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Abstract

Cells must regulate gene expression to control development, differentiation, and to

respond to changes in the environment. The simplistic view of gene regulation states

that an activator or repressor molecule binds to a specific sequence in DNA and

exerts its effects upon transcription. However, the situation becomes more

complicated when we consider that eukaryotic DNA is packaged into chromatin.

Chromatin must be modified in order to control gene expression. Cells have adopted

many ways of achieving this including: chromatin remodelling, DNA methylation

and histone modifications. The exact contributions of each of these need to be

elucidated in order to fully understand gene regulation.

Many common themes run through gene regulation between species, suggesting

there are conserved mechanisms of gene control. Using the simple model organism,

Saccharomyces cerevisiae, I have studied two types of gene repression found in plant

species to compare and further determine their molecular bases. A repetitive DNA

fragment previously found to induce de novo methylation and expression variegation

in Petunia hybrida, was found to cause gene silencing in S. cerevisiae in a

methylation independent manner. The possible mechanisms of this were dissected

using gene replacements and protein expression studies.

In a separate series of experiments, putative homologues of the S. cerevisiae

transcriptional co-repressor, TUP1, were tested for chromatin remodelling ability in

yeast. A TUP1 homologue from Arabidopsis thaliana was shown to repress



transcription in S. cerevisiae but in a different manner from TUP1 indicating

mechanistic similarities and differences between their functions.

By using yeast as a tool to study gene regulation in higher eukaryotes, the principles

of gene repression can be explored and we can speculate the roles of the individual

features such as chromatin remodelling and DNA methylation.



Chapter 1 - Introduction

1.1 Chromatin Structure

The genetic information that determines the basic characteristics of an organism is

encoded by DNA. Cells organise the DNA into chromosomes, which must be stably

maintained and inherited following each cell division. The regulation of DNA

expression into protein is essential for all processes that a cell faces during its

lifetime. DNA contained within the cell nucleus must be folded and packaged into a

nucleoprotein complex known as chromatin. This compacted structure containing the

DNA, must be overcome to allow processes such as replication, transcription and

repair.

Chromatin consists of a fundamental repeating unit known as the nucleosome. The

nucleosome core particle consists of an eight histone proteins with 147bp of DNA

wrapped around the octamer in one and three-quarter turns. Histones are small basic

proteins consisting of a globular domain and a flexible N-terminal tail, which

protrudes from the nucleosome. Histones fall into five classes: HI, H2A, H2B, H3

and H4 (reviewed by Wolffe, 1995). Each class contains histone variants, which are

responsible for gene-specific or tissue-specific chromatin structure (Franklin and

Zweidler, 1977). H2A, H2B, H3 and H4 are known as the core histones and two of

each type comprise the histone octamer. These proteins are highly conserved

throughout evolution, with H3 and H4 being the most conserved. Indeed, there are

only eight amino acid changes between the yeast S. cerevisiae H4 and human H4,
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which suggests histones have an important cellular role. This is further demonstrated

by the observation that budding yeast are not viable without a complete set of core

histones (Kim et al., 1988). Post-translational modifications occur on N-terminal

tails, including acetylation, methylation, and phosphorylation can influence gene

expression and chromosome behaviour (reviewed by Jenuwein and Allis, 2001).

The complete nucleosome particle consists of the nucleosome core, histone HI and

linker DNA, which is the DNA between nucleosome core particles. HI is the largest

of the histones and associates with the linker DNA (Allan et al., 1980). In higher

eukaryotes, there is approximately one H1 molecule for each core particle; however,

there may not be an association at every nucleosome core. Studies suggest HI is

required for the stabilisation, but not the establishment of higher-order structures

(Schwarz and Hansen, 1994). S. cerevisiae contains a gene HHOl, which encodes an

HI-like protein, but whether this protein functions as mammalian HI remains

unknown (Ushinsky et al., 1997).

The nucleoprotein complex generated by histone association with DNA produces a

"beads on a string" structure (fig. 1.1). This structure can be observed at low salt

concentrations. However, in higher eukaryotes, at physiological salt concentrations

electron micrographs show a more compact 30nm fibre (Thoma et al., 1979). This is

believed to be the chromatin structure that is present during most of the cell cycle.

Further compaction of the chromatin fibre occurs during mitosis and meiosis (fig

1.1). The 30nm chromatin fibre is not rigid; it is believed to be a dynamic structure

and in equilibrium with less compact states. These states can be observed by
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differential staining of the nucleus. The more compact state is known as

heterochromatin (Heitz, 1928) and is generally transcriptionally repressed. It

corresponds mainly to centromeres and telomeres and is enriched in repetitive

DNAs. The fibres that are less densely stained are euchromatin, which contain

mainly active genes and make up the majority of chromatin. The molecular

mechanism by which the equilibrium between states is controlled may influence gene

expression. For example, acetylation of H4 slightly influenced the dynamics of

chromatin folding suggesting histone modifications play a role in gene expression

and chromatin structure (Tse et al., 1998).
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Figure 1.1: Folding of chromatin into higher order structures. This schematic
diagram shows the transition from naked DNA into the chromosomes observed
during metaphase in mitosis, with intermediates shown.



1.2 Chromatin and Gene Expression

Transcription of genes in eukaryotic cells requires a number of basal and gene-

specific regulatory proteins. General transcription factors are responsible for

promoter recognition; for example, transcription by RNA polymerase II requires the

binding of TFIID at the TATA box. This recruits other basal transcription factors,

which position RNA polymerase II at the promoter, so that it can transcribe the gene.

Regulation of genes also requires gene-specific proteins binding to cA-acting

sequences to enhance DNA transcription. This model works very simply on naked

DNA, but when we consider that eukaryotic DNA is packaged into chromatin the

situation becomes more complicated. Chromatin is generally repressive to

transcription since DNA binding sites for proteins involved in transcription may be

obscured by nucleosomes. Therefore changes must be made to the chromatin to

allow transcription or repression. Such alterations include covalent modifications to

histone tails and chromatin remodelling (fig. 1.2)
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Chromatin remodelling complexes

DNA binding trans-activators and
basal transcription factors

Active chromatin

Figure 1.2: Influence of chromatin remodelling complexes on general
transcription. Chromatin generally has a repressive structure if positioned
nucleosomes occlude binding sites for DNA-binding proteins. Chromatin
remodelling complexes alter nucleosomes and allow access of the basal
transcriptional machinery and trans-activating factors to the promoter and
relevant binding sites.



1.2.1 Chromatin Remodelling

Chromatin remodelling is carried out by multi-protein complexes, which mobilise or

modify nucleosomes in order to activate or repress gene transcription in a targeted

manner. Chromatin remodellers include the SWI/SNF, ISWI, and NURD complexes.

A well-characterised example is SWI/SNF, which was originally identified in S.

cerevisiae in a screen for sucrose fermentation and mating switch defects (reviewed

by Peterson and Tamkun, 1995). SWI/SNF is a multi-subunit complex comprising at

least 11 proteins and is responsible for the regulation of round 6% of genes in S.

cerevisiae including, SUC2 and FLOl (Hirschhorn et al., 1992; Fleming and

Pennings, 2000). Homologues are found in D. melanogaster, A. thaliana and

mammalian cells.

SWI/SNF chromatin remodelling complexes are ATP-dependent, that is, they utilise

the energy generated from the hydrolysis ofATP to remodel nucleosomes. They also

contain a highly conserved helicase domain, although the associated helicase activity

has never been shown (Laurent et al., 1993). SWI/SNF interacts with DNA in a non¬

specific fashion; therefore, it is recruited to genes by specific DNA-binding proteins

(Cote, et al, 1994). SWI-SNF alters nucleosome positioning, allowing activators to

bind to their sites previously occluded by nucleosomes, thus activating transcription.

The exact mechanism by which SWI/SNF remodels nucleosomes and alters their

positions is not fully understood. End-labelling analysis of DNasel digested

nucleosomal DNA that had been incubated with SWI/SNF, revealed different
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digestion patterns of chromatin. This implies that SWI-SNF is capable of altering the

interactions between histones and DNA, perhaps by inducing some conformational

change in the nucleosome (fig. 1.3). SWI-SNF complexes are capable of a process

known as octamer transfer. This is the directed movement of a histone octamer from

one molecule of DNA to another (Phelan et al., 2000). However, this is a very

inefficient process. Another activity of SWI-SNF that is more efficient and perhaps

relevant is sliding (Whitehouse et al., 1999). Sliding occurs when SWI/SNF directs

the movement of nucleosomes along a segment ofDNA from one site to another (fig.

1.3). Sliding and conformational changes in nucleosomes may be important in

revealing DNA binding sites at promoters for gene activation. Indeed, studies at the

SUC2 promoter in S. cerevisiae, show activation of SUC2 transcription upon

remodelling of nucleosomes which previously occluded the TATA box and upstream

activating sequences (Gavin and Simpson, 1997). However, chromatin remodellers

generally do influence transcription alone but in conjunction with complexes that

modify chromatin, such as histone acetyltransferases.
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A. Sliding

Change in both DNA
and histone structure

Change in histone
conformation

Change in
conformation of DNA

(Derived from Narlikar et a!., 2002)

Figure 1.3: Models for the mechanism of ATP-dependent chromatin
remodelling. (A) shows sliding where chromatin remodellers direct the
movement of nucleosomes from one area of DNA to another. (B) shows the
putative conformational changes imposed by chromatin remodellers on histones,
DNA or both to facilitate access of basal transcriptional factors to sites within the
DNA.

B. Conformational Change



1.2.2 Histone Modifications

The N-terminal tails of histone proteins are subject to a wide variety of post-

translational modifications (fig. 1.4). These distinct changes provide specific binding

sites for chromatin-associated proteins, which determine the transcriptional

regulation of the locus. Indeed, differences in histone modifications can reflect

whether or not a locus is "heterochromatic" or "euchromatic". The diverse array of

possible modifications, which can occur on any one nucleosome, led to the histone

code hypothesis (reviewed by Jenuwein and Allis, 2001). This hypothesis predicts

that a particular set of alterations to histones can dictate the transcriptional activity of

a locus. Modifications imposed upon histones may be interdependent and various

combinations can be applied to any one nucleosome. The balance of these

interactions determines the proteins recruited and ultimately the transcriptional

activity. The histone code provides an additional level of regulation to the underlying

DNA sequence and the regulatory nature of these modifications must be deciphered

to fully understand this.

Histone acetylation correlates with an increase in gene expression. For example, it

has been documented in Saccharomyces cerevisiae, where most of the genome is

active; histones are hyperacetylated (Clark et al, 1993). However, at inactive loci,

hypoacetylated histones are found (Braunstein et al, 1993).

Acetylation occurs on all four core histones on positively charged lysine residues.

This reduces the net charge by neutralising the positive charge on the lysine. It is
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thought that the loss of this positive change reduces the affinity of the histone for the

negatively charged DNA backbone, thus giving a more open chromatin structure

(Hong et al., 1993). This reaction is carried out by histone acetyltransferases (HAT),

which covalently attach an acetyl group from acetyl co.A to the histone. This process

can also be reversed by histone deacetylases (HDAC) that remove the acetyl group

from the lysine residue. The equilibrium between these two enzyme activities

determines the number of acetylated lysine residues per histone. Many general

transcription factors have HAT activity, for example, TAFn250 (Mizzen et al.,

1996). HATs and HDACs tend to form part of larger transcriptional regulatory

complexes and are recruited to the DNA to activate or repress transcription. The Sin3

complex requires the HDAC, RPD3 for full repression of genes (Kadosh and Struhl,

1997). GCN5, a HAT is found associated with the SAGA chromatin-remodelling

complex (Grant et al., 1997). HATs and HDACs are found to be conserved in a wide

variety of organisms where they carry out similar functions underlining their

importance through evolution.

The acetylation mark on histones acts as a beacon for proteins to bind. The SWI/SNF

complex contains a protein with a bromodomain, which has the ability to bind

acetylated lysine residues (Dhalluin et al., 1999). Conversely, repressors such as SIR

proteins and TUP1-SSN6 preferentially bind hypoacetylated histone tails

(Edmondson et al., 1996; Carmen et al., 2002). Thus, the acetylation status of

nucleosomes directs specific protein binding, which influences gene expression.
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Methylation of histones can occur on arginine and lysine residues. Arginine

methylation is a rare modification associated with activation of genes and has been

implicated in signal transduction cascades in response to hormones (Wang et ah,

2001). Methylation of different lysine residues, by a family of histone

methyltransferases, can have either activating or repressive effects on gene

transcription. Methylation of lysine-4 on histone H3 tends to be a mark of

euchromatin (Strahl et al., 1999) whereas lysine-9 methylation of the same histone is

associated with heterochromatin and repressed genes (Nakayama et al., 2001).

Methylation of lysine-9 is carried out by the chromodomain protein SUV39H1 also

known as Su(var)3-9 in D. melanogaster or Clr4 in S. pombe (Rea et al., 2000). This

protein contains a SET domain, which is conserved among histone

methyltransferases. Lysine-9 methylation of H3 creates a binding site for

heterochromatin protein 1 (HP1) (Bannister et al., 2001; Lachner et ah, 2001). HP1

is an important protein involved in gene silencing, which is conserved in fission

yeast, flies, mammals and plants. Binding of HP1 to lysine-9 can lead to the

polymerisation of HP 1 along the chromatin by virtue of its self-association ability

(Cowell and Austin, 1997) and silencing of the locus in question (fig. 1.5). HP1 and

lysine-9 methylation are found at centromeres and are important for the maintenance

of the heterochromatic state (Peter et ah, 2001).

No lysine-9 methylation has been detected in S. cerevisiae, however the yeast

genome is generally transcriptionally active with few areas of heterochromatin.

Notably, lysine-4 methylation is found in S. cerevisiae where the situation is more

complex. Dimethylated lysine 4 residues are associated with either active or inactive

12



genes but trimethylated lysine 4 residues are exclusively associated with active genes

(Santos-Rosa et al., 2002). Moreover, proteins containing SET domains have been

identified in S. cerevisiae\ one such protein SET1 is required for full rDNA silencing

(Briggs et al., 2001).

Histone modifications play an important role in gene regulation and may also have a

role in organising chromosome structure. Phosphorylation of serine 10 on H3 has

been implicated in inducing chromosome condensation during mitosis (reviewed by

Cheung et al., 2000).
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inducing a heterochromatic state.



1.2.3 DNA Methylation

Methylation of the carbon-5 position of cytosine residues in CpG dinucleotides is a

feature ofmany eukaryotic genomes. Lower eukaryotes such as S. cerevisiae and S.

pombe have no detectable DNA methylation however; vertebrate and plant genomes

contain mainly methylated DNA. Non-methylated CpG dinucleotides are restricted

to CpG islands, which usually correlate to functional promoters. There is much

evidence supporting the link between DNA methylation and transcriptional

repression. For example, treatment of DNA with 5-azacytidine, a DNA

demethylating agent causes the reactivation of previously repressed genes (Jones and

Taylor, 1980) and retroviruses (Groudine et al., 1981).

The molecular mechanism of how DNA methylation represses transcription is still

unclear, however, evidence suggests a link between DNA methylation and histone

deacetylation. Treatment of cells with the deacetylase inhibitor, trichostatin A,

increases the expression ofmethylated genes (Chen and Pikaard, 1997). Furthermore,

the MeCP2 complex, which specifically binds methylated DNA, can bind to the Sin3

complex that contains an HDAC (Nan et al., 1998). This suggests MeCP2 recruits

the HDAC complex to DNA to bring about transcriptional repression. DNA

methylation may therefore provide an epigenetic mark, which allows areas of DNA

to be silenced.
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1.2.4 Position Effect Variegation

Position effect variegation (PEV) is characterised by change in levels of gene

expression upon the integration or translocation of a gene to another region of the

genome. PEV was first observed in D. melanogaster when a euchromatic gene was

translocated to a heterochromatic region. This relocalisation caused silencing of the

translocated gene in some cells, resulting in a variegated phenotype (Muller, 1930).

PEV is a heritable but can be reversed by moving the gene away from the

heterochromatic locus (Henikoff, 1990). The mosaic phenotype that results from

PEV is due to the variation in spread of heterochromatin over the gene. Screens for

modifiers of position effect variegation have been invaluable in determining the

molecular players in the formation of heterochromatin, such as HP1 (Eissenberg et

al., 1990).

1.2.5 Epigenetic Regulation

The previously discussed mechanisms of histone modification, chromatin

remodelling and DNA methylation can all be regarded as examples of epigenetic

gene regulation. Epigenetics is defined as a heritable change in gene expression that

occurs without a change to the DNA sequence. All of the epigenetic marks discussed

are intrinsically linked to provide intricate and accurate gene regulation. As

discussed, DNA methylation is associated with histone deacetylation but also histone

methylation. In the filamentous fungus, N. crassa, disruption of lysine-9 methylation

led to a loss of DNA methylation (Tamaru and Selker, 2001). Furthermore, a
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methyltransferase has been identified in A. thaliana, which contains a chromodomain

linking chromatin structure and DNA methylation (Henikoff and Comai, 1998).

Putative chromatin remodelling proteins such as DDM1 from A. thaliana, which

contains homology to SWI/SNF, confirm this (Jeddeloh et al., 1999). Plants mutant

for DDM1 have disrupted DNA methylation patterns and lose gene silencing. These

findings amongst others confirm that the field of epigenetics is important for our

understanding of gene regulation, and interpreting how these processes relate to each

other should expand it.

1.3 TUP1/GROUCHO Family of Transcriptional Co-repressors

Transcriptional co-repressors generally form part of a multi-protein complex brought

to promoters to repress genes. Co-repressors adopt many mechanisms for gene

repression, including chromatin remodelling and histone deacetylation. One such

group of co-repressors is the TUP1/GROUCHO family, which have been grouped

into a family due to their partial sequence and structural similarities, and

conservation in their methods of repression (fig. 1.6). The family comprises members

from different species, all of which contain several WD repeats namely: TUP1,

GROUCHO, LEUNIG and Transducin-like enhancers of split (TLE).
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Figure 1.6: Structural comparison of the GROUCHO/TUP1 family of transcriptional
co-repressors.(A) Shows a schematic comparison of domains from TUP1
homologues. Numbers above and in parentheses correspond to amino acids. Shown
are ScTUPI from S. cerevisiae, CaTUPI from C. albicans, LEUNIG and BP1 from
A. thaliana, and GROUCHO from D. melanogaster. The Q-rich domain corresponds
to a region rich in glutamine and SP-rich domains correspond to regions rich in
serine and proline. (B) shows an alignment of amino acid residues comparing
S. cerevisiae TUP1 (blue) and BP1 from A. thaliana (green). (C) shows an alignment
of amino acid residues comparing S. cerevisiae ARC40 (red) and A. thaliana BP1.
(green).
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1.3.1 WD Proteins

WD proteins are found in all eukaryotes and are involved in a wide variety of cellular

processes, including: cell signalling, transcriptional repression, cytoskeletal

assembly, mitotic spindle formation, and vesicle trafficking (reviewed by Smith et

al., 1999). The best characterised of these proteins is the Gp subunit of hetero-

trimeric G-proteins.

The WD repeat is a 44-60 amino acid sequence that generally has a GH dipeptide 11-

24 residues from its N-terminus and a WD dipeptide at its C-terminus, with a

conserved core sequence in between these dipeptides. A formulaic representation is

given below:

(X^-tGH-X^-WD]}

Variable Constant core

length length

This repeat adopts a (3-propeller fold (fig. 1.7), which is a symmetrical structure

thought to create a stable platform for forming multi-protein complexes and allowing

simultaneous interactions between multiple proteins. This may reflect why the WD

repeat is found in such a diverse range of proteins, including the TUP1/GRO

superfamily of transcriptional repressors.
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A

B

(Reproduced from Smith et al., 1999)

Figure 1.7: Structure of the WD repeat of the G(i subunit of a heterotrimeric G-
protein. (A) shows the top view and (B) the side view. The a-carbon backbone is
shown in grey, the N and C termini of the protein are coloured by red and yellow
respectively. Each blade (shown in blue) consists of four single-stranded
antiparallel p-sheets, which combine to form the P-propeller structure.



1.3.2 TUP1-SSN6 Co-repressor

The TUP1-SSN6 co-repressor complex, found in S. cerevisiae, is responsible for the

repression ofmany diverse genes. It is a member of a large family of transcriptional

repressors conserved in flies, worms, mammals and plants. It exemplifies how a

global repressor can be part of a system that allows it to be highly selective about the

genes it acts upon. The TUP1/SSN6 complex consists of one SSN6 molecule with

four TUP1 molecules associated (Williams et al., 1991).

Some of the many genes that TUP1-SSN6 regulates can be grouped into families on

the basis of their function. These include flocculation genes, oxidative stress genes,

and glucose repressive genes (reviewed by Smith and Johnson, 2000). TUP1-SSN6

itself has no intrinsic DNA binding ability; it represses genes by interaction with a

specific DNA binding protein (Keleher et al., 1992). Each set of genes has a

regulatory region that the specific DNA binding protein will bind, TUP1-SSN6 then

associates with the specific protein, localising it next to the gene to be repressed

(fig. 1.8).

TUP1-SSN6 interacts with the DNA binding protein using the evolutionary

conserved WD repeat domain. SSN6 contains a different type of repeat known as a

tetratricopeptide repeat. SSN6 has 10 of these repeats which form a right handed

helical structure also involved in protein-protein interactions, including its interaction

with TUP1. These functional domains both interact with 0C2/MIG1 complex when

regulating a-cell specific genes (Komachi et al., 1994; Smith and Johnson, 2000).
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However, in most circumstances it is SSN6 that associates with the DNA binding

molecule, leading to the proposal that SSN6 acts as an adapter protein (Tzamarias

and Struhl, 1995). Furthermore, it has been shown that repression of genes is TUP1

and not SSN6 dependent (Tzamarias and Struhl, 1994).

There are several models of TUP 1 mediated repression, which all potentially play a

role in its function. For example, TUP1 is known to act by altering the local

chromatin structure around the genes it regulates. Positioned nucleosomes are found

upstream of both a2 and FLOl promoters (Shimizu et al, 1991 and Fleming and

Pennings, 2001). TUP1 also has been found to interact with chromatin itself by

specific interaction with the N-terminal tails of histones H3 and H4 in vitro

(Edmondson et al., 1996). Removal of these histone tails activates genes formerly

repressed by TUP1-SSN6. Furthermore, the histone-binding domain of TUP1

overlaps its repression domain, suggesting the interaction with histones is

functionally relevant. TUP1 binding of H3 and H4 is specific for hypoacetylated

histones suggesting that histone acetylation may modulate TUP1 activity. The

finding that TUP1-SSN6 interacts directly with RPD3 and HOS1 reinforces this

idea. Yeast mutant in class I histone deacetylases (HDAC) RPD3, HOS1, and HOS2

have hyperacetylated histones H3 and H4 and exhibit a loss of TUP1-SSN6 mediated

repression at MFA2 and SUC2 genes (Watson et al., 2000). Other studies suggested

that class II HDACs were also involved in TUP1-SSN6 repression. Deletion of the

HDA1 histone deacetylase led to hyperacetylation of histones H2B and H3

producing a phenotype similar to a tupl mutant (Wu et al., 2001). Therefore, it is
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likely that TUP1-SSN6 represses different genes using different types of HDAC or

there is some functional redundancy between HDACs.

The ability of TUP 1 to associate with hypoacetylated histones and HDACs suggests

the co-repressor can nucleate an altered chromatin structure, which spreads along the

template. Indeed, TUP1-SSN6 has been shown to remodel nucleosomes up to 5 Kb

upstream of the FLOl promoter (Fleming and Pennings, 2001). There is conflicting

evidence as to whether TUP 1 itself spreads along the region it represses in a manner

similar to SIR proteins. At the STE6 gene, ChIP analysis showed a high density of

TUP1 over the whole locus (Ducker and Simpson, 2000), however other studies

showed TUP1 localisation was limited to the 0(2 binding site (Wu et al., 2001).

In addition to affecting chromatin structure, TUP1-SSN6 also represses genes by

interacting with the basal transcriptional machinery. These interactions alone are

sufficient for repression since studies have shown TUP1-SSN6 activity on naked

DNA in vitro. Genetic screens for genes affecting TUP1-SSN6 repression have

identified proteins associated with RNA polymerase II, for example, SRB7. TUP1

has been shown to associate with SRB7 both in vitro and in vivo (Gromoller and

Lehming, 2000). Yeast carrying a mutant allele of SRB7, which disrupts its ability to

bind TUP1, exhibited a phenotype similar to a tupl mutant, causing de-repression of

genes. TUP1 and MED6, a holoenzyme protein, which interacts with activators to

stimulate transcription, both compete for SRB7 binding to determine gene

expression. It is also thought that TUP1 alters the local chromatin structure and
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inhibits TATA-binding protein (TBP) from associating with DNA, therefore

allowing gene repression (Kuras and Struhl, 1999).

The mechanisms of repression described are not mutually exclusive and are likely to

vary between genes. Other members of the TUP1/GRO family of co-repressors

employ similar strategies for gene repression.
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A

B

Gene Families Repressed by TUP1-SSN6 DNA-Binding Protein

a-cell specific genes a2 and MCM1
DNA damage induced genes CRT1
Flocculation genes ?
Glucose repression genes MIG1

Haploid-specific genes al and a2
Meiosis specific genes ?
Osomtic stress induced genes SKOl

Oxygen utilisation genes ROX1

Sporulation specific genes ?
Starch degrading enzymes NRG1

(Adapted from Smith and Johnson, 2000)

Figure 1.8: Gene repression by TUP1/SSN6. (A) shows the mechanism of
TUP1/SSN6 mediated repression. The co-repressor binds to a specific DNA-
binding protein, usually via interactions with SSN6. This brings the TUP1/SSN6
complex in proximity to the promoter, where it orders nucleosomal arrays or
interacts with RNA polymerase II to induce repression. (B) shows the families of
genes regulated by TUP1/SSN6 and the equivalent DNA binding protein.
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1.3.3 GROUCHO

Initially, groucho (gro) was identified in a screen for genes affecting neurogenesis in

Drosophila, with one mutation resulting in a phenotype of thick sensory bristles over

the eyes resembling the bushy eyebrows of Groucho Marx. Groucho was shown to

be part of the enhancer of split complex (E (spl)), this complex mediates

neurogenesis via Notch signalling. Cells that have initiated neurogenesis emit a

signal that is received by Notch receptors of neighbouring cells and signal

transduction prevents these cells initiating neurogenesis (reviewed by Parkhurst,

1998). Further studies have shown roles for groucho in development including

segmentation, dorsal/ventral pattern formation, and sex determination (Paroush et al.,

1994).

Like the TUP1-SSN6 co-repressor, groucho lacks a DNA-binding domain and is

recruited to the DNA by protein-protein interactions with specific repressors.

Groucho interacts with a variety of such repressors including the hairy family of

transcription factors, runt domain factors, engrailed and dorsal (Parkhurst, 1998). It

acts as part of a large nucleoprotein complex to achieve repression, which is

illustrated by its action at the zerkniillt gene (fig. 1.9).

The zerkniillt gene is regulated by dorsal, which binds a regulatory sequence

upstream of the promoter where it acts with another transcription factor called dead

ringer. Both bind groucho and bring it in proximity to RNA polymerase II and the

gene to be repressed (Valentine et al., 1998). The complex also contains a protein
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known as capicua, which has an HMG-box (Jimenez et al., 2000). HMG domains are

involved in bending DNA, which allows the protein complex to make interactions

that would otherwise not be possible. Similarly to TUP1, groucho mediates these

protein-protein interactions via its WD repeats, as disruption of these leads to loss of

binding (Jimenez et al, 1997). However, in S. cerevisiae, in most circumstances it is

SSN6 that is involved in protein interactions, but no SSN6 homologue has been

identified yet in Drosophila.

The mechanism by which groucho represses genes, is still poorly understood. There

is no evidence to suggest it interacts with the basal transcriptional machinery in the

same manner as TUP-SSN6. However, similarities in the function of two co-

repressors may arise at the local chromatin level. Groucho has the potential to form

oligomeric structures (Chen et al., 1998) and may impose a repressive chromatin

environment by spreading along the locus like TUP 1 at the STE6 gene.

Groucho, like TUP1, interacts with HDAC1 encoded by the rpd.3 gene in Drosophila

(Chen et al., 1999). This interaction is mediated by the glycine-proline (GP) rich

domain of groucho. Experiments using trichostatin A (TSA) and mutant forms of

rpd3 showed this interaction is functional, since repression of genes by groucho was

compromised. However, the phenotype given by rpd3 mutation is not as severe as

groucho mutation, indicating either functional redundancy of HDACs or, as with

TUP 1, groucho may interact with multiple HDACs to achieve repression depending

on the particular gene. In addition, groucho binds hypoacetylated histone tails;

mutations affecting this binding also weaken its repression (Flores-Saaib and Courey,
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2000). Groucho interacts with histones via its N-terminus, like TUP1, and although

the interacting regions share no sequence homology it is plausible that they both

form similar structures to facilitate histone binding. Interestingly, groucho also

associates with histone HI, which may suggest that groucho is involved in

influencing higher order chromatin structure (Chen et al., 1999).
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Figure1.9:Nucleoproteincomplexinvolvedingroucho-mediatedrepression.GrouchoisbroughtintotheDNAvia interactionwithdorsalanddeadringer.ThismeansgrouchoispositionednearthepromoterofthetargetgeneandtheRNA polymeraseIIcomplex.TheCapicuaproteinisalsopresentwithinthecomplextobendtheDNAallowingmultipleDNA- proteininteractions.



1.3.4 Transducin-Like Enhancer of Split Proteins (TLE)

Homologues of the Drosophila protein GROUCHO were identified in mammalian

cells. The human genome encodes at least four Groucho homologues called

transducin-like enhancer of split proteins 1-4 (Stifani et al., 1992). These have

significant homology to groucho, having similar Q-rich domains and WD repeats. A

further subclass of groucho homologues was also identified, called AES (amino

enhancer of split), which contain the conserved Q-domain but lack the WD repeats.

The GP and SP domains identified in groucho are poorly conserved between TLEs.

Further research showed that mammalian homologues perform functions, which are

similar to those in Drosophila, such as: neurogenesis, Notch signalling, and cell fate

decision. However, the situation in mammalian cells is more complex, given the

identification of multiple homologues and that each TLE has its own expression

pattern (Stifani et al., 1992). Despite these differences, a number of studies have

shown TLEs to behave in a manner similar to TUP1 and GROUCHO: they associate

with themselves allowing oligomeric structures (Palaparti et al., 1997). Therefore,

gene repression may be mediated by TLE spreading along the template. They interact

specifically with histone H3 (Palaparti et al., 1997), and an SSN6-like protein,

encoded on either X or Y-chromosomes in mice and humans, UTX or UTY

respectively. UTX and UTY have been shown to bind TLEs, suggesting they are a

mammalian SSN6 homologue. This implies that TLEs function in a manner

analogous to TUP1-SSN6 (Grbavec et al., 1999).
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These similarities in interactions lead to an understanding of how mechanisms in

transcriptional repression are conserved. They also allow speculation that processes

that occur in one functional homologue may also happen in others. For example, it

has been shown that TLE1 and TLE2 are associated with the nuclear matrix,

allowing concentration of these regulatory factors and facilitating transcriptional

regulation (Javed et al., 2000). This could suggest that TUP1 and GROUCHO also

function in this way, although no studies have shown this yet.

Much more is known about the actual regulation ofTLEs than the other homologues.

Phosphorylation of TLE1 by cdc2 reduces their ability to repress genes. This occurs

during the G2/M phases in the cell cycle. In these phases TLE1 appeared to be

excluded from the nuclei; indeed, one phosphorylation site is located near the nuclear

localisation sequence of TLE1 which may "mask" it, making it difficult for the

protein to pass through the nuclear pores (Nuthall et al., 2002). TUP1 is known to be

a phosphoprotein, therefore a mechanism such as this is plausible for TUP1

regulation.

1.3.5 LEUNIG

LEUNIG (LUG) was first identified in a screen for modulators of flower

development in Arabidopsis thaliana (Liu et al., 1995). This protein was shown to be

a negative regulator of AGAMOUS (AG), a floral homeotic gene, the expression of

which specifies stamen and carpel development. AGAMOUS expression is

established by LEUNIG and maintained by the polycomb protein, CURLY LEAF
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(Goodrich et al., 1997). Mutations in LUG caused ectopic expression of^G mRNA

in petals and sepals resulting in carpel-like structures in the outer whorl and petals or

stamens being absent.

Cloning of the LEUNIG gene showed that it encoded a protein with two N-terminal

Q - rich regions and seven WD repeats at the C-terminal (Conner and Liu, 2000).

These motifs have significant homology to the GROUCHO/TUP1 family of co-

repressors. Furthermore, stamen and carpel development is a process similar to

segment identity organisation in D. melanogaster, suggesting LUG is involved in

similar processes to groucho. Therefore LEUNIG has been proposed as the

Arabidopsis homologue ofTUP 1.

Further evidence of this comes from the discovery of an Arabidopsis protein called

SEUSS (SEU), which is a candidate for an Arabidopsis SSN6 homologue (Franks et

al., 2002). SEU is also a negative regulator ofAGAMOUS, moreover, phenotypes of

SEUSS mutations are similar to those in lug mutants and the double mutant shows an

enhanced phenotype. Seu mutations also cause ectopic expression ofAG mRNA. The

SEUSS gene encodes a glutamine rich protein with a putative protein-protein

interaction domain, which is consistent with SEUSS being functionally homologous

to SSN6 as the S. cerevisiae protein also has glutamine rich domains and is involved

in protein-protein interactions in the cell. Furthermore, yeast-2-hybrid analysis

revealed that SEU interacts with LUG. Both SEU and LUG have no apparent DNA

binding motifs, implying an adapter protein would be required to recruit the complex

to the DNA.
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One hypothesis for the action of LUG and SEU is similar to the mechanism of the

TUP1/SSN6 complex in yeast: SEU may bind a protein known as APETALA 2.

APETALA 2 is thought to recruit the SEU/LUG complex to the AGAMOUS gene in

the way that MIG1 will recruit TUP1/SSN6 to the SUC2 gene, although further

analysis is necessary to confirm this.

1.4 Gene Silencing in Plants

When transgenes were first introduced into plants, it became clear that they are

subject to unpredictable silencing and variable expression patterns. This epigenetic

silencing falls into two categories. One type of silencing is due to the chromosomal

location of the integrated transgene where it is subject to position effects of its

chromatin environment (discussed in section 1.2.4). The other type of silencing

became known as homology-dependent gene silencing. When multiple copies of

DNA sequences are present within a genome they interact and become silenced. This

is somewhat counter-intuitive; if multiple copies of a gene were present, a higher

level of expression would be expected. The endogenous genes are also subject to this

silencing in a manner similar to paramutation, where an interaction between two

alleles results in the heritable alteration in the expression pattern of one of the alleles

(reviewed by Martienssen, 1996). Homology-dependent gene silencing is a

troublesome phenomenon for genetic engineering, but it has brought to light many

epigenetic features of gene regulation and has uncovered an ancestral mechanism for

the suppression of transposable elements and viruses.
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1.4.1 Homology-dependent Gene Silencing (HDGS)

Homology-dependent gene silencing can occur at different stages in the expression

of genes. This allows HDGS to be separated into two categories: transcriptional gene

silencing (TGS) and post-transcriptional gene silencing (PTGS). The most notable

differences being that during TGS no transcripts are detected but for PTGS

messenger RNAs are produced but not translated. TGS and PTGS share some

common features such as de novo methylation of the specific DNA sequences

(Matzke, 1989), but also differ mechanistically. For TGS it is the homology between

the promoters, which is essential for silencing, but in PTGS, the coding regions of

the gene are necessary for silencing. Indeed, it is the promoters of genes silenced by

TGS, which are methylated, but methylation is found in the coding regions of genes

silenced by PTGS. TGS is a heritable epigenetic state but PTGS can be lost after

meiosis. However, common themes run through both mechanisms and the pathways

may overlap to some extent.

Similar processes to TGS and PTGS occur in the filamentous fungi Neurospora

crassa and Ascobolus immersus. These have been used as model organisms for

repeat-induced gene silencing and much of the information generated from such

experiments can be applied to plants.
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1.4.2 Gene Silencing Mechanisms in Filamentous Fungi

Much of the evidence supporting the relationship between repeated DNA sequences

and silencing comes from phenomena noted in two filamentous fungi. Methylation

induced premeiotically (MIP) and repeat-induced point mutation (RIP) are processes

that occur in response to repeated DNA sequences in the fungi, Ascobolus immersus

and Neurospora crassa, respectively (Goyon and Faugeron, 1989; Selker and

Garrett, 1988). These are virtually identical silencing mechanisms, where repeated

DNA becomes methylated and silenced. In RIP however, this silencing becomes

irreversible due to the spontaneous deamination of methylated cytosine residues

generating C—>T transitions. Once a sequence has been mutated by RIP, it becomes a

target for de novo methylation of the remaining cytosine residues further, reinforcing

the silenced state.

The exact mechanisms of these silencing events remain unclear. The recognition of

the repeated sequences is likely to involve DNA: DNA pairing. This is strongly

implied by the fact that the DNA modifications are exclusively confined to the

duplicated sequences. Furthermore, closely linked repeats are discovered more

readily by the RIP machinery than duplications that are separated (Selker, 1999).

Intricate links between chromatin structure and DNA methylation have been

established in N. crassa. Inhibition of histone deacetylases causes a loss of DNA

methylation and RIP gene silencing, showing that two are closely linked and play a

role in silencing (Selker, 1998). In addition, the discovery that mutation of a lysine-9

histone methyltransferase causes loss of DNA methylation further connects the roles
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of chromatin structure and DNA methylation (Tamaru and Selker, 2001). This

implies that the genes silenced by RIP are likely to have an altered chromatin

structure.

This change in chromatin conformation has been hypothesised to allow the

production of so called aberrant RNA. This is RNA, which is somehow different in

structure to RNAs produced by genes that are not subject to silencing. This suggests

a link with another silencing mechanism found in N. crassa, known as quelling

(Romano and Macino, 1992). Quelling has similar mechanistic properties to PTGS in

plants and is used as a model system. Quelling is triggered by duplicated coding

sequences, which become silent. This is partially separate from RIP, as it is reversed

once transgenes are removed. Mutants defective in quelling have been observed and

one gene identified in this screen, qde-1, was shown to encode an RNA-dependent

RNA polymerase (RdRP) (Cogoni and Macino, 1999). It is hypothesised that this is

produced in response to aberrant RNAs produced by a highly active transgene or by

a silent locus. The RdRP synthesises complementary RNAs generating double

stranded RNA species that are known to promote gene silencing (Mette et al., 2000).

This process may also be used to reinforce silencing already achieved by RIP,

suggesting mechanistic links between transcriptional and post-transcriptional gene

silencing.

Much of our knowledge of plant transcriptional gene silencing and post-

transcriptional gene silencing has been based on observations from these filamentous

fungi, indicating an evolutionary conserved mechanism for silencing repeated DNA.
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1.4.3 Post-transcriptional Gene Silencing

PTGS genes are silenced due to a sequence-specific RNA degradation process that

affects homologous transcripts. RNA directed silencing or RNA interference (RNAi)

has been observed in many other organisms including C. elegans and D.

melanogaster. For example, multiple copies of a transgene caused gene silencing in

D. melanogaster. This silencing was found to be dependent on a polycomb protein

(Pal-Bhadra et al., 1997). Polycomb proteins are involved in homeotic gene

expression and cellular memory. Our understanding of PTGS like phenomena in

other organisms can contribute to understanding the mechanisms in plants.

In fact, much of our understanding of PTGS comes from quelling in N. crassa and

plants infected by viruses that have RNA intermediates in their life cycle. Like

quelling, it is believed that transgenes and viruses produce aberrant RNA. What

constitutes aberrant RNA is unknown; it may be a result of the high expression of

these genes. Another hypothesis suggests that it is DNA: DNA pairing between

homologous sequences interferes with transcription. DNA: DNA pairing produces an

RNA species, which is recognised by the cell as different, perhaps due to the

introduction of a premature stop codon. This aberrant RNA induces the production of

an RdRP that produces small complementary RNAs (Hamilton and Baulcombe,

1999; Mourrain et al., 2000). These small RNAs pair with the mRNA transcribed by

the gene and produce dsRNA species, which are believed to be degraded by a double

strand dependent RNase (Hammond et al., 2000). This prevents the expression of

proteins from these mRNAs, thus silencing the gene (fig. 1.10). Silencing of this type
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can spread throughout the plant by a signalling molecule, popularly believed to be

double stranded RNA, which travels through the plasmodesmata and phloem

(Palauqui, et al, 1997).

The double stranded RNA not only allows the degradation ofmessenger RNA; it acts

to reinforce the silencing at the DNA level. RNA has been shown to trigger the DNA

methylation found in the coding sequences of PTGS genes (Wassenegger et al.,

1994). Indeed, the methylation found in these genes is found at both symmetric and

asymmetric cytosine residues, which is frequently found at transgenic loci (Meyer et

al., 1994), and is indicative of RNA-directed DNA methylation (Pelissier et al.,

1999). The function of the DNA methylation may not be primarily for gene silencing

but rather for maintenance of the silenced state, as the MET1 gene, homologous to

the mammalian DNA methyltransferase, DNMTl, seems to be required for the

maintenance of the PTGS state (Morel et al., 2000).

The role of double stranded RNA in gene silencing seems to have wider implications

for heterochromatin formation. It has long been established that the Xist RNA

produced from the inactive X chromosome in mammalian cells coats the inactive

chromosome. This is followed by the introduction of a repressive histone code and

DNA methylation (reviewed by Lyon, 1998). More recently, Maison et al. (2002)

noted that pericentric heterochromatin contained an RNA moiety; removal of this

meant the loss of a higher order chromatin structure. Furthermore, constituents of the

RNAi machinery were found to be involved in the organisation of centromeric

heterochromatin in S. pombe (Volpe et al., 2002).
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Deletion of components of the RNA interference-silencing complex (RISC), such as

RdRP, caused loss of silencing of transgenes integrated at heterochromatic

centromeres in S. pombe. These centromeres were also depleted in methylated lysine

9 residues on histone H3 tails. This prevents the recruitment of SWI6, the S. pombe

homologue of HP1, and subsequent silencing. Repeats found at the centromere are

believed to produce RNA species, which are manipulated by the RISC complex to

produce RNAi. It is thought that RNAi may recruit the histone H3 methyltransferase

to impose a repressive chromatin code, which is recognised by other proteins. This is

reinforced by the finding that chromodomains of the type found in the H3

methyltransferase are known to interact with RNA molecules (Akhtar et al., 2000).

Such repression only occurs on one strand, so the other is actively producing RNA,

which leads to a self-reinforcing silent state. Much of the machinery, required for this

type of silencing, has homologues in many other organisms. To date none of the

RISC complex proteins have been identified in S. cerevisiae, which uses the species-

specific silent information regulator (SIR) proteins for heterochromatin-induced gene

silencing.

These observations show a broader spectrum of RNA function within a cell. With

complexes involved in PTGS also involved in heterochromatin formation, it is

feasible that double stranded RNA also may induce a repressive histone code and

heterochromatic state at PTGS genes. A similar mechanism of one strand of DNA

producing transcripts to reinforce silencing may also occur at these genes. The

chromatin-related silencing once thought to be more applicable to TGS may also be

involved in PTGS and the two may be mechanistically related.
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1.4.4 Transcriptional Gene Silencing

Genes silenced by TGS acquire epigenetic states associated with hypermethylation of

promoters and alteration in the local chromatin environment (Matzke et al, 1989; Ye

and Signer, 1996). Like PTGS, it is believed that this gene silencing and DNA

methylation is triggered by DNA: DNA interactions between homologous sequences.

Studies have shown that double-stranded RNA can also trigger promoter methylation

in TGS, implying that TGS and PTGS may have some mechanistic similarities

(Mette et al., 2000).

Various studies suggest that it is unlikely that methylation alone causes gene

silencing in TGS but may act to assist the chromatin components and mark it as a

silent locus for inheritance purposes. Much of our understanding of the TGS

phenomenon, and in particular TGS mutants, has led to a greater knowledge of how

DNA methylation and chromatin structure are intrinsically linked.

Mutations in the Arabidopsis gene DDM1 (decrease in DNA methylation) gene cause

a global decrease in DNA methylation and reactivation of TGS silenced genes

(Jeddeloh et al., 1998) and transposable elements (Miura et al., 2001). This gene was

shown to encode a protein with similarity to the SWI/SNF family of ATP-dependent

chromatin remodelling complexes (Jeddeloh et al., 1999). This suggests DDM1 plays

an indirect role in DNA methylation and may remodel chromatin to allow the access

of DNA methyltransferases. DDM1 is also required to maintain histone H3

methylation at lysine 9, which marks silent chromatin (Gendrel et al., 2002). Since
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DNA methylation has been shown to depend on H3 methylation (Tamaru and Selker,

2001), it is possible that the DNA methylation of transgenes and transposable

elements is guided by H3 methylation at lysine 9. It is tempting to hypothesise a role

of the lysine-9 binding protein HP1 (Bannister et al., 2001; Lachner et al., 2001) and

other chromodomain proteins in TGS. Indeed, homologues of HP1 have been

identified in Arabidopsis (Gaudin et al., 2001). Moreover, a protein isolated from

Arabidopsis, Chromomethylase, contains a chromodomain and a putative DNA

methyltransferase domain, directly linking chromatin structure with DNA

methylation (Henikoff and Comai, 1998).

Mutations in the Arabidopsis MOM (Morpheus molecule) gene have shown that

DNA methylation and gene silencing are not always linked. Arabidopsis cell lines

mutant forMOM, showed activation of previously silent gene (Amedeo et al., 2000).

However, unlike ddml cells, there was no demethylation of the silent loci. Sequence

analysis of the MOM gene revealed it has similarities to the SWI/SNF helicase

proteins suggesting that, like DDM1, MOM may function as part of a chromatin-

remodelling complex. MOM may act as a mediator which works downstream of

DNA methylation to induce gene silencing, analogous to mammalian methyl-CpG

binding proteins which recruit other proteins to methylated DNA to alter the

chromatin structure. Alternatively, MOM may act in another pathway, which is

completely independent ofDNA methylation.

These gene-silencing mutants from Arabidopsis have shown that DNA methylation

is not a pre-requisite for silencing genes. It is clear that chromatin structure plays a
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significant role in the silencing of genes. Indeed, many organisms such as S.

cerevisiae and D. melanogaster have the ability to confer epigenetic states onto

genes without the extensive methylation seen in plant and mammalian cells. The

discoveries linking chromatin structure and DNA methylation may have wider

implications for all species. Mutations in the ATRX gene in humans (Gibbons et al.,

2000) and LSH in mice (Dennis et al., 2001) also cause alterations in genomic

methylation levels, and these genes both encode SWI/SNF like proteins. However,

whether these proteins actually have the proposed chromatin remodelling activities

remains to be seen. The relationship regarding gene silencing, DNA methylation, and

chromatin remodelling is complex and may be situation dependent.

1.4.5 Ancestral Function of Homoiogy-Dependent Gene Silencing

The evolutionary basis of homology-dependent gene silencing is as a protective

mechanism against invasive exogenous DNA such as transposable elements. The

mechanisms of transgene silencing share similarities to those of repression of

repetitive DNA (which may cause deleterious effects through recombination),

viruses, and transposable elements. Therefore, PTGS and TGS are important

protective mechanisms for genomes against recombination and transposition events.

Transgenes share common features with transposable elements given their invasive

and often repetitive nature and are therefore subject to TGS and PTGS.

Like transgenes, transposable elements are generally heavily methylated for silencing

and limiting their spread throughout the genome (Miura et al., 2001). The inverted
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repeats, produced as a result of transposition by transposable elements, are thought to

act as a signal for de novo methylation to the host genome and are believed to be

silenced by TGS. Further evidence linking transgene and transposable element

silencing comes from the ddml mutants. Loss of DDM1 from Arabidopsis leads to

activation of both silenced transgenes and transposable elements suggesting a

common pathway.

Whilst TGS seems to be a mechanism for silencing transposable elements, PTGS is

known to be involved in the repression of viruses in plants. Plant viruses are both

targets and inducers of PTGS. Many of the proteins involved in PTGS are also

essential for viral suppression (Di Serio et al., 2001; Xie et al., 2001). Viroids have

been shown to induce RNA-directed DNA methylation in a similar manner to non¬

pathogenic sequences (Wassenegger et al., 1994). Indeed, any virus with an RNA

genome or an RNA replication intermediate has the potential to induce PTGS.

Furthermore, the systemic spread of PTGS throughout the plant could be seen as a

mechanism to prevent other cells from being damaged by viral infection.

The need to silence parasitic DNA sequences is essential for the integrity of the

genome. Transposable elements and viruses have the potential to transpose and

integrate at potentially deleterious locations within the host genome. The cell has

evolved TGS and PTGS mechanisms to minimise the prospective damage. Whilst

these selfish DNA elements exploit the host genome, the host has also evolved to

utilise the propensity for transposable elements to be silenced to its advantage. The

Lyon hypothesis suggests that the enrichment and non-random distribution of LINE-
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1 elements on the mammalian X-chromosome is a method of harnessing the cells

ability to silence these elements to propagate X-inactivation and silencing along the

chromosome (Lyon, 1998). This suggests that these silencing mechanisms, although

evolved for one purpose, may have wider implications for gene regulation in the cell.

1.4.6 Position Effects and Gene Silencing

As discussed in section 1.2.4, the genomic context ofwhere transgenes are integrated

influences their expression patterns. Genes juxtaposed within heterochromatin are

often silenced, which is a common cause of transgene silencing in plants. In addition,

position effects may be responsible for the transfer of a repressive chromatin

structure to a homologous gene not previously silenced, by DNA: DNA pairing or by

the spread of heterochromatin. It has been shown that transgenes can adopt the

methylation status of the locus where they are integrated (Prols and Meyer, 1992).

Recurring sequence motifs have been observed in DNA that flanks silenced genes in

plants (Matzke and Matzke, 1998). These include matrix attachment regions

(MARs); however, these have also been shown to promote stable expression of

transgenes. The other category of flanking DNA is repetitive sequences including

microsatellites. A repetitive sequence isolated from P. hybrida was shown to

destabilise the expression of an adjacent reporter gene (ten Lohuis et al., 1995). The

sequence was proposed to induce a repressive chromatin structure, which spread

along the reporter gene. A third category of flanking DNA is retroelement remnants.

These have previously been shown to influence expression patterns of adjacent
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regions (Cambareri et al., 1996). The fact that transposable elements are also subject

to transcriptional silencing and are often associated with heterochromatin reinforces

the hypothesis that these can induce position effect variegation.

The different types of gene silencing observed in plants have similar mechanistic

properties and have revealed many functions of chromatin that have wider

implications for the cell. Many of these processes occur in other organisms

suggesting there may be a conserved mechanism of chromatin-mediated gene

silencing.

1.5 Gene Silencing in Yeast

Transcriptional gene silencing occurs in S. cerevisiae by the formation of a

heterochromatin-like structure at discrete loci. The yeast genome is generally

transcriptionally active compared to mammalian cells, and silencing is confined to

the silent mating type loci (HM loci), telomeres and rDNA repeats. Placing genes

next to any of these loci causes position effect variegation and silencing of the

adjacent gene (Rine and Herskowitz, 1987; Gottschling et al., 1990, Smith and

Boeke, 1997). The SIR proteins (silent information regulators), SIR1, SIR2, SIR3,

and SIR4 mediate this process. These SIR proteins do not directly bind DNA, but

form complexes at silent loci by interacting with specific DNA-binding factors. This

gives the SIR proteins added functionality at different loci in a manner similar to

TUP1/SSN6 and its homologues.
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A model for SIR silencing is that SIR3 and SIR4 bind to hypoacetylated N-terminal

tails of histones H3 and H4 (Hecht et al., 1995; Carmen et al., 2002). This forms a

self-reinforcing structure given that SIR3 and SIR4 are capable of homodimerisation

and heterodimerisation. It is thought this forms a higher order structure that spreads

along the silenced locus and stabilises a heterochromatin-like structure (Hecht et al.,

1996). Given that SIR2 is an NAD-dependent deacetylase, it may facilitate SIR3 and

SIR4 binding by inducing hypoacetylation of the relevant histones (Imai et al., 2000;

Landry et al., 2000). Mutational analysis shows that this HDAC activity is required

for silencing, as mutations affecting this enzymatic ability also cause silencing

defects. The structure generated by SIR protein binding is resistant to nucleases and

displays features of heterochromatin such as localisation at the nuclear periphery and

epigenetic inheritance of the silenced state (Palladino et al., 1993).

1.5.1 Silencing at the Silent Mating-Type Loci (HMIoci)

The two silent mating-type loci, HMR and HML confer information to the MAT locus

and are responsible for the mating-type switch in S. cerevisiae. The HM loci are

flanked by cA-acting elements, silencers E and I (for review see Laurenson and Rine,

1992). These silencers limit the spread of SIR proteins to adjacent regions and

impose silencing in a directional manner. The E and I silencers contain arrays of

binding sites for DNA-binding proteins which are required to initiate the assembly of

the SIR complex. The proteins that are responsible for the recruitment of the SIR

proteins by binding these sites are ABF1 (ARS-binding factor 1), and RAP1

(Repressor-activator protein 1), which recruit SIR3 and SIR4 (Sussel and Shore,

48



1991; Boscheron et al, 1996). The silencers also contain binding sites for ORC

(origin recognition complex) that recruits SIR1, which in turn binds SIR4 (Triolo and

Sternglanz, 1996). Multiple mutations in these binding sites are required to affect

silencing, indicating some functional redundancy between the proteins involved.

Once the recruitment is completed, SIR3 and SIR4 are believed to spread along the

locus inducing a repressive chromatin structure.

SIR1 appears to have a different role in silencing than the other SIR proteins. SIR1 is

only involved in silencing at the HM locus, not at the telomeres. Moreover, deletion

of SIR2, SIR3 or SIR4 abolishes silencing at the HM loci, whilst disruption of SIR1

only causes mild defects in silencing. Whilst SIR2, SIR3 and SIR4 are evenly

distributed throughout the silent loci, SIR1 remains localised at the E and / silencers

Rusche et al., 2002). Yeast bearing functional mutations in SIR1 lack stable

inheritance of the silent mating type locus, and are composed of mixed populations

of silenced and non-silenced cells. Studies showed once silencing was established it

was stably maintained, suggesting maintenance and establishment of silent chromatin

is essentially different. This suggests a role for SIR1 in the establishment of silent

chromatin and not maintenance like the other SIR proteins.

1.5.2 Transcriptional Silencing at Telomeres

S. cerevisiae telomeres are composed of C1.3A/TG1.3 repeats of around 300bp in

length (reviewed by Tham and Zakian, 2002). In addition, subtelomeric regions

contain a series of repeats known as X repeats. Genes placed adjacent to long tracts

49



of telomeric DNA become silenced by position effect variegation, specifically called

telomere position effect (TPE) (Gottschling et al., 1990). The TPE phenomenon has

been observed in other organisms such as D. melanogaster and humans. Silent

chromatin found at telomeres has no obvious regulatory role as genes in this region

are sparse, but exists to preserve the integrity of chromosome ends. Indeed, the loss

of SIR2, SIR3 or SIR4 causes a decrease in telomere length and chromosome

instability.

RAP 1 is recruited to the telomere by multiple DNA-binding sites embedded amongst

the telomeric repeats. SIR4 spreading along the telomeric tract is thought to be

facilitated by binding to multiple RAP1 molecules situated along the telomere

(Moretti et al., 1994). SIR2 is recruited by virtue of its interaction with SIR4, which

also recruits SIR3. SIR2 is believed to deacetylate histone tails, which reinforces

SIR3 and SIR4 binding and allows their spread (fig. 1. 11). HDF1, which is the yeast

homologue of the DNA damage repair protein Ku, is also required for telomeric

silencing, and may play a role in SIR protein recruitment (Mishra and Shore, 1999).

ORC, SIR1 and ABF1 are not required for the assembly of SIR proteins onto

telomeres although binding sites have been identified in the subtelomeric X-repeats.

The composition of silent chromatin at telomeres is not uniform, there is a "core"

region which contains SIR2, SIR3 and SIR4, and an extended region furthest from

the chromosome end. This extended region mainly consists of SIR3 and limiting

amounts of the other SIR proteins (Renauld et al., 1993). This observation reinforced
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by the fact that the subtelomeric X-elements act as proto-silencers, which direct

chromatin formation towards the end of chromosomes (Lebrun et al., 2001).

In both the silent mating-type loci and telomeres, there are definite demarcation lines

of what is silent chromatin and active chromatin. This is shown by the presence of

silencer elements, and is reflected by local histone modifications. Suka et al (2002)

demonstrated that acetylation of histone H4 at lysine 16 prevented the spread of SIR3

at yeast telomeres. Such acetylation is carried out by the acetyltransferase SAS2;

yeast with mutated SAS2 exhibited SIR3 spreading from 3 Kb to 15Kb with

hypoacetylation of adjacent chromatin previously maintained active by SAS2. This

implies that H4 lysine 16 acetylation provides a barrier for the spread of SIR proteins

indicating it may be a mark for euchromatin. SIR2 has been shown to deacetylate H4

lysine 16 in vitro, suggesting SAS2 and SIR2 have opposing roles in acetylation and

SIR3 spreading to induce a silenced chromatin state at yeast telomeres.

Further evidence for the role of histone modifications determining heterochromatic

and euchromatic regions comes from the methylation of lysine 79 on histone H3 in S.

cerevisiae. Methylation of this residue is mediated by the methylase DOT1 and

mutations in DOT1 disrupt silencing at both telomeres and silent mating-type locus

(van Leeuwen et al., 2002). One model suggests that methylation of H3 lysine 79

prevents SIR proteins binding to the histone tails. Indeed, H3 lysine 79 methylation

is associated with active chromatin in both yeast and human cells (Ng et al., 2003).

All silenced loci in S. cerevisiae show hypomethylation of this residue. Loss of SIR2,

SIR3 and SIR4 results in increased methylation of this residue, but not to the same
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extent as euchromatin indicating only a partial dependence. The relationship between

SIR proteins and this methylated residue is complicated. However, these

observations combined the acetylation studies, suggest an intricate association

between SIR proteins and modifications on histones, which in turn determines the

chromatin structure of the locus.
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Figure 1.11: Model for SIR-mediated silencing at telomeres. Nucleosomes are
shown as pink ovals and Ac is an abbreviation for acetyl groups. 1. DNA-binding
proteins yKu and RAP1 associate with the telomeric DNA. These recruit SIR2
and SIR4, SIR2 deacetylates histone tails. 2. Following deacetylation SIR3 is
recruited via its association with the hypoacetylated histone tails and also by its
interactions with SIR4 and RAP1. 3. SIR3 and SIR4 form multimers and spread
due to multiple rounds ofdeacetylation by SIR2.



1.5.3 Transcriptional Silencing at the Ribosomal DNA Locus

The rDNA locus in S. cerevisiae consists of 100-200 tandemly repeated copies of

rDNA genes, which form the nucleolus at the nuclear periphery. Each repeat contains

a 5S rRNA gene and a 35S pre-rRNA gene transcribed by RNA polymerases III and

I respectively. Some rDNA genes are repressed and some are expressed in order to

produce ribosomes. The rDNA sequences are potentially recombinogenic; therefore,

SIR2 represses mitotic and meiotic recombination events (Gottlieb and Esposito,

1989). SIR1, SIR3 and SIR4 do not play a role in silencing at this locus. The

association of SIR2 with the rDNA locus requires the DNA-binding protein NET1,

although the mechanism of NET 1 recruitment is unclear, since no NET1 binding

sites have been identified (Straight et al., 1999). Certain RNA polymerase II

transcribed genes are subject to SIR2 dependent position effect variegation when

integrated into this locus (Bryk et al., 1997; Smith and Boeke, 1997). This is

surprising since RNA polymerase I and III can transcribe rRNA efficiently at this

locus. This may suggest a specialised form of chromatin at this locus.

Psoralen cross-linking experiments revealed that the chromatin structures of active

and inactive rDNA copies are different. Inactive genes have a regular nucleosomal

array whilst active copies are nucleosome free (Dammann et al., 1993). SIR2 mutants

had increased accessibility to psoralen cross-linking indicating that this structure is

dependent upon SIR2 (Fritze et al., 1997). This specialised chromatin structure may

have originated not to prevent transcription but to exclude recombinational

machinery, which may have deleterious effects.
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1.5.4 Diverse Functions of Silent Information Regulators (SIR)

SIR proteins have additional functions within the cell that appear not to have a direct

relationship with silencing. As previously mentioned, SIR4 associates with HDF1 or

yKu at telomeres. Ku is a DNA-repair protein involved in non-homologous end

joining in double-strand break repair. Upon DNA damage, yKu and SIR4 dissociate

from the telomere and are directed to the site of DNA damage (Martin et al., 1999).

It is unknown whether SIR4 plays a direct role in DNA repair, or whether it is moved

to the site of damage by virtue of its interaction with yKu. However, it has been

hypothesised that SIR4 induces a heterochromatic-like state that aids end joining and

DNA repair.

SIR3 and SIR4 have no known homologues in other species and appear to be specific

for gene silencing in S. cerevisiae. However, the SIR2 protein has homologues from

bacteria to humans. Bacteria have essentially no chromatin; suggesting the enzymatic

properties of SIR2 may play other pivotal roles in cellular processes. Seven putative

SIR2 homologues have been identified in humans. Indeed, four additional SIR2-like

proteins occur in S. cerevisiae. These homologues (HST1-4) may also share a role in

gene silencing (Brachmann et al., 1995). HST2 has histone deacetylase activity and

influences gene silencing at both telomeres and rDNA repeats (Perrod et al., 2001).

One interesting role for SIR2 is its involvement in cellular ageing. Yeast ageing is

based on the number of cell divisions undergone by a mother cell. The accumulation

of extrachromosomal rDNA circles (ERC), generated by recombination of the rDNA
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repeats was shown to cause ageing in S. cerevisiae (Sinclair and Guarente, 1997).

ERC molecules have origins of replication, and therefore multiply at each cell

division. Segregation of ERCs is biased towards the mother cell, and when they

reach numbers of around 500-1000 per cell (after roughly 20 cell divisions), the

mother cell can no longer divide. SIR2 directly controls the levels of ERCs by

preventing homologous recombination of rDNA repeats (Kaeberlein et al., 1999). In

addition, caloric restriction in rodents and S. cerevisiae has been shown to increase

life span (Lin et al., 2000). The increase in life span by this mechanism requires

SIR2 and NPT1, an enzyme involved in the synthesis of NAD. Since the ability of

SIR2 to deacetylate histones is dependent upon NAD, this provides a link between

cellular energy levels and chromatin structure. It is likely that the increased levels of

NAD induced by caloric restriction increase the HDAC activity of SIR2, which

ultimately influences chromatin structure and reduces ERC production.

1.5.5 Other Proteins Involved In Gene Silencing in S. cerevisiae

There are a number of other proteins that play a role in silencing functions, whilst not

as well characterised as the SIR proteins, they mainly consist of proteins influencing

chromatin structure. Histone modifications have been shown to play a role in

silencing; this is reinforced by the finding that a mutation in the SET1 gene

(encoding a histone methylase) alleviates telomeric silencing. The role of histones in

silencing is furthered by the observation that a histone H2A variant, HTZ1, is

required for silencing at HM loci and telomeres (Dhillon and Kamakaka, 2000).
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Chromatin assembly factor-1 (CAF1) mediates the assembly of histones onto DNA.

It comprises a 3 subunit complex, consisting of CAC1, CAC2, and CAC3. Deletion

of any of these genes results in reduced silencing at HM loci, rDNA repeats, and

telomeres (Enomoto and Berman, 1998). The CAF1 complex is also involved in gene

silencing mediated by the HIR (Histone information regulators) proteins. HIR

proteins control the level of histone expression and their deletion has little effect

upon silencing at HM loci and telomeres, however when combined with a deletion of

a CAC gene, the silencing defects at these loci become exacerbated (Kaufman et al.,

1998).

All of the proteins discussed demonstrate the dependence of gene silencing upon

chromatin structure and chromatin-related proteins. Many of the proteins discussed

have homologues in other species, so knowledge of gene silencing in yeast has

implications for gene regulation in organisms with more complex genomes.

1.5.6 Transcriptional Co-suppression in S. cerevisiae

Transcriptional co-suppression, the silencing of genes in response to increased copy

number, has been well documented in plants but until recently not in S. cerevisiae.

This was likely to be due to the low numbers of repetitive sequences in yeast.

However, transposable elements such as Tyl elements are repeated and dispersed

making them good candidates for co-suppression. Jiang (2002) noted that Tyl

elements in yeast are subject to repeat-induced gene silencing at the transcriptional

level. Expression of Tyl elements was found to occur in two states; all genes were
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switched on or all genes were switched off, with rapid switches between the two

states. There was no mosaic expression of the Tyl elements as seen for genes

influenced by position effect variegation. This is the first example of co-suppression

observed in S. cerevisiae, and the mechanisms still remain elusive. One could

hypothesise that chromatin structure might play a role in the repression. Moreover,

this is a clear example of repeat-induced gene silencing that is independent of DNA

methylation, which is often observed in plant systems.

1.6 Thesis Aims

Current knowledge of gene silencing and gene repression mechanisms suggests

common themes running through species. Many proteins involved in repression are

conserved or have conserved mechanisms such as the TUPl/Groucho family of co¬

mpressors. The way that cells silence and respond to repetitive DNA is conserved in

species from fungi, plants and mammals. In most of these cases the role of chromatin

structure is critical.

In chapter 3, I address silencing of repetitive DNA. A repetitive fragment from

Petunia hybrida found to silence genes was introduced into the yeast Saccharomyces

cerevisiae. I observed if this sequence caused gene silencing in yeast and studied the

mechanisms responsible. This established if similar gene silencing mechanisms exist

in plants and yeast. By using the non-methylating organism, S. cerevisiae, as a tool

for studying repetitive DNA, the processes of DNA methylation and chromatin

structure can be dissected.
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In chapter 4, I studied similarities between the TUPl/Groucho family of co-

repressors. Members of this family, Groucho, Leunig, and BP1, were tested for their

ability to repress genes in S. cerevisiae. Since the TUP1/SSN6 co-repressor acts as a

paradigm for the other repressors in this family, I wanted to observe if the other

members could repress genes in the same manner with respect to nucleosome

positioning. This would help establish how functionally related these proteins are and

elucidate their mechanisms of repression.

This thesis should give an insight into different methods of repression from different

species and similarities and differences can be observed and discussed.
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Chapter 2 - Materials and Methods

2.1 Reagents and Solutions

Agarose Gel Loading Buffer - the buffer consisted of 0.208% orange G, 12.5%

ficoll type 400, and lOOmM EDTA.

Antibiotics - Ampicillin was dissolved in distilled water to give a stock solution of

50 mg/ml. Geneticin (G418) was dissolved in distilled water to give a stock solution

of 25 mg/ml.

Chloroform:Isoamyl alcohol (IAA) consisted of chloroform and iso-amyl alcohol

(IAA) mixed at a ratio of 24:1

Diethyl pyrocarbonate (DEPC)-water was prepared by diluting diethyl

pyrocarbonate to 0.1% in distilled water with agitation, followed by incubation at

37°C for 1 hour and autoclaving.

Dithiothreitol (DTT) was prepared by dissolving solid dithiothreitol at 1M in

distilled water, which was stored in small aliquots at -20°C.
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Drop-out mix - this is used in the preparation of synthetic complete medium, it

consists of amino acids and nucleotide bases in the following amounts with the

nutrient that is selected for omitted from the mixture.

Adenine - 0.125g Leucine - 1 Og

Alanine - 2g Lysine - 2g

Arginine - 2g Methionine - 2g

Asparagine - 2g para-aminobenzoic acid - 0.2g

Aspartic acid - 2g Phenylalanine - 2g

Cysteine - 2g Proline - 2g

Glutamine - 2g Serine - 2g

Glutamic acid - 2g Threonine - 2g

Glycine - 2g Tryptophan - 2g

Histidine - 2g Tyrosine - 2g

Inositol - 2g Uracil - 2g

Isoleucine - 2g Valine-2g

EDTA - ethylene diamine-tetraacetic acid (disodium salt) was dissolved at 0.5M in

distilled water and the pH was adjusted to 8.0 with NaOH.

Ethidium bromide stock solution was prepared by dissolving ethidium bromide to

lOmg/ml in distilled water; the solution was stored in a light proof bottle at room

temperature.
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Phenol was prepared as follows: 250g of solid phenol was dissolved in 127ml of 2M

Tris.HCl (pH 7.5) and the phases left to settle. The aqueous phase was removed and

discarded. To the phenol phase, 55ml 2M Tris.HCl (pH 8), 13.75ml m-cresol, 550|ol

(3-mercaptoethanol and 275mg 8-hydroxyquinoline were added. The solution was

mixed well and left to settle. The phenol layer was retained, aliquoted and stored at

-20°C. Buffered phenol chloroform was prepared by mixing phenol, chloroform and

iso-amyl alcohol at a ratio of 25:24:1 respectively.

PMSF - phenyl-methyl-sulphonyl-fluoride was dissolved in isopropanol to a final

concentration of 250mM.

RNase A was dissolved in water to 2mg/ml and boiled for 30 minutes to inactivate

any DNases present in the preparation, then stored in small aliquots at -20°C.

Salmon sperm DNA was dissolved at 2mg/ml in TE (pH 8) overnight on a roller

drum at 4°C, and stored in small aliquots at -20°C.

Sodium Acetate - 3M sodium acetate was prepared by dissolving powder in water

and adjusting to pH 5.2 using concentrated acetic acid.

Sodium dodecyl- sulphate (SDS) - 10% (w/v) stock prepared in distilled water and

pH adjusted to 7.2 with concentrated hydrochloric acid.
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Sephadex G-25 solid was swelled with TE buffer overnight before use, and stored at

room temperature.

Tris.HCl - 1M Tris.HCl was prepared by dissolving powder in water and adjusting

to the appropriate pH using hydrochloric acid.

Tris/EDTA (TE) buffer - lOmM Tris.HCl (pH 8), O.lmM EDTA.
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2.2 Escherichia coli Culture and Manipulation

2.2.1 Culture Media

In liquid cultures, E. coli cells were grown in Luria-Bertani (LB) broth (1% tryptone,

0.5% yeast extract, and 0.5% NaCl). Agar plates were prepared by supplementing

LB broth with 1.5% agar. For plasmid selection after transformation, ampicillin

(final concentration of 50pg/ml) was added to either broth or solid media. Bacterial

cultures on both solid and liquid media were left to grow at 37°C overnight or as

indicated.

2.2.2 Bacterial Strains

E. coli JM110 (F' traD36 laclqA(lacZ)M15proA+B+/rpsL(Str) thr leu thi lacYgalK

galT ara fhuA dam dcm supE44 A(lac-proAB)) was used for cloning plasmids

involved in RPS experiments. This strain is, dam, dcm, therefore deficient in

methyltransferases which may methylate the RPS sequence. For other routine

cloning E. coli DH5a (F'/endAl hsdRl7(rK^mK+) supE44 thi-1 recAl gyrA (NaT)

relAl A(lacIZYA-argF) U169 deoR (A>80dlacA(lacZ)M15)) cells were used.

2.2.3 Bacterial Glycerol Stocks

1 ml of a saturated culture was added to an equal volume of glycerol solution (65%

glycerol, 0.1M MgSCL, and 0.025M Tris.HCl pH 8), and stored at -70°C.
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2.2.4 Transformation of Plasmids into E. coli

Plasmids can be transformed into cells by either electrical or chemical

transformation; electrical transformation was used as generally it has a much higher

transformation efficiency.

2.2.5 Preparation of Electro-competent cells

2 ml of an overnight starter culture of E. coli cells was used to inoculate a 500ml

culture of LB medium. This was left to grow, with good aeration until an OD600

reading of 0.6 was reached and the cells were left to cool on ice for 30mins. All steps

following this were carried out in a cold room (4°C). The cells were then harvested

by centrifugation at 4000rpm for 20 minutes at 4°C using a JA-14 rotor in a

Beckman centrifuge. Cells were then washed twice in ice-cold sterile water and

centrifugation was repeated. Cells were finally harvested by centrifugation at

5000rpm in a JA-20 rotor and resuspended in an ice-cold solution of 10% glycerol

(500|il). Aliquots were either used immediately or frozen in dry ice and stored at

-70°C.

2.2.6 Transformation of Electro-competent Cells

An appropriate amount of plasmid DNA was added to 50)0,1 of competent cells, and

transferred to a 2mm electroporation cuvette, which had been chilled on ice for 5
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minutes. The cuvette was then placed in the electroporator and pulsed at 240v.

Immediately after 1ml of SOC medium (2% tryptone, 0.5% yeast extract, lOmM

NaCl, 2.5mM KC1, lOmM MgCl2, lOmM MgS04, 20mM glucose) was added. The

cell suspension was removed and placed in a 50ml falcon tube. This was incubated

at 37°C, with gentle agitation, for 45 minutes. Aliquots were spread onto LB plates

supplemented with the appropriate antibiotic.

2.3 Saccharomyces cerevisiae Culture and Manipulation

2.3.1 Culture Medium

Routinely, yeast cells were grown in YPD medium (2% peptone, 2% glucose, 1%

yeast extract), for solid media, broth was supplemented with 2% agar. For selection

of kanamycin resistant yeast, YPD was supplemented with geneticin G418 (Sigma)

at a final concentration of 300mgr'. Selection with zeocin was performed on

complete synthetic medium lacking appropriate amino acids with zeocin at a

concentration of lOOmg/ml. For selection or maintenance of plasmids or selection of

integrants, synthetic - complete medium (0.067% Yeast nitrogen base, 2% glucose,

and 0.2% drop-out mix, for plates this was supplemented with 2% agar) was used

dropping out the appropriate amino acids or nucleotide bases to maintain selection.

All yeast were incubated at 30°C for optimal growth.
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2.3.2 Saccharomyces cerevisiae Strains

For experiments involved in RPS work, strains BY4733 (MATa, his3A200, leulAO,

metl5AO, trplA63, ura3AO) and FY2 {MATa., ura3-52) were used as specified. For

experiments with TUP1 homologues, strain BY4742 {MATa, his3A\, leu2AO,

lys2AO, tuplAO, ura3AO) was used.

2.3.3 Yeast Glycerol Stocks

An overnight culture was mixed with an equal volume of 30% glycerol and stored at

-70°C.

2.3.4 Transformation of Yeast Cells

Yeast were transformed by the method of Gietz and Woods (1994). Cells were

counted from a saturated overnight culture using a hemacytometer and a fresh 50ml

culture was inoculated to a cell density of 5 x 106 cells/ml. Yeast cell culture was left

to grow at 30°C with aeration until a cell density of 2 x 107 cells/ml had been

reached. Cells were harvested by centrifugation (5000 rpm for 5 minutes), washed in

sterile water to remove any residual medium and harvested by repetition of the

centrifugation. Cells were resuspended in 1 ml of lithium acetate (lOOmM),

harvested and resuspended in 400(il of lithium acetate (lOOmM). The cells were split

into 50jll1 aliquots, harvested and the lithium acetate was removed. Cells were

resuspended in transformation mix (240jil 50% polyethylene glycol, 36|il 1M lithium
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acetate and 50|al of single-stranded DNA) with the desired plasmid. Cells were

incubated at 30°C for 30 minutes followed by heat shock at 42°C for 30 minutes.

Cells were harvested by centrifugation (6000 rpm for 1 minute). Cells were

resuspended in sterile water and an appropriate dilution was plated onto agar plates.

For transformations involving antibiotics, an outgrowth was performed in non¬

selective media (YPD or synthetic complete) at 30°C for 5 hours. Subsequently, cells

were harvested and resuspended in sterile water and plated onto medium with

appropriate antibiotics. Colonies from transformations were then picked and replated

onto the same media to ensure loss of any false positives.

2.4 DNA Purification

2.4.1 Phenol/Chloroform Extraction and Ethanol Precipitation

The solution containing the DNA was adjusted to 200|il with water if appropriate.

An equal volume of phenol/chloroform/IAA (25:24:1) was added and mixed by

vortexing. The phases were separated by centrifugation (13,000 rpm for 1 minute).

The aqueous phase was isolated and an equal volume of chloroform/IAA (24:1) was

added to remove any residual phenol from the sample.

The DNA was precipitated by adding sodium acetate (pH 5.2) to a final

concentration of 0.3M with 2-2.5 volumes of ethanol and incubated at -70°C for 30

minutes or at -20°C overnight. The DNA was collected by centrifugation (13,000
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rpm for 10 minutes). The pellet was washed in 1ml of 70% ethanol to remove any

residual salt. The liquid was removed and the pellet was dried under a vacuum. The

DNA was resuspended in an appropriate volume ofwater or TE (pH 8).

2.4.2 Gel Extraction

The DNA fragments were resolved on an agarose gel and the band of interest was

excised using a razor blade. The DNA was recovered using the Qiaex II gel

extraction kit (Qiagen) and further purified by phenol/chloroform extraction and

ethanol precipitation.

2.5 Preparation and Manipulation of DNA

2.5.1 Preparation of Plasmid DNA

Small quantities of plasmid DNA (<10|ig) were isolated from a 5 ml overnight

bacterial culture using a QIAprep spin mini-prep kit (Qiagen). Larger quantities of

DNA were obtained from 200 ml of an overnight culture. Cells were centrifuged at

4000 rpm in a JA-14 rotor. Cells were resuspended in 6 ml GTE (50mM glucose,

25mM Tris.HCl, lOmM EDTA) buffer, to this 12 ml of lysis buffer (200mM NaOH,

1% SDS) was added to lyse the cells and denature chromosomal DNA, then 9 ml of

acidic potassium acetate solution (3M potassium acetate, 2M acetic acid) was added

to neutralise the solution. At all stages the cell suspension was mixed by inversion.

The mixture was centrifuged at 5000 rpm for 20 minutes using a JA-20 rotor. The
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supernatant was removed and a phenol/chloroform and ethanol precipitation was

carried out as previously described. The pellet was resuspended in 1 ml of heat-

inactivated RNaseA (lmg/ml) and incubated at 37°C for 30 minutes. 300jll1 of PEG

solution (20% PEG-6000, 5M NaCl) was added and the sample was incubated on ice

for 1 hour to allow selective precipitation of plasmid DNA. The DNA was isolated

by centrifugation (13,000 rpm for 5 minutes), washed with 70% ethanol and dried

under a vacuum. The pellet was resuspended in 400jll1 of a TE/lithium chloride

solution (400mM LiCl, ImM Tris.HCl, 0.2mM EDTA), and phenol/chloroform

extractions were carried out until the interphase was clear. A final ethanol

precipitation was performed and the pellet was resuspended in 200-400|il of TE. The

concentration was determined spectrophotometrically by measuring absorbance at

A260 using the conversion factor 1 absorbance unit = 50jig DNA/ml.

2.5.2 Restriction Enzyme Digestion

DNA was cut by restriction enzymes according to the manufacturer's instructions.

The products from the digestions were analysed directly by agarose gel

electrophoresis or purified by phenol/chloroform extraction followed by ethanol

precipitation and resuspended in water or TE buffer.

2.5.3 Dephosphoryiation of DNA Fragments

The DNA fragments generated by restriction enzyme digestion are 5'-

phosphorylated. These phosphates can be removed by alkaline phosphatase to
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facilitate further manipulation such as inhibiting self-ligation of a vector backbone in

ligation reactions.

A known amount ofDNA was incubated with calf intestinal alkaline phosphatase (1

unit per 1 pmole DNA ends) with appropriate buffer and incubated for 1 hour at

37°C. Alkaline phosphatase was removed from the DNA by phenol/chloroform/IAA

extraction, followed by ethanol precipitation.

2.5.4 DNA Ligation

DNA ligation reactions consisted of approximately lOOng of vector DNA and insert

DNA at a 1:3 molar ratio in IX ligation buffer and 6 Weiss units of T4 DNA ligase.

Sticky - end ligations were incubated at room temperature for 2 hours. Blunt - end

ligations were carried out at 16°C overnight. The ligation products were purified by

phenol/chloroform/IAA extraction and ethanol precipitation. Samples were then

resuspended in 10pl of water; 5pi of this would then be used to transform electro-

competent cells.

2.5.5 Polymerase Chain Reaction

DNA fragments were amplified using the polymerase chain reaction (PCR).

Routinely, PCR reactions were performed using IX Taq buffer, 200pM dNTPs,

0.25pM primers, an appropriate amount of template DNA and 2 units of Taq

polymerase. For other applications, Vent polymerase was also used. As standard, the
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PCR reaction consisted of 3 minutes at 95°C followed by around 30 cycles of

denaturation at 95°C for 1 minute, annealing temperature (determined by average

melting temperature of the two primers) for 1 minute. This was followed by an

extension at 72°C, the extension time was determined by the length of fragment to be

amplified, generally 1 minute per kilobase of DNA. The resulting PCR product was

purified from an agarose gel as described.

2.6 Radio-labelling of DNA fragments

2.6.1 5'-end Labelling

This technique was used for labelling DNA size ladders.

Approximately 300ng ofDNA ladder was incubated with IX polynucleotide kinase

buffer, 10 units of polynucleotide kinase and 4 picomoles of [y- PJATP at 37°C for

1 hour. The reaction was stopped by heating to 68°C for 20 minutes. Any

unincorporated label was removed by passing the sample through a G-25 Sephadex

column.

2.6.2 Random Prime Labelling

This technique was used for evenly labelling DNA fragments to use as probes in

Southern and Northern hybridisations.
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Approximately, l|ig of DNA and 1.5mg/ml random hexamers were boiled for 5mins

to denature the DNA; the sample was then chilled on ice. To this, IX Klenow

polymerase buffer, 200jjM dNTPs (except dCTP), 5 units of Klenow polymerase and

8 picomoles of [a- P]dCTP were added. The reaction was incubated at room

temperature for 4 hours. The reaction was stopped by adding l(il of EDTA (0.5M).

To purify the DNA, lOOpl of TE buffer and 125|_il of phenol/chloroform/IAA were

added. The sample was centrifuged (13,000 rpm for 10 minutes) and the aqueous

phase removed and passed through a G-25 Sephadex column to remove any

unincorporated nucleotides. The sample was boiled for 5 minutes before adding to

the hybridisation solution to denature the DNA.

2.6.3 Removal of Unincorporated Label

A 1 ml syringe was plugged with glass wool and filled with Sephadex G-25 slurry.

The Sephadex was packed by centrifugation (1,500 rpm for 2 minutes). The column

was washed through with TE buffer, which was then removed by centrifugation

(1,500 rpm for 5 minutes). The labelled sample was applied to the column and

recovered by centrifugation (1,500 rpm for 5 minutes).
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2.7 Preparations from S. cerevisiae Cultures

2.7.1 Genomic DNA

Genomic DNA was prepared from a 10 ml overnight culture of yeast. Cells were

harvested by centrifugation (5000 rpm for 5 minutes). The pellet was then

resuspended in 1 ml ofwater and centrifuged (13,000 rpm 30 seconds) to remove any

remaining medium. The harvested cells were resuspended in 200pl of breaking

buffer (2% triton X-100, 1% SDS, lOOmM NaCl, lOmM Tris.HCl pH 8, ImM

EDTA pH 8). Glass beads (0.3g) and 200jll1 of phenol/chloroform/IAA were added to

the tube and the mixture was vortexed at maximum speed for 3 minutes to lyse the

cells. After vortexing, 200|il of TE buffer was added and the sample was briefly

vortexed before centrifugation (13,000 rpm for 10 minutes) to separate the phases.

The aqueous phase was removed, 1 ml of ethanol was added and centrifuged (13,000

rpm for 5 minutes). The pellet was resuspended in 400|il of TE buffer and 30|il of

RNase A (lmg/ml) was added and incubated at 37°C for 5 minutes. To precipitate

the DNA, lOpl of ammonium acetate (4M) was added an ethanol precipitation was

carried out as described.

2.7.2 Total RNA

A 10ml culture was grown to exponential phase (around 2xl07 cells). The cells were

harvested by centrifugation (6000 rpm for 3 minutes). The pellet was resuspended in

1 ml of ice-cold water and centrifuged (15 seconds at 13,000 rpm) to remove any

74



remaining medium. 400fil of TES solution (lOmM Tris.HCl pH 7.5, lOmM EDTA,

0.5% SDS) was added to resuspend the pellet; to this, 400(j,l of acid phenol was

added and the sample was vortexed at full speed for 10 seconds. The mixture was

incubated at 65°C for 45 minutes with occasional vortexing. The sample was placed

on ice for 5 minutes and then centrifuged (13,000 rpm, for 5 minutes). The aqueous

phase was removed and another 400|il of acid phenol added Vortexing and

centrifugation were repeated. The sample was further purified by adding 400|il of

chloroform, followed by vortexing, and centrifugation as before. The aqueous phase

was removed and 40|j,l of sodium acetate (3M, pH 5.3) and 1 ml of ethanol were

added. This was centrifuged (13,000 rpm for 5 minutes). The RNA pellet was

washed in 1 ml of ice-cold 70% ethanol, and centrifuged as before to isolate the

pellet. The pellet was finally resuspended in 50(j.l of water and concentration

determined spectrophotometrically by measuring A260 using the conversion factor of

1 absorbance unit = 42pg RNA/ml.

2.7.3 Nuclei

Yeast nuclei were prepared for chromatin studies; the protocol was divided into 2

stages:

(i) Preparation of spheroplasts

2 litres of culture, grown in appropriate medium, were grown to mid-log phase. All

proceeding steps were carried out at 4°C. Cells were harvested by centrifugation at
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3000 rpm for 5 minutes, and the wet weight of the pellet determined. The cells were

then resuspended in 3 volumes of ice-cold water and centrifuged at 3500 rpm for 5

minutes and the supernatant removed. The pellet was resuspended in 1 volume of

pre-treatment buffer (50mM Tris.HCl pH 7.5, lOmM EDTA, 1M sorbitol, 30mM

DTT, 5mM (3-mercaptoethanol) and incubated at room temperature for 15 minutes,

to facilitate breakage of disulphide bonds. The sample was centrifuged at 5,000 rpm

for 5 minutes and the pellet was resuspended in 3 volumes of spheroplasting buffer

(50mM Tris.HCl pH 7.5, lOmM MgCl2, 1M sorbitol, ImM DTT). Yeast lytic

enzyme was added and the sample incubated for 40 minutes at 30°C with slow

shaking (110 rpm). To determine if the conversion to spheroplasts had been

completed a sample was placed in distilled water and analysed under the microscope

to see if cells were bursting. Once spheroplasting was completed, the sample was

centrifuged for 5 minutes at 3,500 rpm. The supernatant was removed and the

spheroplasts were washed in 2 volumes of spheroplast buffer and the sample

centrifuged at 3,500 rpm for 5 minutes; this washing and centrifugation step was

repeated twice.

(ii) Preparation of nuclei by differential centrifugation.

Nuclei were prepared from the spheroplasts by lysis in the presence of Ficoll. The

final pellet from the washes was resuspended in 0.5 volumes of spheroplast buffer.

The cells were dropped, using a pasteur pipette, into 6 volumes of ice-cold Ficoll

buffer (18% Ficoll-400, lOmM Tris.HCl pH 7.5, 20mM KC1, 5mM MgCl2, ImM

EDTA, 3mM DTT, ImM PMSF) and left stirring for 20 minutes at 4°C. The
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suspension was centrifuged at 5000 rpm for 5 minutes, to pellet any cell debris and

unlysed spheroplasts. The supernatant was removed and centrifuged for 20 minutes

at 13,500 rpm. The pellet, which contains the nuclei, was resuspended in 1 volume of

storage buffer (20mM Tris.HCl pH 7.5, O.lmM EDTA, 10% glycerol, lOOmM KC1,

ImM DTT, ImM PMSF). The nuclei were aliquoted and stored at -70°C.

2.8 DNA Analysis

2.8.1 Agarose Gel Electrophoresis

DNA fragments were separated according to size by agarose gel electrophoresis.

Different buffers and percentage gels were used depending on the size of fragments

to be resolved.

Fragments smaller than 200bp were separated on a 1.5% agarose gel, fragments

larger than 2Kb were isolated on a 0.7% gel. Anything in between these values was

isolated using a 1% gel.

All routine electrophoreses were carried out using IX TBE (8.9mM Tris, 8.9mM

boric acid, 2mM EDTA) as a running buffer. Fragments larger than 8Kb were

electrophoresed using a IX TAE buffer (40mM tris-acetate, 2mM EDTA) to allow

better separation. Prior to electrophoresis, 6X orange G loading buffer (0.25% orange

G, 15% Ficoll-400, 120mM EDTA) was added to samples to a final concentration of

IX loading buffer.
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All gels were then stained for 10 minutes in a 3|j.g/ml ethidium bromide solution and

de-stained for 10 minutes in distilled water.

2.8.2 Southern Blotting

Southern blotting (Southern, 1975) was used to identify specific DNA sequences

within a population ofDNA fragments. Three steps were involved:

(i) Separation ofDNA fragments on an agarose gel

As in section 2.8.1.

(ii) DNA transfer and immobilisation onto a membrane

After electrophoresis the gel was stained with ethidium bromide as before and

photographed. The gel was washed in denaturation solution (1.5M NaCl, 0.5M

NaOH) for 40 minutes followed by washing in neutralisation solution (ImM

ammonium acetate, 20mM NaOH) for 50 minutes. The DNA was transferred onto

the membrane by upward capillary transfer in 20X SSC (3M NaCl, 0.3M tri-sodium

citrate). After overnight transfer, the membrane was washed in 2X SSC and the DNA

immobilised by baking in a vacuum dryer at 80°C for 1 hour.
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(iii) Hybridisation

The membrane was placed in a hybridisation bottle with a mesh support and pre-

hybridised at 65°C in pre-hybridisation buffer (3X SSC, lOmM EDTA, 0.2% PVP,

0.2% Ficoll-400, 0.2% BSA, 0.1% SDS, 0.04 mg/ml salmon sperm DNA, 0.02mg/ml

heparin) for around 2 -3 hours. The boiled probe was added with fresh hybridisation

buffer (25 ml) supplemented with 2.25g of dextran sulphate and the hybridisation

continued overnight at 65°C. The membrane was washed for 4X 20 minutes in 2X

SSC with 0.1% SDS and again for 2X 20 minutes in 0.1 X SSC with 0.1% SDS. The

membrane was finally washed in 2X SSC and exposed to a phosphorimager screen

(Fuji).

2.9 RNA Analysis

2.9.1 Agarose Gel Electrophoresis

RNA was separated by size using a denaturing 1.5% agarose gel. These gels were

prepared by adding agarose to DEPC-treated water and boiling. After the solution

had cooled to 60°C 10X MOPS (0.4M MOPS, 0.1M sodium acetate, 0.01M EDTA)

was added to give a final concentration of IX, followed by the addition of 40%

formaldehyde (500|fi). The gel was poured in a gel tray, which had been pre-treated

with 3% hydrogen peroxide and rinsed in DEPC-treated water to remove RNases.

RNA gels were electrophoresed in a IX MOPS running buffer in a tank also treated

with hydrogen peroxide.
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RNA samples (15-20|ig) were prepared by adding 25pl of MMF solution (500fil

formamide, 162jiil 40% formaldehyde and 1 OOpl lOx MOPS) and ethidium bromide

was added to a final concentration of 0.1 mg/ml. These were incubated at 60°C for

15 minutes and 5pi loading dye was added prior to electrophoresis. The gel was

scanned using a phosphorimager in fluorescent mode and the ethidium bromide

image saved to use as a loading control.

3.9.2 Northern Blotting

Northern blotting was used to identify specific RNA sequences within a population

ofRNA fragments. There were three steps involved:

(i) RNA size separation on an agarose gel.

As in section 3.9.1.

(ii) RNA transfer and immobilisation on an inert membrane.

Agarose gels were washed in DEPC-treated water twice, each for 20 minutes. This

was followed by transfer onto a nylon membrane by upward capillary transfer in 20X

SSC. After overnight transfer, the membrane was rinsed in 2X SSC and RNA

immobilised by baking in a vacuum dryer at 80°C for 1 hour.
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(iii) Hybridisation

As section 2.8.2.

2.10 Chromatin Analysis

2.10.1 Micrococcai Nuclease Digestion of Nuclei

Nuclei were washed in 1ml of micrococcai nuclease digestion buffer (1M sorbitol,

15mM Tris.HCl, ImM MgC^, 50mM NaCl, 0.5mM PMSF) twice. Nuclei were

harvested by centrifugation (11,000 rpm, 1 minute) and resuspended in 400|il of

digestion buffer. Nuclei were incubated at 37°C for 2 minutes, after which 0.5- 1U of

micrococcai nuclease was added and the reaction started by the addition of CaCl2 to

a final concentration of 1.25mM. Aliquots (90|ll) were removed and placed into 10(0,1

of 10X termination solution (250mM EDTA, 5% SDS, 50mM Tris.HCl pH 8) at

appropriate time intervals, generally between 1 and 8 minutes.

The DNA was purified by adding 30(0.1 of RNaseA (2mg/ml) and incubation at 37°C

for 45 minutes. This was followed by proteinase K treatment (2mg/ml) at 50°C for

30 minutes. The DNA was further purified by phenol/chloroform/IAA extraction

followed by ethanol precipitation.
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2.10.2 Indirect End Labelling

DNA which had been subjected to micrococcal nuclease digestion as in section

2.10.1 was digested with an appropriate restriction enzyme overnight. Samples were

ethanol precipitated, resuspended, and run on a 1.5% agarose gel at 90V. The gel was

then manipulated as a Southern blot (section 2.8.2).
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Chapter 3 - Analysis of the Repressive Effects of a

Repetitive DNA Fragment from Petunia hybrida in

Saccharomyces cerevisiae.

3.1 Introduction

Repetitive DNA can consist of nucleotide sequences of varying lengths and

composition that occur in tandem, inverted and dispersed organisations. There has

long been an association between repetitive DNA and silent heterochromatin; indeed

constitutive heterochromatin consists mainly of repetitive DNA with few active

genes. In recent years, the phenomenon of repeat-induced gene silencing has become

known in plants and filamentous fungi, where multiple copies of genes lead to

silencing. This is often associated with hypermethylation (Matzke et al., 1989) and

changes in chromatin conformation at the silenced locus (Ye and Signer, 1996).

The RPS sequence randomly isolated from Petunia hybrida reinforces the idea that a

repetitive sequence can act as a signal for DNA methylation and local chromatin

condensation (tenLohuis et al., 1995). The RPS is a 1.6 Kb fragment that is 60.3%

AT-rich, which is of a similar composition to most repetitive sequences found in

higher eukaryotes. It consists of a mixture of direct and indirect repeats; at its 3' end

there are 3 direct repeats of a 57 bp motif, which consist of two 13-mers interrupted

by a 9-mer and a 22-mer.
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The RPS was shown to enhance expression variegation of a GUS reporter gene in

both P. hybrida and N. tabacum. This was associated with hypermethylation of the

RPS sequence at both symmetric and asymmetric sites, a phenomenon associated

with silenced transgenic loci (Meyer et al., 1992). One particular methylation site,

located within a Hhal restriction site, is part of a larger 40 bp palindromic sequence

that has the potential to form a cruciform structure. Stem-loop structures are known

to attract DNA methyltransferases, and methylated cytosine residues in single

stranded DNA can signal de novo methylation of adjacent regions (Christman et al.,

1995). Therefore, secondary structures formed due to the repetitive nature of the RPS

may allow it to act as a hot spot for de novo DNA methylation. Indeed, inverted

repeats have been shown to trigger DNA methylation in Arabidopsis (Luff et al.,

1999) by virtue ofhairpin RNA production (Melquist and Bender, 2003).

The RPS potentially functions as an initiation region for heterochromatin formation,

which spreads to the adjacent reporter gene by a mechanism akin to position effect

variegation. This is supported by the fact that although the RPS becomes heavily

methylated, the promoter of the reporter gene does not, implying that DNA

methylation is not the primary cause for gene inactivation. Furthermore, the RPS is

methylated in lines that do not show enhanced expression variegation. Other studies

in Arabidopsis have shown that mutations in the MOM gene allow expression of

previously repressed genes although they remain heavily methylated. This suggests

that, in these instances, methylation is a secondary effect after the initial silencing as

a consequence of a repressive chromatin structure (Amedeo et al., 2000).
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Another feasible hypothesis is that the RPS is subject to homology-dependent gene

silencing. Southern blotting analysis revealed 103 and 104 endogenous RPS

homologues in Tobacco and Petunia respectively; therefore pairing of these DNA

sequences may "transfer" a repressive chromatin structure to the other. This is

emphasised by the fact that when the RPS is integrated into A. thaliana, which has no

sequence homology to the RPS, there is no expression variegation of a reporter gene

attached to the RPS (Miiller et al., 2002). Moreover, the RPS becomes methylated at

similar sites in Arabidopsis, indicating again that methylation is not the initiating

factor in gene silencing in this instance. However, the RPS is not associated with

constitutive heterochromatin in Petunia cells, suggesting that if it does induce a

restrictive chromatin environment, it most likely has structural plasticity and may

revert between states. The type of homology-dependent gene silencing associated

with the RPS is not like co-suppression, as no RNA transcripts were identified from

any ORFs within the sequence, although it is possible that small, rapidly degraded

RNA fragments are produced (ten Lohuis et al., 1995).

The RPS may also contain specific sequences for DNA binding proteins, which

function to create a repressive chromatin environment. A protein isolated from

Arabidopsis called BP1 can bind to the RPS sequence (P. Meyer, personal

communication). Although a BP1 homologue has not yet been identified in P.

hybrida, it is plausible that one exists. BP1 contains seven WD repeats and has

significant homology to the S. cerevisiae TUP1 co-repressor. If BP1 functions in the

same manner as TUP1, it potentially creates an ordered nucleosome array which can

extend at long range (Fleming and Pennings, 2001), thus inducing silencing of a
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reporter gene. If BP1 is a member of the TUP1/GRO family of transcriptional co-

repressors, it is unique in its DNA binding ability. BP 1 is also homologous to another

S. cerevisiae protein, ARC41. This is a member of the actin related complex

(Arp2/3) complex, which is involved in cytoskeletal organisation and actin

filamentation. Indeed, actin-related proteins have been implicated in epigenetic gene

regulation in S. cerevisiae (Jiang and Stillman, 1996). With the position of genes in

the nucleus influencing their expression (for review see Gasser, 2001) and silent

genes often being found at the nuclear extremities, it is possible that BP1 associates

with the RPS as part of a larger protein complex at the nuclear periphery, where it is

maintained in an inactive state. For instance, the SIR proteins, which mediate gene

silencing in S. cerevisiae, are localised at the edges of the nucleus (Palladino et al.,

1993).

There are many possible explanations as to why the RPS causes expression

variegation of an adjacent reporter gene, and these may or may not be mutually

exclusive. In order to understand the mechanism, all of these points must be

considered in turn. This is difficult to achieve in a system such as P. hybrida, where

gene knockouts are difficult and large amounts of other repetitive sequences are

present. An interesting candidate for studying the action of the RPS would be the

budding yeast, S. cerevisiae. This is an organism that can be manipulated easily. S.

cerevisiae has few repetitive DNA sequences, which are confined mainly to the

ribosomal DNA repeats and the telomeres. In addition, a BLAST search of the S.

cerevisiae genome revealed no endogenous sequences with significant homology to

the RPS.
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Budding yeast also has proteins with homology to the RPS binding protein BP1; any

interactions that occur between them can be studied by way of gene knockouts. The

question of the importance of DNA methylation in RPS-induced expression

variegation can also be addressed. As previously mentioned, the methylation status

of the RPS did not necessarily correlate with enhanced expression variegation,

suggesting DNA methylation may not be the primary cause of RPS-mediated

silencing. Since S. cerevisiae does not methylate its DNA, the RPS can be studied so

that the roles of chromatin structure and DNA methylation can be observed

separately.
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3.2 Analysis of RPS Function in S. cerevisiae on Piasmids

3.2.1 Techniques and Materials for Study

In order to observe the action of the RPS sequence in S. cerevisiae, the RPS sequence

was cloned next to a reporter gene in a vector that can be maintained in yeast. The

reporter gene selected was ADE2. The ADE2 gene has previously been used in

various silencing assays because of the simple and instantly observed phenotype of

ade2 cells (for example see Gottschling et al., 1990). The gene encodes the enzyme

phosphoribosylimidazole carboxylase, which is involved in purine biosynthesis.

When the ADE2 gene is mutated or silenced, an intermediate in the purine

biosynthesis pathway cannot be broken down in the normal fashion. This

intermediate has a distinctive red colour, which can be seen in the yeast colony (see

fig. 3.1). The ADE2 gene is particularly useful in silencing assays. If there is

expression variegation where some cells within the colony are expressing ADE2 and

some have silenced the gene, a sectored colony results from the outwards growth of

the yeast cells (fig. 3.1). IfADE2 is active, the colonies or sectors will be white and if

ADE2 is silenced, colonies or sectors should be pink to red.

The ADE2 gene was cloned into vectors next to the RPS sequence (for details of

cloning see table 6.1). The vectors selected were pRS414 (fig. 3.2) and pRS424 (fig.

3.3). These vectors contain the TRP1 selectable marker and yeast carrying the

piasmids were selected for and maintained on SC-trp medium. The pRS414 vector

has a CEN6 origin of replication and is present in the yeast cell at 1-2 copies. The
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pRS424 vector has a 2|i origin of replication and is present at higher numbers,

usually between 20-50 copies per cell. A comparison of results of yeast transformed

with each of these vectors allows us to establish if multiple copies of the RPS are

required for its silencing in yeast, as appears to be the case in Arabidopsis (Miiller et

al., 2002). Alternatively, if a yeast factor is required for silencing, it may be "diluted

out" by the multiple copies of the RPS. As shown in figures 3.2 and 3.3, different

orientations of the RPS and ADE2 constructs were cloned and tested to see if a

particular orientation has more of an effect on the reporter gene. This is important

since PEV can be influenced by gene orientation (Feng et al., 2001).
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Figure 3.1: Colours ofADE2 and ade2 cells. The plate shown has a mixture of
colonies. White colonies are expressing the ADE2 gene, pink colonies have silenced
the ADE2 gene and sectored colonies have some cells expressing the ADE2 gene
and some cells with a silent ADE2 gene.
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Figure 3.2: Features of the low copy number plasmid pRS414. (A) shows an
example of one plasmid used in the study. Notable features of pRS414 are the TRP1
selection marker and the CEN6 origin of replication (Christianson et al., 1992). The
ADE2 and RPS sequences were cloned 11 bp apart in the multiple cloning site. (B) is
a schematic diagram of the repeat structure in the RPS. Numbers indicated are
nucleotide positions. Inverted repeats are denoted by lollipops and direct repeats are
shown as arrows. Homologous repeats are shown by the same colours. Grey arrows
are indicative of 32-33 bp repeats, black arrows show 34-35 bp repeats and white
arrows indicate 57 bp repeats. (C) shows a schematic diagram of the different
orientations of the ADE2 gene and RPS cloned into the vector, which were analysed
in this study.
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3.2.2 Knockout of ADE2 Gene

To study the effect the RPS has on the ADE2 reporter gene, the endogenous copy

must be removed from the host strain. This was achieved by a one step gene

replacement in the S. cerevisiae strain BY4733 {MATa, his3A200, leu2A0, metl5A0,

trplA63, ura3AC). ADE2 was completely deleted from 602 bp upstream of the start

site to 239 bp downstream of the stop codon; this was based approximately on the

ADE2 sequence noted by Stotz and Linder (1990). The ADE2 gene was replaced by

the kanamycin (Kan1) resistance gene to give strain HC1. The Kanr gene was

amplified from the vector pKanMX4 (Wach et al., 1994) by PCR, using primers

adedelstart and adedelend containing 40 bp of homology to the flanking regions of

the ADE2 locus. This DNA was transformed into yeast to allow homologous

recombination. Positive colonies were selected on YPD medium supplemented with

geneticin.

Pink colonies, which suggest the loss of the ADE2 gene, were selected. Genomic

DNA digests followed by Southern blot analysis were performed; these confirmed

that the ADE2 gene had been entirely removed (fig. 3.4). However, some additional

bands are visible in transformant lanes A, C, D, and E. These may be attributed to

partial digestion or cross-hybridisation with sequences elsewhere in the genome. As

transformant B lacked these extra bands it was selected for further experiments as

strain HC1. To further substantiate these results, a complementation test was carried

out where Aade2 cells (HC1) were transformed with pRS412, a single-copy number

plasmid containing the full-length ADE2 gene. This test was employed to ensure the
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new strain had the potential to change colour from pink to white, as is critical for this

silencing assay. Sample colonies are shown in fig. 3.5, demonstrating that the ADE2

deletion can be rescued by supplying the full-length ADE2 gene on a plasmid. The

Southern blot and complementation tests confirm that the endogenous ADE2 gene

was removed and these strains and plasmids could be used to analyse the RPS

function in yeast.
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Figure 3.4: Strategy for knockout ofADE2 gene and Southern blot confirming
gene replacement. P denotes the parental strain (BY4733) and shaded boxes
indicate the 40 bp of homology within the disruption fragment allowing
homologous recombination. The ADE2 gene was deleted from 602 bp upstream of
the trancriptional start site of 239 bp downstream of the transcriptional stop site.
The PCR-generated disruption fragment was produced with primers 'adedelstart'
and 'adedelend' using the pKanMX4 as a template (Wach et al., 1994). The probe
was used to visualise size differences in the restriction digests and was generated
by PCR using primers 005a and 005b (see table 6.2). The blot shows the correct
replacement of the ADE2 gene with the kanamycin resistance gene.
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pRS412, which carries the ADE2 gene; this allows the strain to return to its white
colour.



3.2.3 Analysis of RPS Function on Plasmids

The three centromeric pRS414 plasmids containing various orientations of the RPS

and ADE2 sequences (fig. 3.2) were independently transformed into strain HC1 in

triplicate. As controls, the parental plasmid pRS414 and pRS414 with an ADE2 gene

but no RPS (pRS414/A) were used. An identical procedure was followed for the

pRS424 series of multi-copy vectors. The same number of moles of DNA of each

were transformed: 0.7 picomoles and 0.1 picomoles for the pRS414 and pRS424

series respectively, as estimated by the A260 of the plasmid preparations. This step

was carried out to ensure the numbers of colonies returned were comparable.

Differences in colony numbers could reveal if the RPS mediates long-distance

silencing in yeast. If the RPS silences the TRP1 marker gene it would prevent the

growth of colonies on SC-trp medium and the numbers of colonies returned from the

transformation would be lower than expected. Tables 3.1 and 3.2 show numbers of

colonies from each transformation with fig. 3.6 showing average transformation

efficiencies. Interestingly, pink and sectoring colonies were found on some plates;

examples are shown in figures 3.7A and 3.7B.

Tables 3.1 and 3.2 show that pink colonies (ADE2 off) occur at a higher level on

vectors with the RPS. This indicates that the RPS may function in yeast to enhance

expression variegation. The pink colonies found in the control plates that have the

ADE2 gene alone may represent the level for natural mutation of the ADE2 gene or

may be due to false positives or mutations may have been generated within the ADE2

gene. However, no sectored colonies were found on control plates indicating that the
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sectored colonies observed are examples of true ADE2 expression variegation. In the

case of the pRS414 series of vectors (low copy number), this was up to two fold

higher than the control pRS414/A vector. Interestingly, the pRS424 series (high copy

number) study showed consistently less pink cells than the pRS414 series and levels

were close to background on control plates.

However, the results between separate transformations are also variable and therefore

it is difficult to deduce how reliable they might be. For example, the percentage of

pink colonies observed in orientation 3 (pRS414/AR3) in table 3.1 varies from 1%-

2.6%, over a two and a half fold increase. However, orientation 4 (pRS414/AR4 and

pRS424/AR4) seems to give consistently less pink colonies than the other

orientations, implying that this particular orientation is not as efficient in silencing as

the other orientations.

The hypothesis that the RPS could potentially repress the TRP1 marker gene on the

plasmid was addressed by comparing the transformation efficiencies between vectors

(fig. 3.6). There is a large difference between the average transformation efficiencies

of the parental vector, pRS414, and the vectors containing the RPS (fig 3.6 A). This

may be due to size differences, with smaller plasmids being more easily transformed,

although, this is less obvious with the pRS424 series (fig. 3.6 B). There are small

differences in transformation efficiencies between the different orientations in both

series of vectors. However, due to the large variations in numbers between

transformations, these results are difficult to interpret. For example, pRS424/AR3

shown in table 3.2 has an almost 6-fold difference in transformation efficiency
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between seemingly identical transformations. Despite these variations, a general rule

seems to follow between the orientations where 3>2>4 with respect to transformation

efficiencies, suggesting the RPS may influence the expression of the TRP1 marker

gene especially in orientation 4. This observation may explain why less pink colonies

were found for this orientation; if silencing occurs, in this instance it spreads to both

ADE2 and TRP1 genes.
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Figure 3.6: Average transformation efficiencies. (A) Shows the average
transformation efficiency of cells transformed by pRS414 series. (B) Shows the
average transformation efficiency of cells transformed with pRS424 series of
vectors. Error bars were calculated using standard error.
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Figure 3.7 A : Examples of pink and sectoring colonies found in pRS414 series
of experiments. Shown are the control plates, yeast transformed with the parental
pRS414 vector are pink in colour as expected. Yeast transformed with the
pRS414IADE2 vector are white in colour as expected. Representative pink and
sectoring colonies are from yeast transformed with the RPS and ADE2 on the
pRS414 plasmid.
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Figure 3.7 B : Examples of pink and sectoring colonies found in pRS424 series
of experiments. Shown are the control plates, yeast transformed with the parental
pRS424 vector are pink in colour as expected. Yeast transformed with the
pRS424/ADE2 vector are white in colour as expected. Representative pink and
sectoring colonies are from yeast transformed with the RPS and ADE2 on the
pRS424 plasmid.



3.2.4 Analysis of RPS Function on Plasmids in a tupl Background

Since BP1, the RPS binding protein, has homology to the yeast transcriptional co¬

mpressor, TUP 1, it would be interesting to transform plasmids into both TUP1 and

tupl deletion strains. Differences in transformation efficiencies or numbers of pink

colonies may indicate a role for TUP1/SSN6 in RPS-mediated repression. Therefore,

the same number of molecules of DNA was transformed into a TUP1 strain and a

tupl strain of the same genetic background. In this series of experiments, the pRS414

series of low copy-number plasmids was used, as it showed the biggest difference in

pink colonies between experimental and control plasmids.

In order to carry out this set of experiments the TUP1 gene was deleted in the HC1

strain to obtain strain HC3 (see table 6.4). This was achieved by PCR-mediated

disruption, replacing the TUP1 gene from 2 bp upstream and downstream of the start

and stop codons with a MET15 selectable marker gene. The MET15 gene was

amplified from plasmid pRS401 with primers PRSTUP1A and PRSTUP1B

containing homology to the flanking regions of the TUP1 gene (table 6.2). The

disruption fragment was transformed into yeast (strain HC1) and positive colonies

selected on SC-met medium. A Southern blot was performed on genomic DNA

digests, using probe 5, which confirmed the complete deletion of the TUP1 gene (fig.

3.8).

After successful deletion of the TUP1 gene, the pRS414 series of vectors was

transformed into the tupl strain (HC3) and the parental strain (HC1), with the same
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number of picomoles DNA (0.7 pmoles) added to each. The results are shown in fig.

3.9.

Figure 3.9 (A and B) shows an approximately 10-fold difference between the

transformation efficiencies of the TUP1 (HC1) and tupl (HC3) strains. This is more

likely to be due to intrinsic strain differences, as flocculation phenotype of the tupl

cells makes them difficult to count accurately so there may have been a difference in

the actual number of cells transformed. Furthermore, tupl cells have different

proteins on their cell walls (reviewed by Stratford, 1992) that may make them more

resistant to the transformation process. Therefore, if we normalise the levels of the

transformation efficiencies between the strains by dividing the transformation

efficiencies of the TUP1 strain by around 10-fold (the approximate difference

between the control parental pRS414 transformation efficiencies) then

transformation efficiencies are within the same order. This shows any silencing of

the TRP1 marker gene that may occur is strain independent and is not affected by

TUP1.

There are differences between the numbers of pink colonies between the two strains

(fig. 3.9). Indeed no pink or silenced colonies are found in the tupl mutant whereas

some are found in cells expressing TUPL This may suggest that TUP1 plays a role in

RPS-mediated silencing, as silencing is lost when TUP1 is absent . However, these

differences may to be due to the lower transformation efficiencies of the tupl

mutants rather than TUP1/SSN6 playing a role in the silencing of the RPS and
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reporter gene. Having comparable transformation efficiencies in both TUPI and tupl

strains would confirm this.
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Figure 3.8: Strategy and Southern blot of TUP1 knockout. The TUP1 gene was
deleted in its entirety from 2 bp upstream and downstream of start and stop
codons. The disruption fragment was amplified by PCR from plasmid pRS401
using primers PRSTUP1A and PRSTUP1B. Probe 5 was used to visualise size
differences between genomic restriction fragments. P denotes the parental strain
(HC1) and T denotes transformants. Shaded boxes indicate the 40 bp of
homology allowing homologous recombination. The blot shows bands of
approximately 2.7 Kb in the transformant lanes confirming TUP1 has been
successfully deleted.
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Figure. 3.9: Transformation efficiencies of TUP1 and tupl cells. (A) shows a
table of numbers of colonies returned from a single transformation. (B)
represents a bar chart of these results.



3.2.5 Discussion

The results from plasmids suggest the RPS may have a silencing function in S.

cerevisiae. The pink silenced colonies and especially the sectoring colonies observed

in fig. 3.7 demonstrate this, although the overall incidence of silencing is low. A

comparison of results between high and low copy number vectors shows subtly

increased levels of silencing in the low copy number vectors (compare tables 3.1 and

3.2). This is contrary to the findings in Arabidopsis where one copy did not silence a

reporter gene and the mechanism was thought to involve the recognition of multiple

copies, which induces silencing (Muller et ah, 2002). My results could suggest a

factor, at low abundance in yeast, may bind to the RPS and repress the adjacent

reporter gene, as multiple copies of the RPS would dilute this effect. This may be a

different mechanism to RPS-induced silencing in P. hybrida. Nevertheless, this does

not exclude the possibility that, at some level, the molecular players may be

homologous or conserved.

Comparing the transformation efficiencies between experiments should reveal if the

RPS has a silencing effect on the TRP1 marker gene. The large deviations in

transformation efficiencies between similar experiments make this difficult to

conclude with certainty. However, it seems unlikely that the RPS had an effect on the

TRP1 marker gene although it cannot be excluded, as orientation 4 consistently

returned less colonies in both pRS414 and pRS424 vectors. Comparison of

transformation efficiencies of TUP1 and tupl strains was carried out to determine the

role of TUP 1 in RPS-mediated silencing. However, the small number of colonies
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returned from the transformation of the tupl mutant makes it difficult to conclude

whether TUP1 had an effect on RPS silencing.

Whilst these plasmid experiments have given an insight into RPS silencing in yeast

they have their limitations. The possibility that the TRP1 gene was silenced could

lead to the loss of silenced colonies and the different chromatin environment in

plasmids compared to chromosomes suggest stable integration of the RPS and ADE2

construct into yeast chromosomes would be a more appropriate method of study.
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3.3 Integration of RPS into S. cerevisiae BY4733 Using 5-FOA Counter-

Selection

3.3.1 Techniques and Materials for Study

As established by studying the effects of the RPS on plasmid gene expression,

observing the action of the RPS when integrated into yeast chromosomes would be

preferable. In order to integrate the RPS and ADE2 into the genome, an appropriate

mechanism for the selection of colonies with the integrated RPS and ADE2

constructs had to be considered. Selection for transformants on SC-ade medium

using the ADE2 gene as a selectable marker is not desirable, as this is the gene being

tested for silencing. Therefore, cells that have silenced the ADE2 gene would be lost

upon its selection on this medium. A chemical called 5-fluoro-orotic acid (5-FOA)

has been used to counter-select for cells expressing the URA3 gene (Boeke et al.,

1984). Cells that have a functional URA3 gene degrade 5-FOA to a toxic compound

and die. Only cells that have a non-functional URA3 gene can survive on this

medium. Therefore, prior integration of the URA3 gene into the locus of interest,

followed by the introduction of the RPS and ADE2 sequences to the same locus,

inducing the loss of the URA3 gene, would allow selection for transformants positive

for the RPS and ADE2 by 5-FOA (further discussed in section 3.3.3)
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3.3.2 Integration of the URA3 Gene at the ADE2 Locus

To utilise 5-FOA selection, the URA3 gene was introduced at the locus of interest.

The locus chosen was the native ADE2 locus. This is a housekeeping gene, which

should generally have an open chromatin conformation. The URA3 gene was

amplified from plasmid pBlue/URA3 (table 6.1) using primers RpsadeD and

RpsadeE that contain 40 bp of DNA flanking the region of interest. The knock-in

was performed in the HC1 strain to generate strain HC2. Positive colonies were

selected on SC-ura medium and the correct integration was confirmed by a genomic

digest and Southern blot analysis (fig. 3.10). The Southern blot confirms the

production of yeast strains positive for the URA3 gene. This strain can be used for 5-

FOA counter-selection of strains containing the RPS and ADE2 construct.
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Figure 3.10: URA3 integration at ADE2 locus. The strategy for the Southern blot
is shown with the actual blot below. P denotes parental strain and T denotes
transformant, HC2. Primers 'RpsadeD' and 'RpsadeE' were used for
amplification of the disruption fragment from vector pBlue/URA3 (see
appendices). Probe 1 was used to visualise size differences in genomic restriction
digests between strains. The expected size of 1.9 Kb was found for the
transformant indicating a successful replacement. The areas of homology for
homologous recombination are shown by shaded boxes.
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3.3.3 Selection of RPS Integration by 5-FOA

In order to integrate RPS and ADE2 constructs into the genome, disruption fragments

containing these sequences were prepared. The strategy is simplified in fig. 3.11. To

promote homologous recombination, larger areas ofhomology to the locus of interest

of approximately 80 bp and 200 bp were amplified using primer pairs 007a and 007b,

and 008a and 008b respectively. These regions of homologous DNA were cloned

into pBluescript and sequenced to confirm their correct identity. The RPS and ADE2

sequences of each orientation (1 -4) were cloned between the arms of homology to

prepare plasmids pBlue78/AR (for details of cloning see table 6.1). This allowed

easy production of the disruption fragment by plasmid restriction enzyme digestion.

A control plasmid (pBlue78/A) with the ADE2 gene only was cloned in a similar

fashion. The disruption fragments of each orientation and control were transformed

into yeast strain HC2 and positive colonies were selected on minimal media

supplemented with amino acids and bases for which the strain is auxotrophic, and 5-

FOA (1 mg/ml).

Colonies returned from the selection were re-plated onto 5-FOA medium and SC-ura

medium to confirm 5-FOA resistance and the loss of the URA3 gene respectively. It

was noted that often colonies would grow on both SC-ura medium and 5-FOA

medium indicating the initial selection was not as stringent as expected. Furthermore,

similar numbers of colonies were found on control plates with no DNA added and

plates of transformations with disruption fragments, suggesting unsuccessful

transformations. Despite this, colonies that behaved as expected (growth on 5-FOA

115



and no growth on SC-ura) were selected for Southern blot analysis to confirm the

presence of the RPSIADE2 construct (fig. 3.12).

The Southern blot shows that all seventeen colonies selected were false positives.

The same experiment was repeated three times from the transformation stage.

Despite optimising the transformations and increasing the amount ofDNA added, the

same result was obtained. All of the 51 colonies tested that were growing on 5-FOA

were false positives. The reason for this is unclear. Firstly, these colonies have the

URA3 gene and therefore should not survive on medium containing 5-FOA. Survival

of these colonies may occur due to repression of the URA3 gene and utilisation of the

small amount of uracil provided by the medium. Secondly, even if there are false

positives on the plates, it does not explain why no colonies containing the correct

integration were found. This may suggest that the sequence does not integrate in the

chromosomes despite having longer than standard arms of homology. Increasing the

amount of DNA added to the transformations did not remedy this. Alternatively, the

RPS may kill the cells although this is unlikely, as previously, cells transformed with

the RPS sequence on a plasmid survived and did not show any growth defects and no

ADE2 only control integrations were found. However, in a chromosomal

environment, the RPS may exhibit different effects. As no correct integration was

found, it would appear that yeast bearing the new integration are disadvantaged and

are subject to competition by false positives in the medium. Therefore, perhaps if 5-

FOA selection were optimised to prevent the growth of false positives it would allow

the growth of cells positive for the RPS and ADE2.
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Figure 3.11: Vectors and strategy for integration into BY4733 ADE2 locus. (A)
shows the strategy for integration. The two sequences which, function as arms of
homology were cloned into the multiple cloning site of pBluescript after being
amplified by PCR and sequenced. The ADE2 and RPS sequences were cloned
adjacent to these sequences. The whole construct was excised by restriction
digest, purified and transformed into the S. cerevisiae HC2 strain. This allows
selection of transformants on 5-FOA medium, which selects against cells
expressing the URA3 gene. (B) shows the orientations of the RPS and ADE2
sequences used in this study, which were cloned into the vector in the same
manner (table 6.1).
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control. Probe 1 was used for visualisation of size differences between genomic
restriction fragments. The expected size of the parental strain was observed,
however, this 2.4 Kb band was also identified in the lanes of all putative
transformants indicating that the integration was unsuccessful.
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3.3.4 Optimisation of 5-FOA Selection

The standard amount of 5-FOA added to medium for URA3 counter-selection is 1

mg/ml. Transformations of the RPS/ADE2 disruption fragments were spread on

plates containing increasing amounts of 5-FOA (1.5 mg/ml and 2 mg/ml) in an

attempt to minimise the number of false positive colonies. Southern blot analysis on

colonies growing on these higher 5-FOA concentrations showed that only false

positives were present (fig. 3.13). Since 5-FOA is quite expensive, higher

concentrations of the chemical could not be used. McCusker and Davis (1991) noted

that when proline was used as a nitrogen source, instead of standard ammonium

sulphate, S. cerevisiae cells become hypersensitive to 5-FOA allowing lower

concentrations of it to be used in the medium. Therefore, this approach with proline-

containing medium was adopted. Concentrations of 5-FOA were tested ranging from

25|ig/ml to 1 mg/ml. Colonies were transformed and selected as previously and

analysed by Southern blot as before (fig. 3.13).

The Southern blot of putative positive colonies shows the same pattern as the

parental strain demonstrating that the URA3 gene has not been replaced. Despite

attempts to optimise 5-FOA selection, no positive colonies were obtained. This lead

to the hypothesis that perhaps the RPS/ADE2 construct was not integrating into the

yeast chromosomes for reasons unknown or that the constructs were toxic to the

yeast cells at this integration site.

120



B

M P 25 (ig/ml 100 jag/ml 500 |ag/ml 1 mg/ml M
I HI II II I

I - «•- » i 5 Kb

_ 2.5 Kb

Figure 3.13: Southern blots showing optimisation of 5-FOA strategy. In both
blots M denotes markers, P denotes the parental strain (HC2). The concentrations
indicated are the final concentrations of 5-FOA in the medium used for selection
of transformants. The same Southern blotting strategy (Bgl II digest) was used as
is shown in fig. 3.12. (A) shows increasing concentrations of 5-FOA on the
standard plates. (B) shows increasing 5-FOA concentrations on plates containing
proline as a nitrogen source. In all cases a 2.4 Kb band, indicating the same
structure at the ADE2 locus as the parental strain was found. This suggests the
integration was unsuccessful.
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3.4 Integration of RPS into Yeast Genome by Adenine Selection.

To test the hypothesis that the RPS was either toxic to cells at this chromosomal

locus or that the construct could not integrate, the same yeast strain (HC2) was

transformed with the same disruption fragments but positive colonies were selected

on SC-ade medium. This positive selection is not ideal: if the RPS induces silencing

of the reporter gene, these colonies will be lost on SC-ade medium. However, if

colonies appear it shows that the construct can integrate and that the constructs are

not toxic to the cells in a chromosomal context. Moreover, studies have shown that

genes can alternate between active and repressed states (Gottschling et al., 1990).

Therefore, after selection on SC-ade medium, colonies were picked and grown

overnight in non-selective YPD medium. A loop of this culture was then placed in

fresh YPD and grown overnight. This was repeated again and a sample was plated on

YPD medium and the colour of colonies was noted. This takes advantage of the fact

that the integration should be stable and plating onto non-selective medium will not

cause the loss of the cassette. Although this method of selection is not ideal, it may

give an insight into the mechanism and the stability of RPS-induced silencing.

3.4.1 Integration of RPS into S. cerevisiae BY4733

Using the same constructs and strains as shown in fig. 3.11, the RPSIADE2

constructs were transformed into yeast and selected for on SC-ade plates. Two

colonies from each orientation were picked and grown in non-selective medium as

described along with two ADE2 gene only controls. These are shown in fig. 3.14
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after the outgrowth. As shown, two colonies from the group were pink in colour

(orientations 3 and 4, colonies 3a and 4b). Before we could conclude that these

colonies contain a silenced ADE2 gene, a Southern blot was performed to check the

constructs were integrated in the genome correctly (fig. 3.15).

The blot shows that all the white colonies and controls have bands of the correct

sizes and that the constructs are integrated correctly. However, the two pink colonies

(3a and 4b) have a different pattern of bands from the expected length. No band is

found for colony 3a, the reason for this may be insufficient DNA loaded into the

lane. Colony 4b has the same size band as the parental strain suggesting that the

construct has not integrated at this locus. However, since the colony grew on SC-ade

medium, it implies that the constructs have integrated at the wrong locus. To test this

hypothesis, two Southern blots were performed on the pink colonies (3a and 4b) and

one white colony as a control (3b), although, no real theory can be extrapolated from

3a since no band was found in the localisation Southern blot (fig. 3. 15). The blots

were probed with full-length RPS and ADE2 sequences to observe if the RPS or

ADE2 sequences were present within the genome (fig.3.16).

The Southern blots confirm that the full-length RPS and ADE2 sequences are present

within the yeast genome. It also appears that some rearrangement of the RPS has

occurred in 4b since a smaller band was found in the Southern blot. From my own

observations, I have seen rearrangements of the RPS when placed in an E. coli host,

and indeed repetitive DNA has the potential to recombine and rearrange. Studies

have shown that other repetitive sequences, namely the Alu repeats from humans,
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become unstable when placed in S. cerevisiae (Lobachev et al., 2000) suggesting the

rearrangement of the RPS sequence is a feasible hypothesis. As both colonies were

pink, it is possible that the ADE2 gene contained a point mutation. Therefore, all

colonies were re-plated on SC-ade medium to see if the ADE2 gene was functional

(fig. 3.17). Figure 3.17 shows that all colonies grow on SC-ade medium except the

pink colonies. This suggests that for the pink colonies the gene is silenced by the new

locus, the RPS or that the ADE2 gene contains a point mutation.

The band patterns of the Southern blots suggest that the RPS and ADE2 construct has

integrated at a site other than the endogenous ADE2 locus. To verify if the sequence

has been wrongly targeted, cells were plated onto SC-ura medium (fig. 3.17). As the

URA3 gene is present at the integration locus, colonies with the correct integration

should have lost the URA3 gene and would not grow on this medium. However, if

the construct is elsewhere in the genome, the URA3 gene would still be present and

cells would be able to grow on this medium. The outcome of this plate assay

indicates that all the white colonies were correctly targeted and that the pink colonies

have retained the URA3 gene, confirming that the construct went to the wrong

location.
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Figure 3.14: Colours of colonies after adenine selection and outgrowth. Shown
are selected colonies plated onto YPD, non-selective medium. These colonies
were originally selected for on SC-ade medium, and subjected to 3 sequential
overnight outgrowths in YPD. Shown is the final plating. The numbers annotated
to each colony represent the construct orientation integrated into the yeast. All
colonies are white except 3a and 4b, which are pink in colour.
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Figure 3.17: Growth of colonies on SC-uracil and SC-adenine medium. (A)
shows only colonies 3a and 4b can grow on medium lacking uracil, implying the
URA3 gene is still intact. (B) shows only the white colonies can grow on SC-
adenine medium, although slight growth is detected for 3a and 4b.



3.4.2 Localisation of RPS Sequence

The observation that the RPS sequence was wrongly targeted at a high frequency,

despite having longer than standard arms of homology, led to the hypothesis that the

RPS is targeted to silent chromatin within the yeast genome. This preferential

integration to silent chromatin is found for the Ty transposable elements in S.

cerevisiae (reviewed by Boeke and Devine, 1998). Moreover, the fact that the

incorrectly targeted colonies are pink, whilst correctly integrated colonies are white

suggests the silenced state of the ADE2 gene could be attributed to integration next to

a region of silent chromatin.

To identify the location of the RPS and ADE2 an inverse PCR approach was adopted

(simplified in fig. 3.18). Yeast genomic DNA from colony 4b was digested with

different 6 bp cutter enzymes Hind III, Xba I, and Pst I. The restriction fragments

were self-ligated and divergent primers complementary to sequences in the ADE2

gene was used to amplify the unknown DNA. An approximately 1.7 Kb fragment

was amplified from Hind III digested genomic DNA. PCR of the other genomic

restriction digests did not generate any bands; this may be because the sequences

generated by ligation were too long for the PCR conditions used. The 1.7 Kb band

was excised, cloned and sequenced.

The sequence revealed that the ADE2 gene, and presumably the RPS had been

wrongly integrated at a locus on chromosome XII, upstream of the co-ordinate

231381 (fig.3.19). This corresponds to an insertion in the TRX1 and PDC1 genes.
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The TRX1 gene encodes a thioredoxin, which is required for protection against

reductive stress (Trotter and Grant, 2002). PDC1 encodes a decarboxylase involved

in amino acid metabolism (Dickinson et al., 2000). Little is known about the

chromatin structure of this locus, other than it is not one of the classic silent yeast

loci, it is not sub-telomeric, it is gene-rich, and should therefore have an active

chromatin conformation. Subsequent BLAST searches comparing the DNA

transformed into yeast and the locus of integration revealed no homologous

sequences to this locus in any of the sequences transformed into the yeast. Therefore,

the construct must have integrated by non-homologous recombination. One notable

feature of this locus however is that there is a high proportion of tRNA genes and 8-

sequences from Ty elements upstream of the integration site (fig. 3.19).
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Figure 3.18: Inverse PCR strategy for localisation of RPS and ADE2 sequences
in the yeast genome. The gel shows the approximately 1.7 Kb band successfully
amplified from Hind III digested genomic DNA by primers 019a and 019b (see
appendices), which was cloned and sequenced. The other restriction digests did
not yield products.
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3.4.3 Discussion

Problems concerning the integration strategy make it difficult to establish valid

conclusions from experiments in the BY4733 strain. Despite several attempts to

optimise 5-FOA selection, no colonies containing correctly integrated constructs

were found (figures 3.11 and 3.12). Possible reasons for this were that the RPS was

lethal to yeast in a chromosomal context or that yeast carrying the RPS sequence had

some selective disadvantage and did not grow upon competition. Therefore, selection

for the ADE2 gene on SC-ade plates was utilised to confirm that the RPS did not

induce cell death.

Whilst selection for the ADE2 gene confirmed that the RPS was not lethal to yeast;

this type of selection was not ideal. If the RPS did induce ADE2 gene silencing these

colonies may be lost upon selection. However, previous studies have shown that

silenced genes can revert to an active state (Gottschling et al., 1990) and the

appearance of sectored colonies in plasmid experiments suggested RPS-mediated

silencing may be unstable and alternate between repressed and active states.

Therefore, growth in the non-selective medium YPD was employed after initial

selection to allow the possible flipping between conditions.

Of the eight colonies tested, no pink colonies were found at the correct ADE2 locus

(fig. 3.15). This suggests that either the RPS does not mediate chromosomal gene

silencing or any potentially silenced colonies were lost at the initial selection stage.

However, one pink colonies was found but had localised elsewhere. Inverse PCR
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demonstrated that this construct had integrated at a locus on chromosome XII. The

reason why the wrongly placed colony is pink is unclear, the novel locus of

integration was not one of the classical silent yeast loci and therefore, the ADE2 gene

was not subject to known endogenous position effect variegation. It was

hypothesised that the pink colour may be due to further recombination between the

RPS and ADE2 sequences resulting in mutations in the ADE2 gene. However,

Southern blot analysis proved that the full-length DNA sequences were present (fig.

3.16). As the presence of the full-length sequences does not account for any point

mutations that may occur, the pink colonies were plated on SC-ade medium to

observe if the ADE2 gene was functional (fig. 3.17). This plate assay shows that the

pink colonies did not grow on this medium, however the lack of growth could also be

attributed to RPS-induced silencing.

The difficulties in selection with adenine warrant caution in interpretation of this

data. If any conclusive results on RPS-mediated silencing are to be generated an

appropriate selection must be found to allow stable integration of the RPS and ADE2

sequences into the genome. Such stable integration would potentially allow the yeast

cell to be genetically manipulated to determine the mechanism of RPS silencing.
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3.5 Analysis of RPS in S. cerevisiae FY2 Strain

The limitations of the adenine selection in the previous experiments make it difficult

to extrapolate conclusive answers about RPS function in yeast. Therefore, some

means of selection of transformants other than the ADE2 gene had to be devised.

This involved changing S. cerevisiae strain from BY4733 to FY2. The S. cerevisiae

FY2 strain contains a defective URA3 allele known as ura3-52. The ura3-52 allele

contains a Tyl insertion in the URA3 gene at codon 121 (Rose and Winston, 1984).

In conjunction with using this strain, yeast-integrating vectors were employed. These

vectors have no origin of replication and are not supported in yeast unless they

integrate into the genome. The vector selected was pRS406, which contains a

functional copy of the URA3 gene. When the FY2 strain is transformed with pRS406,

the functional URA3 will recombine with the ura3-52 allele and give one functional

copy of URA3 and one ura3-52 allele. When the ADE2 and RPS sequences are

cloned into this vector, they will become integrated into the genome with the rest of

the vector (fig. 3.20). This means the positive integrants containing the RPS and

ADE2 sequences can be selected for on SC-ura medium. In this case, the locus at

which the RPS will be studied is URA3. It is a similar locus to ADE2, as it is a

housekeeping gene and should have "normal" chromatin structure.
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Figure 3.20: Vectors and strategy for integration in FY2 strain. RPS and ADE2
were cloned into the multiple cloning site of pRS406 integrating vector (Christianson
3t al., 1992) in the various orientations shown in fig. 3.11 (B). The vector was
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3.5.1 Knockout of ADE2 Gene in S. cerevisiae FY2

As previously achieved for the BY4733 strain, the endogenous ADE2 gene was

deleted in the FY2 strain in order to utilise it as a reporter gene. The same strategy

was performed as in section 3.2.2. The Southern blot of the knockout is shown in fig.

3.21, which confirms the successful deletion of the ADE2 gene to generate strain

HC4. A complementation test was also carried out and confirmed the strain would

change from pink to white when the ADE2 gene was supplied on a plasmid (not

shown).
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Figure 3.21: Southern blot showing knockout of ADE2 gene in FY2 strain. The
ADE2 gene was deleted from 602 bp upstream and 239 bp downstream of the
start and stop codons. Primers 'adedelstart' and 'adedelend' were used to
generate a disruption fragment by PCR from plasmid pKanMX4 (see
appendices). The hybridisation probe was used to visualise size differences
between strains . The Southern blot shows the expected 7.1Kb parental band and
the transformed strain, HC4, has the expected 5.5 Kb band. P denotes the
parental strain and T denotes the transformed strain with the kanamycin
resistance gene. DNA sequences used for homologous recombination are
indicated by shaded boxes.
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3.5.2 Integration of RPS into S. cerevisiae Chromosomes

All orientations (1-4) of the RPS and ADE2 constructs were integrated into S.

cerevisiae FY2 using the pRS406/AR series of vectors (description of cloning given

in table 6.1) by the mechanism shown in fig. 3.20. A control with the ADE2 gene

only was also transformed, pRS406/A (see table 6.1). Positive transformants were

selected on SC-ura medium. Colonies and numbers of pink colonies were counted

and are shown in table 3.3. The results in this table show, no pink colonies on the

control plates, which were transformed with the linearised control ADE2 only

plasmid. Cells transformed with vectors containing the RPS sequence have pink and

sectoring colonies, which are most prevalent in colonies containing the construct in

orientation 4. The occurrence of pink and sectoring cells on the plates suggests the

RPS has induced gene silencing when integrated at a chromosomal locus. However,

the integrations must be confirmed by Southern blot analysis.

Of the colonies listed in table 3.3, sixteen putative KPS/ADE2 integrants were

selected for further analysis. For each orientation one pink colony, one sectoring

colony and two white colonies were chosen. Colonies were annotated according to

their phenotype and the orientation integrated: the number (1-4), being the number of

the orientation, 'a' denotes a sectoring colony, 'b' is a pink colony and 'c' and'd'

denoting white colonies. For example, 3b would be a colony with the RPS and ADE2

orientation 3 construct integrated and would be sectoring. A representative sample of

the plates and colonies are shown in fig. 3.22.

139



The correct localisation of these sequences was ascertained by Southern blotting (fig.

3.23). The Southern blot shows that most sequences have the expected length of

bands suggesting the constructs are correctly integrated at the ura3-52 locus. Colony

la has no band, this may be due to insufficient DNA levels on the original gel.

Therefore, as no positive conclusions can be made; la will not be considered any

further. Some colonies show different banding patterns (2a, 2b, 3b and 4b) from the

expected length. As the length of bands is also different from the parental strain, it

suggests that some recombination of the transformed sequences has occurred but this

region has undergone further aberrant recombination.

Southern blot analysis on genomic DNA digests probed with full length ADE2 and

RPS sequences was performed to determine if the different banding patterns could be

attributed to recombination of the repetitive RPS sequence or ADE2 gene. Figure

3.24. shows the Southern blots and confirms that full length ADE2 and RPS

sequences are present in all of the correctly integrated colonies as established by the

previous Southern blot (fig. 3.23). No bands corresponding to the ADE2 and RPS

sequences were identified in colonies 2a and 4b suggesting these are false positives

or have undergone further recombination at the ura3-52 locus, which has resulted in

the exclusion of these sequences from the genome. The Southern blots show that

colonies 2b and 3b have full-length RPS and ADE2 sequences present within the

yeast genome. If we consider that for these strains to grow on SC-ura medium an

integration event must have occurred at the ura3-52 locus to complement the

mutation and the different banding patterns compared to the parental strain, it

suggests integration has happened at this locus. However, the full-length RPS and

140



ADE2 sequences are not integrated in the expected manner predicted in fig. 3.20.

Therefore this locus may have undergone further recombination leaving the ADE2

and RPS sequences intact at this locus, or the full-length sequences have moved to

another location within the genome.

Interestingly, in fig. 3.24, for colonies lb, lc, Id and 2b, bands of slightly shorter

length to the ADE2 gene are found. This suggests some recombination of the ADE2

gene has occurred. However, since some of these colonies are white, it is evident that

this does not affect the colour of colonies. In addition, in fig. 3. 23, only one band is

found that corresponds to the insertion at the ura3-52 locus, implying that if there is

an additional truncated ADE2 gene within the genome it is not present at this locus.

All other colonies studied reveal that the targeting and sequence integrity are correct.

This shows that in the majority of cells that are white, the construct is correctly

targeted, implying that in these cases there is no silencing of the ADE2 reporter gene.

However, in two out of the sixteen colonies studied, constructs were correctly

localised and colonies were pink or sectored implying that the RPS induces gene

silencing in yeast. Therefore, the average number of pink (lb) or sectored colonies

(4a) over all experiments for all orientations was 10.6%. This figure would have to

be amended to 5.3% for silenced colonies to take account of recombinations and

wrongly targeted sequences. However, due to the small number of colonies studied

in these experiments, these results would have to be repeated in order to determine

the statistical significance of these figures. Nevertheless, the appearance of a sectored

colony reveals something about the mechanism of silencing; it shows that throughout
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colony development the expression of the ADE2 reporter gene changed in some cells.

This suggests that the ADE2 gene may alternate between silent and active states

when placed next to the RPS sequence, particularly in orientation 4.
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Vector
Integrated
No.
of

Colonies/ml
No.
of

Pink

Colonies/ml
No.
of

SectoredColonies/ml
%

Pink/Sectored
Colonies

312

0

0

0%

pRS406/A

212

0

0

0%

468

20

12

6.8%

pRS406/ARl

164

6

1

4.3%

267

15

7

8.2%

pRS406/AR2

54

3

0

5.6%

362

18

8

7.2%

pRS406/AR3

65

5

0

7.8%

213

27

25

24.4%

pRS406/AR4

49

6

4

20.4%

Table
3.3:

Transformation
efficiencies
of

pRS406
series

integrations.
Shown

are
the

results
from
two

separate

transformations.
The

numbers
shown
are
the

average
numbers
of

colonies
from
four

plates
of
the

same

transformation.



pRS406/A pRS406/AR1

pRS406/AR2

pRS406/AR3 pRS406/AR4

Figure 3.22: Colonies following pRS406 series transformations. Shown are a
representative sample of plates following integration of the pRS406 series
constructs. As expected, only white colonies are found on control plates,
pRS406/A with the ADE2 gene alone. Other plates with colonies containing the
RPS and ADE2 constructs contain a mixture of pink, white and sectored colonies
some of which have been highlighted.
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Figure 3.23: Southern blot confirming RPS and ADE2 sequences at ura3-52
locus. M denotes the marker, P denotes the parental strain, A denotes the ADE2
only control strain. The other lanes are RPSIADE2 transformants. The
nomenclature is as follows: the number denotes the orientation of the construct

integrated. The letter a denotes a sectoring colony, the letter b denotes a pink
colony and letters c and d refer to white colonies. Probe 4 was used to
differentiate between sizes of bands and the expected sizes are shown above.

145



Dd Od
O O
o o
w 1.6 Kb W

\ura3-52 |—[ RPS |~T ADE2 |-[URA3
Probe 2

M Aa 1a 1b 1c 1d 2a 2b 2c 2d3a 3b 3c3d4a 4b 4c 4d

Q. Q-
C0 W
>

„ 1.9 Kb J>
L< H

| ura3-52KRPS |—| ADE2 |—\uRA3
Probe 3

M Aa 1a 1b 1c 1d 2a 2b 2c 2d3a 3b 3c3d4a 4b 4c 4d M

2 Kb

1.5 Kb

Figure 3.24:Southern blots showing full length ADE2 and RPS sequences
integrated into FY2 genomic DNA. Probes were used to detect full length RPS
and ADE2 sequences, and bands of expected sizes, shown in the schematic
diagrams can be seen in both blots. The nomenclature is as follows: the number
denotes the orientation of the construct integrated. The letter a denotes a
sectoring colony, the letter b denotes a pink colony and letters c and d refer to
white colonies.
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3.5.3 Role of BP1 in RPS-medlated Silencing in Yeast

To examine how RPS-mediated silencing occurs in yeast and to elucidate the

mechanisms of silencing in plants, effectively yeast is being used as a "test tube". A

WD repeat protein from Arabidopsis, with homology to the yeast co-repressor TUP1

was found to bind the RPS. This may or may not be linked with RPS silencing. To

investigate the role of BP1 in RPS-induced silencing in yeast, colonies that were

white in colour but contained the RPS sequence were transformed with a vector

expressing the BP1 protein (p415-MET25-BPl, see table 6.5). In order to utilise the

MET25 promoter, the methionine biosynthesis pathway must be intact. The strain

used is a methionine auxotroph, therefore the MET15 gene was restored to its

original locus by PCR-mediated disruption. The METIS gene was amplified from

vector pRS401 using primers 017a and 017b (see table 6.2).

Once the methionine biosynthesis was intact, colonies were transformed with p415-

MET25-BP1. Northern blot analysis confirmed that BP1 transcription was being

driven by the MET25 promoter (see chapter 4). The colonies transformed were lc,

2c, 3c, and 4c along with an ADE2 only control. Any change in the colour of

colonies from white to pink, which would indicate silencing, was noted (fig. 3.25).

As can be observed from the plates, all of the colonies retained their white colour

suggesting that the BP 1 protein has no influence over gene silencing in yeast in the

experimental conditions examined here.
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This observation can be explained several ways. Perhaps the BP1 protein, like TUP1,

needs to interact with other proteins to achieve repression. BP 1 may be too distant, in

evolutionary terms, from the machinery in S. cerevisiae to allow this (further

discussed in chapter 4). Furthermore, BP1 may not act alone in RPS-mediated

silencing; it may act as part of a larger protein complex, which is absent in yeast.

Also, the mechanisms of RPS-mediated silencing in plants and yeast may differ in

their mechanisms and where BP1 may be relevant in plants, it is redundant in S.

cerevisiae. Alternatively, BP1 may not have any function in silencing the RPS and

the RPS binding site may be coincidental. This is furthered by the fact that the RPS

does not enhance expression variegation in Arabidopsis, which contains endogenous

BP 1 protein. It is also conceivable that once the decision is made for the ADE2 gene

to be active or silent it remains in that state; therefore the RPSIADE2 should have

been transformed into cells already expressing the BP1 protein. However, the

appearance of sectoring colonies in the previous experiments suggests that the

silencing or expression of the ADE2 gene can change through colony development.
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Aa (ADE2 only)

1c (orientation 1) 2c (orientation 2)

3c (orientation 3) 4c (orientation 4)

Figure 3.25: Effects of BP1 on RPS-inediated gene silencing. Shown are plates
of white colonies containing RPS and ADE2 constructs transformed with a
plasmid expressing the BP1 protein. As shown all cells are white suggesting BP1
does not influence RPS-induced silencing in S. cerevisiae.



3.5.4 Role of TUP1 in RPS-mediated Silencing

In order to understand the mechanism of RPS-mediated silencing, the components

that may be involved must be dissected. The two well-characterised gene repressors

in S. cerevisiae are the TUP1/SSN6 co-repressor and the SIR proteins. As previously

mentioned, BP1, a putative TUP1 homologue binds the RPS sequence. When BP1

was transformed into yeast there was no difference in silencing; this could be

because it cannot interact with other yeast proteins necessary for repression. Since

BP1 has homology to TUP1, TUP1 may be a candidate for inducing the observed

RPS-mediated repression in yeast. Therefore, the TUPl gene was replaced by the

zeocin antibiotic resistance marker in a strain showing silencing of the ADE2

reporter gene (4a) and colonies were checked to see if silencing was alleviated and

sectored colonies became white. TUP1 was deleted by PCR-mediated disruption

using the plasmid pPICZB (table 6.1), which contains the zeocin resistance gene and

primers 020a and 020b that contain 40bp homology to the TUP1 locus (table 6.2).

To test if colonies were mutant for TUPl, cells were grown in broth medium and any

that displayed a severe flocculating phenotype, typical of a tupl mutant were

considered positive for a TUPl deletion. The results are shown in fig. 3.26. As the

colonies retain their sectoring phenotype, it indicates that, in this instance, TUPl is

not responsible for RPS-mediated silencing. However, this experiment would have to

be repeated to validate these results.
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Parental

Strain, 4a

A tupl (2)

Figure 3.26: Effects of TUPl on RPS-mediated silencing. Shown are examples
of colonies following a TUPl deletion. The parental strain (4a) containing the
ADE2 and RPS sequences integrated at the URA3 locus is sectoring as expected.
The plate also contains 3 tupl mutants, which were selected from plates
following replacement of the TUPl gene with the zeocin resistance marker.
These colonies are also sectoring implying TUPl has no effect on RPS-mediated
silencing.



3.5.5 Discussion

The utilisation of the FY2 strain allowed positive selection for cells containing the

RPS and ADE2 constructs without selection of the ADE2 gene. This improved the

method of observing gene silencing relative to what was previously achieved for the

BY4733 strain.

Experiments where the RPS and ADE2 constructs were correctly integrated at the

URA3 locus yield pink and sectoring colonies, not seen in ADE2 only controls,

indicating that the RPS can mediate gene silencing in yeast. However, attempts to

elucidate the mechanism of this silencing were inconclusive. Where tested, the RPS-

binding protein BP1 did not enhance RPS-mediated gene silencing in yeast. This

finding does not mean that BP 1 is not involved in RPS-mediated silencing in plants

but may be indicative of evolutionary divergence preventing BP1 from interacting

with the yeast transcriptional machinery. The putative S. cerevisiae BP 1 homologue

and transcriptional co-repressor, TUP1 did not influence RPS-mediated gene

silencing. Deletion of the TUP1 gene did not cause release of RPS-mediated

silencing where tested. Therefore, the mechanism of RPS-induced silencing remains

unknown.

Interestingly, a high frequency of pink or sectoring colonies were found to have full-

length RPS and ADE2 sequences integrated into the genome in an unexpected

fashion. This may be due to further recombination at the ura.3-52 locus. It would be

interesting to carry out a study on a variety of these colonies to determine the exact
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localisation of these sequences and deduce if there are particular hotspots for

integration or recombination.

These experiments clearly show epigenetic gene silencing of the ADE2 gene as

directed by the RPS can occur in both yeast and plants.

3.6 Discussion

The study of a repetitive sequence from P. hybrida in the yeast S. cerevisiae has

revealed certain similarities in the way cells respond to repetitive DNA. As suggested

by the experiments on plasmids, but further validated by experiments with the RPS

integrated into yeast chromosomes, I have demonstrated that the RPS could mediate

silencing of an ADE2 reporter gene in yeast cells. This is a clear example of an

epigenetic event, which is separate from the chromosomal locus and is induced

entirely by the RPS sequence itself. Since the mechanism of RPS-induced silencing

in yeast remains elusive, the evidence from yeast in conjunction with data already

generated in plants must be used to speculate upon its method of silencing.

There are some notable differences in RPS-mediated silencing between the two

systems. In yeast, comparisons between silencing induced by the RPS on low-copy

plasmids and high-copy plasmids show that the frequency of silencing is elevated

when a single copy of the RPS is present (compare table 3.1 and table 3.2). This

differs from previous findings in Arabidopsis, the RPS did not mediate gene

silencing as in Petunia where multiple endogenous copies are present (ten Lohuis et
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al., 1995; Miiller et al., 2002). Therefore, it was concluded that multiple endogenous

copies of the RPS were a pre-requisite for silencing. However, this result was not

reproduced in yeast.

The fact that low-copy number plasmids show enhanced silencing in yeast may

indicate the role for a low abundance factor in silencing. Multiple copies of the RPS

provided by the high copy-number plasmid may dilute this factor out; thus, the

incidence of silencing is reduced. The identity of the yeast factor possibly involved

in this silencing remains unknown. The A. thaliana protein, BP1, a putative

homologue of the TUP1 co-repressor, may be involved in RPS-mediated silencing by

virtue of the fact it can bind the sequence. When expressed in yeast, BP1 had no

effect upon chromosomal RPS-mediated silencing (fig. 3.25). However, the inability

of BP 1 to influence gene silencing in yeast could be due to sequence divergence

throughout evolution, which prevents BP1 from interacting with the yeast

transcriptional machinery to repress gene expression. Therefore, the finding that BP 1

has no role in yeast does not exclude BP 1 from being involved in RPS silencing in

plants. However, in Arabidopsis where BP1 is natively expressed, no expression

variegation of a reporter gene was noted implying that BP 1 may not be involved in

RPS mediated repression (Miiller et al., 2002). Since BP1 appears to be functionally

redundant in S. cerevisiae, its putative yeast homologue, the transcriptional co-

repressor TUP1 was deleted to observe its role in RPS-induced gene silencing

(section 3.5.4). My findings show that TUP1 has no effect on RPS-mediated

silencing in yeast. This again may indicate separate mechanisms of silencing in yeast

and plants.

154



In addition to TUP1, BP1 has significant homology to the S. cerevisiae gene ARC41.

It would have been beneficial to the study to knock out this gene and observe the

effects, particularly since actin-related proteins have been implicated in epigenetic

gene regulation (Jiang and Stillman, 1996). However, deletion of this gene is lethal

in yeast. If BP1 is related to actin proteins it perhaps functions to silence the RPS by

tethering the sequence at the nuclear periphery bringing it in contact with silencing

complexes such as the SIR proteins (Palladino et al., 1993). Experiments tagging the

RPS sequence with GFP and determining its localisation within the nucleus would

help resolve this hypothesis (for example see Straight et al., 1996). Future

experiments would attempt to elucidate the molecular mechanism of repression in

yeast. Studies would include deletion of the SIR proteins, as these are involved in

telomeric silencing and position effect variegation, making them possible candidates

for RPS-induced silencing. Co-immunoprecipitation studies with the RPS would also

establish which proteins bind to the RPS sequence in yeast and may contribute to the

deduction of the molecular mechanism ofRPS-induced silencing.

My experiments, consistent with findings in Arabidopsis and Petunia (ten Lohuis et

al., 1995; Miiller et al., 2002), confirm that DNA methylation is not essential for

RPS-induced silencing. The S. cerevisiae genome contains no cytosine methylation

and yet the RPS was shown to silence a reporter gene. In its native species P.

hybrida, methylation is perhaps a secondary epigenetic mark of a silent locus, which

is essential in organisms with a more complex genome than S. cerevisiae. The

methylation-independent manner of RPS silencing is in parallel with other findings.

For example, Amedeo et al (2000) showed that removal ofDNA methylation from a
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silenced locus was not sufficient to allow gene expression suggesting that DNA

methylation is not the primary effecter of gene silencing. However, this is not seen in

all cases and removal of DNA methylation can lead to the expression of previously

silent genes (Miura et al., 2001). These findings suggest the role of DNA

methylation in gene silencing may be context and situation dependent.

Thus, the exact mechanism of RPS-induced silencing remains unknown. Since

methylation is not pivotal to its mechanism, the role of chromatin structure is

implicated. The RPS may nucleate an altered chromatin structure by virtue of its

repeats or by interacting with specific proteins that allow the formation of silent

chromatin. This state is likely to spread to the adjacent reporter gene, causing

position effect variegation. The argument for position effect variegation is supported

by the stochastic nature of the silencing observed in yeast. For example, although all

ADE2 and RPS constructs were at the same locus, some ADE2 genes are silent and

some are not, with other sectoring colonies confirming ADE2 expression variegation.

One might hypothesise that the variegation occurs because the reporter gene has

adopted an altered, heterochromatic-like state. The appearance of variegating

colonies reinforces this since the extent of heterochromatin-like structure spreading,

joined with epigenetic inheritance patterns and would result in this variegating

phenotype. Future experiments would explore the role of chromatin structure in RPS-

mediated silencing. It would be interesting to determine the histone modifications

found at the RPS and repressed gene to see if they are consistent with the histone

code of silent chromatin. Chromatin immunoprecipitations (ChIP) would reveal if

there was extensive hypoacetylation at the silenced locus, which would implicate the
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role of histone deacetylases (HDACs) in RPS-induced silencing. It would also be

beneficial to look at histone methylation in a similar manner to observe if residues

such as lysine-79 are hypomethylated, as is found at silent loci in S. cerevisiae (Ng et

al., 2003). This would implicate SIR proteins in silencing (van Leeuwen et al., 2002)

and help elucidate the mechanism of silencing.

My results also reveal differences in the silencing capacity of the RPS in relation to

its orientation to the reporter gene. As shown by the plasmid experiments

orientations 2 and 3 gave similar levels of gene silencing whilst levels of silencing in

orientation 4 were consistently lower (tables 3.1 and 3.2). However, this situation

was reversed when the constructs were integrated into the genome, with all

orientations giving comparable levels of pink colonies except for construct 4, which

gave a substantially higher number of pink colonies (table 3.3). These apparent

discrepancies in findings between plasmid and chromosomal silencing may be

explained if for orientation 4 plasmids, the TRP1 marker gene may also have been

silenced by the RPS. This theory would account for the differences since colonies

with a silenced TRP1 marker gene would be lost or out-competed by white colonies

on the particular selective medium. If indeed, in plasmids bearing the orientation 4

construct the TRP1 and ADE2 genes are silenced, it implies the RPS has the potential

to silence in both directions. However, this finding was not observed in orientation 2,

which has the same orientation of the RPS as construct 4. One might hypothesise that

to achieve this type of silencing observed for orientation 4, the RPS must be in close

proximity to the reporter gene promoter where there is some reinforcing function.

However, as shown by the plasmid and integration experiments, the promoter of the
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reporter gene does not have to be directly adjacent to the RPS to allow gene silencing

as is found for orientations 1 and 2. The reason why orientation 4 should have a

higher incidence of silencing compared to the others is unclear; perhaps the promoter

being in close proximity to the inverted repeats has some influence in gene silencing.

Although homologous recombination experiments always show a background of

wrongly integrated sequences, the fact that the RPS and ADE2 constructs were found

incorrectly integrated at a high frequency may give some understanding of the

evolutionary origins of the RPS sequence. When selecting for transformants based

on SC-ade medium, one wrongly inserted sequence was found (fig. 3.15). No

homologies between the locus where the sequences were found and the integrating

construct could be identified, implying that the sequence was directed there by non¬

homologous recombination. Further experiments with the FY2 strain also showed the

presence ofmisplaced sequences (fig. 3.23), although the position of these sequences

was never identified for this strain. In both strains, Southern blot analysis revealed

that the RPS and ADE2 sequences were found intact elsewhere within the genome,

which suggests that these sequences were not subject to internal recombination

events.

In order for colonies to grow on the SC-ura selective medium used in the FY2 strain

experiments, the functional URA3 gene transformed into yeast must recombine with

the ura3-52 allele at the endogenous ura3-52 locus to generate a functional URA3

gene (see fig. 3.20). The construct transformed into yeast could not support the

growth of cells on SC-ura medium without this recombination event occurring.
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Therefore, for the ADE2 and RPS sequences to be found intact but elsewhere in the

genome one could hypothesise that either the locus underwent further recombination

leaving the RPS and ADE2 sequences intact at the ura3-52 locus. Indeed the RPS

may promote illegitimate recombination as palindromic sequences have the potential

to carry out non-homologous recombination with other palindromic sequences

(Miiller et al., 1999). This recombination may affect the ADE2 gene giving rise to

pink colonies. However, this could not be a gross recombination of the ADE2 gene as

frequently the full length gene was identified by Southern blotting. The red colonies

generated by this type of scenario could be distinguished from silenced colonies by

serial plating of the sectored colonies. If the red colour was attributable to epigenetic

silencing we would expect to see reversibility of the state, whereas for colonies that

have undergone recombination the red colour would never change as the ADE2 gene

has been irreversibly altered. A further possibility for the unexpected banding pattern

found at the ura3-52 locus is that the transformed sequences originally went to the

ura3-52 locus and then translocated to a separate locus.

The only group of DNA sequences with the ability to do this are transposable

elements (TE). A putative ORF search of the RPS sequence revealed it had the

potential to synthesise a 61 amino acid peptide. This protein shares homology (50%

identity) with proteins of Ty elements in S. cerevisiae (fig. 3.27), gag-pol proteins

from TEs in other species and a transposase protein found in A. thaliana. Although

the ORF could not encode a full-length gag-pol protein, it implies that part of the

RPS sequence may have evolved from a transposable element that has been

corrupted throughout evolution. Indeed, the RPS has direct and indirect repeats,
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which are indicative of transposable elements. The RPS may retain the structure of a

transposable element, which are potentially recognised by proteins produced by

active Ty elements that may allow it to transpose with the ADE2 gene. Indeed,

disrupted non-functional elements can be reactivated by enzymes produced from

active TEs (see Lewin, 2000). Perhaps the heavy methylation of the RPS in P.

hybrida and A. thaliana is to prevent the activation of the transposable element, as

abolishing DNA methylation in Arabidopsis causes reactivation of transposons

(Miura et al., 2001). The fact that all colonies containing misplaced inserts are pink

may be explained by the fact that transposable elements are known induce the

repression of adjacent sequences (Cambereri et al., 1996), which may explain the

silencing effects of the RPS. This is a very primitive hypothesis and would have to

be confirmed by a series of experiments to prove the RPS is a mobile element.

Transposon display has been previously used in P. hybrida to discover integration

events by TEs and would help to confirm if the RPS was capable of this in its native

species (Van den Broek et al., 1998; De Keukeleire et al., 2001). A series of inverse

PCR and Southern blots in S. cerevisiae would determine the exact nature of the

recombination events at both the ura3-52 locus and the sites of integration of the

RPS and ADE2 sequences and help to ascertain if the RPS is a mobile genetic

element.

Of course, the possibility cannot be excluded that the rearrangements at the URA3

locus activates the Tyl element present in the ura3-52 allele and that this is

responsible for the transposition. This could be established by more inverse PCR and

Southern blotting to confirm exactly what sequences are present at the new locus. It
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is also feasible that some further recombination of the loci has occurred which causes

the differences in expected lengths of bands identified. However, the fact that full-

length ADE2 and RPS sequences have been identified somewhat dismisses this idea.

The fact that all of the misplaced colonies are pink and potentially silenced cannot be

simply explained. The possibility exists that some rearrangement of the ADE2 gene

occurred although the Southern blot confirming the full-length sequence somewhat

dismisses this idea. The one locus that was identified, was not one of the typical S.

cerevisiae silent loci although upstream of the region there were many 8-elements

and tRNA genes (fig. 3.19), which Ty elements are known to favour as spots for

integration (Boeke and Devine, 1998). Furthermore, 5-elements from Tyl

transposable elements are epigenetically regulated by the ACT3 protein (Jiang and

Stillman, 1996). This is an actin-related protein similar to BP1, which may give some

clues to the function of BP 1.

Although the exact system of RPS-mediated gene silencing remains unknown, this

study of the gene repressive properties of the sequence in yeast has demonstrated

interesting features of its mechanism. A repetitive silencing sequence from P.

hybrida was shown to repress genes in yeast in a plasmid at low frequencies and at

higher frequencies in chromosomal contexts. It has been clearly shown that RPS-

induced silencing can occur in yeast and that it is methylation independent. Further

studies could look at histone modifications such as methylation and acetylation to see

if a repressive chromatin code and structure has been introduced at the silenced

locus. I have hypothesised on the possible evolutionary origin of the sequence as a
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transposable element remnant. This would need to be confirmed by detailed studies

in both P. hybrida and S. cerevisiae. This study has shown that there are many
4r

similarities and differences in how yeast and plants both recognise and respond to

repetitive DNA.

14 YPQYDAMERN-PPAPRAE-SSYPQYDAMERNPPAPRAESSYPQYDAMEQN 61
YP Y PP +++ + YPQY N P+P + +S+P + + N

112 YPPYQMSPMYAPPGAQSQFTQYPQYVGTHLNTPSPESGNSFPDSSSAKSN 161

15/50 positives = 30%
25/50 identities = 50%

Figure 3.27: Alignment of putative RPS protein-and tianspusable element
protein. The sequence of the putative RPS protein is shown in fed and the yeast
transposable element sequence is shown in blue. The numbers correspond to
amino acid residues.
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Chapter 4 - Function of TUP1 homologues in the

yeast Saccharomyces cerevisiae

4.1 Introduction

Gene specific transcriptional repression plays a critical role in gene regulation. A

well-characterised example is the WD repeat protein, TUP1, from S. cerevisiae.

TUP1 functions with the adapter protein SSN6 to repress a wide-variety of genes,

including the flocculation genes, glucose repression genes and oxidative stress genes.

TUP1/SSN6 represses genes by organising an ordered, repressive nucleosomal array

over promoters and by inhibiting the RNA polymerase II complex (reviewed by

Smith and Johnson, 2000).

TUP1 acts as a prototype for a family of transcriptional repressors that includes,

mammalian transducin-like enhancer of split proteins (TLEs), and Groucho (GRO)

from Drosophila. Although these proteins are classified as a family on the basis of

their C-terminal WD repeats they lack extensive sequence similarity out-with these

motifs. The N-termini of these proteins is required for functions such as self-

association (Chen et al., 1998) and interaction with histones (Edmondson et al.,

1996; Palaparti et al., 1997; Flores-Saaib and Courey, 2000). The divergent N-

termini potentially form similar structures to facilitate these interactions, so despite

the lack of sequence homology, there may be significant structural and functional

homology between these proteins, suggesting a conserved mechanism of gene

repression between species.
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The parallels in the methods of action of these transcriptional repressors, and in

particular their ability to interact with histones (Edmondson et al., 1996; Palaparti et

al., 1997; Flores-Saaib and Courey, 2000) and histone deacetylases (Chen et al.,

1999; Watson et al., 2000) suggest they influence chromatin structure to repress gene

transcription. However, except in the case of TUP 1, there are no studies showing

chromatin remodelling activity associated with any of the other members of this

family. Indeed, little is known about how this family of proteins exerts their effects

upon transcription. Through our understanding of the mechanism of TUP 1 action in

yeast we can speculate and assess the activities of higher eukaryotic members of the

family.

Putative members of the TUP1/GRO family have been identified in Arabidopsis

thaliana. LEUNIG has significant homology to TUP1 but little is known about its

method of repression (Conner and Liu, 2000). BP1 is another protein that was

isolated from A. thaliana, which also contains seven WD repeats, suggesting it is

another putative TUP1 homologue (P. Meyer, personal communication). BP1 differs

from other homologues by having DNA binding activity. BP1 is implicated in the

repression of repetitive sequences (P. Meyer, personal communication) and shares

homology to TUP1 and the actin related protein (ARP) ARC41 from S. cerevisiae.

Previous studies have compared the functionality of TUP1 homologues between

different species of yeast. A TUP1 homologue from Candida albicans repressed a

lacZ reporter gene in S. cerevisiae (Braun and Johnson, 1997). The means of this

repression were not established, so we cannot conclude that it behaves in the same
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manner as TUP1 with respect to chromatin. In another series of experiments, a TUP1

homologue from Schizosaccharomyces pombe failed to repress genes in S.

cerevisiae. It was thought to be due to sequence differences in the S. pombe SSN6

binding domain, which meant S. pombe TUP1 could not associate with S. cerevisiae

SSN6 to allow repression (Mukai et al., 1999). Surprisingly, the more evolutionary

distant TLE1 from humans could form a functional interaction with S. cerevisiae

SSN6 to repress genes in mammalian cells (Grbavec et al., 1999).

In this study, I aim to establish whether functional orthologues of TUP1

(GROUCHO, LEUNIG, BP1, and CaTUPl) can work with the yeast transcriptional

machinery to repress genes in a S. cerevisiae tupl mutant. Using the well-

characterised nucleosome pattern at the TUP1-SSN6 dependent gene FLOl (Fleming

and Pennings, 2001), I can observe if the foreign proteins can influence or re¬

establish this distinct local chromatin structure in a tupl mutant. This would give an

insight into their mechanisms of repression, enabling deduction of how functionally

related the proteins are, and ultimately help elucidate if there is a conserved pathway

for gene repression.

4.2 Materials and Techniques for Study

To determine the action of TUP1 homologues in S. cerevisiae, each cDNA was

cloned into a yeast expression vector (for details of cloning see table 6.5) and

transformed into an S. cerevisiae strain (BY4742) with a TUP1 gene deletion

(MATa, his3A\, leu2AO, lys2AO, tuplAO, ura3AO). The vector chosen was p415-

165



MET25, which allows protein expression driven by the MET25 promoter (fig. 4.1).

TUP1 is thought to have no involvement in the regulation of this promoter. The

vector allows inducible expression of genes depending on the media conditions

(Mumberg et al., 1994). When cells are grown in SC-methionine medium they

should express the protein, and when grown in SC+methionine (ImM methionine),

expression from the MET25 promoter should be shut offby feedback inhibition. This

allows the use of the "off' conditions as a control. The vector used has a CEN6

origin of replication, which means the plasmid is only present at 1-2 copies per cell.

Endogenous S. cerevisiae TUPI DNA was cloned into these vectors as an additional

control.
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Figure 4.1: Features of the expression vector system p415 MET25. This
plasmid contains a LEU2 gene for selection and the CEN6 origin supports
replication of around one plasmid per cell. The expression of cDNAs is
driven by the MET25 promoter (Mumberg et al., 1994).



4.3 Confirmation of Homologue Transcription from p415-MET25

Northern blot analysis was performed on RNA extracts prepared from each of the

strains containing homologues grown in either inducing or repressive conditions (fig.

4.2). Each was probed with the specific cDNA of the homologue to confirm that

there was expression of the desired full-length RNA in the yeast cell. This in itself

does not confirm that the protein was present. Western blotting of whole cell protein

extracts would be more conclusive, however, antibodies are not readily available for

most of the homologues tested.

The results show that each of the p4\5-MET25 vectors transcribes the mRNA of the

homologue. However, there is some residual transcription from cells grown under

repressive conditions. This suggests the repression of the MET25 promoter is not as

stringent as was hoped. This was previously noted by Mumberg et al (1994).

Furthermore, the repression of some genes under non-inducing conditions appears to

be more efficient than others. ScTUP1, LUG and GRO, all show an increase in

mRNA transcription under inducing conditions, but BP1 and CaTUPl do not. The

reasons for this are unclear but may be due to differences in RNA stabilities.
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ScTUP1 off ScTUPI on BP1 off BP1 on

rRNA

rRNA

CaTUPI off CaTUPI on GRO off

Figure 4.2: Northern blots showing transcription of TUP1 homologues from the
p415-MET25 promoter. Separate Northern blots were carried out on total RNA
samples from yeast transformed with vectors containing the cDNA of each
homologue. These were probed with the specific cDNA of the appropriate
homologue. "Off' refers to yeast grown in SC+methionine medium, and "on"
refers to yeast grown in SC-methionine medium. The ethidium bromide stained
rRNA bands are shown as a loading control.
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4.4 Action of Homoiogues at TUP1 -Regulated Genes

4.4.1 Effects of Homoiogues on Glucose Repression

Glucose repression is a universal mechanism also found in S. cerevisiae whereby

carbon energy sources are utilised in the most energetically favourable manner.

When glucose is present, the need to metabolise other carbon sources, such as

galactose or sucrose, is superfluous. In yeast, many of the genes for uptake and

metabolism of other carbon sources can be repressed by TUP1-SSN6 under these

conditions. Mutations in either TUP1 or SSN6 cause constitutive derepression of

these genes in the presence of glucose (Trumbly, 1992). I examined the glucose

repression function of yeast expressing various TUP 1-homoiogues to investigate if

they could repress genes in the same manner as TUP 1.

This was achieved by a plate assay whereby cells are challenged to grow on medium

containing galactose and a non-metabolisable glucose analogue, 2-deoxyglucose (2-

DG). In a wild type strain, where glucose repression is functional, galactose uptake is

inhibited, cells are unable to metabolise 2-DG and do not grow. However, if glucose

repression is abrogated, as in the case of tupl mutants, galactose uptake and

utilisation will occur in the presence of 2-DG and the cells are able to grow.

Yeast expressing the homoiogues were plated onto medium containing 2-DG and

galactose with an additional galactose-only plate as a control. Wild type and tupl

strains were included as a reference (fig. 4.3). The plates clearly show growth of tupl

170



mutants and no growth of wild type cells as expected. The control experiment, with

S. cerevisiae TUP1 supplied on a plasmid, shows no cell growth indicating that the

plasmid does not effect the outcome of this experiment. No growth on 2-DG was also

noted with yeast expressing TUPI from C. albicans, indicating that it complements a

tupl mutation and represses genes in the glucose repression pathway. Yeast cells

expressing GROUCHO, LEUNIG and BP1 all show growth on 2-DG medium. This

suggests that, like a tupl mutant, they cannot repress genes involved in glucose

repression and do not function to the same extent as TUP 1.
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Figure 4.3: Growth of cells expressing TUP1 homologues on 2-deoxyglucose (2-
DG) medium. As shown all cells can grow on the control galactose only plate.
Wild type cells, cells expressing S. cerevisiae TUP I (ScTUPI) and cells
expressing C. albicans TUP1 (CaTUPI) all fail to grow on medium containing 2-
DG and galactose indicating that their glucose repression pathways are intact.



4.4.2 Activity at the SUC2 Promoter

To further confirm the results generated from the 2-DG plate assay in a more

quantitative manner, the SUC2 gene was selected for further analysis. The SUC2

gene encodes the enzyme invertase, which hydrolyses sucrose to its constituent

monosaccharides, fructose and glucose. SUC2 is subject to TUP1-SSN6 dependent

glucose repression. When yeast cells are grown in the presence of high glucose

concentrations, SUC2 transcription is repressed by TUP1-SSN6. Mutations in SSN6

and TUP1 cause constitutive derepression of SUC2 (reviewed by Trumbly, 1992).

When SUC2 is repressed, there is an ordered chromatin conformation at the promoter

region (Hirschhorn et al., 1992; Gavin and Simpson, 1997). Studies show this

nucleosomal array is disrupted by mutations in TUP1. It is believed that the TUP1-

SSN6 complex acts by blocking the activating SWI-SNF remodelling complex,

maintaining a repressive chromatin structure (Gavin and Simpson, 1997). A

schematic representation is shown in fig. 4.4. TUP1-SSN6 is recruited to the DNA

by associating with the zinc finger protein MIG1 and its homologues (Matallana et

al., 1992; Treitel and Carlson, 1995).

Since SUC2 regulation by TUP1-SSN6 is well established, I tested the ability of the

homologues to repress the SUC2 gene in a tupl knockout strain of S. cerevisiae.

Northern blot analysis was performed to measure the amount of SUC2 mRNA being

produced by yeast expressing the homologues grown in the presence of glucose (fig.

4.5). RNA was prepared from yeast grown in medium that induces expression of the

homologues and medium that does not. This is indicated by "on" and "off in fig.
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4.5, respectively. The probes used for the analysis were SucPr, specific for SUC2,

and ActPr, specific for ACT1 mRNA (see table 6.7). ACTJ was used as a loading

control and RNA was quantitated by 2D densitometry using a phosphorimager. The

SUC2 mRNA transcription is presented as a percentage relative to a tupl mutant,

which will have an active SUC2 gene (100% SUC2 transcription).

The results confirm that in wild type cells that express TUP 1 and in which glucose

repression is intact, SUC2 transcription has decreased approximately 16 fold in

relation to a tupl mutant. Although there is a dramatic difference between the

amounts of SUC2 mRNA, there is still a basal level of SUC2 transcription in wild

type cells. The control, with S. cerevisiae TUP1 supplied on the p415-MET25

plasmid, mirrors these results. When TUP1 is expressed from the plasmid (ScTUPl

on), there is a decrease in SUC2 transcription compared to the tupl mutant. This

decrease is not as significant as in wild type cells but this may be due to the different

expression patterns imposed by expression from a plasmid. When TUP1 is

supposedly not expressed from the plasmid (ScTUP1 off) there is still repression of

the SUC2 gene. This is due to the inefficient regulation of the MET25 promoter,

which allows expression of the homologues under non-inducing conditions, as

observed in section 4.3.

The leakiness of the MET25 promoter must be taken into consideration when looking

at the results for TUP1 from C. albicans. There is substantially more SUC2

transcription from yeast expressing CaTUP1 (CaTUP1 on) than a wild type cell,

although still less than a tupl mutant. Plasmid-borne S. cerevisiae TUP1 experiments
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(ScTUP1 off and ScTUPl on) reveal a 2-fold decrease in SUC2 transcription

between off and on states. We also see a 2-fold decrease in SUC2 transcription

between off and on states with C. albicans TUP1 (compare C&TUP1 on and CaTUPl

off), this shows that the C. albicans TUP1 can repress the SUC2 gene in S.

cerevisiae. This is consistent with the plate assay (fig. 4.3) showing that C. albicans

TUP1 can restore glucose repression in an S. cerevisiae tupl mutant.

The other, less conserved, homologues: GROUCHO, BP1, and LEUNIG do not

repress SUC2 transcription confirming their inability to restore glucose repression.

These results suggest that these proteins do not function in the same manner as TUP 1

with respect to the SUC2 gene. Interestingly, GROUCHO showed an almost 2 fold

increase in SUC2 transcription when it was expressed from the plasmid (GRO on)

compared to when GROUCHO expression was repressed (GRO off). This would

suggest that GROUCHO, either directly or indirectly, has an activating effect on

SUC2 transcription. Ideally, this experiment would be repeated to ascertain the

validity of this result.
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SUC2 Repression

TUP1-SSN6

Figure 4.4: A schematic representation of the activation and repression of the
SUC2 gene. Nucleosomes are represented by black or grey circles. Grey
nucleosomes are those which become mobilised during chromatin remodelling.
UAS is an abbreviation for upstream activating sequence. TUP1-SSN6 is
responsible for the maintenance of a repressive chromatin structure, where
nucleosomes occlude the UAS and TATA box, preventing regulatory proteins
from binding. Upon activation by SWI-SNF, the nucleosomes positioned on the
TATA box and UAS are remodelled, and these sites become available for other
proteins to bind allowing gene activation.
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Figure 4.5: Northern blot analysis of SUC2 transcription as affected by TUP1
homologues. "Off' denotes yeast grown in non-inducing medium, with respect to
homologue expression. "On" denotes cells grown in inducing medium. All yeast
were grown in medium containing 2% glucose as the carbon source. ScTUP I and
CaTUP1 refer to TUPI genes from S. cerevisiae and C. albicans respectively.
(A) shows the Northern blot on which, SUC2 mRNA was visualised using a
DNA probe (SucPr). The blot was stripped and re-probed for ACT1 mRNA as a
loading control, using a DNA probe specific for ACT1 (ActPr). (B) shows levels
of SUC2 mRNA transcribed as a percentage of the tup I mutant normailised
against the y4C77 signal. This was determined by 2D densitometry. These results
clearly show only C. albicans TUP1 functions to repress the SUC2 gene in S.
cerevisiae.
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4.4.3 Activity at the FL01 Promoter

The FLOl gene encodes a lectin-like protein that is located on the cell wall. FLOl is

the dominant member of a family of genes, which cause the flocculation phenotype

(Miki et al., 1982). Flocculation is a phenomenon where cells form clumps that result

in their sedimentation in liquid medium. Yeast mutant for tupl or ssn6 show this

flocculation phenotype (Teunissen et al., 1995). The FLOl gene is regulated by the

TUP1-SSN6 and SWI-SNF chromatin-remodelling complexes (Fleming and

Pennings, 2001). In a wild type strain, where the FLOl gene is not transcribed, the

promoter region is occupied by five strongly positioned nucleosomes. However,

when the SSN6-TUP1 complex is absent, the regular array of nucleosomes found at

the FLOl promoter is completely disrupted (fig. 4.6). Furthermore, detailed

nucleosome mapping analysis at FLOl shows that remodelling by TUP1-SSN6 and

SWI-SNF extends up to 5 Kb upstream of the transcription start site (Fleming and

Pennings, 2001). The DNA binding protein that recruits TUP1-SSN6 to the FLOl

promoter remains unidentified.

TUP1 homologues were tested for their ability to repress the FLOl gene. The

flocculation phenotype of cells was noted following overnight growth in SC-

methionine medium, which induces expression of the homologues, or

SC+methionine medium that should repress homologue expression. Flocculation is
9+

dependent upon Ca ions; this can be used to distinguish flocculation from other

processes that may induce cell clumps, such as mating or aberrant cell separation.

Therefore, cells were harvested and resuspended in 250mM EDTA. If the cells
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previously flocculating become dispersed in EDTA, then this is indicative of true

flocculation (table 4.1).

Homologue Flocculation (-EDTA) Flocculation (+EDTA)

tupl knockout + -

Wild Type - -

ScTUPl off + -

ScTUPlon - -

CaTUPI off + -

CaTUPIon - -

GRO off + -

GRO on + -

BP1 off + -

BP1 on + -

LUG off + -

LUG on + -

Table 4.1: Presence (+) or absence (-) of the flocculation phenotype in yeast cells

expressing TUP1 homologues. ScTUPl and CaTUP1 denote TUPI genes from

Saccharomyces cerevisiae and Candida albicans respectively, GRO denotes

GROUCHO and LUG denotes LEUNIG.

The results show that, as expected, tupl mutants display a flocculation phenotype

and wild type cells do not. In all cases the flocculation phenotype was lost upon
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resuspension in EDTA, proving that the cell clumps observed were true flocculation.

Replacement of endogenous TUP1 with S. cerevisiae TUP1 or C. albicans TUP1 on

the p415-MET25 plasmid causes cells to lose the flocculation phenotype. This

indicates that both proteins are functional at repressing FLOl gene transcription.

Yeast expressing GROUCHO, BP1, and LEUNIG all retain the flocculation

phenotype of a tupl cell, suggesting they do not repress the FLOl gene. However,

as there is a family of genes contributing to the flocculation phenotype, FLOl gene

transcription was analysed specifically by Northern blotting.

Northern blot analysis was carried out on total RNA samples from yeast expressing

each homologue (grown in inducing medium) and from yeast where homologue

expression should be repressed (grown in non-inducing medium). The FLOl and

ACT1 mRNA were specifically probed using probes FloPr and ActPr respectively

(table 6.7). ACT1 mRNA was used as a loading control and the RNA was quantitated

by a phosphorimager using 2D densitometry. The results are shown in fig. 4.7 and

are presented as FLOl mRNA transcription normalised against ACT1 mRNA, as a

percentage relative to a tupl mutant, which will have an active FLOl gene (100%).

Northern blot analysis confirms that the FLOl gene is actively transcribed in tupl

cells and repressed in wild type cells, although a basal level of FLOl transcription

remains. When TUP1 from S. cerevisiae is transcribed from the p415-MET25

plasmid, FLOl transcription is repressed (ScTUP1 on). When expression of S.

cerevisiae TUP1 is repressed by growth on non-inducing medium (ScTUPl off), the

levels of FLOl transcription remain more comparable to wild type cells than tupl
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cells, which is a consequence of the inefficient regulation of the p415-MET25

promoter. This leaky repression can also be seen when LEUNIG and CaTUPl

expression is switched off (CaTUPl off and LUG off).

TUP1 from C. albicans shows FLOl mRNA levels of 8% compared to 5.7% in wild

type S. cerevisiae cells (CaTUPl on). This indicates that C. albicans TUP1 can

complement a tupl mutation and repress the S. cerevisiae FLOl gene. Similar

repression was observed by LEUNIG, where FLOl transcription was also repressed

(LUG on). This implies that the flocculation observed in yeast cells expressing

LEUNIG was a consequence of the other genes involved in flocculation (Table 4.1).

Expression ofGROUCHO and BP1 do not result in a decrease in FLOl mRNA, and

are comparable to the levels of an S. cerevisiae tupl mutant (GRO on and BP1 on),

suggesting they do not repress the S. cerevisiae FLOl gene. However, when

transcription from the p415-MET25 promoter is repressed, although we know there is

residual expression, FLOl mRNA levels are lower, suggesting a more complicated

mechanism of action. These experiments would need to be replicated to ensure the

validity of these results.
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Figure 4.6: A schematic representation of the activation and repression of the
FLOl promoter. Nucleosomes are indicated by black circles. FLOl repression is
mediated by the TUP1-SSN6 complex, which maintains a regular array of
nucleosomes over the FLOl promoter, potentially masking DNA binding sites for
regulatory proteins. Upon activation by SW1-SNF, nucleosomes become
remodelled; some are lost from the promoter, but others are more mobile
(indicated by arrows), occupying different sites. The regular array of nucleosomes
is disrupted and transcription can occur.
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Figure 4.7: Northern blot analysis of FLOl transcription as affected by TUP1
homologues. "Off' denotes yeast grown in non-inducing medium, with respect to
homologue expression. "On" denotes cells grown in inducing medium. ScTUPI
and CaTUPl indicate TUP1 genes from S. cerevisiae and C. albicans
respectively. (A) shows the Northern blot on which, FLOl mRNA was visualised
using a DNA probe (FloPr). ACT1 mRNA as a loading control, using a DNA
probe specific for ACT1 (ActPr). (B) shows levels ofFLOl mRNA transcribed as
a percentage of the tupl mutant normalised against the ACT1 signal. This was
determined by 2D densitometry. These results show LEUNIG and C. albicans
TUP1 function to repress the FLOl gene in S. cerevisiae.
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4.5 Activity of Homologues on Chromatin

4.5.1 Chromatin at the FL01 Promoter

Little is known about the actual mechanism of repression of BP1, CaTUPl, and

LEUNIG, but because they share homology with S. cerevisiae TUP1, one could

hypothesise that these proteins may share the chromatin-remodelling activity of

TUP1. This was tested by examining chromatin at the TUP1-SSN6 regulated FLOl

gene. Micrococcal nuclease digestion and indirect-end labelling on nuclei and naked

DNA controls were employed to observe the nucleosomal array at the FLOl

promoter in tupl mutants and wild-type cells. The region was probed (using probe

FloPr2, see table 6.7) relative to a Dra I restriction site approximately 1 Kb upstream

of the FLOl transcription start site. A representation of the indirect end labelling

strategy is shown in fig. 4.8.

In wild-type cells where the FLOl gene is repressed, an ordered nucleosome array

was evident (fig. 4.9 A). The DNA protection pattern from the micrococcal digest

reveals five strongly positioned nucleosomes, which could obscure DNA binding

sites for activating transcription factors. In contrast, the tupl mutant, which expresses

FLOl, exhibits less defined cleavage sites and increased smearing between bands

(fig. 4.9 B). This demonstrates the loss of the ordered nucleosomal array that

correlates with gene activation. These differences in the nucleosome pattern at the

FLOl promoter clearly implicate the TUP1-SSN6 complex in chromatin remodelling

in accordance with previous studies (Fleming and Pennings, 2001).
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This knowledge of nucleosome positions in wild type and mutant cells was applied to

yeast cells expressing C. albicans TUP1, BP1 and LEUNIG to determine their

effects on nucleosomes positioning at the FLOl promoter. Indirect end-labelling

analyses were carried out (fig. 4.10). The chromatin analysis reveals that C. albicans

TUP 1 restores the nucleosomal pattern to the wild-type array. This is consistent with

earlier findings that CaTUP 1 represses TUP 1 regulated genes in S. cerevisiae (Braun

and Johnson, 1997). BP1 and LEUNIG show a smeared pattern at the FLOl

promoter that is more associated with the tupl mutant. In the instance of BP1, this

correlates with Northern blot analysis showing that BP 1 does not repress the FLOl

gene. However, LEUNIG also showed a smeared nucleosome pattern consistent with

the tupl mutant despite Northern blot analysis revealing the FLOl gene was

repressed. This suggests that LEUNIG may have another mechanism of repressing

the FLOl gene other than chromatin remodelling, possibly by interaction with the

RNA polymerase complex.
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Figure 4.8: The principles of indirect end labelling. Chromatin is digested with
micrococcal nuclease, which cuts DNA between nucleosomes. This generates
different sized fragments with respect to time and the nucleosome pattern.
Protein is removed from the extract, the DNA purified and digested with an

appropriate restriction enzyme. The DNA fragment sizes are visualised using a
probe adjacent to the restriction site in a manner similar to Southern blotting.
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A B

FL01 mRNA - +

Figure 4.9: Indirect end labelling analysis of the FLOl promoter in wild type
and tupl cells. In all cases M denotes marker, M, denotes a 100 bp ladder, and
DNA is naked DNA, which was treated in the same manner as yeast chromatin.
Triangles indicate increased time of micrococcal digestion. (A) shows wild-type
yeast chromatin with an ordered nucleosome array. Noted are nucleosome
positions corresponding to sites protected from micrococcal nuclease digestion.
These positions are consistent with previous findings at the FLOl promoter
(Fleming and Pennings, 2001). (B) has a smeared pattern, which demonstrates
loss of these positioned nucleosomes in a tupl mutant which allows expression of
the FLOl gene.
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Figure 4.10: Indirect end labelling analysis of the FLOl promoter in yeast cells
expressing: C. albicans TUP1 (CaTUPl), LEUNIG (LUG), and BP1. In all cases
M denotes marker, M, denotes 100 bp ladder, and DNA is naked DNA, which
was treated in the same manner as yeast chromatin. Triangles indicate increased
time of micrococcal digestion. (A) shows chromatin from yeast expressing C.
albicans sharing the same ordered nucleosome array as wild-type yeast cells.
This shows that CaTUPl has chromatin remodelling ability. Noted are
nucleosome positions corresponding to sites protected from micrococcal nuclease
digestion, as in fig. 4.6. (B) shows indirect end labelling analysis of yeast
expressing BP1 and LEUNIG. Both have a smeared pattern, similar to tupl
mutants, which confirms these proteins do not have chromatin remodelling
activity in 5. cerevisiae
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4.5.2 Bulk Chromatin

The effects of the homologues were also tested on the entire chromatin of the yeast

cell to investigate their influence on nucleosome and chromatin structure in general.

As the TUP1-SSN6 co-repressor is responsible for the regulation of around 3% of

genes in S. cerevisiae, it may have a genome-wide effect on chromatin (Smith and

Johnson, 2000). Therefore, the nucleosomal repeat length of chromatin from yeast

expressing the different TUP 1 homologues was estimated and compared to wild type

and tupl mutants. Therefore, nuclei were digested with micrococcal nuclease and

DNA fragments were visualised on agarose gels (fig. 4.11 and fig. 4.12). From these

ethidium-stained gels the nucleosomal spacing of the chromatin was calculated by

linear regression. This was determined by establishing the apparent base pair length

per nucleosome from the digestion ladders. The repeat length values were finally

resolved by extrapolation of curves to a time point near zero (fig. 4.13).

The nucleosomal repeat length of the wild type strain is estimated to be 165 bp,

which is the expected length for yeast (van Holde, 1988). The tupl mutant has a

similar repeat length of 167 bp suggesting deletion of the TUP1 gene has very subtle,

if any, effects on general chromatin structure. Expression of the A. thaliana protein,

BP1 in yeast results in the same repeat length (167 bp) as the tupl mutant that it was

expressed in implying that it has no effect on overall chromatin structure. However,

LEUNIG and C. albicans TUP1 both have repeat lengths of 175 bp which is different

from both wild type and tupl yeast. This finding suggests that these proteins are

capable of modifying general yeast chromatin structure in some manner. A similar
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result was established for GROUCHO, which produced a repeat length of 163 bp,

implying that GROUCHO can also influence yeast nucleosomal organisation. Whilst

these results do not offer specific information on how these proteins interact and

influence chromatin, they suggest that at some level they can direct the organisation

of chromatin within the yeast nucleus.
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Figure 4.11: Micrococcal digests of wild type (WT) and tupl mutant cells. The
gels show yeast nuclei incubated for different time periods (1, 2, 4 and 8 minutes)
with micrococcal nuclease. The triangles denote increasing time of incubation.
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Figure 4.12: Micrococcal digests of S. cerevisiae nuclei expressing CaTUPI,
LEUNIG and GROUCHO. The gels show yeast nuclei incubated for different
time periods (1, 2, 4 and 8 minutes) with micrococcal nuclease. The triangles
denote increasing time of incubation.
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Figure 4.13: Nucleosomal repeat lengths cells expressing TUP1 homologues.
(A) shows a graph of nucleosomal repeat lengths calculated by linear regression
from the micrococcal digests shown in fig. 4.11 and 4.12. (B) shows the
estimated repeat length from this graph determined by extrapolation of the curv es
to time points near zero.



4.6 Function of Histone Acetylation at FL01 Promoter

Previous studies have established that a an ordered nucleosomal array over the FLOl

promoter is essential for gene repression. In addition, studies at other TUP1-SSN6

regulated genes, such as SUC2, have revealed that hypoacetylation of histones is also

associated with TUP 1-mediated repression (Watson et al., 2000). Furthermore, TUP1

has been shown to interact with histone deacetylases (HDACs) leading to the

hypothesis that TUP1 recruits HDACs which induces hypoacetylation and gene

repression (Watson et al., 2000). Therefore, I tested the ability of a histone

deacetylase inhibitor, trichostatin A (TSA), to induce activation of the FLOl gene

due to hyperacetylation of histones at this locus. This would determine if

hypoacetylation of histones is a requirement for TUP1-SSN6 mediated repression of

the FLOl gene.

The fission yeast S. pombe, has both SSN6 and TUP1 homologues, which are also

involved in transcriptional repression (Mukai et al., 1999). When the TUP1 genes,

tupllp and tupl2p, were deleted from S. pombe, flocculation occurred (personal

communication). A BLAST search revealed putative FLO gene homologues in S.

pombe. Therefore, both S. cerevisiae and S. pombe were treated with TSA to see if

hypoacetylation of histones is a requirement for gene repression by TUP1 at the

FLOl locus.

To test the importance of acetylation at the FLO genes a flocculation assay was

performed. Differing amounts of TSA were added to exponentially growing cultures
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to give final concentrations of 0, 5, 10, 20 and 50j_ig/ml. Flocculation was determined

by first reading the absorbance of the culture at 600nm; the cuvette was then left for

15 minutes. Any flocculating cells will fall out of solution, which would result in a

change in absorbance. The absorbance was measured again; any difference in the

absorbance readings (AOD600nm) at the different time points is indicative of

flocculation. The results are shown in table 4.2.

Species [TSA]

M-g/ml

AOD600nm/15min

S. cerevisiae 0 0.010

5 0.006

10 0.001

20 0.002

50 0.012

S. pombe 0 0.002

5 0.086

10 0.104

20 0.159

50 0.446

Table 4.2: Trichostatin A (TSA) treatment of S. cerevisiae and S. pombe, and their

effects on flocculation.
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Little difference is observed in OD600 measurements in S. cerevisiae cells, showing

the cells have remained in suspension; therefore flocculation has not occurred. This

shows that the FLOl gene is inactive. This observation could be explained in several

ways. Firstly, repression of the FLOl gene is not dependent upon the acetylation

status of the locus. Secondly, the functional redundancy of the histone deacetylases

plays a role. Watson et al (2000) showed that to alleviate TUP 1-mediated repression

of genes, several HDACs had to be deleted. Therefore, given that some HDACs are

insensitive to TSA (Carmen et al., 1999), functional redundancy between these

proteins may maintain a hypoacetylated state at the FLOl gene. Thirdly, the TSA

may be unable to penetrate the cell wall of yeast. Therefore, whether histone

acetylation plays a role in gene regulation at the FLOl gene in S. cerevisiae remains

unclear.

With S. pombe cells there is an increase in AOD6oonm measurements in response to

increasing TSA concentration. This shows that S. pombe cells flocculate in response

to TSA treatment, suggesting that TUP1 regulation of the FLO genes is dependent

upon deacetylation of the locus. These results, taken with other findings suggest that

deacteylation plays an important role in TUP 1-mediated repression. Considering

these results in S. pombe and the fact that HDACs interact with GROUCHO and

TUP1 in D.melanogaster and S. cerevisiae (Chen et al., 1999; Watson et al., 2000), it

implies conservation in the mechanism across evolution, which highlights the

importance of histone acetylation in TUP 1-mediated gene regulation.
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4.7 Discussion

This series of experiments was performed to examine the functionality of TUP 1 -like

co-repressors from different species in S. cerevisiae. Using the simple budding yeast,

I was able to look at the co-repressors' effects on gene transcription and chromatin

structure with the aim of establishing if there is a conserved mechanism of gene

repression between species.

TUP1 homologues were tested for their ability to repress the TUP 1-regulated genes

SUC2 and FLOl in a tupl knockout background. Plate assays revealed a TUP1

protein from a related yeast C. albicans (CaTUP 1) restored glucose repression in an

S. cerevisiae tupl mutant (fig. 4.3). This finding was reiterated by the fact that

CaTUP 1 could repress both SUC2 and FLOl genes to a level comparable with wild

type cells when examined by Northern blotting (CaTUP 1 on, fig. 4.5 and fig. 4.7).

Indirect end-labelling analysis reflects these observations, showing chromatin

extracted from cells expressing C. albicans TUP1 had an ordered nucleosome array

at the FLOl promoter, with nucleosomes positioned in an identical manner to the

wild type strain (compare wild type and Ca TUP1, fig. 4.9 and 4.10). This shows that

the TUP1 protein from C. albicans can influence chromatin structure and is capable

of directing nucleosome positioning to the same extent as S. cerevisiae TUP1.

Although this protein has previously been shown to repress a LacZ reporter gene in

S. cerevisiae (Braun and Johnson, 1997), this is the first instance of the TUP1

homologue from C. albicans repressing native genes in S. cerevisiae and the first
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study where it is shown to exert effects on chromatin. These results suggest that C.

albicans TUP1 regulates genes in its native species via a similar mechanism.

The effects of GROUCHO and BP1 on gene transcription in S. cerevisiae are

somewhat less conclusive. Neither protein could restore glucose repression in a plate

assay (fig. 4.3) and Northern blot analysis of the FLOl and SUC2 genes showed that

GROUCHO and BP1 did not reduce mRNA levels to the level of a wild type cell

(fig. 4.5 and fig 4.7). Therefore, these proteins do not repress genes in S. cerevisiae.

These findings are supported by indirect end labelling analysis where cells

expressing BP1 showed the less structured nucleosome pattern of a tupl mutant

expressing the FLOl gene.

However, an unexpected observation at the SUC2 gene (fig. 4.5) suggests

GROUCHO may have some influence over gene expression in S. cerevisiae. When

we compare the tupl mutant, which we assume to have full de-repression of the

SUC2 gene, to low levels of GRO expression (GRO off), the amount of SUC2

mRNA produced is almost 2-fold higher in GRO than a tupl mutant. The levels of

SUC2 mRNA are further augmented when GROUCHO is fully expressed (GRO on),

where we see SUC2 transcription rise to 3-fold higher than a tupl mutant. This

implies that when GROUCHO is present, there is less of a repressive effect on the

SUC2 gene. Therefore, GROUCHO has an activating effect on the SUC2 gene either

by a direct or indirect mechanism. One hypothesis for this could be that GROUCHO

binds and sequesters a native protein involved in the partial repression of the SUC2

gene in the absence of TUP1. This would result in an increased level of SUC2
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expression relative to a tupl mutant and levels of SUC2 expression become

consistently higher as GROUCHO expression increases. Given the fact that

GROUCHO contains the WD repeat motif, which has the propensity to form protein-

protein interactions (Smith et al., 1999); multiple non-specific associations may

occur between foreign proteins and native S. cerevisiae proteins. Future experiments

could look at the effects of GRO on more genes both TUP 1-repressed and not

regulated by TUP1 to see if this is a general effect on transcription.

These findings are contradicted by the results concerning FLOl transcription. When

GROUCHO and BP1 are expressed at low levels (BP1 off and GRO off) FLOl gene

expression is approximately half the level of a tupl mutant, suggesting low levels of

BP1 and GRO impose repression on the FLOl gene. However, when expressed at a

higher level (GRO on and BP1 on) the expression levels of FLOl are roughly the

same as a tupl mutant implying there is no repression. These results infer that at low

levels of expression BP1 and GRO may influence the repression of the FLOl gene in

S. cerevisiae and this repressive effect is diluted out at higher concentrations of these

proteins. The reasons why this should occur remain unclear. Perhaps, at low

concentrations, BP 1 and GRO can form part of a functional complex to repress genes

but at higher concentrations of BP1 and GRO they self-associate. GROUCHO is

known undergo self-association (Chen et al., 1998) and this process may cause the

abolition of the functional complex.

Like BP 1 and GROUCHO, LEUNIG did not restore glucose expression nor repress

SUC2 transcription (fig. 4.5). In fact, similarly to GROUCHO, LEUNIG expression
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caused a 2-fold increase in SUC2 transcription when compared to a tupl mutant,

again suggesting a direct or indirect activating effect (fig. 4.5). However, at the

FLOl gene, repression of transcription by LEUNIG was observed and was

comparable to yeast cells expressing TUP1 (fig. 4.7). Indirect end-labelling revealed

that cells expressing LEUNIG did not show the wild type ordered nucleosomal array

associated with gene repression but instead showed the smeared pattern typical of a

tupl mutant. Why should LEUNIG repress some genes in S. cerevisiae and not

others and what is the apparent chromatin independent mechanism?

One hypothesis that may be tested, considers that repression by the TUP1-SSN6

complex is dependent upon a DNA-binding protein recruiting this complex to DNA.

Therefore, for a TUP1 homologue to function in S. cerevisiae, it must have the

ability to interact with yeast SSN6 or the appropriate DNA-binding protein in order

to bring it in proximity to the promoter and allow repression. The LEUNIG protein

has a region of homology to the FLOl activator protein FL08 (Conner and Liu,

2000). There is no evidence showing that FL08 directly binds to DNA although it is

believed to act as part of a complex with DNA-binding proteins and SWI-SNF to

activate transcription (Kobayashi et al., 1996). If LEUNIG has enough homology to

FL08, it too has the potential to interact with this DNA-binding protein, but perhaps

in a non-functional context (fig. 4.14). This could prevent the formation of the

activating complex with SWI-SNF and thereby inhibit activation of the FLOl gene.

Indeed, the default state of the FLOl gene is repressed when both TUP1-SSN6 and

SWI-SNF are absent (Fleming and Pennings, 2001). Therefore, LEUNIG may
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indirectly repress the FLOl promoter as is reflected by the fact that LEUNIG does

not influence the nucleosomal structure at the FLOl promoter.

Another feasible possibility is that, like TUP1, LEUNIG has the ability to interact

with the SRB7 component of the RNA polymerase II complex and represses gene

transcription using that mechanism. These hypotheses could be tested by yeast-2-

hybrid analysis to see if LEUNIG can interact with S. cerevisiae SRB7, chromatin

immunoprecipitations (ChIP) to observe if LEUNIG is bound to the FLOl promoter

and co-immunoprecipitations and yeast-2-hybrids, to observe what proteins, if any,

are interacting with LEUNIG.

These possible indirect effects of non-specific protein binding potentially seen at

SUC2 and FLOl highlight the difficulties in studying a protein from one species in

another. The expression of these proteins is not regulated, as it would be normally.

The expression levels of the protein may be different and non-specific and non¬

functional interactions may occur, which may mask the true function of the protein.

Therefore, although there was no gene repression observed for GROUCHO and BP1

in this study, it does not mean that they do not function as TUP 1-like repressors in

their own species. The reasons for their inability to repress genes in S. cerevisiae

may be due to their inability to bind the adapter protein SSN6. Indeed, TUP1 from a

more related organism, the fission yeast S. pombe, was unable to repress genes in S.

cerevisiae due to differences in the SSN6 binding domain (Mukai et al., 1999).

Therefore, GROUCHO, LEUNIG, and BP 1 may have been unable to influence gene

expression, as they could not be localised at promoters. Experiments with lexA
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fusion proteins tethering the protein to the promoter may help to establish if this is

the case. Perhaps co-expression of LEUNIG with its putative A. thaliana SSN6

homologue SEUSS (Franks et al., 2002) would give a better representation of

LEUNIG action in S. cerevisiae. However, these proteins would ideally be studied in

their own environment.

The effects of TUP 1 homologues on chromatin structure were tested by indirect end-

labelling analysis of the FLOl promoter and on chromatin structure in general by

looking at the repeat lengths of S. cerevisiae bulk chromatin. BP 1 and LEUNIG did

not restore the ordered nucleosomal array of a cell expressing TUP1, however, C.

albicans TUP 1 did, showing it to be a true homologue of TUP 1. Analysis of the

repeat lengths of bulk chromatin does not give us specific information on the effects

that these proteins have on promoter nucleosome structure, but it can reveal if these

proteins do indeed affect chromatin. Compared to the tupl mutant background, BP1

causes no change in nucleosomal repeat length; this correlates with the indirect end

labelling analysis showing it to be redundant at the FLOl promoter. When

considered together, this data suggests BP 1 has no influence on chromatin structure.

C. albicans TUP1, LEUNIG and GROUCHO all show subtle changes in the

nucleosome repeat lengths suggesting they have some influence over chromatin

structure (fig. 4.13). This is not surprising since TUP1 and GROUCHO are

chromatin associated proteins by virtue of their interaction with the highly conserved

histone H3 tails (Flores-Saaib and Courey, 2000; Edmondson et al., 1996), and this

in turn may influence chromatin structure. The nucleosomal repeat length data

suggests that CaTUPl, GROUCHO and LEUNIG have the potential to affect
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chromatin structure although looking at chromatin structures in their native species

could validate these results.

The finding that TSA influences FLO gene expression in S. pombe suggests that the

histone acetylation status of the locus is important for TUP 1-mediated gene

repression. Although the exact mechanism of FLO gene repression in S. pombe

remains elusive, the S. pombe TUP 1 homologue is involved and I have shown loss of

HDAC activity by TSA treatment also causes de-repression. This is a similar

situation to what occurs in S. cerevisiae, where deletion of HDACs leads to de¬

repression of TUP 1- regulated genes (Watson et al., 2000). However, these findings

in S. pombe are very preliminary and would need to be substantiated by chromatin IP

analysis to confirm the acetylation status of the locus and that TUP 1 is also found at

the FLO locus. These findings along with other results predict that HDACs co¬

operate with TUP 1 homologues to achieve repression. Groucho interacts with rpd3

(Chen et al., 1999); S. cerevisiae TUP 1-repression involves various HDACs (Watson

et al., 2000) and now it has been shown S. pombe TUP1 repression requires HDAC

activity. One could hypothesise that LEUNIG will also require HDACs for full

repression of its target genes. These findings implicate the histone code in repression

by TUP 1-like proteins; further experiments should show if histone methylation also

plays a role in repression. Not only is hypoacetylation required for TUP1 mediated

silencing but it is employed for repression by SIR proteins (Carmen et al., 2002) and

methyl-binding proteins in mammals (Nan et al., 1998) implying it is a pivotal

mechanism of inducing gene repression throughout evolution.
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In summary, a TUP1 protein from a related yeast C. albicans was shown to

complement a S. cerevisiae tupl mutation at every level including chromatin

structure. Hypoacetylation is important for TUP 1 -mediated repression in S. pombe as

in S. cerevisiae. LEUNIG can cause repression of a TUP 1-regulated gene in S.

cerevisiae, and GROUCHO and LEUNIG have some influence over bulk chromatin

structure in S. cerevisiae. Given these similarities and the known similarities between

their function in their native organisms it is likely that although these proteins cannot

complement a tupl mutation in yeast that they perform analogous functions in their

native organisms. A possible reason why they cannot perform these functions in S.

cerevisiae is due to sequence divergence throughout evolution.
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No LEUNIG
FL01 expressed

"FTTH"
LEUNIG present
FL01 repressed

Figure 4.14: Putative mechanism of LEUNIG-induced FLOl repression. When
there is no LEUNIG present a complex of proteins including SWI-SNF can
assemble at the FLOl promoter and activate the FLOl gene. When LEUNIG is
present it binds the DNA-binding protein, which prevents the activating complex
assembling and the FLOl gene resorts to its default state of repression.



Chapter 5 - General Discussion

The aim of my thesis was to elucidate if there are conserved mechanisms of

chromatin-mediated transcriptional repression between yeast and plants. I tested the

ability of a repetitive DNA sequence isolated from P. hybrida to induce expression

variegation in yeast and observed the function of various TUP 1 homologues at genes

in S. cerevisiae. My results show that a repetitive DNA fragment can silence genes in

both S. cerevisiae and P. hybrida and that the ability of putative TUP 1 homologues

to repress genes in S. cerevisiae varies.

My data shows that the RPS sequence can induce expression variegation in S.

cerevisiae on both plasmids and when integrated into chromosomes. This

demonstrates a level of conservation in the way species respond and deal with

potentially deleterious repetitive DNA sequences. It also confirms that, although

yeast have few repetitive DNA sequences, they still have the capacity to silence

them. This finding is in line with previous studies of repeated sequences in S.

cerevisiae such as telomeres and Ty elements, both ofwhich are subject to silencing

(Gottschling et al., 1990; Jiang, 2002).

The mechanism of RPS-induced silencing remains unknown in both P. hybrida and

S. cerevisiae. One hypothesis for RPS-mediated repression is that it induces a

repressive chromatin structure by virtue of its repetitive nature or by binding a

protein that induces a heterochromatin-like structure, which spreads to the adjacent

gene by position effect variegation. In accordance with previous studies in P. hybrida
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and A. thaliana, where the methylation status of the RPS did not correlate with gene

silencing (ten Lohuis et al., 1995; Miiller et al., 2002), the non methylating organism,

S. cerevisiae was able to support RPS-mediated gene silencing. This suggests, that in

this instance, DNA methylation is not the initial stage in gene silencing, and may be

a secondary epigenetic mark that is useful in more complex genomes. Indeed, other

studies have shown that disruption of a putative chromatin remodelling factor allows

expression of heavily methylated genes (Amedeo et al., 2000). Previous studies

demonstrated that the RPS contained hotspots for DNA methylation (ten Lohuis et

al., 1995), since RNA from inverted repeats can trigger DNA methylation (Luff et

al., 1999; Melquist and Bender, 2003) it may be that the repetitive nature of the RPS

induces this DNA methylation. However, since RPS-induced gene silencing has been

shown in S. cerevisiae, it could be hypothesised that these inverted repeats are also

recognised by some other chromatin associated protein that induces a repressive

chromatin structure.

The fact that the RPS can trigger de novo methylation, it is repetitive in nature with,

and has putative homology to a transposable element protein suggest that it may be a

remnant of a transposable element. These studies in yeast also suggest that it has

moved from one part of the genome to another. This hypothesis must be considered

with caution and multiple experiments would need to confirm this. However, it is a

feasible hypothesis and would help to explain the repressive nature of the sequence

since transposable elements can induce position effects on the surrounding areas.

207



To appreciate fully the nature of the RPS sequence, the mechanism of action needs to

be elucidated. Differences in levels of silencing between high-copy number and low-

copy number plasmids suggest a low abundance factor in yeast is responsible for

RPS-induced silencing. However, this is different to the situation in plants, where it

was proposed that multiple copies of the RPS sequence were required to initiate gene

silencing (Miiller et al., 2002). Moreover, it is known that the A. thaliana protein

BP1 is capable of binding the RPS sequence, however deletion of the putative yeast

homologue TUP1 did not release the RPS-induced silencing. This potentially

suggests that there are different mechanisms of RPS-mediated silencing in yeast and

plants.

This theory is not unexpected when one considers the divergence of many proteins

involved in silencing. Howevermany of these diverse proteins share common themes

in mechanisms of gene silencing. For example, the SIR3 and SIR4 proteins in S.

cerevisiae, which are possible candidates for RPS mediated silencing have not been

identified in other species to date. The SIR proteins induce a heterochromatin-like

state at telomeres, silent mating-type loci and rDNA repeats (Laurenson and Rine,

1992). They achieve this by binding to specific histone modifications and by

spreading along the template via interactions with histones and SIR-protein

association (Hecht et al., 1995). This method of silencing has many common

mechanistic properties to HP 1-induced silencing, which is not found in S. cerevisiae.

HP 1 is attracted to chromatin by its interaction with a methylated lysine-9 (Bannister

et al., 2001; Lachner et al., 2001). HP1 induces gene silencing and spreads along the

template via its interaction with histones and its self-association ability (Cowell and
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Austin, 1997). Therefore, despite sequence divergence this mechanism between

species are similar. This highlights the difficulties in studying sequences out with

their own genomic context. Whilst the RPS did induce silencing in yeast there is no

evidence suggesting it has the same mechanism as in plants since many different

silencing proteins exist between the species. Perhaps a better system for the study of

the RPS would be S. pombe, which still has relatively easy genetic manipulation

techniques but also has many silencing factors in common with higher eukaryotes

such as the RNA interference-silencing complex (RISC) complex responsible for

PTGS. Furthermore, to date no constituents of the PTGS pathway have been

identified in S. cerevisiae, suggesting it may not be an appropriate model to study

certain aspects of plant gene silencing.

The experiments carried out expressing TUP1 homologues in yeast also echo the

idea that despite sequence divergence many proteins have similar roles. Out with the

WD repeats there is little sequence similarity between TUP 1-homologues. However,

they carry out similar functions such as self-association and interactions with

histones and histone deacetylases. When studied in yeast only a closely related TUP1

from C. albicans could rescue a tupl mutation in S. cerevisiae in the same manner as

the endogenous protein. However, my results suggest that GROUCHO and LEUNIG

can both affect chromatin structure and in some manner may influence gene

expression in S. cerevisiae. These clues imply that in their native species

GROUCHO and LEUNIG may interact and manipulate chromatin to a similar extent

as TUP1. Indeed studies on acetylation highlight its importance in TUP-mediated

repression in S. pombe. This is in line with other findings in D. melanogaster and S.
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cerevisiae indicating conservation in the mechanisms of repression (Chen et al.,

1999; Watson et al., 2000).

My results do not conclusively tell if there is a conserved method of chromatin-

mediated repression. The studies on the RPS suggest that yeast and plants both

recognise and respond to repetitive DNA in a similar manner. Future studies would

elucidate the mechanisms of RPS-induced repression in both yeast and plants. This

could be achieved by a series of gene deletions, band-shift experiments to determine

what proteins bind the RPS sequence in yeast and looking at the nucleosomal

organisation of sequences which are silent and active when adjacent to the RPS. The

studies of TUP1 homologues suggest GROUCHO and LEUNIG can affect

nucleosomal structure, this could be followed up looking at the nucleosomal

positioning of genes regulated by these proteins in their endogenous species. It would

also be useful to elucidate the mechanism of LEUNIG repression at the FLOl gene

to determine if it is direct or indirect repression. My studies have hinted at

conservation in mechanisms of repression, future studies should determine this

conclusively.
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Chapter 6 - Appendix

6.1 Vectors, Strains and Plasmids used in Chapter 3

Plasmid Parent Description Cloning Strategy
pKanMX4 Vector containing the

kanamycin
resistance gene
(Wach etal., 1994).

pPICZB Vector containing the
zeocin resistance
gene (Invitrogen).

pRS401 A yeast integrating
vector containing the
MET15 marker gene.

pRS402 A yeast integrating
plasmid containing
an ADE2 marker

gene

pRS406 A yeast integrating
vector containing the
URA3 marker gene.

PRS412 A yeast low-copy
number plasmid
containing an ADE2
marker gene, used
for complementation
test with ade2 strain.

pRS414 A yeast low-copy
number plasmid
containing a TRP1
marker gene

pRS424 A yeast multi-copy
plasmid containing a
TRP1 marker gene

pBlue/AR1-4 pBluescript pBluescript
containing the RPS
and the ADE2 gene
in all orientations
used for study

The ADE2 gene was purified from
vector pRS402 following a Bgl II
digest and cloned into the Bam HI
site of pBluescript. The RPS was
purified from vector pBlue/RPS
(kindly provided by Prof. P. Meyer)
following an Eco Rl digest. This was
cloned into the EcoRI site of

pBluescript containing the ADE2
gene.

pRS414/A pRS414 A yeast low copy
number vector

containing the TRP1
marker gene and
the ADE2 gene

The ADE2 gene was purified from
vector pRS402 following a Bgl II
digest and cloned into the Bam HI
site of pRS414.
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Plasmid Parent Description Cloning Strategy
pRS414/AR1-

4
pRS414 A yeast low-copy

number plasmid
containing a TRP1
marker gene and
RPS and ADE2
sequences.

The ADE2 and RPS sequences were
removed from pBlue/AR vectors
using a Sac I and Cla I digest. The
construct was cloned into the same

sites in pRS414.

pRS424/A pRS424 A yeast multi-copy
plasmid containing
the TRP1 marker

gene and the ADE2
gene

The ADE2 gene was purified from
pRS402 following a Bgl II digest and
cloned into the Bam HI site of
pRS424.

pRS424/AR1-
4

pRS424 A yeast multi-copy
plasmid containing a
TRP1 marker gene
and RPS and ADE2
sequences

The ADE2 and RPS sequences were
removed from pBlue/AR vectors
using a Sac I and Cla I digest. The
construct was cloned into the same

sites in pRS424
pBlue/URA3 pBluescript pBluescript

containing the URA3
gene, used for gene
knock-outs.

The URA3 gene was amplified by
PCR using primers Blura3A and
Blura3B and plasmid pRS406 as a
template. These primers contained
restriction sites for Cla I and Sac I.
The resulting PCR product was
cloned into these sites in pBluescript.
Plasmid was used as template for
PCR mediated disruption to generate
strain HC2.

pRS406/AR1-
4

pRS406 Used for targeting
RPS and ADE2

sequences to ura3-
52 locus by
homologous
recombination

The ADE2 and RPS sequences were
released from pBlue/AR by digestion
with Sac I and Cla I and cloned into
these sites in pRS406.

pBlue78/AR1-
4

pBluescript Used for targeting
RPS and ADE2

sequences to ADE2
locus by homologous
recombination

Regions of homology were PCR
amplified using primer pairs 007a and
007b and 008a and 008b. Primers
007a and 007b contain restriction
sites for Xho I and Cla I and were

cloned into these sites of pBluescript.
Likewise 008a and 008b have
restriction sites for Spe I and Sac I
and were cloned into these sites. The
ADE2 and RPS sequences were
released from plasmid pBlue/AR by
digestion with Spe I and Cla I and
cloned into these sites in between

homologous DNA sequences. The
whole cassette was released by
digestion with Xho I and Sac I and
was used for transformation.

Table 6.1: Plasmids used in chapter 3.
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Primer Sequence Description
adedelstart TGCTTATGGGTTAGCTATTTCGCCCAAT

GTGTCCATCTGACAGCTGAAGCTTCGTA
CGC

To amplify the kanamycin
resistance gene from
plasmid pKan-MX4. These
primers contain homology to
ADE2 locus for PCR-
mediated disruption. Used to
generate strains HC1 and
HC4.

adedelend TCGAAACGTTATTTTTTTAATCGCAGACT
TAAGCAGGTAAGCATAGGCCACTAGTG

GATCTG

Blura3A TCCATCGATTACTGAGAGTGCACC To amplify the URA3 gene
from pRS406, with Cla I and
Sac I restriction sites.Blura3B ATTTAGGAGCTCGCGGTATTTCACACC

PRSTUP1A TAAGCAGGGGAAGAAAGAAATCAGCTT
TCCATCCAAACCAATATGAGATTGTACT

GAGAGTGCAC

To amplify the MET15 gene
from plasmid pRS401. These
primers contain homology to
TUP1 locus for PCR-
mediated disruption. Used to
generate strain HC3.

PRSTUP1B TAGTTAGTTACATTTGTAAAGTGTTCCTT
TTGTGTTCTGTTCTTACTGTGCGGTATT

TCACACCG

RpsadeD I CGAAACG I IAI I I I I I IAAI CGCAGACI
TAAGCAGGTAAGTAATACGACTCACTAT

AGG

To amplify regions of DNA
cloned into multiple cloning
site of pBluescript. Primers
contain homology to ADE2
locus for PCR-mediated

disruption. Used to generate
strain HC2 and for inserting
ADE2 and RPS sequences
into ADE2 locus.

RpsadeE TGCTTATGGGTTAGCTATTTCGCCCAAT
GTGTCCATCTGAGGAACAAAAGCTGGG

TACCGb

005a CCAACACTTCCTCTACCATTGC To amplify probe 1 used for
Southern blot analysis at
ADE2 locus.

005b TGGACACATTGGGCGAAATAGC

006a CAGAACCCTCTTACATTATCG To amplify probe 5 used for
Southern blot analysis at
TUP1 locus.

006b TGCAGAAGGACAGATAGAGGG

007a CTTAATCGCTCGAGGAGTAACGCCGTA
TCG

To amplify a region of DNA
next to ADE2 gene
corresponding to 686-609bp
upstream of the ADE2
transcriptional start site.

007b ATGAATCCATCGATGGACATTGGGCGA
AATAGC

008a AACTATGGACTAGTCCGTCTTAAGTCTG
CG

To amplify a region of DNA
next to ADE2 gene
corresponding to 204-421 bp
downstream of the ADE2
transcriptional stop site.

008b I I I I GAI CGAGCI CGGACGCI IIAI AA I
TTGGC

017a GATAGACAATAGTGGATTTTTATTCCAA
CAGTGTCI I I GTAGATTGTACTGAGAGT

GCAC

To amplify the MET15 gene
from pRS401. The primers
contain homology to the
MET15 locus to allow use as

a disruption fragment.
017b GTTCAATTGTAGAATATCCTGTATAATTT

GATACTGTCTGTGCGGTATTTCACACCG
018a AACGCGGTTTATTCTGCC To amplify probe 4 used for

Southern blot analysis at
URA3 locus.018b TGTGGTGCTTCAGGGGAT

019a CAACGCTTACAGGTCTCC Utilised for inverse PCR on

ADE2 gene.019b TGTAATCATAACAAAGCC
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Plasmid Sequence Description
020a TAAGCAGGGGAAGAAAGAAATCAGCTT

TCCATCCAAACCAATATGACCTTCGTTT
GTGCG

To amplify the zeocin
resistance gene from
plasmid pPICZB. These
primers contain homology to
the TUP1 locus allowing the
amplified fragment to be
used for PCR-mediated
disruption.

020b TAGTTAGTTACATTTGTAAAGTGTTCCTT
TTGTGTTCTGTTCTGTTCTTACACATGTT

GGTCTCC

Table 6.2: Primers used in chapter 3.

Probe Description
Probe 1 Amplified by primers 005a and 005b. Corresponds to region of DNA 830-

605bp upstream of the ADE2 transcriptional start site.
Probe 2 Full length RPS sequence. Generated by Eco Rl digestion of pBlue/AR.
Probe 3 Probe for ADE2 sequence. Generated by Vsp I digestion of pBlue/AR.
Probe 4 Amplified by 018a and 018b. Corresponds to region of DNA 1652-2013bp

downstream of the trancriptional stop site of the ura3-52 locus.
Probe 5 Amplified by primers 006a and 006b. Corresponds to a region of DNA 120-

359bp upstream of the TUP1 transcriptional start site.

Table 6.3: Probes used in chapter 3.
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Strain Parent Genotype Description
HC1 BY4733 MATa, ade2A::kanMX4,

his3A200, leu2A0, met15A0,
trp1A63, ura3A0

Deletion of ADE2 gene from 602bp
upstream of transcriptional start
site to 239bp downstream of
transcriptional stop site. The ADE2
gene was replaced with the
kanamycin resistance gene.

HC2 HC1 MATa, ade2A::URA3,
his3A200, leu2A0, met15A0,

trp1A63, ura3A0

Contains deletion of ADE2 gene
from 602bp upstream of
transcriptional start site to 239bp
downstream of transcriptional stop
site. The ADE2 gene was replaced
by the URA3 gene.

HC3 HC2 MATa, ade2A::URA3,
his3A200, leu2A0, met15A0,
trp 1A63, tup 1A::MET15,

ura3A0

Deletion of TUP1 gene from 2bp
upstream of transcriptional start
site to 2bp downstream of
transcriptional stop site. The TUP1
gene was replaced by the MET15
gene.

HC4 FY2 MATa, ade2A::kanMX4,
ura3-52

Deletion of ADE2 gene from 602bp
upstream of transcriptional start
site to 239bp downstream of
transcriptional stop site. The ADE2
gene was replaced by the
kanamycin resistance gene.

Table 6.4: Strains made in chapter 3.
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6.2 Primers and Plasmids Used in Chapter 4

Vector Parent Cloning Strategy
p415-

MET25/GRO
p415-
MET25

GROUCHO cDNA was amplified by PCR from vector,
pCR4-GRO (kindly provided Dr. D. Ish-Horowicz) by, using
primers 015a and 015b. These primers contain restriction
sites for Xho I and Spe I and these sites were used for
cloning into p415-MET25.

p415-
MET25/CaTUP 1

p415-
MET25

CaTUPI cDNA was amplified by PCR from vector, pMH1
(a gift from Prof. A. Johnson, Braun and Johnson, 1997)
using primers 016a and 016b. These primers contain
restriction sites for Xho I and Spe I and these sites were
used for cloning into p415-MET25.

p415-
MET25/Sc TUP1

p415-
MET25

ScTUP1 was amplified by PCR from genomic DNA
purified from S. cerevisiae using primers 004a and 004b.
These primers contained Hind III restriction sites, these
sites were used for cloning into p415-MET25. The positive
clones were analysed by restriction enzyme cleavage to
select clones with the correct orientation of ScTUPI.

p415-
MET25/LUG

p415-
MET25

LUG cDNA was purified after digestion of plasmid
pAVA393 (a gift from Prof. Z. Liu, Conner and Liu, 2000)
with Bgl II. The restriction fragment, containing LUG, was
cloned into the Bam HI site of p415-MET25. Restriction
enzyme digests confirmed the correct orientation of the
LUG gene.

p415-MET25/BP1
rv>S" en BP1 cDNA was purified after digestion of plasmid

pBluescript-BP1 (kindly provided by Prof. P. Meyer) with
Xho I and Xma I. BP1 was then cloned into the Xho I and
Xma I sites of p415-MET25.

Table 6.5: Plasmids used in chapter 4.

Primers Sequence Description
004a ATATATACCCAAGCTTGGGATCAGCTTT

CCATCCAAACC
To amplify the TUP1 gene from
S. cerevisiae genomic DNA, with
Hind III restriction sites on the
ends.

004b TTAAATCCCAAGCTTGGGGTTACATTTG
TAAAGTGTTCC

015a ATTCCGCTCGAGTGCATGGTTTTGTGG To amplify GROUCHO cDNA
from plasmid pCR4-Gf?0, with
Xho I and Spe I sites on the ends.

015b ACATGGACTAGTATGTATCCCTCACCG

016a TAACCGCTCGAGAGAGTACATTGATGG To amplify CaTUPI cDNA from
plasmid pMH1, with Xho I and
Spe I sites on the ends.

016b TATCAGACTAGTATGTCCATGTATCCC

Table 6.6: Primers used in chapter 4.
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Probe Description
ActPr Amplified by PCR, and contains ACT1 ORF sequences between +411

and +1422.
FloPr The full-length FL01 gene, which was isolated from plasmid pYY105

following an Eco RV digestion.
FloPr2 Amplified by PCR and corresponds to 775-1146 bp upstream of the FL01

transcriptional start site
SucPr Amplified by PCR, and contains SUC2 ORF sequences between +119

and +1222.

Table 6.7: Probes used in chapter 4.
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