
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Computational investigation of systemic 
pathway responses in severe pneumonia 
among the Gambian children and infants 

 

James Jafali  
 
 

 

 

 

 

A thesis presented for the degree of  

Doctor of Philosophy, 

THE UNIVERSITY of EDINBURGH 
 

 

January 2018 

 
 
 

Division of Infection & Pathway Medicine 
College of Medicine & Veterinary Medicine 

THE UNIVERSITY of EDINBURGH 

 

   
  



 ii 

Declaration  
 
I hereby declare that this thesis and the work presented in it are my own. 
 
I confirm that: 

• This work was done wholly or mainly while in candidature for a 
research degree at this University  
 

• Where any part of this thesis has previous been submitted for a 
degree or any other qualification at this University or any other 
institution, this has been clearly stated.  
 

• Where I have consulted the published work of others, this is always 
clearly attributed. 

 

• Where I have quoted from the work of others, the source is always 
given. With the exception of such quotations, this thesis is entirely my 
own work. 

 

• I have acknowledged all the main sources of help 
 

• Where the thesis is based on work done by myself and jointly with 
others, I have stated clearly what was done by others and what I have 
contributed myself  

 
 
 

 

 

James Jafali  

THE UNIVERSITY of EDINBURGH  

  



 iii 

Abstract  
Pneumonia remains the leading cause of infectious mortality in under-five children, 

and the burden is highest in sub-Saharan Africa. To mitigate this burden, further 

knowledge is required to accelerate the development of innovative and cost-

effective approaches. To gain a deeper insight into the pathogenesis of pneumonia, 

I investigated the central hypothesis that systemic pathway (cellular and molecular) 

responses underpin the development of severe pneumonia outcomes. 

 

Mainly, I compared whole blood transcriptomes between severe pneumonia cases 

(clinically stratified as mild, severe and very severe) and non-pneumonia community 

controls (prospectively matched by age and sex). In total, 803 whole blood RNA 

samples were collected from Gambian children (aged 2-59 months) between 2007 

and 2010, of which, 518 passed laboratory quality control criteria for the microarray 

analysis. After data cleaning, the final database reduced to 503 samples including 

the training (n=345) and independent validation (n=158) data sets. 

 

To investigate the cellular responses, I applied computational deconvolution 

analysis to assess the variations of immune cell type proportions with pneumonia 

severity. To further enhance the computational performance, I applied a data fusion 

approach on 3,475 immune marker genes from different resources to derive an 

optimal and integrated blood marker list (IBML, m=277) for Neutrophils, Monocytes, 

NK, Dendritic, B and T cell types; which robustly performed better than the existing 

individual resources. Using the IBML resource, pneumonia severity was significantly 

associated with the depletion of B, T, Dendritic and NK cell types, and the elevation 

of Monocytes and neutrophil proportions (P-value<0.001).  

 

At the molecular level, pneumonia severity was associated (false discovery 

rate<0.05) with a battery of systemic pathway (innate, adaptive and metabolic) 

responses in a range of biomedical databases. While the up-regulation of 

inflammatory innate responses was also observed in mild cases, severe pneumonia 

cases were predominantly associated with the co-inhibition of the cells of the 

adaptive immune response (B and T) and Natural killer cells, and the up-regulation 

of fatty acid and lipid metabolism. While most of these findings were anticipated, the 

involvement of NK cells was unexpected, and potentially presents a novel immune-

modulation target for mitigating the burden of pneumonia. Together, the cellular and 

molecular pathways responses consistently support the central hypothesis that 
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systemic pathway responses contribute significantly to the development of severe 

pneumonia outcomes.  

 

Clinically, the identification and appropriate treatment of patients at the higher risk of 

developing severe pneumonia outcomes remains the major challenge. To address 

that, I applied supervised machine-learning approaches on cellular pathway based 

transcriptomic features; and derived a 33-gene classifier (representing the NK, T, 

and neutrophils cell types), which accurately detected severe pneumonia cases in 

both the training (leave-one-out cross-validated accuracy=99%) and independent 

validation (accuracy=98%) datasets. Independently, similar performance (98% in 

each dataset) was associated with a subset (m=18) of the validated 52-gene 

neonatal sepsis classifier. Conversely, at least 75% of the cellular biomarkers were 

differentially expressed (false discovery rate<0.05) in bacterial neonatal sepsis. 

Further, very severe pneumonia cases were predominantly associated with 

antibacterial responses; and mild pneumonia cases with blood-culture-confirmed 

positivity were also associated with an increased frequency of differentially 

expressed genes.  These findings suggest the significant contribution of bacterial 

septicaemia in the development of serious pneumonia outcomes. Together, this 

study highlights the future potential of host-derived systemic biomarkers for early 

identification and novel treatment modalities of high-risk cases presenting at a 

resource-constrained clinic with mild pneumonia. However, further validation studies 

are required. 
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Lay summary  
Pneumonia (an infection of the lungs) is the leading cause of deaths in under-five 

children (more than HIV/AIDS, malaria and diarrhoea combined), especially in sub-

Saharan Africa. To reduce this burden, innovative and cost-effective approaches 

are required. However, the development of severe pneumonia outcomes is not fully 

described.   

 

This thesis investigated whether the development of pneumonia severity is 

associated with the immune responses that are detectable in the blood, which is 

clinically accessible. To address this, we applied a comprehensive approach called 

transcriptomics to compare whole blood samples between pneumonia cases 

(clinically classified as mild, severe and very severe pneumonia) and similar non-

pneumonia community controls. The blood samples were collected from the 

Gambian children (2-59 months old) between 2007 and 2010. After data quality 

assurance, 345 samples were applied in the main analyses while 158 samples were 

kept for independent validations. 

 

Whole blood is a complex mixture of a range of immune cell types and molecules, 

which vary in concentration between individuals with different conditions. In the 

main analyses, pneumonia severity was investigated at the cellular and molecular 

levels, and the findings were consistently associated with strong inflammatory 

responses. To investigate the cellular responses, I applied a powerful and cost-

effective approach called computational deconvolution analysis. Firstly, I developed 

a data resource tool called IBML, which further enhanced the computational 

performance.  Using this resource (IBML), pneumonia severity was simultaneously 

associated with an accumulation of pro-inflammatory cell types (neutrophils and 

monocytes), and the depletion of anti-inflammatory mediators (B, T, and Dendritic). 

At the molecular level, while the inflammatory responses were observed from mild 

to very severe pneumonia, severe pneumonia cases were predominantly 

associated with loss of regulatory control mechanisms. While these findings were 

anticipated, here pneumonia severity was unexpectedly associated with significant 

depletion and inhibition of natural killer (NK) cells. Potentially, this finding presents a 

novel intervention target for preventing serious outcomes in pneumonia.   

 

Further, very severe pneumonia cases were predominantly associated with 

bacterial infections, which highlight the importance of early identification and 

appropriate treatment of cases at the higher risk of developing severe pneumonia 
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outcomes. To enhance the identification of high-risk pneumonia cases, here I 

developed a 33-gene molecular diagnostic tool, which accurately detected at least 

98% of the serious pneumonia cases. Independently, these findings shared 

significant similarities with bacterial sepsis (blood infection), which strongly suggest 

the importance of blood-based (i.e. systemic) responses in the development of 

serious pneumonia outcomes. Together, this study highlights the potential of whole 

blood host-based signatures for future clinical identification and treatment of high-

risk pneumonia cases especially in resource-limited settings where the burden is 

highest. However, further validation studies are required. 
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Chapter 1:  Introduction 
 

1.1 Introduction  

This chapter presents an overview introduction of childhood pneumonia 

including the burden, pathogenesis, clinical practice challenges and host 

responses. Further, the implications of genome-wide profiling (particularly 

whole blood transcriptomics) in elucidating the pathway biology of 

pneumonia are highlighted. Finally, the central hypothesis, objectives and 

thesis outline are introduced. 

 

1.1 The burden of childhood pneumonia  

Child survival remains a major public health challenge worldwide especially 

in resource-limited countries such as the Sub-Saharan Africa and South-

Eastern Asia [1-3]. Despite the scaled efforts to implement safe, effective 

and affordable interventions; infections still account for more than 50% of 

child fatality cases [4, 5].  In particular, pneumonia remains the single leading 

cause of mortality in children younger than five years old, with an estimated 

burden of one million deaths in 2013[2, 6].  

 

Indeed, child mortality rates have fallen in the past decade [2, 5, 7-9]. 

However, the progress has largely depended on the country-specific wealth 

index thereby leaving resource-limited countries behind with a high burden of 

childhood pneumonia [4]. Therefore, robust and affordable approaches are 

urgently required to accelerate the reduction of childhood pneumonia burden 

in resource-limited settings like the sub Saharan Africa. However, such 
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approaches require a better understanding of the pathogenesis and host 

responses in childhood pneumonia infection and severity, which is not fully 

understood. In the next section, the risk factors for pneumonia are briefly 

discussed. 

1.2 Risk factors for pneumonia  

Pneumonia has several correlated risk factors both from the host and the 

environment. Firstly, exposure to potential pathogens is the main prerequisite 

risk factor for disease onset and a reservoir for transmission [10, 11].  

Consequently, children living in the high burden regions like the sub-Saharan 

Africa have an increased risk. Notably, both pneumococcal diseases and 

asymptomatic carriage of pneumococcal strains are very high in this region 

including the Gambian children [5, 9, 10, 12, 13] 

 

While exposure is an important risk factor, infectious pneumonia is often high 

among vulnerable people associated with compromised host responses. 

Consequently, underlying host factors such as extreme age (younger 

children or the elderly), low birth-weight, premature birth, malnutrition 

including micronutrients (i.e. zinc) deficiencies and suboptimal breast-

feeding, and co-morbidities such as HIV AIDS, diarrhoea, malaria and 

asthma are among the host risk factors [7, 9, 11, 14, 15]. 

 

Further, environmental factors such living in crowded conditions, and 

exposure to in-door air pollution like biofuels and passive smoking 

compromise the epithelial host defense mechanisms[6, 16]. Furthermore, 

while pneumonia occurs throughout the year, seasonal variations in disease 
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incidence and aetiology have also been reported [17-20]. While it is difficult 

to quantify the magnitude of each risk factor (i.e. because they are highly 

correlated), the major themes for pneumonia risk factors are (i) underlying 

host factors and (ii) environmental exposures [16]. However, effective 

preventive measures against these risk factors are lacking especially in 

resource-limited settings (next section) 

 

With regard to this thesis and subsequent studies, these risk factors present 

a potential source of confounding effects. To mitigate this, it is worth noting 

that this study applied a matched-case control study design to account for 

the potential confounding effects of age, sex and residential area (Chapter 

2). However, it is not feasible to match for many factors at the study design 

level. Therefore, potential confounding factors were further investigated and 

accounted for during data analysis (Chapter 3).  

1.3 Prevention of pneumonia  

“Prevention is better than cure” (Desiderius Erasmus). Indeed, diagnosis and 

treatment of pneumonia remain the clinical challenges [1, 21-24] (next 

section). Therefore, prevention of pneumonia remains a public health priority 

[10, 25, 26]. In particular, innovative and integrated approaches targeting 

both pneumonia and the co-morbidities such as HIV, malaria and diarrhoea 

are required to eliminate potential pathogens and strengthen the host, and 

households, community and the health systems. 

 

At the population level, socio-economic empowerment and community 

sensitization are vital to minimise the underlying risk factors such as poor 
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hygiene, malnutrition, over-crowding and in-door pollution. Further, 

strengthening of health systems (i.e. to enhance optimal diagnosis, and 

effective management of patients), especially in remote area where the 

burden is often high, is a corner stone for reducing the burden of pneumonia 

[27]. However, derivation and implementation of such approaches require 

evidence-based knowledge to influence policy change and stimulate the 

political will. 

 

At the host level, vaccination remains the most successful protection against 

harmful diseases including pneumonia [2, 9, 16, 28]. However, pneumonia 

has a complex aetiology, and vaccines against many pathogens such as 

respiratory syncytial virus (RSV) are not available [29]. Further, while the 

coverage of pneumococcal conjugate vaccine (PCV) is very low in resource-

limited countries, the increasing prevalence of non-vaccine serotypes (NVT) 

in high-coverage settings is becoming worrisome [10]. Thus, novel 

approaches are required to gain a deeper insight into the pathogenesis of 

pneumonia to facilitate the discovery of better vaccine targets and 

candidates. 

 

1.4 Pathogenesis of pneumonia  

Pneumonia is a disease of the lung parenchyma in the lower respiratory tract 

causing mild to very severe outcomes across all ages but more prevalent 

among the very young and very old age groups (under-five children and the 

elderly over 60 years old) and people with compromised immunity [30-32].  In 

the affected lungs, the characteristic features include consolidation of the 
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affected part and the alveolar air spaces are filled with exudate, inflammatory 

cells, and fibrin[33]. The main function of the respiratory tract system, which 

is divided into lower and upper tracts (Figure1.1), is to supply oxygen and 

remove carbon dioxide from the body. However, the air is often contaminated 

with allergens, toxic chemicals and potential invasive pathogens capable of 

causing serious diseases such as pneumonia (lungs), sepsis (blood) and 

meningitis (brain)[34].  

 
Figure 1.1: The respiratory tract system[31] showing pneumonia infected alveoli.    
The left and right figures were copied from Iwasaki (2016), page 3 
(http://dx.doi.org/10.1038/nri.2016.117), and www.momjunction.com (respectively). 

 

Normally, the upper respiratory system is colonised by commensal 

microorganisms while physical and chemical barriers protect the lower 

respiratory tract system [35, 36]. However, due to host and environmental 

risk factors as well as microbial virulence factors, these barriers can be 

breached [16, 37, 38]. When invasive bacteria are detected in the lower 

region, an inflammatory host response that includes the recruitment of 

neutrophils from the blood to the alveoli[39] are induced.  

 

http://dx.doi.org/10.1038/nri.2016.117
http://www.momjunction.com/
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While these host responses are beneficial to eliminate the pathogen, 

deleterious inflammatory responses are often associated with disease 

severity causing tissue injury, pain and accumulation of debris from dead 

cells in the alveoli[38]. Consequently, these physiological changes 

compromise normal lung functions (gas exchange) and are often manifested 

in a range of clinical symptoms such as fever, difficulty in breathing or 

hypoxia even after the pathogen is cleared[40]. Therefore, a deeper 

understanding of the systems-level responses is vital to elucidate novel 

immuno-modulation factors responsible for excessive responses and severe 

outcomes. In the next section, the main causes of pneumonia are described. 

 

1.5 Aetiology of pneumonia 

Infectious pneumonia has a complex temporal-spatial aetiology including 

bacteria, viruses, fungi and atypical bacteria, which also cause meningitis 

(brain), sepsis (blood), media otitis (ear) and sinusitis (sinuses) across 

different geographical regions and seasons [28, 41, 42]. While no pathogen 

is identified in almost half of the clinical pneumonia cases[5, 16, 28], 

Streptococcus pneumoniae and respiratory syncytial virus (RSV) are the 

most common causes of bacterial and viral pneumonia, respectively[43]. In 

sub-Saharan Africa, bacterial pneumonia is more prevalent and is associated 

with more serious outcomes than viral pneumonia[9]. In particular, 

Streptococcus pneumoniae is the leading cause (33%) of pneumonia-related 

mortality in children younger than five years [5]. Other strains include 

Haemophilus influenza, LegionellaChlamydia pneumoniae and mycoplasma 

pneumoniae bacteria as well as Influenza and other virus. 
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Further, co-infection of bacterial with viral pathogens or other underlying 

morbidities such HIV, malaria and diarrhoea are frequently associated with 

severe outcomes. Similarly, the superinfection of viral and bacterial 

pathogens is common in the lungs (i.e. following an Influenza virus infection) 

[44-47].   

Notably, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae,Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacter species) are frequently associated with severe 

nosocomial pneumonia and antibiotic resistance throughout the world [48]. 

Furthermore, Pneumocystis jiroveci is commonly isolated in HIV infected 

children [27, 49, 50]. Due to this complex aetiology and co-morbidities, 

optimal aetiological stratification of pneumonia cases remains a major clinical 

challenge [28, 32, 40] (next section). 

 

1.6 Clinical diagnosis of childhood pneumonia  

1.6.1 Available approaches  
Early and optimal aetiological stratification of cases presenting at the clinic 

with mild pneumonia is vital to prevent severe outcomes (associated with 

bacterial pneumonia) and mitigate the spread of antibiotic resistance due to 

unnecessary presumptive antibiotic treatment [24, 27]. However, existing 

diagnostic tools beyond physical examinations such as chest X-rays and 

culture-based assays on blood or respiratory samples (induced sputum (IS), 

nasopharyngeal airway (NPA), bronchoalveolar lavage (BAL)[51, 52]) are too 

expensive for resource-constrained health facilities, and have several 
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limitations [5, 40, 53, 54]. In particular, chest X-rays cannot establish disease 

aetiology, and frequent exposure to radiation is associated with long-term 

side effects [40]. Further, blood culture results are not rapid (24 to 48 hours) 

and have low sensitivity (<80%) [53, 55]. Consequently, empirical treatment 

(using clinical signs) of suspected bacterial cases is not uncommon.  

HIV status  Signs Treatment 
category 

Treatment 

First line Second line  

Any Cough or cold  No 
pneumonia  

Home care advice Further 
diagnosis  

Negative and 
less exposed 
children 

Fast breathing 
or lower chest 
indrawing  

Pneumonia Oral amoxicillin (home 
therapy) 

Referral  

Danger signs  Severe or 
very severe 
pneumonia  

• Parenteral ampicillin 
(or penicillin) and 
gentamicin 

• Supportive therapy 

Parenteral 
Ceftriaxone 

HIV infected 
or exposed 
children 

Chest-
indrawing 
pneumonia or 
severe 
pneumonia 

Severe or 
very severe 
pneumonia 

• Parenteral ampicillin 
(or penicillin) and 
gentamicin  
 

• Supportive therapy 

Parenteral 
Ceftriaxone 

Parenteral ampicillin (or 
penicillin) and 
Ceftriaxone 
 

 

Suspected 
Pneumocystis 
jirovecii 

Infants  Cotrimoxazole  
(additional) 

 

Table 1.1: Empirical treatment of childhood pneumonia.  These are the revised 
guidelines (2014) by the World Health Organisation (WHO) [27] that were accessed at:  
 http://www.who.int/maternal_child_adolescent/documents/child-pneumonia-treatment/en/ 
 

To minimise referrals, delayed treatment and severe outcomes, the World 

Health Organization (WHO) improvised highly sensitive guidelines (Table1.1) 

for enhancing treatment of suspected bacterial pneumonia at primary health 

facilities [27]. However, this criterion is consequently depleting antibiotic 

stocks and potentially exacerbating the spread of antibiotic resistance 

because bacterial pneumonia can have similar clinical presentations as viral 

pneumonia as well as other common infections such as malaria and 

http://www.who.int/maternal_child_adolescent/documents/child-pneumonia-treatment/en/
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diarrhoea [40]. Moreover, the diagnosis of pneumonia by physical evaluation 

requires well-trained and experienced personnel who are rarely available in 

remote areas [56]. Therefore, new approaches are required to enhance 

clinical stratification of pneumonia. Potentially, gaining a deeper insight into 

the systemic pathway biology of pneumonia presents an innovative approach 

to derive robust diagnostic and prognostic biomarkers for optimal 

stratification of pneumonia cases (next section).  

 

1.6.2 Potential approaches (Biomarkers)  
Stratification of patients is a common challenge in many disease areas 

including cancer and infections; and the potential use of biomarkers present 

an attractive and cost-effective alternative solution [57]. Biomarkers are 

defined as biological characteristics that can be objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacological responses to a therapeutic intervention[58, 

59]. In pneumonia, diagnostic (to stratify bacterial and viral pneumonia 

cases) and prognostic (to predict mild cases at the higher risk of developing 

serious outcomes including mortality) biomarkers are urgently required.   

 

In particular, blood-based biomarkers, which are clinically accessible, 

present a powerful and objective approach for enhancing clinical stratification 

and appropriate treatment of pneumonia cases. However, the application of 

single serum biomarkers such as blood counts, interleukins, C-reactive 

protein (CRP) and procalcitonin are lacking robustness and far from optimal 

[60-65]. Generally, the application of individual biomarkers does not capture 
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the complex pathway responses underpinning the pathogenesis of 

pneumonia [57, 58, 62, 65]. 

 

Recently, synergistic advances in genome-wide profiling experiments and 

data science approaches have spurred the investigation of molecular 

biomarkers, which are more robust and could potentially translate into point-

of-care tests through technologies such PCR [66-68]. To date, molecular 

biomarkers include the occurrence of (i) genetic polymorphisms, gene 

mutations and methylation markers, and (ii) changes in RNA (gene 

expression) and microRNA (miRNA) abundance [69]. In particular, whole 

blood genome-wide profiling has become the mainstay of genomic research 

and future clinical practice. Importantly, whole blood is comprehensive and 

rich with biomarkers, and readily accessible tissue for clinical 

pathophysiological investigations. Therefore, systemic pathway-based 

biomarkers potentially present a powerful and accessible approach for 

enhancing clinical stratification of pneumonia cases. 

 

However, successful translation of molecular biomarkers into clinical practice 

has several challenges including high cost, inadequate study design and 

statistical analyses, and limited accessibility of samples or impracticability 

(i.e. difficult implementation of protocols) [58, 70]. Firstly, many studies have 

applied retrospective and observational designs, which are often 

underpowered.  In particular, observational studies are susceptible to 

potential bias and confounding effects, which undermines their 

generalizability. Further, many candidate biomarkers have lacked adequate 
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validations and follow–up studies either due to lack of similar studies or 

limited resources[58, 70]. Nevertheless, with the cost of genomic profiling 

going down, carefully designed studies investigating systemic pathway-

based biomarkers such as whole blood transcriptomes (which are clinically 

accessible) have the potential to enhance the clinical stratification of 

pneumonia cases [71-73].   

 

1.7 Treatment of pneumonia  

Early prediction and treatment of mild pneumonia cases at the higher-risk of 

developing serious clinical outcomes is vital for mitigating the burden of 

hospital admissions and under-five mortality [27]. As highlighted in the 

previous section, treatment of pneumonia is often based on the World Health 

Organization (WHO) clinical algorithm (Table1.1). Mainly, treatment options 

include symptomatic treatment, oral or injectable antibiotics, and supportive 

therapy such as oxygen supplementation [27, 28, 74]. Special attention has 

to be given to immune-compromised patients and other risk groups as well 

as young children [27]. 

 

While upper respiratory tract infection (URTI) such as cough or common 

colds are only treated asymptomatically, lower respiratory tract infections 

(pneumonia) are usually treated by oral or injectable antibiotics [27]. 

However, not all mild cases will proceed to severe pneumonia if antibiotic 

treatment is withheld. Consequently, while rapid antibiotic treatment of 

bacterial cases is vital to prevent severe outcomes, empirical 

misclassification of non-bacterial (i.e. viral pneumonia) cases is depleting 
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antibiotic stocks and fueling the exacerbation of antibiotic resistance [40, 53, 

56, 75-77]. Therefore, innovative approaches are required to enhance clinical 

stratification and treatment modalities for mild pneumonia cases, and derive 

alternative treatment options for antibiotic-resistant pathogens. 

 

1.8 Host response in pneumonia  

Despite being the most frequent infectious cause of child mortality, host 

responses in childhood pneumonia are not fully understood[31]. Generally, 

host response involves the interplay between the Innate and Adaptive pathways 

of the immune system (and recently metabolic pathways), which mainly differ 

on how they recognize pathogens [78, 79]. In pneumonia, these responses are 

further divided into local (within the lungs) and systemic (detected in the 

blood) [80, 81]. 

 
Figure 1.2: Host responses in the lungs following respiratory infections.    The figure 
was accessed from Iwasaki (2016), page 2: (http://dx.doi.org/10.1038/nri.2016.117) [31] 
 

1.8.1 Innate responses  
The innate immunity provides the first line of defense (against the invading 

pathogens) beyond the physical and chemical barriers (i.e. cilia beating, tight 

junctions and mucus production) provided by the epithelial cells (ciliated, 

http://dx.doi.org/10.1038/nri.2016.117
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club, goblet and basal cells) [79]. Mediators of the innate immunity include 

phagocytes (Neutrophils and Macrophages), antigen presentation cells (i.e. 

dendritic cells, macrophages), innate lymphoid cells (ILCs), and natural killer 

cells. While the innate response is rapid, pathogen recognition is less 

specific relying on pattern recognition receptors (PRRs) to detect pathogen-

associated molecular patterns (PAMPs). The recognition of PAMPs by the 

PRRs initiates the cascade of cellular signaling pathways including 

(i) The production of pro-inflammatory cytokines (i.e. TNF, IL-1, IL-6, IL-

12), chemokines (i.e. CXCL8) and interferons (IFN) through the 

activation of transcription factors such AP-1, IRFs, NF-kB [82-84] 

(ii) Phagocytosis of pathogens, degranulation (eosinophils, neutrophils 

and mast cells), and vasodilation of epithelial cells  

(iii) Priming of the adaptive immunity through the antigen-presentation 

cells (i.e. dendritic cells) [39, 79, 85-89] [31]. 

 

Briefly, PAMPs are biochemical signatures, which are exclusively expressed 

in pathogens (not the host) and essential to their survival. They include a 

major family of biomolecules such as Lipopolysaccharide (LPS), Lipoprotein, 

Peptidoglycan, Lipoteichioc acids (LTAs) [90]. On the other hand, pathogen 

recognition receptors (PRRs) are germ-line encoded and evolutionary 

conserved molecules that are exclusive to the host. The major types of PRRs 

include (i) Toll-like receptors (TLRs), (ii) RIG-I-like receptors (RLRs) (iii) 

NOD-like receptors (NLRs), (iv) C-type lectin-like receptors (CLRs) [85, 87, 

91-95].  
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Toll-like receptors (TLRs) are the most studied PRRs, which are located on 

the outer membrane or the endosome of the host cells (i.e. macrophages). 

On the outer membrane, TLR2 & TLR1 and TLR2 & TLR6 heterodimers 

recognize lipoproteins, LTA, PGN, lipoarabinomannan while TLR4 and TLR5 

recognize LPS and flagellin respectively. In the endosome, TLR3, TLR7, 

TLR8 recognize viral or bacterial RNA while TLR9 recognizes viral or 

bacterial DNA, respectively. Activated TLRs often induce the production of 

pro-inflammatory cytokines such as TNF, IL-1, IL12, IL8 and IFNγ [85].  

 

On the other hand, NOD (nucleotide-binding oligomerization domain)-like 

receptors (NLRs) and RIG-I-like recognize pathogens in the cytosol. NLRs 

comprise at least twenty families including NALP1 and NALP3, which form 

an inflammasome complex (with Caspase-1 and ASC) that mediates the 

production of inflammatory cytokines IL-1B and IL18 [87].  Further, the RLRs 

including RIG-I, MDA5, and LGP2 sense viral RNA and coordinate the 

production of type-I interferon, and the transcription of antiviral genes to 

eliminate the intracellular viral infection [91-93].  

 

Other mediators of inflammation and antimicrobial activities are the 

circulating plasma protein complexes such as the complement system, C-

reactive proteins [96] and antimicrobial peptides such as defensins and 

cathelicidins [97, 98]. In particular, the complement proteins are involved in 

opsonophagocytosis, inflammation (chemo-attraction of phagocytes) and the 

formation of microbial membrane attack complex (MAC) [99, 100]. The 

antimicrobial peptides are natural antibiotics, which also induce phagocytosis 
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and activate adaptive mediators such as CD4+ helper T cells[98]. On the 

other hand, danger-associated molecular signals (DAMPs) such as the high-

mobility group box 1 (HMGB1) protein, reactive oxygen species (ROS) and 

nitric oxide (NO) promote phagocytic and inflammatory activities especially in 

the macrophages [31]. To elicit an effective immune response, the adaptive 

immunity is subsequently involved (next).  

  

 

1.8.2 Adaptive responses  
The adaptive immune response is delayed (days) but capable of recognizing 

a repertoire of more specific antigens than the innate immunity, and forms 

immunological memory for robust response upon re-infection with the same 

pathogen (a hallmark for vaccine development). Its activation is vital for an 

effective clearance of the pathogen, resolving the inflammation and wound 

healing. The main cell types of the adaptive immunity are the B and T cells.  

In whole blood, the relative proportions of lymphocytes (B and T cells) 

approximately range between 20% to 40% [101].  Among them, the relative 

proportions for T and B cells can vary as follows: 61%- 85% and 7%–23%, 

respectively [102-105]. Functionally, the adaptive immunity is divided into 

ℎ𝑢𝑚𝑜𝑟𝑎𝑙 and 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 mediated responses [79, 86, 88, 106-108].  

 

The humoral-mediated response is more rapid and mainly involves the 

production of antibodies (immunoglobulins) by the plasma B cells to 

neutralize and eliminate extracellular antigens. In particular, naïve B cells are 

produced and mature in the bone marrow, and circulate into the bloodstream 
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and other body tissues.  Upon activation with an antigen, they differentiate 

into plasma (antibody producing B cells) and memory B cells. Generally, 

antibodies are involved in the opsonisation pathogens to (i) neutralize their 

virulence activities, and (ii) harness their phagocytosis by innate cells (i.e. 

macrophages) and membrane complex attack (MAC) through the activation 

of the classical complement pathway [79, 86, 88, 106-108] [79, 109-112]. 

 

Antibodies (immunoglobulins) are Y-shaped proteins, which are classified by 

their heavy chains including IgM (μ-chains), IgG (γ-chains), IgA (α-chains), 

IgD (δ-chains), and IgE (ε-chains). In particular, the IgG and IgA molecules 

are the most prevalent antibodies in the serum (systemic responses) and 

secretions (i.e. mucous, tears, saliva and milk), respectively. Notably, the 

IgM and IgG antibodies are more abundant for early (i.e. potential marker of 

acute disease) and long-term (i.e. potential marker for chronic disease) 

exposures, respectively. Further, the IgD and IgE antibodies are the least 

prevalent, and do not activate the complement pathway [79, 86, 106].  

 

On the other hand, cellular-mediated responses are coordinated by the T-

cells (mainly through the production of cytokines) to facilitate the elimination 

of intracellular antigens. Briefly, the T cells are mainly divided into the 

cytotoxic CD8 and CD4 T-cell pathways. The ratio of CD4+ T-cells to CD8+ 

T-cells varies from <1.0 to 2.0 [102-105].  The cytotoxic CD8 T cells 

recognize pathogen-infected host cells through the major histocompatibility 

class1 (MHC-I), and induce their apoptosis to contain the infection (i.e. virus) 

[79, 86, 88, 106-108]. 
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The CD4 T-cells (on the other hand) recognize their antigens via the antigen-

MCH-II class complex presented by the professional antigen presentations 

cells (APCs) especially the dendritic cells. Functionally, the CD4 T-cells are 

further divided into subclasses each producing a range of cytokines including 

Th1 (IL12, IFNγ), Th2 (IL-4, IL-2), and Th17 (IL-6, IL-21, IL-23, TGF-β), Th9 

(TGF-β, IL-4), iTreg (TGF-β, IL-2), Tfh (IL6, IL-21), and Tr1 (IL27, IL-10) 

[111]. Manly, these cytokines amplify and regulate the effector functions of 

other cells including (i) phagocytosis, (ii) antibody production by the plasma 

B cells and (iii) the cytotoxicity of CD8 T-cells and NK cells [79, 86, 88, 106-

108]. Notably, regulatory T cells (Tregs) are vital for controlling excessive 

inflammation to maintain or restore a homeostatic environment[112].  

However, they can be detrimental if activated prematurely or pathogen-

modulated [113, 114].  

 

1.8.3 Local and systemic responses  
It is worth noting that host responses in pneumonia can be separated at the 

local and systemic levels [81, 115, 116]. The local responses are found 

within the lungs [31] while systemic responses are detectable in the 

circulating blood [115, 117]. Normally, the local responses are sufficient to 

clear the pathogen without causing serious clinical outcomes. However, due 

to host risk factors and pathogenic virulence factors, the local response 

boundaries are breached consequently inducing the systemic responses, 

which are often excessive and detrimental to the host and often associated 

with serious clinical outcomes [116, 118]. 
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Figure 1.3: An illustration of local and systemic responses associated with 
pneumonia severity.   Severity outcomes increase with loss of control, from the upper 
respiratory tract (top) to the blood stream (bottom). 
 

Thus, while the local responses are vital to detect, contain and eliminate the 

invading bacteria within the lungs without causing serious clinical pathology, 

the involvement of the systemic responses potentially underpins the 

development of severe pneumonia outcomes [37, 116, 119-122]. Therefore, 

blood-based signatures present an opportunity for case stratification (i.e. 

biomarkers) and management of severe pneumonia cases. Moreover, 

changes in the blood reflect key pathophysiological changes for the entire 

body including the lungs [102]. Importantly, whole blood is a readily 

accessible tissue in clinical practice. Therefore, whole blood genome-wide 

profiling approaches (i.e. RNA Seq or microarray based transcriptomics), 

which have become a mainstay of genomic research and future translation 
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medicine [123], present a powerful and innovative approach for enhanced 

clinical stratification of pneumonia cases [65]. In this thesis, we applied whole 

blood transcriptomics (introduced in the next section) to gain deeper insights 

into the molecular and cellular pathway responses in severe pneumonia. 
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1.9 Whole blood transcriptomics 

Proteins are the building blocks for cell structure and activities in disease and 

health. The human cell has about 20,000 protein-coding genes, which are 

activated at different time points depending on the state of the cell [124]. The 

genes are found on the DNA, which provides the template of protein-coding. 

In a human cell, the DNA is packed in twenty-three pairs of chromosomes 

inside the nucleus. However, proteins are coded indirectly through a 

transient intermediary molecule called messenger RNA (mRNA) that carries 

similar information as DNA and the protein [125]: 

𝑫𝑵𝑨
𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

.
>  𝒎𝑹𝑵𝑨 

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

.
> 𝑷𝒓𝒐𝒕𝒆𝒊𝒏 

 

While proteomics enables direct investigations of protein structures and 

physiological functions, protein analysis is more complicated than genomics 

(gene sequences) and transcriptomics (RNA abundance). Firstly, proteins 

functions are translated from the 4-nucleotide codes of DNA and mRNA into a 

much more complex code of 20 amino acids [126], which also depends on the 

specific structure they fold up into. Further, sample purification is also 

challenging [125, 127].  

 

Transcriptomics is the study of the complete set of RNA transcripts that are 

produced within the cell (transcriptome) under certain conditions such as 

response to infections [123, 125, 128]. Here, the key assumption is that the 

RNA transcripts reflect the transcribed genes, and hence the state of the cell. 

In particular, advances in microarray technologies [129, 130] and recently 

RNA-seq [131] has spurred transcriptomic research investigating 
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pathogenesis pathways, biomarkers and therapeutic targets in a range of 

diseases including cancer [132, 133], infections [121, 134-136] and 

autoimmunity [137-139]. 

 

In pneumonia, several studies have applied whole blood transcriptomics to 

investigate the systemic responses and derived candidate biomarkers [66, 

67, 140, 141]. However, such studies are rarely available in Sub-Saharan 

Africa, where the pneumonia burden is high. Here, this study applied the 

whole blood transcriptomics approach to gain a deeper insight into the 

systemic pathway responses that are associated with the severity of 

childhood pneumonia in resource-limited settings, focusing on the Gambian 

children and infants and using the microarray technology (next section).  

1.9.1 The Microarray approach 
Despite recent advances in RNA-seq, the microarray approach remains the 

method of choice for transcriptomic studies because it is cost-effective and 

more established[142] Briefly, this technology applies hybridization [129] to 

simultaneously assess the abundance of tens of thousands of RNA 

transcripts in multiple samples. For each sample, a raw data point called 

CELFILE, which contains expression signals for all the gene probes on the 

array, is generated [125, 129, 143]. 

1.9.2 Data analysis  
The analyses of microarray data involve the application of various statistical 

and bioinformatics approaches to address the following objectives[144]: 

(i) Class discovery: Identification of novel clusters in the data 

(unsupervised learning)  
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(ii) Class comparison: Identify candidate genes (i.e. differentially 

expressed genes) and signaling pathways (supervised analysis) 

(iii) Class prediction: identification of candidate biomarkers 

 

However, the raw data points are potentially confounded by non-biological 

variations [129, 145]. Therefore, data quality assurance is central to the main 

analysis process. To remove technical variations across the array, the raw 

database is subjected to statistical pre-processing algorithms for background 

correction, normalization, transformation, and summarization of probe-level 

data into the probe set [146, 147]. For studies with multiple sample batches, 

batch-effect normalization is also required in addition to raw data pre-

processing [148-150]. Further, potential outliers are investigated before and 

after data pre-processing [151, 152]. Since not all transcripts are relevant to 

a particular disease, non-informative gene probes are often eliminated to 

minimize potential noise and false discoveries due to multiple testing [153]. 

To enable the contextualization of results, the gene probes are annotated to 

the universal gene IDs such as ENTREZIDs [71, 143].  
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1.10 Study aims and hypothesis  

1.10.1 Rationale  
Pneumonia remains the leading infectious cause of under-five mortality 

especially in resource-limited settings including the Gambia [2, 4]. Therefore, 

innovative approaches are required to gain deeper insights into the 

pathogenesis of pneumonia that could facilitate the discovery of cost-

effective vaccines as well as diagnostic and prognostic tools applicable for 

resource-constrained settings where the burden is highest [154].  

 

Here, this thesis has applied a range of data science approaches using a 

genome-wide whole blood transcriptome to gain a deeper insight into the 

systemic pathway responses associated with the clinical pneumonia severity 

among the Gambian children and infants. Importantly, whole blood is a 

readily accessible clinical tissue and whole blood transcriptomics has 

become the mainstay of genomic research and future translation medicine 

[71, 102]. Further, the methodology and the cost of molecular profiling are 

improving [155]. Therefore, this approach presents an innovative, clinically 

accessible and powerful resource for elucidating the pathway biology, and 

enhancing the clinical practice of severe pneumonia.  
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1.10.2 The central hypothesis  
This study has investigated the following central hypothesis: 

• Systemic pathway responses underpin the development of 

severe pneumonia outcomes. 

This hypothesis implies that while the local responses (compartmentalised in 

the lungs) are the priority, systemic responses are crucially involved in 

severe pneumonia outcomes. To address this hypothesis, the following 

objectives were pursued.  

1.10.3 Study objectives  
The aim of this study is to gain a deeper insight into the systemic pathway 

responses associated with pneumonia severity. In particular, the following 

specific objectives were addressed: 

1) To investigate the cellular pathway responses associated with 

pneumonia severity 

2) To investigate the molecular pathway responses associated with 

pneumonia severity 

3) To identify candidate biomarkers for early detection of mild pneumonia 

cases at the higher risk of developing severe pneumonia outcomes. 

1.11 Thesis outline  

This thesis has seven chapters. The study methodology is described in 

Chapter 2, and extended into Chpater 3 where data curation, 

characterization and quality assurance findings are presented. To investigate 

the cellular pathways, Chapter 4 applied computational deconvolution 

analysis approaches to assess the cellularity of whole blood in pneumonia 

severity. To investigate the molecular pathway responses to severe 

pneumonia, Chapter 5 applied a computational pathway analysis approach 
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using a range of biochemical pathway databases. To address the final 

objective, in Chapter 6 I coupled cellular pathway biology with machine-

learning approaches to investigate the candidate biomarkers for severe 

pneumonia. Finally, Chapter 7 presents an overall summary and discussion.  

Figure 1.4: Systematic diagram of thesis chapters.
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Chapter 2:  Material and methods 

2.1 Introduction 

This chapter introduces the study materials and methodology including the 

study design, the central data resources and statistical analyses. 

2.2 Materials  

This thesis mainly analyzed a whole blood transcriptome and the 

corresponding metadata records (clinical, demographic and microbial 

databases), which were complemented by a range of publicly available data 

resources including gene expression data from the Gene Expression 

Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) 

[156], and biochemical pathway databases such as KEGG, REACTOME and 

Gene Ontology (GO) [157]. Computationally, most of the analyses were 

conducted in R statistical programming language [158] using a range of 

packages especially from the Bioconductor repository [159].  Further, the 

CellMix package [160, 161], which is not on the Bioconductor, was also 

extensively applied. Metadata cleaning and descriptive analysis tables were 

conducted in Stata 12 (StataCorp, Texas) [162]. 

2.3 Study setting  

In this study, participants (children aged 2-59 months) were recruited from 

The Gambia in West Africa. The Gambia is a small (area=11,295 km2) and 

resource-limited country, which is mostly surrounded by Senegal. Eligible 

participants were recruited from the coastal semi-urban in the Greater Banjul 

area (training dataset) or the rural Basse area (Validation data set) between 

June 2007 and September 2010 (Figure2.1) [15]. 
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Figure 2.1: Map of Gambia showing major towns and study sites. 

  (http://www.accessgambia.com/information/map.html) 
 

2.4 Study population   

The Gambia has an estimated population of 2 million people (density=176.3 

people/square km) (https://data.unicef.org/country/gmb). Notably, the 

proportion of under-five children is the highest in this population (Figure2.2).  

 
Figure 2.2: The population structure of the Gambia.   
(http://www.allcountries.org/world_fact_book_2016/gambia_the/gambia_the_people.html) 

 

https://data.unicef.org/country/gmb
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Life expectancy is estimated at 58 years for men and 69 years for women but 

HIV (Human Immunodeficiency Virus) prevalence is very low (less than 2%). 

The under-five mortality rate is estimated at 69 per 1000 live births [163], 

which is above the United Nations (UN)’s 2015 Millennium Development 

Goal number 4 (MDG4). In 2010, malaria (20%), pneumonia (15%) and 

prematurity (14%) were the leading causes of under-five mortality 

(http://www.commonwealthhealth.org). Aetiologically, Streptococcus 

pneumonia is the leading cause of pneumonia in this population [41]. At the 

time of blood sample collection, the coverage for conjugate Haemophilus 

influenzae type b (Hib) vaccine was high but there was no routine usage of 

pneumococcal conjugate vaccine (PCV), which is the case currently in many 

African countries[41]. 

 

2.5 Ethics approval 

Written informed consents for participation in the study were obtained from 

the parents or legal guardians of all participants. The study was approved by 

the Gambian Government-Medical Research Council Joint Ethics Committee 

in Banjul (SCC/EC1062). 

 

2.6 Microarray experiment  

Briefly, a typical microarray experiment involves the following steps:  

1) Study design and sample collection   

2) RNA sample preparation, 

3) Reverse transcribe and label the mRNA, 

4) Hybridization of the labeled target to the microarray plate  
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5) Scan the microarray to quantify the expression signals  

6) Image analysis  

7) Statistical and bioinformatics analysis  

 

2.7 Study design and recruitment of participants 

Study participants were recruited using a prospectively matched case-control 

study design. The eligible cases were children and infants (aged 2-59 

months) who were clinically classified as mild, severe or very severe 

pneumonia at a designated study clinic. To define pneumonia severity levels, 

the modified World Health Organisation (WHO) criteria (Table2.1) were 

applied. It is worth noting that oxygen saturation was measured in all the 

participants. 

 

Pneumonia criteria  
Clinical 

phenotype 

Age, sex, season and community matched non-
pneumonia children aged 2-59 months old 

Controls 

Children 
aged 2-59 

months 
with cough 

OR 
difficulty in 
breathing  

≥50 breaths/min in children 2-11 months old 
≥40 breaths in children 1-5 years old  

Mild 

Lower chest in-drawing / head nodding / 
Nasal flaring / Grunting 

Severe 

Oxygen saturation<90% Very severe 

Table 2.1: Classification of pneumonia cases into severity groups.   This criteria was 
adapted from the World health organization (WHO)’s guidelines for case management at 
health facility [1]. In particular, this criterion includes oxygen saturation data. 

 

In the Greater Banjul region, the pneumonia cases were recruited at the 

Medical Research Council (MRC) hospital in Fajara, the Royal Victoria 

Teaching Hospital (RVT), or the major health centres at Fajikunda, 

Serekunda or Brikama. Together, these samples formed the training 

database (here called Fajara) and were applied for all primary analyses. In 
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the validation sample (from the rural Basse area), all the pneumonia cases 

were recruited at the Basse health centre. In all the sites, children with a 

cough of ≥2 weeks, or severe anemia (hemoglobin level <6 g/dL) or 

confirmed wheeze were excluded.  

 

To account for potential confounding, severe and non-severe pneumonia 

cases were frequency-matched by age, sex, location and season. Further, all 

the pneumonia cases were also matched to non-pneumonia community 

controls. In particular, community controls were selected from a compound 

located at least 50 paces (in a randomly selected direction) from the 

compound with a pneumonia case [15].  It is worth noting that, the validation 

dataset was kept independent from all the primary analyses in order to 

validate the performance of candidate biomarkers in Chapter 6. 

2.8 Collection and processing of whole blood samples 

All the eligible cases and controls (n=1527) were bled on the day of 

recruitment. Whole blood samples were collected for blood culture/PCR 

based bacterial detection and into PAXgene tubes 

(https://www.preanalytix.com) for RNA isolation. Additional lung aspirate 

samples were taken from some individuals for bacterial culture. Sufficient 

whole blood RNA samples (n=803) were extracted and prepared at Medical 

Research Council Unit, The Gambia (MRCG) laboratories and shipped for 

transcriptomics analyses to Peter Ghazal’s group at the Division of Infection 

and Pathway Medicine (DIPM), University of Edinburgh Medical School, 

United Kingdom. 
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2.9 RNA quality control and microarray experiment 

In Edinburgh, whole blood RNA samples were subjected to further quality 

control analysis to assess sample volume (sufficient quantity) and purity 

using the Nanodrop ND1000 spectrophotometer 

(https://www.thermofisher.com), and RNA integrity using the RNA 6000 Nano 

Chip run on an Agilent Bioanalyser 02936A (Agilent Technologies: 

http://www.agilent.com). Eligible RNA samples (n=518) were hybridized and 

sent for genome-wide microarray profiling using the Affymetrix HGU219 

platform at AROS (http://arosab.com).  

 

It is worth noting that the microarray profiling was conducted in two batches: 

Batch1 (n=447) in 2013 and Batch2 (n=71) in November 2014. The second 

Batch was added to minimise the demographic data imbalances (potentially 

confounding variations) between the study groups, and improve the sample 

size of very severe pneumonia (i.e. after sample size re-assessment. The 

final database was reduced to 503 samples (Table2.2) after removing 

outliers (described in section 2.1.4 and 3.3.1.1). 

  

http://arosab.com/
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Site Controls Mild Severe  Very severe  Total 

(a) Number of recruited participants 

Total 714 321 443 49 1527 

Fajara 402 175 232 24 833 

Basse 312 146 211 25 694 

(b) Whole blood microarray experiment samples 

Total 175 137 162 44 518 

Fajara 128 91 121 20 360 

Basse 47 46 41 24 158 

(i) Whole blood samples batch1 

Total 144 124 153 26 447 

Fajara 116 90 118 16 340 

Basse 28 34 35 10 107 

(ii) Whole blood samples batch2 

Total 31 13 9 18 71 

Fajara 12 1 3 4 20 

Basse 19 12 6 14 51 

(c) Final analyses data (After data cleaning) 

Total 167 136 158 42 503 

Fajara 120 90 117 18 345 

Basse 47 46 41 24 158 

(i) Whole blood samples batch1 

Total 139 123 149 24 435 

Basse 28 34 35 10 107 

Fajara 111 89 114 14 328 

(ii) Whole blood samples batch2 

Total 28 13 9 18 68 

Basse 19 12 6 14 51 

Fajara 9 1 3 4 17 

Table 2.2: The distribution of eligible samples.   The table shows the number of samples 
at recruitment (a), microarray profiling (b) and final analyses (c). Pneumonia cases were 
matched to non-pneumonia community controls by age, sex and location.  

 

2.9.1 The Affymetrix HGU219 microarray platform  
To investigate the gene expression profiles associated with pneumonia 

severity, this thesis applied the Affymetrix GeneChip technology particularly 

using the HGU219 microarray platform. Generally, Affymetrix GeneChips 

apply 16-25 pairs of oligonucleotide probes (collectively called a probe set) to 

investigate a gene. To improve robustness, multiple probe sets are often 
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applied to investigate a single gene. Each probe pair comprises a perfect 

match (PM) and a mismatch (MM) probe to assess sensitivity and specificity, 

respectively. In particular, the MM probes have a single sequence mismatch 

at the middle (i.e. 13th position) to estimate background noise due to non-

specific binding [147]  

 

The Affymetrix HGU219 array is a single-channel (one-color) microarray 

platform, which provides intensity data for each probe or probe set indicating 

a relative level of hybridization with the labeled target. For each sample, the 

intensity data represent relative RNA abundance when compared to other 

samples or conditions processed in the same experiment. This array platform 

was designed using sequences selected from the UniGene database 219 

(build date March 30, 2009), RefSeq version 36 (13 July 2009) and full-

length human mRNA’s from GenBank® (downloaded May 12, 2009). For each 

RNA sample, the HGU219 platform stores the raw data for the analysis into a 

CELFILE, which contains expression signals for 54613 gene-probes 

representing 47,000 transcripts and their variants [164-166]. However, it is 

should be noted that the HGU219 array platform was designed without the  

mismatch (MM) probe data.  (https://www.thermofisher.com/order/catalog/product/901595). 

2.10 Sample size re-assessment 

While the blood samples were collected from the Gambian population, the 

original study design applied the variability estimates from a neonatal study 

that was conducted at the Royal infirmary of Edinburgh in the United 

Kingdom[167]. In this thesis (Chapter 3), another sample size analysis was 

conducted to re-assess the statistical power of the study groups. In the 

https://www.thermofisher.com/order/catalog/product/901595
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current sample size analysis, variability estimates were estimated from a 

whole blood transcriptome of Gambian children (GSE20436) who 

participated in the Trachoma study as healthy controls [168].  

 

Mainly, this analysis estimated the number of samples that were statistically 

powered (90%) to detect at least a two–fold change in gene expression at 

5% false discovery rate (FDR) in at least 90% of the genome. 

Therefore, assuming constant variance between the groups, the following 

input parameters were used: 

• Effect size =log2(Fold change)=1  

• Type I error (α)=5% or 1%, 

• Type II error (β)=10% (i.e. power=90%) 

• Variability: A vector of between-sample (n=20) standard deviation 

(SD) values estimated from each gene probe using the GSE20436 

data. 

 

In this analysis, I applied the ssize function that is implemented in the ssize R 

package [169]. To account for multiple testing, this function applies the 

Bonferroni multiple testing correction method [170], which is very stringent. In 

this method, the multiple-testing-adjusted P-value is defined as qi=M*pi; 

where pi is the corresponding raw P-value and M represents the total 

number hypotheses tested. Here, a less stringent approach called rough 

false discovery rate (RFDR) was applied such that qi= pi*2M/(M+1).  
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2.11 Data cleaning (metadata records) 

To ensure data quality and completeness, the demographic, clinical and 

microbial databases were subjected to an intensive data cleaning to identify 

relevant variables, suspicious values, and missing data. The data queries 

were resolved using the hard copy reference database (SCC1062) secured 

in the archive department at the MRC Unit, in the Gambia.  

2.12 Quality assurance of the microarray database  

To ensure data quality, the microarray databases (training and validation 

sets, respectively) were subjected to raw data pre-processing, batch-effect 

correction, outlier detection and gender analysis (Chapter 3). 

2.12.1 Pre-processing of the raw data  

2.12.1.1 Introduction 
Microarray gene expression [130] analysis seeks to investigate meaningful 

biological variations in the abundance of mRNA transcripts that are 

associated with different phenotypes of interest such as infections and 

disease severity [71, 168, 171]. However, these interesting variations are 

often obscured by unwanted non-biological variations within and between the 

arrays [130, 145, 147]. Therefore, appropriate data pre-processing [145, 172] 

is mandatory to effectively 

(i) Remove background noise due to non-specific binding and spatial 

heterogeneity [173]  

(ii) Normalize technical variations between the arrays due to sample 

handling (i.e. hybridization) [174-178] 

(iii) Stabilize the variance (i.e. data transformation) and  

(iv) Summarize probe-specific signals into a probe set (gene) level data 

[145, 146, 179, 180].  
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However, it should be noted that the HGU219 GeneChip is optimised without 

the mismatch (MM) probes (as explained in section 2.9.1). Consequently, 

raw data pre-processing algorithms [181] that require mismatch probe data 

such as Average difference [182], Li Wong [183], MAS.5 [181], PLIER [181] 

and GCRMA [184] were not applicable. To identify an appropriate pre-

processing algorithm, here we assessed the performance of RMA [147] and 

VSN [146] algorithms, which do not require the MM data (more details 

below). 

 

2.12.1.2 Robust Multi-Array Average (RMA) 
The RMA algorithm was developed by Irizarry et. al (2003) [147], and is 

implemented in R Bioconductor 𝑎𝑓𝑓𝑦 package using the 𝑟𝑚𝑎 function [185]. 

Usually, pre-processing algorithms subtract MM data from PM to adjust for 

background noise, which often generates negative values (if MM>PM).  This 

observation suggests that the MM data capture more than background noise, 

and potentially introduces bias when adjusted for background correction. 

Therefore, the RMA method completely ignores the MM data and the 

following step are applied on the PM data: (i) background correction, (ii) 

quantile normalization [186], (iii) log2 transformations, and (iv) summarization 

of probe level data into a probe-set (i.e. gene) level data using robust 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ [187]. 

2.12.1.2.1 RMA background correction  
Formerly, RMA background correction involves the deconvolution of the 

observed perfect match (PM) signal for array 𝑖, probe 𝑗 on probe set (i.e. 
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gene) 𝑘 into background (BG) noise and real signal (S) components [147, 

188].  

𝑃𝑀𝑖𝑗𝑘 = 𝐵𝐺𝑖𝑗𝑘 + 𝑆𝑖𝑗𝑘 

𝑤ℎ𝑒𝑟𝑒 𝐵𝐺𝑖𝑗𝑘~𝑁(𝜇𝑖 , 𝜎𝑖
2), 𝑎𝑛𝑑 𝑆𝑖𝑗𝑘~𝐸𝑥𝑝(𝜆𝑖𝑗𝑘) 

To get the background corrected signals, a transformation 𝐵(. ) is applied 

such that  

𝐵(𝑃𝑀𝑖𝑗𝑘) = 𝐸(𝑆𝑖𝑗𝑘|𝑃𝑀𝑖𝑗𝑘) 

= 𝑃𝑀𝑖𝑗𝑘 − 𝜇 − 𝜆𝜎2 +
𝜑((𝑃𝑀𝑖𝑗𝑘 − 𝜇𝑖 − 𝜆𝑖𝑗𝑘𝜎𝑖

2)/𝜎𝑖)) − 𝜑((𝑃𝑀𝑖𝑗𝑘 + 𝜆𝑖𝑗𝑘𝜎𝑖
2)/𝜎𝑖))

𝜙((𝑃𝑀𝑖𝑗𝑘 − 𝜇𝑖 − 𝜆𝑖𝑗𝑘𝜎𝑖
2)/𝜎𝑖)) − 𝜙(𝑃𝑀𝑖𝑗𝑘 + 𝜆𝑖𝑗𝑘𝜎𝑖

2)/𝜎𝑖)) − 1
  

Where 𝜙(. ) 𝑎𝑛𝑑 𝜑(. ) represent the Gaussian (N(0,1)) cumulative distribution 

and probability density functions, respectively. The parameters (𝜇, 𝜎 𝑎𝑛𝑑 𝜆) 

are estimated separately within each array using the observed PM data. 

Finally, 𝐸(𝑆𝑖𝑗𝑘|𝑃𝑀𝑖𝑗𝑘) is the background corrected PM data [147, 185]. 

2.12.1.2.2 Quantile normalization  
To remove unwanted technical variations between the arrays, the RMA 

algorithm applies 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 on the background corrected data 

(𝐸(𝑆𝑖𝑗𝑘|𝑃𝑀𝑖𝑗𝑘)) [172, 173]. Briefly, quantile normalization seeks to project the 

array-specific n vectors onto a diagonal of an n-dimensional quantile plot 

(where n=number of arrays). In particular, quantile normalization replaces 

the 𝑟𝑡ℎ − 𝑟𝑎𝑛𝑘𝑒𝑑 value in each array by the rank-specific arithmetic mean 

calculated from all the 𝑟𝑡ℎ − 𝑟𝑎𝑛𝑘𝑒𝑑 values across the arrays. For example, 

consider 15, 12, 10, 11 and 16 as the highest ranked values in each array 

(n=5). Then, each value will be replaced by the following arithmetic mean: 

(15+12+10+ 11+16)/5=64/5=12.8 after normalization. The same applies to 

other ranks. While this approach is robust and non-parametric, it makes 
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arrays similar by forcing extreme values to be identical potentially generating 

force negative results in differential expression analyses 

(http://bmbolstad.com/stuff/qnorm.pdf) [189]. 

2.12.1.2.3 Data transformation (log2) 
To stabilize the variance across the arrays, improve linearity and minimise 

the effects of outliers, the RMA algorithm applies the log2 transformation on 

the background-corrected and quantile normalized data [147]. 

2.12.1.2.4 Summarization of probe level data  
This is the final step of the RMA algorithm where probe level data are 

summarized into a probe set (gene). The goal is to estimate the true 

𝑙𝑜𝑔2(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙) for gene (probe set) k on array 𝑖 (𝜇𝑖𝑘) using the 

following model:  

𝑌𝑖𝑗𝑘 = 𝜇𝑖𝑘 + 𝛼𝑗𝑘 + 𝜖𝑖𝑗𝑘 

Where 𝑌𝑖𝑗𝑘 represent the observed background-adjusted, quantile-

normalized, and log-transformed PM intensity for array 𝑖, on probe 𝑗 for 

probe set (gene) 𝑘, and 𝛼𝑗𝑘 = the affinity effect of probe j on gene (probe set) 

k such that ∑ 𝛼𝑗𝑘
𝐽
𝑗=1 =0.  

 

To estimate  𝜇𝑖𝑘 , the robust 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ  algorithm [187, 188] is applied 

within each gene (probe set) k [147]. Let 𝑨𝟎𝒌 be the observed 𝑛 ×

𝐽 (𝑛 𝑎𝑟𝑟𝑎𝑦𝑠 𝑎𝑛𝑑 𝐽 𝑝𝑟𝑜𝑏𝑒𝑠) matrix for the background-corrected, quantile-

normalised and log2-transformed PM intensities for gene (probe set) k 

across all the arrays. Then, the 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  alternatively 

subtracts the column and row medians from the column and row vectors 

(respectively) of the matrix 𝑨𝟎𝒌, until the column and row medians of 𝑨𝟎𝒌 

http://bmbolstad.com/stuff/qnorm.pdf
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converge to zero vectors. Further, let  𝑨𝟏𝒌 be the resulting matrix of residuals 

after the 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ operation. Then, 𝜇𝑖𝑘 values are estimated by the row 

means (i.e. within array mean across the probes) of the following matrix 𝑫𝒌 =

(𝑨𝟎𝒌 − 𝑨𝟏𝒌). Thus, 𝜇̂𝑖𝑘 are called robust multi-array average (RMA) estimates 

for gene (probe set) 𝑘 sample 𝑖 [147, 188]. 

 

2.12.1.3 Variance stabilization normalization (VSN) 
The VSN pre-processing algorithm was developed by Huber et. al (2002) 

[146]. For Affymetrix GeneChip data, VSN involves (i) background correction 

(ii) between-array normalisation and (iii) variance stabilization transformation. 

To summarise the probe-level data into a gene (probe set), the VSN authors 

recommend using the 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ as explained in the RMA method [190]. 

The VSN pre-processing is implemented using the 𝑗𝑢𝑠𝑡𝑣𝑠𝑛 function in the R 

Bioconductor package called 𝑣𝑠𝑛 [190]. In this thesis, we combined the VSN 

algorithm with 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ  summarisation using the 𝑣𝑠𝑛𝑟𝑚𝑎  function in 

the 𝑎𝑓𝑓𝑦 package [147, 185].  

 

Briefly, VSN is a model-based algorithm that works in two steps: (i) an affine 

data transformation (cantering and scaling) to calibrate systematic technical 

experimental factors including sample handling variations and background 

noise (ii) a general log2 (𝑔𝑙𝑜𝑔2) transformation to stabilise the dependency of 

variance on mean [190]. To calibrate the data (step1), the following model is 

applied: 

𝑦𝑘𝑖
∗ = 𝜆𝑠𝑖𝑦𝑘𝑖 + 𝛼𝑠𝑖 

Where 𝑦𝑘𝑖 is the observed raw value for probe 𝑘  in array 𝑖 , 𝑦𝑘𝑖
∗  is the 

calibrated value for 𝑦𝑘𝑖 through the scaling and shifting parameters 𝜆𝑠𝑖  and 
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𝛼𝑠𝑖, respectively. The 𝑠 index denotes the strata of the probes within each 

array [191, 192]. However, in this analysis we that assumed all the probes on 

each array were subjected to the same systematic effects (one stratum), and 

therefore applied an array-wide calibration using the following reduced model 

(without the 𝑠 index): 

𝑦𝑘𝑖
∗ = 𝜆𝑖𝑦𝑘𝑖 + 𝛼𝑖                                                        (1) 

To stabilize the variance of the calibrated signals, the following inverse 

hyperbolic transformation (h) is applied:  

ℎ𝑘𝑖 = 𝑎𝑟𝑠𝑖𝑛ℎ(𝜆0𝑦∗ + 𝛼0)                                            (2) 

= log (𝜆0𝑦∗ + 𝛼0 + √(𝜆0𝑦∗ + 𝛼0)2 + 1)                     

Combining the two steps (1) and (2)), VSN formerly seeks to solve the 

following equation [190, 191]: 

ℎ𝑘𝑖 = 𝑎𝑟𝑠𝑖𝑛ℎ(𝑒𝑏𝑖 ∗ 𝑦𝑖𝑘 + 𝑎𝑖) 

Where 𝑎𝑖 = 𝛼𝑖 + 𝜆0𝛼𝑖  and 𝑏𝑖 = log (𝜆0𝜆𝑖)  are the combined calibration and 

transformation parameter for features from array 𝑖 , which are estimated 

using maximum likelihood and a robust procedure similar to least trimmed 

sum of squares regression [191, 192]. 

2.12.1.3.1 The choice of the transformation function  
Let 𝑦𝑘𝑖 be the observed perfect match (PM) intensity value for probe 𝑘 on 

array  𝑖 , which is deconvoluted into a noise parameter 𝛼𝑘𝑖  and the true 

expression signal 𝑥𝑘𝑖  multiplied by the proportionality factor 𝛽𝑘𝑖  as shown 

below: 

𝑦𝑘𝑖 = 𝛼𝑘𝑖 + 𝛽𝑘𝑖𝑥𝑘𝑖                                                                          (1) 

⇒
(𝑌𝑘𝑖 − 𝑎𝑖)

𝛽𝑖
= 𝑚𝑘𝑖𝑒

𝜂𝑘𝑖 + 𝑣𝑘𝑖                                                        (2) 
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 Where  𝜂𝑘𝑖~𝑁(0, 𝜎𝜂
2) and 𝑣𝑘𝑖~𝑁(0, 𝜎𝑣

2); 𝛽𝑘𝑖 = 𝛽𝑖𝛾𝑘𝑒𝜂𝑘𝑖 ; 𝛼𝑘𝑖 = 𝑎𝑖 + 𝑣̅;  𝑚𝑘𝑖 =

𝛾𝑘𝑥𝑘𝑖 and 𝑣𝑘 = 𝑣̅/𝛽𝑖. Using (2), it can be shown that the variance of 𝑌𝑘𝑖 has a 

quadratic relationship with its mean (3), where 𝑐2 = 𝑉𝑎𝑟(𝑒𝜂)𝐸2(𝑒𝜂).   

⇒ 𝑉𝑎𝑟(𝑌𝑘𝑖) = 𝑐2(𝐸(𝑌𝑘𝑖) − 𝑎𝑖)
2 + 𝛽𝑖

2𝜎𝑣
2                                              (3) 

Therefore, VSN seeks to find a transformation 𝒉(. )  that keeps 𝑉𝑎𝑟(𝑌𝑘𝑖) 

constant (i.e SD not dependent on the mean) using the intuition of the 

𝐷𝑒𝑙𝑡𝑎 𝑚𝑒𝑡ℎ𝑜𝑑 approximation of sample variance (i.e. based on Taylor series 

expansion). For a family of random variables 𝑌𝑢  with E( 𝑌𝑢 )=u and 

Var(𝑌𝑢)=v(u) and a differentiable function ℎ defined on the range of 𝑌𝑢, the 

Taylor  series approximation of the transformation ℎ(𝑌𝑢) is:  

ℎ(𝑌𝑢) ≈ ℎ(𝑢) + ℎ′(𝑢)𝑌𝑢   

⇒ 𝑉𝑎𝑟(ℎ(𝑌𝑢)) ≈ ℎ′(𝑢)2𝑣(𝑢)      

Intuitively, integrating ℎ′(𝑢) =  𝑣−
1

2(𝑢) would generate a variance-stabilizing 

transformation ℎ(𝑦) = ∫
1

√𝑣(𝑢)
𝑑𝑢 . Notably, 𝑎𝑟𝑠𝑖𝑛ℎ(𝑥) =  ∫

1

√𝑥2+1
.  Therefore, 

rearranging 𝑣(𝑢) = 𝑉𝑎𝑟(𝑌𝑘𝑖) as expressed in equation (3) in the form of (𝑥2 +

1), approximately yields:  

ℎ(𝑦𝑘𝑖) = 𝑎𝑟𝑐𝑠𝑖𝑛ℎ (
𝑌𝑘𝑖 − 𝑎𝑖

𝑏𝑖
) = 𝜇𝑘𝑖 + 𝜀𝑘𝑖 

Where 𝑏𝑖 = 𝛽𝑖𝜎𝑣/𝑐; 𝜇𝑘𝑖 = 𝐸(arcsinh (
c

σv
(𝑚𝑘𝑖𝑒

𝜂𝑘𝑖 + 𝑣𝑘𝑖)) ≈ 𝐸(arcsinh (
c

σv
𝑚𝑘𝑖) is 

the transformed true abundance of probe 𝑘  on array 𝑖 ; and 𝜀𝑘𝑖~𝑁(0, 𝑐2) 

[191]. To generate probe set (i.e. gene) level data, the 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑙𝑖𝑠ℎ 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛  was applied to on the VSN-transformed 

probe-level data (i.e. 𝜇̂𝑘𝑖 values) [191] 
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2.12.1.4 Comparison of MRA and VSNRMA 
To compare the performance (i.e. stability) of the two algorithms (RMA and 

VSNRMA), three graphical criteria were applied:  

(i) Standard deviation (SD) against rank of mean: This criterion 

assessed the stability of signal-to-noise ratio using the plot of 

standard deviation (SD) against the mean. In particular, the 

meanSdPlot function implemented in the vsn package [146] was 

applied to assess the distribution of 𝑺𝑫(𝑿𝒌) against  𝑹𝑨𝑵𝑲(𝑿̅𝒌); 

where 𝑿𝒌the gene expression vector for gene probe k  and 𝑿̅𝒌 is 

the mean value across the samples. Ideally, a constant distribution 

(horizontal line) implied good performance. Otherwise, false 

negative or positive discoveries would be expected if the mean 

and SD values are positively or negatively related, respectively. 

 

(ii) Correlation (rXY) against standard deviation (SD):  This criterion 

assessed the correlations of randomly selected pairs (5000 pairs) 

of gene probes (i.e. from independent signaling pathways). Ideally, 

no significant correlation is expected between each random pair of 

gene probes X and Y (i.e. r=0). Therefore, a good algorithm should 

have a stable relationship (horizontal line, y=0) when the 

correlations values (rXY) were plotted against the mean standard 

deviation (mean(SD(X), SD(Y))). Here, two functions CorrSample 

and plot.corr.sample that are implemented in the maCorrPlot R 

package were applied [193] to estimate and plot the values, 

respectively.  
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(iii) Distribution of absolute rank deviation (ARD)[175]: This 

criterion compares the stability (between-sample standard 

deviations) of gene expression values sharing the same rank 

across the gene probes. Ideally, low ARD values indicate better 

performance. Here, a density plot was applied to compare the 

distributions of the ARD vectors associated with the RMA and 

VSNRMA methods. 

 

2.12.2 Batch effect variations  
As described above (Table2.2), the RNA samples were profiled in two 

batches (n=447 in 2013 and n=71 in 2014). However, raw data pre-

processing methods are not effective against batch-effect variations [71, 

149]. To investigate the presence of batch-effect variations, principal 

component analysis (PCA) visualization was applied on the pre-processed 

transcriptomes. In particular, this analysis was restricted to the gene 

expression profiles for the negative control probes (i.e. Nonspecific probes), 

which are designed to remain constant under different biological conditions. 

To get the principal component (PC) scores, the prcomp function in the stats 

R package[194] was applied. To visualize the batch-effect sample clusters, 

PC2 (y-axis) was plotted against PC1 (x-axis) 

 
To eliminate the unwanted batch-effect variations, an empirical Bayes 

normalization called ComBat, which is implemented in the sva R 

Bioconductor package [195], was applied. Briefly, ComBat solves the 

following location/scale (L/S) equation:  
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𝒚𝒊𝒋𝒈 = 𝜶𝒈 + 𝑿𝜷𝒈 + 𝜸𝒊𝒈 + 𝜹𝒊𝒈𝜺𝒊𝒋𝒈; where: 

 

• 𝒚𝒊𝒋𝒈 =the expression value for a gene g in sample j from batch i  

•  𝜶𝒈 is the overall gene expression,  

• X  =a design matrix for sample conditions (other confounders), and 

•  𝜷𝒈= a vector of regression coefficients corresponding to X.  

•   𝜺𝒊𝒋𝒈 = an error term assumed to follow a Normal distribution N(0, σ2).  

•  𝜸𝒊𝒈 and 𝜹𝒊𝒈 represent the additive and multiplicative batch effects for 

batch i on gene g, respectively.  

 

In particular, Combat estimates the L/S model parameters by pooling 

information across genes in each batch to shrink the batch-effect parameter 

estimates towards the overall mean of the batch-effect estimates (across 

genes) in three steps [196]:  

Step 1: Data standardization using least square estimates 

Step 2: Empirical estimation of batch effect parameters using the 

standardized expression data matrix (step1) and parametric priors 

Step 3: Batch effects adjustment using the Empirical Bayes (EB) parameter 

estimates (step2) [150, 195, 196]. 

2.12.3 Detection of outlier samples in the microarray databases  
Outliers cause deleterious effects in statistical analyses including microarray 

gene expression data. To identify the potential outliers, the 

ArrayQualityMetrics Bioconductor package [151] was applied before and 

after data pre-processing. For the raw database, six criteria were applied and 

any sample that was flagged by at least four criteria was eliminated as an 
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outlier. Of them, three criteria were also applicable to the pre-processed 

databases. Here, samples that were flagged by at least two of the three 

criteria methods were also eliminated. The six methods are described in 

Table2.3 below. 

Database 
applicability  

Method  Criteria  

Raw database 
only  
 

Hoeffding's statistic Da on the joint distribution of A 
and M values for each array; where;  M = log2(L1)-
log2(L2),  A = 1/2 (log2(L1)+log2(L2)), L1 is the intensity 
of the array studied, and L2 is the intensity of a 
"pseudo"-array that consists of the median across arrays 

Da>0.15 

Distance between arrays 
Metric= Sa :  Sum of L1 distances (Dab) between arrays 
(Sa = Σb Dab);  Where Dab= mean (|Mai - Mbi|) and Mai is 
the value of the i-th probe on the a-th array. 

Boxplot 
of Sa 

Relative distribution of intensity values (Mai)  
Metric= Ka : Kolmogorov-Smirnov statistic between each 
array's distribution and the distribution of the pooled 
data 

Boxplot 
of Ka 

Raw and pre-
processed 
databases  

Relative Log Expression (RLE) 
Metric= Ra: Kolmogorov-Smirnov statistic Ra between 
each array's RLE values and the pooled, overall 
distribution of RLE values 

Boxplot 
of Ra 

Normalized Unscaled Standard Error (NUSE) 
Metric= Na: 75% quantile of each array's NUSE values  

Boxplot 
of Na 

Spatial distribution of M values. 
Metric=Fa :The sum of the absolutes value of low 
frequency Fourier coefficients 

Boxplot 
of Fa 

Table 2.3: Description of outlier detection methods for the microarray database.   The 
table shows the outlier detection methods that were implemented using the 
arrayQualityMetrics R Bioconductor package [151]. Box plot: For each metric (i.e. Sa), 
samples that lie beyond the extremes of the whiskers of a boxplot (p25-1.5*IQR; 
p75+1.5*IQR) were considered as potential outliers: p25=25th percentile, p75=75th 
percentile, and IQR=interquartile range.  

 

2.12.4 Gender analysis 
The Y chromosome-specific genes present a powerful molecular signature 

for distinguishing sex phenotypes (male or female) [197]. To validate the 

gender variable in the demographic database, gene expression profiles for 

Y-linked genes (m=65) were subjected to principal component analysis 

(PCA) to predict sex phenotypes.  To visualize the sample clusters, a scatter 

plot for PC2 against PC1 scores was applied (as described in batch-effect 

section). For Y- linked genes with multiple probes, a gene probe with the 
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maximum median value across the samples was selected. Suspicious 

samples were verified using the reference database at MRC unit, in The 

Gambia (SCC1062). 

2.12.5 Non-specific feature filtering  
While genome-wide approaches provide comprehensive data reassures, not 

all the gene features are relevant to a particular disease[125]. To minimise 

the dimensionality of the data and reduce the potential of false discoveries 

(i.e. in differential expression analyses), a range of non-specific filtering 

approaches were applied to eliminate the irrelevant gene probes. In 

particular, gene probes that failed any of the following criteria were 

eliminated.  

1. Annotation: Gene probes without standard annotations (i.e. Gene 

SYMBOL or ENTREZID) were filtered out.  

2. Signal intensity:  gene probes with lower intensity values as compared 

to the negative controls were also eliminated. For each sample, the 

following threshold was applied:  Ai=Mi+2*MADi; where  

• M=median value between the gene negative control gene probes. 

• MADi= median absolute deviation across the negative control 

probes. 

Here, a gene probe was eliminated if at least 10% of the signal intensities 

were less than Ai. 

3. Between-sample variability: This filter eliminated the gene probes with 

low coefficient of variation (CV) between the samples (<10%). 

2.12.6 Consolidation of gene probes   
In the microarray assay, a gene is investigated using multiple probes[198]. 

To remove the redundant gene probes, the filtered database was further 
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subjected to a maximum mean filter [199]. In particular, a gene probe with 

the maximum mean across the samples was selected for each gene.  

 

2.13 Investigation of cellular pathway responses to 

pneumonia (Chapter 4)  

Whole blood is a complex tissue comprising multiple immune cell types in 

varying proportions between the samples of different phenotypes [102]. To 

investigate the cellular pathway responses (objective one), I assess the 

association between pneumonia severity and the proportions of immune cell 

types. To estimate the sample proportions of immune cell types, I applied 

computational deconvolution analysis approach on the training data whole 

blood transcriptome. In particular, I sought to estimate P (i.e. the sample 

proportions of immune cell types) using the following linear model equation: 

𝑾 = 𝑬 ∗ 𝑷; where 

• W represent the observed data matrix (m genes by n samples) for 

the heterogeneous whole blood transcriptome  

• E is a data matrix (m genes by k cell types) for the cell type-

specific expression signals 

• P is a data matrix (k cell types by n samples) for the sample 

proportions of the k cell types in E.  

 

In a typical transcriptomic experiment like this study, the microarray assay or 

RNA-seq are often applied to measure W while E and P are often unknown. 

When E is known, partial deconvolution algorithms are often applied [139, 

200]. While optimised cell type-specific expression signatures (i.e. E) exist 

for partial deconvolution [137, 139, 200], their application is limited by 
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platform-specific differences. Alternatively, semi-supervised deconvolution 

approaches, which apply marker genes to estimate P without the knowledge 

of E [201], are more applicable because they are robust to array platform 

differences. However, the existing marker genes resources have little overlap 

and vary in performance. Therefore, I further sought to enhance computation 

performance by applying a data fusion approach to derive a unified marker 

gene list called IBML (Integrated blood marker list) was derived (next 

section). 

2.13.1 Derivation of IBML 
Briefly, IBML stands for an Integrated Blood Marker List. This list contains 

cell type specific marker genes for six human immune cell types: B, T, NK, 

Dendritic, Monocytes and Neutrophils. To derive IBML the following steps 

were applied: 

1. Selection of eligible marker genes from the CellMix R 

package[160]. This package has compiled comprehensive resources 

for computational deconvolution analyses including marker genes. To 

select eligible markers, the following criteria were applied: 

a. Human genome  

b. A marker gene associated with any of the six cell types above  

c. Valid identification ID corresponding to the ENTREZID. 

 

2. Aggregation of all eligible markers regardless of cell type. To 

facilitate subsequent analyses, all the eligible markers were annotated 

to ENTREZIDs. 
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3. Selection of cell type-specific markers: To select the cell type-

specific markers, AUC values from the ROC analysis [202, 203] were 

applied. To calculate the AUC values, the GSE22886 data set [204] 

was applied. This data set was originally applied to derive the IRIS 

marker gene list [204], and here it was preferred because of better 

coverage of cell types and sample sizes. For each marker gene, AUC 

values were estimated for each type. To calculate the AUC values, 

expression values for each cell type were compared against the 

average values from the other cell types (one versus other). Thus, a 

dummy variable (gold standard) was generated for each cell type j 

such that sample i=1 if it represent cell type j, otherwise i=0: 

 

𝒚𝒋𝒊 = {
1, 𝑖𝑓 𝑖 =  𝑗
0, 𝑖𝑓 𝑖 ≠ 𝑗 

 

An AUC value ranges between 0 (perfect negative discrimination), 0.5 (no 

discrimination) and 1 (perfect positive discrimination). Here, a marker 

gene g was assigned to cell k if AUCgk=1. 

 

4. Validation of selected markers. The same approach (AUC=1) was 

applied on the GSE1133 [205] and GSE28490 [206] data sets. To derive 

the final list of markers in the IBML, markers that were consistently 

associated with AUCgk=1 in all the three data sets were selected. 

5. Performance assessment of IBML. Here, IBML was applied to 

deconvolute whole blood transcriptomes with existing (laboratory-

measured) proportions of immune cell types (GSE20300, GSE3649, 

GSE87301, GSE25504, GSE64385) using the ssFrobenius algorithm 
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[160, 201]. To assess the agreement between the measured and 

predicted proportions, Pearson correlation coefficient (R) values were 

applied. The performance of IBML was compared to the original marker 

gene resources in the CellMix package. Table2.5 shows the datasets that 

were applied in this analysis. 

Application  Data  Types  Reference  
Selection of marker genes  GSE22886  Purified samples Abbas(2005)[204] 

Validation selected marker 
genes (ROC analysis) 

GSE1133  Purified samples Su (2004) [205] 

GSE28490 Purified samples  Allantaz(2012)[206] 

Performance assessment of 
IBML  

GSE20300  Whole blood Shen-Orr (2010) 
GSE64385 Whole blood Becht(2016) 
Pneumonia 
(Unpublished) 

Whole blood Ghazal et. al 

GSE87301 Whole blood Shannon(2012) 

GSE25504 Whole blood Smith(2014) 
Table 2.4: Gene expression data applied to derive the IBML marker gene resource.   
The data were downloaded NCBI’s gene expression omnibus [156] 
 

2.13.2 Application of IBML on the pneumonia database 
To investigate the cellular pathway responses in pneumonia, the IBML 

resource was applied to deconvolute sample proportion of immune cell types 

using the pneumonia whole blood transcriptome. To further validate the 

performance of IBML, the predicted proportions of neutrophils and 

lymphocytes were directly compared (Pearson’s r) to the corresponding 

values existing in the clinical database. Subsequently, the deconvoluted 

proportions were compared between the pneumonia severity groups. In 

particular, linear regression approach was applied to adjust for potential 

confounders (age, nutrition status and antibiotic usage). Then, fitted values 

were compared graphically using the whisker and boxplots. 



Chapter 2: Methodology 

 51 

2.14 Unsupervised machine learning  

2.14.1 Introduction  
This section introduces the unsupervised machine learning algorithms that 

were applied to independently assess the inherent structures of the central 

data resources for this thesis. In particular, principal component analysis 

(PCA) and T-Distributed Stochastic Neighbourhood Embedding (T-SNE) 

algorithms were applied for dimensional reduction and visualisation. Further, 

clustering algorithms such as K-means and hierarchical agglomerative 

clustering (with heatmaps) were applied to identify inherent sample clusters.  

2.14.2 Principal component analysis  
Principal component analysis (PCA) is a linear dimensional reduction 

technique (by Pearson K. (1901) [207] and Hotellling H. (1933) [208] for 

visualizing high dimensional data [209-211].  Given a quantitative data set 𝑿 

with 𝑛 samples and 𝑝 variables (𝒙1, 𝒙2, … , 𝒙𝑝 ), PCA transforms the original 

variables into linear combinations of new uncorrelated variables (𝝃1, 𝝃2, … , 𝝃𝑝) 

called principal components (PCs). In particular, the PCs (𝝃𝑗) are derived in 

a decreasing order of importance (variance) such that more data variability is 

captured by the leading 𝑘 ≤ 𝑝  principal components, which enables data 

reduction. While PCA is not a clustering algorithm, scatter plots of the 

leading components often reveal important data clusters. However, PCA is 

sensitive to data scale, and data standardization is mandatory if the original 

variables have different scale units [210]. 

 

Formerly, principal component analysis (PCA) solves for matrix 𝑨 using the 

following definition:  
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𝝃𝑗 = ∑ 𝑎𝑖𝑗𝒙𝑖

𝑝

𝑖=1

⇔ 𝝃 = 𝑨𝑇𝑿, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑟(𝜉𝑗 , 𝜉𝑘) ≈ 0  𝑓𝑜𝑟 𝑖 ≠ 𝑗 

Where 𝒙𝑖  are the original variables in 𝑿, and each column 𝑗  of matrix A 

contains the coefficients (𝑎𝑖𝑗) for component 𝝃𝑗. In particular, the columns of 

A, 𝒂𝑗 = (𝑎𝑗1, 𝑎𝑗2, … 𝑎𝑗𝑝), contain the eigenvectors for the covariance matrix (𝜮) 

of the original data X (or correlation matrix of the standardized data). Further, 

the corresponding eigenvalue for 𝒂𝑗 (𝜆𝑗) represent the variance of 𝑃𝐶𝑗 such 

that 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 . Therefore, an 𝑒𝑖𝑔𝑒𝑛𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  of X is often 

applied to derive the principal components as follows [210]: 

1. Standardize the original variables in 𝑥𝑗 to mean 0 and variance 1. This 

step is mandatory if the original variables have different scale units. 

2. Extract the correlation matrix of the standardized data 𝜮̂ 

3. Perform an 𝑒𝑖𝑔𝑒𝑛𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of 𝜮̂ to get the eigenvectors, which 

are the coefficients (𝑎𝑖𝑗)  of 𝝃̂𝑗 = ∑ 𝑎𝑖𝑗𝒙𝑖
𝑝
𝑖=1 .  This algorithm is 

implemented in R using the 𝑝𝑟𝑖𝑛𝑐𝑜𝑚𝑝 function (stats package)  

 

However, in this thesis we applied the singular value decomposition (SVD) 

approach to derive the principal components (𝝃̂𝑗) using the 𝑝𝑟𝑐𝑜𝑚𝑝 function 

(stats package) in R. Notably, the SVD approach has better numerical 

accuracy than 𝑒𝑖𝑔𝑒𝑛𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 because the variances are computed 

using unbiased divisor (𝑁 − 1) (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/prcomp.html). 

To visualize the transformed data, samples were projected into a two-

dimensional scatter plot using the first (x-axis) and second (y-axis) principal 

components. 
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Similarly, the SVD approach solves for the principal components coefficients 

( 𝑎𝑗 ) (i.e. eigenvectors of 𝜮 ) but without estimating the sample 

covariance/correlation matrix 𝜮 as in the 𝑒𝑖𝑔𝑒𝑛𝑑𝑒𝑐𝑜𝑚𝑝𝑠𝑖𝑜𝑡𝑖𝑜𝑛. In particular, 

this approach is based on the following property: the right singular vectors of 

a matrix Z are the eigenvectors of 𝐙T𝐙. Briefly, the SVD for matrix 𝒁𝑚×𝑛 with 

rank r is defined as follows: 

𝒁 = 𝑼𝑫𝑽𝑻 = ∑ 𝜎𝒊𝒖𝒊𝒗𝒊
𝑻

𝒓

𝒊=𝟏

 

Where 𝑫 is the diagonal matrix of the singular values 𝜎𝒊, and the column 

vectors of matrices 𝑼(𝑚×𝑟) and 𝑽(𝑛×𝑟)  represent the left and right singular 

vectors (respectively) for Z such that 𝑼𝑻𝑼 = 𝑽𝑻𝑽 = 𝑰𝒓.  

 

Therefore (using the property above), the column vectors of 𝑽(𝑛×𝑟) contain 

the coefficients (𝑎𝑗) for the principal components (𝝃̂𝑗) if 𝒁 =
𝟏

√𝒏−𝟏
(𝑿 − 𝟏𝒎𝑇) 

such that 𝒁𝑻𝒁 = 𝜮 (i.e. covariance matrix of X). Here, X represents the 

standardised input data matrix ( 𝑛 × 𝑝) , m is a p-dimensional vector of 

sample means and 𝟏 is an n-dimensional column vector of ones. In other 

ways, PCA involves deconvoluting the column right singular vectors 

(𝒗𝟏, 𝒗𝟐, … 𝒗𝒓) of matrix Z, where the singular values (𝜎𝑖)  are the standard 

deviations (√𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠) for the resulting principal components (𝝃𝒋) [210].  

2.14.3 T-Distributed Stochastic Neighbourhood Embedding (T-SNE) 
T-SNE is a nonlinear unsupervised machine-learning algorithm (developed 

by Laurens van der Maaten and Geoffrey Hinton, 2008), to enhance 

dimensionality reduction and visualization of high-dimensional data [212]. 

Notably, while T-SNE and PCA have a common goal, PCA is a linear 
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algorithm that preserves the global structure of the data. On the other hand, 

T-SNE seeks a nonlinear projection of high dimensional data into a low 

dimensional space while preserving the local and global structures [213] . 

For each sample 𝑖, distributions of the similarity scores calculated using the 

low (𝑸𝑖) and high (𝑷𝑖) dimensional data.  In particular, the similarity of two 

data points is defined by the conditional probability  such that point 𝑥𝑖 would 

pickas its neighbour if neighbours were picked in proportion to the Gaussian 

probability density cantered at  However, it should be noted that T-SNE was 

adapted from the SNE (Stochastic Neighbourhood Embedding) as described 

below [214]. 

Formerly, let X and Y be the data points in the high and low dimensional 

spaces (respectively).Then, the corresponding similarity scores between 

sample i and j in the high (𝑝𝑗|𝑖) and low (𝑞𝑗|𝑖) dimensional spaces are defined 

as follows:  

𝑝𝑗|𝑖 =

exp (−
‖xi − 𝑥𝑗‖

2

 2𝜎𝑖
2 )

∑ exp (−
‖xk − 𝑥𝑙‖

2

2𝜎𝑖
2 )𝑘≠𝑙 

; 𝑝𝑗|𝑖 = 0 𝑖𝑓 𝑖 = 𝑗 

𝑞𝑗|𝑖 =
exp (−‖yi − 𝑦𝑗‖

2
)

∑ exp(−‖yk − 𝑦𝑙‖2)𝑘≠𝑙 
; 𝑤ℎ𝑒𝑟𝑒 𝑞𝑗|𝑖 = 0 𝑖𝑓 𝑖 = 𝑗 

Notably,  𝜎 = 1/√2  in the low dimensional space. This parameter is 

associated with the model perplexity (i.e. the number of close neighbours for 

each point). To find the optimal projection of the data into low the 

dimensional space, SNE minimises the following Kullback-Leibler (KL) 

divergence cost function (C) using gradient decent algorithm: 
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𝐶 = ∑ 𝐾𝐿(𝑃𝑖|𝑄𝑖) = ∑ ∑ 𝑝𝑗|𝑖log (
𝑝𝑗|𝑖

𝑞𝑗|𝑖
)  

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

  

⇒
𝛿𝐶

𝛿𝑦
= 2 ∑(𝑝𝑗|𝑖 − 𝑞𝑗|𝑖 + 𝑝𝑖|𝑗 − 𝑞𝑖|𝑗

𝑛

𝑗

)(𝑦𝑖 − 𝑦𝑗) 

⇒ 𝑦(𝑡) = 𝑦(𝑡−1) + 𝜂
𝛿𝐶

𝛿𝑦
+ 𝛼(𝑡)(𝑦(𝑡−1) − 𝑦(𝑡−2) 

Where, 𝛼(𝑡) = momentum term, 𝑦(𝑡)=solution at time t, and 𝜂=the learning 

rate. Notably, the KL function is asymmetric such that the penalty (C) is 

higher if the distance between two points increases after the projection into 

the low dimensional space (𝑝𝑗|𝑖 > 𝑞𝑗|𝑖). However, the SNE algorithm has two 

major challenges (i) crowding of data points (ii) the cost function is difficult to 

optimise.  

 

To reduce the overcrowding problem, T-SNE algorithm applies a heavy tailed 

Cauchy distribution (t-distribution with one degree of freedom) to project the 

data into the low dimensional space. Notably, the t-distribution is robust to 

outliers than the Gaussian distribution.  Further, T-SNE applies symmetric 

similarity scores such that 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and  𝑞𝑖𝑗 = 𝑞𝑗𝑖 , which reduces the 

complexity of the cost function (C) thereby improving computational 

efficiency. Formerly, the similarity scores for high ( 𝑝𝑖𝑗 ) and low ( 𝑞𝑖𝑗 ) 

dimensional spaces, the optimisation problem at iteration t (𝑦(𝑡)) and the T-

SNE algorithm are presented below.  

𝑝𝑗𝑖 = 𝑝𝑖𝑗 =
𝑝𝑖|𝑗 + 𝑝𝑗|𝑖

2𝑛
;   𝑤ℎ𝑒𝑟𝑒 𝑝𝑖𝑗 = 0 𝑖𝑓 𝑖 = 𝑗                           

𝑞𝑗𝑖 = 𝑞𝑖𝑗 =
(1 + ‖yi − 𝑥𝑗‖

2
)

−1

∑ (1 + ‖yk − 𝑥𝑙‖2)−1
𝑘≠𝑙 

;   𝑤ℎ𝑒𝑟𝑒 𝑞𝑖𝑗 = 0 𝑖𝑓 𝑖 = 𝑗 



Chapter 2: Methodology 

 56 

⇒
𝛿𝐶

𝛿𝑦
= 4 ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)

𝑛

𝑗

(𝑦𝑖 − 𝑦𝑗) (1 + ‖𝑦𝑖 − 𝑦𝑗‖
2

)
−1

                 

⇒ 𝑦(𝑡) = 𝑦(𝑡−1) + 𝜂
𝛿𝐶

𝛿𝑦
+ 𝛼(𝑡)(𝑦(𝑡−1) − 𝑦(𝑡−2)                               

Where n=total number of data points, 𝛼(𝑡) = momentum term, 𝑦(𝑡)=solution 

at time t, and 𝜂=the learning rate. The T-SNE algorithms is briefly outline 

below [212]: 

The t-SNE Algorithm [215] 
1. Compute pairwise affinities 𝑝𝑖|𝑗 with perplexity 𝑃𝑒𝑟𝑝 

2. Set 𝑝𝑖𝑗 =
𝑝𝑖|𝑗+𝑝𝑗|𝑖

2𝑛
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

3. Sample initial solution 𝑌(𝑂) = 𝑦1, 𝑦2, … … 𝑦𝑛  𝑓𝑟𝑜𝑚 𝑁(0, 10−4𝑰) 

for t=1, T do {  
1. Compute the low-dimensional affinities 𝑞𝑖𝑗 

2. Compute the gradient 
𝛿𝐶

𝛿𝑦
  

3. Set 𝑦(𝑡) = 𝑦(𝑡−1) + 𝜂
𝛿𝐶

𝛿𝑦
+ 𝛼(𝑡)(𝑦(𝑡−1) − 𝑦(𝑡−2) 

} 
} 

 

Nevertheless, T-SNE has some limitations including the difficult choice of the 

perplexity parameter and interpretation of results. For example, T-SNE 

captures more local or global variations if the perplexity parameter is too 

small or too large (respectively) consequently leading to different structures. 

Further, cluster size and distances between clusters has no clear 

interpretation, and random noise can lead into false positive structures [216]. 

2.14.4 Hierarchical agglomerative clustering (HAC)  
HAC is a family of unsupervised machine learning algorithms for exploring 

high dimensional data clusters in a two-dimensional space (typically genes 

on the rows and samples on the columns), often using 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠 and 

𝐻𝑒𝑎𝑡𝑀𝑎𝑝𝑠 [210, 217]. Briefly, HAC algorithms start with each sample as a 
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cluster and iteratively merge nearest clusters until all the samples belong to 

one cluster (i.e. bottom to top approach). At each step, the nearest clusters 

are merged using different linkage algorithms including 𝑠𝑖𝑛𝑔𝑙𝑒,  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, and 𝑊𝑎𝑟𝑑’𝑠 methods [210, 218] (Table 2.5).  

Linkage method  Linkage approach  Equation  

Single  
(Single nearest) 

Merges two clusters with 
the minimum of the 
minimum distances.  

𝐷(𝐶1, 𝐶2) = min
𝑥1∈𝐶1,𝑥2∈𝐶2

𝐷(𝑥1, 𝑥2) 

Complete  
(Complete 
furthest) 

Merges two clusters with 
the minimum of the 
maximum distances. 

𝐷(𝐶1, 𝐶2) = max
𝑥1∈𝐶1,𝑥2∈𝐶2

𝐷(𝑥1, 𝑥2) 

Group average 
(Unweighted pair 
group mean 
averaging) 

Merges two clusters with 
the minimum average 
pairwise distances 
between the sample 
points  

𝐷(𝐶1, 𝐶2) =
1

|𝑐1|

1

|𝑐2|
∑ ∑ 𝐷(𝑥1, 𝑥2)

𝑥2∈𝐶2𝑥1∈𝐶1

 

Centroid  Merges two clusters with 
the minimum distance 
between their centroids 
(means)  

𝐷(𝐶1, 𝐶2) = 𝐷 ((
1

|𝑐1|
∑ 𝑥⃗

𝒙∈𝐶1

) , (
1

|𝑐2|
∑ 𝑥⃗

𝒙∈𝐶2

)) 

Ward’s method  Merges two clusters with 
the smallest change (𝛁) 
in the total distance to 
the centroid. 

∇= 𝑇𝐷 − (𝐷𝐶1  +  𝐷𝐶2) Where  

• 𝑇𝐷 = ∑ 𝐷(𝒙, 𝜇𝐶1∪𝐶2
)𝑥∈𝐶1∪𝐶2
 

• 𝐷𝐶1 = ∑ 𝐷(𝑥1, 𝜇𝑐1)𝑥1∈𝐶1
 

• 𝐷𝐶2 = ∑ 𝐷(𝑥2, 𝜇𝑐2)𝑥2∈𝐶2
] 

Table 2.5: Linkage algorithms for hierarchical agglomerative clustering (HAC) 

analysis . D(.)=Distance function [210, 217]. 
 

To identify the nearest clusters, various distance metrics such as the 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (√∑ (𝑥𝑖𝑗 − 𝑥𝑘𝑗)
2𝑃

𝑗=1 ), 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 or 𝐶𝑖𝑡𝑦 −

𝑏𝑙𝑜𝑐𝑘(∑ |𝑥𝑖𝑗 − 𝑥𝑘𝑗|𝑃
𝑗=1 ), 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 distance with order 

D ( √∑ |𝑥𝑖𝑗 − 𝑥𝑘𝑗|
𝐷𝑃

𝑗=1  
𝐷

), 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 (𝑚𝑎𝑥|𝑥𝑖𝑗 − 𝑥𝑘𝑗|) and 𝐶𝑎𝑛𝑏𝑒𝑟𝑟𝑎 distance 

(∑
|𝑥𝑖𝑗−𝑥𝑘𝑗|

|𝑥𝑖𝑗+𝑥𝑘𝑗|

𝑃
𝑗=1 ) are applied. Here, 𝑥𝑖 and 𝑥𝑘 represent a P-dimensional data 

points in clusters 𝑖 and 𝑘 (respectively), and P is the number of features in 

the input data [125, 210, 219].  
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In this analysis, we applied the Euclidian distance and the 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 algorithm to visualise the high-dimensional data 

using 𝐻𝑒𝑎𝑡𝑀𝑎𝑝𝑠 and𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚𝑠. Notably, the choice of the linkage 

algorithm depends on the analysis objective and could reveal different 

structures. Here, the complete linkage algorithm was preferred in order to 

generate compact clusters (i.e. spherical clusters with consistent diameters), 

and avoid the 𝑐ℎ𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 associated the single linkage. Further, the 

single and complete linkage algorithms are computationally efficient but 

could be susceptible to extreme outliers [125, 210, 219], which were 

eliminated during quality control analysis (Chapter 3). In particular, the 

ℎ𝑒𝑎𝑡𝑚𝑎𝑝. 3 function was applied: 

(https://www.rdocumentation.org/packages/GMD/versions/0.3.3/topics/heatmap.3).  

 

2.14.5  K-means clustering  
In Chapter3, we applied the K-means clustering algorithm [220] to explore 

the data clusters associated with the pneumonia transcriptome. For an input 

data matrix 𝑋𝑛×𝑝, the k-means algorithm partitions the n samples 

(𝒙1, 𝒙2, … . 𝒙𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ ℝ𝒑) into K pre-defined clusters such that the within-

group sum of squared deviations from the centroid are minimized. The 

distortion function is defined as follows: 

𝐽(𝐾) = ∑ ∑(‖𝒙𝑖𝑘 − 𝒄𝑘‖)2

𝑛

𝑖=1

𝐾

𝑘=1

  

Where 𝒄𝑘 =centroid for cluster 𝐶𝑘,  𝑘 = 1,2. . 𝐾; 𝑎𝑛𝑑 𝒙𝑖𝑘 ∈ 𝐶𝑘 . In particular, the 

K-means algorithm works as follows [210]:  

1. Initialize the algorithm with random centroids (𝒄1, 𝒄𝟐, … , 𝒄𝐾). This step 

is often repeated to avoid local minima. 

https://www.rdocumentation.org/packages/GMD/versions/0.3.3/topics/heatmap.3
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2. Assign each sample ( 𝒙𝑖 ∈ ℝ𝒑) to the nearest cluster (𝐶𝑘) based on 

the minimum distance (i.e using the Euclidian distance metric) to the 

centroid (𝒄𝑘).  

3. Within each cluster, calculate the new centroid 𝒄𝑘 using the mean of 

the samples in that cluster (𝐶𝑘) (i.e. 𝒄𝑘 = ∑ 𝒙𝑥∈𝐶𝑘
).  

4. Re-assign the samples to the nearest clusters based on the new 

centroids. 

5. Repeat step (2) to (4) until the algorithm converges (i.e. 𝐽(𝐾) remains 

constant). 

2.14.5.1 Cluster stability using the Jaccard coefficient with 
bootstrap samples  

While K-means is a popular clustering algorithm, choosing the number of 

clusters (K) is often difficult.  To select stable number of the K-means 

clusters (K), in this thesis we applied the Jaccard coefficient [221] using a 

sequence of 1000 bootstrap samples. Briefly, the Jaccard coefficient is 

defined as the proportion of elements shared by two sets A and B as defined 

below [222-224]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

 

To estimate the stability (𝑆𝑘) of cluster 𝐶𝑘 (where k=1,..K), 1000 Jaccard 

coefficients comparing 𝐶𝑘 (i.e. based on the original data) to each bootstrap 

sample-based cluster (𝐶𝑏𝑘 , 𝑤ℎ𝑒𝑟𝑒 𝑏 = 1,2, … 1000) were averaged using an 

arithmetic mean. Thus, the stability of each cluster was defined as the mean 

of its 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 as compared to the clustering based on all 

bootstrap iterations [225]. 
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𝑆𝑘 =
1

1000
∑

|𝐶𝑘 ∩ 𝐶𝑏𝑘|

|𝐶𝑘 ∪ 𝐶𝑏𝑘|

𝑏=1000

𝑏=1

 

To identify the optimal number of clusters (K), the cluster-specific stability 

estimates (𝑆𝑘) were averaged based on the pre-defined choice of K as 

follows [225]: 

𝑆𝐾 =
1

𝐾
∑ 𝑆𝑘

𝐾

𝑘=1

 

 

Formerly, let 𝑫(𝒏×𝒑) = (𝒙1, 𝑥2, … . 𝒙𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ ℝ𝒑) be the original matrix. 

Then, this thesis applied the following algorithm to assess the stability of 

clusters ranging from K=2 to K=10 using the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑜𝑜𝑡 function in the fpc R 

package [225]:  

1) Apply the K-means clustering using the original data 𝑫(𝒏×𝒑) 

2) Draw a bootstrap sample 𝑫(𝒏×𝒑)
(𝒃)

with replacement from the original 

data 𝑫(𝒏×𝒑), where b=1, 2,..1000). 

3) Apply the K-means clustering on 𝑫(𝒏×𝒑)
(𝒃)

 

4) For each cluster 𝑪𝑘 , where k=1, 2,…,K; compare the agreemen 

between the original cluster and the bootstrap sample-based cluster 

(𝑪𝑘𝑏) using the Jaccard coefficient. 

5) Repeat steps (2) to (4) many times (i.e. B=1000).  

6) Estimate the stability (𝑆𝑘) of each cluster 𝑪𝑘  by the arithmetic mean of 

its 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 over all the B bootstrap iterations 

7) Calculate the overall stability (𝑆𝐾) associated with the choice of K 

partitions of the data using the arithmetic mean of the cluster-specific 

stability scores (𝑆𝑘). 

8) Repeat steps (1) to (7) for different values of K and select the partition 
with the highest mean stability across the K clusters (𝑆𝐾). 
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2.15 Investigation of systemic molecular responses 

In this thesis, molecular responses were investigated at the gene and 

pathway analytic levels.  At the gene analytic level, differentially expressed 

genes (DEGs) were characterized. Subsequently, the DEGs were applied to 

investigate pathway responses using a range of biochemical pathway 

databases.    

2.15.1 Identification of differentially expressed genes (DEGs) using 
empirical Bayes moderated t-test. 

Microarray gene expression studies often seek to identify differentially 

expressed genes (DEGs) for further investigations such as pathway and 

biomarker analyses [71, 168, 171]. To identify the DEGs associated with 

pneumonia severity, this thesis applied an empirical Bayes moderated t-test 

by Smyth et. al. (2004) [226]. In particular, the moderated t-test seeks to 

overcome the 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (dependence of the t-statistic on 

sample variance), which is a potential problem in microarray studies 

especially with small sample sizes [227-234].  

 

Here, we introduce the ordinary t-test followed by the moderated test in the 

context of two independent samples (X and Y). Let 𝑋𝑔 =

(𝑥𝑔1, 𝑥𝑔2, . 𝑥𝑛)~𝑖𝑖𝑑 𝑁(𝜇𝑔𝑥,   𝜎𝑔
2) and 𝑌𝑔 = (𝑦𝑔1, 𝑦𝑔2, … 𝑦𝑔𝑛) ~𝑖𝑖𝑑 𝑁(𝜇𝑔𝑦,   𝜎𝑔

2) be the 

expression values for gene 𝑔 in group X and Y (respectively), where 

𝜇𝑔𝑥  and 𝜇𝑔𝑦 are the population means and 𝜎𝑔
2 is a shared variance 

 (i.e. assuming  homoscedasticity: 𝜎𝑔𝑥
2 ≈ 𝜎𝑔𝑦

2 ≈ 𝜎𝑔
2). Then, an ordinary t-test 

seeks to test the null hypothesis that 𝑯𝟎: 𝝁𝒈𝒙 = 𝝁𝒈𝒚 against the alternative 

hypothesis that 𝑯𝟎: 𝝁𝒈𝒙 ≠ 𝝁𝒈𝒚 using the following statistic: 
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𝑡𝑔 =
(𝑋̅𝑔 − 𝑌𝑔̅) − (𝝁𝒈𝒙 − 𝝁𝒈𝒚)

𝑆𝑔(𝑝)√𝑣𝑔

=
𝑋̅𝑔 − 𝑌𝑔̅

𝑆𝑔(𝑝)√𝑣𝑔

~𝑡𝑛+𝑚−2  

Where 𝑋̅𝑔 =
1

𝑛
∑ 𝑥𝑔𝑖

𝑛
𝑖=1  and 𝑌𝑔̅ =

1

𝑚
∑ 𝑦𝑔𝑖

𝑚
𝑖=1  are the group-specific sample 

means, 𝑣𝑔 = (
1

𝑛
+

1

𝑚
) and 𝑆𝑔(𝑝) = √

(𝑛−1)𝑆𝑔𝑥
2 +(𝑚−1)𝑆𝑔𝑦

2

𝑛+𝑚−2
 is the pooled sample 

standard deviation where 𝑆𝑔𝑥
2 =

1

(𝑛−1)
∑ (𝑥𝑔𝑖 − 𝑋̅𝑔)

2𝑛
𝑖=1  and 𝑆𝑔𝑦

2 =

1

(𝑚−1)
∑ (𝑦𝑔𝑖 − 𝑌𝑔̅)

2𝑚
𝑖=1  are the group-specific sample variances [235]. 

 

Notably, the goal of differential gene expression analysis is to select top-

ranked genes often using the p-value from the t-statistic. However, the 

ordinary t-statistic ( 𝑡𝑔)  is inversely related to the pooled variance(𝑆𝑔(𝑝)) , 

which varies across the genes. Thus, genes with low variance (i.e. due to 

signal intensities) tend to have inflated values of 𝑡𝑔, and therefore more likely 

to be incorrectly declared as significant (false positive discoveries). 

Consequently, this denominator challenge potentially generates misleading 

lists of candidate genes for further investigations [228, 230, 231, 234].  

 

To mitigate the unwanted dependence of 𝑡𝑔 on 𝑆𝑔(𝑝), an empirical Bayes 

[227, 229] moderated t-test  (implemented in the 𝑙𝑖𝑚𝑚𝑎 𝑅 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 [236]) is 

often applied in differential gene expression analyses [145, 171, 178, 226]. 

Basically, this approach applies a hierarchical Bayesian model to shrink the 

gene-level pooled variance 𝑆𝑔𝑝 towards the pooled estimate (i.e. borrowing 

strength from the distribution of all the genes). In particular, the moderated t-

test statistic for gene 𝑔 (𝑡𝑔)̃  has the following closed form: 
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𝑡𝑔̃ =
𝑋𝑔
̅̅ ̅ − 𝑌𝑔̅

𝑆̃𝑔(𝑝)√𝑣𝑔

~𝑡𝑑𝑔+𝑑0  

Where 𝑑𝑔 is the observed degrees of freedom (df), and 𝑆̃𝑔(𝑝)
2 =

𝑑𝑔𝑆𝑔(𝑝)
2 +𝑑0𝑆0

2

𝑑𝑔+𝑑0
 is 

the posterior mean of the population variance (𝜎𝑔
2), which is estimated using 

the prior variance (𝑆0) and degrees of freedom (𝑑0) given the observed 

variance(𝑆𝑔𝑝). Thus, the observed variance (𝑆𝑔𝑝) is shrunk towards the 

pooled estimate (𝑆̃𝑔(𝑝)
2 ) by the prior variance (𝑆0) and degrees of 

freedom (𝑑0) such that 𝑆̃𝑔(𝑝)
2 = 𝑆𝑔(𝑝)

2  𝑖𝑓 𝑑0 = 0. The prior parameters (𝑆0 and 

𝑑0) are empirically estimated from the observed data using a series of closed 

form equations (more details are in Smyth et. al (2004)) [226].  In summary, 

the moderated t-test is a hybrid test applying a Bayesian estimate (pooled 

variance) into a classic statistic framework.  

 

In this thesis, the limma 𝐵𝑖𝑜𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑅  package[226] was applied to 

conduct the moderated t-test. In particular, this analysis identified 

differentially expressed genes (DEGs) between the non-pneumonia controls 

and each severity state (mild, severe and very severe), respectively. To 

adjust for potential confounding, the following covariates were included in the 

design matrix of the linear model: (i) age, (ii) nutrition status and (iii) antibiotic 

usage in the previous week. The nutrition status covariate was estimated 

from the principal component analysis (PC1) of weight-for-age (under-

weight), height-for-age (stunting) and weight-for height (wasting) Z-scores. 

To guard against false discoveries due to multiple testing, the Benjamini and 

Hochberg FDR correction method was applied ([237, [238]]. 
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For each severity state, the TopTable function was applied to rank and select 

the DEGs using the following criteria: 

1. B>0, where B is the log odds for a gene being differentially expressed 

i.e. if p=probability of a gene being differentially expressed, then 

B=log(p/1-p).  

2. FDR (i.e. Adjusted P-value) <0.05 

3. |Fold change| ≥2 were of much interest (Otherwise, stated) 

2.16 Adjusting for false discoveries due to multiple testing 

2.16.1 Introduction  
In classic statistics, hypothesis testing is associated with type-I (α) and type-

II (β) errors. Type-I error occurs when a true null hypothesis is incorrectly 

rejected (false positive discovery (i.e. 𝐹𝑃  in Table2.6)) while type-II error 

occurs when there is no sufficient evidence to reject a false null hypothesis 

(false negative discovery; scenario FN in Table2.6) [235, 238].  

Null 
hypothesis 
(H0) true? 

Test significant (reject H0)?  
Total Yes No 

Yes  FP TN m0 

No  TP FN m1 

Total  R A m 
Table 2.6: Classification of multiple hypothesis tests  FP=false positive, FN=false 
negatives, TP=true positives, TN=True negatives, R=total number of rejected hypotheses, 
m= total number of hypotheses.  

 

While both errors are critical and often kept at minimal rates (i.e. α≤5% and 

β≤10%) by study design, type-I error is often considered more serious than 

type-II error. In this section we discuss the potential impact of multiple 

hypothesis testing on false positive discoveries. Potentially, the number of 

false positive discoveries (𝐹𝑃)  is directly related to the number of 

hypotheses tested (m) where 𝛼 (type-I error) is proportionality constant. 
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𝐹𝑃 = 𝛼 ∗ 𝑚 

Consequently, more false positive discoveries (𝐹𝑃) are expected for large 

number tests (𝑚) even if 𝛼 is fixed constant; which is more serious for high-

dimensional data such as microarray transcriptomes [239]. To account for 

false discoveries, a range of multiple testing correction procedures[240]  

such as the Bonferroni method [241] and Benjamini & Hochbergh’s (BH) 

procedure [238] are often applied (discussed below). 

2.16.2 The Bonferroni multiple testing correction 
The Bonferroni correction method seeks to control for the Family-Wise Error 

Rate (FWER): the probability of incorrectly rejecting at least one true null 

hypothesis (𝑃𝑟𝑜𝑏(𝐹𝑃 > 0),  Table2.6) [240]. For a given 𝛼  and m 

independent tests, the FWER is defined as follows:  

𝐹𝑊𝐸𝑅 = 1 − (1 − 𝛼)𝑚 ≥ 𝛼;   𝑆𝑖𝑛𝑐𝑒 (1 − 𝛼)𝑚 ≤ (1 − 𝛼) ∀ 𝑚 ≥ 1 

 

Notably, the Sidak correction method rejects any null hypothesis (𝐻𝑖) if the 

corresponding P-value (𝑃𝑖) is less than 1 − (1 − 𝛼)𝑚   (𝑖. 𝑒. 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻𝑖 𝑖𝑓 𝑝𝑖 <

𝑝𝑐𝑟𝑖𝑡 = 1 − (1 − 𝛼)𝑚). However, this approach is more conservative for large 

number of dependent tests [242]. On the other hand, the Bonferroni 

approach rejects any null hypothesis (𝐻𝑖) if the corresponding P-value (𝑃𝑖) is 

less than 
𝛼

𝑚
 [240]. Equivalently, the raw p-values (𝑃𝑖)  are multiplied by 𝑚 

such that test 𝑖 is declared significant if and only if 𝑚 ∗ 𝑃𝑖 < 𝛼.This approach 

is motivated by the following probabilistic property (i.e. Boole's inequality), 

which is also valid for dependent tests: 

FWER = ⋃ 𝛼𝑖

𝑚

𝑖=1

≤ ∑ 𝛼𝑖

𝑚

𝑖

= 𝑚𝛼,  
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Where m = number tests conducted, and αi = type-I error for test 𝑖. Ideally, 

fixing 𝛼𝑖 =
𝛼

𝑚
= 𝛼∗ keeps the FWER≤ α (the desired type-I error):  

FWER = ⋃ 𝛼∗

𝑚

1

≤ ∑ 𝛼∗

𝑚

𝑖

= 𝑚𝛼∗ = 𝑚 (
α

𝑚
) = 𝛼,  

 

While the Bonferroni correction is simple and justifiable in some extreme 

circumstances (i.e. comparing the efficacy of multiple competing drugs to 

increase the confidence on the chosen drug [238]), controlling for FWER is 

very stringent consequently reducing the statistical power (i.e. more false 

negatives) [238, 243, 244]. Hence, it is not ideal for high dimensional data.  

2.16.3 Benjamini & Hochbergh (BH) procedure 
In this thesis, we applied the Benjamini & Hochbergh (BH) procedure to 

control for multiple testing across the gene features [238].  The BH 

procedure seeks to control False Discovery rates (FDR): the expected 

proportions of false discoveries among the rejected hypotheses [238]. 

Generally, FDR correction corrections are less stringent than the FWER 

correction procedures (i.e. Bonferroni method) and suitable for genome-wide 

analysis. Notably, the BH procedure enables more statistical power but at the 

expense of higher type-I error rate than the Bonferroni method [229, 239, 

245]. Formally, false discovery rate (FDR) is defined as follows: 

𝐹𝐷𝑅 = 𝑝𝑟𝑜𝑏(𝑅 > 0) ∗ 𝐸 (
𝐹𝑃
𝑅 |𝑅 > 0) 

Where 𝐸(. ) denote the expected value, FP=false positives and R=rejected 

hypotheses (Table 2.6) [238]. Therefore, FDR=FWER if all the rejected null 

hypotheses are true (i.e. FP=R), and no action is taken if one hypothesis is 

rejected (R=1). 
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2.16.3.1 Implementation of the BH procedure 

For a given 𝛼 (type-I error), the BH procedure applies the following algorithm 

to control for FDR among 𝑚 independent tests: 

1. Rank the corresponding p-values (𝑃𝑘) for each hypothesis test (𝐻𝑘) in 

ascending order such that 𝑃1 < 𝑃2 < ⋯ < 𝑃𝑚−1 < 𝑃𝑚  

2. Find the largest 𝑘∗ such that 𝑃𝑘 ≤
𝑘∗

𝑚
𝛼, where k=1, 2,… 𝑘∗. 

3. Reject all the null hypotheses (𝐻𝑘) for 𝑘 = 1,2, . . , 𝑘∗. 

2.16.3.2 Geometric interpretation (implementation) of the BH procedure 

Geometrically, the BH procedure is equivalent to the following algorithm:  

1. Plot the raw P-values (𝑃𝑖) on the y-axis against the rank k=1,2,..m  (x-

axis)  

2. Superimpose a straight line 𝑃𝑘 =
𝛼

𝑚
∗ 𝑘 such that 

𝛼

𝑚
= 𝑠𝑙𝑜𝑝𝑒 and y-

intercept=0 

3. Reject all the null hypotheses (𝐻𝑘) associated with the points below 

the straight the line in (2). 

2.16.3.3 Assumption 

It is worth noting that the BH procedure is valid for m independent tests. To 

relax this assumption, the Benjamini–Hochberg–Yekutieli procedure [244] 

introduces 𝑐(𝑚) into the denominator  of the HM  inequality such that 𝑃𝑘 ≤

𝛼

𝑚∗𝑐(𝑚)
∗ 𝑘∗, where  

• c(m)=1, for  independent or positively-correlated tests 

• 𝑐(𝑚) = ∑
1

𝑖

𝑚
𝑖=1 , for arbitrary dependency  
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• 𝑐(𝑚) = ∑
1

𝑖

𝑚
𝑖=1 ≈ ln(𝑚) + 𝛾 +

1

2𝑚
 , for negatively-correlated tests, where 

𝛾 is a  Euler–Mascheroni constant.  

Other approaches for controlling the FDR include the positive false discovery 

rate ( 𝑝𝐹𝐷𝑅 = 𝐸 (
𝐹𝑃

𝑅
|𝑅 > 0)) by Storey et. al (2002) [239, 246, 247]. Further, 

bootstrap and permutation procedures have also been proposed [239, 243, 

248].  

 

2.17 Identification of significant pathways (Chapter 5)  

Pathway analysis presents a powerful system-level approach (as compared 

to single gene analysis, which ignores the proteins interactions), for 

investigating candidate vaccines, therapeutic targets and the pathogenesis 

of diseases [249]. In particular, this approach incorporates validated 

biochemical pathway databases such as KEGG [250] to facilitate the 

interpretation of long lists of candidate genes. To identify significant 

pathways, the following approaches are often applied:  

1) Over-representations analysis (ORA) of candidate gene lists using the 

Fisher’s exact test [249, 251-253]. 

2) Score-based gene set enrichment analysis (GSEA) [157, 254, 255], or 

3) More complex analyses that account for the pathway topology 

(structure) [256-265]. 

 

In this thesis, we investigated the pathways associated with the development 

of pneumonia severity using the following hierarchical candidate lists of 

differentially (FDR<0.05, |FC|≥2) expressed genes (DEGs):  
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1. MSvS: DEGs that were jointly associated with mild, severe and very 

severe pneumonia 

2. SvS: DEGs that were jointly associated with severe and very severe 

pneumonia but not mild pneumonia. 

3. Vs: DEGs that were uniquely associated with very severe pneumonia 

 

To investigate these pre-defined genes lists (MSvS, SvS and vS), we 

applied the Fisher’s exact test-based approach (ORA) using the following 

biochemical databases: (i) KEGG [250] (ii) REACTOME [266] (iii) Gene 

ontology (GO) [267] and (iv) HALLMARK. The databases were downloaded 

from the MSigDB website (http://software.broadinstitute.org/gsea/msigdb/index.jsp) [157].  

 

Notably, gene ontology (GO) terms are classified into three key categories: 

(i) Cellular Component (CC) where gene products are active, (ii) Molecular 

Function (MF), which represent the biological function of gene or gene 

product and  (iii) Biological Process (BP), which represent pathways or larger 

processes that multiple gene products are involved in [268]. However, it is 

worth noting that the primary goal of gene ontology (GO) terms is protein 

functional annotation. Therefore, not all the GO terms and their relations 

represent valid functional protein associations such as protein-protein 

interactions or mRNA co-expression [268, 269].   

 

2.17.1 Fisher’s exact test 
Briefly, over-representation analysis (ORA) involves testing the null 

hypothesis that two lists of genes are independent using a 2 × 2 contingency 

table. For example, the columns could represent the list of genes in a 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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specific biochemical pathway (i.e. TLR4 pathway), whilst the rows could 

represent the candidate genes of interest such as differentially expressed 

genes (DEGs) in severe pneumonia (Table 2.7) [270].  

Differentially 
expressed 
gene (DEGs)? 

Gene in the pathway?  
Total Yes No 

Yes  a b (a+b) 

No  c d (c+d) 

Total  (a+c) (b+d) (a+b+c+d)=m 
Table 2.7: An illustration of possible outcomes in over-representation analysis (ORA)  
The Fisher’s exact test (instead of the Chi-square test) is applied to assess the association 
between the column and row variables if the expected value of the, b, c, or d is less than 5.  
 

In particular, the following hypotheses are investigated: 

H0: The row and column outcomes are independent (i.e. 

a/(a+b)=c/(c+d) or the Odds ratio= ad/bc=1) 

H1: There is an association between the row and column outcomes 

(a/(a+b)≠c/(c+d) or the Odds ratio= ad/bc≠1) 

 

To test the null hypothesis, the Chi-square test for association of two 

categorical variables is often applied. However, the Chi-square test depends 

on asymptotic probabilistic properties (i.e. Chi-square distribution), and is not 

valid when the expected cell counts are less than 5 [235, 271]. Inevitably, 

this problem is common when investigating small pathways or small 

candidate gene lists.  

 

Alternatively, the Fisher’s exact test is applied. Notably, this approach is valid 

for any sample size because the P-values are calculated from “exact” 

probabilities of the observed data and more extreme scenarios. However, the 

Fisher’s exact test is more conservative than the Chi-square test, and 
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computationally expensive for large sample sizes. With reference to 

Table2.7, the exact probabilities are calculated using the 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 

distribution as follows: 

𝑃𝑟𝑜𝑏(𝑋 = 𝑎) =
((𝑎+𝑏)

𝑎 )((𝑐+𝑑)
𝑐 )

( 𝑚
(𝑎+𝑐))

=
(

(𝑎+𝑏)
𝑏

)(
(𝑐+𝑑)

𝑑
)

( 𝑚
(𝑏+𝑑))

=
(𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!

𝑎!𝑏!𝑐!𝑑!𝑚!
. 

 
To calculate the 2-sided p-value, the exact probabilities of the observed data 

and more extreme scenarios (while fixing the marginal totals) are added as 

shown in the following algorithm [235, 271]: 

1. Calculate the exact probability of the observed data: 𝑃0 = 𝑃𝑟𝑜𝑏(𝑋 = 𝑎) 

2. Reshuffle the table and calculate the 𝑃𝑖 = 𝑃𝑟𝑜𝑏(𝑋 = 𝑎𝑖) for all the 

possible values of 𝑎 (while fixing the marginal totals).   

3. Add all the probabilities that are less than or equal to 𝑃0 

𝑖. 𝑒. 𝑃𝑣𝑎𝑙𝑢𝑒 = ∑ 𝑃𝑖𝑃𝑖≤𝑃0 .  

Manually, the 2-sided P-value is conveniently estimated by doubling the one-

sided p-value (assuming a symmetric distribution) as follows: 

𝑃𝑣𝑎𝑙𝑢𝑒 = 2 ∗ 𝑃𝑟𝑜𝑏(𝑋 ≤ 𝑎); Where a is an observed cell count. 

 

In this thesis, the Fisher’s exact test was conducted in R using the 

𝑓𝑖𝑠ℎ𝑒𝑟. 𝑡𝑒𝑠𝑡 function (stats package). To adjust for false discovery rate (FDR) 

due to multiple testing, the 𝐵𝑒𝑛𝑗𝑎𝑚𝑖𝑛𝑖 𝑎𝑛𝑑 𝐻𝑜𝑐ℎ𝑏𝑒𝑟𝑔ℎ (BH) procedure [238] 

was applied (within each pathway database) using the 𝑝. 𝑎𝑑𝑗𝑢𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

(stats package). 

 

2.17.2 Limitations of over-representation analysis (ORA) 
Notably, the ORA approach is simple, flexible and computationally efficient, 

and was ideal for our analysis because we investigated pre-defined lists of 

candidate genes using a comprehensive range of biochemical databases.  
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However, this black-box approach ignores important information such as 

pathway structure and gene strength (i.e. expression levels) potentially 

leading to loss of power [249]. Alternatively, more powerful approaches that 

account for the pathway structure and the expression intensities could reveal 

more insights into the pathogenesis of pneumonia [256, 272]. For example, 

𝑆𝑎𝑛𝑔𝑢𝑖𝑛𝑒𝑡𝑡𝑖 (2006) [259, 260] and 𝑂𝑐𝑜𝑛𝑒 (2011) [261] proposed probabilistic 

models to infer the regulatory activities of transcriptional factors [258-261, 

273]. Other pathway structure-based approaches include DAEP (Differential 

Expression Analysis for Pathways) by Haynes (2013) [274], TAEP (topology-

based pathway enrichment analysis) by Yang (2017) [275] and structural  

equations modeling (SEM) based approaches [276-279]. 

2.17.3 Network analysis  
To compensate for the ORA approach, the STRING database was applied to 

identify validated functional protein-protein network interactions that were 

associated with pneumonia severity (https://string-db.org/) [280]. Further, we 

applied the Pathview tool (https://pathview.uncc.edu/) [281] to visualize 

significant  KEGG pathways. For each pathway map, up and down regulated 

genes were highlighted in red and green (respectively) colours while the non-

significant and un-annotated genes were represented in grey and white 

colours, respectively (Appendix). 

2.18 Investigation of candidate biomarkers for severe 

pneumonia (Chapter 6) 

In this analysis, I coupled cellular pathway biology with machine-learning 

approaches to derive candidate biomarkers for the detection of mild 

pneumonia cases at the higher risk of developing severe pneumonia 
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outcomes. In particular, this analysis involved the following steps 

(Figure2.4): 

(i) Cellular pathway-based feature selection (training data)  

(ii) Internal performance assessment (training data) 

(iii) Independent performance validation (validation dataset) 

 
Figure 2.3: An illustration of feature selection for candidate biomarkers of severe 
pneumonia.   Elastic net feature selection was repeated 100 times and markers that were 
selected all the times were retained. Abbreviations: FDR=false discovery rate, FC=fold 
change, IBML=Integrated Blood Marker List, CCG=Cell proportions Correlated Genes, 
DCG=Differentially Cell proportion Correlated Genes. 
 

2.18.1 Feature selection  
Mainly, feature selection combined machine-learning and cellular pathway 

centric approach. Further, sepsis markers were also independently assessed 

and aggregated into the final candidate biomarker set (illustrated in 

Figure2.3). To select the cellular-based features the following criteria were 

applied:  
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1. IBML: This marker list was derived to enhance computational 

deconvolution analysis in Chapter 4. 

 

2. Cell correlated genes (CCGs): These are the genes that were 

positively associated (FDR<0.05) with the deconvoluted (using IBML) 

proportions of immune cell types. Here, empirical Bayes linear 

regression (limma R package) [226] was applied to identify the CCGs 

while adjusting for the potential confounders and false discoveries (BH 

method)[238]. To remove duplicates, genes that were associated with 

multiple cell types were assigned to the cell type with the highest 

positive correlation across all the samples. 

 

3. Differentially correlated genes (DCGs): These were the genes with 

significant statistical interaction (FDR<0.05) between pneumonia 

severity and the deconvoluted (using IBML) proportions of immune 

cell type. To derive the DCGs list, empirical Bayes linear regression 

(limma R package) was applied to test for the interaction terms while 

adjusting for the potential confounders. To remove duplicates, genes 

that were associated with multiple cell types were assigned to the cell 

type with the highest positive correlation among the pneumonia cases. 

 

4. Sepsis markers: Here, a 52-gene validated neonatal sepsis classifier 

was applied [136]. 
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For each list, eligible markers were subjected to Elastic Net feature selection 

(glmm package) [282]. In particular, two criteria were applied to define 

marker eligibility: (i) differentially expressed in mild pneumonia (ii) showing 

trend in fold change (increasing/decreasing) with pneumonia severity.  To 

select robust biomarkers, the Elastic net feature selection was repeated 100 

times, and markers that were selected together all the time were retained. To 

identify the optimal values of the model parameters, the cross-validated  

(here using leave-one-out) cv.glmnet function in the glmnet R package [282] 

was applied.  

 

It is worth noting that while the mild pneumonia cases were applied to select 

eligible gene features, they were excluded from the subsequent analyses 

(Elastic net feature selection and classification). In particular, the Elastic Net 

algorithm involved the application of a regularized logistic regression 

comparing non-pneumonia samples to severe outcomes (severe and very 

severe pneumonia cases). In particular, the outcome variable for the logistic 

regression model was coded as follows:  

𝑦𝑖 = {
1, 𝑖𝑓 𝑖 = 𝑆𝑒𝑣𝑒𝑟𝑒 𝑜𝑟 𝑣𝑒𝑟𝑦 𝑠𝑒𝑣𝑒𝑟𝑒 𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎
0, 𝑖𝑓 𝑖 = 𝑁𝑜𝑛𝑝𝑛𝑒𝑚𝑜𝑛𝑖𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙                       

 

 

For each cellular list (IBMLs, CCGs, DCGs), candidate biomarkers were 

selected at the cellular level (i.e. neutrophils, NK, T) followed by an 

aggregation of the cell type-specific biomarkers. To derive the unified set of 

cellular biomarkers (ALL3), cellular based biomarkers (i.e. IBML3, CCGs3 

and DCGs3, Figure2.4) were also aggregated. Finally, an aggregation of 

cellular-based (ALL3) and sepsis (Sepsis3) biomarkers were also 
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investigated. At each level, the eligible markers were subjected to the Elastic 

Net feature selection to select an optimal and robust biomarker set 

(Figure2.3). 

 

2.18.2 Internal performance assessment  
To assess the performance of the selected biomarkers (at each level), five 

classification algorithms were applied: (i) Support vector machine (SVM) 

(ii) K-nearest neighbour (KNN), (iii) Random forest, (iv) Linear Discriminant 

Analysis (LDA) and (v) the ROC analysis-based classifier (ROCC) 

(Table2.8). To minimise the prediction bias, each algorithm was coupled with 

the leave-one-out cross-validation (LOOCV) approach. For each model, the 

following out of sample performance indices were applied: accuracy, 

sensitivity, specificity, balanced accuracy (mean of sensitivity and specificity), 

negative predictive value (NPV) and positive predictive value (PPV).  

Algorithm 
(reference) 

Description  R package 
(Function)  

Hyperparameters 

SVM[283] Support vector machines e1071(svm) Default: Kernel 
=radial basis  

RF[284] Random forest  randomForest 
(randomForest
) 

Default: 
ntree=500 

KNN[285] K-nearest neighbour  Class 
(knn.cv) 

K=5, l=0 

LDA[286] Linear discriminatory 
analysis 

MASS (lda) Default  

ROCC[287] Receiver operation 
characteristic (ROC) 
analyses based classifier 

rocc (o.rocc) xgenes=all the 
selected genes 

Table 2.8: Classification algorithms applied to assess the performance of candidate 
biomarkers for severe pneumonia.  
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2.18.3 Independent validation of candidate biomarkers  
To independently validate the candidate biomarker sets, the training data 

classifiers were applied to predict severe pneumonia cases in the Basse data 

set, which was kept independent from all primary analyses. To derive the 

classifiers, the SVM algorithm was applied. Briefly, support vector machine 

(SVM) classifier seeks to identify the optimal separating hyperplane, which 

maximizes the margin of the training data[283]. Here, this algorithm was 

associated with the best performance in all the training data classification.  

2.19 Supervised machine learning algorithms  

This section provides a description of the supervised machine learning 

algorithms that were applied in this thesis (Chapter 6) to investigate cellular-

based candidate biomarkers for severe pneumonia including (i) Elastic Net 

feature selection, and (ii) ROCC, KNN, SVM and Random Forest classifiers. 

In particular, multiple classification algorithms were applied to assess the 

robustness of the candidate classifiers. 

2.19.1 Feature selection using the Elastic Net logistic regression  
In this analysis, Elastic Net logistic regression was applied to select optimal 

subsets of transcriptomic classification features for severe pneumonia. 

Briefly, the Elastic Net feature selection combines the regularization 

penalties for LASSO (𝐿1 − 𝑛𝑜𝑟𝑚) and Ridge (𝐿2 − 𝑛𝑜𝑟𝑚) regressions, which 

enables sparsity and grouped feature selection while stabilizing the variance 

of regression coefficients especially for correlated variables. Here, the 

ordinary logistic regression, and the Ridge, LASSO and Elastic Net 

regularization penalties are introduced. 
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2.19.1.1 Ordinary logistic regression  
Let x be an 𝑛 × 𝑝 input data matrix (n samples and p gene features) and 𝑦𝑖 ∈

 {0,1} be the class label for sample i=1,2,..n. Then, logistic regression models 

the probability of Y=1 given x, (P(Y=1|x), using the 𝑙𝑜𝑔𝑖𝑡 function  (i.e. log 

odds): 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝𝜃

1 − 𝑝𝜃
 ) = 𝛽0 + 𝜷𝑻𝒙 = 𝜽𝑻𝒙,  

⇒ 𝑝𝜃 = 𝑃(𝑌 = 1|𝑥, 𝜽) =
𝑒𝜽𝑻𝒙

1 + 𝑒𝜽𝑻𝒙
=

1

1 + 𝑒−𝜽𝑻𝒙
 

Where 𝜽 are the regression coefficients. Notably, the 𝑙𝑜𝑔𝑖𝑡 transformation 

extends the limits of the predicted probabilities (𝑝̂𝜃) from (0,1) to (−∞, +∞) 

[288-292]. To predict the class of a new sample 𝑗, an optimal threshold of 

𝑝̂𝜃  is applied ( i.e. 𝑦𝑗 = 1 if 𝑝̂𝜃 > 0.5) . The regression coefficients ( 𝜽̂)  are 

estimated using maximum likelihood estimation (MLE), which seeks to to 

minimize 
−𝑙(𝜽|𝒙)

𝑛
 of the Binomial distribution [235, 289-291, 293] where: 

𝑃(𝑌 = 𝑦𝑖|𝒙, 𝜽) = 𝑝𝜃
𝑦𝑖(1 − 𝑝𝜃)(1−𝑦𝑖) 

⇒ 𝐿(𝜽|𝒙) = ∏ 𝑝𝜃
𝑦𝑖(1 − 𝑝𝜃)(1−𝑦𝑖)

𝒏

𝒊=𝟏

 

⇒ 𝑙(𝜃|𝒙) = 𝑙𝑜𝑔(𝐿(𝜽|𝒙)) = ∑ 𝑦𝑖𝑙𝑜𝑔(𝑝𝜃) + (1 − 𝑦𝑖)log(1 − 𝑝𝜃)

𝒏

𝒊=1

 

However, ordinary logistic regression is liable to over-fitting and unstable for 

large number of input variables. In particular, the variance of the estimated 

coefficients (𝜽̂) is often high for correlated input variables. To overcome that, 

Ridge regularization is often applied. 
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2.19.1.2  Ridge regularization   
Ridge regression applies an 𝐿2 𝑛𝑜𝑟𝑚  penalty to control the variance of 

regression coefficients for correlated variables [294-296]. Briefly, Ridge 

regularization seeks to minimize the ordinary logistic regression cost function 

𝐶(𝑦, 𝑥, 𝜷) , subject to ‖𝜷‖2
2 < 𝑐2  constraint. Specifically, the following cost 

function is applied to shrink the regression coefficients:  

min (𝐶(𝑦, 𝑥, 𝜷) + 𝜆‖𝜷‖2
2) 

Where λ is a Lagrange multiplier and 𝑐  is a constant. Geometrically, the 

‖𝜷‖2
2 < 𝑐2  constraint is equivalent to a circle with radius c (Figure2.4).  

However, ridge regression lacks sparsity (no coefficient is set to zero), and 

therefore not ideal for feature selection. To achieve sparsity, the LASSO 

penalty is often applied.  

 

2.19.1.3 LASSO regularization 
Least Absolute Shrinkage and Selection Operator (LASSO) regression is a 

popular feature selection algorithm (by Tibshirani, 1996), which applies an 𝑳𝟏 

norm penalty to shrink the estimated coefficients (some to zero)[297] . 

Formerly, LASSO seeks to minimize the ordinary regression cost function 

𝐶(𝑦, 𝑥, 𝜷) subject to ‖𝜷‖1 < 𝑘, which reduces to the following form:  

min (𝐶(𝑦, 𝑥, 𝜷) + 𝜆‖𝜷‖1) 

Where 𝜆  is a Lagrange multiplier and  𝑘  is a constant. Geometrically, the 

‖𝜷‖1 < 𝑘 constraint is equivalent to a diamond (Figure2.4) such that the cost 

function 𝐶(𝑦, 𝑥, 𝜷) can only touch the edges thereby forcing some coefficients 

to zero (hence a sparse model). However, LASSO regression cannot select 

more variables than the training examples (p≤n); and is not ideal for grouped 

variable selection because it randomly selects one variable from a group of 
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correlated variables and ignores the rest. To overcome these limitations, 

Elastic Net feature selection is often applied.  

 
Figure 2.4: A two-dimensional representation of the regularization penalties.  Ridge 
(black circle), LASSO (blue diamond) and Elastic Net (red share). The figure is courtesy of 
Hastie & Zou (2004) (https://web.stanford.edu/~hastie/TALKS/enet_talk.pdf) [298]. 
 

2.19.1.4 Elastic Net regularization  
Briefly, Elastic Net (EN) regularization linearly combines the 𝑳𝟐 norm (applied 

in Ridge regularisations) and 𝑳𝟏  norm (applied in LASSO regularisations) 

penalties [299-301]. Notably, this combination of regularization penalties 

enables the EN algorithm to achieve model sparsity and grouped feature 

selection beyond the number of training examples (p≥n). Formerly, the EN 

algorithm seeks to minimize the logistic regression cost function 𝐶(𝑦, 𝑥, 𝜷) 

subject to 𝐽(𝜷) = 𝛼‖𝜷‖1 + (1 − 𝛼)‖𝜷‖2
2, where 𝛼 ∈ (0,1). Notably, Elastic Net 

is equivalent to LASSO if 𝛼 = 1 or ridge regularisation if 𝛼 = 0. In particular, 

the cost function for an Elastic Net regularised logistic regression has the 

following form where 𝜆 is a Lagrange multiplier:  

min
(𝛽0,𝜷)∈ℝ𝑝+1

− (
1

𝑛
∑ 𝑦𝑖(𝛽0 + 𝒙𝑖

𝑇𝜷) − log (1 + 𝑒(𝛽0+𝒙𝑖
𝑇𝜷))

𝑛

𝑖=1

) + (𝜆((1 − 𝛼)‖𝜷‖2
2)/2 + 𝛼‖𝜷‖1) 

https://web.stanford.edu/~hastie/TALKS/enet_talk.pdf
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For 𝛼 ∈  (0,1) , the 𝐿1 part ( 𝛼‖𝜷‖1)  generates a sparse model while the 

quadratic 𝐿2 part (
(1−𝛼)‖𝜷‖2

2

2
) removes the limitation on the number of selected 

variables, encourages grouping effect, and stabilizes the 𝐿1  regularization 

path. Therefore, the ElasticNet is a more powerful and flexible hybrid 

algorithm combining the strengths of the ridge and LASSO regularizations 

[298].  

 

In this thesis, we applied the Elastic Net feature selection using the R 

Bioconductor package 𝐺𝑙𝑚𝑛𝑒𝑡  [302]. In particular, leave-one-out cross 

validation (LOOCV) was applied (using the 𝑐𝑣. 𝑔𝑙𝑚𝑛𝑒𝑡 function) to estimate 

the optimal value for 𝜆  while fixing 𝛼 = 0.8.  While the classification 

performance was high, an optimal combination of both hyperparameters 

(𝜆 𝑎𝑛𝑑 𝛼) using cross-validation  (which requires more computational time) 

would have achieved more optimal results. 

2.19.2 The ROC analysis based Classifier (ROCC)  
The ROCC algorithm (by Lauss et. al (2010)) is a parameter-free binary 

classier, which is mainly based on the receiver operation characteristic 

(ROC) analysis [287]. Firstly, an area under the ROC curve (ROCAUC) filter 

is applied to select a predefined number of high discriminatory features. 

However, the feature selection step was not required in this analysis 

because the classifier features were pre-selected using the elastic net 

regression. To derive a classification rule, the selected features are 

collapsed into a univariate 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 using a within-sample arithmetic mean 

(across the selected features).  Finally, the 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 is subjected to ROC 

analysis to determine an optimal cut-off threshold (associated with the 
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highest accuracy using the training data) for predicting the class of new 

samples. To account for platform-specific differences, the 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 is 

calculated on standardised input features such that the within-sample 

mean=0 and standard deviation=1.  The ROCC algorithm is outlined below. 

 

Let {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . , (𝑥𝑛, 𝑦𝑛)}  be the training data such that x is a 

standardized p-dimensional input feature matrix and 𝑦𝑖 ∈ {0,1} represent the 

class labels such that:  

𝑦𝑖 = {
1        𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑠𝑒 
0  𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

 

Then, the ROCC algorithm works as follows: 

1. Decide the optimal number of features (k≤p) to include in the classier 

(i.e. k=10) 

2. Calculate the area under the ROC curve (ROCAUC) for all the p 

features with respect to y.  

3. Select the top k features with the highest max(AUC, 1-AUC) 

4. Among the selected k features, negate (i.e. multiply by -1) all the 

features that are inversely related with y (i.e. AUC<0.5).   

5. Generate a univariate 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 (n-by-1 vector) using the within-

sample arithmetic means across the k features.  

6. Rank the 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 values in ascending order, and identify the 

optimal cut-off (i.e. the mean value between two samples) associated 

with the highest accuracy for predicting 𝑦𝑖 in the training data.  

7. Apply the cut-off threshold in (6) to predict 𝑦𝑙 for new sample 𝑙 using 

the 𝑚𝑒𝑡𝑎𝑔𝑒𝑛𝑒 value calculated from input vector 𝑥𝑙. 

2.19.3 K-nearest neighbours (K-NN) classier 
The K-NN is one of the simplest and non-parametric classification algorithm, 

in which a new sample is classified based on the majority vote of its nearest 

neighbours [125, 210, 303-305]. To identify the nearest neighbours for new 
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sample j, distance metrics such as the Euclidian distance ((𝑑(𝑥𝑗 , 𝑥𝑖) =

√∑ (𝑥𝑘𝑖 − 𝑥𝑘𝑗)
2𝑝

𝑘=1 ) are applied. To avoid ties, an odd number of neighbours 

(k=1,3,5,..) is often selected. Alternatively, ties could be resolved by 

comparing the sums of distances between the classes of the selected k 

neighbours. In this analysis, we applied the default R package value of k=5. 

However, this arbitrary choice could generate suboptimal results compared 

to a cross-validation approach (described in section 2.20).  

  

2.19.4 Linear discriminant analysis (LDA) 
The LDA classifier seeks an optimal linear combination (similar to PCA 

analysis) of the input features (𝑥𝑖 ∈ ℝ𝑝) such that the training samples are 

projected into a direction that maximises the separation of the class labels 

(𝑦𝑖 ∈  {−1,1}) [125, 210, 306]. Formerly, the LDA algorithm solves for the 

optimal values of the weight vector 𝒘 and threshold 𝑏 such that  

𝒘𝑇𝒙 + 𝑏 > 0  𝑖𝑓 𝑦𝑖 = 1      𝐴𝑁𝐷      𝒘𝑇𝒙 + 𝑏 < 0  𝑖𝑓 𝑦𝑖 = −1  

 ⟹ 𝑦𝑖(𝑤𝑇𝒙 + 𝑏) > 0  

 

To derive the classification rule, the following Fisher’s criterion (𝐽𝐹) is often 

maximized with respect to the direction vector w:  

𝐽𝐹 =
|𝒘𝑇(𝒎1 − 𝒎2|2

𝒘𝑇𝑆𝑤𝒘
 

Where 𝒎1 and 𝒎𝟐 are the group-specific sample means for y=1 and y=-1 

(respectively), and 𝑺𝑤  is the pooled covariance matrix given by: 

𝑆𝑤 =
1

(𝑛1 + 𝑛2 − 2)
(𝑛1Σ̂1 + 𝑛2Σ̂2) 
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𝚺̂𝟏 and 𝚺̂𝟐 are the maximum likelihood estimates of the group-specific 

covariance matrices for class1 (y=1, n=n1) and class2 (y=-1, n=n2) 

respectively. Without loss of generality (i.e. applying the unit proportionality 

constant), the Fisher’s criterion gives the following closed solutions after 

solving for 
𝑑𝑱𝑭

𝑑𝒘
= 0:  

𝒘 ∝ 𝑆𝑤
−1(𝒎1 − 𝒎2)                                               

⟹ 𝒘 = 𝑆𝑤
−1(𝒎1 − 𝒎2)                                                        

⟹ 𝑏 = −
1

2
(𝒎1 − 𝒎2)𝑇𝑺𝑤

−1(𝒎1 − 𝒎2) − log (
𝑝2)

𝑝1)
),  

Where 𝑝1 =
𝑛1

(𝑛1+𝑛2)
 and 𝑝2 =

𝑛2

(𝑛1+𝑛2)
 are the proportions of samples in class 1 

and class 2 respectively. However, it should be noted that the Fisher’s 

criterion is optimal if the input features follow the Gaussian distribution and 

the class-specific covariance matrices are similar (Webb, 2002, p:127-129) 

[210]. 

2.19.5 Random forest  

2.19.5.1 Introduction  
Random Forest is an ensemble of many classification or regression trees 

(CART) that are grown (trained) on bootstrap samples using random subsets 

of the input features [284]. Briefly, ensemble classifiers seek to improve the 

synergetic performance of weak classifiers [307]. Here, we focus on the 

random forest for classification trees.   

2.19.5.2 Classification trees 
Classification trees are very intuitive classifiers and can be applied to almost 

any type of data scale [210].  As illustrated in Figure2.5, a classification tree 

involves a sequence of binary splits of the training data from the root node 

through the internal nodes (blue box) to the leaf nodes, where samples 
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are finally classified [308, 309]. In particular, (i) a root node has outgoing 

arrows only (grey box), (i) internal nodes have both incoming and outgoing 

arrows (blue box), and (iii) leaf nodes have incoming arrows only (gold 

boxes).  

 
Figure 2.5: A classification tree diagram. The figure shows an illustration of a 

classification tree algorithm for binary outcomes (Class1 and Class2) [308, 309]. 
 

At each node, the best gene feature (and the optimal cut-off value) is applied 

to split the data into more homogenous groups called child nodes. If no 

better split is attainable, the current node is maintained as a leaf node. While 

various metrics including 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛  and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛  exist, 

the 𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 is often applied to select the optimal split of the 

training data into child nodes [284, 308, 310]. In each child node 𝑐, the Gini 

index is calculated as follows: 

𝐺𝑖𝑛𝑖(𝑐) = 1 − ∑ 𝑝𝑘
2

2

𝑘=1

 

Where 𝑝𝑘 is the proportion of samples in class 𝑘 = 1,2 within that child node 

such that 𝑝1 + 𝑝2 = 1. Notably, the 𝐺𝑖𝑛𝑖(𝑐) measures the misclassification 
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rate of samples in each child node. To get the overall 𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 

associated with each split, the weighted  (proportional to the size of child 

node c) 𝐺𝑖𝑛𝑖(𝑐) values are added. 

𝐺𝑖𝑛𝑖(𝑠𝑝𝑙𝑖𝑡) = ∑ 𝑝𝑐 ∗

2

𝑐=1

𝐺𝑖𝑛𝑖(𝑐) 

Where 𝑝𝑐 =the proportion of samples in child node 𝑐 = 1,2 with respect to 

the parent node such that 𝑝1 + 𝑝2 = 1 , and 𝐺𝑖𝑛𝑖(𝑐)  is the corresponding 

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥. However, individual classification trees are weak classifiers that   

liable to over-fitting (high variance) and lack robustness [210, 284]. 

2.19.5.3  Random forest algorithm  
To improve the performance (variance, accuracy and robustness) of 

individual classification trees, the random forest algorithm (as illustrated in 

Figure2.6) applies an ensemble technique called BAGGING (Bootstrap and 

AGGregatING)[311-313]. In particular, the decision rule is based on the 

majority vote of many classification trees that are trained using bootstrap 

samples from the training data. Notably, the bootstrapping approach enables 

the internal validation of the random forest classier using an average of Out-

of-Bag (OOB) errors estimated by predicting the class of training examples 

that are not included in the bootstrap sample of a particular tree [314].  
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Figure 2.6: An illustration of a Random Forest algorithm.   The figure was taken from 
Boulesteix et. al (2011)[314]. 

 

Formerly, Let 𝑫𝒏×𝒑 = {(𝒙1, 𝑦1), (𝒙𝟐, 𝑦2), … . . (𝒙𝑛, 𝑦𝑛)} be the training data set, 

where 𝒙𝑖 ∈ ℝ𝑝  is a p-dimensional vector of gene features in sample 𝑖 and 

𝑦𝑖 ∈ {−1, 1}  is the corresponding class label. Then, the 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡 

involves the following main steps:  

1. Draw 𝐵 bootstrap samples (with replacement) from the original input 

data D.  

2. Build a tree classifier 𝑇𝑏 using each 𝑫𝒏×𝒑
(𝑏)

 bootstrap sample (b=1, 2, 

.B). 

3.  Assign new sample 𝒙𝑘 to the class 𝑦𝑘 based on majority vote of the B 

classification trees (𝑇𝑏). 

To build the random forest classifier, this thesis applied the 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡 R 

package [315, 316] using the 𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥  and default 

hyperparameter (i.e. number of trees and number of features per split (mtry)) 
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values. While the classification performance was high, cross-validated 

ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (described in section 2.20) would have generated more 

optimal results.  

2.19.6 Support vector machines (svm) 

2.19.6.1 Introduction 
Support vector machine (SVM) is the most powerful and successful linear 

classification algorithm based on the idea of margin and kernel tricks[283].  

Briefly, SVM seeks the best separating line (ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒) with the “widest 

margin” between the classes of the training data. While a hard margin 

(Figure2.7a) is sufficient for linearly separable classification problems, 

𝑠𝑜𝑓𝑡 𝑚𝑎𝑟𝑔𝑖𝑛𝑠  (Figure2.7b) and 𝑘𝑒𝑟𝑛𝑒𝑙 𝑡𝑟𝑖𝑐𝑘𝑠  are often applied in more 

complex nonlinear situations [317-319]. Here, the hard-margin SVM (linearly 

separable data) is introduced followed by an extension to the nonlinear 

situations.  
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Figure 2.7: A two-dimensional illustration of a support vector machines (SVM) 

classifier :  (a) hard margin SVM, (b) soft margin SVM where x1 and x2 are 
the classification features. The two classes are represented by red (y=+1) and green 

(y=-1) dots. The images are courtesy of Dr. Saed Sayad(2018)[320] 
(https://www.saedsayad.com/support_vector_machine.htm) 

2.19.6.2 The hard margin SVM 
Let 𝑫 = {(𝒙1, 𝑦1), (𝒙𝟐, 𝑦2), … . . (𝒙𝑛, 𝑦𝑛)} be the training data set, where 𝒙𝑖 ∈ ℝ𝑝 

is a p-dimensional vector of gene features in sample 𝑖 and 𝑦𝑖 ∈ {−1, 1} is the 

corresponding class label. To classify a new sample  𝑘, SVM applies the 

following decision criteria: 

𝑦𝑘 = {
+1 𝑖𝑓 𝒘𝑇𝒙 + 𝑏 ≥ 1 

−1 𝑖𝑓 𝒘𝑇𝒙 + 𝑏 ≤ 1
⟹ 𝑦𝑘(𝒘𝑇𝒙 + 𝑏) ≥ 1 

https://www.saedsayad.com/author.htm
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Here, 𝒘𝑇𝒙 + 𝑏 = 0 is the best separating line (hyperplane) between the 

classes, where  (𝒘𝑇𝒙 + 𝑏 ≥ 1) and (𝒘𝑇𝒙 + 𝑏 ≥ 1)  are lower and upper 

boundaries of its margin (respectively). Notably, the training examples 

touching (i.e. supporting) the margin (i.e.  𝒘𝑇𝒙− + 𝑏 = −1 or  𝒘𝑇𝒙+ + 𝑏 =

1) are called the  "𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠" . Therefore, the margin ( 𝑀 ) is the 

shortest distance between two support vectors on the lower (𝑥−) and (x+) 

upper boundary of the hyperplane (𝒘𝑇𝒙 + 𝑏 = 0) such that:  

𝑀 = 𝑑(𝑥+, 𝑥−) = ‖𝑥+ − 𝑥−‖ = ‖(𝒘𝑇𝑥+ + 𝑏) − (𝒘𝑇𝑥− + 𝑏)‖ = 2 

⟹ ‖𝒘𝑇(𝑥+ − 𝑥−)‖ = 2 

⟹ ‖𝒘𝑇‖‖(𝑥+ − 𝑥−)‖ = 2 

⟹ ‖(𝑥+ − 𝑥−)‖ =
2

‖𝒘‖
 

⟹  𝑀 =
2

‖𝒘‖
 

Therefore, the SVM algorithm seeks to maximise the margin 
2

‖𝒘‖
 while 

correctly classifying the samples (i.e. 𝑦𝑖(𝒘𝑇𝒙 + 𝑏) ≥ 1). In practice, SVM 

minimises the following constrained quadratic problem: 

arg 𝑚𝑖𝑛  (
1

2
𝒘𝑇𝒘)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 

⟹ 𝐿(𝒘, 𝑏, ∝) =
1

2
𝒘𝑇𝑤 − ∑ ∝𝑖 (𝑦𝑖(𝒘𝑇𝒙𝒊 + 𝑏) − 1)

𝑛

𝑖=1

 

Where 𝑦𝑖 ∈ {−1,1}, 𝑖 = 1, .2, . . 𝑛 are the class labels, 𝛼𝑖 ≥ 0 are the Lagrange 

multipliers according to the  Karush–Kuhn–Tucker (KKT) conditions [210, 

283, 321]. Therefore differentiating 𝐿(𝒘, 𝑏, ∝) with respect to 𝒘 gives  

𝒘 = ∑ ∝𝑖 𝑦𝑖𝑥𝑖

𝑛

𝑖=1
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⟹ 𝐿(∝) = ∑ ∝𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑦𝑗 ∝𝑖∝𝑗 𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

Where 𝑖 ≠ 𝑗 are the pairs of the training examples such that ∑ ∝𝑖 𝑦𝑖 = 0𝑛
𝑖=1  

and ∝𝑖 (𝑦𝑖(𝒘𝑇𝒙𝒊 + 𝑏) − 1) = 0 (𝐾𝐾𝑇 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛). Thus, ∝𝑖≈ 0 for all the non-

support vector examples (𝑦𝑖(𝒘𝑇𝒙𝒊 + 𝑏) ≠ 1) such that 𝒘 is efficiently 

estimated using the support vectors (SV) only. 

𝒘 = ∑ ∝𝑖 𝑦𝑖𝑥𝑖

𝑖∈𝑆𝑉

 

Where SV is the set of support vectors (SV). In particular, the ℎ𝑎𝑟𝑑 𝑚𝑎𝑟𝑔𝑖𝑛 

SVM applies the following algorithm: 

1. Minimise 𝐿(∝) = ∑ ∝𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝑦𝑖𝑦𝑗 ∝𝑖∝𝑗 𝑥𝑖

𝑇𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1  with respect to α 

subject to ∝𝑖≥ 0 and ∑ ∝𝑖 𝑦𝑖 = 0𝑛
𝑖=1   

2. Solve for 𝒘 = ∑ ∝𝑖 𝑦𝑖𝑥𝑖𝑖∈𝑆𝑉  using the ∝𝑖≥ 0 values for the support vectors 

(SV) 

3. Solve for b using 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) = 1 for any support vector 𝑖 

4. Predict the class of new sample ℎ as follows: 𝑦ℎ = {
+1    𝑖𝑓 𝒘𝑇𝒙𝒉 + 𝑏 > 0 

−1    𝑖𝑓 𝒘𝑇𝒙𝒉 + 𝑏 < 0
  

2.19.6.3 Soft margin extension 
The ℎ𝑎𝑟𝑑 𝑚𝑎𝑟𝑔𝑖𝑛 approach assumes that the training examples are linearly 

separable by one unit away ( 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1)  from the best separating 

hyperplane (𝒘𝑇𝒙𝑖 + 𝑏 = 0). However, this rigid approach is liable to over-

fitting due to outliers and nonlinearity. Notably, the generalization of SVM 

classifiers depend on the number of support vectors (𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) = 1) such 

that  

𝐸(𝜖𝑜𝑢𝑡) =
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

𝑛 − 1
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Where 𝜖𝑜𝑢𝑡 = out of sample errorand E(.) denotes the expected value [322, 

323]. To accommodate the errors and maintain a wider margin, the 

𝑠𝑜𝑓𝑡 𝑚𝑎𝑟𝑔𝑖𝑛  approach introduces a slack parameter 𝜉  thereby allowing 

some training samples to cross the margin boundaries (i.e. misclassified). 

Formerly, the soft margin SVM solves for 

arg min (
1

2
𝒘𝑇𝑤 + 𝐶 ∑ 𝜉𝑖   𝑛

𝑖=1 ) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖    

Here, C is the regularization parameter capturing the importance of the slack 

parameter 𝜉𝑖  with respect to the margin (
1

2
𝒘𝑇𝒘)  [210, 283]. Notably, the 

objective function reduces to a ℎ𝑎𝑟𝑑 𝑚𝑎𝑟𝑔𝑖𝑛 SVM if 𝜉𝑖 =0, and the penalty 

increases for large values of 𝜉𝑖  [324]. However, the cost function 𝑳(∝) 

remains unchanged but ∝𝑖 is upper-bounded by the regularization parameter 

C such that SVM seeks to minimize  

𝐿(∝) = ∑ ∝𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑦𝑗 ∝𝑖∝𝑗 𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

with respect to α subject to  0 ≤∝𝑖≤ 𝐶 and  ∑ ∝𝑖 𝑦𝑖 = 0𝑛
𝑖=1  for all i=1, 2, ..n.  

2.19.6.4  The kernel trick  
 The 𝑘𝑒𝑟𝑛𝑒𝑙 𝑡𝑟𝑖𝑐𝑘 enables the SVM to learn nonlinear problems with linear 

machinery. Briefly, a kernel function is applied to map the training data (x) 

into an infinitely high dimensional space (Z) where the data is potentially 

linearly separable  (𝐱 → 𝐙 ∈ ℝ∞)  [324-327]. For a kernel function 𝑍 , the 

𝑠𝑜𝑓𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 SVM seeks to minimise: 

𝐿(∝) = ∑ ∝𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑦𝑗 ∝𝑖∝𝑗 𝑧𝑖

𝑇𝑧𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

With respect to ∝ subject to 0 ≤∝𝑖≤ 𝐶  and ∑ ∝𝑖 𝑦𝑖 = 0𝑛
𝑖=1  for all i=1, 2, ..n 

where C is a regularisation parameter.  Notably, the 𝑘𝑒𝑟𝑛𝑒𝑙 𝑡𝑟𝑖𝑐𝑘  mainly 
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involves calculating the dot product 𝑧𝑖
𝑇𝑧𝑗  without explicit mapping into the 

high-dimensional feature space (Z). Further, the complexity of the kernel 

transformation is not directly related to over-fitting because the error rate 

depends on the number of support vectors.  Therefore, the SVM classifier 

has the computational feasibility to learn non-linear problems in infinitely 

high-dimensional space while using the machinery of linear algorithms [324, 

325].   

 

According to Mercer’s theorem, a kernel function K(x,y) is a continuous 

function involving a scalar (dot) product of input features in a particular 

feature space such that  the following conditions are satisfied [210, 324, 325] 

(i) 𝐾(𝑥𝑖 , 𝑥𝑗)  =  𝐾(𝑥𝑖 , 𝑥𝑗)   (Symmetry) 

(ii)  ∑ ∑ 𝐾(𝑥𝑖𝑥𝑗)𝑐𝑖𝑐𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ≥ 0 (Positive semi-definite). 

In particular, the following kernel functions are often applied in SVM 

classification [328]:  

• Linear: K𝐿𝑖𝑛(x, y) = x𝑇y  

• Polynomial: K𝑃𝑜𝑙𝑦(x, y) = (x𝑇y + 1)𝐷 𝑤ℎ𝑒𝑟𝑒 𝐷 ∈ ℝ  

• Gaussian Radial basis function (RBF):   

K𝑅𝐵𝐹(𝐱, 𝐲) = exp (
−‖𝐱 − 𝐲‖2

2σ2
) ⇔ exp (−𝛾‖x − y‖2), 𝑤ℎ𝑒𝑟𝑒 𝛾 > 0. 

In this thesis, we applied the soft-margin SVM with the radial basis function 

(RBF) kernel using the e1071 R package [329]. In particular, the RBF is a 

general kernel function without assuming prior knowledge about the data 

[328]. It is worth noting that here we applied the default value (in R) for the 

regularization parameter C. While the classification performance was high, a 
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cross-validated value (described in section 2.20) for C [322] would produce 

optimal results. 

2.20 Internal validation of classifiers  

A classier is a function that maps unlabelled instances to a phenotypic class 

label using internal data structures [330]. To select the best classifier, 

internal validation is required to estimate the out-of-bag (OOB) error (or 

accuracy). These include Holdout, Bootstrapping and K-folds cross-validation 

[330-332]. In this thesis, we applied leave-one-out cross-validation (LOOCV), 

a special case for the K-folds cross-validation where k=n (i.e. training data 

sample size).  

2.20.1 Cross-validation  
Briefly, Cross-validation involves splitting the training data into K mutually 

exclusive folds, where each kth fold is applied (once) as a testing data set for 

the model trained on the other k-1 folds combined [330-333]. Notably, Cross-

validation generates a distribution of estimates, which is desirable to 

estimate model variance and robustness [330, 332, 333]. Further, it is 

associated with less bias than the Bootstrap validation approach [330].  

2.20.2 Nested cross validation 
While the classification performance was high (Chapter 6), it is worth noting 

that this thesis applied default values for the hyperparameters (Table 2.8 and 

Table 6.1) potentially generating suboptimal results. To get optimal results, 

nested cross-validation is recommended [332, 333]. Briefly, a two-level 

nested cross-validation incorporates an inner cross-validation loop (using the 

K-1 training folds) to identify the best combination of hyperparameters for the 
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kth iteration of the model selection cross-validation loop [331, 332]. The 

algorithm is outlined below:  

2.20.2.1 Nested cross validation algorithm 

1. Split the data into K folds 

2. For each k=1,2,…,K { 

3. Keep the kth fold for model testing  

4. Further split the data for the remaining K-1 folds (combined) into J 

folds 

5. For each j=1,2, ..J { 

a. Keep the data for the jth fold for model testing 

b. Use the J-1 folds data to train the model using each possible 

combination of the hyperparameters  

c. Assess the performance of model hyperparameters using the 

unused data in fold j. 

} 

6. Choose the model with the best combination of hyperparameters 

across all the J folds. 

7. Apply the unused data in the kth fold (1) to assess the performance of 

the classifier trained in (6)  

} 

8. Choose the best model across all the K folds in (1).  

 



Chapter 3: Data characteristics 

 96 

Chapter 3: Data characteristics and quality assurance 
 

3.1 Introduction 

The aim of this chapter is to evaluate (characteristics and quality) and curate 

existing data resources for their use in subsequent chapters of this thesis.  

3.2 Background  

Advances in genome-wide profiling such as whole blood transcriptomics 

have spurred biomedical research for elucidating the pathogenesis, 

biomarkers and therapeutic targets for a wide range of diseases including 

cancer, infections and autoimmunity; and they present an innovative 

approach for future translation of personalized medicine [70, 123, 334]. In 

this thesis, I have analyzed a microarray-based whole blood transcriptome 

(and the corresponding demographic, clinical and microbiology databases) 

for Gambian children aged 2-59 months to gain a deeper insight into the 

systemic pathway responses to severe pneumonia. However, making 

meaningful inferences from high-throughput data has several challenges 

including confounding non-biological variations, high dimensionality, limited 

study design, inadequate sample sizes and limited phenotypic data[71]. 

Therefore, data quality assurance is mandatory[181]. To assess the validity 

and quality of the central data resources for this thesis, this chapter has 

applied a range of statistical quality control approaches on the microarray 

database and the corresponding metadata records. These findings will 

highlight the strengths and limitations of the available data resources, and 

will thereby guide subsequent analyses for addressing the primary objectives 

of this thesis.  
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To evaluate the characteristics and ensure the quality of the existing data 

resources for this thesis; this chapter has addressed the following objectives:  

1) To assess the characteristics and validity of the existing data 

resources  

2) To assess the data quality and limitations (i.e. adequacy, 

completeness, imbalances) in accordance with the primary objectives 

3) To enhance data quality (i.e. data cleaning, pre-processing) and 

identify key covariates (potential confounders) for subsequent 

analyses 

3.3 Results  

3.1.1 Demographic and clinical characteristics of study participants  
In this study, eligible participants (children aged 2-59 months old) were 

recruited from two geographical regions in the Gambia, West Africa. The 

training data were collected from the semi-urban coastal area (here called 

Fajara), and the validation sample was collected from the rural upper region 

called Basse. In total, 1527 children who were clinically classified as mild, 

severe and very severe pneumonia, and their prospectively matched (by 

age, sex, location) non-pneumonia community controls were recruited and 

bled. Of them, sufficient whole blood RNA samples (n=803) were isolated for 

transcriptomics analysis in Edinburgh. After laboratory quality control 

analysis, 518 RNA samples were subjected to the microarray assay. 

However, the final database reduced to n=503 after data cleaning (i.e. 15 

outliers were excluded). Of them, 69%(n=345) and 31%(n=158) represent 

the training and validation populations, respectively. It is worth noting that the 
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validation dataset (Basse, n=158) was kept independent from all the primary 

analyses for validation of candidate biomarkers of severe pneumonia in 

Chapter6. 

 

Figure 3.1: Sample recruitment and processing 

 

As shown Table3.1, the group sample sizes ranged between n=18 (very 

severe) and n=120 (non-pneumonia controls) in the training data (where 

most primary analyses will be conducted); and between n=24(very severe) 

and n=47 (non-pneumonia controls) in the validation dataset. While both 

datasets have more samples in the first Batch, the second Batch had more 

validation samples (n=51) than the training population (n=17). Further, while 
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gender and seasonality were similar between the training and validation 

datasets, it is worth noting that the validation set (the rural sample) was 

relatively younger and associated with worse clinical outcomes than in the 

training set. In particular, the rural population was associated with the higher 

prevalence of severe pneumonia outcomes, malnutrition (stunting and under-

weight) and iron intake than the training set; and the vice versa for vitamin A 

supplementation (p<0.05, respectively). Potentially, this data imbalance may 

impact the performance of candidate biomarkers in subsequent analysis 

(Chapter6). On the other hand, this variability will partially enable to assess 

the robustness of the candidate biomarkers prior to subsequent validations 

(Figure3.1). To ensure data quality and completeness, the metadata records 

were subjected to data cleaning, and the prevalence of missing data was 

investigated (next section). 
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Factor 
Basse 

(Validation set) 
Fajara 

(Training set) P-value 

Total  158 345  

Pneumonia severity   <0.001 

Control 47 (29.7%) 120 (34.8%)  

Mild 46 (29.1%) 90 (26.1%)  

Severe 41 (25.9%) 117 (33.9%)  

Very Severe 24 (15.2%) 18 (5.2%)  

Microarray sample batches   <0.001 

Batch1 107 (67.7%) 328 (95.1%)  

Batch2 51 (32.3%) 17 (4.9%)  

Demographics 

Age in months    

Median (IQR) 11.0 (5.3, 23.3) 14.2 (7.9, 22.6) 0.034 

Age groups (months)   <0.001 

2-5 46 (29.1%) 54 (15.7%)  

6-11 36 (22.8%) 83 (24.1%)  

12-23 38 (24.1%) 134 (38.8%)  

24-59 38 (24.1%) 74 (21.4%)  

Gender   0.49 

Female 73 (46.2%) 148 (42.9%)  

Male 85 (53.8%) 197 (57.1%)  

Season   0.065 

Dry 68 (43.0%) 179 (51.9%)  

Wet 90 (57.0%) 166 (48.1%)  

Nutrition status 

Under weight (Weight-for-Age)    

WAZ score, mean (SD) -1.4 (1.3) -1.1 (1.3) 0.062 

Moderate underweight (WAZ<-2) 45 (28.7%) 90 (26.1%) 0.55 

Severe underweight (WAZ<-3) 19 (12.1%) 19 (5.5%) 0.010 

Stunting (Height-for-Age)    

HAZ score, mean (SD) -1.0 (2.4) -0.7 (1.4) 0.027 

Moderate (HAZ<-2) 27 (17.3%) 44 (12.9%) 0.19 

Severe (HAZ<-3) 14 (9.0%) 10 (2.9%) 0.003 

Wasting (Weight-for-Height)    

WHZ score, mean (SD) -1.2 (1.3) -1.1 (1.4) 0.38 

Moderate (WHZ<-2) 37 (23.9%) 69 (20.2%) 0.35 

Severe (WAZ<-3) 8 (5.2%) 26 (7.6%) 0.32 

Clinical values 

Iron supplementation 32 (53.3%) 28 (27.5%) <0.001 

Vitamin A (within 6 months) 51 (34.0%) 170 (52.5%) <0.001 

Antibiotic usage (within 2 weeks) 9 (6.8%) 57 (17.1%) 0.004 

Table 3.1: Demographic and clinical characteristics of the participants.   Reported P-
values are comparing the distributions of the training and validations data sets using the Chi-
square / Fisher’s exact test (categorical variables) or student t-test/Mann-Whitney test 
(continuous variables). WAZ=weight-for-Age Z score, WHZ=weight –for-height Z score 
HAZ=height-for-age Z score  
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3.1.2 Data completeness (missing data)  
Missing data cause serious problems in statistical analyses, which 

undermine the statistical power to detect study effects (i.e. elimination of 

samples with missing values) and generate biased results (i.e. missing data 

correlating with study outcomes)[335]. It is worth noting that the microarray 

database had no missing values. To ensure the quality and completeness of 

the metadata records, relevant variables were extracted and screened for 

missing or suspicious values, and validated using the reference database 

(SCC1062), which is securely stored at the Medical Research Council (MRC) 

unit, The Gambia. 

 

As shown in Figure 3.2, the prevalence of missing values (yellow colour) 

was very minimal especially among the key variables for the primary 

analyses of this thesis. Comparatively, the prevalence of missing data (i.e 

cell blood counts) is lower in the training data where more primary analyses 

are required. Together, these findings highlight the quality of the existing 

central resources for this thesis. In the next section, I investigated the quality 

of the microarray database. 
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Figure 3.2: The heatmap showing the unsupervised clustering of samples base on the 
distribution of missing values. The main figure shows missing (yellow colour) and 
observed (grey colour) values data in the demographic and clinical valuables (x-axis). The 
samples (columns) are annotated by site (training or validation sample) and pneumonia 
severity (legend).  
 

3.1.3 Quality assurance of the microarray database 
The quality of microarray data depends on several factors at different stages 

of the study [129]. Therefore data quality assurance is an integral part of the 

main analysis to eliminate the confounding non-biological variations and 

mitigate the challenge of multiple testing [151, 153, 336]. To ensure the 

quality of the microarray transcriptome database, I applied a range of 

statistical methods to remove the unwanted variations (i.e. hybridization and 

batch-effect variations), outliers and non-informative gene probes. Here, the 

training and validation data sets were analysed separately.  Prior to that, 

sample size analysis was done to re-assess the adequacy (i.e. statistical 

power) of the existing resources (next section). 
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3.1.3.1 Re-assessment of sample sizes and statistical power  
Meaningful statistical inference requires adequately-powered studies, and 

sample size analyses (or power calculations) are vital [337]. For comparative 

studies (like this thesis), sample size analysis estimates the minimum 

numbers of required samples (per group) that are statistically powered to 

detect meaningful effect sizes (i.e. mean difference, rate or ratio). In 

particular, the following input parameters are required: (i) desired statistical 

power (type II error), (ii) significance level (type I error), (iii) minimum effect 

size (i.e. mean difference, ratio or rate) and (iv) variability estimates for each 

study group. Mathematically, sample size estimates are positively related to 

the statistical power and population variability, and the vice versa for effect 

size and significance level. While investigators decide reasonable effect size, 

statistical power and significance level, estimation of population variability is 

more challenging and often relies on previous studies or pilot data.  

 

For the multidimensional transcriptomic data, sample size and power 

analysis further account for false discoveries due to multiple testing [167, 

169, 338]. In particular, sample size estimates are statistically powered to 

detect multiple-testing-adjusted meaningful effect sizes (i.e. two-fold changes 

in gene expressions between two groups) in the desired percentage (i.e. 

90%) of the gene probes on the array platform. Thus, variability estimates 

are required for each gene probe.  

 

In this thesis, the original study design for the microarray database (Gambian 

children) was powered using variability estimates from the Neonatal Study 

(n=56) conducted at the Royal Infirmary of Edinburgh (United Kingdom) 
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[167]. Approximately, 100 samples (per group) were 90% statistically 

powered to detect a two-fold change in differential expression in at least 90% 

of the gene probes on the array at a significance level of alpha = 0.001 

(corrected for multiple testing by the Bonferroni method [170]). However, 

these estimates were based on the variability estimates from a different 

population, an older profiling technology (potentially with more technical 

variable) and a very stringent approach for multiple testing corrections 

(Bonferroni correction [170]).  

 

To guide subsequent analyses, this analysis re-assessed the statistical 

power of the training database (where primary analyses will be conducted) 

using variability estimates from the same population and less stringent 

parameters applicable to this thesis (Figure3.3). In particular, the following 

question was addressed: How many samples are statistically powered (90%) 

to detect at least 2-fold change in at least 90% of the gene probes in 

microarray database while controlling for false discovery rate (FDR) at 5%? 

To estimate the population variability, I applied the whole blood 

transcriptome for Gambian children who participated as healthy controls 

(n=20) in the Trachoma study (GSE29463) by Natividad et al.(2010) [168]. In 

this analysis, constant variability was assumed between the study groups.  
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Figure 3.3: Sample size estimates for the microarray database.   The curved lines 
indicate the number of minimum required samples (x-axis) statistically powered (90%) to 
detect fold changes (legend) in a particular proportion of the gene probes (y-axis). Variability 
was estimated from healthy controls in the GSE29463 study [168]. FC=fold change (i.e. size 
effect), alpha= False discovery rate (FDR) adjusted Type-I error (𝛼).  

 

In Figure3.3, the sample size estimates for fold-change=2 and 1.5, and 

FDR=0.01 and 0.05 are presented. According to the current analysis, at least 

10 samples are sufficient (90% statistically powered) to detect at least 2-fold 

change in gene expression of at least 96% of the gene probes on the 

microarray; and the proportion of detectable gene probes increases to 98% 

with 20 samples (Figure3.3, red curve). Similarly, 20 samples are sufficient 

to detect more stringent effects (fold- change=1.5, FDR=0.01) in at 90% of 

the gene probes on the array.  

 

In the training data (where most primary analyses were conducted), the 

sample sizes ranged between n=18 (very severe pneumonia) and n=120 
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(non-pneumonia controls) cases (Table3.1).  According to the current 

sample size analysis (Figure3.3), 18 samples are statistically powered (90%) 

to detect at least 1.5-fold change or 2-fold change (FDR<0.05) in at least 

90% or 97% (respectively) of the gene probes on the microarray. Together, 

this analysis suggests that the available database resources are adequately-

powered to address the primary objectives of this thesis. In the next section, 

technical variations in the raw databases were investigated. 

 

3.1.3.2 Pre-processing of raw data  

3.1.3.2.1 Why raw data pre-processing is required? 
Microarray raw data points are not informative due to non-biological (i.e 

hybridization) variations across the array [129]. As illustrated in Figure3.4, 

the variability of raw data expression profiles is higher even within the same 

study group (very severe pneumonia samples in the training sample).  To 

normalise the unwanted variations, raw data pre-processing [147, 339] is 

often mandatory (next section). 

 
Figure 3.4: An illustration of sample variability before and after data pre-processing.   
This plot is based on gene expression signals for samples with very severe pneumonia in 
the training database (n=20). 

3.1.3.2.2 Selection of appropriate algorithm for raw data pre-processing 
Raw microarray data points are confounded by technical variations, which 



Chapter 3: Data characteristics 

 107 

require pre-processing (background correction, normalisation, transformation 

and summarization of probe-specific data) [182]. While many statistical 

algorithms exist, careful selection of an appropriate algorithm is equally 

important. Notably, many algorithms require expression data for mismatch 

probes, which are not included in the design of the microarray platform 

applied in this thesis (Affymetrix HGU219)[166]. 

 

To select the most appropriate pre-processing method, two widely applied 

algorithms that do not require mismatch probes were compared graphically 

(Figure3.5): (i) RMA1 by Irizarry, et al.(2003)[147] and VSNRMA2 by Huber, 

et al.(2002)[146]. While both methods apply median polish summarization, 

the key steps (background, normalisation and transformation) are different. 

Moreover, Irizarry et al. (2006) noted that the accuracy/precision 

(bias/variance) trade-off is driven mostly by background correction[181].  

 

In all the three graphical methods, good performance is measured by the 

stability of the curves.  Using these criteria, a better pre-processing algorithm 

should have: 

(i) Constant variance at different mean values (Figure3.5a),  

(ii) No correlation (i.e. r≈0) between pairs of randomly selected gene 

features (i.e.  probe sets represeting genes  from functionally 

independent pathways) regardless of their variance (Figure3.5b), 

(iii)  Lower absolute rank deviation (ARD) (Figure3.5b). Briefly, ARD is 

                                              
1 RMA=Robust Multi-array Average 
2 VSNRMA=Variance stabilisation normalisation (VSN) with median polish 
summarization as in the RMA method   
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the between-sample standard deviation (SD) for the gene 

expression values sharing the same rank across gene 

probes[175]. 

 

As shown in Figure3.5, the RMA algorithm was consistently associated with 

more stable results than the VSNRMA algorithm. In particular, while the 

distributions of variance against mean (Figure3.5a) were similar, the RMA 

method was associated with more stable correlation and ARD 

values(Figure3.5b-c). Similar results were observed in the validation data 

set, and the RMA algorithm was selected. In the next section, I investigated 

the presence of batch-effect variations beyond raw data pre-processing.
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Figure 3.5: Performance assessment of raw data pre-processing methods (RMA and 
VSNRMA) in the training data.   (a) Per gene probe standard deviation (y-axis) against 
ranked mean values (x-axis). (b) Correlation between randomly selected pair of gene probes 
(y-axis) against the mean of their standard deviations. (c) Absolute rank deviation (ARD), 
which is between the samples standard deviations of gene expression values sharing the 
same rank across the gene features[175]. 
  



Chapter 3: Data characteristics 

 110 

3.3.1.1 Assessment and correction of batch effects variations 
Batch-effect variations come from several data handling sources including 

differences between personnel, laboratory conditions, array platforms and 

time of the experiment [195]. However, raw data pre-processing algorithms 

are often not adequate to remove batch-effect variations [150, 195, 340]. In 

this study, the microarray experiment was conducted in two batches, 447 

samples in 2013 and 71 samples in 2014, which required investigation. The 

second batch was particularly added to minimise demographic data 

imbalances between the study groups.  

 

To assess the batch-effect variations, principal component analysis (PCA) 

was applied to identify unsupervised samples clusters. To account for the 

biological variations, gene expression profiles for the negative control probes 

(which are designed to remain constant under different biological conditions) 

were applied in this analysis. As shown in Figure3.6, batch-effect variations 

were observed in both the training (Figure3.6a) and validation (Figure3.6c) 

datasets beyond raw data pre-processing. 

 

To remove the unwanted batch-effect variations, ComBat normalisation 

algorithm was applied [195, 196]. Briefly, ComBat is a Bayesian data 

standardisation algorithm, which empirically estimates parameters for the 

location-scale (l-s) model using normal and inverse gamma distribution 

priors. While several batch-effect correction algorithms exist[341], ComBat is 

robust to small sample batches and already implemented in the sva 

Bioconductor package[195]. Here, the ComBat algorithm successfully 



Chapter 3: Data characteristics 

 111 

removed the batch-effect variations in both the training (Figure3.6b) and 

validation (Figure3.6d) data sets. 

 

To assess whether Combat was not overcorrecting, a sensitivity analysis 

was conducted using randomly simulated batches (within Batch1 of the 

training data). Unlike with the real batches, sample clustering for the 

randomly generated batches remained unchanged before (Figure3.6e) and 

after (Figure3.6f) Combat adjustment, which reassured its effectiveness. 

Together, this analysis highlights the challenge of batch-effect variations, 

which should be avoided by study design or at least investigated beyond 

data pre-processing. In the next sections, outliers were investigated. 

Figure 3.6: Identification and normalisation of batch effect variations.   The figure 
panels show sample clustering before (row1) and after (row2) batch effect correction in the 
training (a-b) and validation (c-d) data. Sensitivity analysis used randomly simulated 
batches within the Batch1 of the training data (e-f). 
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3.3.1.1 Investigation of outliers  
Outliers are samples that deviate from the global (abnormal samples) or 

group-specific (misclassified samples) distributions. These can cause 

deleterious effects on statistical inference and machine learning approaches 

such as (i) reduced statistical power, (ii) biased estimates, (iii) violation of 

normality assumptions or (iv) over-fitting of models[152, 342].  

 

To detect the suspected global outliers, the arrayQualityMetrics algorithm in 

R Bioconductor [151, 343] was applied before and after data pre-processing 

(Figure3.7). At the time of this analysis, six metrics (more details in Chapter 

2) involving the relative distribution of expression signals, the distance 

between the arrays, and the absolute quality of each sample were 

implemented. While all the metrics were applicable to the raw database, only 

three were applicable to the pre-processed  database. Here, samples that 

were detected by at least two-third  of the applicable methods in the raw (4/6) 

or  pre-processed (2/3) databases were eliminated (respectvely) as outliers 

(Figure3.7). 

 

As shown in Figure3.7, 15 outliers were detected in the training data. Of 

them,  8 were detected in the raw database, and 7  after data pre-

processing. However, using the same criteria, no outlier was detected in the 

validation data set. Subsequently, 345 and 158 samples were analysed in 

the training and validation data sets, respectively (Figure3.7). In the next 

section, I applied the Y-linked genes to validate the sex variable (gender 

analysis). 
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Figure 3.7: Detection of outliers in the training and validation data sets, respectively.   
Outliers were detected sequentially in the raw and pre-processed databases using the 
arrayQualityMetrics package14, 23 
 

 

3.3.1.1 Gender analysis: Molecular identification of potentially sex-
misclassified samples  

In vertebrates, the Y chromosome is a sex-determining region of the DNA 

[197], and a powerful molecular signature for classifying sex phenotypes 

(male or female). To further assess the quality of the existing data resources, 

this property was applied to validate the sex variable labels (gender analysis) 

in the demographic database. In particular, an expression signature of the Y-

linked genes (n=65) was subjected to principal component analysis to 

identify suspicious samples (Figure3.8).  
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Figure 3.8: Gender analysis.    Principal component analysis visualisation of samples 
using 65 Y-chromosome specific genes  
 

As shown in Figure3.8, the Y-linked signature clearly distinguished between 

the male and female samples in both data sets. Notably, only 3(<1%) 

samples (one male and two females) were potentially misclassified in the 

training data, which suggest the quality of the current database. Further, 

these sample labels were consistent with the reference database in The 

Gambia, suggesting a data collection error (not data entry), or other 

unexplained factors. Unlike in the previous section, the suspicious samples 

were retained for further investigation since sex is neither the main outcome 

nor a serious confounder (Table3.3). To minimise false discoveries due to 

multiple testing, non-informative or redundant gene probes were eliminated 

(next section).   
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3.3.1.1 Filtering for non-informative or redundant gene probes  

While a whole blood transcriptome provides a comprehensive approach for 

investigating the systemic pathway responses and candidate biomarkers[71, 

123], not all the genes are relevant to every disease[125]. Further, the 

analysis of high-throughput data often suffers from the “curse of 

dimensionality” (i.e. analysing more variables than sample sizes) including 

false discoveries due to multiple testing[71], and feature selection challenges 

in machine learning[344-346]. In this thesis, the HGU219 array platform has 

analysed 49386 variables (gene probes) using 345 samples in the training 

database. 

 

To mitigate the potential for false discoveries due to multiple testing, non-

informative gene probes were eliminated prior to differential gene expression 

analyses[153]. Of the 49386 gene probes, 32677 (66%) were eliminated 

using the following non-specific joint criteria (Figure3.9):  

(i) Lack of annotation (i.e. ENTREZID), 

(ii)  Low signal intensity: In each sample i, the threshold 𝐶𝑖 =

𝑀𝑒𝑑𝑖𝑎𝑛𝑖 + 2 ∗ 𝑀𝐴𝐷𝑖  was applied; where Median and MAD are the 

sample median and “median absolute deviation” values 

(respectively) estimated from the expression values across the 

negative control gene probes. Thus, gene probes with expression 

values less than the Ci threshold in at least 5% of the samples 

were eliminated.  

(iii) Low variability: coefficient of variation (CV)<10%.  
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However, the microarray technology assay often applies multiple gene 

probe sets to investigate a single gene. To remove the redundant gene 

probes among the filtered gene probes (m=16709), a maximum mean 

filter was applied. In particular, a gene probe with the maximum mean 

across all the samples was retained for each gene. Together, 11037 gene 

probes representing unique genes were selected for subsequent 

differential expression analyses (Chapter 5).  

 
Figure 3.9: Non-specific filtering of gene probes in the training data prior to 
differential gene expression. 

3.1.4 Molecular phenotyping of samples 
This section investigates the association between molecular signatures and 

clinical phenotypes. 

3.3.1.1 Prediction of samples with suspected bacterial septicaemia using 
the neonatal sepsis classifier [136]  

This thesis investigates the hypothesis that systemic pathway responses 

underpin the development of severe pneumonia outcomes. Systemic 

molecular biomarkers are powerful resources for predicting disease 

outcomes [347]. To assess the association between pneumonia severity and 

bacterial septecaemia (blood infection), I applied a validated 52-gene 

neonatal sepsis classifier by Smith, et al., (2014), [136]  
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Briefly, the sepsis classifier (above) applies a transcriptomic signature of 

pathway biology (innate, adaptive and metabolic) derived genes (m=52) to 

identify an optimal threshold for predicting the class (positive or negative) of 

new samples using a ROC analysis-based classification algorithm [348]. 

Using this classifier on the pneumonia database (Table3.2), it was predicted 

that 53.6%(185) of the training sample (n=345) had bacterial sepsis. Notably, 

the prevalence of septicaemia increased with pneumonia severity from 

67.8% in mild pneumonia cases to 100% in very severe pneumonia cases 

(p-value<0.001), and differed significantly between the (i) non-pneumonia 

controls and mild pneumonia cases (p-value<0.001), (ii) mild and severe 

pneumonia cases (p<0.00) and (iii) mild and very severe pneumonia cases 

(p-value<0.003), but not between the severe and very severe pneumonia 

cases (p=0.215).  

Diagnostic tools  

Control Mild Severe Very Severe 
P-value 

N n(%) N n(%) N n(%) N n(%) 
 

N 120 90 117 18 
 

Sepsis classifier 120 
2 

(1.7%) 90 
61 

(67.8%) 117 
104 

(88.9%) 18 
18 

(100%) 
<0.001 

Chest x-ray 120 
0 

(0.0%) 57 
50 

(87.7%) 113 
102 

(90.3%) 18 
17 

(94.4%) 
<0.001 

Blood culture 
results (all) 119 

19 
(16.0%) 90 

12 
(13.3%) 117 

17 
(14.5%) 17 

2 
(11.8%) 0.94 

Blood culture 
results (No 
contaminants) 108 

8 
(7.4%) 88 

10 
(11.4%) 114 

14 
(12.3%) 17 

2 
(11.8%) 0.66 

PCR results 120 
38 

(31.7%) 90 
51 

(56.7%) 117 
66 

(56.4%) 18 
12 

(66.7%) 
<0.001 

Table 3.2: Molecular and clinical phenotypes in the training data.  The table shows 
stratified (by pneumonia severity) proportions of samples with (i) suspected bacterial 
septicaemia (based on Sepsis classifier), (ii) significant chest-x-ray pathology (Chest x-
ray) and (iii) blood culture confirmed results with (all) and without (no contaminants) 
samples labelled as contaminants.  N=Total number of samples analysed with a pneumonia 
study group (denominator); n=number of samples with positive outcome. P-values were 
generated from Fisher’s exact test for associations. 
 

On the other hand, while pneumonia severity was significantly associated 

with significant chest x-ray pathology and PCR positivity (P-value<0.001, no 

significant differences were observed between the mild and severe or very 
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severe pneumonia cases (p-value>0.5). Further, BloodCulture-confirmed 

results lacked sensitivity, and there was no significant association with 

pneumonia severity (p-value>0.5). In particular, only 52 samples (14.58%) 

had blood-culture confirmed positive results including Streptococcus 

pneumonia (n=14; 4.08%), Staphylococcus aureus (n=4; 1.17%), 

contaminants (n=16;4.66%), and other organisms (n=16; 4.66%) such as 

Bacillus species (n=5), Micrococci species (n=6), non-typeable Haemophilus 

influenzae (n=1), Streptococcus viridan (n=3) and Streptococcus species 

(n=1). Nevertheless, it is worth noting that the higher prevalence of 

Streptococcus pneumonia isolates is consistent with several aetiology 

studies worldwide [41, 50, 349, 350]. 

 

In summary, these findings highlight the (i) limitations of the existing standard 

diagnostic tools [55], (ii) the important contribution of bacterial septicaemia in 

the development of serious pneumonia outcomes and (iii) the potential of 

systemic molecular signatures for clinical stratification of pneumonia cases 

(investigated further in Chapter 6). To gain an overview of the training whole 

blood transcriptome, unsupervised clustering approaches were applied (next 

section). 

 

3.3.1.2 Identification of inherent sample clusters (unsupervised 
clustering) 

Class discovery is among the main objectives of microarray analyses, where 

unsupervised approaches are applied. In the previous sections, principal 

component analysis (PCA) has revealed sex (Figure3.8) and batch-effect 

(Figure3.6) related sample clusters, respectively. Here, a similar approach 
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(unsupervised learning) was applied to assess the overview structure of the 

training data transcriptome. In particular, this analysis assessed whether 

sample clustering reflected study outcomes (pneumonia severity) or 

unaccounted confounders.   

 

To identify the dominant and stable clusters, k-means clustering algorithm 

[351] coupled with bootstrap resampling[225] was applied on the most 

variable genes (m=76) with at least 30% coefficient of variation (CV) [352] 

across all the samples. To estimate the cluster stability, the Jaccard 

coefficient[225] was applied. Briefly, this coefficient estimates the proportion 

of bootstrap samples in which the original clustering is reproduced, and 

mathematically ranges between 0% (no stability) and 100% (perfect stability). 

To visualise the sample clusters, the T-SNE (t-distributed stochastic neighbor 

embedding) dimensionality reduction algorithm [212] was applied 

(Figure3.10). 
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Figure 3.10: Unsupervised clustering of samples in training data (n=345).   Data 
visualisation is based on the scores derived from the T-SNE algorithm, which is non-linear 
and more powerful than the principal component analysis (PCA) [212] (details in chapter2). 
Each dot represents a sample annotated by pneumonia severity state (legend) and 
predicted septicaemia (Triangles=Positive, stars=negative).  

 

Here, I assessed the stability of different numbers of clusters between two 

and ten. Among them, two k-mean clusters (222 samples in cluster1 and 123 

in cluster2) were associated with the best stability (Jaccard coefficient 

=99.3% and 0.98.7% respectively). As shown in Figure3.10, this data 

partitioning was significantly associated with pneumonia severity and the 

bacterial septicaemia (using the sepsis classifier), respectively (P-

value<0.001). In particular, the cluster1 was associated with better clinical 

outcomes representing 100%(120), 64%(58/90), 33%(39/117) and 

28%(5/18) of the non-pneumonia controls, mild, severe and very severe 

pneumonia cases (respectively). Similarly, 100%(160) and 34%(62/185) of 

the samples with negative and positive septicaemia predictions (respectively) 

were also associated with cluster1. Firstly, these findings highlight the quality 

of the central data resources since the clustering reflects the study 
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hypothesis (i.e. not major unaccounted confounding factors). Further, the 

association between the unsupervised clusters and bacterial septicaemia 

suggest the potential involvement of systemic responses in the development 

of severe pneumonia outcomes, and highlights the potential of whole blood 

transcriptomes in the clinical stratification of pneumonia cases. In the next 

section, potential epidemiological challenges were investigated.  

 

3.1.5 Epidemiological considerations  

3.3.1.3 Identification of potential confounders in the training data 
A confounder is nuisance factor that is associated with both the exposure 

and outcome variable [353, 354]. If not accounted for, the imbalances in 

these factors often generate misleading conclusions. In this study, we can 

loosely define pneumonia severity as exposure, and cellular and molecular 

responses as the outcomes. While the study groups were sufficiently 

powered (Figure3.3, Table3.1) and matched by study design, residual 

confounding is inevitable especially in observational studies [355]. Therefore, 

potential confounders were investigated in the training data where most of 

the cellular and molecular pathway responses (primary objectives) were 

investigated to identify key covariates for subsequent analyses. To identify 

the potential confounders, this section investigated the associations between 

pneumonia severity (exposure), and the clinical and demographic variables  

 

As shown in Table3.3, the distributions of sex, season and Vitamin A 

supplementation were similar between the study groups (P-value>0.05). 

However, age, nutrition status, sample batch and antibiotic usage 

significantly (P-value<0.05) differed between the pneumonia severity groups 
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(i.e. potential confounders). In particular, younger children, poor nutrition 

status and antibiotic usage were associated with worse clinical outcomes. 

Together, this analysis has identified age, nutrition status, and antibiotic 

usage as potential covariates for subsequent analyses. To investigate 

further, the potential confounders were assessed molecularly (next section).  
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Factor Control Mild Severe Very Severe P-value 

N 120 90 117 18  

Demographics 

Age in months      

Median (IQR) 
15.5  
(7.8, 23.2) 

14.8 
 (10.0, 24.1) 

14.1  
(7.7, 23.2) 

7.3  
(5.6, 12.2) 0.007 

Age groups (months)     0.050 

<6  18 (15.0%) 7 (7.8%) 22 (18.8%) 7 (38.9%)  

6-11 29 (24.2%) 23 (25.6%) 25 (21.4%) 6 (33.3%)  

12-23 47 (39.2%) 37 (41.1%) 45 (38.5%) 5 (27.8%)  

24-59 26 (21.7%) 23 (25.6%) 25 (21.4%) 0 (0.0%)  

Gender     0.66 

   Female 49 (40.8%) 37 (41.1%) 52 (44.4%) 10 (55.6%)  

   Male 71 (59.2%) 53 (58.9%) 65 (55.6%) 8 (44.4%)  

Season     0.44 

   Dry 68 (56.7%) 48 (53.3%) 55 (47.0%) 8 (44.4%)  

   Wet 52 (43.3%) 42 (46.7%) 62 (53.0%) 10 (55.6%)  

Sample batches     <0.001 

   Batch1 111 (92.5%) 89 (98.9%) 114 (97.4%) 14 (77.8%)  

   Batch2 9 (7.5%) 1 (1.1%) 3 (2.6%) 4 (22.2%)  

Nutrition status 

Under weight (Weight-for-Age)      

WAZ score, mean (SD) -0.8 (1.1) -1.2 (1.2) -1.5 (1.4) -0.9 (1.5) <0.001 

Moderate underweight (WAZ<-2) 13 (10.8%) 24 (26.7%) 48 (41.0%) 5 (27.8%) <0.001 

Severe underweight (WAZ<-2) 1 (0.8%) 5 (5.6%) 12 (10.3%) 1 (5.6%) 0.018 

Stunting (Height-for-Age)      

HAZ score, mean (SD) -0.6 (1.2) -0.7 (1.1) -0.8 (1.8) 0.2 (1.4) 0.042 

Moderate stunting (HAZ<-2) 11 (9.3%) 9 (10.1%) 23 (19.7%) 1 (5.6%) 0.055 

Severe stunting (HAZ<-2) 1 (0.8%) 2 (2.2%) 7 (6.0%) 0 (0.0%) 0.096 

Wasting (Weight-for-Height)      

WHZ score, mean (SD) -0.6 (1.0) -1.1 (1.3) -1.4 (1.7) -1.3 (1.8) <0.001 

Moderate wasting (WHZ<-2) 10 (8.5%) 19 (21.3%) 34 (29.1%) 6 (33.3%) <0.001 

Severe wasting (WAZ<-3) 0 (0.0%) 7 (7.9%) 16 (13.7%) 3 (16.7%) <0.001 

Clinical values 

HIV positive   4 (6%) 1 (11%) 0.59 

Iron supplementation   25 (28%) 3 (23%) 0.71 

Vitamin A (within 6 months) 59 (51.3%) 50 (56.8%) 51 (49.0%) 10 (58.8%) 0.68 

Antibiotic usage (within 2 weeks) 2 (1.7%) 16 (18.0%) 32 (29.6%) 7 (41.2%) <0.001 

Table 3.3: Demographic and clinical characteristics of the training sample (Fajara).   
Reported P-values are for Chi-square / Fisher’s exact test (categorical variables) or student 
t-test/Mann-Whitney test (continuous variables). WAZ=weight-for-Age Z score, 
WHZ=weight-for-height Z score, HAZ=height-for-age Z score, IQR=interquartile range, 
SD=standard deviation. Potential confounders are highlighted in RED colour. 
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3.3.1.4 Identification of potentially confounded genes 
In Table3.3, age, nutrition status, antibiotic usage and batch-effect were 

associated with pneumonia severity (exposure). To further investigate these 

potential confounders and identify the key covariates for subsequent 

analyses, this section assessed the associations with the study outcomes 

(gene expression). For each factor, the numbers of potentially confounded 

genes were estimated (Figure3.11b). 

 

Firstly, I estimated the numbers of differentially expressed genes (DEGs) 

before (pre) and after (post) adjusting for each potential confounder. In each 

analysis, the empirical Bayes moderated t-test (using the limma package 

[226]) was applied to identify the DEGs between the non-pneumonia controls 

and each pneumonia severity group, respectively. As illustrated in 

Figure3.11a, potentially confounded genes were exclusively significant 

(FDR<0.05, |FC|≥2) before (positively confounded) or after (negatively 

confounded) adjusting for a particular covariate (i.e. age).  

 

In overall, negative confounding (i.e. masked genes, blue colour) was more 

predominant than false positive (red colour) discoveries (Figure3.11b). 

Comparatively, age (n=216) was the strongest confounder followed by 

antibiotic usage (n=89) and nutrition status especially stunting (n=82). 

Potentially, these confounders may undermine the systemic pathway 

responses in very severe pneumonia where more participants were younger, 

malnourished and associated with more antibiotic usage (Table3.3). 

Therefore, it is important to adjust for these variables in subsequent 

analyses.  
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However, while all the nutrition status variables (stunting, under-weight and 

wasting) were identified as potential confounders, these indices are 

correlated, and not ideal to be adjusted in the same model (i.e. to avoid 

multicollinearity). Instead, principal component analysis (PCA) was applied to 

transform the nutrition status indices into uncorrelated principal component 

(PC) scores. Here, the first principal component, which captured 66% of the 

variability in data, was selected as surrogate covariates for nutrition status. 

Together, this analysis has identified age, antibiotic usage and nutrition 

status as key covariates for subsequent analyses. In the next section, I 

investigated the presence of effect-modification. 

 
Figure 3.11: Numbers of potentially confounded genes in the training data.   (a) An 
illustration of confounded genes: Gene1 and Gene2 are not confounded because their 
significance does not depend on the confounder. On the other hand, Gene3 and Gene4 
were confounded negatively (masked by the confounder) and positively (false positive 
discovery driven by the confounder) respectively.(b) Number of genes of positively (red) and 
negatively (blue) confounded genes (y-axis) by each potential confounder (x-axis). 
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3.3.1.1 Identification of effect-modified genes 
Effect modification is an epidemiological term for stratification, which occurs 

when an exposure (i.e. pneumonia severity) has different (strength or 

direction) outcomes (i.e. gene expression) across the strata of a third 

variable (i.e. age groups) [356]. For example, a gene can be up regulated in 

males but down regulated in females or strongly up-regulated in older 

children but not significant in infants. While confounding is always a nuisance 

factor creating false discoveries, effect modification provides important 

insights into subgroup variations (i.e. magnitude and direction of 

association). To further characterize the existing data resources, this section 

investigated the number of effect-modified genes (EMGs) across the strata of 

clinical and demographic variables including the potential confounders 

(Figure3.12).  

 

To identify potentially modified genes, empirical Bayes moderated F-test 

(limma package [226]) was applied to test for significant interaction between 

each potential effect modifier (i.e. age) and pneumonia severity. For genes 

with significant interaction terms (P-value<0.05), subgroup-specific contrasts 

were tested (empirical Bayes moderated t-tests) to identify differentially 

expressed genes (FDR<0.05, FC≥2) between non-pneumonia controls and 

severe pneumonia groups (respectively). As illustrated in Figure3.12a, 

effect-modified genes (i.e. Gene4 and Gene5) had significant interaction 

(column2) and different conclusions across the strata (columns 3 and 4). 
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Figure 3.12: Numbers of effect-modified genes in the training data.   An illustration of 
effect modified genes: Gene1 did not pass the interaction test (no subgroup effects were 
tested) while the effects of Gene2 and Gene3 did not differ between the subgroups, hence 
not significantly modified. On the other hand, Gene4 and Gene5 passed the interaction test 
and were exclusively significant in one subgroup, hence significantly modified. Total number 
of effect-modified genes across the clinical and demographic strata when severe pneumonia 
groups were compared to non-pneumonia controls, respectively. For each variable (x-axis), 
the total numbers of effect-modified genes are shown on top of the stratum-specific bars: 
DEGs=differentially expressed genes (FDR<0.05, |FC|≥2) 

 
 

In overall, clinical phenotypes were associated with more effect-modified 

genes than the potential confounders (Figure3.12b). Notably, septicaemia 

(predicted by the sepsis classifier [136], Table3.2) had the highest number of 

effect-modified genes (m=1010). At the gene analytic level, pneumonia 

cases with suspected bacterial septicaemia (blood culture, PCR and sepsis 

classifier) were associated with stronger systemic molecular responses. 

These findings support the central hypothesis that systemic responses 

underpin the development of severe pneumonia outcomes and further 
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suggest the importance of bacterial aetiology in serious pneumonia 

outcomes (discussed more in Chapter6). 

 

Consistent with the confounder analysis, age (m=196) and antibiotic usage 

(m=234) were associated with the highest numbers of effect-modified genes 

among the potential confounders. Notably, order children and antibiotic 

usage (especially down-regulated genes) were associated with stronger 

systemic molecular responses. Together, these findings provide an insight 

into the gradient of the molecular responses in severe pneumonia, further 

highlighting the importance of adjusting for the potential confounders in 

subsequent analyses. To gain more insight into the age dependency, age 

analysis was conducted (next section). 

 

3.3.1.2 Characterization of age-dependent genes among the non-
pneumonia controls (age analysis) 

In the previous sections, age has emerged as a strong confounder 

(Figure3.11) and effect-modifier (Figure3.12). At the gene analytic level, 

older children were associated with enhanced systemic responses in 

pneumonia than the infants.  To gain more insights into the ontogeny of 

systemic pathway responses, age-dependent genes were characterised.  To 

account for the potential confounding effects, this analysis was restricted to 

the non-pneumonia controls, and adjusted for nutrition status. In particular, 

empirical Bayes moderated linear regression analysis approach (limma 

package) was applied to identify the genes that were associated (FDR<0.05) 

with age (continuous scale) while adjusting for the potential confounding 

effects of nutrition status (Figure3.13).   
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Figure 3.13: Characterisation of age-dependent genes among the non-pneumonia 
controls.   (a)-(b) Scatter plots showing the association between the up (a) or down (b) 
regulated genes with increased age (x-axis). Each dot represents a sample; and the y-axis 
represents the sample-specific mean expression value across the up (a) or down (b) 
regulated genes: m=number of genes. (c) Enriched KEGG pathways associated with the up-
regulated gene in (a). Hits: The numbers of up-regulated genes that were enriched on each 
pathway. FDR=Multiple testing adjusted p-values (Benjamini–Hochberg (BH) procedure[238] 
) from the hypergeometric test.  

 

In total, 344 genes (up-regulated=236, down-regulated=108) were 

significantly associated with age (FDR<0.05) among the non-pneumonia 

controls (Figure3.13a-b). To assess the molecular functions associated with 

the age-dependent gene sets, the STRING database for protein-protein-

network analysis [280] was applied.  While the down-regulated genes 

(m=108) were not associated with significant pathways, the up-regulated 
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genes (m=236) were predominantly associated with elevated basal levels of 

the pro-inflammatory systemic innate responses according to the KEGG 

pathway database (Figure3.13c). Similarly, Burl et al. (2011) also observed 

age-dependent maturation of the pro-inflammatory cytokine responses 

among Gambian infants (n=120) [357].  While natural developments of the 

host system partially explain this observation, other contributing factors may 

include (i) underlying asymptomatic diseases and (ii) sequelae of prolonged 

exposure to hazardous chemicals or infections. Together, these findings 

suggest the potential of exploring age-dependent systemic responses 

towards the implementation of personalized clinical management of 

pneumonia cases in resource-limited settings.  

 

3.4 Discussion  

This chapter has introduced, evaluated and curated the central data 

resources for this thesis to ensure data quality and facilitate subsequent 

analyses. Briefly, the central data resources include the microarray whole 

blood transcriptome and the corresponding phenotypic databases 

(demographic, clinical, microbiology). Whole blood is rich and readily 

accessible tissue for clinical investigations, and its application in genome-

wide investigations (i.e. transcriptomics) has become a mainstay of 

comprehensive genomic research and future translation medicine for a wide 

range of diseases including cancer, infections and autoimmunity [71, 102, 

123, 204, 358]. Therefore, these data resources provide a powerful and 

innovative approach for gaining deeper insights into the pathogenesis of 

pneumonia, and present an opportunity for future clinical stratification and 
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treatment modalities of pneumonia cases. However, inferring from 

transcriptomic data has several limitations, which require careful 

considerations from study design to the final data analysis [129, 147, 182, 

359]. Here, the strengths and limitations of the existing resources are 

highlighted. 

 

3.1.6 Strengths 
To detect meaningful biological insights, an appropriate study design and 

sufficient sample sizes are fundamental. In this study, a matched case-

control study design was implemented to account for the potential 

confounding effects of age, sex, season and location. Further, while many 

genomic studies are underpowered (i.e. due to financial or ethical 

constraints, or lack of appropriate sample size estimates[68, 71]), the original 

study design was sufficiently powered using conservative approaches (i.e. 

the Bonferroni correction[170]). Further, sample size reassessment 

suggested that the existing data resources are sufficiently powered to 

address the primary objectives; and to detect meaningful biological effects 

even in subgroup analyses.  

 

Further, another limitation with high-throughput data is lack of reliable 

phenotypic data [57, 68, 70, 71].  Here, the whole blood transcriptome has a 

comprehensive database for metadata records including clinical, 

demographic and laboratory phenotypes, which was subjected to intensive 

data-cleaning to ensure data quality. Notably, missing data were very 

minimal especially among the key variables for addressing primary 

objectives of this thesis. Further, gender analysis identified minimal 
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suspicious samples (<1%), which reassured the quality and completeness of 

the available data resources. Furthermore, the application of the sepsis 

classifier [360] to molecularly predict samples with bacterial septicaemia 

provides a powerful approach for data cleaning and addressing the primary 

objectives.  

 

To enhance the quality of the whole blood transcriptome and minimise the 

potential confounding effects, several statistical approaches were applied to 

eliminate the non-biological variations in the data. Firstly, to account for the 

technical  (i.e. hybridization) variations across the array[145], an appropriate 

algorithm for the pre-processing of raw data was carefully selected; and 

potential outliers were eliminated. It is worth noting that the design of the 

array platform for this database (HGU219) does not include the expression 

data for the mismatch probes.  Therefore, while several pre-processing 

algorithms such as MAS, GCRMA, MBEI (or Li & Wong) exist[339], here the 

Robust Multi-Array (RMA)[147] and variance stabilizing normalization (VSN) 

algorithms were applicable.  In particular, the RMA [147] algorithm 

empirically outperformed VSN in both the training and validation data, and 

successfully normalised the unwanted sample variations.  

 

However, the current whole blood transcriptome was processed in two 

sample batches; and raw data pre-processing algorithms are not optimised 

to eliminate batch-effect variations [340]. While this problem is better 

prevented at the study design stage, here a computational solution (comBat 

algorithm) was applied and successfully resolved the unwanted batch-effect 
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variations[195]. While several batch-effect correction algorithms such as 

DWD weighted discrimination (DWD), surrogate variable analysis (SVA), 

Mean-centering (PAMR) and Geometric ratio-based method (Ratio_G) exist, 

ComBat remains the most successful algorithm [150]. Importantly, it is 

robust to small sample sizes and readily available in an R Bioconductor 

environment [195].  

 

While appropriate study design is vital for minimizing confounding effects 

[353, 354, 356], it is equally important to investigate and account for residual 

confounding during analyses. On one hand, it is very challenging to account 

for several confounders during sample collection. On the other hand, residual 

confounding is almost inevitable especially in observational studies [361]. 

Here, potential confounders and effect-modifiers were comprehensively 

investigated to identify key covariates for subsequent analyses (age, nutrition 

status and antibiotic usage). Notably, age-dependencies were consistently 

observed in confounder, effect-modification and age analyses, and the 

findings were consistent with previous observations in the same population 

[357]. While age-dependencies present a confounding challenge in the 

investigations of systemic responses, these findings present an opportunity 

for future personalized clinical interventions in pneumonia.   

 

Further, effect-modification analysis revealed systemic response differences 

across the demographic and clinical strata.  Notably, children with bacterial 

septicaemia (i.e. blood culture, PCR and the sepsis classifier) were 

consistently associated with stronger systemic responses in severe 
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pneumonia. These findings suggest that the data structure reflect the 

intended study objectives (i.e. not unaccounted confounders), and they 

support the central hypothesis that systemic pathway responses underpin 

the development of severe pneumonia states.  Clinically, the highlighted 

importance of bacterial aetiology presents an opportunity for host-based 

biomarkers and treatment modalities in pneumonia cases (Chapter 6).  

3.1.7 Limitations  
Despite the highlighted strengths above, these data resources have some 

limitations. Firstly, it is worth noting that this is an observational study design, 

which is susceptible to potential confounders and has limited interpretations 

[355].  At the individual level, the samples were collected at a single time 

point (i.e. cross-sectional study design). Consequently, this database has 

lacked vital follow up data such as patient outcomes. Preferably, a 

longitudinal study design would enable the proper investigations of causality 

and prognostic biomarkers. Further, while antibiotic usage was identified as a 

key confounder, this data was based on the reported testimony. Potentially, 

this approach is susceptible to recall-bias (i.e. due to loss of memory) [362-

364] and could be misleading (i.e. paracetamol). Furthermore, while batch-

effect variations were normalized computationally, it is important to process 

all the samples in a single experiment.  

3.1.8 Conclusion  
In summary, this chapter has identified the strengths and limitations, and 

enhanced the quality of the available data resources to facilitate subsequent 

analyses. In summary this thesis has adequate and high-quality data 

resources for primary analyses and independent validations.
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Chapter 4:  Computational deconvolution analysis of 
cellular responses using whole blood transcriptomes  

4.1 Introduction 

This chapter investigates systemic cellular pathway responses associated 

with pneumonia severity. Whole blood is a complex mixture comprising a 

wide range of immune cell types, which vary in proportions between samples 

of different phenotypes. To quantify the variations in the proportions of 

immune cell types (cellular responses) in severe pneumonia, here I applied a 

computational approach called computational deconvolution analysis 

(Figure4.1). I further sought to enhance the computational performance by 

applying a data fusion approach to derive an optimal and Integrated Blood 

Marker List (here on called IBML). IBML provides a single unified marker 

gene resource for enhanced computational deconvolution of whole blood 

transcriptomes; and was extensively applied in subsequent analyses. 

 
Figure 4.1: Quantifying of cell type-specific information from heterogeneous whole 
blood samples in transcriptomic analyses.   The biological solution (anti-clockwise) 
involves an intermediate biophysical cell-sorting step before gene expression profiling while 
the computational solution (clockwise) estimates cell type-specific information directly from 
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the whole blood transcriptome. However, many studies are oblivious (No action) of the 
cellular context of whole blood transcriptomes. 

4.2 Background  

Whole blood is rich and readily available tissue for pathophysiological 

investigations in biomedical research and clinical practice [71, 102]. Further, 

the application of whole blood samples in genome-wide profiling studies such 

as transcriptomics has become a mainstay for discovering key biological 

pathways, biomarkers and therapeutic targets for a wide range of diseases 

including infections, cancer and autoimmunity[71, 72]. However, whole blood 

samples have a complex cellularity including myeloid (i.e. neutrophils, 

monocytes) and lymphocytes (i.e. T, B cells) immune cell subpopulations, 

which usually correlate with clinical phenotypes. For example,  pneumonia is 

associated with vigorous recruitment of neutrophils to the lungs [39] and a 

decrease in the lymphocytes subpopulations[365], thereby changing their 

proportions in the blood stream[366-370]. 

 

 

Figure 4.2: White blood cell maturation (a) and normal proportions ranges (b)   The 
figure panels were copied for Riley et. al (2015) : www.aafp.org/afp, Volume 92, Number 11 
,pages: 1005-1006  [101].   

Generally, neutrophils are the most abundant white cells (Figure4.2), which 

increase or decrease in disease [39, 102, 367]. Among the peripheral blood 

http://www.aafp.org/afp
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mononuclear cells (PBMC), the relative proportion of monocytes ranges 

between 2% and 10%. Within the lymphocytes subpopulations, the relative 

proportions for T and B cells are 61- 85% and 7–23%, respectively. Further, 

the CD4+ T-cells to CD8+ T-cells ratio can vary from <1.0 to 2.0 [102-105].  

 

While whole blood transcriptomics (and similar technologies) presents a 

powerful approach for elucidating systemic host response pathways, ignoring 

the variations in sample proportions of immune cell types is both a challenge 

and a missed opportunity[73, 139, 200]. On one hand, these variations 

potentially confound downstream molecular analyses such that strong 

signals from less abundant cell types (i.e. NKs, basophils) are diluted or 

masked by signals from more abundant cell types (i.e. neutrophils). On the 

other hand, changes in cellular proportions provide an overview state of the 

immune system such as cell proliferation, differentiation or apoptosis[73]. 

Therefore, knowledge of the cellular context of whole blood transcriptomes is 

vital for streamlined analyses and accounting for potential confounding.  

 

Standard biophysical cell-sorting techniques such as magnetic bead sorting, 

Fluorescence Activated Cell Sorting (FACS) have several limitations [139, 

200, 371]. Logistically, these methods require more resources and are 

timing-consuming. Biologically, cell purification neglects the systemic view of 

the data and potentially interferes with the gene expression signals 

consequently introducing another confounding layer [139, 200, 371]. Further, 

while this thesis has laboratory measurements for cell blood counts of 

neutrophils and lymphocytes, more detailed data especially for the 



Chapter 4: Computational deconvolution analysis 

 138 

lymphocyte compartment (i.e. NK, B and T) were desirable but unfortunately 

not available. 

 

Computational deconvolution analysis has proved to be a powerful and cost-

effective approach for enumerating cell proportions directly from the 

heterogeneous whole blood transcriptomes[72, 200].  Notably, Abbas et al. 

(2009) [137], Shannon (2014) [139] and Shen-Orr et al. (2010) [372] 

successfully deconvoluted whole blood transcriptomes in the contexts of 

systemic lupus erythematosus, acute kidney allograft rejection and post-

kidney transplant, respectively. Further, the CellMix toolbox (R package) has 

compiled a comprehensive open resource comprising algorithms, expression 

signatures and marker gene lists for different immune cell types, which has 

facilitated the application of computational deconvolution analysis in whole 

blood transcriptomics [160].  

 

While expression signatures are often used in partial deconvolution analyses 

[200], marker gene lists for a given cell type are of more general use 

because they are robust to platform-specific differences [201]. However, the 

overlap between the existing marker genes lists for a given immune cell type 

is poor, presenting the end users with a selection challenge. This level of 

heterogeneity develops inconsistency and variable performance that affects 

reliability. Further, in this thesis an aggregation of all eligible markers was 

associated with reduced performance, which suggested the presence of non-

specific or noisy markers. 
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Data science integration approaches provide an opportunity for a step 

change in the assessment and optimization of these large heterogeneous 

data resources. To further enhance the computational deconvolution of 

whole blood transcriptomes, here I applied a comprehensive and unbiased 

data fusion approach to derive an optimal and integrated blood marker gene 

lists (IBML). Briefly, IBML provides a unified and optimised single application 

resource comprising highly specific immune markers from multiple marker 

gene resources (MGR), which robustly enhanced the prediction of cell type 

proportions from independent whole blood gene expression data sets.  

 

Subsequently, the IBML resource was applied to deconvolute the pneumonia 

database, which enabled the investigation of cellular pathway resources in 

severe pneumonia. In particular, this chapter addressed the following specific 

objectives: 

1. To derive an optimal integrated blood marker gene list (IBML) for 

enhanced deconvolution of whole blood gene expression data 

2. To deconvolute and characterize the cellularity (variations of sample 

proportions of immune cell types) f whole blood in pneumonia severity 

3. To identify cell type-specific molecular differences associated with 

pneumonia severity 

4.3 Results  

4.1.1 Optimisation of an integrated blood marker gene list (IBML) 
Briefly, IBML was derived to provide a unified, reduced and optimised single 

marker gene resource (MGR) for enhanced computational deconvolution 

analysis of human whole blood transcriptomes. To achieve that, three key 



Chapter 4: Computational deconvolution analysis 

 140 

steps were involved: (i) selection of eligible markers from eligible marker 

gene resources (ii) data-driven filtering of eligible markers, and (iii) 

independent performance assessment (illustrated in Figure4.3). Details for 

each step are outlined in the subsequent subsections.  

 
Figure 4.3: Optimisation of an optimal integrated blood marker gene list (IBML) 

 

4.3.1.1 Selection of eligible markers  
In this analysis, eligible markers marker genes were selected from the 

CellMix R package [160], which has compiled comprehensive and accessible 

resources for computational deconvolution analysis. Here, we focused on 

valid human marker genes (with corresponding ENTREZIDs) for neutrophils, 

monocytes, dendritic, NK, T or B cell types.  At the time of this analysis (in 

2014), the CellMix toolbox [160] had ten MGRs comprising thousands of 

marker genes for different tissues, organs and immune cell types for different 

species including human and rat[160, 161, 200]. Here, seven eligible MGRs 

Marker gene lists in CellMix R package (n=10)

Selection of eligible marker gene lists(n=7)

Selection of eligible immune marker genes (n=3475)

IBML (n=277)

B (n=10), T(n=35), NK(n=46),Dendritic(n=9), Monocytes(n=25), Neutrophils (n=152)

Performance assessment  of IBML using  the GSE20300, GSE87301, GSE25504, 

GSE64385 data sets

Selection of immune markers with AUC=1 using  the GSE22886 data (n=807)

Validation of selected markers  using  the GSE1133 and GSE28490 data sets  (n=277)

ROC analysis
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(Table4.1) comprising 3475 immune marker genes that were associated with 

the six cell types above were selected.  To select highly specific markers for 

each cell type, ROC analysis optimisation was applied (next section).  

 

4.3.1.2 ROC analysis optimisation  
The area under the receiver-operating characteristic (ROC) curve (AUC) is a 

robust measure for predictive performance of quantitative variables on binary 

outcomes [202, 203]. Briefly, AUC values range between 0 (perfect negative 

predictor) and 1 (perfect positive predictor) where AUC=0.5 means not better 

than random discrimination. To select a reduced list of highly specific marker 

genes (i.e. IBML), AUC values associated with each cell type were 

calculated for all the eligible markers (n=3475). For each marker gene, the 

expression values of each cell type were compared against the combined 

average of the other cell types (one-versus-other comparison). 

 

To identify highly specific and robust markers, IBML markers were selected 

in two steps (selection then validation) using three independent cell-sorted 

transcriptome databases. In the first step, a total of 807 highly specific cell 

type markers (with AUC=1) were selected using the GSE22886 data set 

[156, 204]. This data was preferred because it is more comprehensive (i.e. 

has information for more cell types) and has better sample sizes than the 

other original MGRs. To independently validate the selected markers 

(n=801), the same approach (AUC=1) was applied using the GSE1133 and 

GSE28490 data sets [156, 205, 206] thereby reducing the final list in IBML to 

277 markers for human Neutrophils (152), Monocytes (25), Dendritic (9), NK 

(46), T (35) and B (10) immune cell types (Figure4.3 & Table4.1). To assess 
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the performance of IBML, independent whole blood transcriptomes were 

deconvoluted (next section). 

Marker gene 
resources 
(reference) 

Immune cell types 

B T NK Dendritic Monocytes Neutrophils 

Abbas[137] 9 10 3 31 27 16 

IRIS[204] 83 74 15 67 72 41 

HaemAtlas[358] 175 46 66 Null 185 695 

Palmer[102] 231 151 Null  Null Null 263 

Grigoryev[138] 5 30 5 Null 4 2 

VeryGene[373] 10 5 17 7 6 Null 

CDBlood[160] 1 1 Null Null 1 2 

IBML 10 35 46 9 25 152 

Table 4.1: Refined marker genes resources (MGRs).   The table shows the distributions 
of cell type-specific marker genes that were extracted from the CellMix package[160]. The 
IBML marker genes are presented in the Appendix A, and as a supplementary Excel file 
(IBMLgenes). 

 

4.3.1.3 Performance assessment of IBML 
In the previous section, I applied ROC analysis on the purified 

transcriptomes to derive IBML. To assess the performance of IBML, here I 

deconvoluted independent whole blood transcriptomes (GSE20300[137], 

GSE87301[374], GSE25504 [136] and  GSE64385 [375]), which are 

heterogeneous. In particular, these data sets were chosen because they 

have existing laboratory-measured proportions of immune cell types to 

enable direct comparison between the predicted and reference values. 

Firstly, five algorithms (DSA [371], ssKL, meanProfile and ssFrobenius) [160, 

201] were assessed, and the ssFrobenius algorithm was associated with 

the highest performance. Using that algorithm (ssFrobenius), the predicted 

sample proportions of immune cell types were directly compared with the 

existing standard values (laboratory measured) using the Pearson correlation 

coefficients (r). To identify the optimal list between the IBML and the original 

MGRs (K=7), the cell type-specific r-values were compared across the 

MGRs (Figure4.4). 
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Figure 4.4: Comparative performance assessment of IBML.   Each dot (and error bar) 
represents a mean (and standard errors) value for Pearson correlations between laboratory-
measured and computationally estimated proportions of cell types across the benchmark 
data sets. The dotted lines represent the average values across the MGRs (i.e. vertical=the 
mean number of markers; horizontal=the mean performance). 

 

Ideally, an optimal MGR should have a minimal size but associated with high 

performance (top left quadrant of Figure4.4). While the IRIS and HaemAtlas 

resources were associated with the highest performance among the original 

MGRs, the later had the highest number of markers (>1000) and the former 

was inferior in monocytes (hence not optimal).  On the other hand, IBML has 

minimal number of markers but robustly associated with high performance 

(R≥0.8) in all the cell types (top left quadrant). Together, these findings 

suggest that the IBML provides a unified, optimal and robust candidate 

marker gene resource for enhanced computational deconvolution analysis of 

whole blood transcriptomes. Subsequently, the IBML resource was applied 

on the pneumonia database (next section). 



Chapter 4: Computational deconvolution analysis 

 144 

4.1.2 Implementation of IBML in the pneumonia database  
As already mentioned, this chapter has sought to apply a computational 

approach to investigate cellular pathway responses in pneumonia severity.  

So far, I have applied independent public data resources (marker gene lists, 

purified expression data and whole blood expression data) to derive an 

optimal marker gene resource (IBML) for enhanced computational 

deconvolution analysis of whole blood transcriptomes. To validate the 

performance of IBML in the pneumonia database, the same approach 

(correlation analysis) was applied (next section).  

4.3.1.4 Performance validation of IBML in the pneumonia database 

Firstly, IBML was applied to deconvolute sample proportions of immune cell 

types (T, B, NK, dendritic, monocytes and neutrophils) from the pneumonia 

whole blood transcriptome. It is worth noting that this database has existing 

laboratory-measured cell proportions (complete blood counts) for neutrophils 

and lymphocytes. To validate the performance of IBML in this database, the 

deconvoluted proportions were directly compared to the corresponding 

laboratory-measured values using the Pearson’s correlation coefficient (r). 

Interestingly, the performance of IBML remained high (r≥0.83) in both cell 

types (Figure4.5). This finding further suggests the robustness and 

applicability of IBML in the pneumonia database.  Subsequently, IBML and 

the deconvoluted proportions of immune cell types were applied to 

investigate the cellular pathway responses (next sections). 
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Figure 4.5: Independent validation of IBML using the pneumonia database:  The figure 
shows scatter plots between the deconvoluted (x-axis) and laboratory-measured (y-axis) 
sample proportions of lymphocyte (left) and neutrophil immune cell types. To achieve the 
same scale between the x and y axes, the proportion values were standardized into Z-
scores (i.e. each value was subtracted the mean and divided by the standard deviation). 
Each triangle in the main figures represent a sample, and n=sample size, r=Pearson’s 
correlation coefficient; P-value =correlation test (H0:r=0). 
 

4.1.2.1 Age-dependent variations in the proportions of immune cell types 
In Chapter 3, age was molecularly associated with elevated baseline status 

of the pro-inflammatory innate responses among the non-pneumonia 

controls. To investigate the corresponding cellular response levels, here I 

assessed whether the deconvoluted proportions of the immune cell types 

varied significantly with age. To account for the confounding effects of 

pneumonia severity and malnutrition, this analysis was restricted to the non-

pneumonia controls (n=120), and linear regression analysis approach was 

applied to adjust for nutrition status (Figure4.6)  
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Figure 4.6: The associations between age (x-axis) and sample proportions of immune 
cell types (y-axis).   In each scatter plot, the dots represent samples, r= partial correlation 
coefficient (Pearson’s) adjusted for nutrition status; slope= linear regression coefficient and 
its 95% confidence interval, n=sample size and p=P-value for the significance for the slope.  
 

While the data points show high variability, age was indeed associated with 

significant (P-value<0.001) variations in the proportions of B, T, Dendritic and 

neutrophils (Figure4.6). In particular, the proportions of neutrophils (myeloid) 

increased with age (r=0.45) and vice-versa for the adaptive response 

mediators: B(r=-0.50), T (r=-0.47) and dendritic cells (r=-27). These findings 

are consistent with the molecular findings in Chapter 3 and similar previous 

studies. Notably, Burr et. al (2011) reported age-dependent maturation of 

Toll-like receptor (TLR)-mediated cytokine responses in healthy Gambian 

Infants[357]. Further, Mandala et al. (2010) also observed a significant age-

dependent reduction in lymphocytes but not NK cells among healthy 

Malawian children (n= 539) [376].  While these results were anticipated, and 

due to natural ontogeny and environmental factors. These findings highlight 

the importance of adjusting for age differences in the primary analyses of this 

thesis. In the subsequent sections, cellular responses associated with 

pneumonia severity were investigated.  
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4.3.1.5 Associations between sample proportions of immune cell 
types and pneumonia severity  

Clinical phenotypes such as pneumonia severity reflect the underlying host 

responses from different immune cell types [53]. To investigate the systemic 

cellular pathway responses in severe pneumonia, this section assessed the 

variations in the deconvoluted proportions of immune cell types across the 

pneumonia severity groups. For each cell type, the linear regression analysis 

approach was applied to quantify the association between pneumonia 

severity and the deconvoluted proportions (F-test P-values) while adjusting 

for the potential confounders (age, nutrition status and antibiotic usage).  

 
Figure 4.7: Deconvoluted sample proportions of immune cell types.   Linear regression 
analysis was applied to assess the association between the sample proportions of each cell 
type (outcome variable) and pneumonia severity while adjusting for potential confounders 
(age, nutrition status and antibiotic usage). The box and whisker plots show the distribution 
of the adjusted proportions across the pneumonia severity groups (x-axis). The indicated P-
values are for the adjusted F-tests. Abbreviations: NK=natural killer cells, *** = P-
value<0.0001  
 

 

In average, neutrophils and dendritic cells represented the highest and 

lowest proportions, respectively (Figure4.7). Comparatively, pneumonia 

severity was associated with significant variations in the sample proportions 

of all the six cell types (P-value<0.0001). In particular, the depletion of 
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lymphocytes (B, T and NK) and dendritic cell types; and the elevation of 

neutrophils and monocytes levels were associated with increased 

pneumonia severity (respectively). Notably, while the elevation of myeloid 

(neutrophils and monocytes) and depletion of adaptive lymphoid (B and T 

cells) cell subpopulations (respectively) are frequently reported [367, 368, 

377, 378], the unexpected potential involvement of human natural killer (NK) 

cells in the pathogenesis of severe pneumonia remains elusive [379-382]. 

Potentially, this finding presents a novel therapeutic target for immune-

modulation and management of severe pneumonia cases. Further, it is also 

worth noting that the cellular proportions distinguished the pneumonia 

severity groups suggesting the potential of cellular pathway-based 

biomarkers in the stratification of pneumonia cases (Chapter 6). Together, 

these findings highlight the potential of computational deconvolution 

analysis, and support the hypothesis that cellular pathway responses 

underpin the development of severe pneumonia states. However, further 

studies are required to gain a deeper insight into involvement of NK cells in 

pneumonia. In the next sections, cell type-specific molecular responses were 

investigated.  
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4.1.2.2 Identification of differentially expressed marker genes in severe 
pneumonia 

Ideally, an investigation of cell type-specific molecular responses can provide 

a deeper insight into the pathogenesis of severe pneumonia. It is expected 

that a marker gene for a given cell type is exclusively expressed in that 

particular cell type [161, 371].  Therefore, immune marker genes resources 

like the IBML provide a reliable estimate of cell type-specific expression 

profiles. To partially understand the differential gene expression profiles 

associated with pneumonia severity at cellular level, immune markers in the 

IBML resource (n=277) were subjected to empirical Bayes moderated t-test 

to identify differentially expressed genes (FDR<0.05, |FC|≥1.5) between the 

non-pneumonia controls and severe pneumonia groups (Figure4.8). 

Figure 4.8: Differentially expressed immune marker genes in pneumonia severity.   (a) 
Volcano plots showing up (red) or down (blue) regulated (FDR<0.05, |FC|≥1.5) cell type-
specific marker genes (in IBML) between non-pneumonia controls (n=120) and pneumonia 
cases (n=225). (b) Correlogram summary showing the proportions of up (red) and down 
(blue) regulated genes between non-pneumonia controls (n=120) and each severity group, 
respectively (mild (n=90), severe (n=117), very severe (n=18)). The fractions of differentially 
expressed makers in at least one severity state are annotated on the x-axis (i.e. 33 of the 35 
T cell markers were down-regulated at least in any of the severity groups)  
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Interestingly, the molecular responses are consistent with the distribution of 

the cellular proportions. In overall, the number of cell type-specific 

differentially expressed genes increased with pneumonia severity 

(Figure4.8b). In particular, pneumonia severity correlated with the up-

regulation of monocytes and neutrophils markers, and the down-regulation of 

markers for NK, dendritic, B and T cells. Notably, 59%(m=27) of the NK 

markers were potentially involved in pneumonia severity. Specifically, while 

three markers (CST7, IL18RAP and STOM) were up regulated (Figure4.8), 

24 (52%) markers were consistently down-regulated with pneumonia severity. 

The down regulation of NK markers with pneumonia further suggests a 

potential protective role of natural killer cells in pneumonia. To investigate 

further, the next section assessed the molecular functions associated with 

the NK cell markers 

 

4.1.3 Functional analysis of natural killer (NK) cell markers 
associated with pneumonia severity 

It is worth noting that the current study design is not adequate to gain a 

deeper understanding of the role of NK cells in pneumonia severity. 

Nevertheless, here I partially assessed whether pneumonia severity is 

associated with NK-specific molecular functions. Firstly, I applied the 

STRINGs database [280] to assess whether the significant NK markers 

(n=27) were associated with any protein-protein functional network 

(Figure4.9a-b). Interestingly, these genes were principally associated with 

the down regulation of the natural killer cytotoxicity network (Figure4.9a-b). 
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Figure 4.9: Molecular functions associated with differentially expressed NK markers 
in pneumonia severity.   (a) Protein-protein interaction network (STRING database [280]) 
for differentially expressed NK markers (n=27) between non-pneumonia controls and severe 
pneumonia groups. (b) Enriched pathways (FDR<0.05) in KEGG biomedical database: 
FDR=False discovery rate (c) Gene expression fold changes between no-pneumonia 
controls and all pneumonia cases for activating receptors on NK cells and their 
corresponding ligands: *= differentially expressed gene (FDR<0.05, |FC|≥2). 

 
 

Further, to assess the co-stimulatory functions of NK cells in pneumonia, I 

assessed the expression profiles of the validated NK receptors and their 

corresponding ligands [383, 384]. Notably, significant down regulation 

(FDR<0.05, |FC|>2) of the co-stimulatory receptors on the NK surface were 

associated with non-significant gene expressions on the corresponding 

ligands (Figure4.9c).  On the other hand, non-significant down-regulation of 

the CD266 receptors was associated with the significant up-regulation 

(FDR<0.05, |FC|>2) of its corresponding ligand (PVRL2) [383, 384]. 

Together, these findings further suggest the previously unknown involvement 

of NK cells in pneumonia. Nevertheless, these predictions require future 

experimental validation studies. In the next section, the same approach was 

applied on the T cells. 



Chapter 4: Computational deconvolution analysis 

 152 

 

4.1.4 Investigating the cross-talk between dendritic and T cells in 
pneumonia  

Dendritic cells are professional antigen presentation cells (APCs) bridging 

the innate and adaptive immune arms through co-stimulation and co-

inhibition of T cells [385, 386]. Here, the depletion of both cell types and 

down-regulation of their markers were significantly associated with 

pneumonia severity. To assess whether pneumonia severity was associated 

with T-cell specific protein-protein associated functional networks, 

differentially expressed T cell markers (n=33) were subjected to functional 

analysis using the STRING database [280] (Figure4.10a-b). Principally, 

pneumonia severity was associated with a connected functional network of T 

cell receptor signalling pathway (FDR<0.001). 

 

To investigate the co-stimulatory cross-talk between dendritic and T cells 

associated with pneumonia severity, I assessed the differential gene 

expression profiles for the corresponding receptors and ligands between the 

two cell types (Figuer4.10c). Interestingly, non-significant change of  

expression or significant down-regulation (FDR<0.05, |FC|>2) of the 

activating receptors on dendritic cell were associated with significant down 

regulation of the corresponding ligands on T-cells, highlighting the positive 

regulatory role of dendritic cells on T cell activities in the pathogenesis of 

pneumonia. Together, these analyses provide insights into cellular pathway 

responses in severe pneumonia; and support the central hypothesis that 

systemic pathway (cellular) responses underpin the development of severe 

pneumonia outcomes. 
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Figure 4.10: Molecular functions associated with differentially expressed T markers in 
pneumonia severity.   (a) Protein-protein interaction network (STRING database [280]) for 
down-regulated T markers (n=33) between non-pneumonia controls and severe pneumonia 
groups. (b) Enriched pathways (FDR<0.05) in KEGG biomedical database: FDR=False 
discovery rate (c) Gene expression fold changes between no-pneumonia controls and all 
pneumonia cases for co-stimulatory receptors (dendritic cell) and their corresponding 
ligands (T cell): *= differentially expressed gene (FDR<0.005, |FC|≥2). 
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4.4 Discussion   

This chapter has applied whole a blood transcriptome to investigate the 

systemic cellular pathway responses in severe in pneumonia. While whole 

blood is readily accessible and widely applied for genomic research and 

routine clinical practice [123], careful considerations are required to quantify 

and account for its complex cellularity that often correlate with clinical 

phenotypes[102]. However, the quantification of cell type specific information 

remains a challenge [200, 371]. Standard biophysical cell purification 

approaches are very expensive, time-consuming and have limited biological 

interpretation due to potential confounding and lack of the systemic 

perspective [73, 102, 139, 200, 371]. Further, this study has limited 

information on the cellularity of the whole blood samples.  

 

To investigate the cellular pathway responses in pneumonia, here I applied a 

powerful and cost-effective computational solution called computational 

deconvolution analysis. Notably, this chapter has (i) generated an optimised 

marker gene resource (IBML) for enhanced deconvolution of whole blood 

transcriptomes and (ii) provided insights into the unexpected potential 

involvement of NK cells in the pathogenesis of severe pneumonia, and could 

be a potential target for future intervention in severe pneumonia. 

4.1.5 Strengths and limitations of computational deconvolution 
analysis  

While computational deconvolution analysis is a powerful and attractive 

alternative to the standard laboratory methods, it has some limitations. 

Generally, standard deconvolution methods require knowledge of cellular 

proportions to estimate cell type-specific expression profiles (direct partial 
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deconvolution) or the vice-versa (reverse partial deconvolution), which are 

rarely available and platform-specific[200]. Alternatively, semi-supervised 

deconvolution algorithms are more attractive because they only require 

marker genes, which are robust to platform-specific differences [201, 371].  

However, existing marker gene resources have little overlap for a given cell 

type, vary in performance, and are potentially contaminated by noisy 

markers, which is another challenge for end-users. 

 

Here, I investigated the hypothesis that a unified, optimal and reliable marker 

genes resource would enhance computational deconvolution analysis of 

whole blood transcriptomes [200, 204]. To address this, I applied a data 

fusion approach to derive a unified and optimized marker gene lists called 

IMBL (Integrated blood marker list). Relative to its reduced size, IBML was 

associated with robust and enhanced performance than the individual MGRs.  

Importantly, this analysis provides the first comprehensive comparative 

performance assessment of the existing marker gene resources (MGRs) 

applicable to computational deconvolution analysis of whole blood.  While 

the IRIS marker list [204] is often applied[371, 387], here HaemAtlas[358] 

was associated with the best performance among original MGRs. 

Nevertheless, IBML provides a simplified and unified single application 

resource for enhanced computational deconvolution of whole blood 

transcriptomes.  

 

However, to maximize the potential of computational deconvolution, marker 

genes resources (MGRs) with more cell type coverage and granularity 
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comprising markers for different activation states are required. In particular, 

deep deconvolution of specific cell subcomponents such as regulatory T cells 

(Tregs); and less abundant cell types such as basophils, eosinophils and 

mast cells would provide comprehensive insights into the pathogenesis of 

diseases. However, lack of comprehensive benchmark data sets (i.e. gene 

expression profiles for purified cell types) remains the challenge[200]. 

Further, while ROC analysis was applied to mitigate the challenge of limited 

sample sizes, derivation of IBML would have benefited from more 

sufficiently-powered studies. Nevertheless (according to this analysis), IBML 

provides the optimal choice among the existing marker genes resources. 

 

4.1.6 Biological insights from computational deconvolution analysis  
To assess whether pneumonia severity is associated with systemic cellular 

pathway responses, IBML was applied to deconvolute the whole blood 

transcriptome. While adjusting for potential confounders including age, 

pneumonia severity was significantly associated with the elevation of 

markers for myeloid cells (neutrophils and monocytes) and the depletion of 

B, T, Dendritic and NK cells respectively. Further, the elevation and depletion 

of immune cell types were consistently associated with the up or down-

regulation of their molecular markers (respectively). Together, these findings 

consistently support the central hypothesis that systemic pathway responses 

underpin the development of severe pneumonia. 

 

While the elevation of myeloid (monocytes and neutrophils) and depletion of 

adaptive (B and T cells) cells are frequently associated with inflammatory 

responses[367, 370, 378], the depletion of NK and dendritic cells were not 
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anticipated and somehow controversial[379, 388]. Dendritic cells are 

professional antigen presentation cells (APCs) mainly responsible for priming 

the T cells [385, 386]. Depletion of dendritic cells may partly contribute to the 

depletion or malfunction of T cells in the blood. Alternatively, T cell depletion 

may be due to other factors such as apoptosis, necrosis or migration of T 

cells to the lungs [116].  

 

This analysis has identified a novel involvement of NK cells in pneumonia 

severity. Natural killer (NK) cells are the innate lymphoid cells well known for 

their cytotoxicity against tumours and virally infected cells [383]. However, 

recent studies have revealed both pro and anti-inflammatory regulatory roles 

such as (i) sending negative signals to primed macrophages[389], (ii) killing 

or promoting the maturation of dendritic cells[390], (iii) suppressing auto-

reactive B cells[391], and (iv) promoting differentiation of CD4+ T cells or 

killing primed T cells [383, 392-396]. In that regard, this finding suggests the 

novel central role of NK cells in the pathogenesis of pneumonia including 

positive regulation of dendritic cells [392, 395, 397], and negative regulations 

of inflammation[383]. In mice models, depletion of NKs is also associated 

with severe outcomes [398-400] further suggesting the involvement of NK 

cells in pneumonia. The number of NK cells was not age dependent in the 

non-pneumonia controls suggesting their specific involvement in pneumonia 

(Figure4.6). These findings require further validation preferably in a 

longitudinal study. 
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4.5 Conclusion  

In summary, the results presented in chapter highlights the potential and the 

challenges of a computational deconvolution analysis for streamlining 

analysis of whole blood transcriptomes. In conclusion, while further 

investigations are required to elucidate the novel role of NK cells in the 

pathogenesis of pneumonia, these findings support the central hypothesis 

that systematic cellular pathway responses underpin the pathogenesis of 

pneumonia. Potentially, the NK findings present a novel target for immune-

modulation and clinical management of pneumonia cases.  
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Chapter 5: Computational investigation of systemic 
molecular pathway responses in severe pneumonia 

 

5.1  Introduction  

This thesis has investigated systemic pathway responses associated with 

pneumonia severity, both at the cellular (Chapter 4) and molecular (Chapter 

5) analytic levels In particular, this chapter has applied a range of validated 

biomedical pathway databases to investigate the molecular pathway 

responses associated with pneumonia severity.  

5.2 Background  

Pneumonia is an inflammatory disease of the lung parenchyma (lower 

respiratory tract system) causing significant morbidity and mortality 

worldwide [2]. The respiratory tract system is crucial for gas exchange 

between the body and outside environment. However, this task brings 

constant exposure to potential pathogens in the air [31]. To ensure normal 

gas exchange, colonization of the upper respiratory tract (i.e. by 

commensals) is often tolerated[10, 35] while the lower tract is strictly guarded 

by physical and chemical barriers. When these barriers are evaded, immune 

responses are induced to eliminate the invading pathogen [78].  

 

It is worth noting that host responses in pneumonia are investigated at either 

“local” (within the lung) or “systemic” (in the blood stream) levels[80, 81]. In 

non-severe cases, local responses are mainly important, and are tightly 

regulated and compartmentalized within the lungs to prevent systemic 

responses, which can be associated with deleterious inflammatory outcomes 
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[31]. However, due to host (virulence) and pathogen (susceptibility) factors, 

these barriers can be breached consequently inducing the systemic 

responses in the circulating blood [31, 39, 115, 116]. Thus, while the local 

responses are sufficient in mild cases, systemic responses are vital for 

outcomes of severe pneumonia outcomes [115]. Therefore, blood-based 

immune signatures should mainly reflect the key components of the pathway 

responses in severe pneumonia. Moreover, changes in the blood reflect key 

components of host responses for not only targeted diseases, but also the 

entire body including the lungs [71]. Importantly, whole blood is clinically 

accessible for pathophysiological investigations [102]. 

 

While whole blood genome-wide profiling provides a comprehensive and 

powerful approach for investigating systemic responses, single-gene 

analysis approaches have failed to realize the potential of such multi-

dimensional and highly correlated data [255, 256]. Host responses often 

involve multiple immune mediators inducing a cascade of signalling events, 

which are manifested in clinical phenotypes such severe pneumonia [36, 37, 

99, 122, 401]. However, these univariate approaches often generate long 

lists of candidate genes, which lack the systems-level perspective of the 

immune system and are very challenging to interpret. Further, such lists are 

potentially confounded by false discoveries due to multiple testing, and 

consequently lack stability (little overlap) between similar studies[254, 402]. 

 

To gain more insight into the pathogenesis of severe pneumonia, here I have 

applied a pathway analysis approach where the quantum of analysis is a set 
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of genes involved in a particular biomedical pathway such as Toll-like 

receptor signalling pathway [157, 249, 255, 403]. This approach incorporates 

existing biological knowledge to condense and contextualize a long list of 

candidate genes into a short list of meaningful biochemical processes. 

Notable biomedical pathway databases include the Gene Ontology (GO), 

KEGG and REACTOME [143, 404]. Moreover, pathway-based approaches 

present an opportunity for robust biomarkers, which capture the disease 

pathogenesis [65, 274, 405]. 

 

To identify molecular pathway responses associated with pneumonia 

severity, the following specific objectives were investigated using the training 

transcriptome (n=345) and a range of biomedical pathway databases: 

1. To identify molecular pathway responses that were uniquely 

associated with severe pneumonia outcomes 

2. To identify potentially prognostic pathways that were associated 

pneumonia from mild to very severe outcomes. 

3. To assess whether very severe pneumonia cases were associated 

with unique molecular pathway responses 
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5.3 Approach  

To address the objectives above, differentially expressed genes (DEGs) 

between non-pneumonia controls and severe pneumonia states (mild, 

severe and very severe, respectively) were classified into the following 

unique subsets corresponding to each specific objective (Figure5.1): 

1. MSvS: DEGs that were jointly associated with all the pneumonia 

states (objective two) 

2. SvS: DEGs that were associated with the development of severe and 

very severe pneumonia states (objective one) 

3. Vs: DEGS that were uniquely associated with the development of 

very severe pneumonia (objective three)  

 
Figure 5.1: Subsets of differentially expressed genes (DEGs) that were applied to 
assess molecular pathways associated pneumonia severity.   Each circle represents 
the set of DEGs between non-pneumonia controls and each severity state. MSvS=DEGs 
shared by mild, severe, very severe pneumonia states; SvS= DEGs shared by severe and 
very severe pneumonia states, and Vs= DEGs unique to very severe pneumonia.  
 

Subsequently, up and down-regulated genes in each subset (MSvS, SvS 

and vS) were applied to identify enriched pathways (FDR<0.05) using the 

following biochemical pathway databases: KEGG, REACTOME, HALLMARK 
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and Gene Ontology (GO). The databases were downloaded from the 

Molecular Signature DataBase (MSigDB) repository 

(http://software.broadinstitute.org/gsea/msigdb) [254, 402].  Here, multiple 

pathway databases were applied to gain a comprehensive view of the 

molecular pathway responses in pneumonia severity, and to account for the 

heterogeneity of the existing biochemical pathway resources. To identify 

significant pathways, Fisher’s exact test for association was applied (using 

the stats package in R [158]). To guard against false discoveries, the raw P-

values were adjusted for multiple testing across the pathways in each 

database using the Benjamini-Hochberg method [238].  

5.4 Results  

5.4.1 Single-gene analysis: Identification of differentially expressed 
genes in pneumonia 

To investigate the molecular pathway responses in severe pneumonia, a 

single-gene analysis was done to identify the candidate gene sets (illustrated 

in Figure5.1) for subsequent pathway analyses. Firstly, an, empirical Bayes 

moderated t-test was applied (limma Bioconductor package [226] ) to (i) 

identify differentially expressed genes between non-pneumonia controls and 

severe pneumonia states (mild, severe and very severe, respectively) while  

adjusting for potential confounders (age and nutrition status and antibiotic 

usage) and  false discoveries due to multiple testing (BH method[238]).  

http://software.broadinstitute.org/gsea/msigdb
http://www.statisticshowto.com/benjamini-hochberg-procedure/
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Figure 5.2: Differential gene expression profiles between severe pneumonia states 
and non-pneumonia controls (n=120).    (a) Volcano plots showing the fold changes for 
up (red) and down (blue) regulated genes (|fold change|≥2, FDR<0.05): AUC=area under 
the ROC curve.  (b) A bar plot showing the trend (number) of up and down regulated genes. 
(c) A Venn diagram showing the overlaps of differentially expressed genes between severe 
pneumonia states. The lists of differentially expressed genes with pneumonia severity are 
presented as a supplementary Excel file (DEGsPneumonia). 

 
 
Of the 11037 genes that passed the non-specific filtering criteria (Chapter 3),  

295 and 759 genes were significantly (FDR<0.05 and |FC|≥2) down and up 

regulated (respectively) in at least one pneumoina severity state (Figure 

5.2). Notably, the fold changes (Figure 5.2a) and the number of diferentially 

expressed genes (Figure 5.2b) increased with pneumoina severity. At the 

gene the level, this finding supports the current hypothesis that sytemic 

molecular responses are associated with pneumonia severity. 

 

Based on the contrasts defined in Figure5.1, 277 (MSvS subset), 463 (SvS 

subset) and 247 (Vs subset) were eligible for the subsequent pathway 
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analyses (Figure5.2c). In particular, 277 genes (13 down-regulated and 266 

up-regulated) were associated with all the severe pneumonia states from 

mild to very severe (MSvS subset). Notably, very few genes (m=13) were 

down regulated in mild pneumonia potentially suggesting the importance of 

inhibitory responses in the development of severe pneumonia outcomes. 

Further, 463 genes (162 down-regulated and 301 up-regulated) were 

uniquely associated with severe pneumonia outcomes (both severe and very 

severe pneumonia). Finally, 247 genes (104 down-regulated and 143 up-

regulated) were uniquely associated with very severe pneumonia state (Vs 

subset). In the next sections, these gene sets (MSvS, SvS and vS) were 

applied for pathway analyses to investigate the systemic molecular pathway 

responses in pneumonia severity. 

 

5.4.2 Systemic molecular pathway responses in mild pneumonia  
In this section, I investigated the pathways that were associated with the up 

(m=264) and down (m=13) regulated genes in all the severe pneumonia 

states from mild to very severe pneumonia (MSvS subset).  While the 

original study design does not allow a formal analysis for prognostic 

biomarkers (i.e. samples were collected at a single time point), this contrast 

presents an opportunity to identify potentially prognostic pathways for early 

identification and monitoring of high-risk pneumonia cases. However, the 

down-regulated genes (m=13) were too small for a proper pathway analysis. 

Further, using the STRINGS database [280], this list was not associated with 

any functionally connected protein-protein networks. Instead, the individual 

genes were characterized (next section).  
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5.4.2.1 Investigation of down-regulated genes in mild pneumonia (m=13)  
Table5.1 presents the potential molecular functions for the down-regulated 

genes in mild pneumonia (m=13). Mainly, this subset was associated with 

the down-regulation of cell adhesion molecules, T cell functions (CCR3, 

CLC, and LRRN3) and allergic responses. While the interpretation of a 

single-gene analysis is limited, the inhibition of T cells is consistent with the 

cellular pathway responses (Chapter 4). In the next section, the up-regulated 

pathways were investigated. 

SYMBOL Description Functions 

CCR3 C-C Motif 
Chemokine Receptor 
3 

Epithelial CCR3 mediates the release of IL8 through LPS-induced lung 
inflammation[406] 
 
Expressed by T lymphocytes co-localizing with eosinophils in allergic 
inflammation[407]  

CDHR3 Cadherin Related 
Family Member 3 

Cadherins are calcium-dependent cell adhesion proteins 

CLC  Charcot-Leyden 
crystal protein 

Regulates immune responses through the recognition of cell-surface 

glycans. Essential for the energy and suppressive function of CD25-

positive regulatory T-cells (Treg) 

CTGF Connective tissue 
growth factor 

Major connective tissue mitoattractant secreted by vascular endothelial 
cells. Promotes proliferation and differentiation of chondrocytes. 
Mediates heparin- and divalent cation-dependent cell adhesion in many 
cell types including fibroblasts, myofibroblasts, endothelial and epithelial 
cells. Enhances fibroblast growth factor-induced DNA synthesis 

DPH6 Diphthamine 
Biosynthesis 6 

Amidase that catalyzes the last step of diphthamide biosynthesis using 
ammonium and ATP. Diphthamide biosynthesis consists in the 
conversion of an L-histidine residue in the translation elongation factor 
(EEF2) to diphthamide (By similarity) [124, 408]. 
 

FCER1A Fc fragment of IgE, 
high affinity I 

Binds to the Fc region of immunoglobulins epsilon. High affinity 
receptor. Responsible for initiating the allergic response. Binding of 
allergen to receptor-bound IgE leads to cell activation and the release of 
mediators (such as histamine) responsible for the manifestations of 
allergy. The same receptor also induces the secretion of important 
lymphokines 

LRRN3  Leucine rich repeat 
neuronal 3 

Potential role in initiation of the primary immune response through 
mediation of interaction between T cells and dendritic cells. 

NRCAM Neuronal cell 
adhesion molecule; 

Cell adhesion protein that is required for normal responses to cell-cell 
contacts in brain and in the peripheral nervous system. 

OLIG2 Oligodendrocyte 
lineage transcription 
factor 2 

 Involved in a chromosomal translocation t(14;21)(q11.2;q22) 
associated with T-cell acute lymphoblastic leukaemia[409]. 

PRSS33  Protease, serine, 33 Serine protease that has amidolytic activity, cleaving its substrates 
before Arg residues  

SIGLEC8 Sialic acid binding Ig-
like lectin 8 

Putative adhesion molecule that mediates sialic-acid dependent binding 
to cells. 

STMN3 Stathmin-like 3 Exhibits microtubule-destabilizing activity, which is antagonized by 
STAT3  

TRABD2A TraB domain Involved in Wnt-protein signalling  
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containing 2A 

Table 5.1: Potential functions of genes that were jointly down-regulated in all the 
pneumonia severity states. The molecular functions are according to the STRING 
database [280], otherwise a citation is provided. 

5.4.2.2 Investigation of up-regulated pathways in  pneumonia 
In this analysis, I investigated the pathways that were associated the up-

regulated genes (m=264) in all the severe pneumonia states (MSvS subset) 

from mild to very severe pneumonia state. While this gene set (m=264) was 

associated (FDR<0.05) with a range of pathway responses (i.e. innate, 

adaptive and metabolic functions), the activation of pro-inflammatory innate 

responses was more predominant (Table5.2). 

 

In particular, mild pneumonia was associated with the activation of pathogen 

recognition receptors (PRRs) pathways including the Toll-like receptors 

(TLRs), intracellular NOD-like receptors (Inflammasome) and the multi-ligand 

receptor for Advanced Glycation End products (RAGE). Notably, these are 

central players in inflammatory responses [85, 410-412]. Consistently, 

several pro-inflammatory pathways were also activated including the (i) 

complement system, (ii) MAPK signalling, (iii) NFKB transcription factor, (iv) 

production of pro-inflammatory cytokines (TNFa, IL1, IL6, IL8, growth factors 

and INFN gamma) (v) chemotaxis of myeloid cell types (i.e. neutrophils, 

macrophages and dendritic cells). Notably, the activation of interferon 

gamma (IFNg) cytokine signals (mostly from the T and NK lymphocytes) is 

particularly important for enhanced bacterial phagocytosis in macrophages 

[413, 414], which suggest the important contribution of bacterial infection in 

pneumonia severity.  
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Further, mild pneumonia was also associated with the activation of 

antimicrobial, stress (responses to reactive oxygen species, wounding and 

heat), adaptive (B and T cell activation and differentiation) and metabolic 

pathway responses. Notably, the biosynthesis of pro-inflammatory 

compounds such as oxygen reactive species, nitric oxide and triglyceride as 

well as xenobiotic metabolism [415-417] and cholesterol haemostasis [418, 

419] corresponded with the catabolism of an anti-inflammatory pyrimidine-

ribonucleoside [420, 421].  

 

To assess whether this gene set (m=264) was associated with functional 

molecular networks, the STRING database for protein-protein interactions 

[280] was applied. As shown in Figure5.3, pro-inflammatory networks 

involving intracellular (NLRs) and extracellular (TLRs) pathogen recognition 

receptors (PRRs), inflammatory cytokines, the complement system (through 

an IL8 receptor (CXCR2)), coagulation (via MMP9), as well as activation and 

regulation of transcription factors (through MAPK14) were interconnected.  

 

Together, these findings suggest the involvement of blood-based (systemic) 

responses, and highlight the interplay between the innate and metabolic pro-

inflammatory systemic pathway responses in mild pneumonia. Potentially, 

blood-based signatures could be applied to detect high-risk cases among the 

patients presenting at the clinic with mild pneumonia.  Notably, these findings 

are consistent with the cellular responses in Chapter 4, and support the 

central hypothesis that systemic pathway responses underpin the 

development of severe pneumonia.  
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Table 5.2: Pathways associated with up-regulated genes in all disease states (Mild, 
severe and very severe) 

SOURCE ID Total Hits FDR 

(a)Innate (Receptors) 

GO:0038187(BP): Pattern Recognition Receptor Signalling Pathway 109 8 0.0076 

GO:0008329(MF) Signalling Pattern Recognition Receptor Activity 17 3 0.0304 

KEGG(hsa04620) Toll Like Receptor Signalling Pathway 102 8 0.0012 

REACTOME Toll Receptor Cascades 118 9 0.0036 

GO:0002224(BP) Toll Like Receptor Signalling Pathway 85 7 0.0092 

GO:0034121 (BP) Regulation Of Toll Like Receptor Signalling Pathway 49 5 0.0168 

GO:0034142 (BP) Toll Like Receptor 4 Signalling Pathway 18 3 0.0407 

REACTOME Activated Tlr4 Signalling 93 7 0.0099 

GO:0002755 (BP) Myd88 Dependent Toll Like Receptor Signalling 
Pathway 

32 6 <0.001 

REACTOME Myd88 Mal Cascade Initiated On Plasma Membrane 83 6 0.0157 

KEGG NOD Like Receptor Signalling Pathway 62 5 0.0178 

GO:0001653 (MF) Peptide Receptor Activity 133 9 0.0069 

REACTOME Peptide Ligand Binding Receptors 188 8 0.0314 

GO:0098543 (BP) Detection Of Other Organism 19 3 0.045 

GO:0050786 (MF) Rage Receptor Binding 11 4 0.0026 

 

(b)Innate (Transcription Factors) 

REACTOME NFKB And Map Kinases Activation Mediated By Tlr4 
Signalling Repertoire 

72 5 0.0314 

GO:0051092 (BP) Positive Regulation Of NF KAPPAB Transcription 
Factor Activity 

132 11 <0.001 

GO:0042346 (BP) Positive Regulation Of NF KAPPAB Import Into 
Nucleus 

27 5 0.0034 

GO:0042348 (BP) Regulation Of NF KAPPAB Import Into Nucleus 48 5 0.0179 

GO:0042993 (BP) Positive Regulation Of Transcription Factor Import Into 
Nucleus 

51 5 0.0214 

GO:0000187 (BP) Activation Of MAPK Activity 137 8 0.0192 

(c)Innate (Cytokines)  

HALLMARK IL6 JAK Stat3 Signalling 87 9 <0.001 

GO:0050707 (BP) Regulation Of Cytokine Secretion 149 13 <0.001 

GO:0032677 (BP) Regulation Of Interleukin 8 Production 61 9 <0.001 

GO:0032757 (BP) Positive Regulation Of Interleukin 8 Production 45 8 <0.001 

GO:0050715 (BP) Positive Regulation Of Cytokine Secretion 96 9 <0.001 

GO:0032612 (BP) Interleukin 1 Production 15 4 0.0044 

GO:0032715 (BP) Negative Regulation Of Interleukin 6 Production 35 5 0.0065 

GO:0050663 (BP) Cytokine Secretion 38 5 0.0092 

REACTOME IL1 Signalling 39 5 0.0099 

GO:0001816 (BP) Cytokine Production 120 8 0.0105 

GO:0004896 (MF) Cytokine Receptor Activity 89 7 0.0107 

GO:0032729 (BP) Positive Regulation Of Interferon Gamma Production 65 6 0.012 

REACTOME Signalling By ILs 107 7 0.0145 

REACTOME G Alpha I Signalling Events 195 9 0.0167 

GO:0010575 (BP) Positive Regulation Of Vascular Endothelial Growth 
Factor Production 

26 4 0.0168 

GO:0032675 (BP) Regulation Of Interleukin 6 Production 104 7 0.0177 

HALLMARK Il2 Stat5 Signalling 200 8 0.0225 

HALLMARK Interferon Gamma Response 200 8 0.0225 

GO:0010574(BP) Regulation Of Vascular Endothelial Growth Factor 
Production 

31 4 0.0241 
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GO:0005149(MF) Interleukin 1 Receptor Binding 16 3 0.0298 

GO:0019956 (MF) Chemokine Binding 21 3 0.0304 

GO:0032732 (BP) Positive Regulation Of Interleukin 1 Production 36 4 0.0335 

GO:0032649 (BP) Regulation Of Interferon Gamma Production 97 6 0.0412 

GO:1903555(BP) Regulation Of Tumor Necrosis Factor 
 Superfamily Cytokine Production 

101 6 0.0444 

REACTOME Chemokine Receptors Bind Chemokines 57 4 0.047 

HALLMARK TNFa Signalling Via NFKB 200 21 <0.001 

GO:0070851(MF) Growth Factor Receptor Binding 129 8 0.0145 

(d) Innate (Chemotaxis) 

GO:0030595 (BP) Leukocyte Chemotaxis 117 11 <0.001 

GO:0060326 (BP) Cell Chemotaxis 162 12 <0.001 

GO:0097529 (BP) Myeloid Leukocyte Migration 99 7 0.0167 

GO:0050920 (BP) Regulation Of Chemotaxis 180 9 0.0221 

GO:0097530 (BP) Granulocyte Migration 75 7 0.0054 

GO:1902622 (BP) Regulation Of Neutrophil Migration 32 4 0.0227 

GO:0002407 (BP) Dendritic Cell Chemotaxis 16 3 0.0312 

GO:0036336 (BP) Dendritic Cell Migration 21 4 0.0105 

GO:0002274 (BP) Myeloid Leukocyte Activation 98 8 0.0044 

GO:0042116 (BP) Macrophage Activation 31 4 0.0241 

(e) Innate (Complement system) 

HALLMARK Complement 200 13 <0.001 

KEGG Complement And Coagulation Cascades 69 7 <0.001 

GO:0001848 (MF) Complement Binding 19 3 0.0394 

(f)Innate (Inflammation or Stress)  

GO:0031663 (BP) Lipopolysaccharide Mediated Signalling Pathway 31 5 0.0054 

GO:0050829 (BP) Defence Response To Gram Negative Bacterium 43 5 0.0141 

GO:0001530 (MF) Lipopolysaccharide Binding 21 4 0.0107 

GO:0006953 (BP) Acute Phase Response 43 5 0.0141 

HALLMARK Inflammatory Response 200 21 <0.001 

GO:0050729 (BP) Positive Regulation Of Inflammatory Response 113 7 0.0243 

GO:0002526 (BP) Acute Inflammatory Response 73 6 0.0177 

GO:0071260(BP) Cellular Response To Mechanical Stimulus 80 6 0.0226 

GO:0071216 (BP) Cellular Response To Biotic Stimulus 163 9 0.0141 

KEGG LEISHMANIA Infection 72 8 <0.001 

KEGG Systemic Lupus Erythematosus 140 8 0.0071 

GO:0000302 (BP) Response To Reactive Oxygen Species 191 10 0.012 

GO:0031960 (BP) Response To Corticosteroid 176 10 0.0088 

GO:0009266 (BP) Response To Temperature Stimulus 148 10 0.0034 

GO:0009408 (BP) Response To Heat 89 7 0.0105 

GO:1904018 (BP) Positive Regulation Of Vasculature Development 133 8 0.0168 

GO:1902883 (BP) Negative Regulation Of Response To Oxidative Stress 35 4 0.0288 

GO:0090083 (BP) Regulation Of Inclusion Body Assembly 16 3 0.0312 

GO:1903036 (BP) Positive Regulation Of Response To Wounding 162 8 0.0342 

HALLMARK Coagulation 138 6 0.0383 

REACTOME Amyloids 83 5 0.0444 

(g) Adaptive 

GO:0002285 (BP) Lymphocyte Activation Involved In Immune Response 98 6 0.0428 

GO:0002292 (BP) T Cell Differentiation Involved In Immune Response 29 4 0.0214 

GO:0002286 (BP) T Cell Activation Involved In Immune Response 60 5 0.0312 

GO:0019864 (MF) IgG Binding 12 3 0.0149 

GO:0019865 (MF) Immunoglobulin Binding 23 4 0.0124 
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GO:0002460 (BP) Adaptive Immune Response Based On Somatic 
Recombination Of Immune Receptors Built From 
Immunoglobulin Superfamily Domains 

154 11 <0.001 

GO(BP) Negative Regulation Of Adaptive Immune Response 37 4 0.0359 

(h)Metabolism  

HALLMARK Cholesterol Homeostasis 74 6 0.0029 

HALLMARK Xenobiotic Metabolism 200 9 0.0082 

GO:0005536 (MF) Glucose Binding 12 3 0.0149 

REACTOME Organic Cation Anion Zwitterion Transport 13 3 0.0154 

GO:0046133 (BP) Pyrimidine RIBONUCLEOSIDE Catabolic Process 11 3 0.0168 

GO:0016810 (MF) Hydrolase Activity Acting On Carbon Nitrogen 
 But Not Peptide Bonds 

143 8 0.0173 

GO:0044262 (BP) Cellular Carbohydrate Metabolic Process 144 8 0.0214 

GO:0072529 (BP) Pyrimidine Containing Compound Catabolic Process 32 4 0.0241 

GO:0006768 (BP) Biotin Metabolic Process 14 3 0.0243 

GO:0051770 (BP) Positive Regulation Of Nitric Oxide Synthase 
Biosynthetic Process 

14 3 0.0243 

REACTOME Triglyceride Biosynthesis 38 4 0.0243 

GO:0044275 (BP) Cellular Carbohydrate Catabolic Process 33 4 0.0246 

GO:2000377 (BP) Regulation Of Reactive Oxygen Species Metabolic 
Process 

152 8 0.0246 

GO:0006638 (BP) Neutral Lipid Metabolic Process 85 6 0.0259 

GO:2000379 (BP) Positive Regulation Of Reactive Oxygen Species 
Metabolic Process 

86 6 0.0259 

GO:0006767 (BP) Water Soluble Vitamin Metabolic Process 88 6 0.0259 

GO:0051769 (BP) Regulation Of Nitric Oxide Synthase Biosynthetic 
Process 

19 3 0.0407 

KEGG GLYCEROLIPID Metabolism 49 4 0.0489 

GO:0016813 (MF) Hydrolase Activity Acting On Carbon Nitrogen  
But Not Peptide Bonds In Linear AMIDINES 

11 3 0.0145 

(i) Cell Cycle 

KEGG Hematopoietic Cell Lineage 88 8 <0.001 

REACTOME Meiotic Synapsis 73 6 0.0139 

REACTOME Packaging Of Telomere Ends 48 5 0.014 

REACTOME Chromosome Maintenance 122 7 0.0167 

REACTOME RNA Pol I Promoter Opening 62 5 0.0182 

REACTOME Telomere Maintenance 75 5 0.0399 

REACTOME Meiosis 116 6 0.0402 

REACTOME Meiotic Recombination 86 5 0.047 

REACTOME RNA Pol I Transcription 89 5 0.0495 

REACTOME Deposition Of New CENPA Containing  
Nucleosomes At The Centromere 

64 6 0.0099 

KEY: BP=Gene ontology biological process.  MF=Gene ontology molecular function. KEGG= Kyoto 
Encyclopedia of Genes and Genomes [250] 
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Figure 5.3:Activated protein-protein networks associated with mild pneumonia.  Up-regulated genes in all the severe pneumonia states (MSvS, m=264) 
were analysed using the STRING database[280]. TFs=Transcription factors, NLRs=NOD like receptors, TLRs=Toll-like receptors.  
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5.4.3 Systemic molecular pathway responses in severe pneumonia  
In the previous section, systemic pathway responses that are jointly associated with 

all the pneumonia severity levels were investigated. To gain a deeper insight into the 

development of severe pneumonia, here I investigated the pathways that were 

associated with the up (m=301) and down (m=162) regulated genes in severe and 

very severe pneumonia but not in mild pneumonia (SvS gene set). The down and 

up-regulated pathways are presented below (respectively). 

 

5.4.3.1 Investigation of down-regulated pathways in severe pneumonia 
Briefly, 162 genes were exclusively down-regulated from severe to very severe 

pneumonia. Principally, this gene set was associated with the down-regulation of 

ant-inflammatory responses especially in T-cell signalling (Table5.3).  

 

As shown in Table 5.3, severe pneumonia cases were associated with significant 

inhibitions of T-cell functions including CD28 dependent co-stimulation (which is vital 

for priming the adaptive responses [385]), T cell selection, differentiation, 

proliferation and receptor signaling. Further, severe and very severe pneumonia 

cases were jointly associated with the down-regulation of the anti-inflammation 

pathways including regulation of IL4 and IL10 [116], regulation of phagocytosis, 

production of immunoglobulin A (IGA) antibody in B cells [422-425] and the WNT 

beta catenin signalling pathway [426]. Furthermore, the PECAM-1 (CD31) adhesive 

and signaling pathway, which is associated with the regulation of T-cell homeostasis, 

effector function and trafficking [427] as well as  regulatory [428, 429] and protective 

[430] roles in inflammation was also down regulated.. . Notably, severe pneumonia 

was also associated with the down-regulation of the Natural killer (NK) cell-mediated 
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cytotoxicity pathway (innate immunity). This finding is consistent with the cellular 

responses observed in Chapter 4 (i.e. pneumonia severity correlated with the 

depletion of NK cells) further suggesting the potential involvement of NK cells in the 

pathogenesis of severe pneumonia, and presents a novel target for potential 

immune-modulation. 

 

To assess whether the down-regulated genes in severe pneumonia states (n=162) 

were associated with functionally interconnected molecular networks, the STRING 

database for protein-protein interactions [280] was applied (Figure5.4). Mainly, this 

gene set was associated with an interconnected protein-protein network involving T 

cell and natural killer (NK) cell functions, and the Wnt signalling pathway. Together, 

these findings suggest an important interplay between the dendritic, T and NK cells 

in the pathogenesis of severe pneumonia states.  To investigate further, the next 

section assessed on the up-regulated pathways. 
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Table 5.3: Pathways associated with the down-regulated genes for severe and very severe 
pneumonia states (m=162) 

SOURCE ID Total Hits FDR 

(a) Innate 

KEGG Natural  Killer  Cell  Mediated  Cytotoxicity 137 11 <0.001 

GO:0001910(BP) Regulation  Of  Leukocyte  Mediated  Cytotoxicity 53 4 0.0305 

GO:0002717(BP) Positive  Regulation  Of  Natural  Killer  Cell  Mediated  Immunity 21 3 0.0247 

KEGG Cell  Adhesion  Molecules (CAMs) 134 5 0.0401 

REACTOME PECAM1  Interactions 10 2 0.0293 

HALLMARK Complement 200 6 0.0346 

HALLMARK WNT  Beta  Catenin  Signalling 42 3 0.0346 

KEGG WNT  Signalling  Pathway 151 5 0.0453 

KEGG Antigen  Processing  and  Presentation 89 4 0.0432 

(b) Cytokines  

GO:0032673(BP) Regulation  Of  Interleukin  4  Production 31 4 0.0086 

GO:0032753(BP) Positive  Regulation  Of  Interleukin  4  Production 22 3 0.0275 

GO:0071353(BP) Cellular  Response  To  Interleukin  4 26 3 0.0354 

GO:0032653(BP) Regulation  Of  Interleukin  10  Production 46 4 0.0218 

(c ) Adaptive(T Cells) 

REACTOME Generation  Of  Second  Messenger  Molecules 27 6 <0.001 

GO:0031343(BP) Positive  Regulation  Of  Cell  Killing 39 4 0.0136 

GO:0002699(BP) Positive  Regulation  Of  Immune  Effector  Process 156 7 0.0136 

KEGG T  Cell  Receptor  Signalling  Pathway 108 10 <0.001 

REACTOME TCR  Signalling 54 6 <0.001 

REACTOME Translocation  Of  ZAP70  To  Immunological  Synapse 14 4 <0.001 

REACTOME Costimulation  By  The CD28  Family 63 6 <0.001 

GO:0050852(BP) T  Cell  Receptor  Signalling  Pathway 146 9 <0.001 

GO:0030217(BP) T  Cell  Differentiation 123 8 0.0019 

GO:0042102(BP) Positive  Regulation  Of  T  Cell  Proliferation 95 7 0.0025 

GO:0046641(BP) Positive  Regulation  Of  Alpha  Beta  T  Cell  Proliferation 19 4 0.0026 

GO:0042129(BP) Regulation  Of  T  Cell  Proliferation 147 8 0.0034 

GO:0046632(BP) Alpha  Beta  T  Cell  Differentiation 45 5 0.0035 

GO:0046640(BP) Regulation  Of  Alpha  Beta  T  Cell  Proliferation 23 4 0.0035 

REACTOME Phosphorylation  Of CD3  And  TCR  Zeta  Chains 16 3 0.0051 

REACTOME PD1  signalling 18 3 0.0065 

GO:0046631(BP) Alpha  Beta  T  Cell  Activation 54 5 0.0067 

REACTOME CD28  Dependent  Pi3k  AKT  Signalling 22 3 0.0083 

GO:0043383(BP) Negative  T  Cell  Selection 13 3 0.0092 

GO:0043368(BP) T  Cell  Selection 36 4 0.0121 

GO:0045061(BP) Thymic  T  Cell  Selection 19 3 0.0208 

REACTOME CD28  Costimulation 32 3 0.0241 

GO:0046635(BP) Positive  Regulation  Of  Alpha  Beta  T  Cell  Activation 51 4 0.0281 

REACTOME Downstream  TCR  Signalling 37 3 0.0293 

REACTOME CD28  Dependent  VAV1  Pathway 11 2 0.0331 

GO:0005070(MF) SH3 -SH2  Adaptor  Activity 52 5 0.0117 

GO:0031294(BP) Lymphocyte  Costimulation 78 11 <0.001 

(d) Adaptive (other) 

GO:0042288(MF) MHC  Class  I  Protein  Binding 19 3 0.0222 

KEGG Intestinal  Immune  Network  For  IGA  Production 48 3 0.0453 

GO:0070665(BP) Positive  Regulation  Of  Leukocyte  Proliferation 136 9 <0.001 

KEGG Hematopoietic  Cell  Lineage 88 6 0.0013 

GO:0002705(BP) Positive  Regulation  Of  Leukocyte  Mediated  Immunity 85 6 0.0064 
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GO:0006968(BP) Cellular  Defence  Response 60 5 0.0089 

GO:0002708(BP) Positive  Regulation  Of  Lymphocyte  Mediated  Immunity 69 5 0.0136 

GO:0002312(BP) Cell  Activation  Involved  In  Immune  Response 139 6 0.0305 

GO:1901623(BP) Regulation  Of  Lymphocyte  Chemotaxis 20 3 0.0221 

GO:0050851(BP) Antigen  Receptor  Mediated  signalling  Pathway 195 9 0.0026 

(e) Other 

KEGG Allograft  Rejection 38 3 0.0397 

HALLMARK Allograft  Rejection 200 11 <0.001 

KEGG Graft  Versus  Host  Disease 42 3 0.0401 

KEGG Primary  Immunodeficiency 35 6 <0.001 

HALLMARK Apical  Surface 44 3 0.0346 

REACTOME The  Role  Of  NEF  In  HIV1  Replication  And  Disease  
Pathogenesis 

28 4 0.0014 

REACTOME NEF  Mediates  Down  Modulation  Of  Cell  Surface  Receptors  
 By  Recruiting  Them  To  Clathrin  Adapters 

21 3 0.0079 

GO:0002230(BP) Regulation  Of  Defence  Response  To  Virus  By  Virus 29 4 0.0071 

GO:0016444(BP) Somatic  Cell  DNA  Recombination 33 4 0.0092 

GO:0033151(BP) V  D  J  Recombination 16 3 0.0136 

GO:0002200(BP) Somatic  Diversification  Of  Immune  Receptors 42 4 0.0143 

GO:0071594(BP) Thymocyte  Aggregation 45 4 0.0208 

GO:0015026(MF) Coreceptor  Activity 38 4 0.021 

GO:0035591(MF) Signalling  Adaptor  Activity 74 5 0.021 

KEGG Colorectal  Cancer 62 4 0.0227 

KEGG Autoimmune  Thyroid  Disease 53 3 0.0453 

KEGG Basal  Cell  Carcinoma 55 3 0.0453 

KEGG Endometrial Cancer 52 3 0.0453 

KEGG Melanogenesis 102 4 0.0453 

KEGG Vibrio Cholerae  Infection 56 3 0.0453 
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Figure 5.4:  Down-regulated protein-protein networks associated with severe pneumonia.   Down regulated genes in severe and very severe 

pneumonia were investigated using the STRING database [280]. NK=Natural killer, Wnt=Wingless-type MMTV integration site family member.. 
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5.4.3.2 Investigation of up-regulated pathways in severe pneumonia 
At the gene analytic level, severe and very severe pneumonia cases were 

uniquely associated with the up-regulation of 301 genes. At pathway analytic 

level, this gene set was principally associated with the activation of innate 

and metabolic pathway responses (Table5.4). Severe pneumonia outcomes 

were associated with further amplification of pro-inflammatory innate 

responses such as complement system, cell chemotaxis, platelet 

degranulation and IL6 production. Notably, severe pneumonia cases were 

further associated with the activation of fatty acid and lipid metabolism 

pathways including Sphingolipid, Lysophospholipid, unsaturated fatty acids 

and lipopolysaccharide metabolism (Table5.4).  

 

In summary, severe pneumonia outcomes are predominantly associated with 

the inhibition of adaptive and NK cell responses, and the activation of fatty 

acid and lipid metabolism pathways consequently promoting the deleterious 

pro-inflammatory responses. These finding further highlight the interplay 

between the innate, adaptive and metabolic pathways in pneumonia and 

support the central hypothesis that systemic pathway responses underpin 

the pathogenesis of severe pneumonia.  To gain more insights into the 

pathogenesis of pneumonia severity, the next section investigated the 

molecular pathway responses to very severe pneumonia. 

 
Table 5.4: Pathways associated with the up-regulated genes for severe and very 
severe pneumonia (m=301) 

SOURCE ID TOTAL HITS FDR 

 (a) Innate 

Hallmark Complement 200 14 <0.001 

Hallmark IL6 JAK Stat3 Signalling 87 9 <0.001 

Hallmark Inflammatory Response 200 13 <0.001 

GO:0060326(BP) Cell Chemotaxis 162 9 0.034 
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GO:0004896(MF) Cytokine Receptor Activity 89 8 0.0068 

GO:0032675(BP) Regulation Of Interleukin 6 Production 104 8 0.0173 

GO:0032755(BP) Positive Regulation Of Interleukin 6 Production 68 6 0.0292 

GO:0002699(BP) Positive Regulation Of Immune Effector Process 156 9 0.0292 

GO:0002698(BP) Negative Regulation Of Immune Effector Process 102 7 0.0363 

GO:0043300(BP) Regulation Of Leukocyte Degranulation 41 5 0.0267 

GO:0002576(BP) Platelet Degranulation 107 7 0.0433 

KEGG Hematopoietic Cell Lineage 88 8 0.0045 

GO:0034113(BP) Heterotypic Cell Cell Adhesion 27 4 0.0329 

Hallmark Epithelial Mesenchymal Transition 200 10 0.0082 

 (b) Metabolism  

GO:1901568(BP) Fatty Acid Derivative Metabolic Process 96 9 0.0043 

GO:0033559(BP) Unsaturated Fatty Acid Metabolic Process 109 9 0.0068 

GO:1901570(BP) Fatty Acid Derivative Biosynthetic Process 46 6 0.0071 

GO:0006636(BP) Unsaturated Fatty Acid Biosynthetic Process 58 6 0.0185 

GO:0006633(BP) Fatty Acid Biosynthetic Process 114 8 0.0215 

GO:0072330(BP) Monocarboxylic Acid Biosynthetic Process 172 11 0.0068 

GO:0030148(BP) Sphingolipid Biosynthetic Process 77 8 0.0053 

KEGG Sphingolipid Metabolism 40 5 0.0133 

GO:0046467(BP) Membrane Lipid Biosynthetic Process 114 10 0.0043 

GO:0006643(BP) Membrane Lipid Metabolic Process 184 11 0.0135 

GO:0071617(MF) Lysophospholipid Acyltransferase Activity 19 4 0.0147 

GO:0009247(BP) Glycolipid Biosynthetic Process 62 6 0.0258 

GO:0006665(BP) Sphingolipid Metabolic Process 138 9 0.0215 

GO:0006688(BP) Glycosphingolipid Biosynthetic Process 25 4 0.0292 

GO:0006687(BP) Glycosphingolipid Metabolic Process 69 6 0.0292 

GO:0032369(BP) Negative Regulation Of Lipid Transport 26 4 0.0292 

GO:0050996(BP) Positive Regulation Of Lipid Catabolic Process 25 4 0.0292 

GO:0032368(BP) Regulation Of Lipid Transport 95 7 0.0292 

GO:0019370(BP) Leukotriene Biosynthetic Process 23 6 <0.001 

GO:0006691(BP) Leukotriene Metabolic Process 33 7 <0.001 

GO:0006672(BP) Ceramide Metabolic Process 73 8 0.0043 

GO:0046513(BP) Ceramide Biosynthetic Process 43 6 0.0068 

GO:0046173(BP) Polyol Biosynthetic Process 26 5 0.0068 

GO:0016755(MF) Transferase Activity Transferring Amino Acyl Groups 26 5 0.0068 

GO:0035091(MF) Phosphatidylinositol Binding 200 11 0.0147 

GO:0001574(BP) Ganglioside Biosynthetic Process 18 4 0.0167 

GO:0001573(BP) Ganglioside Metabolic Process 26 4 0.0292 

GO:1903175(BP) Alcohol Biosynthetic Process 111 8 0.0215 

GO:0097503(BP) Sialylation 21 4 0.0215 

GO:1903509(BP) Liposaccharide Metabolic Process 114 8 0.0246 

GO:0048268(BP) CLATHRIN Coat Assembly 12 3 0.0292 

GO:0034311(BP) Diol Metabolic Process 11 3 0.0292 

GO:0033690(BP) Positive Regulation Of Osteoblast Proliferation 11 3 0.0292 

GO:1903307(BP) Positive Regulation Of Regulated Secretory Pathway 49 5 0.0343 

GO:0046519(BP) Sphingoid Metabolic Process 13 3 0.0385 
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Figure 5.5: Up-regulated protein-protein networks associated with severe and very pneumonia.   The STRING database [280] was applied to 
investigate the protein-protein interactions networks that were associated with the up-regulated genes in severe and very severe pneumonia.  
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5.4.4 Systemic molecular pathway responses in very severe 
pneumonia 

Clinically, the distinction between severe and very severe pneumonia is 

subtle and subjective, and are often treated equally (inpatients)[1]. Here, I 

assessed whether very severe pneumonia cases have a unique set of 

systemic molecular pathway responses (objective three). At the gene level, 

247 genes (down=104, up=143) were uniquely associated with the clinical 

definition of very severe pneumonia (vS subset). Here, the corresponding 

pathways (up and down-regulated) were investigated. 

5.4.4.1 Investigation of the down-regulated pathways in very severe 
pneumonia  

Briefly, the development of very severe pneumonia was principally 

associated with the down-regulation of adaptive pathway responses 

especially in T cells (Table5.5). While most of these pathways were also 

observed in severe pneumonia, very severe pneumonia cases were 

predominantly associated with the inhibition of regulatory effector responses 

including the production of regulatory cytokines (IL2 and IL17), and the 

regulation of cellular responses (i.e. phagocytosis and B cell mediated 

immunity). To investigate further, the next section investigated the up-

regulated pathways in very severe pneumonia. 
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Table 5.5: Pathways associated with the down-regulated genes in very severe 
pneumonia only (m=104) 

SOURCE ID Total Hits FDR 

GO:0050851(BP) Antigen Receptor Mediated Signalling Pathway 195 6 0.0155 

GO:0002460 (BP) Adaptive Immune Response Based On Somatic 
Recombination Of Immune Receptors Built From 
Immunoglobulin Superfamily Domains 

154 5 0.0255 

GO:0002312(BP) Cell Activation Involved In Immune Response 139 6 0.0055 

GO:0002443(BP) Leukocyte Mediated Immunity 189 5 0.0492 

GO:0050715(BP) Positive Regulation Of Cytokine Secretion 96 4 0.0448 

GO:0032660 (BP) Regulation Of Interleukin 17 Production 22 4 0.0011 

GO:0032740 (BP) Positive Regulation Of Interleukin 17 
Production 

13 3 0.0032 

HALLMARK IL2 STAT5 Signalling 200 5 0.0443 

GO:0002819 (BP) Regulation Of Adaptive Immune Response 123 6 0.0032 

GO:0002821(BP) Positive Regulation Of Adaptive Immune Response 73 5 0.0032 

GO:0002285(BP) Lymphocyte Activation Involved In Immune 
Response 

98 5 0.0082 

GO:0002699(BP) Positive Regulation Of Immune Effector Process 156 6 0.0083 

GO:0002712 (BP) Regulation Of B Cell Mediated Immunity 41 3 0.0402 

GO:0002705 (BP) Positive Regulation Of Leukocyte Mediated 
Immunity 

85 6 0.0011 

GO:0002703 (BP) Regulation Of Leukocyte Mediated Immunity 156 7 0.0021 

GO:1903363 (BP) Negative Regulation Of Cellular Protein Catabolic 
Process 

64 4 0.0124 

GO:0031343 (BP) Positive Regulation Of Cell Killing 39 3 0.036 

GO:0002708(BP) Positive Regulation Of Lymphocyte Mediated 
Immunity 

69 6 <0.001 

GO:0002706(BP) Regulation Of Lymphocyte Mediated Immunity 114 7 <0.001 

HALLMARK Allograft Rejection 200 6 0.0141 

GO:0050728(BP) Negative Regulation Of Inflammatory Response 100 4 0.0448 

GO:1900425(BP) Negative Regulation Of Defence Response 144 5 0.0268 

GO:0002286(BP) T Cell Activation Involved In Immune Response 60 5 0.0021 

GO:0002292 (BP) T Cell Differentiation Involved In Immune Response 29 4 0.0021 

GO:2000514(BP) Regulation Of CD4 Positive Alpha Beta T Cell 
Activation 

38 4 0.0032 

GO:0043379(BP) T Cell Differentiation 123 6 0.0032 

GO:0046632(BP) Alpha Beta T Cell Differentiation 45 4 0.0055 

GO:0050852(BP) T Cell Receptor Signalling Pathway 146 6 0.0058 

GO:0046631(BP) Alpha Beta T Cell Activation 54 4 0.0087 

GO:2000516(BP) Positive Regulation Of CD4 Positive Alpha Beta T 
Cell Activation 

27 3 0.0155 

GO:0046634(BP) Regulation Of Alpha Beta T Cell Activation 68 4 0.0174 

GO:0035710(BP) CD4 Positive Alpha Beta T Cell Activation 34 3 0.0268 

GO:0045058(BP) T Cell Selection 36 3 0.0296 

GO:0046637(BP) Regulation Of Alpha Beta T Cell Differentiation 46 3 0.0492 
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Figure 5.6: Down-regulated protein-protein networks associated with very severe pneumonia.   The STRING database [280] was applied to investigate 
the protein-protein interactions networks that were associated with the down-regulated genes in very severe pneumonia 
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5.4.4.2 Investigation of up-regulated pathways in very severe pneumonia  
Here, the up-regulated genes in very severe pneumonia were predominantly 

associated with the activation of stress, antimicrobial and wound healing 

processes (Table5.6 & Figure5.7). Firstly, the predominant activation of 

stress and wound healing processes such as extracellular matrix (ECM) 

organization [431], epithelial mesenchymal transition organization [432], 

collagen formation[433] and coagulation[434] and apoptosis suggest that 

deleterious systemic responses underpin the development of very severe 

pneumonia states. Notably, the predominant activation of antimicrobial 

activities such as defensin antimicrobial peptides[435], and responses to 

bacterium suggests the important contribution of bacterial infections in very 

severe pneumonia outcomes. Further, this finding is similar to host 

responses in sepsis [136] suggesting the involvement of bacterial 

septicaemia in the development of serious pneumonia outcomes, and 

present an opportunity to investigate blood-based biomarkers for clinical 

stratification and treatment modalities of high-risk pneumonia cases 

(Chapter 6). Together, these findings support the central hypothesis that 

systemically suppressed and activated molecular pathway responses 

underpin the development severe pneumonia states 
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Figure 5.7: UP-regulated protein-protein networks associated with very severe pneumonia.   The STRING database [280] was applied to investigate 

the protein-protein interactions networks that were associated with the up-regulated genes in very severe pneumonia.  



Chapter5: Computational pathway analysis 
 

 186 

Table 5.6: Pathways associated with the up-regulated genes in very severe 
pneumonia (m=143) 

SOURCE ID Total Hits FDR 

(a) Innate, antimicrobial, stress or wound healing  

GO:0001906(BP) Cell Killing 56 6 <0.001 

REACTOME Defensins 51 4 0.0032 

GO:0002227(BP) Innate Immune Response In Mucosa 23 9 <0.001 

GO:0019730(BP) Antimicrobial Humoral Response 52 11 <0.001 

GO:0050830(BP) Defence Response To Gram Positive Bacterium 72 12 <0.001 

GO:0050829(BP) Defence Response To Gram Negative Bacterium 43 4 0.0161 

GO:0030228(MF) Lipoprotein Particle Receptor Activity 16 3 0.013 

GO:0030169(MF) Low Density Lipoprotein Particle Binding 15 3 0.013 

GO:0071814(MF) Protein Lipid Complex Binding 24 3 0.027 

GO:0002251(BP) Organ or Tissue Specific Immune Response 33 9 <0.001 

GO:0006959(BP) Humoral Immune Response 187 12 <0.001 

GO:0001878(BP) Response to Yeast 13 5 <0.001 

KEGG Systemic Lupus Erythematosus 140 9 <0.001 

GO:0035821(BP) Modification Of Morphology Or Physiology Of Other Organism 100 8 <0.001 

GO:0044144(BP) Modulation Of Growth Of Symbiont 
Involved In Interaction With Host 

16 3 0.0131 

GO:0051702(BP) Interaction With Symbiont 52 4 0.0301 

GO:0071936(MF) Co-receptor Activity 66 4 0.0305 

GO:0043901(BP) Negative Regulation Of Multi Organism Process 151 6 0.0339 

GO:0075157(BP) Positive Regulation Of G Protein Coupled 
 Receptor Protein Signalling Pathway 

25 3 0.032 

GO:0050832(BP) Response To Fungus 52 9 <0.001 

GO:0050832(BP) Defence Response To Fungus 39 8 <0.001 

GO:0044364(BP) Disruption Of Cells Of Other Organism 26 6 <0.001 

REACTOME Response To Elevated Platelet Cytosolic Ca2  89 6 <0.001 

GO:0002576(BP) Platelet Degranulation 107 6 0.0081 

HALLMARK UV Response Down 144 7 0.0011 

HALLMARK Reactive Oxygen Species Pathway 49 3 0.0435 

REACTOME Extracellular Matrix Organization 87 6 <0.001 

GO:0050840(MF) Extracellular Matrix Binding 51 4 0.0246 

HALLMARK Epithelial Mesenchymal Transition 200 8 0.0011 

HALLMARK Coagulation 138 7 0.0011 

REACTOME Collagen Formation 58 4 0.005 

GO:0001936(BP) Regulation Of Endothelial Cell Proliferation 98 6 0.0057 

GO:0030520(BP) Intracellular Estrogen Receptor Signalling Pathway 20 3 0.0232 

GO:0008201(MF) Heparin Binding 157 7 0.013 

REACTOME Amyloids 83 8 <0.001 

(B) Cell Cycle 

REACTOME Packaging Of Telomere Ends 48 7 <0.001 

REACTOME Deposition Of New CENPA Containing  
Nucleosomes At The Centromere 

64 7 <0.001 

REACTOME RNA Pol I Promoter Opening 62 7 <0.001 

REACTOME Meiotic Synapsis 73 7 <0.001 

REACTOME Telomere Maintenance 75 7 <0.001 

REACTOME Meiotic Recombination 86 7 <0.001 

REACTOME RNA Pol I Transcription 89 7 <0.001 

REACTOME Meiosis 116 7 <0.001 

REACTOME Chromosome Maintenance 122 7 <0.001 

REACTOME RNA Pol I RNA Pol III And Mitochondrial Transcription 122 7 <0.001 
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GO:0030041(BP) Actin Filament Polymerization 23 4 0.0012 

GO:0008154(BP) Actin Polymerization Or Depolymerization 37 4 0.0081 

HALLMARK Apoptosis 161 5 0.0435 
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5.5 Discussion  

This chapter investigated the systemic molecular pathway responses that are 

associated with pneumonia severity (mild, severe and very severe) using the 

training set of the whole blood transcriptome (n=345). At the gene analytic 

level, pneumonia severity was significantly associated with a battery of 

molecular response signatures. The absolute fold changes and the number 

of differentially expressed genes (DEGs) increased with pneumonia severity 

(Figure5.2). Using a range of biochemical pathway databases, this analysis 

has revealed significant systemic pathway (innate, adaptive, metabolic and 

cell-cycle) responses in pneumonia, which support the central hypothesis 

that systemic pathway responses underpin the development of severe 

pneumonia outcomes. These findings show high agreement between the 

biochemical pathways databases, and are consistent with the cellular 

pathway responses in Chapter 4.   

 

5.5.1 Agreements between the biochemical pathway databases  
To enhance the interpretation of high-throughput data, a range of pathway 

analysis algorithms and biochemical databases has been applied [249, 256].. 

To gain a comprehensive view, here I investigated a range of biochemical 

pathway resources that are extensively applied in pathway analyses (KEGG, 

REACTOME, GO, HALLMARK) [254, 402].  Despite the lack of standardized 

nomenclature, the findings of this analysis showed a high level of agreement 

between the pathway responses that were independently enriched across 

the biochemical pathway databases. For example, pathogen recognition 

receptors (PRRs), complement system, natural killer cell (NK), adaptive (B 

and T cells) and lipid metabolism pathway responses were consistently 
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enriched in all the resources. These agreements have increased the 

confidence in these results, which in turn support the central hypothesis 

suggesting the significant contribution of systemic pathway responses in the 

development of severe pneumonia outcomes. 

 

5.5.2 Systemic molecular pathway responses in severe pneumonia 
As hypothesized, the development of severe pneumonia states was 

associated with a battery of significant systemic pathway responses involved 

in the innate, adaptive and metabolic signalling pathways. In particular, while 

the up-regulation of innate responses and cholesterol metabolism were 

associated with the development of all severe pneumonia states (i.e. mild to 

very severe); the development of severe pneumonia states were 

predominantly associated with the activation of fatty acid and lipid 

metabolism pathways, and the inhibition of adaptive effector functions as well 

as NK cell signalling. While many of these findings were anticipated[36, 37, 

39, 80, 112, 436, 437], the potential involvement of NK cells in the 

pathogenesis of pneumonia presents a novel finding on the potential target 

for immune-modulation and case management. Finally, very severe 

pneumonia cases were predominantly associated with antimicrobial and 

wound-healing responses. 

 

Together, these findings underscore the importance of systemic pathway 

responses in development of severe pneumonia outcomes. Consistently, 

Fernandez-Botran et al. (2014) also observed that severe pneumonia cases 

were associated with compromised local responses but enhanced systemic 

responses; and the vice versa for the non-severe cases[436]. Further, these 



Chapter5: Computational pathway analysis 
 

 190 

findings also share several similarities with host responses in sepsis[120, 

136, 381, 438-440], which further suggest the important contribution of 

systemic pathway responses in the development of severe pneumonia 

outcomes. Thus, while immune responses in pneumonia are often 

compartmentalized within the alveoli (local responses)[441], severe 

pneumonia outcomes are potentially caused by the de-compartmentalization 

(leakage) of the local responses into the circulating blood (i.e. involvement 

the systemic responses)[116]. Furthermore, the predominant involvement of 

antibacterial responses in very severe pneumonia outcomes particularly 

suggests the important contribution of bacterial septicaemia in the 

development of serious pneumonia outcomes. Clinically, this finding presents 

an innovative approach for blood-based biomarkers to enhance rapid 

identification and appropriate treatment of high-risk mild pneumonia cases 

(Chapter 6).  

5.5.3 Agreement between cellular and molecular pathway responses  
In this thesis, I sought to investigate the central hypothesis that systemic 

pathway (cellular and molecular) responses underpin the development of 

severe pneumonia states. In Chapter 4, pneumonia severity was associated 

with the depletion of T, B, NK and Dendritic cells, and the elevation of 

monocyte and neutrophil cell proportions, which are consistent with the 

current molecular pathway responses (Chapter5). In particular, the depletion 

of Dendritic, B, T and NK proportions (Chapter 4) molecularly corresponded 

with the inhibition of antigen presentation (i.e. dendritic and T-cells), adaptive 

responses (B and T cells) and natural killer (NK) cell cytotoxicity. On the 

other hand, elevation of monocytes and neutrophils subpopulations 
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molecularly corresponded with the activation of pro-inflammatory innate and 

stress responses including phagocytosis, neutrophil chemotaxis and 

granulation, and the production of reactive oxidative species and nitric acid. 

Thus, the molecular findings support the functional involvement of the 

cellular response mediators in the pathogenesis of pneumonia severity. 

Together, these findings (cellular and molecular pathway responses) jointly 

support the central hypothesis for this thesis that systemic pathway (cellular 

and molecular) responses underpin the development of severe pneumonia 

states. Nevertheless, the potential involvement of NK cells in severe 

pneumonia requires further investigations.  

5.5.4 Limitations  
However, this analysis had some limitations. Firstly, these findings reflect a 

cross-section view of the immune response since whole blood samples were 

collected at a single time point. Preferably, a longitudinal study design would 

provide more insights into the pathogenesis of pneumonia. Secondly, these 

findings largely depend on the current state of the existing biochemical 

pathway databases, which remains an area of active research. Potentially, 

these data and current results may yield yet knew findings if new data 

resources come online.  

 

Further, the over representation analysis (ORA) pathway analysis approach 

(i.e. using the Fisher’s exact test) ignored the pathway structure, and the 

strength the gene features and their interactions.  Though computationally 

expensive, pathway analysis approaches that account for the pathway 

structure (as suggested in Chapter 2, section 2.4.4, page 70) [258-261, 
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273, 276-279, 442] would have revealed more insights into the pathogenesis 

of childhood pneumonia. Furthermore, differentially expressed genes (DEGs) 

based on arbitrary cut-offs values (FDR<0.05 and |FC|≥2) were applied. 

While these cut-offs are biologically and statistically reasonable, a sensitivity 

analysis on a range of cut-offs would potentially generate more robust 

results. Alternatively, parameter free methods such as gene set enrichment 

analysis (GSEA)[157] would be applied. However, such methods require 

more computational time (i.e. permutation tests) and are potentially 

confounded by irrelevant genes and pathways [256]. Nonetheless, the 

agreements between different pathway resources, and between molecular 

and cellular pathway responses suggest reliability and validity. 

5.5.5 Conclusion  
In summary, in this chapter it was shown that pneumonia severity is 

associated with a battery of significant systemic molecular pathway 

responses. These findings highlight the interplay between the innate, 

adaptive and metabolic systemic pathway responses in severe pneumonia. 

Importantly, the molecular (Chapter 5) and cellular (Chapter 4) pathway 

responses consistently support the central hypothesis that systemic pathway 

responses underpin the development of severe pneumonia states. Notably, 

the potential involvement of NK cells presents a novel target for immuno-

modulation, and requires further investigations.
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Chapter 6: Systemic cellular pathway-based 
candidate biomarkers of severe pneumonia 

6.1 Introduction  

Early identification of mild pneumonia patients at the higher risk of 

developing poor outcomes remains a major public health challenge. This 

chapter investigates host-based systemic (whole blood) biomarkers for 

severe pneumonia, to facilitate early detection of high-risk cases presenting 

at the resource-constrained clinic with mild pneumonia. Based on the results 

from the previous chapters, here I have coupled cellular pathway biology with 

machine-learning approaches to select (using the Fajara training data, 

n=345) and validate (using the Basse validation data set, n=345) the 

performance of systemic candidate biomarkers (transcriptomic classifier 

features) for early detection of severe pneumonia cases. 

6.2 Background  

Pneumonia is caused by a range of pathogens including viruses and 

bacteria; and remains the leading infectious cause of mortality in under-five 

children worldwide [2, 7, 9, 50, 443].  Clinically, the detection of 

microbiological aetiology in patients presenting with symptoms of pneumonia 

remains a major challenge especially in resource-limited where the burden is 

highly concentrated [5, 28].  While pneumonia has a complex aetiology, 

bacterial cases are often associated with more serious outcomes [5]. 

Therefore, early identification and appropriate treatment of bacterial cases is 

a cornerstone for mitigating the burden of childhood pneumonia and under-

five mortality[27]. 
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However, standard diagnostic tools (i.e. Chest x-rays and blood culture) are 

both too expensive for remote healthcare facilities and also not optimal in 

their sensitivity and specificity. Firstly, chest x-rays are not aetiology-specific; 

and unnecessary frequent exposure to radiation is a potential risk factor for 

serious conditions like cancer[28]. Further, blood culture lacks sensitivity and 

the turnaround is too long (typically 24-48 hours or longer) to delay empirical 

therapy being started [53, 55]. To mitigate serious bacterial outcomes, the 

World Health Organisation (WHO) criteria[27] prioritises sensitivity over 

specificity. Although this helps to avoid undertreating serious cases, it also 

results broadly in over-treatment with antibiotics, which has the 

consequences of heavier financial costs and the potential increase in 

antibiotic resistance [350, 444, 445]. 

 

Alternatively, host-based biomarkers present a potential paradigm shift in the 

clinical management of pneumonia towards practical personalized treatment 

[154]. While single serum biomarkers have shown potential[56, 96, 446-449], 

whole blood genome-wide profiling presents a potentially more robust and 

innovative approach to explore systemic pathway-based candidate 

biomarkers[65, 121, 136, 450-452] to enhance the stratification and 

management of pneumonia cases. Importantly, whole blood is a rich and 

clinically accessible tissue for pathophysiological investigations, and 

molecular profiling has become a mainstay for future translational 

medicine[123].  
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The aim of this chapter is to derive candidate biomarkers for early detection 

of mild pneumonia cases at the higher risk of developing severe outcomes 

(i.e. bacterial cases). However, it is worth noting that this analysis lacked 

proper gold standard data on disease etiology (i.e. viral or bacterial 

pneumonia).  Therefore, this analysis is based on the main assumption that 

bacterial infections underpin the pathogenesis of severe pneumonia 

outcomes. In this regard, the strategy is to derive a classifier that accurately 

distinguishes severe pneumonia cases from non-pneumonia controls (i.e. 

extreme cases). Subsequently, this classifier would be applied to stratify mild 

pneumonia cases into low-risk and high-risk treatment groups (Figure6.1).  

 
Figure 6.1: An Illustration of the potential clinical application of the current candidate 
biomarkers for stratification and treatment of mild pneumonia cases. Using a 
biomarker stratification rule that distinguishes extreme cases (severe pneumonia cases and 
non-pneumonia controls), mild pneumonia cases with suspected bacterial infection (red 
triangles) would benefit from early antibiotic treatment while withholding treatment for the 
low risk cases (black triangles). 
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6.3 Approach  

In particular, I have applied machine-learning approaches to assess the 

performance of cellular pathway-based biomarkers (range: 18-37). Feature 

selection and internal performance assessment using leave-one-out cross-

validation (LOOCV) were implemented in the training data (Fajara) whole 

blood transcriptome (n=345); followed by an independent validation in the 

Basse data set (n=158), which was kept independent from primary analyses.  

Throughout this chapter, n and m represent the number of subjects and 

genes, respectively.  

  

6.3.1 Feature selection and performance assessment 
As illustrated in Figure6.2, the investigation of candidate biomarkers for 

severe pneumonia involved three main steps: (i) feature selection (ii) internal 

performance assessment using the training data and (iii) independent 

validation using the Basse data set. Briefly, feature selection coupled cellular 

pathway biology and machine learning approaches. In particular, machine-

learning approaches were applied to select and investigate the performance 

of cellular pathway based transcriptomic features. The cellular pathway-

based features and the machine learning approaches are described below. 
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Figure 6.2: Feature selection of candidate biomarkers for severe pneumonia.   The 
cellular pathway gene lists ranged between 277 markers in the IBML and 6369 cell-
correlated genes. The Elastic Net (EN) feature selection was applied to the gene features 
that were differentially expressed in mild pneumonia (compared to non-pneumonia controls). 

6.3.1.1 Selection of cellular pathway-based transcriptomic features  
Briefly, the cellular pathway-based features were independently selected 

from the following lists: 

i. IBML: an integrated blood marker lists (m=277), derived in Chapter 4 

ii.  CCGs: Cell correlated genes (m=6369)  

iii.  DCGs: Differentially correlated genes (m=720).  

The specific details for each cellular list are provided in subsequent sections. 

For each cellular list, candidate biomarkers were selected at the cellular level 

(i.e. B, NK, or neutrophils, respectively) followed by an aggregation. To 

derive a unified cellular classifier, candidate biomarkers from the three lists 

were also aggregated.  
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At each level, eligible features were selected using the following two criteria: 

(i) differentially expressed genes (FDR<0.05 & |FC|≥1.5) in mild pneumonia, 

and (ii) genes showing trended response (i.e. increased or decreased fold 

change) with increased pneumonia severity. Independently, the same 

approach was applied to select eligible markers from the validated 52-gene 

neonatal sepsis classifier [136]. Subsequently, each eligible feature set was 

subjected to machine learning feature selection to identify the optimal 

number of candidate biomarker set (next section).  

6.3.1.2 Machine-learning feature selection  

For each eligible set of biomarkers, the Elastic Net (EN) feature selection 

algorithm (implemented in the glmnet R package[282]) was applied to select 

an optimal combination of synergetic features for distinguishing severe 

pneumonia cases from the non-pneumonia controls. It is worth noting that 

mild pneumonia cases were excluded from machine learning analyses. To 

select the optimal parameter values, the cv.glmnet function was implemented 

using the leave-one-out cross validation (LOOCV). Further, the EN algorithm 

was repeated hundred times to enable the selection of robust and stable 

combination of features. Using this approach, candidate biomarkers that 

were selected together all the time (100 times) were selected and assessed 

for classification performance.  
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To assess the classification of the candidate biomarker sets, five 

classification algorithms coupled with leave-one-out cross validation 

(LOOCV) were applied (Table6.1). 

Algorithm 
(reference) 

Description  R package 
(Function)  

Parameters 

SVM [283] Support vector machines e1071(svm) Default: Kernel 
=radial basis  

RF [284] Random forest  randomForest 
(randomForest) 

Default: 
ntree=500 

KNN [285] K-nearest neighbour  Class 
(knn.cv) 

K=5, l=0 

LDA [286] Linear discriminant 
analysis 

MASS (lda) Default  

ROCC [287] Receiver operation 
characteristic (ROC) 
analyses based classifier 

Rocc (o.rocc) xgenes=all 
selected genes 

Table 6.1: Classification algorithms applied to assess the performance of candidate 
biomarkers for severe pneumonia.  The table shows the R package (name and specific 
function) and parameter settings applied in this analysis (more details in Chapter 2).  
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6.4 Results  

6.4.1 Instigating the association between bacterial septicaemia and 
systemic responses in pneumonia  

In this chapter, the main assumption is that systemic responses to bacterial 

infections are associated with more serious outcomes. To partially assess 

that, here I investigated whether mild pneumonia cases with confirmed or 

suspected bacterial aetiology (i.e. high-risk cases) were associated with 

stronger responses at the gene analytic level. In particular, I applied the 

empirical Bayes moderated t-test [226] to identify differentially expressed 

genes (adjusting for potential confounders) in mild pneumonia stratified by 

bacterial infection phenotypes (Figure6.3).  

 
Figure 6.3:  Systemic responses in mild pneumonia stratified by bacterial infection.   
(a) Number of differentially expressed genes between mild pneumonia cases and non-
pneumonia controls (y-axis) stratified by bacterial infection (x-axis). (b) An overlap of 
suspected bacterial cases in the training data between the between diagnostic tools. 

 
 

As shown in Figure6.3, bacterial infection was indeed associated with 

stronger responses. In particular, while no differences were observed with 

the PCR stratification (which is very sensitive), mild pneumonia cases with 

blood culture-confirmed or suspected septicaemia (using a 52-gene neonatal 

sepsis classifier [136]) were associated with stronger qualitative systemic 
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responses. Notably, while Blood-Culture and PCR results lacked sensitivity 

and specificity (respectively), the sepsis classifier was associated the 

strongest difference between the negative and positive cases, which 

highlights the accuracy and potential of systemic pathway-based biomarkers. 

Together, these findings support the hypothesis that bacterial septicaemia 

importantly contributes to the development of severe pneumonia in this 

population. In the next sections, the composition and performance of the 

candidate biomarkers for severe pneumonia are investigated. 

 

6.4.2 Feature selection from the IBML list 
IBML is an optimized list of marker genes (m=277) for immune cell types, 

which was derived in Chapter 4 of this thesis to enhance computational 

deconvolution of whole blood transcriptomes. It constitutes cell type-specific 

marker genes for B (m=10), T (m=35), NK (m=46), Dendritic (m=9), 

Monocytes (m=25) and Neutrophils (m=152). To assess the classification 

performance of these markers in severe pneumonia, the feature selection 

approach described above (Figure6.2) was applied. 



Chapter 6: Candidate biomarkers 
 

 202 

 
Figure 6.4: Performance assessment of candidate biomarkers selected from the IBML.    
(a) Average performances (across the five algorithms) for cellular level and aggregated (All) 
candidate biomarkers: Neut=neutrophils, Mono=monocytes, NK=natural killer cells and 
All=aggregated. (b) Algorithm-specific performance of the aggregated biomarkers (n=18), 
which are displayed in part (c). 

 

At the cellular level, more neutrophils markers (m=22) were selected than in 

the monocytes (m=2), NK (m=3) and T (m=10) cell types. However, the 

average performances across the classification algorithms (Table6.1) were 

similar (accuracy: 93%) especially with the T and NK cells (Figure6.4a). On 

the other hand, the performance improved to 96% accuracy after the 

aggregation (All) despite the reduction in the number of selected features 

(m=18). In particular, this set combines markers from the B (5%), T (17%), 

NK (17%) and 61% neutrophils compartments (Figure6.4c). At the algorithm 

specific level (Figure6.4b), the Support Vector Machine (SVM) and Linear 

Discriminant Analysis (LDA) algorithms were associated with the highest 

performance (accuracy=98%, respectively) on the aggregated biomarker set 
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(n=18). Together, this finding highlights the synergetic interplay between the 

adaptive and innate cell types, and the potential of cellular-based biomarkers 

in pneumonia. To expand the search domain for cellular candidate 

biomarkers, the next section applied the IBML resource (m=277) to 

investigate the performance of cell-correlated genes (CCGs).  

6.4.3 Feature selection from the cell-correlated genes (CCGs, 
m=6369) 

Cell-correlated genes (CCGs) are genes that were positively correlated with 

the deconvoluted (using IBML) proportions of a particular immune cell type, 

regardless of pneumonia status (Figure6.5). To derive the CCGs list, the 

IBML resource (m=277) was applied to deconvolute the sample proportions 

of immune cell types from the training data (n=345). For each cell type, 

empirical Bayes regression (limma package[226]) was applied to identify 

significantly correlated genes (FDR<0.05) with the deconvoluted proportions 

(regardless of pneumonia severity); while adjusting for the potential 

confounders (age, nutrition status and antibiotic usage) and multiple testing 

(BH method[238]) as follows:  

𝐺𝑒𝑛𝑒𝑖𝑔 = 𝛼 + 𝐵1 ∗ 𝐶𝑒𝑙𝑙𝑃𝑟𝑜𝑝𝑖𝑐 + 𝐶𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠𝑖 

 Where; 

• Geneig represents the expression value for gene g in sample i; 

• CellPropic is the proportion for cell type c in sample i, 

• B1 is the regression coefficient for CellProp variable, 

• Confoundersi is a vector of values for the potential confounders in 

sample i. 

• α =the intercept  

In particular, Geneg was assigned to cell type c if B1>0 and FDR <0.05 (i.e. 

significant positive association). To avoid duplicates, genes that were 

associated with multiple cell types were assigned to the cell type with highest 
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positive Pearson’s correlation value (r). In total, the CCGs (m=6369) list 

contains unique genes for T (m=2063), B (m=590), NK (m=734), Monocytes 

(m=125) and neutrophils (m=2982). On average, the correlations ranged 

between r=0.83 in monocytes to r=0.98 in neutrophils (Figure 6.5). However, 

monocytes-associated genes were not eligible for feature selection (i.e. not 

differentially expressed in mild pneumonia). 

 

 
Figure 6.5: The distribution of cell-correlated genes (CCGs).   The first row (scatter 
plots) shows the correlation between the deconvoluted proportions of each cell type (x-axis) 
and the mean expression values for the CCGs (y-axis). Each dot represents a sample.  The 
second row (volcano plots) shows the differentially expressed CCGs between non-
pneumonia controls and all pneumonia cases combined. Each dot represents a gene. 

 

After feature selection, 30 (T), 14 (B), 18 (NK) and 38 (Neutrophils) 

biomarkers were selected at the cellular level. On average (across the 

classification algorithms), T cell and neutrophils based features were 

associated with the highest performance (accuracy=97%). Similarly, the 

performance improved to 99% accuracy (Figure6.6a) after the aggregation 

(m=37) comprising 62%(23) neutrophils, 30% T and 5.4%(2) NK cell markers 

(Figur6c). This finding further suggests a synergetic interplay between the 

neutrophil, NK, T cell-based features for the classification of severe 
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pneumonia cases. Again, while all the algorithms performed well 

(accuracy>97%), the SVM algorithm was consistently associated with the 

highest performance (accuracy≥100%) on this list (Figure6.6b), which 

suggests robustness. To account for pneumonia severity in the correlation 

structure, the next section assessed the performance of different-correlated 

genes (DCGs).  

 
Figure 6.6: Feature selection and performance assessment of cell-correlated genes 
(CCGs) candidate biomarkers.   (a) Average performances (across the five algorithms) for 
cellular level and aggregated (All) candidate biomarkers: Neut=neutrophils, NK=natural killer 
cells and All=aggregated (b) Algorithm-specific performance of the aggregated biomarkers 
(n=37), which are displayed in part (c). 

 
 

6.4.4 Feature selection from differentially-correlated genes (DCGs) 
Differentially correlated genes (DCGs) are the genes with different (strength 

or direction) correlation structures (with the deconvoluted proportions of 

immune cell types) between the pneumonia severity states (Figure6.7). For 

example, the average correlation coefficient with the proportions of NK cells 
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varied between r=0.16 (among the non-pneumonia controls) and r=87 

(among the pneumonia cases). Statistically, these are the genes with 

significant interaction terms between pneumonia severity and sample 

proportions of immune cell types (effect-modified genes).  

 

To derive the DCGs list, the IBML resource (m=277) was applied to 

deconvolute the sample proportions of immune cell types from the training 

data (n=345). For each cell type, empirical Bayes regression (limma 

package[226]) was applied to identify genes with significant interactions 

(FDR<0.05) between pneumonia severity and the deconvoluted (using IBML) 

proportions as follows:  

𝐺𝑒𝑛𝑒𝑖𝑔 = 𝛼 + 𝐵1 ∗ 𝐶𝑒𝑙𝑙𝑃𝑟𝑜𝑝𝑖𝑐 + 𝐵2 ∗ 𝑃𝑛𝑒𝑢𝑚𝑖 + 𝐵3 ∗ 𝑃𝑛𝑒𝑢𝑚_𝐶𝑒𝑙𝑙𝑃𝑟𝑜𝑝𝑖𝑐

+ 𝐶𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠𝑖 

 Where 

• Geneig represents the expression value for gene g in sample i; 

• CellPropic is the proportion for cell type c in sample i, 

• Pneumi=0 if sample i is a non-pneumonia control, otherwise=1 

• Pneum_CellPropc=the interaction term between pneumonia status and 

the deconvoluted proportions of cell type c.  

• B3 is the regression coefficient for the interaction term (Pneum_CellProp) 

• Confoundersi is a vector of values for the potential confounders in 

sample i. 

• α =the intercept  

 

In particular, Geneg was assigned to cell type c if B3>0 and FDR <0.05 (i.e. 

significant interaction or effect modification). To avoid duplicates, genes that 
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were associated with multiple cell types were assigned to the cell type with 

highest positive correlation (Pearson’s r) among the pneumonia cases 

(Pneumi=1). In total, the DCGs list contains 720 genes for T (m=172), NK 

(m=133) and Neutrophils (m=415) cell types (Figure6.8). 

 
Figure 6.7: The distribution of differentially correlated genes (DCGs).   The first row 
(scatter plots) shows the correlation between the deconvoluted proportions of each cell type 
(x-axis) and average profile of its selected genes (y-axis) stratified pneumonia. Each dot 
represents a sample. The second row (volcano plots) shows the differential gene expression 
of DCGs between non-pneumonia controls and all pneumonia cases combined. Each dot 
represents a gene.  

 

 
At the cellular level, more neutrophils biomarkers (m=34) were selected than 

the T (m=18) and NK (m=9) cellular compartments.  However, the average 

performances (accuracy 95%-96%) across the classifiers were similar 

(Figure6.8a).  Similarly, the performance slightly improved to accuracy=97% 

after the aggregation (m=36) representing 22%(m=8) T, 8%(m=3) NK and 

70%(m=25) neutrophils cell types (Figure6.8c). Again, the SVM algorithm 

was associated with the highest performance (accuracy=99%) in this list 

(Figure6.8b) further suggesting robustness. Together, these findings further 

highlight the potential of cellular-based biomarkers in pneumonia, and the 

robustness of the SVM algorithm.  In the next section, the cellular candidate 

biomarker sets (IBM, CCGs and DCGs) were aggregated. 
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Figure 6.8: Feature selection and performance assessment of differentially correlated 
genes (DCGs) candidate biomarkers:   (a) Average performances (across the five 
algorithms) for the cellular level and aggregated (All) candidate biomarkers: 
Neut=neutrophils, and NK=natural killer cells. (b) Algorithm-specific performance of the 
aggregated biomarkers (n=36), which are displayed in part (c). 
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6.4.5 Aggregation of the cellular candidate biomarker sets  
So far this chapter has derived three cellular pathway-based candidate 

biomarker sets representing IBML (m=18), CCGs (m=37) and DCGs (m=36). 

However, 80% of these biomarkers were unique to a particular set 

(Figure6.9a). To derive a unified candidate set, these markers (m=76) were 

aggregated and subjected to the same feature selection approach 

(Figure6.2) as illustrated in Figure6.9b.  

 
Figure 6.9: Aggregation of cellular-based biomarkers:   (a) The overlap of cellular 

candidate biomarker sets (IBML, CCGs and DCGs). (b) An illustration of biomarker 
aggregation using the feature selection in Figure6.2. (c)-(d) the distribution of the 
aggregated list (no IBML markers were selected). ALL=the aggregated list, IBML=an 
integrated blood marker list (derived in Chapter 4), CCGs=Cellular correlated genes; 
DCGs=differentially correlated genes. 
 

In total, 35 biomarkers were selected from the CCGs (m=32) and DCGs 

(n=16) sets but not IBML (m=0). Among them, 13 markers were common in 

both lists (Figure 6.9c-d). At the cellular level, this candidate list (n=35) 

represents 63%(22) neutrophils, 26%(9) T and 9%(3) NK cell types 

(Figure6.10c). Notably, this list was consistently associated with high 
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performance across all the classification algorithms (accuracy: 98%-100%), 

which suggest robustness (Figure6.10a). Again, the performance of the 

SVM algorithm remained the highest. 

 

 
Figure 6.10: Performance assessment of the aggregated cellular biomarkers.   (a) 
Performance of an aggregation of all cellular biomarker sets (n=35). (b) Performance of a 
reduced model selected the overlapping markers between CCGs and DCGs models (m=11). 
(c) Cellular distribution of the selected markers (m=35). Overlapping markers in the reduced 
model (m=11) are highlighted in red. CCGs=Cellular correlated genes; DCGs=differentially 
correlated genes. 
 

To assess whether a reduced model would replicate the performance, I 

assessed the performance of the overlapping features (m=13). After feature 

selection (Figure6.2) 11 markers were selected. However, this set was 

associated with a reduced performance in the LDA, KNN and ROCC 

algorithms (Figure6.10b) potentially suggesting lack of robustness. 

Nevertheless, based on the SVM and RF-based classifiers (which remained 

unchanged), this list potentially presents a reduced model for the cellular-
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based biomarkers (highlighted in red in Figure6.10c). Together, these 

findings have consistently highlighted the potential of cellular pathway-based 

biomarkers in severe pneumonia; the synergetic interplay between the 

neutrophils, T and NK cell-based features; and the robustness of the SVM 

algorithm. In the next section, I assessed the performance of sepsis markers 

in severe pneumonia. 

 

6.4.6 Feature selection from the 52-gene sepsis classifier 
In Figure6.3, septicaemia was associated with an increased frequency of 

differentially expressed genes in mild pneumonia suggesting its importance 

in the development of severe pneumonia outcomes. To directly assess 

whether sepsis biomarkers can distinguish severe pneumonia cases, I 

applied the same feature selection (Figure6.2) on the validated 52-gene 

neonatal sepsis classifier by Smith et al. (2014) [136] (Figure6.11).  
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Figure 6.11: Performance assessment of sepsis markers in pneumonia.    (a) Optimal 
selected marker (m=18). (b) Performance assessment using five algorithms (x-axis).  
 
Of them (m=52), 18 markers were selected (Figure6.11a). Interestingly, the 

performance was similar to the cellular biomarker sets especially with the 

SVM algorithm (Accuracy=98%). To further investigate this agreement, I 

assessed the expression profiles of the cellular pathway-based candidate 

biomarkers using the Edinburgh neonatal sepsis database [136]. 

Interestingly, at least 70% (Figure6.12) of the cellular-based biomarkers 

were differentially expressed (FDR<0.05) in sepsis; suggesting a stronger 

agreement between the cellular and sepsis markers in pneumonia severity. 

Thus, these findings further support the important contribution of bacterial 

septicaemia in the development of serious pneumonia outcomes. To further 

improve the performance of the candidate biomarkers, the next section, 

aggregated the cellular-based and sepsis markers. 
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Figure 6.12: High agreement between sepsis and severe pneumonia.   Each bar 
represents the proportion (y-axis) of candidate biomarkers of severe pneumonia (x-axis) that 
were differentially expressed (FDR<0.05) in neonatal sepsis using the Edinburgh neonatal 
sepsis database [136]. IBML=Markers selected from the IBML resource derived in Chapter 4 
(section 6.4.2). CCGs=Cellular correlated genes (section 6.4.3). DCGs=differentially 
correlated genes (section 6.4.4). ALL=A combination cellular-based biomarkers (section 
6.4.5). Sepsis=Biomarkers selected from the validated bacterial sepsis classifier (section 
6.4.6). Overlap=an intersection of CCG and DCG biomarkers. CellSep=A combination of 
ALL and sepsis biomarker sets. 
 

6.4.7 Aggregation of cellular-based and sepsis biomarkers  
So far I have independently assessed the performance of cellular-based and 

validated sepsis biomarkers. To derive a unified candidate biomarker set, 

cellular-based (aggregated set, m=35) and sepsis (m=18) biomarkers were 

aggregated.  After feature selection (Figure6.2), 33 markers were selected; 

and this biomarker set is called CellSep. Except for the LDA algorithm, this 

aggregation was associated with an improved performance especially on the 

ROCC, KNN, Random forest (RF) algorithms whilst the SVM remained high 

(Figure6.13a). Interestingly, the selected biomarkers (Figure6.13c) clearly 

distinguished severe pneumonia cases from the non-pneumonia controls 

using the unsupervised principal component analysis (Figure6.13b), which 

suggest their applicability with less complicated algorithms. Together, this 
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finding highlights the important contribution of bacterial septicaemia in severe 

pneumonia; which also support the central hypothesis that systemic pathway 

responses underpin the development of severe pneumonia outcomes.  To 

summarise the feature selection process, the classification performance of all 

the candidate biomarkers were directly compared (next section).  

 
Figure 6.13: Aggregation of cellular-based and validated sepsis biomarkers.   
Supervised (a) and unsupervised (principal component analysis) (b) performance 
assessment of the selected biomarkers (c).  
 

6.4.8 Perfomance summary of candidate biomarker sets  
This section provides a summary and direct performance comparison of the 

candidate biomarker sets across all the algorithms. In Figure6.14, the 

candidate biomarker sets are ordered (ascending) by the average accuracy 

(big circle) across the classification algorithms. Firstly, the KNN, RF and 

SVM algorithms were consistently associated with higher performance than 

the LDA and ROCC classifiers. Notably, the SVM (triangular symbols) had 

the highest performance in all the candidate biomarkers sets.  
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While all the biomarker sets were associated with high performance 

(accuracy>95%), the aggregation of cellular-based and sepsis biomarkers 

(CellSep, m=33) were associated with the highest performance 

(Figure6.14). Therefore, according to this analysis, CellSep is the final 

candidate biomarker set. To validate the candidate biomarker sets, the SVM-

based classifiers were applied to predict severe pneumonia cases in the 

Basse dataset (n=158), which was kept independently from the primary 

analyses of this thesis (next section).  

 

 
Figure 6.14: An training data performance summary of candidate biomarkers.   For 
each candidate biomarker set (x-axis), each dot represents an algorithm-specific (symbol 
legend) performance (colour legend). The large circles represent the average accuracy 
across all the algorithms.  Sepsis=Markers from the 52-validated neonatal sepsis classifier 
[136]; Overlap=an overlap between cell-correlated genes (CCGs) and differentially 
correlated genes (DCGs). ALL=an aggregation between IBML, CCGs and DCGs. 
CellSep=an aggregation between ALL and Sepsis biomarker sets 
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6.4.9 Independent validation of candidate biomarkers using the 
Basse dataset 

In this thesis, data were collected from two different geographical regions 

within The Gambia. By study design, the training data set was collected from 

a semi-urban coastal area (Fajara) while the validation data set represents 

the rural population in the upper region (Basse). So far, I have applied the 

training data set to investigate cellular and molecular pathway responses; as 

well as train and test candidate biomarkers for severe pneumonia. To 

validate the performances of the candidate biomarkers, the SVM-based 

classifiers were applied to predict severe pneumonia cases in the validation 

data set (Basse, n=158).  

 

Prior to that, the validation database was subjected to data cleaning to 

identify potentially mislabelled samples (Figure6.15). In particular, principal 

component analysis (PCA) and the Neonatal Sepsis classifier (m=52)[136] 

identified eight suspicious samples (three non-pneumonia controls and five 

severe pneumonia cases). Subsequently, the suspicious samples were 

eliminated. However, to assess the negative impact of mislabelled samples 

in biomarker analysis, I conducted sensitivity analysis to validate the 

performance of the candidate biomarkers with and without the potentially 

mislabelled samples (Figure6.16). 
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Figure 6.15: Unsupervised description of samples in the validation data set.   The plot 
shows a principal component analysis plot using the most variable genes (m=100) selected 
using the coefficient of variation (CV) statistic across all the samples. The symbols represent 
pneumonia status (legend) and colours represent suspected bacterial infection 
(red=positive, blue=negative) predicted using the neonatal sepsis classifier [136].  

 

In general, the performance was high, and further improved after the data 

cleaning across all the candidate biomarker sets.  Similar to the training data, 

an aggregation of sepsis and cellular-based biomarkers (CellSep) was also 

associated with the highest performance in the validation data set 

(accuracy=98%). Notably, the same performance (accuracy=98%) was 

replicated by the Sepsis (m=18) and DCGs (m=36) biomarker sets. 

Together, these findings independently highlight the potential systemic 

biomarkers in pneumonia, and the important contribution of bacterial 

septicaemia in the development of serious pneumonia outcomes. 
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Figure 6.16: Independent validation of the candidate biomarker sets using the Basse 
data set.   The figure shows the classification performance before (a) and after (b) data 
cleaning. In each figure, the candidate biomarker sets (x-axis) are ordered from lowest to 
highest performer. Classification was based on the support vector machine (SVM) algorithm. 
 

6.4.10 Molecular stratification of mild pneumonia cases into high and 
low risk groups  

To assess the potential applicability of the candidate biomarkers (i.e. as a 

proof of concept), the 33-gene SVM classier (CellSep) was applied to predict 

mild pneumonia cases that were at the higher risk of developing severe 

pneumonia in both the training and validation data sets. In particular, 71 and 

22 cases were predicted as high-risk cases in the training and validation 

datasets, respectively (Table6.2, Table6.3).  

 

In both data sets, the demographic characteristics were similar between the 

low-risk and high-risk. On the other hand, the high-risk cases were 

associated with poor clinical outcomes such as elevated neutrophils counts, 

depletion of lymphocytes (P-value<0.001), lower oxygen saturation, and 

higher heart rate, respiratory rate and body temperature. Further, the high-

risk mild cases were associated with higher prevalence of chest x-ray 
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pathology, and bacterial septicaemia (blood culture isolates, PCR and the 

sepsis classifier). Notably, this stratification shows strong association with 

the original neonatal sepsis classifier [136], which further suggests the 

importance of bacterial septicaemia in the development of serious 

pneumonia outcomes. Together, this finding highlights the potential of host-

based systemic biomarkers in the clinical stratification and treatment 

modalities of patients presenting at the clinic with mild pneumonia. 

Training data (Fajara) 

Factor High-Risk (n=71) Low-Risk (n=19) P-value 

Demographics characteristics 

Age in months, median (IQR) 15.7 (10.8, 24.1) 13.3 (7.0, 19.7) 0.13 

Sex   0.67 

Female 30 (42%) 7 (37%)  
Male 41 (58%) 12 (63%)  
Season   0.94 

Dry 38 (54%) 10 (53%)  
Wet 33 (46%) 9 (47%)  
Under-weight (WAZ), mean (SD) -1.2 (1.2) -1.2 (1.0) 0.90 

Stunting (HAZ), mean (SD) -0.7 (1.1) -0.6 (1.1) 0.74 

Wasting (WHZ), mean (SD) -1.1 (1.3) -1.3 (1.4) 0.64 

Clinical phenotypes 

Haemoglobin, mean (SD) 9.8 (1.8) 10.4 (1.7) 0.25 

Neutrophils, median (IQR) 53.7 (46.0, 66.6) 42.0 (33.3, 47.9) <0.001 

Lymphocytes, median (IQR) 38.2 (26.0, 46.4) 51.0 (45.2, 57.9) <0.001 

Platelets, mean (SD) 380.0 (161.6) 433.5 (126.3) 0.23 

Temperature, median (IQR) 38.2 (37.7, 39.1) 37.6 (36.7, 38.3) <0.001 

Cough 69 (97%) 12 (63%) <0.001 

Heart_rate, mean (SD) 151.8 (15.0) 149.0 (17.8) 0.48 

Respiratory rate, mean (SD) 56.0 (8.7) 52.2 (8.6) 0.092 

Oxygen saturation, mean (SD) 96.7 (1.7) 98.2 (1.6) 0.001 

Chest X-ray (positive) 42 (91%) 8 (73%) 0.092 

PCR (Positive) 40 (56%) 11 (58%) 0.90 

Sepsis classifier (positive) 58 (82%) 3 (16%) <0.001 

BloodCulture   0.80 

   Contaminants 2 (3%) 0 (0%)  
   No growth 61 (86%) 17 (89%)  
   S.aureus 2 (3%) 1 (5%)  
   S.pneumoniae 6 (8%) 1 (5%)  

Table 6.2: Demographic and clinical characteristics of mild pneumonia cases in the 
training data.    The samples were molecularly classified into low and high-risk groups 
using the SVM based 33-gene classifier representing the cellular and sepsis biomarkers 
(CellSep).    
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(b) Validation data (Basse) 

Factor High-Risk (n=22) Low-Risk (n=24) P-value 

Demographic characteristics 

Age in months, median (IQR) 8.2 (5.0, 20.6) 10.9 (4.5, 17.4) 0.88 

Sex   0.55 

   Female 10 (45%) 13 (54%)  
   Male 12 (55%) 11 (46%)  
Season   0.31 

   Dry 6 (27%) 10 (42%)  
   Wet 16 (73%) 14 (58%)  
Under-weight (WAZ), mean (SD) -1.5 (1.1) -1.1 (1.2) 0.21 

Stunting (HAZ), mean (SD) -1.0 (1.3) -0.5 (1.3) 0.18 

Wasting (WHZ), mean (SD) -1.3 (1.2) -1.1 (1.1) 0.64 

Clinical phenotypes 

Haemoglobin, mean (SD) 8.8 (2.4) 10.2 (1.7) 0.048 

WBC_Total2, median (IQR) 16.4 (11.6, 28.9) 9.6 (7.1, 14.6) 0.006 

Neutrophils, median (IQR) 58.0 (49.3, 68.6) 42.5 (31.5, 52.0) 0.005 

Lymphocytes, median (IQR) 34.7 (25.0, 43.6) 52.9 (41.4, 61.6) 0.004 

Platelets, mean (SD) 289.2 (143.9) 366.2 (107.6) 0.074 

Temperature, median (IQR) 39.0 (38.5, 39.4) 38.2 (37.2, 38.7) 0.007 

Cough 20 (91%) 15 (62%) 0.024 

Heart_rate, mean (SD) 159.2 (14.5) 149.7 (17.3) 0.050 

Respiratory rate, mean (SD) 62.3 (9.8) 60.3 (12.2) 0.56 

Oxygen saturation, mean (SD) 95.9 (2.1) 97.2 (1.7) 0.025 

Chest X-ray(positive) 17 (81%) 10 (59%) 0.13 

PCR (Positive) 5 (23%) 3 (12%) 0.36 

Sepsis classifier (positive) 19 (86%) 4 (17%) <0.001 

BloodCulture   0.51 

   Contaminants 3 (14%) 4 (17%)  
   No growth 17 (77%) 20 (83%)  
   S.aureus 1 (5%) 0 (0%)  
   S.pneumoniae 1 (5%) 0 (0%)  

Table 6.3: Demographic and clinical characteristics of mild pneumonia cases in the 
validation data.    The samples were molecularly classified into low and high-risk groups 
using the SVM based 33-gene classifier representing the cellular and sepsis biomarkers 
(CellSep).     
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6.5 Discussion  

In this chapter, I have investigated systemic candidate biomarkers for severe 

pneumonia under the hypothesis that bacterial septicaemia underpins the 

development of severe pneumonia outcomes. In particular, the main 

objective was to derive a classifier for potential stratification of patients 

presenting at the clinic with mild pneumonia into low-risk and high-risk 

treatment groups.  

 

This analysis had several motivations. Firstly, the burden of pneumonia 

remains unacceptably high, and mainly due to lack of optimal and affordable 

diagnostic tools [1]. Evidently, this analysis lacked complete data on 

pneumonia aetiology. To mitigate the burden of childhood pneumonia, 

innovative approaches such as biomarkers are required to enhance the 

clinical stratification and appropriate treatment modalities for mild pneumonia 

cases. In particular, systemic response (host-based) biomarkers potentially 

present an opportunity for a paradigm shift in the clinical practice of 

pneumonia [154].  Here, the observation that cases with bacterial 

septicaemia were associated with stronger systemic responses highlighted 

the importance of bacterial septicaemia in severe pneumonia outcomes. 

Whole blood is readily accessible tissue in clinical practice and molecular 

profiling has become a mainstay of genomic research and future translation 

medicine [71].  

6.5.1 Systemic biomarkers in severe pneumonia  
According to the World Health Organisation (WHO), a biomarker is a 

chemical, its metabolite, or the product of an interaction between a chemical 

and some target molecule or cell that is measured in the human body [27]. 
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Ideally, biomarkers should be accessible, accurate (sensitive and specific), 

robust, reproducible, and reflect the disease pathogenesis [58-62, 446]. To 

derive robust and biologically meaningful biomarkers for severe pneumonia, 

here I coupled cellular pathway biology and machine-learning approaches to 

derive systemic transcriptomic classifier features.  

 

Using that approach, I have derived a 33-gene cellular pathway-centric 

classifier comprising markers from neutrophils, T and NK cells. Notably, this 

classifier was consistently associated with high performance in the training 

and validation data sets. In particular, a support vector machine based 

classifier accurately distinguished severe pneumonia cases in the training 

data (accuracy=100%) and independently validated (accuracy=98%) in the 

Basse data set, which was kept independent from primary analyses. On the 

other hand, all the misclassified samples were either associated with poor 

RNA quality, bacterial infection (positive controls and negative cases) or 

antibiotic usage. Together, these results highlight the accuracy and 

robustness of systemic cellular pathway-centric transcriptomic biomarkers in 

pneumonia (Supplementary Table6A1). 

 

6.5.2 Strengths 
This approach had several advantages. Firstly, the cellular and molecular 

pathway responses consistently supported the central hypothesis that 

systemic pathway responses underpin the development of severe 

pneumonia outcomes (Chapter 4 and Chapter 5). Potentially, these 

biomarkers reflect the pathogenesis of severe pneumonia, and therefore 

robust. Interestingly, the interplay between neutrophils, T and NK cell-based 
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features was consistently associated with high performance across a range 

of classification algorithms, which suggest robustness.  

 

To further enhance the robustness, a powerful and regularized machine-

learning feature selection (Elastic Net[282]) approach was applied to select 

compatible and non-redundant biomarkers. Further, this approach was 

repeated 100 times to select a robust combination of biomarkers that were 

consistently selected together all the time (100 times). Unlike the filter 

methods that independently focus on the strength of individual gene features 

[345, 346], here the focus was to derive an optimal and synergetic 

combination of features that reflect the pathway biology of pneumonia. 

Furthermore, several classification algorithms were applied to assess the 

performance of the candidate features. Among them, the support vector 

machine (SVM) had the highest performance, which is consistent with 

several comparative studies [319, 453, 454].  

 

6.5.3 The agreement between cellular centric and sepsis biomarkers  
Clinically, early identification of bacterial pneumonia cases is very important 

to prevent serious outcomes but the standard tools have several limitations 

[28]. While this analysis lacked complete microbial benchmark data, there 

was a significant agreement between the cellular-based and bacterial sepsis 

markers. Firstly, mild pneumonia cases with suspected septicemia (using the 

sepsis classifier [136]) or blood culture confirmed positive results were 

associated with stronger systemic responses, which suggested the important 

contribution of bacterial septicaemia in the development of severe 

pneumonia outcomes. Independently, validated sepsis markers (n=18) were 
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associated with high classification performance in severe pneumonia 

(accuracy=98% in both the training and validation data sets). On the other 

hand, at least 75% of the cellular pathway-centric biomarkers were also 

significantly associated with neonatal sepsis in the Edinburgh database 

[136].  This agreement highlights the importance of bacterial septicaemia in 

the development of severe pneumonia outcomes, and is consistent with 

epidemiological findings that bacterial aetiology is more associated with 

serious outcomes including mortality [5]. Clinically, these candidate 

biomarkers present a powerful and accessible potential for enhanced 

stratification and treatment modalities for patients presenting at the clinic with 

mild pneumonia. 

6.5.4 Limitations  
While the classification performance (based on Leave-One-Out Cross 

Validation (LOOCV)) was high, it is worth noting that the classifiers were 

trained using default values for the hyperparameters, which potentially 

generated suboptimal results. To improve the performance, nested cross-

validation (as described in Chapter 2, section 2.6, pages 95-96) is 

recommended to identify the best combination of the hyperparameters.  

 

Further, the analysis lacked complete aetiological data.  Ideally, it would be 

straightforward to derive candidate biomarkers for treatment modalities of 

mild pneumonia if viral and bacterial cases were known. However, the 

existing standard diagnostic tools are suboptimal to guarantee “gold 

standard” data.  Secondly, it is worth noting that the current study design was 

not adequate for a proper investigation of prognostic biomarkers mainly due 
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to lack of follow-up data including survival outcomes. Preferably, a 

longitudinal study design would be ideal to investigate prognostic biomarkers 

for predicting mild cases that would progress to severe states.  

 

Furthermore, these candidate biomarkers lacked similar studies for further 

independent validations. Generally, biomarkers require rigorous validations 

to establish robustness and generalizability prior to routine clinical 

application. Therefore, more validation work will follow (more details in 

Chapter7). Nonetheless, robust measures were applied to address the 

objectives of this chapter within the realm of the available resources.  

 

6.5.5 Conclusion  
Despite the limitations in this chapter, the identification of a highly accurate 

and robust 33-gene classifier was presented representing the systemic 

cellular pathway responses involving the neutrophils, T and NK cell immune 

compartments. Importantly, the findings of this chapter suggest the 

hypothesis that bacterial septicaemia underpins the development of severe 

pneumonia outcomes, which is vital for treatment modalities. In conclusion, 

these findings present a novel and powerful approach for the early 

identification of mild pneumonia cases at the higher risk of developing severe 

outcomes. However, further validations are required.  
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Chapter 7:  Discussion 
 

7.1 Introduction 

This chapter presents a summary of key findings, discussion of the strengths 

and limitations, and future outlook of this thesis.  

 

7.2 Motivation  

Despite the scaled efforts to improve child survival [4], infections-attributable 

mortality rates remain high in children younger than five years old (under-

five) [2]. In particular, pneumonia remains the leading infectious cause of 

under-five mortality especially in resource-limited countries like the sub-

Saharan Africa [2, 3, 5, 350]. Pneumonia has a complex aetiology including 

viral and bacterial infections, and disease pathogenesis is not fully 

understood. Consequently, prevention, diagnosis, and treatment of 

pneumonia remain public health challenges. In particular, the derivation of 

optimal vaccines [29] and early identification of bacterial pneumonia cases 

remain the major public health challenges for promoting child survival [24, 

55, 154]. 

 

Further, the existing vaccines [25, 26] and the standard diagnostic tools (i.e. 

Chest x-ray, blood culture) are rarely available in remote settings where the 

burden is highly concentrated [1].  In these settings, the diagnosis of 

pneumonia is further complicated by the presence of co-morbidities with 

overlapping clinical presentations such as malaria and diarrhoea, which 

potentially lead to misclassifications of patients [5]. Thus, while effective 

antibacterial therapies exist, the delayed treatment of bacterial pneumonia 

cases is associated with the development of more serious outcomes 
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including mortality [5, 24]. On the other hand, unnecessarily presumptive 

antibiotic treatment is not cost-effective and potentially exacerbating the 

spread of antibiotic resistance [24, 40]. Therefore, innovative approaches are 

required to enhance the stratification and treatment modalities especially for 

patients presenting at a resource-constrained clinic with mild pneumonia. 

Potentially, gaining a deeper understanding of the systemic pathway 

responses in pneumonia would unravel key immuno-modulation candidates 

for novel vaccine candidates, robust biomarkers and therapeutic targets 

[154].  

7.3 Approach and data resources  

In this thesis, it was hypothesised that systemic pathway responses are 

associated with the development of severe pneumonia outcomes. In other 

words, while the compartmentalised local immune responses (within the 

lungs) are often crucial for the detection and clearance of the invading 

pathogens[455], the involvement of systemic (blood-based) pathway 

responses contributes significantly to the development of serious pneumonia 

outcomes including mortality [80, 116, 436].  

 

Importantly, whole blood potentially contains a large number of biomarkers 

and clinically accessible tissue for pathophysiological investigations. Further, 

whole blood genome-wide profiling has become a mainstay of genomic 

research and future translation medicine in range of diseases including 

cancer, infections and autoimmunity[123]. Potentially, whole blood 

transcriptomics presents a powerful and innovative solution to enhance the 

clinical practice of childhood pneumonia in resource-limited settings. In 
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particular, this approach presents a comprehensive opportunity to gain a 

deeper insight into the pathogenesis of severe pneumonia and explore the 

potential of systemic response-based biomarkers (i.e. a paradigm shift from 

pathogen-based to host-based factors [154]). 

 

Mainly, this thesis has sought to address two main objectives: (i) 

investigation of systemic pathway (cellular and molecular) responses 

associated with the clinical severe pneumonia states and (ii) identification of 

candidate biomarkers for high-risk pneumonia cases among the patients 

presenting at the clinic with mild pneumonia. To address that, I have 

analysed a whole blood transcriptome comprising the training (n=345) and 

validation (n=158) data sets. Whole blood samples were collected from a 

matched-case control study involving Gambian children and infants aged 2-

59 months old. The cases were clinically classified as mild, severe and very 

severe pneumonia, and prospectively matched (by age, sex and location) to 

non-pneumonia community controls to mitigate the potential effect of 

confounding (Chapter 2).  

 

Firstly, sample size re-assessment revealed that the study groups were 

statistically powered to address the primary objectives (Chapter 3). To 

ensure data quality and completeness, the central data resources (the 

transcriptome and corresponding metadata) were subjected to a range of 

quality control measures including intensive data cleaning, pre-

processing[147] and batch-effect correction[148, 150, 195] (Chapter 3). 

Further, potential confounding effects such as age and nutrition status 
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differences were further investigated and accounted for during data analysis. 

To guard against false discoveries, all analyses were adjusted for multiple 

testing using the Benjamini & Hochberg’s false discovery rate (FDR) control 

procedure[238], which is less stringent than the traditional Bonferroni 

procedure[170]. Together, this thesis has adequate and high-quality data 

resources for primary and validation analyses.    

7.4 The significant involvement of systemic pathway 

responses in severe pneumonia  

To gain a deeper insight into pathogenesis of severe pneumonia, the 

systemic pathways responses were investigated at the cellular and molecular 

analytic levels.  

7.1.1 Cellular pathway responses 
Whole blood is complex tissue with heterogeneous cellularity including 

myeloid and lymphocytes cell types, which vary in proportions within and 

between samples and often correlates with clinical phenotypes such as 

pneumonia severity[102, 200, 358, 456, 457]. To investigate the cellular 

pathway responses, here I applied a powerful and yet cost-effective 

computational solution called computational deconvolution analysis [72, 73, 

200] (Chapter 4). Briefly, this approach estimates cell type-specific 

information (i.e. proportions and cell type-specific gene expression 

signatures) directly from the whole blood transcriptomes without incurring 

intermediate costs for cell-sorting techniques such as FACs analysis, which 

are further limited by the availability of cell surface markers[139, 200, 456].  

However, computational deconvolution analysis remains an area of active 

research, which requires more reliable input resources (i.e. marker genes 

lists, expression signatures and algorithms) to facilitate its application in the 
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mainstream analyses of high-throughput data such as whole blood 

transcriptomes[160, 200, 371].  

 

To further enhance the computational deconvolution analysis of whole blood 

transcriptomes and related datasets, this thesis has applied a data fusion 

approach to derive an optimal and integrated blood marker list called IBML. 

This analysis (derivation of IBML) had several motivations. Firstly, marker 

genes (semi-supervised deconvolution) are more applicable than gene 

expression signatures (partial deconvolution) because they are robust to 

array platform-specific differences [160, 201]. Further, IBML provides a 

single unified application resource because the existing marker gene 

resources (MGR) for a given immune cell type were found to be molecularly 

distinct (i.e. have little overlap) consequently presenting the end-user with a 

selection challenge. Furthermore, a data filtering approach was applied 

because an aggregation of all the eligible markers (m=3,475) was associated 

with a reduced performance suggesting the presence of non-specific and 

noisy markers. Briefly, IBML contains highly specific marker genes (m=277) 

for T (m= 35), B(m=10), NK(m= 46), Dendritic (m=9) , Monocytes (m=25) 

and neutrophils (m=152) cell types, and was associated with enhanced and 

robust performance in a range of independent benchmark whole blood 

transcriptomes. Together, IBML presents a unified and optimal application 

resource for enhanced computational deconvolution analysis of whole blood. 

 

Subsequently, the IBML resource was applied to deconvolute the training 

whole blood transcriptome (n=345). As anticipated [367, 368, 370, 378, 385], 
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pneumonia severity was associated with significant depletion of adaptive 

response mediators (B, T, Dendritic), and elevation of pro-inflammatory 

innate mediators (Monocytes and neutrophils).  Unexpectedly, this analysis 

further revealed the depletion of natural killer (NK) cells in severe 

pneumonia. While this finding is consistent with the observation that NK-

depleted mice are susceptible to lung infections[394, 398], the role of NK 

cells in human pneumonia remains elusive[458] and controversial[388], and 

therefore requires further investigations.  Nevertheless, this potential 

protective role of NK cells presents a novel immuno-modulation target for 

mitigating the burden of pneumonia worldwide. Together, these findings 

highlight the potential of computational deconvolution analysis, and support 

the central hypothesis that systemic cellular pathway responses underpin the 

development of severe pneumonia states. 

7.1.2 Molecular pathway responses 
Systemic molecular responses were investigated at the gene and pathway 

analytic levels. At the gene analytical level, absolute fold changes and the 

number of differentially expressed genes (DEGs) increased significantly with 

pneumonia severity. To gain a comprehensive insight into the systemic 

pathway responses in severe pneumonia, the differentially expressed genes 

(DEGs) were investigated using a range of biochemical pathway database 

resources (KEGG, REACTOME, GO and HALLMARK). At the pathway 

analytic level, pneumonia severity was associated with a significant interplay 

between the innate, adaptive and metabolic pathways, which support the 

central hypothesis that systemic pathway responses underpin the 

development of severe pneumonia states (Chapter 5).  
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In particular, while pro-inflammatory innate and cholesterol metabolism 

pathway responses were associated with all the severe pneumonia states 

(from mild to very severe pneumonia); the development of severe and very 

severe pneumonia outcomes were predominantly associated with the co-

inhibition of NK cell signalling (innate) and the adaptive effector responses 

especially in T cells; and the activation of fatty acid and lipid metabolism. 

Notably, these findings are consistent with the cellular pathway responses 

(Chapter 4) including the potential involvement of NK cells in the 

pathogenesis of severe pneumonia. Further, it was also observed that very 

severe pneumonia cases were predominantly associated with antibacterial 

responses. This finding particularly suggests the importance of bacterial 

septicaemia in the development of serious pneumonia outcomes. Clinically, 

this presents an opportunity for the application of systemic response-based 

candidate biomarkers for early detection and treatment modalities of severe 

pneumonia cases. Together, these findings consistently support the central 

hypothesis that systemic pathway (cellular and molecular) responses 

underpin the development of severe pneumonia states. 

 

7.5 The potential of systemic pathway response-based 

candidate biomarkers of severe pneumonia 

Pneumonia has a complex aetiology but mostly dominated by bacteria and 

viruses[28]. While viral pneumonia cases are more prevalent, delayed 

appropriate treatment of the bacterial pneumonia cases is associated with 

more serious outcomes including mortality [5]. However, the aetiological 

stratification of pneumonia cases remains a clinical challenge especially in 
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resource-constrained settings where the burden of childhood pneumonia is 

highest [40]. Therefore, innovative and cost-effective approaches for early 

identification (and treatment modalities) of high-risk pneumonia cases are 

required to mitigate the global burden of childhood pneumonia and promote 

child survival[1, 24]. Potentially, host-based systemic pathway response 

derived biomarkers presents a direct and robust approach for enhancing 

clinical stratification and treatment modalities of pneumonia cases[56, 60-62, 

65, 70, 140, 154, 446, 459]. 

 

To assess the potential of systemic biomarkers, I coupled cellular pathway 

biology with machine learning approaches to derive a whole blood-based 

transcriptomic classifier for the detection of severe pneumonia cases. Using 

that approach, I have derived a 33-gene transcriptomic classifier comprising 

candidate biomarkers from the NK, T and neutrophils cellular pathways. This 

signature (m=33) was robustly associated with high performance across a 

range of classification algorithms in both the training (accuracy=99%), 

validation (accuracy=98%) datasets. These findings highlight the potential of 

systemic pathway response-based transcriptomic biomarkers in pneumonia. 

 

It is worth noting that due to lack of complete “gold standard” aetiology data, 

this analysis compared extreme clinical pneumonia severity phenotype labels 

(non-pneumonia versus severe and very severe pneumonia) to derive the 

candidate biomarkers. Ideally, these biomarkers are intended to for the 

prediction of high-risk pneumonia cases among the patients presenting at the 

clinic with mild pneumonia. Firstly, this approach was motivated by the 
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predominance of cellular centric pathway responses in severe pneumonia 

(Chapter 4 and Chapter 5). For treatment modalities of bacterial pneumonia 

cases, this feature selection approach was driven by the assumption that 

bacterial septicaemia contributes significantly to the development of serious 

pneumonia outcomes.  

 

In this thesis, this assumption was supported by several observations. Firstly, 

pneumonia severe was significantly associated septicaemia (Table3.2, 

Chapter 3). Further, effect-modification analysis revealed that pneumonia 

cases with BloodCulture-confirmed bacterial infection or suspected 

septicaemia (using the validated sepsis classifier) were associated with an 

increased frequency of differentially expressed genes (Chapter 3) including 

the mild cases (Chapter6). In Chapter 5, very severe pneumonia cases 

were also associated with predominant antibacterial pathway responses. 

Furthermore, there was a strong agreement between the cellular-based and 

sepsis biomarkers (Chapter6). In particular, a subset (m=18) of the 52-gene 

validated neonatal sepsis classifier [136] was associated with similar 

classification performance (99% and 98% accuracy in the training and 

validation data, respectively). Conversely, at least 75% of the cellular based 

biomarkers were also differentially expressed in the neonatal sepsis 

database. Moreover, epidemiology studies consistently associate the 

bacterial aetiology especially Streptococcus pneumonia with more serious 

outcomes[5, 7, 9, 22, 41, 350]. Together, these candidate biomarkers 

present a novel approach for early identification and treatment modalities of 

high-risk patients presenting at a clinic with mild pneumonia. In the next 



Chapter7: Discussions 
 

 235 

sections, I highlight the overall strengths and limitations of this thesis 

followed by suggested future recommendations. 

 

7.6 Study strengths  

This section highlights the study strengths. To our knowledge, this is the first 

comprehensive and adequately powered study in the sub-Saharan African 

region to investigate the systemic pathway responses and candidate 

biomarkers for childhood severe pneumonia.  In particular, the application of 

whole blood transcriptome presents a comprehensive and innovative 

approach for elucidating the pathogenesis of pneumonia and investigating 

robust candidate biomarkers for treatment modalities. Importantly, whole 

blood is a clinically accessible and acceptable tissue for pathophysiological 

investigations [102]. Further, whole blood genome-wide profiling has become 

the mainstay of biomedical research and future translation medicine[71, 121, 

123, 154, 450, 451]. Therefore, these findings have a potential to improve 

the clinical practice of pneumonia especially in resource-limited settings 

where the burden is very high [2, 3].  

 

This thesis has sufficient and high quality data resources. The study groups 

were adequately powered to enable meaningful primary analyses (n=345) 

and independent validations (n=158). Secondly, the whole blood 

transcriptome was annotated with high quality metadata records (clinical, 

demographic databases), and the databases were carefully curated to 

ensure data quality and completeness. To mitigate biased results, a 

prospective matched-case-control study design was implemented to account 
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for the potential confounding effects of age, sex, season and location. To 

further enhance the data quality, several statistical approaches were applied 

to account for non-biological variations in the data including raw data pre-

processing, batch-effect correction and confounder analysis to identify key 

covariates for subsequent analyses (Chapter 3). To guard against false 

discoveries, all the analyses were adjusted for multiple testing. 

 

Beyond data quality assurance, this thesis has benefited from a range of 

data science approaches including data fusion, computational deconvolution 

analysis, computational pathway analysis, and pathway biology-coupled 

machine learning analyses. Interestingly, these approaches complimented 

each other and generated robust results, which were consistent with the 

central hypothesis. In particular, computational deconvolution analysis 

derived the IBML marker gene resource (m=277), which further enhanced 

the investigation of cellular pathways (Chapter 4). This resource presents a 

single unified application resource for streamlined analysis and 

interpretations of future whole blood transcriptomes. Further, the cellular 

pathway responses (Chapter 4) were consistent with the molecular findings 

from the computational pathway analysis (Chapter 5). Notably, these 

findings revealed a novel involvement of NK cells in pneumonia severity, 

which presents a potential target for immune-modulation and case 

management. Finally, the application of machine learning approaches on the 

cellular pathway-centric transcriptomic features derived a robust and highly 

accurate candidate classifier (CellSep, m=33) for the detection of severe 

pneumonia cases (Chapter6). This signature presents a novel and 
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accessible approach for early identification and potential treatment modalities 

for patients at the high-risk of developing severe pneumonia among the 

patients presenting at a resource-constrained clinic with mild pneumonia. 

Inevitably, this study has some limitations (next section).  

7.7 Study limitations  

In this section, the limitations of this study are highlighted. Firstly, the original 

study design had some limitations.   While the study groups were statistically 

powered and matched for the potential confounders, it is worth noting that 

this is an observational study design. Thus, while observational studies 

reflect the real conditions in clinical practice (hence more 

generalizable)[460], they are often susceptible to potential bias[68, 355, 460, 

461]. Further, whole blood samples were collected at a single time point 

without follow-up data (i.e. cross-sectional study). Therefore, these findings 

provide a limited cross-sectional view of the systemic pathway responses at 

the individual level, and lack information on patient survival, which is vital for 

deriving long-term interventions. Preferably, a longitudinal study design may 

provide more insights into the individual-level trajectories, and enable proper 

investigation of prognostic biomarkers.  

 

As already mentioned, viruses and bacteria are the predominant causes of 

pneumonia; but the aetiological stratifications of pneumonia cases remains a 

clinical challenge[28]. While Chapter6 investigated candidate biomarkers for 

severe pneumonia, lack of complete aetiology data was a setback. Ideally, 

knowledge of samples with viral, bacterial and co-infections would have 

enabled the formal investigations of aetiology-specific pathways and 
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classifier signatures. However, the existing gold standard diagnostic tools 

have several limitations [55]. 

Similarly, these findings were potentially limited by the shortcomings of the 

existing data science resources.  Firstly, while processing and analysis of 

microarray data has improved, generalisation of results is often limited by the 

technical variations across the array platforms [148-150, 341, 462]. Further, 

while genomic profiling is becoming affordable [155, 463]; the cost is still too 

high for routine clinical application especially in resource-constrained 

settings.  

 

Further, the derivation of the IBML resource (Chapter 4) lacked more 

detailed resources to enable deep deconvolution of minor cell 

subcomponents (i.e. Tregs cells [464]) at different activation stages. 

Furthermore, the findings from the molecular pathway analysis reflect the 

current state of the existing knowledge archived in the biochemical pathway 

databases (Chapter 5). Potentially, these resources may provide different 

insights if more data come online. Similarly, while Chapter6 has derived and 

independently validated candidate biomarkers for severe pneumonia, further 

independent validations are required. However, such data are not available 

especially in the sub-Saharan African region.  

 

Nonetheless, the current study has adequate and high quality resources, and 

applied robust approaches to address the central hypothesis and study 

objectives. Moreover, the molecular pathway responses were independently 

replicated across a range of biochemical resources, and were consistent with 
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the cellular pathway responses. Importantly, these findings support the 

central hypothesis that systemic pathway responses underpin the 

development of severe pneumonia outcomes. To address some of the 

limitations, the next section provides suggested recommendations for future 

work.  

 

7.8 Suggested recommendations and future outlook 

Mainly, the findings of this thesis would benefit from further validations. In the 

short term, further analyses using publicly available data resources are 

required to enhance and validate the IBML resources and the candidate 

biomarkers. For IBML, the priority is to improve the cell type coverage and 

granularity, and conduct further performance validations using whole blood 

transcriptomes from a range of diseases. Similarly, the candidate biomarkers 

require further validation at least in data sets with known pneumonia 

aetiology. Further, both resources could benefit from alternative and 

computationally intensive approaches such as cross-validated (i.e. 

bootstrapping) and ensemble feature selection approaches [465]. Potentially, 

those approaches may generate more robust and cost-effective (reduced) 

biomarker sets for routine clinical practice. 

 

In the long-term perspective, longitudinal studies are required to validate the 

current results. To validate the computational deconvolution analysis results, 

standard approaches such as FACS [466-468] could be applied to re-assess 

the cellular pathway responses especially the potential involvement of NK in 

pneumonia severity. Simultaneously, the cell-sorted blood samples could be 
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applied to molecularly validate the cellular responses at the cellular level (i.e. 

cell type-specific transcriptome analysis). Further, PCR-based methods [469-

471] could be applied to validate the candidate biomarkers of severe 

pneumonia (Chapter6). Ideally, the 33-gene classifier can be applied to 

stratify mild pneumonia cases (at recruitment) into low-risk (treatment 

withheld) and high-risk (antibiotic treatment administered immediately) 

groups, and monitor temporal changes in clinical symptoms.  In expectation, 

both groups should resolve their symptoms with time. Alternatively, another 

low-risk group can be randomised to an antibiotic treatment as the current 

treatment standard.  In expectation, the antibiotic intervention should have no 

significant differences between the low-risk groups. 

7.9 Conclusions  

Together, the findings of this thesis consistently support the central 

hypothesis that systemic pathway (cellular and molecular) responses 

underpin the development of severe pneumonia outcomes. Notably, the 

potential involvement of NK cells in the pathogenesis of pneumonia present 

a novel immune-modulation target for mitigating the burden of pneumonia. 

Further, the discovery of the 33-gene cellular pathway-centric classifier 

(supported by the observed strong association between bacterial 

septicaemia and pneumonia severity) potentially presents a novel and 

accessible approach for early identification and treatment modalities of high-

risk mild pneumonia cases. In conclusion, these findings present a strong 

foundation for innovative future studies aimed at mitigating the burden of 

childhood pneumonia especially in resource-limited settings (i.e. the sub-

Saharan Africa) where the burden is highly concentrated.  
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Chapter 9: Appendices  
 

9.1 Appendix A (Chapter 4): An optimal Integrated Blood Marker 

List (IBML).   

 
Table 9.1: Immune cell type-specific marker genes compiled in IBML. The table shows the 
distribution of marker genes that are associated with six immune cell types (B cells, T cells, NK cells, 
dendritic cells, Monocytes and Neutrophils). IBML was derived in Chapter 4. 
 

CELLTYPE SYMBOL ENTREZID GENENAME 

B CD19 930 CD19 molecule 

B CD79A 973 CD79a molecule, immunoglobulin-associated alpha 

B CD79B 974 CD79b molecule, immunoglobulin-associated beta 

B FCRL2 79368 Fc receptor-like 2 

B IGLJ3 28831 immunoglobulin lambda joining 3 

B KIAA0125 9834 KIAA0125 

B OSBPL10 114884 oxysterol binding protein-like 10 

B P2RX5 5026 purinergic receptor P2X, ligand-gated ion channel, 5 

B POU2AF1 5450 POU class 2 associating factor 1 

B TPD52 7163 tumor protein D52 

T ABLIM1 3983 actin binding LIM protein 1 

T BCL11B 64919 B-cell CLL/lymphoma 11B (zinc finger protein) 

T CAMK4 814 calcium/calmodulin-dependent protein kinase IV 

T CD28 940 CD28 molecule 

T CD3D 915 CD3d molecule, delta (CD3-TCR complex) 

T CD3E 916 CD3e molecule, epsilon (CD3-TCR complex) 

T CD3G 917 CD3g molecule, gamma (CD3-TCR complex) 

T CD5 921 CD5 molecule 

T CD6 923 CD6 molecule 

T CDR2 1039 cerebellar degeneration-related protein 2, 62kDa 

T DGKA 1606 diacylglycerol kinase, alpha 80kDa 

T FBLN5 10516 fibulin 5 

T FLT3LG 2323 fms-related tyrosine kinase 3 ligand 

T ICOS 29851 inducible T-cell co-stimulator 

T IL7R 3575 interleukin 7 receptor 

T INPP4B 8821 inositol polyphosphate-4-phosphatase, type II, 105kDa 

T ITK 3702 IL2-inducible T-cell kinase 

T ITPKB 3707 inositol-trisphosphate 3-kinase B 

T LDLRAP1 26119 low density lipoprotein receptor adaptor protein 1 

T LEF1 51176 lymphoid enhancer-binding factor 1 

T LEPROTL1 23484 leptin receptor overlapping transcript-like 1 
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T MAL 4118 mal, T-cell differentiation protein 

T NELL2 4753 NEL-like 2 (chicken) 

T NOSIP 51070 nitric oxide synthase interacting protein 

T PASK 23178 PAS domain containing serine/threonine kinase 

T PIK3IP1 113791 phosphoinositide-3-kinase interacting protein 1 

T PLEKHB1 58473 pleckstrin homology domain containing, family B 
(evectins) member 1 

T SIRPG 55423 signal-regulatory protein gamma 

T SPOCK2 9806 sparc/osteonectin, cwcv and kazal-like domains 
proteoglycan (testican) 2 

T TCF7 6932 transcription factor 7 (T-cell specific, HMG-box) 

T TMEM204 79652 transmembrane protein 204 

T TNFRSF25 8718 tumor necrosis factor receptor superfamily, member 25 

T TRAT1 50852 T cell receptor associated transmembrane adaptor 1 

T UBASH3A 53347 ubiquitin associated and SH3 domain containing A 

T YME1L1 10730 YME1-like 1 ATPase 

NK ARAP2 116984 ArfGAP with RhoGAP domain, ankyrin repeat and PH 
domain 2 

NK ASCL2 430 achaete-scute family bHLH transcription factor 2 

NK AUTS2 26053 autism susceptibility candidate 2 

NK BZRAP1 9256 benzodiazepine receptor (peripheral) associated protein 
1 

NK CD247 919 CD247 molecule 

NK CHST12 55501 carbohydrate (chondroitin 4) sulfotransferase 12 

NK CLIC3 9022 chloride intracellular channel 3 

NK CST7 8530 cystatin F (leukocystatin) 

NK F2R 2149 coagulation factor II (thrombin) receptor 

NK GNLY 10578 granulysin 

NK GNPTAB 79158 N-acetylglucosamine-1-phosphate transferase, alpha 
and beta subunits 

NK GZMA 3001 granzyme A (granzyme 1, cytotoxic T-lymphocyte-
associated serine esterase 3) 

NK GZMB 3002 granzyme B (granzyme 2, cytotoxic T-lymphocyte-
associated serine esterase 1) 

NK HEG1 57493 heart development protein with EGF-like domains 1 

NK IL12RB2 3595 interleukin 12 receptor, beta 2 

NK IL18RAP 8807 interleukin 18 receptor accessory protein 

NK IL2RB 3560 interleukin 2 receptor, beta 

NK JAK1 3716 Janus kinase 1 

NK KIR2DL2 3803 killer cell immunoglobulin-like receptor, two domains, 
long cytoplasmic tail, 2 

NK KIR2DL4 3805 killer cell immunoglobulin-like receptor, two domains, 
long cytoplasmic tail, 4 

NK KIR2DL5A 57292 killer cell immunoglobulin-like receptor, two domains, 
long cytoplasmic tail, 5A 

NK KIR2DL5B 553128 killer cell immunoglobulin-like receptor, two domains, 
long cytoplasmic tail, 5B 

NK KIR2DS1 3806 killer cell immunoglobulin-like receptor, two domains, 
short cytoplasmic tail, 1 
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NK KIR2DS4 3809 killer cell immunoglobulin-like receptor, two domains, 
short cytoplasmic tail, 4 

NK KIR3DL3 115653 killer cell immunoglobulin-like receptor, three domains, 
long cytoplasmic tail, 3 

NK KIR3DL3 100133046 killer cell immunoglobulin-like receptor three domains 
long cytoplasmic tail 3 

NK KIR3DS1 3813 killer cell immunoglobulin-like receptor, three domains, 
short cytoplasmic tail, 1 

NK KLRC1 3821 killer cell lectin-like receptor subfamily C, member 1 

NK KLRC2 3822 killer cell lectin-like receptor subfamily C, member 2 

NK KLRD1 3824 killer cell lectin-like receptor subfamily D, member 1 

NK KLRF1 51348 killer cell lectin-like receptor subfamily F, member 1 

NK MACF1 23499 microtubule-actin crosslinking factor 1 

NK MYBL1 4603 v-myb avian myeloblastosis viral oncogene homolog-
like 1 

NK NCAM1 4684 neural cell adhesion molecule 1 

NK PDGFRB 5159 platelet-derived growth factor receptor, beta polypeptide 

NK PRF1 5551 perforin 1 (pore forming protein) 

NK PRR5L 79899 proline rich 5 like 

NK PTPN4 5775 protein tyrosine phosphatase, non-receptor type 4 
(megakaryocyte) 

NK RGS3 5998 regulator of G-protein signaling 3 

NK S1PR5 53637 sphingosine-1-phosphate receptor 5 

NK STOM 2040 stomatin 

NK TBX21 30009 T-box 21 

NK TFDP2 7029 transcription factor Dp-2 (E2F dimerization partner 2) 

NK TGFBR3 7049 transforming growth factor, beta receptor III 

NK XCL1 6375 chemokine (C motif) ligand 1 

NK XCL2 6846 chemokine (C motif) ligand 2 

NK YPEL1 29799 yippee-like 1 (Drosophila) 

Dendritic ALCAM 214 activated leukocyte cell adhesion molecule 

Dendritic ATP1B1 481 ATPase, Na+/K+ transporting, beta 1 polypeptide 

Dendritic CCDC88A 55704 coiled-coil domain containing 88A 

Dendritic CD1E 913 CD1e molecule 

Dendritic CLEC10A 10462 C-type lectin domain family 10, member A 

Dendritic MRC1 4360 mannose receptor, C type 1 

Dendritic PON2 5445 paraoxonase 2 

Dendritic SPINT2 10653 serine peptidase inhibitor, Kunitz type, 2 

Dendritic UBE2A 7319 ubiquitin-conjugating enzyme E2A 

Monocytes ANXA1 301 annexin A1 

Monocytes AP1S2 8905 adaptor-related protein complex 1, sigma 2 subunit 

Monocytes ARHGEF10L 55160 Rho guanine nucleotide exchange factor (GEF) 10-like 

Monocytes ASGR1 432 asialoglycoprotein receptor 1 

Monocytes ASGR2 433 asialoglycoprotein receptor 2 

Monocytes CD14 929 CD14 molecule 

Monocytes CSTA 1475 cystatin A (stefin A) 
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Monocytes CYBB 1536 cytochrome b-245, beta polypeptide 

Monocytes DIAPH2 1730 diaphanous-related formin 2 

Monocytes DUSP6 1848 dual specificity phosphatase 6 

Monocytes FXYD6 53826 FXYD domain containing ion transport regulator 6 

Monocytes IRAK3 11213 interleukin-1 receptor-associated kinase 3 

Monocytes METTL9 51108 methyltransferase like 9 

Monocytes MS4A6A 64231 membrane-spanning 4-domains, subfamily A, member 
6A 

Monocytes NLRP3 114548 NLR family, pyrin domain containing 3 

Monocytes P2RY2 5029 purinergic receptor P2Y, G-protein coupled, 2 

Monocytes PID1 55022 phosphotyrosine interaction domain containing 1 

Monocytes PSAP 5660 prosaposin 

Monocytes SLC7A7 9056 solute carrier family 7 (amino acid transporter light 
chain, y+L system), member 7 

Monocytes SLX1A-
SULT1A3 

100526830 SLX1A-SULT1A3 readthrough (NMD candidate) 

Monocytes SLX1B-
SULT1A4 

100526831 SLX1B-SULT1A4 readthrough (NMD candidate) 

Monocytes SULT1A3 6818 sulfotransferase family, cytosolic, 1A, phenol-preferring, 
member 3 

Monocytes SULT1A4 445329 sulfotransferase family, cytosolic, 1A, phenol-preferring, 
member 4 

Monocytes TPPP3 51673 tubulin polymerization-promoting protein family member 
3 

Monocytes VCAN 1462 versican 

Neutrophils AATK 9625 apoptosis-associated tyrosine kinase 

Neutrophils ABHD5 51099 abhydrolase domain containing 5 

Neutrophils ABTB1 80325 ankyrin repeat and BTB (POZ) domain containing 1 

Neutrophils ACOX1 51 acyl-CoA oxidase 1, palmitoyl 

Neutrophils ARAP3 64411 ArfGAP with RhoGAP domain, ankyrin repeat and PH 
domain 3 

Neutrophils ARHGEF40 55701 Rho guanine nucleotide exchange factor (GEF) 40 

Neutrophils B3GNT8 374907 UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 8 

Neutrophils BASP1 10409 brain abundant, membrane attached signal protein 1 

Neutrophils BEST1 7439 bestrophin 1 

Neutrophils BID 637 BH3 interacting domain death agonist 

Neutrophils BTNL8 79908 butyrophilin-like 8 

Neutrophils C5AR1 728 complement component 5a receptor 1 

Neutrophils CAMK2G 818 calcium/calmodulin-dependent protein kinase II gamma 

Neutrophils CANT1 124583 calcium activated nucleotidase 1 

Neutrophils CCNJL 79616 cyclin J-like 

Neutrophils CCR3 1232 chemokine (C-C motif) receptor 3 

Neutrophils CD46 4179 CD46 molecule, complement regulatory protein 

Neutrophils CEACAM3 1084 carcinoembryonic antigen-related cell adhesion 
molecule 3 

Neutrophils CENPBD1P1 65996 CENPBD1 pseudogene 1 

Neutrophils CEP19 84984 centrosomal protein 19kDa 
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Neutrophils CFLAR 8837 CASP8 and FADD-like apoptosis regulator 

Neutrophils CHI3L1 1116 chitinase 3-like 1 (cartilage glycoprotein-39) 

Neutrophils CIR1 9541 corepressor interacting with RBPJ, 1 

Neutrophils CKLF 51192 chemokine-like factor 

Neutrophils CKLF-CMTM1 100529251 CKLF-CMTM1 readthrough 

Neutrophils CMTM2 146225 CKLF-like MARVEL transmembrane domain containing 
2 

Neutrophils CPD 1362 carboxypeptidase D 

Neutrophils CPPED1 55313 calcineurin-like phosphoesterase domain containing 1 

Neutrophils CREB5 9586 cAMP responsive element binding protein 5 

Neutrophils CREBRF 153222 CREB3 regulatory factor 

Neutrophils CTBS 1486 chitobiase, di-N-acetyl- 

Neutrophils CXCR1 3577 chemokine (C-X-C motif) receptor 1 

Neutrophils CYP4F3 4051 cytochrome P450, family 4, subfamily F, polypeptide 3 

Neutrophils DAPK2 23604 death-associated protein kinase 2 

Neutrophils DGAT2 84649 diacylglycerol O-acyltransferase 2 

Neutrophils DOCK5 80005 dedicator of cytokinesis 5 

Neutrophils DSC2 1824 desmocollin 2 

Neutrophils EGLN1 54583 egl-9 family hypoxia-inducible factor 1 

Neutrophils EMR3 84658 egf-like module containing, mucin-like, hormone 
receptor-like 3 

Neutrophils EPHB1 2047 EPH receptor B1 

Neutrophils EPOR 2057 erythropoietin receptor 

Neutrophils F11R 50848 F11 receptor 

Neutrophils FAM129A 116496 family with sequence similarity 129, member A 

Neutrophils FAM212B 55924 family with sequence similarity 212, member B 

Neutrophils FAM53C 51307 family with sequence similarity 53, member C 

Neutrophils FAS 355 Fas cell surface death receptor 

Neutrophils FFAR2 2867 free fatty acid receptor 2 

Neutrophils FPR1 2357 formyl peptide receptor 1 

Neutrophils FRAT2 23401 frequently rearranged in advanced T-cell lymphomas 2 

Neutrophils GMFG 9535 glia maturation factor, gamma 

Neutrophils GPR97 222487 G protein-coupled receptor 97 

Neutrophils HIST1H2AC 8334 histone cluster 1, H2ac 

Neutrophils HIST1H2BC 8347 histone cluster 1, H2bc 

Neutrophils HIST1H2BE 8344 histone cluster 1, H2be 

Neutrophils HIST1H2BF 8343 histone cluster 1, H2bf 

Neutrophils HIST1H2BG 8339 histone cluster 1, H2bg 

Neutrophils HIST1H2BI 8346 histone cluster 1, H2bi 

Neutrophils HOTAIRM1 100506311 HOXA transcript antisense RNA, myeloid-specific 1 

Neutrophils HSPA6 3310 heat shock 70kDa protein 6 (HSP70B') 

Neutrophils IDS 3423 iduronate 2-sulfatase 

Neutrophils IFRD1 3475 interferon-related developmental regulator 1 

Neutrophils IKBIP 121457 IKBKB interacting protein 
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Neutrophils INAFM1 255783 InaF-motif containing 1 

Neutrophils ITPRIP 85450 inositol 1,4,5-trisphosphate receptor interacting protein 

Neutrophils KATNBL1 79768 katanin p80 subunit B-like 1 

Neutrophils KCNJ15 3772 potassium inwardly-rectifying channel, subfamily J, 
member 15 

Neutrophils KDM6B 23135 lysine (K)-specific demethylase 6B 

Neutrophils KIAA1324 57535 KIAA1324 

Neutrophils KIF13A 63971 kinesin family member 13A 

Neutrophils LGALSL 29094 lectin, galactoside-binding-like 

Neutrophils LITAF 9516 lipopolysaccharide-induced TNF factor 

Neutrophils LOC643072 643072 uncharacterized LOC643072 

Neutrophils LRG1 116844 leucine-rich alpha-2-glycoprotein 1 

Neutrophils LRP10 26020 low density lipoprotein receptor-related protein 10 

Neutrophils LRRC4 64101 leucine rich repeat containing 4 

Neutrophils LST1 7940 leukocyte specific transcript 1 

Neutrophils LYN 4067 LYN proto-oncogene, Src family tyrosine kinase 

Neutrophils MAP2K4 6416 mitogen-activated protein kinase kinase 4 

Neutrophils MBOAT2 129642 membrane bound O-acyltransferase domain containing 
2 

Neutrophils MBOAT7 79143 membrane bound O-acyltransferase domain containing 
7 

Neutrophils MGAM 8972 maltase-glucoamylase (alpha-glucosidase) 

Neutrophils MME 4311 membrane metallo-endopeptidase 

Neutrophils MMP25 64386 matrix metallopeptidase 25 

Neutrophils MNDA 4332 myeloid cell nuclear differentiation antigen 

Neutrophils MPZL3 196264 myelin protein zero-like 3 

Neutrophils MRVI1 10335 murine retrovirus integration site 1 homolog 

Neutrophils MSL1 339287 male-specific lethal 1 homolog (Drosophila) 

Neutrophils MSRB1 51734 methionine sulfoxide reductase B1 

Neutrophils MTHFS 10588 5,10-methenyltetrahydrofolate synthetase (5-
formyltetrahydrofolate cyclo-ligase) 

Neutrophils MXD1 4084 MAX dimerization protein 1 

Neutrophils NATD1 256302 N-acetyltransferase domain containing 1 

Neutrophils NCF4 4689 neutrophil cytosolic factor 4, 40kDa 

Neutrophils NCOA1 8648 nuclear receptor coactivator 1 

Neutrophils NDEL1 81565 nudE neurodevelopment protein 1-like 1 

Neutrophils NFIL3 4783 nuclear factor, interleukin 3 regulated 

Neutrophils OAZ2 4947 ornithine decarboxylase antizyme 2 

Neutrophils PGS1 9489 phosphatidylglycerophosphate synthase 1 

Neutrophils PHC2 1912 polyhomeotic homolog 2 (Drosophila) 

Neutrophils PHF20L1 51105 PHD finger protein 20-like 1 

Neutrophils PIGB 9488 phosphatidylinositol glycan anchor biosynthesis, class B 

Neutrophils PIGX 54965 phosphatidylinositol glycan anchor biosynthesis, class X 

Neutrophils POLB 5423 polymerase (DNA directed), beta 

Neutrophils PPP1R3B 79660 protein phosphatase 1, regulatory subunit 3B 
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Neutrophils PPP4R1 9989 protein phosphatase 4, regulatory subunit 1 

Neutrophils PROK2 60675 prokineticin 2 

Neutrophils R3HDM4 91300 R3H domain containing 4 

Neutrophils RAF1 5894 Raf-1 proto-oncogene, serine/threonine kinase 

Neutrophils RALB 5899 v-ral simian leukemia viral oncogene homolog B 

Neutrophils REM2 161253 RAS (RAD and GEM)-like GTP binding 2 

Neutrophils REPS2 9185 RALBP1 associated Eps domain containing 2 

Neutrophils RGL4 266747 ral guanine nucleotide dissociation stimulator-like 4 

Neutrophils RGS18 64407 regulator of G-protein signaling 18 

Neutrophils RNASET2 8635 ribonuclease T2 

Neutrophils RNF149 284996 ring finger protein 149 

Neutrophils ROPN1L 83853 rhophilin associated tail protein 1-like 

Neutrophils S100P 6286 S100 calcium binding protein P 

Neutrophils S1PR4 8698 sphingosine-1-phosphate receptor 4 

Neutrophils SEC14L1 6397 SEC14-like 1 (S. cerevisiae) 

Neutrophils SLC22A4 6583 solute carrier family 22 (organic cation/zwitterion 
transporter), member 4 

Neutrophils SLC25A37 51312 solute carrier family 25 (mitochondrial iron transporter), 
member 37 

Neutrophils SLC45A4 57210 solute carrier family 45, member 4 

Neutrophils SLPI 6590 secretory leukocyte peptidase inhibitor 

Neutrophils SRGN 5552 serglycin 

Neutrophils ST20 400410 suppressor of tumorigenicity 20 

Neutrophils ST20-MTHFS 100528021 ST20-MTHFS readthrough 

Neutrophils ST6GALNAC2 10610 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-
1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 2 

Neutrophils STEAP4 79689 STEAP family member 4 

Neutrophils STK40 83931 serine/threonine kinase 40 

Neutrophils STX3 6809 syntaxin 3 

Neutrophils TBXAS1 6916 thromboxane A synthase 1 (platelet) 

Neutrophils TECPR2 9895 tectonin beta-propeller repeat containing 2 

Neutrophils TIGD3 220359 tigger transposable element derived 3 

Neutrophils TLE3 7090 transducin-like enhancer of split 3 

Neutrophils TLR6 10333 toll-like receptor 6 

Neutrophils TMCC1 23023 transmembrane and coiled-coil domain family 1 

Neutrophils TMCC3 57458 transmembrane and coiled-coil domain family 3 

Neutrophils TMEM154 201799 transmembrane protein 154 

Neutrophils TMEM71 137835 transmembrane protein 71 

Neutrophils TNFRSF10C 8794 tumor necrosis factor receptor superfamily, member 
10c, decoy without an intracellular domain 

Neutrophils TOPORS-AS1 100129250 TOPORS antisense RNA 1 

Neutrophils TREM1 54210 triggering receptor expressed on myeloid cells 1 

Neutrophils TRPM6 140803 transient receptor potential cation channel, subfamily M, 
member 6 
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Neutrophils TSEN34 79042 TSEN34 tRNA splicing endonuclease subunit 

Neutrophils UBE2B 7320 ubiquitin-conjugating enzyme E2B 

Neutrophils UBE2R2 54926 ubiquitin-conjugating enzyme E2R 2 

Neutrophils UBXN2B 137886 UBX domain protein 2B 

Neutrophils USP15 9958 ubiquitin specific peptidase 15 

Neutrophils VNN2 8875 vanin 2 

Neutrophils VNN3 55350 vanin 3 

Neutrophils XPO6 23214 exportin 6 

Neutrophils ZDHHC18 84243 zinc finger, DHHC-type containing 18 

Neutrophils ZNF117 51351 zinc finger protein 117 

.
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9.2 Appendix B (Chapter 5): Annotation of differentially expressed genes on KEGG pathways. 

 

 
Figure 9.1: The Toll-like receptor KEGG pathway map (hsa04620) showing differentially expressed genes in pneumonia (FDR<0.05).   Each coloured 
box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene not analysed, (ii) 
Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) red=up-regulated gene. The pathway map was produced using the 
PathView Web (https://pathview.uncc.edu/). 
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Figure 9.2: The Cytokine-cytokine receptor interaction KEGG map (hsa04060) showing differentially expressed genes in pneumonia (FDR<0.05). 
Each coloured box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene 
not analysed, (ii) Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) red=up-regulated gene. The pathway map was produced 
using the PathView Web (https://pathview.uncc.edu/). 
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Figure 9.3: The Complement and coagulation cascades KEGG map (hsa04610) showing differentially expressed genes in pneumonia (FDR<0.05).   
Each coloured box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene 
not analysed, (ii) Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) red=up-regulated gene. The pathway map was produced 
using the PathView Web (https://pathview.uncc.edu/). 
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Figure 9.4: The Chemokine signalling pathway KEGG map (hsa04062-) showing differentially expressed genes in pneumonia (FDR<0.05).   Each 
coloured box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene not 
analysed, (ii) Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) red=up-regulated gene. The pathway map was produced 
using the PathView Web (https://pathview.uncc.edu/). 
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Figure 9.5: The Natural killer cell mediated cytotoxicity KEGG map (hsa04650) showing differentially expressed genes in pneumonia (FDR<0.05).  
Each coloured box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene 
not analysed, (ii) Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) Red=up-regulated gene. The pathway map was produced 
using the PathView Web (https://pathview.uncc.edu/). 
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Figure 9.6:The T cell receptor signaling pathway KEGG map (hsa04660) showing differentially expressed genes in pneumonia (FDR<0.05). Each 
coloured box is divided into three sections representing mild (left), severe (middle) and very severe (right) pneumonia states.  Colours: (i) White=Gene not 
analysed, (ii) Grey=Gene not significant (FDR>0.05), (iii) Green=Down-regulated genes and (iv) Red=up-regulated gene. The pathway map was produced 
using the PathView Web (https://pathview.uncc.edu/) 
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9.3 Appendix C (Chapter6): Misclassified samples in biomarker 

analysis.  

 

 
Figure 9.7: Misclassified samples in the training (a) and the validation (b) datasets across the 
biomarker sets.    In total, three samples were misclassified by the final biomarker set (CellSep) in 
the training (n=1) and validation (n=2) data sets. In the training data, a non-pneumonia control sample 
(A2533-21.CEL), which was associated with bacterial septicaemia, was misclassified (c). In the 
validation data set, the misclassified samples (A1092-425.CEL and A1092-209.CEL) were associated 
with overall poor sample quality as measured by the RNA integrity number (RIN) was associated with 
one and two misclassified samples  
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