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ABSTRACT 

OxyR-regulated genes are essential to the development of hydrogen peroxide 

resistance in Salmonella enterica serovar Typhimurium (S. typhimurium) and 

Escherichia coli. Classically, such regulation is dependent upon both OxyR and cy 70 . 

Recently, in E. coli, a number of OxyR-dependent genes have been shown to be 

induced in the stationary phase of growth by the alternative sigma factor RpoS, 

independently of OxyR. In addition, RpoS has been shown to regulate a number of 

genes in S. typhimurium when within host cells. In a previous study of 

S. lyphimurium, a hydrogen peroxide-inducible locus, ahp, encoding alkyl 

hydroperoxide reductase, was found to be induced during interaction with 

macrophages (K. P. Francis, PhD Thesis, 1993). In the present study, the role of 

growth phase and RpoS upon ahp was assessed in S. typhimurium using a Mudlux 

reporter system and Western blotting. Although a basal level of protein was found to 

be present in the cells, Ahp was found not to be induced upon entry into the 

stationary phase. This makes ahp unique amongst those OxyR-regulated loci 

examined to date. 

Preliminary experiments employing the Mudlux reporter system indicated that the 

ahp locus was osmotically sensitive in S. typhimurium. Studies on other bacteria 

supported this view. The affect of the osmotic environment of the cell upon the 

expression of ahp was therefore addressed in greater depth. The subsequent use of 

immunoblotting techniques conclusively demonstrated that chromosomal expression 

of the ahp locus was not affected by the osmotic environment surrounding the cell. 

Instead, the Mudlux element was found to alter the natural behaviour of the ahp 

promoter in such a way that it adopted an osmotically-regulated status and, this mode 

of regulation appeared to override regulation via the normal hydrogen peroxide-

inducible mechanism. 

S. enterica is an intracellular pathogen which is capable of surviving within 

macrophage cells. Macrophages are equipped with an arsenal of anti-microbial 

effector mechanisms, including a respiratory burst which generates reactive oxygen 

metabolites. Since ahp had previously been shown to respond to the respiratory burst 
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of macrophages, this study also assessed the role of oxidative stress resistance genes 

in the virulence of S. lyphimurium. Strains of the mouse pathogen SL1344 were 

constructed in which the ahp and oxyR loci were disrupted and their virulence was 

assessed in LD50  studies. Disruption of the ahp or oxyR loci was found to have no 

affect upon the gross virulence of SL1344 for mice, suggesting that these loci were 

not essential for survival within the macrophage. 

The ability to develop immunity against infection by S. typhimurium is thought to 

correlate with the development of immunity against bacterial antigens which are 

expressed in vivo. As a further part to this study, the immunological responses of 

mice to two S. typhimurium-derived polypeptides, AhpC and GroEL, following 

cloning and overexpression of these proteins, were examined. Mice previously 

infected with an attenuated strain of S. typhimurium were shown to elicit significant 

delayed-type hypersensitivity reactions following subcutaneous injection of these 

polypeptides 33 and 104 days post-infection. Moreover, AhpC- and GroEL-specific 

antibodies were detected during the course of infection of mice with S. typhimurium. 

These results demonstrated that immunity to S. typhimurium in the murine host was 

regulated by TH1 cells. In addition, detection of both cell-mediated and humoral 

immune responses to AhpC and GroEL indicated that these polypeptides are targets 

for immunological recognition and may contribute to the protective immunity 

generated by mice following S. typhimurium infection. 
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CHAPTER 1 

Introduction 



1.1 GENERAL OVERVIEW 

The species Salmonella enterica is composed of over 2, 000 different serovars. For 

the purpose of this thesis, serovars of S. enterica will be identified initially by their 

official designation but subsequently referred to by their commonly used serovar 

name (which will be displayed in adjacent brackets). However, the use of the species 

name, S. enterica, will be used when referring to or discussing general properties or 

features of the serovars that form the species. 

The species S. enterica is an important agent of disease as many of its serovars are 

capable of infecting and causing disease in humans and animals. Some like 

S. enterica serovar Typhi (S. typhi), the causative agent of typhoid fever, only infects 

humans whereas S. enterica serovar Typhimurium (S. typhimurium) is capable of 

causing diseases in multiple hosts (Cohen and Tauxe, 1986; Finlay and Falkow, 

1989a). The usual route of infection for S. enterica is by the ingestion of 

contaminated food and water, and the diseases associated with infection are 

collectively termed salmonellosis. Salmonellosis generally takes the form of 

diarrhoeal disease but this can vary from gastro-enteritis (food-poisoning), which is 

essentially a self-limiting infection, to a much more severe disease, such as typhoid 

fever, where the bacteria invade and replicate in the tissues of the body (Gulig, 

1996). 

Diarrhoeal diseases are some of the most important health problems faced by the 

world today (Pang et al., 1995; Maurice, 1994). The contribution of salmonellosis to 

the incidence of diarrhoeal disease is highlighted by the World Health Organisation's 

(WHO) recent statistics which show that annually, there are approximately 16.6 

million cases of typhoid fever with nearly 600, 000 deaths. Moreover, although 

gastro-enteritis is generally considered a non-fatal disease, approximately 3 million 

deaths result from the estimated 1.3 billion incidences of acute 

gastro-enteritis/diarrhoea (due to non-typhoidal salmonellosis) which occur per 

annum (Pang et al., 1995; Ivanoffet al., 1995). The incidence of S. enterica-related 

disease is particularly prevalent in developing countries where the problems of 

2 



infection are exacerbated by the poor sanitation and health care that exists. However, 

diarrhoeal diseases are also a problem for industrialised countries, but here the 

increase in incidence of disease has been associated with the demand for large scale 

food production and greatly increased dependence on convenience and fast foods 

(Maurice, 1994). 

Infection by S. enterica is also a concern for animals including chickens, calves, 

swine and sheep (Coynault et al., 1996), where diarrhoeal and systemic disease have 

economic consequences in farming and animal husbandry. For example, in the USA 

it has been estimated that approximately 57% of all cattle and 70% of all chickens are 

carriers of S. enterica (Jay, 1992). Importantly, such infected animals are considered 

to be a major factor in the spread of S. enterica through the food chain to humans 

(Maurice, 1994). In the Western world, the potential problems of S. enterica 

infection have been significantly reduced by the use of antibiotics. For example, 

antibiotics such as chloramphenicol have been used in farming practice to keep 

animals pathogen-free such that they show an optimal increase in mass (Cohen and 

Tauxe, 1986). Moreover, antibiotics have proven useful in treating infections in 

humans, caused by non-typhoidal S. enterica serovars such as S. typhimurium, or in 

rare instances by S. typhi (Pang et al., 1995). However, multidrug resistance is 

emerging in S. enterica serovars and is spreading globally. For example, it has been 

estimated that around 50-70% of S. typhi strains in the Indian sub-continent are now 

resistant to chloramphenicol. Thus, the use of antibiotics in preventing serious 

disease in both humans and animals is becoming less effective (Pang et al., 1995). 

Many of the problems caused by S. enterica infection could be alleviated in both the 

developed and developing world by the use of vaccines (Ivanoff et al., 1995; 

Coynault et al., 1996). Not only could such vaccines reduce the incidence of serious 

disease such as typhoid fever, but immunisation of animals could be used to combat 

the contamination and spread of S. enterica through the food chain. The development 

of vaccines therefore has an important role in the elimination of diseases caused by 

both typhoidal and non-typhoidal serovars of S. enterica. However, to date, the 

vaccine design strategies targeted at preventing diseases caused by S. enterica have 
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had variable success (Ivanoff et al., 1994; Pang et al., 1995). 

Much of the current research into developing effective prophylactic therapies to 

disease caused by S. enterica has focused on the use of live attenuated organisms. 

This angle of research has profited from examining the interaction of the bacterium 

with the host. To successfully establish an infection, S. enterica must withstand or 

circumvent the host's non-specific and specific arms of the immune system. 

However, S. enterica is a facultative intracellular pathogen and has developed a 

complex array of virulence mechanisms to promote its survival (Finlay and Falkow, 

1989b; Galan and Sansonetti, 1996). Of particular importance to the survival of this 

bacterium is its capability to invade and survive within the hosts' cells, particularly 

macrophage cells, which are equipped with an arsenal of anti-microbial effector 

mechanisms (Jones and Falkow, 1996; Gulig, 1996). Thus, by identifying genes and 

their products which are important for virulence we may be able to target these 

factors and develop immunological strategies to eliminate diseases caused by 

S. enterica. The role of such virulence factors and their immunological properties is 

the basis of the present study. 

The introduction to the present study is split into three sections to give an overview 

of the major factors involved in host-infection by S. enterica and the development of 

vaccines. The first section deals with the immune response and features involved in 

eliminating S. enterica from the host. The following section then examines the 

cellular and molecular bases by which S. enterica is able to accomplish a successful 

infection. Finally, a brief summary will be given of the types of vaccine strategies 

that have been employed, Or that have potential for development, in combating 

diseases caused by S. enterica. 
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1.2 THE IMMUNE RESPONSE TO INFECTION BY S. ENTERICA 

Immunity to microbial infection is very complex and the type and degree of response 

is as much dependent upon the bacterium as the host (Finlay and Falkow, 1989b). In 

order to discuss the immune responses to infection by S. enterica, it is first necessary 

to give a brief, but comprehensive, overview of the immune system. However, for 

relevance to S. enterica, this account will be biased towards the immune responses 

generated to bacterial infection. 

1.2.1 Immunity to infection is dependent upon both innate and specific 

immunity 

Essentially, immunity can be split into two types; innate (natural) immunity and 

specific (acquired immunity) (reviewed in Abbas et al., 1991; Weir and Stewart, 

1993). Innate immunity consists of factors which are present prior to any contact 

with a particular microbe and which are not enhanced by such exposure. On the other 

hand, specific immunity is stimulated by the identification of specific 

macromolecules (antigens) and responses are enhanced, and defensive capabilities 

increased, with each successive exposure to that antigen. Furthermore, the specific 

immune system "remembers" past encounters with a particular microbe (which is the 

basis of protective vaccination). It is important to note that both elements of 

immunity, although distinct, interact with each other. For example, specific 

immunity can involve recruiting components of innate immunity and some aspects of 

innate immunity also play a role in stimulating specific immunity (Abbas et al., 

1991; Gulig, 1996). 

1.2.2 Innate immuni 

Innate immunity provides an important anti-microbial defence to infection. The 

presence of intact physiochemical barriers such as the skin or mucous membranes 

prevent organisms gaining direct entry into the underlying tissues of the body (Finlay 

and Falkow, 1989b). In addition, there are humoral factors present in the blood and 

tissue fluid that have anti-microbial activity. This includes the complement system, a 

family of serum proteins which are activated in a proteolytic cascade, and which can 
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be triggered by the surface of the microorganism (called the alternative pathway of 

activation) (Joiner et al., 1984). Complement mediates a number of effector functions 

(Joiner et al., 1984). Firstly, complement proteins (C5-C9) can form a hydrophobic 

complex in the cell membrane of the bacterium, called a membrane attack complex, 

which results in the lysis of the bacterium by osmotic swelling. In addition, various 

components of the complement system which are generated in the enzymatic 

cascade, can themselves stimulate inflammatory processes (e.g. C5a and C3a) or act 

as chemoattractants (e.g. C5a) to draw phagocytic cells, which are designed to engulf 

and destroy bacteria, to the site of infection (Adams and Hamilton, 1984). Moreover, 

phagocytes have specific cell surface receptors for components of complement (e.g. 

C3b), therefore the deposition of complement proteins onto the surface of the 

microorganism acts as a mechanism to opsonise the bacterium and facilitate its 

uptake into the phagocyte (Joiner et al., 1984; Adams and Hamilton, 1984). 

The anti-microbial role of phagocytic cells 

The involvement of professional phagocytes, namely mononuclear phagocytes 

(monocytes and macrophages) and polymorphonuclear leucocytes (such as 

neutrophils), is a major factor in preventing microorganisms entering the body 

(Adams and Hamilton, 1984; Moulder et al., 1985). Neutrophils mature in the bone 

marrow and are then released into the blood where they function for around 4-5 days 

(Mims, 1987; Gulig et al., 1996). In contrast, mononuclear phagocytes have a life 

span of many months. After extensive development in the bone marrow, 

mononuclear phagocytes migrate via the blood as monocytes and enter into the 

various tissues and the organs of the body, including the liver, spleen and draining 

lymph nodes, where they develop into tissue-resident macrophages (Mims, 1987). 

Such macrophages constitute the reticuloendothelial system (RES) and the liver 

macrophages (Kuppfer cells) are quantitatively the most important component of this 

system (Adams and Hamilton, 1984; Mims, 1987; Kaufmann, 1993). Importantly, 

although being part of the innate immune system, macrophages play a vital role in 

generating, and acting as the effectors of specific immunity (Abbas et al., 1991, 

1996). 



Phagocytic killing of bacteria 

Both macrophages and neutrophils respond rapidly to invading microorganisms in 

the following sequence: chemotaxis through stimulation by host related substances 

(such as inflammatory products [e.g. C5a] or components derived from bacteria), 

target recognition, ingestion and degradation (Weir and Stewart, 1993). Phagocytosis 

involves the internalisation of the bacterial cell into a membrane-bound vesicle, the 

phagosome, and represents the first step in an endocytic pathway. In this pathway, 

the contents of the phagosome are destined for destruction by fusion with 

azurophillic lysosomes (Figure 1.1) The anti-microbial activity of phagocytic cells 

occurs before and after engulfment of the bacteria and involves two mechanisms, 

oxygen-dependent and oxygen-independent killing (Adams and Hamilton, 1984; 

Hasset and Cohen, 1989) (Figure 1.1 and as described in the following text). 

Figure 1.1 Summary overview of phagocytosis and the bacterial killing mechanisms 
in phagocytic cells 
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Killing of bacteria by oxygen-dependent mechanisms 

The oxygen-dependent killing mechanisms are initiated upon contact and engulfment 

of microbes into the phagocyte and is mediated via a respiratory burst associated with 

the hexose monophosphate shunt system. The shunt yields a high quantity of 

NADPH which is required for the action of a NADPH-oxidase, the principal enzyme 

involved in bringing about oxidative killing (Adams and Hamilton, 1984; Morel, et 

al., 1991). In unstimulated macrophages, there is no detectable activity of the 

NADPH-oxidase. However, immunological evidence suggests that the enzyme is 

present in the cells (Morel et al., 1991). It is therefore believed that external stimuli 

are required for activation of the enzyme, probably via receptor-mediated events 

(Forman and Thomas, 1986). As a result of the activity of this enzyme, toxic 

superoxide radicals (02 ) are generated which in turn can undergo further reactions to 

yield a spectrum of reactive oxygen species (ROS) including singlet oxygen ( 1 02), 

hydroxyl radicals (OH*)  and hydrogen peroxide (H 202). 

Nitric oxide (NO) has also been shown to be an important component in the 

oxidative killing mechanism produced by macrophages (Vidal et al., 1993; Pacelli et 

al., 1995). NO is formed by the biotransformation of L-arginine to L-citrulline by a 

nitric oxide synthase. NO is itself toxic but can also potentiate the activity of the 

other ROS in the oxidative killing of microorganisms. For example, nitric oxide 

reacts with H202  to produce peroxynitryl radicals and other toxic nitric oxide derived 

intermediates (Pacelli et al., 1995). In neutrophils, H202  may also be halogenated to 

form highly bactericidal halides via the action of a granule-associated 

myloperoxidase (MPO). Bacterial cells subjected to such a barrage of all these 

different ROS can be damaged at all fundamental levels (nucleic acids, lipids and 

proteins) resulting in the death of the microorganism (Goldman and Raz, 1975; 

Adams and Hamilton, 1984; Imlay and Linn, 1986). 



Killing of bacteria by oxygen-independent mechanisms 

The factors involved in oxygen-independent killing are extremely complex. 

Nevertheless, a number of important anti-bacterial mechanisms have been identified. 

One feature of the phagolysosome is the low pH (pH 3.5-4.0) which is created by the 

acidification of the phagolysosome using a NafH antiporter (Ohkuma and Poole, 

1978; Seguin et al., 1990, 1991; Foster, 1992). Moreover, these low pH conditions 

are inhibitory to a vast range of bacteria (Slonczewski and Foster, 1996). However, 

many of the degradative enzymes present in the phagolysosome, required to destroy 

the endocytosed bacterium, act optimally under these conditions. 

A large number of proteins and peptides are associated with the anti-microbial 

environment of the phagolysosome and some of their functions have been determined 

(Nathan, 1987; Weir and Stewart, 1993; Gulig, 1996). For example, lysozyme is 

capable of breaking the peptidoglycan component of the bacterial cell wall and 

acid-hydrolases are well characterised in their degradative abilities. In addition, 

lactoferrin sequesters iron (Fe) and deprives the bacterium of this essential element 

(Foster and Spector, 1995). However, there are a much wider range of proteins with 

cytotoxic activity whose mode of action are not understood. These include 

azurocidin, cathepsin G, bactenecins, major basic protein (MBP), and bactericidal 

permeability increasing protein (BPI) (Lehrer etal., 1990; Gulig et al., 1996). 

Another feature associated with the phagolysosome are defensins, a family of low 

molecular weight peptides (29-34 amino acids) that have anti-bacterial, anti-viral, 

anti-fungal and cytotoxic activities in vitro (Ganz et al., 1990). These anti-microbial 

peptides form cc-helical amphiphillic structures which are capable of introducing 

anion-specific channels in lipid bilayers and killing the bacterium by depolarising the 

cytoplasmic membrane (Lehrer et al., 1990). In humans, defensins are abundant in 

both macrophages and neutrophils, making up to 5-7% of the total cell protein 

(Groisman, 1994). In contrast, murine macrophages and polymorphonuclear 

leukocytes appear not have defensins (Groisman, 1994). However, S. typhimurium 

mutants which were identified by their susceptibility to purified defensins or crude 
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neutrophil granule components, were found to survive poorly in murine macrophages 

(Fields et al., 1986). Moreover, using the DNA sequence of the gene that encodes 

cryptdin, a type of defensin-like anti-microbial protein, genes with homology to 

defensin-like peptides were identified in murine leucocytes (Oullette and Lualdi, 

1990). It is likely therefore that equivalent anti-microbial peptides exist in murine 

phagocytic cells. 

The importance of both the oxygen-dependent and -independent mechanisms in 

controlling the infection of invading microorganisms is highlighted by a variety of 

human genetic disorders. For example, in Chronic Granulomatous Disease 

macrophages lack a respiratory burst (Ganz et al., 1990) and in Chediak-Higashi 

syndrome and Specific Granule Deficiency phagocytic cells lack anti-microbial 

granule components (Finlay and Falkow, 1989b). These conditions result in the host 

being more susceptible to recurrent and severe infections by Gram-negative bacteria 

including S. enterica. This suggests that both arms of the killing mechanism are 

required for optimal phagocytic destruction of invading pathogens. 

1.2.3 Specific immuni 

Specific immunity is regulated by T lymphocytes (T cells) which are capable of 

identifying antigens, through a membrane-bound receptor protein (the T cell 

receptor), and which dictate the appropriate defensive measure to be taken (Abbas et 

al., 1991, 1996). However, in order to identify antigens, T cells require accessory 

cells to process and present (display) the antigen. Hence these cells are called antigen 

presenting cells (APC's). Many types of cells are capable of performing this role 

including mononuclear phagocytes (monocytes, macrophages), Langerhans cells 

(specialised epithelial cells) and B cells (Abbas et al., 1991). In addition, a whole 

range of cells can be stimulated to perform the function of antigen presentation 

during bacterial infection, including endothelial and epithelial cells (Abbas et al., 

1991). This allows for activation and regulation of immune responses in almost any 

part of the host. 

T cells are generally considered to co-ordinate the immune system and mediate their 
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effects by producing soluble messengers called cytokines (Abbas et al., 1996; 

Mosmann and Sad, 1996). These molecules not only modulate the activity of other 

cells, such as B cells or macrophages, but can also enhance the activity of T cells. 

However, cells that are regulated by T cells can themselves produce cytokines which 

in turn stimulate T cells and other cells. Moreover, there is also evidence that early in 

bacterial infection, cells of the natural immune system help bias or dictate which type 

of specific immune response develops (Nauciel and Espinasse-Maes, 1992; Kelso, 

1995; Abbas et al., 1996). Thus, during the course of an immune response there is a 

great deal of cross-talk between cell types and this helps to shape the manner in 

which the response develops as well as to dampen it down again after the infection 

has been dealt with. 

The role of the Major Histocompatibility Complex (MHC) in determining 

immune responses 

There are a number of cell surface molecules which are essential in determining the 

type of immune response generated during infection. These molecules include cluster 

of differentiation molecules CD4 and CD8, which are found on T cells, and the 

Major Histocompatibility molecules I and II (MHCI and MHCII), which are found 

on APC's (reviewed in Abbas etal., 1991; Weir and Stewart, 1993). 

T cells can only identify a processed antigen when it is associated with the products 

of MHC (Weir and Stewart, 1993). In addition, the ability of a T cell to recognise 

antigen in association with MHO and MHCII is restricted to T cells expressing CD8 

or CD4, respectively. Since T cells only express only CD4 or CD8, they can be split 

into two mutually exclusive subsets, CD4CD8 T cells, which recognise antigen only 

in association with MHCII and CD4CD8 T cells, which only recognise antigen in 

association with MIHC I. 

Antigen processing and presentation 

The CD4CD8 and CD4CD8 T cell subsets produce very different immune 

responses and this is largely dependent upon the source and type of antigen. To 

understand this, it is necessary to give examples of how different antigens are 



processed and presented to T cells (reviewed in Brodsky and Guagliardi, 1991; Weir 

and Stewart, 1993). (This information is summarised in Figure 1.2 and described in 

the following text). 

Figure 1.2 Summary diagram of the antigen processing and presentation pathways 
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cells. (Adapted from Weir and Stewart, 1993). 

When bacteria are engulfed by phagocytes, such as macrophages, they start on an 

endocytic pathway that results in their degradation in the phagolysosome. As a result, 

protein antigens are processed to form small peptides, although it is unclear why 

complete degradation does not occur. Vesicles containing MIIC1I molecules, which 
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are synthesised at the endoplasmic reticulum (ER) and that are delivered via the 

golgi, fuse to this phagolysosome to form the late endosome. Here, the small peptide 

fragments associate with MHCII and, in an undefined manner, the complex is 

directed to the cell surface. This surface-presented MHCII/antigen complex is then 

recognised only by the T cell receptors on CD4 T cells. 

An alternative scenario may ensue when a virus infects a host cell. The virus does not 

remain within a lipid-bound vesicle but normally escapes to the cytoplasm or 

nucleus. Here, the virus is capable of synthesising proteins using the machinery of 

the host cell. These proteins can be processed by a cytosolic enzyme complex, called 

the proteasome, to generate small peptide fragments and a special transporter system, 

TAP (transporter for antigen presentation), is then believed to feed these fragments 

into the endoplasmic reticulum where each peptide associates with MIHCI. The 

resulting complex is then transported to the cell surface and can only be recognised 

by the T cells receptor on CD8 T cells. Importantly, the MHCI and MHCII 

processing pathways are kept distinct by preventing endogenous antigen from 

binding to the MHCII molecules in the ER. This is achieved by the association of a 

polypeptide chain (the invariant chain) with the MHCII molecule. However, upon 

entry into the late endosome the invariant chain is lost and MECII becomes 

accessible to exogenous antigen. 

The association of antigens with class I or class II MHC molecules is therefore due to 

the trafficking of the antigens through different intracellular compartments (Brodsky 

and Guagliardi, 1991). This in turn is dependent upon whether the antigen is from an 

exogenous or endogenous source. In general, the recognition of exogenous and 

endogenous antigens is associated with distinct responses ideally tailored to dealing 

with particular types of infection. For example, the recognition of exogenous antigen 

by CD4 T cells results in cytokines being secreted that enhance the ability of 

phagocytes to kill bacteria or stimulate B cells to produce antibody (See later). These 

types of T cell are called helper T cells (T 11), because they help direct the immune 

system to deal with the particular infection (Abbas et al., 1996). In contrast, host 

cells expressing endogenous antigen associated with MMCI, are destroyed by CD8 

T cells that recognise this complex. These T cells are called cytolytic T cells (CTL) 
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and are, in general, required to destroy virally infected cells (Abbas et al., 1991). 

However, experimental evidence has suggested that endogenous antigen can be 

associated with MHCII molecules and exogenous antigen can be associated with 

MHCI molecules and this may be an important factor in the development of an 

efficient immune response (Malnati et al., 1992; Pfeifer et al., 1993). 

1.2.4 The anti-microbial role of humoral and cell-mediated immunity 

There are two key types of response to consider in specific immunity to bacterial 

infection, humoral and cell-mediated immunity. Humoral immunity involves the 

production of antibody from B cells, and the effector phase is mediated by binding of 

secreted antibody to antigen. In contrast, cell-mediated immunity to bacterial 

infection involves T cells acting to influence and enhance the cells of natural 

immunity, such as the macrophages, to act as agents of specific immunity. 

Humoral immunity 

The production of antibod 

Antibodies (or inimunoglobulins [Ig]) are antigen-specific glycoproteins that are 

derived from activated B lymphocytes (B cells). B cells are formed in the bone 

marrow and possess membrane-bound antibody molecules which act as 

antigen-specific receptors (reviewed in Parker, 1993). Although B cells are not 

professional phagocytes, they can act as APC's because antigen bound by the surface 

antibody is internalised, processed, and the antigen expressed in conjunction with 

MHCII molecules on the surface of the cell. In turn, T H  cells activated by this secrete 

cytokines such as interleukin-4 (IL-4), IL-5 and IL-6 to bring about the activation 

and proliferation of the B cell, as well as the generation of memory B cells (Parker, 

1993). As a result of B cell stimulation, antibody molecules with the same antigen 

specificity as the membrane-bound molecule are expressed in a secreted form. Naive 

B cells which are exposed to antigen generally produce 1gM, which has multiple 

antigen-binding sites and is therefore good at complexing antigens. This is called the 

primary response. However, during the course of antigen stimulation or upon 

re-exposure to antigen, the type as well as the specificity of antibody changes 
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(processes termed isotype switching and affinity maturation, respectively). This is 

called the secondary response and generally results in the production of high affinity 

IgG. In general, a primary response to antigen can be seen within 5-10 days after 

exposure to that antigen. However, in the secondary response, the lag time in 

appearance of antibody is greatly reduced and specific antibody can be observed 1-3 

days post-antigen challenge (Weir and Stewart, 1993). 

An important feature of microbial infection by Gram negative bacteria, such as 

S. enterica, is that humoral immunity can also be developed independently of T cell 

help. The basis for this is associated with the Gram negative bacterial cell wall 

component, lipopolysaccharide (LPS). T cells are unable to recognise non-protein 

antigens, and in an unknown manner LPS can induce B cell proliferation and 

antibody production (1gM and IgG 3  in mice). Nevertheless, because these responses 

are independent of T cell help there is no affinity maturation of B cells nor is there 

development of immunological memory (Weir and Stewart, 1993). 

The role of antibod 

Antibody has a number of roles in mediating protective immunity. Firstly, it binds 

bacterial toxins and receptors to prevent interaction with their respective targets. 

Secondly, antibody (IgG and 1gM) bound on the surface of the microorganism, can 

activate the complement system via the so-called Classical pathway (Joiner et al., 

1984). A major function of antibody, like complement, is opsonisation of microbes. 

Macrophages and PMNs, in addition to having receptors for complement proteins 

(e.g. C1R and OR), possess receptors for the C-terminal region (Fc) of 

immunoglobulin, especially IgG 1  and IgG3  (humans). Target recognition and uptake 

of bacteria via these receptors is extremely efficient (Adams and Hamilton, 1984). 

Moreover, the binding of antibody or complement to these receptors stimulates the 

respiratory burst thus boosting the phagocytes anti-microbial activity (Joiner et al., 

1984; Gulig, 1996). 
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Cell-Mediated Immunity 

In bacterial infection, especially to intracellular bacterial pathogens, the major 

effector in cell-mediated immunity (CMI) is the macrophage and these cells are 

regulated by CD4 T cells to become increased in their anti-microbial activity. 

(Collins, 1974; Finlay and Falkow, 1989b; Kaufmann, 1993). 

During infection, macrophages kill endocytosed microorganisms and present their 

antigens in association with MHCII molecules to TH cells. In turn, TH  cells secrete a 

number of cytokines, including interferon-y (IFN-y), which change the macrophage's 

morphology and functional characteristics, a phenomenon called activation. For 

example, IFN-y enhances the microbial killing mechanisms of the macrophage by 

elevating the rate of phagolysosomal fusion and by increasing the expression of the 

NADPH oxidase (Adams and Hamilton, 1984; Ishibashi and Arai, 1990). Moreover, 

activated macrophages act as the effectors of inflammation by releasing cytokines 

(IL-1 and TNF-a) and other molecules such as pro staglandins that cause an acute 

inflammatory response (Larsen and Hanson, 1983). Inflammation results in fluid and 

leucocyte accumulation at the site of infection and is an important factor in 

containing the spread of microorganisms. Finally, activated macrophages become 

enhanced in their antigen presenting capabilities. For example, IFN-y stimulates an 

increase in the expression of MITCII molecules (Abbas et al., 1991). In addition, 

some of the cytokines released by activated macrophages activate T cells (IL-1) and 

stimulate their proliferation (IL-6), thus cross-talk between cells increases the 

efficiency of the immune response (Weir and Stewart, 1993). Activation of 

macrophages is particularly important in bacterial infections involving intracellular 

bacterial pathogens such as S. enterica, Yersinia enterocolitica and Mycobacterium 

tuberculosis (Moulder, 1984; Finlay and Falkow, 1989b; Kaufmann, 1993). 

However, this intracellular survival is greatly reduced when macrophages are fully 

activated. 



Delayed-type hypersensitivity 

One important method of investigating CMI is through a delayed-type 

hypersensitivity reaction (DTH), as DTH is an in vivo manifestation of a 

cell-mediated response (Abbas et al., 1991). If an experimental animal is injected 

with an antigen, the antigen will be processed and presented by APC's in the context 

of M1HCII carrier molecules to TH cells (Kagaya et al., 1992). As a result, a 

subpopulation of the T cell repertoire becomes primed to recognise the foreign agent. 

Upon secondary exposure to the same antigen, typically injected subcutaneously (e.g. 

into the footpads of mice), a DTH reaction evolves over a period of 24-72 hours 

(hence the reason for being called delayed). In this scenario, neutrophils accumulate 

at the site of administration within 4 hours post-injection, followed by substantial 

increases in both T cells and macrophages by 12 hours. Over this period 

inflammation starts to occur with deposition of fibrin and, by 24-72 hours, a sizeable 

swelling can be observed in the injected footpad. This is called induration, the 

hallmark of DTH. DTH reactions have been used by investigators to examine 

whether certain antigens can stimulate CMI responses and have important value in 

the development of vaccines (Kagaya et al., 1992; Horwitz et al., 1995; Gupta et al., 

1996). 

Functional diversity of T cell help 

One interesting phenomenon of help by CD4 T cells in immune responses is that 

these cells can produce different types of responses, through varying the selection of 

the cytokines they secrete (Kelso, 1995; Mosmann and Sad, 1996; Abbas et al., 

1996). All CD4T cells come from a common origin and upon interaction with 

antigen these cells produce IL-2 (a T cell growth factor) and develop into a 

population called THO. THO cells produce multiple cytokines and, depending upon the 

antigen, the T cell population subsequently develops into either a TO or TH2 subset 

(reviewed in Abbas et al., 1996; Mosmann and Sad, 1996). TH1  cells secrete IL-2, 

IFN-7 and tumour necrosis factor-3 (TNF-13) and the immune responses generated are 

principally effected by CMI, especially by macrophages (Figure 1.3). Therefore, TO 

cells produce responses which are particularly effective at eliminating intracellular 
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bacteria, such as S. enterica. Moreover, IFN-y stimulates activated B cells to secrete 

IgG which can bind to high affinity receptors of phagocytic cells. Therefore, the 

antibody produced in a TO response generally acts to assist CMI (Abbas et al., 

1996). In contrast, 1H2  cells produce IL-3, IL-4, IL-5, IL-10 and IL-13 (Figure 1.3). 

These cytokines are particularly effective at suppressing parasite infections and 

mediating allergic reactions through the action of antibody (IgE) and the 

degranulation of mast cells (Mosmann and Sad, 1996). Therefore, TH2 responses tend 

to be phagocyte-independent and are characterised by the lack of an ability to induce 

CMI reactions like DTH. Interestingly, the cytokines released in TH1 or TH2 

responses act to suppress the effector functions of the alternative response (Figure 

1.3). For example, IFN-T promotes a TO response but acts to down-regulate a TH2 

response (Abbas et al., 1996). In contrast, IL-4 per se or in conjunction with IL- 10 

and IL-13 helps to down-regulate the TH1 response and promote a TH2 response 

(Figure 1.3) (Denich et al., 1993; Abbas et al., 1996). The role of such an 

antagonistic activity is believed to polarise the immune response towards the most 

appropriate method for dealing with the particular infection. 

Figure 1.3 Cytokine production by T H 1 and TH2  populations 

IFN-y  
IL-2 
TNF-0? 	

lç\IFN.y 

TH1 Response 	 TH2 Response 

IL-4 	 L-3 
IL-10 	 IL-4 
IL-13 	U TH2  I) 	IL-5 

IL-10 

The cytokines produced by TH  I and TH2  cells result in characteristic types of response 
(described in the text) but also act to inhibit the generation of each other. Positive and 
negative regulatory roles for T cells and their cytokines are indicated by pointed or blunt 
arrowheads respectively. 
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This idea however, that the CD4 T cell population consists of two functional types 

of T cell has been challenged (Kelso, 1995) since T cells have been found that 

produce mixtures of the characteristic cytokines and therefore cannot be specifically 

categorised as TH1 or TH2 cells. Therefore, as an alternative explanation, it has been 

postulated that what are considered as the two distinct subsets are in fact the end 

result of polarisation in the immune response. The new theory suggests that during 

the course of an infection, the I cell population initially produces a mixture of both 

TH1 and TH2 cytokines, but as the response progresses it is shaped to pursue a 

predominant form of response, which is characterised by what was previously 

considered a TH1 or TH2 regulated phenomenon. The conditions that result in this 

polarisation are dependent upon a combination of features including antigen 

stimulation, the cytokines produced and the type of APC which present the antigen 

(Kelso, 1995; Abbas et al., 1996). For the purpose of this thesis, immune responses 

will be described as either of a TO or a TH2 type, to identify the characteristics of the 

immune mechanisms involved. 

One important finding in determining which type of response develops is the 

composition of the cytokines produced early on in the response. For example, both 

IL-12 and IFN-7 have been shown to promote a TO type response (Lamont and 

Adorini, 1996; Abbas etal., 1996). Macrophages that come into contact with bacteria 

secrete IL-12, which in turn causes T cells and natural killer (NK) cells (large 

granular lymphocytes) to produce IFN-y. This cytokine, as described previously, 

activates macrophages and down-regulates TH2 responses thereby helping to polarise 

the immune response. In contrast, during helminth infection for example, IL-4, IL-10 

and IL-13 are released and these help to down-regulate a TH1 response (Denich et al., 

1993; Abbas et al., 1996). Interestingly, despite the clear role for T cells in 

co-ordinating CMI, it has been suggested that the natural immune responses, which 

are activated in the early stages of immunity, may play a substantial role in shaping 

the nature of the specific immune response that follows (Nauciel and 

Espinasse-Maes, 1992; Kaufinann, 1993; Mastroeni et al., 1996). 
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Organisation of the immune system 

In order for an immune response to develop, antigen must come into contact with 

APC's which in turn require cell to cell contact with T cells. These requirements are 

eased by two factors. Firstly, the immune system is organised into specialised 

lymphoid tissues into which many different types of cell, including B and T cells 

and APC's, can enter and reside (Abbas et al., 1991; Weir and Stewart, 1993). This 

facilitates the close contact required for displaying antigens and for developing the 

required immune response. These lymphoid tissues include the spleen, liver, draining 

lymph nodes and the Peyer's patches of the gut, and are connected by the blood and 

the lymph system. Antigen entering into any part of the body, such as the skin or the 

intestine, is therefore likely to migrate to these tissues. 

Secondly, antigens are structurally diverse and only a small population of B and T 

cells are likely to recognise specific portions of any particular antigen. These cells 

therefore migrate between tissues, a process called lymphocyte recirculation, such 

that the chances of antigen-specific lymphocytes coming into contact with the 

antigen are increased (Abbas et al., 1991; Weir and Stewart, 1993; Siebers and 

Finlay, 1996). Thus, the organisation of the immune system and the behaviour of the 

lymphoid cells act to produce a highly efficient monitoring system against infection. 

1.2.5 Immune responses to S. enterica infection 

The use of a murine model to study S. enterica infection 

Much of the research into the immune responses to S. enterica infection has been 

stimulated by the need to develop effective vaccines to the causative agent of typhoid 

fever, S. typhi. Unfortunately, this organism only infects and causes disease in 

humans and this hinders experimentation. Most experiments into S. enterica infection 

therefore employ S. typhimurium which causes an invasive systemic disease in mice 

that resembles human typhoid fever (Collins, 1974). In particular, inbred mouse 

strains that are genetically susceptible to S. typhimurium infection are used for study 

(see later) and these are infected with low virulence derivatives of S. typhimurium. 

The reason for this approach is that genetically resistant mice can eliminate 
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S. typhimurium through natural immune responses, but susceptible mice require both 

cell-mediated and humoral immunity, which is characteristic of the responses 

generated by humans to typhoid fever (Collins, 1974; Hormaeche, 1979; Hormaeche 

et al., 1985; Mastroeni et al., 1993). 

The role of humoral immunity in S. enterica infection 

S. enterica is an intracellular pathogen and immune responses to infection depend 

upon a mainly phagocyte-dependent killing system (Collins, 1974). By residing in 

the macrophage, S. enterica is protected from the actions of extracellular 

immunological components such as antibody or complement (Moulder, 1985; Finlay 

and Falkow, 1989b). However, during parts of the infection cycle, such as after 

crossing the epithelial barrier in the gut, S. enterica must be exposed to these factors. 

Complement aids lysis and phagocytosis of bacteria. Mutants of S. typhimurium that 

do not produce a complete LPS molecule are attenuated (reduced in virulence) and 

are readily lysed by complement (Collins et al., 1991; Gulig, 1996). This indicates 

the importance of LPS in protecting the bacterium but suggests that complement 

normally plays a minor role in protecting against infection (Gulig, 1996). 

The efficacy of antibody in mediating protection to S. enterica is also questionable. 

However, Mastroeni et al. (1993) demonstrated that naive BALB/c mice were only 

optimally protected (against challenge with a virulent strain of S. typhimurium) when 

both T cells and serum were donated from a susceptible mouse immunised with an 

attenuated strain of S. typhimurium. In addition, it is known that people infected with 

S. typhi, or vaccine derivatives that have been attenuated, produce significant levels 

of 1gM and IgG (Forrest et al., 1991; Tacket et al., 1992), but most of this is likely to 

be due to the polyclonal stimulation of B cells with LPS. Moreover, the presence of 

antibody to an antigen does not necessarily correlate with immunity to that antigen 

(Weir and Stewart, 1993). However, at least one effective vaccine to typhoid fever 

relies solely on humoral immunity (the Vi polysaccharide vaccine) (Ivanoff et al., 

1994). Furthermore, some investigators have achieved some degree of protection in 

mice against S. typhimurium infection through the use of antibodies to LPS (Michetti 

et al., 1992). IgA is associated with secretory immunity and is produced at mucous 
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membranes such as those of the gastrointestinal tract. By using an IgA monoclonal 

antibody-producing hybridoma line (implanted into a mouse's back) with specificity 

for the 0-antigen of LPS, it was shown that mice can be protected from 

S. typhimurium infection. (Michetti etal., 1992). 

The role of cell-mediated immunity in S. enterica infection 

Infection by S. enterica results in a TH1 We of response 

Most research indicates that the major effector of protective immunity to S. enterica 

is cell-mediated immunity and is particularly dependent on the activities of 

macrophages. Thus, if antibody does have a role, it is likely to augment the ability of 

the macrophages to eliminate bacteria by opsonisation (Collins, 1974; Mastroeni et 

al., 1993; Hassan and Curtiss, 1994; Gulig; 1996). This is supported by the 

observation that immunity to S. enterica infection appears to show the characteristics 

of a TO type of response. For example, cytokines associated with a TH1 type of 

response, including IL-12 and UN-y, are induced in the Peyer's patches, mesenteric 

lymph nodes and spleens of S. typhimurium-infected mice (Nakano et al., 1990; 

Nauciel and Espinasse-Maes, 1992; Ramarthrinam et al., 1993; Berbenou et al., 

1994; Morrissey and Charrier, 1994; George, 1996). In addition, injection of resistant 

mice (CBA or A/J) with monoclonal antibody (MAb) specific to either IFN-y or 

IL-12 (anti-JFN-y MAb and anti-IL-12 MAb, respectively) resulted in these mice 

being overcome by the disease much more rapidly than a control group (Nauciel and 

Espinasse-Maes, 1992; Mastroeni et al., 1996). In contrast, addition of IFN-y or 

IL-12 to susceptible mice (BALB/c) infected with S. typhimurium greatly enhanced 

their resistance to the infection (Nauciel and Espinasse-Maes, 1992; Mastroeni et al., 

1996). It is believed therefore, that IFN-y and IL-12 play major roles in suppressing 

the growth of S. enterica in the host. 

Another important cytokine which increases in response to S. typhimurium infection 

in mice is tumour necrosis factor (TNF-a) and this is believed to act synergistically 

with IFN-y (Nakano et al., 1990; Nauciel and Espinasse-Maes, 1992; Berbenou et al., 

1994). Addition of TNF-cx to infected mice results in an increased rate of clearance of 
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S. typhimurium cells from the peritoneal cavity, and this effect can be abolished by 

the injection of anti-1'NF-a MAb (Nakano et al., 1990). Interestingly, during the 

early stages of infection by S. typhimurium the immune responses appear to be 

independent of T cells as T cell-depleted mice still show resistance early in infection 

(Mastroeni et al., 1993; Nauciel and Espinasse-Maes, 1992). Instead this early 

resistance is believed to be mediated by macrophages and NK cells which release 

cytokines and exhibit cross-talk between these two cell types and other cells (Nauciel 

and Espinasse-Maes, 1992; Mastroeni et al., 1996). As mentioned above these 

cytokines are fundamental to the subsequent development of a protective immune 

response by stimulating the development of TH1 cells. Moreover, when 

S. typhimurium cells expressing recombinant IL-4 (a cytokine which promotes a TH2 

response) were injected into mice, the mice displayed poor clearance of the bacteria 

and this was attributed to a reduction in the anti-microbial activity of the 

macrophages (Denich et al., 1993). This highlights the importance of innate 

immunity, particularly that of the macrophages, in mediating immunity to S. enterica 

infection. 

A genetic locus in mice correlates early resistance with macrophages 

A genetic locus has been found in mice which correlates early resistance to 

S. typhimurium infection with innate immunity. This particularly applies to the 

involvement and effectiveness of the macrophages. It has been demonstrated that 

mice can show substantial differences in their resistance or susceptibility to 

S. typhimurium infection. The genetic basis of this has been linked to chromosome 

one, to a locus called ity (immunity to typhimurium). This locus is also believed to be 

allelic to the ish and bcg loci, which modulate murine susceptibility to Leishmania 

donovani and Mycobacterium bovis (BCG), respectively (Hormaeche, 1979). 

Homozygous mice either display resistance (it yR; for example CBA or NJ mice) or 

susceptibility (jtyS;  for example BALB/c and B 10 mice) to S. typhimurium on the 

basis of function or lack of function of this locus, respectively. For example, the jty5  

genotype has been shown to result in decreased resistance to S. typhimurium early 

(1-3 weeks) in the infection period (Hormaeche, 1979; Hormaeche et al., 1985). 
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Originally, the ity gene was believed to affect cytokine production. When 	and 

itys  mice were examined for cytokine production after S. typhimurium infection, it 

was shown that resistant mice produced more IFN-y and TNF-a, two cytokines 

essential for early resistance to infection (Ramarathinam et al., 1990). This was 

substantiated by injecting resistant CBA mice with anti-IFN-y MAb and showing that 

they became susceptible to an S. typhimurium infection that would normally be 

controlled (Nauciel and Espinasse-Maes, 1992). However, in conflict with these 

findings, a separate study has suggested that the ity phenotypes are not due to 

differences in cytokine production (Eckmann et al., 1996). When both types of mice 

were examined for the production of IFN-y, TNF-a and IL-12 (as well as other 

cytokines), no difference was observed in the quantity or time of appearance of these 

cytokines for equivalent infections. 

This latter view has been supported by the cloning and expression of a gene at the 

bcg locus called nramp (naturalresistance-associated macrophage protein) (Vidal et 

al., 1993). This gene is believed to encode a transmembrane protein which transfers 

nitric oxide (and its derivatives) through membranes. When the nramp genes from 

resistant and susceptible mice were compared, a single amino acid substitution in the 

predicted amino acid sequence was found in one of the transmembrane portions of 

the protein. The effect of this was believed to alter the insertion and stability of 

NRAMP within the phagolysomal membrane and thereby cause severe impairment 

of function. Nitric oxide is an important anti-microbial agent (Pacelli et al., 1995) 

and therefore it is currently believed that the differences in resistance and 

susceptibility of mice to S. typhimurium infection is due to the effectiveness of 

microbial killing by nitric oxide (Vidal et al., 1993). 

The role of T cells in S. enterica infection 

As stated above, T cells are believed not to play a major role in events early in the 

host response to S. enterica infection, especially in naive mice, but they are required 

later to suppress the infection and to develop protective immunity (Mastroeni et al., 

1993; Gulig, 1996). In fact, genetically engineered (nu) mice which do not develop a 

thymus (the organ in which T cells develop) survive for up to three weeks 
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post-infection before succumbing to systemic disease (Gulig, 1996). 

Although, CD4 T cells appear critical in the co-ordination of immune responses to 

S. enterica infection, studies have also suggested a role for CD8 T cells. S. enterica 

is believed to survive and remain within the phagosome whilst within the host cell 

and therefore its antigens would not be expected to be associated with the MECI 

complex (endogenous antigen) pathway. However, it has recently been shown that an 

alternative MHCI pathway exists such that phagosomal antigens can, using an 

unknown mechanism, be displayed with MHCI molecules (Pfeifer et al., 1993; Wick 

and Pfeifer, 1994). Thus it is likely that CTL cells play some role in S. enterica 

infection and this has been supported by the identification of CD8 MIHCI restricted 

CTL's in effector responses of human volunteers injected with an attenuated S. typhi 

vaccine strain (Sztein et al., 1995). 

One further type of T cell that may also have a role to play in S. enterica infection, 

are the y8 T cells, which do not display either CD8 or CD4 molecules. These cells 

appear to have cytolytic activity and are especially prominent in M tuberculosis 

infection where they lyse bacterially infected cells (Kaufmann, 1993). How they are 

involved is unknown but they appear to be activated particularly in response to 

bacterially-derived heat shock proteins. Such cytolytic activity has also been shown 

in S. typhimurium infection of synovial joints, where the yö I cells provide important 

anti-microbial immunity (Hermann et al., 1995) 

Host immunosuppressioñ mediated by S. enterica infection 

When susceptible mice are injected with an attenuated strain of S. typhimurium they 

elicit excellent protection against challenge with the virulent parental strain. 

However, it has also been recognised that over the period during which resistance 

develops, mice show poor responses to heterologous antigens (Al-Ramandi et al., 

1991; Al-Ramandi et al., 1992). The cells responsible for this resistance as well as 

the apparent unresponsiveness have been demonstrated to be the macrophages. IFN-y 

is a potent inducer of nitric oxide synthesis in macrophages and if anti-[FN-y MAb is 

injected into S. typhimurium-immunised mice during the development of resistance, 



it is found to alleviate unresponsiveness. Therefore, it has been proposed that NO has 

an immunosuppressive effect during this period (Al-Ramandi et al., 1992). This view 

has been substantiated further by showing that suppression could be blocked by the 

addition of N-monomethyl-L-arginine, a competitive inhibitor of nitric oxide 

synthase (Al-Ramandi et al., 1992). The cells mediating protection in the early stages 

of infection may therefore affect the development of protective immunity, especially 

to heterologous antigens. These observations have particular relevance to the use of 

attenuated S. enterica strains in vaccine development because immunisation of an 

individual with such vaccines may lead to immunosuppression and provide a window 

of opportunity for other pathogens (expressing heterologous antigens) to capitalise on 

the weaknesses of the host defence system (Al-Ramandi etal., 1992). 

1.3 THE INTERACTIONS OF S. ENTERJCA WITH HOST CELLS DURING 

INFECTION 

1.3.1 Introduction 

In the previous section, the perspective of the host in S. enterica infection was 

discussed in terms of the characteristics of the immune response. In the following 

section, the perspective of the bacteria will be given to demonstrate how S. enterica, 

faced with a hostile anti-microbial host environment, has evolved mechanisms to 

succeed in infection. Microbial pathogenicity is a complex phenomenon however, 

and successful pathogens must be able to enter the host and establish one or more 

unique niches in which they can persist and multiply. As such, at least a proportion 

of the infecting microorganisms must be able to withstand, circumvent or avoid the 

defence mechanisms of the host (reviewed in Finlay and Falkow, 1989b). 

S. enterica generally enters the host via oral ingestion of contaminated food and 

water. Once ingested the bacteria breach the cells of intestinal epithelial lining and, 

with invasive serovars such as S. typhi, may proceed into deeper tissues where they 

come into contact with phagocytic cells such as the macrophages (Finlay and 

Falkow, 1989a). Other types of cell have also been implicated in the strategy used by 



S. enterica for infection. For example, S. typhimurium cells have been shown to 

invade a transformed EBV B-cell line and a T-cell leukaemic cell line, suggesting 

potentially that these lymphocytes may be used, like macrophages, to provide a safe 

haven and a vehicle for dissemination around the body (Verjans et al., 1994). It 

should be noted however, that a contradictory proposal suggested that the 

intracellular survival of S. typhimurium in macrophages is unlikely to be the centre 

for propagating such infections, based on a controversial view that the spleens and 

livers of infected mice show considerable extracellular bacteria (Hsu, 1989). 

Nevertheless, the outcome, and many of the features of S. enterica infection are 

dependent upon interaction with epithelial and phagocytic cells, particularly 

macrophages. The following sections will therefore focus on these two important cell 

types and their interaction with S. enterica. 

During infection of the host, bacteria encounter many changes in the environment, 

some of which are potentially hazardous. For example, upon entry into the host, 

S. enterica cells are suddenly exposed to a higher temperature, extremes or rapid 

changes in pH (acid in the stomach and neutral to alkaline in the small intestine), 

limited availability of nutrients and iron, high concentrations of bile salts, and also, 

to the immune responses of the host (Foster and Spector, 1995). In addition, 

S. enterica is an intracellular pathogen and the environments of the cells it enters are 

likely to be very different (e.g. epithelial cells versus professional phagocytes) 

(Fields et al., 1986). The importance of the ability of bacterial cells to sense and 

respond to environmental change or stress has recently been recognised (Miller et al., 

1989c; Mekalanos, 1992; Mahan et al., 1996). In fact, the sensing of environmental 

change within the host may act as a signal to activate expression of specialised 

virulence determinants and regulatory mechanisms which influence the progression 

of the infection process (e.g. attachment or invasion of host cells) (Miller et al., 

1989c; Galan and Sansonetti 1996; Mahan et al., 1996). However, for most bacteria, 

the molecular basis of microbial pathogenesis is, as yet, poorly understood. 
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1.3.2 Experimental methods for investigating the interaction of S. enterica with 

the host 

Our understanding of the events that occur during host-infection by S. enterica, and 

the genetic basis of virulence have been greatly assisted by the following approaches: 

A murine model for salmonellosis 

Determining the factors involved in the interaction of S. enterica with its hosts is 

difficult. Much of the evidence about the factors involved during interaction has been 

facilitated through the use of a murine model, involving the infection of susceptible 

mice with S. typhimurium. This produces a comparable systemic infection to typhoid 

fever in humans (Collins, 1974). In humans, S. typhimuriurn mainly produces a 

localised infection of the gastrointestinal tract. Nevertheless, S. typhimurium and a 

number of other non-typhoidal serovars contain virulence plasmids that give the 

potential to cause serious systemic disease and the murine model therefore has 

relevance to general salmonellosis in humans (Falkow, 1996; Gulig, 1996). 

Perhaps one of the most useful properties of the mouse model is the ability to 

examine the importance of S. typhimurium genes in the overall virulence process. 

This is achieved by performing an LD 50  test (50% lethal dose) which involves 

administering mice with a range of bacterial inocula and determining the number of 

organisms required to kill half the mice in the study, over a suitable time interval. 

Strains of S. typhimurium carrying mutations in the genes of interest can be 

compared against an otherwise isogenic wild type strain, using the LD 50  test, to 

determine whether loss of a particular gene function causes a decrease in the 

virulence of the bacterium. This type of experimental analysis has been particularly 

useful in the development of vaccines to prevent typhoid fever (Chatfield et al., 

1992a). 



Tissue culture systems 

Simplified systems have been developed to assay how S. enterica is likely to interact 

with host cells (Gulig, 1996). These systems include tissue culture where polarised 

epithelial cells such as Madin Darby Canine Kidney cells have been used to simulate 

intestinal epithelial cell situations (Finlay and Falkow, 1989a). In addition, tissue 

culture has likewise provided a means for examining interactions between S. enterica 

and macrophages. Finally, the value of a ligated intestinal loop model has also been 

explored and this has the advantage over other tissue culture systems, in that it is 

more realistic, by allowing the interplay of a number of different cells types. This 

type of model, in particular, has provided insights into tissue destruction and the 

inflammatory responses induced by S. enterica (Galan and Sansonetti, 1996). 

Molecular biological and genetic experiments 

One advantage of using S. typhimurium in models of host infection is that the 

genetics of this bacterium have been extensively investigated and it is amenable to 

genetic manipulation. Indeed, the use of genetic approaches have proved invaluable 

in determining the functions of S. typhimurium genes and also in the construction of 

attenuated bacterial strains for vaccine development. 

Generally, approaches to studying the genetic factors involved in S. enterica 

virulence (normally using S. typhimurium) have taken into account the influence of 

the host environment upon the expression of bacterial genes. Most studies therefore 

attempt to mimic, in vitro, possible host environmental conditions (e.g. acidity) or 

use cell culture or animal models to select and identify genes that may be involved in 

virulence. For example, polyacrylamide gel electrophoresis (Buchmeier and Heffron, 

1990; Abshire and Neidhardt, 1993a) or gene-reporter systems such as phoA or lux 

(Galan and Curtiss, 1989; Miller et al., 1989b; Francis, PhD Thesis, 1993) have been 

used to examine if genes are influenced by a particular environment. Alternatively, 

S. typhimurium has been mutagenised using transposable elements (e.g. TnlO) and 

then screened in tissue culture experiments to determine if the insertion has had any 
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effect upon the virulence of the bacterium in comparison to the parental strain (Fields 

et al., 1986; Garcia-del Portillo etal., 1993a; Shea et al., 1996). 

One of the problems in investigating the genetic response of S. enterica to the host 

environment is that it is relatively uncharacterised and therefore many of the 

experiments performed are dependent on, and limited by, the knowledge of host 

conditions that are being mimicked. However, Mahan et al. (1993, 1994) have 

circumvented this problem by developing a strategy that uses the mouse model to 

select for genes that are wholly required for the survival of S. enterica during 

infection. The strategy called in vivo expression technology (IVET) employs a pur 

mutant of S. typhimurium which grows poorly in mice because of the auxotrophic 

requirement for purine. Random fragments of wild type S. typhimurium 

chromosomal DNA are placed in front of promoterless purA and lacZY genes 

situated in tandem on a plasmid and the plasmid is integrated onto the 

S. typhimurium chromosome. When these bacteria are injected into mice, only those 

microorganisms which can express the pur gene will be able to survive and multiply. 

This in turn indicates that the random chromosomal fragment that has been in front 

of the promoterless pur gene contains a promoter region from a gene that is capable 

of switching on the expression of the purA lacZY genes during the course of 

infection. In vivo expressed genes (ivi) can then be identified by extracting the 

bacteria from the spleens of the mice, plating onto MacConkey lactose indicator 

medium, and selecting for those bacterial colonies which are Lac. This serves to 

eliminate the Lack  bacteria which contain fragments of chromosome carrying 

constitutively expressed promoters. 

As an alternative to WET, Shea et al. (1995) have developed a novel 

transposon-based strategy, termed signature-tag mutagenesis, to identify genes 

required for the survival of S. typhimurium within the mouse. The strategy results in 

every transposon mutant being individually tagged with a unique DNA sequence. 

The advantages of this system are that a large number of transposon mutants can be 

screened simultaneously, and that those insertions that do alter the gross virulence of 

S. typhimurium can be rapidly and specifically identified from the original inoculum. 
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1.3.3 The cellular basis of the entry of S. enterica into epithelial cells 

Portals of entry into the intestinal epithelium 

The primary site of entry of S. enterica into the intestinal mucosa is not certain but 

recent evidence from (host) studies points to the role of specialised microfold cells 

(M cells) in the Peyer's patches (Finlay and Falkow, 1989a; Siebers and Finlay, 

1996). Peyer's patches form part of the gut-associated lymphoid tissue (GALl) and 

essentially consist of lymphoid follicles. In mice, the follicle-associated epithelial 

layer consists of around 5-10% M cells which form tight junctions with neighbouring 

enterocytes. M cells have a shrunken cytoplasm that forms a thin bridge between the 

intestinal lumen and subepithelial space. The basolateral surface of the M cell is 

invaginated to form a pocket into and out of which lymphocytes and macrophages 

can migrate. M cells contain few lysosomes and produce only low levels of digestive 

enzymes, indicating that their main function is not to digest and absorb food from the 

intestinal lumen. However, these cells show active endocytosis, and material taken 

up in this way is rapidly transported, virtually intact, and exocytosed at the 

basolateral surface within 10 minutes (Siebers and Finlay, 1996). 

The role of M cells in promoting intestinal epithelial cell invasion 

It is has been suggested that M cells sample the gut for antigens, as the cells rapidly 

transport intestinally located antigens to the antigen presenting cells in the basolateral 

pocket (Siebers and Finlay, 1996). However, although M cells act as a surveillance 

point for antigens it appears that many types of enteric pathogens including Vibrio 

cholerae, Yersinia enterocolitica, Shigella flexneri and also S. typhimurium and 

S. typhi specifically target these cells as a means to gain entry into the epithelial 

lining (Siebers and Finlay, 1996). Nevertheless, although M cells may be targeted in 

this way, it is quite clear that S. enterica can also invade the columnar epithelial cells 

that line the intestine and this may serve as an additional pathway for tissue invasion 

(Jones et al., 1994). 
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The entry of S. enterica into M cells and the ability to move through epithelial cell 

membranes 

Using murine intestinal loops, it has been shown that S. typhimurium cells invade M 

cells within 30 minutes of introduction. S. typhimurium enters these cells by 

rearrangement of the apical cell membrane ('ruffling'), a phenomenon also seen in 

tissue culture epithelial cells (MDCK and CaCo-2) (Jones et al., 1994; Finlay and 

Falkow, 1990). However, in contrast to other cell types, M cell internalisation of 

S. typhimurium is destructive to the cytoskeletal architecture. Moreover, 60 minutes 

after applying S. typhimurium to intestinal loops it is observed that M cells are dying 

and detaching from the epithelial lining (Jones et al., 1994). The invading bacteria do 

not seem to replicate to any extent within the M cell but move through the cell to 

interact with cells in the follicle dome as well as adjacent enterocytes. Interestingly, 

S. typhi also enters M cells by ruffling, but the cells do not die to the same extent as 

seen with S. typhimurium and there is less invasion of adjacent enterocytes (Jones 

and Falkow, 1996). 

One problem in investigating the role of M cells is that they have not been 

successfully cultured therefore polarised epithelial cells have been used as a model. 

When S. typhimurium infects polarised MDCK cells the bacteria do not appear to be 

specifically transported through the host cell to any significant level (Finlay et al., 

1988). Most of the bacteria remain within the cells (90%), whilst a small number 

(8.7%) exit from the apical surface (the surface they are added to). Only a tiny 

proportion (1.3%) pass through the monolayer and this passage requires around 3-4 

hours. In contrast to this, the ability to pass through epithelial barriers is essential to 

S. enterica serovar Choleraesuis (S. choleraesuis) (Finlay et al., 1988). Indeed, using 

TnphoA disruptions, several mutants of the latter serovar were identified that could 

not transcytose through epithelial monolayers. The differences observed with these 

individual serovars of S. enterica may well reflect on the way they infect the host. 

For example, in the majority of cases, S. typhimurium causes a focal infection in the 

small intestinal epithelium and is not usually thought to proceed into deeper tissue (in 

man) and so results in acute gastro-enteritis (Gulig, 1996). However, both S. typhi 



and S. choleraesuis are invasive and their ability to cause disease correlates with 

efficient movement through the intestinal epithelial barrier (Gulig, 1996). 

Host factors involved in bacterial uptake into epithelial cells 

Epithelial cells are not usually phagocytic, however S. enterica is believed to subvert 

the cell signalling pathways of the host to induce it to engulf the bacterium. This 

results in the characteristic ruffling seen in M cells and tissue culture epithelial cells 

and occurs within one minute after attachment of the bacteria to the cell (Jones et al., 

1994). The nature of this pathway however, is elusive and it appears that 

S. typhimurium can evoke different signalling pathways in different cell lines 

(reviewed in Galan, 1994). Nevertheless, entry requires increases in intracellular Ca  2+ 
 

and inositol phosphates and rearrangements in the host cell cytoskeletal proteins, 

including actin and tubulin (Finlay et al., 1991). 

1.3.4 The molecular and genetic basis for the entry of S. enterica into host 

epithelial cells 

The role of fimbriae and flagella 

In order to enter epithelial cells S. enterica must first make contact. Surface 

components including flmbriae and flagella have been investigated for their role in 

mediating entry into eucaryotic cells. Although motility requires flagella it is also 

linked with the chemotactic responses of the bacterium. Mutations in the chemotaxis 

genes such as cheA, cheR, cheW, and cheY which cause the bacterium to have a 

smooth-swimming phenotype appeared to result in a more invasive phenotype than 

observed with the wild type parent cells (Jones et al., 1992). Equally, a cheB mutant, 

which displays a tumbling phenotype, was less able to enter cells. Therefore, 

chemotaxis may have a role to play in entry into cells (Jones et al., 1992; 

Khoramican-Falsafi et al., 1990) and chemotactic signals from host cells may 

enhance the ability of bacteria to target them, particularly if damaged (Uhiman and 

Jones, 1982). This is supported by the fact that low pH-treated HeLa cells appeared 



to cause an increased frequency of collision from salmonellae as if some attractant 

was being released (Uhiman and Jones, 1982). It is noteworthy however, that the 

invasiveness of non-flagellate or non-motile flagellate S. lyphimurium cells was not 

significantly different, suggesting that the flagellum itself provides little advantage, 

and that motility is therefore the more important feature for invasion 

(Khoramican-Falsafi et al., 1990). Nevertheless, in murine model studies, 

S. typhimurium mutants lacking flagella or motility remained as virulent as the wild 

type strain (Lockman and Curtiss, 1990). Thus, the contribution of motility per se to 

the process of virulence cannot be considered highly significant. 

S. typhimurium expresses type I fimbriae which mediate attachment to mannosyl 

receptors, and these were shown to enhance the binding of S. typhimurium to rat 

enterocytes (Lindquist et al., 1987). In enteropathogenic E. coli (EPEC), type I 

fimbriae have been shown to help binding of the microorganism to the urinary tract 

and also, to have some role in preventing phagocytic killing. However, a fimA 

mutation, which resulted in the loss of expression of the major subunit for fimbrial 

formation, did not attenuate S. typhimurium in BALB/c mice (Lockman and Curtiss, 

1992). However, it is of interest that when a fimA mutation was combined with a 

mutation in flagellum synthesis, the resultant bacteria were found to be 1000-fold 

more attenuated than a wild type strain after oral challenge in BALB/c mice 

(Lockman and Curtiss, 1992). Nevertheless, although flagella per se do not appear to 

be important in S. typhimurium, a regulator of flagella synthesis (11gM) is believed to 

modulate the expression of other unknown loci which are thought to have a role in 

virulence (Schmitt et al., 1994). 

The role of flagella and fimbriae in infection therefore remains controversial and is 

probably dependent upon the serovar of S. enterica examined and possibly also, the 

nature of the experimental model used. For example, the ability of S. lyphi to enter 

epithelial cells has been shown to be dependent on intact flagella, as well as motility 

functions (Liu et al., 1988). Furthermore, virulent S. enterica serovar Gallinarum 

(S. gallinarum), the causative agent of fowl cholera, is naturally non-flagellate 

highlighting the fact that different salmonellae may have optimised different 
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strategies for entry into host cells (Lockman and Curtiss, 1992). 

The role of lipopolvsaccharide 

Lipopolysaccharide may also have a role in mediating entry into epithelial cells but 

this also appears to depend on the serovar of the S. enterica being investigated. 

S. typhimurium mutants which are unable to form a complete LPS molecule, rough 

mutants, are no different to wild type strains in their ability to invade cultured HeLa 

cells (Kihlstrom and Ebedo, 1976). In contrast, both S. typhi (Mroczenski-Wildey et 

al., 1989) and S. choleraesuis (Finlay et al., 1988) rough mutants are deficient for 

entry. Furthermore, the deficiency in LPS was shown to affect the ability of 

S. choleraesuis to transcytose through the cells (Finlay et al., 1988). It could be that 

differences in LPS trigger different signalling pathways to stimulate entry into host 

cells. Alternatively, there may be differences in the ability of LPS from different 

serovars to facilitate the attachment of the bacteria to the outside of the host cell. 

The role of an invasion-protein-export system for S. enterica invasion 

S. enterica Droduces a soecialised invasion structure 

Early work by Jones and colleagues (1981) showed that the interaction of 

S. typhimurium cells with HeLa cells consisted of two phases, a reversible phase in 

which the bacteria can be readily washed off the target cells, and an irreversible 

phase where bacteria are resistant to washing. This suggested that the bacteria were 

becoming firmly attached to the cells with which they were interacting, and that 

S. typhimurium could only be internalised in the irreversible phase. In a separate 

study, treatment of MDCK cells with neuraminidase and trypsin lowered the ability 

of S. typhimurium and S. choleraesuis to adhere to and invade such cells suggesting 

that eucaryotic surface components, possibly receptors, were important for binding 

(Finlay and Falkow, 1989). Moreover, pulse labelling studies with radiolabelled 

methionine in S. cholera esuis and S. typhimurium demonstrated that several novel 

bacterial proteins were induced upon interaction of the bacteria and MDCK cell 

surfaces, indicating that S. enterica senses and responds to this interaction (Finlay 
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and Falkow, 1989a). 

Interestingly, these observations have been supported by electron microscope studies 

which reveal that S. typhimurium cells form appendages with epithelial cells. 

Moreover, these appendages are produced in a transient manner but are never seen 

when the host cell membrane undergoes ruffling (Gulig, 1996). These structures were 

called invasomes (or invasion organelles). It appears then, that upon host cell contact, 

possibly in response to some form of receptor, S. enterica produces a transient 

structure, the invasome, that mediates the cell signalling events that result in the 

internalisation of the bacterium. 

The genetic basis of the invasion aonaratus 

Many of the above findings have been confirmed by the identification of a region at 

centisome 63 of the S. typhimurium chromosome which is responsible for cellular 

internalisation and which, unlike flagella, fimbriae or LPS, is absolutely required for 

invasion of epithelial cells. This region spans 35-40 kb of the S. typhimurium 

chromosome, encompassing approximately 29 genes, and is believed to encode a 

specialised invasion-protein-export system for the delivery of virulence factors which 

functions whilst the bacteria are in contact with the host cell (reviewed in Galan, 

1996). 

Polypeptide secretion in Gram negative bacteria, such as S. enterica, requires that the 

protein passes through an inner membrane, the periplasmic space and an outer 

membrane (reviewed in Wandersman, 1996). The specialised protein secretion 

apparatus encoded by the invasion locus has been termed a Type III system, or an 

invasion-protein-export system, to distinguish it from other known systems (Galan et 

al., 1996). Type I systems transport the protein across both membranes in a single 

step, such as in the secretion of the E. coli haemolysin. In contrast, Type II systems 

transport the protein in two steps, firstly across the inner membrane to the periplasm 

and then from the periplasm across the outer membrane, such as occurs in 

pullulanase secretion by Kiebsiella oxytoca (Wandersman, 1996). Both Type I and 

Type III secretion systems are similar in that they involve a protein complex that 

spans the inner and outer membrane and that they mediate secretion directly across 



both membranes. However, the Type III system is believed to be very distinct 

because of the number and type of components involved and because the system 

appears to be activated in a contact dependent manner upon interaction with host 

cells (Galan, 1996). 

The majority of the genes encoded at centisome 63, organised into the mv (invasin), 

spa (uface presentation ofantigens) and prg (hoP repressed genes) operons, are 

believed to encode polypeptides which form the structural components of the 

invasion-protein-export system. S. typhimurium entry has also been shown to be an 

energy-requiring process since dead or inactivated bacteria are unable to enter 

cultured epithelial cells (MacBeth and Lee, 1993). Moreover, one of the components, 

InvC, is believed to provide the energy for the secretory process as it shows 50% 

amino acid similarity to the a and P subunits of the F0F 1 ATPase (Eichelberg et al., 

1994) and InvC has been shown to possess ATPase activity in vitro, confirming its 

ability to use ATP as a substrate (Eichelberg et al., 1994). 

The genes that encode the invasion apparatus are highly conserved amongst bacterial 

pathogens 

Surprisingly, the organisation of the genes or the products of the genes encoded at 

centisome 63 appear to be conserved in a number of other bacterial pathogens 

including Shigella spp. and Yersinia spp. and also in the plant pathogens Erwinia 

amylovora and Pseudomonas spp. (reviewed in Galan, 1996; Galan and Sansonetti, 

1996). For example, the amino acid sequences of InvC and InvG are 68% and 67% 

similar (57% and 46% identical) to the Spa47 and MxiD proteins of Shigella, 

respectively, and 65% and 55% similar (46% and 31% identical) to the YscN and 

YscC proteins of Yersinia, respectively (Eichelberg et al., 1994; Kaniga et al., 1994). 

Moreover, the SipB and SipC proteins, also encoded at centisome 63, show 63% and 

42% similarity to the Shigella IpaB and IpaC proteins, and when expressed on a 

plasmid were able to restore a full invasive capacity to a non-invasive ipaB ipaC 

double mutant of Shigella (Galan, 1996). 

Interestingly, features of the DNA sequence of these loci differ from the bulk of the 
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genome present in the bacteria, suggesting that they have been acquired from another 

organism. For example, the typical cytosine and guanine composition of 

S. typhimurium DNA is 52% yet the chromosomal region containing the invasion 

genes is only 42%. Such blocks of apparently foreign genes which are required for 

virulence have been called pathogenicity islands and the genes at centisome 63 have 

been designated SPI1 (Salmonella pathogenicity island 1). 

Secretion of proteins by the invasion-protein-export system 

A number of genes have been identified which appear not to form part of the 

secretory apparatus and are therefore believed to be components specifically 

transported by the Type III system. These include the proteins encoded by the sip 

locus (salmonella invasion proteins), which is composed of szpABCD, the sop locus 

(Salmonella outer proteins), which is composed of sopABCDE, and the invf, spaO 

and sptP genes (Galan, 1996; Hueck et al., 1995; Wood et al., 1996; Kaniga et al., 

1996). In agreement with this view, the Sip and Sop proteins were isolated from 

culture media after growth of S. typhimurium and S. dublin, respectively, indicating 

that they had been secreted (Hueck et al., 1995; Wood et al., 1996). 

S. typhimurium has been shown to form an invasome, which is believed to mediate 

the signalling events required to trigger the host cell to internalise the bacterium 

(Galan, 1996). Mutations in some of the genes that form the structural component of 

the Type III secretion system, such as invA, invC and invG, result in cells which do 

not produce this invasion structure or secrete Sip proteins (Galan and Sansonetti, 

1996; Chen et al., 1996b). Although the actual structure of the invasome is unknown, 

it has been postulated that a number of the proteins secreted by the Type III system 

may form part of this structure (Galan, 1996). Moreover, it is also believed that part 

of the signalling mechanism for bacterial internalisation involves the transfer of 

effector molecules into the cell to subvert host cell signalling processes and this has 

been supported by comparisons with other bacterial pathogens. For example, the 

Yersinia specialised invasion-protein-export system has been shown to translocate 

YopE and YopH (lersinia  outer proteins) into host cells in a YopB-dependent 

fashion (Hakansson et al., 1996). YopE and YopH function as a cytotoxin and a 



tyrosine phosphatase, respectively, with the latter possibly having a role in 

preventing tyrosine phosphorylation of important components of the host cell's 

signalling processes. Interestingly, SipB has been implicated in transporting 

S. lyphimurium effector molecules into host cells as it displays 58% amino acid 

similarity to YopB (Kaniga et al., 1995). Moreover, supporting evidence for this has 

been provided by demonstrating that SopE was translocated into HeLa cells by a 

SipB-dependent mechanism (Wood et al., 1996). Thus, it appears that S. enterica 

cells have developed a complex system to promote entry into epithelial cells and this 

is summarised in Figure 1.4. 

Regulation of the S. enterica invasion system 

Regulation of expression of the invasion system, including the Type III secretion 

machinery and the invasome, appears complex. A number of different environmental 

factors, especially those associated with the intestine, have been shown to influence 

the invasion phenotype and the expression of the invasion genes in S. lyphimurium. 

For example, the invA gene (and therefore the mv locus) was demonstrated to be 

induced by conditions of high osmolarity (Galan and Curtiss, 1989) and the orgA 

(Jones and Falkow, 1994) and hilA (Lee et al., 1992) genes, also identified at 

centisome 63, have been shown to respond to low oxygen tension 

One problem in characterising the regulation of the invasion genes is that at least four 

different regulatory proteins including HiIA, InvF, PhoP and SirA, have been 

identified that influence their expression (Lee et al., 1992; Bajaj et al., 1995, 1996; 

Galan, 1996; Johnston et al., 1996). HilA and InvF encode proteins of 56% and 49% 

similarity (32% and 24% identity) to the OmpR and AraC regulatory proteins, 

respectively (Lee et al., 1992; Galan, 1996). Little is known about the regulatory role 

of InvF, but HilA has been shown, using -galactosidase fusions, to influence invF, 

orgA and prg expression. However, HiIA expression is itself influenced by the PhoP 

regulatory protein (Bajaj et al., 1995; 1996) and by a recently identified regulator, 

SirA (_Salmonella Invasion regulator; Johnston et al., 1996), suggesting that there 

may be a hierarchy of control. Nevertheless, how all these signals and regulators 

interact to affect the secretion apparatus and their substrates is unknown, but it has 



Figure 1.4 Hypothetical representation of the components involved in the invasion of 
epithelial cells by S. enterica 
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been proposed that the induction of S. enterica invasion proteins in response to 

multiple environmental cues ensures that bacterial entry is limited to the specific sites 

where an invasion phenotype is required (Galan etal., 1992; Bajaj etal., 1995). 

The importance of the invasion-protein-export system for S. enterica infection 

Mutants in the mv loci of S. typhimurium are defective for entry into cultured 

epithelial cells. Furthermore, investigations have shown that the mv locus (and 

presumably the other genes) is present in over 100 serovars of virulent S. enterica 

including S. typhi (Galan and Curtiss, 1991). However, in S. typhimurium, mutation 

of invA, an essential component of the invasion-protein-export apparatus, resulted in 

only moderate (50-fold) attenuation after oral administration to BALB/c mice but 

was not attenuated by the intraperitoneal route (Galan and Curtiss, 1989). Therefore, 

it would seem that the genes encoded at centisome 63 are only required during 

infection of the intestinal epithelium, and are unlikely to play a further role after 

invasion. 

Interestingly, using mini-Tn5 mutagenesis, a second invasion-protein-export 

apparatus was recently identified at approximately 40 minutes on the S. typhimurium 

chromosome and was designated SPI2 (Shea etal., 1996). Moreover, a number of the 

genes were sequenced and shown to display a high degree of similarity to 

components of the system encoded in SPI1 at centisome 63. For example, the protein 

sequences of orf3 and orf9 (open reading frames) showed 50% and 40% identity to 

InvA and SpaQ. When mutants of S. typhimurium carrying Tn5 insertions in genes 

from this SPI2 were investigated for attenuation, it was found that such strains were 

attenuated approximately 100- and 10, 000-fold by the intraperitoneal and oral routes 

of administration, respectively, in BALBIc mice (Shea et al., 1996). This raises the 

intriguing possibility that this invasion-protein-export system has a wider role in 

promoting the ability of S. enterica to cause a systemic infection. 



1.3.5 The cellular and molecular basis of the replication of S. enterica within 

eDithelial cells 

After S. enterica enters the host cell, it must exploit the resources of that intracellular 

environment for successful growth in order to increase the chances of a successful 

infection (Leung and Finlay, 1991). Electron microscope studies haye demonstrated 

that S. typhimurium enters both M cells and cultured epithelial cells, such as MDCK 

or CaCo-2 cells, within 30 minutes of contact (Finlay and Falkow, 1990; Jones et al., 

1994). Host cell entry by S. typhimurium involves the bacteria being internalised 

individually in small vesicles which subsequently coalesce to form a large vacuole 

(Finlay and Falkow, 1989a). S. typhimurium then replicates in these structures, after a 

lag of 5-6 hours, with a generation time of approximately 40-50 minutes. How these 

bacteria meet their nutritional requirements in such an intracellular environment is 

unknown as the vacuole they survive in has not been well characterised. 

Intracellular replication in epithelial cells is essential 

Leung and Finlay (199 1) have shown that the ability of S. typhimurium to replicate in 

epithelial cells is essential for a successful infection. After screening 45, 000 

independent mini-MudJ transposon mutants of S. typhimurium, three rep mutants (for 

replication deficient) were identified which were unable to replicate in MDCK, HeLa 

and CaCo-2 epithelial cells. Moreover, these mutants showed no difference to their 

virulent parent in aerobic or anaerobic growth, motility, serum resistance or 

macrophage survival. However, even when the oral infection dose of these rep 

mutants was increased 1000-fold above the LD 50  of the parental S. typhimurium 

strain (1x10 6  organisms), approximately 80% of the BALB/c mice survived, 

indicating that the genetic information disrupted in these mutants was essential for 

the growth of S. typhimurium in epithelial cells and also for virulence. 

Intracellular S. tvphimurium cells induce filament formation in epithelial cells 

Recently, filamentous structures containing lysosomal glycoproteins (lgp) were 

shown to emanate from S. typhimurium-filled vacuoles, and these have been termed 

Salmonella-induced filaments (sif) (Garcia-del Portillo et al., 1993b). The 
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appearance of sif requires the presence of viable intracellular bacteria and vacuolar 

acidification. Moreover, sif formation correlates well with the start of intracellular 

replication for S. typhimurium (5-6 hours post entry). The importance of sif has not 

been determined, although it has been suggested that these filaments somehow help 

deliver nutrients to the vacuole-bound S. typhimurium (Garcia-del Portillo et al., 

1993b). Interestingly, these structures were never seen in rep mutants suggesting that 

S. typhimurium must trigger sif formation. Subsequently, a genetic locus, sfA, was 

identified whose disruption produces the phenotype of a rep mutant (Stein et al., 

1996). SifA is a 38 kDa protein with no similarity to presently known polypeptides. 

However, the DNA sequence of the sfA gene has a G+C content of 41%, diverging 

significantly from the genomic average (approximately 52%-54%), suggesting that 

this gene, like the genes that encode the invasion-protein-export system at centisome 

63, has been acquired from another organism (Stein et al., 1996). 

1.3.6 The interaction of S. enterica with the macrophage 

After breaching the intestinal mucosal membrane, invasive S. enterica serovars 

encounter the phagocytic defence system including the polymorphonuclear 

leucocytes (PMN), such as neutrophils, and the mononuclear phagocytes, such as 

monocytes and macrophages (Jones and Falkow, 1996). These cells are specifically 

designed to destroy invading microorganisms and are equipped with an arsenal of 

oxygen-dependent and -independent mechanisms to effect killing (Adams and 

Hamilton, 1984; Lehrer et al., 1990). Nevertheless, intracellular pathogens such as 

S. enterica are capable of surviving within phagocytic cells such as macrophages. 

These cells then provide a safe haven for the bacteria, from the components of the 

immune system in the extracellular environment such as antibody or complement. In 

addition, macrophages act as vehicles for dissemination around the host. 

Nevertheless, the basis by which S. enterica cells are capable of overcoming the 

anti-microbial environment of phagocytes is still relatively uncharacterised. 

During infection by invasive serovars of S. enterica, the main sites of bacterial 

growth are the spleen and liver, where the macrophages of the reticuloendothelial 
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system deal with the infecting organisms (Buchmeier and Heffron, 1989). The role of 

PMNs in suppressing infection is less certain, in fact, the majority of research into 

the interaction of S. enterica cells with the phagocytes has focused on the 

macrophage. However, the following observations are of interest. Firstly, if mice are 

injected with factors that occupy or kill macrophages, such as dextran sulphate, silica 

or liposome encapsulated dichioromethylene diphosphate, then they become more 

susceptible to infection by S. typhimurium in the early phase (within a week) of the 

infection (Gulig, 1996). Secondly and in contrast to the latter finding, mice injected 

with cyclophosphamide (which depletes circulating granulocytes by approximately 

90%) show no increase in susceptibility to S. typhimurium (Gulig, 1996), confirming 

that macrophages are likely to have the predominant role in phagocytic defence. The 

following sections therefore relate to the interaction of S. enterica with macrophages, 

but do not exclude that some of the findings relate to PMNs. 

1.3.7 The cellular basis of the interaction of S. enterica with macroDhaes 

Entry into the macrophage 

Macrophages readily ingest particles, including bacteria, by phagocytosis. 

Macrophages have receptors for the Fc portion of antibody (IgG and 1gM) and 

components of the complement system (C1R and OR). As a result, the process of 

bacterial uptake is enhanced when antibody or complement proteins (e.g. C3b), 

deposited on the surface of the microorganism, are recognised by such receptors 

(Joiner et al., 1984; Weir and Stewart, 1993). Therefore, during the interaction of 

S. enterica cells with macrophages, entry would not appear to be a difficulty. 

However, it appears phagocytosis may not be the only mode of entry into the 

intracellular environment. S. typhimurium can enter a wide variety of cell types and 

therefore by comparison it is believed that an alternative portal of entry may also 

exist in macrophages (Finlay and Falkow, 1989a; Gulig, 1996; Chen et al., 1996b; 

Monack et al., 1996). 

Early, evidence for a non-phagocytic route of entry into macrophages came from the 

44 



identification of a TnlO mutant of S. lyphimurium (SL3792) which entered 

macrophages less well than the parent strain, even when opsonised (Finlay and 

Falkow, 1989a). Recently, it has been shown that entry of epithelial cells by 

S. typhimurium requires an invasion-protein-export system, and mutants in some of 

the genes required for expressing this system are defective for entry into the host cell 

(Galan and Curtiss, 1990; Galan, 1996). Subsequently, a role for this invasion 

apparatus for entry into macrophages has also been implied from the recent finding 

that S. enterica is cytotoxic to macrophages and this phenomenon has been correlated 

with the expression of the specialised export machinery (Chen et al., 1996b; Monack 

et al., 1996). It therefore appears that S. enterica may actively target the macrophage 

for entry. The importance of such a mode of entry is unclear, however, a 

non-phagocytic route may be less likely to stimulate the macrophage respiratory 

burst and also possibly places the bacterium in a unique intracellular compartment, 

safe from the anti-microbial contents of the lysosome. Such a process would 

constitute an important survival strategy (Chen et al., 1996b; Lindgren et al., 1996; 

Monack et al., 1996). 

Intracellular location and replication of S. enterica 

There is a great deal of conflicting evidence as to the nature of the intracellular 

macrophage compartment within which S. enterica survives. In general, 

phagocytosed material enters the cells in a membrane-bound vesicle called a 

phagosome. This phagosome then follows the endocytic pathway and lysosomes, 

containing anti-microbial factors and degradative enzymes fuse to it, to form a 

phagolysosome. There are a variety of strategies used by intracellular pathogens to 

avoid the anti-microbial activities present within the macrophage (reviewed in 

Moulder, 1985). Some pathogens escape from the phagosome or fused 

phagolysosome compartment and replicate in the safe environment of the host cell 

cytoplasm (e.g. Listeria monocytogenes). Others block phagosome-lysosome fusion, 

thereby preventing the delivery of the deadly cocktail of anti-microbial effector 

molecules into the intracellular compartment (e.g. Chiamydia). Finally, intracellular 

pathogens may simply reside in the phagolysosome and resist, or neutralise, the 
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action of the anti-microbial mechanisms directed against them (e.g. Coxiella 

burn etti). These latter two strategies have been described for the intracellular survival 

of S. enterica within the macrophage. 

Early studies (Carrol et al., 1979) demonstrated that formaldehyde-killed 

S. typhimurium cells were rapidly destroyed in phagolysosomes, whereas viable 

bacteria were resistant to destruction over the same time period. Furthermore, there 

were no apparent differences in the level of phagosome-lysosome fusion when 

macrophages treated with live and dead bacteria were compared. This was interpreted 

to indicate that S. typhimurium simply resisted all the anti-microbial factors whilst 

residing in the phagolysosome. In contrast, using electron microscopy, Buchmeier 

and Heffron (1991) suggested that macrophage-intemalised S. typhimurium inhibited 

phagolysosomal fusion. When live and dead S. typhimurium cells were added to 

murine macrophages (J774), and observed after 14 hours, the live bacteria were 

found in half as many fused vacuoles as the dead bacteria. This indicated that an 

important part of the S. enterica survival mechanism was to avoid the delivery of the 

lysosome contents and this was subsequently supported by the identification of a 

S. typhimurium mutant, S5635, which lacked this ability (Ishibashi et al., 1992). 

S. enterica may enter into a uniQue intracellular compartment 

Using time-lapse light microscopic techniques, Alpuche-Aranda et al. (1994) 

demonstrated that S. typhimurium cells do not always enter J774 macrophages by 

conventional phagocytosis. Instead, a process reminiscent of S. typhimurium-induced 

entry into epithelial cells was observed, in which membrane ruffling occurred 

followed by internalisation of the bacteria into small vesicles. These vesicles then 

coalesced to form a large vacuole and which was termed a spacious phagosome to 

distinguish it from the phagosomes generated by classical phagocytosis. Indeed, in 

early studies, S. typhimurium was shown to replicate after a lag of approximately 4 

hours, in a membrane-bound compartment formed from the coalescence of small 

vesicles, in a manner similar to that in epithelial cells (Finlay and Falkow, 1989a). 

These observations therefore suggest that S. enterica may enter and replicate in a 



unique intracellular compartment which may not undergo phagolysosomal fusion. 

Evidence to support that S. enterica enters and replicates in a unique intracellular 

compartment is implied from examining the endocytic route that S. typhimurium 

follows upon entry into the host cell (Garcia-del Portillo and Finlay, 1995). 

S. typhimurium cells were observed to enter into compartments which contained 

lysosomal glycoproteins (lgps). However, these vesicles containing the live bacteria 

were never associated with the mannose 6-phosphate receptor or cathepsin D which 

are normally associated with the phagolysosome. This indicates that S. typhimurium 

subverts the intracellular trafficking system such that it never meets up with the 

lysosome contents. Furthermore, an examination of S. typhimurium cells within the 

macrophages suggested that there were two populations of bacteria present, one 

capable of rapid multiplication and the other static (Abshire and Neidhart, 1993b). It 

has therefore been suggested that S. typhimurium either enters into a safe site where it 

may multiply or, it enters the classical phagosome pathway where it is destined to be 

destroyed (Lindgren et al., 1996). However, these studies do not exclude the 

possibility that bacterium engulfed by phagocytosis can prevent phagolysosomal 

fusion as a survival strategy and that a post-phagocytic entry escape route exists. 

S. enterica is cytotoxic to macrophages 

S. enterica serovars including S. typhimurium and S. typhi have recently been shown 

to be cytotoxic to murine bone marrow-derived and cultured macrophages (Lindgren 

et al., 1996; Chen et al., 1996b). In some studies, this phenomenon manifested itself 

rapidly (within 20 minutes) upon interaction of the bacterium with the macrophage 

and by 8 hours post-infection 80% of the macrophages were dead (Chen et al., 

1996b; Monack et al., 1996). In contrast, a separate study did not observe the 

phenomenon until approximately 14 hours (Lindgren et al., 1996). Cytotoxicity is 

believed to be the result of the induction of apoptosis in the macrophage, as 

apoptosis-associated phenomena such as chromosome condensation, membrane 

blebbing and apoptotic bodies are observed in S. typhimurium-infected cells (Chen et 

al., 1996b). 
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The role of the invasion-protein-export system in cytotoxicity 

Many of the features of the entry and replication of S. enterica within the 

macrophages are analogous to the events that occur in epithelial cells and, as has 

been described previously, are dependent upon the expression of an 

invasion-protein-export system. Interestingly, two studies recently demonstrated that 

the S. enterica/macrophage interaction phenomena, including the membrane ruffling 

upon contact of the bacterium, and cytotoxicity, correlated with the expression of this 

specialised invasion apparatus (Chen et al., 1996b; Monack et al., 1996). 

S. typhimurium mutants defective in components required for the invasion apparatus, 

such as Hi1A or OrgA (Monack et al., 1996) or the secreted products such as InvJ, 

SpaO, SipB, SipC and SipD (Chen et al., 1996b) were found not to cause membrane 

ruffling and were non-cytotoxic, although bacteria were still observed within the 

macrophage. These observations suggested that the invasion-protein-export system is 

important for killing the macrophage. In addition, the entry mechanism of S. enterica 

into a safe site within the macrophage, is likely to result from the subversion of the 

cell signalling pathway by the specialised bacterial secretory apparatus to bring about 

the internalisation of the bacterium (and also, cytotoxicity). 

It remains to be seen whether the secreted proteins described above mediate the 

cytotoxicity or whether other secreted proteins such as the recently identified Sop 

proteins are involved, especially since SopE has been shown to be translocated into 

host (epithelial) cells (Wood et al., 1996). However, in an independent study, the 

regulatory protein OmpR, which is not encoded at centisome 63, was implicated in 

mediating the macrophage cytotoxicity phenomenon (Lindgren et al., 1996). OmpR 

regulates the expression of two outer membrane porins, OmpF and OmpC, and a 

cytoplasmic membrane permease (TppB), in response to osmotic changes (Dorman et 

al., 1989). Studies into the role of OmpR in the virulence of S. typhimurium have 

shown that ompR mutants are attenuated approximately 104 5 - and 10 -fold by the oral 

and intravenous routes of administration, respectively (Dorman et al., 1989; 

Chatfield et al., 1991). However, tppB mutants are not attenuated and an ompCompF 

double mutant was shown to be highly attenuated by the oral route (approximately 



300-fold) but only mildly attenuated by the intravenous route (<10-fold) (Chatfield et 

al., 1991). Therefore, the additional level of attenuation in the ompR mutant, 

especially by the intravenous route, appears independent of the known 

OmpR-regulated genes and may reflect the lack of expression of an (unidentified) 

OmpR-dependent factor involved in the killing of macrophages. 

The role of such cytotoxicity is unclear, but it has been proposed that by inactivating 

the macrophage the bacteria may establish a safe haven in which to multiply and 

also, may possibly prevent the macrophage from signalling to the immune system 

that the host is undergoing a bacterial infection (Chen et al., 1996b). However, it 

should be remembered that mv mutants, which are deficient for producing the 

invasion-export system, are only attenuated by the oral route but not by 

intraperitoneal injection, suggesting that the relative role of such cytotoxicity may 

not be essential (Galan and Curtiss, 1989). It should be noted however, that mutants 

of a second invasion-protein-export system (SPI2), identified at approximately 40 

minutes on the S. typhimurium chromosome, were attenuated by both oral and 

intraperitoneal routes, although whether this system mediates cytotoxicity is 

unknown. Nevertheless, macrophages are critical in the immunological defence 

mechanism to S. enterica (Collins, 1974; Fields et al., 1986; Buchmeier and Heffron, 

1989) and this would be unexpected if they were so readily killed. Thus, it is 

believed that other mechanisms are involved in the ability of S. enterica to survive 

within the macrophage and some of these will be described in the following text. 

1.3.8 The genetic basis of the survival of S. enterica within the macrophage 

The basis of intracellular survival of S. enterica within the macrophage is complex 

and poorly characterised. Unlike epithelial cells, macrophages are specifically 

adapted to defending against infection. In fact, the ability of S. enterica to survive in 

the harsh anti-microbial environment of the phagocyte has been shown to require 

additional adaptive mechanisms to those necessary for survival in epithelial cells 

(Fields et al., 1986; Groisman and Ochman, 1990). For example, Fields et al. (1986) 

isolated 83 TnlO mutants of S. typhimurium which were unable to survive or 



replicate in the macrophage and were attenuated in BALB/c mice when compared to 

the virulent parental strain. However, 22 of the least virulent of these mutants were 

found to survive and replicate in epithelial cells. 

The identification of genes which are required for the survival of S. enterica within 

the macrophages is slowly being unravelled. Studies have indicated that upon 

infection of macrophages approximately 30-40 proteins are elevated in expression 

and 100 are repressed (Buchmeier and Heffron, 1990; Abshire and Neidhart, 1993a). 

Moreover, the ability of bacteria to sense and respond to the environment during 

infection has received a great deal of interest recently (Miller et al., 1989c; 

Mekalanos, 1992; Mahan et al., 1996). Environmental signals within the host may 

act as signals to induce specific virulence traits, such as protective mechanisms, 

required for successful infection. However, the patterns of proteins observed after 

2D-PAGE analysis from intracellular S. typhimurium cells do not simply reflect the 

sum of all the responses of bacteria to all the stimuli thought to exist in the 

macrophage (such as oxidative stress or acidity) (Buchmeier and Heffron, 1990; 

Abshire and Neidhart, 1993a). This suggests that intracellular survival in 

macrophages (and probably also, epithelial cells) is a hugely complex and 

co-ordinated event with the appropriate modulation of all relevant responses (or parts 

of them) to optimise survival. The following section will briefly examine some of the 

stresses within the macrophage and outline the mechanisms which S. enterica 

employs to promote its survival. 

Defence against anti-microbial peptides 

Several S. typhimurium loci have been identified which express proteins that mediate 

defence to the bactericidal actions of anti-microbial peptides and defensin-like 

molecules produced by neutrophils and macrophage (Fields et al., 1986; Miller et al, 

1990; Groisman et al., 1992). Originally, mutations in phoP were shown to result in 

sensitivity to defensins or defensin-like anti-microbial peptides (e.g. magainins, 

cecropins, cryptdins) and resulted in an LD 50  10 5_fold  greater than the parental strain 

(Fields et al., 1986; Miller et al., 1989a). PhoP forms part of a two component 
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regulatory system. Its partner PhoQ, encodes a transmembrane protein and is 

believed to be the sensory component which activates PhoP, the transcriptional 

activator, by phosphorylation (Miller et al., 1989a, 1989b; Miller, 1991). The signal 

to activate PhoPQ is thought to be low Mg 2+ concentrations, but activation may also 

be modulated by low pH, conditions believed to exist within the macrophage 

phagolysosome (Seguin et al., 1990; Soncini et al., 1996). 

The PhoP/Q system regulates approximately 40 different genes, as judged by 

2D-PAGE, which can be split into two sets, pag (EhoP  activated genes) and prg 

(hoP repressed genes) (Soncini et al., 1996). As described previously, the prg genes 

encode components of the invasion-protein-export system (Galan, 1996). However, it 

is the pag genes which are believed to confer resistance to anti-microbial peptides 

because a PhoP constitutive mutant is resistant to these peptides (Miller, 1990). 

However, to date, mutational analysis followed by sensitivity studies has failed to 

identify the pag gene(s) responsible for conferring resistance to defensins. Moreover, 

it was recently shown that PhoP regulates the expression of a separate system for 

defence to anti-microbial peptides, encoded by pmrA (initially identified because it 

provided S. typhimurium with polymixin resistance). The nature of the resistance is 

relatively uncharacterised, but is believed to involve the modification of the outer 

membrane and in fact, PmrA may regulate at least two genes capable of altering the 

lipid A component of the outer membrane (Gunn and Miller, 1996). PhoP therefore 

regulates at least two systems capable of combating the action of anti-microbial 

peptides. 

The importance of mechanisms for defence to anti-microbial peptides in the survival 

of S. enterica within macrophages is further emphasised by the identification of a 

third system. A locus called sap (ensitivity to anti-microbialpeptides) was identified 

after screening 20, 000 mutants of S. typhimurium, containing MudJ fusions, for 

sensitivity to defensin-like compounds (Groisman et al., 1992). This system, encoded 

by sapABCDF, produces an active uptake system to bring anti-microbial peptides 

into the cell for destruction (before they insert into the cell envelope). Disruption of 

the sap genes results in an approximately 1, 000-fold attenuation of S. typhimurium 

'p 

51 



cells when administered by the oral route (between 10 2-105-fold by the 

intraperitoneal route) to BALB/c mice, indicating the importance of this locus for 

virulence. 

The survival of S. enterica during nutrient deprivation 

When S. typhimurium and E. coli are starved of nutrients, including carbon, 

phosphorous and nitrogen, they induce a starvation stress response (reviewed in 

Foster and Spector, 1995; Hengge-Aronis, 1996a). This can be induced deliberately 

by growing cells in defined medium or alternatively, by growing cells in rich 

medium to the stationary phase of growth (where the growth of cells naturally 

depletes the nutrients). The stationary phase response of S. typhimurium is regulated 

in part by an alternative sigma factor called RpoS or a s (reviewed in Hengge-Aronis, 

1996a). Sigma factors provide the specificity for the genes that the RNA polymerase 

can recognise and transcribe (Lonetto et al., 1992; Record et al., 1996). Moreover, 

alternative sigma factors provide a way of regulating developmental pathways or 

stress responses by reprogramming the core RNA polymerase (E) to transcribe a set 

of genes which are recognised selectively by the new sigma factor (Lonetto et al., 

1992; Record et al., 1996). For example, the sigma factor used under normal growth 
70 	 S conditions is RpoD, or CY but during starvation this is replaced by o which 

regulates genes more appropriate for growth under nutrient limitation. Importantly, 

an rpoS::lacZ fusion has been demonstrated to be induced within J774 murine 

macrophages (Chen et al., 1996a), indicating that S. enterica resides within a vacuole 

low in nutrients and also, that RpoS plays a role in mediating intramacrophage 

survival. In fact, rpoS mutants are highly attenuated in BALB/c mice, when 

administered by either oral or intraperitoneal injection (1O- and 10 5-fold, 

respectively) in comparison to the parental strain, suggesting that RpoS plays a major 

role in S. enterica virulence (Coynault et al., 1996). 
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The role of RpoS in the survival of S. enterica within macrophages 

Starvation results in the expression of high affinity nutrient uptake systems to 

scavenge all the possible nutrients (Hengge-Aronis, 1996a). However, 

characteristically, starvation stressed cells also display defence mechanisms to a wide 

range of environmental stresses (in vitro), including heat, osmolarity, pH and 

oxidants, and this is likely to play the predominant role in providing general defence 

to the anti-microbial environment of the macrophage and survival of the bacteria 

(Fang et al., 1992; Hengge-Aronis, 1996a). Many of these defensive measures appear 

to result from RpoS bringing about the expression of multiple stimulons, groups of 

genes induced by a particular stress stimulus (e.g. such as those to acidity or 

oxidative stress), even in the absence of the inducing stimulus for that particular 

stimulon (Hengge-Aronis, 1996a). 

The role of the Salmonella virulence plasmid 

Invasive serovars of S. enterica, excluding S. typhi, carry a large plasmid 

(approximately 90 kb) which is associated with virulence and, which is believed to 

promote the survival of the bacteria in the reticuloendothelial system (Gulig, 1990). 

However, an independent study has suggested that the plasmid somehow prevents the 

recruitment of an unusual T cell subset, the yö T cells, to the site of infection, as 

plasmid-cured strains exhibited greater accumulation of these cells during the course 

of infection (Emoto et al., 1992). 

S. enterica strains cured of this plasmid display between 10 3-106-fold increases in 

LD50  compared to strains bearing the plasmid, however its exact function is unknown 

(Fang et al., 1992). Strains carrying the plasmid have been demonstrated to have 

increased growth rates in the liver and spleens of the host (which are the foci in 

invasive S. enterica infection) but the plasmid does not promote invasion or transfer 

of the bacteria to the reticuloendothelial system (Gulig and Doyle, 1993). In addition, 

investigations to date have indicated that only an approximately 8 kb portion of the 

plasmid is required to restore wild type levels of virulence to plasmid-cured strains 
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(Gulig et al., 1992, 1993). This region contains five genes spvRABCD (Caldwell et 

al., 1991; Gulig et al., 1992, 1993; Coynault et al., 1992) however, very little is 

known about the functions of the products encoded by these genes. The spvR gene is 

believed to produce a regulatory protein that mediates control over the expression of 

spvABCD. Interestingly, an spvB::lacZ fusion was demonstrated to be induced within 

the macrophage, indicating that the functions of the spy locus may promote 

intramacrophage survival (Fierer et al., 1993; Chen et al., 1996a). Expression of spvR 

is regulated by the alternative sigma factor RpoS, with maximal induction occurring 

during stationary phase (Fang et al., 1992). Moreover, it has been postulated that one 

of the most influential factors responsible for attenuating non-typhoidal S. enterica 

rpoS mutants is the loss of spy induction (Fang et al., 1992; Coynault et al., 1996). 

Defence against acidity 

Part of the oxygen-independent anti-microbial defence system involves decreasing 

the pH of the phagolysosomal compartment in which S. enterica enters (Seguin et al., 

1991). This acidification is believed to occur within 30 minutes of bacterial 

internalisation (Rathman et al., 1996) and can drop as low as pH 3.5-4.0 (Foster, 

1992). This pH is inhibitory to many microorganisms as it disrupts the proton 

gradient, which is required to drive transport of substrates, motility and the 

respiratory chain (Slonczewski and Foster, 1996). However, S. typhimurium has been 

demonstrated to induce approximately 50 proteins in response to acid stress, called 

the acid tolerance response (ATR) (Foster and Hall, 1990; Foster, 1992). 

A number of these proteins have been identified but mutations in atp and fur, 

produce the greatest sensitivity to low acid conditions (pH <3.3) and are therefore 

critical to the development of the ATR (Garcia-del Portillo et al., 1993a). These 

genes encode a Mg2 -dependent proton translocating ATPase, which pumps protons 

out of the bacterial cell, and an Fe 2 -binding regulatory protein, which regulates 

changes to the components of the respiratory chain, respectively (Garcia-del Portillo 

et al., 1993a; Slonczewski and Foster, 1996). In addition, Fur also plays a major role 

in regulating the synthesis of enterochelins, which are iron-chelating compounds, and 

54 



fur is therefore important for obtaining iron in the iron-limited environment of the 

phagolysosome (Spector and Foster, 1995). However, fur and atp mutations have no 

significant affect upon S. typhimurium survival within the macrophage, indicating 

that these genes are not required for phagolysosomal survival (Garcia-del Portillo et 

al., 1993a). Whether the other genes induced in response to acidity are important for 

macrophage survival is unknown. However, the Ph0PQ locus has been shown to be 

regulated by low pH, demonstrating that acidity may be an important signal to induce 

other forms of defensive measures (e.g. against anti-microbial peptides). 

The role of a heat shock response 

When bacteria such as S. typhimurium and E. coli are shifted from their optimal 

temperature for growth (37°C) to a higher temperature they synthesise heat-shock 

proteins (reviewed in Gross, 1996). This heat-shock response is predominantly 

regulated, like stationary phase, by an alternative sigma factor, RpoH or a 32,  which 

reprograms the RNA polymerase to identify and transcribe heat shock-inducible 

genes. In E. coil, this response is believed to involve approximately 30 genes. These 

genes encode proteins such as GroEL, GroES, DnaK and DnaJ, which are believed to 

assist in the refolding of aberrant proteins, or proteases such as Lon and Clp, which 

degrade damaged proteins (Lindquist, 1986; Gross, 1996). Importantly, the heat 

shock response is also induced, in part, by a wide variety of environmental insults 

such as acidity or oxidative stress (Kogoma and Yura, 1992; Hengge-Aronis, 1996a). 

For example, DnaK and GroEL are abundant proteins on 2D-PAGE gels after 

exposing S. typhimurium and E. coli to hydrogen peroxide or superoxide, 

respectively (Morgan et al., 1986; VanBogelen et al., 1987; Greenberg and Demple, 

1989). In addition, it appears that some components of the heat shock response, such 

as GroEL and GroES, are essential for cellular processes at normal or optimal growth 

temperatures (Fayet et al., 1989). It is likely therefore, that the heat shock response 

plays an important role in mediating survival within the macrophage. 

In addition to RpoH, heat shock is also regulated by another alternative sigma factor, 

RpoE or cr24  (Gross, 1996). RpoE is capable of binding to the promoter of rpoH and 
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under extreme heat stress (50°C) is believed to augment the transcriptional activation 

of this gene (Gross, 1996). Importantly, RpoE has also been shown to regulate htrA 

(high 1emperature resistance), a gene which is likely to play a role in the survival of 

S. typhimurium within the macrophage (Johnson et al., 1991; Gross et al., 1996). 

Surprisingly, htrA mutants of S. typhimurium, are not sensitive to heat stress but are 

extremely sensitive to oxidative killing (Johnson et al., 1991). HtrA shares homology 

with DegP from E. coli, which degrades periplasmic proteins, and therefore suggests 

that degradation of damaged proteins is an important feature of intracellular survival. 

This is further supported by the fact that S. typhimurium htrA mutants survive poorly 

in macrophages (Fields et al., 1986; Baulmer et al., 1994) and are attenuated 

approximately 10 4_fold,  compared to the virulent parental strain, after oral 

inoculation into BALB/c mice (Chatfield et al., 1992b). 

Defence against oxidative stress 

Upon exposure to, and when within macrophages, S. enterica cells are subjected to 

the toxic reactive oxygen species generated by the respiratory burst. These molecules 

include superoxide, hydrogen peroxide, the hydroxyl radical and singlet oxygen. In 

addition, toxic nitric oxide whose anti-microbial effect is potentiated by the other 

radicals is also generated by a nitric oxide synthase (Pacelli et al., 1995). These toxic 

molecules readily diffuse across the bacterial cell membrane and are capable of 

causing extensive cellular damage at all fundamental levels (Imlay and Linn, 1986; 

Farr and Kogoma, 1991; Demple, 1991). For example, DNA is deaminated and 

depurinated or even subject to strand breakage. Amino acids may be decarboxylated 

or oxidised, peptide bonds within polypeptides may be cleaved, and whole protein 

complexes involved in respiration or uptake of substrates may be inactivated (Farr et 

al., 1988). Moreover, lipids can be peroxidised and this not only increases the 

permeability of the membrane but lipid peroxides themselves are capable of 

damaging DNA (Storz et al., 1987). 

S. typhimurium and E. coli have been shown to induce two distinct stimulons in 

response to hydrogen peroxide and superoxide, respectively, which each comprise of 
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approximately 30-40 genes and which mediate protection to these stresses 

(Christman et al., 1985; Greenberg and Demple, 1989; Walkup and Kogoma, 1989). 

Most of these genes have not been identified but two regulons (groups of genes under 

the control of a single regulatory element), regulated by OxyR and SoxRS, have been 

identified which are largely responsible for the protection mediated to these stresses 

(Christman et al., 1985; Tsavena and Weiss, 1990). These two regulons are also 

thought to play an important role in eliminating nitric oxide derivatives, as both 

SoxRS and OxyR regulons have recently been demonstrated to be induced by 

exposure to NO (Nunoshiba et al., 1993; Hausladen et al., 1996). 

The importance of such defences against oxidative stress in S. typhimurium was 

demonstrated by Fields et al. (1986) who identified three transposon mutants which 

were deficient for survival within the macrophage and which were attenuated in 

BALB/c mice. This indicates that the ability to prevent oxidative damage to the 

bacterial cell may have an important role in S. enterica virulence. 

Defence against superoxide stress 

SoxRS regulates approximately 10 genes which are involved in the response to 

superoxide stress (Greenberg and Demple, 1989; Walkup and Kogoma 1989; 

Tsavena and Weiss, 1990). The functions of some of these genes have been identified 

and include a superoxide dismutase (sodA) which breaks down superoxide to 

hydrogen peroxide, a DNA repair enzyme (nfo) and an enzyme, glucose-6 phosphate 

dehydrogenase, capable of producing large quantities of NADPH (zwJ) required in 

the reduction of oxidised molecules (Greenberg and Demple, 1989; Walkup and 

Kogoma, 1989). Mutations that inactivate either of the soxRS genes results in cells 

that are particularly sensitive to superoxide. Unfortunately, very little information 

exist about the protective role of the SoxRS regulon in the survival of S. enterica 

within the macrophage. However, an E. coli soxRS mutant was shown to be 

extremely susceptible to macrophage killing suggesting that this regulon may be 

important for mediating resistance to oxidative stress (Nunoshiba et al., 1993). 

Nevertheless, an S. typhimurium SodA mutant was shown to be only slightly 
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attenuated (approximately 10-fold) when injected into BALBIc, suggesting that 

defence against superoxide is not a critical feature for macrophage survival (Tsolis et 

al., 1995). Loss of all the functions which are regulated by SoxRS however, may 

well result in a more severe phenotype. 

1.3.9 Defence against hydrogen peroxide stress 

Of particular relevance to the studies undertaken in this thesis is the ability of 

S. typhimurium to mount a defensive response to hydrogen peroxide. In previous 

studies, Francis and Gallagher (1993) identified a hydrogen peroxide inducible locus, 

ahpCF (Alkyl hydroeroxide reductase), which was induced upon interaction of 

S. typhimurium cells with macrophages. Subsequently, an independent study 

demonstrated that another hydrogen peroxide inducible gene, dps (DNA  binding 

protein from starved cells), was also induced by S. typhimurium within the 

macrophage (Valdiva et al., 1996). Interestingly, both of these genes are part of the 

OxyR regulon, perhaps indicating that a small subset of genes are critical to the 

defence of S. enterica cells against hydrogen peroxide which is generated in the 

respiratory burst of phagocytes. Such in vivo expressed genes may also have 

important applications in vaccine development, as disruption may well lead to 

attenuation of S. enterica virulence. In relation to this feature, the following sections 

will focus on the hydrogen peroxide-inducible response of S. enterica, with particular 

emphasis on the OxyR regulon. 

The hydrogen peroxide-inducible response and the role of OUR 

As a result of applying hydrogen peroxide (H 202) or organic peroxides, such as 

cumene hydroperoxide, S. typhimurium and E. coli cells have been shown by 

2D-PAGE analysis to respond by increasing the expression of approximately 30 

different proteins above a basal level (Christman et a!, 1985; Van Bogelen et al., 

1987). 12 of these proteins were maximally synthesised in the first 10 minutes of 

being exposed to the stress and were termed early proteins, whereas 10-30 minutes 

into the stress time a further 18 proteins became elevated and were termed late 
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proteins. This has been termed the peroxide stress response. 

The precise nature of the substrate which mediates stimulation of induction is not 

entirely clear. Nevertheless, by screening diethyl sulphate-mutagenised 

S. typhimurium cells for enhanced survival to peroxide stress, a genetic locus called 

oxyR was identified (Christman et al., 1985). Such mutants (oxyRl [oxyR2, in 

E. coli]) constitutively expressed a subset of approximately 8-9 proteins, even in the 

absence of H202, and these cells were found to be significantly more resistant to 

hydrogen peroxide than wild type cells. Moreover, S. typhimurium mutants deleted 

for the oxyR locus (designated oxyR2 [oxyR], in E. coli]) failed to induce this subset 

of proteins and were extremely sensitive to concentrations of hydrogen peroxide 

which the wild type cells could resist (Christman et al., 1985). This suggested that 

the role of oxyR was critical for mediating hydrogen peroxide resistance to 

S. typhimurium and therefore, the oxyR gene was proposed to encode a positive 

transcriptional activator (OxyR) of a subset of hydrogen peroxide inducible genes 

(the OxyR regulon). 

These studies and further work have characterised the nature and function of some of 

the genes of the OxyR regulon in S. typhimurium and E. coli (Table 1.1). However, a 

number of OxyR targets such as dps have been identified that remain relatively 

uncharacterised. For example, approximately 23 proteins are absent from the 

2D-PAGE gels of E. coli dps mutants examined in the stationary phase of growth 

(Almiron et al., 1992). This suggests that Dps may have a regulatory role to play and 

may not protect cells from oxidative stress by simply binding to the DNA (Almiron 

et al., 1992; Altuvia et al., 1994). In addition, it appears that OxyR may act as both a 

positive and negative transcriptional regulator, as several genes, including oxyR 

itself, can be repressed by OxyR (Tao etal., 1991; Seymour etal., 1996). 

Importantly, a number of OxyR-independent genes have been identified which are 

involved in mediating protection towards hydrogen peroxide. These include a second 

catalase (katE) and two DNA protective enzymes including exonuclease 3 and an 

enzyme involved in DNA recombination and repair, RecA (Fan and Kogoma, 1991). 
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Table 1.1 Genetic loci regulated by the OxyR regulatory protein 

Gene or Organism Gene product OxyR regulation Reference 
locus  
oxyR S. typhimurium OxyR regulatory protein of yes-autoregulated Christman et a! (1985) 

the OxyR regulon 
E. coli as above Tao etal. (1989) 

ahpCF S. typhimurium C22 and F52 subunits of yes-induced Christman etal. (1985) 
alkyl hydroperoxide 
reductase 

E. co/i yes-induced Van Bogelen et al. (1987) 

katG S. typhimurium HPI catalase yes-induced Christman et al. (1985) 

E. co/i Ivanova etal. (1994) 

dps S. typhimurium DNA binding protein from - 

starved cells 
E. co/i yes-induced Altuvia et al. (1994) 

gorA S. typhimurium Glutathione oxidoreductase yes-induced Christman etal. (1985) 

E. co/i Tartaglia et al. (1992) 

oxyS S. typhimurium Untranslated regulatory - 

RNA 
E. co/i yes-induced Tartaglia et al. (1992) 

orfO S. typhimurium Unknown yes-induced Tartaglia et al. (1992) 

E. co/i  
D64a S. lyphimurium Heat shock protein yes-induced Christman et al. (1985) 

E. co/i - 

E89 S. typhimurium Heat shock protein yes-induced Christman et al. (1985) 

E. co/i - 

sodA S. typhimurium Manganese-containing yes-induced Christman et a/. (1985) 
superoxide dismutase 
(MnSOD) 

E.coli no Touati(1988) 

mom S. typhimurium DNA modification enzyme - 

from phage Mu 
E. co/i yes-repressed Bolker and Kahmann 

(1989) 

stiA S. typhimurium Starvation inducible protein yes-repressed Seymour et al. (1996) 

E. co/i - 

(a) Gene or locus has not been proven to be OxyR-regulated directly but has been shown to be 
constitutively expressed or not expressed in an S. typhimurium oxyRl or oxyR2 genetic background, 
respectively. 



The latter protein has a major role in protecting S. typhimurium from intracellular 

oxidative stress as recA mutants were extremely susceptible to the respiratory burst 

of J774 macrophages and were highly attenuated (approximately 10 4-fold) when 

compared to the parental strain, after intraperitoneal injection into BALB/c mice 

(Buchmeier et al., 1993). 

OxyR is a member of the LysR family of transcriptional regulators 

The oxyR gene was mapped to approximately 89.5 minutes on both the 

S. typhimurium and E. coli chromosomes and the gene was subsequently sequenced 

and cloned (Christman et al., 1989; Tao et al., 1989). Using the E. coli sequence, it 

was established that OxyR is a 34.4 kDa protein (305 aa) with homology to the LysR 

family of transcriptional regulatory proteins (25% protein sequence identity to LysR) 

(Tao et al., 1989). These proteins are between 30-35 kDa in size and include LysR 

from E. coli, the NodD gene of Rhizobium meliloti and TrpI from Pseudomonas 

aeruginosa (Henikoff et al., 1988). In addition, almost all these members are 

autoregulatory and regulate a transcript from an overlapping divergent promoter on 

the complementary strand. In the case of OxyR, this is oxyS, an untranslated 

regulatory RNA (Tartaglia et al., 1992) (Table 1.1). 

Regulation of genes by OxyR occurs at the transcriptional level 

Regulation of the genes in the OxyR regulon appears to occur at the transcriptional 

level. Using S. typhimurium oxyRl constitutive mutants it was shown that the katG 

transcript was elevated approximately 50-fold and in turn, resulted in a 50-fold 

increase in catalase activity in these cells (Christman et al., 1985; Morgan et al., 

1986). In contrast, a katG::lacZ operon fusion was found to show no -galactosidase 

activity in an oxyR deletion mutant of E. co/i upon addition of H202 . Regulation at 

the transcriptional level has also been implied for ahpCF based on correlating the 

level of ahpCF transcript and amount of AhpCF activity in the cells of 

S. typhimurium oxyRl mutants (Christman et al., 1985; Tartaglia et al., 1989). 

In line with many LysR homologues, OxyR appears to negatively regulate its own 
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expression (Christman et al., 1989; Tao et al., 1989, 1991). When a plasmid borne 

oxyR::lacZ gene fusion was transferred to an E. co/i oxyR strain, no increase in the 

level of 3-galactosidase activity was observed when the cells were exposed to 

concentrations of H 202  shown to induce the OxyR regulon (Tao et al., 1989). This 

suggested that the induction of the OxyR regulon required no elevation of OxyR 

protein, but rather, was likely to be due to modification or activation of the existing 

cellular OxyR. Moreover, when a similar plasmid was transferred to an oxyR 

deletion mutant, a five-fold greater increase in the level of -galactosidase activity 

was observed than when the plasmid was examined in the parental (oxyR) strain in 

the absence of hydrogen peroxide (Tao et al., 1991). Furthermore, when OxyR was 

constitutively expressed in trans from a separate plasmid this increase in 

-galactosidase activity was abolished (Tao et al., 1991). Therefore, OxyR acts both 

as a transcriptional activator of the genes in the regulon and as a repressor of its own 

synthesis. 

OxyR recognises a specific target sequence of DNA in the genes it regulates 

OxyR mediates its regulatory effects upon the genes of the OxyR regulon by binding 

to a specific region of DNA (the OxyR operator) which partially overlaps with the 

-35-a 70 promoter consensus sequence (Christman et al., 1989; Tartaglia et al., 1989; 

Tartaglia et al., 1992). In fact, Tao and colleagues (1993) have shown that this 

overlap with the Cr70  promoter site results in contact between OxyR and the 

C-terminus of the RNA polymerase a-subunit and is essential for transcriptional 

activation. One exception to this is the oxyRS locus where the oxyR and oxyS genes 

are divergently transcribed from a shared OxyR operator region. In this arrangement 

the OxyR operator region acts to regulate both the transcriptional activation and 

repression of the oxyS and oxyR genes, respectively. This is because like the other 

OxyR regulon genes, the operator of the oxyS gene is positioned such that the 

OxyR-binding site overlaps with the -35-a 70  promoter and the binding of OxyR 

facilitates transcriptional activation. However, for the oxyR gene, this OxyR target 

sequence not only overlaps with the 35.70  consensus hexamer but also extends into 

the -iO-cY°  hexamer, and binding of OxyR within this region facilitates repression of 
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transcriptional activation from oxyR. Such an overlap is an arrangement common to 

transcriptional repressors (reviewed in Gralla and Collado-Vides, 1996), where 

binding of a transcriptional regulator within the -35 and -1 0-a70  sequences reduces 

the access of the RNA polymerase, thus preventing transcriptional activation, and 

accounts for the role of OxyR as a transcriptional repressor. 

The OxyR operator of all the OxyR-regulated genes examined to date, is 

approximately 45 bp in length (Toledano et al., 1994). However, inspection of these 

apparently similar sites indicated that there was no common highly conserved 

consensus sequence (Tartaglia et al., 1989; Tartaglia et al., 1992). Nevertheless, 

degenerate homologies were observed in which only two of the four possible base 

pairs are represented and this led to the suggestion that OxyR may have a 

"degenerate recognition code". By analysing 54 synthetic binding sites, selected from 

pools of random oligonucleotides, Toledano and colleagues (1994) postulated that 

OxyR bound to a degenerate consensus motif 

(ATAGntnnnanCTATnnnrinrmATAGntnnnanCTAT). The postulated consensus 

sequence shows 2-fold dyad symmetry, and the spacing of the ATAGnt elements 

suggests that OxyR binds on one face of the DNA helix in four adjacent major 

grooves to bring about transcriptional activation. This binding is believed to be 

through the formation of an OxyR tetramer, as each OxyR subunit (like other LysR 

members) only has one HTH domain, which would be unlikely to span two helical 

turns of the DNA (Kullik et al., 1995a, 1995b). 

OxyR undergoes a conformational change upon oxidation 

In vitro transcription assays using purified OxyR have demonstrated that binding, 

and transcription from, the ahpC and katG promoters only occurred when the OxyR 

was purified in the absence of dithiothreitol (DTT, a reducing agent), suggesting that 

OxyR was sensitive to oxidation in air-saturated buffers and, that only oxidised 

OxyR mediated transcriptional activation (Storz et al., 1990; Toledano et al., 1994). 

However, both the oxidised and reduced (i.e. prepared in the presence of DTT) 

forms of OxyR, were found to be capable of binding to the oxyRS promoter and 

repressing transcription of the oxyR gene. This was explained by identifying an 
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additional unique target recognition sequence for OxyR which was only present in 

the oxyRS promoter and not in the promoters of the other OxyR-regulated genes 

(Toledano et al., 1994). Moreover, it was shown using treatment with DNase, that the 

regions of DNA protected differed when the oxidised or reduced forms of OxyR 

were bound at the oxyRS promoter. This indicated that OxyR was capable of 

repositioning along the oxyRS promoter (Toledano et al., 1994) and suggested that 

upon oxidation the OxyR protein undergoes a conformational change. 

Model for OxyR regulation 

Reduced 
OxyR 

o OxyR 	 xyS  

Repression 	 No activation 

1 	23 	45 

IF 
Oxidised 

H 
OxyR 	

202 
 

G- I 	 ahpC 

- No effect 
1234 

OxyR oxyS (AJ) 	
ahpC 

Repression 
1 	2 3 4 5 	Activation 	 1 	2 3 4 	Activation 

Figure 1.5 Model for reduced and oxidised OxyR binding and activity at the oxyRS and ahpC 
promoters. For simplicity only one strand of DNA is shown. Numbers refer to the OxyR target 
sequences described in the text. (Adapted from Toledano etal., 1994). 

From the studies outlined above, Toledano and colleagues (1994) have proposed a 

model for the OxyR-mediated regulation (Figure 1.5). For genes such as ahpC and 

katG, which are transcriptionally activated under hydrogen peroxide stress, the OxyR 

tetramer is unable to bind to the target promoter regions because of its conformation 

in the reduced state. Upon oxidation, the conformation alters and OxyR binds to its 

target sites in four adjacent major grooves (1, 2, 3 and 4) bringing about 

transcriptional activation of the genes via interaction with RNA polymerase. For the 



oxyRS promoter, however, the conformation of the reduced OxyR allows it to bind 

two pairs of adjacent major grooves (1 and 2, 4 and 5) separated by one helical turn. 

This results in repression of oxyR and prevention of oxyS activation; whether the 

repression of stiA and mom is achieved in a similar manner is unknown at present. 

Upon oxidation the conformational change occurs and OxyR repositions its contacts 

upon the DNA, unable to bind the fifth unique site but able to bind to the other four. 

This maintains the repression of oxyR as well as stimulating the transcription of oxyS. 

Although this model explains the results obtained during experimentation, it is still 

unclear why reduced OxyR, binding at the oxyRS promoter does not activate 

transcription from oxyS. However, it is possible that the conformation of reduced 

OxyR does not permit a productive interaction with RNA polymerase. 

Alternative regulation of the OxyR regulon genes 

Aside from oxidative stress, S. enterica cells are exposed to a number of different 

environmental stresses during the course of infection. For example they experience 

temperature upshift upon entering the host, acidity in the stomach and high 

osmolarity in the intestine (Foster and Spector, 1995). Moreover, within the 

macrophage S. enterica must then also cope with the hostile environment of the 

phagolysosome including the low pH, anti-microbial peptides and nutrient 

deprivation. It is apparent however, that considerable overlaps occur between the 

responses to specific stresses (Farr and Kogoma, 1991; Hengge-Aronis, 1996a; 

Mahan et al., 1996) and this suggests that specific functions can be recruited to 

mediate effects under a number of conditions. This co-ordinated expression of genes 

would seem to allow efficient use of the bacterial genome. In support of this, 

components of the OxyR regulon have been shown to be induced under a number of 

other stress conditions. 

Overlay) of the hydrogen peroxide-inducible response with heat shock 

Exposure of S. typhimurium cells to 60 p.M hydrogen peroxide results in the 

induction of five heat shock proteins (HSP), three of which belong to the OxyR 

regulon (Christman et al., 1985; Morgan et al., 1986). Amongst these proteins is 

AhpF, which in E. coli is not heat shock-inducible and suggests that different 
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regulation mechanisms exist in these bacteria (Christman et al., 1985). Moreover, the 

promoter lies upstream of the ahpCF locus and ahpC is not heat shock-inducible 

therefore, the mechanism by which ahpF is induced by heat shock, in an 

OxyR-dependent manner, or the possible role of AhpF, is unclear. The identities and 

functions of the other two OxyR-regulated heat shock proteins, D64a and E89, have 

not yet been established. 

Overlap of the hydrogen peroxide-inducible response with starvation stress 

The expression of four genes (to date) have been shown to be critical for the long 

term survival of starvation-stressed cultures. These genes are rpoS and three 

RpoS-regulated starvation-inducible genes, stiA, stiB and stiC (Seymour et al., 1996). 

Interestingly, each of these genes are required for the development of hydrogen 

peroxide resistance in the stationary phase of growth. In addition, stiA and stiB can 

be induced in the exponential phase by exposure of S. typhimurium to 60 p.M H202  

and stiA is regulated (repressed) by OxyR. However, the nature of the sti genes and 

the reason why OxyR should be involved in the regulation of stiA have not been 

reported yet. 

At least three other OxyR-regulated genes have been demonstrated to be regulated by 

RpoS in the stationary phase of growth, and their involvement is believed to 

contribute to the substantial resistance of stationary phase cells to oxidative stress. 

These include katG (Ivanova et al., 1994), dps (Altuvia et al., 1994), gorA 

(Becker-Hapak and Eisenstark, 1995). Interestingly, the induction of katG and dps in 

stationary phase has been demonstrated to be independent of OxyR (Ivanova et al., 

1994; Altuvia et al., 1994). How induction is achieved in the presence of RpoS and 

the absence of OxyR is not fully understood, but it may involve alternative DNA 

binding factors, as in the case of dps where integration host factor (uHF) has been 

shown to be involved (Altuvia etal., 1994). 

Overlap of the hydrogen peroxide-inducible response with osmotic stress 

There is also a very close link between regulation by RpoS and osmotic stress as 

osmotic-induction of many genes in the exponential phase is dependent upon RpoS 



(Hengge-Aronis et al., 1993; Hengge-Aronis, 1996b). Osmotic upshift has been 

shown to increase the level of RpoS in the cell and extend the half life of the rpoS 

transcript. Furthermore, exponential phase cells exposed to osmotic stress display 

increased resistance to oxidants in an rpoS-dependent manner (Hengge-Aronis et al., 

1993). However, only one OxyR-regulated gene (dps) has been shown to be induced 

under osmotic stress (to date). The dps gene was independently identified as pexB, a 

stationary phase-inducible gene that could be induced in exponential phase by 

osmotic stress (Lomovskaya et al., 1994). The RpoS-dependent osmotic-induction of 

dps is not clear as investigations into the role of OxyR have not been performed. 

However, when two different sized fragments of the dps promoter region, regions 

-240 to +440 bp or -82 to +440 bp, were cloned in front of a promoterless lacZ gene, 

it was observed that osmotic stress resulted in stimulation of f-galactosidase activity 

from both constructs whilst peroxide stress only increased expression from the larger 

construct (Lomovskaya et al., 1994). This suggests that the mechanism required for 

osmotic stimulation differs from that of oxidative stress. 

Indirect evidence for the role of another gene of the OxyR regulon in osmotic stress 

has come from studies on a commensal skin organism, Staphylococcus aureus 

(Armstrong-Buisseret et al., 1995). When S. aureus was osmotically challenged it 

responded by inducing a number of proteins to a high level and one of these proteins 

was determined to be 50% similar at the amino acid sequence level to the 

S. typhimurium AhpC protein. Further evidence for a role of the ahp locus in osmotic 

stress has also been recently inferred from a separate study in which the Bacillus 

subtilis ahpC gene was shown to be osmoregulated (Antelmann et al., 1996). Thus, it 

may also be possible that the S. typhimurium ahp locus is induced under osmotic 

stress, and this feature will be explored as part of the present study. Why oxidative 

stress genes may be required for osmotic stress is unknown however, it may well be 

that these functions are required outside the macrophage. 

It is clear that some of the OxyR-regulated genes have roles in several response 

mechanisms for example, dps is induced by oxidants, starvation, osmolarity and, as 

recently shown, by acidity (Valdiva et al., 1996). This may suggest that the genes of 

the OxyR regulon may be required or modulated in different locations during the 



course of infection to promote the survival of S. enterica within the host. 

1.3.10 Summary of the factors involved in the infection of the host by S. enterica 

Infection of the host by S. enterica is a complex phenomenon in which the bacterium 

must enter the host and establish one or more unique niches in order replicate and 

ultimately be transmitted to another individual (Finlay and Falkow, 1989b). 

Nevertheless, the host is extensively equipped, via the immune system, for detecting 

and dealing with invading bacteria and as a result, S. enterica must avoid, withstand 

or circumvent these anti-microbial mechanisms in order to survive and propagate. As 

has been described in this introduction, S. enterica is an intracellular pathogen and is 

capable of invading and surviving within numerous types of cells, including 

macrophages which are ideally equipped for bringing about the destruction of 

microorganisms, and this appears fundamental to the virulence of S. enterica 

(Collins, 1974; Fields et al., 1986; Finlay and Falkow, 1989a; Garcia-del Portillo et 

al., 1993b; Galan, 1996). This ability is dependent on the presence of a complex 

array of virulence traits encoded by genes on disparate parts of the genome (some of 

which are summarised in Table 1.2). Several of these appear to regulate multiple 

factors important for successful infection. For example, the two component 

regulatory system Ph0PQ is required for invasion of epithelial cells in the gut (and 

possibly cytotoxicity) by regulating the prg genes of the invasion-protein-export 

system (Galan, 1996), and mediates resistance to the anti-microbial peptides within 

the macrophage (Fields et al., 1986; Miller et a!, 1989a). 

Disruption of many genes involved in the S. enterica infection process results in a 

decrease in virulence (Table 1.2), and as will be discussed in the following section, 

such genes have potential in the development of prophylactic therapies to diseases 

caused by S. enterica. 



Table 1.2 Summary of some of the genetic determinants involved in S. enterica virulence 

Gene or Function Role in Infection Cs °  Attenuation Reference 
Region  

galE 0-antigen (LPS) formation Protection from complement, entry into epithelial cells 18 >100, 000-fold (o) Collins ci al. (199 1) 

SPI 1 Invasion-protein-export system Entry into epithelial cells (macrophages?), cytotoxicity to macrophages 63 >50-fold (o) Galan and Curtiss 
(1989) 

SPI2 Invasion-protein-export system Entry into epithelial cells? 40 1, 00-fold (o) Shea el al. (1996) 
Cytotoxicity to macrophages? 1, 000-fold (i.p,) 

sfA Salmonella induced filaments Replication in epithelial cells 42 >1, 000-fold (o) Stein ci al. (1996) 

phoPQ Regulates genes in response to Regulates genes of the invasion-export system, regulates defence 27 >10, 000-fold (o) Miller et al. (1989a) 
acidity or low Mg2  against anti-microbial peptides in macrophage 

.rapA Component of an anti-microbial Defence against anti-microbial peptides in the macrophage 37 1, 000-fold (0) Groisman ci al. (1992) 
peptide uptake system 10, 000-fold (i.p.) 

ompR Regulates genes in response to Protects bacteria from gut environment, cytotoxicity to macrophages 76 10, 000-fold (o) Chatfield etal. (199 1) 
osmolarity 100, 000-fold (i.v.) 

fur Regulates genes in response to Defence against pH and scavenging for iron within the macrophage 17 <50-fold (i.p.) Garcia-del Portillo ci 
iron-limitation or low pH al. (1993a) 

oxyR Regulates genes in response to Defence against oxidative stress 90 - Christman etal. (1985) 
hydrogen peroxide 

recA DNA recombination repair Protects DNA from oxidative stress 62 >10, 000-fold (o) Buchineier ci al. (1993) 
enzyme 

hirA Degrades heat shock damaged Protects cells from oxidative stress 5 >10, 000-fold (o) Chatfield ci al. (1992b) 
proteins  

rpoS Alternative sigma factor that Scavenging of nutrients, resistance to multiple stresses, regulation of 64 10, 000-fold (o) Coynault ci al. (1996) 
regulates genes under starvation the Salmonella virulence plasmid 100, 000-fold (i.p.) 
stress 

C' 
Chromosomal map position in centisomes (Cs), (Chromosome split into 100 centisomes) 
Level of attenuation of the bacteria in a murine model, after disruption or mutation of the gene, compared to the virulent parental strain of S. cntcrica serovar Typhimurium administered 

orally (c), intraperitoneally (d) or intravenously (e). 



1.4 THE DEVELOPMENT OF VACCINES TO S. ENTERICA 

Diseases caused by S. enterica infection are a global health problem. On a global 

scale, typhoid fever, caused by S. typhi, remains the most serious S. enterica-related 

illness. This is especially true in the developing world, where it results in 600, 000 

deaths annually (Ivanoff et al., 1994). In addition, non-typhoidal S. enterica-related 

disease accounts for 1.3 billion incidences of human acute gastro-enteritis in the 

world each year (Ivanoff et al., 1994). The likelihood of disease is worsened by the 

poor sanitation and health care conditions many people face, especially in developing 

countries (Bloom, 1989). In addition, infection of animals by S. enterica is also 

common and not only has economic consequences, but is believed to be a major 

factor in the spread of disease through the food chain (Maurice, 1994). For example, 

it has been estimated that 57% of cattle and 70% of chickens in the USA are carriers 

of S. enterica (Jay, 1992). Unfortunately, although antibiotics have proved useful in 

combating S. enterica infection in both humans and animals (especially in the 

developed world), there is a growing concern over the development of antibiotic 

resistance which, in addition to the cost factor, makes antibiotic therapy impractical 

(Cohen and Tauxe, 1986; Pang et al., 1995). There is a major need therefore, to 

develop effective prophylactic therapies to minimise or eliminate S. enterica-related 

disease. This view has stimulated attempts to develop vaccination strategies, 

especially against typhoid fever, to combat infection by S. enterica. 

1.4.1 Vaccines composed of inactivated whole cells 

The earliest vaccines used to combat typhoid fever consisted of heat and phenol 

inactivated S. typhi cells. Although moderately efficacious, these vaccines caused 

adverse reactions including malaise and fever in around 25-40% of all subjects and 

required multiple doses for effective protection (Ivanoff et al., 1994). However, 

effective immunity to S. enterica requires the development of a strong cell-mediated 

response, and one disadvantage of this latter type of vaccine is that dead cells are 

poor inducers of cell-mediated immunity (Collins, 1974). As a result, protection is 

often short-lived (Collins, 1974; Chatfield et al., 1992a). 
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1.4.2 Vaccines comnosed of live attenuated bacteria 

Recent vaccine development has focused on attenuating live bacteria, as these persist 

in the host long enough to stimulate protective immunity yet which are attenuated to 

the level where they do not produce overt disease (Collins, 1974; Chatfield et al., 

1992a; Ivanoff et al., 1994). Although most of the developments in live, attenuated 

S. enterica-related vaccines have addressed the problem of typhoid fever, they also 

have a wider potential in controlling diseases caused by non-typhoidal S. enterica, 

especially those which relate to animals where antibiotic resistance is particularly rife 

(Cohen and Tauxe, 1986; Hassan and Curtiss, 1994). 

One of the earliest live attenuated vaccine strains to be tried was a galE mutant of the 

S. typhi strain, Ty2la, which was produced by nitrosoguanidine mutagenesis 

(Germanier and Furer, 1975). This strain lacks an essential enzyme for the 

production of a complete LPS molecule and such a mutation attenuates 

S. typhimurium in mice (approximately 105-fold) (Collins et al., 1991). However, 

subsequent investigations indicated that the galE mutation was not the attenuating 

factor in Ty2la (Hone et al., 1988). Ty2la probably contains multiple lesions 

(because of the way it was generated), which largely remain undefined. Importantly, 

it appears to be defective in the expression of RpoS and such a mutation has been 

shown to have an attenuating influence in S. typhimurium (Robbe-Saule et al., 1995; 

Coynault et al., 1996). Nevertheless, Ty2la remains the most widely used vaccine at 

present and it has been shown to provide protection in 60% of individuals for up to 7 

years, with very little adverse reaction (Ivanoff et al., 1993). However, this vaccine 

normally requires up to four doses to ensure protective immunity and in some cases it 

has been shown to be ineffective (Plotkin and Bouveretlecam, 1995). 

Direct use of S. typhi for vaccine design has been hampered by the fact that humans 

are its only host, therefore most research has focused on S. typhimurium because of 

its amenability to genetic manipulation and, because it produces a comparable 

typhoid-like disease in susceptible mice (although they lack symptoms of diarrhoea). 

Indeed, several genetic lesions that attenuate S. typhimurium in the murine model 

have been shown to be effective in attenuating S. typhi in humans. However, because 
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of the nature of undefined genetic lesions in Ty2la, attempts have been made to 

construct strains of various S. enterica serovars with defined attenuating lesions. 

Multiple lesions are also more desirable than a single lesions as additional mutations 

reduce the likelihood that the vaccine strain can revert to full virulence (Curtiss and 

Kelly, 1987; Miller, 1993). 

The design of attenuated bacterial vaccine strains has particularly profited from 

studies which investigate factors required for the virulence and propagation of 

S. typhimurium in the infection of mice. For example, studies on auxotrophic mutants 

such as aro (Hosieth and Stocker, 1981), or mutants of global regulators, such as cya 

and crp (which regulate many genes involved in the metabolism of carbohydrates 

(Curtiss and Kelly, 1987)), phoPQ (Miller et al., 1990), ompR (Dorman et al., 1989; 

Chatfield et al., 1991), and rpoS (Coynault et al., 1996) have identified attenuating 

lesions of potential use for vaccine development. 

Most of the recent developments in the use of live attenuated bacteria, have focused 

on S. typhimurium aro mutants which were shown by Hosieth and Stocker (1981) to 

be attenuated approximately 10 6  _fold, in comparison to a parental strain, when 

injected intraperitoneally into mice. These mutants are unable to produce para-amino 

benzoic acid (PABA) or 2,3-Dihydroxybenzoic acid, essential compounds for 

producing folates, ubiquitin, aromatic amino acids and enterochelin. Furthermore, 

these precursor compounds are not present in mammalian tissues and this results in a 

reduction in the rate of growth within the mammalian host (Hosieth and Stocker, 

1981; Ivanoff et al., 1994). Nevertheless, although these bacteria are attenuated, they 

are still capable of reaching the reticuloendothelial system and persist in the host 

long enough to induce protective immunity. 

An S. typhi vaccine (CVD908) has been produced which carries defined lesions in 

both the aroC and aroD genes (Tacket et al., 1992). Clinical trials have indicated it is 

100-fold more immunogenic than Ty2 1 a and the number of doses required is less, 

with good protection occurring even after a single dose (Ivanoff et al., 1994; Pang et 

al., 1995). However, in a number of cases this vaccine resulted in symptoms of 

typhoid fever and this has prompted the introduction of additional lesions in order to 
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try and reduce the reactogenicity (Miller et al., 1993; Ivanoff et al., 1994). These 

additional mutations have included phoPQ (Hohmann et al., 1996), purA (needed for 

purine metabolism)(Levine et al., 1987), htrA (Chatfield et al., 1992b) and rpoS 

(Coynault et al., 1996). However, addition of either the phoPQ or pur mutations in 

the aro strain resulted in over-attenuation and highlighted the need to maintain a 

careful balance between attenuation and virulence when constructing genetically 

defined vaccines. 

Vaccines that use live attenuated S. enterica cells as carriers of heterologous antigens 

Live, attenuated S. enterica strains have been shown to persist within their hosts and 

to induce good immune responses. This makes them ideal carriers for foreign 

antigens, providing a means for inducing protective immune responses to both 

S. enterica and the expressed antigen. This strategy has particular appeal because it 

may be possible to generate immunological protection to multiple pathogens with a 

single vaccine. S. typhimurium aro mutants have been used to present antigens to the 

immune system to provide varying degrees of protection against Leishmania and 

malarial antigens, portions of cholera and diphtheria toxins and viral coat proteins 

(Chatfield et al., 1992a; Gonzalez etal., 1994; Verma et al., 1995; Chabalgoity et al., 

1996; Karem etal., 1997). 

One problem however, is the stability of the system for antigen expression in the 

host. Plasmids have been used to express the foreign antigen but these can be rapidly 

lost in the absence of selection by the dividing bacteria. For example, Cardenas and 

Clements (1993) demonstrated that over 99% of S. typhimurium cells injected into 

mice lost their expression plasmid within 24 hours. Attempts have therefore been 

made to increase the maintenance of the plasmid (Galan et al., 1990). One study 

stabilised the maintenance of the expression vector by co-expressing the product of 

the asd gene from the plasmid together with the antigen of interest in an attenuated 

S. typhimurium asd mutant (Galan et al., 1990). Mutants of asd are unable to make 

the cell wall component diaminopimelic acid, which is involved in cross-linking the 

peptidoglycan of the bacterial cell wall, and therefore there is strong selection for the 



maintenance of the plasmid. An alternative method to stabilise the expression of the 

foreign antigen has been to incorporate it into the chromosome. However, this has the 

disadvantage of lowering the copy number which in turn reduces the ability of the 

antigen to stimulate the immune response (Andersen et al., 1996; Verma et al., 

1995). 

1.4.3 Vaccines composed of chemically defined subunits 

The Vi nolvsacchande of S. tvphi 

Although cell-mediated immunity has been suggested as essential to protection 

against infection (Collins, 1974; Mastroeni et al., 1993) at least one vaccine currently 

tested depends solely on humoral immunity. Virulent isolates of S. typhi are 

surrounded by a polysaccharide capsule, consisting of a polymer of galacturonic acid, 

and loss of this capsule has been associated with loss of virulence (Plotkin and 

Bouveretlecam, 1995). The purified capsular polysaccharide (Vi polysaccharide) has 

been tried in vaccine trials and as little as a single dose of 25 p.g was found to result 

in 65% protection for up to 3 years. Moreover, it produced only mild adverse 

reactions (Ivanoff et al., 1994; Plotkin and Bouveretlecam, 1995). However, since 

this vaccine is specific for the Vi antigen of S. typhi it is unlikely to have a broader 

use for general protection against serovars of S. enterica. 

Polyi,entide subunit vaccines 

Perhaps the ideal vaccine would consist of defined immunogenic polypeptides 

because these would be less likely than whole cells to induce adverse reaction 

(Horwitz et al., 1995). Moreover, there is concern that injection of live attenuated 

S. enterica cells may result in temporary immunological unresponsiveness to 

heterologous antigens and this could provide a window of opportunity for infection 

by other pathogens (Al-Ramandi et al., 1992). However, there is a paucity of data 

relating to the effectiveness of polypeptides in inducing protective immunity, 

possibly as a consequence of the pursuit of vaccines involving attenuated bacterial 

strains. Nevertheless, the reasons why live bacterial vaccines are believed to be so 
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effective in inducing cell-mediated immunity has been attributed largely to the 

production of proteins by S. enterica, in response to the host environment, which are 

identified by TH cells (Kagaya et al., 1992). It is likely then, that a combination of 

proteins capable of stimulating TH cells could be used as the basis of a protective 

vaccine. In support of this, a number of S. typhimurium polypeptides have been 

shown to elicit DTH and antibody responses, when appropriately administered, 

indicating that specific proteins may be able to generate some level of protective 

immunity. Indeed, the injection of S. typhimurium-derived porins or a hydrogen 

peroxide-inducible catalase (KatU) into mice was shown to provide some degree of 

protective immunity against subsequent challenge with a virulent strain of 

S. typhimurium (Udhayakumar and Muthukkaruppan, 1987; Kagaya et al., 1992). 

Such an approach obviously warrants further investigation. 

1.5 AIMS OF THE PRESENT STUDY 

1.5.1 Background 

Macrophages play a critical role in defence against infection of the host by 

S. enterica and the ability of S. enterica to survive within macrophages is essential 

for virulence (Fields et al., 1986). Macrophages are equipped with an arsenal of 

oxygen-dependent and -independent anti-microbial effector mechanisms (Adams and 

Hamilton, 1984; Foster and Spector, 1995). Thus, genes which are expressed within 

the macrophage may promote the survival of S. enterica and have a role in virulence. 

Using a Mudlux transcriptional reporter system, Francis and Gallagher (1993) 

identified a S. typhimurium hydrogen peroxide-inducible locus which was expressed 

upon contact and within macrophages. Further studies demonstrated that this was the 

OxyR-regulated locus ahpCF (alkyl hydroperoxide reductase) (Francis, PhD Thesis, 

1993). AhpCF prevents lipid peroxidation of the cell membrane by converting alkyl 

hydroperoxides to their corresponding non-toxic alcohols (Jacobson et al., 1989; 

Tartaglia et al., 1990). Subsequently, in an independent study, a second OxyR 

regulated gene, dps (DNA-binding protein of starved cells), was shown to be induced 

within the macrophage environment indicating in vivo expressed genes that defend 
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against hydrogen peroxide, particularly the OxyR regulon, may have an important 

role in the virulence of S. enterica. 

1.5.2 Project aims 

Regulation of the ahp locus 

The genes of the OxyR regulon are induced after exposure of S. lyphimurium to 

hydrogen peroxide. However, a number of OxyR-regulated genes including dps, 

katG and gorA have been demonstrated to show OxyR-independent regulation via the 

stationary phase sigma factor, RpoS (Altuvia et al., 1994; Ivanova et al., 1994; 

Becker-Hapak and Bisenstark, 1995). Moreover, S. aureus and B. subtilis 

homologues of ahpC were recently demonstrated to be induced under osmotic stress 

(Armstrong-Buisseret et al., 1995; Antelmann et al., 1996). The ability of 

OxyR-regulated genes to be regulated under different conditions might indicate that 

their functions may be required for additional roles other than simply defence against 

the respiratory burst of macrophages. However, the role of the stationary phase sigma 

factor and osmotic stress in the regulation of the S. typhimurium ahpCF had not been 

reported previously, and so constituted part of the present study. 

The role of the ahp and oxyR loci in the virulence of S. enterica 

Vaccine development for controlling S. enterica infection has prospered from 

investigations into the molecular genetic basis of S. enterica virulence (Chatfield et 

al., 1992a). Since the ahp locus is expressed during interaction with macrophages it 

was perceived that it may play a vital role in the virulence of S. typhimurium. In 

addition, the demonstration that a second OxyR-regulated gene, dps (Valdiva et al., 

1996), was induced within the macrophage may implicate OxyR as an important 

regulator of a number of virulence genes. The role of these loci upon the virulence of 

S. enterica was also assessed as part of this study. 
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The immunological properties of the AhpC protein 

The effectiveness of vaccines composed of live attenuated S. enterica cells to 

stimulate strong protective immunity has been attributed to the presence of 

immunogenic proteins expressed in response to the host environment i.e. in 

vivo-expressed antigens (Kagaya et al., 1992). However, very little information 

currently exists about the immunological properties of the majority of S. enterica 

polypeptides. Because the ahp locus had previously been shown to be expressed 

during macrophage interaction (Francis and Gallagher, 1993), it was perceived that, 

potentially, the Ahp proteins could be recognised by the host immune system. The 

immunological properties of the AhpC protein were therefore investigated as part of 

this study. 
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CHAPTER 2 

Materials and Methods 



2.1 MATERIALS 

2.1.1 Enzymes, isotopes and chemicals 

Enzymes were obtained from Boehringer Mannheim (Sussex, UK). Agarose was 

purchased from FMC BioProducts (Rockland, USA); antibiotics were supplied by 

Sigma Chemical Company Ltd. (Dorset, UK); Isopropyl-3-D-thiogalactoside (IPTG) 

and 5-bromo-4-chloro-3-indoyl-3-D-galactoside (X-gal) were obtained from 

Boehringer Mannheim. Rabbit anti-mouse antibodies were supplied by Sigma 

Chemical company Ltd. Other standard laboratory chemicals were supplied from 

Sigma Chemical company Ltd., BDH Chemicals Ltd. (Dorset, UK), and Fisons 

Scientific Equipment (Leicestershire, UK). Hybond-N nylon membrane was 

purchased from Amersham International plc. (Buckinghamshire, UK) and nitro-

cellulose was obtained from Schleicher and Schuell (Dassel, Germany). X-ray film 

(AGFA Curix RP1, 100 NTF) was supplied by H. A. West (Edinburgh, UK). 

Stabilised solutions of [a- 32P]-dCTP (3, 000 Ci mmoF 1 ) and [35S]-methionine (800 

Ci minor') were purchased from Amersham International plc., and NEN Du Pont 

Ltd. (Hertfordshire, UK), respectively. 

Synthetic oligonucleotides were purchased from Oswel DNA Service (Edinburgh, 

UK) or Perkin and Elmer Ltd. (Cheshire, UK). The oligonucleotides used in this 

study are listed in Table 2.1. 

2.1.2 Bacterial strains and plasmids 

Bacterial strains and plasmids and their sources are shown in Tables 2.2 and 2.3. 
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Primer Name Primer Sequence Comments and usage 

G7858 5'- GCGGATCCCAAAAACCAGGCGTFCA -3' PCR of the S. typhimurium 
(198-214) BamHI ahpCF locus (5'-3') 

G7859 5'- CGAAGCTFGGTGCGAATCAGATAAT -3' PCR of the S typhimurium 
(2524-2508) HindIII ahpCF locus (3'-5') 

N5138 5'- GGAA1TCCATATGTCCTFAA1TAA -3' PCR of the S typhimurium 
(156-179) NdeI ahpC gene (5'-3') 

N5139 5'- GCGGATCCAACGCAGCTATGGC -3' PCR of the S. typhimurium 
(761-748) BamHI ahpC gene(3'-5') 

G8493 5'-GCGATATC AAGCTIT ACGCGTCGTAGC PCR of the pBR325 cml 
(5270-5245) EcoRV 	Hindlil 	MlziI cassette (3'-5') 

ACCAGGCG1TFAAGCIGCAC -3' 

H1286 5'- GGGATATC AAGCTI' GTI'AACCGTCTA PCR of the pBR325 cml 
(2288-2316) EcoRV 	Hindlil 	HpaI cassette (5'-3') 

AGAAACCATFATFATCATG -3' 

M6184 5'-CCGGATCCTI'ACTCGCGGAACAGCG-3' PCR of the S. typhimurium 
(1353-1335) BamHI rpoS gene (3'-5') 

M0917 5'-CCAAGCTFATGTFCCGTCAAGGGAT-3' PCR of the S typhimurium 
(1-18) HindIll rpoS gene (5'-3') 

OXYR1 5'-CCGAATFCATCGCCATGACTATCG-3' PCR of the E. co/i or 
(167-183) EcoRI S. lyphimurium oxyR gene 

(5'-3') 

OXYR2 5'- CCAAGCTFATATCGGTCAGGCGATT -3' PCR of the E. co/i oxyR 
(1238-1211) HindIll gene (3'-5') 

OXYR3 5'- CCGAATFCATATCGGTCAGGCGATf -3' PCR of the E. coli or 
(1238-1211) EcoRI S. lyphimurium oxyR gene 

(3'-5') 

T7 5 '-AATACGACTCACTATAG-3' Sequencing of the 
(736-720)  S. lyphimurium oxyR gene 

Table 2.1 Primers used during the course of the present study 

Shown is a list of primers (oligonucleotides) that were used during the course of this investigation. 

The numbers shown in parentheses refer to the position at which each of the primers lay with respect 

to the published sequence from which they are derived; ahpCF (Tartaglia et al., 1990); oxyR 

(Christman etal., 1989); rpoS (Prince etal., 1994); cml (Bolivar et al., 1988). 



Table 2.2 Table showing the E. coli and S. typhimurium strains, and their derivatives, 

which were used during the course of this study 

Bacterial Strain Genotype Source/Reference 

Escherichia coli 

BL21(DE3) hsdS gal (?cIts857 indl 	Sarn7 nin5 Studier et al. (1990) 
1acUV5-T7 gene 1), pLysS 

JM101 supE 	thi-] 	A(lac-proAB) 	F'[traD36 Yanisch-Perron 
proAB 	ZAM15] (1985) 

DH5ct supE44 	A1acU169 (80 	1acZAM15) Hanahan(1985) 
hsdRl 7 recAl endAl gyrA96 thi-1 relAl 

K090 hsdR2 P-groE, kan N. McClennan 

MPG480 BL21(DE3), pET-19b This thesis 

MPG481 BL21(DE3), pPDT14 This thesis 

Salmonella 
typhimurium 

CH23 recAl C. Higgins 

CH1350 LT2 opp250ppB84::Mu dl-8 Dorman et al. (1989) 
ompRi 009: :Tnl 0 

CH1701 LT2 osmZ6::TnlO Hulton etal. (1990) 

SL1344 his Hosieth and Stocker 
(1981) 

SF 1005 ATCC 14028s rpoS::bla Fang etal. (1992) 

TA4 100 LT2 oxyRl Christman et al. 
(1985) 

TA4 108 LT2 oxyA2[oxyA(oxyR argH) 2] Christman et al. 
(1985) 

TT15276 MS 1868 melAB396::MudP Benson and Goldman 
(1992) 
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Table 2.2 (continued) 

Bacterial Strain Genotype Source/Reference 

MPG203 SL1344 ahp::Mudlux Francis and Gallagher 
(1993) 

MIPG350 LT2 ahp: :Mudlux This thesis 

MPG352 TA4108 ahp::Mudlux This thesis 

MPG470 SL1344 rpoS::bla This thesis 

MPG471 MPG203 rpoS::bla 	 - This thesis 

MPG473 SL1344 ahp::cml This thesis 

MPG474 MPG203 ompRl009::TnlO This thesis 

MPG475 MPG203 osmZ6::TnlO This thesis 

MPG477 MPG352 pPDT3 This thesis 

MPG478 MPG352 pBAD18 This thesis 

Jv[PG479 SL1344 aroA554::TnlO This thesis 

MPG482 CH23 pPDT1 5 This thesis 

MPG484 SL1344 oxyR::kan This thesis 

MPG485 MPG484 pPDT3 This thesis 

MPG486 MPG484 pPDT4 This thesis 

MPG487 MPG484 pBAD18 This thesis 

MPG488 SL 1344 pBADLAC This thesis 



Table 2.3 Plasmids 

Table showing all the plasmids and their derivatives mentioned in this thesis 

Plasmid Relevant Features Source Reference 

pBR322 pMBl replicon, Amp', TetR Bolivar et al. (1977) 

pBR325 pMBl replicon, AmpR,TetR,  Cml' Bolivar etal. (1978) 

pBAD18 
R pMB1 replicon, Amp , contains the Guzman etal. (1995) 

arabinose inducible PBAD  promoter 

pBADLAC pBAD 18 derivative containing the E. coil N. McClennan 
iacZ gene on a 4.0 kb Smal-SnaBI 
fragment (from pRS551) 

pGEM-T ColE 1 replicon, AmpR,  lacZa Promega 

pLysS Cml', pACYC 184 derivative containing Studier et al. (1990) 
T7 lysozyme gene 

pET-19b Co1E1, Amp', P17  Novagen 

pUC4-K pUC19 derivative carrying a kan cassette Pharmacia 

pGT3270 Amp  pJFl 18EH derivative carrying McClennan et al. (1993) 
2.1 kb EcoRl -Hin dill groESL fragment 
from E coli 

pPDT3 pBAD 18 derivative containing a 1.1 kb This thesis 
EcoRI-Hin dlii fragment of the E. coii 
oxyR gene, amplified using primers 
OXYR1 and OXYR2 

pPDT4 pBAD 18 derivative containing a 1.1 kb This thesis 
EcoRi-Hin dlii fragment of the oxyR gene 
from S. typhimurium strain TA4 100, 
amplified using primers OXYR1 and 
OXYR3 

pPDT5 pBR322 derivative containing a 2.3 kb This thesis 
BamHI-HindIII fragment carrying the 
S. typhimurium ahpCF locus, amplified 
using primers G7858 and G7859 



Table 2.3 (continued) 

Plasmid Relevant Features Source Reference 

pPDT6 pPDT5 derivative containing a 0.98 kb This thesis 
MluI-HpaI fragment caning the cml 
cassette from pBR325, amplified using 
primers G8493 and H1286 

pPDT7 pGEM-T derivative containing a 1.1 kb This thesis 
EcoRI fragment of the S. typhimurium 
SL 1344 oxyR gene, amplified using 
primers OXYR1 and OXYR3 

pPDT8 pPDT7 derivative containing the 1.3 kb This thesis 
Hincil fragment from pUC4K, carrying a 
kan cassette, subcloned into the smal site 
of oxyR 

pPDT14 pET-19b derivative containing a 0.6 kb This thesis 
NdeI-BamHI fragment carrying the ahpC 
gene from S. typhimurium, amplified 
using primers N5138 and N5139 

pPDT1 5 pBR325 derivative containing an EcoRI This thesis 
fragment of approximately 6.5 kb, 
subcloned from Mud-P22 DNA, obtained 
from S. typhimurium strain TT 15276 



2.1.3 Solutions 

All solutions were made up in dH 20 and sterilised by autoclaving at 15 pounds per 

square inch for 20 minutes prior to use. Heat labile components were separately filter 

sterilised and added to the main solution after the latter were autoclaved. 

Tris. Cl: 

Tris base (tris [hydroxymethyl] aminomethane) was dissolved to the desired molarity 

in dH20 and the pH was adjusted to the required value by addition of concentrated 

HC1. 

EDTA: 

EDTA (ethylenediaminetetraacetic acid, di-sodium salt) was dissolved in dH 20 to a 

concentration of 0.5 M and was adjusted to pH 8.0 by addition of NaOH. 

TE buffer: 

1 litre of buffer contained 10 mM Tris. Cl (pH 8.0) and 1 mM EDTA dissolved in 

dH2O. 

lOx TBE buffer: 

1 litre of buffer contained 0.9 M Tris. Cl (pH 7.5), 0.9 M Boric acid and 0.02 M 

EDTA dissolved in dH20. 

20x SSC: 

1 litre of 20x SSC contained 3 M NaCI and 0.3 M tn-sodium citrate dissolved in 

dH2O. 

Sodium Acetate: 

Sodium acetate was dissolved in dH 20 to a final concentration of 3 M and the pH 

adjusted to 5.0 with acetic acid. 
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Ethidium Bromide: 

Ethidium bromide was dissolved as a stock solution of 10 mg mY' in dH 20 and 

stored at room temperature in the dark. 

6x DNA loading buffer: 

6x loading buffer for nucleic acid gel electrophoresis consisted of a 40% (w/v) 

sucrose solution with 0.25% (w/v) bromophenol blue. 

UM 

Dulbecco's phosphate buffered saline (PBS), pH 7.4, was prepared by dissolving 1 

tablet of PBS (800 mg NaCl, 20 mg KC1, 144 mg Na 2HPO4, 24 mg KH2PO4  in 100 

MI. 

Antibiotic Solutions: 

All antibiotic solutions were used as indicated in Table 2.4. Aqueous solutions were 

filter sterilised prior to use, and all were stored at -20°C. 

Table 2.4 Antibiotics used during this investigation 

ANTIBIOTIC SOLVENT STOCK 
CONCENTRATION 

FINAL 
CONCENTRATION 

Ampicillin H20 10 mg mY' 50 jig ml- ' 

Chloramphenicol Ethanol 34 mg ml- ' 5 tg ml-1  

Kanamycin 1120 10 mg mY' 50 jtg ml-1  

Tetracycline 70% 
Ethanol  

5 mg mY' 10 tg MI-1  



Protein Standard Approximate 
Molecular Weight (Da) 

a-Lactalbumin 14,200 

Tryp sin Inhibitor 20,100 

Trypsinogen 24,000 

Carbonic Anhydrase 29,000 

Albumin (egg) 45, 000 

Albumin (bovine) 66,000 

Table 2.5a Molecular weight markers 

Markers (MW-SDS-70L, Sigma) were used as a mixture of standards for 

SDS-PAGE. 

Protein Standard Native Molecular Apparent 
Weight (Da) Molecular Weight 

(Da) 

13-Galactosidase 116,000 120,000 

Pyruvate Kinase 58, 000 75, 200 

Trisosephosphate Isomerase 26,600 35, 200 

Table 2.5b Pre-stained molecular weight markers 

Markers (SDS-7B, Sigma) were used as a mixture of standards for SDS-PAGE. 



2.1.4 Molecular weight standard markers 

Molecular weight standard markers (normal and pre-stained) for 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of proteins are 

indicated in Tables 2.5a and b. 

2.1.5 Media 

Luria-Bertani (LB) medium and agar: 

LB media consisted of Difco bacto-tryptone (10 g), Difco yeast extract (5 g) and 

NaCl (10 g), unless otherwise stated, dissolved in 1 litre of dH 20. The pH was 

adjusted to pH 7.2 with 5 N NaOH and the solution sterilised by autoclaving. LB 

agar was formed by adding 15 g 11 Difco bacto-agar. 

LC top agar: 

LC top agar consisted of Difco bacto-trptone (10 g), Difco yeast extract (5 g), NaC1 

(5 g) and Difco bacto-agar (7 g) dissolved in 1 litre of dH 20. The pH was adjusted to 

pH 7.0 and the solution sterilised by autoclaving. 

Soc medium: 

Soc media was made from Difco bacto-tryptone (20 g), Difco yeast extract (5 g), 

NaCl (10 mM), KC1 (2.5 MM),  MgC12  (10 MM),  MgSO4  (10 mM) and glucose (20 

mM) dissolved in 1 litre of dH20. The solution was sterilised by autoclaving. 

Spitzizen Minimal Medium: 

Spitzizen minimal medium (Spitzizen, 1958) consisted of 300 ml dH 20, 80 ml (4x) 

Spitzizen Salts (7 g K2HPO4, 10 g (NH4)SO4, 3 g KH2PO4 , 5 g sodium citrate and 1 g 

MgSO4.7 H20 dissolved in 1 litre of water), 10 ml 20% (w/v) glucose and 0.5 ml 

thiamine B  (1 mg m15. 
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2.2 METHODS 

2.2.1 Manipulations of bacteria and phage 

Growth of bacterial cultures 

Liquid cultures of S. typhimurium and E. co/i were prepared by inoculating a 5 ml 

volume of LB broth (plus a suitable antibiotic if required) with a single bacterial 

colony. Cultures were grown at 37°C with shaking (300 rpm) unless otherwise stated. 

Larger cultures were prepared by diluting an overnight culture 100-fold in conical 

flasks, with an overall capacity 5-10 fold greater than that of the culture volume, 

under the growth conditions stated above. 

Storage of bacterial cultures 

For long term storage of bacterial cultures, a 1 ml volume of an overnight culture was 

mixed with 75 tl of DMSO and stored in a sterile vile at -80°C. A culture was 

recovered by streaking onto an agar plate, containing antibiotic if necessary. After 

overnight incubation at the correct temperature a single colony was picked and a 

fresh culture propagated. For short term storage (4-6 weeks) bacteria were stored as 

streaks on agar plates at 4°C. 

Measurement of bioluminescence from strains bearing the Mudlux element following 

exposure to hydrogen peroxide stress 

S. typhimurium strains carrying the Mudlux bioluminescent reporter system in the 

ahp locus were tested for light emission in response to exposure of cells to hydrogen 

peroxide. Overnight cultures were grown in LB medium containing the appropriate 

antibiotic(s) at 37°C with shaking. Cultures were then diluted into fresh media, 

typically at a cell density of i0 5  cells mF 1 , and grown for two hours at 30°C to 

re-establish exponential growth (for modifications see results section). Samples were 

then treated with 100 jiM hydrogen peroxide (Sigma) and light production was 
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recorded at appropriate intervals in a 96-well plate-reading luminometer (Labsystems 

Luminoskan), as relative light units per second (RLU 1)  Samples were monitored at 

30°C for the duration of the experiment. 

Measurement of bioluminescence from strains bearing the Mudlux element following 

exposure to osmotic stress 

S. typhimurium strains bearing the Mudlux light reporter system in the ahp locus 

were examined for light emission in response to osmotic upshift. Cultures to be 

tested were grown at 37°C with shaking in LB medium containing the appropriate 

antibiotic. In order to test the osmotic inducibility of the ahp::Mudlux strain and its 

derivatives, an LB medium was used containing 1 g F' NaCl, instead of 10 g 1 -1 , so 

that the osmolarity of the medium could be raised to the required level. Overnight 

cultures were diluted to a density of 10 cells ml -1  into this LB medium and 

pre-incubated for a further 2 hours at 30°C to re-establish exponential growth, prior 

to osmotic upshift. Osmotic stress was then brought about by adding NaCl to a final 

concentration of 0.3 M, unless otherwise stated. Cells were then recorded for light 

emission in a 96-well plate-reading luminometer, as relative light units per second 

(RLU sd), at 30°C for the duration of the experiment. For cells bearing the plasmid 

pPDT3, this protocol was modified such that after 30 minutes of pre-incubation, 

arabinose was added to a final concentration of 0.5 % (w/v), and samples were 

incubated a further 1.5 hour before being subjected to the osmotic stress. 

-galactosidase enzyme assay 

The expression of the lacZ gene was measured using a 3-galactosidase enzyme assay, 

as essentially described by Miller (1972b). The strain of interest was diluted to 

approximately i0 5  c.f.u. ml- ' and grown at 37°C until the 0D 600  had reached 0.1-0.2. 

Assays were performed in 1 ml volumes in 1/4 ounce Bijou bottles. 0.5 ml of the 

culture was added to 0.5 ml of enzyme buffer (per litre: 0.06 M Na 2HPO4 .71120, 

0.04 M NaH2PO4 .H20, 0.01 M KC1, 0.01 M MgSO4.7H20 and 0.05 M 

-mercaptoethanol), 50 j.il 0.1% SDS and 100 jtl chloroform. The sample was then 
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vortexed for 30 seconds to permeabilise the cells. (If the culture density was greater 

than 0D600  0.1-0.2, the sample was diluted appropriately with LB immediately prior 

to proceeding with the assay). 200 id of ONPG (o-nitrophenyl--D-galactoside; 

Sigma) (4 mg mf' in 0.1 M Mops, pH 7.0) was added to the sample and mixed by 

inversion. The sample was then incubated at 28°C until a visible yellow colour was 

observed. 0.5 ml of 0.5 M Na2CO3  was added to stop the reaction and the tube 

centrifuged at 20, 000 g for 30 seconds to remove cell debris (this measure would 

prevent any effect of light scattering due to suspended debris in subsequent 

spectrophotometric determinations). 1 ml of the cleared sample was then measured in 

a spectrophotometer at 0D 420  and 3-galactosidase activity was calculated using the 

following equation: 

1, 000 x (0D420/ t x d x 0D 600) 

where t = the time (minutes) of incubation of the samples until a yellow colour 

appeared, d = the dilution factor (value is normally 1 unless sample was diluted prior 

to assaying). All tests were performed in triplicate and the values were expressed as 

Miller Units i.e. Enzyme units per cell mass (Miller, 1972b). 

Determination of the sensitivity of S. tvphimurium strains to peroxide stress using a 

disc inhibition assay 

Disc inhibition assays were performed essentially as described by Christman et al. 

(1985). Cultures to be tested were grown overnight at 37°C with shaking in LB 

medium containing the appropriate antibiotic. For each strain, 100 tl volumes of 

culture were mixed with 3 ml of LC top agar (50°C) and poured onto an LB agar 

plate. Once the top agar had set, a 5 mm Whatman No. 4 cellulose disc was placed 

carefully onto the centre of the plate and 10 .tl of 3% hydrogen peroxide (v/v in 

dissolved dH20) or 10 p1 of 3% cumene hydroperoxide (v/v dissolved in DMSO) 

was dispensed ono the disc. Plates were then incubated at 37°C overnight and the 

zone of killing measured. Tests always included a virulent strain of S. typhimurium, 

SL 1344, as a control. 
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Prenaration of P22 nhae Mates 

S. typhimurium strains carrying the desired chromosomal alteration were cultured 

overnight in the presence of an appropriate antibiotic. A culture was diluted 100-fold 

into 10 ml of fresh LB medium and incubated until the 0D 600  had reached 0.2-0.3 

10 j.tl of a P22 stock (titre i0 9  phage ml-1 ) was added to the culture and the incubation 

was continued for at least 6 hours. 200 p3 of chloroform (CHC1 3) was then mixed 

with the culture, by inversion, several times and the mixture was left for 2 hours at 

4°C. The culture was then centrifuged at 3, 000 g for 15 minutes in a bench-top MSE 

Centaur 1 centrifuge to remove cell debris. The supernatant was transferred to a fresh 

universal bottle and a further 200 j.il of CHC1 3  was added and the sample was mixed 

as before. The sample was then left at 4°C overnight and centrifuged to remove any 

further debris. The supernatant from this final spin, containing the P22 phage, was 

stored in a fresh universal bottle at 4°C with 100 t1 CHC1 3  until further use. 

Phage P22 titration 

An appropriate host strain was cultured overnight in LB. 100 p.1 volumes of culture 

were dispensed into a set of 9 sterile micro-centrifuge tubes, and 100 p1 volumes of a 

serially diluted phage lysate (typically diluted from 108105  phage ml-1 ) were added. 

Tubes were then incubated at 30°C for 30 minutes. 100 p.1 volumes of each tube were 

added to 3 ml of LC top agar (50°C) and poured onto LB plates. Controls containing 

P22 phage or cells only were also included. Plates were incubated overnight at 37°C 

and titres were calculated by enumerating the number of plaques formed at each 

dilution. 

Phage P22 transduction 

Phage P22 transduction was performed by the method of Roth (1970). Strains to be 

transduced were grown as overnight cultures in LB medium. 100 p.1 aliquots of the 

recipient strains were dispensed into 5 sterile micro-centrifuge tubes, and 100 p.l of a 
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serially diluted P22 phage lysate (dilution range i0 9-i05  phage ml- ') was added to 

each. Tubes were mixed by inversion and incubated at 30°C for 30 minutes. The 

contents of each tube was then plated onto LB agar plates containing the appropriate 

antibiotic, and incubated overnight at 37°C. Controls containing P22 phage or cells 

only were also included. Following overnight incubation transductants were streaked 

several times on selective LB agar plates to remove residual P22 phage. 

Preparation of a Mud-P22 lysate 

Mud-P22 lysates used for mapping and isolating specific portions of the 

S. typhimurium chromosome, were prepared as outlined by Benson and Goldman 

(1992). The required Mud-P22 lysogen was grown overnight in 5 ml LB medium 

containing chioramphenicol (40 j.tg ml -1 ). The complete overnight culture was added 

to 25 ml of LB broth containing chloramphenicol and mitomycin C (final 

concentration 2 ig ml -1 ) and was incubated overnight at 37°C with aeration. 3 ml of 

CHC13  was added and the flask was vigorously shaken for 5 minutes. The 

supernatant was then decanted off from the CHC1 3  and centrifuged in a Beckman J2-

21 (JA-20 rotor) for 10 minutes at 8, 000 g, to remove cell debris. The pellet of phage 

particles was then resuspended in 1 ml of TE and phenol/chloroformed (see later) to 

extract the bacterial DNA. 

2.2.2 Nucleic acid manipulation and detection methods 

Agarose gel electrophoresis 

DNA was resolved by agarose gel electrophoresis. The gel consisted of 

electrophoresis grade agarose (0.8% w/v in lx TBE unless otherwise stated) 

containing 0.5 p.g ml-1  ethidium bromide. DNA was prepared for loading with 1/6th 

volume of 6x loading buffer and electrophoresed at 100 V, in a 110 mm x 150 mm 

horizontal gel unless otherwise indicated, until suitable resolution had been obtained. 

Nucleic acid size was estimated in relation to the position of pre-digested Hindlil 

phage Lambda DNA fragments (from Boebringer Mannheim) in the agarose gel. 
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DNA was visualised under UV light (A.=313 nm) and photographed using a 

Mitsubishi video copy processor. 

Equilibration of phenol 

Phenol (Rathbum Chemicals) was prepared by the addition of 0.1% (w/v) 

8-hydroxyquinoline, followed by an equal volume 0.5 M Tris. Cl, pH 8.0. This 

solution was mixed by stirring for 15 minutes and the phenol and Tris. Cl phases 

were allowed to separate. The upper (Tris. Cl phase) was removed and an equal 

volume of 0.1 M Tris. Cl pH 8.0 was added to the phenol, and mixed as before. The 

upper phase was removed and the equilibration process was continued until the 

phenolic phase reached a pH above 7.8. The phenol was then dispensed in 10 ml 

volumes and stored with I ml 0.1 M Tris. Cl pH 8.0 in a light tight bottle at -20°C. 

Phenol/Chloroform extraction of DNA 

Phenol/chloroform extractions were performed to remove cell debris and proteins 

associated with DNA. To one volume of a DNA solution, an equal volume of 

equilibrated phenol was added and the solution was mixed vigorously with vortexing. 

The aqueous phase (containing the DNA) and the phenolic phase were separated by 

centrifugation at 20, 000 g for two minutes. The aqueous layer was then transferred 

to a fresh receptacle and one volume of CHC1 3  was added. The two phases were 

mixed and separated as before and the process was repeated. Finally, the aqueous 

layer was transferred to a fresh tube, leaving a small amount to prevent carry-over of 

the chloroform phase. 

Ethanol precipitation of nucleic acid 

In a micro-centrifuge tube, one tenth volume of sodium acetate (3 M, pH 5.0) was 

added per volume of DNA, followed by 2.5x this total volume of absolute ethanol. 

The solution was mixed thoroughly and left at -80°C for 15 minutes, after which the 

DNA was pelleted by centrifugation at 20, 000 g for 15 minutes. The pellet was then 
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washed with 1 volume of 70% ethanol, to remove salt, and centrifuged for a further 

5 minutes at 20, 000 g. The pellet was then dried under vacuum and resuspended in 

dH2O. 

Restriction endonuclease digestion of DNA 

0.1-20 p.g of DNA was digested in dH20 containing 1/10th volume of a lOx enzyme 

buffer (appropriate to the enzyme) and enzyme was added according to the 

manufacturers guidelines (normally 1 unit of enzyme per 1 tl). Digestion was 

allowed to proceed for 1-2 hours at 37°C (unless the manufacturer suggested 

otherwise) and overnight for chromosomal DNA. For double digests involving 

enzymes with different recommended buffers, DNA was first cleaved with the 

enzyme requiring the lowest salt buffer, after which the digest was optimised for the 

higher salt buffered enzyme. 

Dephoshorvlation of vector DNA 

Plasmid vectors digested with restriction enzymes were treated with shrimp alkaline 

phosphatase (SAP) to aid cloning of inserts into the vector. The cut vector DNA was 

incubated at 37°C for 1 hour in dH 20 containing 1/10th volume of a lOx SAP buffer 

and 1 unit of SAP. The SAP was then inactivated by incubation at 65°C for 

20 minutes, and the DNA was purified by phenol/chloroform extraction, followed by 

ethanol precipitation. 

Recovery of DNA from agarose gels 

The DNA fragment of interest was resolved on an agarose gel as described 

previously. A slice of gel containing the DNA was removed, weighed and purified 

using "Geneclean II" (BIO101). Briefly, 0.5 volumes of TBE modifier was added 

with 4-5 volumes of sodium iodide to the gel slice (where 1 g of gel is assumed to be 

equivalent to 1 ml). The gel slice was then melted at 45-55°C, after which 5 tl of a 

silica binding-matrix ("GLASSMILK") was added to the sample. The sample was 

95 



then mixed thoroughly and incubated on ice for 5 minutes, with further mixing every 

1-2 minutes to ensure the "GLASSMILK" stayed in suspension. The silica, with 

bound DNA, was pelleted by spinning at 20, 000 g for 5 seconds and the supernatant 

was removed. The pellet was resuspended in 0.5 ml of "NEWWASH" and spun at 

20, 000 g for 5 seconds. The supernatant was again discarded and the pellet was 

treated with "NEWWASH" twice more, as before. Finally, the pellet was 

resuspended in 10 tl of dH20 and the sample was incubated at 50°C for 3 minutes, to 

release the DNA from the silica matrix. The sample was then spun at 20, 000 g for 30 

seconds to pellet the "GLASSMILK" and the supernatant, containing the DNA, was 

transferred to a micro-centrifuge tube. 

Ligation of DNA 

Ligations were carried out in dH 20 containing 1/10th volume of lOx ligase buffer, 

using 10 units of T4 DNA ligase (Boebringer Mannheim) in a final volume of 10 fl. 

In this reaction mixture, DNA vector (50-100 ng) was incubated overnight at 15°C 

with 5-10 times excess DNA insert. 

Polvmerase Chain Reaction 

The polymerase chain reaction (PCR) was used for amplification of DNA fragments. 

Primers specific for the region of DNA of interest were designed as required (Table 

2.1 lists the primers used in this study). Reactions were performed in 100 i.l volumes 

containing template DNA (10 ng), 2.5 l of each primer (100 pM), 10 p.1 of a lOx 

PCR reaction buffer (Boebringer Mannheim), 8 p.1 of dNTP mix (containing 2.5 MM 

of each dNTP), 1 p.! Taq DNA polymerase (2 U p.1 1 ) and dH20. 100 p.l of sterile 

mineral oil was added to the surface of the reaction mixture to prevent evaporation 

during the PCR process. The PCR was carried out in a Techne "Gene B" thermal 

cycler dry-block. 

Amplification of the DNA was performed over 30 cycles, each cycle consisted of the 

following three steps: Denaturation at 94°C for 1 minute, annealing at 55°C for 



I minute and elongation at 72°C for 2 minutes. At the end of the 30 cycles, a final 

single cycle of 72°C for 10 minutes was performed to complete the process. PCR 

reaction mixtures were then examined under agarose gel electrophoresis. 

Small-scale preparation of E. coli plasmid DNA 

E. co/i cells carrying the plasmid of interest were grown overnight, with the 

appropriate antibiotic, and normally were incubated at 37°C with shaking. The 

plasmid DNA then was prepared by the "TELT" method of He et al. (1990). The 

culture was dispensed into a micro-centrifuge tube (1.5 ml volume) and centrifuged 

at 20, 000 g for 30 seconds to pellet the cells. The supernatant was discarded and the 

pellet was resuspended in 800 p.1 of TELT solution (50 mM Tns. Cl, pH 7.5; 62.5 

mM EDTA, 2.5 M LiC1, 0.4 % [v/v] Triton X-100). 50 p.1 of a 100 mg ml -1  solution 

of lysozyme, made up in TELT, was also added and the tube was vigorously mixed 

and allowed to stand for 2 minutes at room temperature. The tube was incubated in a 

boiling water bath for 2 minutes and then was transferred to ice for 10 minutes, 

before being spun for 15 minutes at 20, 000 g to pellet cell debris. The supernatant 

was transferred to a fresh tube and 0.6 volumes of isopropanol was added. The 

sample was mixed by inversion and was centrifuged at 20, 000 g for 30 minutes to 

pellet the plasmid DNA. The supernatant was discarded and the pellet was washed in 

70 % (v/v) ethanol, desiccated and resuspended in 50 p.1 of dH 20. 

Large-scale preparation of E. coli and S. typhimurium plasmid DNA 

To obtain large amounts of very pure plasmid DNA, the protocols of Bimboim and 

Doly (1979) and Ish-Horowicz and Burke (198 1) were employed. 

Bacterial cultures carrying the plasmid of interest were grown overnight in 500 ml of 

LB media, with the appropriate antibiotic(s), at 37°C with shaking. Cells were 

pelleted at 4, 000 g in a Beckman J2-21 (JA-14 rotor) centrifuge and excess liquid 

was removed by inversion of the centrifuge tube for 5 minutes. The pellet was then 

resuspended in 18 ml of Solution I (50 mM glucose, 25 mM Tris. Cl, pH 8.0 and 
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10 mM EDTA) and was then treated with 1 ml of a 10 mg ml -1  lysozyme solution 

for 5 minutes at room temperature. 40 ml of Solution 11(0.2 N NaOH and 1% [w/v] 

SDS) was then added, the solution was mixed by inversion several times, and the 

sample was left on ice for 5 minutes. After this time, 20 ml of ice-cold Solution III 

(5 M potassium acetate buffer, pH 4.8) was mixed thoroughly with the sample. The 

sample was left on ice for 15 minutes and was then centrifuged at 6, 000 g for 10 

minutes at 4°C to pellet the cell debris. The supernatant was filtered through 

non-absorbent cotton wool, to remove unpelleted debris, into a fresh centrifuge pot 

and 48 ml isopropanol was added. The plasmid DNA was harvested by centrifugation 

at 6, 000 g for 10 minutes, the pellet was rinsed with 70% (v/v) ethanol and was air 

dried by inversion of the centrifuge pot, to remove excess liquid. The dried pellet was 

then resuspended in 9 ml of TE and 10 g of CsCl was added, followed by 0.25 ml of 

a 10 mg ml- ' ethidium bromide solution. The sample was then vortexed and 

centrifuged in a MSE Centaur I centrifuge at 4, 000 g to remove precipitates. The 

cleared supernatant was then transferred to Sorvall TV865 quickseal ultracentrifi.ige 

tubes and centrifuged at 200, 000 g for 18 hours at room temperature in a Sorvall 

OTD55B ultracentrifuge. The plasmid band was visualised on the CsCl gradient 

under UV light, and was extracted using a sterile needle and syringe. Ethidium 

bromide was removed by mixing the sample (three times) with TE saturated butan- 1-

ol, discarding the upper (butanollethidium bromide) layer each time. The aqueous 

phase was then dialysed against dH 20, several times to remove the CsCl. 

Subsequently, the DNA solution was examined by agarose gel electrophoresis, and if 

necessary, concentrated by extraction with butan-2-ol. 

Small-scale preparation of S. tvphimurium plasmid DNA 

Use of the TELT method of plasmid preparation proved unsatisfactory for 

S. typhimurium therefore, plasmid was prepared using a similar procedure to that 

described for the large scale preparatory method. 

S. typhimurium cells carrying the plasmid of interest were grown overnight in 5 ml of 

LB medium, with the appropriate antibiotic(s), at 37°C with shaking. Cells were 



pelleted in a micro-centrifuge tubes at 20, 000 g for 30 seconds. The supernatant was 

removed and 100 tl of Solution I was added, as well as 10 ptl of a 100 mg mr' 

lysozyme solution. After vortexing, the tube was left to stand for 2 minutes before 

200 j.il of Solution II was added and the sample was mixed thoroughly by inversion. 

150 tl of Solution III was then added, mixed as before and left on ice. After 

15 minutes, the cell debris was removed by centrifuging the sample at 20, 000 g for 

15 minutes and the supernatant was transferred to a fresh tube. The supernatant was 

then extracted with a mixture of phenol/chloroform and the DNA was precipitated 

with ethanol. The pellet was rinsed with 70 % (v/v) ethanol, dried and resuspended in 

dH2O. 

Preparation of genomic DNA from E. co/i and S. tvphimurium 

Preparation of genomic DNA from bacteria was accomplished using the selective 

precipitation properties of hexadecyltrimethyl ammonium bromide (CTAB) (Murray 

and Thompson, 1980). Cell debris, polysaccharides and proteins can be removed 

from a bacterial lysate using CTAB and high-molecular weight DNA can be 

recovered by isopropanol precipitation. 

The bacterial strain of interest was inoculated into 5 ml LB broth, with the 

appropriate antibiotic(s), and was grown overnight at 37°C with shaking. 1.5 ml of 

culture was transferred to a micro-centrifuge tube and cells were pelleted at 

20, 000 g. The supernatant was discarded and the cells were resuspended in 567 il of 

TE buffer. 30 tl of a 10% (w/v) SDS solution and 3 tl of proteinase K (100 p.g ml - ') 

were added and the sample was mixed thoroughly. The tube was then incubated for 1 

hour at 37°C with occasional mixing. 100 jil of 5 M NaCl was added and mixed in 

by inversion, prior to the addition of 80 }.1l of a CTAB/NaCl solution (10% [w/v] 

CTAB in 0.7 M NaC1). The sample was incubated at 65°C for 10 minutes and was 

then centrifuged at 20, 000 g for 5 minutes to spin out the 

CTAB-proteinlpolysaccharide complexes. The upper aqueous layer of viscous 

supernatant was then transferred to a new tube and an equal volume of 

phenol/chloroform (1:1) was added and mixed in thoroughly. The tube was again 
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spun at 20, 000 g for 5 minutes and the upper aqueous layer was transferred to a fresh 

tube, where 0.6 volumes of isopropanol was added. The tube was gently inverted 

several times until a stringy white precipitate of the DNA appeared. The DNA was 

spooled out of the sample using a capillary tube and was transferred to a new tube 

containing 0.5 ml of 70% (v/v) ethanol, to remove the residual CTAB and NaCl. The 

DNA was then pelleted by centrifugation at 20, 000 g for 5 minutes, was dried and 

was resuspended in 100 tl of dH20. 

Southern blotting and hybridisation 

Identification of specific sequences of DNA was established by the transfer technique 

of Southern (1975). In brief, DNA is separated by gel electrophoresis and transferred 

to a solid support e.g. nylon membrane. A radiolabelled DNA fragment is then 

hybridised to the DNA attached to the membrane, and autoradiography is used to 

identify the position of the band complementary to the probe. 

DNA samples of interest were digested with restriction enzymes and fragments were 

separated according to size by agarose gel electrophoresis for 12-15 hours at 

1 V cm-1 . The gel was photographed, and the distance each molecular weight marker 

had migrated was recorded to allow size determination once the DNA had been 

transferred from the gel. The gel was soaked in 0.25 M HCI for 30 minutes, to 

depurinate the DNA, and then was rinsed in dH 20 to remove the excess HC1. 

Subsequently, the gel was soaked in 0.5 N NaOFI/1 .5 M NaCl, for 40 minutes and 

was gently rocked on a moving platform, to denature the DNA. Finally, the gel was 

rinsed with dH20 and treated with 0.5 M Tris. Cl/1.5 M NaCl for a further 40 

minutes with gentle agitation. Two strips of blotting paper were soaked in 20x SSC 

and placed on the upturned agarose gel casting tray, with the ends of the blotting 

paper resting into a reservoir of 20x SSC. The gel was turned upside down and was 

transferred onto this support, ensuring no bubbles were trapped underneath the gel. 

One corner of the gel was removed to allow the orientation to be determined and all 

the sides of the gel were then overlaid with Clingfilm, to ensure the buffer could only 

move through the gel. Nylon membrane (Hybond TM-N, Arnersham) was cut to the 
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size of the gel and was laid directly on top of the gel, again ensuring no bubbles were 

trapped under the membrane. Three pieces of blotting paper were cut to the size of 

the gel, were soaked in dH 20 and laid over the nylon membrane. A stack (6 cm) of 

paper towels which were cut to the size of the gel, was then placed on top of the 

blotting paper producing a wick to draw liquid through the gel, thereby transferring 

the DNA to the nylon. Finally, a 500 g weight was placed on top of the stack to 

ensure good contact between the layers and the system was left overnight at room 

temperature. The following day the nylon membrane was retrieved and rinsed in 

dH20 to remove excess SSC and then, was baked at 80°C for 2 hours. Immediately 

prior to use, the nylon membrane was subjected to UV irradiation (1200 joules) for 2 

minutes in a UV StratalinkerTM  1800 (Stratagene) to cross-link the DNA to the 

membrane before hybridisation was performed with a radiolabelled DNA fragment. 

Random primed end-labelling of DNA 

Random prime labelling was performed as essentially described by Feinberg and 

Vodelstein (1983, 1984). Random hexanucleotides bind to the DNA fragment to be 

labelled and in the presence of nucleotides and the Klenow fragment of DNA 

polymerase I, the spaces in between the hexanucleotides are filled in using the 

parental strand as a template. One of the deoxynucleotides used is radiolabelled, 

hence the newly synthesised strand becomes radiolabelled. 

DNA was labelled using the Boehringer Mannheim Random Primed DNA labelling 

kit. Approximately, 50-100 ng of the DNA (0.2 kb upwards) to be labelled was made 

up to a volume of 11 tl with dH 20 in a micro-centrifuge tube and was boiled for 10 

minutes. The sample was then instantly placed on ice, to maintain the DNA in a 

single-stranded form. To this sample, 1 il of dATP, dTTP and dGTP were added as 

well as 2 il of Reaction buffer (containing the hexanucleotides and buffer for the 

enzyme). 3 .tl of [ct- 32P]-dCTP (10 tCi ') and 1 p.! of Klenow enzyme were then 

added to make a final volume of 20 p.1 and the whole reaction mixture was incubated 

at 30°C for 1-1.5 hours. The total volume was then made up to 200 p.1 and was 

separated through 1 ml of a TE-equilibrated pre-spun Sephadex G-50 column by 
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centrifuging at 2, 000 g for four minutes. Unincorporated radio-isotope was retained 

in the column and the labelled DNA was eluted into a fresh micro-centrifuge tube. 

Hybridisation protocol for DNA probes 

DNA hybridisations were performed at high-stringency (65°C) in a "Techne 

Hybridiser HB-1D" oven. A pre-hybridisation buffer containing 7% SDS (wlv), 0.5 

M NaH2PO4  (pH 7.2) and 1 mM EDTA, and a hybridisation roller were incubated in 

the oven at 65°C. The nylon membrane, used to blot the DNA, was placed inside the 

roller and 20 ml of the pre-hybridisation solution was added to block the membrane. 

Meanwhile, the labelled DNA probe was denatured by boiling for 10 minutes. After 

10 minutes the roller was removed from the oven and the original pre-hybridisation 

mixture was replaced with an equal volume of fresh buffer, along with the denatured 

probe. Hybridisation was allowed to proceed overnight after which the membrane 

was washed twice with a solution containing 5% SDS (w/v), 40 mM NaH2PO4  (pH 

7.2) and 1 mM EDTA, followed by two washes of 1% SDS (w/v), 40 mM NaH 2PO4  

(pH 7.2) and 1 mM EDTA. All washes were performed at 65°C and after completion 

the membrane was wrapped in Clingfllm and autoradiographed at -80°C. 

Sequencing of double-stranded DNA 

DNA sequencing was performed using a modification of the dideoxynucleotide 

method of Sanger et al. (1977). DNA was sequenced using T7 DNA polymerase in 

conjunction with a Sequenase Version 2.0 DNA sequencing kit (USB) according to 

the manufacturers instructions. The method is dependent upon base-specific 

termination by dideoxynucleotides, of enzyme catalysed primer extension reactions. 

Annealing Reaction: 

Approximately 2-5 p.g of CsC1 purified plasmid DNA was made up to 100 p.1 in 

dH20. DNA was denatured by the addition of 25 p.1 of a solution containing 1 M 

NaOH and 20 mM EDTA. The sample was then incubated at 37°C for 30 minutes 

before being ethanol precipitated, dried and resuspended in 7 p.l of dH 20. 2 p.1 of 
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reaction buffer and 1 p1 of the relevant primer (approximately 1 tg) were added and 

the sample mixed with a pipette. This mixture was then incubated at 37°C for 30 

minutes, to allow the primer to anneal to the DNA sequence of interest. 

During this time 6 microfuge tubes were labelled "G", "A", "T", "C", "LM" and "E", 

and were filled with: 

"G" 2.5 .il of termination mix G (ddGTP) 

"A" 2.5 p1 of termination mix A (ddATP) 

"T" 2.5 p1 of termination mix T (ddTTP) 

"C" 2.5 pd of termination mix C (ddCTP) 

"LM" 4 .il of dH20 and 1 p1 of labelling mix 

"E" 7 p.1 of enzyme dilution buffer and 1 p.! of T7 polymerase 

The four tubes containing the termination mixes were then incubated at 37°C ready 

for further use. 

Labelling reaction: 

Once the annealing reaction was complete, the annealed DNA was labelled by 

mixing the following: 

10 p.1 of annealed DNA mix 

1 p.lofO.1MDTT 

2 p.1 of labelling mix ("LM") 

1 p.1 of [a- 35 S]-dATP (10 p.Ci) 

2 p.l of enzyme ("E") 

This mixture was then spun for 2 seconds at 20, 000 g and incubated at 37°C for 3 

minutes. 

Termination reaction: 

Immediately after labelling, the reaction was terminated by pipetting 3.5 p.1 of 

labelling reaction mix into each of the tubes "G", "A" ," T" and "C". The tubes were 

spun at 20, 000 g for 2 seconds to mix the labelling solutions with each of the 
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termination mixes and were incubated at 37°C for 3-5 minutes. 4 ti of stop solution 

was then added, and the samples were used immediately or were frozen at -20°C 

until required. 

Electrophoresis of DNA sequencing reaction mixtures: 

Electrophoresis of sequencing reactions was performed on a BIORAD sequi-Gen 

nucleic acid sequencing gel electrophoresis system. Denaturing polyacrylamide gels 

were made in this apparatus by mixing 71.4 g Urea, 17 ml 1 Ox TBE, and 40 ml of a 

30% (w/v) acrylamide: bisacrylamide (19:1) solution, and adjusting the final volume 

to 170 ml with dH20. 40 ml of the gel mixture was removed and polymerised to form 

a seal at the bottom of the apparatus, in the casting tray, by adding 200 p,l of 20% 

(w/v) ammonium persulphate solution and 200 .tl of TEMED. The sequencing gel 

was then polymerised, between two glass plates, by the addition of 120 111 of 20% 

(wlv) ammonium persuiphate and 120 p.1 of TEMED. Gels were then used 

immediately or were stored for up to 24 hours at 4°C before use. 

The sequencing reactions were denatured prior to loading by heating samples to 

75-80°C for two minutes, and were loaded onto a pre-heated polyacrylamide gel 

(50°C). Samples were then run at 50 mA in lx TBE buffer for 2-6 hours. Gels were 

then dried under vacuum at 80°C for two hours before being autoradiographed 

overnight at room temperature. 

One-step transformation of E. coli 

E. coli cells were transformed using a similar protocol to that of Chung et al. (1989). 

The E. coli strain to be transformed was grown overnight with shaking at 37 0C. The 

overnight culture was then diluted 1/100 into fresh LB medium and grown under the 

same conditions until the 0D 600  had reached 0.4-0.6. The cells were then pelleted in 

a MSE Centaur I bench-top centrifuge, at 4, 000 g for 10 minutes. The supernatant 

was discarded and the cells resuspended in 300 p.1 of TSS solution (1 ml of TSS 

contains 0.5 ml LB medium, 0.5 ml 20% [w/v] PEG 6000, 50 p.1 DMSO and 45 p.1 of 

1 M MgS02). Cells were transferred to a micro-centrifuge tube and were incubated 
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on ice for 10 minutes. The DNA to be transformed was then added to the tube and 

was mixed into the cells by pipette and the sample left for 1-2 hours on ice. After this 

time, 0.5 ml of LB broth was added to the tube and the cells were incubated for 1 hr 

at 37°C prior to plating on selective LB plates. 

Transformation of E. coli and S. tvvhimurium by electroporation 

Cells were made electro-competent using the following protocol. The bacterial strain 

to be transformed was grown overnight in 5 ml LB broth, with the appropriate 

antibiotic(s), at 37°C with shaking. 2 ml of this overnight culture was dispensed into 

a conical flask containing 200 ml LB broth and grown under the same conditions 

until the 0D600  had reached 0.5-0.6. The flask was then chilled on ice for 20 minutes. 

During this period sterile dH20 (500 ml) and sterile centrifuge pots were also chilled. 

Cells were then pelleted at 4, 000 g for 10 minutes in a Beckman JA-21 (JA-14 rotor) 

at 4°C. The supernatant was discarded and the cells were resuspended in 200 ml 

ice-cold sterile dH20 and left on ice a further 15 minutes. The cells were then 

centrifuged and resuspended in the same way once more. After the final spin, the 

bulk of the dH20 was removed such that the cells (originally from 200 ml of culture) 

were resuspended in 1 ml of dH20. Cells were then dispensed as 100 jil aliquots into 

pre-chilled micro-centrifuge tubes. Between 5 pg and 0.5 jig of the DNA to be 

transformed was added to each tube and the samples were mixed by pipette. The cells 

and DNA mixture were then transferred to pre-chilled electroporation cuvettes, 

ensuring no bubbles were formed when dispensed. Electroporation was performed 

using the BIORAD "Gene-Pulser" apparatus, with the voltage set at 2.5 kV and the 

Pulse controller set to 200 ohms. Cuvettes were wiped to remove excess moisture 

and pulsed under the conditions described. After the pulse, 1 ml of SOC medium was 

added to the cuvette, and the whole contents were transferred to a fresh 

micro-centrifuge tube. The cells were then incubated at 37°C for 1 hour, prior to 

plating on selective agar. 
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Blue/white screen for pGEM-T derived phagemids 

The vector pGEM-T (Promega) is specifically designed for the direct cloning of PCR 

products. PCR-generated DNA fragments contain 3' deoxyadenosine residues which 

are added in a non-template dependent fashion by the thermostable polymerase. The 

vector has been treated such that it contains 3'-end thymidine overhangs, thus 

allowing direct ligation between the vector and the PCR fragment without the need 

for restriction digestion of DNA prior to ligation. The cloning site lies within the 

coding sequence for the 3-galactosidase cc-peptide, such that when a fragment of 

DNA is inserted, the lacZa gene is inactivated. Such recombinant clones, when 

transformed into JM1O1 (an E. co/i derivative lacking lacZ), can be selected for by a 

blue white screen which directly tests for f-galactosidase activity (Short et al., 1988). 

The screen involves selection of transformant JIM101 cells on LB medium containing 

50 p.g ml-1  ampicillin combined with the blue white screen provided by the addition 

of 40 p.1 of a 2% X-gal solution (w/v, dissolved in dimethylformamide) and 60 p.1 of 

a 2% IPTG solution (w/v). After overnight incubation of the plates at 37'C, JM101 

colonies harbouring pGEM-T appear as blue colonies, whilst IM101 colonies bearing 

recombinant pGEM-T plasmids appear as white colonies. 

2.2.3 Protein detection procedures 

SDS-polyacrylamide gel electrophoresis of proteins 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed essentially as 

described by Laemmli (1970). The procedure dissociates proteins into their 

individual sub-units and subsequently separates them according to their size. 

Proteins were resolved on either a 16 x 20 cm or 7 x 8 cm SDS-polyacrylamide gel, 

using a PROTEAN II xi Slab Gel or MINT-PROTEAN II Dual Slab Gel apparatus 

respectively (BIORAD). The composition of the gel was dependent upon the protein 

to be investigated, either a 12.5% or 10% (v/v) resolving gel was routinely used and 

the stacking gel was always used at a 4% (v/v) polyacrylamide concentration. 
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The composition of the protein gels is shown below (the quantity of solutions 

indicated were designed for the formation of a 7 x 8 cm gel; the values in parentheses 

reflect the quantities of components required to make a 16 x 20 cm gel). 

Stacking Gel (4% [v/vJ polyacrylamide): 
30% (w/v) acrylamide/ bisacrylamide(19:1): 1.4 ml (3.9 ml) 
Tris. Cl pH 6.8, 0.5 M 2.3 ml (7.5 ml) 
20% (w/v) SDS 50 p.1(150 p.1) 
c1F120 6.2 ml (18.3 ml) 
10%APS 100p.1(300p.1) 
TEMED 10 p.1(30 p.1) 

Resolving Gel (10% [v/v]polyacrylamide): 
30% (w/v) acrylamide/ bisacrylamide(19:1): 	3.4 ml (16.7 ml) 
Tris. Cl pH 8.8, 1.5 M 	 2.5 ml (12.5 ml) 
20% (w/v) SDS 	 50 p.1(250 p.1) 
dH20 	 4.1 ml (20.3 ml) 
10% APS 	 50 p.1(250 p.1) 
TEMED 	 5 p.1(25 p.1) 

Resolving Gel (12.5% [v/v]polyacrylamide): 
30% (w/v) acrylamide/ bisacrylamide(19:1): 	4.0 ml (20.0 ml) 
Tris. Cl pH 8.8, 1.5 M 	 2.5 ml (12.5 ml) 
20% (w/v) SDS 	 50 p.1(250 p.1) 
dH20 	 3.4 ml (17.0 ml) 
10% APS 	 50 p.1(250 p.1) 
TEMED 	 5 p.1(25 p.1) 

APS - Ammonium persulphate 

TEMED-N,N,N'-tetramethylethylethylenediamine 

Laemmli (Loading) Sample Buffer (1 Ox) for SDS-polyacrylamide gels: 

25 mM Tris. Cl, pH 6.8 

2% (w/v) SDS 

10% (v/v) Glycerol 

0.2 M 3-Mercaptoethano1 

0.002% (w/v) Bromophenol Blue 
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5x Running buffer for SDS-polyacrylamide gels: 

144 g Glycine, 30 g Tris-base, 5 g SDS in I litre dH20 

The resolving gel was poured between two glass plates and allowed to polymerise by 

overlaying the acrylamide solution with dH20. Once the resolving gel was set, the 

layer of water was removed and the stacking gel poured. A comb was then 

immediately inserted into the stacking gel, ensuring no bubbles were trapped around 

the teeth of the comb. Once the stacking gel had polymerised, it was used 

immediately or stored at 4°C for up to 24 hours before use. 

Samples to be loaded were mixed with 2x Laemmli (or Loading) sample buffer 

(LSB) and boiled for five minutes, unless otherwise stated, prior to loading. Samples 

were loaded (15-50 il, depending upon the gel used) into individual wells and the 

proteins electrophoresed in lx running buffer at 25-50 imk for 2 hours (MiNI-

PROTEAN II) or 100 V for 18 hours (PROTEAN H). Molecular weight standard 

markers were also added to allow molecular weight determinations of polypeptides 

seen on the gel. 

Staining SDS-polvacrvlamide gels with Coomassie Brilliant Blue 

Polypeptides were visualised by staining with Coomassie Brilliant Blue. Once the 

polypeptides had been separated by electrophoresis, the gels were immersed in a 

fixing/staining solution (0.1% [w/v] Coomassie Brilliant Blue R250 (BIORAD), 45% 

[v/v] Methanol, 10% [v/v] glacial acetic acid) and 45% dH20). Gels were left to stain 

on a shaking platform for 30-60 minutes at room-temperature. Excess stain was then 

removed by soaking the gel in a destaining solution (45% [v/v] methanol, 10% [v/v] 

glacial acetic acid, 45% dH20) for 4-8 hours at room temperature, until polypeptide 

bands could be seen clearly. 



Estimation of protein concentration 

The concentration of a protein in a solution was estimated using the modified method 

of Bradford (1976) by following a BIORAD standard assay procedure. BSA 

solutions of 0, 2, 4, 6, 8, 10 and 12 jtg ml - ' were prepared in 1 ml of dH 20, and 800 

tl of each standard was added to 200 tl of BIORAD protein assay dye-reagent. Each 

sample was mixed by gentle inversion, taking care not to cause foaming, and after 5 

minutes (one hour maximum) the optical density of the solution was read at 595 nm 

(0D595) in a spectrophotometer. For each BSA standard solution, triplicate 

measurements of the 0D 595  were obtained and the average reading plotted against 

concentration to give a standard curve. The protein concentration of the solution of 

interest was then determined by appropriately diluting the sample in 1 ml of dH 20 

and adding 800 tl of this solution to 200 .tl of the dye-reagent. The optical density 

was then determined as outlined above. This reading was used in conjunction with 

the standard curve, to determine the concentration of protein in the solution of 

interest. 

2.2.4 Protein overexpression and purification 

[35 S]-methionine labelling of proteins using pET-19b vectors in E. coli 

BL21 (DE3) pLysS and two derivatives containing either pET-19b or pPDT14 (the 

plasmid containing the ahpC gene to be overexpressed) were grown in LB medium 

supplemented with antibiotics. All strains required 5 tg ml-1  chloramphenicol (which 

maintains the pLysS plasmid) but only the strains carrying pET-19b plasmids 

required 100 .ig mU' ampicillin. Strains were then cultured overnight with shaking at 

37'C. The cells were spun down in an MSE Centaur 1 bench-top centrifuge at 4, 000 

g for 10 minutes and resuspended in 1 ml of fresh LB. 0.5 ml of each culture was 

transferred into 24.5 ml of Spitzizen minimal medium with the appropriate 

antibiotics, and incubated at 37°C with shaking until the 0D 600  had reached 0.6. For 

each culture, four 0.5 ml aliquots were then transferred to micro-centrifuge tubes. In 

each of these set of four tubes, two of the tubes had IPTG (I) added to a final 
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concentration of 0.5 mM. Incubation for all tubes was continued at 37°C for a further 

30 minutes. After this time rifamycin (R) was added to a final concentration of 200 

jtg ml-1  to one of the IPTG treated tubes and one of the untreated tubes, in each batch 

of four tubes. Thus, the tubes from each culture contained -1J-R, -JJ+R, +1J-R, +I/+R, 

respectively. The incubation was then continued for a further 45 minutes before each 

tube was pulse labelled with 5 Xi of [ 35  S]-methionine for 5 minutes. The tubes were 

then cooled on ice, spun at 20, 000 g for 30 seconds and the supernatant (containing 

unincorporated label) was safely discarded. Cells were then resuspended in 100 pd of 

2x LSB, immediately boiled for 5 minutes and then loaded onto a 16 x 20 cm 12.5% 

(v/v) polyacrylamide gel. The gel was then run at 100 V for 18 hours and was then 

dried and autoradiographed at room temperature overnight. 

Large-scale overproduction of AhpC from pET-l9b vectors in E. coli 

Overexpression using the pET vectors followed methods described by Sambrook et 

al. (1989) and the manufacturers recommendations (Novagen). 50 ml of LB 

containing 5 g ml- ' chioramphenicol and 100 p.g ml -1  ampicillin was inoculated with 

a single colony of the E. coli BL21 (DE3) pLysS strain carrying pPDT14. The 

bacteria were then grown overnight at 37°C with shaking. The culture was spun at 

4, 000 g in a Beckman JA-20 (JA-14 rotor) centrifuge at room temperature for 

10 minutes. The supernatant was discarded and the cells were resuspended in 10 ml 

of fresh LB. This was used to inoculate 500 ml of minimal Spitzizen medium, 

containing the appropriate antibiotic and the sample was incubated at 37°C with 

shaking until the 0D600  reached 0.6. IPTG was then added to a final concentration of 

0.5 mM and incubation was continued for a further 3 hours. Cells were then pelleted 

in a Beckman JA-20 (JA-14 rotor) centrifuge at 4, 000 g for 10 minutes and then 

were resuspended in 20 ml ice-cold Buffer A. The bacteria were then lysed by 

sonication using a Lucas Dawes Ultrasonics Soniprobe, with probe size 60 mm x 12 

mm diameter. Sonication was carried out on output setting 5, for 40% of each second 

over a 4 minute period in an ice-cold water bath. Cell debris was then pelleted at 

20, 000 g for 30 minutes at 4°C in a Beckman JA-20 (JA-21 rotor) centrifuge and the 
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supernatant was retained and stored at -80°C. This procedure could be scaled up 

easily, but typically, each run was limited to a 1.5 1 final culture volume. 

Purification of histidine-tag ged AhpC using a nickel-nitrolotriacetic acid MA) 

column 

The nickel (Ni2 ) groups in Ni2 -NTA resin (Qiagen) are capable of binding the 

imizadole ring of histidine amino acids. Proteins containing a His-tag can therefore 

be selectively bound and separated from non-His-tagged proteins with relative ease. 

All the subsequent steps were performed at 4°C. 1.5 ml of resin was transferred to a 

column and allowed to settle (forming a 1 ml column). The column was washed with 

10 ml of dH20 and equilibrated using a further 10 ml of Buffer A (see below). 10 ml 

of cell extract was defrosted, imizadole added to a final concentration of 1 mM and 

the sample was loaded onto the column. The column was then washed with 20 ml of 

Buffer B, containing 20 mM imizadole, to remove any non-His-tagged proteins. The 

His-tagged protein was eluted by the addition of 6 ml of Buffer B containing 80 mM 

imizadole. The eluted fraction was diluted 4-fold in Buffer B (so that the 

concentration of imizadole was 20 mM) and the whole procedure repeated. All 

column fractions were kept at -80°C until further use. The purification of the 

his-tagged protein was monitored by examining the composition of column fractions 

by SDS-PAGE. Typically 20 l of each column fraction was mixed with 10 j.il 2x 

LSB, incubated at 37°C for 10 minutes and loaded onto 7 x 8 cm 12.5% (v/v) 

polyacrylamide gels. Gels were then run at 25-50 mA for 2 hours, stained with 

Coomassie Brilliant Blue stain and destained. Purification was stopped when the 

protein was considered to be >95% pure. Eluates containing the purified AhpC 

protein were then pooled, dialysed against several changes of PBS and the protein 

concentrated (see later). 

The Ni2tNTA columns could be regenerated, after elution of the protein had 

occurred, by adding buffer R. In this way a column could be used many times. 

Columns were stored at 4°C in either dH 20 or Buffer R. The columns were not 
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stored for long periods of time in the presence of Buffers A or B as these appeared to 

have a detrimental effect upon the column. 

Buffer A: 
	

MIM 
	

Buffer R: 

10 mM Tris. Cl (pH 7.9) 	20 mM Tris. Cl (pH 7.9) 
	

6 M guanidine HC1 

10% (v/v) glycerol 

0.5 MNaC1 

0.1% (v/v) NP40 

5mMDTT 

0.5 mM PMSF 

20% (v/v) glycerol 

100 mMKC1 

5mMDTT 

0.5 mM PMSF 

0.2 M acetic acid 

(All buffers were made up in dH 20 and Buffers A and B also contained the following 

protease inhibitors (Sigma): 1[LM pepstatin A, 1 tM chymostatin and 5 tM 

leupeptin) 

Overexpression of GroEL from pPDT15 in S. tvyhimurium 

CH23 containing pPDT15 was grown in 5 ml of LB containing ampicillin (50 

tg ml- ') overnight with shaking at 30°C. The culture was then diluted into 500 ml of 

LB medium containing ampicillin (as before) and grown at 30°C with shaking until 

the 0D600  had reached 0.6. The culture was then rapidly shifted to a water bath set at 

42°C and incubated for 10 minutes, with occasional hand shaking. After ten minutes 

the cells were pelleted in a Beckman JA-20 (JA-14 rotor) by centrifugation at 4, 000 

g for 10 minutes at 4°C. Cells were resuspended in 20 ml of ice-cold Buffer Z and 

were sonicated on ice using a Lucas Dawes Ultrasonics Soniprobe with probe size 60 

x 12 mm. Sonication was performed for 40% of each second for 4 minutes on an 

ouput setting of 5. After sonication, cell debris was removed by centrifugation in a 

pre-cooled (4°C) Beckman JA-20 (JA-21 rotor) at 20, 000 g for 30 minutes. The 

supernatant was then stored at 4°C until further use. 
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Buffer Z: 

10 mM Tris. C1pH7.5 

1 mM EDTA 

1mMDTT 

50 mM NaCl 

0.5 mM PMSF 

1 gM pepstatin A, 1 .tM chyinostatin and 5 p.M leupeptin (unless otherwise stated). 

Sucrose density gradient centrifugation 

Sucrose gradient centrifugation was performed using a Sorvall AH-627 swinging 

bucket rotor in a Sorvall OTD55B ultracentrifuge. Sucrose was dissolved in ice-cold 

Buffer Z to a concentration of 10% or 30% (w/v). To form one gradient, 15 ml of 

each solution was mixed and poured in a gradient mixer, such that the gradient 

formed from 30% to 10% in a 36 ml centrifuge tube. 4 ml of cell supernatant was 

then carefully laid on the top of the gradient. Tubes were then spun at an average 

relative centrifugal force of 86, 000 g at 4°C for 18 hours. 1 ml fractions of the 

gradient were collected using a BIORAD Econo pump, pumping from the bottom of 

the gradient. The fractions were stored at 4°C and examined by SDS-PAGE to 

determine the composition of proteins present. Those fractions containing the GroEL 

protein were then pooled, dialysed against several changes of PBS, to remove the 

sucrose, and the protein concentrated (see later). 

Ion exchange column chromatography 

Ion exchange column chromatography was performed using a Whatman DE52 

diethylaminoethyl cellulose (DEAE) column (80 x 15 mm [approximately 8 ml]). 

Proteins were bound to the column and were purified by differential elution in a 

step-wise gradient of NaCl. The columns could also be used to concentrate purified 

protein. 2 g of pre-swollen DE52 was dissolved in 50 ml Buffer Z and stirred for 10 

minutes at room temperature. The resin was allowed to sediment and was then 

resuspended in 50 ml of fresh Buffer Z and the process repeated. After sedimentation 
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the supernatant was decanted off such that most of the resin was concentrated in a 

small volume. The resin was then poured into a column and allowed to settle. The 

column was extensively washed with Buffer Z until the eluent had the same pH as 

this buffer. Columns were then stored in Buffer Z at 4°C until use. 

For purification, 20 ml of cell supernatant was applied to the DE52 column via a 

BIORAD Econo pump, pumping at 1 ml min- ' (all subsequent washes and elutions 

were performed using this apparatus set at the same rate). The column was then 

washed by with 100 ml of Buffer Z. Elution of proteins was performed by addition of 

a succession of modified Buffer Z solutions. 10 ml of Buffer Z containing 0.15 M 

NaCl was pumped through the column, followed by 10 ml of 0.5 M NaCl buffer and 

finally, 10 ml of Buffer Z containing 1 M NaCl. Flow-through and wash fractions 

were collected in 10 ml aliquots and eluted fractions were collected in 3-4 ml 

fractions. All samples were then stored at 4°C until further use. Fractions were 

examined for protein composition by SDS-PAGE on 10% (v/v) polyacrylamide gels. 

Those fractions containing GroEL were pooled, dialysed against several changes of 

PBS and the protein concentrated (see later). 

2.2.5 Immunodetection of polypeptides 

Immunological detection of proteins was performed using a Western blot procedure. 

Proteins were firstly transferred (blotted) to a solid support (Towbin et al., 1979) e.g. 

nitro-cellulose membrane and the blot was exposed to sera (antibody) specific to that 

protein. Bound sera was then detected using antisera conjugated to an alkaline 

phosphatase, allowing visualisation of the protein band by chromogenic staining 

when the enzyme was exposed to its substrate (Knecht and Diamond, 1984). 

Transfer of proteins to nitro-cellulose membranes by electrophoresis 

The procedure for transferring proteins to nitro-cellulose membranes from 

polyacrylamide gels was essentially that of Towbin and colleagues (1979), with 

modifications suggested by the manufacturers of the apparatus used. A BIORAD 
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"TRANS-BLOT CELL" was utilised for the transfer of polypeptides from the 

polyacrylamide gel to a nitro-cellulose membrane 

Once SDS-PAGE had been performed, a piece of 3MM Whatman paper was cut to 

the size of the gel and was soaked in lx transfer buffer (1 litre of lOx Transfer Buffer 

contained 250 mM Tris. Cl, pH 8.3, 1.5 M Glycine and 20 % [v/v] methanol). The 

gel was then carefully transferred to the filter paper, ensuring no bubbles were 

trapped between the gel and the paper, and was laid onto a transfer buffer soaked 

pad. An appropriately sized piece of nitro-cellulose (Schleicher and Schuell) was 

then soaked in transfer buffer and was carefully placed over the gel, again taking care 

to avoid bubbles. A second piece of buffer-soaked filter paper was placed over the 

membrane and the sandwich was completed by a second soaked filter pad. The entire 

sandwich was placed into a holder and immersed into a gel tank containing lx 

transfer buffer, making sure that the membrane "side" of the sandwich was closest to 

the anode. Polypeptides were then transferred from the gel to the membrane by 

electrophoresing at 10-15 V overnight at 4°C. After blotting the polypeptides, the 

membrane was used immediately for immunodetection experiments. 

Immunodetection of Salmonella tvyhimurium nolypeptides 

The detection of polypeptides followed the method of Knecht and Diamond (1984). 

A blotted membrane, carrying S. typhimurium-derived proteins, was shaken for 1 

hour at room temperature in 100 ml of a 20% (w/v) milk powder solution. The milk 

proteins blocked sites on the membrane not already filled by proteins from the gel 

sample. The membrane was then rinsed twice in 100 ml washes of Tween wash I, 

and the membrane was shaken in 20 ml of the same buffer with 100 j.il of mouse sera 

(olyclonal anti-S. typhimurium protein antisera) for one hour at room temperature. 

After this time, the membrane was washed six times with Tween Buffer I, each wash 

involving shaking at room temperature with 100 ml of buffer for 10 minutes. 

Following washing, the membrane was shaken at room temperature, in Tween Wash 

I containing a 1:1, 000 dilution of alkaline phosphate-conjugated rabbit anti-mouse 

antibody (Sigma). After a further hours agitation, this solution was discarded and 
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unbound sera was removed by washing six times as described above, except using 

Tween wash II. Bound antisera was detected by the addition of 10 ml of a developing 

solution. The reaction was allowed to proceed until bands were clearly visible, and 

the reaction was terminated by extensive rinsing of the membrane with dH 20. 

Tween wash land IT 

Both Tween washes consisted of 9 g NaCl, 0.5 ml of polyoxyethylene sorbitan 

monolaurate (Tween 20) and 10 ml Tris. Cl, pH 7.4 (Tween wash I) or 10 ml Tris. 

Cl, pH 8.8 (Tween wash II) dissolved in a final volume of 11 dH 20. 

Developing Solution: 

1 ml of 0.1% (w/v) nitroblue tetra.zolium in 10 mM Tris. Cl, pH 8.8, was mixed with 

40 il MgC12, 0.1 ml of a solution of 5-bromo-4-chloro-3-indoyl phosphate 

(p-toluidine salt) in dimethyl formamide (5 mg ml-1 ) and 9 ml of 0.5 M Tris. Cl, pH 

8.8. 

2.2.6 Murine model studies 

Innately susceptible (itys)  female BALB/c mice (8-10 weeks of age ) were used for 

testing the attenuation of S. typhimurium strains and the immunological properties of 

S. typhimurium-derived proteins. Mice were obtained from Edinburgh University and 

segregated into cages, never more than three to a cage, and were supplied with a 

commercial pellet diet and water ad libitum. 

Preparation of bacterial cells for injection into mice 

The S. typhimurium strain of interest was grown overnight in 5 ml LB medium, 

containing the appropriate antibiotic, with shaking at 37°C. Bacteria were pelleted in 

an MSE Centaur I bench-top centrifuge at 4, 000 g for 10 minutes. The cells were 

then washed and resuspended in 5 ml sterile phosphate-buffered saline (twice). Serial 

dilutions were then performed in PBS until the required bacterial concentration had 

been obtained. The bacterial inoculum was determined by plating aliqouts from the 
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serial dilution series. Mice were injected by the intra-peritoneal (i.p.) route with 

100 jtl aliquots of the PBS-diluted bacteria. 

Test for bacterial virulence using a mouse model 

S. typhimurium strains were tested for attenuation by the use of a 50% lethal dose 

(LD 50) test (Reed and Muench, 1938) i.e. the number of bacteria it takes to kill half 

the mice in the sample. This LD 50  value could then be compared to that of the 

virulent parent strain. Typically 6 groups of 6 mice were used, and were injected by 

the i.p. route with a range of bacteria from approximately 105106  organisms to 

100 10 1  organisms. The survival of mice in each group was then monitored for at 

least 28 days and the LD 50  subsequently established. 

Prenaration of S. ivyhimurium proteins for injection into mice 

Proteins which had been purified were first of all dialysed in PBS to remove the 

buffers which they were purified in. Dialysis membrane (Medicell International Ltd.) 

was prepared by boiling in a solution containing 2% (w/v) sodium bicarbonate and 

0.05% (w/v) EDTA for 10 minutes, ensuring that the membrane remained 

submerged. This solution was then discarded and the membrane then boiled twice in 

dH20. After this final step, the membrane was allowed to cool, submerged in dH 20, 

and was transferred to a solution containing 20% (v/v) ethanol and stored at 4°C until 

further use. Prior to dialysis, the membrane was rinsed with sterile dH 20 to remove 

the ethanol and the protein solution then placed into an appropriately sized 

membrane bag. Proteins were dialysed in several changes of 2.5 1 PBS at 4°C. The 

dialysed solution was then concentrated using a Millipore immersible filter unit 

(CX-10), with a nominal molecular weight cut off of 10, 000 kDa, attached to a 

vacuum pump. Under a vacuum, the protein is trapped by the filter but excess liquid 

easily passes through. Protein concentration was then determined using a Bradford 

assay (Bradford, 1976) using a BIORAD standard protein assay procedure. The 

concentrated protein was then stored at -80°C until use. 
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Delayed-We hypersensitivity testing 

S. typhimurium proteins were examined for their ability to induce a delayed-type 

hypersensitivity (DTH) reaction in mice, using a footpad swelling assay. Female 

BALB/c mice were injected by the i.p. route with 100 p.1 of PBS (control group) or a 

100 p.! of PBS containing approximately 2.0 x i0 5  c.f.u. of an attenuated 

S. typhimurium strain, MPG479. On days 33 and 104 post-infection, uninfected mice 

and mice infected with S. typhimurium were challenged with the purified 

S. typhimurium proteins, AhpC or GroEL. One day before the challenge, the proteins 

were diluted to 0.8 mg ml -1  in PBS and heat aggregated at 70°C for one hour. The 

proteins were then stored at 4°C overnight until needed. Prior to injection, the 

footpad thickness of the right and left hind footpads (RHFP and LHFP, respectively) 

of each mouse in every group was measured using dial-type callipers, taking three 

measurements per footpad. Mice were subsequently injected subcutaneously with 

40 jig of protein in 50 p.1 of PBS, into the LHFP and 50 p.1 of PBS (only) was 

injected into the RHFP. As a further control, to show that neither the physical 

injection nor the PBS could elicit a DTH response, one group of bacterially-infected 

mice were injected with 50 p.! of PBS in the LHFP and nothing in the RHFP. After 

24 and 48 hours, the thickness of the LI{FP and RHFP was measured as described 

above and compared to establish whether a DTH reaction had occurred. 

Obtaining S. tvyhimurium-specific serum from mice 

Mice (six per group) and were injected by the i.p. route with 100 p.1 of PBS 

containing approximately 2 x i0 5  c.f.u. of an attenuated S. typhimurium strain, 

MPG479. A professional animal handler then lightly anaesthetised the mice and bled 

them, by retro-orbital bleeding, prior to infection (day 0) and on 14, 28, 43 and 110 

days post-infection. Approximately 100 p.1 of blood was obtained per mouse, and 

bleeds from the same group of mice were pooled. The blood was allowed to clot at 

room temperature for 5-6 hours and the cell-free portion of the blood, the serum, was 

then obtained by spinning the samples at 1, 800 g in an MSE Centaur bench-top 
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centrifuge for 15 minutes. Serum was then aliquoted and stored at -80°C until further 

use. 

Preparation of anti-AhpC antisera, obtained from mice 

Purified his-tagged AhpC, which had been dialysed in PBS and concentrated, was 

diluted to 0.5 mg ml-1  in sterile PBS. 700 p.1 of this solution was then aliquoted into a 

1/4 ounce bijou bottle and an equal volume of Alum (Pierce Rockford, Illinois) was 

added dropwise, with stirring, at room temperature for approximately 30 minutes. A 

group of 5 CBA/Ca female mice (Edinburgh University) was injected with 200 11 

(50 p.g ml-1  of protein) per mouse of the AhpC-Alum mixture, with each dose being 

distributed equally between two separate intraperitoneal sites. After an interval of 6 

weeks, mice were challenged with 200 p.1 of the protein, prepared and injected as 

above. Samples of blood were collected under light halothane anaesthesia on days 7, 

10, 14, 20 and 25 post-challenge and the blood from each group of mice was pooled. 

The serum was obtained as described above and samples were stored in 100 p.l 

aliquots at -70°C until required. 
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CHAPTER 3 

The effect of growth phase and RpoS upon the 
expression of ahp 
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3.1 INTRODUCTION 

When S. typhimurium cells become starved of nutrients they enter into a stationary 

phase where the culture displays no net increase in cell number (reviewed in 

Hengge-Aroms, 1996a). The transition from rapid growth to stationary phase 

represents an adaptation of the bacteria to new conditions, and is sometimes called a 

starvation stress response (Foster and Spector, 1995). Associated with this 

phenomenon is an extensive change to the bacterial cell morphology including a 

rounding and shortening of the cell, cytoplasmic contraction and expansion of the 

periplasm (Huisman et al., 1996). In addition, the bacterial genome experiences 

increased negative supercoiling, the nucleoid becomes compacted and the spectrum 

of genes which are expressed and their level of expression dramatically alters in the 

cell (Huisman et al., 1996; Hengge-Aronis, 1996a). 

Characteristically, stationary phase cells display a high level of resistance to a wide 

range of environmental stresses, including heat, ethanol, osmolarity, pH and oxidants 

(McCann et al., 1991; Hengge-Aronis, 1996a). Interestingly, many of the 

mechanisms which underpin resistance form part of regulated and inducible 

responses to stress in growing cells yet, at the onset of stationary phase, they are 

induced independently of any particular stress being present. This is perhaps because 

stationary phase cultures are less able to support an inducible response, due to 

nutrient depletion and limited energy generation, whilst actively growing cells do not 

have such limitations. Cells appear therefore to employ a definite strategy to put in 

place a wide range of protective measures, prior to the complete cessation of growth. 

Major aspects of the stationary phase response are regulated through the activity of 

an alternative sigma factor RpoS ( a  S) which allows the core RNA polymerase (E) to 

facilitate expression of genes required for the survival of the cell at the onset of 

starvation (Hengge-Aronis, 1996a; Espinosa-Urgel et al., 1996). However, it should 

also be noted that RpoS is present in exponentially growing cells, but is much less 

abundant than the vegetative sigma factor RpoD (&) (Hengge-Aronis, 1996a). 

Nevertheless, RpoS has a significant role to play in the exponential phase regulation 

121 



of a number of genes, especially those that are responsive to osmotic shock 

(Hengge-Aronis et al., 1993, Hengge-Aronis, 1996b). 

RpoS mutants are extremely susceptible to a wide range of environmental stresses, 

indicating the essential nature of RpoS in generating the stationary phase response 

(McCann et al., 1991). RpoS has also been shown to be a prime factor in regulating 

the virulence of S. typhimurium (Fang et al., 1992, Coynault et al., 1996). The ability 

of S. typhimurium cells to survive within macrophages appears to be partly linked to 

the capacity for survival in stationary phase, as the rpoS gene and RpoS-dependent 

genes are induced within the macrophage environment (Chen et al., 1996a). In 

addition, rpoS mutants of S. typhimurium are attenuated in mice, and may be useful 

in the generation of vaccines to S. enterica-related disease (Fang et al., 1992; 

Coynault etal., 1996). 

Of interest to this thesis, is the involvement of RpoS in providing cells with 

stationary phase resistance to oxidative stress, in particular its influence on hydrogen 

peroxide resistance and the OxyR regulon. In previous studies, it was shown that the 

ahp locus of S. typhimurium was induced during macrophage interaction and 

specifically in response to hydrogen peroxide generated from the macrophage 

respiratory burst (Francis and Gallagher, 1993; Francis PhD Thesis, 1993). The ahp 

locus encodes a heterodimeric enzyme, alkyl hydroperoxide reductase, which is 

essential in the reduction of organic hydroperoxides generated when the membrane is 

attacked with reactive oxygen species (Jacobson et al., 1989; Storz et al., 1989). 

Therefore, this locus may aid the survival of S. typhimurium during the course of 

infection and could encode a virulence determinant. Identification of virulence loci 

has importance for the development of vaccines, as the construction of defined 

mutants in such loci may lead to attenuation of the virulence of S. enterica (Chatfield 

etal., 1992a). 

Importantly, in E. co!i, RpoS has been shown, to date, to regulate the expression of 

three OxyR-induced genes including katG (Ivanova et al., 1994), dps (Altuvia et al., 

1994) and gorA (Becker-Hapak and Eisenstark, 1995). Moreover, the expression of 

122 



dps and katG in the stationary phase of growth was shown to be independent of the 

OxyR regulatory protein (Altuvia et al., 1994; Ivanova et al., 1994). The situation 

with regards to the role of growth phase and RpoS in the expression of the 

S. typhimurium ahp locus had not been reported previously and it was perceived that 

these factors may have important implications for the role of ahp in infection and the 

host immune response. The possible role of these factors was therefore addressed in 

the present study by using S. typhimurium strains in which the ahp locus had been 

tagged with a bioluminescent reporter system (ahp::Mudlux) or by immunoblotting 

with anti-AhpC antisera. 

3.2 RESULTS 

3.2.1 Construction and characterisation of S. typhimurium rpoS mutants 

The rpoS gene from S. typhimurium had previously been identified and inactivated 

by an insertion of an ampicillin gene in strain SF1005 (Fang et al., 1992). This 

- mutation was transduced via phage P22 into the virulent S. typhimurium strain, 

S1,1344, and its derivative MPG203 (ahp::Mudlux), to generate MPG470 and 

Iv[PG47 1, respectively. 

Inactivation of rpoS by the insertion of an ampicillin gene introduced an additional 

BamHI site into the chromosomal DNA which could be detected by Southern 

blotting (Fang et al., 1992). Thus, when genomic DNA from the parental 

S. typhimurium strain and SF 1005 were digested with BamHI, one fragment of 10 kb 

and two fragments of 8.5 kb and 6.5 kb were identified, respectively, when probed 

with the rpoS gene (Fang et al., 1992). This distinction was used in a similar manner 

to confirm the presence of the rpoS mutation in MPG470 and MPG47 1. Genomic 

DNA isolated from these strains and from SF1005 and S1,1344, was digested with 

BamHI, electrophoresed and blotted onto nylon membrane. The filter was then 

probed with the rpoS gene, which was amplified from the S. typhimurium (SL1344) 

chromosome using primers M0917 and M6184 (Table 2.1). The results are shown in 

Figure 3.1. Both MPG470 and MPG471 displayed the same pattern of bands (8.5 
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Figure 3.1 Southern blot analysis of S. typhimurium SL1344 derivatives 
to confirm the presence of an rpoS disruption 

Genomic DNA was isolated from S. typhimurium strains SF1005 (rpoS), SL1344, 

MPG470 (rpoS) and MPG471 (ahp::Mudlux, rpoS) and treated with BamHI. The 

resulting digests were then electrophoresed in an agarose gel (0.8% (w/v)) and the 
DNA was transferred to a nylon membrane. The membrane was then probed with the 

rpoS gene amplified from the S. typhimurium SL1344 chromosome, using primers 
M0917 and M6184 (see Table 2.1). Key: Lane I, SF1005; Lane 2, MPG470; Lane 

3, MPG471; Lane 4, SL1344. The positions of phage X HindIII molecular weight 

markers are shown (Lane M). 
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and 6.5 kb) as SF1005, whereas SL1344 only exhibited one band of approximately 

10 kb, thus proving that the rpoS mutation had been transduced successfully into 

MPG470 and MPG471. 

Phenotypic tests were also performed on MPG470 and MPG471 to confirm the result 

from the Southern blot analysis. Stationary phase rpoS mutants are known to exhibit 

extreme susceptibility to oxidative stress (Fang et al., 1992). Stationary phase 

cultures of SL1344, S171005, MPG203, MIPG470 and MPG471 were therefore 

challenged with 20 or 50 mM hydrogen peroxide for one hour and cell numbers were 

determined by plating onto LB. The percentage (%) survival of the treated samples 

was then calculated in relation to the untreated samples. As can be seen from Table 

3.1, the majority of SL1344 and MPG203 cells survived both challenge 

concentrations whereas MPG470, MPG471 and SF1005 displayed greatly reduced 

survival, confirming that they contained a defective rpoS gene. 

Table 3. 1 Survival of S. typhimurium rpoS derivatives after treatment with hydrogen 

peroxide 

Strain 

% Survival after treatment with hydrogen peroxide (HP) 

Untreated 20 mM HP 50 mM HP 

SF1005 100.00 40.10 0.03 

SL1344 100.00 96.98 87.43 

MIPG470 100.00 38.00 0.05 

MPG203 100.00 95.01 86.23 

MPG471 100.00 31.04 0.02 

Overnight cultures of S. typhimurium SL1344, SF1005 (rpoS), MPG203 (ahp::Mudlux), MPG470 

(rpoS) and MPG47 1 (ahp: :Mudlux, rpoS) were split into three aliquots and treated with 20 mM or 

50 mM hydrogen peroxide (HP) or left untreated. After incubation for 1 hour, 100 1.11 of each culture 

was appropriately diluted and plated onto LB. The percentage (%) survival of cells in the treated 

sample was calculated in relation to the untreated sample. The values in the table represent the 

average of two separate samples. Variation within samples was less than 6%. 
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3.2.2 Examination of the growth phase-dependent and hydrogen 

peroxide-dependent inducibility of the ahp locus, using a bioluminescent 

reporter system 

The aim of this section was to examine how RpoS affects the expression of the ahp 

locus in growing (exponential phase) and growth arrested (stationary phase) cells. In 

order to examine these phenomena, it was necessary to define the culture conditions 

under which the 'exponential' and 'stationary' phases occurred for the strains to be 

tested. Since the lux reporter system encodes the Vibrio fischeri luciferase 

(Engebrecht et al., 1983, 1985), which is inactivated above 34°C, the growth profile 

was established at 30°C. 

Overnight cultures of M1PG203 and MPG47 1 (rpoS), were diluted 1:10, 000 fold into 

10 ml of LB and grown with shaking at 30°C. At hourly periods, 100 jil aliquots of 

these cultures were withdrawn and plated onto LB plates to determine the cell 

number. Figure 3.2 displays the growth curves of the two strains to be tested and 

indicates that MPG203 and MPG471 grow at equivalent rates, and to the same cell 

number, at 30'C, suggesting that the rpoS mutation does not substantially alter the 

growth of the cells. From these growth curves, it was determined that the window of 

time for examining cultures in the exponential phase was approximately 3-7 hours 

after dilution and incubation at 30°C, whilst the window for late log or early 

stationary phase was approximately 9-12 hours, under these conditions. 

For the purpose of the present study, exponential phase expression of the ahp locus 

was tested at 4 hours, which appeared to be the mid-point of logarithmic growth. It is 

known that many genes are induced as cells reach growth arrest, despite the limited 

ability of cells to produce proteins as a result of nutrient depletion (Hengge-Aronis, 

1996a). Thus, the expression of the ahp locus was examined at the time when ahp 

was most likely to be induced, early stationary phase. This was determined to be at 
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Figure 3.2 The growth profiles of MPG203 and MPG471 

Overnight cultures of MPG203 and MPG47I (rpoS) were diluted 1: 10,000 into fresh LB and 
incubated at 30°C with shaking. At various time points 100 j.tl of each culture was appropriately 
diluted and plated to determine the cell number. Profiles were then plotted of the cell number 

(log 10) versus time (hr). The windows of time corresponding to the exponential (EP) and early 
stationary phases (SP) are indicated. (Experiments were repeated several times and found to be 
reproducible. The figure is a typical example). 
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the shoulder of the curve, approximately 9 hours after dilution and incubation at 

30°C. 

The role of RpoS in the growth phase-dependent and hydrogen peroxide-dependent 

inducibility of the ahp locus 

Overnight cultures of MIPG203 and MPG47 1 (rpo8) were diluted 1: 10, 000 into 

20 ml of fresh LB. Cultures were then incubated at 30°C with shaking for 4 hours, 

the period deemed most representative of exponential phase (see Figure 3.2). The 

samples were then divided into two 10 ml aliquots, and one was treated with 100 M 

hydrogen peroxide (final concentration) and the other was left untreated. At 30 

minute intervals, 200 tl of each sample was withdrawn and the amount of 

bioluminescence measured in a 96-well plate-reading luminometer, pre-heated to 

30°C. An equivalent aliquot was appropriately diluted and plated to determine the 

cell number. As is shown in Figure 3.3 Panel A, no light was induced from the 

untreated samples of M1PG203 and MPG47 1. However, exposure to hydrogen 

peroxide resulted in substantial bioluminescence in both strains irrespective of the 

rpoS background. This suggests that RpoS does not substantially affect the basal or 

hydrogen peroxide-inducible expression of the ahp locus in the exponential phase of 

growth. 

In order to determine whether ahp is expressed in early stationary phase, samples 

were also taken at 9 hours (Figure 3.2). At this time point cultures were divided into 

two 10 ml portions, and treated as before. (Previous studies (Ivanova et al., 1994) 

had shown that 100 .tM hydrogen peroxide was a suitable induction stimulus even in 

cultures of high cell density). 200 p.1 aliquots of the samples were withdrawn and 

examined for bioluminescence and cell number, as described previously. As shown 

in 3.3 Panel B, no light was induced in either MPG203 or MPG471 in the presence or 

absence of a stimulus indicating that ahp is not expressed at the onset of stationary 

phase irrespective of rpoS background. 
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Figure 3.3 The effect of RpoS upon the expression of the ahp locus in 
exponential and stationary phases of growth 

Overnight cultures of MPG203 and MPG471 (rpoS) were diluted 1: 10, 000 into fresh LB medium and 
grown with shaking at 30°C. Incubation was continued for 4 hours or 9 hours, the time points at which the 
cultures were deemed to be in exponential or early stationary phases, respectively (see Figure 3.2). At these 
time points each culture was split into two. One portion was treated with 100 tM hydrogen peroxide (HP), 
and the other portion was left untreated. At half-hourly time points after these treatments, 200 tl aliquots of 
each sample were extracted and examined for bioluminescence in a luminometer. An equivalent sample 
was also serially diluted and plated onto solid medium to determine the cell number. The level of induction 
of the ahp locus is expressed as relative light units per second produced by each cell (RLU s1  cell - '). Panels 
A and B represent the expression of the ahp locus in MPG203 and MPG47I during the exponential and 
stationary phases of growth respectively. The x-axis of each graph starts at the relevant time point for that 
growth phase. (Experiments were repeated several times and found to be reproducible. The graph is a 
typical example). 
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3.2.3 Examination of the growth phase-dependent and hydrogen 

peroxide-dependent inducibility of the ahp locus, using immunoblotting 

The use of the bioluminescent reporter system suggested very substantial induction 

of ahp was possible with hydrogen peroxide in the exponential phase. However, it 

was unclear whether the reporter system exaggerated the true response. In addition, 

the stationary phase expression suggested that no induction of ahp was occurring. 

Thus, immunological procedures were employed to validate whether the reporter 

system provided a true reflection of ahp expression. 

Immunological detection of AhpC production in exponential or stationary phase 

cultures of SL 1344 and MPG470 

Overnight cultures of SL1344 and MPG470 (rpoS) were diluted into 20 ml of fresh 

LB and grown for 4 hours at 30°C with shaking. These cultures were then split into 

two 10 ml aliquots and one was oxidatively stressed with 100 p.M hydrogen peroxide 

whilst the other was left untreated. After a further hour of incubation at 30°C (0D 600  

of 0.1-0.2) the cells were pelleted, resuspended in 40 p.1 of LSB and subject to 

SDS-PAGE. Samples (15 p.1) were loaded onto two parallel gels (12.5% v/v 

polyacrylamide) and electrophoresed. One gel was then stained with Coomassie 

Brilliant Blue to examine the profile of proteins in each sample. The other gel was 

used in Western blotting and the AhpC protein was subsequently detected using 

mouse anti-AhpC polyclonal anti-serum followed by rabbit anti-mouse alkaline 

phosphatase-conjugated antibody. A description of the purification of His-tagged 

AhpC protein for raising anti-sera in mice is given in chapter 6. Examination of the 

Coomassie Brilliant Blue stained gel showed that the lanes were evenly loaded. 

(Figure 3.4 Panel A). However, no distinct AhpC band was detected from the 

samples taken in the exponential phase even following exposure to hydrogen 

peroxide. 

Two bands were detected after Western blotting (Figure 3.4 Panel B). The lower of 

these is believed to be the AhpC protein which has an approximate molecular mass 
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of 22 kDa (Jacobson et al., 1989). This is supported by a control sample containing 

purified His-tagged AhpC protein (lane A). This purified AhpC is approximately 

2.5 kDa larger than the native protein and as such, runs slightly above the native 

protein during SDS-PAGE. The upper band (labelled as X) is an unknown 

component, which may cross react with the AhpC-specific antibodies or the rabbit 

anti-mouse antibody conjugate. The presence of this band fortuitously provided a 

control to demonstrate that the amount of sample loaded into each lane was 

equivalent. 

A basal level of AhpC was detected by immunoblotting untreated exponential phase 

samples (Figure 3.4 Panel B, lanes 1 and 3). Moreover, RpoS did not appear to affect 

this. In the presence of hydrogen peroxide, the level of AhpC increased but was 

equivalent for both rpor and rpo strains (Figure 3.4 Panel B, lanes 2 and 4). This 

is in agreement with the luminescence data (Figure 3.3 Panel A) and confirms that 

RpoS has little effect upon the hydrogen peroxide-dependent inducibility of ahp in 

the exponential phase. However, it is noteworthy that, from immunodetection, the 

level of induction of ahp above the uninduced samples appears only moderate 

suggesting that the light-based reporter system exaggerates the response. 

Stationary phase cultures of SL1344 and MPG470 were similarly examined. 

Overnight cultures were diluted into 40 ml of fresh LB and grown for 9 hours at 

30'C, the time point where cells should be entering early stationary phase (see Figure 

3.2). The cultures were then split into 10 ml aliquots and oxidatively stressed with 

either 100 tM, 500 jtM or 1000 tM hydrogen peroxide (final concentration in LB) 

or were left untreated. After a further hour of incubation at 30°C, 0.5 ml of cells were 

then pelleted, resuspended in 200 p.1 LSB and subject to SDS-PAGE. 15 p.1 of each 

sample was loaded onto identical polyacrylamide gels (12.5% [v/v]) and 

electophoresed. As before, gels were then stained or subject to Western blotting. 

The results are shown in Figures 3.5 Panel A and Panel B. No specific AhpC band 

was seen in any of the samples from the Coomassie-stained gel (Figure 15 Panel A) 

indicating that it is not a prominant protein in the stationary phase. Examination of 
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Figure 3.4 The immunological detection of AhpC from exponential phase cultures of 

SL1344 and MPG470 

Overnight cultures of SL 1344 (virulent parental strain) or MPG470 (rpoS) were diluted 1: 10, 000 
into fresh LB, to give approximately 10 5  c.f.u. ni1, and grown with shaking at 30°C for 4 hours. The 
culture was then split into two 10 ml volumes and either treated with 100 i.LM hydrogen peroxide or 
left untreated. After incubation for a further hour, the samples were subject to SDS-PAGE on two 
identical gels. Following electrophoresis, one gel was stained using Coomassie Brilliant Blue to 
examine the protein profile of each sample (Figure 3.4 Panel A), and the other gel was subjected to 
imrnunoblotting, using an anti-AhpC antisera for detection (Figure 3.4 Panel B). Lanes 1 and 2, and 
lanes 3 and 4, represent SL1344 and MPG470, respectively. Lanes 1 and 3, and lanes 2 and 4, 
represent untreated samples and samples treated with hydrogen peroxide, respectively. Pre-stained 
molecular weight markers (120, 75 and 35 kDa) are shown in lane M and a purified sample of 
His-tagged AhpC protein (see chapter 6) is shown in lane A. Bands corresponding to the wild type 
AhpC protein and to an unidentified component, X, are indicated with arrowheads (Panel B). 

Figure 3.5 The immunological detection of AhpC from early stationary phase 
cultures of SL 1344 and MPG470 

Overnight cultures of SL 1344 (virulent parental strain) and MPG470 (rpoS) were diluted to give 
approximately l0 c.f.u. ml - ' and grown with shaking for 9 hours at 30°C. Cultures were then split 
into four and treated with 100 riM, 500 pM or 1000 .tM hydrogen peroxide or left untreated. After a 
further hour of incubation, samples were loaded onto two identical gels and subjected to SDS-PAGE. 
Following electrophoresis, one gel was stained using Coomassie Brilliant Blue to examine the protein 
profile of each sample (Figure 3.5 Panel A), and the other subject to immunoblotting, using an 
anti-AhpC antisera for detection (Figure 3.5 Panel B). Lanes 1-4 and lanes 5-8 represent SL1344 and 
MPG470, respectively. Untreated samples or samples treated with 100 jiM, 500 pM or 1000 pM 
hydrogen peroxide are represented by lanes 1 and 5, lanes 2 and 6, lanes 3 and 7, and lanes 4 and 8, 
respectively. Pre-stained molecular weight markers (120, 75 and 35 kDa) are shown in lane M and a 
purified sample of His-tagged AhpC protein (see chapter 6) is shown in lane A. Bands corresponding 
to the wild type AhpC protein and to an unidentified component, X, are indicated by arrows (Panel 
B). 
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the Western blot (Figure 3.5 Panel B) showed that AhpC is not positively induced at 

the onset of stationary phase, either in the presence or absence of hydrogen peroxide, 

independently of the rpoS status, and this in agreement with the luminescent data 

from Figure 3.3 Panel B. This confirms that OxyR and RpoS have no effect upon the 

expression of ahp in the stationary phase. Interestingly, however an equivalent level 

of AhpC could be seen in all the cell extracts. 

Native or activated OxyR. supplied in trans, is unable to bring about the induction of 

aho in the stationary nhase 

The native OxyR protein is sensitive to oxidation and in order to bring about the 

induction of the OxyR regulon it must be converted into an activated form (Storz et 

al., 1990). This activation occurs when cells are oxidatively stressed. Since the ahp 

locus appeared not to be induced in the stationary phase, it was unclear whether this 

reflected on a lack of OxyR protein, an inability of the protein to be activated, or an 

inability of the protein to function at its target site. These questions were addressed 

by cloning the native oxyR or a mutated form of oxyR, which mediates constitutive 

expression of genes of the OxyR regulon in the exponential phase of growth, into a 

controllable expression vector. These plasmids were then transferred into an oxyR 

deficient strain, in order that the effects of complementation could be examined. The 

vector pBAD 18 which contains the arabinose-inducible promoter (PRAD)  from the 

araBAD operon of E. co/i, was chosen as the recipient for these oxyR genes (Guzman 

et al., 1995) (see Figure 3.6). The plasmid also contains the araC gene, which 

encodes a protein that can both repress and activate PBAD  (Figure 3.6). Repression 

and induction of the promoter occurs in the absence or presence of arabinose, 

respectively, and is mediated by a conformational change and alteration in the 

binding capacity of the AraC protein at PBAD.Thus,  in these constructs, expression of 

OxyR in trans could be regulated by the addition of arabinose to the media. 

The sequence of the oxyR gene from E. co/i had been determined previously 

(Christman et al., 1989) but the equivalent gene from S. typhimurium had not. 

However, the two species appear to show highly conserved responses to hydrogen 
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peroxide stress. Furthermore, studies have shown that the ahp promoter of 

S. typhimurium can be regulated by the E. co/i OxyR protein (Tartaglia et al., 1990, 

1992). On this basis, the oxyR gene from E. co/i was used to address the role of 

native OxyR in the induction of ahp in the exponential and stationary phases of 

growth. Primers were devised to the 5' (OXYR1) and 3' (OXYR2) ends of the 

coding region of the E. coli oxyR gene (see Table 2. 1), such that when amplified the 

oxyR gene would be promoterless. EcoRI and HindIll sites were included on the 

respective primers to allow directional cloning of the oxyR gene downstream of the 

BAD promoter in pBAD18. Using these primers, a single product of approximately 

1.1 kb was amplified from the E. coli DH5a genome and was cloned into 

EcoRI-HindllI digested pBAD18 to form pPDT3 (Figure 3.6). 

Because of the likely homology between the oxyR genes from S. typhimurium and 

E. coli an attempt was made to use the same primers to amplify the oxyR gene from 

the S. typhimurium strain TA4100. TA4100 was originally isolated following 

chemical mutagenesis of S. typhimurium and displays constitutive expression of the 

genes in the OxyR regulon (Christman et al., 1985). This feature is a reflection of an 

unknown mutation in the oxyR gene which results in the OxyR protein being locked 

into an active configuration. Amplification, using the primers devised for the E. coli 

sequence, OXYR1 and OXYR2, resulted in a single band of the same size as that of 

the E. coli oxyR gene. This suggested that the DNA amplified from the 

S. typhimurium chromosome was the oxyR gene. The original primers to oxyR 

provided EcoRI and Hindill restriction sites. However, since the sequence of the 

S. typhimurium gene was unknown the restriction sites present in the gene were also 

uncharacterised. The PCR product was treated with EcoRJ or Hindill to determine 

whether either of these sites were suitable to flank the gene for cloning purposes. The 

PCR product was found to contain internal sites for Hindlil recognition but not for 

EcoRI (data not shown). Therefore, it was decided to flank the oxyR gene with EcoRJ 

sites at either end. 

With a change of primers, OXYR1 and OXYR3 (see Table 2.1), the oxyR gene was 

amplified from the S. typhimurium genome flanked by EcoRI sites. This 
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Figure 3.6 A summary of the cloning of the oxyR gene into a controllable 
expression vector 

A promoterless copy of a wild type oxyR gene from E. coli, flanked by EcoRI and Hind!!! sites, 

and an oxyR gene, flanked by EcoRI sites, from an S. typhimurium strain TA4 100 (Christman et 

al., 1985) which produces a constitutively active form of OxyR, were obtained by PCR using 

primers OXYR1 and OXYR2 or OXYR1 and OXYR3, respectively (see Table 2.1). The 

resulting oxyR genes were cloned downstream of the arabinose inducible P BAD  promoter in 

pBAD 18 to form pPDT3 and pPDT4, respectively. Key: araC, the gene encoding the AraC 

regulatory protein; PBAD,  the arabinose-inducible promoter from the araBAD operon of E. co/i; 

b/a, the ampicillin-resistance gene; on, origin of replication; oxyR, the gene encoding the native 

OxyR regulatory protein; oxyR c , a mutant oxyR gene that produces constitutively active OxyR; 

', denotes that the oxyR C  gene carries a mutation. 
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S. typhimurium oxyR gene was cloned into the EcoRI site of pBAD 18 to form pPDT4 

(Figure 3.6). Plasmids pPDT3 and pPDT4 were subsequently transferred from E. coli 

strain DH5a into an oxyR mutant of S. typhimurium, MPG484, by electroporation to 

give MPG485 and MPG486, respectively. A full description of the construction of 

the SL1344 derivative MPG484 is outlined in chapter 5, but in brief the oxyR gene of 

this strain has been inactivated by the insertion of a kanamycin gene. 

The native OxyR protein should only activate transcription of ahp in the presence of 

hydrogen peroxide. In contrast, the constitutively active protein should express high 

levels of ahp even in the absence of this oxidant. A preliminary test was performed to 

ensure that the cloned oxyR gene could be induced by arabinose in these 

S. typhimurium strains, and that expression of the genes resulted in a wild type or 

constitutive phenotype, as appropriate. This was confirmed by examining the 

sensitivity of MPG485 (oxyR: :kan, pPDT3) and MPG486 (oxyR: :kan, pPDT4) to 

hydrogen peroxide (3% v/v) or cumene hydroperoxide (3% v/v) using a disc 

inhibition test in the presence or absence of arabinose. The result of adding these 

peroxides to MPG485 and MPG486 are shown in Table 3.2. SL1344, MPG484 

(oxyR::kan) and MPG487 (oxyR::kan, pBAD18) serve as a controls. 

The addition of arabinose to the medium, to bring about the induction of oxyR from 

the plasmids, pPDT3 and pPDT4, resulted in enhanced survival compared to the 

oxyR deficient strain (MPG484). As expected the constitutively active form of OxyR 

in MPG486 provided the greatest protection to both oxidants, although the native 

gene also had a significant effect. Moreover, even in the absence of arabinose the 

presence of the plasmid-borne oxyR genes resulted in enhanced survival to the 

oxidant challenge, suggesting that the plasmids may be slightly leaky under the test 

conditions. This may reflect on the cyclic-AMP receptor protein regulator, which is 

capable of enhancing the expression of the arabinose operon under carbon starvation 

(Guzman et al., 1995). 
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Table. 3.2 The effect of pPDT3 and pPDT4 on the sensitivity of an oxyR mutant to 

hydrogen peroxide and cumene hydroperoxide 

Strain Zone of Inhibition (mm) 

3% (vlv) HP 3% (v/v)CHP 

SL1344 16 22 
of 	+Ara 16 22 

M1PG484 30 31 
If 	+Ara 30 31 

MPG485 20 27 
of 	+Ara 17 23 

MPG486 10 20 

It 	+Ara 9 15 

M1PG487 30 31 
if 	+Ara 30 31 

Cultures of S. typhimurium SL1344, MPG484 (oxyR::kan), MPG485 (oxyR:: laTin, pPDT3), MPG486 

(oxyR: :kan, pPDT4) and MPG487 (oxyR: :kan, pBAD 18) were grown overnight in LB containing the 

appropriate antibiotic. 100 tl of each sample was then added to 3 ml of LC top agar, at 50°C, 

containing 0.5% (v/v) arabinose or left untreated and poured onto LB plates. Once set, a 5 mm filter 

paper disc (Whatmann number 4) was gently placed onto the surface of the agar and 10 il of either 

3% (v/v) hydrogen peroxide (HP) or 3% (v/v) cumene hydroperoxide (CHP) was then administered to 

each disc. After overnight incubation at 37°C the zone of inhibitions were measured (mm). The values 

in the table represent the average of two separate experiments. Variation between experiments was no 

greater than 1 mm. 

It can be concluded from Table 3.2 that addition of arabinose to MPG485 and 

MPG486 results in induction of the native or constitutively activated forms of OxyR, 

respectively. This knowledge would help to determine whether the lack of induction 

of ahp which was seen in stationary phase (Figure 3.5) was due to a deficiency of 

OxyR protein, or to some inability to convert the protein into an 'active' form or 

indeed, to a lack of ability of the OxyR protein to bind the target promoter. An 

138 



exponential phase culture was included to show that the oxyR genes in pPDT3 and 

pPDT4 behaved as expected. 

Cultures of MPG485 and MPG486 were diluted 1: 10, 000 into 4 x 10 ml fresh LB 

and grown for 4 hours to establish exponential phase growth. After this time, samples 

were either treated with 0.5% arabinose (v/v), 100 .tM hydrogen peroxide, both 

chemicals, or were left untreated. Each sample was then incubated for a further hour. 

The optical density was measured and the samples were subjected to SDS-PAGE and 

Western blotting as described previously. Early stationary phase cultures of MPG485 

and MPG486 were treated similarly except that they were grown for 9 hours instead 

of 4 hours. 

The results of these blots are shown in Figures 3.7 Panel A and 3.7 Panel B for the 

exponential and stationary phase samples, respectively. The unidentified component 

X acts a control to show that the loading is even. In the exponential phase (Figure 3.7 

Panel A), induction of AhpC in MPG485 was observed in the dual presence of 

arabinose and hydrogen peroxide (lane 4) but not in their absence (lane 1). This 

indicates that the OxyR which was produced could be activated by exposure to 

hydrogen peroxide. However, enhanced AhpC expression was also observed in the 

sample treated with hydrogen peroxide only (lane 2) but not with arabinose only 

(lane 3). This suggested that even in the absence of arabinose, the plasmid provided 

sufficient OxyR to bring about the expression of AhpC. In contrast, all the samples of 

MPG486 from the exponential phase displayed essentially the same level of AhpC 

protein (Figure 3.7 Panel A, lanes 5 to 8), independently of the presence or absence 

of arabinose or hydrogen peroxide. These results also indicated that 'leaky' 

expression from the plasmid was sufficient to bring about induction of the ahp locus 

in the exponential phase but in addition, showed that hydrogen peroxide was not 

required for activation, as would be expected with the constitutively active mutant 

OxyR protein. 
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Figure 3.7 Detection of AhpC expression in MPG485 and MPG486 in the 
exponential and stationary phases of growth 

MPG485 (oxyR::kan, pPDT3) and MPG486 (oxyR::kan, pPDT4) were diluted to approximately 

10 5  c.f.u. ml -1  in LB medium and grown at 30°C with shaking for 4 or 9 hours. Each culture was 
then divided into four volumes and was left untreated or was treated with 0.5% (v/v) arabinose, 
or 100 pM hydrogen peroxide or a combination of these treatments. After incubation for a 
further hour, samples were subjected to SDS-PAGE and Western blot analysis. AhpC was 
detected using an anti-AhpC antisera. The results represent samples from exponential (Panel A) 

or early stationary phase (Panel B). Lanes 1-4 and 5-8 represent MPG485 and MPG486 

respectively. Untreated samples (lanes I and 5) or samples treated with hydrogen peroxide 

(lanes 2 and 6), or arabinose (lanes 3 and 7), or a combination of these treatments (lanes 4 and 8) 
are shown. Pre-stained molecular weight markers (120, 75 and 35 kDa) were included in lane M 

and lane A contained a purified sample of His-tagged AhpC protein. Bands representing the wild 

type AhpC protein and the unidentified component X are indicated by arrows. 
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With the stationary phase samples, all the lanes displayed very similar levels of 

AhpC protein irrespective of the strain (Figure 3.7 Panel B). This indicates that the 

presence of OxyR, in either the native state or activated state, was unable to bring 

about the induction of AhpC, and that the protein detected solely represents basal 

gene expression independently of OxyR. This suggests that OxyR is unable to 

mediate any effect on the ahp promoter in the stationary phase of growth. It might be 

suggested that lanes 5 to 8 (MPG486) have slightly more AhpC. However, this is 

likely to reflect on the accumulation of the protein during the exponential phase, as a 

consequence of continuous induction by the permanently activated form of OxyR 

basally-expressed from pPDT4. This is unlikely to be seen in MPG485 because in the 

absence of hydrogen peroxide pPDT3 appears not to elicit ahp expression. 

The above results could not exclude the possibility that the PBAD  promoter does not 

function in stationary phase and so is unable to express the oxyR gene. This situation 

was addressed by using an S. typhimurium SL1344 strain MPG488, containing a 

pBAD 18 derivative, pBADLAC (a gift from Dr N. McLennan, Edinburgh 

University) in which the 3-galactosidase gene (lacZ) has been cloned downstream of 

the PBAD  promoter. Using MPG488, the ability of arabinose to induce 3-galactosidase 

activity in the exponential and early stationary phases of growth was therefore 

examined. As before, MPG488 was grown for 4 hours (exponential phase) or 9 hours 

(early stationary phase) and the samples were then treated with arabinose (final 

concentration 0.5% (v/v) or left untreated. After a further hours incubation at 30°C, 

-galactosidase activity was assessed by the method of Miller (1972b) which takes 

into account cell number. The results of these tests are displayed below, together with 

the standard error of the mean (SEM). 

The results displayed in Table 3.3 clearly show that PBAD  functions in both the 

exponential and stationary phases of growth. Moreover, from the data it can also be 

seen that the arabinose-independent expression of lacZ is higher in the stationary 

phase of growth. This strongly indicates that the lack of inducibility of ahp in the 

stationary phase (Figure 3.7 Panel B) does not result from a lack of ability to express 

OxyR in this phase of growth. 
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Table 3.3 The expression of lacZ from the PBAD  promoter during exponential and 

stationary phase 

Expression of -galactosidase 

Strain Exponential phase Stationary phase 

MPG488 untreated 

MPG488 + 0.5% (v/v) Ara 

442.4 ± 17.8 

2345.0 ± 25.3 

2800.0±50.6 

28692.0 ± 100.8 

An overnight culture of MPG488 (pBADLAC) was diluted 1: 10, 000 fold into fresh LB medium and 

grown at 30°C for 4 or 9 hours with shaking. At these time points, samples were taken and treated 

with 0.5% arabinose (Ara) or left untreated. After a further hour of incubation at 30°C the 

3-galactosidase activity from each sample was assayed by the method of Miller (1972b). Values are 

expressed as Miller units and represent the mean and standard error of the mean of triplicate samples. 

Examination of the role of OxyR in the basal level expression of the ahp locus in the 

exponential and stationary phases of growth 

The results from Figures 3.3, 3.4 and 3.5 suggested that RpoS has no major influence 

upon ahp expression. In addition, Figure 3.7 Panel B suggested that even in the 

presence of activated OxyR, ahp expression could not be induced in the stationary 

phase. Nevertheless, AhpC is clearly visible in samples from stationary phase 

cultures. Although OxyR may not be able to induce expression of ahp, it was unclear 

whether OxyR was necessary or responsible for the basal level of expression seen in 

these experiments. The expression of ahp was therefore compared in SL1344 and in 

an S. typhimurium strain in which the oxyR gene had been insertionally inactivated, 

MPG484 (oxyR::kan). 

Cultures of SL1344 and MPG484 were diluted to give approximately 10 c.f.u. mY' 

and were subsequently grown with shaking at 30 °C for 4 or 9 hours. Exponential 

phase cultures (4 hours growth) were then divided into two volumes and were treated 
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with 100 tM hydrogen peroxide or were left untreated and incubated for a further 

hour. Stationary phase cultures (9 hours growth) were split into four volumes and 

treated with 100 tM, 500 p.M and 1000 p.M hydrogen peroxide or were left 

untreated, and samples were then incubated for a further hour. After this time, 

samples were subjected to SDS-PAGE and Western blot analysis as described 

previously. The blots for the exponential and stationary phase cultures are shown in 

Figures 3.8 Panel A and 3.8 Panel B, respectively. Again, the presence of band X 

acted as a control to show that all lanes were evenly loaded. 

Figure 3.8 Panel A shows that, as demonstrated previously (Figure 3.4 Panel A), the 

untreated sample of SL1344 (lane 1) displays no induction of ahp in the exponential 

phase. However, hydrogen peroxide induced a substantial response (lane 2). In 

contrast, the exponential phase samples of MPG484 (in which oxyR was disrupted) 

showed a basal level of AhpC in both tracks independently of the presence or 

absence of hydrogen peroxide (lanes 3 and 4). Since both the untreated samples of 

SL1344 and MPG484 (lanes 1 and 3) showed an equivalent level of AhpC protein it 

seemed that the OxyR protein is not responsible for basal level expression of ahp in 

the exponential phase but that, OxyR is required for the hydrogen peroxide 

inducibility of ahp in the exponential phase. 

In the stationary phase cultures (Figure 3.8 Panel B), all the lanes displayed 

essentially the same level of AhpC protein, irrespective of the strain used or exposure 

to hydrogen peroxide. Thus, it seems that neither RpoS (Figure 3.5 Panel B) nor 

OxyR (Figure 3.8 Panel B) are required or responsible for the basal level of AhpC 

expression which occurs in S. typhimurium in the exponential and stationary phases 

of growth. Moreover, it seems that OxyR is only capable of inducing ahp expression 

in the exponential phase of growth and not in the stationary phase. 
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Figure 3. 8 Detection of AhpC in exponential and stationary phase 
cultures of SL1344 and MPG484 

SL1344 and MPG484 (oxyR::kan) were diluted to give approximately 10 5  c.f.u. mI 1  and grown with 
shaking at 30°C for either 4 or 9 hours. For the exponential phase experiments, cultures were split 
into two volumes and were left untreated or were treated with 100 l.tM  hydrogen peroxide and 
incubated for a further hour. For the stationary phase experiment, cultures were split into four 
volumes and were left untreated or treated with 100 l.LM,  500 .iM or 1000 pM hydrogen peroxide and 
incubated for a further hour. After treatment, all samples were subject to SDS-PAGE and Western 
blot analysis. AhpC was detected using an anti-AhpC antisera. The blots for exponential phase and 
stationary phase samples are shown in Panel A and Panel B, respectively. For Panel A, lanes 1-2 and 
3-4 represent SL1344 and MPG484 respectively. Untreated and treated samples are represented by 
lanes I and 3 and 2 and 4, respectively. For Panel B, lanes 1-4 and 4-8 represent SLI 344 and 

MPG484, respectively. The untreated samples and samples treated with either 100 PM, 500 PM or 

1000 pM are represented by lanes I and 5, lanes 2 and 6, lanes 3 and 7 and lanes 4 and 8, 
respectively. Pre-stained molecular weight markers (120, 75 and 35 kDa) were included in lane M 
and lane A contained a purified sample of His-tagged AhpC protein. Bands representing the wild 
type AhpC protein and the unidentified component X are indicated by arrows. 
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3.3 DISCUSSION 

The ahp locus of S. typhimurium has been shown to be induced upon interaction with 

macrophages (Francis and Gallagher, 1993; Francis, PhD Thesis, 1993) and therefore 

may have a role in virulence. The alternative sigma factor RpoS (CS)  regulates major 

aspects of the stationary phase response of S. typhimurium (Hengge-Aronis, 1996a) 

and, importantly, has been shown to be induced within the macrophage environment 

(Chen et al., 1996a). Therefore, the role of growth phase and RpoS upon the 

expression of the S. typhimurium ahp locus was examined in the present study as 

these factors may have important implications in the expression of ahp during the 

course of infection. 

The use of a bioluminescent reporter system tagged to the ahp locus and Western 

blotting, demonstrated that RpoS had no effect upon the hydrogen 

peroxide-dependent inducibility or the basal level of expression of ahp in the 

exponential phase of growth. Equally, cells in the stationary phase also showed no 

significant induction of the ahp locus in the presence or absence of hydrogen 

peroxide and independently of the RpoS status of the cells. This is in contrast to the 

katG, dps, and gorA genes of E. coli which are each regulated by OxyR in the 

exponential phase and which all display induction upon transition of cells into the 

stationary phase in an RpoS-dependent manner (Ivanova et al., 1994; Altuvia et al., 

1994; Becker-Hapak et al., 1995). 

These findings might suggest that the functions expressed by the other 

OxyR-regulated genes have a greater importance than AhpCF in protecting the cell 

against oxidative stress in the stationary phase of growth. Equally, it might be that 

some alternative features of the cell make the function of AhpCF redundant in the 

stationary phase. For example, it is known that stationary phase cells become rounder 

and shorter and the periplasm expands and the cytoplasm contracts (Huisman et al., 

1996). These alterations may make it more difficult for hydrogen peroxide to 

penetrate the cell. The fact that the catalases KatE and KatG are induced on entry to 

the stationary phase and exist in the periplasm and cytoplasm, respectively (Kagaya 
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et al., 1992), might suggest that hydrogen peroxide is capable of entering each of 

these cellular compartments. However, that the cytoplasmic catalase is induced 

largely to protect the cell against reactive oxygen species, which form as by-products 

of the respiratory chain, cannot be excluded. Biochemical changes to the lipid 

membrane, including a 10% reduction in the level of unsaturated fatty acids and a 

5-fold increase in cyclopropyl fatty acid derivatives, are also known to take place in 

stationary phase (Huisman et al., 1996), and perhaps these may make the membrane 

less susceptible to lipid peroxidation. 

In E. coli, RpoS regulates a number of genes with oxidative stress defence 

capabilities including katE, xthA, katG, dps, and gorA and these are likely to be 

regulated in a similar manner in S. typhimurium (Hengge-Aronis, 1996a; Ivanova et 

al., 1994; Altuvia et al., 1994; Becker-Hapak and Eisenstark, 1995). Furthermore, a 

group of starvation inducible genes, stiA, stiB and stiC, whose functions are unknown 

were recently shown to contribute to the hydrogen peroxide resistance of 

S. typhimurium in both the exponential and stationary phases of growth (Seymour et 

al., 1996). These genes are regulated by RpoS and also appear to play a major role in 

the starvation stress response of S. typhimurium. Mutations in any of stiA, stiB and 

stiC reduce the long term survival of S. typhimurium to a level equivalent of an rpoS 

mutant (50-100 fold). Interestingly, stiA was also recently shown to be regulated by 

OxyR in a non-classical fashion in that it is repressed by reduced OxyR but it is 

neither activated or repressed by oxidised OxyR yet, its repression is alleviated under 

oxidative stress (Seymour et al., 1996). RpoS therefore equips the cell with a wide 

range of oxidative stress defence measures and it could be that this circumvents the 

need for Ahp expression in the stationary phase of growth. In agreement with this 

explanation, stationary phase cultures of the ahp::Mudlur strain (MPG203) displayed 

an almost equivalent level of sensitivity to that of S. typhimurium SL1344 after 

challenge with 20 mM or 50 mM hydrogen peroxide (see Table 3.1). In contrast, it 

has been shown that in stationary phase, that mutants of dps, katG (E. coli) and stiA 

(S. typhimurium) are hypersusceptible to similar peroxide challenges compared to 

parental strains (Almiron et al., 1992; Ivanova et al., 1994; Seymour et al., 1996). 
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B. subtilis also displays an adaptive response to hydrogen peroxide, inducing several 

genes which are equivalent to those in the OxyR regulon, such as a catalase (katA), a 

Dps homologue (mrgA) and the small (ahpC) and large (ahpF) subunits of an alkyl 

hydroperoxide reductase (Hartford and Dowds et al., 1994; Chen et al., 1995). A 

regulator for these proteins has also been postulated called PerR. However, in 

contrast to OxyR, PerR is believed to act as a repressor of the hydrogen peroxide 

resistance genes in the absence of oxidative stress (Chen et al., 1995). Interestingly, 

the B. subtilis katA, mrgA and ahpC and ahpF genes have also been shown to be 

induced by hydrogen peroxide in the stationary phase. However, it seems this 

regulation does not simply reflect on the level of oxidant in the cell but involves the 

level of metal ions present in the medium, particularly manganese (Mn), and to a 

lesser extent iron, cobalt or copper (Chen et al., 1993, 1995). In fact, the stationary 

phase induction of the PerR regulon can be blocked if Mn is supplied to the medium. 

A role for iron in the regulation of the Haemophilus influenzae OxyR regulon and of 

an ahpC homologue from Corynebacterium diptheriae (35% identity to the 

S. typhimurium AhpC protein) has also been reported (Tai and Zhu, 1995; McIver 

and Hansen, 1996), although the role of growth phase was not determined. Whether 

the level of iron or other metal ions influences the expression of the S. typhimurium 

ahp locus has not been reported. Equally, the reason why defence against hydrogen 

peroxide should be regulated by the presence of such ions is unclear. 

A diverse range of phenomena is seen in B. subti!is during stationary phase including 

expression of genes involved in the transition to growth arrest, development of 

motility and the initiation of sporulation processes (Hecker et al., 1996). This 

stationary phase response in B. subtilis is largely regulated by an alternative sigma 

factor, SigB (GB)  (Boylan et al., 1993), and like a5  the level of aB  increases towards 

the end of the exponential phase of growth and prepares the cell for periods of 

inactivity. Moreover, aB  is responsible for the regulation of most of a core set of 

proteins, called general stress proteins (GSPs), which mediate resistance to a wide 

range of stress conditions including those to starvation, heat, acidity and oxidants 

(Hecker et al., 1996). 
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Recently, the AhpC and AhpF proteins were identified as being members of a small 

number of GSPs which are independent of B  control, as the expression of ahp was 

not altered in a a mutant (Antelmann et al., 1996). Thus, the regulation of the 

B. subtilis ahpCF locus shows similarity to that of S. typhimurium, which seems to 

be independent of a regulation. However, in contrast, the B. subtilis ahp locus can 

be induced in post-exponential growth and this has been attributed to a lack of 

specific metal ions in the medium or to activation via the production of endogenous 

hydrogen peroxide as a by-product of the electron transport chain as the growth rate 

diminishes (Chen et al., 1995; Antelmann et al., 1996; Bsat et al., 1996). Whether or 

not the other genes of the PerR regulon display expression is 

unknown at present. Interestingly, an ahp mutant of B. subtilis was found to be 

sensitive to cumene in the exponential phase of growth, but showed no difference to 

the parental strain in sensitivity to cumene in the stationary phase of growth 

(Antelmann et al., 1996). This indicates that the cell may acquire some alternative 

factor that can deal with alkyl hydroperoxides in stationary phase. This possibility is 

supported by the observation that a sigB mutant is sensitive to cumene in the 

stationary phase of growth (Antelmann et al., 1996). 

Sigma factors control the genes that RNA polymerase can transcribe and provide a 

way of regulating developmental pathways (Lonetto et al., 1992; Record et al., 

1996). Importantly, sigma factors are involved in protecting cells under stress 

conditions, for example RpoS (a 5) and RpoH (a32) regulate genes that protect the cell 

from starvation and heat stress, respectively. In S. enterica cells, such sigma factors 

are likely to contribute to the virulence of the bacteria by protecting them from the 

stresses found within the host, particularly the macrophage (see chapter 1). cr is the 
70 closest relative of the a family to a, the primary sigma factor of vegetative bacterial 

cells. Sigma factors contain four regions (determined on the basis of predicted 

function), which in turn can be split into subregions (reviewed in Record et al., 

1996). Structural motifs, located in regions 2.4 (region 2 subregion 4) and 4.2 of 

mediate binding to the -10 (Pribnow box) and -35 hexamer consensus sequences 

present in promoters of a 70-dependent genes (Lonetto et al., 1992; Record et al., 
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1996). The difficulty in distinguishing between 	and 70-regulated promoters is 

complicated because both sigma factors bind to very similar promoter sequences 

(Tanaka et al., 1995; Espinosa-Urge! and Tormo, 1996). Moreover, in vitro, U
s may 

bind to examples of genes which are regulated by a 70  yet, these genes are not 

expressed in the stationary phase in vivo. (Tanaka et al., 1995; Kolb et al., 1995). 

A number of differences between the a   and a promoters have nevertheless been 

postulated and these are displayed in Figure 3.9. a s appears to show little or no 

specificity for the a 70  hexamer sequence (TTGACA) in vivo. However, -35 

hexamers in which the two thymine residues were replaced by cytosine residues 

(CCGACA) were found to abolish E. coli a 70  recognition and introduced 

cyS..depefldeflt control (Wise et al., 1996). Thus, a modified -35 sequence may have a 

role in a recognition. In contrast to the -35 hexamer, the Pribnow box appears to be 

highly conserved in both aTh  and as-dependent promoters (Figure 3.9). 

Nevertheless, it is noteworthy that in approximately 70% of all a s-dependent genes 

thus far examined in E. coli, a cytosine residue occurs in front of the Pribnow box 

and at position 5 of this sequence (Kolb et al., 1995; Espinosa-Urgel et al., 1996). 

Finally, it is of interest that a number of ySregulated  genes, including dps and xthA, 

have also been postulated to have intrinsic curvature in the promoter region 5' of the 

Pribnow box (Espinosa-Urgel and Tormo, 1993). Curvature is often characterised by 

adenine and thyinine rich stretches of DNA. Such curvature can change under 

conditions of high osmolarity or upon association with DNA-binding proteins and is 

believed to be an important aspect of gene regulation (Owen-Hughes et al., 1992; 

Dorman, 1996). DNA curvature may help to stabilise the interaction of RNA 

polymerase with the promoter, possibly compensating for a lack of a well defined -35 

consensus sequence (Espinosa-Urgel and Tormo, 1993). 

The ahp locus of S. typhimurium appears to lack many of the possible features of an 

RpoS-dependent gene (Figure 3.9), in agreement with the experimental observations 

made in this chapter. Firstly, it has a recognisable RpoD-type -35 consensus 
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Promoter sequence 	 Sequence 

-35 	intervening sequence 	-10 
RpoD consensus TTGACA 	 TATAAT 

RpoS consensus CCCACA 
	

CTATACT 

stahpCF 

ecahpCF 

eckatG 

ecdps 

ecgorA 

SigA consensus 

SigB consensus 

bsahpCF 

TTAGCCGAATCAGCAAAATTTCGTTTAACTT 

TTACCGGAATCGGCAAAAATTGGTTACCTT 

TTATAACTTCTCTCTAACGCTGTGTATCGT 

GAATAGCGGAACACATAGCCGGTGCTATACT 

TTGCTGGCACCTATTACGTCTCGCGCTTACAAT 

TTGACA 
	

TATAAT 

GTTTAA 
	

GGGTAT 

TTGACAAAAAATATATATTAATTAATAAT 

Figure 3.9 A comparison of sigma factor promoter recognition sequences involved 
in the regulation of the ahp locus in S. typhimurium, E. coli and B. subtilis 

The S. typhimurium and E. coli ahp locus promoter sequence was compared to the known RpoD (cy 
consensus sequence (Hawley and McClure, 1983), the postulated RpoS (CS)  consensus sequence 
(Wise et al., 1996; Espinosa-Urgel et al., 1996) and also to promoter sequences from three OxyR 
regulated genes, katG, dps and gorA, known to be regulated by RpoS. Also included is a comparison 
of the B. subtilis ahp promoter and the consensus sequences for SigA (CFA)  (Moran et al., 1982) and 
SigB (o) (Hecker et al., 1996). The relative positions of the -10 and -35 hexamers are indicated at 
the top of the table and are underlined within the displayed sequences. The cytosine residues in the 
-10 and -35 hexamers postulated to be important for the recognition of promoters by RpoS are 
highlighted in bold. Key: stahpCF, S. typhimurium ahpCF promoter (Tartaglia et al., 1990); 
ecahpCF, E. coli ahpCF promoter (Smillie, 1994); eckatG, E. coli katG promoter (Toledano et al., 
1994); ecdps, E. coli dps promoter (Toledano et al., 1994); ecgorA, E. coli gorA promoter (Toledano 
etal., 1994); bsahpCF, B. subtilis ahpCF promoter (Antelmann etal., 1996). 
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sequence. Secondly, the Pribnow box has more in common with a RpoD-type 

recognition sequence than an RpoS-type consensus because it does not carry cytosine 

residues at position five or one base upstream of the postulated hexamer. The level of 

intrinsic curvature in the promoter is uncertain, but an AT rich region overlaps with 

and extends 5' of the Pribnow box. The relevance of this or indeed the role of a 

cytosine residue at position four of the ahp -10 hexamer is unknown. Interestingly, 

the ahp locus promoter from E. coli is similar to that of S. lyphimurium indicating 

that if this promoter sequence influences the expression of the gene during different 

growth phases, then the regulation of these genes is likely to be similar. 

Figure 3.9 also shows the promoter sequence of the B. subtilis ahp locus. As stated 

previously, the ahp locus in this bacterium is regulated independently from o, a 

sigma factor involved in the B. subtilis stationary phase response (Boylan et al., 

1993). In vegetative B. subtilis cells the major sigma factor is SigA (/) and the -10 

and -35 hexamers for this sigma factor are identical to that of Cr 70 . In support of the 

tyB-independent expression of the B. subtilis ahp locus, the promoter sequence of this 

locus resembles that recognised by c, an observation which compares favourably 

with the presence of a Cr
70-type promoter sequence in the ahp locus of S. typhimurium 

and E. coli. 

It should be noted that the promoter sequences of three genes of the OxyR regulon in 

E. coli known to be regulated by RpoS, dps, katG and gorA (Altuvia et al., 1994; 

Ivanova et al., 1994; Becker-Hapak and Eisenstark, 1995), do not appear to have the 

stereotypic characteristics of a cySdependent  promoter (Figure 3.9). Only dps 

contains the RpoS -10 consensus sequence. Moreover, although dps has been 

reported to have a curved region of DNA (Espinosa-Urgel and Torino, 1993), the 

sequence of the promoter 5' of the -10 hexamer is not AT rich, nor are the promoter 

sequences of katG or gorA. In fact, compared to these genes, the ahp promoter 

sequence appears to be the most AT rich (Figure 3.9) yet, this locus is regulated in an 

RpoS-independent manner. It is likely therefore, that the promoters of 

OxyR-dependent genes which show regulation have other features, or 
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require other factors, to make them responsive to RpoS. In support of this, the 

stationary phase expression of the dps gene from E. coli, is known to require both 

and the DNA-binding protein Integration Host Factor (IHF) (Altuvia et al., 1994). 

The classical view of the transcriptional activation of the genes in the OxyR regulon 

is that activation occurs through the action of OxyR and the cT70-containing RNA 

polymerase (Ea 70), after treatment of bacterial cells with hydrogen peroxide 

(Christman et al., 1985; Tao et al., 1993). Each of the genes of the OxyR regulon 

contains a conserved but degenerate consensus sequence stretching approximately 45 

bp upstream of the c 70-35 hexamer (Toledano et al., 1994). Because of the size of the 

consensus sequence, it has been proposed that OxyR is capable of binding as a 

tetramer to the promoters of the genes it regulates and this view has been supported 

by purification studies (Toledano et al., 1994; Kullik et al., 1995a, 1995b). Indeed, it 

is thought that OxyR is a redox sensitive protein and will only promote transcription 

of the OxyR-regulated genes in an oxidised state where the protein is thought to have 

undergone a conformational change (Storz et al., 1990). In this altered state, the 

OxyR polypeptide binds in four adjacent major grooves of the DNA at the OxyR 

promoter, thereby forming a tetramer and bringing about transcription through 

interaction with RNA polymerase (Toledano et al., 1994). Studies with the E. coli 

katG promoter have also shown that ET70  is unable to bind and promote transcription 

efficiently in the absence of OxyR (Tao et al., 1993). Furthermore, it has been shown 

that the C-terminus of the a polypeptide of RNA polymerase makes contact with 

OxyR suggesting that OxyR stabilises the binding of the polymerase to the promoter 

region and is essential for transcriptional activation (Tao et al., 1993). 

Interestingly both a 70  and OxyR have been reported to be present in stationary phase 

cells of E. coli (Hengge-Aronis, 1996a; .  Altuvia et al., 1994) yet, the expression of at 

least two OxyR regulon genes, katG and dps, has been shown to be independent of 

both these factors (Ivanova et al., 1994; Altuvia et al., 1994). In this chapter, it was 

found that ahp did not show an OxyR-dependent stationary phase induction in the 

presence of hydrogen peroxide (Figure 3.5) and the reason for this is unclear. 
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However, this phenomenon has also been reported for the dps promoter of E. coli 

(Altuvia et al., 1994). It could be that the expression of OxyR was insufficient to 

allow the formation of tetramers or that the protein is incapable of being activated. 

However, when expression of ahp was examined in S. typhimurium cells bearing 

plasmids expressing either native OxyR or a constitutively active form of OxyR, 

induction of ahp was still not observed (Figure 3.7). Moreover, studies with lacZ and 

the PBAD  promoter indicated that there was no lack of ability to induce the promoter 

under the experimental conditions (Table 3.3). This indicates that it is not the level or 

activation state of OxyR that leads to non-responsiveness of the ahp locus after 

exposure to hydrogen peroxide. However, this might simply reflect a lack of 

sufficient 7O  to drive expression of ahp in the stationary phase and also, on the 

abundance of the alternative sigma factor which might sequester RNA 

polymerase. The latter sigma factor would seem unable to activate transcription of 

ahp and moreover, does not seem to require OxyR for stationary phase activation of 

katG or dps. 

As stated previously, other factors may play a role in the induction of 

OxyR-regulated genes by a 5  (Ivanova et al., 1994). For example, the dps gene of E. 

coli, which requires OxyR and a in the exponential phase of growth, is regulated by 

a5  and Integration Host factor (IHF) in the stationary phase (Altuvia et al., 1994). 

The dps promoter has also been shown to contain intrinsically curved DNA 

(Espinosa-Urgel and Tornio, 1993). Thus, DNA binding proteins, such as IHF, or 

curvature may serve to stabilise the RNA polymerase binding on the stationary phase 

promoter in the absence of OxyR. The lack of a hydrogen peroxide-inducible 

response of the OxyR-regulated genes in the stationary phase may therefore reflect 

on competitive exclusion of OxyR by other promoter binding factors or altered local 

topology. 

Much of the work performed in this chapter has been dependent upon the detection 

of the AhpC polypeptide. It is important to note however, that the detection of the 

polypeptide does not necessarily correlate with the level of ahpC transcript. The 

amount of protein produced from a transcript can be influenced by a number of 
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factors including the quantity and the stability of the transcript. A more accurate 

method to assess transcription from the ahpC gene would be to perform quantitative 

reverse-transcription or Northern blotting, and this could be an angle of further 

studies. Alternatively, the half-life of the protein could be examined by pulse-chase 

labelling with [35-S]-methionine. Such an approach may provide an answer to 

whether the AhpC detected in stationary phase (Figure 3.5 Panel B, Figure 3.7 Panel 

B and Figure 3.8 Panel B) is simply carry over from the exponential phase or reflects 

basal gene expression. 

Previous studies have suggested that the ahp locus of S. typhimurium is expressed in 

the macrophage environment and is therefore likely to play a role in protecting the 

cell from oxidative killing (Francis and Gallagher, 1993; Francis PhD Thesis, 1993). 

The generation of a stationary phase response has also been implicated in the 

virulence of S. typhimurium, as rpoS and examples of RpoS-regulated genes have 

been shown to be expressed upon entry into the macrophage (Chen et al., 1996a). 

This may appear to conflict with the observations made in this study, as ahp displays 

Rpo S -independent expression. However, rpoS expression was shown to be maximal 

only after two hours post-infection of the macrophages by S. typhimurium (Chen et 

al., 1996a). In addition, since the respiratory burst of the macrophage occurs upon 

contact and engulfment of bacteria, and since there is an apparent delay in maximal 

RpoS expression, it seems likely that a proportion of cells may be dependent upon an 

inducible (OxyR) response to deal with oxidative stress. Nevertheless, the results of 

this chapter would suggest that the major role for ahp is protection against oxidative 

damage during early macrophage interaction, and that ahp would play a lesser or no 

role in the long term survival of S. typhimurium in the macrophage, except perhaps 

when the cells were able to actively grow. This would also suggest that the 

importance of RpoS in the virulence of S. typhimurium is independent of ahp. 
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CHAPTER 4 

Determination of the effect of osmolarity on the 
expression of ahp using a bioluminescent reporter 

system 
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4.1 INTRODUCTION 

Bacterial cells are surrounded by a cytoplasmic membrane which is freely permeable 

to water but not to most biological molecules (reviewed in Csonka, 1989; Csonka 

and Hanson, 1991). As a consequence, cells are susceptible to fluctuations in the 

osmotic environment within which they find themselves. Enteric bacteria, like 

S. zyphimurium, normally maintain a cytosolic concentration of soluble substances of 

approximately 300 mOsm, a concentration greater than that of the external 

environment, to produce an outward pressure on the cell wall (turgor) (Ingraham, 

1987). However, when bacterial cells are exposed to sudden increases in external 

osmolarity (hyperosmotic shock or osmotic upshift) dehydration occurs causing 

considerable shrinkage of the cytoplasm and inhibition of growth, as water moves 

out of the cell (Csonka and Hanson, 1991). The deleterious effects of this water 

efflux occur because the intracellular concentration of molecules increases as the 

cytoplasmic volume decreases. In general, an increase in the content of molecules, 

especially inorganic ions, can seriously alter the catalytic rate of enzyme reactions, 

disrupt non-covalent interactions of proteins with nucleic acids and drive the 

non-specific aggregation of proteins and biopolymers into non-functional complexes 

(Ingraham, 1987; Csonka and Hanson, 1991). 

S. typhimurium and E. coli have been shown to respond to osmotic stress by inducing 

the synthesis and uptake of a number of substances including prolme and 

glycine-betaine (Csonka and Hanson, 1991). This net rise in solutes raises the 

osmolarity of the cytoplasm and restores turgor. Unlike inorganic ions, these solutes 

can be accumulated to high levels in the cytoplasm without disturbing the 

functioning of cellular proteins, and are thus called compatible solutes (Csonka, 

1989). 

The ability of S. enterica to respond to environmental change is an important feature 

of virulence (Mekalonos, 1992; Mahan et al., 1996). Environmental change is 

believed to act as a cue to alter gene expression in S. enterica such that the bacterial 

cell becomes equipped to deal with the new environment. These cues which occur 

156 



during the infection process may also act as signals to S. enterica cells to produce 

virulence determinants that increase the ability of the bacteria to invade and multiply 

in the tissues of the host. One such environmental cue is believed to be osmotic 

upshift, which is thought to be elicited in the intestine (Galan and Curtiss, 1990). For 

example, S. typhimurium has been shown to produce an invasion apparatus, or 

invasome, upon contact with intestinal epithelial cells (reviewed in Galan, 1996) and 

the expression of a number of genes involved in the production of this structure is 

stimulated under elevated osmolarity (Galan and Curtiss, 1989, 1990). 

Recently, an investigation into the osmotic stress response of the commensal 

organism Staphylococcus aureus demonstrated that four proteins were highly 

expressed (Annstrong-Buisseret et al., 1995). One of these proteins was 50% 

identical to the amino acid sequence of the AhpC protein from S. lyphimurium. 

Moreover, upon subsequent cloning and sequencing of the S. aureus ahpC gene, a 

downstream open reading frame with homology to ahpF was also identified. 

Investigations into Bacillus subtilis have also shown that an ahp locus exists, and the 

expression of this operon is osmoregulated (Antelmann et al., 1996). The above 

results therefore indicate that the expression of an alkyl hydroperoxide reductase 

activity is important in a number of bacteria during osmotic stress. These results 

suggest that as well as trying to prevent water loss from the cell, bacteria may also be 

experiencing oxidative stress during osmotic upshift. A similar response to osmotic 

stress is known to occur in plant cells, where an accumulation of reactive oxygen 

radical scavenging enzymes is observed as well as a cellular increase in compatible 

solutes (reviewed in Bohnert and Jensen, 1996). 

After breaching the intestinal lining, invasive serovars of S. enterica pass into 

underlying tissues where they enter into macrophages (Finlay and Falkow, 1989a; 

Gulig, 1996). The latter cells destroy bacteria via a combination of a respiratory 

burst, which generates reactive oxygen species, and through an exposure to an 

arsenal of anti-microbial peptides and enzymes (Adams and Hamilton, 1984; Ganz et 

al., 1990). However, S. enterica cells are capable of surviving within the 

macrophage, and part of this ability may be dependent upon inducible anti-oxidant 
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defence mechanisms that protect the bacterial cells from the respiratory burst (Fields 

et al., 1986; Finlay and Falkow, 1989a; Francis and Gallagher, 1993). Interestingly, 

the OxyR-regulated ahp locus of S. lyphimurium has been shown to be induced by 

interaction with macrophages and specifically, by macrophage-derived hydrogen 

peroxide (Francis and Gallagher, 1993; Francis PhD Thesis; 1993). This might 

suggest that ahpCF and possibly the other genes of the OxyR regulon have a role in 

virulence in which they protect the bacterial cell from the environment of the 

macrophage. 

The finding that osmolarity may induce the expression of the ahp locus in other 

bacteria has important implications for the expression of ahp in S. typhimurium, were 

it to behave similarly. Indeed, the fact that S. enterica cells must pass through the 

high osmolarity of the intestine may mean that expression of ahp, and perhaps the 

rest of the OxyR regulon, occurs before S. enterica encounters the macrophages. 

Such expression may therefore pre-adapt S. enterica to the macrophage environment, 

especially against the products generated by the respiratory burst. In addition, the 

classical model of the regulation of the OxyR regulon is based on the activation of 

the target genes in response to hydrogen peroxide (Christman et al., 1985; Toledano 

et al., 1994). The induction of these genes via osmotic change would therefore 

represent an alternative and novel form of regulation. The effect of osmolarity upon 

the expression and regulation of ahp was therefore addressed using the 

S. typhimurium strain, MPG203, which carries the bioluminescent reporter system 

(Mudlux) in the ahp locus. 

4.2 RESULTS 

4.2.1 Examination of the role of osmolarity in the regulation of the ahp locus, 

using a bioluminescent reporter system 

In order to examine the effect of osmotic stress on ahp expression, it was first 

necessary to use a culture medium in which the osmolarity was initially low in order 

that osmotic upshift experiments could be performed. The commonly used medium 



LB was unsuitable as it contains a high level of NaCl (10 g of NaC1 per litre). A low 

salt derivative of LB containing only 1 g per litre (LSLB) was therefore used for the 

experiments described below since the osmolarity of the medium could be increased 

as required. 

The effect of osmotic upshift on the expression of ahy in MPG203 

In order to examine the effect of osmotic upshift in MPG203 an overnight culture 

(grown in normal LB) was diluted 1:10, 000 fold into LSLB, to give approximately 

10 5  c.f.u. mr' and the culture was incubated with shaking at 30°C for 2 hours, to 

re-establish exponential phase growth (this preparative procedure was used 

standardly for all strains throughout these experiments, unless otherwise stated). 

After 2 hours, the culture was divided into four portions. One portion was left 

unaltered whilst for the other portions, the media was adjusted to give a constant 

physical osmotic pressure (West, 1990) by adding 0.3 M NaCl, 0.45 M sucrose or 

5% glycerol (final concentrations). 200 p.1 of each sample was then withdrawn and 

the bioluminescence was measured over a 10 hour period (as relative light units per 

second (RLU s 1 )) in a 96-well plate-reading luminometer, pre-incubated to 30°C. 

For comparison, the effect of exposure of MIPG203 to hydrogen peroxide (the 

classical stimulus) was also examined. In the latter case, however, cells were 

prepared as above except that, normal LB was used and the culture was split into two 

volumes. The samples were then treated after the 2 hour incubation period with 100 

jiM hydrogen peroxide or were left untreated, and the bioluminescence was recorded. 

Figure 4.1 shows the effect of the classical stimulus, hydrogen peroxide, on the 

expression of ahp. As can be seen, ahp was induced only in the presence of hydrogen 

peroxide. Figure 4.2 displays the effect of osmotic upshift upon the expression of 

ahp. Both 0.3 M NaCl and 0.45 M sucrose brought about a substantial induction of 

the ahp operon even in the absence of hydrogen peroxide. The use of both NaCl and 

sucrose also provided evidence that the response was not osmolyte specific. 

Furthermore, glycerol which freely enters the bacterial cell (and therefore does not 

elicit an osmotic stress), was not found to increase the expression of ahp even though 
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Figure 4.1 The effect of hydrogen peroxide upon the expression of the ahp locus in MPG203 

An overnight culture of MPG203 (ahp::Mudlux) was diluted 1: 10, 000 into LB, to give approximately 10 c.f.u. ml, 
and was then grown for 2 hours at 30°C with shaking. After this period, the culture was split into two volumes and was 
either treated with 100 1LM hydrogen peroxide (H 202) or was left untreated. A 200 1.11 aliquot of each sample was then 
monitored for bioluminescence, over approximately 10 hours, in a 96-well plate-reading luminometer pre-heated to 
30°C. Light induction is expressed as relative light units per second (RLU s'). The zero time point of the graph 
represents the time at which the cultures were treated. (Experiments were repeated several times and were found to be 
reproducible. The figure is a typical example). 
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Figure 4.2 The effect of osmolarity upon the expression of the ahp locus in MPG203 

Experiments were performed using a modified LB medium, LSLB. When unsupplemented this had a final NaCl 
concentration of ig l (0.017 M). A culture of MPG203 (ahp::Mudlux) was grown overnight in LB and then diluted 
into fresh LSLB, to give approximately 10 5  c.f.u. ml - ', and incubated at 30°C for 2 hours with shaking. The culture 
was then split into four volumes and was left untreated or was adjusted to a final concentration of either 0.3 M 
NaCI, 0.45 M sucrose or 5% (v/v) glycerol. Bioluminescence was determined as described in the legend for Figure 
4.1. (Experiments were repeated several times and were found to be reproducible. The figure is a typical example). 
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it exerts the same physical osmotic pressure in solution. These results therefore 

suggest that the ahp operon is osmotically regulated. 

The effect of osmolaritv upon ahP expression is dose-dependent 

The data from Figure 4.2 indicated that the expression of the ahp locus was 

osmotically sensitive. A test was therefore performed to see how sensitive the 

expression of ahp was to osmotic changes in the medium. Since the osmotic 

induction of ahp had been shown not to be specific to one compound, it was decided 

to use salt as the osmotic stress-inducer in all the further experiments. 

A culture of MPG203 was prepared in LSLB as described previously before being 

split into four volumes and treated with 0.17 M, 0.3 M or 1 M NaCl. One sample was 

left untreated (which is equivalent to 0.017 M NaCl). 200 p.1 of each sample was then 

withdrawn and examined for bioluminescence as before. 

From Figure 4.3 it can be seen that the expression of ahp appears to increase with 

NaCl concentration up to 0.3 M, suggesting it is a dose-dependent phenomenon. In 

addition, there appears to be an optimal concentration of osmolarity that influences 

the expression of ahp and above this point the response diminishes. 

Osmotic upshift and hydrogen peroxide in combination enhance the expression of 

The data from Figure 4.1 and 4.2 showed that the ahp operon could be activated by 

hydrogen peroxide or osmotic upshift. To examine whether each of these stimuli 

operated via the same mechanism or through an alternative route of activation, the 

effect of these stimuli were therefore assessed separately or in combination. 
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Figure 4.3 The osmotic induction of ahp in MPG203 is dose-dependent 

A culture of MPG203 (ahp::Mudlux) was prepared as described in the legend for Figure 4.2. 
Subsequently, the culture was divided into four volumes and was adjusted to a final concentration of 
0.17 M, 0.3 M, or I M NaCl (final concentration) or was left untreated (0.017 M NaCl). 
Bioluminescence was recorded as described in the legend to Figure 4. 1. (Experiments were 
performed several times and found to be reproducible. The figure is a typical example). 
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Figure 4.4 The effect of hydrogen peroxide, osmolarity or a combination of these 
stimuli upon the expression of the ahp locus in MPG203 

A culture of MPG203 (ahp::Mudlux) was prepared as described in the legend for Figure 4.2. 
Subsequently, the culture was divided into four aliquots and was treated with 100 iiM hydrogen 
peroxide (H 202), 0.3 M NaCl or a combination of these, or was left untreated. Bioluminescence was 
recorded as in the legend to Figure 4.1. (Experiments were performed several times and found to be 
reproducible. The figure is a typical example). 
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A culture of MPG203 was prepared in LSLB as described previously and was then 

split into four aliquots. To these samples either hydrogen peroxide or NaCl or both 

were added to final concentrations of 100 jiM or 0.3 M respectively, whilst one 

sample was left untreated. 200 .tl of each culture was withdrawn and examined for 

bioluminescence in a luminometer. From Figure 4.4 it can be seen that a combination 

of both stimuli potentiated the response far beyond that of the individual stimuli. In 

addition, the response to hydrogen peroxide in the low osmolarity medium was 

shown to be negligible when compared to the untreated sample. These results suggest 

that osmolarity is likely to be acting through a different regulatory pathway to that of 

peroxide stress, but that the ability of the ahp locus to be induced by hydrogen 

peroxide is dependent upon the osmotic environment of the cell. 

OxyR but not OmpR. H-NS. or RpoS is required for the osmotic-inducibility of ahp 

Classically, expression of the ahp locus occurs in response to hydrogen peroxide via 

the binding of the OxyR regulatory protein to the ahp promoter (Toledano et al., 

1994). The results from Figure 4.4 suggested that the mechanism for osmotic 

induction of ahp was different to that for hydrogen peroxide and raised the 

possibility that other regulatory factors may be involved in the osmotic-inducibility 

of ahp. A number of regulators have been shown to play important roles in the 

inducibility of a number of osmotically-regulated genes. For example, RpoS is the 

major regulator of the stationary phase response but has also been shown to play a 

role in the expression of osmotic stress resistance genes in exponential phase cells of 

E. coli (Hengge-Aronis et al., 1993). Moreover, the osmotically-sensitive expression 

of the outer membrane porin proteins, OmpF and OmpC, and the glycine-betaine 

uptake system, which is encoded by pro U, are known to be regulated by OmpR and 

H-NS, respectively (Csonka and Hanson, 1991). Therefore, the importance of the 

oxyR, rpoS, ompR or hns loci in the osmotic-inducibility of ahp was examined. 

The ahp locus containing the bioluminescent reporter system (Mudlux) from 

MPG203, was transduced, via phage P22, to an LT2-derived S. typhimurium strain 

which had been deleted for the oxyR locus (TA4108 (oxyRA2), Christman et al., 
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1985) to form MPG352. Transposon insertion mutations, ompRl006::TnlO and 

osmZ6::Tnl0 (osmZ has been renamed hns), were transduced from CHI 350 (Dorman 

et al., 1989) and CR1701 (Hulton et al., 1990), respectively, into MPG203 to form 

MPG474 and MPG475. In a similar way, an rpoS gene which had been inactivated 

by the insertion of a 3-lactamase gene (rpoS::bla) in S. typhimurium strain SF1005 

(Fang et al., 1992), was transduced into MIPG203 to form MPG471 (see chapter 3). 

Since S. typhimurium strains MPG203, MPG471, MPG474, and MPG475 were 

SL1344 derivatives but, MPG352 was an LT2 derivative, a wild type LT2 derivative 

containing the ahp::Mudlux (MPG350) was also examined, as a control. 

Cultures of the above strains were prepared in LSLB as described previously (the 

c.f.u. ml-1  of each culture was determined to ensure that each sample was composed 

of an equivalent number of cells). Each culture was then divided into two portions 

and these were left untreated or were adjusted to a final concentration of 0.3 M NaCl. 

Bioluminescence was then measured. Figures 4.5 Panels A-E display the results of 

examining the induction of the ahp locus in the mutant backgrounds. Panel A shows 

that the osmotic-inducibility of ahp in the S. typhimurium SL1344 (MPG203) and 

LT2 (MPG350) backgrounds was equivalent. Moreover, the osmotic induction of the 

ahp locus in either the rpoS (MPG471, Panel C), ompR (MPG474, Panel D) or hns 

(MPG475, Panel B) mutant backgrounds was similar to that seen in Figure 4.5 Panel 

A, suggesting that these regulatory loci did not significantly influence the 

osmotic-inducibility of ahp. In contrast, no ahp induction was detected in the 

response of the oxyR deleted derivative (MPG352, Panel B) to osmotic upshift 

thereby highlighting a requirement for OxyR in the osmoregulation of ahp. 

The effect of novobiocin upon the hydro gen peroxide-inducibility of the ahp locus 

DNA supercoiling has been implicated in the regulation of a number of osmotically 

induced genes such as pro  and the DNA gyrase genes, gyrA and gyrB (Jovanovich 

and Lebowitz, 1987; Higgins et al., 1988; Dorman and Ni Bhriain, 1992). In 

addition, previous studies have shown that disruption or inhibition of genes which 
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Figure 4.5 The effect of the ompR, hns, oxyR or rpoS loci upon the 

osmotic-inducibility of ahp 

Cultures were prepared in LSLB as described in the legend to Figure 4.2. Each culture was then 

divided into two. One portion was left untreated whilst the other portion was adjusted to a final 

concentration of 0.3 M NaCl. Bioluminescence was measured as described in the legend to Figure 

4.1. Figure 4.5 Panel A shows the effect of osmotic upshift upon the expression of the ahp locus 

within wild type LT2 (MPG350) and SL1344 (MPG203) backgrounds. Figure 4.5 Panels B-E show 

the effect of oxyR (MPG352), rpoS (MPG471), ompR (MPG474) or hns mutations (MPG475) upon 

the osmotic-inducibility of the ahp locus. Key to S. typhimurium strains: MPG203 (SL1344, 

ahp::Mudlux); MPG350 (LT2, ahp::Mudlux); MPG352 (LT2, ahp::Mudlux, oxyRt2); MPG471, 

(SL 1344, ahp: :Mudlux, rpoS: :bla); MPG474 (SL 1344, ahp: :Mudlux, ompRi 006: :TnI 0); MPG475 

(SL1344, ahp::Mudlux, osmZ6::TnlO [osmZhns]). (Experiments were repeated several times and 

were found to be reproducible. The figure represents a typical example of the results). 
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regulate supercoiling, such as topoisomerase and DNA gyrase, may alter the 

expression of osmotically regulated genes (Menzel and Gellert, 1983; Higgins et al., 

1988). Since it appeared that ahp could be induced by osmotic upshift, the effect of 

novobiocin (an inhibitor of the DNA gyrase subunit B) upon ahp expression was 

examined in conjunction with hydrogen peroxide or osmotic stimulation. 

Cultures of MPG203 were prepared as described previously and were then split into 

six aliquots. Samples were then either left untreated or subjected to hydrogen 

peroxide, or novobiocin treatment or a combination of these chemicals, at final 

molarities or concentrations of 100 tM and 50 or 200 g ml -1 , respectively. The 

bioluminescence from all the samples was then measured. The number of c.f.u. ml -1  

of samples from parallel cultures was determined at suitable time points by plating 

onto LB media. 

From Figure 4.6 it can be seen that hydrogen peroxide elicited no significant ahp 

induction in LSLB (in line with data from Figure 4.4). In contrast, exposure to 

novobiocin resulted in induction of ahp expression in a concentration-dependent 

manner. The fact that a combination of hydrogen peroxide and novobiocin did not 

elicit an enhanced response may suggest that they function via a common regulatory 

step. Nevertheless, it has to be remembered that hydrogen peroxide per se was 

incapable of eliciting any significant response at low osmolarity whilst ahp 

expression was observed in response to novobiocin under these conditions. 

Closer examination of the cell number 5 hours after treatment revealed that a 

considerable difference existed between samples. Initially, the cell number of the 

culture, before being split and treated, was 1.1 x iø c.f.u. ml - 1 . However, after 5 

hours the cell numbers (c.f.u. ml -1 ) were as follows (where H represents hydrogen 

peroxide treated samples and N50 and N200 represent samples treated with 50 or 200 

jig ml-  novobiocin, respectively): untreated, 3.6 x 106;  H, 1.1 x 106;  N50, 3.8 x 10  5 ;  

N200, 6.1 x ion;  N50+11, 2.5 x i05 ; N200+11, 5.7 x 104. Therefore, hydrogen 

peroxide appeared to retard cell growth slightly. However, novobiocin had a more 

dramatic and dose-dependent effect upon the growth of MPG203. Moreover, at 
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Figure 4.6 The effects of novobiocin and/or hydrogen peroxide upon 
ahp expression in MPG203 

A culture of MPG203 (ahp::Mudlux) was prepared in LSLB as described in the legend to Figure 4.2. The 
culture was then divided into six volumes and was treated with hydrogen peroxide (100 .oM), novobiocin 
(50 or 200 .tg nit'), or a combination of these stimuli, or was left untreated. Bioluminescence was 
recorded as described in the legend to Figure 4.1. Key: H, hydrogen peroxide; N50 and N200, novobiocin 
at either 50 or 200 ig ml -1 , respectively. (Experiments were performed several times and were found to be 
reproducible. The graph is a typical example of the results). 
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Figure 4.7 The effect of novobiocin and/or osmotic upshift upon 
ahp expression in MPG203 

A culture of MPG203 (ahp::Mudlwc) was prepared in LSLB as described in the legend to Figure 4.2. The 
culture was then split into six samples and was adjusted to a final concentration of 0.3 M NaCl, 50 or 200 tg 
ml' novobiocin or a combination of these stimuli, or left untreated. Bioluminescence was recorded as 
described in the legend to Figure 4.1. Key: S, NaCI; N50 and N200, novobiocin at either 50 or 200 .tg ml -1 , 

respectively. (Experiments were performed several times and were found to be reproducible. The graph is a 
typical example of the results). 



200 tg ml-1  the novobiocm appeared to kill the cells, yet caused the greatest 

expression of ahp (Figure 4.6). This suggested that the effects of novobiocin may not 

have reflected an alteration in localised DNA supercoilmg at a specific promoter, but 

could represent an indirect effect on DNA supercoiling in general, as a consequence 

of the inhibition of cell growth. 

The effect of novobiocin and osmotic upshift upon the expression of ahp 

The results from Figure 4.6 suggested that novobiocin can induce ahp expression in 

media of low osmolarity and, that hydrogen peroxide seemed not to influence this 

response. The possibility still existed that the novobiocin effect shared a common site 

of action with that for osmotic induction. To address this, MPG203 cells were 

prepared as before and then the culture was split into six aliquots. These were then 

treated with either NaCl (0.3 M), novobiocin (50 or 200 p.g ml - '), or a combination of 

these stimuli and the bioluminescence of the samples was measured (the cell 

numbers of parallel cultures which were treated similarly were determined by 

dilution and plating onto solid LB medium). The effects of the treatments upon the 

expression of ahp can be seen in Figure 4.7. Osmotic shock or exposure to 

novobiocin elicited a clear bioluminescent response. However, a combination of 

these stimuli produced a response that vastly exceeded the response from the 

individual stimuli. These results suggest that the induction of ahp by novobiocin 

occurs via a different regulatory mechanism or point from that of osmolarity but 

suggests that, as found with hydrogen peroxide, novobiocin is capable of augmenting 

the osmotic response. Unlike hydrogen peroxide however, novobiocin alone seems to 

elicit a small response. 

Examination of cell number after treatment for 5 hours again suggested considerable 

differences existed between samples. The initial cell number of the culture prior to 

being split and treated was 9.3 x 10 4  c.f.u. mi'. After 5 hours, the cell numbers 

(c.f.u. ml-1  ) were as follows (where S represents samples treated with NaCl, and N50 

and N200 represent samples treated with 50 or 200 jig ml -1  novobiocin, respectively): 

untreated, 3.4 x 106;  S, 1.3 x 106;  N50, 3.5 x i05 ; N200, 5.9 x iO4 ; N50+S, 2.5 x 105 ; 
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N200+S, 5.4 x 104. Thus, osmolarity, like hydrogen peroxide, appeared to have a 

mild growth retardation effect whilst, as before, novobiocin resulted in a deleterious 

effect upon cell survival, with the most severe decline in growth observed with 

200 tg ml-1  novobiocin. 

Plasmid-mediated expression of OxyR, in the presence of hydrogen peroxide, results 

in a high level of exDression of ahp in media of low osmolaritv 

Previous work (Christman et al., 1985) and the present studies (Figure 4.5 Panel B) 

have shown that the hydrogen peroxide-inducibility of ahp requires the OxyR 

transcriptional regulator but not the rpoS, hns, or ompR gene products. In order to 

dissect the regulatory system further and attribute sites of action to the various 

stimuli, plasmid pPDT3, which carries the oxyR gene under the controllable promoter 

(PBAD) from the arabinose operon of E. coli (see chapter 3 for details of construction), 

was electroporated into an oxyR deletion strain, carrying the bioluminescent reporter 

system in the ahp locus (MPG352), to form MPG477. This would help determine 

whether the effects of osmolarity were acting upstream (e.g. oxyR) or downstream 

(e.g. ahp) in the regulatory circuit. 

Using MPG477, the effect of hydrogen peroxide and osmotic upshift was examined 

in the presence or absence of OxyR as a result of adding or not adding arabinose to 

the medium (arabinose activates expression of OxyR from PBAD).  An overnight 

culture of MPG477 was diluted 1:10, 000 into LSLB and the culture was then 

divided into 8 volumes and grown for 2 hours. Samples that required the expression 

of OxyR, were treated with 0.5% (v/v) arabinose 30 minutes after dilution and then 

re-incubated for a further 1.5 hours. Cultures were then subjected to hydrogen 

peroxide (100 tM), osmotic stress (0.3 M NaCl) or a combination of these treatments 

or were left untreated. The results are shown in Figure 4.8. From Panel B it can be 

seen that the ahp locus is not induced by the presence of OxyR in the absence of a 

hydrogen peroxide or osmotic upshift stimulus. In contrast, in the presence of OxyR 

(expressed from the plasmid) and hydrogen peroxide, a substantial level of ahp 

expression was observed (Panel A), even in the medium of low osmolarity. The 
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Figure 4.8 The effect of supplying OxyR in trans upon the expression of the ahp locus, 
in an itoxyR strain, under conditions of low osmolarity 

Overnight cultures of MPG477 (ahp::Mudlux, oxyRi2, pPDT3) were diluted into LSLB, containing the 

appropriate antibiotics, to give approximately 10 5  c.f.0 ml -1 . Cultures were then incubated for 2 hours at 30°C, 
except for those which required the expression of OxyR from pPDT3, which were adjusted to 0.5% (v/v) 

arabinose 0.5 hours after dilution, before being incubated for the remaining 1.5 hours. Samples with or without 
arabinose were then exposed to 100 MM hydrogen peroxide, 0.3 M NaCI, a combination of these stimuli or none 
of these stimuli. Bioluminescence was measured as described in the legend to Figure 4.1. Panel A shows the 
effect of osmotic upshift and hydrogen peroxide upon the expression of ahp in the presence or absence of 
arabinose. Panel B shows the bioluminescence obtained from two control samples left untreated or treated with 
arabinose. Key: A, arabinose; 5, NaCl; H, hydrogen peroxide. (Experiments were performed several times and 
were found to be reproducible. The figure represents a typical example of the results obtained). 
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requirement for high osmolarity in the hydrogen peroxide-induciblility of ahp 

therefore appeared unnecessary when OxyR was expressed from a plasmid. 

However, it is interesting that a combination of high osmolarity and hydrogen 

peroxide resulted in an increased response in the presence of OxyR compared with 

hydrogen peroxide alone. Surprisingly, however, under these conditions, 0.3 M NaCl 

alone apparently failed to elicit a significant response even in the presence of induced 

OxyR. The explanation for these points remain unclear at present. MPG477 is an 

LT2 derivative of S. lyphimurium, and this is unlikely to account for the results 

obtained because the osmotic-inducibility of the ahp locus in MPG350 (LT2 

ahp::Mudlux) was shown to be equivalent to that of MPG203 (Figure 4.5 Panel A). 

Nevertheless, the oxyR mutation in MPG477 was generated by TnlO-mediated 

deletion, which can result in deletion of flanking genes. Thus, the possibility that 

some component which is encoded close to oxyR, and which influences the observed 

effect of osmolarity, may also have been lost, cannot be excluded. (It should also be 

noted that 0.5% arabinose is unlikely to have a significant osmotic effect upon the 

cultures because it is the equivalent of adding less than 0.5 g NaCl to a litre of media 

(West, 1990). In addition, pBAD18, the parental plasmid to pPDT3, had no effect 

upon the expression of ahp (data not shown)). 

Osmotic stress does not cross-protect S. tvphimurium against hydrogen neroxide or 

cumene hvdroneroxide 

The results outlined so far in this chapter suggested that ahp, or possibly the entire 

OxyR regulon, is influenced by osmolarity. The greatest and lowest levels of 

ahp::Mudlux expression in-response to hydrogen peroxide stress were observed 

under high and low osmolarity conditions, respectively. Tests were performed 

therefore, to determine if modulation of medium osmolarity correlated with 

differences in the protective responses to hydrogen peroxide elicited in SL1344 and 

MPG2O3. 

Overnight cultures of SL1344 and MPG203 were diluted 1:10, 000 into 30 ml of 

LSLB, and were grown for 2 hours to establish exponential phase growth. After this 

172 



time the cultures were split into three 10 ml aliquots and one aliquot was left 

untreated (0.017 M NaCl) whilst the other two were adjusted to final concentrations 

of 0.17 M NaCl (the equivalent of normal LB) or 0.3 M NaCl. Samples were then 

incubated at 30°C for a further hour, to allow the cells to adapt. Each of the cultures 

was then split into two 5 ml portions and 20 mM hydrogen peroxide was added to 

one of the portions whilst the other was left untreated. The cultures were incubated 

for a further hour and subsequently, samples were plated to determine the number of 

viable colony forming units. The percentage survival of the treated sample was 

calculated relative to the untreated samples, and these results are shown in Table 4. 1. 

Surprisingly, the results (Table 4.1) were found to be in complete contrast to those 

predicted from the luminometer studies. For both SL1344 and IMIPG203, those cells 

which were subjected to the lowest osmolarity showed the greatest survival when 

challenged with hydrogen peroxide. It appeared then, that high osmolarity did not 

help to cross-protect S. typhimurium against the effects of oxidative stress but, in 

fact, indicated that high osmolarity enhanced killing by hydrogen peroxide. 

These results did not exclude the possibility however, that osmolarity could be acting 

solely to induce the ahp locus, in an OxyR-dependent fashion but independently of 

the other genes of the OxyR regulon. In order to address this possibility, the above 

test was repeated but using 20 mM cumene hydroperoxide, a chemical specifically 

used to test for Ahp activity (Christman et al., 1985). The results displayed in Table 

4.1 indicated that increased osmolarity did not enhance the survival of cells against 

exposure to cumene hydroperoxide, thus suggesting high osmolarity does not 

increase ahp expression. (The survival of MPG203 was not examined because it is 

hyper-susceptible to cumene). 
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% Survival of Strain Tested 

SL1344 MPG203 

Treatment 

Salt Concentration 

0.017M 	0.17M 	0.3M 

Salt Concentration 

0.017M 	0.17M 	0.3M 

untreated 100.0 100.0 100.0 100.0 100.0 100.0 

20 mM HP 20.0 2.3 1.0 19.2 2.0 0.9 

20 mM CHP j 	22.0 2.3 1.6 - - - 

Table 4.1 Survival of SL1344 and MPG203, grown under different concentrations of 

salt, when treated with 20 mM hydrogen peroxide or cumene hydroperoxide. 

Overnight cultures of SL1344 (virulent parental strain) and MPG203 (ahp::Mudlux) were diluted to 

approximately iø c.f.u. ml 1  in LSLB and grown with shaking at 30°C for 2 hours. The culture was 

then split into three portions and left untreated (0.017 M NaCl) or adjusted to 0.17 M NaCl or 0.3 M 

NaCl and incubated for 1 hour at 30°C. For SL1344, samples were again split and left untreated or 

were treated with 20 mM hydrogen peroxide (HP) or 20 mM cumene hydroperoxide (CHP) and 

incubated for a further hour at 30°C. For MPG203, samples were split and left untreated or were 

subjected to 20 mM HP (only) and incubated a further hour at 30°C. Samples were then appropriately 

diluted and plated onto LB to determine the cell number, and the percentage survival (%) was 

determined relative to the untreated sample. (a)- not determined because MPG203 is naturally 

hyper-sensitive to CHP. Values in the table represent the average of two separate experiments and 

variation between samples which were equivalently treated was less than 5%. 

4.2.2 Examination of the osmotic-inducibility of the ahp locus, using 

immunoblotting 

Experiments that use the luciferase genes from Vibrio species to monitor gene 

expression, have in some instances been reported to produce anomalous results, 

especially under conditions that may influence DNA supercoiling (e.g. osmolarity) 

(Forsberg et al., 1994). The data obtained from the bioluminescence studies indicated 

that the ahp locus was induced by a high osmolarity medium, yet this did not result 

in enhanced protection against hydrogen peroxide or cumene hydroperoxide. The 

possibility that the bioluminescent reporter system had not accurately reflected ahp 
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expression was therefore explored using a Western blot procedure and an anti-AhpC 

antiserum. 

Immunological detection procedures for identifying the AhpC protein in cell extracts 

were similar to those performed in chapter 3 of this thesis. Cultures of SL1344 and 

MPG203 (which encodes a.100 amino acid AhpC polypeptide, truncated by virtue of 

the Mud/ui insertion) were diluted 1:10, 000 fold into 40 ml LSLB and grown for 2 

hours at 30°C before samples were split into four 10 ml aliquots. The culture media 

of each sample was then adjusted to contain a final concentration of either 0.3 M 

NaCl, 100 jtM hydrogen peroxide, or both, and one sample was left untreated. After 

a further hour of incubation, an optical density measurement (0D 600) was taken and 

the cells were pelleted, resuspended in LSB and were subjected to SDS-PAGE 

(12.5% [v/v] polyacrylamide gel) and immunoblotting. Optical density comparisons 

were used to ensure each lane contained an equivalent amount of protein. Wild type 

AhpC was detected using mouse anti-AhpC serum, followed by rabbit anti-mouse 

antibody conjugated to alkaline phosphatase. 

The results are shown in Figure 4.9. Lanes 1-4 and 5-8 represent the samples from 

SL1344 and MPG203 respectively. As a control, purified his-tagged AhpC, which 

was used to raise the antiserum, was included (lane A). This runs slightly higher than 

the native protein due to the presence of the poly-histidine tag. In the SL1344 

samples, two prominent bands running close together were seen. The lower and 

upper bands are believed to represent the AhpC protein and an unidentified 

component (X), respectively (see chapter 3 for further discussion on component X). 

A basal level of AhpC was observed in samples from SL1344 at low osmolarity. 

However, AhpC was found to be induced substantially by hydrogen peroxide under 

both low (lane 2) and high (lane 4) osmolarity. Unfortunately, only the unidentified 

component X, but not the truncated AhpC protein, could be seen in samples from 

MPG203, perhaps suggesting that the truncated AhpC protein is rapidly targeted for 

degradation in the cell. 
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Figure 4.9 Immunological detection of AhpC in SL1344 and MPG203 

Overnight cultures of SL 1344 and MPG203 (ahp::Mudlux) were diluted into LSLB to give approximately 

10 c.f.u. ml and were grown with shaking at 30°C for 2 hours. Each culture was then split into four 

volumes and treated with either 100 l.LM hydrogen peroxide, 0.3 M NaCl or a combination of these 

treatments whilst one sample was left untreated. Cultures were then incubated for a further hour. Equal 

amounts of each sample were subject to SDS-PAGE and Western blot analysis. AhpC was detected using 

a mouse polyclonal serum against AhpC. Pre-stained markers of 120, 75 and 35 kDa were added in lane 

M. Purified his-tagged AhpC was included as a control (lane A). Lanes 1-4 and 5-8 represent SL1344 and 

MPG203, respectively. The samples left untreated, or treated with hydrogen peroxide, NaCl or a 

combination of these stimuli are represented by lanes I and 5, lanes 2 and 6, lanes 3 and 7, and lanes 4 

and 8, respectively. Bands corresponding to the wild type AhpC and an unidentified component (X) are 

indicated by appropriately labelled arrows. 
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These results, in addition to those of Tables 4. 1, provide strong evidence that ahp 

expression is not influenced by the osmotic environment of S. lyphimurium but 

rather, that the bioluminescent reporter system in ahp alters the natural behaviour of 

the ahp locus and converts it to an osmotically-regulated gene. 

4.3 DISCUSSION 

The use of a bioluminescent reporter system indicated that the ahp locus of 

S. typhimurium was osmoregulated (Figure 4.2). However, peroxide survival studies 

(Table 4.1) and Western blot analysis of the AhpC protein (Figure 4.9) indicated that 

the Mudlux fusion in ahp was producing anomalous results and, in fact, that the ahp 

locus was not osmotically sensitive. This suggests that the osmotic environment 

would have no significant effect upon the expression of the ahp locus in 

S. typhimurium during the infection of a host. 

These results are in contrast to those observed with S. aureus and B. subtilis where 

the expression of the ahp locus is sensitive to osmotic change (Armstrong-Buisseret 

et al., 1995, Antelmann et al., 1996). For both S. aureus and B. subtilis, the ability to 

defend themselves against lipid peroxidation would seem to be an important 

requirement whilst under osmotic stress. Lipid peroxidation occurs as a direct result 

of reactive oxygen species interacting with the membrane. Evolution of genes - 

co-regulated by oxidative stress and osmotic upshifl would suggest therefore, that 

osmotic stress may lead to the generation of free radicals. A similar scenario is 

suggested from the study of plant cells (reviewed in Bohnert and Jensen, 1996). Like 

bacteria, plant cells maintain a positive turgor and are subject to osmotic stress. In 

fact, water deficit is the commonest environmental stress factor limiting plant 

productivity. 

The ability of plants to tolerate water deficit shows some similarity to bacteria in that 

plants accumulate compatible solutes to prevent the loss of water from their cells. 

However, the most critical requirement under osmotic stress conditions appears to be 

the ability to detoxify oxygen free radicals (Bohnert and Jensen, 1996). Plants are 
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equipped with superoxide dismutases (SOD) and catalases and some of the 

compatible solutes that are accumulated, such as proline and mannitol, also show 

radical scavenging capabilities. The photosynthetic electron transport system in the 

chioroplast is the major source of oxygen free radicals in plant tissues. Water stress 

disrupts the cellular redox homeostasis and leads to the generation of free radicals in 

the chioroplast. Bacteria are also subject to these osmotic effects and it might be 

expected that disruptions would also occur to the electron transport chain, situated in 

the membrane, as the cell loses turgor. Alternatively, changes in the electrolyte 

balance of the bacterial cell, which are known to occur during osmotic stress (Csonka 

and Hanson, 1991), may disrupt respiratory chain processes to yield oxygen free 

radicals. 

The studies in S. aureus and B. subtilis make the results obtained with the 

S. typhimurium ahp locus all the more surprising, as it might be expected that 

osmotic stress in S. typhimurium would also result in possible membrane lipid 

peroxidation or other oxidative stress damage. Differences do exist however, in the 

regulatory mechanisms of the ahp loci in S. typhimurium, S. aureus and B. subtilis. 

For example the S. aureus homologue has not been shown to be induced by hydrogen 

peroxide (Armstrong-Buisseret et al., 1995) indicating that regulation is likely to be 

fundamentally different to that of S. typhimurium. In B. subtilis, the ahpCF locus 

belongs to a hydrogen peroxide-inducible regulon with many similarities to the 

OxyR regulon (Hartford and Dowds, 1994; Chen et al., 1993, 1995). However, the 

B. subtilis ahp locus has been shown to be regulated by the level of metals, such as 

manganese or iron, in the medium which is a phenomenon not reported for ahp in 

S. typhimurium (Antelmannet-al., 1996). 

A further observation that makes the lack of induction of the ahp locus of 

S. typhimurium look surprising is that the E. coli dps gene is induced under osmotic 

stress (Lomovskaya et al., 1994). The dps gene is a member of the OxyR regulon 

(Altuvia et al., 1994) and was independently identified as pexB, a gene which 

showed post-exponential phase induction (Lomovskaya et al., 1994). A pexB::lacZ 

construct containing a truncated promoter region, importantly lacking the OxyR 
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promoter recognition sequence, was shown to be induced by osmotic and starvation 

stresses but not by hydrogen peroxide. This indicated that the osmotic-inducibility of 

pexB is independent of OxyR. In addition, the osmotic- and starvation-inducibility of 

the pexB gene was shown to be dependent upon RpoS regulation. RpoS acts as the 

master regulator of the stationary phase response (reviewed in Loewen and 

Hengge-Aronis, 1994) but has also been shown to have an important role in 

regulating osmotic stress resistance in growing cells (Hengge-Aronis et al., 1993; 

Hengge-Aronis, 1996a). RpoS is found at a low concentration in growing cells where 

it is unstable (t 112=1 .5 mm) but after osmotic upshift the level of RpoS can increase 

dramatically by stabilisation of the mRNA (t 112=45 mm). 

The S. typhimurium ahp locus shows RpoS-independent expression in both its 

basal-and hydrogen peroxide-dependent inducibility (see Chapter 3). Furthermore, an 

rpoS mutation was also shown to have no effect upon the light induction of MPG203 

when subjected to high osmolarity (Figure 4.5 Panel C), indicating that RpoS had no 

direct or indirect influence upon the expression of ahp. Hengge-Aronis and 

colleagues (1993) have shown that osmotically stressed E. coli cells develop a small 

level of resistance to hydrogen peroxide and this is an RpoS-dependent phenomenon. 

Therefore, one potential reason why the ahp locus is not induced under osmotic 

stress in S. lyphimurium may be that it is not RpoS regulated. RpoS has been shown 

to regulate a number of other genes involved in oxidative stress including the E. coli 

loci katE, xthA, katG, gorA and the S. typhimurium loci stiA, stiR and stiC 

(Hengge-Aronis, 1996a; Ivanova et al., 1994; Becker-Hapak and Eisenstark, 1995; 

Seymour et al., 1996). The lack of induction of the ahp locus in stationary phase in 

S. typhimurium (see chapter 3) may suggest that these and other uncharacterised 

RpoS-regulated functions which may also be present under osmotic stress, 

circumvent the need for Ahp function. Nevertheless, it is noteworthy that substantial 

induction of AhpC could be elicited from wild type cells in response to hydrogen 

peroxide, under conditions of high osmolarity (Figure 4.9), which suggests that 

OxyR regulation is still operational, even when RpoS has been reported to be present 

at a substantial level. Whether this reflects on a more complex control of other 

compensating factors is unknown at present. 
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Osmolarity has been shown to have a profound effect upon the supercoiling of 

cellular DNA and many osmoregulated genes are known to have supercoiling 

sensitive promoters (Higgins et al., 1988; Hulton et al., 1990; Dorman and Ni 

Bhriain, 1992). An unusual influence of the lux bioluminescent reporter system has 

been observed previously, and was shown to occur when the lux genes were cloned 

downstream of the S. typhimurium leu-500 promoter or the proU operon promoter 

(Owen-Hughes et al., 1992; Forsberg et al., 1994). One feature common to both 

these promoters is that they are known to be supercoiling sensitive, suggesting that a 

subset of promoters may be sensitive to the anomalous influence of lux (although it 

should be noted that the leu-500 promoter is not osmotically-sensitive, indicating that 

this subset is not exclusive for osmotically-inducible promoters). Nevertheless, the 

promoter of the gyrB gene is supercoiling sensitive but the level and patterns of 

expression for a gyrB::luxAB fusion are similar to those obtained using other reporter 

systems (Forsberg et al., 1994), therefore the situation is apparently more complex 

than this. 

Perhaps the best characterised example of anomalous gene expression in the presence 

of a lux element is that for the S. typhimurium proU operon (Owen-Hughes et al., 

1992; Forsberg et al., 1994). The proU operon encodes a high-affinity glycine 

betaine transport system, whose transcription is induced by growth under high 

osmolarity (Csonka and Hanson, 1991). The expression of proU is repressed in 

medium of low osmolarity by the presence of a downstream regulatory element 

(DRE), which exists in the coding sequence of the first gene of the operon, pro V 

(Owen-Hughes et al., 1992). Cloning of the proU promoter, excluding this DRE, 

upstream of a transcriptional reporter system would therefore be expected to result in 

expression of proU even under low osmolarity. Indeed, this is observed when a 

fusion is constructed between the relevant segment of the pro  promoter and lacZ. In 

contrast, when luxAB was used as the reporter system, the pro  promoter behaved as 

in the wild type situation and was repressed under low osmolarity (Owen-Hughes et 

al., 1992; Forsberg et al., 1994). Thus, luxAB appeared to substitute for the absence 

of a DRE and mediate repression in low osmolarity. 



The way in which luxAB elicits unnatural behaviour from genes is not entirely clear, 

but this phenomenon has been reported using lux genes from Vibrio harveyi and 

Vibrio fischeri (Owen-Hughes et al., 1992; Forsberg et al., 1994). However, an 

examination of the first 200 nucleotides of luxA have shown that it contains tracts of 

adenine residues, which intrinsically curve the DNA (Owen-Hughes et al. 1992). 

Curved DNA has been shown to influence the promoter activity of genes and many 

of these affects are facilitated by the nucleoid-binding protein, H-NS (Hulton et al., 

1990; Owen-Hughes et al., 1992). H-NS is thought to act as a scaffold, holding DNA 

in an appropriate configuration. H-NS appears not to have a sequence specific 

binding motif but has been shown to bind curved sequences of DNA (Yamada et al., 

1990), affecting the local topology and flexibility of the DNA (Jordi et al., 1995). 

Interestingly, the DRE element in pro  has also been shown to be curved and both 

DRE and luxAB, but not lacZ, fragments of DNA have been shown to bind H-NS 

efficiently (Owen-Hughes, 1992). Repression of proU expression in low osmolarity 

is believed to result from H-NS binding to the DRE (or equivalently to luxAB), 

making the pro  promoter inflexible and unable to support a productive interaction 

between the promoter and RNA polymerase (Jordi et al., 1995). 

In the natural situation, ahp is expressed in the presence of hydrogen peroxide 

irrespective of the osmotic environment (Figure 4.9). However, in the presence of the 

Mudlux element, the ahp locus becomes unresponsive to hydrogen peroxide in 

medium of low osmolarity (Figure 4.3), indicating that the lux element acts to repress 

the normal behaviour of the gene even though it is not osmoregulated naturally and is 

not known to contain a natural equivalent to the DRE. Moreover, in contrast to pro U, 

H-NS was shown not to alter the observed osmotic effects (Figure 4.5 Panel E), 

therefore in this instance, the anomalous effects of the lux system upon the ahp locus 

appear to be H-NS-independent. However, it should be noted that the hns mutation 

used in the present study (osmZ6::TnlO) has been reported to have a mild phenotype 

compared to other hns mutations. This is due to the fact that the transposon lies 

within the hns promoter region and not within the coding sequence of the gene 

(Hulton et al., 1990). Thus, the possibility that some functional H-NS was still 

present cannot be entirely excluded in this instance. 
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Another difference between this investigation and the others is the type of lux 

construct used. Previous studies have used plasmid-borne transcriptional fusions of 

the luxAB genes to the promoters of interest (Owen-Hughes et al., 1992; Forsberg et 

al., 1994), whereas this study involved a chromosome based Mudlux system. A 

transcriptional fusion to the luxAB genes on a plasmid, places the luxA gene directly 

adjacent to the region of DNA of interest. However, the Mudlux element consists of 

the 1uxCDABE operon from V. fischeri flanked by Mu phage sequence (Engebrecht et 

al., 1985). Thus, in a Mudlux fusion, luxA is approximately 4 kb downstream from 

the 5' end of Mudlux element, and is therefore quite distal from the promoter of 

interest. This indicates that if curvature in luxA is responsible for the anomalous 

behaviour of the ahp locus, then it must be acting over a large distance in order to 

influence the ahp promoter. Whether other factors such as the DNA binding proteins 

hF, HU or FIS, which are known to influence supercoiling or topology of DNA 

(Dorman and Ni Bhriain, 1992) play a role in the ahp phenomenon is unknown. 

Alternatively, it may be possible that the lux element somehow alters the activity of 

the ahp promoter directly, perhaps by introducing osmolarity-dependent changes in 

flexibility into the DNA helix. Equally, since changes in medium osmolarity have 

been shown to influence expression of a large number of genes by less than 2-3 fold 

(Jovanovich and Lebowitz, 1987), it may be possible that the lux genes act to 

magnify a very small osmotic change in the ahp promoter which is not detected by 

immunoblotting. 

The addition of novobiocin to a culture of MPG203 was also shown to elicit ahp 

expression independently of hydrogen peroxide or osmolarity (Figure 4.6 and 4.7), 

suggesting that some component in the expression pathway is supercoiling sensitive. 

However, the response appeared to be concentration-dependent. In general, the 

cellular level of supercoiling is regulated predominantly by the action of two 

enzymes, DNA gyrase and topoisomerase (Dorman and Ni Bhriain, 1992). DNA 

gyrase consists of two subunits, GyrA and GyrB, which act together to introduce 

negative supercoils into the DNA. In contrast, topoisomerase I, is able to relax the 

DNA structure by reducing DNA supercoiling. Novobiocin inhibits DNA gyrase by 

blocking the activity of the gyrase B subunit (Menzel and Gellert, 1984). DNA from 

182 



cells lacking gyrase activity would therefore be expected to be more relaxed or less 

negatively supercoiled because topoisomerase is still active. In contrast however, 

high osmolarity is considered to increase the level of negative supercoiling. Perhaps 

the counter-balanced effects of these two agents resulted in the optimisation of ahp 

promoter activity. Alternatively, it may be that novobiocin is not affecting DNA 

supercoiling directly but produces some form of side-effect in the cell, especially at 

high novobiocin concentrations. The profound effect of novobiocin upon the growth 

rates of cells would support this interpretation. 

The classical induction of the OxyR regulon involves transcriptional activation by 

the OxyR protein under hydrogen peroxide stress (Christman et al, 1985). OxyR is 

sensitive to oxidation, and only the oxidised form of the protein can activate 

transcription (Storz et al., 1990). Activated OxyR binds as a tetramer, at a conserved 

but degenerate consensus sequence in the promoters of the genes it regulates 

(Tartaglia et al., 1992; Toledano et al., 1994). This conserved sequence results in 

OxyR binding to nucleotides within four adjacent major grooves. Control of binding 

to this consensus appears to lie in the conformation of the OxyR protein. In its 

reduced state OxyR is in the wrong conformation, and is unable to bind or 'fit' 

correctly into the DNA of the consensus sequence. However, upon oxidation the 

conformation changes and OxyR can bind to the consensus sequence, within the 4 

grooves. 

Any model of the osmotic induction of the ahp locus in association with the lux 

element has to take into account a requirement for OxyR (Figure 4.5 Panel B). In the 

wild type situation, the ahp-promoter is not osmoregulated and the activated OxyR 

tetramer can bind and bring about Ahp expression irrespective of the osmotic 

environment (Figure 4.10 Panel A). In contrast, in the presence of the Mudlux 

element the ahp promoter becomes osmoregulated and this is probably mediated 

through some effect of the luxA gene. Under low osmolarity the lux element acts to 

keep the ahp promoter in the wrong conformation, or inflexible, thus preventing 

access by activated OxyR and repressing the response (Figure 4.10 Panel B(1)). This 

repressive effect may be indirect and may well involve a DNA-binding protein. For 
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Figure 4.10 Summary diagram of the effect of the Mudlux bioluminescent reporter system upon the ahp promoter under different osmotic environments. In the wild type 
situation (Panel A) the ahp promoter is not effected by osmolarity and in the presence of hydrogen peroxide the activated OxyR protein can bind as a tetramer and promote 
ahp transcription. In the presence of the Mudlux reporter system (Panel B), the ahp promoter becomes osmoregulated as a result of some uncharacterised effect of the luxA 
gene. This effect may be indirect and involve a DNA-binding protein (shaded circle). H-NS can bind to luxA and was shown to be involved in the anomalous behaviour of 
a proU::luxAB construct (Forsberg el al., 1994). However, a role for hns was less conclusive from the present study. Alternatively, the effect of luxA may act directly by 
somehow transmitting changes in the DNA helix to the promoter. Under low osmolarity, the effect of luxA is to alter the ahp promoter such that it is in an sub-optimal 
arrangement for the binding of the activated OxyR tetramer thus repressing (-) ahp expression (1). In contrast, in an high osmotic environment the repression is alleviated 
(+) and the alip promoter adopts an optimal arrangement which is capable of binding OxyR, thus activating ahp transcription (2). 



the purpose of this model, the role of H-NS is question marked but cannot be 

excluded because it is involved in the anomalous effect of lux at the pro  promoter 

(Forsberg et al., 1994). Equally, an as yet unidentified DNA-binding protein may be 

involved in interacting with the luxA sequence. On the other hand, the effect of lux 

may be direct and involve altering the flexibility of the DNA helix or restricting the 

accessibility of the ahp promoter, perhaps through an altered secondary or tertiary 

structure. Under high osmolarity, the repressive effect is alleviated, perhaps by 

altering the flexibility of the ahp promoter (by changing the DNA topology) and 

allowing OxyR to bind and stimulate a response (Figure 4.10 Panel B(2)). 

When OxyR was placed on a multicopy plasmid under the regulation of a 

controllable promoter and expressed in an oxyR deletion strain, a significant response 

to hydrogen peroxide was obtained, even in a medium of low osmolarity (Figure 

4.8). How this expression is obtained in low osmotic medium is unknown, perhaps 

the high level expression of OxyR from the plasmid, when activated by hydrogen 

peroxide, can overcome a sub-optimal promoter arrangement. This is supported by 

the enhanced level of response obtained in the same experiment in the presence of 

high osmolarity, where the promoter might adopt a more optimal configuration. 

The results obtained in this chapter add to those from previous studies (Owen-

Hughes et al., 1992; Forsberg et al., 1994) which indicate that caution should be 

taken when interpreting results from experiments involving the use of a lux 

transcriptional reporter system to monitor gene expression. 

185 



CHAPTER 5 

The role of the alip and oxyR loci in 
the virulence of S. typhimurium 
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5.1 INTRODUCTION 

Typhoid fever, which results from infection by S. typhi, remains the most serious of 

the diseases caused by S. enterica. In developing countries an estimated 16.6 million 

cases of this disease occur per annum, with around 600, 000 deaths (Pang et al., 

1995). In addition, infection by non-typhoidal serovars of S. enterica is responsible 

for approximately 1.3 billion incidences of diarrhoeal disease per annum. Therefore, 

infection by both typhoidal and non-typhoidal serovars of S. enterica results in a 

considerable global health problem (Pang et al., 1995; Maurice, 1994). Moreover, 

S. enterica infection of animals is also a common occurrence. Indeed, such infection 

of poultry, cattle, sheep and swine not only has economic importance in agriculture 

and animal husbandry (Coynault et al., 1996), but is believed to be a major factor in 

the transmission of S. enterica to humans via the food chain (Maurice, 1994). 

Unfortunately, our ability to control S. enterica infection in humans and animals has 

become threatened by the spread of multi-drug resistance (Pang et al., 1995). Thus, 

there is a growing need to develop effective vaccine strategies to eliminate reservoirs 

of this organism, especially within animals, and to reduce the level of 

S. enterica-related illness. 

Several approaches have been followed in the development of vaccines to S. enterica, 

but one of the most promising is the development of live attenuated strains which 

carry defined genetic lesions in important genes and provide longer lasting and more 

effective immunity than dead cell vaccines (Collins, 1974; Chatfield et al., 1992a; 

Ivanoff et al., 1995). The development of live attenuated vaccines has promoted, and 

been aided by, studies into the virulence of S. enterica, through identifying genes that 

play roles in helping this bacterium to cause disease. It is very apparent that bacteria 

respond to the host environment and alter their gene expression accordingly. As a 

result, the bacteria enhance their survival under the new conditions and activate the 

appropriate invasion or defensive tactics for the particular stage of infection. This is 

an important facet of virulence (Mekalonos, 1992; Mahan et al., 1996). 
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The development of vaccines to S. enterica has also been helped by the availability 

of an appropriate animal model, based on S. typhimurium which is capable of causing 

a typhoid-like illness in innately susceptible mice. Indeed, it would seem that 

mutations in genes that affect the ability of S. typhimurium to cause disease in the 

mouse model are also likely to influence the ability of S. typhi to cause disease in 

humans (Tacket et al., 1992). Moreover, through the use of an LD 50  test, the mouse 

model provides a means to quantitate attenuation thereby allowing the importance of 

a gene in virulence to be assessed. 

A number of useful attenuating lesions have been identified, through such tests, that 

reduce the ability of S. typhimurium to cause disease in mice. These include 

mutations in genes encoding biosynthetic proteins such as aro (Hosieth and Stocker, 

198 1) or regulatory proteins like cya crp (Curtiss and Kelly, 1987) or Ph0PQ (Miller 

et al., 1993) and in some cases, the same lesions have been used in S. typhi as the 

basis for developing vaccines (Tacket et al., 1992). However, in a number of cases 

where the genetic disruption attenuates S. typhimurium, the same disruption in strains 

of S. typhi has resulted in a vaccine which produces some symptoms of disease 

(Ivanoff et al., 1994). Therefore, not only is their a need to identify new attenuating 

lesions, but also to identify possible lesions which can reduce further the virulence of 

present vaccines to a point where they are protective but do not produce significant 

symptoms of disease. 

In general, invasive S. enterica serovars are capable of breaching the intestinal 

epithelium and penetrating the underlying tissue (Finlay and Falkow, 1989a; Gulig, 

1996). Here they enter macrophages and shortly after, disseminate to the liver and 

spleen where they are capable of replicating and causing serious disease. The ability 

to follow this path has been attributed to their efficiency as intracellular pathogens, 

and survival in the macrophage has been shown to be the most important factor that 

decides the outcome of disease (Buchmeier and Heffron, 1989; Finlay and Falkow, 

1989a). Normally, macrophages are capable of destroying bacteria through a 

combination of a respiratory burst, which produces high levels of reactive oxygen 

species such as superoxide, hydrogen peroxide and nitric oxide, and through 
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anti-microbial factors associated with the lysosome (Adams and Hamilton, 1984; 

Hasset and Cohen, 1989; Lehrer etal., 1990, Pacelli et al., 1995). Therefore, it would 

be expected that the ability of S. enterica to survive within macrophages would be 

closely linked to defensive strategies employed to deal with these anti-microbial 

mechanisms and this in turn would be important for virulence. 

Of particular interest to the present study, is the ability of S. enterica to withstand the 

oxidative killing mechanisms of the macrophage. Oxidative stress is known to 

damage the bacterial cell at all fundamental macromolecular levels including that of 

proteins, lipids, DNA and RNA (reviewed in Farr and Kogoma, 1991) and 

S. typhimurium has been shown to respond to such oxidative stress by the 

derepression of multigenic responses (Demple, 1991). One such stress is the 

hydrogen peroxide stress response which results in the induction of around 30 

proteins (Christman et al., 1985). A small subset of the genes encoding these proteins 

are regulated by a protein called OxyR. Such genes which include katG (catalase), 

ahpCF (alkyl hydroperoxide reductase) and dps (DNA binding protein from starved 

cells), form the OxyR regulon which help to reduce the detrimental effects of 

hydrogen peroxide. In S. typhimurium, loss of the specific regulator, OxyR, or the 

genes it regulates, makes cells extremely susceptible to peroxide stress (Christman et 

al., 1985; Buchmeier et al., 1995; Francis, 1993; Almiron et al., 1992), therefore it 

would be expected that such genes would be essential to the survival of S. enterica 

during the course of infection, especially during entry into the macrophages. These 

genes would also appear to be likely candidates for mediating attenuation in 

S. enterica, when disrupted, and therefore may be of interest for the on-going 

development of attenuated bacterial vaccines. 

Indications that the genes of the OxyR regulon are important in virulence have been 

shown in a number of studies. Francis and Gallagher (1993) demonstrated, using the 

Mudlux reporter system in the ahpCF locus (MPG203), that light was induced upon 

interaction with macrophages. Subsequently, in an independent study, the dps gene 

was also demonstrated to be induced within the macrophages environment (Valdiva 

et al., 1996). Moreover, in studies by Fields et al. (1986), three transposon mutants 



were identified which demonstrated hypersusceptibility to hydrogen peroxide (and 

other oxidants), exhibited reduced survival in macrophages and, were attenuated in 

mice. 

The aim of the following study was to investigate the role of genes involved in 

oxidative stress responses in virulence. Specifically, those genes associated with the 

OxyR regulon, were to be examined and assessed for potential, when disrupted, for 

use in vaccine development. 

5.2 RESULTS 

5.2.1 The role of the ahp locus in the virulence of S. typhimurium 

Testing the virulence of MPG203 using a mouse model 

The availability of MPG203, which contains a Mudlux element inserted within the 

ahpC gene, provided a good opportunity to test whether a disruption in the ahp locus 

had any effect upon the virulence of S. typhimurium. In MPG203, no functional alkyl 

hydroperoxide reductase (Ahp) is produced, as is clearly demonstrated using a 

cumene hydroperoxide disc inhibition test, a test which is specific for Ahp 

functionality (Francis, 1993). 

Serial dilutions from overnight cultures of MPG203 (the ahp mutant) and SL1344 

(the virulent parental strain) were made in phosphate-buffered saline (PBS) to give a 

range of bacterial concentrations of approximately 101106  organisms per ml. Groups 

of six female BALB/c mice, aged 8-10 weeks, were then injected by the 

intraperitoneal route (i.p.) with 100 tl of one of the six concentrations of bacteria and 

their survival was subsequently followed over 28 days. From Table 5.1 (see page 

211) it can be seen that the parental S. typhimurium strain (SL 1344) killed almost all 

the mice in the study with a calculated 50% lethal dose (LD 50) of 1.0 (log 10  cell 

number) (Reed and Muench, 1938). Therefore, it is clear that a bacterial inoculum of 

approximately 10 bacteria, administered by the i.p. route, is capable of killing a 
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susceptible mouse, and this is in line with other studies (Hosieth and Stocker, 1981; 

Coynault et al., 1996). 

In contrast, the LD 50  for MPG203 was found to be 4.8 (log 10  cell number). When 

compared to SL1344, this suggests that the ahp disruption may have an effect upon 

the survival of S. typhimurium during the course of infection. However, the 

attenuation could be attributed to factors other than that of disrupted gene function. 

With the bioluminescent reporter system, the luciferase enzyme converts an aldehyde 

substrate to a fatty acid, and requires FMNH 2  (Engebrecht and Silverman, 1984; 

Meighen, 1991). The Mudlux element not only carries the ability to make the 

luciferase enzyme but also, the ability to synthesise the aldehyde substrate. It is 

possible then that when the ahp gene is induced, as has been shown upon interaction 

with macrophages (Francis and Gallagher, 1993), large amounts of aldehyde could be 

produced. This may impose a metabolic burden upon the cell or alternatively may 

result in some degree of intracellular toxicity, thereby affecting the ability of the 

bacterium to replicate and survive within the host. It was decided, therefore, to test 

whether the attenuation was due to the genetic disruption of ahp directly or resulted 

from some indirect action of the Mudlux. A different type of ahp mutant was 

constructed in which the Mudlux element was absent in order to address this issue. 

Cloning of the S. tvphimurium ahp locus 

The ahpCF locus from S. typhimurium has been cloned and the sequence determined 

in previous studies (Tartaglia et al., 1990). Using the known sequence, primers were 

devised to the 5'- and 3'-ends of ahpCF and incorporated BamHI (G7858) and 

HindIII (G7859) sites respectively (see Table 2. 1), to facilitate cloning into the vector 

pBR322 (Bolivar et al., 1977). The location of primers and choice of restriction sites 

were chosen such that the ahpCF locus would be promoterless and cloned in an 

inverted orientation with respect to the PTET  promoter of pBR322, in case multicopy 

expression of ahp proved toxic. 
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Figure 5.1 

A summary of the cloning and insertional inactivation of the S. lyphimurium ahpCF 
locus 

A promoterless ahpCF fragment was amplified from S. typhimurium genomic DNA by PCR using 

primers that incorporated BamHl (G7859) and Hindu (G7859) restriction sites (see Table 2.1). After 

treatment with these enzymes, the 2.36 kb BamHI-HindllI fragment bearing the ahpCF locus was 

cloned into similarly cut pBR322 to produce pPDT5. Insertional inactivation of the ahp genes was 

achieved by removing an internal 0.9 kb MluI - HpaI fragment of DNA and replacing it with a 

0.98 kb chloramphemcol cassette, amplified from pBR325 using primers G8493 (which carried an 

added MluI site) and H1486 (which carried an added HpaI site) (see Table 2.1) to produce pPDT6. 

This plasmid was then used to generate the pstl fragment (approximately 3 kb) used to transform 

S. typhimurium SL1344. Key: b/a - gene encoding 13-lactamase; on - origin of replication; 

tet - tetracycline resistance gene; ahpC - gene encoding alkyl hydroperoxide reductase subunit C; 

ahpF -gene encoding alkyl hydroperoxide reductase subunit F; cml - gene encoding chloramphenicol 

acetyl transferase from pBR325. 
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The primers were then used in a polymerase chain reaction (PCR) to amplify a 

2.36 kb ahpCF fragment from the S. typhimurium chromosome and the resulting 

DNA was digested with BamHI and Hindffl, ligated to similarly cut pBR322 and 

transformed into DH5a. The resulting plasmid carrying the ahpCF locus was 

designated pPDT5 (Figure 5.1). 

The aim of the experiment was to produce an msertionally inactivated copy of the 

ahpCF locus. This was achieved in two ways, firstly a 0.9 kb MluI-HpaI fragment, 

containing 0.13 kb of the 3' end of the ahpC gene, a 0.24 kb intragemc region and 

0.53 kb of the 5' end of the ahpF gene, was removed from within the cloned ahpCF 

fragment and replaced with a 0.98 kb chloramphenicol cassette from pBR325 

(Bolivar et al., 1978). The latter cassette, which contains its own promoter, was 

amplified by PCR using primers that incorporated the MluI (G8493) and HpaI 

(H1486) sites (see Table 2.1), to facilitate cloning into the corresponding sites of 

PDT5, to generate pPDT6 (Figure 5.1). In this construct, functional ahpCF cannot be 

regenerated even if the cml cassette is deleted within the bacterial cell. Moreover, the 

chloramphemcol cassette provides a selection for placing the modified ahp locus 

onto the chromosome by recombination. 

In order to transfer the disrupted copy of ahpCF onto the S. typhimurium 

chromosome, it was first necessary to transfer pPDT6 into SL1344, such that the 

DNA was methylated in line with that of the final host. This was necessary as the 

plasmids had been constructed in an E. coli strain and the restriction modification 

systems of the S. typhimurium strain would lower the efficiency of incorporation of 

the modified ahp locus, if transferred directly. 

Transfer of the insertionallv inactivated ahp locus onto the S. typhimurium 

chromosome 

The strategy for replacing the wild type ahp locus with that of the modified locus 

was based on the method of Nohmi et al. (1992). Their approach was to construct 

disrupted genes on pBR322, excise the disrupted gene using a single restriction 
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enzyme and then circularise this excised molecule by treating with DNA ligase. The 

circularised region of DNA therefore has no origin of replication so cannot 

self-propagate in the bacterial cell. When cells are transformed with this DNA it will 

either be destroyed through enzymatic degradation, lost as the bacteria replicate 

because the fragment does not have an origin of replication or, be integrated onto the 

chromosome through recombination at a low frequency. This latter option can be 

selected for if a resistance determinant is present in the fragment. Therefore this 

approach was attempted for transferring the disrupted ahp locus onto the 

chromosome. However, the construct pPDT6 was not ideal for attempting this 

procedure as the ahpCF locus had been cloned in on incompatible ends and so could 

not be circularised following excision. Nevertheless, PstI sites were identified 

0.17 kb downstream from the translation initiation codon of ahpC and in the bla gene 

of pBR322 and so, PstI digestion of pPDT6 would generate a fragment of 

approximately 3 kb in length, containing 0.25 kb of ahpC, a 0.98 kb chloramphenicol 

cassette, 1.03 kb of ahpF and 0.77 kb of the pBR322 plasmid DNA. Importantly, this 

fragment would lack a replication of origin when recircularised.. 

Following digestion of pPDT6 with PstI, this fragment was recircularised by ligation 

and electroporated into SL1344. Transfonnants were subsequently selected for on 

chloramphenicol plates and incubated overnight at 37°C. 320 

chioramphenicol-resistant transformants were obtained. However, due to the 

efficiency of electroporation it was possible that undetectable traces of undigested 

plasmid had also been transformed. The transformants were therefore replica patched 

onto plates containing either ampicillin (the antibiotic marker of the plasmid) or 

chioramphenicol (the antibiotic marker in the disrupted ahp locus). These were then 

incubated overnight to identify and eliminate those cells containing the plasmid. Of 

the initial 320 transformants, only 75 were found to be chloramphenicol resistant and 

ampicillin sensitive. 

Following transformation of the recircularised PstI fragment from pPDT6 there are 

four possible outcomes (See Figure 5.2): (a) no recombination occurs (in which the 

wild type locus would remain intact); (b) a single cross-over event occurs in ahpC; 
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(c) a single cross-over event occurs in ahpF; (d) a double cross-over event occurs, 

one each in ahpC and ahpF. In the case of either of the single cross-over events 

occurring (options (b) and (c)), two copies of the hybrid ahpCF locus would exist, 

one wild type in function and the other insertionally inactivated. However, since the 

insertionally inactivated copy of the locus does not contain a promoter, then, 

depending on the point of recombination, intact ahpCF genes will be placed either 

proximal or distal to the chromosomal ahp promoter. In the latter case (Figure 5.2 

(b)), the intact copy of ahpCF would effectively be promoterless and therefore such 

cells would be devoid of Ahp activity. Alternatively, if the recombination results in 

the former outcome (Figure 5.2 (c)), cells would retain Ahp activity and the 

insertional copy would have no determinable effect. Where recombination occurs in 

both ahpC and ahpF (Figure 5.2 (d)) the entire wild type locus would be replaced by 

the inactivated locus and cells would be deficient in Ahp activity. These different 

events could be screened for initially by examining the transformants for Ahp 

activity using a cumene hydroperoxide peroxide disc inhibition test (Christman et al., 

1985). 

All 75 chioramphenicol resistant mutants were subject to a cumene hydroperoxide 

disc inhibition test and S. typhimurium SL1344 and MPG203 (the ahp::Mudlux 

mutant) were included as controls. Plates were grown overnight at 37°C and the 

zones of inhibition were subsequently measured. The mutants could be clearly split 

into 2 groups according to the size of the zone of inhibition. 50 mutants had a small 

zone of inhibition (approximately 24 mm) equivalent to that of SL1344, and 25 

mutants had a large zone of inhibition (approximately 36 mm) equivalent to 

MPG203. These results suggested that the majority of the mutants obtained had 

undergone a single recombination in ahpF as they appeared to have wild type Ahp 

function, as indicated by the small zone of inhibition. This is hardly surprising as the 

probability of establishing a recombination event in the ahpF region must be greater 

due to the proportionally larger DNA fragment present in the construct 

(approximately 1.03 kb) compared to that of ahpC (0.25 kb). 
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Figure 5.2 A schematic diagram of the anticipated outcome 
of recombination in the ahpCF locus 

The promoterless insertionally inactivated copy of the ahpCF locus was excised from pPDT6 on a Pstl 

fragment and religated. This recircularised molecule not only contains the ahpCF locus but also contains a 
small 0.7 kb fragment of pBR322 DNA. After transformation of this molecule into S. typhitnurium SL1344, 
four possible outcomes were anticipated: no recombination (a); a single cross over event in ahpC via X  (b); a 
single cross over event in ahpF via X2 (c); a double crossover via XI and X2 (d). In the event of no 
recombination occurring, the ahp locus would remain as wild type (a) and would show Ahp activity. In the 
event of outcome (b) the chromosome would carry two copies of the ahp locus, an inactivated and intact copy 
respectively. However, the intact copy is distal from the chromosomal promoter and therefore these cells 
would be devoid of Ahp activity. In contrast, if recombination occurred by single cross over in ahpF (c) the 
cell would also contain two copies of the ahp locus but the functional copy would be positioned adjacent to the 
promoter, therefore these cells would also display Ahp activity (d). Finally, if a double cross event occurred (d) 
the insertionally inactivated ahp locus would be exchanged for the wild type locus, and these cells would be 
devoid of functional Ahp. Key: P - ahpCF promoter; cml -chloramphenicol acetyl transferase cassette used to 

disrupt the ahp locus; PD - 0.7 kb fragment of pBR322 DNA; C - functional ahpC gene; F - functional ahpF 
gene; C' - non-functional truncated ahpC gene; 'F - non-functional truncated ahpF gene. The origin of the 
DNA fragments are shown as follows - diagonal stripes-chromosomal ahpC; vertical stripes-chromosomal 

ahpF; dark-grey-ahpC'(truncated at the 3' end by the chloramphenicol-resistance cassette); black-'ahpF 

(truncated at the 5' end by the chioramphenicol-resistance cassette). X  and X2 represent possible positions of 

recombination. 
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The large zone of inhibition observed in 25 of the mutants clearly indicated loss of 

Ahp function. However, it was impossible at this stage to determine whether a single 

or double cross-over event had occurred in these mutants. 

Analysis of recombination events in the ahp locus by Southern blotting and PCR 

To ascertain whether a single or double recombination event had occurred in the 25 

cumene-sensitive transformants, Southern blotting and probe hybridisation were 

employed (Southern, 1975). After a single recombination event, two copies of ahpCF 

locus, one wild type and the other inactivated, would be detectable by these 

approaches thus allowing identification and elimination from this study. A suitable 

restriction enzyme was therefore required to identify the arrangement of the 

recombination events in the mutants obtained. From the S. typhimurium sequence of 

the ahp locus (Tartaglia et al., 1990) it is known that a HpaI restriction enzyme site 

exists such that the entire ahpC gene can be liberated as a 1.38 kb fragment from the 

wild type locus (Figure 5.3 (a)). In the case of a single recombination event in ahpC 

(Figure 5.3 (b)), the HpaI enzyme cuts to liberate two ahpC fragments, one of 

1.45 kb containing the ahpC gene and the chlorarnphenicol resistance cassette, and a 

second fragment of 2.93 kb containing the truncated ahpF gene, the fragment of 

pBR322 DNA and the intact ahpC gene. In contrast, in the event of a double 

recombinant (Figure 5.3 (c)), only the 1.45 kb fragment would be obtained by HpaI 

digestion. Thus, digestion of DNA from transformant cells, followed by probing with 

ahpC, would identify the nature of the recombination events and allow subsequent 

elimination of single recombinants from the study. 

Genomic DNA was isolated from all 25 of the mutants, which showed the large zone 

of inhibition, as well as from S. typhimurium SL1344 which serves as a control, and 
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Figure 5.3 Schematic diagram of the anticipated organisation of the ahpCF 
genes and diagnostic restriction sites 

In order to determine whether the cumene hydroperoxide-sensitive transformants obtained had undergone 
a single or double recombination event with the insertionally inactivated ahpCF fragment, Southern blot 
analysis was used. The chromosomal ahpCF locus (a) can be cut with HpaI to liberate a 1.38 kb fragment 
containing the entire ahpC gene. For a single recombinant in the ahpC gene (b) these sites would result in 
two fragments, one containing truncated ahpC and the cml cassette on a 1.45 kb fragment, and a second 
of 2.93 kb in size, containing truncated ahpF, the fragment of pBR322 DNA and the intact ahpC gene. In 
contrast, only the former HpaI fragment (1.45 kb) would be formed in a double recombinant (c). Using 
HpaI digests and Southern blotting of candidate mutants it was possible to eliminate single recombinant 
mutants from this study by probing with the S. typhimurium ahpC gene (see Figure 5.4a). 

Key: cml -chloramphenicol acetyl transferase cassette used to disrupt the ahp locus; PD - 0.7kb fragment 
of pBR322 DNA; C - functional ahpC gene; F - functional ahpF gene; C' - non-functional truncated 
ahpC gene; 'F - non-functional truncated ahpF gene. The origin of the DNA fragments are shown as 
follows:- diagonal stripes-chromosomal ahpC; vertical stripes-chromosomal ahpF; dark-grey-ahpC' 
(truncated at the 3' end by the chioraniphenicol-resistance cassette); black- 'ahpF (truncated at the 5' end 
by the chloramphenicol -resistance cassette). 

199 



the DNA was treated with the restriction enzyme HpaI. The HpaI digested genomic 

DNA was electrophoresed on a 1% agarose gel, transferred to a nylon filter and 

probed with the ahpC gene (amplified by PCR from the S. typhimurium chromosome 

using primers N5138 and N5139; see Table 2.1). Of the 25 mutants of interest, only 

one, ahp70, carried the correct mutation, producing a single band after digestion 

which was slightly larger than that of the parental strain, SL 1344 (Figure 5.4a). The 

remaining mutants produced two bands, indicating that a single recombination event 

had occurred and were therefore not investigated further. Mutant ahp44 is shown as 

an example of this (Figure 5.4a). 

As further evidence that the nature of the inactivation of the ahpCF locus in the 

double recombinant resulted from insertion of the chloramphenicol cassette, PCR 

and Pvull restriction digests were performed. The chioramphenicol cassette 

introduces a unique PvuII site into the ahp locus (Figure 5.3 (c)), therefore if a 

suitable region is amplified from the wild type and mutant loci, the former should not 

be cut by PvuII and the latter should form two bands. Using primers G7858 and 

G7859 (Table 2.1) the ahp locus from SL1344 and ahp70 was obtained by PCR and 

the fragments were subjected to PvuII digestion. The amplified ahp locus (2.47 kb) 

was slightly larger than the wild type homologue (2.36 kb), prior to PvuH restriction, 

due to the presence of the chioramphenicol cassette (Figure 5.4b). As predicted, only 

the inactivated locus formed two bands (0.86 kb and 1.61 kb), confirming that the 

ahp disruption resulted from the insertion of the chloramphemcol cassette (Figure 

5.4b). Mutant ahp7O was subsequently re-designated MPG473. 

Testing MPG473 for attenuation using a mouse model 

A culture of MPG473 was grown overnight in LB supplemented with 

chloramphenicol. The cells were then pelleted and washed twice in PBS before being 

serially diluted to concentrations of approximately 101106  organisms per ml. Six 

groups of six female BALB/c mice (8-10 weeks old) were then each injected i.p. with 

one of the dilutions of bacteria and the number of bacteria administered in the 

inoculum was determined by plating equivalent samples on LB agar. The mice were 
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Figure 5.4 (a) 

Analysis of recombination events in the ahpCF locus by Southern blotting 

Genomic DNA was isolated from the virulent S. lyp/ürnurium strain, SL 1344, and the transformants of 

interest, a/zp44 and a/ip70. Equal amounts of DNA from these cells were subject to restriction digest 

with Hpal and electrophoresed on a 1% agarose gel overnight at 25 mV. DNA was then transferred to 
a nylon membrane and probed with the ahpC gene, obtained by PCR from the S. typhimurium SL1344 
chromosome using primers N5138 and N5139 (see Table 2.1). The positions of Hindill digested A 
DNA molecular size markers (kb) are indicated at the right of the blot. 

Tracks are as follows: 

C 	- Control sample containing DNA from the virulent S. typhirnuriurn strain, SL 1344 

ahp44 	- DNA from a mutant which has undergone a single recombination event in the 
ahpC gene 

ahp7O 	- DNA from a mutant which has undergone a double recombination event 
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Figure 5.4 (b) 

Use of PCR to demonstrate the presence of 
a cmi cassette within the ahpCF locus 

Primers to the 5'- and 3'-end of the ahp locus, 07858 and G7859, respectively (see 

Table 2.1), were used to amplify the ahp locus from S. tpphimuriurn SL1344 (Lane 1) 

and ahp70 (Lane 2). The chloramphenicol cassette introduces a unique PvuIl site into 
the alip locus. After Pvull digestion of the PCR products from the SL1344 and ahp70 
DNA, no change in size was observed for the band from SL1344 (Lane 3). In contrast, 

the band from ahp70 formed two fragments of approximately 0.86 kb and 1.61 kb 
(Lane 4) thus confirming the presence of the chloramphenicol cassette in the ahp 

locus. Hindlil digested phage A DNA molecular size markers (kb) were included as a 
guide to size (Lane 5). 
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then followed for survival over a period of 28 days, and the results of this 

investigation are shown in Table 5.1 (see page 211). Unfortunately, the level of 

survival of mice injected with MPG473 was below that required for the calculation of 

an LD50  (Reed and Muench, 1938), therefore it is assumed that this mutant is as 

virulent as SL1344 (LD 50  approximately 101  bacteria). These results suggest that the 

ahpCF locus has little effect on the gross virulence of S. lyphimurium, as indicated 

by the LD50  procedure. This suggests that any attenuation present in MPG203 is 

derived from some (uncharacterised) property of the Mudlux element. 

5.2.2 The role of the oxyR gene in the virulence of S. typhimurium 

Cloning of the S. tvphimurium oxvR gene 

Although it appeared that the ahpCF locus of S. typhimurium plays little or no 

discernible role in virulence, it seemed likely that the other genes of the OxyR 

regulon would be involved. Francis and Gallagher (1993) had shown ahp was 

induced during macrophage interaction and therefore, because it constitutes part of 

the OxyR regulon, and because it is not known to be regulated by any other 

transcriptional regulators, it would be expected that the other genes of the regulon 

would also be expressed in a similar manner. This is supported by the demonstration 

that the OxyR-regulated gene dps, is also induced within the macrophage (Valdiva et 

al., 1996). Moreover, Fields et al. (1986) identified a number of oxidative stress 

mutants which were unable to survive in the macrophage and which were attenuated 

in mice. It was therefore decided to determine the role of the oxyR gene per se in 

virulence by disrupting the gene and testing the resulting mutant for attenuation. This 

approach would provide an insight into the overall importance of the OxyR regulon 

in virulence. 

The sequence of the oxyR gene is known for E. coli but not for S. typhimurium 

(Christman et al., 1989). In chapter 3 of this thesis, a description is provided of how 

the S. typhimurium oxyR gene was obtained from S. typhimurium strain TA4 100 by 

PCR and cloned into a controllable expression vector using primers based on the 
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E. co/i oxyR sequence, OXYR1 and OXYR3 (Table 2.1). These primers incorporated 

flanking EcoRI sites and were designed such that the resulting oxyR gene would be 

promoterless. The strategy for disruption of the oxyR gene was essentially the same 

as that used for ahpCF, in which the gene was cloned and then disrupted by insertion 

of an antibiotic-resistance cassette. Using this approach, the disrupted gene could 

then be excised from the plasmid, on a fragment devoid of an origin of replication, 

recircularised and transformed into SL1344. Those cells that had replaced the wild 

type oxyR gene with the disrupted copy could then be screened for by examining the 

antibiotic resistance phenotype. 

Using OXYR1 and OXYR3 primers, the oxyR gene (approximately 1.1 kb) was 

amplified from the S. typhimurium SL1344 genome and cloned into pGEM-T 

(Promega), a vector specifically designed to directly clone PCR products, to form the 

plasmid pPDT7 (Figure 5.5). In order to disrupt the oxyR gene it was necessary to 

identify a unique restriction site for inserting an antibiotic-resistance cassette. Partial 

sequencing was therefore carried out on the cloned DNA in pPDT7 using a primer to 

the T7 RNA polymerase promoter sequence (P r) that flanks one side of the multiple 

cloning site of the plasmid (Figure 5.5). Using this primer, 467 bp of sequence was 

obtained (Figure 5.6). The original primers to oxyR were devised to the E. coli 

sequence, therefore the S. typhimurium gene is assumed to be flanked either end with 

approximately 20 bp of the E. co/i oxyR sequence. By comparison, the sequence 

obtained was found to represent the 3'-end of the S. typhimurium oxyR gene and 

corresponded to bases 771-1238 of the published E. coli gene sequence (Accession 

number, J04553; Christman et al., 1989). Excluding the 20 bp of flanking E. coli 

sequence, the S. typhimurium DNA showed 82.3% sequence identity to the E. coli 

oxyR gene over this region. 

Using the sequence, one possible unique restriction site (not already present in the 

plasmid) was identified, SmaI, which was present in the 3'-end of oxyR (Figure 5.6). 

Since only partial sequencing of the gene had been performed, restriction analysis of 

pPDT7 was required to determine whether the Smal site was entirely unique. 
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Figure 5.5 

A summary of the cloning and insertional inactivation of the S. lyphimurium oxyR gene 

The oxyR gene was obtained by PCR from the genome of S. typhimurium SL1344 using primers 

corresponding to the E. coli oxyR sequence, OXYR1 and OXYR3 (see table 2.1). The 1.07 kb PCR 

product was then cloned directly into pGEM-T (Promega), a vector designed to clone PCR generated 

DNA, to form pPDT7 (see methods section). A unique Smal site was identified in the gene and oxyR was 

subsequently inactivated by the insertion of a 1.3 kb HincII fragment, containing the kanamycin cassette 

from pUC4-K (Promega), to generate vector pPDT8. Key: on - origin of replication; bla - -1actamase 

gene; lacZ - gene encoding 3-galactosidase; PLACZ - the promoter of the lac operon of E. coli; PT7 - Phage 

T7 RNA polymerase promoter; kan - kanamycin-resistance cassette from pUC4-K; oxyR - gene encoding 

the S. typhimurium OxyR regulatory protein. 



ATGCCCAATTTTTTGGCGCGATCAGGTGATGGGGTTTTGTTTTGAAAGCGGGGAGCGGAT 
1 ------------------------------------------------------------ 60 
TACGGGTTAAAAAACCGCGCTAGTCCACTACCCCAAAACAAAACTTTCGCCCCTCGCCTA 
C P1 F W RD Q V MG F CF ES GERM 

GAAAGATACCCATTTCTGGGCGACCATTCTGGAAAACGTTGCGCAAACATGGTGGCGGCG 
61 ------------------------------------------------------------ 120 

CTTTCTATGGGTAAAGACCCGCTGGTAAGACCTTTTGCAACGCGTTTGTACCACCGCCGC 
K D T H F WA TILE N VA Q T W W R R 

GGCAGTGGTATTACATTACTCCCCGCGCTGGCCGTACCGCAGGAGCGTAAGCGCGACGGC 
121 ------------------------------------------------------------ 180 

CCGTCACCATATGTAATGAGGGGCGCGACCGGCATGGCGTCCTCGCATTCGCGCTGCCG 
A V V L H Y S PR W P Y 	R S VS A TA 

GTGGTTTATCTGCCATGCGTTAAGTCGGAGCCCGCGTCGTACCGTGGGGCTGGTTTATCG 
181 ------------------------------------------------------------ 240 

CACCAAATAGACGGTACGCAATTCAGCCTCGGGCGCAGCATGGCACCCCGACCAAATAGC 
W F IC H A L SR S PR R TV G L 	Y  

Smal 
CCCGGGATCGCCGCTGCGTAGCCGTTATGAGCAACTGGCAGAGGCCATCCGTGGCGCAAT 

241 ------------------------------------------------------------ 300 
GGGCCCTAGCGGCGACGCATCGGCAATACTCGTTGACCGTCTCCGGTAGGCACCGCGTTA 
PG S P L R SR YE Q LA E Al R GA M 

GGATGGCCATTTCGACAAGGCGTTAAAACAGGCGGTTTAAGCCGTTCAACGCCGCAACCC 
301 ------------------------------------------------------------ 360 

CCTACCGGTAAAGCTGTTCCGCAATTTTGTCCGCCAAATTCGGCAAGTTGCGGCGTTGGG 
D G H F D K AL K Q A V * 

Hpal 
GATAAGCTTCCGCCATGGTTGGGTAGTTAAAGGTGGTGTTAPCGAAGTATTCGATGGTGT 

361 ------------------------------------------------------------ 420 
CTATTCGAAGGCGGTACCAACCCATCAATTTCCACCACAATTGCTTCATAAGCTACCACA 

EcoRl 
TACCGCCACCTTTCTGCTCCataatC9CCtgaCCgatatgaattCgg 

421 ----------------------------------------------- 467 
ATGGCGGTGGAP.AGACGAGGtat tagcggactggctatacttaagcc 

Figure 5.6 Partial sequence of the S. typhimurium oxyR gene 

The partial nucleic acid sequence of the S. typhimurium oxyR gene was obtained by sequencing of the 

DNA inserted in pPDT7, using the 17 primer. The DNA is flanked at one end with E. co/i oxyR 

sequence (lower case), from use of the primer OXYR3 (see Table 2.1). Excluding this region, the 

467 bp represent the 3'-end of the oxyR gene and the sequence shows 82.3% identity to the published 

E. co/i sequence (Christman et al., 1989; Accession number J04553). The amino acids encoded in the 

open reading frame are specified by the standard one letter abbreviation and are shown beneath the 

nucleotide sequence. The termination codon is represented by an asterisk. Also shown are three 

underlined restriction sites; EcoRl -used to excise the disrupted copy of oxyR from pPDT8; 

SmaI - used to insert the HincIl fragment of pUC4-K containing the kanamycin cassette; HpaI - used 

as a diagnostic cutting site in Southern blot analysis of cells obtained after recombination with the 

disrupted OxyR gene. 
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Digesting pPDT7 with Smal produced a single band after agarose gel electrophoresis, 

indicating that this site was indeed unique to the plasmid-borne S. lyphimurium oxyR 

sequence. Therefore, the Smal site was chosen for use in the disruption. The 

kanamycin-resistance cassette of pUC4-K (Promega), which contains its own 

promoter, was therefore excised as a 1.3 kb HincH fragment and cloned into the Smal 

site present in oxyR, to form pPDT8 (Figure 5.5). Transformants were selected on LB 

kanamycin plates and the plasmid DNA of resulting colonies was verified by 

restriction analysis. In order to enhance the efficiency of transformation and the 

probability of disrupting the chromosomal oxyR gene, pPDT8 was then transferred to 

S. typhimurium SL1344, to ensure correct methylation of the DNA. 

Transfer of the insertionallv inactivated oxyR gene onto the S. lyphimurium 

chromosome 

The disrupted oxyR gene was excised from pPDT8 as a 2.37 kb EcoRI fragment, 

recircularised by treatment with DNA ligase, and electroporated into SL1344. 

Approximately 2, 000 transformants were obtained from this procedure. In previous 

work it had been noticed that S. typhimurium strains deficient in oxyR showed a 

small colony phenotype. Therefore, patching, to eliminate colonies carrying the 

original plasmid, was biased to selecting colonies that showed this phenotype. 400 

colonies were replica patched onto LB plates containing either kanamycin (the 

antibiotic marker in the disrupted oxyR gene) or ampicillin (the antibiotic marker in 

the plasmid) and incubated overnight at 37°C. 386 of the colonies exhibited a KanR 

Amp  phenotype indicating that recombination onto the chromosome had been 

extremely efficient. As in the disruption of ahpCF, there were three possibilities for 

recombination, a double cross-over event, or a single upstream or downstream 

recombination event. The type of mutant produced was determined, as previously 

described for ahp, using disc inhibition tests. OxyR regulates a number of genes 

including ahpCF. Thus, it was decided to use cumene hydroperoxide for the 

inhibition test as it produces a very clear zone of inhibition and SL1344 and TA4108 

(an oxyR deleted strain of S. typhimurium LT2) were employed as controls. From 50 

colonies that were screened for sensitivity to cumene hydroperoxide, 48 showed a 
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zone of inhibition equivalent to SL1 344 (approximately 24 mm) and only 2 colonies 

showed a large zone of inhibition equivalent to TA4108 (approximately 31 mm). 

Analysis of recombination events in the oxyR gene by Southern blotting 

The genomic DNA from the two cumene hypersensitive S. typhimurium strains was 

examined by Southern blotting. The unique HpaI restriction site at the 3'-end of the 

oxyR gene (Figure 5.6) provided a means, similar to that of the diagnostic restriction 

analysis of the ahp mutants, to distinguish those cells that contained two copies of 

the oxyR gene (from a single recombination event) or a single copy (as in the wild 

type or as a result of a double recombination event). For the virulent parental strain 

(SL 1344) a single band would be obtained, the size of which is unknown because the 

position of the nearest upstream HpaI site is uncharacterised. A double recombinant 

would also produce a single band but, would be 1.3 kb larger than that of the wild 

type due to the kanamycin-resistance cassette. If a single recombination event had 

occurred, then two bands would be seen, one the same size as in the double 

recombinant and the other of 1.1 kb (because two copies of the oxyR gene are present 

producing two HpaI sites). 

HpaI was used to cut the genomic DNA of the mutants, along with DNA from 

5L1344. DNA digests were then electrophoresed on an 0.8% agarose gel, transferred 

to a nylon filter and subsequently probed with the S. typhimurium oxyR gene, 

amplified from the chromosome as previously described. When Southern blot 

analysis was performed, both the isolates that were cumene sensitive, oxyR12 and 

oxyR47, produced a single band (approximately 6.0 kb) which was larger than the 

band for 5L1344 (approximately 4.7 kb) indicating that the oxyR locus was disrupted 

(Figure 5.7 Panel A). For proof that the oxyR gene was disrupted by virtue of the 

kanamycin cassette, a parallel sample of the same HpaI digested DNA was blotted 

and probed with the kanamycin cassette, obtained from pUC4-K as previously 

described. No signal was obtained from the DNA sample from SL1344 (Figure 5.7 

Panel B). In contrast, the DNA from the two mutants showed a single band of the 

same size and alignment as the band produced after probing with oxyR (Figure 5.7 
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Figure 5.7 

Southern blot analysis of mutants from insertional inactivation 
of the oxyR gene by recombination 

Genomic DNA was prepared from the parental strain, S. typhiinurium SL1344, and from two 

cumene hypersusceptible mutants, oxyR12 and oxyR47 Equal amounts of DNA were treated with 

the restriction enzyme Hpal and the resulting digests were electrophoresed on a 0.8 % agarose gel 

overnight at 25 mV. The DNA was then transferred to a nylon membrane and probed with the 

oxyR gene from S. typ/iiniuriun (Figure 5.7 Panel A) or the kanamycin gene from pUC4-K 

(Promega) (Figure 5.7 Panel B). For the purpose of probing, the oxyR gene was obtained by PCR 

from the S. typ/zi?nuriurn SL1344 chromosome using primers OXYRI and OXYR3 (see Table 2.1) 

and the kanamycin gene was prepared from the Hindl digestion of pUC4-K. The positions of 

Hindul digested phage X DNA molecular size markers (kb) are indicated in the middle of the page 

as a guide to size. 

Lanes are as follows: 

C - DNA from S. zyphiniurium SL 1344 

oxyRI2 and oxyR47 - DNA from mutants displaying a cumene hypersensitive 

phenotype 
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Panel B). One of these mutants was then used for further study and designated 

MPG484. 

Testing MPG484 for attenuation using a mouse model 

MPG484 was cultured overnight in LB supplemented with kanamycin. The cells 

were then prepared for injection into mice by serial dilution in PBS to approximately 

1O1106 cells per ml. Six groups of six female BALB/c mice (8-10 weeks) were then 

injected i.p. with 100 t1 of the appropriate dilution of bacteria and the number of 

bacteria administered during injection was determined by plating equivalent samples 

on selective media. The mice were then observed for survival over 28 days, and the 

results of this investigation are displayed in Table 5.1. From the data it can be seen 

that the oxyR mutant is as virulent as S. typhimurium strain SL1344, with an LD 50  of 

1 (log 10  cell number). Thus, these results indicate that oxyR does not play a 

substantial role in the virulence of S. typhimurium. 
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Table 5.1 

The effect of disrupting the ahp or oxyR loci upon the virulence of S. typhimurium 

Number of 
bacterial cells 
injected (log10)  

Number of Mice Surviving at 28 days post-injection 

SL1344 MPG203 MPG473 MPG484 
0-1 3/6 6/6 2/6 2/6 
1-2 1/6 6/6 0/6 1/6 
2-3 0/6 5/6 0/6 1/6 
3-4 0/6 5/6 0/6 0/6 
4-5 0/6 3/6 0/6 0/6 
5-6 0/6 0/6 0/6 0/6 

LD50  (log10  
bacterial cell 1.0 

number)  
4.8 ND* 1.0 

Each group was comprised of 6 female BALB/c mice (8-10 weeks of age). The strains to be tested 

were grown overnight in LB, with selection if required. Bacterial cells were then pelleted and washed 

three times in sterile PBS before being diluted to between 10'- 106  bacteria per ml. Mice in each group 

were injected intraperitoneally with 100 1A of one of the dilution series. The survival of the mice was 

then monitored for a period of 28 days post-injection and the LD 50  calculated by the method of Reed 

and Muench (1938). Key: SL1344 - mouse-virulent strain of S. typhimurium; MPG203 - 

ahp::Mudlux; MPG473 - ahpCF::cml; MPG484 - oxyR::kan; ND"- Survival of mice was below that 

necessary to calculate the LD 50 . 
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5.3 DISCUSSION 

The investigations performed in this chapter indicate that S. typhimurium does not 

require the activities of AhpCF or OxyR for full virulence in mice. The ability of 

S. enterica serovars to infect and cause invasive disease in human and animal hosts 

has been attributed to intracellular survival in phagocytic cells, particularly those of 

the mononuclear phagocytic line (Collins, 1974; Hormaeche, 1979; Buchmeier and 

Heffron, 1989). Macrophages play an integral role in the prevention of bacterial 

infection through their phagocytic capabilities and anti-microbial mechanisms. 

Macrophages are capable of producing a respiratory burst to generate reactive oxygen 

species such as superoxide and hydrogen peroxide which are capable of damaging 

the bacterial cell at all fundamental levels (Hassett and Cohen, 1989). Macrophages 

also induce the production of large quantities of nitric oxide (NO), which plays a 

major role in the antibacterial activity of these cells (Vidal et al., 1993; Pacelli et al., 

1995). 

S. typhimurium and E. coli have been shown to respond to oxidative stress by the 

induction of multigenic responses that can prevent and repair damage incurred by 

reactive oxygen radicals (Christman et al., 1985; Greenberg and Demple, 1989; 

Walkup and Kogoma, 1989). A number of these genes are under the control of the 

specific multigenic regulators, OxyR and SoxRS, which are activated under peroxide 

and superoxide stress respectively. These two different regulators have also recently 

been demonstrated to respond to the production of nitric oxide (Nunoshiba et al., 

1993; Hausladen etal., 1996). 

Loss of the specific regulator for the OxyR regulon results in the hypersusceptibility 

of S. typhimurium to many types of peroxides (Christman et al., 1985). OxyR 

regulates a number of important antioxidant defence genes such as katG (BPI 

catalase), ahpCF (alkyl hydroperoxide reductase), and dps (DNA binding protein), 

and loss of any one of these genes also conveys sensitivity to peroxides (Christman et 

a!, 1985; Francis, 1993; Ivanova et al., 1994, Altuvia et al., 1994). It would be 

expected therefore, that OxyR or the genes of the regulon it controls, which protect 
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against oxidative stress, would be essential for the intracellular survival of S. enterica 

in the macrophage. This is supported by the identification of transposon mutants 

which were unable to survive within the macrophage and were found to be sensitive 

to a range of peroxides (Fields et al., 1986). In addition, Francis and Gallagher 

(1993) and Valdiva et al. (1996) have demonstrated that the OxyR regulon genes, 

ahpC and dps, respectively, are induced by S. typhimurium during interaction with 

macrophage cell lines, demonstrating that S. enterica are likely to encounter such 

intracellular oxidative stress. This would suggest that the OxyR regulon, or some of 

the genes that it regulates, may have important roles for the virulence of S. enterica 

upon host infection. 

The insertion of Mudlux into the ahp locus effectively produced a strain which was 

deficient in Ahp activity, as MPG203 was sensitive to cumene hydroperoxide 

(Francis, 1993). When MPG203 was injected into mice by the intraperitoneal route, 

the calculated LD 50  was 4.8 (log10  cell number), compared to SL1344 which had an 

LD50  of 1 (log10  cell number) indicating that MPG203 was attenuated. This 

difference in LD 50  of approximately 4 logs was attributed to the loss of Ahp and 

indicated that the ability to prevent lipid peroxidation, induced by oxidative stress, 

was an important requirement for survival in the host and therefore for virulence. 

However, an S. typhimurium strain in which the ahpCF locus was inactivated by 

insertion of a chloramphenicol-resistance cassette (MPG473), was found to be as 

virulent as SL1344 (Table 5.1). This indicated that the attenuation of MPG203 was 

unlikely to have occurred as a result of loss of Ahp function, but was mediated in 

some manner by the Mudlux element. 

The Mudlux element not only carries the ability to produce luciferase, the enzyme 

responsible for the bioluminescent reaction, but also carries the luxC, luxD and luxE 

genes which produce the aldehyde substrate for the luciferase reaction (reviewed in 

Meighen, 1991). The synthesis of the aldehyde substrate and the bioluminescence 

reaction requires FMNH and NAD(P)H. It could be that induction of the ahp operon, 

as has been shown upon macrophage interaction (Francis and Gallagher, 1993), may 

result in some form of metabolic burden from the channelling of cellular pools of 

metabolites towards the synthesis of the lux proteins or from overproduction of 
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intracellular aldehyde or alternatively, from depletion of NAD(P)H and FMNH in the 

luciferase reaction. In the latter instance, the depletion of NAD(P)H is of special 

importance in oxidative stress as the ability to maintain a reduced cellular 

environment has been linked to the level of this compound and the control of the 

superoxide stress response (Liochev and Fridovich, 1992). This suggests that loss of 

such compounds increases the susceptibility of cells to oxidative stress. 

Alternatively, the production of the aldehyde substrate may reach sufficiently high 

levels to be toxic to the bacterial cell. Whether the anomalous osmolarity-dependent 

expression of the Mudlux element, described in chapter 4, results in the attenuation of 

MPG203 is uncertain, but cannot be ruled out as a contributory factor. 

Since the role of AhpCF appeared to be unessential for the full virulence of 

S. typhimurium in mice, the role of the transcriptional regulator OxyR in virulence 

was addressed. The ability of the OxyR regulon to produce resistance against 

oxidative stress has been demonstrated in lab culture, as oxyR mutants are susceptible 

to the addition of various peroxides (Christman et al., 1985). This suggested that 

although ahpCF may not be essential, some of the other functions regulated as part 

of the OxyR regulon may have an important role in virulence. However, examination 

of an S. typhimurium strain with an insertionally inactivated oxyR gene (MPG484) 

revealed no significant attenuation compared to the virulent strain (Table 5.1). This 

suggests that the ability of OxyR alone to induce resistance to oxidative stress is 

unlikely to provide a significant level of protection to the respiratory burst of 

phagocytic cells. This is supported by the finding that S. typhimurium cells deficient 

in OxyR were no more sensitive to killing by tissue cultured human neutrophils than 

wild type cells (Papp-Szabo et al., 1994). In addition, Mycobacterium tuberculosis, 

an intracellular pathogen of macrophages, is a natural mutant with a disrupted oxyR 

locus, suggesting that this bacterium also does not require the activities of the 

OxyR-induced oxidative stress defence system for survival within phagocytic cells 

(Deretic et al., 1995; Dhandayuthapani et al., 1996). Nevertheless, in contrast to the 

findings in this chapter, a previous report demonstrated that an oxyR mutant of the 

S. typhimurium strain LT2 was significantly attenuated in mice compared with the 

oxyR parental strain (unpublished data cited in Fields et al., 1986). However, 
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subsequently the parental strain, LT2, has been shown to be only weakly virulent 

(Lee et al., 1995). This suggests that oxyR may play some role in virulence, but not a 

vital one. 

These studies cannot rule out the possibility that OxyR-regulated genes other than 

ahpCF have a role to play in the virulence of S. typhimurium as at least four of these 

genes, katG, dps, gorA and stiA, have also been shown to be controlled 

independently of this regulator (Ivanova et al., 1994; Altuvia et al., 1994; Becker-

Hapak and Eisenstark, 1995; Seymour et al., 1996). In these cases, regulation occurs 

via the stationary phase sigma factor RpoS and these genes help provide resistance to 

oxidative stress in stationary phase cells. Whether any further regulatory factors are 

involved in the OxyR-independent induction of the OxyR regulon genes remains to 

be elucidated. Interestingly, rpoS null mutants of S. typhimurium are attenuated, and 

display sensitivity to oxidative stress (Fang et al., 1992; Coynault et al., 1996). In 

addition, the rpoS gene has been shown to be induced to a high level within 2 hours 

of S. typhimurium entering the macrophage (Chen et al., 1996a), suggesting that if 

survival in macrophages is important to the virulence of S. enterica, then resistance 

to the anti-microbial environment is likely to be mediated by this stationary phase 

sigma factor to a significant degree. This observation might also explain why the loss 

of ahp or oxyR have little effect upon the virulence of S. typhimurium since the 

expression of ahp is RpoS-independent and ahp is not expressed in the stationary 

phase of growth. Moreover, it appears that OxyR normally only exerts its regulatory 

effects in actively growing (exponential phase) cells (Ivanova et al., 1994; Altuvia et 

al., 1994; Chapter 3 of this thesis). 

Whilst it is clear from theiresent study that the ahpCF and oxyR genes are not 

required for full virulence, only a small amount of information exists about the role 

or possible importance of the other genes in the OxyR regulon, for virulence. 

Catalase (katG) could be considered one of the most important enzymes in protection 

against hydrogen peroxide as it can directly eliminate this substance. In fact, in early 

studies, it was demonstrated that one of the major effects of hydrogen peroxide upon 

the bacterial cell was the elimination of the chemiosmotic potential and the ability to 

transport compounds such as sugars or amino acids across the cell membrane, and 
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this phenomenon was particularly severe in cells deleted for oxyR (Farr et al., 1988). 

However, when exogenous catalase was supplied, under the test conditions, the 

inhibition of cellular uptake of substances was rapidly alleviated, leading the 

investigators to postulate that catalase was the most important function in the OxyR 

regulon. Despite this, the lack of a role for katG in virulence was recently 

demonstrated by Buchmeier and colleagues (1995). Moreover, these studies also 

suggested that the alternative, growth phase regulated catalase (katE) also had no role 

in virulence. This is important as it suggests that irrespective of OxyR or RpoS 

regulation neither catalases play a significant role in virulence. This would suggest 

that there must be more important antioxidant defence systems than the ability to 

simply breakdown hydrogen peroxide. Surprisingly, a katGkatE double mutant was 

found to be extremely susceptible to hydrogen peroxide when added in culture yet 

displayed no increased sensitivity to killing by macrophages when compared with a 

wild type strain over both short (2 hours) or long (24 hours) periods of exposure 

(Buchmeier et al., 1995). This suggests that the ability to survive the oxidative burst 

of phagocytes does not require catalase. Alternatively, it could be envisaged that 

even with an antioxidant defence system, the level of oxidative stress might be far in 

excess of any defence that might be induced. These results would indicate that at 

least four genes, ahpCF, oxyR, katG and katE, involved in responses to oxidative 

stress, have no visible role in the virulence of S. enterica. 

Other studies in different bacteria have shown similarities and differences to these 

results. A correlation between the catalase activity and virulence has been noted for a 

number of pathogenic bacteria. For example, when fifteen Staphylococcus aureus 

isolates were examined, the most virulent bacteria displayed the highest levels of 

catalase and the least virulent isolates could be increased in pathogenicity by the 

addition of exogenous catalase (Mandell, 1975). However, a number of studies have 

shown that the susceptibility of bacteria to peroxide challenge in lab cultures have 

not correlated with virulence. An examination of the peroxide susceptibility of six 

virulent clinical isolates of Neisseria gonnorhaea demonstrated survival ranging 

from 80-0.001% after exposure to 30 mM hydrogen peroxide for 30 minutes even 

though all six isolates contained the same level of catalase activity (Alcorn et al., 
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1994). In addition, at least two other organisms appear not to require catalase for full 

virulence Shigella (Franzon et al., 1990) and Haemophilus influenza (Bishai et al., 

1994). Interestingly, these catalase deficient mutants, like S. typhimurium, exhibited 

susceptibility to peroxide in lab culture but were not affected in virulence, further 

demonstrating that catalase activity is not a good indicator of virulence. 

It is known that S. typhimurium and E. coli can respond to different forms of 

oxidative stress (Christman et al., 1985; Greenberg and Demple, 1989; Walkup and 

Kogoma, 1989) and it may be that OxyR regulates less important protective 

responses. The SoxRS regulon regulates genes which are activated in response to 

superoxide (Farr and Kogoma, 1991), which is the first product of the respiratory 

burst (Adams and Hamilton, 1984). However, the majority of studies investigating 

this regulon have been performed in E. coli therefore the role of SoxRS in S. enterica 

is unclear. Interestingly, an E. coli soxS::lacZ fusion was induced within the 

macrophage environment suggesting that the SoxRS regulon is likely to be induced 

in the host (Nunoshiba et al., 1993). In addition, an E. coli mutant deleted for the 

soxRS locus displayed increased killing by macrophages indicating that the SoxRS 

regulon may play a role in virulence, however this difference was not seen until 

approximately 4 hours after E. coli had been engulfed by these phagocytic cells 

(Nunoshiba et al., 1993). 

SoxRS regulates a number of functions including a superoxide dismutase (sodA), 

which breaks down superoxide (Demple, 1991). Investigations into the role of sodA 

in S. typhimurium have shown that sodA mutants exhibit enhanced susceptibility to 

macrophages and this increased susceptibility can be alleviated by the expression of 

sodA from a plasmid (Tsolis et al., 1995). Nevertheless, sodA mutants are only 

slightly attenuated in BALB/c mice, approximately threefold, indicating that the role 

of sodA in virulence is likely to be negligible. In addition, the removal of the E. coli 

sodB gene, the normal cellular SOD, made no difference to the killing of these cells 

by human polymorphonuclear leukocytes (Papp-Szabo et al., 1993), further 

suggesting that SOD activities are relatively unimportant. However, it could be 

suggested that without testing a SOD double mutant, the exact role in virulence 

cannot be determined as one SOD activity may compensate for the other. 

217 



Interestingly, the SOD activity of Shigella has been shown to be important in the 

ability of this organism to display characteristics of full virulence in intestinal loop 

models (Franzon et al., 1990). This suggests that like catalases, SOD function in 

virulence may be dependent upon the particular organism. Whether the other genes 

of the SoxRS regulon are important for the virulence of S. enterica is unknown. 

One role of defence against oxidative stress appears to be protection and repair of 

DNA. DNA is susceptible to single and double stranded breaks and to alteration or 

loss of bases under both peroxide and superoxide stress (reviewed in Farr and 

Kogoma, 1991). Interestingly, one of the main observations made about 

S. typhimurium oxyR mutants grown aerobically, is that they show a 10-55-fold 

higher frequency of spontaneous mutation, especially from T°A-+A°T transversions, 

a base substitution event commonly found after treating wild type cells with chemical 

oxidants (Storz et al., 1987). This mutation frequency can be alleviated by multicopy 

expression of katG or ahpCF genes, and slightly by sodA. Similarly, Greenberg and 

Demple (1988) demonstrated that mutants which overproduced either katG, katE or 

ahpCF reduced the level of spontaneous mutagenesis in an oxyR mutant. Moreover, 

one of the OxyR regulated gene, dps, has been demonstrated to form complexes with 

DNA (Almiron et al., 1992), although whether this protects DNA directly from the 

action of hydrogen peroxide is unknown. These results might suggest that the OxyR 

regulon has an important role to play in preventing damage to, and maintaining the 

fidelity of, the bacterial the genome, even though it does not provide a key role in 

virulence. 

A number of other enzymes have been shown to be induced by hydrogen peroxide 

stress independently from the OxyR regulon and include nfo (endonuclease IV), xthA 

(exonuclease III), polA (DNA polymerase I) and recA, recB and recC (recombination 

and DNA repair enzymes) (Farr and Kogoma, 1991). Interestingly, recA or recBC 

mutants, are very sensitive to hydrogen peroxide even though they possess normal 

levels of catalase activity. These mutants also survive poorly in the macrophage 

environment and are attenuated in mice (Buchmeier et al., 1993). Moreover, the 

sensitivity of the recA mutant was directly correlated with the ability of the 

macrophage to produce a respiratory burst as both the wild type strain and recA 
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mutant survived equally well in a macrophage cell line devoid of the ability to 

generate superoxide (Buchmeier et al., 1993). Bacterial killing by hydrogen peroxide 

has been shown to be bi-modal, with mode one being characterised by death at low 

cell density and with low concentrations of the oxidant (1-3 mM) via damage to the 

DNA (Imlay and Linn, 1986). At higher concentrations (>10 mlvi), mode two killing 

occurs where death is actually independent of the peroxide concentration but 

dependent upon the time of exposure. In this case, death is attributed to a range of 

factors including damage to DNA, RNA and a number of undefined cellular targets 

(Imlay and Linn, 1986). Interestingly, Buchmeier et al. (1993, 1995) have suggested 

that, because of the sensitivity of recA or recBC mutants to peroxide in vitro and in 

vivo, the in vivo situation whereby S. typhimurium is killed by hydrogen peroxide in 

macrophages can be likened to that of mode one. In fact, Buchmeier et al. (1993) 

have indicated that the DNA repair process in virulence is more important to survival 

than the ability to directly inactivate hydrogen peroxide. 

It could be imagined that damaged proteins are relatively simple to repair as such 

proteins can be degraded and resynthesised whereas damage to the DNA is a much 

greater threat, as irreversible or lethal mutations may arise (Storz et al., 1987; 

Greenberg and Demple, 1988). Interestingly, the OxyR regulon genes appear to be 

maximally induced by hydrogen peroxide at 0.1-2 mM (Altuvia et al., 1994; Francis, 

1993) which is in the range expected to cause mode one killing by DNA damage, and 

to occur upon interaction with macrophages. Thus, although the OxyR regulon 

appears not to have a critical role in virulence it could be acting to prevent damage to 

DNA during the infection cycle, thereby helping to maintain the fidelity of the 

genome of those bacteria that survive the respiratory burst. The reason why the oxyR, 

ahpCF and katG loci may have little effect upon virulence may then simply reflect 

on the fact that, unlike recA, these genes have a supportive but not an essential role in 

DNA repair. 

This discussion has focused on the possible roles of oxidative defence in the 

virulence of S. enterica. However some research has suggested that S. enterica 

serovars, including S. typhimurium and S. typhi, probably do not require such defence 

systems for survival in phagocytic cells because they somehow avoid triggering the 
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oxidative burst upon entry (Miller et al., 1972a; Kossack et al, 1981). A number of 

other studies have also indicated that S. enterica serovars may not actually enter 

macrophages by classical phagocytosis. Gahring and co-workers (1990) identified a 

transposon mutant of S. typhimurium strain which was defective for entry into both 

macrophages or epithelial cells. This strain was subsequently shown to enter 

macrophages less effectively than the wild type organism even when opsomsed. This 

suggested that S. enterica may possess the ability to actively invade macrophages 

and this theory has been supported by the identification of a specialised 

invasion-protein-export system in a number of S. enterica serovars, including 

S. typhimurium and S. typhi (reviewed in Galan, 1996). This machinery is wholly 

required for entry into epithelial cells, and the same apparatus was recently shown to 

be required for the killing of macrophages by S. enterica (Chen et al., 1996b, 

Monack et al., 1996). It is likely therefore, that this machinery helps in the entry 

process into both epithelial and phagocytic cells. If this is the case, then the classical 

phagocytic pathway would be circumvented with the possibility that the oxidative 

burst would not be triggered or would be avoided. Even if it were, then there is also 

evidence to suggest that S. typhimurium escapes the normal endocytic route and 

enters a unique intracellular location (Garcia-del Portillo and Finlay, 1995). It may 

therefore be possible that entry by such routes would reduce the requirement for 

antioxidant defence systems and might explain why oxyR, ahpCF and katG appear to 

have little effect on S. typhimurium virulence. 

Against this perspective it must be remembered however, that studies on macrophage 

infection by S. typhimurium show that the number of viable bacteria rapidly 

diminishes by several orders of magnitude following infection (Buchmeier and 

Heffron, 1989; Abshire and Neidhart, 1993b; Papp-Szabo et al., 1993; Buchmeier 

and Libby, 1997). Furthermore, phagocytic cells may be activated by interaction with 

cytokines, or soluble factors such as f-met polypeptides and LPS (Karlsson et al., 

1995), therefore out of a population of macrophages it might be expected, especially 

during infection, that some phagocytes will be in an active state. It should also be 

noted that studies including those by Fields et al. (1986) and Francis and Gallagher 
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(1993), suggest that S. enterica cells are likely to be exposed to some form of 

oxidative stress upon macrophage interaction. 

One pertinent question to ask is whether the use of an LD 50  test is a suitable test to 

determine the importance of genes in virulence. This test is usually performed on 

mutant strains of S. typhimurium in innately susceptible mice. However, a virulent 

strain of S. typhimurium usually kills at a low dose (1-10 organisms) and rapidly 

(within approximately 7 days) when injected intraperitoneally. In this scenario, only 

those genes that play a critical role in helping S. typhimurium survive in the host can 

be determined and genes with lesser, but not necessarily unimportant, roles will not 

be identified. This problem might be circumvented by the use of a less virulent 

S. lyphimurium strain, for example LT2. The report that an LT2 mutant carrying an 

oxyR mutation was attenuated in virulence supports this view (Fields etal., 1986). 

Other researchers have employed more sensitive methods for determining if bacterial 

genes are important for infection by, for example, examining the kinetics of infection 

(Dorman et al., 1989; Collins et al., 1991; Kaniga et al., 1996). This can be 

performed by monitoring the number of organisms present in the mesenteric lymph 

nodes, Peyer's patches, liver and spleen over a suitable time period in comparison 

with the fully virulent organism. This type of test has also been used to demonstrate 

that mutations with no apparent role in virulence, as determined by an LD 50  test, can 

actually affect the ability of the bacterium to colonise the host (Kaniga et al., 1996; 

Tsolis et al., 1996). For example the stpP gene of S. typhimurium is believed to 

modulate the protein tyrosine kinase activities of eucaryotic cells, thus perturbing 

events like cytoskeletal rearrangements or phagocytosis, but sptP mutants showed no 

difference from the virulent strain in LD 50  tests. In contrast, examination of the 

colonisation of the spleens of infected animals showed that an sptP mutant was less 

able colonise this site, suggesting it did affect virulence (Kaniga et al., 1996). With 

hindsight, these types of investigations may well have shown differences for mutants 

of the ahp or oxyR loci compared to the virulent strain, and future studies may well 

clarify this. 
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The identification of factors that are important for S. enterica virulence has helped in 

our understanding of how S. enterica causes disease and aided the development of 

vaccines. Recent vaccine design has been orientated, in part, to the development of 

live attenuated bacterial strains, which have been shown to induce longer lasting and 

more effective protection than dead bacterial cells. Such attenuated mutants have also 

been shown to be useful as carriers of a diverse range of heterologous antigens, 

providing protection against the pathogenic organisms from which the antigen is 

normally derived. However, since vaccines devised from attenuated mutants have 

still resulted in some symptoms of disease post-vaccination (Ivanoff et al., 1994), 

recent research has investigated the possible effects of combining lesions to further 

attenuate vaccine strains to a level where the vaccine is protective but does not 

produce reactogenicity or even overt disease in vaccinees (Ivanoffet al., 1994). 

From the studies outlined in this chapter and other investigations (Buchmeier et al., 

1993) it has been shown that some of the genes involved in the peroxide stress 

response, including the ahp locus, katG and oxyR genes, have little fundamental role 

in virulence. However, this does not preclude the use of other genes in the OxyR 

regulon as targets for vaccine development. Moreover, since the ahp and oxyR loci 

are non-essential, they may have a role in already attenuated S. enterica vaccine 

strains by providing a site for the insertion of genes encoding heterologous antigens. 

Such antigens could then be expressed from the promoters of, for example, the ahp 

promoter, during the course of infection. Finally, although the Mudlux element 

insertion in MPG203 did attenuate this strain in mouse models, this type of mutation 

would be unsuitable for vaccine design because the Mu phage may be lost, possibly 

resulting in reversion to wild type levels of virulence. 
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CHAPTER 6 

The purification of the S. typhimurium 
AhpC and GroEL proteins 
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6.1 INTRODUCTION 

Vaccines consisting of live attenuated S. enterica strains are known to produce 

greater immunological protection than those comprised of killed bacterial cells 

(Collins, 1974; Mastroeni et al., 1996). This phenomenon has been attributed to the 

induction of an intensive cell-mediated immune response by the live but not by the 

dead bacteria (Collins, 1974). However, the mechanism by which live cells can 

induce a stronger CMI than dead cells is poorly understood. 

When bacteria are subjected to environmental stress they respond by increasing the 

level of a variety of proteins which help them to deal with the potential detrimental 

effects of exposure to the stress condition (Mahan et al., 1996). When S. typhimurium 

enters into the macrophage, the bacterium responds by inducing around 30-40 

proteins and repressing around 100 (Buchmeier and Heffron, 1990; Abshire and 

Neidhart, 1993a). These studies suggest that S. typhimurium regulates a large number 

of proteins in order to deal with the hostile environment of the macrophage. 

The elevated synthesis of stress proteins in host phagocytes would increase their 

availability for antigen recognition by the host immune system. It has also been 

suggested that such stress proteins may be dominant antigens, compared with the 

normal complement of cellular proteins present in non-stressed bacteria, for 

recognition by both the cell-mediated and humoral response arms of the immune 

system (Kagaya et al., 1992). Therefore, live bacteria may induce greater protection 

than dead bacteria because they respond to the host environment by producing 

antigens that stimulate the immune system. 

The ahpCF genes encode an alkyl hydroperoxide reductase enzyme which prevents 

oxidative damage to the bacterial cell membrane (Christman et al., 1985; Jacobson et 

al., 1989). Previous studies have shown that the ahpCF locus of S. typhimurium is 

induced when bacteria come into contact with, and are engulfed by, macrophages, as 

a result of the hydrogen peroxide produced during the respiratory burst (Francis and 

Gallagher, 1993; Francis, 1993). This suggests that the Ahp enzyme becomes more 
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abundant during the process of binding and internalisation of the bacteria into the 

macrophage and may therefore be a target for immunological recognition. To address 

this phenomenon it was decided to overexpress the S. typhimurium AhpC protein and 

to examine the immunological responses of the murine host to this polypeptide. 

Previous studies have utilised an oxyRl mutant of S. typhimurium, which 

overexpresses the genes of the OxyR regulon, to enhance isolation of AhpC 

(Jacobson et al., 1989). However, the purification method was complex and many 

steps resulted in a poor yield. In order to circumvent this problem, a His-tag 

procedure was employed which allows a rapid single-step purification of the protein 

of interest. This procedure works by creating a fusion polypeptide at the genetic 

level, in which a 23 amino acid leader sequence (approximately 2-3 kDa in size) that 

includes a stretch of ten adjacent histidine amino acids is attached to the N-terminus 

of the protein of interest. The purification system takes advantage of the high affinity 
.2+ interaction of the charged polyhistidme sequence with nickel ions (Ni ) which can 

be chelated on a resin, thereby forming a chromatography system. Contaminating 

proteins can be washed from the resin before a high concentration of imizadole 

(which competes with the His residues for binding to the Ni 21) is used to elute the 

highly purified fusion polypeptide. The His-tag has also been reported to be 

non-immunogenic (Qiagen, 1992), a relevant issue if the resulting polypeptide was to 

be used in immunological studies. 

Previous studies have shown that the S. typhimurium AhpC protein is antigenic in 

rabbits (Storz et al., 1989). Using tissue cultured macrophages it was also shown that 

the S. typhimurium ahp locus was induced upon interaction of the bacteria with these 

phagocytic cells (Francis and Gallagher, 1993; Francis, 1993). However, it remained 

to be proven that Ahp was expressed in vivo and, that it was recognised by the host 

immune system during infection. As a control, the GroEL protein was examined in 

parallel, as previous studies had shown that mice develop both cell-mediated and 

humoral immune responses to this polypeptide during the course of infection with 

S. typhimurium (Brown and Hormaeche, 1989; Gupta et al., 1996). In addition, 

GroEL molecules from other bacteria have also been shown to be immunodominant 
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antigens (Kaufmann, 1990). However, there is conflicting evidence as to whether 

GroEL is induced within S. typhimurium upon interaction with macrophages 

(Buchmeier and Heffron, 1990; Abshire and Neidhart, 1993a). Nevertheless, the 

GroEL protein is an abundant protein of the bacterial cell. For example, in E. co/i, 

GroEL constitutes approximately 1% of the total cell protein in unstressed cells but 

this can be elevated to approximately 10% under stress conditions (Hemmingsen et 

al., 1988). Therefore, the GroEL protein was considered a likely candidate for 

presentation to the immune system during the course of S. typhimurium infection. 

GroEL is induced as part of the cellular response to heat shock as well as in response 

to a number of other stresses (reviewed in Gross, 1996), and in E. co/i, is encoded in 

an operon, groESL, which also encodes the GroES protein. Together, GroEL and 

GroES act as a molecular chaperone, refolding misfolded proteins generated under 

stress conditions. In addition, a useful property of GroEL is that it assumes a 

multimeric configuration consisting of 14 subunits, giving it the approximate size 

equivalent to a ribosome (Hendrix, 1979; Gross, 1996) and this has been useful for 

the selective purification of this protein from E. co/i (Hendrix, 1979). 

6.2 RESULTS 

6.2.1 Cloning and overexpression of the S. typhimurium ahpC gene 

Cloning of the ahpC gene from S. tvphimurium 

As stated above an AhpC chimera was constructed, which contained a histidine-tag at 

the N-terminus, to aid purification of the S. typhimurium AhpC protein. In order to 

create this fusion polypeptide, the ahpC gene from S. typhimurium SL1344 was 

cloned into pET-19b (Novagen). To facilitate this process, primers were devised to 

the 5'- and 3'-end of the ahp gene, to include nucleotides 156-179 (N5138) and 

761-748 (N5139), respectively (as published in Tartaglia et al., 1990). These primers 

also incorporated NdeI or BamHI sites at their 5' ends respectively, for directional 
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Figure 6.7 Cloning of the S. typhimurium ahpC gene 
into pET-19b to generate a His-tag fusion 

The ahpC gene was amplified from the S. typhimurium SL1344 chromosome by PCR using primers to 
the 5' (N5 138) and the 3' (N5 139) ends of the gene which incorporated NdeI and BamHI restriction sites, 
respectively (see Table 2.1). The product was cloned into the NdeI and BamHI sites of pET-19b 
(Novagen) to form pPDT 14. The ahpC gene was cloned such that the 5' end formed an in-frame fusion to 
DNA encoding a histidine-tag (His-tag). When the ahpC gene is expressed from pPDT14 the resulting 
AhpC polypeptide is preceded by 23 amino acids, including 10 adjacent His residues, at the N-terminus 
of the protein. This His-tag can be used to rapidly purify the polypeptide by nickel ion affinity 
chromatography. Key: ahpC, gene encoding alkyl hydroperoxide reductase subunit C; on, plasmid origin 
of replication; HTS, DNA sequence encoding the histidine-tag; bla, gene encoding -lactamase resistance; 
PT7, bacteriophage T7 RNA polymerase promoter. 
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cloning into pET-19b. The NdeI site was devised such that when the ahpC gene was 

cloned into the vector, the region encoding the His-tag would form an in-frame 

fusion to the start of the gene. Using these primers, the 0.6 kb ahpC gene was 

amplified from the genomic DNA of S. typhimurium SL1344 by PCR. The product 

was then restricted with NdeI and BamHI and cloned into the corresponding sites of 

pET-19b to form pPDT14 (see Figure 6.1). 

Overexpression of the ahpC gene from S. tvphimurium 

Expression of His-tagged fusion polypeptides from pET-19b requires the T7 RNA 

polymerase from bacteriophage T7. The plasmid pPDT14 was constructed in E. coli 

strain DH5a, which does not have the ability to produce the T7 RNA polymerase 

therefore, pPDT14 was moved into the E. coli strain BL21(DE3) by transformation. 

This strain carries the Ti RNA polymerase gene on the chromosome, under the 

control of the lac promoter (lactose operon) and expression of the polymerase is 

initiated when IPTG is added to BL21(DE3). The polymerase is very specific and 

does not initiate significant transcription from E. coli DNA sequences. Induction 

therefore results in specific and high level expression of the gene cloned downstream 

of the T7 promoter in the vector. 

Three strains of BL21(DE3) were used to examine the overexpression of ahpC: 

BL21(DE3); BL21(DE3) containing pET-19b (designated MPG480); BL21(DE3) 

containing pPDT14 (designated MPG481). BL21(DE3) and MPG480 were used as 

controls to distinguish host-induced proteins from those which were selectively 

produced from pPDT14 in MPG481. Briefly, each strain was incubated overnight at 

37°C in 5 ml LB medium, containing the appropriate antibiotics. Cells were then 

pelleted and resuspended in 1 ml of LB and 0.5 ml of this was added to 24.5 ml of 

Spitzizen minimal medium (Spitzizen, 1958), containing the appropriate antibiotics, 

and incubated at 37°C until the optical density (0D 600) had reached 0.6. Cultures 

were then split into four aliquots and two of the samples were induced by the 

addition of IPTG (0.5 mM final concentration). After 30 minutes of incubation, one 

of the untreated samples and one of the induced samples was treated with rifamycin 
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(200 g ml-1  final concentration). Rifamycin selectively blocks transcription of host 

genes by inhibition of the E. coli RNA polymerase but not expression from the 

plasmid which is under the control of T7 RNA polymerase. Protein synthesis de novo 

was then detected by pulse labelling with 5 pCi [S 35  ]-methionine for 5 minutes. Cells 

from each culture were then spun down and resuspended in LSB and the samples 

were subjected to SDS-PAGE analysis on a 12.5% (v/v) polyacrylamide gel. After 

drying on paper, the gel was subjected to autoradiography. 

Figure 6.2 shows the radiolabelled products from the three strains under 

investigation. A comparison of the lanes showed that two bands were particularly 

obvious. One of these, of approximately 30 kDa, was common to both MPG480 and 

MPG48 1 (indicated by the arrow labelled B) and the lower one, of approximately 

25 kDa, was only present in MPG481 (indicated by an arrow labelled A). This latter 

band was considered to be the His-tagged AhpC polypeptide. The wild type AhpC 

protein has been reported to have a molecular mass of 22 kDa (Jacobson et al., 

1989), however the presence of the 23 amino acid His-tag increases the size of the 

fusion polypeptide by approximately 2-3 kDa. The upper band (B) is thought to be 

-lactamase which is responsible for the ampicillin resistance of cultures carrying 

pET- 1 9b or its derivatives. This is supported by the identification of band B in both 

M1PG480 and MPG48 1. Quite why the expression of 13-lactamase appears to be 

induced in the IPTG and rifamycin treated culture of MPG48 1 (lane 2) but not for 

that of M1PG480 (lane 2) is unknown, although the possibility of sample loss during 

the experimental procedure cannot be excluded. Nevertheless, the labelling 

experiments clearly showed that AhpC was being produced from pPDT14 under the 

inducing conditions. 

Large scale overexpression and purification of the His-tagged AhpC protein 

MPG481 was cultured overnight at 37°C with shaking in 50 ml LB medium 

containing chioramphenicol (5 pg ml-1 ) and ampicillin (100 pg ml - '). The bacteria 

were then pelleted, resuspended in 10 ml LB medium and this sample was then 

added to 500 ml Spitzizen minimal media containing the appropriate antibiotics and 
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Figure 6.2 Examination of the expression of ahpC using radiolabelling 

BL2I(DE3). MPG480 (pET-19b) and MPG48I (pPDTI4) were grown overnight in 5 ml LB at 37°C 
with shaking in the presence of the appropriate antibiotic. The cells were then harvested, resuspended in 
I ml of fresh LB media and 0.5 ml of this was diluted into 24.5 ml of Spitzizen minimal medium, 
containing the appropriate antibiotic. Each culture was then grown to an 0D 600  of 0.6 before being split 
into 4 aliquots. IPTG was added to a final concentration of 0.5 mM to two of the aliquots and the other 
two aliquots were left untreated. After 30 minutes of incubation, rifamycin (200 .tg ml) was added to 
one of the untreated samples and to one of the IPTG induced samples, and incubation was continued for 
a further 45 minutes. Aliquots were then pulsed for 5 minutes with 5 iCi of [S 35]-methionine and the 
cells were then pelleted, resuspended in LSB and electrophoresed on a 12.5% (vlv) SDS 
polyacrylaniide gel. Protein profiles are shown after autoradiography. As a guide to the size of the 
polypeptides, molecular mass markers of 66, 45, 29, 24, 20 and 14 kDa were included on the gel, and 
detected by Coomassie Brilliant Blue staining. The relative position of these markers on the 
autoradiogram are indicated in lane M. Labelled arrowheads represent the positions of the His-tagged 
AhpC (A) or f3-lactamase (B). Key to lanes: lane 1, 1+ R-; lane 2, 1+ R+; lane 3, I- R+; lane 4, 1- R-. I 
and R represent IPTG and rifamycin respectively; + and - represent that the cultures were treated or left 
untreated, respectively. 
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grown until the 0D 600  of the culture reached 0.6. Expression of the protein was then 

achieved by adding IPTG to a final concentration of 0.5 mM and incubating the 

culture for 3 hours. Cells were then harvested and resuspended in 20 ml of Buffer A 

(see Materials and Methods), somcated and the soluble fraction obtained by spinning 

out cell debris by centrifugation at 4, 000 g for 10 minutes. 

10 ml of supernatant was then subjected to affinity chromatography on a 1 ml 

column, containing Ni 2  ions chelated to the column matrix (agarose), 

pre-equilibrated with Buffer A. Contaminating proteins with even a slight affinity for 

the column were removed by extensive washing of the loaded column with 20 ml of 

Buffer B (see Materials and Methods) containing 20 mM imizadole. The AhpC 

fusion protein was then rapidly and specifically eluted in 6 ml Buffer B containing 

80 mM imizadole and examined by SDS-PAGE (12.5% [v/v] polyacrylamide gel). 

Lane 1 (Figure 6.3) shows the whole cell extract before passage through the column 

and lane 2 shows the AhpC protein after specific elution. Two bands were 

particularly obvious (lane 2), of approximately 25 kDa (the same size as the 

radiolabelled product; Figure 6.2) and of approximately 21-22 kDa. Previous reports 

have suggested that some non-His-tagged proteins, such as Manganese-superoxide 

dismutase, may bind specifically to the column, by virtue of their metal binding 

properties or because of a high His amino acid content (Hengen, 1995). However the 

lower band is too small to reflect this impurity (the molecular size of the E. coli 

Mn-SOD is 38 kDa). During radiolabelling experiments, a lower band was 

sometimes observed and therefore, the lower band is believed to be a degradation 

product of the His-tagged fusion polypeptide. The fact that it appears in the eluate of 

the high imizadole wash would indicate that the degraded fragment must still contain 

the His-tag component. 

To increase the potential purity of the protein, the eluate was diluted four-fold (to 

reduce the concentration of the imizadole) and was then re-passaged through the 

Ni2 -chelate column. However, this second purification step (Figure 6.3, lane 3) did 

not appear to greatly enhance the purity already obtained by the single elution. 

Estimation of the protein concentration, as determined by the Bradford assay 
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Figure 6.3 Purification of a histidine-tagged AhpC polypeptide using 
Ni2  -che1ate resin affinity chromatography 

A culture of MPG48I was grown overnight at 37°C in 50 ml LB medium containing 

chloramphenicol (5 xg ml -1 ) and ampicillin (100 .tg ml - I). The bacteria were then pelleted, 

resuspended in 10 ml LB and added to 500 ml of Spitzizen minimal medium, containing the 

appropriate antibiotic, and incubated at 37°C with shaking until the OD 6  had reached 0.6. IPTG 

was then added to a final concentration of 0.5 mM and incubation continued for three hours. After 

this time, cells were harvested, resuspended in 20 ml of Buffer A (see Materials and Methods), 

sonicated and the soluble fraction of the cells isolated by centrifugation at 4, 000 g for 10 minutes. 

The extract (10 ml) was then subject to metal ion affinity chromatography using a column 

containing I ml of a Ni 2 -chelate resin. Contaminating proteins were removed using 20 ml of 

Buffer B (see Materials and Methods) containing 20 mM imizadole (low stringency wash) and the 

histidine-tagged AhpC protein then eluted in 6 ml of Buffer B containing 80 mM imizadole (high 

stringency wash). This sample was then diluted 1:4 and the column chromatography repeated. The 

position of molecular mass markers of 66, 45, 29, 24, 20 and 14 kDa are shown as a guide to size 

(lane M). Key: lane I, soluble extract of the cell after sonication and centrifugation of the induced 

culture; lane 2, first elution of AhpC; lane 3, AhpC after repeating the affinity chromatography 

procedure. 
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(Bradford, 1976) using a BIORAD standard assay procedure, suggested that 

approximately 1 mg of protein could be purified from 1 litre of culture following 

two-rounds of His-tag purification. 

The procedure was repeated until approximately 10 mg of AhpC protein was 

obtained. The protein was then dialysed against several changes of 

phosphate-buffered saline (PBS) and concentrated using Millipore CX-10 immersible 

filter units, with a molecular weight cut-off of 10 kDa. During concentration the 

AhpC protein was observed to precipitate and so further concentration was 

minimised to prevent loss of the protein. Overall, the dialysis and concentration 

procedures resulted in a significant loss of protein such that the final yield was 

approximately 5 mg. The purified protein was stored frozen at -70°C in PBS as a 

2.5 mg ml-1  solution until further use. 

6.2.2 Cloning and overexpression of the S. typhimurium groEL gene 

Unlike ahpC, the sequence of the S. typhimurium groEL gene was unknown, 

preventing direct use of vectors for overexpression. Nevertheless, previous studies 

have shown that GroEL from E. coli can be induced to a high level from its natural 

promoter, after a period of heat shock (Hendrix, 1979; Hemmingsen et al., 1988), 

and use of a multicopy plasmid enhanced this expression (McClennan et al., 1993). 

Thus, an attempt was made to clone the S. typhimurium groESL operon on a 

multicopy plasmid and express it from its natural promoter in the hope that high level 

production would occur. 

An E. coli mutant (K090; a gift from N. McClennan, Edinburgh University, 

Scotland) which carries the groESL operon under the control of the arabinose 

promoter (PBAD)  was used to facilitate cloning of the groESL operon. GroESL is 

essential for growth under normal conditions as well as stress conditions (Fayet et 

al., 1989) and therefore, K090 can only survive if media is supplied with arabinose to 

stimulate the expression of GroESL from the PBAD  promoter. The ability to control 

the production of GroESL was therefore exploited as a means for isolating the 
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S. lyphimurium groESL operon by complementation of the mutant in the absence of 

arabinose. 

Identification of a groESL homologue in S. tvphimurium 

The groESL operon of E. coli has been extensively characterised (Hendrix, 1979; 

Hemmingsen et al., 1988; Gross, 1996). The relatively high degree of similarity 

between S. typhimurium and E. coli and the highly conserved nature of GroEL 

suggested that the genetics and properties of the S. typhimurium groEL gene should 

be very similar. However, studies have indicated that some bacteria may carry more 

than one homologue of either groEL or groES (Fischer et al., 1993; Rusangawa and 

Gupta, 1993; Duchene et al., 1994; Thole et al., 1995), therefore, a preliminary 

investigation was performed to identify whether S. typhimurium carries one or 

multiple homologues of groESL, as this would have a bearing on the cloning 

strategy. Previous studies had shown that the groESL operon of E. co/i DH50C existed 

on an 8.1 kb EcoRJ genomic DNA fragment (McClennan et al., 1994). Genomic 

DNA was therefore prepared from E. co/i (DH5a) and from a pathogenic strain of 

S. lyphimurium (SL1344) and digested with EcoRI. The resultant digest was then 

subjected to electrophoresis overnight in a 0.8% (w/v) agarose gel and the DNA was 

subsequently transferred to nylon membrane and Southern blotted. A 2.1 kb 

Hindlil-EcoRl fragment from pGT3270 (McClennan et al., 1994) which carries the 

E. coli groESL operon was radiolabelled, and used to probe the filter. The resulting 

blot (Figure 6.4) shows that only one band is specifically identified by this probe in 

both the E. co/i and S. typhimurium samples, of sizes 8.1 kb and 6.5 kb, respectively. 

This suggests that S. typhimurium contains one homologue of the groESL operon. In 

addition, the size of fragments and the absence of any other bands on the gel 

suggested that the complete S. typhimurium groESL operon was present on the 6.5 kb 

EcoRI derived fragment. 
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Figure 6.4 Detection of a groESL homologue in S. typhimurium 

Genomic DNA was isolated from E. coil DH5a and S. typhitnuriurn SL1344 and was subjected to 

EcoRl digestion. The digests were then electrophoresed on a 0.8% (w/v) agarose gel and the 

DNA was transferred to a nylon membrane for Southern blotting. A 2.1 kb EcoRlHindl1l 

fragment from pGT3270 carrying the groESL operon from E. coil (McClennan at al., 1994) was 

labelled with [ 32P]-dATP and was used as a probe to detect the presence of groESL homologues. 

Single bands of approximately 8.5 kb and 6.5 kb were observed in the samples from E. coil (lane 

1) and S. typhiniuriurn (lane 2), respectively. The locations of X Hindill molecular size markers 

are indicated (lane M). 
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Cloning of the S. tvphimurium groESL operon 

The groESL operon lies at approximately 94 minutes on the E. coli chromosome 

(Berlyn et al., 1996) and might be expected to lie at a similar position in 

S. typhimurium because of the high degree of genomic similarity between the two 

organisms. To explore this possibility a specialised Mud-P22 hybrid phage was 

employed. A collection of hybrid Mud-P22 phage have been constructed, such that 

the phage have been integrated into defined locations on the chromosome and so, 

when phage are induced to enter the lytic cycle, large portions of the bacterial 

chromosome, close to the region of insertion, are packaged in a unidirectional 

manner into the phage (Benson and Goldman, 1992). Thus, these Mud-P22 phage 

can be used to enrich for defined regions of approximately 3 genetic minutes of 

chromosomal DNA. In general, these phage have been used to map the positions of 

genes on the S. typhimurium chromosome. However, since Mud-P22 lysates are also 

enriched for defined regions of the bacterial chromosome they can also be used to 

facilitate cloning of genes within these regions. 

Strain TT15276, which contains a Mud-P22 lysogen at 93 minutes on the 

S. typhimurium chromosome (Benson and Goldman, 1992), was used to enrich for 

DNA containing the groESL locus. The culture was grown overnight at 37°C with 

shaking in LB containing chloramphenicol (20 g ml -1 ). 5 ml of an overnight culture 

was then added to 25 ml of fresh LB containing chloramphenicol (20 jig ml -1 ) and 

Mitomycin C (2 jig m1) and grown overnight with shaking. Mitomycin C induces 

the lysogemsed phage to enter into the lytic cycle and to undergo packaging of DNA 

(in this case, the bacterial chinniosome). The resulting phage particles were liberated 

from the cells by the addition of chloroform, and were pelleted by centrifugation at 

8, 000 g for 10 minutes. The pellets were then subject to phenol/chloroform 

extraction, which removes the viral protein coat from the DNA present in the phage. 

The isolated DNA was subsequently digested with a range of restriction enzymes, 

including EcoRll, Hindffl, Pvull, XbaI, Bglll, BamHl and Sad, electrophoresed on a 

0.8% (w/v) agarose gel and blotted onto a nylon filter. The filter was probed with the 

E. coli groESL fragment as described previously. The lysogen in TT 15276 is inserted 
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Figure 6.5 Analysis of Mud-P22 DNA isolated from the S. typhimurium strain TT15276 
for the presence of a groESL locus 

A 5 ml culture of TT15276, containing a Mud-P22 lysogen at 93 minutes on the S. typhimurium 
chromosome, was grown overnight at 37°C in LB medium containing chloramphenicol (5 .tg ml -1 ). The 

culture was then diluted into 25 ml fresh LB, containing the same antibiotic and mitomycin C (2 .tg m1 1 ), 
and incubated overnight at 37°C with shaking. The cells were lysed with chloroform and the phage were 
isolated by centrifugation at 8, 000 g for 10 minutes. Phage proteins were extracted from the DNA with 
phenol/chloroform and the DNA subject to restriction digestion with EcoRI (lane I), HindtIl ( lane 2), 

Pvull (lane 3), XbaI (lane 4), Bgill (lane 5), BamHI (lane 6) or Sad (lane 7). The DNA was then 
electrophoresed on a 0.8% (w/v) agarose gel and Southern blotted. The groESL locus was detected using a 

2.1 kb EcoRI-HindIII groELS probe (see legend to Figure 6.4) derived from E. coli (McClennan et al., 

1994). HindlII digested phage lambda DNA was added as a guide to molecular size (kb) (lane M). 

M 	1 	2 

S. 

Figure 6.6 Confirmation by Southern blotting that a complementing plasmid 
contained the S. typhimuriurn groESL locus 

The plasmid which complemented an E. coli groESL deficient strain, and Mud-P22 DNA, derived from 
TT15276, were subject to EcoRI digestion and the resultant DNA was electrophoresed on a 0.8% (w/v) 
agarose gel. The DNA was then transferred to a nylon membrane and Southern blotted. The groESL locus 

was detected using a 2.1 kb EcoRl-HindlIl groESL probe (see legend to Figure 6.4) derived from E. co/i 
(McClennan et al., 1994). Identical bands of approximately 6.5 kb can be seen in the lane containing the 
Mud-P22 DNA (lane I) or plasmid (lane 2), thus confirming that the plasmid contains DNA which is 

homologous to the groESL operon. The position of the 6.6 kb X HindlIl molecular size marker is shown 

(lane M). 
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Figure 6.7 Summary of the cloning of the S. typhiinurium groESL locus 

The groESL locus had been identified on a 6.5 kb fragment in an EcoRl digested sample of Mud-P22 DNA 
from S ivphiinuriuin strain TT 15276 (Figure 6.5). EcoRl fragments of Mud-P22 DNA of approximately 6-9 
kb were excised frorn a O.% (w/v) agarose gel, purified and ligated into EcoRl-restricted pBR325. The 
ligation mixture, containing a heterogenous mixture of inserts, was then transformed into K090, an E. co/i 
strain which shows arabinose-dependent expression of the groESL locus. Transformants containing 
complementing plasmids were then selected for in the absence of arabinose. One plasmnid, pPDTI 5, was 
obtained and proven to contain tile groELS locus by Southern blotting (Figure 6.6). Key: b/a, gene 
encoding ampicillimi resistance; cml, gene encoding chioramphenicol resistance; let, gene encoding 
tetracycline resistance; on, origin of replication; groESL, the S. tvp/iinurium groESL locus; PGROESL, heat 

shock-inducible promoter of the groESL locus. 
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at 93 minutes and packages DNA clockwise upon entry into a lytic cycle. Thus, the 

presence of groESL in the DNA (Figure 6.5) suggests that the S. typhimurium 

groESL operon is at approximately 93-96 minutes. Analysis of the restriction pattern 

indicated that EcoRL liberated the smallest fragment (approximately 6.5 kb) and so 

DNA from this region was used to clone the groESL locus. 

An area encompassing EcoRI fragments of Mud-P22 DNA of between 6-8 kb was 

excised from the gel. The DNA was purified using GENECLEANII (BlO 101 Inc.) 

and then ligated into the EcoRI site of pBR325. The resultant ligation mix was then 

electroporated into K090 and transformants were selected on LB plates containing 

50 jig ml-1  ampicillin but no arabinose. Only those cells that could express a 

functional groELS independently of the addition of arabinose, would grow. Only one 

colony was obtained and the plasmid was isolated from this transfonnant and subject 

to EcoPJ digestion. After agarose gel electrophoresis, two bands were observed, one 

corresponding to the size of pBR325 (6 kb), and the other to an approximately 6.5 kb 

fragment (data not shown). As further proof that the 6.5 kb fragment contained the 

S. typhimurium groESL locus, EcoRJ digested samples of the complementing 

plasmid and Mud-P22 DNA were examined by Southern blotting, as described 

previously. From Figure 6.6 it can be seen that DNA from plasmid and the Mud-P22 

lysate produced identical bands following autoradiography, thus confirming that the 

groESL operon from S. typhimurium had been isolated. The complementing plasmid 

was subsequently called pPDT 15 and was used for the overexpression of GroEL (see 

Figure 6.7 for a summary diagram of the cloning of the S. typhimurium groESL 

locus). 

Expression and purification of GroEL from S. typhimurium 

The E. coli GroEL protein has been isolated previously by anionic exchange 

chromatography and by centrifugation of the cell extract through a sucrose velocity 

gradient (Hendrix, 1979). GroEL has an approximate molecular mass of 60 kDa 

(Hemmingsen et al., 1988) but has been shown to associate into a multimeric particle 

consisting of 14 subunits with a molecular mass of 840 kDa (Hendrix et al., 1979). 
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This complex can be separated from the majority of other cellular proteins with the 

aid of the centrifugation procedure. The value of these approaches for purifying the 

GroEL protein from S. typhimurium was explored. To prevent any chance of the 

S. typhimurium sample being contaminated with E. coli-derived GroEL, pPDT15 was 

transferred into the S. typhimurium strain CH23, to form MPG482. This strain is also 

recA deficient, thus preventing any detrimental effects of recombination between the 

plasmid encoded groEL and that on the chromosome of MPG482. 

A 5 ml culture of MPG482 was grown overnight at 30°C in LB containing ampicillin 

(100 tg ml-1 ). This lower temperature was required because growth at 37°C was 

found to be detrimental to MPG482, probably as a result of the accumulation of high 

levels of GroEL. The culture was then diluted 1:100 into 500 ml of LB containing 

ampicillin (100 p.g mr'), and was grown with shaking at 30°C until the 0D 600  had 

reached approximately 0.6. The sample was then subjected to a temperature shift to 

42°C, which induces a strong heat shock response and results in the high level 

expression of groESL from the plasmid. After 10 minutes the cells were harvested, 

resuspended in 20 ml of Buffer Z (see Materials and Methods) and sonicated. The 

majority of the insoluble material was then removed by centrifugation at 4, 000 g for 

10 minutes to obtain the soluble fraction containing the GroEL. 

The supernatant (20 ml) was then loaded onto an 80 x 15mm (approximately 8 ml) 

DEAE-cellulose (DE52; Whatman) ion exchange column pre-equilibrated with 

Buffer Z. The column was then washed with 100 ml of Buffer Z to remove any 

unbound proteins. Bound proteins were then eluted from the column by using 10 ml 

volumes of Buffer Z containing stepwise increases in NaCl concentration (150 MM, 

500 mM and 1000 mM NaCl) and the eluted fractions subsequently collected in 

3-4 ml volumes. The initial soluble fraction and fractions obtained from the ion 

exchange procedure were then examined by SDS-PAGE analysis using a 10% (v/v) 

polyacrylamide gel (Figure 6.8). The first lane shows the soluble fraction obtained 

after sonication and centrifugation of the heat-shocked culture. GroEL can be clearly 

seen and is indicated in the figure. GroES is believed to be one of the two bands 

which ran to the approximate position of the 14 kDa molecular mass marker (this 
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Figure 6.8 Use of anionic exchange column chromatography to purify GroEL 

MPG482 (pPDTI5) was grown overnight at 30°C in LB containing ampicillin (100 .tg ml'). The culture was diluted 1:100 into the same 
medium and was incubated at 30°C until the OD 0  had reached approximately 0.6. The culture was then subjected to a heat shock at 42°C for 
10 minutes and the cells were harvested, resuspended in 20m] of Buffer Z (see Materials and Methods) containing 50 mM NaCl and sonicated. 
The soluble fraction containing GroEL was then isolated by centrifugation at 4, 000 g for 10 minutes. 10 ml of supernatant was then subjected to 
anionic exchange chromatography on a DE52 (Whatman) column (80 x 15mm). The column was extensively washed with 100 ml Buffer Z (50 
mM NaCl) to remove any unbound proteins. Bound proteins were then eluted using 10 ml volumes of Buffer Z containing stepwise increases in 
the concentration of NaCl (150 mM, 500 mM and 1000 mM NaCl). Fractions of samples obtained during this procedure were then subject to 
SDS-PAGE analysis on a 10% (v/v) polyacrylamide gel. Molecular weight markers of 66, 45, 29, 24, and 14 kDa were included as a guide to 
size (lane M). Key: lane 1, soluble cell extract after sonication and centrifugation; lanes 2-4, fractions obtained after washing the column with 
Buffer Z (50 mM NaCl); lanes 5-7, lanes 8-10 and lanes 11-13 represent the eluted fractions obtained after using Buffer Z containing 150, 500 
and 1000 mM NaCl respectively. The position of the GroEL and GroES proteins is marked by an arrow. 
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relative position is also marked). The level of GroEL present suggested that a high 

level of induction had occurred. Lanes 2-4 show the column wash fractions in Buffer 

Z (containing 50 mM NaCl) and indicates very few proteins were being washed off 

the column. However, when the salt concentration of Buffer Z was increased to 

150 mM, a number of proteins were seen to elute (lanes 5-7). Importantly a band of 

45 kDa, which forms a predominant part of the initial soluble fraction, was eluted 

and helped to increase the purity of the GroEL sample. Unfortunately, a small 

amount of GroEL could also be seen in the eluates at this salt concentration. 

Therefore, the concentration of NaCl was subsequently adjusted to 500 mM to elute 

as much of the GroEL into as few fractions as possible. The resulting eluate (lanes 

8-10) showed that the column had resulted in substantial purification of GroEL, 

however a number of other bands, including GroES were present. A final elution of 

proteins in 1 M NaCl resulted in little if any further elution of proteins (lanes 11-13). 

The value of subjecting the soluble fraction to sucrose density gradient centrifugation 

was also explored as a means of purification. 4 ml aliquots of the soluble fraction, 

obtained after centrifugation of the somcated cells, were carefully laid onto 

pre-formed gradients (30 ml) of between 30-10% (w/v) sucrose and centrifuged 

overnight at an average relative centrifugal force of 86, 000 g. 1.5 ml fractions of the 

gradient were then carefully removed and samples subjected to SDS-PAGE analysis 

on a 10% (v/v) polyacrylamide gel to ascertain the composition of the proteins 

present. The composition of proteins from a typical gradient is shown in Figure 6.9. 

GroEL is seen at the densest region of the gradient (30% [w/v] sucrose) but appears 

to be relatively dispersed in these lower fractions (lanes 1-7), encompassing 

approximately 8-10 ml of the 34 ml gradient. Lanes 6-10 show that some 

contaminating proteins start to appear and are likely to be components of the 

ribosomes or RNA polymerase as described previously (Hendrix, 1979). The 

majority of the cellular proteins, including GroES, appear to be confined to the upper 

reaches of the gradient (lanes 11-18). The overall purity obtained by such a procedure 

appeared to be >95% (by visual inspection of gels). However, after pooling and 

concentrating appropriate fractions containing GroEL, a number of contaminants 

could still be seen. It was decided therefore, that a combination of both anionic 
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Figure 6.9 The use of sucrose gradient velocity centrifugation to purify GroEL 

A soluble fraction containing GroEL was obtained from MPG482 as described in the legend for Figure 6.8. 4 ml of this supernatant was then laid carefully 

onto a 30-10% (w/v) sucrose gradient (30 ml) and centrifuged for 18 hours at an average centrifugal force of 86, 000 g. Fractions of approximately 1.5 ml 

were isolated from the gradient and the protein composition determined by SDS-PAGE analysis on a 10% (v/v) polyacrylamide gel. Molecular mass 

markers (kDa) were included as a guide to size and are indicated (lane M). Fractions are numbered from the most dense (30% [wIvJ sucrose) to the least 

dense (10% [w/v] sucrose) region of the gradient. Lane numbers correspond to the fraction numbers. The position of the GroEL and GroES proteins is 

marked by an arrow. 
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Figure 6.10 Overall purification of the S. typhimuriurn GroEL protein using a 
combination of ion exchange chromatography and sucrose velocity gradients 

A soluble fraction containing GroEL was obtained from MPG482 as described in the legend for 
Figure 6.8. This fraction was subjected to ion exchange column chromatography followed by sucrose 
velocity gradient centrifugation (see legends to Figure 6.8 and 6.9 respectively). Samples of the 
protein were examined by SDS-PAGE analysis on a 10% (v/v) polyacrylamide gel during the 
purification procedure in order to determine the level of purity. Molecular mass markers of 66, 45, 29, 
24 and 14 kDa were included as a guide to size (lane M). Key: lane 1, soluble cell extract after 
sonication and centrifugation of the induced MPG482 culture; lane 2; GroEL sample after being 
subjected to ion exchange column chromatography; lane 3; OroEL sample after subsequent sucrose 
velocity gradient centrifugation. 

244 



exchange and velocity gradient centrifugation would be used for maximising the 

purity of the S. typhimurium GroEL. A typical sequential profile of the overall 

purification of GroEL is shown in Figure 6.10. The combined protocol was repeated 

until approximately 5 mg of protein had been isolated, as determined by the Bradford 

assay (Bradford, 1976) using a BIORAD standard assay procedure. The resultant 

GroEL samples were dialysed against several changes of PBS and were then 

concentrated using immersible Millipore (CX-10) filter units with a molecular cut off 

of 10 kDa. GroEL was found to precipitate during the concentration procedure, as 

similarly found for AhpC, therefore the concentration step was minimised to prevent 

loss of protein. The resulting protein was stored frozen at approximately 2 mg ml - ' at 

-70°C until further use. 

Approximately 2 mg of GroEL was obtained from approximately 1 litre of starting 

culture, however this was believed to be a rather low overall yield, considering the 

abundance of the protein in the cell after induction. Nevertheless, the purification 

strategy, although costly in terms of loss of protein, resulted in a high level of purity. 

6.3 DISCUSSION 

The S. typhimurium AhpC and GroEL proteins were successfully cloned, 

overproduced and purified and the proteins were estimated to be greater than 95% 

pure after visual inspection of protein gels. This was an important factor, as the 

proteins were to be injected into mice for immunological studies and a high level of 

impurity may affect the characteristics of the immune responses which would be 

generated. 

The use of a His-tag procedure for purification of AhpC proved simple and effective, 

resulting in a high level of purification from only a small number of steps (Figure 

6.3). However, the small additional level of purity gained by a second passage down 

the Ni i 2+  -chelate column probably resulted n some loss of the protein. In addition, the 

dialysis and concentration steps appeared to result in a large loss in the overall 

protein recovery, although the reasons for this are unclear. It is noteworthy that in 
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previous investigations it was found that the native AhpC polypeptide tended to 

aggregate during the purification procedure (Jacobson et al., 1989). This might 

suggest that the His-tag at the N-terminus of the fusion polypeptide was not 

responsible for the precipitation of the protein observed in the present study. 

Nevertheless, the ready nature with which the protein precipitated from solution 

during concentration may have resulted in much of the loss observed. 

Very little infonnation exists about the S. typhimurium homologue of GroEL. 

However, taking advantage of an E. coli strain that could only produce GroESL in 

the presence of arabinose, the groESL operon from S. typhimurium was cloned. A 

number of bacteria contain several copies of the groEL gene, including 

Mycobacterium tuberculosis (Thole et al., 1995), Bradyrhizobium japonicum 

(Fischer et al., 1993), Streptomyces coelicolor (Duchene et al., 1994) and Rhizobium 

leguminosarum (Rusanganwa and Gupta, 1993). In E. coli, the association of GroEL 

with GroES is essential for chaperone activity and the two proteins are encoded 

within an operon. This arrangement also appears in the above bacteria but some of 

these bacteria, including M. tuberculosis and R. leguminosarum, also appear to have 

groEL homologues encoded in a locus in which the groES gene is absent (Thole et 

al., 1995; Rusanganwa and Gupta, 1993) This work is the first to report that 

S. typhimurium contains only one homologue of groEL and which exists in an operon 

with groES. This was shown by Southern blotting (Figure 6.4) and also by virtue of 

the complementing plasmid pPDT15, since the E. coli strain K090 can only grow in 

the presence of both genes and neither is significantly produced in the absence of 

arabinose. Moreover, Southern blot analysis of DNA from a Mud-P22 lysate mapped 

the locus to approximately 9396 minutes on the S. typhimurium chromosome. 

Using the natural heat shock inducible promoter of the groESL operon, a high level 

of induction was obtained after a shift to 42°C. Visual estimates of the amount of 

protein in the cell extract suggested that as much as 20-40% of the soluble protein 

was GroEL. The multimeric assembly of GroEL aided rapid and high level 

purification using sucrose gradient centrifugation (Figure 6.9). However, the anion 

exchange column was found to reduce the overall level of impurities, if performed 
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prior to the sucrose gradient spin (Figures 6.8 and 6.10). Interestingly, the GroES 

protein appeared to elute in the same fractions as GroEL after ion exchange but did 

not appear to be associated with GroEL after sucrose gradient centrifugation. This 

supports evidence that GroES only weakly associates with GroEL, as a high 

centrifugal force is capable of separating these two proteins (Braig et al., 1994; 

Fenton et al., 1994). The overall purity of the GroEL was high, but considering the 

level of induction of the protein the yield of 2 mg per litre was considered poor. 

GroEL, like AhpC, also precipitated upon concentration. The fact that these proteins 

precipitated from the solution would suggest that denaturation had occurred. The 

reason for this precipitation is not known but for the purposes of the immunological 

studies both proteins required to be in phosphate-buffered saline (PBS). The bacterial 

cytoplasm has an ionic salt concentration of approximately 0. 15 M -0.2 M (at neutral 

pH) and protein solubility under these conditions is a result of ionic and polar 

interactions with the surrounding solvent (Scopes, 1994). The concentration of NaCl 

in PBS is approximately 0.14 M therefore, the insolubility of AhpC and GroEL is 

unlikely to be a result of the composition of the PBS. Cellular proteins also exist in a 

reduced environment, and this has important implications for proteins containing 

cysteine groups. Cysteine amino acids are capable of forming disulphide bridges 

between one another, following oxidation of the suiphydryl groups they contain. One 

problem associated with protein purification is that these groups are very sensitive to 

oxidation once the protein has been removed from the intracellular environment 

(Scopes, 1994). This may result in the inappropriate formation of such bonds not 

only within individual proteins but also to adjacent proteins leading to denaturation 

and the formation of aggregates. During the purification of both AhpC and GroEL, 

the reducing agent dithiothreitol (DTT) was present in the buffers. However, during 

dialysis, DTT was excluded and this may have promoted inappropriate intra- and 

inter-disulphide bond formation, especially when the proteins were subsequently 

concentrated, leading to denaturation and precipitation. In support of this, Braig and 

colleagues (1994) reported that they were able to concentrate the GroEL protein to 

approximately 50 mg m1 1  in a buffer containing DTT. 
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CHAPTER 7 

The use of a murine model to examine the 

immunological properties of AhpC and GroEL 
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7.1 INTRODUCTION 

Initial attempts to prevent S. enterica-related diseases, particularly typhoid fever, by 

vaccination, involved whole cell preparations (reviewed in Ivanoff et al., 1994). 

However, these were shown to have a poor ability to induce protective immunity to 

subsequent challenge, although this could be overcome, to a degree, by the use of 

multiple doses (Collins, 1974; Ivanoff et al., 1994; Plotkin and Bouveretlecam, 

1995). This produces problems especially in developing countries where such 

vaccines are most needed. The cost of transport and staff, to disperse the vaccines 

over large areas with poor infrastructure would make a multiple dose regimen 

difficult to implement (Bloom, 1989). Ideally, therefore, there is a need for a vaccine 

that gives long term protection and that can be administered preferably as a single 

dose (Bloom, 1989; Ivanoffet al., 1994). Moreover, such a vaccine would find a use 

in eliminating S. enterica infection of animals, which act as reservoirs for this 

pathogen and which are believed to be a major factor in the spread of S. enterica 

infection to humans via the food chain (Maurice, 1994). 

More recent developments have involved the use of live attenuated organisms and 

these have been shown to induce a greater degree of immunity in individuals than 

killed bacterial cells (Chatfield et al., 1992a; Mastroeni et al., 1996). However, even 

the live attenuated vaccines have not provided a complete answer, as a fine balance is 

required between attenuation and the ability of the organism to persist long enough to 

induce substantial protective immune responses (Chatfield et al., 1992a; Dougan, 

1994; Ivanoff et al., 1994). In addition, field trials have demonstrated that there may 

be problems associated with the use of live attenuated vaccines. For example, the live 

attenuated vaccine strain CVD908, an aroCaroD mutant of S. typhi, has been shown 

to produce symptoms of typhoid fever in human vaccinees (Miller et al., 1993; 

Ivanoffet al., 1994). Moreover, although a single dose of this vaccine was protective, 

multiple doses were still needed for sustained levels of protective immunity (Ivanoff 

et al., 1994; Plotkin and Bouveretlecam, 1995). 
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In addition, to the ability to persist in the host, there is a second reason why live 

bacterial vaccines are believed to be superior to killed-cell vaccines. Live bacteria are 

capable of responding to the host environment and therefore produce a spectrum of 

antigens which more accurately equate with the natural infection (Kagaya et al., 

1992). However, very few studies have examined the protein antigens from 

S. enterica that are important in generating immunity or the value of such antigens 

for the development of prophylactic therapies to S. enterica infection. Indeed, the 

potential for developing a subunit vaccine has largely been ignored, perhaps because 

most of the important recent advances in vaccine development have come from 

identifying genetic lesions that attenuate S. enterica. 

Subunit vaccines comprising of a few key molecules, could solve many of the 

problems associated with whole cell vaccine preparations (Horwitz et al., 1995). 

Many bacterial molecules are likely to be irrelevant or non-essential to developing 

immune responses and possibly may even be immunosuppressive. For example, a 

number of mycobacterial wall components, including lipopolysaccharide and 

lipoarabinomannan, have been shown to suppress the effective development of 

protection against this organism (Horwitz et al., 1995). Thus, a vaccine comprised of 

a few defined components is likely to be safer and less reactogenic and may induce 

stronger protective immunity than a whole cell vaccine. Also, because such vaccines 

would be chemically defined, they are more likely to be produced reproducibly, to be 

easier to assay and to be less expensive to manufacture, transport and store. 

In the present study, the murine model of salmonellosis was employed to examine 

the immune responses of S. typhimurium-infected mice to the proteins, AhpC and 

GroEL. Both of these proteins have been shown to be expressed during interaction 

with macrophages (Buchmeier and Heffron, 1990; Francis and Gallagher, 1993; 

Abshire and Neidhart, 1993a), suggesting that AhpC and GroEL are likely candidates 

for antigen recognition by the host immune system. The importance of these proteins 

in the generation of immunological responses during infection by S. typhimurium 

was assessed therefore, to further our understanding of the immunogenicity of 

defined protein antigens and to examine their potential in vaccine design. 
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Attenuated strains of S. typhimurium produce a systemic bacterial infection in 

innately susceptible (ityS)  BALB/c mice resembling that of typhoid fever in man 

(Collins, 1974; Hormaeche, 1979). Moreover, such strains persist long enough to 

induce immunological protection against a subsequent challenge from a lethal dose 

of wild type organisms. This property has been associated with the development of 

both cell-mediated and huinoral responses (Collins, 1974; Mastroem et al., 1993). 

Cell-mediated immunity (CMI) can be measured by in vivo manifestations such as 

delayed-type hypersensitivity (DTH) (Abbas et al., 1991). Classically, a DTH 

reaction occurs when an individual is challenged with an antigen that has previously 

been recognised by the immune system. For experimental purposes, the challenge is 

often performed by injecting the antigen into the footpad of a laboratory animal. This 

produces swelling at the site of injection 24-72 hours later, hence the name 

delayed-type hypersensitivity. This swelling is a result of the recognition of the 

antigen by memory T cells, which initiate the process of inflammation and 

recruitment and activation of macrophages (Abbas et al., 1991).. 

The humoral response also plays an important role in the immune response to 

S. enterica infection (Mastroem et al., 1993). The predominant antibody response to 

S. enterica is directed at the surface of the bacteria (i.e. the LPS or flagella) but 

recently a number of reports have shown responses are also directed to intracellular 

protein antigens (Brown and Hormaeche, 1989). In the present study, the ability of T 

cells to recognise AhpC and GroEL was addressed by examining the DTH responses 

to these proteins, after injection into the footpads of mice which were previously 

infected with S. typhimurium.In addition, the antibody response to AhpC or GroEL 

was determined by sampling the serum of animals at various time intervals 

post-infection and assessing whether a response had occurred by immunoblotting. 
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7.2 RESULTS 

7.2.1 Examination of the cell-mediated responses of mice infected with 

S. typhimurium 

The aim of this section was to determine whether the AhpC and GroEL proteins are 

recognised by T cells during the course of S. typhimurium infection. This was 

addressed by examining whether mice previously exposed to an attenuated strain of 

S. typhimurium generated a DTH reaction (an in vivo manifestation of a 

cell-mediated immune response) after subcutaneous injection of these proteins. 

Previous studies have suggested that when BALBIc mice are infected with an 

attenuated aroA strain of S. typhimurium, the bacteria persist for approximately 2 

months before being fully cleared from the mouse (Mastroeni et al., 1993). The 

cell-mediated responses were therefore examined at two time points, the first when 

the mice should still contain viable S. typhimurium organisms and the second when 

they should be pathogen-free. This would indicate whether any immune response to 

AhpC or GroEL was a transient feature or whether these proteins could be identified 

as part of the immunological memory to S. typhimurium infection. 

Construction of an attenuated aroA mutant of a pathogenic strain of S. tynhimurium 

Hosieth and Stocker (1981) constructed and characterised an aroA mutant of a 

pathogenic strain of S. typhimurium. Injection of this mutant into susceptible mice 

resulted in protection against a subsequent challenge by a lethal dose of pathogenic 

organisms and this protection was shown to require both antibody and cell-mediated 

immune responses (Mastroeni et al., 1993). Therefore, this mutation was used in the 

present study since a large body of information exists about its attenuating properties. 

An aroA transposon insertion, aroA554::TnlO, was moved by transduction with 

phage P22 HT int4 (Roth, 1970) from SL1346 (Hosieth and Stocker, 1981) into a 

pathogenic strain of S. typhimurium (SL1344) to generate MPG479, for use in the 

present study. 
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Cell-mediated responses to AhpC and GroEL 33 days post-infection of mice with 

S. tvphimurium 

Four groups of six female BALB/c mice, aged 8-10 weeks (15-20 g), were injected 

intraperitoneally (i.p.) with either 1.78 x i0 5  c.f.u. of MPG479 in 100 ti of phosphate 

buffered saline (PBS) (Groups 1 and 2) or with 100 p.1 PBS alone (Groups 3 and 4). 

MPG479 was prepared on the day by taking an overnight culture, grown in the 

presence of 10 jig ml-1  tetracycline, and washing and diluting it in PBS. The number 

of organisms injected was determined by sample dilution and plating onto solid LB 

media containing tetracycline. The dose of organisms was chosen because Hosieth 

and Stocker (1981) had previously shown that a similar bacterial inoculum had 

resulted in no visible signs of illness in the mice, yet conferred substantial protection 

to challenge by a virulent strain of S. typhimurium (SL1344), thus indicating that a 

suitable immune response had been generated. 

After infection, mice were placed in cages, no more than three to a cage, and the 

animals were supplied with a commercial pellet diet and water ad libitum. Thirty 

three days after infection, DTH reactions to the purified AhpC or GroEL proteins 

(see chapter 6 for purification details) were stimulated by subcutaneously (s.c.) 

injecting, the left hind footpad (LHFP) of each mouse with 50 p.1 of PBS containing 

either 40 p.g of heat aggregated AhpC (Groups 1 and 3) or GroEL (Groups 2 and 4). 

As a control to show that any increase in footpad size was a specific response to the 

injection of the proteins, the right hind footpad (RHIFP) of each mouse in all the 

groups was injected with 50 p.1 of PBS only. Uninfected mice, treated similarly were 

used as an additional control. These experimental details are summarised in Table 

7.1. 

After 24 and 48 hours, the thickness of the RFIFPs and LHFPs were measured in 

thousandths of an inch, taking measurements of each footpad at three different 

positions, using dial-type callipers. The thickness of the LHFP (protein injected) was 

then divided by the thickness of the R}IFP (saline injected) to give a footpad 
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Table 7.1 A summary of the experimental protocol for examining the DTH response 

to AhpC and GroEL in mice 33 days post-infection with S. typhimurium. 

Mouse Group Treatment (Day 0) DTH challenge (Day 33) 

(LHFPIRHFP) 

1 S. typhimurium infected AhpC/PBS 

2 S. typhimurium infected GroELfPBS 

3 Saline control AhpC/PBS 

4 Saline control GroELIPBS 

Each group of mice consisted of six female BALB/c mice, 8-10 weeks of age (15-20 g). Mice were 

injected i.p. with (a) 1.78 x i0 c.f.u. of the aroA S. typhimurium mutant, MPG479, in 100 .tl of PBS 

or (b) 100 j.tl of PBS only and were challenged 33 days later by injecting the LHFP s.c. with 50 .tl of 

PBS containing 40 jig of heat aggregated (c) AhpC or (d) GroEL, and the RHFP was injected with 

50 il PBS only. LI{FP, left hind footpad; RHFP, right hind footpad; s.c., subcutaneously. 
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thickness ratio.The ability of AhpC or GroEL to elicit a DTH response could then be 

determined by comparing the mean increase in footpad ratio per group between 

infected and uninfected control mice (Group 1 versus 3 and Group 2 versus 4, for 

AhpC or GroEL, respectively). The results of this experiment are outlined in Figure 

7.1. The statistical significance of the results was calculated by the Student's t-test 

method. 

It should be noted that a control group, infected initially with bacteria and challenged 

on day 33 by the injection of 50 p.1 of PBS into the LHFP only, showed a small 

increase in footpad thickness when compared with the uninjected RHFP. This was 

significant after 48 hours (p<Z0.05) but not at 24 hours (data not shown). This 

suggests that subcutaneous injection of PBS elicits a small amount of swelling in the 

absence of antigen. However, the increase was very small when compared to that of 

mice injected with either antigen. 

It was found that injection of AhpC or GroEL into infected mice (Group 1 or 2, 

respectively) resulted in a significantly greater increase in footpad size than in 

uninfected mice after 24 hours (p<0.01 for each). For example, injection of the LHFP 

with AhpC resulted in a 32% increase in the footpad thickness compared to the PBS 

injected RHFP (Group 1) after 24 hours, in infected mice, whereas only a 15% 

increase was observed in uninfected mice (Group 3). Similarly, injection of the 

LHFP with GroEL resulted in a 30% increase in footpad thickness compared to the 

PBS injected RHFP (Group 2) after 24 hours, in infected mice, whereas only a 9% 

increase was recorded in uninfected animals (Group 4). These relative differences in 

thickness were maintained after 48 hours (p<O.00l  for both proteins), even though 

the overall thickness in both groups declined from that seen at 24 hours. This 

suggests that AhpC and GroEL are capable of eliciting a DTH reaction and indicates 

that these proteins, or epitopes thereof, are specifically recognised by a 

sub-population of the T cell repertoire during the course of S. typhimurium infection 

of mice. 
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Figure 7.1 Cell-mediated responses of mice challenged 
with AhpC and GroEL (Day 33) 

Four groups of six female BALB/c mice, 8-10 weeks of age (15-20 g), were injected i.p. with 1.78 x 10 
c.f.u. of an aroA S. typ/limurium mutant, MPG479, in 100 1.11 of PBS, or with 100 .d of PBS only. 33 days 
later mice were challenged by injecting the LHFP with 40 .tg of heat aggregated AhpC or GroEL in 50 p.1 
of PBS and the RHFP with 50 p.1 PBS only (See Table 7.1). After 24 and 48 hours the thickness of the 
LHFP and RI-IFP were measured and the increase in the mean left footpad thickness was expressed as a 
ratio (LHFP/RHFP x 100) ± SEM. Key: LHFP, left hind footpad; RHFP, right hind footpad. Uninfected 
mice and mice infected with S. lyphimurium are represented by the shaded and empty bars respectively. 
The increase in footpad thickness in infected mice after injection of AhpC or GroEL was compared with 
those in uninfected mice using the Student's (-test and the level of statistical significance of this comparison 
is represented by asterisks: ** p<0.01; '"" p<0.001. 
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Interestingly, the increase in footpad thickness in uninfected mice injected with either 

AhpC or GroEL appeared greater than might be expected for animals that were 

theoretically naive to these antigens. The significance of this enlargement is best 

examined by comparing the size of the LHFP (injected with antigen) relative to the 

RHFP (injected with saline) within the group because this takes into account any 

possible effect of injection with saline. An examination of Groups 3 (AhpC injected) 

and 4 (Gr0EL injected) suggested that AhpC but not GroEL resulted in a significant 

increase in footpad thickness at 24 hours in uninfected mice (p<0.001 and p=0.16, 

respectively). However, the lack of significance in the increase of footpad thickness 

in Group 4 may have reflected on the fact that one mouse had an unusually thick 

RHFP. When the measurements for this mouse were removed and the significance 

recalculated, the increase in footpad thickness due to injection of GroEL was shown 

to be significant (p<Z0.05) compared to the saline control. Nevertheless, the effects of 

AhpC and GroEL were only short lived in these mice and the difference in footpad 

thickness at 48 hr was not significant. In summary, it is clear that both AhpC and 

GroEL induce a transient increase in footpad thickness in uninfected animals, greater 

than that of the saline injected footpads, but this is not nearly as great or as prolonged 

as the enlargement observed in infected mice. In addition, the induction of a 

cell-mediated response in these uninfected mice indicates that there may have been 

previous immunological recognition of AhpC or GroEL (or even homologous 

antigens). 

Cell-mediated responses to AhpC and GroEL 104 days post-infection of mice with 

S. tvphimurium 

A similar protocol to that described for the antigen challenge at day 33 was used to 

examine the cell-mediated responses to AhpC and GroEL at 104 days post-infection, 

a time when the mice should have cleared the bacterial load. Four groups of six 

BALB/c mice, 8-10 weeks old (15-20 g), were either injected i.p. with 1.78 x i0 5  

c.f.u. of MPG479 in 100 .tl of PBS (Groups 5 and 6) or, 100 tl of PBS alone 

(Groups 7 and 8). Mice were then maintained, as described previously. 104 days after 

infection, the LHFP of each mouse was injected s.c. with 40 jig of AhpC (Groups 5 
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and 7) or GroEL (Groups 6 and 8) in 50 tl of PBS and the RHFP of each mouse, in 

all groups, was injected with 50 j.tl of PBS alone. These experimental details are 

summarised in Table 7.2. 

After 24 and 48 hours the thickness of the LHFP and RHFP, and the footpad 

thickness ratio, were determined as previously stated for the antigen challenge at day 

33. The results of this experiment are shown in Figure 7.2. As in Figure 7.1 the 

footpad thickness of infected mice injected with either AhpC or GroEL was 

significantly greater than that of uninfected animals (p<0.05 and p<O.00l, 

respectively). For example, after 24 hours the AhpC injected LHFPs were 20% 

thicker than the PBS injected RHFPs in infected mice (Group 5) but only 13% 

thicker in uninfected mice (Group 7). Similarly, the GroEL injected LHFPs were 

24% thicker than the PBS injected RHFPs in infected mice (Group 6) but only 8% 

thicker in uninfected mice (Group 8). As with the antigen challenge experiment at 

day 33, the DTH responses were still apparent 48 hours post-challenge (p<0.001 and 

p<O.Ol, respectively). This again supports a role for these proteins in the initial 

stimulation of T cells during infection, and in the generation of a cell-mediated 

response and immunological memory. Nevertheless, the overall increase in thickness 

after injection with the proteins was less than observed at 33 days post-infection. The 

mice challenged at 104 days were killed 10 days later and shown to contain no viable 

organisms in the liver or spleens (data not shown). This may suggest that the 

reduction in response is linked to the decline in antigenic stimulation following 

elimination of the bacteria. 

In agreement with the results obtained at day 33, injection of either AhpC or GroEL 

into the left footpad of uninfected animals was shown to result in a small but 

significant increase in footpad thickness (p<0.01 and p<O.Ol, respectively), over that 

in the saline injected footpad. In addition, this was again shown to be transient as by 

48 hours no significant difference could be seen between the footpads injected with 

antigen or saline. These results again suggest that the mice may have had some prior 

immunological exposure to these antigens. 
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Table 7.2 A summary of the experimental protocol for examining the DTH response 

to AhpC and GroEL in mice 104 days post-infection with S. typhimurium. 

Mouse Group Treatment (Day 0) DTH challenge (Day 104) 

(LHFP/RHFP) 

5 S. typhimurium infected AhpC/PBS 

6 S. typhimurium infected GroEL/PBS 

7 Saline control(b) AhpC/PBS 

8 Saline control GroELIPBS 

Each group of mice consisted of six female BALB/c mice, 8-10 weeks of age (15-20 g). Mice were 

injected i.p. with (a) 1.78 x i0 5  c.f.u. of the aroA S. typhimurium mutant, MPG479, in 100 .il of PBS 

or (b) 100 iti of PBS only, and challenged 104 days later by injecting s.c. into the LHFP with 40 ,.tg of 

heat aggregated (c) AhpC or (d) GroEL in 50 tl of PBS and the RHFP was injected with 50 tl PBS 

only. LHFP, left hind footpad; RHFP, right hind footpad; s.c., subcutaneously. 
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Figure 7.2 Cell-mediated responses of mice challenged 
with AhpC and GroEL (Day 104) 

Four groups of six female BALB/c mice, 8-10 weeks of age (15-20 g), were injected i.p. with 1.78 x 
10 c.f.u. of an aroA S. typhimurium mutant, MPG479, in 100 jil of PBS, or with 100 .tl of PBS only. 
104 days later mice were challenged by injecting the LHFP with 40 jtg of heat aggregated AhpC or 
GroEL in 50 sl of PBS and the RHFP with 50 l PBS only (see Table 7.2). After 24 and 48 hours the 
thickness of the LHFP and RHFP were measured and the increase in mean left foodpad thickness was 
expressed as a ratio (LHFP/RHFP x 100) ± SEM. Key: LHFP, left hind footpad; RHFP, right hind 
footpad. Uninfected mice and mice infected with S. typhimurium are represented by the shaded and 
empty bars respectively. The increase in footpad thickness in infected mice after injection of AhpC or 
GroEL was compared with those in uninfected mice using the Student's 1-test and the level of statistical 
significance of this comparison is represented by asterisks: * p<0.05; ** p<O.Ol; ***p<0001 
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7.2.2 Antibody responses to AhpC and GroEL in mice infected with 

S. typhimurium 

Previous investigations into the antibody responses of mice infected with 

S. typhimurium have shown that both surface and intracellular bacterial protein 

antigens are recognised (Brown and Hormaeche, 1989). In the present study, serum 

from infected animals was examined for the presence of antibodies to AhpC or 

GroEL. The mice which were subjected to the DTH experiments also permitted a 

study into the ability of these proteins to directly stimulate B cell responses. Mice 

were challenged on two occasions (see section 7.2.1): (i) 33 days after infection 

('early' challenge; Table 7.1, Groups 1-4), when S. typhimurium was still present 

(Mastroeini et al., 1993); (ii) 104 days after infection ('late' challenge; Table 7.2, 

Groups 5-8), when S. typhimurium had been cleared from the tissues (Mastroeni et 

al., 1993). When antigen is injected subcutaneously into the mouse footpad, some of 

the protein moves to the draining lymph nodes either directly or via antigen 

presenting cells such as macrophages or Langerhans cells. Here, the protein 

stimulates memory T cells which recirculate to the footpad where they elicit a DTH 

reaction in response to the to presence of the protein. The stimulation of T cells in the 

draining lymph node would also be expected to promote the proliferation of B cells 

specific to the antigen, and result in antigen-specific antibody. To address this 

feature, the ability of these proteins to stimulate B cell responses in the draining 

lymph nodes was determined by comparing serum in infected and uninfected mice 

after early or late challenge for antibodies to AhpC or GroEL. 

Examination of the resident antibody levels to AhpC or GroEL in uninfected mice 

Prior to starting the experiments outlined in this chapter, all the mice were bled and 

the sera from each group was pooled. The presence of antibody specific to AhpC or 

GroEL was then investigated by Western blot analysis. This was an important step as 

it would determine whether any of the animals had had previous exposure to these or 

related antigens prior to the planned infection with S. typhimurium. Figure 7.3 
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displays examples of the results obtained from screening these pre-infection, pooled 

sera for the presence of AhpC- or GroEL-specific antibodies. 

An SDS-polyaciylamide gel (12.5% [v/v]) (Figure 7.3 Panel A) was loaded with 

approximately 1 p.g of purified his-tagged AhpC (lane A) or GroEL (lane G) and was 

subjected to electrophoresis. Since previous studies had indicated that a number of 

S. typhimurium proteins are identified by infected mice (Brown and Hormaeche, 

1989), a whole cell extract of S. typhimurium (lane WC), grown to exponential phase, 

was included as a control to show whether there was a general background level of 

antibody specific to these proteins in the uninfected mice. Pre-stained molecular 

mass markers of 120, 75 and 35 kDa were included on the gel as a guide to the size 

(lane M). These stained markers transfer to the Western blot filter allowing the sizes 

of any bands identified by antibodies to be determined. This gel template was used 

throughout the Western blot analysis. 

Equivalent gels were blotted onto nitro-cellulose and the fi1terswere incubated in the 

presence. of 1:200 dilutions of the different pooled sera. The presence of specifically 

bound antibody was then determined by incubation with rabbit anti-mouse alkaline 

phosphate-conjugated antibody. The sera, which was pooled from each of the mice 

within a group, showed a negative response with AhpC and either a negative 

response or, at most, a weak positive response with GroEL (see Figure 7.3, Panels H 

and I for visible GroEL-specific bands). The result for GroEL supports the evidence 

from the DTH studies which suggested that the uninfected mice may have been 

exposed to this or a related antigen prior to infection. 

A number of other proteins were detected using the sera from some groups of 

uninfected mice. Indeed, bands at a different relative position to those of AhpC and 

GroEL were clearly discernible in the S. typhimurium whole cell extracts. The most 

commonly seen bands appeared to consist of a doublet of approximately 35-40 kDa 

and a lower band of approximately 15 kDa. The identity of these bands is uncertain, 

however, in previous studies bands at similar positions were postulated to be porins 
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Figure 7.3 

Determination of the presence of AhpC- or GroEL-specific antibody in serum of 

uninfected mice (pre-infection bleeds) 

Western blot analysis was performed on the pooled sera from groups of mice prior to infection by an 

aroA::TnIO strain of S. typhimurium, MPG479. Panel A represents a standard gel profile used in all 

the Western blot analysis. The 12.5% polyacrylamide gel was loaded with a whole cell extract of 

S. typhimurium SL1344 (lane WC) and approximately 1 .tg of AhpC (lane A) or GroEL (lane G). 

Pre-stained molecular mass markers of approximately 120, 75 and 35 kDa were included as a guide to 

size (lane M). Standardly, identical gels to that described above were electrophoresed and blotted onto 

nitro-cellulose. Each blot was then exposed to a 1:200 dilution of the pooled serum from a group of 

mice. Specifically bound antibody was then detected using a polyclonal rabbit anti-mouse antibody, 

conjugated to alkaline phosphatase. Panels B-I represent the blots from using the pooled sera of 

Groups 1-8 in this procedure. The arrangement of the lanes is identical to that described for the 

Coomassie Brilliant Blue-stained gel. 
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(-35 kDa) or lipoprotein (-15 kDa) (Brown and Hormaeche, 1989). 

The pre-infection bleeds suggested that there were likely to be differences in the level 

of resident antibody to AhpC and GroEL, depending on the particular group studied. 

However, since pooled sera were analysed in these experiments, it is impossible to 

tell whether the antibody responses are true for all the mice in a particular group or if 

the results reflect cage- or even mouse-specific phenomena. As such, these blots 

should be seen as a reflection of the typical spectrum of background levels of 

antibody to AhpC and GroEL in uninfected mice. 

The antibody responses to AhnC or GroEL in mice infected with S. tvphimurium 

The development of antibody responses to either AhpC or GroEL during the course 

of an infection was determined by examining the serum from mice at 14 and 28 days 

post-infection. A group which had displayed no AhpC- or GroEL-specific antibodies 

prior to infection was chosen for this study (Group 1). However, as stated above, this 

does not rule out the possibility that any of the mice in this group had previously 

been exposed to either antigens. 

Gels were run and blotted as described previously. The antibody responses of 

infected mice is shown in Figure 7.4. For the purpose of comparison, the 

pre-infection bleed (Day 0) was included. This showed that although some 

S. typhimurium polypeptides were detectable using the serum from uninfected mice, 

AhpC and GroEL were not amongst them (Figure 7.4 Panel A). By Day 14 a band 

that corresponded to AhpC (Figure 7.4 Panel B) was clearly detectable, but not to 

GroEL. This suggests that the kinetics of the response to these proteins may be 

different. As might be expected, the detection of other S. typhimurium polypeptides 

also increased as the immune response developed to the bacterial infection (Figure 

7.4 Panel B). After 28 days, from the point of infection, however, responses to both 

AhpC and GroEL (Figure 7.4 Panel C) were detectable, GroEL more so than AhpC. 

The response to AhpC appeared weak (given the level of protein loaded in the track), 

and not much greater than that seen on Day 14. In addition, the lane containing the 
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Figure 7.4 The development of an antibody response to AhpC or GroEL in mice after infection with S. tvphiniuriurn 

Western blot analysis was performed on the sera from mice in Group I, prior to infection (day 0, Panel A) and 14 days (Panel B) and 28 days 
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whole cell extract was extremely heavily stained, suggesting that many 

S. typhimurium polypeptides can elicit some form of humoral response in infected 

mice (Figure 7.4 Panel Q. 

7.2.3 The antibody responses of mice subcutaneously injected with AhpC or 

GroEL 

Although infected mice can tell us whether immune responses are generated to AhpC 

or GroEL during infection, it does not indicate how antigenic the native proteins are. 

In order to explore this issue, the mice challenged in the DTH experiments were 

sampled for serum preceding and following challenge with AhpC or GroEL and 

immunoblotting was used to compare serum samples for the presence of specific 

antibody to these proteins in uninfected and infected mice. This would indicate 

whether it was possible to stimulate antibody responses in the draining lymph nodes 

of mice subcutaneously injected with these antigens. 

The antibody responses of uninfected mice subcutaneously injected with AhpC or 

GroEL 

Mice previously injected with saline were injected 33 days later with either AhpC or 

GroEL (Groups 3 and 4). Serum samples from these mice were obtained 10 days post 

challenge (day 43) and Western blot analysis was performed. As can be seen from 

Figure 7.5, subcutaneous injection of these antigens resulted in a negative response to 

AhpC (Figure 7.5 Panel A) and a strong positive response to GroEL (Figure 7.5 

Panel B). The post-challenge blot for AhpC effectively resembles a pre-infection 

bleed, suggesting that within the 10 days post-challenge little or no antibody 

response has been generated to this antigen. This is in contrast to the observation that 

AhpC was capable of eliciting a small but significant T cell response after 

subcutaneous injection of antigen at the same site (the footpad) in uninfected 

animals. On the other hand, the intensity of the GroEL-specific band suggests that a 

substantial response had been generated to this antigen. In fact, as a result of this 

subcutaneous injection, the antibody is capable of detecting GroEL within the whole 
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Figure 7.5 Antibody responses to subcutaneously injected AhpC and GroEL in 
uninfected mice 

Western blot analysis was performed on the sera from uninfected mice 10 days post-challenge with AhpC 
or GroEL. All features of the blots and the identification of specifically bound antibody are as described 
in the legend for Figure 7.3. Panel A and Panel B show the bands obtained after using a 1:200 dilution of 
the pooled serum from uninfected mice challenged with AhpC (Group 3) or GroEL (Group 4), 
respectively. Key to lanes: WC, whole cell extract of S. typhimuriurn SL1344; A, AhpC G, GroEL; M, 
prestained molecular mass markers of 120, 75 and 35 kDa. 
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Figure 7.6 Antibody responses to subcutaneously injected AhpC and GroEL in mice 
challenged 33 days after infection and bled 10 days later 

Western blot analysis was performed on the sera from mice infected with MPG479 10 days after challenge 
with AhpC or GroEL or from infected mice not used in the challenge experiment on day 33. All features of 
the blots and the identification of specifically bound antibody are as described in the legend for Figure 7.3. 
Panels A, B and C show the bands obtained with a 1:200 dilution of the pooled serum from infected mice 
challenged with AhpC (Group I) or GroEL (Group 2) or infected mice not used in the challenge 
experiment on day 33 (Group 5), respectively. Key to lanes: WC, whole cell extract of S. zyphirnuriurn 

SL1344; A, AhpC; G, GroEL; M, pre-stained molecular mass markers of 120, 75 and 35 kDa. 



cell extract, which is at a much lower concentration on the gel than the pure sample 

(Figure 7.5 Panel B). (It is also noteworthy that no Gr0EL-specific antisera was 

detected in pre-immune sera from Group 4 (Figure 7.3, Panel E) prior to GroEL 

injection). 

The antibody responses of infected mice subcutaneously injected with AhpC or 

GroEL 

The results shown in Figure 7.5, obtained from serum in uninfected animals, were 

compared with the serum samples from infected mice which were challenged at day 

33 with AhpC (Group 1) or GroEL (Group 2) and bled 10 days later. An additional 

control group, infected with MPG479 but not challenged with protein on day 33 

(Group 5), was also included. Figure 7.6 shows the antibody responses to AhpC and 

GroEL in these animals. A negligible response to AhpC was observed, irrespective of 

whether the animals were challenged with AhpC, GroEL or left unchallenged (Figure 

7.6 Panels A, B, Q. Importantly, it should be noted that infected mice had been 

demonstrated to develop some form of antibody response to AhpC at day 28 during 

the course of infection (Figure 7.4 Panels A, B, Q. Nevertheless, irrespective of 

whether the mice were infected (Figure 7.6) or pathogen free (Figure 7.5), the 

subcutaneous injection of AhpC appeared to result in poor stimulation of B cell 

responses. 

The situation for GroEL is less clear, the subcutaneous injection of GroEL did not 

appear to enhance the antibody response, as the GroEL-specific bands from mice left 

unchallenged (Figure 7.6 Panel C), or challenged with AhpC (Figure 7.6 Panel A) or 

GroEL (Figure 7.6 Panel B) appeared of approximately equal intensity. Moreover, a 

comparison of the intensity of the GroEL-specific bands after subcutaneous injection 

of GroEL into uninfected (Figure 7.5 Panel B) and infected mice (Figure 7.6 Panel 

B) did not suggest that there was any enhancement of the response to the antigen in 

the infected animals. However, this may simply reflect that the Western blotting 

detection procedure was saturated and was not capable of displaying further changes 

in the level of GroEL-specific antibody. Equally, the relevance of small variations in 
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the results is difficult to assess by comparing blots which were developed 

independently. 

Interestingly, the examination of the sera from mice which were infected but not 

challenged (Figure 7.6 Panel C) suggested that the general antibody response to 

S. typhimurium had increased further since day 28, as had the antibody response to 

GroEL (Figure 7.4 Panel Q. In contrast, there was no detection of an AhpC-specific 

band suggesting that the response to this protein had declined since day 28. 

7.2.4 Summary of the antibody responses to AIipC or GroEL in mice 

The antibody responses of uninfected and infected mice to AhpC and GroEL are 

summarised in Table 7.3. Also included in this table are the preliminary results from 

analysing whether antibody to AhpC (Group 5) and GroEL (Group 6) are present in 

mice challenged on day 104 post-infection and bled 10 days later. Unfortunately no 

pre-challenge bleeds were available for these mice. However, after using the sera 

from these mice, a relatively intense GroEL-specific band was seen on both blots 

(Figure 7.7 Panels A and B) suggesting that the GroEL-specific antibody present had 

been generated during the bacterial infection. No AhpC-specific antibody was 

detected in the sera from the mice challenged with AhpC. 

7.3 DISCUSSION 

The AhpC and GroEL proteins were shown to be recognised by both the 

cell-mediated and humoral-anns of the immune system in mice previously infected 

with S. typhimurium. When infected mice were challenged subcutaneously with 

AhpC or GroEL, a significant increase in footpad swelling was observed compared to 

that of uninfected mice. This was seen for both early (day 33) and late challenges 

(day 104), indicating that both proteins are recognised by subpopulations of the T 

cell repertoire. The fact that both proteins also elicited a significant response at day 

104 emphasises the likelihood that part of the immunological memory to 

S. typhimurium infection is derived from these proteins. In support of this, the 
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Table 7.3 Summary of the antibody responses to AhpC and GroEL in uninfected and 

infected mice 

Detection of antibody to 

S. typhimurium proteins 

Serum sample AhpC GroEL 

Pre-infection (day 0) - 

Post-infection (day 14) + - 

Post-infection (day 28) (b) + ++ 

Challenged (day33)* 

uninfected 

- II 

post-infection 

Challenged (day 33)*  

Post-infection (day 43)  

post-infection 

Challenged (day 104)*  

Results represent a qualitative assessment of the antibody responses in different mice, as interpreted 

from the intensities of bands on Western blots. Key: 'i',  mice were challenged with either AhpC or 

GroEL on the day indicated in brackets and serum was obtained 10 days later; (a) GroEL-specific 

antibody detected in some of the pre-infection blots; (b) sera was examined from a mouse group 

(Group 1) which had displayed no AhpC- or GroEL-specific antibody prior to infection; —, negative 

response, no visible band detected; +, weak positive response, faint band observed; ++, positive 

response, clear band observed; +++, strong positive response, intense band observed. 
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Figure 7.7 Antibody responses to subcutaneously injected AhpC and GroEL in mice 
challenged 104 days after infection and bled 10 days later 

Western blot analysis was performed on the sera from mice infected with MPG479 tO days after 
challenge with AhpC or GroEL on day 104. All features of the blots and the identification of specifically 
bound antibody are as described in the legend for Figure 7.3. Panel A and Panel B show the bands 
obtained from using a 1:200 dilution of the pooled serum from infected mice challenged with AhpC 

(Group 5) or GroEL (Group 6), respectively. Key to lanes: WC, whole cell extract of S. lyphirnuriurn 

SL1344; A, AhpC; G, GroEL; M, pre-stained molecular mass markers of 120, 75 and 35 kDa. 
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bacteria are believed to be cleared approximately 8 weeks after infection (Mastroeni 

et al., 1993), and examination of tissues from mice killed in this study at 114 days 

post-infection proved that no viable S. typhimurium organisms were present in the 

liver and spleens at this time. Therefore, any response observed in the mice at day 

104 post-infection, at a time when the immune response to the initial infection has 

dampened down, is likely to be derived from the stimulation of memory T-cells. 

However, the B cell response to AhpC and GroEL differed. The absence of antibody 

in normal mice injected subcutaneously with AhpC indicated that AhpC was not 

particularly immunogenic (Figure 7.5). Although the epitopes which B and T cells 

can recognise are different (Abbas et al., 1991), this result would appear slightly 

unusual given that the injection of AhpC resulted in a significant T cell-dependent 

response in both the early and late challenge experiments of the uninfected animals. 

In these mice, even when taking into consideration the possibility of some form of 

previous exposure, the number of specific B cells is likely to be low and possibly 

accounts for the lack of response at the time of examination. It is also likely that the 

site of administration of the antigen was suboptimal for eliciting such a response, 

especially since the majority of the injected protein would be expected to end up at 

the local draining lymph nodes rather than in the spleen. It should be noted however, 

that these results do not exclude the possibility that an antibody response did form, 

albeit outwith the test period. 

In contrast, infected mice clearly developed antibody responses to AhpC during the 

course of infection (Figure 7.4), suggesting that a pool of specific B cells were 

present. Challenge of these infected mice with AhpC would therefore be expected to 

produce a greater antibody response. However, analysis of serum samples obtained 

10 days after challenge failed to show, within the limitations of the technique, that 

there had been an increase in AhpC-specific antibodies (Figure 7.6 and Figure 7.7 for 

challenge at 33 and 104 days post-infection, respectively). The reasons for the 

discrepancies in the T and B cell responses to AhpC are unknown. As mentioned 

above, it seems likely that the site of administration of the antigen was the major 

factor for the lack of an antibody response. However, other explanations are also 
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possible. Perhaps, the 'pure' sample of AhpC contained minor yet immunogenic 

impurities from the protein purification procedure. Alternatively, the swelling in the 

mouse footpad may have been a consequence of general irritation from the heat 

aggregated protein. Either of the scenarios would enhance the level of measured 

footpad size and would falsely reflect a greater T cell response. It may also be 

possible that the antibody response to AhpC, which was observed in the early stages 

of infection (Figure 7.4) but not in the later stages (Figure 7.6), was due to some 

ability of the infecting S. typhimurium to modulate the immune response as the 

infection ensued. The bacteria themselves, perhaps via the LPS, possibly acted as a B 

cell adjuvant to boost the ability of B cells to form a response to AhpC. LPS is a B 

cell mitogen and might well have influenced the response to AhpC when the bacteria 

were present. Such a scenario would support the fact that AhpC is a poor B cell 

immunogen per se and might explain why uninfected animals failed to elicit a 

response to subcutaneously injected antigen. This could be tested experimentally by 

immunising mice with graded amounts of LPS in the presence of a fixed dose of 

AhpC and examining the sera from these animals for AhpC-specific antibody. 

In contrast to the results with AhpC, the antibody response to GroEL, although it 

developed less rapidly, was of a greater magnitude (as determined by visual 

inspection of Western blots) and duration, with substantial antibody present even 

after 114 days (Figures 7.4, 7.6 and 7.7). This suggests that GroEL is highly 

immunogenic. However, this may reflect heavily on the relative abundance of this 

protein in the bacterial cell. For example, the normal concentration of GroEL in 

unstressed E. coli cells is approximately 1%, but this rises to become almost 10% 

under stress conditions (Henimingsen et al., 1988), while AhpC appears to be a 

minor component of the cell, even under optimal inducing conditions (See chapter 3 

of this thesis). Nevertheless, for the same dose of protein, administered 

subcutaneously into uninfected mice, only GroEL was shown to elicit an antibody 

response (Figure 7.5). 

The DTH challenges in uninfected animals suggested that the mice had encountered 

AhpC and GroEL previously. This pre-exposure, at least for GroEL, was further 
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indicated by the presence of specific antibodies in the pre-infection bleeds from some 

of the groups of mice. Primary antibody responses are characterised by the 

predominance of 1gM. However, multiple exposures to an antigen result in a 

secondary response which is characterised by an antibody isotype switch to produce 

IgG and an increase in the titre of specific antibodies (Weir and Stewart, 1993). Thus, 

any pre-exposure of the mice to AhpC or GroEL would influence the type and level 

of antibody present. 

A polyclonal rabbit anti-mouse antiserum that detected all the mouse antibody 

isotypes was used in the Western blot analysis therefore, the type of antibody present 

in serum samples could not be determined. In addition, this procedure was relatively 

insensitive to the antibody titre. In order to conclude whether the antibody responses 

generated were primary or secondary, the isotype and titre would have to be 

determined, ideally using a germ-free mouse, which could not have been exposed to 

the S. typhimurium antigens, as a control. This could be best performed by using an 

enzyme linked immunosorbant assay (ELISA), using limiting dilutions of the serum 

samples and specific anti-isotype antibody. This sort of procedure would also have 

helped determine whether the GroEL challenge in infected mice resulted in an 

increase in specific antibody, as no visible increase could be determined by 

examination of the blots (Figure 7.6 and Figure 7.7), possibly because the blot was 

saturated with antibody. 

The nature of any previous immunological recognition of AhpC and GroEL is 

uncertain. Since these mice were not germ-free they will have large numbers of 

microorganisms colonising their external and internal surfaces, including the skin 

and the mucosal lining of the intestinal tract. It is likely that some of these organisms 

contain homologues of AhpC or GroEL, as both proteins appear to be conserved in a 

number of bacterial species. For example, the S. typhimurium AhpC protein shows 

92% identity to that of E. coli and approximately 50% identity to that of 

Staphylococcus aureus (Smillie, 1994; Armstrong-Buisseret, 1995). Although the 

amino acid sequence of the S typhimurium GroEL protein has not been determined, 
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the equivalent molecule from S. typhi has been shown to have 98.5% identity to its 

E. coli counterpart (Lmdler and Hayes, 1994). 

Normal commensal organisms that colonise the mouse would therefore seem a likely 

source of cross-reacting antigens which may be encountered by the immune system. 

In addition, immunological memory has been postulated to involve frequent 

cross-reactive re-stimulation, possibly by exposure to non-pathogenic organisms 

(Beverley, 1990). Since E. coli forms a predominant part of the normal gut flora, it is 

quite possible that these E. coli proteins provided the mice with immunological 

memory to AhpC and GroEL prior to infection with S. typhimurium, although it must 

be remembered that no AhpC-specific antibody response was detected in uninfected 

mice. 

An alternative explanation for pre-existing immune responses to the S. typhimurium 

antigens may be the immunological recognition of cross-reacting proteins in the 

mouse, particularly GroEL. GroEL is highly conserved in ,both eukaryotes and 

prokaryotes and has been implicated as a causative agent in a number of autoimmune 

diseases (reviewed in Kaufmann, 1990 and described later). The S. typhi GroEL is 

approximately 51% identical to that of the mouse mitochondrial GroEL homologue 

and it could be that some of the humoral response to the S. typhimurium GroEL has 

been generated from immune recognition of the mouse homologue. 

Immune responses to S. enterica infection are generally controlled by CD4 helper T 

cells because the bacterial antigens are processed in an endocytie compartment of 

antigen presenting cells and presented in the context of the class II Major 

Histocompatibility Complex (MHCH) (Abbas et al., 1991). However, helper T cells 

(TH) have been split according to the cytokines they produce and the immune 

responses they generate (reviewed in Abbas et al., 1996). TO cells typically produce 

cytokines such as IFN-y and IL-2, and generate cell-mediated responses with some 

antibody production. On the other hand, T H2 cells typically produce cytokines such 

as IL-4, IL-5 and EL- 10 and the immune response is characterised by a predominance 

of antibody. However, it has been suggested that these two subsets are not distinct 
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cell types but reflect the development, dictated by the type of infection, from a 

common type of I cell (Kelso, 1995). In this way, the infection is believed to select 

the correct phenotype of T cell to regulate the relevant response. For example, it 

makes sense that infection by a pathogen capable of surviving inside host cells (e.g. 

S. enterica) would result in a TO response, where activation of macrophages and 

other cell-mediated responses would help in the killing of intracellular bacteria. In 

fact, the development of the inappropriate response has been associated with the 

exacerbation of some disease states, such as seen with the intracellular pathogen 

Mycobacterium tuberculosis, where a TH2 response leads to prolonged infection and 

poor resolution of the disease (Kaufmann, 1993; Abbas et al., 1996). The studies 

performed in this chapter add to the conclusions that the immune responses generated 

to S. typhimurium infection are regulated by TH1  cells. 

Recent research into the development of vaccines to S. enterica infection has focused 

on live attenuated organisms (reviewed in Chatfield et al., 1992a). Attenuated 

S. typhimurium cells produce much greater immunological protection in mice than 

killed cells, by virtue of the development of a strong cell-mediated immune response 

(Collins, 1974; Mastroem et al., 1993). However, the ability of such vaccines to 

produce better protection has been attributed to the production and recognition of 

bacterial proteins, induced in response to the host environment (Kagaya et al., 1992). 

The currently used vaccine against Mycobacterium tuberculosis and Mycobacterium 

leprae infection is the live Bacille Calmette Guerin (BCG) vaccine. Like the 

S. enterica vaccines, the ability of the live BCG cells to induce a better protective 

response than killed cells has been attributed to the selective production of bacterial 

antigens in the host environment (Andersen and Heron, 1993; Andersen, 1994). 

These proteins appear to elicit strong cell-mediated responses and are thought to be 

an important factor in the elimination of Mycobacteria from the host. Very little 

information exists about the ability of individual S. typhimurium proteins to induce 

protective immune responses and, about whether such polypeptides have a potential 

use in prophylactic therapies to disease. Theoretically, subunit vaccines could be 

developed to include a small number of polypeptides that would induce protection to 
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the whole virulent bacterium (Horwitz et al., 1995). The delivery mechanism would 

no doubt be of primary importance in influencing the outcome of such a strategy. 

The immune responses to AhpC and GroEL, described here, raise the question of the 

relationship between mediators of bacterial virulence and the development of 

protective immunity. In a study with the intracellular pathogen Legionella 

pneumophila, it was found that vaccination with the Major Secretory Protein (MSP) 

resulted in strong protective immunity to a subsequent challenge with a virulent 

strain (Blander et al., 1990). However, MSP itself is not directly involved in 

virulence since both wild type and msp strains of L. pneumophila display the same 

level of virulence. Thus, protection does not necessarily depend on immune 

recognition of virulence determinants, rather, any molecule that has the potential to 

initiate an immune response in the presence of a pathogen can be seen as a candidate 

for a subunit vaccine or, as a component of one (Blander and Horwitz, 1991). In 

chapter 5 of this thesis, it was shown that a/mpG was not essential for the full 

virulence of S. typhimurium. Nevertheless, in the present chapter, immune 

recognition of AhpC has been shown. Immune responses to proteins such as AhpC 

and GroEL or other S. typhimurium antigens could therefore be a key step on the 

road to developing a polypeptide based vaccine and to host protection. 

Unfortunately, as yet, only a few S. enterica-derived components have been 

identified that can induce partial or full protective immunity against a virulent 

bacterial challenge. When S. typhimurium outer membrane proteins (OMPs) were 

subcutaneously injected into BALB/c mice (50 p.g OMPs; immunised twice at a 15 

day interval), 100% of the mice survived a lethal challenge of 50 times the normal 

LD50  level of the virulent S. typhimurium strain C5, one month after the last 

immunisation. Moreover, the protective immunity derived from the injection of the 

OMPs was maintained, with up to 70% of the immunised mice surviving the 

challenge after 6 months (Udhayakumar and Muthukkaruppan, 1987). In a separate 

study, the intraperitoneal injection of BALB/c mice with a stress induced catalase, 

KatG (50 tg; immunised twice at a 14 day interval), was shown to provide the mice 

with 50% protection, as measured by survival, against a challenge of 20 times the 
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normal LD 50  level of the virulent S. typhimurium strain SH5 170, three weeks after 

immunisation (Kagaya et al., 1992). Also, in the latter study, examination of the liver 

and spleens of these animals showed that the immunised animals contained 

100-1, 000 fold less bacteria than an unimmunised control (Kagaya et al., 1992). 

Perhaps the most important property of these proteins is that, when suitably 

delivered, they are capable of inducing a TO type of response, as judged by the 

development of DTH (Galdiero et al., 1990; Kagaya et al., 1992; Gupta et al., 1996) 

or, by the detection of TO response-associated cytokines in the tissue culture 

supernatants of monocytes  (TNF-cc and IL-1) after exposing these cells to the antigen 

(Galdiero et al., 1993). 

A number of studies have shown that other S. typhimurium proteins are also 

recognised in a TO-regulated immune response. For example, DTH reactions have 

been elicited in mouse footpads following injection with proteins associated with pili 

and flagella (Gupta et al., 1996), and from the studies in this chapter, AhpC and 

GroEL. These proteins may therefore be important in the development of protective 

immune responses and have potential as components of a subunit vaccine. However, 

the detection of a TO phenotype does not necessarily correlate with protection. For 

example, the KatE protein of S. typhimurium was shown to induce substantial DTH 

when used for immunisation but was not found to be protective (Kagaya et al., 

1992). Thus, although many of these results are encouraging, it is obvious that the 

protective nature conveyed by individual proteins requires further investigation. 

Further clues to developing subunit vaccines to prevent S. enterica-related infection 

may come from examining the preliminary work that has been performed on other 

bacterial species. A number of groups have investigated the potential of using 

mycobacterial proteins in the development of a vaccine (Andersen and Heron, 1993; 

Andersen, 1994; Gelber et al., 1994, Horwitz et al., 1995; Silva et al., 1996; Tascon 

et al., 1996). In M tuberculosis, it has been shown that proteins which are actively 

secreted by replicating bacteria, and which are also believed to be released when the 

bacteria resides within the macrophages, generate protective immunity (Andersen, 

1994). Indeed, vaccination of mice with M tuberculosis culture filtrates was found to 
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prime T cells against a broad spectrum of these proteins (Andersen and Heron, 1993; 

Horwitz et al., 1995, Andersen, 1994). In addition, this culture filtrate still produced 

protection six months after immunisation, as measured by bacterial counts from the 

liver and spleen, and the level of protection was equivalent to that afforded by the 

BCG vaccine (Andersen and Heron, 1993). 

The most efficacious fractions of the M tuberculosis filtrate contained proteins of 

between 5-12 kDa and 25-35 kDa (Andersen, 1994). Similarly, a soluble extract of 

M leprae cell wall proteins, which included low molecular weight peptides of 

between 1-3 kDa, produced protection in mice for up to 12 months post-vaccination 

(Gelber et al., 1994). This may suggest that a limited selection of secreted 

mycobacterial proteins is sufficient for the induction of protective immunity, and 

might be largely responsible for the protective immunity generated after injection of 

the BCG vaccine (Horwitz et al., 1994). Whether any of these proteins have 

homologies to S. typhimurium proteins is unclear. Nevertheless an encouraging result 

from these studies is that the protective mycobacterial antigens, like those in the 

S. typhimurium studies, induced DTH reactions and a selection of TH 1 type cytokines 

such as IFN-7, IL-2, IL-6, GM-CSF (Andersen and Heron, 1993; Horwitz et al., 

1995; Andersen, 1994). 

The protection afforded by a number of Legionella pnemophila proteins to challenge 

by this organism has also been shown to involve the development of strong 

cell-mediated immunity. L. pneumophila is an intracellular pathogen that produces a 

fatal form of pneumonia. Guinea pigs injected with either L. pneumophila cell 

membrane preparations, a heat shock protein homologue of GroEL (MSMIP) or a 

Major Secretory Protein (MSP) showed 80-85% survival 3 weeks post-vaccination 

after virulent bacterial challenge (Blander et al., 1990; Blander and Horwitz, 1991, 

1993). In addition, these preparations were more effective than dead cells (Blander 

and Horwitz, 1993). Thus, such studies involving other bacteria further the evidence 

that polypeptides can be effective in inducing protective immunity. Moreover, at 

least for M tuberculosis, polypeptide preparations can be as effective as the live 

attenuated organism for vaccination (Andersen, 1994). This would suggest that the 
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use of polypeptides in a vaccine to prevent S. enterica infection warrants further 

investigation. 

There are a number of important factors to consider in the use of polypeptides in 

vaccine development. One is heterogeneity in the genetic loci that govern immune 

responses in outbred populations. For example, the ability of mice to respond to 

infection by S. typhimurium has been linked to genetic factors that modulate the 

immune response (Hormaeche et al., 1985; Fayolle et al., 1994; Lo-Man et al., 

1996), such as the H-2 phenotype (MHC Class II). This in turn may affect the ability 

of the immune system to identify selected protein antigens. When different 

laboratory strains of innately susceptible BlO mice were injected with 

S. typhimurium expressing the E. coli MalE protein, immune responses to MalE 

differed. When the H-2 loci of these mice were mapped for the number of epitopes of 

MalE that could be recognised, it was found that the recognition of a small or high 

number of epitopes corresponded to whether mice were low •  or high responders, 

respectively (Lo-Man et al., 1996). / 

The use of a multivalent vaccine may guard against poor responses to individual 

antigens. However, vaccine dosage may compensate for the heterogeneity of immune 

response in an outbred population. For example, the E. coli malE gene was cloned 

into two plasmids which permitted different levels of MalE protein expression within 

S. typhimurium. When B 1 mice, which had shown a poor immunological response 

to the MalE protein, were infected with S. typhimurium strains bearing these vectors, 

the greatest immunological response to this protein was observed in those mice 

infected with bacteria expressing the highest level of MalE (Fayolle et al., 1994). 

There may also be problems associated with the vaccination dose. For example, 

adjusting the amount of a M tuberculosis culture filtrate injected into mice from 

10 g to 100 .tg per mouse, reduced the level of certain cytokines such as IFNy. As a 

result, a shift from a cell-mediated type response (T H 1) to a predominant antibody 

response (TH2) was observed and this correlated with a drop in the immunological 

protection obtained (Andersen, 1994). Thus, any subunit vaccine would require 
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critical examination in order to optimise the induction of the appropriate immune 

response. 

It should also be noted that successful immunisation with bacterial proteins often 

depends on the use of adjuvants (Kagaya et al., 1992; Andersen, 1994; Gelber et al., 

1994). In the experimental details described in this chapter, only heat aggregated 

proteins were injected, suggesting that a requirement for adjuvant may not be 

necessary. However, it is noteworthy that the use of alum as an adjuvant with AhpC 

enabled high levels of specific antibody to be produced and this antibody was used in 

the immunodetection studies outlined in chapter 3 and 4. However, the use of an 

adjuvant is sometimes undesirable, especially in humans, because of the potential 

side-effects such as toxicity or local ulceration which may occur at the site of 

injection. Therefore, any effective vaccine for humans would have to evaluate the 

safety of such adjuvants prior to use (Andersen et al., 1994). 

Some researchers have attempted the use of novel adjuvants which are more likely to 

be acceptable for use in the human host. These include the use of recombinant 

cytokines. Recently, it was shown that [L-12 acted effectively as an adjuvant when 

administered with Yersinia enterocolitica HSP60, a homologue of GroEL (Noll and 

Autenrieth, 1996). IL-12 is normally produced by macrophages and B cells, upon 

stimulation by microorganisms or their products, and is believed to influence the 

formation of a TO type of response (Abbas et al., 1996; Lamont and Adorini, 1996). 

The use of such cytokines raises the interesting possibility of specifically directing 

the development of an immune response of the correct protective phenotype. 

A likely candidate for consideration in any potential subunit vaccine against 

S. enteri ca-related illness is GroEL. The present study suggested that GroEL is 

highly immunogenic, producing both long-lived T and B cell responses. In addition, 

GroEL homologues in a number of bacterial species including M. tuberculosis (Silva 

et al., 1996), M leprae (Gelber et al., 1994), Y. enterocolitica (Noll and Autenrieth, 

1996), L. pneumophila (Blander and Horwitz, 1993) and H. pylon (Ferrero et al., 

1995) have been shown to be highly immunogenic, and induce some degree of 
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protection to lethal challenge doses of the respective bacteria. Nevertheless, the use 

of GroEL in vaccine design is controversial (Kaufmann, 1990). HSPs have gained 

particular interest because of their highly conserved nature (see Figure 7.8) and 

because of evidence which suggests that immune recognition of these conserved 

proteins may lead to autoirnmune disease (Kaufluiann, 1990; Jones et al., 1993). For 

example, the presence of antibodies to HSP60 (Gr0EL family) or HSP70 (DnaK 

family) has been correlated with the generation of rheumatoid arthritis and systemic 

lupus erythematosus, respectively (reviewed in Kaufrnann, 1990). 

GroEL belongs to the heat shock family of proteins (HSPs) and molecular 

homologues appear to be very widespread if not ubiquitous in living organisms 

(Kauflnann, 1990). HSPs generally act as chaperones helping to repair misfolded 

proteins, or control their degradation (reviewed in Gross, 1996). However, although 

these proteins were primarily identified as having a role in heat shock, they have a 

much wider role in a variety of stresses. In addition, the function of GroEL has been 

shown to be essential for the growth of E. coli, suggesting that this protein is integral 

to many general cellular processes (Fayet et al., 1989). Host HSPs are generally 

thought to be hidden intracellularly but under stress conditions, such as during 

microbial infection, it is thought that they may become displayed on the surface of 

the cell (Wandwurttenberger et al., 1991). However, the basis by which most 

autoimmune diseases are generated is poorly understood at present. 

The majority of the studies which have investigated the potential for a cross-reactive 

response between a bacterial HSP and the homologous mammalian host protein have 

focused on the mycobacterial GroEL (Kaufmann, 1990). Alignments of the 

M tuberculosis and human GroEL homologues (Jindal et al., 1989) suggest there is 

approximately 48% identity between these two proteins (Table 7.4; see Figure 7.8 for 

an alignment) and at least four decapetides of the M tuberculosis protein are 

identical. In addition, when the protein sequence of GroEL was divided into stretches 

of 25 amino acids, and these fragments were put into a data base of protein sequence, 

86 human polypeptides were identified which exhibited high sequence similarity to 

many of these fragments. Furthermore, 19 of these polypetides have been implicated 
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in autoimmune diseases such as insulin-dependent diabetes and rheumatoid arthritis 

(Jones et al., 1993), although a causative relationship has yet to be shown. 

One of the greatest concerns about using bacterial GroEL for vaccination, especially 

mycobacterial GroEL, is that in certain infections, a substantial portion of the 

immune response would seem to be directed to this single protein (Kaufmann et al., 

1987). Indeed, in one study, between 20-40% of all the CD4 cells isolated from 

Mycobacterium-infected mice were found to respond to GroEL. In addition, 78 T 

cells are also particularly responsive to this antigen and have been shown to lyse 

Mycobacterium-infected cells. With such a large proportion of cells specifically 

recognising epitopes of GroEL, it has been suggested that the chances that immune 

responses can develop to the hosts own GroEL are high (Kaufmann, 1990). In fact, 

mice primed with synthetic peptides derived from the M tuberculosis GroEL protein 

were found to generate T cells that could respond to both the mouse and bacterial 

GroEL proteins. Moreover, cytolytic I cells primed with peptides based on 

mycobacterial GroEL were capable of lysing uninfected, but stressed, macrophages 

(Kaufmann, 1990). 

It should be noted however, that a recent study has indicated that it is the 

non-homologous regions of the mycobacterial GroEL that are predominantly 

recognised during the course of infection (Mustafa et al., 1996). The mycobacterial 

HSP70 protein also displays a high degree of conservation in bacterial and 

mammalian cells and has been implicated in the generation of autoimmune diseases. 

Interestingly, an investigation of mycobacterial HSP70 also indicated that it was the 

non-homologous regions of this protein which provoked the greatest immunological 

response during mycobacterial infection of mice (Adams et al., 1997). Thus, this 

might indicate that although the GroEL protein is extremely immunogenic, only a 

small proportion of the immune response focuses on the cross-reactive epitopes of 

HSP60 and may suggest that the likelihood of inducing autoimmune disease is much 

lower than has been suggested from other studies. 
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Table 7.4 A comparison of GroEL homologues from different organisms 

Origin of homologues % Similarity % Identity 

Mouse and Human 99 97 

Mouse and E. coli 71 51 

Mouse and S. typhi 71 51 

Mouse and M tuberculosis 67 48 

A table showing the level of similarity and identity of some of the GroEL homologues described in 

the text. % Similarity and % Identity were calculated using a Bestfit analysis of the reported sequence 

of the proteins. % Similarity reflects the percentage of amino acid residues between the (3roEL 

proteins of the organisms which are identical or which are chemically related. % Identity represents 

the percentage of amino acid residues between the GroEL proteins of the organisms which are 

absolutely identical. The accession numbers for the HSP60 sequences in the data base are indicated in 

the legend for Figure 7.8. 

Concerns about the safety of GroEL would also seem relevant to the use of any 

S. enterica GroEL homologue as the S. typhi GroEL shares 75% identity with the 

M tuberculosis homologue, and also shares 51% identity with the human derivative 

(Table 7.4; see Figure 7.8 for an alignment). However, some of the problems of 

homology to human proteins may well be overcome by selectively expressing 

non-homologous epitopes of these proteins in a candidate vaccine. 

In conclusion, more research is required to identify candidate polypeptides from 

S. enterica that can induce protective immunity. The studies performed in this 

chapter have provided an important step towards this goal and have also enhanced 

our understanding of immune responses to antigens from S. enterica. More 

information on the level of antigen required, the value of adjuvants and the 

importance of immunisation route are also required if an effective vaccination 

strategy is to be developed. In addition, the consequences of incorporating certain 

proteins into subunit vaccines need to be fully evaluated before such vaccines might 

be used in human trials. 
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CHAPTER 8 

Concluding discussion 
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8.1 CONCLUDING DISCUSSION 

The ability of bacteria to sense changes in their environment allows such cells to 

optimise their survival (Mekalanos, 1992; Mahan et al., 1996). Of relevance to this 

thesis is the ability of S. typhimurium to deal with hydrogen peroxide stress. 

S. typhimurium and E. coli have both been shown to induce around 30 genes 

involved in protecting the cells from the detrimental effects of hydrogen peroxide 

(Christman et al., 1985; Greenberg and Demple, 1989). A subset of these genes (the 

OxyR regulon), which are regulated by the OxyR regulatory protein, have been 

shown to be essential for the development of resistance to peroxide stress (Christman 

et al., 1985). The classical view of the transcriptional activation of the genes of the 

OxyR regulon, is that activation occurs through the activity of OxyR and the 

70-containing RNA polymerase (Eo °), after treatment of bacterial cells with 

hydrogen peroxide (Christman et al., 1985; Tao et al., 1993). Each of the genes of 

the OxyR regulon contains a conserved but degenerate consensus sequence stretching 

approximately 45 bp upstream of the a ° -35 hexamer (Toledano et al., 1994). The 

binding of OxyR to this target sequence is believed to stabilise the interaction of 

RNA polymerase and is essential for transcriptional activation (Tao et al., 1993). 

Interestingly, it was recently shown that the OxyR regulon genes, dps, katG and 

gorA, can show expression independently of OxyR and cy in the stationary phase of 

growth, by the alternative sigma factor RpoS (Altuvia et al., 1994; Ivanova et al., 

1994; Becker-Hapak and Eisenstark, 1995). Thus, not only do dps, katG and gorA 

form part of the inducible resistance to peroxide stress in growing cells, but they 

contribute to the resistance of stationary phase cells. 

The ahpCF locus of S. typhimurium encodes a heterodimeric protein which protects 

the cell membrane from lipid peroxidation during exposure to hydrogen peroxide 

(Christman et al., 1985; Tartaglia et al., 1990). Interestingly, the present study 

showed that ahp is not induced upon entry into stationary phase and that expression 

is independent of RpoS (see Chapter 3). As such, ahp is the first example of an 

OxyR-regulated gene which is not RpoS regulated. Although these studies were 

performed with S. typhimurium cells, a comparison of the E. coli and S. typhimurium 
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ahp promoter regions would suggest that if it is the -10 and -35 consensus sequences 

which determine regulation by RpoS, then the regulation of ahp in these two 

genetically-related organisms is likely to be similar (Figure 3.9). Moreover, these 

findings are supported by examining the ahp locus in B. subtilis which shows 

(yBindependent expression. a   regulates many equivalent aspects of stationary phase 

to a (Boylan et al., 1993). These results raise the question of why ahp should be 

required in the exponential phase but is not required in the stationary phase and 

further work would be needed to determine if this feature simply reflects redundancy 

of ahp, due to the large number of stress-resistance genes expressed in stationary 

phase cells, or possibly that there is an, as yet unidentified, enzyme present which 

mediates protection to the membrane. In support of this latter possibility, stationary 

phase cultures of an ahp mutant of B. subtilis were shown to be no more sensitive to 

wild type cells after challenges with cumene, yet a c7 13  mutant was extremely 

sensitive, suggesting that aB  regulates a cumene resistance function (Antelmann et 

al., 1996). 

The ability of hydrogen peroxide to induce the genes of the OxyR regulon only 

appears possible in the exponential phase. This study also attempted to determine 

whether this reflects on a lack of OxyR protein or an inability of OxyR to achieve an 

active configuration. Interestingly, when cells were provided with high levels of 

either wild type OxyR or an OxyR molecule capable of constitutive expression of the 

OxyR regulon, no expression of ahp could be obtained (Figure 3.7), suggesting that 

the requirements for OxyR-dependent induction in the exponential phase are absent 

in the stationary phase. It is noteworthy that, although gorA, katG and dps are 

induced upon entry into the stationary phase, their promoter sequences do not bear 

the stereotypical characteristics of RpoS-dependent genes (Figure 3.9) therefore, 

determining the molecular mechanism(s) by which gorA, katG and dps, but not ahp, 

can show RpoS-dependent expression, may yield further clues as to the nature of the 

regulatory determinants required for stationary phase-inducibility and gene 

regulation in general. 
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In the present study, a number of experiments were dependent upon the use of the 

Mudlux transcriptional reporter system to monitor expression of the ahp locus. The 

advantages of such a system is that gene expression can be followed in real-time 

without the need to disrupt cells or perform time-consuming biochemical tests 

(Carmi et al., 1987; Francis and Gallagher, 1993). However, in several instances, the 

lux reporter system has been shown to cause anomalous expression of the tagged 

gene (Owen-Hughes et al., 1992; Forsberg et al., 1994). In this study, the hydrogen 

peroxide-inducible ahp locus was found to be osmotically regulated (Figure 4.2). 

However, a Western blot procedure conclusively demonstrated that the expression of 

the wild type AhpC protein was not influenced by the osmotic environment (Figure 

4.9) and suggested that the Mudlux element imposed some form of anomalous 

regulation upon the ahp locus. This result was all the more intriguing because, 

initially, the osmotic regulation of the S. typhimurium ahp locus fitted well with data 

from S. aureus and B. subtilis, in which the expression of the ahp locus had been 

shown to be osmotically-sensitive (Armstrong-Buisseret et al., 1995; Antelmann et 

al., 1996). 

Whilst anomalies in gene expression using a lux reporter system have been reported 

previously (Forsberg et al., 1994), the findings in this thesis represents the first 

example where a non-osmotically induced gene has developed osmotic regulation as 

a result of the use of such a reporter system. The unusual influence of lux reporter 

genes has been attributed to the luxA gene and specifically to the interaction of the 

DNA-binding protein H-NS, to a region of DNA curvature in the first 200 bp of the 

coding sequence (Owen-Hughes et al., 1992; Forsberg et al., 1994). However, in the 

present study, the anomalous expression of ahp was shown to be independent of 

H-NS (Figure 4.5), although due to the nature of the hns mutation, the complete 

absence of H-NS could not be fully excluded. In the Mudlux fusion, the distance 

(approximately 4 kb) of the ahp promoter from luxA, would make it unlikely that 

changes to the promoter would occur directly by, for example, transmission of 

supercoiling-dependent changes through the DNA helix. It would seem more realistic 

then, that other known DNA-binding proteins with related activities (e.g. StpA; 

Zhang et al., 1996) or as yet unidentified DNA-binding proteins, are involved in the 
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anomalous expression of ahp. The regulatory circuit involved in converting a 

non-osmotically-inducible gene into an osmotically-sensitive gene warrants further 

investigation. The Mudlux element obviously introduces a factor which is capable of 

altering the behaviour of the ahp promoter, identifying the nature of this factor may 

be an important step in furthering our understanding of gene regulation. 

Unravelling the complexities of gene regulation also has important implications in 

understanding how bacterial pathogens such as S. enterica are capable of successfully 

infecting a host. The host-pathogen interaction is a very dynamic one in which 

S. enterica must promote its survival and multiplication, yet, at the same time, deal 

with the considerable array of anti-microbial factors which are present in the host to 

prevent such a scenario (Finlay and Falkow, 1989a). Macrophages are believed to be 

the major factor in preventing infection by S. enterica (Collins et al., 1974; Fields et 

al., 1986; Buchmeier and Heffron, 1989). These phagocytic cells are equipped with 

an arsenal of anti-microbial effector mechanisms including a respiratory burst, which 

generates toxic oxygen radicals. As such, the ability to survive the anti-microbial 

environment of the macrophage might be considered of prime importance in the 

virulence of S. enterica. A major aspect of this study, was to attempt to examine the 

role of oxidative stress resistance genes in virulence and to assess whether such loci 

could be beneficial to vaccine development. 

From the perspective of the bacterium, loss of either the ahp or oxyR loci did not 

significantly alter the virulence Of S. typhimurium in a murine model (Table 5.1). The 

reason for these results are unclear. It is of interest that RpoS, the major regulator of 

stationary phase, has been shown to be induced within the macrophage (Chen et al., 

1996a) and rpoS mutants are attenuated in the munne model (Fang et al., 1992 

Coynault et al., 1996) yet, ahp is not regulated by RpoS and OxyR appears only to 

exert its effects in growing bacterial cells. This perhaps explains the lack of a role for 

these loci in virulence. However, contradictory to the role of RpoS, it is clear from 

other studies that ahp is induced upon interaction of the bacterium with macrophages 

(Francis and Gallagher, 1993). Also, in the present study, the in vivo expression of 

ahp was indicated by the development of immune responses to this protein over the 
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course of S. typhimurium infection (Figures 7.1, 7.2 and 7.4). Whether these features 

reflect on the mechanism(s) by which S. enterica cells enter macrophages or, on the 

intracellular niches in which they are found, is uncertain. 

It is still unclear as to whether S. enterica resides in a phagosome and subsequently 

prevents phagolysosomal fusion (Buchmeier and Heffron, 1991) or whether these 

bacteria may enter into cells via a phagocyte-independent process involving a 

specialised invasion apparatus, such as that used for entry into epithelial cells 

(Alpuche-Aranda et al., 1994; Chen et al., 1996b; Monack et al., 1996). Indeed, it 

remains possible that both modes of entry occur. It is also of interest that Libby and 

Buchmeier (1997) recently demonstrated that the dynamics of a population of 

S. typhimurium within the macrophage demonstrated both rapid growth and death 

throughout a 20 hour period. The fact that there appears to be both growth and death 

would suggest that different proportions of the population are in both active and 

limited growth states at the same time point and would imply that the observations 

that both rpoS and ahp are induced within the macrophage need not necessarily be 

contradictory. Determining the intracellular niche in which S. enterica survives in 

would be an important step towards understanding bacterial pathogenesis. The 

identification of the genes responsible for providing access to such a compartment, 

and which promote the survival of the bacterial cells, may provide a more focused 

search for virulence factors. 

Although, the disruption of the ahp and oxyR genes did not attenuate the full 

virulence of S. typhimurium, this does not necessarily exclude the further 

investigation of these loci for potential in vaccine development. In fact, these loci 

would seem ideal sites for inserting genes expressing heterologous antigens (from 

other pathogens) and could be used in S. enterica strains already attenuated by 

well-characterised lesions, such as aroA. The advantage of the ahpC and oxyR loci is 

that their disruption would be unlikely to alter the level of attenuation of the strain 

they were introduced into, a factor which is important as over-attenuation may lead 

to the poor generation of protective immunity. Secondly, at least for ahp, this locus 

has been shown to demonstrate low basal expression in the absence of the inducing 
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stimulus and perhaps more importantly, is known to be expressed upon interaction 

with macrophages (Francis and Gallagher, 1993). The advantage of this is that the 

insertion of a gene encoding a heterologous antigen in this locus, is likely to be 

stable, since the antigen would not be highly expressed in the absence of the 

oxidative stimulus and would not therefore generate some form of negative selection 

(such as that of a metabolic burden). Indeed, the selective induction of the ahp locus 

within the macrophage would provide an ideal location for the expression of 

heterologous antigens because these cells are of prime importance in antigen 

presentation to T cells. 

Much of the recent work into developing an effective vaccine to S. enterica has 

focused on the use of attenuated bacterial strains (Chatfield et al., 1992a; Ivanoff et 

al., 1994). Live attenuated bacteria provide much greater protective immunity than 

killed cells, but this ability has been attributed to the fact that the live bacteria 

express immunogenic proteins in response to the host environment (Kagaya et al., 

1992). It seems surprising then, that very little work has examined the potential of 

using purified immunogenic proteins to stimulate protective immunity. A subunit 

vaccine would eliminate many of the problems associated with vaccines involving 

killed or live attenuated bacteria. However, very little information exists about the 

proteins from S. enterica which are recognised by the immune system and their 

potential for use in a subunit vaccine. Another major aspect of the present study 

therefore, was to increase our understanding of the immunological response to 

individual polypeptides thereby contributing to this relatively new angle of research 

into vaccine development with regards to S. enterica. 

The successful elimination of S. enterica from the host involves the generation of a 

TH1 response (Kagaya et al., 1992; Mastroeni et al., 1993). Such a response, is 

characterised by the presence of cytokines such as IFN-'y, TNF-a and IL-12 and the 

main effector of this response is the macrophage (Abbas et al., 1996; Lamont and 

Adorini, 1996). Thus, any form of polypeptide-based vaccine would have to 

stimulate a cell-mediated response to be effective. Nevertheless, the exciting 

possibility of an effective polypeptide vaccine has been indicated from preliminary 
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studies on S. typhimurium and other bacteria. For example, the injection of 

S. typhimurium-derived outer membrane porin proteins and a hydrogen 

peroxide-inducible catalase (KatG) has been shown to induce varying degrees of 

protective immunity in mice (Udhayakumar and Muthukkaruppan, 1989; Kagaya et 

al., 1992). In addition, the injection of porins into mice was shown to cause the 

induction of cytokines associated with cell-mediated immunity, such as IFN-7 and 

TNF-cx. (Galdiero et al., 1993), and importantly, suggests that, in the absence of 

bacterial cells, proteins alone may be able to trigger the cytokines required for a TO 

response (Galdiero etal., 1993). 

In addition to the work performed on S. typhimurium-derived proteins, other studies 

using different bacteria such as L. pneumophila (Blander et al., 1990; Blander and 

Horwitz, 1991, 1993), M tuberculosis (Andersen and Heron, 1993; Andersen, 1994), 

M leprae (Gelber et al., 194), 1'. enterocolitica (Noll and Autenrieth, 1996) and 

H. pylon (Ferrero et al., 1995) have indicated that protective immunity can be 

achieved by the injection of purified components from these bacteria. Especially, 

encouraging is the preliminary work that has been performed in M tuberculosis 

which showed that proteins from this bacterium could stimulate DTH reactions and 

elicit the release of cytokines associated with a TO response (Andersen and Heron, 

1993; Horwitz et al., 1995). Moreover, it was shown that the protection afforded by 

the injection of purified protein components was equivalent to that induced by the 

live attenuated mycobacterial vaccine strain, BCG (Andersen, 1994). 

Importantly, in the present study, the S. typhimurium-derived AhpC and GroEL 

proteins were shown to induce significant DTH responses 33 and 104 days 

post-infection, suggesting that these polypeptides are recognised in the context of a 

TH1 response (Figures 7.1 and 7.2). This may well indicate that these proteins have 

potential in the development of a subunit vaccine. However, it is important to note 

that the ability to form a DTH reaction to an injected protein does not necessarily 

correlate with the induction of protective immunity. For example, KatE, the normal 

cellular catalase was shown to induce a DTH reaction in mice which were previously 
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infected with S. typhimurium yet, immunisation of mice with KatE failed to protect 

mice against a subsequent challenge with virulent organisms (Kagaya et al., 1992). 

The development of polypeptide-based vaccines presents several interesting 

challenges. Immune responses to bacteria are likely to result from the recognition of 

a large number of polypeptides and therefore individual polypeptides, although 

immunogenic, would be less likely to stimulate such a large repertoire of immune 

cells, particularly T cells. In previous studies, it was shown that S. typhimurium 

induces approximately 30-40 proteins in response to the macrophage environment 

and reduces around 100 (Buchmeier and Heffron, 1990; Abshire and Neidhart, 

1993a). This aspect raises the fascinating question of how many proteins need to be 

recognised in order for a suitable level of immune response to be generated to a 

bacterium, considering the large number of potential immunological targets. 

Infection of mice with the mycobacterial vaccine strain BCG, induces a selective TH1 

response to proteins of between 6-12 kDa and 25-35 kDa, suggesting that only a 

limited selection of the total complement of cellular proteins may be responsible for 

the protective immunity generated by BCG (Andersen and Heron, 1993; Andersen, 

1994). Similarly, an examination of antigenic fractions from S. typhi demonstrated 

that the proteins which stimulated CMI most effectively were those of between 

29-32, 41-45 and 63-71 kDa (Perez et al., 1996). Thus, it would appear that with the 

use of a few defined polypeptides, it may be possible to induce effective immunity, 

equivalent to that of whole bacterial cells or at least to a level that is protective. 

The number of polypeptides used in any vaccine is itself an important issue, due to 

the heterogeneity of the Major Histocompatibility Complex in an outbred population 

(Lo-Man et al., 1996). The ability to identify and respond to peptides is dependent 

upon MHC molecules and therefore, the injection of a single protein may stimulate a 

substantial immune response in one individual but not in another. As such, subunit 

vaccines are likely to be more effective for wide-scale administration, only if they 

consist of a number of defined polypeptides 
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Bacterial cells such as those of S. typhimurium are capable of persisting within the 

host and therefore there is a greater probability for bacterially-derived antigens to be 

displayed over a long period. Moreover, factors associated with the bacterium are 

likely to stimulate the immune system. For example, tissue damage is likely to cause 

the release of cytokines to attract macrophages and other cells to the site of infection. 

Moreover, bacterial components such as LPS are known to up-regulate immune 

responses by stimulating B cells to undergo isotype switching, such that they produce 

complement fixing antibody, or, by activating macrophages (Baldridge and Ward, 

1997). Thus, bacteria have natural adjuvant properties. The major disadvantages of 

proteins per se is that they are unlikely to persist for very long nor are they likely to 

optimally up-regulate the immune system, to release the cytokines required for the 

development of a TH1 response (Baldridge and Ward, 1997). Indeed, it is noteworthy 

that much of the work into the ability of polypeptides to generate protective 

immunity has shown that protection is most effective in the presence of an adjuvant 

(Kagaya et al., 1992; Andersen, 1994; Gelber et al., 1994; Noll and Autenrieth, 

1996). Thus, a critical assessment of the potential of available adjuvants may be an 

important step in creating a protein-based vaccine. 

Adjuvants have a number of attractive properties ranging from the ability to increase 

the antigen depot and persistence of the antigen to the ability to modulate the nature 

of the immune response (reviewed in Cox and Coulter, 1997). This latter ability of 

adjuvants has particular appeal because, in the absence of bacterial cells which 

induce production of TH1 response-associated cytokines, the adjuvant may be able to 

compensate. In fact, TH1 response-associated cytokines such as IL-12 have actually 

been used successfully as adjuvants to skew the immune response to the desired 

phenotype (Noll and Autenrieth, 1996). It is possible therefore, that a combination of 

different adjuvants may be able to optimise the magnitude of the immune response 

and the TH 1/TH2 balance, even in the absence of bacterial cells. 

Bearing in mind the relevant issues concerning polypeptide-based vaccines, there are 

a number of interesting experiments which could be performed using the purified 

AhpC and GroEL proteins. Of major importance, would be to determine whether the 
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recognition by TH1 cells correlates with an ability of these proteins to induce 

protective immunity. Such an assessment could also explore the efficacy of 

combining these proteins with each other or even, with proteins already shown to 

induce protective immunity (e.g. porins or KatG), as a multivalent approach is more 

likely to generate an efficient immune response. Also, given that adjuvants are 

known to stimulate the immune system, some form of assessment of different 

adjuvants such as cytokines (especially T H 1-associated cytokines) or immune 

stimulating complexes, individually or in combination, would be beneficial to our 

understanding of the potential of adjuvants in formulating vaccine preparations. 

Of particular appeal to the development of a polypeptide subunit vaccine against 

infection by S. enterica, would be the inclusion of GroEL. Preliminary experiments 

have demonstrated that GroEL from a variety of bacteria, including M tuberculosis 

(Silva et al., 1996), M leprae (Gelber et al., 1994), Y. enterocolitica (Noll and 

Autenrieth, 1996) and H. pylon (Ferrero et al., 1995), is immunogenic and capable of 

affording some degree of protective immunity against the respective bacteria. GroEL 

is an abundant protein of the cell (up to 10% of the total cell protein under stress 

conditions) and such abundance obviously aids isolation and purification (Hendrix, 

1979; Hemmingsen et al., 1988). In this study, the amount of GroEL was further 

enhanced by cloning the groE locus onto a multicopy plasmid, and the amount of this 

protein in a soluble cell fraction was estimated (visually) to be approximately 40%. 

Another advantage of GroEL is that because it forms a large multimeric structure 

(840 kDa), it can be separated from the majority of the other components of the cell 

by a relatively simple and rapid procedure involving density gradient centrifugation 

(Hendrix, 1979). Such abundance and ease of purification would be advantageous in 

large-scale vaccine preparations. 

Infection by S. enterica contributes to the massive incidence of diarrhoeal disease 

recorded in the world each year (Pang et al., 1996). Unfortunately, although 

antibiotics have proved useful in combating S. entenica-related illness, the emergence 

of antibiotic resistance makes antibiotic therapy impractical. A prime objective 

therefore, is to devise suitable prophylactic therapies to reduce the incidence of 

297 



S. enterica infection. A polypeptide vaccine is likely to have wide-scale use in both 

humans and animals and be safer, less reactogenic and may induce stronger 

protective immunity than whole cell vaccines. In addition, because such vaccines 

would consist of defined polypeptides, they are more likely to be prepared 

reproducibly, easier to assay, and less expensive to manufacture and store. Thus, the 

development of a polypeptide-based vaccine may be a key step in the eradication of 

S. enterica-related illness. 
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