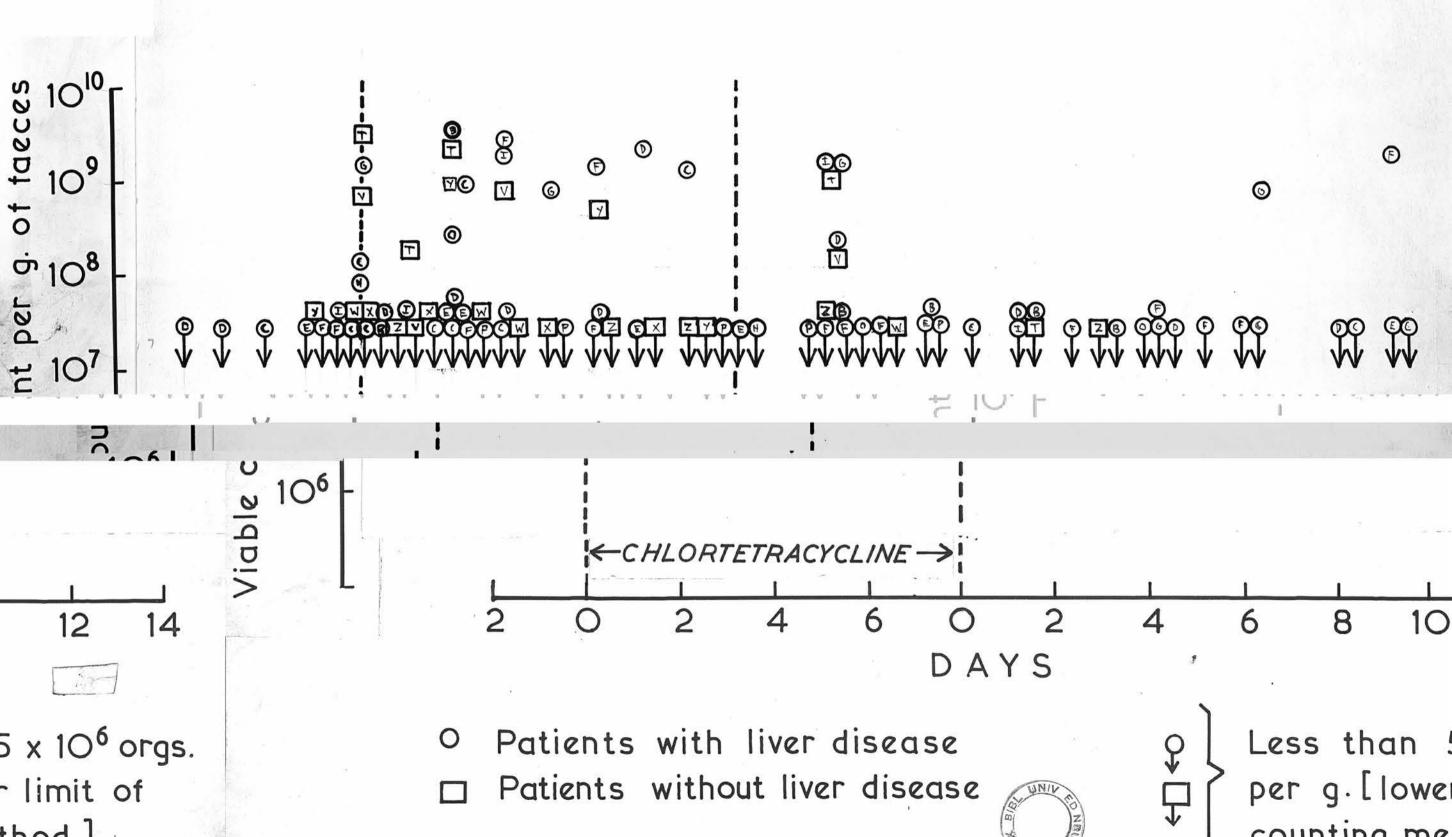
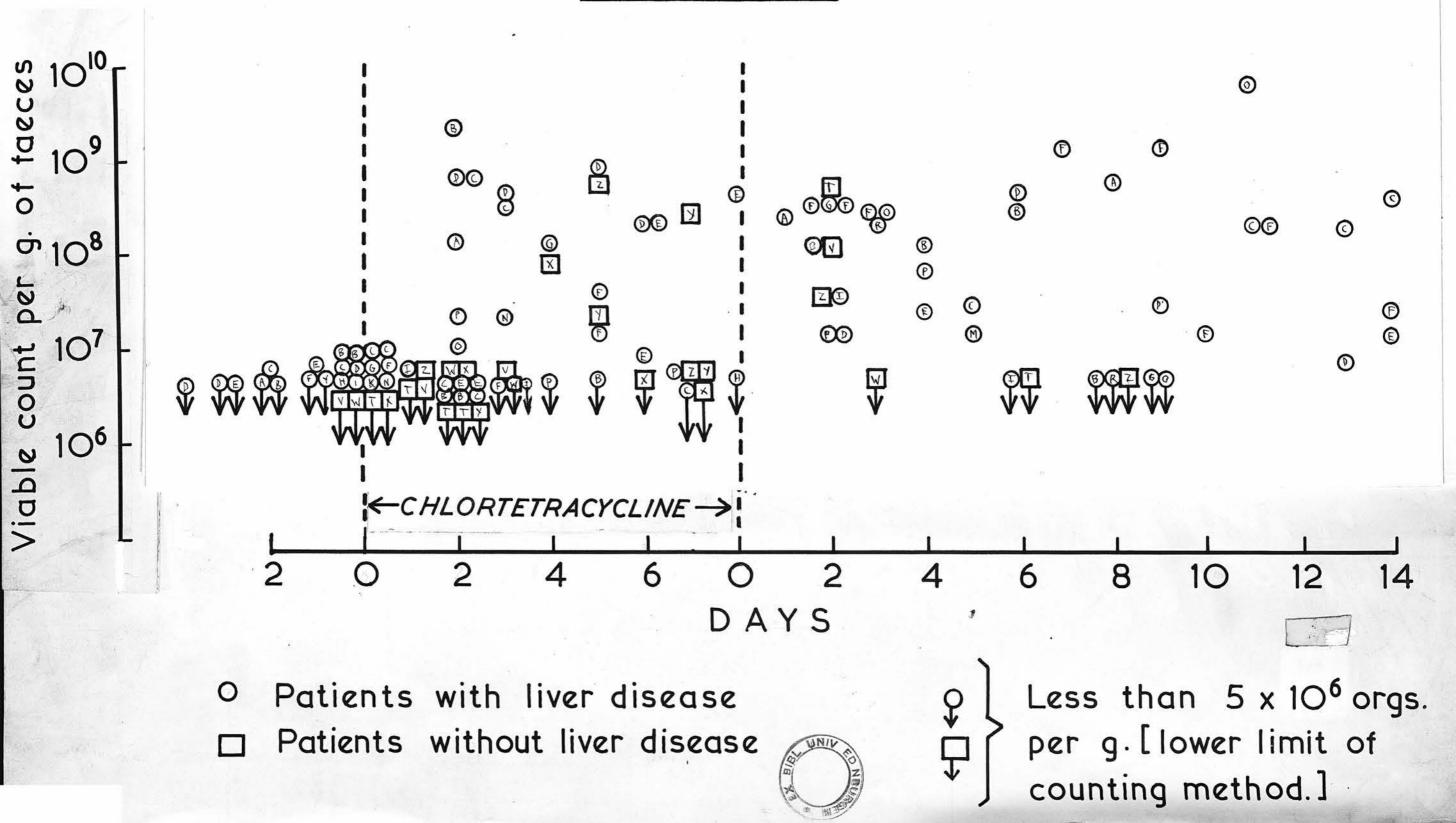


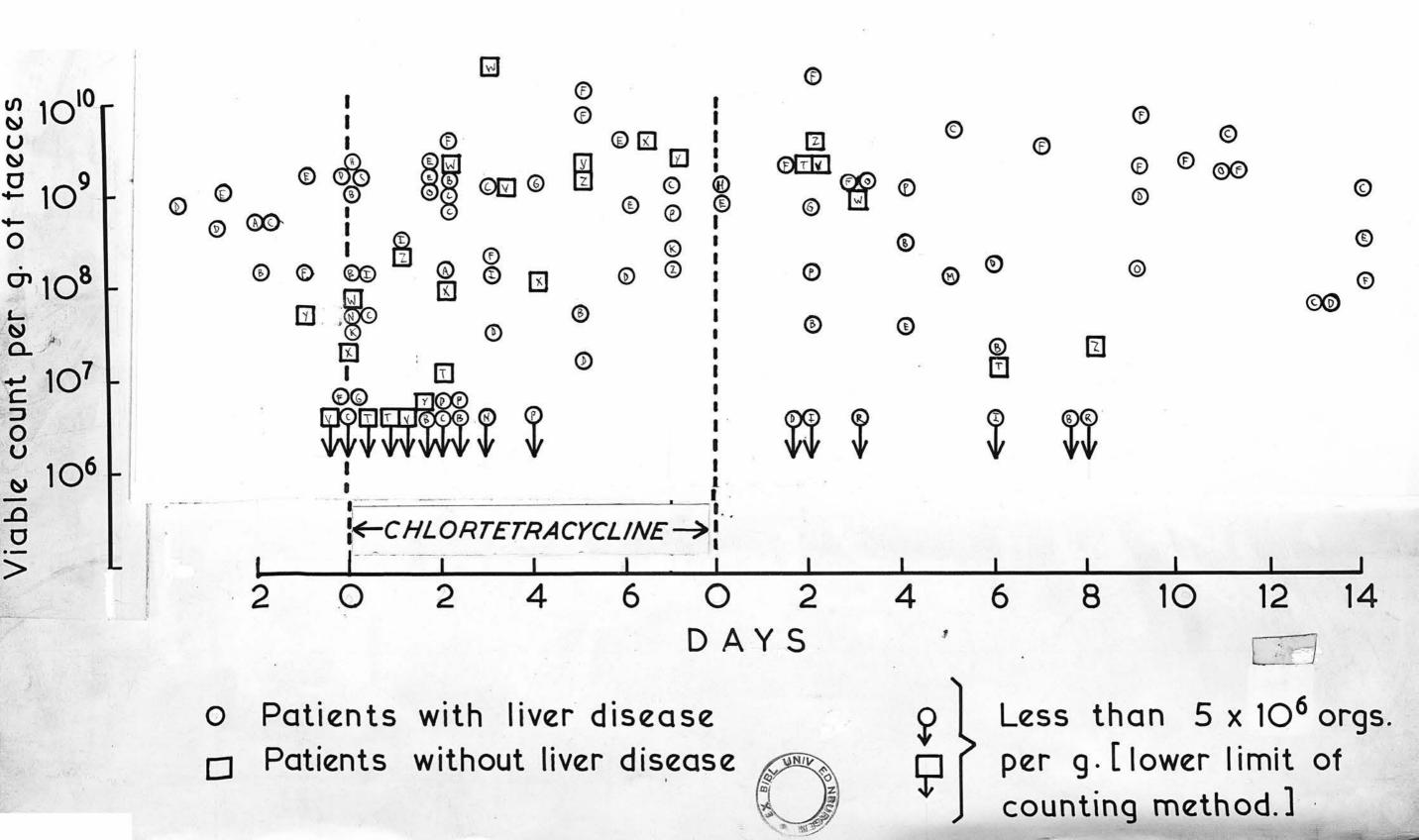
Thesis scanned from best copy available: may contain faint or blurred text, and / or cropped or missing pages.

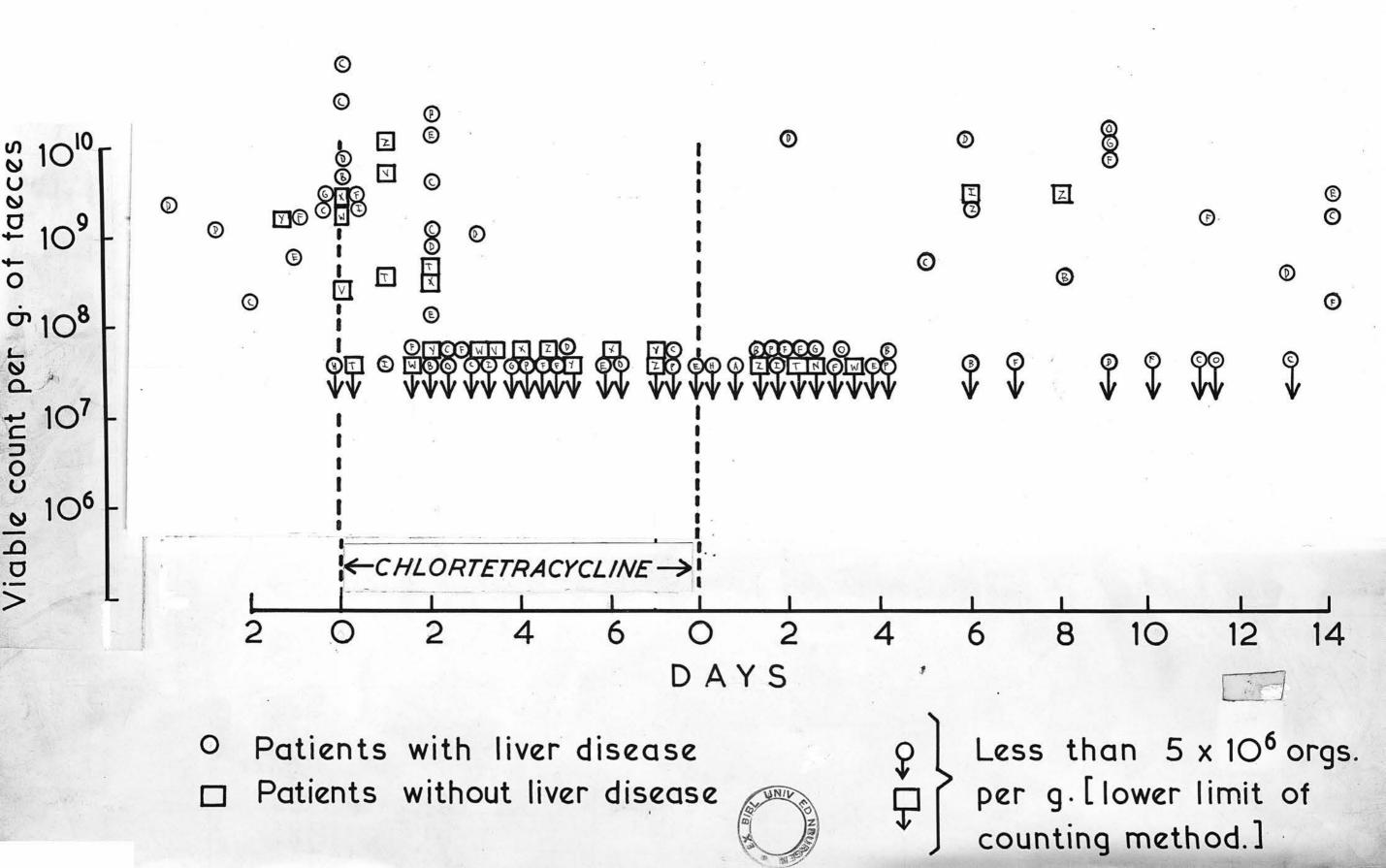

Title: Intestinal flora in cirrhosis of the liver
Volume .2
Author: Ruebner, B.
Year: 1956

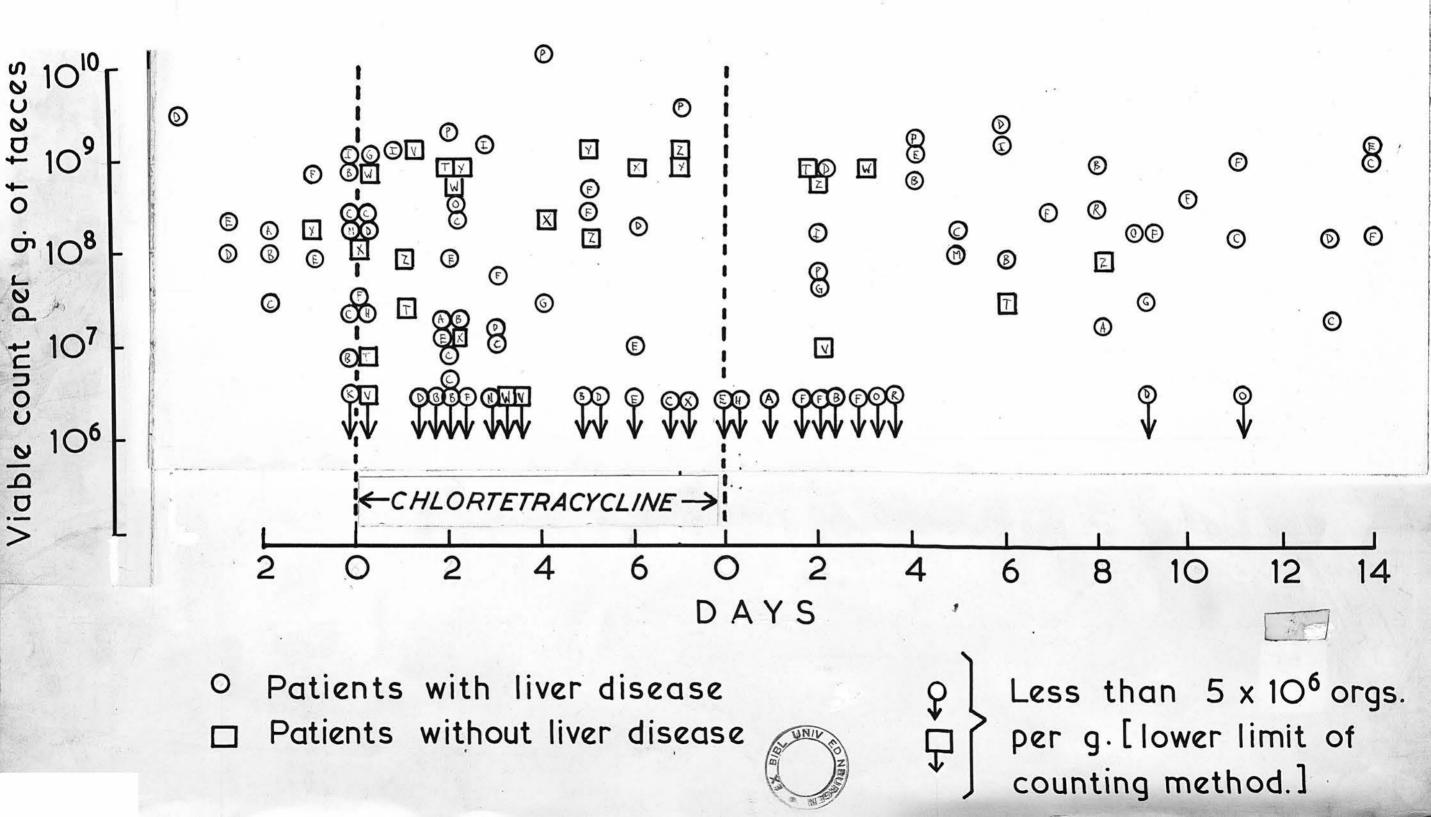
Year: 1956


Thesis: MD

<u>Digitisation notes:</u> No Table J was included in the available material.


LACTOBACILLI


PROTEUS


STREPTOCOCCI

BACTEROIDES

COLIFORM ORGANISMS

1						DUODENUM							4	н.							JEJEUNUM
	S.C.	coli	St.f.	St.v.	St.an.	Diph.	Mic.	Alk.	руо.	Ρ.	Bac.	Lac.	Others	· ·	S.C.	coli	St.f.	St.v.	St.an.	Diph.	Mic.
Patie	nts with Cirr	bosis							,				3								
14010										7			8	đ. 0.	-	3×10^6	4•4 x 10 ⁶		-	_	-
2 x	4.5 x 107 7 6.4 x 106	$^{\prime} \cdot 2 \times 10^4$	2.5×10^4	-	-	-	-	-	-	3 x 10 ³ 2•8 x 10 ⁶	-	-	-	aca e	• •				no	ot investiga -	ated
3 x 4	6•4 x 100	5 X 10°		. not in	vestigated .			_ 	_	2•0 X 10°				Candida	9×10^{-2} 2 x 10^{-2}	$3 3 \cdot 2 \times 10^{\circ}$ $7 \times 10^{\circ}$	2•8 x 10°	_	-	-	-
9	$3 \cdot 2 \times 10^{7}$	4×10^{2}	·····	1998. AMANDAL AND A	-			-	-	-	2.4×10^4	2×10^4	3 x 103	Anitratum	2 7 70	3×10^4	-	2 x 10 ⁵	-	-	-
18	-	6 x 10 ²	2 <u>44</u> 0	-	-	77	-	-	-	-	-		4×10^{2} 2×10^{3}	Staph.pyog. Sandida	-		-	-	-	-	-
19	7.7 - 107					-		-	-			7 x 10 ⁻	₹ 7_x 10°		-	3.9×10^4	1.7×10^{4}	-	-	-	-
20 21	3.3×10^7	-10^{7}	-	-	1.6×10^{4}	_	-	-	-	6.4×10^{4}	-		-		-	72.6×10^{6} 2.4×10^{6}			-	-	-
22	1×10^8	•9 x 105	- 1.2 x 10 ⁴	+] 55	+		-	-		-	<u></u> 0	-			2.4×10^4 2.4×10^4	2.5×10^4	-	-	-	-
23	: 	-	3	-	-	-	. –	-	-		-	-			1 x 10 ⁶	2 -	6.3×10^{3}	l x 106	-	-	8 x 10 ³
24 25	5×10^{6}	-	1.4 x 10 ³	-		ात्मक स ्वत्र क	-		-	-	-	-	- /		$5 \times 10^{\circ}$	3 x 10 ²	-	_ +	-		-
26	-	-	13 1	-			-	3 	. =		-	-			-	-	-	-	-	-	+
.				1								00	A):								
Patie	nts with gast	re-intest:	inal disor	lers									1. 1.								*
42	••••••••				not inve	estigated.									-	-	-	-	-	6 x 10 ²	6 x 10 ²
43					5 - inve								- 10	1 A					no	ot investiga	ated
44	•••••	•••••	• • • • • • • • • • •	• • • • • • • • • •	not inve	stigated .	•••••	• • • • • • • • • • • •	•••••	• • • • • • • • • • • •	•				-	$4 \cdot 4 \times 10^{6}$	4.4×10^{7}	-	-		-
46					not inve					• • •					-	4×10^{7}	•••••	· · · · · <u>·</u> · · · ·	····· _ no	ot investiga	
47	in the second	6 x 10 ⁵				-	-		1.4 x 10	6 -	-	-	2 7					••••	no	ot investiga	ated
48		-		-	5×10^2	-	-	-		-	-	-			-	1.2×10^{5}	3×10^4	-	-	7	-
50	-	-	-	-	5 X 10 ±	-	-	-		-	8 13	-	- : 8		-	1 x 10 ²	-		5.7×10^{-3}		
51 (a) $4 \times 10^8 5$	6×10^{7}	3.4×10^6	-		1 1	-	-	-	-	+	-	- : :		43)no	ot investiga	ated
(b) $4 \cdot 1 \times 10^7 1$	$.6 \times 10^{7}$	1.6×100 7 x 10 ³			-	-	-	-		+		.	in di)	4.7.6 Desc 1.4.6 07 74	1.53A 544
52 53	3 x 106 1 1.2 x 10 ⁹	1×10^{-1}	- X 10	-		-	-		-	-	-	-	1 x 10 ⁵	(Cl.welchii)	5.2 x 10	7 105	···· <u>-</u> ····	•••••	••••••••	not investig	sated
54		-	13 -1 5	-	-	2. .	-	-)	-	-	- 12	(or.woronitz)	0 % 4 10	TO			r	not investig	gated
11-074	han en beseden																				Service constants
Healt.	hy subjects						244														
63	6×10^{6}	-	-	-	<u></u>		1.6×10^{3}	-	-	-	-	-	-				••••		r	not investig	gated
64	-	-	-	- 1.5 x 10	3 ±	-	-	-	-		-	-	- 12		~	11 11	_	F - 102	5 x 10 ²	2 _	
66	-	-	-	T*0 V TO	-	-	-	-	-	-		-	- 10			-	-	-	-		-
67	-	-	1 .	-	-	-	-	-	-	<u></u>	-	-	- 1		-	: 	-	-	1•5 x 104	13.8×10^4	-
68 69		-	-	3.7 x 10	4 _	-	+ _	-	-	-	_	-		42) 8.	-	-	_	$1 \cdot 1 \times 10^{6}$ $1 \cdot 5 \times 10^{3}$	-	-	-
S.C	<u>.</u> = Total sme f.= Strep.fae		. <u>Coli</u> = 0	coliform									l s			ente trata de la contra e contra en e	######################################	1.0 × 10			
	. = Ps. pyocy		P. =			= Bacter			_	obacilli.											
	specimens tak				and a constant			25	<u>.</u>	in some ca			1449-199399-1995327-1								
	umbers repres			C.					v		(1		11 (B) (*	- 1							
	= a few cold		<u> </u>			E O- MAR O				50 											
	= moderate r		foncenter	3									4							14	
			u gantem	•										> *							
+++	= many organ	isms.											a - 3	n. ,							
-	= organisms	present i	In numbers	below th	e upper limi	t of the c	ounting me	ethod (10^2)	per ml).					5 H .							

- = organisms present in numbers below the upper limit of the counting method (10^2 per ml).

The intestinal flora of patients with cirrhosis and other subjects.

TAB LE A

The intestinal flora of patients with cirrhosis and other subjects.

												JEJEUNUM						
Ρ.	Bac.	Lac.	Others			S.C.	coli	St.f.	St.v.	St.an.	Diph.	Mic.	Alk.	ру о.	Ρ.	Bac.	Lac.	Others
								C	3						F			
3 x 10 ³ 2•8 x 10 ⁶	-	-	-	e da a		-	3×10^{6}	4•4 x 10 ⁶	•	- not	- investig	- ated		• : v ::::::::::::::::::::::::::::::::::	5 x 10 ⁵	-		
2•8 x 10 ⁶		1 11		- 1	5	- 9 x 10 ⁶ 2 x 10 ⁶	3.2×10^{6}	2•8 x 10 ⁶	-	-	-	-	-	-		-	-	4
- 2	•4 x 10^4	2 x 10 ⁴	4 _ 3 x	100	Candida Anitratum	$2 \times 10^{\circ}$	7×10^{5} 3×10^{4}		2 x 10 ⁵	-	-	-	-		5 x 10 ⁵	-	· · · · ·	$6 \cdot 4 \times 10^4$ Anitratum (1 \cdot 2 x 10 ³ Staph.pyog. 1 \cdot 5 x 10 ³ Candida
-	-		F_{2x}^{4x}	102	Staph.pyog.	-	-	-	10 K 10	-			-			-	3-1054	1.5 x 10 ³ Candida
a - -a	-	7 x 10	$\frac{2}{7} \left\{ \begin{array}{c} 2 \\ 7 \\ x \end{array} \right\}$	103	Gandida	-	3.9×10^4	1.7×10^4	22 1	-	-	-	-	-	-	_		_
-	-	2 4		- 1	k.	-	2.6 x 106	2 x 108				-	-	-	- 5	-	-	÷.
6.4×10^4	-	-	-	1	10	1.1×10^{7}	3.9×10^4 2.6×10^6 2.4×10^6 2.4×10^4	1.3×10^8		-	-	* 5 - 5	-	-	3.4×10^5	-	-	-
	-	-	-		f. 72 9	1×10^{6}		$6 \cdot 3 \times 10^{3}$	1 x 106	-		8 x 10 ³	-		-	-	2 x 10 ⁴	-
-	-	-	-			5 x 10 ⁶	3×10^2		+	-			-	lx 10 ²	-	-		- + (N. pharyngis + Haemophilus
ss	-	-	-	a gassi,		-	-	-	_ ·		-	- +	_	-	-	_	-	- + Haemophilus
				1.12								. –						
					4	_	-	-	_	_	6 x 10 ²	6 x 10 ²	-	-	-	_	-	_
6×10^2		-	-					4.4×10^{7}	•••••	not	investig	ated						
						-			-	- not	- investig	- ated	-	-	-			-
	·	1012				-	4×10^{7}			-	-	-			3 x 10 ⁶	-		-
-	-	-	_			-	1.2 × 105	3×10^4	••••	not	investig	ated	•••• <u>-</u> ••••	•••• <u>-</u> ••••	· · · · · · · <u>·</u> · · · · ·	-	-	-
· · · · ·		-	1	6.1		-	1.2×10^{5} 1 x 10 ²	0 1 10	-	5.7×10^3	-	- 4	2.1×10^{4}	•	-	-		-
-	+	-	-			-	1. — 1	•••	-	-	introctio	- tod	-	-	-	-	-	-
	+	2 <u>40</u> 200	-		2 2				•••••)	7		1		•••••			
-	-	-	- lx	105	(Cl.welchii)	5.2 × 107	105	····· <u>·</u> ·····	•••••	no	t investi	gated	•••••		••••••			10 ⁵ Cl.welchii.
	_	-	-		(OI. WEICHIII)	J-2 X 1 0	10			no	t investi	_ gated				1 		10 CI. Werchill.
																	~	
				1														
-	-	-	~ _		2			•••••	•••••	no	t investi	gated						
	-			1.			· ·	-	5×10^2	5×10^2	-		2	-	-	-	i - i	-
	-	-	=		ar y	-	-	-	-			17 - 3		-	24 ₂₂	-	-	
	-	-	-		1. 1	-	-	-	1.1 x 10 ⁶	1.5×10^{-4}	3•8 x 10 [±]	-	-	-	_	-	- 5 x 10 ⁵	-
-	-	-			e e	-	3-2	-	1.5×10^3	-	-	gatea - - - -	-	=		-	-	-
t.cloacae a	and Paraco	lon bacil	111.			999 - Canada Tantan - 19 Canadar Martina									****	*****		
cci. Alk.					ž.													
acilli.																		
n some cas				1														
4				39														
					* 													
				41														

÷.,

.

					1	1	LLEU M							1 1	-22) 25		
	S.C.	coli	St.f.	St.v.	St. an.	Diph.	Mic.	Alk.	руо.	Ρ.	Bac.	Lac.	Others		S.C.	coli	St.f.
Patient	ts with cir	rhosis															
2 x 3 x 9 18 19 20 * 21 22	4.3×10^{7} 3×10^{7} 3.7×10^{7} 7×10^{7}	9.6 x 10^{7} 1.6 x 10^{8} 9.4 x 10^{7} 2.2 x 10^{7} 2 x 10^{5} 1 x 10^{5} 4.8 x 10^{7}	- 1.2 x 10 ⁴	4 x 10 ³						1.2×10^{7} 4×10^{7} 4×10^{5} - 1.6×10^{6}	2 x 10 ⁸ + -	- - 1.2 x 10 ⁵	$\begin{cases} 105 \text{ Anit} \\ 104 \text{ Cand} \\ 104 \text{ Stap} \end{cases}$	tratum lida ph. pyog.	9.5 x 1010 9.5 x 1010 9.1 x 1010 - 5 x 1010 9.3 x 1010 1.6 x 1010	$ \begin{array}{c} 4 \cdot 3 \times 10^{9} \\ 1 \times 10^{9} \\ 2 \cdot 4 \times 10^{9} \\ \hline & & \\ $	$ \begin{array}{c} 9 \times 10^{8} \\ 1 \cdot 5 \times 10^{8} \\ 5 \times 10^{7} \\ 6 \times 10^{8} \\ - \\ 7 \times 10^{8} \end{array} $
23 24 25	6×10^{6} 4×10^{2}	4.7×10^{3}	1.9 x 104 1.8 x 106	- ±	-	- +	-	-	4 x 10 ² 1 x 10 ²	-	-	-	3 x 10 ⁶ Sta	ph.albus	1.6 x 10	1 x 10 ³	2 x 10 ⁵
26 Patien	- ts with gas	, 19	3 x 10 ²	-	-	-	-	-			-	-	1 - 17			1.5×10^9 6 x 10 ⁷	_
42 43 44 45 46 47 48 49 50 51 (a) (b)	9.5 x 10 ⁷ - 8 x 10 ⁷	8.2 x 10 ⁴ 6.2 x 10 ⁵	-			6 x 10 ² 4 x 10 ³ - - - - - - - - - - - - -	- - - -	-	1.8 x 10 ⁷	- 3 x 10 ⁶ -	-					2.5 x 10 ⁶ 1.5 x 10 ⁸ 1 x 10 ⁸ 1.1 x 10 ⁸ 8 x 10 ⁶	- - 2 x 109 26 x 109
52 53 54	2.8 x 10 ⁷ 2 x 10 ⁸	$1 \cdot 2 \times 105$ 105 $2 \cdot 5 \times 106$		- 3.5 x 10 ⁶	Ē	2	-	-	- 3 x 10 ²	-		-	_ 10 ⁵ Cl.v	N•	••••••	••••••	•••••
Health	ny subjects														<i>.</i> ,		
63 64 65 66 67 68 69	1.2 x 10 ⁷ - - - -	$\begin{array}{c} 2 \times 10^{3} \\ - \\ 1 \cdot 5 \times 10^{3} \\ - \\ 2 \times 10^{2} \end{array}$	-	1.8 x 10 ⁸	$ 1.5 \times 10^4$ 1	- - - - - 10 ⁴ -		$\frac{1}{2} \times 10^{2}$ 1×10^{2}								$ \begin{array}{c} 1 \cdot 5 \times 10^{8} \\ 2 \cdot 5 \times 10^{5} \\ 1 \cdot 1 \times 10^{9} \\ 3 \times 10^{7} \\ 1 \times 10^{8} \\ 1 \cdot 1 \times 10^{8} \\ - \\ \end{array} $	2 x 10 ⁷
											∆₽.					🇯 = lower limi	t of counting

The intestinal flora of patients with cirrhosis and other subjects.

ILEUM

TAB LE A (Cont'd)

TAB LE A (Cont'd)

The intestinal flora of patients with cirrhosis and other subjects.

					a a construction and a construction of the second		·				nayaya sa	
ac.	Lac.	Others		S.C.	coli	St.f.	Bac.	Lac.	St.an.	Cl.w.	Others	
			. (j						1 ()			
	<u></u>	<u></u>		a = 1010	4 7 7 9	6		<i>a</i> :			2 = 7 (2)	
x 10 ⁸	-	-		9.5 x 1010 9.5 x 1010 9.1 x 1010	$\begin{array}{c} 4 \cdot 3 \times 10^9 \\ 1 \times 10^9 \\ 2 \cdot 4 \times 10^9 \end{array}$	9×10^{8} 1.5 x 10 ⁸ 5 x 10 ⁷ 6 x 10 ⁸	5 x 109 2•5 x 109 4 x 109	-		-	2.5×10^7 (P) 4 x 10 ⁸ (P)	
•	-	-		9.1 x 1010	2.4×10^9	5×10^{7}	4×10^9	-	-		-	
+		- 105 AI	· · · · · · · · · · · · · · · ·	-	-	6 x 10 ⁸	-		6 x 10 ⁸ 6 x 10 ⁹ 3•2 x 10 ⁹	-	-	
. 1	•2 x 10 ⁵		nitratum andida		$ \begin{array}{c} - & - & - & - & - & - & - & - & - &$	-	$ \begin{array}{c} 8 x 1011 \\ 3.2 x 109 \\ 4.5 x 109 \\ 5 x 108 \\ 9 x 107 \\ 9 x 107 \\ \end{array} $	$ 6 x 10^{7} 5 x 10^{8} $	6×10^{9}	-	_	
	-		aph. pyog.	5 x 10 ¹⁰	$2 \cdot 4 \times 10^9$	_	$3 \cdot 2 \times 10^9$	5 x 100	3•2 X 10	_	- + (P)	
	-			5×10^{10} 9.3 x 1010 1.6 x 1010	9 x 108	7 x 10 ⁸ 2 x 10 ⁵	4.5×10^{9}	-	-	5	2.5×10^7 (P)	
		-	. 12	1.6 x 1010	$8 \times 10^{7}_{5}$	- 5	5×10^{8}		±	-		
-	-	3 x 10 ⁶ S	anh albus	-	1 x 10°	2 x 10 ⁵	9 x 10'	- stigated		-	3×10^7 (Mic)	
	-	-	o a pare an an		1.5×10^9		2.5×10^9		1 x 10 ⁹	•••••		
	_	-		-	1.5×10^9 6 x 10 ⁷	-	2.5×10^9 2 x 10 ⁹	1×10^7	-	1 x 10 ⁸	-	
				- Q -								
		401 401										
-	-	1 9 0					not inve	stigated				
-							not inve	stigated				
-		-	а 34 - С	•••••			not inve	stigated				
 (-		•••••	2.5×10^6	- - 2 x 109 26 x 109	not inve	stigated		•••••••••••••••••••••••••••••••••••••••	••••••	
					1.5 x 108	-		2.5×10^8	-	-	-	
		-			$1 \times 10^{\circ}$	0	- 10	$\begin{array}{r} 2.5 \times 10^8 \\ 3 \times 10^9 \\ 5 \times 10^8 \end{array}$	-	-	-	
				-	$1 \cdot 1 \times 10^{\circ}$	2×10^{9}	4×10^{10} 2.4 x 10 ¹⁰	$5 \times 10^{\circ}$	-	-	-	
			17 a 1		0 X 10°	20 7 10-	not inve	stigated	-	-		
							not inve	stigated				
	-	-				• • • • • • • • • • • • • • •	not inve	stigated		• • • • • • • • • • • • • • • •	•••••	
-	-	105 0	L.W.	•••••		• • • • • • • • • • • • • • • •	not inve	stigated		•••••		
			Â.				•••••• 1100 TUNG	sordaned		••••••		
				and the second sec								
			10 A		1.5 - 108		4 - 7 08					
-	-	-			2.5×10^{-5}	-	4 x 10 ⁸ 1 x 10 ⁶	5, 7, 09		-	-	
		-	·		1.1×10^{9}	-		6×10^8	1.7 x 10 ⁹	-		
	-	-		-	3×10^{7}	- 77	5×10^8	2×10^9	-	-	-	
-					1.5×10^{8} 2.5×10^{5} 1.1×10^{9} 3×10^{7} 1×10^{8} 1.1×10^{8}	2 x 10 ⁷	$5 \times 10^8 5 \times 10^6 2.5 \times 10^7$	$5 \times 10^9 6 \times 108 2 \times 109 5 \times 108 2 \cdot 5 \times 10^9 2 \cdot 5 \times 10^9 $	9	9		
-	-	-		63 <u>-</u>	1.1 x 100	-	2.5 x 107	2.5×10^{3}	1×10^9	1.4×10^9	-	
				13 T	9 10			-		2 77 2		

TABLE B

			Smear Count	coliforms	Strep.f.	Bac.	Lac.	St.an.	Cl.w.	Others
Cirr	hosis									
1 2) 3)		chlortetracycline	$9 \cdot 1 \times 10^{10}$	$\begin{array}{c} 4 \cdot 6 \ \mathbf{x} \ 10^8 \\ 1 \cdot 2 \ \mathbf{x} \ 10^6 \\ 4 \cdot 5 \ \mathbf{x} \ 10^7 \\ 2 \cdot 5 \ \mathbf{x} \ 10^9 \\ 5 \cdot 3 \ \mathbf{x} \ 10^8 \\ 7 \cdot 5 \ \mathbf{x} \ 10^7 \\ 9 \cdot 4 \ \mathbf{x} \ 10^8 \\ 1 \ \mathbf{x} \ 10^9 \end{array}$	5×10^{7} $2 \cdot 2 \times 10^{8}$ 5×10^{7} $1 \cdot 3 \times 10^{9}$ $1 \cdot 1 \times 10^{9}$ 1×10^{8} $3 \cdot 1 \times 10^{9}$	1 x 10 ¹⁰ 3 x 109 9 x 108 8 x 109 1.7 x 109	2 x 10 ⁸		3•9 x 10 ⁸ 2 x 10 ⁸ 1 x 10 ⁸	l•2 x 10 ⁹ (Micrococci) l•5 x 10 ⁸ (Micrococci)
4 5 6 7 11 20 27 28 29 30 32 33 4 5 36	V	n	4.2 x 1010 2.3 x 1010 5.2 x 1010 7.5 x 1010	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \cdot 1 \times 10^{\circ} \\ 8 \times 10^{\circ} \\ 1 \cdot 5 \times 10^{\circ} \\ 9 \cdot 4 \times 10^{\circ} \\ 1 \times 10^{\circ} \\ 3 \times 10^{\circ} \\ 5 \times 10^{\circ} \\ 6 \times 10^{\circ} \\ 3 \cdot 5 \times 10^{\circ} \\ 9 \cdot 6 \times 10^{\circ} \\ 10^{$	2 x 109 3•8 x 107 7 x 1010	l x 10 ⁹		5•3 x 10 ⁶	2.4 x 10^9 (Bact.alk) 4 x 10^6 (Bact.alk) 3 x 10^6 (Proteus)
37 41				$ \begin{array}{r} 1 \cdot 2 \times 10^9 \\ 2 \cdot 3 \times 10^8 \\ 8 \cdot 4 \times 10^9 \\ 6 \cdot 5 \times 10^8 \\ 4 \times 10^9 \\ 8 \cdot 5 \times 10^7 \end{array} $	$9 \cdot 6 \times 10^8$ 5 x 10 ⁶ 7 x 10 ⁷	$1.5 \times 10^9 \\ 2 \times 10^9 \\ 1.8 \times 10^{10} \\ 1 \times 10^7$	± 4•5 x 10 ⁸	+ 1 x 10 ⁸		5×10^6 (Proteus) 2 x 10 ⁷ (Proteus)
55 56 57 58 59 60	r nospi	tal patients	4 x 10 ¹⁰ 8•5 x 10 ¹⁰	$\begin{array}{c} 2 \cdot 1 \ x \ 10^{10} \\ 1 \cdot 5 \ x \ 10^8 \\ 6 \ x \ 10^7 \\ 5 \cdot 5 \ x \ 10^7 \\ 2 \cdot 4 \ x \ 10^9 \end{array}$	1×10^{8} $1 \cdot 4 \times 10^{7}$ 4×10^{8} $2 \cdot 5 \times 10^{7}$ $2 \cdot 5 \times 10^{9}$ $3 \cdot 5 \times 10^{7}$	$\begin{array}{c} 2.5 \times 10^{11} \\ 5.5 \times 10^{8} \\ 5 \times 10^{8} \end{array}$		2•5 x 10 ⁸ 1 x 10 ⁹		2 x10 ⁷ (Staph.albus)
61 62 70			7.4 x 10 ¹⁰ 3.4 x 10 ¹⁰	$ \begin{array}{r} 3 \cdot 3 \times 10^8 \\ 2 \cdot 8 \times 10^7 \\ 7 \times 10^8 \\ 1 \cdot 5 \times 10^7 \\ 8 \times 10^8 \\ 2 \cdot 3 \times 10^8 \end{array} $	$ \begin{array}{r} 3 \cdot 5 \times 10^{7} \\ 1 \times 10^{10} \\ 5 \times 10^{9} \\ 8 \times 10^{7} \\ 5 \times 10^{6} \end{array} $	2.5×10^9	7.5 x 10 ⁹	5 x 10 ⁷	5 x 10 ⁷	3•2 x 10 ⁸ (Micrococcus)
71 72 73 74 75 76 77 78		ж 1	3•4 x 10 ¹⁰	$ \begin{array}{c} 1 \cdot 3 \times 108 \\ 1 \cdot 5 \times 107 \\ 1 \cdot 1 \times 1010 \\ 1 \cdot 4 \times 107 \\ 1 \times 108 \\ 4 \cdot 6 \times 108 \end{array} $	1.5 x 107 9.3 x 108 7.5 x 108 4.1 x 107 2.5 x 108 3.6 x 108	$ \begin{array}{c} 1 \cdot 3 \times 10^{9} \\ 1 \cdot 3 \times 10^{9} \\ 1 \cdot 2 \times 10^{9} \\ 1 \times 10^{10} \\ + + + \\ 9 \cdot 4 \times 10^{9} \\ 3 \times 10^{8} \end{array} $	5 x 10 ⁸			

A Comparison of the faecal flora of patients with cirrhosis of the liver and of patients without liver disease.

+++ = profuse growth (Colonies not counted)

Smear counts done in some cases only.

± = a few colonies.

Biochemical findings in intestinal aspirates and the effect of incubation of ileal fluid under various conditions on the pH and the contents of ammonia, methionine, amines and mercaptans.

Concentrations of ammonia nitrogen (NH4) and methionine (Meth) in ug per ml

am = amino present Mec =

																	1																		
			INITI	LAL									I	LEAL FI	LUID:		C	HANGES	AFTER]	INCUBAT	ION														
Subject's No.	7 ¹¹	Ileal		Am		Duodenal	L Gastric	Hα	+Wa	ater	Am Me	e I nH		thionin		Mec			Glucose		Mag	+G]	Lucose ·	+Methio: Meth	nine Am Mec	+ Me + Cł	thionin lortetr NH ₄	e acyclin	e	Mag	+ M	lucose Methioni hlortet NH4	ne racycl	ine	
	pn	MA	MECH	Am	Mec	рп	pn	pn	Nn <u>4</u>	Meth	AIII IMC		I NI	4 Meth	I AIII	Mec	pn	<u>NH4</u>	Meth	Am	Mec	pn	NII4	Meon	Am Mec	<u>p_1</u>	11114	Meon	AIII 1	Med	pn	MIIA	Meon	ATTI MG	0
<u>Cirrhosis</u> o	f the L	iver														9														(
2	7.7	20	70	-	-	-	-	-0•8	+207	0	0	+ -0•	7 +234	4 -200	0	+	-	-	-	- 1	-	-	-	-		-	-	-	-	-	-	-	-	-	-
З	8•1	33	33	0	0	-	7.5	-0•8	+215	+61	0	0 -0.	9 +288	3 -404	L 0	+	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
9	7.5	66	98	-	0		-	-	+152	-	-	-	- +160	o –		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
18	8•1	0	17	0	0		2.5	-	÷		-	-				-	-2.8	+52	+9	+	0	-2.8	+56	-111	+ 0	-	-	-	-	-	-0.1	+10	-7	0	0
19 ^x	7•8	28	61	0	0	7.2	1•8	+0•4	-9	+9	0	0 +0.	5 +71	1 -158	3 0	÷. ; +	-	-	-	-	-	-	-	-		-	-	-	-	-]	5. — 5	-	-	2 .	e -:
20	8•0	6	108	-	Ο.	5 	-	-	1	-	-	-				-		÷.	-	-	-	-	-			-	-	-	_	_		-	-		-
21	7.7	8	98	0	0	-	6.7	-0.5	+197	-2	0	0/-0.	5 +193	3 -215	5 0	+	-	-	-	-	-		-	-		-	-		-	-		-	-	e-e	s -
23	6•3	6	83	0	0	1.8	2.0	- 1	-		-	-					1	-	-	-	-		-	-		-	-	-	-	-	+0•1	-6	-5	0	0
24	8.1	10	16		0	-	-	-1.0	+298	+28	0	0	- +320	- 0	_	- 30	_	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
25	8•4	5	6	0	0	1.8	-	-1.0	+301	+24	+	0			. =	1	-1-3	+263	-16	+	+	-3.5	+55	-15	+ 0	-	-	-	-	-	-	-	-	-	-
26	6•4	28	21	0	0	-	-	-	-	-	-	_			alter and a		1-	<u> </u>		ατά		in 20085-Brod		anadi mutadiri 👬 🖛	n an	an a	an ann an an an an an an		ar magninga		1. # 14 <u>2010</u> 1. 1. /	-	-	-	·
Mean	7•6	18	55			ă.		-0.7	+197	+20		-0•	4 +213	L -244			-1.8	-208	+12			-2.5	+55•5	-140							0	+2	-6		
Gastro-inte	stinal o	disorder	rs													1					~														
45	6•8	7 0	124	0	0	-	-	-	-	-	-	-			. w	-	1	-	-	-	-	-	-	3 .)		-	-	-	-	-	-	-	-	 2	-
46	7.1	46	75	-	0	-	. -	-	-		-	-				-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	5•6	-	-	-	-	-	-			-	_	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-
48	7•9	2	55	-	0		2.1	-0-2	+19	+67	0	0 -0.	2 +32	-144	: 0	+	-2.2	+4	+49	0	0	-2.7	+8	-46	0 0	-	-	-	-	-	-0.1	+2	+14	0	0
49	5•8	19	156	0	0	-		-0-5	+25	-30	0	0 -0.	1 +25	5 -276	0	0	-1.5	+19	+2	0	0	-1•4	+10	-102	0 0	-0.5	-6	-8		0	-0•2	+3	-6	0	0
Mean	6•9	34	102					-0•3	+22	+18		-0•		3 -210			-1.8	+12	+25			-2.0	+9	-74							-0.1	+2	+4		
Normal subj	ects																																		
63	8•1	4	-	-	0	0	-		-	-	-	-			-	_	-			-	-	-		-		-	-		-	-	-		-	-	-
64	8•0	43	77	-	0	3.6	_	-0.2	+169	-71	0	0 -0.	2 +245	5 -14	. 0	0	-		-	-	-	-3•1	+67	+118	+ -	-	-	-		-	-	-	-	-	-
65	8•2	0	7	_	0	-	1.4	_	+201	-	-	-	- +216	5 -	-	_	-1•4	-	+8	+	0	-1•0	+67	-94	+ +	-	.	, ,	-	-	-	-	8.	-	-
66	8•9	53	-	-	0	-	1.7	-	-	-	-	-				.	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	¥.	-
67	7•2	l.	57	0	0	-	-	+0•1	+1	+6	0	0 +0.	8 + ^r	7 -29	0	0	-1.6	+7	-13	0	0	-1•6	+50	-85	0 0	+0•7	+1	-10	-	0	+0•6	+4	-8	-	0
68	7•6	5	111	0	0		5•0	+0•6	+2	-11	0	0 +0•	5 +10) -20	0 0	0	F0.2	+1	-16	0	0	-0.6	+40	-141	0 0	+0•5	+5	-41		0	+0•1	+61	-90		0
Mean	40.45	18	64					+0•2	+93	-25		+0•		2 -21			-0-9	+4	-7]	-1•6	+56	-50		+0.6	+3	-25			+0•3	+32	-49		
								5								02					_		_					1.1							

TAS LE C

x Ileal juice incubated with Lactose: pH -2.9, NH_4 +39, Meth -9, Incubated Lactose and methionine pH

smell of mercaphans

1.2, NH₄ +13, Meth -40. Incubated +Lactose, methionine and chlortetracycline, pH +0.3, NH₄ -6, Meth -12.

TABLE D

Bacterial growth and ammonia production in Ileal fluid during incubation.

Figures represent ammonia in µg N/ml. Bacteria growth is expressed semi-quantitatively (See P 46).

				Glucose	Methionine	Methionine + Glucose	Methionine + Chlortetracycline	Methionine + Glucose + Chlortetracycline
Patients wit	th Cirrhosis	20	+207		+234	2		
2	Coliform orgs. Strep.faecalis Proteus	+++ ++ ++	?		?			
3	Coliform orgs. Strep.faecalis Bacteroides Proteus	33 +++ ++ +++ +++	+215 +++ +++ - -		+288 +++ +++ - -	2		2
9	E.coli Strep.faecalis Bacteroides Proteus	66 +++ ++ + +	+169 ?		+160 ?		÷.	
18	Klebsiella	0 + .	, 1 ¹¹ ,	+52 +++	100 100 100	+56 +++		
19	E.freundii A.cloacae Strep.faecalis Resp.orgs. Candida Lactobacilli	28 - - + + +	-9 - +++ - - - -	+39' +++ - - - +	+71 - +++ +++ +++ - -	+13' - +++ +++ +++ -		-6' ± - - - ±
21	Coliform orgs.	8 +++	+197 ?		+193 ?			
24	E.freundii Strep.faecalis Resp.orgs.	10 ± ++ ++	+298 +++ +++ -		+320 +++ +++ -		1	
25	Coliform orgs. Ps.pycocyanea Resp.orgs.	5 ± ± +	+301 +++ +++ -	+263 +++ +++ -		+55 +++ +++ -	42.01 2 ×	с. С. н. с. с.
Patients wi 48	th gastro-intestinal E.freundii Strep.faecalis	disorders 2 ±	+19 ?	++ ++ +++	+32 +++ ++	+8 +++		+2 ++
49	E.coli E.freundii	19 + ±	+25 +++ +++	+19 +++ +++	+25 +++ +++	+10 +++ +++	-6 ++ +	+3 ++ +
Normal subj	ects							
64	E.coli Resp.orgs. Anaerobic streps.	43 - +++ +	+169 +++ -		+245 +++ - -	+67 +++ -		
65	E.coli Strep.faecalis Ps.pyocyanea Bact.alkalig.	0 - - ±	+201 +++ - -	÷	+216 +++ + + -	+67 +++ + -		
67	E.freundii Strep.faecalis Respiratory orgs. Anaerobic Streps.	1 - - ± ±	+1 +++ _ _	+7 +++ . + -	+7 +++ - -	+50 +++	+1 + + - -	+4 +
68	E.coli Paracolon Bac. Strep.faecalis Bact.alkalig. Lactobacilli Resp.orgs.	5 - - - ++ ++	+2 - - ++	+1 - - ++	+10 - ++ ++ ++ - -	+40 +++ +++ - - - - +++	+5 - - - - - ++	+61 ± - - ++
	Anaerobic streps.	-	_					

' Lactose added instead of glucose.

"Respiratory Organisms" include one or more of the following: Strep.viridans, Micrococci, Staph. albus and Diphtheroids.

TAEE E

Bacterial growth and changes in Methoininecontent of ileal fluid during incubation

Figures represent Methioinine in ug N/ml. Bacteria growth is expressed semi-quantitatively (See P 46).

	organisms	Initial content	Water	Glucose	Methionine	Methionine + Glucose	Methionine + Chlortetracyecline	Methionine + Glucose + Chlortetracycline
Patients wi	th Cirrhosis				3			
2	Coliform orgs. Strep.faecalis Protens	70 ++ +++	0	×	-200		2	
3	Coliform orgs. Strep.faecalis Bacteroids Protens	33 +++ ++ ++ +++ +++	+61 +++ +++ - -		-404: ++÷ +++		12	
18	Klebsiella	11 +		+9%::: +++	-111: 3 +++			
19	E.freundii A.Cloacae Strep.faecalis Resp.orgs. Candida Lactobacilli	61 - - ± ± +	+9 ++++ - -	-9' +++ - - + +	-158 - +++ +++ +++ - -	-40' +++ +++ +++		-12' ± - - - ±
21	Coliform Orgs.	98 +++	-2 ?		-215 ?			R
24	E.freundii Strep.faecalis Resp. orgs.	16 ± ++ ++	+28 +++ +++ -					
25	Coliform orgs. Ps.pyocyanea Resp. orgs.	6 ± ±	+24 +++ +++ -	-16 +++ +++ -		-15 +++ +++ -		
Patients wi	th gastro-intestinal	disorders				antelas tulas <u>a pres</u> enti		
48	E. freundii Strep.faecalis	55 ± ±	+67	+49 +++ -	-144 +++	-46 +++)-	a marina a marina a	+14 ++
49			and and a second s					
	E.coli E.freundii	156 + ±	-30	+2 +++ +++	-276 +++ +++	-102 +++ +++	-8 ++ +	-6 ++ +
Normal sub	E.freundii	+	+++	+++	+++ +++	+++	++ +	++
<u>Normal sub</u> 64	E.freundii	+ + +	+++	+++ +++	+++ +++	+++ +++	++ +	++
	E.freundii jects E.coli Respiratory orgs.	+ + 	+++ +++ -71 +++	+++ +++	+++ +++	+++ +++ 	++ +	++
64	E. coli E. coli Respiratory orgs. Anaerobic Streps. E. coli Strep. faecalis	+ + + 777 +++ ±	+++ +++ -71 +++	+++ +++ +8 +++ + -	+++ +++	+++ +++ +118 +++ -	++ +	++
64 65	E.freundii jects E.coli Respiratory orgs. Anaerobic Streps. E.coli Strep.faecalis Ps.pycyanea Bact.alkalig. E.freundii Strep.faecalis Respiratory orgs.	+ ± 777 ++++ ± 7 7 - - + 577 - - ± ± 117 -	+++ +++ -71 +++ -	+++ +++ + +8 +++ + - - - - 13 +++	+++ +++ -14 +++ - - - 29	++++ ++++ +118 ++++ - - - - - 94 ++++ + - - -	++ +	++

' Lactose added instead of glucose.

"Respiratory organisms" include one or more of the following: Strep.viridans, Micrococci, Staph. Albus and Diphtheroids.

FAECES BEFORE THERAPY

Subject's No. and	Date of spec	S.C.	Coli	St.f.	St.an.	Bac.	Lac.	Cl.w.	Others	
Dates of Therapy	24.10 ^x	2•5 x 10 ¹⁰	4.3 x 108	5 x 107		-	-	±	-	
7 (1)	28.10		$3 \cdot 2 \times 10^8$	6 x 10 ⁸	-	-	-	-		
l (A)		-		이 아이는 그가 들었다.		-	아이는 그의 것이			
30.10 - 4.11										
	24.9 ^x	_	1×10^{6} 1×10^{8}	2.2×10^8				3.9 x 108		
	27.7	11	1×10^{8}	$1 \cdot 1 \times 10^{8}$	-	-	-	$6 \cdot 4 \times 10^{7}$	-	
2 (B)	29.9	1•8 x 1011	9 x 10 ⁸	1.5 x 108	-	-		1•9 x 10 ⁸	-	
29.9 - 4.10		-							-	
29.9 - 4.10			-					_	_	
		_	_				1.1.1.1	1 <u>.</u>		
25.10 - 29.10		-		_	-	×	-	-	-	
		-	-	4	<u>.</u>	-	-	-	-	
			-	-		-	-	-	-	
		-	-	₩	+	÷	-		-	
			-		-		-		-	
13.4 - 20.4	13.4	6.2 x 10 ¹⁰	9 x 10 ⁸	8.5×10^8	-	4.5 x 10 ⁹	-		-	
3 (C)	25.11	5.5 x 1010	5.5 x 107	6 x 10 ⁸		3×10^8	-		-	
	27.11	$3 \cdot 8 \times 10^{10}$	4.6×10^8	6×10^{7}		2×10^9			-	
27.11 - 2.12			4	0		10			*	
	22.3 ^x		2.7×10^4	7 x 108		1.3×10^{10}		-	- 0	
5.4 - 8.4	5.4	1.2 x 1011	4.7×10^8	1.4×10^9	2011년 - 11일 - 12일	8 x 10 ¹⁰	-		1.1 x 10 ⁹	St.albus
		3 - 2	-	-	•	-	-		-	
19.5 - 27.5	19.5	-	4.5×10^{7}	-		1 x 10 ¹⁰	2 x 10 ⁸	2 x 108	1 x 10 ⁹	St.albus
	16.11 ^x	3.6×10^{10} 2.9 x 10 ¹⁰ 5.2 x 10 ¹⁰	2.5 x 109	5×10^{7}		3×10^9			_	
4 (D)	23.11	2.9×10^{10}	$1 \cdot 1 \times 10^8$	3×10^{7}	4.6 x 10 ⁸	9.9 x 108	_	_	_	
	24.11	5.2×10^{10}	5.9 x 10 ⁹	9 x 10 ⁷	7.5×10^8	1.5 x 10 ⁹	-		1	
27.11 - 3.12			-	-			-		— .	
			-		-	-		-	-	
			-		-	(a rr)			-	
			-	-	-		-			
		-		-	-	-	-		-	
2.4 - 5.4	2.4	지방에 많은 것 같아?	3.5×10^8	1.5 x 10 ⁹		8 x 10 ⁹		and the second second		
2.4 - 0.4	N. I			T.0 Y TO		-	_ T		-	4
E (P)	2.3 ^x	_	5.3 x 10 ⁸	1.3 x 10 ⁹		9 x 10 ⁸		1 - 108	1.5 x 10 ⁸	(M5 c)
5 (E)	4.3 ^x		3×10^8	$2 \cdot 2 \times 10^9$	1	5 x 10 ²		1×10^8 2×10^8	T.0 Y TO.	(Mic)
13.3 - 21.3	7.3X	4.5×10^{10}	1.1 x 108	1×10^{8}	9 x 10 ⁸	5 x 108 1•3 x 10 ⁹	-	1.5×10^8	- 7.5	
TO.0 - NT.0	10.3		4.4 x 108	8.5 x 108	-	+	+	+		
	12.3	-	1.3 x 108	4.5×10^8	8 x 10 ⁸	7.5 x 10 ⁺ 8	-	7•5 x 10 ⁸	244 - 1 99 - 1	
	13 1 15 15 10									
7.5 - 13.5		2.);	2. 0	-			-			
		1 - 5								

x Specimens not shown in diagrams.

Addreviations as for Table A. In addition (1) St.f.(h) = haemolytic strep faecalis. (2) St.alb. = Staph.albus. (3) St.pyog. = Staph.pyogemes.

TABLE F (I).

The effect of Chlortetracycline on the faecal flora.

FAECES DURING THERAPY

1.						and a second a strategy of a stand web table of high					
Date	S.C.	Coli	Ρ.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	Cl.w.	Others	
1.11	2.3 x 10 ¹⁰	2•9 x 10 ⁷	1.3 x 10 ⁸	6•6 x 107	1 x 10 ⁸	-	-	-	-	-	
	-			-	-	-		-		-	
		- 1953				-	-	-	-	-	and the second
1.10	6•3 x 10 ⁹	2.3 x 10 ⁷		-	_	-	_	-	4 x 10 ⁶	7 x 107	(St.albus)
4.10		-	1 x 10 ⁶	5.6 x 10 ⁷		1.1 x 107	-		-	-	
	-	-	-	-		-	-	-	-	-	
	-	.	-	T i 2	-	-	-	-		-	
	10	-	9	-		-	-	-	-	-	
27.10	3°1 x 10 ¹⁰		2.1 x 10 ⁹		1.5 x 10 ⁹	-				_	
					~						
	-					-		_		-	
ANT -		C2 - 1002			-	승규는 물건을 많이	-	-		in the second	
			-		-		-	-	-	-	
15.4	1.5 x 1010	Ē	Ξ	6) E 43	-		E - S.	5 x 10 ⁹	3	8•5 x 108 8•5 x 10 ⁸	Mic. St.pyogenes
29.11 30.11	1.5 x 10 ¹⁰	1 x 107 1 x 107	7.2 x 10 ⁸ 4.8 x 10 ⁸	9.4 x 10 ⁸ 1.3 x 10 ⁹	-	3.8 x 10 ⁹	=			-	
7.4	-	4 x 10 ⁸		7 x 10 ⁸	-	-	1 x 10 ⁹	2	1.12	4•7 x 10 ⁸	St.albus
	-	1	9-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5 . E	2	-	-	1. 1. .	2		
					-		-				
21.5 27.5	=	5_x 10 ⁶	=	- 5 x 10 ⁸	- 1 x 10 ⁹	=	5 x 10 ⁹	1.2 x 10 ⁹ 2.5 x 10 ⁹		1 x 10 ⁹	St.albus
29.11	9.5 x 10 ⁹ 8.7 x 10 ⁹ 2.5 x 10 ¹⁰	-	7.5 x 108 8 x 108 2.5 x 108	- 7	-	-	7.5 x 10 ⁸		-		
2.12 3.12	$8 \cdot 7 \times 10^9$	8	8 x 10°	2.5 x 107		-	-	9	1. T. L. C. S.	-	
3.12	2.5 x 1010	2.5 x 10 ⁸	2.5 x 100		1.5 x 108			4 x 10 ⁹			
	-						-				
	14 1 1 - P. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- S.S.	-	PG01-01	- Contract			-	-	-	
	- 420	1.2.2.1	1.00	5	-			1.87	The second	-	
5.4	5 J. C. S.	2_x 10 ⁷	5 x 10 ⁸	4_x 107	1 .	5 x 10 ⁹		-	그 다리는 날랐다.	-	
				3. 10.			-		-		
		0		0							
15.3 19.3 21.3	3.5 x 10 ¹⁰	1×10^{8} 1×10^{7}	2.1 x 10 ⁸ 5 x 10 ⁸	1.5 x 10 ⁸ 9 x 10 ⁸	-	1 x 10 ⁸		1 - 2	-		
19.3	3.2 X 1010		2.1 x 108	9 x 102		-	-				
61.3			5 X 10								
				-				_		-	
9.5	-	2 x 107		4.4 x 108	6.5 x 10 ⁸	1×10^{9}	1 x 1010	-	6.5 x 108	-	
13.5	- 14.	-	5 x 10 ⁶	4•4 x 10 ⁸ 2•5 x 10 ⁸	6.5×10^8 6 x 10 ⁸	1×10^9 2 x 10 ⁸	-	-	-	-	

2

FAECES AFTER THERAPY

(Candida)		(St.albus)	
0thers		2 x 10 ⁸ - - - -	
Cl.w. 	$ \begin{array}{c} - & - & - & - \\ 6 \cdot 4 \times 107 \\ 4 \times 107 \\ 3 \cdot 7 \times 107 \\ - & - \\ 1 \times 10^8 \\ - & - & - \\ - & - & - \\ - & - & - \\ - & & - \\ - & - & - \\ \end{array} $		
Lac. - - + -		- + - -	4 x 10 ⁸ - - + ±
Bac. - 5 x 10 ⁹ 5 x 10 ¹⁰	$ \begin{array}{c} - \\ 2 \cdot 4 \times 10^{8} \\ - \\ - \\ - \\ 1 \times 10^{10} \\ 6 \times 10^{9} \\ 3 \cdot 2 \times 10^{9} \\ + \\ 4 \times 10^{8} \end{array} $	- 7.5 x 108 2.5 x 109 1 x 1010 2.4 x 1010 -	$1^{5} \times 10^{10}$ 1×10^{10} 1×10^{9} 1×10^{11} 1×10^{10} $1^{5} \times 10^{10}$ $1^{6} \times 10^{9}$ $- 5 \times 10^{8}$
St.an. - - - -	$ \begin{array}{c} 4 \cdot 3 \times 10^{7} \\ 5 \cdot 7 \times 10^{7} \\ 2 \cdot 4 \times 10^{7} \\ 2 \cdot 5 \times 10^{8} \\ 1 \times 10^{8} \\ \end{array} $ $ \begin{array}{c} - \\ - \\ 1 \cdot 1 \times 10^{10} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- 1 x 10 ⁹ - - -	- - 4 x 10 ⁹ -
St.f.(H) - - - -	$2 \cdot 2 \times 10^{7}$ $1 \cdot 6 \times 10^{7}$ $9 \cdot 6 \times 10^{7}$ $9 \cdot 9 \times 10^{7}$ $4 \cdot 8 \times 10^{8}$ 5×10^{7} $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	1.5×10^8 1 x 10 ⁸	2.5 x 10 ⁸
St.f. 7.5 x 10 ⁶ 7 x 10 ⁹	2.5×10^7 1.7×10^8 1×10^9	$ \begin{array}{c} 6 \cdot 1 \times 10^{9} \\ 8 \times 10^{7} \\ 6 \times 10^{8} \\ 7 \cdot 5 \times 10^{8} \\ 1 \times 10^{9} \\ - \\ - \\ - \\ \end{array} $	$ \begin{array}{c} - \\ 8 \cdot 5 \times 10^{7} \\ 4 \cdot 4 \times 10^{6} \\ 1 \cdot 8 \times 10^{8} \\ 3 \cdot 4 \times 10^{8} \\ & + \\ & \pm \\ 9 \times 10^{8} \\ 7 \cdot 5 \times 10^{7} \end{array} $
P. $2 \cdot 9 \times 10^8$ $6 \cdot 5 \times 10^9$ $1 \cdot 8 \times 10^9$ 5×10^9	$ \begin{array}{c} 1 \cdot 4 \times 10^{8} \\ 7 \cdot 7 \times 10^{7} \\ $	$ \begin{array}{r} 3.7 \times 108 \\ 2.8 \times 108 \\ 4 \times 108 \\ 4 \times 108 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array} $	$ \begin{array}{c} 1 x 107 \\ 5 x 108 \\ 2 x 108 \\ 5 x 106 \\ - \\ - \\ 2 \cdot 5 x 107 \\ 5 x 106 \end{array} $
Coli 4.3 x 107 4 x 107 1.1 x 107	- - - 1.3 x 108 8 x 108 1.1 x 108 1.1 x 108 1.1 x 108 6.5 x 109 2.3 x 108 8 x 108	$ \begin{array}{c} 2 \times 10^{8} \\ 2 \cdot 5 \times 10^{7} \\ 2 \cdot 5 \times 10^{8} \\ 1 \times 10^{9} \\ 7 \cdot 5 \times 10^{8} \\ 3 \cdot 1 \times 10 \\ - \\ - \\ - \\ \end{array} $	9.9 x 10 ⁸ 4.8 x 109 1.5 x 107 2.6 x 109 1.8 x 109 8.4 x 108 1.2 x 109 2.6 x 109 2.6 x 109
S.C. 2.4×10^{10} 7.6×10^{10} 4.9×10^{10}	$ \begin{array}{r} 6 & x & 10^{8} \\ 6 \cdot 7 & x & 10^{7} \\ 4 & x & 10^{8} \\ 2 \cdot 9 & x & 10^{10} \\ 1 \cdot 8 & x & 10^{10} \\ 3 \cdot 1 & x & 10^{10} \\ 1 \cdot 3 & x & 10^{11} \\ 6 \cdot 5 & x & 10^{10} \\ 3 \cdot 7 & x & 10^{10} \\ 1 \cdot 2 & x & 10^{9} \end{array} $	$3.9 \times 10^{10} \\ 2.2 \times 10^{10} \\ 3.5 \times 10^{10} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	3 x 10 ¹⁰ 2.2 x 10 ¹⁰ 6.9 x 10 ¹⁰ 8.5 x 10 ¹⁰ 7.5 x 10 ¹⁰ 1.2 x 10 ¹¹
Date 5.11 12.11 3.12 ^x 10.12 ^x	$\begin{array}{c} 6.10\\ 6.10\\ 19.10^{x}\\ 19.10^{x}\\ 21.10^{x}\\ 2.11\\ 4.11\\ 10.1^{x}\\ 28.2^{x}\\ 10.3^{x}\\ 15.3^{x}\\ 28.4 \end{array}$	13.12 15.12 13.4 22.4 26.4 ^x 4.5 ^x	5.12 9.12 28.12 ^x 15.2 ^x 4.3 ^x 14.3 ^x 24.3 ^x 27.3 ^x 14.4 18.4

Υ.

No.	Date	S.C.	Coli	St.f.	St.an.	Bac.	Lac.	Cl.w.	Others
57 (T)									
9.2 - 12.2	9.2	4 x 10 ¹⁰	l x 107				6 x 10 ⁹		
60 (X)	11.8		3°3 x 10 ⁸	3.5×10^7		3 x 109		5 x 107	3.2 x 10 ⁸ (Mic
11.8 - 17.8									
61 (Y)	12.8		2.5 x 10 ⁸		5 x 107	2.3 x 109			
13.8 - 20.8									
70 (V) 9.2 - 12.2	9.2		3•2 x 106	1.5×10^{5}		4 x 10 ⁸	9 x 10 ⁸		
71 (W) 22.2 - 25.2	22.2	7•4 x 10 ¹⁰		8 x 107		2•4 x 109			
77 (7)									
13.8 - 21.8								Anna Anna	

SUBJECTS WITHOUT LIVER DISEASE

REFORE THERAPY

TABLE F (II)

DURING THERAPY

Date	S.C.	Coli	Ρ.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	Cl.w.	Others
13.2 15.2	6.3×10^{10} 9.5 x 10 ⁹	$ 8 \times 10^{7} \\ 4 \times 10^{8} $	5 x 10 ⁷	2×10^8 4×10^9	5.5×10^{7} 5.5×10^{9}	-		5 x 10 ⁹ 1•8 x 10 ⁹	-	-
8.3	4.4 x 10 ¹⁰	7•4 x 10 ⁸	1 x 10 ⁷	-	7. 5 x 10 ⁹	-	-	-	-	
	1	-	-	-	-		_	-		-
	-	Ē	Ξ	-	Ξ	-	-	-	-	Ξ.
18.4		1	-	1 x 10 ⁹	2.2 x 10 ⁹	2.1 x 10 ⁹	=	=	Ξ	2•7 x 10 ⁸ (St.pyogenes) -
	-	-	-	-		-	=	Ξ	-	
14.2	2.6×10^{10}	5•5 x 107	1.3 x 10 ⁸	2.2 x 10 ⁸		9 x 10 ⁸	-	1•4 x 10 ⁹	-	
	-	-	-	-		-	-	1	-	
	1		Ē	Ξ	Ξ	Ξ	<u> </u>	Ξ.	Ξ	
18.7	Ξ	=	-	=	1.5 x 10 ⁹	=	-	-	=	2•8 x 10 ⁹ (St.pyogenes) 1•5 x 10 ⁹ (Mic)
27.2	-	-		3 x 10 ⁸	-	-	-	1. 1		-
	-	-		-	-	-	-		-	-
25.6	-	3•3 x 106	2.5×10^7	1 x 10 ⁵	-	-	-	-	-	1×10^7 (St.albus)
13.6	ia <u>-</u> 168	6•5 x 10 ⁸	5 x 10 ⁶	5 x 10 ⁶	-	1 x 10 ⁸	-	1.5 x 10 ⁸	1.5.1.2 ⁷ -1.	-
	-	-	-	-	1.1	-	-	-		
13.8 15.8 18. 8	• =	$ \begin{array}{r} 4 \times 10^9 \\ 2 \cdot 4 \times 10^{10} \\ 6 \times 10^9 \end{array} $	2 x 10 ⁷	-	-	-	1.8 x 10 ¹⁰		-	-
	-		-	7 x 10 ⁸	-	-		_		-
10-2	4.4 × 10'0	6 × 107 1 × 109	-	1.5 + 107	1	-		3.1 */09	-	

AFTER THERAPY

Date	S.C.	Coli	Ρ.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	Cl.w.	Others
18.2 25.2	6•3 x 1010 5•1 x 1010	- 3.6 x 10 ⁸	4.8 x 10 ⁸ 1.1 x 10 ⁹	1.8 x 100 -	3.5 x 10 ⁹	3.6 x 10 ⁹	1 x 10 ⁹	-	(m) (m)	_ l x l0 ⁹ (Mic)
11.3 15.3 19.3 22.3	7•5 x 10 ⁹ -	5.3×10^8 1.2×10^9	$\begin{array}{c} 3.8 \times 10^8 \\ 1 \times 10^9 \\ 3 \times 10^8 \\ 2 \times 10^7 \\ 5 \times 10^7 \\ - \end{array}$	3 x 10 ⁸ 3 x 10 ⁹ 3•5 x 10 ⁸	$1 \cdot 1 \times 10^9$ 1 x 109	2.3 x 10 ⁸ 2 x 10 ⁹	$\frac{1}{7 \times 10^{9}}$	- - +	Ē	Ē
22.3 28.5x 14.4 ^x	$\begin{array}{r} \mathbf{6\cdot4} \times 10^{10} \\ 4 \times 10^{10} \end{array}$	5.3×10^{8} 1.2×10^{9} 2.4×10^{8} 5×10^{9} 2.8×10^{8}	2×10^7 5 x 10 ⁷	2×10^{7} 1×10^{8} $8 \cdot 5 \times 10^{7}$	1 - 108	9 x 10 ⁸ 1.3 x 10 ⁹	$ \begin{array}{r} - & - & - & 9 \\ 7 \times & 10^{9} \\ 2 \cdot 5 \times & 10^{8} \\ 5 \times & 10^{9} \\ 6 \cdot 7 \times & 10^{8} \end{array} $	3 x 109 -	-	
25.4 3.5		- 6 x 10 ⁸	2.9 x 10 ⁸ 1.5 x 10 ⁷	1 x 10 ⁹	1.9 x 10 ⁹ 2 x 10 ⁹	- 7.5 x 10 ⁸	Ξ	1	.	Ē
11.8 16.8	·	- 5 x 10 ⁸	2.5 x 10 ⁸	-	-	=			-	-
18.2 25.2	Ξ	$1.3 \times 1010 \\ 7.4 \times 1010 \\ 4.7 \times 1010 \\ 1000 \\ 100$	8×10^9 5 x 109	2.8 x 108	1.9 x 10 ⁹	1.2 x 10 ⁹	$ \begin{array}{c} 8 \times 10^{8} \\ 5 \times 10^{9} \\ 1 \cdot 3 \times 10^{9} \\ 6 \times 10^{8} \end{array} $	$ \begin{array}{r} $	2•7 x 10 ⁹	i E The
4.3 ^x 8.3 ^x 17.3 ^x 22.3 ^x	Ē	4.7 x 10 ¹⁰ 1.2 x 10 ¹¹	$ \begin{array}{c} 5 \times 10^{\circ} \\ 2 \cdot 6 \times 10^{9} \\ 6 \times 10^{8} \\ 1 \cdot 5 \times 10^{8} \\ 8 \times 10^{8} \end{array} $	Ē	$\begin{array}{c} 6 \times 10^8 \\ 6 \times 10^9 \\ 9 \times 10^7 \end{array}$	Ξ	6 x 10 ⁸	1.2×10^{10}	- 1•3 x 10 ⁹	Ξ
	-	-	-	-			-	-	=	=
	-	-	-	-	-	-	-		-	-
29.6	-	1 x 10 ⁸	1 x 10 ⁷	1 x 10 ⁸		-	-	-	-	-
	-	-	-	-		-	-	-		
25.6	-	-	7.5 x 10 ⁹	1.5 x 10 ⁹	-	1 x 10 ⁸	-	3 x 10 ⁹		-
1.7 7.7	<u> </u>	2.8 x 10 ⁸	2.5×10^8 9 x 10 ⁷	1.2 x 10 ⁹ 1.5 x 108		-	1 x 10 ¹⁰	-	-	-
23.8 25.8	-	8.5 x 10 ⁷ 2.8 x 10 ⁹	1.5 x 10 ⁷ 7.5 x 107	1.5 x 108 1.1 x 109	2	-	-	380 ¹ 1	-	-
14.2	2.7 × 10 "	2.5×108 2.4×109	4.5 × 107 ±	-	1.1	î,	3.2 × 109	2.3×104	<i>с 1</i>	~ ~ ~

			and a supply and the			2015 - 1172 - The State of the	₩₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-2₩1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩1-1-1-2₩			
No.	Date	S.C.	Coli	St.f.	St.an.	Bac.	Lac.	Cl.W.	Others	
7 (F) 10.2 - 16.2	9.2	4.8 x 1010	9.4 x 10 ⁸	1 x 10 ⁸		1.7 x 109				
3.3 - 8.3										
								-		
				even Marte		6000 6000				
			-			-		-	4700	
16.4 - 23.4	16.4	4•5 x 1010 -	7.5 x 107			4•4 x 10 ⁹				
8 (R) 4.8 - 8.8										
	10.2				2.8 x 10 ⁹	1.9 x 109	2.7 x 109			
9 (G)										
10.2 - 16.2									6965 6500	
			6505							
18 (H)	10.7		4.5 x 107		2.5×10^9		6×10^{7}			
10.7 - 18.7										
29 (K) 20.6 - 27.6	20.7		l x 106	4 x 107					3 x 10 ⁶	(Alk)
30 (M) 18.6 - 24.6						and the second state of the second				
31 (N)	22.6	•	3×10^8	6×10^7				-	-	
22.6 - 25.6										
36 (0)					**************************************					
11.6 - 14.6										
25.6 - 28.6										
37 (P)										
11.8 - 21.8										
20 [I] 9.2 ~ 12.2	9.2	4×10°°	1×107				6.104			

. .

BEFORE THERAPY and a first and

42 1					TABLE F ((III).				
Date	S.C.	Coli	Р.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	Cl.w.	Others
						0				
10.2	<u>4.4 x 10¹⁰</u>	6 x 107 1 x 10 ⁹		1.5 x 10 ⁷	-	- 2·1 x 10 ⁹	3•5 x 10 ⁸ 7•5 x 10 ⁸	2•8 x 10 ⁹		
13.8 15.8 17.8	-	2.5 x 10 ⁷ 4.7 x 10 ⁸ 1.2 x 10 ⁹	8 x 107	1.1 x 10 ⁸ 1.6 x 10 ⁸ 5 x 10 ⁹	Ē	Ξ	5 x 10 ⁸ - -	-	-	
15.8 18.8 20.8	-	1.3 x 10 ⁹ 1.8 x 10 ⁹ 1.2 x 10 ⁹	2.5 x 107 3 x 108	2.3 x 109 3 x 109	-	=	-	l·3 x 10 ⁹ 8·5 x 10 ⁸ ±	- -	-
10.2 16.2	-	1.5 x 10 ⁹ -	Ē	1.2 x 10 ⁹	2	-	5 x 10 ⁹ -	1.2 x 109	-	-
24.2 25.2	6 x 1010 2.7 x 1010	8 x 10 ⁸ -	-	2.5 x 109	2.6 x 10 ⁹ 2.8 x 1010	-	-	-	E	. =
14.8 18.8 20.8	=	1 x 10 ⁸ 2 x 10 ⁸ 1•8 x 10 ⁹	7 x 10 ⁸	2.5 x 10 ⁸ - -	3•5 x 10 ⁸ 2•5 x 10 ⁸	- 1•3 x 10 ⁹ 8•5 x 10 ⁶	9•4 x 10 ⁹ - -	Ē	-	=

DURING THERAPY

	9								2
						4a			
					AFTE	R THERAPY			
Date	S.C.	Coli	Ρ.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	

Date	S.C.	Coli	Р.	St.f.	St.f.(H)	St.an.	Bac.	Lac.	Cl.w.	Others	
14.0	$100 - 10^{10}$	1.7 - 1.9	a = - 108	2•5 x 109				2 2 9			
14.2 18.2	1.9 x 10 ¹⁰	$1^{\circ}5 \times 10^{\circ}$ $5^{\circ}5 \times 10^{7}$	6.5 x 10 ⁸	2.5×103 1.5×107	-		4 x 10 ⁹	1 x 10 ⁹	-	-	
	Ξ	-	-	-	Ξ	Ξ	Ē	Ē	=	Ē	
	Ē	Ē		-	-	<u> </u>	<u> </u>	= = =	Ē		
14.2	9 x 10 ⁹	1 x 10 ⁷	l x 10 ⁸	1.8 x 109 -	-	=	2	2 x 10 ⁸		=	
28.2	3.7 x 10 ¹⁰	1.1 x 109	Ξ.	l x 10 ⁹	6.2 x 10 ⁹	=	-	-	1		5
23.8 29.8		7•9 x 10 ⁹ 1•3 x 10 ⁸	4.5 x 107 -	5•5 x 10 ⁹ -	3.5 x 107	=	4.8 x 109	-	=	=	
{	وستود الرجوب والمحود ومحرد وراجا وراجا										

TABLE G

Ammonia production by gram positive bacteria. Cultures grown in Amino Acid medium containing 0.5% glucose. NH4 production and growth in µg N/ml.

Velchil 251 42 106 42 42 67 52 16 67 52 42 24 42 24 43 224 415 12 63 54 63 54 17 610 52 44 10 55 117 610 66 846 39 77 422 44 100 53 110 $23(\pm 213)$ $9(\pm 6)$ 423 11 7 45 31 123 1123 11 7 67 123 111 11 7 226 11 7 23 1128 123 124 1148 126 131 113 7 133 113 7 53 </th <th>pH</th> <th></th> <th>6</th> <th>[</th> <th>7.2</th> <th></th> <th>8</th>	pH		6	[7.2		8
10 obtridium 257 32 221 37 101 obtridium 251 102 (201) 40(16) 105 2 105 2 106 2 107 108 108 2 108 2 108 2 108 2 108 2 108 2 108 2 109 30 100 30 100 30 101 2 101 2 101 2 101 2 101 10 101 10 101 10 102 10 103 20 104 10 105 2(16) 104 10 105 2(16) 110 10 111 7 112 10 113 20 114 10 115 10 116 142 117 10 118 10 119 10 124 10 </td <td>Species</td> <td>Growth</td> <td>NH# production</td> <td>Growth</td> <td>NH4 production</td> <td>Growth</td> <td>NHy production</td>	Species	Growth	NH# production	Growth	NH4 production	Growth	NHy production
15 2 10 0 30 3 actobacillus 17 5 44 4 16 18 Plantarum 66 8 46 5 10 19 dean \pm S.D. 33(\pm 20) 5 \cdot 0(\pm 3) 27(\pm 15) 4(\pm 1) 23(\pm 13) 9(\pm 5) actobacillus 17 0 149 0 163 11 actobacillus 166 67 17 0 163 11 Actobacillus 166 67 11 7 0 166 16	Clostridium Welchii			257 281 105 91 251 105	32 37 37 38 42 42		
actococlins $\frac{13}{17}$ 6 43 4 10 19 clantarum 06 8 49 5 10 5 (san ± S.D. 33(±29) 5•0(±3) 27(±15) 4(±1) 23(±13) 9(±6) actococcilius 17 0 149 0 163 0 15 actococcilius 123 11 45 31 149 0 123 11 dean ± S.D. 99(±65) 8(±15) 126 77 126 77 126 79 126 127 13 126 <td>Mean + S.D.</td> <td></td> <td></td> <td>182(±91)</td> <td>40(±6)</td> <td></td> <td>и</td>	Mean + S.D.			182(±91)	40(±6)		и
actobacillus 17 0 149 0 163 0 123 11 45 31 Mean ± S.D. 99(±65) 8(±15) 18a ± S.D. 136 67 173 99 202 119 164 142 140 166 142 263 214 140 166 142 263 119 164 140 166 164 142 125 119 164 140 166 142 195 265 214 164 140 166 142 195 265 214 164 140 166 142 265 214 164 140 166 142 165 163 20 113 20 164 145 164 140 166 168 164 142 20 164 164 145 166 169 36 164 164 164 164 164 164 164<	Lactobacillus Plantarum	4 63 17	2 2 5 6 8	16 24 43 10 46	0 2 4 4 5 5 7	37 15	3 3 12 19
actobacillus 149 0 ki fidus 123 11 Mean ± S.D. 99(±65) 8(±15) Mean ± S.D. 99(±65) 8(±15) 178 73 173 178 73 19 164 142 123 202 119 164 164 142 223 223 195 253 253 214 131 Mean ± S.D. 133 20 164 142 23 175 99 46 106 59 46 106 50 106 106 50 106 151 53 106 164 113 32 165 123 32 166 113 32 167 13 32 168 113 32 113 32 6 125 25 6 136 29 118 146	Mean ± S.D.	33(±29)	5•0(±3)	27(+15)	4(±1)	23(<u>+</u> 13)	9(±6)
$\begin{array}{c ccccc} & 100$	Lactobacillus Gifidus			149 163 123			
$\begin{array}{c} 178 & 73 \\ 173 & 99 \\ 202 & 119 \\ 164 & 140 \\ 166 & 142 \\ 253 & 214 \\ \end{array}$ Mean ± S.D. $\begin{array}{c} 193(\pm 27) & 131(\pm 53) \\ 11 & 7 \\ 13 & 20 \\ 59 & 46 \\ 106 & 59 \\ 106 & 50 \\ 113 & 32 \\ 113 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 119 & 32 \\ 106 & 38 \\ 106 & 3$	Mean ± S.D.			99(<u>+</u> 65)	8(±15)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl.sporogenes			178 173 202 164 166 223	73 99 119 140 142 195		
$\begin{array}{c ccccc} 13 & 13 & 20 \\ 59 & 46 \\ 106 & 39 \\ 106 & 50 \\ 151 & 53 \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Mean ± S.D.			193(±27)	131(±53)		
$\begin{array}{c ccccc} & 73 & 5 \\ 22 & 6 \\ 113 & 32 \\ 119 & 36 \\ 69 & 46 \\ \hline \end{array}$ Mean \pm S.D. $\begin{array}{c cccccccc} & 79(\pm 39) & 25(\pm 18) \\ 113 & 29 \\ 119 & 32 \\ 69 & 37 \\ 119 & 32 \\ 69 & 37 \\ 119 & 32 \\ 69 & 37 \\ 106 & 38 \\ 99 & 40 \\ 82 & 47 \\ 79 & 53 \\ \hline \end{array}$ Mean \pm S.D. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Staphylococcus Pyogenes			13 59 106 106	20 46 39 50		
Haemolybic) 119 36 Mean \pm S.D. 79(\pm 39) 25(\pm 18) itrep.faecalis 113 29 non-haemolybic) 99 40 82 47 79 99 40 82 82 47 79 79 53 53 Mean \pm S.D. 95(\pm 19) 39(\pm 7) 9 2 3 maerobic 9 6 treptcocccus 32 13 15 13 15 24 85 27 29 40	Mean ± S.D.			74(±56)	36(±18)		
$\frac{113}{119}$ $\frac{29}{32}$ $\frac{113}{69}$ $\frac{32}{69}$ $\frac{69}{37}$ 106 $\frac{38}{99}$ $\frac{40}{82}$ $\frac{47}{79}$ $\frac{95(\pm 19)}{39(\pm 7)}$ $\frac{95(\pm 19)}{39(\pm 7)}$ $\frac{9}{53}$ $\frac{2}{3}$ $\frac{3}{7}$ $\frac{4}{4}$ $\frac{9}{9}$ $\frac{5}{6}$ $\frac{9}{6}$ $\frac{6}{5}$ $\frac{13}{15}$	Strep.faecalis (Haemoly þ ic)			22 113 119	36		
$ \frac{119}{69} & 32 \\ 69 & 377 \\ 106 & 388 \\ 99 & 40 \\ 82 & 47 \\ 79 & 53 \\ Mean \pm S.D. & 95(\pm 19) & 39(\pm 7) \\ \frac{9}{2} & 3 \\ 7 & 4 \\ 9 & 5 \\ 9 & 6 \\ 32 & 13 \\ 15 & 13 \\ 15 & 13 \\ 15 & 24 \\ 85 & 27 \\ 29 & 40 \\ \hline $	Mean ± S.D.			79(±39)	25(±18)		
9 2 2 3 7 4 9 5 9 6 5 13 15 13 15 24 85 27 29 40	Strep.faecalis (non-haemolytic)		Λ	119 69 106 99 82	32 37 38 40 47		
	Mean ± S.D.			95(±19)	39(±7)		
Mean \pm S.D. $21(\pm 27)$ $14(\pm 13)$	Anaerobic Strep b coc cus			9 27 99 32 5 55 29 25 55 99	2 3 4 5 6 13 24 27 40		
	Mean ± S.D.			21(<u>±</u> 27)	14(<u>+</u> 13)	-1	

TABLE H

Ammonia production by gram negative organisms in the amnio acid medium.

Glucose when present at concentration of 0.5%.

 $\rm NH_4$ production and bacterial growth (Turbidity) in μg N/ml.

	6			7.2		8	
Glucose				1	+	-	
Species	Growth NH	4 Growth	NH4	Growth	NH4	Growth	NH4
E.freundii	125 173 166 190	131 130 102 75	154 155 166 178	75 51 62 77 75	88 101 104 120 132	42 60 85	145 191 202
Mean ± S.D.	145(±29)181(;	=15)109(±27)	163 (±]	1)68(±11)109(±16)	62(±22)	179 (± 30)
E.coli				97 107 178 106	85 86 101 110		
Mean ± S.D.		15° y		122(±38	3) 95(±12)		
Klebsiella				187 185 183 130	53 55 81 97		1
Mean ± S.D.				146(±39	9) 71(±21)		
Bact.alkaligenes		27 31	72 70				
Mean ± S.D.		29(±2)	71(±1	L)			an an fa an thao na h-air ann an t-air tag chàinn an na nn an c-ainne an Airtig
P.mirabilis	25 148 42 150	36 36	173 195	130 123 157 173 123 85 79 60 87 239	96 100 100 102 102 107 122 183 199 216	37 47	126 137
Mean ± S.D.	33(±12)149(±	=1) 36(±0)	184(±1	.6)1 27(± 53	5)133(±47)	43(+7)	131(<u>+</u> 8)
P.vulgaris	(F)			136 140 129 139 220	74 79 85 85 90		
Mean ± S.D.				153(±38) 82(<u>+</u> 6)		
P.morgani		80 77	149 150	161 165 138 108 140 140 189	83 83 133 138 146 150 166		
Mean ± S.D.	ic .	78(±2)	150(±1)149(+26)128(±28)		
Ps.pyocyanea		2		165 143 142 164 149	4 73 78 87 173		
Mean ± S.D.			-	155(±23) 83(±62)		
Bacteroides	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			70 2 8 3 2 2 7 15	9 12 15 16 17 17 20 28	1 2 2 3 4	7 11 19 20 21
Mean ± S.D.	4(±2) 13(±	:7)		13(+ 23		2(±2)	16(±6)

TABLE T.

The effect of chlortetracycline at concentrations just limiting growth on NH_4 production growth and NH_4 in μg N/ml.

Chlortetracycline		-		+	Concentration		
Species	Growth	NH4 Produced	Growth	NH ₄ Produced	of Chlortetracycline		
E.freundii	118 114 104 80	119 132 122 120	94 86 86 79	110 98 92 86	2•5		
Mean . S.D.	104 15	123 9	86 8	96 9			
E.coli	148 129 127 106	118 151 105 158	75 72 60 60	124 122 94 93	2•5		
Mean S.D.	122 40	133 22	67 4	108 17			
Klebsiella	132 132 92 81	45 41 95 81	100 89 89 52	28 8 7 18	2•5		
Mean S.D.	109 24	65 24	82 20	15 9			
Strep.facalis (haemolytic)	69 69 69 65	43 54 43 40	58 56 . 56 52	7 4 14 17	50		
Mean S.D.	68 2	45 5	55 8	10 6	2		
Proteus mirab i lis	162 158 124 421	116 100 109 106	112 111 111 103	103 106 106 98	50		
Mean S.D.	141 21	107 19	109 8	103 8			
Proteus morgani	130 130 109 101	150 146 167 158	109 91 82	170 178 173	50		
Mean S.D.	117 17	155 12	94 11	173 15			
Proteus vulgaris	134 117	121 124	78 76	146 148	50		
Mean S.D.	125 14	122 3	77	147 1			
Lactobacillus plantarum	30 24 24 23 21	7 4 0 2 9	21 18 13 11 11 9	11 1 10 5 5 5 0	10		
Mean S.D.	24 5	4 4	14 4	5 4			
Anaerobic Streptococcus	72 31 12	31 19 20	15 8 8	30 30 16	10		
Mean S.D.	38 25	23 7	10 4	25 8			

TABLE

The relationship of gastric and duodenal acidity to the bacterial population of the small intestine

ject's No	Gastric Duodena PH PH	Gastric Flora	Duodenal	Flora	Jejeunal H	lora	Ileal Flo	ora
ients w	ith Cirrhosis							
3	7.5		Bact.coli Strep.faecalis	6 x 10 ⁶ 3 x 10 ⁵			Bact.coli Strep.faecalis	9 x 107 1 x 107
18	2•5		Bact.coli Anitratum	6×10^2 4 x 10 ²	Bact.coli Strep.viridans Anitratum	3×10^{4} 2×10^{5} 2×10^{5}	Bact.coli Anitratum	2 x 10 ⁵ 1 x 10 ⁵
19	1.8	Candida 6.7 x 10 ⁵ M.citreus 1.7 x 10 ⁵	Staph. pyogenes	7×10^4 2 x 10^3 2 x 10^3 2 x 10^3	Staph.pyogenes Candida Luctobacili	1×10^{3} 1×10^{3} 3×10^{5}	Strep.viridans Lactobacilli + Candida + Staph.pyogenes -	
21	6•1	Bact.coli l x 10 ⁶ [Micrococcus + Strep.viridans +			Bact.coli Strep.faecalis	3 x 10 ⁶ 2 x 10 ⁸	Bact.coli	5 x 10 ⁷
23	2.0 1.8	Micrococcus 8.4 x 10 ³ Diphtheroids 4.2 x 10 ³ Strep.viridans 1.7 x 10 ³	sterile	•••••	Bact.coli Strep.faecalis	2×10^{4} 2×10^{4}	Bact.coli Strep.faecalis Ps.pyocyanea	5×10^{3} 2 x 10 ⁴ 4 x 10 ²
25	1•8		sterile	•••••	Bact.coli Strep.viridans + Ps.pyocyanea	3×10^2 1 x 10 ²	Bact.coli Strep.viridans Ps.pyocyanea	4×10^{2} 1×10^{5} 1×10^{2}
tients v	with gastro_intest	inal disorders			*************			
43	Ŧ		P.mirabilis Strep.viridan Diphtheroids	$\begin{array}{c} 6 \times 10^2 \\ 1 \times 10^5 \\ 2 \times 10^4 \end{array}$			Bact.coli Diptheroids) Micrococci)	7×10^2 4 x 10 ³
44	ł				Bact.coli Strep.faecalis	4×10^{6} 4×10^{7}	Bact.coli Strep.faecalis	1 x 107 8 x 107
46	1				Bact.coli	4 x 10 ⁷	Bact.coli P.vulgaris	4×10^{7} 3 x 10 ⁶
47	¥ 5•6		Bact.coli Ps.pyocyanea	6 x 10 ⁵ 1 x 10 ⁶			Ps.pyocyanea	2 x 10 ⁷
48	2•1	sterile	sterik	•••••	Bact.coli Strep.faecalis	1 x 10 ⁵ 3 x 10 ⁴	Bact.coli Strep.faecalis	8×10^4 4×10^4
ormal sub			17					8
64	3•6		Anaerobic strep. Lactobacilli	4 x 10 ⁴	sterile	•••••	Strep.viridans Anaerobic strep	2×10^{8} .1 x 10 ²
65	1.4	Strep.viridans 5.5 x 10^4	Strep.viridans	1 x 10 ³	Strep.viridans Anaerobic strep.		Bact.alkalig.	3 x 10 ²
66	1.7	sterile	sterils		sterile		Bact.coli Bact.alkalig.	1×10^{3} 1×10^{2}
8	5•0	Staph.pyogenes 1×10^2 Micrococcus) 1×10^5 Diphtheroids)	Strep .vi ridans + Micrococcus + Haemophilus +		Strep.viridans Lactobacilli	1 x 10 ⁶ 5 x 10 ⁵	Strep.viridans Lactobacilli	5 x 10 ⁶ 1 x 10 ⁶
1 =	a few colonies : moderate numbers	s isolated but not counted as repeated and the results were		.06				

"Bact.coli" includes all gram negative lactose fermenting organisms.

TABLE

A Comparison of the types of coliform organisms isolated from faeces and ileum

1) Patients with cirrhosis

Patient No.	;	Typical	l E.coli	Faed		lcal colifo	orm oi	rgan	isms			Typical	E.co	oli	Il	eum	• Atypi	cal coli:	form o	rgan	isms	
	number	antigen	LGMD	Suc Sal	number						number				Suc	Sal		antigen				
2	8 x 1.0 ⁸	09	+ + + +															~~~~~				
2	0 Y J 0	09		- +	3 x 10 ⁹	F	+ +	+ +	4	-	++	07	+ -	+ + + + + -	+	-	+	14	+ + +	+ +	+	-
3	+	091	+ + + -		+	F	+ +	+ +	+	-	+	091	+ +	h -h -	-	-	+	$\mathbf{x}_{\mathbb{Z}}$	+ + -	+ +	+	-
4	+	?	+ + + -	+ -	+	편 포	+ +	+ -	+	-							+	F	+ + -	+ -	+	+
9	+	?	+ + + -		+	F.	+ +	+ -		-	+	?	-11	+ + -	-	-						
9 18	+	?	+ + + +	+ -	A CONTRACTOR												. +	K	+ + -	+ -	+	+
19					6 x 107	F	+ +	+ -	+	-												
					1.5 x 10 ⁸	K	+ +	+ -	+	+							and the second s					
22					+	F	+ +	+ -	-	-	+	06	+ -	+ + -	-	-	+	K53	+ + -	+	+	+
					+	K17 K53	+ +	+ +	+	++++	I DOWN						and the second second					
23	+	081	+ + + =	± -		103		• -									+	F	+ + •	+	±	-
25	+	?	- 1 1 -								+	?	4	11 -	-	-	+	F	+ + -	+ -	-	-
	+	?	+ + + +		1.1.6.2			255			+	?	+ -	+ + -	-	-	1.19.1	14				
26	+	?	+ + + +	+ -				1			4											
io. of iso	patients plated	from whom	n	8			11)		ubie	5 cts w	ithout li	ver dise	ase			5						7
							رىلىد	0	ub.jc	000 1	10110000 11	VOI GIDUC	100									
48 49	+ 108	. ?	+ + + ±		- 7	-					-						+	F	+ + •	+ -	±	-
49 64	100	?	+ + + +	-	107	Fx	+ +	+ -	+	+	6 x 10 ⁵	?	+ +	+ + +	±	-	2.2 x .10 ⁴	F^X	+ + •	+ -	+	+
04	+	432 088	+++-	- +													10000002	*				
	+	025	+ + + +	+ +													1. 1. 1. 1. 1.					
65	+	02	+ + + +	- ±	1 × 12 × 1												17					
65 66	5×10^8 3×10^8	017	+ + + -	+ -							1 x 10 ²	0?	+ -	+ + +	+	-	1.5×10^{3}	F	+ + •	+ +	+	-
	3×108	0?	+ + + +	+ -													1.1.1.2.7.7.28					
277	2×10^8	0?	+ + + +		and the second second																	
67	÷	?	+ + + +	± -							1						10 10 10 10 10 10					
68	+	?	+ + + +	+ -	+	F	+ +	+ -	+	-												
68 69	+	?	+ + + -								+	?	+ -	+ + +	+	-						
	+	?	- + + +														-					
	subjects	from whom	n	8						2						3						3
Numbers	olated	expressed	l per g.	in the c	ease of faec					e of			ting	meth	od.	3						

The number following an 0 or H indicates the antigenic composition of E.coli strains. 0? = unknown 0 groups. ? = 0 group not determined.

F = E.freundii, K = Klebsiella. The number following K indicates the capsular type.

L, G, M, D, Suc, Sal indicates fermentation of lactose, glucose, Mancitol, Dulcitol, Sucrose and Selicin. + = Fermentation with acid and gas ± = Fermentation + = Fermentation

Faecal and ileal strains, put in red, were identical biochemically and in some cases antigenially.

FX = Strain of E.freundii identical also by colicine typing.

METHIONINE TOXICITY IN LIVER DISEASE AND ITS PREVENTION BY CHLORTETRACYCLINE.

By ELIZABETH A. PHEAR, B. RUEBNER, SHEILA SHERLOCK and W. H. J. SUMMERSKILL.

[Reprinted from "Clinical Science," Vol. 15, No. 1, February, 1956.]

24

[Reprinted from "Clinical Science," Vol. 15, No. 1, February, 1956.]

METHIONINE TOXICITY IN LIVER DISEASE AND ITS PREVENTION BY CHLORTETRACYCLINE.

By ELIZABETH A. PHEAR,* B. RUEBNER, SHEILA SHERLOCK, and W. H. J. SUMMERSKILL.

(From the Departments of Medicine and Pathology, Postgraduate Medical School of London.)

Received July 13, 1955.

NITROGENOUS substances given to certain patients with hepatic cirrhosis can precipitate neurological changes, indistinguishable from spontaneous hepatic coma (17, 23, 38, 47, 49). These include a high protein diet, ammonium salts and urea. There have also been reports that methionine, an amino-acid often recommended for the treatment of liver disease, might have a similar action. Watson (53) reports a patient with cirrhosis developing confusion after 8 g. methionine and Kinsell and co-workers (22) describe a patient with cirrhosis who became mentally disorientated when given 9 g. dl-methionine daily for three days. Singh, Barclay and Cooke (48) noted neurological deterioration in a patient with hepatic cirrhosis after 10 g. dl-methionine by mouth, and similar changes directly attributable to methionine have been reported in four other patients with hepatic cirrhosis (37, 47). The present paper describes investigations into the mechanism of methionine toxicity and the effect of chlortetracycline in delaying the development of symptoms.

PATIENTS STUDIED.

Twenty-eight patients with liver disease were investigated. Patients one to nine who were studied in detail suffered from cirrhosis of the liver and had previously experienced episodes of impending hepatic coma (*Chronic portal systemic encephalopathy*). Electroencephalograms were compatible with this diagnosis. In eight, the extent of the portal venous collateral circulation was assessed by transplenic portal venography (1) and a very extensive collateral circulation was demonstrated. In the ninth patient (Case seven) disturbance of the blood clotting mechanism prohibited this investigation.

In addition fifteen patients were observed with portal cirrhosis, one patient with biliary cirrhosis, one patient with extra-hepatic portal vein obstruction without cirrhosis and two patients with acute virus hepatitis. Six of these patients had previously experienced the neurological complications of liver disease (Table I).

Twelve patients were included, suffering from non-hepatic diseases.

^{*} Working with a grant from the Medical Research Council.

We wish to thank Dr. C. Dalgleish for biochemical advice, Dr. W. Hayes for guidance in the bacteriological studies, Dr. Harriet J. Warrack of the Wellcome Foundation for typing Clostridium Welchii strains, and Sisters B. D. Griffiths, S.R.N. and P. R. Richards, S.R.N. for enthusiastic nursing co-operation.

diagnosis, extent of portal venous collateral circulation and serum bilirubin and albumin levels.
Patients, diagnos

Patient	Sex	Age	Diagnosis	Portal-systemic collateral circulation	Serum bilirubin (mg. per cent.)	Serum albumin (g. per cent.)
1*	н	56	Portal cirrhosis	Thrombosed portal vein	1.4	2.8
2*	ц	52	:	:	2.0	2.3
3*	W	42		Patent porta-caval anastomosis	1.0	3.2
4*	ц	42		Extensive; patent umbilical vein	2.1	2.7
5*	ц	69	:	Thrombosed portal vein	2.2	2.8
6*	W	59	:	:	1.7	3.1
7*	ц	58			1.8	2.4
8*	W	39		Extensive; patent umbilical vein	1.2	3.2
*6	M	36	:	Extensive	1.4	2.8
10	Ĺ,	34		Extensive	1.5	3.0
11	M	35	:	Slight	ĿI	3.2
12	M	34	55 55		1.3	4.3
13*	M	59			- 0-3	3.9
14	ц	54		None	ĿI	4-0
15	щ	28		Extensive	1-2	3.2
16	M	23	33 33		1.2	4-1
17	M	48	55 55	-1	0-6	4.2
18	W	38		None	0-4	2.5
19	щ	45	Virus hepatitis		11-0	2.9
20	M	18	Portal pylephlebitis	Thrombosed portal vein	0-7	4.9
21	M	52	Portal cirrhosis	2	0-5	3.5
22	щ	99	:	-1-	0-3	3.0
23*	н	75		Extensive	2.2	2.2
24*	ц	26		Slight	7-1	1-4
25*	W	65		Slight	1.9	2.5
26*	щ	58	:	None	2.0	2.3
27*	M	60	Biliary cirrhosis	None	22.0	2.7
28*	ц	23	Portal cirrhosis	Porta-caval anactomocic	0.0	2.6

† Not investigated.

* Patients with neurological complications.

94

PHEAR, RUEBNER, SHERLOCK AND SUMMERSKILL.

METHODS.

Neuro-psychiatric assessment.

The degree of neurological disorder was assessed by two independent observers. The following grades were recognised:

- 0 Normal.
- 1 Trivial lack of awareness, apathy or euphoria with or without objective neurological signs.
- 2 Obvious personality change, with neurological abnormality; gross facade of personality preserved.
- 3 Advanced confusion and disorientation.
- 4 Stuporose but responsive.
- 5 Comatose.

Biochemical methods.

Blood ammonium levels were estimated by a slight modification of Conway's method (12, 37).

Plasma dl-methionine, — plasma 1 ml. was de-proteinised with 5 ml. acetone. After evaporation of acetone, it was desalted by the Dent modification of the Consden, Gordon and Martin method (11). Volumes of each specimen containing 1–30 μ g. methionine, together with a range of standards, were run on buffered one-way chromatograms (28). After lightly spraying with ninhydrin, the concentration of amino-acid in each methionine spot and hence in the original specimen was estimated either by the method of Yemm and Cocking (56) or that of Naftalin (34).

Blood bicarbonate, serum bilirubin and albumin were estimated by routine procedures and arterial blood pH by the method of Rosenthal (43).

Bacteriological methods.

Fresh fæces (200 mg.) were weighed on a clean piece of X-ray film and placed in a bottle containing 100 ml. of 0.85% sodium chloride solution. The bottle was shaken at 37°C. for one hour at 270 oscillations a minute, for homogenization.

A standard loopful (0.01 ml.) of a 1: 100 dilution in saline of this suspension was spread evenly over plates containing the following media:

- (A) Blood agar.
- (B) Blood agar containing 6% agar (20).
- (C) MacConkey's medium.

In some cases Sabouraud's medium was used in addition. These plates were incubated ærobically for 48 hours.

For anærobic cultivation 0.01 ml. of a 1 : 1,000 dilution of the original suspension was spread on—

- (A) Blood agar
- (B) Blood agar containing 6% agar and incubated for 48 hours anærobically in a Fildes-McIntosh jar containing 5% CO₂.

A tomato agar medium for lactobacilli (5) and Fildes peptic blood digest medium for Bacteroides (45) were also used in several cases.

TABLE

						M	ethionine	alone			
		Da	ys of cont	rol period	1			Γ	Days after	start of m	ethionin
		4	3	2	1	0*	1	2	3	4	5
Patient	Dose CNS NH₄N			3 1·7	3	10 4 2·4	10 5 3·0	6 5 2·9	3 2·2	3 1·5	
11	Dose CNS NH₄N Methionine	2 2·7 13		2	2	$ \begin{array}{c} 10 \\ 2 \\ 1.7 \\ 18 \end{array} $	10 3 2·4	4 2·0 123	2 2·0	1	
2†	Dose CNS NH4N			3 2·7	2	8 2 3·0	8 2	10 2	$ \begin{array}{c} 10 \\ 3 \\ 1 \cdot 6 \end{array} $	10 4	
21	Dose CNS NH₄N Methionine		0	0 1·0	0	10 0 1·2 9	10 1	10 2	10 3 0.7 75	0.	
3†	Dose CNS NH4N		1 1·0	1	1 1·2	82	8 1	8 1 1·1	8 1	5 1·3	2
4†	Dose CNS NH4N Methionine			3 1·9	2	$ \begin{array}{c} 10 \\ 2 \\ 3.4 \\ 26 \end{array} $	4 5 3·0 84	4	3	3 2·5	
5†	Dose CNS NH4N Methionine	11		1 0·8	1	$ \begin{array}{c} 10 \\ 3 \\ 4.3 \\ 39 \end{array} $	1 5 2·5 96	4 1·6 47	3 1·2 30	2	
6†	Dose CNS NH4N		·2 1·5	2	2 1·7	20 2 1·5	5 2·6	3 1·7	2 1·3 -		
7†	Dose CNS NH4N	0 1.1	(h)	0 2·2		10 0 2·2	10 1	10 2 2·4	2 3 2·9	1 2·0	
8†	Dose CNS NH4N	-	1 2·3	1	1 -	8 1 0·9	8 1	10 1	10 1	14 2 2·4	16 1
9†	Dose CNS NH ₄ N Methionine			3 1·8		8 3 1·1 13	12 3	$ \begin{array}{c} 12 \\ 3 \\ 2 \cdot 8 \\ 142 \end{array} $	12 3	12 3	12 3
10	Dose CNS NH4N Methionine			0 1·2		10 0 1·1 12	10 0	10 0 1·0	10 0	10 0 0.8 70	10 0

Effect of daily oral methionine with and without chlortetracycline on

96

II.

the neurological condition, blood methionine and ammonium (NH₄N) levels.

					Methio	onine and	chlortetra	acycline			
eeding		Days o	of control	period		Da	ys after sta	art of meth	ionine fee	ding	
6	8	3	2	1	0*	1	2	3	4	5	6
					10	10	10				
		1	1	1 1·4	10 1 40	10 1 2·1	$ \begin{array}{c} 10 \\ 1 \\ 1 \cdot 5 \\ 193 \end{array} $			-	10
	÷		0 1·6	0	10 0 1·3 15	10 0	10 0	10 0 1·1 150			
2 1·9	1		1 1·4		10 1 1·3	10 1	10 1 1·5	10 1	10 1 1·7	12 1 1·2	
		3 2·3 23	3	2	8 2 2·6 0	8 3	8 3	8 5 1·5 205	3	3	2
		1	1	1	10 2 1·4 39	10 2	10 2	10 2 1·8 190	10 2	10 1	10 1 1·6 183
					1	-				-1	
		_									
1 1·3			*								
12 3 0·9 133					6 12						
10 0 0·5 83	ж. 2 — 44										

н

	-	Methionine alone										
- 1		Da	ys of con	trol period	i	Days after start of methionin						
	-	4	3	2	1	0*	1	2	3	4	5	
Patient 11	Dose CNS NH4N Methionine					12 0 1·3 20	12 0	12 0	12 0	12 0	12 0	
12	Dose CNS NH4N Methionine				0 1·1 24	80	12 0	12 0	12 0	12 0	12 0 0·7 87	
13	Dose CNS NH4N Methionine	-			- 1	10 0 0.5 15	12 0 0·7 116	12 0	12 0 0.5 135	14 0	14 0	
14	Dose CNS NH4N Methionine				0 1·7 15	10 0	10 0	10 0	10 0 1·1 159	10 0	10 0	
15	Dose CNS NH4N Methionine					10 0 1·5 27	10 0	10 0	10 0	10 0 109	0·6 50	
16	Dose CNS NH4N			0 1·0	0	20 0 0·8	20 0	20 0	0 1·2			
20	Dose CNS NH4N			0 0.9	0	10 0 0·8	10 0	12 0	12 0 0·9	12 0	12 0	

Bacterial metabolism of methionine in vitro.

Strains of Bact. coli and Proteus vulgaris were grown in 0.5% glucose broth for 24 hours, washed in 0.85% saline and resuspended in 0.02M phosphate buffer at pH 6 and pH 8. Since the pH in the intestine is variable (30) 1,000 µgm methionine/ml. was added to the suspensions which contained approx. 70 µgm/ml. total nitrogen. A Bacteroides strain was grown in 0.5% glucose broth for 48 hours in a Fildes-McIntosh jar and then a similar suspension was prepared. The effect of the addition of 2.5 µg./ml. glucose on methionine breakdown was studied in all species and that of 5 µg./ml. chlortetracycline in *Bact. coli* and *Pr. vulgaris*. Chlortetracycline was not added to Bacteroides suspensions, since these organisms disappear from the gut when the antibiotic is administered. Anærobic conditions for Bacteroides were obtained by the addition of 0.1 mg./ml. thioacetic acid.

Production of sulphates (25) and amines (4) were measured.

Methionine was given to patients with liver disease with their consent and co-operation as part of a necessary assessment of their mental and neurological condition or as a preliminary to consideration of porta-caval anastomosis. Patients -continued.

eeding		•
6	8	
12 0 1·0 74		
		Doses of methionine in grams. Chlortetracycline 2 g. per day started 2 days before methionine.
14 0 0·7 123	14 0 115	CNS—neurological grade. Blood levels of NH ₄ N (normal < 1) and methionine (normal < 20) in µg./ml
10 0.7 150		 † Patients who had experienced neurological complications. * Values before commencing methionine.
12 0	0 0.7	

with severe impairment of liver function were excluded. Dietary protein intake was maintained constant during the period of observation. Patients with neurological complications had been under observation in hospital for at least one week and the neurological condition was steady.

Enteric coated tablets containing 250 mg. dl-methionine were given in divided doses between 6 a.m. and 9 p.m.. The total daily dose, usually 10 g., varied between 8 and 20 g.. Two patients received two courses. The drug was withdrawn when unequivocal neurological deterioration occurred or after five to seven days. Blood levels of methionine, ammonium, bicarbonate and serum bilirubin were estimated at intervals during the control period, during the administration of methionine and following its withdrawal.

In ten patients, 6 g. methionine in 300 ml. 5% dextrose was given intravenously at a constant rate during a 30 minute period. Peripheral blood samples were taken before the infusion and 15, 60, 120 and 240 minutes after its completion and analysed for methionine and ammonium.

Five patients sensitive to methionine by mouth later received chlortetracycline (0.5 g, 4 times per day) for two days before the addition of a second course of oral

H 2

				Methionine				Methioni	Methionine with chlortetracycline	tetracycline	
	Patient		Dose	Neuro- Iooical	Blood	Blood ammonium -	Ď	ose	- logical		Blood
20 2 2 123 2.0 30 3 0 26 21 2 $ 2.9$ $ 40$ 4 3 75 0.7 40 4 $ 46$ 5 2 $ 1.6$ $ 46$ 5 2 $ 1.6$ $ 46$ 5 2 $ 1.6$ $ 32$ 4 $ 1.3$ 62 66 0 14 1_2 3 84 3.0 32 4 2 11 1 4 96 2.5 70 7 0 20 1 3.0 2.5 70 7 0 11 1 3 2.5 $ -$ <		Total (g.)		deteriora- tion (grades)	(.ml.)	(µg. NH4N/ml.)	Total (g.)	Days	deteriora- tion (grades)		(µg. NH4N/ml.)
26 21 2 $ 29$ $ -$	1	20		2	123	2.0	30	3	0	193	1.5
404375 0.7 404046521.63244-13 62 60141433 32 4 2111496 2.5 70702013 2.6 21243 945 2.17 4750		26		7	Ĭ	2.9	I	I	L	I	[
46 5 2 - 1·6 - <td>2</td> <td>40</td> <td>4</td> <td>3</td> <td>75</td> <td>0-7</td> <td>40</td> <td>4</td> <td>0</td> <td>150</td> <td>ĿI</td>	2	40	4	3	75	0-7	40	4	0	150	ĿI
32 4 4 - 1:3 62 6 0 14 11 3 84 $3:0$ 32 4 2 11 1 4 96 $2:5$ 70 7 0 20 1 3 $ 2:6$ - $ 20$ 1 3 $ 2:6$ - $ 32$ 3 2 $ 2:6$ - $ 32$ 3 2 $ 2:6$ $ 27$ $2!$ 3 $94:5$ $2:17$ 47 5 0		46	S	7	Î	1-6	Ì	1	1	I	I
14 1 ¹ / ₂ 3 84 3:0 32 4 2 11 1 4 96 $2:5$ 70 7 0 20 1 3 - $2:6$ - - - 20 1 3 - $2:6$ - - - 32 3 2 - $2:9$ - - - 27 $2!$ 3 $94:5$ $2:17$ 47 5 0		32		4	1	1:3	62	6	0	1	1:2
11 1 4 96 2.5 70 7 0 20 1 3 - 2.6 - - - 32 3 2 - 2.9 - - - 27 $2\frac{1}{2}$ 3 94.5 2.17 47 5 0		14		3	84	3.0	32	4	3	205	1.5
20 1 3 - 2:6 - - - 32 3 2 - 2:9 - - - 27 2½ 3 94:5 2:17 47 5 0	S	11	1	4	96	2.5	70	7	0	183	1.6
32 3 2 - $2\cdot9$ - - 27 $2\frac{1}{2}$ 3 $94\cdot5$ $2\cdot17$ 47 5 0	9	20	-	. 3	Ĩ	2.6	Ĺ	I	ļ	1	1
27 2 ¹ / ₂ 3 94.5 2.17 47 5 0	1	32	3	3	1	2.9	I	I	L	1	1
	Mean	27	2 <u></u> }	3	94.5	-2-17	47	s	0	182.7	1.38

TABLE III.

100

PHEAR, RUEBNER, SHERLOCK AND SUMMERSKILL.

methionine. Both drugs were stopped simultaneously. In these patients fæces were collected before starting chlortetracycline, when the patient was receiving chlortetracycline alone, and later during combined treatment with chlortetracycline and methionine.

RESULTS.

Clinical investigations.

The effect of oral methionine (Tables II and III). The drug imparted a characteristic odour to the breath and rarely caused slight nausea.

Neurological status. Nine patients had portal cirrhosis and pre-existing neurological complications associated with an extensive portal systemic collateral circulation. During the administration of methionine, neurological deterioration of at least two grades occurred in seven (patients 1 to 7) and in two, this effect was reproduced when the drug was administered a second time. Changes followed a similar pattern to those seen during spontaneous deterioration. They occurred from one to four days after commencing and after total doses of 11 to 46 g. methionine. Two of the patients (No. 8 and 9) tolerated 80 and 99 g. methionine without neurological change.

Seven patients with portal cirrhosis (patients 10 to 16) who had never exhibited neurological complications, tolerated 50–102 g. methionine without neurological change. Liver function was considered to be less severely impaired than in the patients who were sensitive to the drug and an extensive collateral circulation was demonstrated in only three (patients 10, 15, 16). The patient with extra-hepatic portal vein obstruction (patient 20) also showed no change.

Blood ammonium levels. Control fasting blood ammonium levels were raised in five of the seven patients who later deteriorated with methionine. There was an inconstant change following methionine, the level rising five times, remaining unchanged once and falling on three occasions. The mean level at the height of deterioration showed no significant difference from the control values.

Two patients who had previously experienced neurological complications, but were unaffected by oral methionine, had raised control blood ammonium levels. In one instance, methionine was followed by a rise and in the other by a fall in the blood ammonium level.

Eight patients without neurological changes showed an inconstant change in the blood ammonium level after methionine.

Blood methionine levels. In four patients who later deteriorated after methionine, the control blood methionine levels were normal in two and raised in two. The level was increased in one and normal in five of the patients who were unaffected by methionine feeding.

In both groups, the rise in blood methionine level after methionine administration was comparable.

Serum bilirubin levels and evidence of acidosis. Serum bilirubin level did not change after methionine feeding (Table IV).

There was no clinical evidence of increasing acidosis. The serum bicarbonate showed a slight but significant decrease (P = 0.01). In two patients in which it was measured, the arterial pH did not change. In one patient the renal compensatory mechanisms were studied before and after seven days of methionine administration (total dose: 70 g.) and was found to be adequate. Titratable urinary acid rose from 38 to 87 mEq. per day (normal value 20–50), while urinary NH₄ rose from 25 to 126 mEq. daily (normal average value 50).

TABLE IV.

Detiont	Contro	ol levels	Levels after	r methionine
Patient	Plasma biliburin (mg./100 ml.)	Blood bicarbonate (mEq./l.)	Plasma bilirubin (mg./100 ml.)	Blood bicarbonate (mEq./l.)
1†	0.9		0.9	
2†	3.8	24.0	1.7	22.7
4†	2.2	27.3	2.1	
5†	0.5	27.9	2.7	26.8
5*	2.3	27.1	1.6	25.6
6†	2.2		2.4	23.8
8†	0.5	_	1.6	
9†	0.8	26.2	1.2	21.8
10	1.5	28.5	1.2	25.1
28†	1.3	23-0	1.3	21.0
Mean	1.6	26.3	1.7	23.8

Serum bilirubin and blood bicarbonate levels before and after the administration of oral methionine.

† Neurological deterioration after methionine.

* Methionine given with chlortetracycline.

Effect of intravenous methionine. Intravenous methionine was given to four patients who had previously deteriorated with oral methionine. In three there was no change in neurological status and in the fourth there was "two-grade" deterioration, occurring two hours after stopping the infusion (Table V).

Six patients without previous neurological changes were unaffected by the infusion.

There was no conspicuous change in blood ammonium level, except in the patient who showed neurological deterioration when the methionine was stopped. In this patient the level rose from 2.7 to $4.1 \mu g/ml$.

Methionine tolerance was impaired in all seven patients with liver disease (patients 1, 2, 3, 4, 17, 18, 19) and blood methionine levels remained elevated four hours after stopping the infusion while in three normal subjects (patients 29, 30, 31) control values were regained within four hours of the infusion.

Effect of chlortetracycline on methionine toxicity. Five patients who had previously deteriorated when given oral methionine were completely or partially protected by the simultaneous administration of chlortetracycline (Tables II, III). Blood methionine levels were higher than those obtained with methionine alone. Blood ammonium levels did not show any conspicuous change during administration of chlortetracycline with methionine, but levels recorded when the drugs were withdrawn were usually lower than those recorded at the height of deterioration following methionine alone.

Conclusions. Oral methionine is toxic to some patients with cirrhosis of the liver and an extensive portal systemic collateral circulation, who have previously shown neurological complications. This toxicity could not be correlated with the changes in blood ammonium levels. Intravenous methionine is apparently non-

TABLE V. Effect of intravenous methionine on the blood levels of methionine and ammonium.

1.5 1.2 2.0 1.6 9.0 1.2 0.3 0.3 4.1 4 1 3 1 I I 1 1 Time in hr. after infusion Ammonium N. 1.2 6.0 2.6 3.1 1.3 0.8 1.2 0.8 6.0 1.2 N 2.2 0.8 2.6 3.2 6.0 1.4 0.5 2.0 2.0 -I 2.5 3.0 9.0 1.5 E 1.7 1.5 0.5 0.5 1.0 -14 0.0 6-0 2.7 0.4 6.0 6.0 0.5 0.5 2.0 2.1 0 138 228 4 94 109 87 88 18 25 I 1 155 3 1 1 Time in hr. after infusion 76 205 176 108 106 214 50 I N 101 124 Methionine 75 275 123 120 110 Г 94 189 141 ۱ 74 (Blood levels in µg./ml.). 290 286 157 199 170 311 118 156 96 89 -4 39 12 46 16 24 20 4 20 18 П 0 Patient * * * ∞ 6 29 30 31

METHIONINE TOXICITY IN LIVER DISEASE.

103

* Patients who had previously experienced neurological complications.

104 PHEAR RUEBNER, SHERLOCK AND SUMMERSKILL.

toxic despite high blood methionine levels. Oral chlortetracycline given with methionine prevented or retarded toxic effects, although blood methionine levels were higher than with oral methionine alone. It therefore seemed likely that the toxicity was due to some substance other than methionine. The protection afforded by chlortetracycline suggested that this toxic factor might be derived from methionine by the action of intestinal bacteria which were affected by the "wide spectrum" antibiotic, and bacteriological observations were therefore made.

Bacteriological investigations.

No difference in the fæcal viable count was found between nine patients without liver disease and twenty patients with liver disease, thirteen of whom had at some

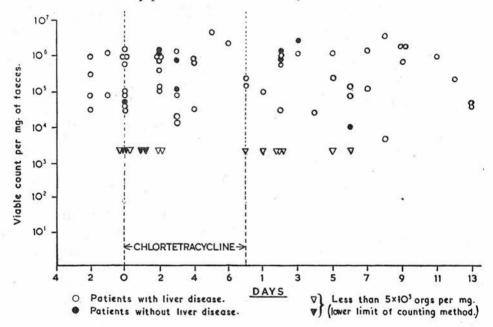


Fig. 1. Effect of chlortetracycline on the fæcal viable count of Streptococci.

time had neurological symptoms. Cl. welchii Type A, however, was isolated in six of twenty patients with liver disease and in only one of the nine other patients. It was not more common in those with neurological complications.

Oral methionine did not have a significant effect on the facal flora of seven patients with liver disease, three of whom had neurological complications.

Effect of chlortetracycline (Figures 1-4).

Chlortetracycline was given for three to eight days to sixteen patients, thirteen of whom had cirrhosis of the liver, all but one with neurological complications. Two patients had three courses of the antibiotic. Seventy two specimens of fæces were examined during the three days preceding and the thirteen days following chlortetracycline. The total viable count showed no sustained fall during therapy. The fæcal flora changed however, the picture being the same in all patients.

Lactose fermenting gram negative rods (*Bact. coli*) were eliminated at some stage in ten of the sixteen patients, whereas before treatment they were absent in

only one. The viable count during therapy fluctuated widely and some patients showed no diminution. No increase in resistance to chlortetracycline during therapy was detected (Fig. 4).

The total count of streptococci during treatment showed no change, but sometimes there was a complete change of strain. In seven patients after treatment a hæmolytic *Str. fæcalis* and in three patients a micro-ærophilic streptococcus, both resistant to chlortetracycline, replaced a sensitive *Str. fæcalis*. A hæmolytic *Str. fæcalis* was never isolated in significant numbers before treatment (Fig. 1).

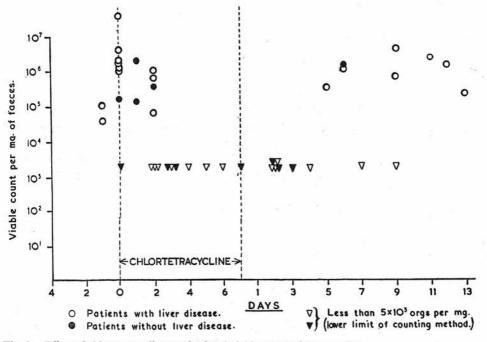


Fig. 2. Effect of chlortetracycline on the fæcal viable count of Bacteroides.

Proteus was not isolated from any patient before therapy. During and after chlortetracycline, proteus appeared in thirteen of sixteen patients. Of those organisms investigated, five were *Pr. mirabilis*, three *Pr. vulgaris* and two *Pr. morganii*. Proteus was usually eliminated from the fæces in two to three weeks, but in some cases (especially after a second course of chlortetracycline), proteus persisted for two to three months (Fig. 2).

Gram negative anærobic bacilli (*Bacteroides*) were investigated in 8 patients, and were present before treatment but disappeared before the fourth day. They reappeared four days after the cessation of the antibiotic (Fig. 2).

In one patient a lactobacillus was present in large numbers before treatment. In five patients chlortetracycline was followed by the appearance of resistant lactobacilli.

Clostridium welchii Type A was isolated initially in three patients and in every instance was eliminated by chlortetracycline.

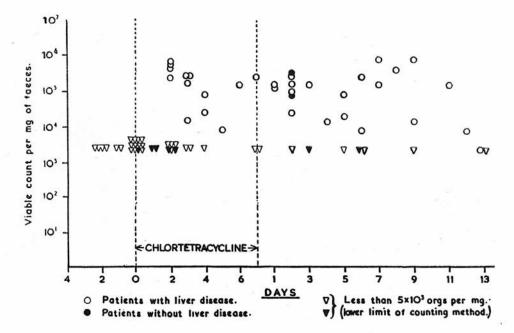
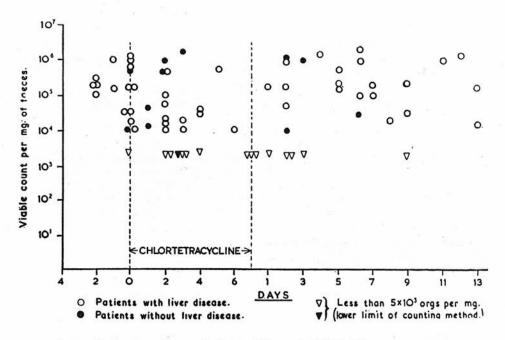
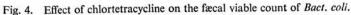




Fig. 3. Effect of chlortetracycline on the fæcal viable count of Proteus.

Staph. pyogenes resistant to chlortetracycline appeared in large numbers in three patients during treatment.

Candida was found in large numbers in only one patient during therapy.

Detailed bacteriological results are shown in the Appendix.

Conclusion. The fæcal flora of patients with liver disease with and without neurological complications does not differ from that of subjects without liver disease. Chlortetracycline effects an inconstant fall in *Bact. coli*, the strain of streptococci often changed and proteus usually appeared while bacteroides fell and lactobacilli frequently increased.

The action *in vitro* of *Bact. coli*, proteus and bacteroides on methionine with and without chlortetracycline was therefore investigated.

Action of Bact. coli, Pr. vulgaris and Bacteroides on methionine.

Bact. coli, Pr. vulgaris and Bacteroides did not grow in cultures in which methionine was the only source of nitrogen. Resting suspensions were therefore set up in a solution of methionine. After incubation NH₄ production in these cultures was slight. In four experiments at pH 8 Bact. coli, Pr. vulgaris and Bacteroides produced respectively 2.0 (\pm 1.0), 10.0 (\pm 5.4) and 0.8 (\pm 0.7) µg. NH₄N per ml.. Further experiments at pH 6 and with and without added glucose gave similar results.

Since $14 \ \mu g$. NH₄N are equivalent to $149 \ \mu g$. methionine and since $1,000 \ \mu g$./ml. of methionine were present initially, it is not surprising that no decrease in the methionine concentration was detected. There was also no detectable increase in SO₄ production.

No evidence was obtained for methionineamine production either from methionine alone (4 occasions) or in a mixed amino-acid medium by growing bacteria (13 occasions), and in the latter medium, no evidence for methionine breakdown was found, by resting suspensions (4 occasions).

DISCUSSION.

A methionine deficient diet is followed by severe liver injury in rats (21). These observations have been enthusiastically applied to human liver disease and methionine is freely prescribed (8, 26). It is of importance, therefore, to realise that this amino-acid in therapeutic amounts has been found to reproduce "impending hepatic coma" in some patients with hepatic cirrhosis. As there is no conclusive evidence that methionine affects the course of liver damage in man (36, 55), this therapy should now be abandoned.

Patients exhibiting neurological deterioration after methionine all had large collateral channels between the portal systemic venous system, with chronic portal systemic encephalopathy (47). These patients can show a perplexing variety of neurological and mental changes, and exacerbation by methionine may provide a convenient method of inducing a diagnostic neurological effect. Chronic portal systemic encephalopathy may follow a surgical porta-caval anastomosis in about 10% of patients (41), and a course of oral methionine given pre-operatively may provide a suitable screening test to determine the likelihood of this occurrence.

The toxic effects of methionine were not related to alterations in the liver function tests. They are not due to unaltered methionine, for there was no correlation of symptoms with the blood methionine level, which rose equally in those who deteriorated and those who did not. The breakdown products of methionine which might be responsible are numerous, and only a few possibilities can be considered.

108 PHEAR, RUEBNER, SHERLOCK AND SUMMERSKILL.

Our *in vitro* studies cannot be taken as evidence that bacteria do not attack methionine for three reasons. Firstly, metabolism of resting suspensions is often very different from that of growing bacteria. Secondly, no attempt was made to induce enzyme formation by growing the bacteria in the presence of high concentrations of methionine. Thirdly, no precautions were taken while washing the bacteria, to keep them under reduced conditions and the enzyme systems which attack methionine may well possess sulphhydryl groups which are oxygen labile.

Ammonium can be derived from methionine and ammonium toxicity has been related to the neurological changes which precede hepatic coma (3, 38, 42). Ammonium production in the intestine seems unlikely to cause the deterioration which follows methionine, for changes in blood ammonium levels were inconstant and alterations of a similar order occurred when chlortetracyline was given with the methionine, yet without neurological deterioration.

A further possibility is that ammonium intoxication may result from disturbed glumatic acid metabolism (54). Glumatic acid is important for cerebral respiration possibly by combining with ammonium to form glutamine. It has been shown that methionine sulfoxide, a substance that can readily be derived from methionine, inhibits this synthesis in *Lactobacillus arabinosis* (51). Accumulation of methionine sulfoxide might explain the cerebral features of methionine toxicity. Moreover, methionine sulfoxide has possibly been detected in the cerebro-spinal fluid of two patients with hepatic coma (52). Current methods of identification, however, are unreliable and this observation needs confirmation. Methionine sulfoxide has proved non-toxic to dogs and rats (2, 50).

Methyl mercaptan can be produced from methionine directly (9) or via cysteine, by proteus and sometimes by *Bact. coli* in the presence of glucose (24). Recently a patient with massive hepatic necrosis and fætor hepaticus was found to have methyl mercaptan in the urine (10) and we have identified this substance on two of four occasions in the urine of four patients in hepatic coma. These are observations of great interest, although the effect of mercaptans on the central nervous system are unknown. Some mercaptans, however, have been found to have anti-hypertensive properties (44) and this might contribute to the hypotension of patients with cirrhosis of the liver.

Butt and Mason (6) considered that fœtor hepaticus was due to a tertiary amine. Methionineamine has never been isolated naturally, and we have failed to find it on ten occasions in the urine of patients with liver disease. It could theoretically be derived from methionine, however, and some amines are known to affect oxidative metabolism in the brain (39, 40).

Methionine may produce acidosis from the metabolism of sulphur and inorganic sulphate, but in the doses we used, adequate renal and pulmonary function should compensate. In our patients, the decrease in arterial pH and blood alkali reserve was slight. Moreover, increasing acidosis has not been reported in spontaneous hepatic coma (7, 38, 46).

At present, the toxic substance derived from methionine and the mechanism of its action remain unknown. Further study of the mercaptans and amines derived from methionine seem worth while.

The observed effects of chlortetracycline on the fæcal flora are in general agreement with those of other investigators, who found some elimination of *Bact.* coli and a rise in proteus, streptococci and staphlococci (14, 33). Pappenfort and Schnall (35) noted the appearance after chlortetracycline therapy of *Candida*, which we found in considerable numbers in only one patient. Loh and Baker (27) found an individual variation. The changes they report are less marked than those

previously described, but very similar to our own. The rise in proteus, however, was more conspicuous in our series, but the increase in *Staphlococcus pyogenes* occurred less often. We confirmed the observation of Dearing and Heilman (14) that Bacteroides were eliminated by chlortetracycline in every patient. In agreement with Loh and Baker, the total anærobic count was found to be less reduced than the count of Bacteroides; this was due to multiplication of lactobacilli and anærobic streptococci.

Although the changes in fæcal flora show a similar pattern, exact results of therapy in any individual cannot be predicted. They presumably depend on the initial presence in small numbers of strains, resistant to the antibiotic, which multiply when sensitive organisms are depressed during therapy. McVay (29) showed that organisms at higher levels of the intestine are suppressed earlier and to a greater extent than those present in the fæces. The changes effected in the ileum and proximal colon, where the antibiotic is present in higher concentration, may be more clear-cut than those seen in the fæces.

The protection afforded by chlortetracycline might be due to a change in intestinal flora, or it could be a direct metabolic effect. Chlortetracycline does not reduce the amount of ammonium produced from methionine by bacterial suspensions and it seems unlikely that the protection is due to less amino-acid being metabolised.

Chlortetracycline prevents massive hepatic necrosis in rats fed on a necrogenic diet (16, 19), an effect attributed to elimination of intestinal bacteria, which may utilise protective constituents of food (18). This long term effect is hardly relevant to our observations and sparing of an essential food factor seems unlikely. Chlortetracycline might affect liver function directly, but this could not be shown by routine liver function tests. Mann and co-workers (31) found that antibiotics failed to reduce blood ammonium levels in patients with liver disease.

Chlortetracycline may decrease amine production in the gut (32). De la Huerga and Popper (15) showed that chlortetracycline inhibited the formation of total tri-methylamine from choline through suppression of choline-utilising bacteria. The possible toxic effects of amine have already been discussed.

"Hepatic coma" shows such natural fluctuations that it is difficult to assess therapy in any individual patient. The present observations, in which patients served as their own control, shows that chlortetracycline is at least of benefit in methionine-induced neurological complications of liver disease. The neurological picture in this condition is identical with that caused by other nitrogenous substances and that seen in many instances of spontaneous "hepatic coma", although the metabolic relationship between these conditions remains unknown. It does seem worth while, however, to apply our observations to the whole group of neurological complications of liver disease, and it is our clinical impression that chlortetracycline therapy is of benefit in spontaneous hepatic coma.

SUMMARY.

1. Oral methionine caused neurological deterioration in seven of nine patients with portal cirrhosis and chronic portal systemic encephalopathy. In eight of the nine patients, large portal systemic venous collateral channels were demonstrated. It was without effect in seven patients with hepatic cirrhosis, three of whom had an extensive portal systemic circulation and one with extra-hepatic portal vein obstruction. These patients had never experienced neurological complications.

2. Intravenous methionine was without effect in three of those who reacted to the oral amino-acid and in one there was a delayed exacerbation.

3. Neurological deterioration occurred without significant change in blood ammonium, blood pH, or serum bilirubin level.

4. Blood methionine levels rose equally in those who deteriorated and those who did not.

5. Oral chlortetracycline prevented or delayed the neurological deterioration in five sensitive patients who received methionine although the blood levels of that substance were even higher.

6. Fæcal flora of patients with liver disease and neurological complications, did not differ from normal subjects and patients with uncomplicated cirrhosis.

7. Methionine did not change the fæcal flora, but chlortetracycline in all groups resulted in a rise in proteus with elimination of Bacteroides and an inconstant fall in *Bact. coli*. The streptococcal types changed and lactobacilli increased.

8. The toxicity of methionine in patients with chronic portal systemic encephalopathy is due to some breakdown product of methionine other than ammonium.

9. It is suggested that chlortetracycline may be of benefit in "spontaneous hepatic coma".

APPENDIX.

During and after chlortetracycline After Dates of Patient Organism Control methionine chlortetracycline Date Without li ver disease 14/2 18/2 32 1.0 × 104 1.3 × 10° 5.5×10^4 9/2-12/2 Bact, coli 2.5 × 10° Str. fæcalis 1.5×10^4 Proteus 6.5 × 10⁸ Bacteroides 4.0 × 10° Lactobacillus acidophilus 6.0 × 10⁵ 1.0×10^{6} 12/2 14/2 33 Bact. coli 3.2×10^{3} 1.0×10^{4} 9/2-12/2 Str. fæcalis 1.5×10^2 $1.2 \times 10^{\circ}$ 1.8 × 10° Proteus 1.0×10^{5} ----Bacteroides 4.0×10^{5} 4.0×10^{5} 2.0×10^{5} Lactobacillus acidophilus 1.2×10^{6} 25/2 28/2 8.0×10^{5} 1.0 × 10⁶ 25/2-28/2 34 Bact, coli Str. fæcalis (hæmolytic) 2.8×10^{7} 6.2 × 10⁶ Str. fæcalis (non-hæmolytic) 8.0×10^4 1.0×10^{6} 2.5 × 10⁶ Bacteroides 2.4 × 10° 35 Bact, coli 5.5 × 104 Str. fæcalis 2.5×10^{4} Anærobic strep. 1.0 × 10° Bacteroides 5.0 × 10⁵ Bact, coli 2.3×10^{5} 36 Str. fæcalis 5.0 × 103 Bacteroides 2.0×10^{5}

Detailed bacteriological data.

METHIONINE TOXICITY IN LIVER DISEASE.

APPENDIX—continued.	A	PPEN	IDIX-	-continu	ed.
---------------------	---	------	-------	----------	-----

	0	Guint	After	During	and after chlorte	tracycline	Dates of
Patient	Organism	Control	methionine		Date	1	chlortetracyclin
Without li	ver disease—continued.						
37	Bact. coli Bacteroides	$\begin{array}{c} 2 \cdot 4 \ \times \ 10^{\circ} \\ 2 \cdot 5 \ \times \ 10^{\circ} \end{array}$					
38	Bact. coli Str. fæcalis Bacteroides	$\begin{array}{c} 1 \cdot 3 \ \times \ 10^{5} \\ 1 \cdot 5 \ \times \ 10^{4} \\ 1 \cdot 3 \ \times \ 10^{6} \end{array}$					
39	Bact. coli Str. fæcalis Bacteroides	$\begin{array}{c} 1.5 \times 10^{4} \\ 1.3 \times 10^{5} \\ 1.2 \times 10^{6} \end{array}$			an a		
40	Bact. coli Str. fæcalis Bacteroides Alkaligenes	$\begin{array}{c} 1.4 \times 10^{4} \\ 4.1 \times 10^{4} \\ Many \\ 8.4 \times 10^{4} \end{array}$					
With liver	disease	-	-	1/11	5/11	10/12	
1	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus vulgaris Bacteroides Cl. welchii Candida	$ \begin{array}{c} 4.6 \times 10^{3} \\ - \\ 5.0 \times 10^{4} \\ - \\ - \\ Few \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 3.2 \times 10^{5} \\ 6.0 \times 10^{5} \\ - \\ - \\ - \\ - \\ - \end{array}$	$ \begin{array}{c} 2.9 \times 10^{4} \\ 1.0 \times 10^{8} \\ 6.6 \times 10^{4} \\ 9.3 \times 10^{5} \\ \\ \\ \\ \\ \\ \\ \\ -$	2·9 × 10 ^s	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30/10-4/11
				4/10	21/10		
2	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus Cl. welchii	$ \begin{array}{c} 1 \cdot 2 \times 10^{3} \\ \hline \\ 2 \cdot 2 \times 10^{8} \\ \hline \\ 3 \cdot 9 \times 10^{5} \end{array} $		$ \begin{array}{c} - \\ 5.6 \times 10^{4} \\ 1.1 \times 10^{4} \\ 1.4 \times 10^{3} \\ - \\ \end{array} $	$ \begin{array}{c} 1\cdot3 \times 10^{5} \\ \cdot \\ 1\cdot3 \times 10^{5} \\ 3\cdot7 \times 10^{4} \end{array} $		29/9-4/10
		1		27/10	10/1	28/2	
	Bact. coli Paracolon Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus Bacteroides Lactobacillus Cl. welchii Staph. Micrococci				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6 \cdot 0 \times 10^{4} \\ 5 \cdot 6 \times 10^{5} \\ \hline \\ 1 \cdot 1 \times 10^{7} \\ 6 \cdot 0 \times 10^{8} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	25/10-29/10
	Lactobacillus Staphs. Micrococci			$ \begin{array}{r} 15/4 \\ 5.0 \times 10^{4} \\ 8.5 \times 10^{5} \\ 8.5 \times 10^{5} \end{array} $			- 13/4-20/4

111

PHEAR, RUEBNER, SHERLOCK AND SUMMERSKILL.

APPENDIX—continued.

Detions	Ormation	Control	After	During a	and after chlorter	racycline	Dates of
Patient	Organism	Control	methionine		Date	-	chlortetracyclin
Vith liver	disease—continued.			29/11	-		
3	Bact. coli Str. fæcalis (non-hæmolytic) Proteus mirabilis	$\begin{array}{c} 4 \cdot 0 \times 10^{\mathfrak{s}} \\ 1 \cdot 5 \times 10^{\mathfrak{s}} \\ - \end{array}$	913 (F. 19	$\begin{array}{c} 1.0 \ \times \ 10^{4} \\ 9.5 \ \times \ 10^{5} \\ 7.2 \ \times \ 10^{5} \end{array}$		-	27/11-2/12"
				13/4			
	Bact. coli Str. fæcalis (non-hæmolytic) Anærobic strep. Proteus vulgaris Bacteroides			$\begin{array}{c} 2.5 \ \times \ 10^{5} \\ 6.0 \ \times \ 10^{5} \\ 1.0 \ \times \ 10^{6} \\ 4.0 \ \times \ 10^{4} \\ 7.5 \ \times \ 10^{5} \end{array}$			5/4-8/4
	1			29/11	8/12	18/12	
4	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Anærobic strep.	$\begin{array}{c} 2.5 \times 10^6 \\ - \\ 5.0 \times 10^4 \\ - \end{array}$	$ \begin{array}{c} 1 \cdot 1 \times 10^{8} \\ - \\ 3 \cdot 0 \times 10^{4} \\ 4 \cdot 6 \times 10^{5} \end{array} $		$ \begin{array}{c} 4 \cdot 8 \times 10^{6} \\ 2 \cdot 5 \times 10^{5} \\ - \\ - \\ - \\ \end{array} $	$ \begin{array}{c} 1.5 \times 10^{4} \\ $	27/11–2/12
	Proteus mirabilis Bacteroides	3.0 × 10 ⁶	9·9 × 10 ⁵	7.4×10^{6}	$\begin{array}{c} 5 \cdot 0 \times 10^{5} \\ 1 \cdot 0 \times 10^{7} \end{array}$	1.0 × 10°	1 ²
				5/4	14/4		
	Bact. coli Str. fæcalis (non-hæmolytic) Proteus mirabilis Anærobic Strep.			$\begin{array}{c} 2.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 5.0 \times 10^{6} \\ 5.0 \times 10^{8} \end{array}$	9.0×10^{5} 2.5×10^{4}		2/4–5/11
	indicole on op.			18/4			
	Bact. coli Str. fæcalis (non-hæmolytic) Proteus mirabilis Bacteroides			$\begin{array}{c} 1.8 \ \times \ 10^{4} \\ 7.5 \ \times \ 10^{4} \\ 5.0 \ \times \ 10^{3} \\ 5.0 \ \times \ 10^{5} \end{array}$	1 . J		14/4–18/4
				15/3	21/3	25/3	
50	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus mirabilis Bacteroides	5.3×10^{8} 1.3×10^{8} 9.0×10^{5}	$\begin{array}{c} 3.0 \times 10^{5} \\ - \\ 2.2 \times 10^{6} \\ - \\ 5.0 \times 10^{5} \end{array}$	$ \begin{array}{c} 1 \cdot 0 \times 10^{5} \\ $	9.0×10^{5} 5.0×10^{8}	$ \begin{array}{c} 2 \cdot 2 \times 10^{6} \\ 5 \cdot 0 \times 10^{4} \\ \hline 2 \cdot 5 \times 10^{4} \\ \hline \end{array} $	13/3–21/3
	Cl. welchii Micrococci Aerobic spore bearer	$\begin{array}{c} 1.0 \times 10^{5} \\ 1.5 \times 10^{5} \\ - \end{array}$	$\begin{array}{c} 2.0 \times 10^{5} \\ - \\ 1.5 \times 10^{6} \end{array}$		=	Ξ	
	8 M N	×		25/3			1
6	Bact. coli Str. fæcalis (non-hæmolytic) Proteus morganii Bacteroides	$\begin{array}{c} 7.5 \times 10^{4} \\ 1.1 \times 10^{6} \\ \hline \\ 8.0 \times 10^{6} \end{array}$		Present Present		5 .C	18/3-22/3

METHIONINE TOXICITY IN LIVER DISEASE.

APPENDIX—continued.

D. C.	0	0.1.1	After	During a	and after chlorte	tracycline	Dates of
Patient	Organism	Control	methionine		Date		chlortetracyclin
With liver	disease—continued.			14/2	18/2	25/2	
7	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Anærobic strep. Proteus mirabilis Bacteroides Lactobacillus Micrococci	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 4 \cdot 0 \ \times \ 10^5 \\ 5 \cdot 5 \ \times \ 10^6 \\ 4 \cdot 0 \ \times \ 10^6 \\ \hline \\ 5 \cdot 0 \ \times \ 10^4 \\ \hline \\ 1 \cdot 8 \ \times \ 10^6 \\ \hline \\ \hline \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 4.6 \times 10^{5} \\ - \\ 3.5 \times 10^{6} \\ - \\ 1.0 \times 10^{6} \\ 1.0 \times 10^{6} \\ - \\ 1.5 \times 10^{6} \end{array}$	10/2–16/2
		\$ • 0	5 E	8/3	11/3		
	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus mirabilis			7.4×10^{5} 7.5×10^{6} $-$ 1.0×10^{4}	$ \begin{array}{c} - \\ 1 \cdot 1 \ \times \ 10^6 \\ 1 \cdot 1 \ \times \ 10^6 \\ 3 \cdot 8 \ \times \ 10^5 \end{array} $		3/3-8/3
	-			18/4	25/4		
	Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Proteus (morganii and mirabilis) Staph. pyogenes		L.	$ \begin{array}{c} 2 \cdot 2 \times 10^{6} \\ 3 \cdot 1 \times 10^{6} \\ - \\ 2 \cdot 7 \times 10^{5} \end{array} $	$ \begin{array}{c} 1.9 \times 10^{\circ} \\ - \\ 2.9 \times 10^{\circ} \\ - \\ \end{array} $		16/4–23/4
				11/3	16/8		
8	Bact. coli Paracolon Proteus morganii			$\frac{-}{2\cdot 5 \times 10^5}$	$ \begin{array}{r} 3.4 \times 10^{5} \\ 2.5 \times 10^{5} \\ - \end{array} $		4/8-11/8
				14/2	25/2		
9	Bact. coli Str. fæcalis (hæmolytic) Str. fæcalis (non-hæmolytic) Anærobic strep. Proteus mirabilis Bacteroides Lactobacillus	5.1 × 10 ⁶ 2.8 × 10 ⁶ 1.9 × 10 ⁶ 2.7 × 10 ⁶		$ \begin{array}{c} 5.5 \times 10^{4} \\ 2.2 \times 10^{5} \\ & & \\ & & \\ 9.0 \times 10^{5} \\ 1.3 \times 10^{5} \\ & & \\ 1.4 \times 10^{6} \end{array} $	$ \begin{array}{c} 5.0 \times 10^{4} \\ 1.2 \times 10^{8} \\ 1.9 \times 10^{8} \\ 5.0 \times 10^{9} \\ \hline \\ 8.0 \times 10^{8} \\ \hline \\ \end{array} $		10/2-16/2
11	Bact. coli Str. fæcalis (non-hæmolytic) Lactobacillus bifidus	$\begin{array}{c} 1.0 \times 10^{6} \\ 3.1 \times 10^{6} \\ - \end{array}$	$\begin{array}{c} 2\cdot3 \times 10^{6} \\ -2\cdot0 \times 10^{5} \end{array}$				
12	Bact. coli Str. fæcalis (non-hæmolytic) Bact. alkaligenes Lactobacillus	$ \begin{array}{c} 1 \cdot 0 \ \times \ 10^{5} \\ 8 \cdot 0 \ \times \ 10^{5} \\ 2 \cdot 4 \ \times \ 10^{6} \\ \end{array} $	5.0×10^{5} $-$ $-$ 5.0×10^{5}				
15	Bact. coli Str. fæcalis (non-hæmolytic) Bacteroides Cl. welchii Cl. Sporogenes	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 × 104 Few Few		2		

113

1

114

PHEAR, RUEBNER, SHERLOCK AND SUMMERSKILL.

		17	After	During a	and after chlorte	racycline	Dates of
Patient	Organism	Control	methionine		Date	1	chlortetracyclin
With liver 19	disease—continued. Bact. coli Str. fæcalis (non-hæmolytic) Bacteroides Cl. welchii	$\begin{array}{c} 4 \cdot 0 \ \times \ 10^{5} \\ 9 \cdot 4 \ \times \ 10^{4} \\ 3 \cdot 8 \ \times \ 10^{4} \\ 5 \cdot 3 \ \times \ 10^{3} \end{array}$	$ \begin{array}{c} 2 \cdot 2 \times 10^{4} \\ 3 \cdot 5 \times 10^{4} \\ - \\ 1 \cdot 3 \times 10^{3} \end{array} $	2			
21	Bact. coli Str. fæcalis (non-hæmolytic) Bacteroides Lactobacillus	$ \begin{array}{c} 7 \cdot 0 \ \times \ 10^{5} \\ 1 \cdot 0 \ \times \ 10^{4} \\ 7 \cdot 0 \ \times \ 10^{7} \\ 1 \cdot 0 \ \times \ 10^{4} \end{array} $					
22	Bact. coli Str. fæcalis (non-hæmolytic) Proteus Bacteroides Lactobacillus	$ \begin{array}{c} 1 \cdot 2 \times 10^{6} \\ 1 \cdot 5 \times 10^{6} \\ 2 \cdot 0 \times 10^{6} \\ \hline \end{array} $			$ \begin{array}{r} 14/2 \\ \hline 2.5 \times 10^{5} \\ 4.5 \times 10^{5} \\ 2.3 \times 10^{6} \end{array} $		9/2-12/2
23	Bact. coli Str. fæcalis (non-hæmolytic) Bact. alkaligenes	$\begin{array}{c} 1 \cdot 0 \ \times \ 10^{3} \\ 3 \cdot 0 \ \times \ 10^{4} \\ 4 \cdot 0 \ \times \ 10^{3} \end{array}$. 27/7 			20/7-27/7
24	Bact. coli Str. fæcalis (non-hæmolytic) Proteus	$\begin{array}{c} 2{\cdot}0 \ \times \ 10^4 \\ 5{\cdot}0 \ \times \ 10^3 \\ 3{\cdot}0 \ \times \ 10^3 \end{array}$		$ \begin{array}{c} 29/6 \\ \hline 1.0 \times 10^{5} \\ 1.0 \times 10^{5} \\ 1.0 \times 10^{4} \end{array} $			18/6-24/6
25	Bact. coli Str. fæcalis (non-hæmolytic) Proteus vulgaris Staph. albus	$\begin{array}{c} 3 \cdot 0 \times 10^{5} \\ 6 \cdot 0 \times 10^{4} \\ - \\ - \end{array}$		$\begin{array}{c} 25/6 \\ \hline 2.3 \times 10^{3} \\ 1.0 \times 10^{5} \\ 2.5 \times 10^{4} \\ 6.0 \times 10^{4} \\ \end{array}$			22/6-25/6
26	Bact. coli Bacteroides	4.4×10^{6} 3.5×10^{6}					
27	Bact. coli Str. fæcalis (non-hæmolytic)	$\begin{array}{c} 1 \cdot 2 \ \times \ 10^6 \\ 9 \cdot 6 \ \times \ 10^5 \end{array}$. ×.	

APPENDIX—continued.

 $^\circ$ Case 5:—On date 5/4 bacterial counts were Bact. coli 1.9 \times 10°, Str. fæcalis (non-hæmolytic) 5.0 \times 10°, Proteus mirabilis 1.0 \times 10° and Bacteroides 3.3 \times 10°.

REFERENCES.

- ATKINSON, M., BARNETT, E., SHERLOCK, S., AND STEINER, R. E. The clinical investigation of the portal circulation with special reference to portal venography. Quart. J. Med., 1955, NS 24, 77.
- (2) BENNETT, M. A. Metabolism of sulphur. The replaceability of dl-methionine in the diet of albino rats with its partially oxidised derivative, dl-methionine sulphoxide. Biochem. J., 1939, 33, 1794.
- (3) BESSMAN, S. P., AND BESSMAN, A. N. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. clin. Invest., 1955, 34, 622.
- (4) BLOCK, R. J. Some amino-acids, peptides and amines in milk, concentrated milks and cheese. J. Dairy Sci., 1951, 34, 1.
- (5) BRIGGS, M. The classification of lactobacilli by means of physiological tests. J. gen. Microbiol., 1953, 9, 234.
- (6) BUTT, H. R., AND MASON, H. L. Fetor hepaticus: its clinical significance and attempts at chemical isolation. Gastroenterology, 1954, 26, 829.
- (7) CARFAGNO, S. C., DE HORATIUS, R. F., THOMPSON, C. M., AND SCHWARZ, H. P. Hepatic coma, a clinical, laboratory and pathological study. New Engl. J. med., 1953, 249, 303.
- (8) CAYER, D. Use of methionine and vitamin supplements in treatment of hepatic disease. Arch. intern. Med., 1947, 80, 644.
- (9) CHALLENGER, F., AND CHARLTON, P. T. Studies on biological methylation. Part X. The fission of the mono- and di-sulphide links by moulds. J. chem. Soc., 1947, p. 424.
- (10) CHALLENGER, F., AND WALSHE, J. M. Methyl mercaptan in relation to feetor hepaticus. Biochem. J., 1955, 59, 372.
- (11) CONSDEN, R., GORDON, A. H., AND MARTIN, A. J. P. Quantitative Analysis of Proteins: a partition chromatographic method using paper. Biochem. J., 1944, 38, 224.
- (12) CONWAY, E. J. Microdiffusion analysis and volumetric error. 3rd Ed., London: Crosby, Lockwood and Son, 1950.
- (13) CONWAY, E. J., AND COOKE, R. Blood ammonia and the deaminases of adenosine and adenylic acid. Nature, Lond., 1938, 142, 720.
- (14) DEARING, W. H., AND HEILMAN, F. R. The effect of aureomycin on bacterial flora of the intestinal tract of man: contribution to pre-operative preparation. Proc. Mayo Clin., 1950, 25, 87.
- (15) DE LA HUERGA, J., AND POPPER, H. Factors influencing choline absorption in the intestinal tract. J. clin. Invest., 1952, **31**, 598.
- (16) FARQUAHAR, J. D., STOKES, J., WHITLOCK, C. M., BLUEMLE, L. W., AND GAMBESCIA, J. M. Studies on the use of aureomycin in hepatic disease. III. Note on aureomycin therapy in hepatic coma. Amer. J. med. Sci., 1950, 220, 166.
- (17) FULD, H. Uber die diagnostische Verweitbarkeit von Ammoniak bestimmungen im Blut. Klin. Wschr., 1933, 12, 1364.
- (18) György, P. Antibiotics and liver injury. Ann. N.Y. Acad. Sci., 1954, 57, 925.
- (19) GYÖRGY, P., STOKES, J., SMITH, W. H., AND GOLDBLATT, H. Studies on the use of aureomycin in hepatic disease. II. The effect of aureomycin on experimental dietary hepatic necrosis. Amer. J. med. Sci., 1950, 220, 6.
- (20) HAYWARD, N. J., AND MILES, A. A. Inhibition of proteus in cultures from wounds. Lancet, 1943; (ii), 116.
- (21) HIMSWORTH, H. P., AND GLYNN, L. E. Massive hepatic necrosis and diffuse hepatic fibrosis (acute yellow atrophy and portal cirrhosis): their production by means of diet. Clin. Sci., 1944, 5, 93.
- (22) KINSELL, L. W., HARPER, H. A., GIESE, G. K., MARGEN, S., MCCALLIE, D. P., AND HESS, J. R. Studies in methionine metabolism. II. Fasting plasma methionine levels in normal and hepatopathic individuals in response to daily methionine ingestion. J. clin. Invest., 1949, 28, 1439.
- (23) KIRK, E. Amino-acid and ammonia metabolism in liver diseases. Acta med. Scandinav., 1936, Suppl. LXXVII, 1.
- (24) KONDO, M. Uber die Bildung des Mercaptans aus l-Cystin durch Bacterien. Biochem., Z. 1923, 136, 198.

12

- (25) LETONOFF, T. V., AND REINHOLD, J. G. A colorimetric method for the determination of inorganic sulfate in serum and urine. J. biol. Chem., 1936, 114, 147.
- (26) LICHTMAN, S. S. Diseases of the liver, gall bladder and bile ducts. 3rd. Ed., London: Kimpton, vol. II, p. 1129, 1953.
- (27) LOH, W. P., AND BAKER, E. E. Fecal flora of man after oral administration of chlortetracycline or oxytetracycline. Arch. intern. Med., 1955, 95, 74.
- (28) MCFARREN, E. F. Buffered filter paper chromatography of the amino-acids. Anal. Chem., 1951, 23, 168.
- (29) McVay, L. V. Studies on the concentrations and bacterial effect of aureomycin in different portions of the intestinal tract. J. clin. Invest., 1952, 31, 27.
- (30) MANN, F. C., AND BOLLMAN, J. E. The reaction of the content of the gastrointestinal tract. J. Amer. med. Ass. 1930., 95, 1722.
- (31) MANN, J. D., BOLLMAN, J. L., HUIZENGA, K. A., FARRAR, T., AND GRINDLAY, J. H. Blood ammonia, experimental and clinical study in abnormalities of the liver and portal circulation. Gastroenterology, 1954, 27, 399.
- (32) MELNYKOWYCZ, J., AND JOHANSSON, K. R. Formation of amines by intestinal microorganisms and the influence of chlortetracycline. J. exp. Med., 1955, 101, 507.
- (33) METZGER, W. I., WRIGHT, L. T., MORTON, R. F., DI LORENZO, J. C., AND MARMELL, M. Antibacterial action of oral aureomycin on the contents of the colon of man. Antibiotics, 1952, 2, 91.
- (34) NAFTALIN, L. Quantitative chromatographic estimation of a-amino-acids. Nature, Lond., 1948, 161, 763.
- (35) PAPPENFORT, R. B., AND SCHNALL, E. S. Moniliasis in patients treated with aureomycin: clinical and laboratory evidence that aureomycin stimulates the growth of *Candida albicans*. Arch. intern. Med., 1951, 88, 729.
- (36) PATEK, A. J., POST, J., RATNOFF, O. D., MANKIN, H., AND HILLMAN, R. W. Dietary treatment of cirrhosis of the liver. J. Amer. med. Ass., 1948, **138**, 543.
- (37) PHEAR, E. A., SHERLOCK, S., AND SUMMERSKILL, W. H. J. Blood ammonium levels in liver disease and "hepatic coma". Lancet, 1955, (i), 836.
- (38) PHILLIPS, G. B., SCHWARTZ, R., GABUZDA, G. J., AND DAVIDSON, C. S. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. New England J. Med., 1952, 247, 239.
- (39) PUGH, C. E. M., AND QUASTEL, J. H. Oxidation of aliphatic amines by brain and other tissues. Biochem. J., 1937, 31, 286.
- (40) QUASTEL, J. H., AND WHEATLEY, A. H. M. The effects of amines on oxidations of the brain. Biochem. J., 1933, 27, 1609.
- (41) RIDDELL, A. G. Changes in man and animals with portacaval anastomoses. Proc. Roy. Soc. Med., 1955, 48, 481.
- (42) RIDDELL, A. G., AND MCDERMOTT, W. V. Hepatic coma. Lancet, 1954, (i), 1263.
- (43) ROSENTHAL, T. B. The effect of temperature on the pH of blood and plasma *in vitro*. J. biol. Chem., 1944, **173**, 25.
- (44) SCHROEDER, H. A., MENHARD, E. M., AND PERRY, H. M. The antihypertensive properties of some mercaptans and other sulfur-containing compounds. J. Lab. clin. Med., 1955, 45, 431.
- (45) SCHWABACHER, H., AND MITCHISON, D. A. Report on two species of the genus fusiformis obtained from pathological lesions in man. J. clin. Path., 1947, 1, 39.
- (46) SCHWARTZ, R., PHILLIPS, G. B., GABUZDA, G. J., AND DAVIDSON, C. S. Blood ammonia and electrolytes in hepatic coma. J. Lab. clin. Med., 1953, 42, 499.
- (47) SHERLOCK, S., SUMMERSKILL, W. H. J., WHITE, L. P., AND PHEAR, E. A. Portal-systemic encephalopathy: neurological complications of liver disease. Lancet, 1954, (ii), 453.
- (48) SINGH, I. D., BARCLAY, J. A., AND COOKE, W. T. Blood ammonia levels in relation to hepatic coma and the administration of glutamic acid. Lancet, 1954, (i), 1004.
- (49) VAN CAULAERT, C., DEVILLER, CH., AND HALFF, M. Troubles provoqués par l'ingestion de sels ammoniacaux chez l'Homme atteint de cirrhose de Laennec. Compt. rend. Soc. de Biol., 1932, 111, 739.
- (50) VIRTUE, R. W., AND DOSTER-VIRTUE, M. E. Studies on the production of taurocholic acid in the dog. V. Methionine sulfoxide. J. biol. Chem., 1941, 137, 227.

- (51) WAELSCH, H., OWADES, P., MILLER, H. K., AND BOREK, E. Glutamic acid antimetabolites: the sulfoxide derived from methionine. J. biol. Chem., 1946, 166, 273.
- (52) WALSHE, J. M. Observations on the symptomatology and pathogenesis of hepatic coma. Quart. J. med., 1951, 20 NS, 421.
- (53) WATSON, C. J. The prognosis and treatment of hepatic insufficiency. Ann. intern. Med., 1949, 31, 405.
- (54) WEIL-MALHERBE, H. The significance of glutamic acid for the metabolism of nervous tissue. Physiol. Rev., 1950, 30, 549.
- (55) WILSON, C., POLLOCK, M. R., AND HARRIS, A. D. Therapeutic trial of methionine in infective hepatitis. Brit. med. J., 1945, (1), 399.
- (56) YEMM, E. W., AND COCKING, E. C. The determination of amino-acids with ninhydrin. Analyst., 1955, 80, 209.

THE BIOLOGIC ASSAY OF L-METHIONINE USING A MUTANT OF BACT. COLI STRAIN K-12

B. RUEBNER, M.B., CH.B. (EDIN.) London, Eng.

From the Department of Pathology, Postgraduate Medical School

Reprinted from THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE St. Louis

Vol. 47, No. 1, Pages 140-144, January, 1956

(Printed in the U.S.A.)

THE BIOLOGIC ASSAY OF L-METHIONINE USING A MUTANT OF BACT. COLI STRAIN K-12

B. RUEBNER, M.B., CH.B. (EDIN.) LONDON, ENG.

THE liver plays an important part in protein and amino acid metabolism. The function of methionine in experimental hepatic necrosis (Himsworth¹) and its metabolism in patients with liver disease (Kinsell and associates²) have been investigated particularly carefully. Many patients with liver disease have a high fasting plasma methionine level and are unable to metabolize methionine. In this paper, a new method for the estimation of L-methionine in plasma is described employing a methionine-requiring mutant of *Bacterium coli* Strain K-12.

Certain mutant strains of *Bact. coli* K-12 (mutants 58/161 and $J^{5\cdot3}$) employed in work on genetic recombination, unlike typical *Bact. coli* strains, cannot grow in a basic synthetic medium containing only glucose and ammonium salts as source of carbon and nitrogen, respectively. Mutant 58/161 requires L-methionine and mutant $J^{5\cdot3}$ requires both L-methionine and L-proline for growth, and these amino acids must be added to the medium. Since as little as 5 μ g per milliliter methionine promotes good growth of the mutants in synthetic fluid medium, whereas 0.5 μ g per milliliter still allows the development of a visible turbidity, these mutants appeared to be suitable for the estimation of methionine levels in the blood. With limiting concentrations of methionine, the amount of growth (judged nephelometrically) is proportional to the methionine concentration.

As the methionine-requiring mutant will grow in the absence of methionine if plasma proteins are present, a protein-free extract of the plasma must be used for assay. Dilutions of this extract are made in fluid synthetic medium, a small inoculum of washed bacteria is added to each, and the tubes are incubated at 37° C. At the same time, a set of standard tubes containing known concentrations of methionine are similarly set up and incubated. After incubation, the turbidity of each culture is compared with the standard series in a photoelectric nephelometer.

METHOD

1. Strains of Bacterium coli Employed.—The L-methionine-requiring strain of Bact. coli K-12, mutant 58/161, was principally used in this work. It was found, however, that its requirement for methionine could be fully satisfied by either homocysteine or cystathionine,

From the Department of Pathology, Postgraduate Medical School, London, Eng. Received for publication June 17, 1955.

which constitute prior stages in methionine synthesis so that the biochemical block in this strain arises before the cystathionine stage. The following amino acids and growth factors were investigated to see whether they could support growth of this strain in the absence of methionine: cysteine, threenine, alanine, proline, aspartic acid, glycine, tryptophane, norleucine, glutamic acid, isoleucine, vitamin B_{12} , choline, calcium pantothenate, para-aminobenzoic acid, and adenine.

None of these substances was found to be capable of replacing methionine in supporting growth. Recovery and dilution experiments strongly suggested that the methionine precursors cystathionine and homocysteine were not present in biologic fluids in significant amounts. This was confirmed by repeating some of the assays with another mutant strain of *Bact. coli* K-12 (J^{5-3}) which requires both methionine and proline. Work on genetic recombination (Clowes and Rowley³) had suggested that in this strain the mutation to methionine-dependence had occurred at a different genetic locus from that of mutant 58/161. This suggestion was supported by the finding that homocysteine and cystathionine could not substitute for methionine in promoting growth of this mutant, nor could cysteine, vitamin B_{12} , aspartic acid, or adenine. Results of assays with the two strains were very similar, thus confirming that homocysteine and cystathionine are not normally present in the plasma in amounts which could interfere with the assay of methionine by mutant 58/161 of *Bact. coli* K-12.

2. Preparation of Inoculum.—An overnight broth culture of the assay strain was washed three times in 0.85 per cent sodium chloride and resuspended to the original volume in saline. One drop of this suspension (0.02 ml.) was used to inoculate the 10 ml. of medium in each assay tube.

3. Medium .- The medium employed had the following constitution:

Na ₂ H PO ₄	7 Gm.
K H ₂ PO ₄	3 Gm.
Mg. SO ₄ (10 per cent soln.)	0.1 ml.
N H ₄ Cl	1 Gm.
Dist. water to	1,000 ml.

The pH was adjusted to 7.2 and the medium sterilized by autoclaving. Before use, 1.25 ml. of sterile 20 per cent glucose solution was added to each 100 ml., giving a final glucose concentration of 0.25 per cent in the medium.

For assays employing strain J^{5-3} , 20 mg. of L-proline was added to each 1,000 ml. of the medium.

4. Preparation of a Standard Curve.—Tubes were prepared containing 10, 5, 4, 3, 2, 1 and 0.5 μ g per milliliter of L-methionine in 10 ml. medium. After inoculation with the test organism, the tubes were incubated at 37° C. for forty-eight hours and the turbidity of each tube measured with a photoelectric nephelometer.^{*} The turbidity in arbitrary units was then plotted against the concentration of L-methionine in μ g per milliliter. Between 0.5 μ g per milliliter and 5 μ g per milliliter there is virtually a linear relationship (see Fig. 1).

5. Deproteinization of Plasma.4—Eleven and two-tenths milliliters of distilled water was added to 8 ml. of plasma in a bottle. This was then stoppered, shaken, and 2.8 ml. of 0.6 N H_2 SO₄ added slowly with mixing, followed by 2 ml. of 10 per cent sodium tungstate. The plasma was therefore diluted 1 in 3 in the preparation of a protein-free supernatant.

The bottle was then shaken for two to three minutes and centrifuged. The proteinfree supernatant was pipetted off and used for the methionine assay after adjustment of the pH to 7.2 and sterilization by boiling for two minutes.

6. Preparation of Assay Tubes.—As the turbidity is proportional to the methionine concentration only over a limited range, several different dilutions of the supernatant were

^{*}An "EEL" photoelectric rephelometer (made by Evans Electroselenium Ltd., Harlow, Essex, England) was used which measures, on an arbitrary scale, the amount of light reflected by the bacteria in the suspension. In order to obtain comparable readings, the instrument was adjusted each day so that a turbidity standard (known to be equivalent to 3.6 mg. of protein nitrogen of *Bact. coli* K-12) read 100 arbitrary units.

RUEBNER

usually made in the basal medium. With low concentrations of methionine, such as are found in the fasting state, 5 ml. of plasma supernatant was added to 1 ml. of ten times concentrated synthetic medium and the total volume made up to 10 ml. with distilled water. Thus, the final dilution of the supernatant in the medium was 1 in 2. With higher methionine concentrations, 1 ml. or 0.5 ml. of plasma supernatant was added to 9 or 9.5 ml. of the synthetic medium, giving a dilution of the supernatant in the medium of 1 in 10 or 1 in 20.

7. Calculation of Plasma Methionine Concentration.—From the standard curve, the methionine concentration in micrograms per milliliters in one of the dilutions of the supernatant set up was determined. This figure was then multiplied by the dilution factor of the supernatant in the medium of the particular tube used, and also by three, which is the dilution of the original plasma in the protein-free supernatant.

Thus: Methionine concentration in μ g per milliliter = the test tube read off the \times in the medium \times 3 of the original plasma standard curve

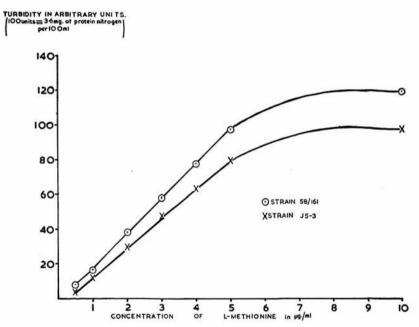


Fig. 1.—Standard curve of growth in arbitrary turbidimetric units as related to concentration of L-methionine in medium.

RESULTS

1. Recovery Experiment.—The L-methionine in normal plasma and in the same sample of plasma to which 100 μ g per milliliter of L-methionine had previously been added was estimated.

		ER READINGS IN RY UNITS	ESTIMATED CONCENTRATION OF
		SUPERNATANT IN DIUM	METHIONINE IN MICROGRAMS PER MILLILITER
Plasma Plasma	1:2	1:20	
	20	-	6
methionine	-	34	108

2. L-methionine Levels in Patients With Cirrhosis of the Liver.—Ten grams of DL-methionine was given daily for two to six days to 9 patients with cirrhosis of the liver. The L-methionine morning plasma levels varied from 9 to 69 μ g per milliliter before the administration of methionine. They rose to 20 μ g per milliliter, or above, in every patient receiving this amino acid. In one case, after six days a level of 375 μ g per milliliter was reached.

In a series of 10 parallel estimations of a single specimen, the average reading was 43.1 arbitrary units and the standard deviation ± 2 .

DISCUSSION

Although quantitative chromatographic methods for the estimation of amino acids in biologic fluids have recently been developed (for example, column chromatography by Moore and Stein,⁵ and paper chromatography by Smith and Tompsett⁶), microbiologic methods probably remain more specific and sensitive than chemical estimations (Wheeler and Gyorgy⁷). The usual microbiologic methods employ *Streptococcus faecalis* (Stokes and co-workers⁸) or *Leuconostoc mesenteroides* P_{60} for L-methionine and *Lactobacillus fermentans* 36 for DL-methionine (Kinsell and associates⁹). All these organisms require complex synthetic media for assay.

. The *Bact. coli* mutants used in this method require L-methionine for growth. Except for cystathionine and homocysteine, which can replace this amino acid as an essential growth factor for strain 58/161, none of the amino acids, B vitamins, and growth factors tested could replace methionine in promoting growth. Both strains gave very similar results, and it is concluded that cystathionine and homocysteine are not present in the plasma in amounts sufficient to invalidate this assay method.

The medium used in this method is much simpler than that required by the other test organisms. There appears to be no reason why other amino acids and B vitamins should not be assayed by a similar method using *Bact. coli* mutants.

The results obtained by this method are very similar to those of Kinsell and associates² who administered 9 Gm. of pL-methionine daily, as compared to 10 Gm. in the present series. Using *Leuconostoc mesenteroides* P_{60} , they found that elevation of the fasting level to above 20 μ g per milliliter occurred in all patients with liver disease, but not in normal subjects. The present investigation thus confirms that methionine utilization is impaired in patients with eirrhosis of the liver.

SUMMARY

A microbiologic method for the assay of L-methionine in plasma, using a methionine-requiring *Bact. coli* mutant, is described. The medium used is much simpler than that required by other test organisms. The method has been applied to the investigation of the abnormal methionine metabolism in patients with cirrhosis of the liver.

It is suggested that other amino acids and B vitamins might be assayed using *Bact. coli* mutants.

RUEBNER

I wish to thank Dr. Sheila Sherlock for stimulating my interest in methionine metabolism, Lord Stamp for his encouragement, Dr. W. Hayes for much help and advice and also for strain 58/161, and Dr. C. E. Dalgliesh for valuable suggestions.

I am also grateful to Dr. R. C. Clowes of the Wright Fleming Institute, St. Mary's Hospital, London, for strain J⁵⁻³ and Dr. D. D. Woods, F.R.S., of the Biochemistry Department, Oxford University, for a gift of cystathionine.

REFERENCES

- 1. Himsworth, H. P.: Lectures on the Liver and Its Diseases. Comprising the Lowell Lectures delivered at Boston, Mass., in March, 1947, Oxford, England, Blackwell Scientific Publications.
- Kinsell, L. W., Harper, H. A., Giese, G. K., Magan, S., McCally, D. P., and Hess, J. R.: Studies in Methionine Metabolism; Fasting Plasma Methionine Levels in Normal and Hepatopathic Individuals in Response to Daily Methionine Ingestion, J. Clin. Invest. 28: 1439, 1949.
- Clowes, R. C., and Rowley, D.: Some Observations on Linkage Effects in Genetic Recombination in Escherichia Coli K-12, J. Gen. Microbiol. 11: 250, 1954.
 Hier, S. W., and Bergeim, O.: Microbiological Determination of Free Leucine, Isoleucine,
- Valine, and Threonine in Dog Plasma, J. Biol. Chem. 161: 717, 1945.
- Moore, S., and Stein, W. H.: Chromatography of Amino Acids on Sulfonated Polystyrene Resins, J. Biol. Chem. 192: 663, 1951.
 Smith, D. C., and Tompsett, S. L.: The Quantitative Determination of Amino-acids in Urine Used in Conjunction With One-dimensional Paper Chromatography, J. Clin.

- Urine Used in Conjunction With One-dimensional Paper Chromatography, J. Clin. Path. 7: 79, 1954.
 7. Wheeler, J. E., and Gyorgy, P.: Studies of Urinary Excretion of Methionine by Normals and by Patients Having Liver Disease, Am. J. M. Sc. 215: 267, 1948.
 8. Stokes, J. L., Gunness, M., Dwyer, I. M., and Caswell, M. C.: Microbiological Methods for the Determination of Amino Acids, J. Biol. Chem. 160: 35, 1945.
 9. Kinsell, L. W., Harper, H. A., Barton, H. C., Michaels, S. D., and Weiss, H. A.: Rate of Disappearance From Plasma of Intravenously Administered Methionine in Patients With Liver Damage, Science 106: 589, 1947.

FROM

THE POSTGRADUATE MEDICAL SCHOOL OF LONDON. DUCANE ROAD, LONDON, W. 12,

> Reprinted from the 'British Journal of Experimental Pathology,' Vol. XXXVII, No. 3, June, 1956.

> > PRINTED FOR

H. K. LEWIS & Co. Ltd.,

136, GOWER STREET, LONDON, W.C.I

BY

ADLARD & SON, LTD., BARTHOLOMEW PRESS, DORKING.

THE *IN VITRO* PRODUCTION OF AMMONIUM AND AMINES BY INTESTINAL BACTERIA IN RELATION TO NITROGEN TOXICITY AS A FACTOR IN HEPATIC COMA

ELIZABETH A. PHEAR* AND B. RUEBNER

From the Departments of Medicine and Pathology, Postgraduate Medical School of London, Ducane Road, London, W.12

Received for publication February 23, 1956

LARGE amounts of ammonium salts are normally present in portal blood and are then metabolised to urea in the liver (Bollman and Mann, 1930). In patients with poor liver function and a portosystemic collateral circulation, and also in dogs with a portocaval shunt (Eck fistula), ammonium may by-pass the liver and reach high levels in the general circulation (Burchi, 1927; White, Phear, Summerskill and Sherlock, 1955). There is evidence that the presence of ammonium salts in the peripheral circulation may have toxic effects. For example, Bollman and Mann (1930) found that ammonium salts were toxic to dogs with an Eck fistula. A correlation between a high peripheral blood ammonium level and nervous symptoms has been noticed particularly after administration of a high protein diet in Eck fistula dogs (Monguio and Krause, 1934) or urea in man (Phillips, Schwartz, Gabuzda and Davidson, 1952) or after haemorrhage from intestinal varices (Riddell, 1955).

In addition to the possible toxicity of ammonium salts there is some evidence that methionine breakdown products, other than ammonium, may also be toxic. Thus, Phear, Ruebner, Sherlock and Summerskill (1956) have shown that after oral methionine certain cirrhotic patients exhibit nervous disturbances clinically indistinguishable from hepatic coma. In view of the fact that ammonium in particular is found in very high concentrations in the portal vein it seems probable that its source is the intestine (Cholopoff, 1927). Since bacteria are known to produce ammonium from both the breakdown of amino acids and the splitting of urea, it seems likely that the ammonium in the portal vein is the result of bacterial metabolism in the intestine. Attempts have therefore been made to treat cases of hepatic coma by the administration of antibacterial agents. Farquhar, Stokes, Whitlock, Bluemle and Gambescia (1950) found that chlortetracycline benefited such patients while Phear et al. (1956) found that the nervous disturbances following oral methionine, mentioned above, were partly or completely prevented by the administration of the same antibiotic. Dintzis and Hastings (1953) and Chao and Tarver (1953) found that the feeding of sulphonamides to animals inhibits the formation of ammonium from urea in the intestine. Sulphonamides have also been shown to lower the blood ammonium level in a patient with a porto-caval anastomosis (McDermott and Adams, 1954). Again, Martini, Phear, Ruebner and Sherlock (1956) during an investigation of the intestinal flora of cirrhotics found that when ileal fluid was incubated there was an increase of coliforms and Streptococcus faecalis with production of ammonium and break-

* In receipt of a grant from the Medical Research Council

down of methionine. However, the addition, before incubation, of chlortetracycline to the ileal fluid prevented almost completely the multiplication of the bacteria and the biochemical changes.

The object of the present study was to investigate the bacterial production of ammonium under *in vitro* conditions approximating to those probably existing in the intestine. The production of amines which may also be toxic (Melnykowycz and Johannson, 1955) was also examined. Work on bacterial nitrogen metabolism has mainly dealt with the action of bacterial suspensions on individual nitrogenous substances. We studied the changes produced by bacteria growing in media containing a mixture of amino acids. The strains used were intestinal bacteria isolated during the investigations of Phear *et al.* (1956) and Martini *et al.* (1956). An attempt was made to identify the principal ammonium producers and to study the effect of chlortetracycline on their growth and ammonium production with a view to applying rational chemotherapy to this condition or to changing the intestinal flora by dietary means.

MATERIAL AND METHODS

Strains of bacteria

The organisms used in this investigation were isolated mainly from the facees of patients with cirrhosis of the liver before and after chlortetracycline therapy (Phear *et al.*, 1956). A few were obtained from the ileal fluid of cirrhotic patients (Martini *et al.*, 1956) and a few others from normal subjects. Strains representing each of the commoner intestinal organisms were chosen.

Sensitivity to chlortetracycline

This was measured by a tube dilution method in 0.5 per cent glucose broth (pH 7.2). The concentrations of chlortetracycline used varied from 250 to 0.12 μ g./ml. Results were read after 18 hr. incubation for aerobes and after 2 days' incubation in a Fildes McIntosh jar for anaerobes. The end-point was taken as the lowest concentration of the antibiotic which inhibited growth. The Oxford Staphylococcus was used as a standard organism throughout. The results of sensitivity tests were in general agreement with those of other investigators (Ungar, 1951).

Culture media

A synthetic amino acid medium of known composition was used for most of the work. The amino acid mixture chosen was that of Stokes, Gunness, Dwyer and Caswell (1945). 'Yeastrel' was added to 0.5 per cent to supply the various members of the B group of vitamins. To each litre of medium were added 5 g. NaCl, 10 mg. MgSO₄, 7 g. Na₂HPO₄, 3 g. KH₂PO₄. The pH was adjusted to 7.2. The final nitrogen concentration was 130 mg. per cent. The amino acids remaining after incubation were identified by paper chromatography.

A case in hydrolysate medium was used for some of the work, and had the same composition except that the 130 mg. per cent nitrogen was derived from case by acid hydrolysis.

A peptic digest of blood was prepared similar to that of Fildes (Mackie and McCartney, 1953) except that horse blood was substituted for sheep blood. Its nitrogen content was adjusted to 130 mg. per cent. Yeastrel and salts were added in the same concentrations as in the amino acid medium.

The buffer concentration (0.02 M) was insufficient to maintain the pH in the presence of added carbohydrate, and after incubation the pH fell. The final pH values of cultures inoculated with an atypical coliform (*Bacterium freundii*), *Proteus morgani* and a non-haemolytic streptococcus in the presence of glucose were respectively 5.2, 4.9 and 4.4.

Anaerobic conditions, when necessary, were obtained by boiling the medium and then adding 0.01 per cent thiolacetic acid. Other substances when added were present in the following concentrations : glucose 500 mg., lactose 500 mg. and urea 100 mg. per cent.

Medium in 10 ml. quantities was placed in 20 ml. screw-capped bottles, inoculated with a drop (0.02 ml.) of a broth culture of each strain and incubated at 37° ,

254

Assessment of bacterial growth

After incubation, growth was usually assessed by the turbidity of the medium. An EEL photoelectric nephelometer (Evans Electroselenium Ltd.) was used. In order to obtain comparable readings the instrument was adjusted each day so that an opacity standard read 100 arbitrary units. The amount of bacterial growth of each species was assumed to be proportional to the nephelometer reading in arbitrary units. In order to compare the growth of different species it was decided to assess bacterial growth in μg . N/ml. One strain of each genus was grown in 0.5 per cent glucose broth, washed three times in 0.85 per cent sodium chloride and re-suspended. The N content of a suspension of standard turbidity (100 arbitrary units) was then determined.

Growth in the blood digest medium was not assessed turbidimetrically as turbidity estimations gave irregular results believed to be due to a breakdown product derived from the medium. When this medium was used in an experiment, growth was assessed by viable counts using the method of Miles and Misra (1938). It was realised that this was less reliable for the assessment of growth than a nephelometric method.

Time of incubation

To find the most suitable time for incubating the cultures before measuring growth and ammonium production a series of cultures of *Bact. freundii* was set up and their turbidity, viable count and ammonium content were measured daily. Growth and ammonium production were almost maximal after 1 day. Cultures of *Bact. freundii* and other aerobes were therefore examined after 18 hr. incubation. Anaerobes including microaerophilic streptococci and lactobacilli grew more slowly and were examined after 48 hr.

Biochemical methods

Ammonium production was measured by the microdiffusion method of Conway (1950). Total nitrogen was measured by Nesslerisation.

DL-methionine was measured by running the specimens, together with a range of standards, on buffered filter paper (McFarren, 1951) and then extracting and measuring the concentration of methionine in the spots by the method of Naftalin (1948) or of Yemm and Cocking (1955).

After making the medium alkaline, amines were extracted into ether. They were then re-extracted into a small volume of hydrochloric acid and run on unidimensional chromatograms using butanol-acetic acid as solvent. Chromatograms were run on Whatman No. 1 filter paper at room temperature. They were sprayed with ninhydrin. It was not possible to identify the amines fully, but known amines were run on each chromatogram, and their Rf values compared with those of the amines produced by the bacteria. No exact quantitative measurements of amine production were made, but the amount of substance in each spot was graded 0 to 6.

RESULTS

Growth and ammonium production by different species

The ammonium content of the medium was increased by the growth of all the species investigated except the lactobacilli which in some experiments did not produce any ammonium (Table I). In the absence of glucose the various species did not differ in the quantities of ammonium produced in relation to growth expressed in terms of

$\frac{\text{production of NH}_4 \text{ nitrogen}}{\text{production of bacterial protein nitrogen}}$

The addition of glucose to the medium, while increasing the growth of all strains except *Bact. freundii*, decreased NH_4 production This agrees with the findings of Stephenson and Gale (1937). In the presence of glucose the most potent NH_4 producers were the coliform, *Proteus* and *Bacteroides* strains and the NH_4N produced in relation to growth was greater from Gram-negative bacteria

							Gl	ucose.		
							_		+	
Species.	×			Growth.	NH₄N production.	NH ₄ N/ growth		Growth.	NH ₄ N production.	NH4N/ growth
Gram-negative bact	eria			1212120101202202	La superiore de la secon	8			1	8
Bact. freundii				109 (27)	163 (11)	1.5		68 (11)	109 (16)	$1 \cdot 6$
Bact. coli .	-	÷.					1	122(38)	95(12)	0.8
Bact. aerogenes		÷.	100				1	146(39)	71(21)	0.5
Bact. alkaligenes	027			29 (2)	71 (1)	$2 \cdot 4$	2			
Proteus mirabilis			1	36 (0)	184 (16)	$5 \cdot 2$	2	127 (53)	133(47)	1.1
P. vulgaris .		- A			_``'	6396374	<u>.</u>	153 (38)	82 (6)	0.5
P. morgani.				78 (2)	150(1)	$1 \cdot 9$		149(26)	128 (28)	$0 \cdot 9$
Bacteroides .								13(23)	17 (6)	1.3
Ps. pyocyanea	•					-		155(23)	83 (62)	$0 \cdot 5$
					Mean	$2 \cdot 8$			Mean	$0 \cdot 9$
Gram-positive bact	eria									
Cl. welchii .		•					200	182 (91)	40 (6)	$0 \cdot 2$
Cl. sporogenes				-				144 (77)	108(74)	$0 \cdot 8$
L. plantarum			14				23	27(15)	4 (1)	$0\cdot 2$
L. bifidus .			.	2			2	99 (65)	8 (15)	0.08
Staph. pyogenes	•		1.	14(2)	42(11)	$3 \cdot 0$		74 (56)	36(18)	0.5
Str. faecalis (haer	noly	tic)					\mathbf{v}	79 (39)	25(18)	$0 \cdot 3$
Str. faecalis (non-				10 (3)	48(1)	$4 \cdot 8$		95(19)	39(1)	$0 \cdot 4$
Microaerophilic st	trept	ococer	us.		—	<u></u>	•	21 (24)	14 (13)	0.6
					Mean	. 3.9			Mean	$. 0 \cdot 4$

TABLE I.—NH₄N Production by Different Species of Bacteria.

All cultures were grown in the amino acid medium of initial pH 7 \cdot 2. Average growth and NH₄ production in μ g.N/ml. Standard deviations in brackets.

(mean 0.9, range 0.5-1.6) than from the Gram-positive organisms (mean 0.4, range 0.08-0.8).

Altering the pH of the glucose-containing synthetic amino acid medium to pH 6 and pH 8 had little effect on the growth and ammonium production of *Bact. freundii*, *P. mirabilis*, *L. acidophilus* and *Str. faecalis*.

The substitution of lactose for glucose did not lower the NH_4 production of *Bact. freundii* to the same extent as glucose although this organism ferments both sugars. On the other hand, while *P. morgani* (a non-lactose fermenter) was unaffected by lactose, the growth and NH_4 production of *Str faecalis* in this sugar did not differ from those in glucose.

Comparison of ammonium production in an amino acid, a casein hydrolysate and a blood digest medium

Ammonium production in relation to growth was similar in the amino acid and casein media but much less in the blood digest medium. The initial ammonium content of the casein medium was 400 μ g. N per ml., while those of the amino acid and blood media were 43 and 62 μ g. N per ml. Thus neither growth nor ammonium production was related to the initial ammonium content of the medium. In the blood medium there was little difference in the ammonium production in relation to growth by the three strains but in the casein and amino acid media *Bact. freundii* was the most potent ammonium producer followed by *P. mirabilis* and *Str. faecalis* (Table II).

PRODUCTS OF INTESTINAL BACTERIA

	Α	mino acid.				Casein.				Blood.	
Species.	Viable count × 10 ⁹ /ml.	NH ₄ N produc- tion.	NH ₄ N/ viable count.	_	$Viable count \times 10^{9}/ml.$	NH ₄ N produc- tion.	NH ₄ N/ viable count.		Viable count $\times 10^{\circ}/\text{ml.}$	NH ₄ N produc- tion.	NH ₄ N/ viable count.
Bact. freundii	$ \begin{cases} 1 \cdot 6 \\ 2 \cdot 5 \\ 2 \cdot 0 \\ 1 \cdot 9 \end{cases} $	$142 \\ 139 \\ 102 \\ 119$:	$2 \cdot 5 \\ 3 \cdot 0 \\ 2 \cdot 9 \\ 3 \cdot 0$	$126 \\ 135 \\ 155 \\ 151$		••••••	$2 \cdot 9$ $2 \cdot 5$ $4 \cdot 7$	29 30 41	
Average	$\overline{2 \cdot 0}$ (±0.3)	$\overline{125}$ (± 16)	63		$\overline{2\cdot 8}$ ($\pm 0\cdot 2$)	$142 (\pm 12)$	50		$\overline{3 \cdot 4}$ (±1.0)	33 (±5)	9.7
<i>Str. faecalis</i> (non-haemolytic)	$ \begin{cases} 2 \cdot 0 \\ 2 \cdot 3 \\ 1 \cdot 5 \\ 1 \cdot 7 \end{cases} $	43 43 39 39		•••••	$2 \cdot 4 \\ 3 \cdot 2 \\ 2 \cdot 0 \\ 2 \cdot 1$	93 93 77 77		•••••	$1.5 \\ 1.6 \\ 1.4 \\ 1.5$	$9 \\ 8 \\ 24 \\ 26$	
Average	$\overline{1\cdot 9}$ (±0·3)	41 (±2)	21		$\overline{2 \cdot 4}$ (±0.5)	$\overline{85}$ (± 8)	35		$\overline{1\cdot 5}$ (±0·1)	17 (±8)	11
P. mirabilis	$ \begin{cases} 2 \cdot 3 \\ 2 \cdot 6 \\ 3 \cdot 8 \\ 4 \cdot 8 \end{cases} $	111 118 96 87		: :	$2 \cdot 7$ $4 \cdot 2$ $5 \cdot 0$ $5 \cdot 5$	186 201 134 199		•••••	$3 \cdot 6$ $3 \cdot 7$ $3 \cdot 3$ $3 \cdot 5$	53 59 59 59	
Average	$\overline{3\cdot 4}$ (±0.9)	$103 (\pm 13)$) 38		$\overline{4\cdot 4}$ (±1·1)	$\overline{180}$ (±27)	41		$\overline{3\cdot 5}$ (±0·1)	$\overline{57}$ (±8)	16

TABLE II.—Comparison of Growth and Ammonium Production in Amino Acid, Casein and Blood Media

Glucose was added to all cultures. Ammonium production expressed in μg , NH_4N/ml .

Urease activity

Table III shows the difference in ammonium production with and without added urea, among those strains found to possess urease activity. Bact. aerogenes and 3 species of Proteus were most active, producing more than 200 μ g. per ml. more ammonium, in the presence of urea. Staphylococcus pyogenes and one strain of Bact. coli had less activity, producing about 20 μ g. more ammonium, in the presence of urea by Bact. coli confirmed the suggestion of Christensen (1946) that occasional strains might possess urease activity. The microaerophilic streptococcus and Ps. pyocyanea showed little activity, producing only about 5 μ g. per ml. additional ammonium. No urease activity was observed in Bact. alkaligenes, a second Bact. coli strain, strains of Str. faecalis, lactobacilli, Bacteroides or Clostridium welchii.

The effect of chlortetracycline on growth and ammonium production

When carrying out chlortetracycline sensitivity tests it was found that tubes containing a concentration of drug which would just inhibit growth over 18 hr. showed good growth after 40 hr. This is probably accounted for by the instability of chlortetracycline (Ungar, 1951). Table IV shows the ammonium production in relation to growth in the presence of quantities of chlortetracycline which partially inhibited growth over a 40-hour period. It will be seen that chlortetracycline decreased the ammonium production in relation to growth of *Bact. aerogenes* and of a haemolytic *Str. faecalis* while having no effect on that of *Bact. coli*, *Bact. freundii*, *P. morgani*, *P. vulgaris*, *P. mirabilis* and *L. plantarum*. Ammonium production in relation to growth was increased in a micro-aerophilic streptococcus.

Amine production

A comparison was made of the amine production of *Bact. freundii*, *P. mirabilis* and a haemolytic *Str. faecalis* in the amino acid, blood and casein media, and in the last with and without added glucose. Under all conditions P, *mirabilis*

produced most amines, and casein was found to be the best medium for amine production by all species. The addition of thiolacetic acid slightly increased amine production. Glucose, while increasing the growth of all three species, decreased amine production by *Bact. freundii* and *Proteus*, while increasing that of the haemolytic *Str. faecalis*.

TABLE III.—Urease Activity of Bacteria Possessing this Enzyme in an Amino Acid Medium Containing Glucose

				2	Urea				
			2		-~	+	-		Increase in the NH_4N production
Species			Growth.	NH ₄ produced.		Growth.	NH4 produced.		in the presence of urea.
Bact. aerogenes	•		183	81	*	$\begin{array}{c} 183\\173\end{array}$	$\begin{array}{c} 468 \\ 425 \end{array}$	÷	$\begin{array}{c} 387 \\ 344 \end{array}$
P. vulgaris .	÷	140	220	90		297 258	$\begin{array}{c} 443\\ 417\end{array}$	5. 5	353 327
P. morgani .	•	٠	189	166	·	239 239	$\begin{array}{c} 500\\ 506\end{array}$		334 340
P. mirabilis .	•		239	216	•	$\begin{array}{c} 254 \\ 254 \end{array}$	$\begin{array}{c} 470\\ 423 \end{array}$:	$\frac{254}{207}$
Staph. pyogenes	•	- 10	151	53	•	$\begin{array}{c} 138\\152 \end{array}$	98 80	•	45 27
Bact. coli .		•	178	101		$\frac{156}{156}$	$\begin{array}{c} 123\\123\end{array}$	•	$\frac{22}{22}$
Anaerobic strept	ococcu	s.	85	27	•	$\frac{74}{83}$	32 31	÷	5 4
Ps. pyocyanea .	-721		164	87	·	$\frac{150}{155}$	94 89	•	7 2

Growth and NH_4 production in $\mu g.N/ml$.

 TABLE IV.—Effect of Chlortetracycline at Concentrations Just Limiting Growth on Ammonium Production in Amino Acid Medium Containing Glucose

 Chlortetracycline

									Cr	10	ortetracy	ycline								
			<u> </u>			NH ₄ N					NH,N							Concentration		
Gro		wth.	th. production.						Growth.			production.					of chlor-			
Species.		A	verage	S.D.	А	verage	S.D.		NH ₄ I owth		Average	S.D.	A	verage	S.D.		NH ₄		tetracycline (in $\mu g./ml.$).	
Bact. freundii			104	(15)		123	(9)		$1 \cdot 2$		86	(8)		96	(9)		1.1		2.5	
Bact. coli .			122	(40)		133	(22)		$1 \cdot 1$		67	(4)		108	(17)		1.6	5.	$2 \cdot 5$	
Bact. aerogenes			109	(24)		65	(24)		0.6		82	(20)		15	(9)		0.2	2.	$2 \cdot 5$	
Str. faecalis (hae	molyt	ic)	68	(2)		45	(5)		$0 \cdot 6$		55	(8)		10	(6)		0.2	2.	50	
P. mirabilis			141	(21)		107	(14)		0.8		109	(8)		103	(8)		0.9).	50	
P. morgani .			117	(17)		155	(12)		$1 \cdot 3$		94	(11)		173	(15)		1.8	3.	50	
P. vulgaris .			125	(14)		122	(3)		$1 \cdot 0$		77	(1)		147	(1)		2.0).	50	
L. plantarum			24	(5)		4	(4)		$0 \cdot 2$		14	(4)	÷.	5	(4)		0.3		10	
Microaerophilic coccus	strept	0-	38	(25)	·	23	(7)		$0 \cdot 6$		10	(4)	•	25	(8)		$2 \cdot 5$		10	

258

PRODUCTS OF INTESTINAL BACTERIA

It appeared that amines of Rf 0.04—0.06 are agmatine, histamine and cadaverine, while that of Rf 0.45–0.47 is probably tyramine with a front retarded by other substances present in the extract. It is not known to which amines the other substances correspond, but that of Rf 0.69–0.72 seems to be similar to the ephedrine-like spot of Melnykowycz and Johansson (1955). Spots with Rf of 0.21–0.23, 0.45–0.47 and 0.69–0.72 gave a positive Pauly's reaction.

Having determined that the casein medium was most favourable to amine production a comparison was made of amine production by these and some other species (Table V). Glucose was added to increase growth. *P. mirabilis* was most active, and lactobacillus, *Ps. pyocyanea*, *Bact. aerogenes* and *Bacteroides* less so. No amines were detectable in the medium after culture of *Cl. welchii* and *Bact. alkaligenes*. It was not possible to identify all the amines produced in our cultures but results are in general agreement with those of previous workers (Gale, 1946).

Chlortetracycline in the same subinhibitory concentrations as in Table IV prevented amine formation by *Bact. freundii* and *Bact. aerogenes* while having little effect on that of the haemolytic *Str. faecalis* and none on that of *P. mirabilis* (Table V).

TABLE V.—Comparison of	Ami	ne Pr	oduction	by Different S	pecies in a Cas	ein
Hydrolysate Medium	with	and	without	Subinhibitory	Concentrations	of
Chlortetracycline						

1	tetra-		Time of incubation in days.		0.04-0.06 E	$0 \cdot 12 - 0 \cdot 15$	$0 \cdot 21 - 0 \cdot 23$	$0 \cdot 35 - 0 \cdot 36$	$0 \cdot 45 - 0 \cdot 47$	$0 \cdot 57 - 0 \cdot 59$	$0 \cdot 61 - 0 \cdot 63$	$0 \cdot 69 - 0 \cdot 72$	0.78-0.83
	_		1		12.22	1						2	
•	+ -+		1		1	i	 	· · · 2 2	$\frac{1}{2}$	4	3	$\cdot \frac{1}{5}$	1
э-	+	-	1	•					3	•••	$\frac{2}{1}$	$\frac{3}{2}$	
	<u> </u>		2				1		3		2212	1	1
	-	2	2									1	
÷.	-		2								1		
			2		1								1
	+		2		_								
	<u></u>		2		_								
	_		2								1		• •
			2										
	с;	++++++++++++++++++++++++++++++++++++	tetra- cycline. · - · · · + · · + · · - · ·	$\begin{array}{ccccccc} \text{tetra-incubation}\\ \text{cycline.} & \text{in days.}\\ \cdot & - & \cdot & 1\\ + & 1\\ \cdot & - & \cdot & 2\\ \cdot & - & 2\\ \cdot & - & \cdot & 2\\ \cdot & - & \cdot & 2\\ \cdot & - & \cdot & 2\\ \cdot & - & - & 2\\ \cdot $	$\begin{array}{cccccccc} \text{tetra-incubation} \\ \text{cycline.} & \text{in days.} \\ \cdot & - & \cdot & 1 \\ + & 1 \\ \cdot & - & \cdot & 2 \\ \cdot & - & - & - \\ \cdot & - & - \\ \cdot & - & - & - \\ \cdot & - & - \\ \cdot & - & - & - $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

All cultures were initially at pH 7.2 and were incubated anaerobically in the presence of glucose. Numbers represent an estimation of the amount of ninhydrin-positive substance in each spot on an arbitrary scale (0-6).

DISCUSSION

The results of our *in vitro* studies on ammonium production cannot unreservedly be applied to the more complex conditions existing in the intestine, although comparable quantities of ammonium were produced in incubation experiments using ileal fluid as a medium (Martini *et al.*, 1956). It would be of interest to know how much ammonium is produced in the gut daily. However, the volume of the gut fluid and its bacterial content are not known and are probably variable. The fact that in our cultures the bacterial cell nitrogen was of the same order as the NH_4 nitrogen produced and that the nitrogen content of the faeces is 1–3 g. per day, suggests that this is in the order of g. rather than mg. White *et al.* (1955) showed that 3 g. of $\mathrm{NH}_4\mathrm{Cl}$ may sometimes give rise to nervous symptoms in patients with cirrhosis of the liver. The quantity of ammonium produced by intestinal bacteria may therefore be of clinical significance. However, only work on isolated intestinal loops of animals can solve this problem satisfactorily. Ammonium production also occurred in a medium containing no other source of nitrogen than a peptic digest of blood. The rise in blood ammonium observed in cirrhotic patients after intestinal haemorrhage may therefore in part be due to ammonium produced by bacteria from blood in the intestine. When blood urea levels rise in cirrhosis of the liver the urease activity of *Proteus* and *Bact. aerogenes* strains may be of clinical significance.

In our experiments cultures were made in small screw-capped bottles in order to prevent escape of ammonium, and anaerobic conditions almost certainly prevailed during most of the incubation period. This assumption is supported by two observations. Firstly, Bact. freundii broke down aspartic acid, cysteine, threenine and serine, which it attacks by dehydrogenation, rather than glycine, alanine and glutamic acid which it would have attacked by oxidation (Fry, 1955). Secondly, the rate of ammonium production by Bact. coli is greatest under aerobic conditions (Stumpf and Green, 1944). Since we found no difference between the ammonium production of Bact. coli with and without thiolacetic acid, anaerobic conditions seem to have prevailed even without this reducing substance. As conditions in the large intestine are favourable to the growth of anaerobic bacteria we did not consider that our results were invalidated by anaerobiosis in our cultures. It must be admitted that in the intestine, where mixed bacterial populations compete for available nutrients, bacteria may not show the same degree of ammonium production as did our pure strains in relatively simple media. Although we found that in several species ammonium production at pH 6 and pH 8 did not differ greatly from that at pH 7, further work on ammonium production under more varied conditions is clearly required. In particular the metabolism of mixed cultures of intestinal bacteria and the production of ammonium during the early phases of growth seem to merit further investigation.

The intestinal flora of patients with cirrhosis of the liver differs from that of normal subjects in a greatly increased number of coliforms and *Str. faecalis* in the small intestine. These organisms also occur at a higher level in cirrhotics (Martini *et al.*, 1956). It does not seem probable, however, that the increased blood ammonium levels in these patients are due to this increase in small intestinal flora. Patients suffering from other diseases but with normal liver function may have a similar intestinal flora without showing any clinical or biochemical abnormality (Martini *et al.*, 1956). It seems probable, moreover, that even in patients with cirrhosis of the liver the majority of intestinal bacteria are situated in the large intestine, which therefore remains the main site of ammonium production. The increased blood ammonium levels in cirrhosis are therefore almost certainly not due to increased ammonium production in the intestine but to a decreased ability of the liver to metabolise ammonium or to the presence of a collateral circulation which by-passes the liver.

Reduction in ammonium production by the intestinal flora in patients with hepatic coma might be of benefit. As glucose was found to reduce ammonium production by intestinal bacteria the low protein-high carbohydrate diet usually prescribed for cirrhotic patients may lower ammonium production partly by lowering the amount of nitrogenous substrate available to bacteria and partly because of the effect of glucose in lowering ammonium production. Lactobacilli which produce little or no ammonium are generally believed to become prominent in the intestinal flora when a milk diet is given (Dudgeon, 1926). Such a diet might therefore be of benefit to patients suffering from the nervous complications of liver disease.

Chlortetracycline was considered to be beneficial in hepatic coma by Farquhar et al. (1950) and more recently antibiotics have been advised for the treatment of hepatic coma on the supposition that production of harmful toxic metabolites might be diminished (Riddell, 1955). Investigations of the effect of chlortetracycline on the faecal flora (Phear et al., 1956) showed that the total viable counts were hardly diminished. Although there was a constant depression of Bacteroides with a partial lowering of the coliform count, the number of Proteus, anaerobic streptococci and lactobacilli increased in many cases and Str. faecalis was un-Replacement of Bacteroides and some coliform strains by Proteus, affected. another strong ammonium producer, may have occurred in the Eck fistula dogs of Mann, Bollman, Huizenga, Farrar and Grindlay (1954) who found that oxytetracycline did not lower the blood ammonium levels in these animals. Our finding that chlortetracycline at subinhibitory levels may lower ammonium production in vitro is of interest but of limited importance as the proportion of strains showing this phenomenon was small.

Antibiotics affecting the principal ammonium producers, *Proteus*, coliforms and *Bacteroides*, should cut down the production of ammonium by intestinal bacteria and therefore might benefit patients in impending hepatic coma. Chlor-tetracycline only fulfils these conditions partially and other wide spectrum antibiotics such as neomycin (Poth, 1954) or a combination of two drugs would probably be more effective.

SUMMARY

A comparison has been made of the *in vitro* ammonium and amine production by different species of growing intestinal bacteria.

When cultivated in a synthetic amino acid medium containing glucose of pH 7.2 all species, except lactobacilli, produced ammonium. Gram-negative bacteria produced more ammonium than Gram-positive organisms. Glucose increased growth in almost all instances and decreased ammonium production. Ammonium production was greater in a case in hydrolysate and less in a blood digest medium than in the synthetic amino acid medium. Urease activity was high in *Proteus* and *Bact. aerogenes* and less in *Staph. pyogenes*, *Bact. coli*, *Ps. pyocyanea* and an anaerobic streptococcus.

Amine production was greater in the casein medium than in that containing synthetic amino acids or a peptic digest of blood. *Proteus* was the most active amine producer.

Chlortetracycline at subinhibitory levels in two strains reduced ammonium production out of proportion to its effect on growth.

As ammonium salts are toxic to patients with cirrhosis of the liver a reduction of intestinal ammonium production might be beneficial. The use of dietary measures and of antibiotics for this purpose is discussed.

We wish to thank Dr. Sheila Sherlock for stimulating our interest in this subject, and Professor Lord Stamp, Dr. W. Hayes, Dr. C. E. Dalgleish and Dr. G. A. Martini for their helpful advice.

REFERENCES

- BOLLMAN, J. C. AND MANN, F. C.-(1930) Amer. J. Physiol., 92, 92.
- BURCHI, I.—(1927) Folia clin. chim. micr., Bologna, 2, 5.
- CHAO, F. AND TARVER, H.-(1953) Proc. Soc. exp. Biol., N.Y., 84, 406.
- CHOLOPOFF, A. D.—(1927) Pflüg. Arch. ges. Physiol., 218, 670.
- CHRISTENSEN, W. B.-(1946) J. Bact., 52, 461.
- CONWAY, E. J.-(1950) 'Microdiffusion Analysis and Volumetric Error.' 3rd. Ed. London (Crosby and Lockwood).
- DINTZIS, R. Z. AND HASTINGS, A. B.-(1953) Proc. nat. Acad. Sci., Wash., 39, 571.
- DUDGEON, L. S.—(1926) J. Hyg., Camb., 25, 119.
- FARQUHAR, J. D., STOKES, J., WHITLOCK, C. M., BLUEMLE, L. W. AND GAMBESCIA, J. M.-(1950) Amer. J. med. Sci., 220, 166.
- FRY, B. A.--(1955) 'The Nitrogen Metabolism of Micro-organisms.' London (Methuen),
- GALE, E. F.—(1946) Advanc. Enzymol., 6, 1.
- McDermott, W. V. and Adams, R. D.-(1954) J. clin. Invest., 33, 1.
- McFARREN, E. F.-(1951) Anal. Chem., 23, 168.
- MACKIE, T. J. AND MCCARTNEY, J. E.-(1953) 'Handbook of Practical Bacteriology.' 9th Ed., Edinburgh (Livingstone), p. 190.
- MANN, J. D., BOLLMAN, J. L., HUIZENGA, K. A., FARRAR, T. AND GRINDLAY, J. H .--(1954) Gastroenterology, 27, 399.
- MARTINI, G. A., PHEAR, E. A., RUEBNER, B. AND SHERLOCK, J.-(1956) Clin. Sci., in press.
- MELNYKOWYCZ, J. AND JOHANSSON, K. R.-(1955) J. exp. Med., 101, 507.
- MILES, A. A. AND MISRA, S. S.—(1938) J. Hyg., Camb., 38, 732.
- MONGUIO, J. AND KRAUSE, F.-(1934) Klin. Wschr., 13, 1142.
- NAFTALIN, L.-(1948) Nature, Lond., 161, 763. PHEAR, E. A., RUEBNER, B., SHERLOCK, S. AND SUMMERSKILL, W. H. J.-(1956) Clin. Sci., 15, 93.
- PHILLIPS, G. B., SCHWARTZ, R., GABUZDA, G. J. JR. AND DAVIDSON, C. S.-(1952) New Engl. J. Med., 247, 239.
- Ротн, Е. J.—(1954) Amer. J. Surg., 88, 803.
- RIDDELL, A. G.—(1955) Postgrad. med. J., 39, 389.
- STEPHENSON, M. AND GALE, E. F.-(1937) Biochem. J., 31, 1316.
- STOKES, J. L., GUNNESS, M., DWYER, I. M. AND CASWELL, M. C.-(1945) J. biol. Chem., 160, 35.
- STUMPF, P. K. AND GREEN, D. E.-(1944) Ibid., 153, 387.
- UNGAR, J.-(1951) In 'Recent Advances in Clinical Pathology.' 2nd. Ed. London (Churchill), p. 109.
- WHITE, L. P., PHEAR, E. A., SUMMERSKILL, W. H. J. AND SHERLOCK, S.-(1955) J. clin. Invest., 34, 158.
- YEMM, E. W. AND COCKING, E. C.-(1955) Analyst, 80, 209.

262