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Abstract

The overall aim of the project was to investigate the potential and challenges in the
application of high spatial and spectral resolution remote sensing to forest stands in
the UK for Continuous Cover Forestry (CCF) purposes. Within the context of CCF, a
relatively new forest management strategy that has been implemented in several
European countries, the usefulness of digital remote sensing techniques lie in their
potential ability to retrieve parameters at sub-stand level and, in particular, in the
assessment of natural regeneration and light regimes. The idea behind CCF is the
support of a sustainable forest management system reducing disturbance of the forest
ecosystem and encouraging the use of more natural methods, e.g. natural
regeneration, for which the light environment beneath the forest canopy plays a
fundamental role.

The study was carried out at a test area in central Scotland, situated within the Queen
Elizabeth II Forest Park (lat. 56°10' N, long. 4° 23' W). Six plots containing three
different species (Norway spruce, European larch and Sessile oak), characterized by
their different light regimes, were established within the area for the measurement of
forest variables using a forest inventory approach and hemispherical photography.
The remote sensing data available for the study consisted of Landsat ETM+ imagery,
a small footprint multi-return lidar dataset over the study area, Airborne Thematic
Mapper (ATM) data, and aerial photography with same acquisition date as the lidar
data.

Landsat ETM+ imagery was used for the spectral characterisation of the species under
study and the evaluation of phenological change as a factor to consider for future
acquisitions of remotely sensed imagery. Three approaches were used for the
discrimination between species: raw data, NDVI, and Principal Component Analysis
(PCA). It can be concluded that no single date is ideal for discriminating the species
studied (early summer was best) and that a combination of two or three datasets
covering their phenological cycles is optimal for the differentiation. Although the
approaches used helped to characterize the forest species, especially to the
discrimination between spruces, larch and the deciduous oak species, further work is
needed in order to define an optimum approach to discriminate between spruce
species (e.g. Sitka spruce and Norway spruce) for which spectral responses are very
similar. In general, the useful ranges of the indices were small, so a careful and
accurate preprocessing of the imagery is highly recommended.

Lidar, ATM, and aerial photographic datasets were analysed for the characterisation
of vertical and horizontal forest structure. A slope-based algorithm was developed for
the extraction of ground elevation and tree heights from multiple return lidar data, the
production of a Digital Terrain Model (DTM) and Digital Surface Model (DSM) of
the area under study, and for the comparison of the predicted lidar tree heights with
the true tree heights, followed by the building of a Digital Canopy Model (DCM) for
the determination of percentage canopy cover and tree crown delineation. Mean
height and individual tree heights were estimated for all sample plots. The results
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showed that lidar underestimated tree heights by an average of 1.49 m. The standard
deviation of the lidar estimates was 3.58 m and the mean standard error was 0.38 m.

This study assessed the utility of an object-oriented approach for deciduous and
coniferous crown delineation, based on small-footprint, multiple return lidar data,
high resolution ATM imagery, and aerial photography. Special emphasis in the
analysis was made in the fusion of aerial photography and lidar data for tree crown
detection and classification, as it was expected that the high vertical accuracy of lidar,
combined with the high spatial resolution aerial photography would render the best
results and would provide the forestry sector with an affordable and accurate means
for forest management and planning. Most of the field surveyed trees could be
automatically and correctly detected, especially for the spruce and larch plots, but the
complexity of the deciduous plots hindered the tree recognition approach, leading to
poor crown extent and gap estimations. Indicators of light availability were calculated
from the lidar data by calculation of laser hit penetration rates and percentage canopy
cover. These results were compared to estimates of canopy openness obtained from
hemispherical pictures for the same locations.

Finally, the synergistic benefits of all datasets were evaluated and the forest structural
variables determined from remote sensing and hemispherical photography were
examined as indicators of light availability for regenerating seedlings.

in



Table of contents

Acknowledgements
Abstract
List of Figures
List of Tables
List of Acronyms

1 Introduction

1.1 Introduction and objectives of the research 1
1.2 Aims and objectives 4

1.3 Relevance of the research and expected outcomes 5
1.4 Thesis outline 7

2 The Continuous Cover Forestry (CCF) system

2.1 Introduction 8

2.2 The CCF system 12
2.3 Emphasis on natural regeneration 21
2.4 Regeneration and light 22
2.5 Site description 25

2.5.1 Field sites 26

2.6 Field sampling strategy 28
2.7 Description of the plots 30
2.8 Description of the species under study 36
2.9 Summary 45

3 Spectral reflectances of marked species

3.1 Introduction 46

3.2 Objectives 50
3.3 Remote sensing of the marked vegetation 52

3.3.1 Factors affecting vegetation spectral reflectance
3.4 Data collection 57

3.4.1 Atmospheric correction and normalization 60
3.4.2 Geometric correction 71

3.5 Patterns of seasonal reflectance 72



3.5.1 Selection of optimal band combination 73

3.5.2 Interpretation of observed spectral reflectances in TM bands 75
3.6 Normalized Difference Vegetation Index (NDVI) 87
3.7 Principal Components Analysis (PCA) 93
3.8 Discussion of the results 102

4 LrDAR data analysis

4.1 Introduction 110

4.2 Objectives 112
4.3 The Laser System 113

4.3.1 The Airborne Laser Scanning (ALS) system 113
4.3.2 The OptechALTM 2033 118

4.4 LiDAR for the retrieval of forest parameters 119
4.5 Algorithms for processing airborne laser scanning data 121
4.6 Data collection 124

4.7 Filtering process 126
4.8 Generation of the Digital Terrain Model (DTM) 140
4.9 Generation of the Digital Canopy Model (DCM) 145
4.10 Discussion of results 157

5 Object oriented tree and gap classification

5.1 Introduction 159

5.2 Object oriented image segmentation and classification 161
5.3 Segmentation procedure in eCognition 165
5.4 Object oriented classification techniques 166
5.5 Data characteristics 168

5.5.1 LiDAR data 170

5.5.2 Airborne Thematic Mapper (ATM) data 171
5.5.3 Aerial ortophotography 176

5.6 Data preprocessing 178
5.7 Manual crown delineation 178

5.8 Segmentation and classification process 180
5.8.1 Segmentation and classification of digital aerial photography 185

v



5.8.2 Segmentation ofATM imagery 207
5.8.3 Segmentation of LiDAR derived DCM 208
5.8.4 Segmentation and classification of the aerial photography

and LiDAR data 221

5.8.5 Segmentation and classification of the multispectral and
LiDAR data 224

5.8.6 Results summary 226
5.9 Validation of classification against manual delineation 228
5.10 Summary 234

6 Canopy openness and light enviroment

6.1 Introduction 237

6.2 Objectives 238
6.3 Hemispherical photography 239

6.3.1 Hemispherical photography acquisition 240
6.3.2 Hemispherical photography processing 242

6.4 LiDAR-derived canopy openness 243
6.5 LiDAR-derived canopy cover 243
6.6 Discussion of the results 256

7 Conclusions and recommendations

7.1 Introduction 258

7.2 The influence of seasonal change on surface reflectance properties of
common forest species 259

7.3 LiDAR data for the estimation of tree height 260
7.4 Estimation of forest structural attributes from a range ofRS methods 261
7.5 Estimates of canopy openness and light environment from RS data 262
7.6 Overall conclusions 262

7.7 Limitations and problems of the research 264
7.8 Future research 265

References 266

appendix 1: Regression equations for Landsat ETM+ data normalization 282
Appendix 2: Programme GROUND 287

vi



Appendix 3: Field work measurements 296

List of Figures

Figure 2.1 Structure and evolving characteristics of stands under CCF 14
system

Figure 2.2 Main components of the contemporary international continuous 15
cover forestry debate

Figure 2.3 Scheme of the transition of the even-aged stands to Continuous 20
Cover Forestry

Figure 2.4 Satellite imagery and map showing the study area 26
Figure 2.5 Location of plots within stand compartments 27
Figure 2.6 Views of Plot 1: regeneration and trees around gap 30
Figure 2.7 Views of Plot 2: general and within stand 31
Figure 2.8 Views of Plot 3: general and within stand 32
Figure 2.9 Views of Plot 4: general and within stand. 33
Figure 2.10 Views ofPlot 5: general and within stand 34
Figure 2.11 Views of Plot 6: general and within stand 35
Figure 2.12 Norway spruce, European larch and Oak 36
Figure 2.13 European larch's (Larix decidua) bark, leaf, form, fruit and twig 37
Figure 2.14 Norway spruce (Picea abies) bark, leaf, fruit, twig and form 40
Figure 2.15 Sessile oak (Quercus petraea) bark, acorn, leaf, and terminal buds 43
Figure 3.1 Typical spectral reflectance characteristics of healthy vegetation 52
Figure 3.2 Colour composites of Landsat ETM+ imagery for the study 58
Figure 3.3 Colour composites of Landsat ETM+ imagery with clouds 59
Figure 3.4 Reflectance values of water bodies before and after atmospheric 67

correction and normalisation correspondent to images taken on
17.07.2000, 25.08.2000 and 24.12.2000

Figure 3.5 Reflectance values ofwater bodies before and after atmospheric 68
correction and normalisation correspondent to images taken on
01.05.2001, 31.10.2001 and 11.12.2001

Figure 3.6 Assesment of the PIFs targets 69
Figure 3.7 Subset of the Landsat ETM+image obtained on 25.08.2000 72

showing the location of the study plots within the Aberfoyle area
Figure 3.8 Subsets of the images selected for the analysis of the spectral 69

reflectance of the marked species
Figure 3.9 Spectral profile for Sitka Spruce, European Larch, Sessile Oak 72

and Norway Spruce for the Landsat ETM+ imager
Figure 3.10 Mean intra-seasonal reflectance values for European larch, sessile 81

oak, Norway spruce and Sitka spruce
Figure 3.11 Mean intraseasonal spectral reflectances bands 3,4,5 for the 82

species analysed with expected errors due to radiometric
correction

Figure 3.12 NDVI imagery over Aberfoyle area derived from Landsat ETM+ 89
scenes

Figure 3.13 Seasonal NDVI values for species under study 90
Figure 3.14 Seasonal NDVI values from a broadleaf forest in USA 90

Vll



Figure3.15 ETM+image acquired on 11.12.2001 91
Figure 3.16 Principal Component images of Elizabeth Forest Park II derived 98

from Landsat ETM+ imagery obtained on 25 August 2000
Figure 3.17 False colour composite of the three first principal components for 99

four acquisition dates
Figure 3.18 High, low and mean scores of the Second Principal Component 100

showing the seasonality of the values trough time
Figure 3.19 Second Principal Component scores showing the seasonality of 101

the values trough time
Figure 4.1 Typical ALS system 114

Figure 4.2 Typical components of an airborne LiDAR ranging system 115

Figure 4.3 Full laser waveform digitization provides nearly continuous 116
vertical (range) resolution

Figure 4.4 Optech ALTM 2033 LiDAR system 119

Figure 4.5 Raw LiDAR data over a sample plot 125

Figure 4.6 Profile of LiDAR measurements over a forested area 126

Figure 4.7 First (top) and last return (bottom) LiDAR measurements for a 126
forested area

Figure 4.8 Flow chart of the linear algorithm for the LiDAR DTM 127
generation

Figure 4.9 Linear regression method for the calculation of ground points 128
Figure 4.10 Area method for the classification of ground points 129
Figure 4.11 Three-dimensional view of the raw LiDAR data for one of the 129

plots
Figure 4.12 Flow chart of the area algorithm for the LiDAR DTM generation 130
Figure 4.13 Generation of ground data points using the linear method 132
Figure 4.14 Linear and area method applied to a dense Norway spruce stand 134
Figure 4.15 Line method with different width parameter values: lm and 3m 135
Figure 4.16 Linear method applied to a dense stand 136
Figure 4.17 Linear method considering 3m for the height parameter and 6m 136

for the width parameter
Figure 4.18 Raw data section from Norway spruce stands 137
Figure 4.19 Area method lm x lm (blue dots) following the raw data 137
Figure 4.20 Area method window size 3m x 3m 138
Figure 4.21 Area method window size 5m x 5m 138
Figure 4.22 Area method applied to a very dense Norway spruce stand with a 138

window size of 5m x 5m

Figure 4.23 LiDAR data distribution for different sections of the selected plot 139
Figure 4.24 LiDAR DTM of the area that contains a 50m x 50m European 140

larch plot under study
Figure 4.25 Ordnance Survey DTM a) of the Aberfoyle area showing in the 142

red box the approximate location of the LiDAR-derived DTM
showed in b)

viii



Figure 4.26 Extract of the Achray Sub Compartment Database from Forestry 144
Commission showing the localization of GPS measured control
points (red dots) on two plots of European Larch

Figure 4.27 LiDAR derived DTM of a European larch sample plot in 145
Aberfoyle

Figure 4.28 Digital canopy models 1 m resolution (a) and 0.5 m resolution (b) 146
of European larch plot in Aberfoyle

Figure 4.29 Orthophoto (a) and shaded relief view (b) of the LiDAR derived 147
DCM for a European larch plot section within the red box in the
orthophoto (c)

Figure 4.30 LiDAR derived DTM (a) and DCM of a European larch plot 148
section (b)

Figure 4.31 Shaded relief view of the DCM of a Norway spruce stand section 149
in Aberfoyle

Figure 4.32 Orthophoto and shaded relief view of the DCM of a Norway 150
spruce stand plot 2 in Aberfoyle

Figure 4.33 Vegetation heights derived from Optech ALTM LiDAR data, 151
60m by 60m

Figure 4.34 Comparison between top heights measured in the field and their 152
respective values obtained from LiDAR

Figure 4.35 Grid node editor in Surfer 6.04 for LiDAR height extraction 152
Figure 4.36 Comparison between tree heights measured in the field and their 154

respective values obtained from LiDAR
Figure 4.37 The laser pulses hit the trees usually missing the tree tops 156
Figure 4.38 Influence of sampling density for the detection of true tree heights 156
Figure 5.1 Airborne Thematic Mapper imagery used in the analysis 172
Figure 5.2 Registration of the ATM data to ortophotography of the area 175
Figure 5.3 Relative position of digital color ortophotographs used as a layer 176

for segmentation and classification of forest species and for tree
crown and gap delineation, overlaid onto the compartments
database from Forestry Commission

Figure 5.4 Individual digital color ortophotographs encompassing the sample 177
plots denoted by red boxes

Figure 5.5 Subsets of aerial photographs corresponding to European larch 179
plot (a); Norway spruce plot (b); mixed European larch and
Douglas fir sample plot (c); Oak sample plot (d)

Figure 5.6 Methodology used in the segmentation and classification process 180
Figure 5.7 Processing flow in eCognition for the segmentation and 183

classification of datasets

Figure 5.8 Hierarchical net of image objects derived from image 185
segmentation level 1 (10 scale parameter), level 2 (50 scale
parameter) and level 3 (90 scale parameter)

Figure 5.9 Results obtained from the segmentation process considering 187
values for the scale parameter ranging from 10 to 50

Figure 5.10 Results obtained from the segmentation process considering 188
values for the scale parameter ranging from 50 to 100

IX



Figure 5.11 Results obtained from the segmentation process considering 189
values for the scale parameter of 50 and varying values for
Color/shape and compactness/smoothness parameters, for a
European larch dataset

Figure 5.12 Results obtained from the segmentation process considering 190
values for the scale parameter of 50 and varying values for
Color/shape and compactness/smoothness parameters

Figure 5.13 Results obtained from the segmentation process considering 191
values for the scale parameter of 50 and Color/Shape 0.8:0.2;
Compactness/Smoothness 0.8:0.2

Figure 5.14 Grey segments represent gaps in a) and brown segments 192
delineated in red represent the gap area after gap segments were
merged

Figure 5.15 First attempt to detect European larch species using fuzzy 193
classification and final fuzzy classification of a European larch
dataset

Figure 5.16 Results obtained from the segmentation process considering 195
values for the scale parameter of 30, 90 and the scale chosen for
the final segmentation of 30 with values for parameters
Colour/Shape and Compactness/Smoothness set at: 0.8:0.2

Figure 5.17 Fuzzy classification results for a mixed European larch and 196
Douglas fir dataset

Figure 5.18 NDVI of the mixed Douglas fir and European larch sample plot 198
Figure 5.19 Results obtained from the segmentation process of a Norway 199

spruce dataset considering values for the scale parameter of 20,
30, 40, 50, and 100

Figure 5.20 Best segmentation results obtained with parameter values of Scale 200
30, Colour/ Shape 0.6:0.4 and Compactness/Smoothness 0.8:0.2
for a Norway spruce plot

Figure 5.21 Fuzzy classification ofNorway spruce dataset 201
Figure 5.22 Results obtained from the segmentation process of a Sessile oak 203

dataset considering values for the scale parameter of 20, 30, 40,
50, 60, and 70

Figure 5.23 Imagery generated using a low pass filter (a), high pass filter (b), 204
and texture filters using skewness (c) and variance (d) of an oak
dataset

Figure 5.24 Fuzzy classification of a Sessile oak dataset 205
Figure 5.25 Subsets ofATM 5,7,9 bands composition showing the location of 207

the plots under study in the yellow boxes: European larch a);
Mixed b); Norway spruce c); and Sessile oak d) sample plot

Figure 5.26 Multiple crowns a) and single crown b) of the Sessile oak specie 208
in a segmented and classified ATM image bands 5,7,9
composition

Figure 5.27 Fuzzy classification results for the European larch sample plot 209
ATM dataset

Figure 5.28 Fuzzy classification results for ATM imagery containing a mixed 211



stand of European larch and Douglas fir species
Figure 5.29 Fuzzy classification results for the Norway spruce sample plot 213

ATM dataset

Figure 5.30 ATM composite of bands 5,7,9 showing the oak plot under study 214
and its respective classification by means of fuzzy logic

Figure 5.31 Whole stand segmentation a) and segmentation of a single 217
European larch crown b) extracted from the classification of the
FiDAR dataset corresponding to a mixed (European larch and
Douglas fir) sample plot with overlaid eCognition segments

Figure 5.32 Segmentation of the FiDAR dataset corresponding to a Norway 219
spruce sample plot

Figure 5.33 Segmentation of the FiDAR dataset corresponding to a Sessile 220
oak sample plot

Figure 5.34 Aerial photograph and FiDAR (background) datasets with 222
eCognition segments overlaid, corresponding to a Norway spruce
plot

Figure 5.35 Comparison between reference crowns (manual delineation - 229
blue) and eCognition generated crowns (red) over the European
larch plot

Figure 6.1 Hemispherical pictures of the three species analyzed 241
Figure 6.2 Two-dimensional distribution of FiDAR hits in a 5 m radius from 246

the hemispherical photography acquisition point, for the European
Farch plot 5

Figure 6.3 Three-dimensional distribution of laser hits for the European larch 246
species

Figure 6.4 Two-dimensional distribution of FiDAR hits in a 5 m radius from 247
the hemispherical photography acquisition point for the Norway
spruce plot 2

Figure 6.5 Three-dimensional distribution of laser hits for the Norway spruce 247
species

Figure 6.6 Two-dimensional distribution of FiDAR hits in a 5 m radius from 248
the hemispherical photography acquisition point for the Sessile
oak plot 3

Figure 6.7 Three-dimensional distribution of laser hits for the Sessile oak 248
species

Figure 6.8 Correlation between ground hits percentage and VisSky for all the 249
data in table 6.2

Figure 6.9 Correlation between ground hits percentage and VisSky for 250
European larch, Norway spruce, and Sessile oak species

Figure 6.10 Correlation between ground hits percentage and Indirect Site 251
factor for the three species

Figure 6.11 Correlation between ground hits percentage and Direct Site factor 252
for the three species

Figure 6.12 Correlation between ground hits percentage and Global Site factor 252
for the three species

Figure 6.13 Fidar derived DCM and corresponding aerial photograph of the 253

XI



European larch sample plot 5 with overlaid grid used for
conventional canopy cover calculation

Figure 6.14 Lidar derived DCM and corresponding aerial photograph of 254
Norway spruce sample plot 2 with overlaid grid used for canopy
cover calculation

List of Tables

Table 2.1 Traditional silvicultural systems in the UK
Table 2.2 Seed production of trees in Great Britain
Table 3.1 Acquisition characteristics of the Landsat ETM+ imagery used in

the study
Table 3.2 Geometric correction accuracies of Landsat ETM+ scenes.

Table 3.3 Correlation matrix for the Landsat ETM+ data obtained on 25

August 2000
Table 3.4 Statistics for base-line imagery (25.08.2000) used in the principal

component analysis (PCA)
Table 3.5 Eigenvector matrix for Principal Component Analysis for image

from 25.08.2000.
Table 3.6 Eigenvector matrix of four images for Principal Component

Analysis
Table 3.7 Eigenvectors computed for the covariance matrix found in table

3.3 for the ETM+ 25.08.2000 image
Table 3.8 Correlations (factor loadings) between principal components and

ETM+ bands for image 25.08.2000
Table 4.1 Example of first return file
Table 4.2 Comparison between field heights obtained with GPS and LiDAR

heights
Table 4.3 Descriptive statistics of the field inventory data for the species

under study
Table 4.4 Descriptive statistics of the field measured height and LiDAR

derived tree height, and the difference between field and LiDAR
measurements

Table 5.1 Main characteristics of the available datasets
Table 5.2 Band characteristics of the Daedalus 1268 ATM instrument

compared to those of the Landsat ETM
Table 5.3 Daedalus 1268 Airborne Thematic Mapper sensor parameters
Table 5.4 Correlation matrix for the 11 ATM bands
Table 5.5 Membership functions used for the fuzzy classification of the

European larch dataset
Table 5.6 Fuzzy classification accuracy assessment of the European larch

dataset
Table 5.7 Membership functions used for the fuzzy classification of a mixed

European larch and Douglas fir dataset

10
44
60

72
73

94

94

95

96

97

130
143

153

155

168

173

173
175
192

193

196

xii



Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12
Table 5.13

Table 5.14

Table 5.15

Table 5.16

Table 5.17

Table 5.18

Table 5.19

Table 5.20

Table 5.21

Table 5.22

Table 5.23

Table 5.24

Table 5.25

Table 5.26

Table 5.27

Table 5.28

Table 5.29

Table 5.30

Table 5.31

Fuzzy classification accuracy assessment for a mixed European
larch and Douglas fir dataset
Membership functions used for the fuzzy classification of a
Norway spruce stand
Fuzzy classification accuracy assessment of the aerial
photography Norway spruce dataset
Membership functions used for the fuzzy classification of a
Sessile oak stand

Fuzzy classification accuracy assessment of a Sessile oak dataset
Membership functions used for the fuzzy classification of a
European larch plot
Fuzzy classification accuracy assessment of an ATM European
larch dataset

Membership functions used for the fuzzy classification of a mixed
sample plot
Fuzzy classification accuracy assessment of the ATM mixed
European larch and Douglas fir dataset
Membership functions used for the fuzzy classification of a
Norway spruce sample plot
Fuzzy classification accuracy assessment result for a Norway
spruce ATM dataset
Fuzzy classification accuracy assessment of the European larch
ATM dataset

Fuzzy classification accuracy assessment of the Sessile oak ATM
dataset

Fuzzy classification accuracy assessment of a European larch
LiDAR dataset

Fuzzy classification accuracy assessment of the mixed species
LiDAR dataset

Fuzzy classification accuracy assessment of the Norway spruce
LiDAR dataset

Fuzzy classification accuracy assessment of the Sessile oak
LiDAR dataset

Fuzzy classification accuracy assessment of a LiDAR and aerial
photographic dataset for European larch
Fuzzy classification accuracy assessment result of a LiDAR and
aerial photographic European larch and Douglas fir dataset
Fuzzy classification accuracy assessment of a LiDAR and aerial
photographic Norway spruce dataset
Fuzzy classification accuracy assessment of a LiDAR and aerial
photographic Sessile oak dataset
Fuzzy classification accuracy assessment of a LiDAR and ATM
European larch dataset
Fuzzy classification accuracy assessment of a LiDAR and ATM
mixed European larch and Douglas fir dataset
Fuzzy classification accuracy assessment result of a LiDAR and

196

200

201

205

206
209

209

211

211

212

213

214

215

216

218

219

220

222

223

223

223

224

225

225

Xlll



ATM Norway spruce dataset
Table 5.32 Fuzzy classification accuracy assessment of a LiDAR and ATM 225

Sessile oak dataset
Table 5.33 Overall and Kappa accuracies values obtained trough object 226

oriented segmentation and classification per species and per
dataset

Table 5.34 Comparison of differences in classification accuracy between 227
Aerial Photography (AP) and Airborne Thematic Mapper (ATM)
datasets after inclusion of the LiDAR data

Table 5.35 Comparison between eCognition extracted crowns and ground 230
reference for the aerial photography datasets

Table 5.36 Comparison between eCognition extracted crowns and ground 231
reference for the ATM imagery

Table 5.37 Comparison between eCognition extracted crowns and ground 231
reference for the LiDAR datasets

Table 5.38 Comparison between eCognition extracted crowns and ground 232
reference for the aerial photography and LiDAR datasets
combined

Table 5.39 Comparison between eCognition extracted crowns and ground 232
reference for the ATM and LiDAR datasets combined

Table 6.1 Variables obtained from the analysis of hemispherical 243
photography for the measurements made within each plot

Table 6.2 Comparison of VisSky canopy openness measurements obtained 245
from the hemispherical photography compared to percentage
ground hit information obtained from the LiDAR data

Table 6.3 Comparison between canopy cover estimations obtained from 254
aerial photography and LiDAR imagery for four different sample
plots, using the dot grid method

Table 6.4 Comparison between canopy cover and canopy openness 255
estimations obtained from aerial photography and LiDAR
imagery for all sample plots, using the object-oriented method

xiv



List of acronyms

ATM Airborne Thematic Mapper
CASI Compact Airborne Spectrographic Imager
CCF Continuous Cover Forestry

CSIRO Commonwealth Scientific and Industrial Research Organization
COST-method Cosine-T method

Dbh Diameter at breast height
DN Digital Number
DOS Dark Object Subtraction
GESAVI Generalised Soil Adjusted vegetation Index
GPS Global Positioning System
HYMAP HyMAP Hyperspectral Scanner
IUFRO International Union

LAI LeafArea Index

Landsat ETM+ Landsat Enhanced Thematic Mapper Plus
MSAVI Modified Soil Adjusted Vegetation Index
MSARVI Modified Soil and Atmospherically Resistant Vegetation Index
NERC Natural Environmental Research Council

NDMI Normalized Difference Moisture Index

NDVI Normalized Difference Vegetation Index
NPCI Normalized Pigments Chlorophyll Ratio Index
OSGB Ordnance Survey Great Britain
PCA Principal Components Analysis
PIF method Pseudo Invariant Features method

PRI Photochemical Reflectance Index



RSA Regeneration Study Area
RTC Radiative Transfer Code

SPOT Satellite Pour l'Observation de la Terre

UK United Kingdom
UKWAS United Kingdom Woodland Assurance Standard
UNCED United Nations Commission on Economic Development

xvi



Introduction

Evaluation ofRemote Sensing Methods in
Continuous Cover Forestry (CCF)

Chapter 1

Introduction and objectives of the research

1.1 Introduction

Remote sensing techniques have experienced significant development in the last decades,
which has brought new opportunities and challenges to the interpretation of
environmental processes. In the last years it has become widely and routinely used for
environmental and natural resources applications including commercial forestry, which
has benefited from new techniques that are improving the availability and accessibility to
the forest information (Chen and Cihlar 1996; Jensen et al. 1999; Lefsky et al. 1999;
Verstraete et al. 1996; Dymond et al. 2002; Hagiwara et al. 2004; Hajek 2005). Remote

sensing can be expected to be used increasingly to collect needed data, especially related
to the monitoring of changes in forest cover, assessing land use and forest land

degradation, evaluating the productivity of the land and providing information not only
for forest inventory but also for direct inputs into forest management and strategic

planning (Howard 1991). With the increasing availability of satellite data remote sensing

products are being utilised more widely.

Traditional remote sensing techniques have been successfully used for forestry

applications, especially for monitoring of resources and to support land management.

Although the status of photography is challenged by continuing innovations in digital

imaging technology, aerial photography remains the most practical and widely used
means of remote sensing (Campbell 1996). Continued reliance on aerial photography is

largely a sign of its superior spatial resolution in comparison to conventional satellite

images (e.g. Landsat, Satellite pour l'Observation de la Terre SPOT). However, more

sophisticated remote sensing techniques have been shown to provide additional
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Introduction

information overcoming limitations in spectral resolution of aerial photography and
limitations in spatial resolution of conventional remote sensors, which represent a barrier
to applicational levels and scales. That is the case for hyperspectral data such as that

acquired by HYMAP and CASI sensors and Radar and LiDAR data, which have proved
to be very useful for the retrieval of forest parameters (Bunting and Lucas 2006; Hyde et

al. 2006; Schlerf et al. 2005; Pulliainen et al. 2003; St-Onge and Vepakomma 2004; Yu
et al. 2004; Hu et al. 2000).

Within the context of Continuous Cover Forestry (CCF), a relatively new forest

management strategy that has been implemented in several European countries, the
usefulness of digital remote sensing techniques lies in their ability to retrieve parameters

at sub-stand level and in the assessment of natural regeneration and light regimes. The
aim of CCF management is to maintain continuous woodland conditions through time,
rather than periodically removing whole crops of trees as clearfelling culture systems do,

transforming even-aged plantations to a mixed, uneven-aged woodland. The main

advantage of this conversion is the increase in ecological stability (Mason et al. 1999;
Hale et al. 2004). Other positive effects of CCF include (Pommerening and Murphy,

2004): increased horizontal and vertical structure of trees within the stand; reduction of

biotic, abiotic and economic risks; and less visual impact compared to clearfelling. But
with the diversity in species and age of the trees within the stand, there is also significant
increase in canopy complexity for management purposes, for which more detailed and

precise data will be needed at individual tree level. This would include information such
as breast-height diameters, tree positions, tree heights, in order to quantify spatial forest
structure through the calculation of the diversity of tree positions, tree species diversity,
and the diversity of tree dimensions (Pommerening 2006). The acquisition of this data is

currently carried out through forest inventories which are both very time and cost

consuming. Remote sensing technologies offer significant potential and an alternative
means to retrieve desired forest canopy variables that could decrease field work effort
and be potentially as reliable as conventional methods for forest inventory.
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The idea behind CCF is the support of a sustainable forest management system reducing
the disturbance of the forest ecosystem to a minimum and encouraging the use of natural
methods (Sterba and Ledermann 2006). Natural regeneration, natural pruning and self-

thinning are stimulated. There has been increasing interest in the use of natural

regeneration in Britain's forest in preference to planting in order to favour more natural

approaches to forest management (Mason et al. 1999; Hale 2001, Hale et al. 2004).
While successful natural regeneration can reduce costs and provide environmental

benefits, uncertainties such as the variability between and within sites can make it
difficult for forest managers to decide when and where to rely on natural regeneration in

preference to, or alongside traditional planting methods (Nixon and Worrell, 1999).

Moreover, the success of natural regeneration depends greatly upon the light environment
as the primary factor in determining the survival and growth of seedlings beneath a forest

canopy (Lieffers et al. 1999), but there is a significant lack of information on the required

understory light regimes for planted species as the methods traditionally used for stand

management (clearfelling and restocking) did not need such information.

Thus CCF represents a new challenge not only for the U.K. forestry community but also
for remote sensing techniques. New approaches have to be developed in order to consider
these two important aspects (regeneration and light environment) for the implementation
of the CCF system. Such approach involve the analysis of available techniques and their

appropriateness to these issues, for example, if their spectral and spatial resolutions are

capable of retrieving the information needed.

In this way, the scope of this research is to evaluate the usefulness of different remote

sensing platforms (Landsat TM, LiDAR, ATM) for CCF implementation. Considerable
research has already been carried out on the applications of data from each of these

platforms to forest management and more generally, to the monitoring of the character of
the vegetation at the surface (Hill and Thomson 2005; Ager and Owens 2004; Blaschke et

al. 2004; Collins et al. 2004; Basham et al. 1997; Danson and Curram 1993; Brockhaus

and Khorram 1992). This includes studies at different scales such as the mapping and
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monitoring changes in major ecological regions (Maselli et al. 2005; Holmgren and
Jonsson 2004; Jiang et al. 2004) or more local studies like the analysis of timber volume
and tree heights (Watt et al. 2004; Means et al. 2000). However, there is at the moment a
lack of information about the advantages and disadvantages of the use of these techniques
towards the CCF management system. The synergy among the techniques has also to be
evaluated to gain an understanding about how different sets of data can complement each

other, thereby taking full advantage of their characteristics and providing a potentially
wider and deeper view of canopy structure.

1.2 Aims and objectives
The overall aim of the project is to investigate the potential, and challenges, in the

application of high spatial and spectral resolution remote sensing to forest stands in
transition to, and managed under the Continuous Cover Forestry system in the UK. The
evaluation of the Landsat ETM+ imagery, ATM imagery, aerial photography, and
LiDAR data available for the research, along with the field measurements, will allow the
identification of reliable techniques and methods that can be applied at tree and stand
level to meet cost-effectively the specific data requirements of CCF. These techniques
and methods will be explored on mature even-aged stands, in order to assess their ability
for the retrieval of key CCF parameters such as tree height, gaps and crown recognition,
and estimates of light environment. The goal is to identify the techniques that directly
serve the objectives of CCF and provide information for the mapping and monitoring of
the transition of existing forest stands to CCF in a cost-effective manner.

Specific objectives will be:
■ To analyse the influence of seasonal changes on the surface reflectance by using

Landsat imagery.
■ To examine LiDAR data for the determination of forest variables such as tree height.
■ To evaluate the application of crown identification methods, using both high-

resolution ATM imagery, LiDAR data and aerial photography.
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■ To evaluate the synergistic benefits of Lidar and high resolution ATM data for forest
structure retrieval.

* To examine forest structural variables determined from remote sensing and

hemispherical photography as indicators of light environment underneath a canopy.

1.3 Relevance of the research and expected outcomes
Remote sensing offers several advantages with respect to CCF. Evaluation of the
transition from traditional forestry methods to a CCF approach demands close monitoring
of several ecological parameters. These include tree height, canopy structure, incidence
of gaps and light requirements. Since the measurement of these variables by ground

survey is time-consuming and expensive, it is likely that remote sensing may offer a less
labour intensive and lower cost approach.

The project has great significance since national and international initiatives are

encouraging more ecologically sound management practices for commercial forestry.
Due to limited British experience in the application of the CCF system and considering

that, under the recent UKWAS certification standard (2000; FSC approved), managers
are required to "increasingly favour" lower impact silvicultural systems, it is necessary to

strengthen the research in this area.

It is therefore argued that remote sensing may prove a cost-effective way to obtain the
information that is needed to help with the planning, establishment and monitoring of the
CCF system in UK. Landsat products have been increasingly used in forestry for the

production of forest thematic maps due to their low cost, high geographic coverage and

good resolution. The monitoring of change detection in more sustainable forest practices,
such as CCF, is a good example of the type of application that can be achieved using
Landsat data. Flowever, the difficulties in calibrating long time series or adjacent images

accurately enough to comparable radiometric levels have hampered its application on a

day-to-day basis for this purpose. Other uncertainties such as the effect of the
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phenological cycles on the signal recorded by the sensor have not been fully explored
either. The analysis of the Landsat ETM+ imagery available for this research will allow
the investigation of these issues with respect to the most common forest species in Britain
and the determination of the most suitable acquisition dates where the phenological
effects (if they exist) can be clearly distinguished.

On the other hand, because CCF implies greater diversity of both tree species and age,

the identification of reliable methods for the extraction and monitoring of tree height is
vital. The use of natural regeneration as a preferred restocking method also demands the
identification of techniques and methods that can provide information about light

requirements and crown and gap detection. The analysis of LiDAR, multispectral and

high resolution optical data in this study will allow the evaluation of the
individual/combined datasets that provide those parameters for CCF management

information. The estimation of the operational cost and feasibility of the implementation
of each technique will also allow the evaluation of their practical use.

Key outcomes will be:

Improved understanding of the applications of high spatial resolution remote

sensing for providing forest structure information.

Improved understanding of the influence of management practices on

regeneration dynamics.

Development of field-validated procedures for the retrieval of forest structure

parameters in forest regions in transition to a Continuous Cover Forestry system.
Evaluation of the synergistic value of ATM and Lidar data for forest structural

parameter retrieval.
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1.4 Thesis Outline

Chapter two comprises an introduction to Continuous Cover Forestry, describing its

history, advantages, disadvantages, and topics within the CCF debate. This chapter also
includes the description of the test site and the species studied and reports the results of
fieldwork undertaken in six contrasting plots in the study area.

Chapter three will present the bibliographic review, methodology and the results obtained
from the correction and analysis of Landsat imagery in connection with seasonal changes
and how they affect the reflectance surface for the retrieval of spectral signatures of the

species under study. Through this analysis it is expected to determine the best time of the

year and best spectral resolution for the retrieval of forest structure information.

Chapter four consists of a bibliographic review, methodology and results obtained from
the analysis of the LiDAR datasets. The outcomes of the research will demonstrate that
this technique is suitable for the modelling of the forest canopy and that in combination
with aerial photography, will allow more objectives of the Continuous Cover Forestry to

be addressed.

Chapter five will focus on the analysis of aerial photography, LiDAR and the Airborne
Thematic Mapper dataset for tree crown delineation.

Chapter six describes the results achieved from the analysis of the hemispherical

photography in relation to canopy openness and percent direct transmitted light, essential
factors for the understanding of the natural regeneration objective.

Chapter seven will analyse the synergy among Landsat, Lidar, ATM, hemispherical

photography, and ground information and its usefulness for the Continuous Cover

Forestry system approach.
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Chapter 2

Introduction to the Continuous Cover Forestry (CCF) system and

description of the study site

2.1 Introduction

The aim of this chapter is to provide a more detailed insight into the Continuous Cover

Forestry system, carrying out a bibliographical review at first, followed by the definition
of the term and the description of the concepts related to the CCF system. This section
also introduces the study area for the project and outlines the key characteristics of the

species and plots chosen for the analysis and studied during the project.

Continuous Cover Forestry (CCF) is an approach to forest management that envisions
shifts in emphasis from sustainable yield to sustainable forests in the broadest sense. The

system requires the substitution of the mechanistic and systematic silvicultural methods
used until now, which have produced reasonable economic profits but also have created
concerns in relation to ecology, biodiversity and aesthetics (Pommerening 2006a), for
others characterized by the introduction of several species of different ages within the
stand and the use of natural regeneration as the main restocking method. There has been
an increasing interest in the idea of diverse forest structure for the potential it has to meet

wider sustainability requirements.

In concept and practice, CCF is not entirely new, having long-established precedents. The
formal history of CCF or uneven-aged silviculture began in Europe in the middle of the
19th century. In 1886 the German professor Karl Gayer emphasized the advantages of

uneven-aged forests and in 1913 his colleague Alfred Moller, influenced by several

writers, and by impressions gained in German managed forests and in natural forests in
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the Amazon and North America, conceptualized the idea of "dauerwald" (continuous

forestry) (Schabel and Pecore 1997). Moller published a book in 1922 that unleashed a

storm in the forest establishment, and which precipitated a flood of other publications and
heated discussions. However, there was a decline in interest in CCF following Moller's
death (Pommerening and Murphy 2004).

The debate on CCF was revived in the 1980s in relation to the discussions on impacts of
acid rain, forest decline, restoration and certification (Brundtland Report 1987). It was in
1992 that interest in CCF acquired greater relevance due to the discussion in the United
Nations Commission on Economic Development (UNCED) summit at Rio de Janeiro,
when the terms and scope of sustainable forest management were redefined and it was

suggested that they become an integral part of modern forest practices worldwide. This
new silvicultural approach has been welcomed in Britain and shows its strongest

commitment in the Welsh Woodland Strategy which aims for the 50 per cent of public
forests to be transformed to CCF by 2020, where feasible (Mason et al. 2004).

According to Malcolm et al. (2001), there are about 1.5 Mha of conifer high forest in
Great Britain composed almost entirely of even-aged plantations of non-native species
established since 1900, and of which around 500-750 kha are established on sites

sufficiently windfirm to be managed under CCF. The task of transforming these even-

aged stands into ones that comprise several species and different ages implies the

adoption of alternative silvicultural methods referred to as "lower impact" (UKWAS

2000). CCF does not describe a set management system, rather a range of management

options that can reflect the characteristics and management requirements of a particular
stand (Lincoln 2005). These options include "group selection, shelterwood or

underplanting, small coupe felling systems, minimum intervention and single tree

selection systems" (Mason 2001). The description of these management systems and their
local variants is the subject of numerous forestry books (Young and Giese 1990; Hibberd

1991; Hart 1995; Barnes 1998). Table 2.1 outlines the main characteristics of the

traditional silvicultural systems used in the UK.
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System

Description

Microclimaticcriteria
Typicalareaofcanopyopenings(inha)

•

Clearcut

Removespartorallofastand,orseveral standsinonecut

Openconditionsdominate overcanopyeffects

>0.5or>1.0(dependingoncanopytree height)to>100

•

Seedtree

Retainsasmallnumberofwellspaced seed-producingtrees(15-50/ha)ona clearedareaforashorttime

Openconditionsdominate overcanopyeffects

>0.5to>0.1afterseedtreeremoval

•

Shelterwood

Systemofsuccessiveregenerationfellings thatretainsaforestcoveroverallorpartof thestanduntilregenerationphaseis completed

Protectivecoverduring regenerationphase

Seebelow

Uniform

Openingacanopyeven;youngtreesmore
orlessevenaged

Protectivecoverduringabrief regenerationperiod,thenfull openconditions

<0.01to0.1

Group

Openingacanopybyscatteredgaps; youngtreesmoreorlessevenaged
Gapsexpandedsuccessively

tofullopenconditionsover 20-40yr

<0.01to0.1initially;enlargedovertime

Irregular

Openingofcanopyirregularandgradual; youngtreesmoreorlessuneven-aged
Canopyopeningsexpanded successivelyovermorethan 50yr;somematuretreesmay beretainedatalltimes
<0.01to0.1initially;enlargedovertime

Stripor wedge

Openingofcanopyinwell-definedstripsor wedges;regenerationeven-agedin advancingstripsorspandingwedges
Somecanopyshadingduring regeneration,thenfullopen conditions

Dependsonlengthofstriporwedgeand canopytreeheight;typically<2times standheight

•

Selection

Forestcanopyismoreorlessretained overallofstandarea

Canopyeffectsdominateover openconditions

Singletree
Treesremoveindividuallyacrossentire stand

Continuousforestcover
<0.01

Group

Treesperiodicallyremovedinsmallgroups
Continuousforestcover
0.01to0.1

•

Coppice

Treesoriginatingbyvegetativemeans
Openconditionsdominate overcanopyeffects

Table2.1:TraditionalsilviculturalsystemsintheUK(Coates1997)
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These European silvicultural methods, mainly selection and shelterwood systems, were

introduced to the colonies at the beginning of the 20th century with the opposite aim of

CCF, that is, to simplify the complex composition of the forests by reducing the number
of species and to convert it into as regular a stand as possible for easier treatment and

management. The problems of the implementation of these methods in Cameroon and the
assessment of the usefulness of alternative methods was analysed by Ngeh (1989). The

problems were mainly related to the lack of natural regeneration and strong competition
with unwanted species. This led to the introduction of alternative systems in which

adequate light conditions are provided by the progressive removal of the existing forest
cover, either manually or by machinery, to encourage the survival and growth of the
useful species. Ngeh study is an example of modification of silvicultural methods to

adapt to particular characteristics and requirements of the management. However, the
conversion to CCF is a large and long term project which is hampered by a lack of

experience of irregular systems in Britain. Furthermore, Price and Price (2006) state that
to date there is a dearth of information on the economic efficiency of irregular stands and
on the transformation process from regular stands in a British context.

However, the exploration of the possibilities for the transformation to CCF has begun
with the establishment of trials and research. For instance, Malcolm et al. (2001)

analysed diverse factors influencing the success of the transformation process, pointing
out that the main problem in Britain is related to the species that, with exception of Scots

pine which is native of northern Scotland, have been introduced and planted in
afforestation schemes over the last century. Thus, these stands are in their first or second

rotation, established on sites that may not have carried forest in the recent past, that is,
artificial ecosystems for which there are few natural models.

The role which remote sensing techniques could play in the implementation of CCF in
Britain is manifold. The more complex stand structure that characterises this approach
creates a need for more within-stand information and a more, continuous level of

monitoring.
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It has been demonstrated that remote sensing can provide more rapid and frequent data

acquisition, faster and automated processing to deliver information, maps and
information delivered at a much greater sampling intensity, and maps of forest attributes
at below the sub-compartment level (Malthus 2002).

The implementation of CCF will require information on the following general aspects:
site conditions, stock quality, species diversity, light climate and regeneration, continuous

monitoring, and aesthetic factors.

The specific CCF information needs that can be explored using remote sensing data
available for this research (Landsat ETM+, ATM, and Lidar) are:

Characterisation of seasonal variations in spectral signatures of forest species.
Characterisation of within-stand vertical structure: measurement of tree heights,
within-stand height variability and its spatial distribution, and derivative

parameters (diameter at breast height, crown size, crown depth, etc.).
Characterisation of within-stand horizontal structure: quantification and spatial
distribution of gaps.

Monitoring of stands' variability (landscape scale).

2.2 The CCF system

There exist many different terms to define and describe Continuous Cover Forestry.

According to the International Union of Forest Research Organisations (IUFRO)

Multilingual Forest Terminology Database, the term describes a highly structured forest

ecosystem managed to maintain continuous tree cover over the total forest area (IUFRO

2002).

Mason et al. (1999) state "continuous cover is defined as the use of silvicultural systems

whereby the forest canopy is maintained at one or more levels without clear felling".
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There exist also some terms associated with the system such as "continuity of forest

cover", "permanent forest", "low impact silviculture", "ecological silviculture", "holistic

forestry", etc., but all of them stress the idea of the continuity of woodland conditions
over time which do not imply a lack of management but emphasize the need to avoid

clearfelling over large areas. Within this broad concept a range of silvicultural systems
are possible (Pommerening and Murphy 2004).

CCF has a long history in Europe and it is known that the system or forms of it have been

practised long ago in parts of Switzerland, France, Germany, Austria and Slovenia

(Pommerening and Murphy 2004). The success of the German forestry is recognised
worldwide. The development of a sustainable forest production on a scientific basis

began in Germany nearly 300 years ago. Its success lies in the adaptability of the
silvicultural methods to the sites and native species and in the utilization of the forest in
other ways, for instance for the increasing of wood quality in stands with low volume

production, or to make use of other forest products as well as the wood (Wild and
Weidenbach 1998).

Until now, yield timber management principles have guided forest management practices
in the UK. Thus, experience in the management of forest under CCF is far more limited
in Great Britain. In 1952 Professor M. L. Anderson (Edinburgh University) began a

conversion trial of 30 year old conifer stand with the aim to create a mixed forest of

irregular structure (Anderson plots) (Hart 1995). It has taken 30 to 40 years for the

diversity of the structure in these plots to become apparent and for it to be possible to

start to judge the success of this trial (Mason et al. 1999). During the 1990s some factors
such as the Rio-Helsinki process, the requirements of certification and the international
movement in favour of a more natural forest management, influenced a rethinking about
the appropriate silvicultural systems for plantation forests in Britain (Mason et al. 2005).
Given that transformation to irregular forest structures can take 50-100 years, it should be
noted that the implementation of CCF, among others, requires both long time and great

patience in order to achieve its objectives.
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Figure 2.1 describes the characteristic structure of a stand managed under CCF.

Trees/h

Stand characteristics under CCF system

N N

Distribution of
tree heights

a)
■ Time

b)
• Time

Distribution
of Dbh

C)
• Time

Volum

Stand volume

through time

d)
• Time

Ecological
characteristics

■ Time
e)

Figure 2.1: Structure and evolving characteristics of stands under CCF system (adapted
from Oesten and Roeder 2001).

The figures show the ideal behaviour of some relationships through time: a) the number
of trees per area unit is kept constant through time; b) there will be a majority of small
trees (seedlings and saplings) after a complete transition from other systems is achieved;

c) the distribution of diameter at breast height (Dbh) will also represent the majority of
small trees; d) stand volume will be approximately the same through time; e) under
successful management there will be no ecological disturbances apart from natural events
or illnesses.

There are many possible advantages in the application of CCF (Continuous Cover

Forestry Group 1994) which include:
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Less visual impact than clearfelling.
Increased within-stand structural and species diversity.
Less disturbance of forest ecosystem and greater shelter for regenerating

seedlings.

Harvesting operations dispersed across the forest and through time, higher

average tree size, and greater output of saw logs.

However, CCF also implies some disadvantages:
More complex stand management requiring skilled personnel.
Yield prediction and regulation is more difficult.
Greater monitoring is required.
Greater harvesting costs because of small dispersed felling sites.

Continuity of woodland
conditions (no clearfelling >
0.25 ha)

Emphasis on vertical &
horizontal structure

Establishment of forest

margins & a network of
protected woodlands

Ecologically sensitive
wildlife management

Promotion of native tree

species (provenances) &
broadleaves in particular

Mixed age
classes & tree

species

►. Attention to site
limitations

Selective individual
tree silviculture

Ecologically sensitive
forest protection, thinning
& harvesting operations

Conservation of old trees,
deadwood & protection of
endangered plant 7
animal species

Figure 2.2: Main components of the contemporary international continuous cover forestry
debate (Pommenering and Murphy 2004).

CCF is not just a silvicultural method but an approach to forest management for

multipurpose objectives that encompasses diverse aspects as shown in figure 2.2.

Pommerening and Murphy (2004) highlighted the main components of the continuous
cover forestry debate:
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Continuity of woodland conditions: this is the most important part of the CCF

concept. Continuity of woodland conditions is a requirement for the survival of
some species and is also an important feature of protection forests, securing and

stabilizing watersheds, mountain slopes and coastlands, and for recreational

purposes. A millenary experience about the use of techniques to guarantee the

continuity and diversity and make use of the forests' multipurpose benefits is
seen in the Maya culture. Increasingly evidence is being uncovered which
illustrates how the Mayas agro-silvicultural techniques made use of succesional

stages of natural forest growth and regrowth. Forest management consisted of
various activities to select, cultivate, protect and introduce trees in shifting
cultivation plots or follow land coppicing of numerous species (by cutting down
to c. 50 cm above the ground and encouraging multi-bole regrowth),

"plantations" of favoured species within the natural forest and deliberate

plantings around houses and urban centres, as living fences, and along trails

(Furley 1998).

Continuity of the woodland implies also some considerations about light regime
beneath the forest. As clearfelling is necessary to open up the canopy and allow
the target species to grow, there is still a lack of agreement about the size of
clearfell allowed and whether it should take tree species and site types into
consideration. Regarding the clearfell, some studies in Britain (Hale 2001, Hale

2003) seem to indicate that the actual gap fraction levels beneath Sitka spruce

(between 5 and 10%) do not provide the appropriate light regime environment for
natural regeneration to occur. Because of the relative shade intolerance of the

major tree species and the lower irradiance and greater cloudiness in Britain,

appropriate gap sizes for regeneration may be quite large (Malcolm et al. 2001).

Group felling is often seen as an appropriate way of transforming stand structure

in northern temperate forest as the removal of individual trees do not provide
sufficient opening of canopy for less shade tolerant species (Price and Price

2006). This result is supported by findings by Mason et al. (2005) about the
survival of different seedlings species after planting in a Sitka spruce spacing trial

16



Continuous Cover Forestry (CCF) System

with different light environments, suggesting that heavy thinning should be

employed to promote growth of advance regeneration.

Emphasis on vertical and horizontal structure: achieving a varied structure of
vertical and horizontal elements provides some advantages: establishment and

tending costs decrease, greater biodiversity and more attractive view.
Mixed age classes and tree species: mixed forest provide a wider range of size
classes and timber products, improves soil composition, and provide more

habitats.

The issue of mixed species stands, whether of introduced and native species or of
introduced species alone, is new territory for British silviculture, therefore any

transformation must be considered to be on a trial basis and eventual species

compositions of these forests is still to be determined (Malcolm et al. 2001).
Attention to site limitations: tree species grown should be dependent on the site.
Since the interaction between thinning, stand structure and wind risk will largely
determine the extent of use of CCF in upland Britain, research is conducted to

investigate wind forces upon trees in irregular stands (Mason et al. 2005).
Successful transformations are likely to occur on windfirm sites with freely-

draining soils and where there are strong aesthetic, conservation or heritage
reasons for adopting a silvicultural syatem based on gap regeneration (Malcolm
et al. 2001).

Selective individual tree silviculture: trees are individually marked, thinned and
harvested in a compromise between silvicultural, economical and conservation
needs.

Conservation of old trees, deadwood and protection of rare and endangered plant
and animal species: all these elements contribute to the biodiversity aspects and
must be acknowledge in the management.

Promotion of native tree species/provenances and broadleaves: this aims for the
restoration of the forest to native species, which are better adapted to local

conditions, and the removal of invasive non-native tree species.

17



Continuous Cover Forestry (CCF) System

Ecologically sensitive forest protection, thinning and harvesting operations: the
disturbance of forest has to be reduced to a minimum by carrying out only limited
forest protection and promoting biological methods.
The establishment of forest margins and a network of protected forests: the forest

margins will act as transition zones between the open landscape and woodlands.

CCF aims to create and maintain an ecologically healthy, productive, profitable and

aesthetically pleasing forest. This means that the forest is perceived in a more holistic

way, trying to balance the economic benefits with the interests of the community

regarding ecology, landscape and recreation. Ideally, this type of forest can be harvested

lightly and frequently, removing only those trees no longer producing timber value at an

acceptable rate of return, and leaving a mature looking forest, or at least a forest that
doesn't look heavily logged (Schabel and Pecore 1997). To date, the profitability of other
forest products is hardly mentioned. These products consist of forest plant materials that

may include fungi, mosses, lichens, herbs, vines, shrubs, trees, or plant parts that are
harvested, including the roots, tubers, leaves, bark, twigs, branches, fruit, sap, and resin,
in addition to the wood. For many temperate forests, little more is known about non
timber forest products (NTFP) than basic taxonomy and the geographic distribution.
There is a general lack of knowledge about the reproductive biology, inventories, and
sustainable yields of these resources. Furthermore, in industrialized countries, NTFP use

is often viewed as a marginal activity, though in reality the trade of these products

provide significant economic benefits to many rural households and communities

(Chamberlain et al. 2000).

Experiences in tropical forests have shown that the financial gain from NTFP could be as

good as the one generated by the wood trade. Peters et al. (1989) carried out a valuation
of an Amazonian forest. The results of their study clearly demonstrate the importance of
non-wood forest products. Compared to timber, the benefits have not been recognised
because non-wood resources are collected and sold in local markets.
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Some of the criticism for the embrace of a NTFP culture is related to the risk involved in

the developing of a "new" product and its possibly limited market. This contrasts with the
results of the Forestry Commission's 2005 GB Survey of Public Opinion of Forestry that
were published in June 2005. Of respondents who said that they had visited woodlands in
the last few years, 27% said that they had gathered some kind of woodland product: 13%
had gathered material for food or drink, 13% had gathered decorative, floral or craft

materials, 9% had gathered "items for seasonal, cultural or religious use" (e.g. holly, ivy,

hazel), and just 2% gathered medicinal or dietary supplements. There is a clear window
of opportunities and many local communities and organisations are already working with
the overall goal to increase knowledge and stimulate wider use and appreciation of
NTFPs (http://www.reforestingscotland.org/projects/rural_alternatives.php)

During the transition from even-aged to CCF some economic issues have to be addressed

(Hanewinkel 2001, Price and Price 2006). The harvest of quality timber may need to be

deferred, administrative and management procedures modified and harvesting technology

adjusted to the new realities. One advantage is the production of large diameter, high

quality sawlogs. One of the disadvantages is the greater harvesting costs because of small

dispersed felling sites (Mason et al. 1999) and that the stand will require a regular
network of racks linked to extraction roads so that harvesting machinery does not damage

regenerating seedlings (Mason and Kerr 2001). Another problem is the demise of skilled

harvesting thinning teams equipped with purpose-built machines for both motor manual
and fully mechanised work (Yorke 2001).

The object of the transformation is to achieve the heterogeneous composition of the forest

by lengthening the regeneration period, breaking up the existing structure, and using

systems other than extensive clearcutting. The process must begin early and at not later
than 40 years in conifer stands and 60 to 80 years in broadleaved stands (Hart 1995,
Malcolm et al. 2001).
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To recreate a semblance of the diversity of fauna and flora, which may have been greatly
altered in the traditional age-class forest, reintroductions of non-commercial, "serving"

species may be necessary. To achieve and eventually maintain a mixed forest, frequent
silvicultural interventions through-out the forest are called for (ranging from a gap

created by felling one tree up to a maximum of 0.25 ha), always in ways which eliminate
the "lesser" tree to eventually provide permanence in stand, site and timber quality (Bode

1992). Figure 2.3 depicts the phases in the transition from even-aged forests to CCF,

according to Oesten and Roeder (2001).

Time

I Phase. Differentiation and stabilisation

Phase. Encouraging regeneration*

Phase. Changing the stand structure

N/ha

Dbh

N/ha

Dbh

N/ha

Dbh

IV Phase. Refinement 100 years

Figure 2.3: Idealised scheme of the transition of the even-aged stands to Continuous
Cover Forestry. The graph shows how stand structure and Dbh change through time
(Oesten and Roeder 2001).

This analysis, considering a time scale of 100 years, is supported by more recent studies

by Sterba and Ledermann (2006) who conducted a study on two forest management
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districts in Austria, natural regeneration and single tree selection, with the aim to model
forests in transition from even-aged to uneven-aged management. They found that after a
simulated 100 years, species diversity, structural diversity and between-stand variation
was enhanced in the natural regeneration system, but the equilibrium of harvests and

growth was reached in the single tree selection system after 80 years.

2.3 Emphasis on natural regeneration
CCF relies greatly on natural regeneration as the preferred method of restocking stands.
The term "natural regeneration" refers to the natural process by which plants replace or

re-establish themselves by reproduction from self-sown seeds or by vegetative recovery

(sprouting from stumps, lignotubers, rhizomes or roots) (Young and Giese 1990). In some

instances seed may not be available at the site immediately but may be carried in from

nearby sources by water, wind or wildlife.

The problems affecting the controlling factors for natural regeneration are (Petrie 1999):
Seed supply: no seed, or seed of poor viability. This may be due to the absence of
fertile plants with viable seed; seed harvesting by ants and predation by other

insects, birds and mammals; lack of pollinators or seasonal variations.
Soil conditions: seed germination and establishment may be impaired by

"unhealthy" soil conditions. Such conditions might include: a lack of suitable sites
for germination as a result of soil compaction, loss of top soil, poor drainage or

excess of soil moisture, an unstable site, or unfavourable soil chemistry.

Competition: competition from the same or other plant species may prevent

successful seedling recruitment. This may be due to weeds, parent plant

allelopathy (chemical inhibition) or fungal attack.
Predation of young plants: seedlings may be destroyed by predators such as

insects and other invertebrates, stock or wildlife. Seedlings and young stems may

lack natural deterrents (toxic or unpalatable chemicals, hard leaves or leaf

21



Continuous Cover Forestry (CCF) System

structures such as torns and hairs) and so are relatively defenceless compared to

mature plants.
Natural hazards and controls: there may be natural climatic, biological and

physical constraints upon natural regeneration. These include fire, flood, wind,

drought, temperature extremes (e.g. frosts), and time of year and light conditions.

The most common factors of failure of regeneration in the plots under study are browsing
and competition. However, anecdotal evidence indicates that the level of browsing of
coniferous natural regeneration is rarely significant except where the red deer population
is totally out of control, or where there is negligible alternative browse vegetation (Yorke

2001). The absence or failure of regeneration due to vegetation competition is commonly
due to excessive opening up of the woodland canopy in "expectation" of regeneration.
The result is often an influx of competing vegetation particularly on the more fertile site

types. If the layer of invasive species is dense, as it often is, invaders may largely or

entirely preclude the establishment of the regeneration of desired species (Young and
Giese 1990).

The successful use of natural regeneration depends upon the manipulation of the stand
microclimate to ensure satisfactory germination and growth of seedlings. One of the
factors determining the survival and growth of seedlings beneath a forest canopy is the

light environment (Lieffers et al. 1999). Thus, to better understand mechanisms involved
in understorey tree regeneration it is important to know how forest canopy and light
interact and which are the light requirements of the target species.

2.4 Regeneration and light
The light environment beneath a forest canopy is heterogeneous, varying both spatially
and temporally (Gay et al. 1971 in Hale 2001). Even in a relatively uniform stand with a

relatively dense overstorey, there is significant spatial variation in light transmitted to the

understorey (Lieffers et al. 1999). The effect of the forest itself in intercepting radiation is
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obvious. Only a small percentage of the incident sunlight reaches the floor of a dense
forest (Barnes et al. 1998).

A hierarchy of factors determines the microclimate experienced by any organism within a

forest. The prevailing climate is modified first by local weather conditions and then by
the vegetation, mainly the upper canopy. Crucially, the structure of the canopy controls
the quantity, quality, spatial and temporal distribution of light (Jennings et al. 1999).
Because light is often the most limiting resource for growth of understorey seedlings and

saplings (Ricard et al. 2003), light availability in the understorey is frequently associated
with regeneration process and the long-term survival of forest tree species (Mcllure et al.

2000, Woods 2000). The growth and survival of understorey trees is closely dependent on
their ability both to acclimate to sudden increases in irradiance caused by a break in the

canopy and to tolerate low irradiances for lengthy periods until a canopy gap occurs

(Delagrange et al. 2004).

Most of the studies have concentrated solely on the ability of trees to grow in shade, and
in particular on the concept of shade tolerance (Messier et al. 1999). The response of a

particular species to light may be referred to as its shade tolerance. Shade-tolerant species
are characterised by more efficient net assimilation at low light levels, partly as result of

morphological and physiological acclimation responses including reduced respiration
rates (Malcolm et al. 2001). Shade-intolerant species are unable to maintain a positive

photosynthesis/respiration balance at low-light levels and cannot survive. On the other

hand, shade-intolerant species tend to respond better to high-light conditions.

Findings indicate that shade-tolerant species exhibit greater changes in crown

morphology along a light gradient than do the more shade intolerant species (Barnes et al.

1998). These morphological changes are of ecological importance in understanding the

capacity of a given species to become adjusted to shaded conditions and the reaction of
such a plant when suddenly released to the light, following windstorm or by cutting of the

overstorey. When logging occurs, there is an immediate and dramatic impact on saplings
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and seedlings: they undergo a change in their light environment and microclimate. These

changes alter the competitive relations in the stand, as each species has its own capacity
to respond to a change in resource availability. Thus some species are favoured, others
discriminated against, and the future structure and species composition of the stand may

not be the same as the preceding one (Canell and Grace 1993).

Numerous studies have stated that canopy gaps are necessary for many tree species to

attain canopy status (e.g. Canham 1989, Poulson and Piatt 1989, Runkle et al. 1995 in
Yoshida et al. 1998). The modelling of the transmission of solar radiation through a

forest canopy has proven challenging owing to the highly variable nature of the gaps

within and between tree crowns, particularly in discontinuous canopies (Hardy et al.

2004). Canopy gaps create a range of light conditions within and around the gap opening

depending of the sun angle, tree height, and sky condition (Lieffers et al. 1999). Like

canopy gaps created by natural tree death or windthrow, gaps are also generated by
silvicultural systems which remove dominant trees (Coates and Burton 1997). Large gaps

in the canopy permit long periods of uninterrupted transmission of direct-beam light to
the understorey. As canopy gaps are regarded as important factors in forest dynamics,
considerable research has been dedicated to the methods to define and estimate gap sizes

(Ferreira de Lima 2005).

The prediction of light levels under a canopy gap is thus important for evaluating forest

management practices which attempt to create an artificial canopy gap in order to

facilitate regeneration (Yoshida et al. 1997). While managers have no control of above-

canopy light, they can control the light levels in the understorey by controlling the

amount, position, and type of vegetation that absorbs the incoming light. It will be
desirable to match the light transmission to the understory with the light requirements for

growth of target species. Messier et al. (1999) have developed a concept that relates the
maximum sustainable height of surviving understorey trees to gap sizes for a number of
boreal species.
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The literature review carried out in this chapter has proved the important role of gaps for
the ecology of natural regeneration, which as mentioned before, is considered the main
method for restocking under CCF management. An understanding of the role of small-
scale disturbance in forest ecosystem can help foresters to develop cutting prescriptions
that maintain functional mature or old-growth conditions and lead to the achievement of
timber production objectives without compromising ecosystem management principles.
The potential of remote sensing techniques for gap detection and quantification was

explored in this work and will be presented in Chapter 5.

2.5 Site description
The study site used for this project is situated within the Queen Elizabeth II Forest Park, a
series of extensive tracts of forest cover in the greater Trossachs in central Scotland

(figure 2.4). The entire forest park covers 50,000 acres consisting of a mixture of
commercial forest, semi-natural and ancient woodlands and open space, managed by
Forest Enterprise. It forms a significant part of the Loch Lomond and Trossachs National

Park, the first national park in Scotland, established in July 2002. As well as supporting
commercial forestry, the region supports a rich variety of animal and non-commercial
forest plant species and is an important region for recreation.

The QEII Forest Park lies in the Central Lowlands, a low-lying belt of fertile valleys with
an average elevation of 150 m (500 ft). Rich soils and most of Scotland's coal deposits
are found in the Lowlands. This region, which comprises just one-tenth of Scotland's
surface area, is home to Scotland's leading industries and cities and the majority of the

country's population.
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Specific blocks of interest within the park are located within the Achray and Loch Ard
Forest Districts surrounding Aberfoyle village (approximate coordinates 56°10'27"N and

4°22'39"W). A Regeneration Study Area (RSA), comprising over 200 ha, was established
in 1998 in the Achray Forest District with the purpose of management under the
Continuous Cover Forestry system. The objectives of the RSA are to provide information
on the effect of different canopy manipulations upon stand microclimates, in particular

light regimes, and to determine the interaction between canopy manipulations and stand

development with an emphasis on natural regeneration. Thus the plots serve as a means

of gaining and transferring experience about alternative silvicultural practices.

2.5.1 Field Sites

For the purposes of this remote sensing study, six plots were established within the area

(figure 2.5), to measure forest variables using a forest inventory approach as well as for

hemispherical photography.
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Figure 2.5: Location of plots within stand compartments (adapted from Forestry
Commission Achray Database)

The candidate sites were personally visited during a pilot field reconnaissance including
an assessment of disturbance, and also to verify that every plot appeared clearly on the
aerial photography. Two plots per specie were selected to have replicas of the
information for validating purposes. The plots chosen were as homogeneous as possible,
to ensure minimum spectral variance of pixels within sites, but also with the maximum
contrast possible between sites, in order to achieve the ideal case for the analysis of

species reflectance for the Landsat data. The selection of even-aged, single species plots

responds to the need for establishing ground truth plots that provide information that can
be compared to the remote sensing results from satellite as well as airborne data. This is

regarded as a first step offering base line data, necessary before the methods can be

extrapolated to mixed age and multi-species treats. In any case, the selection of more
diverse plots both in species and age was not practical owing to the lack of such stands on
the three species analysed in an area small enough that could have been surveyed in the
limited time available for this study. The complexity of stand characteristics that have to
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be considered for image processing and model development would have made the study
of diverse species excessively complicated at this stage in the research.

The size of the plots (50 x 50m) was chosen to be large enough to allow their location on

the medium resolution Landsat ETM+ imagery (30m), and small enough to avoid

unaffordable, intensive fieldwork. Six plots corresponding to three of the species

(European larch, Sessile oak, and Norway spruce) were marked within the stands and

positioned using GPS. Two plots corresponding to the Sitka spruce species were

generated from the Achray Forest Database (Forestry Commission). See also Chapter

Three, Section 3.5.2, page 75 for further explanation. The sites are also representative of
three species with different light regimes. These species were especially chosen because
of their differences of shade tolerance, so in this way is possible to establish comparisons

regarding light conditions and distribution of gaps as one of the most important factors

influencing stand microclimate. The plots also differ in density and age and were selected
in locations with minimum disturbance but close enough to the access roads. Differences
in density and small variations in topography allowed the assessment of the effect of
these factors especially on the LiDAR data.

2.6 Field sampling strategy
Once the sites were visited and the experimental plots chosen, they were marked on the

ground using meter tapes, sticks and compass to orientate them to the North. These were

afterwards precisely located using Global Positioning System (GPS) Trimble Pro XL dual

frequency receiver. Measurements were post-processed for ephemeredes to correct for
satellite positions obtained at sub-meter accuracies. Within each 50x50 m plots, an

inventory of the most important forest structural attributes was carried out: tree-counting,
tree height and Dbh (diameter at breast height). Tree height was one of the most

important variables measured, as it is critical for the accuracy assessment of the LiDAR-
derived Digital Canopy Model. In plots of low density (e.g. European larch) the height of
all trees within the plot was measured (40 trees). For all other plots sample size was
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extracted from the tables developed by Snedecor that relate two measures of variation,

range and standard deviation, giving the expected value of their ratio for a given sample
size (http://forestrv.oxfordiournals.Org/cgi/reprint/25/l/66.pdf). According to this method,

a sample size of 20 trees gives an approximate standard deviation of ±3.08 m that is
within the range expected for the even-aged trees in the sample plots. However, sample
size was increased to 25 in order to have as much data as possible for comparisons with
LiDAR estimates. Other structural measurements were taken in order to have a complete

inventory of the plots under study as a baseline for future research. These measurements

included: identification of dead/alive trees, identification and marking of forked trees,

dominance, and crown diameter measurements of the 25 biggest trees. Top height was
considered as the height of the tree with largest dbh. This parameter was used for the

comparison of ground to LiDAR heights (see Chapter 4, Section, page ).

Plots 1 and 2 are located in the RSA area. Plot 1 is located within a pure stand of

European larch (Larix decidua P. Mill.) and Plot 2 within a mixed stand of European
larch (Larix decidua P. Mill.) and Douglas fir (Pseudotsuga menziesi). Plots 3 and 4 are

located in small hills known as Doon Hill and Fairy Knowe, respectively, within Sessile
oak (Quercus petraea) stands of about 130 years old. Analysis of grow rates indicates a

steady reduction in growth since 1907. A thinning operation was completed in winter
2001 which opened gaps in the canopy and thinned the matrix. Plots 5 and 6 are located
within Norway spruce (Picea abies (L.) Karst) stands.

The measurement of individual parameters was undertaken for the six plots. A total of
807 trees were labelled and their Dbh measured with a metric tape. The height was

measured using a hypsometer model Vertex II; the crown diameter was measured with
metric tape along the two perpendicular axes. Field work for forest inventory was carried
out throughout March 2003. Acquisition of hemispherical pictures was performed during
the first week of May 2003. The Natural Environmental Research Council (NERC) also
overflew these field sites in August 2003, where ATM data was collected. Lidar and
aerial photography were acquired by NERC in September 2002.
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The methodology used for the analysis of each data set will be explained in following

chapters. The key characteristics and features of each plot are outlined..

2.7 Description of the plots
• Plotl

Figure 2.6: Views of Plot 1: a) regeneration, and.

Characteristics

Area: 50x50m

Species: Norway spruce (Picea abies (L.) karst.)

*Age: 35 years

Number of trees: 222

*Soil: Upland brown earth
*Yield class: 12

Terrain: relatively flat
*Mean elevation: 40 m

*(Forestry Commission Database)

b) ..trees around gap

Observations

Other species present:
Sitka spruce (Picea sitchensis

(Bong.) Carr.) 20%
Scots pine (Pinus sylvestris) 5%

Hinberry (Vaccinium myrtillus) 5%
Grass 70%

High presence of regeneration. Many
Sitka spruce (Picea sitchensis

(Bong.) Carr.) saplings but no mature

trees of that species within the plot.
The regenerating Norway spruce

seedlings and saplings are located
arnnnH the hnrHers nf the
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• Plot2

Figure 2.7: Views of Plot 2: a) general and

Characteristics

Area: 50x50m

Species: Norway spruce (Picea abies (L)

Karst.)

*Age: 36 years

Number of trees: 115

*Soil: Upland brown earth
*Yield class: 20

Terrain: Relatively flat
*Mean elevation: 40 m

*(Forestry Commission Database)

b) within stand.

Observations

Other species present:
Grass 90%

Bracken (Pteridum aquilinum) 5%
Moss 5%

High density of trees. This plot presents
some gaps but no regeneration.
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• Plot3

a)

Figure 2.8. Views of Plot 3: a) general and
Characteristics

Area: 50x50m

Species: Sessile oak (Quercus petraea)

*Age: 135 years

Number of trees: 168

*Soil: Upland brown earth
*Yield class: 12

Terrain: 10% slope
*Mean elevation: 70 m

*(Forestry Commission Database)

b)

b) within stand

Observations

Other species present:

Hinberry (Vaccinium myrtillus) 40%

Raspberry (Rubus idaeus) 10%

Blackberry-bramble (Rubus fruticosa) 10%
Moss 40%

The plot is located at the top of Drummond
Hill and exhibits a light slope. The trees are

more or less aligned and present extended
crowns and considerable heights.

High density of trees. Presence of dead
trees. Bad quality of the trunks making the
wood of low commercial value. Locally

very wet soil.

32
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a)

Figure 2.9: Views of Plot 4: a) general and
Characteristics

Area: 50x50m

Species: Sessile oak (Quercus petraea)

*Age: 135 years

Number of trees: 174

*Soil: Upland brown earth
*Yield class: 12

Terrain: 10% slope
*Mean elevation: 70 m

^(Forestry Commission Database)

Continuous Cover Forestry (CCF) System

b)

b) within stand

Observations

Other species present:
Hazel (Corylus avellana) 10%

Holly (Ilex acquifolium) 20%
Beech (Fagus sylvatica) 10%
Moss 300%

Grass 30%

This plot is located at the top of a hill
known as Fairy Knowe. The site presents

few seedlings but no saplings. Most of the

plot is dominated by grass. High density of
trees.
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• Plot5

a)

Figure 2.10: Views of Plot 5: a) general and
Characteristics

Area: 50X50 m

Species: European Larch (Larix decidua P.

Mill.)

*Age: 68 years

Number of trees: 45

*Soil: Upland brown earth
*Yield class: 12

Terrain: 20% slope
*Mean elevation: 70m

^(Forestry Commission Database)

b)

b) within stand

Observations

Other species present:
Bracken (Pteridum aquilinum) 70%,

Hinberry (Vaccinium myrtillus) 20%,
Grass 10%.

Nearly all of the trees situated in the
southern part of the plot lack almost half
of the branches that form the crown. The

loss of these branches, which should be

orientated to the north, could be due to

competition from thinned trees, operation
carried out in 1998. Light levels are

adequate for regeneration but the problem
is the control of vegetation competition.

34



Continuous Cover Forestry (CCF) System

• Plot6

Figure 2.11: View of Plot 6: a) general and
Characteristics

Area: 50x50m

Species: European Larch (Larix decidua)
and Douglas Fir (Pseudotsuga menziesi)

*Age: 67 years

Number of trees: 83

*Soil: Gley
*Yield class: 12

Terrain: 60% slope
*Mean elevation: 100m

*(Forestry Commission Database)

b) ..within stand

Observations

Other species present:
Bracken (Pteridum aquilinum) 5%,
Hinberry (Vaccinium myrtillus) 10%,
Holly (Ilex acquifolium) 10%
Wild service tree (Sorbus torminalis) 5%
Grass 70%.

The dominant species is European larch,

covering approximately 60% of the plot.
The trees are distributed in parallel lines
and the terrain presents a slope of 40°

approximately. This stand is included
within the Regeneration Study Area.
The regeneration consists of a few

seedlings of Norway spruce and Douglas
fir which exhibit deer grazing damage. The
side of the crowns that are south orientated

are more developed maybe due to effects of
the wind.
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2.8 Description of the species under study
The retrieval of forest parameters and requirements for light regime were analysed on 3
different species: European larch {Larix decidua P. Mill.), Sessile oak (Quercus petraea),
and Norway spruce (Picea abies (L.) Karst.). A view of these species is shown in figure
2.12.

The species' botanical and ecological characteristics are described as follows and are

useful to relate their morphological and seasonal changes to the reflectances values
obtained from the remotely sensed imagery, as well as to have an understanding of their

light regimes. This information was mainly extracted from the internet site

(http://www.fs.fed.us/database/feis/plants/tree/picabi/botanical_and_ecological_character
istics.html) unless another source it is stated.

Figure 2.12: Norway spruce, European larch and Oak. ©Copyright 2005-2006 Virginia
Tech Forestry Department.

• European Larch (Larix decidua (P.) Mill.) in Great Britain

European larch been widely planted throughout Europe and Great Britain, and has
also been planted in southern Canada and the north-eastern United States. European
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larch wood is durable and strong, of moderately high density, with excellent

toughness and stiffness. It is used for pulp, framing timber, roof tiles, flooring, and

log houses. It is suitable for veneer and other decorative purposes.

General botanical characteristics
In the UK European larch is an introduced deciduous conifer. Mature height usually

ranges from 9-40 m in the United States and Canada; larger individuals have

occasionally been reported, particularly from Europe (up to 54 m). The crown of

young trees is symmetrical, open, and narrowly conic. European larch is characterized
as deep-rooted.

Figure 2.13: European larch's (Larix decidua) bark, leaf, form, fruit and twig.
©Copyright 2005-2006 Virginia tech Forestry Department

Trunk: straight, 1 - 1.5 m in girth.
Bark: On young trees smooth, on old trees grey or brown and fissured, shredding in
small plates.
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Branches: on young trees, dense, short and compact; on old trees spreading, upturned
or drooping.
Branchlets: drooping, thin, grey or yellowish, glabrous, furrowed. Short spurs dark

brown, nearly black, marked with as many rings as they are old, rings downy.
Winter buds: on main shoots ovoid, short-pointed; scales pointed, slightly resinous;

golden to chestnut brown.
Leaves: on growth shoots single, varying in size up to 6 - 7 cm long; on the spurs -

in clusters of 30 - 40, 1.5 - 3.5 cm long. All leaves turn to yellow in autumn.

Flowers: male strobili stalkless, rounded, yellow, 5-10 mm long, ripening in April
and May.
Mature cones: ovoid, to 4 cm long, 2 cm broad, light brown ripening to grey the first

year.

Seeds: about 4.5 mm long, greyish. Wing: mostly 12.5 mm long, 8-9 mm wide,

reaching to the top of the scales.

Regeneration processes

European larch is monoecious which means that in this species male and female

organs are found on the same plant but in different flowers. Minimum age of first

reproduction is around 10 years. Large seed crops are produced at 3 to 10 year

intervals. The seeds are wind dispersed. Most larch seeds germinate without pre-
treatment. Viable seeds may remain in the cone for 1 to 2 years.

Site characteristics

European larch grows best on uniformly moist, deep, fertile soils. It does not do well
on pure sand. Preferred soil textures include loamy sands, loams, and salty loams.

European larch does not occur on poorly drained or very wet sites.
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Light regime

European larch is intolerant of shade at any age (Hibberd 1991). Its open crown

transmits a considerable amount of light so that it does not tend to suppress more

tolerant understory species (McComb, 1955).

Seasonal development
In Great Britain, European larch cones do not open until spring. European larch
needles die and are abscised in early November in Britain; some are retained through
December.

Silvicultural systems

Group selection silvicultural system is successful with European larch. This is a

system that promotes uneven-aged stands with clumps of even-aged trees well
distributed throughout the cutting unit. These even-aged groups are large enough to

accommodate some shade-intolerant serai species in addition to more tolerant climax

species. Small gaps or openings are created on short intervals to develop into a

mosaic of at least three or more age classes throughout the stand.

Group selection provides that advanced regeneration has not been suppressed for very

long; suppressed seedlings do not respond well to release. Planting in mixtures with
more tolerant species works well if the stands are thinned to allow European larch to

maintain a dominant crown position; it does not usually suppress its more tolerant

neighbours. European larch planted on slopes are susceptible to stem bending and

breakage from snow.

• Norway Spruce (Picea abies (L.) Karst.)

Norway spruce is native to the European Alps, the Balkan Mountains, and the

Carpathians, its range extending north to Scandinavia. It was introduced to Britain as

early as 1500 AD.
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General botanical characteristics

Norway spruce is an introduced evergreen tree. In central Europe, heights of up to 61
m have been reported; the range is usually between 30-61 m and 100-150 cm dbh.
The crown of young trees is narrowly conic, that of older trees becoming broadly
columnar. Norway spruce cones are large (10-18 cm long). The root system is

typically shallow, with several lateral roots and no taproot.

Figure 2.14: Norway spruce (Picea abies) bark, leaf, fruit, twig and form. ©Copyright
2005-2006 Virginia Tech Forestry Department.

Trunk: usually straight and symmetrical, with no tendency to fork.
Bark: orange-brown, finely flaking, becoming gray-brown, scaly on old trees.

Branches: short and stout, the upper level ascending, the lower drooping; twigs

orange-brown.
Buds: reddish brown, 5-7 mm, apex acute.

Leaves: needles that persist for 3 to 4 years, stiff and pointed 1-2.5 cm long. Needles
tend to point downwards and towards the stem tip, light to dark green.
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Seed cones: cones found at the ends of branches long and narrow: 12-16 cm long;

light green color turning to a medium brown at maturity; scales diamond-shaped.

Regeneration process

Norway spruce usually first reproduces at 30 to 40 years of age. Good seed crops are

produced every 3 to 4 years in Britain. Most of the seeds are produced in the crowns

of dominant stems; seed yield is lower in smaller stems in stands of the same age.

Norway spruce seeds are wind dispersed, but do not usually travel much farther than
the height of the parent tree. Movement after dispersal, however, can be considerable
when seeds are dispersed onto crusted snow and are pushed along on the surface by
wind. Seeds germinate promptly and do not require pretreatment or exacting light

regimes. Optimum germination temperature for Norway spruce seeds is around 73

degrees Fahrenheit (23 deg C) but germination will occur up to about 91 degrees
Fahrenheit (33 deg C).

Seedling growth is best at constant low temperature (9 deg C), rather than with

fluctuating temperatures or steady high temperatures. The seedlings are sensitive to

drought and/or overheating, particularly when the soil surface is exposed to direct
insolation. Other studies support the hypothesis that shading improves early seedling
survival.

Site characteristics

Norway spruce grows best in cool, humid climates on rich soils. Preferred soils
include well-drained sandy loams. It also grows well on almost all other types of
soils.

Light regime

Norway spruce is tolerant of shade. Seeds of Norway spruce are probably not long
lived in the soil, although under good storage conditions remain viable for up to 7

years. Disturbance events such as windfalls, snow damage, disease and insect attack
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create small-scale gaps in the mature canopy. Norway spruce depends largely on

advance regeneration (seedling banks) to capture such canopy gaps. Norway spruce is
the most common gapmaker and it is also the most common seedling in gaps.

Seedlings survive in an extremely stunted condition for many years. This reservoir of

seedlings functions in a way analogous to soil seedbanks. Suppressed Norway spruce

saplings can persist for several decades, retaining the ability to respond to canopy

gaps with increased growth.

Seasonal development

Norway spruce cones open from May to June. Seeds ripen in late autumn the same

year. They are released on warm days in late autumn and winter, but are sometimes
retained until spring.

• Sessile Oak (Quercus petraea (Matt.) Lieblein)

The Sessile oak (Quercus petraea), is native to most of Europe. It is a large deciduous
tree of about 40 m tall, similar to English oak, with which it overlaps in range.

Significant botanical differences with English oak include stalked leaves, and
stalkless (sessile) acorns. It is found more often than English oak in upland areas with

higher rainfall, but also with lighter soils with better drainage. The Sessile Oak has an

age of up to 1000 years or more.

General botanical characteristics

It is a large deciduous tree, which grows slowly as a seedling, but of much faster

growth later, with a maximum height of about 30-40m. The Sessile Oak is propagated

by its seeds that are not dormant.

Trunk: Pale brown hard wood, grows faster than Common oak with straighter
branches.

Bark: is deeply fissured with age.
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Leaf: Elliptical leaves, 5-12 cm long, have 5-6 various sized lobes on either side, and
no ears at the base which narrows gradually into a leaf stalk 10-25 mm long, on stalks
with clusters of sessile acorns, flowers appear in May.

Figure 2.15: Sessile oak (Quercus petraea) bark, acorn, leaf, and terminal buds.
©Copyright 2005-2006 Virginia Tech Forestry Department.

Site characteristics

The habitat of the Sessile Oak is mainly in acid upland soils, often in its own pure

stands. It generally prefers lighter well drained soils and not tolerant of flooding.

Light regime

European oaks require high solar irradiances, especially at the seedling stage.

Seasonal development

Acorns in autumn: the Sessile oak fruits less frequently than the Common Oak, and
its acorns are smaller.

43



Continuous Cover Forestry (CCF) System

The tree in winter: growth ceases during the winter because there are no leaves to

carry out photosynthesis.
The tree in spring: spring is the time when the previous year's acorns germinate to

produce the young oak seedlings. Paradoxically, oak seedlings appear almost

anywhere except beneath oak trees.
Female flowers in spring: female flowers are almost stalkless, and are borne in small

groups on twigs, in the axils of leaves.
Male flowers in spring: the male catkins shed their pollen during late spring, and each
catkin produces several million pollen grains. Oak trees are probably self-sterile (the

pollen cannot fertilize female flowers from the same tree).
The tree in autumn: Oaks start to lose their leaves in the middle of autumn, but yellow
leaves can still be seen on the trees in a mild winter. The autumn leaf fall produces a

blanket of leaves, called litter, which forms a protective bed for germinating acorns.

Table 2.2 outlines the main aspects of the seed production of the species under study and
the suggested times for seed collection.

Common Name Age of Age of Average interval Recommended time of seed

first good maximum between good collection

seed crop production seed crops Earliest Normal Latest

(years) (years) (years)

European larch 15-20 40-60 3-5 November Feb/March April

Norway spruce 30-35 50-60 - October October November

Sessile oak 40-50 80 - 120 3-5 September October November

Sitka spruce 30-35 40-50 3-5 September Sep./Oct. December

Table 2.2: Seed production of trees in Great Britain (adapted from Hibberd 1991).
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2.9 Summary
This chapter has introduced the theoretical aspects about Continuous Cover Forestry

system, its definitions and main characteristics.

The definition of CCF used in this work corresponds to the one presented by Mason et al.

(1999) that defines continuous cover as "the use of silvicultural systems whereby the

forestry canopy is maintained at one or more levels without clearfelling", although in

general, all terms that define the system emphasize its most important aspects which are

the continuity of woodland conditions over time and the need to avoid clearfelling over

large areas.

The use of natural regeneration as a restocking method is highly encouraged by CCF. The
successful use of natural regeneration depends upon the manipulation of the stand
microclimate to ensure satisfactory germination and growth of seedlings. One of the
factors determining the survival and growth of the seedlings beneath a forest canopy is
the light environment (Lieffers et al. 1999). Thus, to better understand mechanisms
involved in understorey tree regeneration it is important to know how forest canopy and

light interact and which are the light requirements of the target species.

In this chapter the area and species chosen for the study were also introduced. The study
area consists in six sample plots located within the Elizabeth Forest Park in Aberfoyle,

Scotland, and the species analysed were European larch (Larix decidua P. Mill.), Sessile
oak (Quercus petraea) and Norway spruce (Picea abies (L.) Karst).

These species were especially chosen because of their differences of shade tolerance, so
in this way is possible to establish comparisons regarding light conditions as well as size
and distribution of gaps as one of the most important factors influencing stand
microclimate.
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Chapter 3

Analysis of the spectral reflectances of European larch, Norway spruce,
Sessile Oak, and Sitka Spruce using Landsat ETM+ imagery

3.1 Introduction

The existence of up-to-date and accurate forestry related information is relevant for all
forest management tasks and especially for continuous cover forestry (CCF) purposes.
This information comprises variables or stand parameters such as tree height, diameter at
breast height (dbh), basal area or volumes, which are often used in forestry to aid

planning of forest resources. Although detailed measurements could and should be

acquired in situ, remote sensing from space platforms appears to be the only

economically feasible way to gather information repetitively over large areas with a high

spatial, spectral, and temporal resolution (Verstraete et al. 1996). Optical remote sensing
offers opportunities to determine forest parameters using forest reflectance to monitor
forest stands, and to predict their current and possibly future characteristics as well as

their mapping. Thus, the accurate determination of forest reflectance plays a key role in
the improvement of forest classification, mapping, forest inventory and management

goals in a cost effective manner.

The applicability of Landsat Thematic Mapper (TM) for estimating structural forest
variables based on the vegetation spectral characteristics has been researched over the

past three decades. Stand structure attributes such as tree size, density, and basal area
were reliably quantified using Landsat TM data by Cohen and Spies (1992). Ripple et al.

(1991) utilised TM and SPOT (Satellite Pour l'Observation de la Terre) data over

coniferous forest and established that significant inverse relationships existed between
forest volume and the near infrared bands of both sensors. Similar results were shown by
Gemmell (1995) who also reported that forest volume was strongly related to the
reflectance characteristics of the stand and could thus be estimated from the remote

46



Spectral Reflectances Of Selected Species

sensing data. Trotter et al. (1997) performed a Landsat TM spectral analysis on bands

3,4,5, and 7 and found that acceptable accuracies of wood volume calculations were

obtained for forest-stand areas of about 40 ha therefore limiting its use for inventory at

more detailed scales. Brockhaus and Khorram (1992) found several TM spectral bands to
be significantly and positively correlated to basal area and age classes of trees, but they
concluded that the correlation coefficients were so low as to limit any use in model

development. Significant positive correlations between forests stand parameters and
Landsat TM spectral bands were found by Mallinis et al. (2004) with bands 4 and 7

showing the strongest correlations. Strong positive relationships have been observed
between the Leaf Area Index (LAI) of temperate coniferous forests and the ratio of near
infrared and red radiance measured by Landsat TM (Spannerl990).

Considerable work has focussed on spectral vegetation indices and correlations between

remotely sensed data and biophysical properties. These indices derived from satellite data
are one of the primary sources of information for operational characterisation and

monitoring of the vegetation cover. The most frequently used spectral vegetation index is
the Normalized Difference Vegetation Index (NDVI) described by Rouse et al. in 1974

(Jensen 2000, Perry and Lautenschlager 1984), although improved vegetation indices
have been developed such as the Modified Soil Adjusted Vegetation Index (MSAVI)

(Qi et al. 1994), the Modified Soil and Atmospherically Resistant Vegetation Index

(MSARVI) (Huete and Liu 1994), the Normalised Pigments Chlorophyll Ratio Index

(NPCI) (Penuelas et al. 1994), the Photochemical Reflectance Index (PRI)

(Penuelas et al. 1995), and the Generalised Soil Adjusted Vegetation Index (GESAVI)

(Gilabert et al. 2002).

Price et al. (2002) evaluated the use of Landsat TM to determine optimal vegetation
indices and band combinations for discriminating among six forest management

practices. They found that increasing the number of TM bands by using multiple datasets
of imagery improved discrimination accuracy up to a point, but that the use of too many

bands (greater than 10) could actually decrease discrimination accuracy. The usefulness
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of spectral methods applied to Landsat TM data for differentiating old growth from

younger Spruce-Fir stands was evaluated by Nel et al. (1994), showing that the NDVI
and the Simple Ratio were the best discriminators between the two types.

The correlation between NDVI and Leaf Area Index (LAI) has been a topic of
considerable research (Vieira et al. 2003, Chen and Cihlar 1996, Gilabert et al. 1996,

Chen et al. 1996), as LAI is one of the most important biophysical factors controlling

many processes such as photosynthesis, respiration, transpiration, carbon and nutrient

cycle, and rainfall interception (Qi et al. 1996, Chen et al. 1996).

Time series of Landsat TM imagery have been used successfully in the production of
detailed land cover maps (Ager and Owens 2004, Oetter et al. 2000, Basham et al. 1997,
Wolter et al. 1995). The applications of such data for forestry mapping are also well
documented: Wilson and Sader (2002) used multiple dates of Landsat TM imagery for
the detection of forest types, concluding that the Normalised Difference Moisture Index

(NDMI) applied to imagery collected every 2-3 years proved to be useful in the
detection of harvesting and other disturbances that do not remove the entire overstorey

canopy. Almeida-Filho and Shimabukuro (2002) applied a Principal Components

Analysis to a 12-year Landsat series of data in order to map and monitor land cover

changes in Brazil.

Despite previous research efforts, the question remains as to how spectral Landsat TM
bands respond to the variation of forest parameters or species over time. The analysis of

spectral responses is more complex because most types of land cover exhibit different

spectral behaviour within species in a single season, mainly related to plant growth

(Jakubauskas 1996, Nilson and Peterson 1994) and development, as well as to changing

background properties (Danson and Curran 1993, Elvidge and Chen 1995). Furthermore,
the relationships between spectral and biophysical attributes do not extrapolate to other
sites and years as they depend on viewing and radiation geometries, canopy morphology
and background, and the spectral characteristics of individual plant parts (Gilabert et al.
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1996). Danson and Curran (1993), analysing the remotely sensed response of coniferous
forest plantations, concluded that one of the main factors affecting such responses is
related primarily to stand structure. A study carried out by Vogelmann and DeFelice

(2003) for the characterisation of reflectance properties in South Dakota using Landsat
TM and ETM+ data, concluded that the degree to which the land cover classes could be

separated spectrally and radiometrically depended on the time of year during which the
datasets were acquired, and that no single dataset appeared to be adequate for separating
all types of land cover.

While a number of investigations have examined the long-term variation of forest

reflectance, the use of information relating to the seasonal variation of forest reflectance

appears to be relatively untested (Gemmell et al. 2001) and certainly little has been done
or at least reported in the UK. Some studies are published on this topic: Kodani et al.

(2002) analyzed the seasonal variations in the reflectance factor with respect to the
seasonal variations in the biophysical or biochemical attributes of deciduous canopy in

Japan using four bands of the moderate resolution imaging spectrometer MODIS; Huete
et al. (2002) produced multitemporal profiles of the MODIS Vis over numerous biome

types in North and South America representing their seasonal phenologies; Ustin et al.

(1994) reported the observed seasonal changes in AVIRIS images of vegetation
communities in California.

The investigation of multi-seasonal data-sets for forests is important to facilitate a better

understanding and classification of land cover and further work needs to be undertaken to

identify optimal image acquisition dates and to understand better the biophysical aspects
of the temporal changes in forest reflectance in specific conditions.

The approach in this study for the spectral characterisation of four different species is the
detection of phenological change on a Landsat 7 Enhanced Thematic Mapper Plus

(ETM+) time series. The results indicate patterns of seasonal reflectance properties and
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the time of the year in which data acquisition should be made to obtain the best
discrimination of species.

3.2 Objectives
The analysis of Landsat ETM+ data already available for the area was considered

appropriate for this project due to that is one of the most widely used remote sensing
datasets for forestry applications. The main advantages of Landsat ETM+ are its

availability soon after acquisition and more affordable price in comparison with other
remote sensing data sources. At Landsat resolution it is possible to explore phenological

patterns within and between stands. Given the continued demand for Landsat imagery
from the forestry sector and the growing supply of imagery from Landsat 7, it was felt
that the scenes available for the study area owed to be analysed and that this sensor

provides the most accessible data for the research objectives. The spectral signatures
from stands of four species: European larch (Larix decidua P. Mill.), Norway spruce

(.Picea abies), Sessile Oak (Quercus petraea), and Sitka Spruce (Picea Sitchensis (Bong.)

Carr.) were investigated to determine the extent to which their reflectances varied

seasonally and whether the species could be discriminated better by remote sensing using
this seasonal reflectance data. The spectral reflectance of those species was collected
from Landsat ETM+ images over the Aberfoyle area at different times of the year

through two years, 2000 and 2001. The analysis of the spectral signatures for mapping

purposes therefore stimulates the following questions:

To what extent do the spectral signatures of different tree species vary seasonally?
Are seasonal reflectance spectra sufficiently different between species?
What potential impact does seasonal variation have on monitoring intra-annual

change in forests?
What utility does intra-annual variation have for improved species classification?
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In order to answer these questions, the study aims at evaluating a range of features
derived from ETM+ data for discriminating the marked species in the test site, which
included single bands, NDVI, Principal Components Analysis, and the assessment of the

image acquisition time that provided a better discrimination of the species under analysis.

The understanding of the influence of seasonal changes on the reflectance from different
forest species is important as:

seasonal influence may be useful for classification, taking advantage of different

species' phenologies. It is therefore useful to determine whether the observed
reflectance differences between species are significant and consistent, over

different seasons and areas, before they can be generally applied with success in
remote sensing mapping or in the retrieval of other forest parameters.
Seasonal variation will lead to errors in detection of change over longer time
scales if a) seasonal influence is marked; b) a part of the difference recorded is a

seasonal one, unrelated to longer term changes; c) images are acquired at

different times of the year.

Therefore, the developing of accurate measurements for forested areas using satellite data

requires finding out what actual ground-level changes trigger remotely sensed signal
variations. If the changes are caused by overstorey phenological events, then appropriate
model parameterisations may need to be employed to assess the process accurately.

Limitations of the study arise mainly from the short series to be evaluated which do not

follow closely key phenological events, and the lack of field measurements to tie up the
results derived from remotely sensed products as explored by Fisher et al. (2006) in
which work, through the analysis of 57 Landsat scenes and corresponding field work,
achieved an effective scaling from plot to satellite phenological observations.
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3.3 Remote sensing of the marked vegetation
The basic premises for optical remote sensing of vegetation are that the solar radiation
received by a remotely located sensor upon interaction with the plant stand (e.g. a forest)
carries in it the signature of the vegetation and that this spectral signature can be

deciphered to obtain the important characteristics of the stand (Rautiainen et al. 2004).

Within the electromagnetic spectrum, different wavebands will produce different levels
of reflectance when radiation interacts with the canopy cover. Vegetation shows a

marked increase in reflectance at spectral bands immediately past the range of human
vision. Through the visible light region, vegetation is low in reflectance, with the

exception of a small rise in the green (figure 3.1). For example, in the visible bands (0.4 -
0.7 pm), lower reflectance will occur as more light is absorbed by leaf pigments than is
reflected. The blue (0.40 - 0.50 pm) and red (0.60 - 0.70 pm) wavelengths include two

main absorption bands where light is absorbed by leaf pigments. This broad chlorophyll

absorption continues into the infrared with the long-wavelength side of chlorophyll

absorption extending beyond 0.7 pm (Howard 1991).

Wawalenglh (miuromelir)

Figure 3.1: Typical spectral reflectance characteristics of healthy vegetation. The labelled
arrows indicate the common wavelength bands used in optical remote sensing of
vegetation: A: blue band, B: green band; C: red band; D: near IR band; E: short-wave IR
band (adapted from Jensen 2000).

The change in reflectance from red into the near infrared is usually large, ranging from a

low of about 5% at 0.68 pm to a maximum of about 50% at 0.73 pm. This rapid change
in reflectance has been called the "red edge" and it was reported for first time by Collins
in 1978 (Campbell 2002). The properties of reflectance spectra indicate that the
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chlorophyll absorption band is "saturated" such that the minimum will not change much
with changes in absorption.

Since all vegetation is composed of the same chlorophyll and associated photosynthetic
material, the reflectance spectra from widely differing plants will look similar. However,
either seasonal variation or vegetation stress will cause a difference in the amount of the

chlorophyll absorption, which results in a small shift of the side of the absorption peak as

the absorption decreases and therefore in an observed reflectance change in the near

infrared, or "red edge shift". Since different plants may have differing levels of stress and
thus different depths of chlorophyll absorption, the amount of red edge shift can be used
to differentiate between plant types (Jensen 2000).

Canopy structure also affects the remotely sensed response of vegetation. Nilson and
Peterson (1994) have found that the reflectance factors of forest stands are greatly
influenced by the values of leaf reflection coefficients. Thus, in a coniferous forest, the
stand reflectance may be sensitive to changes in the proportion of needles of the current

year and previous years. Gerard and North (1997) found that the spectral reflectances of
the red and near infrared bands are influenced by structural characteristics such as canopy

cover, tree pattern distribution, and canopy gaps. Asner (1998) indicated that the

variability in canopy structure is the dominant factor on canopy reflectance with the

exception of soil reflectance and vegetation cover in sparse canopies. More recent studies

(Rautiainen et al. 2004) indicate that crown size and shape are important factors

influencing stand reflectance. Further research (Rautiainen 2005) shows that the main

explanation for the low reflectance of coniferous in comparison to broadleaved stands,

especially in near infrared wavelengths, is the high level of within-shoot scattering within
coniferous species. All these studies seem to indicate the fact that the smaller the crown

volume, the lower the canopy reflectance.

The effects of canopy structure on forest reflectance have been modelled, among others,

by Li and Strahler (1985). This geometric-optical model, formulated for use in
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discontinuous canopies, allows for the retrieval of forest parameters from the remotely
sensed images and has been tested several times on a limited number of stands. The
inversion of this model by Woodcock et al. (1997) showed that the means for tree

geometry parameters vary between forest types; the estimates of forest cover are reliable,
and that the estimates of tree size are unreliable due to the breakdown in the relationship
between image intra-stand variance and tree size. This study suggests that improvements
in estimates of tree size require the use of a series of Landsat TM data rather than a single

image.

Another source of spectral difference between plant species is differences in the amount

of water in the leaf or canopy structure. This spectral difference can be seen in leaves
from the same species after a period of drying, and can be an indicator of stress, as leaves
from stressed plants had higher reflectance in the visible and lower in the near infrared

(Penuelas et al. 1994). Spectral differences can also be seen in leaves from trees of
different species. Throughout the wavelength range beyond 1.3 pm, leaf reflectance is

approximately inversely related to the total water present in a leaf. This total is a function
of both the moisture content and the thickness of a leaf (Lillesand 1990).

Normally, there is an inverse relationship between vegetation amount and reflectance in
the visible and mid-infrared region of the electromagnetic spectrum because of the

absorption from plant pigments and water content, respectively. In contrast, the

relationship between vegetation amount and reflectance in the near-infrared is positive

(Mallinis 2004). However, it has been found that this positive relationship does not

always exist; it can be flat (Franklin 1986) or even inverse depending on understorey or

background reflectance (Danson and Curran 1993).

3.3.1 Factors affecting vegetation spectral reflectance
The classification of species of forest types by remote sensing assumes that the features
to be classified in an image reflect or emit light energy in different and often unique ways
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(Lillesand and Kieffer 1994), and that therefore, those unique patterns of response can be

analysed and discriminated by species. However, there are other physical and

physiological parameters that affect the reflectance from vegetation which can vary

according to the species or over an individual plant over space and time (Fyfe 2003). As a

result of these effects it is important to know if the observed reflectance differences
between species are significant and consistent over different seasons and areas so they
can be applied in remote sensing mapping.

There are several factors that influence the reflectance quality of vegetation on satellite
and remote sensing images. These include brightness, greenness and moisture (Cohen
and Spies 1992). Brightness is calculated as a weighted sum of all the bands and is
defined in the direction of principal variation in reflectance. Greenness is orthogonal to

brightness and is a contrast between the near-infrared and visible bands. It is related to

the amount of green vegetation in the scene. Moisture in vegetation will reflect more

energy than dry vegetation. Leaf properties that influence leaf optical properties include
the internal or external structure, age, water status, mineral stresses, and the health of the
leaf. It is important to note that the reflectance of the optical properties of leaves is the

same, regardless of the species. What may differ for each leaf are the typical spectral
features recorded for the three main optical spectral domains: leaf pigments, cell structure
and water content.

Electromagnetic radiation of all wavelengths will interact differently with different parts
of plants and trees. These parts include leaves, stems, stalks and limbs of the plants. The

density of the tree or plant canopy will also affect the scattering of the wavelengths

(http://ucalgary.ca/geog/Virtual/Remote%20Sensing/rsveg.html). Identifying vegetation
in remote sensing images depends on several plant characteristics. For instance, in

general, broad deciduous leaves tend to be more reflective than evergreen needles. It has
also been demonstrated that crown shape affects reflectance. Stands with conical crowns
had much smaller reflectance than ellipsoidal crowns, where larger crown volume results
in higher single scattering from crowns (Rautiainen et al. 2004).
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Soil background is one source of variation that has received much attention in recent

years (Danson and Curran 1993, Elvidge and Chen 1995, Gilabert 2002). The sensitivity
of NDVI to soil background lead to the development of new indices such as the Soil

Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index

(TSAVI), and Modified Soil Adjusted Vegetation Index (MSAVI), which are less
sensitive to this external influence (Rondeaux et al. 1996). Gemmell (1999) inverted a

forest reflectance model to estimate the biophysical characteristics of coniferous forest
stands. Emphasis was placed in incorporating the effects of variation in background

signatures into the inversion process. Results indicated that the inversion model

performed better than spectral indices when the background signatures were included.

Plant age or maturity is also a factor to consider (Nilson and Peterson 1994). It is

recognized that changes in leaf chlorophyll and internal structure during the phenological

cycle of a plant significantly affects its spectral response pattern (Jensen et al. 1999).
Mature plant canopy leaves tend to increase the contrast between infrared (NIR) and red
reflectance (Nel et al. 1994). The possibility that the amount of shade will increase with
stand age has also been documented (Nilson and Peterson 1994, Leblon et al. 1996).

Reflectance from vegetative cover may vary significantly over the course of a growing
season. Thus, acquisition ofmultiple dates of coverage, e.g., early and late in the growing

season, often allows a further refinement of spectral signatures, and thus a higher degree
of resolution among vegetation types. For example, plant species that have spectrally
similar signatures early in the growing season may diverge in this regard later in the

season, thus allowing their unique identities to be resolved. Where multiple layers of

vegetation exist, such as forest canopy and understorey, the measured reflectance is that
of the top-most layer. Consequently, a closed forest canopy would not allow understorey

vegetation to be identified, and an open canopy forest would yield a mix of both tree

canopy and understorey reflectance (Nilson and Peterson 1994). Other factors that
influence the vegetation spectral response are time of day, sun angle, atmospheric haze,

clouds, processing errors.
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Landsat imagery from more than one date may provide additional information over

single-date imagery in three ways (Gemmell et al. 2001): First, the spectral
characteristics of both foliage and background vary with time, affecting the contrast

between crowns and background, thus influencing the separability of different stands

using multispectral reflectances. Second, if two separate Landsat TM scenes had a

sufficient solar zenith angle, this would give two samples of stand bidirectional
reflectance, thus providing more information on the structural characteristics of the stand.

Third, differences in atmospheric conditions affect the ratio of direct to diffuse sky

irradiance, which also affects the contrast between sunlit and shadow component

reflectances.

3.4 Data collection

A set of eight 1G level Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images was

available for the study (figure 3.2 and 3.3). The 1G level product is radiometrically and

geometrically corrected. These images were the best and most cloud free obtained by this
sensor during this period. As the images of a point are taken only every 16 days by the
Landsat system, this makes more difficult the acquisition of cloud-free images, especially
in Britain. Two images are representative of the beginning and peak of summer 2000 (17

July 2000 and 25 August 2000, respectively), one winter 2000 image (24 December), one

mid-spring 2001 image (01 May), two representative images of the beginning and middle
of winter 2001 (31 October and 11 December, respectively), while the last one was taken
at the beginning of spring 2002 (01 March).
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Image 17.07.2000

Image 31.10.2001 Image 11.12.2001
Figure 3.2: Colour composites of Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
imagery acquired for the study. The study site is enclosed in the red box on image
17.07.2000.

1:3850000
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Image 23.08.1999 Image 01.03.2002
Figure 3.3: Colour composites of Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
imagery with clouds over the study site, non suitable for analysis.

From the group of images available, the ones acquired on the 23.08.1999 and 01.03.2002

(figure 3.3) were cloud dominated making the extraction of information over the area of
interest difficult. The images taken in late October and December (24.12.2000,

31.10.2001, and 11.12.2001) present very low sun angles which produces a strong

shadowing and highlights terrain features. Normal time of acquisition of the satellite data
for the study area was about 11:07 GMT.

ETM+ data are organized by rectangular areas referred to as scenes, each 185 km on a

side. A scene is comprised of millions of pixels, each representing a 30 m square, or an

on-the-ground area of 900 square m.

There are also other useful parameters obtained from Landsat imagery, such as

illumination differences (Table 3.1).
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Path Date acquired Sun azimuth Sun elevation Comments

206 23.08.1999 156.40 43.79 Cloudy
205 17.07.2000 150.87 52.73 Cloud-free

206 25.08.2000 156.23 42.78 Cloud-free

205 24.12.2000 164.18 9.53 Very dark
205 01.05.2001 156.04 47.49 Cloud-free

206 31.10.2001 166.13 19.14 Dark

205 11.12.2001 165.19 10.09 Very dark

205 01.03.2002 157.48 24.44 Cloudy
Table 3.1: Acquisition characteristics of the Landsat TM+ imagery used in the study.

The ETM+ sensor measures the sun's energy as reflected from elements of the land
surface. The full spectrum of reflected energy is measured at discrete intervals, referred
to as bands, with each band capturing a narrow range of wavelengths, including visible

(blue, green, red) and non-visible (near infrared, and two mid-infrared) wavelengths. An
ETM+ data set includes reflectance values for each pixel for each of the six bands. A

unique combination of reflectance values comprises a spectral "signature", and

potentially allows each element of the landscape to be identified as a particular type of
land cover.

The multi-temporal set of images allowed the study of the range of spectral variability

through time between species. The six ETM+ optical bands were used to analyze the

spectral response of four forest species in the Elizabeth II Forest Park. The thermal band
was not included in the analysis. ERDAS Imagine Software v 8.7 (ERDAS 2003) was

used for the analysis of the satellite imagery data.

3.4.1 Atmospheric correction and normalisation
The use of multjtemporal imagery requires the removal of the atmospheric effects on

radiation (Du et al. 2002, Hall et al. 1991), especially in this study in where the aim is to
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identify spectral signatures of tree species through time. If the data are not corrected, the
subtle differences in reflectance among the species may be lost.

Optical radiation from the Earth's surface, which highly characterizes surface inherent

properties, is largely contaminated by the atmosphere (Myneni and Asrar 1994). The

atmospheric window through which many of the high resolution sensors scan the Earth
lie within the visible and near infrared regions of the electromagnetic spectrum. Within
this region in particular, atmospheric scattering has an additive effect on the radiation

reaching the satellite sensor, thereby increasing the Earth's reflected response (CSIRO

1995). Absorption and scattering of radiation in the atmosphere is assumed to be

primarily due to gases and aerosols (Myneni and Asrar 1994). The atmospheric particles

(aerosols and molecules) scatter and absorb the solar photons reflected by the surface in
such a way that only part of the surface radiation can be detected by the sensor. On the
other hand, atmospheric particles scatter sunlight into the sensor's field of view directly,

resulting in a radiation that does not contain any surface information at all. The combined

atmospheric effects of scattering and absorption are wavelength dependent, vary in time
and space, and also depend on the surface reflectance and its spatial variation (Kaufman

1989).

As a result, any image processing technique that analyses the relative spectral responses
of different spectral bands, or requires quantitative analysis, will be affected by the

composition of the atmosphere at the time of data capture. Thus, the development of

empirical relationships between satellite measured radiance responses and ground cover

variables will also be affected by changing atmospheric conditions. Changing

atmospheric composition thereby alters the responses detected in each of the spectral
bands and this can, in turn, affect the predicted responses during the analysis. To ensure

that the results are independent of the atmospheric conditions, it is necessary to remove

or minimise the atmospheric effect on the dataset.
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Although qualitative evaluation of raw remotely sensed data has been useful, the

quantitative analysis to link at-sensor reflectances and surface characteristics greatly

depends on the removal of the atmospheric effects. The objective of atmospheric
correction is thus to retrieve surface reflectance from the at sensor signal. In order to
calculate surface reflectance from remotely measured radiance, radiative transfer codes

play an important role for removal of atmospheric scattering and gaseous effects under

varying illumination and viewing conditions (Staenz et al. 2002).

Thus, the quality of the results achieved through the temporal analysis depends highly on

the corrections and calibrations performed on the imagery. For example, contributions
from the atmosphere to NDVI are significant and can amount to 50 percent or more over

thin or broken vegetation cover (Jensen 2005). For multitemporal studies, where variation
in atmospheric parameters such as aerosol optical depth and water vapor content is to be

expected, the use of NDVI is not recommended unless atmospheric correction can be

accurately performed because of the sensitivity of this index to atmospheric perturbations

(McDonald et al. 1998).

In order to correct for atmospheric effects, the relationship between the upward radiance
Lm measured by the satellite and surface reflectance p has to be established. Radiative
transfer theory is used for this purpose. Assuming that the atmosphere is bounded by a

Lambertian surface (reflects solar energy isotropically), the upward radiance at the top of
a cloud-free, horizontally homogeneous atmosphere can be expressed by [1]:

Lm=L0+ pFdT [1]0

n(\-sp)
where L0 is the upward radiance of the atmosphere with zero surface reflectance, often
called path radiance, Fd is the downward flux (total integrated radiance) at the ground, T
is the transmittance from the surface to the sensor (the probability that a photon travels

through a path without being scattered or absorbed), and s is the atmospheric albedo (the

probability that a photon reflected from the surface is reflected back to the surface). The
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factor ——— is the sum of the infinite series of interactions between the surface and the
1 - ps

atmosphere (Fallah-Adl et al. 1995).

Theory shows that the path radiance effect (Rayleigh and aerosol scattering) is dominant
in the visible region of the electromagnetic spectrum and approaches zero in the infrared

region. The opposite occurs for atmospheric attenuation, which presents its minimum in
the visible region and increases in the infrared region.

An image standardization process was applied to the imagery analyzed in this study to

normalize pixel values for differences in sun illumination geometry, atmospheric effects
and instrument calibration. Several attempts were made in order to perform an absolute
correction using a Radiative Transfer Code (RTC) program such as 6S (Second
Simulation of the Satellite Signal in the Solar Spectrum) developed by Vermote et al.

(1997) and for which atmospheric information on the dates of image acquisition was

collected from the Meteorological Office, Edinburgh, consisting of monthly returns of

daily observations. However, use of 6S model was restricted due to the lack of
information about water vapor content (H2O) and ozone concentrations (O3) in the

atmosphere at the time of the image acquisition, parameters required for the input file in
6S to ensure accuracy in the correction process. Other input parameters for this model
were: Sun-sensor geometry, ground reflectance, type of atmospheric model, type of
aerosol model, aerosol optical depth, and spectral band.

The selected procedure for the correction, known as COST, is image-based so that in situ

atmospheric measurements are not required. Of image correction methods, the COST
method is one of the most sophisticated as it attempts to correct for both additive

scattering and multiplicative absorption effects of the atmosphere, and it has been shown

by Chavez (1996) to be as accurate as those that have used in situ atmospheric field
measurements and radiative transfer code (RTC) software. This correction converts the

image's raw DN values to at-sensor reflectance values and corrects for procedure
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distortions caused by the following: gains and offsets from the sensor, path radiance,

atmospheric transmittance along the path from the sun to the earth's surface (which is

approximated by the cosine of the solar zenith angle in this equation), and atmospheric
transmittance along the path from the earth's surface to the sensor. The actual method is
an improvement to the DOS (Dark Object Subtraction) model (Chavez 1988), which only
corrects for the additive scattering effect.

The COST model calculates the following equation:

_ n^SX,bandn * Gainbandn + Biasbandn)— bandn * GainBandN + BiasBandN )) * D
EBandN * (COS((90 -0)*7t 1180))

Where,

PBandN = Reflectance for Band N

LBandN = Digital Number for Band N

HBandN =Digital Number representing Dark Object for Band N
D = Normalized Earth-Sun Distance

EBandN = Solar Irradiance for Band N

BiasBandN= the data product bias contained in the Level 1 product header in watts

The correction was performed using software available from the GIS Laboratory at Utah
State University (www.gis.usu.edu/docs/projects/swgap/ImageStandardization.htm),
which generated a spatial model per image to be run in ERDAS Imagine. The required

input parameters were the header file of each image and the minimum DN values per

band. The result was a spatial model that could then be used to perform the correction on

the image.

The normalisation process is not error free. Although there is a hope that site-specific

predictive reflectance trajectories ("reflectance tables") can be determined, the problems
of reliable normalisation of multidate data still remain to be solved (Nilson and Peterson

1994). Naturally, it has to be considered that the reflectance factors or radiances depend
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not only on the characteristic wavelength but also on the bandwidth. As a consequence,

reflectance trajectories determined by a particular sensor cannot be directly extended to

sensors viewing in another spectral region.

After atmospheric correction the reflectance values of five of the images were normalised
to a baseline data set (the remaining scene) using the PIF method developed by Schott et
al. (1988) that performs a radiometric scene normalisation using Pseudo-Invariant
Features. The method corrects for atmospheric degradations, illumination effects, and
sensor response differences in multispectral imagery (Schott et al. 1988). The technique
is based on the statistical invariance of the reflectance of man-made in-scene elements

such as concrete, asphalt, and rooftops. This approach does not give an absolute
radiometric scale, but has the advantage of compensating for all sources of radiometric
distortion simultaneously and has been shown to be preferable to other simplified

approaches to image calibration (Joyce 2005).

The PIF normalisation process assumes that the relationship between the at-sensor

radiances recorded at two different times from regions of constant reflectance is spatially

homogeneous and can be approximated by linear functions, and its most difficult and

time-consuming aspect is the determination of suitable time-invariant features upon

which to base the normalization (Canty et al. 2004). In practice, targets with constant

reflectance do not exist; therefore, the concept of PIFs is adopted, with the assumption
that their reflectances are constant over time (Du et al. 2002). That makes the selection of

PIFs the key to the image regression. In the present study, these features were extracted

directly from the imagery. The baseline scene selected was the Landsat ETM+ 25 August
2000 data set as this image was particularly clear and haze free.

The normalisation process was carried out through the selection of 10 pseudoinvariant

targets covering a range of brightnesses. The selection of a higher number of PIFs was

limited by the availability of invariant features identifiable in all the images. These

targets were located within the study area and its surroundings. They included large
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lakes, Glasgow airport, and the tops of large buildings. The largest targets were the water

bodies and the smallest target was a building comprising 4 pixels in size.

Attempts were made to avoid mixed pixels and targets that were characterized by high
levels of heterogeneity. For each band, mean values extracted from each target in each
scene were plotted against their counterpart mean values from the baseline scene (25

August 2000).

Regression equations derived from these plots generally had r2 values of 0.98 or higher,

implying an excellent relationship between the individual pairs of bands from the
different acquisitions of data being compared (Appendix 1).

The appropriate regression equations were then used to normalise each band of each non-

baseline data set to the same band of the baseline data set to ensure that the resulting
reflectances were comparable among data sets. For this purpose normalisation models
were built using the parameters from the regression equations for each band in the Model
Maker module in ERDAS Imagine. To check the appropriateness of the correction and
normalisation process, reflectance values corresponding to four deep-water bodies for

every image and their respective reflectance values obtained after atmospheric correction
and normalisation were compared (Figures 3.4 and 3.5).

The results indicate that for each image, the PIF normalisation led to significant

improvements in reflectances, which for each lake can be expected to be very low. The
main reflectance variability for lakes after normalisation was observed for the images

acquired in December 2000 and December 2001. The rest of the scenes showed more

consistency between bands.
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Reflectance values for lakes on image Landsat ETM+
17.07.2000 before correction
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Reflectance values for lakes on image Landsat ETM+
25.08.2000 before correction
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Reflectance values for lakes on image Landsat ETM+
24.12.2000 before correction
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Figure 3.4: Reflectance values of water bodies before and after atmospheric correction
and normalisation correspondent to images taken on 17.07.2000, 25.08.2000 and
24.12.2000. Greater variations after correction can be seen in the 24.12.2000 scene,

indicating that the normalisation of this image could not be achieved accurately.
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Reflectances values for lakes on image Landsat ETM+
01.05.2001 before correction
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Reflectance values for lakes on image Landsat ETM+
31.10.2001 before correction
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Reflectance values for lakes on image Landsat ETM+
31.10.2001 after correction
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Reflectance values for lakes on image ETM+
11.12.2001 before correction

Reflectance values for lakes on image ETM+
11.12.2001 after correction
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Figure 3.5: Reflectance values of water bodies before and after atmospheric correction
and normalisation correspondent to images taken on 01.05.2001, 31.10.2001 and
11.12.2001. Greatest variations after correction can be seen in the 11.12.2001 scene,

indicating that the normalisation of this image could not be achieved accurately.
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However, recent research (Paolini et al. 2006) has showed that high positive correlations
between PIFs as the ones found in this study (Appendix 2), do not necessarily mean that
radiometric effects haven been eliminated.

In the light of this latter publication and although further processing and analysis of the
reflectance and the phenological effects was already carried out, it was decided that the

accuracy of the radiometric normalisation should be tested further to evaluate the extent

of the radiometric normalisation errors during the process.

Reflectance variability for Lake 1 Reflectance variability for Lake 2
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—■—Band 4

Band 5

Reflectance variability for Lake 3

• Band 3

■ Band 4

Band 5

Reflectance variability for Lake 4
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Figure 3.6: Assessment of the PIFs targets. The figure shows the reflectance variability
trough time of four targets used in the normalisation process.

This analysis showed that despite the good positive correlations found for all the PIFs
used for radiometric normalisation (Appendix 2), the variability of the reflectance for
these targets trough time was considerable and may have introduced a margin of error to
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be taken in account when evaluating the reflectance responses of the species considered.

Figure 3.6 shows the reflectance variability for 4 of the most invariant targets located on

lakes surrounding the study area.

The figure shows the variability of the reflectance values trough time. Important

departures from the base-image reflectance (25 August) are observed especially for the
winter imagery (up to 10 reflectance units). The inclusion of these targets in the
normalisation process will therefore introduce bias in subsequent estimations.

The lack of better pseudo-invariant features to be selected lead to the culmination of the

analysis process in the knowledge that possible phenological effects could be diminished
or exacerbated by the errors introduced for this reflectance variability. The use of a

methodology to establish the accuracy of the PIFs and the radiometric correction, as the
one proposed by Paolini et al. (2006), should be used in future research to overcome this

problem.

Once the images were normalized, the radiance images of the 2000 and 2001 dates are

assumed to appear as if they had been imaged through the same sensor response function
and similar atmospheric conditions as the reference reflectance image.

The analysis of the spectral responses of the species under study was carried out on

reflectance data so calculated for each TM scene and for each band. The Landsat ETM+

bands that were used in the analysis include the following: TM1 (blue-green),

TM2(green), TM3(red), TM4(NIR), TM5(mid-infrared(MIR)) and TM7(MIR). The
Normalised Difference Vegetation Index (NDVI) and the first three components from

Principal Components Analysis (PCA1,2,3) were also calculated for each of the six

images used in the study.
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3.4.2 Geometric correction

After radiometric and normalisation corrections, the 25.08.2000 base line scene was

rectified to the Ordnance Survey Great Britain (OSGB) coordinate system using an

empirical correction method based in the positional relationship between points in the

image and their correspondent locations in a map. The correction was performed using 25
common control points extracted from topographic maps at the scale 1:100.000. These

points were characterised for being clearly identifiable both in the map and in the image
and for being features that have no tendency to change over time. They were chosen at

the intersection of main roads, corners of buildings, and other man made features.

Exceptionally, geographical features were chosen where no roads or buildings were

clearly identified. Particular attention was placed on the selection of points in the

surroundings of the study area as these empirical models only correct locally at ground
control points. A first order polynomial rectification algorithm was used, which achieved
a registration accuracy of 0.7 pixels (21 m). The nearest neighbour resampling method
was used.

The 25.08.00 scene was used as a reference to co-register the rest of the images. This was

carried out with the use of the first order polynomial algorithm selecting a mean of 25

points per scene that were identified in both images at a time. The ground control points
were preferably chosen in areas of high contrast, land clearing, geometric features, and
bare ground patches amongst dense vegetation, trying to avoid water bodies, areas

covered by clouds and features subject to shadowing. Control points with a residual

greater than 1 pixel were discarded. The overall root mean square error of the
transformation was of about 1 pixel (30m) for all scenes (Table 3.2).

In order to preserve radiometric integrity, a nearest neighbour procedure was used for

resampling. The images were then spatially subset to the extent of the study site in order
to have a more manageable format size and working area.
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Acquisition date Total RMS error (pixel)

17.07.2000 0.9461

25.08.2000 0.7162

24.12.2000 0.8882

01.05.2001 0.8946

31.10.2001 0.9416

11.12.2001 0.80634

Table 3.2: Geometric correction accuracies of Landsat ETM+ scenes.

3.5 Patterns of seasonal reflectance

Figure 3.7: Subset of the Landsat ETM+ image obtained on 25.08.2000 showing the
location of the study plots within the Aberfoyle area. The bright yellow plots correspond
to the European Larch plots, the pale green to Oak plots, the blue to the Norway spruce
plots, and the pale yellow to the Sitka Spruce plots.
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While structural vegetation variables such as height, dbh, and basal area, are required for
CCF conversion and monitoring purposes, the question remains about how spectral
Landsat TM bands respond to their variation within and between species and over time.
In order to collect information about the species spectral responses, two training sites
were identified for each of the tree species under evaluation. The training sites

encompassed the plots in which height and dbh measurements were taken. A false colour

composite of the August 2000 scene with indication of the sample plots is shown in

figure 3.7.

3.5.1 Selection of optimal band combination
The correlation matrix of the spectral bands contains useful information about data

redundancy and selection of optimal band combinations for interpretation purposes. If the
bands show strong correlation (value near to 1.00) this indicates that the bands usually
contain similar information to each other. When those bands are visualized minimum

separability among different features would be noticed. The following table (3.3)

represents the correlation matrix of the baseline image obtained on 25th August 2000.

Correlation matrix
Base-line image (25.08.2000)

Bands 1 2 3 4 5 7

1 1.0

2 0.979 1.0

3 0.977 0.993 1.0

4 0.361 0.515 0.497 1.0

5 0.637 0.754 0.761 0.884 1.0

7 0.838 0.898 0.915 0.686 0.922 1.0

Table 3.3: Correlation matrix for the Landsat ETM+ data obtained on 25 August 2000
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b) Image 25.08.2000

d) Image 31.10.2001 e) Image 11.12.2001
Figure 3.8: Subsets of the images selected for the analysis of the spectral reflectances of
the marked species (scale 1:145000). Figure b) also denotes the location of the sample
plots (yellow for European larch, green for oaks, blue for Norway spruce and pink for
Sitka spruce).

d) Image 01.05.2001
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The correlation matrices of all Landsat ETM+ imagery available for this study were

calculated and the correlations between bands for all the images showed approximately
the same behavior as for the baseline dataset. From Table 3.2 it is observed that high
correlation exists among visible (band 1-3) and mid-infrared bands (band 5-7), which
means there is a high redundancy of information within these bands. According to

Gemmell (2001), Horler and Ahern (1986) showed that bands 3, 4 and 5 are relatively

independent of one another for coniferous forest.

A combination of bands that includes one from the visible region, the near-infrared and
one from mid-infrared are commonly selected to achieve the best separability in the

vegetated areas using Landsat ETM+ data. However, the analysis of the reflectance

pattern for the selected forest species was carried out on all raw ETM+ bands.

A Principal Components Analysis was also performed to determine the combination of
bands that portrayed the greatest significance for the study. When displayed as images,
the band combination 4, 5 and 3 in the order of red, green and blue was effective in

portraying the changing patterns of reflectance for the different species studied. Subsets
of these colour composite images of the study area are shown in figure 3.8.

3.5.2 Interpretation of observed spectral reflectances in ETM+ bands

Spectral signatures of all forest sampling plots were extracted from the optical bands

(bands 1, 2, 3, 4, 5 and 7) of the six ETM+ acquisitions. Although sample plots of the

species Sitka spruce were not established on the field, it was decided to include plots of
this species to complement the study and for comparisons with the other species, being
Sitka spruce a non-native coniferous commonly found in forest plantations in the UK.
Location of Sitka spruce stands as well as the other stands in which sampling plots were

established in the Aberfoyle area, were obtained from the Achray Forest Database

(Forestry Commission). Sampling plots were located in a GIS layer containing the

Achray Forest sub-compartments and two new plots 50 x 50 m were created in two
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different sub-compartments of the Sitka spruce species. This GIS layer was afterwards
overlaid on the imagery. All spectral signatures were averaged over the ground plots for
the same species to have mean spectral values for each species. Some spectral variability
was found within and between plots of the same species. This was especially significant
for the European larch plots. Variations between the spectral values of European larch

samples from these two plots might be due to the different characteristics they exhibit
related to: topography (Plot 1 was relatively flat and Plot 2 had a high slope); understorey

vegetation cover (Plot 1 had mainly bracken and grass and Plot 2 had mainly grasses);
stand density (Plot 1 had low density and Plot 2 had high density). All other plots from
where reflectances were extracted showed more homogeneous values per image.

As the acquisition of cloud-free images that correspond to phenological events is
difficult, the spectral values are displayed by day and month of acquisition, regardless of
the year. This allowed the interpretation and visualization of seasonal events as if they
were registered in a single year. The resulting pattern of spectral values over time gives
an indication of the typical phenological development in the field.

Leaf-flush or senescence is phenological change that can be captured by satellite images

(Jensen 2000). Species can be distinguished when they are in different phenological

stages in the same image, or when they change differently from one image to the next

(Dymond et al. 2002). However, as stated before, the appearance of the profile is
determined by a variety of interrelated factors, including phenology, plant morphology,

canopy structure, and environmental conditions (Odenweller and Johnson 1984).

Kuusk et al. (2004) investigated another factor that plays a significant role in the spectral

response of forest such as the understorey vegetation. They acknowledge the fact that too
few systematic data are available on the spectral signatures of forest understorey species
and that due to the complexity of their ecosystem it is not possible to describe them

quantitatively. This lack of information has caused problems in the modelling of
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reflectance of sub-boreal forests as well as in the interpretation of the measured
reflectance spectra.

Figure 3.9 illustrates the spectral curves of the four species that were sampled, for all six

images. Band 1, 2 and 3 of Landsat ETM+ represent the visible light of blue-green, green
and red reflectance, respectively. Vegetation containing large amounts of green leaves
and biomass usually shows more absorption in the visible green and red spectral region.

Vegetation that has fewer amounts of those components exhibits relatively higher
reflectance in that spectral region. In this case, all the species appear with relatively high

absorption in these bands, with the deciduous species oak and larch showing the highest
reflectance in all dates. Visible band reflectances (1,2, and 3) are slightly higher in these

species during the leaf-off periods (24 December 2000, 11 December 2001) than during
leaf-on periods (May through August). The overall appearance of the profile is highly

dependant upon acquisition history. If key observations are missing, discriminating
features may not be detected (Odenweller and Johnson 1984).

Band 4 corresponds to reflectance of the near infrared region which is typically high for

vegetation and is thus widely used to separate vegetation from other types of land use.

Sessile oak and European larch appear to have more reflectance in this band than the

spruce species as seen in figure 3.9 a,b,c (July'00, May'01, and August'00). However,
this pattern changes for Oak in figure 3.9 d,e,f corresponding to the winter images

(October'01, December'01, and December'01) where it appears to have a lower
reflectance than European larch and Sitka Spruce, consistent with the expected decrease
in reflectivity as a result of the leaf-off conditions.

77



SpectralReflectances OfSelected Species

Image 01.05.2001 Image 17.07.2000

Image 25.08.2000 Image 31.10.2001

Image 11.12.2001 Image 24.12.2000

European larch
Sessile oak

Sitka spruce

Norw ay spruce

e f

Figure 3.9: Spectral profile for Sitka Spruce, European Larch, Sessile Oak and Norway
Spruce for the Landsat ETM+ imagery displayed in phenological order and obtained on
a) 01.05.2001, b) 17.07.2000, c) 25.08.2000, d) 31.10.2001, e) 11.12.2001, and f)
24.12.2000.

Residual NIR reflectances at these times may be due to the influence of the understorey

vegetation, which mainly consisted of blackberry, bramble, hazel and holy, but may also
be due to the ground contribution to reflectance by wet soils and the thick moss layer
which characterised the Oak plots. As mentioned before, shadows can be another factor
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influencing the NIR reflectance decrease. In winter the reflectance of deciduous forests is
also much influenced by the projected area of the woody part of the trees and by the area

of the shade cast by the tree trunks on the ground (Nilson and Peterson 1994).

The contrasting high reflectance values of European larch in band 4 on winter imagery
could be explained by two main factors: as the contribution of understorey vegetation (as
the sites are dominated by bracken and grasses which are highly reflective) and due to the

viewing and illumination angle. The usual physical interpretation that the subcanopy

components such as grass are more reflective than the forest canopy was demonstrated by
Trotter et al. (1997). In relation to the second factor, the spectral signal typically referred
to as a bidirectional signal, is a function of the prevailing sensor view and solar geometric
characteristics. Depending on these conditions, the target stand can look darker or

brighter (Kuusk et al. 2002).

On the other hand, the European larch plots were also considerably less dense than their
Oak counterparts so that the effect of shadows due to woody parts on reflectance

response was reduced. Stands with a lower overstorey density, as in the case of the

European larch in this work, allow a greater proportion of the incident light to reach the
forest floor, where the amount of understorey cover influences stand spectral response

(Jakubauskas 1996). An understorey dominated by green vegetation will increase

absorption in the visible bands and augment the vegetation component of the overstorey

spectral reflectance. If the understorey of the low-density stands is sparse or dominated

by soil, reflectance is increased in the visible bands. Shadow remains a minor factor, as
the trees are of similar height (low size diversity) and there is little depth to the foliated

canopy. It has been demonstrated that open stands with broadleaved understorey

vegetation or other highly reflective background have elevated near infrared radiances.
Old growth stands with considerable shadows and dark backgrounds have near infrared
radiances lower than expected (Spanner et al. 1990).
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In figure 3.9 it can be seen that the best differentiation between species appears to be in
band 4 for the images taken in July 2000, May 2001 and October 2001. Figures 3.9f and
3.8e corresponding to December 2000 and 2001, show a sudden increase in band 5
reflectance for European Larch. These values do not fit the trend for spectral responses
that is observed in the other figures with peaks in band 4. Again it should be noted that
the winter images are very dark and the spectral response of the selected features could
be biased by radiometric errors no eliminated, and shadowing of woody parts due to the
low solar angle.

Band 5 corresponds to the shortwave-infrared region, which is sensitive to the amount of
water present in plant leaves. The most important contributors to band 5 reflectances are

thus shadows and canopy moisture content (Trotter et al. 1997). Studies have noted the

utility of the shortwave infrared wavelength (bands 5 and 7) region in forest
discrimination (Gemmell 1995). It is expected that the species that contain the greatest

quantity of water in their leaves show the lower reflectance. In this study Norway and
Sitka spruce exhibited the lowest reflectances in this band and European larch was the

species that showed consistently the higher reflectance. This is evident especially during
the leaf-off period for the latter species (late October to April). However, in the same

images (December 2000, October 2001, and December 2001), although the deciduous
Sessile oak was also in leaf-off stage, its band 5 reflectance values contrast highly with
those for European larch, being as low as those corresponding to Norway spruce (figure
3.8 d,e,f). This phenomenon could be explained by background effects, considering that
the oak sites were characterised by wet bare soil and moss. However, what is evident is
that band five has a high variability for different vegetation classes, indicating that the
band could be useful for the separation of different types of vegetation.

Band 7 contains information on shortwave-infrared reflectance, which is also an indicator

of the presence of water in leaves. However, other studies indicate that it might contain

only redundant information, as band 5 suffices, as the Principal Component Analysis in
the next section will show. Figures 3.8f and 3.8e correspond to the spectral responses in
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the images 24.12.2000 and 11.12.2001 and also show a great degree of differentiation
between species in band 7. However, information from images with such a low solar

angle is thought to be unreliable, besides the difficulties for species identification due to

excessive shadowing.

Figure 3.10 corresponds to the observed mean intra-seasonal reflectances obtained from
the image datasets.

Mean Intraseasonal reflectance for European larch
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—•—Band 2

Band 3
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Mean intraseasonal reflectance for Sessile oak

-Bandl

-Band 2

Band 3

-Band 4

-Band 5

-Band 7

May'01 July'17 Aug'25 Oct'31 Dec'11 Dec'24
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Mean intraseasonal reflectance for Norway spruce
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Mean intraseasonal reflectance for Sitka spruce
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c) d)
Figure 3.10: Mean intra-seasonal reflectance values for European larch (a), Sessile oak
(b), Norway spruce (c), and Sitka spruce (d).

The effect of normalisation errors is shown in figure 3.11.
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Figure 3.11: Mean intraseasonal spectral reflectances bands 3,4,5 for the species analysed
with expected errors due to radiometric correction.
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In figure 3.11, the largest error bars correspond to the winter imagery, indicating that the
reflectance values extracted from these scenes might not be comparable with the ones

extracted from the base-line dataset. Very low or high reflectance values specifically in
band 4 for all species do not certainly conform to present research in the area. Although
conifers have been shown to exhibit phenologies (Duchemin 1999), the satellite-
observable manifestation of new needle and shoot growth is not as clear and marked as

deciduous leaf development. Goetz and Prince (1996) have found that the phenological
variation in spruce stands is negligible in closed-canopy stands, whereas discontinuous
stands exhibit a slight seasonality due to variations in the amount of understorey

vegetation background illuminated as solar zenith angles varies through the year. This

emphasizes the necessity of acquiring ground data about the reflectivity of the

understorey and overstorey, and the following of a rigorous processing method to

minimize radiometric and atmospheric effects over the recorded species reflectance.

The observed reflectance for European larch in individual Landsat ETM+ bands is shown
in figure 3.10a. The pattern is similar throughout the growing season and with rising
reflectances in all bands taken in the midwinter imagery which might be a result of low
leaf cover, low sun angles and bias introduce by the normalisation process. Visible bands

(bands 1, 2, and 3) reflectances are slightly higher during leaf-off conditions (Dec' 11 and

Dec'24) than during leaf-on periods (May, July and August).

Sessile oak has a peak in reflectance in band 4 in the growing season and then has a

declining reflectance through August. The sample size is small but both sites analysed
showed this pattern (figure 3.10 b). Band 5 has a peak in May and continues decreasing
to October, then reaches its lowest value throughout the winter period. This might be

again the result of the combined effects from shadows, understorey vegetation cover and

processing errors. Visible bands have expected lower reflectances from May to October.
Bands 5 and 7 closely track visible band reflectance values for the imagery from October
to December.
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Figure 3.10 c corresponds to the observed mean intra-seasonal reflectance of Norway

spruce species. Again, bands 1, 2, and 3 almost overlap showing that just one of them
needs to be used in the band combination. Bands 5 and 7 follow almost the same pattern

with peak in the December 2000 image. Band 4 reflectances exhibit a certain degree of

stability except for the low value in the December 11 image. The reflectance value for the
December'24 image, unusually high, might be product of radiometric errors.

Figure 3.10 d shows the mean intra-seasonal reflectances for Sitka spruce. The spectral

response of this species is characterised by very low values for the visible bands, along
with bands 5 and 7 and which show a very similar pattern to Norway spruce with peaks
for all bands in the December'11 image. Band 4 for this species presents reflectance
values higher than those of Norway spruce and unusually high reflectances during the
winter period due to the errors on the normalisation process explained before.

One trend observed in all the species study plots is the consistent increase in Near
Infrared Reflectance (NIR - band 4) between May and July indicating that this is a feature
of the growing season. Other increases in NIR observed between August and December
for European larch and Sitka spruce species were potentially linked to understorey
reflectance and low sun angles. NIR reflectance was expected to be higher during leaf-on
conditions and significantly lower during leaf off conditions for European larch but the
reflectance values for the imagery taken in October and December are high, mainly as a

consequence of radiometric normalisation errors. However, band 4 could be a good
discriminator of this species as its values in all seasons are distinct from those for the
other species.

In general, these results suggest that a multitemporal approach may be effective in

characterizing the seasonal phenology of the species studied and in differentiating among

them. The reduction of errors due to radiometric corrections may increase the

correspondence of the patterns derived here with other work. Norway spruce and Sitka

spruce have quite similar reflectance (visible, 5, and 7 bands), being higher in winter.
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Band 4 reflectances are higher for Sitka spruce compared to Norway spruce in all
seasons. European larch and Sessile oak had both the highest band 4 and 5 reflectances
and the largest variability among seasons. European larch also had somewhat elevated
band 5 and 7 reflectances compared to other species, while Norway spruce had lower
reflectances in the same bands during May through August and Sessile oak the lowest
band 4,5,7 reflectances in winter. The unusually low reflectance in band 4 for Norway

spruce in the December 11 image and the high reflectance value in the same band and
date observed for Sitka spruce might be explained by a combination of errors introduced
in the processing, especially related to problems with the radiometric correction, and low
sun angle and background effects (shadows and canopy cover). Reflectances extracted
from the December imagery showed the most variable and unexpected values for all

species and also the largest error bars derived for the radiometric correction and
normalization process.

The potential for spectral discrimination of European larch and Sessile oak species was

apparent even before correction of the reflectance data. Differences were apparent in the
relative magnitude of reflectance of NIR wavelengths by these species. It was more

difficult to establish reflectance differences between the spruce species. However, their

spectral signatures show small but discrete differences in the magnitude of the NIR
reflectance which could potentially aid in their mapping. In conclusion, the band in which
a better separation of species can be carried out is band 4 and the date of imagery that
best show a maximum contrast among spectral reflectances was the July 2000 image
when differences in band 4 were maximal. However, no single date appeared to be ideal
to discriminate the four species suggesting that a combination of two or three datasets

covering their phenological cycles will be optimal for their differentiation. In this study
the images that best portrayed the spectral characteristics of the marked species, apart
from the July image, were 01.05.2001 and 31.10.2001. The main phenological
characteristics observed in the imagery are that earlier in the seasonal cycle (May 01), the

foliage is definitely not fully developed while in the latter imagery (August 25) the
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deciduous species (Sessile oak) and European larch have maximum foliage and

chlorophyll content.

Chen and Cihlar (1996) found that late spring TM images (such as the May 2001 in this

study) were superior to summer images for determining overstorey leaf area index in
boreal forest because the effect of the understorey was minimized in the spring, before
the full growth of the understorey. However, they also reported that spectral
differentiation for the species under study was too small to allow species identification

using this imagery. Maselli et al. (2005), in the retrieval of forest attributes from

multitemporal Landsat ETM+ images, reported that image dates that rendered best results
were at the beginning or end of the growing season.

The imagery captured in December showed potential problems that mainly resulted from
a combination of poor radiometric correction and low sun angles that cause excessive

shadowing of the features. The general spectral responses for different species and
seasons might be explained by shadowing effects related not only to the topography but
to the heterogeneous nature of the forest as it is known that the multispectral signatures
derived from sensors such as Landsat ETM+ are the measure of a composite of stand

structure, tree density, and cover condition impacted to varying degrees by atmospheric
and terrain influence (Jiang et al. 2004). Other factors include solar zenith angle,

background reflectance and stand structure. Further studies should be carried out to

develop a rigorous spectral characterisation of the species in question utilising a longer

sequence of images. The calibration of such scenes with in situ measurements is highly
desirable.

This study has analyzed a number of Landsat ETM+ images to characterize the

vegetative phenology of four tree canopies in order to understand the advantages in

considering multitemporal datasets. Much of the spectral change is related to plant

growth and development, but some also relates to changing background properties and

processing errors. All the species analyzed had particular seasonal patterns of reflectance.
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In the earlier images (17.07.2000, 25.08.2000, and 01.05.2001), European larch and
Sessile oak showed a similar pattern as did also Norway and Sitka spruce. The most

significant spectral differences occur in the late October image when European larch and
Sessile oak are in a leaf-off stage. However, lack of available ground information by the
time of data acquisition, such as status of vegetation and type of vegetation during a

particular time interval, often makes it difficult to determine the biological reasons

behind the reflectance changes (Vogelmann and DeFelice 2003). Nilson and Peterson

(1994) have found that the stability of crown closure and LAI accounts for the relative

stability of forest reflectance over a long time of period, in spite of the fact that essential
forest inventory parameters (tree height, dbh, volume) keep increasing until maturity.

3.6 Normalized Difference vegetation Index (NDVI)
Since information contained in a single spectral band is usually insufficient to

characterize vegetation status, vegetation indices are usually developed by combining

spectral bands (Qi et al. 1994). The combination may be in the form of a ratio, a slope, or
some other information (Rondeaux et al. 1996) and aims is to enhance the spectral
characteristics of the vegetation in order to derive its biophysical properties. Vegetation
Indices (VI's) are dimensionless, radiometric measures that indicate relative abundance

and activity of green vegetation, including Leaf Area Index (LAI), percentage green

cover, chlorophyll content, green biomass, and absorbed photosynthetically active
radiation (PAR) (Jensen 2005).

A vegetation index is formed from combinations of reflectances in several spectral wave
bands that are added, divided, or multiplied in a manner designed to yield a single value
that indicates the amount or vigour of vegetation within a pixel (Campbell 2002).

The NDVI is an intrinsic index that does not involve any external factor other than the
measured spectral reflectances and is calculated by the following expression (Gemmell

1999):
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NDVI = Pnir Pr [3]
Pnir Pr

where pNIR is the near infrared reflectance and pR is the red reflectance. The index

operates by contrasting intense chlorophyll pigment absorptions in the red against the

high reflectivity of plant materials in the NIR (Elvidge and Chen 1995). Thus high NDVI
values indicate high leaf biomass, canopy closure, or leaf area.

There are a significant number of studies that show that NDVI values can be affected by

atmospheric effects (Myneni and Asrar 1994), spectral bandwidth (Teillet et al. 1997)
and background reflectance (McDonald et al. 1998, Trotter et al. 1997, Nel et al. 1994).
The latter issue was further explored by Gemmell (1999) in a study to determine the

background effects on coniferous forest spectral signatures, concluding that NDVI,

although it does not specifically account for soil line effects, performed better than the
Soil Adjusted Vegetation Index (SAVI), and was insensitive to near-infrared background
variations and slope-aspect effects.

The literature reports that several biotic and abiotic factors may influence the seasonal
trends of the NDVI of a particular forest site. These factors include the phenological

changes in forest Leaf Area Index (LAI) caused by climate, the proportion of the surface
cover types contributing to the overall reflectance, and the effects resulting from
variations in the solar zenith angle (Spanner et al. 1990). Shadowing effects are also

important in the case of sparse vegetation canopies, low sun elevations, for example, in
winter or at high latitudes, or in the case of large satellite view angles. Leblon et al.

(1996) showed that NDVI is highly sensitive to the amount of shadowing in a forest

canopy.
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Solar zenith angle effects are also pronounced when comparing NDVI values at different
times during the year. Lower sun angles and increased shadow in the winter months also
serve to reduce NDVI values. Shadowing probably plays an important part in the

response of all bands and is thought to be at least as important as canopy water content in

determining the mid-infrared response (Trotter et al. 1997)

NDVI 17.07.2000 NDVI 25.08.2000

NDVI 01.05.2001 NDVI 31.10.2001

Figure 3.12: NDVI imagery scale 1:140000 over Aberfoyle area derived from four
Landsat ETM+ scenes.

Despite its influence from extraneous factors, the ease of calculating NDVI from various

types of satellite data, the success of the NDVI in detecting vegetation and its ease in

interpretation has made it a popular vegetation index (Wilson and Sader 2002). NDVI
was computed for each date of imagery 1G level (radiometrically and geometrically

corrected) and the images derived from four of the dates are shown in figure 3.11.
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Differences in brightness intensities for the imagery are evident in these NDVI images,
with the October imagery showing saturated values in darker areas. Figure 3.13 shows
the extracted seasonal NDVI values for the species and stands studied.

Seasonal NDVI

—♦—European larch
—•—Sessile oak

Sitka spruce

k Norway spruce
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Figure 3.13: Seasonal NDVI values for the species under study.
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Figure 3.14: Seasonal NDVI values from a broadleaf forest in USA (adapted from Huete
et al. 2002).

On a seasonal basis, there are similar trends in the NDVI response between species.
NDVI values were almost constant for Sitka spruce and Norway spruce, ranging between
0.8 and 0.9, except for the values observed in the December imagery. Although the Sitka

Harvard Broadleaf Forest
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spruce NDVI kept within that range for most of the observed time, the Dec'24 image

registered an increase for this species. This increase might not represent a phenological

change but an effect from sun angle, background reflectance, or/and radiometric errors as

discussed before. In contrast, NDVI decreased dramatically in the Dec' 11 scene for the

Norway spruce species. For that scene, oak and Norway spruce stands appear very dark

leading to low NDVI values (figure 3.15). The lack of ground information about the

particular conditions of sites on those dates makes it difficult to explain the exact reasons

behind the changes in reflectance for those sites at this time but the low sun angle along
with shadow combined with the background effects and radiometric errors may be

responsible for this spectral response.

Figure 3.15: ETM+ image acquired on 11.12.2001. The yellow boxes show the location
of Oak and Norway spruce plots which appear very dark in this scene.

Sessile oak presents an increasing NDVI value from May to July, remaining relatively
stable until late August when it decreased through October until December. Other studies

investigating phenology have reported a similar pattern (figure 3.12) for other deciduous
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species (Vogelmann and DeFelice 2003, Kodani et al. 2002, Huete et al. 2002). In a

phenological study on a broadleaved deciduous stand of Japanese beech (Fagus crenata),
Kodani et al. (2002) measured continuous reflectance during the growing season for this

species. The results showed that canopy attributes increased rapidly in spring, were stable
in summer, and decreased in autumn so that patterns of the reflectance clearly changed

during the growing season. They also reported that to detect the processes and the turning

points of the canopy phenology in the deciduous forest, it was necessary to measure

reflectance at least once a week, especially in the flushing season.

Both Sessile oak and European larch species showed a trapezoidal response, being more

defined in the oak species. In other words, NDVIs rose during the spring and decrease

during autumn, closely tracking the development of the forest vegetation on these sites.

However, in the October image an increase in the European larch NDVI occurred while
the Sessile oak NDVI decreased. At this leaf-off stage, the influence of background
reflectance on radiometric response is more accentuated. Given that these sites are

different in density and in vegetation cover, this dissimilar response might be influenced

by these two factors.

The amplitudinal differences in the species NDVI values observed in May suggests that
discrimination between species may be more successful at this time of the year as

opposed to periods later in the growing season. However, these differences are in a

limited range of 0.6 to 0.9 which might not be good enough for species discrimination.
Winter imagery also shows similar differences between coniferous and broadleaved

species but as has been discussed other factors may make the retrieval of reflectance
values a difficult task with no reliable results at this time of the year. In conclusion,
NDVI has showed less ability to portray spectral differences between species than raw

band reflectances.

Another problem related to NDVI is that it tends to saturate at high levels of leaf area
index. In addition, problems related to the use of NDVI in the boreal zone have been

reported (Eklundh et al. 2001, Nilson et al. 1999, Hame et al. 1997, Chen & Cihlar,
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1996). These studies indicate that NDVI may not be a dynamic enough index to be
suitable for leaf area index estimation in coniferous regions as the range of NDVI of
boreal coniferous forests is typically narrow, and where the index reaches nearly
saturated values at moderate values of LAI.

3.7 Principal Components Analysis (PCA)
PCA is an approach that can be used to characterize land cover types from multitemporal
datasets. It has been successfully employed in remote sensing for image data

transformation, information compression, and change detection analysis (Hirosawa et al.

1996, Cihlar et al. 1996). In essence, PCA identifies the optimum linear combinations of
the original bands from satellite data that can account for the variation in pixel values in
an image (Campbell 2002). Linear combinations are of the form

A = CjXi + C2X2 + C3X3 + C4X4 [4]

where X], X2, X3, and X4 are pixel values in four spectral bands, and Ci, C2, C3, and C4
are coefficients applied individually to the values in the respective bands. Principal

components are derived from the original data such that the first principal component
accounts for the maximum proportion of the variance of the original dataset (usually
variations in intensity), and subsequent orthogonal components account for the

decreasing proportions of the remaining variance (Jensen 2005). Thus, this method
reduces the number of bands to be examined while simultaneously retaining as much
information as possible and reducing contributions from noise and other data errors.

PCA was applied to all ETM+ images acquired for the study but only the data

corresponding to the base line image (25.08.2000) is shown in the following tables. Table
3.4 shows the statistics used in the Principal Components Analysis of this image.
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Univariate statistics

0.45-0.52 0.52-0.60 0.63-0.69 0.76-0.90 1.55-1.75 2.08-2.35

Band 1 2 3 4 5 7
Number

(pm)
Mean 14.57 17.53 19.062 76.262 47.512 26.935

Standard 24.799 27.273 28.716 61.469 41.425 26.906
deviation

Minimum 111111

Maximum 154 185 180 255 255 194

Correlation Matrix

1 1

2 0.979 1

3 0.977 0.993 1

4 0.361 0.515 0.497 1

5 0.637 0.754 0.761 0.884 1

7 0.838 0.898 0.915 0.686 0.922

Table 3.4: Statistics for the base-line imagery (25.08.2000) used in the Principal
Components Analysis (PCA).

The linear transformation required is derived from the correlation matrix of the original
dataset. The transformation is computed from the original spectral statistics as in Jensen

(2005). Eigenvalues E = [Au,A22,/l33,...,ylnn\ and eigenvectors

EV = [atp...for k = 1 to n bands, and p = 1 to n components] of the correlation matrix were

calculated for the imagery (table 3.5).

Componentp

Band 1 2 3 4 5 6

1 0.028 -0.093 -0.402 -0.076 0.289 -0.860

2 0.084 -0.134 -0.475 -0.399 0.602 0.477

3 0.060 -0.207 -0.570 -0.276 -0.740 0.067

4 0.866 0.491 -0.075 0.056 -0.030 -0.005

5 0.456 -0.702 0.443 -0.306 -0.002 -0.090

7 0.176 -0.443 -0.292 0.813 0.073 0.143

Eigenvalues 1981.82 198.12 15.45 3.47 1.97 1.42

Table 3.5: Eigenvector matrix for Principal Components Analysis for the 25.08.2
image.
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Analysis of the PCA statistics for all the multidate images showed that correlation
matrices and derived eigenvalues and eigenvectors were similar to those for the
25.08.2000 image presented above, as shown in table 3.6.

Image 17.07.2000 Image 24.12.2000
0.11 -0.35 -0.43 0.21 0.60 0.50 0.02 -0.01 -0.06 -0.17 0.19 -0.96
0.16 -0.35 -0.40 0.09 0.11 -0.81 0.09 -0.01 -0.12 -0.42 0.85 0.26
0.13 -0.40 -0.32 0.13 -0.78 0.27 0.14 -0.13 -0.28 -0.79 -0.48 0.07
0.83 0.49 -0.20 -0.06 -0.02 0.03 0.66 0.73 -0.09 0.05 -0.04 0.00
0.43 -0.38 0.68 0.42 0.05 -0.02 0.64 -0.50 0.57 0.00 0.00 0.00
0.21 -0.42 0.15 -0.85 0.06 0.06 0.33 -0.42 -0.75 0.38 0.03 0.00

Image 01.05.2000 Image 31.10.2001
0.08 -0.08 -0.34 -0.05 -0.48 -0.79 0.03 -0.04 -0.22 -0.08 -0.52 -0.81
0.15 -0.07 -0.46 -0.02 -0.61 0.60 0.10 -0.04 -0.34 -0.08 -0.72 0.57
0.21 -0.26 -0.68 0.30 0.56 -0.02 0.11 -0.22 -0.82 0.36 0.35 -0.02
0.55 0.81 -0.10 -0.08 0.09 -0.03 0.77 0.62 -0.04 -0.03 0.07 -0.02
0.68 -0.34 0.42 0.45 -0.15 -0.02 0.55 -0.63 0.37 0.38 -0.11 -0.01
0.38 -0.35 0.03 -0.83 0.16 0.02 0.25 -0.40 -0.12 -0.84 0.22 0.01

Table 3.6: Eigenvector matrix of four images for Principal Components Analysis.

The eigenvalues contain important information. For example, it is possible to determine
the percent of total variance (%p) explained by each of the principal components, using
the equation:

eigenvalueX x 100
6

y eigenvalueAp
p=i

• [5]

Where Xp is the pth eigenvalue out of the possible n eigenvalues. For example, the first
principal component (eigenvalue X\) of the ETM+ base-line image accounts for 89.99%
of the variance in the entire dataset (table 3.7). Component 2 accounts for 8.99% of the

remaining variance. Cumulatively, these first two principal components account for
98.98% of the variance. The third component just accounts for another 0.7%, bringing the
total to 99.68% of the variance explained by the first three components. Thus, the seven

band ETM+ image might be compressed into just two or three new principal components

images (or bands) that explain 98.98% to 99.68% of the variance.

95



Spectral ReflectancesOfSelected Species

Component 1 2 3 4 5 6

Variance(%) 89.99 8.99 0.70 0.17 0.09 0.06

Cumulative 89.99 98.98 99.68 99.85 99.94 100.00

Componentp

Band A 2 3 4 5 6

1 0.209 -0.459 -0.309 0.015 0.721 -0.365

2 0.262 -0.419 -0.313 -0.204 -0.075 0.781

3 0.273 -0.454 -0.161 -0.065 -0.677 -0.481

4 0.697 0.587 -0.385 0.141 -0.008 -0.037

5 0.494 -0.017 0.667 -0.541 0.130 -0.037

7 0.297 -0.250 0.432 0.801 0.002 0.148

Table 3.7: Eigenvectors computed for the covariance matrix found in table 3.3 for the
ETM+ 25.08.2000 image.

Once the eigenvectors for the covariance matrix has been calculated, it is possible to

calculate a new matrix filled with factor loadings which indicate the correlations between
ETM+ bands and principal components.

This new matrix is calculated as:

R
kp

akP*jK
-JVah

■ [6]

Where

CkP = eigenvector for band k and componentp

Xp = pth eigenvalue

Vark= variance of band k in the covariance matrix

The calculated factor loadings are displayed in table 3.8.
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Component p

Band 1 2 3 4 5 6

1 0.37 -0.270 -0.048 0.001 0.040 -0.017

2 0.421 -0.213 -0.044 -0.014 -0.003 0.033

3 0.417 -0.219 -0.022 -0.004 -0.033 -0.019

4 0.496 0.132 -0.024 0.004 -0.002 -0.007

5 0.534 0.006 0.063 -0.024 0.004 0.001

7 0.485 0.129 0.062 0.055 0.001 0.006

Table 3.8: Correlations (factor loadings) between principal components and ETM+ bands
for image 25.08.2000.

The structure of the principal components extracted from the ETM+ data were similar to
those observed in other studies (Basham et al 1997, Almeida-Filho and Shimabukuro

2002, Price et al. 2002). For the base line image, the first principal component

(Component 1) accounted for >89 per cent of the total variance (table 3.7) and was

positively correlated with all bands (table 3.8). Thus, this component could be interpreted
as an overall brightness component. The second component had negative correlations
with bands 1, 2, 3 (table 3.8) and positive correlation with the near-infrared band and
could be interpreted as a vegetation component.

The third component consists of both near and middle infrared information (bands 4, 5
and 7). This component explained a negligible amount (i.e., <1 per cent) of the total
variance along with the subsequent components. Thus, the six-band ETM+ data can be
reduced in dimension to just two principal components (1 and 2) which account for 98.98
% of the variance.

The highest correlations (i.e., factor loadings) for principal component 1 were for bands
4, 5, and 7 (0.496, 0.534, and 0.485, respectively; table 3.8). These values correspond to

the near and middle infrared reflectance bands and could explain the brightness exhibited
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c) Principal Component 3 d) Principal Component 4

by golf courses and other types of vegetation including some forested regions (figure
3.16a).

a) Principal Component 1 b) Principal Component 2

e) Principal Component 5 f) Principal Component 6

Figure 3.16: Principal Component images of Elizabeth Forest Park II derived from
Landsat ETM+ imagery obtained on 25 August 2000.
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Results showed that the first three PCA images concentrated more than 99% of the total

variability of the data, for all the dates considered. A false colour composite of those first
three components is showed in figure 3.16 for four of the images analysed.

PCA 24.12.2000 PCA 31.10.2001

Figure 3.17: False colour composite of the three first principal components for four
acquisition dates.

As has been demonstrated in previous multitemporal research (Hirosawa et al. 1996), the
first two PCs may represent accumulated greenness during the temporal analysis period
of analysis (the first PC) and the seasonal variation of vegetation (the second PC). These
authors found that the elements of the first PC eigenvector were positive, higher in value,
and very consistent over the period of analysis, while the elements of the second PC
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exhibited a cyclical pattern or seasonal variation. They concluded that the first PC serves

as a means of quantifying the density and photosynthetic activity of vegetation while the
second PC can quantify the seasonal pattern of vegetation change.

Figure 3.18 displays the eigenvector coefficients plotted against date for the highest,
lowest, and mean PCA second component scores. The profile of the second PC appears to

explain a pattern of vegetation change for the study area throughout the year. The higher
score of the second PC indicates a seasonal vegetation change pattern for the subset data
from May to December, with greater photosynthetic activity in spring (May) and
decreased activity during summer (August) after which it begins to increase again. The
lower score of the second PC pixels exhibit the opposite seasonal change pattern but the

highest value is still in May. The mean score pixels exhibit almost no seasonal change

pattern with a peak in December where it is suggested that low sun angles introduce
artifacts in the imagery.

Figure 3.18: High, low and mean scores of the Second Principal Component showing the
seasonality of the values through time.

These results indicate that seasonal change may be estimated using the values of the
second component of principal analysis. Although the contribution of this component to

the total variation is small (8.99%) in comparison to the contribution of the first
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component (89.99%), it is possible to discriminate its information by using PCA and to

characterize inter-annual variation.

In order to evaluate the ability of PCA to characterize the species from a phenological

point of view, the pixel values of the second component analysis corresponding to the
four species analyzed were extracted from the imagery and displayed as seen in figure
3.19.

Figure 3.19: Second Principal Component scores for the tree species showing the
seasonality of the values trough time.

As in the previous analysis using the raw band and NDVI data, Sitka spruce and Norway

spruce show a similar seasonal pattern. Sessile oak exhibits the lowest second PC score in

March, peaks with the highest score in the following image (July) and then decreases for
the remainder of the growing season. On the other hand, European larch shows a similar

pattern during the growing season to the other coniferous species but shows markedly

lower, and negative PC2 scores in the winter scenes. As the reflectance of the stand is
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influenced by the reflectance of the understorey, it is possible that the second component

scores not only reflect the seasonality of the main species but that of the understorey

vegetation as well. This might explain why two species (Sessile oak and European larch)
that have a very similar NDVI values in May, exhibit quite different PCA second

component scores.

In contrast with the NDVI pattern for the spruces with little variability through the year,

the second PCA component shows greater variability for these species between dates.
The range of values is also larger (0 - 40) which allows for a better discrimination

accuracy. The greatest differentiation between species for the second PC on any single
date was observed in October with Sitka spruce exhibiting the highest value and Sessile
oak the lowest.

In general, it seems that PCA is able to capture better the subtle spectral differences

among species than NDVI with October imagery showing the greatest amplitudinal
differences among them. The second PC reflects the seasonal vegetation change patterns

throughout the time shown in figure 3.18 which contributes 8.99% to the total variance in
the dataset. Although further investigation is required, there is evidence to suggest a

potential difference in PCA pattern between coniferous and broadleaved species (contrast
Sessile oak to the other species) and between deciduous and evergreen coniferous species

(e.g. December second PC scores for European larch in comparison to the spruce

species). Overall, the evidence would suggest further investigation of PCA as a tool for

multitemporal analysis of forest types, is warranted.

3.8 Discussion of the results

The use of ETM+ data in this forested environment was aimed at the study of the
reflectance of four tree species that characterize the Aberfoyle area, and to the analysis of
the effects that seasonal changes have on the reflectance responses of those species. The

goal was to present a preliminary analysis on how spectral seasonality might affect the
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relationship between vegetation indices such as NDVI and LAI and other derived forest

parameters for these canopies.

One of the main constraints to the study was the limited number of images available for
the seasonal characterization and the lack of ground information related to site conditions
on the specific image acquisition dates. The temporal resolution of the Landsat satellite

along with cloudy Scotland conditions resulted in the availability of just a few cloud-free
scenes. Full utilization of phenological changes would require that the development of
the canopy could be followed at a greater temporal frequency through the year, and that
the imagery would be available at the right times. The latter requirement is rather difficult
as the number of useable images is limited due to cloud cover.

Another limitation of this study is related to the lack of direct field measurements that
enable the accuracy assessment of the satellite-derived results. Although the results
achieved in this research offer an insight on the phenology of the species analysed in a

local ecosystem, direct measurements of the temporal variability and differences between
deciduous and coniferous canopies are required to validate seasonal patterns derived from
remote sensing data. The measurement in situ of the spectral characteristics of the

understorey can be used to reproduce the spectral signatures of the types of ground

vegetation which are needed in simulating the reflectance spectra of the forest stands.

The accurate determination of the seasonal variations of the species reflectance through
field measurements and Landsat imagery would form a reliable source for the validation
of phenology derived from broader spatial and spectral resolution datasets and help to

bridge the gap between large scale remote sensing and local measurements. Despite the

large number of in situ, plot-level phenological measurements and satellite-derived

phenological studies, there has been little success to date in merging these records

temporally or spatially (Fisher et al. 2006). The main problems lay in the large spatial
differences between the two methods and in the differences in phenological measures
between local studies and broad scale measurements derived from satellite data. Recent
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research (Fisher et al. 2006) has explored this issue by using a large series of Landsat
scenes (57) to derive the phenology of an area in the United States. This study showed
that the derivation of fine spatial scales of phenological variability through satellite

imagery will require a rigorous processing of this data considering the following aspects:

1) proper spectral calibration between scenes, 2) account for forest and ground cover

composition, 3) accurate knowledge of dates of phenological key processes, 4) temporal

uncertainty imposed by compositing methodologies.

Atmospheric correction was restricted by the lack of atmospheric information related to

ozone concentration and water vapour content in the atmosphere at the time of

acquisition, which were required if a rigorous correction was to be carried out using the
6S atmospheric correction method. Instead, the image-based COST method was chosen
as it uses the information contained in the imagery for the correction. A normalisation

process using Pseudo Invariant Features was subsequently used to eliminate the residual
eiTors. The difficulty of the PIF method laid in the selection of features whose reflectance

properties do not change through time and which are also spectrally homogeneous

targets. The results obtained after atmospheric correction and PIF normalisation showed
that the reflectances values among datasets were comparable with the exception of winter
dates. However, recent research (Paolini et al. 2006) has showed that the high levels of

positive correlation between PIFS do not imply a successful radiometric normalisation.
The analysis of the spectral variability of the PIFs through time showed significant

deviations, which underlines the importance of a careful radiometric correction and of

adequate calibration capabilities. Therefore, it is suggested that further research should
make use of a methodology for the assessment of the normalisation process. Paolini et al.

(2006) proposed the use of an algorithm for improved PIFs selection and the assessment

of the quality of the radiometric corrections through the use of the Quadratic Difference
Index. This method has been validated and achieved an accuracy of >80%.

Other aspects that made the analysis more complex was the high spatial variability in the

spectral signatures for specific species and the difficulty in finding pure pixels
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representing each species. Further analysis is required to establish the nature of variation
in seasonal spectral reflectance within individual plots and species.

Registration of the ETM+ imagery to the OSGB coordinate system was carried out using

Map to Image registration and Co-registration. The limitations to these processes were

fundamentally in the availability of enough control points upon which to base the
transformation between images. Most of the features selected were located in the

surroundings of the study site, particularly in the Glasgow area where man made features
were abundant. In order to achieve good control points distribution some natural features
had to be selected mainly in the north part of the scenes. Nevertheless, registration
accuracies of about 1 pixel were achieved.

The selection of the best subsets of bands or band transformations for the analysis of the

temporal characteristics of species spectral reflectance and for discriminating and

predicting forest attributes requires an understanding of the dominant radiometric
interactions that take place within a ETM+ scene. In this way, bands 4,5,3 were chosen
for the display of features although all raw ETM+ bands were analyzed in order to
determine the species' seasonal reflectance trends in all wavelengths. Three different

approaches were used to characterize the seasonal and inter-annual spectral variation

among forest species. The first approach was to analyse raw band spectral reflectances.
From this analysis it was found that Sessile oak exhibited the highest reflectance
followed by European larch, Sitka and Norway spruce. This is in agreement with the
common knowledge that coniferous forests are generally less reflective than deciduous

forests, due primarily to the density of water versus air in the leaf internal structure and
the contrasting geometries of the broadleaved and coniferous plant canopies.

Both spruce species showed more consistent spectral reflectance pattern with temporal
variation except for the values observed for the December 11 image. The most

representative band for the characterization of these species was band 4. In this band,
there is an apparent increase in reflectance for these coniferous species of about 10%
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between May and July followed by a decrease of about 5% between July and August.
Between August and December reflectance slowly increased although values extracted
from the winter imagery may be affected by low sun angles and other effects.

On the other hand, European larch and Sessile oak showed more marked temporal
variations in spectral reflectance for bands 4, 5, and 7. The seasonal pattern for Sessile
oak was much more defined and easy to explain than the trend observed for European

larch, although both are likely to be influenced by reflectance contributions from the

understorey vegetation. In both species a decrease in reflectance values after July was

observed, which was more accentuated in the oak species (19%); European larch
decreased by about 8%. The main difference in the seasonal trend between these species
was after August where NIR reflectance values for Sessile oak continued decreasing
while it kept increasing for European larch.

The band in which spectral discrimination amongst all the species was best appeared to

be near infrared band 4 and the date of imagery that showed a maximum contrast among

spectral reflectances was the July 2000 image. However, no single date was considered
ideal for discrimination of the four species which suggests that optimal differentiation
between the species will be achieved using a combination of two or three datasets

covering their phenological cycles. It was also concluded that winter imagery exhibited
the poorest performance due mainly to the effects of shadowing as a result of low sun

angles and poorer signal to noise performance due to reduce light levels at this time.
Good radiometric normalisation of the winter imagery could not been achieved. The
often unusual values obtained from the winter imagery for some of the plots have been

explained by the low sun angles and increasing shadows for some of the stands. Although
further field investigation is required, other unusual values were explained by
contributions from the understorey vegetation and soil background, as it maybe expected
that the understorey phenology contributes to overall spectral responses particularly in
the seasonal variation. In conclusion, a more extensive study to determine the effect of
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phenological changes on the remotely sensed signal will require the use of a longer or
more temporally intensive, sequence of images.

The second approach investigated was the use of a vegetation index (NDVI) to study
seasonal variation in its values and differences between species. Vegetation indices are

considered a means of deriving canopy biophysical variables such as Leaf Area Index

(LAI), percent green cover, and photosynthetically active radiation (PAR). Satellite

monitoring of vegetation phenology has often made use of vegetation index data such as

NDVI because it is related to the amount of green leaf biomass (Lillesand & Keifer,

2000). Remote sensing data has been applied to the quantification of LAI, timber volume,
and PAR but it has been acknowledged that the relationship between vegetation

biophysical parameters and radiometric data collected by remote sensors is not a simple
one. NDVI was analyzed in this work as a means of representation of the seasonal
variations of the species under study.

Observations of the seasonal variation corresponding to each of the four species studied
in the Aberfoyle area showed that seasonal variability in NDVI was characteristic of

species type and was observed to increase in level by species in the following order: Sitka

spruce, Norway spruce, European larch, and Sessile oak. Sitka spruce and Norway spruce

NDVIs were relatively stable throughout the observed period, whereas distinct seasonal

patterns were observed in European larch and Sessile oak. The varying solar zenith

angles in the imagery complicated analysis of the seasonal differences of the forest stands
and may also have influenced NDVI. For the spruces no significant differences were

observed other than slight variation in the May and August scenes and possibly the
December 11 scene (but low sun angles might play a significant role in this latter

difference). The largest seasonal variations were observed in the Sessile oak NDVI. The
lowest NDVI values observed for Sessile oak and Norway spruce have been explained by
the low sun angles of the December imagery and the location of these plots on shadowed
sites at the acquisition time. The largest difference in NDVI (of about 20%) between
Sessile oak and Norway spruce (apart from the observed in the December 11 scene) was
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observed in the October image, followed by a difference of approximately 15% in the

May image. Both species exhibited same NDVI for the July and August scenes. Overall,
variations in NDVI across the growing season for all species were less marked than
seasonal patterns observed in the individual band reflectances.

PCA transformation was the third analysis used, showing that the second principal

component was able to capture key intra-annual variations as well as spectral differences

among species. The advantage of the PCA analysis is the considerable reduction of the
data by capturing the majority of data variation in the fewest possible number of features.
The Second Component was of particular importance and was able to portray species

spectral responses in a way that could be associated with phenological changes. The
relative measure of seasonal variation showed a more accurate depiction of species

dynamics. Similarities in the shape of the second component scores were observed
between the coniferous tree plots (European larch, Norway spruce and Sitka spruce) and
the Sessile oak specie. As the reflectance of the stand is influenced by the reflectance of
the understorey, it is possible that the second component scores not only reflect the

seasonality of the main species but also that of the understorey vegetation. Because of
that, a more in depth study and spectral characterization of the understorey vegetation in
the Aberfoyle area is needed with the aim of quantifying the influence of the understorey
in the stand spectral responses.

Overall, the results from the multitemporal analysis indicate that acquisition date can

greatly affect the spectral response observed in remotely sensed scene for European larch
and Sessile oak species while the lower variation in the seasonal pattern of the evergreen

coniferous species would have a lower impact in the spectral values retrieved from
ETM+ imagery and the subsequent estimation of biophysical parameters. In any case, the
results suggest that image acquisition should be carefully considered to ensure maximum
information content in remotely sensed data. Furthermore, the results suggest that no

single time of year may be optimal for both the characterization of species (e.g.
classification) and for the estimation of biophysical parameters, suggesting that the use of
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data obtained at different times of the year may be most ideal. Further investigation into

these implications is warranted.

From this study it can also be concluded that although the approaches used helped to

characterize the four forest species, especially to discriminate between spruces, larch and
the deciduous species oak, further work is needed in order to define an optimum

approach to discriminate between spruce species (e.g. Sitka spruce and Norway spruce)
where spectral responses are very similar. In general, the useful ranges of the indices
were small, so a careful and accurate preprocessing of the imagery is required specially
related to calibration and radiometric correction.
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Chapter 4

LiDAR data analysis

4.1 Introduction

LiDAR is an acronym which stands for Light Detection and Ranging and is a technology
that uses an Airborne Laser Scanning (ALS) system. The developments in the technique

began in the 1970s and 1980s with the deployment of the early NASA's airborne system

Atmospheric Oceanographic Lidar (AOL) and Airborne Topographic Mapper (ATM)

(Flood 2001). Developments have been very rapid in the last decade or so, mainly due to

improvements in the integrative use of kinematic GPS and inertial navigation systems

(Baltsavias 1999). In 1994 LiDAR was first used as a method for the derivation of digital
models (Petzold 1999) and its potential to pass through forest canopies was the original
motivation to study laser systems for the purpose of generating digital terrain models

(DTMs) in forest areas (Ackermann 1999, Luethy 2004), and to retrieve various forest

parameters as a subsequent application. This technique can support both forest

monitoring and management planning by providing information at tree level with an

efficiency and precision that is difficult to achieve using conventional methods. Although
Behera and Roy (2002) cite few users for the LiDAR technology 4 years ago, (USA (12),
Canada (7), Japan (5), Australia (3), South Africa (1) and Europe (19 - Belgium,

Germany, Norway, Russia, Sweden, The Netherlands, UK and Italy), new markets

continually open up to take advantage of the high speed of data acquisition and low cost

per measurement.

Because LiDAR data directly record information characterizing the physical structure of
a forest (tree height, crown closure, crown size, etc.), they provide an opportunity to

assess directly the three-dimensional structure of vegetation formations in ways that are
not possible with other sensors (Campbell 2002). Although technologically complex,
LiDAR provides a methodology that is accurate, timely, capable of operating in difficult

terrain, and increasingly affordable (Jensen 2000). This is particularly important within

110



LlDAR ANALYSIS

the forestry context, where both forest companies and governments are interested in

estimating forest attributes to create and maintain up-to-date forest inventories at the
lowest cost possible.

One of the unique properties of LiDAR is its ability to penetrate the vegetation canopy

and to map the ground surface below. This has useful applications in measuring

vegetation attributes useful for planning and reporting, which have been explored in
several studies: LiDAR has proved to be capable of retrieving forest parameters such as

basal area, biomass, stand volume (Lefsky et al. 1999, Nilsson 1996, Means et al. 1999,
Means et al. 2000), and leaf area index (LAI) (Lefsky et al. 1999, Hagiwara et al. 2004).
It also allows for the determination of forest structure (Blaschke et al. 2004, Zimble et

al. 2003, Heurich 2004, Mcombs et al. 2003, Popescu 2003), and tree crown detection

(Gougeon 2003, Brandtberg et al. 2003, Popescu 2003, Heurich and Weinacker 2004).

St-Onge and Vepakomma (2004) assessed forest gap dynamics and growth using

multitemporal LiDAR data. Hudak et al. (2002) researched on the integration of LiDAR
and Landsat data for estimating and mapping forest canopy height.

LiDAR data combines both surface elevation and accurate planimetric coordinates, and

processing algorithms, which can identify single trees or groups of trees in order to
extract various measurements on their three-dimensional characteristics. Within forest

inventory research, the main interest has focused on automatic measurement of tree

height for different tree species and automatic delineation of tree crowns, because from
crown diameter and tree height other important inventory parameters can be derived (Yu
et al. 2004). For example, Nilson (1996) estimated tree heights and stand volume. Studies
in conifer stands (Naesset 1997; Magnussen and Boudewyn 2000) have shown that stand

height can be predicted with r2 values of over 0.9 and timber volumes with r2 values of
0.45 to 0.89. Persson et al. (2002) reported a standard error for the estimate of the height
of individual trees of less than 1 m, and Brandtberg (2000) slightly more than 1 m. Clark
et al. (2004) predicted sub-canopy elevation with 2.29 m accuracy in a tropical landscape.

The estimation of individual tree crown parameters is also possible with LiDAR data,

although with less precision. This analysis has been attempted in many studies: St-Onge
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and Vepakoma (2004) performed a manual delineation to assess forest gap dynamics;

Holmgren and Persson (2004a) detected crown diameters in Finland with a root mean

square error of 0.61 m; Brandtberg et al. (2003) estimated tree crowns in deciduous forest
in North America obtaining low accuracies caused mainly by non-overlapping reference
and test polygons; Naesset and 0kland (2001) estimated tree crown properties in a boreal
nature reserve where R values of average height to the crown and average relative crown

length were 0.71 and .60 respectively.

Thus the applications of LiDAR technology to forestry have been considerable and of

great importance. The ability of LiDAR to map ground elevations even through dense

canopies represents its main advantage over traditional techniques for forest mapping,
such as photogrammetry, which can often only obtain elevations at the top of dense

canopies.

Although LiDAR systems are now mature enough to allow its applicability to forest

monitoring, the data processing algorithms necessary for the accurate retrieval of useful
forest parameters, are still being developed and evaluated. More research is required to

design a standard and automated procedure for the integration with multi- and

hyperspectral optical imagery to improve various feature extraction tasks.

4.2 Objectives
The main objective in this chapter was to investigate multi-return LiDAR data to assess

its potential for predicting tree heights and for the production of a Digital Canopy Model

(DCM) for tree crown delineation within the CCF context and the UK forest scenario in

general, where there are at the moment limited studies about the applicability of LiDAR
for both coniferous and broadleaved species characterization and the potential of LiDAR
in relation to plant densities. This included: the collection of LiDAR data over the

existing ground plots in Aberfoyle, Scotland; the development of an algorithm for the
extraction of ground elevation and tree heights from multiple return LiDAR data, and the

production of Digital Terrain Model and Digital Surface Models (DSM) of the area under
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study, followed by the comparison of the predicted LiDAR tree heights with the true tree

heights. Further analysis in a following chapter will consist of the object oriented

segmentation and classification for crown delineation.

4.3 The Laser System
LiDAR is an active remote sensing technology, which means that transmits and receives

electromagnetic radiation (Thiel and Wehr, 2004) emitted from a laser source. LiDARs

operate in the ultraviolet, visible and infrared region of the electromagnetic spectrum.

LiDAR, as its most basic level, is a laser altimeter that determines the distance from the

instrument to the physical surface by measuring the time elapsed between a laser pulse
emission and its reflected return signal. Multiplied by the speed of light, this time interval
measures twice the distance to the target, thereby providing a measure of target elevation

(Hudak et al. 2002).

4.3.1 The Airborne Laser Scanning (ALS) system
The major components of an ALS include (Baltsavias 1999) (figures 4.1 and 4.2):

a laser range finder (LRF): which includes the laser, transmitting and

receiving optics, the signal detector, amplifier, time counter and necessary

electronic components;

a computer, operating system and software for control of the on-line data

acquisition;

storage media for laser, GPS, INS, scanner and possibly image data;
a scanner;

GPS for navigation, possibly including radio links or antennas for receipt of
real-time corrections and (excluding cases where attitude is estimated by

multiple GPS antennas on the aircraft) an attitude (pitch, roll and heading of
the aircraft) measurement system;

platform and mounting of the system components;

ground reference GPS station(s);
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software for mission planning, and various stages of postprocessing;

Optionally, other sensors, especially video and digital CCD-cameras,

photogrammetric aerial cameras, other sensors (thermal, multiespectral line
CCDs, etc.);

Optionally, temperature and humidity control.

i 1

Figure 4.1: Typical ALS system (Wehr and Lohr 1999) showing the diverse components
of the system and the graphic definition of terms such as laser footprint and swath width
used in relation to LiDAR technology.

An important trend is towards programmability/selectivity of various parameters in order
to allow more flexibility and adaptation to the requirements of different applications.

Apart from flying speed and height, which can obviously vary, the following parameters

are also variable in one or the other systems: scan angle, pulse rate, scan rate (often
inverse proportionally related to scan angle), beam divergence, recording of first and/or
last returns or multiple echoes per pulse, scanning pattern, and INS frequency. Other

parameters, which depend on the previous ones like across and along track point spacing,
swath width, point density, and area covered can also vary.
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Other recent trends in LiDAR development and deployment include: higher flying height,

higher pulse rate, recording of intensity and/or more than one echo per pulse, installation
on multiple platforms, tighter integration of cameras and with higher resolution, wider
selection of GPS receivers and inertial measurement units (IMU), smaller and lighter

systems or components with less power requirements. The laser wavelength is often in
the range of 1040 - 1060 nm (and for bathymetric lasers also 532 nm), while a few

systems have a wavelength of approximately 900 or 1550 nm.

Figure 4.2: Typical components of an airborne LiDAR ranging system. These include the
laser altimeter, instruments for precision navigation (aircraft position and attitude), and a
down-looking digital photographic or video camera (Crane et al. 2002).
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In range measurements with laser, two major ranging principles are applied: the pulse

ranging principle, and ranging by measuring the phase difference between the transmitted
and the received signal backscattered from the object surface.

For pulse ranging systems the range solution tells how far apart two targets have to be, so
that they can be resolved as separate targets. Besides that, for each transmitted laser pulse
several returns can be observed, from the treetops and from the ground. Therefore, today,
airborne scanners typically discriminate between first and last laser return pulses. If the

traveling times of multiple returns are measured, it is possible to resolve different
elevation layers. The comprehensive sampling of a return signal is known as full wave
detection (Thiel and Wehr 2004).

The phase difference method is applied with lasers that continuously emit light. These
lasers are called continuous wave (CW) lasers. In current ranging laser systems, mostly

pulsed lasers are used (Wehr and Lohr 1999) (figure 4.3).

Figure 4.3: Full laser waveform digitization provides nearly continuous vertical (range)
resolution (Crane et al. 2002).
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The first generation of LiDAR sensors used for remote sensing of vegetation were

designed to measure the range to the first surface intercepted by the laser, typically along

singular transects defined by the flight line (Nilsson 1996). More advanced laser

altimeters, imaging or scanning LiDARs, are capable of scanning the ground surface
beneath the airborne platform, resulting in a true three-dimensional data set. Commonly,
for such LiDAR sensors, the laser beam sample area or footprint, is relatively small,

usually less than 1 m in diameter.

Naturally, the larger the spot diameter or footprint the greater the degree of target mixing.

However, smaller is not necessarily better: the optimal spot size will be determined by
the application at hand.

An alternative form of laser altimeter, known as surface LiDAR, utilizes the complete

time-varying distribution of returned pulse energy, or waveform, that results from the
reflection of a single pulse with a large footprint (up to 25 metres) (Popescu 2003).

Dubayah and Drake (2000) classified LiDAR systems for forestry applications according
to three basic characteristics:

their ability to record one or more returns

the size of their footprints, ranging from a few centimetres (5-90 cm) to tens of
metres (10-25 m) in diameter

their sampling rate and scanning pattern

The main advantages of LiDAR technology can be summarized as follows:

high accuracy up to the order of 10-15 cm in the vertical and 50-100 cm in the
horizontal, according to commercial vendors. However, a number of studies have
examined the vertical accuracy of LIDAR data, obtaining results that ranged from
3 to 100 cm, with the majority of the studies reporting from 7 to 22 cm

(www.ctre.iastate.edu/mtc/papers/2002/Veneziano.pdf).

it can be collected under a variety of environmental conditions, including low sun

angle, cloudy conditions, and even darkness, resulting in expanded windows for
data collection.
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capability of canopy penetration unlike passive techniques like photogrammetry

high data density
free of the need for ground control points making it an ideal method for
inaccessible areas

needs less time for data collection. However, because of the massive amount of

point data acquired even in a single flight line, processing times depends on two

factors: computing capacities and personnel skills (as LiDAR processing demands
a large learning curve).

Today only pulsed laser systems are used for airborne laser scanning (Thiel 2004). The

early non-pulsed systems had to separately collect the first and last pulses, but nowadays
all systems are capable of recording simultaneously at least the first and last pulses, and
some systems are even capable of recording multiple pulses, continuous waveforms and
aerial photographs in parallel (Hyyppa et al. 2004).

4.3.2 The Optech ALTM 2033
The LiDAR data used in this study was acquired using the Optech ALTM 2033 system

(figure 4.4). This is one of the most advanced instruments available, individually

acquiring height data points at a rate of 33,000 per second, whilst flying at a height of up
to 2,000 m above ground level. The main characteristics of the instrument are:

at 850 m altitude it provides a point density of 1 m, a swath of 600 m and a typical

height accuracy of +/- 15 cm (1 sigma)

typical acquisition rates are 30-50 sq km per hour, depending on specification,

allowing acquisition of hundreds of square km per day
it can operate day or night (subject to safety considerations) and in weather that
would preclude the acquisition of traditional aerial photography
it provides simultaneous first- and last-pulse capability giving ranges to tree tops

and to the ground in a single pass

it is relatively compact and capable of flying on both fixed wing and helicopter

platforms
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along with first and last returns, it provides a grey scale intensity image which

helps with feature identification
it offers flexibility in terms of its acquisition modes: high or low, narrow or broad

viewing angles

Figure 4.4: Optech ALTM 2033 LiDAR system (Copyright 2005. Optech Inc.)

4.4 LiDAR for the retrieval of forest parameters
The information provided by LiDAR was first used for the derivation of digital elevation
models, a field that has traditionally been one of the domains of photogrammetry. The
two methods have aspects which can be compared (Ackermann 1999): both are highly
automated, although photogrammetry still is to a lesser degree; their results are geometric
and can reach similar accuracies; and with either method, extended areas can be covered,

although flying time per unit area is much shorter for photogrammetry. On the other

hand, there are essential differences between both methods: laser scanning is an active

system, applicable even at night. LiDAR provides ground points in a certain pattern,

which is primarily determined by the system design and only influenced to some extent

by the geometry of the terrain surface and its cover. However, point density is an

important parameter within the LiDAR systems as it might be crucial for detection of

treetops, which is currently one of the main issues in this technology. The
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photogrammetric points, measured automatically or interactively, may be arranged in a

prefixed rigid pattern, but often they are arbitrarily selected, depending on image texture

and features.

The first studies with LiDAR for forest inventory concentrated on using a profiling

system for forest height, stand density, tree species and biomass estimation (Hyyppa et al.

2004). Holmgren and Persson (2004) carried out studies for the identification of species
of individuals trees using an airborne laser scanner in the Scandinavian boreal forest.

They used the structure and shape of tree crowns to differentiate between Norway spruce

(.Picea abies L. Karst) and Scots pine (Pinus sylvestrys L.). The classification accuracy

was of 95% and crown base height estimations of individual trees were also evaluated

(r = 0.84).

The characterization of vertical forest structure using LiDAR has been reported in several

publications. Zimble et al. (2003) demonstrated that this variable could distinguish
between two classes of vertical structure which were based on the median value between

the minimum tree height variance observed in multistory plots (2.75 m), and the
maximum tree height variance observed in single-story (1.21 m) plots. A small footprint,
multi-return LiDAR system (AeroScan) was used for the data collection and the

registered returns were processed with algorithms developed by EarthData Technologies.
Clark et al. (2004) also estimated sub-canopy elevations and tree height in a tropical rain
forest in Costa Rica. They estimated heights with a mean absolute error of 0.90 m

(r2=0.97) using the mean of LiDAR returns in the plot. As in other small-footprint
LiDAR studies, they found that plot mean height was underestimated.

During the last 15 years several experiments have been carried out in order to determine
tree heights by various airborne laser profiling and LiDAR systems (Nilsson 1996,
Nassset 1997, Means et al. 1999, Lefsky et al 1999, Rieger 1999, Means et al. 2000,
Zimble 2003). Naesset (1997) found that the maximum height value of laser canopy hits
for a certain fixed area could be used to estimate the mean tree height. Later, Magnussen
and Boudewyn (1998) showed that, for a given crown shape and a certain plot size, there
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exists a certain quantile of the distribution of the canopy height of a plot that matches the
tree height of interest or the mean height. Furthermore, other variables of the distribution
of canopy heights such as the mean and median values, standard deviation divided by the
mean (coefficient of variation), and various quantiles have been found to be correlated
with mean tree height, dominant height and other biophysical properties (Nelson et al.

1997, Naesset 1997, Means et al 1999, Lefsky et al 1999, Means et al. 2000, Magnussen
et al. 1999, Nelson 1997). In their Costa Rican study, Clark et al. (2004) found that
individual tree heights were underestimated and had 3.67 m mean absolute errors.

The height estimate or vertical distribution of laser returns provides a basis to classify

vegetation and to estimate other important canopy characteristics such as canopy cover

and crown volume (foliage, trunk, branches). Since the vertical components of stands

change with age, older stands can be characterized by canopy gaps. Estimation of canopy
cover is made using the fraction of the LiDAR measurements that are considered to have
been returned from the ground surface (Nelson 1984).

This chapter focused in the retrieval of tree height from LiDAR data. This forest structure

parameter was chosen due to several reasons:
1. the proved success of LiDAR in retrieving tree height
2. the necessity of developing a Digital Canopy Model from LiDAR for the

comparison with other remote sensing datasets
3. the importance of tree height as a parameter which is a function of species

composition, climate and site quality, and can be used for land cover classification
or in conjunction with vegetation indices. If coupled with species composition and
site quality information, height serves as an estimate of stand age or succesional

stages (Behera and Roy 2002).

4.5 Algorithms for processing airborne laser scanning data
The algorithms and details of the methods used to sort LiDAR data into returns from

vegetation and terrain are the subject of few published papers. Most of the LiDAR
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acquisitions are processed commercially using mostly complex algorithms implemented

through proprietary software. One such algorithm is a method developed by Axelsson
that has been implemented in the Terrascan software (Hyyppa 2004). The method
consists of the development of a progressive TIN densification method where the surface
is allowed to fluctuate within certain values, controlled by minimum description length,
constrained split functions, and active contour models for elevation differences. Ground

points are connected in a TIN. A sparse TIN is derived from neighborhood minima, and
then progressively densified to the laser point cloud. In every iteration, points are added
to the TIN, if they are within defined thresholds.

Kraus and Pfeifer (2001) developed an algorithm in which a rough approximation of the
surface is computed first. Next, the residuals, e.g., the oriented distances from the surface
to the measured points, are computed. The true terrain points are expected to have

negative residuals, while the vegetation points are more likely to have small negative or

positive residuals. Each (z) measurement is given a weight according to its distance

value, which is the parameter of a weight function. The surface is then recomputed under
the consideration of the weights. If an oriented distance is above a certain value, the point
is classified as an off-terrain point and eliminated from the surface interpolation. This

process of weight iteration is repeated until all gross errors are eliminated (a stable

situation) or a maximum number of iterations is reached.

Other researchers have developed algorithms to extract bare-earth points from point
clouds. Some elements identified in these algorithms are (Sithole and Vosselman 2004):

Data structure: the output of a laser scanner survey is a cloud of irregularly spaced 3D

points. Some filter algorithms work with the raw point cloud. Some others resample
the point cloud into an image grid before filtering.
Test neighborhood and the number of points filtered at a time: filters always operate

on a local neighborhood. In the classification operation, two or more points are

classified at a time into bare earth or vegetation. This classification can be done in
three possible ways:
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- Point to point: in these algorithms, two points are compared at a time. The
discriminant function is based on the positions of the two points. If the output of
the discriminant function is above a certain threshold, one of the points is
assumed to belong to an object. Only one point is classified at a time.

- Point to Points: in these algorithms, neighboring points (of a point of interest) are
used to solve a discriminant function. Based on the output of the discriminant

function, the point of interest can then be classified. One point is classified at a

time.

- Points to points: in these algorithms, several points are used to solve a

discriminant function. Based on the discriminant function, the points can then be
classified.

Filter concept: every filter makes an assumption about the structure of bare-Earth

points in a local neighborhood. For example, bare-Earth points in a localization must

fit a given parametric surface. Four distinct concepts were observed:

Slope-based: in these algorithms the slope or height difference between two

points is measured. If the slope exceeds a certain threshold, then the highest point
is assumed to belong to an object.
Block-minimum: here the discriminant function is a horizontal plane with a

corresponding buffer zone above it. The buffer zone defines a region in 3D space

where bare-Earth points are expected to reside.
Surface based: in this case, the discriminant function is a parametric surface with
a corresponding buffer zone above it.

Clustering/segmentation: the rationale behind such algorithms is that any points
that cluster must belong to an object if their cluster is above its neighborhood.

Single step vs. iterative: some filter algorithms classify points in a single pass while
others iterate, and classify points in multiple passes. The advantage of a single step

algorithm is computational speed but the classification by multiple passes is usually
more accurate.

123



LlDAR ANALYSIS

Sithole and Vosselman (2004) compared the capabilities of these algorithms finding that
all of them perform well in smooth rural landscapes, but all produce errors in complex
urban areas and rough terrain with vegetation. In general, algorithms that estimate local
surfaces were found to perform best. None of the algorithms made use of the reflectance

intensity. Only one of the algorithms made use of both the first and last pulse data; all
other algorithms in the study only made use of the last pulse data.

Despite all of the efforts in the development of algorithms that provide an accurate

classification between ground and vegetation or other features, there does not exist at the
moment a methodology or standard strategy for its processing. Consequently, the
characterization of the ground surface using LiDAR data, especially in forested areas, is
still a major challenge. Current research is seeking to identify the best methods for
automated identification and extraction of ground measurements (Petzold et al. 1999).

4.6 Data collection

For this study, the LiDAR data was acquired by the Natural Environmental Research

Council, with an Optech ALTM 2033 scanner. The area under analysis, which

encompasses the plots within the stands of interest, was flown at Aberfoyle in September
2002 at an altitude of 1000 m a.s.l. using a scan angle of 20°, with a point density of 4
returns per square metre and a beam divergence of 10 cm. LiDAR data for this project
consisted of a list of X, Y, and Z coordinates of the first and last return pulses as well as
of reflectance intensity, georeferenced to the Ordnance Survey Great Britain (OSGB)
national grid. First return data more likely reflect from leaves or branches of trees while
the laser pulses of the last return data sometimes reflect from the ground below the trees

or between surface and ground.

A single LiDAR over-flight produces millions of measurements or coordinates in X, Y,
Z. Figure 4.5 depicts a sample of raw LiDAR data (first return and last return) over a

forested area.
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Figure 4.5: Raw LiDAR data over a sample plot. The figures on the left show the spatial
distribution of the first laser return and the figures on the right, the spatial distribution of
the last return. The figures at the top show the universe of laser points collected over the
area and figures at the bottom show the same points classified by their height.

Figure 4.6 shows a 120 m profile of the distribution of last returns in which ground
terrain is clearly characterized with top measurements up to approximately 16 m height.
The measurements between the ground surface and the top of the canopy have to be
removed in order to characterize the ground surface and the canopy surface. The
discrimination between the ground measurements from measurements of vegetation and
other structures can be difficult, especially if only a few measurements of the ground are

made through the canopy. Figure 4.7 shows a profile of the first return and the last return
for a forest area.
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Figure 4.6: Profile of LiDAR measurements over a forested area.

Figure 4.7: First (top) and last return (bottom) LiDAR measurements for a forested area.

4.7 Filtering process

A programme referred to as Ground (Appendix 1) was written in FORTRAN for the

purposes of classification of points as belonging to the ground or vegetation, and also for
the interpolation task in areas with low ground point registration. This classification task
leads to the generation of the LiDAR DTM, which is key to the extraction of forest

parameters. The flow chart for the algorithm developed is shown in figure 4.8.
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The program works on the assumption that the lowest points in a point cloud must belong
to the terrain. According to the classification made by Sithole and Vosselman (2004), the
characteristics of the algorithm developed are as follows:

Data structure: it works with the raw point cloud
Tests neighborhood and the number of points filtered at a time: it operates locally

performing a point by point classification
Filter concept: the algorithm is slope based

Single step vs. iterative: it classifies points in a single step

Figure 4.8: Flow chart for the development of the linear algorithm for the LiDAR DTM

generation.

This programme read a file containing LiDAR data consisting of OSGB coordinates,

heights, and signal intensity for first and last returns, and calculated a surface that

approximates the ground height by two different methods: lineal (in two directions, North
and East) and by area. It also calculated tree heights by the difference between a digital
surface model representing the canopy top (generated through the interpolation of first
returns corresponding to the top of the canopy layer) and the ground surface as previously
estimated. Height differences are a key to separating the bare-Earth (ground surface) and
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trees. Therefore, points significantly above their neighbours are assumed to be of

vegetation. This assumption is valid for terrain that is flat or that presents smooth slopes,
but becomes more difficult as the slope of the terrain increases.
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Figure 4.9: Linear regression method for the calculation of ground points.

The algorithm is based on a linear regression method and it assumes that a large height
difference between two adjacent measurements is unlikely to be due to a change in the
terrain topography, but more reasonably to the point belonging to the vegetation layer or
other feature rather than the terrain. The algorithm calculates a line that fits the ground
surface. For that, a linear section of a specified width of the data is selected in either
North or East direction (figure 4.9). The accuracy of this calculation depends on the
existence of enough data that represents the ground as well as its relatively even

distribution. A condition obliges the calculated line to keep the raw values (ground

values) when they are lower in height than the calculated ones. The result of this filtering

process, consisting of the classified ground laser returns, was used to create a digital
terrain model in Surfer (Version 6.02, Golden Software, Inc.). The grid resolution was

0.5 m and the interpolation method used was Kriging, which was already implemented in
the software and which has been used in several studies as the interpolation method for
LiDAR measurements to regular grids that produced the smallest residuals among others
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such as inverse distance and triangulation (Lloyd and Atkinson 2002, Popescu et al.

2002).

Figure 4.11: Three-dimensional view of the raw LiDAR data for one of the plots. An
imaginary grid has been overlaid to depict the size of area considered by the interpolation
method and which contains several laser hits corresponding either to the ground or the
vegetation as shown in figure 4.8.

The area method consisted of the selection of the minimum height measured in a defined
area or window. This minimum value is then assigned to all the points within the area so

that the ground surface is obtained through the calculations of these values for the entire

plot (see figure 4.10 and 4.11). The flow chart of the algorithm is shown in figure 4.12.

Figure 4 .10:
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The first step after the algorithm is run is to read the data base for each file. These files
are in .txt format and correspond to the first and last return of the laser signal.

Figure 4.12: Flow chart of the area algorithm for the LiDAR DTM generation.

The programme read two files (first and last return) containing six values each: file,

Plot_number, F_East (East coordinate for first return), F_North (North coordinate for

First return), F_Elev (Height of the First return), and F_Int (Intensity of the First return)

(table 4.1). The first field (file name) is alphanumeric, the second (Plot_number) is an

integer, the following three (coordinates and elevation) are real and the last one

(intensity) is an integer.

file Plot_number F East F_North F Elev F Int

Aberfoyle_p.osd 1 249659.94 698847.88 85.62 75

Aberfoyle_p.osd 1 249659.69 698848.31 85.77 67

Aberfoyle_p.osd 1 249659.38 698848.75 85.53 84

Aberfoyle_p.osd 1 249659.08 698849.19 85.5 84

Aberfoyle_p.osd 1 249658.91 698849.44 85.52 66

Aberfoyle_p.osd 1 249658.61 698849.88 85.51 70

Table 4.1: Example of first return file
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The following step in the programme consists in the input of control parameters. These
are:

• Height control value. This parameter allows the classification of points as

belonging to the terrain or the vegetation layer and it is closely related to the

expected maximum variation in the Z coordinate in a particular area. The tests

performed with several parameter values (height differences between the expected

highest point and the expected minimum point), produced the best results when a

value of 3 m was used for this parameter. Other research has also used this value
as a threshold for the classification task (Lim and Treitz 2004).

The height value strongly depends on the topography of the terrain (and the

acknowledgement of it by the operator) so that a sensible value can be used in the

analysis. For the data studied in this research it was initially considered to be half
of the difference between the maximum and the minimum ground height. No
substantial variation in the results was noticed when the calculations were made in

the direction of the minimum slope using different threshold values (e.g. lm, 2m,

3m) which can be seen in figure 4.13. In this case, the area studied had a variation
in the ground height of approximately 10m according to the data and verified in
the terrain.

The middle graph in figure 4.13 shows all the lines fitted to the ground data

considering several values for the height parameter. It can be seen that all of them
have a similar behaviour. In contrast, the bottom graph shows the results for the
same analysis but in the maximum slope direction (North), which produced
differences in the heights calculated.
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Figure 4.13: Generation of ground data points using the linear method. The top graph
shows the raw LiDAR data. Note the lack of ground measurements delimited by the red
box. The method is applied to the minimum slope (East direction, middle graph) and the
maximum slope direction (North direction, bottom graph) using different values of the
height parameter: lm, 2m, 3m and 3m for the width of the line. It also shows the results
when using the area method in 5m x 5m window size.
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When the ground is not well characterized because of lack of LiDAR returns from
the ground as in very dense stands (figure 4.14), the selection of the methods as

well as the parameters has to be undertaken with the help of visualization tools
such as Excel or Surfer. Others, like Blaschke et al. (2004), mapped the data set in
a GIS as it is often claimed that 3d analysis and visualization for data processing

provide better understanding of the phenomena under consideration. Some other
studies have also pointed out the need for optical data fusion in the processing

phase of LiDAR data in order to improve the selection of targets and for feature
extraction tasks (Hudak et al. 2002, Popescu et al. 2002).

The problem lies in the fact that the few data points representing the ground are

not very well distributed, as is shown within the red box in figure 4.14, and the
calculation in the North direction results in a negative slope. The analysis in the
other direction solves the problem. The figure also shows the results for the area

method.

/

Finally, the parameter value that gave the best performance was 3m and the
direction of the calculation was always assisted by prior visualization of the data
in Excel (Microsoft Corporation 2003).
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Figure 4.14: Linear and area method applied to a dense Norway spruce stand.

• Width control value. This parameter represents the maximum amplitude in the
East or North coordinate to be considered (width parameter). This value controls
the line width.

The width parameter sets the amount of data to be taken into account in the
calculation of the slope. The programme finds the best linear fit for all the points
within the set range. The results of this calculation with different widths are

shown in figure 4.15.
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Figure 4.15: Line method with different width parameter values: lm and 3m. The figure
at the top shows the effect on the calculation of the ground heights (pink line), when a
width parameter value of 1 m is considered. The figure at the top shows the effect on the
calculation of the ground heights (purple line), when a width parameter value of 3 m is
considered. The curve at the bottom of the figures (black and red) represents the
difference between height values for the original data and calculated heights.

The visualization of these results in a shaded relief graph shows a vertical line effect
when a width parameter equal to lm is considered (figure 4.16a). This effect can be
eliminated by the selection of a greater width for the analysis as for example 3m as is
shown in figure 4.16b.

In plots when there is not enough ground data, or returns from the ground are not well
distributed as shown previously in figure 4.14, consideration of a width parameter of 5m
or more increases the quantity of data available to make the calculation of the slope

allowing a better characterization of the terrain (figure 4.17).
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Figure 4.16: Linear method applied to a dense stand. A linear effect is produced when not
enough data is considered for the calculations as shown in figure a). In figure b) the effect
disappears by increasing the width parameter from lm to 3m.
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Figure 4.17: Linear method considering 3m for the height parameter and 6m for the width
parameter. The best characterization of the ground surface is achieved with the linear
method in the East direction. The area method (blue line) gave the poorest results.
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• The window size parameter: this parameter is considered for the calculation

using the area method. Figure 4.18 shows a section of the raw data for an area

covered by Norway spruce stands.

. Field cata

Figure 4.18: Raw data section from Norway spruce stand.

Figure 4.19 shows the calculated ground heights for this dataset (window size lm x lm)

following the raw data. Ground height is in many areas overestimated when using the
area method (blue dots) in comparison to the linear method in both North direction (red

dots) and East direction (yellow dots). This is due to the combined effect of the small
area considered and the lack of ground laser measurements; therefore it is unlikely that
the size window considered contains at least one of the last returns.

. Field cteta » 3n x 3m North 3m x 3m East . Area 1m x 1m

Figure 4.19: Area method lm x lm (blue dots) following the raw data. This is produced
by the lack of ground returns within the window size considered for the calculation. The
lineal method (pink and yellow lines) estimated better the ground heights.
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Figures 4.20 and 4.21 show the distribution of the calculated ground heights by the area

method considering areas of 3m x 3m and 5m x 5m, respectively. In figure 4.21 it can be
seen that the 5x5m parameter produces nearly similar results as for the line method.

However, problems occur when areas larger than 5m x 5m do not have any last returns
within them so that the value taken as representative of the ground surface may actually

represent the canopy (figure 4.22).
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Figure 4.20: Area method window size 3m x 3m.
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Figure 4.21: Area method window size 5m x 5m
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Figure 4.22: Area method applied to a very dense Norway spruce stand with a window
size of 5m x 5m.

138



LlDAR ANALYSIS

All the analyses for the evaluation of both the lineal and area methods, considering
different values for height and width parameters, were performed on three different
sections of the data plots: at the beginning, middle, and at the end of the plots, to cover

for topographical variations that might be present. As the size of the plots was not too big

(50 m x 50 m) and the stands were topographically nearly flat (with the exception of plot

6), the differences among the three analyses were mostly negligible but the visualization
of the distribution of the data all over the plots helped to characterize the variation in the
terrain. Figure 4.23 illustrates that analysis.
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Figure 4.23: LiDAR data distribution for different sections of the selected field plot (plot
5 corresponding to the European larch species). The figure at the top shows a profile at
the beginning of the plot, the one at the center is a profile at the middle of the plot, and
the bottom figure a profile at the end of the plot, all of them at different heights.
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4.8 Generation of the Digital Terrain Model (DTM)
Once the analyses using the linear and area method with different thresholds was carried
out and evaluated, the linear method with parameters of 3m for both height and width of
the line was chosen for the classification and interpolation of ground and vegetation

points. A DTM was generated for each plot under study using Surfer (Version 6.02,
Golden Software, Inc.) where the classified points were used to interpolate the DTM to a

regular grid of 0.5 m resolution. Several methods such as Inverse Distance, Nearest

Neighbour and Kriging were used to interpolate the DTM surface. The method of

interpolation chosen was Kriging with linear variogram (which does not have a sill) and
no anisotropy (as coordinates X and Y are plot in the same scale and there is no a

preferred direction of lower or higher continuity between data points). This method and
its respective parameters offered the closest visual correspondence with the topography
of the studied plots. The DTM corresponding to the European larch (plot 5) is shown in

figure 4.24.

Figure 4.24: LiDAR DTM of the area that contains a 50m x 50m European larch plot 5
under study.

One of the main limitations of the LiDAR technique is the large size of the files that are

generated (Morsdorf et al. 2004). The storage, distribution, interpolation, and analysis of
LiDAR datasets, which frequently exceed a billion data points, present significant

computational challenges. In this work only the data specific to each plot was analyzed,
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therefore a DTM was built for every plot rather than for the total area for which LiDAR
data was acquired. Every LiDAR plot file of 100 x 100 m analyzed consisted of

approximately 30000 LiDAR "hits" or XYZ coordinate values. It was expected that data
reduction to ease calculations did not affect the accuracy of the analysis but a method to

reduce dataset size reliably is needed.

The derived LiDAR DTMs were compared to existing DTM and GPS ground control

points. The main problem when comparing the results to another DTM was the fact that
the existing DTM is based on measurements with a lower point density therefore a lower
resolution. Thus, it is difficult to find a DTM that has a higher reliability, which could
serve as a reference. The DTM that served as a comparison was at 10m resolution from
Ordnance Survey.

All positions extracted from the LiDAR derived DTM were within the 10m accuracy of
the OSGB DTM. A most precise comparison was performed against positions obtained
with Global Positioning System (GPS) technology. The resulting LiDAR DTM was

compared with 30 GPS points used for the location of the 6 plots (figure 4.26). For this

comparison, elevation differences were calculated at these 30 point locations distributed
over the study area. The GPS points for the location of the plots were collected with a

Trimble Pro XL dual frequency receiver and were post-processed for ephemeris to

correct for satellite positions. The list of three-dimensional coordinates of the points used
for the comparison is given in table 4.2. The root mean square error (RMSE) of the
elevation differences was less than 30 cm (when 18 points lying under short vegetation,

gaps or roads as described in table 4.2 were considered) and was calculated using the

following equation:

RMSE~(Z(- Zcps)2/ [7]

where: Zi = the LiDAR elevation,

Zgps = the elevation of the GPS points,
n = the number of points compared.
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Figure 4.25: Ordnance Survey digital DTM a) of the Aberfoyle area showing in the black
box the approximate location of the area in the topographic map b) and the LiDAR-
derived DTM showed in c) for plot 5.

When all the points described in table 4.2 were included in the calculation, the RMSE
was 2.1 m. The reasons behind these differences might be attributed at the difficulty of
the laser hits to penetrate to the ground, as it can be seen in table 4.2 that the LiDAR

height of most of the points lying under tall vegetation is higher than its correspondent
GPS height.
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Point Number Field height (m) LiDAR height - Field height (m) Description

Plot 1

1 32.53 0.08 road

2 54.86 -0.18 gap
3 42.34 -0.15 short vegetation
4 56.71 1.23 short vegetation
5 61.29 0.31 short vegetation

Plot 2

6 28.94 0.15 short vegetation
7 36.75 -0.22 short vegetation
8 40.35 1.73 big trees
9 34.87 -0.24 short vegetation
10 36.49 -0.12 short vegetation

Plot 3

11 20.94 -0.02 road

12 45.16 -0.48 gap
13 41.33 3.06 big trees
14 54.52 4.41 big trees
15 43.86 -0.29 short vegetation

Plot 4

16 47.54 1.62 big trees
17 50.98 2.59 big trees
18 63.54 -0.04 gap
19 58.36 -0.23 short vegetation
20 45.76 0.27 short vegetation

Plot 5

21 73.64 5.63 big trees
22 86.33 -0.17 gap
23 84.12 6.34 big trees
24 79.45 2.85 big trees
25 70.62 -0.51 road

Plot 6

26 68.32 0.86 big trees
27 67.15 0.11 road

28 71.82 2.24 big trees
29 62.26 1.41 big trees
30 67.93 0.94 big trees

Table 4.2: Comparison between field heights obtained with GPS and LiDAR heights.
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Commission showing the location of GPS measured control points (red dots) on two plots
comprising the European Larch species.

It is also known that forest canopy affects the reception and positioning of GPS data. The

dispersion of the positions estimated at the same point can be more than ten times greater

than when operating in the open (Yoshimura and Hasegawa 2003; Sigrist et al. 1999).

Foliage, as one of the three canopy components besides branches and trunks, plays a

major role in signal reception and repeatability of GPS observations.

The largest single errors occurred in the European larch sample plots which are

characterized by the tallest trees among the species studied and also by the location of
these plots in terrain with slopes ranging from low (plot 5, 20%) to high (plot 6, 60%). It
has been reported that in sloped terrain, planimetric and height accuracy derived from
LiDAR data decrease (Kraus and Pfeifer 1998).

As the European larch plots were also less dense, these results suggest that even though a

greater rate of laser hits are able to reach the ground, the topography of the terrain plays
an important role. Considering the GPS performance again, it might be that tallest trees
cause more interference to the GPS signal making the discrepancies found in these plots a

product of a combined effect of topography and tree height. In general, the DTM
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developed for each of the plots adjusted fairly well to the ground truth. However, it is

recognized that LiDAR may not accurately map all features particularly well as,

depending on point density, laser hits may well miss the very tops of trees but can also
miss the very bottom of depressions or other terrain irregularities. The smoothing on the
data through Kriging interpolation constitutes another important factor that hampers the
accurate representation of ground features.

Figure 4.27 shows a LiDAR-derived DTM for the plot 6 using SURFER (Golden

Software).

Figure 4.27: LiDAR derived DTM of a European larch sample plot in Aberfoyle.

4.9 Generation of the Digital Canopy Model (DCM)
The digital canopy model was computed as the difference between the digital surface
model (DSM), representing the tops of the trees, and the digital terrain model (DTM).
The digital surface model corresponds to the tree canopy hits or first return LiDAR points

interpolated to a regular grid of 0.5 m and 1 m resolution using a Kriging interpolator

(figure 4.28).
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b)

Figure 4.28: Digital canopy models 1 m resolution (a) and 0.5 m resolution (b) of a
European larch plot 5 in Aberfoyle.
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The resultant DCM at 1 m resolution was detailed enough to detect roads and clearly

depicted trees and gaps in the segmentation process. Besides the additional benefit of

requiring less computing time, the 1 m resolution grid was also a smoother digital canopy
model, as opposed to a 0.5 m grid, as can be seen in figure 4.28. A spline smoothing

process was applied to the data in order to get a better visual representation.
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Figure 4.29: Orthophoto (a) and shaded relief view (b) of the LiDAR derived DCM for a
European larch plot section within the red box in the orthophoto (c).
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Figures 4.29 to 4.30 correspond to the orthophotograph, Digital Terrain Model, and
LiDAR derived Digital Canopy Model for a European larch sample plot. The
irregularities present to the Northwest of the plot correspond to an abrupt change of
topography in that plot.

Figure 4.30: LiDAR derived DTM (a) and DCM of a European larch plot 5 (b).
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Another example of the DCM generated for a Norway spruce sample plot is shown in

figure 4.31. Figure 4.32 shows the DCM's shaded relief view of another Norway spruce

stand.

698850J

698840.00-

b) c)
Figure 4.31: Shaded relief view of the DCM of a Norway spruce stand section in
Aberfoyle. The density of the data allows both the identification of tree crowns and gaps
of different sizes.
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Figure 4.32: Orthophoto and shaded relief view of the DCM of an area containing the
Norway spruce stand plot 2 in Aberfoyle.
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Figure 4.33: Vegetation heights derived from Optech ALTM LiDAR data, 60 m by 60m.
The individual tree crowns are Norway spruce. The blue patches are clearcuts. Image
brightness scales from blue for zero vegetation height to for trees up to 24 m tall, in 2-
metre classes.

Figure 4.33 shows a two dimensional view of the LiDAR-derived heights for the Norway

spruce plot 2, which corresponds to the red box in figure 4.32.

Mean tree height, as one of the most important stand characteristics in forest planning,
was calculated for all sample plots in order to compare with their respective values
obtained from the LiDAR derived canopy height model. Top tree heights were also

compared (figure 4.34 and table 4.3).
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Figure 4.34: Comparison between top heights measured in the field and their respective
values obtained from LiDAR.

The individual LiDAR heights of 85 trees were compared with their respective field
measured heights. For this comparison, only trees whose position was easily identified on

the orthophotographs were chosen. The position of each of these trees was marked on a

paper copy of the orthophoto during fieldwork, and their coordinates extracted from the

digital orthophoto in Erdas Imagine 8.7. Simultaneously, every tree was identified in the
LiDAR derived DCM and their height extracted using the Grid Node Editor tool in Surfer
6.04 (figure 4.35).

Figure 4.35: Grid node editor in Surfer 6.04 for LiDAR height extraction.
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Statistic Dbh (cm) Height (m) Crown
Norway Spruce
Plot 1 (115 trees)

i width N (m) Crown width

Mean 99 19.83 5.23 5.08
Minimum 45 12.3 3 3.5
Maximum 73 25.4 8.5 7.2

Standard deviation 26.03 3.06
Plot 2 (222 trees)

1.056 0.91

Mean 72.83 18.1 2.84 3.416
Minimum 11 9.8 1.1 1

Maximum 182 23.2 5.2 6.1

Standard deviation 36.97 3.56
Sessile oak

Plot 1 (168 trees)

1.03 1.15

Mean 76.3 24.84 5.75 5.57
Minimum 25 18 2 2

Maximum 170 27 10.2 9.3
Standard deviation 26.75 2.71

Plot 2 (174 trees)

2.06 1.75

Mean 89.35 15.73 6.58 5.87
Minimum 35 9.1 3.35 2

Maximum 197 24 15 14

Standard deviation 29.93 3.40

European larch
Plot 1 (45 trees)

2.88 2.84

Mean 128.7 29.18 6.6 8.8

Minimum 18 14.5 4.5 4

Maximum 161 35.4 12.5 11.6
Standard deviation 27.32 3.58

Plot 2 (83 trees)

1.8 1.61

Mean 129.4 31.2 5.37 5.49

Minimum 78 26.4 3.2 3.1

Maximum 221 35.2 7.8 7.4

Standard deviation 37.47 2.17 1.1 1.07

Table 4.3: Descriptive statistics of the field inventory data for the species under study.
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Initially, a paired t-test was performed to determine if these datasets were significantly
different. With a mean LiDAR height of 27.69 m (variance = 13.32) and a mean field
measured height of 29.18 m (variance = 10.58) the heights were different (a = 0.05) with
a t statistic equal to 10.6 and a critical t-value of 1.21.

Simple linear regression was then applied to the paired heights to determine the existence
of a linear relationship. Figure 4.36 shows a plot of the relationship between LiDAR-
based and field measured heights where the regression line is y = 0.9501x and correlation
coefficient of determination r = 0.93. Similar results have been reported, for instance

Holmgren and Persson (2004) obtained r = 0.84 with a sample (n) of 135 trees; Clark et

al. (2004) reported an r = 0.97 for mean LiDAR height with n=32; Heurich and
Weinacker (2004) compared laser measured tree height versus field measured tree height
for 857 trees and obtained r = 0.98. In the present study, LiDAR underestimated tree

heights by an average of 1.49 m (table 4.4). The standard deviation of the LiDAR
estimates was 3.64 and the mean standard error was 0.39.

Figure 4.36: Comparison between tree heights measured in the field and their respective
values obtained from LiDAR.
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N Mean Std. error Std. dev. Variance

mean

Field height 85 29.18

LiDAR 85 27.69

0.35 3.25 10.58

0.39 3.64 13.32

height

Difference 85 1.49 0.04 0.39 1.66

Table 4.4: Descriptive statistics of field measured height and LiDAR derived tree height,
and the difference between field and LiDAR measurements.

This systematic underestimation of the tree height using the laser data was found for all

plots with a maximum difference of 3.26 m and a minimum of 0.83 m. This result is due,

according to this experience, mostly to two factors: 1) the LiDAR data processing:

algorithms used for the creation of the DTM and DSM, the interpolation method, and the

smoothing applied to get better visual representation of the tree canopy and 2) the

uncertainty about the reliability of ground reference data, i.e. the measurement of field

heights, which might not be very accurate. Brandtberg (2003) noted that the tree heights
measured manually on the ground could be affected by random errors introduced by the
field personnel. He concluded that in his research the ground reference heights caused a

large proportion of the variance of the differences between ground reference and laser-
based tree heights. Such an explanation might also apply to this study although the device
used for the height measurement (Vertex II, © Haglof Sweden AB) has been reported to

provide great accuracy (Barron, 2001) even when used by people with little experience of
tree measurement. However, Heurich and Weinacker (2004) have pointed out that it is

especially difficult to get good height measurements for deciduous and very high trees in
the field, as for both classes it is very hard to detect the shoots of the trees especially in
the leaf-on period. Moreover the measurement angle becomes very steep for high trees,

which can cause a large error.

Maltamo et al. (2004) suggest that the major cause of the LiDAR tree height
underestimation is due to the fact that not always the laser hits do not necessarily hit the
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very top of the tree crowns (figure 4.37). Therefore the DSM may not represent or

include the highest possible values for height within the stand. As only the dominant tree

layer is detected, suppressed trees may not be found and the detection of the shortest
dominant trees and individual trees in tree groups is also difficult. Maltamo et al. (2004)
also stated that even if laser scanning produces information of tree crowns and

suppressed trees under the dominating tree layers, the current processing methods cannot
utilise it effectively.

Figure 4.37: The laser pulses hit the trees usually missing the tree tops (Yu et al. 2004).
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Figure 4.38: Influence of sampling density for the detection of true tree heights, (a)
Accurate estimation of tree height due to small post spacing (<2.0m). (b) Less accurate
estimate of tree height due to lower sampling density (>2.0m) (Zimble et al. 2003).
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Hyyppa (2004) and Lefsky et al. (2002) suggest several other reasons for height
underestimation: sampling density (figure 4.38); the algorithm used to obtain the canopy

height model; the amount and height of under vegetation; the algorithm used to calculate
the digital terrain model; the sensitivity of the laser system and thresholding algorithms
used in the signal processing as well as a pulse penetration into canopy; and the tree

shape and tree species effect investigated by Nilson (1997). Maltamo et al. (2004) gave
some other reasons as penetration in the foliage in addition to the time interval between
field measurements and laser data acquisition.

Due to the fact that there are several sources of error and also that they cannot be
considered separately but most likely interact, the exact causes of the underestimation of
the tree heights are still unknown.

4.10 Discussion of results

The results of this analysis show that LiDAR is a technique that provides forest

parameters and allow forest mapping in a reliable manner. Although the method of

building the ground DTM and DCM for the sample plots in this study was relatively

simple, it produced accuracies similar to those used by LiDAR companies using more

sophisticated algorithms. This method could save time when greater accuracy is not

needed, although a more accurate approach would almost certainly improve estimates.

Although this is one of a few studies to test LiDAR methods in the context of forestry in
the UK, the retrieval of tree height proved to be highly successful, as has been reported in
most LiDAR research projects. This has significant benefits for forest management and

particularly for Continuous Cover Forestry, where the diversity of species and heights
calls for intensive forest inventory. In order to use airborne laser scanning in standard
forest inventories, the tree species as well as tree heights have to be extracted. The

management of forests under or in transition to CCF may rely on the potential of LiDAR
for the extraction of individual tree heights for its monitoring. However, little success has
been reached related to species recognition, an area that needs further analysis.
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The basic limitation of the LiDAR method, suggested by Ackermann (1999), is its
blindness about the capture and identification of objects and object features, which
translates in the forested environment analyzed in the inability to recognize species. This
restriction was overcome in this study with the use of aerial photographs to support the

filtering of laser pulses, and provided a much better understanding of the area and the
forest stands and thereby improved the algorithm performance.

Further improvements are expected when filter algorithms start making use of additional
information sources (Sithole and Vosselman 2004). Results and performance could be
enhanced if image information would become an integral part of automated data

processing. A fusion can be expected by the combination of LiDAR approaches with

photogrammetry and multi-spectral data.

The main objective of this chapter was to produce the digital canopy models that will be
used as input for segmentation and classification for tree crown detection and delineation.
In order to achieve this, new algorithms for processing the data were required to be
written. Three species were selected for the study, as they provide different scenarios for

analysis and are representative of different light regimes. Deciduous plots were

characterized for strong shadowing and very dense canopies, while spruce stands were

more homogeneous but also dense. European larch sites were also homogeneous but of

particular interest due to their location within the Regeneration Study Area described in

chapter 2 and also for its particular topography. LiDAR, obtained at a point density of 4
returns per square metre, was able to map the differences between plots regarding tree

density, gaps, topography, and most importantly, to provide high-resolution imagery for
crown and gap delineation with considerable detail and accuracy.
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Chapter 5

Object oriented analysis of tree crowns and forest gaps using LiDAR,
ATM and aerial photography

5.1 Introduction

This chapter evaluates small foot-print multireturn LiDAR, multispectral Airborne
Thematic Mapper (ATM) imagery and aerial photography acquired over an area covered
with deciduous and coniferous stands in Aberfoyle, Scotland, for their ability to detect
and delineate tree crowns. The study also evaluated the potential of a LiDAR-based

object oriented approach to deciduous and coniferous forest classification. This analysis
was carried out with the use of object oriented segmentation and classification analysis,

performed separately on each dataset, followed by a combined analysis to investigate

potential improvements on the results. In the segmentation process, an iterative

segmentation and classification of the LiDAR and ATM imagery was performed until a

good correspondence with aerial photography was achieved. Thus, the potential of
LiDAR for mapping horizontal structure of forest stands alone or in combination with

high spatial and spectral resolution data was thoroughly explored.

Specifics objectives included:
Evaluation of the potential of digital aerial photographic data, multispectral ATM

imagery, and LiDAR for crown delineation, based on object oriented approaches.
Determination of the optimum segmentation result and
Validation of the segmentation selection through comparison with reference data.

As was highlighted in the previous chapter, there exists a considerable body of research

using LiDAR data for forestry applications and which have dealt mostly with the
extraction of stand characteristics like tree height, basal area, stand volume, and stem

density (e.g. Nilsson 1996, Lefsky et al. 1999, Means et al. 2000, Naesset 2002, Zimble et
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al. 2003, Clark et al. 2004, Collins et al. 2004, Maitamo et al. 2004) as well as leaf area

index and biomass (Hagiwara et al. 2004, Lim and Treitz 2004, Brandtberg et al. 2003).

Diversity and species composition have also been studied with LiDAR (Blaschke et al.

2004, Holmgren and Persson 2004, Hill and Thomson 2005).

LiDAR data has been increasingly used for tree delineation in the last few years (Tiede et

al. 2004; St-Onge and Vepakomma 2004; Brandtberg et al. 2003) The main advantage of
the LiDAR- derived digital canopy models (DCMs) is that they are unaffected by non¬

uniform light intensity which means that they can be used to detect trees that would
otherwise be in shadow; however, DCMs are often less precise than those derived from

high resolution imagery and trees that are very close cannot be extracted (Mei and
Durrieu 2004).

The renewed interest in sustainable management of forests, maintaining ecosystem

diversity and resilience and protecting sensitive species while providing for a variety of

ecosystem services of value to the community (Coates and Burton 1997) have demanded
the consideration of the use of remote sensing techniques to provide information and

parameters that help to understand and describe in a better way the complex processes

occurring at stand level. Acquiring data on the distribution and species of individual tree

crowns, crown sizes, crown closure, and canopy gaps would be a valuable contribution

(Leckie et al. 2005). But these processes cannot be completely evaluated with the
traditional methods of forest inventory and stand mapping, which can hardly deliver
continuous information about different forest structures as is required by more ecological
silvicultural systems such as CCF. Therefore, high resolution LiDAR and multispectral

imagery, among other remote sensing sources of data, have been evaluated and
researched for their potential to provide, alone and in combination, reliable and accessible
information about traditional forest structure attributes and in the description of the three-
dimensional character of the forest, especially at forest stand and tree levels (Bunting and
Lucas 2006, Hill and Thomson 2005, Hudak et al. 2002, Tickle et al. 2001, Watt et al.

2004, Heurich et al. 2004, Bhogal et al. 2004). This information could not have been
assessed before, but advances in technology now allow.
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Along with improvements in spatial and spectral resolution of remote sensing data, more

sophisticated algorithms for its processing have been developed in the last decade.

Specifically for forest classification, object oriented techniques have been increasingly
used for their advantages over traditional pixel based classification approaches, especially
for its more realistic representation of the elements in the forest. A more in depth review
of the object oriented classification method and its usefulness for tree mapping is given as

follows.

5.2 Object oriented image segmentation and classification
The automatic classification of remotely sensed data is often an essential action within
the image analysis process. Unfortunately, the high spatial resolution of advanced sensors

increases the spectral within-field variability and therefore may decrease the
classification accuracy of traditional per-pixel based methods (Schiewe et al. 2001),
which use the radiometric information contained in the image bands. Ideally, pixels are

expected to be more or less grouped in multispectral space in clusters corresponding to

different land cover types (Price 1994).

A per pixel-based classification results in a thematic map with a label for each pixel of
the class to which it has the highest strength of membership. This "hard" or "crisp"
classification is based on conventional crisp set theory. A conventional classification of

remotely sensed imagery models the study area as a number of unique, internally

homogeneous classes that are mutually exclusive. However, these assumptions are often

invalid, especially in areas where transition zones and mixed pixels occur. Most of

geographical features are rarely internally homogeneous and mutually exclusive;

therefore, classes can hardly ever be separated by sharp or crisp boundaries, in feature

space as well as geographic space. Furthermore, complex relationships exist between

spectral responses recorded by the sensor and the situation on the ground, where similar

classes, pixels or objects show varied spectral responses and similar spectral responses

may relate to dissimilar classes, pixels or objects. Moreover, remotely sensed images
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contain many pixels where boundaries or sub-pixel objects cause pixel mixing, with
several land covers occurring within a single pixel (Lucieer 2004).

The problems arising from a method that considers a pixel as the basic unit for the
classification process can be solved with methods that are able to compose spatial entities

(i.e. regions) which can be used as basic units in image analysis instead of single pixels.
These regions can be determined with the help of image segmentation. Segmentation is
defined by Pal and Pal (1993) as "a process of partitioning the image into some non-

intersecting regions such that each region is homogeneous and the union of no two

adjacent regions is homogeneous".

Thresholding, statistical classification, edge detection, and region growing are defined as

the principal image segmentation approaches. Each method has advantages and

disadvantages. For example, thresholding of image histograms is relatively

straightforward, but disregards spatial information. On the other hand, statistical

approaches take all image information into account, but ignore the spatial explicitness
inherent in remote sensing imagery. Edge detection and region growing share the
common disadvantage of subjective user input, while spatial information recognition is
an advantage in both cases (van Aardt 2004).

The concept of image segmentation is not new but it has attracted lot of attention in
recent years. Many new segmentation algorithms as well as applications have been

developed, but not all of them lead to qualitatively convincing results while being robust
and operational. One reason is that the segmentation of an image into a given number of

regions is a problem with a large number of possible solutions (Blaschke and Strobl

2001).

Image segmentation methods are split into two main domains: knowledge driven (top

down) methods and data driven (bottom up) methods. In the top down approach the user

already knows what they wants to extract from the image but does not know how to
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perform the extraction. By formulating a model of the desired objects, the system tries to

find the best methods of image processing to extract them (Yan 2003).

Bottom-up methods perform a segmentation of the complete image. It groups pixels into

spatial clusters that meet certain criteria of homogeneity and heterogeneity. Bottom-up
methods can thus be seen as a kind of data abstraction or data compression. As with

clustering methods, in the beginning the generated segments are only image object

primitives. It is up to the user to determine what kind of real world objects the generated

image objects represent. Yan (2003) lists the most common types of bottom-up

approaches to image segmentation as follows:

• Global thresholding. In this kind of approach feature space is separated into

subdivisions, and locally adjacent pixels of the same subdivision are merged. This
method leads to results of relatively limited quality. Oversegmentation and

undersegmentation (i.e., separation into units which are too small or merging

regions that do not belong to each other), take place easily without good control
of meaningful thresholds. Local contrasts are not considered or not represented in
a consistent way and the resulting regions can differ widely in size.

• Region growing algorithms cluster pixels starting from a limited number of single
seed points. These algorithms basically depend on the set of given seed points and
often from a lack of control in the break-off criterion for the growth of a region.

• Texture segmentation algorithms. They typically obey a two-stage scheme: 1) in
the modeling stage characteristic features are extracted from the textured input

image and range from spatial frequencies. 2) In the optimization stage features are

grouped into homogeneous segments by minimizing an appropriate quality
measure. These methods are only applicable to a limited number of types of

image data, texture types and problems. Texture often must be very regular to be

recognized. Results can often not be achieved on any chosen scale.
• Knowledge-based approaches. These approaches try to incorporate knowledge

derived from training areas or other sources into the segmentation process. These

approaches mostly perform a per pixel-based classification, based on clustering in
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a global feature space. Segments are produced implicitly after classification,

simply by merging all adjacent pixels of the same class. In doing so these

approaches are typically not able to separate different units or objects of interest
of the same classification. Furthermore, the information on which the

classification can act is typically limited to spectral and filter derivatives.

The multiresolution hierarchical approach developed by Baatz and Schiipe (2000) called
the "fractal net evolution approach", is a bottom-up region growing technique that has
been implemented in eCognition software (Definiens Imaging 2004). This approach is a

move away from per pixel-based analysis, towards an object-based analysis, and multiple
scales of objects can be explored within a single data set (Burnett and Blaschke 2003).

eCognition was chosen for the analysis carried out in this research because the

segmentation results are robust, it has widespread availability, and adequate software

support. This approach has been widely used for forestry applications such as automated
tree detection (Heurich and Weinacker 2004, Tiede et al. 2004, Collins et al. 2004,

Brandtberg et al. 2003), prediction of forest volume and biomass (van Aardt 2004) and
for forest type classification (Shataee et al. 2004), showing good results specially for
conifer forest stands but requiring further work in complex canopies like the ones

characterized by deciduous species and mixed forest. All the reported forest
classifications performed in eCognition have been more succesful than their per pixel-
based counterparts.

The process and results of object oriented image analyses such as that which eCognition

performs is carried out in methodological steps described by Burnett and Blaschke (2003)
as: database building, segmentation, object relationship model building and classification,
and quality assessment.

Database building involves the collation of all sources of information into a database of

georeferenced survey, sample and auxiliary data. Segmentation is the key to the multi-
scale approach of which the main objective is the extraction of meaningful objects, often
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involving an iterative process searching for changes in image object

heterogeneity/homogeneity. Object relationship model building includes assigning object

relationships that are either automatically derived (such as mean spectral values, shape
and distribution) or are semantic and require the knowledge of the expert, at least for

training purposes. The subsequent body of relationships is needed to classify

homogeneous objects. Finally, quality assessment is an essential component of the

approach, both at the final stage and during of the preceding steps.

The following section aims to explain some of the concepts behind the object orientated

segmentation procedures in eCognition.

5.3 Segmentation procedure in eCognition

According to Schiewe et al. (2001) segmentation is basically an automated procedure

representing the way human eyes might recognize a group of pixels as individual objects.
It divides the image into objects and in recognizing those objects, it follows the

hypothesis that neighbouring image elements belong to the same class. This approach for
classification avoids the problems of single mixed pixels and provides more parameters

upon which to classify (texture, shape, neighbouring, distance, and direction) rather than
the brightness normally used.

Multi-resolution segmentation is a basic procedure in eCognition for object-oriented

image analysis. It is used to produce image object primitives as a fust step for further
classification and other processing procedures (Yan 2003). The segmentation rule is to

create image objects as large as possible and at the same time as small as necessary.

The segmentation starts with one pixel objects. In numerous subsequent steps, smaller

image objects are merged into bigger ones. Throughout this pair-wise clustering process,

the underlying optimization procedure minimizes the weighted heterogeneity of resulting

image objects. In each step, that pair of adjacent image objects is merged which stands
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for the smallest growth of the defined heterogeneity. If the smallest growth exceeds the
threshold defined by the scale parameter, the process stops (Yan 2003).

Throughout the segmentation procedure, the whole image is segmented and image

objects are generated based upon several adjustable criteria of homogeneity in colour and

shape. Adjusting the so-called scale parameter indirectly influences the average object
size: a larger value leads to bigger objects and vice-versa. Additionally, the influence of

shape as well as the image's bands on the object's homogeneity can be adjusted.

The process starts at the level of pixels and continues to consecutive levels. Each level is
constructed based on its direct sub-objects, i.e., sub objects are merged into larger image

objects. Merging is limited by the borders of super-objects; adjacent image objects cannot
be merged when they are sub-objects of different super-objects (Rajapakse 2003).

5.4 Object oriented classification techniques
The meaningful primitive objects obtained through segmentation can be classified by two
methods: Sample based classification using a nearest neighbour classifier and rule based
classification using a membership function technique.

The nearest neighbour method classifies objects in a given feature space and with given

training samples for the class of concern. The simple nearest neighbour classifier

computes the Euclidean distance from the pixel to be classified to the nearest training
data pixel in n-dimensional feature space and assigns it to that class. This process can

yield useful results if the training data are well separated in feature space (Jensen 2005).

However, classes are often hard to define resulting in vagueness and ambiguity in a

nearest neighbour-based classification scheme. Most, if not all geographical phenomena
are poorly defined to some extent and, therefore, fuzzy set theory as an expression of

concepts of vagueness can be an appropriate model for working with remotely sensed
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imagery. To adapt to the fuzziness characteristic of many natural phenomena, fuzzy
classification approaches have been proposed (Lucieer 2004).

Fuzzy clasification allows greater flexibility in comparison with binary theory which can

only have two extreme values, and one pixel can only belong to one class. Fuzzy set

theory allows a pixel to hold several non-zero membership grades for different
information classes (Yan 2003).

Fuzzy classification is a technique that operates on fuzzy logic, a multi-valued logic

quantifying uncertain statements. The basic idea is to replace the two Boolean logical
statements "true" and "false" by the continuous range of [0,....,1], where 0 means "false"
and 1 means "true" and all values between 0 and 1 represent a transition between true and
false. Avoiding arbitrary sharp thresholds, fuzzy logic is able to approximate the real
world in its complexity much better than the simplifying Boolean systems do; fuzzy logic
can model imprecise human thinking and can represent linguistic rules (Benz et al. 2004).

Each class of a classification scheme formulated in eCognition contains a class

description. Each class description consists of a set of fuzzy expressions allowing the
evaluation of specific features and their logical operation. Three main processes or steps

are involved in fuzzy classification implemented in eCognition. The first one is called
"fuzzification" and it performs the conversion from a hard to a soft system. In this step a

membership value is assigned to each feature of an object (e.g. shape, texture, spectral

value) with a value between 0 and 1. The second step is the building of a fuzzy rule-base
which is a combination of fuzzy rules. A fuzzy rule can have one single condition or can

consist of a combination of several conditions that have to be fulfilled for an object to be

assigned to a class. The last step is defuzzification. Here the fuzzy memberships are

translated back into hard values in order to visualize classification results where

maximum fuzzy membership degree of the class is used as the class value to be

represented (eCognition User Guide 4, 2004).
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In short, the output is twofold: a fuzzy classification with detailed information of class
mixture and reliability of class assignement, and a final crisp classification where each

object is assigned to only one class (or none, if assignment was not possible).

Previous experience has demonstrated that if a class can be separated into other classes

by just a few features or only one feature, the application ofmembership is recommended
otherwise the nearest neighbour method is suggested (Ivits et al. 2002).

5.5 Data characteristics

In order to investigate the usefulness of multispectral remote sensing in combination with
LiDAR data for vertical and horizontal forest structure characterisation, an Airborne

Thematic Mapper image and a LiDAR dataset were acquired for this study.

Due to its high spatial resolution, existing orthophotographs of the area were used as a

visual aid in the classification process, and as a validation set for the segmentation and
classification results from the object oriented approach, along with the data collected

directly on the sample plots as described in chapter 2.

The main characteristics of the datasets used are outlined in table 5.1.

Data Set Number of bands Spectral Range Horizontal Resolution

Aereal Photography 3 Visible 25 cm

ATM 11 Visible, near, short and thermal infrared 2m

LiDAR 1 Ultraviolet, visible and infrared 1 m

Table 5.1: Main characteristics of the available datasets.

LiDAR data provide accurate 3D coordinates and detailed information on forest canopy
vertical structure but over a limited spatial extent (Hudak et al. 2002) and less direct
information on the object's geometrical shape. In contrast, high resolution imagery such
as Airborne Themathic Mapper provides more detailed information on objects, such as

spectral signature, texture, shape, although it cannot supply direct measurements of

canopy height or estimates of tree diameter or timber volume as LiDAR data can (Hill
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and Thomson 2005); therefore the combination of the two datasets should improve the
results for segmentation and classification compared with the use of spectral response

only.

The ideal situation for the forestry community would be to base its operational and

strategic applications on just one data source, for instance LiDAR or multispectral data,
with which technical and economical issues could be highly reduced. This implies the

development of high resolution sensors that can contribute to a detailed analysis of forest
structure on a tree level, along with the techniques for the processing of this high
resolution data. However, despite great technical advances, there is still a lack of

acceptable accuracies on information required routinely such as canopy cover, tree size

(height and crown diameter), biomass, and crown volume, among others. The primary
reason for this is that important characteristics of the land surface are tied to vertical
structure which most remote sensing techniques have difficulty to retrieve (Dubayah et

al. 2005). That is why LiDAR represents a breakthrough technology, providing direct
measurement of the vertical dimension, but although being a relatively new technique,
there is lack of expertise and a need for experiments that integrate field work and

subsequent data analysis and the development of a methodology for the processing and
evaluation of LiDAR products.

In the segmentation, the LiDAR points are resampled to raster form. After that it is

possible to utilize the combination of the elevation attributes from LiDAR data and
radiometric atributes from the image in the segmentation. The data with similar heights
and spectral attributes are merged into a region. An advantage of this process is that

image objects can be extracted from one data layer, and subsequently in the image

analysis step those image objects are able to take into account the attributes of the other
data layers (Syed et al. 2005).

In the classification, the object-based classification was used to separate the vegetation
and no vegetation region and then the trees from the gaps. The attributes considered in
the classification are: the elevation information from LiDAR data, the spectral
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information from multispectral imagery ATM and orthophotography, the texture

information from the high spatial aerial photography, and the shape of regions.

Spatial registration of LiDAR data, Airborne Thematic Mapper imagery and

orthophotography were performed as data preprocessing to unify the datasets in the

object coordinate system. A more detailed description of the data sets used in this chapter
as follows.

5.5.1 LiDAR data

As described in chapter 4, LiDAR data was acquired on the 19th of September 2002,

using and Optech ALTM2033 scanner. The LiDAR data consisting of a list of
tridimensional coordinates for the first and last return of the laser signal, was used in the
derivation of a Digital Terrain Model and a Digital Surface Model, and subsequently in
the determination of a Digital Canopy Model (DCM) through the substraction of the

Digital Terrain Model from the Digital Surface Model for each of the sample plots under

study in the Aberfoyle area. The eCognition segmentation and classification algorithm
was used to segment this LiDAR derived DCM along with the multiespectral imagery.

The original LiDAR data for every plot consisted in a list of coordinates X, Y, Z plus an

intensity value for each hit, where Z represented the absolute measured LiDAR height
referenced to the Transverse Mercator projection and the Ordnance Survey Great Britain
1936 datum. The LiDAR data used for the segmentation consisted of a list of coordinates

per plot with approximately 50,000 laser hits, where the Z value corresponds to the
calculated tree or ground height after LiDAR processing.

Geometric correction: In spite of the high vertical and horizontal accuracy that
characterizes LiDAR data, a shift of -7 m and -1 m in East and North directions,

respectively, was found in comparison with coordinates taken from the

orthophotography. This shift was corrected using the program Surfer (Golden

Software) and the new geographical reference was checked again against aerial
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photography, resulting in sub-metre accuracies. This process was followed by the
subset of the large original datasets to make the data and workspace more

manageable and to reduce data volume. This pre-processing was carried out using
tools in Erdas Imagine 8.7.

5.5.2 Airborne Thematic Mapper (ATM) data
The platform used to collect imagery of the Aberfoyle area was a Dornier 228 CD-

CALM) aircraft, operated by the UK's Natural Environment Research Council (NERC)
Airborne Research and Survey Facility, on July 13, 2003. The image dataset contains

eight north-south orientated flight lines of ATM imagery of the Queen Elizabeth II Forest
Park collected at 11:49 am. From that set of eight images, two flightlines (03/021 and

03/023) contained the plots under study and therefore were chosen for the object-oriented

segmentation and classification process, and are shown in figure 5.1.

The Daedalus 1268 ATM onboard the aircraft is a passive sensor designed to collect and
record reflected and emitted radiation from the earth's surface. The radiation is separated
into 11 spectral bands, some of which simulate the satellite-borne Landsat Thematic

Mapper (table 5.2) and range from the visible blue to the thermal infrared. Channels 1-5
are in the visible, 6-8 are in the near-infrared, 9 and 10 are in the short wave infrared

(SWIR), and band 11 is a thermal infrared band. The imagery was collected at 1200 m

during uniform cloud-free conditions and the pixel resolution was 2 m. Further
characteristics of the ATM instrument are presented in table 5.3.
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ATM Band Spectral range (pm) Equivalent Landsat TM band

1 0.42 - 0.45

2 0.45 - 0.52 l

3 0.52 - 0.60 2

4 0.605 - 0.625

5 0.63 - 0.69 3

6 0.695 - 0.75

7 0.76 - 0.90 4

8 0.91-1.05

9 1.55-1.75 5

10 2.08 - 2.35 7

11 8.5-13.0 6

Table 5.2: Band characteristics of the Daedalus 1268 Airborne Thematic Mapper
instrument compared to those of the Landsat Thematic Mapper instrument.

Instantaneous Field Of View 2.5 mrad

Pixel swath 938

Digitised Field of View 90°

Scan Rate 12.5 , 25 and 50 Hz
Radiometric Resolution 16 bit

Temperature Reference Two black-bodies for calibration of thermal channel
Table 5.3 Daedalus 1268 Airborne Thematic Mapper sensor parameters.

• Radiometric correction: The imagery was delivered processed to level 3B which
means that radiometric calibrations algorithms had been applied by the producers
and that the data had been mapped to a geographic coordinate system using
onboard attitude and positional information with additional ground control point
for precise location.

• Atmospheric correction: attempts were made to remove the spectral effects of the

atmosphere, ensuring the recorded radiance was as close as possible to the actual
radiance reflected from the ground surface. However, in the end atmospheric
correction was not performed on the ATM dataset as it was considered not

necessary as Mather (1999) states that atmospheric correction must be undertaken
when: a) the ratio of pixel values between wavebands is required, b) measures of
radiance are related to specific properties of features within the data and c)

temporal comparison between datasets is required. None of these analyses were
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needed for the research. Other studies on tree segmentation and classification with

high resolution digital imagery have also not performed atmospheric correction

(Hajeck 2005, Leckie et al. 2005).

• Geometric correction: the initial geometric correction was carried out with the

program AZGCORR, an Airborne Remote Sensing Geocorrection Package

designed by Azimuth Systems and provided by NERC ARSF. The purpose of the

program is to adjust the image data to match true ground space in a known
coordinate system. In order to apply the geometric correction to the image,
information about the image pixel size and the number of lines defining the image
was retrieved from the HDF file. A DEM grid of the area 10 m resolution was

also added to the system, in order to improve geometric accuracy. The image was

geocorrected and resampled to 1 m pixel size. Then Azexhdf program was used to
convert the image corrected by Azgcorr into a BIL binary file.

However, even single flight lines of airborne data are difficult to rectify to a

standard map series because of aircraft roll, pitch, and yaw during data collection

(Jensen 2005). Therefore, further correction of the ATM imagery was necessary

to remove geometric distortions remaining in the data following pre-processing by
the NERC ARSF software, in order to get a dataset spatially registered to the
LiDAR data for the segmentation analysis. This was achieved by registering the

required sections of each ATM flight-line to the matching aerial orthophotographs

by identifying 20 ground control points in both the aerial photography and in the

imagery. A first order polynomial transformation was carried out and, in order to

preserve the statistical properties of the data, the image was resampled with a

nearest neighbor algorithm which assigns the brightness value closest to the

specified x', y' coordinate to the output x, y coordinate (Jensen 2005). The

accuracy of the correction was of RMSE 0.46 m. All these operations were

performed using the tools for geometric correction implemented in Erdas Imagine
8.7 (figure 5.2).
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Figure 5.2: Registration of the ATM data to ortophotography of the area.
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Band

1

1

|

2 3 4 5 6 7 8 9 10

1

2

1

0.833 i

3 0.785 0.911 1

4 0.732 0.935 0.961 1

5 0.754 0.931 0.961 0.991 1

6 0.634 0.536 0.762 0.589 0.621 1

7 0.535 0.432 0.681 0.503 0.524 0.970 1

8 0.319 0.429 0.680 0.514 U.531 U.956 0.986 1

9 0.513 0.609 0.793 0.753 0.759 0.757 0.766 0.806 1

10 0.282 0.184 0.021 0.009 0.042 0.003 -0.061 -0.089 0.118 1

11 0.406 0.573 0.646 0.692 0.697 0.378 0.326 0.350 0.638 -0.124

Table 5.4: Correlation matrix for the 11 ATM bands.

In order to reduce the size of the dataset, a selection of bands was undertaken. Visually,
combinations of bands 5 (visible red), 7 (near-infrared), 9 (middle infrared), and 11

(thermal infrared) were best for species discrimination. To help with the band selection, a
correlation matrix of each image was calculated using the tools in the Model Maker
module implemented in Erdas Imagine 8.7 (table 5.4). The results indicated that these
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bands are certainly no too highly correlated (0.326 to 0.766) therefore they contain most

of the information needed for subsequent analysis.

5.5.3 Aerial ortophotography
Six high resolution (25 x 25 cm) digital colour ortophotographs scale 1:12500

encompassing the plots under study were accessed from the Forestry Commission

(figures 5.3 and 5.4). The digital aerial photography was taken simultaneous to the
LiDAR data in September 2002, at the end of the growing season. The data were

georeferenced to the Ordnance Survey Great Britain 1936 system, Transverse Mercator

projection, and due to its high resolution and planimetric accuracy, was used as a

reference for the geometric correction of the other datasets, for visual identification of
features of interest, and for the generation of vector files of manual tree crown

delineations for comparison with the automatic tree crowns generated through

segmentation with the eCognition algorithm.

Figure 5.3: Relative position of digital colour orthophotographs used as a layer for
segmentation and classification of forest species and for tree crown and gap delineation,
overlaid onto the compartment database from the Forestry Commission.
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European larch sample plot

Figure 5.4: Individual digital colour ortophotographs scale 1:125000 encompassing the
sample plots denoted by red boxes.

Oak sample plot 2

European larch and Douglas fir sample plot
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5.6 Data preprocessing
Data import, geometric correction, atmospheric correction, georeferencing, clipping, and

image enhancement were preprocessing tasks carried out in order to generate a consistent
and accurate set of data to be used for the analysis. Filter tools were applied to some of
the digital ortophotographs and ATM data to improve segmentation and classification in
areas affected by shadows. For the remaining datasets, segmentation was carried out on

raw bands. Further details about data preprocessing are included in following sections.

5.7 Manual crown delineation

As the digital aerial photography presented the best spatial resolution (25 cm), results
from segmentation were compared visually and geometrically to this data set.

For the geometric comparison, manual delineation of features was performed on all

digital ortophotographs containing the study area. Representative examples of this

operation are shown in figure 5.5. Manual delineation was carried out in ArcGIS 9 (ESRI
Inc. 2005) using the graphic tools and then each layer created was saved as a polygon

shape file to enable a posteriori comparison with results obtained from classification.
These shape files were considered as the ground reference.

Crown delineation of European larch and Norway spruce species (figure 5.5 a, b, c) was a

straightforward task; the process was facilitated by the relative open canopy in the sample

plots and the distinctive crown shape of the spruce and larch species. On the contrary,

delineation of the deciduous species was more subjective due to the complexity of the
deciduous crowns, the closed canopy, and the shadowing of wooden parts. The

assignment of one canopy segment to a particular crown or to the contiguous one was a

difficult task. All dominant trees within the plot could be detected but the trees

distributed in the other canopy layers were more difficult to identify, with most of them

dissapearing under the upper canopy layer.
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Figure 5.5: The first column show subsets of aerial photographs corresponding to
European larch plot (a); Norway spruce plot (b); mixed European larch and Douglas fir
sample plot (c); Oak sample plot (d), and their respective images in the second column
showing the manually delineated crowns layer overlaid.
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5.8 Segmentation and classification process

The segmentation and classification process was performed using the multiresolution,
hierarchical algorithm implemented in eCognition in order to evaluate its ability for the
detection of tree crowns and gaps with regard to variations in species and stand density,
as well as the potential of the available datasets to deliver this information. The objective
was to perform segmentation and classification on each dataset individually at first and
then proceed to segmentation using a combination of aerial photography with LiDAR
data and ATM data with LiDAR data to enable accuracy comparisons. A diagram of the

methodology followed is shown in figure 5.6.

LIDAR ATM Orthophotos

1 1
*

Independent object oriented
image analysis

Orthos + Lidar

I I
Object oriented image analysis

on combined datasets

I I
Image segmentation in eCognition

Classifying with membership
functions

is®

I InUpdate and use the feature range

Figure 5.6: Methodology used in the segmentation and classification process.
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The segmentation starts with the importation of data and the assignment of weights to the
different layers that compose the imagery, followed by the assignment of values to the
most important criteria considered by the oriented-objected algorithm, e.g., heterogeneity
and homogeneity. These criteria are defined as follows (eCognition User Guide 4 2004):

Heterogeneity: this criterion measures the maximum allowed heterogeneity of the

resulting image objects; in other words, it determines the size of the image objects. It
is expressed as the Scale Parameter.

Homogeneity: this criterion is composed of three factors: colour, smoothness, and

compactness. In most cases the colour criterion is the most important one for creating

meaningful objects. The shape criterion, defined by smoothness and compactness

factors, especially helps to avoid a "fractal" shaping of objects in strongly textured
data. The colour criterion defines to which percentage the overall homogeneity is
defined by the spectral values of the image layers as opposed to the Shape

homogeneity criteria. Changing the weight for the colour criterion to 1 result in

objects entirely optimized for spectral homogeneity. In addition to spectral
information, object homogeneity can be optimized with regard to object shape,

especially according to its smoothness or compactness. Large smoothness weights
tend to yield more circular segments while large compactness weights tend to yield

rectangular or square segments (Collins et al. 2004).

The assignment of the values is performed through an iterative data exploration process

while developing the classification rule base. The quality of the classification depends

mainly on the quality of the segmentation and the knowledge base. The segmentation is

good if the objects represent the meaningful features to be classified. This can be
achieved only if an appropiate combination of segmentation parameters (scale, colour,

shape) is used to produce the most meaningful objects.

Two main principles for segmentation to be followed are (eCognition User Guide 4

2004):
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- Always produce image objects at the largest possible scale which in turn still

distinguish different image regions (as large as possible and as fine as

necessary).
- Use as much colour criterion as possible and as much shape criterion as

necessary to produce image objects of the best border smoothness and

compactness. The reason for this rule is that the spectral information is

ultimately the primary information contained in image data. Using too much

shape criterion therefore can reduce the quality of segmentation result.

The knowledge base refers to the membership functions. An approach that is often taken
is to perform a nearest neighbour classification first which produces very coarse results.
This is then refined using membership functions. The use of membership functions

requires the selection of the appropriate features to describe each class. These features
can consist for instance, in a spectral range (Object Features/Layer

Values/Mean/Brightness/Ratio); a certain area (Object Features/Shape/Generic Shape

Feature/Area); or a certain context (Class Related Features/Relations to Neighbour

Objects/Relative Border to).

After the selection of the appropriate features, a definition for them according to a

membership function should be assigned. There are many functions to choose from and
all of them are considered fuzzy, which as was mentioned before, means that the objects

(created during segmentation) will be assigned to the class for which its membership is

higher. Once a set of features for a class using membership functions is defined, it is
refered to as a knowledge base for that class. Typically, the more membership functions
used for one class the more defined that class is and the more refined the classification

will be.

The eCognition software offers a great quantity of tools for the refinement of the
classification. As an example, fine segmentations can be run on specific classes and then
can be followed by segmentation-based classification; segments within the same class
can be merged; nearest neighbour (NN) and fuzzy methods can be integrated and used for
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a more complex classification. All these tools were used to a certain degree mostly with
the purpose of obtaining non over-segmented objects which most closely matched the
reference crowns, for instance, suitable features were used to extract gaps and road
classes at a fine segmentation level and then segmentation based on classification was

used to merge objects in the same class in a superior level; however, the goal in this

project was to use a simple segmentation and classification protocol which could be used
for the processing of all datasets with minor adjustments. The process is summarised in

figure 5.7.

Figure 5.7: Processing flow in eCognition for the segmentation and classification of
datasets.

Following classification, the accuracy assessment tools included in eCognition were used
to check the quality of the classification and re-run the process to improve accuracy

whenever results were not satisfactory. Two of these tools were evaluated: Classification
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stability and Error matrix based on samples. These tools provide measures such as

Overall accuracy, Producer's accuracy, User's accuracy, and the Kappa Index of

Agreement (KIA) of which definitions are given as follows (Jensen 2005):

Overall accuracy is determined by dividing the total correct observations (sum of the

major diagonal) by the total number of observations in the error matrix.

The user's accuracy is a measure of how well the classification performed in the field

by categories (rows). The user's accuracy details errors of commission, which results
when a pixel is committed to an incorrect class.

- The producer's accuracy is a measure of how accurately the image data was classified

by category (columns). This measure details the errors of omission which results
when a pixel is incorrectly classified into another category. The pixel is omitted from
its correct class.

The Kappa Coefficient is a discrete multivariate technique to interpret the results of a

contingency matrix. The Kappa statistic K (equation 5.1) incorporates the off

diagonal observations of the rows and columns as well as the diagonal to give a more

robust assessment of accuracy than overall accuracy measures. It is a measure of

agreement between the remote sensing-derived classification and the reference data as

indicated by a) the major diagonal and b) the chance agreement, which is indicated by
the row and column totals. Kappa values >0.80 represent strong agreement or

accuracy between the classification map and the ground reference information. K
values between 0.40 and 0.80 represent moderate agreement. K values <0.40

represent poor agreement.

k k

nyjxii~tj(xi+xx+i)
k=—j=i ^ 5.1

w2 -X(*i+x*+i)
!=i
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After a good classification result was found, polygons corresponding to the crown and

gap classes were created and saved as shape files along with their attributes (area, width,

length), to enable comparisons with the reference data in a GIS.

5.8.1 Segmentation and classification of digital aerial photography
The orthophotographs were segmented based on the eCognition standard multi-resolution

segmentation. Figures 5.8 to 5.12 show the segmentation results using different

segmentation parameters.

Level 1 Level 3

Figure 5.8: Hierarchical net of image objects derived from image segmentation level 1
(10 scale parameter), level 2 (50 scale parameter) and level 3 (90 scale parameter) in a
European larch stand.

Along with the scale factor, the other parameters that influence the segmentation result
are colour, shape, smoothness and compactness. The first stage in the analysis was to

perform several trials for the segmentation with combinations of different values for each
of these parameters. In this way, the best segmentation result was chosen by comparison

among 25 trials which tested the segmentation algorithm for the following combination
of parameter values:
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Scale parameter: this factor has no unit but controls the amount of spectral variation
within objects and therefore their resultant size. The initial value for this parameter

was set at 10 (large number of small segments) and was subsequently evaluated in
increments of 10 to 110 (larger and fewer segments). These results were visually

compared with the original imagery and the scale parameter that better adjusted to the
size and number of the real objects was chosen. Visual comparison as a criterion for
the selection of optimal segmentation output has been used in several works (Schiewe

2002, Schiewe et al. 2001), there is no standard method defined to date to aide in the

selection of optimal scale. Small segmentation scales extract the objects well but

produce a high quantity of segments which make the classification more difficult and
takes more time. Larger scales can simplify the classification tasks reducing the
number of objects but at the expense of the merging of objects that might not belong
to the same class. Minimum and maximum values tested on a European larch sample

plot for the scale parameter produced 6691 segments for a value of 10 and 89

segments for for a scale value of 110 (figures 5.10 and 5.11). It was considered

unnecessary to test segmentation with values bigger than 110 as the output

corresponding to this value was already not a good representation of meaningful

objects.

Colour/shape parameter: this parameter was evaluated for values ranging from
0.9:0.1 to 0.1:0.9 in all datasets. The assignment of large weight to shape

homogeneity generally resulted in poor results (figure 5.11 c) and d)), where

neighbouring tree crowns of the same colour were assigned to the same object. This

output was expected as the algorithm developers (eCognition User Guide 4 2004)

suggested. The effect of an increase in shape weight resulted in deviation from the
colour information in which segments are smoother. However, small output

differences between the use of Colour/Shape at 0.9:0.1 and 08:0.2 mean that the tree

crowns were better represented by the last combination of values, as the former
delivered more fragmented crowns. Therefore, the combination of values that gave
best results, according to visual comparisons to the original imagery, was 0.8 for
Colour and 0.2 for Shape (figure 5.12 d)). Smoothness and compactness were kept
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constant at 08:0.2. These values were also kept constant during the analysis of the
different datasets with some exceptions which will be explained as appropriate.

Scale 40 358 objects
Figure 5.9: Results obtained from the segmentation process considering values for the
scale parameter ranging from 10 to 50 for a European larch dataset.
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Scale 100 89 objects Scale 110 84 objects
Figure 5.10: Results obtained from the segmentation process considering values for the
scale parameter ranging from 50 to 100 for a European larch dataset.

Scale 70 160 objects

Scale 90 115 objects
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a)
Scale 50 Colour/shape 0.9:0.1

Compactness/smoothness 0.5:0.5

c)
Scale 50 Colour/shape 0.3:0.7

Compactness/smoothness 0.1:0.9
207 objects

b)
Scale 50 Colour/shape 0.7:0.3

Compactness/smoothness 0.5:0.5
262 objects

d)
Scale 50 Colour/shape 0.1:0.9

Compactness/smoothness 0.5:0.5
112 objects

Figure 5.11: Results obtained from the segmentation process considering values for the
scale parameter of 50 and varying values for Colour/shape and compactness/smoothness
parameters, for a European larch dataset.
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e)
Scale 50 Colour/shape 0.9:0.1

Compactness/smoothness 0.9:0.1
254 objects

f)
Scale 50 Colour/shape 0.9:0.1

Compactness/smoothness 0.1:0.9
261 objects

g) h)
Scale 50 Colour/shape 0.9:0.1 Scale 50 Colour/shape 0.8:0.2

Compactness/smoothness 0.2:0.8 Compactness/smoothness 0.2:0.8
261 objects 253 objects

Figure 5.12: Results obtained from the segmentation process considering values for the
scale parameter of 50 and varying values for Colour/shape and compactness/smoothness
parameters.

The weights for the three colour layers (R, G, B) that compose each digital aerial

photograph were set equal for each layer. Nearest Neighbour (NN) and fuzzy
classification were performed on each dataset. Based in the knowledge acquired during
field work, samples were taken to enable NN classification and accuracy assessment of
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the fuzzy classification. For the latter, different membership functions were used to

produce the corresponding class description. Details of these functions are included in the

following sections along with the depiction of the segmentation and classification process

carried out on each sample plot dataset.

The following sections describe the analysis performed on each of the datasets.

Segmentation and classification of the dataset corresponding to the European
larch sample plot. By visual comparison to the original dataset, a scale parameter of
50 was selected because the segmentation result fitted the information class extraction
best. Based on these parameters, the segmentation process was performed. Figure
5.13 shows the segmentation result. The maximum and minimum number of

segments was 6431 for scale 10 and 89 for scale 100, respectively.

Original image Scale 50 253 objects
Figure 5.13: Results obtained from the segmentation process considering values for the
scale parameter of 50 and Colour/Shape 0.8:0.2; Compactness/Smoothness 0.8:0.2, for a
European larch dataset.

For the classification task four classes were created: Road, European larch,

Understorey species, and Gaps. Fuzzy classification was performed on the
dataset. The accuracy assessment in eCognition is carried out through the

comparison of declared samples with the classified segments, therefore 10
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samples of each category were taken (except for the road class for which just 2

samples were taken) for the building of the error matrix. For the fuzzy
classification membership functions were declared. These memberships included
the mean value of band 1, the mean of band 3, the ratio of band 1, and the

standard nearest neighbour (table 5.5).

Classes Feature Range
Road Mean band 3 190 - 255

European larch Mean band 1 105-190
Other understorey species Ratio band 1 0.30 - 0.33
Gaps Standard Nearest Neighbor 10 samples
Table 5.5: Membership functions used for the fuzzy classification of the European larch
dataset.

In a processing level 4, a segmentation based classification was performed in
order to merge the segments in the class gaps and road (figure 5.14). New

polygons for this class were created and exported to a shape file. The objective of
this processing step was to retrieve all gap areas for further analysis in chapter 6.

Figure 5.14: Grey segments represent gaps in a) and brown segments delineated in red in
the b) figure, represent the gap area after gap segments were merged.
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The classification results corresponding to the fuzzy approach are shown in figure
5.15.

a) b)
Figure 5.15: First attempt to detect European larch species using fuzzy classification a)
and final fuzzy classification of a European larch dataset b).

The results from the accuracy assessment are shown in table 5.6:

Class Objects Mean Std. Deviation Minimum Maximum

Road 9 0.888 0.314 0 1

European larch 180 0.410 0.288 0 1

Gaps 335 0.883 0.170 0.106 1

Other understorey vegetation 47 0.433 0.369 0.033 1

Accuracy Road European larch Gaps Other understorey
Producer 0.875 1 0.916 0.777

User 1 0.941 0.733 0.933

Kappa per class 0.856 1 0.884 0.692

Totals

Overall Accuracy 0.888
Kappa 0.848

Table 5.6: Fuzzy classification accuracy assessment of the European larch dataset.

Discussion of the results: Table 5.6 shows the classification stability computed over all

image objects in the scene. The number under "Objects" indicates how many objects
were classified in a certain class, for instance, 180 objects were classified as European
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larch and have the European larch membership. "Mean" represents the mean value of the
differences between the best and the second best classification membership values for
each class. "Minimum" and "Maximum" are the minimum values and maximum values

of the difference of the best and second best classification membership values for each
class. From this table it can be noted that the road and gaps classes have the best
classification stability both with a relatively high "Mean" value of 0.88. The European
larch class exhibits the lower "Mean" value of 0.41.

The classification has an overall accuracy of 0.88 and a Kappa index of 0.84. There is
thus strong agreement between the classification and the reference data.

The most important accuracy to be evaluated in this case is that of the classes of interest,

e.g., European larch and gaps. These classes have Producer's accuracy of 1 and 0.91,

respectively; User accuracies of 0.94 and 0.73, and Kappa coefficients of 1 and 0.88. The
less accurate results for the gaps class are likely due to its high spectral heterogeneity.
The objects grouped in this class represent several conditions of the ground layer, which
for this plot can be bare soil or covered by grass or bracken, each of which has a

particular spectral response. One solution to improve the classification could be to

include more classes for these different features, but as the main objective is to quantify
the total gap area, gap size and gap distribution, the effect of grouping all these features
in one class or to declare a class for each one of them does not significantly affect the
estimated values for these parameters.

Segmentation and classification of the dataset corresponding to the mixed

European larch and Douglas fir sample plot. By visual comparison to the original

dataset, a scale parameter of 30 was selected because the segmentation result fitted
the information class extraction best. Based on these parameters, the segmentation

process was performed. Figure 5.16 shows the more representative segmentation
results. The maximum and minimum number of segments were 6945 for scale 10 and
111 for scale 100, respectively.
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Original image Scale 30 911 segments

Scale 90 131 segments Scale 50 366 segments
Figure 5.16: Results obtained from the segmentation process for scale parameter values
ranging from 30 to 90 and the scale chosen for the final segmentation of 30 with values
for parameters Colour/Shape and Compactness/Smoothness set at: 0.8:0.2

For the classification task two parent classes were created: Forested and Non forested
areas. Within the Forested area class, three subclasses were defined, European larch,

Douglas fir, and Gaps, in order to describe the features of interest. Fuzzy
classification was performed on the dataset. To enable the accuracy assessment of the
classification through the construction of the error matrix, 10 samples of each

category were taken. For the fuzzy classification membership functions were

declared. These memberships are different from the functions chosen for the

European larch plot classification, due to the fact that the spectral characteristics of
the mixed plot were best portrayed by the mean NDVI value, the mean value of the

brightness, inverted similarity, and the standard nearest neighbour (table 5.7).
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Classes Feature Range
Non forested area Inverted similarity
European larch Standard nearest neighbour 10 samples
Douglas fir Mean NDVI -0.07 - 0.44
Gaps Mean brightness 1.34 - 30
Table 5.7: Membership functions used for the fuzzy classification of a mixed European
larch and Douglas fir dataset.

The results of the fuzzy classification are shown in figure 5.17. Results of the accuracy

assessment are shown in table 5.8.

Figure 5.17: Fuzzy classification results for a mixed European larch and Douglas fir plot.

Class Objects Mean Std. Deviation Minimum Maximum

European larch 373 0.406 0.211 0.023 0.955

Douglas fir 293 0.620 0.174 0.010 1

Gaps 137 0.554 0.185 0.029 0.691

Non forested area 108 0.475 0.285 0.017 1

Accuracy European larch Douglas fir Gaps Non forest

Producer 0.692 1 0.857 0.9

User 0.818 0.833 1 0.818

Kappa per class 0.6097 1 0.814 0.873

Totals

Overall Accuracy 0.865
Kappa 0.819

Table 5.8: Fuzzy classification accuracy assessment for a mixed European larch and
Douglas fir dataset.
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Discussion of the results: Table 5.8 shows the classification accuracy assessment of the

fuzzy classification for the mixed sample plot. The classification showed the lowest

stability for the European larch and non forested classes which is mainly composed of
shrub and herbaceous understorey vegetation. This problem was due to the spectral

similarity between these two classes. The best classification stability result was achieved
for the Douglas fir class (mean 0.6206) followed by the gap discrimination which also

performed well (mean 0.5548).

The lowest Kappa index was for the European larch class (0.6097) and the highest for the

Douglas fir class (1). European larch showed a lower producer's accuracy due to

omission errors where some European larch segments were classified as non forest. Due
to problems with shadows, there was a compromise during the classification and training
of samples by which some small objects that actually belong to the European larch class
were classified as gaps. These segments were obscured either by shadows or

contamination from the darker gap pixels. For a more accurate classification, each tree

class could be assigned more child classes that reflect the spectral variability within the

species, for instance, shadowed part, healthy, unhealthy, etc. As a consequence of this

compromise, an increase in gap area is expected. However, it is hypothesized that this
increase is compensated for the within-crown gaps that are not being detected and
classified as such.

Overall accuracy and Kappa index had high values were high (0.8653 and 0.8191

respectively), showing a strong agreement with the training samples. Separation of the

European larch class from grass was a difficult task. The open area covered by
herbaceous vegetation in the lower part of the image was classified by means of inverted

similarity to the forest class with the initial classification being refined manually as the
thresholds applied did not work satisfactorily and areas of non forest were often classified
as forest. The European larch class was classified by the nearest neighbour method on the
basis of 10 samples. A NDVI image (figure 5.18) was created in an attempt to

discriminate grass from European Larch and Douglas fir species. However, the NDVI

image was useful just for the separation of the Douglas fir from the rest of the classes.
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Figure 5.18: NDVI of the mixed Douglas fir and European larch sample plot.

Segmentation and classification of the dataset corresponding to a Norway spruce

sample plot. By visual comparison to the original dataset, a scale parameter of 30
was selected because the segmentation result fitted the information class extraction
best. Based on these parameters, the segmentation process was performed. Figures
5.19 and 5.20 show the more representative segmentation results. The maximum and
minimum number of segments were 3542 for scale 10 and 40 for scale 100,

respectively.

Comparing visually the images produced at scale 30 and 40 with the original dataset,
it can be seen that scale 30 performed well enough in isolating most of the trees and
that scale 40 merged the crowns that are close to each other, therefore the former
scale value was chosen for the final segmentation. Furthermore, the characteristic
circular shape of the spruce species constitutes an important discriminating factor that
should be taken in account. For that reason, from the trials carried out testing different
combination values for the colour/shape parameter, for this particular species the best
results were obtained at colour: 0.6 and shape:0.4 and these values were used for the

segmentation.
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Scale 50 178 segments Scale 100 40 segments
Figure 5.19: Results obtained from the segmentation process of a Norway spruce dataset
considering values for the scale parameter of 30, 40, 50, and 100.

Another characteristic of the coniferous stands that makes them easier to classify is
that they represent only a single-story crown canopy, as opposed to one having

multiple sub-canopy layers which are often found in deciduous stands.
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Figure 5.20: Best segmentation results obtained with parameter values of Scale 30,
Colour/ Shape 0.6:0.4 and Compactness/Smoothness 0.8:0.2 for a Norway spruce plot.

For the classification task four classes were created: Norway spruce, road,

gap/shadows, and gaps. Fuzzy classification was performed on the dataset. For the
construction of the error matrix 10 samples of each category were taken, except for
the road class which did not have as much segments and for which classification was

performed with 6 samples. For the fuzzy classification membership functions were

declared. These memberships included the mean brightness value to isolate the road
and the gaps; the mean value of band 1 to classify the gap/shadow class; and the mean

value of band 3 for the classification of Norway spruce (table 5.9).

Classes Feature Range

Norway spruce Mean band 3 53 - 81
Gap/shadows Mean band 1 11 - 27
Gaps Mean brightness 102-105
Road Mean brightness 161-247
Table 5.9: Membership functions used for the fuzzy classification of a Norway spruce
stand.

The classification results corresponding to the fuzzy approach are shown in figure
5.21.
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Figure 5.21: Fuzzy classification of Norway spruce dataset.

Results of the accuracy assessment are shown in table 5.10.

Discussion of the results: Table 5.10 shows the classification accuracy assessment of
the fuzzy classification for the Norway spruce sample plot. The spectrally most

differentiable class had the highest mean (road 0.6469) and the lowest value was for
the Gaps class (mean 0.166).

Class Objects Mean Std. Deviation Minimum Maximum

Norway spruce 228 0.315 0.121 0.011 0.566

Road 21 0.646 0.327 0.080 1

Gaps 41 0.166 0.150 0.010 0.772

Gaps/Shadows 110 0.273 0.182 0.002 0.710

Accuracy Norway spruce Road Gaps Gaps/Shadows
Producer 0.9 1 0.8 0.8

User 0.9 1 0.8 0.8

Kappa per class 0.866 1 0.733 0.733

Totals

Overall Accuracy 0.875

Kappa 0.833

Table 5.10: Fuzzy classification accuracy assessment of the aerial photography, Norway
spruce dataset.
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Producer's accuracy was best for the Road class (1), followed by Norway spruce

(0.866), Gaps and Gaps/shadows (both 0.733). Overall accuracy was high at 0.875
and the Kappa Index showed strong agreement between the classification and
reference data (Kappa = 0.833). The classification accuracy for this plot is slightly
lower than the one obtained for the classification of the European larch sample plot,

mainly because the larch trees are well spaced which facilitates their identification,
and also because the background offers a contrast for class identification; on the

contrary, the Norway spruce plot is more dense making the crowns closer to each
other, and apart from few very well identified gaps, shadowing effects make it more
difficult to separate tree crowns, gaps, and shadows. The exclusion of the class

Gaps/shadows will significantly improve the overall performance of the
classification.

Segmentation and classification of the dataset corresponding to a Sessile oak

sample plot. By visual comparison to the original dataset, a scale parameter of 20
was selected because the segmentation result fitted the information class extraction
best (figure 5.22).

This particular sample plot presents problems with shadowed segments which get

confused with gaps during the segmentation and classification. A visual analysis of
the three bands that composed the digital dataset was carried out but no single band
was able to discriminate between shadows, trees and gaps. To overcome this problem,
a new set of images was generated in Erdas Imagine, where filters were used to

maximize the texture and minimize the influence of shadow. A low pass filter with
3x3 window size, a high pass filter with 3x3 window size, a texture filter using
variance and skewness options with 3x3 and 5x5 window size respectively, as well as
the statistical filter option, were applied to generate the new images (figure 5.23).
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Scale 30 414 objects

■*£k&s/3A
■i

s

Scale 60 117 objects Scale 70 97 objects

Figure 5.22: Results obtained from the segmentation process of a Sessile oak dataset
considering values for the scale parameter of 20, 30, 40, 50, 60, and 70.
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(c) Skewness 3x3 window size (d) Variance 3x3 window size
Figure 5.23: Imagery generated using a low pass filter (a), high pass filter (b), and texture
filters using skewness (c) and variance (d) of an oak dataset.

The new set of images was visually compared to the original dataset in order to
determine which represented a best separation between the trees and their shadowed

parts. It was decided that the low pass filter produced the best discriminator and that
this dataset was chosen for segmentation using parameters for: scale parameter of 20;
colour 0.8 and shape 0.2; smoothness 0.2 and compactness 0.8. The combinations of
these options provided a result in which tree crowns were highly segmented but it was
nevertheless deemed as the best.
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For the classification task two classes were created: Gaps and Sessile oak. For the

purposes of accuracy assessment of the classification 10 samples of each category

were taken. For the fuzzy classification membership functions were declared. These

memberships included mean brightness to isolate the gaps and then inverted

simmilarity to classify the trees (table 5.11).

Classes Feature Range

Gaps Mean brightness 34.24 - 56
Sessile oak Inverted similarity 56 - 248.28
Table 5.11: Membership functions used for the fuzzy classification of a Sessile oak stand.

Figure 5.24: Fuzzy classification of a Sessile oak dataset. Final classification a) and
segments of crown trees b).

Results of the accuracy assessment are shown in table 5.12.
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Class Objects Mean Std. Deviation Minimum Maximum

Sessile oak 671 0.81 0.209 0.050 0.994

Gaps 180 0.185 0.104 0.016 0.280

Accuracy Sessile oak Gaps
Producer 0.963 0.8

User 0.963 0.571

Kappa per class 0.904 0.762

Totals

Overall Accuracy 0.863

Kappa 0.760

Table 5.12: Fuzzy classification accuracy assessment of a Sessile oak dataset.

Discussion of the results: Table 5.12 shows the classification accuracy assessment of the

fuzzy classification for the oak sample plot. The classification showed good results for
the two classes. The best result was achieved for the Sessile oak class with a producer's

accuracy of 0.96 followed for the gaps class with 0.8. The overall accuracy was 0.86 and
the Kappa Index (0.76) showed a strong agreement between classification and reference

samples.

The main constraint for this classification, as mentioned before, was the shadowing of
tree objects which could influence the estimation of the gap area. Also the gaps between
and within-crowns were very difficult to extract, especially the detection of most of the
within crown gaps would require a much more sophisticated segmentation and
classification process.
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5.8.2 Segmentation of ATM imagery

Figure 5.25 depicts the subsets of ATM containing the datasets used for segmentation and
classification using the object oriented method implemented in eCognition.

c) d)

Figure 5.25: Subsets of ATM 5,7,9 band composites showing the location of the plots
under study in the yellow boxes: European larch a); Mixed b); Norway spruce c); and
Sessile oak d).

The segmentation and classification of these datasets followed the same procedure as for
the aerial photography. The lower resolution of the data (resampled to 1 m), which also
exhibits a high spectral variation among pixels, led to the use of small segmentation
scales in the range of 20 to 30. An example of the type of crowns segmented and
classified is shown in figure 5.26.
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Figure 5.26: Multiple crowns a) and single crown b) of Sessile oak species in a
segmented and classified ATM image; bands 5,7,9 composite.

Shading, obscuration, and merging of close crowns were also problems that affected the
discrimination of individual trees. The segmentation and classification process followed
the steps planned for all the datasets and the accuracy evaluation was carried out firstly
within the eCognition program through the matrix error build with the training samples,
and secondly through the comparison of tree crown polygons derived from the object
oriented analysis against the manually delineated ground reference data.

Segmentation and classification of the ATM dataset corresponding to the

European larch sample plot. By visual comparison to the original dataset, a

scale parameter of 30 was selected because the segmentation result fitted the
information class extraction best. This segmentation scale generated 12822

segments. The values for the Colour/shape parameter and the

Compactness/smoothness parameter were set at 0.8:0.2 and 0.5:0.5, respectively.

For the classification task three classes were created: Gaps, Road, and European
larch. Fuzzy classification was performed on the dataset. For the purposes of

accuracy assessment of the classification samples of each category were taken.
For the fuzzy classification membership functions were declared. These

memberships included layer features using spectral characteristics to discriminate
between classes (table 5.13).
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Classes Feature Range

Gaps Mean brightness 5000-6100
European larch Mean brightness 2800-4000
Road Mean band 5 3200 - 5500

Table 5.13: Membership functions used for the fuzzy classification of the European larch
plot.

Figure 5.27 shows the final results of the classification.

Figure 5.27: Fuzzy classification results for the European larch sample plot ATM dataset.

Results of the accuracy assessment based on the best classification result are shown in
table 5.14.

Class Objects Mean Std. Deviation Minimum Maximum

European larch 4284 0.84 0.216 0.51 0.996

Gaps 8233 0.463 0.185 0.631 0.927

Road 305 0.39 0.071 0.422 0.503

Accuracy European larch Gaps Road

Producer 0.95 1 0.181

User 1 0.5 1

Kappa per class 0.906 1 0.139

Totals

Overall accuracy 0.756
Kappa 0.620

Table 5.14: Fuzzy classification accuracy assessment of the ATM European larch dataset.
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Discussion of results: Overall accuracy of the classification (0.756) was about 15%
lower than that obtained with aerial photography. This result was expected due to the
lower resolution of the data and the increasing difficulty for the visualization and
selection of training samples. However, from table 5.14 it can be seen that the class
with lowest accuracy was that of the Road, which was often misclassified either as

gaps or European larch. The removal of this class or the use of a more sophisticated

approach to separate spectrally the class road with a mask from the forest, could

highly improve the accuracy of the classification.

The kappa index for this classification is low but it is again influenced by the
misclassification of the road class; nevertheless, it is high enough for the
classification to be rated as in good agreement with the reference samples.

Segmentation and classification of the ATM dataset corresponding to a mixed

sample plot. By visual comparison to the original dataset, a scale parameter of 20
was selected because the segmentation result fitted the information class extraction
best. This segmentation scale generated 4640 segments. The values for the

Colour/shape parameter and the Compactness/smoothness parameter were set at

0.8:0.2 and 0.5:0.5, respectively.

For the classification task three classes were created: European larch, Douglas fir, and

Gaps. Fuzzy classification was performed on the dataset. For the purposes of

accuracy assessment samples of each category were taken. For the fuzzy
classification membership functions were declared. These memberships included the
mean of spectral bands and the nearest neighbour (table 5.15).
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Classes Feature Range

European larch Nearest neighbour 10 samples
Douglas fir Mean band 9 430 - 780
Gaps Mean band 9 220 - 350
Table 5.15: Membership functions used for the fuzzy classification of a mixed sample
plot.

Figure 5.28 shows the final results of the classification.

Figure 5.28: Fuzzy classification results for ATM imagery containing a mixed stand of
European larch and Douglas fir species.

Results of the accuracy assessment are shown in table 5.16.

Class Objects Mean Std. Deviation Minimum Maximum

European larch 2825 0.759 0.157 0.673 0.863

Douglas fir 1347 0.525 0.311 0.486 0.966

Gaps 468 0.675 0.202 0.542 0.748

Accuracy European larch Douglas fir Gaps

Producer 1 0.7 0.6

User 0.769 0.6364 1

Kappa per class 1 0.5263 0.5

Totals

Overall accuracy 0.766
Kappa 0.650

Table 5.16: Fuzzy classification accuracy assessment of the ATM mixed European larch
and Douglas fir dataset.
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Discussion of results: Overall accuracy (0.766) of the classification of this data set is
in the range of the previous ATM classifications. Again, classification of the Gaps
class obtained the lowest accuracy with producer's accuracy of 0.6 compared to 1 for
the European larch and 0.7 for the Douglas fir class. The Kappa index was 1 for the

European larch , 0.52 for the Douglas fir, and 0.5 for the Gaps class. It is noted that

European larch was classified by means of nearest neighbour, the straightforward way
for classification in eCognition. It was found that when the objects subject to

classification have a more or less homogeneous spectral response, i.e. without large

spectral variations within and between objects in the same class, the nearest

neighbour method provides a reliable method for classification.

Segmentation and classification of the ATM dataset corresponding to a Norway

spruce sample plot. By visual comparison to the original dataset, a scale parameter

of 30 was selected because the segmentation result fitted the information class
extraction best. This segmentation scale generated 3361 segments. The values for the

Colour/shape parameter and the Compactness/smoothness parameter were set at

0.8:0.2 and 0.5:0.5, respectively.

For the classification task three classes were created: Norway spruce, Gap/shadows,
and Gaps. Fuzzy classification was performed on the dataset. For the purposes of

accuracy assessment samples of each category were taken. For the fuzzy
classification membership functions were declared. These memberships included the
mean of spectral bands and the nearest neighbour (table 5.17).

Classes Feature Range

Norway spruce Nearest neighbour 15 samples
Gap/shadows Mean maximum difference 3.0 - 3.4
Gaps Mean maximum difference 1.8-2.0
Table 5.17: Membership functions used for the fuzzy classification of a Norway spruce
sample plot.

Figure 5.29 shows the final results of the classification.
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Figure 5.29: Fuzzy classification results for the Norway spruce sample plot ATM dataset.

Results of the accuracy assessment are shown in table 5.18.

Class Objects Mean Std. Deviation Minimum Maximum

Norway spruce 2447 0.981 0.093 0.589 1

Gap/shadow 745 0.670 0.148 0.332 0.507

Gaps 169 0.471 0.266 0.364 1

Accuracy Norway spruce Gap/shadow Gaps

Producer 0.916 0.692 0.785

User 0.785 0.750 0.846

Kappa per class 0.870 0.555 0.678

Totals

Overall accuracy 0.794
Kappa 0.692

Table 5.18: Fuzzy classification accuracy assessment result for a Norway spruce ATM
dataset.

Discussion of results: The overall accuracy for this classification was 0.794 and the

Kappa index was 0.692 showing a moderate agreement with the trained samples.
Producer's accuracies varied from 0.916 for the Norway spruce class to 0.692 for the

Gap/shadow class. Kappa index per class showed similar values with 0.870 for the

Norway spruce class, 0.678 for the Gap class and 0.555 for the Gap/shadow class, the
latter being the poorest classified class.
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Segmentation and classification of the ATM dataset corresponding to the Sessile
oak sample plot. By visual comparison with the original dataset, a scale parameter of
20 was selected because the segmentation result fitted the information class extraction
best. This segmentation scale generated 8276 objects. The values for the

Colour/shape parameter and the Compactness/smoothness parameter were set at

0.8:0.2 and 0.5:0.5 respectively.

For the classification task two classes were created: Gaps and Sessile oak. Fuzzy
classification was performed on the dataset. For the purposes of accuracy assessment

classification samples of each category were taken. For the fuzzy classification

membership functions were declared. These memberships included layer features

using spectral characteristics to discriminate between classes but shape features were

also included to aid in the classification (table 5.19).

Classes Feature Range
Gaps Mean band 9 223 - 354
Sessile oak Mean band 9 500 - 950

Table 5.19: Membership functions used for the fuzzy classification of the European larch
plot.

Figure 5.30 shows the final results of the classification.

Figure 5.30: ATM composite of bands 5,7,9 showing the oak plot under study and its
respective classification by means of fuzzy logic. Oak tree pixels are shown in green and
gap pixels in black.

214



Object Oriented Tree and Gap Classification

Results of the accuracy assessment based on the best classification result are shown in
table 5.20.

Class Objects Mean Std. Deviation Minimum Maximum

Sessile oak 484 0.508 0.031 0.452 0.98

Gaps 7792 0.729 0.026 0.66 1

Accuracy Sessile oak Gaps
Producer 0.933 0.692

User 1 1

Kappa per class 0.866 0.546

Totals

Overall Accuracy 0.821

Kappa 0.693

Table 5.20: Fuzzy classification accuracy assessment of the Sessile oak ATM dataset.

Discussion of the results: Although it represents a very complex mature canopy of
trees more than 100 years old, this dataset was relatively easy to classify as the only
distinction to be made was between trees and gaps. The gap class in this dataset is
characterised by very dark colour which spectral reflectance is very distinctive in
band 9. The tree crowns are characterised by a spectral range, with the highest values

denoting the top of the trees. However, the part of the trees obscured by shadows was

often misclassified as gaps and therefore the accuracy of the classification was

affected by this fact. The detection of within-crown gaps was particularly difficult
and a compromise was made in which segments exhibiting a part of gap and a part of
shadowed or obscured trees were assigned to a higher height class (i.e., belonging to a

tree) if the tree part of the segment was greater than the gap part of the segment. As a

consequence, total gap area derived from this dataset will be smaller than its actual

counterpart in the ground reference dataset.

Nevertheless, the overall accuracy was 0.82, just slightly lower than that of the
obtained through aerial photography (0.86). The Kappa index (0.69) was again lower
than its counterpart for aerial photography (0.76) but it is still in good agreement with
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the trained samples. The Sessile oak class had a higher producer's accuracy and

Kappa index (0.93 and 0.86, respectively) than the Gaps class (0.69 and 0.54,

respectively).

5.8.3 Segmentation of LiDAR derived DCM
The LiDAR-derived DCM of each plot was used as input for the eCognition

segmentation and object-oriented classification algorithm. As the LiDAR data lacks

significant information about fine scale texture, the only feature available for

segmentation and classification is height.

Segmentation of the LiDAR dataset corresponding to the European larch sample

plot. The segmentation was carried out considering the following parameters: scale 4,
Colour/ Shape: 0.8:0.2 and Compactness/Smoothness: 0.5:0.5, which were selected
after an exhaustive process of trial-error due to their closest fitting when visually

compared to the referenced data The segments were classified using a fuzzy
classification. For the accuracy evaluation samples were taken on the "mean" object
feature in height classes at 5 metre intervals from 0 m to >30 m.

Accuracy 0-5 5-10 10-15 15-20 20-25 25-30 >30

Producer 1 0.9 0.7 0.777 0.727 0.9 1

User 1 1 0.875 0.636 0.666 0.9 1

Kappa per class 1 0.885 0.661 0.736 0.670 0.883 1

Totals

Overall accuracy 0.857

Kappa 0.833

Table 5.21: Fuzzy classification accuracy assessment of the European larch LiDAR
dataset.

Discussion of the results: The accuracy of the classification according to the Overall
and Kappa index is in strong agreement with the referenced samples. Overall

accuracy was 0.857 and the Kappa index of agreement was 0.833. These accuracy

values are higher than the ones obtained using the ATM dataset (0.756 and 0.620,
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Overall accuracy and Kappa index respectively) but lower that their counterparts

obtained through the use of aerial photography (0.888 and 0.848). The best classified
classes were the ones corresponding to the low and top heights. There is no apparent

explanation for the misclassification of certain classes, but they did not significantly
affect the overall accuracy.

Segmentation of the LiDAR dataset corresponding to the mixed sample plot. The

segmentation was carried out on the basis of the following parameters: scale 4,

Colour/Shape: 0.8:0.2 and Compactness/Smoothness: 0.5:0.5. Figure 5.31 a) shows
the results of the segmentation procedure. The segments were classified using a fuzzy
classification. For the accuracy evaluation a number of 10 samples per class were

compared to the objects classified using the "mean" object feature in height classes at

5 metre intervals from 0 m to >30 m.

O 0 " 5
#5-10
#10-15

■

> #15-20
O 20 - 25

b)

Figure 5.31: Whole stand segmentation a) and segmentation of a single European larch
crown b) extracted from the classification of the LiDAR dataset corresponding to a
mixed (European larch and Douglas fir) sample plot with overlaid eCognition segments.

The accuracy assessment of the classification is shown in table 5.22.
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Accuracy 0-5 5-10 10-15 15-20 20-25 25-30 >30

Producer 1 0.75 0.666 0.666 0.75 1 1

User 0.75 1 1 0.666 1 0.666 0.75

Kappa per class 1 0.710 0.633 0.614 0.710 1 1

Totals

Overall accuracy 0.818

Kappa 0.788

Table 5.22: Fuzzy classification accuracy assessment of the mixed species LiDAR
dataset.

Discussion of the results: Overall accuracy for this classification (0.81) is lower than
for the dataset corresponding to the European larch plot (0.92). When comparing to

the classification of this plot using different datasets, the overall accuracy obtained
with LiDAR is higher than that obtained using the ATM data (0.766) and lower than
that yield by the aerial photography classification (0.865). Kappa index of 0.78 is also

significantly higher than that of the ATM classification (0.650) and lower than the

Kappa index value obtained using aerial photography (0.819). The lower accuracy

obtained in this classification in comparison to the accuracy values of the European
larch stand, might be explained by the increase in tree density, the mix of species

against a pure stand, and also for the different topographic characteristics of this plot
which exhibit a slope of ±60° in comparison with the relatively flat terrain in which
the European larch stand lies. The best classified classes were again the ones

corresponding to the low and top heights.

Segmentation of the LiDAR dataset corresponding to the Norway spruce sample

plot. The segmentation was carried out considering the following parameters: scale 2,

Colour/Shape: 0.8:0.2 and Compactness/Smoothness: 0.5:0.5. Figure 5.32 shows the
results of the segmentation procedure. The segments were classified using a fuzzy
classification. For the accuracy evaluation a number of 10 samples per class were

compared to the objects classified using the "mean" object feature in height classes at

5 meter intervals from 0 to 25.
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Figure 5.32 shows the segmentation result of the corresponding LiDAR dataset.

Figure 5.32: Segmentation of the LiDAR dataset corresponding to a Norway spruce
sample plot.

The following table (5.23) shows the classification accuracy assessment results:

Accuracy 0 1 in 5-10 10-15 15-20 20-25

Producer i 0.8 0.833 1 1

User i 1 0.714 0.6 1

Kappa per class i 0.752 0.75 1 1

Totals

Overall accuracy 0.809

Kappa 0.752

Table 5.23: Fuzzy classification accuracy assessment of the Norway spruce LiDAR
dataset.

Discussion of the results: Overall accuracy of the classification was 0.809 and

Kappa index was 0.752. These values are higher in comparison to those obtained

using ATM data (0.794 and 0.692) but lower than those obtained through aerial

photography (0.875 and 0.833). Lower and highest height classes were the best
classified. This might be explained as a consequence of the medium density of the

plot where trees were well separated and because of the typical shape of the trees with
one crown top clearly defined for most of the trees.
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Segmentation of the LiDAR dataset corresponding to the Sessile oak sample plot.
The segmentation was carried out considering the following parameters: scale 7,
Colour/ Shape: 0.8:0.2 and Compactness/Smoothness: 0.5:0.5. . Figure 5.33 shows
the results of the segmentation procedure. The segments were classified using a fuzzy
classification. For the accuracy evaluation 10 samples per class were compared to the

objects classified using the "mean" object feature in height classes at 5 metre

intervals from 0 m to 25 m.

Figure 5.33: Segmentation of the LiDAR dataset corresponding to a Sessile oak sample
plot.

Table 5.24 shows the classification accuracy assessment result:

Accuracy 0-5 5-10 10-15 15-20 20-25

Producer 0.666 0.8 0.666 1 0.8

User 0.666 0.8 0.666 0.666 0.8

KIA per class 0.604 0.728 0.604 1 0.728

Totals

Overall accuracy 0.736

KIA 0.664

Table 5.24: Fuzzy classification accuracy assessment of the Sessile oak LiDAR dataset.
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Discussion of the results: Overall accuracy of the classification was 0.736 and

Kappa index was 0.664. These values were lower in comparison to those obtained

using ATM data (0.821 and 0.693) and aerial photography (0.863 and 0.760). Lower
accuracies in comparison with the other plots might be explained by the complexity
of the hardwood canopy accompanied by a high tree density. Discrimination of single
trees was very difficult due to the canopy appearance as a continuous surface in
which several crowns are merged. The class height with better producer accuracy was
between 15 - 20 m and the classes with lower accuracy were the ones corresponding
to 0 - 5 m and 10 -15 m. The class 0 - 5 m height best corresponded to gaps.

5.8.4 Segmentation and classification of the aerial photography and LiDAR data
In this segmentation analysis, the three bands of the aerial photographs and the DCM
with the height information about the plots were used as input for the eCognition process.

In order to emphasize the height information contained in the DCM, a high weight (5)
was assigned to the DCM layer. The selection of this weight was performed empirically

through a process of trial and error.

The classification process was carried out in much the same way as for the aerial

photography dataset alone but now the information about height allowed a better
discrimination of non forested areas including gaps (figure 5.34).
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Figure 5.34: Aerial photograph and LiDAR (background) datasets with eCognition
segments overlaid, corresponding to a Norway spruce plot. Note the segment delineated
in red depicting a sunlit understory material visible and its correspondent height value in
the LiDAR derived DCM band.

The accuracy assessment results for the classifications corresponding to the different

plots are shown in tables 5-25 to 5.28.

Accuracy European larch Gaps Road

Producer 1 0.90 1

User 0.937 1 1

Kappa per class 1 0.878 1

Totals

Overall accuracy 0.975
Kappa 0.960

Table 5.25: Fuzzy classification accuracy assessment of a LiDAR and aerial photography
dataset for European larch.
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Accuracy European larch Douglas fir Gaps

Producer 0.923 1 0.875

User 0.923 1 0.875

Kappa per class 0.867 1 0.831

Totals

Overall accuracy 0.935
Kappa 0.901

Table 5.26: Fuzzy classification accuracy assessment of a LiDAR and aerial photographic
mixed European larch and Douglas fir dataset.

Accuracy Norway spruce Gap/shadow Gaps Road

Producer 0.88 0.88 1 1

User 1 1 1 1

Kappa per class 0.815 0.815 1 1

Totals

Overall accuracy 0.952

Kappa 0.932

Table 5.27: Fuzzy classification accuracy assessment result for a LiDAR and aerial
photographic Norway spruce dataset.

Accuracy Sessile oak Gaps
Producer 0.882 0.900

User 0.937 0.818

Kappa per class 0.711 0.831

Totals

Overall Accuracy 0.888

Kappa 0.766

Table 5.28: Fuzzy classification accuracy assessment of a LiDAR and aerial photographic
Sessile oak dataset.

Discussion of the results: On the basis of comparison to the reference samples, the
classification results performed well for all plots. The best classification results were for
the European larch plot with a producer's accuracy of 0.975 and KIA 0.96, and the lower
classification accuracy was for the oak plot with producer accuracy of 0.86 and KIA 0.72.

Overall, accuracies were lower than the obtained using aerial photography and higher
than the obtained using ATM data. All classifications were in good agreement with the
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reference samples. The addition of the height LiDAR data was particularly useful when

separating non-forest areas (herbaceous vegetation) from the forested areas which was a

problem during the segmentation of the aerial photography alone due to the spectral

similarity of some tree species to open areas with grass, as in the European larch and
mixed plots. Discrimination between gaps and shadowed parts of trees was also aided by
the LiDAR information.

5.8.5 Segmentation and classification of the multispectral and LiDAR data
In the multi-resolution segmentation process, the influence of the DCM and the multi-

spectral bands on object generation was controlled by layer weight, scale parameters, the
amount of colour and shape factors. Again, the LiDAR layer was assigned a high weight

(weight = 5) in comparison with the multispectral bands 5, 7, 9 (weiht = 1). Note that

eCognition assign weights to internally sum to 1.

The accuracy assessment results for the classifications corresponding to the different

plots are shown in tables 5.29 to 5.32.

Accuracy European larch Gaps Road

Producer 1 0.875 1

User 0.928 1 0.909

KIA per class 1 0.805 1

Totals

Overall accuracy 0.948

KIA 0.922

Table 5.29: Fuzzy classification accuracy assessment of a LiDAR and ATM European
larch dataset.
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Accuracy European larch Douglas fir Gaps

Producer 0.818 1 0.92

User 0.9 1 0.857

KIA per class 0.75 1 0.88

Totals

Overall accuracy 0.921

KIA 0.882

Table 5.30: Fuzzy classification accuracy assessment of a LiDAR and ATM mixed
European larch and Douglas fir dataset.

Accuracy Norway spruce Gap/shadow Gaps Road

Producer 1 0.777 0.75 1

User 0.92 0.777 0.857 1

KIA per class 1 0.697 0.685 1

Totals

Overall accuracy 0.882

KIA 0.837

Table 5.31: Fuzzy classification accuracy assessment result for a LiDAR and ATM
Norway spruce dataset.

Accuracy Sessile oak Gaps
Producer 0.866 0.80

User 0.866 0.80

KIA per class 0.666 0.814

Totals

Overall Accuracy 0.845

KIA 0.666

Table 5.32: Fuzzy classification accuracy assessment of a LiDAR and ATM Sessile oak
dataset.

Discussion of the results: Again note that for all plots the classifications are more

accurate than on the basis of ATM data alone. Flowever, the addition of aerial

photography data to the classification did not represent a significant improvement over
LiDAR data on its own. The best classification results were for the European larch plot
with a producer accuracy of 0.948 and KIA 0.922, and the lower classification accuracy

was for the oak plot with producer accuracy of 0.845 and KIA 0.666. The lower
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resolution of the multispectral dataset complicated the segmentation and classification

process, tree crown details were diluted and was difficult to make a judgement about the

quality of the segmentation.

5.8.6 Results summary

Table 5.33 present the overall and Kappa accuracies values obtained for all the
classifications per species and per dataset.

Species European larch Mixed Norway spruce Sessile oak

Dataset

Aerial Ph.

Overall Kappa Overall Kappa Overall Kappa Overall Kappa

0.888 0.848 0.865 0.819 0.875 0.833 0.863 0.760

ATM 0.756 0.620 0.766 0.650 0.794 0.692 0.821 0.693

LiDAR 0.857 0.833 0.818 0.788 0.809 0.752 0.736 0.664

LiDAR+
Aerial Ph.

0.975 0.960 0.935 0.901 0.952 0.932 0.888 0.766

LiDAR+
ATM

0.948 0.922 0.921 0.882 0.882 0.837 0.845 0.666

Table 5.33: Overall and Kappa accuracies values obtained trough object oriented
segmentation and classification per species and per dataset.

Best classification results were obtained through the combination of aerial photography
and LiDAR data for all species. This is explained by the high resolution of aerial

photography (25 cm) in comparison with 1 m spatial resolution of multispectral data. The
inclusion of the LiDAR dataset increased classification accuracies of both aerial

photography and ATM datasets although in different proportions (Table 5.34). The
results also indicated that the LiDAR data performed less accurately than aerial

photography but better than ATM data.
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Species T.iDAR + AP - AT LiDAR I ATM ATM Difference

European larch 0.087 0.192 0.027

Mixed species 0.07 0.155 0.014

Norway spruce 0.077 0.088 0.07

Sessile oak 0.025 0.024 0.043

Table 5.34: Comparison of differences in classification accuracy between Aerial
Photography (AP) and Airborne Thematic Mapper (ATM) datasets after inclusion of the
LiDAR data.

The largest increases in classification accuracy for aerial photography datasets with the
addition of height information was for European larch (8.7%), followed by Norway

spruce (7.7%), the mixed plot (7%) and lastly the Sessile oak (2.5%) species. Similarly
for the ATM datasets, the highest improvement was for the European larch plot (19.2%),
followed by the mixed plot (15.5%), the Norway spruce (8.8%) and the Sessile oak
dataset (2.4%). The results seem to indicate that the problems arising in classifications of

optical data such as aerial photography or multispectral data such as ATM due to spectral
similarities between classes can be resolved by the introduction of height information

through LiDAR. However, the benefit of this addition still depends on density of the
stand and distance between trees, as the most obvious factors influencing the
classification in this study, and which are probably also species dependent. In their tree
crown delineation using high resolution imagery, Mei and Durrieu (2004) noted that the
results concerning tree segmentation were "stand dependant"; Tiede et al. (2004) also

reported that tree detection and delineation results vary with canopy age, density, and
dominance structure. Other factors to be considered are related to the accuracy of the
LiDAR derived DCM itself which is also affected by topography and density of the

stand, so that in stands with more gaps and greater distances between trees a better

penetration of the laser hits occur and DCM accuracies are expected to be higher. Besides

that, algorithms used for interpolation and generation of continuous surfaces could

produce excessive smoothness of the terrain and/or canopy features, which might also
influence the accuracy of the results.
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All classifications were found to be more accurate when aerial photography plus LiDAR

against ATM plus LiDAR were used, although the differences in accuracy were small

(ranging from 1.4% to 7%). However, these classifications were run on a limited area,

just big enough to include the sample plots (50 m x 50 m), and the stands examined were

pure stands (European larch, Norway spruce, Sessile oak) or a two species stand as in the
case of the mixed plot (European larch and Douglas fir) and all plots contained trees of
the same age and which were more or less regularly distributed. These plot characteristics
and the ultimate goal of the study, lead to relatively simple classifications considering

just a few classes and run just over the sampled area. When forest stands comprise
several species and of diverse tree ages over large areas, segmentation and classification
accuracies are expected to be lower; for example, Collins et al. (2004) found the

eCognition procedure for extracting image objects inadequate. They analyzed LiDAR
and multispectral data (0.3 m resolution) on seven species obtaining an overall
classification result of 0.3211 and attributed the poor results to the intermingled nature of
hardwood tree crowns in high density areas which hampered the potential of eCognition
to recognize individual tree crowns.

5.9 Validation of classification against manual delineation
The results of the object-oriented classification performed in eCognition were compared
to the manually delineated tree shape files considered as the ground reference data. The
number and size of detected trees were analyzed for each selected plot and compared to

40 manually delineated individual crowns per plot derived from the aerial photography.
The layers were compared in vector format. Among the strategies used in other studies
for the assessment of matching between automatic and manually delineated tree crowns,

two were considered as potentially useful for this analysis. One, developed by Leckie et

al. (2005), considers 20 categories of overlaps between the polygons and the other,

developed by Mei and Durrieu (2004), establishes seven types of overlaps. After a first

accuracy assessment using both methodologies, the one designed by Mei and Durrieu

(2004) was found to be more adapted to the purpose of this thesis, more understandable
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and easier to use, and therefore it was chosen for segmentation accuracy assessment

(figure 5.35). The categories of overlap are defined as follows:

correctly segmented with

manual delineation 9 problem of area

segmentation

Figure 5.35: Comparison between reference crowns (manual delineation - blue) and
eCognition generated crowns (red) over the European larch plot. Note the different types
of overlaps observed, displayed on the right.

Well identified tree occur when there is a one-to-one correspondence (only one

segment associated with one ground delineation and viceversa), or with a

tolerance of two pixels between both boundaries and with an overlap area greater

than 80% of the delineated tree area.

Over-segmented trees occur when more than one segment is associated with one

ground delineation.

Under-segmented trees indicates that a segment includes significant part (>10%)
of more than one tree.
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Trees that are both over-segmented and under-segmented, which means that

among the several segments associated with the ground delineation at least one is
common to two or more trees.

Trees that are well identified but with an overlap area <80% of the delineated tree

area; omitted trees; and finally segments not associated with a tree (commission

errors).

The results of the spatial comparison between the eCognition segmentation method and
the ground reference dataset are presented in tables 5.35 to 5.39. The comparison was

performed for the individual and combined datasets (aerial photography, ATM, LiDAR,
aerial photography + LiDAR, ATM + LiDAR), and for the different sample plots

(European larch, Norway spruce, Sessile oak, Mixed plot).

Aerial Photography

European larch Mixed Norway spr. Sessile oak

# trees % # trees % # trees % # trees %

Trees correctly segmented 25 62.5 14 35 12 30 1 2.5

Trees correctly segmented with
a problem of area

0 0 3 7.5 1 2.5 2 5

Trees over-segmented 12 30 8 20 14 35 8 20

Trees under-segmented 0 0 0 0 0 0 0 0

Trees over- and under-

segmented
3 7.5 15 37.5 13 32.5 28 70

Trees omitted 0 0 0 0 0 0 1 2.5

Extra segments 2 5 3 7.5 3 7.5 3 7.5

Correct (segmentation +area) 25 62.5 17 42.5 13 32.5 3 7.5

Table 5.35: Comparison between eCognition extracted crowns and ground reference data
for the aerial photography datasets.
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Airborne Thematic Mapper

European larch Mixed Norway spr. Sessile oak

# trees % # trees % # trees % # trees %

Trees correctly segmented 12 30 9 22.5 8 20 1 2.5

Trees correctly segmented with
a problem of area

3 7.5 2 5 2 5 0 0

Trees over-segmented 0 0 4 10 5 12.5 0 0

Trees under-segmented 0 0 0 0 0 0 0 0

Trees over- and under-

segmented
25 62.5 24 60 23 57.5 38 95

Trees omitted 0 0 1 2.5 2 5 1 2.5

Extra segments 5 12.5 7 17.5 6 15 9 22.5

Correct (segmentation +area) 15 37.5 11 27.5 10 25 1 2.5

Table 5.36: Comparison between eCognition extracted crowns and ground reference data
for the ATM imagery.

LiDAR

European larch Mixed Norway spr. Sessile oak

# trees % # trees % # trees % # trees %

Trees correctly segmented 18 45 10 25 7 17.5 1 2.5

Trees correctly segmented with
a problem of area

6 15 0 0 3 7.5 0 0

Trees over-segmented 0 0 0 0 0 0 0 0

Trees under-segmented 0 0 0 0 0 0 0 0

Trees over- and under-

segmented
14 35 29 72.5 27 67.5 37 92.5

Trees omitted 2 5 1 2.5 3 7.5 2 5

Extra segments 4 10 4 10 3 7.5 8 20

Correct (segmentation +area) 24 60 10 25 10 25 1 2.5

Table 5.37: Comparison between eCognition extracted crowns and ground reference data
for the LiDAR datasets.
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Aerial Photography + LiDAR

European larch Mixed Norway spr. Sessile oak

# trees % # trees % # trees % # trees %

Trees correctly segmented 28 70 19 47.5 18 45 3 7.5

Trees correctly segmented with
a problem of area

0 0 0 0 2 5 3 7.5

Trees over-segmented
0 0 0 0 0 0 0 0

Trees under-segmented
0 0 0 0 0 0 0 0

Trees over- and under-

segmented
12 30 21 52.5 20 50 33 82.5

Trees omitted 0 0 0 0 0 0 1 2.5

Extra segments 2 5 4 10 3 7.5 5 12.5

Correct (segmentation +area) 28 70 19 47.5 20 50 6 15

Table 5.38: Comparison between eCognition extracted crowns and ground reference data
for the aerial photography and LiDAR datasets combined.

Airborne Thematic Mapper + LiDAR

European larch Mixed Norway spr. Sessile oak

# trees % # trees % # trees % # trees %

Trees correctly segmented 13 32.5 12 30 14 35 3 7.5

Trees correctly segmented with
a problem of area

4 10 2 5 3 7.5 0 0

Trees over-segmented
0 0 0 0 0 0 0 0

Trees under-segmented
0 0 0 0 0 0 0 0

Trees over- and under-

segmented
23 57.5 25 62.5 21 52.5 3 7.5

Trees omitted 0 0 1 2.5 2 5 1 2.5

Extra segments 4 10 5 12.5 6 15 10 25

Correct (segmentation +area) 17 42.5 14 35 17 42.5 3 7.5

Table 5.39: Comparison between eCognition extracted crowns and ground reference data
for the ATM and LiDAR datasets combined.

232



ObjectOriented Treeand Gap Classification

Discussion of the results: Almost all ground reference crowns in each plot were

identified, with most of them falling in the category of "over and under-segmented". The
best match between ground reference and automatic segmentation was for the European
larch plot using aerial photography with LiDAR (28 out of 40 trees were accurately
delineated equivalent to 70%), followed by aerial photography (62.5%), LiDAR (60%),
ATM with LiDAR (42.5%) and ATM (37.5%). The low accuracy obtained with ATM
data on its own is explained by the low spatial resolution (2 m) of this dataset. Other
studies for crown delineation, such as the carried out by Leckie et al. (2005), have

reported that 50 - 60% of trees had a good match between manual and automated crown

delineation, using CASI multispectral imagery of 70 cm resolution.

Good crown delineation accuracies were highly related to low density and high distances
between trees in the stands. Of the plots under study, the European larch is the least dense
and with a distance between trees of ± 4 m, followed by the Norway spruce and the
mixed plot (European larch and Douglas fir) both of them being of medium density and
with space between trees of 2 m, and finally the Sessile oak plot with the higher density
and irregular spatial distribution of the trees. For example, accurate delineation reached
70% for the European larch plot where trees are well spaced and isolated but very low

(15%) for the complex and dense canopy of the sessile oak plot. Also within plots where
shadows or a poor contrast between understorey and overstorey exists, delineation
accuracies are low.

For the sessile oak plot, a homogeneous stand with high density and trees close to each

other, the accuracies were low. It was difficult to achieve good crown isolation on the oak

plot mainly because of the different crown sizes which required different scales for

segmentation. Thus, to isolate the smaller crowns using eCognition, it is unavoidable to

over-segment the larger tree crowns. Even the isolation of tree crowns for manual
delineation on the high spatial resolution aerial photographs was a difficult task.

Most of the trees were over-segmented. Considering that there were few omissions (less
than 3 trees per plot), the accuracy of the classification could be assessed considering the
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quantity of trees that were detected, without regard of the degree of segmentation of each
crown. According to that, accuracies could be much higher as most of the trees were

effectively detected (all over 90%). Omissions mainly occurred because of shadowing
effects over the tree crowns. There were also some extra segments (up to 10 segments in
one plot or 25%) generated usually on the borders of trees with gaps and in dark areas.

5.10 Summary
This chapter explored how well the object oriented method implemented in eCognition

performed for segmentation and classification of tree crowns for diverse species and

structure, using three different sources of data at various spatial and spectral resolutions.
The approach used in this analysis was experimental as several combinations of values
for the parameters scale, colour/shape and smoothness/compactness were investigated. It
is clear that for a dataset that is being segmented and classified, the assignment of
different parameter values will produce different results. The methodology for such

assignment of parameter values it has not been yet standardized, which introduces a

certain degree of subjectivity within the analysis. In general, small scale values and more

weight for the colour parameter gave the best results. The level of optimization needed to
obtain meaningful results could be considered high although sophisticated functions and
tools implemented within the software not were used in their totality. The determination
of the number of levels to use and the parameter values was complex and time-

consuming. Different levels of aggregation were applied and the use of functions such as

classification-based segmentation was useful as the software tends to the over-

segmentation of the features.

In general, it was found that this method of classification, although complex in the

assignment of segmentation parameters, produces results that greatly matched the ground
referenced data.

Two results were analyzed with respect to the accuracies obtained: first, the accuracy

assessment of the classifications for which overall values between 0.845 and 0.945 were
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obtained, and second, the assessment of the match between segmented crowns and
manual delineation for which accuracies ranged between 37.5% to 70%.

Best accuracies were for the European larch species in a low density plot and highly

spaced trees, and lowest accuracies corresponded to the Sessile oak species in a high

density plot and with less distance between trees. Shadowing between and within crowns

and spectral similarities between under- and overstorey components were a major

problem especially for the classification of dense plots (Norway spruce and sessile oak).
This fact emphasize the data acquisition time as an important variable to consider in order
to take full advantage of spatial and spectral data characteristics of the species under

study and to maximize the contrast between under- and overstorey.

The spectral information from aerial photography, ATM and tree height data derived
from LiDAR used as input for object oriented segmentation and fuzzy classification

provides useful information for forest inventory and monitoring. The combination of
LiDAR height data with multispectral imagery allowed species classification with
accuracies close to those obtained using aerial photography. Crown delineation, however,
was limited especially in complex canopies and high density stands where LiDAR data

produced a continuous canopy where individual crowns were difficult to detect, and in
which the spatial resolution of the ATM data was not sufficient to allow crown isolation.

Although the eCognition fuzzy classifications provide good results and offer a way to

fully explore the increasing spatial and spectral resolution of the remote sensing

techniques, its use on a daily basis within the forestry community is hampered by some

disadvantages:
1. The use of the software requires highly skilled personnel.
2. Considerable effort is invested on the setting up of segmentation parameters.

3. Every dataset needs a different parameters value to be found for the segmentation

process to produce meaningful results.
4. The software tends to 'over-segment' bright areas, which affects the recognition

and extraction of some vegetated species.
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5. The processing of large datasets, for instance a full Landsat scene, requires at

least 3 hours of processing time.
6. The cost per license is high (~ £10000).

The datasets evaluated in this research for segmentation purposes correspond to even-

aged, single species plots. The diversity in species, ages, sizes, and crown shapes
introduced by CCF will make the segmentation and classification processes in eCognition

very complex.

The comparison of the eCognition results with other segmentation packages

commercially available such as Erdas Imagine, SPRING, and InfoPack, could help in the
identification of a cost-effective tool.
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Chapter 6

Canopy cover and light interception underneath a forest

6.1 Introduction

The forest light environment greatly affects stand regeneration, structure, and

productivity. A variety of methods have been used to measure incoming radiation at

different spatial and temporal scales (Englund et al. 2000), including hemispherical

photography, spherical densiometry, and light sensors coupled to dataloggers. Light
sensors are the most accurate source of light estimates beneath a forest canopy but

they are expensive and endure high maintenance costs (Inoue 2004). These groun-

based methods are also generally time consuming, the equipment can be expensive
and cumbersome, and the measurements are dependant on the weather (Brown et al.

2000).

It is expected that the increase in resolution and dimensionality of remotely sensed
data could help in the development of predictive models for forest dynamic that are
needed for forest management. Such data could therefore provide the ecological detail
missed by the other sensors and techniques (Levin 1992), for instance, the ecological

relationships beneath a forest canopy. Such relationships are related spatially to the

pattern of canopy gaps and sunlight penetration (Silbernagel and Moeur 2001).

Studies of canopy gaps have contributed significantly to our understanding of the role
of small-scale disturbances in forest ecosystems, but have been little used by foresters
for predicting ecosystem response to silvicultural systems (Coates and Burton 1997).

Gap distribution and size are aspects that play a vital role within forest dynamics.

Canopy gaps are a natural feature of the forest and important for the regeneration of

plant species; thus, trees and gaps define the forest (van Dam 2001). The size of the

gap is of particular importance, since research has shown that differences in size of

gaps result in differences in species composition of the next cycle (Whitmore 1989).

Gap size, position within a gap or distance from a gap edge may all be just as
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important as the gap/non-gap distinction at a site location, but it is really the point-

specific irradiance input or (conversely) canopy closure that is most predictive of tree

growth, plant phenology, nitrogen mineralization, suitability as insect habitat and

myriad other ecological processes (Coates and Burton 1997).

Although a LiDAR-based horizontal structural characterisation of forests has been
carried out in several studies (Hill and Thomson 2005, Leckie et al. 2005, Heurich

and Weinacker 2004, St. Onge and Vepakomma 2004), the description of gap sizes
and their spatial distribution has been approached in more traditional ways, mainly

using ground-based data such as hemispherical photography and scene simulation.

Considering that the spatial structure of canopy trees is highly related to the amount of

sunlight intercepted by the canopy, objective estimates of canopy openness and gap

distribution can aid in the construction and interpretation of understorey light and
forest dynamics models, and provide empirical knowledge of canopy structure for
woodland management (Silbernagel and Moeur 2001).

6.2 Objectives

In this chapter the main objective was to investigate the potential of LiDAR for the
characterization of the horizontal structure of the forest stands, and analyse its
usefulness for the derivation of the light environment within each stand in the context
of the Continuous Cover Forestry concept. The results were validated against

hemispherical photography measurements carried out in the sample plots.

Specific objectives were:

The assessment of the potential of LiDAR for the estimation of canopy

openness.

The analysis of the relationship between LiDAR-derived canopy openness for

light interception estimation and hemispherical photography measurements by

species.
Determination of the utility of LiDAR derived light interception estimation in
relation to species' climate regimes.
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The proportion of canopy openness derived from the LiDAR data was compared with
its corresponding values calculated from upward-looking hemispherical photography
and these results were used to determine light interception. The potential of LiDAR
for mapping horizontal structure of forest stands and derived light interception
estimation was demonstrated and these results linked to findings about the species'
climate regimes to evaluate the natural regeneration potential of the sites.

6.3 Hemispherical photography

Hemispherical photography provides an upward-looking view of all or part of the sky.

Typically hemispherical images are acquired with either a standard film camera or a

digital camera fitted with a hemispherical (fisheye) lens pointed upward (Hemiview
User Manual 1999). After classification, hemispherical photographs provide a

detailed map of sky visibility and obstruction. In turn, solar radiation regimes and

canopy characteristics can be inferred from this map of sky geometry. In the case of

plant canopies, a hemispherical photograph can be interpreted as a map of the
directions of canopy openings relative to the location from which the photograph is
taken. Commonly used estimates derived from hemispherical photography include

canopy openness (VisSky), gap fraction, and gap light index. Hemispherical

photography is also used for the determination of leaf area index (LAI) at high

sampling rates or for large areas through the measurement of the gap fraction (van

Gardingen et al. 1999). The relationship between canopy openness and LAI is

logarithmic, so small differences in low levels of VisSky will produce large
differences in LAI.

Although hemispherical photography is one of the most precise methods, as with
other remote sensing techniques there are a number of problems associated with it.
The most significant problem is that it does not consider light transmission and
reflection from leaves or layers of leaves (Roxburgh and Kelly 1995). The technique
assumes that all and any leaves completely block the passage of light. Reflection and
transmission may also be affected by leaf orientation relative to sun angle. In the

digitised image, canopy areas are assigned to either black (completely blocked) or
white (clear sky). This may introduce errors in darker areas where a significant

proportion of the total light arrives via reflection or partial transmission through a
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complete canopy layer. Hemispherical systems also assume that the canopy above the

photograph is a single layer. Usually, these problems do not introduce unacceptable

errors; therefore hemispherical photography is a useful technique for measuring

percentage canopy openness, gap formation and closure, and other physical properties
of plant canopies. Indirect measurements of the light environment can be compared

against direct measurements using light sensors coupled to dataloggers which give the
most accurate measures.

Other disadvantages in the use of hemispherical photography lie in the difficulty to

maintain the equipment in good working order during prolonged field use. The
camera, lens, computer and image analysis software that are required are also

expensive. At present, image processing and analysis are time consuming and rapid
assessments of understorey illumination at a large number of points are not possible.
Hence the necessity to explore alternative techniques such as LiDAR, which may

allow a more rapid and spatially extensive acquisition of information about light

interception.

6.3.1 Hemispherical photography acquisition

A total of 48 hemispherical photographs were taken at 16 sample points selected

randomly within the plots (4 sample locations per plot, 8 pictures per plot), using a

digitally operated camera Coolpix 995 (Nikon Corporation, Tokyo, Japan) with an

exclusive fish-eye lens. The acquisition of hemispherical pictures was carried out in

May 2003 on still and overcast days because it was the predominant sky condition of
the area and also due to the difficulties in determining vegetation edges in

photographs taken on sunny days or under skies with patchy clouds. It was assumed
that canopy openings did not change significantly between the time of acquisition of
LiDAR data (September 2002) and the acquisition of the hemispherical photography.

Camera and lens were placed on a tripod at 1.3 m above the ground. The camera was

oriented north and levelled each time that a photograph was taken. At each sampling

point in the forest, 2 pictures were taken: one with exposure compensation zero and
the other with this value set to -1. For all plots, the underexposed picture always
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showed the most detail and greatest contrast and, as such, was used for further

processing (figure 6.1).

European larch (plot 5)

Norway spruce (plot 2)

Sessile oak (plot 4)

Figure 6.1: Hemispherical pictures of the three species analyzed. The figure shows
two randomly selected pictures of each species which were taken above the
understorey at 1.3 m from the ground.
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6.3.2 Hemispherical photography processing

The hemispherical photographs in digital format were processed using the
HEMIVIEW 2.1 software package (Delta-T Devices, UK). The analysis with this
software required a number of stages. First, a lens correction function was applied to

remove lens distortions and the image was then classified into visible and obscured

sky elements. This classification was undertaken using an interactive brightness
threshold, which allowed the development of a sky/non-sky mask on the computer

screen.

The threshold to classify pixels into 'sky' and 'canopy' was set separately for each

photograph. When a suitable threshold value was established, the following
Hemiview variables were calculated, using the 'uniform overcast sky' setting (Steven
and Unsworth 1980): canopy openness (VisSky, i.e. the proportion of the image not

obstructed by canopy); indirect site factor (ISF, or the proportion of diffuse radiation
transmitted through the canopy); direct site factor (DSF, or the proportion of direct
beam radiation transmitted through the canopy); and Global site factor (GSF, or total
transmittance through the canopy). Values for the VisSky parameter range from 0 to

1, with 0 representing complete sky obstruction, and 1 representing open sky.

Most studies have used an interactive thresholding of hemispherical photography (e.g.
Machado and Reich 1999; Englund et al. 2000; Frazer et al. 2001; Hale 2001, 2003;
Hale and Edwards 2002). However, it is known that this method introduces bias as the

interactive thresholding depends on the observers' subjectivity (Englund et al. 2000).
To reduce this subjectivity, the calculations were undertaken separately on all

photographs on two occasions over different weeks. Regression of the two sets of
measurements confirmed the high degree of consistency between them (R2 = 0.99);

therefore, one set of measurements was used for the subsequent calculations. These
values of canopy openness derived from the hemispherical photography (table 6.1)
were also used as the standard against which the LiDAR assessment method was

compared.
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Label VisSky ISF DSF GSF

hemisl_oakl 0.223 0.314 0.285 0.302

hemis2_oakl 0.215 0.311 0.181 0.257

hemis3_oakl 0.150 0.230 0.150 0.197

hemis4_oakl 0.160 0.228 0.259 0.241

hemis5_oak2 0.175 0.251 0.235 0.244

hemis6_oak2 0.147 0.212 0.142 0.183

hemis7_oak2 0.148 0.212 0.241 0.224

hemis8_oak2 0.146 0.214 0.222 0.217

hemis9_nsl 0.134 0.195 0.173 0.186

hemislO_nsl 0.155 0.250 0.183 0.222

hemisll_nsl 0.156 0.244 0.169 0.213

hemisl2_nsl 0.148 0.212 0.241 0.224

hemisl3_ns2 0.185 0.253 0.284 0.266

hemisl4_ns2 0.165 0.253 0.321 0.281

hemisl5_ns2 0.165 0.250 0.078 0.178

hemisl6_ns2 0.173 0.246 0.278 0.259

hemisl7_ell 0.185 0.297 0.120 0.223

hemisl8_ell 0.226 0.294 0.311 0.301

hemisl9_ell 0.173 0.213 0.212 0.212

hemis20_el 1 0.219 0.307 0.337 0.319

hemis21_el2 0.190 0.276 0.182 0.237

hemis22_el2 0.269 0.385 0.459 0.416

hemis23_el2 0.277 0.384 0.503 0.433

hemis24_el2 0.260 0.357 0.382 0.367

Table 6.1: Variables obtained from the analysis of the hemispherical photography for
the measurements made within each plot. VisSky represents the canopy openness, ISF
(Indirect Site Factor), DSF (Direct Site Factor), and GSF (Global Site Factor).

6.4 LiDAR-derived canopy openness

In contrast to canopy cover, canopy openness is defined as the proportion of the sky

hemisphere that is not obscured by vegetation when viewed from a single point

(Jennings, Brown & Sheil 1999). Canopy openness can be measured using

hemispherical photographs (Rich 1990). In order to assess the capacity of LiDAR to

estimate canopy openness of three contrasting forest species and stand densities, one
variable of the laser pulse measurements was evaluated. This variable corresponds to
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the percentage of ground hits. In contrast, percentage of canopy hits has been found to
be the best estimator of canopy cover (Ritchie et al. 1992), so it was expected that the
inverse variable matched the indirect measurements of canopy openness.

Most studies attribute the error in the estimation of canopy cover to poor

georeferencing between ground-based measurements and acquired remotely sensed
data. In this study, validations of the corresponding locations of hemispherical

photography acquisitions within the LiDAR datasets were performed for average plot
measurements. This study explored the relationship between the information extracted
from LiDAR data and canopy openness estimated from each hemispherical

photograph, georeferenced within decimetres, therefore reducing the errors due to

mis-registration.

To begin with the LiDAR estimations, the radius covered by the hemispherical picture
at a determined height has to be calculated in order to extract LiDAR returns in the

surroundings of the hemispherical picture acquisition point. Although hemispherical

photograph variables can be measured at several zenith angles, it is considered that
the zenith angle of approximately 57.3° provides robust estimates as this angle is

nearly independent of the inclination angles from the canopy elements (Jonckheere et

al. 2005). The percentage of ground hits in the vicinities of each of the hemispherical

picture acquisitions was calculated assuming that all laser pulses with a height of <3m
were understorey and ground hits. The radius covered by the photograph at a

particular height is tan(57.3°) * height, which gives a radius of influence of

approximately 5 m for a 3 m height. The total of ground hits was then divided
between the total laser hits within the radius considered. Table 6.2 shows the ground
hit percentage values per sample point compared to the VisSky data obtained from the

hemispherical photography.
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Label VisSky Ground hits (%)

hemisl_oakl 0.223 32.4

hemis2_oakl 0.215 26.2

hemis3_oakl 0.150 18.7

hemis4_oakl 0.160 15.6

hemis5_oak2 0.175 24.1

hemis6_oak2 0.147 18.5

hemis7_oak2 0.148 16.4

hemis8_oak2 0.146 17.8

hemis9_nsl 0.134 16.9

hemislO_nsl 0.155 18.3

hemisll_nsl 0.156 19.3

hemisl2_nsl 0.148 17.5

hemisl3_ns2 0.185 17.2

hemisl4_ns2 0.165 18.4

hemisl5_ns2 0.165 19.6

hemisl6_ns2 0.173 19.8

hemisl7_ell 0.185 19.7

hemisl8_ell 0.226 24.1

hemisl9_ell 0.173 19.0

hemis20_ell 0.219 22.2

hemis21_el2 0.190 23.4

hemis22_el2 0.269 28.8

hemis23_el2 0.277 30.2

hemis24_el2 0.260 29.5

Table 6.2: Comparison of VisSky canopy openness measurements obtained from the
hemispherical photography compared to percentage ground hit information obtained
from the LiDAR data.

The following graphs show typical examples of the distribution of total LiDAR hits in
the surroundings of the hemispherical photography acquisition points for each

species.
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Distribution of LiDAR hits in the European Larch
plot 5
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Figure 6.2: Two-dimensional distribution of LiDAR hits within a 5 m radius of the
hemispherical photography acquisition point, for European Larch plot 5.
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Figure 6.3: Three-dimensional distribution of laser hits for the European larch species
for a section of the data shown in figure 6.2.
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Distribution of LiDAR hits in the Norway spruce
plot 2

25

20 -

£ 15
CO
0)
X 10

5

0 -

•*' - vvl

« —♦ ♦ ♦♦ —

20 40 60

Number of LiDAR hits

80 100

Figure 6.4: Two-dimensional distribution of LiDAR hits within a 5 m radius of the
hemispherical photography acquisition point for Norway spruce plot 2.
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Figure 6.5: Three-dimensional distribution of laser hits for the Norway spruce species
for a section of the data shown in figure 6.4.
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Distribution of LiDAR hits for a Sessile oak plot 3
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Figure 6.6: Two-dimensional distribution of LiDAR hits within a 5 m radius of the
hemispherical photography acquisition point for Sessile oak plot 3.
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Figure 6.7: Three-dimensional distribution of laser hits for the Sessile oak species for
a section of the data shown in figure 6.6.

248



Canopy Openness And Light Environment

The high correlation between VisSky and LiDAR percentage of ground hits for the

species combined suggests that light environment in forested canopies can generally
be predicted (figure 6.8).

Figure 6.8: Correlation between ground hits percentage and VisSky for all the data in
table 6.2.

Canopies with low transmittance have associated low canopy openness. Canopy

openness can therefore be used as a light environment estimator. It is expected that
the probability of light transmittance will vary as a function of vegetation density.

Specifically, the probability of light transmittance is expected to be high where

canopy gaps are present and low where vegetation density is high (Todd et al. 2003).

The relationships between the LiDAR derived estimates of canopy openness and

VisSky estimates were examined for each forest type (figure 6.9).

35

VisSky
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Figure 6.9: Correlation between LiDAR ground hits percentage and VisSky for
European larch, Norway spruce, and Sessile oak species, respectively.
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Overall, European larch species showed the strongest relationship among the three

species investigated. This might be explained by the fact that these plots had the
lowest stand density and larger distance between trees which gave not only a

generally more open canopy but which also allowed a better laser pulse penetration.

Sessile oak species also showed a good agreement but with a somewhat bimodal
distribution of data points. The poorer estimation in the Norway spruce plots was

probably due to the larger foliage and branch clumping of this species in comparison
with the others and the lower range of canopy openness values found.

Correlations between LiDAR ground hits percentage and Indirect Site Factor showed
also good agreement (figure 6.10). In contrast, poor correlations were found with
Direct Site factor (figure 6.11) and Global Site Factor (figure 6.12) suggesting that

ground hits percentage is not as good an estimator of these canopy variables.
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Figure 6.10: Correlation between ground hits percentage and Indirect Site factor for
the three species.
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Figure 6.11: Correlation between ground hits percentage and Direct Site factor for the
three species.

Figure 6.12: Correlation between ground hits percentage and Global Site factor for the
three species.

6.5 LiDAR-derived canopy cover

Forest canopy cover, frequently defined as the percent area occupied by the vertical

projection of tree crowns, is a commonly used concept in forestry and of wide interest
in both scientific studies and political decisions. Other synonymous terms often used
include canopy closure, crown closure or crown cover; however, there is no

commonly accepted precise definition for the concept.
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Nowak et al. (1996) reviewed four different methods that can be used to estimate tree

cover from aerial imagery: Visual (ocular) estimation; dot grid method; line intercept
or transect method; and digital image analysis methods. Of these, the dot grid and

digital image analysis methods are probably the most useful for many forestry

purposes.

The dot grid estimation method is an easy, accurate, and relatively rapid way for the
determination of canopy cover (Carreiras et al. 2006). A dot grid is simply a set of
dots, symbols, or intersecting grid lines that is superimposed over an image (figure

6.13). Tree canopy cover is estimated by counting the number of dots that that fall on
tree crowns compared with the total number of dots in the area sampled. Tree canopy

cover can then be calculated from the following formula:

% canopy cover = 100 x (dots falling on tree canopy/total number of dots within
sampled area)

This method was carried out to evaluate comparisons of canopy cover estimated from
LiDAR imagery and from aerial photography, due to the fact that the method is

simple and frequently used.

Figure 6.13: LiDAR derived DCM and corresponding aerial photograph of European
larch sample plot 5 with overlaid grid used for conventional canopy cover calculation.
Yellow dots represent grid points overlaid on tree crowns and red dots grid points
overlaid on the understorey.
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Figure 6.14: Lidar derived DCM and corresponding aerial photograph of Norway
spruce sample plot 2 with overlaid grid used for canopy cover calculation. Yellow
dots represent grid points overlaid on tree crowns and red dots grid points overlaid on
the understorey.

The results of these calculations showed a high level of agreement between the
methods (table 6.3). The maximum differences found were for Norway spruce (6.6%)
and the minimum for European larch (5.1%). The results suggest that LiDAR data can

be used to calculate canopy cover for typical UK species with similar accuracies.

Canopy Cover estimations (%)

Sample plot LiDAR Aerial Photography

European larch 50.8 45.7

Mixed species 82.4 76.1

Norway spruce 68.9 62.3

Sessile oak 91.7 85.2

Table 6.3: Comparison between canopy cover estimations obtained from aerial
photography and LiDAR imagery for four different sample plots, using the dot grid
method.

Digital image analysis techniques were also evaluated. As a result of the eCognition

segmentation performed with the objective of crown detection and delineation

(chapter 5), segments classified as trees and gaps were stored along with their area
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size. Therefore, the sum of the area of the classified tree segments divided by the total

plot area is equivalent to the canopy cover percentage. Similarly, the addition of the
area of the gap classified segments divided by the total plot area represents canopy

openness.

The canopy cover and canopy openness estimates obtained from both LiDAR-derived

imagery and aerial photography are given in table 6.4. Again, the two methods are in
close agreement.

Sample LiDAR Aerial Photography

plot Canopy Cover Canopy Openness Canopy Cover Canopy Openness

Plot 1 Norway sp 65.5 22.7 68.7 25.3

Plot 2 Norway sp 70.3 23.3 72.5 19.4

Plot 3 Sessile oak 82.2 16.8 86.1 10.6

Plot 4 Sessile oak 83.6 14.9 89.5 8.2

Plot 5 European 1 53.5 32.7 49.2 35.6

Plot 6 European 1 76.4 22.3 81.4 17.2

Table 6.4: Comparison between canopy cover and canopy openness estimations
obtained from aerial photography and lidar imagery for all sample plots, using the
object-oriented classification method.

The comparison shows that LiDAR has the potential to provide accurate estimates of

canopy cover and canopy openness, but that errors can still influence the results due
to misclassification in both methods. In the case of the classification of the LiDAR

segments through the object-oriented method, shadowed segments corresponding to

trees were often misclassified. On other occasions, for instance during the

segmentation and classification of the Sessile oak species, shadowed tree segments

with reflectance values similar to those of gaps were often classified as the latter

class, leading to a larger canopy openness value for these plots, in comparison to the
results obtained using aerial photography.

This study demonstrates that LiDAR is capable of detecting gaps that occur naturally
within the stand or as a result of the inter-tree distance, which are vital for light

penetration. Given that CCF is a silvicultural system that aims for the use of natural

regeneration as its main restocking method, the consideration of this technique to
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assess the light environment under a forest canopy in an extensive and reliable way is
an important one. Furthermore, this assessment can be linked to other decision

support tools to allow, for instance, the exploration of the impact of different stand

management regimes (Hale et al. 2004).

6.6 Discussion of the results

As a predictive tool, small-footprint LiDAR can be used to obtain accurate

information on the horizontal characterization of forest structure and light
transmittance within forest canopies, specifically for the prediction and monitoring of
the VisSky variable which is an important indicator of light environment.

Differences in canopy structure and organization likely affect the variability of ground

penetration of laser hits and also the variability of depths to which light from different

angles can penetrate. Although there was a significant difference in the light
conditions between the plots analyzed, relationships between regeneration occurrence

and light environment could not be established due to the effect of other variables on

natural regeneration such as vegetation competition and browsing. It is known that the
increase in light penetration results in the thickness of the herb layer and the

consequent reduction in germination success. In contrast, poor light penetration levels
inhibit the production and growth of seedlings. As was reported in chapter two, the

presence of regeneration was confirmed in only two plots, one of European larch

species and the other of the Norway spruce species.

The main advantage of the use of the digital image analysis approach lies in the
creation of permanent maps of tree canopy characterization that may be incorporated
into a GIS and/or used to show how and where tree canopy characteristics change
over time. The use of the LiDAR technique could provide estimations of canopy

openness that could be associated with light penetration for the monitoring of
minimum light requirements for the forest species. Manson et al. (2004) found that
for conifer species, minimum light requirements increased from 10 to 30 per cent of
full light with decreasing shade tolerance. They reported a clear trend in all species
for the seedlings to be found in open conditions and for growth and survival to decline

256



Canopy Openness And Light Environment

progressively from wide towards narrow spacings (i.e. from higher to lower light

levels).

Although the use of LiDAR data has great advantages it also has some limitations.
The analysis carried out in this project has been developed on relatively small sample

plots instead of the entire forest stand, thus sampling errors can still be important.
Additional research may therefore consider applying the methodology of this study
over larger spatial extents with variations in topography. This study has also been
carried out on relatively uniform forest types so further research is necessary to

consider areas with other and more variable vegetation cover. These studies are

challenging as they will have to consider the effect of multiple species and multiple

canopy architectures.

Future research will also probably make use of fine spatial resolution derived from
LiDAR sensors with greater data densities. The detailed information within the
LiDAR height profiles may also allow vegetation clumping and the size and
distribution of canopy gaps to be evaluated. Recent studies on light dynamics within
forests have focused on the spatial location and size of gaps within forest canopies

(Chen et al., 1997, Canham et al., 1999). These studies have suggested that measures
of vegetation clumping will provide greater accuracy in predictions of light
transmittance within closed-forest environments. By characterizing the spatial
distribution of vegetation clumping and indirect paths of light penetration through

geometrical optical modelling, greater correspondence may be obtained between fine

spatial resolution predictions of forest structure from LiDAR.
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Chapter 7

Conclusions and recommendations

7.1 Introduction

Several remote sensing techniques have been explored in this work with the objective
of gaining an understanding of their potential utility for the retrieval of forest

parameters in general and particularly for the description of the structural attributes of
stands composed by up to four species (Sitka spruce, Norway spruce, European

Larch, Sessile oak) typically grown in the Scotland's managed forest. Specific stands
of these species were chosen for study as some were being managed or in transition to

the continuous cover silvicultural system and were expected to yield results relevant
to ascertain the potential benefits of remote sensing methods for monitoring stands
under full CCF management.

The remote sensing techniques investigated ranged from both airborne and satellite
based passive optical remote sensing methods (aerial photography, ATM and Landsat
ETM+ data) to active LiDAR techniques. The inclusion of the vertical dimension for
the retrieval of forest structure, which is traditionally provided by field sampling, was

possible thanks to the use of the LiDAR technology, which, along with the broad

spatial coverage afforded by the other techniques, particularly aerial photography,

provided a detailed and reliable characterization of forest stands.

Through a number of related studies on the above datasets this project is the first to

investigate the utility of remote sensing methods for monitoring forests in transition

to, and managed under the continuous cover forestry system in the UK context.

Specific studies focussed on:
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7.2 The influence of seasonal change on surface reflectance properties of
common forest species

Despite the extremely large body of literature that exists which has focussed on

exploring the relationship between key forest parameters and optical reflectance

properties, there are very few studies which have explored the influence of seasonal

phenologically related changes in reflectance on the relationships derived. This study

sought to investigate variations in seasonal reflectance from common UK forest

species using a temporal sequence of moderate resolution Landsat TM datasets over

Aberfoyle obtained during 2000 and 2001. Such knowledge can also contribute to

improved methods of forest classification, where knowledge of different species

phenologies could be utilised and to an understanding of the influence of seasonal

change on change detection if images are acquired at different times of the year.

Despite only a range of cloud free scenes being available, the results of the study
indicated that the Landsat ETM+ data used in this study, once suitably processed,
were sensitive enough to track the general vegetation phenology trajectory of
deciduous forest species in Aberfoyle and that these were different from evergreen

coniferous canopy types. Coniferous species showed generally similar spectral
behaviours between them suggesting that other methods are required to further

differentiate, and so classify them to species level.

Full utilization of phenological changes would require that the development of any

canopy could be followed through the year, and that imagery would be available at

the right times. This study has highlighted that the latter requirement may be difficult
to achieve in high latitudes where the number of useable images may be limited due
to cloud cover. The influence of changing sun angle on the responses observed also
warrants further investigation. However, other research has highlighted that spectral
contributions of the understorey may significantly alter the signal received from the

overstorey, particularly at certain times of the year. This has direct consequences for
CCF because the opening-up of canopies will be required to allow for regeneration to

be successful in Scottish managed forests, especially for shade intolerant species such
as Sessile oak. For the use of single images, a period when there is maximum spectral
contrast between the overstorey and the understorey should be selected for the image
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acquisition, as it appears clear that the understorey effect will increase as overstorey

density decreases.

Despite warranting further investigation, the overall results of the phenological study
showed that image acquisition date can significantly affect the spectral response
observed in certain forest species which may impact the spectral values retrieved from
ETM+ imagery and any subsequent estimation of biophysical parameters. Thus,

image acquisition dates need to be carefully selected to ensure maximum information
content in remotely sensed data. Further work is required to define an optimum

approach to discriminate between spruce species (e.g. Sitka spruce and Norway

spruce) where spectral responses are very similar and of the utility of different indices
and methods to investigate the phenological response.

7.3 LiDAR data for the estimation of tree height
Within the CCF context and within the UK forest scenario in general, there is a lack
of studies exploring the potential of LiDAR data for species characterization and
estimation of plant structural attributes. In this study, multi-return, high density (4 hits

per square metre) LiDAR data was assessed for its ability to determine tree heights
and for the production of a Digital Canopy Model (DCM) for tree crowns for

subsequent tree crown delineation. The research was hampered by the availability of
software tools for the processing of such data; in order to proceed, relatively

straightforward but effective algorithms for processing the data were required to be
written. Despite the simplicity of the tools developed to generate the ground DTMs
and DCMs, they were shown to produce accuracies similar to the reported in other
works with the use ofmore sophisticated algorithms. Further development in LiDAR

processing tools is clearly required as are their general widespread availability.

Although this is one of a few studies to test LiDAR methods in the context of forestry
in the UK, the retrieval of tree height proved to be highly successful for the three

species selected for study covering a range of different canopy types and light

regimes. The method was also able to map accurately the differences between plots to

identify tree density, gaps, topography, and most importantly, to provide high-
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resolution imagery for crown and gap delineation with considerable detail and

accuracy. This has significant implications for forest management under the
Continuous Cover Forestry regime, where the diversity of species and heights calls
for intensive forest inventory and where LiDAR shows considerable potential.

The selection of the season within which to conduct LiDAR surveys is also an

important one; dense ground vegetation and leaf-on conditions make it difficult to
detect the ground surface. Leaf-off conditions are desired if a "bald-earth" DEM is the
main purpose of a LIDAR survey. However, winter acquisitions may present the

problem of variable snow depth. Thus the spring and autumn time periods may

present the best periods for optimum LiDAR data acquisition. Of these periods, spring
has the added benefit of reduced shrub and understorey vegetation height as a result of

possible flattening by the winter snow pack (Webster 2005).

7.4 Estimation of forest structural attributes from a range of RS methods

Comparisons among estimates of forest structural variables derived from remote

sensing to measurements obtained in the field (large tree maximum canopy height,
mean canopy height, and canopy openness) were carried out. The information from

LiDAR, ATM, and aerial photography were combined in an attempt to improve the

accuracy of the estimates. The results of the study indicated that LiDAR is the best

single data type for estimating canopy height and for the retrieval of individual tree
crowns. The addition of ATM data improved estimates either only marginally or not
at all. The combination of LiDAR and aerial photography yielded the most accurate

results, where it was evident that LiDAR data needs to be combined with high spatial
resolution optical sensor data to compensate for lack of fine texture information in the
LiDAR data.

The integration of spectral information from aerial photography and canopy height
data from LiDAR into an object-oriented classification produced highly meaningful
results for the forested environment under study. The resultant thematic classes
contained information on species composition and structure, which, when combined
with additional information, could reflect the underlying processes of vegetation
succession and woodland management. Results showed that the final result of crown
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detection could have good accuracy (between 0.84% and 0.94%) for broadleaves and
coniferous species. Crown delineation accuracies, in comparison with manually
delineated crowns from aerial photography, decreased mainly due to over-

segmentation of larger crowns.

7.5 Estimates of canopy openness and light environment from RS data
The production of information about canopy gaps is important for CCF objectives
where stand density and light transmittance are key variables in the conversion of the

even-aged stand to a CCF silvicultural system. This project has shown that LiDAR
data can be used to produce high-resolution maps of canopy cover/canopy openness

since a good correlation was found with parameters retrieved from hemispherical

photography (r = 0.78). The differences between ground-based estimations of canopy

properties and LiDAR estimations could be attributed, at least in part, to the different

point and angle of view of the hemispherical photography versus the LiDAR data.

Hemispherical photography registers the canopy from a ground point looking

upwards, whereas LiDAR scans the canopy from above. Therefore, there were areas

seen in the hemispherical photographs, but obscured in the Lidar data, and vice versa.

In addition, LiDAR results highly depend of the density of the measurements and on

the transformations performed on the data, so departures from ground measurements

were expected. This study indicates that each forest species has a unique laser

penetration rate.

As a predictive tool, small-footprint LiDAR can thus be used to obtain information on

the horizontal characterization of forest structure and light transmittance within forest

canopies. The maps produced from such data could be used in the process of scaling

up variables related to light environment from the point or local scale to the larger
scale.

7.6 Overall conclusions

The results of this research, which focused in the evaluation of the potential of several
remote sensing techniques for the retrieval of information of value to managing the
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transition from traditional forest silvicultural systems to CCF, have highlighted the

following aspects:

Phenologically-induced seasonal responses in reflectance from vegetation

canopies may significantly affect the ability to retrieve forest structural
attributes from optical remotely sensed data, particularly for deciduous forest

species. Under Continuous Cover Forestry, the role of contributions from the

understorey in contributing to seasonal reflectance may be significant but

required further investigation. The band in which spectral discrimination

amongst all the species was best appeared to be near infrared band 4 and the
date of imagery that showed a maximum contrast among spectral reflectances
was the July 2000 image. However, no single date was considered ideal for
discrimination of the four species which suggests that optimal differentiation
between the species will be achieved using a combination of two or three
datasets covering their phenological cycles.

LiDAR data has the potential to play a key role in forest inventory under CCF

through its capabilities to produce high-resolution imagery for tree height,
crown and gap delineation with considerable detail and accuracy.

The accuracies of estimates of canopy variables and for species recognition for
stands under CCF will be optimally derived using a combination of LiDAR
and very high spatial resolution optical remote sensing techniques. Digital

photography may suffice as the optical tool where textural content, as opposed
to spectral information may be the key information required.

LiDAR data can be used to accurately monitor the light environment across
CCF. The use of LiDAR in combination with other high resolution optical
remote sensing product is desirable as it takes advantage of high vertical
resolution from LiDAR and spectral/spatial resolution from other dataset, for

instance, aerial photography.

The use of object oriented approaches for segmentation and classification of
forest stands proved to be successful for relatively homogeneous stands with
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low to medium density. The application of this approach could be useful for

monitoring the transition of even-aged stands to CCF. However, disadvantages
related to the complexities of the processing and analysis of datasets using the

methodology implemented in eCognition could affect its use as a daily tool to
aid forest managers. Besides, further research is needed to test the potential of

object oriented techniques on fully established CCF stands.

7.7 Limitations and problems of the research
As discussed above, the short time series and limited availability of cloud-free
Landsat ETM+ imagery for the Aberfoyle region, limited the phenological study.
Further research may also improve the accuracy results implementing a methodology
to overcome the difficulties found in the radiometric normalisation of the imagery.

The lack of standardised methods for LiDAR processing and analysis is a major
limitation to future LiDAR studies. Most of LiDAR applications have used

proprietary software for the processing of the laser measurements. This has cost

implications, as there are just a handful of programs available. In this study, it was

necessary to invest significant time developing methods to read, process and visualize
the data. However, once this problem was overcome, the process of obtaining
individual tree measurements was repeatable and efficient. LiDAR data presents a

simple format and its processing using basic appropriate algorithms could provide
estimations accurate enough for many applications.

Data acquisition has also cost issues. Since field inventories constitute the major part
of forest mapping costs, the interest is to reduce this cost through the combination of
traditional field inventories and remote sensing methods. Although the cost of

acquiring and processing ETM+ imagery is relatively minimal, the cost of acquiring
and the time invested in the processing of LiDAR and ATM data is not. The
correction and analysis of Landsat ETM+ data was also not trivial, requiring

computing power, time, and expertise.
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7.8 Future research

Additional research may consider applying the methodology of this study over larger

spatial extents and in areas with other and/or variable vegetation cover. Extending
these findings to larger areas is challenging due to the consideration of multiple

species and multiple architecture effects. The evaluation of forest dynamics could also
be assessed ifmulti-date data sets are available.

The detailed spectral characterization of forest species and understorey vegetation

commonly found in the Scottish managed forest will certainly improve the mapping
of species using remote sensing. Similarly, the investigation of vegetation clumping
and indirect paths of light penetration making use of the LiDAR fine resolution can

provide better estimates.
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Appendix 1: Regression equations for Landsat ETM+ data normalisation

Regression equations per band for the normalisation of image acquired on 17.07.2000
with respect to the reference image 25.08.2000
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Regression equations per band for the normalisation of ETM+ image acquired on

24.12.2000 with respect to the reference image 25.08.2000

Normalisation Band 1 Normalisation Band 2

o
o
o

100 1CM

00

in 50 -

CM

o
o>
ro 0 -I
fc

y = 1.3303X - 11.917
R? = 0.9568

20 40 60

Image 24.12.2000

80

o
o
CM

m
CM

a>
oi

y = 1.3341 x-6.867
R? = 0.9176 ♦ ♦

20 40 60

Image 24.12.2000

80

o
CD
O 150 n
CM

oo
o 100 -

50 -CM

CD
O)
TO 0 -I
E 0

Normalisation Band 3

y = 1.3011X - 8.0681
R2 = 0.9366

40 60 80

Image 24.12.2000

100

CD

CD
CM

150 -1

OO
O 100 -

50 -CM

CD
O)
TO o 4
E 0

Normalisation Band 4

y = 1.1773X - 4.9367
R2 = 0.97

20 40 60 80

Image 24.12.2000

100

<D
o>
ra

E

Normalisation Band 5

y = 1.6898x- 14.079
R2 = 0.9341

50 100

Image 24.12.2000

150

> 200
■ 150

\ 100
2 50
31

5 0

Normalisation Band 7

y = 1.981x - 36.764
R2 = 0.9613

150

Image 24.12.2000

283



Regression equations per band for the normalisation of the ETM+ image acquired on

01.05.2001 with respect to the reference image 25.08.2000
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Regression equations per band for the normalisation of ETM+ image acquired on

31.10.2001 with respect to the reference image 25.08.2000
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Regression equations per band for the normalisation of ETM+ image acquired on

11.12.2001 with respect to the reference image 25.08.2000
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APPENDIX 2: programme GROUND

c

c

C This program read a file containing LiDAR (Light detecting and ranging
C data) consisting of OSGB coordinates, heights, and signal intensity
C for first and last return and calculates a surface that approximates
C the ground. It also calculates tree heights as the difference between
C the Digital Canopy Model created from the first return laser hits
C (corresponding to the canopy top) and the ground surface and the
C ground surface previously estimated.
C
C The program read two files (first and last return) containing six
C values each: fileid, Plot_number, L_East, L_North, L_Elev and L_Int:
C The first field is alphanumeric, the second is an integer, the
C following three are real and the last one is an integer.
C

C The program sort the data out to construct an array and in this way to
C ease the calculations and control of the results.
C

C Author: Gloria Patricia Olaya Gonzalez
C Date: June 6, 2004
C
C

parameter (vect=99999,value=9999)
integer i,j,k,1,m,r,plot,num2,numl,const,s,z,t
character*40 inputfilei,inputfile2,outfile
character*30 filename,list
real*8 xol(vect),yol(vect),zol(vect),mean,y
real*8 xo2(vect),yo2(vect),zo2(vect).percen
real*8 xxol(vect),yyol(vect),zzol(vect)
real*8 xxo2(vect),yyo2(vect),zzo2(vect)
real*8 txo2(value),tyo2(value),tzo2(value),tco2(value)
real*8 txol(value),tyol(value),tzol(value),tcol(value)
real*8 ctxo2(value),ctyo2(value),ctzo2(value),ctco2(value)
real*8 fctxo2(vect),fctyo2(vect),fctzo2(vect),fctco2(vect)
real*8 ftxo2(vect),ftyo2(vect),ftzo2(vect),ftco2(vect)
real*8 ftxol(vect),ftyol(vect),ftzol(vect),ftcol(vect)
real*8 ptxo2(value),ptyo2(value),ptzo2(value)
real*8 arr2,a,b,fmean(vect),minyo2,minxo2,min,maxyo2,maxxo2
real*8 errorl,error2,cmean(vect),area
real*8 countl(vect),count2(vect),kk
real*8 fmeanf(vect),fctzo2f(vect),ftxo2f(vect),ftyo2f(vect)
real*8 ftzo2f(vect),ftzolf(vect)
real*8 axo2(vect),ayo2(vect),azo2(vect),aco2(vect)
real*8 aaxo2(vect),aayo2(vect),aazo2(vect),aaco2(vect)
real*8 faaxo2(vect),faayo2(vect),faazo2(vect),faaco2(vect)
real*8 axol(vect),ayol(vect),azol(vect),acol(vect)
real*8 aaxol(vect),aayol(vect),aazol(vect),aacol(vect)
real*8 faaxol(vect),faayol(vect),faazol(vect),faacol(vect)

call system('clear 1)
call system('ls -1 *.dat'
write
write
write
read
write
write

(A)
(A)
(A)
(A)
(A)
(A)

1 Input file
inputfilel

name with first return

'Input file name with [[ last return ]]
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read (*,1(A)')
write (*,1(A)')
write (*,'(A)1)
read (*,1(A)')

open (unit=10,
open (unit=20,
open (unit=30,
open (unit=40,
open (unit=50,

inputfile2

'Output file name:1
outfile

file=inputfilel, status='old')
file=inputfile2, status='old')
file=outfile, status='unknown')
file='accept.dat', status='unknown')
file='reject.dat', status='unknown')

if(inputfilel.eq.inputfile2) then
call system('clear 1)
write (*
write (*
write (*
write (*
write (*
write (*
write (*
stop

endif

(A)
(A)
(A)
(A)
(A)
(A)
(A)

• ********************************************* I

• ********************************************* I

'* * * [ [[ ERROR ] ] ] * * * 1
i * * * * * * i

i*** The files are equal, at least in name ***'
I ********************************************* I

• ********************************************* I

write (*
write (*
read ( *

write (*
write (*
read ( *

write (*
write (*
read ( * /

' (A) ' )
1(A)')'The maximum difference in height:'
) errorl
' (A) ' )
'(A)')'The maximum difference in coordinate:
) error2
' (A) ' )
'(A)')'The area [bxb], b:'

if(area.le.0) then
call system('clear')
write (*
write (*
write (*
write (*
write (*
write (*
write (*
write (*
stop

endif

(A)
(A)
(A)
(A)
(A)
(A)
(A)
(A)

*************************************

*************************************

* * * [ [ [ ERROR ]] ] * * *
★ * * * * *

*** The area has to be positive ***
*** and greater than zero ***
*************************************

*************************************

call system('clear')
*************************************************

*************************************************

** [[[ First method ]]]

** Fitting data to a straight line using linear

** in the East and North direction

*************************************************

*************************************************

write (* , ' (A) ' )
********* *******

write (* , ' (A) ' )
********* *******

write (* , ' (A) ' )
* * *

write (* , ' (A) ' )
* regress ion * *
write (* , ' (A) ' )
* ★ *

write (* , ' (A) ' )
********* *******

write (* , ' (A) ')
********* *******
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write (*,'(A)')
* * *

write (*,'(A)')
★g * *
write (*,'(A)')
* * *

write (*,1(A)')
****************

write (*,1(A)')
****************

** [[[ Second method ]]]

** Fitting the data to a region usin

** the area method

*************************************************

*************************************************

write (*,1(A)')
write (*, 1(A49)') ' <o><o><o> PLEASE WAIT <o><o><o>'

read(10,*,err=2 0) list,list,list,list,list,list
do i=l,vect

read (10, *, err=20)filename,plot,xxol(i),yyol(i),zzol(i) ,

* numl
enddo

20 continue

read(20 , * , err=3 0) list,list,list,list,list,list
do j=l,vect

read (20, *, err=30)filename,plot,xxo2(j),yyo2(j),zzo2(j),
* num2

enddo

call sort(const,xol,yol,zol,count1)
call sort(const,xo2,yo2,zo2,count2)
minxo2=xo2(1)
maxxo2=xo2(const)

s = l
i = l
r=0
z = 0
do while (i.It.const)

arr2=xo2(i)
k=0

do j=i,const
if(abs(xo2(j)-arr2).le.error2) then

k=k+l
r=r+l

txo2(k)=xo2(j)
tyo2(k)=yo2(j)
tzo2(k)=zo2(j)
tco2(k)=count2(j)
txol(k)=xol(j)
tyol(k)=yol(j)
tzol(k)=zol(j)
tool(k)=countl(j)

endif
enddo
i=r+l

m=0
mean=0

call sort(k,tzo2,txo2,tyo2,tco2)
do 1=1,k

if(abs(tzo2(1)-tzo2(1)).le.error1) then
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m=m+l

mean=mean+tzo2(1)
ptzo2(m)=tzo2(1)
ptxo2(m)=txo2(1)
ptyo2(m)=tyo2(1)

endif
enddo

mean=mean/m

if(m.gt.4) then
call straight(ptyo2,ptzo2,m,a,b)
do 1=1,k

temp=a+b*tyo2(1)
if(temp.le.0) then

call system('clear1)
'(A)') • ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★■sir*'** •

write (*, 1 (A) ■) '*********************************** •
write (*,'(A)1) '*** [[[ ERROR ]]] ***'
write (*,'(A)') 1*** ***'

write (*,1(A)') '*** Negative Slope - Bad Data ***'
^27ite ( * ' (A) 1 ) 1 *

^0 ( * ' (A) 1 ) ' '
stop
endif

if(temp.It.tzo2(1)) then
ctzo2(1)=temp
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

else

ctzo2(1)=tzo2(1)
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

endif
enddo

else
do 1=1,k

if(mean.It.tzo2(1)) then
ctzo2(1)=mean
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

else

ctzo2(1)=tzo2(1)
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

endif
enddo

endif

z = z+k

k=0
do 1 =s,z

k=k+l

fmean(1)=mean
cmean(1)=tco2(k)
fctzo2(l)=ctzo2(k)
fctxo2(1)=ctxo2(k)
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fctyo2(1)=ctyo2(k)
fctco2(1)=ctco2(k)
ftxo2(1)=txo2(k)
ftyo2(1)=tyo2(k)
ftzo2(1)=tzo2(k)
ftco2(1)=tco2(k)
ftxol(1)=txol(k)
ftyol(1)=tyol(k)
ftzol(1)=tzol(k)
ftcol(1)=tcol(k)

enddo
s = i

enddo

call sort(const,fctco2,fctxo2,fctyo2,fctzo2)
call sort(const,ftcol,ftxol,ftyol,ftzol)
call sort(const,ftco2,ftxo2,ftyo2,ftzo2)
call sort(const,cmean,fmean,cmean,cmean)

do 1=1,const
fmeanf(1)=fmean(1)
fctzo2f(1)=fctzo2(1)
ftxo2 f(1)=ftxo2(1)
ftyo2 f(1)=ftyo2(1)
ftzo2f(1)=ftzo2(1)
ftzolf(l)=ftzol(l)

enddo

call sort(const,yol,xol,zol,countl)
call sort(const,yo2,xo2,zo2,count2)
minyo2=yo2(1)
maxyo2=yo2(const)
min=minyo2

s = l
i = l
r=0
z = 0

do while (i.It.const)
arr2=yo2(i)
k=0

do j=i,const
if(abs(yo2(j)-arr2).le.error2) then

k=k+l
r=r+l

txo2(k)=xo2(j)
tyo2(k)=yo2(j)
tzo2(k)=zo2(j)
tco2(k)=count2(j)
txol(k)=xol(j)
tyol(k)=yol(j)
tzol(k)=zol(j)
tcol(k)=countl(j)

endif
enddo
i=r+l
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m=0
mean=0

call sort(k,tzo2,txo2,tyo2,tco2)
do 1=1,k

if(abs(tzo2(1)-tzo2(1)).le.errorl) then
m=m+l

mean=mean+tzo2(1)
ptzo2(m)=tzo2(1)
ptxo2(m)=txo2(1)
ptyo2(m)=tyo2(1)

endif
enddo

mean=mean/m

if(m.gt.4) then
call straight(ptxo2,ptzo2,m,a,b)
do 1=1,k

temp=a+b*txo2(1)
if(temp.It.tzo2(1)) then

ctzo2(1)=temp
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

else

ctzo2(1)=tzo2(1)
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

endif
enddo

else
do 1=1,k

if(mean.It.tzo2(1)) then
ctzo2(1)=mean
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

else

ctzo2(1)=tzo2(1)
ctxo2(1)=txo2(1)
ctyo2(1)=tyo2(1)
ctco2(1)=tco2(1)

endif
enddo

endif

z = z+k
k=0
do l=s,z

k=k+l
fmean (1) =mean
cmean(1)=tco2(k)
fctzo2(1)=ctzo2(k)
fctxo2(1)=ctxo2(k)
fctyo2(1)=ctyo2(k)
fctco2(1)=ctco2(k)
ftxo2(1)=txo2(k)
ftyo2(1)=tyo2(k)
ftzo2(1)=tzo2(k)
ftco2(1)=tco2(k)
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ftxol(1)=txol(k)
ftyol(1)=tyol(k)
ftzol(1)=tzol(k)
ftcol(1)=tcol(k)

enddo
s=i

enddo

call sort(const,xol,yol,zol,countl)
call sort(const,xo2,yo2,zo2,count2)

y=0
z = l
t=0
do while (minxo2.le.maxxo2)

m=0
s = 0
do j=z,const

if(xo2(j).ge.minxo2+y.and.xo2(j)•le.minxo2+area) then
m=m+l

axo2(m)=xo2(j)
ayo2(m)=yo2(j)
azo2(m)=zo2(j)
aco2(m)=count2(j)
axol(m)=xol(j)
ayol(m)=yol(j)
azol(m)=zol(j)
acol(m)=countl(j)

endif
enddo
z = z+m

y=0
do while (minyo2.le.maxyo2)

do k=l,m
if(ayo2(k).ge.minyo2+y.and.ayo2(k).le.minyo2+area) then

s = s + l

aaxo2(s)=axo2(k)
aayo2(s)=ayo2(k)
aazo2(s)=azo2(k)
aaco2(s)=aco2(k)
aaxol(s)=axol(k)
aayol(s)=ayol(k)
aazol(s)=azol(k)
aacol(s)=acol(k)

endif
enddo

y=0.01
minyo2 =minyo2 +area
call sort(s,aazo2,aayo2,aaxo2,aaco2)
do k=l,s

t=t+l

faaxo2(t)=aaxo2(k)
faayo2(t)=aayo2(k)
faazo2(t)=aazo2(1)
faaco2(t)=aaco2(k)
faaxol(t)=aaxol(k)
faayol(t)=aayol(k)
faazol(t)=aazol(k)
faacol(t)=aacol(k)

enddo
s = 0
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enddo
minxo2 =minxo2 +area

minyo2=min
enddo

call sort (t, faaco2, faayo2 , faaxo2 , faazo2)
call sort(t,faacol,faayol,faaxol,faazol)

call sort(const,fctco2,fctxo2,fctyo2,fctzo2)
call sort(const,ftcol,ftxol,ftyol,ftzol)
call sort(const,ftco2,ftxo2,ftyo2,ftzo2)

write(30,'(310,313,320,314,316,314,315,317,316,316)')
*'"Esst"','"North"','"Ground Height"','"Top Height"1,
*'"North Height"1,'"Esst Height"','"Ares Height"',
*'"Difference N."',1"Difference E."','"Difference A."'

do 1=1,const
cotal=3bs(fctzo2f(l)-ftzolf(l))
cot32=sbs(fctzo2(l)-ftzol(l))
write(30, ' (2f12.3,lOf15 . 3) ') ftxo2f(1),ftyo2f(1),ftzo2f(1),

ftzolf(l),fctzo2f(l),fctzo2(l),f33Z02(1),
COt3l,COt32,3bs(f33Z0l(l)-f33Z02(1))

enddo

stop
end

subroutine sort(n,arrl,3rr2,3rr3,3rr4)
integer n, i, j, inc
resl*8 tempi, temp2, temp3, temp4
re3l*8 srrl(n), 3rr2(n), 3rr3(n), 3rr4(n)

inc = l
10 inc=3*inc+l

if(inc.le.n) goto 10
20 continue

inc=inc/3
do i=inc+l,n

templ=3rrl(i)
temp2=arr2(i)
temp3=arr3(i)
temp4=arr4(i)
j=i

30 if(3rrl(j-inc).gt.tempi) then
srrl(j)=3rrl(j-inc)
3rr2(j)=srr2(j-inc)
3rr3(j)=srr3(j-inc)
3rr4(j)=arr4(j-inc)
j=j-inc
if(j.le.inc) goto 40
goto 30

endif
40 arrl(j)=templ

arr2(j)=temp2
arr3(j)=temp3
arr4(j)=temp4

enddo

if(inc.gt.l) goto 20
return

end
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subroutine straight(x,y,ndata,a,b)
integer ndata,i
real*8 ss,st2,sx,sxoss,sy,t
real*8 a,b,x(ndata),y(ndata)

sx=0

sy=0
st2 = 0
b=0
do i=l,ndata

sx=sx+x(i)
sy=sy+y(i)

enddo

ss=float(ndata)
sxoss=sx/ss
do i=l,ndata

t=x(i)-sxoss
st2=st2+t*t

b=b+t*y(i)
enddo

b=b/st2
a=(sy-sx*b)/ss
return

end
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APPENDIX 3

European Larch Plot EL_1
Date ofData Acquisition: 14/03/03 N. Trees: 45

Tree No. DBH HEIGHT Height FB CrownN CrownE

1 125 28.1 16.5 8.4 8.1

2 146.5 32.4 13.1 10.5 9.2

3 124.5 31.1 15.7 7.2 9.7

4 114.5 29 17.3 7.6 7.7

5 156 28.4 11.5 10.6 10.8

6 116 27.6 16.9 7.8 6.6

7 125 25.9 14.1 9.6 10

8 145.5 30 11.4 12.3 10.6

9 124.5 29.4 14.1 8.6 9

10 134 28.8 15.9 9 10

11 124 29.9 14.7 9.5 8.2

12 136 31.5 17.1 8.6 6.8

13 110 31.3 21.7 6.5 6.8

14 138 33.6 14 12 9.3

15 131 30.7 12.6 8 7.8

16 133 30.5 19.1 7.2 7.8

17 119.5 31.2 11.7 9.7 9.5

18 113 29.9 16.9 8.5 9.8

19 123 30.1 16.9 8.7 9

20 143 33.7 15.3 10.2 8.3

21 128 27.1 11.7 9 9.5

22 141 29.4 18.2 8.1 6.9

23 146 33.2 13.7 9.5 11.6

24 130 14.5 6.3

25 131 30.7 14.1 10.5 9.8

26 136 30.7 12.8 10 9.9

27 108 29.4 12.3 6.9 8.4

28 155 30.2 12.9 7.8 9.4

29 155 27 9.9 7.7 8.3

30 18

31 118 28.7 11

32 32

33 136 21.4 7.8 10.2 10

34 128 27.2 9.2 9.7 9.6

35 161 24.2 11.9 9.5 9.2

36 161 27.8 12.5

37 122 29.8 17.1 4.5 5.6

38 155 31 9.9 12.5 10.8

39 157 32.9 14.6 11.5 9.8

40 118 28.7 11.9 9.9 7.1

41 142 35.4 10.8 10.6 10.8

42 147 27.8 10.6

43 139 29.9 7.8 8.4 8.2

44 151 28.6 8.7 11 11.3

45 97 26.1 12.5 4.8 4
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European Larch Plot EL_2 mixed
Date of Data Acquisition: 11/03/03 N. Trees: 83

•ee No.

1

DBH

135

HEIGHT Height FB CrownN

6

CrownE

6.1

2 145 34.2 8.5 7 5.4

3 185 32.5 16.7

4 127 31.4 12.2

5 125

6 80

7

8

180

122

30.17 15.6

9 110

10 119

11 120 28 9.6

12 170 26.4 13.2

13 197 29.5 9.9

14 164 29.7 15.4

15 101 5 4.1

16 152 27.6 10.4 5.9 5.8

17 154 30.4 9.3 5 5.6

18 135 32.7 11.7 7.8 5.6

19 88 3.2 3.1

20 142 29.1 13.6 6.7 6.8

21 101 4.7 4.9

22 206 30.5 10.6

23 163 30.5 14.1

24 209 33.4 13.5

25 165 32.1 15.2

26 124

27 173 30.7 14.2

28 170 33.5 15.3

29 107 4.7 5.5

30 123 5.6 5.2

31 189 29.2 11.8

32 153 29.4 16.4

33 225 29.7 10.9

34 197 31.8 15.6

35 96

36 176 34.7 15.6

37 95

38 164 27.5 15.5

39 192 34 13.5

40 175 34.3 13.5

41 105 6 5.2

42 97 5.4 6

43 118 30.8 10.4 6.4 6.7

44 101 5.6 5.2

45 113 5.7 6

46 96 3.8 4.2

47 222 33.4 3.8

48 121

49 108

50 167 33.5 10.1
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51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

190 32.8 18

153 33.2 15.1

175 35.1 15.2

138 31.8 14.5

123 6.4 7.4

92 5.5 5.6

142 32.4 12.9 6.7 7

124 6 6.2

114 4.2 4.6

141 31.2 12.7 7 7.2

113 3.9 5

127 5.9 6.1

181 30.1 9.4

108 5.1 5.2

128

121

221 32.7 15

168 33.1 8.3 4.2 4.5

104

150 31.5 4.9 4.3 4.7

82 3.9

116 5.4 6.2

78

126

180 33.2 12.7

100 5.3 5

84 3.4 3.1

108 6.3 6.4

119 4 3.6

149

133 5.8 6.8

87

89 5.8 6.2

298



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Oak Plot Ok_2 Fairy Knowe
Date of Data Acquisition: 15/03/03 Number of trees: 174
R31053E: 56.09.59.43397N 4.22.23.80797W 107.948

DBH HEIGHT Height FB CrownN CrownS

67 14 6

60 10.1 3

16

43 9.6

61 12.2 8.9 3.8 3.5

135 16.6 4.1 9.2 4.9

90 14.6 10.5 4.7 2

23.5

23

57 9.7

92 11.7 8.6 3.8 5

46 9.7

61 12.3 9.7 6 2

62 11.1 9.7

13

15

197 24.1 5.7 15 13

14

22

20

19

16

15

13

13

14

143 16.1 9 8.2 8.4

10

87 17.1 9.1 6 5

19

18

125 15.7 6.1 8 7.6

29

38 5.7

110 14.7 10.8 3.6 2

13

21

14

101 14.5 6 7.5 6.2

18

82 15.3 8.6 5.5 3

53 9.9

39 5

98 17.9 9.9 5.7 5.6

163 22.1 3.5

19

121 19.5 5.6 8.8 6.6

17

76 16.2 6.5 4.7 4.2
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50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

6

80 22 9.3 5.8 5.1

17

58 7.7

123 14.2 8.5 10.8 6.8

9

18

11

172 19.7 4.1 13 13

13

63 13.1 7.2

62 11.7

26

115 11.7 3.9

12

108 18.2 10.6 3.35 5.1

84 13.6 10.4 3.6 7.2

102 15.4 9.1 5.1 8.9

70 12.9 8.9 5.8 2.1

65 9.1

21

181 20 6.1 15 14

15

90 18.2 9.5 6 4.4

38 6.5

86 19.2 11.5 4.2 4.1

92 17.4 7.2 7.5 8.3

35 8.7 9 6

74 19.6 10.1 4.1 7.8

32 6.7

23

79 12.1 3.7 5.4 5

82 15.6 10.7 5 4.8

142 20.7 8.1 9.6 8.5

94 19.7 11.1 5.4 5

84 15.4 12.2 5.1 4.7

81 8.4 4.8 4.9 4.6

88 17.1 5.8 5 6.2

82 17.1 10.6 4.8 3.5

83 16.8 10.5 6 3.4

68 11.9 6.4

14

47 8.9

77 12.7 10.9

23

17

21

88 17.3 8.2 5.8 8.5

36 6.9

74 15.5 10.1 5.7 4.7

75 13.9 8.9 5.3 4.6

76 16.3 6.2 4.6 3.2

105 18.8 3.2 10.4 8.2

14
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Norway Spruce Plot NS_1 (50x50m)
Date of Data Acquisition: 15/03/03 115 trees

Tree No. DBH HEIGHT Height FB CrownN CrownE

1 117 17.8 1.6 6 5.8

2 173 22.9 1.8 7.9 6

3 112 19.7 7 4 3.5

4 121 20.5 8.3 5 5.8

5 127 20.7 8.3 4.6 5.5

6 98

7 128 22.1 4.1 5.3 5.2

8 155 20.6 2.1 6.9 7.2

9 82

10 102 20.6 6 3.9 3.8

11 80

12 120 22 6.6 5.2 4.7

13 109 19.4 6.4 4 4.6

14 111 16.4 5.8 5.6 6.2

15 74

16 111 19.7 7.5 3.5 4.5

17 72

18 92

19 109 17.2 7.5 5.6 4.6

20 109 20.8 9.6 3 3.6

21 72

22 125 20.1 7.3 5.9 5.4

. 23 117 19.1 6.5 5.2 4.4

24 94

25 89

26 74

27 102 21.6 8.4 4.2 4.1

28 85

29 91

30 96

31 117 21 7.1 5.4 5.5

32 60 9.3 4

33 140 21 4.2 5.5 6.3

34 92

35 107 19.6 9.1 6 5.3

36 109 20 6.5 4.2 5.6

37 129

38 92

39 83

40 110 20.5 6.7 5 5.1

41 98

42 144 20.6 8.4 5.7 5.3

43 82

44 91

45 117 25.4 11.9 5 4.1

46 86

47 109 19 7.1 4.6 4.9

48 115 23.1 9.8 5.3 3.9

49 80



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

21

81

94

81

89

98

123

99

98

95

95

118

105

11

75

108

98

77

107

90

84

97

89

113

69

113

96

77

98

109

88

107

74

136

103

85

11

75

102

86

86

87

72

110

78

108

75

101

110

78

135

19.9

12.3

19

17.8

22

19.5

18.5

19.1

19.1

20.7

19.8

18.9

20.7

19.2

19.6

20.1

22.7

6.4

2.5

3.1

9.5

9.4

8.3

7.4

8.5

7

6.7

II

9.2

8.6

9.8

5.4

8.5

6

5.3

4.8

5.1

5.7

3.8

4.2

5.1

5.6

5.7

5.7

4.5

3.9

4

6.9

6.5

5.2

4.8

5.9

3.6

4

4.2

4.6

5.6

4.2

5.1

4

4.3

5.7
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Norway Spruce Plot NS_2 Drumore Wood
Date of Data Acquisition: 13/03/03 n. trees 222

Tree
No. DBH HEIGHT Height FB CrownN CrownS

1 117 23.1 5.7 4.7 5.1
2 30
3 34
4 64 20 7.1 4 3.8
5 103 20.8 5.3 4.8 4.6
6 63 11.4
7 44
8 80 17.7 4.8 3.4 2.9
9 23
10 52 15.6
11 66
12 11
13 103 20 8.1 4.2 3.8
14 112 21.8 6.3 4.1 4.9
15 19
16 39 5.2
17 73 12.3 5 1.8 2
18 46
19 100
20 12
21 79
22 87 14.7 4.3 2.9 2.7
23 116 19.1 5.4 5.2 4.8
24 100 18.8 5.7 4.7 4.6
25 24 3.4
26 143 22.8 6.2 5.8 4.4
27 129 22.7 4.9 5.2 4.3
28 23
29 41.5
30 48

31 138

32 136.5 23 6.7 6.1 5.6

33 14

34 11

35 59

36 109 20.1 7.2 4.5 4.3

37 68.5

38 117 19 6.4 3.8 4

39 100 18.7 5.9 3.4 3

40 97

41 60

42 86 18.7 5.7 4.2 4.4

43 88 18.6 5.4 4.7 4.5

44 66

45 65

46 71

47 77.5

48 162
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48

110

41

92

70

28

131

74.5

52

95

32

88.5

87

122

75

127.5

117

119

49

135

34

75

87

18

32

36.5

91

30

35.5

97

123.5

141

154

72

29

73

92.5

27.5

163

124

31

35

47

90.5

90

63

48

73.5

25

75.5

69

63

19.2 4 3.5

21 5.4 2.8 3.1

18.5 5.1 2.5 2.8

6.7

23.1 6.6 5.2 4.9

19 3.7 3.8

6.1 2 1.8

18.1 2.8 2.1

17.7 2.5 2.2

18 3.2 4

17.5 3 3.1

17.8 3.5 4.2

17 5.3 4.8

20.1 3.9 4.4

11

22 7.3 4.7 4.8

6.1

8

18.3

19.3 4.6 3.6 4.5

21.4 6.5 2.8 5.4

20.8 5.7 3.8 5.6

21 4.9 2.8 3.5

18.7 6.3 3.8 5.2

18.5 5.4 4.1 4.8

5.8 6.4 2.6 2.9

304


