Finite Difference Approximations of
Second Order Quasi-linear Elliptic and
Hyperbolic Stochastic Partial
Differential Equations

Robert J. Pefferly Jr.
9600206

Doctor of Philosophy
University of Edinburgh
2001

7 ‘L{,‘.:i‘i‘\
b * L
% 4
Q &
¢ Cfl;_
w =i
o
<

N, w



ACKNOWLEDGEMENTS
I would like thank both Dr. Jessica Gaines and Dr. Sandy Davie for their eternal
patience, care, concern, and help over these past few years. Without their guid-
ance and recommendations completing this thesis would have been an impossible
task. Thank you from the bottom of my heart. I would also like to acknowl-
edge the Edinburgh University Mathematics Department and Luled Universitet
Software Engineering Department for their efforts in creating an environment
encouraging learning and professional development.

Mor and Mormor, words cannot express my gratitude.

This work was funded in part by the United States-United Kingdom Fulbright

Organisation.



Table of Contents

Chapter 1 Introduction
1.1 Background and notation. . . . . .. .. ... ... ..
1.1.1 Domains in continuous space . . . . . . . . . ..
1.1.2 Discretised space . . . . . . ... ... ... ..
1.2 Numerical approximations . . . . . ..., ... ... ..
1.2.1 Finite difference operators . . . . . . .. .. ..
1.2.2 Finite Difference Schemes (FDSc) . . . . . . ..
1.2.3 Finite Difference Systems (FDSy) . . . ... ..
1.2.4 Error, convergence, and stability . . . . . . . ..
1.3 Wiener process . . . . .. . . .. ..

1.3.1 Stochastic integration. . . . . .. ... .. ...

Chapter 2 Hyperbolic equations in one space dimension

2.1 Introduction . . . . .. ... ... ... ... ...
2.1.1 Summaryofresults . . . . .. ... .......
2.1.2  Hyperbolic Assumed Initial Conditions (HAIC)
2.1.3 The hyperbolic process . . . . . .. .. .. ...

2.2 Discretisation of the process . . . . .. ... ... ...
2.2.1 Canonical finite difference scheme . . . . . . . .
2.2.2 Expansionofterms . ... ... ... ......
2.2.3 Finite difference system . ... ... ... ...

2.3 Errors and convergence . . . . . .. .. ... ...
2.3.1 Initial conditions . . . .. ... ... ... ...
2.3.2 Local €Tor. . . v v v
2.3.3 Convergence . . . . . . . . .o

2.3.4 Numerical rates of convergence . . .. .. ...

Chapter 3 Elliptic processes
3.1 Imntroduction . . . ... ... ... ... ... ..

3.1.1 Summaryofresults . . . . ... .........

...... 1
12
...... 12
...... 13
...... 15
...... 16
...... 18
...... 18

20
...... 20
...... 21
...... 21
...... 23
...... 28
...... 29
...... 31
...... 33
...... 36
...... 36
...... 37
...... 40
...... 43



3.1.2 Elliptic Assumed Initial Conditions (EAIC) . . ... ... 53

3.1.3 Theellipticprocess . . . . . ... ... .. ... ...... 53

3.2 Discretisation of the process . . . . . . .. ... . ... ... 60
3.2.1 Discretisation of the boundary . . . . . . . ... ... ... 60

3.2.2 Computational molecules . . . . . . . ... ... ... ... 61

3.2.3 Green’s function approximation . . . . .. ... ... ... 63

3.2.4 Closed loop feedback . . . ... .. ... ... ....... 66

3.3 Elliptic equations with multiplicative and general noise . . . . . . 69
3.3.1 Finite difference system . . .. ... ... ... ... ... 70
Chapter 4 Numerical methods for elliptic processes 72
4.1 Tterative FDSc methods . . . ... ... . ... . ... ...... 72
4.2 Numerical examples . . . . . . . . .. ... Lo 79
4.21 FDScmatix . . ... .. .. .. 79

4.2.2 Green’s Function . . . . ... ... ... ... .. .... . 82

4.2.3 Non-additive noise processes . . . . . . . . . . . . ... .. 84

4.3 A priori initialization methods . . . . . . ... ... ... ... 88
4.3.1 Blow-upmethod . . ... ... ... ... ... ..... 89

432 GQmethod . . ... ... ... 90

433 ||IX,Y|;%method . . . .. ... 92

434 GPSmethod ... .. ... ... .. ... .. .. ..., .92

4.3.5 Numericalresults . . . . .. ... ... ... ... ..., 93
Chapter 5 Quasi-Geostrophic processes with additive noise 95
5.1 Introduction . . . . . . . . . .. ... 95
5.1.1 Summaryofresults . . . . . ... ... ... ... .. 96

5.1.2  Assumed Initial Conditions (QGAIC) . . . . .. ... ... 96

5.1.3 Processes of interest . . . . . e e e 98

5.1.4 Other papers and processes . . . . . . . .. .. ... ... 100

5.2 Discretisation of the process . . . . . . ... ... ... ... ... 104
5.2.1 Expansionofterms . . . ... .. ... ... ... ... . 105

5.2.2 Computational molecules . . . . . ... ... ... ... ... 110

5.2.3 Numerical approximations . . . . ... .. ... .. .. .. 113
Bibliography 115
Appendix A Notation 121



Appendix B Supplementary proofs and information 126

B.1 Chapter 2 . . . . . . . . . .. e 126
B.2 Chapter3 . . . . . . . . . .. 139
B.3 Chapter 5 . . . . . . . . . . 147
B.3.1 Inviscid shallow-water processes . . . . . . ... ... ... 150
B.3.2 Equationsofstate. . . . . .. .. ... ... .. ..., 151
B.3.3 Quasi-Geostrophic existence and uniqueness . . . . . . .. 152
Appendix C Computer code 157
C.1 Notation . . . . . . . . . . i e 157
C.1.1 Constants . . . . . . . . o i i 159
C.1.2 Goodnessof fit . ... ... ... ... ... ... 160

C.2 Numerical generation of Brownian spaces . . . . . . ... ... .. 160
C.2.1 Normal random variables. . . . . . .. ... ... .. ... 162
C.2.2 Browniansheetcode . . . ... . ... ... ... ..... 165
C.2.3 Rhombic W(D) discretisations . . . . . .. ... ... ... 173
C.2.4 Unit point source . . . . . . . . . o v v i i 175

C.3 A priori initialization methods . . . . . . ... ... ... ... .. 176
C.3.1 Symmetry considerations . . . . . . .. ... ... ... .. 176
C.3.2 Blow-upmethod ... .. ...... ... ... ..... 179
C.3.3 é\Q method . . . . . . . . e 180
C.34 GPSmethod ... .. ... ... ... ... .. .. ... 184
Appendix D Figures 185
D.1 Hyperbolicsystem . . .. .. ... ... ... ... ... . ..., 185
D.2 Ellipticsystems . . . . . . . . ... 189
D21 Z% _ 1 examples . . .. ... 196

D.3 Quasi-Geostrophic system . . ... .. .. e e e e e e e 204



Chapter 1

Introduction

In principle the accurate solution of the governing equations with
appropriate boundary and initial conditions will reveal all required
information in any particular problem. However, the equations of
motion are so complex that only rarely can exact solutions be found,
and any method of approximation of the equations requires first an
understanding of the broad, general, physical principles with which

any approximation must be consistent. [53, page 22]

physical
system - process phenomena

finite aet of equations mathematical description
computer model ‘real world' problem
FDSc R® domain
FDS SPDE's EX: waves, gravity, weather
y initial conditions

Figure 1.1: Levels of abstraction for physical problems

The definitions of ‘equation’ and ‘space’ are taken in the usual sense and given a
‘physical phenomena’ that one wishes to investigate:

oA ‘process’ is a mathematical description of the phenomena that involves partial
differential equations and the initial conditions necessary to ‘solve’ the problem.
oA ‘system’ is a finite set of simultaneous equations and initial conditions that
are used to model a process. The implementation and/or solution of this system
will be called a ‘numerical evaluation,’ ‘approximation,’ or ‘estimate.’

A partial differential equation, PDE, expresses the relationship between a func-
tion and its derivatives with respect to different state variables over a contin-
uous space. When using PDE’s, improvements can be made by adding non-
deterministic (stochastic) elements to the equations to account for the seemingly
random fluctuations between a ‘good’ deterministic model and the phenomena

the process is describing. These fluctuations are due to the circumstances that:
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eThere generally is a measurement error in any mechanical device.

eThere is incomplete or non-exact information about the initial conditions.
eNumerical methods utilise a finite number of decimal places, thus initial condi-
tions and subsequent iterations introduce round off errors.

eProcesses are often a truncation or idealization of a phenomenon that might
utilise incomplete theory or disregard necessary variables.

- The stochastic partial differential equations, SPDE’s, considered in this text
are interpreted in the Walsh distribution valued stochastic process sense using
a standard Brownian sheet; refer to [60, Chapter 2]. SPDE’s interpreted using
a Kondratiev space or a nuclear covariance will not be considered; refer to [34,
Chapter 1}, [41], and [60]. As per standard notation, ‘pathwise’ solutions are -
dependent upon a single generation of a stochastic space, while ‘non-pathwise’
solutions are dependent upon the statistical properties of a stochastic space. As
discussed in [2], when initial conditions are imposed on a process where a solution
exists, is unique, and depends continuously on the data; then the initial conditions
and process will be labeled ‘well posed.” Given a well posed problem:

e F'(-) denotes a ‘solution’ that identically satisfies a process on an a priori domain
and F () denotes a numerical approximation to F (). One can assume without
loss of generality that {2, F,P} is common for both a process and system.

eThe second order quasi-linear SPDE’s of Chapters 2 - 4 can be expressed as:

2 2 2
aa F(z,y,2) +b3 F (z,y,2) +63 F(z,y,2)
0%z 0x0y o%y

0°F (z,y,2) , ,
SW =g (F (IE,?J,Z) ,F(.’E,y,z),w,y,z,W(x,y,z)> ,

62F (CL',’y,Z) +T32F($,y,z-)

=g, 9292

(1.1)

where one of the coordinates can be utilised as time. Specific importance is placed

on the two dimensional form of (1.1):

2 2 2
JSE @y (OF(zy)  O°F (zy)

Oz? 0xdy 0y?
=g ( % oy ,F(z,y),2,9,W (z,9) (1.2)

with characteristic functions, £ (z,y) and ( (z,y), being solutions to the DE:

d 1

el (b + V5 = 4ac) . (1.3)
dr 2a

(1.2) is classified with respect to the discriminant, o = b? —4ac, such that F' (z,y)

is ‘elliptic’ if & < 0, ‘hyperbolic’ if & > 0, and ‘parabolic’ if & = 0. Thus, solutions

to (1.3) are (real valued/complex conjugate) in (hyperbolic/elliptic) processes.

7



eThe Quasi-Geostrophic SPDE’s of Chapter 5 can be expressed as:

0Q (X)
ot

+I(F(X),0(X))=v(VF(X),F(X),X) +w(X)W(X) (14)

where X = (z,y, 2,t), 2 is the Laplacian operator of Notation 3.1.1, J(-) is the
Jacobian of Notation 5.1.1, and Q(-) is a functional of 2F (-); refer to (5.2).
Various methods have been developed to solve these processes in closed form,
but often the solutions involve complicated mathematical devices and/or trivial
circumstances. In discretising a process, systems redefine and simplify the prob-
lem by transforming an equation of continuous change into a finite number of
equations and unknowns. Thus, numerical approximations are often necessary
when modeling a process with non-trivial conditions, since:
¢One is confronted with having to evaluate and possibly solve partial differential
equations where closed form solutions can rarely be identified.
eEven when closed form solutions exist, often their computational demands dras-
tically outweigh the demands of an acceptable numerical evaluation.
Assuming numerical evaluations will be performed; estimates involving SPDE’s
aid a researcher by providing easily controlled ‘realistic’ models for experimenta-
tion. These models allow one to test theories, obtain information on phenomena
that might not be readily available, and provide a non-invasive means of collecting

data as compared to physical models involving intrusive measuring devices.

1.1 Background and notation

#.#.# | Chapter.Section.Number
Equation | (Chapter.Number)
Reference | [Bibliography Number, Loation]

A summary of variables can be found in Appendix A with selected proofs listed
in Appendix B, algorithms in Appendix C, and figures in Appendix D. The fol-
lowing notation will apply throughout the thesis and notation will be omitted if
it does not clarify the problem or detracts from the discussion:

o{d, B,a,b,c,, s} denote real variables and {j, k,1, m,n, o} denote integer count-
ing variables. i = /=1 and is not an integer counting variable.

o{f (), 9C),h(),u(),v(),w(),T(),£(-),C(-)} denote real valued functions.
®g (a1, ,an) |(r,, rn) denotes a function evaluated at (ry,---,ry). -
ey;.,; denotes a function or variable dependent upon ‘text.’

e|c| denotes the absolute value of a function or variable.
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o{[A],[B]} denote matrices where [I] is the identity matrix, [0] is the zero matrix,
and the inverse and transpose of A are denoted by [A™!] and [AT], respectively.
o[V] is a vector and Table 1.1 denotes standard norms which satisfy: 0 < ||V,
Vi + Vill < IV5ll + |Vill, and ||wV|| = |w]|||V||. When [ has a superscript, such

as [!, then [ is a norm notation and not an integer counting variable.

Norm Notation Definition

n .
Absolute or /! IV, 2:1 |a;]
1=

|4

n 2
Euclidean or 12 | ||V, ( 1|aj|2>
]:

Maximum or I | ||V||, max |o;l
1<j<n
Table 1.1: Standard norm notation where [VT] = (o, )

1.1.1 Domains in continuous space

Notation 1.1.1. Let card (-) and C () denote the cardinality and complement of

a set or space.

All processes will assume Euclidean space, R¢, where d € {1,2,3,4} and R¢,
denotes the half space R*! x [0,00]. A geometric point, p € R?, is taken in
the usual sense with a Cartesian coordinate defining its position vector from
the origin, [0]. Position vectors {X,Y} use a standard orthonormal basis and
dot product and refer to an appropriate subset of space dimensions, {z,y, z,t},
where t is the dimension designated as time. A ‘set of points’ is any non-empty
set of R points and a ‘polygonally connected domain’ is a set of points that
forms a closed sub-space of R%, where any two points can be joined by a series of
connected line segments lying wholly within the domain. The standard definitions
of ‘convex,’ ‘open,’ and ‘closed’ apply and S (X, §) is a ‘neighborhood’ defined by
a d-dimensional sphere centered on p with a radius 5 > 0; refer to Figure 1.2. The
following applies to all polygonally connected domains considered in this text:
eThe words ‘polygonally connected’ will be omitted.

eAn ‘interior point,’ g, has at least one non-empty neighborhood lying wholly
within the domain. The ‘interior’ of the domain, U, is the set of all interior points
and is an open sub-space.

oA ‘boundary point,’ s, contains at least one interior and one non-interior point
in every non-empty neighborhood. The ‘boundary’ of a domain, U, is the set of

all boundary points and is a closed sub-space.
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eAn ‘exterior point,” has at least one non-empty neighborhood lying wholly within
the compliment of the domain. The ‘exterior’ is the set of all exterior points; i.e.
the open subspace, (U U 6U) = {R? — (U U 60)}.

- exterior = C( BUS V)
S(p,B)

/
*// interior= U
/

/

/
J origin

Figure 1.2: R? Domain and notation

1.1.1.1 Continuity and singularities

As per standard notation, a variable or function is ‘bounded’ if there exists a
positive real constant strictly less than infinity, K, such that |a| < K. Given
[X — Y] is a difference vector and 8 is bounded such that 0 < 6 < 1; then a

function is labeled ‘Holder continuous over a domain with exponent 6’ if

X)—g(¥
sup 19 g(e |« g (1.5)
{X,Y}eU HX - Y”2

is true. If U is arbitrary, then g (-) is Holder continuous with exponent ¢ and if
- (1.5) only holds for a given neighborhood, Y € S (X, ) C U, then g (-) is ‘locally
continuous.” If § = 1 then ¢ (-) is ‘Lipschitz continuous,” if § = 0 then g(:) is

bounded, and ‘piecewise continuous’ will be defined in the usual sense.

Notation 1.1.2. f(X) € €™ denotes that the function f (-) can be differentiated

at least n times, where the derivatives exist and are bounded.

A singularity is a non-regular point where there is a sudden change in the
initial conditions, driving noise, nature of a process, or a PDE becomes singular.
Singularities are often referred to as shock waves, heat sinks, point sources, re-
entrant corners, or points of ill-formed conditions, where examples include: a
standard Kroneker delta function (s4¢), a ‘unit source’ and/or ‘pulse’ (refer to
Figure D.7), ‘large jumps’ in a stochastic space, and a point of intersection where
boundary conditions contradict each other or have a non-smooth interior angle

greater that .
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1.1.2 Discretised space

Definition 1.1.3. Z4%, C R?, where Z%, is a set of points with a minimum [2

distance between any two distinct points greater than a positive constant, Ax.

d VA Notation Definition - s represents either z or ¢

1 | Uniform | g; g(z;) =g(jAzx)

2 | Uniform | g, g (x], sk) = g (jAz, kAs)

3 | Uniform | gjx, g(z;,uk, 81) = g (jAz, kAy, lAs)

4 | Uniform | g 1m 9 (24, Yk, 21, tm) = g (JAZ, kAY, 1Az, mAL)

Table 1.2: Z%_ Notation

A ‘uniform’ Z¢_ is a common discretisation that fulfills Definition 1.1.3 and is
often referred to as a standard ‘net’ or ‘mesh.” Discretisation points are uni-
formly distributed throughout the domain and are mapped to an ordered d-tuple
(j, k,1,m), which equates to the R? coordinate, X = (jAz, kAy,lAz mAt). Let

Z¢ represent Z4 ., where Az is assumed and:

continuous R 2 space uniform Z 2 space
2
! 2 ‘@ N
continuous R ' space & &2 2
) O o
N & (\0\ X @
0 [+3 RN A s
o ‘J& &%Q °
& 7 z
. - M-divist
uniform Z ' space: M divisions:  Ax= o/M 0 o it
........... | S

47 discrete <+
y = Ax

Figure 1.3: R? and uniform Z¢ spaces

00K base

Figure 1.4: Example D allocations for a uniform Z?

enotation for Z¢ will remain consistent with R?, where Z¢ discretised variables /
functions are listed in Table 1.2 and {Az, Ay, Az, At} = {Az, \, Az, A\, Az, Ay Az},
e{M, N} denote the finite number of divisions of a bounded R' region and are
often limited to values of 2" + 1, such that Az = ;.

oS, (p,7) and S; (p,7) use the [? and ! norms and appear as a d-dimensional ball

11



Operator Difference wrt. z; Definition
average difference NoGjkim e ——
backward difference Db Gjket.m 9jkim — 9i—1klm
central difference AcGjklm 9j+ L ktm = 9i-1 kim
forward difference At Gikim 941,k 0m — Gjklm

Table 1.3: Finite difference operators wrt z

or diamond, respectively; refer to Figure 1.3.

oD is a closed and bounded sub-domain of ¥ and let D, denote the region of R?
space that is mapped to p; refer to Figure 1.4. The D, regions do not have to be
mutually exclusive subspaces.

o‘adjacent’ points are non-boundary points, Y, where min (||Y; pss|l,) < AAz.

1.2 Numerical approximations

This thesis will concentrate on the mean square convergence of finite difference
evaluations preformed on a uniform Z? that discretise equations via Taylor ex-
pansions or Hélder continuous conditions. Using the Lax Equivalence Theorem,
given a well posed linear problem and a discretisation scheme that satisfies consis-
tency and stability conditions, then these are necessary and sufficient conditions
for convergence. For an introduction to the ‘basic principles of discretisation
methods,” refer to [17, Chapter 2.

1.2.1 Finite difference operators

The first order finite difference operators of Table 1.3 are commutative, associa-
tive, and distributive over addition; refer to [17], [18], [33], or [39]. Higher order
operators are composed by repeated application of the first order operators and
are labeled ‘equivalent’ if they produce the same results when applied to any
function in which both operators are defined. Thus, A™f (X) = A (A" ! f (X))
and the following second order operators are equivalent:

DpAsg (25) = Apleg (z5) = Alg (z5) = gj11 — 295 + gj-1- (1.6)
Difference operators can also be applied to functions of multiple dimensions:

Affg (331', yk) = Appg ($j+17 yk+1) = gj+1,k+1 — 9j+1,k — Gjk+1 + Gj k- (1-7)

Since a partial derivative is the limit of a difference quotient, a ‘consistent’
scheme is equivalent to the partial derivatives of the SPDE as Az — 0. Although

12



it is numerically impossible for Az = 0, one should be able to approximate a
partial derivative to any desired degree of accuracy using Z? points that are

‘close enough.” For example, let r € [z;,;11] and s € [z;_1,2;41] such that:

3(23 ) [x=2;= Alzr—%% +0(Az) = JHAJ: o 2 83:(2 : (1.8)
por == M gy HO(A8) = TR g
(1.9)

Using functionals of surrounding discretised points to approximate derivatives,
the template for a numerical scheme will be expressed as a ‘computational molecule’
where the influence from Y to X is denoted by ¥ (Y; X) and:

ethe standard definitions of ‘explicit’ and ‘implicit’ will be utilised.

ea computational molecule is a ‘weighted average’ if Y. J(Y;X) =1.
Xezd
F(X)= Y 9(Y;X) F (Y) and for each - = {I,m} combination, a molecule is
Yezd
denoted by 19(.7_ 1aka7],ka ) 19(.% kaa],ka) 19(.7+11k,).7a k;a)

1.2.2 Finite Difference Schemes (FDSc)

Notation 1.2.1. An expression, § is ‘Big-Oh’ with respect to Az”, when lim %

Az—0
< K and will be denoted by 8 = O (Az"); refer to [39, page XXII].

A FDSc approximation for (1.1) is derived by using a computational molecule to

estimate the partial derivatives of a SPDE via

~

By [ P9 7o ][ Rl | otampon: oo

where F (X), denotes a numerical approximation to F (X) utilising the n** iter-
ation of a difference scheme on a discretised domain. For notational ease, denote
(1.10) as [ﬁn] =1 (FDSC, [ﬁn_l] [ Fsw), (g ()]), where J(-) is a system involv-
ing the FDSc matrix, previous approximations of F (+), boundary conditions, and

driving functionals.

Example 1.2.2. The canonical d=2 explicit elliptic computational molecules de-

picted on the far left of Figure 1.5 are the weighted averages
r 1

[
o

0 1 0
4 ~~ —~ ~~ o~ ~~
o| 10 1|, such that9 =14 and Fp= 1 (Fyap+ Fyorp+ Brpn + B,
0 L 0
Fa o
P2y 1 1 oy 1 (5 o ol
o| § 0 & |, suchthatd =} or 5 and Fip=1 (Fiooe + Fiop+ B
20 5 20

13



Elliptic Schemes Parabolic Schemes Hyperbolic Scheme

v%

X X X

2]

U

Figure 1.5: FDSc computational molecules for (1.2).

+Fj,k—-1) + 3 (Fj+1,k+1 + Fjyip-1 + Fjoppsn + Fj—l,k—l)-
These molecules yield the [F DScy] matrices

00 ro0too0 Lo o0

0 10 01010 0 3 0 | and

0 01 004103 0 0
S R S S I A -
0 % 5 2 O 05050 0 % 5 2 0
0 0 % & 3 00130 % 0 0 5% =

with appropriate entries of {0,1, %, = } for the [FDScss) matriz.

1.2.2.1 Other schemes

Predictor-Corrector methods are often used to reduce computational effort by
combining the numerical benefits of different computational molecules. These
methods utilise at least two FDSc matrices to create an approximation where,
Ai] =3 (FDSe1, FDSe2, Biy] [ﬁk_l] [P, g ()] Thus:

1. Use a FDSc (usually explicit) to derive an estimate for

By =3 (kD01 B [o (Benr)])

2. Use |F e %]4 to derive a ‘more accurate estimate’ for the driving functionals,
9 (Fiy))

3. Use another FDSc (usually implicit) to derive

F]=3 (FDSe2, [ﬁk_%] 9 (ﬁk_)])

z
4. Repeat if necessary.

In using different FDSc’s, improvements can be made by focusing upon the
strengths of an FDSc and overcoming its pitfalls with the benefits of another
FDSc. For example, a non-consistent but stable FDSc with a small spectral ra-
dius can be combined with another FDSc to create an overall consistent scheme.
Due to the amount of material covering this topic over the past century, a dis-
cussion of popular methods such as explicit Adams-Bashforth methods, implicit

Adams-Moulton methods, and n‘* order Runge-Kutta methods will be omitted.
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Input from Evaluate
F(X)g, V(), ™ FDS:F(X ),
and W(X) i
7'y
If estop>|F(X I)H-F(Xl)"" l <

then terminate FDS.

Figure 1.6: Picard-Lindelsf FDSy schematic - closed loop feedback system

Finite Element Systems and Spectral Methods (collectively labeled FESy) dis-
cretise processes using trial functions; refer to [10], [17, Chapter 4], or [19, Section
12.5] for an introduction. Although often more accurate than finite difference sys-
tems due to the superior handling of boundary conditions and error propagation,
FESy experience minor difficulties in the stochastic setting as discussed in [1].
Due to the reliance upon FESy in the deterministic literature, deriving results for
FESy will be addressed in future work.

1.2.3 Finite Difference Systems (FDSy)

Since numerical approximations are derived from well posed initial conditions and

driving functionals, a FDSy approximation will be the reduction of (1.10) where:
{ F (o) oo ] = { FDSes FDSess ] [ F (p6)q } + 0 (Az?)[g ()] gives

F (ps0) 0 I F (ps0)
o= | PPt FPSe | [ Elvles | ot o)

which is used to create a system of equations that approximates a process via
0= [ —I FDSyss } [ F (90)e } + [FDSys] [g (+)], such that

0 I-1 F(@éu)
ﬁ(pu)oo _ |0 FDSyss ﬁ(pu)oo ], or sim
| Rleos | 6 FPRus [ |00 | 4 (PDSu] o (), o sy
|7 (95)ea| = [F DSy [F (ps5)] + [F DSyl [9 ()] (1.11)

Thus, the FDSc and FDSy approximations are equivalent. Using a consistent
FDSc, direct methods ‘exactly’ approximate a system on a domain using Gaussian
elimination or an algebraic reduction to derive a FDSy. This method is preferred
when deriving an approximation, but considering the size and density of the sparse
FDSc matrices, evaluating their inverses is generally not a viable alternative. The
algebraic reduction of a FDSc to derive a FDSy will be used in Chapter 2.

The ‘method of successive approximations’ involves a Picard-Lindeldf iteration
scheme that relies upon multiple iterations of a FDSc to derive a FDSy. Thus,
[ﬁn] =21 (FDSc, [ﬁn_l] g ()]) will be repeated a number of times to derive

15



the FDSy matrix; refer to Figure 1.6. Although computationally expensive, this
method is easily implemented on a computer for a variety of boundary conditions

and domains and this will be the technique used in Chapters 3 - 5.

1.2.3.1 FDSy Illustration

Due to the quasi-linear format of (1.1), a one-dimensional linear function, T (z),
will be considered without a loss of generality. Thus, on the uniform domain
[To, zn], there exists a linear difference equation

aﬂ\“ﬂ.g + bj?j.{,l + ijfj:ainrfj + (2(1j + bJ) Af?j + ((lj + bj + Cj) ’Y‘j, (1.12)

such that Y‘k = wg + 'Youk + ?1 vg. If the discretised solution is satisfied for
arbitrary values of Yo and Yi; then w; must be a particular solution of T; while
u; and v; satisfy the associated homogeneous difference equations of (1.12). Mul-
tiplying the difference equations by v,4; and w1, respectively, and subtracting
yields the relation a;8;4+1 = c;B8;, where 8; = u;v;41 — u;41v; and:

oIf {a; # 0,c; # 0} then the general solution involves two independent arbitrary
constants on the domain and T, is uniquely determined by its two initial values,
Y, and T,. Hence, an algebraic reduction of the direct FDSc yields an FDSy
approximation, [Tk] = [FDSyl] [?1] + [FDSy2] [?0] + [K].

olf {a; #0,c; = 0}, then ;41 = Bj42 = --- = 0 and the T, are constant multi-
ples for £ > j. Hence, the general solution involves one arbitrary constant and
the respective boundary points {Yo, Yn}. The FDSy is often determined via an

iterative FDSc, which eventually yields, [?k] = [FDSy] [To, ?IT\,] + [K].

Remark 1.2.3. Due to the nature of the {a; # 0,c; = 0} system, a linear com-

bination of boundary and adjacent points can also be utilised.

1.2.4 Error, convergence, and stability

Since the exact solution to a process is unknown; the crux of approximating a
process lies in applying a finite difference scheme to create an accurate, conver-
gent, and stable numerical estimate. A local error is unavoidably introduced at
each discretisation step, thus use a consistent scheme such that errors remain
sufficiently small and try to assure that the accumulation of all errors in an ap-
proximation either decay or remain bounded. A system is stable if approximations
remain uniformly bounded functions of the initial state and the cumulative effect
of all round off errors remains negligible as Az — 0. Conversely, a system is
unstable if there exists initial disturbances for which the approximation becomes

unbounded and/or global errors are uncontrollable. It is desirable for a scheme to
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Convergence Definition

almost sure | P ( lim eg — O) =1
Az—0

mean square | lim ]E(egz)% —0
Az—0

stochastic lim P(eg > f) =0
Az—0

Table 1.4: Standard convergence definitions.

be asymptotically stable such that small changes in the initial conditions produce

relatively small changes in the approximation.

Notation 1.2.4. Let ¢s(X) denote a ‘stopping error,” which is an a prioi value
used to terminate an iterative FDSc once successive Picard-Lindeldf iterations
yield es (X) 2"fo (X), — Faz (X),_,|; refer to Figure 1.6.

n—1

Notation 1.2.5. Let ¢ (FDsy,FDsc,ﬁ(X),A;c, n, es (X)) = F (X)~Fazr (X),

denote the ‘error’ and eg (ﬁ (X)) = ’e (ﬁ (X))‘ = ,F(X) — Faq (X),
the ‘global error,” where (FDSy,--- ,es(X)) will be omitted unless necessary.

denote

Notation 1.2.6. The rate of convergence for a FDSy to a solution is denoted as
RC (ﬁ‘(X) ,S,A:E) = iln ( (eg (F (X), sAz) x eg (F (X)), Am)_l))

)

Notation 1.2.7. Denote the covariance, erpectation, probability, variance, and
Lebesgue measure via {C(-),E(-),P(:),V(-), D ()}, respectively.

lim
Az—0

= ks 1n ( lim (]F (X) = Fane (X)| x| F (X) = Faz (X)

Az—0

The standard definition of ‘pathwise’ (strong) convergence will be used, where
a scheme is labeled convergent, if, for any well posed problem, the approximation
approaches the solution of the SPDE as Az — 0; refer to Table 1.4. Conver-
gence will relate to the asymptotic behavior of a finite sequence of random vari-
ables where mean square convergence will be the focus of this thesis; i.e., given
E (a(X)?) < oo, then show nll)rgo]E(|a (X) - a(X)nIZ)% = 0. One can evaluate

1
lim E(eg?)? directly or utilise:
Az—0

S
o=

« lim E(eg?)! = Jim E(ef))" = Jim E((e)7)" = lim (V(e)+E(9))".

Az—0 . Az—0 .

. 2 _ . 2 2 . 2\ 32

o lim E(eg?)? = lim (V(eg) +E(eg)’)” = lim (V([el) +E(le)")".
Since F' (X)) is rarely, if ever, known then this value must also be approximated

N

using a ‘very accurate’ estimate; i.e., Fynz (X),, where 6 is close to 0 and m > n
and/or es,, < es,. The following notation will be utilised for numerical results:
o (ﬁ (X),0,8, Az,m, n) = Fyaz (X),, — ﬁgm (X),,-
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o3 (F (X)) = £ (F0)] = |Fose (X),, = Foae (X),],
oRC (ﬁ(X),O,ﬁ,Az m,n)

S —_— ( lim (‘FQM (X),, — Fsae (X),

Azr—

% oo (X), = Fiaa (X),

)

1.3 Wiener process

As discussed in [60], a stochastic process models a random phenomena and two-
dimensional Gaussian white noise will be interpreted in the canonical Walsh dis-
tribution sense with mean 0 and a Dirac delta covariance function. Let W (D)
represent a |? Gaussian measure with orthogonal increments on Borel subsets of
RZ,, such that {W (D) ~ N (0,9 (D));D € B (R%,)} is a mean 0 Gaussian pro- .
cess with a covariance function C(W (D;), W (D,)) = 90t (D; ND;) and B (R2,) is
the set of Borel subsets with a finite Lebesgue measure. The process W is carried
by a probability space {€, F (F.),»,, P} with a filtration, F, satisfying the usual
conditions: )

ofor each ¢ > 0, {W(D);D, C RéN{r > t}} is independent of F,. .

eW (D) is F;-measurable whenever D C R2 N {0 < 7 < t}.

Remark 1.3.1. Refer to Section C.2 for numerical examples on how one can

generate and refine example spaces.

1.3.1 Stochastic integration

In evaluating processes of measurable functions subject to stochastic noise, the
Riemann-Stieltjes integral must be abandoned and Lebesgue integration utilised
such that meaningful results can be obtained. In order to accommodate Chapter
2, two-dimensional stochastic integration will be the focus of this section; refer

to [9], [13], and [60, Chapter 2]. Given a real valued step function, hy (z,y) =
N
> a;1p, which is a countably finite linear combination of real coefficients and
=1
indicator functions that is well defined on {Q, F, P}, let {D1,--- ,Dn} be a series

N
of disjoint rectangles. Thus for a step function, [[ Ay (z,y)dT = Y o;1p,T:
7=1
N
ea deterministic integral would be [[ hy (z,y)dzdy = Y o; M (D;).
j=1

N
ea stochastic integral would be [[ hy (z,y)dW (z,y) = 3 o W(D;).
i=1

The representation of h(z,t) via a step function is not unique, but given
h(z,t) is a general adapted piecewise continuous function on the domain, one

im hN'—>h

can find a sequence of adapted step functions converging to A, i.e., 1\}
—00
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on the filtration F;. Thus, assuming that [[ A (a:,t)2 dzxdt < oo, one can define
BUsU ’

N
JIh(z,y)dW (z,y) = lim [[hy (z,y)dW (z,y) = max(},;zr(g))%];ajw(%),

where o; = h (min ({z,t} € D;)).

Remark 1.3.2. As per standard notation, let

o[ f(X)dW (X) denote the Ité integral which is a non-anticipating sum that is
utilised due to its martingale properties.

o[ f(X)odW (X) denote the Stratonovich integral which is an anticipating sum
that is used in engineering literature due to similar properties with ‘normal’
Riemann-Steiltjes Calculus.

e The Brownian Sheet, W (X), can be defined by W (X) = W(Uyx) where the
domain is an appropriately selected sub-domain of Re. In the case of Chapter 2,
W (z,t) = W(Dol (z,t)), where (z,t) is the aper of a suitable triangle in R2,.

Hence, the process is stationary, separable, and measurable and the Brownian
sheet is a homogeneous Markov diffusion process with paths that are almost
surely continuous and nowhere differentiable; refer to [9], [34], [39], or [60].
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Chapter 2

Hyperbolic equations in one
space dimension

2.1 Introduction

Notation 2.1.1. The second order d = 2 hyperbolic operator is denoted by
$%(F (z,t),0) = az—gt(f—’t) - 02%, where C' is the ‘wave speed’ or ‘speed of
propagation.’

This chapter concentrates on quasi-linear second-order hyperbolic SPDE’s in R?,

of the canonical form

O*W (=,
H%(F (z,t),C) = v (F (2,t),x,t) +w (F (z,t),z,1t) #, (2.1)
where an initial state and velocity are given at ¢t = 0; or equivalently
o’F PwW
L8 (60,60 +a (P 60,60 e, 22)

with an initial state given along £ = 0. (2.1) will be referred to as the ‘general’
noise case, with the following cases addressed throughout the chapter:
edeterministic, w (F (X), X) = 0,

9% (F (z,t),C) = v (F (z,t),z,t). (2.3)

eadditive noise, w (F (X),X) = w (X),
O*W (z,t)

2 -
5 (F(2,1),C) = v (F(2,8),2,8) +w (2,t) —5 (2.4)
emultiplicative noise, w (F (X),X) = F(X) w (X),
W (z,t
H*(F (z,t),C) = v (F (z,t),7,t) + w (z,t) F (z,1) aTgEt’) (2.5)
As discussed in [33] and [46); dispersion and dissipation will be introduced to

OF (z,t)

(2.1) via {v (-) ,w () } including functionals of the lower order terms {F (z,t), =5

20
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AF (z,t)
at

real valued solutions to (1.3), where

}. The transformation between (2.1) and (2.2) is accomplished using the

£(z,t) =z —Ctand ((z,t) =2+ Ct (2.6)

are called ‘linear propagation functions’ or ‘characteristic curves.” This transfor-

mation follows from $?%(F (z,t),C) = 0 being a combination of the first order
equations {Q{_Q%th_tn C’—igf”i Cﬁ2 ag(“ } or equivalently

of (z,t) _0Og (l‘,t) 531‘ (z,t)  adg(z,t). (2.7)
o Oz or ot '

where f (z,t) = i(z—tl, g(z,t) = aF(“ ,and C = \/— The PDE’s of (2.7) are the
‘conservation of slope’ and conservatlon of momentum’ equations, respectively.
The scalars {{ (z,t), & (z,t)} satisfy {‘94 o) = ool %) . ¢ %ﬁ—’tz}, where

c 0

[ 0 ¢ } and [ 2 é } have eigen values +C and eigen vectors {[1,1],[—1,1]};
i.e. ((z,t) and the invariant & (z,t) are functions of z = Ct. Due to these prop-

agation properties, solutions, initial conditions, and internal disturbances do not
have to be @) and singularities almost surely exist when using a Brownian sheet.
2.1.1 Summary of results

As per Theorem 2.3.8, numerical approximations built using a canonical five
point computational molecule are convergent to the d’Alembert solution with

RC(FDSy = (2.17),F (X) = (2.8)) = 1. Refer to Section 2.3.4 for numerical

results and Section D.1 for a listing of figures.

2.1.2 Hyperbolic Assumed Initial Conditions (HAIC)

The following initial conditions assure that hyperbolic processes are well posed:
Assumption 2.1.2. Utilise the closed and bounded domains of Section 2.1.2.1.

Assumption 2.1.3. Dirichlet boundary conditions {F (z,0), GFT(:’Q |t:0} are given,

where the initial state and velocity are Hélder continuous functions with 0 > %
Assumption 2.1.4. A Brownian sheet is utilised.

Assumption 2.1.5. v (-) and w (+) are real valued measurable functions on R2,

and they are globally Lipschitz continuous with coefficients K,, and K,,.
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A ! B

Ex.) Lix.t)
I/ §(x.t) ()(,t) C(X,l) \\ X ’r K )

«————

F(y,0)and _

Fy.s)| o0 ForF

Domain of Influence

Domain of '
x-Ct l Dependence ¢ x+Ct

Figure 2.1: Initial Conditions

2.1.2.1 Domains

Notation 2.1.6. The variables {r, s} will be used in the same manner as t such
that the coordinate pairs {(z,t), (y,s),(z,7)} € R2,.

Definition 2.1.7. The Domain of Dependence (DoD) is the closed R' interval
bounded by (2.6), where the DoD (z,t) = {(y,s) | s =0,y € [£ (z,t),{ (z,t)]}.

Definition 2.1.8. The Domain of Influence (Dol) is the bounded and open inte-
rior enclosed by the DoD (z,t) and (2.6), such that the Dol (z,t) = {(y, s) | s € (0,1],

yE [é(x>t_5)’<($at_s)]}‘

P I VRN
4

Region of
Influence Domain of

Rotation

Figure 2.2: Region of Influence and Domain of Rotation

Definition 2.1.9. The Region of Influence (Rol) is the unbounded region out-
lined by (2.6), such that the Rol (z,t) = {(y, s) | s € [t,00),y € [((z,1),£& (z,1)]}.

Definition 2.1.10. When using (2.2), the Domain of Rotation, DoR (b,a), is

the rectangular domain in the positive quadrant bounded by the origin and azes.

Figure 2.1-A represents the domains utilised in this chapter and Figure 2.1-B is
a special case that has been partially solved along the lower and side boundaries.
The union of the DoD and Dol is a closed, bounded, and convex domain, where
the DoD (z,t) contains information regarding the initial state of the system,

while the Dol (z,t) contains information regarding the forcing terms of (2.1).
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Solutions on semi-infinite strips are applicable since waves propagating along
(2.6) are reflected at the boundaries; refer to [31, Chapters 17 and 18], [33, page
239] and [46, Chapter 3] with analogous results for the stochastic case proved in
[12]. Results for domains restricted to the positive quadrant of R? are applicable
via a transformation forcing Az = At, shifting, and rotating the basis by —% to
yield a DoR; refer to [20], [30], [44], and [56).

2.1.3 The hyperbolic process

The motivation for solving hyperbolic processes in one space dimension is to model
wave equations analogous to the vibrating string problem where, in zero gravity, a
string of infinite length, constant density, and uniform tension is disturbed. These
processes involve pulses, vibrations, and the flow of information or energy such
as: water waves in a straight and narrow channel, linearized supersonic airflow,
sound waves along a pipe, longitudinal vibrations and torsional oscillations of a
rod, transmission of an electric signal along a low-resistance cable, transmission
of a signal from a transmitter to a receiver, the flux of information according to
Shannon’s model, waves in hydro-magnetics, and one-dimensional transmission of
S and P waves of an earthquake. Stochastic functionals can be used to represent:
eexternal disturbances to a transmission line or noise in a communication channel.
ecnergy introduced to waves via ‘rain’ or some other force.

edispersed energy sources in models of turbulence.

{ T=0 \ 2 T=0 2

Figure 2.3: Deterministic versus stochastic wave propagation; 7' = time

Remark 2.1.11. The communications and electrical engineering fields often utilise
smoother than white noise, colored noise, or bounded stochastic noise in place of
Assumption 2.1.4, such that large singularities almost surely do not exist; refer
to [35, Chapter 6]. Many non-pathwise stochastic spaces also ensure that large

singularities do not ezist; refer to [39].

The d’Alembert solution, (2.8) expresses solutions to (2.3) and (2.4) when
v (-) = v (z,t) or numerical approximations to F'(z,t) when either v (-) or w (-)

are multiplicative or general functions. If one wishes to approximate hyperbolic
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processes involving (2.8) and non-additive functionals, then either a Predictor-

Corrector or Picard-Lindelof iteration scheme must be implemented.

F(z,t):F(C(z,t),O)—;F(f(x 20 / BF .y
// dyds+——// y,8)dW (y,s). (2.8)

2.1.3.1 The deterministic process

Derivations of solutions as well as proofs of existence, uniqueness, and bounded-
ness for (2.3) can be found in research literature from the earlier half of this cen-
tury and most rigorous undergraduate physics and calculus texts published over
the past quarter century. Refer to [38, Sections 10.7 and 10.8] for an overview of
the deterministic system and [31, Chapters 17 and 18] for a discussion of physical
properties. (46, Chapter 3] and [33, Sections 3.12 through 3.14] address the FDSy
setting and for a FESy illustration, consider $? (F (z,t),C) = 0 on the positive
quadrant with 0 endpoint conditions, 9 (DoD (z,t)) = L, z € [0, L], and a = .

Derive a FESy via a separatlon of variables with a Fourler series to yield 1n1t1al
conditions, F (z,0) = Z ¢p sin (nz) and M t=0= Z by, sin (nz), where pro-

n=1
gresswe and standing wave solutions are represented as F (z,t) =

Z (sin (an( (z,t)) + sin (ané (z,t)))— Z 2a- (cos (and (z,t)) — cos (ané (z,1)))

n=1 n=1

and F (z,t) = Z sin (nz) (£ cos (anCt) + 2= sin (anC't)). Assuming a general
solution of F (:c t) h(¢(z,t)) + g (€ (z,t)) for (2.3) with non-zero boundary
conditions, then F (z,0) = h(z) + g (z) and 2E&8 |,_o= i (z) — ¢’ (z). Since,

2C(h(<($,t))+g(€(z,t)))=h(<(x,t))+g(<( z,t)) + h (€ (z,1)) + g (£ (2,1))

+ [ W (2)—g'(z)dz, this yields the d’Alembert solution {(2.8),w (-) = 0},
DdXzﬂ

where @ is a scaling factor accounting for the propagation of disturbances along

(2.6) in both the —z and +z directions; refer to Figure 2.3.

2.1.3.2 The stochastic process

Solutions to (2.1) are not differentiable due to the ‘roughness’ of the Brownian
sheet driving the stochastic process, thus (2.1) and (2.2) are just formal repre-
sentations. The existence and uniqueness of solutions to (2.1) on R%,, where
C = 1.0, is proved in [13] with further results on the positive quadrant shown in
[20], [30], [51], and [56]. Although not addressed in this text:

e[44] discusses hyperbolic processes along a strip in the positive quadrant using
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a variety of initial conditions.

*[50] proves the long time existence for {(2.1), v(-) = 0,0 < & < 1} and w (z,1) is
locally continuous with |w (F (z,t),z,t)| < K (|F (z,t)| + 1) log (|F (=, )| + 2)°.
eCabana, Orsingher, and [60, Chapter 3] address {(2.4),v(-) = 0,w (z,t) = 1}
and discuss how a Brownian sheet is a hyperbolic system. This equivalence to
the vibrating string problem explains the propagation of singularities parallel to

an axis as covered in [12] and [60].

o[15] discusses hyperbolic equations in R%, of the form M C;’%Q
62F 37 F k22l 3T 63W
—C2EELI) — o (F (x,y,1) ,7,y,t) + LEERDL000 (it

There are few results concerning the wave equation driven by random
noise in two (or more) dimensions ... One reason for this is that if
W (z,y,t) is white noise, even the linear equation {v (-) = 0,w (-) = 1}
has no solution in the space of real-valued measurable stochastic pro-
cesses (refer to [60]). Given that white noise can be viewed as a
random variable with values in a space of distributions, the linear
equation has of course a distribution-valued solution ... and is not

readily amenable to numerical calculations. [15, Section 1]

2.1.3.3 Results of [13]

[13, Sections III - V] provide an instructive and intuitive discussion of the nature
of the stochastic process and initial conditions which solve (2.8) on the positive

quadrant, R?, half plane, and semi-infinite strips.

Definition 2.1.12. [13, Definition II.1]: Let h (x) be a Fo-measurable stochastic
process with continuous sample paths and let g (x) : By (R) — 02 ({Q, F,P}) be
a o-finite random 1> measure with a §.- A continuous process F (z,t) is Fi-
measurable and a weak solution of (2.1) with initial conditions {h(-),g(-)} if:

// y,s) f (y,s) dyds + // Y, 8) [ (y,8)dW (y, )

Dol(z,t) Dol (z,t)
of (y,
= / O3 1y ity ay - / F (5:0)9 (d)
DoD(z,t) DoD(z,t)
+ [ 50 09,10 F v,5) dyas
DoI(:z:,t)

(2.9)
almost surely for each f (z) € € with compact support in RZ,.

Lemma 2.1.13. [18, Proposition II.2]: Assuming v (-) and w () are locally Lip-

schitz, then there exists at most one weak solution.
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Proof. Refer to Appendix B. (]

Lemma 2.1.14. [13, Proposition I1.3]: Given Assumption 2.1.5, then for each
Fo-measurable continuous process F (z,1), satisfying:  [[ E(|F (y, s)0|2) dyds <

Dol(z,t)
00, there e:m'sts a um'que continuous solution to the z’ntegml equation F (z,t)
—F y) 2C f.f )dyds+2c ff y13)7y73)dW(y’3)'
Dol(z,t) Dol(z,t)
Proof. Refer to Appendix B. O

Remark 2.1.15. Let U3 = Dol (z,t) U DoD (z,t); the mazimal inequality im-

plies that the above solution satisfies E| sup |F (z,t)|’ | < oo, provided oo >
(y,s)ezjf

[[F (y, s)oI” dyds. When F (z,t), =35 [ OF ( y, lozo dy+EC@, 0)+F(§(:c .0)
6 DoD(z,t)
the uniqueness result of Corollary 2.1.17 can also be proved as an élegant ‘conse-

quence’ of Lemma 2.1.13 and Lemma 2.1.16; refer to [13, pg. 477].

Lemma 2.1.16. [13, Proposition I1.4]: Given Assumptions 2.1.83 and 2.1.5, then
the unique solution of the integral equation (2.8) is a weak solution of (2.1) in the
sense of Definition 2.1.12.

Proof. Refer to Appendix B.’ _ O

Corollary 2.1.17. Given Assumptions 2.1.83 and 2.1.5, then there ezists a unique
solution to (2.8).

Proof. Refer to Appendix B. O

2.1.3.4 Results of [20]

Expanding upon the results of Carmona and Fouque, [20] extends the existence
and uniqueness results to the nonlinear equation

: gx(gyy) _f( ) (F (z,y),2,y) + h(F (2,9),2,9) (2.10)

with initial conditions F'(0,s) = F (r,0) = 1, where « tends to 0 and {z,y} >
0 such that (z,y) lies in the positive quadrant. The random field f(r,s) =

Z Z Wi lk—1,k)x[1-1,) (7, 8), where W is an iid family of bounded and centered
k=1i=1
random variables driven by a two-parameter Wiener process.
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2.1.3.5 Results of [30, Section 4] and [51, Sections 3 and 4]

Using ‘semi-martingales,” SM, on the positive quadrant with zero boundary con-
ditions along the axes, [30] proves existence, uniqueness, and the Markov Property

for the nonlinear equation

82F (:c,y) _ OF (:Evy) OF (:an)
W =1 (F(x,y),:c,y) or dy
+v2 (F(2,y),7,y) + w (F (z,9),7,9) W (z,y). (2.11)

W (z,y) is a two-parameter Gaussian white noise which is formally a Gaussian

process with mean zero and auto-covariance
E(W (rg,ry) W (8z,8y)) =6 (rg — 85) 0 (1y — 8y).

Lemma 2.1.18. Given Assumption 2.1.5, then there is a unique adapted sam-
ple continuous random process, F (z,y), that fulfills Qz—a%é—y) =v (F(z,v),2,y) +

w(F (z,y),z,y) Q%Zé—";’yl; where F' (z,y) € SM® and is Markov relative to Fr(z ).
Proof. [30, Theorem 4.1, page 459 ~ O

Lemma 2.1.19. Given {v; (-),v2(-),w (:)} € €¥), then there is a unique solu-
tion to the Stratonovich version of (2.11) contained in SM,,. The solution is
actually SMo, and is Markov relative to Fr(zyy. If h(-) € €®, h(0) = 0, and
b (-) is strictly positive and bounded, then the Markov process h (Y') satisfies the
Stratonovich integral solution for (2.11).

Proof. [30, Theorem 4.2, page 461]. O

[61] proves existence, uniqueness, and non-explosion for (2.2) driven by W (z, y),
where (z,y) lies in the positive quadrant and initial conditions are given along
the axes. The results of [51] are an extension of [30] and presented in a more

‘user-friendly version.’

Lemma 2.1.20. Consider an Ito version of (2.2), where v (-) = 0 with the addi-

tional function along the characteristics {% =a(-) %, %ﬁ;’y) =a(-) %:’y)}
and reqular SM initial conditions. Assuming that the functionals have a uniform

bound and are Lipschitz continuous, then there exists a unique solution. More-

over, for all § < % and a > 1.0; then E sup % <K.
DoR(z,y) 2

Proof. [51, Theorem 3.2.2, page 304]. O

Lemma 2.1.21. Consider a Stratonovich version of (2.2) with v(-) # 0 and
containing lower order terms of F (x,y) and regular SM initial conditions. For
an unknown SM and F (X) with known SM’s {u (z,y),v (z,y)}, there ezists a

unique solution.
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Proof. [51, Theorem 3.2.6, page 318|. d

2.1.3.6 Results of [56]

[56] proves existence, uniqueness, and smoothness for the nonlinear equation

O°F (z,y) _ OF (z,y) OF (2,)
ouoy v (z,y) o + vg (2,y) —S_y_
W (z,y)
s (F (0,),2,0) + o0 (F (2,9),,9) T 2t (2.12)

with initial conditions given along the axes (boundary), where (z,y) lies in the
positive quadrant. Although not as robust as the results of [51], the presentation
is easier to read and the results listed in [56, Section 5] provide an introduction

to the Green’s function of Chapters 3 - 5.

2.2 Discretisation of the process

Notation 2.2.1. In accordance with Section 1.1, denote the Domain of Depen-
dence, Domain of Influence, Region of Influence, and (2.6) in

oR?, by {DoD (zj,tx), Dol (z;,t), Rol (z;,tk), & (zj,tk), ¢ (25, 1)}

eZ2%, by {DoD;, Dol;x, RoL;k, &k, Cik}

Due to the propagation properties of (2.6), the FDSy and FDSc should in-
clude functionals used to derive solutions to (2.1). Hence R?, must be discre-
tised such that (2.6) are adequately modeled using {&;k, (;x} and the discretised
{DoD, DoI, Rol'} map to their respective R?, counterparts. As addressed in [54],
the respective size of Ax and At help determine if a system is stable and accu-
rate, since the slopes of (2.6) are - and the slopes of {€; 4, (;x} are £ = ££L.
Thus, the magnitude of A must be bounded as to not introduce new properties
to the Z? model and ensure that the conservation principles of (2.7) are upheld.

Referring to Figure 2.4:

(x’.,tk)

Figure 2.4: CFL Condition: U. are closed and bounded sub-domains.
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eWhen )\ < 1, the approximation speed is too fast and the space-time discretised

grid enforces a slope less than +%. Regardless of the magnitude of Az, Dol =
8

>~ U, and the numerical scheme is stable, but the accuracy is questionable due

Jj=4

to the inclusion of U4 and Us.

eWhen X > 1, the approximation becomes violently unstable and is inaccurate
due to the non-inclusion U5 and U7 in Dolj.
oWhen \ # 1, Z2 , # Z, ,y and {&k, Gu} # {€(z5,tk) ¢ (25, t)} such that
there is an inadequate mapping of the continuous domains in Z2.
eWhen A = 1, CAt = Az and Z?m) = Z?“) such that the discretised and
continuous characteristic functions are equivalent.

In addition to the slope of the characteristics and magnitude of A, there is
also the problem of how to map sub-domains {D, W (D)} in order to utilise the

driving functionals of the process in the system. Thus, use the following:

Definition 2.2.2. D,; = {(y, s) | g(Z: Z) € [£ (), tes1) € (5, thon)] } where MM (D; ) =

( ) € [C (xjatk——l)7C(xjatk+1)]
[ dyds = 2AzAt with diagonals 2Az and 2At; refer to Figure 2.5.

Dj k-1

Notation 2.2.3. Centered on (z;,tc_1), let [[ Y (a,B) be equivalent to:

Dj k-1
Gk k-2
o [ [ T(B) when using (¢,§) coordinates.
Cik—2 &k
tp—1 % +C(s—th_2) ty & +C(tx~s)

o f f T(a,8)+ [ [ T(a,B) when using (z,t) coordinates.

th—2 2;—C(s—tg_2) lh—12;—C(tr—s)

2.2.1 Canonical finite difference scheme

Figure 2.5: 5 Point FDSc and rhombic discretisation scheme

From Section 1.2.2, (2.6), and Figure 2.5, since disturbances propagate through
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space as a function of time, a FDSc estimate will be of the form

[Bia] = [FDSc1] [ﬁ_,,-,k] +[FDS2] [Fipoa] + 0 (A22) [y + K [W (03] [wiei]-
(2.13)

Referring to Definition 2.2.2 and Figure 2.5, the diamond shaped region between

two consecutive Z? points is assigned to each grid point; thus a % factor will

assure that the discretised domain is properly weighted. Use (1.9) to construct

the consistent and canonical explicit five point FDSc for (2.1), where the forcing

terms used to calculate F\j,k are mapped to {D;k_1,Vjk—2,w;k—2} tO ensure that

the Dolj is not overstated.

Notation 2.2.4. Let [A,] denote the following matriz with n rows and n + 2

A2 2(1-22) A2 0 0 - 0
A 2(1=23) A2 0 .. 0

columns [A,] = _
0 e 0 0 A2 2(1-—2%) A2

- and let [W(D;x)] denote a square diagonal matriz centered on W (Djx), such that

W (D;-1,) 0 0
(W (Dyx)] = 0 W (Dj k) 0
0 0 W (Djt1,k)

Lemma 2.2.5. The canonical five point direct FDSc for (2.1) is

[ﬁak] = [4,] [ﬁj,k—l] —[1] [ﬁj,k—z] + /\?C(,D) [U (ﬁj,k—%xjatk—Z)]

A -
+% [W(Dj,k—l)] [w (Fjj,k_2, .’Ej, tk—Z)] . (214)
Proof. Rearrange (2.1) such that 0 = —$2(F (z,t),C) + v (F (y,$),9, )

+w (F (y,s),y,9) %S—Z and use (1.9) to construct a consistent explicit FDSc

Fi x—2F; 41+ F j_ Fji15=2F; 41+ Fj_
where —=BE—=LholT gkl  O2LIHLAESSACITIIoLh o o) (Fg—2, T, tk—2)

At? ( ) Az?
Wi Dj,k—l . = .
+w (Fjk-2, Tj, tk-2) —xznr- ~ 0. Solving for F}, gives

~ ~

ﬁj,k =\ (ﬁj+1,k—1 + ﬁj—l,k—-l) +2(1=X) Fjs1 — Fix—s

+/\9ﬁ (Dj,lc—l) (A )

A ~
TR Fik—2,Tj tk—2 | + 57w (Fj,/c—z, Tj, tk—2) W(Djk-1)  (2.15)

2C

~

which reduces to j‘:‘j,k = ﬁj+1’k_1 + ﬁj'—l,k—l — Fjr—2
M (D, - ~ 1 ~
+(2—36’1k1)1) (Fj,k_g, zj, tk_z) + 55&) (F},k_g,_fbj, t[c_2) W(Dj’k_l) (216)
when A\ = 1. Using (2.15), the 9 values yield the computational molecule
0 0 0
A2 2(1-2%) A? | and the {[A,],—[I]} FDSc combination. O
0 -1 0
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2.2.1.1 Other computational molecule’s

eRotated: As depicted in Figure 1.5, another scheme can be constructed using
(2.2) in the DoR, such that F (€ (zj415te41) s C (@541, trt1))

= F (& (j tin1) , (@5, ter)HF (€ (@ian, 1) , C (@i, 1)) — F (€ (25, t6) , € (5, 1))
eProblematic: Although consistent, when discretising the derivative in space as a
central derivative and the derivative in time is a backwards derivative such that
(1+2)?) .ﬁ}"k = Zf},k_l - ﬁj,k_.g + A2 (ﬁjﬂ,k + ﬁj—l,k), the resulting FDSc expe-
riences stepwise over-stability; refer to [33, Section 3.13].

eHigher order: Explicit and implicit schemes can be created such that stability
is achieved for A > 1. For example, 17 (f’j’kﬂ - 2ﬁj,k + ﬁ‘j,k_1>

= 122.12 <_ﬁj+2,k + 16ﬁ}‘+1,k - 30F},k + 16?1’—1& - Fj—m)-

2.2.2 Expansion of terms

When X =1, (2.16) yields the solution if exact values are available for F (z,0),
F (z,At), and the integrals of the driving functionals over each D. When \ #
1, the inherent error introduced results from the expansion/contraction of the

discretised domain and the weighting of the driving functionals.

Lemma 2.2.6. Analogous to the deterministic problem, if A = 1, then
F(z5,te) = A (Fjpr -1+ Fjoip-1) +2(1 = A2) Fjpo1 — Fyga
+ag [ v (F(y,5),y,8)dyds + 55 [[ w(F (y,9),y,5)dW (y,5).
D

i k—1 Dj k-1

Proof. Refer to Appendix B. O
Remark 2.2.7. Lemma 2.2.6 fails when A # 1; refer to Appendiz B.

Notation 2.2.8. A Modified Pascal Row, MPR (™), is the transpose of a bino-
mial coefficient vector intermized with 0’s. This can be viewed as Pascal’s Triangle

with entries separated by 0’s.

S W o
OO =
O W o
= O

1
01

Lemma 2.2.9. When A =1

>

ﬁ [An+2(j—1>]] = [ MPR (™)].

J=1

Proof. Refer to Appendix B. O

Notation 2.2.10. Referring to Figure 2.6, the points that are blackened lie on
{fj,k+1—2l N Cj,k—1+2l}; where | € {0, 1,...,k— 1}. Let
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n

e > denote the k additions along pz2 € DoD;; wheren = (j — k+ 1+ 2[)
DoDLk
elj—k+1,7+k-1].
n

e Y denote the ﬂg;lz additions in the Dol;y that lie on either §r_1-a or

DOI]"k .
Cijk—1-2- pz2 € DoDjy will be excluded from this set of points.

(x4)

Figure 2.6: Alternating Z? points that lie on either & x—1-9 or {jx—1-2

n Tn+1
Lemma 2.2.11. [ u(y,0)dy = Y [ u(y,0)dy | and let T (z,7) de-
DoD; 4, DoDj i \zn-—1

note either dzdr or dW (z,r), such that [[ u(v(y,s),y,s)T (2,7)
DOIj,k

5 (qu<v<y,s),y,s)r<z,r)).

DO]]‘,

Proof. Refer to Appendix B. ‘ d

Corollary 2.2.12. 9t (Dol;y) = <§ + l) M (D) = £M (D) and

n
M| Dol — 3 Duo | = sk (D).
DoD(j;k)

Proof. Refer to Appendix B. d

Definition 2.2.13. Referring to Figure 2.7, define the subspaces:

oLy (y,s) as the set of points (z,7) = (2 € [£(y,5),& (), tk—2)] , 7 = 0).

oL, (y,s) as the set of points (z,7) = (2 € [( (z;,tk—2),{ (y, )], 7 =0).

oU; (y,5) as the set of points (z,7) € [£(y,s),& (zj,tk—2)], where r > 0 and
¢(z,7) < ¢ (@)1, te1).

*Us (y,s) as the set of points (z,r) € [ (zj,tk-2),¢ (y,s)], where r > 0 and
§(z,1) 2 & (241, te—n)- :

¢Us3 (y, s) as the correction of U1 (y,s) and Uz (y,s) in Djx_1, where Uz (y,s) =
{DoI (y,s) NDjk-1}.
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(j;f1 K1)

Figure 2.7: Example subdomains for integration

Notation 2.2.14. Let { P R I A i | } denote integration over
Ll(y’s) L2(ya5) U1 (y,s)Uz(y,s)Ug(y,s)
Dol (y,s)

the domains depicted in Definition 2.2.13, where [ = [f .
Dol(zj,tk-2) U1(y,s)+UV2(y,5)+Us(y,s)

Lemma 2.2.15. Ezpanding F (y, s) around F (x;,tx_1) yields
9(y

F(y,s) = F(zj,te—2) + [ (y,5) + g (y,8) + h(y, ), where:

of (y’ 3) = _ F(=),tk-2), );F(C(Iy,tk 2),0 F(E(y, );F(C(y,s),o)

b | f HEED | dey [ Een dz>.
Li(,9) La(y.s)

Dol(y,s)

og(y,s) = % [[ v(F(z71),2,7)dzdr.
Dol(zj,ti_2)
Dol(y,s) )
.h(y’s):% ff (U(F(Z,T'),Z,T)dW(Z,T).
Dol(z;tk—2)

Proof. Refer to Appendix B and Figure 2.7. a

2.2.3 Finite difference system

As alluded to in Figure 2.3, hyperbolic processes can be visualized as the prop-
agation of singularities over a domain. The following examples represent the
propagation of a pulse of magnitude 2; i.e., a 2d( ) singularity. The diagrams of
Figure 2.8 utilise the canonical FDSc (2.14), where {Az = 0.5, A = 1,v (=, t) = 0}
and the same Brownian sheet is used to drive each system.

eDeterministic propagation where $? (F (z,t),1) = 0.
3*W (z,t)

ozot
eMultiplicative noise propagation where H2 (F (z,t),1) = 0.1F (z, ) 82;1;(;;’”.

eGeneral noise propagation where $2 (F (z,t),1) = 0.1cos (57 F (z,1)) %’ﬁ.

To demonstrate how the FDSc matrix is used and give an introduction as

eAdditive noise propagation where $? (F (z,t),1) = 0.1

to how a FDSy matrix is formulated, utilise the domain of Figure 2.6, where
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Time =0 Time = 1.0 Time = 2.0 Time = 10.0 Time = 25.0

Deterministic m : H]n] |H| H % ll
Additive ; m : I -

Multiplicative ’ m 7777777 ﬂ ;”1 .................... ” VVVVVVVV o ]

== |

Figure 2.8: Propagation of a pulse

(zj,tk) = (2o, t6); from (1.10) and (2.14):

\ Flig
Fos=[N 20-X) X]| By |- Fout2mD) [u (FO,4,0,4At)]
Fis ’
+2—)\C'W(DO,5) [w (F\O,47 0, 4At)] .
P
E_Ls )\2 2 (1 - )\2) )\2 0 0 E—1,4
| B |=|0 ¥ T20-am ¥ 0| |
Frs 0 0 X¥o20-a) 2| R,
' B F2,4 J
7 v F\_l’g, Az, 3At)
/\_1’3 ~
— },7:0’3 + %Dﬂ (D) v F0,3, 0, 3At)
Fis v F\l’g, Az, 3At)
W(D_1’4) 0 0 w i_l’g, —A.’E, 3At)
+2—)‘5 0 W(D()A) 0 w Fg)g,'O,?)At)
0 0 W(D14) w F\l’g, Az, 3At)

As addressed in Section 1.2.3.1, these relations yield an expression for ﬁo,ﬁ in
terms of { [ﬁj,o] , [ﬁj,l] } and values of {v (*) ,w (-), W(D)} over the Dolys. When
A =1, the {9 (D), W(D)} sub-domains will only be evaluated on the blackened
dots of Figure 2.6, while the empty circles represent {ﬁ (), w ()} values used in
the approximation of ﬁo,s- Due to the propagation properties of the characteristic

functions, an algebraic reduction of a FDSc using (2.15) will be utilised.
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Notation 2.2.16. Define P (m,n) such that n is the number of rows and:

k m—2k—1 m=1 , ;
B 1y mejet _ ) = if mis odd
P(m,n) = ]g)( 1) (m—2J—1> [ 01;[1 [A"“(O‘l)]] where k = { 5 —11f mis even

[

(2 i (i 2(3=1)
(=17 (Y5m) | 1T [Ausaioon] | wherem =21-+1

™

<
Il
-

or P (m,n) = ¢

S
X
!

1

o=1

<.
Il
-

ol 21
(_1)J (%(j—l)-f-l) H [An+2(o—1)] where m = 2|

(1 PN LG
(—_1) (2(1-;')) O];[l [An+2(o_1)] where m = 2l + 1

or P(m,n) = ¢ 2(1—f)1

- .
Il
= o

> (<17 (Gi5h)

[ /=0

Lemma 2.2.17. P(k+1,n) = [A4,] P (k,n+2) — [I] P(k — 1,n).

[An+2(0_1)]} where m = 21

o=1

Proof. Refer to Appendix B. 0
Corollary 2.2.18. Using (2.16), when A =1 then
1 0 10 -1 0 1 0 ... 0
P(k,n) =
oO..01 0 10 -+ 1 0 1
Proof. Refer to Appendix B. O

Lemma 2.2.19. FDSy approzimation vectors to (2.8) are expressed as:

bl

-1

AO (D)
2C

[ﬁj,k] = P (k,n) [13]-,1] + P(,n) [u (E,k_l_l, zj, (k—1—1) At)]

l

P (k= 1,n) [Fo] + o fp(l,m (W (03-0)) [ (Bppotor, 2, (k= 1 - 1) )]
=1

1

(2.17)
Proof. Refer to Appendix B. O
Corollary 2.2.20. Given values of {[Y;1],[Y;0]}, relations of the form
T = [ A2 2(1-2) A2 ] %:T_l Y hea+ f(Tipes) or equivalently
Tjr1h-1

[Tk = [An] [Tjk-1] = L] [Tjk—2] + [I] [f (Tjr-2)] can be ezpressed as:

(ik] = P (k,n) [Tja] = P (k= 1,n) [Yy0] + z_: P(l,n) [f (Tjk--1)].  (2.18)

Proof. Refer to Appendix B. O
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Corollary 2.2.21. Given {[Y,1],[Y;o]} and A =1, (2.18) is expressed as

k k-1 k=1 1-1
Yike =2 Vickran— 3 Tiksusro+ 3 O f (Ticteomerp—im) - (2.19)
1=0 1=0 1=1 m=0 ’

Proof. Refer to Appendix B. This result can also be used to verify Lemma 2.2.11
and Corollary 2.2.12. O

2.3 Errors and convergence
An expression is O (Az") if its absolute value is less than K Az", where K depends
upon the driving functionals, initial conditions, and size of the domain.

Assumption 2.3.1. Throughout this section, assume A = % = 1, such that

{& ke, Gk} = {€ (zj,tk) , C (4, tk) }; refer to the CFL condition of [54].

2.3.1 Initial conditions

Assumption 2.3.2. {ﬁj,l, Ilﬁj,o} are derived from the initial conditions {F (z,t) |i=o,

%f’t) |t:0}. Unless otherwise stated, W; o has been included in the evaluation of
ﬁ‘j,l, ¢;0°s are iid, and Drrllja(tx ) (E (eg?o) ,E(eg?l)) < KpopAz® = O (Az3).
oD(z,t ’ ’

As addressed in Section 1.12 and Assumption 2.1.3, well posed problems are given
an initial state and velocity, {F(x,t) |t:0,% |t=0}, and let {6p.p, Kpop}
denote the Holder piecewise exponent and constant for the initial conditions

over DoD (z,t). Thus, min (91’_'60(2:0)’anaS‘:‘t2|f==g) > Opop > % and Kp,p >

max (KF(SU(Z,O),K%%QK:{?), where z € {[&k,&j—2) U [p—2,Ckl}- This infor-
mation is used to evaluate boundary and adjacent interior points (i.e., the first
two rows) of Z? in order to implement a FDSc, such as (2.15). A variety of
methods can be used to derive {I/ﬁj,l, I/ﬁj,o}, but in order to ensure that results are

applicable to generic initialization schemes, Assumption 2.3.2 is utilised.

Example 2.3.3. ﬁ},l can be estimated using a multitude of methods such as a Ito-
Taylor ezpansions, integral evaluation, SDE approzimations, the PDE schemes of
(2], [33], [57], or the HODIE methods of Lynch and Rice. As per Assumption

2.3.2, Dr%a(th) (E(eg?,o) ,]E(eg?-’l)) = O (Az3) results can be derived when the

driving functionals are included in the approzimation of [ﬁ}l]

Often the initial state, F (z,0), will be given such that [Fjpo] can be ezactly
stated; i.e., ¢jo = 0 and the evaluation of ﬁ‘j,l 18 where an error is introduced.
Thus, a scheme that can be utilised consists of ﬁ‘j,l — ﬁ}-,_l = 2At%§’—tz fzz(fj
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o~

+35M (D) + FEW(D;); when A = 1, Fj_

1 can be eliminated to yield Fjl =
By 1o+FJ+1o+AzBF(zt) lx Tj +%'%OE)JI(D)+—2'LOW( ) such that]E( ) O(A:c )

2.3.2 Local error
Lemma 2.3.4. E((f (y,5) + ¢ (y,5) + h(y,5))*) = O (Axz).

Proof. Using the inequality (a + b+ ¢)* < 3 (a® 4 b% + ¢?) gives :
E((f(y,8) +9(y,5) +h(y,s)?) <3E(f(y,3)°) +3E(g(y9)°) +3E(h(y,s)").
Evaluating terms yields the following results:

eFor the initial conditions, expand using Lemma 2.2.15 and the Holder continuity
of Assumption 2.1.3, to give |f (v, s)]

_ P(E(mgtn-2).0)+ F(C(2j0t0-2).0) | F(&(y,S),O);F(C(y,S),O) + % I Qf%:_,rl lr=o dz

2
Ll(y15)+L2(yas)
S ’_F(&("ﬁj7tk—2))o)+F‘(<(xj,tk—Z)aO) _+_ F({(Ij1tk—2)y0)+F(<(zj)tk—Z)aO) _+_ KDOD\/EA:L‘%

1 {8F(zr) 6F( ) |r= Kpep2V2Ach
+2C( 0:T z= §($J th-2) 28z + =522 (12 g(zjatk 2) 2AI) + c

_ 1 Az \/_ OF(z,r) 8F(z ) |r=

=V2Az3 (Kpop (1 + 2—6‘) ?A:cz max ( poranll i §(w],tk ) zzg(zj,tk_z))).

Taking the expected value of the square yields E (f (y,s) ) = 2Az (- )2 = O (Az).
Dol (y,s)

oThe area of (9 [f dyds) =M (Dol(y,s) — Dol (z;,tk—2))

ol(z;,tx_2)
— (tk-2+as)220(tk—2+as) _ (tk—2)22c(tk—2) < 4CAt (tg_p + At) = O (Az).

Dol(y,s)
Thus, (] If Kdyds) = KM (Dol (y, s) — Dol (z;,tx_2)) = O (Az).
OI(:Ej,tk_g)
eFor the E (g (y, 3)2) term, expand using the Lipschitz condition of Assumption
2.1.5 and Cauchy-Schwarz Inequality such that,
Dol(y,s)

E(g(y,s)?) =E (210 [ v(F(zr),27) dzdr)

DOI(:BJ Jtg— 2)

2
Dol(y,s)
<E (21(: I (OaZ,T)|+Kv|F(Z,T)|dzdr>

Dol(z;,tx_2)

2
Dol(y,s)
<2E (210 [f v (0,zr) dzdr>

Dol(zj,ty_ 2)

DOI(:Ej,tk_z)

Dol(y,s) 2
+2E| |5 [/ KulF(z,r)|dzdr

) Dol(y,s) 2
< 557 [ K,Q+]zr|,)dzdr

ol(zj,ty—2)
DoI(y,s) Dol(y,s)
+552E If Kf,dzdr) E [ |F(zn)) dzdr)
_ ol (z;,ty—2) ol (z;,t;—2)
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Dol(y,s)
< s (K (1 )0 (829 + SO B S )IF(z,r)lzdzdr)
ol(zj,tx_2

From Lemma’s 2.1.14 and 2.1.20; E (|F (z,r)|2) is bounded since
F(z,t), =L (C(Z’Q’O);F(g(z’t)’o) +36 [ a—li%’—sz |s=0 dy is a Fy-measurable con-

DoD(z,t)
tinuous process satisfying: [ E(|F (y,s),|°) dyds < co. Thus, taking the
Dol(z,t)
expected value of the square yields E (g (y 3)2)
Dol(y,s)

< gbz (Ky (14 ||2,7]1,))* O (A2?) + 250 (Az) (ff )Kdzdr = 0 (A2).
DoI I‘,tk_g
eUsing the properties of the Ito integral and Lipséhitz condition of Assumption

DoI(y,s)

2.1.5 gives E ((h (y,5))°) = E ((% [[ w(F(z,7r),2,71)dW (2, r)) )

DOI(IJ,tk 2)
DolI(y,s)

= (6)'E I(ff )lw(F(z,r),z,r)Fdzdr)
ol(xj,tr—_o
DoIJ(ys

2
<@VE( I wosnirer (Z,r)|)2dzdr>
0 I],k 2
Dol(y,s)

< 52K [ |w(0,z M+ (K, |F (z,r)|)2dzdr)

ol (zj,tk—2)
Dol(y,s) Dol(y,s)

< % [ Q+lzrly)dedr+ [[  F(z7)? dzdr)

ol (z;,t— 2) DOI(IJ tk—2)

Using Lemma’s 2.1.14 and 2.1.20 to bound the F (z,7) term yields
Dol(y,s) DolI(y,s)

E((h(y,9))%) S%‘%(] [/ Kdezdr+ [f Kdzdr) = O (Az).
ol (xj,ti-2) Dol(zj,tr—2)
eCombining these results gives

E((f (y,8)+9(y8) +h(ys)?) <3E(f(y,5)°) +3E(g(y,5)°) +3E(h(y,s)°)
<0 (Az) + 0 (Az?) 4+ O (Az) = O (Ax).

k-1

Lemma 2.3.5. E ((ff y, s) dyds — U(Fjj’k_Q’xj)t.k_Q) m(Dj,k-1)> )
= O (Azd). ]

Proof. Using Lemma, 2.2.15 and Assumption 2.1.5, v (F' (y, s), ¥, s)
=v (Fjp—2+ f(y,8)+9(y,s)+h(y,s),z; + oy, tk—s + a,). Hence,
v (F (y,5),9,5) — v (Fjk-2, Tj tr—2)|
= v (Fje—2+ f(y,8) +9 W, 8) +h(y,s),z; + oy, tez + o) — v (Fje-2, Z5, te-2)|
< Kolf(y,s) +g(y,s) + h(y,s)| + Ko (Jog| + o)
<Kylf (y:8)+9(y,9) +h(y, s)| + Ko (1+ &) Az,
Using the properties of the Lebesgue integral gives
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J [ Yy, s) dyds — IM (D e—1) v (Fj k-1, %5, tk—1)

3,k—1
=[] (v y Yy 8) — (F}',k—lazj,tk—l))dyds‘
j,k—1
< [[ |v(F Y, 8) — v (Fjx-1, Zj, tk—1)| dyds
]Ic 1
and substitution into the integral yields,
flv Y, 8) dyds — M (Dj 1) v (Fyk-1, 55, tk—l)'
k-1
< K, ff (If (y;8) + 9 (y,8) + h(y,s)| + O (Az)) dyds
]k 1
< Ky [I1f (y,8) +9(y,8) +h(y,s)| dyds + O (Az?).
Djk—1
’ 2
ThllS, E ( (ff )dyds - M (Dj,k—l) v (Flj,k—la Zj, tk_1)> )
j.k—1

((K I 1f(y,s +g(y,8)+h(y,8)ldyd8+0(Aw3)) )

]kl

k-1

< 2KJE (ff If(y,s)+g(y,8)+h(y,8)ldyd8> ) +20 (Azf).

Using Lemma 2.3.4 and Definition 2.2.2 yields

( (ff Y, 8) dyds — M (Djk-1) v (Fjk—1,Z5, tk—1)> )

j,k—1
2
< 2K? (0 (Az)) +0(Az) = O (Azd). O
2
Lemma 2.3.6. E Cff )dW (y, ) (Flj’k_g,l‘j,tk_g) W(Dj,k_1)> )
j,.k—1
= 0 (Az?).
Proof. Evaluating the expectation yields
2
( (ff )dW (y’ ) W(Dj,k—l)w (ﬂ,k—?)zj,tk—2)> )
3,k—1

( (ff Y, 8 ) (Fj,k—h Lj, tl\c—l)) aw (y> 5)) )

=E ff Iw (F(y,s),y,s)—w(}rlj,k—hzjatk—l)ﬁdyd's)

j.k—1

Hence, |w (F (y,8),y,s) — w (Fjx—2, Tj, tk—2)|
= |w (F (zj,te=2) + f (4, 8) + 9 (y,8) + h(y,8) , 75 + g, ti-2 + ) — w (Fj =2, Tj, th—2)|
< Ko lf (y,8) +9(y,8) + h(y,8)| + Ko (o] + )
< Kulf (4,8) + 9@, 9) +h(ys) + K, (1+2) 0 (Az).
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Substitution into the expectation yields

E (ff y,s)dW (y,s) — W(Dj,k—l)w(Fj,k—z,fvj,tk—z))

k—1

< KZE ( I (f (y,5) + g (y,5) + h(y,9)| + O (Az))* dyd8>

Jrk—1

<2KZE|( [[ |f(y,8)+g(y,s)+h(y,s) dyds | + O (Az?)
j.k—1

and using Lemma 2.3.4 and Definition 2.2.2 gives

E (ff Yy, s)dW (y, s) — W(Dj,k—l)w(Fj,k—z,fvj,tk_z)>

k=1

<2K20 (Azx?) + O (Az?) = O (Az?). O

Remark 2.3.7. When utilising the additive functionals: {v(z,t),w(z,t)}, ei-
ther a direct evaluation of the integrals or a similar evaluation utilising Taylor

expansions gives the following improved bounds:

fo dW y, ) - wj,k—QW(Dj,k—l)) =0 (ACLA)

7. k—1
2
oIf v(z,y) € €2 then (ff s) dyds — M (D, k—2) 'uj,k_1> = O (Az®), oth-
7 k—1
erwise if v (z,y) is not differentiable and the Lipschitz condition must be utilised,
2
then (ff s) dyds — M (D k—2) Uj’k_1> = O (Az®).
j,k—1

2.3.3 Convergence

Refer to Section 2.3.4 for numerical rate of convergence results.

Theorem 2.3.8. A numerical approzimation of (2.8) utilising the canonical five

point FDSc is mean square convergent, where E (e?)k) =0 (Ax).

Proof. Using (2.15) and Lemma 2.2.6, since A = 1; ¢, = (F (zj,te) — F (a;j,tk))
=F (33j+1, tk_1) + F (xj_l, tk—-l) - F (117]', tk._g) + 210 ff (F (z, 7”) 5 2, 7‘) dzdr

D]k 1

zc J[w ), 2,7) dW (2,7) = Fjpipm1 — Fjo1po1 + Figs

]kl

BB ) e (s W
= F (2j41,tk-1) + -1 + F (2j-1, te-1) + ejor6-1 — F (25,862
—ej,k—2 —_ E]_+_1’k_]_ - Fjj—-]_,k—l + F.‘jyk_2

+% ( ff v (F (Z, ’I") 2 T) dzdr — M (Dj,k—l) v (E,k—?a Zj, tk—Z))

Jik—1
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+2IC (ff 2, 7)dW (2,1) — w (Fj,k_z,xj,tk_Q) W(Dj,k_l))
3.k—1
= €jy1k-1 T €—1k-1— € k-2

+355 | [ v(F(z7r),2,7)dzdr — m(Dj,k—l)U(Fj,k—2,1'j,tk—2))

J k=1

+ 559 (D) k—1) (U (Fjg-2,%j, tk—2) — v (ﬁj,k—m%,tk—z))

[[ w ,2,7) AW (2,7) — w (Fj k-2, Tj, tk—2) W(Djk—1)

j,.k—1
1 ~~
+56W (Dj k1) (w (Fjk—2,Tjy th—2) — W (Fj,k—271'j, tk—2))
J— v v w .
= ej+]_’k_]_ + ej_l,k_l - ej,k_Q + Tj,k—? + T;-J’k_2 + ,Bj’k_z + /Bj,k—2’ Where.

oYY o= % (ff v(F (z,7),2,7)dzdr — 9 (D) v (F} k-2, Zj, tk_z))

Jrk—1

T s=36| [fw ,2,7) AW (2,7) — W (D —1) w (Fj k-2, Tj, th—2)

F.k—1
B2 = 25 M (Dj4-1) (v (P35, t4-2) = v (Bpca, 3,160 )
32 2= 35 W(Djx-1) (w (Fjk-2,Tj, tg—2) — w (E’,k—z,ﬂl?j,tk—z))-
Using Corollary 2.2.20 and Assumption 2.3.2, this yields the recurrence relation
lej) = [ej-16-1 + €iur k1] — [ej ezl + [Tohp + Tz + Blhs + Bik_s]
= [An] [ej-1) = ] [ejha] + 1] [T9hg + Tshp + Bia + Bk—s]
k-1

= P (k,1) [ej] —P(k—l,l)[ej,o]Jrl_ZlP(l,l) [Tvk -1+ Yk + Bk

"‘5;":1:—!—1] and using Corollary 2.2.21 to expand P (n, 1), this equates to

k=1 1-1
_ v
ik = E €j—k+20,1 — E ¢j—k+21+1,0 + (Tj—l+2m+1,k—l—1

=1 m=0

+T] tromatk—i1 T Bj—troms1k—t-1 T 5f-l+2m+1,k—l—'1) . (2.20)

Evaluating the expectations of the square of (2.20) yields,

k-1 (-1
E(e2,) = ((Z €j_k420,1 — Z ¢j_kt2141,0 T Z > (TYomipio1

=1 m=0

2
+ 15 om1p—i—1 T 5j—l+2m+1,k—l—1 + 5j—l+2m+1,k—z—1))

k 2 k-1 2 : k—1 I—1
< 3E (Z ej—k+2z,1) +3E (Z ej—k+2l+1,0) +3E (( ZO (T;')—l+2m+l,k—l—l
=0 \I[=0 =1 m=

W v W
+TY oms1 -1 T Bj—iromt1p—i—1 T 5j—l+2m+1,k—z—1))

k 2 k—1 2
< 3E <Z ej_k+2¢,1> + 3E <Z ej-—k+2[+1,0>
= =0

k=1 I— 2
+3E((Z Z T] +2mt 1 k—l— 1"‘2 Z B ttomt1 k—i1— 1)

=1 m=0 =1 m=0

L)
N’
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1 m=0 =1

k-1 I-1 2
+3E(<Z Z TY | omitk—io1 T 2o Zo =l 2mt 1 k—l— 1) >>

given that the expectation of the {v (-),w (-)} cross terms are 0 due the inclusion

k 2 k-1 2
of W (D) values. Thus, ]E( J,c <3]E< D ekt 1) )+3E<<Z e k+21+10> )

=0

k=1 1— k 10—
( ((zzn et ) ( 5 5 6 Lo ))
=1 m=0 =1 m=0
k=1 I— k=1 1=
©((5 8 i) | +2((5 5 suammei)
=1 m=0 =1 m=0
n
eFor notational ease, let max = max and use Z =23 q=
j FEG—k+H+1,j+k—1-1] =1 "=

where @ is the average of the a’s.
eFrom Lemma 2.3.5: E ((T;’,k_z)2> 020 (Az®) = O (Az®).
eFrom Lemma 2.3.6: E ((T;”k_z)2> = 270 (Az?) = O (Az?).
~ 2
o (( }’,k_g)2> = 4é2m(Dj,k—1)2 ‘U (Fjk—2,Tj th—z) — vV (F},k—zaxj,tk—:z)'

) ~ ~ 2
< &=zMDjp-1) E ((U (Fj,k—za zj, tk—2> + Kyejp-2 — v (Fj,k—%xj,tk—2>> )
= E&—O(Aw )E (e ]k—2) = O(Aa:4)]E(e§,k_2). 2
oFE (( 7 k_2)2> 4é2E ( (W(Dj k—l) (w (ﬁ} k-2 + €ik—2,Tj, tk_2> — W (ﬁj,k—z, Zj, tk—2> )) )
k1) E ( ]k—2) 412'20(&’7 JE ( ]k—2) = O(sz)E(e?,k—2)'

k-1
i) < 3k%E (g22) + 3 (k — 1)°E (€55°) + 6 3 120 (Az®),
=1

203 ( Jr
Hence E (¢?
-1 k-1 k—1
Z 120 (Az*) max (E (e2,_,_;))+6 3. 10 (Az®)+6 3 10 (Az?) max (E(e2,,,))
= J ’ 1=1 1=1 ’

< k20 (Az®) + (k — 1)2 0 (Az®) + k20 (Az®) + kil 120 (Az*) max (E (eik_l_l))

N =1
+k%0 (Az®) + Z 10 (Ax? )max (E(e?,_,_,)). Since the domain is bounded
and k = O (Az)™ thlS yields ]E( ¢) <O (Az)+ 0 (Az) + O (Az®) + O (Ax)
k=1 k=1
+ Y 120 (Axt )mjax (E (ej,k—l—l)) + ST 10 (Az?) max (E (eik_l_l))
i=1 i=1
k=1 k=1
<0(Az)+ 0O (Az?) S max (E (eik_l_l)) +0(Az) > max (E (e;f’k_l_l))
=1 =1

k=1
<0 (Azx) <1 + 1:21 max (E (eg’,k-z—1))>- Given that max (E (e35) ,E(e2y))
= O (Az?), then the recurrence relation yields the desired result. O

42



2.3.4 Numerical rates of convergence

The following tables summarize pathwise numerical global errors and numeri-
cal rates of convergence for (2.1) with additive and multiplicative noise where
(z,t) € {[0,1] x [0,3]} and the ZZ _ 1 domain refinement is the ‘numerical
solution.” The number of iterations represents the number of Brownian sheets
the errors are averaged over and the results support Theorem 2.3.8 yielding

RC (ﬁ (3, 1) ,2Az) = 1, within statistical sampling error.

Remark 2.3.9. It is interesting to note that for these examples, virtually equiva-
lent results are achieved when utilising {U (ﬁ‘]«,k_l, zj, tk_l) , W (ﬁ‘j,k_l, zj, tk_l)}
in place of {U (ﬁ}"k_g, zj, tk_g) ,w (ﬁ‘j,k_g, Tj,tr—2 } when approrimating the driv-
ing functionals of (2.16). This is due to the initial conditions being bounded be-

tween [—1,1] and the nature of the Brownian sheets utilised.
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Iterations = 32 64 128 256 512
a(F(39)
(513 X 257) 0.00981 | 0.00973 | 0.01117 | 0.01035 | 0.01153
(257 X 129) 0.01513 | 0.01642 | 0.01534 | 0.01569 | 0.01649
(129 X 65) 0.02504 | 0.02384 | 0.02683 | 0.02411 | 0.02411
(65 X 33) 0.02886 | 0.03435 | 0.03740 | 0.03665 | 0.03153
(33 X 17) 0.04553 | 0.04456 | 0.05586 | 0.04473 | 0.04761
(17 X 9) 0.05704 | 0.07231 | 0.07469 | 0.06816 | 0.06956
(9 X 5) 0.06986 | 0.08849 | 0.10447 | 0.10360 | 0.10316
(5 X 3) 0.16952 | 0.14281 | 0.13653 | 0.14866 | 0.13300
(3 X 1) 0.19321 | 0.20787 | 0.20491 { 0.20621 | 0.18891
RC (P (4,1) 241
(257 X 129) 0.625 0.755 0.458 0.600 0.516
(129 X 65) 0.727 0.538 0.806 0.620 0.548
(65 X 33) 0.205 0.527 0.479 0.604 0.387
(33 X 17) 0.658 0.376 0.579 0.288 0.595
(17 x 9) 0.325 | 0.698 | 0.419 | 0.608 | 0.547
(9 x 5) 0.292 | 0.291 | 0.484 | 0.604 | 0.569
(5 X 3) 1.279 0.690 0.386 0.521 0.367
(3 X 1) 0.189 0.542 0.586 0.472 0.506

Table 2.1: $%(F (z,t),1) = 82;259?”; F(z,0) = sin(z+1t) = sin(z) ; F, =
sin (z + At)
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Iterations = 32 64 128 256 512

a(FLy)

(513 x 257) 0.01168 | 0.00991 | 0.01070 | 0.01539 | 0.01034
(257 x 129) 0.01874 | 0.01639 | 0.01591 | 0.01985 | 0.01698
(129 x 65) 0.02776 | 0.02317 | 0.02669 | 0.03037 | 0.02659
(65 x 33) 0.04214 | 0.04224 | 0.04035 | 0.04446 | 0.04035
(33 x 17) 0.08408 | 0.06108 | 0.07176 | 0.06229 | 0.06494

(17 x 9) 0.11410 | 0.11454 | 0.10741 | 0.09590 { 0.11133

(9 x 5) 0.19857 | 0.24393 | 0.18706 | 0.13760 | 0.21228

(5 % 3) 0.41484 | 0.47062 | 0.41240 | 0.21469 | 0.42335

(3 x 1) 0.97715 | 1.03995 | 0.97580 | 0.28029 | 1.00018
RC(F (4,1) ,240)

(257 x 129) 0.681 0.726 0.573 0.367 0.716
(129 x 65) 0.567 0.500 0.746 0.614 0.647
(65 x 33) 0.602 0.866 0.596 0.550 0.602
(33 x 17) 0.996 0.532 0.831 0.486 0.687

(17 x 9) 0.440 0.907 0.582 0.623 0.778

(9 x 5) 0.799 | 1.091 | 0.800 | 0.521 | 0.931

(5 x 3) 1.063 0.948 1.141 0.642 0.996

(3x1) 1.236 1.144 1.243 0.385 1.240
Table 2.2: $%(F (z,t),1) = %; F(z,0) = sin(z+t) = sin(z) ; R

sin (z) + At cos (z)
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Iterations = 32 64 128 256 512
a(F (31

(513 X 257) 0.01107 | 0.01137 | 0.01171 | 0.01130 | 0.01099

(257 X 129) 0.01543 | 0.01448 | 0.01597 | 0.01616 | 0.01594
(129 X 65) 0.02430 | 0.02452 | 0.02100 | 0.02590 | 0.02355
(65 X 33) 0.03696 | 0.02974 | 0.03645 | 0.03415 | 0.03368
(33 X 17) 0.04823 | 0.05118 | 0.04775 | 0.05115 | 0.04942

(17 X 9) 0.07039 | 0.06604 | 0.07337 | 0.07541 | 0.06905

(9 x 5) 0.08428 | 0.08773 | 0.08714 | 0.09898 | 0.09591

(5 X 3) 0.13182 | 0.13964 | 0.14763 | 0.14488 | 0.14377

(3 X 1) 0.24744 | 0.20701 | 0.21680 | 0.19671 | 0.20281
RC(F (4,1),240)

(257 X 129) 0.478 0.348 0.448 0.516 0.537
(129 X 65) 0.655 0.760 0.395 0.681 0.563
(65 X 33) 0.605 0.278 0.795 0.399 0.516
(33 X 17) 0.384 0.783 0.390 0.583 0.553

(17 X 9) 0.545 0.368 0.620 0.560 0.482
(9 x 5) 0.260 | 0.410 | 0.248 | 0.392 | 0.474
(5 X 3) 0.645 0.670 0.761 0.550 0.584
(3x1) 0.908 | 0.568 | 0.554 | 0.441 | 0.496

Table 2.3: H2(F (z,t),1) = Z0&D. P (5 0) = 22 + 12 = 22 ; F} = 22 + Af?
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Iterations = 32 64 128 256 512
a(F (L)

(513 x 257) 0.01248 | 0.00905 | 0.00995 | 0.01112 | 0.01052

(257 x 129) 0.01403 | 0.01525 | 0.01536 | 0.01630 | 0.01642
(129 x 65) 0.02356 | 0.02629 | 0.02582 | 0.02645 | 0.02393
(65 x 33) 0.02561 | 0.02859 | 0.03753 | 0.03518 | 0.03494
(33 x 17) 0.05235 | 0.05413 | 0.05118 | 0.05004 | 0.04937

(17 x 9) 0.07485 | 0.07234 | 0.07551 | 0.07625 | 0.06963

(9 x 5) 0.10941 | 0.10575 | 0.11537 | 0.11550 | 0.10835

(5 x 3) 0.16577 | 0.17861 | 0.17955 | 0.16226 | 0.18294

(3x1) 0.26059 | 0.27318 | 0.31494 | 0.28895 | 0.29099
RC (F (1,1),240)

(257 x 129) 0.170 0.754 0.627 0.552 0.642
(129 x 65) 0.747 0.785 0.749 0.698 0.544
(65 x 33) 0.120 0.121 0.540 0.412 0.546
(33 x 17) 1.031 0.921 0.448 0.508 0.499

(17 x 9) 0.516 | 0.418 | 0.561 | 0.608 | 0.496
(9 x 5) 0.548 0.548 0.611 0.599 0.638
(5 x 3) 0.599 0.756 0.638 0.490 0.756
(3 x 1) 0.653 0.613 0.811 0.833 0.670

© Table 2.4: $2 (F (z,t),1) = ZX&. 17 (3. 4) = 22 + 2 = 22 ; F} = 2% + 2At
ozt ’

47



Iterations = 32 64 128 256 512
&g (F(33)

(5§3 X 257)) 0.01592 | 0.01560 { 0.01526 | 0.01443 | 0.01506

(257 x 129) 0.01731 | 0.02193 | 0.01979 | 0.02269 | 0.02153
(129 x 65) 0.03118 | 0.03538 | 0.03164 | 0.03213 | 0.03209
(65 x 33) 0.03895 | 0.05264 | 0.04173 | 0.04594 | 0.04498
(33 x 17) 0.07385 | 0.07405 | 0.06998 | 0.06311 | 0.06331

(17 x 9) 0.11046 | 0.09474 | 0.09341 | 0.09035 | 0.08897

(9 x 5) 0.12074 | 0.13375 | 0.12806 | 0.13616 | 0.13228

(5 x 3) 0.18000 | 0.18114 | 0.17746 | 0.18559 | 0.19975

(3x1) 0.28169 | 0.26066 | 0.25507 | 0.25614 | 0.27362
RC(F (3.1),240)

(257 x 129) 0.121 0.491 0.374 0.653 0.516
(129 x 65) 0.849 0.690 0.677 0.502 0.576
(65 x 33) 0.321 0.573 0.399 0.516 0.487
(33 x 17) 0.923 0.492 0.746 0.458 0.493

(17 x 9) 0.581 0.356 0.417 0.518 | 0.491
(9 x 5) 0.128 0.497 0.455 0.592 0.572
(5 % 3) 0.576 0.438 0.471 0.447 0.595
(3x1) 0.646 0.525 0.523 0.465 0.454

Iable 2.5: 9% (F (z,t),1) = F(z,t) 82;‘;;””; F (z,0) = sin(z +1t) = sin(z);
F) =sin (z + At)
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Iterations = 32 64 128 256 512
a(F(.1)
(513 x 257) 0.01719 | 0.01395 | 0.01670 | 0.01398 | 0.01573
(257 x 129) 0.02417 | 0.02724 | 0.02282 | 0.02111 | 0.02124
(129 x 65) 0.03355 | 0.03459 | 0.03258 | 0.03109 | 0.03340
(65 x 33) 0.05143 | 0.04454 | 0.04520 | 0.04997 | 0.04829
(33 x 17) 0.07063 | 0.07368 | 0.08744 | 0.07528 | 0.07401
(17 x 9) 0.10214 | 0.12769 | 0.13364 | 0.12769 | 0.11994
(9 x 5) 0.24397 | 0.20316 | 0.22156 | 0.22243 | 0.22025
(5 x 3) 0.44343 | 0.40094 | 0.41627 | 0.41570 | 0.40785
(3 x 1) 1.04837 | 0.95783 | 0.94393 | 0.96733 | 0.93687
RC (P (1,4),240)
(257 x 129) 0.492 | 0965 | 0.451 | 0.595 | 0.434
(129 x 65) 0.473 | 0.344 | 0.514 | 0.558 | 0.653
(65 x 33) 0.617 | 0.365 | 0.472 | 0.685 | 0.532
(33 x 17) 0.457 | 0.726 | 0.952 | 0.591 | 0.616
(17 x 9) 0.532 | 0.793 | 0.612 | 0.762 | 0.697
(9 x 5) 1.256 | 0.670 | 0.729 | 0.801 | 0.877
(5 x 3) 0.862 | 0.981 | 0.910 | 0.902 | 0.889
(3x1) 1.241 | 1.256 | 1.181 | 1.218 | 1.200

’Ea,ble 2.6: H2(F(z,t),1) = F(z,t) ?%; U(z,0) = sin(z+t) = sin(z) ;
Fy = sin (z) + Atcos (z)
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Iterations = 32 64 128 256 512
a(F (1Y)

(513 x 257) 0.01898 | 0.01401 | 0.01854 | 0.01891 | 0.01835

(257 x 129) 0.01933 | 0.02296 | 0.02451 | 0.02539 | 0.02651
(129 x 65) 0.03842 | 0.03553 | 0.03695 | 0.03530 | 0.03551
(65 x 33) 0.04501 | 0.04738 | 0.05279 | 0.04971 | 0.05050
(33 x 17) 0.08349 | 0.06763 | 0.06704 | 0.06789 | 0.07058

(17 x 9) 0.10061 | 0.09665 | 0.09651 | 0.10159 | 0.09947

(9 x 5) 0.10522 | 0.14464 | 0.12570 | 0.13177 | 0.13218

(5 x 3) 0.13336 | 0.18610 | 0.17893 | 0.20221 | 0.19011

(3 x 1) 0.23909 | 0.19775 | 0.21050 | 0.21781 | 0.20956
RC (P (4,4),240)

(257 x 129) -0.027 0.713 0.402 0.425 0.531
(129 x 65) 0.991 0.630 0.592 0.475 0.422
(65 x 33) 0.229 0.415 0.515 0.494 0.508
(33 x 17) 0.891 0.513 0.345 0.450 | 0.483

(17 x 9) 0.269 0.515 0.526 0.582 0.495
(9 x 5) 0.065 0.582 0.381 0.375 0.410
(5 x 3) 0.342 0.364 0.510 0.618 0.524
(3x 1) 0.842 0.088 0.234 0.107 0.141

Table 2.7: 52 (F (z,t),1) = F (z,t) Z0&8. F (,0) = 22 + 12 = 2% F} = 2°A¢?
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Iterations = 32 64 128 256 512
@ (F(3.4))

(513 x 257) 0.01712 | 0.02083 | 0.01734 | 0.01851 | 0.01803

(257 x 129) 0.03079 | 0.02682 | 0.02655 | 0.02553 | 0.02735
(129 x 65) 0.04006 | 0.03549 | 0.03831 | 0.03662 | 0.03484
(65 x 33) 0.04676 | 0.04700 | 0.05403 | 0.04978 | 0.05323
(33 x 17) 0.07278 | 0.07085 | 0.07873 | 0.07322 | 0.07250

(17 x 9) 0.09323 | 0.09642 | 0.09076 | 0.09811 | 0.10232

(9 x 5) 0.13752 | 0.13817 | 0.12612 | 0.14147 | 0.13997

(5 % 3) 0.22030 | 0.20724 | 0.18938 | 0.20899 | 0.21281

(3x1) 0.25710 | 0.29370 | 0.26297 | 0.32182 | 0.30925
RC(F (3,4),240)

(257 x 129) 0.847 0.365 0.615 0.464 0.601
(129 x 65) 0.380 0.404 0.529 0.520 0.349
(65 x 33) 0.223 0.405 0.496 0.443 0.611
(33 x 17) 0.638 0.592 0.543 0.557 0.446

(17 x 9) 0.357 0.445 0.205 0.422 0.497

(9 x 5) 0.561 | 0.519 | 0.475 | 0528 | 0.452

(5% 3) 0.680 0.585 0.586 0.563 0.604

(3x1) 0.223 0.503 0.474 0.623 0.539
Table 2.8: $2(F (z,t),1) = F(z,t) 62;‘;2";’”; F(z,0) = 22+ 2 = 22 ; F}

(z)* + 2At




Chapter 3

Elliptic processes

3.1 Introduction

Notation 3.1.1. The second order elliptic operator is denoted by *F (X) =
d
> (Cj)2 ﬂ-({(—), where C; = Cp = 1.

4 oz
Jj=1
This chapter concentrates on quasi-linear second-order elliptic SPDE’s in R¢ with

additive noise of the canonical form:
V2F (X) = —v (F(X),X) —w (X)W (X) (3.1)

with well posed boundary conditions, where d < 3 and v () is a general function
possibly containing functionals of the lower order terms {F (X),F'(X)}. The
multiplicative and general noise cases of (3.1) will be addressed in Section 3.3,
but they are of minor concern. 72F (X) = 0 is the ‘Laplace’ equation with solu-
tions called ‘harmonic functions’ and when w (X) = 0, (3.1) is the deterministic
‘Poisson’ equation. The {d = 1,2,3} forms of (3.1) are:

O?F (z) oW (z)
5z = V(F(2),2) —wlz) —5 = (3.2)
a2F ($7y) 282F (:L'a y) 82W (:L" y)

o2 + Cy ayg =V (F (‘Ta y) » Ly y) - W ('Ta y) 83:8y ’ (33)

82F (x,y,z) 282F (iL',y,Z) 282F (l',yaz) _

and 922 +C, 2 + C; 522 =

W (z,y,2)

—v (F(CL',y,Z),CL',y,Z) —w($7y,z) 8$8yaz : (34)

Elliptic equations such as (1.1), where b # 0, can be transformed into (3.1) via a
change of basis; for example, replace the (z,y) coordinates of (1.2) with (zy,y;)

where 0 = %—f} - (%)2 %% = %—f} + (%)2 %%, to yield (3.3).
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3.1.1 Summary of results

Similar to the deterministic system, convergence results for the stochastic system
are highly reliant upon the geometry of the domain. As expected, higher rates of
convergence can be achieved with efficient handling of boundary conditions; refer
to the works of Hackbush, Wasow, and [1, page 140].

3.1.2 Elliptic Assumed Initial Conditions (EAIC)

The following initial conditions assure that elliptic processes are well posed.

Assumption 3.1.2. Only closed and bounded domains will be utilised.

exterior
Eboundary ;'

exterior
comp({ OU § )

bounda
30
Z

Figure 3.1: Geometric overview

Assumption 3.1.3. Dirichlet boundary conditions are given, where Fgs (X) is

a real valued piecewise analytic Holder continuous function.

Remark 3.1.4. As per Remark 1.2.3, Neuman and Robin boundary conditions
can be implemented in place of Assumption 8.1.8 with only slight modifications.
A heuristic example of these boundary conditions is a heat problem, where the
Dirichlet and Neuman conditions represent the actual temperature and heat flux

while the Robin condition represents a linear combination of the terms.

Assumption 3.1.5. {v(-),w(-)} € €@ are real valued functions on R¢ and they
are globally Lipschitz continuous with coefficients {K,, K,}. In order to assure

uniqueness, assume v (-) is an increasing function of F ().

Assumption 3.1.6. A Brownian sheet is utilised.

3.1.3 The elliptic process

The motivation for solving elliptic processes is to model steady state systems ob-
serving inverse-a such as:

ecquilibrium states of heat flow, gravitation, or electromagnetic fields.
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eprocesses involving Maxwell’s equation or Steady Stokes equations.

ethe flow of incompressible viscous fluids.

Since the characteristic equations of (3.1) are conjugate complex, initial condi-
tions and singularities instantaneously propagate in all directions. Thus, elliptic
processes are at a ‘state of equilibrium’ where time is irrelevant and characteristic
equations will not be utilised as in Chapter 2.

Notation 3.1.7. When two position vectors are given, such as G (X;Y), X is

the location of a singularity and the operator is with respect to Y.

F(X):/H(X;Y)Fw(y)d}f+/G(X;Y)U(F(Y),Y)dy
60

+ / G(X;Y)w(Y)dW (V). (3.5)

(3.5) is not an explicit formula due to the Green’s function dependency upon
the domain, but it expresses solutions to (3.1) when the additive functionals
{v(X),w(X)} are utilised and approximations to the solution when v (-) is either

a multiplicative or general function.

One might feel uncomfortable seeing only existence and uniqueness
theorems. Indeed, the most important thing in real applications is to
find the solution. Of course, we cannot hope to find explicit formulas
for solutions for general elliptic operations, by the way, even if one
manages to find such a formula for a particular problem, and the
formula is complicated, one has to find numerical methods to be able

to use the formula for real computations. [40, page 85]

3.1.3.1 The deterministic process

The following Lemma’s will be stated for reference and refer to [40] for the defini-
tive text covering this subject. Further theoretical and numerical results can be
found in (2], [19], [21], [33], [38], [17, Section 1.3], [46], and virtually any work by
Wolfgang Hackbusch.

Lemma 3.1.8. Given (EAIC), any two solutions of {(3.1),w (X) = 0} using an
equivalent Dirichlet boundary condition must agree or using (Neumann or Robin)

boundary conditions must agree or differ by a constant.
Proof. Refer to [46, page 105]. O
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Lemma 3.1.9. Gauss’ Mean Value Theorem: For the Laplace equation where

F (X) is a harmonic function and §S = §S, (Y, L) € U; then F (Y') is the average

of the solutions over 6S such that F (Y) =F (X | X € §S) = M (6s)™" [ F (X)dX.
&S

Proof. Refer to [46, page 105]. O

Lemma 3.1.10. Mazimum Principle: If \72F (X) > 0, then either F (X) = C
or F(X) < max (F(Y)).

Proof. Refer to [40, Sections 2.6 and 2.9], [62, Lemma 1], [49, Theorem 3], or [46,
Chapter 4 and Section 8.3] and note that equation (15) should read

‘u (&) < sup u (). O
z€60

Corollary 3.1.11. Minimum Principle: If 72F (X) <0, then either F (X) =C
or F/(X) > min (f (Y)).

Corollary 3.1.12. Laplacian Mazimum - Minimum Principle. For the Laplace
FEquation; max (F (X)) < max (Fss (X)) and ml}n (F (X)) > rfslgn (Fsis (X))

Lemma 3.1.13. Deterministic Erzistence. Given (EAIC), then a solution to
{(3.1),w (X) = 0} ezists as defined by (3.5).

Proof. Refer to Appendix B. | O

Lemma 3.1.14. Deterministic Uniqueness. Given (EAIC), then the solution for
{(3.1),w (X) = 0}, if it exists, is unique.

Proof. Refer to Appendix B. O

Lemma 3.1.15. Let fs (X) € €@ and given initial boundary conditions fss (X)

€ ¢ then there exists a unique solution to the deterministic Dirichlet problem
ViF (X) = fs (X).

Proof. Refer to [40, page 25]. O

Remark 3.1.16. Given the above results and (EAIC), then a solution to a de-
terministic Poisson equation is €@; refer to [40, pages 18-19] or [46, Section
4.2.a].

3.1.3.2 Green’s function and the Poisson kernel: {G (-), H (-)}

Due to the extensive coverage of Green’s functions in the mathematics and physics
literature over the past sixty years, the following will be provided for reference.

For a thorough discussion concerning Green’s functions and Poisson kernels, refer
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to [2], [28, Section 3], [38], [40], [45], [46], [54], and the works of Wasow. Due to
complications involving processes with variable coefficients, the Green’s function
approach has been virtually abandoned in modern theory; but given (1.1) is

quasi-linear, this approach will be used in accordance with (1.12), [45], and [63].

Definition 3.1.17. As defined in [8], let BMxz denote a standard Brownian

motion starting from X and t is the exit time from the domain under Px,

X =Y, _
E(X;Y) = (| X =Y|,) — 5E (ln (I_LBM{XJ} - Y||2)) , where {d =1,2,3)}
_IxX=vigt g < [1BMx.0-Y |,
4m 4m

respectively. This is equivalent to [40, page 18], where {Cy, C,} of Notation 3.1.1

have not been normalized.

Definition 3.1.18. Given a singularity is located at an interior point X, let
C(X;Y) € ¢®, where v (X;p5) =0 and ¢ (X;Y) = £(X;Y) whenY € §0U.

Definition 3.1.19. The Green’s function is G (X;Y) =€ (X;Y) - ((X;Y) and

the Poisson kernel is H (X;Y) = @;;—;YZ, where Z 1s the normal vector of a

boundary in the exterior of the domain, refer to Figure 3.1.

Lemma 3.1.20. For any g (X) € €, there ezists a function f (X) € €, such
that 72f (X) = g (X) in R?.

Proof. Refer to [40, page 4]. O
Lemma 3.1.21. If f(X) € €3, then g(X) = [ f(Y)&(X;Y)dy defines a
bounded continuous function in R? which satisfies @gg (X) =f(X) inU.

Proof. Refer to [40, page 18]. O

Lemma 3.1.22. Since the Green’s function is a symmetric kernel, a reciprocity
relation exits such that G (X;Y) =G (Y; X).

Proof. Refer to Appendix B. O

From the properties of {£(-),( (-)}, there exists a unique solution to the Green’s
function; i.e., Laplace function 72G (X;Y) = 0. Assuming that {f (Y),g(Y)} €
€@ then the following are Green’s First and Second Identities, respectively:

[1myorsmar = [ 1008 ay - [araa(o(v)) - graa (7 () av
(8) §U U
(3.6)
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[10vt sy = [a) 7 f v dY+/f ) 2200 _ g () LW gy

(§) ($)

(3.7)

and when ¢ (V) = f (Y), this yields the ‘Energy Identity’

/ graa (g MIEaY + [ () g yan= [90) B av. @9

(8 80

This ‘conservation of energy’ implies that the yield for a Laplace operator is
constant, thus the Radiation Principle directly follows.

Lemma 3.1.23. The Radiation Principle: The fundamental solution to the Laplace

equation is a unit source distribution satisfying V2F (X) = 1x.
Proof. Refer to [46, page 108] where 1x is a unit source located at X. d

Since G (X;Y') is subject to Lemma 3.1.23, then by definition [ H (X;Y)dY = 1.

A natural description of this principle is an inverse-d law cfgscribing the weak-
ening of a gravitational pull, intensity of light, or strength of an electric field as
the distance between objects increases. The radiation principle indicates that the
gradient of a field at Y, from a point source X, is indirectly proportional to the
surface area of a R? sphere; i.e., 9 (6, (X, | X — Y||,))~". For an exterior prob-
lem where the distance between a boundary and a point is much larger than the
interior diameter of the boundary, the geometry of {U U §U} becomes numerically

insignificant and the boundary can be reduced to a point source.

3.1.3.3 The stochastic process

The literature relevant to (3.1) is not as extensive as the hyperbolic or parabolic
cases of (1.1), thus relevant articles over the past few years include:

o[1] presents a finite element method for solving elliptic processes using a modi-
fied noise that approximates white noise.

o[6] presents a Monte Carlo method for solving elliptic processes.

*[36] discusses Hamilton-Jacobi-Bellman (HBJ) equations experiencing a stochas-
tic ‘control’ using a scheme related to a method of lines that reduces the dimension
of the problem by solving the process in certain directions.

eThe existence and uniqueness for the ‘token elliptic’ case of (3.1) with {v (-) = 0,
w(X) =1, F5s (X) = 0} is presented in [60, Chapter 9]. Also listed is an ‘expla-
nation as to how such equations arrive as the limits of parabolic equations.’
o[52] presents the existence and uniqueness results for a modified version of (3.1),
where V2F (X) = —v (F(X),X)-W (X)+ 1r(x)<o T (X), such that white noise
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is reflected at 0 and Y (X) forces F' (X) to remain positive over the entire domain;
T (X) is a random measure satisfying [ F (X)dT (X) = 0.
U

¢[58] discusses the factorization of self-adjoint elliptic FDSy’s.
eAlthough concentrating on deterministic process and systems, the life’s work of
Dr. Wolfgang Hackbusch is invaluable for the additive stochastic case.

3.1.3.4 Results of [60, Chapter 9]

Assuming a closed and bounded domain with a smooth boundary, consider the
Poisson equation where v (F (Y),Y) is bounded and continuous and (3.5) is a
weak solution for (3.1). Let M be a [? measure on R? that is not a M since
there is no time involved with this domain. Set @ (E,, Ep) = E(M (E,) M (Ey))
and suppose that there exits a positive definite measure Q on R? x R?, such that
|Q (E,, Ey)| < |Q(E, x Ey)| for all Borel spaces {E,, By} C R%. Let M (6U) =0
and T be a k" order differential operator on R? with smooth coefficients. Con-
sider the SPDE {V2U (pv) = TM, U (pss) = O}; to get the weak form, multiply
by a test function h (X) and integrate over R?, pretending M is smooth. Suppose
h (psis) = 0 and perform two integrations by parts to get [ U (X) v?h(X)dX —

[ TM(X)h(X)dX. Let ¥t be a formal adjoint of ¥ and if T is a 0" first
VUG
order operator or if h (X) has compact support in U, integrate by parts on the

right to get U (V?h (X)) = [ %'h(X)M (dX). Since only R? is considered,
VUL
U (X) is a weak solution if U (X) € S’ (R*) almost everywhere and holds for all

h(X)e {S(R?) | h(Y)=0;Y € 6U}, where S is the Schwartz space of decreas-

ing functions. Refer to [60, Proposition 9.1] for the uniqueness result.

3.1.3.5 Results of [8]

Although the results of Walsh are enlightening, in order to address (3.1), the
following results from [8] will be utilised. The case when v (-) # 0 and Fi; (X) =0
is proven, where (as stated on [8, page 220]) the results can be extended to a more

general SPDE with non-zero boundary conditions.

Lemma 3.1.24. [8, Lemma 2.1]: [ G(X;Y)w (Y)dW (Y), where X € U posses
G

an almost surely continuous modification.
Proof. Refer to Appendix B. | O

Remark 3.1.25. It follows that [ In (]| X = Y||,) w (Y') dW (Y) has Lipschitz paths
s

when d = 1, Hélder continuous with exponent 1 —a when d = 2, and Holder con-

tinuous with exponent % —a whend =3 and o > 0.
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Lemma 3.1.26. There ezists a constant K such that for any g (-) € C?(U),
GX;Y)g(Y) g(X) 2 K|G(X;Y)g(Y)l,

Proof. [8, Lemma 2.4]. O

Lemma 3.1.27. Let f(-) and h(-) be continuous, non-decreasing on U, and lo-

cally bounded. Moreover, h(X,r) < f(X,r) for X € U,r € R, and {u; (-),us (-)}

be almost surely continuous random fields on U; solutions to

Uy (X) = —fG(X;Y)f(F(Y) ,Y)dY+fG(X;Y)v(Y)dY+fG(X;Y)dW(Y)
0 ) 0

uy (X) =~ [G(GY)R(F(Y),Y)dY+[ G (X;Y)v(Y)dY+[ G (X;Y)dW (V).
O o o

Then, uy (X) < wug (X) for X € U.

Proof. [8, Lemma 2.6]. O

Lemma 3.1.28. [8, Lemma 2.5]. Given the (EAIC) then (3.5) is the unique

solution to (3.1) which is almost surely continuous on U.
Proof. Refer to Appendix B. ‘ O

Lemma 3.1.28 is still true if, instead of being non-decreasing, F'(X) satisfies
(F (Yy_1,7) — F(Yy_1,8)) (r—s) > —a|r—s|* for all X € U and {r,s} € R
provided a < K, where K is the constant appearing in Lemma 3.1.26. In other
words, F'(X) could be the sum of an increasing function that is locally bounded

and a Lipschitz function with a constant strictly smaller than K.

3.1.3.6 Results of [1] and [4]

FESy methods to solve {(3.2),w (z) = 1} are discussed in [1] where

... the white noise processes are first approximated by piecewise con-
stant random processes. ... It is shown that the solutions to the new
‘simpler’ problems converge to the actual solutions of {(3.2),w(z) =1}
as the white noise approximations become finer. ... Finally, it is
proved that the finite element and difference approximations converge
to the solutions of the simpler problems and hence to the solutions of

the original problems. [1, page 120]

In [4], a general framework to solve (3.3) can be expressed in a variation form,
where 7 (u(z,y) - VF (z,y)) = —T (z,y) using a FESy. Rate of convergence
results for FESy are presented [4, Theorem 3.1] and [4, Theorem 5.1].
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3.2 Discretisation of the process

Due to the lack of a time dimension, there is no clear difference between the space
dimensions, hence the discretisation will be on the same order of magnitude such
that Ay = A\ Az = O(Az) and Az = \,Az = O(Az). Otherwise a FDSy
method of lines will be utilised; refer to Section 4.1.0.6.

3.2.1 Discretisation of the boundary

When 90t (D) < 1, most often the significant contribution of error is introduced
at the boundary; hence a FDSc’s handling of errors at the boundary determines
the accuracy of the system. [62, Theorem 1] estimates the magnitude of the

deterministic errors, but as stated just after the theorem:

There is not much point in using, as is sometimes proposed, a very ac-
curate approximation in U unless it is matched by an equally accurate

interpolation scheme near the boundary.

The usefulness of Theorem 1 is limited by the fact that F'(X) is not
known. ... no really practical appraisal in terms of the data alone

seems to exist, except for very special regions. [62, page 88|

When using a uniform Z¢ , space, unless the R¢ boundary consists of line segments
or planes intersecting at appropriate angles, the boundary contains points outside
the uniform mesh; refer Figure 3.2-A. Thus, a subset of Z¢ points is redefined as

the Z¢ boundary for numerical evaluations, where:

Figure 3.2: Irregular boundary conditions

oFigure 3.2-B. Redefine the discretised boundary such that 6U; denotes the
boundary sub-space assigned to X; € Z4 and adjacent points to the R? boundary
comprise the new Y € Z¢ boundary and evaluate Fg;s (Y). This method is the
preferred approach since a FDSc can be applied without modification.

eFigure 3.2-C. Subtract adjacent points that are required for the FDSc but do
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not fall on the boundary and replace them with appropriate points that lie on
80. This method is numerically accurate, but computationally burdensome since
the FDSc must be adapted to account for variable Az’s close to the boundary.
eFigure 3.2-D. Select adjacent points and derive their ‘boundary value’ via a
PDE approximation. For example, identifying the boundary and derivatives with
respect to +Z is trivial, hence F (Y) = F (X) + %Z)Q Y’ — X||, approximates
adjacent exterior {+} and interior {—} points using R* boundary values.
eAlthough not utilised in this text, other methods ‘solve it locally in neighbor-
hoods of any boundary point by straightening the relevant piece of the boundary’
[40, page 79] or ‘... does not fix the value of F (pgs) a priori.” [21, page 200].

3.2.2 Computational molecules

Assumption 3.2.1. Elliptic computational molecules are weighted averages; thus,

lim P < Y I(X;Y)=1|Y € U) =1, almost surely.

Numerous consistent computational molecules have been derived, but due to As-
sumption 3.2.1, the FDSc; matrices are symmetric and irreducible. As alluded
to in Section 1.2.2, the ‘bench mark’ FDSc’s for elliptic processes are the explicit
- three, five, and seven point ecomputational molecules of Figure 3.3. To generate
these schemes, expand (3.4) around F (z;, yx, ) using (1.9) to yield

0= —angz;y’z) + C? ang;Ez’y’z) + C? angfz’y’z) + v (F (z,y,2),2,Y, 2)

02W(zy,2) _ Fip1pa—2F at+Fio 1k 2 Fjk410=2F) 51+ Fj -1,
tw (:Ii’ Y Z) 0xdydz Az? + Cy Ay?
+C2 Bkt =2Feat Fieion | A FF(ayez) | Ay 9*F(z;,b,21)
z Az? 12 ozt 12 oyt
A22 04 F(z},yk,C) A W(Dj,k,)
+ 12 529 = +v F(xj’ykvzl),xj,ykazl +w(xjayk,zl) AzlAyAz

+{v (-) and w(-) truncation errors}; where a € [z;_1,Zj11], b € [Yk—1, Yk+1),
and ¢ € (21, 2z14+1). This yields the consistent computational molecules:

(ikt+1)
Gk+1.)
(3] i} G+1) G-1.K) (3R]

ik {+1.0)

{j.%-1,)

(.kM-1)

Figure 3.3: [FDSc;) matrices for canonical 3, 5, 7 point schemes
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o (BentB) 82 (Fon) anuwog

7 (ﬁ}'ﬂ,k + ﬁj-—l,k) )\z (ﬁ}',kﬂ + ﬁy}k—1>
Y (5 ) R Y (ST
Az?y ﬁ,k, T, . .
N ( diks Tj k) Ayw (5, yk) W (D k) and (3.10)

2 (1+X2) 2C, (1+2X2)

ﬁy. — }/71\.7+1;k7l + ﬁjj—l,kal + )\2 F\.?>k+lal + ﬁ?)k_lal + )\2 ﬁ?yk7l+1 + ﬁ{’k’t_l
PR 2 (L + A2+ ) v l2(1+a2+22) \2(1+a2+02)
Az (Fj”“”’ > Yk, z’) Azw (25, Y, 21) W (Dj,1)
2(14+ 22+ X2) 280yAz (1+ A2+ A2)

(3.11)

3.2.2.1 Other computational molecules

Comparing d = 2 FDSc computational molecules for the Laplace operator, let
Az = Ay such that (310) yields ﬁ‘j,k = i <ﬁ‘j’k+1 + ﬁ‘j+1,k + ﬁj_'l,/g + ﬁ‘j,k—l) .
eRotated: Apply (1.9) on a space where the coordinates for the basis have been

rotated by 7 along appropriate axes. For example,

~ 1 /7~ ~ ~ ~
Fir= 7 (Fj—l,k+1 + Fijip+1 + Fj_1p-1+ Fj+1,/c-1> . (3.12)

eCombination: Weighting the previously mentioned schemes by appropriate fac-
tors and adding the results yields further improvements when evaluating the
Laplace equation. For example, weighting the molecules by % and %, respectively,

yields the canonical nine-point scheme:

~ 1 /-~ ~ ~ ~
Fip= 20 <Fj—1,/c+1 + Fipipen + Fjoip— + Fj+1,k—1>
1/~ ~ ~ ~

+g <Fj+1,k + Fj_15 + Fjgt1 + Fj,k—l) . (3.13)

Remark 3.2.2. The local error’s for harmonic FDSc’s where Ax = Ay are:
2 4 4 4 4 4

€(3.10) = Al—z (6 gffi’y) +2 Z;f’y)), €(3.12) = Al—a; (6 gii’y) + 6885;(;;3) + 2 ‘Z;f’y)),
and e313) = 4%_%’;‘6 a;ﬁ(gﬁ). Unfortunately, when solving (8.1), improvement in

the local error of (3.13) are not realized due to truncation errors of {v(:),w (:)}.

eExtended: Schemes of higher order for the Laplacian operator can be constructed

using more terms from a Taylor expansion. For example:
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Fip =1 (Fj+1,k + Fj_15+ Fippr + Fj,k—l) -= (Fj—2,k + Fiyon + Fjp—o+ Fj,k+2)
or the thirteen point scheme: ﬁj,k = % (ﬁjﬂ,k + ﬁj_l’]g + ﬁ’j,kﬂ + ﬁ-,k_l) —% (ﬁ}_g,k

+ﬁj+2,k + ﬁ',k—2 + ﬁ},ku) - % (ﬁj—l,k—l + ﬁ]‘+1,k—1 + ﬁ}—1,k+1 + ﬁj+1,k+1) .
eTriangular Mesh: FDSc’s involving triangles or other bounded polygons have
proven popular for filling odd shaped domains. For example, let § = the angle of

rotation from a designated axis, D = a hexagon, and use six equilateral triangles
-~ 5
along with Lemma 3.1.9 to yield Fj, = 2 Y Fio_z;)-
=0 °

¢[62| expands upon the work of Petrowsky and is a general method for evalu-
ating discretisation errors dealing with multiple FDSc using both rectangular,

triangular, and hexagonal D.

3.2.3 Green’s function approximation

Solving the deterministic Laplace equations using smooth €(@*+1 functions, such
as G (+), was first proved by such authors as Gerschgorin in the early 1930’s. The
works of McCrea and Whipple, W. Wasow, R. Courant, K.O. Friedrichs, and
H. Lewy (CFL condition fame) are invaluable for results concerning discretised
Green’s functions. As discussed in [21, Section 23.6], [45], and [54], approximating
a process with additive noise can be viewed as evaluating a deterministic system
with random point sources, as suggested by Lemma 3.2.4. Since the singularities
propagate via the deterministic Green’s function, approximations are approached
by estimating the Laplace operator on a domain with a unit source, this can be
heuristically seen as if one were to release one unit of water at X:

oG (X;Y) represents the amount of fluid that visits an interior point ¥ over an
infinite amount of time. This value may of course be greater than 1 since fluid
can revisit an interior point more than once, but it is finite as proven in [54].
Thus, G (X;Y) is the expectation that a fluid will visit an interior point Y.

oH (X;Y) represents the amount of fluid that will exit the boundary after an
infinite amount of time. Thus, H (X;Y) is the probability of exiting the domain
at the boundary point Y.

In approximating this simplified system, one obtains a discretised Green’s func-
tion, which is sufficient to estimate the ‘complicated’ problem. Although concen-
trating on the d = 2 case, [63, Section 2] is very robust and results can be easily
expanded to d € {1, 3} system.

Lemma 3.2.3. The approzimation to the Poisson kernel where Yy € 60U is:

-~

G (X;Y)
> G(X; X))

X;€00

Hys, (X; V) = (3.14)

63



with errors being proportional to the Green’s function approzimation error. Thus
the Poisson kernel is a PDF, such that the integral of H (X;Y) over U is a CDF.

Proof. As per Definitions 3.1.18 and 3.1.19; to fulfill the yield characteristics of
a unit source and conserve energy in accordance with (3.8); the Poisson kernel

is normalized via the Green’s function along the discretised boundary, such that

fH (X;Y)dY = Y. [ H(X;Yy)dY =1= Y Hgs, (X;Ys). For the error,
Y, €60 65, Vi €60

repldce G (-) with G () +_e1 (G () such that Hgs, (X;Yi) = (G ()f,lYk))
x( > @(X;Xj)> +e(G(X;Xj))x( > C‘\(X;Xj)> . O

X; €80 X; €60

Lemma 3.2.4. FDSy approzimations at a point are derived via: \

F)=aa2 Y GXYe)v (1?’ (Ye) ,Yk>

Y4 €0
AN G (XY w (V) W(De) + ) Hys, (X;Ye) Fas (Ye) (3.15)
Yr €U Y, €60
Proof. Using Lemma 3.1.23 and Definition 3.1.19; place a unit source at X and
approximate the Laplace function with zero boundary conditions to yield the
Green’s function estimate G (X;Yy). Utilise an appropriate weighting of the
{M (D) v (), W(Dg)w(-)} terms from the FDSc to yield (3.15). O

Corollary 3.2.5. Using (1.10), FDSy approzimations over a domain are derived
via: [F (pu)] = 0(82%) [6 ()] v ()] + 0 (8224 [G ()] W (0)] [ ()]
A ) G(kk) GUsk) Glmsh
+ B O] F (ps)); where |G ()] = | -+ G(k) G Glms
G(kym) G(;m) G(m;m)
Proof. Refer to [49, pages 257-258] O

Corollary 3.2.6. The Discrete Mazimum/Minimum Principle: Given a uni-

form Z%,, consider a solution to the difference equation problem Fa, (X) =

> I (X;Y) Far (Y) with a boundary functional Fys ar (X). If the mazi-
Y=pze{U-X}
mum and minimum of Fa, (X) in U are assumed at points that can be effectively

linked to a point in 60, then min (Fysaz (X)) < Fag (X) < max (Fysaz (X)).
Proof. Refer to [49, pages 257-258] O

Corollary 3.2.7. Given X € U andY € 6U if Y2F (X) > 0, then max (F (X)) =
max (F (Y)). Similarly if 7*F (X) <0, then min (F (X)) = min (F (Y)).
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Proof. Using Assumption 3.2.1, an FDS is just a weighted average of its neighbors
forced by functions {v (-),w (-)}. This leads to the conclusion that interior points
are weighted averages of the boundary conditions plus a constant sign forcing
term. Hence if 72F (X) < 0, then the minimum point is on the boundary and if
V2F (X) > 0, then the maximum point is on the boundary. O

Corollary 3.2.8. For the Laplace Equation, both the mazimum and minimum

value of (8.1) occur on the boundary.

Proof. Since 0 = v (-) = w(+), interior points are just a weighted average of the

boundary points in accordance with Assumption 3.2.1. O

To illustrate the following Lemma’s, refer to Section D.2, where:

eFigure D.7, depicts a Kroneker delta function located at (%, %) Often called a
‘unit point source,” this will be utilised to derive the discretised Green’s function.
eFigures D.8 through D.12 represent the growth of a Green’s function ‘close to
the boundary’ to show that the function experiences limited growth.

eFigures D.13 through D.17 represent the Green’s functions on uniform Z? grids.
Using a Z? unit square grid where Az = Ay; place a unit source at (3,3) and

272
using FDSc = (3.10) to yield the following results.
Theorem 3.2.9. The discretised Green’s function exists and is unique.
Proof. Refer [45, Section 6]. QO

Theorem 3.2.10. The truncation error eg (@ (X;;Ye) M (Dk)) corresponding to
the approzimate solution of the Green’s function in d = 2 by means of equation
(3.10) is of order O (Azx), provided the following conditions are satisfied:

oA closed and bounded domain where the boundary is a simple closed analytic
curve with a boundary function, Fss being continuous and piecewise analytic.

e The distance from the singularities of the boundary function to the nearest dis-
cretised interior point is not less than 6 Ax, where 6 is independent of Ax.

oIf {ﬁw (X;))=Fss (Y)Y € 56}, then the distance of the singularities of the
boundary from the line segment connecting X; and Y is not less than 0Ax.

Thus the truncation error is O (Azx) uniformly in every closed sub-domain of U.
Proof. |63, page 62]. QO

Lemma 3.2.11. Placing a unit source at p;, the Green’s function experiences ge-

ometric growth, such that Gy (7;7) = ﬁ@N (7:7) > 1 or simply @N+1 )
+1

1—01~+1 > 1, where 6} denotes the geometric growth of a Green’s function due

to the inclusion of i and 6y denotes the growth constant of a Green’s function,

where card (U) = k.
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Proof. Refer to Appendix B. (]

Remark 3.2.12. Further bounds on the discretized Green’s function errors can
be found in [61]. Due to the closed loop feedback phenomena, the influence of unit
source will almost surely increase and is dependent upon the location within the

domain and the number of interior points.

Corollary 3.2.13. Given (EAIC), then G (Xj; X;) is a unique constant.

Proof. Refer to Appendix B. O
Corollary 3.2.14. Given (EAIC), then 6y, < 1.

Proof. Refer to Appendix B. : O

Corollary 3.2.15. When card (0) = N — oo, then Gn (X X5) = 00 if X s

‘well within the interior’ and a finite constant if X; is ‘close to the interior.’

Proof. Refer to Appendix B. Figures D.8 through D.12 show a graphical repre-

sentation of this result. d

Lemma 3.2.16. Given (EAIC) where 9 (X;; Yx) = 0 (Yk; X;) for all {X;,Y,} €
O, in accordance with Lemma 3.1.22 then the reciprocity relation is true such that
GN (Xj; Yk) = GN (Yk; XJ)

Proof. Refer to Appendix B, [45, Section 6], or [63]. d

Corollary 3.2.17. Given (EAIC), as Az — 0, the difference between two Green’s
function approzimations on the same domain that are a [V] = [o;Az] distance
apart is a constant such that: Alimo <@A$ (X;Y) - G s ([X - V]; Y))

r— ,

= lim (ém (X;Y) = Gona ([X — sV] ;Y)) - K.

Az—0
Proof. Refer to Appendix B. The symmetry of differences in G (z;, yk; 1, Ym) —
G (2, Yk; Tn, Yo) is also shown in [45, Sections 6 - 7]. Extensions to the Z3 case
are given in [45, Sections 11 - 13]. O

3.2.4 Closed loop feedback

To illustrate the effects of closed loop feedback, derive @Az () via the Laplace
equation with a point source and homogenous boundary conditions. For this
section only, denote the 4-tuple {ﬁ (Yx) F (©middie) F (©corner,1) s F (pcomer,g)}
where {pcorner,;} is a point with j paths of {! distance 2Az to the unit source;
refer to Figures 3.4 and 3.5. Let {UU U | F (pss) = 0} equal the:
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comer middle corner
(XH:YK.‘) (xiu-yw) ("ju'yku)
0.0 1.0
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Vi) Vi) (v,) V) Vi) LIkl L bk
comer middle corner

Xy ¥ier) | Xp¥ir) | KprYier)

0.0 1.0

Figure 3.4: Closed and bounded domains for illustrating closed loop feedback

¢ =corner
m = middie

Figure 3.5: Example S; ((z;, ¥, %) ; 2Az) domain

eZ! unit length domain of Figure 3.4 such that F (z;) = Gz (k7). Let Ay = 3
with five interior points, where {@midae} = {%, %} and {pcorner1} = {%, %}.
eZ? unit square domain of Figure 3.4; let Az = Ay = 1, (z;,%) = (3,35), with
nine uniform interior points where {pmigae} = {(%, %) ( %) (%, %) , (%, %)} and
{eormer2} = {(3:3) (3:3), (5:3). (3D}

oZ3 unit sphere domain of Figure 3.5; let Az = Ay = Az =
points where: {pmidae} = {(3,3,3), (3,1,
{pcorner1} = {(%.3,3)> (3 &
{©corner2} = {(5:2:3), (3.3 (5535) 3 53) (3:53)
(%, %,%) (;, ;, ;) (é, g, l) ( , ),(%, %, %)} To follow the growth of the
Green’s function approximation and demonstrate closed loop feedback, use the
explicit FDSc of (3.9) through (3.11) to derive the FDSy schematic of Figure 3.6.
Thus place a unit source at Y; =

ey = 3 such that {1,0,0,0}. Holding the value of F (yx) constant; applying (3.9)

1
4
1
4

wl
=
N—

wl»—' O!IP—‘ —~
|t\9 W= = >

— N N
—_~ e NI
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[ corner
points

Figure 3.6: Schematic for closed loop feedback

once yields {1,%,0,0}, applying the FDSc a second time yields {1,3, 1, O} and
allowmg for closed loop feedback between pmigae and peorner,1 yields {1, 313> 0}
Since F (Yk)pyq is affected by F (Yk),, and F (©middie ), €valuation gives {1 + g, g, é, 0}.
Repeating this scheme gives F (Yiy) =1+ % + % +-= l—_l-g =3 and as N — o0,
this yields the relationship, Gaz (kik—1) = |52] - L.

(:r],yk) = (%, 1) such that {1,0,0,0}. Let Az = Ay and holding the value of
F(:r],yk) constant; applying (3.10) once yields {1, 0, O} applying the FDSc
a second time yields {1,%,0,3}, and allowing for closed loop feedback between
Pmiddie A0d Peorner,2 yields {1,1,0,1}. Since F (%, Yk) 4, 18 affected by F (4, Yk),,

and F (pmidae), evaluation gives {1 +1,3,0,:} Repeating this entire scheme
with new value of F (z;, yx) gives F' (z;,yi) = 1 +3+5+-= 1—11— = 2. Table

3.1 provides values from Z? examples on the unit square where A:I: = Ay and
Gag (p1, X ) = =5. These results are supported by the explicit solutions listed
on [45, pages 283-285], where @ is the ‘chance of revisiting the point at least once’

and truncation errors are listed in [61, Section 2] and [62].

Grid Size | Gas (| ¥ ], [Z]) | approximate 6 | approximate 6
3% 3 1 0 0

5%5 2 z 0.33333

7% 7 1.76923 o 0.43478

9x9 1.95588 = 0.48872

17 x 17 ] 2.40037 = 0.58340

33x 33 |2.84243 = 0.64819

65 x 65 | 3.2839 22 0.69584

129 x 129 | 3.72521 2 0.73156

Table 3.1: Closed loop feedback of 1( ) ona unit square domain using (3.10).

11
272
*(zj,yk, z1) = (3,3, 5) such that {1,0,0,0}. Let Az = Ay = Az and holding the
value of F (z;,yk, 21) constant; applying (3.11) once yields {1, 6,O 0} applying

the FDSc a second time yields {1, 1, 36, =} and allowmg for closed loop feedback

27 6 1 2
21721721721 )"

Similar results hold for the closed loop feedback and differences in the Green’s

as in the previous two examples yields F (zj,y) = —6—, such that
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Figure 3.7: Elliptic Problem Set-up

function dependent upon the location within the domain.

Example 3.2.18. Referring to a uniform Z' domain and using (3.9), G (k; k)

- (é(k;k_l);a(k;k+l)> =1 and G (Padiacent; Padjacent) = 1.9.
e Referring to Figure 3.7, on a uniform Z? domain using a canonical five point
FDSc where Az = Ay: Gax (p1;901) = 1.25 < Gas (6 06) ~ Gas (045 1)
< 1.45 & Gag (2; 92) < Gas (p3;03)- G (955 p1,2,3,46) = 217 10s(max(MN)
G (s 1) = G (97 95), G (73 1) < G (ps; 05) ~ 1-0.44 (1 — log, (max (M, N))),
and G (55 05) — G (ps; Lo~ A1, ) ~ K.

Az
e Analogous results can be derived for a uniform Z3 domain.

3.3 Elliptic equations with multiplicative and
general noise

Expanding upon (3.1), consider quasi-linear second-order elliptic SPDE’s in R?

with multiplicative and general noise of the canonical form:
V'F (X) = —v (F (X),X) —w(F (X), X)W (X) (3.16)

with Dirichlet boundary conditions, where d < 3 and {v (F (X), X),w (F (X), X)}
are general functions possibly containing the lower order terms {F (X), F' (X)}.
The {d = 1,2, 3} respective cases of (3.16) are (3.2) through (3.4) when w (X) of is
replaced by w (F (X), X) for the general case and w (X) F' (X) for the multiplica-
tive case. In order for a solution to exist, then [E [|w (F (X) , X)[P] dX < oo,

but due to singularities introduced via the Brownian sheet and the closed loop
feedback of an elliptic system, approximations for (3.16) using white noise and
a non-trivial w (F (X), X) almost surely do not exist. For example, as Az — 0,
IW(D) m (D)_1| is a random variable with a positive probability of being greater
than a significant value where singularities of non-zero measure almost surely ex-
ist, hence the resulting system is unstable and will almost surely explode from
w(X)F(X) and w (F (X), X) involving functionals of the solution. This funda-

mental change in the nature of the process explains a lack of literature regarding
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existence and uniqueness results, further:

eThe Maximum-Minimum Principle and Lemma 3.1.10 are no longer valid.
eAssumption 3.2.1 is invalid, so any FDSc is not symmetric and computational
molecules are almost surely not weighted averages.

eThe Radiation Principle, Lemma 3.1.23, must be revised due to the functional
dependence of the process modifying the Green’s function.

eResults are no longer applicable to Neumann and Robin boundary conditions
since Neumann boundary conditions yields approximations +K. Given that w (-)
is dependent upon F (-) over the entire domain, the K value is no longer arbitrary.
eAn iterative FDSc must be relied upon in order to derive approximations.
eThe Green’s function and Poisson kernel for a multiplicative or general noise

system cannot be represented in a closed or functional form.

3.3.1 Finite difference system

The Maximum-Minimum Principle allows one to construct proofs for uniqueness
and existence for the deterministic and additive noise processes, but since Lemma
3.1.10 is no longer valid, theoretical results for existence and uniqueness for (3.16)
do not exist. Using the canonical elliptic FDSc, (3.11), as a template, refer to
Figure 3.3 for a graphical representation of the canonical FDSc2 matrices where

computational molecules for (3.16) are expressed as:

B = ﬁm,k,z + ﬁj—l,k,t 422 f},kﬂ,e +F k=Lt ) 32 ﬁj,k,H-l + ﬁj,k,t—l
PR 2 (1402 + 2) v l2(1+22+02) \ 21+ 02+ 0)
Az?v ( gkt,l‘g,yk,zz) Azw ( ]kl)l']:ylcazl) W (Dji k)

+ .
2 (1 + /\12, + )\%) 2 (1 + )\g + )\%) (La=1 + La=2 Ay + 143=30yAz)
(3.17)

+

Since both {v (F (X),X),w (F(X),X)} can be functionals of the solution, let
92 (j;7) =9 (4;4) + m (AQTQF (X;) v (F (X5)n :Xj)

Az 1
Ay W (D) F (X)) ( (Xj)n,X,-)) such that

92 (k; k) 9 (k) 9(myk)
[FDSc2) = | 9(k;l) 92(L;1) 9 (msl)
9(k;m) 9(;m) 92(m;m)

Notation 3.3.1. The spectral radius is denoted as sr ([FDSC]) = ||[Ir}ll .o, where
[r] are the eigen values of the matriz [FDSc].

Remark 3.3.2. The st (+) is related to the (2 norm of a matriz such that ||[} B]||, =
st ([BT][B]) and st ([B]) < ||[[B]||. Given a FDSc matriz, the spectral radius
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can be calculated by either direct or numerical methods; for example use [19, Pro-
gram PWERMY1.EXT] for a general matriz and if the matriz is symmetric, use
[19, Program SYNPW92.EXT].

The FDSy focus will switch from using the Green’s function approximation
to an iterative FDSc method involving [ﬁn] =23 (FDSc2, [ﬁn_l] ,[Fw]). The
FDSc2 matrix is now a function of Az, the discretised domain, boundary condi-
tions, driving functionals, and the underlying FDSc; thus numerical approxima-
tions may exist and converge iff Algiur_r)l0 st ([FDSc2]) < 1; refer to Proposition 4.1.1.
As per Remark 2.1.11 some smoother than white noise stochastic spaces are listed
in [35, Chapter 6] and examples of non-pathwise stochastic spaces are found in
[39]. If smoother than white noise is utilised, numerical approximations and solu-
tions might exist, but only if singularities are less than a critical value dependent
upon the domain, underlying noise, and functionals of the process. Thus, the
maximum magnitude of singularities can be bounded such that sr ([FDSc2]) < 1
almost surely. Given that a consistent and stable numerical approximation can
be constructed, using refinements of the noise, the limiting case of Az — 0 can be
utilised to demonstrate if an approximation is convergent to a finite value which
may or may not be the solution.

Often a system will not be applicable without modification, where some au-
thor’s ‘accepted technique’ is to subtract a singularity and possibly a neighbor-
hood from the domain, thereby generating a new problem that is numerically well
behaved. Otherwise, a local solution can be used if the nature of the singularity is
modified or a mesh refinement examining an ‘area of infection’ can be conducted
and used to replace the sub-domain in the original problem. Other methods are
applicable, but will not be addressed; refer to [2, pages 414-415].
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Chapter 4

Numerical methods for elliptic
processes

Refer to Section D.2 for diagrams of numerical approximations to (3.1) and (3.16)

with both linear and non-linear boundary conditions.

4.1 Iterative FDSc methods

Since the additive noise FDSc matrices considered are positive definite, this en-
sures stability with respect to round off errors, thus if a large step size is utilised,
where card (pz« € U) < O (100), use a direct method such as Gaussian elimina-
tion to solve the system; refer to [21, page 283]. As the cardinality of the interior
points increases, direct methods are often computationally prohibitive due to the
sparse FDSc matrices. Thus, iterative methods are ‘more efficient’ since calculat-
ing an inverse of a sparse FDSc matrix often yields a full matrix, which requires
substantial computational effort to derive and implement. As depicted in Sec-
tion 1.2.3 and Figure 1.6, a Picard-Lindelof iterative method uses the boundary
conditions and driving functionals of a process to approximate solutions by re-
peated ‘sweepings’ of a FDSc over a discretised domain. When implementing
an iterative scheme where card (U) is large (i.e. Az — 0), it is usually neces-

sary to limit the number of previous approximations stored in memory such that
card ({ [ﬁ (X)O] R [ﬁ (X)j—l] }) <3.

Proposition 4.1.1. For any [A;] in R™, the sequence [An41] = [B][An] + [K]
converges to the unigque solution [Aw] = [B] [Aw] + [K], when st (B) < 1.

Proof. Refer to [19, page 255]. O

Remark 4.1.2. As per standard series convergence, the system is absolutely con-
vergent when st (FDSc) < 1; hence Assumption 8.2.1 for (8.1). The successive

approzimations can be roughly viewed as a geometric series; refer to [37].
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When implementing an iterative FDSc, one of the most important factors for
determining the accuracy of the system is the value of es that will be utilised to
terminate the iterations. From Notation 1.2.4, an iterative FDSc will discontinue
when es (X;) > ’ﬁm (X5), — Fag (X;),_,|- Hence es is directly related to the
global error and indirectly proportional to the computational effort required be-
fore a Picard-Lindeldf iteration method terminates. Due to the Green’s function,
the accuracy imparted by a given es <« 1 is domain dependent, but as a general
rule, eg (ﬁ (X)) ~ O (V/e5); refer to Example 4.1.3. Due to the accuracy of
an estimate being dependent upon es, the domain, Az, computational molecule
utilised, boundary conditions, error along the boundary, and how one measures
error (at a point, average over a domain, maximum over a domain), deriving a

comprehensive numerical rate of convergence is often an ill defined task.

Example 4.1.3. Approzimate a deterministic Laplace equation on a 25 X 25 unit
square using a Jacobi method with FDSc = (8.10), Fss (X) = 1.0, and an initial

guess of 0 along the interior. Given es = iy, the scheme terminates once
max (’ﬁ (X), - F (X)n_lD — 9.84831 x 10°%; yielding Figure 4.1.

Figure 4.1: Refer to Example 4.1.3: v/es = 0.01

0*F (z,y) N OPF (z,y) _ 0°W(z,y)
Ox? oy O0zdy

(4.1)

Example 4.1.4. Approzimating (4.1) on a unit square domain where Ay = 1 and
Fss (z,y) =1, let [ﬁ’r] =F ((3.10), Az = k=, e5 = 5 x 107'2) be the ‘numerical
solution.” The errors listed in the following tables suggest a ratio of v/2 and thus
a numerical rate of convergehce ofﬁa(-) = %, similar to the results of Chapter
2. Due to the choice of the domain and boundary conditions, this result is not
surprising and represents a ‘best case’ scenario. As previously mentioned, the
error introduced along the boundary plays the significant role in determining the

error within the domain, thus this error has been eliminated in this system.
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Grid mesh (M x M) | x?(X) eg (X) ?ae%(eg (X;))
J
@ (129 x 129) 4.43F — 06 | 2.56E — 04 | 1.50E — 03
= (65 x 65) 2.66E — 04 | 3.54E — 03 | 1.88E — 02
= (33 x 33) 4.29F — 04 | 5.01E — 03 | 2.38E — 02
& (17 x 17) 9.34E — 04 | 8.51E — 03 | 3.42F — 02
1 (9 x 9) 1.38E - 03 | 9.39E — 03 | 7.38E — 02
! (5 x 5) 1.37F — 03 | 8.96E — 03 | 3.65E — 02
% (3 x 3) 2.02E — 03 | 6.69E — 03 | 6.02E — 02

Table 4.1: eg = |F ((3.10) ,es = 1 x 10719) — F,

Z2, Grid mesh (M x M) | x*(X) eg (X) ?%(eg (X;))
7
Az = 3= (129 x 129) 471E —07 | 1.25E — 04 | 5.64E — 03
Az = L (65 x 65) 3.14F — 04 | 3.65E — 03 | 1.93E — 02
Az = 5 (33 x 33) 5.04F — 04 | 5.29E — 03 | 2.65E — (2
Az =L (17 x 17) 1.13E — 03 | 9.31E — 03 | 4.58E — 02
Az =1 (9 x 9) 1.83E — 03 | 1.02E — 02 | 8.78FE — 02
Az = ; (5 x 5) 1.84F — 03 | 9.73E — 03 | 4.60E — 02
Az =1 (3 x3) 3.55FE — 03 | 8.88E — 03 | 7.99FE — 02

Table 4.2: |F((3.13),es =1 x 10719) — F}
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Remark 4.1.5. For the aforementioned tables, x*(X) is a standard Pearson

Chi-square statistic, eg (X) denotes the average error over the interior, and max (eg (X;))
i€

denotes the mazimum error over the grid.

4.1.0.1 Jacobi iterative method

Often called the ‘Method of Simultaneous Displacements,” the Jacobi iterative
method dates to the late eighteenth century and is applicable to systems involv-
ing large sparse matrices. The Jacobi method is the benchmark FDSc by which

all other iterative systems are measured and is constructed as follows. Let [A]

a1 0 e 0
0 a 0o -
= [Ad‘iag] - [Atow] "' [Aup], where [Adiag] = 2,2 . ,
.0 .0
0 0 ann
0 0 0 a/l,2 vt al,n
[Aiow] = a1 0 -0 , and [Ayy] = .0 . .
U 0 0 0 -+ 0 @noin
n1 *** Gpp-1 0O o ... 0 0

Transform [A] [ﬁ (X)] = [B] into [Agiqg] [ﬁ (X)n] = ([Atow] + [Aup]) X [ﬁ (X)n—-l]
+[B]. If aj; # 0 for all j € [1,n] then [Agg ] exists and [ﬁ (X)n]

= [A5L,] (o] + [Aup)) [P (X),1) + [45L,] [B] o simply |F (), | = [FDS¢]
X {F\ (X )n—l] + [By]. Approximations using this system are repeatedly cycled

until es >  max (Hﬁm (Xj)n - ﬁAz (Xj)n—1
x;e{vnzd}

D, yielding an approximation.

4.1.0.2 Gauss-Seidel method

Often called the Liebmann method, improvement can be made to the Jacobi
method by utilising current approximations to the grid immediately after they
have been calculated. Hence, [ﬁ (X) ] = [FDS(] {F\ (X) ] + [B], where

[ﬁ (X), + ] is the matrix storing the newly estimated F (X)

n+1 n+%

nt1 values and the
remaining F (X ), values. The Gauss-Seidel method not only converges approxi-
mately twice as fast as the Jacobi method, but it also requires less storage space

since only one approximation grid is retained in memory.

Lemma 4.1.6. If a FDSc matriz is irreducible; i.e. diagonally dominant with at
least one row being strictly diagonally dominant, then the Jacobi and Gauss-Seidel

methods are convergent.
Proof. Refer to [57, pages 299-300]. O
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4.1.0.3 Simultaneous Relaxation Methods

Improving on the Jacobi method, use ((1 — @) [Agiag) + & [Aup)) [ﬁ (X)n] + a[B]

= ([Adiag] + @ [Atow]) [ﬁ (X), +1] to produce successive approximations. When
a € (0,1) the FDSy is called an ‘successive under-relaxation’ method and when
a > 1 the FDSy is called an ‘successive over-relaxation’ method, otherwise known
as a SOR method. Although not often used, successive under-relaxation methods
are useful in systems with singularities where other numerical methods do not
easily converge or explode. Various authors have derived ‘optimal’ SOR « values
dependent upon the FDSc, the shape of the domain, roughness of the boundary,
and internal noise. Values such as @ ~ 1 12( g Or @ & H-_ZA‘/F are often used, where

r is the minimum eigen value of the deterministic system.

Example 4.1.7. When performing an SOR using the Jacobi method matriz on a
rectangular domain, then st ([A dwg] ([Alow] +[Ay)) = (cos (WLAa:) 4 cos (TAQ)>
and for optimal SOR results, let a = W [19, Sectzon 12.2]

4.1.0.4 Richardson Method

Given that the FDSc is a positive definite matrix, systems can be rewritten in
the form [1?' (X)n+1] = [IT‘ (X)n] + oy, ([B] — [A2] [13 (X)n]) where @, is chosen
to accelerate the convergence properties of the system. Refer to [62, Section 5]
and [21, Section 21.5] for an introduction to this method. Although this method

is important, it is rarely utilised in practice.

4.1.0.5 Alternating Direction Iteration (ADI) Method

The Peaceman-Rachford or ADI method involves two implicit variations of the
Richardson Method where [A] = [Apor] + [Aver] yields a Predictor-Corrector
[F(X)ss] = [F,] + n ((Arer] [F (X)ys] + [Auer] [F(X),] - (B)

[P (00a] = [F (X)ss] + B ([Anor] [F (XD + [Auer] [F (X)) - (BY).
When using a rectangular domain, significant improvements can be realized over
the previous methods since the implicit steps are closely related to a direct substi-
tution method and the eigen values of [Aj,,] and [A,.,] are often radically differ-
ent. Unfortunately the improvement of this method often fails in non-rectangular
domains since the scheme is implemented with non-optimal parameters {ay,, On}
due to the arbitrary geometry of the domain. Implementations of this scheme on

a variety of domains will not be addressed; refer to works by Herbert Stone.

76



4.1.0.6 Method of Lines

Another method utilised, with various degrees of success, discretises a space di-
mension using N divisions and leave the other dimensions continuous. When suit-
able expressions are substituted, the SPDE is converted into a coupled system of
SDE’s; i.e. difference - differential equations. Using this method on a computer,
one also tends to discretise the remaini-ng space dimensions using M discretisa-
tions where M <& N. By definition, this will fulfill the requirements for a uniform
Z° space, but the magnitudes of {Axz, Ay, Az} force Alir_r)lo/\ — {0 or oo}.

4.1.0.7 Hackbusch Multi-Grid Method

The most computationally efficient methods that exist today involve the multi-
grid iterations of Dr. Wolfgang Hackbusch. Although the subtleties and math-
ematics of these methods are quite beautifiil, a discussion will be omitted. To
implement this system, define several uniform Z?M spaces where j € {1,2,--- ,0}.
Since numerical methods are fast for domains of small cardinality, initially ap-
proximate for a coarse ZZ,, grid then repeatedly ‘bounce’ between refinement
levels using predetermined ‘jump’ criteria to yield a final Z4_, approximation.
Using these recursive refinements, this method provides a computationally effi-

cient means for deriving an approximation; refer to [26] or [27, Chapter 4].

4.1.0.8 Other methods

Related to the Method of Lines, [5] uses a rather ingenious Stochastic Monte-Carlo
method by performing a random walk over a R? domain to derive an approxima-
tion to a solution at a point. This has the highly desirable effect that the only
error introduced to the approximation is a statistical sampling error, which de-
creases as the number of Monte-Carlo paths increases. By statistically accounting
for the propagation of disturbances in all space dimensions, this approach pro-
vides a powerful tool for researchers where computational time is of secondary
concern to approximation accuracy. Using the results of [5], [6] this method can

be expanded to approximate the entire domain where:

... the technique may be applied in any separable coordinate system.
Thus, the technique can easily be generalized into N dimensions; in
general, Monte Carlo methods become more competitive with deter-

ministic methods as the dimension and complexity increase.

If one is modeling a process with complicated boundary conditions this method

is in fact more than ‘competitive’ to other methods, it is often superior.
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FESy methods are often more efficient than FDSy methods for their abil-
ity to handle errors introduced at the boundary. Thus, refer to [19, Program
LINFE125.EXT] for a FESy method approximating the d = 2 Poisson elliptic
equation and [1] for a discussion of the benefits FESy methods exhibit for some

elliptic problems.

4.1.0.9 Symmetry considerations

In order to account for the ‘instantaneous propagation’ of disturbances in all
space dimensions; it is best to ‘mix things up’ and avoid problems from iterating '
a domain in only one direction or pattern. For example, let U be a R? unit square
with corner points (0,0) and (1,1); refer to Figures 4.1 and 4.2. Thus, when
approximating using an iterative method, one should start at the corner point:

A. (0,0) and pfoceed in the positive z and positive y direction.

B. (1,1) and proceed in the negative z and negative y direction.

C. (1,0) and proceed in the positive y and negative = direction.

D. (0,1) and proceed in the negative y and positive z direction.
In doing so, initial conditions are allowed to propagate in all space directions
without a ‘wind effect’ being forced on the system. The geometry of the domain
is crucial since there often exists a natural symmetry that can be exploited. Thus,
only a subset of the domain’s discretized points need to be evaluated to approx-

N

imate the entire domain; i.e. reduce a card (U) = N system to a card (U) = =

system, where m is the number of symmetries inherent in the domain.

— . L center points

U, U2

Us T,

Figure 4.2: A symmetric rectangular domain

Example 4.1.8. Considering the square domain of Figure 4.2, only the triangu-
lar sub-domain U, must be approzimated, since the remaining sub-domains are
either rotations or reflections of U1. Thus, only one eighth of the interior points

must be approrimated. Estimating the Laplace equation yields:

o~

[Flpu)] = [H O] x0+Ly+ Lo+ Lo+ L, [F ()| = [B )] x[+Lo + Ly + Ly + L]
[P (pua)| = [B O] x[=La+ Lo+ Ly = L], |F (ps))] = [H ()] x[+Ls = Ly = Lo + L]
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(B (pu2)] = [H O] X[=La = Lo = Lo = L), [F (pua)] = [ ()] x[=La = Ly = L = L]
[ﬁ (pu.,)] = [ﬁ ()] X[+L3 - L] - L4 + Lz], [F\ (gJUs):I = [ﬁ ()] X[—Ll + L3 + L2 — L4]
Similar rotations and reflections apply for the Green’s function when estimating

the stochastic Poisson equation.

4.2 Numerical examples

To demonstrate how a FDSc matrix is derived and used to formulate a FDSy
matrix, consider the following well posed process

P*W (z,y)

6°F (z,y) , °F(z,) _ (F(,9),2,9) =0 (2,5) —5 52 (4.2)

Oxz? Oy?
The domain for this system is depicted in Figures 4.2 and 4.3, where utilising the
symmetry of the domain, the Green’s function and Poisson kernel values for ﬁl,z
also yield Fy1. A FDSc is built using {(3.10), Az = Ay, A\, = 1,9 = 1} such that

~ Forn+Fip+Fipir +Fipr Az2 /o w (x5,
Fj’k: j+l,k J 1,k4 Gik+1 Jrk 1+ ; ’U(Fj,h,xj;ylc) +—%W(D]’,k)-

(4.3)

Figure 4.3: Triangular domain for example

4.2.1 FDSc matix

In order to construct the FDSc matrix, utilise (1.10) and (4.3) to yield:

~

ﬁ(@u)n]:'[FDSCU FDSC&U][F(@U)n-1]+1 Az? v (Y] + W) [w (-
e, e FPf [ Fo0ns | (g () + WOl 0D
Thus, the canonical five point FDSc of (4.3) will be of the form,
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-~ - -

Fia [010[00011107][F,
B 101{1000001]]|F,
By, 010[0111000]|]F,
Fio 000(4000000]||F,
Fog | _1] 0000400000/ A,
Fp | %|000[0040000]||F,
Fp 0 00|(0O0O0400O00 Fp,
Fis 0 00(0OO0OO0O0OM4CO00 Fi3
Foo 000(0O0O0O0O0A40 Fos
| Fyy | [000[0000004]|F, |
v ﬁl,g,Am,QAy)
v ﬁl,l,Ax,Ay)
+iA.’L’2 v ﬁ?,l’ 2A.’L’, Ay
0
_O -
[ W(Dy2) 0 0 0000 00O
0 WD, 0 000 0 00
+1 0 0 W) 000 0 00
I 0 0
Fio 010000
which is often statedas | F1; { =3[ 1 0 1 1 0 0
By 010011

Az?v (Fra, Az, sz) + W (D) w (Az, 2Ay)
+1 | Az?v ﬁl,l,Ax,Ay) + W(Dy,1) w(Az, Ay)
Az?v (Fyy, 24z, Ay) + W(Dg,1) w (2Az, Ay)
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4.2.1.1 FDSc — FDSy

~

Subtract [ F(pu), } from both sides of the FDSc matrix to yield:

F (pso)
[ —4 1 0 0 0 0 1 1
1 -4 1 1 0 0 0 0
0 1 -4 0 1 1 1 0
0 0 0 4—-4 0 0 0 0
(0] = 1 0 0 0 0 4-—-4 0 0 0
4 0 0 0 0 0 4—4 0 0
0 0 0 0 0 0 4—4 0
0 0 0 0 0 0 0 4 —
0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0
Az?v ﬁl,z, Az, 2Ay) + W(D; o) w (Az, 2Ay)
+1 | Az (B, A, Ay) + W (D) w (Az, Ay)

Az?v (Fyy, 24, Ay) + W(Dy,) w (242, Ay)

O OO OO OO =

N
o |
N

OO OO OO OO

N
|
N

Given the small size of the domain, reduction via the direct method of Gaussian

elimination yields:

-56 0 0 4 1 1 16 15 15 4
O=z%| 0 -5 0 16 4 4 8 4 4 16
0 0 -5 4 15 15 16 1 1 4

60 16 4
+& | 16 64 16
4 16 60

Fi, 4 1 1 16 15 15 4
- 1

or simply {1,1 =16 4 4 8 4 4 16
Fy . 4 15 15 16 1 1 4

60 16 4
+2 | 16 64 16
4 16 60
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Az?y ﬁl,l, A, Ay) +w (Az, Ay) W (Dy,1)
Azv ]/7‘\2,1, 2Az, Ay) +w (2Az, Ay) W (Dy 1)

Az?v ]/7‘\1’2, Az, 2Ay) + w (Az, 2Ay) W (D, 2)
Az?v F\l,l,Ax, Ay) +w (Az, Ay) W(Dy 1)
Az?y ﬁg,l, 2A1:,Ay) + w (2Az, Ay) W (D2,)

Az?v ﬁl,g,Ax, 2Ay) + w (Az,2Ay) W (D 5)

it is eas-




ily verified that the above FDSy can also derived by iterating the FDSc matrix.

4.2.2 Green’s Function

60 16 4

The discretised Green’s function is [@ ()] =4 | 16 64 16 |. As expected
4 16 60
from Lemma 3.1.23, these values can also be generated by placing a unit source at

the respective interior points and estimate the Laplace equation {v (:) = 0,w (-) = 0}
with Fy;5 (X) = 0 boundary conditions. Thus, approximating the simplified sys-

tem yields: R
[ Fio ]|
= Fi,
Ry 010000111077
F,| =l101100000:1 02’1 +[0]
ﬁZ,l . 0100111000 .
. . -O - n-1
121,2 010 51,2 R R
Thus, | By, | =10 1|]| A, which implies [Fn] = [FDS¢] [Fn_l]
ﬁ2,1 . 010 Fy, -
or simply [ ()nJrl [FDScy) @()n] To derive the [@ (1,1; 4, k)] vector,

place a unit source at (Az, Ay) and iterate the scheme

(A
c:;(1,112n+1 } 010][G112), |
G(1,1;1,1),,,+1 10 1 (1,1,1,1)n+1 such that
c?(1,121n+1 010]]|Ga121),
0 1 [010][L1] T1!
l|:101 0+1=1—>i101 1:%4—1,
010][0 : 010 i B
whigh eventually ylelds the middle row of the Green’s function matrix
% +1 | = % . The other Green’s function matrix rows can be derived
56

by placing a unit source at (1,2) and (2,1).

4.2.2.1 Discretised Poisson kernel

4 1 1 16 15 15 4

The discretised Poisson kernel is: [ﬁ(.)] =116 4 4 8 4 4 16
4 15 15 16 1 1 4
Once the discretised Green’s function is established, the discretised Poisson kernel

is a direct consequence of the G (-) values along the adjacent points of the domain.
By definition, [G (ps5)] = 0, thus adjacent points must be utilised to normalize
the boundary conditions. From (4.3), ¥ (-) =9 = 1 and T (1,1)

=> G (P(l,l); Pj) = @1,0 + @2,0 + @3,1 + @2,2 + é\1,3 + é\0,2 + @0,1
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= 9G1 + 9Ga, + 0Gay + (19@2 L+ 9G, 2) +9G12 + 9G1 2+ 9G4
= 12@ + %% + %% + 3 ( + ) + %é—g— + i% + %g% = 1, which is expected from
the Radiation Pr1nc1ple and Conservatlon of Energy. To derive the middle row of

the Poisson kernel which is the [f[ (p1,1: )] vector:

_ 9Gio _ 18 16 _ 7j
el (1,1;1,0) = 11,1> = Y1) Aiggr(},) = = H(1,1;0,1).
G, _ 9G1,249G _ 6 16 3
'H(17 152,2) = il,i) = ir2(1,1) = Zil'é" + %_6') (1 1 =
Gy G 7y 77
.H(1,1,1,3) TAD = a5 = asran = i = 2 (1L,13,1) = H(1,1;2,0) =

H(1,1;0,2).

When constructing the discretised Poisson kernel values as functionals of the
number of discretised paths, let p. € {20, 3,1, 2,2} Where:

oAz = ||p21, 0./, = ll2,1, ]|, » the respective Poisson kernel approximation val-
ues are {£2 18 18} This is due to the fact that there are two discretised paths
between oo and po1 via {{g22 — P12 = P1,1 = P21}, {22 = ©2,1}} and only
one path for the other boundary points.

#2Az = 1,1, .||, the respective Poisson kernel approximation values are { &, &%, = |-
This is due to the fact that there are two discretised paths between .5 and p;;
via {{p22 = p12 = P11}, {22 = P21 — p1,1}} and only one path for the other
boundary points.

1.0 *— .
AN
/
¢ 5 o *
/ \\
7 N
¥ o o o 2
N ’
N ’
® [ ] f ®
\\ ,
/
o \‘/ &
0.0 REEREEY)

Figure 4.4: Discretised d = 2 domains for examples

Example 4.2.1. Utilising the diamond and square domains depicted in Figure
4.4, evaluation of the d=2 Laplace system using [ﬁn+1] =21 ((3 10), [F ] [Fw])
where Az = Ay = 1 yields the following:

e For the diamond S; ((2Az,2Ay),2Az) domain denoted by the dotted line of
Figure 4.4, the FDSc matriz is
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W =

OO OO OO OO OO

| Foz | 0

SO O OO OO O OO

0

OO OO OO OO PO
O OO OO OO~ OO

0

SO O OO OO O OO

0

O OO O O OO RO OO O =

which yields a Poisson kernel of

- ~~ -

- ’ -

e For the solid line square domain of Figure 4.4, the FDSc is omitted due to a

5
W
—
w

—_ S

14

o I

2
8
4
2

—
—
w

—

Co DN N

[ —
e N

OO OO OO OO0~ O O

1
1
4
1

13

oo o MO SoOr OO O
OO R OO, RrOoOoOO

OO O OO OO OO OO

OO OO0 O OO O OO
O OO O OO OO © O~ O
O OO0 O O OO0 o o

F13

lack of space, but the resulting system yields a Poisson kernel of

-~ -

Fis -

F3, -

- ’ -

It is important to note that the FDSc are small matrices with relatively few non-
zero entries. As the size of the domain increases, evaluating the inverse of the

sparse FDSc matriz is prohibitive; hence, the need for iterative methods to derive

approrimations.

67
22
7
22
14
6

7
6
3

22 7
74 22
22 67
14 6
28 14
14 22
6 3
10 6
6 7

7
22
67

6
14
22

3

6

7

6
14
22
10
28
74

6
14
22

67

67

6 7
10 6
6 3
14 22
28 14
14 6
22 67
74 22
22 7

4.2.3 Non-additive noise processes

To demonstrate how the non-additive noise fundamentally changes the system,

consider the iterative FDSc
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where 92 (j, k) = w; W (D;x) + Az?v (f},k,jAa:, kAy) F & if the noise is multi-
plicative and (Aa:% (]?‘j,k,ij, kAy) +w (]?‘j,k,jAa:, kAy) W (D j,k)) Fj,k if the
noise is general. The inclusion of the {v(:),w(-)} terms in the FDSc2 matrix
force the Green’s function to be dependent upon the Brownian sheet, numerical
approximation over the grid, and driving functionals; hence the spectral radius

of FDSc2 is a random variable possibly greater than one.

W (z,y

8%F(z, F
(a:y)_+_ 61(/ ):—F(.T,y) 8xz8y ’

Example 4.2.2. For the multiplicative process,
assume Fys (z,y) = 0 to yield

51’2 [ w]akW(D1’2) 1 0 F/:l,2
F1, =i 1 w;kW (D1,1) 1 Fi,
F21 0 1 wjkW(DZI) F21

L 4 n+41 -
Deﬁne the stochastic space to be a wezghted singularity such that

r
2? =1 (1) \/IE (1) %f jice. [Funi] =3 ([FDSe2), [F (2,0),)):
I F}vl J a1 L0 10 ﬁ2’1

Placing a unit source at 111 and using the transpose [ﬁl,g, ﬁl,l, ]?‘2,1] , if
n

RS
118 1 9 18 97 ,p 2 8 2 _
[4, 6 4] — [32, 16> 32] which eventually converges to [7, % 7]. Thus, 03 =

such that (1 — ;)" = &.

oX = 0 yields the deterministic Green’s function growth [0,1,0] — [l 1 l] —
1
8

.{B. = 0.5 yields the Green’s function growth [0,1,0], — [i, %, i]l — [%, 13*5 g] —
[é—‘r’, 18—7, ;—g] which eventually converges to [%, %, g-]

o% = £ 2 yields the Green’s function growth [0, 1, 0], = [i, %, i]l — [%, 176—21, %]2 —
[%, 283—63:12, ;%}3 which eventually converges to [g, 2;, g]oo

'\/T§ =1 yields the Green’s function growth [0,1,0], — [i, 2, %]1 — [%, 5 1}2 —

[%, %, 2—3}3 which eventually ezxplodes.

Reduction shows that the limiting value ofﬁ(pl,z) = ﬁ(pg,l) = iﬁ(pu) with
~ -1

ILm F(p11), = (1 - % - @W(Dl,l)) , which explodes when @W(Dl’l) > %.

Ezplosion is even more prolific when v (-) # 0 and non-homogenous boundary

conditions are utilised.
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Example 4.2.3. Consider the multiplicative and general noises on the R' unit
line segment domain using Fra) _ —F (z) sin (2nz) — F (z) cos (27x) W) nd

oz? oz
PE@) — _F (z)sin (21z) — F (z)° cos (2nz) 24 Thus,
— 1
192 ( ) - 2(1—sin(27rmj)Am2—cos(27r:vj)AmW(D-)) and
924 (z;) = T e F( ToosEra ) AWE;)) respectively. Utilise a Z1 with a

canonical & point FDSc driven by the noise depicted in Figure 4.5 to yzeld the
approzimations depicted in the Figures 4.6 through 4.10. Due to the fact that
approzimations exrist, this demonstrates that st (FDSc2) < 1. As ezpected, ez-
plosion occurs soon after R > 1 (refer to Figure 4.10) and if the nature of the
driving functionals is ill behaved, then even if R <€ 1 the system might ezplode.

AR
BurmTATIal

-0,2

0,2

0,

o

Figure 4.5: Stochastic path where X = 1, z € [0, 1], and Az = o
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Figure 4.6: Deterministic solution with Fis (0) = 1, Fss (1) = 1, and R = 0.
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Figure 4.7: Convergence with ﬁw (0) =1, ﬁw (1)=1,and X =1.
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Figure 4.8: Deterministic solution with ﬁ,;u (0) =0, ﬁw (1) =0, and R = 0.

o P
02 X T,
ors /7/ N "H_\
o _—% \h\\
. N
—e— multiplicative —m— general

Figure 4.9: Convergence with ﬁw (0) =0, Fss (1) =0, and R =1
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Figure 4.10: Convergence with ﬁ,;u (0) =0, ﬁw (1) =0, and ® = 1.03
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Figure 4.11: Reduction in time using an a priori estimate

4.3 A priori initialization methods

Due to the time consuming iterations of a FDSc to derive an approximation, a
significant amount of effort can be eliminated if one chooses values for an initial
grid that resemble the final approximation. When estimating a system, one often
utilizes zero, homogenous values, or a deterministic solution to begin the iterative
process and although each initialization will yield similar estimates, often errors
can be eliminated and effort be reduced if one utilises a more ‘appropriate’ ini-
tialization; refer to Example 4.1.3. The objective is not to ‘solve’ the system, but
to derive an a priori ‘best guess’ for F (X), which will reduce the computational
effort for an iterative FDSc to derive an approximation; refer to Figure 4.11. Util-

ising information about the domain and computational molecule, construct an a

— —

priori Green’s function and Poisson kernel, { [@], [f:[ ] }, such that

e — — — —

|7 (po)] = 0 (83) |G| v ()] + O (8a**) [G] W D)] [w ) + [ B] [F (030)].
(4.4)

Using this initial guess as a starting point, an iterative FDSc can be implemented

to derive an initial numerical approximation

_ ﬁ(@u)2 1 " FDScs FDScsys | ﬂp;) ] [ (:: )}
= + T F,’U . ,W Dw/(-
| Flpss) | L 0 I ]| Flow) | (), W(D)w (")
vyhich is ut_ilised_ in place of o
F(pU)z . FDSCU FDSCJU 1 F(pU)l ] ~ ' .
 F(pss) | | O I ] _F(pw)d+[T(F1,U(),W(D)w())]

where F (pvs), is often a 0 matrix or a deterministic approximation.

A priori methods are most effective when deriving non-pathwise approxima-
tions or one is forced derive approximations for a given domain utilising different
stochastic noises; refer to Chapter 5. Although the following methods will be
presented as separate entities, the most efficient implementation is utilising a
combination of methods dependent upon the size of the domain, Az, nature of
the driving functionals, roughness of the stochastic space, and boundary con-

ditions. Often more difficult to implement than a homogeneous initialization,
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the savings in computational effort are worth the trouble; refer to the numerical

results of Section 4.3.5.

Example 4.3.1. Returning to the triangular domain of Section 4.2, Table 4.3
provides a comparison between the discretised Green’s function and Poisson kernel
and a few a priori estimates. Although it is clear that the a priori matrices are
not the true values of { [@} , [fl} }, they are good estimates to start from. Refer
to Section C.38 for a pseudo-code description of the following methods.

Method {@Am (pws; @U)} Hax (9505 PU)-‘
R 60 16 4 & 1 1 16 15 15 4
{G B} values | 4|16 64 16| | L1 16 4 4 8 4 4 16
4 16 60 4 15 15 16 1 1 4
3 1 2 2415 15 87 72 72 24
Bl hod 1 1 3 % 339 3?9 3?9 389 3?9 399 389
ow-up metho = S %5 75 i3 3 5 13
’ |5 ) 3 B B B BERER
8 309 309 309 309 309 309 _ 309
[ I L T3 3 IBoI8 16 4
— 4 16 ?8 60 60 60 60 60 ?8
GQ method i1 i1 1 a2 L L2
?2 ?8 ‘?2 56 56 56
1 1 5 44200200720 10
2 83 83 83 83 83 83 83
X,Y|;%method [ 1|1 3 1 2 2 L 2 1 2 4
vl A BB KB EEE
2 83 83 83 83 83 83 83

Table 4.3: Comparison of a priori methods

4.3.1 Blow-up method

This method will focus on the Green’s function and should be used to account for
the influence the driving functionals have upon an approximation; i.e. a numeri-
cal ‘cookie cutter’ for G (). It should not be utilised in deriving a Poisson kernel
for domains with a large number of interior points, since only neighborhoods of
internal points are considered. Regardless of the domain, given a symmetric com-
putational molecule, the following assumptions can be made about the structure
of the discretised Green’s function:

ekrom Lemma 3.2.11, when X is well within the interior, the closed loop feedback
of a Green’s function approximation will be a function of Ax.

elrom Corollary’s 3.2.13 through 3.2.15, when X is either an adjacent point or
close to the boundary, a Green’s function approximation will have a limiting case
of @Am (X; X) < a, where « is usually less than 2.

eFrom Lemma 3.2.16, G (X;Y) = G (Y; X); i.e. the reciprocity relation is valid.
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eFrom Corollary 3.2.17, the difference between two discretised Green’s functions

an [? distance nAz apart is a constant.

4.3.1.1 Procedure

In order to implement this method, utilise the following steps:

(1) Given a computational molecule, Az, and the closed loop feedback prop-
erties of the FDSc, make a best guess at @(pu;pu) for a point well within
the interior. For example, when using the computational molecule (3.10), then
G (X;X) =~ (1.5 + 0.45 (log (M) — 2)); refer to Program C.3.2.

(2) Copy the stochastic noise matrix and for points well within the interior, mul-
tiply the associated W (D;) random values by G (pus; pu) Az??w (X;) and add
G ag (g5 pu5) v (F (X;),z;) Az?. For points close to the boundary, utilise the as-
sociated limiting value for adjacent discretised Green’s functions. For example,
when d = 1 multiply adjacent points by 1.9 and when d = 2 multiply adjacent
points by 1.45 and 1.25 for adjacent corner points; refer to Remark 3.2.18.

(3) In accordance with Corollary 3.2.17, calculate a generic Green’s function dif-
ference for points well within the interior. Use G az (Yx; Yi) and the fact that each
I' jump of Az is a constant; refer to Programs C.3.2 and C.3.3.

The difference vector does not have to be very large due to the radiation prin-
ciple mandating that there is a limited region of significant numerical influence.
Often points within a S, (X, 25Az) neighborhood are more than adequate.

(4) Divide the difference vector by Gaz (Yx; Yx) and remove any negative values
such that the vector represents influence values between 0 and 1.

(5) Starting from the boundary and progressing towards the interior, multiply
the modified functional values by the influence vector and then add the results to
the deterministic ‘best guess.” Values for the influence vector can be interpolated
using linear, trapezoidal, or spline functions.

(6) Utilise the symmetric properties of a domain to minimize the computational
effort.

(7) Delete the manipulated functionals and begin the iterative method utilising

the a priori approximation as the F estimate.

4.3.2 C/}’E) method

Notation 4.3.2. Let a numeric ‘center point’ denote a point in Z% where the
weighting of the minimal 1! distance to the boundary points is equivalent to the
total weighting of all paths to the boundary points. For example, refer to Figure

4.2 or consider the geometric center of a sphere, thombus, or square.
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Given a computational molecule, the assumption that every I! jump of Az im-
plies a Green’s function must be multiplied by an appropriate 9 factor will be
made. Thus, the influence between two points will be approximately Q (X;Y) =
9*Qpath (X, Y); where o = XL q(X;Y) = Q(Y; X), and Qpath (X,Y) is the
number of paths between two Z¢ points of length || X, Y||,; refer to Program C.3.6.
Since it is numerically impossible to cover all paths over all distances, the
assumption that all points well within the interior are numeric center points will
be made. Despite the obvious fact that this is not true, the radiation principle
numerically ignores paths of excessive length so the weighting of minimal paths is
assumed to be the same as the total number of paths. This method will evaluate
‘exact’ approximations for center points regardless of the domain, boundary con-
ditions, and Az; thus, if one is interested in evaluating a system only at specific
points, then this method could be utilised in place of an iterative method. Due
to this method being tied to individual Az jumps, this system will experience the
following numerical complications:
olt is difficult to distinguish between [ paths of {nAz, (n + 1) Az, (n + 2) Az, ...}
Thus this method is most efficient when Az is a numerically significant (large)
value, such that nAz is numerically distinguishable from (n + 1) Az. For example
0.00001 is distinguishable from 0.00002, while 100.00001 is difficult to distinguish
from 100.00002.
eMost boundary points will have only one interior adjacent point, thus correc-
tions will be made for d > 2 boundary points with more than one adjacent point.
In having more than one interior adjacent point, the influence of that boundary
point would be understated if only one adjacent point is considered.
 oSince 0 < 9 < 1 and the number of [* paths of given length grows exponentially
as the distance increases; Q (X;Y) involves a very small 9 value times a very
large Qpath (X;Y) value. Accurately evaluating Q (X;Y) is not a trivial exercise.

4.3.2.1 Procedure

In order to implement this method, utilise the following steps:

(1) Given a computational molecule, derive the 9 value from the associated (+)
terms. For example, when Az = Ay = Az, then 1/9\(3.9) =1 1’9\(3.10) =1 1/9\(3'11) =3,
and 93 13) ~ 0.3924.

(2) Assuming X = (zj,yx, «) and Y = (Zj4m, Yk+n, Zi+e), Where a is an inte-
ger; let Q(X;Y) = Qpath (m, n,a,0,0) x Hlm+n+a) and us;e this relation to derive
G(X;Y) = Ga(X;Y) =Q(X;Y) ( D Q(X;Ya)) and 7 (X; Yio)

Yo €{UUsU}
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(3) Evaluate other interior points in the domain utilising the reciprocity relatlon

and previously calculated values for Q (X;Y5).

Example 4. 3 3. Let N = XYL _1 gnd using (3.10) on Z3,, to yield GQ(X;Y) =

N
4~ = 6N Z 27 or simply 2 22~ . Evaluation yields, GQ (X;{X £ Az}) = 1—% =
j=0 7=0

3, GA(X;{X +2A2)) = —i—§= I GQ(X;{X+3Az}) = 1-1—
%2—%—26:64,GQ(X{X:1:4A33}) 1-3-2_2_ 28 = X, and
GQ(X;{X+6Az}) =1-1 -2 52 _ Us_ 28 — 8 Hence. the re-

currence relation GQ,,, = %é’am_l + 5=, wherem > 1 and GQ, = 2 can be utilised

to calculate the required GQ (+) values.

4.3.3 | X,Y|;¥ method

In order to deal with general domains and evaluate systems where Az is too small
to eliminate paths of excessive length, repeat the GQ method such that X, Y
is used in place of Q (X;Y’). Thus, the /2 norm raised to the -d power will be the

influence measure between two distinct points.

4.3.3.1 Procedure

In order to implement this method, utilise the following steps:
(1) Evaluate || X, Y|]2_d and use this value to derive G (X;Y) =X, Y|;*
. ( > X, Ygugd) and B (XiYi) = (X ¥aw) (T B061))

Y2€{0UsU} Y2€80
(2) Evaluate other interior points in the domain utilising previously calculated

values for G (X Y).

4.3.4 GPS method

Figure 4.12: GPS average where {pg} are the blackened dots

As depicted in Figure 4.12, derive reasonable estimates to a finite set of interior

points {pg}; i.e., derive {ﬁ (pE)} From Lemma 3.1.9 and the reciprocity rela-
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tion, utilise values of the Green’s function calculated when evaluating {ﬁ (pE)}
to derive approximations for the remaining interior points. This method is most
effective when used on domains with complicated boundaries or the cardinality

of the interior points is very large.

£o = (1‘—%, %“) P4 = (2];4’“', %“)
pr = (LD ) | g = (e, 200
p3 = (%Vl MT) pr = (%Vl 2 Mg‘”)

Table 4.4: 8 example GPS points for a square domain

4.3.4.1 Procedure

An approximation will be derived using a limited subset of interior points. Given
an a priori discretised Green’s function or a Green’s function calculated using the
Laplace operator on the domain:

(1) Use a rough grid, symmetric conditions, Laplace operator estimates, or nu-

o~

merical center points to estimate {F (pE)}

(2) Rely upon the reciprocity relation of the [@ (+; pE)] matrices to build [@ (pE; )]
and estimate the remaining interior points by ignoring the boundary conditions

o~

and only utilising {F (pE)} and noise within a small neighborhood.

4.3.5 Numerical results

OF (z,y)  OFF(zy) W (zy)

4.
Oz? 0y? 0x0y (4.5)

Consider (4.5) on a unit square domain with A\, = 1, Fys (z,y) =1, and
F((3.10),es = 5 x 107'2); refer to Figure 4.1. Tables 4.5 through 4.8 list the
computational savings realised when using the aforementioned a priori methods

with an iterative scheme.
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Table 4.5: Percent savings in computational effort for a Hackbush multigrid

method

Table 4.6: Percent savings in computational effort for a SOR method

Table 4.7: Percent savings in computational effort for a Jacobi method using

(3.10)

Table 4.8: Percent savings in computational effort for a Jacobi method using

(3.13)

Grid Size | 7x 7|11 x11 | 19x 19| 35 x 35 | 67 x 67
0 Fill 0 0 0 0 0
Det. F(-)| 83 | 488 7.2 9.1 10.4
Blow up | 16.7 53.3 11.4 13.0 13.5
GQ 16.7 50.5 21.1 3.3 2.2
5 p GPS 8.3 52.4 11.4 13.0 16.6
8 p GPS 8.3 52.4 114 14.5 16.6

Grid Size | 7Tx 7|11 x11|19x19}35x 35|67 x 67
0 Fill 0 0 0 0 0
Det. F(-)| 45 | 33 18.4 9.8 9.4
Blow up 18.2 5.4 12.3 12.4 11.8
GQ 9.1 7.6 20.9 3.1 -0.3
5 p GPS 9.1 5.4 20.3 16.4 16.8
8 p GPS | 9.1 4.3 19.3 16.0 15.6

Grid Size | 7x 7 [ 11 x 11 | 19x 19| 35 x 35 | 67 x 67
0 Fill 0 0 0 0 0
Det. F(-)| 11.5 | 19.0 7.7 11.6 12.5
Blow up 19.2 21.3 14.0 14.5 15.5
GQ 154 34.4 29.6 4.1 2.6
50 GPS | 11.5 13.0 15.3 16.7 19.2
8 p GPS | 11.5 20.2 15.1 18.5 20.4

Grid Size | 7x 7 |11 x 11 [ 19 x 19 | 35 x 35 | 67 x 67
0 Fill 0 0 0 0 0
Det. F(-)| 91 | 248 | 13.0 11.4 12.3
Blow up | 18.2 | 17.5 15.4 147 15.3
GQ 136 | 478 | 32.6 4.0 1.2
5pGPS | 91 | 162 18.6 16.8 19.2
8p GPS | 91 | 162 17.0 19.1 19.8
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Chapter 5

Quasi-Geostrophic processes with
additive noise

The principles to be derived are largely theoretical concepts that can
be applied to an understanding of the natural phenomena. Such prin-
ciples spring most naturally from the study of model problems whose
goal is the development of conceptual comprehension rather than de-
tailed simulation of the complete geophysical phenomenon. Geophys-
ical fluid dynamics has historically progressed by the consideration
of a study sequence within a hierarchy of increasingly complex mod-
els where each stage builds on the intuition developed by the precise
analysis of simpler models. [53, page 2]

Section 5.2 will address the discretisation of the QG processes of interest to this
text and highlight the similarities of QG systems with the FDSc’s of Chapters 2
- 4. Given that the derivation of the QG process is not intuitive, refer to Section
B.3 for an introduction to thin fluids and [53] as to how QG processes arise from

a series of assumptions about the nature of a rotating fluid phenomena.

5.1 Introduction

Quasi-Geostrophic (QG) processes can be expressed as

0Q (z,y, z,t)
ot

PW (z,y, z,t)

HIF(@9.2,9,Q@y20) =w @y nt) —F 2%

+,U(Q(:L.’y’z’t)7Fl ('T’y7z7t)7F(m7y’z7t)"’L.7y7z,t)

(5.1)

where F'(-) is a stream function and Q is the potential vorticity of the form
Q (:L.) y’ Z7 t) = V2F ('T’ y7 Z’ t) + g (F ('T7 y’ Z’ t) ’$7 y’ Z, t) * (5'2)
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Notation 5.1.1. Due to the thin layered approach of a QG process, the Laplacian
and Jacobian operators are with respect to {z,y} only. Thus, the Jacobian of

f(2,y,2,1) and g (z,y,2,t) is I(f (2,y,2,1),9 (3,9, 2,1))

= af‘ﬁ;;’j’z’” ag(ma’z’z’t) - ag(wéi’z’i) af(%‘z’z’t) ; refer to [88, Section 2.7].

QG processes are a simplification of Navier-Stokes equations used in geophys-
ical processes when modeling zonal flow with sinusoidal shear and baroclinic-
barotropic instability. Although deceptively simple, these models are:

equite robust in describing the transfer energy iin thin rotating fluids, thus they
provide a basis for depicting large-scale geophysical motions.

e‘ecasier’ to implement and derive a theoretical understanding of fluid flows.
ecomputationally inexpensive compared to more complete processes.

There are a number of other benefits to these QG models, but the major motiva-
tion stems from the elimination of: certain aspects of the law’s of thermodynam-
ics, the curvature of the manifold, and geostrophic degeneracy via a ‘reduction’
to planar surfaces. It is desirable that QG systems restrict non-linear interactions
to a few wave triads; hence, simplifying bceanography and meteorological con-
cepts for theoretical study. Since waves on a rotating planet can be atmospheric,
gravitational, or sound; one must filter out the sound and gravity waves, but if
these wavelengths are eliminated from the system, it is impossible to ‘accurately
solve’ a process. If ‘long time period’ experiments must be conducted and/or
solutions are required, the simplified nature of a QG process is inappropriate
to attempt detailed quantitative comparisons with laboratory experiments; i.e.

complete Navier-Stokes equations should be utilised.

5.1.1 Summary of results

Assuming the following initial conditions are fulfilled, then the FDSc built using
the consistent components of Section 5.2.2 ensure that a QG process behaves
as an additive elliptic system with a pseudo-deterministic hyperbolic influence.
The QG processes outlined in this chapter are the foundation for future applied
work in thin fluid lubrication processes, macro-computer network modeling, and

possible methods in robotic communications.

5.1.2 Assumed Initial Conditions (QGAIC)

The following initial conditions assure that QG processes are well posed:

Assumption 5.1.2. A solution ezists and is unique in accordance with (5.15).
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Figure 5.1: Construction of QG layers

Assumption 5.1.3. Only closed and bounded domains on RS, are utilised. One
dimension of space will be used as time and the z dimension will be omitted in

place of a counter for the stratification levels.

Assumption 5.1.4. A process is bounded from above and below by pressure sur-

faces and assumes that flow is linear with regards to pressure.

Assumption 5.1.5. Dirichlet boundary conditions are given where
{Fss (z,9,1), Qs (z,9,1)} |s>0 are homogeneous and the initial states
{Fss (z,9,t), Qs (2,9, 8)} lt=0 are Lipschitz continuous with Ki—.

Assumption 5.1.6. A Brownian sheet is utilised.

Assumption 5.1.7. v(-) and w () are real valued measurable functions on R%,

and they are globally Lipschitz continuous with coefficients K,, and K,,,.

Assumption 5.1.8. Incompressible and inviscid fluids will be assumed where the
laws of thermodynamics (entropy), conservation of mass, and conservation of

momentum are strictly observed.

Remark 5.1.9. When the fluid is irrotational and incompressible, then the po-
tential velocity is harmonic and the divergence of the gradient is uniquely 0. Due
to the inclusion of a second order elliptic operator, this chapter will concentrate

on additive noise to *hopefully® avoid the complications of non-additive noise.

5.1.2.1 Domains

Only two-layered closed and bounded domains are considered, where boundary
conditions involve ‘hard’ surfaces above and below with ‘walls’ and ‘wrapping’
along the side boundaries. Often the boundary pressure surfaces will be the
stochastic shape of the earth’s surface and some statement about the ‘top’ of the
fluid. Since, D (z,y, z,t) is the depth of a layer and the aspect ratio, fp = % XK 1,
this thin nature of the domain and internal stratification will allow each layer to be
considered two dimensional, such that ¢, = 0, and the curvature of the manifold
will be ignored. Due to stratification, the thin fluid domains will be ‘divided and

flattened’ into parallel planes perpendicular to Z7 = [0, 0, 1], where the notation
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of Chapter’s 2 and 3 will be utilised with respect to d = 2 planes. Let [ be an
integer valued counter that starts at the top of a fluid and proceeds in a —Z2
direction and since a Pedlosky two-layered model is utilised:

oif [ = 1 denotes layer one then # [ denotes layer two.

oif [ = 2 denotes layer two then # [ denotes layer one.

OAF (z4,Yk, 21, tm) = F (25, Yk, 21, tm) — F (T4, Yk, 21, tm)-

5.1.3 Processes of interest

Bfruh =0.1 th =1.6e—11 Blee =0.25
T fruh = 0.2 Qpp — 4ed Ulee = 0.1
ffruh =90.0 frn = 7.844e — 13 Tlee — 0.1
siran = (08r%,,) " | b =192 -7 | K = 0.1

Table 5.1: QG constants

The following QG processes will be utilised for the numerical work of this chapter.

5.1.3.1 Friih Process [22]

PEVED |5 (F (@,y,2,0), 25,9, 2,1)
VE 1 PW (z,y, 2, )
_ — F - 2 y Iy %y
(5.3)
Q (2,y,2,t) = V2F (2,9, 2,t) + By — £AF (2,9, 2,1). (5.4)

This model attempts to describe the chaotic weather systems that appear over
the middle latitudes of the northern hemisphere; geographical regions such as
the United Kingdom and Northern Europe where the ‘warm’ y=0 boundary rep-
resents the Mediterranean and the ‘cold’ y=1 boundary represents the Arctic
Circle. This model integrates the QG process on a B plane in a zonal peri-
odic channel contained between thin but impermeable ageostrophic boundaries,
where discontinuous flow with bifurcation results from steady waves with reso-
nant triads and zonal flow-wave interacting with a strong B effect. This model
also studies nonlinear wave-wave interactions via wave triads, zonal flow-wave
interactions, bifurcation, strongly modulated amplitude vacillation, and intermit-
tent weaker wave modes. For the domain, assume Ekman layers at the lid and
base with parameters {8 = b7y % = UL = 55,04 <011, })/—f = 0.3} and a unit

v
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Prandtl number. Reducing the deterministic version of (5.3) into its baroclinic

and barotropic components yields:

oYt (z,y,2,1t) + BaTt (z,v, 2,t)
ot ox

Ov:Yc(z,y,z1t)
oz

OV’ Tt (z,y,2)
oz

+ 3 (Tt (z,y,2,t), VTt (2,9, 2,1))

£ 4T "
+3(Ye (2,9, 2,1), V°Ye (2,9, 2,1) = ‘9£ V2Tt (2,9, 2,t) + L— (:y,z’ )
A

+ Urt (IE, Yy, z, t)

+Urc (IE, Y, z, t)

(5.5)

o2 Yc(z,y,2,t) —2fYc(z,y,2,t) dYc (z,y,2,t)
+ B
ot ox
0 v* Yc(z,y,21) 02 Tt (z,y,2,¢)
oz ox
W +3 (Yt (2,9,21), vV Ye (2,9, 2, 1))
+3 (Ye(z,y,2,t), VTt (2,9, 2,1)) — 2£3 (Tt (2,9,2,t), T (2,9, 2,t))
VE viYc (z,y,2,t) — 2f 2 Tc (2,9, 2,1)

__y* 2
- 0.4 V Tc(x,.%z’t)‘*' Py

+U“rt (mvyvz’t) +Z/{Tc (m)ya Z,t)

+2fUy. (z,y, 2,t)

(5.6)

with a spectral representations for orthogonal functions (5.5) and (5.6) similar to
Chapter 2 such that:

(z,y,2,t) Zw{nr } ) cos (nmy +ZZsm nmy)

y (go ez} (0) cos (2m ) F bt} (t)— ;:—<2”;”>> (5.7)

5.1.3.2 Haines and Holland process [29]

oQ (z,y, 2,t) B oW (z,vy, 2, t)
at +J(F(:E,y,z,t),Q(z,y,z,t)) - 1l=1u(m)y7t)+w(m,yazvt) azayat
- (b+ S(.’E)) V2 (F(:E,y,z,t) —FI (mayazit)) +av4 (F(:E,y,z,t) - FI (m,y,Z,t))
» | (5.8)
Q(z,y,2,t) = V°F (z,y,2,t) + By — £AF (2,9, 2,1) (5.9)

Let B = 1.6 x 10711 (ms)™%, £ = 7.844 x 107% (m) ™%, Az = Ay = Z%m

b=192x10"7(s)"", a = 4 x 105'"72, u(z,y,t) = u(z,y)cos (403%3: - ct)
such that the period of the wave-maker corresponds to 4.5 days, v(z,y) =

Asin (%ﬁ%) sin (g%c%) when z € [0,6000km] and y € [0,3600km]. Further,

FI (IE,y, 21, t) = 07 FI (xay,zz,t) = _||ul=1||2ya QI (IE,y, 21, t) = (B - ||ul=1”2l/2) Y
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Qf (z,y,20,t) = (B +my2) y, and S () is the vorticity dissipation term
which increases b of (5.8) ‘by a factor of 1,000 in the last fifth of the channel to
provide a sponge to prevent the re-circulation of the wave maker eddies.’

This model attempts to describe how geographically stable weather fronts are
created and maintained for seemingly long periods of time. Known as blocking,
these stable weather fronts are important to weather prediction since they cause
relatively large changes in the flow of major weather patterns due to their resis-
tance to movement. Regarding the physical model, instead of using a temperature
difference to drive wave patterns in the water, this model propagates waves with
a physical wave maker to examine baroclinic instability that excites blocking.
By altering the meridianal shear in the upper layer, blocking can be excited and

maintained from high-frequency eddy activity originating from below.

5.1.3.3 Lee process [42]

0Q (2,9, % 1) (=)' (AF (z,y,21,1)
SR ARt F = —
050 4 3P (0y,5,1), Q00 0) = 1208 _p)
PW (z,y,z,t
~Li20m 7 F (2,y, 22,t) — 0.006 V° F (2,9, 2, t) w (7,4, 2, 1) aiay%t )
(5.10)
2 (=1’
Q(‘Tayvza t) =V F(:E,y,z,t) + By + TAF (z)yazlat) (511)
where f(y) is the radiative equilibrium temperature and U = —2%:;%@ =

—45)2
l1if [y—45| < aor e it ly — 45| > «. This model attempts to describe

aspects of eddy fluxes and eddy energy that are associated with multiple zonal
jets focusing on the transition from a singe get to a double jet state.

5.1.4 Other papers and processes

The literature over the past half-century in this field has been quite extensive,
hence, some articles of interest include:

e[11] proves results for nonlinear stochastic evolution equations such as the stochas-
tic Navier-Stokes equation in any dimension with general noise.

e[14] proves global existence and uniqueness for a%(tx)}Ll-vQ (X)+K (- v?Q (X))g
= f(X) when 6 € (},1]. They further show that weak solutions also exist glob-

ally, but uniqueness is only shown for the class of strong solutions.

[16] shows temporally almost periodic solution exists to the deterministic case

of (5.1) and this solution is dependent upon the square integral of the wind.
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¢C. Basdevant and R. Sadourny wrote ‘Ergodic properties of inviscid truncated
models of two-dimensional incompressible flows,” Journal of Fluid Mechanic 1975,
Volume 6. This is an excellent introduction to systems constrained to a finite
number of degrees of freedom.
eJiménez, Moffatt, and Vasco discuss the elliptic nature of the vorticity distribu-
tion in ‘The structure of the vortices in freely decaying two-dimensional turbu-
lence,” Journal of Fluid Mechanic 1996, Volume 313.
eMerryfield and Holloway wrote ‘Inviscid quasi-geostrophic flow over topography:
testing statistical mechanical theory,” Journal of Fluid Mechanic 1996, Volume
309. Their simulations for barotropic QG flow provided a basis for this chapter.
eAlmgren, Bell, Colella, and Marthaler’s wrote ‘A Cartesian grid projection
method for the incompressible Euler equations in complex geometries,” SIAM
Journal of Scientific Computing, Volume 18, Number 5, 1997. They demon-
strated a strong connection between the Euler equations on a uniform Z¢ and the
methods used to solve elliptic and hyperbolic PDE’s; hence it is the errors at the
boundary that cause significant numerical problems in any FDSy or FESy.
eRamirez-Piscina, Sancho, and Herndndez-Machado consider equations of the
canonical form O—FB(? = f(F(X),vF (X)) +g(F(X),VF (X)) M{‘a’xﬁ where
{f(-),g(-)} are nonlinear functions in ‘Numerical algorithm for the Ginzburg-
Landau equations with multiplicative noise: Application to domain growth,’
Physical Review B, Volume 48, Number 1, July, 1993. Further insight is gained
in the multiplicative noise on a R?H domain in Ramirez-Piscina, Sancho, et all;
‘External Fluctuations in Front Propagation,” Physical Review Letters, Volume
76, Number 17, 22 April 1996.
eYavneh, Shchepetkin, McWilliams, and Graves wrote ‘Multigrid Solution of Ro-
tating, Stably Stratified Flows,” Journal of Computational Physics, volume 136,
pages 245-262, 1997. They use balance equations to describe turbulent fluid dy-
namics, which is similar to elliptic processes.
eDuan and Kloeden wrote ‘Dissipative Quasi-Geostrophic Motion under Tempo-
rally Almost Periodic Forcing,” Journal of Mathematical Analysis and Applica-
tions, Number 236, pages 74-85, 1999. They discus barotropic QG flow model
O F@wl) | 3 (F (z,y,t), V2F (z,9,1)) + BEES) = G* F (z,y,1)

—E P2 F (z,y,t) + f (z,y,1).
eTimothy DelSole and Brian F. Farrell wrote ‘A Stochastically Excited Linear
System as a Model for Quasi-Geostrophic Turbulence: Analytic Results for One-
and Two-Layer Fluids,” American Meteorological Society, 15 July 1995, pages
2531-2547. They explore the hypothesis that nonlinear eddy interactions in QG
turbulence can be parameterized as a stochastic excitation plus an augmented
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dissipation in a statistically stationary equilibrium.

eBrian F. Farrell and Petros J. Ioannou wrote ‘Stochastic Dynamics of Baro-
clinic Waves,’ Journal of the Atmospheric Sciences, Volume 50, Number 24, 1993,
pages 4044-4057. They explore dissipative baroclinic shear flows subject to addi-
tive stochastic excitation.

eVictor I. Shrira wrote ‘Surface waves on shear currents: solution of the boundary-
value problem,’” Journal of Fluid Mechanics, Volume 252, 1993, pages 265-584.
The author discusses gravity-capillary waves and uses a closed loop feedback
technique to show existence and convergence.

eBasdevant and Sadourny wrote ‘Ergodic properties of inviscid truncated mod-
els of two-dimensional incompressible flows,’” Journal of Fluid Mechanics, Volume
69, 1975, pages 673-688. This paper deals with the numerical approximation of
Navier-Stokes equations.

ePratt and Pedlosky wrote ‘Linear and nonlinear barotropic instability of geostrophic
shear layers,” Journal of Fluid Mechanics, Volume 224, 1991, pages 49-76. The
authors discuss evolution of unstable waves from initially small amplitude waves.
eJames, Jonas, and Farnell wrote ‘A combined laboratory and numerical study
of fully developed steady baroclinic waves in a cylindrical annulus,” Quart. J. R.
Met. Soc., Volume 107, 1981, pages 51-78. The authors explore how to construct
numerical QG systems.

eBrian R. Wetton wrote ‘Analysis of the spatial error for a class of finite difference
methods for viscous incompressible flow,” SIAM Journal of Numerical Analysis,
Volume 34, Number 2, April 1997, pages 723-755. This paper explores several
first and second order FDSy’s for incompressible flow and derives rates of conver-
gence using a ‘careful numerical study.’

eGalves, Olivieri and Vares wrote ‘Metastability for a class of dynamical systems
subject to small random perturbations,” The Annals of Probability, Volume 15,
Number 4, April 1987, pages 1288-1305. This paper considers dynamical systems
in R? subject to small random disturbances and proves convergence in law when

properly normalized to a Markov process.

5.1.4.1 Lewis process [43]
Baroclinic Equation:

2 _
o0v*Tc—2fYc N BaTC 4] (Tt,VzTC) +J (TC, V2Tt)

ot Oz
2 2 2 _
+2£3 (Y, Tt) = _VSTC | V(e — 267c)
V1

- H (5.12)
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Barotropic Equation:

s AVASS & oYt VTt ATt
Ye, 2T Yc, V> = - 1
5 +Bam + 3 (Ye,v*Yc) + I (Te, v*Ye) AR (5.13)
where H = —4r? [; + 4 R+2F ] cos (2my) represents forced internal heating with

wrapping boundary conditions in the x dimension and walls at y = {0,1}, A =
1s7, v =2 x 10772 0, = 0.067, £ = 15, £ = 7.5, 3 = 240, and B = 0.5.

This model represents a convectional two-layered QG formulation subject
to internal diabatic heating resulting in a non-monotonic horizontal tempera-
ture gradient on a B plane in a zonal periodic channel contained between solid
ageostrophic boundaries and Ekman layers at the lid and base. This is a harder
model to analyze due to the internal heating of the fluid vice boundary heating.
Since both vertical and horizontal shear compound the nonlinear interactions of
the waves, non-dimensional variables are used with a unit Prandtl number and a

spectral representation of orthogonal functions, where:

Z Prs (t) cos (n7ry)+z Z (qﬁrc (t) cos (2'"—”) + ¢re (t) sin (—2”;”)) sin (n7y)
n=1 m_
The dommant dissipative term in the model is the Ekman layer and to remove
small scale enstrophy, internal viscosity is parameterized as horizontal potential

vorticity diffusion which assumes a unit Prandtl number.

5.1.4.2 Spectral process and FESy

Spectral methods for a barotropic vorticity equation with Fourier basis functions
are addressed in [32, Section 6-4] and for a description of FESy methods refer to
[10] and the early work by Orzag. The spectral representations are similar to the
example in Chapter 2 and are more instructive for wave-wave interactions and
energy flow, since waves can be decoupled to identify significant wave patterns
in the process and by removing a wave, other wave triads distribute the energy.
There are some numerical difficulties in the stochastic setting due to the roughness

of the driving noise, thus these methods will not be discussed in this text.

5.1.4.3 Assumed solution

Existence and uniqueness results for the deterministic form of (5.1) and

9 F t
@B 3 (F (a0,2,8), 00,97 ) + 82 BLED
ot ox
=v V' F(2,9,2,t) = £Q(z,y,2,t) + avgt(t) (5.14)

exist, but the inclusion of d > 2 additive white noise or d > 1 multiplicative -

general white noise remain open problems.
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Theorem 5.1.10. [7, Theorem 1]: Using (QGAIC), there exists a unique global
solution F (X) to (5.14).

Proof. Refer to Appendix B a

As with the elliptic case, a closed form solution cannot be expressed. Given the
results of Chapter 3, assume that a Green’s function and a Poisson kernel exist

and the solution is expressed in an integral form:

F(X)=/H(X;Y)FU(Y)dY+/G(X;Y)u(F(Y),Y)dY
00

+ / G(X;Y)w(Y)dW (Y) (5.15)

A A
tm Tit S Ykt

whereD'f g(-)df (-) =tf fm fA g()df (-1
3oksls l TiTZ YT
=2

o=1

tm, max(z) max(y)

agg( Off I tewg () df (), and

min(z) min(y)

|t max(z) max(y)

f9() =3 f [ [ 1,,9()df (-). Since the process is both hyper-
0

0=1 0 min(z) min(y)
bolic and elliptic, the system must be driven by an additional energy source such

as heated walls, added small eddy energy, wave maker, or internal heating; oth-
erwise a state of equilibrium will be reached. The iteration of hyperbolic and
elliptic elements accounts for the statement in many QG papers, where a com-
puter model has to ‘settle down’ or ‘overcome errors in the initial conditions’ by
setting t= 0 after the model has ‘run for a while.” One is waiting for the dominant

elliptic terms to reach a ‘realistic’ system.

5.2 Discretisation of the process

Assumption 5.2.1. A uniform Z¢ is utilised where Ay = £ < O (1355)-

Due to the scales involved, it is not unreasonable to expect Az < 200km and
At < 10min, such that the system’s FDSc ‘characteristic equations’ adequately
map the R? characteristics; similar Assumption 2.3.1 where A, < 1. The relevance
of adding random noise to a QG process comes from:

eThe elimination of the sound and gravity waves from the process.

eThe inability to evaluate important characteristics deviations on a much finer
scale than can be modeled with a ‘reasonable’ Az, hence these variations appear

as random perturbations on the meteorological waves. Az denotes the smallest
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Figure 5.2: Aliasing of waves for a given Az - [32, Figure 5.9]

‘wavelength’ that can be represented using the uniform Z? space.

eClosed loop feedback and aliasing create nonlinear instability which develops if
energy is falsely generated and persistently channeled towards the short resolvable
wavelengths of 2Az through 4Az. The Jacobian helps prevent the continued
growth of very short waves but as Az — 0, this problem does not subside. Thus
truncation and aliasing errors due to harmonic waves often appear as random
perturbations.

eThe discussions of [21, Section 28] point out that four dimensional models allow
both elliptic and hyperbolic behavior in the same domain, thus possibly exhibiting

inconsistent FDSc’s with determinants equal to zero.

5.2.1 Expansion of terms

The 2 dimension is a counter for levels 1 and 2, hence, [ € {1,2} and a Brownian

sheet is generated for each (z,y,t) level.

Lemma 5.2.2. When using a uniform Z* space:
o By, = B(yo + kAy) = B (yo + kA, Ax)

o [ w(zy, 21 %dmdydt = w;,

W(Dj,k,l,m)

L(CEILY Ay N Az?
yAtOT

k,l,mW""Kw max (1, /\y, /\t)

Dj k,i,m

0 aAF (Z}, Yk, 21, tm) = @ (Fj,k,l,m - Fj,k,;ét,m) +a (e (Fj,k,l,m) —¢ (Fj,k,#l,m))
3F(E',yk,zbt ) — F o - f

oq L= = e\ Fikgmt1 — Fikam ) + 55z (e ( Fiktme1 | + € { Fikim

alt 9°F()
+ 2 ot

aF(I'3ykazlrt ) a o o a P -
oq—-1=mms = A Fivikim — Fikam | + 25 \ €\ Fitrhtm | — € Fiktm

alz 9%F(.)
+ 2 0x2

OF (zjyk,215tm) _ _a A ) a 7 i
ea—-"5, = 557 \Fik+rim = Fikim ) + 55z (€ (Fiktrim) = e { Fiktm

alAz 02F()
+ 2 Jy?

Proof. The first term is trivial and use either Assumption 5.1.7 or a Taylor expan-
sion to yield the second term. For the remaining terms, multiply by a constant

~

a, and substitute F (-) = F (-) + ¢ (ﬁ ()) to yield the desired results. O

~

Lemma 5.2.3. a /2 F (2}, Yk, 21, tm) = —% (1 + ﬁ) Fjkim
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R ~ L ~
t a7 (Fjﬂ,k,l,m + Fj_1pm + pvi (Fj,k+1,l,m + F',k——l,l,m))

+ x5z (e (F'+1 k,l,m) +e (Fj—l k,l,m) + ;17 (e (E] k+1,l,m> +e (Fj,k—l,l,m)))

F 29 2 4F
sz (1+ ,\2) e(Fj,k,z,m) —I—a%—%p_l_ Ay 3 (2'

. 2 .
Proof. Using (1.9), V2F (25, Yk, 21, t) = L L Citksttin) 8 F (@ mutn)

t"'-) + AgF(Zj,yk,Z[,tm) + A:D2 o4 F() Ay2 64F()
Az AZy 127 T8zt 12 9zt

1 2 i
= xe7 (Fjihim + Fimipim) + mz (Fiperim + Fik-14m) — 5a7 (1 + g) Fjkiym
Ag?2 8*F(") Ay? 9*F(") . . . . :
S5 5gd 15 gy~ Substituting approximations and errors yields the

desired results. 4

— AZF(ZBj,yk,Z[,

Lemma 5.2.4. a V* F (2}, Yk, 2, tm) = 24 (1 + ;}-) l?}kzm
+xe7 (ﬁ}+2,k,z,m = 4ﬁj+1,k,z,m - 4ﬁj-1,k,z,m + f}—z,k,z,m
+$ (ﬁ},1?+2,l,m - 4ﬁj,k+1,z,m - 4ﬁj,k—1,l,m + F',k—2,l,m))
+Se (1 - ;15) e (ﬁ}',k,l,m) +0 (Az?)
AT (e (ﬁjn,k,l,m) - 4e (ﬁ}'ﬂ,k,z,m) — 4e (F] 1,k,l m) +e (ﬁj—z,k,l,m)
L ()t (Bmrn) (B o (i)
and a V® F (z,y, 2, t) = — 2% (1 + ,\e) ﬁj,k,l,m |
+ %5 (F}—i-.'i,k,l,m - Gﬁjn,k,z,m + 15Fj+1,k,l,m + 151?}—1,k,z,m - 6ﬁj—2,k,l,m + F\j—S,k,l,m
+51§ (F},k+3,l,m — 6F, ks2m + 15F) pirim + 15F)k1m — 6Fjk—atm + F\"’“‘”’m))
— 200 (1 + %) ¢ (ﬁj,k’[’m) + O (Az®)
+x5s (e (ﬁHg klm) — 6e (F]+2klm) + 15e (F]H klm) + 15e (F] 1klm)
—6e (E? 2klm) +e (F] 3klm) + ,\e ( (Fj,k+3,l,m) — Ge (F] k+21m)
+15e (Fj,kﬂ,l,m) + 15e (FJ k=1, m) — 6e (ﬁ}y}g_zyl,m) +e (ﬁj,k—&l,m))).

Proof. Using the [M PR) notation of Chapter 2,

4 —_ 64F(z'7ykazl7t ) 64F(z'7ykazlvt )
\V4 F (xja yknzlatm) - J3‘174 = + ]8y4 z
— AgF(zj)ykazbtm) + AgF(mjaykazlatm) + A:l:4 BGF() qu BGF()
Adg Ay 360 9Oz 360 8%y

= 3}3—4 (Fji2h0m — 4Fj1100m + 6Fjpum — 4F5 1 pam + Fij—okim)
+fy4 (Fjk+20m — 4Fjk10m + 6Fjkim — 4Fj k—10m + ij_2 1m) + O (Az?)
= A%A (Firokim — 4Fj1 kum — AFj 1 g gm + Fij—2k1m) + Ax4 (1 + /\4) Fikim
+A%,4 (Fjkaoum — AFjki10m — 4F k-14m + Fix—20m) + O (Az?)
= xoi (1 + X,) Fipgm + (ﬁj+2,k,l,m —AF 1 kum — A1 kim + Fyapim
+g (Fj,k+2,l,m - 4E,k+1,1,m - 4ﬁj,k—1,z,m + ﬁj’,k—Z,l,m)) +0 (Az?).
Repeating this process for the /% F (z,y,2,t) term gives
VeF (5, Uk 20, tm) = aﬁF(ngg,z,,tm) 4 BSF(:z:ja,z;é,zl,tm)
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ASF(z),yk,21,tm) ASF(z;,yx,21,tm) 6
a Az + < Aﬁy + O (A.T )

1
w5 (Fiasktm — 6Fjok0m + 15Fj 1 kum + 15Fj_1k1m — 6Fj o kim + Fj-3 kim
1
t3e (Fjk+3im — 6Fj ko 0m + 15F kirpm + 19F) k1 0m — 6F k—24m + Fj,k—3,l,m)>

Azs (1 + ,\6> Fjk1m + O (Az%). Multiplying both expansions by a constant
and replacing terms with their approximation and error yields the desired results.
O

Lemma 5.2.5. S(x]) V2 (F (Ijﬁyk,zlat ) - FI (xj,yk)zlatm))
= —S(%) v (1 + ) Fikim = S () 22 (1 + ,\2> (ﬁ‘j,k,l,m> +0 (Az?)
(z;) Fiy 1klm+FJ 1,k lm T ,\z (Fj,k+1,l,m+ﬁ',k llm>>

(z5) ( ]+1klm> (ﬁj—m,z,m)-i-%(e( ]k+1lm> ( 3 k- 1lm>>>
Fip

(7
(
and a 7* (F (5, Yk, 2, tm) — F1 (25, Yk, 21, tm)) = S (25) 2o (1 + ,\4>
(7
«

|p Elp
&

2

D>

=
+S (25) 3%z | Firokim — 4F; i1k lm — 4Pk im t+ f’; 2.k,Lm

-i-,\4 (1?, m— 4F; ps1pm — 4 1 g+ Fpe 2zm>>
1+ A4) ( ,k,l,m) O (Az?)
( o (0 (Frazpam) — e (Brrnpam) = e (Fioviam) + ¢ (Fiapim)
+E (e (Fj,k_;_gyl,m) — de (F],k+1lm> de (ij 1 lm) +e (F]k 2lm>>>
Proof. Using Proposition 5.2.3 and (1.9) yields

S(.’L']) V2 (F (xj7ykazl)tm) - FI (xj)ykazlatm))

2 ] g ) o
=S (:L‘) 6*(Fla; ’y"’z"tma)zzp (@5,Uk21,tm)) + 9 (F(z,y,zz,;)yzF (z,9,21,t))

>|n Er» : >|

z;)
i) B

2 . _Fl(z.: 2 —FI
_g (:L‘]) A2 (F(zg,yk,zz,th)zzF (%5,Yk20tm) ) n AC(F(z,y,ZzZ)yZF (z,y,zl,t))) 10 (A.’L‘2)

= 5 (z;) ( A2 (1 + ,\2> (Fiktm = Fliim) + 257 (Fisktm = Fistgim + Fitkim
—F  jimt E (Fj,k+1,l,m - F,{Hl,l,m + Flk_14m— FjI,k—l,l,m))) + O (Az?).
From [29, (5)], FL, () = 0, FL, (z,y,t) = —||Uh],y, so canceling F' (-) terms
since ﬁfk - ﬁ’k =0 and ﬁ{kﬂ’. — ﬁfk — ﬁfk + ﬁ’k . =0 gives
+S5(2) 3% (Fj+1,k,l,m + Fi_1kim+ % (Fj k+1,4m + F',k—-l,l,m))-
For the fourth order term, use Proposition 5.2.4 to yield

a v4 (F (l‘j,yk,Zl,tm) - FI (l‘j)ykyzlytm))

_ S 84(F(z_1 sYk 2l ’tm)_FI(z] »Wk 21 ,tm)) 84 (F(QIJ 7ylcazlatm)_Fh'I(zj 7yk’zlytm))
- (11)‘) azt + 9yt

_ S (Qj) <Ag(F(:I:j,yk,zl,th);FI(zj,ykaZl,tm)) + A§(F(zj’yk)Zlvtmi;fh.l(zj7ylc)zlvtm)))+O (Ax4)
=S (z) 24 (1 + ,\4> (Fjptm — F; klm) + S (2) 27 ((Fjs2,k0m — F]'I+2,k,z,m)
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—4 (Fj+1,k,l,m - Fjl+1,k,z,m) —4 (FJ'—l,k,l,m - Ejl—l,k,l,m) + (Fj—2,k,l,m - F}I—z,k,z,m)
+35 (Fiksztm = Flpioim) =4 Fipsrim = Fleiaim) = 4 (Fie-tim = Fiiorm)

+ (Fjk—24m = Fle_21m))) + O (Az*). Canceling F' (-) terms and replacing

terms with their approximation and error yields the desired results. O

Notation 5.2.6. Let e (@jkl,m) = MQ (1 + ,\2) (ﬁj,k,l,m)

e ( () ¢ (Braim) = & (< (Basuan) < (o)

7 5 Ax? a4F 2 91F(-

Lemma 5.2.7. The general format of the potential vorticity is Q (z,y, z,t) =

ViF (z,y,21,t) + f(Zj, Yk, 21, tm). For the numerical examples, let @j,k,z,m =

ViF (z,y,2,t) + By — aAF (z,y, 2, t), where:

0Q(z,y,21,t) = V2F (z,y, 2, t) + By — £AF (z,y, 21, t) for (5.4) and (5.9).

0Q (z,y,21,t) = V2F (z,y,2,t) + By = L_—‘l;&AF (%, vy, 21,t) for (5.11).

Thus, Qjkim = Djpsm+e (Qj,k,l,m) = V2 F pim+ Bys— @A F e (éj,k,l,m)
—5%5 (1 + é) ﬁ'j,k,l,m + BkAy — aAﬁ'j,k,l,m +e (Qj,k,l,m)

LY . (= A\
+ 227 <Fj+1,k,l,m + Fjvim + 57 (Fj,k+1,l,m + Fj,k—l,z,m>) :

Proof. Q (:L‘ Y, &, ) = V2F (SL‘ Y, 2y ) + By — QAF}'klm = O F(x;j Yk 215tm)

Oz2
+L(zia’—gﬂz”— + By — aAF (25, Yk, 21, tm)- Usmg Proposition 5.2.3 and ex-

pandlng yields Q]klm =V F,klm+ By, — aAF; 4 m
=~z (1 + ,\2) Fikim— 557 (1 + g) (Fj,k,l,m) + BkAy — alFjkum

. L (% Z
+ 57 <Fj+1,k,l,m + Fj_1kim + b (Fj,k+1 tm+ Fijr-11m

ol (e(ﬁ}-ﬂkzm)‘*‘e(ﬂ 1klm>+/\2< (ﬁ}'k+1l,m>+e(F],k 1lm>>>

+A1—32% + —1%6 al; Reduction yields the desired results. |

8Q(z;,Yk21,tm A i
Lemma 5.2.8. a——(fi—g’;’—) ~ ( Azg (1 + /\2) (Fj,k,z,mﬂ - Fj,k,l,m)

. ~ N N
AT (<Fj+1,k,l,m+1 - Fj+1,k,l,m + <Fj—1,k,l,m+1 - Fi 1k im

~ o~

L (5 N
+x ((Fj,k+1,z,m+1 - Fj,k+1,l,m) + (Fj,k—l,l,m-H - Fj,k-1,l,m)>)

A A 2N A MAT 0295 k1,
—aAFjpime1 +aAFj i m+e (Qj,k,l,m+1> —e (Qj,k,l,m) + ASE—len m)

Proof. Using (1.8) and substitution from Proposition 5.2.7 yields

8% Yk 2tm) _ DpO(T4,Yks25tm) + At At 029(-)
2 6t2

29 m .
(Q]klm-H +e (AQ],klm-H Q],klm —¢ (Q]klm)) + £t 5 —37;%-'— Substitu-
tlon and multiplying by a constant yields the desired results.

. ~ ~
3. b b . — .
Lemma 5.2.9. ¢22Edmin) — e m) AT ( Az? (1 + /\2) <E7+1,k,l,m ]—1,k,l,m)

o~ o~

+A+c2 (<Fj+2,k,l,m - Fj,k,l,m) + (Fj,k,l,m - Fj—z,k,l,m)
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o~ o~

+,\% ((Fj+1 k+1,0m — Fj-1, k+1,l,m> + (Fj+1 k—10m — Fj_1, k—llm)))
_aAE7+1klm+ aAF] 1klm T ¢ (Q]+1klm> —e (Q] lk,l,m> + Ax—QM>.

Proof. Repeat Proposition 5.2.8 with respect z and 2Az for a central difference to

m b 9 sbm A ) b b m M s s :
yield 2= ’g;’z”t ) — 88yt 2);; 180 wimim) - Gubstitution yields the desired

results. O

—~ o~

3Q(xj Yk 2istm) _ a1 2 1 )
Lemma 5.2.10. a By = 2AyAzE T AzZ 1+ g E;,IH—l,l,m — Ljk-1lm

1 ~ ~ ~ ~
+xz ((Fj+1,k+1,l,m — Fjtip—10m ) + { Fj-1p41,0m — j—l,k—l,l,m)
1 ~ ~ ~ ~ ~
+E ((ﬂyk+2yl7m - j:k7lym> + (F'ljak—]-)l’m - F}'ak_2vl,m>>> + aAF.lj,k_]-’l’m
~ ~ ~ 62Q',k,l
—QAFj,k-H,l,m + QBk‘Ay + (8 (Qj,k+1,l,m> — ¢ (Qj,k—l,l,m)) + /\yAx—é?yTﬂ .

Proof. Repeat Proposition 5.2.8 with respect y and 2Ay for a central difference to

yield 22 ’g‘;’z”t"‘) = 270 ’y’“’z"tmgzzf"g(zj Wetitn) - Quhstitution yields the desired

results. d

Lemma 5.2.11. a 7% Q (z, Yk, 21, tm) = Az? (1 + ,\2> Q;kdm
+2 (Qj+1 ktm + QDj-1k0m + ,\1—2 (Qj,k+1 L,m + Qj,k—l,l,m))

A1:26 Q; Lk, lm Ayz 6491',1011,771
—ay (1+,\2 e (Qiwim) + G —Ftm + B 5

+x37 (e ( (Qj+1,k,l,m> +e (Qj—l,k,l,m) + ,\—1% (3 (Qj,k+1,l,m> +e (Qj,k—1,z,m>>>-

2 , 2 .
PTOOf V2Q (x]’ Yk, Zl,t ) =2 Q(Jija,‘.l:;,ll,tm) + 9 Q(jza,zkazl,tm)
= & Q(zgy;’z”t"‘) + 4 Q(xgy;’z”tm) + Algz aaﬂ + —IQL—J—Z%‘; Use the same reduction
of Proposition 5.2.3 where substitution yields the desired results. O

Lemma 5.2.12. J(F (xg,yk,zz,t )5 Q(l’],yk,zz,t )) =
1

X, Az? ((FJszm —Fi_1kim Q] k+10,m — Q],k 1,l,m>

- (Qj+1,k,l,m - Qj—l,k,l m) (F] k+1,lm — jk llm>

+F5 11k 0m (Qj+1,k+1,l,m Q]+1k Tim ) = Fj-1,50m

( j—Lk+1im — Qj—l,k—l,l,m
—Fjrt10m (Qj+1,k+1,l,m - Qj—l,k+1,l,m> +F]k 1,Lm (

>l©>

j+1,k—-1,0m Qj-—l,k—l,l,m)

5|

+Q;k+1,1,m (F}'+1,k+1,z,m~ j—l,k+1,l,m> Q]k 1Lm ]+1k 11m—F}'-1,k—1,z,m>

i—lLk+11Im — j—l,k—l,l,m))

/\

—@j+1,k,z,m (f}'+1,k+1,z,m - Aj+1,k—1,l,m> + Qj—l,k,l,m
+ max (‘@ (Y)’ eg (ﬁ (X)) , ‘ﬁ(Y)} eg (@ (X))) + O (Azx), where
”X - (xj’yk’zl’tm)ul < 2Az and “Y - (xjaykazl,tm)nl < 2/\yAx

Proof. The analytic Jacobian of Definition 5.1.1 can be expressed as

3 ,y) 8 s l4] y) 0 s
I(f (z,9),9(z,y)) = Lz 2elia) _ Say) O/(Ea)

= 2 (f (@p) 228) - 2 (1 (s,0) 222)
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= 2 (9(o,9) 2L22) - 2 (g(a,y) 2p2).

Using these representations, FDSc estimates of the Jacobian are

o (F (@ 8) 9 (35, 0) = (Limmaglimas) (suespmpiens)

- (egges) (Leggem) 0 (00
oJo (f (xj, Yk), 9 (33], Yk)) = 4Asz (f]+1 k (gg+1 k+1 — Gj+1,k— 1)
_fj—l,k (gj—l,k+1 - g]—l,k—l) f},k+1 (g]+1,k:+1 - gj—l,k:+1)
+Ffiktm (9i+1k-1 — gi-14-1)) + O (Az)
33 (f (%5, y%) » 9 (25, yx)) = m (9541 (fi+1h41 = fim1h41)
~Giktim (Fivrh-1 = fimrh-1) = i1k (firrps1 — fi+1e-1)
+9i-1,k (fi-1,6+1 — fi-14-1)) + O (Az)
where the O (Az) terms are of the form %%ﬁ or %ﬂ%i.
As discussed in [17, Chapter 10], the Arakawa Jacobian will be utilised where

J (f (xjyyk) g (:Eja yk)) = % (Jl (f (xj)yk) g (xja yk)) + Jp (f (-'L'j,yk) 1 g (xj’yk))
+J3 (f (zj,yx), 9 (z;,vx))) and this Jacobian conserves enstrophy, vorticity,

and mean kinetic energy. Using this information yields the nonlinear term,
J (F (Zj’ Yk 21, tm) ) Q (mj’ Yk, 21, tm))
= m (Fis1him — Fi-150m) (Qjk+1,0m — Lk—-14m) + Fitikim
X (Qj+1h+10m — Ditth—-14m) — (Qjt1ktm — Lj—1,k0m) (Fjk+1,0m — Fik—-1,0m)
—Fi_ 1 kim (Qi1 ket 1,0m — Djm1h—-14m) — Fikt1,4m (Qjt1k+1,0m — Dj—1,641,0,m)
+Fjp—10m (Qjt1h-10m — Di-1k-14m) + DQjk+1im Fitth+1,0m — Fijm1k+1,0m)
~Qjk-14m (Fis1p-14m = Fim1h-14m) — Dit+1.h0m (Fjt1k+1,0m — Fit1h—-1,1m)
+Qj-1kim (Fim1pt1,m — Fj—1k-14,m)). Substituting approximations and er-
rors yields the desired result. O

5.2.2 Computational molecules

Using (1.8) to replace 292258 with = Q(x’y’z”t) + At%;—"z and expand using the
relevant @ (z,v, z;,t) expression yields:
oFriih Process: V2F (z,y, 21, txs1) = £AF (3,9, 21, te1) + V2F (m Y, 2, th)
—£AF (z,y, z;, tg) + At (—J (F(z,y,2,tk), Q(z,y, 21, t)) — TN VE 2 F(z,y, 2, t)
+1 9?9 (z,y,2,t)) + Atw (2,9, 2, tm) %B’Z;tt’"—) + tz%;—).
eHaines and Holland Process: V2F (z,v, 2, tyr1) = £F (2, Y, 21, tet1)
—£F (2,y, 220, thy1) + V°F (z,9, 21, ) — £F (2,9, 21, 1) + FL (T, 9, 2, k)
+At (I (F (z,y, 2, t) , Q (2,9, 21, t)) + Limau (2,9, 21, te)
—(a+ 5 (2) V2 (F (2,9, 20,t6) = F! (3,9, 2, 1)) + B2 25
+o vt (F (z,y,21,t) — FT (z,y, zl,tk))) + Atw (2,9, 21, t) @%&z,u)_

eLee Process: V2F (z,y, 21, tes1) = VEF (2,9, 21, ) — (1) (AFgm,y,;l,tkil))

+ (-1 (M) + Atw (z,y, 2, ty) L) 4 42 590
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Figure 5.3: QG computational molecule

LA (—J (F (2,9, 21,t%) , Q (z, 9, 21, 1)) — (—33)1 (AF(x,g,zl,tk) —f (y)>

—1j9am V2 F (2,9, 29, tm) — 0.006 V° F (z,y, 21, tk)).
eOr equivalently /2F (2,9, 21, te+1) = v1 (T4, Yk, 20 tmt1) + V2 (T, Y, 215 tm)

+Atw (25, Yk, 215 tm) W + O (At?), where {v1 (*,tmy1),v2 (" tm)}
are a collection of functionals from the QG process, such that the v, (z;, Yk, 2, tm)
terms are a weighted two space dimension hyperbolic process.

Using these processes, a computational molecule can be evaluated where the

coefficients for the #,.1 layer will be singled out from the 22Eidktm) o1 thyg

ot
69(12 Yk 21 ,tm)

5t = U1 (T, Yk, 215 tm1) + V2 (25, Yk, 20, tm)

+wj,k,l,m% =3 (—ﬁ (1 + é) (ﬁj,k,l,m+1 - ﬁj,k,l,m)

+A+52 ((ﬁj+1,k,l,m+1 - ﬁj+1,k,l,m) + (ﬁ}’—1,k,z,m+1 - ﬁ}'—l,k,l,m)

+é ((ﬁj,k+1,l,m+l - ﬁj,k+1,l,m> + (ﬁj,k—l,l,m+1 - ﬁj,k—l,l,m)))

-« (ﬁj,k,l,m—H - ﬁj,k,;él,m+l> +e (éj,k,l,m+1> —e (éj,k,l,m) + A‘%az—gﬁ?l’—m)
+aAﬁj,k,l,m. Reducing the right hand side yields

1 2 1\ 5 a p o~ ~
At Ag? 1+ a2 Fjkam+1+ E:Fj,k,l,mﬂ = (zja Yks 21 tmt1) + U2 (zja Yks 21, tm)

W(Djktm) | 1 [ 2 1\ &
tWiklm azagar T ar a2 \1 1 57) Fikim
1 -~ ~~ ~~ -~
+A—382 ((E7+1ak1l$m+1 - E7+17kal,m> + (Fj_lsk7l7m+1 - Fj—l,kalam

1 —~~ -~ ~~ ~~
+E ((Fj7k+1alam+l - F.‘j!k?'*_lyl)m) + (Fj)k_lalam+1 - ijk_lalam>>>

—~ —~ —~ ~ MNA 629',]6,1,
taFjkpmr + @QFjjpm + ¢ (Qj,k,l,m+1> —e (Qj,k,t,m> At

. . e 2 1 e
and cancellation yields Fj;mi1 = o (1 + E) Fikim

v 5 W(D; k1.
- )‘tCA}zz (Ul (J:J, Yks 215 tm+1) + V2 (‘Tj’ Yky 215 tm) + wj’k,l,mM>

Az AyAt
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Figure 5.4: Q;m matrix

(Fj+1 ktmtl + Fio1 g ime1 + % (Fj,k+1,l,m+1 + F',k—l,l,m+1))
+1klm+F] 1,k Lm + ,\g (ij+1lm+F',k—1lm))
(aF]k;élm+1 +aAF]klm+ e (Q]klm+1) —e (Q],klm)

tA:l) QZ kL o~ ~
+24 ’") Hence Fjgjmi1 = 01 (T4, ks 21 i) + 02 (T3, Y, 215 tm)

_.|_

l> Q)= Q=

at?

1 (& ~ L (5 ~
"‘C_Jr (Fj+1,k,l,m+1 + Fj—l,k,l,m+1 + X2 (Fj,k+1,l,m+1 + F',k—l,l,m+1))

Az? 7 3 AAz? W(Dj,,4,m
+_CT (aFj,k,;él,m+1 +e (Qj,k,t,m+1)) - CT Wikdm T AzAyAL

where C; = 2 (1 + Xlg) + Az%a. Figure 5.3 demonstrates the form of a computa-
tional molecule where F. Jk1m+1 is the point being evaluated and the explicit FDSc
matrix for this molecule is shown in Figure 5.4. The left hand side of Figure 5.3
is at = (m+ 1) At additive elliptic computational molecule while the right hand
side of Figure 5.3 is the ¢ = mAt two space dimensional hyperbolic computational

molecule.

Example 5.2.13. Refer to the Friih Process and Figure 5.3 where:
0(53) yields é (—Kzif (1 + Xlg) (Fj,k,l,m+1 — Fj,k,l,m)

. ~ ~ - ~
+x7 ((Fj+1,k,l,m+1 — Fipikim) + { Fj—1eme1 — Fio1k0m

o~

+;13 ((ﬁj,k+1,l,m+1 - ﬁ},kﬂ,l,m) + '(Fj,k—l,l,m+1 - ﬁ',k—l,l,m)))

*aAﬁj,k,l,mH + aAﬁj,k,l,m + ¢ (@j,k,l,m+1) —e (éj,k,l,m) + A‘%—Q&;ﬂ) =
—Eﬁgﬁ ((ﬁﬂ—l,k,l,m - Aj—l,k,l,m) (@j,k+1,l,m - @j,k—l,l,m)

- (@j+1,k,l,m - @j—l,k,l,m) (ﬁj,k+1,l,m - Aj,k—l,l,m) + O (Az)

+ﬁ_l7'+1,}c,l,m (éj+1,k+1,l,m - @j+1,k—1,l,m) —ﬁ}'—l,k,l,m (@j—l,k+1,l,m - @j—l,k—l,l,m)
—ﬁ},kﬂ,z,m (@j+1,k+1,l,m - @j—l,k+1,l,m) +ﬁj,k—1,l,m (éj+1,k—1,l,m — @j——l,k-l,l,m)
+@j,k+1,t,m (A F

—@j+1,k,l,m (ﬁ}'+1,k+1,z,m - Aj+1,k—1,l,m) + éj—Lk,t,m (ﬁj—l,k+1,l,m - Aj—l,k—l,l,m))
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+max(i@(Y)leg (ﬁ X) tﬁ (Y) ‘e (@(X))) %———2— (1+)‘2)ﬁj,k,l,m

3
_%ﬁ (A.H‘lklm—i_Fj? 1klm+/\§ (F]k+1lm+F3k 1, ))
—%A—lﬁ (9 (ﬁ}'ﬂ,k,z,m) +e (F] lklm) + g ( ( ],k+1,l,m> ( Gk— llm>)>
il (14 ) o (Fowam) + 45 %58 + S5 558
_iALzQ (1 + ,\1? @J’klm"'iﬁz (éj+1 klm @j 1,ktm T L (@j,k+1,£,m + @j,k—l,z,m>>
i (14 8) e (Ginam) + 220 + 80T
+i AT ( (Q]+lklm) +e (Q] 1k£m> + ,\z (e (Qj,k+1,z,m> +e (éj,k—l,l,m)))

o(5.4) yields Q]Iclm = - (1 + /\2) Fikim

+x2 (Fj-}—l,lc,l,m + Fj—l klm + ;\3 (Fj,k+1,z,m + F}',k—l,l,m))

+57 (e F\j—}—lk,l,m +e FJ Ledm ) + 32 (€ F\j,k—kl,l,m +e Fj,k 1l,m
Y

. (.
~ 2, (1 + A2) e (Fj,k,l,m> + A2 E0 1 AEOTO 4 B (yo + k), Ag)

12 98z4

—f <F1,k Lm = Fj,k,;ez,m) —f <¢ (ﬁ}',k,l,m) —e <ﬁj,k,;6t,m))-

5.2.3 Numerical approximations

Remark 5.2.14. Due to the predominant influence of a second order Laplacian
operator, a Picard-Lindelof Iteration scheme will be utilised where multigrid meth-

ods have proven to be popular in numerical evaluations.

In 1922, Richardson was the first to discretise geophysical fluid dynamics over a
spherical domain, transform the spherical coordinates into a flat plane, and derive
approximations as a progression in time. As can be seen in the computational
molecule, there is a hyperbolic and elliptic nature to the QG FDSc where the
canonical elliptic five point FDSc (3.10) occurs in the ¢,,41 layer with a two space
dimensional hyperbolic characteristic expansions occurring in the ¢,, layer. Thus,
when constructing an estimate, the hyperbolic terms of the QG FDSc will be
viewed as a deterministic functional with the remaining functionals equate to an
additive elliptic scheme. Unlike Chapter 2, where propagation is a function of
time, the noise and hyperbolic terms are dampened due to the elliptic nature
of the ¢, level; hence each QG level in time is reduced to an additive elliptic
scheme. When implementing a numerical scheme for ]?‘j,k,t,mH and ﬁ"k’¢[’m+1;
refer to Figure 5.5:
(1) For the initial FDSy step calculating Omo from Fi,—o utilise

Om = (F\m), where Q; 1m = V2F (2,y, 2,1) + g ().
(2) To progress in time from @m — @m+1 utilise @m_}_l =

Q (23,96 20, tmt1) = Q (25, Yo 21, tm) + Al (99&16%—0) =
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Figure 5.5: QG FDSy method

+At (—J (F (z,y,2,1),Q(z,y,2,t) +w(z,y, z,1t) %W)
+Atv (Q (z,y, 2,t), F' (z,y,2,t), F (z,y, 2, 1), 2,9, 2, t).
(3) Calculate the flow via Fni1 =3, (@mH), where
V*F (mj’ Y 20 tmt1) = @ (xj’yk’zb tme1) + f ()
(4) Repeat as necessary.
In attempting to prove discretised convergence results, utilise Lemma 3.2.3, where

-1
Yi € 60 |,,,.,, such that, Hys, (X;Y) = G (X; V) S G(X, X)) . As
XjG&U]t"H_I

per Lemma 3.2.4, approximations for (5.15) are accomplished via:
Fx)=Y G(x:v)v (F(Y),v;) (o)
€D
+ 3 G(XY)w (Y)W (Dp) + Y Hy, (X;Y5)Fis (Ya) - (5.16)
Y, €U Y, €60

Given (QGAIC) and a consistent FDSc for a QG process, then using the elliptic
results of Chapter 3, a unique discretized elliptic Green’s function exists for each
F\t:mH domalin since the ﬁt:m values remain constant. Assuming that at least two
different approximation ﬁ‘j,k,l,m+1 values exist using the same FDSc, domain, and

previous {ﬁn |n < m} approximations, then either the Green’s function, Poisson

kernel, or a F,, value are not equivalent for each ﬁj,k,l,mﬂ estimate. Since the
elliptic Green’s function is determined uniquely by the geometry of the domain
and driving functionals, this implies a contradiction, hence the assumption is
incorrect and only one approximation grid exists.

Refer to Section D.3 for a graphical representation of an approximation to a
representative process. As described in Chapter 4, modifications of the a priori
methods are directly applicable; thus the Blow-up method, (/}'TQ method, Sym-
metry method, and ||X, Y|} method are extremely beneficial. Since often the
domain of a QG system is a rectangle in the {z, y} plane, then by symmetry, only

—M4—N discretised Green’s functions need to be either stored or approximated.
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Appendix A

Notation

Table A.1: Standard Notation for Probability

Notation Definition
{Q, F, P} probability triple
Q sample space
F a o-algebra with a filtration F;
«a an average of o
alp a given 3
Cl(a, B) covariance
E(a) expectation
f(a) probability density function
A (u,02) Normal pdf
5 (a) continuous distribution function
iid independent identically distributed
M a strong martingale as defined in [9]
~ N (u,0?) | Normal distribution with mean u and variance o*
P(a) probability
p correlation coefficient
SM a semi-martingale
~ U |a, b uniform distribution over the range [a, b]
V() variance
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Table A.2: Stochastic partial differential equations

|  Notation | Description
[ adW Ito Integral
[aodW Stratonovich Integral
%3%2 partial derivative
[ refer to Notation 1.1.2
V" () the nth order Laplacian operator
A™ () an n'* order difference operator
9 (j; k) FDSc influence from p; to pi

DT ()

deterministic Taylor expansion operator of order n

eg (-),es(-),e()

Global, stopping, and general error notation

FDSc

Finite Difference Scheme

FDSy Finite Difference System

FESy Finite Element System

G (") Green’s function

5() hyperbolic operator

H (") Poisson kernel

J (") Jacobian operator

At Lot :

P (m,n) refer to Definition 2.2.16

RC (1) rate of convergence

s (+) spectral radius

v () real valued function for pseudo-deterministic terms

w () real valued function for stochastic terms
)

FDSy notation
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Table A.3: General Notation

| Notation Description
1ient indicator function
[0] zero matrix
a, B,a,b,c arbitrary real variables
Ctext a function or variable a dependent upon text
req absolute value of a function or variable
" a; k) a matrix centered on a;
A, [B] matrices
A1 inverse of a matrix
[AT] transpose of a matrix
card (+) cardinality of a set or space
C() complement of a set or space
C,K,L,\RN positive real constants

F()rg(),h(),ul),
v(),w(),T(),£(),¢0)

real valued functions

F (X) a solution to a process

F(X) approximation of a solution

g(Y) |x) function evaluated at X

A.g(+) difference operator, refer to Table 1.2
g(+) Fourier or discrete Fourier transform of g
i V-1

[7] identity matrix

j?k’l7m7n70

integer counting variables

Otext Kroneker delta function

M () Lebesgue measure of a set or space

O (a) Big-Oh notation

process a mathematical model in R® space

T, S arbitrary real variables or time in Chapter 2
system a finite set of equations in Z¢ space

0 a bounded variable where 0 <0 <1

Fikim discretised notation for F' (z;, Yk, 21, tm)

w complex variable

V] vector

x ()

Chi-squared statistic
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Table A.4: Geometry

| Notation | Description
1x unit source in a domain located at X
00 boundary of a domain
00, the boundary sub-space mapped to g; € Z?
(8) interior of a domain
d dimension of a process or space
domain polygonally connected domain
D, an R? sub-space that is mapped to pza
DoD(-) | Domain of Dependence
Dol (+) Domain of Influence
DoR () Domain of Rotation
M,N number of divisions of a restricted R' region
0 geometric point
0 interior point
0505 boundary point
£ exterior point
Qpath (-) Program C.3.6
R¢ Euclidean d dimensional space
RY, R&T x [0, 0]
Rol () Region of Influence
Sz (+) d dimensional sphere in R¢ space
Sy (+) d dimensional sphere in Z¢ space
t orthogonal space dimension denoting time
i, the [* norm of a vector
Az discretisation constant for Z¢
Ays Azy At uniform Z4_ constants where A, 22
(Zj, Yk, 21, tm) | (1Az, kAy, 1Az, mAL) = (jAz, kA Az, IN, Az, m\AZ)
z,Y, 2 orthogonal space dimensions
X, Y R¢ position vectors in Euclidean space
VA normal vector to a boundary in the exterior of a domain
z4, discretised d dimensional space
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Table A.5: QG Notation

| Notation Description B
A the axis rate of rotation
bg the Berger number
B the Beta-plane coefficient
C coriolis effect
D depth of a fluid or layer
el elocity
en enstrophy
£ -5 = 22 : Ekman number
fr friction
F stream function
f Z—z: Froude Number
grad gradient
g acceleration due to gravity
H entropy
M mass
P pressure
Q potential vorticity
Pmv %‘%—: Density
T temperature
0 4 the Rossby Number
Op the aspect ratio
U flow
v viscosity
1% vorticity
» Reynolds number
Tt barotropic component
Tc baroclinic component
Oconv convective derivative
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Appendix B

Supplementary proofs and
information

B.1 Chapter 2

Lemma 2.1.13: [13, Proposition I1.2]: Given (HAIC) where v (-) and w(:) are

locally Lipschitz, one can find a constant K such that:

v (F(X),X)—v(F(Y),YV)[+|w(FX),X)-wF(Y),Y)| <KX -Y],
(B.1)

for all {X,Y} € DoD (z,t) C [-L,L]. Then there exists at most one weak

solution.

Proof. Let F (y,s) and G (y, s) be two weak solutions. For each €*-function
with compact support contained in in the domain, say g (y,s), set f(z,t) =

[] g(y,s)dyds. f(-) € € has compact support in R2, and satisfies
DoDUDol

g(z,t) = 9% (f (x,t),1.0). Using f (-) in (2.9) with F (z,t) and G (z, ) we obtain
the relation

[ 95 H(w,5) dyds - // 1,5) — (G (3,5),4,5))

DoDuUDol DoDUDol

< f (y,5)dW (y, s // 0,8) (G (:),9)) f (4, 5) dyds

DoDUDoI
for H (z,t) = F (z,t) — G (z,t). For each integer m the random set

(y,5)€U(z,t)
is F; measurable for all (z,t) € R%,. Using an approximate identity {J,;a > 0}

E,= {(x,t) eR2,; sup (|F(y,s)|+I|G(y,9)]) < m} is such that 15 (z,1)

in the plane and H (z,t) being continuous, we have: H (z,t) =
li_)m [[H(y,8)J1 (t — s,z — y)dyds for each (z,t) € R?,. Consequently, if
n 2 n
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(z,t) € Dol (2,r) are fixed, for each a > 0 we have: E (1, (z,t+ a) |H (a:,t)|2)

n—00 n

2
< lim infE | 15, (z,t + a) LffH y,8)J1 (z — y,t — s) dyds

Tt
By Fatou’s Lemma

<2 lim infE <1Em (z,t+a) Lff (w(F(y,9),y,9) —w(G(y,3),v,8) fn(y,s)dW (y, s)

n—00 2
+t

/)
|

n—00

+2 lim infE | 1g,, (z,t + a) szf (v(F(y,s),y,s) —v(G(y,$),y,5)) fu (y,s) dyds

By using (B.2) with g (+,:) =J1 (z — -,t — -), for n large enough and with
fn (y’ ) ff'j% (x—a t_ﬁ) 1U (a,8) (y75)dad5
Rt

2

)

<2 lim infE Lff ),y,8) —w (G (Y,5),9,9)) 1B, (4, 5) fu (y,8) AW (y, s)

+2 lim infE Lff ):Y58) =V (G (¥,9),¥,5)) 1Em (5 5) fa (¥, 5) dyds

nroo ol(z,t)

due to the local properties of the integrals and the Lipschitz assumption

< K (m,z,r) hm 1nf/ |E (1%, (v,5) |H (¥, 5)| )fnys|2dyds. (B.3)
R2

Note that lim f, (y,s) = 1por(z,) (¥, s) for any point (y, s) away from the bound-
n—00

ary of Dol (z,t) which is of Lebesgue’s measure zero. Moreover, |f, (y,s)| <1

and |H (y, s)|° 1z, (y,s) < m for all integers m, so utilising Lebesgue’s dominated

convergence theorem and (B.3), we have:
lim ff E(1s, (4 s)H(y,5)") fa(y,9) dyds= [ E(1g, (y,5)|H (y,5)°) dyds,

n=%oDUDoI DoDUDol

E(1g, (z,t +a)|H (z,1)") < K(m%r)D DfoD IIE(iEm (y,5) |H (y,9)|") dyds,

and E (1g,, (z,1) |H (z,1)°) < K (m, 2, r)D D{Jj;) IIE (1g,, (y, ) |H (y, 8)|*) dyds.

Letting a — 0 and using Fatou’s Lemma, recursion gives E (1g,, |H (z, t)|2) =0.
" Hence, H (-) = 0 almost surely on E,,, but since m is arbitrary, H (-) = 0 a.s. [
Notation B.1.1. M is a ‘martingale’ will be interpreted as a strong martingale

as defined in [9]. The reader is referred to [89, Section 2.3/, [60, Chapter 2], and

[64] for a more thorough discussion on martingales.

Lemma 2.1.14: [13, Proposition I1.3]: Given (HAIC), then for each Fyp-measurable
continuous process F (z,t), satisfying: [[ E(|F (y,5),|”) dyds < oo then there

Dol(z,t)
exists a unique continuous solution to the integral equation
F(z,t)=F(z,t)g+ [[ v y,s)dyds+ [[ w(F(y,s),y,s)dW (y,s).
DoDuUDol DoDUDol
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Proof. Use a Picard- Lindel('jf iterative scheme to construct a solution such that

nZl,F(m,t)n+1=F +56 [ v )Y, S) dyds
Dol(z,t)
+35 [[ w s),,¥,8)dW (y,s). The process F'(X), is F, adapted and
Dol(z,t) ‘
[f w(F(y,s),_1,y,5)dW (y,s) is a two-parameter martingale with respect
Dol(z,t)

o (2.6). Use the two-parameter version of the maximal inequality to obtain:

2
IE( sup  |F (,8)py — F (4, )] >
DoDUDol :

< E sup ff ( 'n Y5 S ) (F (y’ S)n—l Y S)) dde
DoDuUDol DoI(z t)
2)

o [f WE @), y8) —w(F @ s)ay,y5))dW ()

S K(Tnt)E (L ff (U (F (7-/: S)n » Yy 3) -V (F (y, S)n:1 y Y, 3)) dde
+K(znE (L DfoD 1 (w(F (y,8),,9,8) —w (F(¥,8),_1,9,5)) dW (y, )

oDUDoI
2)

B, st [F 5= F0hf) < Ko [T E(IF (v 5)f) duds, hence,
DoDUDol DoDUDol

<Kgy [[ E <|F (y,s), — F (v, s)n_1|2) dyds and through recursion
DoDUDol

o0
> ]E< sup |F (y,8)n1 — F (9, s)n|2) < 00. This implies the local uniform
= DoDuDol

convergence of F (z,t),+ Y. (F (z,t),,; — F (z,1),) to a process F (z,t) which
=0

n=
is continuous and satisfies (2.8). O

Lemma 2.1.16: [13, Proposition I1.4]: Given (HAIC) are fulfilled, then the
unique solution of the integral equation (2.8) is a weak solution of (2.1) in the
sense of Definition 2.1.12.

Proof. F (z,t) denotes the unique solution of (2.8) and is F(, 4 and F;-measurable
since Figy C }'t If f(y,s) € Q:(‘X’) with compact support on DoD U Dol

ff (3 gig‘t 6;; t)) [ ( ,Y, 8)dyds + w (F (y, s),y,s)dW (y, s)) dzdt

Dol(z t)

t y+(t—s)
=[f (f 1l 552(f(:v,t),1.0)d:vdt>

RZ, \s y—(t-9)

x (w(F (y,s),y,s)dW (y,s) +v (F (y,5),y,5)) dyds

/ fly,s v,8),y,8)dW (y,s) + v (F (y,s),v, s)dyds) dyds  (B.4)
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using a standard version of Fubini’s Theorem for stochastic integrals. Moreover,

%/ 92 (F (2,1),1.0) (Fys (2 + £, 0) + Fias (z — £, 0)) dadt

Dol(z,t)

+ / of g;’ O)Fw (y,0)dy =0 (B.5)

DoD(z,t)
by simple integration by parts. Finally we similarly have:
// t),1.0) T (z — t,z + t) dzdt — / f(z,0)Y (dz) =0

DoI (z,t) DoD(z,t)

(B.6)

for each deterministic continuous o-finite measure Y. Using (B.6) with T defined
by T (E*) = E(1gu (E*)) for E* € By (R) for each B € F we can put (B.4),
(B.5), and (B.6) together with (2.8) to check (2.9). O

Corollary 2.1.17: Given (HAIC), there exists a unique solution to (2.8).

Proof. Assume that there are two solutions to (2.8) such that F (:c t) # G (z,t),

then F“(“””"’);F“(z’”"’) +% [ e, dy+20 [I v(F(y,s),y,5)dyds
DoD(z,t) Dol (z‘ t)
c [J w Y, 8)dW (y,8) # +5¢ [ w y,8)dW (y, )
DoI(:v t) DoI (z t)
_'_G(C(x,t),O)-;—G({(x,t),O) +% [ Jaltl_’l li=o dy_|_ [[ v(G(y,s),y,s)dyds.
DoD(z,t) Dol (z,t)

Since the initial conditions are equivalent such that Fj;o = G, and %ﬁ—’sl ls=0=

3G (y,
y It 05 ca,ncellatlon of constants and determlnlstlc terms yields

ff y,s)dyds+ [[ w(F(y,s),y,5)dW (y,s) #
Dol (z,t) Dol(z,t)

[[ v y,8)dyds+ [[ w(G(y,s),y,s)dW (y,s). In order for the in-
Dol(z,t) Dol(z,t)
equality to be true either [ v (F (y,s),y,s)dyds # [[ v(G(y,s),y,s)dyds

Dol(z,t) DoI(m t)
r ([ w y,8)dW (y,8) # [[ w y,s)dW (y, s). There ex-
Dol(z,t) Dol(z,t)

ists (y, s) such that {F (y,s) # G (y,s) | Dol (y,s) C Dol (z,t)}. Using a recur-
sive argument leads to a contradiction with the initial conditions where F' (z, 0) #
G (z,0) almost surely. O

Lemma 2.2.6: Analogous to the deterministic problem, if A = 1, then
F(zj,te) = )\2(FJ+1k 1+ Fiq e 1)+2(1—)\2)ng 1— Fjr_2
+2c JI v y,8)dyds + 55 [[ w(F (y,s),y,5)dW (y,5).

Dj k-1 Dj k-1

129



L DoD,

Figure B.1: U; for Lemma 2.2.6

Proof. From (2.8), F(xj,tk) _ F(C(a:j,tk),ﬂ)-;F(E(zj,tk),O) + % f 6F(§g;,s) oo dy
DOD(zjﬂ:k)

+L [ v(F(9),y.8)dyds+% [[ w(F(ys),9,5)dW (y,5). Adding

DOI(zj )tk) DOI("EJ' ytk)

0 in the form of (1 — 1) (F(C(zj’t"‘z)’o) + F(E(xj’é"”)’o) + il a_z%%,s_) ls=0 dy)

2
DoD(zj,tk—2)

+i= (7 [ v(F(y,s),y,s)dyds+ [[  w(F(y,s),y,s)dW (y,s))-
oI(zj,tk—2) Dol(zj,tk—2)
and breaking the integral over the ¢;_o term yields F' (z;,t) = f_(ELwé_fﬁ)_Q

+F(C(mj»2tk—2)’0) + F(E(xj’;k—Z)aO) _+_ F(((xéatk))o) ..., F(C(xja;k:—2)70) _ F(E(w,ja;k—2)10)

20 f 8F( y,s) Is— dy+ (2_ 1) f %2 |s= dy+ f 8F( y,s) IS— dy)

DoD(zj,tk-2)

_5(2_1) ff U(F(y,s),y,s)dyds+w(F(y, )7 Y, )dW(y,s)

DOI(:D_-, ,tk 2)

+ac ff y,8) dyds +w (F (y,5),y,5) dW (y, 5)
+a¢ ff ,8) dyds +w (F (y,5),y,5)dW (y,5)
2c ff y,s)dyds +w (F (y,5) ,,s) dW (y, 5). |
Using (2J k8)1t0 combine terms yields F' (a:j,tk) = F] 1h—1+ Fir1e-1 — Fjg—2
+a5 {fl Yy, s) dyds + ZCD{fl v,8),y,8)dW (y, s). O

Remark 2.2.7: When \ # 1, then Lemma 2.2.6 is not necessarily true such that
F (zj,tx) # /\2( _7+11c 1+-F] 1,k— 1)+2(1—/\2)ij 1= Fjr—2
+2c J[v ,&,y) dedy+5e [[ w ),z,y) dW (z,y) since breaking

Dj k-1 J k—1
the domain into components expressed in Figure B.2,

/\2(Fj+1k 1+Fj 1,k— 1)+2(1—/\2)F}k 1—ij 2
20 JIv ),2,y) dzdy + 55 [ w ), 2, y) dW (z,y)

]Icl Jkl

:/\2f_Fé?;_£2 ls=0 dy + (2 — 22 + \?) f&2 |s=0 dy
L :

=222+ X2+ N2 1) aF(-"’s)|s_

DODJ"k 2
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Figure B.2: U, for Lemma 2.2.7

+(2—2)\2+>\2) OFYs) | o dy + A2 [ 2Ews) |, dy

# [F (P (5) )dyds w0 (P (1,5),95) AW (3,9
(2—2A2+/\2 ff y,8),Y,8) dyds +w (F (y,5),y,5) dW (y, s)
(2—2/\2+A2 ff Y, 5),9,5) dyds +w (F (y,5) ,y,5) dW (,s)

+A? ff y,8) dyds +w (F (y, )y, 5) dW (y, s)

—I-ff )dyds-i—w(F(y,s),y,s)dW(y,s)
(2—2/\2+1 ff (y,5) 9, 5) dyds +w (F (y,5),y,5) dW (y, 5)
+(2-2)% + )\2 + A2 — 2CD Iff v(F (y,5),y,s)dyds+w (F (y,s),y,s) dW (y, s)

ol; k-
Subtracting this result from F(Cj’k’o);F(gj‘k’o) + %D £ oKL y’s) ls=0 dy
+%D;!I\]fk y, s) dyds + 2CDofI,fk )J, ;, s)dW (y, s) yields

= (1 - %) | [ 2w | dy— [, dy)
Ly Ly

— (1= ) [ 2B | o dy+ (1) [ 2 | dy
+(1- A2)Zf3f v (F(y,9),y,s)dyds + 54(F (y,5),y,8)dW (y,s)
= (1) [ 0 0 3,9),,9)duds 0 (F (0:5)5) Y (35
—(1=X) [[v(F(y,8),y,5) dyds +w (F (y,5),y,5) dW (y, s)
+(1-2%) Uef v (F (y,5),y,s)dyds +w (F' (y,5),y,5) dW (y, )
- (2~ 2A2 ff F(y,s),y,5)dyds +w (F (y,5),y,5) dW (y, ).

It is easy to see that as A2 — 1 the induced error will decrease, but since A\? # 1

and Az # 0 the expression does not uniquely equal 0.

Remark B.1.2. Due to the importance of the size of the matrices, let ["ox]
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denote a matriz with m columns and n rows centered on o . In order to remain
centered on given variables, matrices of different sizes can be added together pro-
vided the matrices are ‘padded’ with 0’s. For ezample, given [ajx], ajx is the
element in the [Z] column and [%] row and when adding matrices, let

Aj—2k+1 Qj-1k+1 Gjk+1 Cj41k+1  Qj42,k+1

[A] = Baje]l = | aj—ox  @j—1k Gk Gjr1k Gji2k
Qj_2k-1 QAj—1k-1 Qjk—1 Gj+1k-1 Gj42k-1

and [VT] = [b],] = [bjk+2, ik, bjks bik-1, bjk—2], then [34] + [3V]

0 0 bi sz 0 0
Qj—2k+1 Oj—1k+1 Gjk+1 +0jk41 Gjr1k+1  Gjt2k41
=% ajop  Gj—1k ajk + bjk ji1k  Aji2k
Qj—2k—1 Oj—1k—1 Gjk-1T0jk-1 Gjy1e—1 Gjt2k—1
0 0 bjk—2 0 0 J
m
Notation B.1.3. Using Notation 2.2.4, let [B'] = [] [An+2(j_1)], 0 < {m,n}.
i=1

Lemma 2.2.9: When A\ = 1, [**?"B™] = [*+?™ MPR (™)].

Proof. Given: [2+?mB™] = [T [n42(j-1)A] evaluating by hand yields:
1=1

1 0 1 0 ... 0

B = o] = |1 = [*MPR()]
0 0 1 0 1
1 0 2 0 1090 0

7 = | - = [ MPR()]
0 0 1.0 2 0 1

Assuming that [BJ] holds for all n, then [B}*'] = [B]][An42]
@ o @ o@ - 0 ()0 () o .. 1 0 1 0

0B 0 @+ 0 - ()40 0 ()

@) oo d™) o - @7 0 GR) o .0
Lo o g 0@ 0 g 0 g

L Sy 0 1 2 11
[Bit1] = [ MPR, (7*1)]. The result follows from a recursive argument. O

132



n Tn+1
Lemma 2.2.11: [ u(y,0)dy= (f u (y,0)dy | and let T (2,7) de-

DODj,k DOD]',]C Tn—1

note either dzdr or dW (z,7), such that [ w (v (y,s),y,8) Y (2,7)
DOIj,k

(qu(v (ya S) ,y,s)T (Z,T)).

Proof. By inspection of Figures 2.5 and 2.6, Definitions 2.1.7 and 2.1.8, Notation
2.2.10; breaking the DoD; into intervals of length 2Az and skipping adjacent

DOIJ"k

points over the Dol and integrating yields the desired result. g

Corollary 2.2.12: 9 (Dol ;) = ( X_: > (D) = ';fzm(n) and

n

m (Dofj,,c - 3 D,w) = E=kont (D).

DoD(j;k)

Proof. Let h (k) = the number of D regions in domain. Using Definition 2.1.8,
and inspection of Figures 2.6 and 2.5; 9 (Dol;o) = 0, M (Dol;,;) = @, and
M (Dol;z) = 290 (D), thus k(0) = 0, h (1) = 3, and h(2) = 2. For a general ,
assume true for all j < k; the problem is reduced to recurrence relation h (k) =
(k—1)—h(k—2)+1=2 (““‘21’2) . ((k;”"’) +1 = £ For the second result,

repeat Corollary 2.2.12 but remove the D, o regions from the sum. O

Lemma 2.2.15: Expanding F' (y,s) around F (zj,tk—2) (refer to Figure 2.7)
yields F'(y, s) = F (zj,t-1) + f (y,8) + 9 (v, 8) + h (v, 5)-

Proof. From (2.8), F (y,s) = £&:2. 0)+F(5(y’s) 0 +36 [ %:il lr=0 dz
DoD(y,S)
+36 [[ v(F(zr),z,r)dedr+55 [[ w(F(z,71),2z,7)dW (2,1).
Dol(y,s) Dol(y,s)
Breaking up the (y, s) integrals in terms of integrals involving {(z;, tk—2) , L1,2, U123}

_1) F(fj,k-1»0)+F(<j,k-1,0) F<<<y,s),o>+F(¢<y,s),o>

gives: F (y,s) = (1 —

+% [ aF” |T 0dz+ [ v z,r)dzdr
DOD(Ij,tk_g) DOI] k—2
+3  [] w(F(zr),z,r)dW (z,r)+55 [ aFéf’T) lr=0 dz
Dol(zj,tx—2) Li+Le
[ v(F(zr),z,r)dedr + [[ v(F(z r),z,r)dzdr)
l(yys) U?(y7 )
+55 | [J w ),2,m)dW (2,1) + ff ),z,7)dW (2, r))
1(y’3) U2 Y,8 )
+56 | [[ v(F(z,71),2,r)dzdr+ [[ w(F (z,7) ,z,r) dW (z,7) | . Collect-
3(y,$) Us(y,s)
ing terms yields: F'(y,s) = F (zj,tx_2) — F(Ej'k_2’o);F(<j'k—2’0) + F(E(y’s)’o);F(C(y’s)’O)
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‘e [ TP leods
Ll(y,s)+L2(y,s)
+35 [ v(F(zr),zr)dzdr
Ul(y,s)+Uz(y,s)+Us(y,s)
+35 f w(F (z,7),2r)dW (z,7), hence the desired results.
U1(y,5)+U2(y,8)+U3(y,s) 0
Lemma 2.2.17: P (k+1,n) = [A,] P (k,n+2) — P (k — 1,n).
Proof. By Definition 2.2.16, 0 < n and 1 < k.
olet k=20+1. [A,)P(k,n+2)—P(k—1,n)=
2l 21-1
_ JfJ 2(5-1) J+1 (g 2(j—0)+1
=l Y (b-0) [B7] - L Y (-pe) (877
2l i (i 2(5-1)
= (-1 (3-n) ) | T1 [Ansrageos)
20-1 ‘ , \ [20-D+1
0 () (U e
3=l . k=1
21 s 2(3=0) 21—1 ) ) 2(3=1)
=3 (=1 (Y40 ( 1 [An+2,k1) = 0 (S5-pn) ( [l [Amk])
]:l k=0 j=l k=0
20-1 , ‘ . 2(j=1) 2(j-1)
2
=2 (=1)’ ((%u—z) + (%(j—z)ﬂ)) kl;lo [Ansax] + (1) (31) kl;lo [An+2k])
21-1 " 2(j-1) 2l
= % (1 (350e) T1 [Ansael + T (v
]: =
2 2 —z) 2l . 2(j-1)
zg (é?}lzﬂ H [An+2k]> =]Z::l(—1)] (%(+j1—l)+1) kl;ll [An+2(k—1)]
2 2(I+1)-1 o
_ +1 2(j-0)+1] _ +1 2(j-i-1)+1
= 50 () [ = 5 0 () [B7]
2(1+1)-1
Hence, [A,) P (k,n+2)=P(k—=Lm) = 3 (~1)"" (Joinn) [BRO07.
]:
oLetk—2l [A,] P (k,n+2) — P(k—1,n)
. 2(l-1) . .
1 2(j-1)+1 2(j—1+1
= (4 z 0 ()[BT = 5 1) (fman) (B9
2(5—-1)+1 2(1-1) .. 2(5—1+1)
1)’ 2(j— z)+1) [Anyar] = 22 (1) (é(j—H_l)) [T [Ani2k-)
j=l-1 k=1
2(] l+1) 2(1-1) o 2(j—i+1)
1
1)’ l)+1) [ [Aneen]- B (-1) (Jg-10) Anta(e-)]

j=l-1

24—
Bz(z ) _PED (i 2(j—1+1)
o-om) | |- 3 1 (o) (B

(2(3 l)+1) ( 20— l+1))) [ 20~ l+1]+ 1)l (f)_l) [BY]
]-I-l ]431 l+1)[ 25— l+1)] (- l)l[Bg]
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= 5 07 (loo) [BO] + (01182 = S 17 (h) [
Hence, [A,] P (k,n+2)—P(k—1,n) = i‘( ) (2(} 1)) [ i(j_l)], thus for both
cases P (k+1,n) = [An] P (k,n+2) — ? ,M). O

Corollary 2.2.18: When A =1

1 0 10 --1 0 1 0 ... 0
P (IC n) — 2+2(k—1)
o...01 0 10 ---1 01
Proof. Setting k = 1 for any n it can be shown that
1 01 0 --- 0
P(1,n)=[I] and P(2,n) = .
0.~ 0 1 0 1
Assume this is true up to and including any k for all n such that
1 0 0. 1 0 1 0 ... 0
P(k,n)=
0O ... 010 1 0--1 01
then using Lemma 2.2.17, P (k + 1,n)
1 010 ...0yJj10 101 01 0...0
0 0 1 0 1 0 01 0 1 O 1 0 1
1 0 10 1 0 1 0. 0
0 01 0 1 0 1 0 1
1 0 20 2 0 1 O 0
0 01 0 2 0 2 0 1
1 0 0 1 0 1 O 0
o ...01 o0 1 0.1 01

In order to subtract the two matrices, the second matrix needs to be padded with

0 columns on both sides to maintain central points such that

1 0 20---20 1 0...0
Pk+1,n)= :
0 ... 01 0 20 2 0 1
0 0 101 - 0 10 0
oO...0101 -+~ 01 0 0
1 0 10 101 0 ... 0
hence, P (k,n) = . O
0 01 0 1 O 1 0 1



Lemma 2.2.19: FDSy vectors to (2.8) utilising (2.15) can be expressed as:

v[ﬁj,k] — P(k,n) [F [A] = 7 (D) ip ([ el 1] [:vj],(k—l—l)At)
_P(k-1,n) [ﬁ ] %kz P (1,7) [W (Dj-1)] [w (?;,k_,_l,mj,(k—z— 1)At)].
- (B.7)
Proof. A] o and FJ | are given, show that (B.7) is true for £ = 2. By (2.14)
[nBa] = hda] [ns2F5a] = [nFs0] + 29 @) v ([aFj0] s b1, 0)
+350 ([nFro] s lnz),0) W i)l =[oB] [ne2F5a] = [nFio]

+55M (D) v ([ ] [nz5] 0) ([nﬁ}O] ,[nxj],o) [ W (Dj,1)]

= P(2,n) [n+2FJl]_P (2-1n) [};C]
+%Dﬁ (D)P(1,n)v ([n j,O] ,[nz5],(2-1-1) At)

+%P (Ln)w ([nﬁjﬂ] y[nzs],(2-1-1) At) [nW (Dj2-1)]-
Repeating this argument for £ = 3 yields
[nﬁJS] = [n4] [n+2ﬁ',2] - I:nﬁj,l] + ’\—AS—MU ([n}?}j,l] s [n;) ,At)
+%w ([nﬁh] y [n5] 5 At) [nW (D, 2)]. Substituting in the expansion for [ﬁ”]

-~

into the [FJg] expression and using Lemma 2.2.17 and 2.2.18 yields the desired
result. Using the above result and (2.14), when k£ = 3 the expansion of the terms
equates to (B.7) hence the first two cases are true. In order to show that (B.7)

is true for the general case of ¢, assume that the ¢,_; and ¢;_» cases are true for
all n. From (2.15), [nﬁj,k] = 2824ty ([nﬁ},k—z] y[nzj], (k—=1-1) At)

An [n2Fj k1) — [nFjk—2) + %w ([nﬁ},k—z] y[nzs], (kK =1-1) At) [nW (D k-1)]
= A P (k) — 1 n+ 2) |:n+2k—4ﬁ1j,1:| — AnP (k) - 2,'". + 2) I:n+2k_5ﬁ',():|

+A 77.20 M (D )Z (I,n+2)v ([nﬁ},k_l—z] y [nz], (k= 1-2) At)

An 2 (Ln+2)w ([nﬁj,k_l_2] azj], (E—1—2) At) W (D _1_1)]
—P (k -, ) bzl + P (k= 3,m) [nsas-sFol
)

M (D 2 P(l,n) ([nﬁj,k_l_g] lnzj], (k=1 —3) At)
2 l; P(l,n)w ([nFj,k_,_3] uzj], (5 —1—3) At) [wW (D;4—2-1)]
+290 (D) v ([nﬁy,k_z] [nzs], (k- 2) At)

7500 (a2 lnzs], (k = 2) At) W (Do)
= 4,P (k= 1,7+2) [nsap-sFa] = P (k = 2,) [nszpoF,
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—A,P (k= 2,n+2) [nzpoFio] + P (k= 3,9) [ns2s-sFj
k—2 R
+2290 (D) (An S P2 ([npj,k_l_2 (x)] nzi], (b —1—2) At)

- kE_:BP (l,n)v _[nﬁj,k—l—s]  [ns), (K —1—3) At)

+v ([nﬁj,k—2] ) [n.’L‘]] , (k—2) At))

+o <An :P Ln+2)w ([nﬁj,k_l_z,] azs), (=1 2) At> W (D} 4—11)]
_ § P(m)w ([aFikics]  [zs], (6 — L= 3) At) [2W (Dy1)

o0 ([aFye2] o], (6 = 2) AL) W (Dz1)]).
Using Lemma 2.2.17 [ ﬁk] = P (k,n) [n+2(k_1)ﬁj,1] - P(k-1,n) [n+2(k_2)ﬁj,0]

5690 (D) z Pn)v ([aBpmia] e, (6 = 1= 1) At)

i L P () ([+Brra] i), (6 = 1= 1) At) [ W (Dj-0)], hence (B.7)
=1
holds. O
Corollary 2.2.20: Relations of the form
Tj1k-1
Tj,lc = [ A2 2(1 - )\2) )\2 ] Tj,k:—l — Tj’k_2 + f (Tj’k_g)
TJpKm

with given values of {Y;1,T;0} can be expressed as:
k=1
[Yjk) = P (k,n) [Yja] = P (k = 1,n) [Yj0] + 55 2 P L) [f (Yspt-))

Proof. Repeat Lemma 2.2.19 using the relation
Tj—1,1c—1

Tie=[ A 2(1-22) 22] { Tiko1 } —Y,k—2+f (Y,k—2) in place of (2.14).
Tjt1e-1

Corollary 2.2.21: G1ven values of {[Y}, 1] [T,0]}, and A =1, (2.18) is expressed
-1 1-1

as T, = ZT] k+20,1 — Z T ky2410 + Z Yo (Cjmiomire—i—1) -

=1 m=0

Proof. Use Corollary 2.2.18 to expand the P (k, 1) notation and sum the results.
(]

Lemma B.1.4' F(C(zj1tk)70);'F(£(zj7tk)7O) + _21_C f _‘% IT=0 dz )
DOD(zJ'atk)

+3 zn: (Df v(F (2,7),2,7)dzdr + [ w(F(z,r),z,r)dW(z,r))

DOD(z; ,tk) Dn,0

_P(k,1) [F ] +P(k-1,1) [ﬁ;o] =P (k,1) [ej] — P (k — 1,1) [e;0] -
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Proof. Breaking the DoD (z;,t) into segments of length 2Axz,
F(l(z;,tr),0)+F(&(z;,tr),0 OF (y,s
(et OHPE@)0) | 1 [ 0P | gy
DoD(z;,tx)

+55 Zn: (Df v(F (2,1),2,7)dzdr + [ w(F(z,r),z,r)dW(z,r))

DOD(CL‘j ,tk) n,0 Dn,0

=1 (F(C@3,t0),0) + F (€ (25, 14) ,0) + ey 0 + egj,,c,o)
+

e (f BF(“ lr=0 dz + [ v (F (z,7),2,7)dzdr

DoD(zj,ty) n—1 Dn,0
f ,2,7) dW (z, r)) From (2.8),
Fyy = Festothuno 4 1 ( [N |zt [ o(F(57),2,7) dedr
Zn—-1 Dn,O
+ [w ,2,7) dW (2, r)) Substitution yields
Dn 0
F(C(mj!tk)’o);F(E(z‘jvtk)’o) + % f aFaﬁg,SE |S=0 dy
DOD]“k
+5 2 [ v(F(z,r),z,r)dedr + [ w(F (2,7),2,7)dW (z,7)
DoD(zj,tx) \Dn,o Dn,0
= % (ﬁ (C (Ij,tk) ,O) + ]/":’ (f ((L‘j,tk) ,0) + €¢; 1,0 + efj)k’o)-f- Z (Fn,l — Ml‘i‘ﬁ)
.DODJ',]c
= 5 (F (a5 10), 00+ F (€3, 1),0) oo o) + 3 (Faatens)
- b DZ (ﬁn,o + en,O)“% (ﬁ (C (Ij, tk) ao) + ﬁ (f (iﬂj, tk) aO) + € k0 + egj‘k,o)
oLl; k-1
= Z (ﬁn,l + en,l) - Z (ﬁn,O + en,O)
DoD; i DoDj j_1

= P (k1) [Fjl] _P(k—1,1) [FJO] + P (k1) [e1) = P (k —1,1) [¢j0] Thus,
( (zj7tk)70);'F(E(zj7tk) ) + % f aF(Z T) |7‘:0 dz

or
DoD(x;,ty)
+3 D, (f v(F (z,7),2,r)dzdr + [ w(F(z,r),z,r)dW(z,r))
DOD(:L‘]' ,tk) Dn,O Dn 0
=P (k1) [ﬁ’]l] —-P(k-1,1) [FJ 0] + P (k,1)[e;1]— P (k —1,1) [¢;,0], where sub-
traction yields the desired result. O

Corollary B.1.5. P (k,1)[e;1]—P (k—1,1)[ejo] = k (&51)—(k — 1) (¢5,0), where
@ denotes the average over the boundary, 60 = DoD (z;j, ).

Proof. Replace the error terms of P (k, 1) [e;1]—P (k — 1,1) [ej0] with Assumption
2.3.2 and (2.19). Since A =1, P (n,1) is equivalent to n additions. ad
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Remark B.1.6. (2.20) can be represented via
[ej] = P (k,n) [eju] — P (k= 1,7) [e;0]
k-1

+ZP(l,n) [T]k o1+ Voo + B kmio1 + B 1 (B.8)

=1

which is a direct result of Lemma 2.2.19, (2.8), and (2.17), such that
ej,k = F(((z,t),O);—F({(z,t),O) + ilé'- f BFBQE;,S} IS:O d,y
DoD(z,t)

ff )dyd5+2C ff y,s),y,s)dW(y,s)

DoI(:v t) Dol(z,t)

_P(k,n) [ﬁj,l] — 2, (p) EP (l,n) [v (ﬁj,k_,_l,xj, (k—1—1) At)]

4P (k—1,n) [ﬁj,o] —2 § P (1, 1) [W(D; )] [w (ﬁj,k_,_l, 2, (k—1—1) At)] .

Lemma B.1.4 establishes that P (k,n) [ej1] — P (k—1,n) [ej0]
— F(C(l‘,t),o);—F(f(.’L‘,t),O) + 516'_ f aFaf.Z,S) |s:0 dy
DoD(z,t)

+36 an (f v (F (2,7),2,r)dzdr + [ w(F(z,r),z,r)dW(z,r))

DOD(.’L‘]',tk) Dn,0
k—1
—P (k1) [FJ 1] +P(k-1,1) [F ] Z €j—k+2l, 1—2 ej—k+21+1,0 While Lemma

=0
;? ? 11 establishes that

Z: (l,n) [T;'),k—l—l + X1+ Bk + ﬁf,k-ta],

= % [f v(Fs),ys)dyds+55  [[  w(F(ys),y,s)dW (y,s)

DOIJ k= DODJ'Jc DOIj,k—DOD]’,k

kzl lZI [ <A] I+2m+1k—1-1, Tj— 1+2m+1,(k—l—1)At)]9ﬁ(D)

—515 Z: z_: [ ( j— 1+2m+1,k—z)] [w <ﬁj—t+2m+1,k—t—1,$j—l+2m+1, (k -1- 1) At)]-

B.2 Chapter 3

An arbitrary Z¢ space is constructed by adding individual points to a domain
such that the distance between any two points is greater than or equal to an a
priori Az. Hence an ‘arbitrary’ Z4 , space consists of points that fulfill Definition
1.1.3 by being mapped to the natural numbers and this mapping relates to the
cardinality of the set and has no correlation with X, the geometric location in R¢.
Denote points in an arbitrary space via g (p;) = g; where Figure B.3 shows a R',
uniform Z},, and arbitrary Z}, domain of length oo and Az = 2;; the uniform
Z' interval has been divided into M = 24 discretisations, and the arbitrary Z!
has been assigned 9 points. Figure B.4 shows a R? domain, an arbitrary Z?

domain that has been discretised into 9 points, and a uniform Z? domain where
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continuous R ' space uniform Z ' space: M divisions:  Ax= a/M 7a;bitrar‘y z space: 9points:  Ax= a/M

.......

0 a

Figure B.3: One-dimensional space grids. Note: || X — Y|, = ||X — Y|,

continuous R 2 space uniform Z 2 space arbitrary Z 2 space
. 1 7
@
< ‘@ 7 o
8 & 5 s
& & @ . 8
&° 7 kS 3 .
&7 & 2 w 2
M-livi i 4
0 o
> I 9 points
ff Ay A = min( Ax,Ay)
& discret >

steps. AX

Figure B.4: Two dimensional space grids

the mesh used to cover the region has been divided into M and N orthogonal

discretisations.

Notation B.2.1. Let {@N (j;k),@m (j;k)} denote an {arbitrary , uniform}
Z* FDSy approzimation to a Green’s function where card (U) = N > 0.

Lemma 3.1.13: Deterministic Existence. Given (EAIC), then a solution to
{(3.1),w (X) = 0} exists as defined by (3.5).

Proof. Refer to [59, page 455] or since 772G (X;Y) = 0 then
[G(X;Y)u(F(Y),Y)dY = lim [ G(X;Y)v2u(F(Y),Y)dY
0 Az=055_s,(X,A2)
T . dF(Y) AG(X;Y
dim, (fxm) (6 (xX;v) 2552 - F (v) 2850 ) ay
= [ () ER - F(v) 250 ay - [ Fes (v) 25504y
0S2(X,Az) 18]
Since, [ G(X;YV)EXdy —o0, [ F(v)ZEHgy
§82(X,Az) 0S2(X,Az)
= [ FY)¥XNgy . [ F(y)ZENgy,
652(X,Ax) 832(X,Ax)

[ FY)%EENgy 5 F(X),and [ F(Y)*4dY —o0.
0S2(X,Az) 0S2(X,Ax)
Hence, [ G (X;Y)v (F(Y),Y)dY = F(X)— [ H(X;Y) Fss (Y) dY. O
U 60 .

Lemma 3.1.14: Deterministic Uniqueness. Given (EAIC), then the solution
{(3.1),w (X) = 0}, if it exists, is unique.

Proof. Assume that there are two solutions to (3.1), F; (X) and F; (X), with
the same initial conditions and let F3 (X) = F; (X) — F2(X). Then F3(X) =
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[GX;Y)(w (A (Y),Y)—v(F(Y),Y))dY. For this term to not be uniquely

8, either two different Green’s functions exist for the domain or there exits at
least one point such that F} (X) # F,(X). By definition the Green’s function
is unique. In order for F} (X) # F(X) to exist, there must be a second point
Y where Fy (Y) # F5 (Y). Using a recursive argument, Fy (X) # F5(X) on the
entire domain which contradicts the initial conditions, thus F3 (X) = 0. ad

Lemma 3.1.22: The Green’s function is a symmetric kernel such that G (X1, X,) =
G (X1, X2), i.e. a reciprocity relation exits.

Proof. Using (3.7) and assuming X; # X, then [ (G (Y, X2) V2 G (Y, X1)

o
~G (Y, X1) V2 G (Y, X)) dY = [ (G (¥, X;) 2900 - G (v, X;) 29072 ) .
56
Since this involves a unit source with zero boundary conditions then (3.6) yields
0= (G (v, X) 2200 - G (v, xy) 296229) ) ay

= f (Y, X) 1x,ey — G (Y, X1) yex,) dY = G (X2, Y) — G (Y, Xa). O
U

Lemma 3.1.24: [8, Lemma 2.1]: [ G (pi5,Y)w (Y) dWY posses an almost surely
O
continuous modification.

Proof. When d =1, let z € [0, a], then [ G (z,y)w (¥) =2 [w(
0 0

x

— [w(y) dW (y). This SDE result is well known and will be omitted; see [39].
0

Whend = 2, E

)

[ (V) In (1%, = Y1) dW (¥) = [ (¥)In (X, = Y)W (¥)

= [ () ImlXy =Yl =X - Y] @Y < I, - Xl

1 2—a
fw |ln ||X1 Y||2 - ln ||X2 - Y||2|a (t{‘ CL”Xl——Y||2+Eila—a)“X2_Y”2) dY
S 1% = Xall;” mag;( (YV)*) [ ]| X1 = Y]l, = In || Xo = V|,|*

U

@ 2- 2
(uxlivnz + uxz—yuz) dY < Koln || X) = Xall;”® max (w (Y)°)

. 1 1
_ _ _ q@ ! ay dy P
s (s = Yl = X = Y=y )" (f s + [ et

where %—i— % =land1<p< ﬁ Hence, using Assumption 3.1.5:
2)’

< Komax (w(Y)?) |X; — Xa|l3™ and since the difference in the integrals is a

normal random variable with 0 mean, using Chebychev’s Theorem
. T

e ( ) (V)W (V) = [ G (X0 ¥)w (V)W ()] ) < Ka X, = Xl

z{ln (X2 =Yl w (Y)dW (Y) - z{ln (1X2 = Yl,) w (Y) dW (Y)
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Choosing r > 2, Kolmogorov’s Lemma states that [In (|| X —Y||,) dW (Y) pos-

U
sesses an almost surely continuous modification and having chosen that modifi-

cation we deduce E (f In(||S; = Y|,) w(Y)dW (Y)) is continuous on U and
v

;%E(gmmwxrdmgwoﬂﬂvuv—gmmx—ymnwynmmyﬂ
= [In(|IX -Y|)w)dW (Y) = [G(X;Y)w(Y)dW (Y) with the Brownian

U
sheet being fixed. d = 3 mirrors d = 2 such that it suffices to check that h (z) =
f I X“i —e) dW (Y) posses an almost sure continuous modification. Let 0 < 6 < 1;

o )

_ 1
- z{ ‘ IXi=Yll;  [IX2=Yll

Xy =Yl w (Y)dW (Y) - Z{hl (X2 = Yllp) w (Y) dW (Y)

2 2
w(Y) dY

3+6
| Xe=Yly—[[ X1 =Y, | 4
I X1=Yl,liX2=Y]l,

w(Y)2dY

540 3
dY)

< 1 . 1
- Z{ ‘ (I X1-Y1; I X2 =Yl

9 1
§1}1;1é%c (w (Y) )||X1 X2||2 <f‘||x1 YT,  Xe=YT,

1

2 3-8
([t ) <Ko=l ([
(u (||x1—Ynz||x2,—Y|12)3‘t‘L> B XYl T

2

3 1 7

dy ay dy

+f ——*7+> ( W) ( W) . It then follows that
U | X1=Yl, U U

2 3-8
E < Ky || Xy = Xolfp*

[G (X0, Y)w(Y)dW (V) = [ G (Xa,Y)w (Y)dW (Y)

Using moments of Gaussian random variables, for any j, Ky || X; — X2||;(_)

J
E ( [CG(X1 - Y)wX)dW(Y) - [G(Xo - Y)w(Y)dW (Y) Conclude
o o
using Kolmogorov’s Lemma to yield the desired result. g

Remark B.2.2. It follows from the previous proof that [ In (|| X — Y|,) w (Y) dW (Y)

o
has Lipschitz paths when d = 1, Hélder continuous with exponent 1 — a when

d = 2, and Hélder continuous with exponent % — o when d = 3.

Lemma 3.1.28: [8, Lemma 2.5]: Given the (EAIC) then (3.5) is the unique

solution to (3.1) which is almost surely continuous on U.

Proof. Uniqueness. Let F (z) and F, (z) be two solutions, thenF} (z) — F; (z)
+fG (X;Y)(w(F(Y)) —v(F(Y))) dY—l—fG (X;Y)(w(Y)—w(Y))dY =

2 (X)),

0. Multlplymg the appropriate terms of the equatlon by v (F} (X)) — v (F:
canceling terms, and using Lemma 3.1.26, then a|F; (X) — F5(X)| < 0 from
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i ok, j) ﬁ(k,k)
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o(k,k) 0] 0k] 0] 0k (G 0k 0 Tk

Figure B.5: 2 Point Closed Loop System

which uniqueness follows. This further implies the following uniqueness state-

ment: If F} (X) and F; (X) satisfy (3.5) U; C R?, then F, (z) = F5(z) i.e. on

{Buy;}.

Existence Step 1. Suppose that F(X) is bounded, continuous, and non-

decreasing. Let W, be a sequence of processes with trajectories [ G (X;Y) dW, (Y)
v

— [G(X;Y)dW (Y) almost surely as n — oco. For each n we consider (3.1) with
o

0 boundary conditions. The existence of a unique solution follows from Lions [4,
Theorem 2.1 p. 171]. F, (X) fulfills (3.5) and F, (X) — F,, (X)
+ [G(X;Y)v(F(Y))dY — [G(X;Y)v (Fp (Y))dY
3 U

= [G(X;Y)w(Y)dW, (Y)~ [G(X;Y)w(Y)dW,, (Y). Multiply both sides by
s s

their respective terms and using Lemma 3.1.26 yields eg? ,, < [ G (X;Y)
O

X (Wy — W, v (Fp) — v (Fy) + 2a(F, — F,)). Since E (l{G (X;Y) (W, — Wm)2>

— 0 as n,m — oo and F is bounded, then {F,} is a Cauchy sequence and
F = lim F, using (3.5).

Exiszgrolj:e step 2. Suppose that F(Y) is bounded from below and F,(Y) =
F(Y) An where F, (Y) is the unique solution to (3.5). It follows from Lemma
3.1.27 that the sequence {F, (z)} is decreasing for any X, hence converges in
RU —o00. Let B, = {supF(X,FO (X)) < n} On B,, v (F,) < v(Fy) < n and
U (Fm) = v (Fy) on ﬂl:n, for m > n. F,, is the unique solution on 8, to (3.5)
and consequently F,, = F, on 3, where m > n and F,, — F.

Existence step 3. Now assume that F is bounded, continuous, and non-
decreasing, let F,(Y) = F(Y) V (—n). Repeat the proof in the second step, .

constructing this time and increasing sequence. a
. O o _ GaGi) _ 1
Lemma 3.2.11: Gy, (55 7) = 1—N9Fv+1 = onrr

Proof. When card (U) = 1, there is only one point for the FDSc to act on, hence

G1(j;5) =14 9(0) +0(;5)° + - = 29 (755) = 25 where ) = 9 (5; 5).
=0

If an explicit scheme is used, G; (j; j) = 1, since 9 (j; j) = 0, otherwise the initial
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Figure B.7: Schematic and tree for Uy,

disturbance will grow in size by a factor of =5-. When card (U) = 2; refer to
Figure B.5 and Figure B.6, where Uy_; = 0:

G (k; ) = Z(ﬁ(k )9 (k; 5) Gs (4; 5) = 0 (ks §) G1 (ks k) Gz (73 5)

and Gy (7:§) = G1 (s ) + i (9 (G 9))* Ga (k3 ) 9 (s )
= G1(5;7) + 9 (5 k) 9 (k; J)G2 (7;4) G1 (5; §) G1 (k; k). Collecting Ga (j; §) terms

: A (405) — GI(J i7) * —
yields G2 (339) = TG matcn G o) — (v(y,a)w(a,k)a(m)cl(k ) Where {65, 62} =

{9G:5)9 (6; ) G1 (5:) G (ks )9 (53 ) + 9 (G R) 9 (ks ) G (ks ) }.
As depicted in Figure B.6, when card (Uny41) = N + 1, let g, be the new
point added to Uy = {UN 1 U gp;}, where Uy_y will be treated as one state, and

assume that GN (4;9) = . Thus,
Gren (5:1) = £ 0.6 5) ( GV~ )8 (8 = 135) 4950 B (k;))
=0
=G1(5;9)9 (53N = 1) G (N = 155) + G1 (55 5) 9 (55 k) G (K; 5),
G (k; §) = G (ks k)9 (k;j).QN+1 (j;j)+G1 (’ﬁ, k) (k;N —1)Gnn (N - 1;7),
and Gy (N —1;5) = AN -GN Ui HIN LG 1 (kif) - Gypstitution yields

R 1-9(N-1;N-1)
(1 - BUIGNNI0) G, (73 ) = (S0

1-3(N—1;N—-1) 1—-3(N—1;N—1)

+G1 (35 ) 9 (55 k) ) Gvsr (k) and Gy (k3 5) = (G (ki k)9 (ks )
G1 (k:k)(k:N—1)9(N—1;9) G 41(39)

+ 1-9(N-1;N-1) ) 1 Gk N-1)O(N-1;k) \
- 1-9(N-1;N-<1)

. . _ 1-8(N—1;N—1)
Remark B.2.3. [t is worth mentioning that1 = TN TN 1) _C1 G 8GN DN —1)

C1()0GN=)O(N=-1k) | A (s » .. 1-9(N-1;N—1
X ( : Ji)—éZN—l;I)V—l) L+ Gy (7’7)19(7’]“)) 1—19(N—1;N-—1)—C(¥1(k;k)ﬂ(k;?V—l)ﬂ(N—l;k)
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X (@1 (k; k)0 (k;7) + él(k;fl%f&{zjjz,ﬁa(g_l;j)>. This is true only if the reci-

procity relationship holds and the FDSc matriz is symmetric; see Lemma 8.2.16.

Using G (J; j) = 1= and the argument from the card (U) = 2 case,
( ,J) — 1
Gw (i) = _GN-IW-1508 G | 1- (.;j)+19((1j;1;<—;2191g1;—11;)j)) = 14y lhus

T=9(N—L;N-1)

Gvs1 (5:4) = G (5:5) (L5520 + 9 (j5 k) ) G (ks ) = 22420,
1-9(N—-1;N—1) and
GN 41 (kg YO (G N —1)O(N —1;k)+9(jk)(1—-9(N~1;N —1)))

On+1=1—(1—0n) (1 — O},,). Further algebraic reduction will be omitted since

where 03 ,, =1 —

these results are adequate for this chapter. O
Corollary 3.2.13: Given EAIC, then G (4;7) is a unique constant.

Proof. Let {@N (3:7) ,@}r\, (j;j)} denote two different Green’s function approxi-
mations. When card () = 1, G, (j;§) = G1 (j;j) = 1—191(1'-1')
one point to act upon. Assuming that Gy (j; j) # G (j;7) for card (U) = N;

since there is only

in order for this to occur at least one ¥ (n;m) # 9 (n;m). This leads to a
contradiction, since FDSc # FDSc; thus Gy (4;9) = @;rv (7;9)- O

Corollary 3.2.14: Given (EAIC), then Oy, < 1.

Proof. When card (U) =1, 9(j;7) < 1, otherwise the FDSc is not consistent.
eWhen card (U) = 2, 19(.7‘;1')—19(.7';jl)fgc(;:;)l;;ﬂ(j;k)ﬁ(k;j) <1or
9(5;7) (L =9 (k; k) + 9(5; k)9 (k;7) + 9 (k;k) < 1. In an explicit FDSc; 0 +
9 (j;k)9 (k;7) +0 < 1 almost surely. In an implicit FDSc, 9 (5;7) (1 — 9 (k; k)) +
V(55 k)9 (k; 7) + 9 (ki k) <9 (5;5) (1 =9 (ks k) + (1 — O (k; k) 9 (ks 5) + 9 (k; k)
= 1=k k) (9 (5;5) +9(k;5)) + I (ks k) < (1 =9 (ks k) (1) + 9 (ks k) =
hence, 2 ;j)“19(j;j1)1_9_(1;°(;:3,$19(j;k)ﬂ(k;j) < 1 almost surely.
eWhen card (U) = N + 1 it suffices to show that 0 < 6% < 1.
Case 1: For an explicit scheme 9 ([;1) =0, 9 (N — 1; N — 1) + 9 (N — 1;7)

+9 (N —1;k) =1and 9 ({j or k};Un_1) < 1if py; or &) is an interior point
and 9 ({4, k};UOn-1) <1 if an adjacent point. Hence, almost surely true.

Case 2: For an implicit scheme 6}, < 1 almost surely, since 0 < ¥ (Un; N +1)
<(1-9(UyN;0p)and 9 (N +1;0y)=1-9(N+1;N +1). O

Corollary 3.2.15: When card (U) = N — oo, then Gy (4;7) = oo if p; is ‘well

within the interior’ and a finite constant if p; is ‘close to the interior.’

Proof. Since Gy (j;4) = S3U8, tim Gy (j;) = G1 (535) T1 - Thus, it
N+1 n—oo n—00

is simply a matter of checking that 0 < 83, <1 and this can be easily verified,

using Assumption 3.2.1. If 8% | {n > M} is numerically indistinguishable from 0,

the growth of the discretised Green’s function will remain constant after a finite
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series of iterations. Being numerically distinguishable from 0 is dependent upon
the radiation principle, round-off error, and location in the domain since points
close to the boundary have a limited number of paths that can be utilised in the

growth of the Green’s function approximation. a

Lemma 3.2.16: Given (EAIC) where ¥ (j;k) = 9 (k;j), in accordance with
Lemma 3.1.22 then the reciprocity relation is true such that Gy (4; k) = Gy (k; ).

Proof. When card (U) =1, Gy (j;k) = G1 (k;§) = Gy (j; §) since p; = pr. When
card (U) = 2, G, (j; k) = 3. (9 (j; j (

0
mxﬁGAMEwmuhﬁijﬁlMﬂwﬁgywawm

. Gl(j;j) — A (i

= z( (k; k)0 (k J) G2 (j; ) = Ga (k; j). Referring to Figure B.6:
oAssume V(j;k) = 9(k;j) true for {Un_1,0;,0x}. card (Oy_1) = N — 1;
On-1 = {p1, * ,pn-1}. card(U;) = card (Ux) = N; U, = {1, , ov-1, 05}
and Ux = {p1, - ,p~n-1,0c}- Let Onyp1 = U; U Uy; card (On41) = N + 1;
Ok = {p1, ", ov-1, 05, Px}-
Refering to Figure B.7; assume that Uy_; is one state space and place a unit
source at - = p; to yield Gyt (45 k) =9(5;7) Gnit (4; k) + 0 (45 k) x
(8 ;) Givss (5 6) + 9 (ks &) Govar (s ) + 9 (ks N = 1) G (N = 1))
+9(j; N - 1) (?9 (N = 1;5) Grs1 (G k) + 9 (N = 1;k) Gy (ks )
+9(N—1;N—1)Gpp (N -1 k)) Rearranging terms

Gvs1 (i k) = TGP EGR N TGN D)

(19 (k; 7) (0 (ks k) Grgr (ks k) + 9 (N — 1:k) Gyar (N — 1 k))

+9 (N = 155) (9 (k; N = 1) Gria (ki ) + 9 (N = LN = 1) Givss (N = 1)) )
Using the fact that 9 (m;n) = 9 (n; m); solving for
{@NH (N —1;k), G (N —1;3) G (3;79) Gt (k; k)} with some rather
tedious algebra yields Gy41 (j; k) = 1—19(k;k)—z9(j;k)ﬂ(k;jl)—ﬁ(N—1;k)19(k;N—1) X

(9Gi) (9G39) Bran () + 9 (N = 155) G (N = 15))

+9 (N = 13k) (9 (5 N = 1) Gy (559) + 9 (N = LN = 1) Gy (N = 135) ) )
= Gpy1 (k; j), hence Gyy1 (j;k) = Gny1 (k; j) almost surely. a

Corollary 3.2.17: Given (EAIC), as Az — 0, the difference between two

Green’s function approximations on the same domain that are a [V] = [a;Az]

distance apart is a constant such that: Alim0 (@Az (X;Y) = Gag (X = V], Y)) =
z—

lim (@m (X;Y) - Goas (X — sV, Y)) =K.

Az—0
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Proof. In the limit as Az — 0, the coefficients for the FDSc are oblivious to
the magnitudes of {Az, v (-)}. When numerically solving the discretised homoge-
neous Laplace equation, the influence between two points follows a tree expansion
depicted in Figures B.5 and B.7. Hence, the magnitude of G (Xj; Yy) is function of
the number of discrete steps and paths between the points, i.e. a measure propor-
(lej-yklll)
tional to 6 and the number of paths that can be used to connect two
points. From the radiation principle, points outside a neighborhood wl >
||[e]ll, play a diminished role in the evaluation of G (X;Y). Hence, the branching
process used to approximate a solution does not utilise a ‘distance measure’ in the
usual sense, only the number of discretised step sizes away. Thus, in the limit, AG
represents a series of constants. Given that G (X;Y) = 6G (X; X) then this ex-

plains why G (X; X)-G (X;Y) =G (X; X)-0G (X; X) =G (X; X)(1-6). O

B.3 Chapter 5

Fluids on the surface of a planet act as a combination of barotropic (‘dry air’)
and baroclinic (‘pure water’) components where various amounts of water, mo-
mentum, and heat are exchanged. Thus, meteorological phenomena should be
completely described by a set of highly nonlinear PDE’s relying upon Newton’s
second law of motion, Navier-Stokes equations, law of thermodynamics, and the
conservation of energy, mass, and momentum for thin viscous fluids. To visualize
the scales involved, if the earth was an apple, the atmosphere and oceans would be
approximately the skin of the apple, hence descriptions of the atmosphere involve
fluid dynamics with minimal vertical motion relative to large horizontal motion.
Due to friction, this thin fluid experience solid body rotation with a planet where
winds and currents represent small deviations from this rotation. As discussed in
[53, Section 1.3], the non-inertial plane of reference effects fluids by ‘forcing’ flow
to occur parallel to pressure gradients; paired with the prevalence of naturally
occurring density stratification, these effects further magnify the thin dynamics of
a geophysical process since different density layers rarely interact except for rare
global disturbances (volcanoes), strong isotropic systems (hurricanes), and the
pycnocline. Thus, the atmosphere may be regarded as a multi-layered thin fluid
on a rotating irregular surface experiencing external heating over O (1000 km)
areas moving with average horizontal velocities of O (IOIL—I?).

When describing phenomena such as weather systems, ocean currents, or the
flow of magma in the inner earth; the effects of rotation, stratification, and the
predominance of nonlinear interactions that involve a number of variables en-

sure that developing a process, much less evaluating a ‘solution,’ is an arduous
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Figure B.8: Coriolis effect on the Northern Hemisphere
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Figure B.9: Vector breakdown of the Coriolis effect

task. Due to this complexity, simplifications are made to develop processes that
capture the essence of the physical phenomena, thus these assumptions are not
an inherent property of a fluid, but are macro concepts. For example, steady
incompressible and inviscid flow are simplifications acceptable for large scale geo-
physical fluid dynamics since viscosity effects are moot and shock waves do not
exist almost surely. Quasi-Geostrophic (QG) processes attempt to describe large-
scale geophysical fluid phenomena where the fluid is both incompressible and
inviscid. The attribute of ‘large scale motions’ will be restricted to phenomena
where the rate of a fluid element traveling over the length of a domain is signifi-
cantly less than the rate of rotation of a planet. The Rossby number, 64 = %,
is a measure of the non-inertial plane of reference’s effect upon the motion, where
the magnitude of the Rossby number is inversely proportional to the effect the
rotation has upon the process. Thus, only phenomena with low Rossby numbers
(04 < 1) will be considered, where a planet’s rotation plays a significant role
in the movement of the fluid. On earth, the effect of the low Rossby number is
the seeming force called the Coriolis Effect, where objects appear to experience
a force that is orthogonal to the rotation of the earth and pushes from (left to
right) / (right to left) if one is in the northern / southern hemisphere; refer to
Figure B.8

Remark B.3.1. For the Coriolis effect, only consider the velocity of the process
normal to the direction of rotation. Unless otherwise specified, the rate of rotation

for the earth is A = 7.3 x 1075571 and the magnitude of the acceleration can be
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estimated at C = 2Asin (I') = 2A x U, where ' is the angle from the equator;

refer to Figure B.9.

Remark B.3.2. The Poincaré inequality holds for these boundary conditions.

Solid stationary walls with no-slip boundary conditions, U = 0 and either constant

aT

temperatures T = Tyau or adiabatic conditions S = 0 are utilised, where Ekman

0z

layers at the lid and base are due to the ageostrophic effects of having a ‘hard’

surface. One cannot ‘cut’ or sever a flurd’s boundary and the boundary of a fluid

‘sticks’ to non-fluid surfaces; refer to works by Rutherford and [{7, page 6].

B.3.0.1 Baroclinic and barotropic components

Although a spectral approach will not be used in this text, all fluids have barotropic

and baroclinic components, where:

eThe baroclinic component of a fluid, Tc (z,y, z,t), represents the dynamics of

fluid similar to pure water, where the components of pressure and density do not

coincide such that sy7pav X VP # 0. For example, the density at the bottom of

a glass of water is the same as the density at the top, but the pressure is greater
at the bottom of the glass.
eThe barotropic component of a fluid, Tt (z, y, 2, t), represents the dynamics of a

compressible fluid similar to pure dry air. The components of pressure and den-

sity coincide such that \7ppv X 7P = 0. For example, the density and pressure

of dry air at the bottom of a glass is more than at the top.

Notation B.3.3. In a two-level system, the first barotropic and baroclinic modes

are given by Tt (z,y, 2,t) =

F(x>yyzl ,t)+F(1,y,

Z£] ,t)

2

F(Z‘,y»zz ,ﬁ)—F(I,y,Z;ﬂ,i)

and Yc (z,y,2,t) =

2

Let 1, denotes the indicator function if the level for the variable is the same as

the level in question and 14 if the level is different.

Due to spectral properties, stream function processes are often separated into

baroclinic and barotropic components, such that waves can be decoupled. Since

the fluid is inviscid, both components cannot support a shearing stress, thus flow

runs parallel to isobars and are driven by pressure and the Coriolis effect.
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B.3.1 Inviscid shallow-water processes

As discussed in [53], when constructing processes, numerous approaches can be
taken to describe a phenomena, but the processes considered in this text will
utilise a two-layer conservation approach using partial derivatives (Eulerian) vice
a convective derivatives (Lagrangian). One of the most prolific processes of de-
scribing geophysical fluid dynamics has been the study of inviscid shallow-water
models and shear fluid dynamics on a homogenous, incompressible, and inviscid
(baroclinic) fluid as proposed by Rossby, Pedlosky, et all. In this two-layered shear
flow shallow water model, the baroclinic nature of the fluid and mass conservation
ensure that YU = %& + %2 4 Z& — 0 while [|F||, (9 (L)"') << 1. Given these

/27
ou 4
constraints, %& + S = 0 and the vorticity is given by: [V] = —-&&
Y Uy _ Uy
oz oy

This two-layer approach is the simplest model that maintains baroclinicty and is
robust and resilient in that as one eliminates given wave frequencies, other waves
transfer the energy flux. The connection between the elliptic processes of Chap-
ter 3 and processes of this chapter are quite apparent, but the connection with
the hyperbolic process is not as clear. To illustrate this connection, one of the
simplest processes to consider is a two-dimensional model where one of the di-
mensions is space and the other is time; as in Chapter 2. Processes of this nature
can be reduced to the so-called telegrapher’s problem -ag‘i%:) + ﬂf’t-) = 0 which
is a hyperbolic process with initial conditions solved on either R2,, the positive
quadrant, or a semi-finite strip; [21, Section 28.3]. Although simplified, higher
dimensional models on a planetary surface possess the same connection where the
spherical wrapping of a planet can be modeled with a restricted semi-finite strip
with boundary conditions experiencing the reflection property of Chapter 2. In
the 1950’s Forsythe demonstrated that the solution this process where z € [0, L] is

L
F(z,t) = [G(z —y,7)df (y,0) where G (-) is a Green’s function that represents
0

the characteristic solutions of Chapter 2 and not the Green’s function defined in
Chapter 3 and 4.

Remark B.3.4. gj'ﬁ% = %‘tl + U (g%, %,...) denote the convective derivative
which is derivative along a fluids trajectory to a particular closed element. Rather
than fiting a derivative on a set point in space, the derivative is centered upon a
small element in a fluid. Heuristically view a convective derivative as a drop of

ink in a stream of water.

The state variables of density, entropy, friction, and pressure are denoted by

puv, H, fr, and P, respectively. Other physical constants include the Berger
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number (bg), Reynolds number (s¢),beta plane coefficient B, viscous dissipation
constant v, Ekman dissipation constant £ and the Froude Number (£) which is a
quantitative measure of the relative importance of rotation and stratification on
a fluid. Vorticity is a measure of the curl of a velocity vector, enstrophy is the
total mean square vorticity and the low Rossby number implies that the relative
vorticity is small compared to the planetary vorticity, where flows almost surely
experience a significant vorticity vector, which is non-divergent. If the curl of U
is 0, then the flow is irrotational and the circulation is 0 on every closed path. A

vortex filament is a line in the fluid that parallels the vorticity vector. Let:

u:l: (x7 y’ z’ t)
oU (z,y,2,t) = | Uy(z,y,2,t) | denote the velocity of a fluid.
| U (2,9, 2, 1)
[ ou, _ Oy
(?}r 0z
oV (z,y,2,t) = %1 — %Zizi denote the vorticity of a fluid.
A
oz Ay

oG = [GT] =0, 0, —G] denote the acceleration due to gravity.

B.3.2 Equations of state

[17, Chapter 10] gives an introduction to enforcing conservation laws in a FDSy
to ensure that mass, energy, momentum, vorticity, and enstrophy are conserved.
From Assumption 5.1.8 the domain is a closed system and friction is negligible
within the interior. Incompressible denotes that the ppry is a constant and inde-
pendent of the temperature and inviscid implies ¥ = 0. Tangential stress implies
a non-zero viscosity and energy and mass cannot be created or destroyed and
it is impossible to convert heat into work at a constant temperature. This im-
plies that complete information for a process at set time is known if the stream
function, two thermodynamic variables, and an equation of state are given. The
basic hydrodynamic equations for a barotropic atmosphere are the equation of
motion relative to a non-inertial plane of reference (Newton’s second law), the
continuity equation (conservation of mass), the equation of state for dry air and

the thermodynamic equations may be written as follows.

eThe momentum equation: %—Zt’ =agradP —2AxU+ G+ fr
eConservation of mass: a”g{" = —grad - (ppvU) given pyv = £ and Pa = BT

eFirst law of thermodynamics - conservation of energy: h = c% + P%—‘:

where « is the specific volume, 3 is the barotropic gas constant for dry air, ¢
is the specific heat at a constant volume, and h is the diabatic heating. These
equations may be written in terms of various coordinate systems and although
they are capable of solution, as shown in [53, Chapter 4], further simplification

can be conducted. For example, using the hydrostatic relation m%%—f +G=0to
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derive forms identical to the simplified Navier-Stokes equation. The d = 2 steady

Navier-Stokes equations for an incompressible fluid in conservative form are:

ouz) | owktty) . o ( P\ _ 2 2 (U, | U
® 5z + ayy+8_z(M)_y(vuz) o (E‘F#)

oUg) | owsthy) , o (P ) _
° 8; + Bzy +@(W—V)—U(V2Uy)

where « is a reference velocity introduced to homogenize the eigen values of the

system. If the process is inviscid the Navier-Stokes equations reduce to the Euler

Equations where: oty y+yPv v=0.
o2t 4 7 - (puvuu) + v = 0 XY 17 - (prvv) = 0

Pressure in this case is not a thermodynamic variable, but it can be considered
a LaGrange multiplier that ensures the kinematic constraint of incompressibil-
ity, i.e. solenoid of the velocity field. The vorticity is calculated by ¥V = 7 x u
and represents approximately half the local rotation rate of the fluid. The ad-
ditional of the term w - \yu represents the effects of the vortex stretching and is
identically 0 in two-dimensional flows. The vorticity can be combined with the
stream function to yield a concise description of the two-dimensional flows where
the flow is parallel to curves of constant streamlines. The boundary conditions
are F (ps5) = 0 and ap—g‘;&‘—) = 0, where the elimination of the vorticity leads to
the pure stream function %?— + J(F, Q) = vA?F where energy is transferred via

convection, not conduction or radiation.

B.3.3 Quasi-Geostrophic existence and uniqueness

The following results are taken directly from [7].

Notation B.3.5. Let (u,v) denote an inner product.

Use the integral form

Q) =G (t) Qo (t) +ftG(t—s)f(Q(8))ds+fG(t —s)w (z,y,t) dW (s).
By defining ’ ’
f(Q) =-€6Q—-B%E —3(F,Q) and h(t) = Q(¢t) -
yields the deterministic mild integral equation

h(t) = G(t) Qo + 0ftG(t——s)f (h(t) —i—OftG(t—-s)w(z,y,t)dW(s)) ds. In the

following, prove the local existence of h () by the Banach contraction mapping

G(t—s)w(z,y,t)dW (s)

ot o

principle in (%, Since A generates an analytic semi-group S () on {2 and has only
negative eigen values, we have for a > 0,

S(t) (-A)" = (-A)" S (t) yields [|(=4)* S () ull, < & - [lull,, hence

IS ()]l, < K - ||ujl,. We first show that SiS (t — s) f (U (s) + W4 (s)) ds makes
sense for U (-)+ Wy (+) and thus U () in C ([0, T]; [?). Recalling that w = U+W,,

this follows from the following lemma.
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' Lemma B.3.6. [7, Lemma 1]: Define the mappingF : C ([0, T]; H3) — C ([0, T}]; 1?)
by (F(w)) (t) = ftG(t —8) f (w(s))ds where t € [0,T] and w € C([0,T); H').
TheF is continugus, and it can be extended t a continuous mapping from the space

C ([0,T);12) to C([0,T);1?). Furthermore, the image of the extended mapping is
contained in C ([0,T]; H*) fora € [0,3).

Proof. The continuity of F : C ([0,T}; H}) — C([0,T];[?) is obvious. As for
extending the domain of f let {ww,} € C ([0,T];[?) be arbitrary. Using the above
abbreviations w = V2F and wy; = V2F,, we get f (w) — f (w2) = € (w2 — w) +
9F d(w2—w) Fy—F) wy _ 8F 8(w2—w A(F—-F3) w
B(F,— F)+ £ Awew) | A0-F duy _ 9Rwicw) 4 HF-R) o2 Let g € [0,1) and
consider an arbltrary ¥ € D((—A)*). Then the above 1dent1ty implies
t t

J = <(—A)“w,fG(t— S)f(W(S))dS—fG(t— s) f (w2 (s)) ds)
_ [(G(t-s) (—A)* b, [€ (wp — w) + BAGE) 4 R ) AT 20

oz Oy oz

__9F d(wa—w) + O(F—F3) dwsy
By~ oz oy 82:

t
f J1+J2+J3+J4+J5+J6)d8. Let
0
s)

i =(G(t—3)(~A)" ¥, (€ ( w)] (s))
o2 =(G(t—3)(—A)¥, _Bﬁ—l] (5))
oy =(G(t—s) (—A)"y, [LA2=) (5))
oJi=(G(t-s) (—A)"y, | A9 (5))
oJs = (G (t—5) (~A)" 9, [-L 2] (s))
oJs = (G (t - 5) (—A)* o, | 2508 (s).

and estimate |J;| such that

olil = (G (t = ) (—A)* ¥, € (ws —w))| < £ |G (¢ = 5) (=A)" Yl - |z = wll,
ST (=) 1l - lws = vl

o\l = (Gt~ 5) (~4)*, [BM] ()]

< BlG (=) (~A) vll, - | X52| < BK (=) [, - Jlwa — wll, where

we have used the Poincaré inequality, on et ;z which has 0 mean. Using the
Cauchy-Schwartz inequality [(u,v)| < ||u|| ||v|| we also obtain
o|Js| = \ (t - 5) (~ ), [ 2] (g))

= | ( = 5) (~A4)°§) &, wp — w))

< [(22(G (2 = 5) (~4)" 9) 2, w3 — w)| + [((G (¢ = 5) (—A)* ) £k wa — w)|

< |G = 5) (~ 4" 9) ||z = w+IG (¢ = ) (= A)" Bl | 2] |-z = wl]
As for estimating Ha_D G(t—s)( ) z/))%gll we get

|32 @@~ 9 e 5| < |2 G -5 (-4)9)

ezl
4
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<K[|RGE=5) A0 415 < KNG E=9) (=4 Bl 43 - ol
sxwﬁmw@eaHWMSKwﬂﬂ%Mwwmemw
have used the inequality [|uv|] < ||u|]% ||v||%, the continuity of the mapping
%—1; : H2 — H?, the embedding D ((—A)%H’) H? for arbitrary b > 0, and the
facts that H2 and H' are embedded in /. Furthermore, ||G (t — s) (=A)* 9|, <
KNG (t = ) (=A)* ¥l < K |G (¢ = ) (—4)** (-4)" g

<K (t- s)_(%+b+a) |[¥|| because of the smoother property of the semi-group G

and the embeddings D ((—A)%+b) — H® — [ for arbitrary b > 0. Thus,
o[ 7y < K (t—5) %) L K (¢ — 5) G4yl ]| - fJw — wa
o7y < K (t— 5% L K (¢ — 5) (49 L )l flwg| - Jw — w
o Js < K (t—5)" (%) L k(¢ — ) (B0 |yl ]l - flw — |
o|Js < K (¢ — )7 () L K (¢ — )74 ]| ] - [lw — ]

t
Thus we have |J| < [ (|Ji] + |=2| + |J5] + |Ja] + |J5| + | J6|) ds
0

< —8K+BK‘t1_a'||7/)||'OS<uEt”w(5) - Ws (5)”"'(1 4b—1q pebme g - 2b 20 t:‘%_b_a)'
8

1| - su1<) (lw (8)]| + |lw2 (s)]]) -Os<ug |lw (s) — we (s)|| providing the positive con-
t s<t

stants {a, b} satisfy 0 < a+b < {. This finally implies that

OftG(t—s)f(w(s))—ftG(t—s)f(wz(s))GD(( ) for 0 < a < 7 and
((—A)a)(ftG(t—s)f( fth—s)f ws ( >H
< A e ] sup o (5) — s (3 + (=i - 40 + - thoiee).

1]l - sup (|w (s)l] ; IIwz( ) - sup |lw(s) —w; (s)[|. Especially for a = 0 we
0<s<t . 0<s<t

!wu—@fw@»—ﬂaa—@ﬂw@»\

< (K +BE) -t sup [[w(s) —wa (]| + (25 - 50 4 255 1370) -y

0<s<t
-Osug (lw ()| + Jlwe (s)]]) © sup lw (s) — wa (s)|| for every 0 < b < 1. O
<s<t

<s<t

obtain

Concluding from the above lemma that [tG (t —s) f (U (s)) + Wa (s), consid-
0

ered as a mapping with the argument U () can be extended to a bounded map
from C ([0,77],1? (D)) into itself. To obtain that a unique local solution U (t)
has a unique local solution w (z,y,t) on [0,7), by the Banach contraction map-
ping principle, the solution w (z,y,t) € C ([0,7];1? (D)) as well as w (z,y,t) €
C ([0,7]; H* (D)) for arbitrary a € [0, 3).

Theorem 5.1.10: [7, Theorem 1]: Using (QGAIC), then for the initial condi-
tions considered in this text, there exists a unique global solution to (5.1) when
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w(X)W(X)=w (X)W (2).

Proof. Let U = y?u and V = y7%v Because of the smoothing effect of the sectorial
operator A, and the fact that f is locally Lipschitz in U from H{**'n H2m+D)
to H" N H?>™ for m = {0,1,2}, we conclude that the solution is H* N H*™ for
m = {0,1,2} and hence U is a strong solution. Estimating the norm ||U (¢)]|,
multiply by u and integrate over D to get
2
LA = vf[le —sf U+V)U- Bf(g— MU - [I(u+v,U+V)
D

= —v||vU|? —gf U2+UV Bf(3“U+3vU) '

+ f ( gz %‘;U + g’; ‘Z‘;U - g—;%‘gU + gz ‘?9‘; U) where we have used the fact that
f J (u, F U= f J(v, F)U = 0 via integration by parts. We estimate the right

hand side term by term
—E[(U+VIU<SEQ+L|V|)IUI
D

B[ (% +3)USB[} (27 + 02+ 2% +v?)
D
< BK (JJU* + V1% < BK (|U||> + ||V||?,) where we have used the Poincaré

inequality on g—“ and ‘9” which have 0 mean.

du 8V 8%u du 83U
g‘ 8z Oy wU = f V f (azayUV + 8z By V)
<Vl f a":gyU\ + ] i) |2

< ”V”mg5 (88:8y2 + UQ) +f (QLg: |V||io%%2)

< TVl (143 IIVIIOO)+IIUH +$ IvUl”. Since J b2

D
K SpU?. We also have used the Young inequality to get that (|3%|[|V|l.) |42

2 " ..
= g; V2 + %‘Z—Z , for any real positive number o > 0. Similarly we have

f ol <51Vl (1 + 3 Vo) W01 + U1

[—mavy - f f(a% UV+8v8UV)
D

oz Ay dzdy oz By

2y 2 v a 2
<IVIL (85 +U2)+f(i§; VIE+52°)
< HVI VI + K WV VI + £ VI IVIE + 8 901
<3V I + KIVIE, + £IVIE, + £ 901
v « 2
[ 88U < 3 IVl U + K IVIE, + £ VI + 89Ul
D

Combining these results yields ;6[(!9({“ < (—v+2a) - ||[wU|?

+(EQ+ K|V +BEK + K |[V]l, (1+ 311Vl )+IIVIIOO)-IIUIIQ+BKIIVI|EO+
2K V|2 + 2K ||V||%,. Taking o = v/2, we obtam;alg{“ <A@®)-U @I +B (@)
where A(t) = (EQ+K||V|lo) +BK + K |[V|o, (1+21Vlle) +IIVll) > 0
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and B(t) = 2BK V|2, + 4K ||V, + 8K ||V|, > 0. Hence by the Gron-

A(s)d ¢ A(E)dr
wall inequality we obtain ||U (£)]|* < |lwol? eof g [ B(s) e O 45 where
0

t € (0,T). Note that HJ (D) is embedded in Cy (D), the trajectories of W, (t)
can be uniformly approximate on any finite interval [0,7] by functions V in
C ([0,T); H3 (D)) and D (A) is dense in /2 (D). Thus, the boundedness estimate
is true for any local solution U (¢). This shows that the unique local solution does

not blow up on any finite intervals. O
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Appendix C

Computer code

Although not all of the programs are necessary when implementing a particular
system, the following is intended as a guide for the construction of the algorithms
presented in this text. Allocating code with respect to private and public access
is at the discretion of the programmer.

oThe following C++ ‘header files’ are assumed: stdio.h, iomanip.h, math.h,
iostream.h, fstream.h, stdlib.h, and time.h. If using a different language,
please utilise appropriate header files to ensure similar functionality.

oThe following files are specifically created for numerical implementations and as-
sumed when designing systems: functions.cpp, time.class.cpp, fft.cpp,
vector.cpp, comp.num.cpp, comp.vec.cpp, matrix_3d.cpp, matrix_2d.cpp,
chi_test.cpp, max_min.cpp, random_gen.cpp, path.cpp, square.cpp, and
space.cpp. The last three classes are numerical implementations of the Brownian

path, Brownian sheet, and Brownian space; refer to Propositions C.2.1 - C.2.3.

C.1 Notation

Algorithms have been coded in JAVA and C++, but will be presented in pseudo-
code to utilise the notation of this text and free the reader from a particular

language syntax. Refer to the following examples.

Program C.1.1. The function w(:) is a generic function returning a real value
and the constant char TYPE of w = {‘a’,‘m’,‘g’,‘d’} determines if w(-) is

an additive, multiplicative, general, or 0 functional, respectively.

w (real ﬁ, vector X) : real

{

if TYPE.of w = d then return (0);
if TYPE.of w = a then return (w(X));
if TYPE.of w = m then return (w (X) ﬁ),
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if TYPE.of.w = g then return (w (ﬁ X)) ;
}
Thus in C++, Program C.1.1 could be:
double w_func(double F', double z, double y, double 2)
{ double tempval = 0.0;
if (TYPE_of_w ==’a’)
tempval = 2z +y — 3z % 2;
if (TYPE.of w ==’m’)
tempval = ((2z+y—32x2) % F);
if (TYPE.of_w ==’g’)
tempval = ((2z+y—3z%2)x Fx F - F);

return(tempval); }

Program C.1.2. For an example of a user defined class, the following d = 2

matriz class is dynamically allocated and incremented by Ax.

class matrix.2d
{
double Az, Ay, Ay);
matrix_2d(int Mg, N,; double «, L) %) Constructor function.

{

Az = ﬁ; Ay = A\,Az; A= new vector double [M,];
for j=0 to M, |
{

A; = new vector double [N,];

for k=0 to N,

Ajr = o;

}

if print_it=1 then print "Create matrix._2d";

}

“matrix_2d() %% Destructor function.
{
if print_it=1 then print "Destruct matrix.2d";
for =0 to M,
delete Aj;;
delete A;

}

%% Functions that belong in this class are placed here.
¥
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C.1.1 Constants

The following constants will be utilised and denote integer intn,,, as the max-
imum positive integer that can be expressed on a given computer.

double 7™ = 3.1415926535897932384626433;

double e = 2.7182818284590452353602874;

int char_offset = 304;

int print_it = 0; %% Set to 1 to print results to the screen.

int dec_places = 9; %% The number of decimal places requested when
printing out results. The maximum value is dependent upon the number of sig-
nificant digits being utilised on the computer.

int noise_generations = 1; %% The number of noise generations used to
derive an approximation. Set equal to 1 if a pathwise approximation is required
or a higher number if a non-pathwise approximation is required.

double Az = 1T4,L——1‘3 %% The corresponding Az for M, where z € [0, L].

int Mgmay = 5; %% The ‘roughest’ M, grid considered.

double A = 1.0; %% the hyperbolic CFL condition

double Chyp > 0; %% The speed of propagation

int hyp_STYLE_ of_INIT = 1; %% Allows different initialization schemes to
be utilised when evaluating adjacent points F (zj, At).

int hyp_STYLE.of _SOL = 1; %% Set to 0 if a P approximation is sought or
1 if a approximation is sought over the Dol.

double Ay = A, =1;

double e¢s = 5e-12;

int e_STYLE_of_INIT = 1; %% A variable that allows for different initializa-
tion schemes to be utilised when evaluating the discretised boundary.

int e_STYLE_of_SOL = 2; %% A variable that allows for different FDSy’s to
be utilised: SOR, multigrid, Jacobi, etc.

double ¥ = (2(1+ A2+ )\3))_1; %% The canonical FDSc’s of (3.9) through
(3.11) will be assumed.

double A; = 0.001;

char QGprocess = ‘f’; %% ‘b’ ‘I’ = Designates whether a Friih, Haines and
Holland, or Lee process is being modeled.

int save = 1e7; %% Save [ﬁ ()} and any other required information every
‘save’th time iteration.

int QGruns = 1e10; %% The number of time iterations required before a

model terminates.
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C.1.2 Goodness of fit

Program C.1.3. A test for goodness of fit using a Pearson Chi-square test,

card(Uaz) |ﬁ N_F ]2
20N _ _ | Boas(ei)-Fas(e;)|
where x* (e) = J;l = s (o) .

chi_2_test (matrix_2d Fya,, ﬁm(-); integer M,, N,): real
{
real a=0,x*=0;
for 7=0 to M,
for k=0 to NN,
{

if Fyne (jAT, kAL) #0 then x? = y? 4 [[estiATka-Fas(azkar

Fons(iBu kA1) ;
if Fpns (jAz,kAt) =0 then a = ﬁm (jAz, kAL)| ;

}

if « > Qeriticar then

I2

print "Questionable test:" (x%, c);

return (x?);

C.2 Numerical generation of Brownian spaces

A method for numerically generating a white noise stochastic space is accom-
plished by dividing a domain into mutually exclusive subspaces and generating a
series of mean-zero Gaussian random variables. As standard notation, let | 8
denote « given 3, M (-) denote the Lebesgue measure, and denote the Normal

. : =(s=p)? . .
distribution via fyr(u,02) (s) = \/2;7@ = Mutually exclusive sub-domains, D;,

have independent and stationary increments such that:

oW (0) = 0, W(D;) ~ N (0,9t (D;)), and W (-) is continuous.

oGiven Dy C D; then E(W(D;) | W (D)) = W (Dy), V(W (D;) |

W (Dx)) = M (D; — Di), and C (W (D), W (D)) = I (D; N D).

oE (W (D,)*) = 301 (D;)>.

The initial generation of W (X) given Z4, is a straightforward procedure, while

the refinement of W (X) is not; as demonstrated via the following propositions.

Proposition C.2.1. Assuming a Brownian path, W (z), has been created with
M (D;) = Az; when the path decreases in step size to 9 (Dx) = 52, the stationary
increments of W (D;) ~ N (0,99t (D;)) refine to Wy (D | W (D)) ~ N (w_(;ﬁ, im (Dj)>
and Wy (Dgy1 | W(D;)) = W(D;) — W(Dy), where k = 2j. A possible refinement
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scheme would consist of W (Dx | W(D;)) = W—(QDL) + o and W (Dg41 | W(D;)) =
W—(;-"—) — a; where a ~ N (0, 3901 (D;)).

Proof. Given a Brownian path, derive a second process, W (z), by utilising a
Levy Construction Method conditioned upon the functional values of W(D;).
Hence, E(W; (D¢) | W(D;)) = 224 and V (Dy) = 42, to yield

E(V (W, (D) | W(D;))) = 42 — v (W—Q’L’) = 82 refer to Figure C.1. 0
Wit 0 0 A o 1 D
W(x) ax v D 0, :

Figure C.1: Levy construction: Brownian path and sheet divisions

Proposition C.2.2. Assuming a two-dimensional Brownian sheet has been cre-
ated where D; ;. consists of rectangular shape regions with central differences. In
order to construct the Levy refinement scheme depicted in Figure C.1, let D;y

be the union of the four restricted rectangular regions labeled {Dog,D1,D3,D3}. A

possible refinement scheme would consist of: W (Dg) = sz’—o+%+ﬂl , W(D,) =
W(Dj,k

Wi 5, a W i, a
4 %_ﬂl; W(D2) = "Q;—k)—§+52, W(D3) = L]Z-fl—g—ﬂz; where

Q r~ N (0, im(D]”k)) and ﬂ{l’g} ~ N (0, %m(D]’,k)).

PT‘OOf. Let £ = Do UD; or Dy UD3, a ~ N(O,%ﬂ), and ,3 ~ N(O,%ﬂ)

Due to Martingale properties; V(W (D;x)) = AzAy, V(W(E)) = %ﬂ, and

V(W (Do,0,3)) = 222%. Assuming that W (D, ) is given, use the ergodic drift to
. WD,

yield: E(W(E) [W(0;4)) = ") and v (W(E) | W(D;4))

= V((W(E))) - V(E(E|W (D;))) = 228 V(W(vj,k)) _ dsdy _ asdy _
W

2

8284 Let W(E) = w + a such that E(W(D;)

| W (0sk ) .
A:c4Ay _ VE}A) — A:z:4Ay _ AzSAy — AzSAy_ Hence, W(D]’) _ 52 ta + ,B _ W(Zj,k) +
& 4 8, yielding: W(D,) = "(%#) | a W(Dy) = "0t) L« _ 5 wp,) =
2 , yielding: W(Dg) = =7~ 4+ $4+ 5, WD) = =~ + 5 -5, W(Dy) =
—W(ij”“) — %4 B, and W(D;) = W(I;j'k) - 5= b | O
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Figure C.2: Brownian space divisions

Probosition C.2.3. Assuming a three-dimensional Brownian space has been cre-
ated where D;x; consists of rectangular shape regions with central differences. In
order to construct the Levy refinement scheme depicted in Figure C.2, let D, be
the union of the eight restricted rectangular regions {Dy,--- ,D7}, where each of

the D, 1s adjacent to p;x;. A possible refinement scheme would consist of:

W(DO)ZM+ ¢4+ 84a), WD) = M+ @t b8 g,
W(Dz)=w(°“”)+“ 2+ a, W(Da):MJF%“%l—%
W(D4)=K(Dg’—“) 242 45, WDs) = w—%+%—aa,
W(Ds) = W—(Eé’k—’l) — % —%3+a4, W (D7) = W(Dé“) - - % — Q4 where

o~ N (0,3M(D;.), By ~ N (0, 39(D; k1)), and agi 234y ~ N (0, £I(Dk))-

Proof. Repeat Proposition C.2.1 using the sub-domains {Dp UD; UDy UD3} and
{D4 UD5 UDg UD;}. Then utilise Proposition C.2.2 on each sub-domain. O

C.2.1 Normal random variables

The following pseudo-random number generator algorithms are taken from code
written by Dr. Jessica Gaines. As per her instructions, please do not distribute
and contact University of Edinburgh Department of Mathematics and Statistic if
interested in utilising the following code.

Program C.2.4. The following is a general construction of a user-defined class.

class jrandom
{
jrandom(void) %/ Constructor function.
{ %% Seed the random-number generator with current time
srand( (unsigned)time( NULL));

if print_it=1 then print "Construct jrandom RV functions.";

}

~jrandom() %% Destructor function.
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{ %% Destruct the appropriate objects.
if print_it=1 then print "Destruct jrandom ";

}

%% Functions that belong in this class are placed here.
b

Program C.2.5. Sample random functions.

random;,; ( void ): integer
{ return(rand(-)); }

and

random ( void ): real

{ return (randommt(.) (int,_n}n)); }

Program C.2.6. Returns a uniform random deviate between 0.0 and 1.0. Set
idum to any negative value to initialize or reinitialize the sequence. Uses no

system-supplied routines and shuffles numbers.

ran2(long idum): real
{
integer MJ = 714025, IA =1366, IC = 150889;
long «, Vos,newdum;  integer if f =0;
if (idum <0 or iff =0) then
{
iff=1
if print_it=1 then print "Initializing";
if (idum = (IC — (idum)) %M J < 0) then idum = (— (idum));
for j=1 to 97
idum = (IA (idum) + IC) %M J;  V; = (idum);
idum = (IA (idum) + IC) %M J; o= newdum = idum;
}

j: integer (1+97.0*a);

MJ
if (j > 97 or j < 1) then print "RAN2: Error in j value.";

a=V;; newdum = (IA newdum + IC)%MJ; V;=newdum;
return (MLJ),

}

Program C.2.7. Routine to return a uniform random deuviate between 0.0 and

1.0; set idum to any negative value to initialize or reinitialize the sequence.
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ran3(integer idum): real
{
integer Mp;c = 10°, MSEED = 161803398, MZ = 0;
integer inext,inextp,if f =0;  long mass, mj, mk;
if (idum <0 or iff =0) then
{
iff=1;
if print_it=1 then print "Initializing";
mj = MSEED — (idum);
mj% = Mpre; mass =mj; mk=1;
for o0=1 to 54

{
7= (21 x0)%55; ma; = mk; mk =mj — mk;
if (mk < MZ) then mk+ = Mpq; mj = may;
}
for k=1 to 4
for o=1 to 55
{
ma,— =ma (1 + (0 + 30)%55);
if (ma, < MZ) then ma,+ = Mpjq;
}
mmext = 0; nextp = 31;
) _
if (++inext = 56) then inext = 1;
if (++inexrtp = 56) then inextp = 1;
m] = MAinext — MAinextp
if (mj < MZ) then mj+ = Mpjq;
Ma;nezt = mj;
return (—mL),

Mpic

}

Program C.2.8. Returns a normally distributed deviate with a given mean and

standard deviation.

SlowN (real p,0): real

{

integer iset=0; real gset, fac, r,vi,vs;
if iset = 0 then

{
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while (r > 1.0);
{ vi =2random(-) —1; vy =2random(:)—1; 1 = v2+vZ; }
fac=4/ 13'01709—@; gset=0v; fac + u; iset=1;
return (ovefac+ p);
}
else
{ iset=0; return (gset); }

C.2.2 Brownian sheet code

A d =2 example will be provided where W (D, ;) is the random variable mapped
to (z;,yx) € D;x and W (4, k, 1) is allocated via the scheme depicted in Figure C.1.

Program C.2.9. Class square for the d=2 Brownian Sheet.

class square
real o; integer N,, fringe; matrix_3d W;
square(integer M,, N,; real Az, Ay) % Constructor

{
N, = 4; o= é’%—y;
W = new matrix_3d (M, Ny, N,);
if print_it = 1 then print "Create square";
reset (+);
edge(); %% correction for the adjacent points

}

“square() %k Destructor function.

{

delete W;
if (print_it=1) then print "Destruct square ";

}

%% Functions that belong ‘in this class are placed here.
}s
Program C.2.10. Function to reset the Brownian Sheet.

reset ( void ): void
{
for 7=0 to M,
for k=0 to N,
for [=0 to N,
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W(j,k,1) =SlowN (u,0); %% w=0
%% Now correct for the boundary
for =0 to M,
{
W(5,0,2) =0; W(j,N,—1,0)=0;
W(])O,?’):O’ W(j>Ny_1a1) :O;
}
for k=0 to N,
{
W(0,k,0)=0; W(M,—-1,k1)=0;
W(0,k,3)=0; W(M,-1,k2)=0;

Program C.2.11. Get the value of W (D) as depicted in Figure C.1.

W (D) (integer j, k): real
{
real #=0;
if (-1 <j < M,) then
if (-1 <k < N,) then
for [ =0 to N,
B=B+W(jk1);
return (B);

}

Program C.2.12. Condense the noise as Az — 2Azx. The order of operations
1s VERY important!

condense_noise(matrix_3d W; integer M,,N,; real o) : matrix_3d
{
Mz:1+1‘—§1; Ny:1+%; o=20;
edge(); %% correction for the adjacent points
W(0,0,1) =W(0,0,1) + W(0,1,2) + W (1,1, 3) + W(1,0,0);
for k=1 to N, -1
{
W(0,k,2) = W(0,2k,2) +W(0,2k — 1,1) + W(1,2k — 1,0) + W (1, 2k, 3);
W(0,k,1) =W(0,2k, 1)+ W(0,2k +1,2) + W(1,2k + 1,3) + W (1, 2k,0);
}
W(0,N, —1,2) =W(0,2(N, - 1),2) + W(0,2(N, — 1) — 1,1)
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+W(1,2(N, —1)-1,0) + W(1,2(N, — 1),3);
for =1 to M, -1
{
W(35,0,0) =W(24,0,0) + W(25 —1,0,1) + W(25 — 1,1,2) + W (25,1, 3);
W(5,0,1) =W(245,0,1) + W(25,1,2) + W(25 +1,1,3) + W(25 + 1,0,0);
) ‘ .
W(M, -1,0,0)=W(2(M,-1),0,00+W(2(M,—-1)—-1,0,1)
+W(2(M,-1)-1,1,2) + W(2(M, - 1),1,3);
for =1 to M, —1
for k=1 to Ny -1
{
W (j, k,3) = W(2j,2k,3) + W(2j,2k — 1,0)
+W(25 —1,2k—1,1) + W(25 — 1, 2k,2);
W (4,k,0) = W(2j,2k,0) + W(2j — 1,2k,1)
+W(2j —1,2k+1,2) + W(24,2k + 1, 3);
W (j,k,2) = W(27,2k,2) + W(24,2k — 1,1)
+W (25 +1,2k—1,0) + W(25 + 1,2k, 3);
W(j,k,1) =W(24,2k,1) + W(2j,2k + 1,2)
+W(2j +1,2k+1,3) + W(25 + 1,2k,0);
}
for j=1to M, —1
{ |
Wi, N, —1,2) =W(2j5,2(N, —1),2) + W(25,2(N, — 1) - 1,1)
+W(25+1,2(Ny,—1)- 1,00+ W (25 +1,2(N, —1),3);

W(j, Ny —1,3) = W(25,2 (N, ),3)+W(2J, (Ny—l) —1,0)
+W(2j—1,2(N—1)—11)+W(2] 2 (N, —1),2);
}
for k=1 to N, -1
{

W(M, —1,k,00=W(2(M, —1),2k,0) + W (2 (M, — 1) — 1,2k,1)
+WEeReM-1)-1,2k+1,2)+W(2(M,—-1),2k+1,3);
W(M, —1,k,3) =W(2(M, —1),2k,3) + W(2 (M, —1),2k —1,0))
+W(2(M;~1)-1,2k-1,1) + W(2 (M, — 1) — 1,2k,2);
}
W(M -1,N,—-1,3) =W(2 (M, —-1),2(N, — 1),3)
WM —-1),2(N,—-1)- 1,00+ W(2(M,—-1)—-1,2(N, —1),2)
W(2 (M —1)-1,2(N, —1) - 1,1);
for =0 to M,
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{
W(5,0,2) =0; W(j, Ny, —1,0) =0;
W(]’OaB)ZO’ W(j7Ny_171):0;
}
for k=0 to N,
{
W(0,k,0)=0;, W(M,—-1,k1)=0;
W(0,k,3)=0; W(M,—1,k2)=0;
}

return (W);

}

Program C.2.13. Ezpand the Brownian Sheet from 2Ax — Ax as depicted in
Proposition C.2.2.

expand noise(matrix_3d W; integer M;, N,; real 0): matrix_3d
{
real a,b,c,B3,09; matrix3d W,, hold;
edge(); %% If doing a blow up
My=2M,-1)+1; N,=2(N,—-1)+1;
o= 02 = 555
W, = new matrix_3d(Mg, N,, N,); %% new noise grid
for =2 to M, —1 %% Add 2 to j with each iteration
for k=2 to Ny, —1, %k Add 2 to k with each iteration
{ .
B=1W(L,50); a=1iS10wN(0,0);
b=8lowN (0,02); c¢=SlowN (0,0,);
W2 G-Lk+1,2)=8—-a+c;
W, (j,k+1,3)=8—-a—c;
Wy (j—1,k,1)=8+a—b;
W, (4,k,0) =8+ a+b;
B=1iW(LE1); a=1S1owN(0,0);
b=SlowN (0,02); ¢ =SlowN (0,07);
W, (j,k+1,2)=F—a+c;
»(J+1,k+1,3)=8-a—c;
W, (j+1,k,00)=8+a+0b;
W, (j,k,1) = B+a—b;

g .

2.0°

B=1W(L,%2); a=1s10wN (0,0) ;
b=SlowN (0,03); c¢=SlowN (0,02);
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Wz(j-i-lk;?)) B—a-—c;
(j+lk ,0)=8+a+b;
(U, k ) B+a—b;
(4, k, 2) B—a+c;
=1W(L,£3); a = 381lowN (0,0);
b=SlowN (0,02); ¢ =SlowN (0,0);
Wg(j,k— )=6+a+b;
Wy (j—1,k—-1,1)=8+a~b;
W, (5 — 1k2) B—a+c;
W, (7,k,3) =8 —a —c;
}
for =2 to M, —1 %% Add 2 to j with each iteration
{ .
B = iW(%,0,0); a= %Slow/\/"(O, o);
b=SlowN (0,02); ¢=SlowN (0,03);
Wz('—112)—ﬁ—a+c;

W,
W,
W,

‘Q

W, (4,1,3)=8—-a—c;
W, (j—1,0,1)=8+a—b;
W, (4,0,0) = B+a+b
B=1w(L,0,1); = 2SlowN (0,0);
b=SlowN (0,02); ¢ =SlowN (0,07);
Wz(j,1,2)=ﬂ—a+c;

Wy (j+1,1,3)=8-a—c;
W, (j+1,0,0) =8+a+b;
W, (5,0,1) = 8+ a — b;
B = %W(%,%F,Q); = 1SlowN (0,0);
b=S8lowN (0,07); c= Slow./\f(O, 02);
Wz(j+1N—13):ﬂ—a,—c;
W, (j+1,N,—1—1,0) =B +a+b;
(4, N, 1—11) B+a—b;
(4, N, 2)=B—a+c;
B = 1W(1 N2_1,3); a = 3S1owN (0,0);
b= SlowN (O, 02); ¢ =SlowN (0,02);

??

Wz(j,N — )—ﬂ+a+b;
(]—1N 2,1)=pF+a—-1b;

W, (5 — 12) B—a+c;

W (4, N, )—ﬂ—a—c;
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for k=2 to Ny—1 %% Add 2 to k with each

{

B=1iW(M¥==L £ 0); a=1SlowN (0,0);

b=8lowN (0,02); ¢ =SlowN (0,09);
W, (M, —2,k+1,2)=F—a+c;

(M, -1,k+1,3)=F—a—c;
W, (M, — 2,k,1)=8+a—b;
W, (M, — 1,k,0) =8 +a+b;
B—-IW(O,S, 1);  a=31SlowN (0,0);
b=SlowN (0,02); c¢=SlowN (0,0,);
W, (0,k+1,2) =8—-a+c;

2 (1,k+1,3)=8—-a—c;
W, (1,k,0) = B+ a+b;
WQ(Okl): B+a—b;
B=1W(0,%2); a=3SlowN (0,0);
b—Slow (0,09); ¢ =SlowN (0,09);
W2(1k3)=ﬁ a-—c;

W, (1,k—1,0) =5 +a+b;
WQ( , ) ,8+a—
W2(0k2) —a+C,

B=1W(Ma=l £ 3},  q=1510wN(0,0);

)2

b= Slow./\/ (0,02); ¢ =SlowN (0,0);
WQ(M—lk—l,O):ﬂ+a+b;
Wy, (M, -1-1,k—-1,1)=8+a—b;
Wy (M, —1-1,k,2)=8—a+c;
W, (M, 1k3) B—a-—c;
}
B=1W(¥=10,0); a=3SlowN (0,0);
b=S8lowN (0,03); c¢=SlowN (0,07);
WQ(M -1-1,1,2)=pF—-a+c;
W, (M, 1,1,3) B—a—c;
WQ( 1-1,0,1)=8+a-0b;
W, (M. 100) B+ a+b;
B = iW(0,0, 1);  a=3SlowN (0,0);
b =SlowN (0,00); c¢=SlowN (0,0);
W, (0,1,2) =8 —a+c;
W, (1,1,3) =6 —a—c;
W, (1,0,0) =5+ a+b;

170

iteration



W, (0,0,1) = 8 +a — b;
B = iw(o,ﬂ;,g); a = 1S1owN (0,0);

b=SlowN (0,03); ¢ =SlowN (0,05);
W, (1,Ny,-1,3)=8—a—c;

W, (1, N, —2,0) = +a+b;
W, (0, N, — 2,1) = +a—b;
W, (0, N, —1,2)=F—a+c;
B=1W M@{—l,ﬂéﬁl,B ;  a=3SlowN (0,0);

b=SlowN (0,02); ¢=SlowN (0,07);
Wy (My —1,Ny, —1-1,0) =B+ a-+b;
W, (M, —1-1,N,—1-1,1)=B+a—b;
W, (M —1-1,Ny—1,2)=B—-a+c;
Wy (M, —1,Ny,—1,3)=F—-a—c;

hold = W; W =W;; W, = hold;
delete Ws;

}

return (W);

}

Program C.2.14. Save a Brownian Sheet for later use.

void save_file( matrix.3d W; integer o): file
{

integer ones= 0%10;

integer tens = ((o-ones)/10)%10;

integer hundreds = (o-ones-tens+*10)/100;

char (hundreds+char_offset) ;

char A

char B = char(tens +char_offset);

char (ones +char_offset);

char C
open print_file(’s’,’q’, A, B, C, ’.’,’t’,’x’,’t’);‘
for j=0 to M,
for k=0 to N,
for =0 to N,
print_file, setprecision(dec.places), W(j, k,{);

close print._file;

}

Program C.2.15. Qutput a Brownian sheet for a Maple plot.
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maple_print_file(matrix_3d W; integer o, num): file
integer ones= 0%10;
integer tens = ((o-ones)/10)%10;

integer hundreds = (o-ones-tens*10)/100;

char A = char(hundreds+char_offset);

char B = char(tens +char_offset);

char C = char(ones +char_offset);

open print_file(’m’,’a’,’p’,’s’, A, B, C, ’.’,’m’,’w’,’s’);

ones= num%410;
tens = ((num-ones)/10)%10;
B
C
print_file "A"BC":=[[ ";
for k=Ny,—1to 0
{

for =0 to M, -1

print_file,setprecision(dec_places), W(D)(j, k)", ";

print_file, setprecision(dec_places), W(D) (M, —1,k) " 1,[ ";
t
for 7=0 to M, -1

print_file, setprecision(dec_places), W (D) (4,0) ", ";
print_file, setprecision(dec_places), W(D) (M, —1,0) " 11:";

char (tens +char_offset);

char (ones +char_offset);

close print_file;

}

Program C.2.16. Get a Brownian sheet for further manipulation.

get_file(matrix_3d W; integer o): matrix_3d
{

real 8 =20;

integer ones= 07%10;

integer tens = ((o-ones)/10)%10;

integer hundreds = (o-ones-tens*10)/100;

char A = char(hundreds+char_offset);
char B = char(tens +char_offset);
char C = char(ones +char_offset);

if print_it=1 then print "Make sure that sq###.txt contains data.";
open in_file(’s’,’q’,A, B, C, ’.°,’t’,’x’,’t?);
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for j=0 to M,
for k=0 to N,
for [=0 to N,
{
in_file >> f;
W(j,k,1) = B;
) ,

close in_file;

C.2.3 Rhombic W (D) discretisations

The following Brownian sheet applies to the FDS of Chapter 2 and utilised the
notation of the previous Section. The sub-domains are divided via the scheme

depicted in Figure C.3.

Figure C.3: Brownian sheet allocation

Program C.2.17. Brownian sheet used for the hyperbolic problem.

class h_rhombic

{

real o; integer N,; matrix_3d W;
h_rhombic(integer M, N,; real Az,Ay) %) Constructor

{

N, =2; o=,/8%0,
W = new matrix_3d (Mg, Ny, N,);
reset (-);

if print_it =1 then print "Create h_rhombic";
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“h_rhombic() %% Destructor function
delete W;
if print_it=1 then print "Destruct h_rhombic";

}

Program C.2.18. Initialize the Brownian sheet.

reset ( void ): void
{
for 7=0 to M,
for k=0 to N,
for [=0 to N,
W (4, k,1) = SlowN (n,0); %h u=0
for =0 to M,
W (3,0,0) = 2309,
for k=0 to N,
{
W(0,k,1) = W(Oz,k,l);
W(M, - 1,k,1) = ZMabhl)
W(M, —1,k,0) =0;
}

}

Program C.2.19. Retrieve W (D).

W (D) (integer j, k): real

{
real §=0;
if ((-1<j<M;) and (—1<k < Ny)) then
{
if j#0 then S=W(j —1,Y,0);
if k#0 then f=08+W(j,k—1,1);
}
return (8);
}

Program C.2.20. Condense the grid from Az — 2Az.
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condense noise(matrix_3d W; integer M,,N,; real o): matrix 3d

{
o =20; M$=M52_—1+1; Ny:&’z_—l+1;
for =0 to M,
for k=0 to N,
{
W (j,k,0) = W(D) (25 + 1,2k);
W(j,k,1) =W(D) (24,2k + 1);
}
}

Program C.2.21. Ezpand the grid from 20z — Az.

expand noise(matrix_.3d W; integer M., N,; real o): matrix_ 3d

{ |
My,=2(M,-1)+1; Ny=2(N,—1)+1; o=%;
for 7=0 to M,
for k=0 to N,
{
W (27, 2k,0) = SlowN (0,0);
W (27 + 1,2k,0) = SlowN (0,0);
W (25 +1,2k,1) = SlowN (0,0);
W(25 + 1,2k —1,1) = W (4, k,0) — W (27, 2k, 0)
~W (2] + 1,2k, 0) — W(2j + 1, 2k, 1);
W (25 — 1,2k + 1,0) = SlowN (0,0);
W (24, 2k, 1) = SlowN (0,0);
W (27,2k + 1,0) = SlowN (0,0);
W(25,2k+1,1) = W(j,k, 1) — W(2j — 1,2k + 1,0)
~W (24,2k,1) — W(24,2k + 1,0);
}
}

C.2.4 Unit point source

Program C.2.22. Introduce a unit point source to a two dimensional plane.

delta(matrix_-3d W; integer j,k): void

{

reset (0); %% reset the sheet to 0
W(j,k0)=025;  W(j k1) =0.25;
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W (4, k,2) = 0.25; W (4, k,3) = 0.25;
}

Program C.2.23. Introduce a unit point source to rhombic discretisation.

void delta(integer j,k)

{
reset (0); %% reset the sheet to 0
W(,k—1,1)=1;

C.3 A priori initialization methods

C.3.1 Symmetry considerations

Program C.3.1. This is a sub-optimal program listing the orientations and the
arrangement of points necessary to derive an estimate. To aid readability, let

w (4, k) = w(jAz, kAy) and assume v (-) = 0.

real pt_eval(matrix_2d F(.),G; square W; integer orientation)
{
real num =0, den =0;
if (orientation=0) then
{
for k=1 to N, -2
{ num=num+ F(0,k)G(1,k)+F (M, —1,k)G (M, —2,k);
den =den+G (1,k) + G (M, — 2,k); }
for =1 to M, —2
{ num=num+F(,0)G(G,1)+F (4N, -1)G (N, —2);
G (7, Ny ;

den=den+G(j,1)+G(G,N,—-2); }
num:%; den = 0;

for j=1 to M, —2
for k=1 to Ny -2
den = den + w (j, k) W (D) (j, k) G (j, k);
num = num + den;

}

else if (orientation=1) then

{

for k=1 to N, -2
{  num=nun+F kN, - 1)G(1,k) + F (k,0)G (M, — 2,k);
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den =den+G (1,k) + G (M, — 2,k); }
for =1 to M, —2
{ num=num+F(O,N,-1-3)G(j1)
+F (M, —1,N,—1—5)G (j,N, — 2);
den=den+@(j,l)+@(j,Ny—2); }
nun = §&8;  den = 0
for k=(N,—1) to 1
for j=1 to M, —2
den = den + w (N, — k,7) W(D) (N, — k,5) G (j, k);
num = num + den;

}

else if (orientation=2) then
{
for k=1 to Ny —2
num = nun + F (M, — 1,N, —1 - k) G (1, k)
+F(O0,N, —1- k)G (M, —2,k);
den=den+ G (1,k) + G (M, — 2,k); }
for =1 to M, —2
{ nm=num+F(M,—1-jN,—-1)G(j,1)
+F(My—1-30)G(j,N, —2);
den=den+G(j,1)+G(,N,-2); }
num:%g—rg; den = 0;
for j=(M;—1) to 1
for k=(N,—1) to 1
den = den + w (M, — j, N, — k) W(D) (M, — j, N, — k) G (j, k);
num = num + den;
else if (orientation=3) then
{
for k=1 to N, —2
{ num=num+ F (M, —1-k0)G(1,k)
+F (My—1—k,N, —1)G (M, — 2,k);
~den=den+G(1,k)+G (M, —2,k); }
for j=1 to M, —2
{ nun=num+F (M, -1,7)G3,1)+F(0,5)G(j,N, —2);
den:den+@(j,1)+@(j,Ny—2); }
nung—g%; den = 0;
for k=1 to Ny —2
for j=(M,—-1) to 1
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den = den + w (k, M, — j) W (D) (k, My — §) G (j, k);
num = num + den;

}

else if (orientation=4) then
{
for k=1 to N, -2
{ num=num+F (M, —1,k)G(1,k) + F(0,k) G (M, — 2,k);
den =den+ G (1,k) + G (M, —2,k); }
for =1 to M, -2
{ num:num+ﬁ(Mx—1—j,O)CA?(j,1)
+F(M,—1-35N,—1)G(j,N, - 2);
den=den+@(j,1)+@(j,Ny—-2); }
nunge@; den = (;
for j=(M;—1) to 1
for k=1 to N, -2
den = den + w (M, — j, k) W(D) (M, — 5, k) G (j, k);
num = num + den;

}

else if (orientation=5) then
{
for k=1 to Ny, -2
{ num=nun+F(k0)G(1,k)+F(k,N,—1)G (M, — 2,k);
den =den+ G (1,k) + G (M, — 2,k); }
for j=1 to M, —2
{ num=nun+F(0,5)G (1) +F (M. - 1,5) G (5, N, — 2);
den=den+G (j,1)+G(j,N, - 2); } ’
nmz%; den = (;
for k=1 to Ny, -2
for j=1 to M, -2
den = den + w (k, ) W(D) (k, 1) G (G, k);
num = num + den;

}

else if (orientation=6) then
{
for k=1 to N, -2
{ num:num+ﬁ(0,Ny—1—k)@(l,k)
+F (M, —1,N, —1-k) G (M, — 2,k);
den =den+ G (1,k) + G (M, — 2,k); }

y QY
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for j=1 to M, -2
{ num=num+F(5,N,—-1)G (1) + F(5,0)G (j,N, - 2);
den=den+G(j,1)+G(,N, - 2); }
nmn:g—g%; den =0;
for j=1to M, -2
for k= (Ny,—1) to 1
den = den + w (j, N, — k) W(D) (j,Ny—lc)@(j,k);
num = num + den;

}

else if (orientation=7) then
{
for k=1 to N, -2
{ num:num+ﬁ(Mz—l—k,Ny—l)@’(l,k)
+F (M, —1-k0)G (M, —2,k);
den =den+ G (1,k) + G (M, — 2,k); }
for j=1 to M, -2
{ num=num+l/5(Mz——1,Ny-1~j)@(j,1)
+F(O0,N,—1-5)G(,N, —2);
den=den+G (,1)+G(,N,-2); }
nungg—uﬂ; den = 0;
for k=(N,—1) to 1
for j=(M;—1) to 1
den = den + w (N, — k, M, — j) W(D) (N, — k, My — j) G (j, k);
num = num + den;

}

return(num) ;

C.3.2 Blow-up method

The following programs will utilise a simplistic version of the Blow-up method.

When implementing this method, one should correct for points ‘close to the

boundary’ and then normalize the influence vector by dividing by Gn (X;; X;).

The size of the influence vector can also be adjusted depending upon the domain

and nature of the driving noise.

Program C.3.2. Ezample function used for the elliptic Z? grid where G (4, k; 7, k)
is approzimated using the FDSc (8.10).
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blow_up 5p (integer M,): real

{

if M, = 3 then return(1.0);
if M, = 5 then return(1.5);
else return (1.5 + 0.45 (logs (M) — 2));

}

Program C.3.3. Gy (Xj; X;) is estimated and then Corollary 3.2.17 is utilised
to create a vector of G (+) values where: G, =Gy (7,k; 7, k) —AGy (4, k; 7 — o,k).

void set_influence (integer M,) : vector

{

Gn (X;; X;) = blowup5p (M,);

G = vector [li-adius];

Go = G (X;3 X;);

Gi =Gy —1.00000; G,=G,—045352; G;=Gy— 0.26760;
Gi=G5—0.18685; Gs=Gy4—0.14364; G¢= G5 — 0.11685;
Gr=Ge~0.09859; Gs =G, —0.08529; Go = Gg — 0.07517;

G =Gy —0.06722; G = Gio — 0.060780; continue ---;
for ]: O to li.adius, ++j
if G, <0 then G, =0;

}

Program C.3.4. Using the radiation principle, only points within a restricted
neighborhood will be considered. A spline function, trapezoidal method, or some
other approximation technique can be used to interpolate élz (o) when a € (nAz,n + 1Az).

real Ginfluence (real oo ) : real
{
integer base = integer (Z);
if (base < I} ) then return (@base);

radius
else return(0);

}

C;3.3 (/?a method

Regardless of the magnitude of Az, distances in a uniform Z¢ are traversed us-
ing an ! norm since paths occur on jumps parallel to an axis. For example, a
particle traveling the diagonal of the R? rectangular domain of Figure 1.3 would
cover a distance of \/m, while a particle in a uniform Z? travels a distance
of |a} + |B]. Since multiple paths of the same [! distance can be constructed in
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¢ (X))
Qpath (6,4,3,0,0)

Figure C.4: Minimum [! distance paths for domains

a uniform Z¢ ideally, every conceivable path over every distance is accounted
for when constructing a numerical approximation. Although impractical for nu-
merical evaluations due to the infinite number of distinct paths for even trivial
domains, Program C.3.6 determines the number of minimum distance ! paths

between two uniform Z¢ points; refer to Figure C.4.

Remark C.3.5. In order to implement a ||X,Y||;¢ method, utilise | X,Y|;* in
place of Q(X;Y) in the following algorithms.

Program C.3.6. A recursive function that determines the number of minimum
distance I* paths in a restricted conver sub-domain between two uniform Z% points

(Zay Yo, 2ar tp) and (Zatis Ystms Zatn, ta+o), where {a,b, a, B} are integers.

function Qpath (integer [, m, n, o, sum) : integer
{
l=|ll, m=|m|, n=|n|, o=]|o|; integer branch =0;
% If all counters are 0 but one, then only one Z' path.
If {{+m+n+o0)=max(l,m,n,0)} then branch =1;
else
{ % Recursive calls to cover the different branching paths
If [ > 0 then branch = branch + Qpath(l—1, m, n, o, sum);
If m > 0 then branch = branch + Qpath(l, m —1, n, o, sum);
If n > 0 then branch = branch + Qpath(l, m, n—1, o, sum);
If o> 0 then branch = branch + Qpath(l, m, n, o—1, sum);

}

return (sum + branch);
}
oIf d = 1, then there is only one path between z; and zx such that Qpath (-) = 1.
olf d = 2, then the number of paths between (z;,yx) and (Zj4i, Yk+m) is alge-
braically reduced to Qpath ({,m,0,0,0) = (;*™) = (4™).

m
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oIf d > 2 then the number of paths between X; and X experiences geometric
growth. For example, when d = 3: Qpath(1,1,1,0,0) = 6, Qpath (1,2,3,0,0) =
60, Qpath (2, 2,2,0,0) = 90, and Qpath (3, 3,3,0,0) = 1680.

Program C.3.7. A éﬁ function which is not corrected for the number of adja-
cent points. If ||-|l; < O (Az) (50Azx), then an ezact calculation is recommended,
otherwise an approrimation is highly recommended. When Ax # Ay # Az # At

a weighting scheme for ¥ can be implemented.

éa (integer j, k, 1, m, n, o; real ¥): real

{
integer aa=|j—m|+ |k —n|+|l—o|; %% the !' norm
return (9* x Qpath (|j —m|, |k —nl|,|l —o|,0,0));

}

Program C.3.8. This is a simplistic realisation of the éa where the Qpath Pro-
gram C.3.6 has been replaced by an equivalent binomial coefficient. An adjustment

for adjacent points are included given a square domain is assumed.

real GQ( integer j,k,m,mn, card (Pagjacent)) :© real

{
real a=0; integer o,counter;
o=1j—m|+|k—n|; counter =min(|j —m|,|k—n|);

0‘2+Card(9adjacent)
counter

if 0< 50 then oo = ¥° ; %% exact calculation

0—2+card( p, g5 t i .
else o =1° (wunter (Pococen )) ; %% approximation

return (a);

}

Program C.3.9. A simple implementation on a rectangular domain.

matrix2d C/r'a( matrix2d F) : matrix2d

{

for k=1 to N, —2, ++k
for j=1 to M;—1, ++j

—~

F; = DET (j,k) + 5TO (j, k);
}

Program C.3.10. This program approzimates values of Y H (X) Fis (X) using
50

the GQ () results and to estimate H (X).
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real ﬁ(integer J,K; real Fygs(-)) : real

{
real =0, num =0, den=0;
for =1 to M, —2, ++j
{ —
B8=GQ(J,K,j0,9,1);
den =den+ 3; num= num+ BFy (7,0);
8 =GQ(J,K,j,N, —1,9,1);
den = den + 8; num:num+ﬁﬁw (5, Ny — 1);
¥
for k=1 to Ny, —2, ++k
{ —
B8=GQ(J,K,0,k,9,1);
den = den + ; num = num + BFy (0,k);
B=Gu(J,K, M, —1,k,9,1);
den = den + (; num:num-l—ﬁﬁw (M, - 1,k));
}
if (|num| < 0.00001) then return (0);
else return(% :
}

Program C.3.11. This program approzimates values of@ using the C/?a (+) re-

sults and derives an estimate for the functionals of the system.

real S/T?)(integer J,K) : real
{
real =0, num=0;
for =1 to M, —2, ++j
for k=1 to N, —2, ++k
{ —~
8 =GQ(J,K,jk,9);
if (j#J or k# K) then
num = num + § (v (jAz, kAy) M (D) + w (jAz, kAy) W(D) (5, k));

return(@ (J,K; J,K)v (U (ﬁ (), JAz, KAy) 90 (D)
+w (JAz, KAy) W(D) (J, K)) + A,Ynum)
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C.3.4 GPS method

Program C.3.12. This is a sub-optimal program showing the orientation of
points with respect to the discretised Green’s function. A method for estimating

the influence from the driving functionals {v (:),w (:)} is omitted.

void 8GPS(matrix_2d [ﬁ] , [@], square [W]) : matrix_2d

real num=0; real den=0;
for j=1 to M, —2, ++j
for k=1 to Ny, —2, ++k
{ ~ ~
num = G (po; J, k) F (po); %% orientation=0
den = G (o; J, k)

num = num + G (po; Ny — k,5) F (p1); %% orientation=1

den = den—l-G(goo, j)

nun = nun + G (po; M. — k) F (ps); %% orientation=2
den=den+G(5o —k);

num = num + G (gpo; k ) F (ps3); %% orientation=3

den = den + G (po; k -7)

num = num + G (po; My — j, k) F (ps); %% orientation=4

den = den+G(5o j,k)

num = num + G (go; k ) F (ps); %% orientation=5

den = den + G (po; k, ) ;

num = num + G(po,j, — k) F (pg); %% orientation=6

den = den + G (po; 4, Ny — k) ;

num = num + G (po; N k M, — j) F (p7); %% orientation=7
den = den + G (po; N, — k, My — j);

Fy,k=%+{Gw<>, ()m@),w(-)ww)(-)};

}
return ([13]) ;
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Appendix D

Figures

Although the numerical work to verify the results of this chapter have involved
uniform Z? with a few billion interior points, in order to show visible changes,

only rough domains will be presented.

D.1 Hyperbolic system

Figures D.1 through D.6 represent a numerical refinement of a uniform Z? rectan-
gular domain (z,t) € {[0,1] x [0, 1]} where $2 (F (z,t),1) = F (z,t)+2F (=, 1) %,
F (z,0) = sin (2nx + 27t) = sin (27z), and M%f—’tl lt=o= 27 cos (2mrzx). Using the
513 x 257 numerical approximation of the process as the ‘numerical solution,’
Table D.1 gives a quick comparison of the different numerical refinements where
x? (¢) is a standard Pearson’s chi-square statistic and max (eg) is the maximum
global error taken over the Dol. Since the chi-square statistic yields a p-value
of approximately 1, this indicates that even rough Z2, approximations are good

approximations to the numerical solution.

Grid Size x2 (e) max (eg)
(513 x 257) | O 0

(257 x 129) | 0.00123126 | 0.0254

(129 x 65) | 0.00368544 | 0.05111
(65 x 33) 0.00863931 | 0.1013
(
(
(

33 x 17) | 0.0192065 | 0.2574
17x9) | 0.044964 | 0.577
9 x 5) 0.120365 | 1.155

Table D.1: Z%, comparisons
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