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Chapter 1 

Introduction 

In principle the accurate solution of the governing equations with 

appropriate boundary and initial conditions will reveal all required 

information in any particular problem. However, the equations of 

motion are so complex that only rarely can exact solutions be found, 

and any method of approximation of the equations requires first an 

understanding of the broad, general, physical principles with which 

any approximation must be consistent. [53, page 22] 

physical 
system process phenomena 

finite set 01 equations 

r computer model 
'real world' problem 

d  fl  

mathematical description1  

[ FD5c 
5domain 

PDE's waves gravity, weather 
F05y initial c onditions 

zu 

Figure 1.1: Levels of abstraction for physical problems 

The definitions of 'equation' and 'space' are taken in the usual sense and given a 

'physical phenomena' that one wishes to investigate: 

A 'process' is a mathematical description of the phenomena that involves partial 

differential equations and the initial conditions necessary to 'solve' the problem. 

A 'system' is a finite set of simultaneous equations and initial conditions that 

are used to model a process. The implementation and/or solution of this system 

will be called a 'numerical evaluation,' 'approximation,' or 'estimate.' 

A partial differential equation, PDE, expresses the relationship between a func-

tion and its derivatives with respect to different state variables over a contin-

uous space. When using PDE's, improvements can be made by adding non-

deterministic (stochastic) elements to the equations to account for the seemingly 

random fluctuations between a 'good' deterministic model and the phenomena 

the process is describing. These fluctuations are due to the circumstances that: 
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*There generally is a measurement error in any mechanical device. 

.There is incomplete or non-exact information about the initial conditions. 

*Numerical methods utilise a finite number of decimal places, thus initial condi-

tions and subsequent iterations introduce round off errors. 

*Processes are often a truncation or idealization of a phenomenon that might 

utilise incomplete theory or disregard necessary variables. 

The stochastic partial differential equations, SPDE's, considered in this text 

are interpreted in the Walsh distribution valued stochastic process sense using 

a standard Brownian sheet; refer to [60, Chapter 21. SPDE's interpreted using 

a Kondratiev space or a nuclear covariance will not be considered; refer to [34, 

Chapter 1], [41], and [60]. As per standard notation, 'pathwise' solutions are 

dependent upon a single generation of a stochastic space, while 'non-pathwise' 

solutions are dependent upon the statistical properties of a stochastic space. As 

discussed in [2], when initial conditions are imposed on a process where a solution 

exists, is unique, and depends continuously on the data; then the initial conditions 

and process will be labeled 'well posed.' Given a well posed problem: 

F (.) denotes a 'solution' that identically satisfies a process on an a priori domain 

and F (.) denotes a numerical approximation to F (.). One can assume without 

loss of generality that {l, F, PI is common for both a process and system. 

*The second order quasi-linear SPDE's of Chapters 2 - 4 can be expressed as: 

52F(x,y,z) 	
b 
 52F(x,y,z) 

 + 3
2F(x,y,z) 	O2F(x,y,z) 	52F(x,y,z) 

a 	+ 	 c 
52x 	SxDy 	52Y 	192Z   + 	

+ r DxSz 
52F(x,y,z) 

= g (F' (x, y, z) , F (x, y, z) ,x, y, z, W (x, y, Z)) 

(1.1) 

where one of the coordinates can be utilised as time. Specific importance is placed 

on the two dimensional form of (1.1): 

52F(x,y) +bS2F(x,y) 	32F(x,y) 
a 	

DxOy +C 

( SF(x,y) SF(xY)F(Xy)Xy(Xy)) 	(1.2) =g 	
' ay 

with characteristic functions, 6 (x, y) and (x, y), being solutions to the DE: 

- -- 
dx 2a 

(b+ yb2  _4ac). -  (1.3) 

(1.2) is classified with respect to the discriminant, a = b2  - 4ac, such that F (x, y) 

is 'elliptic' if a < 0, 'hyperbolic' if a > 0, and 'parabolic' if a = 0. Thus, solutions 

to (1.3) are (real valued/complex conjugate) in (hyperbolic/elliptic) processes. 
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*The Quasi- GeostrophicSPDE's of Chapter 5 can be expressed as: 

Q(X) 
+ J (F (X), Q (X)) = v ( 2F (X) , F (X) , x) + w (X) J,j7  (X) (1.4) 

at 

where X = (x, y, z, t), 72  is the Laplacian operator of Notation 3.1.1, J (•) is the 

Jacobian of Notation 5.1.1, and Q (.) is a functional of 72F (.); refer to (5.2). 

Various methods have been developed to solve these processes in closed form, 

but often the solutions involve complicated mathematical devices and/or trivial 

circumstances. In discretising a process, systems redefine and simplify the prob-

lem by transforming an equation of continuous change into a finite number of 

equations and unknowns. Thus, numerical approximations are often necessary 

when modeling a process with non-trivial conditions, since: 

*One is confronted with having to evaluate and possibly solve partial differential 

equations where closed form solutions can rarely be identified. 

*Even when closed form solutions exist, often their computational demands dras-

tically outweigh the demands of an acceptable numerical evaluation. 

Assuming numerical evaluations will be performed; estimates involving SPDE's 

aid a researcher by providing easily controlled 'realistic' models for experimenta-

tion. These models allow one to test theories, obtain information on phenomena 

that might not be readily available, and provide a non-invasive means of collecting 

data as compared to physical models involving intrusive measuring devices. 

1.1 Background and notation 

Chapter. Section. Number 
Equation (Chapter. Number) 
Reference [Bibliography Number, Loation] 

A summary of variables can be found in Appendix A with selected proofs listed 

in Appendix B, algorithms in Appendix C, and figures in Appendix D. The fol-

lowing notation will apply throughout the thesis and notation will be omitted if 

it does not clarify the problem or detracts from the discussion: 

.{a, /31  a, b, c, r, s} denote real variables and {j, k, 1, m, n, o} denote integer count-

ing variables. i = / T and is not an integer counting variable. 

.{f (.) , g (.) , h (.) , u (•) , v (•) , w () ,T () , () , ( (.)} denote real valued functions. 

g (ai,... , a) (r,,... ,r) denotes a function evaluated at (r1,... , rn). 

text denotes a function or variable dependent upon 'text.' 

elal denotes the absolute value of a function or variable. 



.{[A] , [B]} denote matrices where [I] is the identity matrix, [0] is the zero matrix, 

and the inverse and transpose of A are denoted by [A-1] and [AT],  respectively. 

.[V] is a vector and Table 1.1 denotes standard norms which satisfy: 0 < 

JIVj + V 11 < JIVj 11 + JJVk J J , and IlzuVII = J o l JIVII.When 1 has a superscript, such 

as 11,  then us a norm notation and not an integer counting variable. 

Norm Notation Definition 

Absolute or 11 HVIII 

Euclidean or 12 
I11 V 112 t 

(n 
I 

i 	lajI, 

Maximum or 100 VH max Jaj J 
i<j<n 

Table 1.1: Standard norm notation where [VT] 	[a • - , a] 

1.1.1 Domains in continuous space 

Notation 1.1.1. Let card (.) and C (.) denote the cardinality and complement of 

a set or space. 

All processes will assume Euclidean space, Rd,  where d E 11, 2, 3, 4} and R 

denotes the half space Rd_i  x [0, oo]. A geometric point, p e Rd,  is taken in 

the usual sense with a Cartesian coordinate defining its position vector from 

the origin, [0]. Position vectors {X, Y} use a standard orthonormal basis and 

dot product and refer to an appropriate subset of space dimensions, {x, y, z, t}, 

where t is the dimension designated as time. A 'set of points' is any non-empty 

set of Rd  points and a 'polygonally connected domain' is a set of points that 

forms a closed sub-space of Rd,  where any two points can be joined by a series of 

connected line segments lying wholly within the domain. The standard definitions 

of 'convex,' 'open,' and 'closed' apply and S (X, 3) is a 'neighborhood' defined by 

a d-dimensional sphere centered on g with a radius /3 > 0; refer to Figure 1.2. The 

following applies to all polygonally connected domains considered in this text: 

*The words 'polygonally connected' will be omitted. 

*An 'interior point,' pu, has at least one non-empty neighborhood lying wholly 

within the domain. The 'interior' of the domain, J, is the set of all interior points 

and is an open sub-space. 

A 'boundary point,' p, contains at least one interior and one non-interior point 

111 every non-empty neighborhood. The 'boundary' of a domain, 6, is the set of 

all boundary points and is a closed sub-space. 



exterior = C( 73u  5) 

Z 

Z 

*An 'exterior point,' has at least one non-empty neighborhood lying wholly within 

the compliment of the domain. The 'exterior' is the set of all exterior points; i.e. 

the open subspace, C (J U 65) = {Rd - (Z3 U 

S() 

I origin 

Figure 1.2: ]l2  Domain and notation 

1.1.1.1 Continuity and singularities 

As per standard notation, a variable or function is 'bounded' if there exists a 

positive real constant strictly less than infinity, K, such that Jal < K. Given 

[X - Y] is a difference vector and 9 is bounded such that 0 < 0 < 1; then a 

function is labeled 'Holder continuous over a domain with exponent 0' if 

g(X) — g(Y) 
sup 	 <K 

{X,Y}EJ II X - 112 
(1.5) 

is true. If 3 is arbitrary, then g (.) is HOlder continuous with exponent 0 and if 

(1.5) only holds for a given neighborhood, Y E S (X, /3) C U, then g (.) is 'locally 

continuous.' If 0 = 1 then g (.) is 'Lipschitz continuous,' if 9 = 0 then g (.) is 

bounded, and 'piecewise continuous' will be defined in the usual sense. 

Notation 1.1.2. f (X) e (n)  denotes that the function f (.) can be differentiated 

at least n times, where the derivatives exist and are bounded. 

A singularity is a non-regular point where there is a sudden change in the 

initial conditions, driving noise, nature of a process, or a PDE becomes singular. 

Singularities are often referred to as shock waves, heat sinks, point sources, re-

entrant corners, or points of ill-formed conditions, where examples include: a 

standard Kroneker delta function (6text),  a 'unit source' and/or 'pulse' (refer to 

Figure D.7), 'large jumps' in a stochastic space, and a point of intersection where 

boundary conditions contradict each other or have a non-smooth interior angle 

greater that it. 
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1.1.2 Discretised space 

Definition 1.1.3. Z C 1W', where Z is a set of points with a minimum 12  

distance between any two distinct points greater than a positive constant, /x. 

Notation Definition - s represents either z or t 
1 Uniform gj g (xi) = g (jx) 

2 Uniform gj,k g(xj,sk) = g(jx,k/s) 

3 Uniform 9j,k,i g (xi, Yk, Si) = g (jx, ky, las) 

4 Uniform gj,k,1,m g (xi, Yk, Z1, tm) = g (jx, ky, 1z, mt) 

Table 1.2: Z Notation 

A 'uniform' Z 	is a common discretisation that fulfills Definition 1.1.3 and is 

often referred to as a standard 'net' or 'mesh.' Discretisation points are uni-

formly distributed throughout the domain and are mapped to an ordered d-tuple 

(j, k, 1, ni), which equates to the 1W' coordinate, X = (jLx, k/ay, lz, mat). Let 
Zd represent Z, where Ax is assumed and: 

continuous A 2  space uniform Z I space 

continuous A 	space 
 

I. 	A' 
a 

I 	/ 

uniform Z I space: M divisions: 	Ax= aIM 	0
M djvinion 

dscreIe 

Figure 1.3: R" and uniform Z' spaces 

iu•SUii 
1111111 	r** 
IUUIUUI WAWAWI 

Figure 1.4: Example D allocations for a uniform V 

*notation for V will remain consistent with 1W', where Zd  discretised variables / 
functions are listed in Table 1.2 and {x, /y,  Liz, t} = {ix, )/x, )'Lx, ALX}. 

.{M, N} denote the finite number of divisions of a bounded R' region and are 

often limited to values of 2" + 1, such that Lx = 

.S2  (p, r) and S1  () r) use the 12  and 11  norms and appear as a d-dimensional ball 
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Operator Difference wrt. xi  Definition 
average difference A Lxagj,k,j,m 9j+1,k,t,m 	9j-1,k,l,m 

2 
backward difference /bgj,k,1,m gj,k,1,m - gj-1,k,1,rn 
central difference 9j+,k,1,m - 9j_,k,1,m 

forward difference fgj,k,1,m gj+i,k,1,m - gj,k,1,m 

Table 1.3: Finite difference operators wrt x 

or diamond, respectively; refer to Figure 1.3. 

D is a closed and bounded sub-domain of 5 and let D. denote the region of Rd 

space that is mapped to g; refer to Figure 1.4. The D. regions do not have to be 

mutually exclusive subspaces. 

*'adjacent' points are non-boundary points, Y, where mm (Ily, PJUi2) 

1.2 Numerical approximations 

This thesis will concentrate on the mean square convergence of finite difference 

evaluations preformed on a uniform Z' that discretise equations via Taylor ex-

pansions or Holder continuous conditions. Using the Lax Equivalence Theorem, 

given a well posed linear problem and a discretisation scheme that satisfies consis-

tency and stability conditions, then these are necessary and sufficient conditions 

for convergence. For an introduction to the 'basic principles of discretisation 

methods,' refer to [17, Chapter 2]. 

1.2.1 Finite difference operators 

The first order finite difference operators of Table 1.3 are commutative, associa-

tive, and distributive over addition; refer to [17], [18], [33], or [39]. Higher order 

operators are composed by repeated application of the first order operators and 

are labeled 'equivalent' if they produce the same results when applied to any 

function in which both operators are defined. Thus, L.Th f (X) = L ('f (X)) 

and the following second order operators are equivalent: 

/b/f9 (xi) = fbg (xi) = Lg (xi) = gj+i - 2g + gj-i. 	(1.6) 

Difference operators can also be applied to functions of multiple dimensions: 

/ 1 g (xi, Yk) = /bbg (x +1, Yk+1) = gj+1,k+i - gj+1,k - gj,k+1 + 9j,k. 	(1.7) 

Since a partial derivative is the limit of a difference quotient, a 'consistent' 

scheme is equivalent to the partial derivatives of the SPDE as Ax -* 0. Although 
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it is numerically impossible for Lx = 0, one should be able to approximate a 

partial derivative to any desired degree of accuracy using Zd  points that are 

'close enough.' For example, let r E [x,x +i] and s E [x-,,x+,] such that: 

	

ag (X) 
I X=x'

19X 	3 
lim 

Lfg 	
+0 (Ax) - gj+i -gi 

  Ax a29 (r) 
Ax--+O Lx 	 - ix 

+ 
ax2 	

(1.8) 

	

a29 (X) 	urn Lg (xi) +0 (Ax) = gj-i - 293  + gj+i Ax 2  a4g (s) 

ax2 	IXX3- 
Lx-O /X 2 	 x2 	

+
12  5x 

(1.9) 

Using functionals of surrounding discretised points to approximate derivatives, 

the template for a numerical scheme will be expressed as a 'computational molecule' 

where the influence from Y to X is denoted by 9 (Y; X) and: 

*the standard definitions of 'explicit' and 'implicit' will be utilised. 

a computational molecule is a 'weighted average' if 	9 (Y; X) = 1. 
XEZLd 

	

.F (X) = 	t9 (Y; X) P (Y) and for each . = {l, m} combination, a molecule is 
y7d 

	

9(j - 1,k+1,.;j,k,) 9(j,k+1,.;j,k,.) 	9(j+1,k+1,;j,k ) .) 
denoted by: 	z9 (j-1,k,.;j,k,.) 	V (j,k,.;j,k,.) 	V (j+1,k,.;j,k,) 

9(j-1,k-1,.;j,k,.) 0(j,k-1,.;j,k,.) 9(j+1,k-1,;j,k,.) 

1.2.2 Finite Difference Schemes (FDSc) 

101 Notation 1.2.1. An expression, 0 is 'Big-Oh' with respect to /x', when lim AXr 

<K and will be denoted by 3 = 0 (Ax'); refer to [39, page XXII]. 

A FDSc approximation for (1.1) is derived by using a computational molecule to 

estimate the partial derivatives of a SPDE via 

[P (]  = 
I 

FDSc FDSc] [P()1 

I 
+0 (x) [g 01; (1.10) 

where F (X) denotes a numerical approximation to F (X) utilising the nth  iter-

ation of a difference scheme on a discretised domain. For notational ease, denote 

(1.10) as [P,,] = : (FDSc, [P_1] ,[ F] , [g (•)]) where M (.) is a system invo1v 

ing the FDSc matrix, previous approximations of F (.), boundary conditions, and 

driving functionals. 

Example 1.2.2. The canonical d=2 explicit elliptic computational molecules de-

picted on the far left of Figure 1.5 are the weighted averages 
00 

Z 	410 	, such that = and Fj,k  = (Pj+l,k + Pj-1,k +,k+1+,k_1). 
00 
1 1 1  

1 

such that =or 	and Pj,k=(Fj+l,k+Fj_i,k+Fj,k+1 



SEP,1' 
.u,,,u...,,. 

Figure 1.5: FDSc computational molecules for (1.2). 

+,ki) + 	(++ + +i,k-i + -1,k+1 + _i,k_i). 

These molecules yield the [FDSc? j] matrices 

and 

1 1 n in inn 1 1 1 
5 
1 

20 
1 

'' 

1 
' 5 

n 
5

n "5'-'" i n 20 
n 

5 20 
1 1  

' 20 5 20 ' 5 20 5 20 

n n 1 1 1 n n ln 1 n n 1 1 
" 

'-' 20 5 20 "'-'5', 5 '-' " 20 5 

with appropriate entries of {o, 
, , } for the [FDScou] matrix. 

1.2.2.1 Other schemes 

Predictor-Corrector methods are often used to reduce computational effort by 

combining the numerical benefits of different computational molecules. These 

methods utilise at least two FDSc matrices to create an approximation where, 

[Pk ] = : (FDScl, FDSc2, [Pk- i ] , 	 , [Frn ] , [g (.)]). Thus: 

Use a FDSc (usually explicit) to derive an estimate for 

[k-] =: (FDScl, [-Pk-,] , [g (k1)]). 

Use [F~k-1] to derive a 'more accurate estimate' for the driving functionals, 

{g (k-)]. 
Use another FDSc (usually implicit) to derive 

[Pk] = : (FDSc2, [k 1] , [g (Pk)]). 
Repeat if necessary. 

In using different FDSc's, improvements can be made by focusing upon the 

strengths of an FDSc and overcoming its pitfalls with the benefits of another 

FDSc. For example, a non-consistent but stable FDSc with a small spectral ra-

dius can be combined with another FDSc to create an overall consistent scheme. 

Due to the amount of material covering this topic over the past century, a dis-

cussion of popular methods such as explicit Adams-Bashforth methods, implicit 

Adams-Moulton methods, and n1h order Runge-Kutta methods will be omitted. 
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Input from 	
Evaluate  

F(X)0, v(), 	 110 
FDS: F(X j)n• 

andW(X)  to 
If e 	>IF(X )-F(X1),  I 
then terminate FDS. 

Figure 1.6: Picard-Lindelöf FDSy schematic - closed loop feedback system 

Finite Element Systems and Spectral Methods (collectively labeled FESy) dis-

cretise processes using trial functions; refer to [10], [17, Chapter 4], or [19, Section 

12.5] for an introduction. Although often more accurate than finite difference sys-

tems due to the superior handling of boundary conditions and error propagation, 

FESy experience minor difficulties in the stochastic setting as discussed in [1]. 

Due to the reliance upon FESy in the deterministic literature, deriving results for 

FESy will be addressed in future work. 

1.2.3 Finite Difference Systems (FDSy) 

Since numerical approximations are derived from well posed initial conditions and 

driving functionals, a FDSy approximation will be the reduction of (1.10) where: 

I - 
[ FDSc FDSci 11 F ()oo] +0 (x) [g (.)] gives 

F() 	- 	0 	I 	j I F() 

O= [ FDSc - I FDScou 

I I 
F (u)00 I +0 (x2 ) [ g - 	0 	I — I 	F()  

whichis used to create a system of equations that approximates a process via 

	

0 - [ 
—I FDSy5  1 [P 	

I + [ FDSy] [g (.)], such that 
- 	0 	I — I ] F() 

F 	1 	1 0 FDSy8  1 1 
	I + [ FDSytj ] [ g (•)], or simply 

F() j = 10 	' 	] L F() 

[P (] = [ FDSy] [F ()] + [FDSy] [g (.)]. 	(1.11) 

Thus, the FDSc and FDSy approximations are equivalent. Using a consistent 

FDSc, direct methods 'exactly' approximate a system on a domain using Gaussian 

elimination or an algebraic reduction to derive a FDSy. This method is preferred 

when deriving an approximation, but considering the size and density of the sparse 

FDSc matrices, evaluating their inverses is generally not a viable alternative. The 

algebraic reduction of a FDSc to derive a FDSy will be used in Chapter 2. 

The 'method of successive approximations' involves a Picard-Lindelöf iteration 

scheme that relies upon multiple iterations of a FDSc to derive a FDSy. Thus, 

[F] = (FDSc, [P_1] , [g (.)]) will b: repeated a number of times to derive 



the FDSy matrix; refer to Figure 1.6. Although computationally expensive, this 

method is easily implemented on a computer for a variety of boundary conditions 

and domains and this will be the technique used in Chapters 3 - 5. 

1.2.3.1 FDSy Illustration 

Due to the quasi-linear format of (1.1), a one-dimensional linear function, T (x), 

will be considered without a loss of generality. Thus, on the uniform domain 

1x0, XN],  there exists a linear difference equation 

a j?j+2  + b? +1  + cj? j=aj? j  + (2a + b) f T + (a + b + c) I j, (1.12) 

such that Tk = Wk + Touk + T 1 vk.  If the discretised solution is satisfied for 

arbitrary values of To  and T1; then wj  must be a particular solution of T3  while 

uj  and vj  satisfy the associated homogeneous difference equations of (1.12). Mul-

tiplying the difference equations by v 1  and u ji , respectively, and subtracting 

yields the relation a/3 +1  = c/3j, where /3 = uv +i  - u iv and: 

.If {a3  =A 0, c3  0 Of then the general solution involves two independent arbitrary 

constants on the domain and Ti  is uniquely determined by its two initial values, 

To  and T1. Hence, an algebraic reduction of the direct FDSc yields an FDSy 

approximation, [;?k] = [FDSy1] [-Ti] + [FDSy2] [-T,)] + [ K]. 

.If {a 	0, cj = 01, then i3 +i = 	= ... = 0 and the Tk are constant multi- 

ples for k > J. Hence, the general solution involves one arbitrary constant and 

the respective boundary points {T07  TN}. The FDSy is often determined via an 

iterative FDSc, which eventually yields, [?k] = [FDSy] [T, ?3]  + [K]. 

Remark 1.2.3. Due to the nature of the {a3  =A 0, c3  = 01 system, a linear com-

bination of boundary and adjacent points can also be utilised. 

1.2.4 Error, convergence, and stability 

Since the exact solution to a process is unknown; the crux of approximating a 

process lies in applying a finite difference scheme to create an accurate, conver-

gent, and stable numerical estimate. A local error is unavoidably introduced at 

each discretisation step, thus use a consistent scheme such that errors remain 

sufficiently small and try to assure that the accumulation of all errors in an ap-

proximation either decay or remain bounded. A system is stable if approximations 

remain uniformly bounded functions of the initial state and the cumulative effect 

of all round off errors remains negligible as Ax -* 0. Conversely, a system is 

unstable if there exists initial disturbances for which the approximation becomes 

unbounded and/or global errors are uncontrollable. It is desirable for a scheme to 
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Convergence - Definition 

almost sure p(  urn e 	—+ 0= 1 

mean square urn E(eg2 ) 	0 

stochastic lim P (CO > 3) — 0 

Table 1.4: Standard convergence definitions. 

be asymptotically stable such that small changes in the initial conditions produce 

relatively small changes in the approximation. 

Notation 1.2.4. Let c (X) denote a 'stopping error,' which is an a prioi value 

used to terminate an iterative FDSc once successive Picard-Lindelöf iterations 

yield es (X) 	(X) — PA- (X)_j; refer to Figure 1.6. 

Notation 1.2.5. Let e (FDSy, FDSc, P (X) , x, n, C5 (X)) = F (X)—P (X) 

denote the 'error' and eg (P (X)) 	I e (P (X)) I = IF (X) — P (X) I denote 

the 'global error,' where (FDSy, 	, es (X)) will be omitted unless necessary. 

Notation 1.2.6. The rate of convergence for a FDSy to a solution is denoted as 

RC (P (X) , s, 	= 	In(lim (eg (F (X) , sx) x eg (F (X) , 
In(s) 	Ax—*O 

=lnlim 
(IF(x)_P5xxx)_Px(x))). 

In(s) 	(AX-40 

Notation 1.2.7. Denote the covariance, expectation, probability, variance, and 

Lebesgue measure via {C(.) ,]E(.) ,P(.) ,V(.) ,9Y1(.)}, respectively. 

The standard definition of 'pathwise' (strong) convergence will be used, where 

a scheme is labeled convergent, if, for any well posed problem, the approximation 

approaches the solution of the SPDE as /.x —* 0; refer to Table 1.4. Conver-

gence will relate to the asymptotic behavior of a finite sequence of random vari-

ables where mean square convergence will be the focus of this thesis; i.e., given 

< oc, then show lim 1E(c(X) — (X).  12) = 0. One can evaluate 
n-+oo 

lim lE(cg2) 2  directly or utilise: 

lim E (2) = lim IE (H2) = lim TE (02) = lirn (V (e) + E 02) . 

lim E(cg2) = lim (V(eg) +E(cg)2)2 = lim (V(c) +E(eD2). 

Since F (X) is rarely, if ever, known then this value must also be approximated 

using a 'very accurate' estimate; i.e., F0 (X)m  where 0 is close to 0 and m > n 

and/or Cm < cs,. The following notation will be utilised for numerical results: 

.1 (P (X) 1  01  /31  Ax, m, n) = Po  (X)m  Ppx (X). 



.e(P(x)) = Ji (P (X)) ~ 

(P (x) , 0) 	m, 
n) 

= F0 (X)m - POAX  (X) 

= _L in urn (JFOLX (X)m - PDX (X) x 	(X)m - 	 (X) ln(13) 

1.3 Wiener process 

As discussed in [60], a stochastic process models a random phenomena and two-

dimensional Gaussian white noise will be interpreted in the canonical Walsh dis-

tribution sense with mean 0 and a Dirac delta covariance function. Let W (D) 

represent a 12 Gaussian measure with orthogonal increments on Borel subsets of 

R, such that {W(D) t-' .A( (0, 9J (D)) ; D E B (R)} is a mean 0 Gaussian pro-

cess with a covariance function C(W(D1) ,W(D2)) = 9Jt(D1 fl D) and B (R) is 

the set of Borel subsets with a finite Lebesgue measure. The process W is carried 

by a probability space {1, .F 	t>O , P} with a filtration, .F, satisfying the usual 

conditions: 

*for each t > 0, {W(D) ; D- C Rd fl Jr > t}} is independent of J. 

*W (D) is Ft-measurable whenever D c R2 fl {0 < <t}. 

Remark 1.3.1. Refer to Section C.2 for numerical examples on how one can 

generate and refine example spaces. 

1.3.1 Stochastic integration 

In evaluating processes of measurable functions subject to stochastic noise, the 

Riemann-Stieltjes integral must be abandoned and Lebesgue integration utilised 

such that meaningful results can be obtained. In order to accommodate Chapter 

2, two-dimensional stochastic integration will be the focus of this section; refer 

to [9], [13], and [60, Chapter 2]. Given a real valued step function, hN (x, y) = 

N 

aj lD, which is a countably finite linear combination of real coefficients and 
3=1 

indicator functions that is well defined on {Q, .F, IP}, let {D1, . . . , DN} be a series 
N 

of disjoint rectangles. Thus for a step function, ff hN (x, y) dT = L c31D T: 
3=1 

N 

a deterministic integral would be ff hN (x, y) dxdy = E a39Jt (D3). 
3=1 

N 

a stochastic integral would be ff hN (x, y) dW (x, y) = 	c 3W (D3). 
3=1 

The representation of h (x, t) via a step function is not unique, but given 

h (x, t) is a general adapted piecewise continuous function on the domain, one 

can find a sequence of adapted step functions converging to h, i.e., lim hN - h 
N—*oo 

18 



on the filtration F. Thus, assuming that 55 h (x, t) 2  dxdt < oo, one can define 
?JUSU 

N 

55 h (x, y) dW (x, y) = urn 55 hN  (x, y) dW (x, y) = 	lim 	E cW(D), 
N—oo 	 max(9fl(D))—O j=1 

where ai  = h (min ({x,t} ED3 )). 

Remark 1.3.2. As per standard notation, let 

of f (X) dW (X) denote the Ito integral which is a non-anticipating sum that is 

utilised due to its martingale properties. 

of f (X) o dW (X) denote the Stratonovich integral which is an anticipating sum 

that is used in engineering literature due to similar pioperties with 'normal' 

Riemarin-Steiltjes Calculus. 

The Brownian Sheet, W(X), can be defined by W(X) = W(Jx) where the 

domain is an appropriately selected sub-domain of V. In the case of Chapter 2, 

W (x, t) = W(DoI (x, t)), where (x, t) is the apex of a suitable triangle in 

Hence, the process is stationary, separable, and measurable and the Brownian 

sheet is a homogeneous Markov diffusion process with paths that are almost 

surely continuous and nowhere differentiable; refer to [9], [34], [39], or [60]. 
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Chapter 2 

Hyperbolic equations in one 
space dimension 

2.1 Introduction 

Notation 2.1.1. The second order d = 2 hyperbolic operator is denoted by 

(F (x, t) , C) = 82F(x,t) - C282F,t) where C is the 'wave speed' or 'speed of 0t2 	 Ox2  

propagation.' 

This chapter concentrates on quasi-linear second-order hyperbolic SPDE's in 

of the canonical form 

2  (F (x, t) , C) = v (F (x, t) , x, t) + w (F (x, t) , x, t) 5W (x, t) 

	

SxSt 	
(2.1) 

where an initial state and velocity are given at t = 0; or equivalently 

52F(,() 52W() 
=v2 (F,+w2 (F(,()() 

	

s(s 	(2.2) 

with an initial state given along ( = 0. (2.1) will be referred to as the 'general' 

noise case, with the following cases addressed throughout the chapter: 

*deterministic, w (F (X) ,X) = 0, 

2  (F (x, t) , C) = v (F (x, t) , x, t). 	 (2.3) 

*additive noise, w (F (X) , X) = w (X), 

2  (F (x, t) , C) = v (F (x, t) , x, t) + w (x, t) 
02  W (x, t) 

SxSt 	
(2.4) 

*multiplicative noise, w (F (X) , X) = F (X) w (X), 

2  (F (x, t) , C) = v (F (x, t) , x, t) + w (x, t) F (x, t) 
s2w (x, t) 

	

SxSt 	
(2.5) 

As discussed in [33] and [46]; dispersion and dissipation will be introduced to 

(2.1) via {v (.) , w (.)} including functionals of the lower order terms f F (x, t), OF(:,t) 
ax 
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8Fxt)} The transformation between (2.1) and (2.2) is accomplished using the at  

real valued solutions to (1.3), where 

e(x,t) =x—Ct and ((x,t) =x+Ct 	 (2.6) 

are called 'linear propagation functions' or 'characteristic curves.' This transfor- 

mation 	

or equivalently 

follows from 2  (F (x, t) ,C) = 0 being a combination of the first order 

equations - ax 	ax -  at j 
ff 3(C(x,t)) - Ca9(3t) Gj(x,t) - Og(x,t)) 

,  

af(x,t) - ag(x,t) 	9f(x,t) 	aag(x,t) 	
(2.7) 

at - ax 
and 

 ax = at 

where f (x, t) - &F(x,t) g (x, t) = OF(x,t) and C 8x 	 The PDE's of (2.7) are the -  
'conservation of slope' and 'conservation of momentum' equations, respectively. 

The scalars {( (x, t) , (x, t)} satisfy { = Cx,t) a(x) 	Cae(x,t) 
}, 

where at 	09X ' at - 	ax 

DC 	101 
0 	

and 
L 	

0 have elgen values +C and elgen vectors {[1, 1], 1-1, 1]}; 

i.e. (x, t) and the invariant e (x, t) are functions of x ± Ct. Due to these prop-

agation properties, solutions, initial conditions, and internal disturbances do not 

have to be (1)  and singularities almost surely exist when using a Brownian sheet. 

2.1.1 Summary of results 

As per Theorem 2.3.8, numerical approximations built using a canonical five 

point computational molecule are convergent to the d'Alembert solution with 

RC (FDSy = (2.17), F (X) = (2.8)) = 1  . Refer to Section 2.3.4 for numerical 

results and Section D.1 for a listing of figures. 

2.1.2 Hyperbolic Assumed Initial Conditions (HAIC) 

The following initial conditions assure that hyperbolic processes are well posed: 

Assumption 2.1.2. Utilise the closed and bounded domains of Section 2.1.2.1. 

Assumption 2.1.3. Dirichlet boundary conditions {F (x, 0), OF(x,t) I t=0  are given, 

	

at 	I 
where the initial state and velocity are Holder continuous functions with 0 > 

Assumption 2.1.4. A Brownian sheet is utilised. 

Assumption 2.1.5. v (.) and w (.) are real valued measurable functions on 

and they are globally Lipschitz continuous with coefficients Kv  and K. 
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A 
, (x,t) 

(x,t) 
 (x,t) 

F(y,O) and Y
// 	/ \\ 

F(ys)I 	 Domain of nfluence •\ 

B 
(x,t) 	(x,t) 

(xt) 

F andF FOTF  

/ 	

F 
or F 

Domain of 

Figure 2.1: Initial Conditions 

2.1.2.1 Domains 

Notation 2.1.6. The variables {r, s} will be used in the same manner as t such 

that the coordinate pairs {(x,t) , (y, s) , (z,r)} E il,. 

Definition 2.1.7. The Domain of Dependence (DoD) is the closed ]l' interval 

bounded by (2.6), where the DoD (x, t) = {(y, s) I s = 0, y e [ (x, t) , ( (x, t)]}. 

Definition 2.1.8. The Domain of Influence (Dol) is the bounded and open inte-
rior enclosed by the DoD (x, t) and (2.6), such that the Dol (x, t) = {(y, s) I s E (0, t], 

y  [(x,t—s),(x,t—s)]}. 

ç(o,t) 	(x,t) -' 
	 a 

Domain of 
Region of 
Influence  

Rotation 

b X 

Figure 2.2: Region of Influence and Domain of Rotation 

Definition 2.1.9. The Region of Influence (Rol) is the unbounded region out-

lined by (2.6), such that the Rol (x, t) = {(y, s) I s E [t, oo), y E [((x, t) , (x, t)]}. 

Definition 2.1.10. When using (2.2), the Domain of Rotation, DoR (b, a), is 

the rectangular domain in the positive quadrant bounded by the origin and axes. 

Figure 2.1-A represents the domains utilised in this chapter and Figure 2.1-13 is 

a special case that has been partially solved along the lower and side boundaries. 

The union of the DoD and Dol is a closed, bounded, and convex domain, where 

the DoD (x, t) contains information regarding the initial state of the system, 

while the Dol (x, t) contains information regarding the forcing terms of (2.1). 
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Solutions on semi-infinite strips are applicable since waves propagating along 

(2.6) are reflected at the boundaries; refer to [31, Chapters 17 and 18], [33, page 

239] and [46, Chapter 3] with analogous results for the stochastic case proved in 

[12]. Results for domains restricted to the positive quadrant of R2  are applicable 

via a transformation forcing Ax = At, shifting, and rotating the basis by - to 

yield a DoR; refer to [20], [30], [44], and [56]. 

2.1.3 The hyperbolic process 

The motivation for solving hyperbolic processes in one space dimension is to model 

wave equations analogous to the vibrating string problem where, in zero gravity, a 

string of infinite length, constant density, and uniform tension is disturbed. These 

processes involve pulses, vibrations, and the flow of information or energy such 

as: water waves in a straight and narrow channel, linearized supersonic airflow, 

sound waves along a pipe, longitudinal vibrations and torsional oscillations of a 

rod, transmission of an electric signal along a low-resistance cable, transmission 

of a signal from a transmitter to a receiver, the flux of information according to 

Shannon's model, waves in hydro-magnetics, and one-dimensional transmission of 

S and P waves of an earthquake. Stochastic functionals can be used to represent: 

'external disturbances to a transmission line or noise in a communication channel. 

*energy introduced to waves via 'rain' or some other force. 

*dispersed energy sources in models of turbulence. 

_2T_ 2T 

Figure 2.3: Deterministic versus stochastic wave propagation; T = time 

Remark 2.1.11. The communications and electrical engineering fields often utilise 

smoother than white noise, colored noise, or bounded stochastic noise in place of 

Assumption 2.1.4, such that large singularities almost surely do not exist; refer 

to [35, Chapter 6]. Many non-pathwise stochastic spaces also ensure that large 

singularities do not exist; refer to [39]. 

The d'Alembert solution, (2.8) expresses solutions to (2.3) and (2.4) when 

v (.) = v (x, t) or numerical approximations to F (x, t) when either v (.) or w (.) 
are multiplicative or general functions. If one wishes to approximate hyperbolic 
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processes involving (2.8) and non-additive functionals, then either a Predictor-

Corrector or Picard-Lindelöf iteration scheme must be implemented. 

= F(((x,t) ,0) +F((x,t) ,0) 	1 	aF(y,$) 
F(x,t) 	

f 
Ds 	

8=0dy 
2 

D0D(x,t) 

+ I 	
ff 

v (F (y, s), y, s) dyds + 	ff 
w (F (y, s), y, s) dW (y, s). (2.8) 

2C 	 2C 
DoI(x,t) 	 DoI(x,t) 

2.1.3.1 The deterministic process 

Derivations of solutions as well as proofs of existence, uniqueness, and bounded-

ness for (2.3) can be found in research literature from the earlier half of this cen-

tury and most rigorous undergraduate physics and calculus texts published over 

the past quarter century. Refer to [38, Sections 10.7 and 10.8] for an overview of 

the deterministic system and [31, Chapters 17 and 18] for a discussion of physical 

properties. [46, Chapter 3] and [33, Sections 3.12 through 3.14] address the FDSy 

setting and for a FESy illustration, consider S52  (F (x, t) , C) = 0 on the positive 

quadrant with 0 endpoint conditions, 9J (DoD (x, t)) L, x e [0, L], and a = 

Derive a FESy via a separation of variables with a Fourier series to yield initial 
00 	 00 

conditions, F (x, 0) = £ c sin (mx) and ÔF(x,t) 	 b sin (nx), where pro- 

gressive and standing wave solutions are represented as F (x, t) = 
00 	 00 

	

(sin (am( (x, t)) + sin (am (x, t)))— 	(cos (am (x, t)) - cos (a< (x, t))) 

00  and F (x, t) = 	sin (mx) ( cos (amCt) + 	sin (anCt)). Assuming a general 

solution of F (x, t) = h ( (x, t)) + g ( (x, t)) for (2.3) with non-zero boundary 

conditions, then F (x, 0) = h (x) + g (x) and 18F(x,t) 	h' (x) - g' (x). Since, 

2C(h((x,t)) +g((x,t))) = h(((x,t)) +g((x,t)) +h(e(x,t)) +g((x,t)) 

+ 	f 	h' (z)—g' (z) dz, this yields the d'Alembert solution 1(2.8), w (.) =01, 
DoD(x,t) 

where 	is a scaling factor accounting for the propagation of disturbances along 

(2.6) in both the —x and +x directions; refer to Figure 2.3. 

2.1.3.2 The stochastic process 

Solutions to (2.1) are not differentiable due to the 'roughness' of the Brownian 

sheet driving the stochastic process, thus (2.1) and (2.2) are just formal repre- 

sentations. The existence and uniqueness of solutions to (2.1) on 	where 

C = 1.0, is proved in [13] with further results on the positive quadrant shown in 

[20], [30], [51], and [56]. Although not addressed in this text: 

.[44] discusses hyperbolic processes along a strip in the positive quadrant using 
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a variety of initial conditions. 

.[50] proves the long time existence for {(2.1), v (.) = 0,0 < a < 11 and w (x, t) is 

locally continuous with 1w (F (x, t) , x, t)l < K (IF (x, t)l + 1) log (IF (x, t)l + 2)a. 

*Cabana, Orsingher, and [60, Chapter 3] address 1(2.4), v (.) = 0, w (x, t) = 1} 

and discuss how a Brownian sheet is a hyperbolic system. This equivalence to 

the vibrating string problem explains the propagation of singularities parallel to 

an axis as covered in [12] and [60]. 

.[15] discusses hyperbolic equations in 	of the form 	- c 
C2 8F(x,y,t) - 	F ( 	 w(F(x,y,t),x,y,t)83W(x,y,t) 

	

y 	2 	 V 	X, y, , X, y, 	 ôxôy&t 

There are few results concerning the wave equation driven by random 

noise in two (or more) dimensions ... One reason for this is that if 

W (x, y, t) is white noise, even the linear equation {v (.) = 0, w (.) = I  
has no solution in the space of real-valued measurable stochastic pro-

cesses (refer to [60]). Given that white noise can be viewed as a 

random variable with values in a space of distributions, the linear 

equation has of course a distribution-valued solution ... and is not 

readily amenable to numerical calculations. [15, Section 1] 

2.1.3.3 Results of [13] 

[13, Sections III - V] provide an instructive and intuitive discussion of the nature 

of the stochastic process and initial conditions which solve (2.8) on the positive 

quadrant, 	half plane, and semi-infinite strips. 

Definition 2.1.12. [18, Definition 11.1]: Let h (x) be a .F0-measurable stochastic 
process with continuous sample paths and let g (x) B (Ti) —4 12  ({l, F, IP}) be 
a a-finite random 12  measure with a 13. A continuous process F (x, t) is F-

measurable and a weak solution of (2.1) with initial conditions {h(.) ,g()} if: 

ff v (F (y, s), y, s) f (y, s) dyds 
+ ff 

	

DoI(x,t) 	 DoI(x,t) 

- 
J 

af(y,$) 
I (,O) h(y)dy— f f(y,0)g(dy) - as 

DoD(x,t) 	 DoD(x,t) 

+ ff Sj  2 ( 
(y, s) , 1.0) F (y, s) dyds 

DoI(x,t) 

(2.9) 

almost surely for each f (x) E °° with compact support in R. 

Lemma 2.1.13. [13, Proposition 11.2]: Assuming v (.) and w (.) are locally Lip-

schitz, then there exists at most one weak solution. 
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Proof. Refer to Appendix B. 	 Li 

Lemma 2.1.14. [13, Proposition 11.3]: Given Assumption 2.1.5, then for each 

F0-measurable continuous process F (x, t)0  satisfying: ff IE (F (y, s)012) dyds < 
DoI(x,t) 

oo, there exists a unique continuous solution to the integral equation F (x, t) 

=F(y,$)0+ 	ff v(F(y,$),y,$)dyds+ 	ff w(F(y,$),y,$)dW(y,$). 
DoI(x,t) 	 DoI(x,t) 

Proof. Refer to Appendix B. 	 LI 

Remark 2.1.15. Let Z3t  = Dol (x, t) U DoD (x, t); the maximal inequality im-

plies that the above solution satisfies E
((Y,S)cz3t 

sup 	F (x, t)I 	<00, provided 00> 

J 

ff IF (y, s)0  I p  dyds. When F (x, t)0 = 2C 	as 	f Io 
Ut 	 DoD(x,t) 

the uniqueness result of Corollary 2.1.17 can also be proved as an elegant 'conse- 

quence' of Lemma 2.1.13 and Lemma 2.1.16; refer to [13, pg. 477]. 

Lemma 2.1.16. [13, Proposition 11.4]: Given Assumptions 2.1.3 and 2.1.5, then 

the unique solution of the integral equation (2.8) is a weak solution of (2.1) in the 

sense of Definition 2.1.12. 

Proof. Refer to Appendix B. 

Corollary 2.1.17. Given Assumptions 2.1.3 and 2.1.5, then there exists a unique 

solution to (2.8). 

Proof. Refer to Appendix B. 

2.1.3.4 Results of [20] 

Expanding upon the results of Carmona and Fouque, [20] extends the existence 

and uniqueness results to the nonlinear equation 

02F(x,y) 
= -f 

1 (x y —,—)g(F(x,y),x,y)+h(F(x,y),x,y) 	(2.10) 
axay 

with initial conditions F (0, s) = F (r, 0) = 1, where a tends to 0 and {x, y} > 

0, such that (x, y) lies in the positive quadrant. The random field f (r, s)
00 CIO 

= 

E Wk, j1{k_1,k)[1_1, j) (r, s), where W is an iid family of bounded and centered 
k=1 1=1 
random variables driven by a two-parameter Wiener process. 
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2.1.3.5 Results of [30, Section 4] and [51, Sections 3 and 4] 

Using 'semi-martingales,' SM, on the positive quadrant with zero boundary con-

ditions along the axes, [30] proves existence, uniqueness, and the Markov Property 

for the nonlinear equation 

32F(x,y) 	 3F(x,y)9F(x,y) 

axay 
=vi(F(x,y),x,y) 

ax ay 
+v2 (F(x,y),x,y) +w(F(x,y),x,y)W(x,y). 	(2.11) 

W (x, y) is a two-parameter Gaussian white noise which is formally a Gaussian 

process with mean zero and auto-covariance 

Lemma 2.1.18. Given Assumption 2.1.5, then there is a unique adapted sam-

ple continuous random process, F (x, y), that fulfills 0j) = v (F (x, y) , x, y) + 

w (F (x, y) , x, y) 	'; where F (x, y) e SM °° and is Markov relative to 

Proof. [30, Theorem 4.1, page 459] 

Lemma 2.1.19. Given {vi (.) , v2  (.) , w (.)} 	
(J),  then there is a unique solu- 

tion to the Stratonovich version of (2.11) contained in SM. The solution is 

actually SM and is Markov relative to FF(,).  If h (.) E (6),  h(0)=O,  and 

h' (.) is strictly positive and bounded, then the Markov process h (Y) satisfies the 

Stratonovich integral solution for (2.11). 

Proof. [30, Theorem 4.2, page 4611. 	 10 

[51] proves existence, uniqueness, and non-explosion for (2.2) driven by W (x, y), 

where (x, y) lies in the positive quadrant and initial conditions are given along 

the axes. The results of [51] are an extension of [30] and presented in a more 

'user-friendly version.' 

Lemma 2.1.20. Consider an Ito version of (2.2), where v () = 0 with the addi- 

tional function along the characteristics 
f 

0u,y) = a 	8F(x,y) 8v(x,y) 
ax 7 ay= a 	UF(x,y) } 

ay 
and regular SM initial conditions. Assuming that the functionals have a uniform 

bound and are Lipschitz continuous, then there exists a unique solution. More- 

over, for all 0 < and > 1.0; then E ( sup 	 ) <K. 
\D0R(x,y) 	1 	H2 

Proof. [51, Theorem 3.2.2, page 3041. 	 U 

Lemma 2.1.21. Consider a Stratonovich version of (2.2) with v () 	0 and 

containing lower order terms of F (x, y) and regular SM initial conditions. For 

an unknown SM and F (X) with known SM 's {u (x, y) , v (x, y)}, there exists a 

unique solution. 
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Proof. [51, Theorem 3.2.6, page 3181. 	 U 

2.1.3.6 Results of [56] 

[56] proves existence, uniqueness, and smoothness for the nonlinear equation 

02F(x,y) 	DF(x y) 	DF(x,y) 
=vi(x,y) 

' 
+v(x,y) 

axay 19X 

+v3(F(x,y),x,y)+w(F(x,y),x,y) 
092W(x,y) 	

(2.12) 
axay 

with initial conditions given along the axes (boundary), where (x, y) lies in the 

positive quadrant. Although not as robust as the results of [51], the presentation 

is easier to read and the results listed in [56, Section 5] provide an introduction 

to the Green's function of Chapters 3 - 5. 

2.2 	Discretisation of the process 

Notation 2.2.1. In accordance with Section 1.1, denote the Domain of Depen-

dence, Domain of Influence, Region of Influence, and (2.6) in 

]El- by {DoD (xi, tk)  ,DoI (xi, tk) , Rol (xi, tk) , (xi, tk) , (xi, tk)}. 

by {DoD,k, DoI,k , RoI,k , j,k, (j,k}. 

Due to the propagation properties of (2.6), the FDSy and FDSc should in-

clude functionals used to derive solutions to (2.1). Hence 	must be discre- 

tised such that (2.6) are adequately modeled using {j,k, cj,k} and the discretised 

{DoD, Dol, Rolf map to their respective ]R2+  counterparts. As addressed in [54], 

the respective size of Ax and At help determine if a system is stable and accu- 

rate, since the slopes of (2.6) are ±1  and the slopes of {e,k, (j,k} are 	= 

Thus, the magnitude of A must be bounded as to not introduce new properties 

to the Z2  model and ensure that the conservation principles of (2.7) are upheld. 

Referring to Figure 2.4: 

(x J tk) 

NZUY  

Figure 2.4: CFL Condition: J. are closed and bounded sub-domains. 



*When A < 1, the approximation speed is too fast and the space-time discretised 

grid enforces a slope less than ±. Regardless of the magnitude of Ax, DoI,k = 

Z5, and the numerical scheme is stable, but the accuracy is questionable due 
j=4 
to the inclusion of 64 and Z38- 
*When A > 1, the approximation becomes violently unstable and is inaccurate 

due to the non-inclusion Z35 and Z37 in D0I3,k. 

When A ~ 1, Z(x t) 	 and {j,k, j,k} 54 { (x j, tk) , ( (xj, tk)} such that 

there is an inadequate mapping of the continuous domains in Z2. 

*When A = 1, CLt = Lx and Zt) = Z ) such that the discretised and 

continuous characteristic functions are equivalent. 

In addition to the slope of the characteristics and magnitude of A, there is 

also the problem of how to map sub-domains {D, W(D)} in order to utilise the 

driving functionals of the process in the system. Thus, use the following: 

Definition 2.2.2. D,k 
= { 

(y, s) 	
(y, s) E [ (xi, tk+1) , (xi, tk-1)] 1 
(y, s) 	[ (xi, tk-1) , ( (xi, tk+1)] 	

where 	(D,) = 

ff dyds = 2/x/t with diagonals 2Lx and 2Lt; refer to Figure 2.5. 
Dj,k_i 

Notation 2.2.3. Centered on (xi, tk-1), let ff TI (a, 3) be equivalent to: 
D3, k-i 

(j,k jk-2 

f 	f TI (a, /3) when using ((,) coordinates. 
(j,k-2 j,k 

tk-1 x+C(s-tk_2) 	 tk x+C(tk-s) 

f 	f 	TI (a, 0) + f 	f 	TI (a, /3) when using (x, t) coordinates. 
tk-2 x-C(s-tk...i) 	 tk-1 X3 -C(tk-S) 

2.2.1 Canonical finite difference scheme 

O Uk) 

k*I 

1) 

k-I 

:0

k_ ,k-2) 	
k-2 

F', 

 

X 
J-2 	J-i 	j 	1.1 	J.2 

Figure 2.5: 5 Point FDSc and rhombic discretisation scheme 

From Section 1.2.2, (2.6), and Figure 2.5, since disturbances propagate through 
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space as a function of time, a FDSc estimate will be of the form 

[,k+1] = [FDSc1] [-Pj,k ] + [FDSc2] [Pi,k-1]  +0 (x) [v,k1] + K [W(D,k)] [w,k _ 1]. 

(2.13) 

Referring to Definition 2.2.2 and Figure 2.5, the diamond shaped region between 

two consecutive V points is assigned to each grid point; thus a 	factor will 

assure that the discretised domain is properly weighted. Use (1.9) to construct 

the consistent and canonical explicit five point FDSc for (2.1), where the forcing 

terms used to calculate Fj,k are mapped to {D,k _ 1, Vj,k_2, W,k_2} to ensure that 

the DoI,k is not overstated. 

Notation 2.2.4. Let [An] denote the following matrix with n rows and n + 2 

A2  2(1—A2) 	A2 	0 0 	 0 
A2 	2(1—A2) A   0 	•.. 	0 

columns [An] = 

0 	0 A2  2(1—A2) A2  

and let [W(D,k)] denote a square diagonal matrix centered on W(D,k), such that 

W(D_l,k) 	0 	0 
[W(D,k)] = 	 0 	W(D,k) 	0 

0 	0 	W(D +l,k) 

Lemma 2.2.5. The canonical five point direct FDSc for (2.1) is 

	

[Pi,k ] = [An] [-Pj,k-1] - [ I] [Pj,k-2] + 2C 
	

[ (Pj,k-2, Xj, tk-2)] 

[W (D_1)] [ (Pi,k-2, Xj, tk-2 	 (2.14) 

Proof. Rearrange (2.1) such that 0 = _52  (F (x, t) , C) + v (F (y, s) , y, s) 
82W(y,$) and use (1.9) to construct a consistent explicit FDSc +w (F (y, s) , y, s) OxOt 

Fj,k-2F,k_1+F3,k_1 + 2Fj+1,k_2Fj,k_1l_1,k 
 + v (Fj,k_2,  X,  tk_2) where 

- 	 Lt2  
w(D3,k_1) 

+w (1 j,k-2, x,  tk_2) 2xt 	0 Solving for Fj,k  gives  

J,k =  A2  (+1,k_1 + _1,k_1) + 2 (1 - A2) ,k-1 - 

+ ATI 
 ,k_1) (Pj,k-2,xj,tk_2) + 	w (Pi,k-2,  Xj) tk-2) W(D,k_l ) 	(2.15) 

which reduces to 1 j,k = 'j+1,k-1 + ] j-1,k-1 - l7j,k-2 

(Pi,k-2,x,tk_2) + 	(Pi,k-2,. X j i tk-2) W(D,k_l) 	(2.16) 

when A = 1. Using (2.15), the t9 values yield the computational molecule 
0 	0 	0 
A2 	2(1-A 2)   A2 	and the {[A] , - [I]} FDSc combination. 	 LII 
0 	—1 	0 

KIC  



2.2.1.1 Other computational molecule's 

*Rotated: As depicted in Figure 1.5, another scheme can be constructed using 

(2.2) in the DoR, such that F ( (x1, tk+1) , ( (x i , tk+1)) 

= F ( (x3, tk+1) ( (Xi, tk+l))+F ( (x +1, tk) 7 ((x+1, tk))-F ( (xi, tk) ( (Xj, tk)). 

*Problematic: Although consistent, when discretising the derivative in space as a 

central derivative and the derivative in time is a backwards derivative such that 

(1+2 \ 2 )Pj,k = 2,k-1 - Fj,k_2 + A2 (Pi+l,k  + 	the resulting FDSc expe- 

riences stepwise over-stability; refer to [33, Section 3.13]. 

Higher order: Explicit and implicit schemes can be created such that stability 

is achieved for A > 1. For example, r (i,k+l - 2]j,k + Fj,k_1) AtP 
1 	pi  

= 12x2 (-+2,k + 16 +1,k - 30 ,k + 16 -1,k - _2,k). 

2.2.2 Expansion of terms 

When A = 1, (2.16) yields the solution if exact values are available for F (x, 0), 

F (x, At), and the integrals of the driving functionals over each D. When A 0 
1, the inherent error introduced results from the expansion/contraction of the 

discretised domain and the weighting of the driving functionals. 

Lemma 2.2.6. Analogous to the deterministic problem, if A = 1, then 
F (xi, tk) = A2  (F+1,k_1 + 1 j-1,k-1) + 2 (1 - A2) Fk1 - 1 j,k-2 

+ 	ff v (F (y, s) , y, s) dyds + 	ff w (F (y, s) , y, s) dW (y, s). 

Proof. Refer to Appendix B. 	 El 

Remark 2.2.7. Lemma 2.2.6 fails when A =A 1; refer to Appendix B. 

Notation 2.2.8. A Modified Pascal Row, MPR (fl), is the transpose of a bino-

mial coefficient vector intermixed with 0's. This can be viewed as Pascal's Triangle 

with entries separated by 0's. 
MPR(9)= 	 1 
MPR(')= 	1 0 1 
MPR(2)= 	1 0 2 0 1 
MPR(3)= 	1 0 3 0 3 0 1 
MPR(4)= 1 0 4 0 6 0 4 0 1 

Lemma 2.2.9. When A = 1, [n [Afl+2(i_1)]] = [ MPR 

Proof. Refer to Appendix B. 

Notation 2.2.10. Referring to Figure 2.6, the points that are blackened lie on 

{j,k+1-21 fl j,k-1+21},  where I G 10, 1, ..., k - 11. Let 
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denote the k additions along g2 E DoD,k where n = (j - k + 1 + 21) 
D0D3,j. 

e [j - k + 1,j + k 

i 	denote the k(k-4)  additions in the DoI,k  that lie on either e,k-1-21  or 
Do13 ,k  

(j,k-1-21. PZ2 e DoD,k  will be excluded from this set of points. 

yl. 0 • 0 

0'. 0 • 0 •0 

o.o.o.o. 

Figure 2.6: Alternating V points that lie on either j,k-1-21  or 

n 

Lemma 2.2.11. f u(y,O)dy = 	( f u(y,O)dy ) and let T(z,r) de- 
DODJ ,k 	 DOD3,k \xn_i 	 J 

note either dzdr or dW (z, r), such that ff u (v (y, s) , y, s) 'I' (z, r) 
DoI j,k 

= 	(ffu(v(Ys)Ys)T(zr)). 
DoIj,k  D 

Proof. Refer to Appendix B. 	 Li 

Corollary 2.2.12. 9J1 (DoI,k) = ( + 	I) 9fl (D) = ç9J (D) and 

- 	
= 

DoD(j;k) 

Proof. Refer to Appendix B. 	 LI 

Definition 2.2.13. Referring to Figure 2.7, define the subspaces: 

9L1  (y, s) as the set of points (z, r) = (z e [ ( y, 8) , (xi, tk_2)] , r = 0). 

L2  (y, s) as the set of points (z, r) = (z E[((x,tk_2) ,ç(y,$)] ,r = 0). 

96, (y, s) as the set of points (z, r) e [ ( y, 8) , (xi, tk_2)], where r > 0 and 

(Z, r) <((x_1) tk1). 

2 (y, s) as the set of points (z, r) E [( (xi, tk_2) , (y, s)], where r > 0 and 

e(z,r) > (x+1,tk_1). 

33  (y, s) as the correction of -5i (y, s) and ?32  (y, s) in Dj,k_1, where Z33 (y, s) = 

{Do-T (y,  s) fl D,k_11. 
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- 

* 	--* 
\ 

Dj1 

L2 

Figure 2.7: Example subdomains for integration 

Notation 2.2.14. Let 	f , f , ff, ff, ff 	denote integration over 
LL1  (y,$) L2 (y,$) Ui (y,$) J2(y,$)t53(y,$)) 

DoI(y,$) 

the domains depicted in Definition 2.2.13, where 	ff 	= 	ff 
DoI(x3  ,tk_2) 	31 (y,$)+1S2(y,$)+J3(y,$) 

Lemma 2.2.15. Expanding F (y, s) around F (xi, tk_1) yields 

F (y, s) = F (xi, tk_2) + f (y, s) + g (y, s) + h (y, s), where: 

.f (y, s) = - F((xj,tk_2),O)+F(((sj,tk_2),0) + F(e(y,$),o)+F(((y,$),o) 

( f 
ÔF(z,r) I r dz f 

OF(z,r) 
= 	+ 	 0r r=0 dz). 

L2 (y,$) 

DoI(y,$) 
_1 g (y,$)— 	ff 	v (F (z, r) , z, r) dzdr. 

DoI(x3  ,tk_2) 

DoI(y,$) 

.h(y,$)— 
1  - 	ff 	w (F (z, r) , z, r) dW (z, r). 

DoI(x3  ,tk_2) 

Proof. Refer to Appendix B and Figure 2.7. 

2.2.3 Finite difference system 

As alluded to in Figure 2.3, hyperbolic processes can be visualized as the prop-

agation of singularities over a domain. The following examples represent the 

propagation of a pulse of magnitude 2; i.e., a 26(0 ,0)  singularity. The diagrams of 

Figure 2.8 utilise the canonical FDSc (2.14), where {x = 0.5, A = 1, v (x, t) = 01 
and the same Brownian sheet is used to drive each system. 

.Deterministic propagation where 52  (F (x, t) , 1) = 0. 

*Additive noise propagation where 2  (F (x, t) , 1) = axat 

*Multiplicative noise propagation where f 2 	 82W(xt) (F (x, t) , 1) = 0.1F (x, t) OxOt 

*General noise propagation where 552  (F (x, t) , 1) = 0.1 cos (5irF (x, t)) 82V(x,t) 
axat 

To demonstrate how the FDSc matrix is used and give an introduction as 

to how a FDSy matrix is formulated, utilise the domain of Figure 2.6, where 
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Time =0 	 Time 1.0 	 Time =2.0 	 Time= 10.0 	Time =25.0 

Deterministic  

Additive 	

r::IIII:I:IIiIIIIII 	.1::II:.1:1..II..:IIe:1Y:rIIS: 	
..IIs::;zzzzI:::.xz1:z: 	IIIIIIIIIIIIII'II1IIIII 

Multiplicative 

r uuuuuuuuuI 	
::iz::::izzj:iisIs.sissis  

General 	.,'IIIIIIIIIIIII;II1II:I1III:I:ZI 	....:::::.::::::.::1:YI:IIIIIIII 	.YY1ISSISSSIII.IIIIII1I 	.: i:izzz:. :; . 	____ 

Figure 2.8: Propagation of a pulse 

(x,tk) = (xo,t6 ); from (1.10) and (2.14): 

A 	2 (1 - A 2  ) A2  ] - F0,4  + 	9J1 (D) [ 	0, 4Lt)] 
F1,5  

+ -LW  (D0 )] ,5 ) [ (PO,4,0,4t. 

F_ 2,4  
F_ 1,5 	A2  2 (1 - A2) 	A2 	0 	0 	F_ 1,4  
F0,5 	= 	0 	A2 	2 (1 - A2) 	A2 	0 	F_0,4  
F1,5 	0 	0 	A2 	2 (1 - A2) A2 	F1,4  

F2,4  

F_1,3 	
v F_1,3, _x, 3Lt) 

- 	F0,3 	+ 931 (D) v F0,3, 0, 3t) 
F1,3 	 v F13, x, 3t) 

W(D 1 ,4) 	0 	0 	
W F 1,3, — x, 3Lt) 

0 	W(D0 ,4) 	0 	w F0,3,0,3t) 
0 	0 	W(D1,4) 	

w Fi ,3 , AX,  3t) 

As addressed in Section 1.2.3.1, these relations yield an expression for F0,6  in 

terms of { [
Pilo] , 	I 

and values of {v (.) , Lo  (.) , W (D)} over the Do10 ,6 . When 

A = 1, the {9J1 (D) , W(D)} sub-domains will only be evaluated on the blackened 

dots of Figure 2.6, while the empty circles represent {F, v (.) , w (•)} values used in 

the approximation of F0,6 . Due to the propagation properties of the characteristic 

functions, an algebraic reduction of a FDSc using (2.15) will be utilised. 
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Notation 2.2.16. Define P (m, n) such that n is the number of rows and: 
k 

P (m, n) = 	i (-1) 3 
( rn-i-i 

Im-2k-1 

IT 	[A +2(0_i) ] 

1 	( 	rn—i 
where k = 	if m is odd 

L 	0=1 
	—1 if m is even m-2j-1, 

( 21 [2(j_1) 1 
(-1)i e 2(j_1)) L 	

[A +2(01) ] where m= 21+1  

orP(m,n) 

j=1 o=i J 

=j 

21-1 

((j_1)+1) 

r2(-1)+1 

[I 	[A +2(0_ 1) ] where m = 21 
j=1 [ 	o=i 	 J 

(I 
(-1) 

(21-i 2(l-j)) 

2(1—j) 
'  fj 	[A +2(O_1) ] 

1 
where m = 21 + 1 

j=O L ° ' j 

orP(m,n)=I 
(_1)i (i) [I 	[A +2(0_ i) ] 

1 
where m = 21 

j=0 1 [ 	o=1 	 j 

Lemma 2.2.17. P(k+1,n)=[A]P(k,n+2)—[I]P(k-1,n). 

Proof. Refer to Appendix B. 	 E 

Corollary 2.2.18. Using (2.16), when .A = 1 then 
1010•• 10 1 0... 0 

P(k,n)= 
0 ... 0 1 0 1 0 •.. L 0 1 

Proof. Refer to Appendix B. 	 El 

Lemma 2.2.19. FDSy approximation vectors to (2.8) are expressed as: 

)9J(D) k—i 

P (k, n) [j,] + 2C 	
P (1, n) [ (Pj,k—l— 1 x, (k - i - 1) At)] 

1=1 
k—i 

—P (k - 1, n) [P,0] + 	P (1, n) [W(Di,k _1)] [ (,k_1_1, x, (k - i - i) st)]. 
1=1 

(2.17) 

Proof. Refer to Appendix B. 	 EMI 

Corollary 2.2.20. Given values of {[T,1], [T,o]},  relations of the form 
Ti_i ,k- 1 

Ti,k = [ ) 
2  2 (1 - A 2  ) A2 ] 	Ti,k_i -  Ti,k_2 + f (T,k_2) or equivalently 

T+i ,k- 1 

[Ti,k] = [An] [Ti,k_1] - [ I] [Yj,k-2] + [I] [f (Ti,k2)] can be expressed as: 

[Ti,k] = P (k, n) [T,,] - P (k - 1, n) [,o] + 	P (1, n) [f (Yj,k-1-1)]. 	(2.18) 

Proof. Refer to Appendix B. 
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Corollary 2.2.21. Given {[,1] , [T,0]} and A = 1, (2.18) is expressed as 

k 	 k—i 	 k—i i—i 
= 	 - 	j—k+21+1,0 + 	f (Yj-1+2m+i,k-1-1). 	(2.19) 

1=0 	 1=0 	 1=1 m=0 

Proof. Refer to Appendix B. This result can also be used to verify Lemma 2.2.11 

and Corollary 2.2.12. 	 El 

2.3 Errors and convergence 

An expression is 0 (Ax") if its absolute value is less than K/.xr,  where K depends 

upon the driving functionals, initial conditions, and size of the domain. 

Assumption 2.3.1. Throughout this section, assume A = 	= 1, such that AX 

{e,k (j,k} = { (xi, tk) , (xi, tk)}, refer to the CFL condition of 15J. 

2.3.1 Initial conditions 

Assumption 2.3.2. 	 are derived from the initial conditions {F (x, t) t=o, 

OF(x,t)
at it=0 1.  Unless otherwise stated, W,0  has been included in the evaluation of 

Fi,i, c,o  's are iid, and 
D0

max  
D(x,t) 

(i (cg 0) , IE (cg)) 	KDOD/X3  = 0 (Lx3). 

As addressed in Section 1.12 and Assumption 2.1.3, well posed problems are given 

an initial state and velocity, {F(x,t) t=o,aF(7t) 
 tO} and let {ODOD,KDOD} 

denote the Holder piecewise exponent and constant for the initial conditions 

over DoD(x,t). Thus, min (OF(Z,0),Oait)) > 9DoD > 1  and KDOD > 

max (KF,.  (z,o) I  Kaxt)
) 

lx=z , where z E {[j,k, j,k-21 U [(j,k-2, (j,k]}. This infor-

mation is used to evaluate boundary and adjacent interior points (i.e., the first 

two rows) of Z2  in order to implement a FDSc, such as (2.15). A variety of 

methods can be used to derive {Fj1, Fj,o}, but in order to ensure that results are 

applicable to generic initialization schemes, Assumption 2.3.2 is utilised. 

Example 2.3.3. F,1  can be estimated using a multitude of methods such as a Ito-

Taylor expansions, integral evaluation, SDE approximations, the PDE schemes of 

[2], [33], [57], or the HODIE methods of Lynch and Rice. As per Assumption 

2.3.2, Domax  
D(xt) 

(JE (c ,0) , E(eg ,1)) = 0 (x3 ) results can be derived when the 

driving functionals are included in the approximation of 
[Pill] 

Often the initial state, F (x, 0), will be given such that [F,0] can be exactly 

stated; i.e., ej,o = 0 and the evaluation of F,1  is where an error is introduced. 

Thus, a scheme that can be utilised consists of Fj,l - F,1 = 2At97,t) X=X 
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+9R(D) + L° W(Dj), when ) = 1, F,_ 1 can be eliminated to yield F,1 = 

F,_i,o+Fj+i,o 	x OF(x,t) x=x 	
2C

Q9J (D)+ °W(D) such that E(e 1) = 0 (x). 
2 	 It=o at  

2.3.2 Local error 

Lemma 2.3.4. TE ((f (y, s) + g (y, s) + h (y, s))2) = 0 (Lix). 

Proof. Using the inequality (a + b + c)2 <3 (a2 + b2 + c2) gives 

E((f(y,$)+g(y,$)+h(y,$))2) <3TE(f(y,$)2)+3TE(g(y,$)2)+31E(h(y,$)2). 

Evaluating terms yields the following results: 
*For the initial conditions, expand using Lemma 2.2.15 and the Holder continuity 

of Assumption 2.1.3, to give I f (y, s) 

= 
~_F(~(xj,tk-2),O)+F(C(xj,tk-2),O)  + F(e(y,$),O)+F(((y,$),O) 	1 	

f 	Or 
OF(z,r) 

2 	 2 
	

r=O dz 
Li(y,$)+L2(y,5) 

- F(.(j,tk_2),O)+F(((xj ,tk_2),O) + F(.(x,tk_2),O)+F(((xj,tk_2),O) + R[DOD\/LZ 2 2 	 2 

+ 1 (OF(z,r) r=OOF(z,r) r=O 	2Lx'\ + KDO D2V'jLX I 
Or 	z=(xj,tk_2) 2x + 	Or 	z=((xj,tk_2) 	) 	C 

z 	r=O 	 OF(z,r) 'r=O 2Lx\ 	 F( r 
= 	 (KD,D (1 + 	+ 	max ( 	) Iz=(x,tk_2)' Or Iz=((x,tk 

Taking the expected value of the square yields E(f (y, s)2) = 2x (.)2 0 (x). ( DoI(y,$) 

ff 	

\ 
*The area of 	dyds) = 9R (DoI(y, s) - Dol (xi, tk_2)) 

oI(xj,tk_2) 	I 
= (tk2+c)2C(tk2+a0 - (tk2)2C(tk_2) <4Cit (tk_2 + Lit) = 0 (AX). 

DoI(y,$) 

ff 	KdYds) = K931 (DoI(y, s) - Dol (xi, tk_2)) = 0 (tx). Thus,  
(OI(Xi,tk-2) 

For the TE (g (y, 
)2) term, expand using the Lipschitz condition of Assumption 

2.1.5 and Cauchy-Schwarz Inequality such that, 
DoI(y,$) 

TE (g (y, 
)2) 

= TE (( 	ff 	v (F (z, r) , z, r) dzdr

)2)  

DoI(x3 ,tk_2) 

- 	 ff TE ( ( 	
DoI(y,$) 	

)2) 

DoI(x3 ,tk_2) 

- ( 
ff v(Ozr)dzdr)) < 2E ( 

/ 	DoI(y,$) 

\.. DoI(x,tj_) 

+2TE((

DoI(y 

ff K v F(zr)dzdr))

2 
s)  

\ DoI(x,t,_2) 

1 	
DoI(y,$) 

ff 	K (1 + IzrH2)dzdr 2C 	 ) 
0I(xj,tk_2) 

) ("Iff ("") 
(p DoI(y,$)E 	

ff Kdzdr
) 

TE 	ff 	F(z,r)2dzdr 
oI(xj,tk_2) 	 oI(x,t_)  
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/ DoI(y,$) 

(K (1+ z, Mo (x2)  + 	O (tx) E ( 	ff 	F (z, r)12  dzdr 
\oI(xj ,tk_2) 

From Lemma's 2.1.14 and 2.1.20; E (IF (z,r) 2) is bounded since 

F (x, t)0 = F(((x,t),0)+F((x,t),0) + 	f 	Us) s=0 dy is a F0-measurable con- 2 	2C 	as 
D0D(x,t) 

tinuous process satisfying: ff JE (F (y, s)0 2) dyds < cx. Thus, taking the 
DoI(x,t) 

expected value of the square yields E (g (y, 8)2) 
DoI(y,$) 

< 	(K (1 + z, rH2))2 0 (x2) + 	O (ax) ff Kdzdr = 0 (x2). 
DoI(x3  ,tk_2) 

Using the properties of the Ito integral and Lipschitz condition of Assumption 

( / 	DoI(y,$) 	
2 

2.1.5 gives E((h(y,$))2)=E( ( 	ff 	w(F(z,r),z,r)dW(z,r) 
\ \ DoI(x3,t_) 

/ DoI(y,$) 

= (J)2 ( 
	ff 	w (F (z, r) , z, r) 2  dzdr 
\ oI(x3  ,tk_2) 

/ DoI(y,$) 

E ( 	ff 	(Jw (0, z, r)I + K F (z, r)D2 dzdr 
\oI(xj ,tk_2) 

/ DoI(y,$) 

<E( ff w(0,z,r)2+(KF(z,r)D2dzdr 
\oI(xj ,tk_2) 

2 / DoI(y,$) 	 DoI(y,$) 

< ( ff ( 1+Hz,rH2)2 dzdr+ ff F(z,r)2dzdr 
\oI(x,tk_2) 	 DoI(x3 ,tk_2) 

Using Lemma's 2.1.14 and 2.1.20 to bound the F (z, r)2  term yields 
2 / DoI(y,$) 	 DoI(y,$) 

E ((h (y, s))2) < 	( 	ff 	Kdzdr  + 	ff 	Kdzdr j = 0 (AX).
'oI(xj,tk_ 2) 	 DoI(xj,tk_2) 	I 

*Combining these results gives 

E ((f (y, s) + g (y, s) + h (y, 8))2) <31E (f (y, s)2) + 3E (g (y, 8)2) + 3]E (h (y, 8)2) 

<0 (ax) +0 (Lx2) +0 (x) 
 =0 (AX). 

/( ff
Lemma 2.3.5. If 	f v(F(y,$),y,$)dyds—v(Fj,k_2)x,tk_2)9Jt(D,k_l) )2) 

=0(Lx 5). 

Proof. Using Lemma 2.2.15 and Assumption 2.1.5, v (F (y, s) , y, s) 

=v(Fj,k_2+f(y,$)+g(y,$)+h(y,$),x+a,tk_2+a5). Hence, 

Iv (F (y, s) , y, s) - v (lj,k-2, X, tk_2) 

= I v (j,k-2  + f (y, s) + g (y, s) + h (y, s) , xj  + ay, tk_2 + a5) - v (Fj,k27  x, tk_2)I 

<Kjf(y,$)+g(y,$)+h(y,$) +K (1 + )Lx. 

Using the properties of the Lebesgue integral gives 

RR 



ff v (F (y, s) , y, s) dyds - 931 (D ,k_1) v (lj,k-1,  x, tk_1) 
j,k - i 

= ff (v (F (y, s) , y, s) - v (,k-1  x, tk_1)) dyds 
j,k-i 

< ff Iv (F (y, s) , y, s) - v (P,k_1, X, tk_1) I dyds 

and substitution into the integral yields, 

I ff v(F(y,$),y,$) dyds —9Jt(D,k_l)v(Fj,k_ l ,w,tk_l) 
j,k-i 

< Kv ff (If (y,$)+g(y,$)+h(y,$)+O(/x))dyds 
Dj,k_1 

<K ff If(y,$)+g(y,$)+h(y,$) dyds +O(Zx3). 
D k-i 

)2)Th

7

( ,k-1  
us, T ( 	ff v (F (y, s),y, s) dyds - 9)1 (D,k_1) v (Pj,k_1)  x, tk_1) 

/7 
<E( (Kvfff(y,$)+g(y,$)+h(y,$) dyds +O(x3) ) 2) 

\ \ D3_i 

<2KE ( (ff f(y,$)+g(y,$)+h(y,$) dyds ) ) +2O(Lx6). (ff 

/ J 
Using Lemma 2.3.4 and Definition 2.2.2 yields 

E ( [ff v (F (y, s) , y, s) dyds - 	(D_) v (,k-1  x, tk_1)) 

2) 

(ff 

<2K (o 
())2 

 + 0 (x) = 0 (x5). 

Lemma 2.3.6. E ( ( ff w (F (y, s) , y, s) dW (y, s) - w (Fj,k2, x, tk_2) W(D,k_l) )2) 
j,k-i 

=O (Ax 3 ). 

Proof. Evaluating the expectation yields 
7/ 

E ( (ff w (F (y, s) , y, s) dW (y, s) - W(D,k_1) w (,k-2, 1j) tk_2)) 2) (ff 

2) 

= E ( ç 	
(w (F (y, s) , y, s) - w (Fj,kl, x, t_1)) dW (y, s)) (ff 

= E 	ff 1w (F (y, s) , y, s) - (,k-1 Xi, tk_1)I dyds) 
j,k-i 

Hence, 1 w (F (y, s) , y, s) - w (Fj,k2)  xi, tk_2) 

= w (F (xi, tk_2) + f (y, s) + g (y, s) + h (y, s) ,X + a, tk_2 + c) - w (Fj,k2, X, tk_2) 

<Kf(y,$)+g(y,$)+h(y,$)+Kw (1 + )O(x). 
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Substitution into the expectation yields 
7/ 

E ( ( ff w (F (y, s) , y, s) dW (y, s) - W(D,k_l ) w (,k-21  x )  tk-2) 

\ (

ff 

<KE ( 11 (f (y, s) + g (y, s) + h (y, s)!  +0 (x))2  dyds) 
j,k-1 

<2KE (If if (y, s) + g (y, s) + h (y, s)12  dyds) + 0 (x4) 

and using Lemma 2.3.4 and Definition 2.2.2 gives 
Ii 

E ( [ ff w (F (y, s) , y, s) dW (y, s) - W(D,k_l ) w (,k-2,  Xj, tk-2) 

\ (

ff 

<2KO (zx3) + 0 (A.x4 ) = 0 (Lx3). 	 El 

Remark 2.3.7. When utilising the additive functionals: {v (x, t) , w (x, t)}, ei-

ther a direct evaluation of the integrals or a similar evaluation utilising Taylor 

expansions gives the following improved bounds: 

(j,k  
.E 	ff w (y, s) dW (y,  s) - Wj,k_2W(Dj,k_1)) = 0 (x4). 

k-1 	 / 

.If v (x, y) E (2) then ( ff v (y, s) dyds - 93t (D,k_2) V,k_1) = 0 (Ax'), oth- 
j 

/ 

,k-1 	 J 
erwise if v (x, y) is not differentiable and the Lipschitz condition must be utilised, 

then ( ff v (y, s) dyds - 9fl (D_) Vj,k_1 ) = 0 (/x6 ). 
/ 

j,k-1 	 / 

2.3.3 Convergence 

Refer to Section 2.3.4 for numerical rate of convergence results. 

Theorem 2.3.8. A numerical approximation of (2.8) utilising the canonical five 

point FDSc is mean square convergent, where IE (ck) = 0 (ax). 

Proof. Using (2.15) and Lemma 2.2.6, since A = 1; Cj,k = (F (xi, tk) - (xi, tk)) 

= F (x +1, tk-1) + F (x_1 , tk-1) - F (xi, tk-2) + 	ff v (F (z, r) , z, r) dzdr 
D,k —1 

+ 	ff w (F (z, r) , z, r) dW (z, r) - +1,k-1 - —1,k-1 + ,k-2 
D3 k—i 

— Tc-93 (D j,_1) v (Pj,k-2,  x, tk-2) - 	w (Pj'k-21 x, tk-2) W(D,k_l ) 

= F (x +1, tk-1) + Cj+1,k1 + F (x1,tk_1) + Cjl,kl - (xi, tk-2) 

—Cj,k2 - 	- Pjl,k1 + Fj,k2 

(
If v (F (z, r) , z, r) dzdr - 	(D,k _ 1) v (,k_2,  x, tk-2)) 

j,k-i 

Ful 



+ 	( j w (F (z, r) , z, r) dW (z, r) - w (Pj,k-2)Xj,tk-2)  W(Dk_1)) 
j, k-1 

= Cj+1,k_1 + Cj_1,k_1 - Cj,k_2 

+1 
 (

ff v (F (z, r) , z, r) dzdr - 	(D_1) v (,k-2,  x, tk_2)) 
j,k-1 

(D_1) ( (,k-2, Xj, tk_2) - v (,k_2  X)  tk2)) 

+ 	(ff w (F (z, r) , z, r) dW (z, r) - w (,k-2  X, tk_2) W(Dik_1)) 
,k-1 

+W (D_) ( (Pj,k-2, Xj, tk_2) - (,k_2) Xj,  tk_2)) 
T w 

= Cj+1,k_i + Cj_i,k_1 - Cj,k_2 + T k _ 2  + j,k2  + 13j,k-2  + 13j,k-2' where: 

	

= 	( ff v (F (z, r) , z, r) dzdr - t (D) v (Fj,k2, Xi, tk_2)) 
j,k-1 

OTLJ 	= 	( ff w (F (z, r) , z, r) dW (z, r) - W (Di,k_i)  w (,k_2  X, tk_2)) 
j, k-1 

	

/3j,k-2 = 	9J1 (Dj,k_i) ( (]j,k-2, X,  tk_2) - Vj'k-2; X, tk_2)) 

	

I-3A-2 = 	W (D_) ( (1 j,k-2, X, tk_2) - (,k_2 X,  tk_2)). 

Using Corollary 2.2.20 and Assumption 2.3.2, this yields the recurrence relation 

[ei,k] = [ej_i,k_i + Cj+i,k_i] - [c,k_2] + [TV+ T_2  + j,k-2  + j,k-21 

= [An] [e,k_i] - [ I] [e,k2] + [I] [TY,k _ 2  + T k _ 2  + 	+ k-21 
k-i 

= P (k, 1) [ci,'] - P (k - 1,1) [c,o] + 	P (1,1) [T ,k _ j _l  + T k _j_ i  + 	k-1-1 
1=1 

+13j,k_1_i] and using Corollary 2.2.21 to expand P (n, 1), this equates to 

k 	 k-i 	 k-i 1-1 

Cj,k = 	Cj_k+21,1 - 	Cjk+21+1,0 + 	(T_1+2m+i,k_1_1 
1=0 	 1=0 	 1=1 m=0 

j-1+2m+i,k-l-1 + j1+2m+i,k11  + j_1+2m+1,k_1_i) . 	(2.20) 

Evaluating the expectations of the square of (2.20) yields, 
k 	 k-i 	 k-i 1-1 

	

(c) = 	
(1=0 

Cj_k+21,i - 	Cj_k+21+1,0 + 	(T_1+2m+1,k1_i 

	

1=0 	 1=1 in=0 

	

3-1+2m+1 k 1 i + 	1+2m+i,k-1-1 + j_1+2m+1,k_1_1))) 
2 /k-i 1-i 

- 	
( ( 	

_k±21,i) 2) +3E ((ECj-k+21+10)) +3E ( 
	

(T_1+2m+l,k_1_1 <3E 	e3  
1=1 m=0 1=0 10 

	

j-1+2m+1 k 1 1 + 	1+2m+1,k-1-1 + j_1+2m+i,k_1_i))) 

- 	( (_k±21,1)

2) 

	

+ 3E 
( 	

Ci_k+21+i3O) 2) <3E >c3  
\1=0 10 

+3E 	T-1+2m+i,k-1-1 + 	fij_1+2m+i,k_1_1) ) 
( (1=1 

k-i 1-i 	 k-i 1-1 	 2 

 m=0 	 1=1 m=0 
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/ 0-1 1—i 	 k—i 1-1 	 2
±Q11' j 	>:: >i: 	 pwruJI-4 'j-1+2m+1,k-1—i 	/j-1+2m+1,k-1-1 J

=1 M=O 	 1=1 m=O 	 / 
given that the expectation of the {v (.) , w (.)} cross terms are 0 due the inclusion 

of W (D) values. Thus, E (C,k) 3 ((t ci_k+21,1) 2) +3E 
((1 

ci_k+21+1,0 
) 2) 

/ / 

 

	

(k—I 1—i 	/7k—i 1—i 	 )2))

->Tv 	
ii'l (.?V

TU ( " j-1+2m+1,k-1-1)2) Ij-1+2m+i,k-1—i 

	

\1=i m=O 	\1=i m=O 

(]E 

	

7k—i 1—i 	/ 7k—i 1—i 	 2

Ll1 	
CW

)2) 

	

ii'I1 1?WL j-1+2m+1,k-1—i 	( 	/j-1+2m+i,k-1—i 

	

\ \1=1 M=O  	\1=i 

For notational ease, let max = 	max 	and use 	a1  = >12 at  = n, 
i 	jE[j-k+1+1,j+k-1-1J 	1=1 	1=i 

where d is the average of the a's. 

*From Lemma 2.3.5: IE ((r,k_2)2) = 0 (Lx5 ) = 0 (AX 5). 

*From Lemma 2.3.6: ((Tk2)2) = 	0 (x) = 0 (x3). 

E ((k2)2) =TZ(D,_)2  v 	X, tk_2) — (,k_2 X, tk_2) 2 4C2

< 4C2 	(D ,k_l)2 E ((v (Pj,k-2, Xji tk-2 ) + KVc,k_2 - V (-Pi,k-2 
,xj, tk_2))2) 

= frO (x) (e ,k2) = 0 (x4) (,k_2)• 

. 	 ((w (D,k_1) ( (,k_2 + Cj,k_2, X,  tk_2) - 	 tk_2)) ) 
2)  

=931 (D,2C3ki) E (e,k2) = 	0 (x2) IE (c ,k2) = 0 (x2) IE (e,k2). 

Hence 1E(e ,k) <3k21E (i2) + 3 (k — 1)2 (-2) +6 	120 (x5), 

+6 	120 (x4) max (E (c,k_j_i))+6 	10 (x3)+6 	10 (x2) Max (E (c,ki)) 

	

i=i 	 3 	 1=i 	 1=i 	3 

	

k20 (x 3 ) + (k - 1)20 (x3 ) + 00 (x 5 ) + 	10 (x4) max (E (c,ki)) 

	

+k20 (3)  + 	10 (x2)  Max (E (e,k_11)).  Since the domain is bounded 

and k=O 	this yields JE (c,k) 	+ 0 (AX)  + 0 (Lx2) + 0 (AX)  
k  

+ >12 120 (x4) ma x (IE (ek_1_1)) + >12 10 (x2) Max  (IF (e,k1i)) 

	

1=1 	 3 	 1=1 	3 

	

0 (ix) +0 (x2) 	max ( (e,k1)) +0 (x) 	max (E (e,k_11)) 
3 	 1=1 3 

< O(AX)  (i +>12 Max (IE (e,k_1_1))).  Given that ma (E (e? , E(e ,0)) 

= 0 (x3), then the recurrence relation yields the desired result. 	 LI 
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2.3.4 Numerical rates of convergence 

The following tables summarize pathwise numerical global errors and numeri-

cal rates of convergence for (2.1) with additive and multiplicative noise where 

(x )  t) e {[o, 1] x [0, ] } and the Z2 	
1 domain refinement is the 'numerical 

- 1024 
solution.' The number of iterations represents the number of Brownian sheets 

the errors are averaged over and the results support Theorem 2.3.8 yielding 

(P (, ) , 2Lx) = , within statistical sampling error. 

Remark 2.3.9. It is interesting to note that for these examples, virtually equiva-

lent results are achieved when utilising { V (Pj,k-1, x, tk_1) , w (pj,k-1;  X, tk_1) 
I 

in place of { (Pj,k-2, Xj, tk-2) ,w (,Pj,k-27 Xj; tk-2)} when approximating the driv-

ing functionals of (2.16). This is due to the initial conditions being bounded be-

tween [-1, 1] and the nature of the Brownian sheets utilised. 
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Iterations = 
i-O  (p (1,  1) 2 	2 	) 

32 64 	128 	256 	512 

(513 x 257) 0.00981 0.00973 0.01117 0.01035 0.01153 
(257 x 129) 0.01513 0.01642 0.01534 0.01569 0.01649 
(129 x 65) 0.02504 0.02384 0.02683 0.02411 0.02411 
(65 x 33) 0.02886 0.03435 0.03740 0.03665 0.03153 
(33 x 17) 0.04553 0.04456 0.05586 0.04473 0.04761 
(17 x 9) 0.05704 0.07231 0.07469 0.06816 0.06956 
(9 x 5) 0.06986 0.08849 0.10447 0.10360 0.10316 
(5 x 3) 0.16952 0.14281 0.13653 0.14866 0.13300 
(3 x 1) 0.19321 0.20787 0.20491 0.20621 0.18891 

(P(,) 	2 ; x) 

(257 x 129) 0.625 0.755 0.458 0.600 0.516 
(129 x 65) 0.727 0.538 0.806 0.620 0.548 
(65 x 33) 0.205 0.527 0.479 0.604 0.387 
(33x 17) 0.658 0.376 0.579 0.288 0.595 
(17 x 9) 0.325 0.698 0.419 0.608 0.547 
(9 x 5) 0.292 0.291 0.484 0.604 0.569 
(5 x 3) 1.279 0.690 0.386 0.521 0.367 
(3 x 1) 0.189 0.542 0.586 0.472 0.506 

Table 2.1: 52  (F (x, t) , 1) = 	
9x9t 	F (x, 0) = sin (x + t) = sin (x) 

sin (x + t) 



Iterations = 
CO  (p (1,  1)) 

32 64 	128 	256 	512 

(513 x 257) 0.01168 0.00991 0.01070 0.01539 0.01034 
(257 x 129) 0.01874 0.01639 0.01591 0.01985 0.01698 
(129 x 65) 0.02776 0.02317 0.02669 0.03037 0.02659 
(65 x 33) 0.04214 0.04224 0.04035 0.04446 0.04035 
(33 x 17) 0.08408 0.06108 0.07176 0.06229 0.06494 
(17 x 9) 0.11410 0.11454 0.10741 0.09590 0.11133 
(9 x 5) 0.19857 0.24393 0.18706 0.13760 0.21228 
(5 x 3) 0.41484 0.47062 0.41240 0.21469 0.42335 
(3 x 1) 0.97715 1.03995 0.97580 0.28029 1.00018 

(P2 2 	,2x) 

(257 x 129) 0.681 0.726 0.573 0.367 0.716 
(129 x 65) 0.567 0.500 0.746 0.614 0.647 
(65 x 33) 0.602 0.866 0.596 0.550 0.602 
(33 x 17) 0.996 0.532 0.831 0.486 0.687 
(17 x 9) 0.440 0.907 0.582 0.623 0.778 
(9 x 5) 0.799 1.091 0.800 0.521 0.931 
(5 x 3) 1.063 0.948 1.141 0.642 0.996 
(3 x 1) 1.236 1.144 1.243 0.385 1.240 

Table 2.2: 552  (F (x, t) 1) = 82W(x,t) 
t9xôt . F (x, 0) = sin (x + t) = sin (x) ; Fi 

sin (x) + / t cos (x) 
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Iterations = 32 

I 	(())  

64 	128 	256 	512 

(513 x 257) 0.01107 0.01137 0.01171 0.01130 0.01099 
(257 x 129) 0.01543 0.01448 0.01597 0.01616 0.01594 
(129 x 65) 0.02430 0.02452 0.02100 0.02590 0.02355 
(65 x 33) 0.03696 0.02974 0.03645 0.03415 0.03368 
(33 x 17) 0.04823 0.05118 0.04775 0.05115 0.04942 
(17 x 9) 0.07039 0.06604 0.07337 0.07541 0.06905 
(9 x 5) 0.08428 0.08773 0.08714 0.09898 0.09591 
(5 x 3) 0.13182 0.13964 0.14763 0.14488 0.14377 
(3 x 1) 0.24744 0.20701 0.21680 0.19671 0.20281 

(') ,2x) 

(257 x 129) 0.478 0.348 0.448 0.516 0.537 
(129 x 65) 0.655 0.760 0.395 0.681 0.563 
(65 x 33) 0.605 0.278 0.795 0.399 0.516 
(33 x 17) 0.384 0.783 0.390 0.583 0.553 
(17 x 9) 0.545 0.368 0.620 0.560 0.482 
(9 x 5) 0.260 0.410 0.248 0.392 0.474 
(5 x 3) 0.645 0.670 0.761 0.550 0.584 
(3 x 1) 0.908 0.568 0.554 0.441 0.496 

Table 2.3: 2  (F (x, t) 1) = 82W(x,t) F(x,0) = x2  + t2  = 	F1  = x2  + t2  8x0t 

Rol 



Iterations = 32 

(P)  
64 	128 	256 	512 

(513 x 257) 0.01248 0.00905 0.00995 0.01112 0.01052 
(257 x 129) 0.01403 0.01525 0.01536 0.01630 0.01642 
(129 x 65) 0.02356 0.02629 0.02582 0.02645 0.02393 
(65 x 33) 0.02561 0.02859 0.03753 0.03518 0.03494 
(33 x 17) 0.05235 0.05413 0.05118 0.05004 0.04937 
(17 x 9) 0.07485 0.07234 0.07551 0.07625 0.06963 
(9 x 5) 0.10941 0.10575 0.11537 0.11550 0.10835 
(5 x 3) 0.16577 0.17861 0.17955 0.16226 0.18294 
(3 x 1) 0.26059 0.27318 0.31494 0.28895 0.29099 

2 	2,2Lx) 

(257 x 129) 0.170 0.754 0.627 0.552 0.642 
(129 x 65) 0.747 0.785 0.749 0.698 0.544 
(65 x 33) 0.120 0.121 0.540 0.412 0.546 
(33 x 17) 1.031 0.921 0.448 0.508 0.499 
(17 x 9) 0.516 0.418 0.561 0.608 0.496 
(9 x 5) 0.548 0.548 0.611 0.599 0.638 
(5 x 3) 0.599 0.756 0.638 0.490 0.756 
(3 x 1) 0.653 0.613 0.811 0.833 0.670 

Table 2.4: 2  (F(x,t) 1) 	82W(x,t) 
8x&t  . U(x,t) = x2  +t2  = 	x2  + 2t 
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Iterations = 32 64 	128 	256 	512 

(513 x 257) 0.01592 0.01560 0.01526 0.01443 0.01506 
(257 x 129) 0.01731 0.02193 0.01979 0.02269 0.02153 
(129 x 65) 0.03118 0.03538 0.03164 0.03213 0.03209 
(65 x 33) 0.03895 0.05264 0.04173 0.04594 0.04498 
(33 x 17) 0.07385 0.07405 0.06998 0.06311 0.06331 
(17 x 9) 0.11046 0.09474 0.09341 0.09035 0.08897 
(9 x 5) 0.12074 0.13375 0.12806 0.13616 0.13228 
(5 x 3) 0.18000 0.18114 0.17746 0.18559 0.19975 
(3 x 1) 0.28169 0.26066 0.25507 0.25614 0.27362 

(fr(,) ,2x) 

(257 x 129) 0.121 0.491 0.374 0.653 0.516 
(129 x 65) 0.849 0.690 0.677 0.502 0.576 
(65 x 33) 0.321 0.573 0.399 0.516 0.487 
(33 x 17) 0.923 0.492 0.746 0.458 0.493 
(17 x 9) 0.581 0.356 0.417 0.518 0.491 
(9 x 5) 0.128 0.497 0.455 0.592 0.572 
(5 x 3) 0.576 0.438 0.471 0.447 0.595 
(3 x 1) 0.646 	1 0.525 0.523 0.465 0.454 

Table 2.5: 	2  (F (x, t) , 1) = F (x, t) 82W(x,t) 
c9xat 	F (x, 0) = sin (x + t) = sin (x); 

= sin (x + t) 



Iterations = 32 64 	128 	256 	512 

(513 x 257) 0.01719 0.01395 0.01670 0.01398 0.01573 
(257 x 129) 0.02417 0.02724 0.02282 0.02111 0.02124 
(129 x 65) 0.03355 0.03459 0.03258 0.03109 0.03340 
(65 x 33) 0.05143 0.04454 0.04520 0.04997 0.04829 
(33 x 17) 0.07063 0.07368 0.08744 0.07528 0.07401 
(17 x 9) 0.10214 0.12769 0.13364 0.12769 0.11994 
(9 x 5) 0.24397 0.20316 0.22156 0.22243 0.22025 
(5 x 3) 0.44343 0.40094 0.41627 0.41570 0.40785 
(3 x 1) 1.04837 0.95783 0.94393 0.96733 0.93687 

(fr 	,2L x) 

(257 x 129) 0.492 0.965 0.451 0.595 0.434 
(129 x 65) 0.473 0.344 0.514 0.558 0.653 
(65 x 33) 0.617 0.365 0.472 0.685 0.532 
(33 x 17) 0.457 0.726 0.952 0.591 0.616 
(17 x 9) 0.532 0.793 0.612 0.762 0.697 
(9 x 5) 1.256 0.670 0.729 0.801 0.877 
(5 x 3) 0.862 0.981 0.910 0.902 0.889 
(3 x 1) 1.241 1.256 1.181 1.218 1.200 

Table 2.6: 	2  (F (x, t) , 1) = F (x, t) 82W(x,t).  U (x, 0) = sin (x + t) = sin (x) ôxôt 

F1  = 

 

sin (x) + At cos (x) 
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Iterations = 
av  (p (1,  W 

32 64 	128 	256 	512 

(513 x 257) 0.01898 0.01401 0.01854 0.01891 0.01835 
(257 x 129) 0.01933 0.02296 0.02451 0.02539 0.02651 
(129 x 65) 0.03842 0.03553 0.03695 0.03530 0.03551 
(65 x 33) 0.04501 0.04738 0.05279 0.04971 0.05050 
(33 x 17) 0.08349 0.06763 0.06704 0.06789 0.07058 
(17 x 9) 0.10061 0.09665 0.09651 0.10159 0.09947 
(9 x 5) 0.10522 0.14464 0.12570 0.13177 0.13218 
(5 x 3) 0.13336 0.18610 0.17893 0.20221 0.19011 
(3 x 1) 0.23909 0.19775 0.21050 0.21781 0.20956 

2 	2,2x) 

(257 x 129) 0.027 0.713 0.402 0.425 0.531 
(129 x 65) 0.991 0.630 0.592 0.475 0.422 
(65 x 33) 0.229 0.415 0.515 0.494 0.508 
(33 x 17) 0.891 0.513 0.345 0.450 0.483 
(17 x 9) 0.269 0.515 0.526 0.582 0.495 
(9 x 5) 0.065 0.582 0.381 0.375 0.410 
(5 x 3) 0.342 0.364 0.510 0.618 0.524 
(3 x 1) 0.842 0.088 0.234 0.107 0.141 

Table 2.7: S52  (F (x, t) , 1) = F (x, t) 82W(x,t).  F (x, 0) = x2  + t2  = x2; F1  = x2/t2  
i9x3t 
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Iterations = 

aq (p (1, W 
32 64 	128 	256 	512 

(513 x 257) 0.01712 0.02083 0.01734 0.01851 0.01803 
(257 x 129) 0.03079 0.02682 0.02655 0.02553 0.02735 
(129 x 65) 0.04006 0.03549 0.03831 0.03662 0.03484 
(65 x 33) 0.04676 0.04700 0.05403 0.04978 0.05323 
(33 x 17) 0.07278 0.07085 0.07873 0.07322 0.07250 
(17 x 9) 0.09323 0.09642 0.09076 0.09811 0.10232 
(9 x 5) 0.13752 0.13817 0.12612 0.14147 0.13997 
(5 x 3) 0.22030 0.20724 0.18938 0.20899 0.21281 
(3 x 1) 0.25710 0.29370 0.26297 0.32182 0.30925 

kC- (.P (1, 1) , 2]~T 
(257 x 129) 0.847 0.365 0.615 0.464 0.601 
(129 x 65) 0.380 0.404 0.529 0.520 0.349 
(65 x 33) 0.223 0.405 0.496 0.443 0.611 
(33 x 17) 0.638 0.592 0.543 0.557 0.446 
(17 x 9) 0.357 0.445 0.205 0.422 0.497 
(9 x 5) 0.561 0.519 0.475 0.528 0.452 
(5 x 3) 0.680 0.585 0.586 0.563 0.604 
(3 x 1) 0.223 0.503 0.474 1 	0.623 0.539 

Table 2.8: 	2 (F(x,t) ,1) = F(x,t) O'w F(x,0) = x2 + t2 = 	F1 = oxat 
()2 + 2t 



Chapter 3 

Elliptic processes 

3.1 Introduction 

Notation 3.1.1. The second order elliptic operator is denoted by V 2  F (X) = 
d 
 (C)2 	where C1  = C = 1. 

This chapter concentrates on quasi-linear second-order elliptic SPDE's in R° with 

additive noise of the canonical form: 

	

172F (X) = —v (F (X) , X) - w (X) W (X) 	 (3.1) 

with well posed boundary conditions, where d < 3 and v (.) is a general function 

possibly containing functionals of the lower order terms IF (X) ,F' (X)}. The 

multiplicative and general noise cases of (3.1) will be addressed in Section 3.3, 

but they are of minor concern. 72F (X) = 0 is the 'Laplace' equation with solu-

tions called 'harmonic functions' and when w (X) = 0, (3.1) is the deterministic 

'Poisson' equation. The {d = 1, 2, 31 forms of (3.1) are: 

52F(x) - 

	

	 ÔW(x) 	
(3.2) —v(F(x),x)—w(x) a 

(9X 2 -  

32F (XI  y) +2a2F 	= —v(F(x,y),x,y) —w(x,y) 
a2W(x,y) 	

(3.3) 

	

ax2 	' a2 	 axay 

and a2F(x, y, z)c2a2F(x, Y ,z) +c2a2F (x, Y,z) = 
ax2 	" 	a 	 09z2  

	

—v (F (x, y, z) ,x, y, z) - 	
33W(x,y,z) 

(x, y, z) 	
axayaz 	

(3.4) 

Elliptic equations such as (1.1), where b 0, can be transformed into (3.1) via a 

change of basis; for example, replace the (x, y) coordinates of (1.2) with (xt, Yt) 

	

where 0 = 	2  8x - (a\
) 	

j 	a\ 2 0Yf 
- 	+ () --, to yield (3.3). 
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3.1.1 Summary of results 

Similar to the deterministic system, convergence results for the stochastic system 
are highly reliant upon the geometry of the domain. As expected, higher rates of 
convergence can be achieved with efficient handling of boundary conditions; refer 

to the works of Hackbush, Wasow, and [1, page 1401. 

3.1.2 Elliptic Assumed Initial Conditions (EAIC) 

The following initial conditions assure that elliptic processes are well posed. 

Assumption 3.1.2. Only closed and bounded domains will be utilised. 

exterior 
comp( UU 87-) 

exterior 

intcrior 	 interior 
boundary—i 	( 	

U 	 Z 

8 U 

Figure 3.1: Geometric overview 

Assumption 3.1.3. Dirichiet boundary conditions are given, where FoU  (X) is 

a real valued piecewise analytic Holder continuous function. 

Remark 3.1.4. As per Remark 1.2.3, Neuman and Robin boundary conditions 

can be implemented in place of Assumption 3.1.3 with only slight modifications. 

A heuristic example of these boundary conditions is a heat problem, where the 

Dirichlet and Neuman conditions represent the actual temperature and heat flux 

while the Robin condition represents a linear combination of the terms. 

Assumption 3.1.5. {v (.) , w (.)} e (2)  are real valued functions on Rd  and they 

are globally Lipschitz continuous with coefficients {K, K}. In order to assure 

uniqueness, assume v (.) is an increasing function of F (.). 

Assumption 3.1.6. A Brownian sheet is utilised. 

3.1.3 The elliptic process 

The motivation for solving elliptic processes is to model steady state systems ob-
serving inverse-cr such as: 

*equilibrium states of heat flow, gravitation, or electromagnetic fields. 

53 



*processes involving Maxwell's equation or Steady Stokes equations. 

*the flow of incompressible viscous fluids. 

Since the characteristic equations of (3.1) are conjugate complex, initial condi-

tions and singularities instantaneously propagate in all directions. Thus, elliptic 

processes are at a 'state of equilibrium' where time is irrelevant and characteristic 

equations will not be utilised as in Chapter 2. 

Notation 3.1.7. When two position vectors are given, such as G (X; Y), X is 

the location of a singularity and the operator is with respect to Y. 

F(X)=fH(X;Y)Fou(Y)dY+fG(X;Y)v(F(Y)Y)dY 

+ / G (X; Y) w (Y) dW (Y). 	 (3.5) 

(3.5) is not an explicit formula due to the Green's function dependency upon 

the domain, but it expresses solutions to (3.1) when the additive functionals 

{v (X) , w (X)} are utilised and approximations to the solution when v (.) is either 

a multiplicative or general function. 

One might feel uncomfortable seeing only existence and uniqueness 

theorems. Indeed, the most important thing in real applications is to 

find the solution. Of course, we cannot hope to find explicit formulas 

for solutions for general elliptic operations, by the way, even if one 

manages to find such a formula for a particular problem, and the 

formula is complicated, one has to find numerical methods to be able 

to use the formula for real computations. [40, page 85] 

3.1.3.1 The deterministic process 

The following Lemma's will be stated for reference and refer to [40] for the defini-

tive text covering this subject. Further theoretical and numerical results can be 

found in [2], [19], [21], [33], [38], [17, Section 1.3], [46], and virtually any work by 

Wolfgang Hackbusch. 

Lemma 3.1.8. Given (EAIC), any two solutions of {(3.1),w (X) = 0} using an 

equivalent Dirichiet boundary condition must agree or using (Neumann or Robin) 

boundary conditions must agree or differ by a constant. 

Proof. Refer to [46, page 105]. 	 . 



Lemma 3.1.9. Gauss' Mean Value Theorem: For the Laplace equation where 

F (X) is a harmonic function and 6S= 6S2  (Y, L) E 3; then F (Y) is the average 

of the solutions over 6S such that F (Y) = (X I X e SS) = 9R (6S) 1  f  (X) dx. 
6S 

Proof. Refer to [46, page 105]. 	 Li 

Lemma 3.1.10. Maximum Principle. If 72 F (X) > 0, then either F (X) = C 

orF(X) < max (F(Y)). 
}'E5Z5 

Proof. Refer to [40, Sections 2.6 and 2.9], [62, Lemma 1], [49, Theorem 3], or [46, 

Chapter 4 and Section 8.3] and note that equation (15) should read 

'u() < sup u(x)'. 	 Li 

Corollary 3.1.11. Minimum Principle: If V 2 F(X) < 0, then either F (X) = C 

or F (X)> mm (f (Y))
YEJU 

 

Corollary 3.1.12. Laplacian Maximum - Minimum Principle. For the Laplace 

Equation; max (F (X)) <max (F (X)) and mm (F (X)) > mm (F (X)). 

Lemma 3.1.13. Deterministic Existence. Given (EAIC), then a solution to 

1(3.1),w (X) = 01 exists as defined by (3.5). 

Proof. Refer to Appendix B. 	 LE 

Lemma 3.1.14. Deterministic Uniqueness. Given (EAIC), then the solution for 

1(3.1),w(X) = 01, if it exists, is unique. 

Proof. Refer to Appendix B. 	 Li 

Lemma 3.1.15. Let f (X) e 62)  and given initial boundary conditions fczj (X) 

E 	('), then there exists a unique solution to the deterministic Dirichiet problem 

17'F (X) = f (X). 

Proof. Refer to [40, page 251. 	 Li 

Remark 3.1.16. Given the above results and (EAIC), then a solution to a de-

terministic Poisson equation is (2);  refer to [jO, pages 18-19] or [46,  Section 

3.1.3.2 Green's function and the Poisson kernel: {G (.) , H (.)} 

Due to the extensive coverage of Green's functions in the mathematics and physics 

literature over the past sixty years, the following will be provided for reference. 

For a thorough discussion concerning Green's functions and Poisson kernels, refer 
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to [2], [28, Section 3], [38], [40], [45], [46], [54], and the works of Wasow. Due to 

complications involving processes with variable coefficients, the Green's function 

approach has been virtually abandoned in modern theory; but given (1.1) is 

quasi-linear, this approach will be used in accordance with (1.12), [45], and [63]. 

Definition 3.1.17. As defined in [8], let BM{x,t}  denote a standard Brownian 

motion starting from X and t is the exit time from the domain under IPx , 
— HX — 

(X; Y) = 	
in (jX — Y112) — IE (in (BM{x,t}  - 	

, where {d = 1, 2, 31 
— 	

47r 	 47r 
Ix—Yu2 + E (HBM{X_Y2 ) 

respectively. This is equivalent to [40, page 18], where {C, C} of Notation 3.1.1 

have not been normalized. 

Definition 3.1.18. Given a singularity is located at an interior point X, let 

(X; Y) E (2),  where 2(  (X; g 5) = 0 and (X; Y) = 6 (X; Y) when Y e 83. 

Definition 3.1.19. The Green's function is C (X; Y) = (X; Y) — ((X; Y) and 

the Poisson kernel is H (X; Y) = OG(X;Y) where Z is the normal vector of a 

boundary in the exterior of the domain; refer to Figure 3.1. 

Lemma 3.1.20. For any g (X) E °°, there exists a function f (X) e QY°, such 

that 72 f  (X) = g(X) in Rd .  

Proof. Refer to [40, page 41. 	 LI 

Lemma 3.1.21. If f (X) e Q(2),  then g (X) = f f (Y) (X; Y) dy defines a 
Rd 

bounded continuous function in Rd  which satisfies 72g  (X) = f (X) in J. 

Proof. Refer to [40, page 18]. 	 LI 

Lemma 3.1.22. Since the Green's function is a symmetric kernel, a reciprocity 

relation exits such that G (X; Y) = G (Y; X). 

Proof. Refer to Appendix B. 

From the properties of { (.) , ( (.)}, there exists a unique solution to the Green's 

function; i.e., Laplace function V 2  G (X; Y) = 0. Assuming that If M, g (Y)} e 
(2)  then the following are Green's First and Second Identities, respectively: 

I f(Y)v2g(Y)dY=ff(Y) D(Y) dY az 
U 	 öU 

— / grad (g (Y)) . grad (f (Y)) dY 

(3.6) 
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f f (y)  V2 g (Y) dY f g (y)  72 f (Y) dY + f f (Y) 09 
	

—g(Y)dY az 
(3.7) 

and when g (Y) = f (Y), this yields the 'Energy Identity' 

/ grad (g (Y)) 2  dY + f 
g (y) 

 72 g(Y)dx = f  g (Y) 5' dY az 
bu 

(3.8) 

This 'conservation of energy' implies that the yield for a Laplace operator is 

constant, thus the Radiation Principle directly follows. 

Lemma 3.1.23. The Radiation Principle: The fundamental solution to the Laplace 

equation is a unit source distribution satisfying \72F (X) = 

Proof. Refer to [46, page 108] where 1x  is a unit source located at X. 

Since G (X; Y) is subject to Lemma 3.1.23, then by definition f H (X; Y) dY = 1. 
JU 

A natural description of this principle is an inverse-d law describing the weak-

ening of a gravitational pull, intensity of light, or strength of an electric field as 

the distance between objects increases. The radiation principle indicates that the 

gradient of a field at Y, from a point source X, is indirectly proportional to the 

surface area of a R' sphere; i.e., 931 (5S2  (X, X - Yj 2))'. For an exterior prob-

lem where the distance between a boundary and a point is much larger than the 

interior diameter of the boundary, the geometry of {J U 631 becomes numerically 

insignificant and the boundary can be reduced to a point source. 

3.1.3.3 The stochastic process 

The literature relevant to (3.1) is not as extensive as the hyperbolic or parabolic 

cases of (1.1), thus relevant articles over the past few years include: 

.[1] presents a finite element method for solving elliptic processes using a modi-

fied noise that approximates white noise. 

.[6] presents a Monte Carlo method for solving elliptic processes. 

.[36] discusses Hamilton- J acobi- B ellman (HBJ) equations experiencing a stochas-

tic 'control' using a scheme related to a method of lines that reduces the dimension 

of the problem by solving the process in certain directions. 

The existence and uniqueness for the 'token elliptic' case of (3.1) with {v (.) = 0, 
w (X) = 1, F6z3  (X) = 01 is presented in [60, Chapter 9]. Also listed is an 'expla-

nation as to how such equations arrive as the limits of parabolic equations.' 

.[52] presents the existence and uniqueness results for a modified version of (3.1), 

where V 2  F (X) = —v (F (X) , X) - W (X) + 1F(x)<QT (X), such that white noise 
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is reflected at 0 and T (X) forces F (X) to remain positive over the entire domain; 

T (X) is a random measure satisfying f F (X) dT (X) = 0. 

.[58] discusses the factorization of self-adjoint elliptic FDSy's. 

*Although concentrating on deterministic process and systems, the life's work of 

Dr. Wolfgang Hackbusch is invaluable for the additive stochastic case. 

3.1.3.4 Results of [60, Chapter 9] 

Assuming a closed and bounded domain with a smooth boundary, consider the 

Poisson equation where v (F (Y) , Y) is bounded and continuous and (3.5) is a 

weak solution for (3.1). Let M be a 12  measure on Rd  that is not a M since 

there is no time involved with this domain. Set Q (Ea, Eb) = 1(M (Ea) M (Eb)) 

and suppose that there exits a positive definite measure $.D on Rd  x  Rd,  such that 

Q (Ea, Eb) I < IQ (Ea  x Eb) I for all Borel spaces {Ea, Eb} C V. Let M (6Z5) = 0 

and T be a kth  order differential operator on Rd  with smooth coefficients. Con- 

sider the SPDE {V2U (z5) = 	U 	= o}; to get the weak form, multiply 

by a test function h (X) and integrate over R°, pretending M is smooth. Suppose 

h () = 0 and perform two integrations by parts to get f U (X) 72  h (X) dX - 

f 	I;I (X) h (X) dx. Let Tt be a formal.adjoint of T and if T is a 01h  first 
5uöZ5 
order operator or if h (X) has compact support in 5, integrate by parts on the 

right to get U ( 2h (X)) 	f Th (X) M (dx). Since only Rd  is considered, 
UWU 

U (X) is a weak solution if U (X) E S' (Rd)  almost everywhere and holds for all 

h (X) E IS (Rd)  I h (Y) = 0; Y e 5}, where S is the Schwartz space of decreas-

ing functions. Refer to [60, Proposition 9.1] for the uniqueness result. 

3.1.3.5 Results of [8] 

Although the results of Walsh are enlightening, in order to address (3.1), the 

following results from [8] will be utilised. The case when v (.) 0 0 and Fju  (X) = 0 

is proven, where (as stated on [8, page 220]) the results can be extended to a more 

general SPDE with non-zero boundary conditions. 

Lemma 3.1.24. [8, Lemma 2.1]: f  (X; Y) w (Y) dW (Y), where x e U posses 
U 

an almost surely continuous modification. 

Proof. Refer to Appendix B. 

Remark 3.1.25. It follows that flu ( I I - YM2) w (Y) dW (Y) has Lipschitz paths 

when d = 1, Holder continuous with exponent 1 - a when d = 2, and HOlder con-

tinuous with exponent 1  - a when d = 3 and a > 0. 



Lemma 3.1.26. There exists a constant K such that for any g (.) E C2  (J), 

G(X;Y)g(Y) .g(X) > K JIG (X;Y)g(Y) 2. 

Proof. [8, Lemma 2.4]. 	 El 

Lemma 3.1.27. Let f (.) and h (.) be continuous, non-decreasing on ?i, and lo-

cally bounded. Moreover, h (X, r) < f (X, r) for X E U, r e R, and Jul (.) , u2 ()} 
be almost surely continuous random fields on 5; solutions to 

u1  (X) = - f G (X; Y) f (F (Y), Y) dY+f G (X; Y) v (Y) dY+f G (X; Y) dW (Y) 

u2 (X)=—fG(X;Y)h(F(Y),Y)dY+fG(X;Y)v(Y)dY+fG(X;Y)dW(Y) 

Then, u1  (X) <u2  (X) for X E 

Proof. [8, Lemma 2.6]. 	 El 

Lemma 3.1.28 [8, Lemma .5]. Given the ('EAIC) then (3.5) is the unique 

solution to (3.1) which is almost surely continuous on 

Proof. Refer to Appendix B. 	 EE 

Lemma 3.1.28 is still true if, instead of being non-decreasing, F (X) satisfies 

(F (Yd-1, r) - F (Yd-1, s)) (r - s) > —a r - 812  for all X E J and {r, s} E R 

provided a < K, where K is the constant appearing in Lemma 3.1.26. In other 

words, F (X) could be the sum of an increasing function that is locally bounded 

and a Lipschitz function with a constant strictly smaller than K. 

3.1.3.6 Results of [1] and [4] 

FESy methods to solve 1(3.2),w (x) = 1} are discussed in [1] where 

the white noise processes are first approximated by piecewise con-

stant random processes. ... It is shown that the solutions to the new 

'simpler' problems converge to the actual solutions of 1(3.2), w (x) = 1} 

as the white noise approximations become finer. ... Finally, it is 

proved that the finite element and difference approximations converge 

to the solutions of the simpler problems and hence to the solutions of 

the original problems. [1, page 1201 

In [4], a general framework to solve (3.3) can be expressed in a variation form, 

where V  (u (x, y) . VF (x, y)) = —T (x, y) using a FESy. Rate of convergence 

results for FESy are presented [4, Theorem 3.1] and [4, Theorem 5.1]. 
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3.2 	Discretisation of the process 

Due to the lack of a time dimension, there is no clear difference between the space 

dimensions, hence the discretisation will be on the same order of magnitude such 

that Ay = AYAx = 0 (ax) and Az = 	= 0 (Ax). Otherwise a FDSy 

method of lines will be utilised; refer to Section 4.1.0.6. 

3.2.1 Discretisation of the boundary 

When 9J (D) <<< 1, most often the significant contribution of error is introduced 

at the boundary; hence a FDSc's handling of errors at the boundary determines 

the accuracy of the system. [62, Theorem 1] estimates the magnitude of the 

deterministic errors, but as stated just after the theorem: 

There is not much point in using, as is sometimes proposed, a very ac-

curate approximation in U unless it is matched by an equally accurate 

interpolation scheme near the boundary. 

The usefulness of Theorem 1 is limited by the fact that F (X) is not 

known. ... no really practical appraisal in terms of the data alone 

seems to exist, except for very special regions. [62, page 88] 

When using a uniform Z", space, unless the V boundary consists of line segments 

or planes intersecting at appropriate angles, the boundary contains points outside 

the uniform mesh; refer Figure 3.2-A. Thus, a subset of Zd  points is redefined as 

the Zd  boundary for numerical evaluations, where: 

I 

Figure 3.2: Irregular boundary conditions 

*Figure 3.2-13. Redefine the discretised boundary such that &5i  denotes the 

boundary sub-space assigned to X3  E Zd and adjacent points to the Rd  boundary 

comprise the new Y E Zd boundary and evaluate FjU  (Y). This method is the 

preferred approach since a FDSc can be applied without modification. 

Figure 3.2-C. Subtract adjacent points that are required for the FDSc but do 

Me 



L I 

not fall on the boundary and replace them with appropriate points that lie on 

6J. This method is numerically accurate, but computationally burdensome since 

the FDSc must be adapted to account for variable Ax's close to the boundary. 

*Figure 3.2-D. Select adjacent points and derive their 'boundary value' via a 

PDE approximation. For example, identifying the boundary and derivatives with 

respect to +Z is trivial, hence F (Y) = F (X) + aFx) 
Ily 
 - X1 2  approximates 

adjacent exterior {+} and interior {-} points using Rd  boundary values. 

Although not utilised in this text, other methods 'solve it locally in neighbor-

hoods of any boundary point by straightening the relevant piece of the boundary' 

[40, page 79] or '... does not fix the value of F 	a priori.' [21, page 200]. 

3.2.2 Computational molecules 

Assumption 3.2.1. Elliptic computational molecules are weighted averages; thus, 

lim 	( 	(X; Y) = 1 Y E 	= 1, almost surely. 
x—O EU 

Numerous consistent computational molecules have been derived, but due to As-

sumption 3.2.1, the FDScu  matrices are symmetric and irreducible. As alluded 

to in Section 1.2.2, the 'bench mark' FDSc's for elliptic processes are the explicit 

three, five, and seven point computational molecules of Figure 3.3. To generate 

these schemes, expand (3.4) around F (xi, Yk, z1) using (1.9) to yield 
0___  - 	

± 2 
ôF(x,y,z) 

 + c a2F(2x,y,z) 
 + v (F (x, y, z) , x, y, z) - ax2 	y 

	

+w (x, y, z) 32W(x,y,z) - Fj+1,k,l-2Fj,k,1+Fj_1,k,1 + C2 	k+1,t21j,k,l+1j,k_1,t 
axayaz - 	 x 2 	 y 	AY  

± ix284F(a,yk,z1)&'F(x3,b,zj) 
12 	5x4 	+ 12 	ay4  

_ 	 w( D,k,t
12 	az 	

) z2  ôF(x3,,) 
+ v (P (xi, Yk,  z1 ) , x, Yk, 1) + w (xi, Yk,  z1) AXAYAZ 

+ {v (.) and w () truncation errors}; where a E [x_ 1 , x+1],  b e [Yk-1, Yk+11, 

and c E [z j_i, zj+i]. This yields the consistent computational molecules: 

Figure 3.3: [FDScu] matrices for canonical 3, 5, 7 point schemes 
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(Pk+l +Fk_1) 

+ x
2  (,y) 

+ 
xw(yk)W(Dk) 	

(39) Pk — 	2 	 2 	 2 

(Pi+l,k +i_1,k) + 
	

(+ + i,k-1) 

= 	2 (1 + 	 2 (1 + ) 

(Pi'k, X 7  Yk) 
+ A 

(xi , Yk)  W(D,k) and 	(3.10) + 
2(1+A) 	2C(1+A) 

( 2 (1 + A + A) 	2 (1 + A + A) 	Z  2 (1 + A + A)) 
P+l,k,l + i_1k1) + A2 (k+11 + Pk-11) + A2 (kL+1 

+ Fj,k,1_1 

x2v 	X, Yk, 

+ 2(1+A+A) + 

xw (xi, Yk,  z1) W (D,k,1) 

2y/.z (i + A + A) 
(3.11) 

3.2.2.1 Other computational molecules 

Comparing d = 2 FDSc computational molecules for the Laplace operator, let 

Ax  = Ay such that (3.10) yields 1,k  =(Pj,k+1 + j+1,k  + FjL1,k + 7j,k_1). 

*Rotated: Apply (1.9) on a space where the coordinates for the basis have been 

rotated by along appropriate axes. For example, 

	

Fj,k = 	(_1,k+1 + +1,k+1  + —1,k-1  + +1,k_1) . 	(3.12) 

*Combination: Weighting the previously mentioned schemes by appropriate fac-

tors and adding the results yields further improvements when evaluating the 

Laplace equation. For example, weighting the molecules by 1  and 1, respectively, 

yields the canonical nine-point scheme: 

Fj,k = 
20 (_1,k+1 + +1,k+1  + —1,k-1 + +1,k_1) 

+ 	(+ + —1,k + ,k+1  + ,k_1). 	 (3.13) 

Remark 3.2.2. The local error's for harmonic FDSc's where Lx = /. y are: 
ix2  (a4 flx,y) T 8F(x ,y) 	AX2  (094F(x,y) 	j94 F(x,y) 

+
OF(x,y) 

e(3.10) - 	9x4 	84) 
C(312) - 	Ox' 	'60x28y2 	

'\ 
8y4 )' 

and C(313) 
= 40x6 	

I(). Unfortunately, when solving (3.1), improvement in 

the local error of (3.13) are not realized due to truncation errors of {v (.) ,w 

*Extended: Schemes of higher order for the Laplacian operator can be constructed 

using more terms from a Taylor expansion. For example: 
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1 j,k = -I-(+1,k + Fj_1,k + P7j,k+1 + Fj,k_l) - (_2,k + Pj+2,k + Fj,k-2 + Fj,k+2) 

or the thirteen point scheme: 1 j,k =  (.i+1,k + Fj_1,k + 'j,k+1  + Fj,k_1) - (pi-2,k 

++2,k + ,k-2 + ,k+2) -10  (Pj_1,k-1  + +1,k-1  + —1,k+1 + +1,k+1) 

*Triangular Mesh: FDSc's involving triangles or other bounded polygons have 

proven popular for filling odd shaped domains. For example, let 0 = the angle of 

rotation from a designated axis, D = a hexagon, and use six equilateral triangles 

along with Lemma 31.9 to yield Fj,k = 

9[62] expands upon the work of Petrowsky and is a general method for evalu-

ating discretisation errors dealing with multiple FDSc using both rectangular, 

triangular, and hexagonal D. 

3.2.3 Green's function approximation 

Solving the deterministic Laplace equations using smooth (d+1)  functions, such 

as G (.), was first proved by such authors as Gerschgorin in the early 1930's. The 

works of McCrea and Whipple, W. Wasow, R. Courant, K.O. Friedrichs, and 

H. Lewy (CFL condition fame) are invaluable for results concerning discretised 

Green's functions. As discussed in [21, Section 23.6], [45], and [54], approximating 

a process with additive noise can be viewed as evaluating a deterministic system 

with random point sources, as suggested by Lemma 3.2.4. Since the singularities 

propagate via the deterministic Green's function, approximations are approached 

by estimating the Laplace operator on a domain with a unit source, this can be 

heuristically seen as if one were to release one unit of water at X: 

G (X; Y) represents the amount of fluid that visits an interior point Y over an 

infinite amount of time. This value may of course be greater than 1 since fluid 

can revisit an interior point more than once, but it is finite as proven in [54]. 

Thus, G (X; Y) is the expectation that a fluid will visit an interior point Y. 

H (X; Y) represents the amount of fluid that will exit the boundary after an 

infinite amount of time. Thus, H (X; Y) is the probability of exiting the domain 

at the boundary point Y. 

In approximating this simplified system, one obtains a discretised Green's func-

tion, which is sufficient to estimate the 'complicated' problem. Although concen-

trating on the d = 2 case, [63, Section 2] is very robust and results can be easily 

expanded to d E {1, 31 system. 

Lemma 3.2.3. The approximation to the Poisson kernel where Yk  E R3 is: 

Höj(X ; Yk) = 
(X;Yk) 

(X; X3) 
xi  EöJ 

(3.14) 
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with errors being proportional to the Green's function approximation error. Thus 

the Poisson kernel is a PDF, such that the integral of H (X; Y) over JZ3 is a CDF. 

Proof. As per Definitions 3.1.18 and 3.1.19; to fulfill the yield characteristics of 

a unit source and conserve energy in accordance with (3.8); the Poisson kernel 

is normalized via the Green's function along the discretised boundary, such that 

f H (X; Y) dY = E f H (X; Yk)  dY = 1 = E Houk  (X; Yk). For the error, 
JU 	 YkESJ5Jk 	 YkEStS 

replace G(.) with G(.)+e(G(.)) such that H6u, (X; Yk) = (G(X;Yk)) 

( 	a(XX)) +e(G(X;X))x(
Xj 
 ö(X;Xj)) .El 

XjEJU J 	 ESU 	 J 

Lemma 3.2.4. FDSy approximations at a point are derived via: 

(X;Yk)v((Yk ),Yk) 
Yk EL 

+/x2_d 	d (X; Yk ) w(Yk)W(DO + : i: f,66k (X; Yk)  FozJ  (Yk ) 	(3.15) 
YkEU 	 YkES?J 

Proof. Using Lemma 3.1.23 and Definition 3.1.19; place a unit source at X and 

approximate the Laplace function with zero boundary conditions to yield the 

Green's function estimate G (X; Yk). Utilise an appropriate weighting of the 

1931(Dk)v (.) ,W(Dk)w(.)} terms from the FDSc to yield (3.15). 	 El 

Corollary 3.2.5. Using (1.10), FDSy approximations over a domain are derived 

via: [F ()] =0 (x2) 
	[v (.)] +0 (x2)  [G (.)] [W(D)] [w (.)] 

G(k;k) G(l;k) G(m;k) 

+ [H (•)] [F  ()]; where [G (•)] = 	... 	(k; I) 	(1; 1) 	(m; I) 

G(k;m) G(l;m) G(m;m) 

Proof. Refer to [49, pages 257-258] 

Corollary 3.2.6. The Discrete Maximum/Minimum Principle: Given a uni-

form Z, consider a solution to the difference equation problem FAx  (X) = 

> 	9 (X; Y) FAx  (Y) with a boundary functional F6 	(X). If the maxi- 
Y=gzE{ZJ—X} 

mum and minimum of FAx  (X) in 5 are assumed at points that can be effectively 

linked to a point in 53, then mm 	(X)) < F (X) < max 	(X)). 

Proof. Refer to [49, pages 257-258] 	 El 

Corollary 3.2.7. Given  E 5 and  E R3 if v2F(X) > 0, then max (F (X)) = 

max (F (Y)). Similarly if 72F (X) <0, then mm (F (X)) = mm (F (Y)). 
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Proof. Using Assumption 3.2.1, an FDS is just a weighted average of its neighbors 

forced by functions {v (.) , w (.)}. This leads to the conclusion that interior points 

are weighted averages of the boundary conditions plus a constant sign forcing 

term. Hence if V 2  F (X) <0, then the minimum point is on the boundary and if 

172F (X) > 0, then the maximum point is on the boundary. 	 D 

Corollary 3.2.8. For the Laplace Equation, both the maximum and minimum 

value of (3.1) occur on the boundary. 

Proof. Since 0 = v (.) = w (•), interior points are just a weighted average of the 

boundary points in accordance with Assumption 3.2.1. 

To illustrate the following Lemma's, refer to Section D.2, where: 

*Figure D.7, depicts a Kroneker delta function located at (, ). Often called a 

'unit point source,' this will be utilised to derive the discretised Green's function. 

Figures D.8 through D.12 represent the growth of a Green's function 'close to 

the boundary' to show that the function experiences limited growth. 

Figures D.13 through D.17 represent the Green's functions on uniform Z2  grids. 

Using a Z2  unit square grid where Ax = y; place a unit source at (i., ) and 

using FDSc = (3.10) to yield the following results. 

Theorem 3.2.9. The discretised Green's function exists and is unique. 

Proof. Refer [45, Section 6]. 	 El 

Theorem 3.2.10. The truncation error C2 ( (Xi; Yk) 9J1 (Dk)) corresponding to 

the approximate solution of the Green's function in d = 2 by means of equation 

(3.10) is of order 0 (Ax), provided the following conditions are satisfied: 

A closed and bounded domain where the boundary is a simple closed analytic 

curve with a boundary function, Fjz5  being continuous and piecewise analytic. 

The distance from the singularities of the boundary function to the nearest dis-

cretised interior point is not less than 9x, where 9 is independent of Ax. 
*If {Pju  (Xi) = F (Y) I Y E sz}, then the distance of the singularities of the 

boundary from the line segment connecting X3  and Y is not less than OLx. 

Thus the truncation error is 0 (/x) uniformly in every closed sub-domain of U. 

Proof. [63, page 621. 	 LI 

Lemma 3.2.11. Placing a unit source at pj, the Green's function experiences ge-

ometric growth, such that GN+1 (j; j) = GN (j; j) > 1 or simply GN+1 (i; i) 
= 1-01N+1 > 1, where O denotes the geometric growth of a Green's function due 

to the inclusion of Pk  and 9k  denotes the growth constant of a Green's function, 

where card (5) = k. 
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Proof. Refer to Appendix B. 	 LI 

Remark 3.2.12. Further bounds on the discretized Green's function errors can 

be found in [61]. Due to the closed loop feedback phenomena, the influence of unit 

source will almost surely increase and is dependent upon the location within the 

domain and the number of interior points. 

Corollary 3.2.13. Given (EAIC), then C (Xi; X) is a unique constant. 

Proof. Refer to Appendix B. 	 LI 

Corollary 3.2.14. Given (EAIC), then 0N+1 < 1. 

Proof Refer to Appendix B. 	 LI 

Corollary 3.2.15. When card (5) = N -* cxc, then div (Xj; X) - 00 if X3 is 
'well within the interior' and a finite constant if X is 'close to the interior.' 

Proof. Refer to Appendix B. Figures D.8 through D.12 show a graphical repre- 

sentation of this result. 	 LI 

Lemma 3.2.16. Given (EAIC) where 9 (Xi; Yk) = '9 (Y,; X) for all {X, Yk} e 
?i, in accordance with Lemma 3.1.22 then the reciprocity relation is true such that 

GN(X;Yk) =GN(Yk;X). 

Proof. Refer to Appendix B, [45, Section 6], or [63]. 	 LI 

Corollary 3.2.17. Given (EAIC), as /x —~ 0, the difference between two Green's 
function approximations on the same domain that are a [V] = [ax] distance 
apart is a constant such that: urn (6,(X; Y) - 	([X - V] Y)) 

zx-*O 

= urn (& (X; Y) - 	([X - sV] Y)) = K. 

Proof. Refer to Appendix B. The symmetry of differences in G (xi, Yk; x1, y) - 
G (xi, Yk; x, Yo) is also shown in [45, Sections 6 - 7]. Extensions to the V case 

are given in [45, Sections 11 - 131. 	 LI 

3.2.4 Closed loop feedback 

To illustrate the effects of closed loop feedback, derive C (.) via the Laplace 

equation with a point source and homogenous boundary conditions. For this 

section only, denote the 4-tuple {P (Yk) ,.? (gmidd1e) , P (corner,i) , P (corner,2)} 
where {corer,j} is a point with j paths of 11 distance 2Lx to the unit source; 

refer to Figures 3.4 and 3.5. Let {Z5 U R3 I F () = 01 equal the: 



corner middle corner 

(Xi-1 k .1) )x,, y 01  ) (xj,, •yk,, 

middle 

,y) )x1,y0) 

middle 

(Xi.' Y) 

corner middle 

,( 

corner 

(Xj+l -Yk 

1.0 

0.0 	 1.0 
corner 	middle 	 middle 	corner 

I 	 I 	 I 	 I 

(Y.) 	() 	)y.,) 

0.0 	 1.0 

Figure 3.4: Closed and bounded domains for illustrating closed loop feedback 

Figure 3.5: Example S1  ((xi , Yk,  z1 ) ; 2Lx) domain 

.Z' unit length domain of Figure 3.4 such that F (xi) = GAx (k; j). Let Ay - 1 
— 5 

(1 9 with five interior points, where {midd1e} = {, } and {corner,1 = tim 10 

.Z2  unit square domain of Figure 3.4; let Lx = 	= , (ri,y)= (, ), with 

nine uniform interior points where { 	 \ ) 
middle 	

/1 
} = 	, 	, 	, ) , I.j, ) 	, 

3 
	and 

ri 1\  /3  1\ /1 3'\ 13 3\) 
{corner,2} = t ,  ), 	' 	, i ', 
.V unit sphere domain of Figure 3.5; let Lx = 	= 	= with 25 interior 

/1 1 1\ /2 1 1\ 11 1 1\ /1 2 1\ /1 1 1\ /1 1 2\ points where: {middle} = { 	, , ) , 	, , ), 	, , ) , 	, , j , 	, , ) , 	, , 
{ 11 1 1\ (1 1 1\ 11 1 1) (5 1 1\ /1 5 1\ /1 1 5 

{corner,i} = 	, w, 	' 	) , 	, , 	, 	, ) , 	, g 	, 	, , )}, and 

{ 	
1\ /1 2

3 
1" 	/2 1 1\  

corner,2} = 	, ), 	, , ) , 	, , ) , 	, , ) , 	2 3) , 	3 3) , 	3 3) ,  

Q
12 1 2\ (1 1 1\ (1 2 1\ 12 1 1) /2 2 1\ 

,2 3 	), 	, , ), 	, 	, , 	}. To follow the growth of the 

Green's function approximation and demonstrate closed loop feedback, use the 

explicit FDSc of (3.9) through (3.11) to derive the FDSy schematic of Figure 3.6. 

Thus place a unit source at Yk = 

*Yk =such that {1, 0, 0, 0}. Holding the value of F (Yk)  constant; applying (3.9) 
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middle 	: 	corner 
((Xj'yk) 	 points 	 points 

Figure 3.6: Schematic for closed loop feedback 

once yields {i,, 0, 0}, applying the FDSc a second time yields {i, , , o}, and 

allowing for closed loop feedback between Pmiddle  and  Pcornerj  yields { 1,, , 0 }. 

Since F (Yk)1  is affected by P (Yk) and P (gmidd1e),  evaluation gives {i + , , , o}. 

Repeating this scheme gives P (Y) = 1 + + 1 + = 	= 3 and as N -+ oo, 

this yields the relationship, GAx  (k; k - 1) =2Ax 

= 	such that {1,0,0,0}. Let /.x 	Ay and holding the value of 

F (xi, Yk)  constant; applying (3.10) once yields {i, 1, 0, o}, applying the FDSc 

a second time yields {i,, 0, }, and allowing for closed loop feedback between 

middle and Pcorner,2  yields {i,, 0, }. Since F (xi, Yk) 1  is affected by P (xi, Yk),,  
and F (middle),  evaluation gives {i +, , 0, }. Repeating this entire scheme 

with new value of F(xj,Yk) gives  F(x,Yk) = 1 + I  + I  +... = 	= . Table 

3.1 provides values from Z2  examples on the unit square, where /x = /y and 

GAx  (, X) = 	These results are supported by the explicit solutions listed 

on [45, pages 283-285], where 9 is the 'chance of revisiting the point at least once' 

and truncation errors are listed in [61, Section 2] and [62]. 

Grid Size ö 	([j ,  [j) approximate 0 approximate 0 
3 x 3 1 0 0 
5 x  5  0.33333 
7 x 7 1.76923  0.43478 
9 x 9 1.95588  0.48872 
17 x 17 2.40037  0.58340 
33 x 33 2.84243 Li  0.64819 
65 x 65 3.2839  0.69584 
129 x 129 3.72521 

56 0.73156 

Table 3.1: Closed loop feedback of 1(11) on a unit square domain using (3.10). 
2 1 2 

(x3 , Yk, z1) = (, , ) such that {1, 0, 0, 01. Let Lx = 	= /z and holding the 

value of P (xi, Yk, z1) constant; applying (3.11) once yields {i, 1, 0, o}, applying 

the FDSc a second time yields {i,, 	} and allowing for closed loop feedback 36 18 

as in the previous two examples yields P (xi, Yk) = 17 such that {f, , ,21}. 

Similar results hold for the closed loop feedback and differences in the Green's 



I
f(Y, 	

_____ 

Figure 3.7: Elliptic Problem Set-up 

function dependent upon the location within the domain. 

Example 3.2.18. Referring to a uniform V domain and using (3.9), G (k; k) 

	

(d(k;k-1)+d(k;k+1) = I and C (adjacent; adjacent) 	1.9. - 	2 	) 
Referring to Figure 3.7, on a uniform V domain using a canonical five point 

FDSc where /x = y.• OAx (pi; pi) 	1.25 < dAX (; g) 	x 	4) 

1.45 	X (; 2) 	(; p3). 	(; p1,2,3,4,6) 	
21-1092(max(M,N)) 

(g; g 7) = G (; 	(; ) <Ô 	g) 	1-0.44(1 — 1092  (max (M, N))), 

and G (g5; 	- 	(g5 
J5-[V][x]IIi) 	K. AX 

*Analogous results can be derived for a uniform V domain. 

3.3 Elliptic equations with multiplicative and 
general noise 

Expanding upon (3.1), consider quasi-linear second-order elliptic SPDE's in Rd 

with multiplicative and general noise of the canonical form: 

172F (X) = —v (F (X) , X) — w (F (X) , X) W (X) 	(3.16) 

with Dirichiet boundary conditions, where d < 3 and {v (F (X) , X) , (F (X) , X)} 

are general functions possibly containing the lower order terms IF (X) , F' (X)}. 

The {d = 1, 2, 31 respective cases of (3.16) are (3.2) through (3.4) when w (X) of is 

replaced by w (F (X) , X) for the general case and w (X) F (X) for the multiplica-

tive case. In order for a solution to exist, then f  [w(F(X) ,X) 2] dX < oc, 

but due to singularities introduced via the Brownian sheet and the closed loop 

feedback of an elliptic system, approximations for (3.16) using white noise and 

a non-trivial w (F (X) , X) almost surely do not exist. For example, as Lx —* 0, 

W (D) 9J (D) -'I is a random variable with a positive probability of being greater 

than a significant value where singularities of non-zero measure almost surely ex-

ist, hence the resulting system is unstable and will almost surely explode from 

w (X) F (X) and w (F (X) , X) involving functionals of the solution. This funda-

mental change in the nature of the process explains a lack of literature regarding 



existence and uniqueness results, further: 

The Maximum-Minimum Principle and Lemma 3.1.10 are no longer valid. 

*Assumption 3.2.1 is invalid, so any FDSc is not symmetric and computational 

molecules are almost surely not weighted averages. 

*The Radiation Principle, Lemma 3.1.23, must be revised due to the functional 

dependence of the process modifying the Green's function. 

*Results are no longer applicable to Neumann and Robin boundary conditions 

since Neumann boundary conditions yields approximations ±K. Given that w (.) 
is dependent upon F (.) over the entire domain, the K value is no longer arbitrary. 

*An iterative FDSc must be relied upon in order to derive approximations. 

*The Green's function and Poisson kernel for a multiplicative or general noise 

system cannot be represented in a closed or functional form. 

3.3.1 Finite difference system 

The Maximum-Minimum Principle allows one to construct proofs for uniqueness 

and existence for the deterministic and additive noise processes, but since Lemma 

3.1.10 is no longer valid, theoretical results for existence and uniqueness for (3.16) 

do not exist. Using the canonical elliptic FDSc, (3.11), as a template, refer to 

Figure 3.3 for a graphical representation of the canonical FDSc2 matrices where 

computational molecules for (3.16) are expressed as: 

- (P+l ,k,l + 	—1,k,1\2 (,k+1,1 + 	,k-1,1 	2 (,k,1+1 + 	,k,1-1 
Y2(l + 2 + 2)) +  Z2(1+2+2) 

	

x2v 	x, Yk, Z1) 	 AxW 	x, Yk,  z1) W (D,k,1) 

+ 	
2(1++) 	+ 2(1++) (1d=1 + 1d=2Y+ 1d=3yZ) 

(3.17) 

Since both {v (F (X) , X) , w (F (X) , X)} can be functionals of the solution, let 

2(j; j) = (i i) + 2(1

AX 	

+A+) 
(x2P (xy' v (P (x) , x) 

+(l+ld+ldyz)W(Dj) P (X' w (P (x) 	, x)) such that 

02 (k; k) 9 (1; k) 	t9 (m; k) 

	

[FDSc2] = 	0 (k; 1) 	t92 (1; 1) 9 (m; 1) 
9(k;m) 9(l;m) t92(m;m) 

Notation 3.3.1. The spectral radius is denoted as sr ([FDSc]) = I[r]H, where 

[r] are the eigen values of the matrix [FDSc]. 

Remark 3.3.2. The sr () is related to the 12  norm of a matrix such that 11[n B]112 = 

i/sr ([BT]  [B]) and sr ([B]) < I I [B]. Given a FDSc matrix, the spectral radius 
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can be calculated by either direct or numerical methods; for example use [19, Pro-

gram PWERM91.EXT] for a general matrix and if the matrix is symmetric, use 

[19, Program SYNPW92.EXT]. 

The FDSy focus will switch from using the Green's function approximation 

to an iterative FDSc method involving [P,,,] = M (FDSc2, [F_1 ] , [F5 ]). The 

FDSc2 matrix is now a function of Ax, the discretised domain, boundary condi-

tions, driving functionals, and the underlying FDSc; thus numerical approxima-

tions may exist and converge if urn sr ([FDSc2]) < 1; refer to Proposition 4.1.1. 

As per Remark 2.1.11 some smoother than white noise stochastic spaces are listed 

in [35, Chapter 61 and examples of non-pathwise stochastic spaces are found in 

[39]. If smoother than white noise is utilised, numerical approximations and solu-

tions might exist, but only if singularities are less than a critical value dependent 

upon the domain, underlying noise, and functionals of the process. Thus, the 

maximum magnitude of singularities can be bounded such that sr ([FDSc2]) < 1 

almost surely. Given that a consistent and stable numerical approximation can 

be constructed, using refinements of the noise, the limiting case of Ax -+ 0 can be 

utilised to demonstrate if an approximation is convergent to a finite value which 

may or may not be the solution. 

Often a system will not be applicable without modification, where some au-

thor's 'accepted technique' is to subtract a singularity and possibly a neighbor-

hood from the domain, thereby generating a new problem that is numerically well 

behaved. Otherwise, a local solution can be used if the nature of the singularity is 

modified or a mesh refinement examining an 'area of infection' can be conducted 

and used to replace the sub-domain in the original problem. Other methods are 

applicable, but will not be addressed; refer to [2, pages 414-415]. 
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Chapter 4 

Numerical methods for elliptic 
processes 

Refer to Section D.2 for diagrams of numerical approximations to (3.1) and (3.16) 

with both linear and non-linear boundary conditions. 

4.1 Iterative FDSc methods 

Since the additive noise FDSc matrices considered are positive definite, this en-

sures stability with respect to round off errors, thus if a large step size is utilised, 

where card (Zd E 5) < 0 (100), use a direct method such as Gaussian elimina-

tion to solve the system; refer to [21, page 283]. As the cardinality of the interior 

points increases, direct methods are often computationally prohibitive due to the 

sparse FDSc matrices. Thus, iterative methods are 'more efficient' since calculat-

ing an inverse of a sparse FDSc matrix often yields a full matrix, which requires 

substantial computational effort to derive and implement. As depicted in Sec-

tion 1.2.3 and Figure 1.6, a Picard-Lindelöf iterative method uses the boundary 

conditions and driving functionals of a process to approximate solutions by re-

peated 'sweepings' of a FDSc over a discretised domain. When implementing 

an iterative scheme where card (?) is large (i.e. Lx --~ 0), it is usually neces-

sary to limit the number of previous approximations stored in memory such that 

card ({ [P (X)0] ,... , [P (X)1] }) <3. 

Proposition 4.1.1. For any [Ai] in Rm, the sequence [A 1 ] = [B] [An] + [K] 

converges to the unique solution [A] = [B] [A] + [K], when sr (B) < 1. 

Proof. Refer to [19, page 2551. 

Remark 4.1.2. As per standard series convergence, the system is absolutely con-
vergent when sr (FDSc) < 1; hence Assumption 3.2.1 for (3.1). The successive 

approximations can be roughly viewed as a geometric series; refer to [37]. 
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When implementing an iterative FDSc, one of the most important factors for 

determining the accuracy of the system is the value of es that will be utilised to 

terminate the iterations. From Notation 1.2.4, an iterative FDSc will discontinue 

when e (Xi) > -PA. (X) - PA. (X)_1 . Hence C5 is directly related to the 

global error and indirectly proportional to the computational effort required be-

fore a Picard-Lindelöf iteration method terminates. Due to the Green's function, 

the accuracy imparted by a given es <<< 1 is domain dependent, but as a general 

rule, cg (F (X)) 	0 (v'; refer to Example 4.1.3. Due to the accuracy of 

an estimate being dependent upon e5, the domain, Ax, computational molecule 

utilised, boundary conditions, error along the boundary, and how one measures 

error (at a point, average over a domain, maximum over a domain), deriving a 

comprehensive numerical rate of convergence is often an ill defined task. 

Example 4.1.3. Approximate a deterministic Laplace equation on a 25 x 25 unit 

square using a Jacobi method with FDSc = (3.10), F6U (X) = 1.0, and an initial 

guess of 0 along the interior. Given es 	the scheme terminates once 10,000 

max ( ~ P (X) - P (X)_1 ) = 9.84831 x iO; yielding Figure 4.1. 
XEZ5  

Figure 4.1: Refer to Example 4.1.3: 	= 0.01 

32F(x,y) 32F(x,y) 32W(x,y) 

3x2 	
+ 	32 	= 

- 3x3y 	
(4.1) 

Example 4.1.4. Approximating (.1) on a unit square domain where ), = 1 and 

Fju (x, y) = 1, let [Pr ] = P ((3-10) , /.x = 	, es = 5 x 10-12) be the 'numerical 
513 

solution. The errors listed in the following tables suggest a ratio of V/2i and thus 

a numerical rate of convergence of 	(.) = , similar to the results of Chapter 

2. Due to the choice of the domain and boundary conditions, this result is not 

surprising and represents a 'best case' scenario. As previously mentioned, the 

error introduced along the boundary plays the significant role in determining the 

error within the domain, thus this error has been eliminated in this system. 
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Ax Grid mesh (M x M) x2  (X) eg (X) max (eg (Xi)) 

Ax = (129 x 129) 4.43E - 06 2.56E - 04 1.50E - 03 
Ax = (65 x 65) 2.66E - 04 3.54E - 03 1.88E - 02 
Ax = 

64 
(33 x 33) 4.29E - 04 5.01E - 03 2.38E - 02 

Ax = 
32 

(17 x 17) 9.34E - 04 8.51E - 03 3.42E - 02 
Lx = 

16 
(9 x 9) 1.38E - 03 9.39E - 03 7.38E - 02 

Ax = (5 x 5) 1.37E - 03 8.96E - 03 3.65E - 02 
Ax = (3 x 3) 2.02E -03 6.69E -03 6.02E -02 

Table 4.1: eg = F ((3.10) , es = 1 x 1010) - Pt 

Ax Grid mesh (M x M) x2  (X) eg (X) max (CO (Xi)) 
XjEU 

Lx = (129 x 129) 4.71E - 07 1.25E - 04 5.64E - 03 
Ax = T (65 x 65) 3.14E - 04 3.65E - 03 1.93E - 02 AX 

= (33 x 33) 5.04E - 04 5.29E - 03 2.65E -02 
Ax = 

32 
(17 x 17) 1.13E - 03 9.31E - 03 4.58E - 02 

Ax = (9 x 9) 1.83E - 03 1.02E - 02 8.78E - 02 
(5x 5) 1.84E-03 9.73E-03 4.60E-02 
(3 x 3) 3.55E-03 8.88E-03 7.99E-02 

Table 4.2: 1 F ((3.13) , es = 1 x 1010) - Ft 
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Remark 4.1.5. For the aforementioned tables, x2  (X) is a standard Pearson 

Chi-square statistic, eg (X) denotes the average error over the interior, and max (eg (Xi)) 

denotes the maximum error over the grid. 

4.1.0.1 Jacobi iterative method 

Often called the 'Method of Simultaneous Displacements,' the Jacobi iterative 

method dates to the late eighteenth century and is applicable to systems involv-

ing large sparse matrices. The Jacobi method is the benchmark FDSc by which 

all other iterative systems are measured and is constructed as follows. Let [A] 
a1,1 	0 	... 	0 

= [Adiag] - [A10] - [A 	
o a2,2 0 

], where [Adiag ] = 

	

0. 	0 
•.. 	0 

o ... 0 	 0 a1,2  

[A10] 
= 	a2,1  0 	

0 , and [A] = 	0 

	

0 0 	 0 ... 0 a_1,,, 

	

0 	 0 	0 	0 

Transform [A] [P (X)] = [B] into [Adiag ] [P (x)] = ([ A10] + [A]) X [P (x)_ 1 ] 

+ [B]. If ajj  =A 0 for all j e [1, n] then 	diag] exists and [P (X)] 

= [A9] ([A10] + [A]) [P (X) 1 ] + [Adia 9 ] [B] or simply [P (X)] = [FDSc] 

X [P(X)n-1] + [B2 ]. Approximations using this system are repeatedly cycled 

until es > max 	
-PA- 

(X) - F (X)_1 ]), yielding an approximation. 
XE{Un7Zd} 

4.1.0.2 Gauss-Seidel method 

Often called the Liebmann method, improvement can be made to the Jacobi 

method by utilising current approximations to the grid immediately after they 

have been calculated. Hence, [F (X) +1] = [FDSc] [F (X) +1] + [B], where 

[F (X) + i] is the matrix storing the newly estimated F (X) 1  values and the 

remaining P (X) values. The Gauss-Seidel method not only converges approxi-

mately twice as fast as the Jacobi method, but it also requires less storage space 

since only one approximation grid is retained in memory. 

Lemma 4.1.6. If a FDSc matrix is irreducible; i.e. diagonally dominant with at 

least one row being strictly diagonally dominant, then the Jacobi and Gauss-Seidel 

methods are convergent. 

Proof. Refer to [57, pages 299-3001. 
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4.1.0.3 Simultaneous Relaxation Methods 

Improving on the Jacobi method, use ((1 - a) [Adjag ] + a [A]) [P (X)] + a [B] 

= ([Adiag] + a [A10 ]) [P (X)+1] to produce successive approximations. When 

a e (0, 1) the FDSy is called an 'successive under-relaxation' method and when 

a> 1 the FDSy is called an 'successive over-relaxation' method, otherwise known 

as a SOR method. Although not often used, successive under-relaxation methods 

are useful in systems with singularities where other numerical methods do not 

easily converge or explode. Various authors have derived 'optimal' SOR a values 

dependent upon the FDSc, the shape of the domain, roughness of the boundary, 

and internal noise. Values such as a 1+x or a T—+Tzx are often used, where 

r is the minimum eigen value of the deterministic system. 

Example 4.1.7. When performing an SOR using the Jacobi method matrix on a 

rectangular domain, then sr ([Adiag] ([Ai0] + [A])) = (cos (z) + cos f_!~ty ) ) 

and for optimal SOR results, let a = 	2 	
2 [19, Section 12.2] 

4.1.0.4 Richardson Method 

Given that the FDSc is a positive definite matrix, systems can be rewritten in 

the form [F (X) +1] = [P (X)] + a ([B] - [A2 ] [P (X)]) where an is chosen 

to accelerate the convergence properties of the system. Refer to [62, Section 5] 

and [21, Section 21.5] for an introduction to this method. Although this method 

is important, it is rarely utilised in practice. 

4.1.0.5 Alternating Direction Iteration (ADI) Method 

The Peaceman-Rachford or ADI method involves two implicit variations of the 

Richardson Method where [A] = [Ahor ] + [Aver ] yields a Predictor-Corrector 

[P (X) +i] = [P (X)] + a ([Aho,l [P (x) +1] + [Aver ] [P (x)] - [B]) 

[P (X) +1] = [P (X) +1] + n ([Aho,l [P (X) +1] + [Aver ] [P (x) +1] - [B]). 

When using a rectangular domain, significant improvements can be realized over 

the previous methods since the implicit steps are closely related to a direct substi-

tution method and the eigen values of [Ahor ] and [Aver ] are often radically differ-

ent. Unfortunately the improvement of this method often fails in non-rectangular 

domains since the scheme is implemented with non-optimal parameters {a, f3} 

due to the arbitrary geometry of the domain. Implementations of this scheme on 

a variety of domains will not be addressed; refer to works by Herbert Stone. 
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4.1.0.6 Method of Lines 

Another method utilised, with various degrees of success, discretises a space di-

mension using N divisions and leave the other dimensions continuous. When suit-

able expressions are substituted, the SPDE is converted into a coupled system of 

SDE's; i.e. difference - differential equations. Using this method on a computer, 

one also tends to discretise the remaining space dimensions using M discretisa-

tions where M <<< N. By definition, this will fulfill the requirements for a uniform 
Zd space, but the magnitudes of {Lx, Ay, AzJ force lim ) —+ {O or oc}. 

4.1.0.7 Hackbusch Multi-Grid Method 

The most computationally efficient methods that exist today involve the multi-

grid iterations of Dr. Wolfgang Hackbusch. Although the subtleties and math-

ematics of these methods are quite beautiful, a discussion will be omitted. To 

implement this system, define several uniform 	spaces where j E 11, 	, o}. 

Since numerical methods are fast for domains of small cardinality, initially ap- 

proximate for a coarse Z 	grid then repeatedly 'bounce' between refinement 

levels using predetermined 'jump' criteria to yield a final Z 	approximation. 

Using these recursive refinements, this method provides a computationally effi-

cient means for deriving an approximation; refer to [26] or [27, Chapter 4]. 

4.1.0.8 Other methods 

Related to the Method of Lines, [5] uses a rather ingenious Stochastic Monte-Carlo 

method by performing a random walk over a Rd  domain to derive an approxima-

tion to a solution at a point. This has the highly desirable effect that the only 

error introduced to the approximation is a statistical sampling error, which de-

creases as the number of Monte-Carlo paths increases. By statistically accounting 

for the propagation of disturbances in all space dimensions, this approach pro-

vides a powerful tool for researchers where computational time is of secondary 

concern to approximation accuracy. Using the results of [5], [6] this method can 

be expanded to approximate the entire domain where: 

the technique may be applied in any separable coordinate system. 

Thus, the technique can easily be generalized into N dimensions; in 

general, Monte Carlo methods become more competitive with deter-

ministic methods as the dimension and complexity increase. 

If one is modeling a process with complicated boundary conditions this method 

is in fact more than 'competitive' to other methods, it is often superior. 
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FESy methods are often more efficient than FDSy methods for their abil-

ity to handle errors introduced at the boundary. Thus, refer to [19, Program 

LINFE125.EXT] for a FESy method approximating the d = 2 Poisson elliptic 

equation and [1] for a discussion of the benefits FESy methods exhibit for some 

elliptic problems. 

4.1.0.9 Symmetry considerations 

In order to account for the 'instantaneous propagation' of disturbances in all 

space dimensions; it is best to 'mix things up' and avoid problems from iterating 

a domain in only one direction or pattern. For example, let J be a R2  unit square 

with corner points (0, 0) and (1, 1); refer to Figures 4.1 and 4.2. Thus, when 

approximating using an iterative method, one should start at the corner point: 

(0, 0) and proceed in the positive x and positive y direction. 

(1, 1) and proceed in the negative x and negative y direction. 

(1, 0) and proceed in the positive y and negative x direction. 

(0, 1) and proceed in the negative y and positive x direction. 

In doing so, initial conditions are allowed to propagate in all space directions 

without a 'wind effect' being forced on the system. The geometry of the domain 

is crucial since there often exists a natural symmetry that can be exploited. Thus, 

only a subset of the domain's discretized points need to be evaluated to approx-

imate the entire domain; i.e. reduce a card () = N system to a card (5) = 

system, where m is the number of symmetries inherent in the domain. 

+ L 	center 

FAA ki  lk 
FAAF  h19L 

U 	LX 
L, 

+ >\ 1 	
° 

U 

0 	1 	2 	3 

Figure 4.2: A symmetric rectangular domain 

Example 4.1.8. Considering the square domain of Figure 4.2, only the triangu- 

lar sub-domain Z31  must be approximated, since the remaining sub-domains are 

either rotations or reflections of U1. Thus, only one eighth of the interior points 

must be approximated. Estimating the Laplace equation yields: 

[P (p.1 )] = [(.)] x{+Li +L2 +L3 +L4], [P( 2 )] = [ft (.)] x [+L2 + L, + L4 + L31 

[P (p3)] = 	
x[—L2  + L4  + L1  - L31, [P (Pu4)] = [fl (.)] X [+L4  - L2  - L3  + L1 ] 
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[P (i] = [ (•)] x[—L4  - L3  - L2  - L1], [P (6)] 
= 

[ (•)] x[—L3  - L4  - L1  - L21 
x[+L3  - 	- L4  + L211  [P (8)] = [ft (.)] x[—Li  + L3  + L2  - L4]. 

Similar rotations and reflections apply for the Green's function when estimating 

the stochastic Poisson equation. 

4.2 Numerical examples 

To demonstrate how a FDSc matrix is derived and used to formulate a FDSy 

matrix, consider the following well posed process 

52F(x,y) 32F(x,y) 	 92W(x,y) 
+ 	= —v (F (x, y) , x, y) - w (x, ') 	axay 	

(4.2) 

The domain for this system is depicted in Figures 4.2 and 4.3, where utilising the 

symmetry of the domain, the Green's function and Poisson kernel values for F1,2  

also yield P2,1. A FDSc is built using {(3.1O), /x = Ay, ) = 1, 79 = } such that 

	

Fj,k = +1,k + -1,k + 	 w (xi, Yk) ,k+1 + ,k-1 	X2  

	

4 	
+ 	v (Pa, X, Yk) + 	w(D) 

(4.3) 

Figure 4.3: Triangular domain for example 

4.2.1 FDSc matix 

In order to construct the FDSc matrix, utilise (1.10) and (4.3) to yield: 

( 	1 	1 FDSc 	FDScu]1 P (Pu)fl-1  1 	(x2 [v (.)] + [W(.)] [w (.)]). [F8jL 0 	i 	[ F() ] 
Thus, the canonical five point FDSc of (4.3) will be of the form, 
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F1,2  

F1,1  

F2,1  

F1,0  

F2,0  

F3,1  

F2,2  

F1,3  

F0,2  

F0,1  

O 1 0 0 0 0 1 1 1 0 
1011000001 
0100111000 
0004000000 

-i 0 0 0 0 4 0 0 0 0 0 
4 fl fl A A A A A A A A 

0000004000 
0000000400 
0000000040 
0 0 0 0 0 0 0 0 0 4 

V Fi ,2,x,2y) 

Ax, y) 

+4x2 
 

v F2,1, 2x, Ay) 

W(D1,2 ) 	0 	0 	0 0 0 0 0 0 0 
0 	W(D1,1) 	0 	0 0 0 0 0 0 0 
0 	0 	W(D2,1) 0 0 0 0 0 0 0 

0 	 0 
0 

F1,2  

F1,1  

F2,1  

which is often stated as 	= 	1 0 1 1 0 0 0 0 0 1 

	

F1,2 	0 1 0 0 0 0 1 1 1 0 
	F1,0  

F2,0  

F3,1  

	

F2,1 	0 1 0 0 1 1 1 0 0 0 	
F2,2  

F1,3  

F0,2  

F0,1  

F1,2, x, 2y) + W(D1,2 ) W  (Ax, 2 y) 

+ 	x2v 	 +W(D1,1)w(x,Ay) 

/x2v F2,1, 2x, 	+ W(D2,1) w (2x, y) 

F1,2  

F1,1  

F2,1  

F1,0  

F2,0  

F3,1  

F2,2  

F1,3  

F0,2  

F0,1  

Of 



4.2.1.1 FDSc —+ FDSy 

Subtraci 
F 	n 1 from both sides of the FDSc matrix to yield: 
F(p) j 

—4 1 0 0 0 0 1 	1 	1 0 
1 —4 1 1 0 0 0 0 0 1 
o 1 	—4 	0 	1 	1 	1 0 0 0 F21  
o 0 	4-4 	0 	0 	0 0 0 0 F10  

101_i 114 
0 0 	0 	0 	4-4 	0 	0 0 0 0 F20  
0 0 	0 	0 	0 	4-4 	0 0 0 0 F31  
0 0 	0 	0 	0 	0 	4-4 0 0 0 F22  
0 0 	0 	0 	0 	0 	0 	4-4 0 0 F13  
0 0 	0 	0 	0 	0 	0 0 4-4 0 F02  
0 0 	0 	0 	0 	0 	0 0 0 4-4 J LFO:1 

/x2v F1,2, Ax, 2y) + W(D1,2) w (ax, 2y) 

+ AX2V Fi,i , Ax, Ay) +W(Di,i)w(x,Ay) 

x2v F2,1, 2x, 	+ W(D2,1) w (2x, Ly) 

Given the small size of the domain, reduction via the direct method of Gaussian 

elimination yields: 

F1,2  

F2,1  

F1,1  

—56 	0 0 	4 	1 	1 	16 	15 	15 	4 	F1,0 

[0] = 	0 	—56 0 	16 	4 	4 	8 	4 	4 	16 	F2,0 
F3,1 0 	0 —56 	4 	15 	15 	16 	1 	1 	4 
F2,2  
F1,3  
F0,2  
F0,1  

60 	16 	4 
/x2v 	Fi,2 , Ax, 2Zy) +w(x,2y)W(D1,2) 

+56 	16 	64 	16 Ix2v 	Fii,x,y) +w(x, Ay) W(D1,i ) 
4 	16 	60 

/x2v 	2,i,2Lx,Ay) +w(2x,y)W(D2,1) 

F1,0  
F20  

F1,2  4 	1 	1 	16 	15 	15 	4 	F3,1  
or simplyP 	= 16 	4 	4 	8 	4 	4 	16 	F2,2  

F2,1  4 	15 	15 	16 	1 	1 	4 	F1,3  
F0,2  
F01  

60 	16 	4 
/XV 	Fi,2 , Ax, 2y) +w(x,2y)W(D1,2) 

56 + 	16 	64 	16 /x2v 	 +w(Lx, Ay) W(D11) 	it is eas- 
4 	16 	60 

A X 2 	F2,1, 2x, 	+ w (2x, 	y)  W(D2,1) 



ily verified that the above FDSy can also derived by iterating the FDSc matrix. 

4.2.2 Green's Function 

60 16 4 
The discretised Green's function is [a (•)] = 	16 64 16 . As expected 

4 16 60 
from Lemma 3.1.23, these values can also be generated by placing a unit source at 

the respective interior points and estimate the Laplace equation {v (.) = 0, w (.) = 01 
with F (X) = 0 boundary conditions. Thus, approximating the simplified sys- 

tem yields: 

I F1,2  I 

I 	I 
F1,2 	roi0000iiio1I. I 

[2,1j

F11 	_11101100000111F2,iI 	+[0]. 
[0 1 0 0 1 1 1 0 0 0 

—I 	 II0 
n 	 i . . 	I 

L 	in_i 
F1,2 	0 1 0 	F1, 2  

Thus, i 	= 1 1 0 1 	 which implies [F] = [FDSc] 

F21 	0 1 0 	F21  

or simply [ (+i] = [FDSc] [a (•)n]  To derive the IG (1,1; j, k)] vector, 

place a unit source at (Lix, Ay) and iterate the scheme 

0 1 0 
+ 1 	= 	1 0 1 	(1,1;1,1) + 1 	such that 

0 1 0 	a(1,1;2,1) 
010 	0 	 010 
101 0+1 = 1 	101 1 = 1+1, 
010 	0 	 010 

which eventually yields the middle row of the Green's function matrix 
16 	 16 1 
56 

+ 1 	= 	. The other Green's function matrix rows can be derived 

T6 	 T6 
by placing a unit source at (1, 2) and (2, 1). 

4.2.2.1 Discretised Poisson kernel 

4 	1 	1 16 15 15 4 1 .  

The discretised Poisson kernel is: [ft (•)] = 	16 4 4 8 4 4 16 
4 15 15 16 1 1 4 

Once the discretised Green's function is established, the discretised Poisson kernel 

is a direct consequence of the C (.) values along the adjacent points of the domain. 

By definition, [G ()] = 0, thus adjacent points must be utilised to normalize 

the boundary conditions. From (4.3), 9 (.) = =and T (1, 1) 
= 	(i,i); j) = C1,0  + C2 ,0  + C3,1  + C2,2  + C1,3  + CO,2  + a0,1 



= 	G1,1 + t9G2,1 + 062,1 + (002,1 +001,2 )  + 001,2 + t901,2 + 	i,i 

= 164 +1i+1i+1 h16 	16\ + 11616 456 	456 456 4 56 + 56) 	
+1 + 1 64 

= 1, which is expected from 456 456  

the Radiation Principle and Conservation of Energy. To derive the middle row of 

the Poisson kernel which is the [U (p11 : 	vector: 

G1,0 - 9Gi,o - 1 64 1 	- 16 (1,1; 1,0) 
= T(1,1) - T(1,1) - 	 T(1,1) - 56 = H (1,1; 0, 1). 

G1,i 	9G1,2+9Gi,2 = (1 16 + 1 16\ 	1 	8 .H (1,1; 2,2) 	T(i,i) = 	T(1,1) 	456 	g) T(i,i) = 

. 	(1,1; 1,3) G1 
,3 	G1,2 	116 1 	4 

- I(1,1;3,1) = I(1,1;2,0) = 
= T(1,1) = T(1,1) = T6 T(1,1) = T6 - 

(1, 1; 0, 2). 

When constructing the discretised Poisson kernel values as functionals of the 

number of discretised paths, let p. e {p2,0, P3,1, p2,2} where: 

OAX = I I P2,1, p. 1 = P2,1, p.j 2 , the respective Poisson kernel approximation val- 

ues are { ' ' " This is due to the fact that there are two discretised paths 56 56 56J 

between P2,2 and P2,1 via {{p2,2 - P1,2 - P1,1 - p2,11 , JP2,2 - P2,1}} and only 

one path for the other boundary points. 

2Lx = MPi,i, p. 1, the respective Poisson kernel approximation values are {,56 56}. 
This is due to the fact that there are two discretised paths between 02,2 and p',' 
via {{p2,2 	- P1,11 , {p2,2 - P2, -~ pi,i}} and only one path for the other 

boundary points. 
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• 

/ \\ 

., S 
0.0 	 1.0 

Figure 4.4: Discretised d = 2 domains for examples 

Example 4.2.1. Utilising the diamond and square domains depicted in Figure 

4.4, evaluation of the d=2 Laplace system using [F +1] =: ((3.10), 

where /x = Ay = yields the following: 

For the diamond S1 ((2x, 2Ly) ,2Lx) domain denoted by the dotted line of 

Figure 4.4, the FDSc matrix is 

1.0 



F2,3  

F1,2  

F2,2  

F3,2  

F2,1  

F2,4  = 1 
4 

F3,3  

F4,2  

F3,1  
F2,0  

F1,1  
F0,2  

which yields a 

F2,3  

F1,2  

F2,2  

F3,2  

F2,1  

F2,4  
F3,3  

F4,2  
F3,1  

F2,0  
F1,1  

F0,2  
F1,4  

0 0 1 0 0 1 1 	0 
00100000 
11011000 
00100011 
00100000 
00000400 
00000040 
00000004 
00000000 
00000000 
00000000 
00000000 
00000000 

Poisson kernel of 

00001 
00111 
00000 
10000 
11100 
00000 
00000 
00000 
40000 
04000 
00400 
00040 
00004 

- F2,4  

F2,3  r 13 	14 	1 	2 	1 	2 	1 	14 1 
F3,3 
F4,2 

F1,2  
1 

1 	2 	1 	2 	1 	14 	13 	14 
I 	 I 

F3,1 
F22 

= 
48 8 	4 	8 	4 	8 	4 	8 

F3,2  1 	14 	13 	14 	1 	2 	1 	2 
Fij 

F2,1  [ 	1 	2 	1 	14 	13 	14 	1 	2 _j 
 FO, 2  

F1,3  
*For the solid line square domain of Figure 4., the FDSc is omitted due to a 

lack of space, but the resulting system yields a Poisson kernel of 
F1,4  

F1,3 67 	22 	7 	7 	6 	3 	3 	6 7 	7 	22 	67 
F2,4 
F3,4 F2,3 22 	74 	22 	22 	14 	6 	6 	10 6 	6 	14 	22 
F4,3 

F3,3  7 	22 	67 	67 	22 	7 	7 	6 3 	3 	6 	7 
F4,2 

 F1,2  22 	14 	6 	6 	10 	6 	6 	14 22 	22 	74 	22 
F4,1 

F22 1  

= 
224 14 	28 	14 	14 	28 	14 	14 	28 14 	14 	28 	14 

F3,2  6 	14 	22 	22 	74 	22 	22 	14 6 	6 	10 	6 

7 	6 	3 	3 	6 	7 	7 	22 67 	67 	22 	7 
F1,0 

F2,1  6 	10 	6 	6 	14 	22 	22 	74 22 	22 	14 	6 
F0,1  

F3,1  J 
3 	6 	7 	7 	22 	67 	67 	22 7 	7 	6 	3 

F0, 
F0,3  

It is important to note that the FDSc are small matrices with relatively few non- 

zero entries. As the size of the domain increases, evaluating the inverse of the 

sparse FDSc matrix is prohibitive; hence, the need for iterative methods to derive 

approximations. 

4.2.3 Non-additive noise processes 

To demonstrate how the non-additive noise fundamentally changes the system, 

consider the iterative FDSc 



F1,2  

F1,1  

F2,1  

F1,0  

F2,0  

F3,1  

F2,2  

F1,3  

F0,2  

F01  

where 792 (j, k) = w,kW(D,k) + AX2V (pi'k, jAx, ky) pi  if the noise is multi-

plicative and (x2v (.Pj,k, jAx, kLy) + w (.Pi,k,  jAx, kLy) W(D,k)) P k  1  if the 

noise is general. The inclusion of the {v (.) ,w  (.)} terms in the FDSc2 matrix 

force the Green's function to be dependent upon the Brownian sheet, numerical 

approximation over the grid, and driving functionals; hence the spectral radius 

of FDSc2 is a random variable possibly greater than one. 

	

82F(x,y)ô2F(x,y) - 	
(x, 	82W(x,y) Example 4.2.2. For the multiplicative process, 9x2 I 9y2  - 	 OxOy 

assume F6u  (x, y) = 0 to yield 

[

P1,2 

I 	

[ W,kW(Dl,2) 	1 	0 	1 [ F1,2  1 
F1,1 	= 	1 	Wj,kW(Dl,l) 	1 	

j [ 	
I  

i F2,1 	 0 	1 	W3,kW(D2,l) 	F2,1  I 
L 	n+1 
Define the stochastic space to be a weighted singularity such that 
IF1,2 1 	ro 1 01 r 1,2 i 

- F1,1 	- 1 1 VR  1 
J 

I Pi 	; i.e. [P + ] =: ( [ FDSc2,,],  [P (x, On]). 
F2,1 

J71+1 	
[o 	1 	0 	I F2,1  

L 	 L 

Placing a unit source at 11,1 and using the transpose [P1,2, p1j , P2,1] , if 

. 	= 0 yields the deterministic Green's function growth [0, 1, 0] -* [, 1,  ] -* 
fi 18 11 
L 	-* 	, ] which eventually converges to [ 8 21 	Thus, 03 - 1 32 16 777J• 	 - 

such that (1 - 03)' = 
13 	1 = 0.5 yields the Green's function growth [0, 1,0]0 - [ 	

5 

	

- 	L 	
1
8' s

3
i 2 

2 1 115 17 151 
32i3 which eventually converges to L' 8 21 

T21  TI 
= 	yields the Green's function growth [0,1,0]0  -4 	[ 	12 4 	3 12' 72 ' 12 

1483 2332 4831 
L' -- 	4j3 which eventually converges to L' ' i 

61 
5 5 5oo 

	

1 	25 
8 

1 11 
. 	= 1 yields the Green's function growth [0, 1,0]0 -p  [ 	

1 
2, ] - L' -- i2 - 

125 140 25 
L --  32]3 which eventually explodes. 

Reduction shows that the limiting value of F (p1,2) = P (p2,1) = F (p',')  with 
-1 

lim F (p)71 = (i - - W(D8 	4i,1)) , which explodes when 	W(D1,1) > 
71-4 

Explosion is even more prolific when v(.) 0 0 and non-homogenous boundary 

conditions are utilised. 

F1,2 	792 (1, 2) 	1 	0 	0 0 0 1 1 1 0 
= 	1 	92(1,1) 	1 	1 0 0 0 0 0 1 

F21 0 	1 	792(2,1) 0 1 1 1 0 0 0 
71+1 

PJ 



Example 4.2.3. Consider the multiplicative and general noises on the 1R unit 

line segment domain using= —F (x) sin (2irx) - F (x) cos (2irx) 	and aX2 ax 
82F(x) 2 	 DW(x) =.—F (x) sin (27x) - F (x) cos (27x). Thus, ax 
t92 	- 	 1 	 d >< X3 1 	 an 

92 (x4 = 	 respectively. Utilise a Z 1i with a 

canonical 3 point FDSc driven by the noise depicted in Figure 4L5 to yield the 

approximations depicted in the Figures 4.6 through 4.10.  Due to the fact that 

approximations exist, this demonstrates that sr (FDSc2) < 1. As expected, ex-

plosion occurs soon after > 1 (refer to Figure .10) and if the nature of the 

driving functionals is ill behaved, then even if N <<< 1 the system might explode. 

Figure 4.5: Stochastic path where R = 1, x E [0, 1], and /x = 

1,06 

0,98 

0.96 

0,94 

092 

09 

-.-- rnItipIictiO __._genJ 

Figure 4.6: Deterministic solution with F6u  (0) = 1, F6U  (1) = 1, and N = 0. 

of 



0.4 

0,2 

-.-- muI5p5ctiVO  

Figure 4.7: Convergence with P6u  (0) = 1, P j  (1) = 1, and = 1. 

0,6 

0,5 

0.3 

-.-- nuItIphcaIive 	—.--gen,rI 

Figure 4.8: Deterministic solution with P,sj  (0) = 0, p6Z3  (1) = 0, and N = 0. 
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Figure 4.9: Convergence with F (0) = 0, Pbu  (1) = 0, and = 1 
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1,2 

016 

1 ._n1t1phjt10 —.-9enorI 

Figure 4.10: Convergence with F (0) = 0, & (1) = 0, and R = 1.03 



t=O 	 t = T 

F(X),=O 	F(X)1=F(X) 	F(X) 

Figure 4.11: Reduction in time using an a priori estimate 

4.3 A priori initialization methods 

Due to the time consuming iterations of a FDSc to derive an approximation, a 

significant amount of effort can be eliminated if one chooses values for an initial 

grid that resemble the final approximation. When estimating a system, one often 

utilizes zero, homogenous values, or a deterministic solution to begin the iterative 

process and although each initialization will yield similar estimates, often errors 

can be eliminated and effort be reduced if one utilises a more 'appropriate' ini-

tialization; refer to Example 4.1.3. The objective is not to 'solve' the system, but 

to derive an a priori 'best guess' for F (X)1  which will reduce the computational 

effort for an iterative FDSc to derive an approximation; refer to Figure 4.11. Util-

ising information about the domain and computational molecule, construct an a 

priori Green's function and Poisson kernel, { [c], [H] 
j I 

such that 

[)] =0 (x2) [] [v 
(S)] 

+0 (x2) [] [W(D)] [w 
(.)} + [] 

[F ()]. 
(4.4) 

Using this initial guess as a starting point, an iterative FDSc can be implemented 

to derive an initial numerical approximation 

[()2] = [ FDSc FDSco] 	

I + IT (,v(.),W(D)w(.))] 
F(g) 	 F() 

which is utilised in place of 
[F] = [FDSc FDSc6

1 

(PU)  ] + [T (P,v(.),W(D)w(.))] 

where F (73)1  is often a 0 matrix or a deterministic approximation. 

A priori methods are most effective when deriving non-pathwise approxima-

tions or one is forced derive approximations for a given domain utilising different 

stochastic noises; refer to Chapter 5. Although the following methods will be 

presented as separate entities, the most efficient implementation is utilising a 

combination of methods dependent upon the size of the domain, Ax, nature of 

the driving functionals, roughness of the stochastic space, and boundary con-

ditions. Often more difficult to implement than a homogeneous initialization, 



the savings in computational effort are worth the trouble; refer to the numerical 

results of Section 4.3.5. 

Example 4.3.1. Returning to the triangular domain of Section 4.2, Table 4.8 

provides a comparison between the discretised Green's function and Poisson kernel 

and a few a priori estimates. Although it is clear that the a priori matrices are 

not the true values of { 161 , [.] }, they are good estimates to start from. Refer 

to Section C.3 for a pseudo-code description of the following methods. 

Method (; Pud = [&x (gazj; o,)] 
[60 	16 	4 1 4 	1 	1 	16 	15 	15 	4 1 

values 1 i 	16 	64 	16 I 1 16 	4 	4 	8 	4 	4 	16 I 

4 	16 	60] 
I56 I 

4 	15 	15 	16 	1 	1 	4 ] 

Blow-up method 
3 	1 
1 	3 	1 

= -- 	--- 	=1= 	72 	72 	24 	1 
3 	 3 I 

2 5  
13 309 	309 	309 	309 	39 	3409 ___ 

GQ method 
1 	4161 

4 	41 

- 
1 	1 	1 	I 40  

4 	2 	16 	16 

4 

X,Ymethod 1  
3 	1 	1 

1 	3 	1 

2 
1 	1_3 18 

 _83 
18 	H 	18 	1T 	IT 	IT 
83 	83 	83 	83 	83 	83____ . 

Table 4.3: Comparison of a priori methods 

4.3.1 Blow-up method 

This method will focus on the Green's function and should be used to account for 

the influence the driving functionals have upon an approximation; i.e. a numeri-

cal 'cookie cutter' for C (.). It should not be utilised in deriving a Poisson kernel 

for domains with a large number of interior points, since only neighborhoods of 

internal points are considered. Regardless of the domain, given a symmetric com-

putational molecule, the following assumptions can be made about the structure 

of the discretised Green's function: 

*From Lemma 3.2.11, when X is well within the interior, the closed loop feedback 

of a Green's function approximation will be a function of Ax. 

*From Corollary's 3.2.13 through 3.2.15, when X is either an adjacent point or 

close to the boundary, a Green's function approximation will have a limiting case 

of G (X; X) <a, where a is usually less than 2. 

From Lemma 3.2.16, 0 (X; Y) = 6 (Y; X); i.e. the reciprocity relation is valid. 



.From Corollary 3.2.17, the difference between two discretised Green's functions 

an 12  distance n/x apart is a constant. 

4.3.1.1 Procedure 

In order to implement this method, utilise the following steps: 

Given a computational molecule, Ax, and the closed loop feedback prop- 

erties of the FDSc, make a best guess at G (; 	for a point well within 

the interior. For example, when using the computational molecule (3.10), then 

	

(X; X) 	(1.5 + 0.45 (1092 (Mr) - 2)); refer to Program C.3.2. 

Copy the stochastic noise matrix and for points well within the interior, mul-

tiply the associated W(D) random values by C1  (ij; zj) /x 2w (Xi) and add 

G 	(; 	) v (F (Xi) , x) AX 2. For points close to the boundary, utilise the as- 

sociated limiting value for adjacent discretised Green's functions. For example, 

when d = 1 multiply adjacent points by 1.9 and when d = 2 multiply adjacent 

points by 1.45 and 1.25 for adjacent corner points; refer to Remark 3.2.18. 

In accordance with Corollary 3.2.17, calculate a generic Green's function dif-

ference for points well within the interior. Use dAx  (Yk; Yk)  and the fact that each 
11 jump of /x is a constant; refer to Programs C.3.2 and C.3.3. 

The difference vector does not have to be very large due to the radiation prin-

ciple mandating that there is a limited region of significant numerical influence. 

Often points within a S2  (X, 25Lx) neighborhood are more than adequate. 

Divide the difference vector by G (Yk ; Yk) and remove any negative values 

such that the vector represents influence values between 0 and 1. 

Starting from the boundary and progressing towards the interior, multiply 

the modified functional values by the influence vector and then add the results to 

the deterministic 'best guess.' Values for the influence vector can be interpolated 

using linear, trapezoidal, or spline functions. 

Utilise the symmetric properties of a domain to minimize the computational 

effort. 

Delete the manipulated functionals and begin the iterative method utilising 

the a priori approximation as the F estimate. 

4.3.2 CQ method 

Notation 4.3.2. Let a numeric 'center point' denote a point in 7Ld  where the 
weighting of the minimal 1' distance to the boundary points is equivalent to the 
total weighting of all paths to the boundary points. For example, refer to Figure 
4.2 or consider the geometric center of a sphere, rhombus, or square. 

HE 



Given a computational molecule, the assumption that every 11  jump of Ax im-

plies a Green's function must be multiplied by an appropriate 9 factor will be 

made. Thus, the influence between two points will be approximately Q  (X; Y) = 

79Qpath (X, Y); where a = 	Q (X; Y) = Q (Y; X), and Qpath (X, Y) is the 

number of paths between two Z'1  points of length I I X, YJ 1; refer to Program C.3.6. 

Since it is numerically impossible to cover all paths over all distances, the 

assumption that all points well within the interior are numeric center points will 

be made. Despite the obvious fact that this is not true, the radiation principle 

numerically ignores paths of excessive length so the weighting of minimal paths is 

assumed to be the same as the total number of paths. This method will evaluate 

'exact' approximations for center points regardless of the domain, boundary con-

ditions, and x; thus, if one is interested in evaluating a system only at specific 

points, then this method could be utilised in place of an iterative method. Due 

to this method being tied to individual /x jumps, this system will experience the 

following numerical complications: 

.It is difficult to distinguish between 11  paths of {n.x, (n + 1) /x, (n + 2) Ax, ...}. 
Thus this method is most efficient when /x is a numerically significant (large) 

value, such that nA.x is numerically distinguishable from (n + 1) Ax. For example 

0.00001 is distinguishable from 0.00002, while 100.00001 is difficult to distinguish 

from 100.00002. 

*Most boundary points will have only one interior adjacent point, thus correc-

tions will be made for d> 2 boundary points with more than one adjacent point. 

In having more than one interior adjacent point, the influence of that boundary 

point would be understated if only one adjacent point is considered. 

*Since 0 < 3 < 1 and the number of 11  paths of given length grows exponentially 

as the distance increases; Q  (X; Y) involves a very small ?9' value times a very 

large Qpath (X; Y) value. Accurately evaluating Q  (X; Y) is not a trivial exercise. 

4.3.2.1 Procedure 

In order to implement this method, utilise the following steps: 

Given a computational molecule, derive the 3 value from the associated 79 (.) 
terms. For example, when /x = Ay = Az, then 9(3.9) = , 3(3.10) = , 3(3.11) = 

and 79(313) 	0.3924. 

Assuming X = (xi, Yk,  z1 ) and Y = (Xj+m, Yk+n, Z1+a), where a is an inte-

ger; let Q  (X; Y) = Qpath (m, n, a, 0, 0) x (m+n+a)  and use this relation to derive 

(X; Y) = GQ (X;Y) =Q(X;Y)
(Y2C-fUU6U} 

Q(X;Y)) and ft(X;Y5 ) 
J 
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(Y2CJ Z3 	
(X;Y2) 

Evaluate other interior points in the domain utilising the reciprocity relation 

and previously calculated values for Q (X; Y2). 

HX,YH Example 4.3.3. Let  = 	'—i and using (3.10) on 	to yield GQ(X;Y) = 
N 	 N 

2N+1 122N _i - = 9N 	or simply --. Evaluation yields, GQ (X; {X ± Lx}) = 	- 

j=0 	j=0 

Q (X; {X + 2Lx}) = 1 - 1 - 20 - 
	GQ (X; {X + 3x}) = 1 4 	6416' 

- 1 - 20 - 52 - 116 - 31 20 - 52 - 
	GQ (X; {X + 4Lx}) = 1 	64 	256 	1024 - 256' and 25664' 

GQ (X; {X + 6/x}) = 1 - 1 	20 	52- 	- 	 - 116 	244 = 63 Hence. the re- 4 	64 	256 	1024 	4096 	1024 
currence relation GQ.. = GQm_i + , where m ~ 1 and GQ1 = can be utilised 

to calculate the required GQ (.) values. 

4.3.3 II
X,YII2 method 

In order to deal with general domains and evaluate systems where /x is too small 

to eliminate paths of excessive length, repeat the GQ method such that IIXI 
yj-d 

is used in place of Q (X; Y). Thus, the 12 norm raised to the -d power will be the 

influence measure between two distinct points. 

4.3.3.1 Procedure 

In order to implement this method, utilise the following steps: 

Evaluate X, 	and use this value to derive G (X; Y) = X, y-d 

/ 	 \_1 	

G 
11  X ( 	 X,Y2 ) and H(X;Yo ) = 	V; y6) 	(X; Y2) 

J 	 2E8ZJ 

Evaluate other interior points in the domain utilising previously calculated 

values for G (X; Y). 

4.3.4 GPS method 

Figure 4.12: GPS average where {E} are the blackened dots 

As depicted in Figure 4.12, derive reasonable estimates to a finite set of interior 

points {E}; i.e., derive {P (PE)}. From Lemma 3.1.9 and the reciprocity rela- 



tion, utilise values of the Green's function calculated when evaluating {P (PE)} 

to derive approximations for the remaining interior points. This method is most 

effective when used on domains with complicated boundaries or the cardinality 

of the interior points is very large. 

3 	5 4  
I'g 

3'S) 
L '  

PI _(iY 2 .M.) 
k3 

_(zM. \ 5-\53) 

/2(M-1)4NL\M. 
6=3 

4Ny  
'5) 3 5) 

(, i)  817 = 
(4Ny

3 5, 
2(Mx_1)) 

= 

Table 4.4: 8 example GPS points for a square domain 

4.3.4.1 Procedure 

An approximation will be derived using a limited subset of interior points. Given 

an a priori discretised Green's function or a Green's function calculated using the 

Laplace operator on the domain: 

Use a rough grid, symmetric conditions, Laplace operator estimates, or nu-

merical center points to estimate {P( E)}. 

Rely upon the reciprocity relation of the [ (; E)] matrices to build  
and estimate the remaining interior points by ignoring the boundary conditions 

and only utilising { ()} and noise within a small neighborhood. 

4.3.5 Numerical results 

52F(x,y) 32F(x,y) 092W(x,y) 
,9X2+ 	 = - 3xDy 	

(4.5) 

Consider (4.5) on a unit square domain with ) = 1, F5  (x, y) = 1, and 

F ((3.10) , es = 5 x 10_2);  refer to Figure 4.1. Tables 4.5 through 4.8 list the 

computational savings realised when using the aforementioned a priori methods 

with an iterative scheme. 
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Grid Size 7 x 7 11 x 11 19 x 19 35 x 35 67 x 67 
OFill 0 0 0 0 0 

Det. F (.) 8.3 48.8 7.2 9.1 10.4 
Blow up 16.7 53.3 11.4 13.0 13.5 

GQ 16.7 50.5 21.1 3.3 2.2 
5 V GPS 8.3 52.4 11.4 13.0 16.6 
8 p GPS 8.3 52.4 11.4 14.5 16.6 

Table 4.5: Percent savings in computational effort for a Hackbush multigrid 
method 

Grid Size 7 x 7 11 x 11 19 x 19 35 x 35 67 x 67 
OFill 0 0 0 0 0 

Det. F (.) 4.5 3.3 18.4 9.8 9.4 
Blow up 18.2 5.4 12.3 12.4 11.8 

GQ 9.1 7.6 20.9 3.1 -0.3 
5 	GPS 9.1 5.4 20.3 16.4 16.8 
8 	GPS 9.1 4.3 19.3 16.0 15.6 

Table 4.6: Percent savings in computational effort for a SOR method 

Grid Size 7 x 7 11 x 11 19 x 19 35 x 35 67 x 67 
OFill 0 0 0 0 0 

Det. F (.) 11.5 19.0 7.7 11.6 12.5 
Blow up 19.2 21.3 14.0 14.5 15.5 

GQ 15.4 34.4 29.6 4.1 2.6 
5 	GPS 11.5 13.0 15.3 16.7 19.2 
8 	GPS 11.5 20.2 15.1 18.5 20.4 

Table 4.7: Percent savings in computational effort for a Jacobi method using 
(3.10) 

Grid Size 7 x 7 11 x 11 19 x 19 35 x 35 67 x 67 
OFill 0 0 0 0 0 

Det. F (.) 9.1 24.8 13.0 11.4 12.3 
Blow up 18.2 17.5 15.4 14.7 15.3 

GQ 13.6 47.8 32.6 4.0 1.2 
5 p GPS 9.1 16.2 18.6 16.8 19.2 
8 p  GPS 9.1 16.2 17.0 19.1 19.8 

Table 4.8: Percent savings in computational effort for a Jacobi method using 
(3.13) 



Chapter 5 

Quasi- Geostrophic  processes with 
additive noise 

The principles to be derived are largely theoretical concepts that can 

be applied to an understanding of the natural phenomena. Such prin-

ciples spring most naturally from the study of model problems whose 

goal is the development of conceptual comprehension rather than de-

tailed simulation of the complete geophysical phenomenon. Geophys-

ical fluid dynamics has historically progressed by the consideration 

of a study sequence within a hierarchy of increasingly complex mod-

els where each stage builds on the intuition developed by the precise 

analysis of simpler models. [53, page 2] 

Section 5.2 will address the discretisation of the QG processes of interest to this 

text and highlight the similarities of QGsystems with the FDSc's of Chapters 2 

- 4. Given that the derivation of the QG process is not intuitive, refer to Section 

B.3 for an introduction to thin fluids and [53] as to how QG processes arise from 

a series of assumptions about the nature of a rotating fluid phenomena. 

5.1 Introduction 

Quasi- Geostrophic(QG) processes can be expressed as 
____ 	

03W(x,y,z,t) Q (x, y, z )  t) + J (F (x, y, z, t), Q (x, y, z, t)) = w (x, y, z, t) 	
axayat at 

+v (Q (x, y, z, t) , F' (x, y, z, t) , F (x, y, z, t) , x, y, z, t) 
(5.1) 

where F (.) is a stream function and Q is the potential vorticity of the form 

Q (x, y, z, t) = V 2F (x, y, z, t) + g (F (x, y, z, t) , x, y, z, t). 	(5.2) 
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Notation 5.1.1. Due to the thin layered approach of a QG process, the Laplacian 

and Jacobian operators are with respect to {x, y} only. Thus, the Jacobian of 

f (x, y, z, t) and g (x, y, z, t) is J (f (x, y, z, t) , g (x, y, z, t)) 
- Of(x,y,z,t) Dg(x,y,z,t) 	Dg(x,y,z,t) Df(x,y,z,t) . refer to [88, Section 2.7]. - ax 	Dy 	 Ox 	ay 

QG processes are a simplification of Navier-Stokes equations used in geophys-

ical processes when modeling zonal flow with sinusoidal shear and baroclinic-

barotropic instability. Although deceptively simple, these models are: 

*quite robust in describing the transfer energy iin thin rotating fluids, thus they 

provide a basis for depicting large-scale geophysical motions. 

.'easier' to implement and derive a theoretical understanding of fluid flows. 

computationally inexpensive compared to more complete processes. 

There are a number of other benefits to these QG models, but the major motiva-

tion stems from the elimination of: certain aspects of the law's of thermodynam-

ics, the curvature of the manifold, and geostrophic degeneracy via a 'reduction' 

to planar surfaces. It is desirable that QG systems restrict non-linear interactions 

to a few wave triads; hence, simplifying oceanography and meteorological con-

cepts for theoretical study. Since waves on a rotating planet can be atmospheric, 

gravitational, or sound; one must filter out the sound and gravity waves, but if 

these wavelengths are eliminated from the system, it is impossible to 'accurately 

solve' a process. If 'long time period' experiments must be conducted and/or 

solutions are required, the simplified nature of a QG process is inappropriate 

to attempt detailed quantitative comparisons with laboratory experiments; i.e. 

complete Navier-Stokes equations should be utilised. 

5.1.1 Summary of results 

Assuming the following initial conditions are fulfilled, then the FDSc built using 

the consistent components of Section 5.2.2 ensure that a QG process behaves 

as an additive elliptic system with a pseudo-deterministic hyperbolic influence. 

The QG processes outlined in this chapter are the foundation for future applied 

work in thin fluid lubrication processes, macro-computer network modeling, and 

possible methods in robotic communications. 

5.1.2 Assumed Initial Conditions (QGAIC) 

The following initial conditions assure that QG processes are well posed: 

Assumption 5.1.2. A solution exists and is unique in accordance with (5.15). 
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Figure 5.1: Construction of QG layers 

Assumption 5.1.3. Only closed and bounded domains on 	are utilised. One 

dimension of space will be used as time and the z dimension will be omitted in 

place of a counter for the stratification levels. 

Assumption 5.1.4. A process is bounded from above and below by pressure sur-

faces and assumes that flow is linear with regards to pressure. 

Assumption 5.1.5. Dirichiet boundary conditions are given where 

{ F 	(x, y, t), Q (x, y, t)} I t>o are homogeneous and the initial states, 

{F 	(x, y, t), Q (x, y, t)} I t=o  are Lipschitz continuous with K=0. 

Assumption 5.1.6. A Brownian sheet is utilised. 

Assumption 5.1.7. v (.) and w (.) are real valued measurable functions on 
and they are globally Lipschitz continuous with coefficients Kv  and K. 

Assumption 5.1.8. Incompressible and inviscid fluids will be assumed where the 

laws of thermodynamics (entropy), conservation of mass, and conservation of 
momentum are strictly observed. 

Remark 5.1.9. When the fluid is irrotational and incompressible, then the po-
tential velocity is harmonic and the divergence of the gradient is uniquely 0. Due 

to the inclusion of a second order elliptic operator, this chapter will concentrate 

on additive noise to *hopefully*  avoid the complications of non-additive noise. 

5.1.2.1 Domains 

Only two-layered closed and bounded domains are considered, where boundary 
conditions involve 'hard' surfaces above and below with 'walls' and 'wrapping' 
along the side boundaries. Often the boundary pressure surfaces will be the 

stochastic shape of the earth's surface and some statement about the 'top' of the 
fluid. Since, V (x, y, z, t) is the depth of a layer and the aspect ratio, Op = <<< 1, 
this thin nature of the domain and internal stratification will allow each layer to be 
considered two dimensional, such that U 	0, and the curvature of the manifold 
will be ignored. Due to stratification, the thin fluid domains will be 'divided and 
flattened' into parallel planes perpendicular to ZT = [0, 0, 1], where the notation 
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of Chapter's 2 and 3 will be utilised with respect to d = 2 planes. Let 1 be an 

integer valued counter that starts at the top of a fluid and proceeds in a —z 

direction and since a Pedlosky two-layered model is utilised: 

.if I = 1 denotes layer one then 0 1 denotes layer two. 

.if I = 2 denotes layer two then :/ 1 denotes layer one. 

LF (xi, Yk, Zj, tm) = F (xi, Yk, Z1, tm) - F (xi, Yk, Z, tm). 

5.1.3 Processes of interest 

13 fruh = 0.1 '3hh = 1.6e - 11 J3iee  = 0.25 
Tfruh = 0.2 ahh = 4e5 at,, = 0.1 

ffruh = 90.0 fhh = 7.844e - 13 Tjee = 0.1 

Kfruh = (0.8T ruh) '  bhh = 1.92e - 7 Kjee  = 0.1 

Table 5.1: QG constants 

The following QG processes will be utilised for the numerical work of this chapter. 

5.1.3.1 Früh Process [22] 

3Q(x,y,z,t) 
+ J (F (x, y, z, t) , Q (x, y, z, t)) 

at 

= - 	v F(x,y,z,t)+ I v 2 	
33W(x,y,z,t) 

20A
Q(x,y,z,t) +w(x,y,z,t)  

axayat 
(5.3) 

Q (x, y, z, t) = 2F (x, y, z, t) + By - f/SF (x, y, z, t). 	(5.4) 

This model attempts to describe the chaotic weather systems that appear over 

the middle latitudes of the northern hemisphere; geographical regions such as 

the United Kingdom and Northern Europe where the 'warm' y=0 boundary rep-

resents the Mediterranean and the 'cold' y=1 boundary represents the Arctic 

Circle. This model integrates the QG process on a B plane in a zonal peri-

odic channel contained between thin but impermeable ageostrophic boundaries, 

where discontinuous flow with bifurcation results from steady waves with reso-

nant triads and zonal flow-wave interacting with a strong B effect. This model 

also studies nonlinear wave-wave interactions via wave triads, zonal flow-wave 

interactions, bifurcation, strongly modulated amplitude vacillation, and intermit-

tent weaker wave modes. For the domain, assume Ekman layers at the lid and 
___ UL 1 base with parameters {e = 	= 	- 

_ 	
, 	< 0. 1, 	= 0.3} and a unit 



Prandtl number. Reducing the deterministic version of (5.3) into its baroclinic 

and barotropic components yields: 

a V2  Tit (x, y, z, t) + 9Tit (x )  y, z, t) + UTt (x, y, z, t) 
a V2  Tt (x, y, z) 

at 	 ax 	 ax 

+Uyc  (x, y, z, 
) 0'7 2  Tic (x, y, z, t) + .r (Tit (x, y, z, t) , 72Tit (x, y, z, t)) 

Ox 

+J (Tic (x,y,z,t) ,V2Tic (x,y,z,t)) = - 	V 
-ft (x,y,z,t) 4 

0 4  
17 4T (x, y, z, t) 

(5.5) 

a V2  Tic (x, y, z, t) - 2f Tic (x, y, z, t) 
+8 

 aTic (x, y, z, t) 
at 	 ax 

+Uy(x,y,z,t) 
a V2  Tic (x, y, z, t) + 
	(x, y, z, t)

09'7 2  Tit (x, y, z, t) 

	

ax 	 ax 

+2f UT , (x, y, z, 
t) aTit (x, y, z, t) + 

J (Tit (x, y, z, t) ',72  Tc  (x, y, z, t)) 
ax 

+J (Tic (x, y, z, t) , V2  Tit (x, y, z, t)) - 2f  (Tit (x, y, z, t) ,Tic (x, y, z, t)) 

v/ 
- 	V2  Tic (x, y, z, t) + 

V 4 T (x, y, z, t) - 2f 72  Tic (x, y, z, t) 
(5.6) 

0A 

with a spectral representations for orthogonal functions (5.5) and (5.6) similar to 

Chapter 2 such that: 

	

N 	 NM 

Ti 	(x )  y, z, t) = 	 (t) cos (nry) + 	sill (nivy) 

	

n=1 	 n=1 m=1 

(t)cos( 
(mn 

	

	

/2mx) 
+{rn,m,T}(t)sin (2rnx)) 

	
(57) 

a 

5.1.3.2 Haines and Holland process [29] 

DQ(x,y,z,t) 

	

	 a3w(x,y,z,t) 
+ J (F (x, y, z, t) , Q (x, y, z, t)) = 111u (x, y, t) + w (x, y, z, t) 

at 	 axayat 

- (b + S (x)) 72  (F (x, y, z, t) - F' (x, y, z, t)) + a 74 (F (x, y, z, t) - F' (x, y, z, t)) 
(5.8) 

Q (x, y, z, t) = 72F (x, y, z, t) + By - fLF (x, y, z, t) 	(5.9) 

Let B = 1.6 x 10_li (ms)', f = 7.844 x 10 13  (m) 2, Lx =Ay-  200/cm 
- 6,000km' 

b = 1.92 x i0 (s)', a = 4 x l0, u (x, y, t) = u (x, y) Cos (4,omx - Ct) 

such that the period of the wave-maker corresponds to 4.5 days, v (x, y) = 

Asin ((x_xo)lr) 	

( 
sin (o)ir  

00km 	3,600km)
Y—Y 
	when x e [0, 6000km] and y e [0, 3600km]. Further, 

F' (x, y, z1, t) = 0, F' (x, y, z2, t) = - 11 41=1 112y,  Q' (x, y, z1, t) = (B - U11l2v2) , 
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Q' (x, y, z2, t) = (B + IlUl=I  12v) y, and S (x) is the vorticity dissipation term 

which increases b of (5.8) 'by a factor of 1,000 in the last fifth of the channel to 

provide a sponge to prevent the re-circulation of the wave maker eddies.' 

This model attempts to describe how geographically stable weather fronts are 

created and maintained for seemingly long periods of time. Known as blocking, 

these stable weather fronts are important to weather prediction since they cause 

relatively large changes in the flow of major weather patterns due to their resis-

tance to movement. Regarding the physical model, instead of using a temperature 

difference to drive wave patterns in the water, this model propagates waves with 

a physical wave maker to examine baroclinic instability that excites blocking. 

By altering the meridianal shear in the upper layer, blocking can be excited and 

maintained from high-frequency eddy activity originating from below. 

51.3.3 Lee process [42] 

3Q(x,y,z t) 	 (—i) (F(x,y,zi,t) 
+ J (F (x, y, z, t) , Q (x, y, z, t)) = 30 	2 	- (n) at 	 ) 

—11=2am  v2  F (x, y, z2, t) - 0.006 76  F (x, y, z, t) w (x, y, z, t) 
093  (x, y, z, t) 

Dx5y5t 
(5.10) 

Q (x, y, z, t) = 72F (x, y, z, t) + By + (_21)  F (x, y, z1 , t) 	(5.11) 

where f (y) is the radiative equilibrium temperature and U = _2 ,t) = 

1 if ly - 451 < a or e 	if ly - 451 > a. This model attempts to describe 

aspects of eddy fluxes and eddy energy that are associated with multiple zonal 

jets focusing on the transition from a singe get to a double jet state. 

5.1.4 Other papers and processes 

The literature over the past half-century in this field has been quite extensive, 

hence, some articles of interest include: 

.[11] proves results for nonlinear stochastic evolution equations such as the stochas-

tic Navier-Stokes equation in any dimension with general noise. 

.[14] proves global existence and uniqueness for f) +UvQ (X)+K (- V 2  Q (X))°  

= f (X) when 0 e () 1 1]. They further show that weak solutions also exist glob-

ally, but uniqueness is only shown for the class of strong solutions. 

.[16] shows temporally almost periodic solution exists to the deterministic case 

of (5.1) and this solution is dependent upon the square integral of the wind. 
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.C. Basdevant and R. Sadourny wrote 'Ergodic properties of inviscid truncated 

models of two-dimensional incompressible flows,' Journal of Fluid Mechanic 1975, 

Volume 6. This is an excellent introduction to systems constrained to a finite 

number of degrees of freedom. 

Jiménez, Moffatt, and Vasco discuss the elliptic nature of the vorticity distribu-

tion in 'The structure of the vortices in freely decaying two-dimensional turbu-

lence,' Journal of Fluid Mechanic 1996, Volume 313. 

sMerryfield and Holloway wrote 'Inviscid quasi-geostrophic flow over topography: 

testing statistical mechanical theory,' Journal of Fluid Mechanic 1996, Volume 

309. Their simulations for barotropic QG flow provided a basis for this chapter. 

Almgren, Bell, Colella, and Marthaler's wrote 'A Cartesian grid projection 

method for the incompressible Euler equations in complex geometries,' SIAM 

Journal of Scientific Computing, Volume 18, Number 5, 1997. They demon-

strated a strong connection between the Euler equations on a uniform 7Z" and the 

methods used to solve elliptic and hyperbolic PDE's; hence it is the errors at the 

boundary that cause significant numerical problems in any FDSy or FESy. 

*Ramirez-Piscina, Sancho, and Hernández-Machado consider equations of the 

canonical form 	= f (F (X) , F (X)) + g (F (X) ,F (X)) ow(x)  where ax 

If (•) , g (.)} are nonlinear functions in 'Numerical algorithm for the Ginzburg-

Landau equations with multiplicative noise: Application to domain growth,' 

Physical Review B, Volume 48, Number 1, July, 1993. Further insight is gained 

in the multiplicative noise on a 	domain in Ramcrez-Piscina, Sancho, et all; 

'External Fluctuations in Front Propagation,' Physical Review Letters, Volume 

76, Number 17, 22 April 1996. 

Yavneh, Shchepetkin, McWilliams, and Graves wrote 'Multigrid Solution of Ro-

tating, Stably Stratified Flows,' Journal of Computational Physics, volume 136, 

pages 245-262, 1997. They use balance equations to describe turbulent fluid dy-

namics, which is similar to elliptic processes. 

Duan and Kloeden wrote 'Dissipative Quasi-Geostrophic Motion under Tempo-

rally Almost Periodic Forcing,' Journal of Mathematical Analysis and Applica-

tions, Number 236, pages 74-85, 1999. They discus barotropic QG flow model 
OV2F(x,y,t) + J (F (x, y, t) ,V2F  (x,  y,  t)) + 5aF(;Yt) 	

ii 	F (x, y, t) 

—E 72  F (x, y, t) + f (x, y, t). 

*Timothy DelSole and Brian F. Farrell wrote 'A Stochastically Excited Linear 

System as a Model for Quasi- Geostrophic Turbulence: Analytic Results for One-

and Two-Layer Fluids,' American Meteorological Society, 15 July 1995, pages 

2531-2547. They explore the hypothesis that nonlinear eddy interactions in QG 

turbulence can be parameterized as a stochastic excitation plus an augmented 
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dissipation in a statistically stationary equilibrium. 

*Brian F. Farrell and Petros J. Ioannou wrote 'Stochastic Dynamics of Baro-

clinic Waves,' Journal of the Atmospheric Sciences, Volume 50, Number 24, 1993, 

pages 4044-4057. They explore dissipative baroclinic shear flows subject to addi-

tive stochastic excitation. 

*Victor I. Shrira wrote 'Surface waves on shear currents: solution of the boundary-

value problem,' Journal of Fluid Mechanics, Volume 252, 1993, pages 265-584. 

The author discusses gravity-capillary waves and uses a closed loop feedback 

technique to show existence and convergence. 

Basdevant and Sadourny wrote 'Ergodic properties of inviscid truncated mod-

els of two-dimensional incompressible flows,' Journal of Fluid Mechanics, Volume 

69, 1975, pages 673-688. This paper deals with the numerical approximation of 

Navier-Stokes equations. 

.Pratt and Pedlosky wrote 'Linear and nonlinear barotropic instability of geostrophic 

shear layers,' Journal of Fluid Mechanics, Volume 224, 1991, pages 49-76. The 

authors discuss evolution of unstable waves from initially small amplitude waves. 

*James, Jonas, and Farnell wrote 'A combined laboratory and numerical study 

of fully developed steady baroclinic waves in a cylindrical annulus,' Quart. J. R. 

Met. Soc., Volume 107, 1981, pages 51-78. The authors explore how to construct 

numerical QG systems. 

*Brian R. Wetton wrote 'Analysis of the spatial error for a class of finite difference 

methods for viscous incompressible flow,' SIAM Journal of Numerical Analysis, 

Volume 34, Number 2, April 1997, pages 723-755. This paper explores several 

first and second order FDSy's for incompressible flow and derives rates of conver-

gence using a 'careful numerical study.' 

Galves, Olivieri and Vares wrote 'Metastability for a class of dynamical systems 

subject to small random perturbations,' The Annals of Probability, Volume 15, 

Number 4, April 1987, pages 1288-1305. This paper considers dynamical systems 

in Rd  subject to small random disturbances and proves convergence in law when 

properly normalized to a Markov process. 

5.1.4.1 Lewis process [43] 

Baroclinic Equation: 

DV 2 TC -2fTc 	aTc 
+ 13— + J (Tt, V2Tc) + J (Tic, V2Tt) at 	ax 

+2fJ (Tic, Tit) 
- 	V2Tc + 2 ( 2Tc - 2fTc) - 

H 	(5.12) - e 
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Barotropic Equation: 

09 V2 Tt 	OTt   

	

+13 	+ J ( f  C' V21c) + J (IC, V2Tc) - V2Tt + Vt (5.13) 
at 	Ox 

where H = —472  + 42F]  cos (2iry) represents forced internal heating with 

wrapping boundary conditions in the x dimension and walls at y = {0, 11, A = 
1.s 1, ii = 2 x 10_6, °A = 0.067, f = 15, S = 7.5, >r = 240, and B = 0.5. 

This model represents a convectional two-layered QG formulation subject 

to internal diabatic heating resulting in a non-monotonic horizontal tempera-

ture gradient on a B plane in a zonal periodic channel contained between solid 

ageostrophic boundaries and Ekman layers at the lid and base. This is a harder 

model to analyze due to the internal heating of the fluid vice boundary heating. 

Since both vertical and horizontal shear compound the nonlinear interactions of 

the waves, non-dimensional variables are used with a unit Prandtl number and a 

spectral representation of orthogonal functions, where: 

= 	(t) cos (niry)+ ( 	(t) cos (2- x) 
 + 	(t) sin (2mx))  sin (niry) 

n=1 	 n=1 m=1 
The dominant dissipative term in the model is the Ekman layer and to remove 

small scale enstrophy, internal viscosity is parameterized as horizontal potential 

vorticity diffusion which assumes a unit Prandtl number. 

5.1.4.2 Spectral process and FESy 

Spectral methods for a barotropic vorticity equation with Fourier basis functions 

are addressed in [32, Section 6-41 and for a description of FESy methods refer to 

[10] and the early work by Orzag. The spectral representations are similar to the 

example in Chapter 2 and are more instructive for wave-wave interactions and 

energy flow, since waves can be decoupled to identify significant wave patterns 

in the process and by removing a wave, other wave triads distribute the energy. 

There are some numerical difficulties in the stochastic setting due to the roughness 

of the driving noise, thus these methods will not be discussed in this text. 

5.1.4.3 Assumed solution 

Existence and uniqueness results for the deterministic form of (5.1) and 

OQ(x,y,z,t) + J(F(x,y,z,t) , Q(x,y,z,t)) 	
OF(x,y,z,t) 

+13 

	

at 	 Ox 

= V 1 	
OW (t)

4 F(x,y,z,t) —SQ(x,y,z,t)+ 	 (5.14) 
at 

exist, but the inclusion of d > 2 additive white noise or d > 1 multiplicative - 

general white noise remain open problems. 
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Theorem 5.1.10. [7, Theorem 1]: Using (QGAIC), there exists a unique global 

solution F(X) to (5.1). 

Proof. Refer to Appendix B 	 LI 

As with the elliptic case, a closed form solution cannot be expressed. Given the 

results of Chapter 3, assume that a Green's function and a Poisson kernel exist 

and the solution is expressed in an integral form: 

F(X)=fH(X;Y)F(Y)dY+fG(X;Y)v(F(Y),Y)dY 

+fG(x;Y)w(Y)dw(Y) 	 (5.15) 

tm 
where f g(.)df(.)  f f f g(.)df(.,l), 

Dj,k,l,m 	 tm_i x3— 	Yk — - 
I 	tm max(x) max(y) 

f g  (.) df  (.) = 	f f 	f 1g  (.) df  (.), and 
01 0 min(x) min(y) 

I 	tm max(x) max(y) 

fg(.)df(.) = 	f f 	f 1g(.)df(.). Since the process is both hyper- 
o=1 0 min(x) min(y) 

bolic and elliptic, the system must be driven by an additional energy source such 

as heated walls, added small eddy energy, wave maker, or internal heating; oth-

erwise a state of equilibrium will be reached. The iteration of hyperbolic and 

elliptic elements accounts for the statement in many QG papers, where a com-

puter model has to 'settle down' or 'overcome errors in the initial conditions' by 

setting t= 0 after the model has 'run for a while.' One is waiting for the dominant 

elliptic terms to reach a 'realistic' system. 

5.2 	Discretisation of the process 

Assumption 5.2.1. A uniform V' is utilised where At - - 	< 0 (-). 

Due to the scales involved, it is not unreasonable to expect /.x < 200km and 

At < 10mm, such that the system's FDSc 'characteristic equations' adequately 

map the R' characteristics; similar Assumption 2.3.1 where At  < 1. The relevance 

of adding random noise to a QG process comes from: 

*The elimination of the sound and gravity waves from the process. 

*The inability to evaluate important characteristics deviations on a much finer 

scale than can be modeled with a 'reasonable' Ax, hence these variations appear 

as random perturbations on the meteorological waves. Lx denotes the smallest 
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Figure 5.2: Aliasing of waves for a given Lx - [32, Figure 5.9] 

wavelength' that can be represented using the uniform Zd  space. 

*Closed loop feedback and aliasing create nonlinear instability which develops if 

energy is falsely generated and persistently channeled towards the short resolvable 

wavelengths of 2Lx through 4Lx. The Jacobian helps prevent the continued 

growth of very short waves but as /.x - 0, this problem does not subside. Thus 

truncation and aliasing errors due to harmonic waves often appear as random 

perturbations. 

The discussions of [21, Section 28] point out that four dimensional models allow 

both elliptic and hyperbolic behavior in the same domain, thus possibly exhibiting 

inconsistent FDSc's with determinants equal to zero. 

5.2.1 Expansion of terms 

The z dimension is a counter for levels 1 and 2, hence, 1 E 11, 2} and a Brownian 

sheet is generated for each (x, y, t) level. 

Lemma 5.2.2. When using a uniform V space: 

'8Yk = 13 (yo  +kLy)B (yo  +1V)t/.X) 

f 	w(x,y,z,t)w(xYzlt)dxdydt = Wj,k,1, 
W(Dj,k,t,m) 

+K max (1, ôx8y3t m xyt 	 A,AtLX 2  
D j ,k,l,m  

aF (xi, Yk, Zj, tm) = a (Pj,k,I,m - Fi,k,541,m) + a ( (Pj,k,1,m) - (Pj,k,541,-)) 

- a 
-AtAx (Pj,k,1,m+1 - 1 j,k,1,m) + 	( (Pj,k,I,m+I) + (Pj,k,l,m)) At Ax 

at 02F(.) 
+ 	at2 

a8F j z1tm) = 
ax 	 AX (Pj+1,k,I,m - i,k,l,m) + 	(C (Pj+1,k,1,m) 	(-i,,i,m)) 

azx 02F() 
ax2 

- a -
A, AX (Pj,k+1,1,m - Fj,k,1,m) + 	(c (Pj,k+I,I,m) - e (Pj,k,l,.)) AY AX 

a/x 02F() 
+ 	a2 

Proof. The first term is trivial and use either Assumption 5.1.7 or a Taylor expan-

sion to yield the second term. For the remaining terms, multiply by a constant 

a, and substitute F (•) = P (.) + e (P (.)) to yield the desired results. 	El 

- 2a Lemma 5.2.3. a V2  F (xi, Yk, ZI, tm) - 	(i + r) 
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+gr (Pj+],k,l,- + Fj_1,k,1,m  + - (Pi,+i,i,m + i,k_1,1,rn)) 

(e (-Pj+l,k,l,m)  + C (-Pj—1,k,l,m) +( (Pj,k+1,1,.)  + C (i,k_1,1,m))) 

2ai + 	e (Pj,k,l,-)  + a 	
a4F(.) +a i.y2ô4F(.) 

12 8x4 	12 9y4 

2 	
82 F(x3  ,Yk ,Zj ,tm) 	a2 F(x1 ,Yk ,Zj ,tm) Proof. Using (1.9), VF(Xj,Yk,Z1,tm) = 	8x2 	+ 	9y2 

- /F(Xj,yk,Zt,tm) ± IF(Xj,yk,Zj,tm) + x2  OF(.) 	4 	F() 
- A2X 	 j 8x + 12 9x 4  
_1j - 	

x2 	+1,k,1,m + Fj_1,k,1,m)  + 	(,+i,i,m + Fj,k_1,1,m) -AX   (i + ) Fj,k,1,m 

x 2  84F 8F(.) Substituting approximations and errors yields the 12 8x4 + 12 5y4  

desired results. 

Lemma 5.2.4. a V4  F (xi , Yk, Zi, tm) = 	(i + ) Fj,k,1,m 

+AX 	 - 4+1,k,1,m - 4 -1,k,1,m + Fj_2,k,1,m 

± 	(Pj,k+2,1,m-4-Pj,k+1,1,m- 4-E1,k_1,1,m  + Fj,k_2,1,m)) 

+AX 	 AYI* 
6a4(i +(Pi,k,l,m) + 0 (x4) 

(e (Pi+2,k,t,m) 	4e (.Pi+l,k,l,m) - 4e Vj-1,k,1,m) + e (Pi-2,k,t,m 

+ 	(e (-Pi,k+2,1,m) - 4e (Pi,k+1,1,m) - 4e (Pi,k-1,1,m)  + e (.i,k_2,1,m))) 

and a V6  F (x, y, z1, t)= - 	(i + ) Fj,k,1,m 

± 	 6 +2,k,1,m + l5Fj+1,k,1,m  + l5Fj_1,k,1,m - 6 -2,k,1,m + —3,k,1,m 

+ 	(Pj,k+3,1,m-6-Pj,k+2,1,rn  + '5,k+1,1,m  + '5,k-1,1,m 	6Fj,k_2,1,m  + Fj,k_3,1,m)) 

- 	1 + 	(Pj,k,l,-) +0 (x6 ) 20a ( 
	

1 

( (Pj+3,k,I,.) -  6e (Pi+2,k,l,m)  + 15e (pj+l,k,i,m)  + 15e (Pj—I,k,I,m) 

—6e (Pj-2,k,I,m) + C (Pj-3,k,I,m) + 	( (Pi,k+3,1,m)- 6e (Pi,k+2,1,m) 

+15e (Pi,k+1,1,m) + 15e (Pi,k-1,1,m ) - 6e (Pi,k-2,1,m ) + C (Pi,k-3,1,m))). 

Proof. Using the [MPR] notation of Chapter 2, 

V 4F (xi , Yk, Zj, tm) - 04F(Xj,yk,Z1,tm) + U4Fj,y,zi,tm) 
- 	&x 4 	 '9y4  

- 	F(Xj,yk,Zl,tm) +
+ 	

36F(.) 	ty4 06F() 
- 	Mx 	 My 	ö 86 x +360 .96 Y 
= 	(Fj+,ic,i,m 	41 j+1,k,1,m + 6Fj,k,1,m - 4lj-1,k,1,m + Fj_2,k,1,m) 

+4 (Fj,k+2,1,m - 4Pj,k+1,1,m  + 6Fj,k,1,m - 4Fj,k _ 1, j,m  + Fj,k_2,1,m)  + 0 (x4) 

= 	(Fj,,j,m - 4Fj+1,k,1,m - 4Fj_1,k,1,m  + Fj_2,k,1,m) + AX 
(i + ) Fj,k,l,m 

(Fj,ic+,i,m - 4Fj,k+1,1,m - 4Fj,k_1,1,m  + Fj,k_-2,1,m) + 0 (x4 ) 

= 	(i + r) Pj,k1,m + 	(Pj+2,k,l,m -4Fj+1m-4Fj_1,k,1,m + ,, 	 Fj_2,k,t,m 

±(Pi,+,i,m - 4Fj,k+1,1,m  4Fj,k_1,1,m  + Fj,k_2,1,m)) + 0 (x4). 

Repeating this process for the 17 6 F (x, y, z1, t) term gives 

17 6 F (xi, Yk, Zj, 
 t,.)- 86F(xj,yk,zj,tm) + 8°F(Xj,yk,Zl,tm) 

- 	ax6 	 &y6  
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— LF(Xj,yk,Zl,tm ) 	ZF(Xj,yk,Zl,tm) 	( 	6 
— 	 + 	 + X 

= 	(Fj ,,i,m  — 6Fj+2,k,i,m  + lSFj+1,k,1,m  + lSFj_1,k,1,m  — 6Fj2,k,1,m  + Fj_3,k,1,m 

+ 	(Fj,+,i,m  — 6Fj,k+2,1,m  + 15Fj,k+l,1,m  + 15Fj,k_1,1,m  — 6Fj,k_2,1,m  + Fj,k_3,1,m)) 

20 (i + ) Fj,k,l,m +0 (x6 ). Multiplying both expansions by a constant 

and replacing terms with their approximation and error yields the desired results. 

Lemma 5.2.5. S (xi) 72 (F (xi, Yk, Zi, tm) — F' (xi, Yk, Z1, tm)) 
/ = -s (xi) 2.  x2 1 + )) j,k,1,m 	 + 1 \) (Pj,k,I,m) +0 (Lx2) 2  

+S (xi) AX 2  (Pj+I,k,I,m + 'j-1,k,i,m  + r (Pj'k+1,1,m + P7j,k_1,1,m)) 

+S (xi) g (e (-Pj+1,k,I,m) + c (,Pj-1,k,t,m + l (c (Pj,k+1,1,m) + e  I  
\ 6a and a v4 (F (xi, Yk, z1, tm) - F' (xi, Yk, Z1, tm)) = S /  X ) 	1+A4 ) Pj,k,1,m 

+S (xi) AX   (Pi+2,k,l,m — 4 +1,k,i,m — 4F_1,k,1,m  + Pj-2,k,i,m 

+ -L(-Pi,k+2,1,m — 4Fj,k+1,1,m - 4Fj,k_1,1,m  + Fj,k_2,1,m)) 

\ +S (xi) 6a  
AX4(i + 	C (Pj,k,I,m) 0(x4) 

+S(xi) 	( (Pi+2,k,i,m  —4c (-Pj+1,k,1,m) - 4e (Pj-1,k I I,M) + C (Pj-2,k,I,m) 

1
4 
 

 1 (Pj'k+2,1,m) - 4e (Pi,k+I,I,m) — 4e (Pj'k-1,1,m) + C (Pj'k-2,1,mM
.

+C  -I 1\ 

Proof. Using Proposition 5.2.3 and (1.9) yields 

S (xi) V2  (F (xi, Yk, Zj, tm) - F' (xi, Yk, z1, tm)) 

+ — s () 
( 82  (F(x ,yk,Z1,tm)_F'(Xj,Yk,Zl,tm)) 	82 (F(xYzl,t)_FI(x,Y,zl,t))) 

— 	
. 	 8x2  

— S (x3) 
((F(xj,yk,zt,tm)_FI(xj,yk,zt,tm)) 

+ 
Ac2(F(x,y,zj,t)—FI(x,y,zj,t)) 

 ) 
+ 0 (x2 ) — . __   AX 2 

 

AY 2 

 = S (xi) 
(— 	

(i + ) (Fj,k,i,m  — Fjk,i,m) +AX (+i,,i,m — 	+1,k,i,m + Fj_1,k,i,m 

Fj_1,k,1,m  + 	(,+i,i,m - 	,k+1,1,m + Fj,k_1,1,m 	Fj,k_1,i,m))) + 0 (x2). 

From [29, (5)], F 	(.) = 0 1  F' (X I Y, 	= —U12y, so canceling F' (.) terms 

since F,k,. — ',k,. = 0 and ',k+1,• — 	k,• — 1,k,• + Pk -1,- = 0 gives 
2  (F (xi, Yk, Zi, tm) — F' (xi, Yk, ZI, tm)) = S (X) 	(i + 	,k,i,m 

+S (x) 	(Fj+l,k,l,m + 	—1,k,1,m + 	(Fj, i,i,m  + ,k_1,i,m)). 

For the fourth order term, use Proposition 5.2.4 to yield 

a v 4  (F (xi, Yk, Zi, tm) — F' (xi, Yk, Zj, tm)) 

— S (x) 
( ü (F(x ,Yk,ZI ,tm )—F' (x ,Yk ,ZL ,tm)) + 

	
(F(x ,Yk,Z1 ,tm )Fh' (x ,Yk,Zl ,tm))) 

— 	 8x4 	 8y4  

— 	
A4 (F(xj,yk,zl,tm)_F'(xj,yk,z1,tm)) + 

	
j,Yk i,tm)—F xi,,zi,tm))) 

+0 (x4 ) S (x) 
( 

- 	 x4 	 AY  

— S (x) 6a( + 1 ) (klm — Fj,k,i,m) + S (x) 	((+2,k,1,m — Fj+2,k,1,m) — 
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-4 (i+i k 	- F' 	) - 4 (Fji,,i,m 
- -'j_1,k,1,m) + (Fj_2,k,1,m 

- 'j-2,k,1,m) Im 	j+1,k,lm 

+ 	( (Fj, + ,j,m - 	k+2,1,m) - 4 (,+i,i,m - Fj,k+1,1,m) - 4 (Fj, _i,,m - Fj,k_1,1,m) 

+ (Fj,ic_2,1,m - Fj k_21 m))) + 0 (Lx4). Canceling F' (.) terms and replacing 

terms with their approximation and error yields the desired results. 

Notation 5.2.6. Let e (QTi'k,l,m) =
2a (I +-L) e (Pj,k,l,m) 

+-r (C (-Pj+I ,k,I ,m) + (fj-1,k,1,m) + r ( (Pj,k+1,1,m) + (Pj,k-I'I'M))) 

x2 04F(.) ± 	
i9F(.) 

—a ( (Pj,k,l,,n) - (Pj,k'~'-'I'M)) + 12 Ox4 	12 Ox 4 

Lemma 5.2.7. The general format of the potential vorticity is Q (x, y, z1, t) = 

172F (x, y, zj, t) + f (xi, Yk, Zi, tm). For the numerical examples, let Qj,k,1,m = 

V 2F (x, y, z1, t) + By - aLF (x, y, z1, t), where: 

.Q (x, y, z1, t)= V 2F (x, y, z1 , t) + By - fLF (x, y, zj, t) for (5.) and (5.9). 

eQ (x, y, z1, t) = 
72F (x, y, z1 , t) + By 	r' F (x, y, z1, t) for (5.11). 

Thus, Qj,k,1,m = Qj,k,t,m+C (~jxl,m) = V 2Fj,k,t,m+BYkaFj,k,1,m±C (j,k,1,m) 

= - AX2
2 (i + 

) Pj,k,l,m + BkLy - a/Fj,k,1,m + (Qj,,i,m) 

+ 1 
(Pj+1,k,I,m + Fj_1,k,t,m + 	(i,+i,i,m + Pi,k_1,1,m)). 

I, 

	

02 	(x ,Yk ,Z1 ,tm) 
Proof. Q (x, y, z1, t) = 2F (x, y, z1, t) + By - aFj,k,1,m 

= 	Ox2 

+ 
82 fr(x3 ,Yk ,Z1 ,tm + By, - aL 	(xi, Yk, Z1, tm). Using Proposition 5.2.3 and ex- 

panding 

2 
yields Qj,k,1,m V2Pi,k 1,m + Byk - aFj 

'

k,1,m 

= - 	(i + r) Fj,k,1,m - r 	+ 	(Pj,k,l,,.) + Bk/ay - aFj,k,1,m 

1 
AX 

 + AX  (.Pi+l,k,l,m + Fj_1,k,1,m 	(Pj,k+i,i,m + Fj,k_1,t,m)) 
y 

1 +r ( (Pj+I,k,1,m) + e (.Pj-I,k'I'M) + r ( (.i,k+1,1,m) + Vj'k_1,1,m))) 

x2 	Reduction yields the desired results. 	 El 
12 Ox4 + 12 Ox 4 

Lemma 5.2.8. a8 j,Yk,Zi,tm) = a (- 2 (i + 
-) (Pj,k,t,m+l - 1'j,k,1,m) at 	 AX2 

+
AX Pi 

a 2
((+i,,i,m+i - Fj+1,k,1,m) + (Pj-1,k,l,m+l - Fj_1,k,1,m) 

+ 	((,+i,i,m+i - Fj,k+1,1,m) + (Pj,k-1,1,m+I - ,k_1,1,m))) 
Pi 

—aFj,k,1,m+1 + aPj,k,1,m + c (j,k,1,m+1) - e (dj,k,l,,.) + 2 	0t2 

Proof. Using (1.8) and substitution from Proposition 5.2.7 yields 
OQ(xj,yk,zt,tm) - 	fQ(xj,yk,zl,tm) 	it 82 Q(.) 

o - 	+ at2 	 At 

= th Qj,k,1,m+1 + CC6j,k,l,m+l) - Qj,k,1,m - C (dj,k,1,m)) +02Q,,k,l,m Substitu-

tion and multiplying by a constant yields the desired results. 

Lemma 5.2.9. aOQ(Xj ,yj,z,tm) = a ( 	2 
(1 + r) (Pj+l,k,t,m 1 j_1,k,1,m) Ox 	2Lx 	A X 

1 
( (Pi +2,k,t,m - -E'j,k,l,m) + (Pj,k,l,,. - P_2,k,1,m) 
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+ 	((Pj+l,k+1,1,m - _1,k+1,1,m) + 
O2Qj,k, I'm '\ + 	+ (Qj+l,k,l,m) - (Qj_i,,i,m) + X 	2 ) 

Proof. Repeat Proposition 5.2.8 with respect x and 2x for a central difference to 

yield OQ 	k,Zl,tn) = 
Ox 	 2x 	 Substitution yields the desired 

results. 	 Li 

Lemma 5.2.10. aOQj,z1tm) = a 1
(— 
 2 

Oy 	 (i + r) (Pi,k+I,I,m - Fj,k_1,1,m) 

+ 12 ((Pj+l,k+1,1,m - +1,k_1,1,m) + (Pi-1,k+1,1,m - 	_1,k_1,1,m) 

+ 1 1 
(Pi,k+2,1,m - Pj,k,1,m) + (Pi,k-1,1,m - Fj,k_2,1,m))) + aFj,k_l,1,m ( 

82 Qj,k,l,m \ 
—a,k+1,1,m + 2Bky + (C (Qj,k+1,1,m) - (Qj,k-1,1,m)) + AYAX aY2 ). 

Proof. Repeat Proposition 5.2.8 with respect y and 2/ay for a central difference to 
OQ j,Yk,Zi,tm) = yield 	ay 

Substitution yields the desired 

results. 	 Li 

2a Lemma 5.2.11. a v2 Q (xi, Yk, Zj, tm 	
/

) = - 	 i + 	Qj,k,1,m 

+r (j+1,k,1,m + Qj_1,k,t,m + 	0j,+i,i,m + Qj,k_1,1,m)) 

2a  
— 	(i + 	c (!~j,k,l,m) 	

LX 2 0Qj,ic,t,m ± 8x' 	12 	81' 

+ a ( (Qi+1,k,t,m) +r 	e (Qi 	) + 	( (QTi,k+1,1,m) + (QTi,k_1,1,m))). 

82 Q(x ,Yk ,Zj ,tm) + 
82 Q(x ,Yk ,zj ,tm) Proof. 72Q(2j,Yk,2,tm) = 	9x2 	 8y2 

- AQ(xj,yk,zt,tm) 	Qj,i,,tm) 	x 2 + 	 + i 	Q() O 	+ 	oQ(.) Use the same reduction 
- 	 12 Ox4 	12 Ox4 

of Proposition 5.2.3 where substitution yields the desired results. 	 LI 

Lemma 5.2.12. J(F(Xj,Yk,Zl,tm),Q(Xj,Yk,Z1,tm)) = 

1 
12x2 ( (Pi+l,k,t,m - Fj_1,k,1,m) (Qj,k+1,1,m - Qj,k_1,1,m) 

- pj+l,k,1,m - Qj_1,k,1,m) (Pil k+I,I,m - Fj,k_1,1,m) 

+Fj+1,k,1,m (~j+l,k+l,1,m - Qj+l,k_,1,m) pi-1,k,1,m (j_1,k+1,t,m - Qj_1,k_1,1,m) 

Fj,k+1,1,m pi+l,k+1,1,m - Qj_1,k+1,1,m) +,k-1,1,m pj+l,k-1,1,m - Qj_1,k_1,1,m) 

+Qj,k+1,1,m (Pi+l,k+1,1,m 	_1,k+1,1,m) Qj,k-1,1,m (Pi+l,k-I,I,m - Pi-1,k-1,1,m 

- Qj+1,k,1,m (Pi+l,k+1,1,m - 	+1,k_1,1,m) + Qj-1,k,1,m (.Pi-1,k+I,I,m - Pi-1,k-1,1,m 

+ max ( (Y) I eg (P (X)) , P (Y) I eg ( (X))) + 0 (Ax), where 

JIX - (Xj,Yk,Z1,tm)M i <2/x and Ily - (Xj,Yk,Z1,tm)Il l 	2)\y X. 

Proof. The analytic Jacobian of Definition 5.1.1 can be expressed as 

J (f (x, y) , g (x, )) 
= Of(x,y) Og(x,y) - Og(x,y) Of(x,y) 

Ox 	49Y Ox 	ay 

-- 	
,y) 	-L (f - 	

(f 
(x 	Og(x,y) 	 ____ 
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= 	(g (x 
 ) af(x,v)) 	a (g (x, 

 ) Of(x,y)\ 
TY 	ax 	ax 	 ay 

 )• 
Using these representations, FDSc estimates of the Jacobian are 

( fi+1k-fi-1k) (ik+1_ ik_1 ) .J1  (f (xi, Yk) , g (xi, Ilk)) = 	2Lx 

- (gj+1,k-gj-1,k 

	

	
+O(Lx) ) (fik+1-fik-1 ' 

2x 	 2 	) 
.J2  (f (xi, Ilk) , g (xi, Yk)) (f+i, (gj+1,k+1 - gi+1,k-1) 

-fj-1,k (gj-1,k+1 - 9j-1,k-1) - fj,k+1 (gj+1,k+1 - gj-1,k+1) 

+fj,k,1,m (gj+1,k-1 - 9j_1,k_1)) + 0 (ax) 
.J3  (f (xi, Ilk) , g (xi, Yk)) = 4y (gj,k+1 (fj+1,k+1 - f_1,k+1) 

9j,k,1,m (fj+1,k-1 	fj-1,k-1) - gj+1,k (fj+1,k+1 - fj+1,k-1) 

+gjl,k (fj-1,k+1 - fj-1,k-1)) + 0 (AX) 
where the 0 (Ax) terms are of the formor AY  2 ay2 

As discussed in [17, Chapter 10], the Arakawa Jacobian will be utilised where 

J (f (xi, Yk) , g (xi, Yk)) = (J1 (1 (xi, Yk) , g (xi, Yk)) + J 2  (f (xi, Ilk) , g (xi, Yk)) 

+J3  (f (xi, Yk) , g (xi, Yk)))  and this Jacobian conserves enstrophy, vorticity, 
and mean kinetic energy. Using this information yields the nonlinear term, 

J (F (xi, Yk,  z1, tm), Q (xi, Yk, Zi, tm)) 
- 1 - 	 - 1 j-1,k,t,m) (Qj,k+1,1,m - Qj,ic-1,1,m) + 1 j+1,k,1,m 12x2  ((-+1,k,1,m  

X (Qj+1,k+1,1,m - Qj+1,k-1,1,m) - (Qj+1,k,1,m - Qj-1,k,1,m) (Pj,k+1,1,m - -F7j,k-1,1,m) 

-tj-1,k,1,m (Qj-1,k+1,1,m - Qj-1,k-1,1,m) - j,k+1,i,m (Qj+1,k+1,1,m - Qj-1,k+1,1,m) 

+Fj,k-1,1,m  (Qj+1,k-1,1,m - Qj-1,k-1,1,m) + Q j,k+1,1,m (1 j+1,k+1,1,m - Pj1,k+1,1,m) 

Qj,k-1,1,m (-F7j+1,k_1,1,m 	P7j-1,k-1,1,m) - Qj+1,k,1,m (1j+1,k+1,1,m - 1 j+1,k-1,1,m) 

+Qj_1,k,1,m (Fj_1,k+1,1,m - Fj_1,k_1,1,m)). Substituting approximations and er- 

rors yields the desired result. 	 El 

5.2.2 Computational molecules 

Using (1.8) to replace aQ(x,y,zj,t)with 	r 	2 at2 ± 	
82Q(r,) and expand using the at 

relevant Q (x, y, zj, t) expression yields: 
Früh Process: V 2  F (x, y, z1 , tk+1) = fF (x, y, z1, tk+1) +,72 F  (x, y, z1, tk) 

v -f AF (x, y, z1, tk)±t  (-j(F (x, y, z1, tk) , Q (x, y, z1 , tk)) - 	V2 F (x, y, z1, tk) 

+ 	V2  Q (x, y, Z1 tk)) + tw (x, y,  z, tm) 8
3W(x,y,z,tm) 	t2  8Q(r,.) 
axayat + at2 

*Haines and Holland Process: 7 2F (x, y, z1, tk+1) = f  (x, y, z1, tk+1) 

-f F (x, y, z 1, tk+1) + V 2  F (x, y, z1, tk) - f  (x, y, z1, tk) + Ff (x, y, z, tk) 

+t (-J (F (x, y, z1, tk) , Q (x, y, z1 , tk)) + iu (x, y, z1, tk) 

- (a + S (x)) v2  (F (x, y, Zj, tk) - F' (x, y, zi, tk)) + t2  a2Qfr,.) 
T at2 

+ 	(F (x, y, z1, tk) - F' (x, y, z1, tk))) + tw (x, y, z1
, tk) a3w(x,y,zj,tk) 

oxoyat 

'Lee Process: V2F (x, y, z1, tk+1) = 72 
	 A(,,,) 

 (x, y, z1, tk) - ( 1)i (Fxyzitk+l) 
2 

+ ( 	1)1 ( 
	2 F(x,y,z1,tk) 

tw (x, y, Z1 tk - 	 ) + 
	 ) a

3w(x,y,zt ,tk) 	t2  a2Qfr1.) 
axayat 	+ T at2 
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= 

Figure 5.3: QG computational molecule 

+t (-J
( 

(F (x, y, Z1, tk), Q (x, y, zi, tk)) - 30 ( 	2 	- I (Y)) 
1)1 	

F(x,y,z',tk) 
—11r 2am V2 F (x, y, Z2, tm) - 0.006 76 F (x, y, z1, tk)). 

Or equivalently V 2 F (x, y, z1, tk+1) = vi (xi, Yk, Zi, tm+i) + V2 (xi, Yk, Zi, tm) 

+tw (xi, Yk, zi, tm) 
02 W 	

+ 0 (t2), where {vi (, tm+i) , V2 (, tm)} Oxôyôt 

are a collection of functionals from the QG process, such that the v2 (xi, Yk, Zj, tm) 

terms are a weighted two space dimension hyperbolic process. 

Using these processes, a computational molecule can be evaluated where the 

coefficients for the tm+i layer will be singled out from the DQX1,,tm) term; thus at 
8Q(Xj,yk,Z1,tm) 

- v1 (xi, Yk, Z1, tm+i) + V2 (xi, Yk, Zj, tm) 

	

at 	- 

	

W(Dj,k,1,m) - 1 	2 +Wj,k,1,m xyzt - 	(i + r) (Pj,k,l,m+l - Fj,k,1,m) 

+ 	((Pj+l,k,l,m+l - 	+1,k,1,m) + ('Pj-1,k,1,m+1 - 	_1,k,1,m) 

+ ((,+i,i,m+i - 	,k+1,1,m) + (Pj'k-1,1,m+1 - -Pj'k-1,Ly 	 1,m 

(,,i,m+i - 	,k,~1,m+1) + (j,,i,m+i) - e (j,k,1,m) + 2 8t2 ) 
+cFj,k,1,m. Reducing the right hand side yields 

(i+ 	) 	,k,1,m+1 + 	,k,1,m+1 = i (xi, Yk, ZI, tm+i) + 2 (xi, Yk, Z1, tm) 

W(Dj,k,1,m) 
+ 1 1 2 ( + *) Fj,k,1,m +Wjklm zxyt At Ax 	Y 

+((+1,k,1,m+1 - 	+1,k,1,m) + (-Pj-1,k,1,m+1 - 	_1,k,1,m) 

+ 	((,k+1,1,m+i - ,k+i,1,m) + (Pj'k-1,1,m+1 - Fj,k_1,1,m))) 

+Fj,k, 1,m+1 + 	+ e (j,k,1,m+1) - 	 3 (. k1,m) \ + 2 at2 ) 
and cancellation yields 	,k,1,.+1Ct (1 + 	) j,k,i,m 

- Ajx2 
al (xi, Yk, Zi, tm+i) + V2 (xi, Yk, zi, tm) + 

Cf ( 
	

Wjkl,m xyt ) 
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Figure 5.4: Qj,k,1,m matrix 

1 	 i + Ct 	 + j-1,k,1,m+1 + 	(Pi,k+1,1,m+l + 'j,k-1,1,m+1 

- (Pi+l,k,l,m + Fj_1,k,1,m + 	(Fj,k+I,I,m + Fi,k_1,1,m)) 

+ A.2 
(aPj,k,,4,,m+j + 1Fj,k,1,m + (Qj,,i,m+i) - (QTi,,i,m) 

Hence Fj,k,t,m+1 = i (Xj,yk,Z1,tm+1) +V2(Xj,Yk,Z1,tm) 

+* (Pi+l,k,l,m+l + -1,k,1,m+1 + (,+i,i,m+i + ,k_1,1,m+1)) 

F (i~j,k,I,m+1)) 
\tzx2 	W(Dj,k,l,m) 

Ct (
j,k,/rl,rn+1 + 	- Ct Wj,k,1,m Lxyt 

where Ct = 2 (i + ~ 
) 

+ Lx2a. Figure 5.3 demonstrates the form of a computa-

tional molecule where Fj,k,1,m+1 is the point being evaluated and the explicit FDSc 

matrix for this molecule is shown in Figure 5.4. The left hand side of Figure 5.3 

is a t = (m + 1) /t additive elliptic computational molecule while the right hand 

side of Figure 5.3 is the t = m/t two space dimensional hyperbolic computational 

molecule. 

Example 5.2.13. Refer to the Früh Process and Figure 5.3 where: 

.(5.3) yields --L ( 	(i+ 	(Pj,k,I,,n+1 - F'j,k,i,m) 

+AX 12 ((Pj+l,k,l,m+l - 1'i+1k1m) + 	 - Fj_1,k,1,m 

+ 	((Pi,k+1,1,m+l - Fj,k+1,l,m) + (Pj,k-1,1,m+l - Fj,k_1,1,m))) 

OFj,k,1,m+1 + OFj,k,1,m + C (j,,i,m+) - (dj,,i,m) + 	 = 

- 12A x2 ((Pi
+l,k,l,m - Fj_1,0,m) (d j,k+1,1,m - Qj,k_1,1,m) 

- (j+1,k,1,m - Qj_1,k,1,m) 
(Pi

l k+1,1,m - Fj,k_1,1,m) + 0 (AX) 

++1,k,1,m (di+l,k+1,1,m  - Qj+1,k_1,1,m)
pi-1,k,t,m (di-1,k+I,I,m - Qj_1,k_1,1,m) 

Fj,k+1,1,m (dj+l,k+1,1,m - Qj_1,k+1,1,m) +,k-1,1,m (di+l,k-1,1,m  - Qj_1,k_1,1,m) 

+Qj,k+1,1,m (Pi+l ,k+1,1,m - 	_1,k+1,1,nz) 	j,k-1,1,m (Pi+l,k-I,I,m - 	_1,k_1,1,m) 

Qj+1,k,1,m (Pi+l,k+I,I,m 	+1,k_1,1,m) + di-1,k,1,m (Pi-1,k+1,1,m - 	_1,k_1,1,m)) 
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+max ((Y) Cg (P(X)) , 	 ((X))) + 	(1+ 
  )  

VIY L_ 1 
20A AX (-i+1,k,1,m + i_l k,1,m + 	(Pi,k+I,I,m + 1 i,k_1,1,m)) 

Y 

1 ( (Pj-1,k,l,m(Pi+1,k,1,m) + C 	
1 

(C(k+11m) + C (Pj'k-1,1,m))) J + 
20A LX2 -  

	

I 	ii 

21 (i + 	+ 
	84 F

+  
zy2 04F(.) 

x2 + 	(Pj,k,1,m) 	129    a 
1 1 2 	+ 	) Qj,k,I,rn± 	(dj+1,k,1,m + Qj-1,k,I,m 	j,+i,i,m + Qj,k_1,I,m)) - Y 

12 	 __ ____ 1 + 	C (j,ic,I,m) ± 1x2 0'Q3,i,i,m + 12 	8x4 	12 	4 

1" +;1 	
C (dj+1,k,1,m) + C (• 	

1
( (Qj,k+1,I,m) + C

3 1kIm+ y 

.(5.) yields Qj,k,I,m 
-

AX 
2 	i + ) Pj,,j,m 

+r (Pj+l,k,t,m + - j-1,k,I,m + 	(Pi,k+1,1,m + Fi,k_1,I,m)) 

(C (Pj+1,k,1,m) + C (Pj_1,k,1,m) + r (C (Pj,k+I, I,m) + C (Pj' k-1,1,m))) 

tx2 	4 i9F(.) + 	C (F) + i,k,I,m 	12 0x m 12 	+ 13 (yo + k\/x) 

—f (Pj,k,l,rn 	Fj,k,~I,rn) - f ( (Pj,k,1,m) - (Pi'k,541,m)). 

5.2.3 Numerical approximations 

Remark 5.2.14. Due to the predominant influence of a second order Laplacian 

operator, a Picard-Lindelöf Iteration scheme will be utilised where multigrid meth-

ods have proven to be popular in numerical evaluations. 

In 1922, Richardson was the first to discretise geophysical fluid dynamics over a 

spherical domain, transform the spherical coordinates into a flat plane, and derive 

approximations as a progression in time. As can be seen in the computational 

molecule, there is a hyperbolic and elliptic nature to the QG FDSc where the 

canonical elliptic five point FDSc (3.10) occurs in the tm+l layer with a two space 

dimensional hyperbolic characteristic expansions occurring in the tm layer. Thus, 

when constructing an estimate, the hyperbolic terms of the QG FDSc will be 

viewed as a deterministic functional with the remaining functionals equate to an 

additive elliptic scheme. Unlike Chapter 2, where propagation is a function of 

time, the noise and hyperbolic terms are dampened due to the elliptic nature 

of the tm+l level; hence each QG level in time is reduced to an additive elliptic 

scheme. When implementing a numerical scheme for 'j,k,I,m+1 and Fj,k, I,m+1; 

refer to Figure 5.5: 

For the initial FDSy step calculating Qm=0 from Fm 0 utilise 

Qm = ü (pm), where Qj,k,I,m = 172F (x, y, z, t) + g (.) 

To progress in time from Qm — f 	utilise m+1 	i (P'.' m) where 

( 8Q(x,y (xi, Yk, z1, tm+i) = 	(xi, Yk, Zj, tm) + t 	at 	) = 	
(Xj,Yk ) Zj, tm) 

,z,t) 
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Figure 5.5: QG FDSy method 

+t (_ (F (x, y, z, t) , Q (x, y, z, t)) + w (x, y, z, t) 83W@ X t) ) 
+/.tv (Q (x, y, z, t) , F' (x, y, z, t) , F (x, y, z, t) , x, y, z, t). 

Calculate the flow via m+1 = 2 (m+1) where 

	

17 2F (xi)  Yk,  z1, tm+i) = 	(xi )  Yk, Zj, tm+i) + f (). 
Repeat as necessary. 

In attempting to prove discretised convergence results, utilise Lemma 3.2.3, where 

Yk E JU I t,,,,,such that, Honk  (X; Yk) = G (X;Yk)
(XjE6Ujtm+j 

a(X,X) 	. As 
I 

per Lemma 3.2.4, approximations for (5.15) are accomplished via: 

	

(X)= 	(X; Yk) v(P(1'),1)9J1(Dk ) 
Yk E?S 

+ 	Ô (X; Yk) w (Yk ) W(Dk) + E 1T16 ZJ, (X; Yk)F  (Yk). 	(5.16) 
YkEtS 	 YkEöJ 

Given (QGAIC) and a consistent FDSc for a QG process, then using the elliptic 

results of Chapter 3, a unique discretized elliptic Green's function exists for each 

Ftzrm+i domain since the Ft m  values remain constant. Assuming that at least two 

different approximation 1j,k,1,m+1  values exist using the same FDSc, domain, and 

previous 	n < m} approximations, then either the Green's function, Poisson 

kernel, or a F value are not equivalent for each 'j,k,1,m+1  estimate. Since the 

elliptic Green's function is determined uniquely by the geometry of the domain 

and driving functionals, this implies a contradiction, hence the assumption is 

incorrect and only one approximation grid exists. 

Refer to Section D.3 for a graphical representation of an approximation to a 

representative process. As described in Chapter 4, modifications of the a priori 

methods are directly applicable; thus the Blow-up method, GQ method, Sym-

metry method, and IIX, YI method are extremely beneficial. Since often the 

domain of a QG system is a rectangle in the {x, y} plane, then by symmetry, only 
MN  discretised Green's functions need to be either stored or approximated. 
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Appendix A 

Notation 

Table A.1: Standard Notation for Probability 
Notation Definition 

{cZ, F, 1P} probability triple 
sample space 
a o,-algebra with a filtration .F, 
an average of a 

a8 a given /3 
C(a,8) covariance 
IE (a) expectation 

f (a) probability density function 
f -( 2) Normal pdf 
13 (a) continuous distribution function 
iid independent identically distributed 
M a strong martingale as defined in [9] 

P1 (, a2) Normal distribution with mean jt and variance a2  
P (a) probability 

P correlation coefficient 
SM a semi-martingale 

U [a, b] uniform distribution over the range [a, b] 
V(a) variance 
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Table A.2: Stochastic partial differential equations 
Notation Description 

f odW Ito Integral 

J, c a dW Stratonovich Integral 
ôg(x,y) partial derivative 

refer to Notation 1.1.2 

v 	(.) the nth order Laplacian operator 
,An 

(.) an n th  order difference operator 
t9 (j; k) FDSc influence from Pj  to  Pk 

(x) (.) deterministic Taylor expansion operator of order n 

eg (•) , c 	(.) , c (.) Global, stopping, and general error notation 
FDSc Finite Difference Scheme 
FDSy Finite Difference System 
FESy Finite Element System 
G (.) Green's function 
5 (•) hyperbolic operator 

H (.) Poisson kernel 
J (•) Jacobian operator 
At 

C/it 
Ax 

P (m, ii) refer to Definition 2.2.16 
RC (r) rate of convergence 
sr (.) spectral radius 

V (.) real valued function for pseudo-deterministic terms 
w (•) real valued function for stochastic terms 

(•) FDSy notation 
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Th1 A ?. 	nr.l Nnt.f,inn 
Notation Description 

1text indicator function 
[0] zero matrix 
OZ )  /3, a, b, c arbitrary real variables 

atext a function or variable a dependent upon text 

lal absolute value of a function or variable 
[a,k ] a matrix centered on a,k 
[A], [B] matrices 
[A 1 ] inverse of a matrix 
[AT] transpose of a matrix 
card (.) cardinality of a set or space 
C (.) complement of a set or space 
C, K, L, )., positive real constants 

f (.) , g (.) , h (.) , u (.), 
v (•) , 	(.) , T (.) , 	(.) , 	(.) 

real valued functions 

________________________ 
F (X) a solution to a process 

(X) approximation of a solution 
g (Y) I (x) function evaluated at X 
L.g (.) difference operator, refer to Table 1.2 

(.) Fourier or discrete Fourier transform of g 

[I] identity matrix 
j, k, 1, m, n, o integer counting variables 

5text Kroneker delta function 

9)1(.) Lebesgue measure of a set or space 
o (a) Big-Oh notation 
process a mathematical model in V space 
r, s arbitrary real variables or time in Chapter 2 
system a finite set of equations in 7Zd  space 
0 a bounded variable where 0 < 0 < 1 

Fj,k,1,rn discretised notation for F (xi, Yk, Zj, tm) 
complex variable 

[V] vector 

X () Chi-squared statistic 
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Table A.4: Geometry 
Notation Description 

unit source in a domain located at X 
6Z3 boundary of a domain 

the 	 -space _boundary _sub_mapped _to__ 
interior of a domain 

d dimension of a process or space 
domain polygonally connected domain 
D P  an Rd  sub-space that is mapped to 	Zd 

DoD (.) Domain of Dependence 

Dol (.) Domain of Influence 

DoR (.) Domain of Rotation 
M, N number of divisions of a restricted R1  region 

geometric point 

PU interior point 

P jU boundary point 

PC exterior point 
Qpath (.) Program C.3.6 
Rd Euclidean d dimensional space 

1lt V71 x [0, 00 ] 

Rol (•) Region of Influence 
S2  (.) d dimensional sphere in R' space 
S1(-) d dimensional sphere in Z' space 
t orthogonal space dimension denoting time 

VIa the 1' norm of a vector 
AX discretisation constant for Z° 
), 	)'t Aa uniform Z 	constants where 
(xi, Yk, ZI, tm ) (jzx, k/ay, 1/z, mLt) = (j/x, k)zx, l)L.x, mA/.x) 

x, y, z orthogonal space dimensions 
X, Y R' position vectors in Euclidean space 
Z normal vector to a boundary in the exterior of a domain 
Zd A. discretised d dimensional space 
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Table A.5: QG Notation 
Notation [ 	Description 

.4 the axis rate of rotation 
bg theBergernumber 
13 the Beta-plane coefficient 
C coriolis effect 
V depthofafluidorlayer 
el elocity 
en enstrophy 

= 	: Ekman number 
fr friction 
F stream function 
f : Froude Number qL 

grad gradient 
g accelerationduetogravity 

entropy 
M mass 
P pressure 
Q potentialvorticity 

PMV : Density 
T temperature 

theRossbyNumber 

0v theaspectratio 
U flow 
ii viscosity 
V vorticity 

Reynoldsnumber 
It barotropiccomponent 
Ic barocliniccomponent 

convective derivative 
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Appendix B 

Supplementary proofs and 
information 

B.1 Chapter 2 

Lemma 2.1.13: [13, Proposition 11.2]: Given (HAIC) where v (.) and w (.) are 

locally Lipschitz, one can find a constant KL such that: 

v(F(X),X)—v(F(Y),Y)+J(F(X),X)—w(F(Y),Y)KL MX—Yj 2  
 

for all {X, Y} E DoD (x, t) C [—L, L]. Then there exists at most one weak 

solution. 

Proof. Let F (y, s) and G (y, s) be two weak solutions. For each °°-function 

with compact support contained in in the domain, say g (y, s), set f (x, t) = 

ff 	g (y, s) dyds. f (.) e &°) has compact support in 	and satisfies 
DoDUDoI 

g (x, t) = 52 (1 (x, t) , 1.0). Using f (.) in (2.9) with F (x, t) and G (x, t) we obtain 

the relation 

ff 
g (y, s) H (y, s) dyds 

= ff 
(w (F (y, s), y, s) 

DoDUDoI 	 DoDUDoI 

x f (y, s) dW (y, s) 
+ ff 

(v (F (y, s) , y, s) — v (G (y, s) , y, s)) f (y, s) dyds 

DoDUDoI 

 

for H (x, t) = F (x, t) - G (x, t). For each integer m the random set 

Em  = (x, t) e 	sup (F (y, s) I + I G (y, s)) <m is such that 1Em  (x, t) 
(y,$)EtS(x,t) 	 J 

is .F measurable for all (x, t) E 	Using an approximate identity {a;  a> 0} 

in the plane and H (x, t) being continuous, we have: H (x, t) = 

lim ff H (y, s) 	(t - s, x - y) dyds for each (x, t) E 	Consequently, if 
+t 
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(x, t) e Dol (z, r) are fixed, for each a> 0 we have: E (lEm (x,t + a) I H (x, t)12) 

< urn infE I 	(x, t + a) 1ff H (y, s) 	(x - y,t - s) dyds 

2) 

n-+oo 

\ 	 +t 

By Fatou's Lemma 
/ 
	k 

2 

<2 urn infE I 	(x,t+a) f (w(F(y,$),y,$)) —w(G(y,$),y,$)f(y,$)dW(y,$) 
Ti—*OO 	

t 

2 

+2liminfE (lEm (x,t +a)kf (v (F(y,$) ,y,$) - v (G(y,$) ,y,$))f (Ys) dyds ) 

By using (B.2) with g (•,.) = Yj. (x — •, t — .), for n large enough and with 

f (y, s) = ff 31. (x — c, t — fi) 1(a,$) (y, s) dad3 
R2 n 

 

n-+Oc 	
( k~ 

+2iirninfE(ff (v(F(y,$),y,$)—v(G(y,$),y,$))lEn(y,$)fn(y,$)dyds 

2) 

oI(x,t) 

due to the local properties of the integrals and the Lipschitz assumption 

<K(m,z,r) urn infff I E(lEm (y, s) I H(y,$)12) fnysl 2 dyds. 	(B.3) 
n-boo 

Note that urn f (y, s) = lDoI(x,t) (y, s) for any point (y, s) away from the bound-

ary of DoI(x,t) which is of Lebesgue's measure zero. Moreover, Jf (y, 8) 1 < 1 

and jH (y, 8) 12 
1Em (y, s) < m for all integers rn, so utilising Lebesgue's dominated 

convergence theorem and (B.3), we have: 

lim 	ff E (lEm (y, s) H (y, 8)2) fn (y, 8)2 dyds = ff E (1gm (y, s) jH (y, s) 12) dyds, 
" °°DoDUDoI 	 DoDUDoI 

E(lEm (x,t+a) jH(x,t)12) <K(m,z,r) ff E(i 	(y,$) H(y,$)12) dyds, 
DoDUDoI 

and E (lEm (x, t) IH (x, t) 2) <K (m, z, r) ff E (1 	(y' s) IH (y, S)12 ) dyds. 
DoDUDoI 

Letting a —+ U and using Fatou's Lemma, recursion gives IE (lEm IH (x, t)12) = 0. 

Hence, H (.) = 0 almost surely on Em , but since m is arbitrary, H (.) = 0 a.s. LI 

Notation B.1.1. M is a 'martingale' will be interpreted as a strong martingale 

as defined in [9]. The reader is referred to [39, Section 2.3], [60, Chapter 2], and 

[6] for a more thorough discussion on martingales. 

Lemma 2.1.14: [13, Proposition 11.3]: Given (HAIC), then for each F0-measurable 

continuous process F (x, t)0 satisfying: ff IE (IF (y, s)012) dyds < oo then there 
DoI(x,t) 

exists a unique continuous solution to the integral equation 

F (x, t) = F (x, t)0+ ff v (F (y, s) , y, s) dyds+ ff w (F (y, s) , y, s) dW (y, s). 
DoDUDoI 	 DoDUDoI 

127 



Proof. Use a Picard-Lindelöf iterative scheme to construct a solution such that 

n>1,F(x,t)1=F(x,t)0+ 	ff v(F(y,$),y,$)dyds 
DoI(x,t) 

+ 	ff w (F (y, s),,, , y, s) dW (y, s). The process F (X) is F adapted and 
DoI(x,t) 

ff w (F (y, s)_1 , y, s) dW (y, s) is a two-parameter martingale with respect 
DoI(x,t) 

to (2.6). Use the two-parameter version of the maximal inequality to obtain: 

sup F( y,$ ) +1 _F( y,$ ) 2) 
DoDUDoI 

<E ( sup 	ff (v(F(y,$),y,$) —v (F(y,$)_1 ,y,$)) dyds 
DoDUDoI DoI(x,t) 

+2C  ff 	(w (F (y, s) , y, s) - (F (y, s) 	, y, s)) dW (y, s) 
~2) 

DoDUDoI 

<K(t)E 
( 

ff (v (F (y, s)"' y, s) - v (F (y, s)1 , y, )) dds) 
oDUDoI 

+K(,t)E 
( 

ff (w (F (y, s) , y, s) - w (F (y, s)_ , y, s)) dW (y, s)) 
oDUDoI 

ff 	(F (y, s) - F (y, s)_1 
2) 

dyds and through recursion 
DoDUDoI 

E ( sup 	F (y, s) 1 - F (y, 
s)2) 	

K(,t) 	ff E (F (y, s)0 2) dyds, hence, 

	

DoDUDoI 	 DoDUDoI 
cc 	

1 
E 
(DoDuDOI 

sup 	F (y, s) 1 - F (y, s)2) < oc. This implies the local uniform 
n=O  

00 

convergence of F (x, t)0 + E (F (x, t) 1 - F (x, t)) to a process F (x, t) which 

is continuous and satisfies (2.8). 	 LI 

Lemma 2.1.16: [13, Proposition 11.4]: Given (HAIC) are fulfilled, then the 

unique solution of the integral equation (2.8) is a weak solution of (2.1) in the 

sense of Definition 2.1.12. 

Proof. F (x, t) denotes the unique solution of (2.8) and is 	and -measurable 

since F(,t) C J. If f (y, s) E &° with compact support on DoD U Dol 

jf 	
02 

 
(_

f(x,t) 	f(t)) 
ff (v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s)) dxdt 

DoI(x,t) 

t y+(t-s) 

=ff( 
/ 
f f S2(f(x,t),1.0)dxdt 

ii 	\s y-(t-s) 
x (w (F (y, s) , y, s) dW (y, s) + v (F (y, s) , y, s)) dyds 

= ff f (y, s) (w (F (y, s) , y, s) dW (y,. s) + v (F (y, s) , y, s) dyds) dyds (B.4) 
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using a standard version of Fubini's Theorem for stochastic integrals. Moreover, 

ff Sj 2
(f(x,t), 1.0)(F6u(x+t, 0) +F u (x—t,O))dxdt 

DoI(x,t) 

	

I' 	ôf(y,O) 

	

+ I 	F(y,O)dy=O 	 (B.5) 

DoD(x,t) 

by simple integration by parts. Finally we similarly have: 

ff (2(f(x,t),1.0))T(x—t,x+t)dxdt— f f(x,O)T(dx)=O 

DoI(x,t) 	 DoD(x,t) 

(B.6) 

for each deterministic continuous a-finite measure T. Using (B.6) with TI defined 

by TI (E*) = 1E(1E (E*)) for  E*  e 13 (R) for each B E F we can put (13.4), 

(B.5), and (B.6) together with (2.8) to check (2.9). 	 II 

Corollary 2.1.17: Given (HAIC), there exists a unique solution to (2.8). 

Proof. Assume that there are two solutions to (2.8) such that F (x, t) 0 G (x, t), 

then F(((x,i),O)+F((x,t),O) + OF(y,$) 	o dy + 	ff v (F (y, s) , y, s) dyds 2 	2C f as
DoD(x,t) 	 DoI(x,t) 

+ 	ff w(F(y,$),y,$)dW(y,$)+ 	ff w(C(y,$),y,$)dW(y,$) 
DoI(x,t) 	 DoI(x,t) 

+ C2 	2C 	at 
 + 	f o dy+ 	ff v (G (y, s) , y, s) dyds. 

	

DoD(x,t) 	 DoI(x,t) 

Since the initial conditions are equivalent such that F,0  = G,o  and OFy,$) 
as 

8G(y,t) t=, cancellation of constants and deterministic terms yields at 

ff 	v (F (y, s) , y, s) dy ds + ff w (F (y, s) , y, s) dW (y, s) 
DoI(x,t) 	 DoI(x,t) 

ff v (C (y, s) , y, s) dyds+ ff w (C (y, s) , y, s) dW (y, s). In order for the in- 
DoI(x,t) 	 DoI(x,t) 

equality to be true either ff v (F (y, s) , y, s) dyds 	ff v (C (y, s) , y, s) dyds 

	

DoI(x,t) 	 DoI(x,t) 

or 	ff w(F(y,$),y,$)dW(y,$) 	ff w (G (y, s) , y, s) dW (y, s). There ex- 
DoI(x,t) 	 DoI(x,t) 

ists (y, s) such that IF (y, s) 54 G (y, s) I Dol (y, s) C Dol (x, t)}. Using a recur- 

sive argument leads to a contradiction with the initial conditions where F (x, 0) $ 

C (x, 0) almost surely. 	 U 

Lemma 2.2.6: Analogous to the deterministic problem, if A = 1, then 

F (xi, tk) = A2  (Pj+1,k_1 + Pj-1,k-1) + 2 (1 - A2) 'k1 - Pj,k_2 

+ 	ff v (F (y, s) , y, s) dyds + 	ff w (F (y, s) , y, s) dW (y, s). 
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L, 	DoD Jk2 	L2 

Figure B.1: J j,j for Lemma 2.2.6 

F(((x ,tk) ,O)+F(e(x ,tk),O)1 	 OF(y,$) I 

	

= 	2 	+ 	 i=o dy Proof. From (2.8), F (xi , tk)  
D0D(x)  ,tk) 

+ 	ff v (F (y, s), y, s) dyds+ 	ffw (F (y, s) , y, .$)dW(y, s). Adding 
DoI(x ,tk) 	 DoI(x3  ,tk) 

	

U in the form of (1 - 1)F((xj, 	

DOD(s3,tk_2) 
	dy 

	

2 	 ) ( 	tk_2),O) ± F((x tk2O) + 
	 I  49S 

ff 	v(F(y,$),y,$) dyds + 	ff w(F(Ys)Ys)dW(Ys)) 
oI(x ,tk_2) 	 DoI(xj ,tk_2) 

and breaking the integral over the tk-2  term yields F (xi, tk) = F(e(x,tk),O) 
2 

+ 
F(.(xj,tk_2),O)  + F(((x,tk),O) - F(((xj,tk_2),O) - F((x,tk_2),O) 

aF(y,$) 	dy + j ÔF(y,$) 

L1 	 D0D(xj,tk_z) 	 L2 
	dy 1 ( 8F(y,$) 	 _____ 	 _____ 

f 	o dy + (2 - 1) 	f 	 as s=O 

+ 	(2 - 1) 	ff 	v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
DoI(x3 ,tk_2) 

+ 	ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
J1 

+ 	ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
32 

+ 	ff v(F(y,$) ,y,$)dyds +w(F(y,$) ,y,$)dW(y, s). 
Dj,k—i 

Using (2.8) to combine terms yields F (xi, tk) = 1 j-1,k-1 + lj+1,k-1 - j,k-2 

+ 	ff v (F (y, s) , y, s) dyds + 	ff w (F (y, s) , y, s) dW (y, s). 	D 
Dj,k_i 	 Dj,k_i 

Remark 2.2.7: When A =A 1, then Lemma 2.2.6 is not necessarily true such that 

F (xi, tk) 0 ,\2  (Fj+' ,k _'  + Fj_1,k1) + 2 (1 - A2) lj 5k-1 - j,k-2 

+ 	ff v (F (x, y) , x, y) dxdy+ ff w (F (x, y) , x, y) dW (x, y) since breaking 
D,k.i 

the domain into components expressed in Figure B.2, 

A2 (1 +1,k-1 + Fj_1,k_1) + 2(1 - A2) 1 j,k-1 - j,k-2 

+ffv(F(x,y),x,y)dxdy+ffw(F(x,y),x,y)dW(x,y) 

=A 
2 DF(y,$) 	

o dy + (2 - 2A2  + A2) f 
OF(y,$) 

I=o dy J as as 
L1 

OF(y,$) I 	i 
+(2-2A2+A2+A2-1) I 	13=o ay 

D0D3,k -2 
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Figure B.2: ?5,k for Lemma 2.2.7 

+ (2 — 2A2  + A2) f 
aF(y,$) s=O dy + A2 f 

aF(y,$) s=O dy as 
L3 	 L4 

+A2 ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
34 

+ (2 — 2A2  + A2) ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
U5 

+ (2 - 2A2  + A2) ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 

66 +A2  ff  v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
U7 

+ ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
U8 

+ (2 - 2A2  + 1)11 v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
U9 

+(2-2A2+A2+A2-1) 	ff v(F(y,$),y,$)dyds-i--w(F(y,$),y,$)dW(y,$) 
DoI,k_ 1  

Subtracting this result from 
F((,k,o)+F(,,k,o)  + i 	

f 
8F(y,$) s=O dy 2 	2C 	as 

DoDj,k  

+ffv(F(y,$),y,$) dyds +ffw(F(y,$),y,$)dW(y,$)yields 
D012,k 	 DoI,k 

= (1 - A2) 	aF(y,$) 	 OF(y,$) 
s=O dy — 	 d 

	

(i 	 ) 

	

L1 	 L2 

A2) f 
0F(y,$) 

s=o dy + (1 - A2) f 
aF(y,$)  

08 	s=O dy 
L3 	 L4 

+ (1 — A2) ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
ZJ4 

—(1— A 2)  ff  v (F (y,$), y, s) dyds + w (F (y, s), y,$) dW (y, s) 

—(1— A 2)  ff  v (F (y, s), y, s) dyds + w (F (y, s), y, s) dW (y, s) 
U6 

+ (1 - A2) ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s) 
U7 

- (2 - 2A2) ff v (F (y, s) , y, s) dyds + w (F (y, s) , y, s) dW (y, s). 
U9 

It is easy to see that as A2  —* 1 the induced error will decrease, but since A2  1 

and Ax 0 the expression does not uniquely equal 0. 

Remark B.1.2. Due to the importance of the size of the matrices, let [a,k ] 
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denote a matrix with m columns and n rows centered on 	In order to remain 

centered on given variables, matrices of different sizes can be added together pro-

vided the matrices are 'padded' with U's. For example, given [a,k], Ozi,k  is the 

element in the 	column and [ row and when adding matrices, let 

a_2,k+1 a_,k1 a,k+1 a+1,k+1 a+2,k+1 
[A] = [a,k] = 	a_2,k 	aJ_1,k 	a3,k 	a+1,k 	a+2,k 

a_2,k_1 a_1,k_1 a,k_1 a+1,k_1 a+2,k_1 
and [VT] = [b k ] = [b,k+2, b,k+1, b,k, b,k_1, bj,k_2], then [l] + [V] 

0 	b,k+2 	0 	0 
a_2,k+1 a_1,k+1 a,k+1 + b,k+1 a+1,k+1 a+2,k+1 

= 	a_2,k 	a_1,k 	a,k + b,k 	a+1,k 	a+2,k 
a_2,k_1 a_1,k_1 a,k_1 + b,k_l  a+1,k_1 a+2,k_1 

o 	b,k_2 	0 	0 

Notation B.1.3. Using Notation 2.2., let [B] = fi [A +2( _i)], 0 < {m, n}. 

Lemma 2.2.9: When \ = 1 [n+2mrn] = [n+2m MPR (fl)]. 

in 
Proof. Given: [fl+2mBm] = III [ + _ l A] evaluating by hand yields: 

j=1  

r 1 01 0 ... ol 
[R B'] = [GA] = In+2 	 . 	I - — Ln MPR()] 

[ 0 ... 0 1 0 ij 

r 	1 0 2 0 1 0 ... 01 

[B2] = 

L . 	

] = [n+4 	(2) 

0... 010201 

Assuming that [B] holds for all n, then [Br'] = [B] [A +2 ] 

[ 0 () 0  () 	0 	() 	... 	0 (-) 0  () j [... 0 	1 	0 

[ () 	() + (fl 	0 	•. 	(_) + () 	0 	() 	0 1 

[0 () 0 

L

r   

(

()

)  

+ (fl 

 	\ 

6 _1) + 

 

() 	0 
1I 

(i) fj+1 

0 

(p1)0 	(p') 	'j+1jo...  

(p') •..0j)0...0 	0(j+1 0 	+1 	

] 

J 
[Br'] = [ MPR 

(1)].  The result follows from a recursive argument. 	EJ 
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fl 

Lemma 2.2.11: f u(y,0)dy => 	( f u(y,0)dy) and let T(z,r) de- 
D0D3 ,k 	 DOD3 ,k \Xn_i 	 J 

note either dzdr or dW (z, r), such that ff u (v (y, s) , y, s) T (z, r) 
Do13 ,k 

= 	(ffu(v(Ys)Ys)T(zr)). 
DoI,,. D 

Proof. By inspection of Figures 2.5 and 2.6, Definitions 2.1.7 and 2.1.8, Notation 

2.2.10; breaking the DoDj,k  into intervals of length 2x and skipping adjacent 

points over the Dol and integrating yields the desired result. 	 LI 

Corollary 2.2.12: 9fl (DoI,) = ( + 	i) 9)t (D) = 9) (D) and 

9N D01i,k - E Dn,O 	k2—k(D) 
DoD(j;k) 	J 

Proof. Let h (k) = the number of D regions in domain. Using Definition 2.1.8, 

and inspection of Figures 2.6 and 2.5; 9Y (Do13,o) = 0, 9Y (DoI,i) = 	and 

9J1(DoI,2) = 29Jt(D), thus h(0) = 0, h(1) = , and h(2) = 2. For a general k, 

assume true for all j < k; the problem is reduced to recurrence relation h (k) = 

2h (k - 1) - h (k - 2) + 1 = 2 ()2) - (k_2?) + 1 = L2 . For the second result, 

repeat Corollary 2.2.12 but remove the D,0  regions from the sum. 	 LI 

Lemma 2.2.15: Expanding F (y, s) around F (xi, tk_2)  (refer to Figure 2.7) 

yields F (y, s) = F (xi, tk_1) + f (y, s) + g (y, s) + h (y, s). 

Proof. From (2.8), F (y, s) = F(((y,$),O)±F((y,$),O) + 	f 	r=O dz Or 
DoD(y,$) 

+ 	ff v (F (z, r) , z, r) dzdr + 	ff w (F (z, r) , z, r) dW (z, r). 
DoI(y,$) 	 DoI(y,$) 

Breaking up the (y, s) integrals in terms of integrals involving {(x, tk_2) , Li,, -51,2,31 

gives: F (y, s) = (1 - 1) F(,k_1,0)+F(j,k_1,0) + F(((y,$),O)±F((y,$),O) 

Or lr=O + 1 	
OF(z,r) 

y3 

	

	 dz + 	If v (F (z, r) , z, r) dzdr 
D0D(x,tk_2) 

____________ + 1 	
ff 	w (F (z, r) , z, r) dW (z, r) + 	

OF(z,r) 
f 	Or r=O dz 

DoI(x3 ,tk_2) 	 L1+L2 

+1 

	ff v(F(z,r),z,r) dzdr + ff v(F(zr)zr) dzdr ) 
1(y,$) 

1 

ff 	
(F(z,r),z,r)dW(z,r) + ff w(F(zr)zr)dW(zr)) 

1(y,$) 	 ?5 2(y,$) 

1 + 	ff v(F(z,r),z,r) dzdr + ff w(F(zr)zr)dW(zr)) . Collect- 
3(y,$) 	 33(y,$) 

ing terms yields: F (y, s) = F (xi, tk_2) - F(tj,k_2,0)+F(j,k_2,0) + F((y,$),O)+F((y,$),O) 
2 	 2 
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OF(z,r) r=O dz 
L1 (y,$)+L2 (y,$) 

+ 1 	ff 	v (F (z, r) , z, r) dzdr 
U1 (y,$)+U2 (y,$)+t$3(y,$) 

	

f 	w (F (z, r) , z, r) dW (z, r), hence the desired results. 2C  
31 (y,$)+U2 (y,$)+733(y,$) 

Lemma 2.2.17: P (k + 1, n) = [An] P (k, n + 2) - P (k - 1, n). 

Proof. By Definition 2.2.16, 0 <n and 1 <Ic. 

Let k = 21 + 1. [An] P (k, n + 2) - P (k - 1, n) 
21 

[An] 	(_1\i 
) 	[B(i1) OU-0) 

21-1 
-

(_\i
2  (i(3 ._1)+1) 

[B(i_1)+1
)  

j=1 j=1 

= 21 
(_i)i 

2(j 	I 
(j(j-,)) [An] ( 	[Afl+2+2(k_1)]) 

j=1 k=1 

21-1 (2(_ 1)+i 
[A fl _] 

(2(i—t)+I)=1 k

-(_i)i 

j1 

21 - _( 1)3(j 

2(_1) 	

) 	
21-1 	 (2(_1) 

(1)3+1  fi 	[An ,] 	- 	- 	(3 	 n 	[Afl+2k]) 
( 

2(j_1)+1) 
j=1 

- 2(j-1)) 
k=O j=1 k=O 

21-1 = (_i)i 
(2(j_1) + ((j1)+1)) 	i 	[A] + (_1)21 

( 	

2(j-1) 2(j-1) 

(221 
) 	fj 	[Afl+2k]) 

j1 k=O k=O 

21-1 - (1 ) 
j+1 	

2(j-1) 	 21 

H 	[A,] + fl [A] ( j=1 / 	k=O 	 k=O 

21 = 	()i (+i 	
2(j-1) 	

j+1  ) 	
21 - [f 	[A+2,k} 	 (2(j—l)+l) ) 

 2(j-1)+1 

II 	[Afl+2(k_1)] 
j=1 

2(3 	1)+1 
k=O 	 j=1 k=1 

21 
— - 1)j (3+1  2(j-1)+1 ) 

2(1+1)—i 

= 	

(2(j-1-1)+l 

j2(j_1_1)+1) 
j 	1

B ]. 

31 

Hence, 
2(1+1)—i 

[An ] P (k, n + 2)—P (k — 1, n) = 	(_i)i+ . (i 
2(j_1_1)+1) 

111 [B ]. 

j=1+1 
*Let Ic = 21. [An ] P (k, n + 2) — P (k - 1, n) 

= [An] 
21-1 

() 
(i B2o3_11' 

2 (j-1)+i) I 	n+2 	j 

2(1-1) 

— 	 ( j_i+i ) (i_1+1) [B] 

j=1 j=1-1 
21—i 2(j-1)+1 	2(1-1) 2(j-1+1) 

— — ( —i )' 
j (20-0+1) 	[I 	[Afl+2k] - 	I 	(— 	(2(i-1+1)) [I 	[Afl+2(k_1)] 

j1 k=O 	 j=1—i k=1 
21-1 2(j-1+1) 	 2(1-1) 2(j-1+1) 

— 
)3+1  (-1 2(j_1)+i) [A fl+2(k_ 1) - (-1) 

j  ( 3 (-1)  n 	[Afl+2(k] 2(j_1+1)) 
j=1 k=1 	 j=1-1 k=i 

21-1 — IBn(3_1+1)] 
(—i)' (2(j-0+1)

)IBn2(j1+1

.I — 	
(—i) 	

(2(i-1+1)  I 
21-1 

— — 
i))) 

 [Bn(31+1)] 
( 	1)3+1((j 	

)+(3 
— 	2(j-1)+1 	2(j-1+ 

+ (_)1 (h-') [B] 
3 	1 
21-1 

— 
( 	i)'  

j+1  
 (2(j-1+1)) 
[B(i1)] + (_1)1 [B] 

j=1 
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21 
 

21 
 

(2U-0)  
[i-] + (_1)1 [B] = 	(l) (j(j  

j)) 
 [Bn(i-1)]. 

Hence, [An] P (k, n + 2) - P (k - 1, n) = 	(— i) ((j_1))  [B], thus for both 

cases P(k+ 1,n) = [A]P(k,n+2) - P(k - 1,n). 	 El 

Corollary 2.2.18: When A = 1 
1010•• 10 10... 0 

P (k, n)- +2(k-1) 

0... 010 10••• 1 01 

Proof. Setting k = 1 for any n it can be shown that 
10 10•••0 

P(1,n) = [I] and P(2,n) = 

0••0 1 01 
Assume this is true up to and including any k for all u such that 

1 010•• 10 10... 0 

P(k,n)= 

0... 010 10••• 10 1 
then using Lemma 2.2.17, P (k + 1, n) 

10 	10...0 	1010... 	101 	0...0 

0...01 	01 	0...01 	0 	1• 0•••1 	01 

1010••• 1010... 0 

0 ... 0 1 0 1•  0 •.. 1 0 1 

10 20•• 2010... 0 

0 ... 0 1 0 2 0 	2 0 1 

1010••• 1010... 0 

0 ... 0 1 0 1 0 ... 1 0 1 
In order to subtract the two matrices, the second matrix needs to be padded with 

0 columns on both sides to maintain central points such that 
10 20••• 2010... 0 

P(k+1,n)= 

0... 010 20••• 201 

00101•• 0 10...0 

0...010 1•01 00 

1010••• 1010... 0 

hence, P(k,n) = 	 ... 	 . 	 LI 

0... 010 10••• 101 
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Lemma 2.2.19: FDSy vectors to (2.8) utilising (2.15) can be expressed as: 

k-i 

[Pj,k] = P (k, n) 	
j,J ] 	A 	(D) 	

P (1, n) v ([Pi,k_l_i] , [xi] , (k - 1 - 1) t) + 
2C 

1=1 
k-i 

A 
-P (k - 1, n) [P,o] + 	P (l, n) [W(D,k _l )] [ (Pj,k-1-1, x, (k - 1 - I) At) 

1=1 
(B.7) 

Proof. Fj,O  and F,1  are given, show that (B.7) is true for k = 2. By (2.14) 

[n,2] = [ A] [n+2,1] - [nPj,O] +(D) v 	, [x] , o) 

+2C 	(w 	, [x] ,ü) [W (D,)] = [B] [n+2Pj,l] - [nPj,O] 

+9J (D) v 
([j,] , [,

x] , o) + 	w ([P,] , [x] , o) [W (D,1 )] 

= P (2, n) [n+2,1] - P (2 - 1, n) [nPj,O] 

(D) P (1, n) v 	, [,x] , (2 - 1 - 1) t) 

+P (1, n) w ([P,0] , [,xj], (2 - 1 - 1) t) [W(D,2_ 1)]. 

Repeating this argument for k = 3 yields 

[P,3] = [ N A] [+2,2] - [nPj,l]  + 	xLt 	Pi'll , [ x] , At) 

+w ([,fr,1] , 	, At) [W(D,2)]. Substituting in the expansion for [j,2] 

into the [j,3]  expression and using Lemma 2.2.17 and 2.2.18 yields the desired 

result. Using the above result and (2.14), when k = 3 the expansion of the terms 

equates to (B.7) hence the first two cases are true. In order to show that (B.7) 

is true for the general case of tk, assume that the tki and tk2 cases are true for 

all n. From (2.15), [nPj,k] = ALxtv ([ThPj,k_2] , [ x], (k - I - i) At) 

A [ fl+2Fj,k_1I - [Fj,k_2] + 	W 	 , [ x] , (k - l - 1) t) [W (D,ki )] 

= AP (k - 1, n + 2) [n+2k-4Pj,,] - AP (k - 2, n + 2) [fl+2k_6,0] 

(D) 	P (l, n +2) v ([flPj,k2] , [ x] , (k - l - 2) t) 

+A 	P (l, n +2) w ([flPj,k2] , [ x] , (k - I - 2) t) [W(D,kl)] 

-P (k - 2, ri) [n+2,k-6,i]  + P (k - 3, n) [n+2,k_8Fj,o] 

(D) 	P (1, m) v ([nPj,k_l_3] , [ x] , (k - l - 3) t) 

- 	P (1, n) w ([n,k_13] ) [ x] , (k - I - 3) t) [W(D,k21)] 

+93t (D) v ([flPi,k2] , [ x] , (k - 2) At) 

+W ([nj,_] , [ x] , (k - 2) t) [w (D ,k_1)] 

= AP (k - 1, n + 2) [Th+2,k_4,1] - P (k - 2, n) [n+2,k-6,i] 
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-AP (k - 2, n + 2) [n+2,k-6 Pj,o] + P (k - 3, n) [fl+2,k_8Fj,o] 

A 	P (1, n +2) v ([n,k_1_2  (x)] , [x] , (k - 1 - 2) t) 2 	
( k-2 

+-9J(D)  
1=1 

- 	P (1, n) v [nPj,k-1-3],  [x] , (k - 1 - 3) t) 
1=1 

+v ([nPj,k-2], [x] , (k - 2) At)) 

+ 	
(

An  EP (1, n +2) w ([Jj,k_l_2] , [, x] , (k - I - 2) t) [flW(D,k _l _i )] 

- 	P (1, n) w ([nj,k_1_3] , [ x1 , (k - 1 - 3) t) [W (D,k _1_ 2)] 

+w ([n,k_2] , [ x] , (k - 2) t) [nW(Dj,k_ 1)]). 

Using Lemma 2.2.17 [nPj,k] = P (k, n) [n+2(k-l)Pj,l] - P (k - 1, n) [n+2(k-2)pj,O] 

(D) E P (1, n) v ([fl Pj,k_1_l] , [ x] , (k - I - 1) At) 

k-i 
+ 	P(1,n)w [nPi,k-1-1] , [ x] , (k - i - i) t) [W(D,k_l)], hence (B.7) 

1=1 
holds. 

Corollary 2.2.20: Relations of the form 
-1 ,k- 1 

	

= [A2  2 (1 - A 2  ) A2 ] T,ki 	- T,k2 + f (T) 
TJpKm 

with given values of 1T,1, T,0} can be expressed as: 

[T,k] = P (k, n) [T,,] - P (k - 1, n) [T,0] ± P (1, n) [f (T,k_1_1)1. 

Proof. Repeat Lemma 2.2.19 using the relation 
1,k- 1 

Tj,k 	{ A 2  2(1 - A 2  ) A2 ] 	T,ki 	-Tj,k_2+f (T,k _ 2) in place of (2.14). 
Tj+1,k_i 

Corollary 2.2.21: Given values of {[T,1 ] , [T,0]}, and A = 1, (2.18) is expressed 
k 	 k-i 	 k-i 1-1 

as Ti,k =  I Tjk+21,1 - i: Tk+21+1,0 + E jI f (Yj_1+2m+1,k_1_1) 
1=0 	 1=0 	 1=1 m=0 

Proof. Use Corollary 2.2.18 to expand the P (k, 1) notation and sum the results. 
E 

Lemma B.1.4. F(((xj,tk),0)+F((xj,tk),0)i 	ÔF(z,r) jr=O dz 

	

2 	 +f 	 ar 
DoD(x3  ,tk) 

1 ( 1 v (F (z, r) , z, r) dzdr + f w (F (z, r) , z, r) dW (z, r)) 
DOD(x3 ,tk) D,0 	 D,o 

-P (k, 1) [P,1] + P (k - 1,1) 
[,o] 

= P (k, 1) [c,1] - P (k - 1,1) [e,0]. 
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Proof. Breaking the DoD (xi, tk) into segments of length 2x, 
F(((x, ,tk),O)+F((Xj,tk),O) 1 	

f 	
________ _______________ 	 F(y,$) 

2 	 as 
DoD(x3 ,tk) 

1 
( I v (F (z, r) , z, r) dzdr + f w (F (z, r) , z, r) dW (z, r)) 

D0D(xj,t k ) D,o 

= 	(P ( (xi, tk) , 0) + P ( (xi, tk) , 0) + Ck,O + ejk,O) 

	

+2C 	 f 
DF(z,r) 

xn+1 

	

- 	 Ur r=Q dz + f v (F (z, r) , z, r) dzdr 
( DoD(x,tk) x -._i 

+ f w(F(zr)zr)dW(zr)). From (2.8), 

( x~ 
F 	- F_i,o+F+i,o 	1 	

f 
aF(z,r) 

- 	 2 	+ 	Or 	rzO dz + f v (F (z, r) , z, r) dzdr 
sn_i 

+ f w (F (z, r) ,z, r) dW (z, r)) Substitution yields 

F(((s,tk),O)+F((x,tk),O) + 1 	( 	8F(y,$) 
s=o dy 

2 	 2C J as 
DOD3 ,. 

( f v (F (z, r) , z, r) dzdr + f w (F (z, r) , z, r) dW (z, r)) 
DOD(x j ,tk) D,o 	 Dn,O 

(Fn,l
Fn_i,o+Fn+i,o

(x,tk) , 0) + P 	(x,tk) , 0) + j,k° + eej 	" k,O 	
- 	 2 	) DoD 

	

C"J)
= (P (C (xi, tk) , 0) + P ( (xi, tk) 0) + e,o + 	+ 	+ 

DoD 

- 

	 (Pn,O + 	- (P (( (xi, tk) , 0) + P ( (xi, tk) , 0) + 	+ eeik,o) 
DoDj,k _i 

= 

	(Pn' j
+ 	- 

	 (&0 + Cn,O) 

	

DoDjk 	 DoD3 k—i 

= P (k, 1) 	- P (k - 1,1) [P,0 ] + P (k, 1) {c,'] - P (k - 1,1) [e,0]. Thus, 
_____________ 	 I F(((xj,tk),O)+F((xj,tk),O) 

± 1 	 a F8r(z,r) 
Ir=o dz 2 	 2C 

DoD(x3 ,tk) 

( 1 v (F (z, r) , z, r) dzdr + f w (F (z, r) , z, r) dW (z, r)) 

D0D(x3 ,tk) D,o 	 Dm 0 

= P (k, 1) [P,1] —P (k - 1,1) [P,0 ] +P (k, 1) [ei,'] —P (k - 1,1) [e,0], where sub- 

traction yields the desired result. 	 LII 

Corollary B.1.5. P(k, 1) [c,1]—P(k —1,1) [e,0] = k ()—(k —1) (), where 

Ti denotes the average over the boundary, 85 = DoD (xi, tk). 

Proof. Replace the error terms of P (k, 1) [c,1]—P (k - 1, 1) [e,0] with Assumption 

2.3.2 and (2.19). Since A = 1, P (n, 1) is equivalent to n additions. 	LI 
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Remark B.1.6. (.2.20) can be represented via 

[c,k] = P (k, n) [e,1] - P (k - 1, n) [e,o] 
k-i 

	

+ 	P (1, n) [T ,k _ I _l  + Tk-I-i  + /3k-1—i  + /Zk-I-1] 	(B.8) 
1=1 

which is a direct result of Lemma 2.2.19, (2.8), and (2.17), such that 
- F(((x,t),0)+F((x,t),0) j 	8F(y,$) 

C3,k - 	2 	 2C 	J 	as 	s=0 Y 
DoD(x,t) 

+ 	ff v(F(y,$),y,$)dyds+ 	ff w(F(y,$),y,$)dW(y,$) 
DoI(x,t) 	 DoI(x,t) 

—P (k, n)[ 
	2C  9A - 	(D) 	P (1, n) IV (Pj,k-1-1, x, (k - i - i) st)] Pil l ]  L  

+P (k - 1, n) 	- 	P (1, n) {W (D,k _ 1)] [ (Pi,k-1-1, x, (k - i - i) At 

Lemma B.1.4 establishes that P(k,n) [e,,] - P(k - 1,n) [e,0 ] 
- F(((x,t),0)+F((x,t),0) j 	OF(y,$) 
- 	2 	'2C J 	as s=0 Y 

D0D(x,t) 

(j v (F (z, r) , z, r) dzdr + f w (F (z, r) , z, r) dW (z, r) 2C E 

	

D0D(xj,tk) \D,o 	 D,o 

[Pj,,] [Pi'01 

k 	 k-i 
—P (k, 1) 	+P (k - 1, 1) 	oj = i Cj_k+2I,1 	i Cj_k+21+1,0 while Lemma 

1=0 	1=0 
2.2.11 establishes that 

P (1, n) [T,k_I_l + T3 kll + k-1-1  + k—I—i] 

= ff 	v(F(y,$),y,$)dyds+ 	ff 	w (F (y, s), y, s) dW (y, s) 
DoI,k—DoD3,k 	 DoIj,k —DoDj,k 

k  1-1 
_ 	[v (1+2m+i,k_I_i  Xj_I+2m+i, (k - I - 1) At)] l (D) 

11 m=0 
k-i 1-i 

- 	 [W(Dj_I+2m+i,k_1)] P (_I+2m+i,k_1_i,Xj1+2rn+i, (k — 	1) st)]. 
I=i m=0 

B.2 Chapter 3 

An arbitrary Zd  space is constructed by adding individual points to a domain 

such that the distance between any two points is greater than or equal to an a 

priori Ax. Hence an 'arbitrary' Zdx  space consists of points that fulfill Definition 

1.1.3 by being mapped to the natural numbers and this mapping relates to the 

cardinality of the set and has no correlation with X, the geometric location in V. 

Denote points in an arbitrary space via g (j) = gj where Figure B.3 shows a 

uniform Z, and arbitrary Z domain of length a and Lx =the uniform 24 

V interval has been divided into M = 24 discretisations, and the arbitrary V 

has been assigned 9 points. Figure B.4 shows a R2  domain, an arbitrary V 

domain that has been discretised into 9 points, and a uniform V domain where 
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Continuous R 1 space uniform Z I space: M divisions: Ax= aIM 	arbitrary Z ' space: 9 points 	Ax = aIM 
6 28 58 	 4 

IIIIIIIIIIIIIIIIIIIIlIII 	 I 	II 	4 	 I 

0 
	

a 

Figure B.3: One-dimensional space grids. Note: IIX - 	 = IX - Y112 

continuous A 2 space uniform z 2 space arbitrary Z 2 space 

.5 

K61 

1

o
6

z I 	.g  g 
2 

9 points 

ia,. 
X = 

Figure B.4: Two dimensional space grids 

the mesh used to cover the region has been divided into M and N orthogonal 

discretisations. 

Notation B.2.1. Let {N (i; k) , 	 (j; k)} denote an {arbitrary , uniform} 
Zd FDSy approximation to a Green's function where card (?) = N> 0. 

Lemma 3.1.13: Deterministic Existence. Given (EAIC), then a solution to 

{(3.1),w(X) = 0  exists as defined by (3.5). 

Proof. Refer to [59, page 455] or since V2G (X; Y) = 0 then 

JG(X;Y)'u(F(Y),Y)dY = lim 	f 	G(X;Y)v2v(F(Y),Y)dY 
U U

- 

S2(Xx) 

= lim f 	(G (X; Y) °) 
- F (Y) 8G(X;Y)\ az )dY 

0 öU—S2(XAX) 

= 
f (G(x;Y)_F(Y)8G; ) dY 

- 
f F (Y) G(X;Y)dy 

9Z 
8S2(X4x) 

Since, 	f C (X; Y) 1F(Y)dY —~ 0, 	f F (Y) aGcdY 8Z 
6S2(XAx) 	 öS2(X,x) 

f 	F (Y) 	dY 
- 

f F (Y) 	dY, 
5S2(X4x) 	 6S2(X,Ax) 

f 	F (Y) a(x;Y)dy —+ F (X), and f F (Y) 	dY —4 0. 
r9Z az 

6S2(X4x) 	 5S2 (X,Ax) 

Hence, f G (X; Y) v (F (Y) , Y) dY = F (X) — f H (X; Y) FoU (Y) dY. 
U 	 66 

IMI 

Lemma 3.1.14: Deterministic Uniqueness. Given (EAIC), then the solution 

1(3.1),w (X) = 0} , if it exists, is unique. 

Proof. Assume that there are two solutions to (3.1), F1 (X) and F2 (X), with 

the same initial conditions and let F3 (X) = F1 (X) — F2 (X). Then F3 (X) = 
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f G (X; Y) (v (F1 (Y) , Y) - v (F2 (Y) , Y)) dY. For this term to not be uniquely 

0, either two different Green's functions exist for the domain or there exits at 

least one point such that F1 (X) =A F2 (X). By definition the Green's function 

is unique. In order for F1 (X) 0 F2 (X) to exist, there must be a second point 

Y where F1 (Y) F2 (Y). Using a recursive argument, F1 (X) =A F2 (X) on the 

entire domain which contradicts the initial conditions, thus F3 (X) = 0. 	El 

Lemma 3.1.22: The Green's function is a symmetric kernel such that G (X1, X2) = 

G (X1, X2), i.e. a reciprocity relation exits. 

Proof. Using (3.7) and assuming X1 X2 then f (C (Y, X2) 72 C (Y, X1) 

8G(Y,X1 ) 	 _______ —G(YX1)V2C(YX2))dY = f (ix2 	 - G(YX1) OG(YX2))dY. 
OZ 

Since this involves a unit source with zero boundary conditions then (3.6) yields 

U = f ( (Y, X2) aG(YX1) 
- G (Y X1) 

ÔG(Y,X2) dY az 	 az ) 

=f(G(Y,X2)lxi=y—G(Y,Xi)ly=x2)dYG(X2,Y)—G(Y,X2). 

Lemma 3.1.24: [8, Lemma 2.1]: f G (, Y) w (Y) dWY posses an almost surely 

continuous modification. 
a 	 a 

Proof. When d=1, let x[0,a], then f G (x, y) w (y) dW (y) = Xfw(y)dW(y) 
0 	 0 

X 
- f  (y) dW (y). This SIDE result is well known and will be omitted; see [39]. 

0 
2 

Whend= 2, (fw(Y)ln(IXl —YM2)dW(Y) - fw(Y) ln(HX2 _Y2)dW(Y)) 
73 

= f  (Y) 2 ln X1 - 	 - In X 
- Y112 dY 	

2—a dY < 	- X22 x 

2—a 

f  (Y) 2 ln X1 - Y112 - In X2 - ya (j 	da 
aIlXi_YU2+(1_a)11X2_Y112) 	dY 

'0 
<Xi - X29 

2—a max (w (Y)2) f ln 	 2 	1121 X1 - Y2 - In jX - Y a 
YEU 	 Z3  

2—a 

(11X1—Y112 
+ 1x2±yIj) 	dY 	Ka in jX1 - X2 112

—a max ( (Y)2) 2 

x (f lln MX1 
- 

Y 11 
- In JJX2 

- 

Y 112 
1 q, dY 	 d 	

)p + _______ 

) 	
dY 	

P 

inixi-y 2- 	1flIlX2_I2) 

where 1 + 1 = 1 and 1 <p < ---. Hence, using Assumption 3.1.5: q p 	 2—a 
~ 2) 

E(fln(xi_Y2)w(Y)dw(Y)_fln(x2_Y2)(Y)dw(Y) 

< Ka max (w (Y)2)jjXJ - X2_a and since the difference in the integrals is a 
YEt5 

normal random variable with 0 mean, using Chebychev's Theorem 

E(fG(Xi Y)w(Y)dw(Y)_fG(xi Y)w(Y)dW(Y) T) 	 X2112( 
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Choosing r > 2, Kolmogorov's Lemma states that fin (UX - Yj 2) dW (Y) pos- 
U 

sesses an almost surely continuous modification and having chosen that modifi-

cation we deduce IE (fin (ISt - Y 2) w (Y) dW (Y)) is continuous on 5 and 

(fin (!Wx,t - Y 2) w (Y) dW (Y) - fin (jX - Y112) w (Y) dW (Y)) 

= fin (UX - Y112) w (Y) dW (Y) = f G (X; Y) w (Y) dW (Y) with the Brownian 
U 	 U 

sheet being fixed. d = 3 mirrors d = 2 such that it suffices to check that h (x) = 

f "dW (Y) posses an almost sure continuous modification. Let 0< 0 < 1; 
U 

11X1—Y112 

E f 1n(Xi_Y2)w(Y)dW(Y)_ f 1n(X2_Y2)w(Y)dW(Y)D 

- 	
2±2 

2 
(Y)2 dY 

Z5 IIXI—YI12 

_ 	 3+9 

< 	1 	- 	 1 	" 11X2-Y112-HX1-Ylk ' 	 (y)2 dY 
- 
	

11X1-Y112 	1X2-Y112 	lxi -YH211X2-Y112

5+0 

W 

39 	 2 

<max (w (Y)2) X1 - x2H 	( 	lxiIl2 - lxY1I2 

2 
dY) 

( dY 	
)2 

<K9X1—X2 	(f 	dY
5+261 

U (Hxi —Y112l1x2 —Y112) 

+ f 	 (I 	(i 1 d ) . It then follows that 

~2) 
ffG(X2,Y)w(Y)dW(Y)fG(X2,Y)w(Y)dW( 	<Ke Xi —X2 . 

U  

) Using moments of Gaussian random variables, for any j, K9 IIXI _X2 I 8 

> TE ( f G (X1 - Y) w (Y) dW (Y) 
- f G (X2 - Y) w (Y) dW (Y) 

~j). 
Conclude 

U 
using Kolmogorov's Lemma to yield the desired result. 

Remark B.2.2. It follows from the previous proof that f In (MX - Y112) w (Y) dW (Y) 
U 

has Lipschitz paths when d = 1, Holder continuous with exponent 1 - a when 

d = 2, and HOlder continuous with exponent 2 - a when d = 3. 

Lemma 3.1.28: [8, Lemma 2.51: Given the (EAIC) then (3.5) is the unique 
solution to (3.1) which is almost surely continuous on U. 

Proof. Uniqueness. Let F1 (x) and F2 (x) be two solutions, thenF1 (x) - F2 (x) 

+fG(X;Y)(v(Fi (Y)) —v(F2 (Y))) dY + f G (X; Y) (w (Y) —w(Y))dY= 
U 	 U 

0. Multiplying the appropriate terms of the equation by v (F1 (X)) - v (F2 (X)), 

canceling terms, and using Lemma 3.1.26, then a IF, (X) - F2 (X) I < 0 from 
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i3(j,k) 

q: 
jk 

Figure B.5: 2 Point Closed Loop System 

which uniqueness follows. This further implies the following uniqueness state-

ment: If F1 (X) and F2 (X) satisfy (3.5) Z5j C Rd, then F1 (x) = F2 (x) i.e. on 

JU u 

Existence Step 1. Suppose that F (X) is bounded, continuous, and non-

decreasing. Let W be a sequence of processes with trajectories f G (X; Y) dW (Y) 
U 

—* f G (X; Y) dW (Y) almost surely as n —+ oc. For each n we consider (3.1) with 
13 

o boundary conditions. The existence of a unique solution follows from Lions [4, 

Theorem 2.1 p. 171]. F (X) fulfills (3.5) and F (X) — Fm (X) 

+fG(X;Y)v(F(Y))dY— fG(X;Y)v(Fm (Y))dY 
U 

f C (X; Y) w (Y) dW (Y) — f G (X; Y)w (Y) dWm (Y). Multiply both sides by 
U 	 U 

their respective terms and using Lemma 3.1.26 yields e m f G (X; Y) 

X (w — Wm, V (F) — V (Fm) + 2a (F Fm)). Since E (i C (X; Y) (w — Wm) 2) 

-~ 0 as n, m —+ oo and F is bounded, then {F} is a Cauchy sequence and 

F = lim F,-, using (3.5). 
n-+co  

Existence step 2. Suppose that F(Y) is bounded from below and F (Y) = 

F (Y) A n where F (Y) is the unique solution to (3.5). It follows from Lemma 

3.1.27 that the sequence {F (x)} is decreasing for any X, hence converges in 

RU —oc. Let on = sup F (X, Fo (X)) <n. On On , V(Fm) < v(Fo) <n and 
113 	 J 

Vm (Fm) = V (Fm) on fim, for m > n. Fm is the unique solution on On to (3.5) 

and consequently Fm = F on on where m > n and F,-, —+ F. 

Existence step 3. Now assume that F is bounded, continuous, and non-

decreasing, let F,, (Y) = F (Y) V (—n). Repeat the proof in the second step, 

constructing this time and increasing sequence. 	 El 

\ 	G1'r(j;) — Lemma 3.2.11: GN+1 (i;.n 
= 	 — 

Proof. When card (5) = 1, there is only one point for the FDSc to act on, hence 

E 	1-01 

If an explicit scheme is used, G1 (j; j) = 1, since 0 (j; j) = 0 otherwise the initial 
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Figure B.6: Venn Diagram for ?iN+1 

(N-1,N-1) 

Figure B.7: Schematic and tree for Z5N+1 

disturbance will grow in size by a factor of 
01 
 When card (J) = 2; refer to 

Figure B.5 and Figure B.6, where UN-1 = 0: 
00 

G2 (k;j) =((k;k))1 (k;j)G2 (j;j) = 79 (k;j)&(k;k)G2(j;j) 

00 
and G2 (j;j) = i (j; j) +((j;j))1 G2 (k;j) 79 (j;k) 

1=0 

= & (j; j) + (j; k) (k; 02 (j;j) & (j;j) & (k; k). Collecting 2 (ii) terms 
i(j;j) 	 1 yields G2  (i; i) = 1-(j;k)(k;j)Ôi(j;j)i(k;k) 	1_((j;j)+(j;k)(k;j)öi(k;k)) 

where {, 021 = 

+(j;k)(k;j)Gi (k;k)}. 

As depicted in Figure B.6, when card (5N+1) = N + 1, let Ok  be the new 

point added to UN =  {N-1 U Pjj,  where 5N-1  will be treated as one state, and 

assume that GN (j;j) = 10N 
Thus, 

00 

GN+l (j; j) = E 79  U; Al  ((j;N - 1)N+1 (N - 1;j) + 79 (j;k) GN+l (k;i)) 
1=0 

=&(j;j) 19 (j;N -1)GN+l(N -1;j)+Gl(j;j)(j;k)GN+l(k;j), 

GN+1 (k; j) = & (k; k) V (k; i) N+1 (i j)+& (k; k) 79 (k; N - 1) &+i  (N - 1; j), 

and 6N+1 (N - 1;j) 	 Substitution yields 1-79(N--1;N-1) 

( 1 - 1(i;i)9(i;N_1)9(N_1;i) 
) o+ 	

= ( 	
1-9(N-1;N-1)

Gi(i;i)(i;N_1)(N_1; 1  
1-t9(N-1;N-1) 

j) V  (j; k)) N+1  (k; j) and GN+l  (k; j) = (a1 (k; k) V (k; j) 

+ a1 (k;kO(k;N-1)t9(N-1;j) \ 	Gzv+i(i;i) 
1-t(N-1;N-1) 	) (i 61 (k;k)19(k;N-1)i9(N-1;k) \ 

1-i9(N-1;N-1) 	) 

Remark B.2.3. It is worth mentioning that 1 	1-t9(N-1;N-1)-Gi(j;j)(j;N-1)t9(N-1;j) 
X  (5 j(j;j)i9(j;N-1),t9(N-I;k) + & (j; j) (j; k)) 1- 	

1 - (N- 1;N- 1) 
1-(N-1;N-1) 	 (N-1;N-I)-Gi(k;k)(k;N-1)(N-1;k) 
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x 	(k; k) t9 (k;j) + i(k;k) 79 (k;N-1)9(N-1;j)\ ). This is true only if the reci- 1-(N-1;N-4) 

procity relationship holds and the FDSc matrix is symmetric; see Lemma 32.16. 

Using ON  (j; j) =and the argument from the card () = 2 case, 

GN
G1(3;j) 	 = 	 1 	 1  Thus 9 	 - 119U;N-1)i9(N-1;j)äi(j;j) 	1-9(j;j)+ (1-t9(N-1;N-1)) 

(j;N-1)i9(N-1;j) 
1-t9(N-1;N-1) 

GN(j;i) 
GN+1 (i;i) = 

GN (J;3 f 3(j;N-1)9(N-1;k) + 

	

) 	1-(N-1;N-1) 	(j; k)) aN+l (k;j) = 
1-i9(N-1;N-1) where 	= 1 - d 	(k)((N1)(N1k)+(k)(1(N1N1))) 

and 

°N+1 = 1— (1 - ON) (1 - 	Further algebraic reduction will be omitted since 

these results are adequate for this chapter. 	 E 

Corollary 3.2.13: Given EAIC, then G (j; j) is a unique constant. 

Proof. Let {N (j; j) 	(j; i)} denote two different Green's function approxi- 

mations. When card (?J) = 1, G1 (j; j) = 	(j; j) = 	1 	since there is only 

one point to act upon. Assuming that GN (j; j) 0 GN  (j; j) for card (5) = N; 

in order for this to occur at least one t9 (n; m) 0 9t  (n; m). This leads to a 

contradiction, since FDSc =A FDSc; thus ON (j;j) = Ot  

Corollary 3.2.14: Given (EAIC), then 0N+1  <1. 

Proof. When card (6) = 1, t9(j;j) < 1, otherwise the FDSc is not consistent. 

*When card (-) = 2, 	 < 1 or 

9(j;j)(1—t9(k;k))+9(j;k)'i9(k;j)+t9(k;k) < 1. In an explicit FDSc; 0+ 

V (j; k) t9 (k; j) + 0 < 1 almost surely. In an implicit FDSc, 79 (j; j) (1 - z9 (k; k)) + 

O(j;k)'t9(k;j)+l9(k;k) <9(j;j)(1 —9(k;k))--i-(1 —t9(k;k))t9(k;j)+t9(k;k) 

= (1 —t9(k;k))(t9(j;j) +t9(k;j)) + 'i9(k;k) < (1 —t9(k;k)) (1) +9(k;k) = 1, 
9(j j)-9(jj)19(kk)+9(jk)(kj) hence, 	1-(k'k) 	< 1 almost surely. 

*When card () = N + 1 it suffices to show that 0 <O < 1. 

Case 1: For an explicit scheme ?9 (1; 1) = 0, 9 (N - 1;N —1) + 79 (N - 1;j) 

+79 (N - 1; k) = 1 and 79 Qj or kJ; UN-I) < 1 if P{j or k} is an interior point 

and t9 ({j, k} ; UN-1) < 1 if an adjacent point. Hence, almost surely true. 

Case 2: For an implicit scheme 	< 1 almost surely, since 0 <t9 (5N; N + 1) 

<(1 —'O(?iN;N)) and 79(N+1;U N) = 1 —t9(N+1;N+1). 	 LI 

Corollary 3.2.15: When card (?J) = N -+ oc, then ON (j; j) 	00 if aj  is 'well 

within the interior' and a finite constant if pj is 'close to the interior.' 

Proof. Since GN+1 (i;i) = 
GN(j;j) lim ON (i;i) 	i ( j;j) fl 	Thus, it 1_e* 

N+1 n-oo n-+Qo 
is simply a matter of checking that 0 <O 	< 1 and this can be easily verified, 

using Assumption 3.2.1. If O {n> M} is numerically indistinguishable from 0, 

the growth of the discretised Green's function will remain constant after a finite 
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series of iterations. Being numerically distinguishable from 0 is dependent upon 

the radiation principle, round-off error, and location in the domain since points 

close to the boundary have a limited number of paths that can be utilised in the 

growth of the Green's function approximation. 	 E 

Lemma 3.2.16: Given (EAIC) where t9 (j; k) = t9 (k; j), in accordance with 

Lemma 3.1.22 then the reciprocity relation is true such that GN (j; k) = GN (k; j). 

Proof. When card (J) = 1, 61 (i; k) = 	i (k; i) = & (j; j) since gaj = Pk When 
00 

card() = 2, 02 	k) = 
1=0 

= 0 (j; k) G, 	)G2 (k; k) =z9 (k; i) 	i (i; 	 &(k;k) 
1-(jk)(k;j)Ôi(j;j)&(k;k) 

= 0 (k; j) G, (k; k) 	
ai (i;i) 	= 	(k; i) 	i (k; k) G2  (i; i) 1-t9(j;k)9(k;j)Ôj(j;j)&(k;k) 

00 

=E (9(k;k))(k;j)02 (j;j) = 02 (k;j). Referring to Figure B.6: 
10 

*Assume z9(j;k) = 	9(k;j) true for {iN_1,J,?ik}. 	card(5N_l) = N - 1; 

N-1 = {g-',.•. , 80N-I}- card (3j ) = card (5k) = N; Z3j =&I,,  gpr-i, gj}, 

and Uk = 	PN-1, NJ. 	Let 	3N+1 = Z3j U Jk;  card (-3N+1) = N + 1; 

Uk = 	, 	N-1, Pi, Ok}. 

Refering to Figure B.7; assume that 	N1  is one state space and place a unit 

source at 	= 	j to yield GN+1 (j; k) = 19  (j; j) G 	(j; k) + 79 (j; k) x 

(19 (k; j) 6N+1  (J; k) + ,d (k; k) ON+I  (k; k) + 79 (k; N — 1)aN+l (N— 1;k)) 

+ 	(j; N - 1) (0 (N - 1; j) 6N+1 (j; k) + 	(N - 1; k) 	N+1  (k; k) 

+9 (N - 1; N - 1) GN+l  (N - 1; k)). Rearranging terms 

GN+1 (j; k) 	
1 

1 

(t9 (k; j) (19 	k) 	N+1  (k; k) + 79 (N - 1; k) GN+1  (N - 1; k)) 

+ 	(N - 1;j) (19 (k; N - 1) 6N+1  (k; k) + 	(N - 1; N - 1) GN+1 (N - 1; k))) 

Using the fact that t9 (m; n) = 79 (n; m); solving for 

{ GN+1 (N - 1; k) , GN+1 (N - 1;j) , 	N+1 	, &+i (k; k)} with some rather 

tedious algebra yields CN+1  (i; k) = 1-(k;k)-(j;k)i9(k;j)-i9(N-1;k)9(k;N-1) X 

( 	(j; k) ( 	(j; j) 	N+1 (i i) + 0 (N —1; j) GN+l  (N —1; i)) 

+ 	(N - 1; k) (0 (j; N - 1) GN+1 (j; j) + 	(N - 1; N - 1) 6N+1  (N - 1; i))) 
= GN+1 (k; J), hence 	N+1 (i; k) = GN+1 (k; j) almost surely. El 

Corollary 3.2.17: Given (EAIC), as Lx - 0, the difference between two 

Green's function approximations on the same domain that are a [V] = [ax] 

distance apart is a constant such that: lim( X; Y) - 	([X - V] , Y))
AX-+0 OAX  

= 

lim (ö (X; Y) - 	([X - sV] ,Y)) = K. 

we 



Proof. In the limit as Ax -4 0, the coefficients for the FDSc are oblivious to 

the magnitudes of {x, v (.)}. When numerically solving the discretised homoge-

neous Laplace equation, the influence between two points follows a tree expansion 

depicted in Figures B.5 and B.7. Hence, the magnitude of C (Xi; Yk) is function of 

the number of discrete steps and paths between the points, i.e. a measure propor- 
x - __ 

AX  
tional to 0 	I and the number of paths that can be used to connect two 

points. From the radiation principle, points outside a neighborhood 	2j112 
SAX 

[a]M2 play a diminished role in the evaluation of G (X; Y). Hence, the branching 

process used to approximate a solution does not utilise a 'distance measure' in the 

usual sense, only the number of discretised step sizes away. Thus, in the limit, LC 

represents a series of constants. Given that G (X; Y) = OG (X; X) then this ex-

plains why G(X;X)—G(X;Y)=G(X;X)—OG(X;X)=G(X;X)(1-0). El 

B.3 Chapter 5 

Fluids on the surface of a planet act as a combination of barotropic ('dry air') 

and baroclinic ('pure water') components where various amounts of water, mo-

mentum, and heat are exchanged. Thus, meteorological phenomena should be 

completely described by a set of highly nonlinear PDE's relying upon Newton's 

second law of motion, Navier-Stokes equations, law of thermodynamics, and the 

conservation of energy, mass, and momentum for thin viscous fluids. To visualize 

the scales involved, if the earth was an apple, the atmosphere and oceans would be 

approximately the skin of the apple, hence descriptions of the atmosphere involve 

fluid dynamics with minimal vertical motion relative to large horizontal motion. 

Due to friction, this thin fluid experience solid body rotation with a planet where 

winds and currents represent small deviations from this rotation. As discussed in 

[53, Section 1.3], the non-inertial plane of reference effects fluids by 'forcing' flow 

to occur parallel to pressure gradients; paired with the prevalence of naturally 

occurring density stratification, these effects further magnify the thin dynamics of 

a geophysical process since different density layers rarely interact except for rare 

global disturbances (volcanoes), strong isotropic systems (hurricanes), and the 

pycnocline. Thus, the atmosphere may be regarded as a multi-layered thin fluid 

on a rotating irregular surface experiencing external heating over 0 (1000 km) 

areas moving with average horizontal velocities of 0 (i0lhr  ). 

When describing phenomena such as weather systems, ocean currents, or the 

flow of magma in the inner earth; the effects of rotation, stratification, and the 

predominance of nonlinear interactions that involve a number of variables en-

sure that developing a process, much less evaluating a 'solution,' is an arduous 
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Figure B.8: Coriolis effect on the Northern Hemisphere 

Figure B.9: Vector breakdown of the Coriolis effect 

task. Due to this complexity, simplifications are made to develop processes that 

capture the essence of the physical phenomena, thus these assumptions are not 

an inherent property of a fluid, but are macro concepts. For example, steady 

incompressible and inviscid flow are simplifications acceptable for large scale geo-

physical fluid dynamics since viscosity effects are moot and shock waves do not 

exist almost surely. Quasi- Geostrophic (QG) processes attempt to describe large-

scale geophysical fluid phenomena where the fluid is both incompressible and 

inviscid. The attribute of 'large scale motions' will be restricted to phenomena 

where the rate of a fluid element traveling over the length of a domain is signifi-

cantly less than the rate of rotation of a planet. The Rossby number, 0A = 

is a measure of the non-inertial plane of reference's effect upon the motion, where 

the magnitude of the Rossby number is inversely proportional to the effect the 

rotation has upon the process. Thus, only phenomena with low Rossby numbers 

(OA < 1) will be considered, where a planet's rotation plays a significant role 

in the movement of the fluid. On earth, the effect of the low Rossby number is 

the seeming force called the Coriolis Effect, where objects appear to experience 

a force that is orthogonal to the rotation of the earth and pushes from (left to 

right) / (right to left) if one is in the northern / southern hemisphere; refer to 

Figure B.8 

Remark B.3.1. For the Coriolis effect, only consider the velocity of the process 

normal to the direction of rotation. Unless otherwise specified, the rate of rotation 

for the earth is A = 7.3 x 10 5s 1  and the magnitude of the acceleration can be 
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Figure Rift Barotropic and Baroclinic 

estimated at C = 2A sin (F) 	2A x U, where F 	is the angle from the equator; 

refer to Figure B.9. 

Remark B.3.2. The Poincaré inequality holds for these boundary conditions. 

Solid stationary walls with no-slip boundary conditions, U = 0 and either constant 

temperatures T = Twat, or adiabatic conditions 	= 0 are utilised, where Ekman az 

layers at the lid and base are due to the ageostrophic effects of having a 'hard' 

surface. One cannot 'cut' or sever a fluid's boundary and the boundary of a fluid 

'sticks' to non-fluid surfaces; refer to works by Rutherford and [47, page 6]. 

B.3.0.1 Baroclinic and barotropic components 

Although a spectral approach will not be used in this text, all fluids have barotropic 

and baroclinic components, where: 

*The baroclinic component of a fluid, Tc (x, y, z, t), represents the dynamics of 

fluid similar to pure water, where the components of pressure and density do not 

coincide such that VPMV x VP 54 0. For example, the density at the bottom of 

a glass of water is the same as the density at the top, but the pressure is greater 

at the bottom of the glass. 

*The barotropic component of a fluid, 'ft (x, y, z, t), represents the dynamics of a 

compressible fluid similar to pure dry air. The components of pressure and den-

sity coincide such that VPMV x 7P = 0. For example, the density and pressure 

of dry air at the bottom of a glass is more than at the top. 

Notation B.3.3. In a two-level system, the first barotropic and baroclinic modes 

are given by 'ITt (x, y, z, t) = 
F(x,y,z ,t)+F(x,y,zAi ,t) 

and Tc (x y z 	
F(x,y,z1 ,t) — F(x,y,z~t,t) 

2 	
, 	, , t) 

= 	 2 

Let 1=1 denotes the indicator function if the level for the variable is the same as 

the level in question and 10, if the level is different. 

Due to spectral properties, stream function processes are often separated into 

baroclinic and barotropic components, such that waves can be decoupled. Since 

the fluid is inviscid, both components cannot support a shearing stress, thus flow 

runs parallel to isobars and are driven by pressure and the Coriolis effect. 
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B.3.1 Inviscid shallow-water processes 

As discussed in [53], when constructing processes, numerous approaches can be 

taken to describe a phenomena, but the processes considered in this text will 

utilise a two-layer conservation approach using partial derivatives (Eulerian) vice 

a convective derivatives (Lagrangian). One of the most prolific processes of de-

scribing geophysical fluid dynamics has been the study of inviscid shallow-water 

models and shear fluid dynamics on a homogenous incompressible, and inviscid 

(baroclinic) fluid as proposed by Rossby, Pedlosky, et all. In this two-layered shear 

flow shallow water model, the baroclinic nature of the fluid and mass conservation 

ensure that VU = aux  + 	+ 	= 0 while FI2 (9A (L)_1) <<< 1. Given these az 

constraints, Oux + 	= 0 and the vorticity is given by: 	
MY 

 ax 
aux 

[V] = 	- 

ax 	a9  
This two-layer approach is the simplest model that maintains baroclinicty and is 

robust and resilient in that as one eliminates given wave frequencies, other waves 

transfer the energy flux. The connection between the elliptic processes of Chap-

ter 3 and processes of this chapter are quite apparent, but the connection with 

the hyperbolic process is not as clear. To illustrate this connection, one of the 

simplest processes to consider is a two-dimensional model where one of the di-

mensions is space and the other is time; as in Chapter 2. Processes of this nature 

can be reduced to the so-called telegrapher's problem OF(-zt)  + F(x,t) = 0 which 

is a hyperbolic process with initial conditions solved on either R2 t, the positive 

quadrant, or a semi-finite strip; [21, Section 28.3]. Although simplified, higher 

dimensional models on a planetary surface possess the same connection where the 

spherical wrapping of a planet can be modeled with a restricted semi-finite strip 

with boundary conditions experiencing the reflection property of Chapter 2. In 

the 1950's Forsythe demonstrated that the solution this process where x E [0, L] is 
L 

F (x, t) = f C (x - y, ,r) df (y, 0) where C (.) is a Green's function that represents 
0 

the characteristic solutions of Chapter 2 and not the Green's function defined in 

Chapter 3 and 4. 

Remark B.3.4. 	= 	+ U 
(,  at 	p  .... ) denote the convective derivative 

which is derivative along a fluids trajectory to a particular closed element. Rather 

than fixing a derivative on a set point in space, the derivative is centered upon a 

small element in a fluid. Heuristically view a convective derivative as a drop of 

ink in a stream of water. 

The state variables of density, entropy, friction, and pressure are denoted by 

IMv, 	fr, and ?, respectively. Other physical constants include the Berger 
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number (bg), Reynolds number (>r) ,beta plane coefficient B, viscous dissipation 

constant v, Ekman dissipation constant £ and the Froude Number (f) which is a 

quantitative measure of the relative importance of rotation and stratification on 

a fluid. Vorticity is a measure of the curl of a velocity vector, enstrophy is the 

total mean square vorticity and the low Rossby number implies that the relative 

vorticity is small compared to the planetary vorticity, where flows almost surely 

experience a significant vorticity vector, which is non-divergent. If the curl of U 
is 0, then the flow is irrotational and the circulation is 0 on every closed path. A 

vortex filament is a line in the fluid that parallels the vorticity vector. Let: 
U (x,y,z,t) 

.0 (x, y, z )  t) = 	14 (x, y, z, t) 1 denote the velocity of a fluid. 
U (x, y, z, t) 

ay 	OZ 

.V (x, y, z, t) = 	'90-- 	denote the vorticity of a fluid. ax 

Ox 	ay 

g = [gT] = [0, 0, -G] denote the acceleration due to gravity. 

B.3.2 Equations of state 

[17, Chapter 101 gives an introduction to enforcing conservation laws in a FDSy 

to ensure that mass, energy, momentum, vorticity, and enstrophy are conserved. 

From Assumption 5.1.8 the domain is a closed system and friction is negligible 

within the interior. Incompressible denotes that the PMV  is a constant and inde-

pendent of the temperature and inviscid implies v = 0. Tangential stress implies 

a non-zero viscosity and energy and mass cannot be created or destroyed and 

it is impossible to convert heat into work at a constant temperature. This im-

plies that complete information for a process at set time is known if the stream 

function, two thermodynamic variables, and an equation of state are given. The 

basic hydrodynamic equations for a barotropic atmosphere are the equation of 

motion relative to a non-inertial plane of reference (Newton's second law), the 

continuity equation (conservation of mass), the equation of state for dry air and 

the thermodynamic equations may be written as follows. 

The momentum equation: = ogradP - 2A x U + 9 + f  at 

*Conservation of mass: aPmv = —grad. (pMvU) given PMv = and Pa = 3T 

*First law of thermodynamics - conservation of energy: h = cçf + pLa 
at 

where a is the specific volume, 3 is the barotropic gas constant for dry air, c 
is the specific heat at a constant volume, and h is the diabatic heating. These 

equations may be written in terms of various coordinate systems and although 

they are capable of solution, as shown in [53, Chapter 4], further simplification 

can be conducted. For example, using the hydrostatic relation 1 22  + = 0 to 
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derive forms identical to the simplified Navier-Stokes equation. The d = 2 steady 

Navier-Stokes equations for an incompressible fluid in conservative form are: 

	

o(U2) + 	
+ () = v (VU) 	•a2  (au. + au) 

49X 	 ay 	OX PMV 	Oy 

	

j2) 
 + 	 + 	

( 

-P  

) = 
ii (vZ4) ay PMV 

where c is a reference velocity introduced to homogenize the eigen values of the 

system. If the process is inviscid the Navier-Stokes equations reduce to the Euler 

Equations where: 	+ v - V + 'yP V = 0. at 
90PMVU + V (pvuu) + = 0 	 + v (PM-VV) = 0 at 
Pressure in this case is not a thermodynamic variable, but it can be considered 

a LaGrange multiplier that ensures the kinematic constraint of incompressibil-

ity, i.e. solenoid of the velocity field. The vorticity is calculated by V = V x u 

and represents approximately half the local rotation rate of the fluid. The ad-

ditional of the term w vu represents the effects of the vortex stretching and is 

identically 0 in two-dimensional flows. The vorticity can be combined with the 

stream function to yield a concise description of the two-dimensional flows where 

the flow is parallel to curves of constant streamlines. The boundary conditions 

are F (g) = 0 and 8'(Psu) = 0, where the elimination of the vorticity leads to az 
the pure stream function % + J (F, Q) = vL 2F where energy is transferred via 

convection, not conduction or radiation. 

B.3.3 Quasi- Geostrophicexistence and uniqueness 

The following results are taken directly from [7]. 

Notation B.3.5. Let (u, v) denote an inner product. 

Use the integral form 
t 	 t 

Q (t) = G (t) Q0  (t) + f G (t - s) f (Q (s)) ds + f G (t - s) w (x, y, t) dW (s). 
0 	 0 

By defining 

f (Q) = —Q - ax - J (F, Q) and h (t) = Q (t) - f G (t - s) w (x, y, t) dW (s) 

yields the deterministic mild integral equation 

h (t) = G (t) Qo + f G (t - s) f (h (t) + f G (t - s) w (x, y, t) dW (s)) ds. In the 

following, prove the local existence of h (t) by the Banach contraction mapping 

principle in 12.  Since A generates an analytic semi-group S (t) on 12  and has only 

negative eigen values, we have for a> 0, 
8(t) (_A)a = (_A)a 8(t) yields I RAY 8(t) u2 U 11 2 , hence 

11S M112 < K - 1Iuj12 . We first show that SS (t - s) f (U (s) + WA (s)) ds makes 

sense for U (•)+WA (.) and thus U (.) in  ([0, T] ; 12). Recalling that w = U+WA, 

this follows from the following lemma. 
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Lemma B.3.6. [7, Lemma 1]: Define the mapping F C ([0, TI H) - C ([0, T} 12) 

by (F (w)) (t) 	fG(t — s) f(w (s))ds where t E [0,T] and w e C([0,T] ;H'). 
0 

The F is continuous, and it can be extended t a continuous mapping from the space 

C ([0, T] ; 12 ) to C ([0, TI 12 ) . Furthermore, the image of the extended mapping is 

contained in C ([0, TI H) for a e [0, ). 

Proof. The continuity of F : C ([0, T] H) —* C ([0, T] 12) is obvious. As for 

extending the domain off let {ww2 } E C ([0, T] 12) be arbitrary. Using the above 

abbreviations w = V 2 F and w2 = 
V2 F2, we get f (w) 

- f (w2) = S (w2 — w) + 

B (F2 - F) + D(w2—w) + 8(F2—F) aw2 _ !2F O(w2—w)8(F—F2) 	Let a e [0, 1) and 
ax Dy 	 ax Dy Dy (9X

+ Dy Ox 

consider an arbitrary 0 e D ((_A)a). Then the above identity implies 
t 	 t 

J = ((A)a , f G (t — s) f (w (s)) ds 
- f G (t — s) f (W2 (s)) ds 

0 	 0 

= f(G (t — s) (_A)a , [e (w2 - w) + 80(F2—F) + 0F D(w2—w) O(F2—F) OW2 
OX Ox ay Ox Dy 

0 

_DF D(w2—w) 	O(F—F2) 
ax + 	](s))ds=f(Ji +J2 +J3 +J4 +J5 +J6 )ds.Let 

0 

= (G (t - s) (_A)a , (S (w2 — w)] (s)) 

= (G (t - s) (_A)a 
I 

B02— 

 OX 
] (s)) 

[l = (G (t - s) (_A)a p, 
[ 
OF O(w2-w) 

Dy 	j (s)) 

J4 = (G (t - s) (_A)a 	[D(F2—F) Q
Dx 	Dy I (s)) 

[ 
= (G (t - s) (—A)° 	DFO(W2—W)1 ?p, 

L Dx j(s)) 

= (C (t - s) (_A)a 	1D(F—F2) Dw2 
' L ayjX__] (s)). 

and estimate J Jj I such that 

J1 = (G (t - s) (_A)a 0, S (W2 - w)) <S MG (t — s) (_A)a 0112 MW2 - 

<rK (t - ) 	
1112 W2 - W112 

= I (G (t —s) (—A, [13.9(F2—F)] (s)) 

aX I O(F2—F) II < 13K (t - )a 	 where ~ B G (t - s) (_A)a M2 	Dx 	- 	
- wI2  

F2 —F) we have used the Poincaré inequality, on D(
Ox 

which has 0 mean. Using the 

Cauchy-Schwartz inequality I (u, v) I < I I u  v  we also obtain 
[LFi9(W2—W)]

•kJ3= (G(t—s)(—A)a 	OX ay 
- I 

( !DD— 
/ 'a ' OF 

- 	((G (t — s) (—A) ) ,W2 - 

D2F a ' OF < 1 '(G (t - s) (—A) ) , w - w) + ((G (t — s) (_A)a ) 	, W - W) — \Dy \ 

'a 	II DF II a 'OF"  

< 
~~!~!D— (G (t - s) (—A) ) 	•W2 — wM+MG (t — s) (—A) 	DxDy MW - wIL 

11
22As for estimating 	(G (t - s) (_A)a 0)LF we get 

ay

ax 

II OF U hoD (G(t—s)(—A) 	DFII < hOD 1Gax — ay (t_s)(A)a)M 	hIhi 4 
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<K 	(G (t — s) (_A)aib)M 1 LMH < K Rc (t - s) (_A)ab)MH M 

K
~J 
 A+G (t - s) (—A 	II 	<K (t — s) (4+b+a) 	j 	where we 

have used the inequality IIuvJJ < jjuj ji lI vI I I, the continuity of the mapping 
OD 3 	 4b H —+ H, the embedding D ((—A)) H for arbitrary b> 0, and the 

facts that H2' and H' are embedded in i. Furthermore, I I G (t — s) (_A)a 	< 

K G (t - s) (—A)lHl+b <K JI G (t — s) (—A) 	(A)a 

< K (t - s) (2+b+ 
11011 

a) 	because of the smoother property of the semi-group G 

and the embeddings D ((—A) +b) 2 	Hl+b 1, for arbitrary b> 0. Thus, 

<K (t — )(4a) + K (t — 	 IwM Mw — W211 

J4 <K (t (4+b+a) + K (t — 

J5 <K (t - + K (t - 

K (t — + K (t - 

11011 IIW211 • Mw — W2 

LL) - 

MW — W2 

Thus we have I JI <f(Jd + IJ21 + IJ3 1 + IJ4 1 + IJ5 1 + J6 )ds 

< K+5K .t1_a .U. sup w (s) - w2 (s)H+ (_
8K 	ti_b_a + 4K • 

	

1-4b-4a 	 1-2b-2a  
02 

— 1—a 

bM. sup (Mw (s)M +1w2 (s)M) sup w (s) — w2 (s)M providing the positive con- 
O<s<t 	 O<s<t 

stants {a, b} satisfy 0 < a + b < Z
. 

This finally implies that 

ftc (t — s) f (w (s)) — ftc (t — s) f (W2 (s)) E D ((_A)a) for 0 < a < 1 and 
o 	 o 

((_A)a) (f tG (t — s) f (w (s)) 
- f tG (t — s) f (W2 (s))) 

eK+K .tl_a. 8K 	1--b -a + 4K 
sup w (s) — w2 (s)M+ (1_4b_4a 	 1-2b-2a 

ti_b_a 
— 1—a 

	

	
) 

O<s<t 

11011 . sup (Mw (s)M +Mw2 (s)11) sup Mw (s) — W2(s)II. Especially for a = 0 we 
O<s<t 	- 	 O<s<t 

obtain MftG (t — s) f (w (s)) — ftc (t — s) f (W2 (s))M 
lb 	 o 	 II 

<(K+13K) •t• sup lw(s) — W2 (s) h 
I
+ 

/ 8K .t—b 
+

4K 	l—b 

O<s<t 	
1-4b 	

2b . t ). 11011 

sup (Mw (s)M + bw2 (s)H)• sup lw (s) —W2 (8)11  for every 0< b < 1. 
O<s<t 	 O<s<t 

Concluding from the above lemma that f tG (t — s) f (U (s)) + WA (s), consid- 
0 

ered as a mapping with the argument U (.) can be extended to a bounded map 

from C ([0, T] ' 12 (D)) into itself. To obtain that a unique local solution U (t) 

has a unique local solution w (x, y, t) on [0, ,T), by the Banach contraction map-

ping principle, the solution w (x, y, t) e C ([0, T] ; 1 (D)) as well as w (x, y, t) E 

C ([0, ] ; Ha (D)) for arbitrary a e [U, ). 
Theorem 5.1.10: [7, Theorem 1]: Using (QGAIC), then for the initial condi-

tions considered in this text, there exists a unique global solution to (5.1) when 
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w(X)W(X) =w(X)W(t). 

Proof. Let U = v2u and V = v2v Because of the smoothing effect of the sectorial 

operator A, and the fact that f is locally Lipschitz in U from H' n H2(m+l) 

to H' n H2m  for m = {O, 1, 21, we conclude that the solution is H n H2  for 

m = {O, 1, 21 and hence U is a strong solution. Estimating the norm U (t), 

multiply by u and integrate over D to get 

	

( ôu 	Ov\ 1 511U112 - 
--f ivUI2—Sf(U+V)U—Bf +)U—fJ(U+V,U+V) 2 49t 	ax 

D 	 D 	 D 	 D 

=_vvU2_ef(U2+ UV)  _Bf(U+U) 
D 	 D 

(
uU  + u U  - ° U + v VU\ where we have used the fact that+f- ) D 

f J (u, F) U = f J (v, F) U = 0 via integration by parts. We estimate the right 
D 	 D 
hand side term by term 

s—sf (U + V) U <5(1± L JIVIIj HU 2  
D 

D 
ax 	09X 	

— D 
2 (Ox 	 Ox 

<BK (MU 2  + jV12) <BK (llU12 
+IIV I12 ) where we have used the Poincaré 

00 

inequality on 1L and 	which have 0 mean. 

OUOVU - a(pu)v 
= ( 

ax 
32u UV + 8UOUV) J 	—Jax Oy 

D 

<"V' 	8u U +f ( 	V) UI - II 	ilooj 
 

ay 
D' 	 D 

(axft 
2 
 + U2)  +f ( 1 Uu2 'V"2 aOU2 <V!00f 	 ) 

I 	1100 
D 	 D 

< V 00  (1 + VM00)+HUH2+ 	Since 	
2 
 is bounded by K f v2u2  = 

D 
OXOY 	

D 

KSD  U2. We also have used the Young inequality to get that (I Ox 
 I V I  

1 (9u 2  ,,,,2 + 	for any real positive number c > 0. Similarly we have 2a8x II 1100 28y 

I 8u2Vj < K 
lI "VI 00  (1 + IV 00) IUI 2  + IvUU2  Oy ax _ 

D 

I — 	U - f -1V = 
j Ov UV

ax ay  
D 	

D 49Y 

<V00f' (o2v2 
 + U2)  + ( 

1 	"V"2  + 
2!2U2)

a ax II 1100 2 ay D OxOy 
	 D 

K < 	UV 00  U 2  + K VM00  IVM
2 
 + 	IVU 2  + 

< 	11V 00  IUM 2  + K+ K VI 	a "V"4 I' 	1100 + 	IvUM2  

I v oVU < 1 IVM 00  U 2  + K jV" 3  ± ll K "V" 4  ± UvU 2. aYOX —2 1100 	a 	1100 	2 
D 

Combining these results yields 12102 c9 	(—v + 2a) 

+ (e (1 + K VM00)  + BK + K IIVII 00  (1 + 	VII.) + IVI00).MUI2+13K IIV

I1200 

+ 

2K V+K 	Taking a = v/2, we obtain 1 lliI2 <A(t)•I (t)I2+B (t) a 	00 at - 
where A (t) = (e(i+ K VII.)  + BK + K Vj 00  (1+ 1 JI VII,,.) + VU.) > 0 
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and B (t) = 213K IIVI12
+  4K 	+ K HV 0  > 0. Hence by the Gron- 

I A(s)ds 	t 	JA(e)dr 
wall inequality we obtain U (t)M2 < w0 2  e° 	+ f B (s) es 	ds where 

t E (0, T). Note that H (D) is embedded in Co  (D), the trajectories of WA (t) 

can be uniformly approximate on any finite interval [0, TI by functions V in 

C ([0, T]; H (D)) and D (A) is dense in 12  (D). Thus, the boundedness estimate 

is true for any local solution U (t). This shows that the unique local solution does 

not blow up on any finite intervals. 
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Appendix C 

Computer code 

Although not all of the programs are necessary when implementing a particular 
system, the following is intended as a guide for the construction of the algorithms 
presented in this text. Allocating code with respect to private and public access 
is at the discretion of the programmer. 

The following C++ 'header files' are assumed: stdio.h, iomanip.h, math. h, 
iostrearn.h, fstream.h, stdlib.h, and time .h. If using a different language, 
please utilise appropriate header files to ensure similar functionality. 
*The following files are specifically created for numerical implementations and as-
sumed when designing systems: functions. cpp, time-class. cpp, fft. cpp, 

vector. cpp, comp-num. cpp, comp.vec .cpp, matrix-3d. cpp, matrix-2d. cpp, 
chi-test. cpp, max-min. cpp, random-gen. cpp, path. cpp, square. cpp, and 
space. cpp. The last three classes are numerical implementations of the Brownian 
path, Brownian sheet, and Brownian space; refer to Propositions C.2.1 - C.2.3. 

C.1 Notation 

Algorithms have been coded in JAVA and C++, but will be presented in pseudo-
code to utilise the notation of this text and free the reader from a particular 
language syntax. Refer to the following examples. 

Program C.1.1. The function w (.) is a generic function returning a real value 
and the constant char TYPE-of _w = {'a' , 'm', 'g' , 'd'} determines if w (.) is 
an additive, multiplicative, general, or 0 functional, respectively. 

w (real F, vector X) : real 

{ 
if TYPE-of w = d then return (0); 
if TYPE-of _w = a then return (w(X)); 
if TYPE-of _w = m then return (Li (X) F); 
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if TYPE-of w = g then return (w(P,x)); 

} 
Thus in C++, Program C.1.1 could be: 

double wfunc(double F, double x, double y,  double z) 

{ double tempval = 0.0; 

if (TYPE_of_w =='a') 

tempval = 2x+y-3z*z; 

if (TYPE_of_w =='m') 

tempval = ((2x+y-3z*z)*F); 

if (TYPE_of_w =='g') 

tempval = ((2x+y-3z*z)*F*F—F); 

return (tempval); } 

Program C.1.2. For an example of a user defined class, the following d = 2 

matrix class is dynamically allocated and incremented by Ax. 

class matrix-2d 

{ 
double /.x, /.y,  A(.); 

matrix_2d(int M,N; double a,L) %°h Constructor function. 

AX 
{ 

=Ly = )t?,,/ x; 	A = new vector double [Mr ]; 

for j = 0 to M 

{ 
= new vector double [Np]; 

for k = 0 to N 

= 

} 
if print_it=1 then print "Create matrix-2d"; 

} 
matrix-2d( %% Destructor function. 

{ 
if print_it=1 then print "Destruct matrix-2d"; 

for j = 0 to M 

delete A3 ; 

delete A; 

} 
%0h Functions that belong in this class are placed here. 

}; 
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C.1.1 Constants 

The following constants will be utilised and denote integer intm,, as the max- 

imum positive integer that can be expressed on a given computer. 

double ii = 3.1415926535897932384626433; 

double e = 2.7182818284590452353602874; 

mt char-of fset = 304; 

mt print-it = 0; %% Set to 1 t print results to the screen. 

mt dec_places = 9; %% The number of decimal places requested when 

printing out results. The maximum value is dependent upon the number of sig- 

nificant digits being utilised on the computer. 

mt noise-generations = 1; %% The number of noise generations used to 

derive an approximation. Set equal to i if a pathwise approximation is required 

or a higher number if a non-pathwise approximation is required. 

double Lx = M-1' %% The corresponding Lx for Mx  where x E [0, U. 

mt M5maij = 5; %% The 'roughest' Mx  grid considered. 

double A = 1 .0; %% the hyperbolic CFL condition 

double Chyp  > 0; %% The speed of propagation 

mt hyp_STYLE_of_INIT = 1; %% Allows different initialization schemes to 

be utilised when evaluating adjacent points F (xi, Lit). 

mt hyp_STYLE_of_SOL = 1; %% Set to 0 if a P approximation is sought or 

1 if a approximation is sought over the Dol. 

double 

double C5 = 5e-12; 

mt e_STYLE_of_INIT = 1; %% A variable that allows for different initializa- 

tion schemes to be utilised when evaluating the discretised boundary. 

mt e_STYLE_of_SOL = 2; %% A variable that allows for different FDSy's to 

be utilised: SOR, multigrid, Jacobi, etc. 

double 79 = (2 (i + A 2 + A)) 1 ; %% The canonical FDSc's of (3.9) through 

(3.11) will be assumed. 

double At  = 0.001; 

char QGprocess = 'f'; %% 'h' '1' = Designates whether a Früh, Haines and 

Holland, or Lee process is being modeled. 

mt save = 1e7; %% Save [F (.)] and any other required information every 

'save'th time iteration. 

mt QGruns = lelO; %% The number of time iterations required before a 

model terminates. 
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C.1.2 Goodness of fit 

Program C.1.3. A test for goodness of fit using a Pearson Chi-square test, 
card(ti) 	- 	- 

where x2  (e) = 	
= 

j=1 

chi-2-test (matrix-2d POA.,F(.);  integer M, Np): real 

{ 
real a=O, 2 =O; 

for j = 0 to M 
for k = 0 to N 

{ 
if Fo (jx, kt) 0 then x2  = x2  + 

f F0  (jx, kt) = 0 then a= I P x  (jx, kt) H 
} 

if a > acritical then 

print "Questionable test:" (x2,a); 
return (x2 ); 

} 

C.2 Numerical generation of Brownian spaces 

A method for numerically generating a white noise stochastic space is accom-
plished by dividing a domain into mutually exclusive subspaces and generating a 

series of mean-zero Gaussian random variables. As standard notation, let a 10 
denote a given /3, 931 () denote the Lebesgue measure, and denote the Normal 

(, 	)2 
distribution via fv( 2 ) (s) 	e 22 . Mutually exclusive sub-domains, D, 
have independent and stationary increments such that: 
.W(0) = 0, W(D) .A.f(0,931(D)), and W(.) is continuous. 
'Given Dk C D3  then TE(W(D) I W(Dk)) = W(Dk), V(W(D) 

W(Dk)) = 9J1(D - Dk), and C(W(D) ,W(Dk )) = 931(D flDk ). 
.TE(w(D3)4) = 3931 (Dy. 
The initial generation of W (X) given Z', is a straightforward procedure, while 
the refinement of W (X) is not; as demonstrated via the following propositions. 

Proposition C.2.1. Assuming a Brownian path, W (x), has been created with 
931 (Di) = Ax; when the path decreases in step size to 931 (Dk) = j, the stationary 
increments of W(D) 	Af(O,9it(D)) refineto W (Dk  I W(D)) 	

f( 2 ,9J1(D)) 
and W2  (Dk+1  I W(D)) = W(D) - W(Dk), where k = 2j. A possible refinement 

160 



scheme would consist of W2  (Dk  I W(D)) = 	+ a and W2  (Dk+1  I W(D)) = 
W(D) — a; where a -'..Af(O, 1  9J1(D)). 

Proof. Given a Brownian path, derive a second process, W2  (x), by utilising a 

Levy Construction Method conditioned upon the functional values of W (Di). 

Hence, IE(W2  (Dk) I W(D)) = E(2i2 and V(Dk) = 4, to yield 

E(V(W2  (Dk) I W(D))) = 	- V (!2) = 	refer to Figure C.1. 

w(x) 	
x  Z 

	

_ 
	D,_ 

 

Figure C.1: Levy construction: Brownian path and sheet divisions 

Proposition C.2.2. Assuming a two-dimensional Brownian sheet has been cre-
ated where D,k consists of rectangular shape regions with central differences. In 
order to construct the Levy refinement scheme depicted in Figure C.1, let D,k 

be the union of the four restricted rectangular regions labeled {D0 , D1, D2, D3}. A 

possible refinement scheme would consist of: W (D0) 
= W(Di,k) 

+ + /3 , W(Di) 

+ 	-01,  W(D) 
= w(Dj,k) - 

+ /3, W(D3) 
= w(D3,k) - - 

/3; where 4 	2
a '-- .iV (0, 9Jt(D,k)) and fi{1,2} 	Al (0, I 9Y(Dj,k)). 

Proof. Let E = D0  U D or D2  U D3, a 	.A/ (O, 	and /3 r' Al (o, XY) 

Due to Martingale properties; V(W(D,k)) = Lx/y, V(W(E)) = 	and 

V(W(D0,1,2,3)) = 
x1y . Assuming that W(D,k) is given, use the ergodic drift to 

w(Dj,k ) 
yield: E(W(E) IW(Dj,k)) = 2  and V(W(E) W(D,k)) 

( 	'\ - 	_  = V((W(E))) - V(E(EIW(Dj,k))) = __ — v w(D,k) 	
-AXAY   - 

2 ) — 2 	4 - 

	

Let W(E) 
= w(D,k) 

+ a such that E(W(D) I W(E)) = 	and 

V(W(D) I W(E)) = V(W(D)) — V(]E(W(D) I W(E))) = AxAY  — v(f) = 4 

AxAY  __ 2  Lx1y - 	- AxAY 
 - 	— 	Hence, W( D3, 	2 4 	4 	4 	8 — 8 

± /3, yielding: W(D0) = 
W(D' k) 	a  + + fir, W(D1) 	

w(Dj,k) 
+ - fir, W(D2)4 	2 	= 

w(Dj,k) - 
+ /3, and W(D3) 

= 	a 
4 ——/3. 	 LI 4 	2 
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Figure C.2: Brownian space divisions 

Proposition C.2.3. Assuming a three-dimensional Brownian space has been cre-
ated where Dj,k,1  consists of rectangular shape regions with central differences. In 
order to construct the Levy refinement scheme depicted in Figure C.2, let D,k,1 be 
the union of the eight restricted rectangular regions {D0,.. . , D7}, where each of 
the D is adjacent to Pj,k,1.  A possible refinement scheme would consist of: 

w(Do)- 
W(D3,k,1) 

+ a  + 	+ a,, W(D1) = 
W(D3,k,L) + + 
	- a1, 8 	4 	2 

W(D2) - 
w(D3,k,l) 

+ - 	+ a2, W(D3) 	
w(D,,k,t) + 
	

$1 

	

- 8 4 2 	 8  
W(D4) - 
	
+ 	

- 
+ a3, W(D5) 

w(D3,k,l) - 

- 

	

- 8 4 2 	 8  
W(D6) 	

W(Dj,k,t) - - 	
+ a4, W(D7) 	

W(Dj,k,1) - a 	02 
- 	8 	----a4; where 

	

- 8 4 2 	
- 

 
c 	Al (0, JJ(Dj,k,j)), 13{1,2} 	Al (0, 193t(Dj,k,j)),  and a{l,2,3,4}  c'-' Al (0, j9Xt(Dj,k,j)). 

Proof. Repeat Proposition C.2.1 using the sub-domains {D0  U D U D2  U D31 and 
{D4  U D5  U D6  U D7}. Then utilise Proposition C.2.2 on each sub-domain. 	LI 

C.2.1 Normal random variables 

The following pseudo-random number generator algorithms are taken from code 
written by Dr. Jessica Gaines. As per her instructions, please do not distribute 
and contact University of Edinburgh Department of Mathematics and Statistic if 
interested in utilising the following code. 

Program C.2.4. The following is a general construction of a user-defined class. 

class jrandom 

{ 
jrandom(void) Gh%  Constructor function. 

{ %% Seed the random-number generator with current time 

srand( (unsigned)time( NULL)); 

if print_it=1 then print "Construct jrandom 1W functions."; 

} 
jrandom() XX Destructor function. 

162 



{ U Destruct the appropriate objects. 
if print_it=1 then print "Destruct jrandom 

} 
°h°h Functions that belong in this class are placed here. 

}; 

Program C.2.5. Sample random functions. 

randomt ( void ): integer 

{ 	return(rand(.)); } 
and 

randorn( void ): real 

{ 	return (random t(.) (int)); } 

Program C.2.6. Returns a uniform random deviate between 0.0 and 1.0. Set 

idum to any negative value to initialize or reinitialize the sequence. Uses no 

system-supplied routines and shuffles numbers. 

ran2(long idum): real 

{ 
integer MJ = 714025, IA = 1366, IC = 150889; 

long c,V98,newdum; 	integer iff=0; 

if (idum < 0 or if f = 0) then 

{ 
if f = 1; 

if print_it=1 then print "Initializing"; 

if (idum = (IC - (idum)) %MJ < 0) then idum = (- (idum)); 

for j = 1 to 97 

idum = (IA (idum) + IC) %MJ; Vj  = (idum); 

idum = (IA (idum) + IC) %MJ; o = newdum = idum; 

} 
- 	 1 (-f-97.O*a'\ 

j— integer 	MJ ) 

if (j>97 or j<1) then print 11RAN2: Error in j value."; 

a = V; newdum = (IA newdum + IC) %MJ; Vi  = newdum; 

return (th); 
} 

Program C.2.7. Routine to return a uniform random deviate between 0.0 and 

1.0; set idum to any negative value to initialize or reinitialize the sequence. 
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ran3(integer idum): real 

{ 
integer MBIG = io, MSEED = 161803398, MZ = 0; 

integer inext, inextp, if f = 0; 	long ma56, mj, mk; 

if (idum < 0 or if f = 0) then 

{ 
if f = 1; 

if print_it=1 then print "Initializing"; 

mj = MSEED - (idum); 

mj% = MBIG; ma55  = mj; mk = 1; 

for o=1 to 54 

{ 
j = (21 * o)%55; 	ma3  = mk; 	mk = mj - mk; 

if (mk < MZ) then mk+ = MBIG; mj = ma3 ; 

} 
for k = 1 to 4 

for o = 1 to 55 

{ 
ma,— = ma (1 + (o + 30)%55); 

if (ma0  < MZ) then ma0H- = MBIG; 

} 
inext=0; 	inextp=31; 

} 
if (++inext = 56) then inext = 1; 

if (++inextp = 56) then inextp = 1; 

mj = majnext - majnextp; 

if (mj <MZ) then mj+ = MBIG; 

majnext = mj; 

return ( 
\MBIGJ 

} 

Program C.2.8. Returns a normally distributed deviate with a given mean and 

standard deviation. 

SlowjV(real i,o): real 

{ 
integer iset=0; 	real gset, fac, r,v1,v 2 ; 

if iset = 0 then 

{ 
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while (r > 1.0); 

{vi =2random(.)-1; 	v2=2random(.)-1; 	r=v?+v;} 
fac=/_29(T); 	gset=avifac + ; 	iset=1; 

return (av2fac + ji); 

} 
else 

{ 	iset=0; 	return (gset); 	} 

C.2.2 Brownian sheet code 

A d = 2 example will be provided where W(D,k) is the random variable mapped 

to (xi, Yk)  e D,k and W(j, k, 1) is allocated via the scheme depicted in Figure C.1. 

Program C.2.9. Class square for the d=2 Brownian Sheet. 

class square 

real a; 	integer N, fringe; 	matrix-3d W; 

square(integer M, N; real Ax, Ay) °h% Constructor 

{ 
N=4; 	AXAY 

W = new matrix-3d (M,N,N); 

if print-it = 1 then print "Create square"; 

reset (.); 

edgeO; %/ correction for the adjacent points 

} 
square() °h% Destructor function. 

{ 
delete W; 

if (print_it=1) then print "Destruct square "; 

} 
°h% Functions that belong in this class are placed here. 

}; 

Program C.2.10. Function to reset the Brownian Sheet. 

reset( void ): void 

{ 
for j = 0 to M 
for k=0  to N 

for 1 = 0 to N 
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W(j,k,l) = Slow((,cr); °h% ,u = 0 

°h% Now correct for the boundary 

for j = 0 to M 

{ 
W(j,0,2) =0; 

W(j,0,3) = 0; 

} 
for k = 0 to N 

{ 
W(0,k,O) = 0; 

W(0,k,3) =0; 

ii 

W(j,N - 1,0) = 0; 

W(j,N - 1,1) = 0; 

W(M— 1,k,1) =0; 

W(MX - 1,k,2) = 0; 

Program C.2.11. Get the value of W(D) as depicted in Figure C.1. 

W(D) (integer j, k): real 

{ 
real i3=0; 

if (-1 <j < M) then 

if (-1 < k <Np) then 

for 1 = 0 to N 

/3 = /3 + W(j, k, I); 

return (/3); 

} 

Program C.2.12. Condense the noise as Lx -+ 2Lx. The order of operations 

is VERY important! 

condense_noise(matrix_3d W; integer M,N; real a) : matrix-3d 

{ 
M=1+; N=1+; a=2a; 

edgeO; %% correction for the adjacent points 

W(0,0,1)=W(0,0,1)+W(0,1,2)+W(1,1,3)+W(1,0,0); 

for k = 1 to N - 1 

{ 
W(0,k,2) =W(0,2k ) 2)+W(0,2k— 1,1)+W(1,2k— 1,0)+W(1,2k,3); 

W(0,k,1)=W(0,2k,1)+W(0,2k+1,2)+W(1,2k+1,3)+W(1,2k,0); 

} 
W(0,N - 1,2) =W(0,2(N— 1),2) +W(0,2(N— 1)— 1,1) 
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+W(1,2(N -1)- 1,0) +W(1,2(N - 

for j = 1 to M - 1 

{ 
W(3',0,0)=W(2j,0,0)+W(2j-1,0,1)+W(2j--1,1,2)+W(23',1,3); 

W(j,0,1)=W(2j,0,1)+W(2j,1,2)+W(2j+1,1,3)+W(2j+1,0,0); 

} 
W(MX - 1,0,0) =W(2(M- 1),0,0) +W(2(M -1)- 1,0,1) 

+W(2(M -1)- 1,1,2) +W(2(IVI - 1),1,3); 

for j = 1 to M - 1 

for k = 1 to N - 1 

{ 
W(j,k,3) =W(2j,2k,3)+W(2j,2k- 1,0) 

+W (23-  - 1,2k- 1,1)+W(2j- 1,2k,2); 

W(j,k,0) = W (2j, 2k, 0) + W (2j - 1, 2k, 1) 

+W(2j - 1,2k+ 1,2) +W(2j,2k+ 1,3); 

W(j,k,2) -W(2j,2k,2)+W(2j,2k-1,1) 

+W (2j + 1,2k - 1,0) +W(2j + 1,2k,3); 

W(j,k,1) = W (2j, 2k, 1) + W (2j, 2k + 1, 2) 

+W(2j + 1, 2k + 1, 3) + W(2j + 1, 2k, 0); 

} 
for j = 1 to M - 1 

{ 
W(j,N - 1,2) =W(2j,2(N - 1),2)+W(23',2(N -1)- 1,1) 

+W(23- +1,2(N-1)-1,0)+W(2j+1,2(N-1),3); 

W(j,N - 1,3) =W(2j,2(N- 1), 3) + W (2j, 2 (Ny  -1)- 1,0) 

+W (2j - 1,2 (N - 1) - 1,1) + W(2j - 1,2 (N - 1), 2); 

} 
for k = 1 to N - 1 

{ 
W(M - 1, k, 0) = W(2 (M - 1), 2k, 0) + W(2 (M - 1) - 1,2k, 1) 

+W(2(M-1)-1,2k+1,2)+W(2(M-1),2k+1,3); 

W(MX - 1,k,3) =W(2(M- 1) ,2k,3)+W(2 (M - 1),2k- 1,0)) 

+W(2(M- 1)- 1,2k- 1,1)+W(2(M -1)- 1,2k,2); 

} 
W(MX - 1,N - 1,3) = W(2 (M -1) ,2(N -1) ,3) 

+W(2 (M - 1), 2 (N - 1) - 1,0) + W(2 (M - 1) - 1,2 (N - 1), 2) 

+W(2 (M - 1) - 1,2 (N - 1) - 1,1); 

for j = 0 to M 
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{ 
W(j,0,2) = 0; 

W(j,0,3) = 0; 

} 
for k = 0 to N 

{ 
W(0,k,0) = 0; 

W(0,k,3) =0; 

} 
return (W); 

} 

W(j,N - 1,0) = 0; 

W(j,N-1,1) =0; 

W(M - 1,k,1) = 0; 

W(MX - 1,k,2) = 0; 

Program C.2.13. Expand the Brownian Sheet from 2x - /x as depicted in 

Proposition C.2.2. 

expandnoise(matrix3d W; integer M,N; real a): matrix-3d 

{ 
real a,b,c,/3,0`2 ; 	matrix-3d W2 , hold; 

edgeO; %°/ If doing a blow up 

Mx2 (Mx  1)+1; N=2(N-1)+1; 
- cr. a— 	, 	0`2 - - 

W2  = new matrix_3d(M,N,N); %% new noise grid 

for j = 2 to M -I %% Add 2 to j with each iteration 

for k=2 to N-1, %% Add 2 to k with each iteration 

{ 
/=W(,,0); a=s1ow.,A/(0,a); 4 	2
b = SlowA( (0, 0'2);  c = Slow/ (0, 0`2); 

W2  (j - 1,k+ 1,2) = /3—a+c; 

W2  (j,k+1,3) =13— a — c; 
W2  (j- 1,k,1) =/3+a—b; 

W2  (j,k,0) = 8+a+b; 

/3=W(,,1); a=siowJV(0,a); 4 	2
b = Slow.N (0, 92); c = Slow.N (0, 92); 

W2 (j,k+1,'2) =/3—a+c; 

W2  (j+ 1,k+ 1,3) = /3—a—c; 

W2  (j+1,k,0) =/3+a+b; 

W2 (j,k,1) =/3+a—b; 

/3=W(,, 2); a=SlowiV(0,a) 4 	2
b = SlowJV (0, 0'2);  c = SlowAI (0, a2); 
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W2  (j+1,k,3) =/3—a—c; 

W2(j+1,k-1,0)=13+a+b; 

W2  (j,k — 1,1) =/3+a—b; 

W2(j,k,2) =/3—a+c; 

13=4 2W(,,3); a=S1owJf(0,a); 

b = S1owJV (0, 92); 	c SlowjV (0, a2); 

W2(j,k— 1,0) =/3+a+b; 

W2(j-1,k-1,1) =13+a — b; 

W2(j— 1,k,2)=0—a+c; 

W2  (j,k,3) =13 — a — c; 

} 
for j = 2 to M - 1 %% Add 2 to j with each iteration 

{ 

13=4 2W(,0,0); a=S1owAi(0,a); 

b = SlowAf (0, 92); 	c = SlowAf (O, 0'2); 

W2  (j- 1,1,2)  =13 — a+c; 

W2  (j,1,3) = 13—a—c; 

W2  (j- 1,0,1) =/3+a—b; 

W2  (j,0,0) = /3+a+b; 

13= W(,0,1); a= S1owAf(0,a); 

b = SlowAf (0, 0'2); 	c = SlowAf (0,92); 
W2  (j,1,2) =/3—a+c; 

W2  (j+ 1,1,3) = 13—a—c; 

W2(j+1,0,0) =13+a+b; 

W2  (j,0,1) =13+a — b; 
1W
4 	2( 

1, 	a=S1owV(0,a); 

b = Slow/ (0, a2); 	c = SlowA( (0, 92); 

W2(j+1,Nzl  —1,3) =13 — a — c; 

Njj  

W 2(j,N— 1— 1,1)=13+a—b; 

W2  (j,N - 1,2) = /3—a+c; 

13 = 	 a= S1ow.iV(0,a); 4 (2 2 	 2 
b= S1owJV(0,a2); 	c= SlowAI(0,a2); 

W2  (j,N-2,0) =13+a+b; 

W2(j-1,N-2,1)=/3+a—b; 

W2(j-1,N-1,2) =/3—a+c; 

W2  (j,N - 1,3) = O— a —c; 

} 
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for k = 2 to N - 1 °h% Add 2 to k with each iteration 

{ 
=W(M;_1, ,0); 	a = S1owAI (0, 	a); 

b = Slow.Af (0, 92); 	c = Slow.A1 (0, 0'2); 

W2  (Ma, -2,k+1,2)  = /3 - a+ c; 

W2  (M - I, k+ 1,3) = /3 - a—c; 

W2 (M-2,k,1)=/3+a—b; 

W2  (Ma, - 1,k,0) = /3+a+b; 

/3 = W (0, , 1); 	a = S1owjV (0, a); 

b = SlowJV (0, 0'2); 	c = SlowAI (0, 92 ); 

W2 (0,k+1,2)=/3—a+c; 

W2 (1,k+1,3)=/3—a—c; 

W2 (1,k,0)=/3+a+b; 

W2 (0,k,1) =/3+a—b; 

/3 = W(0,,2); 	a= s1ow.iV(0,a); 

b = SlowAf (0, a2); 	c = S1owV (0, 0'2); 

W2  (1,k,3) =/3—a—c; 

W2 (1,k— 1,0) =/3+a+b; 

W2  (0,k— 1,1) = 

W2 (0,k,2) =/3—a+c; 

/3=W(M;_1,,3); a=S1owJ\/(0,a); 

b = SlowJf (0, 92); 	c = SlowJV (0, 92); 

W2  (M - 1,k - 1,0) = 

W2 (M-1-1,k-1,1) =/3+a—b; 

W2  (M —1— 1,k,2) = /3—a+c; 

W2  (M - 1,k,3) =/3—a—c; 

} 
/3 = W (M1,  0, 0); 	a 	S1ow.Af (0, a); 4 	2
b = Slow.,V (0, a2); 	c = SlowJV (0, 92); 

W2 (M-1-1,1,2) =/3—a+c; 

W2  (M - 1,1,3) = /3 - a — c; 

W2  (M — 1 — 1,0,1) = /3+a - b; 

W2  (M - 1,0,0) —/3+a+b; 

/3 = W(0,0,1); 	a = S1owV(0,a); 

b = Slow.,V (0, a2); 	c = S1owf (0, 92); 

W2  (0,1,2) =/3—a+c; 

W2  (1,1,3) =/3—a—c; 

W2  (1,0,0) =/3+a+b; 
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W2  (0,0,1) =/3+a—b; 

= W(0,!,2); a= S1ow.iV(0,a); 

b = S10wJV (0, 0'2); 	c = SlowJV (0, 0'2); 

W2  (1,N— 1,3) =/3—a—c; 

W2  (1,N, - 2,0) = 3+a+b; 

W2  (0,N - 2,1) = /3+a—b; 

W2 (0,N— 1,2) =j3—a+c; 
0 = 1W( M_1,  1-,3); 	a 	SlowAf(0,a); 4 	2
b = SlowAf (0, 92); 	c = SlowAf (0, 0`2); 

W2  (M - 1,N —1— 1,0) = /3+a+b; 

W2  (M — 1 — 1,N —1— 1,1) = /3+a—b; 

W2  (M —1— 1,N - 1,2) =/3—a+c; 

W2  (M - 1,N - 1,3) = /3—a—c; 

hold = W; W=W2; W2  = hold; 

delete W2 ; 

} 
return (W); 

} 

Program C.2.14. Save a Brownian Sheet for later use. 

void save_file( matrix-3d W; integer o): file 

{ 
integer ones= o%10; 

integer tens = ((o-ones)/10)%10; 

integer hundreds = (o-ones-tens*10)/100; 

char A = char (hundreds+ char-of f set); 

char B = char (tens +char_off set); 

char C = char (ones +char_off set); 

open print_file('s','q', A, B, 	, 	. C ' ' , 
for j = 0 to M 
for k=0  to N 

for I = 0 to N 
print-file, setprecision(dec_places), W(j,k,l); 

close print-file; 

} 

Program C.2.15. Output a Brownian sheet for a Maple plot. 
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maple -print _f ile(matrix_3d W; integer o, num): file 

{ 
integer ones= o°hlO; 

integer tens = ((o-ones)/10)%10; 

integer hundreds = (o-ones-tens*10)/100; 

char A = char(hundreds+char_off set); 

char B = char(tens +char_off set); 

char C = char(ones +char_off set) ; 
openprint_file('m','a','p','s', A, B, C, '.','m','w','s'); 

ones= nuni%10; 

tens = ((nuni-ones)/10)°h10; 

B = char(tens +char_offset); 

C = char(ones +char_offset); 

print-file A"BC":=[[ If

for k = N -1 to 0 

{ 
for j = 0 to M - 1 

print_file,setprecis ion (dec_places), W(D) (j, k)', "; 

print-file, setprecision(dec_places), W(D)(M-1,k) If  ][ ; 

} 
for j 0 to M - 1 

print-file, setprecis ion (dec_places), W(D)(j,0) 

print-file, setprecision(dec_places), W(D)(M - 1,0) 

close print-file; 

ii 

Program C.2.16. Get a Brownian sheet for further manipulation. 

get_f ile(matrix_3d W; integer o): matrix-3d 

{ 
real /3=0; 

integer ones= o°hlO; 

integer tens = ((o-ones)/10)°h10; 

integer hundreds = (o-ones-tens*10)/100; 

char A = char(hundreds+char_offset); 

char B = char(tens +char_offset); 

char C = char(ones +char_offset); 

if print_it=1 then print "Make sure that sq###.txt contains data."; 

open in_file('s','q',A, B, C,  
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for j = 0 to M 
for k = 0 to N 

for I = 0 to N 

{ 
in-file >> /3; 

W(j,k,1) = 

} 
close in-file; 

} 

C.2.3 Rhombic W (D) discretisations 

The following Brownian sheet applies to the FDS of Chapter 2 and utilised the 

notation of the previous Section. The sub-domains are divided via the scheme 

depicted in Figure C.3. 

V(D)(j,k) 

Figure C.3: Brownian sheet allocation 

Program C.2.17. Brownian sheet used for the hyperbolic problem. 

class hrhombic 

{ 
real a; 	integer N; matrix-3d W; 

h_rhombic(integer M,N; real Lx,/y) %% Constructor 

{ 
N=2; 	AXAY 

W = new matrix-3d (M,N,N); 

reset (.); 

if print-it =1 then print "Create h_rhombic"; 

} 
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-h-rhombic( %% Destructor function 

{ 
delete W; 

if print_it=1 then print "Destruct h_rhombic"; 

Program C.2.18. Initialize the Brownian sheet. 

reset( void ): void 

{ 
for j = 0 to M 

for k=0 to N 

for I = 0 to N 

W(j,k,l)=SlowJf(,a); %% p=0 

for j = 0 to M 

W(j,0,0) - W(j,O,O). 
- 2 ' 

for k = 0 to N 

{ 
W(0, k, 1)  

- 2 ' 

W(M - 1, k, 1) = W(M 
2 
-1,k,1) 

W(M - 1,k,0) = 0; 

} 

III 

Program C.2.19. Retrieve W(D). 

W(D) (integer j, k): real 

{ 
real fi= 0; 
if ((-1 <j <Ms) and (-1 < k < Ny)) then 

{ 
if j0 then O=W(]'-1,Y0); 

if k7~0 then i3=13+W(j,k-1,1); 

= /3+W(j,k,0) +W(j,k,1); 

} 
return (3); 

} 

Program C.2.20. Condense the grid from /x -~ 2/x. 
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condense_noise(matrix_3d W; integer M,N; real a): matrix-3d 

{ 
a=2a M_M+1. N=-±1; X 	2 	 Y 	2 

for j = 0 to M 

for k = 0  to N 

{ 
W(j,k,0) = W(D) (2j + 1,2k); 
W(j,k,1) =W(D) (21',2k+ 1); 

} 
} 

Program C.2.21. Expand the grid from 2/x --~ Ax. 

expand_noise(matrix_3d W; integer M,N; real a) matrix-3d 

{ 
M=2 (Mx —l)+l; N=2(N-1)+1; a=; 
for j = 0 to M 

for k =0  to N 

{ 
W(2j,2k,O) = Slow.N (0, a); 
W(2j + 1,2k,0) = SlowA1 (0, a); 
W(2j+1,2k,1) =Slow.Af(0,a); 
W(2j+1,2k-1,1) =W(j,k,0) —W(2j,2k,0) 

—W (2j + 1, 2k, 0) — W (2j + 1, 2k, 1); 

W(2j - 1,2k+ 1,0) = SlowV(0,a); 

W (2j, 2k, 1) = Slow.A1 (0, a); 
W(2j, 2k + 1,0) = S1owJV (0, a); 

W(2j,2k+1,1) =W(j,k,1) —W(2j - 1,2k+1,0) 
—W(2j,2k,1) — W (2j, 2k + 1, 0); 

} 
} 

C.2.4 Unit point source 

Program C.2.22. Introduce a unit point source to a two dimensional plane. 

delta(matrix_3d W; integer j,k): void 

{ 
reset (0); %% reset the sheet to 0 

W(j,k,0) = 0.25; 	W(j,k,1) = 0.25; 
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W(j,k,2) = 0.25; 	W(j,k,3) = 0.25; 

} 

Program C.2.23. Introduce a unit point source to rhombic discretisation. 

void delta(integer j,k) 

{ 
reset (0); %% reset the sheet to 0 

W(j,k - 1,1) = 1; 

} 

C.3 A priori initialization methods 

C.3.1 Symmetry considerations 

Program C.3.1. This is a sub-optimal program listing the orientations and the 

arrangement of points necessary to derive an estimate. To aid readability, let 

w (j, k) = w (jx, kLy) and assume v (.) = 0. 

real pt_eval(matrix2d F(.),G; 

{ 
real num=0, den=0; 

if (orientation=O) then 

{ 

square W; integer orientation) 

for k=1 to N-2 

{ 
den =den+G(1,k)+G(M-2,k); 	} 

for j = 1 to M - 2 

{ 
den = den + Ô (i 1) + 0 (j, N - 2); 	} 
_num. , . 

num_d- , 	oen — u, 

for j = 1 to M - 2 

for k = 1 to N - 2 

den = den + w (j, k) W (D) (j, k) 0 (j, k); 
num = num + den; 

} 
else if (orientation=1) then 

{ 
for k = 1 to N - 2 

{ 	num = num +F(k,N - 1)(1,k) +F(k,0)G(M - 2,k); 
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den = den +G(1,k)+G(M-2,k); 	} 
for J =1  to M., -2 

{ 	nuni= num +P(O,N-1—j)(j,1) 

+P (M,;  - 1,N —1 —j)(j,N —2); 
den =den+G(j,1)+G(j,N-2);

num  
} 

num =; den =O; en 
for k = (N - 1) to 1 
for j = 1 to M - 2 

den = den + w (N - k, j) W(D) (N - k, j) G  (j, k); 
num = num + den; 

} 
else if (orientation=2) then 

{ 
for k = 1 to N - 2 

num = num +P(M— 1,N-1—k)(1) k) 
+F(O,N — 1-- k)G(M - 2,k); 

den = den +G(1,k)+G(M-2,k); 	} 
for j = 1 to M - 2 

{ num = num +F(M— 1—j,N— 1)G(j,1) 
+(M— 1—j,O)G(j,N-2); 

den = den +G(j,1)+G(j,N-2); 	} 
num = num; den =O; den 
for j = (M - 1) to 1 
for k = (N - 1) to 1 

den = den + w (M - j, N, - k) W(D) (M - j, Ny,, - k) (j, k); 

num = num + den; 

else if (orientation=3) then 

{ 
for k = 1 to N - 2 

{ num = num +P(M-1—k,O)(1,k) 

+(M —1— k, N,, - 1)G(M - 2,k); 
den =den+C(1,k)+C(M-2,k); 	} 

for j =I to M - 2 

{ 
den =den+G(j,1)+G(j,N-2); 	} 

num = num; den =O; den 
for k = 1 to N - 2 

for j = (M - 1) to 1 
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den = den + w (k, M - j) W(D) (k, M - j) d  (j, k); 

num = num + den; 
} 
else if (orientation=4) then 

{ 
for k = 1 to N - 2 
{ 

	

num = num +P(M-1,k)G(1,k)+P(O,k)a(M-2,k); 

den = den +G(1,k)+G(M-2,k); 	} 
for j = 1 to M.,-2 

{ 	nuni= num +P(M-1—j,O)(j,1) 

+P'(M —1 — j,N - 1)G(j,N —2); 

} den =den+G(j,1)+G(j,N —2);
num num =; 	den =O; en 

for j = (M - 1) to 1 

for k=1 to N-2 

den= den +w(Mx  — j,k) W(D)(Mx  —j,k)ö(j,k); 

num = num + den; 
} 
else if (orientation=5) then 

{ 
for k = 1 to N - 2 
{ 

	

num — num -i-P(k,O)G(1,k)+P(k,N-1)G (Mx  ---2,k); 
den = den +C(1,k)+G(M-2,k); 	} 

for j = 1 to M - 2 

{ 	num = num + .P (0, j) 	(j, 1) + P(M - 1,j) 	(j,N —2); 

den =den+G(j,1)+G(j,N-2); 	} 
num = num; 	den =O; den 
for k = 1 to N - 2 
for j = 1 to M - 2 
den= den +w(k,j)W(D) (k,j)G(j,k); 

num = num + den; 
} 
else if (orientation=6) then 

{ 
for k = 1 to N - 2 
{ 

	

num = num +F(O,N — 1 —k)G(1,k) 

- 1,N — 1 — k)a(Mx  - 2,k); 
den = den + G (1, k) + G (M - 2,k); 	} 
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for j = 1 to M.,- 2 

{ nm=nurn+P(j,N—l)a(j,l)+P(j,O)G(j,N-2); 

den =den+G(j,1)+C(j,N-2); 	} 
num=; 	den =O; den 
for j =I to M - 2 

for k = (N - 1) to 1 
den = den + w (j, N - k) W(D) (j, N - k) G (j, k); 

nuin = nuin + den; 

} 
else if (orientation=7) then 

{ 
for k = 1 to N - 2 

{ 	num=nuni+F(M— 1—k,N— 1)G(1,k) 

+ 	(M - 1 - k, 0) G (M - 2, k); 

den = den + G (1, k) + G (M - 2, k); 	} 
for j =I to M - 2 

{ 	num=num+F(M— 1,N— 1 —j)G(j,1) 

+(0,N— 1 —j)(j,N —2); 

den = den +G(j,1)+C(j,N-2); 	} 
num=; 	den =0; den 
for k = (N - 1) to 1 

for j = (M - 1) to 1 
den = den + w (N - k, M - j) W(D) (N - k, M - j) (j, k); 

num = nuin + den; 

} 
return(num); 

I] 

C.3.2 Blow-up method 

The following programs will utilise a simplistic version of the Blow-up method. 
When implementing this method, one should correct for points 'close to the 
boundary' and then normalize the influence vector by dividing by ON  (Xi; Xi). 

The size of the influence vector can also be adjusted depending upon the domain 

and nature of the driving noise. 

Program C.3.2. Example function used for the elliptic V grid where C (j, k j, k) 

is approximated using the FDSc (3.10). 
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blow-up-5p (integer Mr ): real 

{ 
if M = 3 then return(1.0); 

if M = 5 then return(1.5); 

else return (1.5 + 0.45 (1092 (Mx) - 2)); 

Program C.3.3. GN (X; X) is estimated and then Corollary 32.17 is utilised 

to create a vector of C (.) values where: G0  = GN (j, k j, k) - LGN  (j, k j - o, k). 

void set-influence (integer M) : vector 

{ 
GN(X;Xi) = blow-up-5p (Mr); 

= vector [l.adius]; 
C0  = GN(X;X); 
61  = 00  - 1.00000; C2  = 61  - 0.45352; 

64  = 03  - 0.18685; C5  = 64  - 0.14364; 

67  = 06  - 0.09859; G8  = 07  - 0.08529; 

610  = 09  - 0.06722; C11  = 010  - 0.060780; 

for j = 0 to l' ++j++J 

if C3  <0 then C3  = 0; 

63  = 02  - 0.26760; 

G6  = 65  - 0.11685; 

09 = 08  - 0.07517; 

continue 

} 

Program C.3.4. Using the radiation principle, only points within a restricted 

neighborhood will be considered. A spline function, trapezoidal method, or some 

other approximation technique can be used to interpolate 612 (a) when a E (n/x, n + 1Lx). 

real Ginfluence (real a ) : real 

{ 
integer base = integer (); 

AX 

if (base < l adius) then return (abase); 
else return(0); 

} 

C.3.3 CQ method 

Regardless of the magnitude of Ax, distances in a uniform Zd  are traversed us-

ing an 11  norm since paths occur on jumps parallel to an axis. For example, a 

particle traveling the diagonal of the R2  rectangular domain of Figure 1.3 would 

cover a distance of NO + /32, while a particle in a uniform V travels a distance 

of Jal + 101. Since multiple paths of the same I' distance can be constructed in 
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Figure C.4: Minimum 1' distance paths for domains 

a uniform Zd;  ideally, every conceivable path over every distance is accounted 

for when constructing a numerical approximation. Although impractical for nu-
merical evaluations due to the infinite number of distinct paths for even trivial 
domains, Program C.3.6 determines the number of minimum distance l paths 

between two uniform Z' points; refer to Figure C.4. 

Remark C.3.5. In order to implement a X, yj-d  method, utilise I X , yj—d in 

place of Q  (X; Y) in the following algorithms. 

Program C.3.6. A recursive function that determines the number of minimum 

distance 11  paths in a restricted convex sub-domain between two uniform Zd  points 

(Xa, Yb, z, t) and (Xa+i, Yb+m, 	t+0), where {a, b, a, /31 are integers. 

function Qpath (integer l, m, n, o, sum) : integer 

{ 
l=l, m=m, n=Inj, o=o; integer branch =0; 

% If all counters are 0 but one, then only one Z' path. 
If {(l +m + n + o) = max (1, m, n, o)} then branch = 1; 

else 

{ °h Recursive calls to cover the different branching paths 
If 1>0 then branch = branch + Qpath (l-1, m, n, o, sum); 

If m> 0 then branch = branch + Qpath(l, m - 1, n, o, sum); 

If n>0 then branch = branch + Qpath(l, m, n — i, o, sum); 

If o> 0 then branch = branch + Qpath(l, m, n, o - 1, sum); 

} 
return (sum + branch); 

} 
.If d = 1, then there is only one path between xj  and Xk such that Qpath (.) = 1. 
.If d = 2, then the number of paths between (xi, Yk)  and (x +1, Yk+m)  is alge-

braically reduced to Qpath (1, m, 0, 0, 0) = (+m) = (i+m) 
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.If d > 2 then the number of paths between X3  and Xk experiences geometric 

growth. For example, when d = 3: Qpath (1, 1, 1, 0, 0) = 6, Qpath (1, 2, 3, 0, 0) = 

60, Qpath (2, 2, 2, 0, 0) = 90, and Qpath (3, 3, 3, 0, 0) = 1680. 

Program C.3.7. A GQ function which is not corrected for the number of adja- 

cent points. If 	< 0 (Ax) (50x), then an exact calculation is recommended, 

otherwise an approximation is highly recommended. When Lx 54 Ay 0 /z $ At 

a weighting scheme for 79 can be implemented. 

GQ (integer j, k, 1, m, n, 0; real 9): real 

{ 
integer a = j — m+k — n+l — ot; %% the 11  norm 
return (t9a 

} 

Program C.3.8. This is a simplistic realisation of the GQ where the Qpath Pro- 

gram C.3.6 has been replaced by an equivalent binomial coefficient. An adjustment 

for adjacent points are included given a square domain is assumed. 

real GQ( integer j,k,rn,n, card ( adjacent )) : real 

{ 
real a=0; 	integer o, counter; 

o = j - m + Ik - nJ; 	counter = mm (jj - rn, Ik - nD; 

%% exact calculation if o<50  
thena=&(o-2+card (Padjacent) \ 

)counter  

else - 
(o_2+card(adaceflt)\ 

-79'  counter 	 ); %%approximation 

return (a); 

Ii 

Program C.3.9. A simple implementation on a rectangular domain. 

matrix2d GQ( matrix2d F) : matrix2d 

{ 
for k=1 to N-2, ++k 

for j=1 to M-1, ++j 

F,k =DET(j,k)+ST0(j,k); 

} 

Program C.3.10. This program approximates values of E fl (X) F6u  (X) using 
6Z5 

the GQ (.) results and to estimate H (X) 
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real DET(integer J, K; real F(.)) : real 

{ 
real /3=0, num =0, den =0; 

for j=l to M-2, ++j 

{ 
= GQ(J,K,j,0,9,l); 

den = den + /3; 	num = num + /3F7 (j,0); 

/3 = GQ(J,K,j,N - 1, V, 1); 

den = den + /3; 	num = num+ /3P5  (j,N —1); 

} 
for k =I to N —2, ++k 

{ 
/3 = GQ(J,K,0,k,O,l); 

.den = den +/3; 	num = num +/3F5j(0,k); 

/3 =GQ  (J,K,MX - 1,k,79,1); 

den = den +/3; 	num = num +/3Fo(M — 1,k)); 

} 
if (num <0.00001) then return (0); 

else return(num) 

I] 

Program C.3.11. This program approximates values of G using the GQ (.) re-

sults and derives an estimate for the functionals of the system. 

real STO(integer J,K) : real 

{ 
real /3=0, num 0; 

for j=1 to M-2, ++j 

for k=1 to N-2, -H-k 

{ 
/3 = 
if (j J or k K) then 

num = num + /3 (v (jx, kLy) 9J1 (D) + w (jix, kLy) W(D) (j, k)); 

} 
return( (J, K; J, K) V ( ( (.) , Jtx, KLy) 9N (D) 

+w (Jzx, Kty) W(D) (J, K)) + \'Onum) 
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C.3.4 GPS method 

Program C.3.12. This is a sub-optimal program showing the orientation of 

points with respect to the discretised Green's function. A method for estimating 

the influence from the driving functionals {v (.) , w (.)} is omitted. 

void 8GPS(matrix_2d [P] , [s]; square [W]) 	matrix-2d 
{ 

real num =O; 	real den =O; 

for j=1 to M-2, ++j 

for k=1 to N-2, ++k 

{ 
num = C (go;  j, k) F (gao); %°h orientation=O 

den = 
num =num 	- k,j)F( i ); %°h orientation=1 

den = den + G( o;N - k, j); 

num = num +(o;M — j,N - k).(p2); %% orientation=2 

den = den +G( o;M — j,N - k); 

num = num +G(o;k,M —j)F(p); °h% orientation=3 

den = den +G( o; k, M.  -j); 
num = num +(go;M —j,k)(4); O/G%  orientation=4 

den = den +G(o;M—j,k); 
num = num + 	(go; k,j)F(g 5); °h°h orientation=5 

den = den + 	(po; k, j); 

num = num + G( o;j,N - k)F( 6 ); %% orientation=6 

den = den +G(o;j,N - k); 

num = num +G(go;N - k, M,,, -j)P(); Vo% orientation=7 

den = den +G(g o;N—k,M—j); 

=nUM den + {dN () , V () M (D) , w () W(D) 
} 

return ([F]); 

} 



Appendix D 

Figures 

Although the numerical work to verify the results of this chapter have involved 

uniform V with a few billion interior points, in order to show visible changes, 

only rough domains will be presented. 

D.1 Hyperbolic system 

Figures D.1 through D.6 represent a numerical refinement of a uniform V rectan-

gular domain (x, t) e { [0, 1] x [0, ] } where S52  (F (x, t) , 1) = F (x, t)+2F (x, t) axat 
F(x,0) = sin (27rx+2lrt) = sin(2irx), and Ox,t) 	2r cos (2irx). Using the 

513 x 257 numerical approximation of the process as the 'numerical solution,' 

Table D.1 gives a quick comparison of the different numerical refinements where 

x2  (c) is a standard Pearson's chi-square statistic and max (eg) is the maximum 

global error taken over the DoT. Since the chi-square statistic yields a p-value 

of approximately 1, this indicates that even rough Z2 x  approximations are good 

approximations to the numerical solution. 

Grid Size x2  (c) max (eg) 
(513 x 257) 0 0 
(257 x 129) 0.00123126 0.0254 
(129 x 65) 0.00368544 0.05111 
(65 x 33) 0.00863931 0.1013 
(33 x 17) 0.0192065 0.2574 
(17 x 9) 0.044964 0.577 
(9 x 5) 0.129365 1.155 

Table D.1: 	comparisons 

185 



Figure D.1: Lx = 

Figure D.2: x = 



Figure D.3: /x = 32 

Figure D.4: Ax = 64 
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Figure D.5: Ax = 
128 

Figure D.6: Ax = 
256 
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D.2 Elliptic systems 

To illustrate the discretised Green's function Lemma's, let: 

*Figure D.7, depicts a Kroneker delta function located at (, ). Often called a 

'unit point source,' this will be utilised to derive the discretised Green's function. 

.Figures D.8 through D.12 represent the growth of a Green's function 'close to 

the boundary' to show that the function experiences limited growth. 

Figures D.13 through D.17 represent discretised Green's functions on a unit 

square Z2  grid. 

Figure D.7: 61 i\ in V 
2'2) 	64 
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Figure D.8: C (, y; j, k) 9Y (D) on 

Figure D.9:" -i " 2y; j, k) 9J1 (D) on 
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Figure D. 10: C (, 3 y; j, k) 9J1 (D) on Z3333  

Figure D.11: C (, 4y;j, k) 9J (D) on 
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Figure D.12: G(/.x, Ay; j,k)9R(D) on 
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Figure D13: Discretised Green's Function on a 9x9 grid 
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Figure D14: Discretised Green's Function on a 16x16 grid 
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Figure D15: Discretised Green's Function on a 33x33 grid 
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Figure D16: Discretised Green's Function on a 65x65 grid 
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column 
20 	40 	50 	80 	100 	120 

Figure D17: Discretised Green's Function on a 129x 129 grid 
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D.2.1 Z21  examples 
512 

Using a Z2  unitsquare grid on {[0,1]x[O,1]} where Ax=Ay = -1--, approximate 82  F(x,y) = 82W(x,y) via an iterative 
512 	 ax ay 

FDSy using {FDSc = (3.11), ; 0 =2x1O'41. The following two figures represent theWBM() used to drive the system. 

Plot of WBM(D) using file elsq004.txt 
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Plot of WBM(Q)  using file elsq005.txt 
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Elliptic additive noise system driven by elsq004.txt with a linear boundaryF(x,y)=l. 
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Elliptic additive noise system driven by elsq005 .txt with a linear boundar)f(x,y)=1. 

Pe 
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Elliptic additive noise system driven by elsq004.txt with a non-linear boundar)F c (x,y)= 
(1+x) +y 
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Elliptic additive noise system driven by elsq005 .txt with a non-linear boundar) ç (x,y)= 
(1+x) +y 
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Utilize a Z2 unit square grid on {[O,1]x[0,1]} where Ax=Ay = ---- and approximate 62  F(x,y) = F(x,y) 	via 
512 	 ax 0-Y 

{FDSc = (3.11), e 0 =2x10 141. 

Elliptic multiplicative noise system driven by elsq004.txt with a non-linear boundar)F,ç (x,y)= 
(1+x) +y 
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Elliptic multiplicative noise system driven by elsq005.txt with a non-linear boundar)F(x,y)=. 
(1+x) +y 2 
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D.3 Quasi-Geostrophic system 
Using a Z2  unit square grid on { [0, 1]x[0, 1] } where AxAy = 	and At 

=1 
Ax; approximate the Früh QG process 

with 0 boundary conditions ande 0 =5x10 12  using the process: 
aQ(x, y, z, t) 

=-J(F(x, y, z, t), Q(x, y, z, t))- 0. 2A F(x, y, z, t)+ O.32A2  x, y, z, t) 
+ 2 W(x, ' z t) 

at 	 axayat 

where Q(x, y, z, t) = A2F(x, y, z, t)+ O.iy - 90AF(x, y, z, t). 

Level 0 
	

Level 1 

t = 0.001 time unit 
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1.5 

t0.01 time unit 

t=0.02 time unit 
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t=0.3 time unit 

t=0.6 time unit 
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t=0.9 time unit 

t=1.0 time unit 
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