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Abstract 

The ability of higher-order statistics to preserve phase information makes them particularly 

useful in the study of non-Gaussian stationary linear processes amongst other things. This 

thesis derives some new results in the estimation of the parameters of MA models from the 

cumulants of the output processes. 

New general relationships between the output cumulants and the system parameters are de-

rived. These relationships involve different cumulant slices of the same order and the system 
parameters, and are used to develop new system identification methods which use only third-

order or only fourth-order cumulants. Both least squares and recursive versions of the system 

identification algorithms are proposed. The identifiability of the algorithms is formally proved 

and asymptotic performance expressions are derived. Previous techniques of the same type 

required the use of second order statistics in order to ensure identifiability, sacrificing in this 

way the advantage of HOC-based methods in the presence of additive coloured Gaussian noise. 

The important issue of model order selection is also addressed and a practical method based 

on the minimisation of a cumulant-error function is proposed. It is also demonstrated that the 

MA parameter estimation methods are useful for the estimation of ARMA model parameters 

through double-MA modeling. 

In many applications the primary objective is the estimation of the inverse filter coefficients. 

New general relationships are derived which involve the output cumulants and the inverse 

filter coefficients. Based on these relationships, a unified description of existing deconvolution 

methods is proposed and new deconvolution methods based on fourth-order cumulants or on a 

combination of second- and fourth-order cumulants are developed. 

Finally, this thesis investigates properties that characterise sets of numbers as being the cumu-

lants of some MA model. This problem is easier to analyse if the numbers are organised in a 

matrix form and the properties are expressed using matrix theoretic notions such as the rank 

of a matrix and the features of linear structured matrices. Because of estimation errors, sets 

of sample cumulants are not real cumulants of some MA model. Based on the characteristic 

properties of sets of cumulants, this thesis presents an iterative composite property mapping 

algorithm which maps the sample cumulants to a set of enhanced cumulants. If convergence 

is achieved, the enhanced cumulants are true cumulants of some MA model. If convergence 

has not been achieved, the enhanced cumulants are "nearer" to a set of true MA cumulants 

than the original set of sample cumulants was. It is shown that when the enhanced cumulants 

are used for parameter estimation, they can improve the performance of parameter estimation 

algorithms. 
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Chapter 1 

Introduction 

1.1 Introduction 

Data acquisition is one of the most important stages in the study of both natural and 

artificial processes. The data quite often are in the form of a sequence or equivalently 

in the form of a discrete signal. Discrete signals can be classified in two broad cate-

gories: deterministic signals whose exact form can be reproduced at will using some 

well defined algorithm, and random signals which are sequences of numbers obeying a 

certain probabilistic law. The majority of discrete signals encountered in practice, and 

usually the most interesting ones, are random signals'. In most cases the underlying 

probabilistic law is not known, or at best is only partially known. In order to be able 

to process a random signal in a useful way it is necessary to make some statistical as-

sumptions regarding its underlying probabilistic law. Such assumptions which aim at 

explaining or describing the mechanisms underlying the generation of random signals, 

are called random or stochastic models. The use of models for the study of random 

signals was first proposed by Yule in [2]. 

Within this thesis the problem of estimating the parameters of a particular class of 

stochastic models is considered. The purpose of this chapter is to give an informal 

introduction to the work undertaken in this project. The chapter begins with a brief 

overview of stochastic modeling which helps put the contributions of this thesis in the 

appropriate context. Following this, there is a discussion of the principal motivations 

for this work. Finally the organisation of the thesis is described. 

1.2 Stochastic Modeling 

Modeling is an essential step in practical problem solving. As Mendel points out in 

[3, 4] the modeling process can be decomposed into four stages: Representation, mea- 

surement, estimation and validation. The representation stage involves identifying the 

is interesting to point out that the definition of random signals used here, includes deterministic 

signals observed in random noise. 
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Chapter 1 : Introduction 

class of models which is more appropriate for the problem under consideration. For 

example in problems involving random signals, the representation stage involves deci-

sions as to whether the stochastic model should be linear or nonlinear, time-varying or 

static; in the time domain or frequency domain etc. 

The measurement stage involves deciding which physical quantities related to the prob-

lem under consideration need to be measured and how they should be measured. 

The estimation stage involves using the measurements for the estimation of 

non-measurable physical quantities related to the problem under consideration. These 

physical quantities are usually parameters characterizing the underlying model. 

Finally the validation stage involves the design of statistical tests involving confidence 

limits for assessing the success of the modeling process. 

The work in this thesis deals with the problem of estimation for problems where the 

measurements are random signals. Before looking at the estimation methods inves-

tigated in this thesis, it is necessary to examine the statistical mechanism which is 

assumed to generate the observed random signals. It is interesting to note here that 

the more we assume about the underlying mechanism the easier the estimation stage 

becomes. On the other hand, this restricts the range of applications of the model. The 

assumptions about the generating mechanism of the signals considered in this work are 

summarised in the next section. 

1.2.1 Modelling Assumptions 

Measured random signals are assumed to be realisations of discrete stationary random 

processes i.e. processes whose probabilistic law does not change over time [5]. Discrete 

stationary random processes offer two main advantages: First, discrete stationary pro-

cesses are quite often ergodic processes [5] i.e. a single infinite length realisation of the 

process is sufficient to characterise the underlying probabilistic law. Lack of ergodicity 

prohibits the practical application of estimation methods in problems where only a sin-

gle realisation of the random process is available. Second, their theoretical foundations 

have been studied extensively over the past 50 years, starting with the influential work 

of Wiener [6] and Wold [7]. Wold's decomposition theorem states that every discrete 

stationary process can be decomposed to a general linear process and a predictable 

process with these two processes being uncorrelated to each other. 
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Chapter 1 : Introduction 

Linear Models 

Wold's decomposition theorem is one of the most important results in modern statistical 

signal processing. It provides the theoretical justification for the construction of linear 

models for the study of discrete stationary processes. In this thesis it is assumed that 

the random signals under consideration are realisations of stationary processes whose 

predictable component is zero. The idea is that the measured random signal is the 

output of an unknown linear system whose input although un-measurable, is known 

to be a random independent identically distributed (lID) sequence. Before discussing 

the probability distribution of the input sequence, it is useful to make some further 

assumptions on the structure of the linear filter. To facilitate practical implementations 

it is easier to assume that the linear model is described by a finite number of parameters. 

The most popular approach to achieve this is to restrict attention to models whose 

corresponding filter transfer function is a rational polynomial. This translates in the 

time domain to an input-output relation for the stochastic model according to which 

the present output value of the model is a finite linear combination of past values of the 

model output (i.e. feedback) and present and past values of the model input [8]. The 

coefficients of the linear combination are the parameters of the model. Models satisfying 

the general input-output relation involving past and present values of both the input 

and output are called Autoregressive Moving Average models (ARMA models). Quite 

common are the following two special cases of ARMA models: 

• Autoregressive models (AR. models) which involve only the present value of the 

model input. 

• Moving Average models (MA models) which involve no past values of the model 

output. 

This thesis investigates batch estimation methods for MA models. From the discussion 

so far it is obvious that the proposed modeling of random signals involves three physical 

quantities: the input signal, the finite set of model parameters and the output signal. 

Here it is assumed that from these three quantities only the output signal is measurable. 

The other two can only be estimated using the measured output signal. 

If the primary objective is the estimation of the model parameters, then the estimation 

problem is referred to as system identification and has received extensive attention in 

system theory, time-series analysis and control theory [9, 10, 11, 12]. Novel methods 

for system identification of MA models are presented in this thesis. These methods can 

also be used in ARMA parameter estimation for the estimation of the MA part of the 

ARMA process or even for the estimation of the AR part as will be seen in chapter 3. 

On the other hand, if the primary objective is the estimation of the input sequence, then 

the estimation problem is referred to as blind deconvolution or simply as deconvolution. 

3 



Chapter 1 : Introduction 

The term blind deconvolution first appeared in Stockham et al's paper [13]. Deconvo-

lution involves estimating a linear system whose transfer function is reciprocal to the 

transfer function of the system corresponding to the linear stochastic model. This is 

also referred to as estimating the inverse system. Algorithms for blind deconvolution 

are also investigated in this thesis. 

Non-Gaussian linear processes 

Another important issue in the modeling approach adopted in this thesis is that of the 

probability distribution characteristics of the input process of the linear system. The 

most common assumption usually made in the statistical signal processing literature 

is that the input process is a white Gaussian process with zero mean and constant 

variance. Parameter estimation theory for Gaussian processes is well established and 

it is relatively easy to derive objective performance benchmarks for estimators like 

the Cramer-Rao Bound [5]. In addition Maximum Likelihood estimation [5, 14] is 

relatively straightforward for Gaussian processes. Modeling using Gaussian processes 

also has some theoretical justification because of the implications of the Central Limit 

Theorem. Interestingly enough, there is a considerable number of practical applications 

where non-Gaussian signals have been identified. To name a few, radar returns, seismic 

reflectivity sequences and passive sonar are modeled as Rayleigh, mixture of Laplace, 

or log-normal distribution processes respectively. Communication applications also 

involve non-Gaussian processes. Motivated by evidence cited above, we depart in this 

thesis from the Gaussian model and consider specifically non-Gaussian linear processes 

and estimation methods for such processes. 

The departure from the Gaussian model has some important implications for the sta-

tistical tools used in this thesis. Traditionally correlation-based methods [15, 16, 11, 9] 

have been employed for the study of Gaussian processes. This was because zero-mean 

Gaussian processes can be explicitly characterised by their second-order statistics and 

at the same time first- and second-order statistics do not carry any information on the 

phase properties of the underlying linear system. 

For non-Gaussian processes, first- and second-order statistics are not sufficient for their 

complete characterisation. For the study of non-Gaussian processes, statistics of order 

higher than two, have been used in statistical signal processing during the past twenty 

years. In most practical applications involving non-Gaussian processes, third- and 

fourth-order moments and cumulants have been used, as well as their Fourier transforms 

known as bispectra and trispectra. The utilisation of higher than second-order statistics 

for the study of non-Gaussian linear processes allows the recovery of both amplitude and 

phase information of the underlying linear system. Consequently higher-order statistics-

based methods can identify non-minimum phase systems. The earlier techniques [17, 

18, 19] which are dated before the emergence of higher-order statistical techniques, 
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Chapter 1: Introduction 

could achieve the same result but only under restrictive assumptions (first-order MA 

models, limited class of input distributions). Because of their theoretical advantages 

in the study of non-Gaussian linear processes, higher-order statistical techniques are 

good candidates for application to a wide range of practical problems. For example, 

areas of application include estimation of source signature in seismic data processing 

[21, 22, 23, 24], construction of equalisers for communication systems [25, 26, 27, 28], 

biomedical signal processing [29] and other areas. However, it should be pointed out, 

that the type of stochastic models discussed in this section do not always describe 

accurately the natural processes which underlye practical problems. The most common 

problems are violations of the assumptions of stationarity and whiteness of the driving 

sequence [30]. 

1.3 Estimation Using Higher-Order Statistics 

Dealing with non-Gaussian processes almost always implies abandoning Maximum Like-

lihood estimations methods. This is because the likelihood function is usually analyti-

cally intractable in the non-Gaussian case. This is reflected in the existing higher-order 

statistics-based estimation methods for non-Gaussian linear processes, which are all 

instances of the general Method of Moments [14]. The estimation methods consid-

ered in this thesis are also based on the Method of Moments. Although the results 

presented here are relevant to general ARMA processes, the investigation is mainly 

oriented towards MA processes. 

The area of HOC-based (higher-order cumulant-based) MA parameter estimation is a 

mature area of research with many papers produced over the last ten years [31, 32, 33, 

34, 35, 36, 37, 38, 39, 40]. The majority of the existing work is concerned with the 

development of linear algebraic methods i.e. methods involving the solution of linear 

systems of equations with respect to expressions of the system parameters. Despite 

the maturity of the subject, some areas have been identified where there is scope for 

further development. More specifically, there is no unified description of methods based 

on the inter-relations of different cumulant slices of the same or different order. Such 

an analysis is undertaken in this thesis. In particular, I develop new general equations 

which inter-relate cumulants slices of both the same and different orders. I consider 

two versions of these equations, one involving the system parameters and a second one 

involving the inverse system parameters. 

From my theoretical development, I have derive new methods for system identification 

and deconvolution which fill the gaps of existing techniques. For example I designed 

the new system identification methods to deal with signals contaminated with additive 

coloured Gaussian noise in a more efficient manner than earlier techniques. Furthermore 

I develop new deconvolution methods based on fourth-order cumulants and present a 
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first systematic study of the identifiability of HOC-based deconvolution methods. 

Finally, an interesting issue concerning the higher-order cumulants of MA processes 

that has not been investigated before, is that of deriving properties that characterise 

real cumulants of MA processes. In this thesis I derive characteristic properties of 

cumulants which I then translate into properties of matrices consisting of cumulants. 

I use these results to enhance the quality of sets of sample cumulants and to develop 

novel iterative methods for MA parameter estimation. 

1.4 Thesis Organisation 

After this introduction the theory of higher-order statistics is reviewed. In Chapter 2 the 

cumulants of stationary processes are defined, and their symmetry properties resulting 

from the stationarity assumption are investigated. The cumulants of linear processes 

are examined later and the fundamental relationship between the output cumulants 

and the impulse response of linear system is presented. The phase properties of linear 

systems with a rational transfer function are reviewed and the ability of higher-order 

cumulants to resolve phase ambiguity is demonstrated with examples. 

In chapter 3 the problem of MA system identification is considered. General equations 

relating cumulant slices of the same or different orders are developed. Existing system 

identification methods are reviewed, and expressed within a unified framework using 

the aforementioned equations. New linear system identification methods are developed 

and both least squares and recursive solutions are proposed. Applications of the new 

methods to model order selection and ARMA parameter estimation are also presented. 

In chapter 4 the problem of blind deconvolution of MA models is considered. General 

equations are developed relating MA cumulants to the inverse filter coefficients. These 

equations are then used to develop linear methods for blind deconvolution for MA 

models. The structure of the matrices involved in these methods is studied in order to 

demonstrate the identifiability of the deconvolution methods. Finally, expressions for 

the asymptotic variance of the inverse filter coefficients are derived. 

Chapter 5 deals with the subject of MA cumulant enhancement. Second- third- and 

fourth-order cumulants of MA processes are used to build matrices for which certain 

properties are derived. These properties are shown to be characteristic of matrices 

consisting of true MA cumulants. Property mappings are developed corresponding to 

the cumulant matrix properties. The property mappings are then used to build iterative 

procedures to map sample cumulant matrices to matrices possessing the prescribed 

properties. This procedure can be viewed as an alternative to nonlinear cumulant 

matching. 
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Chapter 6 summarises the conclusions of this work and suggests areas for useful future 

work. 



Chapter 2 

Higher-Order Statistics 

2.1 Introduction 

The traditional approach to the solution of almost every signal processing and system 

theory problem has been the application of second-order (correlation-based) methods. 

The mean and the covariances (first and second order statistics respectively) are suffi-

cient for the characterisation of the probabilistic law of stationary Gaussian processes. 

In real world applications though, it is quite common to encounter non-Gaussian pro-

cesses. For non-Gaussian processes apart from the first and second order moments, 

moments of order higher than 2 provide additional information about the probabilistic 

law of the processes. Utilisation of high-order moments in parameter estimation prob-

lems involving non-Gaussian processes can lead to improved accuracy. During the past 

15 years there has been increasing interest in this direction. 

Although moments provide all the available information for higher-order analysis of 

a random process, it is usually preferable to work with cumulants which are quantities 

closely related to moments. According to [46] cumulants were first defined by Thiele 

in about 1889. Most of Thiele's work is in Danish and his most accessible English 

translation appeared in 1931 [47]. The next important contribution to the statistical 

theory of cumulants was due to Fisher in 1929 [48]. For the signal processing commu-

nity the most influential work was that of Leonov and Shiryaev [49], Brillinger [50] and 

Brillinger and Rosenblatt [51]. More recently hundreds of articles have appeared on 

different aspects of higher-order statistical methods in signal processing. 

This chapter sets out the background theory of cumulants in general and more specially 

the theory of cumulants within the context of linear system theory. The chapter con-

tains the most important theoretical results required for the development that follows 

in the subsequent chapters. The chapter begins with the formal definition of moments 

and cumulants for multivariate random variables. The properties of cumulants and 

moments are also discussed here. The discussion is then specialised on the cumulants 

of random stationary processes and more particularly on the cumulants of stationary 

linear random processes. The relation between cumulants and the impulse response of 

linear systems is established in section 2.5. In section 2.6, linear systems with rational 
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transfer functions are considered, and the ability of higher-order statistics to char- 

acterise their correct phase properties is discussed. Finally, the chapter ends with a 

discussion of sample cumulant and moment estimators and their asymptotic properties. 

2.2 Moments and Cumulants 

Cumulants are the main tool used in this thesis. Because cumulants are better under-

stood as functions of the moments, this section begins with the definition of moments 

of vector random variables. Let X be an n-dimensional random vector defined as 

X = [X1'...'  X'] T . The nth-order moment (X) = Yn (X 1 , ..., X) is defined as [5] 

(2.1) 

The moments are related to the characteristic function of the random vector X which 

is defined as follows [5] 

	

= E{exp(j TX)}, 	 (2.2) 

where is an n-dimensional complex vector defined as = [ti, ...,eThIT. It can easily be 

shown that 

= 	 I  
(2.3) 

in equation (2.2) is changed to AT,  the resulting function 

	

Mx (A) = E{exp(,\TX)} 	 (2.4) 

is the moment-generating function. The nth-order moment of the random vector X is 

equal to the coefficient of the fl Ai in the Taylor expansion around zero (provided it 

exists) of the moment-generating function. Equation (2.3) can now be written as 

Yn 	
OMx(A) I 

(2.5) ..., X) 
= 0A 1  

The logarithm of the characteristic function is the second characteristic function of the 

random vector X [5]: 

= lnx() = ln(E{exp(j T X)}). 	 (2.6) 

in equation (2.6) is changed to AT,  the resulting function 

	

K(A) = ln(E{exp(A T X)}), 	 (2.7) 

9 
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is the second moment generating function or cumulant generating function. In anal- 

ogy with the moments being the coefficients of the. Taylor expansion of the moment- 

generating function, the cumulants are defined as the coefficients of the Taylor ex- 

pansion around zero 1  of the cumulant-generating function. In particular, the dumu- 

lant of the random vector X is defined as the coefficient of the fJL 1  A, in the Tay- 

lor expansion. The nth-order cumulant of the random vector X will be denoted as 

= ic(Xi , ..., X). The above definition of cumulants clearly implies that, 

= (_j)Th_ 	= OKx(A) 
I 	

(2.8) 
zO 

Both moments and cumulants are invariant to permutations of the components of X. 

Assuming that the moment-generating (or the cumulant-generating) function is analytic 

at the origin, the infinite set of moments (or cumulants) is sufficient to determine the 

joint distribution uniquely [46, 52]. 

From the definition of the moments and cumulants, it is evident that they are closely 

related. The exact formulas giving the relationship between cumulants and moments 

have been derived in [49, 50, 53, 14]. Before presenting these formulas it is necessary to 

introduce some notation on partition sets of integers. We follow the notation of [14] in 

which boldface lowercase letters denote sets of integers. Let n be the set 11, 2, ..., 

and let m be a subset of n. The notation X m  denotes the vector consisting of the 

elements of X with indeces in m. The ordering of the components of X m  is irrelevant 

for the following discussion. A partition of n is a collection of disjoint subsets of n 

whose union is n. For example {{1, 3}, {2}, 14}1 is a partition of {1, 2, 3,4}. A generic 

partition of n will be denoted by P(n) and the set of all partitions of n is denoted by 

P(n). The following two theorems provide us with the explicit relationships for the 

moments with respect to cumulants and the reverse. 

Theorem 2.1 The nth-order moment of X is related to the cumulants of the sub-

vectors of X via 

= 	 [J K(X) 	 (2.9) 
P(n)EP(n) mEP(n) 

Theorem 2.2 The nth-order cumulant of X is related to the moments of the sub-

vectors of X via 

ic(X) = 	(_ 1)(_1)(r - 1)! JJ /t(Xm ) 	 (2.10) 
P(n)EP(n) 	 MEP(n) 

Detailed proofs of the above theorems can be found in [14]. It is instructive to see 

'Provided that such expansion exists. 
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special cases of the moments to cumulants Theorem (2.2) for n=1,2,3 and 4. 

n= 1 

ic i (Xi ) = 	= E{X 1 }. 	 (2.11) 

n = 2 

= 	 - pi (Xi ) jt i (X2 ) 	 (2.12) 

which shows that K2  (Xi , X2 ) is the covariance of X i  and X2 . 

n=3  

c3 (Xi ,X2 ,X3) = p3 (Xi ,X2 ,X3) - p1 (X i )1i 2 (X 2X 3 ) - pi(Xi)p2(X2X3) - 

p (X i ) p2 (X 2X 3 ) + 21t' (X)p  (X2) Al (X32.13) 

= 4 

ic4(Xi,X2,X3,X4) = 1i4(Xi,X2,X3,X4) - p2(Xi ,X2)1i2 (X3X4 ) 

— P2 (X 1 , X3) Y2 (X 2X 4 ) - p2  (X i , X 4)p2 (X 2X 3 ) 

—pi (Xj),u3(X2X3X4) - p (X 2 )93 (X 1 X3X 4 ) 

—It1 (X3)1i3(X 1 X2X4 ) - p1 (X4)1,t3(X1X2X3) 

+2p2 (X iX 2 )u i  (X 3)pi  (X 4 ) + 2P2 (X1X3)pi  (X2 )pi  (X4 ) 

+2p2 (XI X 4 )pi  (X2)  Al (X3) + 21L2 (X2X4)pi (Xi )pi (X 3 ) 

+22 (X3X4 )pi (Xi) pi (X2) + 21 12 (X2X3)pi (Xi )pi  (X4) 

—6pi (XI) Ill (X2) A l (X 3 ) Al  (X 4 ) 	( 2.14) 

The above expressions become much simpler if one assumes that the random variables 

X1 , X2, X3 and X4  are zero-mean. 

2.3 Properties of Moments and Cumulants 

The following properties of cumulants have been reported in the literature [51, 12, 54, 

46, 49]: 

Property 1: Cumulants and moments are symmetric in their arguments i.e. 

Pn(Ti, ...,r) = pn(Ti i , 	and ic(ri, ...,r) = ic(r1 , 

where (i 1 , ..., i) is a permutation of (1, ...,n). 

11 
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Property 2: Suppose x1, X2, ...,  x are m independent vector-valued random vari-

ables where xr  has components X, ..., X,' . Then 

7fl 	 m 	7Th 

x 1'•••' 	n) 
r1 	 r=1 	 71 

The moments do not have such a property. 

Property 3: Suppose that X consists of two independent sub-vectors X a  and Xb. 
Then K(X) = 0 while in general it(X)  0. 

Property 4: For constants a 1 , ..., an  we have that 

it(aiXi,...,aX) = 

and 

,c, (aiXi , ..., aX) = Kn (Xi, ..., X) fl a 

Property 5: Both moments and cumulants are additive in their arguments i.e. 

1i(x 1  + Y1 , Z2 , ..., Z) = ji(x 1 , Z2 , ..., Z,) + An (Y1, Z 2 , ..., Z,) 

icn (Xi  + Yi , Z2 , ..., Z) = ic(Xi , Z2 , ..., Z) + tc(Yi , Z2 , ..., Z) 

Property 6: If {X 2 , i = 1, ..., k} are jointly Gaussian random variables then all cu-

mulants of order higher than second are zero. This follows from the fact that the 

characteristic function of jointly Gaussian random variables with mean vector it 

and covariance matrix R is given by 

OW = exp(j - 'TR) 

The first and second order cumulants are just the means and covariances. Higher-

order moments are not zero in this case and this is one of the disadvantages of 

moments compared to cumulants. 

2.4 Cumulants and Polyspectra 

2.4.1 Cumulants of Stationary Random Processes 

The main subject of interest in this dissertation is the study of random stationary pro-

cesses using high-order cumulants. In this section the cumulants of random stationary 

processes are defined and we examine the properties resulting from the stationarity 

assumption are examined. Let {x(t)} be a zero-mean kthiorder  strictly stationary [8] 

12 



Chapter 2 : Higher-Order Statistics 

random process. The kthorder  cumulant of this process, denoted as Ck, x  (ri , 72, ..., 7 k_1), 

is defined as the joint k th-order c.umulant of the random variables x (t), x (t + r1), x (t + 

T1),...,X(t+Tk_1) i.e. 

Ck,(T1,T2,...,Tk_1) = !ck(x(t),x(t+Tl),x(t+Tl),...,x(t+Tk_1)). 	(2.15) 

The kthorder  moment is defined in a similar way: 

mk,(T1,r2,...,Tk_1) =ILk(X(t),X(t+T1),X(t+T1),...,X(t+Tk_1)). 	(2.16) 

The second-, third- and fourth-order cumulants of zero-mean stationary random pro-

cesses are of particular interest in applications. In the following the equations (2.12) 

to (2.14) are modified for the zero-mean stationary random process {x(t)}: 

c2,(r) = m2,( 7-), 
	 (2.17) 

= m3,(71,72), 	 (2.18) 

c4,(71,7-2,7-3) = m4,(71,7-2,73) - c2,r(71)c2,x(7-2 - r3) - c2,(7 2 )c2 ,(73  - 71) 

—e2,(73)c2, X (71 - 72). (2.19) 

c2,S (r) is just the autocorrelation of x(t). 

As a direct sequence of the k tI -order stationarity of the random process {x (t) }, the kt¼ 

order cumulant is independent oft and is only a function of the k — i lags r1, T2,..., Tkl. 

More specifically, because of the stationarity assumption the following relationship 

holds: 

PCk(X(tl),X(t2), ...,x(tk)) = ck,(t2 - t1, t3 - t 1 , ...,tk - t 1 ). 	(2.20) 

Let 

r_1 =t1 —t for n=2,...,k. 	 (2.21) 

Equation (2.20) becomes 

Ick(x(tl), x(t2), ..., x(tk)) = ck,(r1, ..., r, ..., 7k_1) where 1 < i < k - 1. 	(2.22) 

Substituting the r's from (2.21) into ek,(T1 - 7i,...,—Ti,...,Tk_1 - Ti) (2.21) yields 

Ck,(T1 - T, ..., —Ti, ..., Tk_1 - TO = 

- 41, ..., t2 - t,i, t1 - 4 1  , 42 - 41, ..., tk - 41). 	(2.23) 

13 
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Using equation (2.20) and Property 1 of section 2.3, equation (2.23) becomes 

Ck,(T1 - T, ..., —Ti, ...,Tki - T) - 

kk(x(ti+1), x(t2), ..., x(t), x(t1),x(t+2), •.• x(t)) = 

kk(X(tl),X(t2),...,X(tk)). 	 (2.24) 

Combining equations (2.22) and (2.24) yields the following formula for the transforma-

tion of lags of cumulants of stationary processes: 

Ck,(T1 - T, ..., —Ti, ..., Tkl - Ti) = ck,(ri, ..., 7i I  ...) 7k_1) 1 	(2.25) 

where 1 < i < k - 1. The above equation and property 1 of section 2.3, show that the 

cumulants of a stationary process possess many symmetries, which are very important 

from a computational point of view because they make the computation of cumulants 

manageable. They divide the set of kthorder  cumulants of stationary process into k! 

regions. Knowing the cumulants in any of these sets, enables the cumulants in the 

other k! - 1 sets to be calculated. The set of cumulants corresponding to the lags 

r1  ~! 
... T/_ ~! 0 is a minimal sufficient set [14]. Suppose that we need to calculate a 

cumulant ck,(ti, ..., tj_) which does not belong to the minimal sufficient set. We can 

use the following procedure to reflect this cumulant back to a cumulant in the minimal 

sufficient set: 

Step 1: Order the lags in decreasing order t 1  ~: ... > 	Then according to property 

1 of section 2.3, we have that ck,(t1, ...,tk_1) = ck,(t 1 , ... ,tjk_ 1 ). If tik_l  ~! 0 then 

the cumulant ck,(t, 7.... tjk_ 1 ) belongs to the minimal sufficient set, else proceed 

to Step 2. 

Step 2: Perform the lag transformation described by equation (2.25) so that 

tik_ 1 ) = ck,(t1 - t,.,_1 
, 42 - t_1, ...) t_). Now all the lags are pos-

itive or zero and a final ordering in decreasing order results in lags corresponding 

to a cumulant in the minimal sufficient set. 

In figure (2.1) (a) the 6 regions of symmetry of the third-order cumulants are shown. 

2.4.2 Polyspectra of Stationary Random Processes 

It is well known that the power spectral density of a stationary process is defined 

as the Fourier transform of the covariance sequence (whenever the transform exists). 

The same notion is extended for high order cumulants [50, 51, 54]. Assume that the 
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cumulant sequence is absolutely summable i.e. 

+00 	 +00 

	

i ICk,(Ti, ..., r,_i) < oo. 	 (2.26) 
T1=-00  

Then the k° order polyspectrum is defined as the (k - 1)-dimensional discrete-time 

Fourier transform of the kth1order  cumulant i.e., 

+oo 	 k—i 
Sk,(w1,...,wk_I) = 	E 	ck, x (7_1,...,7-k_1)exp(—jw j 7-i), 	 (2.27) 

Tk_1= -00 	 i=i 

	

where 1wi I <ir for i = 1,2,...,k— land J W1 +w2 + ...+wk_iI 	ir. It is obvious from 

equation (2.27) that the polyspectrum is periodic with period 27r i.e., 

	

Sk,x(wi, ...,wk_i) = Sk,(wi + 27r, ...,Wk_i + 27r). 	 (2.28) 

The cumulant sequence can then be obtained from the polyspectra using the inverse 

Fourier transform formula: 

1 	
ir 	 k—i  

Ck,(Ti, 	Tk_i) = (2)k_1 	 Sk, r (Wi, ...) w_i) exp(j 	wr)dwi . . .dw_1. 

(2.29) 

When k = 3, S3,T (w1,w2) is called the bispectrum and when k = 4, S4,(w,w2,w2) is 

called the trispectrum. The symmetries of the cumulants analysed in the previous para-

graph imply certain symmetries in the polyspectrum. There are also certain conjugate 

symmetries provided that the cumulants are real, and consequently the polyspectrum 

possesses a richer symmetry structure than the cumulants. We now take a closer look 

at the symmetries of the bispectrum. In figure (2.1)(b) we see the symmetry regions of 

the bispectrum. Knowledge of the bispectrum in the triangular region AOB is enough 

for a complete description of the bispectrum. This can be achieved according to the 

following relations: 

S3,,(wi ,w2 ) e AOB = S3,(w2,w1) E BOG = S,(—w2,w1 +w2) E COD 

= S,(—wi,wi + w 2 ) E DOE = S3,(—w1 - w2,w1) E EOF 

= S3,x(wi - w 2 ,w 2) E FOG = S,(— wi, —w2) E GOH = S,(—w2, —Wi) E HOl 

= S,(wi + w2, —w2) E IOJ = S,(wi + w2, —Wi) E JOK 

= S3,(w1, —Wi - w2) E KOL = S3,(w2, —Wi - w2) E KOA 

The symmetries of the trispectrum are far more complicated. In [55] Pflug et al. point 

out that the trispectrum of real processes possesses 96 symmetry regions. 

15 



Chapter 2 : Higher-Order Statistics 
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Figure 2.1: (a) Symmetry regions of third-order cumulants c3,(7_1,r2). (b) Symmetry 
regions of the bispectrum S3,(w1, 2). 

2.4.3 Cumulants and Polyspectra of kt1 -order White Non-Gaussian 
Noise 

A stationary zero-mean non-Gaussian process {w(n)} is said to be white of order k, if 

CIc,w(Ti, ...,Tk_1) = 7k,. 6 ( 7_1, ...,Tk_i), 	 (2.30) 

where 7k,,,  :A 0 and 6(71, ..., Tk_1) is the (k - 1)-dimensional Kronecker delta function. 

72,w,Y3,w and 74,w,  are the variance, skewness and kurtosis of {w(n)} respectively. Since 

we have assumed that {w(n)} is non-Gaussian, 7k,w  cannot all be zero for k > 3. 
Combining equation (2.27) with (2.30) we obtain 

Sk,(wl, ...,Wk_i) = 7k,w. 	 (2.31) 

Equation (2.31) shows that the polyspectrum is flat for all instances of (wi' ...,wk_1). 

Quite often the term lID sequence (Independent Identically Distributed) sequence ap-

pears in the HOS literature. The term lID sequence simply implies whiteness of all 

orders. The generation of high-order white noise sequences is very important for the 

numerical simulation of linear non-Gaussian random processes. 
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2.5 Cumulants and Polyspectra of Non-Gaussian Linear 

Processes 

Let {w(n)} be a strictly stationary processes, all moments of which exist, and are 

absolutely summable, i.e. 

00 

<00 Vk > 2. 	 (2.32) 

Let {x(n)} be a random process, related to {w(n)} according to the convolutional 

equation, 

00  x(n) = j h(n - j)w(j) 	 (2.33) 

where h(j) is an absolutely summable sequence 

00 

Ih(i)I <00. 	 (2.34) 

The sequence h(j) can be regarded as the impulse response of a linear time invariant 

system. The transfer function of the linear 2  system is denoted by H(z). The absolute 

summability of h(j) ensures the BIBO (Bounded Input Bounded Output) stability of 

the linear system in equation (2.33) and ensures the strict stationarity of the output 

process {x(m)} provided the input is strictly stationary. Since stationarity has been 

established, the kth_order  cumulant of {x(n)} is a function of k - 1 lags (ri, ..., Tk_1). 

The basic relationship between the cumulant of the output process and the impulse 

response parameters is given by the following theorem: 

Theorem 2.3 Let {x(n)} be a random process satisfying equation (2.33). Then its 

cumulants are given by 

Ck,(T1, ..., r_) = 
	

h(j, ...,jk_1)Ck,w(r1 - ji, ..., T_ - jk-1), 	(2.35) 

where 

hk(jl,...,jk_1) = 	h(i)h(i+ji) . ..h(i+jk_l). 	 (2.36) 

From the above theorem it is straightforward to see that the absolute summability of the 

impulse response implies the absolute summability of the cumulants (and moments). 

2 The transfer function is defined as the z-transform of the impulse response. The z-transform is 

defined in Appendix A. 
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Formula 2.35 is known as the Brillinger Rosenblatt formula. The absolute summability 

of the cumulants is a necessary condition for the existence of the polyspectra. If the 

Fourier transform of equation (2.35) is taken, the equivalent relationship between the 

input and output kth  order polyspectra is obtained [51]: 

Sk,(Wi, ...,L)k_i) = Hk(wi, ...,wk_1)Sk,(w1, ...,Wk_1), 	 (2.37) 

where 

k-i 
Hk(wi, ...wk_i) = H(wi )... H(wk _l )H*( wj ), 	 (2.38) 

with H(w) being the Fourier transform of the impulse response 

H(w) = j h(i) exp(—jwj). 

If {w(i)} is a kthorder  white noise process, then according to the discussion in section 

2.4.3, Ck,(Ti, ..., rj_) = 'Yk,w6(T1, ..., 7,k_1) and Sk, = 'Yk,w When {w(i)} is an III) 

process, {x(i)} is called a linear random process, and equations (2.35) and (2.37) become 

respectively, 

Tk_i) = 7k,whk(Ti, ..., Tjg_i), 	 (2.39) 

and 

Sk ,(wi ,...,wk _i ) = 7k,wHk(Wi,...,Wk_1). 	 (2.40) 

For k = 2 equation (2.40) reduces to the well known spectral density: 

= 72,H(w)H*(w) = 72,lH(w)I 2 	 (2.41) 

It is clear that the power spectrum S2,(w) (or equivalently the covariance sequence), 

depends only on the magnitude of H(w) and is independent of its phase. Because of 

this, it is often said that second-order statistics (covariances and the corresponding 

spectra) are phase - blind. There is no way to recover the phase characteristics of 

the transfer function H(w) using only second-order statistical information. However, if 

the magnitude and phase spectra of the higher-order spectra are considered (equation 

2.40), it can be seen that for the amplitude 

k-i 
ISk, z (w1,...,  Wk— i ) I = IH(wi)I . . IH(wk_i)lIH( — w)IISk,v(wi,...,wk_i)I 	(2.42) 

i=i 

IfUz 
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and for the phase 

k—i 

Oh (W1) + ...+4h(Wk_1) - 7bh(>Wi) + 1I'k,v(wl, ... ,wk_l) (2.43) 

so that phase information is preserved. 

The inability of second-order statistics to preserve phase information has motivated 

the research into the use of higher-order statistical information for the study of linear 

random processes. An important theoretical result in this direction was that of Lii and 

Rosenblatt [31], which states that for non-Gaussian processes it is possible to recover 

both the magnitude and the phase from the polyspectra. More specifically they have 

proved the following result [31]: 

Theorem 2.4 Assume that the following properties hold for the Fourier transform 

H(.) of the impulse response h(t): 

 

H(w)O V1. 

 

00 

Iih(i)I <00 

Assume also that 0 < -Yk,,, < 00 for some k > 2. Then H(w) can be computed from 

Sk, (w 1 , ..., Wk-1) up to an unknown complex constant scale factor A exp(jwm) where 

A is real and m is an integer. 

The above theorem has theoretical rather than practical value, since it requires knowl-

edge of infinite polyspectral or equivalently cumulant lags. In the next section we 

restrict our attention to the class of linear processes whose corresponding system im-

pulse responses have rational transfer functions. 

2.6 Cumulants of MA, AR and ARMA Processes 

Let H(z) be the z-transform of the impulse response h(n). We examine the case where 

H (z) is a rational polynomial. In particular we look at the three basic types of linear 

models namely MA (Moving Average), AR (Autoregressive) and ARMA (Autoregres-

sive Moving Average) models. 
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The MA model is defined as 

x(n) = 	b(i)w(n— i) b(0),b(q) 0, 	 (2.44) 

where {w(n)} is a non-Gaussian lID processes with zero mean and finite cumulants 'y 

of up to k-order. The corresponding transfer function has only a nontrivial numerator 

polynomial: 

H(z) = B(z), 	 (2.45) 

where B(z) is the z—transform of b(i). This model is also known as an all-zero model  

[56]. The cumulants of MA processes are given as special cases of equation (2.39) for 

finite impulse response: 

q-,l 

Ck,(T1, ...,Tk_i) = 7k ,w 	b(i)b(i+ r1 ) . . .(j + Tk_i), 	 (2.46) 
i=0 

where q ~! 7-1  ~! 	~! Tj_ > 0. We observe that the cumulants of MA processes have 

a finite domain of support. The domain of support for the third-order cumulants of 

MA processes is depicted in figure 2.2. The dark area depicts the minimal sufficient 

domain of support corresponding to q ~! r1  ~! r2  0. The domain of support for 

fourth-order cumulants is depicted in figure 2.3. The solid area depicts the minimal 

sufficient domain of support corresponding to q ~! r1  ~! r2  ~! ~! 0. 

The filters in the AR and ARMA models are recursive (hR or Infinite Impulse Re-

sponse). The AR process {x(n)} satisfies the following convolution equation  4 : 

>a(i)x(m —  i) = w(n) a(0),a(p) 0, 	 (2.47) 

where {w(n)} is a non-Gaussian III) processes with zero mean and finite cumulants yj 

of up to k-order. In the case of AR models the transfer function has only a non-trivial 

denominator polynomial. 

1 	
(2.48) 

where A(z) is the z—transform of a(i). AR models are also known and as all-zero models 

because their transfer function has no poles. The computation of the cumulants of AR 

processes is a special case of the computation of the cumulants of ARMA processes 

which we now introduce. The ARMA process {x(n)} satisfies the following difference 

3 The term all-zero is misleading since it implies that the transfer function has only zeros and no 

poles, while in reality the transfer function has z' as a denominator and 0 is a pole with multiplicity q. 
'Since this is a causal AR model it must be minimum phase. 
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Figure 2.2: (a) The finite domain of support for 3 d  order cumulants of an MA(q) 
process. 

equation: 

Ea(i)x(m —  i) = >b(i)w(n —  1) a(0),a(p),b(0),b(q) 	0, 	(2.49) 

where {w(n)} is a non-Gaussian III) processes with zero mean and finite cumulants 

of up to k-order. The transfer function has both numerator and denominator 

polynomials which are assumed to be co-prime 5 : 

B(z) 
H(z) 	. 	 (2.50) 

A(z) 

The cumulants of AR and ARMA processes can be calculated using equation (2.35), 

which involves the impulse response of the system. It should be pointed out though, 

that equation (2.35) contains an infinite number of terms and consequently in practice 

some truncation error is inevitable. In order to overcome this problem, a new method 

has been developed independently by Porat and Friendlander [57] and by Swami and 

Mendel [58], which calculates the cumulants with respect to AR or ARMA model 

parameters. This method is based on a state-space realisation of ARMA models. For 

completeness we summarise the main results here. In the following we assume that 

a(0) = b(0) = 1 with no loss in generality. For the ARMA model of equation (2.49) let 

'Which means that there are no pole-zero cancelations 
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Figure 2.3: (a) The finite domain of support for 41h  order cumulants of an MA(4) 
process. 
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m = max(p,q+ 1) and define 

—a(1) 	—a(m - 1) —a(m) 	1 

1 	 0 	0 	 0 
A= 	.. 	 : 	

,B= : 
	

and 

0 	 1 	0 	 0 

	

C = [ 1 b(1) 	b(m - 1) ], 	
(2.51) 

where a(m) = 0 for m > p and b(m) = 0 for m > q. JA, B,C} is a state-space 

realisation of the ARMA process (2.49) which implies that 

	

hi  (n) = h(n + r) = CAT1B = CAT1  AB. 	 (2.52) 

Equation (2.52) shows that {A, B, CAT 1 } is a state-space realisation of hi (n). Equation 

(2.39) can now be rewritten as 

00 	k—i 

ck,(T1, ..., rj_) = 	[f h(n) where 7-0  = 0 	 (2.53) 
i=O 

Combining equation (2.52) and (2.53) we can obtain an expression for the cumulants 

with respect to the state-space matrices [57, 58]. The derivation makes use of the 

Kronecker product operator ®, and is presented in Appendix A. Finally we obtain the 

following expression 

k—i 

ck,(r1,...,Tk1) = 7k,C® (I —  AG (k))  (I® 	 (2.54) 
j=o 

2.6.1 Phase Properties of Systems with Rational Transfer Functions 

In this section we review minimum- and maximum-phase systems since they will play 

an important role in the sequel. 

Distribution of zeros and phase properties A minimum-phase polynomial is one 

that has all of its zeros strictly inside the unit circle. A maximum-phase polynomial is 

one that has all its zeros strictly outside the unit circle. 

Minimum-phase systems A minimum-phase system is a causal linear shift-invariant 

system with rational transfer function 

H(z) - B(z) 
- A(z) 
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where both B(z) and A(z) are minimum phase polynomials. Thus a minimum-phase 

system is a causal stable system with a causal stable inverse. 

Maximum-phase Systems A maximum-phase system is one where its transfer func-

tion is represented as the ratio of two maximum-phase polynomials. Thus it is an 

anticausal stable system with an anticausal and stable inverse. 

Mixed-phase Systems A stable and casual system is called mixed-phase system 

when some of its zeros are located strictly inside the unit circle and the rest strictly 

outside the unit circle. 

Maximum- and mixed-phase systems are jointly referred as non-minimum-phase sys-

tems. We should note here that in none of the above definitions are zeros allowed on 

the unit circle. For every non-minimum-phase system we can find a spectrally equiv-

alent minimum-phase system by moving zeros (or poles) which are outside the unit 

circle to their conjugate reciprocal locations inside the unit circle (figure 2.4). This 

operation can be described formally as follows: Let H(z) be the transfer function of 

Figure 2.4: A zero ; and its reciprocal conjugate Ar. 
Zi  

a non-minimum-phase system. Suppose that H(z) has a zero z0  which is outside the 

unit circle. Then the system with transfer function Hnew  (z) where 

Hmew (z) = H(z) z_
1  - z 	

( 2.55) 
- 

has the zero z0  replaced with the. With a similar transformation we can replace the 

poles of a transfer function. Complex zeros or poles are always transformed in pairs. 
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It is easy to check that the magnitude of the frequency response is invariant under 

the previous transformations. In fact the phase of the frequency response is altered. 

Suppose that the transfer function of a stable casual system has M zeros from which 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 
-6 	 -4 	 -2 	 0 	 2 	 4 	 6 

me-lag 

Figure 2.5: The autocorrelation sequence is the same for all systems 

2Mc are complex and MR are real so that M = 2Mc + MR. Then, given that any real 

zero can be replaced with its reciprocal and that any complex conjugate pair of zeros 

can be replaced by its reciprocal conjugate pair without any change to its magnitude 

frequency response, there are 2MC+MR  possible systems with different combinations of 

zeros. One of these 2M+Mi  systems is minimum-phase, one is maximum-phase and 

the rest 2MC+MR-1  are mixed-phase. The following important conclusions can thus be 

drawn: 

• Any non-minimum-phase system can be represented by the cascade of minimum-

phase system and an all-pass system that serves to move the zeros from the inside 

to the outside of the unit circle. 

• Since correlation-based techniques are phase-blind, all the 2M  systems look iden-

tical if analysed with correlation-based techniques. 

The latter is demonstrated in the following example. Suppose that we have a MA model 

whose corresponding system has the following zeros: r1  = 0.5, r2 , r3 = 0.4 ± jO.3 
where j = /(- 1). There are four possible configurations of the three transfer function 

zeros: one corresponding to a minimum-phase system, two corresponding to mixed-

phase systems and one corresponding to a maximum-phase system. The autocorrelation 

function for all systems is the same and is depicted in figure (2.5). The third order 
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Third order cumulants 

Minimum Phase 

Mixed Phase 
System I 

0• 

: 

02- 

Maximum Phase 

Figure 2.6: Third-order cumulants are different for the spectrally equivalently systems 
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cumulants for the different systems are given in figure (2.6). The third-order cumulants 

can obviously distinguish the different zero configurations. 

Now we take a look at a different criterion for the characterisation of the phase prop-

erties of systems. 

Partial energy criterion: Let the unit impulse response of system H(z) be {h(k)1k = 
0, 1, ..., oo}. Then the total energy of the system can be defined as (using Parseval's 

equality) 

00 

	
f, 

	dw 
EH = > Ih(k)12 = 	IH(w)1 2 — 	 (2.56) 

k=O ,t 	2ir 

We see that all the 2M  systems have the same energy. The difference lies in the 

distribution of this energy. In the minimum-phase system the energy is concentrated 

at the early time. So defining the partial energy as 

EH(n) = 	Ih(k)I 2  

then the minimum-phase system is the one of the 2M  systems for which Eh(n) becomes 

minimum. 

2.7 Estimation of Cumulants from Finite Samples 

In most practical situations we need to estimate the cumulants from a finite sample of 

noisy data. Suppose we are given a data sequence of length N 

ZN = [z (1) ,...,z (N)]T 

which can be made zero-mean by subtracting the mean from the data. The estimation 

of cumulants is based on the estimation of moments and the use of the moments to 

cumulants formula (2.10). In the following we assume without loss of generality that 

7'1 ~! T2 ~! Tk_. The sample estimator of the kth 1
-order moment mk,(r1, ...,rk_1) 

is given by the following expression: 

1 N--r1 k-i 

Tflk,(Ti, ..., Tk_1) = 	fJ z(i + 73 ) where r0 = 0. 	(2.57) 
i=1 j=O 

If we replace the moments with their sample estimators in equations (2.17), (2.18) and 

(2.19), we obtain the following expressions for the sample estimators of second-, third-, 
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and fourth-order cumulants: 

N-Ti 

z(i)z(i + Ti) 	 (2.58) 

1 N-Ti 

	

ê3,(Ti,r2) = 	 z(i)z(i+Ti)z(i+r2) 	 (2.59) 

1 N-Ti 

	

c4,(71, 7'2, 7'3) = 	 z(i)z(i+Ti)z(i+T2)z(i+T3) 

— c2,Z(m)c2,Z(r2 — 73) 

— ê2,(n)2,(r3 - Ti) 

—e 2 ,(l)e2 ,(r2 — 7-1) 	 (2.60) 

Large Sample Properties of Cumulant Estimators: 	The large sample (or 

asymptotic) properties of sample cumulant estimators are crucial for the derivation of 

the asymptotic properties of practical methods based on higher-order cumulants. The 

asymptotic properties of cumulant estimators were first investigated in [59] and later 

in [60, 61]. The following theorem summarises the main result: 

Theorem 2.5 Let 

00  y(n) = >h(i)w(n —  i) (2.61) 

be a non-causal linear convolutional process, whose impulse response is exponentially 

stable. Input w(i) is stationary zero mean and lID, with 	0 for i> 1 and finite 

moments 6  up to order 2k; i.e. mi , w  < oo, i = 1,...,2k where 	= E{w}. Also let 

z(n) = y(n) + e(n), where e(n) is an additive noise process, independent of w(n) with 

finite moments up to order 2k, and 7i , , = 0 for i > 3. Finally let 

k—i 

Sk,y(i) = y(i) H y(i + r) Ti > 7.2 	> Tj 	 (2.62) 
j=i 

and define the k th -order sample moment estimator as 

1 N-Tl 

rnk,(Ti, ... 7Jç 4) = 	Sk,y(Z). 	 (2.63) 

The sample cumulants estimators êk,(Ti, ..., Tk..4) are obtained from equation 2.10 if 

we replace the moments with their sample estimators 2.63. Then 

N- 

	

4,y(71,Ti, .., Tk
_i) w.p.i 

—* Cky(T1, ..., Tki) 	 (2.64) 

6 J11 case w(i) is not III) we require that its moments are absolutely summable. 
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and 

N—oo 
w.p.1 

Ck,z(ri, ..., 	-+ Ck,z(Ti, ..., Tk_1). (2.65) 

Expression (2.64) establishes the strong consistency of the sample cumulant estimators. 

Expression (2.65) establishes the strong consistency of the sample cumulant estimators 

even in the presence of noise (asymptotic noise insensitivity of cumulants). 

In [59, 61] it is also proved that if the assumptions of theorem (2.5) are valid, then the 

sample cumulant estimator is asymptotically normally distributed. Since cumulants are 

the main statistics used in the rest of this thesis, it is essential to be able to calculate 

the asymptotic covariances of the sample cumulants. The derivation of such expression 

is due to Porat and Friendlander [57]. They first derived expressions for the asymptotic 

covariance of sample moments. We summarise the main result here: 

Suppose we want to calculate the asymptotic covariance of the following sample mo-

ments 

ñi,y  (ri , ..., rn_i) = 
1 

N—max{r} 

y(t)y(t + 71) 	y(t + rn_i ) 	(2.66) 

and 

N -max{o } 

rnk,(a1,.,ok-1) = 
	 y(t)y(t + cri) ... y(t + ak_i). 	(2.67) 

Then the asymptotic covariance of the above sample moments is given by the following 

expression: 

lim Ncov{ñi,(ri , ..., r_), rnk,(a1, ..., a_ 1)} = 
N-*c'o 

00 

y(r_i )y(t)y(t + ai) . . . y(t + ak_i)} 

	

—m,(ri )  ..., r_i)mk,(ai, ..., ak_i)] 	(2.68) 

Equation (2.68), can be regarded as a generalisation of Bartlett's asymptotic formula 

(for more details the reader is referred to Appendix B). The asymptotic covariance 

of sample cumulants can be obtained from the asymptotic covariance of sample mo-

ments and the Jacobian of the moments to cumulants transformation given by equation 

(2.10). The calculation of the covariance of sample cumulants will be examined more 

thoroughly in the following chapters, where derive asymptotic expressions for the per-

formance of the proposed parameter estimation methods will be derived. 
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2.7.1 Alternative Cumulant Estimation Methods 

One of the most serious problems when working with higher-order statistics is that the 

variance of the estimation of the higher-order cumulants is high and, in general, very 

long data sequences are needed to reduce the error of estimation. In [62] alternative 

cumulants estimates are proposed that result in lower variance of estimation at least for 

symmetrically-distributed data. A different approach  is the following scheme which is 

based on segmenting and averaging the data sequence and usually results in smoothed 

higher-order cumulant estimates: 

Segment the data into K records of lvi samples each (N = KM). 

Subtract the average value of each record from the data. 

Assuming that {z(2)(k),  k = 0, 1, ..., M - 1} is the data set per record i=1,2,...,K, 

obtain estimates of the higher-order moments 

1 
m ) (ri ,..., r_i) = 	> z() (k+ri) . . . z () (k+r,_1) 

k=S1 

where n=2,3,...,Ni=1,2,...,Kand 

Si  = max(0, -7-17 .-- 1 

S2  = min (M - 1,M - 1—r1 , ..., M - 1— 

Average over all segments 

= 1 m ()(Tr) 

Finally generate the nth1order  cumulant sequence O,,2  (r1 , ..., rn_i), which as we 

show in section 2.1.1 is a function of moments from second to nth order. 

In the case of very short data records, the records of length M can be overlapped. If 

the data sequence is not long enough we can use overlapping records for the calculation 

of the estimates. 

7 which is widely used in practice. 
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2.8 Summary 

This chapter has described the main theory of cumulants and cumulant-related issues 

from linear systems theory that are required for the theoretical development of the 

following chapters. Many significant applications of higher-order statistics in signal 

processing have been excluded from this review since they were not closely related to 

the material that follows. 

In particular in this chapter we have seen how cumulants of stationary linear pro-

cesses are related to the impulse response of the corresponding linear system. This 

relationship has been used extensively in the HOS literature to derive new parameter 

estimation methods. The theoretical justification for using higher-order statistics for 

the characterisation of both the magnitude and phase response of linear systems is 

provided by the theorem 2.4 of Lii and Rosenblatt. Finally we have discussed the issue 

of estimating cumulants and moments from a finite number of samples. The asymp-

totic properties of cumulant estimators are instrumental in the asymptotic study of the 

methods developed in the following chapters. 
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Moving Average Parameter 
Estimation 

3.1 Introduction 

In this chapter the problem of estimating the parameters of a MA model from the 

cumulant statistics of the noisy observations of the system output is considered. The 

system is driven by an III) non-Gaussian sequence that is not observed. The noise is 

additive and can be coloured and even non-Gaussian under certain conditions. 

The chapter presents some new general equations that relate cumulant slices of the same 

order as well as cumulant slices of different orders with the system parameters. It will 

be shown that special cases of these equations have been used in existing MA parameter 

estimation techniques and thus the new equations allow a unified description of some of 

the most important linear algebraic system identification methods. More importantly, 

the new equation relating cumulants of the same order with the system parameters, 

is used to develop new parameter estimation algorithms based on only third-order or 

only fourth-order cumulants. Previous techniques of the same type required the use 

of second order statistics in order to ensure id entifi ability, sacrificing in this way the 

advantage of HOC-based methods in the presence of additive coloured Gaussian noise. 

The new methods can utilise the whole set of third- or fourth-order cumulants resulting 

in improved performance in comparison with methods utilising only a partial set. 

This chapter also presents expressions for the asymptotic variance of the estimated 

parameters and application to MA model order selection and ARMA parameter esti-

mation. 

The performance of the proposed methods is demonstrated and compared with that of 

existing techniques with the use of Monte Carlo simulations. 
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3.2 Problem Definition 

Consider the single-input single-output system depicted in Figure (3.1). The output 

process {y(n)} is generated according to the following linear convolutional model: 

x(n) = > h(k)w(n —  k), 	 (3.1) 

and 

y(n) = x(n) + u(n). 	 (3.2) 

In equation (3.1), {x(n)} is an MA process and H(z) is the transfer function of the 

FIR filter h(n). There are no restrictions on the phase characteristics of H(z) which 

can possibly be non-minimum phase. {w(n)} is a zero-mean non-Gaussian stationary 

process whose moments of order up to eight are finite. 1  

uknown 
additive u(n) 
noise 

H(z) 
W(n) 	 y(n) 

unobserved 	 observed 
input signal 	uknown transfer 	 : 	signal 

function 

Figure 3.1: Problem definition. 

The process {u(n)} in equation (3.2) is an additive noise process which is independent 

of {x(n)}. We assume that {u(n)} is Gaussian process which is not necessarily white. 

The problem under consideration in this chapter is that of estimating the impulse re-

sponse of H(z) (or equivalently the parameters of the MA process) from noisy observa-

tions of the output process {y(n)}. From a statistical perspective, since the distribution * 

of the output data is in general unknown, it is not possible to apply Maximum Likeli-

hood Estimation [5, 14] methods in order to obtain the unknown MA parameters. All 

the existing methods for the solution of the parameter estimation problem formulated 

in this section belong to the general framework of the Method of Moments [14]. 

'The asymptotic variance of sample fourth-order cumalants depend on up to eighth-order cumulants. 
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3.2.1 The Method of Moments applied to MA parameter estimation 

The Method of Moments allows the description of all HOC-based methods for MA 

parameter estimation within the same statistical framework. In summary the Method 

of Moments is applied as follows: We denote with 0 the unknown MA parameters i.e. 

	

0= {h(0),...,h(q)} 	 (3.3) 

Suppose that we observe a data sequence y(N) = [y(1),...,y(N)]. From the data 

sequence y(N), we calculate a finite set of statistics 

SN = {sN(i),i = 1,...,M}, 	 (3.4) 

which in our case consists of cumulants of various orders. The number of statistics M 

is usually much smaller than the number of observations N, but hopefully still convey 

enough information about the unknown parameters. This operation of replacing the 

data with a statistic of lower dimensionality, is often referred to as data reduction. 

We assume that the vector statistic SN asymptotically converges 2  to the true vector 

statistic, which is denoted as s(0) in order to make explicit its dependence on the 

unknown parameter vector. The final step for parameter estimation is to devise a 

mapping 9, which maps the vector statistic s, to the true parameter vector 0 i.e. 

	

0=9(s(0)). 	 (3.5) 

The performance of different parameter estimation methods depends on the selection 

of the mapping Q, as well as on the amount of information contained in the selected 

vector statistic s(o). 

According to Mendel in [63], there are three basic types of algorithms for the identifi-

cation of the parameters of MA models using cumulants: 

Closed-Form Solutions: Giannakis in [1] derived some very simple formulas that 

give the MA parameters with respect to third or fourth order cumulants. In [32] 

he also developed a method for the recursive calculation of the parameters of an 

MA model, using the autocorrelation and diagonal third-order cumulants. The 

same method was later reformulated by Swami and Mendel in [58]. These meth-

ods were later extended by Tugnait in [33]. The closed-form solutions are not 

particularly useful as practical estimation procedures, since they do not smooth 

out the effects of errors in the estimation of cumulants. 

Linear Algebraic Solutions: This type of method involves the solution of over- 

2 1n the case where the statistics are sample cumulants, the convergence is in probability. 
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determined systems of equations which are linear with respect to quantities re-

lated to the unknown parameters. The solution of the linear system is then 

transformed in an appropriate way so that it results in the unknown system pa-

rameters. Examples of these methods can be found in [32, 33, 34, 35, 38, 37]. The 

equations involved in these methods are all based on interrelationships between 

cumulant slices, and will be examined within this context later in this chapter. 

Another interesting method which differs from the rest of linear algebraic meth-

ods, although based on linear algebraic principles is that of Fonollosa [36]. It is 

based on an expression of cumulants as linear combination of cumulant slices. 

In contrast to the other linear methods which involve Least Squares solutions of 

over-determined systems, the method of [36] is based on minimum norm solutions 

of under-determined linear systems. 

Non-linear Solutions: Non-linear methods usually involve the minimisation of 

quadratic cu mulant- matching measures [57, 64, 63]. Nonlinear methods are com-

putationally expensive and may converge to a local minimum. Good initial con-

ditions, usually provided by linear methods, can help reduce computational com-

plexity and avoid convergence to a local minimum. When a nonlinear method 

converges to a global minimum it is generally more accurate than both closed-form 

and linear algebraic solutions. 

In the rest of this chapter we concentrate on linear algebraic methods for parameter 

estimation 

3.3 Linear Methods for MA Parameter Estimation 

The starting point in all linear algebraic methods for MA parameter estimation is the 

Brillinger and Rosenblatt [51] formula which was introduced in chapter 2. It is repeated 

here for convenience: 

q 

Ck,(71,.. . , 	= 7k,w E h(i)h(i + ri) ... h(i + Tk_1) 	 (3.6) 
i=O 

where r3  j = 1,..., k - 1 are integer lags. Equation (3.6), gives the expression of 

cumulants of an MA process with respect to the parameters of the process, but it 

does not show what is the direct relation between two different order cumulants of the 

same MA process, or between different cumulant slices of the same order. Equation 

(3.6) can be used to obtain such formulas which can then be used for MA parameter 

estimation. In the following two sections we examine separately the derivation in the 

time domain of formulas involving cumulants of different orders and formulas involving 

different cumulant slices of the same order. 
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3.3.1 Relationships between cumulants of different order 

In this section we examine the relationship between mth  and nth  order cumulants of 

LTI processes. Suppose that the input sequence {w(t)} has mth1order  cumulant given 

by 

Crn ,w (Ti,...,Tm_i)=7m,wö(Ti, ... ,Tm _i), 

and nth. order  cumulant given by 

= 7,6(r1,. . 

where 7rn,w,7n,w :A 0. In the following we assume that n > m. The analysis that 

follows is in the time domain. Let 

rn-i 	 n-i 

	

Prn,n = 	h(i)h(j)[ rj h(i +j + Tk)][ H h(i + Tk)]. 	 (3.7) 
i,j 	k=i 	 k=m 

Changing the order of the summation in equation (3.7) we can obtain different ex-

pressions for Pm,n.  If we sum first with respect to i and then with respect to j we 

have, 

m-1 

	 n-1 

Pm,n = E h(j) E h(i) [ fl h(i + . + Tk)][ H h(i + Tk)]. 	 (3.8) 

	

j 	i 	k=i 	 k=m 

If we multiply both sides of equation (3.8) by Yn,w,  and make use of the Barlett, 

Brillinger Rosenblatt formula (3.6) we have, 

7n,w-Prn,n = >h(j)Cn,x(j+Ti,...,j+Trn_i,Tm,...,Tn_i). 	 (3.9) 

If we now sum first with respect to j and then with respect to i we have, 

n-1 

	 M-1 

Prn ,n = E h(i)[ [f h(i + Tk)] 	h(j) [ fJ h(i + .j + Tk)]. 	 (3.10) 
k-rn 	 j 	k=i 

If we multiply both sides of equation (3.10) by 'yrn,w  and using (3.6) again we obtain, 

n-i 

'fm,wFrn,n = E h(i)[ H h(i + Tk)]Crn,x(Z  + Ti,.. . , i + Tm_i). 	 (3.11) 
2 	 k=m 
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Combining equations (3.9) and (3.11), we obtain the following relationship between the 

M th  and flth  order cumulants of MA processes: 

h(j)Cn,x(j+Ti,...,j+Tm_i,Tm,...,Tn_i) 

En,m 	h(i){ll h(i + Tk)]Cm,x(  + Ti,. . ., i + Tm_i), 	 (3.12) 
k=m 

where En,m = 	If the ranges of the summations are taken from —oo to +00 then 

equation (3.12) is valid for general non-causal stable LTI systems. In practice equation 

(3.12) is useful for the identification of FIR systems only. Special forms of equation 

(3.12) have been used in many linear methods for MA identification which will be 

examined later in this chapter. 

3.3.2 Relationships between different cumulant slices of the same or-

der 

Similarly to the development of the previous section one can obtain relations between 

different slices of the cumulants with the same order. Assume that the input sequence 

{w(t)} has kth_order  cumulant given by 

Ck,w(T1,. . .,Tk_i) = 7k,w5(T1,. . 

Let 

1 	 1 	 k 

Q1,k = 7k,w E h(i)h(j)[f[ h(i + mt)][fl h(j + flt)][ J h(i + j + Ti)], 	(3.13) 
i,j 	t=i 	t=i 	i=1+1 

where 2 < 1 < k - 1. Changing the order of summations we obtain the following two 

expressions for Q1,k: 

Ql,k = 	h(i)[fl h(i + mt)]7k, 	h(j)[[J h(j + nj)][H  h(i + i + Tt)] 

h(i)[J] h(i + Tfli)]Ck,x(fli,. . . , l, j + Ti,. . .,i+ Tk), 	(3.14) 
i=i 

and 

1 	 1 	 k 

Q1,k = > h(j)[fl h(j + flt)]7ic,w E h(i)[J] h(i + mt)][ H h(i +j + Ti)] 

j 	i=1 	 i 	t=i 	t=1+1 

= 	h(j)[flh(j+nt)]ck,(ml,...) mL,i+rI+i,...,i+Tk). 	(3.15) 
j 	i=1 
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From equations (3.14) and (3.15) we obtain, 

h(i)[flh(i+rnl)Jck,(nl,...,nl,i+T1+l,...,i+rk) = 

h(j)[flh(j+ni)]ck,(ml,...,  MI, i+rl+l,...,i+rk). 	(3.16) 

If the lags are chosen so that {m1,.. ., ni} 	{m 1 ,. . ., m} then the equality in (3.16) is 

non-trivial. Equation (3.16) has not been used directly for parameter estimation. As 

we will see in the next section, special cases of equation (3.16) can be used to construct 

linear methods for the estimation of parameters of MA models. 

3.4 A Unified Framework for the Description of Linear 

Methods for MA identification 

In this section we briefly review the most important linear algebraic methods for MA 

parameter estimation. These methods will be examined in the context of the theory 

developed in the previous sections. The equations involved can be derived as special 

cases of either equation (3.12) which relates cumulants of different orders, or equation 

(3.16) which relates cumulants of the same order. 

Giannakis - Mendel 1989 [32]: This is one of the earliest methods for MA parameter 

estimation. It is based on special instances of equation (3.12) for 2nd  and Yd  order 

cumulants . Equation (3.12) for n = 3, m = 2 and 71 = —r and r2 = 0 becomes 

- j, _r - j) = - j). 	 (3.17) 

Equation (3.17) holds for the noise free case. For —q < r < 2q we can construct a 

system of (3q + 1) equations with (2q + 1) unknowns . The unknowns in this case are 

3,2, c3,2h(1),. . . , f3,2h(q), h 2 (1), . . ., h2 (q). This method does not warrant the consis-

tency of the obtained estimates since there exist values of the h(k) 's such that the 

matrix of the linear system is not full rank. 

Tugnait 1990 [33]: The approach of Giannakis and Mendel described in the previous 

paragraph has been modified by Tugnait in [33]. The equations (3.17) are augmented 

by special cases of equation (3.16) for third-order cumulants . The new equations can 

be obtained from (3.16) for k = 3, 1 = 1, m1 = 0, n1 = q and r1  = 

h(q)e3,(—r,0) - 	h2 (j)c)3,x(j - T, q) = c3,x (-7,q) 	 (3.18) 
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Taking equation (3.17) for —q < r < —i and equation (3.18) for q + 1 < r < 2q, we 

obtain a system of 4q equations with the following 2q + 2 unknowns: 

,h2 (l),. . .,h2 (q) 

The above set of equations is still valid in the presence of III) noise. 

Tugnait 1991 [34]: In order to avoid problems of numerical ill-conditioning, Tugnait 

in 1991, reformulated the algorithm of the previous paragraph as follows: 

Multiply both sides of equation (3.17) with €' = 1/E3,2 to obtain 

h(j)c3 ,(7_ - j,r - j) 	 -j). 	 (3.19) 

Using c3,(—r, 0) = €'h(q)c2,(r) in equation (3.18) we obtain 

c'h(q)c2,(r) 
- Eh2(j)c)3,x(j - r, q) = c3,x (—r,q). 	 (3.20) 

Taking equation (3.19) for —q 	< 2q and equation (3.20) for —q <r <q we obtain 

5q + 2 equations of the 2q + 2 unknowns, 

€', c'h(q), h(1), . . ., h(q), €'h2 (1), . . ., 

Aishebeili, Venetsanopoulos, Cetin 1993 [35]: In [35] a new linear algebraic 

method is developed which is based on relations between second and third-order cu-

mulants. For n = 3 , m = 2, 71  = — t 1  and 72  = t2  - , equation (3.12) becomes 

h(i)c3,(ti  - i, t2  - i) = 
	

f2 ,3h(i)h(t 2  - t1  + i)c2 ,(ti  - i). 	(3.21) 

Taking the set of equations for t1, t2 in the region shown in figure (1), we obtain a 

linear system of (5q2  + 4q + 1) equations with respect to the following (q2  + 5q + 2)/2 
unknowns: 

h(1), ...,h(q),€ 2 ,3 ,€2 , 3h(1), ... ,€2 ,3 ,h(q) ,c2 ,3h2 (1), . . 

The solution of the linear system is used to form a matrix which is known to have rank 

1. In practice due to estimation errors the rank of this matrix is larger than 1, and so 

it is reduced to 1 using SVD-based rank reduction. The rank reduction method was 

used in [35] in order to overcome the over-parameterisation of the unknown vector. 
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Robustness to additive noise 

In practical situations, the received signal is usually a noise-corrupted version of the 

original one. The signal model is then expressed as 

y(m) =x(n)+u(n) 

For Gaussian processes only , cumulants of order greater than two are identically zero. 

As we have seen in chapter 2 , under the assumption that the additive noise u(n) is 

Gaussian and independent of the signal x(n) then the third-order cumulants of y(n) 

are equal to the third-order cumulants of x(n). 

c3,S(7I,7-2) = c3,(7-1,7-2) 

In practice though, the variance of e3,(r1, 72)  is larger than the variance of c3,X(rl, 72). 
On the other hand, second order cumulants are affected by presence of noise because 

e2,(7) = c2,(7) + C2(7) 

The methods reviewed on the previous paragraphs all depend on equations involving 

second order cumulants with lags from —q to q. Excluding equations  containing c 2 ,(0) 

can make them robust to additive white noise. The method of [35] can be modified 

to deal with additive noise whose second-order cumulants are non-zero only for lags in 

the range ITI < q where, 

_f (q/2)-1 ifqiseven 
q 	

(q-1)/2 	ifqisodd 

In general, the need to make assumptions about the second order cumulants of the ad-

ditive noise limits the range of practical applications of system identification methods, 

like the ones described previously in this section. The way to overcome this limitation 

is to derive linear algebraic methods which rely only on third- (or fourth-) order cumu-

lants. Until recently no such linear methods were known. The first linear methods for 

FIR identification using only third-order cumulants appeared in [37, 38, 65]. Extensions 

of the method described in [65] will be the subject of the next sections. First we take 

a brief look at the methods of [37, 38] which have many similarities. 

In [38], the following equation is developed, based on relationships between the c 3 (q,.) 

and c3 (0,.) cumulant slices: 

h2 (i)c3 (qi + r) = c3 (7,0)c3(q,q) 1c3 (q, 0) 	 (3.22) 

3 Excluding equations is not always possible. We should always make sure that the exclusion of the 

selected equations does not affect the consistency and uniqueness of the least squares solution. 
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For —q < r < q we obtain a system of 2q +1 equations with respect to q +1 unknowns. 

In [37], the following equation is developed, again based on relationships between the 

c3 (q,.) and c3 (0,.) cumulant slices: 

y c(q, k + i) - 'y3h(0)h2  (q)c3 (k, k) = _ C3 (q, k) 	 (3.23) 

For —q < k < q we obtain once more, a system of 2q+ 1 equations with respect to q+  1 

unknowns. 

Both methods described above utilise only two of the cumulant slices and ignore the 

rest of the statistics which may contain useful information. They also differ from other 

linear algebraic methods for system identification since they are not linear with respect 

to cumulants. These terms involve products of cumulants which in most cases have 

higher variance than cumulants themselves. In the next section new methods for the 

estimation of the parameters of MA models are developed. 

3.5 MA Parameter Estimation Using Only Third-Order 

C umulants 

From the discussion in the previous section, it is obvious that the existing HOC-based 

linear algebraic methods for MA parameter estimation do not account for the effects of 

additive Gaussian noise in an efficient manner. Methods involving correlations are af-

fected by the bias of the correlation statistics in the presence of additive Gaussian noise, 

while the two methods which are based only on third-order cumulants are relatively 

primitive because they ignore relevant information contained in the unused cumulant 

slices, and because they are not linear with respect to the cumulants. In this section, 

a new method is presented which attempts to overcome some of the these problems. 

3.5.1 Relationships between third-order cumulant slices 

Consider equation (3.16), for k = 3, mi  = m, n1  = n and r1  = 

h(i)h(i + n)c3,(m, i + r) = 	h(i)h(i + m)c3 ,(n, i + r). 	(3.24) 

Equation (3.24) was first derived by Tugnait (equation (18) in [33]) but it has never 

been used directly for parameter estimation. Equation (3.24) depends on the three 

parameters (m, n, r). It is important to examine the ranges of these parameters, where 

equation (3.24) is nontrivial. The following restrictions apply to the values of m and ii. 
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—q < m, n < q. (Otherwise equation (3.24) becomes an identity 0 = 0). 

. m> 71 because the equation parameterized by (m, n, r), is identical to the equa-

tion parameterised by (ii, m, r). 

• n > 0 because the equation parameterised by (m, n, r), is identical to the equation 

parameterised by (m, —n, r + n). This is obvious, if we observe that for 0 < n < 

m <q and for a suitable r, 

h(i)h(i + m)c3,(—n, i + r) = 
	

h(i)h(i + m)c3,(n, i + r + n). 

Finally from the previous points, it is clear that all the nontrivial equations in (3.24) 

can be described by the parameters (m, n, r) for 0 < n < m < q. Given m and n, we 

want to find the range of values of r such that the cumulants c(m, i + r) are not all 

zero for i = O,...,q— n and the cumulants c(n,i+r) are not all zero for i = 0,...,q— m 

respectively. In both cases the range of T is the same, depends on both m and n and 

is given by m + n - 2q r < q. We define the set containing all the possible triplets 

(m, n, r) as follows: 

T={(m,n,r):0n<mq, m+n-2q<r<q} 	(3.25) 

The set T contains >jJ >In=n+1 (3q - m - n + 1) = q(q + 1) (2q + 1) elements. In 

the parameter identification scenario as it was described in section 3.2, our theoretical 

objective is to obtain expressions for the h(i)'s. In the next section we examine how it 

is possible to derive such expressions from equation (3.24). 

3.5.2 Least-Squares Method using only Third-Order Cumulants 

In this section a least squares approach is presented to the solution of equations 

(3.24). In the following we assume without loss of generality that h(0) = 1. Equa-

tion (3.24) is treated as a system of linear equations with respect to the unknowns 

h(l),...,h(q),h2 (l),...,h2 (q), and h(i)h(i+l) for 1 < i < q— land 1 <1< q — i 

and the number of unknowns is q(q + 3)/2. At this stage, one can consider a minimum 

of Mmin = q(q + 3)/2 equations and a maximum of Mmax = q(q + 1) (2q + 1) equa-

tions can be used to form a linear system of equations with respect to the q(q + 3)1 2  
unknowns. The equations can have the following two forms depending on the value of 

parameter n: 

h(k)h(k + m)c 3,(k + r, n.) - 
	

h(k)h(k + n)c3,(k + T, m) = 0, for n 03.26) 

'The minimal set of equations that ensures identifiability is discussed later in section (3.3) 
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and 

h(k)h(k + m)c 3,(k + r, n) - 
	

h2 (k)c 3 ,(k + r, m) = 

c3,(7- , m), for n=O, 	(3.27) 

which can be expressed in a matrix form as follows: 

(3.28) 

Where g= [h(1),...,h(q),h2 (1),...,h2 (q),h(1)h(2),...,h(1)h(q) ........ h(q-1)h(q)] T  

is a g2±3g  element vector, d is a q2 (q + 1) element vector, and B is a (M x 2±3Q)  ma-

trix. The contents of d and B are determined according to (3.26) and (3.27). The least 

squares solution of this over-determined system of linear equations is 

g = (BTB)BTd . 	 (3.29) 

In the selection of equations for the construction of the linear system, it is advisable 

to try to avoid some of the equations, which make use of cumulants with relatively 

"large" lags. The over-determined system of equation (3.28) can also be solved using 

the Total Least Squares (TLS) method [66]. The TLS method assumes that there are 

estimation errors in the elements of both B and d. The B and d are then modified so 

that the rank of the extended matrix [Bid] equals the rank of B. 

3.5.3 Compensating for the over- parameterisation of the system of 
equations 

It is obvious from the construction of the vector of unknowns g, that its elements are 

not independent of each other. The Least Squares solution on the other hand, assumes 

that the unknowns, i.e. the elements of vector g are independent and so the resulting 

solution is sub-optimum in this respect. In fact, due to errors in the estimation of the 

cumulants, the elements of the solution vector obtained from (3.29) will not comply 

with the theoretical structure of g. In order to compensate for this, and to exploit 

all the available information hidden in g, two alternative solutions are proposed in the 

next two sections. 

'Here "large" means lags near to the model order q. 
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An SVD-based rank reduction solution 

We can form the following matrix R, in a similar fashion to [35]: 

1 

h(i) 

h(2) 

h(q-1) 

h(q) 

h(i) 

h2  (1) 

h(2)h(1) 

h(q— 1)h(i) 

h(q)h(1) 

h(q) 	1 
h(1)h(q) 	I 
h(2)h(q) 	I 

(3.30) 

h(q - 1)h(q) 

V(q) 	
] 

It is clear from the structure of R that its rank is one. R may then be written in the 

following form: 

I h(1) I 
R = hhT = 	. 	 I 

[ 

1 h(1) ... h(q) 
] . 

	 (3.31) 

[q] 

In practice however, again due to estimation errors, its rank will be greater than 1. 

Now if the SVD of R is 

q+1 

	

R 	akukv, 

where o > 0'2 ... ~! o  ~! aj+i > 0. The system parameters can be found as 

h(n - 1) = 	 (3.32) 

where u1 , 1  is the first element of u 1  and v,i is the nth  element of v 1 . In many practical 

situations, it is very useful to have a measure of "confidence" for the obtained least 

squares solution. From the previous discussion we can see that such a measure can be 

devised as follows: 

I:
011 

	 (3.33) 

where 0 < .A < 1. The nearer A is to 1, the more confident we can be of our solution. 

A second stage LS solution 

Given that in practical situations the real cumulants are not known, sample estimates 

of the cumulants are used in equation 3.28. After solving equation 3.28 we obtain the 
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following 	 vector: 

= [h(1),. ..,h(q),h2 (1),...,h2 (q),h(1)h(2),. . .,h(1)h(q).......,h(q-1)h(q)] T(3.34) 

Consequently, the result is an estimate g of the vector g. The rank reduction method 

presented in the previous section, removes the redundancy present in vector g and 

maps this vector to a q-element vector that is supposed to represent the true system 

parameters. Here, the same objective is achieved by forming and solving a system of 

linear equations. Suppose we want to obtain the system parameters which we denote 

as 

h = [h(1),. . ., h(q)] T . 

	 (3.35) 

The system consists of the following equations: 

h(i)h(j) =h(i)h(j) for i,j = 1,...,q and h(i) = h(i) for i= 1,...,q. (3.36) 

In total we have q2  + q equations with q unknowns. In matrix form we have: 

Hh=ge  

where, 

0 	... 	0 
H2 	

0 	h(i)... 	0 
H = 	,where H1 	

: 

Hq 	
0 	... 	0 	h(i) 

H0 

and 

(3.37) 

for i=0,...,q (h(0) = 1), 

g. = [h2 (1),h(1)h(2),...,h(1)h(q),h(2)h(1),...,h(2)h(q) ........ h 2 (q),h(1),...,h(q)] 

3.5.4 A Closed-Form Solution and Uniqueness of the Least Squares 
Method 

In order to claim the uniqueness of the least squares solution of the system of linear 

equations (3.28), it is necessary to ensure that the collected equations result in a full-

rank matrix B. In the following section, a closed-form recursive method is developed 

which will be used later to claim the uniqueness of the least squares solution. 

A Recursive Algorithm In this section it is shown that the unknown parameters 

h(1),...,h(q), h2  (1),...,h2 (q), and h(i)h(i+l) for 1 	i 	q-1 and 1<1< q—ican 
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be determined from (3.24), using a closed-form recursive algorithm. Taking (3.24) for 

m = q, n = 0 and r = q we have, 

c3,(q,q) 
r C3,2  (u, q 

(3.38) 

Again for m = q, if we take r = q - j for j = 1,.. ., q we have the following recursive 

equation: 

h
2 (j) = h(q)c3,(q —j,0) - >jih2  (k)c 3,(k+ q —j,q) 

(3.39) 
c3 (q,q) 

For m< qand r=m-2qwe also have, 

h(q - m)h(q) 
h2 (q)c3 ,(q - m, q) 

(3.40) = 
c3 , x (q,q) 

Finally for m< qand r=m+j-2q ,j=l,...,q—'rn, 

h(q—j—m)h(q—j)=[ 	h2 (k)c 3,(k-2q—m—j,m) 
k=q-j 

q-m 
- 	 > 	h(k)h(k + m)c 3,(k - 2q + m + j, 0)]/c3,(q, q). 	(3.41) 

k=q-m-j+1 

All the divisions are well conditioned since c3,(q, q) 0 0. The above recursive algorithm, 

shows that using only a subset of equations from (3.24) and assuming that h(0) = 1, 

we can uniquely recover the unknown parameters h(l),. . .,h(q),h2 (1),. . .,h2 (q), and 

h(i)h(i+l) for 1< i< q— land 1<1<q—i. 

We collect the triplets (m, n, r) corresponding to the equations used in the previous 

recursive method, in the following set: 

R= {(q,0,q—j) :0 <j !~ q}U 

{(m, 0, m + j - 2q) : 0 < m < q and 0 <j <q - m}, 	 (3.42) 

The set R contains q(q + 3)/2 elements. 

It is worth noting that there is one more set of triplets (m, n, r), which can be used to 

construct a different recursive solution. In this second set, the value of m is fixed to q. 

Suppose we construct a system of equations, corresponding to the triplets (m, n, T) E M 
where M is a superset of R. The resulting system of equations in matrix form, is written 

as follows: 

Bg = dM. 
	 (3.43) 

The following theorem ensures the uniqueness of the Least Squares solution of equation 
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(3.43). 

Theorem 3.1 For the signal model (3.1) and assuming that we know the model order 

q, and that we are given the correct third-order cumulant statistics c3,(ri , 72 ) for all 

r1  and r2  in the principal domain of support, the matrix BM in (3.43), is of full rank; 

rank(BM) = q
2  - 3q 

Proof: 	The theorem can be proved by contradiction. Suppose that rank(BM) < 
g2+3g Then there are more than one different solutions to the system of equations 

(3.43). Since the equations corresponding to the triplets (m,n,r) E 1?. are included 

in the system of equations, all the solutions should satisfy equations (3.38) to (3.41); 

hence all the solutions must be identical. This a contradiction hence the rank of BM 
is g2±3g • 

In practice, only a sample sequence of the noisy data is known. Then the true cumulants 

are replaced by their sample averages. Since it is known [59] that the sample cumulants 

converge (with probability one) to the true cumulants as the sample size goes to infinity, 

the new parameter estimation method is asymptotically consistent. It should be noted 

here that if the correct model order is not known , the solution of (3.43) gives totally 

erroneous results. The problem of model order selection will be considered later in this 

chapter. 

3.6 MA Parameter Estimation Using Only Fourth-Order 

C umulants 

As we have seen in Chapter 2, third-order cumulants of non-skewed processes are iden-

tically zero. In many practical situations, when the signals under consideration are 

non-skewed, third-order cumulant-based methods are inappropriate. In such cases, one 

has to employ fourth-order cumulant based methods. 

The linear methods reviewed in section 3.4, can be modified so that the third-order 

cumulant statistics are replaced by fourth-order cumulant statistics. Once again these 

existing linear methods have some disadvantages. Some methods require the use of 

correlations as well as fourth-order cumulants and so they are not suitable in appli-

cations where there is additive non-skewed coloured noise. The methods of [37, 38] 

can be extended to fourth order cumulants, but once again they ignore most of the 

information carried by the fourth order cumulants. 

In the next section, we consider methods based on inter-relations between different 
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fourth order cumulant slices. 

3.6.1 Relationships between fourth order cumulants 

If we consider equation (3.16) for k = 4, then we have two alternatives for the parameter 

Equation 1: For k = 4 and 1 = 2 equation (3.16) becomes, 

h(i)h(i + mi )c4 ,(ni , i + r1,i  + r2 ) = 

h(i)h(i + ni )c4,(m i , i + 7-1 ,i + 7-2 ). 	 (3.44) 

Equation 2: For k = 4 and 1 = 3 equation (3.16) becomes, 

h(i)h(i + mi)h(i  + m2 )c4,(ni , n2 , i + 71 ) = 

h(i)h(i + ni)h(i  + n2 )c4 ,(m i , m 2 ,i + r1 ). 	 (3.45) 

While equation (3.45) has been also derived by Tugnait in [33] equation (3.44) would 

not appear to have been reported before. Novel linear methods for MA parameter 

estimation using only fourth order cumulants can be developed using both of the above 

equations. However, equation (3.45) requires more extensive over-parameterisation 

than equation (3.44) since it involves triple products of the system parameters instead 

of double products. Because of this in the following we concentrate our attention 

on equation (3.44). Before using equation (3.44) for MA parameter estimation, it is 

important to obtain the ranges of the parameters (m, n, r1 , r2 ) that result in non-trivial 

equations. By setting r1  = r2 = r in (3.44), the number of parameters is reduced to 

three (m, n, r) and the fourth-order case can be treated in a similar manner to the 

third-order case. In this case the range of the parameters (m, n, r) is the same as 

that in section 3, and the recursive algorithm of section 3.1 can be easily extended to 

the fourth-order cumulant case by replacing c3,(k + r, m) with c4,(k + r, k + r, m). 

However if ones wishes to consider the possibility of r1  0 r2 , then the analysis is less 

straightforward. The following section deals with this problem. 

Analysis of the parameterisation of the fourth order equation 

Using the same arguments with the third-order cumulant equation of section (3), we 

conclude that we can form the non-redundant set containing all non-trivial equations 
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(3.44) for m and n satisfying the condition 

0 < n < m < q. 

However, in order to generate this set of equations in practice, we also need the ranges 

of the parameters i-1 and 7-2 . Once we have the ranges of all parameters , we will be able 

to calculate the maximum number of different equations generated by (3.44). Suppose 

that m > 0 in c4(n,i+7-1,i+r2).  For convenience we make the following substitutions: 

a=i+ri and /3=i+-r2  

The cumulant c4 (n, a, ,3) can be non-zero only if 

n — qo<q 
	

(3.46) 

For different orderings of the parameters n and c we have the following ranges for the 

parameter /3: 

• Ifncqthen o—q/3q. 

• If  <a < nqthen n — q</3 < q. 

• Ifn — q:~ o<Othen m — q/3 < q+a. 

The above inequalities define the 2-D domain of support for the slice c4 (n,a,/3) for 

n > 0 which is described by the polygon ABCDEF in Figure (3.2). Since we have now 

obtained the region which defines the possible values of c and /3 we can now obtain the 

corresponding region for r1  and r2 . 

From the right hand side of equation (3.44), we observe that i ranges from 0 to q - m. 

Consequently, a pair (ri , r2 ) produces a non-trivial equation, only if there exists a value 

of i for 0 < i < q - m , such that the point with coordinates (r1  + i, r2  + i) belongs 

to the polygon ABCDEF. If we look again at Figure (3.2), we can see that the set 

of points with coordinates (r i , r2 ) satisfying the above condition, define the polygon 

ABGHKF. The number of different pairs (r1 , r2 ) which correspond to points in the 

polygon ABGHKF, can be calculated as follows: 

-m-n+2q 	 m+n-q+1 

(3q-2*—m—n+1)+ 	(3q—m—n)+ 

	

(2q—i+1)=5q2 +4q-2qn-2qm—m—n+1. 	(3.47) 
z=m+n-q+1 

The above equation means that, given a pair of values for (m, n), we can use formula 

(3.44) to build 5q2 +4q-2qn-2qrn—m—n+1 non-trivial equations, which correspond to 

different selections of r1  and r2 . Most of these equations appear twice. In order to create 
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Figure 3.2: 2-D domain of support for cumulant slice C4  (n, a,3) n > 0. 

a non-redundant set of equations, we consider (7-1 , 7-2 ) such that'the corresponding points 

belong to either polygon AFKH or ABGH. The number of equations then becomes, 

+ 1)(5q+2 — 2n - 2m). 	 (3.48) 

We sum over the allowed values of m and n, we obtain the total number of different 

equations produced by formula (3.44): 

q rn—i 1  

i 	(q+1)(5q+2-2n-2m) = q(3q+2)(q+1)2 . 	(3.49) 
m=i n0 

In summary the parameters rn,n,r1  and r2  must satisfy the following conditions: 

. 0 < n < m < q, 

• (m+m—qri.q  and  ri — q:~ r2ri)or 
(m+n-2q:!~ ri <m+'n—qand m+n-2q r2  
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3.6.2 Least Squares Solution Using only Fourth-Order Cumulants 

In a similar fashion with the third-order cumulant case of section 3.5.2, a system of 

linear equations can be constructed with the following equations: 

h(k)h(k + m)c4,(k + 71,k  + 72 , n) - 

h(k)h(k + n)c4,(k + r1,k  + r2 , m) = 0 for n 0, 	 (3.50) 

and 

h(k)h(k+m)c4,(k+ri,k+r2,n) - 

h2 (k)c,(k+ ri , k+ r2 ,m) = c4,(ri,r2,m), for n = 0. 	(3.51) 

The post-processing methods presented in section 3.5.3 can be applied to the solu-

tion of the system of linear equations in order to compensate for the effects of over-

parameterisation. 

The total number of equations, given by equation (3.49), grows very quickly with the 

model order q and so it becomes impractical to use all the equations. In practical 

situations, we need a tractable number of equations which warrant identifiability and 

relatively small variance of the estimated parameters. Equations which warrant iden-

tifiability can be deduced from the recursive solution which is developed in the next 

section. 

3.6.3 A Recursive Solution Based on Fourth-Order Cumulants 

Taking (3.44) for m = q, n = 0 and 7-1  = q we have 

c4 ,x (q, q, r2) 
0r2 q. 

q, 72 ) 
(3.52) 

The division is always well conditioned if 7-2  = q or r2  = 0. Again for m = q and n = 0, 

if we take r1  = q - j for j = 1,. . . , q we have the following recursive equation: 

h2 (j) = h(q)c4,(0,q—i,r2) - 	h2  (k)c 4 ,(q,k+ q —j,r2 ) k=O -j <T2 <q — j. 
c4(q,q,72+ k) 



Chapter 3: Moving Average Parameter Estimation 

Here all the divisions are always well conditioned, if r 2  = 0. For m < q, n = 0 and 

72 = m - 2q we also have, 

h(q - m)h(q) 
- h2  (q)c4 , x (m, q + ri , m - q) 

m - 2q 	m - q. 
- c4,(0,q—m+r1,—q) 

The above division is always well conditioned if 7-1  = m - q, or if r1  = m - 2q. Finally 

for m<q,n=O and r2 =m+j-2q,j=1,...,q—m, 

h(q — j — m)h(q — j) = [ 	h2(k)c4,(m,k+ri,k-2q+m+i) 
k=q-j 

q-m 
- 	

> 	h(k)h(k + m)c 4,(O, k + T1, k - 2q + m  + j)1/c4,(0 , q - m - j + T1, —q). 
k=q-m-j+1 

In the above equation m + j - 2q Ti m + j - q. We can ensure that the division is 

well conditioned, if we select Ti to be either m + j - 2q or m + i q. 

The above recursive algorithm, shows that using only a subset of equations from (3.44) 

and assuming that h(0) = 1, we can recover uniquely the unknown parameters 

h(1),...,h(q),h 2 (1),...,h 2 (q),andh(i)h(i+l) for 1i<q-1 and 1l<q—i. 

The recursive algorithm presented here, is based on equations which have the value of 

the parameter n fixed to 0. In a similar way, a recursive solution based on equations 

with the value of the parameter m fixed to q can be developed. 

The identifiability theorem 3.1 of section 3.5.4 can easily be extended to linear systems 

constructed from fourth-order cumulant based equations. 

3.7 Asymptotic Performance Analysis 

In this section, we derive expressions which can be used to obtain the asymptotic per-

formance of the MA parameter estimation methods developed in this chapter. The 

asymptotic performance is given as a function of the system parameters and the statis-

tics of the input sequence. The following theorem ( Theorem 3.16 in [14]) is required is 

order to explore the asymptotic distribution of the estimates of MA models. 

Theorem 3.2 Let d(N) be a positive sequence that tends to infinity with N, and 

assume that d(N)(sN - S(0)) converges in distribution to a Gaussian random vector 

with zero mean and positive definite covariance E(0). Assume that c(s) is continuously 

differentiable and its Jacobian G(s) is nonsingular for all s(0). Then d(N)(SN - S(0)) 

is asymptotically normal with zero mean and covariance G(s)E(0)G T (s). 
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Let us now see how the Theorem 3.2 applies to the method developed in section 3.5.2: 

. The model order q is assumed to be known so for the vector 0 we have 

(3.53) 

• the sample statistic vector SN  consists of the sample third-order cumulants defined 

over the minimal domain of support i.e. 

SN = { si (N), s 2 (N), ... S q ( q+1)12(N)} 

= {e3,(0,0),3,(0, 1), ...,ê3 ,x (q,q)}. 	 (3.54) 

E(0) is the asymptotic covariance matrix of the sample cumulant vector SN. 

In section 2.7 we described a method to calculate the asymptotic covariances 

of sample moments. Since for zero-mean processes third-order cumulants are 

equal to third-order moments, E(0) is the same as the asymptotic covariance 

matrix of the sample moment vector which corresponds to SN. For fourth-order 

cumulants the asymptotic covariance matrix of the sample cumulants is obtained 

by transforming the asymptotic covariance matrix of second- and fourth-order 

cumulants with the Jacobian of the moment-to-cumulant transformation given 

by theorem 2.2. 

• The mapping c(s) is a composite mapping given by 

c(s) = (92 0 91) (S) 	 (3.55) 

where Gi  corresponds to the least squares solution of equation (3.28) while ci 
corresponds to the least squares solution of equation (3.37). For the Jacobian 

G(s) of Q(s) we have that 

G(s) = G 2 G1 , 	 ( 3.56) 

where G1 and G2 are the Jacobians of G, and c2 respectively. 

The exact form of the Jacobians G1  and G2 can be obtained according to the following 

theorem [57]: 

Theorem 3.3 Assume that the parameter vector 0 and the statistic s(0) satisfy a 

linear constraint 

A(s)0 = b(s). 	 (3.57) 
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Denote with F(s) the transformation of the statistics vector corresponding to the Least 

Squares solution of equation 3.57 i.e. 

= [AT(sN )A(sN )]_1 AT (SN)b(SN). 	 (3.58) 

The Jacobian ofF(s) is then given by the following expression 

F = [AT(sN )A(sN )]_1 AT(sN )D(s) 	 (3.59) 

where D(s) is a matrix whose ith  column is 

D_ôb 9A 

as, 	
(3.60) 

where si is the i1h  element of the vector statistic s. 

According to theorem 3.3 and the notation of section 3.5.2, the Jacobian G 1  is given 

by: 

G 1  = [BTB]BTDi. 	 (3.61) 

The i1h column of D 1  is given by the following expression: 

ôd 	_ 
D12 

= 8s(N) 	as(N)°Is=s(8) 	 (3.62) 

where s(N) is the i1h  element of the vector s(N) defined in equation 3.54. Similarly 

for the Jacobian G2 we have the following expression: 

G2 = [HTH]_1HTD2 	 (3.63) 

In equation 3.63 the jth  column of D 2  is given by 

132, - 
Oge

- 
 8H 
 (3.64) 

where ii is the jth  element of the vector i which is defined as 

1= [h(1),...,h(q),h2 (1),h(1)h(2),...,h(1)h(q),h(2)h(1),...,h(2)h(q)....... 

h(i),. . . ,h(q)3.65) 

3.8 MA Model Order Determination 

In this section , the problem of MA. order determination using higher order cumulants 

is addressed. The problem of order determination is crucial since most of the existing 
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HOC based system identification methods are very sensitive to incorrect model order. 

The main idea behind all the MA model order determination methods, is that the 

third-order cumulants of a MA model are identically zero for lags outside the region 

defined by —q < r1 , r2  q 2.2. In [67] two methods were suggested for the order 

determination of FIR systems that are based on visual inspection and statistical testing. 

In [68] it is pointed out that although SVD is a numerically robust tool for AR order 

determination, it is not commonly used for MA order determination. They provide 

the first SVD criteria for MA model determination. In [35] the order is determined 

through the minimisation of a cumulant error measure. This method is particularly 

attractive since it can be implemented as a completely automated procedure without 

the involvement of visual inspection of singular values or subjective thresholding. 

In this section, novel approaches to model order selection are considered which are 

based on the system identification methods developed in the previous sections. More 

specifically, two methods based on the optimisation of performance criteria are devel-

oped. The first involves the maximisation of the confidence factor defined in equation 

(3.33), and the second the minimisation of a cumulant matching error measure in the 

fashion of [35]. 

Both the new methods rely exclusively on third or fourth-order cumulants and con-

sequently, they are of use in situations when the output sequence is contaminated by 

additive coloured Gaussian noise with unknown statistics. 

3.8.1 Model Order Selection Using a Criterion Based on the Confi-
dence Factor 

The idea behind the proposed system order selection method is to select the order that 

results in the largest confidence measure A defined by equation (3.33). The proposed 

method can be summarised as follows: 

Assume that the system order is less than p. (In practice it is usually possible to 

make such an assumption.) 

Assume that the model order is q, where 

q = 1,.. . ,p. For each value of q do the following: 

From the given data calculate the sampled third-order cumulants assuming 

that the system order is q. 

Use the least-squares method of section 3.5.2 to calculate the parameter 

vector gq . 

Form the matrix Rq  as shown in equation 3.30. 
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(d) Perform SVD on R q  and calculate the confidence measure A q  from equation 

(3.33). 

(iii). Select the order q that yields the maximum value of A q . 

The described order selection algorithm offers the advantage of not requiring a visual 

inspection or subjective thresholding as in the approaches in [68, 67]. 

3.8.2 Order selection through minimisation of a cumulant-error mea-

sure 

The model order selection method of the previous section is based on the principle that 

the confidence measure is maximised for the correct model order. The confidence mea-

sure corresponding to a model order q, is used as a criterion of how well the underlying 

model fits the data. In this section a different criterion of goodness of fit is used. This 

can be achieved using a cumulant-matching error measure. Such a criterion has been 

used before in [35]. In order to be implemented, the cumulant-matching error measure 

requires a good parameter estimation method. The MA parameter estimation method 

developed in this chapter is proposed for this purpose. The third-order cumulant based 

parameter estimation method used in [35] is a variation of the closed-formula solution 

for parameter estimation, and is prone to errors due to numerical ill-conditioning. 

The model order selection algorithm for third-order cumulants is summarised in the 

following. The extension to fourth-order cumulants is straightforward. For the unknown 

model order q is assumed that q :5 qmax.  Suppose that the order is q' < qmax. Under 

this assumption use the methods of section 3.5.2, to obtain a vector of parameters 

hqi = [hqi(0),hqi(1),...,hqi(q')]T 	 (3.66) 

where hqi(0) = 1. Then using [51] we calculate third-order cumulants corresponding to 

the parameter vector h q i: 

	

Cql(T1,T2) = > hqi(i)hqi(i+ri)hq (i+ 72 ). 	 (3.67) 

The cumulant-matching error function corresponding to q' is then given as 

qmax i•i C3,(Tl,T2) - Cq1(7-1,72) 2 
Eqmax = E i ( 

	

c3,(O,O) 	cq'(O,O) 	
(3.68) 

1j=OT2=O  

The selected model order 4 is obtained as follows: 

= 

	

min Eq...  (q) 	 (3.69) 
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The above algorithm is not affected by the presence of additive Gaussian noise since it 

relies on a purely third-order cumulant based estimation method. 

3.9 Applications to ARMA Parameter Estimation 

This section addresses the problem of estimating the parameters of non-Gaussian 

ARMA processes using only third-order cumulants of the observations. Assume that 

{y(n)} is an ARMA(p, q) process satisfying the following difference equation: 

c(i)y(k - i) =E b(i)w(k - (3.70) 

where {w(n)} is an unobservable, stationary, zero-mean, iid, non-Gaussian process. 

The transfer function corresponding to model (3.70) is given by 

H(z) - B(z) - 	0b(i)z 	
(3.71) 

- A(z) -  

The z-transform of the third-order cumulants of {y(m)} are given by the following 

equation [51]: 

C3,(z 1 , z2) = 73,H(zi)H(z2)H(z1z2) = 
3,12 11) 

(3.72) 
A (Zi ) A (z2) A (zj 1  z) 

In [60], it was shown that the problem of estimating the ARMA(p, q) parameters can 

be reduced to two MA estimation problems. According to [60], equation (3.72) can be 

written as 

C3,(z 1 ,z2 )A(z i )A(z 2 )A(z 1 z 1 ) = 73,B(zi)B(z2)B(z 1 z') 	(3.73) 

In the time domain equation (3.73) becomes 

P 	 0 m,riS(q,p) 
3 (i,j)c3 ,(m - i,n -i) = 

	
(3.74) 

 73 ,b3 (m,n) m,n E S(q,p) 

where S(q,p) = {(m,n) : q < q+2p,n = 1, 2}. From equation (3.74), one 

can estimate the coefficients c 3 (i, j) and b3 (i, j) which are then considered as third-

order cumulants of MA models corresponding to the AR part and the MA part of the 

ARMA model respectively. In [60] the c(q, k)-algorithm is used to obtain the system 

parameters. In general any MA parameter estimation method can be used for the same 

purpose. 
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3.10 Numerical Simulations 

In this section numerical experiments are performed to demonstrate the performance 

of the methods developed in this chapter. Random signals are generated according to 

the following signal models: 

Model 1 

x(n) = w(n) + 0.9w(n - 1) + 1.385w(n - 2) - 0.771w(n - 3) 

y(n) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at 0.403, —0.651 + jl.219. 

Model 2 

x(n) = w(n) + 0.1w(n - 1) - 1.87w(n - 2) + 3.02w(n - 3) - 1.435w(n - 4) 

+0.49w(n - 5) 

y(m) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at —2, 0.7 ± jO.7 and 

0.25 + jO.433. This model has also been used in [5,6,9]. 

Model 3 

x(n) = w(n) + 0.1w(n - 1) - 1.87w(n - 2) + 3.02w(n - 3) 

—1.435w(n - 4) + 1.49w(n - 5) 	(3.75) 

y(n) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at —2.02, 0.933 ± jO.7158 

and 0.0287 + jO.729. 

Model 4 

x(n) = w(n) - 1.13w(n - 1) + 0.6w(n - 2) 

y(n) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at 0.565 + jO.529882. In all 

models the input signal w(n) used in the simulations involving third-order cumulants 

is a zero-mean exponentially distributed III) noise sequence with a, = 1 and 2. 

In simulations involving fourth-order curnulants the input signal w(n) is an III) noise 

sequence distributed according to a Laplace distribution with parameter I = 1, and 
= 2, 73,w = 0 and 	= 24. Additive coloured noise is created as the output of 
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the following MA(4) model: 

v(n) = 0.5u(n) - 0.25u(n - 1) - 0.5u(n - 2) + 0.25u(n - 3) - 0.25u(n - 4) (3.76) 

where the input sequence is an III) Gaussian sequence. We define the signal-to-noise 

ratio as SNR(dB) = 10 log(P/P) where P denotes the power of the signal. The 

accuracy of system identification is assessed by calculating the Mean Square Error 

(MSE): 
MSE - j...0(h(n) - ui(m)) 2  

- 	 > 0 h2 (n) 

where h(m) is the estimated system parameter. 

3.10.1 Third-order cumulant based estimation 

The system identification methods used in the simulation are marked as follows: 

Ml A system of equations is constructed according to section 3.5.2. The system con-

sists of equations of the type of 3.26 and 3.27 corresponding to the following set 

of triplets: 

{(O,q,r) : r = —q,. ..,0}u{(0,q— 1,r) : r = q,q+ 1}U 

1(0,m,r): m= 1,...,q-2 and r= —q,...,2q—m}U 

{(1,m,7 - ): m=2,...,q— 1 and r= —q,...,q—m} 

u{(2,m,r):m=3,...,q-1 and r=0,...,q—m}.] 

So for q > 2 there are q(q - 1) - 1 equations. The system is solved using 

TLS and the over-parameterisation of the resulting vector is reduced using the 

LS methods of section 3.5.3. 

M2 Is the same as Ml with the only difference being that the over- parameterisation 

is reduced using the method SVD-based method described in section 3.5.3. 

M3 this is the same as Ml with the only difference being that the linear system is 

solved using LS instead of TLS. 

M4 the method of Alshebeili et al in [35] 

M5 the method of Fonollosa et al [69] 

M6 the method of Tugnait in [34] 

M7 this is the same as M3 but TLS is used to solve the linear system. 
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M8 This is a nonlinear optimisation method based on the minimisation of a cumulant-

matching error criterion [31]. The nonlinear method is initialised using method 

Ml. 

Other methods for MA parameter estimation like [1, 32, 37, 38] have not been considered 

in the simulations since they perform very poorly in the examples considered here. In 

the first example sequences were generated according to the signal model 2. To reduce 

the realisation dependency of our simulations, the parameter estimates are averaged 

over 50 Monte Carlo simulations. Graphs (a) to (e) in figure 3.3 represent identification 

results for the individual parameters of signal model 2. The midpoints in the vertical 

bars represent the average value of the estimate after 50 Monte Carlo runs. The length 

of the vertical bar is twice the standard deviation of the estimated values. Graph (f) in 

figure 3.3 shows the MSE of the different identification methods. All the graphs show 

the results for SNR=50dB (coloured green) and for SNR=lOdB (coloured blue). The 

results produced here show that the solution of the linear systems proposed in section 

3.5.2 with TLS (method Ml) produces better results than plain LS (method M3). 

Furthermore, when the linear systems are solved using TLS, the use of the method of 

section 3.5.3 (method Ml) to overcome the effects of over- parameterisation produce 

better results that those of the methods of section 3.5.3 (method M2). The results 

of figure 3.3 also show that the method Ml proposed in this chapter outperforms all 

the other linear methods M2 to M7. For high SNR the performance of Alshebeili 

et al [35] method M4 is comparable to that of Ml. For lower SNR the involvement 

of second order statistics in M4 and M6 has a considerable effect on the accuracy 

of the estimates. Replacing the LS solution in M4 with TLS, results in method M7 

which has significantly worse performance than M4. From figure 3.3 it is clear that the 

estimates of M4 and M5 are highly biased. As expected the nonlinear method M8 

performs better than the linear methods. However the improvement over Ml, which 

was used to initialise M8, is not significant. Figure 3.4 compares the location of zeros 

models estimated using Ml with the location of models estimated using M4, M5 and 

M6. It is seen from figure 3.4 that the effect of decreasing the SNR is to increase 

the dispersion of the estimated zeros. This is more prominent for the zeros estimated 

by M4 and M6 since they are more sensitive to additive coloured noise. The good 

performance of method Ml is evident from the small dispersion of the corresponding 

zeros and their relative robustness to additive coloured noise. 

The next example involves signal model 1. System identification results for SNR=50dB 

and SNR=OdB are presented in figure 3.5. Once again the results are averaged over 

50 Monte Carlo runs. For SNR=50dB all methods perform very well for signal model 

1. As expected the results for the methods involving second-order statistics are highly 

biased for SNR=OdB. The method Ml proposed in this section performs very well in 

both cases. It achieves results which are comparable only with the nonlinear methods 

M8, which itself uses Ml to provide the initial solution. Figure 3.6 compares the 
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Figure 3.3: Identification results for signal model 2. The number of output samples 
is 5000. The graphs display the performance of system identification methods for 
SNR=50dB and SNR=lOdB. 
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Figure 3.4: Estimated locations of zeros of signal model 2 after 50 Monte Carlo runs. 
The number of output samples is 5000. 
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estimated locations of zeros for signal model 1. obtained from Ml with those obtained 

with the rest of the methods. It is important to note that the results in figure 3.6 are 

S NR=OdB 
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Figure 3.6: Estimated locations of zeros of signal model 1 after 50 Monte Carlo runs. 
The number of output samples is 2000. 

obtained a very low SNR of 0dB. The results obtained from methods M4 and M6 are 

practically useless. 

The final example involves signal model 4. This is a minimum-phase system. The 

system identification results summarised in figure 3.7 were averaged over 50 Monte 

Carlo runs. The length of the output sequence is 2000 samples. Once again the results 

demonstrate the significant advantage achieved by system identification methods based 

64 



I. _u 
,-I-II-j- 

[M1J 	[M3] 	tM41 	EMS] 	[M61 
estimation methods 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Chapter 3 : Moving Average Parameter Estimation 

-0.4 

-0.6 

-0.8 

-1 

-1.2 

.h( 1 )4I- std 50 J -.--.  

LM1] 	[M3] 	[M4} 	[M51 	[146] 
estimation methods 

((.01 
05 

0.001 

ftflU((1 

14 
I 

4-7  
[Ml] 	[M3] 	[M41 	[M5] 	[M6] 

methods 

Figure 3.7: Identification results for signal model 4. The number of output samples 
is 2000. The graphs display the performance of system identification methods for 
SNR=50dB and SNR=OdB. 

SNR=Odb 
15 
	

1.5 

03 
	

03 

-03 	 -03 

-15 	 .13 	 - -- 
-15 	-1 	.05 	0 	03 	I 	15 	 -15 	-1 	-05 	0 	0.5 	I 	IS 

Figure 3.8: Estimated locations of zeros of signal model 4 after 50 Monte Carlo runs. 
The number of output samples is 2000. 

65 



Chapter 3: Moving Average Parameter Estimation 

only on third-order cumulants, in low SNR environments. The estimated locations of 

zeros for signal model 4 obtained from method Ml, are compared with the locations 

obtained from M4 and M5, in figure 3.8. The SNR in 3.8 is 0dB. Method M4 fails 

to locate the zeros accurately. Both Ml and M5 provide estimates relatively near 

the true zeros, but the estimates obtained from Ml are dispersed in a smaller region 

around the true zeros. 

In summary, from the simulations examined in this section, the third-order cumulant 

method proposed in this section performs better than existing linear methods especially 

for very low SNR. The use of TLS for the solution of the linear system of section 3.5.2 

improves significantly the accuracy in system identification. 

3.10.2 Fourth-order cumulant based estimation 

Fourth-order cumulant based methods have not been analysed extensively in the ex-

isting higher-order statistics literature. The second- and third-order cumulant method 

of Aishebeili et al can be extended to form a second- and fourth-order cumulant based 

method. However the information provided in the Appendix of [35] is not sufficient to 

allow an implementation of the second- and fourth-order cumulant based method. In 

theory, the extension of [35] has an important disadvantage compared to the method 

proposed in 3.6.2. The fourth-order extension in [35] is considerably more complicated 

than the third-order version and requires more extensive over-parameterisation. In 

contrast, the method proposed in 3.6.2 can very simply be obtained from the third-

order method of section 3.5.2 by replacing the third-order cumulants with appropriate 

fourth-order cumulants. 

The fourth-order cumulant-based system identification methods considered in this sec-

tion are the following: 

Ni This is the method proposed in section 3.6.2. 

N2 This is the fourth-order method presented in [36]. It is the extension of M5 

considered in the simulations of the previous section. 

In the first example, signals consisting of 5000 samples were generated according to 

signal model 3. The SNR is 50dB. The results of 50 Monte Carlo runs are summarised 

in figure 3.9. It can be seen that both in terms of bias of the individual parameter 

estimates and in terms of standard deviation, the method proposed in this section 

performs better than method N2. In fact method N2 practically fails to identify the 

correct system parameters. The locations of the estimated zeros for all Monte Carlo 

runs are depicted in figure 3.10. 
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The last example involves signal model 1. The number of output samples is 2000 and 

the SNR is 50dB. The results of 50 Monte Carlo simulations are summarised in figure 

3.11. For this particular system both methods work quite well with slightly better 

results achieved with method N2. The zeros of the system are also located accurately 

with both methods. 

ozii 	r,iu 	 1.5 	 • 	 I 

MAA 	I 	 -1.5 	-I 	-0.5 	0 	0.5 	I 	1.5 
Re 

Figure 3.11: Fourth-order cumulants based identification results for signal model 1. 
The number of output samples is 2000. The graphs display the performance of system 
identification methods for SNR=5OdB. 

Summarising we can say that the fourth-order method proposed in this section per-

forms very well in the simulations presented in this section. The method of Fonollosa 

et al although it performs well for signal model 1, it practically fails to identify the 

parameters of signal model 3 when 5000 output samples are available. 

3.10.3 Results on model order selection 

In this section the performance of various model order selection methods is tested. 

In particular the methods of sections 3.8.1 and 3.8.2 are compared with the method 

based on equation (73) of [35]. In table 3.1 simulation results are presented for signal 
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model 1 which has model order 3. In order to illustrate the effectiveness of the algo-

rithms, 100 Monte Carlo runs for determining the order of the system were performed 

at SNR=lOdB and output sample size N = 500, 1000, 2000 and 4000. The best per-

formance is achieved with the algorithm of section 3.8.2 followed by that of 3.8.1. A 

I 	I 	Number of Successful Selections ] 

Method N=500 N=1000 N=2000 N=4000 
Sec 3.8.2 93 97 98 99 

TSec 3.8.1 89 95 97 97 

I 	[35] 	1 	84 	1 	90 	1 	93 	1 	99 	I 
Table 3.1: System order selection for Signal Model 1: Successful selections in 100 Monte 
Carlo trials with SNR=lOdB 

similar experiment is performed for signal model 2 which has model order 5. The SNR 

in this case is 20dB and the experiment is performed for output sample sizes N = 4000, 

5000 and 6000. Once again the method of section 3.8.2 performs better than the others 

followed by the method of section 3.8.1. 

I 	I Number of Successful Selections 

Method N=4000 N=5000 N=6000 
Sec 3.8.2 74 84 91 
Sec 3.8.1 71 83 89 

1 	[35] 	I 	46 	1 	57 	1 	69 

Table 3.2: System order selection for Signal Model 2: Successful selections in 100 Monte 
Carlo trials with SNR=20dB 

3.11 Conclusion 

This chapter has considered the problem of estimating the parameters of an MA model 

using only third- or fourth-order cumulants. New algorithms have been presented which 

are based on equations relating different cumulant slices of the same in terms of the 

system parameters. The identifiability of the algorithms has been established through 

a recursive solution of these new equations. The simulation results demonstrate that 

the new methods perform better than existing HOC-based linear methods for MA 

parameter estimation. 
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Chapter 4 

Blind Deconvolution of MA 
Models 

4.1 Introduction 

In this chapter the problem of estimating the inverse parameters of an MA model from 

the cumu!ant statistics of the noisy observations of the system output is considered. 

The system is driven by an III) non-Gaussian sequence that is not observed. The noise 

is additive and can be coloured and even non-Gaussian under certain conditions. 

The chapter derives general equations relating the inverse system parameters with 

the output cumulants. These new equations are linear with respect to the inverse 

system parameters and they are used to develop linear methods for blind deconvolution. 

Existing deconvolution techniques are given a unified description with the use of the 

new equations. The generality of the approach adopted in this chapter allows the 

development of new fourth-order cumulant based deconvolution methods, which are 

not restricted to the use of only a single one-dimensional slice of the output cumu!ants. 

This chapter also derives expressions for the asymptotic variance of the estimated in-

verse filter parameters. 

Finally the performance of the deconvolution is demonstrated with the use of Monte 

Carlo simulations. 

4.2 Problem Definition 

The problem of blind deconvolution can be defined as follows. Consider the single-input 

single-output system depicted in Figure (3.1). The output process {y(n)} is generated 

according to the following convolutional model: 

x(n) =E h(k)w(n - k), 	 (4.1) 
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where {w(n)} is a zero-mean non-Gaussian stationary process whose moments of order 

up to eight' is related to are finite, and 

y(n) = x(n) + v(n), 	 (4.2) 

where {v(n)} is a Gaussian additive noise process which is independent of {x(n)}. We 

assume that {v(n)} is spectrally white but this assumption can be relaxed later for 

some cases. We assume without loss of generality that h(0), h(q) =A 0. 

uknown 
additive 	13(n): 
noise 

H(z) 	 0(z) 
w(n)____________ 	 y(n)  

unobserved 	 observed 
input signal 	uknown transfer 	 signal 	deconvolution 	restored 

function 	 filter 	 input 

Figure 4.1: Single channel system and deconvolution filter. 

The objective of blind deconvolution 2  is to find an inverse filter with transfer function 

O(Z) = 
	 (4.3) 

so that 

12 

=E Ox(n - j) 	 (4.4) 
j=r1 

where t1(n) w(n) and Ti and r2  are the orders of the anti-causal and the causal part 

respectively. The values that 7- 1  and r2  can take depend on the phase characteristics of 

the generating system H(z): 

H(z) is minimum phase: The inverse system e(z) is a purely causal system i.e. r1  = 
0 and r2  > 1. 

H(z) is mixed phase: The inverse system ®(z) has both causal and anti-causal parts 

i.e. r1  < — 1 and r2  > 1. 

expression for the variance of the fourth-order sample dumulants involves up to eighth-order 
cumulants. 

2 The term blind refers to the fact that we perform deconvolution without prior knowledge of the 
input sequence {-(n)}. 
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H(z) is maximum phase: The inverse system e(z) is a purely anticausal system i.e. 

r1  < — 1 and r2  = 1. 

In this chapter we assume that H(z) has no zeros on the unit circle. We must note 

here that since H(z) is the transfer function of an FIR system its inverse 1 is the 

transfer function of an hR system. Because the inverse system is assumed to be stable 

it can be approximated arbitrarily closely by ®(z) as defined by equation (4.3). Hence, 

for sufficiently large values of —r 1  and r2 , the following equation holds: 

E) 	
1 

(z) = 	 (4.5) 
H(z) 

Next the two general approaches to blind deconvolution will be examined and the close 

relationship between deconvolution and system identification will be explained. 

Direct and Indirect Deconvolution The inverse system e(z) can be obtained 

either directly or indirectly. As will be shown later in this section, it is possible to 

derive relationships between the inverse impulse response 9,, j = r1 ,...,r2  and the 

cumulants of the output process, and to use these expressions to obtain the inverse 

impulse response directly. We refer to this type of method as direct deconvolution. 

Alternatively, one can use equation (4.5) to obtain the inverse system O(z). This 

approach involves the estimation of the system transfer function H (z), which is then 

inverted to obtain O(z). This type of method is referred to as indirect deconvolution 

and will also be examined more thoroughly later in this chapter. 

Both direct and indirect deconvolution methods developed in this chapter belong to 

the general category of the Method of Moments [14]. In a similar manner to section 

3.2.1, a vector of cumulant statistics is calculated from the observed sequence {y(n)}, 

which is then transformed so that it results in the unknown parameter vector 0, which 

in the case of deconvolution is given by 

0 = 1 9ri, 9r1-i--11 ... ,0r2_1,0r2} 	 (4.6) 

In the following section HOC-based methods for direct deconvolution are examined. 

4.3 Direct Deconvolution 

In section 3.3 equations involving cumulants of the output process and the parameters 

of the generating system have been examined. In order to develop direct deconvolution 

methods it is required to develop expressions relating the cumulants of the output 

process to the parameters of the inverse filter. 

72 



Chapter 4 : Blind Deconvolution of MA Models 

4.3.1 Fundamental relationships for the inverse filter parameters 

As shown in section 2.6 the cumulants of MA processes are given by the following 

equation: 

q - 
Ck,(7 -1, ..., Tb_i) = 'Yk,w > h(i)h(i + r1 ) • .h(i + Tk_1). 	 (4.7) 

i=O 

Let r, 	7-1 + mi for i > 1 in 4.7. Then after z-transforming with respect to 7-1 we 

obtain 

Ck,r(z; m2, ..., mk_1) = 7k, w H(z 1 ) [H(z) * [z rn1 H(z)] * . . * [zm'H(z)]]. 	(4.8) 

In order to introduce the inverse filter transfer function in equation 4.8 we divide both 

sides of 4.8 with H(z 1 ) and, after making use of equation 4.5, we obtain 

M2,..., Mk-1) = 7k,. [H(z) * [zm'H(z)] * . . . * [zmk_1H(z)]]. (4.9) 

In the time domain, and assuming that the impulse response 93  of the inverse system 

vanishes for j < r or j > r2 , equation 4.9 is equivalent to, 

0ck,(r+j,T+m1+j,...,r+mk_2+j) 

	

{ h(r)h(mi ) . . .h(mj_) r, m1,. . . , mj_ e [0, q] 	 (4.10) 
= 0 	 otherwise 

Of particular interest in practical situations are the special cases of 4.10 for k = 2, 3 

and 4. The corresponding equations are: 

1  r2 f h(m) me[0,q], 
-- 	9c(m+ 

j=rj 	
j) 

= 	0 	otherwise 
 

W  

r2  h(m)h(n) m 
93c3,(m+j,n+j) 

= { 	

, nE [0, q], 

0 	otherwise 	
(4.12) 

=r1 

r  
+ j,m2  + , + ) = { 

h(m i )h(m 2 )h(n) m 1 , m 2 , n E [0, q]. (4.13) 
jrj 	 0 	 otherwise  

Equation 4.12 was first reported in [88] and a different derivation of 4.10 for the special 

case of diagonal cumulants appeared in [26]. The derivation in [26] is inelegant and leads 

to the false claim that equation 4.10 is a direct consequence of the Giannakis-Mendel 

equation which was derived in [32]. For suitably selected parameters r, mi.... , Mk-2 
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the right side of equation 4.10 becomes zero and then 4.10 involves only inverse system 

parameters and k Ih  order cumulants of the output process {x(n)}. 

The equations developed so far in this section along with the equation 3.12 can be used 

to derive new families of equations involving the inverse filter coefficients, the second-

order cumulants and slices of higher-order cumulants. Consider equation 4.11 for m = i 

0 < i < q: 

	

9c2,(i+j) = 0,2 h(i), 	 (4.14) 
j=r1 

where 72,w = a. Equation 4.10 can be rewritten as 

OjCk,(i + i, i + 71 + i, •••, + Tk_2 + i) = 7k,wh(i)h(i + 72) . . . h(i + 7k_2) 

(4.15) 

where i,i+Ti,i+r2,...,i+Tk_2 E [0,q]. Finally 3.12 for n = k >2 and m= 2 

q 	 q 	k-2 

h(i)cj,(i + T, r1 , T2,. . . , 7k_2) = Ek,2 	h(i)[JT h(i + Tk)]c2,(i + r), 	(4.16) 

	

i=O 	k=i 

	

where Ek,2 
= 	Equations 4.14 and 4.15 can be substituted in the left and right side 

of equation 4.16 respectively, in order to replace the system parameters h(.)'s with the 

inverse filter parameters: 

q 	r2 

OjC2,(Z+j)Ck,(Z+T,Ti,T2,. ..,Tk_2) = 
i=O j=r1 

q 	r2 
OjCk, x ( + j, Ti + i  + j, ..., 7k_2 + i  + j)C2,x(  + r), 	(4.17) 

i=O j=r1 

where ri,r2,.. . ,Tk_2 E [0,q]. Equation 4.17 for third and fourth order cumulants 

becomes 

q 	r2 	 q r2 

+ j)c,(i  + T, Ti) = 	9c,(i + j, Ti + i  + i)c2,x (i + T) 
i=Oj=ri 	 iOjri 	 (4.18) 

and 

q 	r2 

OjC2,x(+j)C4,(i+T,Ti,T2) = 
i0 j=rj 

q 	r2 
9jc4,(i + j, 7-1 + i  + j, T2 + i + j)C2,x(i  + T) 	 (4.19) 

i=O j=r1 

Equations 4.17 and consequently equations 4.17 and 4.19 are linear with respect to 

inverse system parameters and, as will be shown in the next section, they can be used 
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for direct deconvolution. 

The equations developed in this section can be used to construct linear systems of equa-

tions with respect to the inverse filter coefficients. Different combinations of equations 

can be used for the construction of the linear system, resulting in different deconvo-

lution schemes. The first scheme presented in the next section is based on equation 

4.12. 

4.3.2 Deconvolution scheme using only third-order cumulants 

According to the problem definition of section 4.2, the only known quantities in equation 

4.12 are the third-order cumulants. In order to have equations involving only inverse 

filter coefficients and cumulants and not the system's parameters, it is appropriate to 

select the equations where the right-hand side is zero, i.e. equations corresponding to 

m, n in which at least one is outside [0, q].  Given a pair of parameters (m, n), which at 

least one is outside [0, q] the corresponding equation is 

Oc3 ,(m + j, n + j) = 0. 	 (4.20) 
j=rl 

This equation has been used in a similar deconvolution method developed in [39]. An 

adaptive version of that method has been reported in [89]. 

The equation corresponding to the parameter pair (m, n) is the same as the equation 

corresponding to the parameter pair (n, m) since e3 ,, (m + j, n + j) = c3, (n + j, m + j). 

In order to avoid duplicating equations, consider only the equations corresponding to 

parameter pairs (m, n) with rn < n are considered. The set of cumulant lags involved 

in the equation corresponding to a parameter pair (m, n) is the following: 

1 (m,n) = {( m+ri, n+ri), (m+ri+1, n+ri+1), ..., (m+r2- 1, n+r2- 1), (m+r2, n+r2)} 

Denote with rMA(q)  the set of all third-order cumulant lags belonging to the domain of 

support of a MA(q) process (the domain of support of MA processes has been discussed 

in section 2.6). Then, the equation corresponding to the parameter pair (m, n) is non-

trivial only if the intersection '(m,n)  n  £MA( q ) is non-empty. Consequently, the set 

of parameter pairs (m, n), m < n corresponding to non-trivial equations is defined as 

follows: 

D={(-1—i,q—j—i):i=0,...,r 2 +q-1 and j= 1,...,q+1} 

U{(i+j,q+1+i) :i=0,...,—r1  and j= 1,...,q+1}. 	(4.21) 

The set of non-trivial equations for m < n, is depicted in figure 4.2. The first set in 

the definition of V, is represented by the rectangle DOKL excluding the edge DO. The 
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Figure 4.2: Domain of support for equation 4.20. 
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second set in the definition of V, is represented by the rectangle ABCD excluding the 

the edge CD. Individual equations are represented by points with integers coordinates. 

The total number of equations is (r2  + q)(q + 1) - ri (q + 1). In the following it is 

assumed that we are dealing with mixed- or minimum-phase systems and that the 

inverse impulse response is normalised so that 0 0  = 1. Equation 4.20 then becomes, 

0c3,(rn+j,n+j) = —c3,(m,n). 	 (4.22) 
j=r1, j0 

Collecting the equations defined in 4.21, a system of linear equations with respect to 

the unknowns 0,1, 9 +i °i i7 02 can be formed. The detailed structure of the 

linear system is analysed in the following. Suppose that the equations corresponding 

to the parameters pairs belonging to the set 

{( - 1 — i,q — j--i):i=0,...,r2 +q - 1} 	 (4.23) 

are collected for a given j satisfying 1 < j < q + 1. A matrix with the coefficients of 

the inverse impulse response can then be formed. The coefficients of 0, 1  are located in 

column 1 and the coefficients of °7.2  are located in the last column i.e. column — r1  +r2. 

The matrix consisting of the coefficients of the selected equations has the following 

block structure: 

f A1 , 1 (j) I A,2 (j) 1 
A(j) = 	 I 	I . 	 (4.24) 

I Ori,rj A2,2(j) ] 
A(j) is an (r2 + q) x (r2 - ri ) matrix. The matrices A,,, (j) and 012+1,-11  contain 

the coefficients of the non-causal part of the inverse impulse response. The matrix 

°r2+1,—rj is a (r2  + 1) x ( — r1 ) matrix whose elements are all zero. For convenience of 

notation, in the following we assume that = c3,(ri,r2). The matrix A i , 1 (j) is a 

(q - 1) x ( — ?i) matrix and has the following structure: 

0 • . . 	0 	c_q,_j+1 C_q+1,_j+2 	C_2,q_j_1 

o ... 	0 	0 	C_q 

' 

—j+1 	 C_3 
'

q—j-2 
A,,, (j) = 	

. 	 . 	 . 	 . 	
. 	 (4.25) 

0 	 ... 	 0 	0 	C_q,_j+1 

A1 , 2 (j) and A 2 , 2 (j) contain the coefficients of the causal part of the inverse impulse 

response (Oj for 0 < j ::,~ r2 ). A 1 , 2 (j) is a (q - 1) x r2  matrix and has the following 

structure: 

CO 3 q_j+i 
	

Cj_1,q 	0 	0 	 0 

A1,2(3) 	
C_i ,qj 

= 
	 Cj_2,q_1 	Cj_i,q 	0 	0 	. . . 0 	

(4.26) 

C_ q 2,_j3 	 Cj_2,q_1 Cj_i,q 	0 	. . . 0 
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A 2 , 2 (j) is an ((r2  + 1) x r2 ) matrix and is defined as A 2 , 2 (j) = 

	

C_q+1,_j+2 	 Cj_1,q 	0 	0 	0 
	

0 

	

C_q,_j+1 	C._q4.1,_j+2 	 Cj_1,q 	0 	0 
	

0 

	

0 	C_q,_j+i 	 Cj_2,q_1 	Cj_1q 	0 
	

0 

	

o 	o 	C_q,_j+i 	 Cj_2,q_1 	Cj_1,q 	0 

	

o 	o 	 0 	C_q,_j+1 	 Cj_2,q_1 	Cj_1,q 

	

o 	o 	 0 	0 	C_q,_j+1 	 Cj_2q_1 

	

o 	o 	 0 	C_q,_j+1 

The constant terms of the right-hand side of 4.22, are collected in the following vector: 

a(j) = [ C_i,q_j, ..., C_q+i,_j+2,C_q,_j+i, 0, 	01T 	(4.27) 

(q-1)—elements 	(r2+1)—elements 

Let us now consider equations corresponding the parameter pairs belonging to the set 

{(i + j, q + 1  + i) : i = 0,..., —ri - 11 (4.28) 

for a given j satisfying 1 < j q + 1. The matrix containing the coefficients of these 

equations has the following block structure: 

B(j) = [ B i (j) 0_rl,r2 ] . 	 (4.29) 

B(j) is an ((—r 1 ) x (r2  - Ti)) matrix. 0—rj,r2  is an (—r 1  x r2) matrix with all its 
elements equal to zero. 0r1,r2  contains the coefficients of the causal part of the inverse 
impulse response. B 1  (j) is an ((—Ti) X (T1)) matrix containing the coefficients of the 
anticausal part of the impulse response: 

o 	 o 	0 	C_q,_j+1 	Cj_2,q_1 Cj_1,g 

o 	 0 	C_q,_j+1 C_q+1,_j+2 	Cj_iq 	0 

	

B I (j) = 	c_q,_j+1 	C_q+1,_j+2 	 C_i, q 	0 	0 	... 	0 

C_q+1,_j+2 	 Cj_1,q 	0 	0 	... 	0 	0 

	

Cj_i,q 	0 	0 	... 	0 	0 	0 	0 

The vector containing the constant terms of the equations has all its elements equal 

to zero: 

b(j) = 0_ri 	 (4.30) 

It should be noted here that the matrices A(j) and B(j) as well as the vectors a(j) 

and b(j), all contain cumulants from only one diagonal slice. More specifically it is the 
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12 

1-diagonal 

2-diagonal 

• 
• 	/ 	/ 

i- diagonal 
• 
• 

(q+1)2' diagonal 

'0 	/q 

-q 

Ti 

Figure 4.3: Geometric interpretation of i—diagonal slices. 

diagonal slice 

c3,x (—q,—i+1),...,c 3 ,x (i— 1,q). 	 (4.31) 

We call this the i—diagonal slice. The i—diagonal slices are depicted in figure 4.3. It is 

possible to build a system of equations involving all the (q + 1) diagonal slices depicted 

in figure 4.3. Let 0 be the vector containing the unknown inverse filter coefficients: 

0 [9r1 ,Ori+i ,  ... , 9_i, 91, ... , r ]T 
	

(4.32) 

Then the system of linear equations can be written in matrix form as follows: 

A(1) 
	

a(1) 

B(1) 
	

b(1) 

A(2) 
	

a(2) 

B(2) 
	

0 = 	b(2) 
	

(4.33) 

A(q+ 1) 
	

a(q+1) 

B(q+1) 
	

b(q+1) 

Equation 4.33 can now be written as 

CIO = Cl 
	

(4.34) 

The matrix C 1  has (r2  - r1  + q)(q+ 1) rows and (r2  - r i ) columns. In section 4.2 we 
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have assumed that h(0), h(q) 0. This implies that 

c3,(—q,0) = 73,h(0)h2 (q) 	0 and c3,(0, q) = 73,h2 (0)h(q) 	0. 

(4.35) 

As a consequence of property 4.35 and its structure, the matrix of coefficients generated 

by the 1-diagonal slice is full rank. 

The results presented here can be extended very easily to the fourth-order case. In the 

next paragraph a new fourth-order cumulant-based method for direct blind deconvolu-

tion is presented. 

4.3.3 Extension to fourth order cumulants 

For symmetrically-distributed signals third-order cumulants are zero, and the use of 

fourth-order cumulants is required. Take equation 4.13 for m 1  = m2  = m, m, n, such 

that at least one is outside [0,q], and Oo = 1: 

Oc,(m +j, m + j, n + j) = —c4,(m, m, n). 	(4.36) 
j=r1, jO 

This equation is new and has not been used for blind deconvolution before. The pa-

rameterisation in 4.13 has been reduced, since we have taken m 1  = m 2  = m. Equation 

4.36 is now parameterised in a way similar to the third order cumulant equation 4.22. 

This is very convenient, since all the analysis developed in section 4.3.2 can be ex-

tended directly to fourth-order cumulants if equation cT1 ,T2  = c3,(71, r2 ) is replaced 

with c1-1 ,,-2  = c4,(r1, 71, r2 ). We denote the resulting matrix equation as follows: 

D 1 0 = d 1 	 (4.37) 

The matrix D 1  has (r2 - r1  + q)(q + 1) rows and (r2 - r1 ) columns. 

4.3.4 Deconvolution schemes involving second- and third-order cu-

mulants 

In many cases it is desirable to involve second-order statistical information along with 

higher-order statistics in order to recover the inverse filter coefficients. Second-order 

statistics have lower variance than higher-order statistics so their inclusion can have 

positive effects on the estimated parameters. 

One possibility of introducing second-order statistical information is to use equation 

4.11. Zheng et al in [45] have used equation 4.11 along with the equation involving 
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the (q+1)-diagonal third-order cumulant slice. Equation 4.22 allows us to extend the 

method of [45] to include all the available third-order statistics of the output process. 

Assuming that Oo  = 1, equation 4.11 can be written as follows: 

9c2,(m+j) = — c2 ,(m), 	 (4.38) 
j=fi, ;;'-O 

where m [0, q].  Equation 4.38 is parametrised only with respect to m. After collecting 

the equations corresponding torn = —1,..., —r—q and m = q+1, ..., —r1+q, we obtain 

a coefficient matrix with the following block structure: 

r 	(2) 	(2) 	-i 
I 	A1,1 	A1,2  I 

C 2  = I 0r2+1,_ri 	A22,2 	 (4.39) I 
B 2  L 	1 	0-rj,r2 ] 

The matrices A1 (2)  1 , A (2)
1,27  A2 (2)  2 , and B1 (2) 

 have the same structure with the matrices 

A,,, (q+ 1), A i , 2 (q+ 1) 7  A 2 , 2 (q+ 1), and B i (q+ 1) respectively, provided we replace 

c,,- with c2,( -r). Using the same substitution, we can get the vector of the constant 

terms of equation 4.38, which can be written as c(2) = [a(2),b(2)]T. The new equations 

can now be added to the system of third-order cumulant based equations 4.34: 

	

I C1

]o 	
I Cl 1 

C(2 ) 	= L c(2)j 	
(4.40) 

In exactly the same way we can add the second-order cumularit-based equations to 

system 4.37 which is based on fourth-order cumulants. 

There is another way of adding second-order statistical information to the deconvolution 

schemes developed in the previous section. This can be achieved with equation 4.18 
for the third-order statistics case, and with equation 4.19 for the fourth-order statistics 

case. Let us examine the third-order cumulant case first. 

After collecting the coefficients of Oj's in equation 4.18 and assuming Oj  = 1 we obtain 

the following equation (We also rename the parameters (r, r1 ) of equation 4.18 as 
(r1, r2)): 

9jf(r,r) = fo(ri , r2 ), 	 (4.41) 
j=ri (j0) 

where the f3 (ri , r2 ) is given as follows: 

f(7 -1 , 7-2) 
= 	

+ j, i + j + ri)c(r  + i) - c2 ,(i + j)c3 , x (r2  + i, 7-1 )). (4.42) 
1=0  

In equation (4.42), r1  = — q, - ,q and T2 = — 2q,.. ,q. For r1 = 0 equation 4.42 
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involves only (q + 1)-diagonal cumulants and it has been used for deconvolution in [45]. 

Equation 4.42 allows us to generalise the approach of [45] to include all the available 

third-order cumulants. It is easy to observe that for r2  = — 2q and for r1  = 

equation 4.42 is the same as equation 4.22 for (m, n) = (q + r1 , q). Similarly, equation 

4.42 for r2  = q and 7-1  = —q,...,-1 is the same as equation 4.22 for (m, n) = (0, -Ti ). 

Consequently, there are (2q + 1)(3q  + 1) - 2q new equations resulting from the general 

equation 4.42. These equations in matrix form can be written as 

	

c23e = c(2,3) 	 (4.43) 

It is interesting to note that the inverse filter parameters involved in equation 4.42 

are the parameters 9-2q, ..., 0-1, 91, ..., 8q• The rest of the inverse filter coefficients are 

obtained using a linear system represented by equation 4.34, so we can combine 4.34 

and 4.43 and obtain the following: 

I c1 

Io 	
I 	1 

L c(23) 	= { C' 	
(4.44) 

For symmetrically-distributed signals, we use equation 4.19 which, after collecting the 

coefficients of the 9,'s and assuming 90 = 1, becomes 

Og(Ti,r2,T3) =go(ri,T2,T3), 	 (4.45) 
j=rl(joO) 

where the gj(ri , 7-2, 7-3 ) is given as follows: 

Yj(Ti,T2,T3) = 
i=O 

c4,(i + j, r2  + i  + j, r3  + i  + j)c2,x (i + Ti)). 	 (4.46) 

Once again we have renamed the parameters of 4.19 from (r, r1 , 72) to (T1, T2, 73). Equa-

tion 4.46 is not trivial for the following values of r1 , 72  and r3 : 

—2q <r1  < q, —q < 7-2 ,7-3  < q. 	 (4.47) 

If we set r2  = r3 , equation 4.45 can be used to form a set of linear equations in a 

similar way to equation 4.42. Thus we can use equation 4.45 to obtain a system of 

(2q + 1) (3q + 1) - 2q linear equations which in matrix form can be written as 

	

D 2 '4 O = d 2 '4 
	

(4.48) 

The new equations 4.48 can be used together with equations 4.37 to obtain the following 
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combined system: 

I D 1 1 	1 d 	1 L D 2 '4  j 
0 

= [ d24 ]. 	
(4.49) 

4.3.5 General Comments 

Uniqueness of least-squares solutions: As we have seen at the end of section 

4.3.2, the inclusion of the linear equations whose coefficients come from the 1-diagonal 

cumulant slice ensures that matrix C 1  is full rank. Consequently the linear systems 

4.33, 4.40 and 4.44 all involve full rank matrices. The uniqueness of the least-squares 

solutions of the above systems is guaranteed. In practice, the cumulants that are used 

to construct the linear systems of the previous sections are not known and they have 

to be estimated. Assuming that the sample estimates are asymptotically consistent, 

the corresponding estimates of the inverse filter coefficients will also be asymptotically 

consistent. The uniqueness and consistency of the least-squares solutions of the systems 

involving fourth-order cumulants (linear systems 4.37,4.49) is also guaranteed by the 

same arguments. The fourth-order cumulant slice that ensures that the matrices are 

full rank is the one-dimensional slice c4 , S (—q,0,0),...,c 4,(O,q,q). 

Order of the inverse filter: Assuming that Pi  is the maximum modulus of the roots 

of H(z) located inside the unit circle, and P2  is the minimum modulus of the roots of 

H(z) outside the unit circle, then r2  should be selected to be proportional to 1/log(p i ) 

and r1  should be proportional to —11109(P2)  [14, 56]. The algorithms studied in the 

previous sections are relatively insensitive to the choice of r1  and r2  as long as they 

are taken to be large (in absolute value) enough. In fact equations 4.22 for example, 

are completely insensitive to the selection of r1  and r2 , as long as for the parameters 

(m,m) the following condition holds: supposing that the points (x i ,yi ) and (X2, Y2) 
define the segment that results from the intersection of the segment defined by the 

points (m + r1 , n + ri ) and (m + r2 , n + r2 ) with the domain of support of third-order 

cumulants of the MA(q) process, then 

m+ri <x1  <x2  < m+r2 

	

n+ri<yi<y2<n+r2. 	 (4.50) 

Similar conditions hold for the second- and fourth-order equations 4.38 and 4.36 re-

spectively. Equations 4.42 and 4.45 are completely insensitive to the selection of r1  and 

r2  as long r1  is selected to be smaller than —2q and r2  bigger that q. When —r 1  and r2  

are not sufficiently large, there will be a relatively significant residual in the equations 

which does not satisfy the above conditions. 
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A common assumption for all the algorithms of this chapter is that 00  = 1. This assump-

tion implies that the underlying system is mixed or minimum phase. For maximum-

phase systems, as we have seen in section 4.2, the inverse impulse response is purely 

anti-causal. All the algorithms can easily be converted to deal with maximum-phase 

systems if the assumption Oo  = 1 is replaced with O-i = 1. 

Model order q: In this chapter we have assumed that we are given the true model 

order q. MA model order selection techniques have been examined in chapter 3. For 

maximum phase systems, the model order determines the exact structure of the linear 

systems and affects the estimated inverse impulse response. It is interesting to note 

though, that for minimum phase systems the structure of the systems does not depend 

closely on the true model order and consequently in these cases the estimation of the 

inverse impulse response is insensitive to model order selection. 

Implementation issues: As discussed earlier, if the underlying system has zeros 

very near the unit circle, then the inverse model orders —r 1  and/or r2  can get very 

big. In such a case, the linear systems examined in the previous sections, can become 

forbiddingly large. Fortunately when this happens these linear systems become very 

sparse and can be implemented using sparse matrices techniques. 

4.4 Indirect Deconvolution 

Indirect deconvolution is a two-stage procedure. The first stage involves the estimation 

of the system parameters h(i) i = 0, ..., q. For this purpose one can use the methods 

developed in chapter 3 or other methods available in the literature [63, 90, 68, 37]. 

The second stage involves the calculation of the inverse filter coefficients 03  for j = 
..., r2 . The inverse filter coefficients can be obtained as the least-squares solution of 

the following system of equations: 

min{k,r2 -r1 } 

Oih(k—l)=ö(k+ri ) 	k=O, ... ,r2—ri +q. 	(4.51) 
1max{0,/c-q} 

In matrix notation we have 

Bj.,9, = 	 (4.52) 

where O  is the vector 	..., 0, 0 7  O, ... , 0121. Finally we normalise with respect to 

00. 

UM 
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4.5 System Identification Through Deconvolution 

The equations developed in section 4.3.1 can also be used to estimate the filter pa-

rameters h(i) i = 0,..., q. More specifically, assuming we have estimated the inverse 

filter parameters 93  for j = — 2q,..., q we can use equation 4.11 to obtain directly the 

system impulse response h(i) for i = 0, ..., q. However this approach is very sensitive 

to additive coloured noise and so for low SNR a method based on equation 4.12 is now 

developed. Consider equation (4.12) for all the m and n in the range between 0 and q. 

Equation 4.12 can now be rewritten as follows: 

Oic3x(m+in+i) = 73,h(m)h(n) m,n E [O,q]. 	(4.53) j 	2q   

We can now form a matrix D with the products 73,xbm bn  calculated from equation 

(4.53): 

-y3,h 2 (0) 	73,h(0)h(1) 	73,h(0)h(q) 

H 	
73,h(0)h(1) 	y3,h 2 (1) 	•.. 73,h(1)h(q) 	

(4.54) 

y3,h(0)h(q) 73,h(1)h(q) ... 

It is obvious from the structure of H that rank(H) = 1. In fact we have 

h(0) 

	

h(1) 	
h(0) h(1) 
	

h(q)]. 	 (4.55) 

h (q) 

In theory taking the SVD of H would result in only one nonzero singular value. In 

practice though, there will be more than one nonzero singular value. In this case we 

take the most dominant singular value and we use the SVD to perform rank reduction 

on H. Say H = UEVT. Then if u 1  is the first column of U , v 1  is the first of V and 

01 is the dominant singular value of H we have 

[h(o) h(1) ... h(q) J = r .v1T 	 (4.56) 

where r is a constant. After normalising so that h(0) = 1 we find the system parameters 

(we must note here that sometimes this normalisation may lead to numerical instability 

due to division with a very small number). From the previous we see that in order to 

find the system parameters we need only to know the inverse system parameters 93  for 

j = — 2q,. . , q. This means that the estimation of the h(i) 's is immune to errors in the 

estimation of the 93 's for j = r1 ,. . ., — 2q - 1 and for j = q,. . . , r2. 

The above procedure can easily be extended to the fourth-order cumulant case. Con- 

M. 
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sider equation (4.13) for m1 = 0 and  for all m2 and n in the range between 0 and 

q. 

+ j, n + j) = 74,h(0)h(m 2)h(n) m 2 , n E [0, q]. 	(4.57) 
j=-2q  

Assuming that we have already estimated 0-2q, .•., 9q, we can use the right-hand side 

of equation 4.57 to form the following matrix: 

I 	-y,,,h(0) 	74,h2 (0)h(l) 	-y4,h2 (0)h(q) 1 
I 74,.h2 (0)h(1) 4 ,h(0)h2 (1) 	74,h(0)h(1)h(q) I 

H (4) =I  

L 4,h2 (0)h(q) 74,h(0)h(1)h(q) ... 	74h(0)h2(q) ] 

Once again rank(H(4)) = 1. 11 (4)  can now be written as 

(4.58) 

h(0) 

11 (4)  = 'y4,h(0) 	
h(1) 	

h(0) h(1) . 	h(q) 
	

(4.59) 

h (q) 

The system parameters are then obtained using exactly the same procedure as the 

third-order cumulant case (equation 4.56). 

The standard method to obtain the system parameters from the inverse system is 

to perform a straightforward inversion procedure in the frequency or time domain 

(similar to the method of section 4.4). The advantage of the present method is that 

the application of the SVD can potentially smooth out the effects of errors in the 

inverse impulse response. Furthermore the present method involves only a portion of 

the inverse impulse response from 9-2q, ..., 0q which usually has smaller length than 

the full inverse impulse response. This can reduce the computational requirements of 

having to deal with a very long impulse response in time domain calculations. 

4.6 Asymptotic Performance Analysis 

The asymptotic performance of the deconvolution methods developed in this section 

can be analysed using the theorems 3.2 and 3.3 of section 3.7. 

Asymptotic covariance expressions for the estimates of direct deconvolution: 

The deconvolution methods developed in section 4.3 use the output cumulants to build 

3 Another option is to use m. = q. 

me 
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a system of linear equations which is then solved using the least-squares method. Here 

we develop analytic expressions for the asymptotic covariance matrix of the random 

vector 6 obtained from equation 4.34. The corresponding expressions for the rest of the 

direct deconvolution methods can be derived using a similar procedure. The method 

resulting in equation 4.34 involves only third-order cumulants. We collect the third-

order cumulants corresponding to the minimally sufficient set of lags in the following 

vector: 

S3 = [c3,(0,0),c3,(0,1),...,c3,(q,q)]T . 	 (4.60) 

The least-squares solution of 4.34 is expressed as 

= (C1TC1)_1C1Tc1. 	 (4.61) 

According to theorem 3.3, the Jacobian of the transformation 4.61 is given by 

G1 = [C 1 TC 1 ]_1 C 1 TDC1 . 	 (4.62) 

where the i1h  column of D 1  is given by 

	

0c 1 	OC i  
Dc1 , = 	 (4.63) 

0s3 (i) 

In particular, if we assume that s3(i) = c3,(rl,r2) and that r3 , q (a,b) = (c,d) is a 

mapping such that c 3,(a, b) = c3,(c, d) and 0 < c < d < q, we have the following 

expression for the k 1 element of Dc 1  ,: 

8e3,(m, n) 	
r2 	l9c3,(m + j, n + j) - 

Dc1 (k,i) = 0C3,.(r1, r2) - 	 ôc,(ri, r2) 	- 
3=r (jOO) 

{ 0 	(ri,r2) 	{L3,q(m+j,n+j)  :j=ri,...,r2} 

1 	(ri,r2) = 13,q (m,fl) 	 (4.64) 

Gi (r1,r2)L3,q(m+i,n+i) i=ri,...,r2, i5k0. 

Finally, the asymptotic covariance matrix of Ô is given by 

urn Ncov{Ô T O} = Gc 1 E(s3)Gc 1 T . 	 (4.65) 
N-oo 

Asymptotic covariance expressions for the estimates of indirect deconvo-

lution: The asymptotic expressions of the estimates of indirect deconvolution are 

derived in a similar way as those of direct deconvolution. The multi-stage nature 

of indirect deconvolution translates to a cascade of Jacobian transformations of the 

asymptotic covariance matrix of the sample cumulants. 

As we have seen in section 4.4, the solution of equation 4.52 is normalised with respect 
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to 90•  The Jacobian of this transformation is defined as 

1 
Gnorm  - 

00 

0 0 0 -- 0 0 

o II 0 0 0 0 
00 

o o 0 1 _L 
00  o 0 

o o 0 	•.. 0 - 1 0 80  

0 0 0 -- 0 1 
00 

(4.66) 

Gnorm  is a (r2  - ri ) x (r2  - r1  + 1) matrix. 

The Jacobian corresponding to the solution of equation 4.52 is given by the following 

expression 

G1 = 	 T1-' 	 (4.67) '-'mv •-'muv, 

where the (i,j) element of Di.v ,  is 

	

88(i-1+ 	
min(i-1,r2—r1) 

OOih(i - 1 - 1) - ri) 	
- 

D1flV (,,) = 
Oh(j 	 Oh(j) 

	

) 	
1=rnax(O,i-1—q) 

f 0 —j-1 (i ~ q+1, ji-1) or 

or (r2—ri+1<i<r2—ri+q, j~ r2—ri —i+1) 	(4.68) 

1 o 	otherwise. 

Finally, the asymptotic covariance of the inverse filter coefficients obtained using indi-

rect deconvolution is given by 

	

lim Ncov{OTO} = GnormGinvGsysIDE(S'3)GT GT GT 	 (4.69) syslD nv norm, N—+c'o 

where G55ID  is the Jacobian matrix corresponding to the system identification method 

used to derive the filter parameters h(0), ..., h(q). 

4.7 Numerical Simulations 

In this section numerical experiments are performed to demonstrate the performance 

of the methods developed in this chapter. Random signals are generated according to 

the following signal models: 

Model 1 

x(n) = w(n) - 2.4w(n - 1) + 0.8w(m - 2) 

y(n) = x(n) + v(n) 
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The zeros of the system transfer function 11(z) are located at 2 and 0.4. The inverse 

filter model order is set to r1  = —10 and r2  = 8. 

Model 2 

x(n) = w(n) - 0.8w(n - 1) - 0.86w(n - 2) + 0.768w(n - 3) + 1.0205w(n - 4) 

y(n) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at 1.1+jO.6 and —0.7±jO.4. 

The inverse filter model order is set to r1  = —30 and r2  = 25. 

Model 3 

x(n) = w(n) + 0.3w(n - 1) - 0.4w(n - 2) 

y(n) = x(n) + v(n) 

The zeros of the system transfer function H(z) are located at 0.8 and 0.5. The inverse 

filter model order is set to r1  = 0 and r2  = 20. 

Similarly to the previous section, the input signal w(n) used in the simulations involv-

ing third-order cumulants is a zero-mean exponentially distributed III) noise sequence 

with o, = 1 and = 2. In simulations involving fourth-order cumulants the input 

signal w(n) is an III) noise sequence distributed according to a Laplace distribution 

with parameter 1 = 1, and a = 2, Y3,w = 0 and 74,w = 24. Additive coloured noise is 

created as the output of the following MA(4) model: 

v(n) = 0.5u(n) - 0.25u(n - 1) - 0.5u(n - 2) + 0.25u(n - 3) - 0.25u(n - 4), (4.70) 

where the input sequence is an III) Gaussian sequence. We define the signal-to-noise 

ratio as SNR(dB) = 10 log(P/P) where P denotes the power of the signal. The 

accuracy of deconvolution is assessed by calculating the Mean Square Error (MSE): 

Fq 	-m)2 
MSE = Fq 02 

where Om is the estimated impulse response corresponding to time m. The MSE can 

also be expressed in dB's as 10log10 (MSE)dB's. 

4.7.1 Third-order cumulant-based deconvolution 

The deconvolution methods used in this section are defined as follows: 
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Method 1: This method involves system identification using method Ml of chapter 3. 

The inverse system parameters are obtained according to the method described 

in section 4.4. 

Method 2: This is the third-order cumulant based method described in section 4.3.2. 

This method is similar to that described in [39]. 

Method 3: This is the second- and third-order cumulant method described by equa-

tion 4.40. 

Method 4: This is the second- and third-order cumulant method described by equa-

tion 4.44. 

Method 5: This is a second- and third-order cumulant method described by the spe-

cial case of equation 4.44 which invoves only main diagonal cumulants. This is 

the the same as the method first presented in [45]. 

Method 6: This method is also similar to method 5 but it includes the equations 4.41 

for r1  = — 1,... , 1 and T2 =0. 

The first example involves signal model 1. The number of output samples is 1000 and 

two experiment were performed, each one involving 50 Monte Carlo runs. The SNR 

during the first experiment is 50dB while in the second experiment is 10dB. Figure 4.4 

depicts the results of individual deconvolution methods for SNR=50dB. The graphs 

in 4.4 show the true inverse impulse response, the average of the estimated impulse 

response and the average plus/minus the standard deviation of the estimates. To facil-

itate comparison the standard deviations of the estimated impulse response obtained 

from all methods and the MSE are shown in the graphs of figure 4.6. All methods 

perform well in this experiment but the best results are achieved with the indirect 

deconvolution method which is marked as Method 1. The results for SNR=lOdB are 

shown in figures 4.5 and 4.7. The variance of the estimates is higher for all decon-

volution methods because of the effects of the noise. The method of [45] (Method 5) 

is more seriously affected by the lower SNR. It is also interesting to note that under 

SNR=lOdB the performance of Method 1 is no longer better than that of the other 

methods. 

This example involves channel model 3. This is a minimum phase system and the 

purpose of this example is to demonstrate the robustness of deconvolution methods to 

overestimation of the model order. The model order in this example is assumed to be 4 

instead of 2. The results are shown in graph 4.8. 50 output sequences of 5000 samples 

are generated with SNR=lOdB. Despite the overestimation of the model order and the 

low SNR, both methods perform well in the estimation of the inverse impulse response 

as predicted by the theory. 

WO 
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Figure 4.4: Deconvolution results for signal model 1 after 50 Monte Carlo runs. The 
number of output samples is 1000 samples and the SNR is 50dB. 
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Figure 4.5: Deconvolution results for signal model 1 after 50 Monte Carlo runs. The 
number of output samples is 1000 samples and the SNR is 10dB. 
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Figure 4.8: Deconvolution results for signal model 3 after 50 Monte Carlo runs. The 
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The final example involves signal model 2. The deconvolution of this model requires 

longer data sequences than signal model 1, so output sequences of 5000 samples are 

used in this example. Identification results for SNR=50dB are shown in the graphs of 

figure 4.9 and results for SNR=lOdB are shown in figure 4.10. Methods 2 and 3 which 

are based on equations 4.20 and 4.38 perform better than methods 4, 5 and 6 which are 

mainly based on equation 4.41. Furthermore, it is clear from figure 4.10 that methods 

4, 5 and 6 are much more sensitive to additive noise. 

4.7.2 Fourth-order cumulant based deconvolution 

In this section fourth-order cumulant-based methods are examined. 

Method 1(4): This the new fourth-order method described in section 4.3.3. It is 

based solely on the fourth-order cumulant equation 4.36. 

Method 2(4): This is the fourth-order equivalent of Method 3 in the previous section. 

It combines the fourth-order equation 4.36 with the second-order equation 4.38. 

Method 3(4): This method involves system identification with the method of the 

previous section 3.6.2 and then inversion to obtain the inverse system parameters. 

Method 4(4): This methods involves all equations 4.36, 4.38 and 4.13. 

In the first example sequences were generated according to signal model 3. The SNR is 

set to 10dB and the model order is overestimated to be 4. The results are averaged after 

50 Monte Carlo runs, each run involving output sequences of 2000 samples. Methods 

1(4) and 4(4) are used for deconvolution. The results are reported in figure 4.13. As we 

can see both methods manage to estimate the inverse impulse response quite accurately. 

Finally, sequences were generated according to signal model 2. The number of output 

samples is 7000. It is bigger than that of third-order cumulants, in order to compensate 

for the increase in the variance of the fourth-order cumulants. The results of deconvo-

lution for SNR=50dB and SNR=lOdB averaged after 50 Monte Carlo runs are reported 

in figures 4.14 and 4.15 respectively. The performance of Methods 1(4), 2(4) and 3(4) 

are the same in terms of their MSE, for both low and high SNR. The estimates obtained 

from Method 3(4) have higher variance than those obtained from Methods 1(4) and 

2(4), but they are less biased. The inclusion of equations 4.36 has a negative effect on 

the performance of Method 4(4). 
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Figure 4.9: Deconvolution results for signal model 2 after 50 Monte Carlo runs. The 
number of output samples is 5000 samples and the SNR is 50dB. 
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Figure 4.14: Deconvolution results for signal model 2 after 50 Monte Carlo runs. The 
number of output samples is 7000 samples and the SNR is 50dB. 
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Figure 4.15: Deconvolution results for signal model 2 after 50 Monte Carlo runs. The 
number of output samples is 7000 samples and the SNR is 10dB. 

101 



Chapter 4 : Blind Deconvolution of MA Models 

4.8 Conclusions 

This chapter has considered the problem of blind deconvolution of FIR systems. In 

order to build methods for blind deconvolution, some new general equations have been 

derived, which relate the inverse response to the output cumulants. Previously, only 

special cases of these equations had been derived. The new equations can be combined 

in various ways to produce deconvolution algorithms. These algorithms involve the 

solution of linear systems of equations. The structure of the matrices involved in these 

systems was studied in order to facilitate implementation and, most importantly, to for-

mulate for the first time conditions that ensure the identifiability of the inverse system 

parameters. Expressions for the asymptotic variance of the inverse system parameters 

obtained from HOC-based deconvolution have also been derived. Simulation results 

have been presented which demonstrate the performance of the blind deconvolution 

algorithms. 
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Chapter 5 

MA Cumulant Enhancement 

5.1 Introduction 

One of the great concerns when we apply higher-order statistical techniques to real 

signals is the higher variance of estimates of the higher-order statistics relative to the 

variance of estimated second-order statistics. This disadvantage of higher-order statis-

tics is compensated, to some degree, by the fact that the higher the order of the statistics 

is, the larger the number of available statistics becomes. For example, suppose that 

we observe a stationary non-Gaussian MA(q) process. The non-redundant set of infor-

mation bearing second-order statistics (correlation statistics) contains q + 1 elements. 

On the other hand, the non-redundant set of information bearing third-order statistics 

(third-order cumulants) contains (q+l)(q+2)/2 elements. Intuitively, one could deduce 

that there is some form of internal structure in a set of the third-order cumulants of an 

MA (q) process. Indeed not all sets of (q+ 1)(q+2)/2 numbers can be considered to be 

true third-order cumulants of some MA(q) process. Consequently, there must be some 

structural properties that characterise MA(q) cumulants. In fact, HOC-based MA pa-

rameter estimation methods in the literature, as well as those developed earlier in this 

thesis, implicitly rely on the internal structure of cumulants. This chapter explicitly 

focuses on the characteristic properties of higher-order cumulants and study has two 

objectives: 

To gain an understanding of the kind of properties which are sufficient to char-

acterise sets of cumulants. Such a result, apart from its theoretical value would 

be useful for the realisation of the second objective. 

To be able to "enhance" sets of sample estimates of cumulant statistics. 

Sets of sample estimates of cumulant statistics, possess the characteristic proper-

ties of sets of true cumulants only approximately. The accuracy of this approx-

imation depends on how accurate are the sample estimates of the cumulants. If 

we know the characteristic properties of sets of cumulants (objective 1), then we 

can build a mapping that maps, according to some optimality criterion, the set 

of sample estimates of cumulants to a set of enhanced cumulants which possess 

the desired properties. 
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The enhanced cumulants can then be used for parameter estimation using any of the 

existing methods. 

The chapter starts with the study of the properties of third-order cumulants. This is 

achieved through a geometric (or vectorial) interpretation of equation 3.24 of chapter 

3. The cumulants are then used to form a matrix and the properties of cumulants 

can be conveniently expressed as properties of a matrix. The sufficiency of the derived 

properties to characterise third-order cumulants is formally proved. This method is 

then extended to account for the joint structure of second- and third-order cumulants. 

The next subject of this chapter is to study the properties of fourth-order cumulants. 

For fourth-order cumulants there are two alternative approaches. The first involves 

the study of the full set of the available fourth-order cumulants. The large number 

of statistics makes this study difficult and limits its practical value for relatively large 

model order q. Furthermore, the fourth-order cumulant-based methods developed in 

the previous chapters use only a subset of the available statistics. For these reasons the 

second approach considers only a subset of the fourth-order cumulant statistics. The 

properties of this set are derived and expressed in matrix notation. 

Finally, the chapter considers the development of mappings corresponding to the prop-

erties of the cumulant matrices. The composition of these mappings is then used to 

develop an iterative algorithm that given a set of sample cumulants and tries to map 

this set to an enhanced set possessing the theoretical properties. The convergence 

properties of the iterative algorithm are also analysed. The chapter concludes with the 

presentation of results obtained from numerical experiments. 

5.2 The Linear Structure of Third-Order MA Cumulant 

Slices 

The starting point of the analysis of the structure of third-order cumulants is equation 

3.24 of chapter 3 which is repeated here for convenience: 

h(i)h(i + n)c3,(m, i + r) = 	h(i)h(i + m)c3,(n, i + r). 	(5.1) 

Consider equation 5.1 for m = q and then divide both sides with h(0)h(q) we obtain 
the following: 

c3,(m, r) = q h(i)h(i+m) 
c3 , x (q, i + r). 	 (5.2) 

iO 
h(0)h(q) 
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Equation 5.2 shows how the third-order cumulants of an MA(q) processes, can be 

expressed as functions of the system parameters and of cumulants one of whose lags 

equals the model order q. 

5.2.1 Geometric interpretation 

Equation (5.2) has an interesting geometric interpretation which reveals the linear 

structure inherent in the third-order cumulants of MA processes. This becomes more 

evident after constructing a vector equation with the aid of equation 5.2. Let us define 
the following vectors of cumulants 1 : 

Cn = [c3,(n - q,n),c3,x(n - q+ 1,n), . . .,c3 ,x (q - 1,n),c3 ,x(q,n), , 9J T . 	(5.3) 

2q—n+1 

Also, for 0 < d < q we define as Cd  the following vector: 

c = 	O,c3,(O,q),c3,(1,q),c3,(2,q),.. 	 (5.4) 
d 	 q+1 	 q—d 

The vectors ed q and Cn  have 2q + 1 elements each. Equation (5.2) can be written in 

Figure 5.1: The one-dimensional cumulant slices and their corresponding vectors. 

'The symbol ()T is used to denote transpose. 
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vector form as, 

q h(i)h(i + m) 
cn = h(0)h(q) 	

(5.5) 

We observe, that 

(5.6) 

is a set of linearly independent vectors. Equation (5.5) also shows that 

Cn Espan(B) 	n=0,...,q. 	 (5.7) 

Due to the symmetries of third-order cumulants, we need only consider the vectors c 

for n = q, ..., 0, each one containing cumulants belonging to a one-dimensional third-

order cumulant slice. These cumulant slices are depicted in figure 5.1. Expression 5.7 

shows that the vectors corresponding to different one-dimensional cumulant slices be-

long to the same (q+ 1)-dimensional subspace and that a basis of that subspace contains 

vectors of cumulants taken from a single one-dimensional cumulant slice. This subspace 

interpretation of equation 5.5 provides the motivation to organize the cumulants in a 

matrix form as follows: 

C 3 ,q  = [cq ,c 1 ,c,. . . , C,Cq_1,Cq_1,. . ., ci ,co]. 	 (5.8) 

The detailed structure of C3 ,q  is shown in figure 5.2: The matrix C 3 ,q  has dimension 

C1J,q 	C1,q 

0 	CO,q 

o 	•.. 	0 
o 	... 	0 

C1,q1 	CO,q_1 	C1,q1 

C_2,q_2 C1,q2 	CO,q_2 

Cq_1,0 	Cq_1,[ 	Cq_1,2 

C_q,O 	C_q+1,0 Cq+2,0 

Cql,q Cq , q  0 0 ... 0 
Cq2,q Cq_1,q Cq ,q  0 ... 0 

CO,q C1,q Cq_1,q Cq , q  0 
0 CO,q C1,q Cq_1,q Cq , q  

Cq_1,q_1 Cq,q_1 0 . 	. 	. 0 
Cq_2,q_2 Cq...1,q2 Cq,q_2 . 	. 0 

• 	• Cq_1,2q_4 Cq_1,2q_3 Cq_1,2q_2 Cq_1,2q_1 0 
• Cq_4,0 Cq_3,0 Cq_2,0 Cq_1,0 Cq,O 

Figure 5.2: The detailed structure of C3 ,q . (c 7.1 , 2  is used to denote c3,(rl, r2)). 

(2q + 1) x (2q + 1). The matrix C 3 ,q  contains all the third-order cumulants in the 

principle domain V, (where V = {c 3,(ri ,r2 ) : 0 < 71  < r2 q}). There are (q+1)(q+ 

2)/2 cumulants in V. Clearly, matrix C 3 ,q , possesses the following two properties: 

• The rank of C3 ,q  is q + 1. This is a direct consequence of expression 5.7 
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• C has some particular structural characteristics. For example, as we can see from 

5.8, there are certain elements of C3 ,q  which are zero. In addition, the non-zero 

elements of C3 ,q  are interrelated in a manner dictated by the symmetries of the 

third-order cumulants. Because of these symmetries, different one-dimensional 

cumulant slices share some of their elements. 

The structural characteristics of the matrix C3 ,q  can be put now in a more formal 

context. The following definition is required (taken from [91]): 

Definition 5.1 Let 	...,) for 1 < i < m and 1 < j < n be a given set of 

functions which depend on the parameters (i 2, ..., ) in which p < mn. Furthermore, 

let the class A consist of all m x ii matrices whose components are governed by the 

functional relationship 

X(i,j) = 

= aij W 	 (5.9) 

for 1 < i <m and 1 <j < n. The matrix class A is said to have a structure induced 

by the functions a2,3 () and to have "p" degrees of freedom. If the functions a2,j () are 

linear, the matrix set A is said to have a linear structure. 

The vector is the generating or principal parameter vector of the linear structured 

matrix. The vector 6  containing the third-order cumulants, corresponding to the 

minimally sufficient set of lags, plays the role of vector t in the construction of matrix 

C3 ,q  i.e. 

= [c3 , S (0,0),c3,(0,1),...,c3,(q,q)] T  

The functions a2 , (s), corresponding to matrix C3 ,q  are all linear since for some of 

the (i,j) the functions are constant a2,( 3 ) = 0 , and for the rest (i,j)s the functions 

return an element of the vector 6  i.e. a2,(3) = G. From the previous discussion, it is 

obvious that the matrix C3 ,q  has a linear structure induced by the functions a,( 3 ), 

with "(q + 1)(q  + 2)/2" degrees of freedom. 

The next section deals with the question of whether the rank and structure proper-

ties are sufficient to characterise a matrix as being constructed by true third-order 

cumulants of some MA(q) model. 

5.2.2 Characteristic properties of third-order MA cumulants 

Suppose the matrix S has both the desired structure and rank properties defined in 

the previous section. It is interesting to examine whether this matrix consists of real 
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cumulants of some MA model. The approach adopted in the following is to construct 

a MA(q) model whose third-order cumulants are the elements of the matrix S. 

Since the matrix S has the same structural characteristics as those of a matrix con-

structed of real cumulants , then, if s, 2  is a non-zero element of S, we denote sj,j as 

s(ri, r2 ), where (r1 , r2 ) are the lags we associate with the i,j-element of a structurally-

equivalent matrix which is constructed from real cumulants. Then, because of the 

structure property, the same symmetries that apply to lags of cumulants will apply to 

these associated lags of s(ri , r2 ). In the following it is assumed that s(0, q), s(q, q) 0. 

The following Lemma is required: 

Lemma 1 Suppose that we are given a (2q + 1) x (2q + 1) matrix S , which has the 

two prescribed properties (structure and rank). Then the following equation holds for 

s(ri, r2): 

q s (i, q)s(i + n, q) 
s(j,n) 

=.s(0,q)s(q,q) 
 s(j + Z, q) 	 (5.10) 

for n=0,..q-1 and j=n—q, ... ,q. 

Proof: The vectors corresponding to the first q + 1 rows of the matrix are denoted 

as s where d = 0, ..., q and the vectors corresponding to the last q rows of the matrix 

are denoted by Sq_i, ...,s0. We assume that s(0,q),s(q,q) 0, then it is obvious from 

their structure, that the q + 1 vectors s ,d = 0,..., q are linearly independent. Given 

that the rank of the matrix is q + 1, we can conclude that the vectors corresponding to 

the last q rows of the matrix, belong to the space spanned by the first q + 1 rows. In 

particular, since the last n elements of the vector 5, (n = q - 1, ..., 0) are zero, it can 

easily be seen that they belong to the space spanned only by sd for d = 0,...,q—n. We 

can write this as follows: 

S, Espan{S,...,s'} n=q-1,...,0. 	 (5.11) 

Now we take n = q - 1, it is straight forward to prove that •, 

s(1,q)0 + .s(q - 1,q) i 	 (5.12) Sq—i 
= s(0,q) q 	s(q,q) 5q• 

In scalar form, this translates to 

1  
.s(j,q 	

s(i,q)s(i+q— 1) 
— 1)= s(j + i, q) j = —1, ..., q, 	(5.13) 

i=o 	s(q,q)s(0,q) 

so equation (5.10) holds for n = q - 1. 
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Assumption 1: Let us suppose that equation (5.10) holds for every n such that q-1 > 

n > k, for some k > 0. 

We want to prove that it also holds for m = k - 1, 

q—k+1 

Sk_1 = 	Ak_l,s. 	 (5.14) 

Because of the cumulant-like symmetries in the lags of s(k - q - 1, k - 1), the first 

element of Sk_1 is s(k - q - 1,k - 1) = s(q - k + 1, q). It is related with s(0, q) as 
follows: 

s(q - k + 1, q) = Ak_ 1 ,o s(0,q). 	 (5.15) 

From equation ( 5.15) we can obtain the value of )¼ki 3O = s(q - k + 1, q)/s(0, q). Since 

s(k - q - 1,k - 1) = (s (q - k + 1, q)/s(0, q))s(0,q), equation (5.10) holds for n = k - 1 

and j = k - q - 1. 

Assumption 2: Suppose that equation (5.10) holds forn = k—i and k—q-1 <j <m 

where m < —2. 

In other words, we assume that we know that 

q—k+1 s(i, q)s(i + k - 1, q)8( + m, q) = 	A k_1,q_k+1_is(i + m, q). 
s(0,q)s(q,q) 

(5.16) 

We want to obtain the value of Ak_1, m _k+q 2 and use this to show that equation (5.10) 

isvalid for n=k-1 andj=m-i-1. So, 

q—k+1 s(i,q)s(i+ k - 	
m+ 1, q) + (Akl, m k+q+2) s(0, q), 

s(0,q)s(q,q)  
2=—M 

(5.17) 

but s(m+ 1,k —1) = s(—m - 1,k— m —2), where k - m —2 > k. Then according to 
Assumption 1 we have, 

s(m+1,k—i) = .s(—rn-1,k—m-2) 
q—k+ni+2 s(j,q)s(j+ k - m - 2,q)(. - m - 1,q). (5.18) 

j=o 
= 	

s(0,q)s(q,q) 
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Consequently, the previous equation can now be rewritten as follows, 

q-k+rn+2 s(j, q)s(j + k - m - 2, q) 
s(m+1,k-1)= 	i 	s(0,q)s(q,q) 	

8( - m - 1,q) 
 

j=1 

+ s(0,q)s(k - m - 2)3(_ - 1,q). 	(5.19) 
s(0,q)s(q,q) 

If we make the transformation j = i + m + 1 in equation (5.19) we obtain 

s(i + m  + 1, q)s(i + k - q) 
s(m+1,k-1)= >1 	s(0,q)s(q,q) 1=-rn 

s(0,q)s(k— m - 2,q) 
+ 	

q) 	
s(—m— 1,q). 	(5.20) 

s(O q)s(q  

Now observe that the summations in equations (5.20) and (5.17) are equal , thus we 

can deduce that 

s(k - m— 2,q)s(—m— 1,q) 
Ak_i ,rnk+q+2 = 	s(0,q)s(q,q) 

and, consequently, equation (5.17) can be rewritten as 

q-k+i s(i, q)s(i + k - 1, q) 
s(m+1,k-1)= >i: 

s(0,q)s(q,q) 	
s(i + m  + 1, q). 	(5.21) 

 

Equation (5.21) demonstrates that equation (5.10) is valid for j = m+ 1 and n = k - 1. 

Now, knowing that the initial equation corresponding to n = k - 1 and j = k - q - 1 

holds, we have demonstrated that we can prove equation (5.10) to be valid for n = k — i 

and k - q - 1 <j —1. From expression (5.11) we know that, 

q-k+1 

Sk-i = 
	

(5.22) 

We have already obtained the values of Ak_i,o  to Ak_i, q k, but we still need to find 

Aki,qk+i. This is easily obtained if we consider the following expression for the last 

non-identically zero element of Sk_1: 

s(q, k - 1) = Ak_i , q _ki3(q, q), 	 (5.23) 

-  
Ak_1, q_k1 

- s(q,k — 1) 

 .s(q,q) 	
(5.24) 

Since we know all the A's in (5.22), we can now write (5.22) in scalar form: 

s(i,q)s(i+k - l) 
s(j,k-1)= 	 3(jj,q) j = k —1— q,...,q. 	(5.25) 

s(0,q)s(q,q) 
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Given that equation (5.10) is valid for n = q— 1 we have shown that it is valid for every 

n such that q-1 >n>0. 

Since we know that .s(0,q),s(q,q) $0, we can find a73  $0 such that 

q) = 
7  

s(0,q)s(q,q) s(i,q) 	
(5.26) 

s(0,q) s(0, q) s(0, q) 

We combine equations (5.10) and (5.26), we obtain the following: 

(j, n) = 
	s(i, q)s(i + n, q) s(0, q) s(q,q) s(i+j,q) 

7 
i=O s(0,q)s(q,q) 	3 

si0,qjs(0,q) s(0,q) 

7 	
s(i, q) s(i + n, q) s(i + j, q) 	

(5.27) 
. 0 s(0,q) s(0,q) 	s(0, q) 

Equation (5.27) shows that s(j, n) is the third order cumulant of an MA model with 

parameters h(i) = s(i, q) /s(0, q). Thus the following theorem holds: 

Theorem 5.1 Every (2q + 1) x (2q + 1) matrix S possessing the structure and rank 

properties defined in the previous section, consists of real cumulants of some MA(q) 

model. 

In the previous section it was stated that the matrix C3,q , whose elements are cumulants 

of an MA(q) model, possesses the rank and linear structure properties. The above 

theorem states that the inverse is also true. The above two sentences provide the 

necessary and sufficient conditions for a set of (q+1)(q+2)/2 numbers 2  to be the set of 
third-order cumulants of some MA(q) model. It is interesting to notice here, how the 

construction of matrices of cumulants allows the expression of cumulant properties in 

terms of matrix properties which are easier to manipulate and analyse using standard 

linear algebra. The utility of this matrix representation is exploited later in this chapter, 

when mappings corresponding to matrix properties are developed. 

The next section extends the work on the structure of third-order cumulants and studies 

second- and third-order cumulants in the same framework. 

2 The set has (q + 1)(q + 2)/2 elements since this is the degrees of freedom of the linear structure. 
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5.3 Joint Structure of Second- and Third-Order Cumu-

lants 

The joint structure of second- and third-order cumulants can be studied using equation 

3.12form=2 and n=3: 

	

h(j)c3,(j + r1 , T2) = E3,2 	h(i)h(i + r2)c2,(i + 71 ), 	 (5.28) 

where e3 , 2  = 73,x/°. After taking T2 = q and dividing both sides by h(0)h(q), equation 

5.28 becomes 

q 	
h(j) 

c2,(71) = 	h(0)h( q ) C3 	+ r1 ,  q), 	 (5.29) 

where E2,3 = 1/E3,2. Equation 5.29 can be interpreted in a similar way to equation 5.2. 

The second-order cumulants are used to form the following vector: 

C(2) = [c2,x (—q), ...,c2,(0), .•.,2,(q)]T• 
	 (5.30) 

Equation 5.29 can now be written in vector form: 

	

C(2) = E2,3 1 h(0) 	
(5.31) 

	

3=0 	h(q) q 

where the vectors cd 
q are defined by equation 5.4. Equation 5.31 clearly shows that 

the vector containing the second-order dumulants belongs to the same subspace as the 

vectors c, n = 0,..., q which contain one-dimensional third-order cumulants slices: 

C(2) E span(B), (5.32) 

where 13 is defined by expression 5.6. The matrix C3,q  defined by equation 5.8 can now 

be extended by including the second-order cumulant vector: 

C2,3,q = [c(2) 7 cq ,c j7 c,..., q,Cq_i,Cq_1, ... ,Ci,C0]. 	 (5.33) 

The detailed structure of C2,3, q  is shown in figure 5.3. 

The matrix C2,3,q  has dimension (2q + 2) x (2q + 1) and contains all the second-order 

statistics c2,(7),T = 0, ...q as well as all the third-order cumulants in the principal 

domain V, (where V = { c3,(7_i,r2) : 0 q}). Similarly with matrix C3 ,q  

defined in 5.2, the matrix C2,3,q  possesses the following two properties: 

• The rank of C2,3,q  is q + 1. This is a direct consequence of expressions 5.7 and 

5.32. 
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• C2,3,q  has a linear structure with (q + 1)(q + 4)/2 degrees of freedom. The 

generating parameter vector is defined as 

= [c2,(0), ...,c2,(q) ,c3,(O,0),c3,(O, 1), ...1 c3,(q,q)]T 	(5.34) 

The linear functional relationships between the parameter vector t2 and the ele-

ments of matrix C2,3,q  are determined by the symmetries of third-order cumulant 

lags and the symmetry of negative and positive lags of second-order cumulants. 

	

C_ q 	C_q+1 

	

CO,q 	C1,q 

	

o 	CQ, q  

	

o 	•.. 	0 

	

o 	•.. 	0 

C_1,q_1 	CO,q_1 	C1,q_1 

C_2,q_2 C_1,q_2 	CO,q_2 

Cq_1,0 	Cq_1,1 	Cq_1,2 

	

C_q,O 	C_q+1,0 C_q+2,0 

C_1 Co Cl ... Cq_1 C q  

Cq_1,q C q , q  0 0 0 
Cq_2,q Cq_l,q Cq , q  0 . 0 

CO 3 q C1,q Cq_1,q Cq,q  0 
0 CO,q C1,q Cq_i,q Cq , q  

• 	• Cq_i,q_i Cq,q_l 0 . 	. 0 
• Cq_2,q_2 Cq_1,q_2 Cq,q_2 0 

• Cq_1,2q_4 Cq_1,2q_3  Cq_1,2q_2 Cq_1,2q_1 0 
• Cq_4,0 Cq_3,0 Cq_2,0 Cq_l,O Cq,O 

Figure 5.3: The detailed structure of C2,3,q . ( c 1 , 2  is used to denote c3,(r1, r2) and c,-
is used to denote c2,(r)) 

Naturally the following question arises: Given a matrix with the same rank and struc-

ture properties as those of matrix C2,3,q  is it possible to say that the elements of the 

given matrix are true second- and third-order cumulants of some MA (q) model? 

This question has been partially answered in the previous section. Excluding the first 

row, all the rows of C2,3,q  were shown to contain true one-dimensional third-order cu-

mulant slices. So the question now reduces to whether the first row can be considered 

to contain second-order cumulants of the same MA(q) model. The rest of this section 

deals with this question. 

Suppose that a matrix S' has the same rank and structure properties with the matrix 

C2,3,q . The first row of S' is denoted as 

= [s(—q),s(—q+ 1),... ,s(-1),s(0),s(1),... ,s(q — 1),s(q)]. 

(5.35) 

The notation used for the rest of the elements of the matrix is the same as that used used 

in section 5.2.2. In the following it is assumed that s(0,q),s(q,q),s(q) 0 0. Because 

the rank of S' is q + 1, all its rows can be expressed as linear combinations of the 
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linearly-independent rows 	where d = 0,..., q (rows 2 to q + 2): 

(5.36) 

In scalar form equation 5.36 becomes 

s(r) = >ajs(i+r,q). 	 (5.37) 

The objective here is find the values of as so that s(r) can be decomposed into its 

constituent parts. It will then be possible to decide whether s(r) for r = 0, ..., q are 

second-order cumulants of some MA model. By setting r = q in equation 5.37 it is 

possible to obtain the value of a0 : 

s(q) = aos(q,q) = ao 
 = s (q) 

 (5.38) 
s(q,q) 

Similarly, by setting r = —q in 5.37, it is possible to obtain the value of aq : 

s(—q) = aqs(O,q) 	
- 

	

s(—q) 	s(q) 
(5.39) 

	

= a = s(0,q) 	
aEJ - 

The rest of the coefficients a2  can be calculated recursively. For example the value of 

a1  can be calculated as a function of a0  after setting r = q - 1 in 5.37: 

s(q— 1) = aos(q— 1,q) + ais(q,q) = a1  = s(q— 1)— a os(q— 1,q). 	(5.40) 

Unfortunately equation 5.40 does not provide any information on the nature of s(q-1). 

Alternatively, the following system of equations is formed, based on the fact that s (T) = 

ajs(r+i,q) = 	ajs(—r+i,q) 0< r < q. 	 (5.41) 

After changing the variable of summation on the right-hand side, equation 5.41 becomes 

E as(r + i, q) =aT+s(i, q) 0 < r < q. (5.42) 

The values of a0  and aq  are known from equations 5.38 and 5.39 and so expression 

5.42 can be regarded as a system of q - 1 linear equations with respect to the q - 1 

unknowns a 1 , ..., aq _1. It is easy to observe that 

s(q)s(i,q) 
a2 = s 	

' 	 (5.43) 
(q,0)  

is a solution of the system 5.42. This solution extended to i = 0 and i = q is consistent 
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with the values of co and c q  given by equations 5.38 and 5.39. In order for the solution 

5.43 to be also a solution of 5.37, it is required that 5.43 is a unique solution of the 

linear system 5.42. For q ~! 3, this can only happen when the matrix of the coefficients 

of the unknowns of the linear system 5.42 is full rank. Suppose this matrix is called P. 

Then P can be expressed as 

P = P left - P right 
	

(5.44) 

where Pleft is defined as 

q) 

q) 

Pleft = 	. . . 

s(q— 1,q— 1) s(q,q) 

s(q,q) 	0 

	

... 	(q, q) 

s(q,q) 	0 

o 	•.. 	•.. 	 0 

	

o...... 0 	0 

(5.45) 

and P right  is defined as 

s(O,q) 	 ... 	s(q-2,q) 

o 	s(0,q) 	...... ... 	s(q-3,q) 

P right = 	 ... 

o 	o 	0 	s(O,q) 	s(1,q) 

o 	o 	•.. 	0 	0 	s(1,q) 

(5.46) 

Pleft contains the coefficients of ai i = 1, ...,q-1 in the left-hand side of equation 5.42 

and P right  the corresponding coefficients in the right-hand side of 5.42. Although both 

P eji  and P right  are always' full-rank, P is not guaranteed to be full-rank. P can fail to 

be full rank for a few degenerative cases like for example s(0, q) = s(1, q) = . = s(q, q). 

It is important to note that it is always to possible to check if P is full-rank. Assuming 

that P is full-rank, then 5.43 is the solution of 5.37, which can then be re-written as 

8(T) = 	 (5.47) 
s(q,O) 

Taking equation 5.26 into account, equation 5.47 becomes 

s(r) = 	
s(q)s(i,q) 	ss(q,q)s(i -i-- T, q) 

.s(q,O) 
7(O,q)  

s(O,q)s(O,q) .s(0,q) 

- 

73 s(q)s(q,q) 	s(i,q) s(i+r,q) 
(5.48) 

- 	 s(q,O) 	0 s(O,q) s(q,O) 

Equation (5.48) shows that 8(7) is the second-order cumulant of an MA model with 

parameters h(i) = s(i, q)/s(0, q). 

'Assuming that s(O, q), s(q, q) :A 0. 

115 



Chapter 5: MA Cumulant Enhancement 

In summary, the following theorem holds: 

Theorem 5.2 Suppose that a (2q+2) x (2q+ 1) matrix S' possesses the structure and 

rank properties of matrix 5.33. Then, if one of the following conditions holds, 

• q < 2, 

• q > 3 and the determinant of the square matrix P defined by equation 5.44 is 

non-zero, 

then the matrix S' consists of real second- and third-order cumulants of some MA(q) 

model. 

The structure of fourth-order cumulants is now considered in the next section. 

5.4 The Linear Structure of Fourth-Order MA Cumulant 

Slices 

The structure of fourth-order cumulants of MA models is much richer than that of 

third-order cumulants and consequently its analysis is more complicated than that of 

third-order cumulants. In a similar manner to the development of the previous sections, 

an obvious starting point for the analysis of the structure of the fourth-order cumulants, 

would be an expression of the inter-relationships between different slices of fourth-order 

cumulants. Two such expressions have been developed in section 3.6.1. Equation 3.44 

is considered first. For n1  = q and m 1  = m equation 3.44 becomes 

h(i)h(i + m) 
c4,(m, 7-1, 72) = 	

h(0)h(q) c4(q i + 
71 , Z' + 72 ). 	(5.49) 

Equation 5.49 shows how all fourth-order cumulants can be expressed as a linear com-

bination of a single 2-D fourth-order cumulant slice. 

5.4.1 Geometric interpretation 

In section 5.2.1, the third-order equation involving 1-D cumulant slices was rewritten 

in a vectorial form. Extending that approach to the fourth-order equation 5.49 which 

involves 2-D cumulant slices, means rewriting equation 5.49 in a matrix form. The 

domain of support of the 2-D fourth-order cuinulant slice c4,(m, r1 , T2), for some m 
such that 0 < m < q, is depicted in figure 5.4. The polygon ABCDEF in figure 
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Figure 5.4: The domain of support of the 2-D cumulant slice c4,(m,71,72), 0< m < q-

5.4 can be seen as a horizontal slice  from the 3-D domain of support of fourth-order 

cumulants depicted in figure 2.3. The matrices D m  for 0 < m < q are constructed with 
the fourth-order cumulants whose first lag is fixed to m. They are defined as follows: 

c4, S (m, m - q, q) 
	

c4,(m, q, q) 

Dm 	 0mq 
	

(5.50) 

c4 ,(m, m - m - q) 
	

c4,r(m, q, m - q) 

The dimensions of D m  are (2q - m + 1) x (2q - m + 1). In the following Oj  denotes 
a (i x j) matrix whose elements are all zero. The matrix D q  is used to define the 
following set of block matrices: 

[ °q-d,d I °q-d,q+1  I 
cd 

= °q+1,d 	Dq 	°q+1,q-d ] 

	

0 d< q. 	 (5.51) 

L °d,d 	°d,q+1 	°d,q-d 

The set of matrices {C : 0 d q} is a set of linearly independent matrices, whose 
dimension is (2q + 1) x (2q + 1). 

The matrices D m  for 0 < m < q - 1 are used to construct the following set of block 

4 The slice is taken parallel and above the plane of TI, T2 
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matrices: 

Cm  - [ °m,2q-m-4-1 	°m,m 	1 
Dm 	°2q-m+1,rn j 0 < m q -  1. 	 (5.52) 

The dimension of these matrices is also (2q + 1) x (2q + 1). 

Equation 5.49 can now be written in matrix form as follows: 

Cm = 
q h(i)h(i + m) c_m_i 0 < m < q -  1. 	 (5.53) 

h(0)h(q) 

Equation 5.53 shows that the set of matrices {D m  : 0 < m < q - 1} belongs to the 

linear space spanned by the base matrices {C : 0 < d < q}: 

	

Cm Cspan({D d  :0< d< q}) 	m= 0,...,q— 1. 	 (5.54) 

The matrix Dq , which is used to construct the matrices C, has rank 1. This is easily 

seen if r1  is set to q in 5.49: 

C4,x (rn 1 q,72) = 
h(m) 
 c4 ,x (q,q,72). 	 (5.55) 

h(q) 

Equation 5.55 shows that the rows (and columns) of Dq  and consequently the rows 

and columns of C, are collinear. 

Expressions 5.54 and 5.55 provide important information on the theoretical structure of 

fourth-order cumulants of MA(q) models. That information can be used to construct 

a matrix of fourth-order cumulants, so that the properties of the matrix reflect the 

properties of the set of cumulants. Before defining the final cumulant matrix, it is 

helpful to define some additional auxiliary matrices denoted by D for 0 < d < q and 

D for 0 ~ in ~ q - 1: 

°q+i,d I  Dq  I  °q+1,q-d 
] , 

0 < d < q, 	 (5.56) 

[ 

D m  02q_m+1,rn 
] 

0<m<q- 1. 	 (5.57) 

Finally, the following matrix is defined: 

D  qO  

C4 ,q  = 	 . 	 (5.58) 
.LFg 1 

D 10  
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The dimension of matrix C4 ,q  is ((+1)5+4))  x (2q+ 1) and contains all the available 

fourth-order cumulant statistics. Clearly, from the discussion earlier in this section, 

C4 ,q  possesses the following properties: 

• The rank of C4 ,q  is q + 1. This is a direct consequence of expressions 5.54 and 

5.55. 

• C4 ,q  has a linear structure with 1  (q + 3)(q+ 2)(q+ 1) degrees of freedom. 

The principal parameter vector of the linear structured matrix is the vector containing 

all the fourth-order cumulants. The structure of matrix C4 ,q  is much more complicated 

than the third-order equivalent C 3 ,q , mainly because of the large number of fourth-

order statistics and the large number of regions of symmetry in the lags of fourth-order 

cumulants. Consequently, it is very difficult to prove that the properties of C4 ,q  are 

sufficient to characterise fourth-order cumulants of some MA(q) model. Consequently 

only a reduced set of fourth-order cumulants is considered in the next section. 

5.4.2 Properties of a subset of the fourth order cumulants 

The parameter estimation methods developed in the previous chapters, when extended 

to the fourth-order cumulant case, involve only the fourth-order cumulants whose two 

of the lags are equal. It is therefore sensible to examine the properties of this particular 

subset of cumulants. When examining the properties of a subset of fourth-order cumu-

lants, it is important to ensure that the subset contains a sufficient amount of structure 

to characterise the selected cumulants. In the subset considered here, as it will become 

obvious later in this section, it is necessary to also include all the cumulants contained 

in the 2D-slice c4 ,x (q, Ti , r2 ). Suppose that the all the selected fourth-order cumulants 

are collected in a vector k4.  The following paragraph gives a formal definition of the 

vector 

Definition of 	As we have seen in the previous paragraph the vector contains 

the fourth-order cumulants which have two equal lags and the cumulants which have 

one lag fixed to q. In order to formally define , it is necessary to define the cumulant 

lags that result in a minimal description of the set. There are three separate cases for 

the lags of c4,(r, r, m): 

T, m satisfy the condition 0 < T < m < q. This results in (q+2)(q+1)/2 different 
cumulants. 

r, m satisfy the condition 0 < m < T < q. This results in q(q + 1)/2 different 
cumulants. 
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(iii). r, m satisfy the conditions in - q 	r < 0 < in < q. This results in (q + 2)q/2 

different cumulants. 

The above add up to (3q2  + 6q + 1)/2 cumulants. Apart from these cumulants, vector 

also contains the cumulants c4 ,z (q,ri ,7-2 ) for 0 < 7-2  < ri  < q; that is q(q - 3)/2 

additional cumulants. Consequently t4 contains (4q2  ± 3q + 1)/2 cumulants. 

Linear relationships for the cumulants of 

In the following we make use of equation 3.45 which is repeated here using more con-

venient notation for the cumulant lags: 

h(i)h(i + mi)h(i  + m2)c4,X(ri, r2 ,i + m) = 

h(i)h(i + Ti)h(i + 72)c4,(m1, m 2 ,i + m). 	 (5.59) 

Equation 5.59 for mi = q, in2  = 0 and T1 = 72 = r becomes 

q h(i)h2(i+r) 
c4,(7-,r,m) = c4 ,x (q, 0, i + m). 	 (5.60) 

1=0 h(q)h2(0)  

Equation 5.60 can be given a vectorial interpretation in a similar way to the third-order 
equation 5.2. Let us define the following vectors 5 : 

Cq_ n  = [c4, z,(q - n, q - n, —n), c 4 , x (q - n, q —n, —n + 1),. . . , c(q - n, q - n,_q),9J T , 

	

q+n+1 	 q-n 

(5.61) 

where n = 1, ..., 2q — 1, and 

= { 	 1),c4,(q,0,2),.. .,c4, x (q,O,q),9JT , (5.62) 

d 	 q+i 

for d = 0, ...,q. The vectors defined by 5.61, 5.62 have 2q + 1 elements. Equation 5.60 
can now be written in vector form as follows: 

Cq_n = q 
h(i)h2 (i + q - n) 	

(5.63) 
 h(q)h2 (0) 1=0 

'The notation of the fourth-order cumulant vectors in this section is the same as the notation of 

the third-order cumulant vectors of section 5.2.1. This should not cause any confusion since the the 

present section and section 5.2.1 are independent of each other. 
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A different kind of relationship, exists between the cumulants c4 ,x (q, r, m l ) and c4 ,x (q, r, m 2): 

c4 , r (q,7,?Th1 ) = h(MI) 
 

r 

	

c4 ,s (q, ) m 2), 	 (5.64) 
h(m 2 ) 

where h(m 2 ) is assumed to be non-zero. This equation can also be given a useful 

vectorial interpretation: Define the following vectors 

	

Cq ,1 = {c4,(q,l,O),c4,(q,l,l),c4(q,1,2),. . 	 (5.65) 

for 1 = 0, ..., q. Then 5.64 in vector form is written as 

Cq,m1 = 	Cq m 
h(mi) 	

2 	 (5.66) , 

)T(M2) 

for h(m 2 ) 0. The vectors Cq,m j  also have 2q + 1 elements. 

From equations 5.63 and 5.66 it is easy to see that 

	

Cq_n,Cq,1 E span ({c : d= 0,...,q}), 	 (5.67) 

where n = 0, ..., q and 1 = 0, ..., q. In a similar manner to the previous section, these 

vectors can be used to form a matrix with specific rank and structure properties: 

C,q  = [cq ,q , ..., Cq,i, 4, ..., C, Cq_i, ..., CO, ..., ci_qIT 	 (5.68) 

C ,q  is a (4q) x (2q +1) matrix containing cumulants belonging to the vector defined 

earlier. Considering only the subset of cumulants which belong in G , results in a 

significant reduction in the size of C ,q  when this is compared with the size of C 4 ,q  

defined in equation 5.58. Furthermore C'4q  possesses similar properties to those of 

C4 ,q . More specifically C'4  ,q  possesses the following properties: 

• The rank of C'4,q  is q + 1. This is a direct consequence of expression 5.67. 

• C ,q  has a linear structure with (4q2  + 3q + 1)/2 degrees of freedom. 

The simple structure of C ,q  makes it possible to prove the following theorem: 

Theorem 5.3 Every (4q) x (2q+ 1) matrix S possessing the above structure and rank 

properties, consists of real fourth-order cum ulants of some MA(q) model. 

The proof is an extension of the proof of theorem 5.1 and is given in Appendix B. 

121 



Chapter 5 : MA Gum ulant Enhancement 

5.5 MA Cumulant Enhancement 

So far this chapter has been devoted to the investigation of the structure of MA(q) 

cumulants. Cumulant properties have been identified, and they have been shown to 

characterise cumulant matrices. In this section sample cumulants are considered. In 

order to make the discussion as general as possible, the order of the statistics used is 

not stated explicitly in most of the material that follows. 

Suppose that * = {x(0), ...,x(N)J is a single realisation of an MA(q) process. This 

observation vector is used to calculate a vector of sample cumulant estimates . The 

vector represents the sample estimate version of either 43 or or G. The number 

of sample cumulants in is v, so t E R. The corresponding vector consisting of true 

cumulants of the MA(q) process is denoted by h•  The set of all true MA(q) cumulant 

vectors th  is denoted by /C q  C ll". In practical situations, due to the inaccuracies in 

the estimation of the sample cumulants, the inter-relationships between the elements 

of are not the same as those that exist between true cumulants of an MA(q) process. 

Problem definition: The problem under consideration here is that of finding a func-

tion that can be used to map the sample cumulant vector to another vector 4  whose 

elements are true cumulants of some MA(q) model i.e. to a vector in ?C q . This function 

should also satisfy some optimality criteria, for example 4 should be the "nearest" vector 

to possessing the prescribed structure. We denote such a matrix as ]1" -+ K. 

In the previous sections it was shown that the properties of cumulants can be translated 

to matrix properties. Consequently, any mapping corresponding to cumulant properties 

can be translated to a matrix mapping. Suppose that C q  is an (m x n) matrix  

representing one of the matrices C3 , q , C2,3, q  or C q . The rank of Cq  is q + 1 and in 

addition has a characteristic linear structure which depends on the order of cumulants 

used. The set of all such C q  matrices corresponding to all possible MA(q) models, is 
denoted by M q  C 7-1, where 7-1 is the Hilbert space of (m x n) matrices. The inner 
product in 7-1 is defined as 

<X1X2 >= trace(X 1 X2 T ), X 1 X2  e 7-1. 	 (5.69) 

The corresponding norm is the Frobenius norm (denoted as 11 . . . hF). Let tq  denote 
the matrix obtained from C q  after replacing its elements with their corresponding finite 

sample estimates. Since the symmetries in the lags of sample cumulants are the same 

as those of true cumulants and the linear structure depends only on the symmetries of 

the cumulants involved, the sample cumulant matrix Ôq  has the same linear structure 
as Cq . The estimation errors present in the elements of Ôq  force E q  to be a full-rank 

6 (n = 2q + 1,m > n) 
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matrix. 

Let S18  denote the set of (m x n) matrices possessing the linear structure induced by 

the cumulant symmetries. Also let 5q +1 denote the set of (m x n) matrices whose rank 

is q + 1. Because of theorems 5.1,5.2 and 5.3, it follows  that M q = SIs Ii 8q+i The 

problem of cumulant enhancement defined earlier, can now be decomposed as follows: 

Map the sample cumulant vector to the corresponding linear structured matrix 

q which belongs in 813.  Denote this mapping as 

1l' -+ S. 	 (5.70) 

Given a matrix Cq  in 813,  find a mapping 9 : Sj .' 818 fl 8q+1,  such that c(Oq) 
is the "nearest" matrix to q  among the matrices of 81, fl Sqi . 

Finally, the inverse mapping T7 1  : 813  -i R'4 is used to obtain the enhanced 

cumulant vector 4 . This is because given that c(ôq ) E Sis fl 8q+i,  it follows that 

E K q . 

The second step is the most difficult to implement and requires closer examination. 

Step (ii) can be recast as an optimisation problem: Find a matrix e Si fl 8q+1  which 

solves the optimisation problem 

inf 	lix - C q ll F . 	 (5.71) 
XESz s flS q+i 

At this point the Composite Property Mapping Algorithm (CPMA) [91] is used to 

solve the optimisation problem (5.71). According to [91], in order to render a tractable 

solution procedure to the optimisation problem (5.71), it is beneficial to decompose the 

original problem into two subproblems relating to the two individual matrix properties, 

namely the structure and rank properties. The general theory of property mappings 

has been developed first by Zangwill in [93]. In [94] Cardoso used the CPMA for 

fourth-order cumulant "structure forcing" in a blind array processing problem. 

Mappings corresponding to the structure and rank properties are discussed in the fol-

lowing sections. 

5.5.1 Mapping corresponding to the rank property 

The objective here is to find a mapping cq+i : H -f  8q+1 such that, given a full 
rank matrix X E fl, q+l(X) is the (q + 1)-rank matrix that lies closest to X in 

7 Theorem 5.2 requires some extra conditions which are assumed to be satisfied here. 
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the minimum Frobenious norm sense. The widely used Singular Value Decomposition 

(SVD) representation [66, 91] can be used to devise such a mapping. Suppose that the 

SVD representation of X is given by 

2q-I-1 
X = j akukv, 	 (5.72) 

k=1 

where Uk,  k = 1, ..., 2q + 1 are the singular values of X order in decreasing order, and 

Uk, v, k = 1 1  ..., 2q+ 1 are the corresponding orthonormal left and right singular vectors. 

Let be the subset of ii whose elements have rank smaller than or equal to q + 1. 

Provided that 0 < Sq+1 54  Sq+2, the desired mapping can be implemented by discarding 

the q smallest singular values of X: 

q+1 

cq+i(X) = 	c7kUkV'k. 	 (5.73) 
1c1 

If 0,q+1 ~! 0q+2,  then the mapping is from fl to S+1. In practice, it is important always 
to check that Uq+1  is sufficiently bigger than Uq+2,  otherwise the rank of (X) might 

be smaller that q + 1. Since it is safe to assume that rank(X) > rank(gq+i(X)), the 
Pythagoras' Theorem holds: 

	

11x112 = iicq+i(X)i1 2  + lix - c +1(x)11. 	 (5.74) 

Equation 5.74 is easily obtained using llXll2 = 21 o. It is important to note here 
that, in the general case where 3q+1 ~! 8q+2, cq+i() C fl is a projection on a non-convex 
cone8  [95]. 

5.5.2 Mapping corresponding to the linear structure property 

The objective here is to find a mapping 913 : 1-1 - 818  such that it maps a given matrix 
X to the "nearest" matrix that has the same linear structure as the matrix C q . It would 
be useful here to characterise the matrix in a more formal way. Suppose T: : mn 
denotes a linear transformation such that if x = Y(X) then x is the concatenation of 
column vectors  of X. Furthermore we have that X = Y'(x) (Y is an isomorphism). 

Another useful property of this transform is that it preserves norms in the sense that 

1IT(X)IIE = 11(X)11F 	 (5.75) 

'The set S1  of (m x n) matrices with rank less than or equal to q + 1, is a cone since if X E S 1  
then Va E R, aX E On the other hand S. 1  is non-convex adding two matrices from S 1  results 
in a matrix with rank in general larger than q + 1. 

	

9 1f X is an (m x n) matrix, then the (i, j)-element of X, equals the (i - 	 - m)-element of T(X). 
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where IFIIE denote the Euclidean norm. C has a linear structure with as the principal 

parameter vector. The elements of C q  are either zero or equal to some element of . 

Obviously the same holds for the elements of the vector T(C q ). Then there exists an 
mn x v matrix Ag  such that 

Aqt = T(Cq ) or equivalently T'(A q ) = C q . 	 (5.76) 

Each row of Ag  corresponds to an element of C q . If this element is zero, then the whole 

row is zero, while if it is equal to the jth  element of then the i1h  element of the row 

is equal to one and the rest are zero. The matrix A is called the characteristic matrix 
of the linear structure [91]. In general, the matrix A is another way of expressing the 

functions a,,(...) in the definition of linear structured matrices 5.1. From the above 

discussion it is easy to see that the mapping F1 8 (.) in 5.70 is implemented as 

T'(Aq ). 	 (5.77) 

The mapping 91, can now be expressed in terms of the characteristic matrix: Given a 

matrix X, 91(X) should satisfy the following conditions: 

. It should have the prescribed linear structure, which means that there exist a 

principal parameter vector 0 E 11, such that 

91 3 (X) = 7'(Aq O). 	 (5.78) 

• The 913 (X) should be selected so that it minimises lix - O1s(X)IIF, which, ac-

cording to the first condition, becomes 

lix - T 1 (Aq0)IF = IIT(X) Aq OilE. 	(5.79) 

It is now easy to see that 91, (X) should be defined as the least squares solution of 

AgO = 

c1(x) = T 1 (Aq [Aq T Aq]'Aq T  T(X)). 	 (5.80) 

The set S1 8  of m x n linear-structured matrices characterised by the matrix A g  is a 
convex subset of R. The mapping 913() is an orthogonal projection on that convex 

subset. The Pythagoras' relation applied to this projection gives 

'2 lIXlI = IIcls(x)IIF + IX - ci3(X)M. 	 (5.81) 

In the next section the mappings corresponding to the rank and structure properties 

are combined to form an iterative method for cumulant enhancement. 
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5.5.3 An iterative algorithm based on the composite mapping 

Earlier it was shown that the sample cumulant matrix Cq  has the same linear structure 

as a matrix of true cumulants, but it does not have the same rank. Applying the rank 

reduction mapping 5.73 to Oq  produces a matrix with the right rank but destroys the 

linear structure. The linear structure mapping can be applied now to fix the structure, 

and then this procedure is repeated until convergence to a matrix possessing both 

properties is achieved. The composite property mapping is defined as 

	

c = 	 (5.82) 

so, given a matrix X, applying the mapping 5.82 gives Q(X) = cq (cq+i(X)). It is 
possible to get an idea of how close a matrix X is to a q + 1-rank matrix, by examining 

how close the following quantity is to 1, provided that Uq+1 > aq+2 

	

Aq+i(X) 	L..k1 °k 
--2q+1 	 (5.83) 

L..k=1 k 

The proposed iterative procedure for cumulant enhancement is summarised in the fol-
lowing: 

From the available data obtain a sample estimate Ô of the Principal Parameter 

Vector (PPV). (The model order q is assumed to be known.) 

Calculate the characteristic matrix A q  which corresponds to the known model 

order q. 

Using the PPV Ô, form the sample estimate Oq  = Aq . 

Set ô(°) = Oq . 
Repeat 

= c(o(k)) = cq(cq+i(o(k))). 	 (5.84) 

until 1 - )tq(Ô(11)) < €, where € is a predefined small positive number. 

Finally use the components of the final matrix q  to create the enhanced PPV 
given by = [Aq TAq]_ 1 Aq T q.  

The asymptotic behaviour of the proposed algorithm is discussed in the following sec-

tion. 
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5.5.4 Asymptotic behavior of the cumulant enhancement algorithm 

The algorithm developed in the previous section is similar to the method of Successive 

Projection On Convex Sets presented in [96]. The difference here is that, as it was 

pointed out earlier, the set 8q+1  is not convex and consequently the convergence results 

in [96] cannot be applied in this case. 

A different kind of analysis is adopted here which is similar to the asymptotic study of 

the multichannel modeling algorithm of [95]. The analysis is based on the Pythagoras 

equations 5.74 5.81 for the two property mappings. Suppose that the iterative algorithm 

generates an infinite sequence of matrices C(k)  for k 0, ..., oo. A single iterative step 

from k) to is given by: 

O(+1) = cis(cq+i(ä)). 	 (5.85) 

The Pythagoras equation for the (cq+i (.) projection is 

= 	 + ii 	- 	 (5.86) 

The Pythagoras equation for the 918(•) projection is, 

(Ic-f-i) 2 
 	 q+1

(k+i) 2 
= II 	IF 

+ 	 - 	hF. 	(5.87) 

From equations 5.86 and 5.87 it is obvious that 

(k) 2 

	

ä(k+i)hl 	hhcq+i(ô)lI ~ IIJ 	Ih 	 (5.88) 

Inequality 5.88 shows that the composite property mapping c(•) is a norm-reducing 

mapping and consequently the sequence of norms IO(')hI, k = 0,..., oo is decaying. The 

latter directly implies that the sequence 1(1c)11,  k = 0, ..., oo converges. Furthermore, 

the matrix sequence Ô(1c),  k = 0, ..., oo is a bounded sequence of the Hilbert space W. 

Equations 5.86 and 5.87 combined, give 

- 9q1(j(k))11 + 19q1( (k) )  - &k+1)2 - 1(k)11 - JÔ(k+i) 2 11F I IF, 
(5.89) 

which, because of the convergence of IIO(k)hI, k = 0, ...;oo, results in 

lim I IO(k) - 9q+1 (O(k))II 	 (k) , + Igq+j() - &k+1) 1 1 2 = 0. 	(5.90) 
k—oo 

Because of the triangular inequality the following equation holds: 

''2 ''2 - O(k+l)hI < 	- 	+ 	 - 
(5.91) 
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Equations 5.91 and 5.90 combined, give 

urn [O(k) -  6(k+1)] = 0. 	 (5.92) 

Equation 5.92 shows that the composite property mapping is a distance-reducing map-

ping. After every application of the composite property mapping in 5.85 the resulting 

matrix has the correct structure property, but not necessarily the correct rank. How-

ever, the minimum distance of O(') from the set' 0  S +, is given by 

d(O(k),S ~ ,) = 	- 	 (5.93) 

The square of the right-hand of 5.93 is the same as the first term of 5.90 and conse-

quently converges to zero i.e. 1imk_ + d(C(k),S +,) = 0. This result shows that the 

sequence of matrices resulting from the iterative algorithm tends asymptotically to the 

set of matrices of 7 -1 whose rank is less that or equal to q + 1. If during the evolution of 

the iteration the singular value a, remains non-zero, then the sequence tends asymp-

totically to Sq+i,  i.e. the subset of 7-1 that contains all the matrices which have rank 

q + 1. 

5.6 Numerical Results 

In this section numerical simulations are presented which demonstrate the effect of 

cumulant enhancement on system identification and blind deconvolution. Random 

signals are generated according to the following models: Model 1 

x(n) = w(n) + 1.5w(n - 1) - 2.6w(n - 2) - 0.89w(n - 3) 

y(n) = x(n) + v(n). 

The zeros of the system transfer function 11(z) are located at 0.560 + jO.158, — 2.621. 

Model 2 

x(n) = w(n) + 0.1w(n - 1) - 1.87w(n - 2) + 3.02w(n - 3) 

—1.435w(n - 4) + 1.49w(n - 5) 	 (5.94) 

y(n) = x(n) + v(n). 

The zeros of the system transfer function H(z) are located at —2.02, 0.933 ± jO.7158 

and 0.0287 ± jO.729. The inverse filter model order is set to r1  = —35 and r2  = 15. 

10 This is the set of matrices in fl with rank less than or equal to q +1. 
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Model 3 

x(n) = w(n) - 0.8w (n - 1) - 0.86w (n - 2) + 0.768w (n - 3) + 1.0205w (n - 4) 

y(n) = x(n) + v(n). 

The zeros of the system transfer function H(z) are located at 1.1±jO.6 and —0.7±jO.4. 
The inverse filter model order is set to r1  = —30 and r2  = 25. The following methods 
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Figure 5.5: Identification results for signal model 1. The number of output samples is 
2500 and SNR is 50dB. The results obtained without enhancement are shown in green 
and those obtained after enhancement are shown in blue. 

are used for system identification: 

Ml This the TLS method of chapter 3 (Ml of section 3.10). 

M2 Is the same linear system as Ml but solved with LS instead of TLS. 

M3 the method of Alshebeili et al in [35] 

M4 the method of Fonollosa et al [69] 

M5 the method of Tugnait in [34] 
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System identification results for signal models 1 and 2 are reported in figures 5.5 and 

5.7 respectively. The maximum number of iterations allowed in the CPMA algorithm 

is 50. Convergence may or may not take place after 50 iterations. The results obtained 

after cumulant enhancement are improved both in terms of bias and variance for all 

algorithms except Ml. The methods Ml, M2 and M4 are based only on third-order 

cumulants. The fact that the results obtained from these three methods are not identical 

shows that for the signalmodels tested here the enhanced cumulants after 50 iterations 

are not true cumulants. 

The following methods are used for deconvolution: 

Method 1: This is the third-order cumulant based method described in section 4.3.2. 

Method 2: This is the second- and third-order cumulant method described by equa-

tion 4.40. 

Method 3: This is a second- and third-order cumulant method described by the spe-

cial case of equation 4.44 which invoves only main diagonal cumulants. 

The results of blind deconvolution for signal model 3 are summarised in figure 5.8. The 

MSE of deconvolution for the same signal model is shown in figure 5.10. The number 

of output samples is 1000 and the SNR is 50dB. The use of enhanced cumulants has a 

positive effect on the results obtained by all deconvolution algorithms. The effects are 

more significant for method 3 which uses only diagonal third-order cumulants as well 

as second-order cumulants. The enhanced diagonal cumulants have been enriched with 

information from non-diagonal cumualant slices, and this has resulted in a significant 

improvement on the deconvolution results. 

The same experiment is performed for signal model 2. The number of output samples 

is 4000 and the SNR is 50dB. The results of deconvolution are summarised in figure 5.9. 

The MSE after 50 Monte Carlo runs is shown on figure 5.11. The estimated impulse 

response obtained from non-enhanced cumulants is severely biased. The preprocessing 

of the cumulants using 50 iteration of the CPMA for cumulant enhancement has reduced 

the bias significantly and thus resulted in lower MSE. 

5.7 Conclusions 

This chapter has considered theoretical properties of sets of MA cumulant statistics. 

The higher-order cumulants of MA models were organised in suitably constructed ma-

trices and it is shown that such matrices have a rank depending on the order of the MA 

model, and a linear structure dictated by the symmetries of the cumulants. These two 

properties of the cumulant matrices are referred to as the rank and structure properties. 
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It is also shown that any matrix possessing these two properties can be considered as a 

matrix consisting of true MA cumulants. Based on these results a CPMA was devised 

with the objective of mapping matrices of sample cumulants, which do not possess the 

two properties, to matrices of true MA cumulants. The CPMA algorithm is an iterative 

algorithm, and when it converges, it performs a function similar to nonlinear cumulant-

matching methods. The problem of convergence is also discussed and it is shown that 

provided the rank reduction mapping involved in the CPMA are one-to-one mappings, 

the distance of the generated matrices to the desired set, converges asymptotically to 

zero. In practice it is observed that convergence may require thousands of iterations. 

It is also demonstrated that even if convergence is not achieved within a prespecified 

number of iterations, the enhanced cumulants can improve the results obtained from 

system identification and deconvolution algorithms. 
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Chapter 6 

Summary and Conclusions 

6.1 Introduction 

The work described in this thesis has been primarily concerned with the development 

and analysis of higher-order cumulant-based techniques for the estimation of the pa-

rameters involved in MA modeling. New estimation methods for both the problems 

of systems identification and blind deconvolution have been proposed in this thesis. 

Within this chapter the main conclusions of the work are highlighted and pointers 

towards future work are presented. 

6.2 Achievements of the Work 

For the problem of system identification, theoretical work has been performed which 

results in new general relationships between cumulant slices of the same order and 

cumulant slices of two different orders. These relationships also involve the system 

parameters and, consequently, they can be used for system identification. In fact, some 

of the most important existing MA parameter estimation methods are based on special 

cases of the equation relating cumulants of different orders, and so this equation has 

been used in chapter 3 to give a unified description of existing estimation methods. The 

main contribution of chapter 3 was to use the equation relating third-order cumulant 

slices, and the one relating fourth-order cumulant slices, to develop a new third-order 

cumul ant-based method and a new fourth-order cumulant-based method for system 

identification in MA modeling. The new methods are based on the solution of systems 

of equations which are linear with respect to double products of the system impulse 

response. Both LS/TLS and recursive methods are proposed for the solution of the 

systems of equations. In addition, SVD and LS methods are proposed for the efficient 

recovery of the system parameters from the double products of the impulse response, 

which result from the solution of the linear systems. The important issue of identifia-

bility was also addressed in chapter 3. Expressions for the asymptotic variance of the 

parameters estimated with the new methods were derived. The system identification 

algorithms proposed in chapter 3 do not work if the wrong model-order is used. It is 

thus evident that the robustness of the system identification algorithms, depends on 
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the availability of good model order selection methods. For this purpose methods for 

MA order were also proposed in chapter 3. The simulations presented at the end of 

chapter 3 demonstrate the ability of the new methods to provide accurate estimates of 

the system parameters even in the presence of high-levels of additive coloured Gaus-

sian noise. The MA models used in the simulations are similar to MA models used 

to test HOC-based identification methods in the statistical signal processing literature 

and are characterised by relatively low model-orders. In some practical problems the 

underlying systems have longer impulse responses, and an AR or ARMA model could 

result in more efficient modeling. The MA identification methods of chapter 3 can also 

be used for the identification of the paramaters of AR or ARMA models. 

For the problem of blind deconvolution, new general expressions were derived which 

relate the inverse impulse response with the output cumulants. Expressions involv-

ing cumulants of the same order and expressions involving cumulants of two different 

orders were derived. The only previously reported HOC-based methods for blind de-

convolution are those of Nikias and Chiang [39] and Zheng and McLaughlin [45]. In 

[39], a purely third-order cumulant-based method is presented, while in [45], methods 

based on second-order and diagonal third-order cumulants as well as methods based on 

second-order and diagonal fourth-order cumulants are reported. The general equations 

derived in chapter 4, allow for a unified description of these existing methods and, 

most importantly, allow for the development of new methods combining second-order 

cumulants with all third-order cumulant slices and new methods based on fourth-order 

cumulants. An important part of the analysis of chapter 4, is the study of the structure 

of the matrices involved in the deconvolution methods. As a result of this analysis cri-

teria for the identifiability of the inverse filter parameters were formulated in chapter 

4. Another result reported in chapter 4 is that of system identification through the 

inverse filter parameters without the need of inversion. Additionaly new asymptotic 

performance expressions have been derived for the deconvolution methods. 

Finally in chapter 5, the theory of MA cumulant enhancement was presented. This is 

a novel concept, which has not been considered before in the HOC-based MA param-

eter estimation. Chapter 5, using the expressions developed in chapter 3, presented 

some characteristic properties of cumulants of MA models, and formulated them using 

matrix theoretic properties. The use of matrix concepts to express cumulant proper-

ties, facilitated the formulation of property mappings corresponding to the cumulant 

properties. Using the theory of CPMA (Composite Property Mappings Algorithm), an 

iterative algorithm was proposed in chapter 5, which maps sets of sample cumulants to 

sets of real cumulants of some MA model. The convergence properties of the iterative 

algorithm were studied and it was pointed out that even if convergence can sometimes 

takes many iterations to be realised, only a few iterations are enough to "enhance" 

the properties of the original set of sample cumulants. The enhanced set of sample 

cumulants can then be used for system identification or deconvolution using any of 

the available methods. It has been seen through numerical simulations, that applying 
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cumulant enhancement to the sample cumulants can sometimes improve significantly 

the performance of parameter estimation methods. 

6.3 Future Work 

To conclude the thesis, I suggest some pointers to further areas of development, and 

some alternative applications. 

The work presented in this thesis was exclusively concerned with batch estimation prob-

lems, in which the entire data set is available to the estimator. In many real situations, 

for example in communication systems, we frequently encounter situations in which 

the data stream is continuous and it is required to update the estimate continuously. 

Adaptive versions of the parameter estimation algorithms presented in this thesis can 

be derived in the spirit of the theory presented in [8]. 

Another issue that requires further investigation is that of parameter estimation for 

Multiple Input Multiple Output (MIMO) linear models. The work presented in this 

thesis concentrated on the problem of parameter estimation of Single Input Single 

Output systems. Many practical problems have a multi-dimensional nature. In [97], 

the formula of Brillinger Rosenblatt 2.35 which holds for SISO models is extended to 

the MIMO case. The extended equation is based on the Kronecker product and its 

structure is remarkably similar to that of the SISO equation. It will be interesting to 

examine whether the similarity at the level of the Barlett Brillinger formula can lead to 

an extension of the results presented in this thesis, to similar results for MIMO systems. 

Finally, in this thesis the problem of curnulant enhancement was studied only for the 

case of MA models. An interesting extension would be to consider models involving hR 

systems. Such models are the AR and ARMA models. Trying to establish properties 

that characterise sets of cumulants as being the cumulants of some ARMA or AR model 

is less straightforward than the MA case, because cumulants of AR or ARMA models 

do not have a finite domain of support. A possible way to overcome this problem is 

to use identifiability results for AR and ARMA models such as those presented in [61]. 

These results define subsets of the infinite set of ARMA or AR cumulants which are 

sufficient for the characterisation of the underlying models. One can then concentrate 

in these subsets to try establish properties which characterise true cumulants of some 

AR or ARMA model. 
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z- Transform 

The bilateral z-transform of the sequence y(k), k = — oo, ..., oo is defined as 

00  Y(z) =y(k)z_k 	 (B.1) 
k=—oo  

More information on the properties of the z-transform can be found in [56]. 

The Kronecker Product 

The Kronecker product of A(p x q) and B(m x n) is denoted A ® B and is pm x qn 

matrix defined by 

a1jB c 12B 	ci q B 

21 
A®B= 	

: 	
. 	 (13.2) 

Upq B 

More information on the properties of the Kronecker product can be found in [98]. 

Barlett's asymptotic formula and equation 2.68 

Equation 2.68 for n = k = 2 is written as 

urn Ncov{ñ2,(r),ñi 2 ,(a)} = 
N—co 

00 

[E{y(0)y(r)y(t)y(t + a)) - m2,(7)m 2 ,(17)] = 

00 

[m4,(7, t, t + a) - m2,(r)m2,(0')1. 	 (B.3) 
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From equation 2.10 we know that 

M4,1, (T - , t, t + a) = c4 ,(r, t, t + a) + m2,(r)m2,(0)  + 

m 2 ,(t)m 2,(t + a - r) + m2,(t  + 0')m2 ,(t - r). 	 (B.4) 

Finally combining equations B.3 and B.4 we obtain Barlett's asymptotic formula 

lim Ncov{i'n 2 ,(7- ), rn2,(a)} = 
N—*oo 

00 

(m2,(t)m2,(t + a - r) + M2, 1, (t + 0')m2,(t - r) + c4,(7- , t, t + a)) 	(B.5) 
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Proof of Theorem 5.3 

Assume that the (4q) x (2q + 1) matrix S, posseses the desired rank and structure 

properties defined in section 5.4.2. Since S has the same structural characteristics as 

a matrix constructed from real fourth-order cumulants, then if the (i,j)-element of S 

is not identically zero, it can be expressed as .s(ri,r2,r3) where (71 ,r2,r3 ) are the lags 

we associate with (i,j)-element of a structurally equivalent matrix consisting of real 

fourth-order dumulants. S can be written as follows: 

S 	 (B.1) 

where 

	

Sq,1 = [s(q, 1, 0), s(q, 1, 1), s(q, 1, 2), . . ., s(q, 1, q),0T, 	 (B.2) 

q+1 	 q 

for 1= 0, ..., q, 

	

s d = [,s(q,0,0),s(q,0,1),s(q,0,2),...,s(q,0,q),9), 	(B.3) 

d 	 q+1 	 q—d 

for d= 0, ...,q and 

Sq_n = [s(q— nq— n,—n),s(q—n,q_n,—n--j-_1),...,s(q—n,q—n,q), , 9J, 
q+,-,+l 	 q-ri 

(B.4) 

form = 1, ...,2q— 1. It is further asssumed that s(q, q, 0), s(q, q, q), s(q, 0, 0) 0. As a 

result of the way they are constructed the q + 1 vectors sd q for d = 0, ..., q are linearly 

independent. Since the rank of S is q + 1, each of the vectors sq,1 for 1 = 0, ..., q is a 

scaled version of s and consequently the following eqations hold: 

s(q,q,r) -- s(q,0,q)s(q,0,r) 

 s(q, 0,0) 	
(B.5) 
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and 

s(r,r,q)- s(q,O,r)s(q,O,r) 
(B.6) 

- 	s(q,O,O) 

It is necessary to prove that 

q s(q, 0, i)5 2 (q, 0, i + q - k) s(q, 0, i + m) 
	(B.7) 

. 

s(q - k,q — k, m) = 
s2 (q,0,O)s(q,0,q) 

for k = 1,..., 2q - 1. The vectors Sq_k for k 	1, ..., q can be expressed as a linear 

combination of the vectors s for d = 0,..., q awccording to the following equation: 

Sq_k = 
k 

A t 	q 

Equation B.7 will be derived as a by-product of the solution of equation B.8 for k = 

1, ..., q with respect to the A's. More specifically it is desired to prove that 

	

= .s(q, 0, i)52 (q, 0, i + q - k) 	
(B.9) 

82 (q, 0, 0)s(q, 0,q) 

fork = 1, ...,q and i = 0,...,k. Equation B.8 fork = 1 becomes: 

Sq_i = As + 	 ( B.10) 

Then the first element of Sq_i satisfies the following: 

s(q - 1, q - 1, —1) = A ' s(q, 0,0) 	
= s(q - 1'q - 1, 

s(q,O,0) 

- 8 2 (q, 0, q)s(q, 0,1) 
1 	- s2(q,0,0)s(q,0,q) 	

(B.11) 

The last non-zero element of Sq_i satisfies the following: 

s(q - 1, q - 1, q) = A' 1 s(q, 0, q) 	
4_1) = s 2  (q, 0, q - 1)s(q, 0,0) 

s2 

	

	
(B.12) 

(q,0,0)s(q,O,q) .  

In deriving equations B.11 and B.12 equation B.6 has been used. Equations B.11 and 

B.12 show that equation B.9 is valid for k = 1. 

Assume that B.9 is valid for k < K where K < q. It is now necessary to prove that is 

also holds for k = K + 1. As a result of the rank property the following equation holds: 

K+1 

	

5q—(K+i) = i 
(_(K+1))K+1_i 	 (B.13) 

i=o 
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The first element of Sq_(K+1) satisfies the following equation: 

s(q - (A'+ 1), q - (K + 1),1' - 	_(1s(q, 0, 0). 	(B.14) ) 	K+1 

From the lag symmetries it is known that 

s(q—(K+l),q—(K+l),_K_l)=s(q,q,K+l). 	 (B.15) 

Taking equation B.5 for r = K + 1 results in 

.s(q,0,q)s(q,0,K+ 1) 
(B.16) s(q,q,K+l)= 	

s(q,0,0) 

Finally, combining equations 13.14,13.15 and B.16 results in the following expression for 
(q—(K+1)) 

"K-fl 

- s(q,0,K+ 1)s2(q,0,q) 	
(B.17) K+l 	- 	s2 (q,0,0)s(q,0,q) 

Equation B.17 shows that (q—(K+l)) has the form expected by equation B.9. K+l 

Assume that A 	has the correct form for i = M,..., K+ 1 where 1 < M <K + 1. 
Now it is necessary to prove that A (q—(K+1))  

M_l 	also has the correct form. The element 

s(q - (K + 1), q (K + 1), —M + 1) can be written as follows: 

s(q—(K+1),q_(K+1),_M+1)= 
K+l 

(q (K+l)) (q—(K+1)) 
M-1 	.s(q,0,0)+ 	- 	s(q,0,i—M+1). 	 (B.18) 

i=M 

From the symmetries of cumulant lags it is known that 

.s(q—(K+1),q_(K+1),_M+1)= 

s(q - K + M - 2, q - K + M - 2, M - 1). 	 (B.19) 

Since M > 2 it follows that K - M + 2 < K. Consequently s(q - K + M - 2, q - K + 
M - 2, M - 1) is given by the following expression: 

s(q—K+M-2,q_K+M_2,M_1)= 
K—M+2 >: 	(q — (K—M+2)) s(q,0,i+M-1), 	 (B.20) 

1=0 

— (K—M+2)) (q where the A 	 can be obtained from equation B.9 after replacing k with 
(K - M + 2). To aid comparison with equation B.18, equation B.20 can be written as 
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follows: 

s(q - K -I-  M - 2, q - K + M - 2, M - 1) = )q_(K_M+2))8(q, 0,0 + M - 1) + 
K—M+2 

	

>: 	(q — (K — M+2)) 
s(q, 0, i + M - 1XB.21) 

i=1 

It is easy to check by substituting the known expressions for the .\'s in equation B.18 

and B.21 such that 

K+1 	 K—M+2 

	

0, i - M + 1) 	 R M+2)) = 	 - 	s(q, 0, i + M - 1) (13.22) 
i=M 	 1=1 

Finally combining B.19 and B.22 results in the following: 

(q—(K+1 )) 
( M—i 	,s (q, 0,0) = (q_(K_M+2))3(q 0,0 + M - 1) 

(q—(K+1))( 00) = .s(q,0,0)s2 (q,0,q— (K— M+2)) 
s(q,0,M— 1) = I'1— 1 s2 (q, 0, 0)s(q, 0, q) 

(q—(K+1))- s(q, 0, M - 1)s 2 (q, 0, q - (K - M + 2)) 
M-1 	- 	s2(q,0,0)s(q,0,q) 	

(B.23) 

Equation B.23 shows that A' 1  has the form expected from equation B.9 and this M-1 
concludes the proof of B.7. 

Since s(q, 0,0) is assumed to be non-zero then it is possible to find 'y 	0 such that 

8 2 (q,0,0)s(q,0,q)s(q,0,i-i-- m) 

	

s(q, 0, i + m) = 74 	
54(q,0,0) 	

(B.24) 
 

Substituting B.24 into B.7 results in 

s(q—k,q—k,m) = 
	s(q,0,i)s 2 (q,0,i-j-q—k) 	s2 (q,0,0)s(q,0,q)s(q,0,i-i--m) 

74 	 = 

	

s2 (q,0,0)s(q,0,q) 	 .s4 (q,0,0) 

s(q - k,q—k,m) = 74 	
s(q,0,i)s 2  (q,0,i+q—  k)s(q,0,i+m) 

.s4(q,0,0) 	
(B.25) 

i=O 

Equation B.25 shows that s(q - k, q - k, m) can be considered as the fourth-order 
cumulant with lags (q - k,q - k, m), of an MA(q) model with parameters h(i) = 
s(q, 0, i)/s(q, 0, 0) for i = 0,...,q. 
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