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Abstract

The ever-increasing volume of audio data available online through the world wide web means that automatic methods for indexing
and search are becoming essential. Hidden Markov model (HMM) keyword spotting and lattice search techniques are the two most com-
mon approaches used by such systems. In keyword spotting, models or templates are defined for each search term prior to accessing the
speech and used to find matches. Lattice search (referred to as spoken term detection), uses a pre-indexing of speech data in terms of
word or sub-word units, which can then quickly be searched for arbitrary terms without referring to the original audio.

In both cases, the search term can be modelled in terms of sub-word units, typically phonemes. For in-vocabulary words (i.e. words
that appear in the pronunciation dictionary), the letter-to-sound conversion systems are accepted to work well. However, for out-of-
vocabulary (OOV) search terms, letter-to-sound conversion must be used to generate a pronunciation for the search term. This is usually
a hard decision (i.e. not probabilistic and with no possibility of backtracking), and errors introduced at this step are difficult to recover
from. We therefore propose the direct use of graphemes (i.e., letter-based sub-word units) for acoustic modelling. This is expected to
work particularly well in languages such as Spanish, where despite the letter-to-sound mapping being very regular, the correspondence
is not one-to-one, and there will be benefits from avoiding hard decisions at early stages of processing.

In this article, we compare three approaches for Spanish keyword spotting or spoken term detection, and within each of these we
compare acoustic modelling based on phone and grapheme units. Experiments were performed using the Spanish geographical-domain
ALBAYZIN corpus. Results achieved in the two approaches proposed for spoken term detection show us that trigrapheme units for acous-
tic modelling match or exceed the performance of phone-based acoustic models. In the method proposed for keyword spotting, the
results achieved with each acoustic model are very similar.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

The increasing amount of speech and multimedia data
stored electronically has motivated the development of
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technologies that can provide automatic search for data
mining and information retrieval. These technologies have
developed alongside large vocabulary continuous speech
recognition (LVCSR) and use many of the same
techniques.
1.1. Keyword spotting and spoken term detection

We can broadly divide audio search approaches into
keyword spotting (KS), and lattice-based methods, which
have become known as spoken term detection (STD). For
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keyword spotting, the terms are defined in advance, and
then models or templates representing each term are used
to find matches. The National Institute for Standards
and Technology (NIST) introduced an STD evaluation in
2006. In doing so, they defined the task of spoken term
detection as being a two-stage process in which the audio
is first indexed according to word or sub-word units (e.g.
phones), and then search is performed over the indexed
audio. The indexing may be as a 1-best string, or as an
N-best lattice.

Spanish keyword spotting systems generally use hidden
Markov models (HMMs) of phone-based sub-word units
(Lleida et al., 1993; Cuayahuitl and Serridge, 2002; Tejedor
and Colás, 2006; Scott et al., 2007). In some cases, filler
models are incorporated which represent the non-keywords
in the speech (Lleida et al., 1993; Cuayahuitl and Serridge,
2002).

Lattice-based methods offer significantly faster search,
as the speech is processed just once by the HMMs. A num-
ber of authors have taken the approach of searching for
terms in the output of an LVCSR system (Hauptmann
and Wactlar, 1997; Logan et al., 2000; Makhoul et al.,
2000; Hansen et al., 2005), though a common finding is
that these approaches yield high miss rates (i.e., low recall)
(James and Young, 1994; Young and Brown, 1997; Tanaka
et al., 2001; Yu et al., 2005). Hybrid methods based on the
combination of keyword-spotting (which gives high recall)
and sub-word lattice search have proven successful in com-
bining the strengths of both methods (Yu and Seide, 2004;
Tejedor and Colás, 2006).

In this paper, we present three approaches. Two of
them are capable of spoken term detection, as they
index the speech in terms of sub-word units. The other
architecture can only perform keyword spotting, process-
ing the audio using a recognition network composed of
word models (of the keywords) and filler (garbage)
models.

One of the problems which spoken-term detection must
overcome is dealing with out-of-vocabulary (OOV) search
terms, where we define OOV words to be those which do
not appear in the pronunciation lexicon. This is important,
as the OOV rate for STD in applications such as multilan-
guage surveillance, technical document database searching
and news-story indexing tends to be higher than for tran-
scription tasks due to a bias toward proper nouns and
acronyms as search terms (Thambiratmann and Sridharan,
2007).

Search within a word-based lattice is vocabulary-depen-
dent, as only terms which appear in the LVCSR lexicon can
ever appear in the output. Therefore it is common to build
lattices and employ search over sub-word units in these
cases. Similar ideas have been applied to open vocabulary
keyword spotting methods, for example HMM-based
methods with word models composed of sub-word units.
However, these methods are at the cost of considerably
slower query speed, as the speech must be re-searched for
each new search term (Rohlicek, 1995).
In both cases, the search term is modelled in terms of
sub-word units, typically phonemes, and for OOV search
terms, letter-to-sound conversion must be used to generate
a pronunciation for the search term. This is usually a non-
probabilistic issue and a difficult decision and errors intro-
duced at this step are difficult to recover from. We there-
fore propose the direct use of graphemes (i.e., letter-
based sub-word units) for acoustic modelling.

Rather than enforcing a potentially hard decision on the
sequence of phone units, the relationship between gra-
phemes and sounds will then be modelled probabilistically
by the acoustic models (HMMs) themselves, rather than by
an external letter-to-sound model (such as a classification
tree, commonly used in text-to-speech synthesis).

This is expected to work particularly well in languages
such as Spanish, where the letter-to-sound mapping is very
regular. Whilst this regularity means that letter-to-sound
conversion can be achieved more reliably than for some
other languages (for example English), by modelling graph-
eme-based units directly we have the advantage of replac-
ing a potentially error-prone hard decision with a
probabilistic one which naturally accounts for this
variation.
1.2. Grapheme-based automatic speech recognition (ASR)

Killer et al. (2003) demonstrated that grapheme-based
LVCSR systems for Spanish can achieve performance
which is close to that of phone-based systems. In some
other languages – notably English, the speech sounds are
harder to predict accurately from the graphemes, so graph-
eme-based units typically perform worse than phone-based
units for acoustic modelling (Killer et al., 2003).

However, Dines and Doss (2007) show that the use of
graphemes in English can yield competitive performance
for small to medium vocabulary tasks in automatic speech
recognition (ASR) systems. In experiments on the OGI
Numbers95 task (Cole et al., 1994), a grapheme-based
ASR system was found to give similar performance to
the phone-based approach. However, on tasks of increased
complexity, such as DARPA resource management (Price
et al., 1998) and continuous telephone speech (Chen
et al., 2004), the phone-based system gave lower error rates
than the grapheme system.

Doss Magiami-Doss et al. (2003, 2004) also proposed
the use of a phone-grapheme based system that jointly
models both the phone and grapheme sub-word units dur-
ing training. During decoding, recognition is performed
either using one or both sub-word units. This was investi-
gated in the framework of a hybrid hidden Markov
model/artificial neural network (HMM/ANN) system.
Improvements were obtained over a context-independent
phone-based system using both sub-word units in recogni-
tion in two different tasks: isolated word recognition task
(Magiami-Doss et al., 2003) and recognition of numbers
task (Magiami-Doss et al., 2004).
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1.3. Motivation and organization of this paper

Given the performance of grapheme-based models for
Spanish LVCSR and the potential advantages of grapheme
over phone-based units for tasks involving OOVs, we pro-
pose that grapheme-based acoustic modelling can outper-
form phone-based modelling for certain applications.

In this work, we compare grapheme-based sub-word
units (monographeme and trigrapheme models) with con-
ventional phone-based units (monophone and triphone
models) for acoustic modelling using HMMs, in three dif-
ferent architectures for keyword spotting and spoken term
detection. Sections 2 and 3 define the database and acoustic
model configurations used. The three architectures are
described in Section 4. Section 5 defines the evaluation met-
rics used, experimental results are presented in Sections 6
and 7 concludes and suggests future work.

The novel aspects of this work are in the application of
grapheme-based units to acoustic modelling in keyword
spotting and spoken term detection, and the confidence
measures introduced in the architectures presented in Sec-
tions 4.1 and 4.3.
2. The ALBAYZIN database

The experiments were performed using the Spanish geo-
graphical-domain ALBAYZIN corpus (Moreno et al., 1993)
which contains utterances that incorporate the names of
mountains, rivers, cities, etc. ALBAYZIN contains two sepa-
rate sub-corpora: a phonetically rich component and a geo-
graphic corpus. Each of these is divided into training and
test sets. We used these 4 distinct, non-overlapping por-
tions of the data as described by Table 1.

The four sets are used as follows: The phonetic training set
was used to train the acoustic models along with phone and
grapheme bigram language models. The STD development
set was used to train the lexical access module in architectures
1 and 3, and tune the language model scale and insertion pen-
alty for the sub-word unit decoder in all three architectures.
The phonetic test set was used to decide the number of Gauss-
ian mixture components for all types of acoustic models, and
the STD test set was used for final evaluation.
3. HMM-based acoustic modelling

The input signal is sampled at 16 kHz and stored with 16
bit precision. Mel-frequency cepstral coefficients were com-
Table 1
Specification of the training, development and testing sets for the ALBAYZIN d

Phonetic corpus (orthographically transcribed and phonetically l

Train set NAME: Phonetic training set

CONTAINS: 4800 phonetically balanced sentences from 164 speake
20 min

Test set NAME: Phonetic test set

CONTAINS: 2000 phonetically balanced sentences from 40 speaker
40 min
puted at 10ms intervals within 25 ms Hamming windows.
Energy and first and second order derivatives were
appended giving a series of 39-dimensional feature vectors.

The HTK v3.4 (Young et al., 2006) toolkit was used for
the feature extraction, acoustic modelling, and decoding
described in this paper.
3.1. Phone models

An inventory of 47 allophones of Spanish (Quilis, 1998)
was used (as given in Appendix A), along with beginning
and end of utterance silence models to build context-inde-
pendent (monophone) and context-dependent (triphone)
systems. All allophone and silence models had a conven-
tional 3-state, left-to-right topology and there was an addi-
tional short pause model which had a single emitting state
and a skip transition.

The output distributions for the monophone system
consisted of 15-component Gaussian mixture models
(GMM), and those in the triphone system used 11 compo-
nents. In both cases, the number of mixture components
were chosen empirically based on phone accuracy on the
phonetic test set. The triphone models were cross-word
and were state-clustered using HTK’s standard decision
tree method with phonetically-motivated questions, which
leads to 5632 shared states.
3.2. A grapheme inventory for Spanish

Although there is a simple relationship between spelling
and sound in Spanish, care must be taken in defining the
inventory of graphemes (Alarcos, 1995). We will use the
term ‘‘grapheme” to mean a single unit, which is a sequence
of one or more letters, to be used for acoustic modelling.
This may not be precisely match the alphabet used for writ-
ing because we can expect better performance if we account
for a small number of language-specific special cases.

The letter ‘‘h” only affects the phonetic realisation when
it appears in the combination ‘‘ch”, as in ‘‘chaqueta”

(‘‘jacket”) or ‘‘Pancho” (a proper name). ‘‘ch” is always
pronounced [tS]. Therefore ‘‘ch” is considered to be a
grapheme (digrapheme in this case) and the letter ‘‘h”

can be removed everywhere else. The only exceptions are
in loanwords, such as ‘‘Sáhara” (borrowed from Arabic)
or ‘‘hall” (borrowed from English) where the ‘‘h” is pro-
nounced somewhere along a [h]–[v] continuum, depending
on the speaker. In the work presented here, we ignored the
atabase

abelled) Geographic corpus (orthographically transcribed)

NAME: STD development set

rs: 3 h and CONTAINS: 4400 sentences from 88 speakers: 3 h and
40 min
NAME: STD test set

s: 1 h and CONTAINS: 2400 sentences from 48 speakers: 2 h
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pronunciation of ‘‘h” in loanwords, because the corpus
used for experimentation contains no loanwords.

The combination‘‘ll” is pronounced [F] or [y], depend-
ing on context, and so is also considered a grapheme
(digrapheme in this case) because its pronunciation is not
related to that of its constituent letters. ‘‘~n” is also consid-
ered a grapheme for the same reason (it is not an ‘‘n” plus a
‘‘~”). It is always pronounced [›].

There are therefore a total of 28 grapheme units in our
systems: a, b, c, ch, d, e, f, g, i, j, k, l, ll, m, n, ~n, o, p, q,
r, s, t, u, v, w, x, y and z.

There are, of course, other letter combinations that
could be considered as single graphemes, such as ‘‘rr”,
but a balance must be struck between capturing these spe-
cial cases of letter-to-sound relationships, and keeping the
grapheme inventory size small for statistical modelling rea-
sons. The ideal grapheme inventory, even for a phoneti-
cally simple language like Spanish, is not easily defined.
This is a challenge for grapheme-based modelling, and in
future work we will consider automatic methods for avoid-
ing a sub-optimal manual choice of grapheme inventory.
3.3. Grapheme models

The grapheme systems were built in an identical fashion
to the phone-based systems; the only differences were in the
inventory of sub-word units (Section 3.2) and the questions
used for state clustering. The monographeme models used
mixtures of Gaussians with 15 components, and the trigra-
pheme models used eight components. As with the phone
models, these numbers were chosen empirically based on
grapheme accuracy on the phonetic test set. There are
3575 shared states retained after clustering in the trigra-
pheme system.

To build state-tied context-dependent grapheme models
(trigraphemes) requires a set of questions used to con-
struct the decision tree. There are three ways to generate
those questions: using only questions about single gra-
phemes (‘‘singleton questions”), converting from the ques-
tions used to state-tie triphones (Section 3.1) according to
a phone-to-grapheme map, or generating questions from
data automatically. Killer and colleagues (Killer et al.,
2003) reported that singleton questions give the best per-
sub-word unit
decoderspeech sub-wo

unit str

Fig. 1. The fast 1-b

sub-word unit
decoderspeech sub-wo

unit lat

Fig. 2. The sub-word l
formance, so we used a singleton question set for state
tying in our experiments.
4. Three architectures for keyword spotting and spoken term

detection

In this work we compare three different architectures:

(1) Viterbi decoding is used to give the single most likely
sequence of sub-word (phone/grapheme) units. The
keyword is specified in terms of sub-word units, and
a lexical access module is used to find exact or near
matches in the decoded output.

(2) Viterbi decoding is used to produce an N-best sub-
word (phone/grapheme) lattice. An exact word-
matching procedure is applied to the lattice with the
keyword specified in terms of sub-word units.

(3) Hybrid system which combines a conventional key-
word spotting system composed of keywords and fil-
ler models which account for the non-keywords, with
a sub-word decoder and lexical access module as in
(1) in order to reduce the false alarm rate.

The three architectures (1)–(3) are described below in
Sections 4.1, 4.2 and 4.3 respectively.

4.1. Architecture 1: 1-best sub-word unit decoding + lexical

access

This architecture is illustrated in Fig. 1. The first pro-
cessing step uses the HTK tool HVite to produce the sin-
gle most likely (1-best) sequence of phones or graphemes,
using the HMM sets trained as described in Sections 3.1
and 3.3 respectively. We refer to this as the sub-word unit

decoder, and the output is a sequence of U phone or graph-
eme sub-word units S ¼ fs1; s2; . . . ; sUg.

Decoding incorporates a phone or grapheme bigram
language model (LM) which was trained on the phonetic
or grapheme transcription of the phonetic training set,
respectively Fig. 2.

These sequences are then passed to the lexical access

module which we describe in detail in the following
sections.
lexical access
module

spoken
terms

rd
ing

est architecture.

exact match
+ threshold

spoken
terms

rd
tice

attice architecture.
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4.1.1. Lexical access module – training the alignment costs

Each keyword W is represented as a sequence of R

phone or grapheme sub-word units W ¼ fw1;w2; . . . ;wRg,
and search is performed within S, the output of the sub-

word unit decoder. This approach is based on the dynamic
programming algorithm proposed by Fissore et al. (1989).

The essence of the algorithm is to compute the cost of
matching each keyword W with the decoded output S.
The total cost is accumulated from the costs of four types
of alignment error: substitution, insertion, deletion, and
continuation. The first three of these are standard in
ASR decoding, and ‘continuation’ (Fissore et al., 1989) is
included in order to distinguish an insertion error from,
for example, hypothesising fbaag during a time interval
in which the true phone sequence was fbag.

Different costs are associated with each type of align-
ment error and are estimated as follows:

Csubðh; kÞ ¼ � log
N subðh; kÞ

N totðhÞ
ð1Þ

Cinsðh; kÞ ¼ � log
N insðh; kÞ
N totðhÞ

ð2Þ

CdelðhÞ ¼ � log
NdelðhÞ
N totðhÞ

ð3Þ

Cconðh; kÞ ¼ � log
N conðh; kÞ

N totðhÞ
ð4Þ

where we define:
N subðh; kÞ is the total substitutions of test symbol k for

reference symbol h; N insðh; kÞ is the total insertions of test
symbol k after reference symbol h; NdelðhÞ is the total dele-
tions of reference symbol h; N conðh; kÞ is the total continu-
ations of test symbol k after h and N totðhÞ is the total
occurrences of reference symbol h, is given by

N totðhÞ ¼
X

k

N subðh; kÞ þ N insðh; kÞ þ N conðh; kÞ½ � þ N delðhÞ

ð5Þ
The costs are estimated by first producing 1-best hypothe-
ses for the training data using the sub-word unit decoder,
and evaluating Eqs. (1)–(4) against the reference transcript.
In order to develop a vocabulary-independent system, the
full vocabulary of the STD development set was used. This
means that many of the training keywords would be unli-
kely to appear in a practical application, though yields a
more general system.

4.1.2. Lexical access module – finding matches
Dynamic programming is used to calculate the overall

cost of matching each keyword W against the hypothesised
sequence S. Letting r and u be indices for the position
within W and S, respectively, the local cost function
Gðr; uÞ is calculated in recursively as:

Gðr; uÞ ¼
Gðr � 1; u� 1Þ þ Csubðwr; suÞ
Gðr; u� 1Þ þ Cins=conðwr; suÞ
Gðr � 1; uÞ þ Cdelðwr; suÞ

�������
ð6Þ
where

Cins=conðwr; suÞ ¼
Cinsðwr; suÞ if su ¼ su�1

Cconðwr; suÞ otherwise

���� ð7Þ

The keyword search over a length L hypothesised sequence
of sub-word units progresses as follows:

(1) For each keyword K, set the minimum window length
to W min

K ¼ NK=2þ 1, where N K is the number of sub-
word units contained in the dictionary entry for key-
word K. Set the maximum window length as
W max

K ¼ W min
K þ N K .

(2) Calculate the cost G each keyword K over each can-
didate window.

(3) Sort keyword hypotheses according to G, removing
any for which the cost G is greater than a threshold
HGmax .

(4) Remove overlapping keyword hypotheses: make a
pass through the sorted keyword hypotheses starting
with the highest-ranked keyword, removing all
hypotheses with time-overlap greater than Hoverlap%.

(5) Return all keyword hypotheses with cost less than
Gbest þHGbeam

, where Gbest refers to the cost of the
highest-ranked keyword and HGbeam

is beam width.

The thresholds HGmax , Hoverlap, and HGbeam
, and the win-

dow sizes W min
K and W max

K , are set on STD development set
in order to give the desired trade-off of precision and recall.

As an example of the windowing in the grapheme-based
approach, searching for the keyword madrid, which has a
grapheme transcription {m a d r i d}, given a grapheme
decoder output of {m a i d r i e d a a n}, the minimum
and maximum windows are W min

K ¼ 6=2þ 1 ¼ 4 and
W max

K ¼ 4þ 6 ¼ 10. The cost G is therefore accumulated
over the following candidate windows:

{m a i d}, {m a i d r}, {m a i d r i}, {m a i d r i e},
{m a i d r i e d}, {m a i d r i e d a}, {m a i d r i e d
a a}, {a i d r}, {a i d r i}, . . ., {i e d a}
4.2. Architecture 2: sub-word unit lattice + exact word

matching

Lattice search provides a natural extension to the 1-best
path architecture above, and again search is based on sub-
word (phone or grapheme) units.

The decoding process for the 1-best decoder from Sec-
tion 4.1 was used, except that HVite was run in N-best
mode. The resulting output were lattices generated from
the top N tokens in each state. An example grapheme lat-
tice is shown in Fig. 3.

4.2.1. Exact word matching in the lattice

The Viterbi algorithm provides an efficient method to
find all path fragments in the lattice that exactly match
the phone or grapheme string representing search terms.
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We use an implementation provided by collaborators at the
Brno University of Technology (Szoke et al., 2005). Preli-
minary work confirmed the finding of Szoke et al. (2005),
that given a suitably dense lattice, the accuracy improve-
ment from allowing non-exact matches was minimal, and
that N ¼ 5 gave a suitably dense lattice. In the work
reported here we set N ¼ 5 and only consider exact
matches.

For each hypothesised keyword K which the search
returns, a confidence score CK is calculated as follows:

CK ¼ LaðKÞ þ LðKÞ þ LbðKÞ � Lbest ð8Þ

where:

� LaðKÞ is the log likelihood of the best path from the lat-
tice start to the node of the first phone or grapheme of
K.
� LðKÞ is the log likelihood of keyword K, computed as

the sum of the acoustic log likelihood of its constituent
phones or graphemes, plus the total language model log
likelihood for the sequence (weighted by the language
model scale factor).
� LbðKÞ is the log likelihood of the best path from the last

node of the last phone or grapheme of K to the end of
the lattice.
� Lbest is the likelihood of the 1-best path over the com-

plete lattice.
sub-word unit
decoder

speech

sub-word
unit string

keyword spotting
module ke

Fig. 4. The hybrid
LaðKÞ and LbðKÞ are computed using standard forward-
backward recursions (Young et al., 2006). A threshold on
the confidence score is set on the STD development set in
order to reduce the false alarm rate and give the desired
system performance.
4.3. Architecture 3: hybrid word + sub-word system

Standard word + filler HMM-based keyword spotting
as outlined in Section 1.1 above tends to give high hit rates
(recall). In the third hybrid architecture, we propose com-
bining such a system with a sub-word decoder method in
order to reduce the false alarms, and so increase the preci-
sion. The hybrid architecture is shown in Fig. 4.

The sub-word unit decoder is the same system as
described above in Section 4.1: decoding takes a phone
or grapheme bigram and produces the most likely sequence
of phone or grapheme units.

The keyword spotting module uses the same set of acous-
tic models, though the bigram language model is replaced
by a recognition network composed of words and fillers
as shown in Fig. 5.

Any transition between keywords and filler models is
allowed as well as self transitions for both keywords and
fillers. This configuration allows multiple keywords to
appear in a single utterance and multiple instances of the
lexical access
module

keywords

substring
selection

selected
strings

confidence
measureywords

architecture.
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same keyword in the same utterance. The keyword HMMs
are constructed as concatenations of phone or grapheme
HMMs, so no additional training is required. A pseudo
N-gram language model, similar to the one proposed by
Kim et al. (2004) was used, in which probabilities are sim-
ply assigned to the two classes of keyword and filler. The
probability for the keyword class was set to be 6 and 12
times that of the fillers in the context-independent and con-
text-dependent systems, respectively. These ratios were
optimized on the STD development set.

The set of hypothesised keyword matches and associ-
ated timings from the keyword spotting module are passed
to the substring selection module which converts them into
their corresponding phone or grapheme sequences as given
by the sub-word unit decoder. These sub-word sequences are
then processed by the lexical access module as described in
Sections 4.1.1 and 4.1.2 above.

4.3.1. Detecting false alarms using the lexical access module

The lexical access module determines the cost of match-
ing each dictionary word to the hypothesised sequence of
phones or graphemes. Confidence measures can be derived
from both relative and absolute cost of keywords. For
example, if the second-best matching keyword has a cost
which is close to that of the lowest cost keyword, then we
can assign low confidence to the match. Similarly, if the
absolute cost for the best matching word is high, then we
also have low confidence in this match.

We adapt this idea for detection of false alarms as fol-
lows. The lexical access algorithm is run twice, first using
a set of costs estimated against the keywords which were
correctly detected in the STD development set by the key-

word spotting module. This identifies a best matching word
in the lexicon, along with its match cost Gbest. In the second
run of the lexical access algorithm, a set of costs trained on
false alarms (FAs) produced by the keyword spotting mod-
ule when run on the STD development set, is used to return
the lowest-cost word GFA.
If the keywords corresponding to Gbest and GFA are the
same, and GFA � Gcorrect P a, a match is returned, as we
consider that the hypothesis is closer to a true keyword
than a false alarm. If the words associated with GFA and
Gbest differ, or the difference falls below alpha, the match
is rejected. The threshold a is tuned on the STD develop-
ment set.

4.4. Vocabulary dependence

The sub-word lattice system described in Section 4.2 is
the most vocabulary independent, needing no knowledge
of the keywords or indeed any word list at all during train-
ing (although a dictionary is required to convert the corpus
word transcription into a sub-word unit transcription). The
1-best system as described in Section 4.1 can be made inde-
pendent of the keyword list, but does need to know about
the corpus vocabulary during training of the lexical access
module. The hybrid system of Section 4.3 is the most
vocabulary-dependent system, and needs to know the cor-
pus vocabulary, the keyword list and have spoken exam-
ples of the keywords during training. It is expected that
the more vocabulary or corpus-dependent a system is, the
better its performance should be.
5. Evaluation metrics

The purpose of this research is to identify keywords
within audio. Unlike ASR, which typically considers cor-
rect recognition of all words equally important, we are
interested in the trade-off of precision and recall. We use
the following metrics to evaluate the systems presented in
this work.

The figure of merit (FOM) was originally defined by Roh-
licek et al. (1989) for the task of keyword spotting. It gives the
average detection rate over the range [1, 10] false alarms per
hour per keyword. The FOM values for individual keywords
can be averaged in order to give an overall figure.

The NIST STD 2006 evaluation plan (NIST, 2006)
defined the metrics occurrence-weighted value (OCC) and
actual term-weighted value (ATWV), both of which are spe-
cifically tailored to the task of spoken term detection.
These 2 metrics have been adopted and their description
follows.

For a given set of terms and some speech data, let
N correctðtÞ, N FAðtÞ and N trueðtÞ represent the number of cor-
rect, false alarm, and actual occurrences of term t respec-
tively. In addition, we denote the number of non-target
terms (which gives the number of possibilities for incorrect
detection) as N NTðtÞ. We also define miss and false alarm
probabilities, P missðtÞ and P FAðtÞ for each term t as:

P missðtÞ ¼ 1� N correctðtÞ
N trueðtÞ

ð9Þ

P FAðtÞ ¼
NFAðtÞ
NNTðtÞ

ð10Þ



Table 3
Evaluation of the keyword spotting module of architecture 3 in isolation

Keyword spotting module

Monophone Triphone Monographeme Trigrapheme

FOM 65.9 68.3 61.0 67.6
OCC 0.74 0.73 0.66 0.78

Results are given in terms of FOM and OCC for both context dependent
and independent models, using grapheme and phone units.

Table 4
Results in terms of FOM and OCC for the three architectures for context-
independent and -dependent phone and grapheme models

Monophone Triphone Monographeme Trigrapheme
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In order to tune the metrics to give a desired balance of
precision versus recall, a cost CFA for false alarms was de-
fined, along with a value V for correct detections.

The occurrence-weighted value is computed by accumu-
lating a value for each correct detection and subtracting a
cost for false alarms as follows:

OCC ¼
P

t2terms½VN correctðtÞ � CFANFAðtÞ�P
t2termsVN trueðtÞ

ð11Þ

Whilst OCC gives a good indication of overall system per-
formance, there is an inherent bias toward frequently-
occurring terms.

The second NIST metric, the actual term-weighted value
(ATWV) is arrived at by averaging a weighted sum of miss
and false alarm probabilities, P missðtÞ and P FAðtÞ, over terms:

ATWV ¼ 1�
P

t2terms½P missðtÞ þ bP FAðtÞ�P
t2terms1

ð12Þ

where b ¼ C
V ðP priorðtÞ�1 � 1Þ. The NIST evaluation scoring

tool sets a uniform prior term probability P priorðtÞ ¼ 10�4,
and the ratio C

V to be 0.1 with the effect that there is an empha-
sis placed on recall compared to precision in the ratio 10:1.

In this work, we present results in terms of FOM and
OCC. However, rather than giving the ATWV values
which give point estimates of the miss and false alarm
probabilities, we present these results graphically in order
to show the full range of operating points. For all results,
tuning for the language model scale and insertion penalty
is performed on STD development set according to the met-
ric which is used in evaluation. For all measures, higher
values indicate better performance.

6. Results

The experiments were performed on the ALBAYZIN data-
base, described in Section 2. A set of 80 keywords were cho-
sen based on their high frequency of occurrence and
suitability as search terms for geographical-domain informa-
tion retrieval, and evaluation (retrieving search terms) is per-
formed on the STD test set. Significance tests in the form of
paired t-tests are used to compare systems, in order to deter-
mine whether differences are consistent across search terms.

6.1. Recognition accuracy

Whilst phone or grapheme recognition is not the main
focus of this work, it is an important factor in STD/KS per-
formance. We present phone accuracy results in Table 2.
Table 2
Phone and grapheme recognition accuracy for both context-independent
and dependent models

Monophone
(%)

Triphone
(%)

Monographeme
(%)

Trigrapheme
(%)

Recognition
accuracy

63.9 68.2 75.2 79.1

Results are presented on the phonetic test set.
For both the phone and grapheme systems, performance
is improved through the use of context-dependent models.
The grapheme recognition accuracy is higher, though this
is expected as there are fewer graphemes than phones.
6.2. Spoken term detection and keyword spotting results

Architecture 3 uses a standard keyword spotting module
in combination with a sub-word-based confidence measure.
In order to examine the gain due to the confidence mea-
sure, Table 3 presents results for the keyword spotting
module in isolation.

These results show that the performance improvement
in moving from context-independent to context-dependent
models is greater for grapheme-based models than for
phones. Paired t-tests show that there is no systematic dif-
ferences between the results of context-dependent phone
and grapheme-based systems.

Table 4 presents results in terms of FOM and OCC for
each of the three architectures described above in Section 4.

We first note that comparing the results of the hybrid
architecture 3 with those in Table 3, the addition of the
confidence measure leads to performance improvements
for each metric. However, it is only for the monographeme
and triphone systems evaluated under the FOM metric that
the increases are statistically significant (p < 0:01).
6.2.1. Evaluation in terms of FOM
Table 4 shows that for evaluation in terms of FOM,

context-dependent models give the best performance for
all architectures and for both phone and grapheme-based
models. Significance tests show that for the lattice-based
approach of architecture 2, the grapheme-based systems
FOM

Architecture 1 72.7 73.5 65.9 74.4
Architecture 2 44.0 47.1 58.1 64.0
Architecture 3 80.3 82.3 76.9 79.6

OCC

Architecture 1 0.70 0.72 0.67 0.76
Architecture 2 0.40 0.42 0.53 0.61
Architecture 3 0.85 0.84 0.84 0.85

For all measures, higher values indicate better performance.
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give consistent increases in performance over the best
phone-based system with p < 0:01. Trigraphemes gave
the best performance on architecture 1, though this was
not found to be statistically significant. For architecture
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Fig. 6. DET curves showing miss against false alarm probability of each
architecture.
3, the best results are found using phone-based models,
though the difference is not statistically significant.

6.2.2. Evaluation in terms of OCC

We find similar patterns where the evaluation is in terms
of OCC, though the performance for the phone-based
models does not improve by moving from context-indepen-
dent to -dependent models. Graphemes give better perfor-
mance than phones for architecture 2, shown to be
significant with p < 0:01. For architecture 3, the results
are very similar, and for architecture 1, the trigrapheme
gives the highest performance, though the result is not sta-
tistically significant.

6.2.3. Evaluation in terms of ATWV
We present detection error trade-off (DET) curves of the

ATWV performance for each of the three architectures in
Fig. 6. Each plot shows miss against false alarm probability
for context-independent and dependent models, for both
phone and grapheme-based systems, giving an indication
of the system performance at a number of operating points.

The DET curves for architecture 1 in Fig. 6 show that
the performances are quite similar for each of the systems,
though the trigrapheme models marginally outperform the
others for much of the range.

Fig. 6 shows the sizable performance gap between phone
and grapheme-based models for the lattice-based architec-
ture 2, and that for most of the range, the trigrapheme sys-
tem provides a lower bound. It is also showed that
monographeme system also outperforms both monophone
and triphone systems.

DET curves for the hybrid architecture are given in
Fig. 6, and show that the best performance is achieved
by the monophone system.

7. Conclusions and future

Our results suggest that grapheme-based units perform
at least as well as phone-based units for keyword spotting
and spoken term detection, and that the relative perfor-
mance of phone/grapheme models varies according to the
architecture. The trends we observe when evaluating
according to FOM and OCC are similar, since both are
occurrence-weighted measures, whereas ATWV is term-
weighted and reveals different aspects of the systems’ per-
formance. As expected, better results were found for
vocabulary-dependant systems.

7.1. Hybrid approach

Architecture 3, the hybrid system, which is the most
complex and the most vocabulary dependent, gives the
overall best performance for each type of sub-word unit,
and for each evaluation metric. The DET curves in terms
of ATWV metric in Fig. 6 show that the best performance
is achieved by the monophone system. At the same time the
difference in FOM and OCC performance across the
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different acoustic models is not significant. These results
may be attributed to the addition of other knowledge
sources. These include the keyword network in the keyword

spotting module and the empirically-trained costs in the lex-

ical access module, which makes it more robust to weaker
acoustic models. However, this architecture cannot per-
form spoken term detection (as defined by NIST) because
it requires knowledge of the keywords when processing
the speech data.

7.2. 1-Best approach

Architecture 1, the 1-best approach, is capable of spo-
ken term detection. Again, there is not significant variation
in performance across the four acoustic model types, pre-
sumably because of the additional knowledge used in the
form of the lexical access module. However, the DET
curves in terms of ATWV metric in Fig. 6 shows that the
trigrapheme models marginally outperform the others for
much of the range.

7.3. Lattice-based approach

Architecture 2, the lattice approach with no lexical

access module, is the most vocabulary and corpus indepen-
dent system and conforms with the requirements of recent
NIST evaluations. Under this architecture we find more
marked performance differences between the different
acoustic models. Our experiments give evidence that for
the lattice-based approach, grapheme-based systems out-
perform equivalent phone-based methods.

Comparing the context-independent and context-depen-
dent systems, we find that the grapheme-based approach
benefits more from context-dependent modeling than the
phoneme-based approach. This is expected, as a grapheme
may be pronounced quite differently according to context.
By comparison, context-dependent allophones belonging
to the same central phone are typically subject to a smaller
degree of variation.

7.4. Grapheme-based modelling

We consider that the power of the grapheme-based sys-
tem on STD tasks, especially in the lattice-based architec-
ture, can be attributed to two factors. The first is the
probabilistic description of pronunciation variation in the
grapheme model, which helps represent all possible pro-
nunciations of a search term in a single form. The second
is its capacity to incorporate additional information,
including both acoustic and phonological cues, in the lat-
tice, thus improving the decision-making process in the
search phase.

Grapheme-based systems do not appear advantageous
under the 1-best and hybrid approaches of architectures 1
and 3, where the single most likely phone or grapheme
sequences are used rather than lattices for keyword search.
Given the increased acoustic variation associated with gra-
phemes compared with phones, the advantage arises from
postponing hard decisions and keeping multiple decoding
paths alive. Furthermore, as stated above, the additional
linguistic information from the lexical access module may
diminish the relative performance of the different acoustic
models.
7.5. Future work

Future work will include scaling up to larger tasks,
which will necessitate development of language modelling
techniques. One advantage of grapheme-based sub-word
units is that very long span N-gram language models can
be trained directly from very large text corpora. However,
proper smoothing of these language models will be essen-
tial in order to retain the ability to model OOV search
terms. Our goal is to build a full information retrieval sys-
tem from the architectures presented in this work, incorpo-
rating spoken term detection and keyword spotting. Within
this system, proper names will contribute to a high OOV
rate, as will verbs, which present difficulties issue in Latin
languages (Steigner and Schroder, 2003) such as Spanish.
We will also focus in multigrapheme-based systems in
order to deal with the imported graphemes when the set
of keywords to search for is composed of words borrowed
from other languages.

We also intend to apply architecture 2 to other lan-
guages and domains, initially English language meetings
data. Whilst letter-to-sound conversion is less regular
for English than Spanish, a grapheme-based approach
would still be desirable given the inherent flexibility in
dealing with out of vocabulary terms. The key to this will
be in deriving an appropriate inventory of grapheme-
based units for English, and automated methods may
be required. Additionally, we are working on methods
to replace the decision trees which map from CI to CD
grapheme units with probabilistic mappings. This will
have the effect of removing another hard decision from
the system, and improve the ability to model unusual
pronunciations.
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Appendix A. Phone set
a,e,i,o,u
 vowel

A,E,I,O,U
 stressed vowel

an,en,in,on,un
 unstressed vowel between two nasals (i.e

between n,m,~n)

An,En,In,On,Un
 stressed vowel between two nasals (i.e

between n,m,~n)

b
 plosive at the beginning of the word or

after a nasal (n,m,~n)

B
 fricative appears within a word if not

after a nasal

T/
 corresponds to grapheme ‘‘ch”
d
 plosive at the beginning of the word or
after a nasal (n,m,~n)
D
 fricative if it appears within a word, if
not after a nasal
f
 corresponds to grapheme ‘‘f”

g
 plosive at the beginning of the sentence

or after a nasal (n,m,~n)

G
 fricative if it appears within a word, if

not after a nasal

X
 sound as ‘‘j”

j
 corresponds to grapheme ‘‘i” when ‘‘i”

appears in a diphthong

J/
 corresponds to grapheme ‘‘y” at the

beginning of a word or after a nasal
(n,m,~n). When appearing after a word
which finishes in a vowel, changes to J
J
 corresponds to grapheme ‘‘y” all cases
which are not considered in J/
k
 corresponds to grapheme ‘‘k” and
grapheme ‘‘c” when it does not sound as
‘‘z”
l
 corresponds to grapheme ‘‘l”

L
 corresponds to grapheme ‘‘ll”

m
 corresponds to grapheme ‘‘m”
n
 corresponds to grapheme ‘‘n”

N
 corresponds to grapheme ‘‘n” when

following a vowel.

Nn
 corresponds to grapheme ‘‘~n”
p
 corresponds to grapheme ‘‘p”
r
 corresponds to grapheme ‘‘r”
R
 corresponds to grapheme ‘‘rr”
s
 corresponds to grapheme ‘‘s”
t
 corresponds to grapheme ‘‘t”

T
 corresponds to graphemes ‘‘z” or ‘‘c”

when sounds as ‘‘z”
w
 corresponds to grapheme ‘‘u” within a
diphthong
gs
 corresponds to grapheme ‘‘x”
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