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Preface

This paper is in two parts. Part 1 is the previously unpublished 1972 mem-
orandum [41], with editorial changes and some minor corrections. Part 2
presents what happened next, together with some further development of
the material. The first part begins with an elementary set-theoretical model
of the λβ-calculus. Functions are modelled in a similar way to that normally
employed in set theory, by their graphs; difficulties are caused in this enter-
prise by the axiom of foundation. Next, based on that model, a model of the
λβη-calculus is constructed by means of a natural deduction method. Fi-
nally, a theorem is proved giving some general properties of those non-trivial
models of the λβη-calculus which are continuous complete lattices.

In the second part we begin with a brief discussion of models of the
λ-calculus in set theories with anti-foundation axioms. Next we review
the model of the λβ-calculus of Part 1 and also the closely related—but
different!—models of Scott [51, 52] and of Engeler [19, 20]. Then we dis-
cuss general frameworks in which elementary constructions of models can
be given. Following Longo [36], one can employ certain Scott-Engeler al-
gebras. Following Coppo, Dezani-Ciancaglini, Honsell and Longo [13], one
can obtain filter models from their Extended Applicative Type Structures.
We give an extended discussion of various ways of constructing models of
the λβη-calculus, and the connections between them. Finally we give exten-
sions of the theorem to complete partial orders. Throughout we concentrate
on means of constructing models. We hardly consider any analysis of their
properties; we do not at all consider their application.
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Part1: Introduction

There seem to be three main difficulties in the way finding a reasonable con-
cept of application which allows self-application. First there is the cardinality
difficulty: if a set contains at least two elements then the set of functions from
that set to itself has a greater cardinality than the set itself. So one cannot
expect to find a set containing all functions from itself to itself (other than
a trivial one).

So one has to pick out just some of the functions. But, as a version of
Russell’s paradox shows, it is not obvious which are the correct ones. It seems
reasonable that a set with self-application should contain a function, f , say,
with no fixed point. That is, f(x) 6= x for any x in the set. On the other
hand, given f , one can define a function, g, from the set to itself by setting
g(x) = f(xx). But if g is in the set then g(g) = f(g(g))—a contradiction.

Scott’s answer (see [47, 48, 49]) is that such a set should be a complete
lattice, and each function should be continuous. Then every function has a
fixed point. He constructs such lattices as certain inverse limits.

We too will find such lattices, but via the third difficulty: what kind of
object is a function? With the usual definition of a function as a certain kind
of set of ordered pairs and the usual definition of application, the axiom of
foundation precludes self-application. We search for variants of these defini-
tions within ZF set theory which allow self-application and can also be used
in the same way as the conventional ones.

To avoid confusion, we use primes to distinguish non-standard from stan-
dard concepts of function, application and mapping. An operation on sets
called “application′ ”is defined by:

x[y] =
⋃

{w | ∃z ⊆ y (< z, w >∈ x and z is finite)}

This is as an instance of a more general definition given relative to a fixed
relation R between sets:

x[y] =
⋃

{w | ∃z (< z,w >∈ x and R(z, y))}

This reduces to a mild variant of the standard case, if we take R to be equality
and define x to be a function′ iff it is a function and the second component
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of every ordered pair in x is a singleton. We have “collected” the “outputs”
of the various members of x since, in general, more than one may be given.

If we define R by: R(z, y) ≡ (z ⊆ y and z is finite), then the first
definition of application′ is obtained. To show that nothing has been “lost”
by this definition, let f be a standard function from X to Y . Let

f̂ = {< {x}, {y} >|< x, y >∈ f}

Then, if x ∈ X, f̂ [{x}] = {f(x)}. So f̂ has the “same” behaviour as f .
However we now have better possibilities of self-application′. For example,
given x, let f = {< {1}, {y} >| y ∈ x}⋃{1}. Then f [f ] = x.

Further, following the Scottian precept, application′ is continuous in its
second argument place. To see what this means in the present context,
a directed set is defined to be one that is non-empty and given two of its
members, there is a third member including them both. A function, f , from
sets to sets is continuous iff, for any directed set, X, f(

⋃

X) =
⋃

x∈X f(x).
The reader can easily check that application′ is indeed continuous in this
sense at its second argument. It has a stronger property at its first one: it is
completely additive there. That is, if X is any set, (

⋃

X)[y] =
⋃

x∈X x[y].

Unfortunately we do not have a good definition of function′ which allows
both ordinary uses, as outlined above, and good collections of functions′ with
self-application′. We will outline some of the difficulties and then show how a
good collection of sets (not functions′) with self-application′ can be obtained.

The problem is that extensionality fails. For if, say, < y, z > is in x, and
w is any finite set, x and x

⋃{< y
⋃

w, z >} are extensionally equivalent. So a
definition of function′ would have to select one member from each extensional
equivalence class. It is natural to choose either minimal or maximal members.
Let us briefly examine the first alternative. Say that x is a function′ iff

• Every member of x is an ordered pair.

• If < y, z >∈ x then z is a singleton.

• If < y, z >, < y′, z >∈ x and y ⊇ y′ then y′ = y.
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It is not known if there is a way to use this definition to obtain a good domain
with self-application.

The other alternative suffers from a major defect since the example of
how extensionality can fail shows also that there is no maximal set in any
equivalence class. However one can try to define mappings′ instead. Let us
say that a set, f , is from X to Y iff f ⊆ Pf (

⋃

X)×Pf (
⋃

Y ), where for any X,
Pf (X) is the set of finite subsets of X. One then says that a mapping′ from
X to Y is a set from X to Y which includes any extensionally equivalent set
from X to Y . This is in fact a good definition. But now no non-trivial set
can be a set of mappings′ from itself to itself!

For suppose X is a set of mappings′ from itself to itself. Let T =
⋃

X.
As T is a union of mappings′, we get that T ⊆ Pf (T ) × Pf (T ). We prove
by induction on the depth of t that, if t is in T then, for every f in X, t is
in f . Given such a t, let t =< x, x′ >, and choose an f in X. By induction,
x′ ⊆ g, for every g in X. But then f is extensionally equivalent to f ∪ {t},
and so, by the maximality of mappings′, we get that t is in f .

We turn now to finding a good collection of sets with self-application′,
neglecting any question as to whether the sets can be regarded as functions′

or mappings′. First we try to find a lattice of sets, T ∗
C , which obeys the

comprehension axiom: if f : T ∗
C → T ∗

C is continuous then for some f̂ in T ∗
C

and all x in T ∗
C , f(x) = f̂ [x]. Only then will we worry about extensionality.

Now if TC =
⋃

T ∗
C , then x ∈ T ∗

C implies that x ⊆ TC . So the simplest
choice making T ∗

C a lattice is to take T ∗
C = P(TC), and we only have to

decide the nature of TC . Now the function λx : T ∗
C (x ⊇ y → z, ∅) is a

continuous function from T ∗
C to T ∗

C where y and z are finite subsets of T ∗
C .

(Here (x ⊇ y → z, ∅) is an example of McCarthy’s conditional expression; it
denotes z, if x ⊇ y holds, and ∅ otherwise.) Now {< y, z >} is extensionally
equivalent to this function and so we may as well assume that if y and z are
finite subsets of TC , < y, z > is in TC , that is that:

Pf (TC)× Pf (TC) ⊆ TC

If equality holds here then the above argument suggests that difficulties might
later arise with obtaining a model of extensionality and comprehension. So
we will take TC to contain some set ι which is not an ordered pair. Specifically,
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if we take TC to be the least set such that:

TC = {ι} ∪ Pf (TC)× Pf (TC)

then, as we verify in the next section, T ∗
C obeys the axiom of comprehension.

Extensionality is obtained by a process which effectively identifies ι with
some other members of TC and then obtains maximal elements using a op-
eration on T ∗

C which, in turn, is specified by means of a natural deduction
system. It seems easier to delay more extensive explanations till the actual
construction in the next section. Surprisingly it turns out that for certain
choices of the identification of ι, one obtains models isomorphic to some
obtained by Scott [48, p.33].

Variants on this construction are possible. For example one could build
up TC from any number of “atoms” like ι. Or one could insist that if y were a
finite subset of TC and z were any subset of cardinality less than κ, say, then
< y, z > is in TC . This would give rather larger collections and the natural
deduction system mentioned above would have to be infinitary.

As regards the possibility of choosing minimal rather than maximal ele-
ments, we suspect that one could have similar difficulties with the definition
of mapping′. Perhaps one way of overcoming the general difficulty would
be to regard ordered pairs of ordered pairs of ..... as being trees of finite
depth and consider replacing them by trees of arbitrary depth. In this way
one would avoid those difficulties whose existence depends on the axiom of
foundation.

The construction of models for the λ-calculus given in the next section
seems less general than the Scott construction. In future work we hope to
give a construction generalising them both.

Other definitions of application′ are also of some interest. Let us define
κ-λ-application, where κ and λ are cardinals and κ < λ by:

x[y]λκ =
⋃

{w | ∃z ⊆ y (< z, w >∈ x and κ ≤| z |< λ}
This application′ is completely additive in its first argument and what may
be called κ-λ-continuous in its second. A function from sets to sets is κ-λ-
continuous iff:

f(
⋃

X) =
⋃

{f(
⋃

Y ) | Y ⊆ X and κ ≤| Y |< λ}
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Ordinary continuity is 0-ℵ0-continuity. Complete additivity is 0-2-continuity
and what is called additivity, 1-2-continuity. One can obtain complete lat-
tices comprehending all κ-λ-continuous functions and satisfying the axiom
of extensionality by similar methods to the above in the cases of complete
additivity and additivity. We have not investigated the other cases.

More interestingly, define application′ by:

x[y]N =
⋃

{w | ∃z, z′ (z ⊆ y and z′ ∩ y = ∅ and << z, z′ >,w >∈ x)}

Now functions can have no fixed points. Define TN by:

• ι ∈ TN

• If x, y, z are finite subsets of TN then << x, y >, z >∈ TN .

Let comp = {<< ∅, x >, x >| x ∈ TN}. Then comp ∈ P(TN) and if
x ∈ P(TN), then comp[x]N = (TN \ x) 6= x. This is particularly interesting
in view of the version given above, of Russell’s paradox, for one of the legs
it stands on is the existence of precisely such a function′ as comp.

Finally we give some technical definitions and facts taken from the work
of Scott [47, 48, 49]. A continuous lattice is a structure < D,v,�,

⊔

>
satisfying the following axioms:

1 x = y ≡ (x v y ∧ y v x)

2 x v y ≡ ∀z (z � x ⊃ z � y)

3 x � y ≡ ∃z (x � z � y)

4
⊔

X v y ≡ ∀x ∈ X (x v y)

5
⊔

X � y ≡ ∀x ∈ X (x � y) (when X is finite)

6 x � ⊔

Y ≡ ∃y ∈ Y (x � y) (when Y is directed)
(Y is directed iff it is non-empty and x, y ∈ Y implies that x v z and
y v z for some z ∈ Y .)
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These lattices can be given a topological characterisation [48].

Let ⊥=
⊔ ∅ and > =

⊔

D. The following facts taken from unpublished
lecture notes of Scott are worth knowing:

1 x � y � z ⊃ x � z

2 x v y � z ⊃ x � z

3 x � z ⊃ x v y

4 ⊥� x

5 (x � z ∧ y � z) ⊃ (x t y) � z

6 ∀z (z � x ⊃ z v y) ⊃ x v y

7 ∀x (x =
⊔{z | z � x})

8 x � y ≡ ∀Y ((Directed(Y ) ∧ y =
⊔

Y ) ⊃ ∃y′ ∈ Y.x v y′)

A simple example of a continuous lattice is < P(X),⊆,�,
⋃

> where X is
any set and, given x, y ∈ P(X), x � y iff x ⊆ y and x is finite.

An element x of D is isolated iff x � x. If for any x in D,

x =
⊔

{z | z � x and z is isolated}

then D is an algebraic lattice [28]. For example, a function c :P(X) → P(X)
is a closure operation iff it is continuous (with respect to the subset ordering),
idempotent and c(x) ⊇ x when x ⊆ X. Then < D,⊆,�,

⋃

> is an algebraic
lattice if D = {c(x) | x ⊆ X}, x � z iff for some finite y ⊆ X, x ⊆ c(y) ⊆ z,
and, given Y ⊆ P(X),

⊔

Y = c(
⋃

Y ). It follows from the continuity of c,
that for any directed subset Y of D,

⊔

Y =
⋃

Y .

Suppose, now, that < D,v> and < E,v> are complete lattices and f is
a function from D to E. Then f is continuous iff for any directed set X ⊆ D,

f(
⊔

X) =
⊔

x∈X

f(x)
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It is additive iff for any non-empty set X ⊆ D,

f(
⊔

X) =
⊔

x∈X

f(x)

It is completely additive iff for any X ⊆ D,

f(
⊔

X) =
⊔

x∈X

f(x)

2 A Continuous Domain

Let TC be the smallest set satisfying:

• ι ∈ TC .

• If µ, ν are finite subsets of TC , then < µ, ν >∈ TC .

Generally we shall use µ → ν as an abbreviation for < µ, ν >. We shall use
τ, τ ′, . . . for members of TC and µ, ν, . . . for finite subsets of TC and x, y for
arbitrary subsets.

Let T ∗
C = P(TC). Define x � y to hold iff x = µ ⊆ y for some µ. Then

< T ∗
C ,⊆,�,

⋃

> is a continuous lattice.

Let x, y be in T ∗
C . Application is defined by:

x[y] =
⋃

{ν | ∃µ ⊆ y (µ → ν ∈ x)}

Application is completely additive in its first argument and continuous in its
second one. For the first of these assertions, calculate that:

(
⋃

X)[y] =
⋃

{ν | ∃µ ⊆ y (µ → ν ∈
⋃

X)}
=

⋃

{
⋃

x∈X

{ν | ∃µ ⊆ y (µ → ν ∈ x)}}

=
⋃

x∈X

{
⋃

{ν | ∃µ ⊆ y (µ → ν ∈ x)}}

=
⋃

x∈X

x[y]
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For the second of these assertions, suppose Y is directed. Then µ ⊆ ⋃

Y
iff ∃y ∈ Y (µ ⊆ y). So:

x[
⋃

Y ] =
⋃

{ν | ∃µ ⊆
⋃

Y (µ → ν ∈ x)}
=

⋃

{ν | ∃y ∈ Y ∃µ ⊆ y (µ → ν ∈ x)}
=

⋃

y∈Y

{
⋃

{ν | ∃µ ⊆ y (µ → ν ∈ x)}}

=
⋃

y∈Y

x[y]

Next we demonstrate comprehension. Let f : T ∗
C → T ∗

C be continuous.
Let f̂ = {µ → ν | ν ⊆ f(µ)}. If x ∈ T ∗

C then:

f̂ [x] =
⋃

{ν | ∃µ ⊆ x (µ → ν ∈ f̂)}
=

⋃

{ν | ∃µ ⊆ x (ν ⊆ f(µ))}
=

⋃

µ⊆x

f(µ)

= f(
⋃

µ⊆x

µ) (as {µ | µ ⊆ x} is directed)

= f(x)

We now have a model for the λ-calculus without extensionality.

Rather than characterise how extensionality fails, we give some examples.

• For any x, x and x ∪ {∅→∅} are extensionally equivalent.

• For any x, x and x ∪ {ι} are extensionally equivalent.

• For any µ, µ′, ν, ν ′, {µ → ν ∪ ν ′} and {µ → ν ∪ ν ′, µ ∪ µ′ → ν} are
extensionally equivalent.

• For any µ, ν, µ′, ν ′,{µ→ν, µ′→ν ′} and {µ→ν, µ′→ν ′, µ ∪ µ′→ν ∪ µ′}
are extensionally equivalent.

Extensionality is obtained by considering only a subset of T ∗
A. These subsets

are maximal members of the equivalence classes generated by the extensional
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equivalence relation and satisfy certain other conditions which we shall ex-
plain later.

To obtain them we specify a natural deduction system where the set of
formulas is TC . Natural deduction systems are described by Prawitz in [44].
Let Th be the smallest subset of TC such that:

• If ν ⊆ Th then µ → ν ∈ Th.

Note that ∅ → ∅ ∈ Th. Choose ωι = {τ ′1, . . . , τ ′n} (n > 0) such that ωι ∩ Th
is empty and ι is not in ωι.

The axioms and rules are:

Axioms

1. ∅ → ∅.

Rules

1. For 1 ≤ i ≤ n,
ι
τ ι
i

2.
τ ι
1 . . . τ ι

n

ι
3.

µ → (ν ∪ ν ′)
(µ ∪ µ′) → ν

4.
µ → ν, µ′ → ν ′

(µ ∪ µ′) → (ν ∪ ν ′)

5.

µ → ν ,
[µ′1]
τ1

. . .
[µ′n]
τn ,

[ν1]
τ ′1

. . .
[ν1]
τ ′n

µ′ → ν ′
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where µ′ =
⋃

µ′i; ν =
⋃

νi; µ = {τ1, . . . , τn}; ν ′ = {τ ′1, . . . , τ ′n′}, for
n ≥ 0, n′ ≥ 0; µ′i is the entire set of assumptions for τi (1 ≤ i ≤ n);
and νi is the entire set of assumptions for τ ′i (1 ≤ i ≤ n′)—see the
Notes.

Rules 1 and 2 are sometimes displayed as ι
ωι

and ωι
ι respectively. Rule 5 is

sometimes displayed as:

µ → ν ,
[µ′]
µ ,

[ν]
ν ′

µ′ → ν ′

Notes 1. In natural deduction systems, derivations are trees whose top
formulas are the assumptions. Other formulas result from the ones above
them by means of the rules of inference. The assumptions are either open or
closed. The rules show how, as a derivation is built up, other assumptions
are closed. This is indicated by the square brackets; it is intended that the
formulas in the brackets include all the open assumptions of the correspond-
ing branch. Main branches are those depending from open assumptions. The
formula at the root of the tree is the conclusion of the derivation and follows
from the open assumptions. Axioms yield trees with the axiom as conclusion
and with no assumptions.

2. The set of theorems of the system will prove to be Th. The restriction
that ωι∩Th = 0 allows a clearer development, eliminating some trivial cases
and redundancies.

3. The members of our extensional domain will be those subsets of TC

closed under deduction. The axiom and rules 3 and 4 are justified by our
requirement that the subsets are maximal members of the extensional equiv-
alence classes. (See examples 1, 3 and 4 above.)

Rules 1 and 2 are intended to, as it were, make ι behave like a function.
Since example 1 above is analogous to example 2, one might expect, instead,
that ι would be an axiom. However it would then follow that there would
be exactly one set closed under deduction, viz TC . (See also the discussion
below of fixed points of K.)
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Rule 5 can be split into two parts, which, under the same conventions as
Rule 5, may be displayed as:

5a
[µ′]
µ , µ → ν
µ′ → ν

5b

µ → ν ,
[ν]
ν ′

µ → ν ′

Rule 5b is intended to ensure that if x is closed under deduction, so is x[y],
for any y. If we did not have Rule 5a, extensionality would fail: suppose
µ′, µ, ν are as in Rule 5a and (µ → ν) ∈ x but (µ′ → ν) /∈ x. Then x and
x ∪ {µ′ → ν} are extensionally equal (in the proposed domain). One would
certainly like to have a less ad hoc explanation of the rules.

4. It is extremely useful to obtain a simple normal form theorem (see [45]).
Evidently if one has a derivation tree with a sub-derivation of either of the
forms,

ι
ωι

ι
or ωι

ι
τ ι
i

(where 1 ≤ i ≤ n) then there is one with the same conclusion and open
assumptions, but no such sub-derivations. This is called a normal derivation.
Notice that sub-derivations of normal derivations are normal and that ι can
only occur on a main branch of a derivation if it is either an assumption
or else is the conclusion. In fact stronger results are obtainable, although
unnecessary. One can give what Prawitz calls a normalization theorem and
show that the system is decidable.

We write µ ` ν iff ∀τεν∃µ′ ⊆ µ (τ follows from µ′). Since we are dealing
with a natural deduction system, ` is a quasi-order.
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Let Cl = {µ → ν | µ ` ν}. Then Cl[x] =
⋃{ν | ∃µ ⊆ x (µ ` ν)}.

Let T ∗
CE = {Cl[x] | xεT ∗

A} ⊆ T ∗
A.

As Cl[·] is a closure operation, < T ∗
CE,⊆,�,

⊔

> is a continuous lattice
if we define � and

⊔

by:

x � y iff ∃µ.x ⊆ Cl[µ] ⊆ y.
⊔

X = Cl[
⋃

X].

Application is a well-defined operation on T ∗
CE. For let ν ⊆ Cl[x][y].

There are µi ⊆ y (i = 1, n) and νi (i = 1, n) such that µi → νi ∈ Cl[x] and
⋃

νi ⊇ ν. Therefore, by Rule 4,
⋃

µi →
⋃

νi is in Cl[x], and so
⋃

µi → ν
is in Cl[x] by Rule 3, This shows that: ∃µ ⊆ y (µ → ν ∈ Cl[x]) (take
µ =

⋃

µi). Now, if ν ` ν ′ and ν ′ 6= ∅, let τ be in ν ′ and choose ν ′′ ⊆ ν
such that there is a derivation of τ from ν ′′. Then, taking µ as above we
see that µ → ν ` µ → ν ′′ ` µ → τ by Rules 3 and 5. Hence τ ∈ Cl[x][y]
and so ν ′ ⊆ Cl[x][y]. Therefore Cl[x][y] is closed and so application is indeed
well-defined. It further follows that:

Cl[Cl[x][y]] = Cl[x][y]

.

Application is continuous in both arguments. For the first argument, let
X be a directed subset of T ∗

CE and choose y ∈ T ∗
CE. Then:

(
⊔

X)[y] = Cl[
⋃

X][y]

= (
⋃

x∈X

Cl[x])[y] (as X is directed)

= (
⋃

x∈X

x)(y) (as X ⊆ T ∗
CE)

= (
⋃

x∈X

x[y]) (additivity with respect to < T ∗
C ,

⋃

>)

= (
⊔

x∈X

x[y]) (as {x[y] | x ∈ X} is directed)
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For the second argument, let Y be a directed subset of T ∗
CE and let x be

in T ∗
CE. Then:

x[
⊔

Y ] = x[
⋃

Y ] (as Y is directed)

=
⋃

y∈Y

x[y] (by continuity with respect to

< T ∗
C ,

⋃

> and directedness of X)

= (
⊔

x∈X

x[y]) (as {x[y] | y ∈ Y } is directed)

It will turn out later that application is actually completely additive in its
first argument.

First we need some proof theory, which we begin by describing the theo-
rems.

Lemma 1 ∅ ` τ iff τ ∈ Th
Proof Suppose τ ∈ Th. We prove by induction on the structure of τ that
∅ ` τ . For some µ and ν, τ = µ → ν and ν ⊆ Th. By induction hypothesis,
∅ ` ν. Then, by Axiom 1 and Rule 5, ∅ ` ∅ → ν; so, by Rule 3 we get that
∅ ` µ → ν.

Suppose ∅ ` τ . We proceed by induction on the size of the derivation of
τ from ∅. The proof divides into cases, according to the last axiom or rule
applied.

Axiom 1 Here τ = ∅ → ∅ and so τ ∈ Th.

Rule 1 Here τ is some τ ι
i , and there is a smaller proof of ι from ∅. But

then, by induction, we get that ι is in Th, which is a contradiction.
So this case cannot arise.

Rule 2 Here we get a smaller proof of each τ ι
i , contradicting the conditions

on ωι.

Rule 3 Here µ → (ν ∪ ν ′) ∈ Th implies ν ∪ ν ′ ⊆ Th implies τ ∈ Th.

Rule 4 Here µ → ν, µ′ → ν ′ ∈ Th implies ν, ν ′ ⊆ Th implies τ ∈ Th.

Rule 5 here µ → ν ∈ Th implies ν ⊆ Th implies (by transitivity of `)
ν ′ ⊆ Th implies τ ∈ Th

14



2

Note that since ι /∈ Th, T ∗
CE is non-trivial.

Lemma 2 If ω ` µ → ν and ι /∈ ω then either µ → ν ∈ Th or else there are
µj → νj (j = 1,m) (m 6= 0) in ω such that: µ ` ⋃

µj and
⋃

νj ` ν.

Proof By induction on the size of normal derivations of µ → ν from ω,
supposing that µ → ν /∈ Th. Different cases correspond to the different
axioms or rules last used.

Axiom 1 Inapplicable.

Rule 1 Here the derivation has the form

ω′

ι
τ ι
i

where ω′ ⊆ ω. As the derivation is normal, it then follows that
ω′ = ι. But by assumption ι /∈ ω, and so this case cannot arise.

Rule 2 Inapplicable.

Rule 3 Here the derivation has the form

ω′

µ′ → (ν ∪ ν ′)
(µ′ ∪ µ′′) → ν

where µ = µ′ ∪µ′′ and ω′ ⊆ ω. As µ → ν 6∈ Th, µ′ → ν ∪ ν ′ 6∈ Th.
So we find, by induction, µj → νj (j = 1,m) in ω such that
µ = (µ′ ∪ µ′′) ` µ′ ` ⋃

µj and
⋃

νj ` ν ∪ ν ′ ` ν.

Rule 4 Here the derivation has the form

ω′

µ1 → ν1

ω′′

µ′1 → ν ′1
µ → ν

where ω′∪ω′′ ⊆ ω and µ = µ1∪µ′1 and ν = ν1∪ν ′1. Both µ1 → ν1

and µ′1 → ν ′1 cannot be in Th, for then µ → ν would be. There
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are three cases of which we consider only one: µ1 → ν1 not in
Th and µ′1 → ν ′1 in Th. The others are similar. Then we find
µ1j → ν1j in ω′ ⊆ ω such that µ = µ1 ∪ µ′1 ` µ1 `

⋃

µ1j and
⋃

ν1j ` ν1 ` ν1 ∪ ν2 = ν (since ν2 ⊆ Th).

Rule 5
ω′

(µ′ → ν ′)
[µ]
µ′

[ν ′]
ν

µ → ν
where ω′ ⊆ ω. If µ′ → ν ′ ∈ Th, ν ⊆ Th contradicting the fact
that µ → ν 6∈ Th. So, by induction, we find µj → νj ∈ ω so that
µ ` µ′ ` ⋃

µj and
⋃

νj ` ν ′ ` ν.

2

Suppose x is in T ∗
C . We say that x types ι iff ι ∈ x implies there is an

ω ⊆ x such that ω ` ι and ι /∈ ω.

Lemma 3 If x types ι and y is in T ∗
CE then Cl[x[y]] = Cl[x][y].

Proof Cl[x[y]] ⊆ Cl[Cl[x][y]] = Cl[x][y], by a previous remark. Suppose
ν ⊆ Cl[x][y] Then, by a previous remark, for some µ ⊆ y, µ → ν ∈ Cl[x].
So for some ω ⊆ x, ω ` µ → ν. If µ → ν ∈ Th, ν ⊆ Cl[x[y]]. As x types ι,
we may assume that ι /∈ ω. So by Lemma 2, we find µj → νj in ω such that
µ ` ⋃

µj and
⋃

νj ` ν. As y is closed,
⋃

µj ⊆ y, so
⋃

νj ⊆ x[y] and hence
ν ⊆ Cl[x[y]].

2

It is now easy to verify the comprehension axiom. Suppose f :T ∗
CE → T ∗

CE
is continuous. Let xf = {µ → ν | ν ⊆ f(Cl[µ])} and let f̂ = Cl[xf ].
Evidently xf types ι. We calculate, given y in T ∗

CE:

f̂ [y] = Cl[xf [y]] ( by Lemma 3)
= Cl[

⋃

{ν | ∃µ ⊆ y (µ → ν ∈ xf}]
= Cl[

⋃

{ν | ∃µ ⊆ y (ν ⊆ f(Cl[µ]))}]
= Cl[[

⋃

µ⊆y

{
⋃

{ν | ν ⊆ f(Cl[µ])}}]
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= Cl[
⋃

µ⊆y

f(Cl[µ])]

=
⊔

µ⊆y

f(Cl[µ])

= f(
⊔

µ⊆y

Cl[µ]) (as {Cl[µ] | µ ⊆ y} is directed, and f is continuous)

= f(y)

To see that the lattice ordering agrees with the induced pointwise function
ordering suppose, given x, y in T ∗

CE that x[z] ⊆ y[z] for all z in T ∗
CE. We wish

to prove that x ⊆ y. If µ → ν is in x then ν ⊆ x[Cl[µ]] ⊆ y[Cl[µ]]. So there
is a µ′ ⊆ Cl[µ] such that µ′ → ν is in y. Since µ ` µ′, it follows by Rules 5
and 3 that µ → ν is in y. Again, if ι ∈ x then ωι ⊆ x (by Rule 1), so ωι ⊆ y
(by the above) and finally, ι ∈ y (by Rule 2).

2

Some of the properties of the T ∗
CE’s obtained by varying ωι, can be estab-

lished in a general axiomatic way that applies also to the domains constructed
by Scott [48]. Suppose < D,v,�,

⊔

, ·[·] > satisfies these axioms:

Axiom 1 < D,v,�,
⊔

> is a continuous lattice.

Axiom 2 Application, ·[·], is continuous in its second argument.

Axiom 3 Every continuous function is comprehended by ·[·].

Axiom 4 The lattice ordering agrees with the induced pointwise function
ordering.

Axiom 5 | D |≥ 2.

These axioms are satisfied by < T ∗
CE,⊆,�,

⊔

, ·[·] > as shown above. Com-
paring these axioms to the last set of axioms given by Scott in [47], our
axiom 1 strengthens his requirement that < D,v,

⊔

> is a complete lattice
and axiom 5 is much weaker than his axiom of substance. The other axioms
are also asserted by him.
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It is a trivial consequence of axiom 4 that application is monotonic in its
first argument and that extensionality holds. On occasion the brackets will
be omitted when writing applications. For example, we may write xy for
x[y]. From axioms 3 and 4 it follows that we can define ⇒:D ×D → D by:

(x ⇒ y)[z] = (z � x → y,⊥)

This is ~e(x, y) in the notation of [48]. We will always use the infix notation
for ⇒. The function ⇒ is completely additive in its second argument, and
antimonotonic in its first argument. We define the combinators K and S to
be the elements of D such that, respectively:

Kxy = x

Sxyz = xz[yz]

where the missing brackets are associated to the left. By extensionality, these
equations define K and S uniquely, if they exist.

A set B ⊆ D is dense iff when x � y there is a b ∈ B such that
x � b � y. As a consequence of this definition, if B is dense then for every
x in D, {b ∈ B | b � x} is directed and x =

⊔{b ∈ B | b � x}.

The usefulness of these axioms is demonstrated by:

Theorem 1 1. Application is completely additive in its first argument.
(This does not depend on the fact that D is actually a continuous
lattice—only that it is complete.)

2. The combinator K exists, and if B is dense in D,

K =
⊔

b∈B

{b ⇒ (⊥⇒ b)}

.

3. The combinator S exists, and if B is dense in D,

S =
⊔

d,e,e′,f∈B

{(d ⇒ (e ⇒ f)) ⇒ ((d ⇒ e′) ⇒ (d ⇒ f)) | e � e′}

.
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4. If, in addition, D is algebraic then,

S =
⊔

d,e,f∈B

{(d ⇒ (e ⇒ f)) ⇒ ((d ⇒ e) ⇒ (d ⇒ f))}

.

5. | D |≥ 2ℵ0.

6. Suppose T is a suitable second-order theory whose axioms are the for-
mal counterparts of 1-5. Let T ∗ be the extension of T by the equational
definitions of the combinators S and K. Then the ordering � is defin-
able in the theory T ∗ by means of a first-order formula involving only
application (and the equality predicate).

7. Let CL + Ext be the standard first-order theory of combinatory logic
with the principle of extensionality. Then T ∗ is not a conservative
extension of CL + Ext. In particular,

∃xy∀z(x[z] = x ∧ y[z] = y ∧ x 6= y)

is provable in the one, but not the other.

The proof is delayed until the Appendix. Note that it follows from part
6 that if D1 and D2 satisfy axioms 1-5 then they have an isomorphism of
their structures iff they have isomorphisms of the functional part of their
structures alone.

Corollary 1 1. |T ∗
CE |= 2ℵ0

2. In T ∗
CE,

K =
⊔

{Cl[{µ → {∅ → µ}}]}

and

S =
⊔

{Cl[{µ → {ν → ω}} → {{µ → ν} → {µ → ω}}]}

.
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Proof 1.

2ℵ0 ≤ |T ∗
CE | (by Theorem 1.5)

≤ |T ∗
C |

= 2ℵ0

2. Evidently B = {Cl[µ]} is dense in T ∗
CE and T ∗

CE is algebraic. Further
Cl[µ] ⇒ Cl[ν] = Cl[{µ → ν}]. So,

K =
⊔

µ
{Cl[µ] ⇒ (Th ⇒ Cl[µ])} (by Theorem 1.2).

=
⊔

µ
{Cl[µ] ⇒ Cl[{∅ → µ}]}.

=
⊔

µ
Cl[{µ → {∅ → µ}}]

The formula for S follows in a similar way from Theorem 1.4.

2

The reader will notice the similarity between the formulas for S and
K and the corresponding formulas occurring in the well-known Curry-Feys
connection between combinatory logic and minimal implicational logic, which
arose through their theory of functionality. It was, in fact, an attempt to
make type symbols (in the usual sense) form a model that led to the present
work.

Next we would like to compare our models with those obtained by Scott
by trying to see which of ours are isomorphic to which of his. Notice that,
because of Theorem 1.7, it makes no difference whether we consider just func-
tional isomorphisms or isomorphisms of the entire structures. First, however,
it is necessary to find the fixed points of K in T ∗

CE and in some of Scott’s
models.

Suppose x ∈ T ∗
CE is a fixed point of K. Now

K[x] = (
⊔

µ
{Cl[{µ → {∅ → µ}}])[x] (by Corollary 1.2)
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=
⊔

µ
(Cl[{µ → {∅ → µ}}][x]) (by Theorem 1.1)

=
⊔

µ
Cl[{µ → {∅ → µ}}[x]] (by Lemma 3)

=
⊔

µ
{Cl[∅ → µ] | µ ⊆ x}

Therefore if τ ∈ x, ∅ → {τ} ∈ K[x] = x. Conversely suppose µ → ν is in x.
Now x = K[x] =

⊔

µ{Cl(∅ → µ) | µ ⊆ x}, which is the closure of a directed
set. So for some νi ⊆ x (i = 1, n), {∅ → νi | i = 1, n} ` µ → ν. So, if
µ → ν /∈ Th,

⋃

νi ` ν by Lemma 2, and then ν ⊆ x.

Suppose now that x 6= Th (= ⊥). Then some τ is in x\Th. Choose such
a τ of lowest complexity (say complexity = number of arrows). If τ = µ → ν
then ν ⊆ x, by the above, and ν\Th 6= ∅ as τ /∈ Th. This contradicts the
minimal complexity of τ . So τ = ι. We now show that x = TC . Certainly
ι ∈ x. Suppose ν ⊆ x. Then, by the above, ∅ → ν is in x and so µ → ν ∈ x.
So by induction x = TC .

We have therefore shown that if x is a fixed-point of K, then it is either
⊥ (= Th), or > (= TC). Conversely ⊥ [x] =⊥= K[⊥][x] and so K[⊥] =⊥
by extensionality. Further if x = > , then >[x] = K[>][x] and so K[>] = >.
Therefore K has exactly two fixed points, ⊥ and >, in T ∗

CE.

Scott describes a general class of models of the λ-calculus with extension-
ality in [48], to which we refer the reader for definitions and notation. These
models are obtained as inverse limits of systems < Dn, ψn >∞

n=0 of complete
lattices Dn and projections ψn : Dn+1 → Dn where Dn+1 = Dn → Dn (the
complete lattices of continuous functions from Dn to Dn) and ψn+1 is deter-
mined by ψn. More specifically, the ψn have partial inverses ϕn :Dn → Dn+1

and the following formulas hold for n > 0:

ψn+1(g) = ϕn ◦ g ◦ ψn

and
ϕn+1(f) = ψn ◦ f ◦ ϕn

.

So his models are determined by the choice of ψ0 and D0. If we want
the limit to be a continuous lattice, then D0 must be one. However we need
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not assume this for the moment. (Neither is it assumed by Scott in [47],
but there ψ0 is restricted—but, as remarked by David Park, this is also
unnecessary.) We will restrict ourselves to finding the fixed points of K
when ψ0 = λx : D1.x(t), where t is an isolated member of D1. This ψ0 has
partial inverse ϕ0 :D0 → D1, where ϕ0 = λx :D0.λy :D0.(y w t → x,⊥). For
each d0 ∈ D0 we define a vector d =< dn >∞

n=0 by dn+1 = λx :Dn.dn.

Now ψ0(d1) = d1(t) = d0 and, proceeding inductively, if xn ∈ Dn,

ψn+1(dn+2)(xn) = ψn ◦ dn+2 ◦ ϕn(xn)
= ψn(λx :Dn.dn+1(ϕn(xn)))
= ψn(dn+1)
= dn (by induction hypothesis)

Therefore ψn+1(dn+2) = λx :Dn.dn = dn+1.

So d is in D∞. Now if e ∈ D∞,

d(e) =
∞
⊔

n=0
dn+1(en) =

∞
⊔

n=0
dn = d

showing that d is a fixed point of K (for then Kde = d = de).

Conversely, if d is a fixed point of K, in [47] Scott proves dn+1 = λx :Dn.dn

by an argument which covers this case just as well as the one considered there.
So in D∞, the combinator K has exactly |D0 | fixed points.

As, in T ∗
CE, the combinator K has two fixed points it could only be

isomorphic to a D∞ obtained from a ψ0 and D0 as described above if |D0 |= 2,
when D0 = {>,⊥}. In this case there are two possible D∞’s, obtained by
taking t =⊥,> respectively and in fact this gives all the projections from
D0 → D0 to D0. These models are discussed in [48, p.33]. Surprisingly, if
we take ωι = {∅ → ι}, T ∗

CE is isomorphic to the first and if ωι is {ι → ι}, it
is isomorphic to the second. We delay the proof to a later memorandum.

However, any T ∗
CE can certainly be obtained from some D0 and ψ0, even

if not in the way considered above. For one can always take T ∗
CE = D0 and

let ψ0 : (D0 → D0) → D0 be the appropriate isomorphism. However this is
not a very interesting characterisation!
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The problem of characterisation really exists: we show, in outline, that
there are infinitely many non-isomorphic lattices obtainable by varying ωι.

Let us consider some T ∗
CE. An element d ∈ T ∗

CE is said to be periodic iff
it is isolated and occurs infinitely often in the sequence

d, d[TC ], d[TC ][TC ], d[TC ][TC ][TC ], . . .

In T ∗
CE, d is isolated if it is Cl[µ], for some µ. Define URS :TC → ℘(TC) (for

ultimate right-hand-side) by: URS(ι) = 0, URS(µ → ν) = ν∪(
⋃

τ∈ν URS(τ)).

Let U1 = {µ | µ ⊆ ⋃

i URS(τ ι
i )}. One can prove first that if µ ∈ U1

then Cl[µ][TC ] = Cl[µ′] for some µ′ ∈ U1 and second that for any µ some
member of the sequence Cl[µ], Cl[µ][TC ], Cl[µ][TC ][TC ], . . . is Cl[µ′] for some
µ′ ∈ U1. So if d is periodic then it is Cl[µ′] for some µ′ in U1 (and as
a matter of fact there are always at least two periodic elements of D). So
P (ωι) =|{d ∈ T ∗

CE | d is periodic}| is a well-defined integer (which is actually
greater than 1), which is an isomorphism invariant.

Now define τn (n ≥ 0) by:

τ1 = ∅ → {ι}

τn+1 = ∅ → {τn}.

Then it is not hard to show that P ({τn}) = 2n giving the required infinite
collection of non-isomorphic models.

Appendix: The Proof of Theorem 1

1.Application is completely additive in its first argument

Suppose X ⊆ D. Define f :D → D by: f(y) =
⊔

x∈X x[y]. This function
is continuous, for if Y is directed then,

f(
⊔

Y ) =
⊔

x∈X

x[
⊔

Y ]
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=
⊔

x∈X

⊔

y∈Y

x[y]

=
⊔

y∈Y

⊔

x∈X

x[y]

=
⊔

y∈Y

f(y)

So by axiom 3, there is an f̂ in D such that f(y) = f̂ [y] (y ∈ D). On the one
hand, given y in D,

f̂ [y] =
⊔

x∈X

x[y]

v
⊔

x∈X

(
⊔

X)[y]

= (
⊔

X)[y] (by monotonicity)

So f̂ v ⊔

X (by axiom 4).

On the other hand, since f̂ [y] w x[y] (x ∈ X), given y ∈ D, f̂ w x (x ∈ X),
by axiom 4, and so f̂ w ⊔

X. So, f̂ =
⊔

X and for y in D we have:

(
⊔

X)[y] = f̂ [y] =
⊔

x∈X

x[y]

2. The combinator K exists, and if B is dense K =
⊔

b∈B{b ⇒ (⊥⇒ b)}

For any dense set B, we may calculate that:

(
⊔

b∈B

{b ⇒ (⊥⇒ b)})xy = (
⊔

b∈B

{⊥⇒ b | b � x})y (by part 1.)

=
⊔

b∈B

{b � x}

= x

This also yields the existence of K as there is always at least one dense set,
viz D.
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3. The combinator S exists, and if B is dense,

S =
⊔

d,e,e′,f∈B

{(d ⇒ (e ⇒ f)) ⇒ ((d ⇒ e′) ⇒ (d ⇒ f)) | e � e′}

Lemma 4 Suppose B is dense and that z � x[y]. Then there are y′, y′′ ∈ B
such that y′ � y′′ � y and (y′ ⇒ z) � x.

Proof Note that:

x[y] =
⊔

{x′ ∈ B | x′ � x}[
⊔

{y′ ∈ B | y′ � y}]
=

⊔

{x′[y′] | x′, y′ ∈ B, x′ � x and y′ � y} (by part 1)

This equation expresses x[y] as the least upper bound of a directed set.
So there are x′, y′ in B such that x′ � x, y′ � y and z v x′[y′]. Then
(y′ ⇒ z) v x′; for given t in D, if (y′ ⇒ z)[t] = z then y′ � t and so
(y′ ⇒ z)[t] = z v x′[y′] v x′[t]. Then (y′ ⇒ z) v x′ follows by axiom 4.
So (y′ ⇒ z) � x. The existence of a y′′ in B satisfying y′ � y′′ � y is
guaranteed by the definition of density.

2

Now, as in the proof of part 2, we find that:

S ′xyz =
⊔

d,e,e′,f∈B

{f | (d ⇒ (e ⇒ f)) � x ∧ (d ⇒ e′) � y ∧ d � z ∧ e � e′}

where

S′ =
⊔

d,e,e′,f∈B

{(d ⇒ (e ⇒ f)) ⇒ ((d ⇒ e′) ⇒ (d ⇒ f)) | e � e′}

Suppose (d ⇒ (e ⇒ f)) � x, (d ⇒ e′) � y, d � z and e � e′. Then
(e ⇒ f) v x[z], e′ v y[z] and so f v xz[yz]. Therefore S ′xyz v xz[yz].

Conversely suppose f � xz[yz]. By Lemma 4, there are e, e′ in B such
that (e ⇒ f) � x[z] and e � e′ � y[z]. By Lemma 4, we can now find d′, d′′

25



in B such that (d′ ⇒ (e ⇒ f)) � x and d′ � d′′ � z. Similarly there are
d′′′, d′′′′ in B such that (d′′′ ⇒ e′) � y and d′′′ � d′′′′ � z. As d′′ t d′′′ � z,
d′′ t d′′′ � d � z for some d in B. Then (d ⇒ (e ⇒ f)) v (d′ ⇒ (e ⇒ f))
� x, (d ⇒ e′) v (d′′′ ⇒ e′) � y, d � z and e � e′ and so f � S ′xyz. But
now, as xz[yz] =

⊔{f ∈ b | f � xz[yz]]}, xz[yz] v S′xyz.

The existence of S follows as before.

4. If B is dense and D is algebraic, then:

S =
⊔

d,e,f∈B

{(d ⇒ (e ⇒ f)) ⇒ ((d ⇒ e) ⇒ (d ⇒ f)) | e � e}

Every isolated element in D is in B for if d � d then d � e � d for
some e in B. So b = d. One can then, using the fact that D is algebraic,
strengthen Lemma 4 so that y′ = y′′. The proof of 4 is then analogous to
that of 3, but uses this stronger version of Lemma 4.

5.|D |≥ 2ℵ0

Lemma 5 I is non-isolated.

Proof As (
⊔

d∈D(d ⇒ d))[x] =
⊔{d | d � x} = x, given x in D, by part

1, it follows from axiom 4 that I =
⊔

d∈D(d ⇒ d). Then, if I were isolated,
we would have I =

⊔

d∈D0
(d ⇒ d), for some finite subset, D0 of D. Then

|D |=| {I[d] | d ∈ D} | would also be finite. But it is well known that no
nontrivial (axiom 5) model of the λ-calculus can be finite.

2

Now, form a chain d0 � d1 � . . . � I such that di+1 6v di, for all i,
starting with d0 = ⊥. If we have defined d0, . . . , dn, suppose, for the sake of
contradiction, that dn � e � I implies e v dn, given e. Then

I =
⊔

{e | e � I} =
⊔

{e | dn � e � I} = dn
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and so I � I, contradicting Lemma 5. So for some dn+1, dn � dn+1 � I,
but dn+1 6v dn. So such a chain exists.

With each f :N → N which is a strictly increasing function from the nat-
ural numbers to the natural numbers, and such that f 0(0) = 0, we associate
a member xf of D by:

xf =
⊔

n≥0

(dfn(0) ⇒ dfn+1(0))

Suppose f , f ′ are two such functions such that f(0) ≥ 2 and f ′(0) ≥ 2, and
for some n, fn(0) 6= f ′n(0). We show that xf 6= xf ′ . Since one can find a
set of 2ℵ0 such functions such that any two different members satisfy these
conditions on f and f ′, this will conclude the proof.

Let n0 be the smallest integer such that f (n0+1)(0) 6= f ′(n0+1)(0). Then
fn0(0) = f ′n0(0) (possibly n0 = 0) and

xf [dfn0 (0)+1] =
⊔

0≤n≤n0

df (n+1)(0)

= df (n0+1)(0)

6= df ′(n0+1))(0)

= xf ′ [df ′n0 (0)+1]
= xf ′ [dfn0 (0)+1]

By extensionality xf 6= xf ′ .

6.Suppose T is a suitable second-order theory whose axioms are the formal
counterparts of 1-5. Let T ∗ be the extension of T by the equational defini-
tions of the combinators S and K. Then the ordering � is definable in the
theory T ∗ by means of a first-order formula involving only application (and
the equality predicate).

First we need to show that a weaker version of Lemma 5 is provable in
T ∗.

Lemma 6 The formula ∃z.z 6� zis provable in T ∗.
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Proof We give an informal proof although it will be obvious that a more
rigorous formulation is possible.

By the axiom of comprehension of sets, there is a least set X0 such that:

K ∈ X0 ∧ ∀x ∈ X0(K[x] tK ∈ X0)

There is an admissible rule of single induction for X0:

φ(K) , ∀x ∈ X0 (φ(x) ⊃ φ(K[x] tK))
∀x ∈ X0 φ(x)

This is proven by a standard method. There is then derivable a rule of double
induction:

∀x∈X0 φ(x,K) , ∀y∈X0 φ(K,y) , (∀x, y∈X0 φ(x,y) ⊃ φ(K[x]tx,K[y]ty))
∀x, y∈X0 φ(x, y)

where x, y are distinct variables.

One easily proves by single induction that ∀x ∈ X0 (x w K). Then by
double induction, ∀x, y ∈ X0(x v y ∨ y v x). As K ∈ X0, one now sees that
X0 is directed. Now we show by single induction that ∀x ∈ X0 (x 6v x[⊥]).
If K v K[⊥] then x = Kxy v K ⊥ xy =⊥, contradicting axiom 5. Suppose
x 6v x[⊥] for a given x in X0. If K[x] tK v (K[x] tK) ⊥= x tK[⊥], then
x = Kx ⊥v (x ⊥) t (K ⊥⊥) = (x ⊥), a contradiction.

We can now prove that
⊔

X0 6�
⊔

X0. For otherwise
⊔

X0 v x for some x
in X0, as X0 is directed. Then as (K[x]tK) ∈ X0, (K[x]tK) v ⊔

X0 v x.
So K[x] v x and x = Kx ⊥v x ⊥, a contradiction

2

Next, let x vz y be an abbreviation for: ∀w (w[x] = z ⊃ w[y] = z)

Lemma 7 It is provable in T ∗ that:

1. x v⊥ y iff x w y.

2. x v> y iff x v y.
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3. If z 6=⊥ and z 6= > then x vz y iff x = y
Proof We again proceed informally, using the fact that the existence, as a
continuous function, of x ⇒ y can be demonstrated in T ∗.

1. Suppose x v⊥ y and y′ � y. Then (y′ ⇒ >)[y] = > 6= ⊥. So
(y′ ⇒ >)[x] 6=⊥ so y′ � x. Therefore y v x. Conversely, suppose
y v x and w[x] =⊥. Then ⊥v w[y] v w[x] =⊥.

2. Suppose x v> y and x′ � x. Then (x′ ⇒ >)[x] = > = (x′ ⇒ >)[y].
So x′ � y also. Conversely, suppose x v y and w[x] = >, then
> w w[y] w w[x] = >.

3. Suppose z 6=⊥,> and x vz y. If x′ � x, (x′ ⇒ z)[x] = z and so
(x′ ⇒ z)[y] = z. But z 6=⊥. Therefore x′ � y, showing that x v y.
Suppose y′ � y. Then, ((y′ ⇒ >) t (⊥⇒ z))[y] = > 6= z, by part 1.
So ((y′ ⇒ >) t (⊥⇒ z))[x] 6= z. Therefore, by part 1, y′ � z and we
conclude that y v x. The converse is evident.

2

Let x �> y be an abbreviation for:

∃z (∀w ((z[w] = > ∨ z[w] =⊥) ∧ (z[w] = > ⊃ w w x)) ∧ z[y] = >)

Let x �⊥ y be an abbreviation for:

∃z (∀w ((z[w] = > ∨ z[w] =⊥) ∧ (z[w] =⊥⊃ w v x)) ∧ z[y] =⊥)

Lemma 8 It is provable in T ∗ that:

1. x �> y ≡ x � y.

2. x �⊥ y ≡ x w y.
Proof

1. It is provable in T ∗ that:

x � y ≡ ∀Y ((Directed(Y ) ∧ y =
⊔

Y ) ⊃ ∃y′ ∈ Y.x v y′)

29



where Directed(Y ) is an obvious formula. Now suppose x �> y, Y
is directed and y =

⊔

Y . Then some z exists as guaranteed by the
condition x �> y. For this z, it is the case that z[y] = z[

⊔

Y ] =
⊔

y′∈Y z[y′]. Now for every y′ in Y , z[y′] is > or ⊥. If it is ⊥ for every
such y′, z[y] =⊥. So for some y′ in Y , z[y′] = > and so x v y′ by the
properties of z. This shows that x �> y implies x � y.

Conversely, suppose x � y and take z = (x ⇒ >). Evidently z[w] is >
or ⊥ for any w. Further, given w, (z[w] = >) ⊃ (w � x) ⊃ (w w x).
Finally, as y � x, z[y] = >.

2. Evidently if x �⊥ y then x w y. Conversely, set:

z =
⊔

{(x′ ⇒ >) | x′ 6� x}

It is obvious that z[w] is > or ⊥ for any w. Now, by part 1 we have
that z[w] =

⊔{> | ∃x′ 6� x (x′ � w)}. So z[w] =⊥ iff whenever x′ 6� x
then x′ 6� w, that is iff w v x. From this we also see that z[y] =⊥,
since y � x′ implies x � x′.

2

We can now prove that in T ∗ the ordering � is first-order definable in
terms of application (and the equality predicate). Define Extreme(e), Is(e, x)
and Strict(e, x, y) by:

Extreme(e) ≡ ∃x, y (x ve y ∧ x 6= y)
Is(e, x) ≡ ∀y (y ve x)

Strict(e, x, y) ≡ ∃z (∀w(Extreme(z[w]) ∧ (Is(e, z[w]) ⊇ x ve w))
∧ Is(e, z[y]))

Now, by Lemma 7, the three formulas Extreme(e) ≡ (e =⊥ ∨ e = >),
and Is(⊥, x) ≡ (x =⊥) and Is(>, x) ≡ (x = >) are provable in T ∗. So
too, therefore, are Strict(>, x, y) ≡ x �> y and Strict(⊥, x, y) ≡ x �⊥ y.
Now, by Lemma 6, we see that ∃z¬ Strict(>, z, z) is provable in T ∗. So as
∀zStrict(⊥, z, z) is also provable in T ∗, we get that:

(x = T ) ≡ Extreme(x) ∧ ∃z¬Strict(x, z, z)
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is provable in T ∗.That is, > is first-order definable in T ∗ in terms of applica-
tion alone. That � is also so definable now follows from Lemma 8.1.

7. Let CL + Ext be the standard first-order theory of combinatory logic
with the principle of extensionality. Then T ∗ is not a conservative extension
of CL + Ext. In particular,

∃x, y∀z ((x[z] = x) ∧ (y[z] = y) ∧ (x 6= y))

is provable in one but not the other.

It is easy to show that in T , for any z, ⊥ [z] =⊥, >[z] = > and ⊥6= >.
Existential introduction gives the required theorem.

On the other hand, in [6], Barendregt has given a model of CL + Ext
possessing only one fixed point (that is, an element x such that x[y] = x, for
all y in the model). So the given sentence cannot be a theorem of CL+Ext.
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Part 2: Introduction

In Part 2 we discuss and expand on developments in the subject since 1972,
keeping close to the topic of elementary constructions of models of the lambda-
calculus. We begin with a discussion of models in set theories with an
anti-foundation axiom. One is interested in solving the domain equation
D ∼= [D → D] up to equality. It would be interesting to look at other
domain equations, and also to consider constructive set theories with an
anti-foundation axiom, where it may be possible to find sets equal to their
own function space. Next we present the non-extensional model T ∗

C of Part 1,
Scott’s P(ω) model, Engeler’s model P(BA), and variants; here, and through-
out the paper, we emphasise the consideration of models in the categorical
sense, mainly within the category of algebraic complete lattices.

Next we consider an idea of Longo’s, and introduce Scott-Engeler alge-
bras. Each such algebra gives rise to a model of the λβ-calculus. Both Scott
and Engeler’s models fit in this general framework; T ∗

C does not. A wider
class can be obtained from the Extended Applicative Type Structures, by
means of the filter model construction of Coppo, Dezani-Ciancaglini, Honsell
and Longo; EATSs arose originally in connections with the intersection type
discipline, studied in a long series of papers by Coppo and his co-workers.
It turns out that all models of the λβη-calculus in the category of algebraic
complete lattices can be obtained from these structures. Thus they yield a
representation theory for such models. However we lack a similar theory for
models of the λβ-calculus; for example the model considered by Scott in [52]
is not obtainable as such a filter model.

There are various ways to obtain explicit constructions of models of the
λβη-calculus. One is to construct the EATS as a free algebra and then
show that it satisfies conditions, presented below, for the filter construction
to yield a model. It turns out that the natural deduction method used in
Part 2 can be seen as a way of presenting and analysing such free algebras;
for any of a wide class of equations one always obtains a non-trivial model
of the λβη-calculus. Another—and previous—method is Scott’s well-known
D∞ construction. Here one constructs a model starting from an embedding
of any complete lattice (or even cpo) in its own function space and then
taking the inverse limit of a derived chain of higher type function spaces.
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We show that all the models obtainable from the above class of equations
can be constructed in this way too, starting from a simply presented initial
algebraic complete lattice and embedding.

Unfortunately, we do not have a converse showing how from a given initial
lattice and embedding to obtain a corresponding set of equations. Coppo,
Dezani-Ciancaglini, Honsell and Longo [14, 16] have shown how to find a set
of equations, but they do not fall within the class considered here; it would
be interesting to find a more inclusive class without this defect. We also
consider a construction of Scott, starting from a certain kind of model of the
λβ-calculus and then applying a closure operation to obtain an extensional
model. Theorem 1 of Part 1 concerns general properties of any continuous
lattice which forms a model of the λβη-calculus. The paper concludes by
considering generalisations to complete partial orders (cpos) obtaining par-
ticularly that for cpo models of the λβ-calculus, the partial order is first-order
definable in terms of application alone, and provably so in a suitable second-
order theory. (In this paper, complete partial orders are taken to be partial
orders with a least element and lubs of all directed sets.) Interesting com-
pleteness problems arise: what equations hold between terms in all models
of the λβ-calculus (or the λβη-calculus) in, say, the category of cpos and
continuous functions? Such problems were also considered in [30].

As remarked in the Preface, we do not consider the application of the
models or the analysis of their properties. For example, Scott used his P(ω)
model [51] as the basis for a very concrete exposition of his programme
of computation theory. Again, much of the work of Coppo et al concerns
the connections with type theory, especially the theory of intersection types
(see e.g. [12] and the references contained therein). The connection plays
a double rôle, yielding both a greater understanding of type theory and a
tool for analysing filter models. Even with all the omissions, some selection
has still remained necessary. For example we have concentrated on models
in the categorical sense; sometimes weaker structures arise: λ-algebras or
combinatory algebras.

There are a number of directions for possible further research. An evident
one is to generalise to a wider class of cpos, such as Scott domains. Some
work of this kind can be found in [15] using Scott’s information systems [54]
as a more general version of EATSs; see also [12]. Presumably models such
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as Tω [42, 11] would fit into this framework. In a more esoteric direction,
one can consider weaker notions of continuity, such as preservation only of
ω1-lubs. An extreme possibility was suggested by Scott [53]; he considered
taking the class of all sets as a model, and gave versions of T ∗

C and Engeler’s
model employing “set-sized” continuity.

Next, one might consider models of related untyped λ-calculi. For exam-
ple, the call-by-name and call-by-value (or partial) λ-calculi [1, 38] correspond
to slightly different domain equations. For the first, one works with the equa-
tion D ∼= [D → D]⊥ where (·)⊥ is the lifting construction, which adds a new
least element. For the second, one works with the equation D ∼= [D →⊥ D]⊥
where [· →⊥ ·] is the strict function space construction. These will result
in slightly amended notions of EATS and filter models. See [8, 31, 18] for
work in this direction for the call-by-value λ-calculus. More broadly still,
one might look for a notion of EATS or information system corresponding to
any given domain equation. By contrast, in [2] it is shown how to construct
particular information systems, the ones corresponding to their “standard”
solution (by an inverse limit construction). The idea of the present work is
rather to consider a class of such systems. That is, one is studying all struc-
tures which are solutions to domain equations rather than a single standard
one. This is an interesting enterprise for the untyped λ-calculus where it
was an achievement to obtain even one (non-syntactical) model. The math-
ematical interest in studying a wide class of models extends to other domain
equations; it is less clear that the computational interest does.

One can also consider models of “substructural” λ-calculi, such as the
λI-calculus or the linear or affine λ-calculi; see [32] for work in this direction.
These possibilities lead one beyond “traditional” domain theory. Now one
might think of investigating Girard’s qualitative models [26] or, more gen-
erally, models in categories of stable functions [9]; for work of this kind on
the qualitative models see [29]. Interesting analogues of the graph-theoretic
models arise in the quantitative models of Girard [27, 39]. It seems very
likely from the work in [35, 17, 31] that an understanding of generalised
graph-theoretic models, EATSs, and so on, can be gained in the context of
(categorical models of) linear logic.

The book by Aczel [3] can be consulted for historical and mathematical
information on set theories with an anti-foundation axiom. For accounts, in
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great depth, of continuous lattices and of the more general continuous partial
orders see [25, 33]; both books contain extensive historical discussion. For
accounts of constructions of models of the λ-calculus, whether set-theoretic
or by inverse limits see [6], and for more on inverse limits, e.g. for finding
solutions of domain equations, see [43, 25].

2 Non-Well-Founded Models

We consider applicative structures < X, · > where · is a binary function over
X; this function is called application and written using infix notation. Such
a structure is extensional iff

∀f, g (∀x f·x = g·x) ⊃ f = g

It is functional if X is a set of functions from X to X and application is
the usual set-theoretic application, that is for all f ,x in X: f·x = f(x).
As long as we are using well-founded set theory, there are no functional
applicative structures. Boffa has remarked (see [6, p495]) that with the weak
axiom BA1 [3, p51] every extensional applicative structure is isomorphic to
a functional one. Now, the usual D∞ construction [6, p 477] can be carried
out without using the axiom of foundation, yielding an isomorphism of cpos,

φ : D ∼= [D → D]

(where, in general, [D → E] is the cpo of all continuous functions from D
to E). So, applying Boffa’s remark to < D∞, · >, where x · y = φ(x)(y),
we obtain an isomorphic functional applicative structure < E, · >. Then
by transferring the partial order structure of D along the isomorphism, E
becomes a cpo isomorphic to D such that

E = [E → E]

The situation changes according to the anti-foundation axiom considered.
Say that an applicative structure is rigid if it has only one automorphism, the
identity. Aczel has remarked that with Finsler’s axiom [3, p46] one has rather
that any rigid extensional applicative structure is isomorphic to a functional
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one. It was—essentially—noted by Scott [47] that the continuous automor-
phisms of < D∞, · > are in 1-1 correspondence with the order-theoretic auto-
morphisms of D0 (a proof can be based on Exercise 18.4.18 of [6]). But by the
extension of Theorem 1.6 of Part 2 given below, every automorphism of D∞
is continuous. So D∞ is rigid iff the only automorphism of the partial-order
D0 is the identity (that is, D0 is rigid in the order-theoretic sense). There
are many such cpos; the simplest non-trivial one is the two element complete
lattice.

Let us now change the anti-foundation axiom under consideration to
AFA. This was originally introduced under the name of X1 by Forti and
Honsell in [21], and is the main axiom considered by Aczel in [3]. It then
turns out that the only functional structures are trivial, being either the
empty one, or the one whose only element is x where:

x = {< x, x >}

For if < X, · > is a non-empty functional applicative structure, then any
two of its elements are bisimilar. It would be very interesting to know what
happens with other domain equations. For example, using AFA, is there a
unique cpo D such that:

D = [D → D] + N

where N is the “flat” cpo of the natural numbers?

In another direction, Aczel has suggested considering non-well-founded
intuitionistic set theories [37, 22]. It is then possible for all functions from
one cpo to another to be continuous. One would conjecture, for example,
that there were non-trivial solutions to the equation

X = X → X

if such a theory were based on Boffa’s or Finsler’s axioms, “defeating” the
difficulties caused by the foundation axiom and cardinality considerations.
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3 The Models of Plotkin, Scott and Engeler

It was stated above that the applicative structure < T ∗
C , ·[·] > is a model

for the λ-calculus without extensionality. However no interpretation of the
calculus was given modeling β-conversion. Since [41] was written, definitions
have been given of the notion of a model of the λβ-calculus; one of these—
syntactical λ-models [6, p.101]—incorporates the idea of interpreting the
calculus (see [6, Chapter 5]).

We will also be interested in the categorical organisation of the our mod-
els. Say that a λ-structure in a cartesian closed category K is a triple
< D, λ, φ > where D is an object in the category and λ : DD → D and
φ : D → DD are morphisms. It is a model of the λβ-calculus in K if
φoλ = idDD ; if, in addition, λoφ = idD then it is a model of the λβη-calculus
in K. If < D, λ, φ > is such a model of the λβ-calculus then, in the terminol-
ogy of [6], D is a reflexive object; also, to each such model there is canonically
associated a syntactical λ-model. Note that giving a morphism φ : D → DD

is equivalent to giving an applicative structure in the category, by which we
mean a structure < D, · > where · : D×D → D. We will mainly consider the
category, ALG, the cartesian closed category of algebraic complete lattices
and continuous functions.

Let us consider applicative structures of the form < T ∗
C , ·[·] >, but starting

with an arbitrary set of “atoms”, A, instead of just one, ι; this possibility
was already noted above. Let TA be the least set such that:

TA = A ∪ (Pf (TA)×Pf (TA))

Define application on P(TA) by:

x · y =
⋃

{ν | ∃µ ⊆ y.µ → ν ∈ x}

where µ → ν denotes < µ, ν >. Then, as before, application is completely
additive in its first argument and continuous in its second. Also as before,
every continuous function f is comprehended by f̂ where:

f̂ = {µ → ν | ν ⊆ f(µ)}

Since application is continuous in both arguments we get a continuous map:

φ : P(TA) → [P(TA) → P(TA)]
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Since, as one easily verifies, the passage f 7→ f̂ is continuous, we also get a
continuous abstraction map:

λ : [P(TA) → P(TA)] → P(TA)

where λ(f) = f̂ . As f̂ comprehends f , it follows that φoλ = idP(TA). That
is, < P(TA), λ, φ > is a model of the λ-calculus in ALG.

The applicative structure < P(TA), · > can be made into a syntactical λ-
model by defining a syntactical interpretation [6, p.101]. The definition is by
induction on the structure of λ-terms, augmented with constants for elements
of P(TA). It yields the syntactical λ-model associated to < P(TA), λ, φ >.
All cases other than abstraction are determined by the applicative structure;
for abstraction one has:

[[λx.M ]]ρ = {µ → ν | ν ⊆ [[M ]]ρ(x:=µ)}

Very similar models were given by Scott and Engeler. Scott [51] consid-
ered an applicative structure on P(ω), with application given by:

x·y = {m | ∃en ⊆ y.(n,m) ∈ x}

where (n,m) is a standard enumeration of all pairs of integers, and en is a
standard enumeration of all finite subsets of integers. For abstraction one
puts:

λ(f) = {(n,m) | m ∈ f(en)}
For the associated syntactical λ-model the clause for abstraction is:

[[λx.M ]]ρ = {(n,m) | m ∈ [[M ]]ρ(x:=en)}

A variant is provided by the use of non-standard pairings; this possibility
was used to good effect by Baeten and Boerboom in [5].

Engeler [19, 20] considered BA, the least set such that:

BA = A ∪ (Pf (BA)×BA)

He obtains an applicative structure on P(BA) by putting:

x·y = {b | ∃µ ⊆ y.µ → b ∈ x}
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where µ → b denotes < µ, b >. For abstraction one puts:

λ(f) = {µ → b | b ∈ f(µ)}
and we again obtain a reflexive object in ALG. For the syntactical λ-model,
the clause for abstraction is:

[[λx.M ]]ρ = {µ → b | b ∈ [[M ]]ρ(x:=µ)}

Finally, in [52], Scott showed that models could be based on finite se-
quences, rather than on sets, and gave a construction which provides a model
of the λ-calculus given any set S such that S+ ⊂ S. (Actually, he also as-
sumed that ε was in S, but—as he remarked—this is not necessary.) Here is
an example, presented rather in the style of Engeler’s model. Let SA be the
least set such that:

SA = A ∪ (S∗A × SA)

Application is given by:

x·y = {b | ∃n∃a1, . . . , an ∈ y. << a1, . . . , an >, b >∈ x}
and abstraction by:

λ(f) = {<< a1, . . . , an >, b >| b ∈ f({a1, . . . , an})}
One interest of this model is that it does not fall within the ambit of either of
the general frameworks we consider below, Scott-Engeler algebras or EATSs.

In the following two sections, proofs—or at least indications of proofs—
will be given, that the only isomorphisms that hold between all these models
are the evident ones, arising from two sets of atoms of the same cardinal-
ity or in case the models are trivial. Scott pointed out that idea behind
these models is already implicit in the work on enumeration operators in
the recursion-theoretic literature (see, for example, [46, Chapter 9.7]). For
example, to each integer n is associated an enumeration operator Φn, where
for any y in P(ω):

Φn(y) = Wn·y
Here Wn is the standard enumeration of r.e. sets. That is the definition
of application was already (essentially) known. Note, by the way, that it
is straightforward to turn the collection of r.e. sets into a model of the
λβ-calculus: one simply interprets the above definition of application and
interpretation of abstraction in the context of the r.e. sets.
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4 Scott-Engeler Algebras

One can treat models such as P(ω) and P(BA) systematically by following an
idea originating with Longo [36] and developed further by others [34, 55, 31].
Say that a Scott-Engeler algebra (SE-algebra) is a structure < X,→> where:

→: Pf (X)×X → X

Longo considered extensional SE-algebras, where < X,→> is extensional iff
for all µ,ν in Pf (X) and x,y in X:

(µ → x) = (ν → y) implies µ = ν and x = y

Note the use of infix notation (µ → x) here. Krivine [34] considered a more
general concept of ordered SE-algebras (but not using the terminology); we
will not develop their theory here, except implicitly via our treatment of
EATSs in the following sections.

SE-algebras can be presented as algebras in the usual sense of universal
algebra. One considers structures < X,→n (n ≥ 0) > where the functions
→n: Xn+1 → X are subject to evident axioms. The induced notion of
morphism h :< X,→X>→< Y,→Y > is that of a function h : X → Y such
that h(µ →X a) = h(µ) →Y h(a). Equipped with the evident →, BA is the
free SE-algebra over A. Another example is provided by the P(ω) model:
ω can be made into a SE-algebra by putting (en → m) = (n, m); replacing
the pairing function by an arbitrary recursive function, one may obtain any
effective SE-algebra over ω; the extensional ones are those where the function
is 1-1.

Say that a Scott-Engeler algebra is set-theoretic if the “step function” →
is pairing. In well-founded set theory the set-theoretic algebras are just the
BA. Other natural examples arise from the perspective of non-well-founded
set theory. Working with the axiom AFA one can consider the maximal set
B′

A such that
B′

A = A ∪ (Pf (B′
A)×B′

A)

Now one has available the sub-algebras of the B′
A; these possibilities will,

however, not be considered further.
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Let < X,→> be a SE-algebra. Then P(X) can be made into an applica-
tive structure by defining:

x·y = {b | ∃µ ⊆ y.(µ → b) ∈ x}

There are two obvious possible abstraction functions:

λ(f) = {(µ → b) | b ∈ f(µ)}

and:
λ+(f) = {(µ → b) | b ∈ f(µ)} ∪ AtX

Here AtX is the set of atoms of < X,→>: an element of an SE-algebra is
said to be atomic iff it is not of the form (µ → z); otherwise it is said to be
functional.

Other than the necessity of extensionality, all of the following theorem
can be found in [36]:

Theorem 2 1. < P(X), · > can be made into a model of the λβ-calculus
iff < X,→> is extensional. In that case λ′ is an abstraction function
iff λ ≤ λ′ ≤ λ+.

2. < P(X), · > can be made into a model of the λβ-calculus in exactly
one way iff < X,→> is extensional and X contains no atoms.

Proof

1. Suppose that λ′ is an abstraction function for the applicative structure
< P(X), · >. Then:

(i) If (µ → a) ∈ λ′(f) then a ∈ f(µ).

(ii) If a ∈ f(µ) then for some ν ⊂ µ, (ν → a) ∈ λ′(f).

(iii) (µ → a) ∈ λ′(µ ⇒ {a})

For part (i), if (µ → a) ∈ λ′(f), then a ∈ λ′(f)·µ = f(µ). For part (ii),
if a ∈ f(µ), then a ∈ λ′(f)·µ and so, by the definition of application,
for some ν ⊂ µ, (ν → a) ∈ λ′(f). For part (iii) as a ∈ (µ ⇒ {a})(µ)

41



we get by part (ii) that for some ν ⊂ µ, (ν → a) ∈ λ′(µ ⇒ {a}). So by
part (i), we have that a ∈ (µ ⇒ {a})(ν) and so that µ ⊂ ν. Therefore
as we already know that ν ⊂ µ and (ν → a) ∈ λ′(µ ⇒ {a}), part (iii)
follows.

We can now prove extensionality. Suppose that (µ → a) = (ν → b).
By part (iii) we then have that (ν → b) ∈ λ′(µ ⇒ a). So by part (i) we
have that b ∈ (µ ⇒ {a})(ν). Therefore µ ⊂ ν and a = b; by symmetry
we also have that ν ⊂ µ.

The statement that λ ≤ λ′ ≤ λ+ is equivalent to the statement:

(µ → a) ∈ λ′(f) iff a ∈ f(µ)

The implication from left to right is just part (i) above. In the other
direction, if a ∈ f(µ) then (µ ⇒ {a}) ≤ f and so by part (iii) and the
monotonicity of λ′, (µ → a) ∈ λ′(f).

Conversely, it is easy to check that if λ ≤ λ′ ≤ λ+ then λ′ is an
abstraction function.

2. Immediate from part 1.

2

The minimal abstraction function seems somehow the most natural choice.
Let us try to make the choice functorial. First we define a category of λ-
structures in a cartesian closed category. A morphism from one such struc-
ture < D, λD, φD > to another < E, λE, φE > is a pair < f, g > where
f : D → E and g : E → D and the following diagrams commute:

DD λD
> D

f g

∨ ∨

f

EE

λE

> E

DD <
φD

D
∧ ∧

gf g

EE <
φE

E
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Composition is defined by: < f ′, g′ > o < f, g >=< f ′of, gog′ >, and there
is an evident identity. The idea of this definition is to regard λ-structures as
dialgebras in the sense of Freyd [23]

Now we can set:

Pλ(< X,→>) =< P(X), λ, φ >

on objects and
Pλ(h) =< h∗, h−1 >

on morphisms h :< X,→>→< Y,→> (where h∗(x) = {h(a) | a ∈ x}
and h−1(y) = {a ∈ X | h(a) ∈ y}). Note that h∗ is left adjoint to h−1.
Unfortunately, this does not define a morphism. The difficulty is that while
the second diagram does commute, the first does not. In general one only
has the inclusion:

h∗(λPλ(X)(f)) ≤ λPλ(Y )(h∗of oh−1)

for the left-hand-side is {h(µ) → h(b) | b ∈ f(µ)}, whereas the right-hand-
side is {µ′ → h(b) | ∃µ. b ∈ f(µ) ∧ h(µ) ⊂ µ′}. Oddly, if one restricts the
morphisms one can obtain a contravariant functor by putting instead:

Pλ(h) =< h−1, h∗ >

Say that h is strong iff whenever h(x) = µ′ → b′ then:

1. There are µ, b such that x = µ → b, h(µ) ⊃ µ′ and h(b) = b′

2. There are µ, b such that x = µ → b, h(µ) ⊂ µ′ and h(b) = b′

Then one can show that Pλ(h) is a morphism iff h is strong, obtaining a
contravariant functor on the subcategory of strong morphisms.

Finally, we consider when two models of the λβ-calculus obtained from
SE-algebras are isomorphic. It turns out that all the obvious notions of iso-
morphism coincide. The next theorem was (essentially) proved by Schellinx
in [55]. His proof used the special case of theorem 7 (see below) of models
of the λβ-calculus constructed from extensional SE-algebras; this result was
proved by Bethke.
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Theorem 3 Let X and Y be extensional SE-algebras. Then the following
are equivalent:

1. The λ-structures P(X) and P(Y ) are isomorphic.

2. The applicative structures < P(X), · > and < P(Y ), · > are isomorphic
(either in ALG or in SET).

3. X and Y are isomorphic.

Proof Since X and Y are extensional, the λ-structures P(X) and P(Y )
are models of the λβ-calculus. So by theorem 7 any isomorphism of the
applicative structures < P(X), · > and < P(Y ), · > is continuous. The
only other non-trivial implication is that 2 implies 3. So, suppose that g :<
P(X), · >∼=< P(Y ), · > is a continuous isomorphism. Then g is a continuous
isomorphism of the complete lattices P(X) and P(Y ). So there is a bijection
h : X ∼= Y such that for any subset u of X, g(u) = {h(x) | x ∈ u}. Now
calculate for any finite µ ⊂ X, finite ν ⊂ Y and x in X that:

{h(µ → x)} · ν = g({µ → x}) · g(h−1(ν))
= g({µ → x} · h−1(ν))

(as g is a morphism of applicative structures)
= g({x | µ ⊂ h−1(ν)})
= {h(x) | h(µ) ⊂ ν}
= {h(µ) → h(x)} · ν

But then, as Y is extensional we have that h(µ → x) = h(µ) → h(x), showing
that h is a homomorphism.

2

So, if two such models are isomorphic, the corresponding EATSs must
have the same number of atoms. So, as remarked by Schellinx, two applica-
tive structures < P(BA), · > and < P(BA′), · > are isomorphic iff A and
A′ have the same cardinality. Further, no < P(BA), · > is isomorphic to
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< Pω, · >. For then by Theorem 3 we would have BA and < ω,→> isomor-
phic, which cannot be as the latter has no atoms. This result was first proved
by Longo [36], by a different method. By analogous arguments to that used
in the above proof, one can show that < P(TA), · > and < P(TA′), · > are
isomorphic iff A and A′ have the same cardinality, and similarly for the SA.
We also have that no < P(TA), · > is isomorphic to any < P(X), · > (where
X is a SE-algebra) as there is always an atom u in any P(TA) (in the order-
theoretic sense) which on application can yield a non-bottom non-atom. For
further work, e.g. on elementary equivalence or embeddings, see [36, 13, 55].

5 Extended Applicative Type Structures

A yet more general approach is available following ideas of Coppo, Dezani-
Ciancaglini, Honsell and Longo [13]. The “arrow” functions of Scott-Engeler
algebras have two aspects: they combine groups, by forming finite sets, and
they also form “step-functions.” Separating these two aspects, and abstract-
ing on the formation of finite sets we can consider a semilattice with a binary
function.

Say that an EATS (Extended Applicative Type Structure) is a structure
< X,∧,>,→> where < X,∧,> > is an lower semi-lattice and → is a binary
function on X; we will use the evident infix notation (a → b). This defini-
tion generalises that in [13]; there the following additional conditions were
imposed linking → and the partial order:

C1 If a′ ≤ a and b ≤ b′ then (a → b) ≤ (a′ → b′)

C2 > ≤ (> → >)

C3 (a → b) ∧ (a → c) ≤ a → (b ∧ c)

These conditions can be amalgamated into the single condition:

C If a ≤ ∧

j∈J aj and
∧

j∈J bj ≤ b then
∧

j∈J(aj → bj) ≤ (a → b)
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(where J is a finite set). Condition C1 can be rewritten as the inequation:

C1′ a → (b ∧ b′) ≤ (a ∧ a′) → b

and the last two conditions can be strengthened to:

C2′ > = (x → >)

C3′ (a → b) ∧ (a → c) = a → (b ∧ c)

which are equivalent to C2 and C3, respectively, in the presence of C1.

EATSs form a variety of universal algebras and so we have available a
standard notion of morphism: a function is a morphism iff it preserves finite
meets and the → operation. The set TA considered above yields an EATS
with carrier Pf (TA); the semilattice operations are taken to be set theoretic
unions and the → operation is taken to be pairing. This EATS is the free
EATS over A.

Every Scott-Engeler algebra < X,→> yields an EATS with carrier Pf (X).
The semilattice operations are again taken to be set theoretic unions; the →
operation is given by:

(µ → ν) = {µ → b | b ∈ ν}

The construction yields a functor E whose action on morphisms is given by
E(h)(µ) = {h(a) | a ∈ µ}; it is left adjoint to an evident forgetful functor.
As an example, E(BA) is the free EATS over A satisfying C2′ and C3′.

To each EATS < X,∧,>,→> we will associate a λ-structure, Fλ(X).
First, though, we consider—see also [25]—how to associate to any semilattice
< X,∧,> > an algebraic complete lattice F(X). It consists of all filters over
< X,>,∧ >, partially ordered by subset, where a filter over < X,>,∧ > is a
subset of X closed under finite meets and also closed upwards in the partial
order. We write x∗ for the least filter containing x; it is given by:

x∗ = {a | there is a finite set J and aj in x (j ∈ J) such that
∧

j∈J

aj ≤ a}
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Least upper bounds in F(X) are given by the formula:
∨

(A) = (
⋃

A)∗

and when A is directed
∨

(A) =
⋃

A

as directed unions of filters are filters. The finite elements of F(X) have the
form

a↑= {b ∈ X | a ≤ b}
Note that a↑≤ b↑ iff b ≤ a. This representation of algebraic complete lattices
by lower semilattices is complete in that any one can be so represented,
up to isomorphism. Given an algebraic complete lattice D, construct the
semilattice < B,∧,> >, taking B to be the set of finite elements of D,
(a ∧ b) = (a ∨D b) and > = ⊥D. There is an isomorphism θ : D → F(B)
where θ(x) = {a ∈ B | a ≤ x} and θ−1(y) =

∨

D y.

Now we set Fλ(X) =< F(X), λ, φ > where the functions λ and φ are
defined by:

λ(f) = {a → b | b ∈ f(a↑)}∗

and
φ(x) =

∨

{a↑⇒ b↑| (a → b) ∈ x}
The associated application is given by:

x·y = {b | ∃a ∈ y.(a → b) ∈ x}∗

Note that, unlike the case of SE-algebras, we are just considering one ab-
straction function; it would be interesting to investigate the range of possible
abstraction functions.

We have that φoλ ≥ id [F(X)→F(X)]. For if b ∈ f(x) then for some a in x,
b ∈ f(a↑). But then (a → b) ∈ λ(f) and so b ∈ λ(f)·x. When Condition C
holds, application is given by the simpler formula:

x·y = {b | ∃a ∈ y.(a → b) ∈ x}

and we also have that:

x·(a↑) = {b | (a → b) ∈ x}
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To see the first of these, suppose b is in the left hand side. Then there
is a finite set J and aj,bj (j ∈ J) such that

∧

j∈J bj ≤ b and aj ∈ y and
(aj → bj) ∈ x. Setting a =

∧

j∈J aj, we get that a ∈ y and, by Condition
C, that (a → b) ∈ x; so b is in the right hand side. For the second of these,
suppose b is in the left hand side. Then, from what we have just seen, there
is an a′ in a↑ such that (a′ → b) ∈ x. But then a ≤ a′ and so by Condition
C, (a → b) ∈ x.

As may be expected, translating Scott-Engeler algebras to EATSs and
then obtaining λ-structures yields isomorphic results to obtaining the struc-
tures directly. One has an isomorphism θ : Pλ(X) ∼= Fλ(E(X)) where
θ(x) = Pf (x) and θ−1(y) =

⋃

y.

In the work of Cardone and Coppo [12] a slightly different approach is
taken to the description of filter models which are complete algebraic lattices.
They consider an inequational theory of type schemes closed under rules cor-
responding to the semi-lattice conditions and Condition C, and form the
model as a collection of filters of type schemes. Starting from a given collec-
tion of inequations between type schemes one can take the least such theory,
and form the filter model. For example, from the empty set one obtains the
original BCD model [10]. It should be noted that Cardone and Coppo ac-
tually consider a more general scheme, constructing filter models which are
Scott domains.

This construction of a filter model amounts to the same thing as first
forming an EATS from the equivalence classes of the type schemes and then
taking the filter λ-structure as given above. The process of forming the
least theory can also be described in standard universal algebraic terms.
One regards type schemes over a set of type parameters A as terms in the
signature with ω and the elements of A as constants and binary function
symbols for intersection and arrow. Then one adds equational axioms for:
the semi-lattice structure; the given inequations (writing t = t∧u for t ≤ u);
and Condition C. These last can be taken as the evident transcriptions of
C1′, C2′ and C3′. Lastly one obtains the required filter model as the filter
model of the initial algebra satisfying all the equations. From this point of
view the BCD model appears as the filter model formed from the free EATS
over A that satisfies Condition C. An explicit description of this EATS is
given below.
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The construction yields a model of the λβ-calculus in ALG if a certain
converse form of Condition C holds:

B If
∧

j∈J(aj → bj) ≤ (a → b) then a ≤ ∧

i∈I ai and
∧

i∈I bi ≤ b for some
finite subset I of J ,

(where J is a finite set); the consequent can be equivalently written in the
form:

∧{bj | a ≤ aj} ≤ b. An equivalent version of this condition appears
in [13].

Theorem 4 Let < X,∧,>,→> be an EATS. Then the following are equiv-
alent:

1. Fλ(X) is a model of the λβ-calculus in ALG

2. Condition B holds.

3. For any finite set J and aj, bj (j in J):

φ(
∨

j∈J

(aj → bj)↑) =
∨

j∈J

(aj↑⇒ bj↑)

Proof Let us prove that 1 implies 2. So, suppose that < F(X), λ, φ > is a
model of the λβ-calculus in ALG. Suppose that

∧

j∈J(aj → bj) ≤ (a → b).
Set f equal to

∨

j∈J(aj ↑⇒ bj ↑). Then a → b is in λ(f), as each aj → bj

is. But then b ∈ λ(f)·(a ↑) which is equal to f(a ↑) by the assumption.
Therefore

∨

j∈J(aj↑⇒ bj↑) = f ≥ (a↑⇒ b↑) and it follows that a ≤ ∧

i∈I ai

and
∧

i∈I bi ≤ b for some finite subset I of J , as required.

Next, we prove that 2 implies 3. In general, b ∈ φ((a → b)↑)(a↑) , and so
φ((a → b)↑) ≥ (a↑⇒ b↑). Therefore, φ(

∨

j∈J(aj → bj)↑) ≥
∨

j∈J(aj↑⇒ bj↑).
In the other direction, we calculate for any x in F(X) that:

φ(
∨

j∈J

(aj → bj)↑)(x) = {b | ∃a ∈ x.
∧

j∈J

(aj → bj) ≤ (a → b)}∗

≤ {b | ∃a ∈ x, I ⊂ J.
∧

i∈I

bi ≤ b and a ≤
∧

i∈I

ai}∗
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(by Condition B)
=

∨

j∈J

(aj↑⇒ bj↑)(x)

Finally we show that 3 implies 1. For any continuous f : F(X) → F(X),
calculate:

φ(λ(f)) = φ(
∨

{(a → b)↑| b ∈ f(a↑)})
=

∨

{a↑⇒ b↑| b ∈ f(a↑)} (by 3 and the continuity of φ)
= f

2

The equivalence of parts 1 and 2 is proved in [13] under the assumption
of Condition C; however the proof is (essentially) that just given.

There is a pleasant characterisation of those EATSs which satisfy the
additional conditions of [13]. We write λ a φ to mean that λ,φ are an adjoint
pair of maps.

Proposition 1 Let < X,>,∧,→> be an EATS. Then the following are
equivalent:

1. λ a φ

2. λ preserves finite sups and for all a,b in X, λ(a↑⇒ b↑) = (a → b)↑

3. Condition C holds

Proof To show 1 implies 2, assume λ,φ are an adjoint pair of maps. Then
λ preserves finite sups as left adjoints preserve all existing sups. Next, for
a,b in X, λ(a↑⇒ b↑) ≥ (a → b)↑ holds in general as (a → b) ∈ λ(a↑⇒ b↑).
For the converse, as (a↑⇒ b↑) ≤ φ((a → b)↑) holds in general, we have
λ(a↑⇒ b↑) ≤ (a → b)↑, as λ a φ.
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To show 2 implies 3, assume that λ preserves finite sups and for all a,b in
X, λ(a↑⇒ b↑) = (a → b)↑. Suppose that we have a finite set J and a,b,aj,bj

(j ∈ J) such that a ≤ ∧

j∈J aj and
∧

j∈J bj ≤ b. Then

(
∧

j∈J

(aj → bj))↑ =
∨

j∈J

λ(aj↑⇒ bj↑)

= λ(
∨

j∈J

(aj↑⇒ bj↑))

≤ λ(a↑⇒ b↑) (as a ≤
∧

j∈J

aj and
∧

j∈J

bj ≤ b)

= (a → b)

To show 3 implies 1, assume that Condition C holds. Since, in general,
φoλ ≥ id [F(X)→F(X)], we have only to show that λoφ ≤ idF(X). For this it is
enough to show that if b ∈ x·(a↑) then (a → b) ∈ x. This is immediate from
the above remarks on application and Condition C.

2

That Condition C implies adjointness was already noted in [13].

We can also characterise when < λ, φ > is a closure pair (that is when it
is an adjoint pair such that λφ = id). Say that an element of X is functional
if it has the form:

∧

j∈J

(bj → cj)

where J is a finite set.

Proposition 2 Let < X,>,∧,→> be an EATS. Then < λ, φ > is a closure
pair iff Condition C holds and every element of X is functional.

Proof First, suppose that < λ, φ > is a closure pair. By Proposition 1,
Condition C holds. Next, choose a in X. As λoφ ≥ idF(X), we have that
a is in λ(φ(a ↑)). So there is a finite set J and bj,cj (j ∈ J) such that
∧

j∈J(bj → cj) ≤ a, and cj ∈ (a↑)·(bj↑). By the second of these and Condition
C we get that (bj → cj) ∈ (a↑), and so a =

∧

j∈J(bj → cj).
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For the converse, suppose Condition C holds and every element of X is
functional. By Proposition 1 we only need to show that λoφ ≥ idF(X). For
this, it is enough to show that for every a in X, a ∈ λ(φ(a↑)). Now, as every
element of X is functional, a has the form

∧

j∈J(bj → cj) where J is a finite
set. But then cj ∈ (a↑)·(bj↑); so (bj → cj) is in λ(φ(a↑)), and therefore a is
too.

2

Note that the second half of the proof shows (without using Condition
C) that if every element is functional then λoφ ≥ idF(X). A result of Coppo
et al [13] states that any EATS satisfying Condition C yields an extensional
applicative structure iff all its elements are functional. Since a pair of adjoint
maps between partial orders is a closure pair iff the right adjoint is 1-1,
Proposition 2 is equivalent, given Proposition 1, to the result of Coppo et al.

Putting Proposition 2 together with Theorem 4, we can characterise when
the construction yields a model of the λβη-calculus in ALG.

Corollary 2 Fλ(X) is a model of the λβη-calculus iff conditions B and C
hold and every element of X is functional.

We now have conditions under which various classes of λ-structures are
represented by EATSs, in particular models of the λβ-calculus, or models of
the λβη-calculus. It is natural to ask if all such structures are represented.

Theorem 5 Let < D, λ, φ > be a λ-structure. If λ,φ are an adjoint pair of
maps, then it is represented by an EATS satisfying Condition C.

Proof Suppose < D, λ, φ > is a λ-structure and < λ, φ > is an adjoint
pair. Define an EATS < B,∧,>,→> by taking < B,∧,> > to be the
lower semilattice set of finite elements of D, as discussed above, and setting
(a → b) = λ(a↑⇒ b↑)—which is a good definition as left adjoints preserve
finiteness. (And recall the isomorphism θ : D → F(B).)

Let us show that the EATS satisfies Condition C. So suppose that we have
a finite set J and a,b,aj,bj (j ∈ J) such that a ≤ ∧

j∈J aj and
∧

j∈J bj ≤ b.
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Then
∧

j∈J

(aj → bj) =
∨

D

{λ(aj↑⇒ bj↑) | j ∈ J}

= λ(
∨

j∈J

(aj↑⇒ bj↑)) (left adjoints preserve sups)

≤ λ(a↑⇒ b↑) (as a ≤
∧

j∈J

aj and
∧

j∈J

bj ≤ b)

= (a → b)

Finally we prove that < θ, θ−1 > and < θ−1, θ > are morphisms of λ-
structures. Since they are isomorphisms in ALG it is enough to prove that
< θ, θ−1 > is a morphism, and since λ a φ and λB a φB (as B satisfies
Condition C), it is enough to prove that either one of the diagrams commute.
Again using that θ is an isomorphism in ALG, we see that we need only check
that it preserves application, and calculate:

θ(x) · θ(y) = {b | ∃a ∈ θ(y). (a → b) ∈ θ(x)} (as B satisfies Condition C)
= {b | ∃a ≤ y. λ(a↑⇒ b↑) ≤ x}
= {b | ∃a ≤ y. a↑⇒ b↑≤ φ(x)} (as λ a φ)
= φ(x)(y)

2

In [13] this theorem is proved assuming also that < D, λ, φ > is a model
of the λβ-calculus.

By the theorem, all models of the λβη-calculus in ALG are represented.
Unfortunately, as we shall see, this is not the case for the λβ-calculus as, for
example, the models introduced by Scott in [52] cannot be so represented, in
general. Evidently, one would wish for a more general representation theory
which would allow the representation of all such models.

As before we may try to make the construction of Fλ functorial. It is
again possible to obtain a contravariant functor by taking a suitable notion
of strong morphism, but we prefer to obtain a covariant functor by restricting
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the objects to those EATSs satisfying Condition C, and thereby obtain a
categorical view of Theorem 5. We begin by making F functorial, setting,
for any semilattice morphism h : X → Y , F(h) = h∗ where for any x in
X, h∗(x) = {a′ | ∃a ∈ x. h(a) ≤ a′}. This has a right adjoint, given by:
h−1(y) = {a ∈ X | h(a) ∈ y}. Now a map between complete upper semi-
lattices is a left adjoint iff it preserves all lubs. Therefore F is a functor
from the category of EATSs to the category of complete algebraic lattices
and completely additive maps. It is clearly faithful, and it is not hard to see
that it is full. (For if f : F(X) → F(Y ) is a left adjoint then it preserves
finiteness and so we may define h : X → Y by h(a)↑= f(a↑); then h is a
morphism and f is h∗.) As we also know the representation is complete, we
have shown that F is an equivalence of categories.

Returning to Fλ, put

Fλ(h) =< h∗, h−1 >

on EATS morphisms h :X → Y .

Lemma 9 1. If Y satisfies Condition C, then Fλ(h) is a morphism of
λ-structures.

2. Let X and Y be EATSs satisfying Condition C. Then every morphism
from Fλ(X) to Fλ(Y ) that is an adjoint pair is represented.

Proof

1. First, for any f : X → Y we have

h∗(λXf) = h∗(
∨

{(a → b)↑| b ∈ f(a↑)})
=

∨

{(h(a) → h(b))↑| b ∈ f(a↑)}
(as h∗ is a left adjoint and h∗(c↑) = h(c)↑)

and also

λY (h∗of oh−1) = {a′ → b′ | b′ ∈ h∗(f(h−1(a′↑)))}∗

= {a′ → b′ | ∃b ∈ f(h−1(a′↑)).h(b) ≤ b′}∗

= {a′ → b′ | ∃a, b.a′ ≤ h(a) ∧ h(b) ≤ b′ ∧ b ∈ f(a)}∗
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and as Y satisfies Condition C, the two are equal.

For the other diagram we have to show that for all v in Y and u in X,
h−1(v ·h∗(u)) = h−1(v) ·u. Calculation shows that the left-hand-side is
{b | ∃a ∈ u, a′. h(a) ≤ a′ ∧ (a′ → h(b)) ∈ v}∗, and that the right-hand-
side is {b | ∃a ∈ u. (h(a) → h(b)) ∈ v}. And again using the fact that
Y satisfies Condition C, we see that the two are equal.

2. Let X and Y be EATSs satisfying Condition C, and let < f, g > be a
morphism from Fλ(X) to Fλ(Y ) that is an adjoint pair. Then, by the
above remarks we may define a semilattice morphism, h : X → Y by
h(a)↑= f(a↑) and f is h∗ and g is h−1. That h preserves → is shown
by the following calculation:

h(a →X b)↑ = f((a → b)↑)
= f(λX(a↑⇒ b↑)) (by Proposition1)
= λY (f o(a↑⇒ b↑)og) (as < f, g > is a morphism)
= λY (h∗o(a↑⇒ b↑)oh−1)
= λY (h(a)↑⇒ h(b)↑)
= h(a) →Y h(b) (by Proposition1)

2

It is easy to see that Fλ is faithful. It follows from Theorem 5 and
Lemma 9 that if we restrict the domain of Fλ to EATSs satisfying Condition
C, and the range to the subcategory with objects the λ-structures which are
adjoint pairs and morphisms which are adjoint pairs, then Fλ becomes an
equivalence of categories. In particular this give a good representation theory
for models of the λβη-calculus in ALG.

Finally we prove that not all models of the λβ-calculus can be represented
by an EATS.

Fact 1 Let A be a set with at least two members. Then there is no EATS X
such that the λ-structure P(SA) is isomorphic to Fλ(X)
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Proof Suppose, for the sake of contradiction, that X is an EATS such that
f :P(SA) ∼= Fλ(X). Then f :P(SA) ∼= F(X). But θ :P(SA) ∼= F(Pf (SA))
where θ(x) = Pf (x). So F(Pf (SA)) ∼= F(X) and there is a semilattice
isomorphism h : Pf (SA) ∼= X such that f = F(h)oθ. We may therefore
assume that the EATS X has the form < Pf (SA),→> and f is θ. From this
it follows that the applicative structure on P(SA) is given by the formula:

u · v =
⋃

{ν ∈ Pf (SA) | ∃µ ⊂ v.(µ → ν) ⊂ u}

Now let a and b be two distinct elements of A. Set x = {a, b} → {a}. Then
as {<< a, b >, a >} · {a, b} = {a} we have that x ⊂ {<< a, b >, a >};
similarly x ⊂ {<< b, a >, a >}. But as a 6= b, it follows that x = ∅, which is
impossible.

2

6 Extensional Models

In Part 1, we provided an elementary “natural deduction” method for con-
structing models of the λβη-calculus. The λ-structure, < T ∗

CE, λ, φ > con-
sidered there is a model of the λβη-calculus in ALG where:

λ(f) = {µ → ν | ν ⊂ f(µ∗)}∗

and
φ(x)(y) = x[y]

This construction provided an alternative to Scott’s well-known inverse limit
construction [47, 48, 49, 6]. Another elementary “closure” method of con-
structing models was given by Scott in [51, 52]. The idea is to start with a
model of the λβ-calculus < D, λ, φ > such that < φ, λ > is a closure pair
and then take the fixed points of a certain associated closure operation on D.
A final method was introduced by Coppo et al [13]: one constructs EATSs
satisfying the conditions of Theorem 2.

Here we compare the different methods. Each one can be used to obtain
any model of the λβη-calculus in ALG. This is trivially the case for the
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inverse limit construction or Scott’s closure method; one just starts off with
the model to be constructed. For the EATS method it is a consequence of
Theorem 5, and for the natural deduction method it is an immediate conse-
quence of remarks below linking it to the EATS method. What is important
is, rather, to relate the ways made available by the different methods of
constructing or presenting models.

6.1 EATSs and Natural Deduction

According to Theorem 2 a model can be constructed if we can find an EATS
satisfying conditions B and C and such that every element is functional.
One way to try to do this is to start from Pf (TA), the free EATS over a set
of atoms A, and then divide out by the least congruence that equates each
atom with a specified non-atom and that satisfies Condition C (in the evident
sense); it should be proved that the resulting EATS satisfies Condition B.

By contrast, the natural deduction method works directly with TA, pro-
viding a consequence relation ` over TA. The link between the two is provided
by a notion of a consequence relation on a semilattice < X,∧,> >. This is
a relation ` over X such that:

1.
a ` b b ` c

a ` c
2.

a ` b a ` c
a ` b ∧ c

3. a ∧ b ` a

To each such relation ` one can associate a semilattice congruence ≡` by:
a ≡` b iff a ` b ` a; conversely to each semilattice congruence ≡ on X one
can associate a consequence relation `≡ by: a `≡ b iff (a ∧ b) ≡ a. This
puts the consequence relations and the congruences into monotone bijective
correspondence. Let ` be a consequence relation on X. We write [a] for the
equivalence class of a relative to ≡`; note that a ` b holds iff [a] ≤ [b] holds
in X/ ≡`. Say that a theory is a subset x of X closed under finite meets
and upper closed under ` (the latter meaning that if a is in x and a ` b
then b is in x). Let Th`(X) be the collection of theories partially ordered
by inclusion. Then there is an isomorphism θ :F(X/≡`) ∼= Th`(X) where
θ(x) = {a | [a] ∈ x}; its inverse is θ−1(y) = {[a] | a ∈ y}.

In the particular case of a free semilattice Pf (L), consequence relations
correspond to consequence relations on L [50, 4], that is relations ` between
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Pf (L) and L such that

1. Γ, φ ` φ 2.
Γ ` φ ∆, φ ` ψ

Γ, ∆ ` ψ

where Γ,∆ range over finite subsets of L; φ,ψ range over elements of L and
we follow a standard convention in using commas for union and confusing
elements of L with their singleton sets. To each consequence relation ` over
Pf (L) we associate a consequence relation over L, also denoted by `, by:
Γ ` φ iff Γ ` {φ}; conversely to each consequence relation ` over L we
associate a consequence relation over Pf (L), again also denoted by `, by:
Γ ` ∆ iff Γ ` φ for every φ in ∆. This puts the two classes of consequence
relation in monotone bijective correspondence. Given a consequence relation
` on L, a theory is a subset x of L closed under `, meaning that if Γ ⊂ x
and Γ ` φ then φ is in x. Let Th`(L) be the collection of theories partially
ordered by inclusion. Then there is an isomorphism δ :Th`(Pf (L)) ∼= Th`(L)
given by: δ(x) = {φ | {φ} ∈ x}; its inverse is δ−1(y) = {Γ | Γ ⊂ y}.

Now let us consider congruences and consequence relations on an EATS
< X,∧,>,→>. Let ` be a consequence relation on < X,∧,> >. We say
that ` satisfies Condition B iff whenever

∧

j∈J(aj → bj) ` (a → b) then
a ` ∧

i∈I ai and
∧

i∈I bi ` b for some finite subset I of J (where J is a
finite set); we say that ` satisfies Condition C iff whenever a ` ∧

j∈J aj and
∧

j∈J bj ` b then
∧

j∈J(aj → bj) ` (a → b) (where J is a finite set). If ≡` is an
EATS congruence, ` satisfies Condition B (respectively C) iff X/≡` does.
Note that if ` satisfies Condition C then ≡` is an EATS congruence. We
can define a λ-structure on Th`(X) by: λ`(f) = {a → b | b ∈ f(a↑)}∗ and
φ`(x)(y) = {b | ∃a ∈ y.(a → b) ∈ x}∗ (where x∗ is the least theory containing
x, and a↑ is {a}∗). One can show that if ≡` is an EATS congruence, then
< θ−1, θ > is an isomorphism of λ-structures.

Let us now consider < Pf (TA),∪, ∅,→> the free EATS over A (where
µ → ν is < µ, ν >). Let ` be a consequence relation on TA. We say that
` satisfies Condition B iff whenever {µj → νj | j ∈ J} ` (µ → ν) then
µ ` ⋃

i∈I µi and
⋃

i∈I νi ` ν for some finite subset I of J (where J is a
finite set); we say that ` satisfies Condition C iff whenever µ ` ⋃

j∈J µj and
⋃

j∈J νj ` ν then {µj → νj | j ∈ J} ` (µ → ν) (where J is a finite set).
Then ` satisfies Condition B (respectively C) iff the associated consequence
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relation on Pf (TA) does. A λ-structure on Th`(TA) can be defined, setting
λ`(f) = {µ → ν |ν ⊂ f(µ∗)}∗ and φ`(x)(y) = (

⋃{ν| ∃µ ⊂ y.(µ → ν) ∈ x})∗
(where x∗ is the least theory containing x). One can show that < δ−1, δ > is
an isomorphism of λ-structures.

Natural deduction is a useful way of presenting consequence relations on
TA. Given a set of pairs < µi, νi > of finite subsets of TA (with i ranging
over a given index set I) consider the natural deduction system whose set of
formulas is TA and whose axioms and rules are as in Part 1, except that the
first two rules are replaced by:

1 For i in J and τ in νi,
σ (σ ∈ µi)

τ

2 For i in J and σ in µi,
τ (τ ∈ νi)

σ

Define ` by: µ ` τ iff there is a proof of τ from a subset of µ. Then ` is the
least consequence relation satisfying Condition C and such that for all i in I,
µi ≡` νi. It follows, by the above remarks, that ≡` is the least congruence
on Pf (TA) satisfying Condition C and such that for all i in I, µi ≡` νi.

By employing a free EATS, the axioms for semilattices are “built-in”
to the natural deduction method. Matters are further simplified if we also
build-in some of Condition C; this can be done by working with Scott-Engeler
algebras. Let < X,→> be a SE-algebra and let ` be a consequence relation
over X. We say that ` satisfies Condition B iff if {µj → bj | j ∈ J} ` (µ → b)
then µ ` ⋃

i∈I µi and {bi | i ∈ I} ` b for some finite subset I of J (where
J is a finite set); we say that ` satisfies Condition C iff if µ ` ⋃

j∈J µj and
{bi | i ∈ I} ` b then {µj → bj | j ∈ J} ` (µ → b) (where J is a finite set).
Then ` satisfies Condition B (respectively C) iff the associated consequence
relation on E(X) does. A λ-structure on Th`(X) can be defined, setting
λ`(f) = {µ → b | b ∈ f(µ∗)}∗ and φ`(x)(y) = {b | ∃µ ⊂ y.(µ → b) ∈ x}∗
(where x∗ is the least theory containing x). One can again prove < δ−1, δ >
is an isomorphism of λ-structures.
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Let us now consider a natural deduction system whose set of formulas
is BA, the free SE-algebra over A. Let < µi, νi > be a set of pairs of finite
subsets of BA (with i ranging over a given index set I). The rules are:

1 For i in J and τ in νi,
σ (σ ∈ µi)

τ

2 For i in J and σ in µi,
τ (τ ∈ νi)

σ

3

(µ → b1) , . . . , (µ → bn) ,
[µ′]
µ ,

[b1, . . . , bn]
b′

µ′ → b′

where n ≥ 0.

Defining ` as before, µ ≡` ν iff µ is congruent to ν in the least congruence
≡ over E(BA) satisfying Condition C and equating all the pairs µi and νi.
Note that if we define normal derivations to be those in which rules 1 and
2 do not occur in immediate succession, then all derivations can be put in
normal form.

For example, if I is empty E(BA)/ ≡` is the free EATS over A satisfying
Condition C; its filter model is the BCD model [10]. A straightforward
induction on derivations shows that if µ ` b then a ` b for some a in µ. With
this one can easily show that ` is the least consequence relation over BA such
that if µ′ ` µ and b ` b′ then (µ → b) ` (µ′ → b′).

Now suppose instead that A is non-empty, I is A, each µa is {a} and each
νa is a non-empty set of functional elements of BA. Then every element of
E(BA)/≡` is functional. Further a straightforward induction on derivations
in normal form shows that ` satisfies Condition B. Another induction on
derivations in normal form shows that there are no theorems, and so, as
A is non-empty, there are at least two distinct theories. It follows, using
Corollary 2, that F(E(BA)/≡`) is a non-trivial model of the λβη-calculus.
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A construction of Hoofman and Schellinx [31] (and see also [7, 34]) fits
within this framework. They defined a preorder �fε over BA, given any 1-1
map f : A → A and arbitrary ε : A → Pf (A). They then obtained a model
of the λβη-calculus as (essentially) the complete lattice of lower-�fε-closed
subsets of BA (under the subset ordering). This amounts to applying the
above construction to the A-indexed system < {a}, {ε(a) → f(a)} >.

There is an intimate connection between the two natural deduction ap-
proaches; it allows us to greatly generalise the construction given in Part
1 of models of the λβη-calculus using natural deduction systems over TA.
Let h : P(TA) → E(BA) be the unique EATS homomorphism such that
h({a}) = {a} (a ∈ A). Consider the natural deduction system over TA with
axioms given as above from a set of pairs < µi, νi > of finite subsets of TA

(i ∈ I). Then a straightforward induction on normal derivations shows that
µ ` ν iff h(µ) ` h(ν), where we are now considering the natural deduction
system over BA with axioms given from the set of pairs < h(µi), h(νi) >
(i ∈ I). It follows that the λ-structure of theories over TA is isomorphic to
the corresponding λ-structure of theories over BA. Suppose now that A is
non-empty, that I is A, µa is {a} and that νa has empty intersection with
A but that νa\Th is non-empty, where Th is the set of theorems considered
in Part 1. This generalises the situation considered there for models of the
λβη-calculus. One can show that Th = h−1({∅}) and so h(νa) is a non-empty
set of functional elements. Therefore, by the above result on natural deduc-
tion systems over BA, one has that the λ-structure of theories over TA is a
non-trivial model of the λβη-calculus.

6.2 The D∞ Construction

One can consider the D∞ construction as providing a way of presenting mod-
els of the λβη-calculus. Given an embedding φ : D0 → DD0

0 the construction
provides a model via the inverse limit construction. In [13], (see also [16])
Coppo et al showed (in our terms) that provided D0 is an algebraic complete
lattice, D∞ can be obtained as the filter model of a free EATS satisfying
Condition C and identifying a certain explicitly given set of pairs of ele-
ments. Unfortunately, these identifications are not of the general form we
have considered above, where we equate pairs a and νa. We will show that the
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converse does hold: given any presentation of a model as considered above,
we can obtain the model also via the D∞ construction, starting from a rather
simply presented initial embedding. It would be interesting to improve our
results by finding a more general class of equations which always yield models
of the λβη-calculus and for which there is a theorem of the kind proved by
Coppo et al.

So let us take a non-empty set of atoms A, and consider a set of pairs
of the form < {a}, νa > where νa is a non-empty set of functional elements
of BA. Write `A for the associated consequence relation on E(BA), and ≡A

for the associated congruence relation. We know that Fλ(E(BA)/≡A) is a
non-trivial model of the λβη-calculus. In order to find φ : D0 → DD0

0 we
need the set of pairs to satisfy the condition that every element of each νa is
first-order, that is the element has the form µ → b where µ is a set of atoms
and b is an atom.

If this is not the case, it can be made so via a transformation. First let
t : BA → T put BA in bijective correspondence with a set of atoms T . Write
tb for t(b), and tµ for {tb | b ∈ µ}. Consider the set of pairs

{< {ta}, {tµ → tb | (µ → b) ∈ νa} >} ∪ {< {tµ→b}, {tµ → tb} >}

and let `T and ≡T be, respectively, the associated consequence and congru-
ence relations on E(BT ). Evidently the first-order condition is now satisfied,
and Fλ(E(BT )/≡T ) is a non-trivial model of the λβη-calculus; we will see
that it is isomorphic to Fλ(E(BA)/≡A). Define h : A → BT and k : T → BA

by, respectively, h(a) = ta and k(tb) = b; we will also write h for the exten-
sion to BA and even for E(h), and similarly for k. An easy inductive proof
on the size of b in BA shows that {h(b)} ≡T {tb}. With this one can show
that if µ `A ν then h(µ) `T h(ν); further it is straightforward to show that if
µ `T ν then k(µ) `A k(ν). But one has for any a in A that k(h(a)) = a and
so k(h(µ)) ≡A µ; finally as one has {h(k(tb))} = {h(b)} ≡T {tb}, we have
that h(k(µ)) ≡T µ. Putting the four facts together we get that E(BA)/≡A

and E(BT )/≡T are isomorphic, and so too, therefore, are the corresponding
models of the the λβη-calculus.

We may therefore assume that every element of each νa is first-order,
and proceed to construct an initial embedding φ0 : D0 → DD0

0 for the D∞
construction. Recall that we can regard F(E(BA)/ ≡A) as the collection
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Th`(BA) of theories over BA of the consequence relation ` induced by the
above natural deduction system; we abbreviate Th`(BA) to Th`. The λ-
structure is given by:

φ(y)(z) = {b | ∃µ ⊂ z.(µ → b) ∈ y}∗

and abstraction is given by

λ(f) = {µ → b | b ∈ f(µ∗)}∗

where (·)∗ is the closure operation associated to `. Now let `0 be the restric-
tion of ` to the set of atoms and take D0 to be the set of theories of `0. There
is an embedding α0 : D0 → Th` with right adjoint β0 where α0(x) = x∗ and
β0(y) = (y ∩ A).

To construct φ0 we make use of the following fact, whose easy proof is
omitted:

Fact 2 Suppose A i→ C j← B is a pair of embeddings with respective right
adjoints iR and jR. Then i factors through j iff i = jjRi. In that case jRi is
an embedding with right adjoint iRj.

In the present case, we have two embeddings: D0
φα0→ ThTh`

`
αβ0

0← D1 where
D1 is DD0

0 . So to find an embedding φ0 : D0 → D1 we have to show that
φα0 = αβ0

0 β0
α0φα0, which is equivalent to showing that φδ0 = δδ0

0 φδ0 where
δ0 = α0β0. This, in its turn, is equivalent to showing that for all x in D0 and
y in Th`, x∗ · y = δ0(x∗ · δ0(y)) and that is an immediate consequence of the
following lemma:

Lemma 10 For all x in D0 and y in Th`,

x∗ · y = {b | ∃a ∈ x, µ ⊂ y.(µ → b) ∈ νa}∗

Proof Clearly the right hand side is included in the left hand side. For the
converse inclusion, suppose that b is in x∗ · y. Then there is a finite subset
µ of y such that µ → b is in x∗. So there are a1, . . . , am and µi → bi in νai

such that (µ1 → b1), . . . , (µm → bm) ` (µ → b). Taking a minimal such m,
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we find by Condition B that µ `A µi and b1, . . . , bm ` b. But then each µi is
a subset of y, and so b1, . . . , bm are in the right hand side, and therefore b is
too.

2

We therefore have an embedding φ0 : D0 → D1 with right adjoint ψ0,
where φ0 = βα0

0 φα0 and ψ0 = β0λαβ0
0 . Since φ0(u)(v) = β0(u∗ · v∗), we have

by Lemma 10 that

φ0(u)(v) = {b | ∃a ∈ u, µ ⊂ v.(µ → b) ∈ νa}∗

where we are now taking closures with respect to `0.

Now we can construct a sequence Dn
φn→ Dn+1

ψn← Dn of embedding-
projection pairs in the usual way, with Dn+1 = DDn

n , and φn+1 = φψn
n and

ψn+1 = ψφn
n , and D∞ is lim−→ < Dn, φn >. There is a colimiting cone of

embeddings ρn :< Dn, φn >→ D∞, whose right adjoints we denote by σn.
Setting

λ∞ =
∨

n≥0

ρn+1σρn
n

and
φ∞ =

∨

n≥0

ρσn
n σn+1

we obtain < D∞, λ∞, φ∞ >, the model of the λβη-calculus provided by the
D∞ method.

Theorem 6 < D∞, λ∞, φ∞ > is isomorphic to < Th`, λ, φ >.

Proof We can define embeddings αn : Dn → Th` with right adjoints βn by
taking α0 and β0 as above and putting αn+1 = λαβn

n and βn+1 = βαn
n φ. Let

us prove that the αn form a cone, i.e. for all n, αn = αn+1φn. For n = 0 we
have:

α1φ0 = (λαβ0
0 )(βα0

0 φα0)
= λφα0 (by the above discussion of φ0)
= α0
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For n + 1 we have:

αn+2φn+1 = λαβn+1
n+1 φψn

n

= λ(αn+1φn)(ψnβn+1)

= λαβn
n

= αn+1

Next we show that the cone is colimiting. For this by Theorem 2 of [43] it is
enough to show that

id =
∨

n≥0

δn

where δn = αnβn. Let us show that for every b in BA there is an n such
that b ∈ δn({b}∗); the equation for the identity will then follow. The proof
is by induction on b. If b is in A, we can take n = 0. Otherwise b has
the form µ → c, and by the induction hypothesis there is an n such that
µ ⊂ δn(µ∗) and c ∈ δn({c}∗). But then c ∈ δn({µ → c}∗ · δn(µ∗)), and so
(µ∗ ⇒ {c}∗) ≤ δδn

n (φ({µ → c}∗)). But as δn+1 = λδδn
n φ we now see that

(µ → c) ∈ δn+1({µ → c}∗), as required.

Since the αn form a colimiting cone, we can assume that D∞ is Th`
and ρn = αn. We will show that the identity on Th` is an isomorphism of
the λ-structures, i.e. that φ = φ∞ and λ = λ∞. As both λ-structures are
models of the λβη-calculus, the second equation follows from the first. For
the first equation we first need the fact that for all f in Dn+1 and x in Dn,
αn(fx) = αn+1(f) · αn(x), which is proved by a calculation:

αn+1(f) · αn(x) = (λαβn
n )(f) · αn(x)

= λ(αnfβn) · αn(x)
= αn(f(βn(αn(x))))
= αn(fx)

Now we can prove that φ = φ∞ by the following calculation:

φ∞(x)(y) =
∨

n≥0

αβn
n (βn+1(x))(y)

=
∨

n≥0

(αno(βn+1x)oβn)(y)
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=
∨

n≥0

αn((βn+1x)(βny))

=
∨

n≥0

(δn+1x) · (δny) (by the previous calculation)

= x · y (as
∨

n≥0

δn = id)

2

As an example, if we take A to be {ι}, and νι = {∅ → ι}, D0 is the
two-point complete lattice {⊥,>} and φ0 is the standard embedding given
by: φ0(x) = (⊥ ⇒ x); on the other hand, if we take νι = {{ι} → ι}, we
get the embedding considered by Park [40, 30] where φ0(x) = (> ⇒ x). By
the above discussion on the relation with natural deduction systems over TA,
these models are obtained in that framework if we take νa to be, respectively,
{∅ → {ι}} or {{ι} → {ι}}. This establishes a connection with the D∞
construction asserted in Part 1.

A wider class of Park models can be obtained by taking any non-empty
set A, choosing a finite subset µ of A and setting νa = {µ → a}. Then D0

is P(A) and φ(x) = (µ ⇒ x). The model D∗
∞ of [16] can be obtained by

taking A to be {∗, t} (corresponding to the authors’ {ϕ∗, ϕ>}) and setting
ν∗ = {{t} → ∗} and νt = {{∗} → t, {t} → ∗}. It remains to understand the
full scope of the method; the question is which pairs of algebraic complete
lattices and embeddings can be represented.

6.3 Scott’s Closure Method

Suppose we are given a λ-structure < D, λ, φ > and a continuous closure
operation c : D → D. Then c splits as D i→ Fixc

j→ D where Fixc is
the algebraic complete lattice of fixed points of c. We can then define an
associated λ-structure < Fixc, λc, φc > by taking

λc = iλji

and
φc = ijφj
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Scott discovered that if one starts with a model of the λβ-calculus such that
λφ ≥ id then by an appropriate choice of closure operation, this construction
produces a model of the λβη-calculus. It is interesting to consider the more
general case where φ a λ; we suppose from now on that this is the case.

Proposition 3 1. < φc, λc > is an embedding-projection pair iff λccφ =
c.

2. Suppose that < φ, λ > is a closure pair. Then < Fixc, λc, φc > is a
model of the λβη-calculus iff λccφ = c.

Proof

1. First, suppose that λφ ≥ id . Then:

λcφc = id iff iλjiijφj = id
iff cλccφc = c (as i a j)
iff λccφ ≤ c (as c is a closure operation and λφ ≥ id)

Next, suppose that φ a λ. Then:

φcλc ≤ id iff ijφjiλji ≤ id
iff ccφcλcc ≤ cc (as i a j)
iff φcλ ≤ cc (as c is a closure operation)
iff c ≤ λccφ (as φ a λ)

The result is then an immediate consequence.

2. Suppose that < φ, λ > is a closure pair. By part 1 it is enough to
show that if λccφ = c then φcλc ≥ id . Calculating, we find: φcλc =
ijφcλji ≥ ijφλji = id .

2
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There is a least closure operation c : D → D such that:

λoccoφ ≤ c

It can be found as a lub
∨

n≥0 cn of a sequence of iterates, where c0 = idD

and c(n+1) = λocn
cnoφ. To see this one uses that λ a φ to show that cn is an

increasing sequence of closure operations; then c is a closure operation too.
For minimality one shows by induction on n that for any closure operation
c̄, if λc̄c̄φ ≤ c̄ then cn ≤ c̄. One then has, by a standard argument, that:

λoccoφ = c

and so if < D, λ, φ > is a model of the λβ-calculus such that λφ ≥ id , then
by Proposition 6.3, < Fixc, λc, φc > is a model of the λβη-calculus.

We can find such a model of the λβ-calculus by dividing out a free EATS
Pf (TA) by an appropriate congruence forcing all its elements to be functional.
We use a natural deduction system over TA to do this. Let E be an I-indexed
collection < µi, νi > of pairs of finite subsets of TA, (i in I), and consider the
natural deduction system whose formulas range over TA and whose axioms
and rules are:

1 For i in J and τ in νi,
σ (σ ∈ µi)

τ

2 For i in J and σ in µi,
τ (τ ∈ νi)

σ

3

(µ → ν) ,
[µ′]
µ ,

[µ]
µ′ ,

[ν ′]
ν ,

[ν]
ν ′

µ′ → ν ′

Then µ ` ν ` µ iff µ is congruent to ν in the least EATS congruence ≡E over
Pf (TA) equating all the pairs µi and νi; here ` is defined as before. There is
an evident normal form for derivations.
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Suppose now that A is non-empty, that I is A, µa is {a} and that νa\Th
is non-empty, and has empty intersection with A. Then the system has no
theorems, and ` satisfies Condition B; the proofs are by induction on normal
derivations. So Pf (TA)/ ≡E is non-trivial, satisfies Condition B and every
element is functional. It follows, using Theorem 4, that Fλ(P(TA)/≡E) is a
non-trivial model of the λβ-calculus, and by the remark after Proposition 2
that λφ ≥ id ; we can then apply Scott’s method to obtain a model of the
λβη-calculus.

We now wish to relate the models to those obtained by directly con-
structing an EATS satisfying the criterion of Corollary 2. The first task is
to relate consequence relations ` on a semilattice < X,∧,> > to continuous
closure operations c on the associated algebraic complete semilattice of filters
F(X). To each such ` we associate a continuous closure operation c` by:
c`(x) = x∗ (= {b | ∃a ∈ x.a ` b}); conversely to each such c we associate
a consequence relation `c by: a `c b iff b ∈ c(a↑). In this way consequence
relations and continuous closure operations are in 1-1 correspondence; if con-
sequence relations are ordered by inclusion and continuous closure relations
by the usual pointwise ordering, then the correspondences are monotonic.

Each such closure operation, c, splits as F(X) i→ Fixc
j→ F(X) where

Fixc is the algebraic complete lattice of fixed points of c. Let ≡c be the semi-
lattice congruence associated to the consequence relation `c. Then there is an
isomorphism α :Fixc

∼= F(X/≡c) where α(x) = {[a]≡c | a ∈ x} (and [a]≡c is
the ≡c-equivalence class of a). Suppose now that ≡c is an EATS congruence
(we do not know a corresponding condition on c). Then < α, α−1 > is an
isomorphism of the λ-structures < Fixc, λc, φc > and Fλ(X/≡c).

Lemma 11 Let < X,∧,>,→> be an EATS satisfying Condition B, in
which every element is functional. Suppose too that c is a continuous closure
operation on (the complete semilattice) F(X). Then `c satisfies Condition
C iff λccφ ≤ c.

Proof Suppose that `c satisfies Condition C. It is enough to show for any
a,b in X and finite x in F(X), that if b ∈ cc(φ(x))(a↑) then (a → b) ∈ c(x).
In this case b ∈ c(φ(x)(c(a↑))), and so, by continuity, there are a′ in c(a↑),
and b′ in c(b↑) such that b′ ∈ φ(x)(a′↑). As every element is functional, there
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is a finite set I and ai, bi (for i in I) such that x =
∨

i∈I(ai → bi)↑ and so,
as Condition B holds, by Theorem 4 we have that φ(x) =

∨

i∈I(ai↑⇒ bi↑).
So, as b′ ∈ φ(x)(a′↑), there is a J ⊂ I such that aj↑⊂ a′↑ (for j in J) and
∧

j∈J bj ≤ b′. But then as `c satisfies Condition C, we have (a → b) in c(x)
as required.

Conversely, suppose that λccφ ≤ c. There are three cases to show that
`c satisfies Condition C. First, we must show that > `c (> → >), i.e. that
(> → >) ∈ c(>↑) = c(⊥). But > ∈ ⊥(>↑); so (> → >) ∈ λ(⊥) ≤
(λccφ)(⊥) ≤ c(⊥). Second we have to show that for any a, b and b′ in X:
(a → b) ∧ (a → b′) `c a → (b ∧ b′), for which it is enough to show that
a → (b ∧ b′) ∈ λφ(((a → b) ∧ (a → b′))↑). But b ∈ φ((a → b)↑)(a↑) ≤
φ(((a → b) ∧ (a → b′))↑)(a↑), and similarly for b′. Therefore, we have that:
(b ∧ b′) ∈ φ(((a → b) ∧ (a → b′))↑)(a↑), and the conclusion follows.

Third, we must show that if a′ `c a and b `c b′, then (a → b) `c (a′ → b′).
We have that: b ∈ φ((a → b)↑)(a↑), a ∈ c(a′↑) and b′ ∈ c(b↑). Therefore
b′ ∈ c(φ((a → b)↑)(c(a′↑))), and so (a′ → b′) ∈ λccφ((a → b)↑).

2

With all this we have enough information to show the two approaches to
the construction of models of the λβη-calculus equivalent. In both approaches
we take an A-indexed collection νa of finite subsets of TA where νa\Th is
non-empty and has empty intersection with A. In one, we construct the
least congruence ≡ on Pf (TA) equating each a with the corresponding νa

and satisfying Condition C. Then Fλ(Pf (TA)/≡) is a non-trivial model of
the λβη-calculus. In the other, we take the least congruence ≡E on Pf (TA)
equating each a with the corresponding νa, and then take the least continuous
closure operation c on Fλ(Pf (TA)/≡E) such that λccφ ≤ c, and apply Scott’s
method to obtain a model < Fixc, λc, φc > of the λβη-calculus.

Now, by Lemma 11 and the discussion of the relation between closure
operations and consequence relations, `c is the least semi-lattice consequence
relation on Pf (TA)/≡E satisfying Condition C. It follows that ≡c is an EATS
congruence, and < Fixc, λc, φc > is isomorphic to Fλ((Pf (TA)/ ≡E)/ ≡c).
But (Pf (TA)/ ≡E)/ ≡c is isomorphic to Pf (TA)/ ≡, and so we have that
< Fixc, λc, φc > is isomorphic to Fλ(Pf (TA)/≡), as desired.
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7 General Properties of λ-Calculus Models

A variety of properties of T ∗
CE were established in Corollary 1; the method

is to give axioms on a continuous complete lattice that T ∗
CE satisfies and

then establish general versions of these properties for all continuous complete
lattices satisfying the axioms. Here we see how to relax some of these axioms;
the main new result is an extension of part 6 of Theorem 1 to any model of
the λβ-calculus in the cartesian closed category CPO of cpos and continuous
functions.

One can easily show that the first four axioms are equivalent to saying
that D and [D → D] have an isomorphism of their partial orders. (Such
isomorphisms are necessarily completely additive, yielding part 1 of Theorem
1.) Parts 2, 3 and 4 of theorem 1 give formulas for the combinators K and
S. These also hold if one only assumes that D is a continuous cpo (or an
algebraic one, as appropriate); the proofs are the same as in the case of a
complete lattice.

Part 5 of Theorem 1 can be very much generalised.

Fact 3 Let < D, λ, ϕ > be a non-trivial model of the λβ-calculus in CPO.
Then |D| ≥ 2ℵ0.

Proof First, to finite sequences u of 0s and 1s we assign elements au of
D, setting aε = ⊥ and aiu = [bi, au]. Here b0 and b1 are distinct elements
of D, [·, ·] is the standard pairing combinator [6, Chapter 6] and we confuse
λ-terms with their denotations in D. By induction on the length of u one has
that if u is a prefix of u′, then au ≤ au′ ; that is, the assignment is monotonic
in the prefix ordering. But then, to infinite sequences v of 0s and 1s we can
assign elements av by:

av =
∨

{au | u is a finite prefix of v}

Define πi for i ≥ 0 by setting π0 = (·)0 and πi+1 = λx.πi((x)1), where
the (·)j are as in [6, Chapter 6]. Then if v is a finite or infinite sequence of
length ≥ (i + 1), πi(v) = bj, where j is the ith element of v; this is proved
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by induction for finite v, and then by continuity for infinite v. It follows that
the assignment v 7→ av is 1-1.

2

This proof was (essentially) suggested by Paul Taylor. A different proof
can be given, following ideas of Honsell reported in Exercise 5.8.5 of [6].

Turning next to part 7 of Theorem 1, one can consider the evident gener-
alisation to continuous cpos; however the proof given above does not immedi-
ately generalise as it depends on the existence of a top element. Nonetheless
we conjecture that the generalisation would hold. Part 7 showed that, in the
case of non-trivial models which are continuous complete lattices, the natu-
ral second-order theory of such models was not conservative over the natural
first-order theory of non-trivial models of the lambda calculus, even for Σ1-
sentences (the universal quantifier can be absorbed by a λ-abstraction). One
can ask what happens with simpler sentences, particularly equations. Now
a very interesting completeness question arises. In [24] Harvey Friedman
showed that two terms of the typed λ-calculus are βη-convertible iff they de-
note the same elements in the full type hierarchy over the natural numbers.
One would like similar results for the untyped λβ-calculus and λβη-calculus.
In particular we conjecture that two terms of the untyped λ-calculus are
β-convertible iff they are equal in all models in CPO of the untyped λβ-
calculus, and similarly for the λβη-calculus. Continuous models in the sense
of [6, page 508] equate all unsolvable terms; Honsell and Ronchi della Rocca
have shown (private communication) that in Park’s models [40] all terms of
order 0 are equated. Perhaps the techniques of Baeten and Boerboom [5]
could be of some use here. Such questions have also been considered by Hon-
sell and Ronchi della Rocca in [30]; in particular, they proved that there is a
λ-theory which is not the theory of any model of the λβ-calculus in CPO.

Finally we consider part 6 and will prove:

Theorem 7 Let < D, λ, ϕ > be a model of the λβ-calculus in CPO. Then
vD is first-order definable from application and equality.

This can be strengthened to show that the definition is provable in a
suitable second-order theory; however, being a routine matter, that is left
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to the interested reader. An important corollary of this theorem is that
if D and E are both models of the λβ-calculus in CPO then θ : D → E
is an isomorphism of both the partial-order structure and the applicative
structure iff it is an isomorphism of the applicative structure alone. In the
case of models of the λβη-calculus, isomorphisms of the applicative structure
also yield isomorphisms of the entire λ-structure. This fails for models of
the λβ-calculus as is evidenced by the above examples of non-λ-categorical
models constructed from Scott-Engeler algebras.

The above proof of Theorem 1.6 can be adapted to the present more
general situation. One mainly needs another supply of continuous functions,
as there may no longer be a sufficient supply of step functions. Let E,F be
cpos and suppose x is in E and y,z are in F with y v z. Then there is a
continuous function, nx

y,z : E → F where:

nx
y,z(u) =

{

z (if u 6v x)
y (otherwise)

The formulas used in the proof are obtained by considering transcriptions
into the language of application and equality of topological ideas. In any cpo
we have that the partial order is the same as the so-called specialisation order
of the Scott topology:

x v y iff ∀V.x ∈ V ⊃ y ∈ V

where V ranges over all Scott open sets. (A subset is open in this topology
iff it is an upper set, inaccessible under directed lubs.) Transcribing this to
the language at hand one obtains:

x v y iff ∀w(w[x] 6= ⊥ ⊃ w[y] 6= ⊥)

But we do not (yet!) have a definition of ⊥ so it is natural to abstract on ⊥
and consider the relation:

x ve y ≡ ∀w(w[x] 6= e ⊃ w[y] 6= e)

Lemma 12 1. If e is ⊥, then x ve y ≡ x v y
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2. If e is maximal, then x ve y ≡ y v x

3. If e is neither ⊥ nor maximal, then x ve y ≡ x = y

Proof

1. Suppose that e is ⊥. In one direction, if x ve y, take w to be λ(ny
⊥,I).

If x 6v y then w[x] 6= ⊥ and so w[y] 6= ⊥ and then y 6v y, which is a
contradiction. So x v y.

In the other direction suppose that x v y. Then if w[x] 6= ⊥, it follows
by monotonicity that w[y] 6= ⊥.

2. Suppose that e is maximal. In one direction, if x ve y, take w to be
λ(nx

⊥,e). Then w[x] = ⊥ 6= e and so w[y] 6= e and so y v x.

In the other direction suppose that y v x, and that w[x] 6= e. If
w[y] = e then by monotonicity and the maximality of e we get that
w[x] = e, which is a contradiction.

3. Suppose that e is neither ⊥ nor maximal. Assume that x ve y. Take
w to be λ(ny

e,e′) where e′ is strictly above e. If x 6v y then w[x] 6= e and
so w[y] 6= e and so y 6v y, a contradiction. Therefore x v y. Next, take
w to be λ(nx

⊥,e) . Then w[x] 6= e and so y v x. Thus we have proved
that x = y.

In the other direction, it is evident that if x = y then x ve y.

2

With this we are in a symmetric situation: we cannot distinguish between
D and Dop. Let us consider the relation:

x ≺ y ≡ ∃V.(V ⊆ x↑) ∧ y ∈ V

If D were a continuous cpo, this would be the same as the relation�; without
the assumption of continuity one has that ≺ is a sub-relation of � (see [25]
for a fuller discussion). If we again transcribe into the language at hand, and
abstract on ⊥ we obtain the relation:

x ≺e y ≡ ∃w((∀z.w[z] 6= e ⊃ x ve z) ∧ w[y] 6= e)
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Lemma 13 If e is maximal, then x ≺e y ≡ y v x

Proof Suppose that e is maximal. In one direction assume that x ≺e y.
With w as guaranteed by the assumption, we have that w[y] 6= e and so
x ve y. Therefore, by Lemma 12.2, y v x. Conversely, if y v x then to show
that x ≺e y we can take w to be λ(nx

⊥,e).

2

With this we are in a position to break the symmetry:

Lemma 14 There is an element c of D such that c 6≺⊥ c

Proof Let C∗ be the combinator denoted by λzλx.xz. Let Z be the least
set containing ⊥ and closed under C∗. Then Z is directed and for any z in Z,
one has that C∗(z) 6v z. Let c be

∨

Z. Suppose, for the sake of contradiction,
that c ≺⊥ c, and let w be as guaranteed by the assumption. Then w[c] 6= ⊥
and so by continuity, w[z] 6= ⊥ for some z in Z. But then c v⊥ z and, by
Lemma 12 we get: C∗(z) v c v z yielding the required contradiction.

2

Using all three lemmas, we can now define ⊥ by the formula:

Bot(e) ≡ (∃a.a 6ve a) ∧ (∃b.b 6≺e b)

and so the partial order can be defined by the formula:

x v y ≡ ∃e.Bot(e) ∧ x ve y

and Theorem 7 is proved.
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