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L ay S u m m a r y

Robots in human environments are expected to behave safely and smartly around

people. One of the most challenging problems for autonomous robots is in dealing

with human unpredictability and superior speed, requiring effective ways for the

robot to reason about others and to determine its own best actions. We study these

issues in the domain of autonomous robot navigation, wherein mobile agents (be

they robots or humans) move in a goal-directed way through physical spaces.

The key task in this domain is to predict the hidden goals that determine the agent’s

behaviour from observations of their past actions. This is difficult owing to the

complexity arising from reciprocal motion: the interactive nature of how an agent’s

own movement is determined at every step by the movements of others’ and the

need to reason about how the two are coupled. For a robot to safely move in this

setting, while reducing collisions and time taken, it needs algorithms that predict

the effect of its future actions on other agents’ behaviours.

We propose a novel approach for predicting the intention of multiple agents. Our

method is based on a simulation framework that predicts the goal of each agent by

comparing the observed behaviour with simulations based on hypothetical goals.

The probabilistic estimates maintained over potential goals of other agents improves

with the length of time over which observations become available. The underlying

model of motion is designed to account for the interactivity between agents which

improves the accuracy of prediction in crowded scenarios.

To address the problem of determining the robot’s own motion, we provide a novel

planning system for autonomous navigation in dynamic environments. Our method

produces an interactive cost-map: a construct that contains the necessary

information for a robot to navigate safely in an area with other moving agents.

Given our goal predictions, we are able to generate the predicted path of each agent,

taking into account the reciprocal effects of each other agents’ motion. Experiments
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show that our method is capable of navigating with significantly fewer collisions

and time spent than most commonly used alternatives.

Our solution is fast and scalable, allowing for it to be deployed in real environments

and on robots with limited computational resources. The software is also made

available open-source as a ROS-plugin tool, enabling reproducibility and extensions

in future work.
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A b s t r a c t

Modern applications of mobile robots require them to have the ability to safely and

effectively navigate in human environments. New challenges arise when these

robots must plan their motion in a human-aware fashion. Current methods

addressing this problem have focused mainly on the activity forecasting aspect,

aiming at improving predictions without considering the active nature of the

interaction, i.e. the robot’s effect on the environment and consequent issues such as

reciprocity. Furthermore, many methods rely on computationally expensive offline

training of predictive models that may not be well suited to rapidly evolving

dynamic environments.

This thesis presents a novel approach for enabling autonomous robots to navigate

socially in environments with humans. Following formulations of the inverse

planning problem, agents reason about the intentions of other agents and make

predictions about their future interactive motion. A technique is proposed to

implement counterfactual reasoning over a parametrised set of light-weight

reciprocal motion models, thus making it more tractable to maintain beliefs over the

future trajectories of other agents towards plausible goals. The speed of inference

and the effectiveness of the algorithms is demonstrated via physical robot

experiments, where computationally constrained robots navigate amongst humans

in a distributed multi-sensor setup, able to infer other agents’ intentions as fast as

100ms after the first observation.

While intention inference is a key aspect of successful human-robot interaction,

executing any task requires planning that takes into account the predicted goals and

trajectories of other agents, e.g., pedestrians. It is well known that robots

demonstrate unwanted behaviours, such as freezing or becoming sluggishly

responsive, when placed in dynamic and cluttered environments, due to the way in

which safety margins according to simple heuristics end up covering the entire

feasible space of motion. The presented approach makes more refined predictions
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about future movement, which enables robots to find collision-free paths quickly

and efficiently.

This thesis describes a novel technique for generating "interactive costmaps", a

representation of the planner’s costs and rewards across time and space, providing

an autonomous robot with the information required to navigate socially given the

estimate of other agents’ intentions. This multi-layered costmap deters the robot from

obstructing while encouraging social navigation respectful of other agents’ activity.

Results show that this approach minimises collisions and near-collisions, minimises

travel times for agents, and importantly offers the same computational cost as the

most common costmap alternatives for navigation.

A key part of the practical deployment of such technologies is their ease of

implementation and configuration. Since every use case and environment is

different and distinct, the presented methods use online adaptation to learn

parameters of the navigating agents during runtime. Furthermore, this thesis

includes a novel technique for allocating tasks in distributed robotics systems,

where a tool is provided to maximise the performance on any distributed setup by

automatic parameter tuning. All of these methods are implemented in ROS and

distributed as open-source. The ultimate aim is to provide an accessible and efficient

framework that may be seamlessly deployed on modern robots, enabling

widespread use of intention prediction for interactive navigation in distributed

robotic systems.
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“If I had a world of my own, everything would be nonsense.

Nothing would be what it is, because everything would be what it isn’t.

And contrary wise, what is, it wouldn’t be.

And what it wouldn’t be, it would. You see?”

— Lewis Carroll
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1
I n t r o d u c t i o n

1.1 D o m a i n a n d p r o b l e m d e s c r i p t i o n

Navigation, the act of accurately assessing the state of the world and producing

a plan to safely traverse it, is considered one of the most elemental skills for the

successful performance of autonomous mobile agents in the real world. A desirable

trait for any robot that is designed to operate with full or partial autonomy, it requires

a planning algorithm that is able to calculate a path from an origin to a target goal

while avoiding collisions with the environment.

At the inception of intelligent robotics, some of the most effective methods of

traversal planning were originally based on graph search algorithms, where the

environment is envisioned as a discrete set of nodes across which the agent may

move. One such algorithm, originally developed by Dijkstra [25] and then improved

into an optimal goal-directed search method, is the omnipresent A* search

algorithm [52]. Its simplicity and efficiency enabled some of the earliest mobile

robots such as "Shakey" to navigate safely in a relatively simple environment [99]

(coupled with visibility graphs and the Stanford Research Institute Problem

Solver (STRIPS) automated planner).

After many decades of work thereafter, it is discernible from the state-of-the-art of

both research and commercial products, that developing a fully autonomous agent

with the objective of planning a path from one point to another in a static

environment is a solved problem. Extensions such as considering the kinematic or

dynamic robot constraints, as well as utilising novel apparatus or techniques for

sensing and mapping, add robustness and flexibility to the already well-established

problem of robot motion planning.

1
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However, researchers are now aiming to deploy autonomous robots in highly

dynamic environments[134], where the world or its components are complex

features evolving across time. Such features may be transient and represent

momentary effects on the surrounding space, such as the temporary relocation of

obstacles and their predictable motion in a previously static world. Periodic events

may affect the environment in more unpredictable ways such as rush-hour periods

or circadian patterns in populated areas (see Fig. 1).

(a) Hospital corridor (b) Train Station

Figure 1: Dynamic environments with interacting humans

Ultimately, such features may refer to the presence of active agents, reacting to

other agents or modifying the space given some form of rational action model.

Therein lies the key open issue for Human-Robot Interaction (HRI): the effective

co-existence and co-operation of very different types of agents in the same

environment. A unified holistic approach for tackling the collection of challenging

new problems pertaining to the field of HRI is yet to emerge as equally effective,

robust or complete as when considering static un-populated environments.

Furthermore, assumptions made in earlier works such as the world remaining

static may no longer be suitable for locations with humans. Pedestrians are not

purely dynamic objects, acting according to strictly predictable deterministic

physical laws or having perfect knowledge of their surroundings. A more accurate

assumption is than they are goal driven, interactive, computationally bounded

agents following stochastic plans dealing with local-sensors and limited

observability.



1.2 R e s e a r c h c h a l l e n g e s 3

In fact, most recent research produces autonomous agent designs strongly

inspired by how a human would attempt to solve the task itself [72]. A pedestrian or

mobile robot may thus be equipped with an approximate model of the world, learnt

over time and experience, with which to understand observations from on-board

local sensors. This autonomous agent then uses probabilistic inference,

complemented with a mixture of heuristics and principled models, to predict

consequences of its own actions and those of other agents like it. We follow this

design paradigm, arguing that a robot able to navigate around humans effectively

must be endowed with comparable reasoning techniques but subject to similar

realistic constraints.

1.2 R e s e a r c h c h a l l e n g e s

Techniques for collision avoidance in environments without dynamic agents such

as humans or other robots are well established [100] and have been steadily

improving upon since their inception, however new methods are required for

environments with goal driven agents. We tackle the full problem of intention-aware

interactive motion planning: the implementation of an autonomous robotic agent

able to navigate in such populated areas as a human would.

Figure 2: Example environment, akin a robotised shopping centre, airport or warehouse.

Consider the example environment shown on Fig.2. A sensorised environment,

filled with both robotic and human agents, each navigating towards multiple goals, in
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a dynamic space where agents may appear or leave intermittently. How do we design

a robot to detect and plan according to the social situations presented? Which models

of reasoning and what prior knowledge is required to infer the human intentions?

What robot equipment is the minimum required for detecting people and navigating

safely amongst them? These are but a few of the challenges being tackled by our

research and that of other recent methods (Discussed in detail in the Background

Section 2).

Realistically, robotic platforms are usually constrained in sensing and

computational power to minimise complexity and cost. This produces the

conundrum of balancing planner reactivity and accurate long-term motion

predictions. From a theoretical perspective, models able to predict reciprocity, the

reaction of an agent to others’ activity and intentions, must be accurate and capable

of inferring the agent’s intention from observed behaviour. From a practical

standpoint, algorithms must be fast enough to run in real-time on-board the robot

platform while providing good enough estimates of future activity. Put simply: the

more predictive power the robot has, the less time the robot often has to plan with it.

(a) Crossing task, with

robot left and human top

(b) A robot plans and begins to overtake pedestrian, but instead fails to

do so and waits after it moves past. Green trajectory shows planned path.

Figure 3: Typical challenge in social navigation. A human is usually faster in planning and

moving across the space. Incorrectly predicting future motion wastes computational

power and time, as well as providing sub-optimal mobility. Images from [73].

A robot is said to be reactive when it can sense the state of the world and compute

a reaction, an action which will further progress towards its goal. The speed of

producing the action is critical in dynamic scenarios, since the state of the world

may change by the time an action to be taken is calculated. If slow to react, robots

may appear to not understand the situation which they find themselves in, or worse

yet make mistakes by using outdated plans. Such was the case in one of the first

tests of autonomous vehicles, where lack of prediction of vehicle intent lead to a
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collision [35]. A specific example in HRI involves a robot planning a trajectory while

a person crosses in front of it, where at each moment the robot finishes calculating a

path it finds itself to be obstructed by the walking pedestrian (See Fig. 3). The

outcome is an oscillating or stationary robot, an obviously sub-optimal action for a

navigating agent.

So even though algorithmic speed and efficiency are desired, a better

understanding of the surrounding obstacles and their motion may provide the robot

insight into how to trade reactivity with predictive power effectively. Researchers

thus endow robots with a wide variety of predictive models with different levels of

sophistication. These may be approximations based on heuristic rules, the most

common being that the dynamic obstacle will move for the foreseeable future with

the same velocity (speed and orientation) as it has in the immediate past. Although

being at the low cost end of the spectrum of prediction, it is a naive approach that

fails at predicting any deviation from the path that an agent currently travels.

There is a growing consensus that intention-aware planning, where agents are

considered as goal-oriented and able to infer the purpose behind observed

behaviours, would enable robots to act more effectively in environments populated

with humans safely [24]. A clearly desirable milestone for HRI, there are three

commonly recognised levels of sophistication towards this goal. Mobile robot

systems for social spaces exhibit one or more of these, where each level is

increasingly harder technically and scientifically to implement:

• Social compliance: involves designing robots programmed with safeguards that

enable them to survive in populated environments. These may include rules

based on social standards, such as walking on the right side of corridors or

avoid navigating in busy areas. Research on proxemics, the study of space

among social agents[51], and similar heuristics are developed based on

behavioural psychology studies of actions that impact positively or negatively

on pedestrian welfare.

• Human awareness: denotes the ability of robots to discern the presence and

motion of other pedestrians, often providing them with absolute priority and

deferring most of the interaction procedure to them. Requires the ability to

detect pedestrians using egocentric and/or allocentric sensing, often coupled
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with simplified models of pedestrian motion that do not account for the

robot’s presence or activity.

• Intention modelling: provides the robot with the ability to recognise which goals

other agents may be pursuing, and thus predict their future actions given its

knowledge of the world. These models of human decision making are

parametrised and often trained off-line with acquired data from the

environment in which the robot is to be deployed. Robots may then plan to

co-operate with people expecting interactions, and accurately predict the

humans’ reactions to the robot behaviour.

There is a wide selection of methods that tackle different aspects of social

navigation, but only few approach the complete problem as we present it. The

following are representative techniques from the state of the art, which are closely

related to the focus of our work:

- Socially compliant mobile robot navigation via inverse reinforcement learning from

Kretzschmar et al. [70]. Off-line training of relevant navigation features from

acquired interactive trajectories, able to predict interactive motion accurately.

- Human aware navigation for assistive robotics from Vasquez et al. [138].

Semi-autonomous wheelchair using intention driven agent models. Graphical

models combined with RiskRRT for planning in a known map given estimated

human goals.

- Intention-Aware Motion Planning from Bandyopadhyay et al. [5]. Focusing on

pedestrian motion prediction for autonomous car navigation, agents are modelled as

intention-driven Mixed Observability Markov Decision Processs (MOMDPs), the robot

uses the optimal policy learnt off-line.

Overall these approaches provide a good perspective of ongoing research in social

navigation. They propose methods with high predictive power relying on prior

knowledge of the environment, and are often computationally expensive for both

training and predicting agent motion. Their dependency on learning data

acquisition diminishes portability to different environments and increases

deployment difficulties. Furthermore, reciprocal navigation, whereupon agents’
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motion and predictions affects each others’, increases the complexity of data

acquisition and training.

Our objective is to develop algorithms that provide effective prediction of

interactive motion while emphasising computational efficiency and deployability on

dynamic domains. We aim to provide a full system of prediction and planning that:

• Is respectful of social interactivity between agents

• Performs fast inference with reciprocal motion models

• Provides a cost-map based planner integrated into the currently predominant

robotics framework

1.3 O u r a p p r oa c h a n d a i m s

To the best of our knowledge, this is the first work to consider reciprocal actions

to be an intrinsic part of the intention-inference model for human-aware navigation.

Furthermore, our predictive framework is coupled with an on-line motion planning

system that considers both the estimated future plan of agents as well as the

distribution over possible agent navigation goals. Our approach does not require

prior knowledge of the environment or necessitate learning spatial context, and is

thus suitable for deployment in truly dynamic or novel spaces. Lastly, a key

objective is to provide the full implementation as a compatible, open-source and

low-computational cost solution, so it may facilitate its distribution to even the most

constrained robot platforms.

In parallel to HRI work on social navigation, our work focuses on fast and reliable

interactive motion prediction and distributed robot motion planning in dynamic

scenes. A distributed approach provides advantages such as robustness to system

failures, however it introduces new challenges such as performance scalability and

sharing information between agents. We focus on producing a low-computational

cost solution for prediction, planning and tracking. This is coupled with a task

allocation analysis that distributes the complexity among available computers, be

they static servers or on mobile robots.
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Instead of focusing on metrics such as human comfort or navigation naturalness,

we aim to provide a robust framework that achieves scalable intention inference of

humans or other robotic agents, coupled with interactive costmaps for reciprocal

social navigation in multi-agent setups. Our approach is deployed and tested on

omni-directional robots in allocentric sensorised environments, but may be readily

ported to different setups where autonomous agents must navigate with only on-

board sensors in an unknown environment.

We assume that humans are goal-oriented agents with stochastic decision making

processes rather than dynamic objects reacting to external interactions without

understanding of the world. In the same spirit, we model pedestrians or any other

navigating agent as a causally driven planner, performing actions as part of a plan

to ultimately accomplish its goal. However, for an agent that necessitates the

knowledge of other agents’ current and future actions, it becomes necessary to form

a reasoning model describing the observed behaviour.

In fact, as mentioned earlier, the problem of producing a successful plan given a

goal is the quintessential task of a robotic agent. The problem we address is the

inverse, as our autonomous agent attempts to fathom the original goal which drove

another agent’s observed behaviour. Furthermore, it is desired for the model to

describe not only the presently observed activity, but also predict future actions or

otherwise behaviour pertaining to a different situation or environment.

To accomplish this we employ methods inspired by the community of psychology

research, originally rooted in philosophy and epistemology, in order to design our

tools for understanding causality in the navigation domain. We construct a process

which reasons about the driving intention of human pedestrians, based on principles

described in the studies of reasoning about causality [101].

Let us assume an agent already has some basic knowledge of the world, such as

the location of its goal and how it would go about reaching it unimpeded by

interfering agents. We thus propose the following thought process for reasoning

about the observed behaviour of other agents:

• What goal drives that agent to follow such behaviour?

• How does the presence and activity of other agents affect it?
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• If the agent had a dissimilar goal, would it act differently?

Comparing expectations produced by an action model with observations is key to

discerning the true purpose to an agent’s activity. Since an agent is goal-oriented,

its behaviour would undoubtedly be distinctly different depending on what it is

trying to achieve. So, our agent compares the observations of such an agent with

counterfactual alternatives, or "what if" the agent were to have a different goal. These

hypotheses may be simulated using the agent’s own model of acting in the world

(basically, what would our agent do in that situation), and the expected outcomes are

then matched with the observed behaviour. This provides a likelihood distribution

over the possible goals that may have driven the agent to perform as it did.

We consider this a specific instance of the inverted planning problem [112], where

we propose a counterfactual reasoning framework for agents to discover and

understand the intentions of other agents, so that they may better be predicted and

interactions successfully accomplished. Our method may be envisioned as a

selective process for generating counterfactual evidence, which then employs

Bayesian reasoning for computing the probabilities necessary for, in our specific case

of the inverse planning problem, intention inference.

To tackle the multi-agent interactive motion domain, we implement an internal

motion model which predicts the motion of agents and their reciprocal influences

while they travel towards their target. This forward model, composed of a

re-purposed multi-agent simulator, is used to generate the expected interactive

trajectories of agents given their goals. We use this simulated motion as priors for

our inverse model, where the agent reasons about the intention of agents given their

trajectories. We then tune the model parameters on-line, providing adaptation to

dynamic environments and agents with different navigation attributes (e.g.

preferred speed, maximum acceleration).

Inferring the intention of other agents is thus important for autonomous agents

aiming to roam populated spaces. However, without a framework to plan with

respect to these intentions the agent would perform just as well without any

predictive abilities. We present a framework that considers the planning agent’s

target goal as well as the estimated ones of all other relevant agents, and calculates a

safe trajectory through time and space to accomplish its own objective,
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simultaneously permitting others to do so as well. Our method is based on a

cost/reward system, where our planning agent balances the constraints of avoiding

present and possible future collisions, while encouraged to navigate socially as a

pedestrian would in a human environment.

Thus, complementing our model matching framework, where a generative

simulation-based model produces goal estimates given observations, we can invert

the approach and use our on-line trained models to predict interactive motion of

agents given the estimated goal poses. To tackle this chicken-and-egg problem, we

present a framework to produce interactive costmaps integrating prediction and

planning using the flexible technique of multi-layer costmaps for robot navigation.

The proposed algorithms provide an efficient intention-aware component, which

integrated into a multi-agent distributed robot setup, enables robots to navigate

fluently among other pedestrians.

Although there are many technical challenges in implementing the outlined

approach, the key necessity of deploying prediction and planning on

computationally constrained platforms demands efficient task allocation approaches.

System architecture design is critical for complex multi-agent distributed setups.

Our particular system is composed of multiple mobile robots with on-board sensors,

navigating in sensorised environments which are themselves monitored by

dedicated servers, all interconnected through the same communication network. The

potential performance of the mobile robots can be maximised by configuring their

core modules and their corresponding tasks (e.g. sensing, navigation).

We present our research work into automatic tuning and task allocation in

distributed robotic setups. Each task has parameters which affect their performance,

each combination of parameters is known as a task variant, and the objective is to

distribute tasks across constrained hardware processors using the variants that

provide the highest overall performance. Our approach is developed as an

open-source tool for the Robot Operating System (ROS), the standard framework for

robotics systems, and is designed to facilitate users improving the effectiveness of

different modules that mobile robots depend on for prediction and planning.
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1.4 K e y c o n t r i b u t i o n s

The main hypothesis driving our work is thus:

Can an intention-inference model, sufficiently accurate and light-weight for real-time motion

planning in dynamic systems, capture the interactive motion of navigating agents?

In order to address this question, we present a framework for Intention-aware

Counterfactual Reasoning for Interactive Navigation (ICRIN)1, a complete system

composed of interchangeable parts. Our results indicate that considering interactive

motion when inferring navigation intent is greatly beneficial to prediction accuracy.

In fact, long-term trajectory predictions are not essential for robot navigation, but

close-encounter interactions are and their prediction and prompt resolution is both

hard and important to solve.

(a) Amazon Kiva robots (b) Fetch Robotics (c) Locus Robotics

Figure 4: Distributed robotic systems with an increasing demand for HRI capabilities.

There is currently great demand for robotic systems that are not only able to act in

environments with humans present (Fig. 1.4(a)), but to do so while actively

co-operating in a joint task (Fig. 1.4(b)). Distribution warehouses have seen a large

drive towards automation, however there are still key jobs too challenging for

robotics technology or otherwise are more cost-effective if performed by a person

(i.e. manipulation). For this reason, human-robot teams are increasingly deployed,

where robots are expected to automatically carry out deliveries, follow humans and

avoid collisions in tight interactive spaces (Fig. 1.4(c)). Intention-prediction is

essential for domains such as this where interactive motion planning is required for

1 https://github.com/ipab-rad/icrin

https://github.com/ipab-rad/icrin
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a distributed multi-robot setup. Task allocation has a key role as warehouses with

thousands of robots require good logistics for distributing delivery loads amongst

all agents.

Our key contributions are:

• A model of pedestrian navigation for context-free goal prediction based on

Counterfactual Reasoning. Future motion is predicted using Bayesian Recursive

Estimation and samples from an off-the-shelf multi-agent simulator.

• Intention-aware motion planning with Interactive Costmaps, a cost and reward

based approach for avoiding pedestrians while navigating socially.

• A distributed implementation, open source software and ROS integration,

coupled with work on Task Allocation, which ensures real-world performance

on constrained systems.

This thesis is structured as follows: the Introduction (Section 1) presents an

overview of the research problem of intention-aware robot navigation, and the

Background (Section 2) provides a concise selection of relevant methods that tackle

relevant challenges. It is followed by the three main parts detailing our work:

• Section 3: Counterfactual Reasoning for Predicting Intent on page 32.

• Section 4: Interactive Costmaps for Social Navigation on page 49.

• Section 5: Task Allocation for Distributed Robotic Systems on page 67.

The final conclusions and suggested future-work follow in Part 6 on page 89.



2
Ba c k g r o u n d

We present a survey of the major problems in the area addressed by the dissertation

and outline the state of the art methods that have been applied to solve these. It is

followed by a summary of key ideas in the area of autonomous robot navigation in

environments populated by humans, with emphasis on methods that do prediction of

pedestrian motion in Sect. 2.2 and navigation in multi-agent environments in Sect. 2.3.

2.1 O v e r v i e w

Traditionally, most robots in crowded spaces use some form of sensor-based

reactive collision avoidance for local navigation [46]. As discussed in Sect. 1.2

Research challenges, purely reactive robots are indeed capable to provide a robust

solution [68], specifically in situations when human pedestrians perform the hardest

parts of the interaction (i.e. prediction of motion).

Robots completely relying on reactive planning without models predicting future

agent behaviour often assume agents will continue on approximately the same path.

This is the common assumption of Constant Velocity (CV), where the future pose is

estimated with increasing uncertainty from the last observed velocity. Unfortunately

this leads to the infamous "Freezing Robot Problem", where a robot cannot find a free

path to its destination since the environment is filled with potential future collisions

(See Fig. 5). This may occur even when the area is not populated by many other

agents, denoting the issue is with the reductive simplification. The problem arises

from failing to predict the reciprocal avoidance from other agents, and is studied and

discussed at length by Trautman et al. [133].

Some approaches circumvent or minimise the problems of the CV assumption, such

as ignoring faraway collisions by choosing velocities reachable only within a short

13
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Figure 5: "Frozen" robot (Top right black star) cannot find a path completely devoid of

possible future collisions due to the uncertain future motion of pedestrians. From

[133].

dynamic window [37]. The Dynamic Window Approach (DWA) is commonly used

as a part of a hierarchy of planners to ensure the robot eventually arrives to its

destination. An example, from [77]: A high-level planner such as A* selects a node on

a known map to travel towards, while the low-level DWA performs reactive collision

avoidance. Although improving the effectiveness in populated spaces (see Fig. 6), a

dynamic window does not produce any insight into future motion of other agents

and thus can only mitigate but not resolve the interactive motion problem alone.

Ultimately, any planner without interactive motion prediction exhibits this

limitation when a robot is faced with oncoming pedestrians [27]. As reciprocal

motion is not expected, the robot encounters an oncoming "wall" of people,

foreseeing only future collisions when moving towards the pedestrians [76]. This

downside affects non-interactive planners specially when environments become

highly-populated (> 0.55people/m2) or the environment forces frequent

interactions amongst pedestrians [132].

And so, mobile robots require accurate predictions of pedestrian motion, or at

least better than the CV assumption. A common approach involves prior analysis of

an environment and the motion of pedestrians found therein [139]. Data is acquired

in the form of large numbers of trajectories between a starting point and an end

goal, and traditional machine learning techniques are then used to train
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Figure 6: State of the art navigation of autonomous mobile robot in pedestrian

environment.Colours denote laser scanner detections and their inferred contextual

nature From [77]

probabilistic models describing the data [65]. These models learn patterns of

pedestrian motion off-line, which the planning agent uses on-line, typically in a

Bayesian fashion [135], calculating the likelihood that newly observed pedestrian

motion is akin to the trained demonstrations [6] (See Fig. 2.7(b)).

Although producing highly accurate predictions of future motion, recorded

trajectories are with respect to the original location of obstacles (See Fig. 2.7(a)), and

thus off-line learning approaches inherently rely on a static environments [131].

Reciprocal motion between pedestrians is often not captured by the independently

acquired trajectories, and thus cannot predict interactions between agents accurately

[146]. Although there are methods to mitigate this by acquiring the data through

simulation instead [56], it soon becomes apparent that the quantity of trajectories

required to represent both interactive and dynamic setups becomes infeasibly large

[85].

A proposed alternative is to not predict the trajectory itself, but rather the intention

of the agent or, in the case of navigation, its physical goal to be reached in space [30].

Intention inference relies on the likelihood of the agent to be performing the observed
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(a) Distribution of demonstrated trajectories (b) Future motion estimates from observation

Figure 7: Activity forecasting via IRL from previously acquired navigation data. From [65]

behaviour, as well as the prior probability of an agent pursuing the underlying goal

that generates its motion [24]. Once a goal is estimated, future trajectories may be

generated by using a forward action model, which offers flexibility in comparison to

predicting trajectories directly [64].

To model another agent’s behaviour, it may be assumed to act as if it were

computing the policy of a Markov Decision Process (MDP), its intention driving the

agent to perform actions towards achieving its ultimate goal (See Fig. 2.8(a)). With

this assumption, motion planning may be solved by computing the optimal policy

while considering the other agent’s future actions (See Fig. 2.8(b)). The intention is

simply considered a partially observable random variable which may be indirectly

inferred given behaviour evidence [5] (See Fig. 2.8(c)).

(a) Crossing problem with

two possible pedestrian goals

(b) Intention-aware

optimal policy

(c) Multi-agent inference of navigation goals

Figure 8: Intention-Aware Motion Planning (IAMP) combines pedestrian intention inference

with an autonomous driving car for predictive collision avoidance. From [5].
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IAMP may be the key to developing successful interactive agents, however it raises

many questions regarding its implementation. For example, if we assume intention is

the location an agent is trying to reach, how may it actually be inferred? There have

been numerous studies involving the detection of interactions amongst people [21],

as well as specific human behaviours intended to be replicated by robots [115], such

as following other agents socially [44]. While there is a consensus in psychology that

humans perform intention recognition whenever interacting with other goal-driven

agents, there is no unified approach on how it may be signalled or sensed by a robotic

system [26].

There is a particular interest in accomplishing this in HRI domains where the

human agent may be disabled or incapable of performing a task alone [33].

Typically the participant is only indirectly able to communicate its intention through

a computerised interface with appropriate sensor equipment [138]. Such a case in

navigation occurs for robotic wheelchair users, where the human may have some

degree of control of the wheelchair’s motion, but due to ease of use and safety

concerns the motion is filtered through an automated planner [75]. A graphical

model is implemented, describing the relationship between the human’s activity

and selected features (e.g. joystick motion, human’s head orientation), enabling the

inference of the desired target goal of the human given sensor data [? ] (See

Fig. 2.9(a)).

Now, assuming the intention may be inferred through a selection of sensors and

trained models, how can the robot use this information to plan accordingly by

remaining a socially respectful agent? Alas, we would be no closer in finding a

solution if after correctly inferring the desired activity of a person, the robot agent is

incapable of performing according to social expectations and rules [79]. Social

norms such as proxemics are often hand-crafted potential functions with empirically

chosen values (or learnt from data [106]), determining costs for the automated

planner ahead of calculating its trajectory [91]. These costs dissuade the robot from

navigating too close to pedestrians, or to behave as expected by other social agents

when joining an interaction situation [72] (See Fig. 2.9(b)).

Unfortunately, such approaches trade efficiency for safety, often deferring priority

to other agents and preferring the planner to behave sub-optimally rather than risk
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any collision [127]. Human pedestrians are represented as social obstacles, to be

avoided as if it were a repulsive force pushing the robot away [122], unless an

interaction is sought with the pedestrian and its role reversed producing instead

attraction [89]. However, proxemics and other costmap-based methods are often

robot-centric, generating cost of the robot proportional to the pedestrian’s

annoyances, but not vice-versa [17]. This leads to mismatched actions where the

robot is too cautious and takes most if not all of the interactive avoidance effort,

exacerbating the robot’s navigation problem since it is usually also the slowest agent

[20].

(a) Goal inference from head orientation (b) Socially aware shared-autonomy navigation

Figure 9: Goal intention inference of navigating user using an RGB-D sensor for face detection.

From [118].

Some approaches aim to combine prediction and planning into a single

framework, rather than seeing them as completely separate problems. Demiris et al.

present Hierarchical Attentive Multiple Models for Execution and

Recognition (HAMMER), an infrastructure composed primarily of a pair of models,

one for prediction and another for planning [24]. Interestingly, the predictive model

is the inverse of the forward model used for motion planning, representing the

agent is inferring the intention of other agents by reasoning about their motion

using its own planner (See Fig. 10). Multiple inverse models are instantiated in order
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to attempt to explain the evidence, since it may have been caused by a multitude of

possible intentions. The forward model is used to generate control action sequences

given observed state, predicting the next state which is compared with outcome

after the demonstrated action. The authors compare and describe similarities with

the mirror system on biological counterparts, hinting humans also perform causal

inference of other agent’s goals as corroborated by [59].

Figure 10: Inverse and Forward model module of HAMMER. Prediction and planning use the

same set of models. From [23]

This line of research is otherwise known as the "inverse planning" problem, where

instead of producing a plan given a goal, a goal is estimated given observed

behaviour (See Fig. 11). Ramirez et al. propose that, given a target agent and its

possible set of goals, intention inference may be carried out by simulating its

plausible future motion using standard planners [112–114]. The formulation of plan

recognition as plan generation is akin a counterfactual simulation, studied both in

logic [101] and philosophy [10]. Thus reasoning counterfactually about the causal

link between the observed behaviour and the driving intention has a strong

grounding in probabilistic causal reasoning [29, 50]. We envision that prediction and

planning should go hand in hand with causal reasoning, and consider the

aforementioned lines of research a strong inspiration for this work.

It is important to consider the trade-offs between the state-of-the-art techniques

discussed in this thesis. Of particular interest is the key distinction between methods

with learning components trained off-line (Such as those based on Partially

Observable Markov Decision Process (POMDP) or Deep Learning (DL) formulations)

or on-line (Based on heuristic models coupled with parameter tuning). It is noted

that if enough data is available and the state-space of the targeted problem does not
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(a) Planning Problem (b) Recognition Problem

Figure 11: Essence of the planning and goal inference recognition problem. From [113].

make the solution computationally intractable, off-line methods have a significant

advantage in performance when tackling more complex problems. However, off-line

methods may in turn excel when data that captures the desired aspect of the

problem is hard to acquire, or when the state/action space is too large.

The following is a list of key approaches presented in the literature of prediction

(Sect. 2.2) and planning (Sect. 2.3) for autonomous agents in populated environments.

These methods are either applied or directly applicable to the problem of human-

aware motion planning. We also include techniques from different domains which

are theoretically comparable or have been a scientific inspiration for our work.

2.2 P r e d i c t i o n o f m o t i o n

Following the increased interest in machine learning methods, there is a vast

selection of techniques available for tackling the quintessential problem of inferring

the state of a partially observable variable. In the case of navigation, the theoretical

focus may be on inferring the ulterior goal of an agent, but in practice techniques

aim to generate the most probable future motion. To this purpose there is a wide

spectrum of approaches: some trade accuracy for speed, others consider the

reciprocal effects amongst pedestrians, but only a few study the active role of an



2.2 P r e d i c t i o n o f m o t i o n 21

interactive planning robot within the predictive framework as we do. We now

review the main categories of predictive models used for HRI navigation:

2.2.1 Heuristic based

A navigation heuristic is a rule applied to represent a naive assumption over the

motion of agents. The omnipresent simplification assumption is that pedestrians

continue moving with a Constant Velocity (CV), as if solely governed by Newton’s

first law of inertia. Although logically incorrect, fast planners may rely on CV given

their reduced planning window, essentially extrapolating the motion of other agents

to perpetuate as they have immediately before [77].

As expected, there are many variations of the CV assumption, most common of

all describing diminishing certainty over an agent’s pose and velocity across time,

often implemented as Gaussian processes [78]. It is safe to assume that most research

approaches that do not explicitly declare a more sophisticated predictive model likely

follow the CV or a similar assumption [72].

Although there are a few pedestrian models based on particle forces [54], the Social

Forces (SF) model [53] is the most popular due to its parametric configurability and

interactive physics-based motion model. Agents are modelled as moving particles

which produce forces against each other, be they repulsive from obstacles or attractive

towards the agents’ goals. Often coupled with predictive models, some approaches

use the social forces model as a simulator [119], or couple it with traditional planners

like A* for robot navigation amongst humans [20]. Indeed, intention inference may

be performed by assuming pedestrians navigate as described by the SF model [30].

Other methods produce geometric constructs, their properties offering significant

efficiency of computation such as for convex optimization [22]. Deterministic

simulators of multi-agent systems such as Optimal Reciprocal Collision

Avoidance (ORCA) may be adapted for pedestrian agents such as the Reciprocal

Collision Avoidance for Pedestrians (RCAP) framework [48]. This enables the

prediction of pedestrian motion following the assumption that pedestrians perform

collision avoidance using Velocity Obstacles (VOs) [64] or their interactive version
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RVOs [7], a very effective approach when modelling dense crowds [63]. Other

alternative approaches to physics or geometry offer behavioural heuristics inspired

by nature, providing more realistic motion predictions while maintaining

computational efficiency [96].

2.2.2 Off-line training

Whereas heuristic based models provide fast motion prediction, they are unable

to produce accurate long-term trajectory estimates, which are required for more

sophisticated HRI settings. All of these techniques rely on previously acquiring a

sizeable amount of motion data, such as recording pedestrian trajectories while

navigating around the environment. The robustness and flexibility of the provided

results often depends on the quality and variability provided by the data acquisition

process.

One of the simplest methods of learning from trajectories involves clustering

them, and using a similarity metric to calculate likelihood [80]. Posing motion

prediction as classification from prior data opens the machine learning toolbox and

offers many possible different techniques [46]. Other approaches propose pedestrian

motion models and learn their parameters from data, such as the Navigation

Function (NF) model or resolution-optimal potential field in grid space [143]. The

model parameters are learnt offline, able to generate the likely future motion of

pedestrians to the extracted goals [18], however the interactions between agents are

ignored and removed from the training dataset beforehand.

Other approaches do consider pedestrian interactions, such as the Linear Trajectory

Avoidance (LTA) model [102] which improves the prediction of social behaviour in

multi-agent systems. A similar but more sophisticated approach utilises a stack of

polar histograms instead, providing a solution based on a mixture of heuristics and a

trained model [19]. Furthermore, an improvement in the form of Interactive Gaussian

Processes (IGP) permits the prediction of reciprocal effects between pedestrians with

a much more accurate and adaptable framework than relying only on CV [132].
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Although a hotly contested topic in the literature is which features are key to

use for learning from data, one technique reigns superior to all others for learning

from navigation data: Inverse Reinforcement Learning (IRL) (See Fig. 12). Sometimes

called Inverse Optimal Control (IOC), IRL describes the navigating agents as a MDP

internally driven by a reward function, where the aim is to learn it given the observed

behaviour, hence the inverse of reinforcement learning [145]. Maximum Entropy IRL

is best when data is relatively easy to acquire, but when demonstrations may be sub-

optimal or noisy [56]. Although IRL-based approaches are traditionally only able to

provide great accuracy of prediction in static environments [65], recent work shows

promising results on dynamic setups [109].

IRL methods often fail to represent the reciprocal effects amongst agents, since

trajectories from data are often independently acquired and the chosen features do

not capture interactivity. So approaches focus on feature selection [69], whereas

others such as the pedestrian ego-graphs [17], combine principled motion models

with IRL techniques. Selecting appropriate features representing the reciprocal

aspects of pedestrian navigation enable interactive trajectories to be predicted

accurately [74], although the exponential requirement of data representing the

multiple situations to describe the interactions may become non-scalable to larger or

denser environments [70]. Due to the countless IRL based approaches, we invite the

reader to review Vasquez et al. [139] for a more thorough experimental comparison

of results and shortcomings.

Assuming the agent is a MDP agent has efficiency advantages due to the reduced

computation complexity. However, it involves learning about the agent’s hidden

intention implicitly, instead of explicitly represented as a partially observed variable

in a hierarchically structured model. Such is the case of a POMDP, offering multiple

inference advantages at the cost of complexity [129]. There are multiple approaches

based on this concept, either posing the problem as a robot-centric Robot

Navigation - Hierarchical POMDP (RN-HPOMDP) [36], or assuming the only latent

variable is the agent’s target goal thus reducing the complexity to a MOMDP [134].

Deep Learning methods are very new in the literature, providing equiparable

results if not better than more traditional techniques such as IRL [2]. If ever more

reliant on large amounts of data [1], it bypasses the research discussion of feature
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(a) Acquisition of pedestrian trajectories (b) Learning reward function from demonstrations

Figure 12: Socially Compliant Mobile Robot Navigation via Inverse Reinforcement Learning.

From [70].

selection, if not replacing it with an arms race of data acquisition and neural

network structural combinations.

2.2.3 On-line adaptation

A predictive model trained with a dataset learns the characteristics of agent

motion, but is often dependent on the setup from which the navigation data is

acquired. On-line learning methods attempt to provide portability to new

environments or robustness in highly dynamic systems. Although recent

approaches provide knowledge transfer for scene-specific motion prediction [3],

on-line adaptation remains a key focus of more versatile approaches.

Typically, all agent goals are known a priori and the inference model

discriminates between them with a likelihood function. In Escobedo et al. [32], an

intention-inference model is coupled with a semi-autonomous wheelchair, where

the target navigation goal is determined by the user’s head orientation. In similar

work, orientation and past trajectories of agents are used to predict their respective

goals, which are considered by the motion planner and complimented by the use of

a joystick to indicate preferences of the wheelchair user [75].

In [31], pedestrians are modelled with Gaussian Processes (GP) and online

adaptation is achieved by fitting its parameters using only the most recently
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acquired data. This provides robustness to environments with different agents or

dynamic setups, although the hyper-parameters which primarily govern the model

are learnt previously offline. Other models follow the same pattern for Bayesian

intention inference in interactive [135] and non-interactive setups [97].

The Growing Hidden Markov Model (GHMM) is an extension to Hidden Markov

Models (HMMs) as proposed by Vasquez et al. [137], a goal-oriented model that

learns the structure and its parameters incrementally from input trajectory data. The

model adapts across time when provided with new continuous observation

sequences, where each discrete state corresponds to a region in the environment.

The probabilistic model may then be queried to infer future states given past

observations of agent motion. Although more accurate than other HMM-based

techniques, the model does not consider the effect of agents’ motion onto others,

impeding its use on multi-agent interactive domains [30].

2.3 P l a n n i n g f o r nav i g at i o n

Although the primary objective of a planner is to reach a target goal via an

environment, in spaces shared with people avoiding collisions against a "lethal"

obstacle is a main priority. There is a wide variety of planners used for HRI, most of

them differentiate themselves in the assumptions they make of the world and the

agents within it. Furthermore, most planning techniques have different concessions

for humans and robots, giving priority usually to humans if the interaction leads to

a dead-lock. In this research, no pre-conception is explicitly coded for humans, they

are treated as reciprocating agents, using on-line adaptation instead to learn the

characteristics of their motion. A review of the main planner categories used for HRI

navigation are as follow:

2.3.1 Static planners

The simplest of planning techniques assume the world is static, where a global

trajectory may be found from the current planner agent pose to the target goal
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location. They do not expect environment features to move, relying instead on pure

speed of computation for reactive collision avoidance. For this reason they are often

coupled with stop and wait behaviour for prioritising safety, leaving the hardest

part of interactions for pedestrians to resolve.

There are a vast collection of methods, most popular amongst all is the

Rapidly-exploring Random Tree (RRT) due to its superior computation speed [81].

Improvements like probabilistic RRTs attempt to solve the problem of moving in

dynamic spaces, relying on partial motion planning to maintain the real-time

constraint [39]. Although fast and ensuring collision free trajectories, problems arise

with situations like over-taking, where trajectories may cross and thus be considered

as colliding. A conservative approach where safety is guaranteed, may be improved

with an adaptable time horizon where smaller trajectories may be planned

iteratively as the state of the world changes, such as DWA based appraoches [11].

RiskRRT [116], an extension to the classic RRT algorithm where the planner

considers the "risk" of motion, given possible collisions or social norms in an

environment populated with other agents. Their method considers each human

interaction as producing an F-formation, a shape which contains a socially

impassable obstacle space or o-space shape between the interacting agents. For

example, the o-space of 2 interacting people may be an L-Shape, C-Shape, V-Shape

and so on based on their respective positions. Robots may then attempt to avoid

interaction areas when navigating in order to minimise disruption of human

pedestrians (See Fig. 13 [117].

(a) O/P-Space for

L-Shape F-Formation

(b) RiskRRT planner (Green robot) with goal-

driven pedestrian (Red circle)

(c) Interaction

recognition and

avoidance

Figure 13: Autonomous navigation using human interaction models and RiskRRT. From

[117].
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The o-space is surrounded by a thinner layer where the participants of the

interaction are located called p-space, which may be reached by an agent that

wishes to join the interaction. It is unclear from the study how the o-space and

p-space may interfere whenever an agent is willing to join a close interaction, it is

presumed the o-space may be suppressed or the p-space enlarged. No work is

presented on how the p-space may be actively manipulated by a planner in order to

improve the success chance of an interaction approach. This is improved upon by

recent work [33], explicitly generating "meeting points" where the agent may dock if

desiring to establish a new or join an ongoing interaction. RiskRRT has been since

expanded to consider possible human intentions as plausible navigation goals in the

known environment [118].

Although potential field methods remain popular due to their ease of

implementation, they present the problem of robots getting stuck in local minima,

such as corners or pedestrian groups [142]. They however provide an efficient

solution for the passing problem, specially when the interaction occurs in corridors

with agent pairs [130].

There is a large section of the literature which assumes the world to be static, and

thus provides methods for calculating optimal policies based on those assumptions

[4, 5, 42, 58, 121]. They often consider the pose and motion of agents to be noisy and

partially observable, which is argued in some way captures the dynamic behaviour

in the scene. Most of these methods are based on POMDPs or their approximated

solutions, which are learnt off-line and then the policy is deployed on the mobile

robot.

The pedestrian dynamics and intentions are built into the transition function

between states, which is often a hand-crafted Markovian model. There are a few

exceptions, such as [107] where the transition function is learnt from data using a

GHMM. This has the advantage of learning the probabilities of transitions between

neighbouring world regions, which is then used by the POMDP model to calculate a

policy.
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2.3.2 Dynamic planners

Dynamic planners provide a more adaptable solution, since they take into account

the evolution of the world state after every planner iteration. Rather than relying

purely on speed of computation and fast reactions, a world model of some form is

introduced that describes the state transition across time, in the case of navigation the

motion of pedestrians across the space. The main advantage of proactive planners is

consider the motion of other agents as they plan, anticipating their movement and

consequently producing a safe trajectory.

It is important to note that there is a continuum of planners that, although based

on local navigation techniques, attempt to deal with dynamic environments through

a series of heuristics or geometric constructs. Such is the case of the Nearness

Diagrams (NDs), providing fast reactive collision avoidance in highly dynamic

scenarios including modifications to the environment structure [94]. Others couple

the aforementioned CV model with efficient planner, such as combining a biped

walking model and laser scanner detector for dynamic pedestrian avoidance [82].

More sophisticated techniques propose learning the dynamic nature of

multi-agent navigation, seeking to minimise the reliance of machine learning

techniques on static environments. These approaches include off-line training with

improved versions of IRL [75], Q-learning [61] and Gaussian Mixture Models (GMMs)

[34] to name a few. The key insight is that by learning from pedestrian trajectories,

and selecting the appropriate training features, a robot agent may sample

trajectories that should produce comparable mobility, as demonstrated in [75] with

an autonomous wheelchair scenario.

Some approaches provide a more social focus on navigation amongst humans, and

consider their discomfort as the robot plans around their expected future motion. By

combining a behavioural model of human locomotion and a navigation algorithm

based on visual cognitive functions, multiple robots are able to plan safely while

respecting social margins inspired by proxemics [49].
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2.3.3 Interactive

Technically an interactive planner is nothing but a dynamic planner that models

the effects of motion between agents. The most common assumption is reciprocity,

the fact that an autonomous planner should expect agents to avoid it similarly as it

evades them, with the possibility of disparate shares of effort between humans and

robots.

The aforementioned Reciprocal Velocity Obstacle (RVO) is a popular geometric

construct, its optimised version ORCA used for vast multi-agent simulations where

some accuracy of motion is traded for maximum computational performance [125].

The authors have provided across the years multiple variations on the original

concept, for example focusing on multi-robot navigation with Hybrid Reciprocal

Velocity Obstacles (HRVOs) [123], or even a probabilistic approach of the original

construct [47]. Since we also consider reciprocity as inherent to the interactive

navigation problem, these techniques are specially relevant to this work and more

details are included in Section 3.2.2.

An interesting variation of ORCA that seeks to improve the motion efficiency and

realism is presented with Progressive Hindsight Optimization (PHOP). As with ORCA

it is a fast multi-agent navigation planner, but PHOP introduces the ability of the

autonomous agent to make predictions about the future motion of other agents [45].

PHOP relies on energy minimisation by considering effect of future actions or

"hindsight", providing a solution anytime if necessary. Although the assumption is

that agents are goal driven there is no intention inference, but there are other

approaches that do use probabilistic VOs coupled with recursive agent modelling for

interactive navigation with humans [66].

As expected, some approaches leverage off-line computation to improve planning

ability, such as by posing the multi-agent problem as an interactive POMDP [42].

Although other policy generation methods available, Interactive POMDPs (I-POMDPs)

provide sophisticated models for behaviour prediction of other agents as it is inbuilt

into the planner framework [43].
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Some approaches propose to train models of interactive navigation from data,

such as the IGP as presented by Trautman et al. [132]. Possible agent goals are learnt

a priori and the reciprocal intention-driven motion is represented by the IGPs,

producing the probable trajectories of agents with their uncertainties. Their

technique is demonstrated on common datasets as well as in a real cafeteria with

navigating people. Although the hyper-parameters are directly learnt from sample

trajectories, a significant amount of prior information of the environment and

acquired data is required to choose the best kernels.

2.3.4 Costmap based

Costmaps are a replicate of the world map with included knowledge of navigation

utility. This is often calculated before performing an action, and the costmap is then

provided to the planner to find a trajectory that minimises the path cost to the target

goal. As such, costmaps may then be combined with static, dynamic or interactive

planners, as they add a superimposed layer representing deterrents for the planner.

Typically, costs are allocated to areas deemed difficult or risky for the robot to

traverse. In the case of HRI navigation pedestrians often have a repulsive aura

surrounding them, preventing other agents from getting too close while in motion.

This approach is inspired by proxemics, the study of personal space around agents.

This is a useful construct that can be expanded to many different situations, adding

social rules for the robot to follow. There is a large number of proposed rules,

distances and costs in the literature, but most do not consider humans to move or

perform interactive motion [122].

An exception is provided by the "Six Harmonious Rules" from the

Human-Centered Sensitive Navigation framework [79]. The most common rules are

based on human-centred comfort, keeping a safety distance or considering the

human awareness when seeking interactions [91]. Other approaches generate cost

on predicted human motion, encouraging robot agents to move out of the way of

incoming pedestrians given their observed pose and velocity [71].
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Some approaches propose learning the social costs from acquired data instead

[106]. These may then be provided to the robot planner to navigate in the space

where they were learnt, permitting the robot to somewhat navigate like a human

pedestrian would [115]. This of course raises the question of whether human cost

functions can be directly ported to a robot and expect to have the same results, this

remains an open research problem to this day.

Lastly, costmaps may be used to encourage robot’s to follow social rules, such as

passing on the right side of corridors [86]. The framework proposed by Lu et al.,

which is also part of the standard robotics ROS infrastructure, enables researchers to

combine multiple costmap layers [88]. Overall it offers a flexible system for

researchers to implement and tune reward and cost based maps for social

navigation [87]. Since the presented approach relies on this technique, more details

are included in Section 4.2.1.



3
C o u n t e r f a c t ua l R e a s o n i n g f o r P r e d i c t i n g I n t e n t

This chapter includes work previously presented in [8] and [109], it is the product

of a collaboration with Fabio Previtali, Nantas Nardelli and Subramanian

Ramamoorthy.

3.1 I n t r o d u c t i o n

Motion planning for mobile robotic platforms in human environments is a

problem involving many constraints. Where and how the robot can travel is

fundamentally defined by the environment and its evolution over time. For instance,

the simplest motion planning specification is that the robot should not collide with

entities in the environment. Given a model of the world, there are by now many

standard approaches to computing trajectories that satisfy this simple requirement.

However, the small modification that some entities in this environment can move

around, on their own accord and possibly with their own separate goals, can have a

substantial influence on the nature of the motion planning problem. Of the few

methods that can cope with such dynamic environments, many depend on having

access to significant amounts of prior knowledge (e.g., corpora of example

movements from past experience) so as to train models of the dynamics of the

environment which are then used for decision making.

A standard approach, for instance, is to pose the problem in decision theoretic

terms (e.g., using POMDPs or its variants), learning the necessary components of

models from past data. However, this can be cumbersome in many application

scenarios. Realistic navigation in crowded spaces is an intrinsically interactive

planning problem, which significantly increases the complexity of decision-theoretic

formulations. Also, we often want robots to be deployable in multiple environments,

32
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which further stretches these methods in terms of model complexity and data

requirements. So, on platforms that have resource constraints, there is an unmet

need for efficient solutions to these interactive motion planning problems.

Figure 14: Inferring intentions of three KUKA youBots and two people by using our

counterfactual intention inference algorithm. Interactions among agents are forced

due to a limited collision-free navigation space. A novel distributed tracking

method is used to provide real-time motion data.

We adopt an intermediate stance wherein we utilise a simple parametrised motion

model (based on the concept of the HRVO) that captures key elements of how people

navigate when encountering other people in the same space; estimating the

parameters of such a model from data. Our model is simple enough, structurally, to

enable tractable learning from data. At the same time, it provides sufficient bias to

incorporate what is otherwise often learnt in an expensive way from historical data.

Furthermore, we utilise a tractable set of such models to define a belief-update

computation over goals.

In our framework, we conceptualise each other agent as adopting locally-optimal

actions given a potential goal. These goals, which represent movement intention, are
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of course latent and unobserved by our planning agent. So, the problem of said

agent is to infer from noisy data these goals in real-time, enabling a trajectory to be

planned over a longer horizon than reactive avoidance would. Intention-awareness

is achieved by counterfactual reasoning, using the predictions of the locally-optimal

movement model to update beliefs regarding latent goals. The key contributions of

this proposed framework are:

• An intention-inference algorithm for dynamic environments with multiple

interactively navigating agents

• A novel multi-camera multi-object tracking system, light weight yet flexible

enough to accommodate dynamically varying numbers of objects

• An asynchronous distributed architecture to improve efficiency and robustness

(e.g. with respect to communication failures)

We report on experiments with simulated and physical experiments in which

robotic and human agents navigate autonomously, moving toward goals while

naturally avoiding each other (see Figure 14). Our robot planner runs robustly at

10Hz, navigating naturally around other agents - implicitly inferring the target goal

of other agents in real-time using our inference model.Although the multi-camera

system is not part of the main project, it is elemental to understand its capabilities

and specifications for analysing the tracking and prediction experiments.

3.2 R e l e va n t Wo r k

In this section we briefly describe the relevant information of techniques and work

our methods depend on. Please note these approaches are not claimed to be a

contribution of this thesis and their novelty and value belongs to their respective

main authors.
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3.2.1 PTracking

In collaboration with Fabio Previtali and La Sapienza University of Rome, we

developed a novel pedestrian tracking system called PTracking. Based on their

previous work [104], we tackle the distributed multi-camera multiple object tracking

problem, where each agent is tracked locally by each camera using a particle filter.

In order to improve the accuracy and robustness of the tracking estimates, they

are then clustered and passed through a global particle filtered across multiple

cameras (See Fig. 15). A fusion algorithm based on Bayesian recursive estimation

then provides the improved pose estimate for each agent present in the scene.

Figure 15: PTracking: Each camera produces a stream where agents are locally tracked using

a particle filter. Local agent estimates are fused with a distributed particle filter,

producing robust global pose estimates.

In this thesis, we use the pose and velocity estimates provided by PTracking as the

main input for pedestrian detection. We employ multiple cameras to track and

record multiple pedestrians as they navigate, the occlusion robustness provided in

conjunction with this technique proves to be specially effective in crowded spaces. In
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our experiments, at least 2 cameras were placed opposite each other on the extremes

of the navigation setup, more were added surrounding the space if needed to

improve tracking multiple occluding agents. Fewer cameras cause agents to

disappear or detections to merge, negatively impacting our system’s performance

(i.e. Wrong motion predictions and incorrect motion planning). For more details

please review the literature [8, 109].

3.2.2 The Hybrid Reciprocal Velocity Obstacle (HRVO)

The Velocity Obstacle (VO) is a geometrical construct based on the collision cone, a

region in velocity space that represents all the velocities that would lead to a

collision with the target agent. The Velocity Obstacle (VO) is offset given the

obstructing agent’s velocity, enabling the planning agent to avert a future collision.

The Reciprocal Velocity Obstacle (RVO) is an improvement which embeds reciprocal

motion, given that the obstructing agent will attempt to avoid a collision in a similar

manner. The Hybrid Reciprocal Velocity Obstacle (HRVO) adds a heuristic which

encourages agents to pass each other on specific sides, in order to avoid oscillations

and deadlocks.

The HRVO simulator1 is treated as a motion library in our work, and for its

purpose it could be interchanged with any other that may be able to calculate the

interactive future motion of a goal-driven agent. It was selected due to its superior

computational efficiency and speed for large multi-agent setups. Numerous changes

and improvements were done to the HRVO library to suit our purposes, since instead

of using the library as a simulator as intended, it is now used to generate motion

priors for multiple alternate worlds used by our reasoning framework.

ORCA is a simplified version of this construct, where the velocity cone is truncated.

This reduces the constraints for an agent’s choice of velocities and thus speeds

computational speed at the cost of increased collisions. There is a significant amount

of research work on VO-based models and improvements, each tailored to specific

1 http://gamma.cs.unc.edu/HRVO/

http://gamma.cs.unc.edu/HRVO/
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Figure 16: Velocity Obstacle evolution: a) Given the motion of two agents, we may construct

b) a VO, c) a RVO and d) a HRVO. Image and methodology from [126].

scenarios or domains. More details may be found in the relevant literature

[124, 126, 136].

3.3 M e t h o d o l o g y

This section describes our framework for predicting the navigation goal of

multiple interacting agents. The novelty arises from the implementation of an

off-the-shelf motion simulator as a deterministic sampling method, where multiple

simulations are run for comparing different possible agent behaviours. These

counterfactual simulations, since they are an alternative to the latent real behaviour,

serve to compute the likelihood that each simulated behaviour is generated from the

same navigation goal as the observed agent’s behaviour. The mathematical

formulation and algorithm now follow:

3.3.1 Intention Inference

For each agent, aj ∈ A that is detected and tracked in the environment, we

compute predictions of movement intention in real-time. The intention of an agent is

defined as the target goal, gi that agent, aj is attempting to reach. The action space

is defined as the set of possible velocities achievable in the next planning step given

the agent’s dynamic constraints. We construct the agent motion model by online

parameter fitting given a stream of observed behavioural data, provided by the

aforementioned distributed tracker (see Section 3.2.1).
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We then use these models to generate a set of plausible actions vt
ji where each vtji

is the simulated locally optimal motion of aj navigating towards gi. These simulated

velocity vectors vtji provide the motion probabilities required for estimation of the

likelihood of aj navigating to gi, given the observed agent motion vtj .

3.3.2 Interactive Multi-Agent Navigation Framework

Our parametrised interactive dynamics model is constructed based on the notion

of HRVO (See Section 3.2.2). Multi-agent simulators utilising this concept represent

an efficient framework for simulating large numbers of agents navigating towards

predefined goals while avoiding collisions with each other. These simulation runs

iteratively, where in each time step all agents compute a new velocity vector. Their

planned motion is constrained by the movements and positions of other agents,

represented as velocity obstacles. The selected new velocity is the closest to the

preferred velocity, the best unconstrained velocity towards the goal belonging to the

subset of non-colliding velocities.

Originally designed for massive multi-agent simulations, the HRVO framework

maximises computation speed and scalability at the cost of short-sighted motion

and agent collisions [63]. We utilise its advantages to perform fast deterministic

sampling of agent motions for parameter fitting for densely populated indoor

environments.

This motion model is inherently interactive, by considering the relationships

between velocity obstacles implied my multiple agents, which enables our inference

algorithm to usefully differentiate between purposeful advancement towards a goal

and avoidance behaviours which could be mistaken as such. The framework is

comparable to a constant velocity model whenever an agent is unobstructed.

3.3.3 Goal inference algorithm

In our framework, we consider each agent to be pursuing a goal while avoiding

collisions and minimising travel time. Each agent has an internal model of the
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Figure 17: Our counterfactual framework iteratively generates a set of simulated

environments for each agent in the real world. Each simulation computes the

locally optimal motion given each possible target goal. These velocities are

compared with the observed agent motion using Bayesian recursive estimation

for intention inference.

environment and agents within it. In the context of such internal models, we

consider our agents to be boundedly rational.

Each planning agent first performs a sensing update of all agent positions and

velocities. Using the updated agent motion models, the planner agent infers the

target goal of all agents given past observations. Finally, the planner computes a

collision free motion given the inferred next movement of surrounding agents. We

assume every other agent performs a similar but not necessarily identical procedure

for navigating through the environment.

We now present the goal inference (Algorithm 1), which calculates the posterior

distribution over possible goal intentions using Bayesian Recursive Estimation (Eq. 3).

Description. The set of navigation goals G is provided a priori (such as could be

given by a semantic map). The goals represent the set of hypothetical intentions the

planning agent P considers for each agent aj. Observed positions and velocities xtj ,

vtj ∀ A are updated during the sensing step and stored in Pt. We then generate a

simulation Sji of the environment for each aj and gi , transferring the up-to-date

information of all agents to each instantiated Sji. Each simulated environment is run

for a single time step, producing simulated vtji for each agent given the specified

target goals. These velocities are constrained by vt−1
j and aj navigation parameters

(average, maximum velocities and accelerations), which are updated online given
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Algorithm 1 : Goal Inference
Input : set of goals G, agents to be modelled A, planner environment P

Data : simulation environments S, simulated velocities vt
ji, environment history Pt−1

Output : updated intention posteriors P(gi|vtj )

1 Pt ← P:{xtj , vtj } ∀aj ∈ A ; // Sensor update

2 foreach aj ∈ A do

3 foreach gi ∈ G do

4 Sji ← Pt−1 ; // Instantiate Simulation

5 aj goal← gi ; // Set agent goal

6 Sji → Run Simulation step

7 vtji ← Sji ; // Obtain agent velocity

8 P(vtj |gi) from Nx,y
(
µji,Σj

)
, Eq. 2 ; // Set motion estimate

9 if P(gi)not initialised then

10 P(gi) = 1
‖g‖

11 end

12 P(gi|vtj ) = P(vtj |gi)P(gi), Eq. 1 ; // Update posterior

13 end

14 end

15 Return P(gi|v1:tj ) ∀aj,gi from Eq. 3

sensor observations and stored on the planner agent’s memory. See Figure 17 for a

visual depiction of this process.

The set of simulated velocities vt
ji is used for generating the set of counterfactual

motion probability distributions used by the inference algorithm. The posterior

update rule for Bayesian estimations is described as:

P(gi|vtj) = P(vtj |gi)P(gi) (1)

where P(gi|vtj) is the probability that agent aj with current velocity vtj is heading

towards goal gi. P(gi) is the prior probability for each gi, initially uniformly

distributed across all goals and updated after every inference step with the

previously calculated posterior P(gi|vt−1
j ). The likelihood P(vtj |gi) of vtj given gi is
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sampled from a bivariate normal probability distribution constructed from each vtji

such that:

Nx,y
(
µji,Σj

)
, µji =

 µx

µy

 (2)

where µji is the mean for the bivariate Gaussian distribution for aj and gi centered

at vtji , or P(vtj |gi) in Eq. 1. After each iteration of the inference algorithm, the set of

normalised posterior probabilities converges towards the latent intention of the agent.

The most probable goal is then used by the planner agent to accurately predict the

future motion of each aj.

P(gi|v1:tj ) =
P(vtj |gi)P(gi|v

1:t−1
j )∫

P(vtj |gi)P(gi|v
1:t−1
j )dvtj

(3)

As an example, consider two agents navigating autonomously between Goals 1

and 2, as seen in Figure 18. The intersection between goals forces agents to evade

each other while navigating towards their target. The velocity of Agent1 is, in an

unobstructed scenario, closer to the optimal velocity towards Goal3 rather than 2.

However, the presence and behaviour of Agent0 constraints the range of possible

motions by Agent1 and vice versa. Our inference framework considers this and

generates a set of counterfactual velocities for each agent given all possible goals

and other agents present in the environment. So P(vt1|g2) > P(vt1|g3) and thus

P(g2|vt1) increases towards iterative convergence.

3.4 E x p e r i m e n ta l e va l uat i o n

This section describes the experiments performed for testing our intention

inference algorithm and the distributed tracker. Results from experiments in our

HRI lab (see Figure 19) and in the main entrance to our Informatics Forum are

discussed in Section 3.4.1 and 3.4.2 respectively. Technical details of the

experimental setup are also included for reproducibility in Section 3.4.3. Videos of

our experiments are publicly available on our website2.

2 Videos can be downloaded from http://goo.gl/r4pJIV.

http://goo.gl/r4pJIV
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Figure 18: Two autonomous planning robots moving towards opposite goals. Agent 1’s

bearing and velocity indicate movement towards Goal 3, but our inference

algorithm correctly predicts its true intention towards Goal 2. Agent trails represent

past trajectories, instantaneous likelihoods L(Agent,Goal) are shown under each

counterfactual simulation window.

3.4.1 Laboratory Experiments

Setup. Robot position and velocity estimates are acquired through adaptive Monte

Carlo localization with an on-board laser scanner per robot. Pedestrian position and

velocity estimates are provided by the distributed tracker using two overhead

cameras, facing opposite directions with overlapping fields of view over the

environment. Each agent is delimited by a 80 cm2 circular boundary given the

footprint of the robots used for the experiments. In high density navigation,

autonomous robots are challenged with reacting fast enough to avoid collisions
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Figure 19: Navigation environment for human-robot interaction experiments.

while navigating towards their goals efficiently. We use an HRVO-based fast

de-centralised reactive planner for controlling our robots autonomously.

Description. Although many experiments with differing agent and task

combinations were carried out, we choose to show a 4 agent navigation experiment

for demonstration purposes. Figure 20 shows two autonomous robots (Agents 0 and

1) tasked with moving through the goals in a clockwise cycle. Two human

participants (Agents 20 and 21) randomly decide which goal to go for next after

arriving at each target goal. This experiment forces both robots and humans to

navigate interactively since the space for collision free motion is limited.

Pedestrian motion. The accurate velocity control by the robot agents enhances

the position and velocity estimates provided by the distributed tracker. People are

however generally faster in both navigation speed and motion planning, representing

a harder agent to track and predict. Our distributed tracker updates the agent motion

parameters online and provides a representative navigation model of each agent in

the environment. This enables the inference algorithm to predict human navigation

goals just as fast as for autonomously planning robots.

Performance. During our experiments in complex scenarios including

autonomous robots and human walkers, motion is fluid and convergence over

posteriors occurs as quickly as 100ms after leaving a goal – one single iteration of

the inference algorithm. When agents are unobstructed, our algorithm performs
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Figure 20: Two autonomous robots (Agents 0 and 1) cycle clockwise and 2 pedestrians (Agents

20 and 21) navigate around the environment. Human participants were instructed

to choose random goals and to let the robots do most of the avoidance. Even

in complex scenarios, our goal-inference algorithm provides real-time accurate

intention predictions for all agents.

comparable to a simpler constant-velocity model that assumes a direct trajectory

towards the goal. When agents are forced to move at a velocity constrained by other

agents’ motion, our inference framework predicts the reciprocal change in motion

accurately. Our algorithm thus converges towards the true latent goal when the

observed velocity is affected by interactive constraints.

Figure 20 shows the instantaneous likelihoods and posterior estimates over goals

for all agents. The inference of Agent 20’s intention is the only one not converged yet

since the agent just left Goal 2. Its velocity (influenced by Agent 0’s motion) is used

by our framework to predict the agent is moving towards Goal 3. Note the

probability of Agent 20 moving towards Goal 1 is relatively high, given that its
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hypothetical motion towards Goal 1 could be blocked by Agent 1. During some

experiments, humans were asked to not avoid the robots and navigate towards goals

non interactively. Our reactive planner is still capable of evading un-cooperative

agents, even though the framework is designed for fully-aware interactive

navigation. Minor collisions during experiments were rare and caused due to

wireless failure or complete occlusion of a camera tracked agent.

Figure 21: Sampling of goal space for intention inference. 100 discrete samples across the

x and y space dimensions at 1 and 0.5 meter separation respectively. Agent

0 navigates and reaches Goal 1, located at [-6.3, 1.5]. The 3D plot shows the

probability distribution of goals over the navigation space.

Goal Sampling. Navigation goals may not be pre-defined ahead of time, such as a

robot that is unaware of the human’s space of goals. For this case we may sample the

space with a discrete set of goals, and use our inference algorithm to calculate the

posterior probability distribution over all possible intentions. In Figure 21, 100 goals

were placed evenly across the space, and the autonomous agent sent to navigate

towards Goal 1. The plot shows that the inference framework correctly predicts the

location of the agent’s goal. Note the posterior distribution behind Goal 1 formed by

the previous motion towards Goal 1 as shown by the agent trajectory. Goal sampling
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is specially suitable for converging over dynamic goals, such as when an agent is

followed by another.

3.4.2 Atrium Experiments

Unconstrained. We evaluated our framework to perform real-time tracking and

goal inference in a natural human environment. This is challenging due to

numerous aspects, such as containing agents with changing intentions, or

navigating with other latent constraints (e.g., maintaining a formation with other

agents). Our results show that, after selecting relevant goals for the environment

(i.e., main exit, elevators, bathrooms), our inference algorithm provides accurate

beliefs over the possible set of goals (see Figure 22).

Dynamic. The large size of this environment increases the available navigation

space around agents, thus relaxing the constraint of swift collision avoidance.

However, the continuous stream of agents entering and leaving the scene creates

difficulties experienced by a navigating robot when navigating across a human

dominated environment. Our inference algorithm is robust in dealing with any

occasional identity mismatches or occlusions by the tracker.

Density. Given the distributed nature of our tracker and inference algorithms,

computational complexity increases linearly per each agent entering the scene. This

experiment shows up to 20 real agents entering the environment and navigating

freely between goals. Our framework is robust and goal inference accuracy remains

high and convergence is fast under such a challenging setup.

3.4.3 Technical Specifications

This section outlines the technical details of the experimental setup. All

experiments were carried out using the ROS framework. The code used for our

experiments is publicly available on GitHub3.

3 PTracking can be downloaded from https://bitbucket.org/fabioprev/ptracking and the

counterfactual framework from https://github.com/ipab-rad/ICRIN.

https://bitbucket.org/fabioprev/ptracking
https://github.com/ipab-rad/ICRIN
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Figure 22: Real-time intention prediction in a densely populated environment. Around 20

agents navigate unconstrained in a natural scenario. In this setup, the algorithm

generates 60 simulated environments (20 agents, 3 goals) during each inference

iteration, providing an up-to-date probability distribution over agent intentions.

We use a group of five KUKA YouBots in a laboratory space that covers an open

space of 8 x 6 metres. The robots are autonomous, where each planner has

independent knowledge and they carry out separate decision-making processes

online without centralised control. Sensor fusion of data provided by the distributed

tracker and robots’ amcl produce accurate robot position and velocity estimates.

Computability. In order to ensure real-time performance, we measured the

computational speed of our proposed method on all the environments used for the

experiments. The results are produced using a single core Intel(R) Core(TM)2 Duo

CPU P8400 @ 2.26GHz, 4 GB RAM. Our framework is robust at tracking, inferring

and planning in real-time (Tracker: ∼30Hz, AMCL: ∼3Hz, Inference/Planner: 10Hz).

Each inference step takes ∼3ms for a default 5 agent, 3 goal setup, scaling linearly

with number of agents and goals to be inferred.
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3.5 C o n c l u s i o n

We presented a novel framework for inferring and planning with respect to the

movement intention of goal-oriented agents in an interactive multi-agent setup. Our

counterfactual reasoning approach generates locally optimal motions of agents in

the environment based on parametrised agent models, whose parameters are being

estimated online from observed data. Our goal-inference procedure is a Bayesian

Recursive Estimation to maintain beliefs over potential goals for all agents. This

method is tested for accuracy and robustness in dense environments with

autonomously planning robots and pedestrians in dynamic environments. Our

results show that this is an effective and computationally efficient alternative to

models that often depend on offline training of pedestrian trajectory models.



4
I n t e r a c t i v e C o s t m a p s f o r S o c i a l N av i g at i o n

This chapter includes work previously presented in [8] and [9], it is the product of

a collaboration with Fabio Previtali, and Subramanian Ramamoorthy.

4.1 I n t r o d u c t i o n

Autonomous robots are being deployed widely in a variety of human

environments ranging from indoors such as hospitals and shopping malls to more

rugged environments such as construction sites. This variety in applications belies

the fact that there are a set of core competencies that any distributed robot system

must possess. The most basic capability is to be able to plan and execute paths

efficiently, given a description of the environment (typically a map, often the output

of a probabilistic mapping algorithm) and potentially noisy sensory signals, such as

from vision or laser scanners. In many realistic applications, this description of the

task involves not just a specification of where obstacles may lie, but also a more

elaborate specification of the relative suitability of different regions of the workspace

from the point of navigability, safety and so on. In the literature these specifications

are often captured within costmaps [12, 60, 128].

We present a framework that, focusing on low computational and implementation

cost to the user, is able to provide a rich prediction of other agents’ intentions and

future motion. We generate a costmap fast enough for online planning, describing the

future motion of agents capturing the reciprocal motion of their trajectories. We refer

to reciprocity as the interactive effect of planning agents onto each others activity. We

use counterfactual reasoning for estimating the navigation goals of agents given their

observed positions and velocities. Using an interactive motion model, we can then

predict the trajectories of navigating agents while computing the planner’s preferred

49
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trajectory. This is constructed as a cost/reward multi-layer costmap which encourages

the planner to navigate socially with other agents (Fig. 23).

Figure 23: A human H and an autonomous robot R navigate towards opposing goals. The

robot predicts the intention of the human and constructs an interactive costmap,

dynamically describing the reciprocal agent motion estimates as a cost layer (red)

and encouraging the robot to navigate socially as a reward layer (green).

We compare our method and results with other efficient state-of-the-art methods

for dynamic navigation, such as social costmaps[87]. Since we acknowledge the

navigation task and environment determine the combination of different costmap

layers, we have designed our framework as a configurable ROS Navigation plugin.

For example, some setups may prioritise safety over convenience of the autonomous

platforms, and thus may require a layer adding an area of cost surrounding moving

agents. Our implementation interfaces motion prediction with multi-layer costmap

generation, thus easing the combination of our interactive costmap layer with others.

The key contributions of our proposed framework are:

• An interactive motion prediction algorithm based on counterfactual reasoning

for navigation intent in dynamic environments
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• A method for online costmap generation without special contextual world

knowledge

• A framework for effective social motion-planning evaluated against state-of-the-

art efficient costmap methods

We propose a novel construct: interactive costmaps (Fig. 23). We define them as a

combination of a costmap with a mechanism for reasoning about interactive agents’

intention in the environment in order to adapt this costmap over time. We

contribute to an active literature on the topic of how best to strike the balance

between the expressiveness of models of dynamic entities in the environment, and

the computational costs associated with them. Simple and fast models in this spirit

include those that simply avoid visiting any region where an obstacle has been

sighted, and a slightly better version of this which assumes that obstacles travel at a

constant velocity so that an entire region can be treated as untraversable [77].

Our focus, following the methodology of [8], is to achieve computationally

efficient prediction of intent using light-weight motion models, and to integrate this

seamlessly with costmaps which are implemented and demonstrated within the

ROS environment. This allows our contribution to fit within the larger ecosystem of

functionality: including high-level features such as social and human factors, or

robot motion specifics when ported to different platforms.

4.2 R e l e va n t Wo r k

In this section we briefly describe the relevant information of techniques and work

our methods depend on. Please note these approaches are not claimed to be a

contribution of this thesis and their novelty and value belongs to their respective

main authors.
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4.2.1 ROS Navigation and multi-layer stack

The Robot Operating System (ROS) [111] is a widely used framework for creating

robotics software. It provides the infrastructure for modules or nodes to share data,

e.g. a sensor node providing a stream of values to a planning algorithm in a different

node. Originally designed to serve as just the foundation of the PR2 Robot, its

popularity as an efficient message-passing system and the modularity of its package

implementation has catapulted it to become the de facto choice for most robotic

research platforms. Its open-source community creates and distributes a vast

amount of code implementations of on-going research approaches, our aim being to

contribute to the ever growing expanse that is ROS.

Although our approach relies on many of ROS features, we build our work

specifically atop the navigation stack. This collection of packages provide a complete

solution for a mobile robot, including sensor processing, localization, mapping and

motion planning. The techniques implemented and their configuration for the core

ROS packages are often the most robust but conservative, since the aim is to provide

a working solution to as many potential different robotics systems as possible.

The navigation stack thus assumes the world is static, and uses a combination of a

global planner to calculate a trajectory to reach the target goal, and a local planner

to avoid any collisions while following the trajectory. The implementation produces

a costmap from environment observations, representing physical objects as “lethal”

obstacles across which the robot cannot traverse, empty space and anything in

between. Detected obstacles are inflated by adding a cost area surrounding them,

which the planner uses to balance navigating towards the goal efficiently but safely

(See Fig. 4.24(a)).

As discussed previously in Section 2.3.4, there are prior implementations of

costmap generation techniques aimed at producing social navigation among human

pedestrians, as presented by Lu et al.2 [86, 87]. The authors provide a novel layered

costmap framework, designed to ease the combination of multiple costmaps and

1 http://wiki.ros.org/costmap_2d

2 We note that David V. Lu!! [sic] is also the main developer of ROS Navigation and commend his great

work on practical social robot navigation.

http://wiki.ros.org/costmap_2d
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(a) ROS Navigation costmap values and obstacle inflation (b) Multi-Layer costmaps

implementation from [88]

Figure 24: Our approach builds on top of ROS, its navigation stack and the multi-layer

costmaps extension. a) Image from 1

tuning their numerous parameters effectively [88] (See Fig. 4.24(b)). We develop our

costmap layers following this formalism, providing our techniques as a plugin so it

may be seamlessly integrated.

4.3 M e t h o d o l o g y

We propose a framework for generating a costmap for a planning agent in an

environment, focusing on its ability to navigate interactively with other agents. These

agents may or may not be using similar planning techniques, aiming to plan robustly

regarding other robots or human pedestrians. Our layered costmap is designed to

represent the cost for our agent to navigate through the space towards a designated

goal, while rewarding it for acting socially [87]. In order to construct this multi-layer

costmap, we require the online position and motion estimates of all agents, as well

as the latent target goal for each agent.

We acquire position and velocity estimates of pedestrians online using our own

distributed multi-camera tracking algorithm. Each local position estimate of a

navigating agent is provided by each camera and then fused globally using a
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distributed particle filter [109]. We then estimate their velocities given their past

observed motion and calculate their average velocities and accelerations.

4.3.1 Counterfactual Reasoning for Intention Prediction

Latent agent goals cannot be observed directly, so in order to infer them we use a

reasoning framework based on an interactive motion simulator, which provides the

posterior probability of target goals for each agent online. Based on the RVO2

reciprocal motion simulator library [125], our generative model simulates the

interactive motion of agents, given all agents’ past motion and a set of hypothetical

goals, and compares it with current observations to determine the likelihood of such

hypotheses. Our counterfactual framework uses Bayesian recursive estimation to

track the likelihood for each agent over all hypothetical goals in the environment

(Fig. 17 on Sect. 3.3.2 page 39 and [8] for details).

We use the same formalism and notation as Sect. 3.3.2: For each agent, aj ∈ A

that is detected and tracked in the environment, we compute online predictions of

movement intention. The intention of agent aj is defined as the target goal gi from

the set of hypothetical goals G that aj could be attempting to reach. The action

space is defined as the set of possible velocities achievable in the next planning step

given the agent’s dynamic constraints. We construct the agent motion model by

online parameter fitting given a stream of observed behavioural data, provided by

our distributed tracker algorithm [109].

We then use these models to generate a set of plausible actions vt
ji where each vtji

is the simulated locally optimal motion of aj navigating towards gi given A. These

simulated velocity vectors vtji are used to compute the motion likelihoods given the

observed agent motion vtj . They are in turn required for estimation of the posterior

of aj navigating to gi using Bayesian recursive estimation:

P(gi|v1:tj ) =
P(vtj |gi)P(gi|v

1:t−1
j )∫

P(vtj |gi)P(gi|v
1:t−1
j )dvtj

(4)
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Figure 25: Diagram illustrating an interactive costmap. The cost layer (red) is constructed from

other agent reciprocal motion estimates given their target goal, and reward layer

(blue) is built from future robot planner reciprocal motion predictions.

4.3.2 Costmap Generation via Interactive Motion Simulation

Given the robot planner current pose, velocity and goal {Pp, Pv and Pg} and for

all other agents {Ap, Av and Ag} - where Ag is estimated with Eq. (4) - we expand

our generative framework to reason about the future motion as well as the past

(Algorithm 2). Since our navigation model takes into account the reciprocity

between agents’ motion, we instantiate a simulation S and generate a sequence of

future planner and agent pose predictions (Pest, aestj respectively) in order to

construct an interactive costmap Icostmap across space and time (Fig. 25). It is

important to realise that these position estimates not only describe the agents’

goal-driven motion, but also capture the reciprocity given each others’ activity or

interactiveness of navigation.

We begin by performing motion estimates (Algorithm 2, lines 2-5) for a set number

of future steps which we call Foresight. This parameter sets the number of steps the

planning agent uses to generate position estimates of navigating agents. Given the

simulator timestep ∆t, the look-ahead time is thus Foresight×∆t.

A longer foresight enables the robot to plan further into the future and a smaller

∆t builds a denser costmap at a small computational cost. These parameters depend

on the speed of the agents and size of the navigation space. From empirical tests
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Algorithm 2 : Interactive Costmap Generation
Input : Pp, Pv, Pg, Ap, Av, Ag, Foresight, ∆t

Data : Pest, Aest, Simulation S, Rlayer, Clayer

Output : Icostmap

1 Instantiate simulation S , assign {Pp,Pv,Pg,Ap,Av,Ag}

2 for 1 in Foresight do

3 Run simulation S given ∆t ; // Compute motion predictions

4 Store Pest → Pest, aestj → aestj ∀A

5 end

6 foreach aestj ∈ Aest do

7 foreach aestj ∈ aestj do

8 Clayer ← Nx,y
(
µji,Σj

)
; // Generate Cost Layer

9 end

10 end

11 foreach Pest ∈ Pest do

12 Rlayer ← Nx,y
(
µji,Σj

)
; // Generate Reward layer

13 end

14 Return Icostmap = Clayer −Rlayer + Defc - Eq. (5)

we select a balanced Foresight = 20 steps and ∆t = 0.2 seconds (i.e., 4 seconds look-

ahead), enabling our agents to generate a costmap of our complete environment.

However, a cost layer representing the motion of other agents’ interactive

navigation, without encouraging our own planner to act accordingly, produces

inadequate motion due to the unequal reciprocal offset between the agents’ share of

navigation effort. We thus represent both the cost of navigating through other agents’

future trajectories, while providing reward for the planning agent to navigate

interactively. Like so, we split our interactive costmap into multiple layers as

described in [88].

Cost layer. Planner cost generated over agents’ interactive future motion estimates

(Algorithm 2, lines 6-10).
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Reward layer. Planner reward generated over planner’s interactive future motion

estimates (Algorithm 2, lines 11-13).

We generate the cost/reward values with a bi-variate Gaussian distribution Nx,y

with µji centered on the position estimates produced by our predictor. We assume

the rate of change of the agent’s velocity captures the uncertainty of our velocity

estimate, thus set Σj to the observed acceleration of the agent.

The values of a ROS costmap layer range between 0 to 127, thus to implement

both rewards and costs we set the default cost Defc of all cells to be halfway. Any

cost value smaller than Defc indicates a reward for the planner agent, and any larger

value represents the cost generated by the future motion of other agents.

We thus construct Icostmap, which represent the overall cost/reward values

contained within each costmap cell as follows:

Icostmap = Clayer −Rlayer + Defc (5)

4.3.3 Integration with ROS Navigation

We make use of the global and local navigation functionalities provided by ROS,

by creating a plugin which generates a costmap during the map update loop. This

costmap is then used by a local planner, which constructs a trajectory given a target

goal within the local map provided. Usually, the map will be empty unless obstacles

are detected within range, or a costmap is loaded.

The trajectory is scored given the proximity to the target goal Goald, the similarity

to the “optimal” trajectory to the goal Pathd, and the traversal cost across the costmap

Costmapc. These are weighted with wg, wp and wc respectively, and the cost function

for scoring trajectories is as follows:

C = wgGoald + wpPathd + wcCostmapc (6)

Where Costmapc represents our interactive costmap Icostmap in Eq. (5).

For our experiments, we modified the default ROS navigation Goal (wg), Path (wp)

and Costmap (wc) weights from [0.8, 0.6, 0.01] to [0.3, 0.01, 0.9] respectively. These
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values greatly encourage the use of our costmap while keeping a reasonable

trajectory weight to encourage the robot to keep moving towards the goal. Specific

information regarding the ROS navigation framework, the basic costmap structure

and the trajectory planner can be found in the ROS Navigation wiki3. A critical

evaluation of the aforementioned methods and the selected baselines now follows.

4.4 E va l uat i o n

4.4.1 Baselines

As explained in Section 2, we do not compare against any offline trained methods

due to their reliance on contextual data and inability to deal with highly dynamic

environments. In order to evaluate Interactive Costmaps (Fig. 26d), we have selected

the most commonly used costmap-based navigation methods as baselines.

Obstacle layer. The standard obstacle detection is performed using an on-board

laser scanner, and introduces a cell containing a lethal obstacle in the robot’s

navigation space (Fig. 26a). When the cell is re-observed, if the obstacle is no longer

present and given a clearing parameter, the obstacle is removed. A lethal obstacle is

a physical entity assumed to be static, around which an inflation layer is constructed

given the radius of the robot in order to allow planning around it. During

experiments, these obstacles may linger if unobserved, which may populate the

environment with incorrect lethal costs assumed to still be present.

Although this is the standard setup for autonomous navigation with ROS, it

proves ineffective for dynamic setups, where moving agents are registered as

obstacles trails. These create impasses across the space, and force the platform to

re-plan and take inefficient paths towards goals, or at worse fail to find any path if

the space is constrained (e.g., corridors).

Constant velocity model. A popular model for describing the motion of

pedestrians, it generates position estimates across future iterations given the

assumption that an agent will continue moving with its current velocity vector (Fig.

3 http://wiki.ros.org/navigation

http://wiki.ros.org/navigation
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(a) Standard obstacle layer (b) Constant Velocity model

(c) Proxemics/Social layer (d) Interactive costmaps

Figure 26: Costmap comparison. Robot R and detected agent (square) are located opposite

each other moving towards opposite goals. Cost can be seen in red and reward

in light blue, rest are obstacles. The projected path indicates the ROS navigation

trajectory biasing the robot towards the goal. Only our method is able to correctly

infer the goal and predict the future agent motion.

26b). This approach is inherently naive, since it does not consider what goal the

agent may be navigating towards, nor does it consider the reciprocal effect of other

agent’s motion. However, the speed at which it may be computed in order to

produce future agent position estimates provides estimates fast enough for online

planning.

Proxemics and social preference. The de-facto approach for navigating amongst

people in ROS is the usage of the social navigation layers [87], consisting of the

Proxemics layer and the Passing layer (Fig. 26c). Proxemics provides a cost which

describes the social space for each agent given their position and velocity, whereas

the Passing cost is a heuristic which generates a cost at either side of an agent

forcing the planner to always pass on a pre-defined side. Although social navigation
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is focused on navigating in human environments, it provides a limited description

of their future motion, formed by a bi-variate Gaussian shaped towards the velocity

vector of the agent.

The motion prediction is thus not much better than the constant velocity model,

although navigating around static people is safer due to the description of the

personal space. At worse, the planning agent avoids navigating agents excessively

given the cost around their present location, and given that the passing side does

not get chosen dynamically, it may block the path of a planning agent if the passing

agent chooses the same passing side as the planner.

4.4.2 Experimental Setup

We now present the results from a series of experiments that compare the

performance of our methods against baselines in our environment setup (Fig. 19 on

page 43). We deploy as much of the code as possible on the mobile platforms

themselves, as we focus on autonomous and distributed setups. This enables

navigation frameworks to be robust against network failures and renders it easily

re-deployable in different environments.

We use a small fleet of youBot robots for our experiments, focusing on

human-robot encounters. Although the youBot is an omni-directional platform, for

our experiments we configure it to prefer the default of navigating forward. This

increases its maximum speed, improves robot localization accuracy and obstacle

detection and also helps human pedestrians to infer the future motion of the robot.

The youBot is computationally constrained, reinforcing the need for implementing

efficient planning solutions. This is convenient also for more computationally

endowed or augmented platforms, since there is a need to keep navigation

algorithms fast to improve reactivity and allow computationally expensive processes

(e.g., vision) to perform unobstructed. We select 10Hz as the minimum frequency at

which the robot may plan its motion for producing fluid and reactive navigation.

For detecting pedestrian agents, we use a distributed camera setup [109] which

provides agent position and velocity estimates, which are then fused for improving



4.4 E va l uat i o n 61

their accuracy and then published through ROS. We present results based on an

off-board camera setup as this allows us to focus attention on the core interactive

navigation module. We expect that an on-board sensing version of the same

experiment would require minimal modifications - mainly dealing with occlusions

in order to create the observation traces. Multiple cameras offer occlusion

robustness, improving the quality of position and velocity estimates for these

experiments.

It is important to note that we do not provide the planner agent with the target

goal of other navigating agents ahead of time, they must infer this from online

observations whilst completing the task. We thus propose the following

experiments.

(a) Passing experiment (b) Crossing experiment

Figure 27: Passing and crossing experiments 1 and 2 with the agents’ initial positions and

goals. The planning robot R and a detected human are tasked with moving towards

pre-determined goals GR and GH respectively. Using interactive costmaps, their

interactive future motion is predicted and shown as the robot’s reward (blue) and

cost (red) layers.

Passing experiment (Exp. 1). This experiment consists of two facing agents

navigating towards the starting location of the opposite agent (Fig. 27a). The

difficulty of this scenario arises from avoiding the other agent on the correct side

without oscillating, and with enough clearance to behave socially - rather than

navigate in a straight line and force the other agent to take an inefficient longer

trajectory.
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Crossing experiment (Exp. 2). In this experiment agents are tasked with navigating

while crossing an agent, which forces the robot to either overtake the navigating

agent or wait till it passes ahead towards its goal (Fig. 27b). The difficulty arises from

gauging the position and velocity of the approaching agent, since the planner could

cause a collision or always be forced to wait for the passing agent slowing down

unnecessarily.

Free navigation (Exp. 3). This unstructured experiment involves several agents

choosing random goals within the navigation space (Fig. 19). The agents are forced

to pass or cross dynamically, as well as performing other behaviours not previously

described (e.g., navigating in parallel, or waiting for an agent to leave a goal). We

consider this to be the ultimate navigation test, and we varied the trials to include on

occasion multiple planning agents and/or multiple pedestrians, in order to test for

any distributed navigation artefacts (e.g., robot planners oscillating).

Table 1: Comparison of costmap experiments, obstacle layer is used as a baseline. CPU%

shows average measured consumption and p.a. shows additional load per agent.

Execution time shows time required for costmap generation. Experiment times show

average/worst time over all trials, where ∞s denotes a timeout (> 30s).

Method CPU Execution Passing Crossing Collision Near-collision

Obstacle layer (Baseline) 0% 0s 5/∞s 5/∞s 80% 70%

Constant Velocity model 4%+1% p.a. 5ms p.a. 15/20s 12/18s 40% 60%

Proxemics and social 3%+2% p.a. 5ms + 5ms p.a. 8/28s 12/14s 20% 50%

Interactive Costmap 6%+2% p.a. 5ms + 5ms p.a. 7/8s 8/9s 10% 20%

4.4.3 Results

In Exp. 1 and 2 agents start opposed and navigate simultaneously towards their

goals. Experiments are timed out at 30 seconds after which the navigation is

considered to be unsuccessful. The goal location and distance is varied, but was

never longer than 4 metres apart. Given the variability of pedestrian and robot

motion and sensing across trials, goals are chosen to enable agents to select the
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passing side and whether to overtake or not. If a collision takes place the trial is

stopped and considered a failure. Exp. 3 trials last up to 2 minutes each, and 10

trials per experiment were executed for each of the compared methods (Total: 120

trials).

For all trials, we measure the average time to completion, average CPU usage,

execution time of the costmap generation loop, collisions and near-collisions. We

define a near collision where one or both agents are forced to significantly and

abruptly alter the intended trajectory in order to avoid an imminent collision. This is

often caused when navigating non-reciprocally, ignoring other agent’s presence or

motion. Although near-collisions are better than collisions, it must be noted that

human pedestrians are specially adept at collision avoidance. We thus consider their

mobility when judging near-collisions as the pedestrian is forced to greatly deviate

from their path. Our results may be found in Table 1.

4.4.4 Analysis

Our results show that autonomous agents relying on costmaps for path planning

are able to traverse the environment. The variety of costmaps tested represents

information from the environment which is used by a traditional planning

algorithm, in our case DWA, to find a collision-free path in the provided search space.

They are in so far optimal in representing the traversal cost of the navigating agent,

whereas the performance of finding a path depends on the search algorithm used.

Invariably, the larger the search space (i.e. the area surrounding the agent

considered for planning a path), the longer the time required to generate it,

regardless of which costmap method is used. The computational cost and scalability

thus depend significantly on the number of dynamic agents present, since each

must be represented on the costmap accordingly.

The acquired results of the evaluated methods (See Section 4.4) are shown in

Table 1, and their discussion now follows:

Obstacle layer. We consider this the standard baseline, since any other method that

considers perceived obstacles as dynamic rather than static should perform better.
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Our results indicate just that, although with negligible cpu% cost and execution time,

the robot planner had difficulties robustly navigating between goals. More often than

not, the planning agent would perceive a walking agent moving past and either find

a gap between agent detections through which to navigate, or be stuck long enough

to re-observe the space and proceed through after a long delay (often longer than

the 30s cutoff). The leftover trail of lethal obstacle filled cells makes the obstacle layer

ineffective for navigation in dynamic environments (Fig. 26a).

We tested a modified obstacle layer, where only the current position of the

detected agents are added to the costmap. This is performed with our agent layer,

using the externally acquired tracking data to locate agents’ positions. This version

of the costmap greatly improved the passing and crossing times - close to the

optimum of 5 seconds - for the experiments as reported in Table 1. Unfortunately

this is due to the robot practically ignoring the presence of the navigating agent,

which caused many near and full collisions as it was not navigating interactively.

Constant velocity model. Computationally, it consumes more on average than the

obstacle layer since it requires accessing the costmap generation methods. By

introducing a layer of cost in front of the moving agent, the planning agent is given

a prediction of the future motion of the agent, and thus attempts to plan around.

However, since the prediction is based on the average velocity of the agent, it is

inherently noisy and fluctuates, blocking the planner’s path intermittently. Due to

this, the constant velocity model “freezes” the robot platform until the person has

passed, thus why on average the passing time is ∼15 seconds (Table 1).

In the crossing experiment, the constant velocity produces better results since the

planner always predicts (sometimes erroneously) that the pedestrian will always walk

in front of the robot, and thus the robot must wait and pass behind the agent. Even

though we find this to be an artefact rather than a design choice, it speeds up the

navigation for the planner since there is no oscillation between possible passing sides

such as in the previous experiment. However, the collision and near-collision rates

caused during the experiments is still considerably high, specially since the velocity

of a pedestrian may change rapidly, and without intention prediction the robot does

not have enough time to re-plan safely.
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Proxemics and the passing layer. Proxemics offer a description of cost over the

current position of an agent and its instantaneous future motion. The results

obtained reflect this by enforcing the planner to prefer to stay away from the

detected pedestrian. This produces good results in Experiment 2, as it dynamically

chooses whether to pass in front or behind the crossing agent.

However, Proxemics does not provide any useful information when passing an

opposing agent, since it is in a way a combination of the obstacle layer and a velocity

obstacle with limited range. The planner thus appears to not navigate interactively

until near the presence of the Gaussian personal space distribution, and then re-plans

causing a near-collision. Furthermore, enabling the passing heuristic from the social

navigation layers forces the robot to prefer passing on a pre-determined side, which

works as many times as the human pedestrian chooses the correct avoidance side.

Interactive costmap. The predictive model is made as efficient as possible, each

counterfactual simulation taking only 20µs to run at most, providing the interactive

predictor plenty of time for generating future pose estimates. The costmap generation

cpu cost and time is comparable to the constant velocity model, since both need to

edit the cost values inside the cells of the local costmap.

The interactive costmaps are generated and updated online, and provide the

planner with the necessary information to move interactively towards the target

goal. We achieve the lowest average time in both experiments, as well as the lowest

number of collisions and near-collisions overall. In the passing experiment, the

planner quickly predicted the intended goal of the opposing agent and the passing

side given the average velocities and positions of both agents. In the crossing

experiment, the behaviour of overtaking the crossing agent was determined by the

reward/cost sum in the costmap. Given the trajectory scoring function - Eq. (6), if

the path is close to optimal, the goal close enough, and the interactive prediction

indicates that passing in front of the other agent is doable, the planner selects to do

so.

Overall, navigation smoothness is much improved notably due to the fact that

pedestrians could understand the future motion of the robot given its tendency of

navigating interactively. The legibility of motion and expected reciprocity are factors

recognised to improve navigation between humans and other autonomous agents
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[72], a benefit complementary to reducing the number of collisions [93]. In our

experiments, a collision rate of 10% is a practically acceptable threshold, specially

considering other infrastructural components add uncertainty and delays to the

planning system (i.e. Tracker, goal inference, computational and wireless

limitations). Better results could be expected with code optimization and improved

calibration of the camera tracking system.

Our open source code used for the navigation experiments, goal inference and

interactive costmap generation can be found on our GitHub repositories4 and our

results online5.

4.5 C o n c l u s i o n

We have presented a novel approach to intention-aware motion planning based on

counterfactually inferring goals of navigating agents for generating an interactive

costmap. Our framework is explicitly designed to run on computationally

constrained platforms while providing a rich prediction of agents’ future actions

online.

We have shown that we outperform commonly used alternatives in a selection of

navigation experiments, reducing the average time to completion and the rate of

collisions and near-collisions. We thus provide an efficient costmap layer integrated

into a ROS Navigation based framework for providing safe social navigation for

mobile robots in human environments.

4 https://github.com/ipab-rad

5 https://goo.gl/iW7Z0c

https://github.com/ipab-rad
https://goo.gl/iW7Z0c
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Ta s k A l l o c at i o n f o r D i s t r i b u t e d R o b o t i c S y s t e m s

This chapter includes work previously presented in [8], [9], [13] and [14], and as

such it is the product of collaborative work with Jose Cano Reyes, Vijay Nagarajan,

Sethu Vijayakumar and Subramanian Ramamoorthy among others.

5.1 I n t r o d u c t i o n

A ROS application is a collection of software processes called nodes, that

communicate with each other through message passing. Each node usually

performs a specific task, e.g. sensing, planning, navigation, etc. A ROS node or task

is typically parametrised, where parameter values determine the content and

frequency of the messages sent by the node. Therefore, parameters not only

determine the performance of the node, but also the amount of computational

resources required. For example, consider a ROS node implementing the navigation

task of a mobile robot. By increasing the controller frequency of this task, we can

increase the number of velocity commands per second sent to the robot wheels,

thereby enhancing the quality or performance of the navigation, albeit at the cost of

increased CPU utilisation. In addition, ROS applications may be distributed, i.e. run

across multiple computation devices, so nodes could be allocated to any of these

devices.

Given this context, the ROS user is confronted with the complex task of

configuring the ROS system as a whole in order to obtain a desired overall

performance. This involves: (i) selecting the values of parameters affecting

individual ROS nodes; (ii) allocating ROS nodes to computation devices. Figure 28

illustrates different configurations for a ROS system and the associated performance

generated.

67
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Figure 28: Example of ROS system configurations and obtained performance.

However, the overall performance of a ROS application is system-specific and hard

to quantify in general. For example, in our case study (Section 5.5), performance is a

function of essential requirements (e.g. avoiding collisions between agents,

minimising travel time to reach target goals), as well as more sophisticated

preferences (e.g. minimising close-encounters and hindrance between agents,

minimising the time to infer the true agent goals). We assume that the ROS user

typically has a good knowledge of the system and is able to quantify the local

performance of individual ROS nodes for a given parameter value data point.

Consider again a node implementing the navigation task of a mobile robot. The user

can quantify the positive effect on navigation upon increasing controller frequency

(e.g. increases linearly up to a point and then saturates). Furthermore, the user also

has good knowledge about how important the ROS nodes are in terms of how much

they contribute to the overall performance. If we assume that the overall

performance can be represented as the weighted sum of the individual performance

of the nodes, the user can provide a good estimate of those weights.

In this thesis we propose an approach1 that allows ROS users to study and

configure their systems. We first perform a characterisation of the ROS system and a

performance analysis (inspired by [141]) to learn for each individual node how its

performance (and resource requirement) varies as a function of its parameters. We

then tackle the following two problems:

• Problem1: Determining the parameter values and node allocations that maximise

the overall system performance.

1 Code available at: https://github.com/ipab-rad/perf_ros

https://github.com/ipab-rad/perf_ros
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• Problem2: Determining the node allocations that minimise the hardware

required, given the parameter values.

These problems can be modelled as a constrained variant of the multiple-choice

multiple knapsack problem. We provide a greedy algorithm to solve each problem,

the first one uses a performance gradient, and the second one is based on the CPU

requirement of the nodes. Our evaluation shows that the greedy solutions are within

1% of the optimal solution. Further evaluation on a real ROS case study validates our

proposed model, with the observed performance values within 2.5% deviation of the

expected ones.

5.2 R e l e va n t w o r k

Task allocation is a well studied area of research for distributed computational

setups, including multi-robot systems [40]. The often tackled problem is that of

determining the best process or task to run on any given platform, which depends

on the different loads and constraints imposed on the system. Multiple techniques

have been presented to tackle dynamic allocation of tasks [83], for example when

the characteristics of the system change such as network connectivity [12].

This work is a generalisation of our previous proposal [13]. Whereas we address

system configuration over a continuum set of parameter combinations, the previous

work only assumes a small number of parameter configurations (called variants).

This important consideration offers much more flexibility to the ROS user and has

increased the efficacy of our greedy solutions, bringing them closer to optimal.

There are many other prior works addressing task allocation in distributed robotics.

A comprehensive taxonomy can be found in [67], where problems are categorised

based on: i) the degree of interdependence of agent-task utilities; and ii) the system

configuration, which in turn is based on an earlier taxonomy [41]. According to these

taxonomies, the two problems discussed in this paper fall in the category of Cross-

schedule Dependencies (XD). Other works based on the linear assignment problem

[105] assume a single task per agent [84, 90, 98]. In our case, the number of tasks is

equal or greater than the number of agents. In [16, 144] several agents are needed to
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complete each task, which is a subset of our problem. Finally, in [95] heterogeneous

tasks and multiple instances for each task are assumed, but it does not consider

different configurations of the same task.

To summarise, no previous work in robotics addresses all the following

considerations: a constrained, distributed, heterogeneous system with more tasks

than agents and a continuum set of different configurations for the tasks.

5.3 P r o b l e m d e f i n i t i o n

We model a general ROS system composed ofN nodes and C computers. ROS nodes

form a directed graph Gn = (N, E), where pair of nodes (n,m) ∈ N communicate

through message-passing edges. An edge en,m ∈ E is labelled with the bandwidth

required, which depends on the size and frequency of the messages being sent, and

is defined by a function b : en,m → R. Computers form an undirected graph Gc =

(C, L), where each computer c ∈ C has a given CPU capacity defined by a function

R : c → N. Computers can be of two types, embedded on a robot, or external — we

call them servers. Network links between pairs of computers (c, z) ∈ C are defined as

lc,z ∈ L, so that each link between computers supports one or more message-passing

edges between nodes. The capacity of a link is given by its maximum bandwidth,

which is defined by a function B : lc,z → R. Depending on the type and location,

computers can communicate using either wireless or wired links.

ROS nodes can have parameters, some of them are configurable and others are

internal and cannot be changed. Configurable parameters generate different node

settings. Thus a node n ∈ Nwill be defined by a set of one or more settings, where the

total number of settings depends on the type and number of parameters affecting the

node. A given setting for a ROS node nk, k ∈N, is characterised by its CPU utilisation

and the performance level generated, represented by the functions U,P : nk → R. We

normalise the CPU utilisation of any node setting to a “baseline” computer. We also

normalise the capacity of all other computers in the system in the same way. The

performance level of a ROS node is a function of the content and frequency of the

messages sent. However, determining this relation automatically can be hard. Our
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approach assumes that a system expert manually quantifies performance levels for a

small number of settings for each node. Then, we interpolate any other node setting

via regression (Section 5.5.2).

Given the previous definitions, we model our two configuration problems as a

constrained form of a multiple knapsack problem. In addition, Problem 1 also

assumes the multiple-choice generalisation — note that for Problem 2 parameter

values for nodes are given, so only one setting per node is considered. These

individual problems (i.e. multiple knapsack, multiple-choice) are well-known in the

literature ([62] [92]), however we consider both at the same time (for Problem 1)

along with a set of special constraints that distinguish our formulation from

previous work.

Our objective hence is to find a set of feasible allocations A of ROS nodes to

computers (i.e. those that satisfy all the system constraints), and also:

a) Maximise the overall system performance for Problem 1

b) Minimise the total computer capacity required for Problem 2

Note that we assume the overall performance as the weighted sum of the performance

of the nodes. Furthermore, each node must be allocated to exactly one computer, but

each computer could contain more than one node depending on its capacity. Next,

we provide the mathematical description of the problems.

Problem1 : max

|C|∑
c=1

|N|∑
n=1

wnPnk
Acnk

(7)

Problem2 : min

|C|∑
c=1

Rc (8)
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Subject to :

|N|∑
n=1

Unk
Acnk

6 Rc c = 1, ..., |C|, (9)

|E|∑
e=1

ble 6 Bl l = 1, ..., |L|, (10)

|C|∑
c=1

Acnk
= 1 n = 1, ..., |N|, (11)

|N|∑
n=1

wn = 1 (12)

Acnk
∈ {0, 1} ∀n,∀c (13)

where:

• Acnk
= 1 represents that the setting k of node n has been allocated to computer

c (0 otherwise).

• Pnk
is the performance level generated by the setting k of node n.

• wn is the weight of node n in the overall performance (note that the value is

the same for any setting).

• Unk
is the CPU utilisation of the setting k of node n.

• Rc is the CPU capacity of computer c.

• ble is the bandwidth required by edge e, which is supported by network link l.

• Bl is the maximum bandwidth of network link l.

The first set of constraints (9) ensures that the nodes allocated to a computer do not

exceed its capacity. The second set of constraints (10) guarantees that the bandwidth

of any network link is not exceeded. The third set of constraints (11) ensures that

every node is allocated to exactly one computer — note that since a ROS node cannot

assume two different settings at the same time, it is not necessary to add an extra

restriction to guarantee that exactly one setting of each node is allocated. The last

set of constraints (12) ensures that the overall value for any combination of weights

for the nodes is always the same. Finally, we add two new sets of constraints to the

model, which specifically apply to distributed ROS systems.
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Residence constraints (Res): restrict the particular subset of computers C ′ ⊂ C, to

which a given node n may be allocated. This makes sense, for example, when nodes

are directly connected to sensors/actuators on a given robot.

n ∈ N ∧ c ∈ C ′ =⇒ Acnk
= 1 (14)

Co-residence constraints (CoRes): restrict the subset of valid allocations such that

pairs of nodes (n,m) must always reside on the same computer. In practice, this may

be required when the long latency of a network link is not tolerable.

n,m ∈ N∧ c, z ∈ C : (Acnk
,Azmq) =⇒ c = z (15)

5.4 A l g o r i t h m i c s o l u t i o n s

We now describe the two greedy algorithms that solve the optimisation problems

proposed. Both algorithms provide near-optimal solutions (see Section 5.6.2). In

addition, the solutions found are always feasible (i.e. satisfy all the constraints) for

any ROS system. However, finding solutions may depend on the specific constraints

of each system.

5.4.1 Problem 1: maximising performance

The first greedy algorithm uses a heuristic based on the performance gradient, ~∇P,

of the configurable nodes (i.e. those with configurable parameters). We assume that

there are M 6 N configurable nodes. Each point in the gradient vector is determined

by the CPU utilisation of the nodes, ~∇P(U1, ...,Um), and the value for each point is

given by the best relative increment in performance for a unit of CPU utilisation —

note that the performance level corresponding to each CPU utilisation value can be

obtained from the performance analysis (Section 5.5.2). The procedure is described

in Algorithm 3 and consists of two parts: i) an initial allocation of nodes that satisfies
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the system constraints; ii) an allocation refinement that attempts to maximise the

overall performance by relocating nodes and updating configurable nodes using the

performance gradient, when possible.

Algorithm 3 : Greedy heuristic Problem 1

1 while BW_constraints satisfied do

2 A← allocate nodes with Res_constraints

3 A← allocate nodes with CoRes_constraints

4 A← allocate remaining nodes

5 end

6 if BW_constraint ¬ satisfied then

7 return

8 Nconf = select configurable nodes from N

9 Call Upgrade_conf_nodes(A, Nconf), Algorithm 4

10 Cfull = select computers from C where Rc.free == 0

11 for c in Cfull do

12 A← move any n with Unk
< Unmax to Cfull

13 end

14 Call Upgrade_conf_nodes(A, Nconf), Algorithm 4

15 Update Cfull

16 for c in Cfull do

17 A← move any n to Cfull

18 end

19 Call Upgrade_conf_nodes(A, Nconf), Algorithm 4

20 return A

The initial allocation (Algorithm 3 lines 1-7) assumes that:

a) Configurable parameters are set to their minimum values, thus generating the

lowest CPU utilisation and performance level

b) The ROS system is able to work with this configuration

c) Rc is fixed for all computers
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Then, nodes with residency (Res) constraints are allocated to the corresponding

computers. Next, nodes with coresidency (CoRes) constraints are allocated,

prioritising nodes with highest CPU utilisation and computers with largest capacity.

Finally, the remaining nodes are allocated using the same prioritisation policy. Note

that if all the bandwidth (BW) constraints are satisfied, the allocation order (outline

above) always guarantees a solution.

In allocation refinement (Alg. 3 lines 8-19), first configurable nodes are upgraded

following Algorithm 4, which selects nodes based on the performance gradient

(note that c = A(n) gets the currently allocated computer of node n) and increases

the CPU utilisation of the currently selected node by one unit in each iteration. The

process stops when no more increments are possible, because nodes reached their

maximum CPU utilisation (Unmax , obtained from the performance analysis) or

computers reached their maximum capacity — Rc.free is the current free capacity of

computer c. Then (Alg. 3 lines 10-14) nodes that did not reach their maximum

utilisation allocated to computers that reached the maximum capacity (we called

them full computers, Cfull) are moved to computers that did not (Cfull).

Algorithm 4 is called again to fill up the new CPU capacity generated. Finally

(Alg. 3 lines 15-19), the set of full computers is updated and any node from full

computers, having reached its maximum CPU utilisation or not, is moved to a

computer with enough free capacity to contain it. Algorithm 4 is called for the last

time, possibly allowing to further improve the overall performance.

Note that to move nodes, selections are also made according to the gradient.

Furthermore, computers are selected by maximum capacity and always

guaranteeing that new allocations do not violate any previously satisfied constraints.

5.4.2 Problem 2: minimising computer capacity

The second greedy algorithm uses a simple heuristic that attempts to allocate nodes

with highest CPU utilisation to computers with lowest capacity first (it is based on

previous work [12]). In addition, it assumes that the initial capacity of any server in
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Algorithm 4 : Upgrade_conf_nodes(A, Nconf)

1 Vaux = []

2 for n in Nconf do

3 if Unk
< Unmax then

4 Vaux.add(n)

5 end

6 while Vaux 6= [] do

7 Unk
= ~∇P(U1, ...,Um)

8 if Unk
< Unmax then

9 c = A(n)

10 if Rc.free > 0 then

11 Unk
+=1

12 else

13 Vaux.del(n)

14 else

15 Vaux.del(n)

16 end

17 return

the system is 0, thus being increased when required. The procedure is described in

Algorithm 5.

Initially nodes with residency constraints are allocated. Since residency constraints

may imply running nodes in computers whose capacity cannot be increased (e.g.

robot’s on-board computer), we allocate these nodes first to guarantee their allocation.

Then the remaining nodes are allocated, A(n) = c, following the described heuristic

while satisfying coresidency constraints. If at some point the selected computer is a

server and cannot allocate the currently selected node, its capacity is increased to

exactly satisfy the required CPU utilisation for the node (Alg. 5 line 10). Note that

if all the bandwidth constraints are satisfied, finding solutions only depends on the

coresidency constraints of the system.
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Algorithm 5 : Greedy heuristic Problem 2

1 Nmax = sort nodes by max CPU_utilisation

2 Cmin = sort computers by min capacity

3 A← allocate nodes with Res_constraints

4 for n in Nmax do

5 for c in Cmin do

6 if n satisfies CoRes_constraints in c then

7 if Rc.free >= Unk
then

8 A← A(n) = c

9 else if c.type == server then

10 Rc += Unk
− Rc.free

11 A← A(n) = c

12 end

13 end

14 if A(n) == NULL or BW_constraint ¬satisfied then

15 return

16 end

17 return A

5.5 C a s e s t u d y

We now present a real ROS distributed system that is a particular instantiation of

the general model presented in Section 5.3. The system is composed of two types of

agents: autonomous robots with on-board processing and sensing capabilities; and

humans. Each agent is pursuing a goal (i.e. a spatial position in the scenario) while

avoiding collisions with other agents. In addition, an external server has access to

network cameras which can track people inside the environment. Robots infer the

goals and future motion of other agents using tracking data and online sensor

processing (see [8, 9] for more info). Server and robots communicate wirelessly

whereas network cameras and server connect through Ethernet, thus defining the

network graph Gc.
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Figure 29: Case study: Node graph, Gn, composed of one Experiment node, one Tracker node

per network camera, and six nodes per robot.

Figure 29 shows the node graph Gn of the case study, where multiple nodes are

interconnected through ROS topics and services. Some nodes within the robot

namespace may run on the server, thus potentially improving the overall

performance. In addition, edges between nodes are labelled with the expected range

of message frequencies, which can be easily translated to the required bandwidth.

We now describe briefly each ROS node, highlighting those with critical parameters

(one per node) that can generate different settings, thus modifying their performance.

Parameterised Nodes:

• Tracker: One instance per network camera that forms part of a distributed person

tracking algorithm (See Section 3.2.1). The critical parameter is the output frame

rate. The higher the frame rate, the more accurate the tracking.

• Model: Provides intention-aware predictions for future motion of interactively

navigating agents, both robots and humans (See Chapter 3 on Counterfactual

Reasoning). A higher number of modelled agent goals will lead to more

accurate goal estimates.
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• AMCL: The Adaptive Monte Carlo Localisation [108] relies on laser data and

a known map of the environment. The number of particles the algorithm may

use during navigation defines the localisation robustness.

• Navigation: Avoids detected obstacles and plans a path given a costmap, finally

producing the output velocity the robot must take (See Section 4.2.1). The higher

the controller frequency, the more reactive and smooth the navigation is.

Non-Parameterised Nodes:

• Experiment: A server node that basically coordinates all robots taking part in the

experiment.

• Environment: Combines information generated by the local robot, other robots

or other nodes (i.e. Tracker).

• Planner: Generates a navigation costmap (used by the Navigation node) that

encodes the future motion of all agents with respect to other agents’ motion

given their inferred target goals from the Model (See Chapter 4 on Interactive

Costmaps).

• YouBot_Core: A set of ROS packages and nodes (e.g. etherCAT motor

connectivity, internal kinematic transformations, interface with the laser

scanner, etc) that enables the robots (KUKA youBots) to function.

5.5.1 System characterisation

In order to test our algorithmic solutions, we characterised each node in Figure 29

using common monitoring tools from Linux (e.g. htop) and ROS (e.g. rqt). Table 2

summarises the measured values. Columns two and three show residence and

co-residence constraints. Column four shows the settings selected by the system

expert for each configurable node. The next three columns show the average values

of CPU utilisation, message frequency and bandwidth required for each node

setting — note that there is only one setting for non-parametrised nodes. The last

two columns represent the performance level for each node setting and the weight

(wn) of each node, both quantified by the system expert.
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The robots’ on-board computers are 1.6GHz Intel Atom dual core with 2GB RAM.

The server used is a 3.30GHz Intel i5 quad core with 16GB RAM. All the CPU

measurements are normalised to the robot CPU capacity, with a value of 100. The

server capacity was estimated based on the results provided by SPEC CPU2006 [55].

The networks employed are a wireless 802.11ac at 300Mbps, and a 1Gbps Ethernet.

5.5.2 Performance analysis

In order to estimate the relationship between parameter configurations (node

settings), CPU utilisation and performance from the characterisation (as shown in

Table 2 on page 83), polynomial curves are fitted to the measurements. These

functions may be linear, quadratic or logarithmic depending on the rate of

performance increase relative to the selected parameter. The performance curve is

assumed to be monotonically increasing, since a higher parameter value should

contribute to an improvement no matter how slight. Figure 30 and 31 show the

estimated relationship between parameter values and CPU utilisation vs. measured

performance for the four configurable nodes: Tracker, Model, AMCL and Navigation.

A key assumption of our approach is that, although any parameter value

increments lead to higher performance, servers are computationally constrained and

cannot handle every parameter set to maximum. Furthermore, parameters increase

performance non-linearly, so some parameters may correspond to higher

performance improvement than others. Estimating this increase for every parameter

increment, and suggesting the optimal parameter selection while keeping the

system computationally feasible is the purpose of the presented algorithms.

Since complex experimental setups are expensive to run and analyse, it is in the

user’s interest to reduce the number of measurements required for a sufficiently

accurate trend curve. Note that although in our case the presented function is based

on four samples at most, the estimated curves describes the real system behaviour

with sufficient accuracy for performance optimisation. Our experimental results

(Section 5.6.3) show the validity of these predictions, as the solutions provided by

the estimated performance curves match the behaviour of the the real system.
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Figure 30: Performance curves: parameter values vs performance level. A value of "100

performance" denotes the maximum output of a certain task given the maximum

parameter value. Values estimated by the curve fit to be over the limit are cropped.

Figure 31: Performance curves: CPU utilisation vs performance level. A value of "100

performance" denotes the maximum output of a certain task given the selected

parameter value. Values estimated by the curve fit to be over the limit are cropped.
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However, if required by a more complex system, more experimental measurements

may be acquired to produce a curve that better fits the real system.

The equations in Figure 31 are used in Problem 1 (Section 5.4.1) to obtain the

performance gradient. In Problem 2(Section 5.4.2), we also use the graph relating the

parameter values and CPU utilisation — this and other graphs are not shown but

are available in the online repository2. Finally, it is worth noting that assigning

different performance levels for the nodes in Table 2 will generate different

performance curves, which in turn might affect the allocation solutions provided in

both problems. Our methodology helps the user to explore different combinations

in order to make the best choice.

5.6 E va l uat i o n

In this section, we first define a set of system instances of increasing size derived

from the case study presented. Then, we test our solutions (Algorithms 3,4 and 5)

with the objective of answering the following research questions:

• RQ1: How well do our greedy heuristics perform on the system instances

compared to the optimal solutions?

• RQ2: How well do the ideal allocation solutions provided by our two algorithms

translate into real configurations of the case study?

• RQ3: How would the real system behave if we modify the parameter values

provided by our algorithms?

These are evaluated with a performance metric comparing the expected output

quality of the tasks with measurements running on a real case study for each

parameter configuration (See Section 5.6.3).

2 https://github.com/ipab-rad/perf_ros

https://github.com/ipab-rad/perf_ros
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5.6.1 System instances

In order to obtain different instances of our case study, we only need to add

robots and/or cameras to the baseline system (i.e. one robot, one camera), as dotted

lines show in Figure 29. Increasing these elements, the total number of ROS nodes

will change accordingly, thus producing more challenging problems. Table 3

summarises the set of instances analysed, including the total number of nodes

(Nodes) and configurable nodes (cNodes) present in each case.

Table 3: System instances considered increasing the complexity of the case study and

consequently the algorithm search space for finding a solution satisfying the

constraints.

Instance Servers Robots Cameras Nodes cNodes

1 2 1 1 8 4

2 2 1 2 9 5

3 2 1 3 10 6

4 3 2 1 14 7

5 3 2 2 15 8

6 3 2 3 16 9

5.6.2 Simulation: algorithms analysis

We first analyse the solutions provided by our two greedy algorithms comparing

them with the corresponding optimal solutions for the instances described in Table 3.

Please note that optimal solutions will be given by allocations of node settings to

computers that:

a) Maximise the overall performance for Problem 1 — note that individual

performance values for a given node setting are obtained by applying the

equations in Figure 30
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b) Minimise the total CPU capacity required for Problem 2 — note that in this case

we set the maximum value for each node parameter, which translates into the

maximum performance (and CPU requirement) possible.

The optimal solution for each case was obtained by executing brute force

algorithms, which required several hours to complete for some instances.

Answering RQ1, we found that both heuristics provide near-optimal solutions for

all the instances analysed. Figure 32 shows the results for Problem 1, where values for

the greedy heuristic (Expected) are normalised to the optimal ones (value “1” for all

the instances). As it can be seen, the difference with the optimal solution for Problem

1 is less than 1% on average. For Problem 2, the average difference is less than 0.1% —

the differences being negligible, they are not shown in a graph.
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Figure 32: Problem 1: Comparison between expected and measured overall performance. All

values are normalised to the optimal solution (value = 1).

5.6.3 Case study: behaviour analysis

Given the previous results, we now compare the behaviour of the case study with

the expected values. For each instance in Table 3, we configure the ROS nodes in

the real system with the parameter settings and the specific allocation provided by

the two algorithmic solutions. Then, we check if the real system matches a specific

configuration by monitoring the frequencies of the messages sent by the ROS nodes. If
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the observed frequency values are close to the expected ones (obtained from Table 2

or by the performance analysis) for all the nodes, the real system matches the given

configuration. Otherwise, the expected/observed frequencies can differ due to:

a) Overloaded computers running more tasks than can be handled

b) Approximation errors in the system characterisation and/or performance

analysis

In our case, the observed frequencies for all the instances analysed and for both

problems deviate less than 3% on average from the expected ones, which answers

RQ2 and validates our approach, that is, the accuracy of the system characterisation

and the performance analysis presented.

Furthermore, given the observed frequencies, we estimate the real system

performance for the nodes, Pmeasured, by applying the following formula:

Pmeasured = Pexpected ×
Fmeasured

Fexpected
(16)

where Pexpected is the expected performance predicted by our algorithms,

Fexpected is the expected frequency for each ROS node and Fmeasured is the

observed frequency during the experiment. For Problem 1, results are also included

in Figure 32 (Measured), where measured performance values only deviate by 2.5%

on average from the expected ones. As expected, we obtain similar results for

Problem 2.

Table 4: Parameter settings considered for Instance 1. Parameters increment effects are:

Number of model goals for more accurate intention inference, AMCL particles for

improved localization, and navigation planner frequency for smoother motion.

Configuration Model (Goals) AMCL (Particles) Navigation (Hz)

Baseline 80 200 15

Mod. 1 200 300 16

Mod. 2 3500 1000 18

Mod. 3 10000 3000 20
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Finally, we analyse the effect on the case study behaviour when increasing some of

the parameter values provided by our algorithms. In particular, we consider several

node settings for Instance 1 when nodes in the robot domain are forced to run in the

robot. Table 4 shows the configuration provided by Algorithm 3 (Baseline) and the

three modifications considered; only configurable nodes are shown.

Figure 33 shows the results, where CPU=100 means that the robot capacity does not

change. Recall that increasing the parameter values causes the CPU utilisation of each

node to increase. For CPU=100, this translates into an overloaded computer, even for

the first modification (Mod. 1). Answering RQ3, this parameter modification leads to

the CPU capacity constraint not being satisfied, which degrades performance, further

validating our approach. The figure also shows the performance improvement if the

CPU capacity were to be increased (CPU+) as required.
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Figure 33: Problem 1, Instance 1: Comparison of different node settings when not increasing

(CPU=100) and when increasing (CPU+) the robot’s capacity. Values are

normalised to the baseline configuration (performance = 1).

5.7 D i s c u s s i o n

Finally, we briefly discuss two important issues referred to previously:

i) The quantification of individual performance for the nodes

ii) The relationship between the individual performance of the nodes and the

overall system performance
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In the first case, since a ROS node could have a complex relationship between the

parameter values and performance generated, instead of giving the ROS user the

responsibility of assigning performance levels, it might be possible to consider

developing methods to automate the process ([15, 57]). However, applying such

methods is orthogonal to our proposal which we reserve for future work.

In the second case, we have assumed a linear contribution of the individual

performance of each node to the overall value (expressed via node weights), which

seems to work well for our case study. However, this relationship might be

non-linear for more complex systems. In such a case, it might be possible to perform

a sensitivity analysis [120] based on the individual contributions to determine the

relationship more accurately, but we leave it for future work.

We thus conclude that the approach presented and provided tool can be very useful

for ROS users, helping them to better understand the behaviour of their systems and

optimize their performance.

5.7.1 Conclusion

We have proposed an approach for automatically configuring ROS applications.

The approach is based on performing a system characterisation and a performance

analysis to get the configuration that can optimise the system, either maximising

performance or minimising the hardware resources required. We have modelled

these optimisation problems mathematically and we have proposed two greedy

algorithms to solve them, whose solutions deviate from the optimal by less than 1%

on average. We have validated our algorithms in a real ROS environment, observing

an average difference between estimated and measured performance of 2.5%.
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F u t u r e w o r k a n d C o n c l u s i o n s

6.1 F u t u r e w o r k

We hereby outline a series of ideas and work in progress emerging from the

presented work, and thus encourage the research community to engage in

discussion of the following insights.

6.1.1 Counterfactual Reasoning for Intention Inference

Learning navigation context. Our intention inference methodology is context free:

no prior information of plausible goal location is required for intention inference.

Goal sampling as discussed in Section 3.4.1 is capable of exploring the complete

navigation space, but is limited by chosen resolution and computational power. We

postulate that context may be inferred similarly as navigation goals, as the activity

of agents is ultimately driven by the environment. Our previous work [109] utilised

IRL to learn the reward function of agents moving across the space. This

environmental context knowledge could direct the sampling of navigation goals for

improving inference convergence rates.

Modelling human awareness. Agent awareness, referring to the ability to discern

not only the existence of others, but also to recognise other agents’ navigation

properties and their intentions is a key factor in HRI modelling [28]. Modelling

awareness would improve the adaptability of social navigation, choosing to move

around “un-aware” agents more conservatively in comparison to aware and

reciprocating agents. The study of human attention in HRI tasks ties into this [38],

paving the way towards more socially capable robot platforms.

89
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Egocentric tracking of agents. In real environments, mobile robots may have

incomplete knowledge about their surroundings and the agents within it. Our work

however relies on multiple cameras able to track agents covering the complete

navigation space. Although robots in our work perform local sensing for

localization, our distributed intention inference and tracking methodology is

compatible with cameras or other sensors placed on mobile platforms instead of

wall mountings. Work towards this would improve robustness to noise and tracking

artefacts (i.e. Agent occlusion, confusion and disappearance), improving the

deployability of the proposed methodology.

6.1.2 Interactive Costmaps for Social Navigation

Navigation intention legibility. An important lesson from performing

human-robot experiments, is to consider the performance differential between the

two types of agents. Humans are (for now) much faster at most if not every aspect

of navigation. However, even though the humans’ ability to predict intention is

excellent, it is somewhat impaired when the target is not a human [49], or in our

case a small non-humanoid omni-directional robot as is the youBot platform. Future

research should consider that, since the other agents are aiming to infer the robot’s

intention, it should attempt to maximise the clarity of its motion by planning for

saliency and readability for intentionality [132].

Pedestrian model from data. As outlined in the Background Section 2, previous

approaches have proposed pedestrian models for interactive motion prediction

trained on data. However, these are neither designed to integrate into a

counterfactual planner such as our approach, nor are they parametrisable and thus

adaptable to dynamic setups. New machine learning techniques are emerging such

as Recurrent Neural Networks (RNNs) [2], possibly capable of providing the

necessary model characteristics, which could provide better results than relying on

fast heuristic-based planners (i.e. RVOs).
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6.1.3 Task Allocation for Distributed Robotics

Automatic performance analysis. Our proposed methods for task allocation as

well as others rely on an accurate characterisation of the system to be optimised.

This requires a system expert to perform a series of tedious experiments to test the

corresponding relation between performance and parameter setting, a procedure

which may be impractical due to the large scale of some robotic setups. The

automation of such process, such as by performing the characterisation iteratively in

a simulation framework [140] would provide continuous integration and

optimisation for distributed setups without requiring extensive user effort.

6.2 C o n c l u d i n g r e m a r k s

Distributed sensorised robot systems are on their way to become commonplace in

near-future work and living spaces. Autonomous navigation in such environments

remains a challenging domain, specially when interactions with pedestrians are not

only expected but actively carried out in a principled but efficient manner. A key

necessity towards this milestone is providing capable robots able to co-operate with

humans, specifically by developing intention-inference algorithms for HRI tasks.

The hypothesis:

Can an intention-inference model, sufficiently accurate and light-weight for real-time motion

planning in dynamic systems, capture the interactive motion of navigating agents?

Is addressed by the presented framework for social navigation in dynamic

environments, removing constraints on prior knowledge such as goal location or

environmental context, while minimising computational complexity. Our approach

leverages a fast reciprocal motion model with counterfactual reasoning to infer

navigation goals of interacting agents online. The speed of our technique produces

responsive robots capable of fluid motion, encouraged to navigate socially by

following interactive costmaps. This construct encapsulates the knowledge of other

agent’s predicted future motion across space and time, enabling robots to avoid

moving pedestrians.



6.2 C o n c l u d i n g r e m a r k s 92

Finally, we demonstrate our methods’ effectiveness in real-world experiments,

where we implement a novel procedure for task allocation and parameter tuning to

maximise the performance of distributed robotics systems. We provide our work as

open-source and integrated with the standard robotics framework ROS, encouraging

the research community to work towards practical social autonomous navigation.
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