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Abstract 

Over the last three decades, there has been extensive research interest in the behaviour of 

systems of particles interacting via core-softened potentials. This class of simple interparticle 

potential was originally developed to model metals such as Cesium, Cerium and Thorium, 

which undergo "core collapse" - that is, an abrupt diminution of core radius with increasing 

pressure. This phenomenon is thought to give rise to interesting solid state phase behaviour, 

including isostructural phase transitions. In recent years, these potentials have also been used 

to model the behaviour of tetrahedrally-bonded molecular liquids, including H 2 0 and Si02 , 

with particular reference to the liquid state anomalies seen in these systems, widely believed to 

be linked to the possibility of liquid-liquid phase transitions. 

In this thesis, we have made an extended study of a particular core-softened system in 

two dimensions (originally studied in Sadr-Lahijany et al, Physical Review Letters 81, p. 4895  

[1]). Whereas most studies have only examined single facets of the phase behaviour for a given 

model, we have systematically studied both liquid and solid state phase behaviour, using a 

combination of analytic and state of the art simulation methods. Our aim has been to gain a 

greater understanding of the key features behind the unusual phase behaviour associated with 

core-softened systems. 

After an introduction, we review previous work on the phase behaviour of core-softened 

systems, in which we see that these apparently "simple" potentials can give rise to a range of 

unusual and exotic behaviours. We then briefly study the behaviour of a simple one-dimensional 

core-softened model. This demonstrates liquid state anomalies and a zero temperature tran-

sition point, as well as illuminating the dangers of generalising between potentials and across 

dimensionality. 

We then move onto the two dimensional system. We study the solid state using a corn- 



bination of the harmonic approximation, Lattice Switch Monte Carlo (a recently developed 

simulation technique which allows Monte Carlo moves between structures), and Gibbs-Duhem 

integration. We find two triangular lattice phases, separated by a region of stable square lattice 

phase at intermediate pressure; we also find evidence for an isostructural transition (with pos-

sible critical point) between the triangular phases at densities metastable with respect to the 

square lattice phase. To study the liquid state, we use Lennard-Jones Devonshire cell theory 

and extensive Monte Carlo simulation. We reevaluate the cell theory model, and find strong 

evidence that Lennard-Jones and Devonshire's original results were misinterpreted, as were the 

cell theory results for the system at hand [1]. Our liquid state simulation results confirm the 

presence of reentrant melting and liquid-state anomalies in the system. We find that, contrary 

to previous suggestions, these anomalies do not originate from a liquid-liquid transition, but 

instead from a continuous or near-continuous melting transition, a phenomenon only possible 

in two dimensions. 



Declaration 

This thesis has been composed by myself and it has not been submitted in any previous ap-

plication for a degree. The work reported within was executed by me, unless otherwise stated. 

Elements of this work appear in references [2] and [3]. 

April 2003 

111 



Dedication 

To Ange, with all my love. 

To my parents, who answered my questions. 

And to the continuing memory of Carl Sagan, for his fantastic television series "Cosmos", 

without which I'd have tried to be a paleontologist instead. 

iv 



Acknowledgements 

Thanks to Nigel Wilding and Alastair Bruce, for helping me to see it through. Also, to Graeme 

Ackland, Stewart Reed, and Andrew Jackson for useful discussions. And to Simon Bates for 

gainful employment. 

Further, thanks to the Whole Sick Crew (Haze, Ed, Ben and Emerson) for enduring friend-

ship and what passes for sanity in these parts. To all the old Bristol mob (may the Christmas 

meals keep coming round), and to Sandy, Jay, Shelley, Nine, Neil etc. for making the far north 

bearable. 

And, finally, I'd like to acknowledge 'my EPSRC studentship. 

V 



Contents 

Abstract 	 1 

1 Introduction 	 1 

1.1 Statistical Mechanics and Phase Transitions .....................2 

	

1.1.1 	Statistical Mechanics ..............................2 

	

1.1.2 	Phases and Phase Transitions .........................7 

	

1.2 	States of Matter 	....................................9 

	

1.2.1 	Fluid States ...................................10 

	

1.2.2 	Solid States ....................................12 

Crystals ......................................12 

Hexatics .....................................14 

Glasses 	.....................................15 

2 Background and Review 	 16 

	

2.1 	Anomalous Phase Behaviour .............................16 

2.1.1 Liquid State Anomalies ............................16 

Liquid State Anomalies as Structural Competition .............19 

Evidence ....................................23 

Liquid-Liquid Transitions - Phosphorus ...................25 

Liquid-Liquid Transitions - Carbon ......................26 

	

2.1.2 	Isostructural Lattice Transitions .......................27 

2.1.3 Anomalous Phase Behaviour - Summary ...................28 

	

2.2 	Core-Softened Potentials ................................29 

vi 



CONTENTS 
	 vii 

2.2.1 	What is Core-Softening? ............................29 

2.2.2 Stell-Hemmer Potentials - Early Work .....................30 

The Lattice Gas ................................30 

One Dimensional Continuum Fluid ......................32 

2.2.3 Solid State Phase Behaviour of Core-Softened Potentials ..........36 

Two Dimensions ................................36 

Three Dimensions ...............................38 

2.2.4 Liquid State Phase Behaviour of Core-Softened Potentials .........42 

2.3 	Summary 	........................................45 

2.4 	Research Aims 	.....................................46 

3 Analytical Results in 1D 	 48 

3.1 The Takahashi Nearest-Neighbour Gas ........................48 

3.2 	The 11) Hard Rod System ...............................50 

3.3 The Shouldered Hard Rod System ..........................51 

3.3.1 	Liquid State Anomalies ............................53 

Density Behaviour ...............................53 

Compressibility Behaviour ...........................56 

3.4 	Summary and Discussion 	...............................58 

4 Solid State Approximations 	 60 

4.1 	Ground State Calculations ...............................60 

4.1.1 	Ground State Results .............................63 

4.2 The Harmonic Approximation .............................65 

4.2.1 	Harmonic Approximation Results .......................69 

4.3 	Summary and Discussion 	...............................72 

5 Lennard-Jones Devonshire Cell Theory 	 74 

5.1 	Background and Model 	................................74 

5.2 	The 12-6 Lennard-Jones Fluid .............................77 

5.3 Reappraisal of the LJD cell theory ..........................79 

5.4 The 2D Sadr-Lahijany Potential System .......................80 



CONTENTS 
	

viii 

5.5 	Summary and Discussion 	...............................85 

6 Monte Carlo Methods 

6.1 	Basic Monte Carlo 	................................... 88 

6.1.1 Simple Monte Carlo Integration 	....................... 89 

6.1.2 Importance Sampling 	............................. 90 

6.1.3 The Metropolis Method 	............................ 93 

6.2 	Implementation ..................................... 96 

6.2.1 Real Simulations 	................................ 96 

Periodic Boundaries and the Minimum Image Convention ......... 96 

Potential Cutoffs and Cell Structures ..................... 98 

6.2.2 Monte Carlo in Open Ensembles 	....................... 99 

NPT Monte Carlo 	............................... 100 

iVT Ensemble 	................................. 102 

6.2.3 Processing the Results 	............................. 105 

Recording Observables 	............................. 105 

Error Estimation 	................................ 106 

Single Histogram Extrapolation ........................ 107 

Multiple Histogram Extrapolation 	...................... 109 

6.3 	Dealing with Coexistence 	............................... 110 

6.3.1 Multicanonical Reweighting 	.......................... 111 

6.3.2 Lattice Switch Monte Carlo 	.......................... 113 

6.3.3 Error Estimation in Two-Phase Simulation 	................. 116 

6.3.4 Gibbs-Duhem Integration 	........................... 117 

7 Simulation Results 
	 119 

7.1 	Two Dimensions 	....................................119 

7.1.1 	Solid State Simulation .............................119 

Simulation Procedure 	.............................119 

Simulation Results ...............................122 

7.1.2 	Liquid State Simulation ............................125 

Simulation Procedure 	.............................125 



CONTENTS 
	

lx 

Simulation Results ...............................126 

Finite Size Effects 	...............................130 

	

7.2 	Three Dimensions 	...................................132 

7.2.1 	Simulation Procedure 	.............................132 

7.2.2 	Simulation Results ...............................132 

8 Discussion and Conclusions 	 134 

	

8.1 	Discussion - Results 	..................................134 

	

8.2 	Discussion - Methods ..................................136 

8.2.1 Lennard-Jones Devonshire Cell Theory ....................136 

8.2.2 	Lattice Switch Monte Carlo ..........................137 

8.3 Discussion - Core-Softened Potentials .........................138 

A Statistical Mechanics 	 139 

B Data Production and Analysis 	 142 

Bibliography 	 149 



Chapter 1 

Introduction 

We begin this thesis with a broad brush and necessarily brief discussion of some of the theory 

and ideas underlying condensed matter physics. We will first give an overview of the theory 

of statistical mechanics, and how it may be applied to the idea of phase transitions in matter. 

Then, we will turn to descriptions of those physical states of matter that we seek to represent 

within this framework. This chapter will introduce many of the concepts that we shall return 

to in the course of this work. 

The rest of this thesis is structured as follows. In chapter 2, we discuss some unusual 

behaviours observed in experiment for some systems, and review work done on "core-softened" 

interparticle potentials which, it has been suggested, can duplicate these behaviours. Our aim 

is to study a particular instance of a core-softened potential, and examine how, or indeed 

whether, it exhibits these behaviours. Following this, in chapter 3, we use an exactly solvable 

one-dimensional system to show these behaviours in detail. We then move to our specific two 

dimensional model. In chapter 4, we take a first approximation to our system's solid-state phase 

behaviour, using the harmonic approximation method. In chapter 5, we use the Lennard-Jones 

Devonshire cell model to approximate the liquid state phase behaviour. Finally, we turn to the 

powerful method of Monte Carlo simulation to examine the full phase behaviour of our chosen 

model; chapter 6 discusses the Monte Carlo methods we use and we present the results from 

our simulations in chapter 7. We wrap up by drawing together our results and presenting our 

conclusions in chapter 8. 

1 
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1.1 Statistical Mechanics and Phase Transitions 

Statistical mechanics is the bridge between our ideas on the basic interactions governing the 

microscopic movements of particles, and the behaviour of macroscopic bodies made up of these 

particles. This bulk macroscopic behaviour must be determined by these microscopic dynamics, 

but even in a classical framework, finding the trajectories of all these particles would involve 

solving of the order of 1023  coupled differential equations, and even if this were feasible, the 

results would be exceedingly non-linear and microscopically chaotic. 

Statistical mechanics gives us a probabilistic approach, without considering of the micro-

scopic dynamics of the system. It gives a statistical description of systems, talking about average 

bulk properties and fluctuations of the system. This is done by considering every possible con-

figuration the system could take, and assigning a probability to each based on macroscopic 

criteria. This simplifies our problem a little; rather than solving 1023  differential equations to 

track particle trajectories, we now only need to integrate over 1023  different variables to find 

all possible particle configurations. Whilst doing this exactly is unfeasible for all but the sim-

plest systems, there are tricks and approximations we can make to get useful results, greatly 

helped by the power of modern digital computers. Several such methods are presented in the 

later chapters of this work; here, we present a brief overview of the underlying theory. Fuller 

descriptions can be found in references [4] and [5]. 

1.1.1 Statistical Mechanics 

At the heart of this body of theory is the Boltzmann distribution; if we take a system of 

N particles, where volume V is fixed, and which can exchange energy, E, with a heat bath 

at temperature T, then the probability of observing the system in a microstate (that is, a 

particular microscopic arrangement of that system) denoted by r is given by: 

p(T) = 
Z 
	 (1.1) 

where k is the Boltzmann constant, and Z, known as the partition function, is a normalisation 
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constant given by: 

	

Z = 	 (1.2) 

This assumes that microstates r and energy E are discrete; generalisation to continuum 

systems is simple (see appendix A). 

Given this distribution, we can calculate the average observed value for any property of our 

system; for arbitrary property A, this is given by: 

	

(A) = - 	A(r)e'" 	 (1.3) 
F 

where we have introduced the inverse temperature, 3 = 11kT, as a notational convenience. 

If A is an extensive variable (that is, it is proportional to N), it can be shown that provided 

(A) is well defined, fluctuations in (A) will scale with N as - 11\/N. This means that, for 

macroscopic systems (very large N), p(A) will be very sharply peaked. In the limit of an infinite 

system, p(A) will be so sharp as to pick out a single, definite value of A for the system at a 

given state point (in this case, constant NVT, the canonical ensemble) . In this thermodynamic 

limit, the properties of the system become definite. 

Rather than summing across every possible microstate, r, it is often useful to phrase equa-

tions 1.1 through 1.3 using the density of states, Q(E). This function is a count of the number 

of microstates r which have energy E; more formally: 

	

= E 5(E - E(F)) 	 (1.4) 

This is equivalent to the concept in quantum mechanics of the degeneracy of a state. Now, 

let us write the probability of observing the system with energy E, that is p(E), in terms of 

the density of states: 

p(E) = 1(E)e 	 (1.5) 
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We consider the logarithm of the unnormalised probability distribution, Zp(E): 

—*ln(Zp(E)) = —*ln 
(cl(E)e_1E) 	

(1.6) 
= E—kTln(1l(E)) 

From this, we define the entropy, S, of the system: 

S = kin (11(E)) 
	

(1.7) 

Entropy is a measure of the amount of F-space the system can explore. It is often described 

as a measure of disorder - the more inicrostates a system can explore, the less it is possible to 

say anything definite about its structure. Using equation 1.7, we can write equation 1.6 as the 

Helmholtz free energy: 

A = —1n(Zp(E)) 
(1.8) 

= E—TS 

This quantity will be minimised when the probability p(E) is maximised. We see that the 

behaviour of the system is governed by an interplay between energy minimisation and entropy 

maximisation, moderated by temperature. At low temperatures, the system will preferentially 

minimise energy, even if it means being restricted to a very small set of microstates. At high 

temperatures, entropy maximisation dominates, and the system will move between a large 

number of microstates, over a wide range of possible energy values. 

Macroscopic thermodynamic properties can be calculated from the first derivatives of the 

free energy with respect to the constraints; for example, in the NVT constrained system, we 

can calculate entropy S and pressure P from: 

S = _AI 	 (1.9) aT I v 

P = - 	 (1.10) 
V IT 

Response functions (also known as susceptibilities, from the terminology for magnetic sys-

tems) are calculated by second derivatives of the free energy, for example the constant-pressure 
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specific heat. Cp, and the isothermal compressibility, KT: 

Cp =  T 1  - 	8TIV,P 
 

T a2.4 

I - v,P 

- 	1 8t'
IT - 

- 1 (82A 
 

- 	 T) 

These response functions can be used to measure fluctuations within the system [6], for 

instance, compressibility KT measures fluctuations in volume, whilst constant-pressure specific 

heat Cp measures fluctuations in entropy. 

For it to be possible for a particular macroscopic variable to refer to a possible free energy 

minimum, that is, to be an equilibrium value, certain conditions on the free energy at that 

point must hold. These stability criteria refer to the convexity properties (that is, the sign 

of the second derivative) of the free energy at that point. Stability implies that infinitesimal 

fluctuations will neither decrease entropy (if the fluctuations are at fixed E and V), nor increase 

free energy (at fixed T); as such, the stability criteria for the compressibility and constant-

pressure specific heat are: 

KT > 0 

Cp > 0 

Comparison with equations 1.11 and 1.12 tell us that the Helmholtz free energy must be 

concave with respect to temperature (4 < 0) and convex with respect to volume (4 > 0)aV 

in order to be stable. 

It is possible to write equivalent expressions for all of the above upon relaxing the conditions 

of either constant volume (for which we must state an applied pressure F) or constant particle 

number (for which we must state the chemical potential p of the system). Equivalent probability 

distributions and free energy expressions can be written for these open ensembles - see appendix 

A. Free energies for these open ensembles are referred to as Gibbs free energies, denoted G. 
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Figure 1.1: a) A schematic Helmholtz free energy curve with respect to volume; this curve has 
two minima, and will exhibit phase coexistence. The thick grey line shows a "common tangent 
construction" - this is the lowest line tangential to both minima. Its gradient is minus the 
coexistence pressure, and it intercepts the free energy curve at the coexistence volumes V 1  and 

Vt2. 
b) Pressure against volume for this system. Between the coexistence volumes, there is a 
discontinuity in volume with respect to pressure. 
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1.1.2 Phases and Phase Transitions 

We now consider a system with the Helmholtz free energy curve A(V) at given T shown in 

figure 1.1 a. We see that here we have two free energy minima. Let us consider the behaviour of 

the system at constant temperature as we raise the constrained volume from V1 . As we increase 

volume up to Vi ,, pressure will gradually decrease (see equation 1.10), and the mesoscopic 

arrangement of the system will remain homogeneous (that is, the bulk density of different 

regions will be the same). However, when we move above V, 1 , but below V 2 , the system can 

lower its free energy by becoming heterogeneous - by splitting itself with some parts having 

specific volume Vt, and others having specific volume Vt2,  whilst retaining total constrained 

volume Vti < V <V2. From equation 1.10, we can say that to do this, the pressures at these 

two volumes must be equal, P(Vi) = P(V2) = Pt otherwise the system could lose free energy 

by moving to one volume or the other'. Since the pressure must be equal, we can find the 

coexisting volumes by making a common tangent construction as shown in figure 1.1. This 

effectively splits the system into two subsystems, each having fixed NPT rather than NVT. 

Each subsystem must therefore have equal Gibbs free energy G. 

Moving between V1 and V2,  we stay at constant pressure with increasing volume, with the 

system split between two coexisting specific volumes; this is a phase coexistence between the 

microscopic structures (phases) represented by the two Helmholtz free energy minima. Above 

V2, it is no longer preferable for the system to split, and we return to normal behaviour. 

Now consider the behaviour, not at constrained volume, but at constrained pressure. This 

is shown in figure 1.1 b. We see a discontinuity in volume with respect to pressure at P. At 

exactly the transition temperature, Pt, the system will be exactly split between the coexisting 

phases. Such a discontinuity in a first derivative of the free energy with respect to an applied 

field is known as a first order phase transition. 

Finally, we consider the behaviour as we vary temperature T. Figure 1.2 a shows A(V) curves 

at a variety of temperatures. Figure 1.2 b is a phase diagram showing the volume-temperature 

behaviour; the shaded area shows constrained volumes at which coexistence will occur, and 

the thick line shows the volumes of the coexisting phases at that temperature. Figure 1.2 c 

shows the behaviour in temperature-pressure space, with the thick line showing the locus of the 

'Similarly, the chemical potential ji = must be equal for the two coexisting volumes. 
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Figure 1.2: a) Helmholtz free energy curves with respect to volume at four temperatures, 
T1  < T2 < TC < T3 . Where there is a phase transition, the thick grey line indicates the 
common tangent construction. Descending dotted lines indicate coexistence volumes. 

Phase diagram in volume-temperature space for the system with free energy curves as 
shown in figure 1.2 a. The thick black line indicates the envelope of coexisting volumes; the 
shaded area shows volumes where phase coexistence will occur. Horizontal dotted lines 
indicate the temperatures for which free energies are plotted in figure 1.2 a, descending dotted 
lines indicate the coexistence volumes from those free energies. 

Phase diagram in pressure-temperature space for the system with free energy curves as 
shown in figure 1.2 a. The black line indicates the locus of pressures at which phase 
coexistence will occur. The dot'at P = Pc and T = TC shows the "critical point", where the 
line of first-order transition comes to an end at a point of continuous transition. 
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transition. Exactly at temperature TC and pressure P,  the coexisting phases have the same 

volume; at this critical point, rather than seeing a discontinuity in volume, we see a singularity 

in the isothermal compressibility. Singularities or discontinuities in second derivatives of the 

free energy are known as continuous or second order phase transitions. Above the critical 

temperature, T, there is no longer a phase transition. 

The response function singularities at second order transitions are associated with infinite 

fluctuations and diverging correlation lengths. These are, of course, impossible to realise in a 

finite system; the cutoff imposed by finite size makes it impossible to tell the difference between 

a true continuous transition and a first-order transition in which the order parameter shift is 

simply smaller than the resolution of the experiment, a "weak" first order transition. As such, it 

is not possible to prove a transition line to be unequivocally second order by direct experimental 

observation. 

Even strongly first order transitions can raise problems. The physical rearrangement of par-

tides necessary to pass between free energy wells may be difficult for the system, and unlikely to 

occur over the timescale of observation. A good example of this is diamond - at room temper-

ature and pressure, the thermodynamically stable structure of carbon is graphite, however, the 

contents of De Beers warehouses are unlikely to become valuable only to pencil manufacturers 

any time soon. The intermediate states between diamond and graphite have very high a free 

energy, and therefore a very low probability of occurring. This phenomenon (observation of a 

system in a local rather than a global free energy minimum) is called metastability. Metastable 

phases may persist above (superheating) or below (supercooling) transition temperatures, as 

appropriate, though they may have short lifetimes until a large enough fluctuation takes them 

into the stable phase. The final limit of metastability is the spinodal, the order parameter value 

(and associated temperature and pressure limits) beyond which the free energy curve for that 

phase breaches stability conditions. The textbook by Debenedetti [7] covers many details of 

metastability, particularly with regard to the liquid state. 

1.2 States of Matter 

So far we have discussed phases as different structures, without mentioning what those struc- 

tures might be. We will now talk about the phase diagram of a "typical" system, in which 
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a) 	Crystalline 	 b)T 
Solid 	I 

Liquid 

Gas 

T 

Figure 1.3: Standard pedagogical phase diagram, based on that of Argon. 
Temperature-pressure projection. 
Volume-temperature projection. 

particles are approximately spherical and only of a single type. We will not talk about mix-

tures, polymers, or liquid crystals; nor will we venture into electronic or quantum effects, such 

as those which may give rise to plasmas, superconductors, Bose-Einstein condensates, and so 

forth. We restrict ourselves entirely to the classical regime and those states of matter we meet 

day to day. 

The "standard" pedagogic phase diagram for such a system is shown in figure 1.3. We see 

three familiar phases; gas, liquid, and solid. We will discuss each of these classes of structure 

in turn. The reader is referred to reference [8] and references below for more information. 

1.2.1 Fluid States 

The characteristic of a fluid state is flow; macroscopically, fluids have neither rigidity nor fixed 

shape. Both gas and liquid phases have a fluid structure. Everyday examples are air, water, 

milk, and treacle. Microscopically, this structure is defined by a lack of long range structure, 

or equivalently, by stating that average properties are invariant under any combination of 

translation and rotation transformations. This implies a very high degree of symmetry. 

Long range ordering of particles (or lack thereof) is best illustrated with the radial distri-

bution function g(r). This function gives the correlation between particle positions, that is, 

the probability of finding two particles in the system separated by distance. r, relative to the 
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th 

Figure 1.4: Radial distribution function g(r) data for a Lennard-Jones fluid. 

probability for a completely uniform distribution. In three dimensions it is given by: 

g(r) = P-2 ( ö(r - Ir - riD)  

i joi 

An example for a Lennard-Jones fluid is shown in figure 1.4. We see a strong peak at 

the nearest neighbour distance. At low separation, the correlations are dominated by the 

repulsive forces. As we move to larger separations, we see progressively smaller and wider 

peaks at further neighbour shells, as the disorder of the liquid averages out the short-range 

correlations. The heights of these peaks should exhibit an exponential decay to unity, the value 

for a completely uniform particle distribution. The fluid phase is also isotropic; the equivalent 

angular distribution function will also fall off to unity in an exponential decay. 

The fluid phase represents a large area of the microstate phase space; as such, fluids have 

high entropies, and are favoured at high temperature. They have large values-for response 

functions such as compressibility and expansivity. 

The first order gas-liquid transition is caused by attractive interactions within the fluid, 

thus competition between high density, low energy liquid configurations, favoured at low tem-

perature, and low density, high entropy gas configurations, favoured at high temperature. At 

sufficiently high temperature, this competition disappears, as the entropy comes to dominate 

the free energy; the transition line terminates at a critical point. Without attractive interactions 
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Figure 1.5: Triangular lattice constructed using two different unit cells and bases. Circles show 
positions of particles, dashed lines show outlines of unit cells, dotted lines join nearest-neighbour 
particles. 

Triangular lattice constructed using a hexagonal unit cell with the basis as a single particle 
at the centre of that cell. 

Triangular lattice constructed using parallelogram unit cell with two-particle basis. 

(for instance, in hard sphere systems), the competition is absent, as is the transition. 

1.2.2 Solid States 

The solid state is characterised by rigidity; a solid has a fixed shape, and does not flow. Some 

have full long-range order; these crystalline, or lattice structures are composed of regular ar-

rangements of particles repeated across space. The peculiar hexatic phase, which can only exist 

in two dimensions, has long-range bond orientational order, but no translational order. Other 

states, known as glasses, are microscopically arranged like fluids, that is, with no long-range 

order at all; opinion is divided as to whether they form a strictly thermodynamically separate 

state. 

Crystals 

Crystals are solid phases with long-range order and restricted symmetries. They are usually 

hard yet brittle. Good day-to-day examples are sugar, table salt and quartz, as well as pure 

metals. The physics of these structures are described extensively in reference [9]. 

A perfect crystal is made up of a periodic array of particles, such as the triangular crystal 

shown in figure 1.5 a. This structure is made up of two parts. The first part is the unit cell. 

This is a volume of space, shaped such that it can be repeated (preserving orientation) to fill 
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space. The unit cell contains a number of particles; the set of particle positions relative to the 

centre of the cell is called the basis. By filling space with the repeated unit cell containing the 

basis, we gain a crystal structure; figure 1.5 a shows a unit cell (the dashed hexagon) and basis 

(a single particle in the centre of that hexagon) used to construct a triangular lattice. Choice of 

unit cell and basis does not uniquely define a crystal structure; figure 1.5 b shows an alternate 

unit cell (a parallelogram) and a two-particle basis used to construct the same structure as 

figure 1.5 a. 

Equivalent sites within each unit cell are joined by lattice vectors, R. In d dimensions, lattice 

vectors are any linear combination of a set of d primitive lattice vectors a 1 , . . . ,aj, such that: 

R = 1 1 a1  + 12a2 + . .. + Idad 	 (1.15) 

where l i  are integers, and the primitive lattice vectors cannot all lie in the same plane. Once 

again, these primitive lattice vectors are not uniquely specified for a given lattice. The positions 

of particles are invariant upon any combination of translations of the entire crystal through a 

lattice vector (long range translational order). Similarly, the positions of particles are invariant 

over a limited set of possible rotations of the entire crystal (long range orientational order). 

We refer to the positions of particles in this "perfect crystal" as lattice sites; this is not 

strictly accurate crystallographic terminology, but is a useful and commonly used shorthand. 

In a "real" (T > 0) crystal, particles will make excursions from their lattice sites; however, each 

particle will be associated with a single lattice site, which will be its average position in time 

or ensemble. Similarly, in a real crystal structure, there will be defects, that is, points where 

the lattice symmetry is not perfect. 

The radial distribution function for a crystal will show sets of strong peaks at each neighbour 

shell distance. For a perfect crystal, these peaks would be 6-functions, but are widened in 

real systems by thermal fluctuations in position. Between these peaks, the radial distribution 

function approaches zero. The height of the peaks should fall off algebraically with increasing 

separation, r. 

Strictly speaking, crystal structures like this only exist in three and higher dimensions. Below 

three dimensions, and at non-zero T, mean-square deviation from expected particle separations 

increases monotonically with increasing particle separation [10, 11].  In one dimension, this 
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effect is so severe (with the mean square deviation increasing as the square of distance) that 

only the fluid state can be stable, with thermal motion literally shaking any periodic structure 

to pieces. In two dimensions, things are less clear cut; mean square deviation increases with the 

logarithm of separation. Whilst this forbids long-range translational order in the true infinite 

system size limit, the decay of long range order may be so weak "as to allow two-dimensional 

systems of less than astronomic size to display crystalline order" [11].  Further, whilst infinite 

two dimensional systems may have only quasi-long range translational order, true long range 

orientational order may persist [11]. 

Hexatics 

The unusual hexatic phase can only exist in two dimensions, as a consequence of the pecu-

liar melting behaviour of two dimensional crystals. This matter was originally investigated 

by Kosterlitz and Thouless [12], who followed suggestions that melting in two dimensions was 

mediated by the presence of dislocation defects, that is, defects in the translational order of 

the crystal. They proposed that, for a two dimensional crystal at low temperatures, disloca-

tions with opposite direction occur in close-bound pairs, but that above a certain temperature, 

they may disassociate, causing melting. Extension of this theory by Halperin and Nelson [13], 

suggests that the second order dislocation-pair disassociation transition is not sufficient to take 

the system to a fully isotropic liquid, but instead to a hexatic phase, where, whilst there is 

no translational order (g(r) peak height decaying exponentially), long-range bond orientational 

order remains. At higher temperature still, disclination defect pairs (pairs of defects in the bond 

orientational order) within the hexatic become unbound through a second continuous transi-

tion, forming a true liquid. It should be noted that it is possible for disclination and dislocation 

pairs to become unbound together, to give traditional first-order melting directly from crystal 

to liquid. 

Whether this continuous melting scenario "really" occurs for two-dimensional systems is still 

a matter of some controversy [14]. However, the Kosterlitz-Thouless-Halperin-Nelson (KTHN) 

theory is still the closest to a rigorous theory of melting that condensed matter physics can 

offer. 
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Glasses 

Glasses (or amorphs) are solid (that is, rigid) structures without any long-range ordering - 

the generally-encountered example is window glass, amorphous Si0 2 . They can be formed by 

cooling a liquid far below the melting transition in a manner that suppresses crystallisation; the 

typical method is very rapid cooling, or "quenching". At low enough temperatures, the liquid 

becomes structurally arrested; particles explore the configuration space extremely slowly with 

respect to the timescale of observation (tens of seconds in supercooled water experiments [7], 

upwards of hundreds of years for panes of glass). This is reflected in a rapid and continuous 

increase in viscosity, to the point of rigidity. The resulting structure will be metastable with 

respect to a crystalline phase, but the structural arrest prevents crystallisation. 

Opinion is divided upon whether glasses are truly a separate phase from liquids, separated 

by a second-order "vitrification" transition, or if instead the transition is strictly a matter of 

kinetics and broken ergodicity. These two competing viewpoints are outside the scope of this 

work - a good primer can be found in reference [7]. 



Chapter 2 

Background and Review 

In this chapter, we will first discuss certain unusual phase behaviours - liquid state anomalies, 

fluid-fluid transitions and isostructural solid transitions - and give examples experimentally 

observed in real systems. Then we shall present a class of simple model potential ("core-softened" 

potentials), and review the literature surrounding these potentials. Through this, we hope to 

convince the reader that the varying classes of unusual phase behaviour we have discussed can 

all be shown by simple systems interacting via such core-softened potentials. Finally, we will 

summarise how the study of such systems may help us, both in our understanding of unusual 

experimental phenomena, and more widely in our understanding of phase behaviour in general, 

and state those facets of the matter which we will be examining in the rest of this thesis. 

2.1 Anomalous Phase Behaviour 

2.1.1 Liquid State Anomalies 

That most ubiquitous of substances, water, exhibits several unusual behaviours in its liquid 

state, which continue to draw research and speculation to the present day. Most notable (and, 

indeed, known to most school children) is the anomalous behaviour of the density of water as a 

function of temperature. Where a substance can normally be expected to contract, on cooling, 

liquid water exhibits a density maximum at around 4°C (that is, 277K); below this temperature, 

water actually expands upon cooling. This continues right up until freezing occurs, when water 

freezes into ice (or, more properly, ice Ih),  a solid phase which is peculiarly less dense than the 

16 
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Figure 2.1: Schematic representations of liquid state compressibility and density anomalies. 
Solid lines show the behaviour of an anomalous liquid such as water - dashed lines show typical 
liquid behaviour. 

Behaviour of isothermal compressibility, KT with temperature. The dashed line shows KT 
for a typical liquid decreasing monotonically with decreasing temperature. The 
compressibility of liquid water shows a minimum at T,,, = 319K, below which it increases 
upon further cooling. 

Behaviour of the density, p, with temperature. In a normal liquid, density will increase 
monotonically upon cooling. Water shows a density maximum, with density falling upon 
cooling below a temperature TMD = 277K. 

The density maximum can also be seen in the behaviour of the thermal expansion 
coefficient, cp = 	with temperature. For a normal liquid, cp will decrease on cooling, 
but remain positive. Since water has a density maximum, op passes through zero at the 
anomaly temperature TI/ID,  and becomes negative. 

liquid phase. Hence, ice floats on water. Less familiar, though equally strange, are the anomalies 

seen in the response functions of water; a minimum is seen in the isothermal compressibility, 

KT, around 46'C, 319K. Anomalous extrema are also seen in several other of water's response 

functions, including the constant-pressure specific heat, Cp, and the speed of sound through 

water - see figures 2.1 and 2.2. 

Such anomalies occur for several other structurally similar substances, including Si, Ge, Si02 

and Ge02. What is most striking about water, however, is the increase in anomalous behaviour 

upon supercooling. The anomalous effects become ever greater as metastable liquid water is 

cooled; indeed, extrapolation of experimental results suggests that KT and Cp exhibit a power-

law singularity at a temperature around 228K (-45°C) [15]. Unfortunately, this temperature 

may be experimentally unrealisable for pure water; below 235K (the homogeneous nucleation 

temperature), supercooled water spontaneously freezes. 
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Figure 2.2: Temperature domains for liquid water, adapted from [16]. Between the boiling 
temperature, TB = 373K, and the melting temperature, Tr.4 = 273K, liquid water is stable. 
It remains metastable down to the temperature of homogeneous nucleation at TH = 235K, 
below which it will spontaneously crystallise. Metastable glassy water is stable up to the 
"crystallisation temperature" at Tx = 155K, above which it will also spontaneously crystallise. 
Various anomalies occur for liquid water, including a maximum in the speed of sound (at 
TSA = 346K), a minimum in the isothermal compressibility (at temperature of extremal 
compressibility TEC = 319K), a minimum in the heat capacity (at TmCp = 309K), and a 
maximum in the density (TMD = 277K). If response functions are extrapolated below 
experimentally realisable temperatures, they go through a power-law singularity at T5 = 228K 
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Figure 2.3: a) A water (H 2 0) molecule, showing bond length and angle. 
b) A hydrogen-bonded water dinner. The liydrogen bond has a strength of around 24kJ/mul, 
as compared to the covalent H - 0 bond strength of around 4700/inol. The hydrogen bond is 
not entirely electrostatic in character, with some covalent, character (delocalisation of electrons 
between the oxygen and hy(lrogen atoms concerned) being shown. The bond strength ShOWS 
little dependence upon the H - () 	H bond angle, with distortions IIJ) to around 250  showing 
little effect. Bond length is more important., with bond strength having been shown to fall off 
exponentially away from the 0. . H equilibrium distance of around 1.86A [17]. 

Liquid State Anomalies as Structural Competition 

The physical origin of these anomalies has been the subject of learned debate for many years. 

One of the most persuasive arguments of recent years [1] is that they are dime to structural com-

petition in the fluid. To explain this, let us first consider the water molecule (figure 2.3 a). The 

hydrogen-oxygen covalent bonds are strongly polarised, giving the hydrogens a slight net posi-

tive charge, and the oxygen atom a slight net negative charge; this allows nearby water molecules 

to form directionally-dependent, short-ranged hydrogen bonds between each other (figure 2.3 

b). This bonding is somewhat stronger than Van der Waals interactions, but mmmcli weaker than 

true covalent bonding. All known low pressure solid ice phases involve fully hydrogen-bonded 

networks of water molecules. In the liquid phase, however, hydrogen-bonded networks are of 

necessity transient, with hydrogen bonds breaking and forming continuously as the molecules 
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Figure 2.4: a) A network of water-like molecules in 2D. To form the network, the molecules 
must adopt a very ordered configuration (low entropy), which is also very open. 
b) Randomly-packed water-like molecules in 2D. This configuration has much less order than 
that shown in figure 2.4 a, but is also much more dense. 

move, and short-ranged, not persisting beyond second- or third-nearest neighbours. Due to the 

very specific directional and range requirements of hydrogen bonding, such networked clusters 

will have lower entropy than more traditional randomly-oriented liquid configurations; they will 

also have a greater specific volume (see figure 2.4) 

As our hypothetical sample of liquid water is cooled, the lower energy of the networked 

clusters indicates that they will form with greater probability amidst the liquid. The networked 

clusters take up more volume than the randomly-oriented clusters; if the formation of open 

clusters with cooling overtakes the contraction of both types of cluster with cooling, volume 

will increase, and a density maximum will have occurred. This is the same as saying that the 

entropy and volume of the fluid become anti-correlated. We can see this if we cast the thermal 

expansion coefficient, ap = -1  !V- j P  in terms of fluctuations: 

Op = 	(DSV) 
	

(2.1) 

When S and V become anti-correlated, ap passes through zero and becomes negative, and 

density passes through an extremal point. The temperature at which this occurs will vary with 

pressure, tracing out a line of temperatures of maximum density (or TMD line) through the 

phase diagram. - 

A similar explanation can be given for the compressibility anomaly. When both networked 

and random clusters are possible as equilibrium structures, application of pressure will convert 

the open, networked clusters back to dense, random clusters. Hence, as open clusters begin to 
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appear with cooling, so the isothermal compressibility, KT =OPIT will begin to increase, 

against its normal behaviour. Once more, this can be seen by recasting the response function 

in terms of fluctuations: 

KT 	(8v 2 ) 
	

(2.2) 

As the networked clusters appear, whilst volume fluctuations within each type of cluster 

may be small, the presence of structures with two different equilibrium volumes within the 

liquid increases the volume fluctuations within the liquid as a whole. Hence KT will increase 

upon cooling. Once again, there should be a locus of temperatures of extremal compressibility 

(TEC line) through the phase diagram. 

As we cool further, we would expect these functions to return to more normal behaviour, 

as the open, networked structure comes to dominate the liquid, and fewer random clusters 

appear. Fluctuations should fall away back to the level within the networked structure, so 

the compressibility should pass through a maximum and fall again. Similarly, upon cooling, 

both volume and entropy within the networked clusters alone should begin to fall together 

on cooling; without random clusters converting to a networked structure, these two variables 

should correlate normally, ap should rise back up through zero, and density should see a local 

minimum and rise with falling temperature once more. Water has not been seen to exhibit this 

return to "normal" behaviour. Three main explanations for this have been proposed: 

The Stability Limit Conjecture 

This hypothesis, due to Speedy [19], suggests that the liquid-gas spinodal line changes from 

positive to negative slope in the negative pressure regime, retracing back to positive pressures at 

low temperatures (see figure 2.5 a). In such a situation, as water is supercooled and approaches 

the spinodal line, it will lose mechanical stability with respect to a supercooled gas phase, 

signalled by the extrapolated divergence in the response functions. The cause of the re-entrant 

behaviour is argued to be the inevitable intersection between the negatively-sloped TMD curve 

and the spinodal line; Speedy [19] has shown through thermodynamic arguments that if the 

two curves meet, the slope of the spinodal line must change sign. 

The Second Critical Point Hypothesis 
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Figure 2.5: Three scenarios for the anomalous properties of water. Solid lines show the line 
of first order transition separating phases; stable phases are labelled in bold type, metastable 
phases in bold italic type. Critical points are marked with circles (filled for stable, empty for 
metastable). The locus of the density anomaly is marked with a dashed line, and the liquid-gas 
spinodal lines are marked with dot-dashed lines. 

The Stability Limit Conjecture: the liquid-gas spinodal line begins to retrace at the point 
where it intersects the TMD line. The anomalies seen are due to approach to this spinodal 
line, with the associated loss of stability of the liquid phase. 

The Second Critical Point Hypothesis: metastable with respect to the ice phases, there 
exists a critical point C' which separates the liquid phase into low density liquid (LDL) and 
high density liquid (HDL) forms. The anomalies seen are the effects of this critical point. 

The Singularity-Free Hypothesis: the anomalies are a "stand-alone" effect, a structural 
competition effect with no associated thermodynamic singularity. 



CHAPTER 2. BACKGROUND AND REVIEW 	 23 

The second critical point hypothesis [20] suggests that the apparent singularity in supercooled 

water represents a second critical point. In this explanation, as well as the familiar line of 

liquid-gas transition and critical point, there exists a second line transition in the fluid phase, 

also terminating in a critical point. This novel transition is the full fruition of the structural 

competition in water, and separates the liquid phase into a random-packed high-density liquid 

(HDL) phase at high pressure, and a strongly-networked low-density liquid at low pressure. The 

line of first-order transition between these phases terminates in a critical point C' (see figure 

2.4 b), and it is the approach to the critical temperature, Ta',  that is causing the apparent 

singular behaviour. There is no retracing spinodal, as the TMD line changes slope such that it 

never intercepts the liquid-gas spinodal curve. 

We note that the structure of the strongly-networked phase would still be made up of many 

separate networked clusters. Though molecules within these clusters would be locally strongly 

ordered, the clusters would maintain the characteristics of transience and short range. Hence 

the system as a whole retains the complete orientational and translational symmetry of a fluid 

phase. 

3. Singularity-Free Hypothesis 

The theory against which the other hypotheses must be tested is the singularity-free hypothesis. 

Sastry, et al, [21] have demonstrated through thermodynamic arguments that the compressibil-

ity must increase on cooling across a TMD line which is negatively sloped in the (T, P) plane. 

As such, anomalous increase in KT on cooling does not guarantee approach to a thermodynamic 

singularity; instead, the extrapolation to an infinite compressibility may be incorrect, with the 

true behaviour being approach to a finite (yet arbitrarily large) compressibility maximum, be-

low which normal behaviour reasserts itself. In this hypothesis, the structural competition is 

considered to be powerful enough to give the liquid state anomalies (as described above), but 

not powerful enough to erupt into a full-blown phase transition. This scenario is illustrated in 

figure 2.4 c. 

Evidence 

Since it has not yet proved possible to directly observe liquid water close to the extrapolated 

singularity, other, more indirect means must be used to study this problem. An important study 
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in this field was carried out by Poole, et al, [20] who used the ST2 model potential for water 

[22] in molecular dynamics simulations to locate the liquid-gas spinodal curve, as a test of the 

retracing spinodal hypothesis. Their results showed a spinodal curve that was not re-entrant, 

instead showing a fluid-fluid transition and critical point as in figure 2.5 b, giving rise to the 

second critical point hypothesis. Whilst simulation work on real systems can never be seen 

as definitive (especially with a substance as infamously difficult to simulate as water), Poole's 

work established the second critical point hypothesis as a serious possibility. 

The major experimental evidence for a fluid-fluid transition has come from studies of glassy 

amorphous water. At atmospheric pressure, only crystalline ice phases are accessible between 

pure liquid water's temperature of homogeneous nucleation (at around 235K) and a "crystalli-

sation temperature" of around 155K (see figure 2.2). Below this, there is some controversy over 

whether there exists "ultra-viscous" supercooled liquid water [23], followed by a glass transition 

at 136K, or whether the actual glass transition is at some temperature above 155K, with liquid 

water quenched to this temperature falling straight into a glass phase [24]. What is established 

is that water demonstrates polyarnorphisrn, in that there are two separate glassy forms - the 

Low Density Amorph (LDA) and the High Density Amorph (HDA). The LDA form, seen at 

low pressures, can be prepared through deposition of water molecules on a cold plate' [25], and 

can also be produced by directly quenching liquid water [26]. The high-pressure HDA form 

was discovered through compression of ice lb  below 150K, but can also be prepared through 

compression of the LDA form [27]. The transition between the two amorphs appears to be both 

sharp and reversible, and is accompanied by a large volume change of around 20%. This tran-

sition does seem to be first order, though such a description should be used with care around 

glassy phases. 

This polyamorphism may support the second critical point hypothesis as evidence for a 

fluid-fluid transition in metastable water. It is often claimed [16] that the amorphs LDA and 

HDA represent kinetically arrested configurations of the LDL and HDL fluids respectively, with 

the transition between the amorphs being a continuation of a fluid-fluid transition into the 

glassy regime. 

Such claims are not without support. Thermodynamic properties of liquid water at low 

and high pressures can be extrapolated smoothly through the "no-man's land" between 155K 

'Most water in the universe is believed to exist in the LDA form, depositing from interstellar vapour onto 
dust particles in exactly this manner. 
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and 235K to respective low and high density amorphs [28]. Similarities between the structure 

factor data for high and low pressure supercooled water and the respective amorphs have also 

been found [29] (though this remains controversial [301).The case is, however, certainly not 

solved; extrapolations can never be relied upon, and some workers suggests that, rather than 

representing a kinetically arrested HDL phase, the HDA is instead a poorly-crystallised form 

of ice 'h  [31]. Further, the use of glassy phases as putative extensions of liquid phases remains 

controversial. 

The proposed liquid-liquid transition in water is between metastable, supercooled phases, 

and has so far proved impossible to observe directly in experiment. Rather more concrete 

evidence of transitions between stable fluid phases is found under extreme conditions in both 

phosphorus and carbon, which we now describe briefly. 

Liquid-Liquid Transitions - Phosphorus 

Phosphorus has a rich phase diagram (see [32, 33]), across most of which the atoms remain 

trivalent and threefold coordinated. Solid phases include four crystalline forms, with rhombo-

hedral, orthorhombic (black phosphorus), cubic (metallic phosphorus), and monoclinic (violet 

phosphorus) lattices, several amorphous polymeric "red" forms, and a molecular "white" solid, 

consisting of hexagonal or rhombic dodecahedral arrangements of tetrahedral P4 molecules. 

Upon melting at low pressures, phosphorus forms a molecular liquid of such P4 tetrahedra. 

Such melts show unusually strong spatial correlations (out to around 20A, that is, around the 

fifth nearest neighbour molecule). Molten phosphorus can boil to form a vapour of P4 molecules; 

upon further heating, these molecules will dissociate to form a vapour of P 2  dimers. The melt-

ing curve of black (orthorhombic) phosphorus shows a maximum with respect to temperature 

at around 1GPa. 

Ab initio molecular dynamics computer simulations [34] of high pressure and temperature 

molten phosphorus have suggested that the molecular liquid may undergo a first order transition 

to a polymeric liquid at very high temperatures and pressures. It is suggested that this occurs 

via "opening" of the P4 molecules, followed by bonding into a polymer made up of "roof-shaped" 

monomers. Experimental data appears to confirm this view [35], with a rapid (order of minutes), 

reversible transformation occurring, observed through X-ray diffraction measurements of the 

structure factor. The transition line appears to connect to the melting curve of orthorhombic 
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Figure 2.6: Schematic phase diagrams for Phosphorus and Carbon, showing the proposed liquid- 
liquid phase transitions. 

Phase diagram for high temperature phosphorus. Upon melting, the orthorhombic phase 
can become either a molecular low-density liquid (LDL) made up of P4 units, or a polymeric 
high-density liquid (HDL) depending upon pressure. The two liquids are separated by a line 
of first-order transition. The LDL-orthorhombic-HDL triple point is at approximately 1000°C 
and 1GPa. 

Phase diagram for high temperature carbon. Graphite can melt into either a low-density 
liquid with a chain-like character, or a high-density liquid characterised as a tetrahedral 
network. These liquid phases are separated by a line of first-order transition, terminating in a 
critical point. The LDL-graphite-HDL triple point is at approximately 4500°C and 5.6GPa. 

black phosphorus at or near the melting curve maximum (see figure 2.6 a), suggesting that 

the maximum is not a continuous change in the slope of the melting curve, but is instead a 

discontinuity, reflecting the transition between a liquid phase denser than the solid and a liquid 

phase less dense than the solid. 

The slope of the line of fluid-fluid transition here does appear to be negative, showing the 

entropy-volume anticorrelation between structures we have noted above. However, the poly-

meric liquid and molecular liquid have an essentially different symmetry, and so this transition 

could not demonstrate a critical point in the same way as the proposed liquid-liquid transition 

in water. Though phenomenologically closer to the "A-transition" in liquid sulphur (polymeric 

to S8), this transition makes a good counterpoint to the hypothesised transition in water. 

Liquid-Liquid Transitions - Carbon 

Another proposed liquid-liquid transition may occur in liquid carbon. The melting curve of 

graphite shows an maximal point with respect to temperature at around 5.6GPa. Careful study 

of this curve [36) suggests that, once again, this is not a smooth maximum but a discontinuity. 
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Figure 2.7: Schematic phase diagrams for Cerium and Cesium. 
Phase diagram for Cerium. There is a critical point, C', terminating an isostructural 

transition between the fcc phases II and IV. 
Phase diagram for Cesium. This system was long thought to also demonstrate an 

isostructural transition between fcc phases II and III, however, phase III is now widely 
believed to be a complex large supercell structure [41]. 

Data from the same study on resistivity of the liquid phase appears to show a discontinuity at 

around the same pressure, strongly suggesting that the liquid undergoes a first-order transition. 

A molecular dynamics simulation study of carbon [37] gives results supporting this hypoth-

esis, showing the discontinuity in slope of the graphite melting curve as a result of a stable 

liquid-liquid phase transition with critical point (see figure 2.6 b). From these results, the low 

pressure low, density liquid form is largely two-fold coordinated, with a chain-like, polymeric 

structure. The high pressure high, density liquid form is almost entirely four-fold coordinated, 

forming a dense diamond-like tetrahedral network. 

2.1.2 Isostructural Lattice Transitions 

At atmospheric pressure, there exist four stable crystal forms of the rare earth metal Cerium. 

At high temperature, the stable phase I, J - Ce, has a body centred cubic (bcc) lattice. This 

cools to a face centred cubic (fcc) phase II (y - Ce), with lattice spacing a 0.52nm, at 

approximately 726°C. Upon further cooling, Cerium passes through a double-hcp phase III 

(/3 - Ce) at round 53°C, then into the low-temperature phase IV (c - Ce) at around 96K - this 

phase IV is fcc with lattice spacing a = 0.485nm. 

As pressure is increased, the temperature stability range of phase III decreases. At a tern- 

perature of around 0.25GPa, phases II, 111 and IV meet at a triple point, and above this, phase 
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III is no longer stable, leaving a first order transition line between the fcc phases II and IV, 

across which there is a loss in volume of around 14.5%. This transition is marked by neither 

a change in lattice symmetry, nor in magnetic symmetry (both phases being paramagnetic), 

and was the first isostructural transition discovered in which the order parameter is simply the 

lattice spacing of the crystal'. Even more peculiarly, this line appears to terminate in a critical 

point at around 1.46GPa and 480K, above which phases II and IV appear to cease to have 

separate identities. Cerium is the only element known to exhibit such a stable isostructural 

critical point, and as such its properties have come in for a great deal of study. Much of this 

attention has focused on altering the position of the critical point through alloying and doping 

the metal with other rare earths and Thorium (see the indispensable reference [32] and refer-

ences therein). Cerium is also noteworthy for having a minimum with respect to pressure in 

the melting curve (at approximately 3.3GPa and 660°C) in the supercritical fcc phase regime. 

The isostructural transition in Cerium is credited to a pressure-induced transition in the 4f 

electrons of -y - Ce, leading to a sudden diminution of the effective core diameter for the Cesium 

atoms. Whilst the exact nature of this transition remains a matter of debate [40], the general 

idea of pressure-induced core collapse seems sound. 

The alkali metal Cesium was long thought to exhibit a similar fcc —fcc isostructural transition 

between phases II and III, associated with a fall in volume of around 9%, though with any 

critical point forestalled by melting. This transition was also generally accredited to electron 

core collapse (in this case, a pressure driven 6s - 5d transfer). However, recent experimental 

evidence [41] strongly suggests that phase III is not fcc but instead has a complex large-period 

supercell structure. This is backed up by theoretical studies suggesting that the fcc phase is 

mechanically unstable at the densities seen in the Cs III phase [42]. 

2.1.3 Anomalous Phase Behaviour - Summary 

The links between isostructural lattice transitions and liquid state anomalies are stronger than 

they may seem at first. Both rely on the existence of two distinct equilibrium particle sepa-

rations in a substance. In water, these separations correspond to the widely-spaced hydrogen 

bonded networks, and randomly packed molecules. In Cerium, the two different stable electron 

2 1t should be noted that in recent papers, it has been suggested that there is some essential difference between 
the phases (either cs - Ce having a subtly distorted fcc structure (38], or in a hidden electronic structure symmetry 
[391), such that the observed critical point is actually a tricritical point, with the transition continuing as second 
order beyond this. 
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Figure 2.8: a) "Core-softened" interparticle potential; this has a "shoulder" (region of negative 
curvature) in its core. 

Energy density with respect to volume for a system interacting via the potential shown in 
figure 2.8 a. At zero temperature, this is equal to the Helmholtz free energy. 

Volume as a function of pressure for the zero-temperature system. This has a discontinuity. 

structures provide two discrete core radii. These distinct particle separations give rise to two 

competing structures with the same symmetry, be that the continuous symmetry of the liquid 

state or the lattice symmetry of an fcc crystal. Further, if the second critical point hypothesis 

is true, then both water-like and Cerium-like systems have a full, first-order phase transition 

between phases of the same symmetry. 

We have now tentatively identified a common factor between these two types of phase be-

haviour. We will now identify a class of simple interparticle potential which can, perhaps surpris-

ingly, demonstrate liquid state anomalies, isostructural solid-solid transitions, and liquid-liquid 

transitions, without dealing with the complicated directional character of the water molecule, 

or the quantum mechanical electron orbitals of Cerium atoms. 

2.2 Core-Softened Potentials 

2.2.1 What is Core-Softening? 

In order to model the behaviours described above, we desire an interparticle potential which will 

show two distinct possible particle separations in thermodynamic equilibrium, selected between 

by an externally applied field. 

We know that the stable volume of the system at given (P, T) will be that for which the 

free energy is minimal and that only volumes at which the free energy is convex with respect 

to volume can be thermodynamically stable. Let us consider a system of particles at zero 

temperature. We will now suppose the particles to be interacting via an interparticle potential 

with a region in the repulsive core where the potential is both repulsive (V < 0) and concave 
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< 0) with respect to the interparticle separation, as shown in figure 2.8 a. At zero 

temperature, this concavity will be reflected in the function e(v) , and hence into the Helmholtz 

free energy curve (see figure 2.8 b). We can see that the equilibrium volume will no longer be a 

continuous function of pressure. We have introduced a first-order phase transition at a pressure 

P', as shown in figure 2.8 c, without assuming any change in the symmetry of the system. 

The presence of such a shoulder in the repulsive core of a potential is known as core-softening, 

in analogy to the phenomena of electronic core collapse in Cerium. Potentials exhibiting such 

a region are known as core-softened. 

Of course, the presence of such a transition at zero temperature does not indicate that the 

structure exhibiting such a transition at a given pressure will be the structure which is thermo-

dynamically stable at that pressure. Nor does it indicate that phases stable at non-zero tem-

perature will exhibit such transitions. Above T = 0, entropy must enter our considerations, and 

the curves shown in figures 2.8 b and c will become three-dimensional entropy-energy-volume 

landscapes, one for each possible structure, and such a simple analysis becomes impossible. 

However, the possibility that such a potential could exhibit a transition between phases of the 

same symmetry is demonstrated. 

2.2.2 Stell-Hemmer Potentials - Early Work 

The idea of core-softening was introduced by Stell and Hemmer in a 1970 paper [43], where 

they demonstrated that a core-softened potential could introduce "extra" phase transitions in 

both a lattice gas system of any dimensionality, and in a one-dimensional continuum system. 

We will review their argument here. 

The Lattice Gas 

A lattice gas is a simple model of a cell system, in which space is discretised into lattice 

points. Each lattice point is associated with an "occupancy number"; this is, the number 

of particles occupying the area of space corresponding to that lattice point. The interaction 

between particles is represented with a potential, depending only upon the relative location 

of lattice points and their occupancies. We represent the "hard core" repulsion of particles by 

allowing only occupancy numbers of 0 or 1. It can be seen that the lattice gas is equivalent to 

a spin system, and that by restricting the occupancy to have only two possible values, we have 
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Figure 2.9: Lattice gas model phase diagram. The dashed line shows the line of symmetry 
around p =; if interactions between adjacent sites are infinite, state points at densities above 
this line of symmetry (light shaded area) are unphysical, and only the transition at densities 
below the line of symmetry is seen. If interactions between adjacent sites are finite and very 
large, the entire state space is available, and the conjugate transition at p> 1  becomes physical. 

made our lattice gas equivalent to an Ising model. 

Such a system has a symmetry between occupied sites ("particles") and unoccupied sites 

("holes") [44]. A consequence of this symmetry is that the properties of every thermodynamic 

state point of the system can be calculated from the properties of another state point. This 

"mapping" between state points is reversible (if point A maps to point A', then point A' maps to 

point A) and single-valued (point A is the only point which maps to point A'), and points may 

map onto themselves (the locus of such points forms a single line of symmetry through the phase 

diagram). The mapping corresponds to "flipping the spins" on every lattice site in the system 

(that is, converting every lattice point with occupancy 0 to occupancy 1 and vice versa). The 

mapping between the thermodynamic functions of conjugate state points is relatively simple; 

the important parts for our argument are: 

T 	= 	T' 
(2.3) 

I 	1\ - (1 
- 

Now, consider a lattice gas system in which pairs of particles cannot occupy adjacent sites, 

that is, the potential V0  between particles at adjacent sites is infinite. Further, there is an 

interaction acting between particles in non-adjacent sites capable of producing a line of first-

order transition with a critical point at (p i ,T1 ) 3 . The infinite interaction between adjacent 

31n two or higher dimensions, most attractive potentials are capable of giving such a system a gas-liquid like 
transition. In one dimension, the attraction will have to be long ranged. 
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occupied sites constrains the density of the system to be less than or equal to ; whilst the 

conjugate pairs for the available state points exist, they are non-physical, as they have infinite 

energy 

We now take the interaction V0  acting between adjacent sites to be finite but arbitrarily 

large. The factor V0  enters the equation of state only through the Boltzmann factor e'0;  since 

V0  can be made arbitrarily large, this exponential can be made arbitrarily small, and hence the 

change in the p part of the phase diagram can be made arbitrarily small. However, the 

p> part of the phase diagram has now become physically accessible, and with it a conjugate 

state "image" critical point (arbitrarily close to (1 - P1, Ti )) and associated line of transitions, 

guaranteed through the continuity of the mapping (see figure 2.9). This has the effect of bringing 

a second transition to the system. 

Extending this argument to real systems is tentative at best; the lattice gas model is quite 

basic, and the particle-hole symmetry which the argument rests upon is not applicable to 

continuum systems. However, exact results for the one dimensional continuous system (also 

presented in more detail in reference [45]) are more promising. 

One Dimensional Continuum Fluid 

For this system, particles are considered to interact via the potential given by: 

q5(r) = 	 00 
	

d 

= Vo (1—(r—d)/d.\) 
	

d 	< r < d(1+A) 
	

(2.4) 

= 
	

d(1+A) < r 

The form of this potential is shown in figure 2.10 . Without the attractive part, and with 

.\ < 1, this potential will act only between nearest neighbour particles. The exact intensive 

Helmholtz free energy in one dimension for the nearest neighbour-only potential, can be 

found using the Takahashi Nearest-Neighbour Gas method (see [46] and chapter 3). However, 

without the attractive contribution, the system will not exhibit a phase transition at non-zero 

temperature. 

The form of the attractive long-ranged tail, when added to a simple hard core potential, gives 

a phase diagram with a single line of first-order phase transition, terminating in a critical point. 

When added to a nearest neighbour potential, this attractive contribution allows calculation 



CHAPTER 2. BACKGROUND AND REVIEW 
	

33 

V 

-a. 

4(r 

V 

-a 

a) 	 b) 

Figure 2.10: a) Ramped core-softened potential with long-range attraction, as given by equation 2.4. 
b) Shouldered core-softened potential with long-range attraction, as given by equation 2.6. 

of the exact free energy in one dimension [] in the limit 'y - 0 (with large y,  the attraction 

becomes arbitrarily weak but arbitrarily long ranged). This free energy is given by: 

a(v, T) = CE (a - a/v) 	 (2.5) 

Here CE denotes the "convex envelope" of the function; that is, CE(A(v)) is the maximal 

function convex with respect to the origin, but never higher than the function A(v). 

The phase diagram for the full potential depends upon two parameters, A (the width of the 

shoulder) and the combination Vod/a, as shown in figure 2.11 a . It can be seen that, for all 

A < 1, there exists a value of Vod/a above which a second line of first order phase transitions 

with a critical point occurs. This line of phase transition may or may not meet the "normal" 

line of transition in a triple point; the higher Vo d/c is, or the lower A is, the less likely we are 

to observe a triple point. 

All three possible phases seen in this model can only be described as fluid-like; as we noted 

in chapter 1, systems with translational order are unstable in one dimension. It is possible for 

such a potential to exhibit an extra fluid-fluid transition. Of course, and as we shall see, this 

does not mean that such potentials will definitely give fluid-fluid phase transitions in higher 

dimensions; it is merely that the "default" high density phase in one dimension is fluid, whereas 

in higher dimensions high density lattice phases become the norm. 

Stell and Hemmer note in passing [451 that this model can exhibit "crossing isotherms" - 

that is, negative cp, a liquid state anomaly as we described earlier for water - but they do not 

develop this further. 

The unusual phase behaviour seen here is not a consequence of the exact form chosen for 



0.5 

Vd/(x 
0.4 

0.3 

0.2 

0.1 

aS 	5 	
:1 	 S 	

a 

r-IIF1 L.JI• 9a**g*l+A* 
.v 'V 'V'' I 	 • 'V 'V 'V'V 

MEN IN 
WW"

I I 

41• 	• 

IV, 	OR 

One transition 

£à 
. .i 

I •&'  

34 

0 	 0.5 	 1.0 	 0 
	

0.5 	 1.0 

a) 	 b) 

Figure 2.11: a) Characteristics of the phase diagram for a one dimensional system interacting via the 
potential given in equation 2.4. 
b) Characteristics of the phase diagram for a one dimensional system interacting via the potential given 
in equation 2.6. 
These diagrams are reproduced from reference [45] 

equation 2.4; Stell and Hemmer also consider a potential of the form 

çb(r) = 	00 	 r < 	d 

= 	Vo 	 d 	< r < d(1+A) 	 (2.6) 

= _e_"yr 	d (1 + A) < r 

(see figure 2.10 b) which they treat in the same manner. This system gives qualitatively similar 

phase behaviour, as shown in figure 2.11 b. Further, none of the anomalous behaviour is due 

to the discontinuities within the interparticle potentials; as Stell and Hemmer point out, it is 

possible to construct continuous potentials arbitrarily close to those used here. 

This work was followed by a series of papers examining the behaviour of the shouldered 

potential (given by equation 2.6) in higher dimensions. In reference [48], two complementary 

perturbation schemes are developed for the one dimensional system. Both calculate the free 

energy from the radial distribution function, g(r). The shoulder height V0  is taken as a pertur-

bation parameter from a reference hard-sphere system of radial distribution function gHs  (r). 
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The first scheme calculates expands g(r; V0 ) around V0  such that: 

g(r;v,Vo )=gHs(r;v)+Vo 	 (2.7) 

The authors note that the free energy calculated through this scheme is a rigorous up-

per bound to the "true" free energy though the Gibbs-Bogoliubov inequality; further, in one 

dimension it becomes exact in the limit of close packing. 

The second scheme writes the radial distribution function as: 

g(r; v, 	= e V) y ( r;  v, V0 ) 	 (2.8) 

The function y(r; v, V0) is then expanded around V0  = 0 such that: 

ayl 
g(r; v, 17) = 	 (YHS(r- v) + V0 	+...) 	 (2.9) 

The authors note that this scheme appears to be a lower bound to the true free energy, 

though they are unable to show this rigorously; it further appears to become correct in the 

ideal gas limit. 

These approximations are then extended to three dimensions [49], though there is no guar-

antee of rigour in this extension. Using the Weis and Percus-Yevick expressions for gHs(r) , in 

three dimensions, and Hall and Alder-Hoover-Young expressions for the hard sphere solid free 

energy, and assuming the equilibrium crystal structure to be fcc, the authors find an isostruc-

tural solid-solid transition. 

Similar results were found by Young [50], who used a Lennard-Jones-Devonshire cell mode1 4  

to study the solid state phase diagrams for several potentials, including a shouldered square well 

potential (see figure 2.12 b) . This work takes into account several crystal lattices, including bcc 

and simple cubic, and finds results for the shouldered square well which qualitatively reproduce 

the experimental phase diagram for Cerium. 

Since these first papers, there has been a great deal of research on the behaviour of core-

softened potentials. Some has focused on their solid phase behaviour, whilst the possibility of a 

fluid-fluid transition in water has kindled a great deal of interest in their fluid phase behaviour. 

4Lennard-J ones- Devonshire cell theory was originally developed as a mean-field lattice theory of the liquid 
state, though can be better interpreted as a theory of the solid state, conceptually sitting somewhere between 
the simple Einstein crystal and the harmonic approximation. See chapter 5 and [2] for a full discussion. 



CHAPTER 2. BACKGROUND AND REVIEW 
	

36 

t(r) 

co  

a) 	 b) 

Figure 2.12: a) Simple shouldered hard-sphere core-softened potential. 
b) Simple ramped core-softened potential. 

We shall now review this body of work. 

2.2.3 Solid State Phase Behaviour of Core-Softened Potentials 

Two Dimensions 

Two dimensional systems hold a certain degree of appeal for theoretical work. Whilst it is not 

possible to produce exact results as it is for many one-dimensional systems, two dimensional 

systems are sometimes more tractable than their three-dimensional counterparts. They are also 

often taken as qualitatively more similar to three dimensional systems than one dimensional 

systems are. There are still caveats (the largest being the instability of lattice phases in the 

infinite limit, and the possibility of continuous melting), but this field of study is still worthwhile. 

In three dimensions, and for spherically-symmetric phases, the fcc lattice is, in general, the 

most stable lattice for a one-component crystalline phase. Researchers willing to go further 

than assuming fcc will often only go so far as to check for other possible close-packed lattices 

(and possibly simple cubic), unless some external evidence compels them to examine other 

lattices. In two dimensions, triangular lattice phases are the norm, and anything more exotic 

the exception. 

Work by Jagla [51] has shown that a simple core-softened potential can produce a whole 

menagerie of possible lattice phases in two dimensions, even in the ground state (that is, T = 0). 
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The potential studied was a hard core with linear ramp (see figure 2.12 b), given by: 

= 	00 	 r < r0 

= 	 r0 < r < r1 	 (2.10) 
rj —ro 

= 	0 	r1 < r 

Jagla uses ground state calculation to find which phases will be stable at zero temperature. 

A number of possible lattices are proposed, and their configurational energy as a function of 

volume, e(v), are calculated; from this, their enthalpies h (equivalent to the Gibbs free energy 

at zero temperature) can easily be found, and their relative thermodynamic stabilities checked. 

The results (calculated for a range of the potential parameter, ro/ri) are surprising. Eight 

possible lattice phases are found. Two of these are triangular, corresponding to an interparticle 

separation of either the hard sphere diameter or the ramp diameter. A square and rhombic 

lattice are found, which are both normally unstable against shear deformations which would 

lead to collapse into a triangular structure. Other structures involve unit cells with more than 

one particle. Strangest of all is a ground-state quasicrystal, stable only at one distinct point of 

pressure and To/ri. 

The full (P, T) phase diagram for an example of this system was then calculated using 

a combination of Monte Carlo simulation and thermodynamic integration; this exhibits six 

separate lattice phases, including a region of entropically stabilised quasicrystal. The system 

exhibits three separate melting point maxima, and a density anomaly in its fluid phase 5 . 

This two dimensional linear-ramped potential system does not appear to exhibit a stable 

isostructural solid-solid transition. This does not discount the possibility that such a transition 

may exist, but is preempted by thermodynamically more stable lattices, and as such occurs 

between metastable phases. 

At this point, a major caveat on isostructural solid-solid critical points must be made. It 

has already been pointed out that there exists an extra possible phase in two dimensions, the 

hexatic, lacking in any translational order but retaining orientational order. Though normally 

considered as a phenomenon of melting, a two-dimensional lattice phase will lose stability to 

a hexatic phase when the Kosterlitz-Thouless elastic constant CK_T  falls below a particular 

5 Since the potential lacks any attractive part, it does not show a liquid-gas transition. 
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value, CK_T < 16r. We rewrite this constant in terms of the isothermal compressibility: 

CK-T- 	
41L 

 KT(+K') 	
(2.11) 

Close to a critical point, critical fluctuations can make the bulk modulus arbitrarily small. 

Since these same fluctuations will have little effect upon the shear modulus p we should ex-

pect that, upon approach to an isostructural critical point, a two-dimensional system will pass 

through a second-order transition into an island of hexatic phase as the critical fluctuations 

make isothermal compressibility arbitrarily large [52]. Following on from these arguments, 

Bladon and Frenkel [52] have observed exactly this, and their results have been confirmed by 

further investigation [53]. This makes it unlikely that a stable isostructural solid-solid critical 

point in two dimensions could be directly observed. 

Three Dimensions 

It will be instructive at this point to consider work by Bolhuis, Frenkel and Hagen [54, 55]. 

Though not directly concerning core-softened potentials, it has strong implications for work 

on isostructural transitions. These authors have considered the phase behaviour of the simple 

square well potential, given by: 

0 	= cc 	 r < 	or 

= -E 	a 	< r < a+ 	 (2.12) 

= 0 	a+8<r 

This potential is often used as a simple model for interactions between uncharged colloidal 

particles. It is known from experimental, theoretical and simulation work that simple attractive 

potentials will exhibit a liquid-gas type transition as long as S/a is large enough. Below a 

particular value, however , the liquid-gas critical temperature will drop below the melting 

curve; the condensation transition will be preempted by freezing, and the liquid-gas transition 

will become metastable with respect to the solid phase. 

Bolhuis and Frenkel studied the phase behaviour for this system when S becomes very small 

compared to a (that is, with no stable liquid-gas transition), using a combination of Monte 

Carlo simulations and thermodynamic integration from the hard-sphere system. It was assumed 

that the stable lattice phase was either triangular or fcc, depending upon the dimension. They 
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found that, for 61a <0.07, the system exhibits an isostructural fcc - fcc or triangular-triangular 

transition in three and two dimensions, respectively. For values of 61a > 0.07, this isostructural 

transition is preempted by melting, becoming metastable. 

This isostructural transition does not occur through the mechanisms we have mentioned 

above, being entropically driven, but such behaviour from such a simple potential is certainly 

interesting. With the potential so short-ranged, the liquid-gas transition has long sunk into 

metastability behind the solid phase, to a point at which it is effectively unobservable. As we 

raise the parameter 6, the potential becomes longer-ranged, and the position of the isostructural 

transition line moves up in volume and temperature until it becomes metastable with respect to 

the liquid phase. If we raise 6 further, the liquid-gas transition will rise out of metastability and 

become part of the equilibrium phase diagram, whilst the isostructural transition will disappear 

back to unreasonably high free energies, before disappearing altogether. This behaviour is not 

some artifact of the square well potential; it has also been shown for the hard core attractive 

Yukawa potential [55]. This raises questions as to whether the liquid-gas transitions in other 

systems have isostructural "shadow" transitions between metastable solid phases; further, as to 

whether isostructural transitions have metastable fluid-fluid shadows. 

Following this work, Boihuis and Frenkel [56] have studied the phase diagram for a core-

softened potential, the shouldered hard sphere, given by: 

	

q(r)oo 	 r < 	ci 

	

=EO 	 or 	< r < o- ( 1+6) 	 (2.13) 

	

0 	a(i-i-6) < r 

This potential was studied using a combination of Monte Carlo simulations and thermo-

dynamic integration, once again only considering the fcc lattice. They find that this system 

does appear to exhibit an isostructural fcc - fcc transition for a range of shoulder widths out 

to 6 0.25. This study was taken further by Rascon, et al [57]. These authors used a den-

sity functional perturbation theory to study the same system, but also considered bcc and sc 

lattices. Their results give quite reasonable agreement with Boihuis and Frenkel's simulation 

data [56]. They suggest that, as the width 6 of the shoulder rises, the bcc phase becomes 

stable at increasingly high temperatures, until by 6 0.16 it has preempted the fcc - fcc tran-

sition altogether. For potentials with such wide shoulders, there will be one fcc phase with a 
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Figure 2.13: Core-softened potentials studied in reference [59]. 

low-temperature region of stable bee phase, with the isostructural transition between phases 

metastable behind the bee phase. This result is very similar to the interceding phases found by 

Jagla [58] in two dimensions. The authors also examined the phase behaviour for the repulsive 

Yukawa potential, given by: 

cb(r) = 
	 (2.14) 

It will immediately be noticed that this potential does not satisfy the conditions for core-

softening, being a monotonically decreasing function of the particle separation r. The authors 

note that their perturbation scheme gives poor quantitative results for thispotential, though 

they believe their results to be qualitatively correct. Their results show a stable region of bee 

phase, with no possibility of isostructural transition. 

The same density functional perturbation scheme has been used by Velasco, et al [59] to 

study two core-softened potentials, both modifications of the shouldered hard sphere potential. 

Both modifications are shown in figure 2.13. 

Both modifications show a low-temperature bee region, with fee becoming the stable phase 

at higher temperature. Interestingly, isostructural transitions can be found in both fee and bee 

lattices for both modifications; at low temperatures, the bee phase overlays the fee transition, 

such that there can exist an fee — bee —fee triple point. In the range of potential parameter r 1 /r0 

studied for the first modification (figure 2.13 a), the bee - bee transition ends in a critical point 

within the stable bee range. Both fee - fee and bee - bee critical points recede in temperature 

with decreasing r 1  /ej, until the fee - fee transition recedes completely behind the bee region, as 

has been discussed above. Velasco, et a!, have calculated the value of the potential parameter 
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such that the fee - fee critical point lies exactly on the fee - bee transition line - this gives rise 

to a novel form of triple point, between the bee phase and two fee phases of equal density. 

For the second modification (figure 2.13 b), the chosen potential parameter is 61 (see figure 

2.13 b). Here, the bee - bee transition extends beyond the bee stability region, such that the 

bee - bee critical point is metastable with respect to the fee lattice. As 61  increases, the fee - fee 

critical temperature increases, whilst its pressure falls; it is expected that with increasing 61, 

the fee - fee transition will disappear behind the liquid phase. 

Considering this, and the work of Boihuis and Frenkel [54, 55], we can make an interesting 

speculation. We have seen how, for the square well potential, there exist two isostructural 

transitions, the standard liquid-gas transition and an fee - fee transition. Depending upon the 

well width, only one is stable, the other being metastable, deep behind the other structure. 

Velasco's work [59] shows an isostructural transition in both the fee phase and the bee phase. It 

is possible to suggest that every "kink" in the free energy curve puts an isostructural transition 

into every possible structure for the system (each lattice, and also amorphous and fluid struc-

tures), but that these transitions are not normally observable, due to being either metastable 

with respect to other structures, or existing only as an analytic continuation off into regions 

where the structure is fully unstable. 

These works have only considered the normal cubic lattices (that is, fee, bee and sc). We 

saw earlier how core-softened potentials can stabilise all kinds of exotic lattice phases in two 

dimensions, and this may be true in three dimensions, too. Jagla [58] has attempted to calculate 

the stable ground-state lattices for the linear ramp potential (equation 2.10, see figure 2.12 

b). Once again, this has been done by proposing a set of possible lattice phases; the chosen 

set included not just the normal cubic lattices (sc, bee and fee), but also tetragonal, hcp, 

rhombohedral and hexagonal. All these lattices are found to have a stable region across the 

range of pressure and potential parameter examined; further, there exist areas in the phase 

diagram across which none of these structures were found to be mechanically stable, hence 

where the stable lattice must be outside of this set. To actually map the stability for many 

lattices across any reasonable range of the phase diagram would be an incredible job of work, 

even when confined to these high-symmetry lattices. It is possible that even more bizarre phases 

may be stabilised by core-softening. Work on atomic pseudopotentials for Cesium by Reed and 

Ackland [60] gives effective interparticle potentials which exhibit core-softening - it may be 
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Figure 2.14: Potentials used in references [1, 61, 621. 

interesting to investigate whether such potentials can give rise to large supercell structures 

similar to that speculated for the Cesium III phase [41]. 

2.2.4 Liquid State Phase Behaviour of Core-Softened Potentials 

The current controversy over the second critical point hypothesis for water has sparked a great 

deal of investigation, both through theoretical approximations and direct simulation, into fluid 

systems which may demonstrate liquid state anomalies and/or liquid-liquid transitions. Here 

we will only he concerned with those investigations which have studied continuum core-softened 

systems. 

Sadr-Lahijany et al [1, 61, 621 have studied the liquid phase behaviour in two dimensions 

resulting from two interaction potentials. The first of these is a combination of a 12-6 Lennard-

Jones potential with a Gaussian well, given by: 

(r) = 	
( 12 - (

fl6 - 	 (2.15) 
T) 	\r) ) 

Sadr-Lahijany et al [1, 61, 621 also study a discretised version of this potential, composed of 
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Figure 2.15: Phase diagram for potential given by equation 2.15, reproduced from [1]. The 
thick line shows the estimated melting curve, open circles mark temperatures of maximum 
density, and the dashed line marks temperatures of maximum compressibility. Curves mark 
lines of constant density. The point C' marks a critical point terminating a line of first order 
liquid-liquid transition estimated from cell theory. 

two square wells, such that: 

	

cb(r) = 00 	 r < a 

(2.16) 

	

= —AE 	ar1 < r < ar2 

	

0 	ar2 < r 

The parameters studied were A = 1.7, ro = 1.5 and w = 5.0 for the continuous potential, 

and r1 = 1.4, r2 = 1.7 and A = 2 for the discrete potential - see figure 2.14. No motivation 

is stated for this choice of parameters. After confirming that the continuous potential could 

indeed give rise to density and compressibility anomalies in one dimension, they performed 

molecular dynamics simulations on a two-dimensional system using both potentials. The results 

for both potentials are described as being qualitatively similar [1]. These results show liquid 

state anomalies in density, compressibility, and diffusion, and two distinct solid phases (with 

the melting curves determined by the points where the diffusion coefficients vanish). At high 

pressures, the system freezes into a square lattice solid, whilst at low temperatures, the solid 

form is a triangular lattice. This triangular lattice has lower density than the liquid phase at 
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the melting temperature, and therefore through the Clausius-Clapeyron equation has negative 

slope. 

The presence of structural competition was investigated through study of the radial distri-

bution function of the liquid, g(r). This function shows a split in the first peak, indicating 

two preferred nearest-neighbour separations. The relative weights of the two sub-peaks change 

with applied pressure, indicating competition between open and closed structures, accounting 

for the anomalies. No full liquid-liquid transition was directly observed in these simulations. 

However, the authors fitted their compressibility data to power law divergences, and from this 

inferred the existence of a metastable liquid-liquid critical point behind one of the solid phases. 

They supported this hypothesis with calculations from a modified Lennard-Jones-Devonshire 

cell theory. Their reported phase diagram is shown in figure 2.15. 

The first observation of a liquid-liquid transition from a core-softened potential has come 

from very recent work by Malescio and Pellicane [63]. These authors consider a combined 

shouldered hard sphere and square-well potential, given by: 

	

(r) = oo 	 r < ci 

= or < r < ar1  
(2.17) 

	

= —Ar 	ar1 < r < 072 

= 	0 	crr2 < r 

This potential, using parameters r1  = 2.5, r2 = 3.0 and A = 1.25, was studied in three dimen-

sions using thermodynamically self-consistent integral equations to approximate the equation 

of state, specifically, a combination of hypernetted chain and soft mean spherical approximation 

equations (see references within [63]). Once again, the authors do not motivate their choice 

of parameters. Their results show two transition lines and critical points, one the common or 

garden gas-liquid transition, the other a liquid-liquid transition. The authors estimate that 

this second transition lies between phases metastable with respect to the solid phase (estimated 

using the empirical Hansen-Verlet rule'); Monte Carlo simulations performed at state points 

near the purported second transition show no evidence of lattice structure, evidence that the 

metastable liquid states around the transition have appreciable lifespans. 

Further work on this potential [64, 65] has been performed using parameters r1 = 2.0, 

6 "Crystallisation occurs when the height of the first (main) peak of [the structure factor] S(k) attains the 
value 2.85" (63] 
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r2 = 2.2, .\ = 2. These parameters have been chosen by calculating liquid equations of state 

through the procedures mentioned above, to find values which appear most likely to give a 

liquid-liquid phase transition. Molecular dynamics simulations are used to directly observe the 

transitions once parameters have been established. The liquid-state approximations are quoted 

as showing good qualitative agreement with the simulation results. The simulations show 

both transitions as metastable with respect to the solid phase, with their positions sensitive 

to the potential parameters. Increase in width of the attractive well increases both critical 

temperatures, whilst increase in .\ or decrease in r1 the temperature of the liquid-liquid critical 

point is lowered with respect to the liquid-gas critical temperature. 

This model has one final important feature; it shows no density anomaly in the fluid phase. 

The other core-softened potential known to demonstrate a liquid-liquid transition is a version 

of the linear ramp potential, due to Jagla [66].  This potential is given by: 

	

çb(r) = 	 00 	 r < rt 

	

= 	(- 1 z-_.X-z-) r0 < r < r1 
ri —To 	r2-TO 	 (2.18) 

	

= 	 T1 < T < T2 
7'2 - TO 

	

= 	0 	 T2 < T 

Systems interacting via this potential have been shown to have extra liquid-liquid transitions 

and critical points in both two and three dimensions, using direct Monte Carlo simulation. In 

two dimensions, Jagla shows the liquid-liquid transition to occur between stable phases, with 

the transition line reaching a triangular-liquid-liquid triple point at low temperatures; this 

triangular lattice is less dense than either liquid phase, and so has a melting curve of negative 

slope. In three dimensions, the transition also appears to be stable, with none of the simulations 

performed showing evidence of a solid phase. Both two and three dimensional +systems show 

liquid state anomalies. 

2.3 Summary 

We have seen that simple core-softened potentials can mimic the phase behaviour of several 

unusual, and apparently disparate real systems. On the one hand, these potentials can give rise 

to the unusual liquid phase behaviour seen in a variety of tetrahedrally coordinated systems, 
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including water, Si, Ge, 5i0 2 , and Ge0 2 , and to a certain extent carbon and phosphorus. 

The real interaction potentials for such systems are complex and strongly anisotropic, making 

accurate modelling difficult. Similarly, core-softened potentials can exhibit the unusual solid 

phase behaviour of the metal Ce. We have distilled these features down to one essential property 

of the interaction potential; the presence of two distinct particle separations, selected between by 

pressure. As such, these potentials are extremely relevant to the understanding and development 

of experimental work in several areas of ongoing research. 

The exotic and varied phase diagrams that such potentials give us access to suggest that 

these potentials may facilitate study of several other phenomena. By inducing a critical point 

in a two dimensional solid phase, we can induce a surrounding area of hexatic phase stability; 

hexatic phases are notoriously difficult to cause and to pin down, and so core-softened potentials 

could aid in their study. The richness of phases shown by core-softened systems could hold other 

such surprises, such as stable quasi-crystals. Further, many of the features attracting study to 

these potentials regularly occur in metastable phases; these may lead to better methods for 

artificially altering the relative stability of phases in simulation work. 

Finally, these potentials could be of great interest at a more basic level of condensed matter 

theory; they may help to give a better understanding of how shape of potential influences 

phase and state behaviour. We have seen suggestions that transitions within phases (such as 

the liquid-gas transition) may have corresponding 'shadow" transitions in other phases, raising 

interesting questions as to how the free energy landscape of lattice and fluid phases reflect and 

affect each other. Apparently similar potentials give transitions with liquid state anomalies, 

or phase diagrams where such anomalies are completely absent. In summary, core-softened 

potentials offer a rich seam of potential research, which should be of interest in terms of theory, 

simulation, and experiment alike. 

2.4 Research Aims 

In this work, we intend to follow up on the work of Sadr-Lahijany et al [1], making an extended 

study of the phase behaviour of a two-dimensional system of particles interacting via the core-

softened potential given in equation 2.15. We will investigate the origin of the liquid state 

anomalies in the system, particularly with respect to whether they are the result of structural 
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competition which may give rise to liquid-liquid phase separation at sufficiently low temperature. 

We will also study the solid state phase behaviour, checking for the possibility of solid-solid 

isostructural transitions and any relation to the liquid state phase behaviour. Finally, we shall 

investigate the liquid state behaviour of the system in three dimensions, checking for liquid 

state anomalies and evidence of liquid-liquid transitions. Through this study, we hope to gain 

insight into the behaviour of this particular model, and through that insight, learn more about 

the phase behaviour of core-softened potentials in general. 



Chapter 3 

Analytical Results in 1D 

Before we start examining the Sadr-Lahij any system, we will take a look at the much simpler 

example of a core-softened system in one dimension. Whereas continuum systems in two and 

higher dimensions are often analytically intractable, exact solutions exist for several classes of 

simple one dimensional systems. The study of such a solution for a core-softened system should 

allow us to get a "feel" for the behaviour of core-softened systems in higher dimensions. Of 

course, one dimensional systems also lack many of the features seen in higher dimensions; as 

such, the work presented here should be seen as an instructive example. 

3.1 The Takahashi Nearest-Neighbour Gas 

We will use this elegant method, which allows for the exact treatment of one dimensional 

systems of particles, provided that only particles which are nearest neighbours interact. The 

method was originally developed by Takahashi [46] (and independently by Cursey [67]) as a 

generalisation of the "Tonks gas" one dimensional hard rod system [68]. 

We start with the configurational integral for our one-dimensional system at constant pres-

sure, given by: 

Z 
 = i

........... /e 	 ...dx, 	(3.1) 
 Xo<X1<...<XJ 

'An example of such an interaction is an interparticle potential with a hard core and no interaction beyond 
twice the hard core radius. 
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where x i  is the coordinate of the ith particle, P is the applied pressure, and O(r) is the potential 

acting between particles separated by r. The total volume of this system is given by L = x — x. 

We rephrase equation 3.1 such that: 

	

ri = Xi - 
	 (3.2) 

and observe that 

	

19(x 1 ,x2,.. .,x) = 1 
	 (3.3) 

0(r1,r2,...,r) 

This allows us to write equation 3.1 in the following form: 

	

Z = f frl,r2 .....r,>O f e(E 	(r)+PE 	r)drdr, 

	

= f frl,r2 .....r,>O f ri: e_ri+Pridri  ... drn 	 (34) 

= (f° e(")dr)Th 

This simple equation is equivalent to the partition function of a chain of n non-interacting 

spin sites, each of which can take spin values r = 0. .oc, have an internal energy dependent upon 

their spin (r), and are acted upon by an external field P which decreases the energy of each 

spin site by Pr. These spins correspond to the interparticle separations, hence we have the 

partition function of n spin sites corresponding to the partition function of n + 1 particles. 

Now that we have the configurational part of the partition function, we can easily calculate 

the corresponding thermodynamic potential, in this case the Gibbs free energy: 

G = —  log() 

= 
 (3.5) 
—slog 

 

with A as the thermal de Brogue wavelength - this merely adds a constant contribution to the 

free energy, and is taken as unity through convenient choice of units. 

Knowing the free energy, it is possible to calculate all thermodynamic quantities of the 

system, for instance the average interatomic distance: 

— I - 
In LOPJT 

- - if(f'° edr) 

- 	
+I) 	 3.6 

- 	J'° re''dr 
- 	

.r'° e(4(7)+")dr 
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showing that, for a nearest-neighbour interaction 1D system, the interparticle separation is equal 

to the average atomic distance for a system of only two particles interacting via a potential (r) 

and subject to a pressure P. We also note that, since (r) will be a single-valued function of 

r, average interatomic distance I must be a single-valued function of P - there can be no true 

phase transitions at non-zero temperature for the Takahashi gas 2 . 

3.2 The 1D Hard Rod System 

We will now demonstrate Takahashi's model with the one-dimensional equivalent of hard spheres 

- the simple hard rod potential, given by: 

I 00 	r <a 
(3.7) 

0 	r > a 

We first calculate the configurational integral for this system: 

f° e' )  dr = f e_I3P'e_0odr  +f°° ee0dr a 
r= = 0 	 - 	

oo 
	 (3.8) 

e - 
/3P 

which gives the free energy for a 1D hard-sphere system: 

C 	nPa + n log(8P) +1ogA 

ng 
(3.9) 

9 = Pa+ log(OP)  + log A 

with g as the intensive Gibbs free energy per particle. 

Applying equation 3.6 gives us: 

I—
a= 1 

	
(3.10) 

which is the correct equation of state for the 1D hard sphere system [68], and is continuous and 

2 1ndeed, it has long been suggested that there cannot be a phase transition at non-zero temperature for any 
one dimensional model interacting via a finite-ranged potential, though no general proof of this exists [69]. 
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U 

4-C 

0 

-e 

Figure 3.1: Shouldered hard rod/sphere potential 

single valued for all T > 0 and positive P. 

3.3 The Shouldered Hard Rod System 

We will now use Takahashi's model to study a very simple core-softened potential; a hard rod 

potential with a shoulder, as shown in figure 3.1: 

00 	 0 	< r < 	or 

a 	< r < a(1+6) 	 (3.11) 

— f 	a(1-i-8) < r < 	00 

Calculating the configurational integral gives us: 

f° e(')')dr = f eedr + f7(l+ó) e_ re_f3edr + f1+ e_redr 

= 	0 	p (— ) 1e_n1 o(1+ö) + CO, [e_'r1=°° 	
) J r=o(1+ö) I 	Jr=u 

—  
,3P 	 I- '' 	- -(ee 	— e 	— 

—  

— 	&'"e 14 2 / 

— 	f3P 	 + ee 13 ') — eCe3) 

- 	e"(') (2cosh(/3(E_q-)) _e( Op +)) 
- 	 P 

(3.12) 

Let us now move to the reduced units * and P* :  

	

p*.aöp 	 (3.13) 
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giving the configurational integral as: 

" 	
2 

fo e 	dr = 7 	(2 cosh ( (1— P*)) _e'+ ) 	(3.14) 

The reduced Gibbs free energy per particle is therefore: 

	

* 	9 
9 

E 

2)  
(i + 	- I log (** 	- 	log [2 cosh(* (1— P*))  - e 1) ] (3.15) 

6 	0* 

The equation of state is: 

1 + 1 + 2
sinh(/3* (1 - P*)) - 

2cosh (* (1 - p*)) - 	 (3.16) 

We know that this system can exhibit no phase transition at T> 0, so we will examine the 

zero temperature limits: 

2)  
lim g* = p* (I + 	+ 	log [e1*) + e_1_] 	 (3.17) 
-00 

2 	 - 

	

-.oc 
7(1 	

e( 1 ) + e(') 	
(3.18) 

f3  

There are two possible limits here; one, at P* > 1, where the eIr(l_) terms go to zero, 

and the other at P* < 1, where the e 1"  terms go to zero. As such, the zero temperature 

behaviour is given by: 

1im .. g* 	= 	p*(1+6)_1 

(3.19) 
p* > 	limg* 	= 

	

lim+(1 - a) = 	0 

The zero temperature behaviour is shown in figure 3.2. We can see that there is a disconti- 
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Figure 3.2: Gibbs free energy and equation of state for the shouldered hard rod system in the 
zero-temperature limit. 

nuity in the derivative of the Gibbs free energy at T* = 0, p* = 1; that is, a first-order phase 

transition exists at this point. This is a transition between interparticle separations lying at the 

base of the shoulder (1 = o(1 + 8)) at low pressure (P* < 1) and interparticle separations lying 

at the hard-core radius (1 = or) at high pressure (P* > 1). At non-zero temperature, thermal 

disorder smooths out this transition; at least one particle will have enough energy to overcome 

(at P > 1) the applied pressure or (at P < 1) the shoulder repulsion of a neighbour, making 

I a continuous function of P. 

3.3.1 Liquid State Anomalies 

We have now shown that softening the hard rod potential with a shoulder introduces a zero-

temperature transition in this system. We will now investigate whether core-softening in this 

simple system will give rise to anomalous behaviour in density and compressibility. 

Density Behaviour 

The derivative of I (the equivalent to v in this system) with respect to T for the shouldered 

hard sphere potential is given by: 

2 Dl/ 1 	( 	4/3*2 (1 - p* + P*e_21) 

a8 DT* p  - 	- (2 cosh ()3*(1 _p*)) -  e(1))2)) 	
(3.20)P. 

Anomalous expansion upon cooling will occur when equation 3.20 is negative; it can be seen 

that this can never happen if P* > 1. Density anomalies cannot occur at pressures greater than 

the transition temperature in this model. 

Analytically solving 	= 0 is very difficult for this system; it is easier to use numerical 8T P 

methods. This gives us a locus of temperatures of maximum density, shown in figure 3.3 for 
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Temperatures of Maximum 

	

• 	 Density 
Temperatures of Extremal 

Compressibility (6=0.2) 

	

0.9 	 - Temperatures of Extrcmal 
1.. 	

Compressibility (=1.0) 

0.8 

	

0.10 	 0.2 	 0.4 	 06 

I 

Figure 3.3: Liquid state anomalies numerically calculated for the potential 3.11. Temperatures 
of maximum density are independent of the detail of this potential, whilst temperatures of 
extreinal compressibility are not; we show TEC lines calculated at 6 = 0.2 and 6 = 1.0. Lines 
serve as guides to the eye. 

6 = 1.0. We see a TMD curve which retraces in temperature at a pressure of P* = 0.757, 

tending towards (though never reaching) .P* = 1.0 at T* = 0.0. At pressures below * = 0.694, 

we see no further density anomalies - the TMD line ceases with an inflection in density at this 

pressure. 

We now offer a physical explanation for this behaviour, in terms of structural competition. 

Consider the effect on the free energy from a particle moving up onto the shoulder of its neigh-

bour; there is a deleterious positive contribution from an increase in configurational energy, but 

there is also a favourable negative contribution from decreasing volume, and also from increas-

ing entropy (increasing the amount of configuration space explored). The balance between these 

contributions depends upon temperature and pressure. As temperature is decreased, the con-

tribution of entropy to the free energy becomes less important; when temperature becomes low 

enough, configurational energy becomes the most important factor, and configurations in which 

particle separation is above the shoulder width come to dominate. This "switch over" leads to 

the density anomaly. With further decrease in temperature, most particles will not sample the 

shoulder, and the "normal" expansivity behaviour of these particles will overcome the anomalous 

structural competition contribution, leading to a return to normal density behaviour. 

Now consider the pressure/volume behaviour. At high pressures (specifically, above the 

transition pressure at P = 1), the volume contribution to the free energy outweighs the config-

urational energy contribution; particles move onto the shoulder of their neighbours potentials 
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with ease. In terms of structural competition, one structure completely dominates, and so 

there is no competition to cause the density anomaly. As we lower pressure, some particles 

move down off the shoulders; since there are few, there is only a slight configurational energy 

gain to the total free energy to move them back onto the shoulder, and so temperature must be 

very low to get the density anomaly. As pressure is lowered still further, the number of particles 

not sampling the shoulders increases, the configurational energy gain to the total free energy 

for moving them back up increases, and the temperature at which the density anomaly occurs 

increases. 

Of course, this structural competition is only one contribution to the expansivity, aT 

As we lower pressure still further, particles are sampling separations further and further from 

either the hard core distance or the shoulder, acting more like a hard rod gas. This adds a 

large positive contribution to the expansivity, which begins to overcome the signature of the 

structural competition. This causes the TMD line to curve back towards the pressure axis, at 

first retracing, then, at low enough pressure, disappearing entirely, swamped by the hard rod 

gas contribution. 

We now consider the dependence of the TMD line on the only free parameter of the potential, 

. We observe that the contents of the brackets in equation 3.20 have no 8 dependence, and so 

we can rewrite the expansivity as: 

	

(13', P- ) 	 (3.21) 

The 8 dependence is given by: 

82 1 I 	- ! fi (/3*,P*) + 
8T*8öj p  - 2 	 2 	06 	

(3.22) 
= 	lf(3*p*) 

We are specifically considering the case= 0; since this requires f C8, P*) = 0, we 

see from equation 3.21 that the TMD line is independent of J. All dependence on this parameter 

has been subsumed into our choice of reduced units, specifically the reduced pressure P' 
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Compressibility Behaviour 

We now turn to the behaviour of the isothermal compressibility, KT.  This is given by: 

1 .91 
KT 	 LOPT 

KT = T 	
+ 2* 

(2cosh((1_P*))_e_(1+P)2) 	

(3.23) 
1 

 ( 	

2_e_2 

We are interested in the possibility of extrema in the compressibility, that is, points where 

aT =0; unfortunately, the expression for this condition is even less tractable than the 

condition for the temperatures of maximum density. As such, we have found the TEC loci 

numerically for a variety of values of ö. Two typical curves are shown in figure 3.3. 

We first examine their general behaviour. In all cases, the line of maximum compressibility 

originates at the zero temperature transition point, P = 1, where compressibility diverges. This 

line proceeds with negative slope, passing through the TMD line at the point where the latter 

has infinite slope (as thermodynamically required [21]). The slope of the line of compressibility 

maxima decreases with increasing temperature, until we reach a pressure below which there 

are no compressibility anomalies. At this point (an inflection in compressibility with respect to 

temperature), the line of maxima becomes a line of minima, with positive slope in the phase 

diagram, which continues with increasing temperature. 

Once again, we make a physical explanation for this general behaviour. We initially consider 

the system at the transition pressure (P*  1). At very high temperatures, entropy favours 

particles exploring configurations both on and beyond the potential shoulder. Changes in 

pressure will create changes in volume in a "normal" manner; thus, compressibility behaves 

as normal. As we decrease temperature, however, the increase in favour to configurational 

energy considerations will cause some particles to drop down from the shoulder; an increase in 

pressure will cue some of these to move back up onto the shoulder. This creates an increase in 

compressibility with decreasing temperature; that is, compressibility passes through a minimum 

by decreasing temperature. As we decrease temperature still further, more particles will drop 

from the shoulder, so the increase in compressibility will continue, until finally diverging as we 

reach the transition point. 

We now consider the system at a lower pressure. Upon cooling from a very high tempera-

ture, we will see the same compressibility behaviour; initial decrease with cooling, then passing 
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through a minimum to anomalous increase with cooling via the same mechanism. However, 

upon reaching a low enough temperature, an infinitesimal increase in pressure is no longer 

enough to overcome the configurational energy bonus to falling from the shoulder; compress-

ibility stops increasing, passing through a maximum and returning to normal behaviour. At low 

enough pressures this effect is strong enough that compressibility anomalies will never occur. 

We now turn to the 8 dependence of the compressibility lines in the same way as for the 

expansivity; that is, we rephrase equation 3.23 into a 8 dependent part and a 8 independent 

part, thus: 

KT = 1 ( * p*6)f2(,P) 	 (3.24) 

We first consider the behaviour with respect to temperature: 

3KT I - 1 (af2 (@*,P*)l 	1 
DT 	1 	OT 	

_y2 (*,P*)) 	 (3.25)
al  

And now with respect to 8: 

a2KT 	- ! 	 + 02f2(...) - ( QiI -- 	( ' +' ( 	 +  — I 	8ó 0T* 	8T6 	a 8T p J2\.) 	 .1 	8T p 

- 	 !(_LiLic( \8131 	
___ f 

- 	 I 	ö 8T 	12 j2 	1 	8T P 	1 8T85J 2  

(3.26) 

where we have used the fact that all differentials of f2 
(/*, P*) are zero. We are concerned with 

the behaviour of the anomaly lines, that is, where I p  = 0; this allows us to simplify further, 

to: 

 al Dl I 	2 I '\ D2 KT I 	
= 

f2 (*,p*) 	

- aTas) 	(3.27) DT*a6I 	2 

	

IP;7'EC 	1 

Substituting in from equations 3.21 and 3.22, and by comparison with equation 3.24, we 

find: 

	

D2 KTI 	1 	Dl 

	

DT*a81 	
=KT(8_1)f1(/3*,P*) 	 (3.28) 

P;TEC 21 	a6 

Let us now consider the sign of this. The first three terms are all positive. The term (8 - 1) 

is by necessity negative. All hangs on the sign of Ii (*, P*), which is the 8-independent part 
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of the expansivity, and will take the same sign. 

As such, where the expansivity is positive ("normal" density behaviour), a,3'- 	will 
P;TEC 

be negative. As such, increasing 8 will increase the range over which anomalous compressibility 

occurs. Where expansivity is negative (that is, there is anomalous density behaviour), increase 

in 6 will decrease the range over which anomalous compressibility occurs. There will be no 8 

dependence where the TEC line crosses the TMD line; the TEC line is "pinned" at this point, as 

well as at the zero temperature transition point. This is consistent with our numerical results 

- see figure 3.3. 

This behaviour can be explained as follows. Consider the system at temperatures above the 

TMD curve. As we increase 6, we favour particles having separations on the shoulder of the 

potential, by increasing the entropy and pressure driven incentives to do so. As such, there 

are fewer particles to move up onto the shoulder by increasing pressure, the decrease in system 

volume by increasing pressure will be less, and therefore compressibility will be lower; this pulls 

the compressibility minima to higher temperatures and the compressibility maxima to lower 

temperatures. 

At temperatures below the TMD curve, however, many particles do not sample the potential 

shoulder. Since increasing 6 makes occupying the shoulder more favourable, an increase in 

pressure will cause more particles to move up onto the shoulder at high 6 than at low 6, increasing 

compressibility. This drives compressibility maxima in this region to higher temperatures. 

3.4 Summary and Discussion 

We have studied a simple shouldered hard rod potential in one dimension using the Takahashi 

nearest-neighbour gas model, producing exact analytic results. We have shown that this system 

exhibits a phase transition (albeit a residual zero-temperature phase transition), whereas the 

unsoftened hard rod potential does not. Further, we have shown that our softened potential 

exhibits liquid state anomalies of the kind discussed in the previous chapter. We have studied the 

behaviour of these anomalies, both by studying our exact forms for density and compressibility, 

and through numerical methods. These behaviours seem amenable to interpretation of the 

anomalies as a result of structural competition, as has been suggested by other authors. Having 

a good grasp on this very simple system, we may now turn to the behaviour of core-softened 
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systems in higher dimensions. 



Chapter 4 

Solid State Approximations 

We now begin to study our chosen system, that is, extending work done by Sadr-Lahijany, et 

a! [1], on particles interacting via equation 2.15 in two dimensions. Before turning to direct 

simulation, it will be useful to perform some exploratory analysis with a series of approximations. 

In this chapter, we begin to explore the solid part of the phase diagram using the two tried and 

trusted methods of ground state calculation and the harmonic approximation. The first of these 

is powerful, in that it is simple and can give us exact free energies, but limited, in that it only 

gives us information about the system's behaviour at zero temperature. The second is a natural 

extension of the first, a second-order approximation that can extend our initial beachhead out 

into the phase diagram, though it loses accuracy with increasing temperature. These results we 

gain here will be utilised in chapter 7 as starting points for direct simulation work. 

4.1 Ground State Calculations 

At zero temperature (the "ground state"), the entropic contribution to a purely classical system's 

free energy becomes zero. The Helmholtz free energy per particle, a, for a given configuration 

becomes simply the energy per particle e, and the Gibbs free energy per particle, g, becomes 

equal to the enthalpy per particle, h: 

a 	e—Ts 	
(4.1) 

a(T = 0) = 	e98  

60 
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g 	a+Pv 

	

g(T = 0) = egs  + Pv 	 (4.2) 

= 	h 

where e9 , the "ground state energy", is the energy per particle of the system in a "ground state" 

configuration. At zero temperature and positive pressure, and in dimensionality two or greater, 

the equilibrium phases will almost invariably be crystalline in the sense described in chapter 

1. We can also safely assume that the "ground state" configurations for these phases will have 

all particles sitting exactly on lattice sites, which we shall denote R. For an additive pairwise 

potential q(r), the ground state energy for such a configuration will be given by 

(4.3) 

These energies are easy to calculate for simple potentials, and can be combined with equa-

tions 4.1 and 4.2 to construct zero temperature phase diagrams. In this process, a number of 

possible lattices are proposed, and their ground state energies as functions of volume calculated. 

From this, we can calculate what volume of each lattice will give minimum Gibbs free energy 

at a given pressure (measuring the local minimum within each of a set of restricted free en-

ergy spaces), and then which of these minima is lowest and therefore thermodynamically stable 

(measuring the global minimum across the entire free energy space). This is called a ground 

state calculation. 

Phase transition details can be found through the normal phase equilibrium conditions, that 

is, equality of Gibbs free energy and of pressure between phases: 

gi(vi) = 92(v2) 	

(4.4) 
Pi (v i ) = P2(v2) 

with subscripts indicating phase. Pressure as a function of volume can be calculated through 

the identity P 
- 	

which at zero temperature becomes: av IT, 

P(v)- - De9(v) 

1T=0 
(4.5) 

- 	 av  

Since the method already requires the ground state energies as a function of volume, this 



CHAPTER 4. SOLID STATE APPROXIMATIONS 
	

62 

derivative should take very little extra calculation. 

There are two subtleties we must be aware of when using this method. The first is the 

matter of mechanical stability. Consider a crystal lattice, and within it a particle occupying 

lattice site R. At equilibrium, there must be no force acting upon this particle, so that 

(
(R_R')) =0 	 (4.6) 

Here, ii is a unit vector of arbitrary direction. This tells us that the lattice point R is an 

extremal point in the local energy landscape. This will be true for all sensible lattices, but is 

not enough to guarantee stability; if this extremal point is not a minimum, then the crystal 

lattice is not mechanically stable, as the positions of particles occupying the lattice sites will not 

be stable with respect to any perturbation in their position. So the condition for mechanical 

stability is that, for all lattice sites R, 

(ii 	(j:0(R—R')) >0 	 (4.7) 

We note that equations 4.6 and 4.7 are equivalent to saying that our system is occupying a 

free energy minimum with respect to the dN particle position phase space dimensions, as well 

as with respect to volume. 

When performing a simple implementation of a ground state calculation, explicitly checking 

stability against every possible set of particle displacements is not feasible'. We must content 

ourselves with testing stability against those deformations which a given lattice is most obviously 

vulnerable to, and checking the sign of the second derivative of egs  at given v with respect to 

those parameters of the lattice which describe those deformations. 

The second, and more limiting problem with this method is that without proposing and 

testing an infinite number of lattices it is only ever possible to say that the resulting phase 

diagram shows the most stable lattice of the proposed set, rather than representing the true 

free energy minima. Some knowledge of which structures are stable at non-zero temperature 

(from experimental and/or simulation data for either the system at hand, or one similar) should, 

if possible, be used as a guide; otherwise, a large set of possible structures should be proposed 

(see Jagla [51] for an example). 

1 Though note that the more advanced harmonic approximation (see section 4.2) can do this for us. 
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Figure 4.1: Ground state energies for the 2D square and triangular lattices using the potential 
given by 2.15. 

4.1.1 Ground State Results 

We have performed a simple ground state calculation for a two dimensional system interacting 

via equation 2.15, with parameters as stated in chapter 2 and in [1]. Results from this potential 

are quoted with reduced units as for the standard Lennard-Jones potential, such that: 

e* = 	eft 

V* = 
= J\/Jd/V 	 (4.8) 

T* = kT/E 

= pQ.d/ 

Simulation results from Sadr-Lahijany, et al [1] show only square and triangular lattice 

phases across the region of interest, so these are the lattices which we shall propose for our 

calculation. Ground state energies per particle for these lattices as functions of volume are 

shown in figure 4.1 . Rather than calculating the energy for the system in the thermodynamic 

limit, the energies shown are those for an N x N lattice, where N is chosen to be the lowest 

value such that going to an (N + 1) x (N + 1) lattice changes the value of e  by no more than 

one part in 106.  For both lattices, N is never more than 30 over the range of volumes shown. 

Waterloo Maple was then used to calculate analytic expressions for the ground state energies 

and their derivatives as functions of volume for both square and triangular 30 x 30 lattices. Con-

ditions for phase coexistence (equation 4.4) were solved for using these expressions (equivalent 
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Figure 4.2: Zero-temperature phase diagram for the potential given in equation 2.15. Solid lines 
indicate transitions between thermodynamically stable phases; dashed lines represent transitions 
between metastable phases. 

to a common tangent construction for the system), giving the zero-temperature phase diagram 

shown in figure 4.2 

This phase diagram shows two stable triangular lattice phases bracketing a region (0.172 < 

P* < 16.435) where the stable phase is a square lattice. The two triangular phases are separated 

by an isostructural transition (at PK = 3.121), metastable with respect to the square lattice. 

This hidden transition is due to the region of concavity which can be seen in the triangular 

lattice ground state energy curve (figure 4.1). There is also a region of concavity in the square 

lattice phase ground state energy, however it can be seen that it can only yield a transition at 

negative pressures, where any lattice will be unstable with respect to a gas phase. 

Stable square lattice phases are unusual, and normally mechanically unstable, so mechanical 

stability has been checked explicitly against two possible deformations. The first of these was a 

Brillouin zone boundary shear deformation, or lattice plane slip, in which neighbouring lattice 

planes slip past each other in opposite directions. The second was a long-wavelength shear 

deformation, in which the entire sample is sheared. 

15.0- 

Metastable Triangular ( v*=0.997) > 

Metastable Triangular (v*=1.816) 

0.0 
Low Density Triangular Lattice 

To describe these deformations in terms of the lattice, we use a "doubled-up" parallelogram 
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(a) 	 (b) 	 (c) 

Figure 4.3: a) "Doubled-up" square lattice cell with two-point basis. 
Lattice plane slip deformation of the square lattice. 
Long wavelength shear deformation of the square lattice. 

unit cell with a two-point basis, as shown in figure 4.3 a. For a lattice spacing Ta, the shape of 

this doubled lattice cell is described using the matrix 	
ra 	0 	

, whilst the basis vectors are 
( 

\j3 2ra) 

( 	(a 
given by 	and 	, with both a and equal to zero. The parameter a describes the 

O) 
	Ta 

o 	
) 

position of one of the particles in the cell; non-zero a moves every other lattice plane slightly 

across, corresponding to the plane slip as shown in figure 4.3 b. The parameter 3 describes the 

shape of the lattice cell, such that a non-zero 0 gives a parallelogramic cell, corresponding to 

the long-wavelength shear deformation as shown in figure 4.3 c. If e9  for the square lattice 

is calculated with this parameterisation, stability against these deformations can checked by 

finding the sign of -- - around a = 0 and the sign of 8e 
--- - around = 0 at given v.

00 	 a,3 a—O 

The appropriate derivatives were checked in a Maple calculation, with the square lattice 

stable against both deformations across volume ranges of 1.0 < v < 1.352 and 2.234 < v' < 

2.680. The square lattice is therefore stable against these deformations across its range of 

thermodynamic stability (1.054 < v' < 1.156). 

Whilst the zero temperature phase diagram is a good starting point for study of the solid 

phase diagram, it tells us nothing of the behaviour at non-zero temperature. Further, in a 

ground state approximation we must explicitly check against given mechanical instabilities. A 

more sophisticated method is needed, and so we turn to the harmonic approximation. 

4.2 The Harmonic Approximation 

Above zero temperature, particles in crystalline systems can no longer be expected to sit immo- 

bile at their lattice sites, and the entropic contribution to the free energy becomes significant. 

We will model solid state phase behaviour at non-zero temperature with the harmonic approx- 
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imatiort [9, 70], which is both simple to implement and exact in the low temperature limit. 

We first assume that a system of N particles have equilibrium positions at the sites of a 

d-dimensional Bravais lattice, with these sites denoted by R 2 . We shall further assume that 

particles are reasonably localised around, and can be associated with, these positions - that 

is, that their typical separation from their equilibrium sites is small compared to the distance 

between sites. We denote the separation of the ith particle from its associated lattice site by 

u, so that the actual position of particle i is given by r i  = R + u. If particles interact by a 

pairwise-additive potential, then the total energy of such a system is given by 

	

E = 	
(4.9) 

	

rij= 	 - R + u - u3 ) 

Since we are assuming that all u i  are small, we can approximate this through a Taylor expansion 

around the (R 2  - R)'s with the (u - u)'s as the small parameter. The vector form of the 

Taylor series is: 

E = 	 — R3 ) + 	3 (u— u3 ) .V(R —R3) 	
(4.10) 

+1 yij ((ui  - u) . V) 2  q  (R - R) + 

The first term in this expansion is the number of particles N times the ground state energy 

e9  , the second proportional to the force acting on a particle at its equilibrium position, a 

lattice site, which should be zero by symmetry. Neglecting terms of third order and higher, this 

gives us: 

E = Ne 98  + 	((u - u) V)20  (R - R) 	 (4.11) 
ij 

The first term here is known as the ground state potential energy, Eeq , and the second 

term is known as the harmonic energy, Eharm.  Let us now expand the harmonic term into its 

Cartesian components. 

First, we will simplify our nomenclature: 

= R, - 	
(4.12) 

uji  = u - U3 
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Greek superscripts will indicate Cartesian components (for instance, in three dimensions, 

a, 3 = {x, y, z}). We write the harmonic energy as: 

Eharm 	

( ( 	

(u - u) (u 	
) 

D2 	

) 	

(4.13) 
t3 	

Draarl3) (R,) 

Multiplying this out followed by some index manipulation gives us: 

Eharm = 	Kuu 16 	 (4.14) 
ij a/3 

with the dynamical matrix K 3  defined as: 

K 	= 	LL ('(R) - "( R)) - ' a 	
(4.15) 

Rij

Kjai  0  = 

The off-diagonal elements of this matrix represent minus the double derivative in equation 

4.13; the condition for the on-diagonal elements ensures that the system is invariant under 

uniform translations of and rotations around the centre of mass of the system. 

Since the u-dependence of the energy has been approximated to only second order in the 

Taylor series, the u dependence of the energy contributions for particles in the direction of other 

particles (the terms summed over in equation 4.14) are parabolic in character. The equations of 

motion for the N particles on the lattice are therefore those of N coupled harmonic oscillators 

for each component of the displacements - hence harmonic approximation. Working in reduced 

units of particle mass, these equations of motion are 

a 	3Eharm 
U 9ua 

(4.16) 

We anticipate that the solutions of this will be in the form of simple plane waves, u(R, t) = 

Substituting this into the equations of motion gives us the eigenvalue problem: 

W 2 = ( Kii e_ u'i) E 	 (4.17) 

The properties of the Bravais lattice restrict solutions to only N non-equivalent values of 
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the wave vector k. Since K is both real and symmetric, it can be shown that for each of these 

values of k, there will be d eigenvectors €, the polarisation vectors allowed for that wave vector, 

and d eigenvalues w (k), whose square roots give the frequency of vibration along that wave 

vector. d of the frequencies should be found to be zero, these correspond to translations of the 

entire system. If any frequency w(k) is found to be imaginary (that is, a negative eigenvalue 
W" 

(k)), then the chosen lattice is mechanically unstable - this is equivalent to the condition for 

mechanical stability given by equation 4.7. Note that by performing this calculation, stability 

against every possible deformation is checked implicitly, within the limits of the approximation. 

For a stable lattice, then, there should be (dN - d) normal modes of oscillation for the 

particles (corresponding to d polarisations of N wave vectors minus the d zero-frequency modes). 

In analogy to excitations of the normal modes of the electromagnetic field in quantum mechanics 

(photons), excitations of these modes are known as phonons. 

We, however, are more interested in the thermodynamic properties of a system described 

in the harmonic approximation than in its kinetics. Since we have a form for the energy 

of the system (see equation 411), we can calculate its partition function according to the 

approximation, Zh arm : 

E({u}) = Ne gs  + 	 (4.18) 
ii cxf3 

Zharrn fJfe'duk 	 (4.19) 
k 

By comparison with integrals of Gaussian functions, this becomes: 

N 

Zharm = e 	
(-) 

[detK] 2 	 (4.20) 

which allows us to calculate all thermodynamic properties normally; principally, the approxi-

mate Helmholtz free energy per particle: 

I3aharm 	
- In  Zh.r-  

N 

= 	e95 -1n+ln[detKj 	 (4.21) 

i 	2ir 	1 = /3egs- 



CHAPTER 4. SOLID STATE APPROXIMATIONS 
	

69 

The restriction on the summation over the eigenvalues corresponds to fixing the position 

of the centre of mass of the system (since modes of oscillation where w a (k) = 0 correspond to 

translations of the entire system). 

From this, we can work out the phase diagram in the harmonic approximation for a sys-

tem with a similar method to that used for finding the ground state phase diagram: propose 

a number of lattices, calculate the ground state energy and dynamical matrix, check for me-

chanical stability by ensuring all eigenvalues are positive, and find lines of phase transition by 

equating pressure and Gibbs free energy at each temperature. This will normally be carried out 

numerically rather than analytically, using a finite lattice of N particles with periodic bound-

ary conditions and the minimum image convention (that is, particles interact with the nearest 

periodic image of other particles - see chapter 6 and reference [71]). Finite size effects to the 

calculated free energy per particle f are expected to be of order J! S  [72]. 

It can be seen from equation 4.21 that, as temperature tends to zero, the harmonic ap-

proximation tends to the exact ground state free energy (equation 4.1); as such, the harmonic 

approximation is a controlled approximation, exact in the low temperature limit. However, 

as temperature increases, particles will stray further and further from their lattice points, in-

validating the underlying assumptions of the approximation. We must be aware that at high 

temperatures, or under other circumstances where these assumptions may be invalid (such as 

the appearance of defects in a two dimensional crystal near melting), the approximation will 

break down altogether. By including higher order terms in the Taylor expansion of equation 

4. 10, it is possible to construct anharmonic approximations to overcome these problems, though 

we will not consider such theories here. 

4.2.1 Harmonic Approximation Results 

The procedure given above for calculation of phase coexistence was implemented numerically 

in the C language. The eigenvalues of the dynamical matrix for a lattice at a given volume 

were solved for using an implementation of the QL algorithm with implicit shifts [73]. Our 

code warns if there exist more or less than d zero eigenvalues (the 'soft" phonon modes) - 

note that computer calculations of these modes will only give approximate zeroes, so are in 

practise found to be of values within a given tolerance factor of zero. The code also warns if 

negative modes are found - that is, if the crystal structure is found to be mechanically unstable 
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at given volume. The logarithms of the non-zero eigenvalues are then summed to calculate the 

harmonic free energy, which is combined with the calculated ground state energy to give the full 

free energy within the approximation. The conditions for phase coexistence are solved for using 

an implementation of the Newton-Raphson method [73], with the pressure calculated using a 

central difference method. 

This code was used to find the phase diagram in the harmonic approximation for a 2D 

system of 16 x 16 particles on square and triangular lattices interacting via the potential given 

in equation 2.15. With this size lattice, the finite size corrections to the harmonic free energy 

should be of the order of 0.01, with the free energies found to be of the order of 10. Above the 

16 x 16 system size, the vast increase in computational time (the algorithm is 0(N 2 )) is not 

worth the extra precision. 

As a consistency check, the code was used to find volumes at which the square lattice 

becomes mechanically unstable - that is, at which negative frequencies are found. A range of 

such volumes was found as 1.343 < v < 2.234. The upper bound is identical to that found 

above for stability against shear deformations in the ground state energy calculation. The lower 

bound of v < 1.343 is lower than the bound of v < 1.352 found for the limit of stability with 

respect to shear. This is attributed to instability against some deformation other than shear or 

lattice plane slip, and is consistent with our ground state calculation results. 

Coexistence lines were calculated up to a reduced temperature of 0.9; these are plotted in 

figure 4.4. As shown by the ground state calculation, we have a low pressure region of a low 

density triangular solid (LDTS) phase, passing through a transition into a high density square 

solid (HDSS) phase with increasing pressure. At high pressures, a further transition takes us 

into a high density triangular solid (HDTS) phase. A hidden triangular-triangular transition 

line exists in the square lattice's region of stability. Figure 4.5 a shows the T - p projection of 

this phase diagram. 

We note in passing a curiosity which can be seen straight away in the HDSS-HDTS transition 

(see figure 4.4); the coexistence line passes through a pressure maximum at around T* = 0.51. 

From the Clausius-Clapeyron equation ( = ), at this point these two phases have equal 

entropy. 

We see in figure 4.4 that the hidden isostructural triangular-triangular transition line stops 

at T* = 0.205, and that the LDTS-HDSS transition line stops at T* = 0.575. Above these tern- 
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Figure 4.4: Low-temperature phase diagram in the harmonic approximation for the poten-
tial given in equation 2.15. Solid lines indicate transitions between thermodynamically stable 
phases; dashed lines represent transitions between metastable phases. The dot-dashed line 
shows the melting curve reported in reference [1]. 
Inset: The same phase diagram viewed on the same scale as shown in reference (1]. 
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Figure 4.5: a) T - p projection of figure 4.4. Solid lines indicate binodals, curves showing the 
equilibrium coexistence densities between phases. Dashed lines indicate the binodal for the 
metastable triangular-triangular transition. Between the dotted lines, the triangular lattice is 
not mechanically stable within the harmonic approximation. 
b) Enlarged portion of (a), showing the low-density triangular binodal curve for the triangular-
triangular transition (lower, dashed, curve) and the open square-triangular transition (upper 
curve). Symbols indicate the points at which the coexistence densities were evaluated. The 
dotted line shows the density above which the open triangular lattice loses mechanical stability. 
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peratures, the method used could not find densities for the LDTS phase which satisfy the coexis-

tence conditions. Figure 4.5 b shows an enlargement of figure 4.5 a, showing the low-density side 

of the LDTS halves of the appropriate binodal curves, as well as the temperature-independent 

density above which the LDTS lattice loses mechanical stability within the approximation. It 

can be seen that the binodal curves are rapidly approaching this limit of mechanical stability; 

no further solutions to the coexistence conditions can be found because no stable coexistence 

volumes exist within the approximation above these temperatures. 

We note that the LDTS lattice loses stability along the LDTS-HDSS lattice transition 

remarkably close to the melting line reported from the molecular dynamics results of Sadr-

Lahij any et al [1]. We have already noted how the harmonic approximation should break down 

close to melting in two dimensional systems, which explains why this coexistence line meets the 

reported melting curve well below its triple point; the loss of stability can be explained as a 

complete break down of the approximation. 

For the isostructural transition line, we suggest that the loss of stability is caused by ap-

proach to an isostructural critical point. As the volumes of the coexisting phases approach 

each other, it is possible that one or both phases could reach a volume at which mechanical 

stability is lost. Alternatively, the loss of stability could represent a breakdown of the harmonic 

approximation close to an isostructural critical point, with the triangular lattices in the true 

system maintaining mechanical stability. 

4.3 Summary and Discussion 

We have used both a ground state calculation and the harmonic approximation to examine 

the solid state phase diagram of our chosen system. Our results are consistent with those 

presented by Sadr-Lahijany, et a! [1], who note that the liquid phase coexists with an open 

triangular lattice at low pressure and a dense square lattice at high pressure. The harmonic 

approximation LDTS-HDSS coexistence line does not pass through the triple point found by 

those authors, but we note that we cannot expect this approximation to he accurate near 

melting. We note the further existence of a dense triangular lattice at very high pressure, with 

the harmonic approximation suggesting that the high pressure square-dense triangular lattice 

transition line exhibits a pressure maximum. 
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It is possible that the two triangular lattices are not thermodynamically connected. Our 

results show that they are separated by an isostructural transition at low temperature, though 

this transition is hidden behind the stable square lattice phase. The harmonic approximation 

suggests that there is a region of volumes between those seen in the stable triangular phases 

across which the triangular lattice is not stable, though it is possible that anharmonic effects 

could stabilise the lattice here, in which case the hidden isostructural transition line could end 

in a critical point, rather than a triple point meeting a line of transition to the next-most-stable 

lattice phase. The pressure at which this hidden transition line occurs is too high for effects of 

this possible hidden isostructural critical point (such as a metastable island of hexatic phase, as 

discussed by [52]) to be causing the thermodynamic singularity in the metastable liquid phase 

suggested by Sadr-Lahij any et al [1]. 

These results give us a foothold in the solid state part of the phase diagram for this system, 

which we will return to in chapter 7. 



Chapter 5 

Lennard-Jones Devonshire Cell 

Theory 

Having begun to numerically explore the solid state of our system, we now turn to the fluid 

state. Most modern work on fluid equations of state use density functional theories. However, 

the work which we are following [1] uses an older model for fluid state behaviour, the Lennard-

Jones Devonshire Cell theory, to investigate the possibility of liquid-liquid phase separation. 

Using this model, the authors claim to find two lines of first order phase transition, both ending 

in critical points, one of which is the expected liquid-gas transition line, the other a novel 

transition separating a low density liquid from a high density liquid. 

In this chapter, we will discuss the Lennard-Jones Devonshire cell theory (hereafter abbrevi-

ated to LJD cell theory), its use and its limitations. We will attempt to reproduce the behaviour 

observed for the model by Sadr-Lahijany, et al, and discuss the implications of our results. 

5.1 Background and Model 

LJD cell theory [74, 75, 76, 	is a mean-field lattice approximation to the liquid state. Until the 

advent of density functional theories, it was the main method for calculation of liquid equations 

of state [78], and remains in research use today [1, 79]. 

In the model, particles are considered to be localised in singly occupied "cells". These cells 

are centred on the sites of a fully occupied lattice, and particles are considered to move inde- 

74 



CHAPTER 5. LENNARD-JONES DEVONSHIRE CELL THEORY 	 75 

pendently within these cells, with the lattice sites as their equilibrium positions. For simplicity, 

cells are assumed to be spherical, and are of volume v = VIN, radius s. The interactions with 

the neighbours of a particle are simplified by "smearing" them across the surface of a further 

sphere, radius ra , concentric with the cell. The volume of this "interaction shell" is related to 

the cell volume by: 

ra = 
	

(5.1) 

where -y  is a lattice-dependent constant, chosen such that for a primitive unit cell of volume v, 

the lattice parameter ra  will be the radius of the interaction shell (see figure 5.1 a). Interactions 

with particles beyond nearest neighbour are neglected. 

The Helmholtz free energy within this approximation is given by: 

a = —kTlnv1a 	
e(0)

+ --- 	 (5.2) 

Here, e(0) is the ground state energy for the lattice (normally the same as e 95  from the previous 

chapter); or, is a constant "communal entropy" term', which accounts for the entropy lost due 

to the localisation of particles into cells; and Vf is the "free volume", given by: 

VI 
= f e__e(OkTd r 	 (5.3) 

with U(r), the "cell potential", as the interaction energy of a particle at a position r within its 

cell, and the integral being carried out across the cell volume. 

Within this approximation, it is a simple matter to calculate the interaction of a particle 

with its neighbours. The radial symmetry of the system allows us to reduce U(r) to U(T), 

where r is the radial coordinate of the particle's position within the cell. Figure 5.1 b shows the 

geometry within the cell. Simple trigonometry gives us the separation R between the particle 

at P and an element dA of the shell. If the shell represents c particles and the interparticle 

potential is given by O(R), the total interaction of the particle with the shell U(r) is given by: 

- 
fshell ql(R)dA 

shell dA 
'Reference [74] assigns o = a, although the exact value chosen for ar  has no impact upon phase coexistence 

as long as it remains independent of volume. 
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Figure 5.1: a) A two dimensional cell (dotted circle) of volume v and radius s is assumed 
to be centred on a lattice site with primitive unit cell (dashed hexagon) of the same volume. 
The underlying lattice is shown with dot-dashed lines, with lattice sites as filled points. The 
interaction with neighbouring lattice sites is approximated with an interaction shell (full circle), 
of radius the same as the lattice spacing a. 
b) The geometry for the interaction of a particle at position P within a three dimensional cell 
with an element of the shell dA. Given the radial coordinate r of the particle, the angular 
coordinate 8 of the element and the shell radius a, it is simple to calculate the separation R 
between particle and shell element; from this, the interaction can be integrated around the shell. 

Here, the integral is carried out across the surface of the interaction shell. This integral 

would normally be carried out numerically, with further numerical integration to calculate the 

free volume according to equation 5.3 for given density p, which enters through the limits on 

the integrals. 

In their original implementation of this method, Lennard-Jones and Devonshire approxi-

mated the phase diagram for the 12-6 Lennard-Jones potential, given by: 

/ a)12 	(fl6\\ 	
(5.5) 

rJ ) 

We quote reduced units for this potential as shown in equation 4.8. 

Lennard-Jones and Devonshire used an fcc lattice, which has coordination number c = 12 

and geometric constant 'y = The value of U(r) (equation 5.4) was calculated using the 12-6 

Lennard-Jones potential; however, the ground state energy e(0) appearing in equation 5.3 was 

calculated using the potential: 

/ 7)12 
- 1.2 

( , ) 6) 6\\ 	
(5.6) 

r 

This is a modified 12-6 Lennard-Jones potential, with the attractive part increased in 

strength by 20%. This modification was motivated as representing the effects of next and 
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higher nearest neighbour interactions. 

For this system, Lennard-Jones and Devonshire found a critical point 2  at 	1.3, P' 0.6, 

0.56. These results should be compared with the consensus arising from a number of 

simulation studies of criticality in the LJ fluid, the most recent and sophisticated of which [80] 

quotes T = 1.3120(7) 7  P = 0.1279(6), p = 0.316(1). The accuracy with which the cell theory 

appears to predict the critical temperature of the LJ fluid has long been regarded as its major 

success [75]. 

5.2 The 12-6 Lennard-Jones Fluid 

We have obtained the cell theory phase diagram for the 12-6 Lennard-Jones fluid, using the same 

model parameters as the original study. This was performed, initially at least, as a consistency 

check for our implementation of the method. 

Using the Romberg method [73], numerical integration was carried out to calculate the cell 

potential and thence free volume and Helmholtz free energy (according to equations 5.2-5.4) for 

the system at given v. An initial equation of state for the system was found by using a golden 

section search [73] to minimise the Gibbs free energy with respect to v on a grid of points 

in (P, T) space, with phase transitions located as apparent discontinuities in T - v curves. 

Like simulation and experiment, this golden section search method is vulnerable to finding 

local minima in the free energy curve near phase transitions, so the method was supplemented 

by using a Newton-Raphson root finding algorithm [73] to solve for the standard coexistence 

conditions, using the approximate coexistence points from the golden section search as starting 

points. Critical points are approximated as the first point along a phase boundary where no 

distinct coexistence volumes could be found. 

The results from this implementation can be seen in figure 5.2. We find a critical point at 

T = 1.354, P'v/T' = 0.68; we suggest that we have indeed duplicated the critical point from 

the original study [74]. However, our full phase diagram shows two lines of first order transition, 

meeting at a triple point, both terminating in critical points. 

Since LJD cell theory is a lattice model, accurate representation of non-lattice phases is not 

2 Hill [75] describes the cell theory without the modified ground state term used by LJD, but quotes the 
critical parameters corresponding to a modified system defined in reference [82], which uses further interaction 
shells to account for next and higher nearest neighbours. 
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Figure 5.2: (a) (p, T) projection of the modified cell theory U potential phase diagram. Dots 
show density points found using the golden section search. Solid lines show coexistence densities. 
(b) (P, T) projection of the same phase diagram. Solid lines indicate lines of first-order phase 
transition, filled circles indicate critical points. Note that the lower temperature, higher pressure 
critical point is that found by Lennard-Jones and Devonshire. 

possible, making accurate physical characterisation of the phases seen in figure 5.2 impossible. 

However, a plausible identification of the phases is suggested by the shape of the phase diagram 

near the triple point, where it resembles that of the true 12-6 Lennard-Jones fluid, with a 

low pressure, low density gas phase, an intermediate liquid phase and a high pressure, high 

density solid phase. We will support this characterisation of the phases by examining their 

cell potentials, calculated at the triple point (T' = 1.02, P' = 0.025). These can be seen in 

figure 5.3. Figure 5.3 a shows the cell potential for the low density phase; this is three orders of 

magnitude less than kT across the whole cell, so this phase can quite reasonably be interpreted 

as gas-like. In contrast, the cell potential for the high density phase (figure 5.3 b) has a very 

steep minimum at r = 0, the centre of the cell. The hard core repulsion of the particle's 

neighbours makes the potential very large and positive away from the cell's centre. As such, 

the particle is strongly confined to its lattice site, so we interpret this as a solid-like phase. 

Finally, figure 5.3 c shows the cell potential for the intermediate density phase. Ave see that 

its form is similar to that of the gas like phase, with a broad "hump" in the middle of the cell, 

of height around kT; the particle is still reasonably free within the cell. We interpret this as a 
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Figure 5.3: Radially symmetric cell potentials for the modified cell theory with LJ potential, 
calculated at the triple point from figure 5.2. 

Potential for the low density phase (p* = 0.026) 
Potential for the high density phase (p* = 0.869) 
Potential for the intermediate density phase (p* = 0.171) 

liquid-like phase. With these assignments, the critical point found by Lennard-Jones Devonshire 

is between a solid-like and liquid-like phase, whilst the other, lower-temperature critical point 

at T,*,  = 2.17, P* = 1.221, p = 0.104 terminates a line of liquid-gas like transition. 

We point out that these results are not a consequence of Lennard-Jones and Devonshire's 

modification of the potential. We have performed calculations using the unmodified potential 

to calculate e(0), and find a qualitatively similar phase diagram and cell potentials, though 

with the solid-liquid like critical temperature reduced to T = 0.82. 

5.3 Reappraisal of the LJD cell theory 

We have found that the original LJD cell theory critical point for the 12-6 potential terminates 

a line of pseudo solid-liquid coexistence, rather than a liquid-gas coexistence, as originally 

suggested; further, that the model shows another first order transition line, which we believe 

to be a better candidate for the liquid-gas transition. It seems likely that Lennard-Jones and 

Devonshire were not aware of this second line of transition, since at the time of their study, 

numerical integration was a time-consuming and labour intensive matter, making it difficult to 

extend the calculations down to the rather low densities at which the gas-like phase appears. 

Also, the proximity of their critical point temperature to that for the "real" 12-6 U critical point 

(estimated at the time from experimental data for Argon) would have made the attribution 

extremely tempting. In hindsight, the agreement in temperature can only be regarded as 

coincidental, since mean field theories (such as the cell model) are expected to considerably 
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overestimate the critical temperature, as they cannot take into account large fluctuations. The 

liquid-gas like critical point here does indeed do so. 

A critical point between liquid-like and solid-like phases can have no physical equivalent. It 

is an artifact of the cell theory, in which cell volume is the only available order parameter, since 

the model imposes the orientational and translational symmetries of an underlying lattice upon 

fluid-like states, which in reality have no such symmetries. This inability to accurately represent 

disordered phases has long been appreciated even if the existence of artifact solid-liquid critical 

points has not, and several attempts have been made to "patch" the model against this and 

other shortcomings. These include zero and multiple occupancy of cells ('hole" theories) [75, 811, 

calculations of interactions with second and higher nearest neighbours (see for example reference 

[82]), use of Monte Carlo integration to give more accurate cell shapes and free volumes [83], 

and differing methods for calculating the cell potential (see eg. reference [79]). However, none 

of these extensions fully address the underlying lattice approximation which renders any cell 

theory equation of state for a liquid suspect - by definition, a liquid is a disordered state without 

a lattice. Even hole theories will only be able to represent a liquid of appreciable density as a 

highly defective crystal. 

If a basic cell theory for even a simple 12-6 Lennard-Jones potential exhibits two critical 

points, use of cell theory to study possible liquid-liquid phase separation should he treated 

with caution. Because of this, we will now attempt to reproduce the cell theory results of 

Sadr-Lahijany, et al, and examine them in the context of our findings about the model. 

5.4 The 2D Sadr-Lahijany Potential System 

In reference [1], Sadr-Lahijany, et al, briefly discuss the use of cell theory to investigate the 

possibility of a second fluid phase critical point in two dimensions, using their potential (equation 

2.15). Whilst they do not go into detail about their cell theory implementation', they do quote 

equations for the free volume and Helmholtz free energy differing from our equations 5.2 and 

3 The closest implementation to SadrLahijany's we have found in the literature is used in work by D.A. Young 
to calculate the solid state free energy of a system with a square-well type potential [50]. The Young form for the 
free energy is as equation 5.7, with a free volume given by vj = f e_(1)/ 2kTdr, and is "based on agreement 
with molecular dynamics data ... in the square well solid." 
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5.3. In our nomenclature, Sadr-Lahijany, et al calculate the free energy using: 

a--kTlnv1a 	 (5.7) 

with a = 1. Their free volume is given by: 

VI 
= fa 

e_URTdr 	 (5.8) 

This is equivalent to equations 5.2 and 5.3 with e(0) = 0. No detail is given concerning the 

underlying lattice used; it seems reasonable that they would have used a triangular lattice, which 

has lattice constant -y = 2/,/3- and coordination number c = 6. Using this model, the authors 

report two lines of first order phase transition ending in critical points, one at low pressures 

corresponding to liquid-gas phase separation, the other at higher pressures corresponding to 

liquid-liquid phase separation, with a critical point C' at Ta., 0.4, P, 1.5. 

We have attempted to reproduce these results, to check whether or not this second critical 

point is a cell theory artifact liquid-solid transition.The phase diagram we have found is shown 

in figure 5.4. Whilst this phase diagram does indeed show two critical points, neither point is 

at the coordinates described in reference [1]. As with the 12-6 Lennard-Jones potential, our 

results show three phases, separated by three lines of first order phase transition meeting at a 

triple point, and two critical points. Unlike the Lennard-Jones potential, the slope of one of the 

lines of phase transition is negative. We will once again cautiously attempt to identify these 

phases through their cell potentials evaluated at the triple point, seen in figure 5.5. We will 

start with the low density phase cell potential, as seen in figure 5.5 a. This potential has a very 

steep central minimum, which leads to strongly confinement of particles to the centres of their 

cells. We must identify this phase with a solid. The cell potential for the highest density phase 

(see figure 5.5 c) shows similar character, and we will identify this phase as solid-like as well. 

The presence of two separate solid phases is due to the shape of the interparticle potential; in 

the low density phase, particles sit in the bottom of the Gaussian well part of the interaction 

with their neighbours, whilst in the high density phase, they sit at the ledge of the potential 

due to the minimum of the Lennard-Jones part of the interaction, with the Gaussian well part 

overcome by the Lennard-Jones hard core repulsion. 

The intermediate density phase has the cell potential shown in figure 5.5 b. Here, the cell 
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Figure 5.4: Phase diagram for the Sadr-Lahijany cell theory form using the core-softened po-
tential (equation 2.15). Compare with figure 5.6. 
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Figure 5.5: Radially symmetric cell potentials for the core-softened potential, calculated at the 
triple point from figure 5.4. Note that, for the logarithmic plots, the energy scale zero has been 
shifted for purposes of clarity. 
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potential has a local maximum at the centre, on the lattice site. Surrounding this in a ring 

is a steep energy minimum, at radial coordinate riscr 0.325. Though this minimum has a 

depth of order l0kT, we will characterise this phase as fluid-like. This is because the energy 

maximum at the lattice site indicates that this lattice is mechanically unstable at this density. 

The shape of this potential occurs at densities where the lattice site sits between the minima of 

the Lennard-Jones and the Gaussian well parts of the interparticle potential, but the Gaussian 

well is not completely swamped by the Lennard-Jones repulsive contribution. 

For this model, then, we find neither a liquid-gas transition nor a liquid-liquid transition, 

but instead two liquid-solid transitions with artifact critical points, and a low-density solid-like 

phase which will change to a gas-like phase with decreasing pressure without a transition. Since 

we have failed to reproduce the results of Sadr-Lahijany, et al with this model, we will make 

one further attempt, returning to equation 5.2 for the free energy and equation 5.3 for the free 

volume. 

Using this form for cell theory, we find the phase diagram shown in figure 5.6 . The same 

phase diagram on a larger scale, showing the full extent of the coexistence lines, is shown in 

figure 5.7 . This shows four phases (identified with roman numerals i - iv), with two critical 

points (once again, neither is at the coordinates given by Sadr-Lahijany, et al) and one triple 

point. We will attempt to characterise these phases using the now-familiar method. 

The cell potentials are shown in figure 5.8 . Figures 5.8 a-c show the cell potentials evaluated 

at the triple point for phases i-iii. We also show cell potentials for phases iii and iv (figures 5.8 

d and 5.8 e); these are evaluated at the triple point temperature and phase iii-iv coexistence. 

We see that phase ii (figure 5.8 b) and phase iv (figure 5.8 d) are solid-like, with deep 

central wells. As with the Sadr-Lahijany version of the cell theory, the two separate solid 

phases correspond to the central well being near either the Gaussian well minimum of the 

interparticle potential, or the Lennard-Jones minimum. We also see two fluid-like phases with 

energy maxima at the cell centres. Phase iii (figures 5.8 c and 5.8 d) is similar to the intermediate 

density phase of the Sadr-Lahij any cell theory, and so we attribute it as liquid-like. Phase i has 

the centre of the cell occupying the tail of the interparticle potential, and can be attributed as 

somewhat gas-like. 

This gives us a phase diagram similar to that given by the Sadr-Lahijany cell theory, but 

with a liquid-gas transition (cutting off the low-pressure solid-liquid artifact critical point), and 
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Figure 5.6: "Standard" cell theory phase diagram projections for the core-softened potential 
(see equation 2.15), with phases identified by roman numerals i - iv. No coexistence data is 
available between the two lowest density phases, i and ii, below a temperature of T* = 0.44, 

as below this temperature the lowest density phase i reaches zero density to machine precision, 
causing the root-finding algorithm to fail. As such, the dashed line in the p - T projection is a 
purely schematic continuation for purposes of clarity. 



CHAPTER 5. LENNARD-JONES DEVONSHIRE CELL THEORY 	 85 

40 
 

30 

. 20 

10 

0 
0 	 10 	 20 	 30 	 40 

T 

40  

30 

- 20 

10 

0.2 	 0.4 	 0.6 	 0.8 

P
. 

 

Figure 5.7: Larger scale view of figure 5.6, showing the full extent of the coexistence lines. 

without the solid-solid transition. Our two critical points are liquid-gas like and liquid-solid 

like, and once again we find no evidence for a liquid-liquid transition. 

5.5 Summary and Discussion 

Our major finding here is that the original LJD cell theory critical point [74] was misattributed, 

with this misinterpretation continuing to the present day. The major problem here is that 

simple cell theory is really a theory of the solid lattice state, a first-order expansion around 

lattice displacements without particle position correlations, and is not really applicable to the 

liquid state. Whilst this flaw in the theory has long been appreciated [77], its full consequences, 

that is, the existence of solid-liquid artifact' critical points within the model, has not. 

We have been unfortunately unable to reproduce Sadr-Lahijany's results. They appear to 

have used a non-standard cell theory implementation, of which their work [1] gave insufficient 

detail for us to duplicate. Even so, it seems likely that their reported "second critical point" is 

more likely to be of solid-liquid like character, and an artifact of the cell theory, rather than 

representing a second critical point in the fluid phase, as they believed. 
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Figure 5.8: Radially symmetric cell potentials for the phases from figure 5.6. Note that, for the 
logarithmic plots, the energy scale zero has been shifted for purposes of clarity. 

Potential for the low density phase (i) (p* = 0.315) calculated at the triple point. 
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Potential for the very high density phase (iv) (p* = 0.966) calculated at the triple point 

temperature and (iii)-(iv) coexistence. 
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Whilst there are qualitative similarities between our cell theory results and both Sadr -

Lahijany's simulation results (the presence of lines of transition with negative slope) and our 

own solid state results (the presence of two solid-like phases with the same lattice structure), 

quantitative agreement is very poor. We can see from comparison with our solid state results 

that as well as a poor approximation to the liquid state, cell theory is also a poor approximation 

to lattice states. 

In summary, cell theory has provided us with no new information on the "true" physical 

behaviour of this system, and despite previous reports, its use leaves us none the wiser on the 

existence or otherwise of liquid-liquid transitions in the system we have chosen to study. 



Chapter 6 

Monte Carlo Methods 

We are now in a position to investigate our system with direct simulation methods. Two main 

methods are available for this; Monte Carlo (MC) simulations and Molecular Dynamics (MD) 

simulations. The first proceeds in the spirit of statistical mechanics, attempting to numerically 

integrate a quantity proportional to the configurational integral, whilst the second has more 

of a classical mechanics bent to it, attempting to solve Newton's equations of motion for the 

system. Both should give equivalent results. Whilst Sadr-Lahijany, et al, used MD simulations, 

in this work we turn to MC simulation work. This means that we turn away from the dynamics 

of the system, but enables us to investigate the "open" ensembles (NPT and iVT) more easily. 

We will begin this chapter with a brief illustration of the principles behind Monte Carlo 

simulation, following one of the standard works on the subject [71]. We will follow this with a 

discussion of the extensions to this basic algorithm which we have used in this work, some of 

which are well documented elsewhere, others of which of more recent additions to the simulation 

toolkit. 

6.1 Basic Monte Carlo 

The idea of simulation is to perform a "virtual experiment" in which we can measure the same 

observables we measure in "real" experimental work. As we know, in statistical mechanics these 

observables are given by ensemble averages. We recall from chapter 1 that the ensemble average 

RR 
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for such an observable A in the NVT ensemble will be given by: 

- I drA(r)e'(') 
(6.1) (A)NvT - fd re U(r) 

Since these integrals are rarely analytically tractable, we will turn to methods of numeric 

integration. A naive first approach might be to attempt to evaluate the integrals with a simple 

quadrature, such as Simpson's Rule. Such simple quadratures involve dividing the interval of 

each integral into n equally spaced abscissas, evaluating the function to be integrated at each 

of these points, and approximating the integral through some combination of these calculated 

values. This is an effective method for integration in one or two variables, but not for this 

problem. If the physical system we represent is d dimensional, then the number of function 

evaluations required will be n Nd1  If we were to study a system of only 100 particles in three 

dimensions, using only 10 abscissas, we would have to perform an incredible 10300  function 

evaluations. Worse still, across most of the phase space, there would be significant overlap 

between particles, giving a vanishingly small Boltzmann factor, so most of the vast number of 

evaluations would contribute virtually nothing to the integral. 

6.1.1 Simple Monte Carlo Integration 

A more efficient method is to perform our function evaluations at randomly chosen points across 

phase space. Whilst in quadrature, a fixed number of function evaluations must be carried out 

across the phase space for the results to be combined meaningfully, by picking random points 

we avoid this. Our estimate for the integral, and our estimate of the error of this, can be 

refined as we go, until we reach a desired level of accuracy. Whilst less efficient for one-variable 

integration, even for three-variable integrations such Monte Carlo integration can far outstrip 

normal quadrature [73, 71). 

The simplest implementation of this is to pick our evaluation points independently, from a 

probability density uniform across the phase space. To combine our function evaluations, we 

simply note that any integral can be rewritten in terms of an average, thus: 

IV f(r)dr =v (ji:5.) 	 (6.2) 

with the average performed over the region of integration. Therefore, in this simple imple- 
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mentation, we can estimate this "true" mean, and the error in our estimate, through standard 

statistics. 

Though we will no longer be performing an astronomical number of calculations, most of 

our evaluations will still contribute very little to our integrals. As such, this method, the very 

simplest form of Monte Carlo numerical integration, is still not suitable. We must find a way 

to concentrate our function evaluations in the regions of phase space which contribute most to 

our integrals. 

6.1.2 Importance Sampling 

Let us recast equation 6.1 in terms of of a probability density function, pNVT(r),  thus: 

(A) A r VT  = fdrA(r)PNVT(r) 	 (6.3) 

e_(r) 

	

pNvT(r) = 	
(6.4) 

 fd re m(r) 

If we could choose our random evaluation points according to the probability density function 

p(r), then our problem would be far simpler. For most observables A, the phase points which 

would contribute most to the integral will be those where p(r) is significant. Since part of p(r) 

is one of the integrals we wish to calculate, this may seem unhelpful. Fortunately, an elegant 

solution to the problem exists, originally developed by Metropolis, et al. 

We first approximate our phase space as being made up of a finite set of discrete points, 

{r i  . . . r,}. Rather than generating a number of independent random points in phase space 

from this set, we will generate a Markov chain of evaluation points. Trial points in the Markov 

chain are not independent, but are generated with a probability which depends solely on the 

previous phase space point in the chain. This probability is generated through a fixed transition 

matrix ir, such that if the ith point in our chain is r, the probability that the next point is r3  

is given by: 

P(r3) = 
	 (6.5) 

We can see immediately that the matrix 7r must be a stochastic matrix, that is, the sum of 
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any of its rows is one: 

	

7mn  = 1 	 (6.6) 

Now, we will randomly pick an initial point for our chain. If the probability that this will 

be any given point from our set is given by a vector (l),  then the equivalent probability vector 

for the second point in our chain will be given by: 

	

( 2 ) = 	p(l)ir 	 (6.7) 

We can see that the probability vector for the third point in our chain will be given by: 

	

(3) = 	p(2)ir 	
(6.8) 

= p(1)ir2 

And by extension, the probability vector for the ith member of the chain will be given by: 

	

P (i) = 	 (6.9) 

Over a large number of iterations the probability vector should tend to a limiting distribution 

P = lim 	p(l).il 	 (6.10) 

This limiting distribution will be given by the solution to the eigenvalue problem: 

P = p7t 
	 (6.11) 

If there is only one such eigenvector, then our Markov chain is ergodic (that is, will explore the 

whole phase space), and this limiting distribution will be independent of the initial probability 

vector (l).  It can be shown that this will be so provided the transition matrix ir is not only 

stochastic but irreducible. 

To solve our problem, therefore, we can pick configurations (that is, points at which we 

evaluate our integrand) as a Markov chain with a transition matrix such that the limiting 
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distribution will be given by equation 6.4. To make this easier, we take a stricter condition on 

p and ir than equation 6.11, that of detailed balance (also known as microscopic reversibility): 

Pmmn = Pnnm 	 (6.12) 

This condition states that the probability of being in state r m  and the next state in the 

chain being r is the same as the probability of being in state r and the next state being state 

rm . It is a simple matter to show that a transition matrix and limiting distribution which fulfil 

this condition will also fulfil equation 6.11. 

We will use a transition matrix which fulfils Metropolis' Asymmetric Solution for ir. This 

is given by: 

ama 	P. ~! Pm m 	n 

7rmn  = 	 Pn < Pm 	m 	n 	 (6.13) 

1 
- >1n54m 7rmn 	 m = ii 

If the underlying matrix a is symmetric, it is easy to show that this solution will fulfil 

detailed balance'. To give a stochastic transition matrix, a should also be stochastic. 

With given a, we can see that the dependence of ir on p comes in only through the ratio 

Considering equation 6.4, we can see that by calculating the ratio of two such probabilities, we 

completely avoid having to calculate the configurational integral for the ensemble, and instead 

are left with a simple function of the energy of given configurations, a quantity which should 

be relatively easy to calculate: 

Pn  = 	 (6.14) 
Pm 

So, given a trial configuration n already generated from configuration m with probability ac-

cording to the matrix ama , the probability of accepting that trial configuration as the next 

member of our chain is given by: 

Pmn = mm (1, e") 	 (6.15) 

where the function min(x, y) returns the smaller of the two arguments and: 

'Non-symmetric matrices can fulfil equation 6.12, or even just equation 6.11, but are not normally used. 
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iUnm  = U(r) - U(rm ) 	 (6.16) 

This cancellation of the configurational integral makes Metropolis Monte Carlo a feasible 

method. It also gives the method a major weakness; since the full configurational integral 

is never calculated, so our ensemble average will not be properly normalised. As long as our 

Markov chain of configurations passes through most of the region which significantly contributes 

to the ensemble average, our results will be good - that is, reasonably well normalised. If the 

Markov chain is not reasonably ergodic over the length of the simulation, however, our results 

will be less good. This weakness also means that such Monte Carlo integration is not a direct 

route to properties such as the full free energy, the entropy, or the chemical potential, whose 

calculation depends on knowledge of the full configurational integral. 

6.1.3 The Metropolis Method 

We now need to specify the underlying matrix, a. As such, we will consider a very simple 

implementation of the the Metropolis Monte Carlo method on a digital computer. 

We consider a system specified in NVT in two dimensions. As such, we have N particles, 

whose positions (the 2N dimensions of the phase space) are specified by 2N variables held in 

the computer. These positions are constrained to remain within a square simulation volume, 

V, that is, they are constrained to remain within the range (o... \/t7). We also specify the 

interaction between the particles, such that we can calculate the energy for any configuration 

r, U(r). 

We begin with an initial configuration of these particles, 	We must now pick the next 

member of the Markov chain; that is, the next configuration of particles. To do this, we 

randomly pick one of our N particles, whose coordinate we denote rV. We then apply a 

random displacement to that particle, generating a trial position for that particle rn1t)  and 

hence a new trial configuration r(1t). This is done such that the particle has equal probability 

of ending up at any position within a square region 7Z centred on that particle (see figure 6.1). 

This can be done by picking two random numbers from distributions uniformly distributed 

on the region (örmax  ... ö'T max ), and adding these numbers to the the components of the 

particle position; this will give 7?. a volume 46r ax . Since our positions are discrete in machine 
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Figure 6.1: A new trial configuration is generated by moving a randomly selected particle with 
uniform probability to a position within the shaded region 7, which is a square with side length 

2öTmax. 

representation, the probability of picking a given trial configuration r(it)  is given by the matrix: 

(it) 
r( 1 )r( 1 t) = 1/46r2 ax 	r n  

(6.17) 
(it) 

ar(1)r(1s) 	= 	0 	r 

This equation defines our underlying matrix a. To fully implement equation 6.13, we now 

calculate the energy for both configurations, U(r(') ) and U(r(it)),  and the difference between 

these energies, U(r(l))(r(l)) according to equation 6.16. Now, to follow equation 6.15, if AU is 

negative, (that is, Pr (hl) ~! NO)), we accept our trial configuration r(11),  that is, make it our new 

configuration, and next member of our Markov chain, The probability of moving between 

two given states Fm and r with A U negative is arnu, which was the probability of generating 

a given configuration r(it) in the first place. 

If AU is positive (Pr(lt) < Pr (1)), then we accept the move with probability given by equation 

6.14, that is, This fulfils the second part of equation 6.13. If the move is not accepted, 

we discard our trial configuration, and the next member of our chain is the same as the current 

member of our chain, r2) = r (i) ;  this fulfils the final part of equation 6.13, accounting for the 

probability of remaining in the same state. 

From here, we can continue generating our chain of configurations, by generating new trial 

configurations, comparing their energies, and either accepting them or rejecting them appropri-

ately. We can record calculated observables from these configurations as we go along, and once 

we have generated sufficient configurations, estimate the ensemble averages for the observables 
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Calculate configurational energy 
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Randomly select particle r 

Apply displacement to r 
generating trial configuration r 

Calculate configurational energy 
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)- 

U(r")) 	>min( 1 ,exp(-( U(r") U(r")) 

Accept move, r=r 	 Reject move, r=r 

i=i+l 

Record observable A 

Figure 6.2: Flow chart describing basic NVT Monte Carlo algorithm. 

as their mean calculated value. This algorithm is summed up as a flow chart in figure 6.2. 

The algorithm described here is enough to create a complete "toy" Metropolis Monte Carlo 

program, easily generalised to three dimensions. All that is missing is a prescription for the 

value of the parameter 6rmax , the maximum trial displacement along an axis for a particle. 

The size of this parameter has a direct impact on the efficiency of a Monte Carlo simulation. 

With large öTmax, particles can be displaced to essentially anywhere in the simulation box; as 

such, we begin to lose the advantages of importance sampling, with many moves rejected, and 

hence poor sampling of phase space. As Srmax  becomes very small, most moves will make only 

a small difference to the energy of the system, and the rate of acceptance will become very high; 
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however, the new configurations will be only very slightly different to the old configurations, 

giving us very little new information. Once again, this leads to poor sampling. Conventional 

wisdom holds that örmax should be adjusted such that the about 50% of moves attempts are 

accepted - this is normally done by adjusting t5rmax  over a set of Monte Carlo runs before actual 

sampling begins to take place. No proof that this gives the "best" results exists. 

6.2 Implementation 

We have described above the theory behind Monte Carlo simulation, and in principle, given 

enough detail to implement such simulations. As ever, though, there are a number of fiddly 

details to attend to, and a number of tricks, optimisations and approximations that will make 

our life easier, which we will discuss in this section. 

Further, we have only described how to make these simulations work in the NVT ensemble, 

which has a number of disadvantages, not least that most actual experimental work is carried 

under conditions of fixed pressure and temperature. So we shall go on to describe how to work 

in the "open ensembles", that is, fixed NPT and MVT. 

Finally, it is possible to gain much more than simple ensemble averages at a state point 

from Monte Carlo simulation. We will close this section by describing how we can process our 

results. 

6.2.1 Real Simulations 

Periodic Boundaries and the Minimum Image Convention 

Even on the most advanced of modern digital computers, it is not possible to perform simulations 

at anything like the order of magnitude of size of the thermodynamic limit. Nor will this be 

possible in the foreseeable future. At most, we can only simulate systems with N of a few tens 

of thousands, and normally we will be dealing with thousands or even hundreds of particles. 

This will introduce serious finite size effects into our work. Further, we have not yet dealt with 

how the boundary conditions on our simulation box should work. 

The first part of the standard solution to these problems is that of periodic boundary condi-

tions. We will fool our system into believing that it is part of an infinite system by tessellating 

our simulation volume across space, as shown in figure 6.3. Just as the box is repeated across 
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Figure 6.3: Periodic boundary conditions and the minimum image convention. The central box 
is the simulation box; this is repeated across space to imitate an infinite system. Rather than 
calculating interactions with an infinite number of image particles, a particle will only interact 
with the nearest images of other particles; for instance, the shaded particle labelled '1' will only 
interact with particles within the dashed box. 

space, so are its contents, as "periodic image" particles. The box has no walls, either, with 

particles interacting and moving freely across the notional boundaries; if a Monte Carlo step 

displaces a particle through a face and out of the central box, then it will merely reappear 

through the opposite face. As such, we need only store the coordinates of the particles in the 

central box, as it is a simple matter to calculate the coordinates of their periodic images. 

For this system to be a good imitation of a "true" infinite system, neither individual particles 

nor the system as a whole must be able to "notice" this imposed periodicity. For individual 

particles, this requires that the interaction energy between a particle and its periodic images 

must be negligible - that is, the effective range of the interparticle potential must be less than 

half the width of the simulation box. For "long-range" potentials 2,  the interaction between 

particle images can remain significant; various methods have been devised to deal with such 

systems [71]. Such potentials are not studied in this work, however; over system sizes of order 

greater than a hundred particles, the influence of periodic boundaries on individual particle 

interactions should be minimal. 

More of a problem is the occurrence of long-wavelength fluctuations in the system. The 

enforced periodicity will obviously restrict the available phonon wave-vectors. If a system has a 

2 Long range particles are defined as those in which the interaction falls off no faster than rd , where d is the 

dimensionality of the system. 
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correlation length longer than half the box length (as will occur on approach to critical points 

or any other second-order transition, where correlation length diverges), this will introduce 

problems. 

In general, though, periodic boundary conditions give a good approximation to full thermo-

dynamic systems for reasonably large system sizes, and the presence of finite size effects can be 

checked for by repeating simulations at larger system sizes and comparing the results. 

Given our new ersatz infinite system, which we represent using a finite number of particle 

positions, we must now calculate the total energy using a finite number of calculations. We 

should calculate the interaction between every one of our N particles and every other particle, 

including images. This is obviously unfeasible, as there are an infinite number of images. We 

have already noted, however, that for the potentials we will be using here the effective range 

should be less than the width of the simulation box. So we will approximate by calculating only 

the interactions of a particle with the N - 1 closest normal or image particles within a region 

the same size and shape as the simulation box, but centred on the particle in question. This 

minimum image convention is illustrated in figure 6.3. 

Potential Cutoffs and Cell Structures 

We can take the idea behind the minimum image convention even further. We can approximate 

a given pairwise potential by saying that, beyond a cutoff range r, the interaction between 

particles is as good as zero, and as such we will only need to calculate interactions between 

particles separated by r < r, that is, within a spherical (or circular) region radius r. Since 

calculating the potential is often computationally expensive, this should result in an appreciable 

saving of computer time for most systems. 

Such truncation does effect the results from a simulation. Methods exist to counter this, 

though not perfectly, for example by approximating liquid systems as perfectly homogeneous 

outside the cutoff radius. The errors introduced by a well chosen potential cutoff of sufficient 

range should only change the results in quantitative detail, rather than in general behaviour. 

For systems where the simulation box length is much larger than 2r, and where the number 

density is reasonably high, further savings in computer time can be made by using a cell list 

structure. Using a cutoff, it is still necessary to calculate distances to all N - 1 other particles 

in the system, then compare against the cutoff range; computational time for calculating a 
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Figure 6.4: With a potential cutoff, the highlighted particle will only interact with particles 
within the circle, though distances to all particles must be still be calculated. Using a cell 
structure, only distances to particles within the filled cells need to be calculated. 

pairwise interaction will still scale as N 2 . To counter this, we can divide the simulation box 

into a number of sub-boxes (known as cells) with side length at least equal to r, and maintain 

lists of which particle occupies which cell. We then only need to calculate interactions between 

a particle and those particles in the same or neighbouring cells (see figure 6.4) . This algorithm 

will scale as N (collation of the lists is order N, and at given density, the number of interactions 

to be calculated will be constant), making it very efficient; however, the large amount of extra 

book keeping necessary will make this method comparatively slow for small system sizes. 

6.2.2 Monte Carlo in Open Ensembles 

Now that we have discussed how to effectively and efficiently perform NVT Monte Carlo simula-

tions, we will turn to Monte Carlo in other ensembles, specifically the open ensembles, constant 

NPT (isothermal-isobaric) and constant 1aVT (grand canonical). 

Before this, though, we will briefly ask why should we want to use these ensembles? Consider 

performing simulations in the NVT ensemble on a system capable of exhibiting two-phase 

coexistence. As long as we remain in the single-phase regions, we will be fine. As soon as we 

reach a state point in the two-phase coexistence region, however, we will find problems. At 



CHAPTER 6. MONTE CARLO METHODS 	 100 

such a point, the system will want to phase separate, and at a large enough system size, would 

happily do so. However, in a small simulated system, it may well be unable to. This is because 

an interface must form between the coexisting phases. This interfacial region will have a very 

large free energy per particle; in an infinite system, this will have an infinitesimal contribution 

to the full free energy, but in our simulation (where the interface is repeated off into infinity 

by the periodic boundary conditions), it will make a very large and prohibitive contribution. 

Thus, NVT simulations of first order phase transitions are very difficult, and are dogged by 

metastability and finite size effects. 

Consider instead simulating the same system using an open ensemble. At every point except 

the exact coexistence point, there is only a single thermodynamically stable phase. An open 

ensemble should be free to vary its size (volume for NPT, particle number for 1iVT) until its 

configuration is entirely in the phase of lowest Gibbs free energy. Of course, things are not this 

simple; on passing across the transition, the configurations sampled by an open ensemble must 

still pass through interfacial states, and will also suffer from metastability and finite size effects. 

These effects will not be so harsh as they are in the NVT ensemble, however, and methods exist 

for getting around them (see section 6.3). 

NPT Monte Carlo 

Working in the isothermal-isobaric ensemble has the advantage that most experimental work is 

carried out under conditions of constant pressure and temperature; hence NPT ensemble Monte 

Carlo allows for direct comparison with experimental results. 

Since an NPT ensemble system will not have fixed volume, it is convenient to introduce 

the concept of scaled coordinates for the particles. We assume a square (cubic) box of side 

L = V-1/d, though the method is easy to generalise. Particle positions are now determined by 

the set of scaled coordinates s, such that: 

r i  = Ls 
	

(6.18) 

We can now write ensemble averages as: 

(A) NPT 
- 

- dVe' VN f dsA(s)e'4 

 f dVe PV VN f dse() 
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The factor V" has come about due to the change in integration variable from r to s. In 

our Monte Carlo procedure, we will be making moves which alter V. This gives us a limiting 

distribution of: 

PNPT cx e—O(PV+U(s:L))+N In 	 (6.20) 

Rather than working in V, where checks must be in place against moving to unphysical 

negative volume, it is more convenient to work in in V. Making the change in variable in 

equation 6.19, we have ensemble averages given by: 

(4)NPT
- VdinVe"V' fdsA(s)e' 

- f Vdln Ve_ vVN f dseU() 	
(6.21) 

The limiting distribution function for our Markov chain will now be given by: 

PNPT cx e(_U 1) I n V 	 (6.22) 

We will now specify two types of move to generate trial configurations. The first moves 

particles in s space, and works as NVT Monte Carlo, that is, a particle i is picked at random, 

and a displacement applied such that: 

(t) 
S i  = Si + 5Smax ( - 1) 	 (6.23) 

where is a vector with components that are random numbers uniform over the range (0. . . 1). 

The second move changes V such that: 

In V(t) = in V + ö (in Vmax ) ( - 1) 	 (6.24) 

where is a random number uniform on (0. . . 1). Changes in V will be introduced through 

changes in L, which alter the particle positions r whilst preserving scaled coordinates s. 

As before, trial moves are accepted with a probability equal to the ratio of the unnormalised 

probabilities PNPT between original configuration m and trial configuration n. To this end, we 
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calculate the quantity LH: 

LHnm  = AU.,,, + P(V - Vm) - (N + 1)3' in (V./V.) 	 (6.25) 

and accept or reject moves with probability: 

Pnm = mm (i, 	 (6.26) 

In the case of s-space moves (ie no change in V), this reduces to the same acceptance 

probability as equation 6.15. 

Particle displacement moves are generally attempted with N times the frequency of volume 

moves, and the parameter 6 (in Vmax ) is generally chosen to yield 30 - 50% move attempt 

acceptance. Once again, these are "rules of thumb" without a rigorous basis. 

Periodic boundaries and potential cutoffs work here as in the NVT ensemble. Cell structures 

can also be applied, but the cell lists should be recalculated after every volume move, with the 

cell box length being recalculated. 

,tVT Ensemble 

Performing Monte Carlo simulation at constant chemical potential may at first seem somewhat 

odd, as ,i is not a natural variable for experiment. However, this ensemble gives us certain 

unique advantages, though it is rather constrained in its range of application. 

The grand canonical ensemble allows fluctuation of particle number N at constant volume. 

We will allow for this by putting our system in equilibrium with a hypothetical infinite ideal 

gas system of particles of the same type, and exchanging particles between the systems. Our 

hypothetical system will have volume V0  Do; to manage exchanges, we retain the scaled 

coordinate system from the NPT ensemble, with particles retaining their s i  coordinate be-

tween systems. Since V0 is so enormous, of course, particles in the hypothetical system will 

be effectively non-interacting, and this system need not be modelled; the scaled coordinate 

representation is necessary to ensure detailed balance. 
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With this representation, an ensemble average is given by: 

00 

(N!) ' VNA_dNeN f dsA(s)e1(s) 

(A) = N=O 	 (6.27) 
F 00  0  (N!) VNA-dN 

N= 	
eOpN f ds(s)e_(s) 

A is the thermal de Brogue wavelength for the particles; this is taken as unity through convenient 

choice of unit. From this, we are seeking from our algorithm a limiting distribution function 

given by: 

PvT cx e_ U(s)Nj4In N!—dN In A+N In V 	 (6.28) 

Once again, we will make two kinds of move. The first will sample s space; it should come 

as no surprise that this is carried out exactly as for NVT and NPT Monte Carlo, with random 

displacements applied to randomly chosen particles. The second will move through particle 

number, mimicking particle exchange with the ideal gas system. Particle number moves are 

split into two possible types; "creation" moves (effectively taking a particle from the ideal gas 

into the system of interest), and "destruction" moves (moving a particle from the studied system 

into the ideal gas system). 

In a creation move, the trial configuration is generated by placing a new particle at a random 

location chosen uniformly from the simulation volume. The energy for this trial configuration 

is evaluated, and a creation factor Cnm  calculated: 

= 	V 	
(6.29) 

Ad(N +1) 

Such a configuration is accepted with probability given by: 

(6.30) 

In a destruction move, a random particle is picked from the simulation volume, and the trial 

configuration is made by deleting it. From this, the destruction factor Durn  is calculated: 

= 	e_U 	 (6.31) 
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This trial configuration is accepted with probability: 

Pnm = mm (1, e ' '"') 	 (6.32) 

To preserve detailed balance, creation moves and destruction moves must be attempted with 

equal probability. Any probability ratio between creation/destruction moves and displacement 

moves is legal, but simulation lore has it that an equal probability for attempts to create, 

destroy, and displace particles gives the most efficient simulations. Once again, this is only a 

rule of thumb. 

Grand canonical Monte Carlo is more tricky programming-wise than working in the NVT 

and NPT ensembles. In the fixed-N ensembles, particle positions can be stored in a fixed-length 

array. In pVT work, the length of array necessary can fluctuate considerably. One method to 

work around this is to use a fixed length array of length much greater than the expected (N) 

[71]. Use of non-fixed arrays in languages like C and of dynamic linked list structures are 

also possible; though in principle these should be less computationally efficient, many modern 

compilers are capable of optimising such algorithms. 

The main reason for using 1iVT Monte Carlo is that it can directly evaluate the free energy of 

a system. We have seen that normally Monte Carlo integration cannot do this; it will only ever 

give unnormalised partition functions, giving an unknown additive constant to the free energy. 

In this algorithm, however, we have set up the system with a known (indeed, preset) chemical 

potential for particle exchange with an ideal gas particle reservoir. Since the free energy of an 

ideal gas can be calculated directly, the full free energy of our system can be calculated [84]. 

Unfortunately, the range of application for grand canonical Monte Carlo is limited by its 

reliance on particle insertion moves. In a dense liquid, most particle insertion attempts will be 

rejected, due to large overlap between particle cores. After a particle deletion, a hole will be 

left; it may take a long time for displacement moves to allow the system to respond to this, and 

following particle insertions may well merely put a particle back into this hole. As such, the 

algorithm will explore phase space very slowly. Methods exist to alleviate this [86, 85], though 

not completely. The situation is even worse for crystalline solids; particle insertions will, in 

general, only be accepted at empty lattice points, which are themselves unusual defects, and 

particle deletions, which would create such defects, are likely to be rejected. As such, 1iVT 
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Monte Carlo study of bulk phases is limited to low to moderate density fluids. 

6.2.3 Processing the Results 

Recording Observables 

Each of the ensembles we have mentioned includes an obvious observable to measure from 

Monte Carlo simulation. In NVT Monte Carlo, this is the energy; since this has to be measured 

for every configuration generated, it takes little effort to record. In NPT Monte Carlo work, 

both volume and energy are calculated and can be recorded, whilst in the PVT ensemble, the 

readily accessible observables are particle number and energy. It is unnecessary (and indeed 

uneconomic in terms of storage space) to record these observables after every move attempt, 

since such data will be strongly correlated, with each point yielding little extra information; 

instead, data should be recorded at regularly spaced intervals throughout the simulation run. 

It can be useful to collect certain other information from a simulation run. A good example 

is the pair distribution function, g(r). This is to simulation what its Fourier transform, the 

structure factor s(k), is to experiment; that is, the best source of information on structure, 

since whilst "snapshot" configurations from simulations can be very helpful for visualisation 

purposes, there is no real way of telling if a given configuration is "typical" or not. 

The function g(r) measures the probability of observing a pair of particles having separation 

r. It is measured in simulation by evaluating all the pair separations in the system at intervals 

through the simulation, and compiling this data in histogram bins (normally stored in the 

computer as an array), then performing the appropriate normalisation [71]. 

Another useful quantity which can be measured for pairwise additive potentials is the pres-

sure. To measure this, we must take an ensemble average of the "internal virial function" W(r), 

given by: 

w=-I>I 	
d(r)  

(6.33) 
dr 3  

i i<j 

This function is susceptible to problems with potential cutoffs, which can be corrected for 

in the same way as for energy measurements. If this data is recorded over the simulation run, 
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then the ensemble average pressure is given by: 

+ 	(W) 	 (6.34) 

If the ensemble is such that either volume or particle number vary, then the appropriate 

quantities must also be measured as ensemble averages. In all ensembles, this average should 

give the pressure; this may seem pointless for the NPT ensemble, but is a good exercise as a 

consistency check. 

As well as calculating the averages of observed variables, the variances of these averages 

also hold useful data. It is possible to use these to calculate response functions [6] such as 

the isothermal compressibility KT and the specific heats from our simulation data. The exact 

method varies across ensembles; whilst ensemble averages are equivalent across ensembles, the 

fluctuations do vary (as an example, consider that volume fluctuations are zero in the NVT 

ensemble whilst non-zero in the NPT ensemble). A good list of formulae for calculating these 

quantities in different ensembles can be found in Allen and Tildesley's book [71]. 

Error Estimation 

Assuming that our Monte Carlo run has been infinitely long in a completely ergodic system, 

then our results will be "exact". However, since most researchers do not have access to infinitely 

powerful computers, or infinitely long research grants, our results will normally be susceptible 

to statistical errors; that is, the distribution we sample will be an approximation to the "exact" 

result. As such, we must attempt to estimate this error. 

Our individual recorded data points will, in general, not be independent. The data will have 

a correlation length, T, the characteristic decay time of the autocorrelation function for the 

observable A through the simulation run. If we can calculate this length for a run with r data 

points, then the variance in the mean (A) that we measure is given by: 

a2 ((A)) - 	(A - (A)) 2 	 (6.35) 
- T 2  

T 

This is a standard statistical result. Since the correlation length is often costly to calculate, 

however, it is standard practise in simulation to calculate error using block averages. For this, 

the simulation data is divided into nb blocks, each length Tb = r/nb. The ensemble average 
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of A over each block, (A) b' is then calculated. The variance of these block averages can then 

calculated: 

1 nb  
2 ((A)) a 	 - (A)) 2 	 (6.36) 

nb b=1 

It can be shown that this error estimator should be inversely proportional to ri& if Tb  is large 

enough that the blocks become uncorrelated. As such, we can estimate the error in our results 

through: 

- 2 ((A)) 

	

a2 ((A)) - 	 (6.37) 
nb 

This quantity should be calculated for a range of nb with the actual error estimate being 

taken from a region where it appears to be approaching a constant. 

Single Histogram Extrapolation 

Histogram extrapolation is a powerful tool which allows us to extend the results from a sim-

ulation at a single state point to give information on the surrounding region of phase space. 

Whilst the ideas behind it are old, they were popularised through the work of Ferrenberg and 

Swendsen [87]. 

To demonstrate the concept, let us consider the probability of observing a system in the 

canonical ensemble with configurational energy E at state point = 11T, p(E; ). We can 

write this in terms of the density of states, 11(E): 

AE; 0) 
 

(6.38) 

	

- 	Z(/3) 

with Z(/3) the partition function, given in terms of the density of states by: 

Z(0) = 	1l(E')e'' 	 (6.39) 

We will now rearrange this to get a form for the density of states: 

11(E) = Z(/3)p(E; /3)e 	 (6.40) 
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Now consider the probability distribution at another state point /3' = 1/T': 

p(E; 
 

(6.41) 
- 	Z(3') 

and substitute in equation 6.40: 

p(E;8') - 
	p(E ; /3) e_('_)E 

(6.42) 
- 	E' p(E'; )3)e(13'13 )E 

The partition functions here have cancelled. This shows that, given only the function p(E) at 

a single state point /3, we can calculate the same function at any other state point; this process 

is known as reweighting. The argument is easy to generalise to other ensembles; for instance, in 

the NPT ensemble, the probability distribution becomes p(E, V; /3, P) and the density of states 

1l(E, V) to give the result: 

p(E,V; 0',P)= 	
p(E, V; 0, P)e)(E+(P'_P)V) 

(6.43) 
E',V' p(E', V'; 0, P)e_('_1)(E+(P'_P)V) 

and equivalently for the jiVT ensemble in N and E. 

We do not have access to the full functions p(E ... ), but we can bin the results from our sim-

ulations into histograms, h(E ... ). These histograms provide estimates proportional to p(E ... ), 

and can be reweighted just as above. These can be used in the same way to give us estimates 

of the distributions for the variables at other state points, giving us access to their ensemble 

averages and fluctuations. The errors in the reweighted histograms are measured using block 

averaging in the same way as the straight up simulation results, remembering to weight each 

data point's contribution appropriately. 

Since our measured histograms are not the full probability distribution, however, we cannot 

extend the results of one simulation across all phase space. This manifests in several ways. 

First, our simulation results suffer from statistical errors. Histogram reweighting preserves 

the fractional error in a histogram, rather than the absolute error. Our simulation results may 

have uniformly small absolute error in h(E; T), but the fractional error will be small at the 

peak of the distribution, and very large in the tails. If we reweight to a state point where the 

peak of the new distribution is at an energy in the tail of the old distribution, then that peak 

will suffer from very large fractional and absolute error. 
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Secondly, our simulations only sample a range of each observable. Consider an NVT sim-

ulation which has not visited points with E < EL. In this case, the estimated histogram is 

zero for E < EL (h(E < EL; T) - 0), whilst the actual distribution, p(E < EL; T), will be 

very small but still non-zero. Now consider reweighting the histogram to a state point T' where 

p(E < EL; T') is significant; we can see from equation 6.42 that h(E < EL; T') will be zero. 

Finally, we discretise the density of states for our system by using histogram bins. We must 

ensure that the width of these bins is not so much that we miss fine detail which may be present 

in the function p(E ... ). This problem is not as crippling as the previous two; it can be solved 

by performing the reweighting again with smaller bin sizes, whilst the previous two problems 

are due to an inherent problem, incomplete sampling by the Monte Carlo algorithm. 

The first two drawbacks limit single histogram extrapolation to a limited region of phase 

space surrounding the original state point. Even so, it is a useful tool. As an example, for 

our problem at hand, we could find a point of compressibility maximum on an isotherm by 

performing a large number of simulations to an ever-greater number of decimal places in T 

according to some extrema-seeking algorithm until we achieved the desired accuracy. It would 

be far quicker, however, to perform a single simulation near to the estimated maximum, then 

use repeated histogram reweighting to find the maximum. 

Another common use for histogram extrapolation is to locate coexistence points to arbitrary 

precision in a similar way. We will return to this in the next section. 

Multiple Histogram Extrapolation 

This extension to histogram extrapolation [88, 89] allows us to combine simulation data gathered 

at several state points. This can help us with problems due to poor sampling; we can combine 

simulations which individually do not sample the full variable range of interest, but taken 

together do. 

When combining histograms in this manner, the normalisation of the histograms will be 

different for each simulation. Each histo gram is normalised by a quantity proportional to 

the full partition function, but this constant of proportionality is unknown and different for 

each simulation. Thus the derivation for the multiple histogram extrapolation method is much 

more complicated than the single histogram method given above, using an iterative method 

to establish the ratios of these constants of proportionality - that is, the logarithm of the free 
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energy differences between the state points - before combining them. For a full discussion of 

this method, see reference [89]. 

6.3 Dealing with Coexistence 

Consider the order parameter distribution function for a system near two-phase coexistence, 

p ... (A). This will have a double-peaked structure, with the peaks reflecting the order param-

eter distributions for the two phases. Exactly at coexistence, the free energies of the phases 

will be equal, therefore the probabilities of observing each phase will be equal, and hence the 

weight under each peak will be equal. 

Now, consider performing a Monte Carlo simulation at such a point. To sample both phases, 

the simulation must pass through states with order parameter values in the trough between the 

peaks. These states are mixtures of the two phases, and will therefore contain interfaces. If 

the transition is suitably weak (for instance, near a critical point), the two phases will be 

very similar, and the free energy cost of the structural mismatch at these interfaces will be 

low. As such, there will still be a reasonable probability of observing such interfacial states, 

and a Monte Carlo simulation run should be able to pass back and forth through such states 

with relative ease. This will result in good sampling of the relative weights of the phases, and 

histogram reweighting can be used to find the exact coexistence point according to the equal 

weight criterion. 

Unfortunately, in general the two phases are more likely to be structurally very different, 

and the free energy of the interfacial states will be very high. This creates a high free energy 

barrier between the phases, resulting in a deep probability trough between peaks. At best, the 

simulation will cross this barrier only rarely, and poorly sample the relative weights of each 

phase. At worst, the simulation will not pass across the barrier over any reasonable run time, 

and become "stuck" in one phase or the other. 

To effectively simulate coexistence, we must overcome this difficulty. One method is that 

of "extended sampling". In this, rather than sampling from the Boltzmann distribution, we 

use a distribution where there is much less trouble crossing the interfacial states. We must 

then use some method to find what our results would have been if we had used the Boltzmann 

distribution. Extended sampling comes in many flavours and goes under many names; the 
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particular formalism we will explain and use here is that of "multicanonical sampling" [91, 921. 

The second method is to construct our simulation so as to avoid the problematic interfacial 

configurations altogether. Direct simulation methods of this type include Gibbs Ensemble 

Monte Carlo (a clever method for simulating coexisting fluid phases - see reference [901), and 

the recently-proposed Lattice Switch Monte Carlo [96, 97, 98], which is developed explicitly for 

coexisting crystalline phases, and which we shall describe here. 

Finally, we can completely avoid two-phase simulation, pursuing instead single-phase sim-

ulations of the phases of interest. The methods of thermodynamic integration can be used 

to calculate the free energy difference of a simulated system with respect to another system of 

known free energy (for instance, an ideal gas or Einstein crystal) through numeric integration of 

free energy derivatives. By performing this for two phases, it is technically possible to find coex-

istence directly by equating pressure, chemical potential and Gibbs free energy. Such methods 

have met with some success; however, if the overall free energies (or their associated errors) are 

large compared to the characteristic free energy difference between the phases, it will be difficult 

to estimate coexistence points to any precision. If we are given one or more pre-determined 

point on the coexistence line, however, we can use the method of Gibbs-Duhem integration [102], 

which uses single-phase simulations to numerically integrate the Clausius-Clapeyron equation, 

giving us a path of constant free energy difference through the phase diagram. 

A good review of methods for simulating coexistence between fluid phases can be found in 

reference [94]. 

6.3.1 Multicanonical Reweighting 

The idea of multicanonical reweighting is to alter our sampling to an arbitrary distribution of 

our choice, usually to pass through regions of high free energy (such as in the above example of 

phase coexistence), or to better sample those hard-to-reach yet important values of some order 

parameter (see the section on Lattice Switch Monte Carlo below). 

We will denote this (as yet arbitrary) multicanonical sampling distribution PIC (A). With-

out loss of generality, we can write this function in terms of the appropriate ensemble distribu-

tion, p(A): 

pMc(A) e 4 p(A) 	 (6.44) 
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Here, 1(A) is a "weight function", which can be seen as biasing the normal Boltzmann sampling 

to the required distribution. 

We now move to considering this for a general ensemble to the NVT ensemble; generalisation 

back is a simple matter. In this ensemble, we have: 

e_$E e77( E) 

	

pivic(E) c 	
Z(8) 	

(6.45) 

Extension of Monte Carlo move acceptance probabilities to sample this distribution is simple; 

in NVT work, equation 6.15 becomes: 

Pmn = mm (i, e— 0 A U—. +(m_m.)) 	 (6.46) 

Similarly, calculation of the histograms and averages which would have been sampled under 

the Boltzmann distribution is easy to implement, with contributions from a given simulation 

data, point being weighted by e_' in the appropriate calculations. 

We must now decide on the sampling distribution PMc  that we want. The usual choice is 

to sample the region of interest uniformly; from equation 6.45, we can see that for this we must 

set our weights such that: 

	

eE) 0C p(E) 
	

(6.47) 

Of course, the problem here is that p(E) is the quantity we wish to find in the first place. 

All is not lost; we do not require strictly uniform sampling, merely approximately uniform 

sampling. As such, we can plug an approximation to p(E) into equation 6.47, which should at 

make our sampling more uniform. 

Use of multicanonical simulation is usually an iterative process. An initial run at the state 

point is performed. The histogram h0 (E) for this state point is used as an estimator for P(E), 

and used to find a multicanonical weight function through equation 6.47. A second run is then 

performed using this weight function; this should improve the sampling. The new histogram 

h 1  (E) is then used to produce a more refined weight function, and the process repeated until a 

simulation samples the required region of phase space with the required uniformity. This simple 

method is known as the "visited states" method. Fixes to this and alternative methods exist 
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[92]. It should be appreciated that the method used to estimate the weight functions is not 

important, as long it produces the desired uniformity of sampling. How to gain a good weight 

function is to a degree "voodoo", in that one must rely heavily on physical intuition rather than 

using a set, systematic strategy. 

Multicanonical sampling has achieved great success in simulation of coexistence, especially 

between fluid phases and around critical points [93, 94, 95]. Liquid-gas coexistence in particular 

is well-suited to this method - by starting near the critical point, where the free energy barrier 

is neither particularly wide nor deep, a good weight function can be found with relative ease. 

Histogram reweighting can then be used to find the appropriate weight functions at steps further 

back along the coexistence line, where the depth and width of the free energy barrier would 

make a fresh weight function prohibitively computationally expensive to evaluate. 

6.3.2 Lattice Switch Monte Carlo 

Coexistence between phases with different symmetries can give even extended sampling methods 

troubles. A good example is coexistence between solid phases with different lattices, where the 

free energy barrier between phases will be far too high to estimate as a weight function in 

reasonable time. Further, this will be the case along the whole length of the transition line; 

for such transitions, there can be no critical point near which the transition is weak enough to 

evaluate a weight function which can then be reweighted. A very recent solution to this problem 

is the method of Lattice Switch Monte Carlo [96, 97 1  98], which avoids simulating two-phase 

configurations altogether. 

This method assumes that, over the length of the simulations to be performed, there is 

negligible chance of one phase transforming into the other. This allows us to separate the phase 

space into two regions, which we denote through the discrete variable a = {O, 1}, separated by an 

effectively infinite free energy barrier. Single-phase simulations can give us the configurational 

integrals associated with each of these regions, Za , up to a multiplicative constant; the problem 

is to couple simulations of each phase so as to equate these constants, which will allow calculation 

of the free energy difference. 

For lattice phases, we use the phase label a as the order parameter for the transition. We 

add to our Monte Carlo algorithm to allow moves in this parameter - that is, moves which take 

us between configurations characteristic of both phases. We decompose particle positions in a 
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similar way to that used in the harmonic approximation (see chapter 4). In the simplest form 

of lattice switch, particle positions are now given by: 

ri  = R + u 
	

(6.48) 

There are now two sets of lattice vectors R, one for each lattice phase. These represent 

the ground-state positions of particles in lattice phase a. The displacement vectors ui are as in 

the harmonic approximation, and are independent of a. Unlike the harmonic approximation, 

it does now matter which lattice position we index to which particle. We should choose indices 

in each phase such that, on switching the label a, we maintain as many particle neighbours as 

possible. 

We can now add a "lattice switch move" to the NVT ensemble Monte Carlo algorithm. Part 

of our description of the current configuration m is the phase label a = a m ; we generate a trial 

configuration n by a = NOT(am ). The probability of accepting this trial configuration is as 

equation 6.15. 

This is unfortunately not enough to make a working lattice switch algorithm. In general, 

displacement vectors typical in one phase will not be typical in another, and so performing this 

switch will usually change a perfectly acceptable configuration in one phase into a configuration 

with considerable overlap of particle cores in the other phase. This means that the quantity 

AUnm  from equation 6.15 will normally be large and positive, and lattice switch moves between 

such configurations will be accepted only rarely. There will only be a small subset of configu-

rations for which AU,,,, is small or negative; these "gateway configurations" will in general be 

those where all particles lie close to their lattice positions. 

We must, therefore, enhance the probability of the simulation visiting these gateway config-

urations. We have already discussed a good tool for this - multicanonical reweighting. We must 

gather estimators for the probability distribution function, p(AU) (where A U is the change in 

energy which would result from a hypothetical lattice switch move) for both phases, and use 

them as weight functions to ensure that our simulations sample in A U reasonably uniformly. 

This will allow regular sampling of gateway configurations, and hence allow our simulation to 

perform regular successful lattice switch moves, sampling both phases well without ever passing 

through two-phase configurations. 
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This method can be extended to isothermal-isobaric Monte Carlo. First, we must move to 

scaled coordinates, such that: 

r i  = LB (R + s) 	 (6.49) 

Here, we have introduced the d x d matrices B. These are chosen according to two criteria. 

First, since our two phases may have different volumes, these matrices are chosen such that: 

B0  
- 	

(6.50) 
JBIJ 	(V') 

with (V') as the ensemble average volume for phase a, evaluated using a brief single-phase 

simulation. 

Secondly, the two phases may not both be commensurate with the same shape simulation 

boxes. The matrix B  defines the shape of the simulation box to be used for phase a. Given a 

two dimensional B matrix: 

B= ( 
B 	

(6.51) 

BYX BYY) 

the simulation box will be a parallelogram with sides formed by vectors (LB XX , LB YX ) and 

(LB XY .LB YJ ). If, for simplicity, we use B matrices which are diagonal, giving a rectangular 

simulation box: 

B=( 	

0 

0 	B ) 
	

(6.52) 

then the aspect ratio for the simulation box for phase a will be B X /B Y . 

The R2 's are chosen such that BR  describes the unscaled lattice for phase a. Finally, 

the standard NPT definition of L no longer holds, and is replaced by: 

	

L  IBaI = V 	 (6.53) 

Lattice switch moves are made by switching the value of a as in NVT lattice switch. It 

can be shown that the acceptance criterion for a lattice switch move in this representation is 

the same as that given in equation 6.26. Once again, typical configurations in one phase are 
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unlikely to translate well into the other, and we should use multicanonical weighting, this time 

in the parameter A H, as described in equation 6.25. 

There is a lot of freedom to choose mappings between lattices in the LSMC technique, and 

very little experience on how to do this. Whilst any mapping will "work", the best mappings 

will be those which have as many gateway configurations as possible. It has already been men-

tioned that mappings should preserve neighbours; if possible, they should also map between 

characteristic deformations of each phase. One approach to this which shows promise involves 

describing the particle displacement vectors as superpositions of phonons characteristic to one 

lattice, found using the harmonic approximation (see chapter 4), and mapping these onto super-

positions of phonons characteristic to the other lattice. This has been found to be very effective 

[101], but becomes less so outside of the region of validity of the harmonic approximation. 

It has been suggested that the concept of lattice-switch Monte Carlo can be extended to 

"phase-switch" Monte Carlo, for interface-free simulation of coexistence between non-lattice 

phases. This has been used to simulate the melting transition for hard spheres [99, 100]. 

6.3.3 Error Estimation in Two-Phase Simulation 

We have already discussed how to use block averaging to measure the uncertainty in the results 

from our simulations. This method for measurement of uncertainty in observables is not suffi-

cient to measure uncertainty in the position of coexistence points. To do this, we must consider 

what we are measuring when we find a coexistence point. 

Let us consider a single simulation of two-phase coexistence in the NPT ensemble; generali-

sation to other ensembles is easy. At coexistence, the extensive Gibbs free energies for the two 

phases, C1 and C2 are equal, that is the difference in Gibbs free energy between phases AG is 

zero. We can rephrase this in terms of the configurational integrals: 

A  = —(In Zi —lnZ2 ) 

(6.54) 
- 	in Z i 
- 	 z2  

We do not know the full configurational integrals for the phases, but we can estimate the 

ratio of these integrals as the ratio of the times the simulation spent in each phase, R, and 
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therefore estimate the free energy difference: 

LG—lnR 	 (6.55) 

At our estimated coexistence point, R should equal unity, equivalent to the "equal weights" 

criteria mentioned at the start of this section. We can estimate the error cTR in this ratio 

through block averaging. 

To estimate error in our coexistence temperature, we consider ourselves as measuring the free 

energy difference AG (specifically, AG 0) at that temperature. From a standard statistical 

result, we know that the error in temperature will be given by: 

3LG' \2 

4 = aC ( -af) 	 (6.56) 

Through standard results and some simple manipulation, this reduces to: 

2 kT2 2  

FA H7 
CrR cIT = (6.57) 

where iH is the difference in average enthalpy between the two phases, and we have used 

the fact that at coexistence, R = 1 and TLS = —H. Estimating error in a different ther-

modynamic field would involve taking the differential in equation 6.56 with respect to that 

field. 

6.3.4 Gibbs-Duhem Integration 

The relatively recent, and extremely elegant, method of Gibbs-Duhem integration [102]  allows 

calculation of a coexistence line using only single-phase, uncoupled simulations, using numerical 

integration of the Clausius-Clapeyron equation. This equation gives the slope of a coexistence 

curve in the temperature-pressure plane, and can be written: 

dP I AH  

coex 
- TIW 

(6.58) 

Here, LH is the difference in enthalpy between the coexisting phases, and AV is the differ-

ence in volume between the coexisting phases. Both quantities on the right hand side can be 

sampled through two single-phase simulation runs at a coexistence point. Knowing these, we 
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know the slope of the coexistence point, and should be able to extrapolate to another coexistence 

point a short interval along the coexistence line. 

The method of extrapolation - that is, the method used to numerically integrate the ordinary 

differential equation 6.58 - is usually of the predictor-corrector ('PC") type. This type of 

algorithm requires only one evaluation of the integrand at each step, whilst in general other 

algorithms require many [73]; since evaluation of the integrand requires two full simulation 

runs, and is therefore generally the most computationally expensive part of the calculation, 

predictor-corrector algorithms become the method of choice. 

In the predictor-corrector formalism, we are to solve an ordinary differential equation of the 

form: 

dx 
= I(x, y(x)) 

dy 
(6.59) 

To do this, we approximate the true function y(x) by an nth order polynomial around a 

given point. This polynomial is constructed from ii points on the curve (usually equally spaced 

in z), denoted (x i , y (xi)) (where i runs between 1 and ii), and the values of I(x, y(Xj )) at those 

points. Using this polynomial, we extrapolate a new point along the curve, (x? 1 , y (x )1)). 

This predicted point is then fed back to produce a better estimate for the polynomial (called an 

estimator step), to give a corrected point (x ?1  p ( 1 )). This process can then, if desired, be 

iterated to convergence (as is done in reference [102]), or stopped there [73], before proceeding 

to the next integration point 

As can be seen, we will need n known points on the coexistence curve to start off a PC 

algorithm, though it is possible to "kick-start" a high order PC scheme by using lower order 

schemes to multiply an initially small number of known points. Since increasingly high order 

PC schemes lose stability at decreasing integration step sizes, it may often be best to avoid this 

altogether, and use a less accurate but more stable low order scheme. 

It can also be seen that progressively greater error is introduced into the estimates with every 

integration step. We start off with only the errors in the original known points; with every step, 

we introduce stochastic error in the estimation of I from the simulations, and systematic error by 

approximating the coexistence curve to a polynomial. As such, where possible points regularly 

spaced along a Gibbs-Duhem integration should be checked using some other means. 



Chapter 7 

Simulation Results 

In this chapter, we will present results gleaned from the methods we discussed in the previous 

chapter, applied to systems of particles interacting via equation 2.15. We will start by extend-

ing our solid state approximation results from chapter 4 using Lattice Switch Monte Carlo and 

Gibbs-Duhem integration in the NPT ensemble; we describe our implementation of these meth-

ods, and the results which we gain from them. Then, using grand canonical simulation, we will 

turn to the liquid state, as studied by Sadr-Lahijany et al [1]; after presenting our results, we 

will note the unusual finite size of the system. Final1y, we will use grand canonical simulation 

to investigate the. three dimensional version of our chosen system. Discussion of the meaning 

and implications of our results will be saved for the next chapter. 

7.1 Two Dimensions 

7.1.1 Solid State Simulation 

Simulation Procedure 

Our simulations of coexistence in the solid phase use two different algorithms, Lattice Switch 

Monte Carlo and Gibbs-Duhem integration. At the core of these two different methods lies a 

common implementation of the basic NPT Monte Carlo algorithm. 

We implement this common base to the methods in the C programming language. We 

use relatively small system sizes with N = 256 particles, implementing a potential cutoff at 
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a) 	 b) 	 c) 

	

Figure 7.1: a) Particles on lattice given by 	with B 8 ° ( the identity matrix) applied. 
This is a square lattice. 

Particles on lattice given by R"; arrows show displacement with respect to Rsquare  positions. 
Particles on lattice given by RTZ, with matrix Bt  applied; this gives a triangular lattice. 

Circles mark lattice sites; dashed lines mark lattice vectors. 

r = 2.5. Simulations of the square lattice phase are implemented using a square simulation 

box; simulations of the triangular lattice are implemented using a box with aspect ratio 4, 
allowing the lattice to be commensurate with the simulation box. Simulation code outputs total 

system configurational energy and system volume. It can also output structural data in the form 

of the radial distribution function g(r) and snapshot configurations - whilst such snapshots are 

not as rigorous a measure of structure as the function g(r), they are often valuable in visualising 

systems. 

Our implementation of the Lattice Switch scheme follows from the generalised scheme given 

in chapter 6. Our set of lattice vectors suare  are given by a square lattice oriented with the 

box, as seen in figure 7.1 a. The B square  matrix is given by the identity matrix: 

= ( 1 0 

	
(7.1) 

	

B square 	

\ 0 1) 

The lattice vector set R is as the square lattice set, but with every other lattice plane 

shifted a half lattice spacing horizontally (see figure 7.1 b). To this, we apply the Bt7  matrix, 

given by: 

	

Btri - 
(v) 

( \/

7 	0 

	

- (Vsq) 	
0 	

(7.2) 

This takes us to a triangular lattice, as seen in figure 7.1 c. The scaling constant 	is 
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evaluated before the Lattice Switch runs at a given state point by two quick single-phase NPT 

simulations. 

Attempts to make lattice switch moves are made as often as volume change moves, with the 

acceptance probability given by 

Pnm = mm (1, e"") 	 (7.3) 

The "overlap parameter" AHnm  is calculated as per normal (see chapter 6). 

In addition to configurational energy and system volume, our LSMC simulations also output 

values for AH and for which lattice the system is in. As is standard in LSMC simulations, we 

use multicanonical sampling in LIH to facilitate lattice switch moves [96, 97, 981. The data 

output from the simulation is used to build LH histograms for each phase according to the 

"visited states" scheme, which are then fed back into the simulation as multicanonical weights; 

this process is iterated to convergence with acceptably small statistical error, calculated as 

outlined in section 6.3.3 . Histogram reweighting is then used to find the pressure at which the 

two histogram weights are equal and the phases are in coexistence. 

Our Gibbs-Duhem scheme is as outlined in chapter 6. To recap, we are solving a simple 

ordinary differential equation given by the Clausius-Clapeyron equation: 

dT I 	
— kT'

coex

dP 	- 	Lh 
	 (7.4) 

with the subscript indicating coexistence, Av as the difference in average volume per particle 

between the phases at coexistence, and Ah as the difference in average enthalpy per particle 

between the phases at coexistence. We denote the right hand side of this equation I(P, T). 

In our implementation, we solve this equation using a simple trapezoid predictor-corrector 

algorithm. We perform runs in each phase at a coexistence state point, then evaluate I(P, T) 

at that point. We use this "predictor" step to estimate a new coexistence point as being at: 

Pp  = 	P+LP 	
(7.5) 

Tp  = T+LPI(P,T) 

where LP is a chosen pressure step size. We then perform runs for each phase at this estimated 

coexistence point, and evaluate I (Pr, Tn). This "corrector" step is used to correct the estimate 
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of coexistence; the corrected coexistence state point is given by: 

Pc= 	 PP 	
(7.6) 

Tc  = T+(I(P,T)+I(P,T)) 

The process is then be continued, treating the corrected coexistence point as a new actual 

coexistence point. Step size LP should be small enough that features of the curve are properly 

resolved, whilst large enough to move along the coexistence curve at a reasonable speed. 

The formulae for error estimation with this method can be found in reference [103]. 

Simulation Results 

We have used our LSMC implementation to study the transition lines found with the harmonic 

approximation in chapter 4. We "kick-start" our LSMC simulations by giving them initial 

configurations of particles lying at points on the appropriate lattices, at the volumes predicted 

by the harmonic approximation. 

The HDSS - HDTS transition occurs at pressures well above those at which the behaviours 

we are interested in occur; as such, we have performed only two LSMC simulations (at T* = 0.1 

and T* = 0.2) to verify its existence. Here, our simulation results agree with the harmonic 

approximation (see figure 4.4). 

We have attempted to use LSMC to study metastable LDTS—HDTS coexistence. Whilst our 

simulations at low temperature (T* = 0.05 and T* = 0.1) do show triangular lattice phases of 

the predicted densities, these have a very short lifespan in our simulation runs before transform-

ing into the HDSS phase. This lifespan is not sufficient to allow simulation of coexistence using 

LSMC simulation; it is also too short to allow good statistics for the Gibbs-Duhem method. 

This leaves us with the LDTS - HDSS transition. We have successfully used LSMC to 

find coexistence points up to T* = 0.4. These are shown in figure 7.2. We can see that they 

agree well with the harmonic approximation up to a temperature of T* = 0.2; above this 

temperature, the simulated coexistence points lie at significantly higher pressures than those 

from the harmonic approximation. This is to be expected; at the very low density of the 

LDTS phase, the local energy landscape surrounding the lattice positions is unlikely to be well 

characterised as parabolic on the scale of typical particle deviations from their lattice positions. 

Above T* = 0.2, the LSMC method was found to become increasingly less efficient. At 
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LSMC coexistence curve 
Melting curve from reference [II 
G-D coexistence curve 

G--* Harmonic approximation coexistence curve 

Liquid 

HDSS 

0.. 

- 	.... 

LDTS 

0.2 	 0.4 	 0.6 	 0.8 

Temperature, 1* 

Figure 7.2: Phase diagram showing the HDSS-LDTS transition line calculated within the har -
monic approximation (dotted line, see chapter 4), from LSMC simulations (full line), and from 
Gibbs-Duhem integration (dashed line). Simulation data is from NPT simulations with N = 256. 
Error bars for LSMC results are calculated as outlined in section 6.3.3; error bars for Gibbs-
Duhem results are calculated according to the prescription given in reference [103]. Also shown 
is the melting curve taken from reference [1] (thick grey line). 
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Figure 7.3: 1Htrjsquare  histograms for LDTS - HDSS LSMC simulations at T* = 0.05 and 
T* = 0.3, system size N = 256. At T* = 0.05, the histograms have Gaussian character, and 
are approximately symmetric. At T* = 0.3, the LH histogram for the HDSS-LDTS move has 
this "normal" character, whilst the LDTS-HDSS histogram has a pronounced asymmetry, with 
a significant high-LH tail. 

low temperatures, the collected LXH histograms are as would normally be expected - that 

is, approximately Gaussian for both phases. With increasing temperature, however, the A H 

histograms for the LDTS phase change to a distribution more log-normal in character, that 

is, asymmetric with a pronounced high-LH tail. This is shown in figure 7.3. We believe that 

this behaviour reflects an increase in the defect density on approach to melting. This long tail 

makes good sampling of LH much slower; beyond T* = 0.4, this becomes so severe that use of 

LSMC is no longer feasible. 

The remainder of the coexistence line has been evaluated using Gibbs-Duhem integration. 

The results are shown in figure 7.2, and can be seen to smoothly extend the transition line 

up to T* = 0.525 ± 0.006, P = 0.929, above which the LDTS phase was observed to melt in 

simulation. Whilst this is a poor estimate to the LDTS melting curve, due to the possibility of 

hysteresis, it is within error in temperature of the melting curve reported by Sadr-Lahij any et 

al [1], though at a significantly lower pressure than their estimate for the LDTS - HDTS-liquid 

triple point. 
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7.1.2 Liquid State Simulation 

Simulation Procedure 

Our Monte Carlo simulations of the liquid state have been performed in the grand canonical 

(constant 1iVT) ensemble. We have performed a large number of small systems size simulations, 

with square simulation boxes of size L* = 10, using a potential cutoff at r 2.5. The 

simulation code outputs total system configurational energy and particle number. Isothermal 

compressibility is calculated from fluctuations in particle number according to the standard 

prescription for this ensemble from reference [71], that is: 

KT 
= 13V (DN2)VT 

(N),vT 
(7.7) 

To find extrema in compressibility and density, we first perform a set of Monte Carlo runs 

at points along a line of constant chemical potential. The simulation data were then combined 

self consistently according to the multihistogram framework. Actual positions of extrema are 

estimated by using a golden section search [73] along the line of constant chemical potential, 

evaluating the appropriate observable by using histogram reweighting on our combined data 

set. 

Where we have observed two-phase coexistence (either directly or by observing hysteresis 

along a line of constant chemical potential in our simulation results), where necessary we have 

used multicanonical sampling in number density to estimate the position of the coexistence 

line to within acceptable statistical error, as estimated in section 6.3.3. This has been done 

using the standard visited states iterative approach - in summary, we feed an observed bimodal 

number density histogram back into the simulation as a set of multicanonical weights, until 

the histogram coming out of the simulation converges with the histogram used as a weight 

function with acceptably small statistical error. The point of coexistence is then estimated by 

using histogram reweighting to find the state point at which the weight under each peak in the 

number density histogram is equal. 

During the course of a simulation run, we also collect structural data in the form of the 

radial distribution function g(r) [71]. Our simulation code can also output "snapshot" particle 

configurations from the system. 
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Figure 7.4: Phase diagram from uVT simulations, V* = 100, showing the positions of liquid 
state anomalies and coexistence curves, as denoted in the legend. The + denotes the esti- 
mated LDTS - liquid- HDSS triple point. Simulations were performed at points marked with 
x symbols. 
Note that the liquid state anomalies and LDTS-liquid coexistence line suffer from strong finite 
size effects (see text), and the "true" large system size anomaly lines will be at significantly 
lower temperature. HDSS-liquid coexistence is only estimated, due to difficulty in simulating 
this transition (see text). 

Simulation Results 

A p - T phase diagram showing the results from our simulations of the liquid phase is shown in 

figure 7.4; also shown is the liquid-gas coexistence curve calculated by Wilding I31 We confirm 

the presence of liquid state anomalies in the system; we observe both a TMD line and a locus 

of points of extremal compressibility. We demonstrate these anomalies with a typical plot of 

the temperature behaviour of compressibility and density at = —3.0 in figure 7.5. 

The lines of minimum compressibility and of maximum density appear as anticipated. How-

ever, near the line of maximum compressibility, the number density histograms from simulations 

are bimodal — that is, they have two peaks, indicating two-phase coexistence. An example is 

shown in figure 7.6 a. Further, if we examine the time evolution of number density from simu-

lations at these points (figure 7.6 b), we find that the simulation passes back and forth between 

these phases with relative ease, even without multicanonical weighting. If we use histogram 
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Figure 7.5: Compressibility and density against temperature for 	= —3.0, showing the pres- 
ence of compressibility extrema and a density maximum. 

reweighting techniques to find the exact coexistence line, that is, where these points have equal 

weight, we find that it traces out the line of maximum compressibility. 

We attempt to illuminate this by considering the results collected from simulations on either 

side of this line. Figure 7.7 a shows the number density distribution, figure 7.7 b snapshot 

configuration, and figure 7.7 c the g(r) histograms from simulations performed at T* = 0.6. 

In the left hand column of figure 7.7, we see the results from a simulation performed below 

the coexistence line, at —3.5. Here, we have a very narrow number density histogram 

((p*) = 0.56 )and a g(r) function characteristic of a solid phase. This is borne out by the 

snapshot configuration, which shows particles occupying a triangular lattice. These data are 

consistent with our simulation results for the LDTS phase. The central column of figure 7.7 

shows the results from a simulation performed at = —2.5. This shows a wide, Gaussian-like 

number density histogram ((p*) = 0.63 - we note that the liquid is more dense than the LDTS 

solid phase), and a g(r) function tending to 1 with increasing r. The snapshot configuration is 

without order. This is what we expect from a liquid phase. Our data are consistent with the 

line of maximum compressibility tracing out the LDTS-liquid coexistence curve. This transition 

line has negative slope in the P - T plane, as the LDTS phase has greater volume than the 

liquid phase. 

It should be noted that simulations in the LDTS phase have low (order 1%) acceptance rates 
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Figure 7.6: a) Particle number histogram collected from a VT simulation at V = 100, T* = 

0.6, 1f' = —3.0, close to a point of compressibility maximum. This distribution is clearly bi- 
modal. 
b) Raw simulation data (system density p' against Monte Carlo move number r) collected 
without using multicanonical reweighting at V' = 100, T' = 0.6,1f' = —3.0. The simulation 
can clearly be seen to regularly pass back and forth between phases (though not often enough 
to give good statistical information). 

for particle insertion and deletion moves. Though acceptance rates this low are very unusual 

for at the densities observed for this phase, they are consistent with our interpretation of the 

LDTS phase as a solid phase. 

Above 	—2.5, upon cooling, freezing into the LDTS phase is preempted by a transition 

to a high-density phase. We once again attribute this phase by considering number density 

distribution, g(r) and a snapshot configuration, as shown in the right hand column of figure 

7.7. We note a narrow, high density number density histogram ((p) = 0.82), a solid phase 

g(r), and a snapshot configuration with particles occupying a square lattice. This is consistent 

with our simulation results for the HDSS phase. Evaluating the melting curve here has proven 

more difficult than with the LDTS phase, even using multicanonical sampling. First, transition 

back and forth between liquid and HDSS is not observed over the lifetime of an unweighted 

simulation. Secondly, the free energy barrier between the HDSS and the liquid phase is both 

deep and, in terms of density as an order parameter, wide. Finally, as has previously been 

remarked, the grand canonical Monte Carlo algorithm is unsuited to working in high-density 

phases, especially lattice solids. Whilst four HDSS-liquid coexistence points are marked in figure 
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Figure 7.7: a) Density distributions for (left) the LDTS phase at T* = 0.6, 	= —3.5, for the 
liquid phase (centre) at T* = 0.6 1  p = — 2.5 and for the HDSS phase (right) at T* = 0.6, jf = 
—2.5. 

Snapshot configurations for the LDTS phase (left), the liquid phase (centre) and the HDSS 
phase (right). Dashed lines join nearest neighbour particles in the lattice phases. 

The full line shows the radial distribution function g(r) for the HDSS phase (left), the liquid 
phase (centre) and the LDTS phase (right). The interparticle potential is shown schematically 
as a dotted line for comparison. 
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Figure 7.8: Temperature dependence of isothermal compressibility at 	= —3.0 for various 
system sizes. 

7.4, acceptance rates for particle insertion and deletion were of order < 0.01%, the statistical 

error (not shown) is large, and this coexistence line should be taken as a guide only. It may well 

be possible to gain more precise results using phase-switch Monte Carlo in the NPT ensemble 

[99, 100]. 

Due to the difficulty in estimating the HDSS melting curve, it is difficult to find the position 

of the HDSS-LDTS-liquid triple point to any precision. By fitting data from both melting 

curves using linear regression (a rather naive technique), we estimate the triple point at T* 

0.526 7  if —2.5 (as shown in figure 7.4). In the same way, we estimate this triple point pressure 

as P 0.9. This is close to our estimate of the triple point from our solid-state simulations. It 

is within error in temperature (though significantly lower in pressure) to the estimate by Sadr-

Lahijany, et al. These three triple point estimates are all vulnerable to hysteresis, of course, 

and are all performed in different ensembles at different system sizes. 

Finite Size Effects 

As part of this work, the finite size effects in the liquid state have been studied by Wilding 

[3]. In particular, the finite size effects for the liquid state anomalies (and hence the liquid-

LDTS transition) have been assessed; it has not proven possible to study these effects for the 

liquid-HDSS transition (see remarks above). 
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Figure 7.9: Temperature dependence of number density at 	= —3.0 for various system sizes. 

The behaviour of compressibility and density along a typical line of constant chemical po-

tential (* = —3.0) with system size is shown in figures 7.8 and 7.9. We first consider the 

behaviour of the compressibility. We can see in figure 7.8 that, with increasing system size, 

the maximum in compressibility moves to lower temperature, and becomes both higher and 

sharper. At all system sizes, this peak coincides with liquid-LDTS coexistence. Wilding's re-

sults for the liquid-LDTS coexistence line (at system size L* = 40) are shown compared to our 

results (L* = 10) in figure 7.10. 

We now move on to the system size behaviour of the density. Wilding's results are shown in 

figure 7.9. We again see the temperature of maximum density move to lower temperature with 

increasing size, though we note that by L* = 35 the density curves appear to reach convergence. 

This final estimate for the TMD curve is at a higher temperature than the compressibility 

maxima at the largest system size studied; Wilding has observed that, upon cooling below the 

TMD curve, the number density histograms for the large system simulations gain a 'subsidiary 

peak" at the LDTS density [3]. We interpret this as infrequent fluctuations into the LDTS 

phase before coexistence is reached. We will discuss this matter further in chapter 8. 
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Figure 7.10: LDTS-liquid melting curves for system size L* = 10 (dotted line) and L* = 40 (full 
line). Symbols show coexistence points found using histogram extrapolation; lines are guides 
to the eye. 

7.2 Three Dimensions 

7.2.1 Simulation Procedure 

Our simulations of the liquid state of the system in three dimensions are once again performed 

in the grand canonical ensemble. We use a standard ,uVT algorithm at a system size of L* = 10, 

with a potential cutoff at r = 2.5, with a cell approximation (cells have length re ). Simulation 

of liquid-gas coexistence has been performed using multicanonical sampling in number density 

with the visited states algorithm. Simulations output total system configurational energy and 

number density, as well as structural data in the form of g(r) and snapshot configurations. 

7.2.2 Simulation Results 

We have used grand canonical Monte Carlo simulations to study the liquid state of the three 

dimensional system. In three dimensions, the grand canonical algorithm only functions with 

any efficiency up to a number density p 0.65 [71]. We have performed simulations in a range 

with the liquid-gas coexistence curve as a low chemical potential limit, the liquid-gas critical 
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Figure 7.11: Phase diagram for the three-dimensional system, showing liquid-gas coexistence 
(thick line), the estimated liquid-gas critical point (filled circle), and a number of lines of 
constant density (as key). 

point temperature as a high temperature limit, and p* 0.6 as a low temperature and high 

chemical potential limit. 

We have found it helpful to locate the liquid-gas coexistence line and critical point for this 

system, so that the effects of approach to the critical point or transition line are not mistaken 

for liquid-state anomalies. Since the liquid-gas critical behaviour of this system is not of direct 

interest to us, we have not attempted to place the critical point to any great accuracy. 

Our results show neither density nor compressibility anomalies across the range we have 

studied (T*  0.95. . . 1.3, —4... - 3.5). In the interests of completeness, we show the 

liquid-gas coexistence line and several lines of constant density in figure 7.11. 



Chapter 8 

Discussion and Conclusions 

We start this chapter by discussing our results, and drawing conclusions concerning the nature 

of the liquid state anomalies we have observed for our system. We will then discuss various 

aspects of some of the methods we have used in the course of this work. Finally, we offer our 

thoughts on the behaviour of core-softened potentials in general. 

8.1 Discussion - Results 

We have studied the phase behaviour of two dimensional systems interacting via a particular 

instance of core-softened potential (equation 2.15). We have studied both liquid and solid state 

behaviour. Solid state results start from harmonic approximation calculations; these suggest 

that at low pressures, there is a transition from a low density triangular lattice to a high density 

square lattice phase. At very high pressures, the triangular lattice becomes stable once more, 

this time at a high density. Metastable with respect to the square lattice, we find evidence for 

an isostructural LDTS-HDTS transition with possible associated critical point. 

This picture has been confirmed using Monte Carlo simulations, with the coexistence line 

between LDTS and HDSS phases mapped using a combination of Lattice Switch Monte Carlo 

and Gibbs-Duhem integration. We note that, on approach to the LDTS-HDSS-liquid triple 

point, particles in the LDTS phase make large excursions from their lattice sites. 

We have also performed extensive simulations of the liquid phase for this system. These 

confirm the presence of liquid state anomalies in this system - that is, density maxima and corn- 
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pressibility extrema along lines of constant chemical potential. The positions of the compress-

ibility maxima in the phase diagram appear to be associated with freezing to the LDTS phase. 

Density probability distribution functions at the compressibility maxima have a double-peaked 

structure, showing phase coexistence. Recorded particle configurations and radial distribution 

data recorded on either side of the line of maxima indicate that the coexisting phases have LDTS 

structure (on the low temperature side) and liquid structure (on the high temperature side). 

Simulations by Wilding [3] have also revealed pronounced finite-size effects on the position of 

the anomalies (and therefore the position of the LDTS melting curve). 

We believe that the anomalies are due to structural competition between the liquid structure 

and clusters of lower density, lower entropy LDTS crystalline structure, rather than between two 

types of liquid structure, as suggested by Sadr-Lahijany et al [1]. The presence of these LDTS-

like clusters lowers the average density of the system, and increases the compressibility; their 

size and persistence increase upon cooling towards the freezing transition, giving the anomalous 

behaviour. These solid clusters may appear above the melting curve because of the nature of 

melting in two dimensions. Our results point to a quasi-continuous freezing transition; at the 

system sizes we have studied, the free energy barrier between phases is very small, allowing 

such clusters to forms far above melting. 

This interpretation is consistent with our simulation results for the equivalent three di-

mensional system, in which we find no anomalous liquid state behaviour; in three dimensions, 

freezing must be strongly first order, and we will see no precursor effects. 

In summary, then, our results for the Sadr-Lahijany system point to an LDTS-liquid melting 

transition that is defect moderated and only weakly first order. Compressibility anomalies in 

the system are due to the fluctuations associated with this transition, and density anomalies are 

due to fact that the LDTS phase is less dense than the liquid. With respect to the possibility of 

liquid-liquid phase separation for this system, if this melting transition were truly continuous, 

the concept of a liquid phase metastable with respect to the LDTS phase would become difficult 

to support. In this case, the possible metastable LDTS-HDTS transition and critical point 

would be equivalent to the metastable liquid-liquid transition proposed by Sadr-Lahijany et al 

[1], but too far removed from the observed anomalies to be realistically effecting the behaviour. 

With the melting transition as weakly first order, our results do not discount the possibility of 

a metastable liquid-liquid transition. However, it is difficult to see how it could produce such 
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strong anomalies over so wide a region of phase space. 

Continuous melting is an interesting behaviour which remains a matter of research and 

debate; as such, any system which may exhibit such behaviour is deserving of further study. 

However, unequivocal confirmation of hexatic phase behaviour requires very large system size 

simulations, calculating computationally expensive orientational distribution functions, and is 

outside the scope of this work. 

8.2 Discussion - Methods 

We have used a variety of methods over the course of this work; two seem particularly deserving 

of comment. The first is Lennard-Jones Devonshire cell theory, for a long time the main 

method for approximating liquid state behaviour. Our results call for a major reappraisal of 

this method. The second is Lattice Switch Monte Carlo, a very recently proposed method 

for simulating coexistence between lattice phases, and by extension, for simulating coexisting 

phases of different symmetries separated by large free energy barriers. We appraise how useful 

this novel method has been in this context. 

8.2.1 Lennard-Jones Devonshire Cell Theory 

The major success of Lennard-Jones Devonshire cell theory has been regarded as its apparently 

accurate prediction (to one part in a hundred) for the critical temperature of the 12-6 Lennard-

Jones fluid. We have shown that this critical point in the cell model actually terminates a line 

of coexistence between solid-like and liquid-like phase. This critical point is an artifact of the 

cell structure of the model, which imposes crystalline order on the liquid state, where no such 

order exists in reality. Further, we have found that the cell theory model shows a second line 

of first order transition, which we believe to be a better candidate for the liquid-gas transition. 

This line terminates in a critical point at a temperature very much lower than the true critical 

temperature, as one would expect from a mean-field theory. 

In our cell theory study of the Sadr-Lahijany system, we use two different cell theory imple-

mentations. One gives a system with a gas-liquid transition and critical point and a solid-liquid 

transition with artifact critical point; the second gives a system with two solid-liquid transitions 

with artifact critical points. Neither implementation gives a phase diagram showing more than 
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a passing qualitative resemblance to our simulation results, and neither exhibit any evidence of 

a liquid-liquid transition. 

Based upon our findings, we believe cell theory to be a poor approximation to both liquid 

and lattice states. 

8.2.2 Lattice Switch Monte Carlo 

Our use of the LSMC technique here has demonstrated both its generality and its limitations. 

We have successfully generalised the technique to two dimensions, where we have used it to 

study LDTS-HDSS coexistence in the NPT ensemble. The technique has worked reliably 

and efficiently at low temperature. At higher temperatures, problems emerged due to the 

increasing defect density of the LDTS phase on approach to melting. For LSMC to work, average 

particle positions must be identifiable with a true lattice structure; however, on approach to 

melting in two dimensions, the lattice can become extremely distorted due to propagation of 

dislocation defects. Even developments such as harmonic LSMC cannot help if this occurs, as 

the assumption of a true lattice is broken. It is possible that "phase switch" LSMC could be 

adapted to study this system. 

Similarly, the extension of the ideas in LSMC to "phase switch" Monte Carlo would not be 

useful for finding the LDTS-liquid coexistence curve, since a true lattice would still be assumed 

for the LDTS phase at melting. Phase switch Monte Carlo could well be used to establish the 

HDSS-liquid coexistence curve, however; our results suggest that this transition is strongly first 

order. 

None of this is a weakness with LSMC per Se, of course; LSMC was designed with three 

dimensional lattice systems in mind, which always retain long range translational order, and 

always melt through first order transitions. That the algorithm remained usable to as high a 

temperature as it did should be seen as a success. It would be interesting to see if the ideas 

of LSMC can be usefully extended to structures with order intermediate between lattices and 

fluids. 
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8.3 Discussion - Core-Softened Potentials 

Some work concerning core-softened potentials [1, 51] has studied two dimensional systems, 

apparently without regard for the possibility of continuous melting. Where these works have 

searched for evidence of second critical points, the lack of consideration of the possibility of 

another form of second-order transition in the system is problematic. If the possibility of 

continuous melting is taken into account, however, in light of our results, core-softened potentials 

in two dimensions become worthy of study as a possible test bed for theories on hexatic melting. 

There is still a good deal of research to be done on the phase behaviour of these potentials, 

with the goal of finding what features of these potentials are responsible for the presence, 

stability and position of possible liquid-liquid phase transitions and liquid state anomalies. 

We feel that such research should not concentrate solely upon the liquid state; the presence, 

stability and position of possible solid-solid isostructural transitions may well be linked to the 

possibility of liquid-liquid phase transitions [54, 55]. Core-softened potentials can also offer 

rich and interesting solid state phase behaviour [51, 57, 58, 59]; a good motivation for further 

research into this could be the discovery of very large unit cell structures in Cesium. 



Appendix A 

Statistical Mechanics 

This appendix contains brief summaries, without proofs, of three matters from the text: use of 

statistical mechanics in continuum systems, statistical mechanics in open ensembles, and the 

Clausius-Clapeyron equation for the slope of coexistence curves. 

Continuum Systems 

We consider a continuum system of N particles in d dimensions, in the canonical ensemble. 

This system has a 2Nd  dimensional phase space; N   dimensions describing the possible particle 

positions, and N   dimensions describing particle momenta. As such the partition function 

becomes: 

11 = 	fe"drd 	 (A.1) 

Here, we have separated the general phase space coordinate F into r, describing all parti-

cle positions, and p, describing all particle momenta. The prefactor is a necessary quantum 

mechanical contribution; the 11N! accounts for particle indistinguishability, whilst the term 

involving Planck's constant h accounts for the zero of entropy for the ideal gas. 

We can separate the energy into a sum of kinetic (momenta dependent) and potential (posi-

tion dependent) terms; this allows us to factorise the partition function into kinetic and potential 
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parts: 

Z = 11  f e'dp  I e Edr 	 (A.2) 

The first, kinetic part of this is easily evaluable; it is the partition function for the ideal gas, 

denoted Z, and given by: 

Zid 	
vN 

- N!AdN 
(A.3) 

where A is the thermal de Broglie wavelength, given by A = (h2 /27rmkT)'/ 2  in three dimensions. 

The remaining potential term of the partition function is known as the excess part, zex :  

zex = V_NJ edr 	 (A.4) 

In analytic and Monte Carlo studies, we often use just the configurational integral part of 

this: 

Zc0f1i9 = I e—OE(r) dr 	 (A.5) 

The full partition function is then given by: 

Z = 	 (A.6) 

As all thermodynamic properties are derived from the log of the partition function, they 

can all be expressed as sums of configurational and ideal (other) terms from equation A.6; 

it is common in analytic and Monte Carlo studies to disregard the trivial ideal terms, unless 

connection must be made to experiment. 

Open Ensembles 

With fixed NPT (the isothermal-isobaric ensemble), the probability distribution function be-

comes: 

PNPT(r,v) = 1 
	

(A.7) 
ZNPT 
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with P as the pressure. The partition function for this ensemble is given by: 

ZNPT = 	e_e_V 	 (A.8) 

The appropriate free energy is the Gibbs free energy; this is given by: 

C 	In ZNPT 	
(A.9) 

= E—TS+PV 

In the grand canonical ensemble (fixed iVT), the probability distribution function is given 

by: 

	

PVT (r, N) = 1 
	

(A. 10) 
ZVT 

with i as the chemical potential. The partition function for this ensemble is given by: 

ZLVT = 	 (A.11) 

The logarithm of the configurational integral gives 3PV: 

	

 —lnZ,vT 	= —I3PV 	 (A.12) 

The Clausius-Clapeyron Equation 

The slopes of coexistence curves in the temperature-pressure pinae are determined by the 

Clausius-Clapeyron equation. This remarkably elegant equation relates the slope of the co-

existence curve to the differences in entropy, A S, and volume, LW between each phase, thus: 

	

dP AS 
- 	 (A.13) 

dT AV 

Since entropies are usually unevaluable, this equation is often written in the form: 

dPzH 
- 	 (A.14) 

dTTLW 

where LH is the difference in enthalpies between the phases. 



Appendix B 

Data Production and Analysis 

This appendix expands upon the simulation methods used to collect the data presented in 

chapter 7, illustrating the steps taken in data production and analysis. 

Solid State Simulation 

LDTS-HDSS Coexistence (Lattice Switch Procedure) 

Lattice Switch Monte Carlo simulations need to be performed at points close to coexistence, 

such that there is a high probability of crossing back and forth between phases within a simu-

lation of reasonable length. At the very least, both phases must be local free energy minima at 

the simulation point. For our low temperature (T*  <0.2) LDTS-HDSS coexistence simulations, 

we used our harmonic approximation results (see chapter 4) as initial estimates for coexistence. 

At higher temperatures, the harmonic approximation results began to deviate significantly from 

our simulation results, and no longer supplied effective estimates for coexistence. Histogram 

extrapolation from low temperature results was tried, but this method would only work over 

impractically small temperature increments due to the relatively rapid change with temper-

ature of the equilibrium properties of the LDTS phase at coexistence. Instead, estimates for 

higher-temperature coexistence points were made by fitting the established coexistence line to a 

polynomial. In retrospect, use of Gibbs-Duhem integration combined with the LSMC approach 

(as described in reference [103]) should have been used. 

Once an estimate to a coexistence point is made, the LSMC method requires measurement of 
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Figure B.1: Data collected for LDTS-HDSS coexistence at T* = 0.05, P = 0.25, N = 256. 
Raw weighted simulation data (V*  against Monte Carlo move number r). The simulation can 

be seen to be regularly passing back and forth between two separate phases widely separated 

	

in volume. The simulation spends 	21% of its time in the low volume (HDSS) phase and 
79% of its time in the high volume (LDTS) phase. Histogram reweighting of this data gives 

coexistence (equal probability of observing each phase) at T* = 0.2507 + 0.00001, showing the 
narrow temperature range over which appreciable coexistence can be measured. 

Weighted histograms of overlap parameter collected from the simulation shown in figure B. la. 
The unweighted ("true") histograms from this run can be seen in the top graph of figure 7.3. 
Comparison of these shows that multicanonical sampling has allowed relatively even sampling 
of both gateway states (LH around zero) and the configurations contributing significantly to 
the configurational integral. 

(left) Unweighted ("true") volume histogram for the LDTS phase from the data presented in 
figure B.la. 
c) (right) Unweighted ("true") volume histogram for the HDSS phase from the data presented 
in figure B.la. 
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Figure B.2: Overlap parameter histograms collected for LDTS-HDSS coexistence at T* 
0.4,P* = 0.63,N = 256. 

Illustration of iterative collection of multicanonical weights. The earliest estimate of weights 
is shown with open circles, followed by squares, then diamonds, then triangles. Note that not 
all iterations from the process are shown. The left-hand graph shows histograms for the overlap 
parameter from the HDSS phase; symbols are shown every tenth histogram bin. The right-hand 
graph shows histograms for the overlap parameter from the LDTS phase; symbols are shown 
every fiftieth histogram bin. 

Combined estimated weights for T* = 0.4; the histograms are normalised to ensure the values 
at LH = 0 are equal. 

"overlap parameter" histograms, used as multicanonical weights to increase the sampling rate of 

low probability "gateway" configurations [96, 97, 98, 103], from which lattice switch moves have 

appreciable acceptance probabilities. For our NPT simulations, this overlap parameter is LH as 

defined in equation 6.25. At very low temperature (T*  <0.1), Boltzmann sampling of gateway 

(low zH) states was frequent enough that these histograms could be collected from a single 

LSMC-type run of 1E8 Monte Carlo move attempts. However, at higher temperatures, it was 

found to be more effective to collect the histograms for each phase separately, through a series 

of iterative single-phase multicanonical simulations in each phase. The gathered histograms 

were then normalised with respect to each other by setting the values at iH = 0 to be equal 

(which they must be by construction), then fed into an LSMC simulation as weights. The "true" 

coexistence temperature was then be estimated by performing histogram extrapolation to equal 

peak weight on the results from the LSMC simulation. 

At high temperatures (T* > 0.3), the zH histograms for the LDTS phase began to exhibit 
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very long high overlap parameter tails. The full extent of these tails do not contribute signifi-

cantly to the probability of observing the LDTS phase, but are observed with very much higher 

probability than the gateway states. Using "standard" multicanonical sampling, where the aim 

would be to observe ZH values with equal probability, our simulations would have spent most 

of their time sampling these tails, producing data which would be of little value to us. As such, 

we imposed high-zH cutoffs, such that above these cutoffs LH values were sampled according 

their unweighted Boltzmann probabilities. 

We illustrate the methods we have described in figures B.1 and B.2. 

LDTS-HDSS Coexistence (Gibbs-Duhem Integration Procedure). 

Once Lattice Switch Monte Carlo had become impractical (due to low sampling probabilities 

for gateway states and significant high-LH tails), we switched to the method of Gibbs-Duhem 

integration. This is a very simple and remarkably elegant procedure, as outlined in chapters 7 

and 6. Our Gibbs-Duhem simulation results are tabulated in table B.1. 

Liquid State Simulation (Two Dimensions) 

Liquid State Anomalies 

Simulations were carried out at points across the liquid state, as marked in figure 7.4 in chapter 

7. Histogram extrapolation was then used to extrapolate the density and compressibility be-

haviour from the collected data along lines of constant chemical potential. These temperature 

dependences are shown in figures B.3 and B.4. 

LDTS-Liquid Coexistence 

Number density histograms from simulations performed at the compressibility maxima noted 

above show the clear bimodal signature of two-phase coexistence (see chapter 7). Simulations 

performed at these maxima are capable of crossing back and forth between the coexisting phases 

unaided, but to minimise error and avoid any possibility of hysteresis multicanonical reweighting 

has been performed. It has been found that a single simulation run of 1E8 Monte Carlo move 

attempts has been enough to give weights allowing even sampling across both coexisting phases. 
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P 0.629 T 0.4 P 0.679 Tp 0.429 
<h> 

HDSS -4.82 1.174 HDSS -4.73 1.176 
LDTS -4.36 1.82 LDTS -5.42 1.80 

Lh 0.45 Av 0.65 Lh 0.69 Lv 0.63 

P 0.679 T 0.424 P 0.729 Tp 0.449 

HDSS -4.73 1.176 HDSS -4.64 1.177 
LDTS -4.20 1.80 LDTS -4.04 1.78 

Lh 0.53 Av 0.63 zh 0.60 Lv 0.61 

P 0.729 T 0.448 P 0.779 Tp 0.471 
<h> <V> <h> 

HDSS -4.64 1.177 HDSS -4.55 1.179 
LDTS -4.05 1.79 LDTS -3.88 1.76 

Ah 0.60 Lv 0.61 zh 0.67 L.v 0.58 

P 0.779 T 0.469 P 0.829 Tp 0.490 
<h> 

HDSS -4.56 1.178 HDSS -4.47 1.179 
LDTS -3.89 1.77 LDTS -3.75 1.75 

Lh 0.66 Lv 0.59 Lh 0.73 Lv 0.57 

P 0.829 T 0.489 P 0.879 Tp 0.509 
<h> 

HUS -4.41 1.130 HL)S -4.38 1.11 

LDTS -3.75 1.75 LDTS -3.61 1.73 

E Lh 0.72 Lv 0.57 Ah 0.79 Lv 0.54 

P 0.879 T 0.508 P 0.929 Tp 0.525 
<h> 

HDSS -4.39 1.181 HDSS -4.30 1.182 
LDTS -3.60 1.72 LDTS -3.47 1.71 

Lh 0.79 Lv 0.54 zh 0.83 Liv 0.53 

P 0.929 T 0.525 P 0.979 Tp 0.542 

HDSS -4.31 1.182 HDSS -4.22 1.183 
LDTS -3.48 1.71 LDTS Melting Observed 

Lh 0.83 Lv 0.53  I 	I 
Table B.1: Tabulated Gibbs-Duhem results. The left-hand column gives predictor-step re-
sults, the right hand column gives corrector-step results. Temperatures, pressures, volumes and 
enthalpies are all quoted in the appropriate reduced units. 



0.5 

0.4 

0.3 

0.2 

0.1 

8.55 

APPENDIX B. DATA PRODUCTION AND ANALYSIS 
	

147 

0.7 

0.675 

0.65 

A 
. 0.625 

V 

0.6 

0.575 

0.55 
0.55 

T 

Figure B.3: Temperature dependence of density upon temperature at several chemical po-
tentials, with V* = 100. All curves show density maxima. The curves were obtained using 
histogram extrapolation, as described in the text. 

T 

Figure B.4: Temperature dependence of compressibility upon temperature at several chemical 
potentials, with V* = 100. All curves show both compressibility maxima and minima apart 
from the curve for = —2.5, where the compressibility maximum is preempted by freezing to 
the HDSS phase. 
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Figure B.5: Particle number histograms from simulations performed near LDTS-liquid coex-
istence (both with V* = 100). At p7 = —2.75, the histogram is clearly bimodal, and the 
distributions for the two phases can be seen to be distinct. By p7 = —3.25, though the his-
togram remains bimodal, the density distributions for the two phases have considerable overlap, 
making estimation of coexistence problematic. 

Establishing the exact coexistence line from the number density histograms has proven difficult, 

as the density distributions for the two phases have considerable overlap (see figure B.5); the 

LDTS-liquid coexistence line shown in figure 7.4 from chapter 7 is estimated from the position 

of the locus of compressibility maxima, as this gives lower error. 
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