
Generic refinements for behavioral

specifications

Marius Petria

Doctor of Philosophy

School of Informatics

University of Edinburgh

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429726591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
This thesis investigates the properties of generic refinements of behavioral specifica-

tions.

At the base of this investigation stands the view from algebraic specification that

abstract data types can be modeled as algebras. A specification of a data type is formed

from a syntactic part, i.e. a signature detailing the interface of the data type, and a

semantic part, i.e. a class of algebras (called its models) that contains the valid imple-

mentations of that data type.

Typically, the class of algebras that constitutes the semantics of a specification is

defined as the class of algebras that satisfy some given set of axioms. The behavioral

aspect of a specification comes from relaxing the requirements imposed by axioms, i.e.

by allowing in the semantics of a specification not only the algebras that literally satisfy

the given axioms, but also those algebras that appear to behave according to those

axioms. Several frameworks have been developed to express the adequate notions of

what it means to be a behavioral model of a set of axioms, and our choice as the setting

for this thesis will be Bidoit and Hennicker’s Constructor-based Observational Logic,

abbreviated COL.

Using specifications that rely on the behavioral aspects defined by COL we study

the properties of generic refinements between specifications. Refinement is a relation

between specifications. The refinement of a target specification by a source specifi-

cation is given by a function that constructs models of the target specification from

the models of the source specification. These functions are called constructions and

the source and target specifications that they relate are called the context of the refine-

ment. The theory of refinements between algebraic specifications, with or without the

behavioral aspect, has been well studied in the literature. Our analysis starts from those

studies and adapts them to COL, which is a relatively new framework, and for which

refinement has been studied only briefly.

The main part of this thesis is formed by the analysis of generic refinements.

Generic refinements are represented by constructions that can be used in various con-

texts, not just in the context of their definition. These constructions provide the basis

for modular refinements, i.e. one can use a locally defined construction in a global con-

text in order to refine just a part of a source specification. The ability to use a refine-

ment outside its original context imposes additional requirements on the construction

that represents it. An implementer writing such a construction must not use details of

the source models that can be contradicted by potential global context requirements.

1

This means, roughly speaking, that he must use only the information available in the

source signature and also any a priori assumption that was made about the contexts of

use.

We look at the basic case of generic refinements that are reusable in every global

context, and then we treat a couple of variations, i.e. generic refinements for which

an a priori assumption it is made about the nature of their usage contexts. In each

of these cases we follow the same pattern of investigation. First we characterize the

constructions that ensure reusability by means of preservation of relations, and then, in

most cases, we show that such constructions must be definable in terms of their source

signature.

Throughout the thesis we use an informal analogy between generic (i.e. polymor-

phic) functions that appear in second order lambda calculus and the generic refine-

ments that we are studying. This connection will enable us to describe some properties

of generic refinements that correspond to the properties of polymorphic functions in-

ferred from their types and named “theorems for free” by Wadler.

The definability results, the connection between the assumptions made about the

usage contexts and the characterizing relations, and the “theorems for free” for behav-

ioral specifications constitute the main contributions of this thesis.

2

To Irina, for being continuously supportive.

3

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Marius Petria)

4

Acknowledgements

I want to thank my supervisor Don Sannella for his valuable guidance during all these

years. Not only for the technical expertise but also for the understanding he showed

with regard to my particular concerns. His constant support made it possible for this

thesis to reach its final form.

I also want to thank the examiners of this thesis Andrzej Tarlecki and John Longley

for giving me important feedback that helped improving the quality of the final version.

A special thanks to Philip Wadler whose paper about “theorems for free” inspired the

work from this thesis.

This work was funded for three years by a Wolfson Microelectronics Scholarship

and an ORSAS award.

Last but not the least I want to thank my family and friends for being there when

my feeling was that nothing worth reading will come out of my research. Their en-

couragement pushed me forward and allowed me to continue.

5

Table of Contents

1 Introduction 8
1.1 General remarks . 8

1.2 The goal of the thesis . 10

1.3 The structure of the thesis . 11

2 Preliminaries 13
2.1 Categories and institutions . 13

2.2 Algebraic preliminaries . 14

2.2.1 Relations . 16

2.2.2 Higher order types . 16

2.3 Constructor-based observational logic 18

2.3.1 Specifications . 28

2.3.2 Refinement of behavioral specifications 30

2.4 Other behavioral frameworks . 32

2.5 Externalized behavioral semantics 34

2.5.1 Appropriate semantics for basic specifications 35

2.5.2 Proving correctness of refinements 40

2.6 Summary . 44

3 Constructions in general contexts 46
3.1 Introduction . 47

3.2 Local constructions in global contexts 48

3.3 General correspondences . 53

3.4 Definability . 58

3.4.1 Definability via parametricity 58

3.4.2 Definability via stability . 60

3.5 Theorems for free . 64

6

3.6 Summary . 67

4 Constructions in restricted contexts 68
4.1 Introduction . 68

4.2 Vertical global constructions . 69

4.2.1 Vertical correspondences . 71

4.2.2 Definability . 75

4.2.3 Theorems for free . 79

4.3 Vertical global constructions on iso-closed classes 81

4.3.1 Theorems for free . 87

4.4 Comparing general and vertical globality 88

4.5 Quasi-vertical global contexts . 90

4.5.1 Theorems for free . 95

4.6 Summary . 97

5 Constructions for higher order types 100
5.1 Introduction . 100

5.2 Higher order sorts in COL . 101

5.2.1 Extensionality in COL . 104

5.3 Implementation of functions as higher order constants 107

5.3.1 Mixing type hierarchies . 109

5.4 Logical implementation of functions as higher order constants 113

5.4.1 Lost properties in the logical case 117

5.5 Representation independence . 122

5.6 Summary . 129

6 Conclusions 131
6.1 Summary . 131

6.2 Future work . 133

6.2.1 Constructions for indexed categories 134

6.2.2 Curry-Howard isomorphism for constructions 134

6.2.3 Towards a notion of beliefs 136

Bibliography 138

7

Chapter 1

Introduction

Contents
1.1 General remarks . 3

1.2 The goal of the thesis . 5

1.3 The structure of the thesis . 6

1.1 General remarks

Algebraic specification is a paradigm that encompasses powerful techniques for rep-

resenting systems as algebras and their constraints as axioms. The generality of this

framework makes it applicable in all fields where one needs to confirm the soundness

of an implemented system with respect to some logical requirements. An important

area of usability for algebraic specifications is software development. In this field one

could easily arrive at the conclusion that good practices developed only by empirical

means are not always enough to guarantee the proper evolution and development of

correct software, and hence the need for deductive reasoning based on a formal frame-

work arises.

Firstly, the practice of algebraic specifications teaches one how to represent infor-

mation. In the case of data that is typically done by using abstract data types. Abstract

data types are formed from a syntactic part representing the names of the operations

that are meaningful for that data type, and from a semantic part representing the class of

algebras that are considered as acceptable implementations of that data type. One way

to define the class of acceptable algebras in an abstract data type’s semantics is to use

the tools of universal algebra and logic, by specifying a set of axioms that needs to be

8

satisfied by those algebras. This track is particularly useful if we want a short presen-

tation of the class of acceptable implementations for a data type, instead of explicitly

enumerating the potential algebras. By giving a set of axioms that they should obey we

use just the language of a particular logic and the symbols present in the signature. For

example we could easily think of natural numbers as bytes of memory in a computer,

hence imagining an ad hoc implementation for the data type of natural numbers. But it

will be too much to actually define the configuration of each particular computer that

can represent numbers in the process of formally presenting the semantics of natural

numbers. So, instead of defining the semantics of a data type by explicitly describ-

ing the acceptable implementations it is simpler to give a more succinct definition by

means of axioms. An important consequence of this methodology is that the choice for

simplicity brings a great amount of generality, i.e. one has the freedom to change or to

add any details to an implementation as long as it does not violates the requirements

of the axioms.

A distinct case of representing information arises in the task of representing pro-

grams. This appears in the literature of algebraic specifications as the theory of refine-

ments. A program (or a construction, in the terminology we use later in this thesis) is

typically represented by a function between abstract data types, i.e. it takes algebras

from its input data type and creates algebras in its output data type. As in the case of

actual implementations of data types, definitions of actual programs can be extremely

complex, as they might include the entire definition of the language in which they are

written. One way in which classes of programs can be tuned to reflect our require-

ments is by enforcing them on their source and target models, i.e. by adding axioms

to the corresponding source and target data types. However, in this thesis we will look

at a supplementary method for coercing programs. We will look at programs that are

generic, i.e. that are reusable in contexts different than that of their definition. It is

important to understand that genericity of constructions is not expressed by axioms of

their source or their target specifications but by the ability to reuse them.

The second important practice of algebraic specifications is the use of formal de-

duction. One can infer “new” properties about an abstract data type by using the defin-

ing axioms under the rules of a chosen logical system. By proving a property formally

one can ensure that any implementation provided for that data type will have the en-

tailed property. With the combination of these two features, specification and deduc-

tion, algebraic specification provides a framework for validating software systems.

Several changes were made to the basic framework of algebraic specifications we

9

have described, in order to make it more fit for practical specification scenarios. One

thing under scrutiny has been the way in which axioms should describe the class of

acceptable algebras of a specification. It was found that the standard satisfaction rela-

tion, that requires the equality symbol from the axioms to be interpreted as the identity

in the carriers of the algebras, is over-restrictive. A more permissive alternative is that

the equality symbol from the axioms should be interpreted as observational equality

rather than as identity. In consequence not only algebras that satisfy the axioms in the

classical sense are deemed as acceptable but also those for which no observation which

contradicts the axioms can be made. These modifications were included in the design

of behavioral logics [GM00, BH06a] and guided the development of refinement theory

using behavioral semantics [ST87, BH98, EK99].

1.2 The goal of the thesis

In this thesis we look at the properties of generic programs. Generic programs corre-

spond to those constructions (functions between data types) that can be used not only

in the context of their definition, but can be reused also in contexts that introduce new

details. Technically, genericity can be characterized in terms of preservation of rela-

tions (the term stability is used to denote preservation of relations between algebras

in [Sch87, BST08, STar]). So, without being too formal we can say that reusable (i.e.

generic) constructions are those that preserve the relations between their arguments. In

addition to this result we develop another method for characterizing generic programs

inspired by the work on second order lambda calculus (also known as System F) done

in [Gir72, Rey74, GLT89, Wad89]. More explicitly, generic programs will be charac-

terized by definability results. To summarize the result we can say that in order for a

program to be reusable it must be written using only the syntax provided by its input

data type.

The insight that second order lambda calculus phenomena can be replicated in the

theory of algebraic specification is based essentially on the identification of stability

(introduced in [Sch87] for algebraic specification) with parametricity (introduced in

[Rey74] for System F). Both stability and parametricity were invented to capture the

phenomenon of abstraction barriers: stability in the framework of algebraic specifi-

cations; and parametricity in second order lambda calculus. We do not attempt to

formalize the relation between these two concepts but rather use the apparent simi-

larities to guide our exploration in the algebraic specifications world so as to mimic

10

older results obtained using parametricity in second order lambda calculus. Something

similar to the “theorems for free”, noticed by Wadler in [Wad89] for System F, will be

obtained using this path for generic programs in algebraic specifications.

The novelty of our research is given partly by the analysis of some older results

about stability in a newer framework for behavioral specifications, i.e. Bidoit and Hen-

nicker’s Constructor-based Observational Logic[BH06a]. The richness of this frame-

work allows us to examine details that have not been expressed in the literature, like the

correspondence between the class of potential usage contexts and conditions on the re-

lations characterizing generic programs. Additionally, we examine definability results

for generic programs, and this investigation is to our knowledge new in the algebraic

specification world. Based on definability we can prove interesting properties of data

types that arise from generic constructions. We will name these properties “theorems

for free” to emphasize the parallel with the results for second order lambda calculus.

The reason why some “theorems” for generically constructed models can be consid-

ered as coming “for free” is that they are not a consequence of the constraints imposed

by the source and target specification but they are implied by genericity.

1.3 The structure of the thesis

The thesis has six chapters and in the middle four chapters we can find original devel-

opments.

Chapter 2 is largely devoted to introducing the notions needed in the later chap-

ters. It recalls the definitions of basic algebraic specifications, of higher order type

hierarchies and, towards the end of the introductory part, the notions of behavioral

specifications in COL and refinement. In this chapter we have placed the first original

piece of work of the thesis, which is a discussion about fundamentals of behavioral

semantics and is not deeply connected with the core body of the thesis on generic con-

structions (Chapters 3 to 5). The main point of that section is to analyze the concept of

behavioral consistency and to explain why the customary approach to this issue lead to

some incomplete results in the literature.

Chapter 3 is dedicated to generic programs, or using the formal terminology intro-

duced in that chapter, to global COL-constructions. We analyze those constructions

that can be used in any arbitrary global context and we prove that they are characterized

by preservation of relations (see Theorem 3.9). Furthermore, we prove that they must

be definable (see Proposition 3.11) but we cannot obtain a complete characterization

11

via definability (see Example 3.15). At the end of the chapter we illustrate how gener-

icity of constructions can be used in order to derive useful properties about constructed

models (see Section 3.5) by obtaining “theorems for free” in the style of those proved

by Wadler in [Wad89] as a result of parametricity for polymorphic functions.

Chapter 4 explores some variations of the notion presented in the previous chapter.

While in Chapter 3 we deal with general global COL-constructions, i.e. constructions

that are reusable in any context, in Chapter 4 we look at constructions that are reusable

in a limited number of contexts, typically chosen to work well with the behavioral

constraints imposed by COL. Thus we examine two cases, the so-called vertical global

constructions and the quasi-vertical ones. For both of them we follow the same pattern

of investigation. First we characterize them by means of preservation of relations, then

we look at definability properties, and in the end we show how all these features can

enhance our knowledge about constructed models by deriving “theorems for free”.

Chapter 5 contains another variation of the notion of global construction. We con-

sider signatures that are enhanced with an explicit type structure. Our goal for that

chapter is to get closer to the capabilities of second order lambda calculus, in order to

make the correspondence between stability and parametricity more accurate (the orig-

inal “theorems for free” of Wadler were proved for higher order functions). Among

things we define the notion of logical COL-signature and in such signatures we prove

that a long standing problem, from both the lambda calculus world and the algebraic

world, can be solved satisfactorily. More precisely, in Section 5.5, we prove that ob-

servational equivalence between algebras can be soundly and completely characterized

by the existence of a logical relation.

Chapter 6 concludes with a summary and a comment on possible future directions

among which the view that constructions correspond to proofs in the style of the Curry-

Howard isomorphism [CF58, How80, Gri90] seems the most interesting.

12

Chapter 2

Preliminaries

Contents
2.1 Categories and institutions . 8

2.2 Algebraic preliminaries . 9

2.3 Constructor-based observational logic 13

2.4 Other behavioral frameworks 26

2.5 Externalized behavioral semantics 28

2.6 Summary . 39

In this chapter we introduce the basic concepts concerning behavioral specifica-

tions and refinements between them. In the beginning of the chapter we recall the

fundamentals of universal algebra and of simple type hierarchies represented alge-

braically. Then we describe a framework that incorporates the behavioral aspects of a

specification and we introduce refinements relative to this framework. In the end, Sec-

tion 2.5.1, we present an original discussion about the appropriate way to define the

behavioral semantics of a specification and the problems that appear in the literature in

connection to this issue.

2.1 Categories and institutions

We assume the reader is familiar with basic notions and standard notations from cate-

gory theory; e.g., see [Mac98] for an introduction to this subject. Here we recall very

briefly some of them. By way of notation, |C| denotes the class of objects of a cate-

gory C, C(A,B) the set of arrows with domain A and codomain B, and composition is

13

denoted by “;” and is written in diagrammatic order. The category of sets (as objects)

and functions (as arrows) is denoted by Set, and CAT is the category of all categories.

The opposite of a category C (obtained by reversing the arrows of C) is denoted Cop.

The theory of institutions [GB92] is a categorical abstract model theory which

formalizes the intuitive notion of logical system, including syntax, semantics, and the

satisfaction between them. An institution I = (SignI ,SenI ,ModI , |=I) consists of

1. a category SignI , whose objects are called signatures,

2. a functor SenI :SignI → Set, giving for each signature a set whose elements are

called sentences over that signature,

3. a functor ModI :(SignI)op→CAT giving for each signature Σ a category whose

objects are called Σ-models, and whose arrows are called Σ-(model) morphisms,

and

4. a relation |=I
Σ
⊆ |ModI (Σ)|×SenI (Σ) for each Σ∈ |SignI |, called Σ-satisfaction,

such that for each morphism ϕ:Σ→ Σ′ in SignI , the satisfaction condition

M′ |=I
Σ′ Sen

I (ϕ)(ρ) iff ModI (ϕ)(M′) |=I
Σ

ρ

holds for each M′ ∈ |ModI (Σ′)| and ρ ∈ SenI (Σ). We denote the reduct functor

ModI (ϕ) by �ϕ and the sentence translation SenI (ϕ) by ϕ(). When M = M′�ϕ we

say that M is a ϕ-reduct of M′, and that M′ is a ϕ-expansion of M. When there is no

danger of ambiguity, we may skip the superscripts from the notations of the entities of

the institution; for example SignI may be simply denoted Sign.

2.2 Algebraic preliminaries

We will briefly present the basic definitions of many sorted signatures and algebras

[EM85]. The concepts will be presented mirroring the constituting parts of an institu-

tion: signatures, models, sentences.

An algebraic signature Σ is a pair (S,OP) where S is a set of sorts and OP is a

set of operation symbols. For each operation symbol op there is an operation profile

s1, . . . ,sn→ s with s1, . . . ,sn,s ∈ S. We write op : s1, . . . ,sn→ s to denote an operation

with its profile and for simplicity we often write op : w→ s where w stands for the

list of argument sorts (also called arity) s1, . . . ,sn. If the list of arguments sorts is

14

empty we say that the operation symbol is a constant symbol. A signature morphism

σ : Σ→ Σ′ between two signatures Σ = (S,OP) and Σ′= (S′,OP′) is a pair (σsrts,σopns)

of functions σsrts : S→ S′ and σopns : OP→ OP′ such that for all op : w→ s ∈ OP we

have that σopns(op) : σsrts(w)→ σsrts(s) ∈ OP′, where σsrts(w) = σsrts(s1) . . .σ
srts(sn).

We say that a signature morphism is tight if it is surjective on sorts.

An algebra A = ((As)s∈S,(Aop)op∈OP) over a signature (S,OP) consists of an S-

sorted family of carriers sets (As)s∈S and a family of functions (Aop)op∈OP such that

if op : s1, . . . ,sn → s then Aop is a function from As1 × . . .×Asn to As. The class of

algebras corresponding to a signatureΣ is denoted by Alg(Σ).

The reduct of a Σ′-algebra A′ w.r.t. a signature morphism σ : Σ→ Σ′ is a Σ-algebra

A, also denoted by A′�σ, such that As = A′
σ(s) for all s ∈ S and Aop = A′

σ(op) for all

op ∈ OP.

The term algebra TΣ(X) denotes the free Σ-algebra over variables from X , i.e. its

elements are OP∪X-terms. We write TΣ for the algebra of ground terms TΣ(/0). An

interpretation Iα : TΣ(X)→ A associated with a valuation α : X→ A is defined as usual

as the canonical algebra morphism that freely extends the valuation α.

To simplify writing we sometimes denote lists of sorts like s1, . . . ,sn by w and

hence the profiles of the operations can be written as op : w→ s. We also use the

notation a : w when we want to refer to a tuple of elements a1, . . . ,an ∈ Aw = As1 ×
. . .×Asn . Moreover, sometimes we will omit to explicitly name the sort of the carriers,

understanding implicitly that we work in a many-sorted framework even if the notation

does not show it (for example we will write a ∈ A to denote an element in a carrier set

of the algebra A and so on). The value of a term t with variables from X under a specific

valuation α : X → A will be written At [α] instead of Iα(t).

In order to fit the definition of an institution we should also define the sentences

that are used to express properties about algebras. These sentences are the usual first

order formulas built from equational atoms (written as t0 = t1) by iterative application

of logical connectives and quantifiers. The satisfaction of sentences by models is the

usual satisfaction relation defined inductively on the structure of the sentences. The

obtained institution is many sorted first order logic with equality, abbreviated FOL.

We will treat FOL as the standard logic for the rest of the thesis, and we will refer to

its models as standard algebras when we want to emphasize the difference between

them and other kind of algebras, for example behavioral algebras as introduced below.

We will also use the term literal satisfaction to refer to FOL satisfaction when we need

to distinguish it from behavioral satisfaction.

15

2.2.1 Relations

We will now give the definition of a closed algebraic relation. The closedness principle

will become important in the next chapters as it intuitively allows the representation

of “equivalence relation between different algebras”. This concept is taken from the

work Sannella and Tarlecki did on behavioral refinements in [STar].

Definition 2.1 (Closed algebraic relation). Let Σ = (S,OP) be an algebraic signature

and let A and B be two Σ-algebras. An algebraic relation, written ρ: A↔ B, is an

S-sorted binary relation ρ= (ρs)s∈S that commutes with the operations from OP, i.e.

for all op : s1, . . . ,sn→ s ∈ OP, for all ai ∈ Asi and bi ∈ Bsi such that ai ρsi bi for all

i = 1, . . . ,n we have that Aop(a1, . . . ,an) ρs Bop(b1, . . . ,bn).

An algebraic relation ρ: A↔ B is closed if for all a0,a1 ∈ A and b0,b1 ∈ B such

that a0 ρ b0, a0 ρ b1 and a1 ρ b0 we have that a1 ρ b1.

a1

@@
@@

@@
@@

b1

a0

~~~~~~~~
b0

Before going any further we will spell out some useful definitions for manipulating

relations. We say that ρ0: A↔ B is finer than ρ1: A↔ B if ρ0⊆ρ1; we can also say

that ρ1 is coarser than ρ0. We say that a relation ρ: A↔ B is bi-surjective if for all

a ∈ A there exists b ∈ B such that a ρ b and vice versa. We say that a relation ρ: A↔ B

is bi-injective if for all a ∈ A and b0,b1 ∈ B such that a ρ b0 and a ρ b1 we have that

b0 = b1, and vice versa. We denote by dom(rel) the domain of a relation ρ between A

and B. For an algebraic relation ρ: A↔ B we denote by Adom(ρ), and resp. Bdom(ρ), the

subalgebras obtained after restricting A, and resp. B, to the domain of ρ.

2.2.2 Higher order types

We will now present the details of considering an explicit type structure in algebraic

signatures in a style similar to the one used by Meinke in [Mei92] (earlier definitions

in the same style were given in [MTW87]) . These definitions are first used in Chapter

5, because results until then do not need higher order types represented in algebraic

signatures.

Definition 2.2. Let B be a non-empty set, the members of which will be termed basic

types, the set B being termed a type basis. The simple type hierarchy Types(B) gener-

16



ated by B is defined as Types(B)=
⋃

n Typesn(B) where Typesn(B) is defined inductively

as:

• Types0(B) = B

• Typesn+1(B) = Typesn(B)∪{(s0⇒s1) | s0,s1 ∈ Typesn(B)}

Each element (s0⇒s1) ∈ Types(B) is termed a function type or a higher order type.

We use the typical convention of right-associativity for ⇒, i.e. s0⇒s1⇒s2 denotes

s0⇒(s1⇒s2).

A type structure S over a type basis B is a subset S ⊆ Types(B) which is closed

under inner types, i.e. (s0⇒s1) ∈ S implies s0,s1 ∈ S.

Definition 2.3 (Simply typed signature). A signature Σ=(S,OP) is a simply typed sig-

nature if S is a type structure over some type basis B and for each function type (s0⇒s1)

there exists in OP a binary application operation symbol: apps0,s1
: s0⇒s1,s0→ s1. We

write APPS for the set of all application operation symbols corresponding to the types

in S.

Definition 2.4 (Combinators). Let S be a type structure. For any s0,s1,s2 ∈ S such that

(s0⇒s1⇒s2)⇒(s0⇒s1)⇒s0⇒s2 ∈ S we denote by Ss0,s1,s2 a constant operation on the

sort (s0⇒s1⇒s2)⇒(s0⇒s1)⇒s0⇒s2. For any s0,s1 ∈ S such that s0⇒s1⇒s0 ∈ S we

denote by Ks0,s1 a constant operation on the sort s0⇒s1⇒s0. We denote by COMBS

the set of combinators on the sorts from S, i.e.

COMBS = {Ss0,s1,s2 | s0,s1,s2 ∈ S}∪{Ks0,s1 | s0,s1 ∈ S}

Please note that for a combinator to appear in the set COMBS it is necessary that

the corresponding type is present in S.

Definition 2.5 (Combinatorial signatures). A combinatorial signature is a simply typed

signature Σ = (S,OP) that has all the corresponding combinators, i.e. COMBS ⊆ OP.

We will frequently use the lambda notation for terms written in a combinato-

rial signature. It is well known [CF58] that the availability of S and K in an alge-

braic signature is sufficient to give meaning to expressions that use bound variables.

Hence we will use lambda terms like λx:s.λ f :s⇒s. f (x) to denote an S ,K -term of sort

s⇒(s⇒s)⇒s under the classical encoding. We will not go into the details of formally

introducing lambda terms and their encodings into combinatorial terms and we will

defer the reader interested in such introduction to Barendregt’s introduction to lambda

calculus [Bar81].

17



Definition 2.6 (Simply typed signature morphisms). Let Σ and Σ′ be two simply typed

signatures. A simply typed signature morphism σ between Σ and Σ′ is a standard

signature morphism that respects the type structure, i.e. σ(s0⇒s1) = σ(s0)⇒σ(s1)

and maps application symbols to application symbols. If in addition Σ and Σ′ are

combinatorial, a simply typed signature morphism is combinatorial if it also maps

combinators to combinators.

Definition 2.7 (Extensionality axioms). Let Σ be a simply typed signature. We denote

by ExtAxΣ the set of extensionality axioms ExtAxs0,s1 for all sorts s0⇒s1 ∈ S, where

ExtAxs0,s1 is defined as ∀ f ,g:s0⇒s1.((∀x:s0.apps0,s1
( f ,x) = apps0,s1

(g,x))−→ f = g)

Definition 2.8 (Combinatorial axioms). Let Σ be a combinatorial signature. We denote

by CombAxΣ the set of combinatorial axioms CombAxS
s0,s1,s2

and CombAxK
s0,s1 for all

sorts s0,s1,s2 ∈ S, where

CombAxK
s0,s1

is defined as ∀x : s0,y : s1.Ks0,s1(x)(y) = x

and

CombAxS
s0,s1,s2

is defined as ∀ f : s0⇒s1⇒s2,g : s0⇒s1,x : s0.Ss0,s1,s2( f )(g)(x)= ( f x)(gx)

We can now define the notion of logical relation which incorporates the extension-

ality requirement for relations.

Definition 2.9 (Logical relation). Let Σ = (S,OP) be a simply typed signature. An

algebraic relation ρ: A↔ B is logical if for all s0⇒s1 ∈ S, f ∈ As0⇒s1 and g ∈ Bs0⇒s1

that are extensionally equal w.r.t ρ, i.e. f (a) ρs1 g(b) for all a ρs0 b, we have that

f ρs0⇒s1 g.

2.3 Constructor-based observational logic

Constructor-based observational logic was introduced in [BH06a] by Bidoit and Hen-

nicker, with the purpose of representing in a simple manner the concepts of reachability

and of observability at the signature level. Reachability and observability are essen-

tially concepts expressible in second order logic, but by including them in the definition

of signatures one allows rich specifications of data types using only first order formu-

las. The reachability constraint is enforced by means of constructors which intuitively

identify those elements in the carriers of algebras which are important to the user. The

18



observability constraint is based on observers which induce an observational equality

between elements representing the extent to which a user of the algebra can distinguish

between elements.

Definition 2.10 (COL-signature). A constructor is an operation symbol cons : s1, . . . ,sn→
s with n≥ 0. The result sort s of cons is called a constrained sort (or constructed sort).

An observer is a pair (obs, i) where obs : s1, . . . ,si, . . . ,sn→ s is an operation symbol

with 1 ≤ i ≤ n. The distinguished argument sort si of obs is called a state sort (or

hidden sort).

A COL-signature ΣCOL consists of a signature Σ = (S,OP), a set OPCons ⊆ OP of

constructors and a set OPObs of observers (obs, i) with obs ∈ OP.

The set SCons ⊆ S of constrained sorts (w.r.t. OPCons) consists of all sorts s such

that there exists at least one constructor in OPCons with range s. The set SLoose ⊆ S of

loose sorts consists of all sorts which are not constrained, i.e. SLoose = S\SCons.

The set SState⊆ S of state sorts (or hidden sorts), w.r.t. OPObs, consists of all sorts si

such that there exists at least one observer (obs, i) ∈OPObs, obs : s1, . . . ,si, . . . ,sn→ s.

The set SObs ⊆ S of observable sorts (or visible sorts) consists of all sorts which are

not state sorts, i.e. SObs = S\SState.

An observer (obs, i), where obs : s1, . . . ,si, . . . ,sn→ s, is called a direct observer if

s ∈ SObs, otherwise is called an indirect observer.

In the following, whenever we have a COL-signature ΣCOL we use Σ to refer to

the underlying algebraic signature, i.e. ΣCOL = (Σ,OPCons,OPObs), and similarly for

Σ′COL.

Remark 2.11. In [BH06a] Bidoit and Hennicker make the assumption that the nature

of sorts is inferable directly from the choice of constructors and observers as in the

above definitions. In general we will use the same approach but there are some edge

cases when we will need a slightly different setting in which we are allowed to mark

explicitly sorts as being constructed or hidden. Basically we want the ability to mark

a sort as being constructed even if we have no constructor for that sort, or to mark a

sort as being hidden even if we have no observer for it. In the first case our intention

is to specify an empty set of constructed elements (because there is no constructor to

construct them); while in the second case we would like to specify an observational

equality under which all elements appear to be equal (because there is no observer to

distinguish between them).

19



Therefore, we will extend the collection of COL signatures with signatures written

as (Σ,OPCons,OPObs,SState,SCons), where the set of constructed and hidden sorts, SCons

and SState, are given explicitly. However, we require that this extension is conservative,

i.e. that each sort for which there exists a constructor or an observer is included in

the corresponding set. In other words we do not change the nature of constructed or

hidden sorts that is inferred from the presence of constructors or observers, but we can

specify constraints for those sorts that are not already constrained by operations. For

example the following signature can be written in the extended setting

(S = {s0,s1},OP = /0,OPCons = /0,OPObs = /0,SState = {s0},SCons = {s1})

in order to express that s0 is a hidden sort even if it has no observer on it and that s1 is

a constrained sort even if it has no constructor. The intended semantics for these limit

cases is that the inhabitants of sort s0 are not distinguishable one from another and

respectively that there is no inhabitant of sort s1.

By abusing the notation we will call the extended framework also COL for two

reasons. The first reason is that we believe that these limit cases rightfully belong to

a framework that wishes to capture observability and reachability constraints com-

pletely. The second reason for abusing the original name is that the introduction of

these kind of signatures are not fundamental changes of the original setting presented

in [BH06a]. The desired effect, i.e. empty sorts and totally indistinguishable elements,

are features that can easily be specified by axioms in the original setting. However we

will appeal to these extensions just when they are absolutely necessary (for example

in Proposition 3.8) and we will do the rest of the presentation in terms of the original

setting.

In order to define the set of important elements in an algebra w.r.t. a COL-signature

we define the notion of constructor term, which are terms built with the aid of distin-

guished constructors over variables of loose sort.

Definition 2.12 (Constructor term). Let ΣCOL be a COL-signature, and let X =(Xs)s∈SLoose

be a family of countably infinite sets Xs of variables of loose sort s. For all s ∈ SCons ,

the set T (ΣCOL)s of constructor terms with “constrained result sort” s is inductively

defined as follows:

• Each constant cons :→ s ∈ OPCons belongs to T (ΣCOL)s.

• For each constructor cons : s1, . . . ,sn→ s∈OPCons with n≥ 1 and terms t1, . . . , tn

20



such that ti is a variable xi : si if si ∈ SLoose and ti ∈ T (ΣCOL)si if si ∈ SCons ,

cons(t1, . . . , tn) ∈ T (ΣCOL)s .

The set of all constructor terms is denoted by T (ΣCOL).

Please notice that we cannot guarantee that for every constrained sort there is at

least one constructor term of that result sort.

The set of elements generated by interpreting the corresponding loose variables

in all the constructor terms represents the COL-generated part of an algebra, i.e. the

important elements w.r.t. the distinguished constructors.

Definition 2.13 (ΣCOL-generated part). Let ΣCOL be a COL-signature. For any Σ-

algebra A∈Alg(Σ), the ΣCOL-generated part of A is an S-sorted family of sets GenΣCOL(A)=

(GenΣCOL(A)s)s∈S defined as follows.

• Case s ∈ SLoose: GenΣCOL(A)s = As

• Case s ∈ SCons: GenΣCOL(A)s = {a ∈ As | there exists a term t ∈ T (ΣCOL)s

and a valuation α : X → A such that At [α] = a}

The ΣCOL-generated algebra of A denoted by 〈GenΣCOL(A)〉 is the minimal subalgebra

of A that contains GenΣCOL(A).

Let B be a subset of A. We write GenB
ΣCOL

(A) for the minimal set generated with the

rules presented above and in addition that contains all elements from B. Accordingly,

〈GenB
ΣCOL

(A)〉 is the minimal subalgebra of A that contains GenB
ΣCOL

(A).

Please notice that for constrained sorts for which there is no constructor (see Re-

mark 2.11) the generated part on those sorts will be empty.

Dually to constructor terms one can define the possible observations as terms of

visible result sort formed only using the distinguished observers. Contexts have a slot

for the observed element and potentially a finite number of variables that are place-

holders for elements in the generated part.

Definition 2.14 (Observable context). Let ΣCOL be an observational signature, let

X = (Xs)s∈S be a family of countably infinite sets Xs of variables of sort s and let

Z = ({zs})s∈SState be a disjoint family of singleton sets (one for each state sort). For

all s ∈ SState and v ∈ SObs, the set C (ΣCOL)s→v of observable ΣCOL-contexts with

“application sort” s and “observable result sort” v is defined as follows:

21



1. For each direct observer (obs, i) with obs : s1, . . . ,si, . . . ,sn → v and pairwise

different variables x1 : s1, . . . ,xn : sn from X, obs(x1, . . . ,xi−1,zsi,xi+1, . . . ,xn) ∈
C (ΣCOL)si→v.

2. For each observable context ctx ∈ C (ΣCOL)s→s′ , for each indirect observer

(obs, i) with obs : s1, . . . ,si, . . . ,sn→ s, and pairwise different variables x1 : s1, . . . ,xn :

sn from X not occurring in ctx, ctx[obs(x1, . . . ,xi−1,zsi,xi+1, . . . ,xn)/zs]∈C (ΣCOL)si→v

where ctx[obs(x1, . . . ,xi−1,zsi,xi+1, . . . ,xn)/zs] denotes the term obtained from

ctx by substituting the term obs(x1, . . . ,xi−1,zsi,xi+1, . . . ,xn) for zs.

The observational equality is a reflexive relation defined on the whole carrier of an

algebra which relates the elements that cannot be distinguished by applying observable

contexts instantiated with all possible generated elements.

Definition 2.15 (Observational ΣCOL-equality). Let ΣCOL be a COL-signature. For

any Σ-algebra A∈ Alg(Σ), the observational ΣCOL-equality on A is an S-sorted binary

relation ≈ΣCOL,A= (≈ΣCOL,As)s∈S defined as follows. For all s ∈ S, two elements a,b ∈
As are observationally equal w.r.t. ΣCOL, i.e. , a≈ΣCOL,As b (or, for short, a≈ΣCOL,A b),

if and only if

Case s ∈ SObs: a = b

Case s ∈ SState: for all observable sorts v ∈ SObs , for all observable contexts ctx ∈
C (ΣCOL)s→v, and for all valuations α : X→GenΣCOL(A) we have that Actx[α](a)=

Actx[α](b)

The COL satisfaction relation (or behavioral satisfaction) between Σ-algebras and

first-order Σ-sentences is denoted by |=ΣCOL and is defined inductively on the structure

of sentences by taking equality to denote observational equality.

Definition 2.16 (COL-satisfaction). Let ΣCOL be a COL-signature and A be a Σ-

algebra.

atomic formulas A |=ΣCOL l = r if and only if Al ≈ΣCOL,A Ar

universal formulas A |=ΣCOL ∀X .e′ with e′ ∈ Sen(Σ∪X) if and only if for all A′ ∈
Alg(Σ∪X) such that A′x ∈GenΣCOL(A) for all x ∈ X we have that A′ |=Σ′COL

e′. In

particular, A |=ΣCOL ∀X .l = r if and only if for all valuations α : X→GenΣCOL(A)

we have that Al[α]≈ΣCOL,A Ar[α]

22



existential formulas A |=ΣCOL ∃X .e′ with e′ ∈ Sen(Σ∪X) if and only if there exists

A′ ∈ Alg(Σ∪X) such that A′x ∈ GenΣCOL(A) for all x ∈ X and A′ |=Σ′COL
e′. In

particular, A |=ΣCOL ∃X .l = r if and only if there exists a valuation α : X →
GenΣCOL(A) such that Al[α]≈ΣCOL,A Ar[α]

boolean connectors the definitions for the usual boolean connectors ∨,∧,¬ are done

recursively in a classical way.

We will denote by Alg(ΣCOL,Ax) the class of Σ-algebras that COL-satisfy the set of

formulas Ax.

Now, we will define what are the acceptable algebras for a COL signature. These

will be those algebras that respect the reachability constraints and observability con-

straints imposed by the COL signature.

Definition 2.17 (COL-algebra). Let ΣCOL be a COL-signature. A ΣCOL- algebra (also

called COL-algebra) is a Σ-algebra A which satisfies the following constraints induced

by ΣCOL.

• reachability constraint: for any a ∈ 〈GenΣCOL(A)〉 there exists b ∈ GenΣCOL(A)

such that a≈ΣCOL,A b.

• observability constraint: ≈ΣCOL,A is a Σ-congruence on 〈GenΣCOL(A)〉.

The class of all ΣCOL-algebras is denoted by AlgCOL(ΣCOL) and that of COL-algebras

that COL-satisfy a set of axioms Ax is denoted by AlgCOL(ΣCOL,Ax).

A COL-algebra which is equal to its generated subalgebra is called reachable. A

COL-algebra for which the observational equality is equal to identity is called fully-

abstract.

Example 2.18 (Failures of reachability and observability constraints). From the defini-

tion of COL-algebras we can see that there are two ways in which a standard algebra

can fail to comply with the requirements of a COL-signature. Both kinds of failures

can be understand better if we concentrate our attention on operations that are neither

constructors nor observers, and for the sake of brevity let us name them plain opera-

tions. It is easy to imagine examples in which plain operations would cause the failure

of reachability or observability requirements. Consider the following COL signature:

ΣCOL =(S= {s,v},OP= {a : s,obs : s→ v,op : s→ s},OPCons = {a,obs},OPObs = {obs})

23



and let A be a Σ-algebra such that As = Av = B, Aa = true, Aobs = idB and Aop =

¬B, where B is the set of booleans {true, false}, idB is the identity function and ¬B
is the negation function. It is clear that SState = {s}, SObs = {v}, SCons = S and

SLoose = /0 and therefore the observational equality ≈ΣCOL,A coincides with identity

and GenΣCOL(A)s = true. It is now obvious that Aop : As → As does not respect the

reachability constraint as Aop(true) = false is not behaviorally equal to a generated

element (which can only be true). For a counterexample that deals with observability

constraints consider the following signature

ΣCOL = (S = {s,v},OP = {obs : s→ v,op : s→ v},OPCons = /0,OPObs = {obs})

and let A be a Σ-algebra such that As = Av = B, Aobs = λx.true, Aop = idB. Now we

have SState = {s}, SObs = {v}, SCons = /0 and SLoose = S and we can easily see that

≈ΣCOL,As= (B×B), however Aop does not preserve the observational equality.

The notion of morphism between two COL-algebras is different from the notion of

homomorphism between standard algebras. The main features of COL-homomorphisms

are that they are relations instead of functions and that they are required to relate at least

the elements from the generated algebras and to be compatible with the observational

equalities. Basically, a COL-homomorphism is a standard homomorphism between

quotient algebras obtained after factoring through observational equality.

Definition 2.19 (COL-algebra morphism). Let ΣCOL be a COL-signature and let A,B

be two ΣCOL-algebras. A COL-algebra morphism h: A→ B is an S-sorted family

(hs)s∈S of relations hs⊆ 〈GenΣCOL(A)〉s×〈GenΣCOL(B)〉s with the following properties

for all s ∈ S:

• for all a ∈ 〈GenΣCOL(A)〉s , there exists b ∈ 〈GenΣCOL(B)〉s such that a hs b

• for all a ∈ 〈GenΣCOL(A)〉s,b,b′ ∈ 〈GenΣCOL(B)〉s , if a hs b, then (a hs b′ if and

only if b≈ΣCOL,B b′)

• for all a,a′ ∈ 〈GenΣCOL(A)〉s,b ∈ 〈GenΣCOL(B)〉s, if a hs b and a≈ΣCOL,A a′, then

a′ hs b

• for all op : s1, . . . ,sn→ s∈OP, for all ai ∈ 〈GenΣCOL(A)〉si and bi ∈ 〈GenΣCOL(B)〉si ,

if ai hsi bi for i = 1, . . . ,n then Aop(a1, . . . ,an) hs Bop(b1, . . . ,bn).

For a given COL-signature ΣCOL, the ΣCOL-algebras together with the ΣCOL-

morphisms form a category. The identity morphism idA on a ΣCOL-algebra A is given

24



by the observational equality ≈ΣCOL,A. We denote by ≡ΣCOL the isomorphism rela-

tion between ΣCOL-algebras, i.e. we write A ≡ΣCOL B whenever there exists a COL-

isomorphism between A and B. In order to get a better idea about the characteristics of

COL-isomorphisms one can refer to [BH06a]. Please notice that a COL-isomorphism

is bi-surjective on loose sorts and bi-injective on visible sorts; this observation will be

useful in the chapters that follow where various kinds of relations (named correspon-

dences) are presented in order to capture the notion of COL-isomorphism.

Definition 2.20 (Black box). Let ΣCOL be a COL-signature and A be a ΣCOL-algebra.

The black box of A is a COL-algebra equal to the quotient algebra 〈GenΣCOL(A)〉/≈ΣCOL,A,

and it is written also as BBΣCOL(A).

The main properties of the black box algebra are summarized below, and their proof

can be taken from [BH06a].

Proposition 2.21 (Black box properties). Let ΣCOL be a COL-signature and A be a

ΣCOL-algebra. Then BBΣCOL(A) is a reachable and fully-abstract algebra which is

COL-isomorphic to A. Moreover, BBΣCOL(A) satisfies literally all the sentences that

are satisfied behaviorally by A, i.e. BBΣCOL(A) |= e if and only if A |=ΣCOL e.

So, behavioral satisfaction can be reduced to literal satisfaction for the black box

algebras. Hence, for the case of two isomorphic COL algebras, which have basically

the same black box algebra, the sets of behaviorally satisfied sentences are the same.

Corollary 2.22 (COL-isomorphic algebras satisfy the same sentences). Let ΣCOL be

a COL-signature and A,B be two ΣCOL-algebras such that A ≡ΣCOL B. Then for all

sentences e A |=ΣCOL e if and only if B |=ΣCOL e.

In order to present COL as an institution we need to define model reducts along

signature morphisms. As has been observed many times in the literature (for example

in [MG94, BH06b] ), reducts along standard signature morphisms of COL-algebras

are not always well defined as COL-algebras, i.e. they do not necessarily preserve

the behavioral satisfaction relation. The solution to this problem is to use only signa-

ture morphisms that are compatible with the reachability and observability constraints

imposed by the signatures.

Definition 2.23 (Horizontal signature morphism). Let ΣCOL and Σ′COL be two COL
signatures. A COL-signature morphism σCOL : ΣCOL→ Σ′COL is a standard signature

morphism σ : Σ→ Σ′ such that:

25



• if op ∈ OPCons then σ(op) ∈ OP′Cons

• if op′ : w′ → s′ ∈ OP′Cons with s′ = σ(s) then there exists op : w→ s ∈ OPCons

such that σ(op) = op′

• if (op, i) ∈ OPObs then (σ(op), i) ∈ OP′Obs

• if (op′, i) : w′ → s′ ∈ OP′Obs with s′i = σ(si) then there exists (op, i) : w→ s ∈
OPObs such that σ(op) = op′ (si is found in w at position i).

It was proved in [BH06a] that the satisfaction condition holds w.r.t. behavioral

satisfaction for horizontal signature morphisms. Hence we can present COL as an

institution with the basic constituents being COL-signatures and horizontal signature

morphisms (called COL-signature morphisms), COL-algebras and first order formu-

las.

We will now turn our attention to a class of signature morphisms that are not so well

behaved, but still rich in properties: the vertical signature morphisms. Vertical signa-

ture morphisms can add new constructors and observers and their reducts are useful

for information hiding, i.e. translating models that are richer and can be observed in

more detail into models that are more restrictive and more abstract. They were dis-

cussed in connection with refinement in papers like [MG94] by Malcolm and Goguen

and reinterpreted in the setting of COL by Bidoit and Hennicker in [BH06b].

Definition 2.24 (Vertical signature morphism). Let ΣCOL and Σ′COL be two COL-

signatures. A vertical signature morphism σ between ΣCOL and Σ′COL is a signature

morphism σ : Σ→ Σ′ such that σ(SObs)⊆ S′Obs and σ(SLoose)⊆ S′Loose.

We will now prove some small results concerning the properties of vertical signa-

ture morphisms. Some of them are known already for COL and some might be known

for frameworks akin to COL.

Proposition 2.25 (Smaller generated algebras for vertical reducts). Let ΣCOL and

Σ′COL be two COL-signatures and σ be a signature morphism between them such that

σ(SLoose)⊆ S′Loose. Consider a Σ′-algebra A′ and let A = A′�σ. Then 〈GenΣCOL(A)〉 ⊆
〈GenΣ′COL

(A′)〉�σ.

Proof. If s∈ SLoose then σ(s)∈ S′Loose and GenΣCOL(A)s =As =A′
σ(s)=GenΣ′COL

(A′)σ(s)=

(GenΣ′COL
(A′)�σ)s.

26



If s ∈ SCons let X = (Xs)s∈SLoose be an infinite set of variables. Then for any term

t ∈ TΣ(X)s we have a corresponding Σ′-term σ(t). This ensures that 〈GenΣCOL(A)〉 ⊆
〈GenΣCOL(A

′)〉�σ.

Proposition 2.26 (Coarser observational equality for vertical reducts). Let ΣCOL and

Σ′COL be two COL-signatures and σ be a vertical signature morphism between them.

Consider a Σ′COL-algebra A′ and let A be a Σ-algebra such that A = A′�σ. Then

≈Σ′COL,A
′�σ ⊆≈ΣCOL,A.

Proof. Let ≈ = ≈ΣCOL,A and ≈′ = ≈Σ′COL,A
′�σ. We want to show that ≈′ ⊆ ≈. For

this consider s ∈ SState such that σ(s) ∈ S′State, a,b ∈ A′
σ(s) = As such that a ≈′s b and

any context ctx ∈ C (ΣCOL)s→v. We will show that for every valuation α we have that

Actx[α](a) = Actx[α](b). For such a context ctx ∈ C (ΣCOL)s→v consider its translation

σ(ctx) via the signature morphism σ. Because a ≈′ b we have that A′
σ(ctx)[α](a) =

A′
σ(ctx)[α](b). However, from the definition of model reducts we can easily see that

Actx[α](x) = A′
σ(ctx)[α](x) for all appropriate values x and valuations α. Finally, we can

conclude that a≈ b as they yield equal results under all observations.

Proposition 2.27 (One way translation of COL-satisfaction). Let ΣCOL and Σ′COL be

two COL-signatures and σ be a vertical signature morphism between them. Then

for all Σ′COL-algebras A′ and all sentences e = ∀X .l = r we have that A′ |=ΣCOL σ(e)

implies A′�σ |=ΣCOL e.

Proof. This is an immediate consequence of Proposition 2.25 and Proposition 2.26 as

the set over which quantification is evaluated in smaller in ΣCOL and the observational

equality is coarser.

The most important property of vertical signature morphisms w.r.t. their usage for

refinements is the fact that they preserve COL-isomorphisms. See the proof of the

following proposition in [BH05].

Proposition 2.28 (Preservation of COL-isomorphisms). Let ΣCOL and Σ′COL be two

COL-signatures and σ be a vertical signature morphism between them. For any two

Σ′COL-algebras A′,B′ such that A′ ≡Σ′COL
B′ if A′�σ is a ΣCOL-algebra then B′�σ is a

ΣCOL-algebra and A′�σ ≡ΣCOL B′�σ.

The previous property makes vertical signature morphisms appropriate for describ-

ing refinements in the sense of the definitions presented below (see Definition 2.31).

27



2.3.1 Specifications

Typically a specification has a syntactic part represented by its signature and a semantic

part represented by its class of models. The formal theory of specifications and of the

operators used to define them can be made at the general level of institutions as in

[ST88a].

Definition 2.29 (Basic specifications). A COL-specification SPCOL describes a COL-

signature ΣCOL denoted by Sig[SPCOL] and a class of ΣCOL-algebras denoted by

Mod[SPCOL]. Basic specifications SPCOL = (ΣCOL,Ax) consist of a signature ΣCOL

and a set of Σ-sentences Ax that give the semantics Mod[SPCOL] =AlgCOL(ΣCOL,Ax).

Similar definitions can be given for standard specifications, written SP, by using

standard algebraic signatures for representing the syntax and standard algebras with

standard satisfaction for the semantics.

Please note that by abuse of notation we will sometimes write A∈ SPCOL to denote

a model in the semantics of SPCOL, i.e. A∈Mod[SPCOL]. Also, many times we assume

implicitly that the signature of SPCOL is ΣCOL, or that the signature of SPICOL is

ΣICOL, etc.

During this thesis we will use operators for building structured specifications [BG80,

SB83].

Definition 2.30 (Structured specifications). Let SPCOL be a COL-specification, Σ′COL

be a COL-signature and φ : Σ→ Σ′ be a standard signature morphism. We denote

by φ(SPCOL) the translated specification along φ for which we have Sig[φ(SPCOL)] =

Σ′COL and Mod[φ(SPCOL)] = {A′ ∈ Mod(ΣCOL) | A′�φ ∈ Mod[SPCOL]}. Let SP0
COL

and SP1
COL be two COL specifications on the same COL-signature. We denote by

SP0
COL + SP1

COL the sum specification for which we have Sig[SP0
COL + SP1

COL] =

Sig[SP0
COL] = Sig[SP1

COL] and Mod[SP0
COL +SP1

COL] =Mod[SP0
COL]∩Mod[SP1

COL].

In the following lines we will give examples that will show the way we will present

specifications.

spec BOOL

sorts Bool

operations true, false : Bool

constructors true, false

axioms true 6= false

end

28



spec NAT

sorts Nat

operations 0 : Nat

s : Nat→ Nat

constructors 0,s

axioms ∀x,y : Nat

s(x) = s(y)−→ x = y

s(x) 6= 0

end

Above we have described two specifications, BOOL and NAT, each of them having

a constrained visible sort. We will shorten the presentation of axioms by writing the

variables just once and considering that each axiom is universally quantified. How-

ever, when we need to write more complex axioms we will be more explicit about the

quantification and the scope of variables.

Typically the nature of sorts will be directly inferred from the distribution of con-

structors and observers. This is done in conformance with the style of presentation

imposed in [BH06a].

spec IMPLICITSAMPLE THEN

sorts s,v

operations a : s

b : v

obs : s→ v

constructors a,b

observers obs

end

We can analyze IMPLICITSAMPLE and infer that s is a hidden sort because obs is

an observer for it and both s,v are constructed because they have at least one construc-

tor. However, in some cases we might need to take advantage of the flexibility given

by the framework established in Remark 2.11, and in order to specify explicitly that a

sort is constructed or hidden we use the following syntax:

29



spec EXPLICITSAMPLE = BOOL + NAT THEN

sorts s,v

hidden s

constructed v

end

The specification EXPLICITSAMPLE has a hidden loose sort s and a constrained

visible sort v. Accordingly its algebras will have an empty generated part on the visible

sort and a total observational equality on the hidden sort.

Notice that we have also used operators to build structured specifications. The key-

word THEN denotes a translation specification followed by some additional require-

ments written in the body of the currently defined specification.

To specify higher order types we will typically use combinatorial specifications,

i.e. specifications that have a combinatorial signature and also satisfy the correspond-

ing combinatorial axioms. The requirement that all combinators to be defined and all

corresponding sorts to be included in the signature will appear simply written as the

word combinatorial in the specification.

2.3.2 Refinement of behavioral specifications

A behavioral refinement SPCOL SPICOL represents the process of implementing a

target specification SPCOL by a more concrete source specification SPICOL via a con-

struction that will map models of SPICOL to models of SPCOL. Behavioral refinements

have been studied extensively in the literature [Sch87, ST88b] and the discussion was

actualized to COL in [BH05, BH06b].

As we have said the notion of refinement is based on that of construction which is

defined as follows:

Definition 2.31 (Construction). Let SPCOL and SPICOL be two COL-specifications.

A COL construction k between SPICOL and SPCOL, written k : SPICOL⇒SPCOL, is a

function k : Mod[SPICOL]→Mod[SPCOL] that preserves COL-isomorphisms, i.e. for

all AI,BI ∈Mod[SPICOL] such that AI ≡ΣICOL BI we have that k(AI)≡ΣCOL k(BI). We

call the pair of specifications, SPICOL and SPCOL, the context of the construction.

The definition we use here is slightly different than the one used in [BH05, BH06b].

The main difference is that we treat directly constructions between specifications rather

30



than just between signatures, and hence we will work only with constructions that are

total functions.

A refinement is a relation between specifications that amounts to the existence of a

construction. Basically, we say that SPICOL is a refinement of SPCOL along k if there

exists a construction k : SPICOL⇒SPCOL.

As it appears from Proposition 2.28, reducts along vertical signature morphisms

provide COL-constructions and are suitable for refinements when they are well de-

fined.

A special kind of constructions are those for which the signature of the source

specification is “embedded” in that of the target specification, and the construction

preserves the interpretation of the symbols from the source signature. These construc-

tions are called persistent constructions.

Definition 2.32 (Persistent construction). Let ΣICOL and ΣCOL be two COL-signatures

and σCOL : ΣICOL → ΣCOL be a signature morphism between them. A construction

k : SPICOL⇒SPCOL is persistent if for all AI ∈ SPICOL we have that k(AI)�σCOL = AI.

In order to simplify the presentation we will sometimes omit to explicitly name the

underlying signature morphism for a persistent construction, but implicitly assume the

default name σCOL for a construction k, or σ′COL for k′.

The next definition characterizes the class of constructions that will be used through-

out this thesis. We will investigate properties of constructions that implement new op-

erations defined on old sorts, i.e. which are persistent along a tight signature morphism

(see Section 2.2).

Definition 2.33 (Tight construction). Let k : SPICOL⇒SPCOL be a persistent con-

struction. We call k a tight construction if the underlying signature morphism σCOL :

ΣICOL→ ΣCOL is a tight signature morphism.

One of our objectives for the chapters that follow is to prove definability properties

for some special kinds of constructions. i.e. that operations added in Σ′ are definable in

terms of those present in Σ. However, this problem makes most sense when the sets of

sorts are the same in both signatures, and this is the reason why the tight constructions

will stand at the basis of our investigation.

31



2.4 Other behavioral frameworks

Some of the problems that will be investigated in this thesis in the framework of COL
have been investigated in a simpler setting, that will be denoted by OBS. Basically the

study of stability of constructions and the introduction of the technique of lifting con-

structions were developed in [Sch87, San99, HB99, BST08] relative to a framework

which can be seen as a “sub-institution” of COL containing only a particular subclass

of COL signatures. These signature will be called integral signatures, and they have

the distinguishing feature that all operations that produce or consume state sorts are

necessarily constructors and respectively observers.

Definition 2.34 (Integral COL-signature). Let ΣCOL be a COL signature. We say that

ΣCOL is integral if

• SLoose = SObs and SCons = SState

• for every op : s1, . . . ,sn→ s such that s ∈ SState we have that op ∈ OPCons

• for every op : s1, . . . ,sn → s and i ∈ 1 . . .n such that si ∈ SState we have that

(op, i) ∈ OPObs.

Please notice that in an integral signature there are only two kinds of sorts: visible

(which are also loose) and hidden (which are also constructed).

The following signature is an example of an integral signature:

spec INTEGRALSAMPLE THEN

sorts s,v

operations a : s

op : s→ s

obs : s,s→ v

obs′ : s→ s

constructors a,op

observers (obs,1),(obs,2),obs′

end

In the signature of INTEGRALSAMPLE loose sorts are visible and constructed sorts

are hidden. More importantly all the operations that have a hidden result sort, i.e. a

and op, are constructors. And, all operations that have a hidden sort in the argument

list are observers (for all positions in the arguments list of the hidden sort).

32



Please notice that if there is at least one plain operation that produces or consumes

a hidden sort that is not among the set of constructors or observers then the signature

is not integral. The absence of such plain operations has an important consequence,

namely that the standard algebras of integral signatures are necessarily COL-algebras,

i.e. the reachability constraint and observability constraint are trivially satisfied for

integral signatures. That happens firstly because hidden elements produced by opera-

tions are, by definition, produced by constructors and therefore in the generated part.

Secondly, because observers always commute with observational equality the observ-

ability constraints hold for all operations that act on hidden sorts.

Before going any further please notice that integral signatures can be presented

without naming explicitly the constructors and the observers. For an operation the

quality of being a constructor or an observer can be inferred from the nature of its

arguments or result sort. Hence, it is sufficient to describe the set of hidden sorts and

of visible sorts in order to get a complete definition of an integral signature. That is the

way that was typically chosen in previous presentations like [Mit91, San99, GM00]

for describing behavioral aspects of a specification.

We will use the name OBS to denote the “sub-institution” of COL obtained by

only considering the integral signatures. An important observation is that in OBS
the notion of behavioral isomorphisms between algebras (inherited automatically from

COL) becomes equivalent with the notion of observational equivalence used in [Sch87,

Mit91, San99, BST08]. More explicitly, one can see that two algebras of an integral

signature are COL-isomorphic if and only if all ground terms of a visible sort evaluate

to the same thing. We will reproduce the definition of observational equivalence from

[ST87] to make the concept clear.

Definition 2.35 (Observational equivalence). Let ΣCOL be an integral COL-signature.

Let A and B be two ΣCOL-algebras that are equal on the visible sorts. We say that A

and B are observational equivalent, written A≡Obs B, if for any set X with variables of

visible sorts and any term t ∈ TΣ(X) of visible sort, for each valuation α : X → A (so

that α : X → B as well) we have that At [α] = Bt [α]

It is easy to prove that two algebras are observationally equivalent if and only

if there exists a COL-isomorphism that is identity on the visible sorts. The remark

about the coincidence between the two concepts, observational equivalence and COL-

isomorphism, was first made in [BH06a].

Another remark is that in OBS the conditions under which a signature morphism

33



is vertical reduce to a single requirement, i.e. that visible sorts are preserved (which

of course means that the loose sorts are preserved as well). This observation is espe-

cially interesting when seen in conjunction with the study presented in the following

chapters. Our investigation of lifted constructions in COL is similar to the one done in

[Sch87, BST08] for OBS. But, because the morphisms used for OBS were those that

preserve visible sorts, which in COL-terminology are the vertical ones, it means that

previous presentations of the subject are a particular case of the presentation we give

in Chapter 4.

2.5 Externalized behavioral semantics

We have seen until now, the presentation of what is called the internalized behavioral

semantics. In this section we plan to look at the externalized way of defining behavioral

semantics. In [BH05] Bidoit and Hennicker made a comprehensive comparison of the

two variants of presenting behavioral semantics.

The internalized behavioral semantics is usually defined by setting a logical frame-

work that has a built in notion of behavioral satisfaction. With the help of the behav-

ioral satisfaction relation one can relax the requirements for models in the semantics

of a specification, by considering as acceptable implementations not only the alge-

bras that satisfy literally some axioms but all those that satisfy them behaviorally. The

presentation of COL illustrates this pattern, and hence the semantics of COL basic

specifications is given with respect to COL-satisfaction.

However, in the literature, one can find different ways to enhance the notion of an

acceptable model for a specification. The main alternative to the internalized view for

defining behavioral semantics is the externalized view, which is based on abstraction

operators. Abstraction operators transform classes of algebras representing the stan-

dard semantics into classes of algebras which represent the behavioral semantics. We

will see below the definition for some of these operators.

Definition 2.36 (Abstraction operators). Let ΣCOL be a COL-signature and A be a

class of Σ-algebras. The behavioral extension operator is defined as follows:

BehΣCOL(A) = {A ∈ AlgCOL(ΣCOL) | BBΣCOL(A) ∈ A}

The abstractor operator is defined as follows:

IsoΣCOL(A) = {A ∈ AlgCOL(ΣCOL) | there exists B ∈ A such that A≡ΣCOL B}

34



The reachable and fully-abstract operator is defined as follows:

RFAΣCOL(A)= {A∈AlgCOL(ΣCOL) |A∈A is reachable and fully-abstract w.r.t. ΣCOL}

Definition 2.37 (Behaviorally closed classes). A class of Σ-algebras A is called be-

haviorally closed w.r.t. ΣCOL if A ⊆ BehΣCOL(A).

Before starting to present how these operators are used to define the externalized

behavioral semantics of a specification we shall enumerate some useful properties of

the abstraction operators.

Proposition 2.38 (Abstraction operators properties). Let ΣCOL be a COL-signature

and A a class of Σ-algebras that is closed under standard isomorphisms. Then:

• BehΣCOL , IsoΣCOL and RFAΣCOL are idempotent and monotonic

• RFAΣCOL(A)⊆ A ⊆ IsoΣCOL(A)

• BehΣCOL(A)⊆ IsoΣCOL(A)

• BehΣCOL(A) = IsoΣCOL(RFAΣCOL(A))

• BehΣCOL(A) = IsoΣCOL(BehΣCOL(A))

• BehΣCOL(A) = IsoΣCOL(A) if A is behaviorally closed

Proof. The most important identity on which the relation between the three operators

is based is BehΣCOL(A) = IsoΣCOL(RFAΣCOL(A)), so we will only prove this one as the

other ones follow immediately.

Let A ∈ BehΣCOL(A). This means that BBΣCOL(A) ∈ A . But from Proposition 2.21

we know that A ≡ΣCOL BBΣCOL(A) and also that BBΣCOL(A) is reachable and fully-

abstract and hence we get A ∈ IsoΣCOL(RFAΣCOL(A)).

Let A∈ IsoΣCOL(RFAΣCOL(A)). We get that there exists B∈A that is reachable and

fully-abstract such that A≡ΣCOL B, and furthermore that BBΣCOL(A)≡ΣCOL B. Because

BBΣCOL(A) and B are both reachable and fully-abstract we get that they are standardly

isomorphic and hence BBΣCOL(A) ∈ A .

2.5.1 Appropriate semantics for basic specifications

The externalized view of the semantics of behavioral specifications was considered in

the literature in two main forms. The first flavor, which is encountered in [ST87], is

35



based on the abstractor operator and treats as acceptable denotations of a specification

all models that are observational equivalent with a standard model of the specifica-

tion. The second flavor, encountered in [BH98], is based on the behavioral extension

operator and accepts all models whose black box behavior is a standard model of the

specification. We will use the adapted versions of these operators to COL as it is

done in [BHW95, BH05]. The IsoΣCOL operator is the abstractor operator in COL and

applied to a class of Σ-algebras it produces the class of COL-algebras that are observa-

tionally equivalent to those in the original class (recall that observational equivalence

from OBS is the same as isomorphism in COL). The BehΣCOL operator is the behav-

ioral extension operator and applied to a class of Σ-algebras it produces the class of all

the COL-algebras that have their black box behavior in the original class.

These operators are used to give behavioral semantics starting from classes of stan-

dard algebras. In particular they can be used to give the behavioral semantics of basic

specifications by applying the operators to the class of algebras that literally satisfy the

sentences.

Definition 2.39 (Externalized behavioral semantics). Let ΣCOL be a COL-signature

and Ax⊆ Sen(Σ) be a set of Σ-sentences.

The abstractor semantics for the basic specification SPCOL = (ΣCOL,Ax) is given

as follows: Moda[SPCOL] = IsoΣCOL(Alg(Σ,Ax)).

The behavior extension semantics for the basic specification SPCOL = (ΣCOL,Ax)

is given as follows: Modb[SPCOL] = BehΣCOL(Alg(Σ,Ax)).

It is shown in [BHW95] that the abstractor operator and the behavioral extension

operator coincide on behaviorally closed classes (the result is for OBS but it can be

easily adapted to COL using Proposition 2.38). Classes that are not behaviorally

closed were deemed to be uninteresting or inconsistent and were neglected (quote from

[BHW95]):

A specification SP is behaviorally consistent if the behavior of any model
of SP is also a model of SP (and hence fulfills the requirements of SP)

The original name for behavioral closedness was behavioral consistency. But that

changed quickly in [BH96], where we encounter the following paragraph:

An algebraic specification SP is behaviorally closed if the behaviors of all
models of SP are also models of SP. If this is not the case, this means
that there is some “inconsistency” between the properties required by the
specification SP and the chosen behavioral equality.

36



and in a footnote a reference is made to the previous definition in [BHW95]:

“Behaviorally closed” was called “behaviorally consistent” in [BHW95],
but the terminology proposed here seems more adequate.

Despite that partial recognition of the fact that behavioral closedness should not

be taken for behavioral consistency, the bias against classes that are not behaviorally

closed has been propagated since. Therefore, because almost always the presentations

were assuming behaviorally closed classes the distinction between the two kinds of

semantics is blurred in the literature. In this section we propose an adequate definition

for consistency of behavioral specifications, and by rehabilitating the classes that are

not behaviorally closed we will make some comments on the difference between the

two ways of defining the externalized behavioral semantics.

First let us look at what behavioral closedness requires in our present framework

and whether this notion can be a sensible definition of behavioral consistency. Defini-

tion 2.37 says that a class of Σ-algebras A is behaviorally closed if A ⊆ BehΣCOL(A).

That means in particular that all algebras in A are COL-algebras. This is a very strong

requirement when analyzed with respect to a basic specification (ΣCOL,Ax). It implies

that axioms Ax are enough to enforce the COL constraints when interpreted literally,

i.e. taking A = Alg(Σ,Ax). It is obvious that such a requirement cannot be the test

of consistency in COL as virtually all basic specifications will have to be regarded as

behaviorally inconsistent. This obvious problem could not have been noticed in the

original framework of OBS used in [BHW95] and [BH96], where the corresponding

COL-constraints were trivially satisfied (see the discussion on integral signatures in

Section 2.4). But even if we assume that our basic specification is powerful enough

to enforce the COL constraints, by using integral signatures as in OBS or by adding

additional axioms, we still don’t agree that behavioral closedness is appropriate as a

notion of consistency. For that, let us consider the original example (Example 3.18 in

[BHW95]) that was used to illustrate a behaviorally inconsistent specification.

spec DEMO

sorts s

operations a,b : s

hidden s

axioms a 6= b

end

37



We agree that the specification DEMO is inconsistent and that the class of models

that literally satisfy a 6= b is not behaviorally closed. The arguments are the same as in

[BHW95], namely that because there are no observers, the observational equality on

the sort s relates a,b, and therefore there is no literal model of a 6= b that behaviorally

satisfies a 6= b. What we do not agree with is that inconsistency is caused by the fact

that the class of models that literally satisfy a 6= b is not behaviorally closed. We can

look at another example for which the same cause could be invoked but where it seems

inappropriate to do so, and we should consider the specification as being consistent.

spec DEMO+

sorts s,v

operations a,b : s

obs : s→ v

observers obs

axioms a 6= b

end

Now, the class of literal models of specification DEMO+ is still not behaviorally

closed. To see that, recall that a class A is behaviorally closed if for all A ∈ A the

black box BBΣCOL(A) ∈ A . Therefore, in order to show that the literal models of a 6= b

do not form a behaviorally closed class, we must find a literal model of a 6= b such

that its black box does not satisfy a 6= b. We can easily imagine such a model that

interprets differently a and b literally satisfying a 6= b, but for which the observation

obs produces equal results on a and b, forcing its black box to satisfy a = b. However,

there are many models for which the observation produces different results and for

which the black box satisfies a 6= b, and there is no reason why we should not accept

those as part of the behavioral semantics of DEMO+.

To sum up, we have seen two examples DEMO and DEMO+ for which the literal

class of models is not behaviorally closed but we think that one should be considered

behaviorally inconsistent and the other one behaviorally consistent. In order to formal-

ize these insights we will give the definition of consistency in the externalized style of

behavioral semantics. Basically we say that a class of standard algebras is behaviorally

consistent if it has at least one reachable and fully abstract algebra.

Definition 2.40 (Behavioral consistency). Let ΣCOL be a COL-signature. A class A

38



of Σ-algebras is behaviorally consistent w.r.t. ΣCOL if RFAΣCOL(A) 6= /0. A set E of

Σ-sentences is called behaviorally consistent w.r.t. ΣCOL if Alg(Σ,E) is behaviorally

consistent w.r.t. ΣCOL.

We can now explain why DEMO is inconsistent: because there is no fully abstract

model that literally satisfies the required axiom a 6= b; all fully abstract models will

satisfy literally a = b. On the other hand there are fully abstract models of a 6= b w.r.t.

the signature of DEMO+ and hence that specification is behaviorally consistent.

Now that we have explained why one should accept behaviorally non-closed classes

as consistent specifications, we should discriminate between the two choices of exter-

nalized behavioral semantics: the abstractor semantics vs. the behavioral extension

semantics. We announce our preference for the behavioral extension semantics and

we justify that by its compatibility with the internalized behavioral semantics. In other

words the choice is made such that the externalized behavioral semantics and the in-

ternalized behavioral semantics of a basic specification coincide and that happens be-

cause:

BehΣCOL(Alg(Σ,Ax)) = AlgCOL(ΣCOL,Ax)

The previous identity can be easily proved by using the fact that each algebra satisfies

behaviorally an axiom if and only if its black box satisfies it literally (see Proposition

2.21).

One of the reasons for preferring a behavioral semantics that is in accordance with

the COL satisfaction relation, is that the deduction system for behavioral specifica-

tions will have the good properties of an abstract entailment system in the sense of

Meseguer [Mes89]. In contrast, one can observe the lack of one important property for

the deduction system `Iso induced by the IsoΣCOL operator, defined bellow.

Definition 2.41 (Behavioral deduction systems). Let ΣCOL be a COL-signature.

We define the deduction system `Beh as a relation between sets of ΣCOL-sentences

as follows: Ax0 `Beh Ax1 if BehΣCOL(Alg(Σ,Ax0))⊆ BehΣCOL(Alg(Σ,Ax1)).

Similarly, we define the deduction system `Iso as a relation between sets of ΣCOL-

sentences as follows: Ax0 `Iso Ax1 if IsoΣCOL(Alg(Σ,Ax0))⊆ IsoΣCOL(Alg(Σ,Ax1)).

As we have already anticipated, `Beh is well-behaved and it has the property of

allowing a proof goal to be split into subgoals.

Proposition 2.42 (`Beh has unions). Let Σ be an algebraic signature and let Ax,Ax1

be two sets of Σ-sentences. Then Ax `Beh Ax0∪Ax1 if Ax `Beh Ax0 and Ax `Beh Ax1.

39



Proof. By considering the coincidence with the internalized semantics given by COL-

satisfaction, the goal is equivalent to: Ax |=COL Ax0∪Ax1 if Ax |=COL Ax0 and Ax |=COL

Ax1; and this is trivial in any institution.

Of course `Iso will also have unions when we consider only behaviorally closed

sets of sentences, as it coincides with `Beh. However, for axioms that have a class of

models that is not behaviorally closed the property fails.

Example 2.43 (`Iso does not have unions). Ax `Iso Ax0 and Ax `Iso Ax1 does not imply

Ax `Iso Ax0∪Ax1. Let’s consider a COL-signature ΣCOL = (S = {s,v},OP = {a,b :

s,obs : s→ v},OPObs = {obs}). We have that a = b `Iso a = b and a = b `Iso a 6= b

but a = b does not entail the union. The crucial step here is that for a Σ-algebra A

such that A |= a = b, we can find a model B such that A≡ΣCOL B but B |= a 6= b. Simply

interpret a and b differently but let the observation produce the same result as in A.

This is a big drawback as it means that proof goals cannot be split in general into

subgoals that can be solved independently, and justifies our preference for the behav-

ioral extension operator over the abstractor operator. Despite the clear advantage of

the behavioral extension operator, the abstractor operator is still typically used to give

semantics for behavioral specifications and one reason for this is that it is more conve-

nient to express the basic notions of the theory of refinements. However, this is done

at the expense of uniformity, i.e. by neglecting classes that are not behaviorally closed

or by accepting drawbacks such as the one exposed above. A consequence of that is

that most of the work on refinement is done only for behaviorally closed classes, for

which the choice between the two kinds of semantics does not matter. In Section 2.5.2

we will see an example of the confusion that can arise from the non-recognition of the

validity of behavioral non-closed classes.

2.5.2 Proving correctness of refinements

We saw that the inaccurate definition of behavioral consistency has blurred the demar-

cation line between the two options for giving externalized semantics for behavioral

specifications, even though the choice should have been clear. We will see in this sec-

tion that this confusion also generated incomplete methods for proving correctness of

behavioral refinements, even though their full power was easily accessible.

Consider the case of a COL-construction k : Mod[SPICOL]⇒Mod[Σ] that we want

to prove is a correct construction between SPICOL and SPCOL. In order to actually

40



prove the correctness of k we need to show that for any model AI ∈ SPICOL we have

that k(AI) ∈ SPCOL. If we assume that SPICOL and SPCOL are basic specifications

(ΣICOL,AxI) respectively (ΣCOL,Ax) we must show that for all AI |=ΣICOL AxI we

have that k(AI) |=ΣCOL Ax.

Several methods have been proposed for simplifying proofs of correctness for be-

havioral constructions. One of the most important techniques is applicable whenever

the axioms Ax can be translated into the signature ΣI. This is the case in many exam-

ples [Ros03, BH06a, BH06b, HLST00]. Typically, this scenario happens when k is a

model reduct �φ along a signature morphism φ : Σ→ ΣI. This means that we can use φ

to translate the axioms Ax into ΣI as φ(Ax). In this setting, we can do the proof of cor-

rectness in the signature ΣICOL, by showing roughly that AxI |=ΣICOL φ(Ax). Since the

proof obligation is expressible in a single signature, powerful proof methods designed

to work directly with observational equality are available like Rosu’s circular coinduc-

tion method [RG00]. Of course, the situation is not always that simple; as the COL
constraints imposed by the two signatures can differ significantly, one should take care

when doing the translation in order to ensure soundness. The sound translation of Ax

might involve the explicit encoding of the ΣCOL constraints into the signature ΣICOL

[BH06a, BH95], but to illustrate that is not our purpose. It is important to understand

that this kind of simplification, reducing the goal to a single signature, works only

when we have a sound translation of Ax into ΣI.

For other cases, when such a syntactic translation is not available, a semantic ap-

proach is needed in order to reduce the complexity of the task of proving the cor-

rectness of the construction. Such semantic simplifications where first proposed by

Sannella and Tarlecki in [ST88b] and recently by Bidoit and Hennicker for COL in

[BH06b]. Before starting to look at these methods we will present an example for

which the syntactic approach does not work.

Example 2.44. Let SPICOL = (ΣICOL,AxI) and SPCOL = (ΣCOL,Ax) where ΣICOL =

({s,v},{obs : s→ v,a : s},{obs}), ΣCOL = ({s,v},{obs : s→ v,a,b : s},{obs}), AxI =

{∀x,y.x 6= a∧ y 6= a−→ x = y} and Ax = {(∃x.x 6= a)−→ b 6= a}.
Let k : SPICOL⇒AlgCOL(ΣCOL) be defined as follows:

• k(AI)b is interpreted as k(AI)a if for all c ∈ AIs, AIobs(c) = AIobs(a)

• k(AI)b is interpreted as an element c ∈ As such that AIobs(c) 6= AIobs(a) other-

wise.

41



We have a setting in which s,v are both loose sorts, v is visible, and the elements

of s are constrained by SPCOL to be either behaviorally equal to a or otherwise equal

between them. The construction k implements b as one of the elements different from a

if it exists or as a if none exists.

We can see that k takes isomorphic algebras to isomorphic algebras. However,

we cannot soundly translate the axioms Ax into ΣICOL because the construction k is

based on elements that are not representable as ΣI-terms. Therefore, our only chance

to prove correctness of the construction is a semantic proof, i.e. we need to prove that

for all AI ∈ SPICOL we have that k(AI) |=ΣCOL Ax.

After this introduction let us focus on the semantic simplification proposed in

[ST88b, BH06b]. Because COL constructions preserve isomorphisms one could do

the proofs of correctness only for the literal models of the specification and then ex-

tend this proof automatically to all models of the source specification.

Bidoit and Hennicker propose in [BH06b] the following rule for any COL con-

struction k.

k(Alg(ΣI,AxI)) |=ΣCOL Ax

k(AlgCOL(ΣICOL,AxI)) |=ΣCOL Ax
(2.1)

In other words, it is sufficient to prove only that models constructed from the lit-

eral algebras of AxI satisfy the axioms Ax behaviorally. This rule is sound because

any model AI0 that satisfies AxI behaviorally is COL-isomorphic to a model AI1 that

satisfies AxI literally , namely its black box behavior. Furthermore because k pre-

serves isomorphisms we get that k(AI0) ≡ΣCOL k(AI1) and using the assumption that

k(AI1) |=ΣCOL Ax we also get that k(AI0) |=ΣCOL Ax.

Two points need to be made here. First point is that the rule is sound without

requiring that AxI has a behaviorally closed class of literal algebras. However, we

can consider it a real simplification only when Alg(ΣI,AxI) ⊆ AlgCOL(ΣICOL,AxI)),

because it reduces the number of models for which the axioms Ax should be proved.

The second point, mentioned also in that paper, is that the rule is complete only for

behaviorally closed specifications. We will give below a counterexample that shows a

correct COL-refinement whose correctness cannot be proved using the given rule.

Example 2.45 (Incompleteness of Rule 2.1). Let SPICOL =(ΣICOL,AxI) and SPCOL =

(ΣCOL,Ax) where

42



spec SPICOL

sorts s0,s1,v

operations a0,b0 : s0

a1,b1 : s1

obs0 : s0→ v

obs1 : s1→ v

f : s0→ s1

observers obs0,obs1

axioms obs0(a0) = obs0(b0)

f (a0) = a1

f (b0) = b1

end

spec SPCOL

sorts s1,v

operations a1,b1 : s1

obs1 : s1→ v

observers obs1

axioms a1 = b1

end

Let k : Alg(ΣI)→ Alg(Σ) be the reduct along the inclusion σ : Σ→ ΣI. We can

easily see that k gives a correct implementation constructor from SPICOL to SPCOL;

for each model AI ∈ SPICOL the reduct AI�σ trivially satisfies the ΣCOL constraints.

Because obs0 is the only observer on s0, it means that a0 ≈ΣICOL,AI b0 and furthermore

using the fact that f preserves observationally equality we get that a1 ≈ΣICOL,AI b1.

This means that AI |= obs1(a1) = obs1(b1) and hence that AI�σ |= obs1(a1) = obs1(b1)

and finally that AI�σ |=ΣCOL a1 = b1.

However, this cannot be proved using the Rule 2.1 as there are standard algebras of

AxI that interpret obs1(a1) differently than obs1(b1) and so the observational equality

of a1 and b1 is not a valid property for Alg(ΣI,AxI)�σ.

To sum up, Rule 2.1 fails to accommodate behaviorally non-closed classes in two

ways. It is sound for such classes but it is not really a simplification; and also there

are cases in which its application for behaviorally non-closed classes, like in Example

43



2.45, is impossible.

Our solution in order to give a proof rule that is both sound and complete for all

basic specifications is to reduce the class of models to the most important ones, i.e. the

reachable and fully-abstract models.

k(RFAΣICOL(Alg(ΣI,AxI))) |=ΣCOL Ax

k(AlgCOL(ΣICOL,AxI)) |=ΣCOL Ax
(2.2)

Theorem 2.46 (Soundness and completeness). Proof rule 2.2 is sound and complete

for all COL constructions.

Proof. Soundness:

Assume k(RFAΣICOL(Alg(ΣI,AxI)) |=ΣCOL Ax, and let AI ∈ AlgCOL(ΣICOL,AxI).

From Proposition 2.38 we get that there exists BI ∈ RFAΣICOL(Alg(ΣI,AxI) such that

AI ≡ΣICOL BI. As k preserves COL-isomorphisms we have that k(AI)≡ΣCOL k(BI) and

from k(BI) |=ΣCOL Ax we conclude, using Corollary 2.22, that k(AI) |=ΣCOL Ax.

Completeness:

Assume k(AlgCOL(ΣCOL,AxI)) |=ΣCOL Ax. The conclusion is immediate because

RFAΣICOL(Alg(ΣI,AxI)⊆ AlgCOL(ΣCOL,AxI).

Please notice that the additional power of this rule comes from identifying the

representative models for a COL specification, and exactly as in Definition 2.40 of

behavioral consistency, these should be the reachable and fully abstract models. Also,

notice that Rule 2.2 not only ensures completeness but it also provides a more restricted

class RFAΣICOL(Alg(ΣI,AxI)) than the class Alg(ΣI,AxI) used in Rule 2.1, which gives

supplementary power in the process of proving axioms in Ax. In the attempt to prove

Ax one can use the knowledge that source algebras are reachable and fully abstract as

well as literal models of the source specification.

2.6 Summary

In this chapter we have introduced the basic elements for the theory of algebraic spec-

ifications needed in order to investigate the refinement process. In addition to that

we have presented a new point of view on some old foundational issues about the

behavioral semantics of specifications. It is noted that a more adequate description of

behavioral specifications can be given if one chooses carefully the notion of behavioral

44



consistency, and based on that we improve a proof technique that can be used to ease

the assessment of correctness of behavioral refinements.

45



Chapter 3

Constructions in general contexts

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Local constructions in global contexts . . . . . . . . . . . . . . . 42

3.3 General correspondences . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Theorems for free . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

In this chapter we look at consequences of stability [Sch87, BST08, STar] in the

context of refinements for behavioral specifications. This investigation is partly mo-

tivated by the similarities between stability and parametricity [Rey74]. Both stability

and parametricity were invented to capture the phenomenon of abstraction barriers:

stability in the framework of algebraic specifications; and parametricity in second or-

der lambda calculus, or System F [Gir72, Rey74]. Informally, each of them represents

a requirement on functions that manipulate data types, expressed in terms of preserva-

tion of relations. Stability is a property of constructions between specifications which

requires that relations between source models must be extended to relations between

target models. Parametricity is a property of the inhabitants of universally quantified

types in System F and requires that type instantiation for related types produces re-

lated results. We do not attempt to formalize the relation between these two concepts

but rather use the apparent similarities to guide our exploration in the algebraic spec-

ifications world so as to mimic older results obtained using parametricity in second

order lambda calculus. Something similar to “theorems for free”, noticed by Wadler

46



in [Wad89] for System F, are used to ease correctness proofs of behavioral refinement

for algebraic specifications.

3.1 Introduction

Typically, software development is done by splitting a big goal into smaller, more feasi-

ble tasks. The small modules are implemented separately and then linked together. We

can translate some properties of individual subcomponents to the bigger final product,

but we will show that one can also derive new properties based on the mutual indepen-

dence of the components. Because components are implemented in isolation, and must

be ready for use in any global context, i.e. in combination with any implementation of

all the other components, they should have a great degree of genericity, i.e. they should

not interfere with the properties of other components that are beyond their scope. This

kind of reasoning, based on the encapsulation of module implementations captured by

stability, will be the subject of this chapter and constitutes the essence of “theorems for

free” for refinements.

The development of these ideas starts in Section 3.2 where we introduce the proce-

dure of lifting constructions across fitting signature morphisms and the notion of global

constructions. Recall that constructions (Definition 2.31) are basically functions that

map the models of a source specification to models of a target specification. We con-

sider that the source and the target signature of a construction represent the local con-

text of its definition. Global constructions are those that are defined in local contexts

but can be reused in suitable global contexts. Global contexts are potentially richer

than the local contexts, i.e. more operations are present in the signatures. Our goal is

to characterize global constructions in terms of preservation of relations and also in

terms of definability. Depending on the form of the signature morphisms that map the

local contexts to the global ones, we will get different versions of global constructions.

In this chapter we look at global constructions that can be reused in absolutely every

global context, which will be called general global constructions, and we postpone the

investigation of those that are reusable only in some restricted contexts to Chapter 4.

We prove in Section 3.3 that globality, i.e. the capability of a construction to be

reused in global contexts, is equivalent to preservation of closed algebraic relations.

These relations will be called closed correspondences. In Section 3.4 we use that

preservation result in order to show that operations implemented via general global

constructions, i.e. present in the target signature of such a construction, are definable

47



in terms of the operations present in the source signature. Finally, Section 3.5 illustrates

how the genericity of global constructions can be used to derive properties about such

a construction without knowing its actual implementation.

Please have in mind that across the thesis we will use the term genericity (and

generic construction) as a synonym to globality (and respectively global construction).

3.2 Local constructions in global contexts

“Local constructions in global contexts” [BST08] is an implementation strategy used

for splitting refinement goals into smaller tasks. We will first present the general setting

for lifting local constructions to global contexts and then we shall discuss how the

special features of COL interact fit into the established theory.

Typically a refinement step SP′COL SPI′COL means taking models of a more con-

crete specification (here represented by SPI′COL), and producing models of a more

abstract specification (here represented by SP′COL); in other words giving a construc-

tion k′ : SPI′COL⇒SP′COL. Doing that all the time is not only hard, especially when

the specified systems have significant details, but it is also inefficient because parts of

the construction could perhaps have been reused from a previous implementation. The

solution is to isolate parts of SPI′COL, reducing complexity, in terms of which we shall

implement parts of SP′COL. Technically this means that we choose a sub-specification

SPICOL of SPI′COL with less information and use only that information for implement-

ing the corresponding subpart SPCOL of SP′COL.

We will focus on some special COL-constructions. These special constructions

preserve their arguments and do not enrich the universe of sorts. The first requirement

means that we will work only with constructions k : SPICOL⇒SPCOL that are persis-

tent along a signature morphism σCOL : ΣICOL → ΣCOL (see Definition 2.32). The

second requirement appears because our main focus is to express definability results

for new operations in terms of the old operations, and therefore we are not interested

in morphisms that enrich the set of sorts but only in those that enrich the set of op-

erations. This will be enforced by assuming that the underlying signature morphisms

σ : ΣI→ Σ are tight, i.e. they do not add new sorts. Hence we will work only with tight

constructions (see Definition 2.33).

The connection between signatures that appear in a lifting operation can be repre-

sented diagrammatically as a pushout in the category of algebraic signatures, which

48



will be called from now on a lifting pushout:

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

A particular case of pushout is when σCOL and φ are inclusions of common symbols

into ΣCOL and respectively ΣI′COL, and then Σ′COL is the union of ΣCOL and ΣI′COL.

The goal of this methodology is to get automatically a persistent construction k′,

whenever a persistent construction k is given, such that the following diagram com-

mutes:

SPI′COL
k′ +3

�φ
��

SP′COL

�
φ′

��
SPICOL k

+3 SPCOL

Having such a procedure for lifting constructions means that in order to produce a

construction k′ in the global context, from SPI′COL to SP′COL, it is sufficient to focus

our work on defining a construction k in the local context and then k′ will come auto-

matically. To describe the general lifting procedure we will use the fact that for every

lifting pushout we can glue together models over ΣI′ and Σ, i.e. we use the amalgama-

tion property for standard algebras.

Let us recall a well known property of FOL (see [Tar86] and [Dia08] for a in-

stitutional presentation of this fact): pushout squares of algebraic signatures have the

amalgamation property:

ΣI′
σ′ //

Σ′

ΣI
σ

//

φ

OO

Σ

φ′
OO

This mean that for every AI′ ∈Mod(ΣI′) and A ∈Mod(Σ) such that AI′�φ = A�σ there

exits a unique model A′ ∈ Mod(Σ′), denoted by AI′⊗ A, such that A′�σ′ = AI′ and

A′�φ′ = A. Amalgamation is the standard tool for defining liftings and combining spec-

ifications in the literature of algebraic specifications (see [Gog89]). Categorically, this

condition means that Mod : Signop→Cat weakly preserves pushouts, i.e. every signa-

ture pushout is taken into a weak pullback of model classes.

Before going any further we will make the assumption that all signature morphisms

that appear from now on are inclusions. This assumption is made in order to simplify

notation only, but all the results should carry over to the non-injective case without

49



significant effort. Actually, there are plenty of practical examples when one needs

non-injective fitting morphisms. Just to give an example imagine a local context that

specifies a list of elements of sort Elem and an observer length : List→ Nat that gives

the number of elements in a list. It is very plausible that we would want to use con-

structions for this data type in global context where Elem = Nat, hence contexts which

are mapped using non-injective fitting morphisms. Technically, we base our simplifi-

cation assumption on the fact that amalgamated algebras exist disregarding whether

the morphisms of the pushout are injective or not.

Now, returning to the lifting procedure notice that we did not state that the fitting

morphisms φ or φ′ are COL signature morphisms; that is why the lifting pushout is a

pushout in the category of standard algebraic signatures rather than in that of COL-

signatures. We only require that σCOL and σ′COL are COL-morphisms. We will use

various kinds of fitting morphisms and we will investigate the properties of liftable

constructions depending on the properties of the fitting morphisms. The classes of

fitting morphisms analyzed in the next chapters (Chapter 4, Chapter 5) will be closed

under pushouts along COL-signature morphisms, i.e. φ′ will be in the same class φ is.

In this chapter we will examine the unrestricted case when the fitting morphism φ is an

arbitrary signature morphism. This means that global contexts can have any observ-

ability and reachability constraints relative to the local contexts, the only requirement

being to include the local signatures.

Because φ is not necessarily a COL signature morphism it follows that in general

the reduct along φ of a ΣI′COL-algebra need not yield a COL-algebra over ΣICOL. To

avoid cluttering conditions about the fitting morphism φ we will work in a simplified

setting without restricting the usability of the presented technique. More exactly, we

will consider only the essential case in which the specifications SPI′COL and SP′COL

in the global context are the canonical translated specifications obtained from the lo-

cal context using the morphism φ, i.e. φ(SPICOL) and respectively φ′(SPCOL). This

approach is simple enough to ensure that reducts of models from the global specifica-

tions are COL-algebras but it is also versatile enough to be adapted to global contexts

that are more complex. For example, if our global context contains the specifications

SPI′COL and SP′COL, and we decide as before to isolate the specifications SPICOL and

SPCOL as the local context, we distinguish two steps in order to use a construction from

the local context. Firstly, we will be able to lift a construction k : SPICOL⇒SPCOL

to a construction k′ : φ(SPICOL)⇒φ′(SPCOL) in a canonical global context. Sec-

ondly, we should prove that our original global context fits the canonical one, i.e.

50



SPI′COL ⊆ φ(SPICOL) and φ′(SPCOL)⊆ SP′COL, and hence that the canonical lifting is

trivially extended to the original global context. However, the second inclusion is quite

often impossible to prove, as there is always need to use axioms of SPI′COL in order to

do a proper lifting to a global context. A more appropriate strategy would be to prove

σ′COL(SPI′COL)∩φ(SPCOL)⊆ SP′COL but even this one fails in some cases. The exact

technicalities of the lifting process are depicted in Proposition 3.4. Nevertheless, one

can study lifting to the canonical context without caring too much about fitting, which

remains to be solved separately.

With this technical simplification our goal changes into that of lifting any construc-

tion k between SPICOL and SPCOL such that the following diagram commutes:

φ(SPICOL)
k′ +3

�φ
��

φ′(SPCOL)

�
φ′

��
SPICOL k

+3 SPCOL

In the conventional setting of standard algebras the amalgamability property for

the given pushout of signature morphisms is enough to define the lifted version of a

construction to a bigger context. However, in COL that is no longer the case as there is

no guarantee that the standard amalgamation of two COL-models is a COL-algebra.

Even if we were working only with COL-signature morphisms, the amalgamation

property is not guaranteed for the COL-institution as remarked in [BH06a]. Therefore

we will define the standard lifted construction based on amalgamation for standard

algebraic signatures and then we will later see how we can reason about the COL
constraints.

Definition 3.1 (The standard lifted construction). Consider a lifting pushout and let k :

SPICOL⇒SPCOL be a persistent COL-construction. The standard lifted construction

corresponding to k is a function k′ : φ(SPICOL)⇒Mod(Σ′) defined as k′(AI′) = AI′⊗
k(AI′�φ). We will sometimes write φ(k) for the lifted construction k′.

The question is under what conditions the standard lifted constructions are ”well-

defined“, i.e. they produce COL-algebras and preserve COL-isomorphisms. We will

say that a construction k is global if its standard liftings along “all” lifting pushouts

are indeed ”well-defined“. We will parametrize this definition by making it dependent

on the class of lifting pushouts that we want to consider. That is in order to give a

definition that will form a template for all the notions discussed in this chapter but also

in the following ones.

51



Definition 3.2 (Global COL-construction). Let k : SPICOL⇒SPCOL be a persistent

COL-construction and P be a class of lifting pushouts. We say that k is a P -global

COL-construction if for every lifting pushout from P , φ(k) is a COL-construction

between φ(SPICOL) and φ′(SPCOL).

As we have already announced, in this chapter we will treat the case of construc-

tions that can be lifted across all lifting pushouts, i.e. P is the class of all lifting

pushouts. The adapted version of the previous definition is given below in Defini-

tion 3.3. Various instances of the previous definition will be encountered in the next

chapters, specialized to the class of signature morphisms used as fitting morphisms,

see Definition 4.1, Definition 4.25, Definition 5.11.

Definition 3.3 (General global COL-construction). Let k : SPICOL⇒SPCOL be a per-

sistent COL-construction. We say that k is a general (global) COL-construction if for

every lifting pushout, φ(k) is a COL-construction between φ(SPICOL) and φ′(SPCOL).

Before going any further we will present the typical scenario that involves the

reusability of general global constructions. We will explain briefly how one can define

a construction in an arbitrary global context starting from the canonical one.

SPI′COL
k′ +3

�φ
��

SP′COL

�
φ′

��
SPICOL k

+3 SPCOL

Proposition 3.4 (Lifting general global constructions). Let k : SPICOL⇒SPCOL be a

general global COL-construction, and two specifications SPI′COL and SP′COL forming

a global context connected by the following lifting pushout

Sig[SPI′COL]
σ′COL // Sig[SP′COL]

Sig[SPICOL] σCOL
//

φ

OO

Sig[SPCOL]

φ′
OO

If the following conditions are satisfied:

1. SPI′COL ⊆ φ(SPICOL)

2. φ(k)(SPI′COL)⊆ SP′COL

then k′ : SPI′COL⇒SP′COL, defined as k′(A′) = φ(k)(A′) for each A′ ∈ Mod[SPI′COL],

is a COL-construction. Moreover, the following conditions represent an equivalent

52



version of the ones above, but they are more appropriate for practical use because they

require the inclusion proofs to be done for a smaller class of algebras.

1. SPI′COL ⊆ φ(SPICOL)

2. φ(k)(RFA(SPI′COL))⊆ SP′COL

Proof. The fact that k′ is a COL-construction is immediate from the fact that it is a

restriction of the canonical lifting φ(k).

The interesting part are the sufficient conditions that allow us to consider only

the reachable and fully-abstract algebras of the input specification from the global

context. The simplification is due to the fact that φ(k) preserves COL-isomorphisms,

by definition of COL-constructions.

We will now proceed to identify local conditions that ensure the possibility of lift-

ing COL-constructions to any general global context.

3.3 General correspondences

In order to obtain COL-algebras from lifted constructions φ(k) for any standard sig-

nature morphism φ we have to impose additional conditions on the given construction

k. The idea is to require k to preserve not only the observational equalities induced by

its local context, but all such observational equalities for all possible contexts. As we

plan to use k in unrestricted contexts, observational equalities in the global context are

not comparable in general to the ones in the local context, i.e. they can be defined for

any number of elements and can be finer or coarser than the corresponding one from

the local context. Therefore we should require k to be ready to preserve all algebraic

relations between SPICOL-algebras.

Definition 3.5 (General correspondence). Let ΣCOL be a COL-signature and A,B be

two ΣCOL-algebras. A (general) correspondence ρ: A↔ B is an algebraic relation. If

in addition ρ is a closed relation we call it a closed general correspondence. Any two

elements a ∈ A and b ∈ B such that a ρ b are called (general) correspondents.

Notice that in contrast to a COL-homomorphism (Definition 2.19), a general cor-

respondence is not required in any way to take into account the reachability or observ-

ability aspects induced by the (local) COL-signature. That happens because it must

53



be appropriate for all global contexts, i.e. for whatever set of generated elements or

observational equality is induced by the global context.

Also, compared with the conventional notion of correspondence invented by Schoett

and presented in [Sch87, BST08, STar], we don’t require that the relation should be

identity, or a bijection, on visible sorts. That is because that we must be ready for fitting

morphisms that map visible sorts to loose sorts and therefore we should also consider

relations that are not one-to-one correspondences on visible sorts. In Chapter 4 we will

give other definitions for some special kinds of correspondence that are closer to the

conventional definition.

Now we can express locally, following the pattern already established in [Sch87,

BST08], a necessary and sufficient condition for a COL-construction to be global. We

will show that globality is equivalent to preservation of all closed correspondences. In

this case we cannot eliminate the requirement for closed correspondences; it is not true

that general global constructions preserve all general correspondences. However, the

cases investigated in Chapter 4 will prove to be more adequate and will allow the proof

of a result that does not mention closedness.

Definition 3.6 (Generally stable COL-construction). Let k : SPICOL⇒SPCOL be a

tight COL-construction. We say that k is generally stable if it extends general cor-

respondences, i.e. for any SPICOL-algebras AI,BI and any general correspondence

ρ: AI↔ BI we have that ρ is a general correspondence between k(AI) and k(BI). We

say that k is generally closed-stable if it extends closed general correspondences.

Please notice that the definition of stable constructions as we gave it relies on the

fact that the construction is tight, because it makes sense saying that a ΣI-relation can

be seen directly as a Σ-relation because there are no sorts in Σ that are not also in ΣI.

We can now show that the requirement of general closed-stability is necessary and

sufficient for a tight COL-construction to be usable in all general contexts. Again, our

result is different than previous results obtained in the literature, as globality is proven

to be equivalent to closed-stability rather than to plain stability. That happens because

the general case was not previously investigated and the characterization of globality

in terms of plain stability is possible only in the special cases presented in Chapter 4.

Proposition 3.7 (Closed-stability implies globality). Let k : SPICOL⇒SPCOL be a tight

COL-construction. If k is generally closed-stable then k is a general global COL-

construction.

54



Proof. Consider a lifting pushout as below:

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

We need to show that φ(k) is a persistent COL-construction along σ′COL between

φ(SPICOL) and φ′(SPCOL). For simplicity we will write k′ instead of φ(k).

First of all we will show that k′(AI′)∈AlgCOL(Σ
′
COL) for all AI′ ∈AlgCOL(ΣI′COL).

Let AI = AI′�φ, A = k(AI) and A′ = k′(AI′).

An important observation is that the COL-constraints induced by the global signa-

tures on AI′ and A′ coincide, and this happens also for the local context. This amounts

to proving that 〈GenΣI′COL
(AI′)〉= 〈GenΣ′COL

(A′)〉�σ′ , 〈GenΣICOL(AI)〉= 〈GenΣCOL(A)〉�σ,

≈ΣI′COL,AI′=≈Σ′COL,A
′ �σ′ and ≈ΣICOL,AI=≈ΣCOL,A �σ. We will do the proof only for the

global context as the claims for the local context are a particular case of the global

one. Because σ′COL is a COL signature morphism we trivially get that observational

equalities and generated parts induced by the source and the target signatures coin-

cide. Also, we get that 〈GenΣI′COL
(AI′)〉 ⊆ 〈GenΣ′COL

(A′)〉�σ′ . In order to prove that

these generated algebras are equal we will show that the newly added operations do

not produce new elements. For that let ≈I be a relation on AI that is equal to the

restriction ≈ΣI′COL,AI′ �φ. It is clear that ≈I is a correspondence that is bi-surjective

on 〈GenΣI′COL
(AI′)〉�φ. Furthermore, ≈I is closed because it is the restriction of an

observational equality. Because k is generally closed stable we get that ≈I is also a

correspondence on A. Hence, the newly added operations preserve ≈I , and therefore

when they are applied to elements from 〈GenΣI′COL
(AI′)〉�φ they produce elements from

〈GenΣI′COL
(AI′)〉�φ. This ensures that 〈GenΣ′COL

(A′)〉�σ′ ⊆ 〈GenΣI′COL
(AI′)〉 due to the

minimality of the generated algebras.

To show that A′ is a COL algebra we need to show that≈Σ′COL,A
′ is a Σ′-congruence

on 〈GenΣ′COL
(A′)〉. For the operations that come from ΣI′ the preservation requirement

is immediate. We only have to prove it for operation that are new. Such an operation

op′ ∈ OP′ comes from Σ and hence it preserves ≈I .

Secondly we need to show that for all AI′ ≡ΣI′COL
BI′ we have k(AI′)≡Σ′COL

k(BI′).

Let h be the isomorphism between AI′ and BI′ and ρ be the closed correspondence

equal to h�φ. From the fact that k is generally closed stable we get that ρ is preserved by

the implemented operations. Furthermore, because σ′ is tight h will be an isomorphism

also between k(AI′) and k(BI′).

55



In the proof of necessity we will take a closed general correspondence ρ and define

a context in which ρ will become a COL-isomorphism. Then using globality we will

get that such an isomorphism must be preserved.

Proposition 3.8 (Globality implies closed-stability). Let k : SPICOL⇒SPCOL be a tight

COL-construction. If k is a general global construction then k is generally closed-

stable.

Proof. Let AI and BI be two SPICOL models and ρ be a general closed correspondence

between AI and BI. We want to prove that ρ is also a closed correspondence between

k(AI) and k(BI). It is sufficient to prove that the additional operations introduced in Σ

commute with ρ (closedness is immediate because it does not depend on the signature).

For that we will build a global context ΣI′COL and two ΣI′COL-isomorphic extensions

AI′ and BI′ of AI and resp. BI such that the corresponding isomorphism extends ρ and

using the fact that the lifting of k to this context must be a COL-construction we will

infer that k preserves ρ.

Now, let ΣI′COL be the following COL-signature (SI′,OPI′,OPI′Cons,OPI′Obs) where

• SI′ = SI]{Bool}

• OPI′ = OPI ]{!a,b : s | (a,b) ∈ρs,s ∈ SI}] {?b : s→ Bool | b ∈ Bs,s ∈ SI}]
{true, false : Bool}

• OPI′Cons = {!a,b : s | (a,b) ∈ρs,s ∈ SI}]{true, false : Bool}

• OPI′Obs = {(op, i) | op : s1, . . . ,sn→ s ∈ OPI,1 ≤ i ≤ n}]{?b : s→ Bool | b ∈
Bs,s ∈ SI}

• SI′Cons = SI

Please notice that we have defined explicitly the set of constructed sorts and recall

Remark 2.11 for more information about that. A consequence of the way we chose to

define ΣI′COL is that all sorts from SI are hidden and constructed. Furthermore, because

we have constructors only on sorts for which dom(ρ) is not empty, the generated parts

of ΣI′COL-algebras are empty on all the other sorts.

Consider the obvious inclusion from ΣI to ΣI′ to be the fitting morphism φ and let

us define AI′ such that AI′�φ = AI and BI′ such that BI′�φ = BI. For that we must define

only the interpretation of the additional symbols. We let the sort Bool be interpreted as

follows : AI′Bool = BI′Bool = {true, false} and for the additional operations

56



AI′: • !a,b = a for all (a,b) ∈ρ

• ?b(a) = true if a ρ b and false otherwise

BI′: • !a,b = b for all (a,b) ∈ρ

• ?b(b′) = true if there exists a such that a ρ b and a ρ b′ and false otherwise

Notice that both algebras AI′ and BI′ satisfy the reachability constraints imposed by

ΣI′COL because their reachable parts consist of the elements that are linked by ρ, i.e.

〈GenΣI′COL
(AI′)〉= domAI′(ρ) and 〈GenΣI′COL

(BI′)〉= domBI′(ρ). Also, they satisfy the

observability constraint because all operations in the signature are observers and they

preserve the observational equality by default.

Now, we will show that the extension of ρ that is identity on Bool, called ρ′, is a

ΣI′COL isomorphism between AI′ and BI′ by checking all conditions of Definition 2.19

for all sorts s ∈ SI.

• For all a ∈ 〈GenΣI′COL
(AI′)〉s we get that there exists b ∈ BIs such that a ρs b and

therefore b ∈ 〈GenΣI′COL
(BI′)〉s.

• For all a,a′ ∈ 〈GenΣI′COL
(AI′)〉s and b ∈ 〈GenΣI′COL

(BI′)〉s such that a ≈s a′ and

a ρs b we have that ?b(a) =?b(a′) = true and hence a′ ρs b.

• For all b and a0 ρs b0 we show that ?b(a0) =?b(b0). If ?b(a0) = true then a0 ρs b

by definition and hence ?b(b0) = true. If ?b(b0) = true we get that there exists a

such that a ρs b0 and a ρs b and then because ρ is closed we get that a0 ρs b and

hence ?b(a0) = true.

• For all a ∈ 〈GenΣI′COL
(AI′)〉s and b,b′ ∈ 〈GenΣI′COL

(BI′)〉s such that a ρs b and

b≈s b′ we have that ?b′(a) =?b′(b) =?b′(b′) = true and hence a ρs b′.

• For all a ∈ 〈GenΣI′COL
(AI′)〉s and b,b′ ∈ 〈GenΣI′COL

(BI′)〉s such that a ρs b and

a ρs b′ we have that ?b0(a) =?b0(b) =?b0(b′) for all b0 ∈ BI′s and hence b≈s b′.

• All the operations from OPI preserve ρ because it is a correspondence.

We have established that ρ′ is an isomorphism between AI′ and BI′. Moreover,

we can show that any COL-morphism h′ between AI′ and BI′ must be equal to ρ′.

To see that consider such a COL-morphism h′: AI′ → BI′. Because the interpreta-

tions of the constructors must be related we get easily that ρ′⊆h′. Now consider a ∈
〈GenΣI′COL

(AI′)〉 and b ∈ 〈GenΣI′COL
(BI′)〉 such that a h′ b. Because 〈GenΣI′COL

(BI′)〉=

57



domBI′(ρ) we get that there exists a0 such that a0 h b. But from the properties of the

COL-morphisms that entails a≈ΣI′COL,AI′ a0 and eventually that ?b(a) =?b(a0) = true,

which implies a ρ b. That proves h′⊆ρ′ and finally that h′=ρ′.

Using the fact that k is a global construction we get that k′(AI) ≡Σ′COL
k′(BI). But

the reduct of the COL-isomorphism between k′(AI′) and k′(BI′) must be the unique

COL-morphism ρ′ between AI and BI. Therefore we get that the additional operations

added by σ preserve the relation ρ.

The equivalence of the two notions, globality and closed-stability, is synthesized in

the following theorem.

Theorem 3.9 (Globality is equivalent to closed-stability). Let k : SPICOL⇒SPCOL be a

tight COL-construction. Then k is general global construction if and only it is general

closed-stable.

Proof. The two implications are proved in Proposition 3.7 and Proposition 3.8.

3.4 Definability

This section sets the framework for obtaining useful properties of constructed models

from the fact that general global constructions are generally closed-stable. Informally,

we can reason that in order to use a construction in any global context, its defini-

tion must rely only on the operations provided by the local source specification. Any

supplementary assumptions about the source models could be contradicted by some

choice of context, so the implementer should write implementations in terms of the

available signature. Before formalizing the notion of definability and proving that

closed-stability implies it, we will make a small detour by looking at a similar phe-

nomenon that happens in System F.

3.4.1 Definability via parametricity

This section is not crucial for understanding the results presented in this thesis, but

it helps to illustrate the intuition behind them: stability could be used for algebraic

specifications similarly to how parametricity is used in second order lambda calculus.

The second order lambda calculus was first developed by Girard [Gir72] in the con-

text of logic and was reinvented independently a few years later by Reynolds [Rey74]

in the context of computer science as a framework for polymorphic programming

58



languages. Reynolds introduced the notion of relational parametricity [Rey83], and

proved an abstraction theorem in order to explain semantically the difference between

parametric polymorphism and ad-hoc polymorphism. A polymorphic function is para-

metric, in the sense of Strachey [Str67], if it always uses the same algorithm, regardless

of the type it is applied to. This means that a parametric function does not make addi-

tional assumptions, it uses only the information available in its polymorphic type.

As a consequence of this requirement for generality, the number of parametric

functions of a given polymorphic type can be quite restricted. Reynolds used relations

to formalize this principle of generality, and this finally led to the discovery of proper-

ties of parametric functions that are derivable directly from their type, called by Wadler

theorems for free [Wad89]. Rather than giving a definition for System F we will just

recall the basic constructs with some examples. In System F we can write universally

quantified types like ∀X .X×X → X . An inhabitant of this type f : ∀X .X×X → X can

be instantiated for any type A, obtaining a term fA : A×A→ A. Notice that, using an

informal semantics for System F, an inhabitant f : ∀X .X ×X → X can be considered

as an element f ∈ ∏A∈Types(A×A→ A), and therefore nothing forces uniformity of

interpretation across various types. Examples of inhabitants for this type are the first

projection λx,y:X .x and the second projection λx,y:X .y which are uniform, but also

non-uniform polymorphic functions like λx,y:X .i f (X = Nat) then x+1 else x which

acts differently for natural numbers than for other types.

Relational parametricity [Rey83] is a semantic constraint that distinguishes be-

tween the uniform, so-called parametric, and the non-uniform inhabitants of types

by requiring that whenever we instantiate an inhabitant of a universal type to related

types we obtain related results. In order to make this formal it is necessary to de-

fine the action of type constructors on relations. For products, two pairs are related

if the corresponding components are related; for functions, two functions are related

if they take related arguments to related results. In our case f : ∀X .X × X → X is

parametric if for every relation R ⊆ A× B, fA(R× R → R) fB. Now, it is easy to

prove that the only parametric inhabitants of the type ∀X .X × X → X are the two

projections. This can be done as follows. Let f : ∀X .X × X → X be a parametric

function, and assume that fBool(true, f alse) = true. Now, consider a type A and two

elements of this type a,b : A; we will show fA(a,b) = a. For this we take a relation

R ⊆ Bool×A such that R = {(true,a),( f alse,b)} and due to parametricity we obtain

fBool(true, f alse) R fA(a,b), i.e. fA(a,b) = a. If fBool(true, f alse) = f alse we can

also show that fA(a,b) = b for every a,b : A. Therefore, f acts like the first argument

59



projection.

There are many known consequences of parametricity, especially definability re-

sults based on the representability of initial algebras in System F [RP90, GLT89,

PA93]. For example: there is only one parametric inhabitant of the type ∀X .X → X ,

namely the polymorphic identity function. Another classic example is that the only

parametric inhabitants of the type ∀X .(X → X)×X → X are the definable terms λs :

X → X .λ0 : X .sn(0), the Church numerals.

Even though we will not look for a formal translation of these results into the

setting of algebraic specifications, we will investigate the idea that stable constructions

should be definable. In other words, we are trying to draw an informal parralel between

stability and parametricity and obtain for the former the same kind of results that have

already been obtained for the later.

3.4.2 Definability via stability

In order to prove that stability implies definability we shall define what we mean for an

operation interpreted in an algebra to be definable in terms of the operations of another

signature.

Definition 3.10 (Algebraic definability). Let Σ and Σ′ be two algebraic signatures and

let σ : Σ→ Σ′ be a tight signature morphism between them. Let op′ : s1, . . . ,sn→ s ∈
OP′ be an operation symbol and A′ be a Σ′-algebra.

We say that op′ is (point-wise) Σ-definable on A′ if for every tuple a1, . . . ,an, with

ai ∈ A′si
for i = 1 . . .n, there exists a term t ∈ TΣ({x1, . . . ,xn}) such that:

A′op′(a1, . . . ,an) = A′t [a1/x1, . . . ,an/xn]

We call the term t the defining term for op′ and a1, . . . ,an.

Let k : SPICOL⇒SPCOL be a tight COL-construction. We say that k is definable if

all operations from OP are ΣI-definable on algebras in k(SPICOL).

We can now prove that any generally closed-stable construction must be definable.

Proposition 3.11 (Closed-stability implies definability). Let k : SPICOL⇒SPCOL be a

tight COL-construction. If k is generally closed-stable then k is definable.

Proof. Let A be a COL-algebra in k(SPICOL), i.e. there exists AI ∈ SPICOL such that

k(AI) = A. Let op : w→ s ∈ OP and consider a tuple a ∈ Aw. We define a closed

60



correspondence ρ: AI ↔ AI that relates AIt [a] ρ AIt [a] for all t ∈ T ({x}). Because

k extends closed correspondences we get that AIop(a) ρ AIop(a) and hence, from the

definition of ρ, we get that there exists a term t ∈ T ({x}) such that AIop(a) = AIt [a].

A stronger notion of definability is uniform definability which requires that the

defining terms should be the same for correspondent arguments. We can prove that

this concept is equivalent to stability, however it is not equivalent to globality.

Definition 3.12 (Uniform (general) definability). Let ΣCOL and Σ′COL be two COL-

signatures and let σCOL : ΣCOL→ Σ′COL be a tight COL-signature morphism. We say

that an operation op′ : w→ s ∈ OP′ is uniform (generally) definable on a class A ′

of Σ′COL-algebras if for all A′,B′ ∈ A ′, all general closed correspondences ρ: A′�σ↔
B′�σ, and all ρ-correspondent tuples a ρ b there exists a common defining term t for

op′ and a, resp. for op′ and b.

Let k : SPICOL⇒SPCOL be a tight COL-construction. We say that k is uniform

generally definable if all operations from OP are uniform generally definable on k(SPICOL).

It is easy to prove that uniform general definability is a sufficient condition for

obtaining closed-stability.

Proposition 3.13 (Uniform definability implies closed-stability). Let k : SPICOL⇒SPCOL

be a tight COL-construction. If k is uniform generally definable then k is generally

closed-stable.

Proof. Let AI,BI be two ΣICOL-algebras and ρ: AI ↔ BI be a general closed corre-

spondence between them. We will denote by A and B the constructed algebras k(AI)

and k(BI). Also, consider an operation op : w→ s ∈ OP and two tuples a ∈ Aw and

b ∈ Bw such that a ρw b. Using the general definability assumption we get that there

is a defining term t for op and a that acts as a defining term also for op and b, i.e.

Aop(a) = At [a] and Bop(b) = Bt [b]. Because ρ is a ΣI correspondence we get that

At [a] ρ Bt [b] and hence that the interpretations of op in A and B preserve the relation

ρ. As that happens for every operation and related arguments, we get that ρ is a Σ-

correspondence and therefore k extends closed correspondences.

We can also prove that stability is sufficient for uniform-definability.

Proposition 3.14 (Stability implies uniform definability ). Let k : SPICOL⇒SPCOL be

a tight COL-construction. If k is generally stable then k is generally uniform definable.

61



Proof. In order to obtain the same defining term for two correspondent arguments we

use the term generated correspondence over those arguments.

The reason why closed-stability is not capable of enforcing uniform definability is

because the term generated relations are typically not closed and hence they are not

automatically preserved by a closed-stable construction.

So, uniform definability is equivalent to stability but is only sufficient for closed-

stability. That also means that uniform definability is sufficient for proving globality.

However, the reverse is not true, i.e. there are global constructions for which the imple-

mented operations fail to be definable by the same term for correspondent arguments

as we can see in the following example.

Example 3.15 (Closed-stability does not imply uniform definability). We will define

a tight construction k : SPICOL⇒SPCOL that is generally closed stable but is not uni-

form definable. For that let SPICOL be the following specification:

spec SPICOL

sorts s,v

operations out : s→ v

in : v→ s

⊥,> : v

constructors ⊥,>, in
observers out

axioms ⊥ 6=>
out(in(⊥)) =⊥

end

and let SPCOL be the extension of SPICOL with an operation

spec SPCOL = SPICOL then
operations op : s→ s

end

A construction k : SPICOL⇒SPCOL must implement op for each algebra AI ∈ SPICOL.

Let AI be a model of the specification and let A = k(AI) be defined as follows:

Aop(x) = Ain(>) for all x ∈ As if AIout(in(>)) = AI⊥

Aop(x) = Ain(⊥) for all x ∈ As if AIout(in(>)) = AI>

62



To prove that k is generally closed-stable we must prove that it extends all closed

general correspondences. For that we will analyze the pattern of correspondences

between algebras of SPICOL specification.

Let AI,BI ∈ SPICOL and ρ: AI↔ BI be a closed general correspondence. Know-

ing just this information we can deduce that AI⊥ ρ BI⊥, AI> ρ BI>, AIin(⊥) ρ BIin(⊥)

and AIin(>) ρ BIin(>). To further enrich our knowledge about how ρ looks we need to

assume something about the interpretation of out in the two algebras. We will treat

two cases depending on whether the term out(in(>)) is interpreted identically in AI

and BI or is interpreted differently. First, let us look at the simple case and assume that

out(in(>)) is interpreted as > or as ⊥ in both models. Then the definition of the con-

struction is the same for AI and BI and without any additional information about ρ we

can conclude that k extends ρ. Secondly, we should look at the case when the construc-

tion defines the implementation differently and for that assume that AIout(in(>)) = AI⊥
and BIout(in(>)) = BI>. This allows us to deduce that AI⊥ ρ BI> and because ρ is

closed we get AI> ρ BI⊥ and furthermore that Ain(>) ρ Bin(⊥). The last relation is

sufficient to conclude that the interpretations of op preserve ρ as Aop(x) = Ain(>) and

Bop(x) = Bin(⊥).

Finally, we should give an example of two correspondent elements for which the

operation op cannot be defined by the same term. Let AI and BI be defined as follows:

AIs = {a0,a1} , BIs = {b0,b1} AIv = BIv = {⊥,>}

AI⊥ = BI⊥ =⊥, AI> = BI> =>

AIin(⊥) = a0 , AIin(>) = a1

BIin(⊥) = b0 , BIin(>) = b1

AIout(a0) =⊥ , AIout(a1) =⊥

BIout(b0) =⊥ , BIout(b1) =>

and let ρ be the total relation between AI and BI (obviously ρ is a closed general cor-

respondence). From the definition of k we get that Aop(x) = Ain(>) = a1 and Bop(x) =

Bin(⊥) = b0. Now, taking our correspondents via ρ to be a0 and b0 we get that there

is no term t such that At [a0] = a1 and Bt [b0] = b0. Before ending this example please

notice that there are particular terms t0 and t1 such that At0 = a1 and Bt1 = b0, so the

result of point-wise definability is not under scrutiny here.

63



This example also shows, indirectly, that there exists general global constructions

that do not preserve all correspondences; they only preserve the closed ones. That hap-

pens because the construction in Example 3.15 cannot preserve all correspondences.

Assuming that it does then it should also be uniformly definable which is obviously a

contradiction according to what we have just proven.

3.5 Theorems for free

We have shown, in the previous section, that operations implemented via general global

constructions are required to be syntactically definable in terms of the source signature.

We can use that insight to show that if operations from the source specification preserve

a property then the implemented operations, which are definable in terms of the source

operations, will preserve the same property.

Our example will be that of implementing a replace function for lists in a global

context based on the specification LISTWITHNAME starting from a general global

construction k acting in a local context based on specification LISTSKELETON.

The specifications defined below are linked by the following lifting pushout

Sig[LISTWITHNAME] // Sig[LISTWITHNAMEANDREPLACE]

Sig[LISTSKELETON] //

φ

OO

Sig[LISTSKELETONWITHREPLACE]

φ′
OO

The specifications LISTWITHNAME and LISTWITHNAMEANDREPLACE consti-

tute the global context:

64



spec LISTWITHNAME

sorts List,Elem,String

operations empty : List

insert,remove : Elem,List→ List

change : String,List→ List

name : List→ String

constructors empty, insert,change

observers (name)

axioms name(insert(x,c)) = name(c)

name(remove(x,c)) = name(c)

name(change(s,c)) = s

end

spec LISTWITHNAMEANDREPLACE = LISTWITHNAME THEN

operations replace : Elem,Elem,List→ List

axioms % This is a theorem for free
name(replace(x,y,c)) = name(c)

end

The local context is formed from specifications LISTSKELETON and LISTSKELE-

TONWITHREPLACE.

spec LISTSKELETON

sorts List,Elem

operations insert,remove : Elem,List→ List

end

spec LISTSKELETONWITHREPLACE = LISTSKELETON THEN

operations replace : Elem,Elem,List→ List

end

We will enumerate some of the differences between the local and the global con-

65



text. First of all, in the local context there are no hidden or constructed sorts, because

List and Elem are both visible and loose. However, in the global context List becomes

a hidden and constructed sort. Please notice that the fitting morphism φ is not a COL
signature morphism, moreover it is not even vertical.

So, assume we have a general global construction that implements replace locally:

k : LISTSKELETON⇒LISTSKELETONWITHREPLACE

It follows that we can use the canonical lifting

φ(k) : φ(LISTSKELETON)⇒φ(LISTSKELETONWITHREPLACE)

and by using Proposition 3.4 we can define a construction in the global context

k′ : LISTWITHNAME⇒LISTWITHNAMEANDREPLACE

if we can prove the following two conditions:

• LISTWITHNAME ⊆ φ(LISTSKELETON)

• φ(k)(RFA(LISTWITHNAME))⊆ LISTWITHNAMEANDREPLACE

The first condition is trivially satisfied, because the local context does not have any

COL-requirements, i.e. all standard algebras are COL-algebras.

The second condition is where genericity of k comes into play in order to derive

the desired property ∀x,y,c.name(replace(x,y,c)) = name(c) in the global context.

Please notice that we do not know much about k; we do not know exactly how it is

implemented but we know it must be reusable in all general contexts. Therefore, k

must be definable (see Propostion 3.11), and hence replace must be definable in terms

of insert and remove. So, for algebras in φ(RFA(LISTSKELETON)) for which insert

and remove preserve names it follows easily that remove also preserves names.

The example shows that proving the correctness of a lifted construction based on

the canonical lifting cannot be done solely using the information of the specifications

involved in the lifting procedure, but must rely on the genericity of the construction.

That use of genericity to derive properties directly from the type of the k resembles

the phenomenon in System F known as “theorems for free”. The variant adapted to

System F of our “theorem for free” says that every parametric inhabitant (recall that

parametricity corresponds to stability) of a type corresponding to the “type” of k:

∀E.∀L.(E→ L→ L)→ (E→ L→ L)→ (E→ E→ L→ L)

66



can be written as

λE,L.λinsert,remove.λx,y,c.op(. . .op(x,y,c) . . .)

where each occurrence of op can be replaced either with insert or with remove. This

“theorem for free” in System F basically means that all parametric inhabitants of that

type are lambda definable.

3.6 Summary

In this chapter we have presented the adaptation, to the setting of constructor based

observational logic [BH06a], of a technique developed in [BST08] for lifting con-

structions defined locally to global contexts. The kind of construction that we have

studied is the most general of all that we will consider in this thesis, because such a

construction can be reused in all global contexts.

Global contexts allow the exploration of the constructed models in full detail and

they can refer to any number of elements from the carriers and observe them at any

granularity. We proved that general globality is equivalent to preservation of closed

algebraic relations. This characterization result is inspired from what was first done

in [Sch87], but the setting and the final meaning of the result are different. In the

next chapter we will see versions of globality that are closer to the ones that have

been investigated in the literature. The novelty of our approach consists exactly in the

tuning of various notions of relation that are needed to characterize different notions

of globality, that vary with the restrictions imposed on their usage contexts.

Another novelty with respect to the algebraic specification literature is our inves-

tigation of definability results implied by stability. This research line was suggested

by similar results obtained for the second order lambda calculus from parametricity.

The definability result obtained for global constructions represents a confirmation of

the informal expectation that the implementer should rely only on what it is available

to him in the source signature when writing a generally reusable implementation. In

the example given in Section 3.5 we have exploited definability in order to show that

globally implemented operations inherit properties from the operations present in the

local source signature, and one can simply guess such properties by looking at the type

of the implementation, as was done by Wadler for System F [Wad89].

67



Chapter 4

Constructions in restricted contexts

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Vertical global constructions . . . . . . . . . . . . . . . . . . . . 62

4.3 Vertical global constructions on iso-closed classes . . . . . . . . . 76

4.4 Comparing general and vertical globality . . . . . . . . . . . . . 83

4.5 Quasi-vertical global contexts . . . . . . . . . . . . . . . . . . . . 85

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

In this chapter we will study implementation constructions that are prepared to be

lifted only to contexts fitted via a restricted class of signature morphisms, in contrast

to Chapter 3 where the fitting morphism was allowed to be an arbitrary signature mor-

phism.

4.1 Introduction

In Chapter 3 we have investigated the properties of constructions that can be reused

in general contexts. A step further can be made by considering fitting signature mor-

phisms that are more adequate to the behavioral aspects of COL. The first case we will

look at is that of constructions that can be lifted only via vertical pushouts, i.e. those

in which φ is a vertical signature morphism:

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

68



Obviously, any construction that can be used in all general contexts is also usable

in all vertical contexts, because any vertical signature morphism is also a general sig-

nature morphism. A consequence of that is that the constraint “has to work for all

vertical fitting morphisms” is weaker than the constraint “has to work for all fitting

morphisms”. In conclusion, we should expect that definability and “theorems for free”

inferred for the vertical case will be weaker than in the general case. However, one

can see the other side of the coin as giving more freedom to the implementer, as he has

the possibility of creating more constructions using the knowledge that usage contexts

will be restricted.

Restricting usage to vertical contexts improves significantly some of the techni-

cal results as we will see in Section 4.3. In particular we will show that globality is

synonymous to preservation of all correspondences, not just closed ones.

Before advancing any further let us say that all concepts defined for the general

case will be redefined in order to reflect the restriction of fitting morphisms to vertical

signature morphisms. Hence, we will talk about things like vertical global construc-

tions, vertical correspondences and vertical stability. However, some of the time we

will omit the word “vertical” from their name and use it only whenever there is danger

of confusion or when we make comparisons to the general case.

4.2 Vertical global constructions

In accordance with the choice of usage contexts, we shall define the appropriate notion

of construction that can be used in any vertical context.

Definition 4.1 (Vertical global COL-construction). Let k : SPICOL⇒SPCOL be a per-

sistent COL-construction. We say that k is a vertical global COL-construction if for

every vertical lifting pushout, φ(k) is a COL-construction between φ(SPICOL) and

φ′(SPCOL).

The notion of vertical global construction is closer to what has been studied in the

literature in [STar, BST08]. To see that please recall our discussion from Section 2.4

on how the established framework of OBS maps into COL. In particular, recall that the

reachability and observability aspects in the classical frameworks correspond to what

we call an integral COL-signature, in which every operation acts both as a construc-

tor and as an observer (see Definition 2.34). Recall also that in an integral signature

visible sorts are the same as the loose ones and hence the condition of verticality for

69



OBS-signature morphisms amounts to requiring no change in the nature of the visi-

ble sorts, i.e. φ(SObs) ⊆ S′Obs (see Section 2.4). The lifting of local constructions into

global contexts has been studied in [BST08] relative to OBS by using lifting signature

morphisms that preserve visible sorts, i.e. vertical according to our definitions. Here

we extend that work by considering the full form of COL-signatures, not just those

that are present in OBS, and consequently adopting more general fitting morphisms

that take into account also the loose sorts.

Before going any further we will present the typical scenario that involves the

reusability of vertical global constructions similarily as it is done for the general case

in Proposition 3.4, relative to a vertical lifting pushout.

SPI′COL
k′ +3

�φ
��

SP′COL

�
φ′

��
SPICOL k

+3 SPCOL

Proposition 4.2 (Lifting vertical constructions). Let k : SPICOL⇒SPCOL be a vertical

global COL-construction, and two specifications SPI′COL and SP′COL forming a global

context connected by the following vertical lifting pushout

Sig[SPI′COL]
σ′COL // Sig[SP′COL]

Sig[SPICOL] σCOL
//

φ

OO

Sig[SPCOL]

φ′
OO

If the following conditions are satisfied:

1. SPI′COL ⊆ φ(SPICOL)

2. φ(k)(SPI′COL)⊆ SP′COL

then k′ : SPI′COL⇒SP′COL, defined as k′(A′) = φ(k)(A′) for each A′ ∈ Mod[SPI′COL],

is a COL-construction. Moreover, the following conditions represent an equivalent

version of the ones above, but they are more appropriate for practical use because they

require the inclusion proofs to be done for a smaller class of algebras.

1. RFA(SPI′COL)⊆ φ(SPICOL)

2. φ(k)(RFA(SPI′COL))⊆ SP′COL

70



Proof. The fact that k′ is a COL-construction is immediate from the fact that it is a

restriction of the canonical lifting φ(k).

The interesting part are the sufficient conditions that allow us to consider only

the reachable and fully-abstract algebras of the input specification from the global

context. The simplification of the first condition is due to the fact that φ is a vertical

signature morphism, and hence it preserves COL-isomorphisms. The simplification of

the second condition is due to the fact that φ(k) is preserving COL-isomorphisms, by

definition of COL-constructions.

4.2.1 Vertical correspondences

Similarly to the case dealing with general contexts, the globality of the constructions

relative to vertical contexts can be captured locally by means of preservation of corre-

spondences. However, the notion of correspondence changes because of the particular

properties of the fitting morphisms. General correspondences are just plain algebraic

relations, i.e. they are required to be preserved by all of the operations in the signature.

Correspondences in the vertical case will carry supplementary information about the

loose and visible sorts, as they must capture the essence of observational equalities that

come from a vertical extension.

Definition 4.3 (Vertical correspondence). Let ΣCOL = (S,OP,OPCons,OPObs) be a

COL-signature and A,B be two ΣCOL-algebras. A (vertical) correspondence ρ be-

tween A and B, written ρ: A↔ B, is an algebraic relation between A and B that is:

• bi-injective on visible sorts

• bi-surjective on loose sorts.

If in addition ρ is closed we call it a (vertical) closed correspondence. Any two ele-

ments a ∈ A and b ∈ B such that a ρ b are called (vertical) correspondents.

We will show that vertical correspondences commute with the observational equal-

ities of the related algebras. This will be the first example where both requirements,

bi-surjectivity and bi-injectivity, are used.

Proposition 4.4 (Vertical correspondences commute with observational equalities).
Let ΣCOL be a COL-signature, A,B be two ΣCOL-algebras and ρ: A↔ B be a ver-

tical correspondence between them. Then for every a0,a1 ∈ A and b0,b1 ∈ B such that

a0 ρ b0, a1 ρ b1 and a0 ≈ΣCOL,A a1 we have that b0 ≈ΣCOL,B b1.

71



Proof. To show that b0 ≈ΣCOL,B b1 we will pick any context ctx ∈ C (ΣCOL) and valu-

ation β : XLoose→ 〈GenΣCOL(B)〉 and we will prove that Bctx[β](b0) = Bctx[β](b1). For

that we consider a corresponding valuation α : XLoose→〈GenΣCOL(A)〉, i.e. α(x) ρ β(x)

for each x ∈ XLoose. Such a valuation exists because ρ is bi-surjective on loose sorts.

We now apply the context ctx to the valuation α and to a0 and a1 and we obtain that

Actx[α](a0) = Actx[α](a1). Moreover, because α and β correspond through ρ, we get

that Actx[α](a0) ρ Bctx[β](b0) and Actx[α](a1) ρ Bctx[β](b1). Finally, because ρ is bi-

injective on visible sorts and because we have Actx[α](a0) = Actx[α](a1), Actx[α](a0) ρ

Bctx[β](b0) and Actx[α](a1) ρ Bctx[β](b1) we get that Bctx[β](b0) = Bctx[β](b1).

The notion of stability, i.e. preservation of correspondences, changes accordingly

to the newly introduced notion of correspondence.

Definition 4.5 (Vertically stable COL-construction). Let k : SPICOL⇒SPCOL be a

tight COL-construction. We say that k is vertically stable if it extends vertical cor-

respondences, i.e. for any SPICOL-algebras AI,BI and any vertical correspondence

ρ: AI↔ BI we have that ρ is a vertical correspondence between k(AI) and k(BI). We

say that k is vertically closed-stable if it extends closed vertical correspondences.

Similarly to the general case we can prove that closed-stability implies globality,

i.e. preservation of closed vertical correspondences is sufficient in order to lift a local

construction to any vertically fitted context.

Proposition 4.6 (Closed-stability implies globality). Let k : SPICOL⇒SPCOL be a tight

COL-construction. If k is vertically closed-stable then k is a vertical global COL-

construction.

Proof. Consider a vertical lifting pushout as below:

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

We need to show that φ(k) is a COL-construction along σ′COL between φ(SPICOL) and

φ′(SPCOL). For simplicity we will write k′ instead of φ(k).

First we will show that k′(AI′) ∈ AlgCOL(Σ
′
COL) for all AI′ ∈ φ(SPICOL). Let AI =

AI′�φ, A= k(AI) and A′= k′(AI′). We claim that the constraints imposed by ΣI′COL and

Σ′COL, on AI′ and respectively A′, coincide, i.e. 〈GenΣI′COL
(AI′)〉 = 〈GenΣ′COL

(A′)〉�σ′
and ≈ΣI′COL,AI′ =≈Σ′COL,A

′�σ′ .

72



Notice that because σ′COL is a COL signature morphism, i.e. it does not add

new constructors or observers, we get that GenΣI′COL
(AI′) = GenΣ′COL

(A′)�σ′ and that

≈ΣI′COL,AI′ =≈Σ′COL,A
′�σ′ . We will show that 〈GenΣI′COL

(AI′)〉= 〈GenΣ′COL
(A′)〉�σ′ and

that ≈Σ′COL,A
′ is a congruence on 〈GenΣ′COL

(A′)〉. For that let ρ: AI ↔ AI be the re-

striction of ≈ΣI′COL,AI′ to 〈GenΣI′COL
(AI′)〉 and reduced via φ. It is easy to see that ρ is a

closed vertical correspondence and because k is vertically closed-stable we get that ρ is

preserved by k and hence the operations added by σCOL commute with ρ. That means

in particular that the elements produced by those operations are still in 〈GenΣI′COL
(AI′)〉

and hence 〈GenΣI′COL
(AI′)〉 = 〈GenΣ′COL

(A′)〉�σ′ . Now, we can see that ρ is a congru-

ence on the generated algebra 〈GenΣ′COL
(A′)〉 by noticing that the operations that come

from Σ′COL preserve ≈ by default and the ones added by σ preserve it due to stability.

Secondly we need to show that for all AI′ ≡ΣI′COL
BI′ we have k(AI′)≡Σ′COL

k(BI′).

For that let h be the isomorphism between AI′ and BI′ and ρ be the correspondence

equal to h�φ. It is trivial that ρ is a closed vertical correspondence, and using the fact

that k is vertically closed-stable we get that ρ commutes with the added operations.

Finally, because σ is tight we can conclude that h is a COL-isomorphism between

k′(AI′) and k′(BI′).

Now, we will revise the proof of Proposition 3.8 in order to obtain the other di-

rection of the implication, i.e. that closed vertical correspondences are necessarily ex-

tended by vertical global constructions.

Proposition 4.7 (Globality implies closed-stability). Let k : SPICOL⇒SPCOL be a tight

COL-construction. If k is a vertical global construction then k is vertically closed-

stable.

Proof. Let AI and BI be two SPICOL models and let ρ be a closed vertical correspon-

dence between AI and BI. Similarly to what we have done for the general contexts’

case we will build a global context ΣI′COL and two ΣI′COL-isomorphic extensions AI′

and BI′ of AI, and respectively BI, such that the corresponding isomorphism extends

ρ. We will stress only those details that differ from the proof of Proposition 3.8.

We define ΣI′COL to be equal to (SI′,OPI′,OPI′Cons,OPI′Obs) where

• SI′ = SI]{Bool}

• OPI′ = OPI]{!a,b : s | (a,b) ∈ρs,s ∈ SI}]{?b : s→ Bool | b ∈ Bs,s ∈ SIState}]
{true, false : Bool}

73



• OPI′Cons = {!a,b : s | (a,b) ∈ρs,s ∈ SICons}]{true, false : Bool}

• OPI′Obs = {(op, i) | op : s1, . . . ,sn→ s ∈ OPI,si ∈ SIState,1 ≤ i ≤ n}]{?b : s→
Bool | b ∈ Bs,s ∈ SIState}

Please notice that we have defined the observers and constructors for ΣI′ in such a way

that the fitting morphism φ, i.e. the inclusion from ΣI to ΣI′, is a vertical morphism,

i.e. visible and loose sorts do not change their nature. From that definition we can see

that SI′Loose = SILoose, SICons = SICons ]{Bool}, SI′State = SIState and SI′Obs = SIObs ]
{Bool}. Notice the differences between this definition and that present in the proof of

Proposition 3.8 where all sorts in Σ′COL were defined to be constructed and also hidden

(with the exception of Bool).

Now, let us define AI′ such that AI′�φ = AI and BI′ such that BI′�φ = BI. For that

we must define only the interpretation of the additional symbols introduced by φ. We

let the sort Bool be interpreted canonically, i.e. AI′Bool = BI′Bool = {true, false}, and for

the additional operations we use the same interpretation as in the general case:

AI′: • !a,b = a for all (a,b) ∈ρ

• ?b(a) = true if a ρ b and false otherwise

BI′: • !a,b = b for all (a,b) ∈ρ

• ?b(b′) = true if there exists a such that a ρ b and a ρ b′ and false otherwise

Following the same reasoning as in the proof of Proposition 3.8 we can show that

the only relation between AI′ and BI′ that extends ρ and is identity on Bool is a COL-

isomorphism. Furthermore, we know that φ(k)(AI′) ≡Σ′COL
φ(k)(BI′) and hence the

corresponding isomorphism is an extension of ρ. Finally, that means that ρ is an alge-

braic relation between k(AI) and k(BI).

Please notice that in the general case (see Proposition 3.8), all algebraic relations

needed to be preserved in order to ensure globality. In the vertical case, due to the

smaller class of contexts in which a construction might be used, we obtain that a

smaller class of relations are necessarily preserved. More explicitly, vertical global

constructions need not preserve algebraic relations that do not map all elements of

loose sorts because they will not be used in contexts in which the generated parts

on those sorts will be a strict subset of the corresponding carriers. Also, the rela-

tions that are not one to one correspondences on visible sorts cannot appear as COL-

isomorphisms between algebras in contexts that preserve the nature of those visible

sorts.

74



We can now put together the two propositions concerning necessity and sufficiency

of closed-stability for globality, in order to obtain a characterization of global construc-

tions by means of preservation of closed-correspondences.

Theorem 4.8 (Globality is equivalent to closed-stability). Let k : SPICOL⇒SPCOL be

a tight COL-construction. Then k is vertically global if and only it is vertically closed-

stable.

Proof. A direct consequence of Proposition 4.6 and Proposition 4.7.

4.2.2 Definability

Because a smaller number of usage contexts means more flexibility granted to the

implementer, the definability results for the vertical case will not be as strong as in

the general case. We anticipate the results by saying that we will obtain a definabil-

ity result for vertical COL-constructions, but the defining terms will contain not only

operations from the source signature but also elements from the carriers of the loose

sorts induced by that signature. To express this formally we have to revise our defini-

tion of definability in order to make it aware of the additional information present in a

COL-signature.

Definition 4.9 (Loose definability). Let ΣCOL and Σ′COL be two COL-signatures and

let σCOL be a tight COL-signature morphism between them, i.e. σCOL : ΣCOL→Σ′COL.

Let op′ : s1, . . . ,sn→ s ∈ OP′ be an operation symbol and A′ be a Σ′COL-algebra.

We say that op′ is (point-wise) loose definable on A′ if for every tuple a1, . . . ,an,

with ai ∈ A′si
for i = 1 . . .n, there exists a term t ∈ TΣ∪A′Loose

({x1, . . . ,xn}) such that:

A′op′(a1, . . . ,an) = A′t [a1/x1, . . . ,an/xn]

We will call the term t the defining term for op′ and a1, . . . ,an. (The definition extends

easily to sets of operations and classes of algebras).

Let k : SPICOL⇒SPCOL be a tight COL-construction. We say that k is loose defin-

able if all operations from OP are loose definable on k(SPICOL).

In this section we will use mainly the notion of loose definability and for simplicity

we will just call it definability when there is no danger of confusion with the notion of

algebraic definability used in Chapter 3.

Now, we can use this concept in order to show that all vertically closed-stable

constructions are definable.

75



Proposition 4.10 (Closed-stability implies loose definability). Let k : SPICOL⇒SPCOL

be a tight COL-construction. If k is vertically closed-stable then k is loose definable.

Proof. Let A be a COL-algebra in k(SPICOL), i.e. there exists AI ∈ SPICOL such that

k(AI) = A. Let op : w→ s ∈ OP and consider a tuple a ∈ Aw. We define the vertical

correspondence ρ: AI↔ AI that relates AIt [a] ρ AIt [a] for all t ∈ TΣ∪AILoose({x}). Note

that ρ is a closed vertical correspondence because all elements from AILoose are related

and also the fact that ρ ⊆ = makes it closed and injective on visible sorts. Because k

extends closed vertical correspondences we get that Aop(a) ρ Aop(a) and therefore, by

the way we defined ρ, there exists t ∈ TΣ∪AILoose({x}) such that Aop(a) = At [a].

Similarly to the general case we can produce a sound criteria for proving that a

construction is closed-stable. We have proved in Proposition 3.13 that uniform general

definable constructions, i.e. those for which the implemented operations are definable

by the same defining term when applied to generally correspondent arguments, are

generally closed-stable. In the vertical case we can prove a similar result by requiring

that the defining terms are correspondent, not necessarily equal, for vertically corre-

spondent arguments. In order to express that we will first define what we mean by

correspondent terms.

Definition 4.11 (Correspondent terms). Let ΣCOL be a COL-signature, A and B be

two ΣCOL-algebras and let ρ be a vertical correspondence between A and B. We say

that two terms t0 ∈ TΣ∪ALoose(X) and t1 ∈ TΣ∪BLoose(X) are correspondent via ρ if there

exists a set of variables Y , a term t ∈ TΣ∪Y (X) and two ρ-correspondent valuations

α : Y → ALoose and β : Y → BLoose, i.e. α(y) ρ β(y) for all y ∈ Y , such that t[α] = t0
and t[β] = t1.

Basically, two terms with variables from X and elements from the loose carriers of

A and B are correspondent if they have a common “shape” (represented in the definition

by the term t) and the loose elements that are present in their body correspond one to

another.

We can now express the notion of uniform definability for vertical correspondents.

Definition 4.12 (Uniform loose definability). Let ΣCOL and Σ′COL be two COL-signatures

and let σCOL be a tight COL-signature morphism σCOL : ΣCOL→ Σ′COL. We say that

an operation op′ : w→ s ∈ OP′ is uniform loose definable on a class A ′ of Σ′COL-

algebras if for all A′,B′ ∈ A ′ and all correspondent tuples a ∈ A′w and b ∈ B′w, via

76



a closed vertical ΣCOL-correspondence ρ, there exists two ρ-correspondent defining

terms, t0 for op′ and a, and t1 for op′ and b.

Uniform definability in the vertical case is conceptually similar to uniform defin-

ability in the general case. However, we should have in mind that they are based on dif-

ferent kinds of correspondences, and while there is a general correspondence between

any two elements of every two algebras that is not the case with vertical correspon-

dences. For example, the vertical correspondence’s requirement of being bi-injective

on the visible sorts typically stops one to put in correspondence elements that have

different observable behaviors.

Proposition 4.13 (Uniform definability implies closed-stability). Let k : SPICOL⇒SPCOL

be a tight COL-construction. If k is uniform loose definable then k is vertically closed-

stable.

Proof. Let AI,BI be two ΣICOL-algebras and ρ: AI ↔ BI be a closed vertical corre-

spondence between them. We will denote by A and B the constructed algebras k(AI)

and k(BI). Also, consider an operation op : w→ s ∈ OP and two ρ-correspondent

tuples a ∈ Aw and b ∈ Bw. Using the uniform loose definability assumption we get

that there are two correspondent terms, t0 for op and a and t1 for op and b, i.e.

Aop(a) = At0[a] and Bop(b) = Bt1[b]. Let t be the common “shape” of the two cor-

respondent defining terms t0 and t1 with α and β being the two correspondent valu-

ations such that t0 = t[α] and t1 = t[β]. Because ρ is an algebraic relation, i.e. it is

preserved by the operations in the ΣI signature, we get that At [α][a] ρ Bt [β][b]. That is

equivalent to At0[a] ρ Bt1[b] and hence the interpretations of op in A and B preserve the

relation ρ. As that happens for every operation and related arguments we get that ρ is

a Σ-correspondence and hence k extends ρ.

Is the reverse implication true, i.e. is every closed-stable construction uniformly de-

finable? We can produce a counterexample for that statement. Hence, it is not the case

that any vertically closed-stable construction is uniform loose definable. The problem

is that term generated relations, which could have been used to prove the uniformity,

are not typically closed and therefore are not necessarily extended by closed-stable

constructions. However, we will see in Section 4.3 that under the condition that the

source specification is iso-closed we can prove that closed stability is equivalent to

stability and does imply uniform definability. That means that we cannot provide the

same counterexample as in Example 3.15 for the failure of uniform definability (be-

77



cause that construction was defined for an iso-closed class of COL-algebras) and we

must find a construction that acts on a class that is not iso-closed.

Example 4.14 (Closed stability does not imply uniform definability). We will define

a tight construction k : SPICOL⇒SPCOL that is vertically closed stable but is not uni-

form loose definable. For that let ΣICOL be the following signature:
sorts s,v

operations out : s→ v

x00,x01,x10 : s

⊥ : v

constructors ⊥,x00,x01,x10

observers out

and let ΣCOL be the signature that adds a constant x11 : s to ΣICOL.

Now let Mod[SPICOL] = {A,B}, i.e. the semantics of the specification is given just

by the two COL-algebras A defined as follows:

As = Bs = {c0,c1} and Av = Bv = {⊥}

Ax00 = c0, Ax01 = c0, Ax10 = c1

Bx00 = c0, Bx01 = c1, Bx10 = c0

A construction k : SPICOL⇒SPCOL must implement x11 : s for each algebra AI ∈
SPICOL. Because we only have two algebras in SPICOL we can define it directly by

letting Ax11 = Bx11 = c1.

The defined construction is closed-stable because any closed algebraic relation ρ

between A and B must obey c0 ρ c0, c0 ρ c1, c1 ρ c0 by algebraicity and then imediately

c1 ρ c1 by closedness. Therefore k extends all closed algebraic relations, i.e. it is

generally closed-stable and in particular it is vertically closed stable. However, k is

not uniformly definable because there is no term that evaluates to c1 in both algebras.

Please notice that the counterexample we are presenting does not use the particular

requirements of the vertical case as we have no loose sorts. In fact this is a perfectly

good counterexample for the general case as well. The reason we preferred to present a

more elaborate counterexample in Example 3.15 was to show that, in the general case,

we can find counterexamples even if the source specification is iso-closed. That is not

possible in the vertical case as we will see in Section 4.3.

78



4.2.3 Theorems for free

We will now look at some concrete examples of how vertical closed stability can

be used to derive useful properties about vertical global constructions. In the gen-

eral case (see Section 3.5) we worked with a specification of lists as inhabitants of a

loose and visible sort in the local context, because we had the liberty to change the

nature of that sort in global contexts. In the vertical case, that is not possible any-

more and we will change the setting by considering a specification of containers as

inhabitants of a hidden and constructed sort. Our example will contain specifications

CONTAINERWITHNAME and CONTAINERWITHNAMEANDREPLACE for the global

context:

spec CONTAINERWITHNAME = BOOL THEN

sorts Container,Elem,String

operations empty : Container

insert,remove : Elem,Container→ Container

isIn : Elem,Container→ Bool

name : Container→ String

change : String,Container→ Container

constructors empty, insert,change

observers (isIn,2),(name)

axioms name(change(s,c)) = s

name(insert(x,c)) = name(c)

name(remove(x,c)) = name(c)

isIn(x, insert(y,c)) = x = y∨ isIn(x,c)

isIn(x,remove(y,c)) = x 6= y∧ isIn(x,c)

end

spec CONTAINERWITHNAMEANDREPLACE = CONTAINERWITHNAME THEN

operations replace : Elem,Elem,Container→ Container

axioms % This is a theorem for free
name(replace(x,y,c)) = name(c)∨name(replace(x,y,c)) = name(empty)

end

and specifications CONTAINERSKELETON and CONTAINERSKELETONWITHREPLACE

79



for the local context:

spec CONTAINERSKELETON = BOOL THEN

sorts Container,Elem

operations empty : Container

insert,remove : Elem,Container→ Container

isIn : Elem,Container→ Bool

constructors empty, insert

observers (isIn,2)

end

spec CONTAINERSKELETONWITHREPLACE = CONTAINERSKELETON THEN

operations replace : Elem,Elem,Container→ Container

end

whose signatures are related by the following pushout:

Sig[CONTAINERWITHNAME] // Sig[CONTAINERWITHNAMEANDREPLACE]

Sig[CONTAINERSKELETON] //

φ

OO

Sig[CONTAINERSKELETONWITHREPLACE]

φ′
OO

The local context based on CONTAINERSKELETON presents containers generated

by empty and insert and observed by isIn, hence modeling finite sets of elements. The

global context introduces in addition a new observation (name) that returns a name

for a container and a new constructor (change) that changes the name of a container.

However, the nature of loose or visible sorts (in our case Elem) is not changed and

hence the fitting morphism is vertical.

According to Proposition 4.2, in order to lift a vertical global construction k :

CONTAINERSKELETON⇒CONTAINERSKELETONWITHREPLACE to the global con-

text it is sufficient to prove:

• RFA(CONTAINERWITHNAME)⊆ φ(CONTAINERSKELETON)

• φ(k)(RFA(CONTAINERWITHNAME))⊆ SP′COL

In order to prove the first inclusion we have to show that reducts of reachable

and fully abstract models in CONTAINERWITHNAME satisfy the COL-constraints im-

posed by the local context. We will not give that proof as it is not the point of our

80



example, but we will remark that the axioms defining the result of observation isIn af-

ter a remove or an insert operation allow us to prove that reachability and observability

constraints are satisfied by those operations.

For the second inclusion, similarly to the example in Section 3.5, we have that

insert and remove preserve the names of the containers. Definability in this case means

that the implemented operation replace should be definable in terms of insert, remove

and empty. Because insert and remove preserve names we can easily conclude that

replace either produces a container with the name of the empty container or it pre-

serves the name of its argument.

4.3 Vertical global constructions on iso-closed classes

Typical specifications are at least iso-closed, in particular basic specifications induced

by a set of axioms are iso-closed. We can draw some useful consequences about the

nature of the defining terms for constructions that start from a iso-closed specification.

We have seen already that in the vertical case, loose definability ensures us that for

any implemented operation we can find a defining term that contains elements from

the loose carriers of the algebras. While that result can still be exploited to gain more

information about the implemented operations, it is useless for reasoning about the op-

erations that have a loose result sort. However, using additional information, like the

requirement for closedness under behavioral isomorphisms, we can strengthen signif-

icantly the result that can be obtained. In that case, we will always be able to find a

defining term that contains elements only from the carriers of visible sorts.

First we will show that any (plain) vertical correspondence can be decomposed

into two closed vertical correspondences using an intermediate algebra that is COL-

isomorphic to the original algebras.

Proposition 4.15 (Decomposition of vertical correspondences). Let ΣCOL be a COL-

signature, A,B be two ΣCOL-algebras and ρ be a vertical correspondence between

them. Then there exists a ΣCOL-algebra Tρ such that A ≡ΣCOL Tρ ≡ΣCOL B, and two

vertical closed correspondences ρA: A↔ Tρ and ρB: Tρ↔ B such that ρA;ρB=ρ.

Proof. Let Tρ contain all the pairs that are linked by the relation ρ, i.e. (Tρ)s = {(a,b) |
(a,b) ∈ρs} for all s ∈ S. The operations are defined component-wise and we can see

that A is well-defined as a Σ-algebra because ρ is algebraic. It is easy to check that

observational equality on Tρ decomposes on two components, i.e. (a0,b0) ≈ΣCOL,Tρ

81



(a1,b1) if and only if a0 ≈ΣCOL,A a1 and b0 ≈ΣCOL,B b1. However using Proposition

4.4 it is sufficient for the observational equality to hold just for one of these to enforce

the equality of the pair, i.e. a0 ≈ΣCOL,A a1 implies b0 ≈ΣCOL,B b1 and vice versa. Using

that we can easily show that Tρ obeys the reachability constraint because for each ele-

ment in the generated algebra (a0,b0) ∈ 〈GenΣCOL(Tρ)〉 we can find an observationally

equal element in the generated part (a1,b1) ∈ GenΣCOL(Tρ) just by focusing on find-

ing the constructor term that evaluates to something observationally equal to a0. The

observability constraint trivially follows from the component-wise preservation of the

observational equality.

To see that A≡ΣCOL Tρ we define the COL-morphism h: A→ Tρ as a0 h (a1,b1) if

and only if a0 ≈ΣCOL,A a1 for elements in the generated algebras. We can easily check

that all conditions in the definition of the COL-morphism are satisfied.

In order to define the two closed vertical correspondences ρA and ρB, such that

ρ=ρA;ρB, just take a ρA (a,b) and (a,b) ρB b for all (a,b) ∈ρ.

We can now prove that globality does not just imply preservation of closed vertical

correspondences but, more generally, it implies preservation of all vertical correspon-

dences.

Proposition 4.16 (Globality implies stability). Let k : SPICOL⇒SPCOL be a tight

COL-construction such that SPICOL is iso-closed. Then k is vertically stable if it

is vertically global.

Proof. To prove that any vertical correspondence is preserved we first decompose

it into two closed vertical correspondences using Proposition 4.15. Then using the

closed-stability, guaranteed by Proposition 4.7, we obtain that those are preserved, and

therefore their composition will also be preserved.

We can now state the equivalence between vertical globality and vertical stability.

Theorem 4.17 (Globality is equivalent to stability). Let k : SPICOL⇒SPCOL be a tight

COL-construction such that SPICOL is iso-closed. Then k is vertically global if and

only it is vertically stable.

Proof. One implication has just be proven in Proposition 4.16, and for the other impli-

cation we use the fact that stability is stronger than closed-stability which is sufficient

to derive globality (see Proposition 4.6).

82



Another improvement, due to preservation of all vertical correspondences, is that

for iso-closed classes the uniform loose definability of global constructions becomes

necessary.

Proposition 4.18 (Globality implies uniform loose definability). Let k : SPICOL⇒SPCOL

be a tight COL-construction such that SPICOL is iso-closed. Then k is uniform loose

definable if it is vertically global.

Proof. Let AI,BI be two ΣICOL-algebras, let op : w→ s ∈ OP and let a ∈ AIw and

b ∈ BIw be two correspondent elements via a vertical correspondence ρ: AI↔ BI. We

define another vertical correspondence ρ0: AI↔ BI that relates AIt0[a] ρ0 BIt1 [b] for all

ρ-correspondent t0 ∈ TΣ∪AILoose({x}) and t1 ∈ TΣ∪BILoose({x}). Because k extends ρ0 we

can conclude that there exists two ρ-correspondent terms t0, t1 that define op for a and

resp. b.

With the previous proposition we have proved that vertical globality is character-

ized, soundly and completely, by uniform loose definability, and we will write these

conclusions in the next theorem.

Theorem 4.19 (Globality is equivalent to uniform loose definability). Let k : SPICOL⇒SPCOL

be a tight COL-construction such that SPICOL is iso-closed. Then k is vertically global

if and only it is uniformly loose definable.

Proof. A direct consequence of Proposition 4.13 and of Proposition 4.18.

We have proved until now that working with iso-closed classes ensures us that

global constructions can be characterized in terms of stability or uniform loose de-

finability. We will now focus on some useful properties that will lead us towards a

stronger definability result.

First we define a special kind of algebraic relations called self-correspondences,

and then we will show that these are preserved by vertical global constructions, even

though they are not vertical correspondences. As the name suggests, we will require

that a self-correspondence relates an algebra to itself, it only relates equal elements and

it must relate all “relevant” visible elements.

Definition 4.20 (Self-correspondence). Let ΣCOL be a COL-signature and let A be a

ΣCOL-algebra. A self-correspondence ρ on A is an algebraic relation between A and

A such that:

• a ρ b implies a = b

83



• 〈Gendom(ρ)
ΣCOL

(A)〉v ⊆ dom(ρv) for all v ∈ SObs

In the previous definition we have used the notion of minimal generated part (see

Definition 2.13), that is 〈Gendom(ρ)
ΣCOL

(A)〉 is the minimal generated part that contains the

elements from dom(ρ).

One can see that self-correspondences are in fact a special kind of predicate. This

kind of predicate can be defined algebraically by identifying a class of algebras. If

we denote by loose subalgebras those subalgebras that preserve the carriers of loose

sorts, and by visible subalgebras those subalgebras that preserve the carriers of visible

sorts, then a self-correspondences for a COL-algebra A is a visible subalgebra of a

loose subalgebra of A. That means that for a self-correspondence it is not important to

contain all loose sorts, but should contain all their visible outcomes.

We will now show that vertical global constructions which start from an iso-closed

specification must extend self-correspondences. The proof is done by completing a

self-correspondence to a standard correspondence, by relating each loose element to

itself. Because not all loose elements are guaranteed to be present in the original

self-correspondence, we will have to force them into the complete correspondence.

But, we will also want to keep track of those elements that were originally present

in the self-correspondence. That is why we use a helper algebra in which the loose

elements that were not in the self-correspondence from the beginning will be tagged

in order to distinguish them. In fact our complete correspondence will be defined on

the helper algebra, and based on the fact that correspondences are extended by generic

constructions, and on the fact that the untagged elements form a stable partition of the

complete correspondence, we will obtain that the original self-correspondence is also

preserved.

Proposition 4.21 (Extending self-correspondences). Let k : SPICOL⇒SPCOL be a tight

COL-construction such that SPICOL is iso-closed. If k is a global vertical construction

then k extends all self-correspondences.

Proof. Let AI ∈ SPICOL and ρ: AI↔ AI be a self-correspondence. We need to show

that k extends it, i.e. that ρ is an algebraic relation on A = k(AI).

In order to prove the preservation of a self-correspondence by a global construction

we will base our arguments on the preservation of vertical correspondences. Therefore,

we will try to complete ρ to a vertical correspondence, i.e. one that is bi-surjective on

all loose sorts. However, we cannot do that directly on AI, so we will construct a helper

algebra T and do the completion on it.

84



Before proceeding any further please notice that 〈Gendom(ρ)
ΣICOL

(AI)〉 is a ΣICOL-algebra

that is isomorphic to AI. As we can also see ρ as a relation on 〈Gendom(ρ)
ΣICOL

(AI)〉, we

will assume w.l.o.g. that AI = 〈Gendom(ρ)
ΣICOL

(AI)〉 discarding the elements that are not

relevant neither to the algebra’s semantics nor to the relation ρ.

The helper algebra T will be defined as follows. On visible sorts it will be exactly

like AI, i.e. Tv = AIv for all v ∈ SIObs. On a hidden sort s it will contain two tagged

copies for each element a ∈ AIs, and we will write a+ and a− to distinguish these

copies. It will also contain a copy for each element a in the domain of ρs which

will be written simply as a. We will call the elements we have described so far, both

on visible and on hidden sorts, direct copies. In addition to the direct copies, the

hidden carriers will contain all the tagged terms over direct copies (the tagged terms

are Σ-terms over the direct copies that contain at least a tagged element). To sum

up, the visible sorts are interpreted as in AI, while the hidden sorts contain multiple

direct copies (tagged and untagged) of the elements in AI and terms (only tagged) over

these copies. Please note that the only hidden untagged elements in T are those that

are present in dom(ρ). That is true also for visible sorts, because from the second

requirement of the definition of self-correspondences and from our assumption that

AI = 〈Gendom(ρ)
ΣICOL

(AI)〉 we get AIv = dom(ρv) for all v∈ SIObs. To conclude, on all sorts

the elements in T are untagged if and only if they are dom(ρ). For all elements in T we

can define a standard value, that belongs to AI, by forgetting the tags and evaluating

the obtained term in AI. We write t̂ ∈ AI for the standard value of t ∈ T .

The interpretation of the operations depends firstly on the result sort. If the result

sort is visible, then Top(t) = AIop(t̂). If the result sort is hidden we treat two cases.

If one of the arguments is tagged, either tagged direct copy or tagged term, then the

result will be a tagged term Top(t) = op(t). If none of the arguments is tagged the result

will be untagged and obtained by evaluating the operation on the arguments in AI, i.e.

Top(a) = AIop(a). The defined algebra is obviously observationally isomorphic with

AI, as it contains just additional copies of the already existing behaviors, and hence

the vertical correspondences on T are extended by k. Therefore, we can focus our

attention on vertical correspondences on T , and we will define one that contains the

original self-correspondence ρ.

For that, let ρT : T ↔ T be defined as follows. First we want ρT to relate all un-

tagged elements to themselves, and hence we will have that a ρ a implies a ρT a for all

a ∈ AI. Secondly, the tagged elements are related by changing the tags, i.e. a+ ρT a−

and a− ρT a+ for any direct tagged copies. Two tagged terms are related by ρT if

85



and only if they have the same structure but corresponding direct tagged copies in that

structure have opposite tags. We can see easily that ρT is a vertical correspondence on

T . The main property of ρT is that it does not relate any tagged element to itself; if

one element is related to itself it must be untagged and must be in dom(ρ), i.e. t ρT t

implies t ∈ dom(ρ) and t ρ t for all t ∈ T .

Now consider an operation symbol op : w→ s added by the tight signature mor-

phism ΣICOL → ΣCOL and let a,b ∈ AI be such that a ρ b. However because ρ is

a self-correspondence we get that a = b and hence a ρ a. Furthermore, we obtain

that a ρT a and because k extends ρT we get that Top(a) ρT Top(a). Using the main

property of ρT as described above we get that Top(a) ρ Top(a) and also that Top(a) is

untagged. Now, notice that the standard value function induces a vertical correspon-

dence ρ0: AI↔ T , i.e. t̂ ρ0 t. This means that Aop(a) ρ0 Top(a) and moreover because

Top(a) is untagged we get that its standard value is equal to itself, or in other words

that Aop(a) = Top(a) which finally leads to Aop(a) ρ Aop(a).

Preservation of self-correspondences improves the quality of the properties that can

be inferred from vertical globality. We no longer have to put all the loose elements into

a relation in order to guarantee preservation, and therefore we can hope for a better

definability result. Recall that loose definability comes with defining terms that can

contain an arbitrary number of loose elements and a consequence of that is the loss

of any usefulness when applied to operations that have a loose result sort. However,

we have seen that in the case of iso-closed specifications it is enough to require only

the reachable visible elements to be related and in accordance to that we can change

first the definability definition, and then prove that we can find defining terms, for

operations implemented via vertical global constructions, that depend only on those

reachable visible elements.

Definition 4.22 (Visible definability). Let ΣCOL and Σ′COL be two COL-signatures

and let σCOL be a tight COL-signature morphism between them. Let op′ : s1, . . . ,sn→
s ∈ OP′ be an operation symbol and A′ be a Σ′COL-algebra. We say that op′ is visible

definable on A′ if for every tuple a1, . . . ,an, with ai ∈ A′si
for i = 1 . . .n, there exists a

term t ∈ TΣ∪Va1,...,an ({x1, . . . ,xn}) such that:

A′op′(a1, . . . ,an) = A′t [a1/x1, . . . ,an/xn]

where Va1,...,an is the indexed set of reachable visible elements from a1, . . . ,an, i.e.

Va1,...,an
v = 〈Gena1,...,an

ΣCOL
(A)〉v for all v ∈ SObs. The definition extends as before to sets of

operations and classes of algebras and constructions.

86



Now we can prove that globality implies visible definability, i.e. defining terms

for operations might depend only on a set of reachable visible elements, and need no

longer be dependent on elements of hidden loose sorts.

Proposition 4.23 (Globality implies visible definability). Let k : SPICOL⇒SPCOL be

a tight COL-construction such that SPICOL is iso-closed. If k is a vertically global

construction then k is visible definable.

Proof. Let A be a COL-algebra in k(SPICOL), i.e. there exists AI ∈ SPICOL such that

k(AI) = A. Let op : w→ s∈OP and a tuple a∈ Aw. We define the self-correspondence

ρ: AI ↔ AI that relates AIt [a] ρ AIt [a] for all t ∈ TΣ∪Va({x}) where Va is the set of

reachable visible elements from a. Notice that this relation trivially satisfies the first

requirement of self-correspondences, and by including Va in it we make sure the sec-

ond requirement is also satisfied. Now, because k extends self-correspondences we get

that Aop(a) ρ Aop(a) and therefore there exists a term t such that Aop(a) = AIt [a]

It is not to be expected that vertical globality is equivalent to some sort of uni-

form visible definability. For uniformity one needs preservation of relations between

different algebras, but self-correspondences do not offer that, they are just predicates.

4.3.1 Theorems for free

We have already used loose definability to prove properties for operations that have a

constrained loose sort. The distinctive value of visible definability is shown when we

try to obtain properties for generically implemented operations that have a loose result

sort. For that we will use a coalgebraic specification of streams as a loose sort.

spec STREAM

sorts Stream,Elem

operations hd : Stream→ Elem

tl : Stream→ Stream

observers hd

axioms

end

87



spec CUTSTREAM = STREAM THEN

operations cut : Stream→ Stream

end

Consider a vertical global construction k : STREAM⇒CUTSTREAM. We will not

repeat the scenario from previous examples by looking at the properties of its canonical

lifting in a particular global context but rather we will try to explain why the name of

the implemented function reflects its behavior. The property we are looking for is that

a generically implemented cut operation does in fact “cut” a finite number of elements

from the head of the stream.

Applying loose definability for cut leads us to an unsatisfactory result. We would

get that the defining terms can contain any loose elements, that is arbitrary streams.

Such a property does not restrict the results that can be produced by cut and that is

why for obtaining a meaningful property we will make use of visible definability.

Visible definability applied to cut means that defining terms are in fact formed only

from hd, tl and visible elements. But, because we have no way to build streams from

visible elements we obtain that the defining terms are formed only from tl. Please no-

tice that we cannot put in correspondence any two streams, and hence we cannot apply

loose definability to obtain that the amount of cutting is the same for all elements and

across algebras. Hence, it is not the case that generic constructions between STREAM

and CUTSTREAM are in one to one correspondence with natural numbers, but they

definitely perform a cutting operation.

4.4 Comparing general and vertical globality

We have seen until now, in Chapter 3 and Section 4.1, two kinds of global construc-

tions. We will summarize the main results in the table below.

Vertical global constructions are more convenient when we want to base an ar-

gument on the preservation of a correspondence because we know for sure that any

vertical correspondence is extended, and we don’t need to show additionally that the

correspondence is closed. Also, it is easier to integrate lifted constructions into vertical

global contexts (see the differences between Proposition 3.4 and Proposition 4.2). In

favor of general global constructions stands, first of all, their generality, i.e. the ability

to use them in any context. That comes with more powerful definability results as only

88



the operations from a signature appear in the defining terms, in contrast to the verti-

cal case for which defining terms may contain a finite number of elements from loose

carriers.
Global

constructions

General

(Definition 3.3)

Vertical

(Definition 4.1)

Correspondences

General correspondences:

algebraic relations

(Definition 3.5)

Vertical correspondences:

algebraic relations

bi-injective on visible sorts

bi-surjective on loose sorts

(Definition 4.3)

Globality

equivalent to

closed-stability

Yes.

General globality

is equivalent to

closed general stability

(Theorem 3.9)

Yes.

Vertical globality

is equivalent to

closed vertical stability

(Theorem 4.8)

Globality

equivalent to

stability

No. Not all

general correspondences

are preserved by

generally global constructions

(Example 3.15)

No. (arbitrary classes).

Yes. (iso-closed classes).

Vertical globality

is equivalent to

vertical stability.

(Theorem 4.17)

Definability

(point-wise)

Yes

General globality

implies

algebraic definability

(Proposition 3.11)

Yes

Vertical globality

implies

loose definability

(Proposition 4.10)

or visible definability

(Proposition 4.23)

Definability

(uniform)

No. Not all

generally global constructions

are

uniformly general definable.

(Example 3.15)

Yes. For iso-closed classes.

Vertically global constructions

are

uniformly loose definable.

(Theorem 4.19)

In the next section, we will look briefly at a kind of global construction that falls

89



between the two already presented cases and borrows good properties from both of

them.

4.5 Quasi-vertical global contexts

In this section we will look at a kind of fitting morphism which we will call quasi-

vertical signature morphisms. The two main points that we want to insist on are the

characterizations of globality via stability and via uniform definability. Recall that

because the general global constructions are forced to extend only the closed corre-

spondences they are incompletely characterized by uniform definability (see Example

3.15). The vertical global constructions, studied in a previous section, are well-behaved

from that point of view, i.e. they extend all correspondences and we can choose the

same defining term for any two correspondent tuples of arguments. However, the de-

finability results are not as strong as for the general case: we only have uniform loose

definability, or visible definability in the best scenario. Our goal is to find a notion

of globality that will inherit the best properties from the already discussed cases. The

way to do that is by using a notion of fitting signature morphism that falls between the

notions of general signature morphism and vertical signature morphism. We will enu-

merate the corresponding definitions and the important properties for quasi-vertical

global constructions will be given sometimes without a complete proof, unless the

proof is significantly different from that given in the previous cases.

We start by defining the quasi-vertical signature morphisms as the ones that pre-

serve only the visible sorts.

Definition 4.24 (Quasi-vertical signature morphism). Let ΣCOL and Σ′COL be two

COL-signatures and let φ : Σ→ Σ′ be a signature morphism between their under-

lying signatures. We say that φ is a quasi-vertical signature morphism if it preserves

visible sorts, i.e. φ(SObs)⊆ S′Obs.

Similar to the general case, a quasi-vertical lifting pushout is a lifting pushout in

which the fitting morphism φ is a quasi-vertical morphism.

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

90



Definition 4.25 (Quasi-vertical global construction). Let k : SPICOL⇒SPCOL be a per-

sistent COL-construction. We say that k is a quasi-vertical global COL-construction if

for every quasi-vertical lifting pushout, φ(k) is a COL-construction between φ(SPICOL)

and φ′(SPCOL).

The lifting to an arbitrary context of a quasi-vertical global construction is done

as in the general case, using reachable and fully-abstract algebras only in one of the

necessary inclusions.

Proposition 4.26 (Lifting quasi-vertical global constructions). Let k : SPICOL⇒SPCOL

be a quasi-vertical global COL-construction, and two specifications SPI′COL and SP′COL

forming a global context connected by the following quasi-vertical lifting pushout

Sig[SPI′COL]
σ′COL // Sig[SP′COL]

Sig[SPICOL] σCOL
//

φ

OO

Sig[SPCOL]

φ′
OO

If the following conditions are satisfied:

1. SPI′COL ⊆ φ(SPICOL)

2. φ(k)(SPI′COL)⊆ SP′COL

then k′ : SPI′COL⇒SP′COL, defined as k′(A′) = φ(k)(A′) for each A′ ∈ Mod[SPI′COL],

is a COL-construction. Moreover, the following conditions represent an equivalent

version of the ones above, but they are more appropriate for practical use because they

require the inclusion proofs to be done for a smaller class of algebras.

1. SPI′COL ⊆ φ(SPICOL)

2. φ(k)(RFA(SPI′COL))⊆ SP′COL

The notion of correspondence must be also tuned for quasi-vertical usage.

Definition 4.27 (Quasi-vertical correspondence). Let ΣCOL = (S,OP,OPCons,OPObs)

be a COL-signature and A,B be two ΣCOL-algebras. A (quasi-vertical) correspon-

dence ρ between A and B, written ρ: A↔ B, is an algebraic relation between A and B

that in addition is bi-injective on visible sorts.

The definition of quasi-vertical stability is, as expected, the preservation of quasi-

vertical correspondences.

91



Definition 4.28 (Quasi-vertical stable COL-construction). Let k : SPICOL⇒SPCOL be

a tight COL-construction. We say that k is quasi-vertically (closed) stable if it extends

all quasi-vertical (closed) correspondences.

We can prove that closed-stability characterizes globality using an almost identical

procedure to the one used in the general case.

Theorem 4.29 (Globality is equivalent to closed-stability). Let k : SPICOL⇒SPCOL be

a tight COL-construction. Then k is quasi-vertically global if and only if it is quasi-

vertically closed-stable.

Proof. The proof is similar to that of Theorem 4.8.

Proving that quasi-vertical (closed) stability is sufficient in order to obtain quasi-

vertical globality can be done by noticing that all isomorphisms in quasi-vertical fitted

contexts are closed quasi-vertical correspondences (see Proposition 4.6 as the proof

goes along the same lines).

The necessity of closed quasi-vertical stability follows from the fact that each

closed quasi-vertical correspondence can be seen as a COL-isomorphism in a care-

fully chosen quasi-vertical context. The quasi-vertical context that is associated to a

closed quasi-vertical correspondence is built similarly to how the associated contexts

are built in the general and vertical cases (see Proposition 3.8 and Proposition 4.7).

Basically the quasi-vertical case is a combination between the general case and the

vertical case. The associated context for a quasi-vertical correspondence ρ has for ev-

ery pair of related elements a ρ b an explicit constructor constant !a,b (as in the general

case), and an explicit observer ?b only for state sorts (as in the vertical case).

In the quasi-vertical case we can prove that all quasi-vertical correspondences

should be preserved. That result is similar to the one proved for vertical global con-

structions as it requires that the source specification is iso-closed. In order to prove it

we will show that a quasi-vertical correspondence can be decomposed into two quasi-

vertical closed correspondences, via a helper algebra which is isomorphic to one of

the related algebras. This is different than in the vertical case (Proposition 4.15) in

which decomposition was symmetric, that is the helper algebra was isomorphic with

both correspondent algebras. That happens basically because two algebras that are

quasi-vertical correspondent are not necessarily isomorphic.

Proposition 4.30 (Decomposition of quasi-vertical correspondences). Let ΣCOL be a

COL-signature, A,B be two ΣCOL-algebras and ρ be a quasi-vertical correspondence

92



between them, i.e. ρ: A↔ B. Then there exists a COL-algebra Aρ such that A ≡ΣCOL

Aρ, and two quasi-vertical closed correspondences ρA: A↔ Aρ and ρB: Aρ↔ B such

that ρA;ρB=ρ.

Proof. The idea behind the definition of Aρ is to slightly modify A by adding some

copies for the elements that are related by ρ. More concretely, for each sort s ∈ S,

Aρ
s will contain all the elements a ∈ As that do not appear in ρs, and also all the pairs

from ρs, i.e. (a,b)∈ρs implies (a,b)∈ Aρ
s . We can define the A-value m̂ for an element

m ∈ Aρ by letting m̂ = a if m = a or m = (a,b). To sum up, the carriers of Aρ have

pairs from ρ, and singletons which are not related by ρ. The operations are defined in

order to respect that distinction and also to commute with the pairs. Let op : w→ s and

let m ∈ Aρ
w. We first apply op to the A-values of m and for that let Aop(m̂) = a. If a

is unrelated by ρ then the result in Aρ will be a singleton, i.e. Aρ
op(m) = a. Otherwise,

when there exists b ∈ B such that a ρ b, we treat two cases. The first case is when one

of the arguments in m is a singleton and then we can choose any pair that contains a as

a result for Aρ
op(m). The second case, when all the arguments in m are pairs, we set the

result by evaluating the tuples that compose m, i.e. Aρ
op(m) = (Aop(a),Aop(b)). So, the

operations basically preserve ρ whenever it is possible.

To see that Aρ is an isomorphic COL-algebra to A we have to notice that the charac-

teristics of elements from Aρ are similar to their A-values. The reachability constraints

can be explained by checking that m ∈ GenΣCOL(A
ρ) if m̂ ∈ GenΣCOL(A), and also that

a ∈ GenΣCOL(A) implies that there exists m ∈ GenΣCOL(A
ρ) such that m̂ = a. The ob-

servability equality comes from A, i.e. m0 ≈ΣCOL,Aρ m1 if and only if m̂0 ≈ΣCOL,Aρ m̂1.

These facts makes it easy to check that Aρ ≡ΣCOL A.

We can now define the relations ρA: A↔ Aρ and ρB: Aρ ↔ B as a ρA (a,b) and

(a,b) ρB b for all (a,b)∈ρ. These are closed quasi-correspondences and ρ=ρA;ρB.

Please notice that the decomposition property is different from the one proved in

the vertical case (see Proposition 4.15). Typically, in the quasi-vertical case we cannot

make the decomposition producing an intermediate algebra that is isomorphic to both

related algebras, and hence Proposition 4.15 cannot be reused.

We can show under the requirement that the source specification is iso-closed that

quasi-vertical globality is equivalent to quasi-vertical stability. As one implication is

immediate from Theorem 4.29, we only have to show that globality implies stability,

i.e. global constructions extend all correspondences.

93



Theorem 4.31 (Globality is equivalent to stability). Let k : SPICOL⇒SPCOL be a tight

COL-construction such that SPICOL is iso-closed. Then k is quasi-vertically global if

and only if it is quasi-vertically stable.

Proof. As stability is stronger than closed-stability we can use Theorem 4.29 to discard

one direction of the proof obligation. In order to show that globality implies preserva-

tion of all correspondences, we consider a quasi-vertical correspondence ρ: AI↔ BI.

Using the decomposition property (Proposition 4.30) we get that ρ=ρAI;ρBI where

ρAI: AI↔ AIρ and ρBI: AIρ↔ BI are closed quasi-vertical correspondences and AIρ ∈
SPICOL. Finally we use closed-stability for k and obtain that ρ is also extended.

Now we can turn our attention to definability which is an immediate result using

the same proof as for the general case.

Proposition 4.32 (Globality implies definability). Let k : SPICOL⇒SPCOL be a tight

COL-construction. If k is quasi-vertically global then k is definable.

Proof. This proof is exactly the same as in the general case (see proof of Proposition

3.11). More explicitly, in order to show that an operation applied to a set of arguments

produces a result that is term generated from its arguments we use the minimal quasi-

vertical correspondence that contains those arguments.

However, unlike for the general case, we can prove that defining terms for quasi-

vertical correspondent arguments must be the same. That happens because all corre-

spondences are preserved and the notion capturing that property is defined as follows:

Definition 4.33 (Uniform quasi-vertical definability). Let ΣCOL and Σ′COL be two

COL-signatures and let σCOL be a tight COL-signature morphism σCOL : ΣCOL →
Σ′COL. We say that an operation op′ : w→ s∈OP′ is uniformly quasi-vertical definable

on a class A of ΣCOL-algebras if for all A,B ∈A , all quasi-correspondences ρ: A↔ B

and all ρ-correspondent tuples a ∈ Aw and b ∈ Bw there exists a common defining

Σ-term t for op′ on a and on b.

We can easily show that uniform quasi-vertical definability implies quasi-vertical

stability using the same reasoning as in Proposition 3.13.

Proposition 4.34 (Uniform definability implies stability). Let k : SPICOL⇒SPCOL be

a tight COL-construction. If k is uniformly quasi-vertical definable then k is quasi-

vertically stable.

94



Proof. The proof follows by an argument that is similar to the one used for proving

Proposition 3.13 for the general case.

Now we can prove that uniform definability is necessary for global quasi-vertical

constructions.

Theorem 4.35 (Globality is equivalent to uniform definability). Let k : SPICOL⇒SPCOL

be a tight COL-construction such that SPICOL is iso-closed. Then k is quasi-vertically

global if and only if k is uniformly quasi-vertical definable.

Proof. The fact that uniform definability is sufficient for obtaining globality follows

by an argument that is similar to the one used for proving Proposition 3.13.

The sufficiency is proved by using stability which is a consequence for global

constructions on iso-closed classes. For that let AI,BI be two ΣICOL-algebras, let

op : w→ s ∈ OP and let a ∈ AIw and b ∈ BIw be two correspondent elements via

a quasi-vertical correspondence ρ: AI ↔ BI. We will denote by A and B the con-

structed algebras k(AI) and resp. k(BI). We define another quasi-vertical correspon-

dence ρ0: AI↔ BI that relates AIt [a] ρ0 BIt [b] for all t ∈ TΣ({x}). Because k extends

ρ0 we have that Aop(a) ρ0 Bop(b)and we can conclude that there exists a term t that

defines op for a and resp. b.

4.5.1 Theorems for free

The characteristics of quasi-vertical globality are very similar to the ones of general

globality. The distinctive difference is the uniform definability result, that allows us to

conclude that implemented operations are defined by the same term when applied to

related arguments. To see how that improves the reasoning we will present an exam-

ple in which we have a local context with no observers with the aim to implement a

merging function merge : List,List→Container.

spec LISTSKELETON

sorts List,Elem

operations insert,remove : Elem,List→ List

hidden List

end

95



spec LISTSKELETONWITHMERGE = LISTSKELETON THEN

sorts List,Elem

operations merge : List,List→ List

end

We will look at properties of a lifting to the following quasi-vertically fitted con-

text:

spec LISTWITHNAME

sorts List,Elem

operations empty : String→ List

insert,remove : Elem,List→ List

name : List→ String

constructors empty, insert

observers (name)

axioms
name(empty(s)) = s

name(insert(x,c)) = name(c)

name(remove(x,c)) = name(c)

end

spec LISTWITHNAMEANDMERGE = LISTWITHNAME THEN

operations merge : List,List→ List

axioms // This is a theorem for free
∀x,y.name(merge(x,y)) = name(x)

∨
∀x,y.name(merge(x,y)) = name(y)

end

Please notice that the fitting morphism is quasi-vertical but it is not vertical. That

happens because List is a hidden sort both in the local context and in the global context,

but it is loose locally and constructed globally. Also, notice that the reducts of the

models from the global specifications are COL-algebras for the signatures of the local

96



specifications. That is not always the case for reducts along quasi-vertical signature

morphisms, but because we do not have any functions of visible result sort in the local

context all standard algebras are COL-algebras.

Consider k to be a quasi-vertical construction in the local context. We get that

merge is uniformly definable. Please notice, that by not having any function from the

state sort List to the visible sort Bool we can easily conclude that all inhabitants of sort

List are relatable via a quasi-vertical correspondence. After these remarks we can say

that uniformity means that for any tuple of arguments we can find a common term that

defines merge when applied to them. Uniform definability implies that merge acts like

a chosen projection for all possible arguments, i.e. it cannot choose to project the name

of the first argument or the name of the second argument based on an examination of

the arguments. The free theorem for this case will be

(∀x,y.name(merge(x,y)) = name(x))∨ (∀x,y.name(merge(x,y)) = name(y))

which is stronger than the one inferable just by using plain definability:

∀x,y.name(merge(x,y)) = name(x)∨name(merge(x,y)) = name(y)

4.6 Summary

In this chapter we have investigated the properties of global constructions depending on

the restrictions that are made to the usage contexts. We have identified how the notion

of correspondence must change in each case to ensure a sound and complete charac-

terization of globality. The preservation of loose sorts in the lifting process is captured

by the bi-surjectivity of the characterizing relation on the loose sorts, while the preser-

vation of visible sorts is captured by the bi-injectivity on the visible sorts. Unlike the

general case presented in Chapter 3, both vertical and quasi-vertical global construc-

tions can be characterized by means of stability, rather than just closed-stability. These

results are in the same tone as those proved in [Sch87, BST08].

We have also proved definability results for both cases. The definability result for

vertical global constructions is rather poor at first as it states that defining terms can

contain an arbitrary number of elements from the loose carriers, but in the end we show

how it can be strengthened to allow only elements from the visible sorts in them. The

visible elements that might appear in defining terms for vertically global constructions

are those that are generated from elements of loose sorts. That is because the promise

97



is that in global contexts no element of the loose sort will be discarded, so their visible

outcome cannot be ignored.

The definability notion for the quasi-vertical case is algebraic definability, the dif-

ference compared to the general case being that uniform definability is obtained as

well.

An updated comparison table describing the features of the three cases of global

constructions that have been investigated so far is given below.

98



Global

constructions

General

(Definition 3.3)

Quasi-vertical

(Definition 4.25)

Vertical

(Definition 4.1)

Correspondences
algebraic relations

(Definition 3.5)

bi-injective on Obs

(Definition 4.27)

bi-injective on Obs

bi-surjective on Loose

(Definition 4.3)

Globality

equivalent to

closed-stability

Yes.

General globality

is equivalent to

closed general

stability

(Theorem 3.9)

Yes.

Quasi-vertical globality

is equivalent to

closed quasi-vertical

stability.

(Theorem 4.29)

Vertical globality

is equivalent to

closed vertical

stability.

(Theorem 4.8)

Globality

equivalent to

stability

No.

General globality

does not imply

general stability

(Example 3.15)

Yes (iso-closed classes).

Quasi-vertical globality

is equivalent to

quasi-vertical stability

(Theorem 4.31)

Yes (iso-closed classes).

Vertical globality

is equivalent to

vertical stability.

(Theorem 4.17)

Definability

(point-wise)

Yes

General globality

implies

algebraic definability.

(Proposition 3.11)

Yes

Quasi-vertical globality

implies

algebraic definability.

(Proposition 4.32)

Yes.

Vertical globality

implies

loose definability.

(Prop. 4.10)

or visible definability

(Proposition 4.23)

Definability

(uniform)

No

General globality

does not imply

uniform algebraic

definability.

(Example 3.15)

Yes (iso-closed).

Quasi-vertical globality

is equivalent to

uniform algebraic

definability.

(Theorem 4.35)

Yes (iso-closed).

Vertical globality

is equivalent to

uniform loose

definability.

(Theorem 4.19)

99



Chapter 5

Constructions for higher order types

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Higher order sorts in COL . . . . . . . . . . . . . . . . . . . . . 94

5.3 Implementation of functions as higher order constants . . . . . . 100

5.4 Logical implementation of functions as higher order constants . 106

5.5 Representation independence . . . . . . . . . . . . . . . . . . . . 114

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

In this chapter we will analyze the features of constructions for which the imple-

mented functions are denoted by functional constants on higher order sorts. We do

that primarily in order to mirror the setting of lambda calculus and to be able to ob-

tain “theorems for free” for higher order types. However, our algebraic approach will

reveal new facets of the abstraction barriers imposed by stability and we will analyze

these thoroughly.

5.1 Introduction

As we have said previously in Chapter 3 one of the informal guidelines in the investi-

gation of properties induced by stable constructions is the similarity between stability

and the notion of parametricity present in the framework of second order lambda cal-

culus. This suggested to us the use of the catch phrase “theorems for free”, originally

used by Wadler in [Wad89] to describe properties inferred from parametricity, in the

algebraic specifications world. Some “theorems for free” for stable constructions were

100



presented in Chapter 3 and in Chapter 4. In those chapters we showed that just by

looking at the source and target signatures of a construction we can extract properties

for that construction without knowing its actual implementation. However, the sub-

stance of “theorems for free” is the link between the type of an implemented function

and some property it should satisfy. In the playful words of Wadler, the aim is the

following:

Write down the definition of a polymorphic function on a piece of paper.
Tell me its type, but be careful not to let me see the function’s definition. I
will tell you a theorem that the function satisfies.

While this is to some extent captured by the work presented in the previous chap-

ters, if we allow ourselves to think of the signatures of a construction as defining its

type, we shall look in this chapter at a more direct fit of the concepts from System

F. We will work with type hierarchies inside signatures in order to express properties

about generically implemented functions just by looking at their types.

First, in Section 5.2 we will present the basic setting for working with higher order

types in COL signatures. Then, in Section 5.3, we will look at how the global con-

structions, that have been already been investigated in the previous chapters, interact

with the richer type hierarchies. In Section 5.4, we will investigate one of the features

of function types, extensionality, in relation with the notion of global construction.

The global constructions that can be used in extensional contexts will turn out to be

characterized by logical relations, and hence they will be named logical global con-

structions. At that point we will be able to note a closer similarity than before between

logical stability and parametricity, which is defined in System F as preservation of log-

ical relations. We will see that logical global constructions produce operations that are

not necessarily definable in terms of the source signature. In the last section, Section

5.5, we will discuss some problems concerning representation independence; among

other things we will give a sound and complete method for showing observational

equivalence of COL-algebras based on logical relations.

5.2 Higher order sorts in COL

Higher order types can be represented in COL in a straightforward manner starting

from standard simply typed signatures. In fact, the observational aspects provided by

COL allow for a smoother representation of extensionality than in the standard al-

gebraic framework. The typical way to represent extensional higher order types is to

101



constrain the models by an axiom, i.e. the extensionality axiom. In COL this constraint

can be represented at the signature level by requiring that the application operation is

the only observer for higher order types. Informally, that can be understood immedi-

ately if we realize that extensional equality is an observational equality; it is a relation

between functions that cannot be distinguished through application and extensional

higher order types are just particular examples of hidden sorts. We will express the

basic notions in the following definitions.

Definition 5.1 (Functional signatures in COL). A signature ΣCOL is simply typed if

the underlying signature Σ is simply typed. If in addition Σ is combinatorial we call

ΣCOL combinatorial too.

A simply typed signature ΣCOL is called applicative if the application operations

are among the observers on the higher order types, i.e. APPS ⊆ OPObs.

An applicative signature ΣCOL is called functional if the application operations

are the only observers on the higher order types, i.e. for all s0⇒s1 ∈ S we have that

OPs0⇒s1
Obs = {(apps0,s1

,1)}.

Notice that standard simply typed signatures can be written in a canonical way

by currying all the operation symbols, except those corresponding to application, and

presenting them as constants of higher order types. However, the semantics of COL
constraints means that it is significant whether a function is represented as a constant or

as an operation. In particular, observers cannot be constant symbols; they must have at

least one argument sort, i.e. the observed sort. So, we cannot present COL signatures

in a canonical way, but we should not regard that as a disadvantage. There is a useful

distinction that comes from allowing more than one hierarchy of types. In simply typed

COL-signatures there are two type hierarchies; an implicit hierarchy of types, that is

not represented in the carrier sets but rather as functions between the carrier sets, used

for giving meaning to the operations present in the signature; and an explicit hierarchy

of types which is used to give meaning to functional constants. Methodological advice

is to treat as constants of a higher order sort only those functions which rightfully

belong to the intended semantics, i.e. over which we intend to quantify in our axioms.

We will see how the existence of two type hierarchies impacts the process of writing

implementations (see Section 5.3.1). Also, this separation will be crucial in our attempt

to characterize globality in terms of stability in Theorem 5.15.

Please note, that even if observers and constructors are not required to be present

in the carriers of the algebras, there might be cases when we would like them to be

102



represented somehow in the carriers. That can easily be obtained by putting in the

signatures some higher order constants that behave like the corresponding uncurried

operations. In order to simplify notation we will introduce a new syntax for speci-

fications (hspec SPECNAME) that have all their uncurried operations represented as

curried higher order constants with the behavior of those constants enforced by ax-

ioms. For example the following specification:

hspec BRIEFSPEC then
sorts s,v

operations obs : s→ v

empty : s

cons : s,v→ s

combinatorial
constructors empty,cons

observers obs

end

is equivalent to a standard COL specification that has two additional constant obs′

and cons′ and some axioms defining their behavior.

spec FULLSPEC then
sorts s,v

operations obs : s→ v

empty : s

cons : s,v→ s

obs′ : s⇒v

cons′ : s⇒v⇒s

combinatorial
constructors empty,cons

observers obs

axioms app(obs′,x) = obs(x)

app(app(cons′,x),y) = cons(x,y)

end

We do that in order to write lambda expressions in BRIEFSPEC (using the S ,K -

combinators) that contain all the symbols of the signature. For example we write

λx,v.cons(cons(x,v),v), because we understand it as being a combinatorial term us-

ing the higher order constant cons′ instead of cons. Before getting any further please

103



have in mind that we are not enriching COL, and that we are using this new notation

just for the sake of brevity in cases when we would like the operations of the signature

to have a representative value in the carrier of the algebras.

5.2.1 Extensionality in COL

Our claim from the beginning of this section was that extensionality is captured by

the constraints induced by a particular kind of simply typed COL signatures, namely

by functional signatures, i.e. those for which the only observer on higher order sorts

is application. We will show that algebras of functional COL-signatures are always

extensional. The converse, i.e. that extensional COL-algebras can always be seen as

algebras of a canonical functional signature, is not necessarily true for COL signatures

but we will identify a class of simply typed COL signatures for which that holds (see

Proposition 5.8).

Extensional COL-algebras are those that satisfy the extensionality axioms w.r.t.

COL-satisfaction.

Definition 5.2 (Extensional COL-algebras). Let ΣCOL be a simply typed COL-signature.

A ΣCOL-algebra A is called extensional if A |=ΣCOL ExtAxΣ.

A property equivalent to extensionality can be expressed by characterizing the ob-

servational equality of an extensional COL-algebra.

Proposition 5.3. Let ΣCOL be a simply typed COL-signature. A ΣCOL-algebra A is

extensional if and only if ≈ΣCOL,A is a logical relation on 〈GenΣCOL(A)〉.

Proof. Let A be ΣCOL-algebra.

Assume that A is extensional, i.e. A |=ΣCOL ExtAxΣ. Let f ,g ∈ 〈GenΣCOL(A)〉s0⇒s1

such that for all a,b ∈ 〈GenΣCOL(A)〉s0 with a ≈ΣCOL,A b we have f (a) ≈ΣCOL,A g(b).

This means that for all a ∈ 〈GenΣCOL(A)〉s0 we have f (a) ≈ΣCOL,A g(a) which by ex-

tensionality implies f ≈ΣCOL,A g.

Now assume that ≈ΣCOL,A is logical on 〈GenΣCOL(A)〉 and that for some f ,g ∈
〈GenΣCOL(A)〉s0⇒s1 , A |=ΣCOL ∀x. f (x) = g(x). Using that and the fact that ≈ΣCOL,A is a

congruence we have for all a,b ∈ 〈GenΣCOL(A)〉s0 with a ≈ΣCOL,A b that f (a) ≈ΣCOL,A

g(a) ≈ΣCOL,A g(b). Which in the end proves f ≈ΣCOL,A g because ≈ΣCOL,A is logical.

Proposition 5.4 (Functional algebras are extensional). Let ΣCOL be a functional COL-

signature and A be a ΣCOL-algebra. Then A is extensional.

104



Proof. Let A be a ΣCOL-algebra and let s0⇒s1 ∈ S and f ,g ∈ 〈GenΣCOL(A)〉s0⇒s1 such

that for all a ∈ 〈GenΣCOL(A)〉s0 we have f (a)≈ΣCOL,A g(a). This leads to f ≈ΣCOL,A g

because app is the only observer on s0⇒s1. Therefore,≈ΣCOL,A is logical on 〈GenΣCOL(A)〉
and consequently extensional.

A question that remains to be answered for the sake of completeness is if all exten-

sional COL-algebras can be represented as algebras of a canonical functional COL-

signature. This is not a crucial result so the rest of this section can be skipped by a

selective reader. The important conclusion is that we will use functional signatures for

representing extensionality in COL.

We will see in the following example that it is not always the case that extensional

algebras can be represented as algebras of a canonical functional signature. We pro-

duce a counterexample in which we start with an extensional algebra of a simply typed

COL signature and then by eliminating all the observers on the higher order sorts from

the signature, except the applications, we end up altering the observational equality

and the original algebra will not be an observational algebra of the newly obtained

signature. Before presenting that counterexample we will see how we can associate

to each simply typed COL-signature a functional COL-signature by forcing the app

operations to be the only observers on higher order types.

Definition 5.5 (Associated functional signature). Let ΣCOL = (Σ,OPCons,OPObs) be a

simply typed COL-signature. The signature Σ∗COL = (Σ,OPCons,OP∗Obs) is called the

associated functional signature of ΣCOL where OP∗Obs contains the same observers for

basic types as OPObs and only the application operations app as observers on higher

order types.

The following example presents an extensional algebra COL that cannot be seen

as a COL-algebra for the associated functional signature.

Example 5.6 (Extensional but not functional). Let ΣCOL be the following COL signa-

ture:

spec EXTNOFUN = BOOL then
sorts s,s⇒s

operations obs0 : s→ (s⇒s)

obs1 : s⇒s→ Bool

app : s⇒s,s→ s

observers obs0,obs1,(app,1)

end

105



and let A be the following ΣCOL-algebra:

As = {a,b}, As⇒s = { f ,g}

Aobs0 = [a 7→ f ,b 7→ g]

Aobs1 = [ f 7→ true,g 7→ false]

Aapp( f ,x) = a and Aapp(g,x) = b for all x ∈ As

and let Σ∗COL be the associated functional signature, i.e. Σ∗COL =(Σ, /0,OPObs\{obs1}).
We claim that A |=ΣCOL ExtAxΣ but it is not a Σ∗COL-algebra.

Proof. First notice that ≈ΣCOL,A is the identity relation and hence A is a fully-abstract

ΣCOL-algebra. Furthermore it is obvious that A satisfies the extensionality axiom.

Now, if we try to view A as a functional algebra of Σ∗COL we realize that ≈Σ∗COL,A

is the total relation. From this we can conclude that A is not a Σ∗COL-algebra because

Aobs1 does not give identical results for the related arguments f ≈Σ∗COL,A g.

The reason behind the previous counterexample is the presence of the observer

obs0 which makes the observational equality on the basic sort s dependent on that on

the higher order sort (s⇒s). We can recover a positive result by showing that for

signatures that disallow such observers (see Definition 5.7 below) extensionality is

synonymous with functionality.

Definition 5.7 (Straight observers). Let ΣCOL be a COL-signature. An observer (obs, i)∈
OPObs, where obs : s1, . . . ,sn→ s, is called straight if s is a basic type whenever si is a

basic type.

We can now prove that if observational equality on basic sorts depends only on

other basic sorts, eliminating observers for higher order sorts does not modify it.

Proposition 5.8 (Straight extensional algebras are functional). Let ΣCOL be a simply

typed COL-signature with straight observers and let Σ∗COL be its associated functional

COL-signature. Then any extensional ΣCOL-algebra A is also a Σ∗COL-algebra.

Proof. Let ≈ be the observational equality ≈ΣCOL,A w.r.t. ΣCOL, and let ≈∗ be the

observational equality ≈Σ∗COL,A w.r.t. Σ∗COL.

As the signatures ΣCOL and Σ∗COL differ only in the set of observers, we can say

that the corresponding generated algebras coincide and it is sufficient to prove that

≈=≈∗ in order to conclude that A is a Σ∗COL-algebra.

106



It is easy to see that ≈⊆≈∗ because each observable context formed from Σ∗COL

can be seen as an observing term over ΣCOL, that will respect ≈ and therefore will

give equal results for ≈ related elements.

Now, we will prove by induction over the type structure that ≈∗⊆≈. First, let s be

a basic type, and let a,b ∈ 〈GenΣ∗COL
(A)〉s be two elements such that a ≈∗s b. Because

the observers on basic types are straight, i.e. they do not lead to higher order type

results, and the difference between the two signatures is just for observers of higher

order types, we can see that C (ΣCOL)s→v = C (Σ∗COL)s→v for every observable sort

v∈ SObs. Therefore the observational equalities coincide on all basic types s. Secondly,

let us consider a higher order type s0⇒s1 and two related functions f ≈∗s0⇒s1
g w.r.t.

the associated signature. Because f and g are related we get that for all arguments

a ∈ 〈GenΣ∗COL
(A)〉s0 we have that app( f ,a) ≈∗s1

app(g,a). Now, using the induction

hypothesis, ≈∗s1
⊆≈s1 , we get that app( f ,a) ≈s1 app(g,a). And finally from the fact

that A is extensional we get that f ≈s0⇒s1 g.

We consider that these results that relate extensionality with functional signatures

are enough to justify the following methodological rule: whenever we want to repre-

sent extensional higher order types we shall use functional signatures.

5.3 Implementation of functions as higher order con-

stants

In Chapter 3 and Chapter 4 we have looked at constructions that implement func-

tions represented as additional operation symbols. In this section we will focus on the

differences that appear when we have an explicit type hierarchy present in our sig-

natures and implemented functions are represented as additional constant symbols on

some higher order types. We will present our findings using the quasi-vertical global

constructions introduced in Section 4.5. We make this choice because quasi-vertical

globality implies a simple kind of definability, namely algebraic definability, and also

it is characterized by a relatively simple kind of correspondence, the quasi-vertical cor-

respondences, i.e. algebraic relations which are bi-injective on visible sorts. However,

this choice is not that important as the discussion that follows is easily translatable to

the setting of general or vertical global constructions. To emphasize the generality of

the development we will not use the “quasi-vertical” qualification unless it is needed

to compare it to one of the other variants. So, the assumptions for this section are that

107



we are working with a quasi-vertical global construction k : SPICOL⇒SPCOL such that

signatures ΣICOL and ΣCOL are simply typed (see Definition 5.1) and the tight signa-

ture morphism σ : ΣI→ Σ adds only constant symbols of the form op : s0⇒s1 on some

higher order type.

The lifting to global contexts is done via lifting pushouts like the one below where

φ is an quasi-vertical signature morphism.

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

This view entitles us to use the results that have already been proven in Chapter 4, but

insisting on the fact that the implemented operations have a special characteristic, i.e.

they are constant symbols.

For example, Proposition 4.32 ensures that global constructions add symbols that

are definable. Notice however that there is an important difference between what de-

finability means for functions represented as operations with a non-nullary arity, as in

the examples of previous chapters, and functions represented as constant symbols, as

we consider in this section. Algebraic definability (see Definition 3.10) means in the

first case that there is a defining term for each set of arguments. In the second case,

because we don’t have argument sorts, it means that there is single defining term for

the implemented function.

Now, we will look at an example that corresponds to a well known fact from System

F: the only parametric inhabitants of the type ∀X .(X → X)→ X → X are the Church

numerals, i.e. λX .λs.λ0.sn(0) for n ∈ N (see [Rey83, GLT89]). To mimic that in COL
we will choose a construction that starts from a trivial combinatorial signature, i.e.

one that has no operations other than the applications and the combinators, and that

implements a function with a type corresponding to the one of the Church numerals.

We want to prove that global constructions from EMPTY to CHURCH are in one to one

correspondence with the standard implementations represented by Church numerals.

spec EMPTY

sorts Elem

combinatorial

end

108



spec CHURCH = EMPTY then
operations op : (Elem⇒Elem)⇒Elem⇒Elem

end

Let k : EMPTY⇒CHURCH be a global construction. Because k is global we get that

it is also definable and hence for each AI ∈ EMPTY there exists a defining term t such

that Aop = AIt . Please notice that the defining terms are in fact combinatorial terms,

i.e. terms formed only from applications of the S ,K combinators, because there are no

other operations in the signature of EMPTY. In conclusion, for an algebra AI ∈ EMPTY

the operation op is defined by a combinatorial term. One can prove that each com-

binatorial term t of type (Elem⇒Elem)⇒Elem⇒Elem is observationally equal to a

Church numeral C : (Elem⇒Elem)⇒Elem⇒Elem. Taking into account that k is also

uniformly definable and all algebras of EMPTY can be related to each other through

quasi-vertical correspondences we get that a unique defining term can be chosen for all

algebras and hence each global construction corresponds to a standard implementation

given by a Church numeral.

5.3.1 Mixing type hierarchies

We have seen that the treatment of functions as higher order constants allows us to

get properties more in line with the ones presented originally for System F. However,

persistent constructions that implement functions as constants on a higher order type

have one big disadvantage. They must give an interpretation in the source algebra to

the newly added functions, and hence they cannot add truly “new” functions. More-

over, global constructions require that the implementation of the newly added constant

should be definable and hence one is able to express only what is term definable in the

given signature. A consequence of that is that in the specification of a data type we

should include all combinators that will be used for defining higher order functions.

In particular, if we want to allow constructions that are recursively defined we must

add an iterator or a fix-point combinator to the source signature. This complicates the

specification process as the focus is no longer only on the specification of the interfaces

of the data types but also on the function spaces that are manipulating them. One solu-

tion for cases when we want to keep the signatures simple and we want to enrich them

with “new” functions, is to add functions as non-nullary operations even if we have

109



an explicit type hierarchy. The use of the implicit meta type hierarchy will not force

us to interpret the newly added symbols directly in the carriers of the original models

but rather as functions on those carriers. Doing that will give us greater flexibility and

we will be able to express not only functions that are term definable from the source

signature, but all functions that do not break abstractions imposed by that signature.

Global implementations of functions as constants require that these are strictly gener-

ated from the operations of the source signature. Global implementations of functions

as non-nullary operations require only that what can be observed from them should be

definable.

We will see next an example of a construction which cannot be written as an imple-

mentation of a constant symbol. In other words there is no global construction between

STATE and STATEITER below. Then we will see that the implementation of an iterator

function is possible if we choose to represent that function as an uncurried operation

or if we add a fix-point combinator to the source signature.

hspec STATE

sorts State, Elem

operations init : State

next : State→ State

obs : State→ Elem

case : Elem⇒(State⇒Elem)⇒(State⇒Elem)

constructors init,next

observers obs

combinatorial
axioms init 6= next(x)

next(x) = next(y)−→ x = y

case(e)(f )(init) = e

case(e)(f )(next(x)) = f (x)

end

110



spec STATEITER = STATE then
operations iter : (Elem⇒Elem)⇒Elem⇒State⇒Elem

axioms iter(n)(i)(init) = i

iter(n)(i)(next(x)) = n(iter(n)(i)(x))

end

There is no global construction k : STATE⇒STATEITER because such a construc-

tion will require that the interpretation of iter is definable as a lambda term formed

only with the init,next and obs operations from STATE. Informally an iterative func-

tion iter(n)(i) : State⇒Elem could be defined by a different lambda term for each

argument, and no single finite term can define it for all arguments. More formally, by

finding a correspondence for each construction k : STATE⇒STATEITER which is not

preserved be kwe will prove that no such construction is global.

Proposition 5.9. Let k : STATE⇒STATEITER be a tight construction. Then k is not

stable.

Proof. Assume that k is stable and let AI ∈ STATE be the model that interprets the sorts

State and Elem as the set of natural numbers, the higher order sorts as the correspond-

ing full function spaces, next as the successor function and obs as the identity on the

natural numbers. We define a quasi-vertical correspondence ρ: AI↔ AI by letting it be

identity on basic sorts State and Elem; on State⇒State it relates only those functions

that grow linearly, i.e. f ρ f if and only if f (x)− f (y) ≤ 2(x− y) for all x,y ∈ N; on

other higher order sorts it is defined logically keeping in mind the previous defined

restrictions. It is easy to check that ρ is a quasi-vertical correspondence.

Now let f be the doubling function, i.e. f = λx.2x. It is clear that f ρ f . From the

stability of k we get that Aiter( f )(1) ρ Aiter( f )(1). But from the axioms we have that

Aiter( f )(1)(n) = f n(1) for all n ∈ N. Hence, Aiter( f )(1) = 2x and furthermore 2x ρ 2x

which contradicts the definition of ρ because 2x grows exponentially.

In order to implement an iterator as a higher order constant we need some stronger

assumptions in the source signature, for example an iterator can be implemented with

the aid of a fix-point combinator. For that consider a construction k : STATEY⇒STATEYITER

with:

111



spec STATEY = STATE then
operations Y : (TypeIter⇒TypeIter)⇒TypeIter

axioms F(Y(F)) = Y(F)

end

and

spec STATEYITER = STATEY then
operations iter : (Elem⇒Elem)⇒Elem⇒State⇒Elem

axioms iter(n)(i)(init) = i

iter(n)(i)(next(x)) = n(iter(n)(i)(x))

end

where TypeIter denotes the type of the iterator, i.e. (Elem⇒Elem)⇒Elem⇒State⇒Elem.

Please notice that we can define the iterator function with the aid of the fix-point

combinator and using the formula

iter = Y (λit.λ f .λe.λs.case(e)(λx. f (it( f )(e)(x)))(s))

.

As we have already anticipated, an alternative to enriching the source signature is to

modify the target signature and present the iterator as an uncurried function. With this

modification in place we will be able to define a construction k : STATE⇒STATEITER’.

That is because definability in the case of operations allows different defining terms de-

pending on the arguments.

spec STATEITER’ = STATE then
operations iter : Elem⇒Elem,Elem,State→ Elem

axioms iter(n, i, init) = i

iter(n, i,next(x)) = n(iter(n, i,x))

end

We can implement iter as an uncurried operation by letting iter(n)(i)(x) be equal to

nm(i) where m is a natural number such that x = nextm(init) (the existence of such a

number is guaranteed because next and init are the constructors of sort State).

Finally, let us say that a simpler signature from which to start the construction is not

just an aesthetic desideratum but also has a pragmatic value. For simpler signatures it

is easier to show that a relation is a correspondence, i.e. it is preserved by all operations

from the signature.

We can think how tedious the proof of algebraicity would be in a signature with

112



a fix-point operator. Typically, combinators have complicated types and hence the re-

lation must be declared at least for all the subtypes that appear in the combinator’s

type. Moreover, they are introduced for an infinity of types in a generic way for all

types of the type hierarchy. In the case of the fix-point operator a definition would be

Y : (s⇒s)⇒s for all s ∈ Types(S). For defining a relation for all these types a recursive

definition based on the type structure is needed in order to deal with the infinity of

types. Logical relations are recursively defined on the structure of types and the defini-

tion for base types is sufficient; for the higher order types the definition follows through

the extensionality principle. While logical relations work well with S ,K -combinators,

as these combinators preserve them trivially, they do not simplify the task when used

in conjunction with the fix-point combinator. It is not automatic that fix-point com-

binators preserve logical relations. Several studies [Wad89, Pit00, CH07] have been

carried out about specializations of logical relations that work well with fix-point com-

binators, but they all require a more concrete framework for talking about fix-points,

namely complete partial orders. In those frameworks one works with pointed relations,

that relate the least elements of the cpo’s, and also continuous relations, that relate the

upper bounds of related chains. For us, that means that we should include in all our

specifications the specification of a cpo (which requires operations of infinite arity for

the upper bound) and then discuss algebraicity of our relations in these enriched sig-

natures. Since that is a major complication we prefer as a methodological guideline to

keep our signatures simple and to look for implementations of functions represented as

uncurried operations, rather than including fix-point combinators in the signature and

to look for implementations of functions as higher order constants.

5.4 Logical implementation of functions as higher or-

der constants

In the previous section we have seen how the theory developed in Chapter 4 interacts

with higher order types. Basically we applied a first order treatment to higher order

concepts, but in this section we will look at a proper setting for reusable constructions

based on functional signatures. The first step for doing that is to work with logical

relations. Those are the kind of relations that are used in describing parametricity for

System F and the original “theorems for free”. The goal is to define a kind of global

construction that will be characterized by preservation of logical relations.

113



In order to use logical relations to characterize a kind of global construction we

should consider the main property that distinguishes them from plain algebraic rela-

tions, i.e. extensionality. Therefore we will look at global constructions that can be

used only in extensional contexts. We will prove that logical correspondences (de-

fined below as some kind of logical relation) characterize reusability of constructions

in extensional contexts. Furthermore, in Section 5.5, we will prove that logical cor-

respondences provide a sound and complete method for proving that two algebras are

observational equivalent. In order to obtain such a result it is essential to work with

correspondences that are first of all vertical correspondences as the existence of a verti-

cal correspondence between to algebras guarantees that they are COL isomorphic (see

Proposition 4.15). Hence, our setting for the rest of the chapter will be that of con-

structions reusable in vertically fitted extensional contexts. We will call that kind of

context a logical context and we will use this terminology whenever it feels more natu-

ral. For example we will use logical signature for a functional COL signature, logical

signature morphism for a vertical signature morphism between logical signatures, and

logical lifting pushout for a fitting pushout along logical signature morphisms:

ΣI′COL
σ′COL // Σ′COL

ΣICOL σCOL
//

φ

OO

ΣCOL

φ′
OO

Definition 5.10 (Logical signature morphism). Let ΣCOL be a functional COL signa-

ture. We can also say that ΣCOL is a logical signature. A logical signature morphism

is a vertical signature morphism between two logical signature.

We define logical global constructions as those constructions that are usable across

all logical lifting pushouts.

Definition 5.11 (Logical global construction). Let k : SPICOL⇒SPCOL be a persistent

COL-construction. We say that k is a logical global COL-construction if for every log-

ical lifting pushout, φ(k) is a COL-construction between φ(SPICOL) and φ′(SPCOL).

We can now adapt the notion of correspondence to reflect the restrictions present

in the usage contexts. In order to ensure compatibility with global lifting the corre-

spondences must incorporate the extensionality principle, and hence they should be

extensional. However, there is a little twist to the definition of logical relations (see

Definition 2.9) that needs to be done in order to ensure globality. Namely, logical

114



correspondences are extensional relations, but extensionality is required only for the

elements contained in the relation.

Definition 5.12 (Domain-restricted logical relation). Let Σ= (S,OP) be a simply typed

signature. An algebraic relation ρ: A↔B is logical if for all s0⇒s1 ∈ S, f ∈ dom(ρ)A,s0⇒s1

and g ∈ dom(ρ)B,s0⇒s1 that are extensionally equal w.r.t ρ, i.e. f (a) ρs1 g(b) for all

a ρs0 b, we have that f ρs0⇒s1 g.

Basically a domain-restricted logical relation ρ between A and B is a logical relation

between the subalgebras Adom(ρ) and Bdom(ρ) determined by dom(ρ). These kind of

relation is capable of characterizing the logical global constructions.

Definition 5.13 (Logical correspondence). Let ΣCOL be a COL logical signature and

let A,B be two ΣCOL-algebras. A logical correspondence ρ between A and B is a

vertical correspondence between A and B which in addition is a domain-restricted

logical relation.

Definition 5.14 (Logically stable COL-construction). Let k : SPICOL⇒SPCOL be a

persistent COL-construction. We say that k is logically (closed) stable if it extends all

(closed) logical correspondences.

The choice made for the notion of logical correspondence can be now justified

formally by proving that preservation of such relations is necessary and sufficient for

a logical global construction.

Theorem 5.15 (Globality is equivalent to closed-stability). Let k : SPICOL⇒SPCOL

be a tight COL-construction. Then k is logically global if and only it is logically

closed-stable.

Proof. The proof follows the essential lines that led to Theorem 4.17.

The sufficiency part, i.e. stability implies globality, is due to the fact that isomor-

phisms between algebras in logical contexts are closed domain-restricted logical rela-

tions (they are extensional on domain formed by the generated subalgebras) and there-

fore they are preserved by closed-stable constructions.

The necessity part, i.e. globality implies stability, is based on building a logical

context for each logical correspondence, in which the correspondence will be extended

to an isomorphism. If we follow the proof of Propositions 4.7 we will see that the only

difference when building this global context is that we should not add new observers

(of the form ?b : s→ Bool) on the higher order sorts. We do that in order to produce

115



a functional signature, i.e. one that has only application operations as observers for

higher order sorts. Fortunately, there is no need for those additional observers as their

role is performed by the extensionality of the logical relation. More explicitly, those

observers were used to coerce the observational equality in the global context to be

equal to the original correspondence. However, two logical relations are equal if they

are equal on base types. So, it is sufficient to coerce the observational equality in the

global context to be equal to the original correspondence by using additional observers

only on base types, and extensionality ensures the rest.

In conclusion, globality amounts to preservation of closed logical correspondences.

Following the pattern established by Chapter 4 we can ask ourselves if we can prove

more than that, in particular if non-closed correspondences are preserved as well. We

don’t yet have a clear answer to that question, but we will see in the next subsection

that the decomposition pattern that was used in Proposition 4.15 is no longer adequate

when we refer to logical correspondences.

Before discussing properties that used to work in the standard case but no longer

work in the logical case let us prove a proposition that illustrates one advantage of

working with logical global constructions. The fact that a logical global construction

will be used just in extensional contexts offers an advantage to the implementer when

writing the definition of the construction. One can be flexible in adopting an interpre-

tation for a functional constant by choosing between extensionally equal values. To

illustrate this we will prove that we can change the interpretation given by a construc-

tion to a functional constant, with an extensionally equal one, and obtain a construction

that is indistinguishable from the first.

Proposition 5.16. Let k : SPICOL⇒SPCOL be a logical global COL-construction, let

op : s0⇒s1 be an implemented functional constant, let AI ∈ SPICOL, let A = k(AI) and

let f = Aop. Then for every g ∈ As0⇒s1 such that f (x) = g(x) for all x ∈ As0 , we can

define a logical global construction k′ : SPICOL⇒SPCOL such that k′ only differs from

k on AI and k′(AI)op = g. Moreover, k(AI)≡ΣCOL k′(AI).

Proof. For any logical correspondence ρ: AI ↔ BI we have to show that k′(AI)op ρ

k′(BI)op, i.e. g ρ Bop where k′(BI) = B.

Let ρ: AI ↔ BI be a logical correspondence. By the logical stability of k we get

that f ρ Bop. That means that for every a ρ b we get that f (a) ρ Bop(b), which from the

fact that f is extensionally equal to g leads us to g(a) ρ Bop(b). The extensionality of

ρ finally gives us that g ρ Bop.

116



It is easy to check that the model obtained by changing the interpretation of a

symbol to an extensionally equal element yields an isomorphic algebra.

5.4.1 Lost properties in the logical case

In this section we will look at things that do not fit the developments from the previous

chapters. First, we will see that we cannot reproduce the result of Theorem 4.17, i.e.

we cannot prove that logical global constructions must preserve all logical correspon-

dences. So, in general our best result will be the preservation of closed correspon-

dences, but in some particular cases plain stability is still obtainable. Secondly, we

have to acknowledge the failure of definability results implied by preservation of log-

ical correspondences. This is an expected result as something similar has been known

in the lambda calculus literature starting from Plotkin’s paper on lambda definability

[Plo80].

5.4.1.1 Failure of stability

Recall how we managed to derive that global constructions must preserve all corre-

spondences and not just the closed ones (see Theorem 4.17). We have shown in Propo-

sition 4.15 that each correspondence ρ: A↔ B can be written as the composition of

two closed correspondences. In the logical case we have to show additionally that the

decomposition yields logical relations whenever we start from a logical relation, but

that does not always happen.

In order to have an impression on how extensionality interacts with closedness

we will show that the closedness property is entirely determined by the nature of the

relation on the base types.

Proposition 5.17. Let ΣCOL = (S,OP,OPCons,OPObs) be a COL functional signature,

let A,B be two ΣCOL-algebras and ρ: A↔ B be a logical correspondence between

them. If ρs is a closed relation for all base types s then ρ is a closed relation.

Proof. Consider a higher order type s⇒s′, f0, f1 ∈ As⇒s′ and g0,g1 ∈ Bs⇒s′ such that

f0 ρ g0, f0 ρ g1, f1 ρ g0. We need to show that f1 ρ g1. For that we use the extensionality

property for ρ and show that for any a ρs b we have that f1(a) ρs′ g1(b). That is a

consequence of closedness of relation ρs′ for the following related pairs: f0(a) ρs′

g0(b), f0(a) ρs′ g1(b), f1(a) ρs′ g0(b).

117



In Proposition 4.15 the closed correspondences that decompose a correspondence

ρ: A↔ B were defined as a ρA (a,b) and (a,b) ρB b if and only if a ρ b. The problem is

that ρA and ρB are not necessarily logical even if ρ is logical. So, that path of reasoning

does not ensure that every logical correspondence can be decomposed into two closed

logical correspondences.

An alternative decomposition strategy would be to first decompose the relation ρ

into closed relations only on the base types and then let the definition on the higher

order types follow logically. These extensions will be closed in conformance with

Proposition 5.17, but their composition will typically be bigger than ρ and hence they

do not offer a sound decomposition. This phenomenon is related to the discussion in

[HLST00] about the fact that logical relations are not closed under composition.

We have explained why the proof that lead to the necessity of preservation for all

correspondences cannot easily be adapted for the logical case. However, that does

not constitute a definite argument for showing that global logical constructions do not

preserve all correspondences. We should come up with a counterexample where such a

construction does not preserve a non-closed logical relation to confirm our hypothesis,

but until now the search for such a counter example remains inconclusive. On the other

hand we can make the decomposition work for a special class of algebras which we

will call state-injective algebras, as described in the following paragraphs.

Definition 5.18 (State-injective algebra). Let ΣCOL = (S,OP,OPCons,OPObs) be a

COL-signature and let A be a ΣCOL-algebra. We say that A is an state-injective alge-

bra if for all op : w→ s ∈ OP with s ∈ SState we have that Aop is an injective function,

i.e. Aop(a) = Aop(b) implies a = b.

With additional assumptions we can use the same style of decomposing an arbitrary

correspondence into two closed correspondences as in the proof of Proposition 4.15,

and the correspondences we end up with will be logical. In order to obtain a sound

decomposition we will be forbid the presence of types of the form s⇒v, where v∈ SObs,

in the signature.

Definition 5.19 (Signature with no functional observers). Let ΣCOL =(S,OP,OPCons,OPObs)

be a functional COL-signature. We say that ΣCOL is a signature with no functional

observers if there is no type s⇒v ∈ S with v ∈ SObs.

In signatures with no functional observers we can show that logical correspon-

dences between state-injective algebras can be decomposed into two closed correspon-

dences. This result might seem over restrictive and not very useful, but state-injective

118



algebras are quite easy to obtain and we will be able to extend the result also for stan-

dard algebras.

Proposition 5.20 (Decomposition of logical correspondences). Let ΣCOL be a COL
signature with no functional observers, let A,B be two state-injective ΣCOL-algebras

and ρ: A ↔ B be a logical correspondence between them. Consider Tρ, such that

A≡ΣCOL Tρ ≡ΣCOL B, and the two closed correspondences ρA: A↔ Tρ and ρB: Tρ↔ B,

such that ρA;ρB=ρ, that exist in conformance with Proposition 4.15. Then ρA and ρB

are logical.

Proof. We will only show that ρA is logical as the proof for ρB is similar.

Please recall from Proposition 4.15 that ρA: A↔ Tρ is defined as a ρA (a,b) if

a ρ b and consider a higher order type s0⇒s1 ∈ S. Because ΣCOL is a signature with no

functional observers we get that s1 ∈ SState. Therefore, the application that corresponds

to s0⇒s1 should be an injective function in A. Now, consider f ∈ As0⇒s1 and (g,h) ∈
(Tρ)s0⇒s1 such that for all a ρA (a,b) we have that f (a) ρA (g(a),h(b)). From the

definition of ρA we get that f (a) = g(a) which by injectivity of the application means

that f = g and, finally from the fact that ( f ,h) = (g,h) and f ρA ( f ,h) we get f ρA

(g,h).

The nice thing about state-injective algebras is that they are not that hard to find and

hence the previous proposition has a broad applicability. In fact for any COL algebra

we can find an isomorphic state-injective algebra.

Proposition 5.21 (Isomorphic state-injective algebra). Let ΣCOL =(S,OP,OPCons,OPObs)

be a COL-signature and let A be a ΣCOL-algebra. There exists a ΣCOL state-injective

algebra TA such that A≡ΣCOL TA.

Proof. We will define TA almost like the term algebra over elements from A. However,

we must alter the definition for visible sorts as visible elements must correspond one to

one in order to ensure that A≡ΣCOL TA. We will write T instead of TA in the definition

for simplicity of notation.

on sorts s ∈ S

s ∈ SState Ts = TΣ(A)s

s ∈ SObs Ts = As

on operations op : s1, . . . ,sn→ s ∈ OP

119



s ∈ SState Top(t1, . . . , tn) = op(t1, . . . , tn)

s ∈ SObs Top(t1, . . . , tn) = Aop(t1,...,tn)

Because TA is like the term algebra on hidden sorts we get that TA is state-injective.

Moreover, TA is isomorphic to A as it does not introduce or eliminate from its “behav-

iors”.

Theorem 5.22 (Globality implies stability). Let k : SPICOL⇒SPCOL be a tight COL-

construction, such that ΣICOL is a functional signature with no functional observers

and SPICOL is iso-closed. Then k is a logically stable construction if it is a logical

global construction.

Proof. We use the fact that any vertical logical correspondence ρ: A↔ B can be de-

composed via four closed logical correspondences via the following path: A↔ TA↔
Tρ ↔ TB ↔ B (first we use the induced relation between the state-injective algebras

TA↔ TB given by Proposition 5.21, and then we decompose it according to Proposi-

tion 5.20).

5.4.1.2 Failure of definability

Another result that fails to work in the logical case is definability. Again we can have

a glimpse of why the failure happens if we look at the proofs for definability in the

non-extensional cases. In order to derive definability results we used some minimal,

i.e. term generated, correspondences and we have used the fact that implemented op-

erations should be in these generated correspondences. The problem is that, typically,

generated relations are not logical, and hence they need not be preserved by logical

constructions. Again we can say that this is just an informal argument for why such

a proof fails in the logical case. Fortunately we have a counterexample, of a logical

global construction that is not definable.

120



hspec EXAMPLE = BOOL then
operations u : s

v : s→ (s⇒Bool)

w : (s⇒Bool)→ s

observers v

combinatorial
axioms ∃x : s.x 6= u

∀x,y.x 6= u∧ y 6= u−→ x = y

∀x,y.x = y−→ v(x)(y) = true

∀x,y.x 6= y−→ v(x)(y) = false

end

spec EXAMPLEEXT = EXAMPLE then
operations r : s⇒s

end

We define the construction k : EXAMPLE⇒EXAMPLEEXT by taking for each source

algebra A the interpretation Ar = λx.w(v(xA)) where xA is the element required by the

axioms to exist and to be different from Au.

Proof. We will prove that k is logically stable. For that consider a logical correspon-

dence ρ: A↔ B and we will prove that k extends ρ.

We will first show that Av(xA) ρ Bv(xB). Notice that our higher order sorts are

loose and that means that the domain of ρ on higher order sorts is the full carrier.

Hence, because ρ is a domain-restricted logical relation it is sufficient to prove that

Av(xA)(a) ρ Bv(xB)(b) for all a ρ b.

Notice that due to the axioms of the specification, in algebra A the elements of

sort s are either observationally equal to xA or to Au. It is easy to see that only el-

ements from similar groups can be related by a correspondence, i.e. a ρ b implies

either that a ≈ Au and b ≈ Bu or it implies that a ≈ xA and b ≈ xB. Therefore we

will analyze the two cases. Firstly, assume that we have a ρ b and a ≈ Au and b ≈
Bu. This means that Av(xA)(a) = false and Bv(xB)(b) = false and hence Av(xA)(a) =

Bv(xB)(b). Secondly, assume that we have a ρ b and a ≈ xA and b ≈ xB. This means

that Av(xA)(a) = Av(xA)(xA) = true and Bv(xB)(b) = Bv(xB)(xB) = true and hence

121



Av(xA)(a) = Bv(xB)(b). Using the fact that ρ is logical from Av(xA)(a) ρ Bv(xB)(b)

for all a ρ b we get that Av(xA) ρ Bv(xB).

Because Av(xA) ρ Bv(xB) we get that Aw(Av(xA)) ρ Bw(Bv(xB)) and furthermore,

from the definition of r, we get Ar ρ Br. Hence, we can conclude that the construction

is logically stable.

However, suppose we take a particular model for this specification by letting As =

{a0,a1}, Au = a1, Av = eqAs and Aw(eqa0) = a0 and Aw(x) = a1 otherwise. For the

model A the element xA, different from Au, is a0. We can easily see that the im-

plemented function Ar = Aw(Av(a0)) is behaviorally equal to λx.a0. But, there is no

lambda term formed only from u,v,w that can produce a value that is behaviorally

equal to λx.a0.

The previous counterexample relies heavily on the fact that the appropriate logical

correspondences are bi-surjective on higher order sorts. That is ensured by the fact

that the higher order sorts are loose. The question of definability remains opened if

we restrict to specifications for which the higher-order sorts are constructed. I seems

plausible that a definability result (like visible definability Definition 4.22) could be

obtained for logical constructions with constructed higher order sorts, even if they do

not preserve all vertical correspondences and only preserve the ones the are logical on

their domain. That would not contradict the fact that logical relations do not ensure

definability, because our special notion of domain-restricted logical relations are more

adapted to enforce definable elements. However, this work remains to be developed in

the future.

5.5 Representation independence

In this section we consider the issue of providing a sound and complete method for

proving observational equivalence of extensional models. This problem has been stud-

ied both by the lambda calculus and by the algebraic specification communities and

we will briefly recap the history of the problem.

The behavior of programs represented as lambda terms has been studied mainly

for structures which satisfy the extensionality axiom literally, i.e. the Henkin models

typically used to give semantics to lambda calculus. An important technique used for

proving the fact that the behavior of programs does not depend on the way data is rep-

resented was developed by Mitchell in [Mit91]. Mitchell’s theorem of representation

122



independence states that two algebras over a signature, that does not contain higher

order functions, are observational equivalent if and only if there exists a logical re-

lation between them which is a bijection on visible sorts. Furthermore, an example

was presented in [Mit96] to show that the requirement for the absence of higher order

operations cannot be eliminated.

To summarize the known facts on this topic we can say that the existence of a

logical relation, which is also a bijection on visible sorts, is a sufficient condition for

showing observational equivalence between algebras. It is also a necessary condition if

there are no higher order functions, and there are simple counterexamples which show

that the restriction to first order functions cannot be discarded (Section 8 of [HS02]

also contains a succinct recapitulation of these results). Further study tried to change

the notion of relation in order to obtain a complete method for proving observational

equivalence between extensional models. Honsell and Sannella [HS02] proposed for

this a lax definition based on logical relations: the prelogical relations. Another ap-

proach was devised by Hannay in his PhD thesis [Han01], where he proposed ab-

straction barrier observing relations as a complete method for showing observational

equivalence between algebras represented as packages of an existential type in System

F.

Before presenting our approach we will illustrate the problem by presenting two

observationally equivalent models for which there is no logical relation between them

that is a bijection on visible sorts.

Example 5.23 (No logical relation). Let ΣCOL be the following COL signature:

spec NOLOG = BOOL then
sorts s,s⇒s

operations c : s

op0,op1 : s⇒s

obs : s⇒s→ Bool

app : s⇒s,s→ s

observers obs,(app,1)

constructors c

end

let A be the following ΣCOL-algebra:

As = {a,b}, As⇒s = { f ,g}

Ac = a, Aop0 = f , Aop1 = g, Aobs = [ f 7→ true,g 7→ false]

123



and let B be the following Σ-algebra:

Bs = {a,b}, Bs⇒s = { f ,g}

Bc = a, Bop0 = g, Bop1 = f , Bobs = [ f 7→ false,g 7→ true]

with:

• Aapp( f ,x) = Bapp( f ,x) = a for all x ∈ {a,b}

• Aapp(g,x) = Bapp(g,x) = b for all x ∈ {a,b}

We can show that A and B are observational equivalent, i.e. A ≡ΣCOL B, but there

is no logical relation that is identity on Bool between them. Moreover, it is clear that

A and B satisfy the extensionality axiom literally.

Proof. Assume there exists a logical relation ρ: A↔ B. Because Ac ρ Bc we have

that a ρ a which by the extensionality of ρ leads to f ρ f . Based on this we get that

Aobs( f ) ρ Bobs( f ), which is a contradiction because it is equivalent to true ρ false.

Please have in mind that in the previous example, ΣCOL is not a combinatorial sig-

nature and hence we cannot construct terms corresponding to arbitrary lambda terms.

That is important, because otherwise we will have to declare A and B as having differ-

ent behaviors due to Aobs(λx.c) 6= Aobs(λx.c), but since λx.c is not a term of our signature

we do not need to care about that mismatch. Examples for full lambda-calculus can be

found in [Mit96, HS02].

The previous example illustrates the problem that was investigated in the literature,

i.e. two observationally equivalent extensional models that cannot be related logically.

While this is a valid statement we claim that the goal was not chosen with care, and a

solution to this problem arises naturally if we ask the right question.

The deficiency of the previous counterexample is that it tries to find a logical rela-

tion between algebras that are literally extensional rather than behaviorally extensional.

That was not noticed before, because the frameworks that where used to present the

issue do not use the concept of observational equality between elements as a primary

concept. The extensionality axiom is regarded as belonging to the meta-framework

of lambda-calculus, and therefore literal extensional models (Henkin models) are used

for the semantics of lambda-calculus. We want to underline that extensionality is an

axiom that should be adapted to the kind of semantics that is in use. Hence, when one

wants to study observational equivalence one should use behavioral extensionality. We

124



will see that if we only consider behavioral extensional models then logical relations

are necessary for observational equivalence.

Also, the notion of logical relation should be aware of the fact that not all the

elements in the carriers of algebras are of interest. Basically, one has to work with

domain-restricted relations in order to guarantee completeness.

We will show that in logical signatures two COL-algebras are isomorphic if and

only if there exists a logical correspondence between them.

Proposition 5.24 (Soundness of logical correspondences). Let ΣCOL be a logical COL-

signature and let A and B be two ΣCOL-algebras. If there exists a logical correspon-

dence ρ: A↔ B then A and B are COL-isomorphic

Proof. Assume that there exists a logical correspondence ρ: A↔ B. By definition this

means that ρ is a vertical correspondence and a consequence of Proposition 4.15 is that

vertical correspondences enforce COL-isomorphism.

Now we can prove that the existence of a logical correspondence is a necessary

condition for observational equivalence. The only requirement is to work in a logical

COL signature, which basically means to require behaviorally extensional algebras.

Proposition 5.25 (Completeness of logical correspondences). Let ΣCOL be a logical

COL-signature and let A and B be two isomorphic ΣCOL-algebras. Then the isomor-

phism h: A→ B is a logical correspondence.

Proof. In order to show that h is a domain-restricted logical relation we have to show

that all functions from the generated algebras that are extensionally equal w.r.t. h are

also related by h.

Let f ∈ 〈GenACOL(Σ)〉s0⇒s1 and g ∈ 〈GenΣCOL(B)〉s0⇒s1 such that whenever a hs0 b

we have f (a) hs1 g(b). Using the fact that h is an isomorphism, there exists f ′ ∈
〈GenΣCOL(B)〉s0⇒s1 such that f hs0⇒s1 f ′. We will show that g and f ′ are observational

equal.

For any b∈ 〈GenΣCOL(B)〉s0 let a be an element in 〈GenΣCOL(A)〉s0 such that a hs0 b.

For this pair we get that f (a) hs1 g(b) from the assumptions for f and g, and f (a) hs1

f ′(b) from the congruence properties of h. Now, using the closure property of h we

can deduce that g(b) ≈ΣCOL,B f ′(b). Because app is the only observation we get that

g ≈ΣCOL,B f ′. Finally, the properties of the COL-morphism ensures us that f hs0⇒s1

g.

125



We can gather the previous results to express the equivalence between COL iso-

morphisms and the existence of a logical correspondence.

Theorem 5.26 (COL-isomorphisms and logical correspondences). Let ΣCOL be a log-

ical COL-signature and let A and B be two ΣCOL-algebras. Then A and B are COL-

isomorphic if and only if there exists a logical correspondence between them.

It is worth pointing out that vertical correspondences have their domain formed

from the generated subalgebras of th related algebras. In conclusion, in order to show

that two algebras are observationally equivalent one has to define a relation on basic

sorts and by restricting the domain only to generated elements the definition on higher

order sorts follows by extensionality.

Logical correspondences are important because they are hierarchically defined over

the structure of types, and they can be defined by only providing a definition on ba-

sic types. This compactness of definition was the reason why a characterization of

observational equivalence in terms of logical relations was sought in the first place.

The difference between domain-restricted logical relations and plain logical relations

is that for the former one has to priorly define the domain of the relation, while for the

later the domain is defined also recursively over the structure of types. However, this

is not an impediment in COL because the domain of a logical correspondence is given

by signature’s constraints and do not need to be explicitly defined for every sort.

Next we will give an example of two isomorphic COL algebras for which there is

no logical relation but we can easily define a logical correspondence. The example is

taken from Jo Hannay’s PhD thesis [Han01] (Example 5.7).

Example 5.27. Let ΣCOL be the following combinatorial COL signature:

hspec CROSSCONTAINER = BOOL + NAT then
sorts Container

operations empty : Container

insert : Container,Nat→ Container

isIn : Container,Nat→ Bool

remove : Container,Nat⇒Container

crossover : (Container⇒Nat⇒Container)⇒Nat⇒Bool

constructors empty, insert,S ,K
observers (isIn,1)

combinatorial

end

126



let A and B be the following Σ-algebras:

• AContainer =BContainer is the set of lists on natural numbers, written as [7,2,3, . . .].

• On higher order types we take the full type hierarchy.

• Aempty = Bempty is the empty list.

• Ainsert = Binsert = insertOne uniquely inserts a natural number before the first

entry that is greater than it.

• AisIn = BisIn = isOne is the function that checks if an number occurs only once

in a list.

• Aremove = delOne is the function that removes the first occurrence of a natural

number from a list.

• Bremove = delAll is the function that removes all occurrences of a natural number

from a list.

• Acrossover = λ f : Container⇒Nat⇒Container.λn : Nat.isIn( f ([1],n))(n).

• Bcrossover = λ f : Container⇒Nat⇒Container.λn : Nat.isIn( f ([1,1],n))(n).

It is proved in by Hannay in [Han01] that A and B cannot be distinguished by

evaluating terms but there is no logical relation between them which is identity on

visible sorts. Briefly, the reason behind the failure is that a logical relation ρ between

A and B will always relate finite ascending lists of natural numbers, which implies

delOne ρ delOne by extensionality of ρ. Furthermore, this leads to a contradiction

because Acrossover(delOne,1) is not equal to Bcrossover(delOne,1).

The problem was solved by Hannay with the help of a new kind of relation, the

abstraction barrier-observing relations ([Han03]). These relations are very similar to

our logical correspondences (except they are defined for System F) and we will explain

why there is a logical correspondence between A and B.

We will prove that even if there is no logical relation between A and B we can

define a logical correspondence between them.

The difference in definitions between logical relations and logical correspondences

is that the former relate any two functions that are extensionally equivalent, while the

latter require this only for functions in the domain of the relation. Basically, in order

to define a logical correspondence ρ one has to:

127



Define the domain: Define the domain of the relation ρ.

Define the basic relation: Define the related elements on basic sorts. The related el-

ements on higher order sorts follow by extensionality.

Prove algebraicity: Prove that ρ is algebraic, i.e. that all the operations in the signa-

ture (except combinators, see explanation next) preserve the relation. The proof

of algebraicity is significantly simplified by the fact that on higher order sorts

the relation is defined by extensionality. It can be easily proved that combinators

are always in relation (due to the axioms that define them).

For the algebras in Example 5.27 we can follow these steps:

Define the domain: Let dom(ρ)⊆ A×B be formed by the restriction to the generated

subalgebras, i.e. dom(ρ) = 〈GenΣCOL(A)〉×〈GenΣCOL(B)〉.

Define the basic relation: On visible sorts ρ is identity, while on Container sort is a

sub-relation of identity relating all finite ascending lists of natural numbers.

Prove algebraicity: It is easy to prove that all first order operations preserve ρ. The

only challenging thing to prove is that Acrossover ρ Bcrossover. It does not really

help to try to do a proof using extensionality of ρ because crossover is defined in

B using elements (the list [1,1]) that is not in the domain of ρ. So, the solution is

to do an induction proof on the structure of f . One can prove that the operations

obtained by combining insert and remove in A and respectively B cannot be

distinguished using crossover.

This example illustrates the general methodology of defining logical correspon-

dences and hence for proving that two COL algebras are isomorphic.

Another example from literature is that given by Mitchell in [Mit96] (Exercise

8.5.6) which also appears in [HS02]. We will rewrite that example in COL to make

the presentation consistent.

Example 5.28 (Mitchell’s example). Let ΣCOL be the combinatorial-generated COL-

signature over the base type nat enriched with an operation op : (nat⇒nat)⇒nat and

the usual constructors 0 : nat and s : nat⇒nat.

128



spec MITCHELL

sorts Nat

operations 0 : Nat

s : Nat→ Nat

op : (Nat⇒Nat)⇒Nat

combinatorial
constructors S ,K ,app,0,s

end

Let A be the full type hierarchy over ANat = N with Aop interpreted as the constant

function 0, i.e. Aop( f ) = 0 for all f ∈ ANat⇒Nat . Let B be like A but with Bop( f ) = 0

if f is computable and Bop( f ) = 1 otherwise. Since the difference between A and B

cannot be detected by evaluating terms we have that A≡ΣCOL B. Moreover we cannot

find a logical relation between the full carriers of A and B which is identity on N : any

logical relation ρ will relate equal functions from A and B, i.e. for all f ∈ N⇒N we

have that f ρ f , and that leads to 0 being in relation to 1 by applying Aop and Bop.

We can easily observe that the failure in finding a logical relation is due to the fact

that we are willing to accept in the relation functions that are extensionally equivalent

even if they are not in the generated part of the algebras. The definition of domain-

restricted logical relations do not force use to do that. In fact, if we restrict only to the

generated parts then we can find a logical relation.

5.6 Summary

In this chapter we have looked at global constructions that work in contexts with an

explicit type hierarchy. Treating functions as constant symbols on higher order types

brought us closer to the setting of lambda calculus.

We have discussed the notion of logical relation from the perspective of global con-

structions. This gives a new characterization of (closed) logical relations, as being the

kind of relations that are necessary and sufficient to enable a construction to be usable

in all logical contexts. The extensional nature of the logical relations is however a hur-

dle in the way of obtaining smooth characterization results. In particular we witness

the failure of stability and definability of global constructions, but the former can be

recovered for a particular kind of signatures (i.e. those with no functional observers).

129



In the end, we have presented a new approach to a long-standing problem con-

cerning a sound and complete method for proving observational equivalence between

extensional models. Our approach is to define a new kind of relation that is in confor-

mance with COL constraints and to prove that if one looks for logical relations also

on subalgebras of the equivalent algebras then the method is complete.

130



Chapter 6

Conclusions

Contents
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

This is the final chapter of this thesis. It contains a short recapitulation of what has

been presented and what can still be done in order to develop the theory of construc-

tions.

6.1 Summary

In the previous chapters we have investigated the properties of global constructions.

This topic has been researched under various forms in [Sch87, BST08] but we bring a

new view on the subject by casting its problems in the framework of Constructor-based

Observational Logic.

The choice of COL is not just an aesthetic preference or just for the sake of a small

variation, but during the thesis it can be observed that it is the optimum framework for

expressing such results. COL allows us to be explicit about the elements in an algebra

whose behavior is of interest and about the operations that are used to observe that

behavior. This fine level of detail in specifying behaviors enabled us to identify some

issues that were undetected in previous presentations of the subject. Recall one of the

results presented in Section 5.5, in which we provide a sound and complete method

based on logical relations for proving observational equivalence (COL-isomorphism)

between algebras. That problem has been investigated in both lambda calculus and

algebraic communities without satisfactory results. However, the solution is almost

131



trivial in COL, and the reason why that happens is exactly because we are using its

specific features to control the behavior of the algebras involved . It is essential to our

solution that the problem is expressed for algebras of logical signatures (see Defini-

tion 5.10) and the definition of logical signatures uses the features of COL, i.e. the

distinguished single observer on the higher order sorts that must be application and

the requirement for higher order sorts to be loose. That conjunction of requirements

could not be easily expressed in previous frameworks where practically all sorts were

constrained and all operations were observers (see Definition 2.34). It is the merit of

the framework that it allows such a simple solution to the original problem.

The richness of COL signatures and of the signature morphisms between them

also allowed us to examine several flavors of globality (genericity), depending on the

details of the fitting morphisms. For each of these variants, globality is characterized

in terms of preservation of correspondences which reflect in their structure the choices

of global contexts.

In Chapter 3 we have presented the constructions that can be used in any global

context. The extreme flexibility in the use of those constructions means that the im-

plementer is highly restricted. He cannot assume anything more than what it is present

in the signature and hence in order to write a general global construction he will have

to restrict himself to implementing operations that are definable in terms of the source

signature. This requirement greatly reduces the number of general global construc-

tions that can be written, but on the other hand it is a powerful tool for the user of

such construction in order to prove properties of constructed models. Overall, general

constructions do not interact well with behavioral abstraction, e.g. we have witnessed

in Example 3.15 the failure of uniform definability even for iso-closed specifications.

That should not come as a surprise as it happens because we can use general global

constructions in unrestricted contexts, i.e. without paying any attention to the COL-

aspects of the source signature.

Chapter 4 is designed to address the shortcomings of general global constructions.

The studied constructions take into account the behavioral details present in their con-

texts. For example, vertical constructions can be used only in contexts that preserve

the nature of the loose and visible sorts. That requirement translates immediately into

the definition of the relations characterizing vertical global constructions. We define

vertical correspondences to be bi-surjective on loose sorts and bi-injective on visible

sorts in order to capture the characteristics of all COL-isomorphisms between algebras

from vertically fitted contexts. Returning to roles, from the point of view of the imple-

132



menter we can remark that the definability result is less restrictive, i.e. one can write

implementations using elements from the loose carriers (see the loose-definability re-

sult Proposition 4.10). Of course, that liberty for the implementer comes with a cost

for the user of vertical global constructions who will have less knowledge to use when

proving properties of constructed models. However, this drawback is not to bad as in

the majority of cases, i.e. when specifications are closed under COL-isomorphisms, a

stronger definability result (visible definability) can be inferred, and hence some power

is regained for the user of global constructions. In the final part of the chapter we look

at some hybrid constructions, situated between the two notions that we have already

discussed, namely the quasi-vertical constructions. Quasi-vertical constructions can

be used in more contexts than the vertical constructions, i.e. the only requirement is to

keep the nature of visible sorts, but they take on some of the good properties of vertical

constructions.

The last chapter on global constructions is Chapter 5 in which we describe the

interaction between global constructions and higher order sorts. We find out that by

considering extensionality of the contexts we get logical relations as the characterizing

correspondences. However, for such constructions we do not get definability prop-

erties. Nevertheless, the study of higher order sorts in conjunction with the notion

of COL-constructions led us to the concept of logical signatures and to a complete

characterization of observational equivalence in terms of logical relations.

6.2 Future work

Some areas of the subject are left untouched by this thesis. Due to our interest in char-

acterizing the definability of new operations in terms of operations already present in

the signature we have restricted ourselves to constructions along signature morphisms

that do not add new sorts. Extending the interest to constructions that also add new

sorts should lead to definability results for types, not just for operations. Just antici-

pating the results that might come out of this study we can expect that the carriers of

the newly added sorts would be freely generated from the ones of the old sorts. It re-

mains to figure out what will be the conditions for the contexts that would characterize

completely such type generating constructions.

133



6.2.1 Constructions for indexed categories

A path to follow in the further development of the theory of generic constructions

would be to treat it at a categorical level. At first, the framework of institutions seems

the most appropriate for talking abstractly about constructions but we would prefer a

simpler setting in order to make some additional points about constructions. For that

we will use the classical notion of indexed categories [Mac98]. Recall that an indexed

category is a functor F : Synop→ Sem with Syn,Sem ∈ Cat.

Starting from an indexed category F one can define the category of persistent con-

structions over that indexed category. The objects of the category of constructions

would be the fibers of F , i.e. F(Σ) for Σ ∈ Syn. The morphisms between F(Σ) and

F(Σ′) are pairs 〈σ, k〉 such that σ : Σ→ Σ′ and k : F(Σ)⇒F(Σ′) such that k;F(σ) =

1F(Σ). The case that was studied in this thesis is that of iso-preserving constructions

over the indexed category Mod that gives the semantics of COL specifications.

The goal of this research will be to define categorically the correspondences and

hence provide a categorical characterization of global constructions in terms of preser-

vation of correspondences. It will be interesting to find out how we can present in an

indexed category F the link between the contexts of use for global constructions (rep-

resented by morphisms in Syn) and the particular requirements on correspondences

(represented by morphisms in the fibers of F), in order to explain for example the link

between vertical contexts and vertical correspondences.

Another way to make the presentation of generic constructions more independent

of the concrete setting and more reliant on categorical concepts will be to investigate

the relation between the definability properties of those constructions and the concept

of Beth definability as it appears in classical model theory, and that was previously

lifted to institutional model theory in [PD06, Dia08].

6.2.2 Curry-Howard isomorphism for constructions

Another idea is to give the semantics of sentences in the same way as the semantics

of signature symbols is given. That will allow us to express the Curry-Howard iso-

morphism at the level of institutions, that is to see sets of types (signatures) as sets of

sentences. For that we will present the meaning of sentences using an indexed cate-

gory, in order to mimic the way the model functor Mod is introduced for an institution

[GB92], using an evidence functor Evd that gives all the evidence for the validity of

a set of sentences. Furthermore, starting from the fact that meanings for signatures

134



(models) and meanings for sentences (evidence) are both given via indexed categories,

we can define for both the corresponding category of persistent constructions. Hence,

functions between the classes of evidence can be studied using the same theory as

functions beween classes of models.

Definition 6.1 (K-institution). A K-institution KI = (Sign,Sen,Mod,Evd, |=) consists

of

• an indexed category Mod : Signop→ Cat

• a functor Sen : Sign→ Cat, giving for each signature Σ a category of sentences

(also written as SenΣ instead of Sen(Σ))

• for each signature Σ, an indexed category EvdΣ : Senop
Σ
→ Cat

• a relation |=Σ⊆ |Mod(Σ)|× |Sen(Σ)| for each Σ ∈ |Sign|, called Σ-satisfaction,

such that the satisfaction condition holds.

The difference between a classical institution as defined in [GB92] and a K-institution

consists in the fact that the sentences for each signature form a category on which is

based an indexed category of evidence. This is the first step towards bringing the

Curry-Howard isomorphism to the level of institutions (surely additional conditions

should be satisfied by the satisfaction relation in order to ensure compatibility with the

evidence functors but we will not go into that right now).

So, we define the meaning of sentences, i.e. given by EvdΣ for each signature Σ,

using the same categorical concept (indexed categories) as is used for defining the

meaning of signatures, given by Mod. Hence, for each signature Σ we have objects

E,E ′ ∈ |Sen(Σ)| (informally representing the (sets of) sentences over Σ) and mor-

phisms between them (best thought as inclusions between sets of sentences). Intu-

itively, the objects in EvdΣ(E) are representing evidence for the validity of the sen-

tences in E.

Let us explain briefly the name chosen for evidence. At first we were tempted to

use the term “proofs” instead of “evidence” as the title of this section shows. That was

mainly motivated because the Curry-Howard isomorphism is often presented as “types

as sentences” and “functions as proofs”. However, we use the term “evidence” instead,

because we save the term “proof” to denote a computable evidence or computable

functions between evidence, as will be revealed later.

Before addressing the issue of constructions in K-institutions let us remark that we

can already link some concepts from the model-theoretic world to concepts from the

135



proof-theoretic world in the style of the Curry-Howard correspondence. One can see

the model-theoretic operation of reduction given by the action of Mod on signature

morphisms, that is taking models of a larger signature into models of a smaller signa-

ture, as correspondening to the forgetful proof rule that says that evidence for a larger

set of sentences can be seen as an evidence for a smaller set of sentences. In other

words, the fact that E ′ entails E when E ⊆ E ′ is semantically given by a reduct functor.
σ : Σ→ Σ′

Mod(σ) : Mod(Σ′)⇒Mod(Σ)

ι : E→ E ′

Evd(ι) : Evd(E ′)⇒Evd(E)
As we have seen in the previous section, persistent constructions can be defined

for each indexed category, so in the case of K-institutions we can talk about model-

constructions, induced by Mod, but also about evidence-constructions, induced by

EvdΣ for each Σ ∈ Sign. That is, functions between model classes correspond through

the Curry-Howard isomorphism to functions between evidence classes. More specula-

tively, one can think of evidence-constructions as a form of theorem proving, i.e. that

it is sufficient to map each evidence in Evd(E) to a evidence in Evd(E ′) in order to

assert the validity of E ′ starting from that of E. Therefore, on this line, we can say

that implementations correspond to proofs. The goal of applying the Curry-Howard

isomorphism for K-institutions is to transfer insights from refinement theory to proof

theory and vice-versa.

A theory of proofs for institutions was also proposed in [MGDT07] and then de-

veloped in [Dia06]. While that approach identifies the need to treat sets of sentences

and proofs between them rather than single sentences, it does not organize sentences

as an indexed category. We think that our presentation has the advantage of giving se-

mantics to sentences in a way that embodies the Curry-Howard isomorphism naturally,

but the full extent to which this view brings something useful and new still remains to

be investigated.

6.2.3 Towards a notion of beliefs

Currently just at the level of speculation, we can think about interpreting into proof

theory the results of global constructions obtained in refinement theory. We have al-

ready said that an evidence-construction can be seen as some kind of proof, but giving

a function between Evd(E) and Evd(E ′) is definitely pretty far from what is typically

understood by giving a proof from E to E ′.

Classical proofs are typically generated from a set of proof rules, and are not

just arbitrary functions. And here is the point where one can make a link with the

136



theory behind global constructions. More explicitly, an evidence-construction ek :

Evd(E0)⇒Evd(E1) can be thought as an arbitrary “proof” between E0 and E1 because

it gives a way to see each item of evidence for E0 as an evidence for E1. However,

we have seen that constructions that can be reused in global contexts satisfy various

definability properties. One can define a notion of global evidence-construction, and

obtain a definability result for such constructions. Using that insight one can imagine

that global evidence-constructions correspond in fact to proofs as we understand them,

i.e. adhering to a generation principle.

Our proposed hypothesis is to consider that the concept of proof can be explained

using the notion of global construction. That means, first of all, that there are differ-

ent notions of proofs depending on the scope of reusability. For example, the ones

that can be reused in any context, having discretionary knowledge about evidence, are

the universal proofs which have the property of being generated. However, one can

investigate different notions of proofs, which satisfy weaker definability results. We

denote these weaker variants of proofs by the term “beliefs”. Beliefs are not necessary

generated and can be of various kinds: vertical beliefs, quasi-vertical beliefs. For ex-

ample vertical beliefs are those evidence-constructions that can be reused only across

vertical lifting pushouts. These constructions have, as has been investigated in this

thesis, weak definability properties (at best we have visible definability). However, in

the realm of proof theory that might become interesting, because such beliefs represent

an argument for proving conclusions without generating them strictly from hypotheses

by using logical deduction. Beliefs might sound odd as a basis for an argumentative

discourse as they are not generated by a step by step deduction. For them it is not

important how they are obtained but how they can be used. And the more limited is the

scope of their use, the more liberty in making the argument can be accepted. A motto

for using beliefs would be: one does not need to be rigourous in one’s proofs if they

are not to be used in all contexts.

But as we said, all these thoughts are at the level of speculation and need to be

applied to some concrete cases in order to see if there is any value in creating a notion

of beliefs to complement the already well established study of proofs.

137



Bibliography

[Bar81] H. P. Barendregt. The Lambda Calculus. Netherlands: North-Holland,

1981.

[BG80] R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification

language. In Dines Bjørner, editor, Proceedings of the 1979 Copenhagen

Winter School on Abstract Software Specification, volume 86 of Lecture

Notes in Computer Science, pages 292–332. Springer, 1980.

[BH95] Michel Bidoit and Rolf Hennicker. Proving the correctness of behavioural

implementations. In Proc. AMAST ’95, volume 936 of Lecture Notes of

Computer Science, pages 152–168. Springer, 1995.

[BH96] Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof

of behavioural properties. Theoretical Computer Science, 165(1):3–55,

1996.

[BH98] Michel Bidoit and Rolf Hennicker. Modular correctness proofs of be-

havioural implementations. Acta Informatica, 35(11):951–1005, 1998.

[BH05] Michel Bidoit and Rolf Hennicker. Externalized and internalized notions

of behavioral refinement. In ICTAC, volume 3722 of Lecture Notes in

Computer Science, pages 334–350. Springer, 2005.

[BH06a] Michel Bidoit and Rolf Hennicker. Constructor-based observational logic.

Journal of Logic and Algebraic Programming, 67(1–2):3–51, 2006.

[BH06b] Michel Bidoit and Rolf Hennicker. Proving behavioral refinements of

COL-specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and

José Meseguer, editors, Algebra, Meaning and Computation: Essays Ded-

icated toJoseph A. Goguen on the Occasion of His 65th Birthday, volume

138



4060 of Lecture Notes in Computer Science, pages 333–354. Springer,

2006.

[BHW95] Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and ab-

stractor specifications. Science of Computer Programming, 25(2-3):149–

186, 1995.

[BST08] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational

interpretation of CASL specifications. Mathematical Structures in Com-

puter Science, 18:325–371, 2008.

[CF58] Haskell Curry and Robert Feys. Combinatory Logic, volume 1. Nether-

lands: North-Holland, 1958.

[CH07] Karl Crary and Robert Harper. Syntactic logical relations for polymorphic

and recursive types. Electron. Notes Theor. Comput. Sci., 172:259–299,

2007.

[Dia06] Răzvan Diaconescu. Proof systems for institutional logic. Journal of

Logic and Computation, 16(3):339–357, 2006.

[Dia08] Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser,

2008.

[EK99] Hartmut Ehrig and Hans-Jörg Kreowski. Refinement and implementa-

tion. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors, Al-

gebraic Foundations of Systems Specification, pages 201–242. Springer,

1999.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1,

volume 6 of EATCS Monographs on Theoretical Computer Science.

Springer-Verlag, Berlin, 1985.

[GB92] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for

specification and programming. Journal of the Association for Computing

Machinery, 39(1):95–146, 1992.

[Gir72] Jean-Yves Girard. Interpretation functionelle et elimination des coupures

dans l’arithmetique d’ordre superieure. PhD thesis, Universite Paris VII,

Paris, 1972.

139



[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-

ume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 1989.

[GM00] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Com-

puter Science, 245(1):55–101, 2000.

[Gog89] J. A. Goguen. Principles of parameterized programming. Software

reusability: vol. 1, concepts and models, pages 159–225, 1989.

[Gri90] Timothy G. Griffin. A formulae-as-type notion of control. In POPL ’90:

Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, pages 47–58, New York, NY, USA, 1990.

ACM.

[Han01] Jo Hannay. Abstraction Barriers and Refinement in the Polymorphic

Lambda Calculus. PhD thesis, University of Edinburgh, 2001.

[Han03] Jo Hannay. Abstraction barrier-observing relational parametricity. In

Martin Hofmann, editor, Typed Lambda Calculi and Applications, volume

2701 of Lecture Notes in Computer Science, pages 1086–1086. Springer

Berlin, 2003.

[HB99] Rolf Hennicker and Michel Bidoit. Observational logic. In Armando Mar-

tin Haeberer, editor, Proceedings of the 7th International Conference on

Algebraic Methodology and Software Technology (AMAST’98), volume

1548, pages 263–277, 1999.

[HLST00] Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki.

Constructive data refinement in typed lambda calculus. In Proceedings

of the 3rd International Conference on Foundations of Software Science

and Computation Structures. European Joint Conferences on Theory and

Practice of Software (ETAPS 2000), volume 1784 of Lecture Notes in

Computer Science, pages 161–176. Springer, 2000.

[How80] William Howard. The formulae-as-types notion of construction. In To

H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-

malism, pages 479–490. Academic Press, 1980.

140



[HS02] Furio Honsell and Donald Sannella. Prelogical relations. Information and

Computation, 178(1):23–43, 2002.

[Mac98] Saunders MacLane. Categories for the Working Mathematician. Springer-

Verlag, New York, 1998.

[Mei92] Karl Meinke. Universal algebra in higher types. Theoretical Computer

Science, 100(2):385–417, 1992.

[Mes89] José Meseguer. General logics. In H.-D. Ebbinghaus, editor, Logic Col-

loquium ’87, pages 275–329. North-Holland, 1989.

[MG94] G. Malcolm and J. Goguen. Proving correctness of refinement and imple-

mentation. Technical Monograph PRG-114, University of Oxford, 1994.

[MGDT07] Till Mossakowski, Joseph Goguen, Rǎzvan Diaconescu, and Andrzej Tar-

lecki. What is a logic? In Jean-Yves Beziau, editor, Logica Universalis:

Towards a General Theory of Logic, pages 111–135. Birkhäuser, 2007.

[Mit91] John C. Mitchell. On the equivalence of data representations. Artificial

intelligence and mathematical theory of computation: papers in honor of

John McCarthy, pages 305–329, 1991.

[Mit96] John Mitchell. Foundations for Programming Languages. MIT Press,

Cambridge, MA, 1996.

[MTW87] Bernhard Möller, Andrzej Tarlecki, and Martin Wirsing. Algebraic spec-

ifications of reachable higher-order algebras. In Donald Sannella and

Andrzej Tarlecki, editors, Recent Trends in Data Type Specification, 5th

Workshop on Abstract Data Types, Gullane, Scotland, September 1-4,

1987, Selected Papers, volume 332 of Lecture Notes in Computer Sci-

ence, pages 154–169. Springer, 1987.

[PA93] Gordon D. Plotkin and Martı́n Abadi. A logic for parametric polymor-

phism. In International Conference on Typed Lambda Calculi and Appli-

cations (TLCA) , Utrecht, The Netherlands, volume 664 of Lecture Notes

in Computer Science, pages 361–375. Springer-Verlag, 1993.

[PD06] Marius Petria and Răzvan Diaconescu. Abstract Beth definability in insti-

tutions. Journal of Symbolic Logic, 71(3):1002–1028, 2006.

141



[Pit00] Andrew M. Pitts. Parametric polymorphism and operational equivalence.

Mathematical Structures in Computer Science, 10(3):321–359, 2000.

[Plo80] Gordon Plotkin. Lambda-definability in the full type hierarchy. In To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,

pages 365–373. Academic Press, 1980.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Paris collo-

quium on programming, volume 19 of Lecture Notes in Computer Sci-

ence. Springer, 1974.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism. In

Information Processing ’83, pages 513–523. North-Holland, Amsterdam,

1983.

[RG00] Grigore Rosu and Joseph Goguen. Circular coinduction. In In Interna-

tional Joint Conference on Automated Reasoning, 2000.

[Ros03] Grigore Rosu. Inductive behavioral proofs by unhiding. Electronic Notes

in Theoretical Computer Science, 82(1), 2003.

[RP90] John C. Reynolds and Gordon D. Plotkin. On functors expressible in

the polymorphic typed lambda calculus. In Gérard Huet, editor, Logical

Foundations of Functional Programming, University of Texas at Austin

Year of Programming, pages 127–152. Addison-Wesley, Reading, Mas-

sachusetts, 1990. A preliminary version of a paper to appear in Informa-

tion and Computation.

[San99] Donald Sannella. Algebraic specification and program development by

stepwise refinement. In LOPSTR, volume 1817 of Lecture Notes in Com-

puter Science, pages 1–9. Springer, 1999.

[SB83] Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio

Ausiello and Marco Protasi, editors, Proceedings of the 8th Colloquium

on Trees in Algebra and Programming, volume 159 of Lecture Notes in

Computer Science, pages 377–391. Springer, 1983.

[Sch87] Oliver Schoett. Data Abstraction and the Correctness of Modular Pro-

grams. PhD thesis, University of Edinburgh, Department of Computer

Science, 1987.

142



[ST87] Donald Sannella and Andrzej Tarlecki. On observational equivalence

and algebraic specification. Journal of Computer and System Sciences,

34:150–178, 1987.

[ST88a] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary in-

stitution. Information and Computation, 76(2/3):165–210, 1988.

[ST88b] Donald Sannella and Andrzej Tarlecki. Toward formal development of

programs from algebraic specifications: Implementations revisited. Acta

Informatica, 25:233–281, 1988.

[STar] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Speci-

fication and Formal Program Development. Cambridge University Press,

to appear.

[Str67] Christopher Strachey. Fundamental concepts in programming languages.

Lecture Notes, International Summer School in Computer Programming,

Copenhagen, aug 1967. Reprinted in Higher-Order and Symbolic Com-

putation, 13(1/2), pp. 1–49, 2000.

[Tar86] Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H.

Pitt, Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,

Proceedings of the Tutorial and Workshop on Category Theory and Com-

puter Programming, volume 240 of Lecture Notes in Computer Science,

pages 334–360. Springer, 1986.

[Wad89] Philip Wadler. Theorems for free. In Functional Programming Languages

and Computer Architecture, pages 347–359. ACM, 1989.

143


