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ABSTRACT

This paper discusses the relations between extended incidence calculus and
the Assumption-based Truth Maintenance Systems (ATMS). We first prove that
managing labels for statements (nodes) in an ATMS is equivalent to producing in-
cidence sets of these statements in extended incidence calculus. We then demon-
strate that the justification set for a node ts functionally equivalent to the im-
plication relation set for the same node in extended incidence calculus. As a
consequence, extended incidence calculus can provide justifications for an ATMS
because implication relation sets are discovered by the system automatically. We
also show that extended incidence calculus provides a theoretical basis for con-
structing a probabilistic ATMS by assoctating proper probability distributions on
assumptions. In this way, we can not only produce labels for all nodes in the
system, but also calculate the probability of any of such nodes in it. The nogood
environments can also be obtained automatically. Therefore, extended incidence
calculus and the ATMS are equivalent in carrying out inferences at both the sym-
bolic level and the numerical level. It extends the result in [16].
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1. INTRODUCTION

One of the most important and difficult task of any intelligent system is
to ultimately infer what we can confirm or possibly confirm given a set of
facts. The set of statements we might confirm builds up our current beliefs
towards the world we are concerning or we want to know. This set needs
to be modified as more and more information is collected. Therefore our
beliefs about the problem changes all the time and each of these changes is
caused by some newly observed facts. Up to date, many approaches have
been proposed to make such inference. Among them, the assumption-based
truth maintenance system (ATMS) [6] provides an attractive mechanism
to maintain and update the belief set.

The ATMS is a symbolic reasoning technique used in the artificial in-
telligence domain to deal with problems by providing dependent relations
among statements during inference. This technique has been used in many
areas such as fault diagnosis, trouble shooting, .... In practical applications,
it has been found that a system using this technique can only infer results
with absolutely true or false. It lacks the ability to draw plausible conclu-
sions such as that a conclusion is true with a degree of belief. However in
many cases, pieces of information from a knowledge base provide assump-
tions and premises with uncertainties. It 1s necessary to let the ATMS have
the ability to cope with uncertainty problems.

In order to overcome this problem, some research on the integration of
symbolic reasoning with numerical inference has been carried out to asso-
ciate numerical uncertainties with ATMS [3], [4], [7], [10], [13], [14], [15],
[16], [20], [21]. In [7], De Kleer and Williams use probability theory to deal
with uncertainty associated with assumptions. In [10], [15], the authors use
possibilistic logic to handle this problem. In [10], both assumptions and
justifications are associated with uncertainty measures. The uncertainty
values associated with justifications are used to select the path for deriving
a node. Only those pathes with strong supporting relations are used to
infer the corresponding nodes. [15] continues the work carried out in [10]
and extends it to deal with a military data fusion application. [3], [4], [13],
[16], [20], [21] all use Dempster-Shafer theory of evidence (DS theory) ([5],
[22]) to calculate beliefs in statements. Among them, [16] studies a formal
relation between DS theory and ATMS. It is proved in [16] that any belief
network in DS theory can be translated into an ATMS structure. In such
a system, inference is performed based on ATMS techniques while beliefs
in statements are calculated by using probability theory.

One common limitation in all these extensions of the ATMS! is that the
probabilities assigned to assumptions must be assumed probabilistically

IExcept the discussion in [10], [15] in which the topic was not discussed.



independent in order to calculate the degree of belief in a statement.

In this paper, we continue this research and intend to provide a general
basis for constructing a probabilistic ATMS. The uncertainty technique we
have chosen is extended incidence calculus. Incidence calculus was intro-
duced in [1], [2] which aims at providing an automated reasoning technique
to deal with uncertainty problems by associating classical propositional
logic with probabilities. In [17], [18] this theory has been generalized con-
siderablely to model a wider range of problems and the advanced theory
is called extended incidence calculus. There are several reasons for us to
choose extended incidence calculus to implement a probabilistic ATMS.
First of all, apart from its numerical reasoning characters, extended in-
cidence calculus also possesses some symbolic reasoning features. In ex-
tended incidence calculus, numerical uncertainties are not associateed with
statements we want to infer, rather sets of possible worlds are associated
with statements and uncertainties are associated with elements of possible
worlds. Each possible world associated with a formula indicates that this
formula is true under the support of this possible world. This is called
the indirect encoding of uncertainties. In general, if we only consider the
manipulation of incidence sets in incidence calculus, it is very similar to the
calculation of labels of nodes in the ATMS. Secondly, as extended incidence
calculus can calculate beliefs in statements after obtaining incidence sets,
it can combine a numerical reasoning procedure and a symbolic reasoning
procedure into one mechanism. Finally, we have provided a more general
combination technique in extended incidence calculus which can combine
both dependent and independent pieces of information [17], [18]. So it
1s not necessary to assume the independence of probability distributions
among assumptions as required in [3], [4], [7], [13], [16], [20], [21].

The main contributions of this paper are: 1) We prove that extended inci-
dence calculus and the ATMS are equivalent at both the symbolic reasoning
level (if we view the set of possible worlds in extended incidence calculus
as the set of assumptions in an ATMS) and numerical inference level if
we associate proper probabilistic distributions on assumptions. They can
be translated into each other’s form. 2) We show that the integration of
symbolic and numerical reasoning patterns are possible and extended in-
cidence calculus itself is a typical example of this unification. Extended
incidence calculus can be regarded as a bridge between these two reasoning
patterns. 3) in [17], [18] it has been proved that extended incidence cal-
culus is equivalent to Dempster-Shafer theory of evidence in representing
evidence and combining source-independent evidence. Therefore the result
of investigating the relationship between extended incidence calculus and
ATMS can provide a theoretical basis for some results in [16], namely the
calculation of beliefs in nodes and the weight of conflict introduced by all
evidence as well as its effect on individual nodes. 4) It is assumed that
Jjustifications must be supplied by the problem solver if one uses the ATMS
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techniques. We will show that extended incidence calculus can be used
to provide justifications for nodes automatically without human’s involve-
ment. Therefore a complete automatic ATMS system is constructible. 5)
The calculation of probabilities in nodes is done under the assumption that
all given probability distributions are probabilistically independent. When
this condition is not satisfied, the algorithm in [16] would not work. In [17],
[18] we propose a more general combination mechanism to deal with the
latter case. So extended incidence calculus can be used to help an ATMS
to manage numerical uncertainties when it is necessary.

The paper is organized as follows. In the rest of this section, we will
abstract the reasoning models in an ATMS and extended incidence calcu-
lus and then discuss their similarities. Section 2 introduces the basics of
extended incidence calculus. In section 3 we introduce the ATMS notations
and extend it by adding probabilities to assumptions. In section 4 we will
show how to encode an ATMS structure into extended incidence calculus
terminologies and perform the same inference in extended incidence cal-
culus. We will explore how to manipulate labels of nodes and calculate
degrees of belief in nodes in extended incidence calculus. In section 5 we
will briefly discuss how to provide justifications from extended incidence
calculus. In the concluding section, we summarize the paper.

1.1. The basic reasoning model in the ATMS

The truth maintenance system (TMS) [8] and later the ATMS [6] are
both symbolic approaches to producing a set of statements in which we be-
lieve. The basic and central idea in such a system is that for each statement
we believe in, a set of supporting statements (called labels or environments
generally in the ATMS) is produced. A set of supporting statements is,
in turn, obtained through a set of arguments attached to that statement
(called justifications). In an ATMS, a justification of a statement (or called
node) contains other statements (or nodes) from which the current state-
ment can be derived. Justifications are specified by the system designer.

For instance, if we have two statements representing inference rules:

rLip—q

ro.q—T

then logically we can infer that r3 : p — r. In an ATMS, if 1,75 and r3 are
represented by nodeq, nodes and nodes respectively, then nodes is derivable
from the conjunction of node; and nodes and we call (r1,r2) a justification
of nodes. Normally a rule may have several justifications. Furthermore if |
and 7y are valid under the conditions that A and B are true respectively,
then rule r3 is valid under the condition that A A B is true, denoted as
{A, B}. {A},{B} and {A, B} are called sets of supporting statements (or



environments) of r1, ra and r3 respectively. If we associate nodes with the
supporting statements such as {A, B} and the dependent nodes such as
{(r1,72)} then nodes is generally in the form of

rg p— r,{{A, B}..},{(r1,r2)...}

when nodes has more than one justification. The collection of all possible
sets of supporting environments is called the label of a node. If we use
L(r3) to denote the label of nodes, then {A, B} € L(r3). If we assume that
r1, 72 hold without requiring any dependent relation on other nodes, then
node; and nodey are represented as

riip =, ({41} {0}
ra g =7 {{B}},{0}

Therefore, we can infer a label for any node as long as its justifications
are known.

The advantage of this reasoning mechanism is that the dependent and
supporting relations among nodes are explicitly specified, in particular, the
supporting relations among assumptions and other nodes. This is obviously
useful when we want to retrieve the reasoning path. It is also helpful for
belief revision.

The limitation of this reasoning pattern is that we cannot infer those
statements which are probably true rather than absolutely true. However,
if we attach numerical degrees of belief to the elements in the supporting
set of a node, we may be able to infer a statement with a degree of belief.
For example, if we know A is true with probability 0.8 and B is true with
probability 0.7 and A and B are probabilistically independent, then the
probability of A A B is true is 0.56. The belief in a node 1s considered as
the probability of its label set. So for nodes, our belief in it 1s 0.56.

1.2. The basic reasoning model in extended incidence calculus

Incidence calculus was introduced by Bundy in [1], [2] to deal with prob-
lems in numerical reasoning. The special feature of this reasoning method
is the indirect association of numerical uncertainty with formulae. In in-
cidence calculus, probabilities are associated with the elements of a set
of possible worlds (denoted as W) and some formulae (called axioms) are
assoclated with the subsets of the set of possible worlds. Each element
in such a subset for a formula ¢ makes the formula true and this sub-
set is normally called the incidence set of the formula, denoted as i(¢)
(i(¢) € W). Our belief in a formula is regarded as the probability weight
of its incidence set. Assume that the set of possible worlds is W and r1, ry
are two axioms in an incidence calculus theory and the incidence sets for



ry and 7 are i(p = q) = Wi and i(¢ — r) = Wa, then the incidence
set of (p => g A g — r)is Wiy NWa. As formula p — r holds when for-
mula p — ¢ A ¢ — r holds, the incidence set of p — ¢ A ¢ = r must be
a subset of the incidence set of r3. So W; N W5 makes p — r true and
Wy NWy Ci(p — r) true. So the propagation of incidences of formulaes is
done through implication relations.

If W contains the set of assumptions in an ATMS, W7, W5 are the subsets
of W and W1NW5 1s regarded as the conjunction of the elements in Wy NWs,
then the manipulation of an incidence set is similar to the derivation of a

label.

1.3. Similarities of the two reasoning models

Abstractly if we view the set of possible worlds in incidence calculus as
the set of assumptions in an ATMS, and view the calculation of the inci-
dence sets of formulae as the calculation of labels of nodes in the ATMS,
then the two reasoning patterns are similar. Furthermore, as the proba-
bility weight of an incidence set can be calculated, incidence calculus has
associated numerical uncertainty with symbolic reasoning into one mech-
anism. Incidence calculus has no such indications as justifications during
its inference procedure. The implication relations are discovered automat-
ically.

The apparent similarity of these two reasoning patterns motivates us to
explore their relations more deeply. We focus our attention on the produc-
tion of labels in the ATMS and calculations of incidence sets in incidence
calculus. We will prove that the two reasoning mechanisms are equivalent
in producing dependent relations among statements. As incidence calculus
can draw a conclusion with a numerical degree of belief on it, incidence
calculus actually possesses some features of both symbolic and numerical
reasoning approaches. Therefore, incidence calculus can be used as a theo-
retical basis for the implementation of a probabilistic ATMS by providing
both labels and degrees of belief of statements and as an automatic rea-
soning model to provide justifications for an ATMS.

2. EXTENDED INCIDENCE CALCULUS

2.1. Basics of extended incidence calculus

Incidence calculus [1], [2] starts with two sets, the set P contains propo-
sitions and the set W consists of possible worlds with a probability distri-
bution on them. For each element w of W, the probability on w, g(w), is
known and Yg(w) = 1. From the set P, using logical operators A, V, -, —,
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a set of logical formulae are formed which is called the language set of P,
denoted as L£(P). The elements in the set ¥/ may make some formulae in
L(P) true. For any ¢ € L(P), if every element in a subset 1, of W makes
¢ true and W; is the maximal subset of this kind, then W is represented
as i(¢) in an incidence calculus theory and it is called the incidence set of
¢. Therefore, the supporting set of a formula ¢ is i(¢) and its probability is
p(¢) = wp(W1) where wp(W1) = Zyew, o(w). Tt is assumed that ¢(L) = {}
and i(T) = W where L, T represent false and true respectively. In [17],
[18] incidence calculus is extended in three aspects so that the advanced
reasoning mechanism i1s more powerful. This advanced mechanism is called
extended incidence calculus. In the following, we only introduce extended
incidence calculus.

Definition 1: Generalized incidence caleulus theories®

A generalized incidence calculus theory is a quintuple < W, o, P, A, 1 >
where W 1s a set of possible worlds with a probability distribution g, P is
a set of propositions and A is a subset of L(P) which is called a set of
axioms. The function i assigns an incidence set to every formula in A.
For any two formulae in A, we have

(¢ A) =i(o) Ni(v)

Based on this definition, given two formulae ¢, ¢ € A, we have i(¢) C
i(y) if ¢ |= . For any other formula ¢ € L(P)\ A, it is possible to get the

lower bound i, (¢) of its incidence set as
o) = | itw) (1)
Yl=e

For ¢ € A, ¢ = ¢ means that formula ¢ — ¢ is valid (a tautology). The
degree of our belief in a formula is defined as p.(¢) = wp(i.(¢)).

Definition 2: Semantic tmplication set

For any formula ¢ € L(P), if Y |= ¢ then ¢ is said to be semantically

tmplied b denoted as . Let ST = Y € A}, set
plied by 1, v E ¢ (¢) ={v v E oV ;
SI(¢) is called a semantical implication set of ¢.

Definition 3: Essential semantic tmplication set

?The original definition of incidence calculus theories in [2] is stricter than the defi-
nition here. More details on generalized incidence calculus theories can be found in [17],
(18], [19].
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Furthermore, let ESI(¢) be a subset of SI(¢) which satisfies the condi-
tion that a formula ¢ is in ESI($) if for any ' in SI(¢) then ¢ [E ¢/,
then ESI(¢) is called an essential semantical implication set of ¢. This is
denoted as ESI(¢) = ¢.

ProposITION 1. If ESI(¢) and ESI'(¢) are the two essential semantic
wmplication sets of formula ¢ coming from the same generalized incidence

calculus theory, then ESI(¢) = EST'(¢).

Proof

Suppose that ESI(¢) and EST'(¢) are different and further suppose that
a formula ¢ is in EST(¢) but not in ESI'(¢). If ¢ € ESI(¢) then for any
formula ¢’ € SI(¢), we have that ¢ [~ ¢'.

However, as ¢ € EST'(¢), then there is at least one formula ¢" (¢ €
SI(¢)) which makes the following equation true ¢ |= ¢". So according to
Definition 3, ¢ ¢ ESI(¢). Conflict. Therefore, ESI(¢) = ESI'(¢) and

the essential semantic implication set is unique.
QED

It will be proved later that the essential semantic implication set of a
formula is exactly the same as the set of justifications of that formula in

an ATMS.
Erample 1

Suppose we have a generalized incidence calculus theory and we know that
the following five inference rules

riie—d
ro:d—b
rg:b—a
ry:d—c
rsic—a

are in the language set. Further suppose that the set of axioms A contains
these five rules and all the possible conjunctions of them, then the lower
bounds of incidence set of other formulae can be inferred. For instance, for
formula e — @, the lower bound of its incidence set is

iesay= | i)
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According to Definition 2, all the formulae ¢ in A satisfying the condition
that ¢ |= (e — a) are in the semantic implication set. So the calculation of
lower bounds of incidence sets can be restated as:

dESI(Y)

In this example, there are in total seven axioms satisfying this require-
ment, so there are seven axioms in SI(e — a).

e=>d)Ad—=bA(b—a)
(e=>d)A(d—=e)A(ec—a)
(e=>d)A(d—=e)A(e—=a)A(d—b)
(eo>d)AN(d—=e)A(e—=a)A(b—a)
ead)AN(d=e)AN(e=a)A(d—=b)A(b—a)
e=>d)ANd—-b)Ab—oa)A(d—c)
(e=>d)A(d—=b)A(b—a)A(c—a)

However if we examine these seven axioms closely, we will find that
only the first two axioms are necessary to be considered if we want to get
is(e = a). The rest are unnecessary as their incidence sets are included into
the incidence sets of the first two axioms. Based on Definition 3, these two
axioms are in the essential semantic implication set of e — @ and this set
only has these two axioms. Therefore the following proposition is natural.

ProOPOSITION 2. IfSI(¢) and ESI(¢) are a semantic implication set and
an essential semantic tmplication set of ¢, then the following equation

holds:
i-(8) = i-(S1(6)) = i-(ESI(9))

where 1, (SI(¢)) = U¢j651(¢) i(¢;)-

PROOF

Assume a set of axioms in a generalized incidence calculus theory is A.
For a formula ¢, when ¢ € A, we have

¢ € SI(¢), ¢ € ESI(9), EST = {¢}

i (@) = i(¢) = i (SI(¢)) = ix(ESI(¢))

When ¢ € A, we have a set of formulae ¢1,...,¢, € A (n > 1) each
of which implies ¢. So SI(¢) = {¢1,...,#n}. Assume that the elements
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in ESI(¢) are n, ..., ¥m, then for ¢;, there will be some formulae ¢;: (at
least 4; itself) in SI(¢) which make the following equation hold

oj =¥

Let SIy, be a set containing these ¢, i.e. SIy, = {é; | ¢;1 |= 5},
then we have i.(v;) = i.(S1y;) because i(¢;/) C i(¢;). Repeating this
procedure for each formula in ESI(y), we obtain the following equation

i« (BS1(¢)) = Uy, ix (STy;)

To prove
i (S1(8)) = ix (ESI(6))

we need to prove that
i« (S1(9)) = Uy, x(S1y;)
Assume that i, (S1(¢)) \ Uy, i (S1y;) = S # {}, we have

S#{tandwe S =

w € ix(SI()) \ Uy,ix (Sly,) =

(Fp)p € 51(0), 9 & ESI(¢),w € i(p) =
(F ) € S1(9), 0 F ¢, ¢ & ESI(9)
(otherwise ¢ € S1, and ¢ ¢ SI(¢)) =
(Fe")p" € SI(9),¢" | ¢, 9" & ESI(¢) =
.. (repeat this procedure until we find ¢;)
(Fpt)pr € SI(B), pr—1 = r, 00 & ESI()
and Ay, o E @) (as A is finite) =

or & ESI(¢) and ¢ € ESI(4)

Conflict, so S is empty. Therefore, i, (SI(¢)) = i«(ESI(¢)) and i.(¢) =
i (S1(9))-

END

Based on a generalized incidence calculus theory, the efficiency of calcu-
lating an incidence set for a formula is very much dependent on the speed
of finding its semantic implication set as well as the essential semantic
implication set.

2.2. Combining several generalized incidence calculus theories

An ATMS has the ability to make inferences based on more than one
piece of information. In the following we will see how to deal with multiple
pieces of information in extended incidence calculus in general.
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Given a generalized incidence calculus theory, beliefs in formulae are
derivable. Usually we consider that each generalized incidence calculus
theory carries the information provided by one piece of evidence. If we have
multiple pieces of evidence on a problem and their information is carried by
multiple generalized incidence calculus theories, then we need to combine
them in order to reach a conclusion from all the available information.
The combination of multiple generalized incidence calculus theories is done
using a combination rule in extended incidence calculus [16, 17]. Given two
theories

<W,op, P,.Al,il >

<WaQaPaA2ai2 >

the combination rule produces the third generalized incidence calculus the-
ory as < W\ Wy, ¢, P, A, i > where

Wy = U i1(¢) Niz(¥) ¢ €A b e A
oAG=—

A:{g0|g0:(/>/\1/),where¢>6.,41, 1/)6-’42a @#L}

and

)= |J i(e)nis(v) peA
(endl=w)

The probability distribution on W\ Wy is updated as
o(w)

/ _
¢(w) = 1L Yuew,o(w’) wEWA Mo

The special case of the rule is when two generalized incidence calculus
theories are given on different sets of possible worlds and the two sets are
probabilistically independent (or DS-Independent®), the combination can
be performed using the Corollary 1 in [17]. Given that

< WlaglaPaAlail >

< WZaQZaPaAZaiZ >

3See definition and explanation in [18], [23]. In the analysis in [18], [23], two sets
of possible worlds are probabilistically independent cannot guarantee they are DS-
Independent when their common original source is known. In the case that original
source is the set product of these two sets, their probabilistic independence also implies
their DS-Independence. In this paper, as we only consider the latter case, we will use
term probabilistically independence to name the DS-Independence among two sets.
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applying Corollary 1 we get a combined theory < Ws, g3, P, A3, i3 > where

Wy = U i1(¢) ® i2(¥) ¢ €A bE A
PAY=—
Ws = Wi @ Wy \ Wy
01 (wis) 02 (way)

Lowh ) EWo Ql(wlli)QZ(w/Zj)

1z

o03(w) = o3((wis, wa5)) = Y

As = A as defined above

and

is(p) = | (11(6) @is (1)) \ Wo 6 € ALY E A
PAY =

In general a pair (w;, wo;) is an element of Wi @ Wo \ Wy. It is required
that T is automatically added into a set of axioms A if Uge 4i(¢) C W,

Similarly if there are several generalized incidence calculus theories and
the corresponding probability spaces are probabilistically independent, the
combined result will be < W, g, P, A, ¢ >. This result is also the same as
that obtained by combining the theories one by one.

Wo= | i1(61) @ .. @in(¢n) where ¢; € A; (2)

PIN. AP =—

! w! JEW Ql(wii)~~~9n(wéj)

11

o) = el n) = T

A={v v =N¢;,0; € Aj, ¥ #1}

and

)= |J  (11(61) @ .. @in(n)) \ Wo where ¢; € A;

PLIAAPnlEp

Now we look at an example. Suppose that there are two generalized
incidence calculus theories:

<A{X,-X}, 01, P,{d = b0,T},i1(d = b) ={X},i1(T) = {X,~X} >

<AV, =V} 02, P,{b = a, T}, ia(b— a) ={V},ix(T) ={V,-V} >
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if the two sets of possible worlds are probabilistically independent, then
using the above corollary the combined theory is

<Sx ®@Sv,03, P,{d—>bAb—a,...T} is(d = bAb—a)={(X,V)}..>

Table 1 below shows the combination procedure.

0] d—b T
i(¢) X} X, -X}
b—a d—bAb—a b—a
{v} {(X,V)} {X,~X}o{V}
T d—b T
IV, -V} | {X}o{V,-V} {X,-X}e{V,-V}

Table 1. Combination of two independent generalized incidence calculus
theories

The first two rows in the table represent the first generalized incidence
calculus theory and the first column represent the second theory. From the
combined theory, we have i,(d — a) = U¢|:(d_>a) ilg) = {(X,V)}. If we
know that g¢1(X) = 0.75, 02(V) = 0.8, then p.(d — a) = 0.6 which is our
belief in formula d — a. In this case, the conflict set Wy is empty.

3. EXTENDING ASSUMPTION-BASED TRUTH MAINTE-
NANCE SYSTEMS

The ATMS was introduced by de Kleer [6] based on the TMS [8] in
which a special set of arguments, named as assumptions, are particularly
addressed. Considering an inference rule a — b, normally in propositional
logic this rule tells us that if a is observed then b i1s believed to be true.
In this procedure the information supporting the inference from a to b is
assumed to be true by default. If this information is supplemented then
the rule can be written as:

aNC =

where (' 1s regarded as the information related to the rule but hidden be-
hind the rule. In an expert system, C' can be thought of the rule strength
m. While in an ATMS, C is called an assumption®. In the absence of infor-
mation, assumptions are assumed to be true in the procedure of carrying

4We follow de Kleer’s convention that upper-case letters are used to represent
assumptions.
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out inferences. When a conflict is discovered, some of the assumptions will
be assigned false to prevent the firing of relevant rules. In this section,
we extend the ATMS by associating probabilities on assumptions in order
to establish formal and theoretical relations between a probabilistic ATMS
and incidence calculus.

3.1. Non-redundant justification sets and environments

We briefly describe the ATMS below.

node: a node ( called a problem-solver’s datum) in an ATMS represents
any datum unit used in the system. This datum unit can be a propo-
sition or any formula in the propositional language which the system
uses. The truth and falsity of a datum unit is inferred during the
system processing procedure.

assumptions: a set of distinguished nodes which are believed to be true
without requiring any preconditions are called assumptions.

justifications: justifications are supplied by the problem-solver. A justifi-
cation for a node contains those nodes from which it can be derived.
Usually, a node has several justifications representing multiple paths
to infer the node.

label: a set of assumptions is called an environment of a node if the
node holds under this environment. The label of a node contains all
collections of such environments. Each environment in a label consists
of non-redundant assumptions.

nogood: there i1s a nogood node in an ATMS system, any environment in
which falsity is derived is included in the label of nogood.

In an ATMS, each node is associated with a label and a set of justifica-
tions and the node is normally denoted as

< node;,label, justifications >

The inference procedure in the ATMS propagates assumptions along jus-
tifications.

Both the label and the justifications for a node can be explained as ma-
terial implications. Given a node ¢ with label {{A1, Az, ...} {B1, Ba, ...}...}
and with justifications
{(#1, 22, ...) (Y1, Y2, ...)...}, the meaning of the label of ¢ is that the conjunc-
tion of assumptions in each environment makes ¢ true, such as A; A As...
of environment {A4;, A;...} makes ¢ true. So L(c) is a set containing con-
junctions of assumptions. L(c) = {(A1 A Aa A ...), (B1 ABa A ..)...}. The
following relation is true.

(A1 /\A2 A )\/ (Bl /\Bz A )\/ .= C
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Each justification of ¢ also represents an implication, that is, for justifi-
cation (z1, 22, ...), if 21 A za A ... is proved to be true, then ¢ is true as well.
So there is similar implication relation:

(z1Az2 AL )V (L Ay A )V oo e

The relations between a justification and 1ts node states that the conjunc-
tion of z;(y;) logically supports the conclusion ¢. If we consider z; and ¢ as
formulae in a propositional language, then A;z; is a formulain the language
which implies c, that 1s, formula
Aiz; = cis always true. In general if we let j(e) = {(z1 Az2 A L), (1 Ay2 A
.o)...}, then every element in j(c) semantically implies ¢, so j(¢) k= c.

In general each justification is nonredundant. That is, deleting any ele-
ment in an justification will destroy the implication relation of this justi-
fication to its node. For any two justifications for one node, usually these
two justifications don’t imply each other. That is one justification cannot
be inferred from another. If one justification can be inferred by another,
then the effect of this justification will be covered by the latter one. The
same rules also apply to the environments for a node. So any environment
is nonredundant and any two environments of a node have at lease one
different assumption. We will show this in the following example.

Erample 2

The five inference rules given at the beginning of Example 1 can be
encoded into a set of ATMS nodes as®

nodey < e = d, {{7}},{(7)} >

nodes < d = b, {{X}},{(X)} >

nodeg :< b — a, {{V}}{(V)} >

nodey < d = ¢, {{Y}},{(Y)} >

nodes < ¢ = a, {{W}H {(W)} >
Similarly we encode another two inference rules in this ATMS as

nodeg < d = a, {{X,V},{Y, W}}, {(nodes, nodes), (nodes, nodes) } >

noder < e = a, {7, X, V},{Z,Y,W}} {(nodey, nodegs)}
or replacing nodeg by its justification set

noder :< e = a,{{Z, X, V},{Z,Y,W}},

{(nodey, nodes, nodes), (nodey, nodey, nodes) }

We should notice that (nodey, nodes, nodes) also implies nodeg, but it is
not in the justification set of nodeg as the effect of this justification has

5A node with only an assumption (or assumptions) in both its label and its jus-
tifications means that this node is supported and dependent on this assumption (or
assumptions) only.
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been covered by the justification (nodes, nodes). The same thing happens
to nodey; as well.

In fact there are in total seven conjunctions of nodes make noder true,
but only two of them are included in the justification set of node;. These
seven conjunctions of nodes and the two of them used in the justification
set are exactly the same as the semantic implication set and the essential
semantic implication set for formula e — a in extended incidence calculus
(see Example 1). If the essential semantic implication set of a formula is
known, then this set can be used as justifications for the node. That is why
we use extended incidence calculus to provide justifications for nodes. We
will discuss this in detail in section 5.3.

The justification set of a node in an ATMS contains implication relations
among a set of nodes and this desired node. If we require that a justifi-
cation set of a node is non-redundant, then deleting any justification from
the justification set of a node will cut off a path which can derive the node.
From any given justification set, we can always get a non-redundant justi-
fication set from it and these two sets give out the same environments. For
any inference chain which can derive the node, there must exist a justifica-
tion. This justification contains fewer nodes then the chain but can infer
the same result. The labels of nodes are also non-redundant. The non-
redundancy of a label means either that for any two environments in the
label of a node, one environment cannot be inferred from another or that
deleting any assumption (or assumptions) in an environment will destroy
the supporting relation among this node and the environment.

For nodez, the non-redundant justification set and label are

{(nodey, nodes, nodes)

(nodey, nodey, nodes) }

and

HZ2, X, V{2, Y, W}}

respectively.

3.2. Probabilistic assumption sets
In an ATMS, all nodes can be divided into four types: assumptions,

assumed nodes, premises, and derived nodes. An assumption node is a
node whose label contains a singleton environment mentioning itself, such

as < A, {{A}},{(4)} >.

An assumed node is a node which has justifications mentioning only

assumptions®. For instance < a, {{A}},{(4)} >or < b, {{A4, B}},{(4, B)} >.

6In [7], an assumed node has only one justification mentioning one assumption.
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All other nodes are either premises or derived. A premise (or a fact) has an
empty justification and empty label set, i.e., it holds without any precon-
ditions. A deriwed node usually doesn’t include assumptions in its justifica-
tions, such as {c,{{A, B}},{(a,b)}}. In general, if we keep the restriction
that non-assumptions cannot become assumptions, or assumptions cannot
become another type of node [6], then it is possible to keep all assumptions
in one set and other nodes in another set, and the two sets are distinct.

The inference result of a node has one of three values: Believed, Disbe-
lieved and Unknown. If one of the environments in the label ¢ is believed,
then ¢ i1s believed. If one of the environments in the label —c¢ 1s believed,
then ¢ i1s disbelieved, otherwise ¢ is unknown. When both ¢ and —c are
believed, there 1s a conflict and falsity is derived. In this case, some of
the previous results should be retrieved and reinferred, e.g., delete nogood
environments from those labels of nodes where they appear. Such kinds of
inference in an ATMS produce only three possible values. It cannot rep-
resent a plausible conclusion d with a degree of belief. Attempts to attach
uncertain numbers with assumptions in the ATMS have appeared in [3],
[4], [7], [10], [15], [16]. The belief of a node is identified as the probability
of its label Bel(c) = Pr(L(c)).

For example [20], the rule Turn the key — start the engine with 0.8 can
be represented in the ATMS as

<b—a {{B}},{(B)} >

where B stands for an assumption ( or a set of assumptions) which supports
the implication relation b — @ and assign 0.8 as the probability of B. @ and
b represent propositions ‘start the engine’ and ‘turn the key’ respectively.

Assume that for node b we have < b, {{A}}, {(A)} >, then the jus-
tification for node a is b A (b — a) = a. That is for node a we have
< a,{{A, B}},{(b,b —> a)} >. ais a derived node.

Therefore Bel(a) = Pr(L(a)) = Pr(A A B) = 0.8, if the probability
distributions are probabilistically independent and the action ‘turn the key’
is true, i.e., p(4) = 1.

In this way, principlely the ATMS has the ability to make plausible
inferences with beliefs. For a simple case like this, the calculation of proba-
bilities on nodes is not difficult to carry out. However, in most cases labels
of nodes are very complicated and probability distributions on assumptions
maybe somehow related. In these circumstances, calculating probabilities
of labels of nodes is quite troublesome as shown in [16], [20]. We introduce
the following two definitions to cope with this difficulty in general.

Definition 4: Probabilistic assumption set”

"Similar definition is given in [16] called an auxiliary hypothesis set.
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A set {Aq, ..., Ay}, denoted as Sa, . a,, is called a probabilistic assump-
tion set for assumptions Ay, ..., A, if the probabilities on Ay, ..., A, are
given by a probability distribution p from a piece of evidence and
Ypefa,..a3p(D) = 1. The simplest probabilistic assumption set has two
elements A and —A, denoted as Sy 4. For any two elements in a proba-
bilistic assumption set, it is assumed that A; N A; = 1. For all elements in
the set, we have V;A; =true forj=1,..., n.

For two distinct probabilistic assumption sets Sa, . 4, and Sp,  B..,
the unified probabilistic assumption set is defined as Sa,,.. 4,.B:,. B, =
Say,...4, @58y, B, = 1(Ai,B;) | Ai € Sa,,..,a4,,B; € SB,,....B,, } Where
©® means set product and p(A4;, Bj) = p1(A4i) x p2(B;j). p1 and po are the
probability distributions on S4,, . a, and S, . B, , respectively.

Example 3

Assume that the five assumptions in Example 2 are in different probabilis-
tic assumption sets. An environment for nodeg derived from justification
{(nodes, nodes)} is {{X,V}}, then the joint probabilistic assumption set
for this environment is Sx -x ® Sy,-v. Similarly the joint probabilistic
assumption set for environment {{Y, W1} is Sy .y @ Sw -w .

Definition 5: Full extension of a label

Assume that an environment of a node n is {A, B, ...,C'} where A|B,...,C
are in different probabilistic assumption sets Sa, .. a,,S58,,..B, and Sc,, ¢
Because ANBAN..NC = AABAN...ANCAN(VE; | E; € Sey, E,),
AANBA..ANC—nand ANBAN..ANCA(V;E; | E; € Sk, E,) = n are
all true (where Sg, . g, is a probabilistic assumption set which is different
from Sa, . .a,,5B,,.. B, and Sc, ..c,) {AB,...,.C}®Sg,,. g, is called a
full extension of the environment to Sg, . g,. If there are in total m prob-
abilistic assumption sets in the ATMS, then {A,B,...,.C}®S8g,, £, ©®..Q
Sty,...r; 15 called the full extension of the environment to all assumptions,
or stmply called the full extension of the environment. Simiarly f every
environment in a label has been fully extended to all assumptions, then we
call the result the full extension of the label, denoted as F'L(n).

To understand the idea behind this definition, we look at Example 2
again. There are 5 probabilistic assumption sets in this ATMS structure,
Sz-z, Sx,-x, Sv,-v, Sy,-y and Sw-w. One environment of nodeg is
{X,V} which contains assumptions in two probabilistic assumption sets
Sx,-x and Sy,-y. Based on Definition 5 the full extension of this environ-
ment is

o

{X,V}®Sz-2®Sv-v @ Sw,-w
and the full extension of label L(node) is

{X,V}®Sz-2®Sy-y @Sw-w U{Y,W}®Sx-x @Sv-v®Sz-z
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Similarly, we are able to calculate full extensions for all environments of
nodes.

In particular, let L(L) represent all inconsistent environments (i.e. no-
good) and let FL(L) represent the full extension of them. If a label of a
nodeis L(¢) = {{A41, Aa, ... },{B1, B2, ...}, ...}, it means that (A1 AA3A.)V
(Bi ABa A..)V...— cis true. After we get the full extension of the label
and represent it in digjunctive normal form ( a disjunction of conjunctions),
we have that (A1 A A2 AL A Bl A Cl) V..V (A1 A A2 A Bn A 01 A
c) V(AL AN A A LA By A A Cpy) = ¢ is true, each conjunction in the
full extension contains the elements from different probabilistic assumption
sets and any two such conjunctions are different. Such a full extension is
convenient for calculating uncertainties related to assumptions.

The motivation of this definition comes from two aspects. First of all,
although Laskey and Lehner have the definition of probabilistic assumption
sets in [16] implicitly and give an algorithm to calculate the probability of
a node based on its label, we are not satisfied with the algorithm they give.
It lacks theoretical notation. Secondly, if we organize different assumptions
into different probabilistic sets, we’d better adopt some set operations to
deal with them. In this sense, the management method on sets of possible
worlds in extended incidence calculus seems reasonable to be used here.
These two reasons suggested us to give the above definition about how
to extend a label into its full length notation and such a full extension is
convenient for calculating uncertainties related to assumptions.

Example 4

In Example 3, we have two different probabilistic assumption sets for
two environments of nodes. However the probability of nodes cannot be
obtained by calculating them separately and then adding them together.
Doing so may over count the joint part in these two sets. The solution to
this 1s to apply Definition 5 to each of these environments and we have full
extensions for these two environments as

Sz-z @{X,V}® Sy -v @ Sw,-w

Sz-72 @ Sx,~x @ Sy-v @{Y,W}

The full extension of the label of nodeg 1s the union of these two sets.
(Sz,-z@{X, V}®@ Sy -v @ Sw-w)U (Sz-290 Sx-x @Sv-v {Y,W})

or

Sz-7z @ {X,V}® Sy-y @ Sw-w USx-x @ Sv-v @{Y,W})
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If we use pz to represent the probability distribution on probabilistic as-
sumption set Sz -z, then belief in this node is

Bel(nodeg)

=pz(Sz,-z)(px (X)pv (V)py (Sy,-v )pw (Sw-w )+

Px (Sx,~x)pv (Sv,-v)py (Y)pw (W) Lpx (X)pv (V)py (YV)pw (W))
=pz(5z,~2)(px (X)pv (V) + py (Y )pw (W) Lpx (X)pv (V)py (Y)pw (W)

In general if the nogood environments are not empty, those non-empty
environments should be deleted from the label of a node. The probability
of a node is then changed to:

Bel(node) = Pr(FL(a)\ FL(L))

4. CONSTRUCTING LABELS AND CALCULATING BELIEFS
IN NODES USING EXTENDED INCIDENCE CALCULUS

We have introduced extended incidence calculus and the ATMS in the
previous two sections. In this section we are going to draw some mapping
relations among the components in these two reasoning mechanisms. Imag-
ine that the joint set of set products of different probabilistic assumption
sets in an ATMS corresponds to the set of possible worlds in a generalized
incidence calculus theory and also imagine that the set of nodes (except
assumptions) in an ATMS is translated into the language set L(P) of a
suitable proposition set P in extended incidence calculus, then the sup-
porting relation between the labels (which contain assumptions) and the
set of nodes in the ATMS is similar to the supporting relation between the
set of possible worlds and the language set in extended incidence calculus.
This 1s the intuition behind our formal manipulation procedure for produc-
ing incidence sets (or the lower bounds) for formulae which can then be
used to obtain labels for nodes in the ATMS.

4.1. An example

Now we will use an example (from [16]) to show how to manage as-
sumptions in the ATMS in the way we manage sets of possible worlds in
extended incidence calculus. We will solve this problem using ATMS tech-
niques and extended incidence calculus respectively. The result shows that
both inference mechanisms can be used to solve the same problem and the
results are the same. It also indicates the procedure of transforming an
ATMS into extended incidence calculus.
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Ezrample 5

Assume that we have five inference rules from Example 2 and fact e is
observed, we want to infer our belief in other statements, such as a. This
is shown in figure 1.

b
X V
eZ d \a
Vw

Figure 1. Semantic Network ofclnference Rules

Approach 1: Solving this problem in an ATMS.

Assume that there are following nodes in an ATMS:
assumed nodes:

n<e—d, {71} {(2)} >
ny < d— b, {{X}} {(X)} >
ng < b—a, {{V}}{(V
(
(

)t >
ng:<d—c, {{V}}1{(Y)} >
ns < e — a, {({WH,{(W)} >

premise node:
ns < e, {{}},{0} >

derived nodes:

ne < d— a, {X,V}H{Y,W}} {(no, n3), (n4,ns)} >
nr:<e—a,{{7, X, V} {2, Y, W}},{(n1,ne)} >

or replacing ng by its own justifications
ny:<e—a,{{7, X, V},{Z,Y,W}},{(n1,ne,n3), (n1, na,ns} >
ny < a, {{Z, X, V},{Z,Y,W}},{(n7,ns)} >

or

ng :< a, {{ZaXa V}a {Za Ya W}}a {(nla n2, N3, ng), (77,1, N4, N5, ng)} >

assumption nodes: < X, {{X}},{(X)} > and so on.

It is not enough to know labels only if we are interested in calculating
beliefs on nodes [20], [16]. We would have to manipulate labels in some
way 1n order to get the beliefs. In our approach, we need to obtain the full
extension of a label first. In order to do so, probabilistic assumption sets
are required and some new assumptions need to be created when necessary.
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For the premise node e, if we associate it with a distinct assumption F,
then node n§ can be rewritten as ng :< e, {{E}}, {(E)} >. There are in
total six probabilistic assumption sets. They are Sv-v, Sw-w, Sx-x,
Sy,-v, Sz,~z, SE,~E-

The labels of derived nodes are obtained based on the justifications given
by the problem solver, premise nodes and assumed nodes. The label of
proposition a is L(a) = {{Z, X, V}{Z,Y, W}} and its full extension is

FL(a)=Sg-p@{Z}®({X,V}® Sv-v @ Sw-w USx-x @
Sy,-v @ {Y,W})

If we assume that different probability distributions on different assump-

tion set are

pv(V)=.7
pw (W) =.8
px(X)=.6
py(Y)=.75
pz(Z) =8
pe(E) =

and they are probabilistically independent, then the belief in node a 1s
Bel(a) = Pr(FL(a)) = 1x 8x(6x.7+.75x.8 L.6x.7x.75x.8) = 0.6144

A different calculation procedure can also be found in [16] which produces
the same result.

Approach 2: Using extended incidence calculus to solve the
problem.

Now let us see how his problem can be solved in extended incidence
calculus. Suppose that we have the following six generalized incidence
calculus theories

< SV,ﬂVa QlaPa {b - aaT}ail(b - a) = {V}all(T) = SVV_‘V >

< Swaw, 02, P {c = a, T} is(c — a) = {W},ia(T) = Sw-w >
< Sx-x,03 P {d—b,T},is(d = b) = {X},i5(T) = Sx
) =AY} 4a(T)
< Sz-z,05 P le—>d T} is(e »d)={Z},i5(T) = Sz -z >
< Sg-p,06(E) =1,P {e},is(e) = {E},i6(T) = S ~p >

where Sy v, ..., Sz -z, and Sg - are probabilistic assumption sets.

)

)

(
< SY,—|Y’ 04, Pa {d - CaT}a 14(d —c
(
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As we assumed that sets of Sx -x,..., 5g,~g are probabilistically inde-
pendent, the combination of the first five theories produces a generalized
incidence calculus theory < S7,07, P, A7, iy > in which the joint set is
St =957-7®Sx-x @Sv-v @Sy~v @ Sw-w.

i7(d —bAb— Cl) = Szy-.z{X}{V}Syy-.ySWy-.W
= Sz-z{XHV}Sy v Sw-w
i7(d > cAe—a) = Sz z{Y H{W}Sx,-x Sv,-v
ird = bAb—and—chc—a) =Sz -z X HVIHYHW)
i7(6 —dANd—=>bAb— Cl) = {Z}{X}{V}Syy-.ykgwy-.w
i7(6 —dANd—cAhec— Cl) = {Z}{Y}{W}Sxy-.xsvy-.v

Ifwelete 5dAd—=bAb—a=¢1ande >dAd—>cAhc—a= ¢,
then

ir(¢1 A da) = {ZZHXHVHY HIV}

Combining this theory with the sixth generalized incidence calculus the-
ory we obtain

ile A1) = Sg -1 Z HXHV } Sy -y Sw-w

ile A ¢2) = Sg -1 ZHY HW }Sx -x Sv -v

i(eNP1AP2) = SE~p{ZHXHVIH{Y H{W}. Because eA¢1 — a, eAgy —
a and e A ¢1 A @3 — a, the following equation holds:

is(a) = i(e Np1)Ui(e A o) Uile Ady A ¢a)

= SEy-.E{Z}{X}{V}Syy-.ySWy-.W U SEy-.ESXy-.sty-.v{Z}{Y}{W}

and

p«(a)

wp(i«(a))

P(SE~e{ZHXHV Sy —y Sw-w USE ~pSx ~x Sv-v{ZHY HW})
p(Se) x wp({ZHXHV ISy -y Sw-w U Sx -x Sv,-v{ZHY HIW})

= wp(Sg ~g) x wp({Z}) x wp({X HV }Sy -y Sw-w U Sx -x Sv -v{Y HW})
= wp(Sp,~r) x wp({Z}) x (wp({X HV}Sy -y Sw-w)
+wp(Sx,~x Sv,-v {Y HW}) Lwp({XHVHY HW}))
=1x08x(6Xx.Tx1Ix1+1x1x.7T5x .8L.6x.7x.75x .8)=0.6144

(1
g g8

So our belief in a 1s also 0.6144.
Similarly we can obtain i.(d — a), ix(e = a) as

i* (d — Cl) = SEyﬂEszyﬂZ{X}{V}Syy—‘YSI/V’—‘WUSE7—|ESZyﬂZ{Y}{W}SXV—‘XSVV—‘V

s (6 — a) = SEy_.E{Z}{X}{V}Syy-.ySWy-.WUSEy-.E{Z}{Y}{W}Sxyﬂxsvy-.v



24

These six generalized incidence calculus theories are in fact produced
from assumed and premise nodes in the ATMS.

If we compare the full extensions of nodes in the ATMS and the lower
bounds of incidence sets on formulae, we can find that the following equa-
tions hold:

is(d—>a)=FL({d— a) is(le >a)=FL(e = a) is(a) = FL(a)

That 1s the full extension of a node is the same as the lower bound of
incidence set of the corresponding formula.

Here the symbol = is read as “equivalent to”. An incidence set of a
formula (or its lower bound) is equivalent to the full extension of the label
of a node means that for an element (a1, as, ..., a;) in the incidence set, the
element (a; Aas A...Aayg) is in FL(x). In the following we give the general
procedure of encoding a list of ATMS nodes by the equivalent generalized
incidence calculus theories.

4.2. The algorithm of equivalent transformation from an ATMS
into extended incidence calculus

Definition 6: Equivalent transformation algorithm

Given an ATMS we follow the following steps to convert it into general-
ized incidence calculus theories.

Step 1: divide the list of nodes into four sets: a set of assumption nodes,
a set of assumed nodes, a set of derived nodes and a set of premises. The
set of assumption nodes is called lower level nodes and the last three sets
together are called higher level nodes. Based on the higher level nodes; a set
of propositions P is established. A higher level node is either a proposition
in P or a formulain £(P).

Step 2: from the set of assumption nodes, we can form a list of proba-
bilistic assumption sets S4, . 4,.,5B;,.B,;-.., based on Definition 4. It is
also assumed that these sets are probabilistically independent. If they are
not independent, an extended ATMS cannot solve them.

Step 3: divide those assumed nodes into groups. If both node n; and n;
are in group ¢, then n; and n; must satisfy one of the conditions: there
exists an assumption A which is in an environment of L(n;) and also in
an environment of L(n;) or an assumption in L(n;) and an assumption in
L(n;) are in the same probabilistic assumption set. If n; and n; are in the
same group and n; and n; are in the same group, then n;, n; and n; should
be in the same group.

Step 4: for any group k, create a corresponding structure < Wk, og, P, i, A >.
The set of axioms A contains assumed nodes in this group and all the
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possible conjunctions of them. The set of possible worlds Wj is either
a probabilistic assumption set or the set product of several such sets if
there 1s more than one probabilistic assumption set involved in the labels
of these assumed nodes. For instance, if the label of node n; is {{A}, {B}}
and Sa,, . A,.,5B,, . B, are different, then the set of possible worlds W
should be Wy, = S4, .. 4, ©SB,,.. B, Theincidence function ¢ is defined
as g (n¢) = L(n;) and ix(ne Any) = L(ng) 0 L(n;). So iy defined on A is
closed under A. We further define i, (false) = {} and iy (true) = Wy, then
structure < Wy, pg, P, i, A > is a generalized incidence calculus theory. In
the case that the set of possible worlds is a joint space of several probabilis-
tic assumption sets, labels of nodes need to be reconstructed. Following
the above case if Sa, 4, ={A,—A} and Sg,, . B, = {B, B}, the label

of node n; can be changed as

L(ni) = {{A} @ {B,-B}, {4, ~A} © {B}}
= {{{Aa B}a {Aa _'B}}a {{Aa B}a {_'Aa B}}}
= {{Aa B}a {Aa _'B}a {_'Aa B}}

In general, L(n;) = {{A} ® SB,,.. B, S4,, .. 4, © {B}}

Step 5: for each premise node, create a generalized incidence calculus
theory and add the set of possible worlds to the list. For example, for
premise e, a suitable generalized incidence calculus theory might be <
{V},0(V)=1,P {e},ij(e) = {V} >. The added probabilistic assumption

set must be different from any set in the list.

Step 6: combining these generalized incidence calculus theories we have
the result that for any derived node d;, there is i, (d;) = FL(d;) \ FL(L).
FL(d;) \ FL(L) means deleting those conjunctive parts which appear in
both FL(d;) and FL(L).

So both the label set and the degree of belief in a node can be obtained
in this combined generalized incidence calculus theory.

4.3. Formal proof

In this section we will give the formal proof about the equivalence be-
tween an ATMS and the transformed generalized incidence calculus theo-
ries.

THEOREM 1. Given an ATMS, there exists a set of generalized incidence
calculus theories such that the reasoning result of the ATMS is equivalent
to the result obtained from the combination of these theories. For any
node d; in an ATMS, FL(d;)\ FL(L) is equivalent to the lower bound
of the incidence set of formula d; in the combined generalized incidence



26

calculus theory, that is FL(d;) \ FL(L) = i.(d;). The nogood environ-
ments is equivalent to a subset of the set of possible worlds which causes
conflicts, that is FL(L1) = Wy.

PROOF

The purpose of this proof is that, applying the Equivalent Transforma-
tion Algorithm in Definition 6 on a given ATMS, we get a list of generalized
incidence calculus theories, the combined generalized incidence calculus
theory of these theories generates the same label set and belief degree of a
node as the ATMS does.

Assume that the nodes of an ATMS are divided into four sets, e.g., a set
of assumption nodes, a set of assumed nodes, a set of premise nodes and a
set of derived nodes.

Step A: In order to carry out the proof below, we need to reconstruct
the justifications of derived nodes to ensure that justifications of derived
nodes contain only assumed nodes or premise nodes. This can be done as
follows.

Given a derived node d;, choose a node from its justifications. If the node
is an assumption (', then create an assumed node ¢ with single environment
{C'} and single justification (C') and then replace C' with ¢ in any justifi-
cations where C' appears. If the node is a derived node, then replace the
node with the justifications of this node. For example if d; is such a derived
node with justifications {(z1, z2)(23, z4)} and d; appears in a justification
of node d; as {(...,d;, ...), ...}, then d; is replaced with its justifications and
the new justifications of d; are {(..., z1, 22, ...), (.., 23, 74, ...), ... }.

Repeat this procedure until all nodes in the justifications of a derived
node are either assumed nodes or premise nodes. As a consequence, an
environment of a derived node contains only assumptions because labels of
assumed and premise nodes contain only assumptions.

Step B: For any derived node d;, suppose its justifications are

{(al, as, ), (bl, bz, ), }

then the conjunction of each justification of d; implies d;, such as a; Aas A
... = d;. If we denote this implication as |=, then we have ay Aas A ... = d;.
If we let j(di) = {a1 Aaa A ...yby Aba A} then j(d) | di. The

environments of d; will be
(L(a1) ® L(az2) ® .. )U (L(b1) ® L(b2) ® ...) U ...

For example, if

L{a1) = {li1, lia, ...}
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and
L(az) = {ljl,ljz, }
then
L(al) ® L(az) = Ut,k{lit U l]k}

In general for a derived node d;, assume that d; has a justification
(n1,no, ..., ny), then

L(ny) © L(ny) @ ... L(ny) \ L(L)

1s the label set of d;.

Step C: After forming a language set from higher level nodes, a series
of generalized incidence calculus theories (assume n theories in total) can
be constructed from assumed nodes and premise nodes based on steps 4
and 5 described in the Equivalent Transformation Algorithm. Any two
sets of possible worlds of such theories are required to be probabilistically
independent and all of them can be combined using Theorem 2 in Chapter
3 and the subset of possible worlds which leads to contradictions is W .

Suppose (n1,na,...,n;) is a justification of a derived node d; (we have
ensured that these nodes are either assumed nodes or premise nodes) and
they are arranged into ¢ generalized incidence calculus theories. Combining
them we will obtain the generalized incidence calculus theory

<W1a/'L/1aPa"4/1’i/1> (1)

2/1(77,1 A o AN nl): il(nn AN nlml) ® ... Q0 it(ntl AN ntmt) \ Wll
=(L(n11) @ ... @ L(M1my) @ ... @ (L(41) ©@ ... @ L(nem,)) \ WY
= L(n1) ® L(ns) ® ... ® L(ny) \ W/

where {n1,...,n} = {n11, ..., Rimys N1y ooy Rem, } a0d (PRI A AR, ),
(ne1A...Algm,) are in these different generalized incidence calculus theories,
and W/ is the subset of possible worlds which leads to contradictions after
combing these ¢ generalized incidence calculus theories.

Assume that by combining the remaining n L ¢ generalized incidence
calculus theories we have

<W2’/,L/2,P,.A/2,Z'/2> (2)

where AL = {y1,y2,...,yn} and the subset of possible worlds leading to
contradictions is W4. To combine the theories in (1) and (2), ¢ A y1, ¢ A
Y2, ..., @ N\ yp, will be in the set of axioms of the new combined theory.

< Wi, iy, P, AL i > (3)
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Here ¢ denotes n1 Ana A... An;. Because ¢ Ay; = ¢ and for any ¢ Ay; =
¢ Ny;, ¥ E ¢, the following equation holds.

ix(9) = U; i Ayj)
=U; 71 (¢ )®Zz(i‘/;

\ W,
=t1(¢) © U, 15(y }

=i1(p) @ W2 \ W3) \ W as ;i (y;) = Wa \ W

=i1(¢) @ Wa \ ((#1(¢) @ W3) U W5)

=(L(n1) ® L(n2) @ ... @ L) \ W{) @ W \ (1 (¢) ® Wz) U Ws)

=(L(n1) ® L(n2) @ ... @ L(ny)) @ Wa \ (W] @ Wa) U (i1 () @ W3) U W3)
=((L(n1) ® L(n2) ® .. ®L(n1))®Wz)\WO

where W4 is the set of possible worlds which leads to contradictions af-
ter combining the generalized incidence calculus theories ¢} and i. The
incidence function 1s ¢ in the final generalized incidence calculus theory.
Wy is the total set of possible worlds causing conflict after combining all
generalized incidence calculus theories.

Because of the relation ny A...An; — d; in the ATMS, we have the relation
ny A ... An; = d; in extended incidence calculus. So i, (¢) C i.(d;). In
general, if there are k justifications for node d;, the environments obtained
from k justifications are (L(a11)®...@L(a15))U...U(L(ag1®...@L(agy) )\ L(L
), then there are k corresponding formulae ¢1, ¢o, ..., ¢x, where i;,(¢;) C
ix(dy) for j=1,..., k. So U i (¢5) Cix(dy).

Step D: In the ATMS a nogood environment is derived if L is proved.
When ¢ and —¢ are both derived, L{c)® L(—e) is a nogood environment. For
any higher level node a, (@, —~a) is automatically recognized as a justification
of node L and L(L) = nogood. Certainly for an assumption A, (A, —A)
is also a justification of node 1, but adding such justifications does not
affect the result in our discussion, so in the following we only consider
justifications of L which are in the form of (a, —a).

Choosing a justification of node L, such as (¢,—¢), L(e) @ L(—c¢) will
be a part of environments of nogood. When ¢ or —¢ is a derived node,
we replace ¢ or —¢ with its label. Suppose that the justifications of ¢ are
{(#1, 22, ...), (x1, 23, ...), ...} and the justifications of —e¢ are {(y1, y2, ...), ...},
then {(z1, 22, ..., y1, ¥2, -..), (21, T2, ..., 1, Y2, -..), ... } will be the justifications
of L. Therefore (L(z1)®L(22)®...0 L(y1) @ L(y2)®.. )U(L(21) @ L(22)®...®
L(y1)® L(y2)®...) are nogood environments. Because z1 Aza A Ay1A... =L
and 1 Aza A Ay Ao =1, we have (L(21) @ L(#22) ® ...@ L(y1) ® ...) U
(L(z1) @ L(22)®...0 L(y1) ®...) C Wy based on Step C above. Therefore
FL(L) C W.

The other way around, for any element w € Wy, in the combined theory
there exists a formula ¢; Aga A ... A g, =L and w € L(¢1) @ ... ® L(én).
Deleting those ¢; which will not destroy the equation A;¢; =1, we will
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have ¥1 A ... A, =L. Therefore there exists a node z, the conjunction
of some 1); implies z and the conjunctions of remaining +; implies =z. So
ZADzZ = Y1 A LAY, =L, and L(11)®...@ L(¢y,) are nogood environments.
It is straightforward that w is in the full extension of L(t1) ® ... ® L(¢m,),
so w is a nogood environment, that is FL(L) D Wy, so FL(L) = Wy.

Step E: Using the result from Step C and Step D, because Uj ijx(¢;) C
i+ (d;), we have the following non-equations.

(L(a11) © .. ® L(a12)) @ ... ® (L{ags @ ... ® L{agy))) \ Wo C in(dy)

FL(di) \ FL(L) Cix(dr)

The other way around, for any w € i.(d;), there exists a formula ¢ =
$1 N ... A ¢y and w € i(¢). There is also a formula ¢ € FL(d;) such that
on the definition of FL(d;), ¢1 A... A should be a justification of node dj,
80 L(1) ®...@ L(¥m) \ L(L) will be the environments of d;. Therefore w is
in the full extension of FL(d;)\ FL(L). That is FL(d;)\ FL(L) D i.(dp),
so eventually FL(d;)) \ FL(L) = i.(dp).

QED
Ezrample 6

Example 6 shows the way of dealing with conflict information. Following
the story in Example 5, suppose we are told later that f is also observed
and there is a rule f — —e with degree 0.8 in the knowledge base. That is,
three more nodes in the ATMS are used.

assumed node: < f — ¢, {{U}},{(U)} >

premise node: < f,{{}},{()} >
assumption node: < U, {{U}},{(U)} >
pas: SU,—|U = {U,—|U}, SF,—|F = {F, —|F}.

Figure 2. semantic network of inference rules
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Here pas means probabilistic assumption set and Sp-r is created to
support premise node f.

In the ATMS, we can infer that one environment of node ¢ is {E, 7, Y}
and one environment of node ¢ is {F,U}. So the nogood environment is
{E,X,Y,F,U}. The belief in node a needs to be recalculated in order to
re-distribute the weight of conflict on other nodes. The new belief in node
a is 0.366 given in [16].

In extended incidence calculus similar to Example 5, two more gener-
alized incidence calculus theories are constructed from the assumed node
f — —c and the premise node f. Combining these two theories with the
final one we obtained in Example 1, we have Wy = {UZY}® i.(a) =
{ZXV UZYW}\ Wy. Therefore wp({UZY}) = 0.48 which is the weight
of conflict and p),(a) = wp({ZXV U ZYWH\{UZY }) = 0.366 which is
our belief in a. Both of these results are the same as those given in [16],
but the calculation of belief in node a and the weight of conflict are based
on extended incidence calculus.

4.4. Comparison with Laskey and Lehner’s work

The work carried out in this section has some similarity with Laskey
and Lehner’s work in [16]. The key idea in [16] is mainly about to create
the medium level elements between a set of beliefs and numerical assign-
ments and then associate the numerical assignments to the medium level
elements. The medium level elements are exactly the set of possible worlds
in extended incidence calculus and the set of assumptions in an ATMS.
Both of our and Laskey and Lehner’s work try to group assumptions into
different sets and each set is associated with a probability distribution.
Both of the work calculate labels and degrees of belief in nodes. They all
concern the normalization after conflict is discovered and the total conflict
weight is obtained. However the result we presented here is more theo-
retical. We provided a formal proof on the connections between extended
incidence calculus and the ATMS while Laskey and Lehner didn’t. More-
over, the result obtained in this section provides a theoretical basis for some
results obtained in [16]. In this subsection, we will explain this point in
more detail.

Difference 1). In [16] after the label of a node is obtained, in order to
calculate the belief in this node, an algorithm is given to rewrite a label as
a list of disjoint conjuncts of assumptions. For instance, in Example 5 the
label of node a is rewritten as L(a) = 51 V f2 where 8y = WAY A Z and
Ba=(VAXANIZA-W)VIVAXANZAWASY).

If we simplify the elements in the full extension of a label (i.e. using Z
to replace (Z A =W)V (Z AW)), we can get exactly those 7 list required
in [16].

8In order to state the problem clearly, we use UZY instead of UZY Sx Sy Sy SgSp.
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Difference 2). In [16] when nogood environments are produced, the beliefs
in nodes are calculated in the following way

Pr(label N —nogood)  Pr(label N —nogood)
Pr(—nogood) ~ 11 Pr(nogood)

Bel(node) =

It is suggested that the whole nogood environments can be divided into
two groups nogood; and nogoods where nogoods has no overlap with envi-
ronments in nogood; or label. So in a real calculation nogood is replaced by
nogood; and it 1s claimed that such replacement doesn’t affect the whole
result. They didn’t provide a proof. We will prove this result is sound.

THEOREM 2. Assume that all nogood environments can be divided into
two disjoint groups nogood; and nogoods. For a node dy, if L(d;) has no
overlap with nogoods, then the following equation holds.

Bel(d)) = Pr(L(d;) "nogood)  Pr(L(d;) N nogoody)
ety = 1 L Pr(nogood) 1L Pr(nogood;)

PROOF

If all nogood environments can be divided into two disjoint groups, then
it 1s possible to divide all the corresponding generalized incidence calculus
theories into two groups based on Step C in section 4.3. The combina-
tion of generalized incidence calculus theories in two groups produces two
conflict sets, referred to as nogood; and nogoods respectively. The final
combination of these two generalized incidence calculus theories will not
produce any conflict sets (if it does then the assumption that nogood; and
nogoods are disjoint is wrong). Assume that the two generalized incidence
calculus theories are ¢; and is respectively after combining two groups of
generalized incidence calculus theories, for a formula ¢, if the list of axioms
making ¢ true are x1, s, ..., &,, then

ix(¢) = J(ir(2;))

J

Assume that the list of all axioms for incidence function ¢5 are ¥y, ya, ..., Ym,
then combining ¢; and ¢ we have

i (¢)= Ui(Ujiar Ayj))

(nogoods)))
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= (Uri1(21)) ® (W2 \ F L(nogoods))
= 1.(¢) @ (W2 \ FL(nogoods))

So p(¢) = p(iL(9)) = u(ix(9)) x p(Wa \ FL(nogoods)) = p(ix(¢)). That
® _ Pr(L(¢) N'nogoody)
Bel(o) = 1 L Pr(nogood,)

Therefore, those nogood environments which don’t have overlap with the
label of a node don’t affect the belief in this node.

END

Difference 3). The major step in [16] is to create an auxiliary set for each
belief function and let the auxiliary set carry the information provided by
the belief function. So the probability distribution on an auxiliary set which
in turn gives the belief function on another set can be thought as the source
for this belief function. Therefore the two auxiliary sets defined in this way
should be DS-Independent, otherwise these two belief functions cannot be
combined by the Dempster’s Rule and the result obtained in an ATMS has
no way to compare with the result in DS theory.

However, in extended incidence calculus, we don’t need to make such
an assumption. For dependent probabilistic assumption sets, as long as
we can find their joint probabilistic assumption set, we can still combine
them using the rule in [17], [18]. If there are a number of probabilistic
assumption sets and some of them are dependent, we combine dependent
probabilistic assumption sets first and then carry out the combination for
the rest.

Ezxample 7

Example 7 demonstrates the point we discussed in 2) above. Assume that
the ATMS network is extended as in Figure 4 by adding more nodes in it.
When the facts h and j are observed, both ¢ and —¢ will be derived, then
there will be a conflict. So the total nogood environments are {UZY, HI}.
Without giving any obvious links between i — i, j — —¢ and the previous
network, {7} should have no effect on the belief in a. So the belief in a
shouldn’t be changed even more facts are observed.

assumed nodes: < h — ¢, {{H}},{(H)} >
<Jj—-, {0} >

premise nodes: < A, {{}}, {0} >
<1050 >
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assumption node: < H, {{H}} {(H)}>
<L {L{D}>
pas: SH,—|H = {H, —|H}, S]y_.] = {I, —J}.
Sa -~a ={G, -G}, Sp -~ = {L,-L}.

Figure 4. Extending the existing ATMS

If we wish to consider this problem in extended incidence calculus, after
we encoded the new assumed and premise nodes into incidence calculus the-
ories, the combination of these theories produces a conflict set Wy = {HT}.
The further combination of this theory with the generalized incidence cal-
culus theory obtained in Example 5 gives the final result of the impact of
all evidence. In this final generalized incidence calculus theory, we have

pll(a) = pL(a) = 0.366 while the whole weight of conflict is

wp(FLUZY U HI))
pu(U)pz(Z)py (Y) + pua(H)pr(1) L pu(U)pz(Z)py (Y)pa (H)pr(1)
=0.48+4 pu (H)pr(1) L 0.48px (H)pr(1)

Therefore in extended incidence calculus we don’t need to divide no-
good environments into different groups while the correct result can still be
achieved.

5. EXTENDED INCIDENCE CALCULUS CAN PROVIDE JUS-
TIFICATIONS FOR THE ATMS

In the previous sections, we have discussed the formal relations between
extended incidence calculus and the ATMS. The major similarity of the
two reasoning mechanisms is that the justifications in an ATMS are equiv-
alent to the essential semantic implication sets in incidence calculus. As a
result, the labels of nodes are equivalent to the incidence sets of the cor-
responding nodes. However, a difference between these two reasoning pat-
terns is that the justifications are assigned by the designers in an ATMS
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while essential semantic implication sets are discovered automatically in
extended incidence calculus. Therefore, the whole reasoning procedure in
extended incidence calculus is automatic while the one in an ATMS is
semi-automatic. The procedure of discovering semantic implication sets in
extended incidence calculus can be regarded as a tool to provide justifica-
tions for an ATMS. The application of this procedure into an ATMS can
release a system designer from the task of assigning justifications and this
procedure can guarantee those justifications are non-redundant. A problem
with this procedure is that it 1s slow to find all essential semantic impli-
cation sets. If it is possible to have a fast algorithm for this procedure,
then an ATMS can be established and extended automatically without a
designer’s involvement.
We use an example to show our idea here concretely.

Ezample 10 Providing justifications automatically using extended
incidence calculus

We examine Example 5 in [16] in a different way here. Assume that our
objective in Example 5 is to calculate the impact on a when e is observed.
Because there is no direct effect from e on a, a diagram shown as Figure
1 is created to build a link between e and a. In order to infer a, the
Justifications for node e — @ are essential to be given in an ATMS. Assume
that the information carried by this diagram is denoted as St and the
information specifying justifications is denoted as Sy, then in an ATMS we
have

S[USJ:>L(6—>G) (1)

Here notation A = B means that from information carried by A, it is
possible to infer information carried by B through some logical methods.
S7 may either contain the justifications for node e — @ only or consists of
more justifications for the assisting nodes (such as e — b). We say that S
is the extra information for the system inference.

Given the same initial information carried by St to it, extended incidence
calculus does inferences without requiring any more information. The in-
ference procedure produces

Sr = ix(le > a) UESI(e — a)

This can be explained as from information in S7, we can obtain both the
lower bound of the incidence set and the inference pathes of a node. The
essential semantic implication set for a node contains exactly the justifi-
cations for the same node. Therefore the extra information required by
the ATMS can be supplied by extended incidence calculus as an output in
general and we are able to change (1) as follows in an ATMS

SrUESI(e —a) = L(e — a)
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which takes the output from extended incidence calculus as an input in the
ATMS.

So we can abstract out essential semantic implication sets for all neces-
sary formulae and assign them on the corresponding nodes without consid-
ering assumptions on the initial nodes. In this way, an justification existing
ATMS can be constructed.

So we conclude that the inference result in extended incidence calculus
provides justifications for an ATMS automatically.

6. CONCLUSION

A notable statement about the relations between the ATMS and ex-
tended incidence calculus has been given by Pearl [20]. He said:“In the
original presentation of incidence calculus, propositions were not assigned
numerical degrees of belief but instead were given a list of labels called inci-
dences, representing a set of situations in which the propositions are true.

Thus, incidences are semantically equivalent to the ATMS notion of
‘environments’, and it is in this symbolic form that incidence calculus was
first implemented by Bundy.” In this paper we have discussed the relations
intensively. This discussion proves the equivalence between extended inci-
dence calculus and the ATMS. The result tells us that extended incidence
calculus itself is a unification of both symbolic and numerical approaches. It
can therefore be regarded as a bridge between the two reasoning patterns.
This result also gives theoretical support for research on the unification
of the ATMS with numerical approaches. In extended incidence calculus
structure, both symbolic supporting relations among statements and nu-
merical calculation of degrees of belief in different statements are explicitly
described. For a specific problem, extended incidence calculus can either be
used as a support based symbolic reasoning system or be applied to deal
with numerical uncertainties. This feature cannot be provided by pure
symbolic or numerical approaches independently.

An advantage of using extended incidence calculus to make inferences
is that i1t doesn’t require the problem solver to provide justifications. The
whole reasoning procedure is performed automatically. The inference result
can be used to produce the ATMS related justifications. The calculation
of degrees of beliefs in nodes is based on the probability distributions on
assumption sets which can either be dependent or independent.

In the traditional TMS or ATMS, when nogood environments are gener-
ated, a number of assumptions need to be deleted (or the truth value of the
assumptions are changed to be false) in order to restore the consistency in
the whole system. This procedure is usually called belief revision [8], [11],
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[12]. Notions of epistemic entrenchment are used to determine which sets
of assumptions to favour over others when resolving a conflict. It should be
interesting to use the extended incidence calculus as a means of supplying
a formal basis for this principle.
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