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21. INTRODUCTIONOne of the most important and di�cult task of any intelligent system isto ultimately infer what we can con�rm or possibly con�rm given a set offacts. The set of statements we might con�rm builds up our current beliefstowards the world we are concerning or we want to know. This set needsto be modi�ed as more and more information is collected. Therefore ourbeliefs about the problem changes all the time and each of these changes iscaused by some newly observed facts. Up to date, many approaches havebeen proposed to make such inference. Among them, the assumption-basedtruth maintenance system (ATMS) [6] provides an attractive mechanismto maintain and update the belief set.The ATMS is a symbolic reasoning technique used in the arti�cial in-telligence domain to deal with problems by providing dependent relationsamong statements during inference. This technique has been used in manyareas such as fault diagnosis, trouble shooting, .... In practical applications,it has been found that a system using this technique can only infer resultswith absolutely true or false. It lacks the ability to draw plausible conclu-sions such as that a conclusion is true with a degree of belief. However inmany cases, pieces of information from a knowledge base provide assump-tions and premises with uncertainties. It is necessary to let the ATMS havethe ability to cope with uncertainty problems.In order to overcome this problem, some research on the integration ofsymbolic reasoning with numerical inference has been carried out to asso-ciate numerical uncertainties with ATMS [3], [4], [7], [10], [13], [14], [15],[16], [20], [21]. In [7], De Kleer and Williams use probability theory to dealwith uncertainty associated with assumptions. In [10], [15], the authors usepossibilistic logic to handle this problem. In [10], both assumptions andjusti�cations are associated with uncertainty measures. The uncertaintyvalues associated with justi�cations are used to select the path for derivinga node. Only those pathes with strong supporting relations are used toinfer the corresponding nodes. [15] continues the work carried out in [10]and extends it to deal with a military data fusion application. [3], [4], [13],[16], [20], [21] all use Dempster-Shafer theory of evidence (DS theory) ([5],[22]) to calculate beliefs in statements. Among them, [16] studies a formalrelation between DS theory and ATMS. It is proved in [16] that any beliefnetwork in DS theory can be translated into an ATMS structure. In sucha system, inference is performed based on ATMS techniques while beliefsin statements are calculated by using probability theory.One common limitation in all these extensions of the ATMS1 is that theprobabilities assigned to assumptions must be assumed probabilistically1Except the discussion in [10], [15] in which the topic was not discussed.



3independent in order to calculate the degree of belief in a statement.In this paper, we continue this research and intend to provide a generalbasis for constructing a probabilistic ATMS. The uncertainty technique wehave chosen is extended incidence calculus. Incidence calculus was intro-duced in [1], [2] which aims at providing an automated reasoning techniqueto deal with uncertainty problems by associating classical propositionallogic with probabilities. In [17], [18] this theory has been generalized con-siderablely to model a wider range of problems and the advanced theoryis called extended incidence calculus. There are several reasons for us tochoose extended incidence calculus to implement a probabilistic ATMS.First of all, apart from its numerical reasoning characters, extended in-cidence calculus also possesses some symbolic reasoning features. In ex-tended incidence calculus, numerical uncertainties are not associateed withstatements we want to infer, rather sets of possible worlds are associatedwith statements and uncertainties are associated with elements of possibleworlds. Each possible world associated with a formula indicates that thisformula is true under the support of this possible world. This is calledthe indirect encoding of uncertainties. In general, if we only consider themanipulation of incidence sets in incidence calculus, it is very similar to thecalculation of labels of nodes in the ATMS. Secondly, as extended incidencecalculus can calculate beliefs in statements after obtaining incidence sets,it can combine a numerical reasoning procedure and a symbolic reasoningprocedure into one mechanism. Finally, we have provided a more generalcombination technique in extended incidence calculus which can combineboth dependent and independent pieces of information [17], [18]. So itis not necessary to assume the independence of probability distributionsamong assumptions as required in [3], [4], [7], [13], [16], [20], [21].The main contributions of this paper are: 1) We prove that extended inci-dence calculus and the ATMS are equivalent at both the symbolic reasoninglevel (if we view the set of possible worlds in extended incidence calculusas the set of assumptions in an ATMS) and numerical inference level ifwe associate proper probabilistic distributions on assumptions. They canbe translated into each other's form. 2) We show that the integration ofsymbolic and numerical reasoning patterns are possible and extended in-cidence calculus itself is a typical example of this uni�cation. Extendedincidence calculus can be regarded as a bridge between these two reasoningpatterns. 3) in [17], [18] it has been proved that extended incidence cal-culus is equivalent to Dempster-Shafer theory of evidence in representingevidence and combining source-independent evidence. Therefore the resultof investigating the relationship between extended incidence calculus andATMS can provide a theoretical basis for some results in [16], namely thecalculation of beliefs in nodes and the weight of conict introduced by allevidence as well as its e�ect on individual nodes. 4) It is assumed thatjusti�cations must be supplied by the problem solver if one uses the ATMS



4techniques. We will show that extended incidence calculus can be usedto provide justi�cations for nodes automatically without human's involve-ment. Therefore a complete automatic ATMS system is constructible. 5)The calculation of probabilities in nodes is done under the assumption thatall given probability distributions are probabilistically independent. Whenthis condition is not satis�ed, the algorithm in [16] would not work. In [17],[18] we propose a more general combination mechanism to deal with thelatter case. So extended incidence calculus can be used to help an ATMSto manage numerical uncertainties when it is necessary.The paper is organized as follows. In the rest of this section, we willabstract the reasoning models in an ATMS and extended incidence calcu-lus and then discuss their similarities. Section 2 introduces the basics ofextended incidence calculus. In section 3 we introduce the ATMS notationsand extend it by adding probabilities to assumptions. In section 4 we willshow how to encode an ATMS structure into extended incidence calculusterminologies and perform the same inference in extended incidence cal-culus. We will explore how to manipulate labels of nodes and calculatedegrees of belief in nodes in extended incidence calculus. In section 5 wewill briey discuss how to provide justi�cations from extended incidencecalculus. In the concluding section, we summarize the paper.1.1. The basic reasoning model in the ATMSThe truth maintenance system (TMS) [8] and later the ATMS [6] areboth symbolic approaches to producing a set of statements in which we be-lieve. The basic and central idea in such a system is that for each statementwe believe in, a set of supporting statements (called labels or environmentsgenerally in the ATMS) is produced. A set of supporting statements is,in turn, obtained through a set of arguments attached to that statement(called justi�cations). In an ATMS, a justi�cation of a statement (or callednode) contains other statements (or nodes) from which the current state-ment can be derived. Justi�cations are speci�ed by the system designer.For instance, if we have two statements representing inference rules:r1 : p! qr2 : q! rthen logically we can infer that r3 : p! r. In an ATMS, if r1; r2 and r3 arerepresented by node1, node2 and node3 respectively, then node3 is derivablefrom the conjunction of node1 and node2 and we call (r1; r2) a justi�cationof node3. Normally a rule may have several justi�cations. Furthermore if r1and r2 are valid under the conditions that A and B are true respectively,then rule r3 is valid under the condition that A ^ B is true, denoted asfA;Bg. fAg; fBg and fA;Bg are called sets of supporting statements (or



5environments) of r1; r2 and r3 respectively. If we associate node3 with thesupporting statements such as fA;Bg and the dependent nodes such asf(r1; r2)g then node3 is generally in the form ofr3 : p! r; ffA;Bg:::g; f(r1; r2):::gwhen node3 has more than one justi�cation. The collection of all possiblesets of supporting environments is called the label of a node. If we useL(r3) to denote the label of node3, then fA;Bg 2 L(r3). If we assume thatr1; r2 hold without requiring any dependent relation on other nodes, thennode1 and node2 are represented asr1 : p! q; ffAgg; f()gr2 : q ! r; ffBgg; f()gTherefore, we can infer a label for any node as long as its justi�cationsare known.The advantage of this reasoning mechanism is that the dependent andsupporting relations among nodes are explicitly speci�ed, in particular, thesupporting relations among assumptions and other nodes. This is obviouslyuseful when we want to retrieve the reasoning path. It is also helpful forbelief revision.The limitation of this reasoning pattern is that we cannot infer thosestatements which are probably true rather than absolutely true. However,if we attach numerical degrees of belief to the elements in the supportingset of a node, we may be able to infer a statement with a degree of belief.For example, if we know A is true with probability 0:8 and B is true withprobability 0:7 and A and B are probabilistically independent, then theprobability of A ^ B is true is 0:56. The belief in a node is considered asthe probability of its label set. So for node3, our belief in it is 0:56.1.2. The basic reasoning model in extended incidence calculusIncidence calculus was introduced by Bundy in [1], [2] to deal with prob-lems in numerical reasoning. The special feature of this reasoning methodis the indirect association of numerical uncertainty with formulae. In in-cidence calculus, probabilities are associated with the elements of a setof possible worlds (denoted as W) and some formulae (called axioms) areassociated with the subsets of the set of possible worlds. Each elementin such a subset for a formula � makes the formula true and this sub-set is normally called the incidence set of the formula, denoted as i(�)(i(�) � W). Our belief in a formula is regarded as the probability weightof its incidence set. Assume that the set of possible worlds is W and r1; r2are two axioms in an incidence calculus theory and the incidence sets for



6r1 and r2 are i(p ! q) = W1 and i(q ! r) = W2, then the incidenceset of (p ! q ^ q ! r) is W1 \W2. As formula p ! r holds when for-mula p ! q ^ q ! r holds, the incidence set of p ! q ^ q ! r must bea subset of the incidence set of r3. So W1 \W2 makes p ! r true andW1 \W2 � i(p! r) true. So the propagation of incidences of formulaes isdone through implication relations.IfW contains the set of assumptions in an ATMS,W1;W2 are the subsetsofW andW1\W2 is regarded as the conjunction of the elements inW1\W2,then the manipulation of an incidence set is similar to the derivation of alabel.1.3. Similarities of the two reasoning modelsAbstractly if we view the set of possible worlds in incidence calculus asthe set of assumptions in an ATMS, and view the calculation of the inci-dence sets of formulae as the calculation of labels of nodes in the ATMS,then the two reasoning patterns are similar. Furthermore, as the proba-bility weight of an incidence set can be calculated, incidence calculus hasassociated numerical uncertainty with symbolic reasoning into one mech-anism. Incidence calculus has no such indications as justi�cations duringits inference procedure. The implication relations are discovered automat-ically.The apparent similarity of these two reasoning patterns motivates us toexplore their relations more deeply. We focus our attention on the produc-tion of labels in the ATMS and calculations of incidence sets in incidencecalculus. We will prove that the two reasoning mechanisms are equivalentin producing dependent relations among statements. As incidence calculuscan draw a conclusion with a numerical degree of belief on it, incidencecalculus actually possesses some features of both symbolic and numericalreasoning approaches. Therefore, incidence calculus can be used as a theo-retical basis for the implementation of a probabilistic ATMS by providingboth labels and degrees of belief of statements and as an automatic rea-soning model to provide justi�cations for an ATMS.2. EXTENDED INCIDENCE CALCULUS2.1. Basics of extended incidence calculusIncidence calculus [1], [2] starts with two sets, the set P contains propo-sitions and the set W consists of possible worlds with a probability distri-bution on them. For each element w of W, the probability on w, %(w), isknown and �%(w) = 1. From the set P , using logical operators ^;_;:;!,



7a set of logical formulae are formed which is called the language set of P ,denoted as L(P ). The elements in the set W may make some formulae inL(P ) true. For any � 2 L(P ), if every element in a subset W1 ofW makes� true and W1 is the maximal subset of this kind, then W1 is representedas i(�) in an incidence calculus theory and it is called the incidence set of�. Therefore, the supporting set of a formula � is i(�) and its probability isp(�) = wp(W1) where wp(W1) = �w2W1%(w). It is assumed that i(?) = fgand i(T ) = W where ?; T represent false and true respectively. In [17],[18] incidence calculus is extended in three aspects so that the advancedreasoning mechanism is more powerful. This advanced mechanism is calledextended incidence calculus. In the following, we only introduce extendedincidence calculus.De�nition 1: Generalized incidence calculus theories2A generalized incidence calculus theory is a quintuple < W; %; P;A; i >where W is a set of possible worlds with a probability distribution %, P isa set of propositions and A is a subset of L(P ) which is called a set ofaxioms. The function i assigns an incidence set to every formula in A.For any two formulae in A, we havei(� ^  ) = i(�) \ i( )Based on this de�nition, given two formulae �;  2 A, we have i(�) �i( ) if � j=  . For any other formula � 2 L(P )nA, it is possible to get thelower bound i�(�) of its incidence set asi�(�) = [ j=� i( ) (1)For  2 A,  j= � means that formula  ! � is valid (a tautology). Thedegree of our belief in a formula is de�ned as p�(�) = wp(i�(�)).De�nition 2: Semantic implication setFor any formula � 2 L(P ), if  j= � then � is said to be semanticallyimplied by  , denoted as  j= �. Let SI(�) = f j  j= �; 8 2 Ag, setSI(�) is called a semantical implication set of �.De�nition 3: Essential semantic implication set2The original de�nition of incidence calculus theories in [2] is stricter than the de�-nition here. More details on generalized incidence calculus theories can be found in [17],[18], [19].



8Furthermore, let ESI(�) be a subset of SI(�) which satis�es the condi-tion that a formula  is in ESI(�) if for any  0 in SI(�) then  6j=  0,then ESI(�) is called an essential semantical implication set of �. This isdenoted as ESI(�) j= �.Proposition 1. If ESI(�) and ESI 0(�) are the two essential semanticimplication sets of formula � coming from the same generalized incidencecalculus theory, then ESI(�) = ESI 0(�).ProofSuppose that ESI(�) and ESI 0(�) are di�erent and further suppose thata formula  is in ESI(�) but not in ESI 0(�). If  2 ESI(�) then for anyformula  0 2 SI(�), we have that  6j=  0.However, as  62 ESI 0(�), then there is at least one formula  00 ( 00 2SI(�)) which makes the following equation true  j=  00. So according toDe�nition 3,  62 ESI(�). Conict. Therefore, ESI(�) = ESI 0(�) andthe essential semantic implication set is unique.QEDIt will be proved later that the essential semantic implication set of aformula is exactly the same as the set of justi�cations of that formula inan ATMS.Example 1Suppose we have a generalized incidence calculus theory and we know thatthe following �ve inference rulesr1 : e! dr2 : d! br3 : b! ar4 : d! cr5 : c! aare in the language set. Further suppose that the set of axioms A containsthese �ve rules and all the possible conjunctions of them, then the lowerbounds of incidence set of other formulae can be inferred. For instance, forformula e! a, the lower bound of its incidence set isi�(e! a) = [�j=(e!a) i(�)



9According to De�nition 2, all the formulae � in A satisfying the conditionthat � j= (e! a) are in the semantic implication set. So the calculation oflower bounds of incidence sets can be restated as:i�( ) = [�2SI( ) i(�)In this example, there are in total seven axioms satisfying this require-ment, so there are seven axioms in SI(e ! a).(e! d) ^ (d! b) ^ (b! a)(e! d) ^ (d! c) ^ (c! a)(e! d) ^ (d! c) ^ (c! a) ^ (d! b)(e! d) ^ (d! c) ^ (c! a) ^ (b! a)(e! d) ^ (d! c) ^ (c! a) ^ (d! b) ^ (b! a)(e! d) ^ (d! b) ^ (b! a) ^ (d! c)(e! d) ^ (d! b) ^ (b! a) ^ (c! a)However if we examine these seven axioms closely, we will �nd thatonly the �rst two axioms are necessary to be considered if we want to geti�(e! a). The rest are unnecessary as their incidence sets are included intothe incidence sets of the �rst two axioms. Based on De�nition 3, these twoaxioms are in the essential semantic implication set of e ! a and this setonly has these two axioms. Therefore the following proposition is natural.Proposition 2. If SI(�) and ESI(�) are a semantic implication set andan essential semantic implication set of �, then the following equationholds: i�(�) = i�(SI(�)) = i�(ESI(�))where i�(SI(�)) = S�j2SI(�) i(�j).PROOFAssume a set of axioms in a generalized incidence calculus theory is A.For a formula �, when � 2 A, we have� 2 SI(�); � 2 ESI(�); ESI = f�gso i�(�) = i(�) = i�(SI(�)) = i�(ESI(�))When � 62 A, we have a set of formulae �1; :::; �n 2 A (n � 1) eachof which implies �. So SI(�) = f�1; :::; �ng. Assume that the elements



10in ESI(�) are  1; :::;  m, then for  j, there will be some formulae �j0 (atleast  j itself) in SI(�) which make the following equation hold�j0 j=  jLet SI j be a set containing these �j0 , i.e. SI j = f�j0 j �j0 j=  jg,then we have i�( j) = i�(SI j ) because i(�j0) � i( j). Repeating thisprocedure for each formula in ESI( ), we obtain the following equationi�(ESI(�)) = [ j i�(SI j )To prove i�(SI(�)) = i�(ESI(�))we need to prove that i�(SI(�)) = [ j i�(SI j )Assume that i�(SI(�)) n [ j i�(SI j ) = S 6= fg, we haveS 6= fg and w 2 S )w 2 i�(SI(�)) n [ j i�(SI j ))(9')' 2 SI(�); ' 62 ESI(�); w 2 i('))(9'0)'0 2 SI(�); ' j= '0; '0 62 ESI(�)(otherwise ' 2 SI'0 and ' 62 SI(�)) )(9'00)'00 2 SI(�); '0 j= '00; '00 62 ESI(�) )::: (repeat this procedure until we �nd 't)(9't)'t 2 SI(�); 't�1 j= 't; 't 62 ESI(�)and 6 9'0t; 't j= '0t (as A is �nite) )'t 62 ESI(�) and 't 2 ESI(�)Conict, so S is empty. Therefore, i�(SI(�)) = i�(ESI(�)) and i�(�) =i�(SI(�)).ENDBased on a generalized incidence calculus theory, the e�ciency of calcu-lating an incidence set for a formula is very much dependent on the speedof �nding its semantic implication set as well as the essential semanticimplication set.2.2. Combining several generalized incidence calculus theoriesAn ATMS has the ability to make inferences based on more than onepiece of information. In the following we will see how to deal with multiplepieces of information in extended incidence calculus in general.



11Given a generalized incidence calculus theory, beliefs in formulae arederivable. Usually we consider that each generalized incidence calculustheory carries the information provided by one piece of evidence. If we havemultiple pieces of evidence on a problem and their information is carried bymultiple generalized incidence calculus theories, then we need to combinethem in order to reach a conclusion from all the available information.The combination of multiple generalized incidence calculus theories is doneusing a combination rule in extended incidence calculus [16, 17]. Given twotheories <W; %; P;A1; i1 ><W; %; P;A2; i2 >the combination rule produces the third generalized incidence calculus the-ory as <W nW0; %0; P;A; i > whereW0 = [�^ =? i1(�) \ i2( ) � 2 A1;  2 A2A = f' j ' = � ^  ;where � 2 A1;  2 A2; ' 6=?gand i(') = [(�^ j=') i1(�) \ i2( ) ' 2 AThe probability distribution on W nW0 is updated as%0(w) = %(w)1��w02W0%(w0) w 2 W nW0The special case of the rule is when two generalized incidence calculustheories are given on di�erent sets of possible worlds and the two sets areprobabilistically independent (or DS-Independent3), the combination canbe performed using the Corollary 1 in [17]. Given that<W1; %1; P;A1; i1 ><W2; %2; P;A2; i2 >3See de�nition and explanation in [18], [23]. In the analysis in [18], [23], two setsof possible worlds are probabilistically independent cannot guarantee they are DS-Independent when their common original source is known. In the case that originalsource is the set product of these two sets, their probabilistic independence also impliestheir DS-Independence. In this paper, as we only consider the latter case, we will useterm probabilistically independence to name the DS-Independence among two sets.



12applying Corollary 1 we get a combined theory <W3; %3; P;A3; i3 > whereW0 = [�^ =? i1(�)
 i2( ) � 2 A1;  2 A2W3 =W1 
W2 nW0%3(w) = %3((w1i; w2j)) = %1(w1i)%2(w2j)1�P(w01i;w02j )2W0 %1(w01i)%2(w02j)A3 = A as de�ned aboveand i3(') = [�^ j='(i1(�)
 i2( )) nW0 � 2 A1;  2 A2In general a pair (w1i; w2j) is an element ofW1
W2 nW0. It is requiredthat T is automatically added into a set of axioms A if [�2Ai(�) � W .Similarly if there are several generalized incidence calculus theories andthe corresponding probability spaces are probabilistically independent, thecombined result will be < W; %; P;A; i >. This result is also the same asthat obtained by combining the theories one by one.W0 = [�1^:::^�n=? i1(�1)
 :::
 in(�n) where �i 2 Ai (2)W =W1 
 :::
Wn nW0%(w) = %((w1i; :::; wnj)) = %1(w1i):::%n(wnj)1�P(w01i;:::;w0nj)2W0 %1(w01i):::%n(w0nj)A = f j  = ^�j; �j 2 Aj;  6=?gand i(') = [�1^:::^�nj='(i1(�1)
 :::
 in(�n)) nW0 where �i 2 AiNow we look at an example. Suppose that there are two generalizedincidence calculus theories:< fX;:Xg; %1; P; fd! b; Tg; i1(d! b) = fXg; i1(T ) = fX;:Xg >< fV;:V g; %2; P; fb! a; Tg; i2(b! a) = fV g; i2(T ) = fV;:V g >



13if the two sets of possible worlds are probabilistically independent, thenusing the above corollary the combined theory is< SX 
SV ; %3; P; fd! b^ b! a; :::; Tg; i3(d! b^ b! a) = f(X;V )g::: >Table 1 below shows the combination procedure.� d! b Ti(�) fXg fX;:Xgb! a d! b ^ b! a b! afV g f(X;V )g fX;:Xg 
 fV gT d! b TfV;:V g fXg 
 fV;:V g fX;:Xg 
 fV;:V gTable 1. Combination of two independent generalized incidence calculustheoriesThe �rst two rows in the table represent the �rst generalized incidencecalculus theory and the �rst column represent the second theory. From thecombined theory, we have i�(d ! a) = S�j=(d!a) i(�) = f(X;V )g. If weknow that %1(X) = 0:75; %2(V ) = 0:8, then p�(d ! a) = 0:6 which is ourbelief in formula d! a. In this case, the conict set W0 is empty.3. EXTENDING ASSUMPTION-BASED TRUTH MAINTE-NANCE SYSTEMSThe ATMS was introduced by de Kleer [6] based on the TMS [8] inwhich a special set of arguments, named as assumptions, are particularlyaddressed. Considering an inference rule a ! b, normally in propositionallogic this rule tells us that if a is observed then b is believed to be true.In this procedure the information supporting the inference from a to b isassumed to be true by default. If this information is supplemented thenthe rule can be written as: a ^C ! bwhere C is regarded as the information related to the rule but hidden be-hind the rule. In an expert system, C can be thought of the rule strengthm. While in an ATMS, C is called an assumption4. In the absence of infor-mation, assumptions are assumed to be true in the procedure of carrying4We follow de Kleer's convention that upper-case letters are used to representassumptions.



14out inferences. When a conict is discovered, some of the assumptions willbe assigned false to prevent the �ring of relevant rules. In this section,we extend the ATMS by associating probabilities on assumptions in orderto establish formal and theoretical relations between a probabilistic ATMSand incidence calculus.3.1. Non-redundant justi�cation sets and environmentsWe briey describe the ATMS below.node: a node ( called a problem-solver's datum) in an ATMS representsany datum unit used in the system. This datum unit can be a propo-sition or any formula in the propositional language which the systemuses. The truth and falsity of a datum unit is inferred during thesystem processing procedure.assumptions: a set of distinguished nodes which are believed to be truewithout requiring any preconditions are called assumptions.justi�cations: justi�cations are supplied by the problem-solver. A justi�-cation for a node contains those nodes from which it can be derived.Usually, a node has several justi�cations representing multiple pathsto infer the node.label: a set of assumptions is called an environment of a node if thenode holds under this environment. The label of a node contains allcollections of such environments. Each environment in a label consistsof non-redundant assumptions.nogood: there is a nogood node in an ATMS system, any environment inwhich falsity is derived is included in the label of nogood.In an ATMS, each node is associated with a label and a set of justi�ca-tions and the node is normally denoted as< nodej; label; justifications >The inference procedure in the ATMS propagates assumptions along jus-ti�cations.Both the label and the justi�cations for a node can be explained as ma-terial implications. Given a node c with label ffA1; A2; :::g fB1; B2; :::g:::gand with justi�cationsf(z1; z2; :::) (y1; y2; :::):::g, the meaning of the label of c is that the conjunc-tion of assumptions in each environment makes c true, such as A1 ^ A2:::of environment fA1; A2:::g makes c true. So L(c) is a set containing con-junctions of assumptions. L(c) = f(A1 ^A2 ^ :::); (B1 ^ B2 ^ :::):::g. Thefollowing relation is true.(A1 ^A2 ^ :::)_ (B1 ^B2 ^ :::)_ :::! c



15Each justi�cation of c also represents an implication, that is, for justi�-cation (z1; z2; :::), if z1 ^ z2 ^ ::: is proved to be true, then c is true as well.So there is similar implication relation:(z1 ^ z2 ^ :::)_ (y1 ^ y2 ^ :::)_ :::! cThe relations between a justi�cation and its node states that the conjunc-tion of zi(yj) logically supports the conclusion c. If we consider zi and c asformulae in a propositional language, then ^izi is a formula in the languagewhich implies c, that is, formula^izi ! c is always true. In general if we let j(c) = f(z1^ z2^ :::); (y1^y2^:::):::g, then every element in j(c) semantically implies c, so j(c) j= c.In general each justi�cation is nonredundant. That is, deleting any ele-ment in an justi�cation will destroy the implication relation of this justi-�cation to its node. For any two justi�cations for one node, usually thesetwo justi�cations don't imply each other. That is one justi�cation cannotbe inferred from another. If one justi�cation can be inferred by another,then the e�ect of this justi�cation will be covered by the latter one. Thesame rules also apply to the environments for a node. So any environmentis nonredundant and any two environments of a node have at lease onedi�erent assumption. We will show this in the following example.Example 2The �ve inference rules given at the beginning of Example 1 can beencoded into a set of ATMS nodes as5node1 :< e! d; ffZgg; f(Z)g>node2 :< d! b; ffXgg; f(X)g >node3 :< b! a; ffV gg; f(V )g >node4 :< d! c; ffY gg; f(Y )g >node5 :< c! a; ffWgg; f(W )g>Similarly we encode another two inference rules in this ATMS asnode6 :< d! a; ffX;V g; fY;Wgg; f(node2; node3); (node4; node5)g >node7 :< e! a; ffZ;X; V g; fZ; Y;Wgg; f(node1; node6)gor replacing node6 by its justi�cation setnode7 :< e! a; ffZ;X; V g; fZ; Y;Wgg;f(node1; node2; node3); (node1; node4; node5)gWe should notice that (node1; node2; node3) also implies node6, but it isnot in the justi�cation set of node6 as the e�ect of this justi�cation has5A node with only an assumption (or assumptions) in both its label and its jus-ti�cations means that this node is supported and dependent on this assumption (orassumptions) only.



16been covered by the justi�cation (node2; node3). The same thing happensto node7 as well.In fact there are in total seven conjunctions of nodes make node7 true,but only two of them are included in the justi�cation set of node7. Theseseven conjunctions of nodes and the two of them used in the justi�cationset are exactly the same as the semantic implication set and the essentialsemantic implication set for formula e ! a in extended incidence calculus(see Example 1). If the essential semantic implication set of a formula isknown, then this set can be used as justi�cations for the node. That is whywe use extended incidence calculus to provide justi�cations for nodes. Wewill discuss this in detail in section 5.3.The justi�cation set of a node in an ATMS contains implication relationsamong a set of nodes and this desired node. If we require that a justi�-cation set of a node is non-redundant, then deleting any justi�cation fromthe justi�cation set of a node will cut o� a path which can derive the node.From any given justi�cation set, we can always get a non-redundant justi-�cation set from it and these two sets give out the same environments. Forany inference chain which can derive the node, there must exist a justi�ca-tion. This justi�cation contains fewer nodes then the chain but can inferthe same result. The labels of nodes are also non-redundant. The non-redundancy of a label means either that for any two environments in thelabel of a node, one environment cannot be inferred from another or thatdeleting any assumption (or assumptions) in an environment will destroythe supporting relation among this node and the environment.For node7, the non-redundant justi�cation set and label aref(node1; node2; node3)(node1; node4; node5)gand ffZ;X; V g; fZ; Y;Wggrespectively.3.2. Probabilistic assumption setsIn an ATMS, all nodes can be divided into four types: assumptions,assumed nodes, premises, and derived nodes. An assumption node is anode whose label contains a singleton environment mentioning itself, suchas < A; ffAgg; f(A)g >.An assumed node is a node which has justi�cations mentioning onlyassumptions6. For instance < a; ffAgg; f(A)g > or < b; ffA;Bgg; f(A;B)g >.6In [7], an assumed node has only one justi�cation mentioning one assumption.



17All other nodes are either premises or derived. A premise (or a fact) has anempty justi�cation and empty label set, i.e., it holds without any precon-ditions. A derived node usually doesn't include assumptions in its justi�ca-tions, such as fc; ffA;Bgg; f(a; b)gg. In general, if we keep the restrictionthat non-assumptions cannot become assumptions, or assumptions cannotbecome another type of node [6], then it is possible to keep all assumptionsin one set and other nodes in another set, and the two sets are distinct.The inference result of a node has one of three values: Believed, Disbe-lieved and Unknown. If one of the environments in the label c is believed,then c is believed. If one of the environments in the label :c is believed,then c is disbelieved, otherwise c is unknown. When both c and :c arebelieved, there is a conict and falsity is derived. In this case, some ofthe previous results should be retrieved and reinferred, e.g., delete nogoodenvironments from those labels of nodes where they appear. Such kinds ofinference in an ATMS produce only three possible values. It cannot rep-resent a plausible conclusion d with a degree of belief. Attempts to attachuncertain numbers with assumptions in the ATMS have appeared in [3],[4], [7], [10], [15], [16]. The belief of a node is identi�ed as the probabilityof its label Bel(c) = Pr(L(c)).For example [20], the rule Turn the key ! start the engine with 0:8 canbe represented in the ATMS as< b! a; ffBgg; f(B)g >where B stands for an assumption ( or a set of assumptions) which supportsthe implication relation b! a and assign 0.8 as the probability of B. a andb represent propositions `start the engine' and `turn the key' respectively.Assume that for node b we have < b; ffAgg; f(A)g >, then the jus-ti�cation for node a is b ^ (b ! a) ) a. That is for node a we have< a; ffA;Bgg; f(b; b! a)g >. a is a derived node.Therefore Bel(a) = Pr(L(a)) = Pr(A ^ B) = 0:8, if the probabilitydistributions are probabilistically independent and the action `turn the key'is true, i.e., p(A) = 1.In this way, principlely the ATMS has the ability to make plausibleinferences with beliefs. For a simple case like this, the calculation of proba-bilities on nodes is not di�cult to carry out. However, in most cases labelsof nodes are very complicated and probability distributions on assumptionsmaybe somehow related. In these circumstances, calculating probabilitiesof labels of nodes is quite troublesome as shown in [16], [20]. We introducethe following two de�nitions to cope with this di�culty in general.De�nition 4: Probabilistic assumption set77Similar de�nition is given in [16] called an auxiliary hypothesis set.



18A set fA1; :::; Ang, denoted as SA1;:::;An , is called a probabilistic assump-tion set for assumptions A1; :::; An if the probabilities on A1; :::; An aregiven by a probability distribution p from a piece of evidence and�D2fA1;:::;Angp(D) = 1. The simplest probabilistic assumption set has twoelements A and :A, denoted as SA;:A. For any two elements in a proba-bilistic assumption set, it is assumed that Ai^Aj )?. For all elements inthe set, we have _jAj = true for j = 1; :::; n.For two distinct probabilistic assumption sets SA1;:::;An and SB1 ;:::Bm ,the uni�ed probabilistic assumption set is de�ned as SA1 ;:::;An;B1;:::Bm =SA1;:::;An 
 SB1 ;:::;Bm = f(Ai; Bj) j Ai 2 SA1 ;:::;An; Bj 2 SB1 ;:::;Bmg where
 means set product and p(Ai; Bj) = p1(Ai) � p2(Bj). p1 and p2 are theprobability distributions on SA1 ;:::;An and SB1 ;:::;Bm , respectively.Example 3Assume that the �ve assumptions in Example 2 are in di�erent probabilis-tic assumption sets. An environment for node6 derived from justi�cationf(node2; node3)g is ffX;V gg, then the joint probabilistic assumption setfor this environment is SX;:X 
 SV;:V . Similarly the joint probabilisticassumption set for environment ffY;Wgg is SY;:Y 
 SW;:W .De�nition 5: Full extension of a labelAssume that an environment of a node n is fA;B; :::; Cg where A;B; :::; Care in di�erent probabilistic assumption sets SA1 ;:::;Ax ; SB1;:::;By and SC1;:::;Cz .Because A ^ B ^ ::: ^ C = A ^ B ^ ::: ^ C ^ (_Ej j Ej 2 SE1 ;:::;Et),A ^B ^ :::^ C ! n and A ^ B ^ :::^C ^ (_jEj j Ej 2 SE1 ;:::Et)! n areall true (where SE1 ;:::;Et is a probabilistic assumption set which is di�erentfrom SA1;:::Ax ; SB1;:::;By and SC1;:::;Cz). fA;B; :::; Cg
SE1;:::;Et is called afull extension of the environment to SE1;:::Et. If there are in total m prob-abilistic assumption sets in the ATMS, then fA;B; :::; Cg
SE1;:::;Et
 :::
SF1;:::;Fj is called the full extension of the environment to all assumptions,or simply called the full extension of the environment. Similarly if everyenvironment in a label has been fully extended to all assumptions, then wecall the result the full extension of the label, denoted as FL(n).To understand the idea behind this de�nition, we look at Example 2again. There are 5 probabilistic assumption sets in this ATMS structure,SZ;:Z , SX;:X , SV;:V , SY;:Y and SW;:W . One environment of node6 isfX;V g which contains assumptions in two probabilistic assumption setsSX;:X and SY;:Y . Based on De�nition 5 the full extension of this environ-ment is fX;V g 
 SZ;:Z 
 SY;:Y 
 SW;:Wand the full extension of label L(node) isfX;V g 
 SZ;:Z 
 SY;:Y 
 SW;:W [ fY;Wg 
 SX;:X 
 SV;:V 
 SZ;:Z



19Similarly, we are able to calculate full extensions for all environments ofnodes.In particular, let L(?) represent all inconsistent environments (i.e. no-good) and let FL(?) represent the full extension of them. If a label of anode is L(c) = ffA1; A2; :::g;fB1; B2; :::g; :::g, it means that (A1^A2^:::)_(B1 ^B2 ^ :::)_ :::! c is true. After we get the full extension of the labeland represent it in disjunctive normal form ( a disjunction of conjunctions),we have that (A1 ^ A2 ^ ::: ^ B1 ^ :::C1) _ ::: _ (A1 ^ A2 ^ :::Bn ^ :::C1 ^:::)_ :::(A1 ^A2 ^ :::^Bn ^ :::^Cm)! c is true, each conjunction in thefull extension contains the elements from di�erent probabilistic assumptionsets and any two such conjunctions are di�erent. Such a full extension isconvenient for calculating uncertainties related to assumptions.The motivation of this de�nition comes from two aspects. First of all,although Laskey and Lehner have the de�nition of probabilistic assumptionsets in [16] implicitly and give an algorithm to calculate the probability ofa node based on its label, we are not satis�ed with the algorithm they give.It lacks theoretical notation. Secondly, if we organize di�erent assumptionsinto di�erent probabilistic sets, we'd better adopt some set operations todeal with them. In this sense, the management method on sets of possibleworlds in extended incidence calculus seems reasonable to be used here.These two reasons suggested us to give the above de�nition about howto extend a label into its full length notation and such a full extension isconvenient for calculating uncertainties related to assumptions.Example 4In Example 3, we have two di�erent probabilistic assumption sets fortwo environments of node6. However the probability of node6 cannot beobtained by calculating them separately and then adding them together.Doing so may over count the joint part in these two sets. The solution tothis is to apply De�nition 5 to each of these environments and we have fullextensions for these two environments asSZ;:Z 
 fX;V g 
 SY;:Y 
 SW;:WSZ;:Z 
 SX;:X 
 SV;:V 
 fY;WgThe full extension of the label of node6 is the union of these two sets.(SZ;:Z 
 fX;V g 
 SY;:Y 
 SW;:W ) [ (SZ;:Z 
 SX;:X 
 SV;:V 
 fY;Wg)or SZ;:Z 
 (fX;V g 
 SY;:Y 
 SW;:W [ SX;:X 
 SV;:V 
 fY;Wg)



20If we use pZ to represent the probability distribution on probabilistic as-sumption set SZ;:Z , then belief in this node isBel(node6)= pZ(SZ;:Z)(pX (X)pV (V )pY (SY;:Y )pW (SW;:W )+pX(SX;:X )pV (SV;:V )pY (Y )pW (W ) �pX (X)pV (V )pY (Y )pW (W ))= pZ(SZ;:Z)(pX (X)pV (V ) + pY (Y )pW (W ) � pX (X)pV (V )pY (Y )pW (W ))In general if the nogood environments are not empty, those non-emptyenvironments should be deleted from the label of a node. The probabilityof a node is then changed to:Bel(node) = Pr(FL(a) n FL(?))4. CONSTRUCTING LABELS AND CALCULATING BELIEFSIN NODES USING EXTENDED INCIDENCE CALCULUSWe have introduced extended incidence calculus and the ATMS in theprevious two sections. In this section we are going to draw some mappingrelations among the components in these two reasoning mechanisms. Imag-ine that the joint set of set products of di�erent probabilistic assumptionsets in an ATMS corresponds to the set of possible worlds in a generalizedincidence calculus theory and also imagine that the set of nodes (exceptassumptions) in an ATMS is translated into the language set L(P ) of asuitable proposition set P in extended incidence calculus, then the sup-porting relation between the labels (which contain assumptions) and theset of nodes in the ATMS is similar to the supporting relation between theset of possible worlds and the language set in extended incidence calculus.This is the intuition behind our formal manipulation procedure for produc-ing incidence sets (or the lower bounds) for formulae which can then beused to obtain labels for nodes in the ATMS.4.1. An exampleNow we will use an example (from [16]) to show how to manage as-sumptions in the ATMS in the way we manage sets of possible worlds inextended incidence calculus. We will solve this problem using ATMS tech-niques and extended incidence calculus respectively. The result shows thatboth inference mechanisms can be used to solve the same problem and theresults are the same. It also indicates the procedure of transforming anATMS into extended incidence calculus.



21Example 5Assume that we have �ve inference rules from Example 2 and fact e isobserved, we want to infer our belief in other statements, such as a. Thisis shown in �gure 1. d XY aVc Wb����*HHHHj ����*HHHHje Z -Figure 1. Semantic Network of Inference RulesApproach 1: Solving this problem in an ATMS.Assume that there are following nodes in an ATMS:assumed nodes: n1 :< e! d; ffZgg; f(Z)g >n2 :< d! b; ffXgg; f(X)g >n3 :< b! a; ffV gg; f(V )g >n4 :< d! c; ffY gg; f(Y )g >n5 :< c! a; ffWgg; f(W )g>premise node: n8 :< e; ffgg; f()g>derived nodes:n6 :< d! a; ffX;V g; fY;Wgg; f(n2; n3); (n4; n5)g >n7 :< e! a; ffZ;X; V g; fZ; Y;Wgg; f(n1; n6)g >or replacing n6 by its own justi�cationsn7 :< e! a; ffZ;X; V g; fZ; Y;Wgg; f(n1; n2; n3); (n1; n4; n5g >n9 :< a; ffZ;X; V g; fZ; Y;Wgg; f(n7; n8)g >or n9 :< a; ffZ;X; V g; fZ; Y;Wgg; f(n1; n2; n3; n8); (n1; n4; n5; n8)g >assumption nodes: < X; ffXgg; f(X)g > and so on.It is not enough to know labels only if we are interested in calculatingbeliefs on nodes [20], [16]. We would have to manipulate labels in someway in order to get the beliefs. In our approach, we need to obtain the fullextension of a label �rst. In order to do so, probabilistic assumption setsare required and some new assumptions need to be created when necessary.



22For the premise node e, if we associate it with a distinct assumption E,then node n08 can be rewritten as n08 :< e; ffEgg; f(E)g >. There are intotal six probabilistic assumption sets. They are SV;:V , SW;:W , SX;:X ,SY;:Y , SZ;:Z , SE;:E .The labels of derived nodes are obtained based on the justi�cations givenby the problem solver, premise nodes and assumed nodes. The label ofproposition a is L(a) = ffZ;X; V gfZ; Y;Wgg and its full extension isFL(a) = SE;:E 
 fZg 
 (fX;V g 
 SY;:Y 
 SW;:W [ SX;:X 
SV;:V 
 fY;Wg)If we assume that di�erent probability distributions on di�erent assump-tion set are pV (V ) = :7pW (W ) = :8pX(X) = :6pY (Y ) = :75pZ(Z) = :8pE(E) = 1and they are probabilistically independent, then the belief in node a isBel(a) = Pr(FL(a)) = 1� :8�(:6� :7+ :75� :8� :6� :7� :75� :8) = 0:6144A di�erent calculation procedure can also be found in [16] which producesthe same result.Approach 2: Using extended incidence calculus to solve theproblem.Now let us see how his problem can be solved in extended incidencecalculus. Suppose that we have the following six generalized incidencecalculus theories< SV;:V ; %1; P; fb! a; Tg; i1(b! a) = fV g; i1(T ) = SV;:V >< SW;:W ; %2; P; fc! a; Tg; i2(c! a) = fWg; i2(T ) = SW;:W >< SX;:X ; %3; P; fd! b; Tg; i3(d! b) = fXg; i3(T ) = SX;:X >< SY;:Y ; %4; P; fd! c; Tg; i4(d! c) = fY g; i4(T ) = SY;:Y >< SZ;:Z ; %5; P; fe! d; Tg; i5(e! d) = fZg; i5(T ) = SZ;:Z >< SE;:E ; %6(E) = 1; P; feg; i6(e) = fEg; i6(T ) = SE;:E >where SV;:V , ..., SZ;:Z , and SE;:E are probabilistic assumption sets.



23As we assumed that sets of SX;:X ; :::; SE;:E are probabilistically inde-pendent, the combination of the �rst �ve theories produces a generalizedincidence calculus theory < S7; %7; P;A7; i7 > in which the joint set isS7 = SZ;:Z 
 SX;:X 
 SV;:V 
 SY;:Y 
 SW;:W .i7(d! b ^ b! a) = SZ;:ZfXgfV gSY;:Y SW;:W= SZ;:ZfXgfV gSY;:Y SW;:Wi7(d! c ^ c! a) = SZ;:ZfY gfWgSX;:XSV;:Vi7(d! b ^ b! a ^ d! c ^ c! a) = SZ;:ZfXgfV gfY gfWgi7(e! d ^ d! b ^ b! a) = fZgfXgfV gSY;:Y SW;:Wi7(e! d ^ d! c ^ c! a) = fZgfY gfWgSX;:XSV;:VIf we let e ! d ^ d ! b ^ b! a = �1 and e ! d ^ d! c ^ c ! a = �2,then i7(�1 ^ �2) = fZgfXgfV gfY gfWgCombining this theory with the sixth generalized incidence calculus the-ory we obtaini(e ^ �1) = SE;:EfZgfXgfV gSY;:Y SW;:Wi(e ^ �2) = SE;:EfZgfY gfWgSX;:XSV;:Vi(e^�1^�2) = SE;:EfZgfXgfV gfY gfWg. Because e^�1 ! a, e^�2 !a and e ^ �1 ^ �2 ! a, the following equation holds:i�(a) = i(e ^ �1) [ i(e ^ �2) [ i(e ^ �1 ^ �2)= SE;:EfZgfXgfV gSY;:Y SW;:W [ SE;:ESX;:XSV;:V fZgfY gfWgandp�(a)= wp(i�(a))= wp(SE;:EfZgfXgfV gSY;:Y SW;:W [ SE;:ESX;:XSV;:V fZgfY gfWg)= wp(SE)� wp(fZgfXgfV gSY;:Y SW;:W [ SX;:XSV;:V fZgfY gfWg)= wp(SE;:E)� wp(fZg)� wp(fXgfV gSY;:Y SW;:W [ SX;:XSV;:V fY gfWg)= wp(SE;:E)� wp(fZg)� (wp(fXgfV gSY;:Y SW;:W )+wp(SX;:XSV;:V fY gfWg) �wp(fXgfV gfY gfWg))= 1� 0:8� (:6� :7� 1� 1 + 1� 1� :75� :8� :6� :7� :75� :8) = 0:6144So our belief in a is also 0:6144.Similarly we can obtain i�(d! a), i�(e! a) as:i�(d! a) = SE;:ESZ;:ZfXgfV gSY;:Y SW;:W[SE;:ESZ;:ZfY gfWgSX;:XSV;:Vi�(e! a) = SE;:EfZgfXgfV gSY;:Y SW;:W[SE;:EfZgfY gfWgSX;:XSV;:V



24These six generalized incidence calculus theories are in fact producedfrom assumed and premise nodes in the ATMS.If we compare the full extensions of nodes in the ATMS and the lowerbounds of incidence sets on formulae, we can �nd that the following equa-tions hold:i�(d! a) � FL(d! a) i�(e! a) � FL(e! a) i�(a) � FL(a)That is the full extension of a node is the same as the lower bound ofincidence set of the corresponding formula.Here the symbol � is read as \equivalent to". An incidence set of aformula (or its lower bound) is equivalent to the full extension of the labelof a node means that for an element (a1; a2; :::; ak) in the incidence set, theelement (a1^a2^ :::^ak) is in FL(�). In the following we give the generalprocedure of encoding a list of ATMS nodes by the equivalent generalizedincidence calculus theories.4.2. The algorithm of equivalent transformation from an ATMSinto extended incidence calculusDe�nition 6: Equivalent transformation algorithmGiven an ATMS we follow the following steps to convert it into general-ized incidence calculus theories.Step 1: divide the list of nodes into four sets: a set of assumption nodes,a set of assumed nodes, a set of derived nodes and a set of premises. Theset of assumption nodes is called lower level nodes and the last three setstogether are called higher level nodes. Based on the higher level nodes, a setof propositions P is established. A higher level node is either a propositionin P or a formula in L(P ).Step 2: from the set of assumption nodes, we can form a list of proba-bilistic assumption sets SA1 ;:::;Am; SB1 ;:::Bn ; :::; based on De�nition 4. It isalso assumed that these sets are probabilistically independent. If they arenot independent, an extended ATMS cannot solve them.Step 3: divide those assumed nodes into groups. If both node ni and njare in group i, then ni and nj must satisfy one of the conditions: thereexists an assumption A which is in an environment of L(ni) and also inan environment of L(nj) or an assumption in L(ni) and an assumption inL(nj) are in the same probabilistic assumption set. If ni and nj are in thesame group and nj and nl are in the same group, then ni; nj and nl shouldbe in the same group.Step 4: for any group k, create a corresponding structure <Wk; %k; P; ik;A >.The set of axioms A contains assumed nodes in this group and all the



25possible conjunctions of them. The set of possible worlds Wk is eithera probabilistic assumption set or the set product of several such sets ifthere is more than one probabilistic assumption set involved in the labelsof these assumed nodes. For instance, if the label of node ni is ffAg; fBggand SA1;:::;Am ; SB1 ;:::;Bn are di�erent, then the set of possible worlds Wkshould be Wk = SA1;:::;Am
SB1 ;:::;Bn . The incidence function ik is de�nedas ik(nt) = L(ni) and ik(nt ^ nj) = L(nt) \ L(nj). So ik de�ned on A isclosed under ^. We further de�ne ik(false) = fg and ik(true) =Wk, thenstructure <Wk; pk; P; ik;A > is a generalized incidence calculus theory. Inthe case that the set of possible worlds is a joint space of several probabilis-tic assumption sets, labels of nodes need to be reconstructed. Followingthe above case if SA1 ;:::Am = fA;:Ag and SB1 ;:::;Bn = fB;:Bg, the labelof node ni can be changed asL(ni) = ffAg 
 fB;:Bg; fA;:Ag 
 fBgg= fffA;Bg; fA;:Bgg; ffA;Bg;f:A;Bggg= ffA;Bg; fA;:Bg; f:A;BggIn general, L(ni) = ffAg 
 SB1;:::;Bn ; SA1;:::;Am 
 fBgg.Step 5: for each premise node, create a generalized incidence calculustheory and add the set of possible worlds to the list. For example, forpremise e, a suitable generalized incidence calculus theory might be <fV g; %(V ) = 1; P; feg; ij(e) = fV g >. The added probabilistic assumptionset must be di�erent from any set in the list.Step 6: combining these generalized incidence calculus theories we havethe result that for any derived node di, there is i�(di) � FL(di) n FL(?).FL(di) n FL(?) means deleting those conjunctive parts which appear inboth FL(di) and FL(?).So both the label set and the degree of belief in a node can be obtainedin this combined generalized incidence calculus theory.4.3. Formal proofIn this section we will give the formal proof about the equivalence be-tween an ATMS and the transformed generalized incidence calculus theo-ries.Theorem 1. Given an ATMS, there exists a set of generalized incidencecalculus theories such that the reasoning result of the ATMS is equivalentto the result obtained from the combination of these theories. For anynode dl in an ATMS, FL(dl) n FL(?) is equivalent to the lower boundof the incidence set of formula dl in the combined generalized incidence



26calculus theory, that is FL(dl) n FL(?) � i�(dl). The nogood environ-ments is equivalent to a subset of the set of possible worlds which causesconicts, that is FL(?) � W0.PROOFThe purpose of this proof is that, applying the Equivalent Transforma-tion Algorithm in De�nition 6 on a given ATMS, we get a list of generalizedincidence calculus theories, the combined generalized incidence calculustheory of these theories generates the same label set and belief degree of anode as the ATMS does.Assume that the nodes of an ATMS are divided into four sets, e.g., a setof assumption nodes, a set of assumed nodes, a set of premise nodes and aset of derived nodes.Step A: In order to carry out the proof below, we need to reconstructthe justi�cations of derived nodes to ensure that justi�cations of derivednodes contain only assumed nodes or premise nodes. This can be done asfollows.Given a derived node dl, choose a node from its justi�cations. If the nodeis an assumptionC, then create an assumed node c with single environmentfCg and single justi�cation (C) and then replace C with c in any justi�-cations where C appears. If the node is a derived node, then replace thenode with the justi�cations of this node. For example if dl is such a derivednode with justi�cations f(z1; z2)(z3; z4)g and dl appears in a justi�cationof node dj as f(:::; dl; :::); :::g, then dl is replaced with its justi�cations andthe new justi�cations of dj are f(:::; z1; z2; :::); (:::; z3; z4; :::); :::g.Repeat this procedure until all nodes in the justi�cations of a derivednode are either assumed nodes or premise nodes. As a consequence, anenvironment of a derived node contains only assumptions because labels ofassumed and premise nodes contain only assumptions.Step B: For any derived node dl, suppose its justi�cations aref(a1; a2; :::); (b1; b2; :::); :::gthen the conjunction of each justi�cation of dl implies dl, such as a1^ a2 ^:::! dl. If we denote this implication as j=, then we have a1^a2^ ::: j= dl.If we let j(dl) = fa1 ^ a2 ^ :::; b1 ^ b2 ^ :::; :::g then j(dl) j= dl. Theenvironments of dl will be(L(a1) 
 L(a2)
 :::)[ (L(b1)
 L(b2)
 :::)[ :::For example, if L(a1) = fli1; li2; :::g



27and L(a2) = flj1; lj2; :::gthen L(a1) 
 L(a2) = [t;kflit [ ljkgIn general for a derived node dl, assume that dl has a justi�cation(n1; n2; :::; nl), thenL(n1) 
 L(n2) 
 :::
 L(nl) n L(?)is the label set of dl.Step C: After forming a language set from higher level nodes, a seriesof generalized incidence calculus theories (assume n theories in total) canbe constructed from assumed nodes and premise nodes based on steps 4and 5 described in the Equivalent Transformation Algorithm. Any twosets of possible worlds of such theories are required to be probabilisticallyindependent and all of them can be combined using Theorem 2 in Chapter3 and the subset of possible worlds which leads to contradictions is W0.Suppose (n1; n2; :::; nl) is a justi�cation of a derived node di (we haveensured that these nodes are either assumed nodes or premise nodes) andthey are arranged into t generalized incidence calculus theories. Combiningthem we will obtain the generalized incidence calculus theory<W1; �01; P;A01; i01 > (1)i01(n1 ^ n2 ^ :::^ nl)= i1(n11 ^ :::^ n1m1) 
 :::
 it(nt1 ^ :::^ ntmt) nW 01= (L(n11)
 :::
 L(n1m1 )
 :::
 (L(nt1) 
 :::
 L(ntmt)) nW 01= L(n1) 
 L(n2)
 :::
 L(nl) nW 01where fn1; :::; nlg = fn11; :::; n1m1; :::nt1; :::; ntmtg and (n11^ :::^n1m1), ...,(nt1^:::^ntmt) are in these di�erent generalized incidence calculus theories,and W 01 is the subset of possible worlds which leads to contradictions aftercombing these t generalized incidence calculus theories.Assume that by combining the remaining n � t generalized incidencecalculus theories we have <W2; �02; P;A02; i02 > (2)where A02 = fy1; y2; :::; yng and the subset of possible worlds leading tocontradictions is W 02. To combine the theories in (1) and (2), � ^ y1; � ^y2; :::; �^ yn will be in the set of axioms of the new combined theory.<W3; �03; P;A03; i > (3)



28Here � denotes n1 ^n2 ^ :::^nl. Because �^ yj j= � and for any  ^ yj j=�^ yj ,  j= �, the following equation holds.i�(�) = Sj i(� ^ yj)=Sj i01(�)
 i02(yj) nW 03=i01(�)
Sj i02(yj) nW 03=i01(�)
 (W2 nW 02) nW 03 as Sj i02(yj) =W2 nW 02=i01(�)
W2 n ((i01(�)
W 02) [W 03)=(L(n1)
 L(n2)
 :::
 L(nl) nW 01) 
W2 n ((i01(�) 
W 02) [W 03)=(L(n1)
 L(n2)
 :::
 L(nl)) 
W2 n ((W 01 
W2) [ (i01(�)
W 02) [W 03)=((L(n1) 
 L(n2)
 :::
 L(nl)) 
W2) nW0where W 03 is the set of possible worlds which leads to contradictions af-ter combining the generalized incidence calculus theories i01 and i02. Theincidence function is i in the �nal generalized incidence calculus theory.W0 is the total set of possible worlds causing conict after combining allgeneralized incidence calculus theories.Because of the relation n1^:::^nl! dl in the ATMS, we have the relationn1 ^ ::: ^ nl ! dl in extended incidence calculus. So i�(�) � i�(dl). Ingeneral, if there are k justi�cations for node dl, the environments obtainedfrom k justi�cations are (L(a11)
:::
L(a1x))[:::[(L(ak1
:::
L(aky))nL(?), then there are k corresponding formulae �1; �2; :::; �k, where ij�(�j) �i�(dl) for j = 1; :::; k. So Sj ij�(�j) � i�(dl).Step D: In the ATMS, a nogood environment is derived if ? is proved.When c and :c are both derived, L(c)
L(:c) is a nogood environment. Forany higher level node a, (a;:a) is automatically recognized as a justi�cationof node ? and L(?) = nogood. Certainly for an assumption A, (A;:A)is also a justi�cation of node ?, but adding such justi�cations does nota�ect the result in our discussion, so in the following we only considerjusti�cations of ? which are in the form of (a;:a).Choosing a justi�cation of node ?, such as (c;:c), L(c) 
 L(:c) willbe a part of environments of nogood. When c or :c is a derived node,we replace c or :c with its label. Suppose that the justi�cations of c aref(z1; z2; :::); (x1; x2; :::); :::g and the justi�cations of :c are f(y1; y2; :::); :::g,then f(z1; z2; :::; y1; y2; :::); (x1; x2; :::; y1; y2; :::); :::gwill be the justi�cationsof?. Therefore (L(z1)
L(z2)
:::
L(y1)
L(y2)
:::)[(L(x1)
L(x2)
:::
L(y1)
L(y2)
:::) are nogood environments. Because z1^z2^:::^y1^:::=?and x1 ^ x2 ^ :::^ y1 ^ ::: =?, we have (L(z1)
 L(z2)
 :::
 L(y1)
 :::)[(L(x1)
L(x2)
 :::
L(y1)
 :::) � W0 based on Step C above. ThereforeFL(?) � W0.The other way around, for any element w 2W0, in the combined theorythere exists a formula �1 ^ �2 ^ ::: ^ �n =? and w 2 L(�1) 
 :::
 L(�n).Deleting those �j which will not destroy the equation ^i�i =?, we will



29have  1 ^ ::: ^  m =?. Therefore there exists a node z, the conjunctionof some  i implies z and the conjunctions of remaining  j implies :z. Soz^:z =  1^:::^ m =?, and L( 1)
:::
L( m) are nogood environments.It is straightforward that w is in the full extension of L( 1)
 :::
 L( m),so w is a nogood environment, that is FL(?) �W0, so FL(?) = W0.Step E: Using the result fromStep C and StepD, because Sj ij�(�j) �i�(dl), we have the following non-equations.((L(a11) 
 :::
 L(a1x)) 
 :::
 (L(ak1 
 :::
 L(aky))) nW0 � i�(dl)FL(dl) n FL(?) � i�(dl)The other way around, for any w 2 i�(dl), there exists a formula � =�1 ^ :::^ �n and w 2 i(�). There is also a formula  2 FL(dl) such that =  1 ^ :::^ m, �!  . So w 2 i�( ) = L( 1)
 :::
L( m) nW0. Basedon the de�nition of FL(dl),  1^:::^ m should be a justi�cation of node dl,so L( 1)
 :::
L( m)nL(?) will be the environments of dl. Therefore w isin the full extension of FL(dl) n FL(?). That is FL(dl) nFL(?) � i�(dl),so eventually FL(dl) n FL(?) = i�(dl).QEDExample 6Example 6 shows the way of dealing with conict information. Followingthe story in Example 5, suppose we are told later that f is also observedand there is a rule f ! :c with degree 0:8 in the knowledge base. That is,three more nodes in the ATMS are used.assumed node: < f ! :c; ffUgg; f(U )g>premise node: < f; ffgg; f()g >assumption node: < U; ffUgg; f(U )g>pas: SU;:U = fU;:Ug, SF;:F = fF;:Fg.d acb����*HHHHj ����*HHHHje -f :c-Figure 2. semantic network of inference rules



30Here pas means probabilistic assumption set and SF;:F is created tosupport premise node f .In the ATMS, we can infer that one environment of node c is fE;Z; Y gand one environment of node :c is fF;Ug. So the nogood environment isfE;X; Y; F; Ug. The belief in node a needs to be recalculated in order tore-distribute the weight of conict on other nodes. The new belief in nodea is 0:366 given in [16].In extended incidence calculus similar to Example 5, two more gener-alized incidence calculus theories are constructed from the assumed nodef ! :c and the premise node f . Combining these two theories with the�nal one we obtained in Example 1, we have W0 = fUZY g8, i�(a) =fZXV [ ZY Wg nW0. Therefore wp(fUZY g) = 0:48 which is the weightof conict and p0�(a) = wp(fZXV [ ZYWg) n fUZY g) = 0:366 which isour belief in a. Both of these results are the same as those given in [16],but the calculation of belief in node a and the weight of conict are basedon extended incidence calculus.4.4. Comparison with Laskey and Lehner's workThe work carried out in this section has some similarity with Laskeyand Lehner's work in [16]. The key idea in [16] is mainly about to createthe medium level elements between a set of beliefs and numerical assign-ments and then associate the numerical assignments to the medium levelelements. The medium level elements are exactly the set of possible worldsin extended incidence calculus and the set of assumptions in an ATMS.Both of our and Laskey and Lehner's work try to group assumptions intodi�erent sets and each set is associated with a probability distribution.Both of the work calculate labels and degrees of belief in nodes. They allconcern the normalization after conict is discovered and the total conictweight is obtained. However the result we presented here is more theo-retical. We provided a formal proof on the connections between extendedincidence calculus and the ATMS while Laskey and Lehner didn't. More-over, the result obtained in this section provides a theoretical basis for someresults obtained in [16]. In this subsection, we will explain this point inmore detail.Di�erence 1). In [16] after the label of a node is obtained, in order tocalculate the belief in this node, an algorithm is given to rewrite a label asa list of disjoint conjuncts of assumptions. For instance, in Example 5 thelabel of node a is rewritten as L(a) = �1 _ �2 where �1 = W ^ Y ^ Z and�2 = (V ^X ^Z ^ :W ) _ (V ^X ^ Z ^W ^ :Y ).If we simplify the elements in the full extension of a label (i.e. using Zto replace (Z ^ :W ) _ (Z ^W )), we can get exactly those � list requiredin [16].8In order to state the problem clearly, we use UZY instead of UZY SXSWSV SESF .



31Di�erence 2). In [16] when nogood environments are produced, the beliefsin nodes are calculated in the following wayBel(node) = Pr(label \ :nogood)Pr(:nogood) = Pr(label \ :nogood)1� Pr(nogood)It is suggested that the whole nogood environments can be divided intotwo groups nogood1 and nogood2 where nogood2 has no overlap with envi-ronments in nogood1 or label. So in a real calculation nogood is replaced bynogood1 and it is claimed that such replacement doesn't a�ect the wholeresult. They didn't provide a proof. We will prove this result is sound.Theorem 2. Assume that all nogood environments can be divided intotwo disjoint groups nogood1 and nogood2. For a node dl, if L(dl) has nooverlap with nogood2, then the following equation holds.Bel(dl) = Pr(L(dl) \ nogood)1� Pr(nogood) = Pr(L(dl) \ nogood1)1� Pr(nogood1)PROOFIf all nogood environments can be divided into two disjoint groups, thenit is possible to divide all the corresponding generalized incidence calculustheories into two groups based on Step C in section 4.3. The combina-tion of generalized incidence calculus theories in two groups produces twoconict sets, referred to as nogood1 and nogood2 respectively. The �nalcombination of these two generalized incidence calculus theories will notproduce any conict sets (if it does then the assumption that nogood1 andnogood2 are disjoint is wrong). Assume that the two generalized incidencecalculus theories are i1 and i2 respectively after combining two groups ofgeneralized incidence calculus theories, for a formula �, if the list of axiomsmaking � true are x1; x2; :::; xn, theni�(�) =[j (i1(xj))Assume that the list of all axioms for incidence function i2 are y1; y2; :::; ym,then combining i1 and i2 we havei0�(�)= [l([ji(xl ^ yj))= [l([ji1(xl)
 i2(yj))= [l(i1(xl)
 [ji2(yj))= [l(i1(xl)
 (W2 n FL(nogood2)))



32= ([li1(xl))
 (W2 n FL(nogood2))= i�(�)
 (W2 n FL(nogood2))So p�(�) = �(i0�(�)) = �(i�(�)) � �(W2 n FL(nogood2)) = �(i�(�)). Thatis Bel(�) = Pr(L(�) \ nogood1)1� Pr(nogood1)Therefore, those nogood environments which don't have overlap with thelabel of a node don't a�ect the belief in this node.ENDDi�erence 3). The major step in [16] is to create an auxiliary set for eachbelief function and let the auxiliary set carry the information provided bythe belief function. So the probability distribution on an auxiliary set whichin turn gives the belief function on another set can be thought as the sourcefor this belief function. Therefore the two auxiliary sets de�ned in this wayshould be DS-Independent, otherwise these two belief functions cannot becombined by the Dempster's Rule and the result obtained in an ATMS hasno way to compare with the result in DS theory.However, in extended incidence calculus, we don't need to make suchan assumption. For dependent probabilistic assumption sets, as long aswe can �nd their joint probabilistic assumption set, we can still combinethem using the rule in [17], [18]. If there are a number of probabilisticassumption sets and some of them are dependent, we combine dependentprobabilistic assumption sets �rst and then carry out the combination forthe rest.Example 7Example 7 demonstrates the point we discussed in 2) above. Assume thatthe ATMS network is extended as in Figure 4 by adding more nodes in it.When the facts h and j are observed, both i and :i will be derived, thenthere will be a conict. So the total nogood environments are fUZY;HIg.Without giving any obvious links between h! i, j ! :i and the previousnetwork, fHIg should have no e�ect on the belief in a. So the belief in ashouldn't be changed even more facts are observed.assumed nodes: < h! i; ffHgg; f(H)g>< j ! :i; ffIgg; f(I)g >premise nodes: < h; ffgg; f()g>< j; ffgg; f()g>



33assumption node: < H; ffHgg; f(H)g>< I; ffIgg; f(I)g >pas: SH;:H = fH;:Hg, SI;:I = fI;:Ig.SG;:G = fG;:Gg, SL;:L = fL;:Lg.d acb����*HHHHj ����*HHHHje -f :c-h i-j :i���Figure 4. Extending the existing ATMSIf we wish to consider this problem in extended incidence calculus, afterwe encoded the new assumed and premise nodes into incidence calculus the-ories, the combination of these theories produces a conict set W 00 = fHIg.The further combination of this theory with the generalized incidence cal-culus theory obtained in Example 5 gives the �nal result of the impact ofall evidence. In this �nal generalized incidence calculus theory, we havep00�(a) = p0�(a) = 0:366 while the whole weight of conict iswp(FL(UZY [HI))pU(U )pZ(Z)pY (Y ) + pH(H)pI(I) � pU(U )pZ(Z)pY (Y )pH(H)pI(I)= 0:48 + pH(H)pI(I) � 0:48pH(H)pI(I)Therefore in extended incidence calculus we don't need to divide no-good environments into di�erent groups while the correct result can still beachieved.5. EXTENDED INCIDENCE CALCULUS CAN PROVIDE JUS-TIFICATIONS FOR THE ATMSIn the previous sections, we have discussed the formal relations betweenextended incidence calculus and the ATMS. The major similarity of thetwo reasoning mechanisms is that the justi�cations in an ATMS are equiv-alent to the essential semantic implication sets in incidence calculus. As aresult, the labels of nodes are equivalent to the incidence sets of the cor-responding nodes. However, a di�erence between these two reasoning pat-terns is that the justi�cations are assigned by the designers in an ATMS



34while essential semantic implication sets are discovered automatically inextended incidence calculus. Therefore, the whole reasoning procedure inextended incidence calculus is automatic while the one in an ATMS issemi-automatic. The procedure of discovering semantic implication sets inextended incidence calculus can be regarded as a tool to provide justi�ca-tions for an ATMS. The application of this procedure into an ATMS canrelease a system designer from the task of assigning justi�cations and thisprocedure can guarantee those justi�cations are non-redundant. A problemwith this procedure is that it is slow to �nd all essential semantic impli-cation sets. If it is possible to have a fast algorithm for this procedure,then an ATMS can be established and extended automatically without adesigner's involvement.We use an example to show our idea here concretely.Example 10 Providing justi�cations automatically using extendedincidence calculusWe examine Example 5 in [16] in a di�erent way here. Assume that ourobjective in Example 5 is to calculate the impact on a when e is observed.Because there is no direct e�ect from e on a, a diagram shown as Figure1 is created to build a link between e and a. In order to infer a, thejusti�cations for node e! a are essential to be given in an ATMS. Assumethat the information carried by this diagram is denoted as SI and theinformation specifying justi�cations is denoted as SJ , then in an ATMS wehave SI [ SJ ) L(e! a) (1)Here notation A ) B means that from information carried by A, it ispossible to infer information carried by B through some logical methods.SJ may either contain the justi�cations for node e! a only or consists ofmore justi�cations for the assisting nodes (such as e! b). We say that SJis the extra information for the system inference.Given the same initial information carried by SI to it, extended incidencecalculus does inferences without requiring any more information. The in-ference procedure producesSI ) i�(e! a) [ESI(e ! a)This can be explained as from information in SI , we can obtain both thelower bound of the incidence set and the inference pathes of a node. Theessential semantic implication set for a node contains exactly the justi�-cations for the same node. Therefore the extra information required bythe ATMS can be supplied by extended incidence calculus as an output ingeneral and we are able to change (1) as follows in an ATMSSI [ESI(e ! a)) L(e! a)



35which takes the output from extended incidence calculus as an input in theATMS.So we can abstract out essential semantic implication sets for all neces-sary formulae and assign them on the corresponding nodes without consid-ering assumptions on the initial nodes. In this way, an justi�cation existingATMS can be constructed.So we conclude that the inference result in extended incidence calculusprovides justi�cations for an ATMS automatically.6. CONCLUSIONA notable statement about the relations between the ATMS and ex-tended incidence calculus has been given by Pearl [20]. He said:\In theoriginal presentation of incidence calculus, propositions were not assignednumerical degrees of belief but instead were given a list of labels called inci-dences, representing a set of situations in which the propositions are true.... Thus, incidences are semantically equivalent to the ATMS notion of`environments', and it is in this symbolic form that incidence calculus was�rst implemented by Bundy." In this paper we have discussed the relationsintensively. This discussion proves the equivalence between extended inci-dence calculus and the ATMS. The result tells us that extended incidencecalculus itself is a uni�cation of both symbolic and numerical approaches. Itcan therefore be regarded as a bridge between the two reasoning patterns.This result also gives theoretical support for research on the uni�cationof the ATMS with numerical approaches. In extended incidence calculusstructure, both symbolic supporting relations among statements and nu-merical calculation of degrees of belief in di�erent statements are explicitlydescribed. For a speci�c problem, extended incidence calculus can either beused as a support based symbolic reasoning system or be applied to dealwith numerical uncertainties. This feature cannot be provided by puresymbolic or numerical approaches independently.An advantage of using extended incidence calculus to make inferencesis that it doesn't require the problem solver to provide justi�cations. Thewhole reasoning procedure is performed automatically. The inference resultcan be used to produce the ATMS related justi�cations. The calculationof degrees of beliefs in nodes is based on the probability distributions onassumption sets which can either be dependent or independent.In the traditional TMS or ATMS, when nogood environments are gener-ated, a number of assumptions need to be deleted (or the truth value of theassumptions are changed to be false) in order to restore the consistency inthe whole system. This procedure is usually called belief revision [8], [11],
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