

THE UNIVERSITY of EDINBURGH

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

A CRITICAL ACCOUNT OF CLINICAL AND PHYSIOLOGICAL STUDIES IN RETT SYNDROME

Alison Margaret Kerr OBE MB ChB DCH FRCP FRCPCH

MD Thesis
University of Edinburgh
2005

Acknowledgements

Although I have worked alone, progress in these studies has been due to the support and collaboration many people. My working base has been generously provided within the health oriented departments of the Royal Hospital for Sick Children, Glasgow 1982-1986, Quarrier's Homes Epilepsy Centre 1986-1995 and the University of Glasgow Department of Psychological Medicine 1995-2005. I received part time salary funding through grants to the University of Glasgow from Quarrier's Homes for 7 years and from the Scottish and UK Rett Syndrome Associations from 1988 to the present and small grants have come from many sources to organise and attend meetings and to purchase equipment. The British Paediatric Surveillance Unit circulated my description of the syndrome to British paediatricians in 1990. The International Rett Association and the Research for Rett Foundation supported my attendance at meetings and welcomed my contributions.
Particularly I wish to acknowledge the many people who have worked closely with me, supporting and encouraging this work, collaborators, coauthors and families of people with Rett syndrome. They are too numerous to list but the following have given outstanding support over long periods - Patricia Amos, Rosemary Cooper, David Southall, Peter Julu, Stig Hansen, Flora Apartopoulos, Angus Clarke, Hayley Archer, William Fraser, Ingegerd Witt Engerstrom, Yoshiko Nomura, Masaya Segawa, Dawna Armstrong, Mark Bailey, Peter Webb, Bronwen Burford, Christa Einspieler, Yvonne Milne, Isobel Allan, Anna Salamonowicz and Kathy Hunter. Without the early invitations and encouragement from John Stephenson, Andreas Rett, Hugo Moser and Bengt Hagberg the work might never have begun. Kathy McFall and staff at medical illustration in Gartnavel General Hospital have improved many of my illustrations. I am grateful for the advice of Keith Brown and Robert Minns who have provided advice on the thesis presentation and to George Mills who ensured that my computer continued to function at a critical point. Certainly neither the research nor the thesis would have been completed had it not been for the constant and understanding support of my husband Tom and of my family to whom this work is dedicated.

Abstract

\section*{A critical account of clinical and physiological studies in Rett Syndrome}

Rett syndrome is the manifestation of an X linked, mainly female, genetic, neurodevelopmental disorder that usually produces profound intellectual and physical disabilities including abnormal muscle tone, with a tendency to develop limb contractures, scoliosis, epilepsy and irregular respiration. There is characteristic hand stereotypy with poor voluntary hand use, locomotion is compromised and speech is rare. Although the disorder is not progressive many sequele shorten life especially in the most severely affected. Subtle abnormalities, present from birth, are frequently overlooked because there is some developmental progress until a period of regression at around one year of age when speech and hand use diminish. This thesis gives an account of clinical, physiological and genetic studies carried out between 1982 and 2005 with the aim of recording the natural history of the disorder and understanding its clinical manifestations.

The subjects of these studies have been people of all ages, mainly from the British Isles, reported to have Rett syndrome by their physicians and families or carers (British Isles Survey, $\mathrm{n}=1228$). Most have been examined and recorded on video by myself, many repeatedly. Fully informed parental consent and appropriate ethical approval has been given for all procedures.

The early manifestations of the disorder were investigated from developmental histories and donated videos (78) taken by families before they were aware of the problem. The abnormal respiratory rhythms were investigated and characterised, using non-invasive measures of respiratory rhythm, carbon dioxide, oxygen, heart rate and blood pressure. The poor control of voluntary movement was investigated using electromagnetic stimulation of the cortex to record conduction in the motor pathways. Stereotyped hand movements were analysed from three-dimensional live recording and informal two-dimensional video. The prevalence of a toe anomaly was estimated, visual evoked potentials were recorded and a reported increase in urinary neopterin was investigated. The health of people in the British Survey was monitored longitudinally from family and physician reports and direct clinical examinations, data being stored on computer. Simple scores were generated to indicate separately the severity of the condition and health of the individual.

The survey data has been used to estimate the prevalence of the disorder (1 in 10,000 females), natural history from birth to death, the predictive value of the earliest signs, survival at different levels of severity, the impact of scoliosis surgery on health and has provided a foundation for studies relating clinical manifestations to specific mutations on the affected gene $M E C P 2$ (Xq28). The studies have indicated the nature of the Rett disorder to be developmental and non-progressive, with primary impact on the processing functions of the brain, probably beginning in the brain stem before birth.

Aims and Hypothesis

My aim in these studies has been to achieve a better understanding of the disorder that underlies the Rett syndrome through longitudinal clinical and neurophysiological investigations. My particular focus of interest has been the earliest signs of the disorder and the relationships between bursts of abnormal respiration, mood, movement and electroencephalographic disturbance. The hypothesis has been that close observation of the behaviour of the individual and the changes, which occur over time, would provide important clues to the underlying process and contribute to tracing its origins and directing its management.

CONTENTS

List of Figures p3
List of Study Datasets p12
Abbreviations p13
Section 1: Literature and background p14
1.1 Definition
1.2 History of the research
1.3 Development of diagnostic criteria
1.4 Differential Diagnosis
1.5 Neuropathology, neurochemistry, physiology
16 Genetic discoveries
1.7 Origin and objectives of the thesis studies
Section 2: Subjects and methods - general p25
2.1: Subjects
2.2: Survey data
2.3: Criteria for Rett syndrome
Section 3: Epidemiology p31
3.1: Rett syndrome in the West of Scotland
3.2: Natural history of Rett syndrome
3.3: Reporting through the British Paediatric Surveillance Unit
3.4: Prevalence study in 1991
Section 4: Clinical Observations p40
4.1: Hands and Mind pre- and post-regression
4.2: Early clinical signs
4.3: Nurse recognition of early deviation
4.4: Abnormal general movements in Rett babies
4.5: Analysis of hand movements
4.6: Discussion of clinical studies
Section 5: Investigations I: p53
5.1: The Quarrier's method
5.2: Hyperventilation in the awake state
5.3: Correlation of e.e.g., respiration and movement
5.4: Functional evidence of brainstem immaturity
5.5: Characterisation of breathing
5.6: Electroencephalographic studies
Section 6: Investigations II: p73
6.1: Corticospinal projections
6.2: Short fourth ray
6.3: Visual function in Rett
6.4: Urinary pterin levels in Rett
Section 7: Genetic progress p85
7.1: Long-read sequence analysis of $M E C P 2$
7.2: Mutation analysis in British and Italian patients
7.3: Mutation analysis and counselling
7.4: Dimensional phenotypic analysis
7.5: Large genomic rearrangements
Section 8: Management in Rett syndrome p96
8.1: Serotonin and breathing dysrhythmia
8.2: Results of surgery for scoliosis
8.3: Role of the physician
Section 9: Prognosis in Rett syndrome pl04
9.1: Analysis of deaths
9.2: Predictive value of early signs
9.3: R270X mutation and mortality
9.4: Mutation positive people who converse
9.5: Mind and brain in Rett disorder
9.6: Outcome in Rett disorder
Section 10: Conclusions p118
Section 11: Bibliography p122
Appendix A: Figures p140
Appendix B: Survey dataset p236
Appendix C: Study datasets p279
Appendix D: Survey Questionnaire p309
Appendix E: Subject information and consent forms p324

LIST OF FIGURES

All tables and diagrams are included in this section as Figures.
The numbering corresponds to the sections of the text.

Section 1: Literature and Background

1.2.1 Clinical features described by Andreas Rett
1.3.1 Diagnostic criteria proposed by Hagberg
1.3.2 Criteria for exclusion proposed by Hagberg
1.3.3 Scheme of main characteristics proposed by Hagberg
1.3.4 Criteria for classic Rett syndrome agreed in Gothenberg 1987
1.3.5 International Criteria for classic Rett syndrome 1988
1.3.6 Criteria circulated in the British Paediatric Surveillance unit study
1.3.7 Modifications to the criteria in 2001
1.3.8 Four clinical stages described by Hagberg 2002
1.3.9 The changing trend in predominant muscle tone abnormality
1.3.10 Definition of 'formes frustes'
1.3.11 Items recommended for inclusion in describing new cases relating to MECP 2 mutations: International Guideline 2001

Section 2: Subjects and Methods - general - also Appendices

2.2.1 British Isles Survey (BIS) Scoring system for Health, Severity and Feeding difficulty

Section 3: Epidemiology

3.1.1 Data on 19 subjects with Rett Syndrome
3.1.2 Occipito-frontal circumferences in 19 cases of Rett syndrome
3.1.3. Diagrammatic representation of developmental progress in Rett Syndrome

Section 4: Clinical Observations

4.1.1 Observations from four pre-regression films. Ages are those at which behaviour was first evident
4.1.2 Pre-regression histories obtained from families in 20 girls
4.2.1 Suggested factors contributing to the Rett regression event
4.2.2 Model to illustrate the hypothetical effect of the central receptive processing defect upon patterns of behaviour in Rett disorder
4.3.1 Health visitors' reviews: numbers of video samples receiving button presses throughout the first year of life.
4.3.2 Health visitors' reviews: Percentage of button presses for video of Rett and normal infants in the three age bands in the first year.
4.3.3 Midwives reviews: Numbers of samples receiving button presses in the first month of life
4.3.4 Categories of comment explaining button presses.
4.3.5 Proportion of health visitors' comments according to different categories
4.3.6 Proportion of midwives comments according to different categories
4.4.1 The absence or presence of various signs within the first 6 months of life in 22 girls with Rett
4.4.2 Number of infants in 2-month epochs to show the first appearance of the various abnormal signs observed in 22 babies with Rett
4.4.3 The quality of generalised movements in 14 girls with Rett during the first 4 months post term
4.4.4 Individual developmental trajectories in eight girls with Rett during the first 4 months of life.
4.5.1 Stereotyped hand movements in a girl with Rett syndrome. Time curve, derived from three-dimensional motion analysis, of the markers on the right wrist (solid line) and left wrist (broken line).
4.5.2 Frequency analysis of motion data showing the dominant frequencies at 1.2 and 2.4 Hz . The vertical scale shows the power at any particular frequency.
4.5.3 Two dimensional video taken from an informal video recording when the subject was 3 years old. The oscillations are well marked indicating that early video screening is informative in Rett syndrome.
4.6.1 How the Rett behaviours fit the 'map' of behaviours in developmental disorder.
4.6.2 Speculation on how early subcortical influences on the developing cortical neurones may predict later functioning of the sensorimotor feedback

Section 5: Investigations I

5.1. Quarrier's system for simultaneous ambulatory video-e.e.e. recording
5.2.1 Method for recording behaviour, respiration and e.e.g.
5.2.2 Clinical details for 18 people with Rett Syndrome in a study of respiration
5.2.3 Selected physiological data for 18 people with Rett Syndrome in a study of respiration
5.2.4 Selected biochemical data on 10 people with Rett Syndrome in a study of respiration
5.2.5 Interrupted printout of an overnight recording showing the transition between waking and sleeping. It can be seen that the CO 2 level falls during hyperventilation.
5.2.6 Section of an awake recording showing episodes of apnoea, each associated with a valsalva manoeuver.
5.2.7 A prolonged apnoeic pause during which the oxygen level fell and a vacant spell was seen without any evidence of cortical epileptic seizure.
5.2.8 A section of day time recording in which a period of normal breathing is followed by intermittent hyperventilation.
5.3.1 Data for 14 people with Rett is a study to correlate movement, with changes in e.e.g and respiration
5.3.2 Encephalograms in Rett syndrome.
5.3.3 Parallel recordings of e.e.g. breathing and behaviour in Rett syndrome.
5.3.4 Comparing the occurrence of non-epileptic e.e.g. paroxysms during normal and dysrhythmic breathing.
5.4.1 The normal breathing pattern in a girl with Rett syndrome and a normal control.
5.4.2 Breathing dysrhythmias seen in Rett syndrome.
5.4.3 Normal breathing in Rett and controls: average rates.
5.4.4 Mean blood pressure (BP) and heart rate (HR) in Rett and normal girl from continuous records.
5.4.5 Mean blood pressures in normal and Rett girls. There was no statistical difference $p>0.1$
5.4.6 Continuous, synchronous recording of cardiac vagal tone (CVT) and mean arterial blood pressure (mean BP) in Rett and normal girls during normal breathing.
5.4.7 Average resting cardiac vagal tone (CVT) in three groups of children.
5.4.8 The effects of hyperventilation on sympathetic-vagal balance in Rett and normal girls.
5.4.9 The effects of breath holding on sympathetic-vagal balance in Rett and normal girls.
5.4.10 Comparing the reaction of mean arterial blood pressure (BP) and cardiac vagal tone (CVT) to hyperventilation in Rett and in a normal volunteer.
5.5.1 Respiratory and autonomic results according to age group.
5.5.2 Apneustic breathing style
5.5.3 Forceful breathing style
5.5.4 Inadequate breathing style
5.5.5 Valsalva breathing style
5.5.6 Less common breathing styles
5.5.7 Charts showing the percentage of awake time spent in each type of abnormal respiratory rhythm at each age group.
5.5.8 Cardiac vagal tone and cardiac sensitivity to baroreflex according to age of the subject.
5.5.9 Effects of hyperventilation on sympatho-vagal balance in a normal person and one with Rett syndrome
5.5.10. Effects of breath holding on sympatho-vagal balance in a normal person and one with Rett syndrome
5.5.11. Brain stem shutdown in a girl of 10 years
5.5.12. Brain stem storm (abnormal activation of the brain stem
5.5.13. Brain stem 'epilepsy' (Julu et al 2001)
5.6.1 Relating abnormalities in e.e.g records to reported clinical epilepsy, stage in the development of Rett syndrome and the waking state.
5.6.2 E.e.g from a girl of 16 years with classic Rett Syndrome showing persistent monorhythmic theta.
5.6.3 E.e.g. from a girl aged 12 years showing widespread repetitive spike discharges.
5.6.4 Diagram to illustrate the coexistence of epilepsy, non-epileptic vacant spells and respiratory dysrhythmia.
5.6.5 A possible sequence of events in the generation of the Rett Syndrome
5.6.6 Mechanisms which may contribute to the vacant spells in Rett Syndrome

Section 6: Investigations II

6.1.1 Neurophysiological observations on eight girls with Rett Syndrome
6.1.2 Motor action potentials following electromagnetic stimulation of the cervical spine and motor cortex in Rett and normal subjects
6.1.3 Onset latencies of motor action potentials following electromagnetic stimulation of the motor cortex in relation to the ages of subjects
6.1.4 Onset latencies of motor action potentials in relation to conduction distance (Eyre et al 1990)
6.1.5 Durations of motor action potentials following electromagnetic stimulation of the motor cortex in Rett and normal subjects related to age
6.1.6 Recordings of the phasic stretch reflex in normal and Rett subjects.
6.1.7 Onset latencies of phasic stretch reflexes in biceps brachii in relation to ages in Rett and normal subjects
6.1.8 Onset latencies of phasic stretch reflexes in biceps brachii in relation to conduction distance in Rett and normal subjects
6.1.9 Durations of phasic stretch reflexes in biceps brachii in relation to age in Rett and normal subjects
6.2.1 Photograph of a the foot of an adult with Rett syndrome showing the shortened 4th ray
6.2.2 Radiograph of the foot of an adult with Rett syndrome showing the shortened 4th ray
6.2.3 Diagram to indicate points at which Rett disorder, Downs syndrome and other prenatal conditions might interfere with the normal development of both brain and limbs
6.3.1 The distribution of astigmatic error and ametropia in subjects with Rett syndrome.
6.3.2 Binocular VEP to 60^{\prime} 'check pattern in normal and Rett subjects
6.3.3 Tables comparing latencies and amplitudes of negative and positive waveform components of VEPs in response to 60' check patterns in people with Rett syndrome and controls.
6.4.1 Biosynthesis and function of biopterin and neopterin
6.4.2 Urinary neopterin levels in Rett subjects, their sisters and controls.
6.4.3 Urinary biopterin levels in Rett subjects, their sisters and controls.

Section 7: Genetic progress

7.1.1 Map of the MECP2 mutations in people with Rett disorder
7.2.1 Diagram of the exon - intron structure of MECP2 and position of mutations
7.2.2 The frequency of different mutations in a group of British and Italian patients with Rett disorder
7.3.1 A family with two sisters with R133C mutations in MECP2 and Rett disorder. Their mother has the same mutation shown in peripheral blood leucocytes with completely skewed X inactivation and normal intelligence
7.4.1 Proportions of cases from BIS (Glasgow) and other sources in whom mutations were identified
7.4.2a) Age of onset of regression and of reported seizures in cases with and without identified mutations; b) Unusual clinical features for cases with and without identified mutations
7.4.3 Analysis of clinical features according to the type of mutation
7.4.4 Necessary and supportive criteria associated with commonly occurring mutations
7.4.5 BIS (BIRS) severity score and RSBQ hand factor scores for commonly occurring individual mutations
7.4.6 Age of onset of regression and age at onset of reported seizures related to individual mutations

Section 8: Management in Rett Syndrome

8.1 Analysis of respiratory rhythms in TK before and two months after commencing treatment with buspirone.
8.2.1 Scoliosis by age group and severity
8.2.3 Change in function after scoliosis surgery in 50 people with classic Rett
8.3.3 Comparing possible early signs in autistic spectrum disorder,

Angelman Syndrome and Rett syndrome.

Section 9: Prognosis in Rett Syndrome

9.1.1 Reported deaths among 31 people with classic Rett syndrome
9.1.2 Autopsy reports in nine deaths of people with classic Rett syndrome.
9.2.1 Kaplan Meier curves for people with Classic Rett grouped by preregression severity.
9.2.2 Kaplan Meier curves for people with Classic Rett grouped by early post-regression severity.
9.2.3 Deaths related to the severity before the final episode.
9.2.4 The change in severity scores with age in individuals with classic and non classic Rett.
9.2.5 Box plots of severity scores at age 10-14 years a) and at 15-19 years
b) in relation to pre-regression severity scores in people with classic Rett.
9.2.6 Most frequently occurring mutations in the study population related to most recent severity scores.
9.3.1.Survival with R270X mutation compared with all other mutations.
9.3.2.The distribution of 8 common and other collected mutations on MECP2 by deceased status in Australian and UK cases of Rett disorder.
9.4.1. Mutation positive people who converse: comparison of cases and controls.
9.4.2. Mutation positive people who converse: Molecular Genetic Results: MECP2 gene analysis and X-chromosome inactivation ratios for the study group.
9.4.3. Mutation positive people who converse : drawings and writing by a) case 8, b) case 10 .
9.4.4. Reported skills of mutation positive people who can converse
9.5.1 Proportions of those acquiring speech and retaining clear words in 265 cases (classic and atypical) in BIS
9.5.2 Comparison of the characteristics of adults with and without speech from BIS
9.6.1 Occipito-frontal circumference measurements for people with classic Rett Syndrome at birth and after 18 months
9.6.2 Longer term changes in classic Rett related to the predominant early abnormality of muscle tone
9.6.3 Changing skills with age in a cohort of adults with classic Rett syndrome
9.6.4 Comparing behaviour in 10 people in adolescence and adulthood
9.6.5 Good and poor health circles in Rett syndrome.

List of Datasets for specific studies

Numbers correspond to the sections of text
3.1: West of Scotland study
3.2: Study of natural history of Rett Syndrome
4.1: Hands and Mind in Rett Syndrome
4.3: Nurse recognition of deviation
4.4: Abnormal general movements in Rett Syndrome
5.2 -3: Hyperventilation in the awake state and correlation of events
5.4: Functional evidence of brain stem immaturity
5.5: Characterisation of breathing
5.6: Critical examination of serial e.e.g, with video monitoring
6.1: Neurophysiological observations on the corticospinal projections to the upper limb
6.2: Short 4th ray in Rett Syndrome
6.3: Visual function in Rett Syndrome
6.4; Urinary pterins in Rett Syndrome
7.1: Long read sequence analysis of MECP2
7.2: Mutation analysis in British \& Italian population
7.4: Dimensional phenotypic analysis
8.2: Results of surgery for Scoliosis
$9.1 \& 2$ Analysis of deaths in BIS
9.4: People with mutation positive RS who converse

Abbreviations

BDNGF brain derived neuronal growth factor
BIS (or BIRS) British Isles Survey (for Rett)
CSGE conformation sensitive gel electrophoresis
e.e.g. electro encephalogram / graph

EMS (or TMS) (transcranial) electromagnetic stimulation

HSQ Health survey questionnaire (used in BIS)
MAP2 microtubule associated protein 2
MBD methyl cytosine binding domain
NMDA non glutamate receptor
MECP2 gene for methyl CpG binding protein
MeCP2 methyl CpG binding protein
OFC occipito-frontal circumference
RSBQ Rett syndrome behavioural questionnaire
RS Rett syndrome
SSCP single stranded conformation polymorphism
TRD transcription repression domain
UBE3 gene associated with mutation in Angelman syndrome
VEP visual evoked potential
XCI X-inactivation

Section 1

Literature and background

1.1 Definition

The Rett disorder is a developmental, X-linked dominant condition resulting from mutation in the gene MECP2 Xq28 (Amir et al 1999), usually manifesting as the Rett Syndrome (RTT). Prevalence at age 14 years in the UK is estimated at not less than 1 in 10,000 females, with both higher and lower estimates elsewhere (Asthana et al 1990, Kerr 1991, Kerr 1992, Hagberg \& Hagberg 1997). There are far fewer males than females. The disorder presents with subtle signs of developmental deviation from birth (Burford et al 2003, Einspieler et al 2005) and developmental regression in infancy or early childhood when fine hand skills and communication skills decrease and stereotyped movements become evident. Severe or profound intellectual impairment is usual and there is little or no speech, respiratory rhythm is disturbed, feeding presents difficulties, epilepsy is common and there is a tendency to develop scoliosis and contracture of limb joints. In spite of their serious problems these are typically attractive people, enjoying company, not frankly dysmorphic and may live long and in good health although survival varies according the severity of the condition (Kerr 2002).

1.2 History of the research

The first full description of the Rett syndrome was published by Andreas Rett (Rett 1966, 1977) who noticed similar stereotyped hand movements in two children seated on the laps of parents waiting at his epilepsy clinic and with the help of his secretary gathered a number of cases he had seen previously. Rett recorded the clinical characteristics of the condition (figure 1.2) Having investigated his patients using an early and unrefined protocol for the estimation
of ammonia in the blood he became convinced that the disorder was due to an inborn error of ammonia metabolism, a possibility he later dismissed.

Without awareness of Rett's first German language description, Ishikawa and Japanese colleagues presented three cases (Ishikawa et al 1978), remarking upon their stereotyped hand movements, irregular breathing and apparent lack of progression over time. Also without prior knowledge of Rett's description, Hagberg began to notice such cases in Sweden. From their apparent early normality, which was followed by rapid deterioration, he thought that this might be due to a progressive metabolic disorder and with European colleagues, investigated a cohort of cases (Hagberg et al 1983). Research into the disorder was helped by collaboration between clinicians and laboratory scientists from Japan, Austria, Sweden, the UK, the USA and other countries who met in a series of international conferences beginning in 1984 at the invitation of Andreas Rett. These initiatives were encouraged by parents, notably Mrs Kathy Hunter in the USA, Yvonne Milne in England and Isobel Allan in Scotland who founded Rett Syndrome Associations. The conferences provided valuable contact between clinical and laboratory scientists, families and people with Rett, leading to research which was well focussed and sufficiently funded to provide knowledge of the clinical, pathological, physiological and genetic basis of the disorder and so to develop rational management.

1.3 Development of Diagnostic Criteria

While the aetiology and pathophysiology of the condition were still largely unknown it became important to define the terms used to describe the condition in order to distinguish it from other conditions leading to severe disabilities and to permit the scientific study of a homogeneous cohort. It was agreed to reserve the term 'classic Rett Syndrome' to describe the situation when all the cardinal signs were present without any other confounding factors and to use the term 'atypical' or 'non classic' Rett syndrome for cases with similarities but some differences.

It has required the growing experience from large national surveys and successive publications of criteria for the nature of these cardinal signs to be fully appreciated. Early proposals for criteria included a normal neonatal and early infancy period, autism, microcephaly and cerebral atrophy (Hagberg et al 1983). However in his 1986 review Opitz stated 'I remain unconvinced that any Rett syndrome child has truly or completely normal development at any time in life' and 'no evidence for a true degenerative disorder has ever been demonstrated in the Rett syndrome' (Opitz 1986). Other researchers have found evidence of subtle deviation from birth and the lack of evidence of progressive degeneration. (Kerr 1987, 1995, Naidu 1997, Leonard \& Bower 1998, Burford \& Kerr 2003, Einspieler et al 2005). That the disorder is not degenerative has now been clearly demonstrated pathologically as well as clinically (Armstrong 2000, 2002). Mutation testing and development of an animal model have made it possible to confirm the wide range of severity within the Rett disorder and to confirm that its impact is already felt before birth affecting somatic and brain growth (Huppke et al 2003, Armstrong et al 2003). The successive sets of criteria are shown in the appendix A (Figures 1.3.1-7). The criteria adopted in this thesis are those approved by the Diagnostic Criteria Working Group (Figure 1.3.5) (Trevarthen et al 1988) with the modifications published in the International guidelines (Kerr et al 2001) (Figure 1.3.7).

The evolution of the clinical picture throughout life was described by Hagberg and Witt Engerstrom as occurring in stages (Hagberg \& Witt Engerstrom 1986), stage I being asymptomatic, stage II during regression, stage III a 'pseudo stationary' period and stage IV a later degenerative stage (Figure 1.3.8). Adopting a different approach, Kerr and Stephenson described the stages as preregression, regression and post-regression, accepting no clearly normal early period and no inevitable later deterioration (Figure 1.3.9). The predominant muscle tone was used to classify presentation according to 'subtype', hypotonic, dystonic, severely hypertonic or mildly hypertonic (Kerr \& Stephenson 1985, 1986). There was tendency for early hypotonia to lead to later hypertonia.

A complex issue was raised by situations when Rett seemes a likely diagnosis in the absence of some of the cardinal signs or the presence of unexpected features, particularly when no other diagnosis could be confirmed. Hagberg described such cases as 'variants' of Rett syndrome (Hagberg \& Witt-Engerstrom 1990b, Hagberg \& Skjeldal 1994, Hagberg \& Gillberg 1998), including male (Philippart 1990), congenital (Nomura et al 1985), early seizure (Hanefeld 1985), formes frustes Hagberg \& Rasmussen 1986 (see Figure 1.3.10) and preserved speech variants (Zappella 1992). Other researchers have adopted the terms 'atypical' or 'non-classic' Rett' recording details of any differences from the classic description. The presumption has been that some non-classic cases do have the Rett disorder and that others have distinct and different disorders which are still to be recognised and which affect closely related neural networks.

1.4 Differential Diagnosis

At the earliest period when the child with Rett begins to show failure to progress in development the condition must be distinguished from other non-dysmorphic developmental disorders. At this stage deviation from the normal spontaneous movements of babies may alert to the diagnosis and justify mutation testing (Burford \& Kerr 2003, Einspieler et al 2005).

During the regression period there may be confusion with a number of metabolic conditions including Batten's disease (Hagberg \& Witt-Engerstrom 1990) however the continued deterioration of metabolic disorders contrasts with the stabilisation that is seen in the child with Rett, usually within a few months. From the early descriptions of the condition Rett syndrome has been compared to autism and many cases have been given a tentative diagnosis of autism before being correctly diagnosed. There are undoubted similarities. Both are developmental and pervasive disorders. Both may present in late infancy or early childhood with a crisis marked by regression (Kerr 2003a). Both display multiple stereotypies and are prone to unexplained agitation.

There are major clinical differences too. The person with Rett is characteristically profoundly physically and intellectually disabled whereas most autistic people are not. Epilepsy is common in Rett and much less so in autism. Above all the person with Rett relates well to people, demonstrating a capacity for relationships that seems to be completely lacking in autism. Some would still include Rett in the 'autistic spectrum' whereas most clinicians working in Rett prefer to explore the similarities and differences between these clinically distinct states. Although both clearly affect the finer processes of thought and understanding and there are likely to be some underlying mechanisms involved in both (Shibayama et al 2004). Significant neuropathological differences have also been demonstrated (Casanova et al 2003, Samaco et al 2004).

Unlike autism and like Rett, Angelmann's syndrome is associated with a specific genetic configuration. As in Rett the child deviates subtly from normal and may develop stereotypies but the irregular breathing seen in Rett has not been described. A developmental regression is unusual. The degree of intellectual disability is usually less although as in Rett, speech is often absent. As in Rett the child is sociable. Reduced expression of UBE3 and GABRB3 has been reported to be due to $M E C P 2$ deficiency suggesting a basis for some of the similarities between Angelmann and Rett syndromes and an association with epileptic disorders. (Samaco et al 2005).

1.5 Neuropathology, Biochemistry, physiology of the Rett brain

Rett and his colleagues were impressed by the relatively normal appearance of the brain, which although small appeared to be well formed, but it was noticed that the basal ganglia were pale (Rett 1966, 1977, Jellinger \& Seitelberger 1986). Baumann indicated that the neurones were smaller and more closely packed than normal (Baumann et al 1995). Armstrong used silver staining to study the dendritic development in cortical neurones and showed a lack of normal branching, particularly in frontal, inferior temporal and parietal areas (Armstrong 1992,1995, 1998, 2000, 2002). Using immuno-fluorescent
techniques she and her colleagues also demonstrated hugely increased density of receptors for serotonin in the brain stem (Armstrong \& Kinney 2001) and reduced substance P (Deguchi et al 2000). Still more recently this group has shown severe deficiency of serotonin transporter protein in the dorsal motor nucleus of the vagus (Paterson et al 2005). Blue and Johnston found increases in NMDA receptors for glutamate in the cortex during early childhood with reduction below normal by 10 years (Johnston et al 1995). Wenk and colleagues found evidence of cholinergic disturbance in the basal forebrain (Wenk et al 1999) Kaufmann found specific lack of Microtubule Associated Protein-2 (MAP2), a substance which is normally present in the base plate before the migration of neurones to the cortex and is important for the maintenance of dendritic structure (Kaufmann et al 1995, 1997, 2001). Using confocal microscopy Belichenko demonstrated partial development of the speech area in Rett (Belichenko et al 1997). Casanova distinguished the appearance of the brain from that in autism in a study of the mini-columns that surround the cortical neurones (2003). Evidence from the direct study of the brain thus seems to indicate a developmental disorder which without preventing neuronal emplacement subtly interferes with brain development with particular impact on neuronal connectivity and the synapse (Johnston 2005).

Physiological investigation revealed early disturbance of the sleep rhythms suggestive of prenatal monoamine disturbance (Nomura et al 1984, Nomura \& Segawa 1990a \& 1990b), relatively normal conduction in the long motor and sensory tracts with indications of central processing difficulties (Eyre et al 1990, Hagne et al 1989) and disturbed regulation of respiratory and cardiac rhythms (Sekul et al 1994, Johnsrude et al 1995, Julu et al 1997, Guideri et al 1999). Electroencephalographic (e.e.g.) records show normal or immature patterns before regression and by the end of regression bursts of slow waves with or without spikes are commonly present, exacerbated in sleep (Glaze et al 1987, Cooper et al 1998)

1.6 Genetic discoveries

The existence of monozygotic twins with the disorder suggested a genetic origin and a huge preponderance of females indicated the X chromosome. An affected young mother with male and female offspring and another family of three cases narrowed the search to Xq28 (Schanen et al 1997, Xiang et al 1998, Sirianni et al 1998) and in 1999 Amir and colleagues, in the laboratory of Huda Zoghbi located the affected gene MECP2 (Amir et al 1999).

MECP2 had already been recognised as an important 'housekeeping' gene (Nan et al 1993, 1997, 1998). It consists of 3 known exons, of which exon 3 is the largest, spanning 1084bp and encoding a 486 amino acid protein (D'Esposito et al 1996). MECP2 is widely expressed and alternative polyadenylation in the 3'UTR results in a highly expressed 10.1 kb transcript in the foetal brain (D'Esposito et al 1996, Coy et al 1999). The protein MeCP2 contains two known functional domains, an 85 amino acid methyl-cytosine-binding domain (MBD) and a 104 amino acid transcriptional repression domain (TRD). The MBD binds to 5 methyl cytosine residues in symmetrically positioned CpG dinucleotides located in gene promotor regions that are subject to transcriptional silencing after DNA methylation (Lewis et al 1992, Nan et al 1993). The TRD interacts with histone deacetylase and SIN3A, a transcriptional co-repressor. Interaction between this transcription repressor complex and chromatin-bound MeCP2 causes deacetylation of core histones resulting in transcriptional repression (Nan et al 1998, Jones et al 1998)

Thus through transcriptional repression and possibly in other ways, MECP2 plays a role in regulating the expression of other genes. It transcribes into at least two forms of the MeCP2 protein (Mnatzakanian et al 2004, Samaco et al 2004) and these are dynamically controlled in response to local tissue requirements (Matarazzo \& Ronnett 2004, Mullaney et al 2004). Interactions with other genes and substances important for the growth and maintenance of the body are still being explored. These include UBE3, GABRA3 (Samaco et al 2005), BDNF
(Riikonen 2001, 2003), DLX5 (Horike et al 2005), also FKBP5 and SGK already known to be stress-responsive genes involved in glucocorticoid metabolism (Nuber et al 2005). MECP2 mutation affects an imprinted gene cluster on Chromosome 6, including $D L X 5$ and $D L X 6$, which regulates the production of enzymes synthesizing gamma-aminobutyric acid (GABA). Although the MECP2 gene is active throughout the body it is in the brain that its role appears to be most important, affecting the neurones as they become mature (Armstrong et al 2003) and specifically active at the synapse (Johnstone et al 1995, Mullaney et al 2004). That it is important in prenatal development is clear from its expression in the Cajal-Retzius cells and other subcortical and brain stem elements before the cortical neurones are emplaced (Armstrong et al 2003).

Genetic research has made rapid recent progress due to the development in Scotland (Guy et al 2001) and the USA (Akbarian et al 2001) of mice with MECP2 mutations. These Rett models have already proved remarkably useful because the gene is highly conserved (Hendrich 2000) and the symptomatology in the mouse to some extent parallels that in the human.

Over 300 sites of mutations have been located on the MECP2 gene leading to clearly recognisable Rett syndrome. There is general agreement that early truncating mutations most effectively prevent production of MeCP2 protein and so lead to more severe disease than missense or late truncating mutations that allow partial production (Cheadle et al 2000). However the clinical profile of the disease is remarkably constant within a wide range of severities (Kerr \& Witt Engerstrom 2001, Charman et al 2005).

The presence of two X chromosomes in all female cells and the random inactivation of one of these (XCI), protects the woman from the effects of a mutation in one of her X chromosomes. When one X chromosome is used more than the other (skewed X inactivation) the disease is more or less severe according to which X chromosome is used most. At present there is still
uncertainty as to how common such skewing may be in the Rett population. One study has found significant skewing in 43% of cases with truncating mutations or mutations affecting the MBD (Weaving et al 2003). Other investigators found no significant skewing in the brains of 10 cases (Shabazian et al 2002, Gill et al 2003). In a study with mouse models of Rett disorder, Young and Zoghbi found that, at the single cell level, XCI favoured the wild type (healthy) allele because these cells survived as those with the mutation did not. No mice had non-random XCI favouring the mutant allele. This study seems to indicate the importance of MeCP2 for neuronal viability (Young and Zoghbi 2004).

A mutation in MECP2 seems to arise most frequently during cell divisions of the sperm and since the paternal X determines female offspring it is a daughter who is affected (Miltenberger \& Laccone 2003). Such cases appear sporadic, as they arise from a fresh mutation and usually fail to be transmitted to offspring of the affected female due to the severity of her condition (Shabazian \& Zoghbi 2001). However the condition is a fully penetrant X-linked dominant and the uncommon situation has been recorded in which the female receiving the mutation is favourable skewed to such an extent that she is unaware of the condition and bears children, in which case there is a 50% risk to both male and female offspring (Schanen \& Franke 1989, Kerr\& Belichenko et al 2001). Germ line mosaicism has also been described in the female, leading to more than one offspring being affected - male or female (Gill et al 2003).

Few males have been found with the condition, presumably for the reasons explained above. Of those recorded, some have been very severely affected, presumable because their only X chromosome carries the mutation. Interestingly the clinical profile in such cases appears to be the same as in more classic cases (Kerr et al 2003). In Klinefelter's syndrome (Schwartzmann et all 1999), with one or more additional X chromosomes and in somatic mosaicism (Clayton Smith et al 2000) when only one portion of the cells contain the
mutated X, the male may present the same profile as the female with classic Rett disorder.

A start has been made in explaining some previously unrecognised disorders that share clinical features in common with Rett and may have been reported as 'aytpical Rett'. Two mutations have already been identified, remote from $M E C P 2$, responsible for such conditions. The gene STK9 (CDKL5) (Kalscheuer et al 2003) is associated with some 'atypical' cases dominated by severe early epilepsy (Weaving et al 2004). Similar neurochemical disturbance which may underlie similarities between Rett and other developmental disorders is being explored. Hitchins et al (2004) found no MECP2 mutations in 24 sporadic cases of $U B E 3$ negative Angelman syndrome. However in a study comparing Prader Willi, Angelman, autism and Rett with age matched controls, Samaco et al (Samaco et al 2004) reported that whereas different transcriptional and post transcriptional mechanisms are present in these disorders all are associated with altered levels of the MeCP2 protein.

At present, with high quality research proceeding throughout the world, the development of effective treatment seems within reach at the genetic level and at the pharmacological level. Strategies being now being discussed include some for alteration of the pattern of X inactivation, insertion of $M E C P 2$ gene or MeCP 2 protein and the replacement or reduction of key neuroactive substances.

1.7 The origin and objectives of the thesis studies

The studies described here commenced late in 1982 when in response to my offer to carry out research in his department Professor John Stephenson invited me to investigate the Rett syndrome at the Fraser of Allander Unit in Glasgow (Kerr \& Stephenson 1985). At that time only the publication by Rett was available but Dr Stephenson had just attended a lecture in Oxford at which Professor Bengt Hagberg had presented cases of the disease, describing the signs and demonstrating the characteristic hand movements. From Dr Stephenson's
diagnostic register of the referrals to the unit, we were able together to identify 19 cases presenting with developmental difficulties compatible with a diagnosis of Rett Syndrome and to establish an initial estimate of prevalence. At this time Rett syndrome was commonly regarded as a rare and enigmatic disorder that began with the abrupt regression and continued on a relentless downward course.

Concern to examine affected people in order to understand the disorder and the concern of families for their children's problems to be understood, led to my collaboration with the newly founded support associations and I was offered a unique opportunity to meet and examine a very large number of people with Rett at all ages, over a long period of time. From the resulting cohort have developed the many research studies reviewed in this thesis. I have given most space to those to which I have contributed most.

From the first cases and their families it was clear that the disorder was already present before the regressive episode and that there was little if any change in the level of intellectual disability after the regression period (Kerr and Stephenson 1985, 1986, Kerr et al 1987). I wished to investigate the early period in which the disease became manifest. I was impressed also by periodic disturbances in behaviour, hand stereotypies, hyperventilation, breath holding, agitation and periods of interrupted awareness and wished to discover how these related to bursts of slow wave seen on the electroencephalogram (e.e.g.). These research questions remained central to my investigations. Facilities could not be provided for extensive neurophysiological research in the Children's hospital and I was invited by Dr John Laidlaw, head of the Quarrier's Homes Epilepsy Centre and Dr James Minto its director to base the work there on the western side of Glasgow, collaborating with Mrs Patricia Amos, a highly experienced e.e.g. technician (1986-1995). In 1995 I was invited by Professor Colin Espie to join the University of Glasgow Department of Psychological Medicine (1995-2005).

Section 2

Subjects and methods - general

Introduction

The research subjects in these studies were selected from the cohort, which developed from my investigation of Rett Syndrome, beginning in November 1982. This cohort became formalised as the British Isles Survey (BIS) for Rett Syndrome in 1990-1, when the British Paediatric Surveillance Unit agreed to circulate my description to over 800 paediatricians in the UK. The collection and recording of data and the conduct of the survey has been solely by myself. The description in this section applies to the subjects in the BIS cohort and the methods that I have used in recording their health data. The subjects and methods for the individual research projects that follow are described in the later sections. Some very large genetic studies presented in section 7 have included cases from other countries and cohorts.

Ethical approval for BIS has been provided by the appropriate ethical committees at each stage in its development, by the medical board at Quarrier's Epilepsy Centre, the ethical committee of the Glasgow Royal Hospital for Sick Children and most recently the Multi-centre Research Ethics Committee for Scotland (MREC) ref MREC/03/0/42. The existence of notified cases has always been recorded. Detailed health data is held when the family/carer has given informed consent for that. Each research project arising from BIS has obtained separate, appropriate ethical approval. Families and carers have provided fully informed consent for all projects. Very few people with Rett are capable of giving informed consent due to their profound intellectual disability and these few have also consented. Appendix E shows typical information sheets and consent forms.

2.1 Subjects

The subjects of these studies $(\mathrm{n}=1236)$ have been reported or referred to me since 1982 as suffering or probably suffering from the Rett Syndrome. A note on the terminology that I have adopted is at the end of this section. The dataset in Appendix B indicates for all the reported cases their status with regard to the criteria for classic Rett syndrome, dates of birth and death and mutation test results as far as is known to me. A note on the present state of mutation testing is at the end of this section. Separate lists in Appendix C indicate mutation status for people included in each individual research study with further data relevant to that study. As a paediatrician, my initial contact was with children, however my long association with the disorder and the caring Associations, the concern of families to remain in touch with research developments and requests for advice on management by colleagues has led to many adults being reported and referred to me. Awareness in the medical profession has been slower to develop in adult care than in paediatric care and this is reflected in the relatively small number of adults in BIS. If the suspected diagnosis of Rett disorder has not been confirmed, or if another diagnosis has been made, the case is not removed from the database. This is in order to facilitate comparison with other conditions that have some features in common with Rett syndrome. Many families have found it supportive to keep this contact. Therefore about 6% of people in the survey are considered not to have Rett disorder although they have presented with some of the same signs and been reported as possibly Rett. In the database these are designated 'not Rett' with a record of any other condition that has been diagnosed. Status 'unknown' in the database indicates that I have not had an opportunity to examine the individual and have insufficient information to form an opinion on clinical status.

2.2 Survey methods

Data collection
Health data was gathered from family histories, reports from colleagues, direct examinations by myself of more than 800 people, many on several occasions,
and health questionnaires completed by families (750 people, many completing several over some years), providing valuable retrospective and prospective health data. A copy of the BIS health questionnaire is shown at Appendix D. The questions were chosen to provide the most robust and objective information for use in research studies and in preparing advice for families and professional colleagues. Every family completing a health questionnaire is offered a copy as a home held record, to be copied and shared at the family's discretion.

The Rett Syndrome Association UK and the Rett Syndrome Association Scotland invited me to offer consultations at family referral clinics organised by them in different parts of the country, extending my contact with families and professional colleagues, providing a wealth of clinical experience and data and ensuring that what is learned from research is shared with families and professional colleagues. No charge was made for my advice. Although families came for consultation at their own request they were advised to discuss their attendance with their medical advisers who frequently sent accompanying information. Treatment was never prescribed or undertaken by me at such clinics. Consultations lasted 30 minutes and as many as 40 families have been seen by me during these 2-3 day events. Following each consultation my summary letter was sent to the physician and other professionals as requested by the family, with a copy to the family.

With the agreement of families I recorded video during consultations, for over 400 people, many on several occasions. This has provided valuable additional clinical data and teaching material for other families and professionals.
In response to my concern to understand the earliest signs of the Rett disorder, 78 families have donated copies of cine- or video records which they made during the early days and months of life of the child with Rett. These have provided invaluable insight and have been used in the research described in section 3. Parts of the video record are also included in a teaching DVD for
physicians, 'Understanding the Rett Disorder' completed in 2005, a copy of which has been placed in the back pocket of this thesis.

Database organisation

A list of the data fields designed to store health information is provided and explained in Appendix D. In the data fields which record locomotor ability, hand use, use of speech, understanding of speech, feeding difficulty, scoliosis and epilepsy, data is recorded separately, as a single digit, in every 5 year period throughout life. The first such period refers to the period before regression in cases in whom regression has occurred and to the first 5 years of life in cases where no regression has occurred. This system provides a useful and robust longitudinal record that is in part retrospective and in part prospective.

A simple score reflects the severity of the disease and another reflects the health of the individual. Charting severity and health separately in this way allows some distinction to be made between aspects of the disease that are inherent (severity) and aspects, which have much to do with circumstances and may be more amenable to health management.

The Severity Score is calculated from the items: - predominant abnormality in muscle tone, feeding difficulty, ability to walk without support, presence of epilepsy and perceived severity of the scoliosis. The Health Score is calculated for the 12 months preceding the report or assessment, from the items: - weight, frequency of episodes of epilepsy, chest infections or aspirations, episodes of other illnesses and the parent's opinion of the individual's state of health. The scoring system is shown in figure 2.2.1.Appendix \mathbf{A} When a death has occurred, in addition to available reports on the events surrounding the event and the recorded cause of death, the type of death is classified as relating to severe epilepsy (S), debility/ frailty (F), general causes (G) or sudden and unexpected (U).

2.3 Notes on BIS criteria, terminology and mutation testing status:

Note on Criteria:
BIS uses the criteria for classic Rett syndrome as agreed by international consensus in 1987 (Diagnostic Criteria working group 1988) and modified in the recent International Guidelines (Kerr et al 2001) (figures 1.3.5 \& 7) as discussed in section 1.3 (Development of diagnostic criteria).

Note on terminology
In BIS and this thesis the term Rett Syndrome (RS) indicates the observed clinical profile usually associated with a mutation in MECP2.

The term Classic Rett syndrome (CR) indicates the presence of all the main clinical features and the absence of any other features of possible aetiological significance. The term 'incomplete Classic Rett' (inc CR) indicates that the case appears classic but not all the evidence is available, due either to the young age of the individual or to the lack of early developmental history.

The term 'Rett syndrome non classic' ('R non C', 'atypical Rett syndrome') indicates the presence of some but not all of the 'Rett' features, sometimes with elements not usually associated with Rett syndrome yet within a context that is suggestive of Rett disorder. The term 'Rett disorder' is used for the situation when the mutation and the clinical condition are present and the process is being discussed. The recently introduced term 'RTT' does not allow for these distinctions and is currently in use to describe both the disorder and the syndrome. This term is not used in this thesis for that reason.

Note on mutation testing status:
Mutation testing became possible in 1999 and is not universally available. In some areas it is still regarded as a research procedure. Although more than 300 mutation sites have been found in the MECP2 gene, the entire gene has not yet been explored and previously unidentified pathological mutations are still being found. We presume that the Rett syndrome may follow failure to express MeCP2
protein for reasons other than a $M E C P 2$ mutation, but so far the expression of MeCP 2 is not routinely measured. For these reasons, although identification of a mutation on MECP2 is firm evidence of the presence of the disorder, failure to identify a mutation is not good evidence of its absence.

Many people involved in these studies have not had mutation testing and some who have been investigated have not had a mutation identified. Since close to 90% of carefully examined cases with classic Rett syndrome have been shown to have a mutation, clinical status is still considered to be the most reliable guide to the presence of the disorder. Among people with 'atypical' Rett (Rett non classic) up to 40% have been found to have a $M E C P 2$ mutation. These mutation positive 'atypical' cases include many mild cases that are not 'classic', having experienced no regression event, and having better brain growth and better skills than are expected in the classic syndrome. Others are so severe as to be judged 'non classic' due to skills never having been developed so that the abnormality was evident to all at birth and there has been no obvious regression. Weakness may be so severe that stereotypies cannot be sustained. The mutation status of those people who are included in this account remains unknown for many. The dataset in Appendix \mathbf{C} shows which individuals have been included in each study as far as possible and the extent and results of mutation testing when that has been reported.

Section 3

Epidemiology

Introduction

As with many other newly discovered disorders the Rett syndrome was at first presumed to be rare but has proved relatively common among females with severe and profound intellectual disabilities. Estimates of prevalence have varied depending on how and where they have been gathered (Kerr \& Stephenson 1985, Asthana 1990, Hagberg \& Hagberg 1997) with general agreement at present, for the childhood figure, of not less than 1 in 10,000 females, male occurrences being quite rare. The first cohort of cases brought for my advice on diagnosis and management provided the opportunity to provide the first estimate of the prevalence and to form a concept of the nature of the condition.

3.1 West of Scotland Study:

This first estimate of prevalence was made at the invitation of and in collaboration with Dr John Stephenson at the Glasgow Royal Hospital for Sick Children. The work began in November 1982, was presented locally, in January 1985 at the annual British Paediatric Neurology Association conference and then by invitation at the European Congress of Child Neurology in Siena in April 1985 (Kerr \& Stephenson 1985).

The aim of the study was to provide for the available group of patients, a detailed history and examination with video recording and to draw conclusions as to the nature and prevalence of the condition in the West of Scotland, the area served by the hospital. I was the chief investigator and provided the reports.

For 5400 referrals to the Fraser of Allander Assessment centre over 12 years, a record had been kept of diagnostic categories that included those in whom a diagnosis had not been possible. From these records we identified 42 males and
females who had been seen for an undiagnosed condition with apparent onset around 7-24 months.

Among these cases, 19 females, age range 3-15 years, were identified as fully compatible with the written descriptions by Rett (Rett 1966) and a demonstration given by Professor Bengt Hagberg during a British Paediatric Neurology Association conference in Oxford, earlier in the same year. These people were invited for a 36 -hour admission and investigation. In Andreas Rett's early investigation blood ammonia had been found to be raised but Bengt Hagberg and his colleagues had found no biochemical abnormality. The aim of our initial investigation was to confirm as far as possible, without unduly invasive investigation, that no other abnormality was present which might explain the severe neurological deficits - including structural, vascular, neoplastic, metabolic, toxic, traumatic and genetic disease. A full history was obtained from the families and the following investigations carried out:- examinations of blood and urine, estimations of blood gases, concentrations of urea and electrolytes, including copper and zinc, fasting ammonia and activities of creatine phosphokinase, aldolase and leucocyte enzymes, high resolution prometaphase banding of X chromosomes. Urine tests were performed to estimate excretion of amino acids, glycosaminoglycans, oligosaccharides, organic acids, hydroxymethylmandelic acid and 3-methoxy 4-hydroxy-phenyl glycol. Waking and sleeping e.e.g. and radiography were performed and in some cases computed tomography, nerve conduction studies and electromyography.

The chief positive results are indicated in the table (figure 3.1.1). Calculating from the Department of Health and Social Security figure of 40,000 births annually in the referral area of the hospital, the estimated minimum childhood prevalence for Rett syndrome was 1 in 15,000 females.

In three past generations no other case of Rett Syndrome was identified in families with affected individuals. Mean maternal age at birth of the affected
child was 25 years ($16-40$), paternal 27 years ($21-40$). There were 17 male and 18 female siblings and 9 miscarriages. The mother and maternal grandmother of one child were diagnosed as schizophrenic. At birth mean gestation was 40 weeks (38-42), mean birth weight $3.2 \mathrm{Kg}(2.1-4)$ and mean occipito-frontal circumference 34 cm (32-36). Figure 3.1.2 indicates the trend in OFC growth. All had received immunisation, with febrile reactions in two but no seizures. No consistent relationship was found between dates of immunisation and onset of regression. However 7 families had considered immunisation to be the likely cause of the disorder. The onset of the disorder was seen in the pattern of early development with slight delay in initial skills, smiling and sitting alone and the late acquisition or failure in reaching to grasp, walking alone and speech. Every child had regressed (mean age 16 months, range 10-24 months). The onset of regression was commonly marked by screaming and repetitive hand movements. Regression led to 12 children being described as autistic. After a period of decline in walking, manipulation and speech, mental age was considered to be around the 6-12 month level with little change thereafter. Figure 3.1.3 indicates the pattern of developmental progress. Individuals related well to the human face. The lower limbs were initially hypotonic and became increasingly stiff with time. Deep tendon reflexes were increased but the Babinski response was not present. On the basis of the invariably disturbed muscle tone subtypes were distinguished, a hypotonic (usually early) subtype (subtype1), an ambulant dystonic subtype, some of these markedly wasted but others not wasted (subtype 2) and a non-ambulant, usually older hypertonic subtype (subtype 3). Repetitive involuntary movements were a feature in all cases affecting all parts of the body. Apparent panic attacks were noted in all cases and hyperventilation in all but one. The electroencephalogram was abnormal in all with bursts of slow waves in four, two per second spike and wave in five and featureless recordings with much $3-4 \mathrm{~Hz}$ theta in five. Sleep organisation was poor with REM apparently increased at the expense of stage II sleep. Computed tomography reported the brain to appear normal in 5 and compatible with mild atrophy in 3. Biochemical investigations produced results within the normal range.

Each of these children had been previously examined by Dr Stephenson, an acute investigator who had already excluded likely alternative diagnoses. Having recorded video of each patient, I was now able to study the behaviour of these children - aged from 3 to 13 years - as a group, while considering afresh their remarkably similar histories and the results of our investigations. Many already known conditions were excluded by the results of the laboratory tests and the combination of negative findings on family history, gestation and birth history with the subsequent progress of these children, whose state had clearly stabilised after slow initial progress and a rather selective developmental regression, their present good health and their obvious enjoyment of human contact. Taken together, these findings excluded many conditions responsible for early hypotonia such as Prader Willi Syndrome, birth injury, congenital myopathies and cerebral palsy of prenatal origin; many causes of regression including degenerative and epileptic disorders, such as Batten's disease and conditions associated with stereotyped behaviour such as autism. All the cases clearly matched the detailed description provided by Rett (Rett 1966).

Conclusions

It was clear from this study that the disorder is not rare, that it is clinically manifest before the onset of the regression period at which time development is already delayed, that it is accompanied by involuntary movements affecting more than just the hands and that the prevalence at age 14 is not less than 1 in 15,000 females.

3.2 Study of the natural history of Rett Syndrome in $\mathbf{2 3}$ girls

This second study was an extension of the first, in preparation for an invited presentation at an international meeting in Baltimore USA in 1985, to discuss and plan research into the disorder (Kerr \& Stephenson 1986). I conducted the investigation.

Subjects were as in the first study with the addition of four new cases and possibly two more identified from records, who could not be contacted at that time, all conforming to the pattern for Rett syndrome as described by Rett (Rett 1966). Ages ranged from 11 months to 22 years. One family provided a cine film taken by a grandparent, from the first week of life and during the first year, before the parents were aware of the child's difficulties

With a confirmed group of 23 cases within a well-defined area the estimated minimum had now risen to 1 in 12,500 females at 0 to 14 years.

Cases were examined as in the previous study and detailed developmental histories elicited. It was clear from the developmental histories that progress had been suboptimal in these children from at least 6 months and probably earlier, until the onset of the regression episode. Even when children were still being considered as within the normal range with regard to developmental progress, imitation was absent and hand use poor. In 13 cases the first sign leading to medical referral had been failure to walk independently.

The donated infant film showed the child as a very quiet and inactive baby, a cheerful ten months' child with ill-directed movements when reaching for toys and poor hand-eye coordination, displaying difficulty in rolling over and achieving forward movement moving by creeping with the legs dragged behind. At one year she was cruising unsteadily and in reaching for the conveniently placed handle of a toy her fingers alternately grasped and released the object. Although the child did not regress until some months later it was evident that her mobility was already compromised with a suggestion of stereotyped movements in the arms and hands.

From these 23 cases it was clear that muscle hypotonia was an early sign of the disorder, preceding the increased muscle tone and contractures observed in older people. Presentation subtypes were again described according to the
predominant abnormality of muscle tone, hypotonic (type 1), dystonic but walking (type 2), hypertonic (type 3) and less mobile (figure 1.3.9, Appendix A). We did not find evidence of continuing dementia, the understanding of girls after regression and later in life appearing to be little less than the state before the onset of regression.

It is of interest that one child included in this study as 'incomplete Rett' at age 2 years (BIS 495), thereafter failed to regress and her skills improved steadily although she remained without speech, stereotypy decreased and further investigation led to the diagnosis of mutation positive Angelman syndrome (del 15), which has since emerged as one of the cardinal differential diagnoses for Rett.

We concluded that these children were already affected by the disorder and had reached a developmental 'ceiling' before the onset of the regressive period. It appeared that the regressive event was in part due to exacerbation of an already existing involuntary movement disorder. We found no evidence of continuing dementia after the regressive event. Prevalence was confirmed at no less than 1 in 12,500 females.

3.3 British Paediatric Surveillance Unit study

(Kerr, 1991 - published in the fifth annual report of BPSU)
The British Paediatric Surveillance Unit BPSU bpsu@rcpch.ac.uk (http://bpsu:inopsu.com) by this time an established part of the British Paediatric Association aimed to support approved research into the prevalence of rare disorders, by circulating all willing paediatricians with the researcher's invitation to report appropriate cases and providing a monthly postal card on which to register that such cases had been identified. It was then for the researcher to contact the doctors who had reported cases and to complete the research project. In this way in 1991 the BPSU assisted my launch of the British Isles Survey for Rett syndrome. No direct funding was received but my description of the disease was circulated to all willing paediatricians in Britain and the Republic of Ireland.

An invitation was issued on three consecutive months to report new cases of Rett syndrome or suspected Rett syndrome, male or female, born in or after 1975, with the result that 104 paediatricians reported 247 cases and the number of known cases throughout the British Isles increased to 383 . Questionnaires which I sent to responding physicians resulted in 169 cases being sufficiently described to indicate that the classic syndrome accounted for 150 (88\%). All these were females although the circulated literature had not excluded the possibility of male cases. The numbers of cases reported in each birth year suggested a minimum prevalence in childhood of 1 in 10,000 . However patchy reporting suggested that many new cases were still being overlooked. From this result it could be confirmed that the syndrome was strongly associated with female sex and that a mutation in the X chromosome was likely to be the cause of the disorder.

3.4 Report of the British Longitudinal study \& Survey 1982-1991

In this report it was possible to confirm that with 30 cases reported in the 10 year old group and a steady flow of new reports arriving, the prevalence at this age was probably not less than 1 in 10,000 females. The range in ages was from 3 to 42 years. There were very few reported males, apparently none classic.

In this report a pair of monozygotic twins was described, one of whom was clearly classic and severe while the other, although recognisably Rett was much less severely affected, could walk, feed and help to dress herself and to sing little songs, quite close to the pattern described by Hagberg as 'formes fruste' (Hagberg \& Witt Engerstrom 1986, figure 1.3.10). This occurrence was convincing evidence that the same genetic disorder underlay a range in severity and was present in both twins (Kerr 1991).

Comment on the research in this section

In addition to providing an early estimate of prevalence, the results of these studies indicated that clinical signs are present before the regression period, that involuntary movements and respiratory irregularity are regular features of the
condition and that subtypes could be recognised according to the predominant abnormality of muscle tone. We found no evidence of deterioration in intellect after the end of the regression period. The involuntary movement disorder led to the suggestion, according with observations reported by Segawa and Nomura (Nomura et al 1985) that the basal ganglia and monoamines were in some way involved in the manifestations of the disorder. Sporadic mutation on the X chromosome seemed a likely cause. A Scottish workshop organised jointly with Mrs Susan Allan, founder of the RSA Scotland, brought Professor Rett, 60 leading members of the medical professions, 52 children with Rett syndrome, and 130 parents to meet in a clinic environment at the Royal Hospital for Sick Children in Glasgow (May 1986). My observation of the many people with Rett at all ages during that event led me to suspect that although epilepsy is present in many people with Rett, there were other interruptions of awareness which could not be attributed to cortical epilepsy, that might relate to the highly irregular respiratory rhythm and bizarre fluctuations in mood. I was impressed also by the ability of these physically disabled people to use their hands purposefully when strongly motivated (Kerr 1987, Kerr et al 1987).

Experience of a growing number of cases led me to adopt concepts that were not yet generally accepted at that time. Namely that these people did not appear autistic as they related well to the human face although with limited understanding; they did not appear to have been truly normal before the regression period in spite of their attractive appearance and some developmental gains; evidence was lacking to support the idea that they suffered continuing intellectual deterioration after the end of the childhood regression period. That the Babinski sign was absent in our cases suggested that the long motor tracts were intact and the problems of movement were proximal. These observations informed the design of the following studies.

In compiling and editing the invited report of the 1986 clinical workshop I described the many conditions to be distinguished from Rett Syndrome, as falling into three main categories, in the following way (Kerr 1987):-

* Firstly there are those who having presented with regression and hand stereotypy proceed to follow a steady downhill course without the Rett syndrome plateau. These are likely to have a degenerative metabolic disorder. Commonly before regression such children demonstrate more skill than is apparent in pre-regression Rett Syndrome but during regression they may appear identical.
* Second are the children with profound cognitive disability but without the severe motor difficulties of Rett Syndrome. Their hands appear to be the obedient servants of a severely restricted intelligence. Characteristically these children do not have a history of regression but only of slow development.
* Third are autistic children who give the impression of an intelligence which is less impaired, who do not make good personal contact, and whose repetitive hand movements are deft, under voluntary control and apparently perfomed to give some gratification.

Since discovery of the genetic mutations, which lead to the syndrome, it has been possible to estimate the prevalence of mutation positive cases, rather than only the prevalence of the clinical syndrome. Within the survey cohort classic cases now constitute about 75% of cases considered to have Rett syndrome and atypical cases to constitute 15%. Among those so far mutation tested, $80-90 \%$ of cases with classic Rett and 30-40\% of those with atypical (non-classic) Rett have proved positive, maintaining the rough estimate of prevalence at about 1 in 10,000 females for the disorder. However it has not been possible to carry out a thorough search for cases and a steady flow of new cases at every age indicates that more are to be found, especially among adults with milder disease.

Section 4

Clinical Observations

Introduction

Lack of obvious abnormality in the newborn infant and some early developmental progress led to a common assumption that the child was normal before the onset of the regression event (Hagberg et al 1983, Hagberg et al 1985). For a proper understanding of the origins of disorder it was clearly most important to establish when the first signs of the disease might be detected. This might be investigated from detailed pre-regression developmental histories and from early family videos.

The loss of skills, which occurred during regression, led to a general assumption that deterioration continued and that the disorder is progressive (Hagberg et al 1983). This could be best investigated by observing the change in many individuals over time.

The stereotyped hand movements provided one of the cardinal features of the Rett syndrome and it was a common assumption that the child chose to indulge in these. However my impression was that she had little if any control over them and that the rhythms were centrally generated. One way to investigate this was to characterise and measure the hand activities and to observe their emergence in early childhood.

The following studies aimed to characterise the early developmental deviations and to apply objective measures to the stereotyped hand movements seen later.

4.1 Hands and Mind in Rett syndrome

A total of 40 children were included in this study. The developmental histories of 20 children were recorded in detail. Family films taken before the onset of
regression were available for 4 children. Serial filming was carried out for 19 people repeatedly over a 4 -year period following regression and at single sessions in a further 14. Four children were videoed weekly for six months during music therapy sessions. Those 23 presented in most detail are indicated in Appendix C. (Kerr et al 1987)

Two tables (figure 4.1.1 and 2) provide the results of the study. The preregression film appearances were suggestive of hypotonia in two cases. Between 2 and 11 months there appeared to be an excess of patting or waving activity of the arms in association with jerky incoordination. Three cases showed abnormal opening and closing of the fingers and twisting movements of the wrists. Hand use was clumsy and hand skills were not demonstrated beyond the 10-12 month level some months before the onset of regression. When regression began children appeared confused and withdrawn. In each of these four cases parents had not noticed anything wrong until onset of the regression event.

The twenty pre-regression histories similarly indicated that parents considered their children normal at the pre-regression stage or were concerned only at the slow rate of progress. However the level of recorded hand skill as judged by the cleverest manipulative achievements and language development suggested failure to achieve more than a 10-12 month level of skill regardless of the age of onset of regression. There was a lack of imitative and imaginative play. Interestingly families who watched the recordings with me spontaneously recognised the early expression of later abnormalities of movement.

From the post regression videos it could be seen that the stereotyped hand movements consisted of repeated quite simple and essentially clumsy movements, which incorporated the actions, tapping, rubbing, clasping or squeezing. Each hand moved as a whole or with a wave like activity passing across it. The hands came together in most younger children but were often apart in older people. Each hand followed a distinctly different pattern to its partner.

The hands were rarely watched unless they came where they could not be ignored. The stereotyped activity continued even when it was clear that the child wanted to eat and food was within her reach and she would lean towards the food with her mouth open. Agitation or contact with a surface appeared to increase the hand activity. Holding the hands reduced but did not abolish the activity. A few children could finger feed but for most the hands seemed incapable of voluntary action with the notable exception of musical interactions during which the therapist and child were in close physical contact and the instrument presented an easily accessible means to respond to a musical stimulus. In this situation with the child interested and strongly motivated the hands were used to strike the instrument in a poorly coordinated jerky and impulsive fashion. The achievement seemed to give great satisfaction as evidenced by intimate eye contact and smiling. There was increasingly effective use of the hands in music therapy sessions although this remained jerky and poorly coordinated. Because of the possibility of bias in interpretation of such video we invited comment from colleagues with wide experience of young children and found ourselves in agreement.

4.2 Early Clinical Signs in the Rett Disorder:

This review examined the progress of people with Rett disorder during the period from birth and through the regression period, using information from more than 600 cases then in BIS, the records from their families, physicians and my own direct examinations (70% of the cases over a period of 12 years) with many video recordings made during consultations (Kerr 1995). 42 donated videos were available for this research, taken by families during the early period before during and after regression, often begun before any recognition of the child's problem and a video library had been accumulated of healthy babies with which the Rett material could be compared.

The aim of the study was to observe the natural evolution of the disorder and so to gain a clearer understanding of its origins and character. Over 85% of the
reported and examined cases displayed the features of classic Rett syndrome. There had been 19 deaths. In collaboration with neuropathologist Dr Dawna Armstrong it had been possible for donated tissues to be examined from 6 people (see section 9.1 for these reports).

Developmental histories indicated very early problems. Young parents without experience of other children assumed that their baby was normal until they began to notice failure to walk or to interact.positively with other children or until loss of skills occurred, however they described the infant as 'very good', 'very placid', implying a lack of complaint or demand unless the child was in pain. Experienced parents or older members of the family perceived differences from their healthy children from birth, reporting them as inattentive, 'floppy' or 'stiff' in posture and 'jerky' in their movements. However if the child was making any developmental progress and did not appear unwell parents usually received reassurance from the health professionals. Parents who expressed early concerns were sometimes reproved or considered neurotic, and this attitude generated frustration and anger as the severity of the condition became evident.

The video records of the babies with Rett usually showed them to be placid and poorly mobile from birth by comparison with healthy babies of the same age. There was a lack of normal exploratory behaviour by these babies and they responded poorly to play opportunities. In some children there was an excess of repetitive movement of the limbs and trunk. Small twitching movements of the eyes were seen in some as early as $2-3$ months. Particularly striking was the repeated opening of the hand with which the child grasped an object. These signs appeared to indicate that the young infant was already disabled in terms of her understanding, her postural tone and her capacity for controlled movement. Head circumferences began to drift off the birth centiles in some children as early as 2 months and in a few cases were already below 2SD at birth. While there was a range of severity in the Rett condition it was clear that the pathological process was already active in the brain at the time of birth and
although the child was making some developmental progress the higher centres appeared already incompetent. Developmental histories suggested that few children with Rett acquired skills beyond the $9-12$ month stage after which stagnation supervened or there was a fluctuating course, the acquisition of a skill being closely followed by its loss. It appeared that within the pre-regression period the child was slowly reaching a developmental ceiling at or below the 12month stage.

As the regression event supervened, skills were lost, particularly any speech and fine hand skills that had been acquired, sometimes dramatically but sometimes gradually. Although the child was frequently agitated and distressed she did not appear unwell. Muscle tone became more obviously reduced and stereotyped movements of the hands, limbs and face became more marked. The stereotypies and agitation with loss of interpersonal contact led to some being regarded as autistic. In terms of what was known about the growth of the brain during this period and the neuropathological findings in Rett, I drew up a list of factors which seemed likely to contribute to the regression event (figure 4.2.1). The irregular respiratory pattern, which was a feature of the condition, appeared towards the end of the regressive period in most cases and seemed likely to be responsible for the short interruptions of awareness common to many people with Rett, which lacked the characteristics of epileptic seizures. I proposed a model, which related the behaviour of the child with Rett to a disorder of central processing of cognitive and motor activity (figure 4.2.2).

In order to investigate further the early abnormalities of babies with Rett a video was produced in which a sequence of edits was arranged showing Rett and normal babies in random order but arranged serially at each month throughout the first year of life. Copies of this video were made and circulated among colleagues to explore the possibilities of enlisting collaborators with adequate resource and skill to apply objective measures to the movements seen in these babies, the aim being to explore the possibilities for screening infants with
developmental delay in order to reach an earlier diagnosis and provide earlier support to the child and parent.

Three different lines of investigation developed from this initiative, leading to the three studies recorded below:

1) Dr Bronwen Burford, a psychologist with special experience in measurement of intuitive responses of care workers agreed to collaborate in recording the responses of experienced nursing staff to normal and Rett babies from birth to one year (study report at section 4.3).
2) Professors Einspieler and Prechtl agreed on a joint project to analyse video of babies with Rett using their well established and standardised objective methods for the assessment of the spontaneous movements of babies (for these methods see Prechtl 1984, Einspieler, Prechtl et al 1994, Einspieler et al 1997, Prechtl 1997, Prechtl 1999, Prechtl 2001, Einspieler et al 2005a). Their aim was to characterise the spontaneous movements of these babies. For this purpose video was produced to show all the available recordings of 10 babies with Rett. This material was arranged for viewing at every month during the first year of life (study report at section 4.4)
3) Colleagues at the Virtual Environment Centre in Edinburgh that provides a service in gait analysis (Ed Vec) agreed to provide three dimensional studio analysis of the stereotyped hand movements of one girl and to compare their physical characteristics with the hand movements recorded in the same girl by informal 2D video at a consultation during early childhood. (see section 4.6)

In each of these studies, I invited the collaboration, recruited the subjects, supplied the clinical data and videos, was involved in planning the protocols and contributed to writing the reports. My colleagues conducted the assessments.

4.3 Nurse recognition of early developmental deviation in home videos of infants with Rett disorder

This study was planned with Dr Bronwen Burford, psychologist to record the intuitive responses of experienced nurses to the activities of babies with Rett (Burford et al 2003).

Subjects and methods
The study used early video material donated by families of children with Rett for this research. Dr Bronwen Burford, a psychologist with special interest in movement and non-speech communication had previously developed a method for recording the responses of experienced observers while they viewed interactions between carers and severely disabled people on video (Macleod et al 1993). The observer pressed a button, accurately marking the recording whenever an event of significance was felt to have occurred on the video. After the first viewing, the selected points were revisited and the viewer gave reasons for selecting each point or deselected it if preferred. The viewers own words were recorded. The children included in this study are listed in Appendix C 4.3.

Thirty-six experienced volunteer health visitors (26) and midwives (10) were invited to view randomly arranged clips of the donated home videos at each month of life which had been recorded for 11 normal and 14 Rett infants. Midwives viewed videos of babies from birth to 26 days, most being within 14 days of birth. Health visitors viewed them from birth to one year. Rett syndrome was not mentioned but they were told that some of these infants were later found to have a developmental disorder and they were asked to indicate by pressing the button whenever the behaviour of an infant raised a suspicion of developmental deviation. After the viewing session each button press point was played back and the viewer was invited to describe why suspicion had been aroused or to cancel the earlier indication. The viewer used her own words to describe her reactions which were recorded. An independent rater confirmed the classification of the comments.

Statistical advice was independently provided in planning and in the analysis of the results by H.A.Macleod, lecturer in the University of Edinburgh department of Community and Higher Education. For all the health professionals the number of button presses as a proportion of the total number of viewings (button -press ratio) was caloulated for Rett and control infant groups and subjected to Wilcoxon signed-rank tests.

Results \& conclusions

Figures 4.3.1-6 provide the results. From the first month of life and throughout the first year the infants with Rett received more button presses than controls $(46 \%, 361$ out of 778) in comparison with the control group ($12 \%, 67$ out of 558 viewings).

Figure 4.3.1 shows the total number of viewings by health visitors of all samples which led to one or more button presses and those which did not, for both groups of infants at all ages Rett infants 45.7% v controls 10.9%. Different samples of two infants with Rett and two controls at the same age on different videotapes produced comparable responses and no order effects were observed. Three different compilations of videotapes produced similar results. The median button-press ratio for health visitors was 0.4 for the group with Rett and 0.1 for the control group ($\mathrm{p}<0.0001$) indicating recognition of normal development and suspicion about infants with Rett.

Figure 4.3.3 indicates the confidence of the midwives in recognizing normal development and uncertainty about infants with Rett. The median button -press ratio was 0.5 for the Rett group and 0.1 for the control group ($\mathrm{p}<0.01$).

The consistent nature of the comments made by the viewers made it possible to classify the comments into those about appearance of the infant, posture, movement and personal contact. Table 4.3 .4 shows these categories. An
independent rater, blind to the nature of the study, allocated a random selection of the comments (60%) to the chosen categories. A kappa 0.81 was obtained between the rater and primary researcher, indicating a good level of agreement.

The control group received 58 comments from health visitors and most of these were mild or tentative (e.g. - it might be the angle of the camera' or ' foot seems turned out but 'I could check if I was there'. The babies with Rett received a total of 438 comments and in contrast to comments about healthy control babies most of these were emphatic, concerning distinct abnormality. All ten infants videotaped at 4 months or less received such comments. Figure 4.3.5 gives the percentage of comments in each category and age group. For example 33% of all comments by health visitors at 0-4 months were on appearance. Appearance attracted the greatest share of comment in the two earlier age groups. The share of comments on movement increased steadily throughout the first year. All the infants received the comment that they 'might have a syndrome', including those who received the fewest button presses. Hands were mentioned in 10% of all comments by health visitors on Rett infants and appeared in every category and at every age. These comments referred to hand posture, lack of reaching and grasping and poor general hand use. In the 9-12 month age group some viewers remarked on infants repeatedly putting the hands in the mouth.

Midwives made 16 comments about control infants, all of which were tentative Rett infants received 110 comments from midwives. Emphatic mention of the hands accounted for 23 of 37 comments on posture and nine of 30 on movements. Seven of the Rett infants received such comments as ' hands are very unusual', 'strange praying position of the hands' and ' hand movements are strange'. Figure 4.3.6 compares the spread of midwife comments between the two groups.

This study not only indicated the presence of early signs of the developmental deviation in infants with Rett but also showed that experienced nurses might
detect the problem from informal videos. All these Rett infants had been passed on routine developmental assessments, some as late at 9,12 or even 18 months, suggesting that such screening procedures may be inadequate for the detection of children with Rett.

4.4 Abnormal general movements in Rett babies

Collaboration was invited with Heinz Prechtl and Christa Einspieler whose work on the characterisation of the spontaneous movements of babies before birth and in the first months of life has provided a valuable means of objective assessment (Einspieler et al 1997). These scientists agreed to apply their methods to the early home videos of babies with Rett in order to describe and as far as possible to characterise any deviations from normal development (Prechtl 1984, Einspieler, Prechtl et al 1994, Einspieler et al 1997, Prechtl 1997, Prechtl 1999, Prechtl 2001, Einspieler et al 2005a). For full details of the methods of detection and analysis used in these Rett studies see Einspieler et al 2003, and 2005.

The two observers HP and CE analysed the videos separately with an interscorer agreement of 96%. In addition the first author re-analysed all the recordings again after an interval of 18 months and again found 96% agreement. This study aimed to describe the normal and abnormal spontaneous movements, posture and behaviour of babies with Rett.

Initially Einspieler and Prechtl viewed video from 22 children with classic Rett syndrome throughout the first 6 months of life. The clinical characteristics of these babies are shown in the data set C 4.4 Appendix C The fullest available selection of videos was supplied showing 10 babies with Rett Syndrome at each month of age throughout the first year.

Movements, posture and behaviour were assessed in a detailed frame-by-frame analysis. All signs which deviated from the normal standard were meticulously recorded paying special attention to the face, the hands and the body
movements. This analysis clearly demonstrated an abnormal quality of general movements (100\%) tongue protrusion (62\%), postural stiffness (58\%), asymmetric eye opening and closing (56\%), abnormal finger movements (52%), hand stereotypies (42\%), bursts of abnormal facial expression (42\%), bizarre smile (32\%), tremor (28\%) and stereotyped body movements (15\%).

These results are shown in Figure 4.4.1, Appendix A. The presence or absence of the clinical signs did not correlate with the later severity of the condition.

This was the first study to be able apply standardised measures for early spontaneous movements to infants with Rett syndrome, proving conclusively that the disorder is manifest within the first six months of life, although the signs were not necessarily considered to be specific for Rett.

In a further study of the videos of 14 infants with Rett (Einspieler et al 2005) Einspieler and Prechtl studied the period from birth to 4 months in order to judge the character of the general movements (GMs) which are normally seen during that stage in development. A detailed analysis clearly demonstrated that none of the infants had normal GMs. The abnormal movements and their individual developmental trajectories differed from those seen in babies with acquired brain lesions. However no specific pattern was detected which might characterise the disorder at this stage. The figures 4.4.3-4 show the quality of the GMs and their trajectories.

4.5 Analysis of hand movements in Rett Syndrome

Collaboration was invited with Roy Middleton, Marrietta Van Der Linden and Mark Wright of the Edinburgh Virtual Environment Centre of the University of Edinburgh in order to provide objective measures of the stereotyped hand movements in fully developed Rett syndrome, to see if the same characteristics might be detected in earlier video recordings and so to reach a better understanding of the origins of these movements and to explore the possibility of detecting the movement aberration in early life. The hand movements of a $10-$ year-old girl were subjected to accurate three dimensional computerized motion
analysis and compared to 2 dimensional video analysis of the same girl at 10 and at 3 years of age (Wright et al 2003).

The 3-D computerised motion analysis revealed regular patterns with strong coupling between the hands (figure 4.5.1). Frequency analysis showed a dominant frequency at 1.2 Hz with a higher component at 2.4 Hz (figure 4.5 .2), which may relate to the activity of basic rhythm generators in the brain. The same coupling characteristics were extracted from standard 2D video made at the same time and from 2D recordings made of the same girl when she was aged 3 years (figure 4.5.3).

The study has shown that informal 2 D video reflects the same movement characteristics seen on accurate 3D analysis and that the movement patterns of this 3 year old child are retained at the older age of 10 years. The appearances are those of an automatic rhythm, generated centrally and under minimal if any control by the individual. A parallel is suggested with the tremor of Parkinsonism in which, like Rett the movement cannot be voluntarily controlled but in certain highly charged situations it can be interrupted allowing purposeful activity. That it has been possible to record and characterise the movement of the hands in Rett suggests that it may prove possible to develop screening which could detect the movement pattern in young children using simple 2D video and automated analysis.

Comment on the research in this section

These studies have established beyond doubt that the disorder is clinically manifest from birth, indicating the possibility of earlier diagnosis and therefore of earlier support for the child and family. Experienced parents frequently voice anxieties about their infants with Rett syndrome and deserve to be listened to. Mutation testing offers a way to confirm the diagnosis when it is suspected.

The study of hand movement has demonstrated objectively the distinct pathological pattern of hand movement and has shown that it remains stable over
many years, suggesting a rhythm which is physiologically driven. The stereotypy is one feature which has led to Rett disorder being compared to autism. Figure 4.6.1. (Kerr 2000) was prepared for a discussion on behaviour in Rett and comparison with that seen in autism. It suggests how behaviours aseen in Rett syndrome might be compared with those seen in autism and cerebral palsy. The figure 4.6.2 produced for the same discussion (Kerr 2000), speculates on how prenatal subcortical influences on the developing cortical neurones set the patterns for sensorimotor feed back relationships in the mature brain, patterns which fails to develop normally in the infant with Rett disorder, producing an inflexible tremor instead of action that can be sensitively controlled according to requirements. My concept was based in the knowledge that flushes of neuroactive substances produced in the developing thalamus and base plate, including MAP2, - already known to be reduced in Rett - are known to be in contact with the immature cortical neurones as the pass through the base plate on their way to the cortex and seem likely to play a part in the essential 'servo-mechanism' linking receptive and expressive activities (Kaufmann et al 1997). The early infant studies by Einspieler and Prechtl indicate disruption of early spontaneous movement patterns. These spontaneous movements can be detected in the normal infant before birth and are believed to be generated by brain stem oscillators (Prechtl 1999). This too supports the presumption of a prenatal developmental role for the gene $M E C P 2$.

Section 5

Investigations I: Cardio-respiratory \& e.e.g.studies

Before regression the child with Rett is often described as placid. However at the time of regression, behaviour becomes marked by sudden changes - parents have described this 'as if a switch had been turned'. Normal quiet breathing may change to deep breathing or breath holding. There may be unexplained extreme agitation with panic or screaming. The hands may suddenly engage in exaggerated squeezing or clapping, together or in the mouth or hair. Interest or engagement may be suddenly interrupted by flushing, pallor or cyanosis with loss of attention or fainting. Short bursts of slow waves, with or without spikes are seen in the electroencephalogram (e.e.g.) unaccompanied by clinical epileptic seizure.
Both Rett and Ishikawa described the hand movements as stereotyped and the breathing as periodic with agitation (Rett 1966, Rett 1977, Ishikawa et al 1978). Lugaresi and colleagues also described these features as characteristic of the Syndrome (Lugaresi \& Cirignotta 1982, Lugaresi et al 1985). At this time it was still commonly assumed that the child wished to engage in these activities. It was also commonly believed that the interruptions of awareness or faints were due to epilepsy. I questioned both assumptions. I proposed to explore the nature of the bursts of abnormal activity which could be seen to affect the e.e.g., respiratory movement and the mood and awareness of the individual. I planned to investigate the time relationships between these events, using objective physiological measures in order to reach a better understanding of their origins.

5.1 A low cost method for simultaneous video recording of ambulant subject and electroencephalograph: the Quarrier's system.

A system was developed in collaboration with Mrs Pat Amos at Quarrier's Epilepsy Centre, near Glasgow and support by physics staff from the Royal Hospital for Sick Children. By this means an awake and active subject could be videoed over several hours while the electroencephalograph tracing was
superimposed on the video recording and continuously viewed on a monitor, allowing correlations to be observed between behaviour, appearance and e.e.g. signals (Kerr et al 1988). The signal from a medilog (ambulatory e.e.g.) system was passed through a time code generator and video mixer and so superimposed in real time on the monitored view of the subject as well as being recorded on paper. I led this development. The arrangement we developed allowed us to begin to explore the relationships between these variables (Appendix A, figure 5.1).

5.2 Hyperventilation in the awake state.

After having developed the above techniques we became aware of the respiratory studies being carried out by Dr David Southall and invited collaboration in order to add objective measures of respiration to our investigation. I led the investigation and participated in all except the analysis of the taped respiratory and e.e.g. recordings and biochemical estimations (Southall et al 1988, Kerr et al 1990). This was a descriptive project, aiming to determine the pattern of the spontaneous respiratory disorder in Rett and measure its consequences for levels of oxygen and carbon dioxide. A control group of healthy boys and girls aged 4-15 years had already been recruited by Dr Southall as part of a separate prospective study of respiratory function.

The clinical characteristics of the Rett subjects for this and the following study, which used the same records to correlate behaviour and e.e.g. are shown in the Appendix C, dataset 5.2. Families attended with each subject and gave informed consent.

Respiratory inductance plethysmography (Respitrace, Studley Data systems) was used to record chest movements during breathing; measures of expired CO 2 were made using an Engstrom Eliza constant sampling infrared analyser; Transcutaneous CO2 measurements were made using a Hewlitt Packard machine and beat-to-beat oxygen saturation was measured with a Nellcor Respox 2
machine. In order to synchronise the recordings a continuous time code was included and the monitors showing the physiological recordings were kept within the view of the video camera. The entire procedure was continuously recorded on VHS video and the result was simultaneously shown on a monitor screen so that the investigators and the families could observe the proceedings. Thus it was possible to analyse real time relationships between the actions of the child and the physiological measures. The recordings of respiratory movement and respiratory gases were also printed out on continuous paper, as was the e.e.g. recording so that real times could be matched precisely. A diagrammatic representation of the arrangement is shown in Appendix A, figure 5.2.1. In 10 cases with markedly abnormal breathing, radial arterial blood was taken for measurements of electrolytes including ionised calcium and arterial pH . The Appendix.C, dataset 5.2 provides further background data for cases included in these studies.

Over 4 weeks we monitored 18 people with Rett syndrome, 11 during overnight recordings and all in day time using our combined techniques to measure activity by video, e.e.g., respiratory movement, expired and transcutaneous CO 2 , arterial oxygen. Appendix A,Figure 5.2.2 gives the clinical details of the 18 people with Rett syndrome. Appendix A, Figure 5.2.3 gives the physiological data for the group. Appendix A,Figure 5.2.4 gives the biochemical data for 10 cases.

Ten of the Rett subjects (56%) but none of the controls hyperventilated. Hypocapnia was present during hyperventilation and arterial pH values ranged from 7.47 to 7.6 . The hyperventilation was interspersed with periods of apnoea during which there was hypoxaemia (in 47% of apnoeas). All but one of the subjects with Rett had periods of apnoea. Sections of the paper printouts from the recordings are shown in Appendix A, figures 5.2.5-8.

Hypokalaemia and hypocalcaemia were found in cases who hyperventilated at great intensity and tetany was recorded in one child.

We suggested that the hypocapnic alkalaemia and hypoxia might contribute to cerebral impairment in Rett syndrome and that therapeutic intervention might be possible. During this study we observed several abnormal rhythms of breathing, shallow, deep with hyperventilation, breath holding, failure to take a breath and Valsalva-like breathing. We noted that many interruptions of awareness were not associated with epileptic manifestations on e.e.g. Only one epileptic seizure was shown on e.e.g., witnessed after a period asleep when the child woke and hyperventilated with such intensity that the carbon dioxide and oxygen levels fell steeply. A short epileptic convulsion occurred during which the CO 2 levels recovered.

5.3 Correlation of electroencephalogram, respiration and movement in Rett Syndrome.

In a further study in collaboration with Southall, Samuels, Cooper, Mitchell and Amos a detailed analysis was made of daytime video, e.e.g. and respiration, establishing exact time relationships between episodic behaviours, e.e.g. changes, breathing rhythm, blood gases and stereotyped movements, observing differences between different age groups in order to gain insight into the nature of the breathing dysrhythmia and the non-epileptic vacant spells (Kerr et al 1990). I organised the project, determined its objective, enlisted the patients and controls and was directly involved in the recordings. The detailed study to relate the behaviours to the changes in e.e.g., respiration and respiratory gases was carried out by myself from the continuous paper recordings. E.e.g. comment was provided by Mrs Amos and Dr Rosemary Cooper.

Dr Jane Mitchell, senior lecturer in mathematics, was invited to provide the independent statistical analysis of the results.

Subjects were 14 girls indicated in the dataset 5.2 (Appendix C) aged 6 to 17 years (mean 7 years). Controls were 12 healthy, volunteering girls, sisters and friends of the people with Rett similarly recorded over the same period. Parents
always attended with their children. The materials used were the same as in the above project. The recordings were made over about one hour in daytime. In cases with Rett syndrome showing severe hyperventilation a period of rebreathing was introduced in order to raise the level of CO 2 . This was done by placing a light transparent hood over the head, resting on the shoulders of the child as can be seen in the figure 5.3.3 Appendix C.

No recording from a healthy control showed any abnormalities of breathing, transcutaneous respiratory gases or e.e.g record.

Data for the people with Rett is shown in Appendix A, figure 5.3.1. Three girls with Rett syndrome had minimal respiratory dysrhythmia and showed no correlation between e.e.g., respiration and movement. The other 11 RS girls (617 years) had severe awake respiratory dysrhythmia, ten showing hyperventilation with hypocapnia alternating with breath holding - one showed only breath holding episodes. All had some periods of awake regular breathing with normal respiratory gases. In these girls the e.e.g. showed non-epileptic generalised slow activity some of which was paroxysmal. Figure 5.3.2

Appendix \mathbf{C} shows the typical electroencephalograms in three cases. Short periods of e.e.g. slowing occasionally followed prolonged apnoeic pauses. In two cases brief partial complex seizures occurred but these were quite distinct from the non-epileptic events.

In the six youngest girls, non-epileptic paroxysms of e.e.g. slow activity occurred at 1.5 to 4 Hz . These paroxysmal e.e.g. disturbances were associated with periods of normal breathing (with normal pCO2 levels) whether the girls were alert, drowsy or asleep, but were uncommon during episodes of hyperventilation (with hypocapnia). In these youngest girls discrete episodes of disturbance - in respiratory rhythm, e.e.g. and intensified stereotyped movement, allowed direct comparisons to be made of the time spent in each and the relationships between them. Interruption-free periods were selected for these
measurements. Within these selected periods significant hypoxia - < 50% saturation was recorded on one occasion without alteration in e.e.g. or behaviour. Figure 5.3.4 compares the time occupied by the non-epileptic e.e.g. paroxysms during periods of normal and of dysrhythmic breathing. Chi-squared tests were carried out in cases 1,2 and 5 to compare durations of regular discrete e.e.g. paroxysms in the various periods of breathing. There was a clear difference in the number of bursts during respiratory dysrhythmia (low) and normal breathing (high), $\mathrm{p}=0.001$ for this difference. The number of bursts occurring during alert and asleep periods of normal breathing (with normal pCO 2) was not significantly different. In cases $1,2,4$ and 5 the e.e.g. paroxysms occupied $1-3 \%$ during respiratory dysrhythmic periods and $8-100 \%$ during alert normal breathing periods ($\mathrm{p}=0.001$ for this difference). The episodes of stereotyped movement involved the face, trunk, limbs and hands and were graded as very energetic $(++)$, moderately so $(+)$ and minimal or absent $(-)$. In cases $1,2,4,5$ and 6 episodes of stereotyped movements ($++\&+$) occurred during the periods of respiratory dysrhythmia and diminished (+ \& -) during periods of normal breathing. The percentages of ++ activity for the nineteen continuous periods recorded were compared using a non-parametric test (Kruskal Wallis) that assumes the various periods to be independent. This test shows a significant difference in the amount of intense stereotyped movement $(++)$ during periods of dysrhythmic breathing (high) and normal but alert breathing (low) $(\mathrm{p}=0.01)$

In the older girls (aged11-17) the stereotyped hand movements did not fluctuate with the periods of respiratory dysrhythmia. Fairly persistent generalised, largely unreactive theta activity at $4-6 \mathrm{~Hz}$ was present in all these girls and in one tended to increase at the end of apnoeic pauses.
Six children had attacks of vacancy and staring not associated with e.e.g. changes. Two of these girls also each had one minor complex epileptic seizure with ictal activity recorded on e.e.g. Both the non-epileptic and the epileptic events occurred after periods of intense hyperventilation with severe hypocapnia
and were associated with apnoeic pauses with or without a valsalva-like manoeuvres. Pulse oximetry indicated subsequent but not prior hypoxaemia. All the girls with RS showed abnormality on e.e.g. Nine of the fourteen RS girls showed some epileptogenic activity in the form of single or grouped spike and sharp wave discharges or slow spike and wave, distinct from the episodes of paroxysmal slow activity.

Striking observations during this study were a clear association between the bursts of paroxysmal slow waves on e.e.g. and the periods of normal breathing, contrasting with the periods of severely dysregulated breathing and hypocapnia during which the e.e.g abnormality was less marked. It was clear that the dysregulated breathing was closely associated with agitation and increase in the hand stereotypy, especially in the younger children. Alerting of the child after a period of rest was almost always accompanied by the onset of disturbed respiratory rhythm. There were several types of disturbed respiratory rhythm and characteristically the pattern of breathing switched between these in the same child. Although epileptogenic e.e.g. and clinical epileptic seizures occurred during monitoring, non-epileptic vacant spells which were also recognised to be a feature of the disorder. Breathing while asleep was usually regular with normal blood gases unless it was obstructed.

5.4 Functional Evidence of brain stem immaturity

Certain aspects of the appearance and behaviour of people with Rett suggested problems of autonomic regulation. These included unexplained episodes of agitation with flushing, and almost invariably small cold feet, which had been noted to grow and become warm following sympathectomy carried out in the course of corrective surgery for scoliosis. Constipation was common. Sleep was disturbed. The source of the very abnormal respiratory rhythm was unknown and the brain stem was suspect. At this time I was invited to take a room at the University of Glasgow in the department of Psychological Medicine and met Dr Peter Julu who had recently set up a unit for the investigation of central
autonomic function at the nearby Glasgow Southern General Hospital. With colleagues he had already developed the NeuroScope, a piece of equipment to measure non-invasively the response of the brain stem cardio-respiratory neurones to changes in arterial blood pressure as shown in the change in heart rate. (Julu 1992, Julu et al 1993, Julu et al 1996). Dr Julu agreed to assess one child with Rett and this led to an extensive collaboration, investigating the abnormality of cardio-respiratory control (Julu et al 1997, 1998, 2001, Julu 2001). The equipment which we had developed at Quarrier's Epilepsy Centre was combined with that developed by Dr Julu.

The study was approved by the ethical committee of the Southern General Hospital and received fully informed parental consent. I planned the project, recruited the subjects and was involved in all the procedures, interfaced with the families, prepared the reports and assisted my colleagues in the assessments as required. Dr Stig Hansen managed the equipment, Dr Peter Julu conducted the assessments and analysed the recordings, and Mrs Flora Apartopoulos recorded the e.e.g.s,

In this preliminary study we investigated seven girls with Rett syndrome for whom background clinical data is shown in the Appendix C. dataset 5.4. Volunteer sisters and friends acted as controls. Parents were always present throughout the assessments.

Breathing movements were measured by a plethysmograph placed around the chest at the level of the xiphisternum, recording movement in the chest and abdomen. Sympathetic activity was monitored by measuring the arterial blood pressure (Finapres TM). Cardiac parasympathetic activity was monitored by measuring the cardiac response to baroreflex using the NeuroScope a recent invention, which outputs a measure of cardiac vagal tone (CVT) in units on a linear vagal scale (LVS) (Julu 1992). The P-P interval is continuously recorded from the electrocardiogram providing the measure of heart rate. The rate of
response by the brain stem cardio-respiratory neurones to changes in blood pressure is reflected on a beat-by-beat basis in the subsequent adjustment to heart rate. E.e.g. was recorded continuously using a cap and was time locked with the other recordings. Transcutaneous oxygen and carbon dioxide were measured as in the previous studies. A continuous video recording was made showing each subject throughout the assessment. Setting up usually took 30 minutes and then a recording was continued throughout a full hour. During recordings the girl sat in her preferred chair and parents had full access to her to entertain, offer drinks and snacks. Frequently a parent took over the task of holding one finger still enough for the recording of blood pressure to continue uninterrupted.

A more complete explanation of the methods employed, produced in collaboration with my colleagues Drs Stig Hansen and Dr Peter Julu is provided in the section 5.5.

The figures 5.4.1-9, Appendix \mathbf{A} illustrate the findings in this study. The people with Rett were all able to breathe normally while asleep and at rest (figure 5.4.1 Appendix A). However while awake and alert, each girl had 6 or more abnormal respiratory rhythms, switching between these apparently at random. Figure 5.4.2 Appendix A shows the abnormal rhythms recorded during this study. At rest the respiratory rates and heart rates of people with Rett did not differ significantly from those of controls (figure 5.4.3 \& figure 5.4.4, Appendix A).

Figures 5.4.5 \& 5.4.6, Appendix A compare a Rett and a normal recording during quiet breathing and demonstrate how in the normal subject's record, a rise in BP is promptly controlled by a fall in heart rate (figure 5.4.5). Figure 5.4.6, demonstrates how in the normal girl vagal tone rises sharply to control a rise in blood pressure. Such prompt corrective action was not seen in the Rett recordings.

Resting cardiac vagal tone during periods of quiet breathing in Rett was significantly reduced $\mathrm{p}<0.001,3.6+-0.7$ units in the linear scale as compared to normal controls ($10.5+-0.9$). The level in Rett is close to that of the normal neonate (Halley et al 1995) (figure 5.7, Appendix A). Heart rate and blood pressure were under normal parasympathetic control during hyperventilation in the normal girls but not in Rett where the cardiac vagal tone (CVT) was invariably withdrawn at the height of sympathetic activity during both hyperventilation (figure 5.4.8) and breath holding (figure 5.4.6), leading to sympatho-vagal imbalance with the risk of sudden death. Sympathetic control of heart rate and blood pressure was adequate during voluntary breath holding in normal controls but in Rett there were oscillations and rebounds (figure 5.4.9, Appendix A).

From this study the near neonatal level of cardiac vagal tone, the poor central autonomic regulation and the multiple breathing dysrhythmias indicated immaturity of brainstem cardio-respiratory control in Rett. This immaturity constitutes a potential hazard, risking fatal cardiac arrhythmias. The study provided new insight into the Rett disorder and into other developmental or acquired disorders that interfere with central cardio-respiratory regulation. It raised new possibilities for intervention and demonstrated a robust means of objective assessment in evaluating such treatment.

5.5 Characterisation of Breathing and associated central autonomic dysfunction in Rett disorder

This second study of central autonomic cardio-respiratory control was a continuation of the first with larger numbers. Families were being referred for assessment from physicians and health authorities in all parts of the British Isles because it was useful in management, assisting in distinguishing epilepsy from the vacant spells due to central failure of cardio-respiratory regulation and providing advice on management.

The clinical details of the British subjects included in this study are given in the dataset 5.5, Appendix C. There were also several additional Swedish subjects for whom data is not held in BIS. All subjects were female, male cases were not excluded but are exceptionally rare. Control values came from 11 female volunteers, family and friends of those with Rett. Fully informed consent and ethical approval was provided for all the procedures, consent always being from the parents, who always attended with their girls.

Patients were assessed as in the previous study, by synchronous, continuous, non-invasive measures of autonomic and respiratory function, time locked to video and e.e.g. Subjects sat in a chair with a parent close by. Each recording lasted one hour during which the individual could eat or drink and be entertained as required. The procedure is painless. Respiratory movement was recorded by a stretch sensitive resistance plethysmograph at xiphisternal level recording the amplitude of thoracic and abdominal breathing movements in arbitrary units. A TCM3 monitor (Radiometer Copenhagen Denmark) recorded partial pressures of oxygen (P02)and carbon dioxide (PCO2) transcutaneously. A finger photo plethysmograph (FinapresTM, Ohmea USA) recorded digital arterial blood pressure in wave forms for calculation of beat by beat systolic, mean and diastolic blood pressure. The central autonomic (brain stem) control of cardioinhibitory activity was monitored by means of the NeuroScope TM (Medifit diagnostics, London, UK), which calculates cardiac vagal tone from e.c.g. R-R intervals. The cardiac vagal tone was expressed in arbitrary units on a linear vagal scale.

Explanation of the NeuroScope method of assessment of central autonomic

 function (for further details see Julu 1997. Julu et al 2001)Excitation of the baroreceptor combined with the rise in arterial pressure caused by ejection of blood from the left ventricle, inhibits firing of the sinoatrial node, delaying the onset of the following cardiac cycle, as reflected in the R-R interval. As blood is ejected into the arteries at every cardiac cycle, stimulating
the baroreceptors, there are rapid and quantifiable pulse synchronised changes in R-R intervals. These are measured continuously via the NeuroScope TM. Baroreceptor signals are the main source of excitation for the cardiovagal motor neurones in the medulla. The cardiac vagal tone is the end result of impulses carried in the vagus nerve and regulated through integrative processes in the nucleus of the tractus solitarius, nucleus ambiguus and bulbar reticular formation. Being the only inhibitory output of the cardio respiratory integrative system, cardiac vagal tone is very important in rapid cardiovascular responses and is a major contributor to integrative inhibition in the system. The normal mean value in healthy young supine adults breathing quietly is 10 arbitrary units in the linear vagal scale (LVS), falling to zero at full atropinisation. The cardiac vagal tone is a more direct indicator of central cardiovascular parasympathetic output than the surrogate index respiratory sinus arrhythmia. The cardiac sensitivity to baroreflex is the increase in pulse interval per unit change in systolic blood pressure. It is calculated by quantifying cardiac responses to ejection pressures in each cardiac cycle as delta $R R /$ delta $S B P$ where delta $R R$ is the difference between present and previous e.c.g. R-R intervals and delta SBP is the difference between the systolic blood pressure values in two preceding cardiac cycles. The cardiac sensitivity to baroreflex indicates the overall gain in the negative feedback in the baroreflex system set up in the nucleus tractus solitarius and the nucleus ambiguus.

Breathing movements, levels of blood gases and blood pressure wave forms were transmitted through an interface - the MedullaLab (Medifit diagnostics) and joined the neuroscope data in a common microcomputer. The VaguSoft soft ware (Medifit diagnostics) simultaneously recorded e.c.g., heart rate, cardiac vagal tone, systolic, mean and diastolic blood pressure, blood gases and cardiac sensitivity to the spontaneous arterial baroreflex. The e.e.g was recorded on a 16 channel PL-e.e.g. in the UK (Walter Graphtec UK, West Sussex) and on an 8 channel paper machine (Nihon Ohden, Tokyo, Japan) in Sweden. Breath by Breath analyses of 47 cases excluded all interruptions.

Baseline function was defined as autonomic activity during normal breathing with normal levels of blood gases. Control subjects voluntarily hyperventilated and held their breath in accordance with our demonstrations.

Statistical values were given as mean (SEM). Statistical differences were assessed using analysis of variance (ANOVA) with a two sided Student t test for probability (p) values, using Minitab for Windows 11.21.

The respiratory and autonomic results are shown in figure 5.5.1 Appendix \mathbf{A}. No control subject showed spontaneous respiratory dysrhythmia. All Rett subjects had some normal rhythm while awake but also showed 5-11 (mean 8) types of abnormal rhythm (see figures 5.5.2-6). Valsalva breathing occurred in 26 of 47 subjects tested (59\%), Biot's breathing in two, and Cheyne-Stokes respiration in 12 subjects with inadequate breathing.

Breathing patterns and levels of vagal tone differed in the different age groups (fig 7 and table 1 (figure 5.5.7 \& 8). Most forceful breathers were under 5 years and most normal and Valsalva type breathers were older. Combined percentages of breathing dysrhythmias in the $0-9$ years age groups were higher than in the older age groups) $\mathrm{p}=<0.005$. The percentage of Valsalva breathing in the over 19 year age group was higher than in the youngest group ($\mathrm{p}=<0.01$) or in the $6-9$ year age group ($\mathrm{p}=<0.05$). Inadequate breathing was most commonly seen under 18 years of age, where Cheyne -Stokes breathing was also seen. This was the same pattern as was seen in the 1987 study. Since it was already shown that more severely affected people were likely to die earlier (Kerr et al 1995) it seemed possible that the different patterns at different ages reflected the longer survival of the least affected people.

Ventilatory efficiency in Rett cases

Blood gases were adequately recorded transcutaneously for detailed analysis in 27 subjects. Carbon dioxide fell during intense hyperventilation and rose during inadequate breathing as oxygen levels fell. Mean lowest and highest PCO2
values were 4.12 and 5.43 kPa (31 and 41 mm Hg) respectively. In two of 27 feeble breathers (7\%) P CO2 exceeded $7.98 \mathrm{kPa}(60 \mathrm{~mm} \mathrm{Hg})$. Repeated apnoea or valsalva breathing was always associated with a PO2 below $10.64 \mathrm{kPa}(80 \mathrm{~mm}$ Hg). Valsalva breathers did not have raised PCO2. Oxygen levels fell below $6.65 \mathrm{kPa}(50 \mathrm{~mm} \mathrm{Hg})$ in 14 of 27 Rett subjects (52%).

Baseline autonomic function
Baseline brain stem autonomic function was analysed in 48 females aged 2-35 years, mean 13.2 years and in 11 controls ages 5-28 years (mean 10.2). There was no significant difference in mean resting heart rate (mean SEM): Rett 101 (3.6) beats/min) or mean arterial blood pressure (Rett 79 (5.3) mm Hg , controls $86(7.1) \mathrm{mm} \mathrm{Hg}$). Mean cardiac sensitivity to baroreflex was lower in Rett cases than in controls (Rett 3.4 (0.4) $\mathrm{ms} / \mathrm{mm} \mathrm{hg}$; control 6.2 (0.9) $\mathrm{ms} / \mathrm{mm} \mathrm{Hg}$; $\mathrm{p}<00.01$). Mean cardiac vagal tone was also low in Rett cases: (Rett 4.5 (0.4) units; controls 2 (1.2) units in the linear vagal scale; $p<0.002$).

Vacant spells and associated events
Epileptiform e.e.g features increased in sleep and diminished on alerting. Monorhythmic theta waves increased with age. Epileptiform discharges were rarely associated with clinical seizures or vacant spells. Valsalva breathing was sometimes accompanied by $4-5 \mathrm{~Hz}$ theta wave activity and prolonged apnoeas caused e.e.g. flattening. Many vacant spells in 48 of 56 subjects were associated with involuntary movements and dystonic postures and appeared during shallow breathing, long breath holds, central apnoeas, apneusis and Valsalva breathing.

Effects of breathing dysrhythmias on autonomic function
Voluntary hyperventilation, invited in control subjects, was accompanied by increased mean blood pressure, promptly countered by increased cardiac vagal tone with a consequent decrease in heart rate bringing the blood pressure under control, after which heart rate was restored to normal (figure 5.5.9). Vagal tone was maintained raised during hyperventilation and was withdrawn when
hyperventilation ceased. During the spontaneous hyperventilation occurring in Rett subjects (figure 5.5.9) cardiac vagal tone increased transiently but was withdrawn and reinstated only after the hyperventilation ended. The increase in the mean blood pressure started by the onset of hyperventilation was thus uncontrolled. In control subjects, both cardiac vagal tone and cardiac sensitivity to baroreflex reflecting parasympathetic control were withdrawn at the beginning of the voluntary breath hold and restored immediately at the end. The cardiovascular system was thus under the sole influence of the sympathetic system at that time (figure 5.5.10)

In the Rett cases, breath holding caused prompt withdrawal of cardiac vagal tone and cardiac sensitivity to baroreflex, as in the controls but the increase in sympathetic activity at the beginning of breath holding caused oscillation of the blood pressure ('ringing'), indicating poor negative feedback regulation (figure

5.5.10, Appendix A).

Risk factors identified in Rett
Five Rett subjects developed a progressive decrease in blood pressure with diminishing cardiac vagal tone and cardiac sensitivity to baroreflex. Mean arterial blood pressure approached 40 mm Hg , the level associated with spinal transection; cardiac sensitivity to baroreflex and cardiac vagal tone came close to zero and heart rate approached the intrinsic rate of the sinoatrial node, suggesting lower brain stem shutdown (see figure 5.5.11). The e.e.g. showed very low voltage or flat recordings and the transcutaneous oxygen levels fell. These episodes followed repeated or prolonged periods of Valsalva manoeuvres, hyperventilation or poor ventilation. The longest such shutdown lasted 3 minutes.

A background of feeble breathing with low P 02 and raised PCO 2 can lead to repeated episodes of exaggerated simultaneous increases in cardiac sensitivity to baroreflex, cardiac vagal tone and blood pressure (see figure 5.5.12). The term 'brain stem storm' seems appropriate for this event as the functional indices of the whole brain stem - rostral, caudal and dorsal - were simultaneously and
momentarily increased. Such large sudden increases in vagal tone with poor ventilation, raise CO 2 and hypoxia carry a risk of cardiac arrest.

Episodes of brain stem activity were observed which did not conform to the expected physiological activation of the neurones involved. Normally output from autonomic neurones is continuously adjusted through reflexes or pacemaker neurones according to the body's requirements. The term 'brain stem epilepsy' while controversial, seems appropriate to describe this brief widespread aberrant activation of the brainstem neurones although no epileptiform activity was recorded at the cortex in these cases during the study (figure 5.5.13) This event differed from brain stem storm in that the known predisposing factors - low PO 2 , high PCO 2 were absent. Epileptic involvement of the respiratory neurones may be a hazard in Rett.

From this study a number of important conclusions could be drawn.
Brainstem function, including breathing rhythm, cardiac sensitivity to baroreflex and cardiac vagal tone, which are maintained by complex integrative inhibition, are affected in the Rett disorder, whereas the baseline sympathetic tone, which is maintained by pacemaker activity, is preserved. The normal baseline arterial blood pressure in Rett cases indicates normal sympathetic function in the brain stem. The oscillation of blood pressure during breath holding in Rett indicates lack of parasympathetic restraint of the sympathetic system because the cardiovascular system is normally restrained through a parasympathetic negative feedback system. Whereas healthy people can cope with the reduced negative feedback in the parasympathetic system during a breath hold, this manoeuvre is precarious in Rett. That Rett subjects did maintain normal breathing while asleep may reflect improved inhibitory integration in the brain stem during sleep. The breathing dysrhythmias while awake may suggest poor integration at higher centres such as the hypothalamus and the limbic cortex where wakefulness drive of breathing is significantly modulated.

The apneusis (protracted inspiration) seen in the youngest girls suggests a serotonin related defect $(-\mathrm{HT})$ in the brain stem as $5 \mathrm{H}-\mathrm{T} 1 \mathrm{~A}$ receptors play a major part in the initiation of expiration (see section 8.1)).

In the Valsalva breathing that is seen most in older people, the forceful expiration against a closed upper airway contributes to aerophagy and abdominal distension, a frequent and sometimes painful problem in these people. This deserves further investigation. It appears possible that the Valsalvas are due to poor coordination between the expiratory effort and the upper airway.

The shallow breathing and inadequate ventilation seen in some cases is easily overlooked in everyday life. Its absence among older people suggests an association with more severe disease and shorter survival. The weak respiratory drive may lead to rising CO 2 and falling O 2 . That combination stimulates the peripheral chemoreceptor and combined with poor central respiratory drive leads to maximal cardiovagal excitation such as was seen in the brain storms. (figure 5.5.12)

Brainstem shutdown may be due to post activation-or post ictal neuronal quiescence after the severe brain stem activation following forceful breathing (figure 5.5.12).

Epilepsy originating in the brain stem may not be unique to Rett and might be looked for in other conditions.

The labile respiratory rhythms, low baseline vagal tone and cardiac sensitivity to baroreflex which is comparable to that of neonates and the signs of the inability to restrain sympathetic responses in Rett suggest brain stem immaturity and a lack of integrative inhibition. These failures may explain many vacant spells and some sudden deaths and strongly support the concept of a prenatal origin in this disorder.

5.6 Critical examination of serial e.e.g. with video monitoring

At this stage in the investigation of Rett syndrome we had monitored the e.e.g. as part of the autonomic assessment finding abnormalities, sometimes with epileptogenic features but seldom witnessing an epileptic seizure. Dr Rosemary

Cooper, senior neurophysiologist recently retired from the North Staffordshire hospital, agreed to review a number of e.e.g.s recorded before, during and after the regression period to provide insight into the evolution of the e.e.g. abnormality and its relationship to suspected and diagnosed epilepsy. I invited and organised this study and provided contact with the physicians of known families. Dr Cooper requested the e.e.g.s and reported them. The paper was written jointly.

We examined data relating to epilepsy from the BIS and 150 e.e.g.s, paper recordings from 78 cases including 23 with prolonged synchronous recordings of e.e.g. respiration and movement whose assessments we had conducted for the studies reported in sections 5.2 and 5.3. The physicians who recorded e.e.g. for cases in BIS were invited to send them to Dr Cooper for review. Of particular interest were recordings made before during and soon after the regression event. Further clinical data for the subjects is supplied in Appendix C, 5.6.

The figure 5.6.1 Appendix A provides the main results of the study. The proportion of abnormal records increased from 6 of 18 (33\%) during the first 7 months to 44 of $59(75 \%)$ in the later period to 6 years, the increase in abnormality following rather than preceding the onset of regression. In young girls the abnormality increased in sleep but decreased during episodic hyperventilation and breath-holding. Epileptogenic activity was commonly present without clinical seizures. Eleven vacant spells were directly monitored during assessments in the department and these were not epileptic but related to the breathing abnormality. Without e.e.g. monitoring, these vacant spells might well have been assumed to be epileptic in origin.

This study indicated the value of monitoring when interruptions of attention or consciousness are occurring which raise the possibility of epilepsy. In Rett the intermittent e.e.g. abnormality and the behavioural changes indicate abnormal fluctuating arousal, possibly of midbrain or brainstem origin. Figures 5.6.2 \& 3, Appendix A show the e.e.g.s in two cases. Data provided by families for BIS
made it possible to compare their reports of breathing abnormality, epileptic seizure and non-epileptic vacant spells in 191 girls. A diagram at Figures 5.6.4, Appendix A shows the occurrence of these three types of disturbance in BIS indicating that whereas 46% were subject to all these abnormalities (87 of 191) only 7% appeared to have epilepsy alone without the non-epileptic attacks and noticeable respiratory irregularity. 61% (116) reported both breathing irregularity and non-epileptic vacant spells. Only 6\% reported none of these problems.

Comment on the research in this section

These studies led to consolidation of a concept of how the Rett disorder arises, indicated in the diagram (figure 5.6.5, Appendix A) and of the factors that contribute to the vacant spells seen in Rett syndrome (figure 5.6.6, Appendix A). The early studies of the dysrhythmic breathing in Rett indicated involvement of the brain stem in the disorder and led to consultations with Professor DW Richter of Gottingen who had carried out extensive research into the control of cardiac and respiratory rhythms in the brainstem. Richter came at our invitation to observe several assessments. Serotonin was agreed as a likely neurotransmitter to be implicated in the apneustic breathing seen most frequently in the youngest children with Rett since through its 1 A receptors it normally initiates the expiratory effort. For this reason we approached Dr Dawna Armstrong (Texas Children's hospital) who, with others had already carried out estimations of several neurotransmitters in the brain, to enquire if the status of Serotonin receptors had been considered. In fact estimations had been carried out but not as yet reported, as they had not been the focus of that investigation. Receptors for Serotonin were found to be greatly increased in the brain stem and specifically in the areas involved in regulation of respiratory rhythm (Armstrong \& Kinney 2001). All these findings combined to focus the research on the brainstem and its role in early brain development as well as in the regulation of later cardio-respiratory rhythms. An international autonomic workshop was therefore held at the Swedish Rett Centre at Froson and provided
an opportunity for a small number of research colleagues to view the autonomic assessments and discuss the evidence it provides on early brain stem involvement in the Rett disorder. (Witt Engerstrom \& Kerr 1998). Still more recently reports have indicated lack of serotonin transporter in the dorsal motor nucleus of the vagus nerve which might be expected to relate to the autonomic problems we have demonstrated (Paterson et al 2005).

Several early researchers investigated the cardio-respiratory and autonomic problems in Rett (Lugaresi 1985, Cirignotta 1966, Verma et al 1986, Johnsrude et al 1995, Nomura et al 1997, Guideri et al 1999). However the studies described here brought understanding to a new level with regard to the poor central autonomic control in Rett disorder and the frequent occurrences of nonepileptic vacant spells that are suffered by these people. These abnormalities constitute one of the most difficult problems in management and are very disruptive for the individual and family. They are almost certainly responsible for some of the sudden and unexpected deaths (Kerr et al 1997). When they are misinterpreted as epileptic excessive amounts of ineffective medication may be prescribed.

Section 6:

Investigations II:

6.1 Neurophysiological observations on corticospinal projections to the upper limb in subjects with Rett syndrome.

The severely disordered control of movement in Rett and the changes with age, from early hypotonia to later hypertonia gave rise to the suspicion of lesions at the level of the corticospinal tracts that increased with time (Hagberg et al 1986, Hagne et al 1989). However accounts and observations of individuals who displayed full and useful movement in limited and highly motivated situations in spite of their evidently poor control of voluntary movement led me to search for a way to investigate these tracts as I suspected that the tracts were intact and the problem arose in the higher centres. Professor Janet Eyre was already using the method of transcranial electromagnetic stimulation of the cortical neurones in a study of cerebral palsy and I invited collaboration. We agreed to investigate the excitability of the cortico-spinal neurones and the integrity of their projections to the alpha motor neurones through the corticospinal tract in subjects of different ages with Rett Syndrome. (Eyre et al 1990)

My contribution to the study was to set the research agenda and invite families to bring their girls or women, selecting a range of ages and levels of severity of the disorder and to provide the clinical assessment. The experimental methods were those of my colleagues in Newcastle. Informed consent was obtained from parents and the University of Newcastle Ethical committee approved the study.

The study was performed in 8 subjects with classic RS whose clinical characteristics are indicated in the dataset 6.1, Appendix C. Further neurophysiological details relevant to the study are given in the figure 6.1.1, Appendix A. The neurophysiological data from these subjects was compared with those from 350 healthy subjects from birth to adulthood examined as part of

Professor Eyre's earlier researches. Electromagnetic stimulation of the motor cortex and the cervical motor roots was used to evoke motor action potentials in the biceps brachii and hypothenar muscles. The phasic stretch reflex in the biceps brachii was also recorded to study the excitability of the spinal alpha motor neurons.

Electromyograms were recorded with surface mounted standard e.e.g. electrodes placed on the belly of the right biceps brachii and over the right hypothenar muscles. The signals were amplified by a Nicolet amplifier (CA 1000) and filtered with a bandpass -3 dB at 5 Hz and 1.5 kHz .

An electromagnetic stimulator (MagStim 200, Novametrix) was used to excite the motor cortex. The stimulating coil was held tangential to the scalp and positioned to obtain motor action potentials in the biceps brachii and hypothenar muscles. To excite the cervical motor roots the coil was positioned in the coronal plane dorsal to the cervical spines C 5 to C 8 and stimulus intensity reduced to obtain the longest latency to the onset of motor action potentials in the relaxed biceps brachii and the hypothenar muscles.

In all 8 subjects with RS including those less than nine years, motor action potentials could easily be evoked by stimulation of the motor cortex in both the biceps and hypothenar muscles when they were relaxed, indicating a lowered threshold for activation. Normally these cannot be evoked unless the muscle is contracted (figure 6.1.2). The values for latency of onset of the evoked motor action potentials in the relaxed muscles following cortical stimulation are shown in figure 6.1.3. In Rett subjects these lie below the lower interquartile range for relaxed muscle indicating shortening of the latency. Since the shorter latency in Rett might be due to the shorter stature of these people the values were also plotted in relation to the C5 spine to the mid-point of biceps brachii with the results shown in figure 6.1.4 and it can be appreciated that the shortening of latency in the Rett subjects is real. The durations of the motor action potentials are shown in figure 6.1 .5 as related to age of the subjects. The durations of the
motor action potentials lie well above the normal range and it can be seen that this does not alter with age.

In the Rett subjects the phasic stretch reflex was also readily evoked in relaxed biceps indicating a lowered threshold of activation (figure 6.1.6) Normally this reflex cannot be evoked in relaxed muscle after age 2 years. The latency of onset of the phasic stretch reflex in relation to the ages of the Rett subjects is shown in comparison to normal controls in the figure (figure 6.1.7). Figure 6.1.8 relates the latency of onset of phasic stretch reflex to arm length, confirming the finding that latencies are genuinely reduced. The durations of the phasic stretch reflexes in the Rett subjects were longer than normal (figure 6.1.8) and remained so in the older people (figure 6.1.9). In contrast to the findings related to cortical responses, direct electromagnetic stimulation of the cervical motor roots, which was carried out in 5 subjects, resulted in responses of normal latency and duration.

The ability to evoke motor action potentials following brain stimulation in Rett subjects implies integrity of the corticospinal tracts. The short latency indicates that either the largest myelinated fibres of the corticospinal tract conduct with faster velocities than normal or that the time for bringing the corticospinal neurones and or spinal alpha motor neurones to firing threshold is diminished. The conduction delays of the peripheral efferent and afferent components of the phasic stretch reflex are likely to be normal as indicated by the normal onset latencies and durations of the motor action potentials following electromagnetic stimulation of the cervical motor roots in the five Rett subjects examined.

Taken together with the clinical and pathological evidence on the brain in Rett, the results of this study suggest that the defect lies 'upstream' from the outflow of the motor cortex. This procedure has since been repeated in people with Rett, with the same result (Heinen et al 1996) and later studies of the neuropathology of the condition indicate the major impact of the MECP2mutation on the
synapse (Armstrong 1992).

6.2 Short fourth ray in Rett Syndrome

The presence of a short fourth ray was first observed by me in the feet of a British case and again in a girl with Rett syndrome during an international workshop and clinic in Baltimore in 1985 when I brought it to the attention of Professor Opitz who was collecting such observations of minor anomalies from all the clinicians taking part (Opitz 1986). Opitz later noticed and reported the same defect in more cases (Opitz 1987). This minor dysmorphism was of interest as throwing light on the developmental nature of the condition at a time when that was still being debated. As special clinics for people with Rett syndrome became established in Britain the opportunity arose to test the association in a large number of people. A letter to the Archives of Disease in Childhood (Kerr et al 1993) drew attention to the observation and permission was also given to examine the feet of adults resident in a Scottish institution for people with learning disability.

The aim of the study was to test the hypothesis that this defect is present in more people with Rett syndrome than is expected in the healthy population. The anomaly is referred to below as 'short fourth toe' although it is indeed the metatarsal which is also affected as shown by later radiographic studies (Leonard et al 1999). I observed that the hands were similarly affected but considered that the abnormal movements of the hands in Rett might be considered to contribute to that abnormality and so concentrated attention on the feet. Comparison could be made with the findings of Ray and Haldane who investigated the anomaly in a healthy population and found it in 3 of 2500 . They proposed autosomal dominant inheritance with incomplete (27\%) penetrance (Ray \& Haldane 1965).

I conducted this study. The methods, results and conclusions were discussed with the co-authors and statistical advice supplied by Jane Mitchell. Permission
to examine cases at a large Scottish institution for people with learning disability was given by the consultants concerned and ethical approval provided by the institution's ethical committee. Residents gave their spoken agreement. People with Rett were examined at the request and with the permission of the families attending Rett clinics. (Kerr et al 1995)

Two cohorts were included in this study:
Cohort 1 included 137 consecutive cases of classic Rett syndrome over 5 years of age examined by me at the Rett clinics organised by the Rett Associations. The 91 cases which have been recorded in BIS are listed with other relevant clinical characteristics (Appendix C 6.2).

Cohort 2 included 526 people with learning disability who were resident in an institution.

The examination was a simple observation of each bare foot, around which I drew a line. The abnormality was considered to be present when the 4th toe was of the same length as the fifth toe and substantially shorter than the 3rd toe. I examined the feet of people in the institution with the agreement of each one. Only one individual was unwilling to participate and was omitted. No other measures were employed for the entire cohort. The diagnosis of the neurological conditions was ascertained as far as possible from the case records. In cases highly suggestive of Rett syndrome families were invited to attend and supplied additional histories. The co-authors met to study the recorded outline of each foot and to agree on which were to be considered to have the short 4th toe. If there was any disagreement that foot was not rated as affected.

Cohort 1: Twenty-eight of 137 (20\%) consecutive cases of Rett Syndrome aged over 5 years and 24 of 96 (25\%) cases over 10 years had this minor dysmorphism indicating that it became more evident with increase in age.

Cohort 2: The short 4th toe anomaly was found in 19 of 526 residents in the institution (3.6%). Among 14 people with probable Rett syndrome 4 showed the anomaly (28\%). Among 49 people with Downs Syndrame 8 showed the
anomaly (16%), Only one woman with short 4th toes did not have features suggestive of either Rett or Down's syndrome. Six men with the anomaly had suffered a variety of prenatal genetic or environmental insults. One man had signs suggestive of Rett syndrome but permission for further investigation was not provided. With two exceptions the cases of probable Rett syndrome had received no earlier neurological diagnosis. The photographs at Appendix A, figures 6.2.1. and 6.2.2. show the abnormality.

A strong association was demonstrated between the anomaly and Rett syndrome and a less strong association between the anomaly and Downs syndrome. The statistician considered that further statistical tests were not appropriate since the normal adult prevalence of 3 in 2500 (1 in 800) is vastly different from that in adults with Rett (more than 1 in 5) and in Downs (more than 1 in 6) and the significance is clear.

The presence of the anomaly is highly suggestive of a prenatal defect which manifests as the individual grows, affecting both brain and limb development. A flow diagram (figure 6.2.3) was constructed to show the stages at which a postulated genetic deficit might be expected to influence growth of the organism in these ways. The number of previously undiagnosed people with signs suggestive of Rett syndrome in this adult institution should alert physicians responsible for the health of these people to be more aware of this diagnosis. It seems highly probable that such adult cases are still overlooked.

Following this study a further radiological investigation by colleagues in Australia confirmed the presence of the anomaly in both hands and feet (Leonard et al 1999).

6.3 Visual function in Rett Syndrome:

Professor Daphne McCulloch and her optometrist colleagues from the Caledonian University had worked with me in a project examining the vision of
close to 600 people with learning disability in a large institution and were highly experienced in such visual assessments (Kerr 1994). They agreed to conduct this study. I recruited the subjects to represent a range of ages and severities of classic Rett Syndrome, supplied the clinical data, contributed to planning of the protocol, visited the project and participated in the writing of the paper (Saunders et al 1995). However I did not participate in the actual assessments or analysis. Statistical analyses were provided by Professor McCulloch, comparing results in people with Rett with established normal values.

People with Rett Syndrome seldom have useful speech but families find them very responsive to visual stimuli and educational approaches frequently use the presentation of objects pictures or cards with written words to provide choice to the individual. It was agreed to carry out ophthalmic assessments in order to see if vision is adversely affected by the disorder and to provide families with information on any minor optical corrections, which might improve vision. Previous studies had carried out tests using visually evoked potentials (VEPs) but visual acuity had not been systematically investigated by this means.

The eleven subjects with classic Rett syndrome were aged 4.8-24.3years. Their clinical characteristics are indicated in Appendix C. 6.3. They attended for an outpatient assessment with their parents who gave informed consent. The control subjects were 18 developmentally normal people aged 6.4 to 21.2 years who formed part of a cohort in other studies at the Caledonian University.

Each subject was refracted using a non-cycloplegic near retinoscopy technique (Mohindra 1975) and examined by direct ophthalmoscopy. Ocular posture and pupil reflexes were assessed and gross visual field testing was attempted. Binocular VEPs were recorded using pattern onset checkerboard and grating stimuli. Subjects were placed 43 or 85 cm from the stimulus screen which subtended 29.2 by 34.9 degrees visual angle at 43 cm and 15.8 by 19.4 degrees angle at 85 cm . Grating stimuli ranged in size and the threshold was regarded as
the finest grating size to which a reproducible VEP could be elicited. An observer situated behind the stimulus display attracted the subjects' attention by talking, singing or jingling keys. A second observer ensured that the VEPs were recorded on while the individual was fixating the screen. Each VEP recording was the average of between 40 and 50 epochs initiated by the pattern presentation. An artefact rejection programme eliminated trials with amplitudes exceeding plus or minus 50 microvolt. VEP traces were judged to be reproducible if the most prominent peak occurred within 20 ms in two successive trials. Episodes of intense hyperventilation were noted as these might affect the attention or response of the individual.

10 Rett subjects and all the control subjects succeeded in completing all aspects of testing - one failed to cooperate long enough for a VEP threshold to be estimated. In general people with Rett were found to cooperate well with VEP testing, sitting quietly and attending to the visual stimuli. However poor or intermittent attention to Keeler and Cardiff cards made attempts to perform preferential looking tests unsuccessful in all cases. The range of eye movements was full although following a visual target was intermittent. No subject had nystagmus but one had exotropic strabismus. Two girls with Rett had corneal conditions. One girl had keratoconus in both eyes and one had a scarred cornea due to recurrent infection. Among the 22 eyes 11 had astigmatic errors of at least 1.5D (1.5-5D, mean 1.76D). Axes were all within 20 degrees of vertical. The mean level of ametropia was $+1.57 \mathrm{D}(-3.75-+5.75)$ among the seven subjects with this defect (see figure 6.3.1, Appendix A). Anisometropia was present in seven subjects and absent in five.

To analyse the VEPs, p100 latency was measured in the control subjects and the mean derived. The mean latency was 92.62 (SD 22.46) ms. A 95\% confidence interval, ranging from 45 to 140 ms was thus established for the latency of the positive component. In Rett subjects the largest reproducible peak within this 95% confidence limit was regarded as the p100. Both its latency and its
amplitude were noted. The latency and amplitude of negative components on either side of this p100 were also noted. Negative peaks before and after p100 were termed N60 and N120, respectively.

Subjectively the VEPs for 60'check stimuli from subjects with Rett syndrome appeared different from those of control subjects (see figure 6.3.2, Appendix A). The latency of the second negative component (N120) tended to occur earlier ($\mathrm{p}<0.1$) and to be larger than in the controls subjects. The pl00 component in Rett subjects tended to be earlier and smaller than in controls. The amplitude difference was significant at the 10% level. Despite the subjective impression of difference between the Rett and control responses no significant difference could be demonstrated at the 5\% level either in latencies or amplitudes, possibly reflecting the small sample size. see figure 6.3.3, Appendix A).

Estimates of VEP acuity thresholds were calculated in all subjects. There was a significant difference between the VEPs of the Rett subjects and those of controls, The Rett group demonstrating significantly smaller amplitudes of positive and negative components ($\mathrm{p} 100, \mathrm{p}=0.004$; $\mathrm{N} 60, \mathrm{p}=0.05$; N 120 , $\mathrm{p}=0.032$. The latencies of the p100 and N120 were significantly delayed ($\mathrm{p}=0.019$ and $\mathrm{p}=0.002$ respectively. These differences could not be accounted for by refractive errors in Rett subjects nor by accommodation difficulties.

This group of people with Rett syndrome showed a low incidence of strabismus and nystagmus and had relatively good visual acuity as compared to data from other studies of people with severe learning disability. The visual pathways do appear to be spared in Rett by comparison with other equally severe intellectually disabling disorders. All the Rett subjects appeared to use their vision and attend to a visual stimulus albeit with a short attention span. The increased p100 and N120 latencies at finest grating size suggest that Rett subjects were closer to threshold than control subjects at this stimulus size.

Although the sample size was small it would appear that, in common with other disabled populations these people with Rett have a high incidence of large refractive errors. Spectacles were indicated and prescribed for five of these subjects after discussion with the parents and proved to be well tolerated and apparently benefited the individuals, with improved participation, sociability and enjoyment of their surroundings while wearing the spectacles.

Neuro-anatomical studies of the brain in Rett have also found that the occipital cortex is relatively spared in Rett as compared to frontal and temporal areas (Armstrong 1992).

6.4 Urinary Pterins in Rett Syndrome: Messahel et al 2000

I invited colleagues to conduct this study, recruited the subjects to represent a range of ages and severities of Rett Syndrome, supplied clinical data for the British subjects and participated in the writing of the paper. However I was not involved in the laboratory aspects of the study. Ethical approval was obtained by the principal investigator.

There is increasing evidence that abnormal immune responses may contribute to neurological disease (McGeer et al 1001). However investigation in vivo is complicated by the fact that most of the mediators are biologically labile compounds that bind to target cells and disappear from the circulation soon after their release. An indirect approach to monitoring immune reactions is to quantify biochemical changes that are induced by cytokines. The macrophage is an important effector cell of the immune system and activated by cytokine interferon gamma produces large quantities of the unconjugated pteridine, neopterin that is relatively stable and can be measured in body fluids including urine (Fuchs et al 1993). Neopterin is therefore a clinically useful although nonspecific marker of immune activation and high levels have been found in the urine in a number of neurological disorders (Anderson et al 1992).

Reduced biopterins are essential for biosynthesis of the monoamine neurotansmitters, noradrenalin, adrenalin and serotonin, which are probably
involved early in the course of Rett disorder (Nomura et al 1985). The figure
6.4.1 shows the relationships between these substances. Bolthauser et al and Sahota et al found normal levels of biopterin derivatives in serum and urine of people with Rett (Bolthauser et al 1986) but Zoghbi et all found total biopterins to be raised in CSF (Zoghbi et al 1989). In Rett disorder a disturbance in serotonin metabolism is indicated by the large increase in serotonin receptors in the brain stem (Armstrong \& Kinney 2001). The age of the subjects was not considered in these studies and we suspected that the disturbance might differ in young and older people with Rett.

This study measured urinary neopterin and biopterin by high-performance liquid chromatography in 40 subjects with Rett syndrome, eight of their healthy sisters and 29 female control volunteers (age range 2-54 years). The 28 subjects recruited from the BIS are listed with relevant clinical data in Appendix C, 6.4 Data were analysed using Student's t test and Mann-Whitney non-parametric test.

The results were subdivided on the basis of age. Urinary neopterin was significantly higher in the under 6-year old Rett group compared with their control group ($0.05<\mathrm{p}<0.025$) As the age of Rett girls increased the values returned to normal values until no significant difference was seen over 21 years. The sisters of girls with Rett syndrome had neopterin values intermediate between their Rett sisters and the controls ($p>0.05$ in all cases). There was no overall significant difference in urinary biopterin levels in young girls but levels in Rett remained low while control values rose. After 11 years there were significant reductions in the levels of urinary biopterin in Rett compared with normal controls (6-10 years RS vs 6-10 years controls $p>0.05,11-20$ years RS vs controls $0.005<p<0.001$, over 21 years RS vs controls $0.05<p<0.025$. The group of sisters under 6 years showed an intermediate value for urinary biopterin and did not differ significantly for the age-matched Rett group or control group ($p>0.05$). The sisters of Rett patients also failed to show an increase in urinary
biopterin with age and so differences were observed between the older sisters and their corresponding controls. The results of the study and p values are shown in Figures 6.4.2-3, Appendix A.

The results of the study confirmed earlier preliminary findings that urinary neopterin levels are raised in a proportion of young girls with Rett syndrome but not in older women. In contrast urinary biopterin levels are not different from controls in the youngest children but while control values increase with age these remain low.

These findings may indicate immune activation during the regression phase of Rett syndrome which might reflect stress or another disease related change. They also raise the possibility that an inherited fault in tetrahydrobiopterin metabolism may increase the risk of developing the disorder, a matter that would require further investigation. The findings have still to be explained in terms of the results of the genetic mutations in MECP2 that interacts with other genes and neuroactive substances including serotonin, which is chemically related to the biopterins and found in the same pathways.

Comment on the research in this section

The investigations described here indicate abnormalities but also a degree of normality in Rett syndrome, confirming the view that this disorder, while pervasive and profoundly damaging to function of the brain does leave some areas of function virtually intact. This is of importance to the scientists' understanding of the role of $M E C P 2$ in the brain and the essential nature of this disorder - also to the therapist looking for means to assist learning and improve the quality of life. Vision and hearing are intact and clearly enjoyed by people with Rett disorder (Elefant 2002). The view of families is supported that these people can and do make use of their vision. That the defects shown in section 6.1 do not increase with age agrees with our observations that older people with Rett may live long in good health and may continue to learn throughout life.

Section 7:

Genetics

Introduction

The almost complete restriction of the Rett syndrome to females indicated the probability that this was a genetic disorder due to a mutation on the X chromosome. However its sporadic occurrence increased the difficulty of locating the affected gene and it was not until the rare occurrence of an affected brother and sister in one family (Schanen et al 1997) and three affected siblings in another (Amir et al 1999) that the first mutations on the gene MECP2 were identified in 1999 (Amir et al 1999). Since then it has become clear that there are over 300 different mutation sites and several types of mutation, any one of which may lead to Rett syndrome. It has also become apparent that the severity of the disorder is influenced by the site and type of mutation and in the female by skewing of X inactivation. It is expected that in some cases the gene MECP2 will be found to be intact and that lack of expression of the protein MeCP2 causes the disorder.

The presence of the distinctive classic Rett syndrome makes the diagnosis easy and mutations have been found in over 85% of such cases, but the Rett disorder may also manifest in such mild or severe forms as to fit the syndromic descriptions 'atypical', ' non-classic' and 'variant' Rett, in whom mutations on MECP2 have so far been found in about one third. Recently mutations have been identified in other genes accounting for some such non-classic cases and a cluster of different diseases is thus coming to be recognised for the first time, each of which must be presumed to have its impact on the neuronal infrastructure for cognition, fine hand use and speech, presumably involving synaptic structure and neurotransmission and so presenting some of the same features which have been associated with

Rett disorder. One gene in which a mutation can lead to a Rett-like disorder is CDKL5(STK5), which appears to be associated with severe early epilepsy which causes a regression (Kalscheuer et al 2003, Weaving et al 2004. Evans et al 2005)

It has been reported that certain mutations on $M E C P 2$ may present a distinctly different clinical phenotype and evidence for this is still emerging (Clayton-Smith et al 2000, Meloni et al 2000, Orrico et al 2000). There are also people who receive a diagnosis of another disorder because the physician is unaware of Rett disorder. Experience from the BIS has indicated that the diagnostic labels autism and Angelman syndrome are commonly misapplied to Rett.

7.1 Long-read sequence analysis of the MECP2 gene in Rett syndrome: correlation of disease severity with mutation type and location.

This study was planned and executed mainly by others and my part was to supply clinical data from the British survey, advise on its use and participate in writing the parts of the published paper representing that material (Cheadle et al 2000).

This study recorded the MECP2 mutations in 48 females with classical sporadic Rett, seven families with possible familial Rett and five sporadic females with features suggestive but not diagnostic of Rett. Long distance PCR coupled with long-read direct sequencing was employed to sequence the entire $M E C P 2$ gene coding region in all cases. Mutations were identified in $44 / 55(80 \%)$ of unrelated classic and sporadic and familial patients but only 20% of those with suggestive but not diagnostic features. Twenty-one different mutations were identified (12 missense, four nonsense and five frame-shift mutations) 14 of these were novel. All missense mutations were located either in the methyl-CpG binding domain (MBD) or in the transcription repression domain (TRD). Nine recurrent mutations
were characterized in a total of 33 unrelated cases (73% of all cases with MECP2 mutations). Milder disease was noted in patients carrying missense mutations as compared with those with truncating mutations ($\mathrm{p}=0.0023$), and milder disease was associated with late as compared to early truncating mutations ($\mathrm{p}=0.0190$). The individual mutation results from this study for British patients are integrated into the BIS database (Appendix B) and shown also in dataset 7.1, Appendix C. A map of the MECP2 mutations in the patients with Rett disorder is shown at figure 7.1.1.Appendix \mathbf{A}.

7.2 Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females.

This study was planned and mainly executed by others and my part was to contribute to the aims of the study, supply clinical data from the BIS and participate in writing the parts of the published paper containing that material. (Vacca et al 2001a, Vacca et al 2001b).

Subjects were 62 patients half from the UK and half from Italy all but two (Italian cases) being classic, for whom cells had previously been taken for mutation testing with fully informed parental consent. The UK subjects are listed in dataset 7.2, Appendix \mathbf{C} and further data can be found in the main database Appendix B

DNA was extracted from probands and when indicated from parents and siblings. The MECP2 coding region was studied by direct sequencing and by SSCP and CSGE analysis followed by direct sequencing of shifted and/or heteroduplex fragments. Published mutation results from other centres were also reviewed.

Diagrams of the gene and mutations and of the frequency of mutations are shown in figures 7.2.1 \& 2, Appendix \mathbf{A} including mutations reported in previous studies. The overall mutation rate in this study was 71% for UK
cases and 67.5% for Italian cases. Seven mutations were identified which had not been previously recorded. All the mutations were de novo and heterozygous. Among the point mutations all but five were $\mathrm{C}-\mathrm{T}$ transitions. Eight cases had frame-shift mutations due to deletions in exon 3 (severe cases) or an insertion in exon 2. The majority of mutations were restricted to the functional MBD and TRD domains of the MECP2 gene and the six most common mutations accounted for 62% of the total. However deletions were also detected in the 3^{\prime} coding region from base pairs 1116 to 1165 outside the MBD and TRD domains and these appeared to be quite common. This observation led to the suggestion that a new functional domain exists on the MeCP2 protein. This region of MeCP2 shows a homology of 35% identity and 50% positivity in a 75 amino acid stretch with two other brain specific factors, brain specific factor 1 (BF1) and fork head 4 (FKH4) (Murphy et al 1994). Such relationships between different genes may underlie observations of a number of conditions - different from or atypical for Rett which may be associated with MECP2 mutations (Meloni et al 2000).

From these results and the review it was clear that function of the MeCP2 protein is essential for the Rett phenotype as mutations are spread throughout the entire length of the protein. It was also obvious that the frequency of mutations clusters in certain areas. Previously unknown mutation sites were added to those already recognised and there was speculation as to how different mutations may interfere with the function of MeCP2.

7.3 Mutation analysis in the MECP2 gene and genetic counselling for

Rett Syndrome.

This study was planned and executed mainly by others and my part was to supply clinical data from the British survey and to participate in writing the parts of the published paper representing that material (Gill et al 2003).

The study reported 11 families with more than one member with non classic or classic Rett Syndrome. In one British family the same MECP2 mutation, R133C was present in two sisters with clinical Rett syndrome (BIS 148,149) and in their healthy mother see figure 7.3.1, Appendix A. In a second British family girl (BIS 22) has classic Rett syndrome with an R294X mutation. Her younger sister (BIS 399) had mild developmental difficulties at 7-11 months, with reduced speech and social interest and it was feared that she might have Rett disorder but by five years she was clearly functioning normally and has been shown to have normal MECP2. In a third British family a girl with classic Rett and an R294X mutation (BIS 322) has a non-dysmorphic maternal aunt with moderate developmental difficulties and a history suggestive of social withdrawal at 27 months. No mutation has been identified in that lady. Among the other eight families only people with definite clinical signs of Rett syndrome were shown to have $M E C P 2$ mutations.

It was concluded that family recurrence of Rett syndrome is unusual and that other causes should be carefully considered in developmentally delayed siblings of a person with Rett syndrome. However since the disorder may be inherited the sisters and mothers of affected individuals should be offered MECP2 gene testing. This study also indicates that the clinical signs of Rett syndrome are a very useful guide to the disorder and that severe developmental difficulties in families with a person with Rett should have other diagnoses considered in addition to Rett as the are less likely to have the Rett disorder.

7.4 Dimensional phenotypic analysis and functional categorisation of mutations reveal novel genotype-phenotype associations in Rett syndrome.

This study was planned and for the main part executed by others and my part was to supply clinical data and measures of severity and typicality for Rett and to participate in writing the parts of the published paper representing that material (Charman et al 2005).

The study aimed to explore genotype-phenotype correlations in Rett syndrome in terms of the typicality and severity of the clinical manifestations, adopting a multi-dimensional approach.

Included in the study were 190 mutation tested people reported to have Rett syndrome including 5 males (140 classic, and 50 non-classic (atypical) Rett syndrome). Mutations had been identified in MECP2 in 135 of these cases. Data was contributed from BIS (BIRS) and reports from other centres in the UK. In all cases the parents/ carers gave fully informed consent. Typicality was judged from the presence of the necessary and supportive features of the syndrome and BIS severity scores were adopted (Figure 2.2.1 Appendix \mathbf{A} and Kerr 2003). The RSBQ hand score is a behavioural measure derived from the intensity of hand stereotypy (Mount et al 2001). Figures 1.3.5 and 1.3.7 show the diagnostic and supportive criteria in early and modified forms. Diagrams showing the mutations on MECP2 can be seen at Figures 7.1.1 \&7.2.1.

Statistical analysis: (further details are provided in Charman et al 2005) For those cases with identified MECP2 mutations, group mean scores on the dependent variables were compared using analysis of covariance (ANCOVA), covarying for age. The group mean scores for dependent variablesin cases with common individual mutations were compared using

Kruskal-Wallis and Mann-Whitney nonparametric tests, appropriate for small group sizes. Categorical comparisons were conducted using the X2test. Alpha was set at $\mathrm{p}<0.05$ (two-tailed) throughout, with appropriate Bonferroni corrections for multiple comparisons being employed in post hoc tests (Carman et al 2005).
Probability values, ' p ' are indicated in the legends for the figures.

Results are shown in the figures 7.4.1-6 Appendix A. Figure 7.4.1 shows the percentages of people with mutations identified among classic and atypical Rett groups Among classic cases personally diagnosed by AK in BIS (BIRS) 89.5\% had mutations (non classic Rett cases 20\%). In cases reported as classic in other centres 78% had mutations identified (nonclassic Rett 40%) Overall 82.9% of reported classic cases and 38% of reported non-classic Rett cases had mutations

Figure 7.4.2a shows that a mutation is more likely to be identified when a regression occurs between 6 and 30 months and when the age at the first seizure is reported after 12 months.

Figure 7.4.2b indicates that cases in which a mutation is not identified are more likely to have had some other event or illness to explain the neurological disorder and are more likely to be dysmorphic.

In Figure 7.4.3a the typicality of cases with early truncating mutations, believed to interfere most with the production of the protein MeCP2, is compared with the typicality of cases with mutations believed to have a milder effect - missense and late truncating mutations. It can be seen that there is some difference $(\mathrm{p}=0.05)$

Figure 7.4.3b indicates that the presumed severity of the different categories of mutation is reflected in the BIS (BIRS) clinical severity scores ($p<0.001$, maximum severity score $=10$), and to a lesser extent relates to
the reported intensity of the RSBQ hand stereotypy score ($\mathrm{p}<0.01$) (maximum severity of hand stereotypy=12).

Figure 7.4.3c For those cases with a $M E C P 2$ mutation this figure indicates the association between early truncating mutations (presumed to have a more severe effect) and the onset of regression or of seizures before 6 months.

Figure 7.4.4 illustrates how the numbers of necessary and supportive criteria relate to the common individual mutations, indicating the less classic presentation of R133C and R168X. One reason for this difference is shown in Figure 7.4.5 where BIS (BIRS) severity scores are shown for the same group of mutations and R133C and to a lesser extent R306C can be seen to be milder than the other mutations. Figure 7.4 .6 shows the later age at onset of regression associated with these two mutations relative to the more severe mutations R168X, R 255X, R270X and T158M.

This study employed mutation test results, the BIS (BIRS) severity scoring system from BIS (BIRS) and the hand stereotypy score (RSBQ) to examine the reliability of the clinical diagnosis when the classic criteria are present, to explore situations in which the presentation is less typical and to relate type of mutation to clinical presentation. Early truncating mutations were shown to be associated with more severe disease than missense or late truncating mutations. The mutations R133C and R306C are associated with less severe disease and later onset. More severe disease with earlier onset of regression and of reported seizure is associated with R270X, R168X, R255X and T158M. Presentation may be less classic in the mild disorder. In the comparison of 6 common mutations (Figure 7.4.4-6) the BIS (BIRS) severity score differed significantly ($\mathrm{p}<0.001$) and Manley-Whitney post hoc comparisons showed that cases with R133C had a significantly lower
severity score than those with R255X and T158M. Across the six groups the RSBQ hand score did not differ significantly.

7.5 Large genomic rearrangements in MECP2.

This published study was planned and for the main part executed by others (Ravn et al 2005). I supplied clinical data from the British survey for five subjects and participated in writing the parts of the paper representing that material. Subjects were profiled using the international guidelines (Kerr et al 2001). UK subjects are shown with data in Appendix B. BIS codes 791, 915, 605, 550, 398.

At the time of this study it had become clear that $80-90 \%$ of people with clinically classic Rett syndrome have mutations in $M E C P 2$, leaving some classic cases unexplained. This study used the Multiplex Ligation dependent Probe Amplification technique MLPA to screen 45 patients with Rett syndrome who had previously tested negative for mutations in the coding regions of $M E C P 2,19$ of whom were classic. The method determines the number of copies of each MECP2 exon. With this approach seven patients were detected with genomic deletions not previously found. These included the subjects in BIS 550 and 398. These people with large rearrangements which had not been previously detected all had classic Rett syndrome, thus the detection rate among classic cases who had previously been reported mutation negative was 37% (7 of 19). The seven deletions detected in this study spanned from 15 kb to approximately 80 kb and together covered the whole gene $M E C P 2$. In three of these cases the mutations also affected part of the adjacent IRAK 1 gene. However these patients did not display additional clinical features.

The pattern of X inactivation was determined and was considered to be skewed if more than 80% of either X chromosome was inactivated. One
case was found to have skewed X inactivation without obvious clinical consequences.

Comment on the research in this section

The studies in this section have progressed understanding of the nature of the Rett syndrome and disorder in several ways. There is clearly some correlation between the type and position of the mutation on MECP2 and the clinical presentation but how much of the variety is due to the pattern of X inactivation is still to be explored. It is clear that whereas the classic Rett syndrome is almost always found to be due to mutations in MECP2 there are still cases in which one has not been identified. It seems possible that in at least some of these the fault lies in failure to express the MeCP2 protein rather than a $M E C P 2$ mutation per se. To understand the relationship between the gene and the clinical presentation will require further work and may lead to new and perhaps more efficient ways of making the diagnosis.

The situation as regards non-classic Rett is complex and has only begun to be explored. It is to be expected that more than one disease process may lead to a particular constellation of clinical signs so we should expect that mutations elsewhere in the genome or indeed other early neurological insults will produce some of the symptomatology associated with Rett. Also it should be expected that some mutations in MECP2 will lead to unexpected presentations due to their position or to other epigenetic factors. Adjacent genes may be affected and translocation may involve other areas in the genome. In this next stage of investigation it will be important for the cases under discussion to be clearly described (Kerr, Nomura et al 2001).

Advice to the family of the person with Rett syndrome has improved with these and similar studies. If a mutation is found in one person it becomes possible to offer testing to sisters and mothers with the likelihood of being able to remove or greatly reduce the fear of recurrence, although we still
know little about any factors which might predispose to germ line mutation. The situation for the family is more difficult when a mutation is not identified and many people find it hard to live with the uncertainty even if the clinical diagnosis is clear.

Section 8:

Management in Rett syndrome

Possibilities for specific intervention in Rett disorder have grown with the discovery of the affected gene in 1999 and the development of methods, albeit still in the early stages, for the introduction or release of the normal gene in the cells of the affected individual. Improved understanding of the pathogenesis has indicated possibilities for pharmacological treatment and recognition of the earliest signs of the disorder raises the hope that it may become possible to treat the young infant soon after birth, before the onset of the regression period. However these possibilities are still for the future and the approaches described here reflect a pragmatic, damage limiting approach.

8.1 Serotonin and breathing dysrhythmia in Rett Syndrome.

I selected the individual for treatment (BIS 712, Appendix B), conducted the clinical examinations, organised the autonomic assessments and arranged the meetings with international collaborators. The autonomic assessments were carried out with a collaborative team consisting of the physicist Dr Stig Hansen, e.e.g. technician Mr Apartopoulos and Autonomic physiologist Dr Peter Julu and myself. Ethical approval was from the Southern General Hospital (Kerr et al 1998)

The family gave informed consent and the pharmaceutical firm agreed to the named patient prescription. No funding or other inducement was received.

Our observations of the abnormalities of breathing and cardiac rhythm in Rett (see neurophysiological investigation) led us to the conclusion that central autonomic control remains close to the neonatal level in Rett disorder, with relatively normal sympathetic drive but inadequate parasympathetic restraint when the individual is awake and active. Among the several different patterns of breathing recorded in

Rett it is an apneustic pattern, which predominates in the youngest children in whom there is an abnormally long inspiratory phase. Serotonin provides an important component for initiation of the normal expiratory effort. In studies of donated Rett autopsy material Professor Dawna Armstrong and colleagues demonstrated that the receptors of serotonin are greatly increased indicating a problem in serotonin production or use. Following a report of the successful treatment of patient with damage to the brain stem inspiratory centre using buspirone, a specific serotonin 1A agonist (Wilken et al 1997) and after discussion of their result with Professor Richter and Dr Wilken the authors, we agreed to offer this treatment in the case of a relatively able girl with Rett syndrome and particularly severe apneustic pauses which led to faints.

The subject presented to me because of her extreme apneustic breathing and faints. Her parent and physician requested advice on treatment and agreed to a trial of buspirone. The methods which we had developed for continuous noninvasive time-locked measurement of respiratory and cardiac rhythms, blood pressure, e.e.g., and blood gases with video allowed us to measure the abnormality of respiratory rhythm before and after the introduction of buspirone.

The recommended dose was 5 mg daily increasing in stages of several days to 20 mg daily. Two days after beginning treatment the family noticed benefit in that the girl became less agitated and had fewer attacks. A reassessment 2 months after the introduction of treatment indicated a decrease in the percentage of apneustic breathing. The girl continued to be maintained on this medication. Figure 8.1, Appendix A shows the percentages of respiratory rhythms before and after two months of treatment. There was a marked improvement in the amount of apneustic breathing. There were no unwelcome effects of the treatment. The family and their physician have since chosen to continue this treatment.

It is of interest that after mutation testing became available a mutation was not found in this girl. Although it is acknowledged that there are people with Rett
disorder in whom mutations are present but not so far identified, however it remains possible that the subject of this study has a different disorder which is impacting on the brain stem respiratory centres and much else in the brain in a similar way to the Rett disorder.

A PhD study conducted by Dr Sami Al-Rawas under the guidance of Dr Peter Julu and with advice from myself confirmed the value of buspirone in a larger number of young children with Rett syndrome, selected as suitable because of a high proportion of apneustic breathing. The effect of buspirone was to reduce the proportion of apneustic breathing in some cases However it did not prove effective in all cases and had no effect in reducing other types of abnormal rhythm. This PhD was accepted and is in the possession of the University of London, Imperial College, and the work has not so far been published, personal communication)

8.2 Results of Surgery for Scoliosis in Rett Syndrome

This project was planned and executed by myself using the longitudinal data health data available in BIS. Comment was invited from an experienced parent and from the surgeon responsible for most of the corrective surgery in the UK (Kerr et al 2003).

In this descriptive study it was not possible to find precisely matched controls for each operated case. Statistical advice was provided in planning and in analysis by Robin Prescott, Professor of Medical Statistics at Edinburgh University who judged that the inclusion of all the available cases with sufficient data and comparable age and severity would allow useful comparisons to be made (Kerr et al 2003).

Scoliosis is a common complication of Rett syndrome and can become severe. In BIS scoliosis was present in 3% of cases before regression but by 25 years it affected 87%. In the 16-20 year age group 43% (75 of 173 cases) were reported
with severe or operated deformity. In the past many surgeons have been reluctant to operate because of the fragility and reduced lifespan of the individual with Rett and the perception that she cannot benefit from the improved posture. Developments in operative techniques and policies have reduced the requirement for immobility after surgery and with changing awareness of potential quality and length of life in Rett, more operative correction has been undertaken. Cases in the BIS cohort for whom surgery had been carried out were reviewed to compare the reports of their health provided by families before surgery and new reports of the same items of health following surgery in order to assess benefit.

In estimating the prevalence of scoliosis all individuals in the BIS with classic Rett and sufficient data were included (Appendix B provides brief data on all BIS cases). In assessing the effects of surgery only those classic cases were included who had data provided before corrective surgery and at least one year after surgery (dataset 8.2 Appendix C). The severity of the scoliosis is considered mild if it is perceptible but appears to cause no inconvenience to the individual, moderate if it is marked with some perceived effect on balance or posture and severe if that effect is considered severely disabling, The opinions of the parent and physician are both taken into consideration. This is inevitably a subjective judgement. A photograph is invited, taken from the back with the individual seated and the spinal processes marked in felt tip pen but only a minority of families have been able to supply this. New radiographic evidence of severity of scoliosis is not requested, as that is considered unjustifiable. States of health before and after surgery are recorded on each questionnaire, using the BIS scoring system (figure 2.2.1, Appendix A). The questions asked in the BIS health questionnaire include items of health and function and enquire regarding the effects of the scoliosis or surgery for scoliosis on these, whether an operation has been undertaken or not (for a copy of the data held in the survey computer and the health questionnaire see Appendix D).

The figure 8.2.1, appendix A shows the prevalence of scoliosis in classic Rett in BIS within each 5-year period throughout life.

Surgical correction was reported in 91 classic cases, 50 of whom were clinically classic with adequate prospective health data collected before and after surgery. The results of the enquiry about the effects of the scoliosis and of surgery and the states of health before and at least one year after surgery are given in the figure 8.2.2, appendix A. Dataset 8.2, Appendix C shows all the classic cases who have been operated for scoliosis and have completed one or more health questionnaires.

Following the initial post-operative recovery families considered that the operation had improved general well-being for 84% of individuals (42 of 50 classic cases with post-operative health reports), was unchanged in $3,6 \%$ and worse in $5(10 \%)$.
Thirteen of these people walked independently before surgery and 12 did so after surgery. Sitting posture had improved in 82% and deteriorated in $10 \% .52 \%$ had a reduction in chest episodes (infections or aspirations), 6% had more. Digestion of food appeared better in 42%, worse in 6%. Toilet function improved in only 10% and had deteriorated in 20%, two people having become incontinent.

On parents' reports there were short term complications of surgery in 48% of patients (24 of 50). In 6 cases the lung collapsed - almost unavoidable in this surgery. There were four respiratory infections and four wound infections. In two cases there was ventilator dependence for several days. Three cases were considered to suffer from continuing pain. In three parents remarked on a slow return to normal eating and in two there was excessive bleeding.

Longer term problems included movement of the stabilising rods necessitating further surgery in two cases and minor recurrence of scoliosis in 11 of 50 cases (22%). The five dissatisfied families gave five different reasons for their dissatisfaction, continuing pain, lack of post-operative support, the requirement
for further corrective surgery, poor health following collapse of both lungs at surgery and the continuing requirement for a brace after surgery. The co-author surgeon had no serious complications, supporting the general experience that the centres with most experience are likely to have the lowest complication rate.

From experience of the surgical procedure, advice was provided on the management of the admission, the surgery itself and the postoperative care. Parents were always invited to stay with the child throughout her stay in hospital and the operative and ward staff were given time to become familiar with the usual behaviour and abnormal respiratory rhythm of the patient. This was particularly important for the anaesthetist. Surgery aimed for a robust anterior and posterior fixation at two operative sessions separated by two weeks. An anterior shell brace involving most of the back was used initially after surgery to support the back and ease handling. It was important to ensure that adequate lifting aids were provided in hospital and at home post operatively. Maintaining adequate nutrition was of prime importance and the presence of a parent was of great value. Early mobilisation and effective treatment for pain were given priority.

Scoliosis is a severe complication of Rett syndrome adversely influencing posture, activity and the use of skills. Surgical correction can be of considerable benefit and in this questionnaire based study, led to improved well-being in 84%. In most cases sitting, standing, walking, digestion and toileting were either improved or stabilised. However the procedure is a major one, not be lightly undertaken. The advice from an experienced specialist scoliosis surgeon is to plan the operation with the family aiming to intervene if the angle of scoliosis is progressing past 40 degre, to ensure optimal nutrition before surgery, to plan for admission of the parent with the affected person and to ensure that the nursing and anaesthetic team is familiar with the complex behaviours and disabilities including the bizarre respiratory patterns of the person with Rett. The operative technique should ensure a very robust fixture and lifting aids should be supplied at home and in hospital post-operatively.

8.3 Individuals with Rett disorder and the role of the physician:

This paper enumerates the practical problems of people with Rett disorder based on my experience from research and service for these people and their families and indicates how the physician can arrange to monitor the health of these people and plan timely intervention. The diagnosis should be made early so that the family and child can be suitably supported. The table 8.3.3, Appendix A shows clinical features, which may assist in distinguishing the Rett disorder in the young child from autism and Angelmann Syndrome, both of which lead to frequent diagnostic uncertainty with troublesome consequences for child and parent (Kerr 2003, Kerr et al 2003).

Comment on management in Rett syndrome

These studies have advanced management of two specific problems for people with Rett disorder which represent the pharmacological and the physical approaches. The possibilities for the pharmacological approach are now beginning to open with the growing insights from the genetic and neurochemical advances. For the present the physician is likely to be more concerned to prevent unnecessary medication - traditional or 'alternative' than to advise more prescriptions. Non-epileptic vacant spells are all too often mistaken for epilepsy and treated with medication which only adds to the problem. Central to improving this situation will be the development of adequate cardio-respiratory-e.e.g. monitoring, still available in very few centres.

Corrective surgery has a limited place and it is essential to understand the natural history of the condition in order to know if and when to operate.

Physical therapies and educational approaches are of most importance and will perhaps remain chief among the possible interventions. Music as therapy and for pleasure, swimming and horse riding with suitable safeguards are effective in promoting health and encouraging learning. Since care depends on the family it is
important that family members are welcomed if they wish to be involved in programmes. However the care of such a person is so demanding that it is essential that flexible relief is offered to the family including time off at night if sleep is regularly disturbed and holiday breaks during he rest of the family can pursue other activities.

These are people with many and complex needs for health, education and social welfare, who cannot readily indicate their problems. In this situation the caring services must monitor health and well being, assessing needs and ensuring provision on a regular basis (Kerr 1994, Kerr 2003, Kerr et al 2003).

Section 9

Prognosis in Rett Syndrome

Introduction

The reduction in skills occurring during late infancy in a child who looked normal and had been making some progress led to an early assumption that the child had been normal before regression but thereafter the disorder pursued a downward course (Hagberg et al 1984). However my experience suggested that understanding was already restricted before regression and remained little changed after that time although the physical sequele of this profoundly disabling condition might produce the impression of true degeneration (Kerr \& Stephenson 1985, 1986). It was important to understand the evolution of the disorder in order to plan education and care for the individual and to assess the efficacy of any therapeutic intervention.

My opportunity to observe progress throughout the lifetime of people with Rett syndrome increased with the invitation to advise the two British Rett Syndrome Associations through family referral clinics, the establishment of the British Isles Survey BIS (Kerr 1991 and section 3.3) and the development of the Health Survey Questionnaire' (HSQ and coding system, attached at appendix D). I was thus able to store health data from willing families and physicians and from my clinical examinations of people with Rett at all ages.

9.1 Analysis of deaths in BIS

I planned this study which was carried out in collaboration with Dawna Armstrong and David Doyle who were responsible for the neuropathological examination of nine autopsies and with Robin Prescott, Professor of Medical Statistics, Edinburgh University, who provided statistical advice for the study and calculated the mortality rate. The rest of the content of the study is purely descriptive for which no truly appropriate controls could be provided however
the severities of cases who died, as reported before their final illness is presented for comparison with mean severities of cases who survived. I provided the clinical data from BIS and wrote the paper (Kerr et al 1997)

At this time of this study (February 1997) there were 805 cases reported to BIS, 631 sufficiently documented for classification, among whom 77% were classical (481), 13\% non-classic Rett (84) and 9\% not Rett (56). Since 1983 there had been reports of 39 deaths, 3lof these in people with classic Rett. For cases known throughout each year of the study the overall mortality could therefore be estimated at 1.2 percent per annum.

The available data for all those who have died up to the present time is shown in the dataset in (Appendix C, 9.1) Health prior to the final illness and the cause of death are established as far as possible from reports by the attendant physician and family, death certificate and post-mortem when these are available. The dataset also displays 'type of death'. This classifies deaths as 'frail-F' when the individual was debilitated with severe contractures and nutritional problems; 'seizure-S' when it was believed that severe epileptic seizure disorder had led to death; 'general-G' when the cause appeared unrelated to the Rett disorder; 'Unexpected-U' when sudden and unexpected in an otherwise robustly functioning person with Rett. For each person an index of severity was derived from the feeding difficulty score, muscle tone disturbance, presence of seizures, scoliosis and walking ability (see coding explanation at appendix D). For each person an index of health was derived from data in the year preceding the death and included frequency of seizures, weight, frequency of respiratory and other intercurrent illnesses and the parent's report on state of health. Higher figures indicate greater severity and poorer health. Causes of death were determined as far as possible from reports by physicians and families and in 9 cases from autopsy.

The table (see figure 9.1.1, Appendix A) indicates the type of death and age of each person. It can be appreciated that the largest group of deaths (48\%) occurred in 'frail' people and these deaths tended to occur in late childhood or early adult life. Mean severity for the group was 100% and mean health score 87\%.

Among four with 'Seizure' type death (13\%) severity was 75% and health 12%. Among four with 'General' causes of death (13\%) mean severity score was 80% and health score 12%. In the 'Unexpected' deaths (8 cases, 26%) severity was 80% and health score 25%. Autopsies in the nine cases (see figure 9.1.2) gave brain weights between 1100 and 1200 g - moderately reduced in weight but not sufficiently to be called microcephalic. The results of Golgi staining were the same in each case. There was no evidence of progressive degeneration but there was a reduction of basal dendrites in layers III and V in the frontal and inferior temporal cortex and the basal dendrites in III and apical dendrites in layer V in the motor cortex. The findings were the same in all nine cases and were judged not to explain the deaths. One case was investigated for cardiac changes (Kerr et al 1997). That death was sudden and unexpected following a breath hold during feeding in a girl who had previous severe breath holding attacks with loss of consciousness not necessarily related to feeding.

Professor Prescott calculated the mortality in BIS as 1.2 percent of known cases per annum. This figure presumes on all living cases and all deaths having been reported to the survey. In fact there was then and there still remains a steady flow of new reports for children and adults at all ages. Also deaths are likely to occur unreported, still commonly in undiagnosed individuals. This figure was thus only an estimate although one which has remained useful.

From this study we concluded that a proportion of the people with classic Rett might live into adult life, deaths being due to the same causes as affected normally developed people. It was clear that the initial severity of the disease played a part in the 15 (48\%) 'frail' deaths but also that these people were in poor
health, adding a further adverse factor. The study focussed attention of the proportion of people who died unexpectedly. In this group, severity was not different from that of survivors in the same age band and health was not particularly poor. Cardiac immaturity may have been a factor in one person. Having already observed the unstable central autonomic regulation underlying the characteristic irregular respiratory rhythm and non-epileptic vacant spells in Rett, we suggested that brain stem immaturities contribute to the vulnerability of these people and may lead to sudden deaths.

9.2 Predictive value of the early clinical signs in Rett disorder

This published study was conducted and the paper written by myself with independent statistical advice in planning and analysis of the results from Robin Prescott, Professor of Medical Statistics, Edinburgh University.
(Kerr \& Prescott 2005)

By the time of this study mutation testing in Rett was becoming accepted although not universally available and it was already clear that MECP2 mutations are usually found in classic Rett cases ($80-90 \%$) less often found in less typical cases ($30-40 \%$) and that in some atypical cases mutations in other genes might be responsible for the condition. The number of reports to BIS was 1159 , with the health of many recorded throughout life. The aim of the study was to establish the stability and predictive value of an early severity score for people with clinical Rett syndrome.

Cases included were all those with clinical Rett syndrome, classic or non classic whose families had agreed to have data stored in BIS (see Appendix B for selected data for all cases). Severity scores were calculated from predominant muscle tone, locomotor ability, feeding difficulty, scoliosis and epilepsy. For the calculation of severity scores (see Appendix A, 2.2.1). The scores are expressed here as $\%, 0 \%$ being the least and 100% the most severe. This simple and robust information came from parent completed health questionnaires, supplemented by
physician's reports and my own clinical examinations (see Appendix D for items and coding system). From the available data a score was given for every five-year period throughout life, highest scores indicating greatest severity. When regression had occurred the first period referred to the pre-regression period and when regression had not occurred it referred to the period up to five years of age. The second period reported severity in the years after regression or five until 10 years.

The statistical methods and conclusions were provided by my co-author, Professor Robin J Prescott (Kerr \& Prescott 2005). It is unavoidable from the nature of data collection that data is incomplete for most individuals. The approach adopted in this analysis uses all data as fully as possible, although this has the result that analyses directed at different questions are based on different numbers of individuals (for an account of this method see Brown \& R.J. Prescott 1999). The tables 9.2.1-2 indicate the numbers on which the different analyses are based. The Kaplan-Meier survival curves that are shown are calculated for classic and non-classic cases and estimates are made of survival for those with the full range of pre-regression severity scores (see Appendix A figures 9.2.1-2 and figures 9.2.3-4).

The Figure (Appendix A 9.2.1) shows the cumulative survival for the classic Rett population in bands according the levels of pre-regression (birth to regression) severity. The Figure (Appendix A 9.2.2) shows cumulative survival for the classic Rett population in bands according to the levels of immediately post-regression (5-9 years) severity. It can be seen that while the 5-9 year-old severity scores more accurately predict later survival, the scores before regression also provide early and relevant indications of the later outcome. In the group of 65 subjects with a pre-regression severity of 40% or more there were 6 deaths, with Kaplan-Meyer estimates of survival at 10, 20, and 30 years of $96.3 \%, 87.5 \%$ and 77.8% respectively. In contrast among non-classic Rett cases there were no deaths registered in 69 subjects with a pre-regression severity
score of 30% or less and a median follow up time of 9.8 years and a maximum of 43 years (graph not shown). The table at figure at 9.2.3, Appendix A lists the latest severity scores for 59 classic cases who have died, indicating the type of death reported for each. It can be seen that those dying in a debilitated condition have higher severity scores before the final episode than those dying from general causes or unexpectedly. Similarly, in the earlier paper concerning deaths 9.1 and Figure 9.1.1. it can be appreciated that the severity score in the frail people who died was 100% (maximum severity) before the final illness.

For classic and non-classic Rett we related early and late severity scores for the same individuals. The Figure 9.2.4, Appendix A shows the mean severity scores up to 29 years in 605 people with observations before regression and in at least one subsequent period, allowing comparison of three pre-regression severity bands. It can be seen that in all three bands severity indices rise sharply until about 15 years and then show some tendency to stabilise. The mildest through to the most severe show similar trends although at different levels. Those with classic Rett show much greater rises than Rett non classic subjects. Although the pre-regression severity index predicts the later severity index in all three bands the adult scores show a mean increase of around 40 points for classic subjects compared to around 20 points for Rett non-classic subjects.

The figure (9.2.5, Appendix A) shows how people with classic Rett and different levels of pre-regression severity fared at 10-14 years (a) and 15 to19 years (b). It is clear that while there is considerable individual variation the pre regression signs do give an indication of the progress to be expected later.

Early onset of regression was an independent predictor of greater severity later on ($\mathrm{p}<0.01$).

At the time of this study a minority of cases in the survey had been tested for MECP2 mutations and most deaths had occurred before it was possible to carry out mutation testing so that the mutations in each case could not be included in this analysis. The table (at figure 9.2.6, Appendix A) shows the mean severity
scores associated with the most common mutation sites on MECP2 and indicates a degree of correlation between mutation and severity. It was expected that the presence of skewed X inactivation would contribute to the outcome but that could not be investigated at this time.

We conclude that the clinical signs that are present before the child regresses are of value in prognosis. Recognition of these signs and early diagnosis are important to allow the provision of early support for parent and child and because this early stage probably represents the best time for pharmacological intervention. The natural evolution of the disorder varies according to the initial severity with the longest survival in the least affected. It is important to appreciate the different trajectories in planning for any individual and in assessing the efficacy of any intervention introduced.

9.3 The R270X mutation and mortality in Rett syndrome

This joint Australian and British study was invited by Helen Leonard and mainly conducted by others. My contribution was to supply clinical data from the British Survey and to contribute suggestions on gathering and presenting the data (Jian et al 2005). The aim was to investigate the observation that cases with the mutation R270X were lacking from studies of older people with Rett although in the Australian survey it was one of the most common mutations to be identified. The hypothesis was that the reason for the lack among older cases in other studies was earlier death in cases with R270X.

524 mutation positive cases were included, 353 from the British and 171 from the Australian based survey. Survival from birth was determined using the Kaplan-Meier product-limit method, following the example of the above paper. The log-rank test was applied to evaluate variations in survival among those with the different mutation groups. The eight most frequently occurring $\mathrm{C}>\mathrm{T}$ transition mutations were compared. Survival among cases with R270X was compared with survival in cases with all other mutations. Sufficient results for
skewing of X inactivation could not be obtained for their inclusion in the analysis.

The figure 9.3.1, Appendix \mathbf{A} indicates the survival with R270X mutation as compared with all other collected mutations over a 25 year period. The survival for cases with R270X was reduced by comparison with all other mutations when taken together.

The figure 9.3.2, Appendix A shows the numbers and percentages of deaths from each of the most common mutation groups. The percentage of deaths in the R106W group is highest, followed by the percentage of deaths in the R270X group.

It is of interest to note a degree of correlation between the percentages of deaths in this study and the degrees of severity for each mutation found in the British study reported above. In both cases the mutation R133C is associated with a better outcome. Both studies suffer from the absence of the routine testing for skewed X inactivation - unfortunately a time-consuming and expensive procedure in the existing health system.

9.4 People with mutation positive Rett Syndrome who converse.

This project was carried out at my invitation. With colleagues I recruited subjects and ensured fully informed consent. I contributed clinical data and wrote the clinical aspects of the paper. The genetic work was carried out entirely by colleagues (Kerr et al 2005). Statistical support was provided by Robin Prescott, Professor of Medical Statistics at Edinburgh University.

A distinct group of people with Rett syndrome have useful speech (Zappella1992, 1997, De Bono et al 2000). Useful speech was reported to be present in 6% of people after regression in BIS among mutation positive people (20/331). This study aimed to explore the associations of this facility and to
learn from people with speech about the attitudes and inclinations of people with the condition.

The study included thirteen MECP2 mutation positive people over 10 years of age, who had been reported to BIS or to the Institute of Medical Genetics in Cardiff, adequately documented and reputed to use clear speech in phrases or sentences in appropriate situations and on a regular basis after the regression period. The dataset is shown at Appendix C 9.4. The families completed the BIS health questionnaire with additional questions directed to ascertain the understanding and use of speech, also what we might learn from this person about her personality, interests and preferences. The results are shown in Figures 9.4.1-4, Appendix A. X-inactivation patterns were established as far as possible.

The study group differed significantly from an age matched, mutation positive control group without speech ($n=110$) with regard to disease severity ($p<0.001$), feeding difficulty scores ($p<0.001$), health scores ($p<0.001$), epilepsy ($p<$ 0.001), head circumference ($p<0.004$), age at onset of the regression period ($p<$ 0.001) - 6 in the study group did not regress, and mutation frequency (R133C $\mathrm{p}<0.006$, C terminal deletions $\mathrm{p}=0.014$). X -inactivation was moderately skewed in two and yielded no useful result in three, see Figure 9.4.1.

Speech was fragmented with a soft breathless quality and all but two had obviously irregular breathing. One person with R168X mutation preferred signing to speech. All enjoyed interpersonal contact, showing affection and preferring people to objects, clearly distinguishing the condition from autism. Ten were described as habitually anxious. Music was a source of pleasure and provided a valuable educational asset. Even in these most able people understanding was severely restricted and little initiative was shown.

While the characteristic Rett profile is present in these people (Kerr et al 2001) they are commonly not classic and the presence of speech and lack of regression may lead to missed diagnoses. A strong association was demonstrated between this milder form of the disease and R133C and C-terminal deletions. It is now accepted that when marked skewing of X-inactivation is present this can affect the severity of the condition. This group although small does indicate that favourably skewed X -inactivation need not be present in order to explain mild cases.

In 2003 Smeets et al reported predominantly autistic presentation in cases with the mutation R133C and a slower disease progression in cases with R 306 C (Smeets et al 2003). All the cases on whom we have reported with R133C are sociable and enjoy face to face communication. We suspect that this discrepancy may be due to the fact that we have used information from parents and the individuals with Rett who do retain speech. Also we have considered only those over 10 years of age. The marked hand stereotypy which is present in most people with Rett and the agitation and withdrawal which are common during the regression period may well give an impression of autism which is shown to be mistaken as that stage remits. However there are interesting similarities and the comparison is fruitful.

9.5 Mind and Brain in Rett Syndrome

The development and retention of speech is uncommon in Rett syndrome and people with these skills commonly manifested the non-classic (atypical) presentation, raising the question whether the cause was the Rett disorder or not. Some of the most severely affected people were also judged to be 'non-classic' as their skills were clearly poor from birth and regression imperceptible, again casting doubt on the diagnosis of Rett disorder. With the discovery in 1999 of the mutations responsible for the disease and the gradual spread of access to mutation testing it became possible to identify with certainty the non-classic cases who have the Rett disorder. The occurrence of a mother and her two
children each with the same mutation but with very different severity of the clinical signs and symptoms led to a full collaboration with that family in order to draw attention to the fact that the same genetic defect expressing the same profile of disability (phenotype) may show a very wide range in severity and to share the insights of a person with Rett and the ability to express her preferences and difficulties. In this study the numbers were also reviewed of people with Rett syndrome, classic and non-classic, with the ability to speak. The characteristics were compared of people with and without the ability to speak. Neuropathologist Pavel Belichenko contributed a review of his work on the neuroanatomy of the Rett brain relating to speech areas.

I invited this collaboration, contributed the clinical data, obtained the reports, reviewed the speech characteristics and wrote most of the resulting paper (Kerr Belichenko et al 2001).

The figure shown at 9.5.1, Appendix A indicates the proportions of people with and without speech in BIS at this time. The table at 9.5.2. Appendix A compares the characteristics of people with and without speech in BIS. Mutation testing was not yet generally available in the UK so that mutation test results could not be included.

The young woman was born to a healthy mother (source of her clinical information) who recognised the condition immediately because her own younger sister had been similarly affected. The infant fed poorly and seemed not to understand how to suck. Her developmental progress was very slow as regards movement and cognition however apart from her mother other professionals were reluctant to admit the presence of abnormalities. There was no regression and the child learned to walk, speak, count and read, always learning slowly and requiring much support. Her health and appearance were good and she married and had first one girl with classic Rett and then a boy who followed the same course but with much greater severity. Like the rest of his family his appearance was considered normal at birth. He smiled and had begun
to bring his hands together with stereotyped movements in the midline but weakness limited limb movements. It was quickly clear that breathing and feeding could not be managed at the same time and after a series of respiratory arrests he succumbed at 14 months.

Reviewing his studies of the speech areas in donated autopsy material, Dr Belichenko reported that there was no sign of abnormal migration of neurones. There was a reduction by $15-30 \%$ in the size of the largest neurones and the marker p38IR was reduced in all the speech areas examined as compared to controls. The interhemispheric difference was preserved in the motor speech areas 44 and 45 . This interhemispheric difference is associated with the normal development of speech and in Rett is taken to indicate that some morphological basis for speech processing is present (Leontovich et al 1999, Belichenko et al 1996, Belichenko et al 1999, Belichenko et al 2001).

It can be appreciated from these results that a significant minority of people with Rett syndrome do have speech, which may remain useful. In the case of one family there is no doubt that a mutation is present. The characteristics of the people with speech indicate capacities for social engagement and for learning. The particular value of music is emphasised for pleasure but also as an aid to learning.

The presence of the same MEPC2 mutation in a mild, classic and severe case demonstrates the wide range in clinical severity which may be expected in the Rett disorder, while the profile of the disease remains recognisable as Rett syndrome, classic or not.

The neuropathological review confirms that the infrastructure for speech is at least partially preserved in Rett.

9.6: Outcome in Rett Syndrome:

This invited chapter for a book (Kerr 2002) provided a description of the transition from childhood to adult life in Rett using research data not previously
published from BIS. The continuing growth of the brain as reflected in increasing occipito-frontal circumference is shown in the figure 9.6.1, Appendix A. Here it can be appreciated that in about half the cases OFC comes to lie below the 2SD and in the others it remains within the normal centiles although commonly suboptimal for that individual and family expectations.

The longer term changes in Classic Rett as related to the predominant abnormality of muscle tone are indicated in the figure 9.6.2, Appendix A The changing levels of function through life are indicated in the figure 9.6.3, Appendix A where it can be seen that skills in hand use, speech and locomotion tend to decline and feeding difficulties and scoliosis tend to worsen. However epilepsy was reported to be less common in older people.

The behaviours, which are associated with Rett syndrome, remain rather stable into adult life as shown (see figure 9.6.4).

Figure 9.6.5, Appendix \mathbf{A} indicates how attention to each aspect of need maintains the individual in good health, regardless of severity while neglect allows her to slip into the circle of ill-health in which each element tends to lead to the next.

Comment on the research in this section

Only with a large cohort of people whose condition is monitored over a lifetime as exists in BIS is it possible to understand the natural history of a disorder. Especially in Rett disorder a brief acquaintance can be misleading. The very young infant gives little indication of the troubles which follow. During regression it is easy to imagine that the deterioration will continue. Later in adolescence improvement in contact can accompany the increasing difficulties due to growth.

Such an understanding makes it possible to advise the family and plan the necessary support for education and therapy for child and family. Schools particularly appreciated this guidance. Is walking likely to continue? What
communication aids are likely to be required? How much activity must be built into the school day?

Families need to prepare themselves for what lies ahead, in the most severely affected person whose life expectancy is likely to be shortened as well as in the mildly affected but dependent individual who may outlive her parents and will need to be found a home for her mature years.

Without this long-term perspective on the course of the disorder it is impossible to judge the efficacy of treatment. This will apply increasingly to pharmacological and genetic intervention but already it is important as decisions are made about management of a deteriorating scoliosis or feeding difficulties. The studies in this section have added to this knowledge and it is fortunate that in the investigation of Rett syndrome research and family interests have become so mutually supportive, making long-term studies such as this possible.

Section 10

Conclusions and future directions

These studies of people with Rett syndrome began in 1982 with the aim of achieving a better understanding of the natural history of the disorder and its underlying patho-physiology and with a particular focus on the early period between birth and the onset of the late infancy regression event, the abnormalities underlying episodes of agitation, breath-holding, hyperventilation and non-epileptic vacant spells and the evolving pattern of disability through out life. Each study has added some new knowledge to its topic. Each has also contributed knowledge about the development and function of the brain in health and disease.

The combination of the investigation of a severe and little known disease and a service for the population who suffer from it led to the establishment of what is generally believed to be the largest personal cohort of this type, holding and sharing a supply of clinical data that in itself is a valuable resource and that has already contributed to many investigations beyond those first planned. With the discovery of the MECP2 mutations the British Survey data became highly relevant to the task of matching the types and locations of mutations with the clinical problems, which result. Already this research is being found relevant not only to Rett but also to such neurological conditions as autism, Downs, fragile X, 'non-syndromic MR, Angelman syndromes and others (Longo et al 2004, Orrico et al 2000, Shibayama et al 2004, Pescucci et al 2003).

The very large library of video recordings and donated early film of babies with Rett with family agreement has contributed to instruction about the disorder, has formed the basis for the studies in section 4 and is continuing to do so.

That so many people with Rett have been examined on so many occasions and that health questionnaires have been completed repeatedly and meticulously by so many families bears witness to the exceptional collaboration which has been possible with the Rett Associations and the individual families who have repeatedly demonstrated their serious commitment to research, travelling long distances to be seen and to contribute their valuable data. Donated videos have provided a unique resource. Tissues donated on the death of a person represent a costly sacrifice. Without such selfless giving none of this research could have taken place.

The studies have led to progress in several areas. The earlier widespread perception that the newborn child was normal has been replaced by realisation that signs may be detected at birth, bringing the hope that earlier diagnosis may lead to more effective support for child and family. The episodic behaviours have been traced to central autonomic dysregulation, which may be amenable to treatment at least in part. The natural history of the condition has been traced retrospectively and prospectively and demonstrated the wide range of severity within the condition. The different outcomes have been charted. All this has helped to lay a foundation for research into specific genetic and pharmacological intervention and the development of more effective physical and educational therapies. Knowing the problems directs research and understanding the natural course of the disease allows proper evaluation of any treatment adopted.

The policy of including non-classic Rett cases in the survey has aided the search for other conditions which impact on related neural mechanisms as well as the broadening understanding within the medical profession of how varied the presentation of the Rett disorder may be.

Much remains to be investigated before we can prevent and treat this condition but as the control and the actions of $M E C P 2$ and its protein MeCP2 begin to be
understood the tasks become more clearly defined. With growing understanding have come suggestions for new strategies including attempts to replace $M E C P 2$, to switch female cell use to the normal X in the female cell and replacement of factors, which are found to be reduced. Perhaps as problematic is the prospect of altering the levels of substances which are being produced in excess due to the lack of MeCP2 restraint. It is clear that the problems in the brain begin early and yet much of it develops and functions remarkably normally, nothing appears to be destroyed, at least in the early years, providing hope that effective intervention may indeed be found.

If intervention is to be fully successful much earlier diagnosis will be necessary. Prenatal diagnosis although already possible (Mari et al 2005) is not universally feasible because occurrence can seldom be predicted. However the early signs detected in the studies of section 4 indicate that careful attention to the family accounts of early development and close observation of the infant can prompt mutation testing before the regression event takes hold. The characterisation of the movement disorder in infancy and the fact that as it emerges it can be detected by gait analysis techniques and by nurses not familiar with the condition suggests that routine automated video screening may in future be developed, adapting techniques already used in computer entertainment. Such routine and automatic screening for babies might alert the physician to the need for a more detailed assessment in a young child with an excess of stereotyped movement.

My hypothesis has been that close observation of the behaviour of the individual and of the changes occurring over time, through clinical and physiological studies, would provide important clues to the pathological processes underlying the Rett syndrome and would contribute to finding its origins and directing its management. This has been demonstrated to be the case. In my view a sound understanding of the nature of the disorder and its normal clinical course, based on observation, will remain essential in guiding
research and in the evaluation of intervention. It is the practical problems of the individual, which can focus research on the areas relevant to care. Further investigation is necessary of many more aspects of Rett disorder, the osteopenia (Budden \& Gunness 2003, Leonard et al 1999a \& b), the sleep disturbance (Segawa \& Nomura1992), the growth failure (Holm 1986), the feeding difficulties (Morton et al 1997), the almost universal constipation and the scoliosis (Loder et al 1989, Kerr \& Prescott 2005) to list just a few. These are problems, which are already under investigation and already have become better understood but still remain to be solved. In achieving a complete understanding of them not only will people with Rett syndrome be helped to a better quality of life but also the new insights so gained will lead to benefits in other areas of brain disorder and neuroscience.

Section 11

Bibliography

Akbarian S, Chen RZ, Gribnan J, Rasmussen TP, Fong HF, Jaenisch R, Jones EG (2001) Expression pattern of the Rett Syndrome gene mecp2 in primate prefrontal cortex. Neurobiology of Disease. 8, 784-791.

Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Franke U.Zoghbi H. (1999) Rett Syndrome is caused by mutations in X-linked MECP2, encoding methyl CpG binding protein 2. Nature Genetics. 23, 185-188.

Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EI, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY. (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome henotypes. Annals of Neurology. 47,670-679.

Anderson DN, Abou-Saleh MT, Collins J Hughes K, Cattell RJ, Hamon CGB, Blair JA, Dewey ME (1992) Pterin metabolism in depression: an extension of the amine hypothesis and possible marker of response to ECT. Psychological Medicine. 22, 863-869.

Armstrong DD. (1992) The neuropathology of the Rett syndrome. Brain \& Development. 14, 89-98.

Armstrong DD. (1995) The neuropathology of Rett Syndrome - overview 1994. Neuropediatrics, 26, 100-104.

Armstrong D, Dunn JK, Antalffy B, Trivedi, R. (1995) Selective dendritic alterations in the cortex of Rett syndrome. Journal of Neuropathology Experimental Neurology, 54, 195-201.

Armstrong DD (1998) Rett Syndrome: clinical pathologic correlation. In : New developments in Child Neurology. ed: Velickovic Perat, Bologna: Monduzzi Editore 183-190.

Armstrong DD (2000) Rett Syndrome Neuropathology review 2000. Brain \& Development. 23, S72-76.

Armstrong DD (2002) Neuropathology of Rett syndrome. Mental retardation and developmental disabilities research reviews. 8,2, 72-76.

Armstrong DD, Deguchi K, Antallfy B. (2003) Survey of MeCP2 in the Rett syndrome and the non-Rett syndrome brain. Journal of Child Neurology. 18,10, 683-687.

Armstrong DD, Kinney (2001) The neuropathology of the Rett Disorder. In: Rett Disorder and the Developing Brain. ed. Kerr AM \& Witt Engerstrom I. Oxford. Oxford University Press. 57-84. ISBN 0-19-856815-0

Asthana, J.C., Sinha, S., Haslam, J.S. and Kingston, H.M. (1990) Survey of adolescents with severe intellectual handicap. Archives of Disease in Childhood. 65, 1133-1136.

Bauman, M.L., Kemper, T.L., and Arin, D.M. (1995). Microscopic observations of the brain in Rett syndrome. Neuropediatrics, 26, 105-10.

Badr GG, Witt Engerstrom, Hagberg I, Hagberg B. (1987) Brain stem and spinal cord impairment in Rett Syndrome: somatosensory and auditory evoked responses investigations. Brain \& Development, 9,517-522.

Belichenko PV, Leontovich T, Mukhina J, Hagberg B, Dahlström A. (1997) Morphological studies of neocortical areas and basal ganglia in Rett syndrome. European Child \& Adolescent.Psychiatry, 6, 78.

Blue ME, Naidu S, Johnston MV (1999) Development of Amino Acid Receptors in Frontal Cortex from girls with Rett syndrome. Annals of Neurology.45,541-545.

Bolthauser E, Niederwieser A, Kieraat L, Haenggeli CA (1986) Pterins in patients with Rett syndrome.American Journal of Medical Genetics 24.317-321.

Brown H, Prescott R. (1999) Applied mixed models in medicine. In Statistics in practice. Series editor Barnet V. Wiley. Chichester New York. Wiley. ISBN 0-471-96554-5

Budden SS (1995) Management of Rett Syndrome: a ten year experience. Neuropediatrics 26, 75-77.

Budden SS, Gunness ME (2003) Possible mechanisms of osteopenia in Rett syndrome: bone histomorphic studies. Journal of Child Neurology. 18 .10, 698-702.

Burford B, Kerr AM and McLeod H (2003) Nurse recognition of early Deviation in Development in Home videos of infants with Rett Syndrome. Journal of Intellectual Disability Research. 47.8,588-596

Casanova MF, Buxhoeveden D, Switala A, Roy E. (2003) Rett syndrome as a minicolumnopathy. Clinical Neuropathology. 22.4, 163-168.

Charman A, Neilson T, Mash V, Archer H, Gardiner M, Knudsen GP, Mc Donnell A, Perry J, Whatley SD, Bunyan DJ, Ravn K, Mount RH, Hastings P, Hulten M, Orstvik KH, Reilley S, Cass H, Clarke A, Kerr AM, Bailey MES (2005) A multidimensional approach to identifying genotypephenotype associations in Rett Syndrome. European Journal of Human Genetics. 13.1121-1130.

Cheadle, J. P., Gill, H., Fleming, N., Maynard, J., Kerr, A., Leonard, H., Krawczak, M., Cooper, D. N., Lynch, S., Thomas, N., Hughes, H., Hulten, M., Ravine, D., Sampson, J. R., and Clarke, A. (2000). Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Human Molecular Genetics. 9, 1119-1129.

Cirignotta, F., Lugaresci, E. and Montagna, P. (1986). Breathing impairment in Rett Syndrome. American Journal of Medical Genetics, 24, 167-173.

Clayton-Smith J, Watson P, Ramsden S, Black GC. (2000). Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 356, 830-832.

Cooper RA, Kerr AM, Amos PM. (1998) Rett syndrome: critical examination of clinical features, serial e.e.g. and video-monitoring in understanding and management. European Journal of Paediatric Neurology. 2, 127-135.

Couvert P, Bienvenu T, Aquaviva C, Poirier K, Moraine C, Gendrot C, Verloes A, Andres C, Le Fevre AC, Souville I, Steffann J, des Portes V, Ropers HH, Yntema HG, Fryns JP, Briault S, Chelly J, Cherif B (2001) MECP2 is highly mutated in X-linked mental retardation. Human Molecular Genetics. 10.9, 941-946.

Coy JF, Sedlacek Z, Bachner D, Delius H, Poustka A (1999) A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3^{\prime}-untranslated region of the methyl-CpG-binding protein 2 gene (MECP2) suggests a regulatory role in gene expression. Human Molecular Genetics. 8,1253-1262.

De Bona C, Zappella M, Hayek G, Meloni I, Vitelli F, Bruttini M, Cusano, R, Loffredo P, Longo I, Renieri, A (2000) Preserved speech variant is
allelic of classic Rett syndrome. European Journal of Human Genetics. 8, 325-330.

Deguchi K, Antalffy B, Twohill LJ, Chakraborty S, Glaze DG, Armstrong DD (2000) Substance P immunoreactivity in Rett Syndrome. Paediatric Neurology. 22, 259-266.

D'Esposito M, Quaderi NA, Ciccodicola A, Bruni P, Esposito T, D'Uso M, Brown SDM (1996) Isolation, physical mapping and Northern blot analysis of the X -linked human gene encoding methyl-CpG-binding protein, MECP2.Mammalian Genome. 7, 533-535.

Diagnostic Criteria Working Group (1988). Diagnostic Criteria for Rett syndrome. Annals of Neurology, 23, 425-28.

Einspieler C, Prechtl HFR, van Eykern AL, de Roos B,(1994) Observation of movements during sleep in ALTE and apnoeic infants. Early Human Development. 40.39-50.

Einspieler C, Prechtl HFR, Ferrari F,Cioni G, Bos AF (1997) The qualitative assessment of general movements in preterm, term and young infants - review of the methodology. Early Human Development,50,47-60.

Einspieler C, Kerr AM \& Prechtl HFR. (2005a) Is the development of girls with Rett disorder really normal? Pediatric Research. 57, 696-700.

Einspieler C, Kerr AM, Prechtl HFR. (2005b) Abnormal General movements of girls with Rett disorder: the first 4 months of life. Brain \& Development 27.1.8-13.

Elefant C. (2002) Speechless yet communicative: revealing the person behind the disability of Rett syndrome through clinical research on songs in music therapy. In: Music Therapy in Europe. Eds. Aldridge G. DiFranco G, Ruud E, Wigram T ed. Ismez. Rome.

Evans JC, Archer LH, Whatley SD, Kerr AM, Clarke A, Butler R (2005) Variation in exon 1 coding region and promoter of MECP2 in Rett Syndrome. European Journal of Human genetics. European Journal of Human genetics.13,124-126.

Eyre J, Kerr AM, O'Sullivan M, Ramesh V. (1990) Neurophysiological observations on corticospinal projections to the upper limb in subjects with Rett Syndrome. Journal of Neurosurgery and Psychiatry. 53.874-879.

Fuchs D, Weiss G, Hausen A. (1992) In: Neopterin:Biochemistry, Methods, Clinical Application. Berlin, New York, Walter de Gruyeter.

Gill H, Cheadle JP, Maynard J, Fleming N, Whatley S, Cranston T, Thompson EM, Leonard H, Davis M, Christodolou J, Skjeldal O, Hanefeld F, Kerr A, Tandy A, Ravine D, Clarke A (2003) Mutation analysis in the MECP2 gene and genetic counselling for Rett Syndrome. Journal of Medical Genetics. 40,380-384.

Glaze DG, Frost JD, Miller HY, Percy AK (1987) Rett's Syndrome: Correlation of electraencephalographic characteristics with clinical staging. Archives of Neurology. 44, 1053-1056.

Gomot M, Gendrot C, Verloes A, Raynaud M, David A, Yntema HG, Dessay S, Kalscheuer V, Frints S, Couvert P, Briault S, Blesson S, Toutain A, Chelly J, Desportes V, Moraine C (2003) MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation. American Journal of Medical Genetics 123A .2, 129-139.

Guideri F, Acampa M, Hayek G, Zappella M, Di Perri T. (1999) Reduced heart rate variability in patients affected with Rett Syndrome. A possible explanation for sudden death. Neuropediatrics 1999. 30,146-148.

Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics. 27,322-326.

Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia and loss of purposeful hand use in girls: Rett's syndrome - report of 35 cases. Annals of Neurology, 14, 471-479.

Hagberg B, Goutieres F, Hanefeld F, Rett A Wilson J (1985)
Rett syndrome - criteria for inclusion and exclusion. Brain and Development, 7, 372-373.

Hagberg B, Witt-Engerstrom I (1986) Rett Syndrome: A suggested staging system for describing impairment profile with increasing age towards adolescence. American Journal of Medical Genetics. 24, 47-59.

Hagberg B, Rasmussen P (1986) Forme Fruste of Rett Syndrome - a case report.' American Journal of Medical Genetics. 24, 175-181.

Hagberg B, Witt Engerstrom I. (1990) Early stages Rett syndrome and infantile neuronal ceroid lipofuscinosis - a difficult differential diagnosis.' Brain and Development. 12, 20-22.

Hagberg B, Witt Engerstrom I (1990a) Swedish Rett syndrome basic data register 1960-90. (1990a) In: Rett syndrome in Sweden. neurodevelopment - disability - pathophysiology. Ed. Witt Engerstrom I. Acta Paediatrica Scandinavia, Supplement 369, IBSN 91-628-0081-7

Hagberg B, Gillberg C (1993) Rett Variants - Rettoid types (ed B. Hagberg, M. Anvret. and J. Wahlstrom). Rett Syndrome - Clinical and Biological Aspects. In: Clinics in Developmental Medicine 127. Ed. Hagberg B. 127. MacKeith Cambridge University Press,. Cambridge, ISBN 0521412838.

Hagberg B, Skjeldal, O (1994) Rett Variants: a suggested model for inclusion criteria. Pediatric Neurology. 11, 5-11.

Hagberg B (1995) Clinical delineation of the Rett Syndrome Variants. Neuropediatrics. 26, 62.

Hagberg B, Hagberg G (1997) Rett Syndrome: epidemiology and geographical variability European Child and Adolescent Psychiatry.6,5-7.

Hagberg B (2002) Mental retardation and developmental disabilities research reviews. 8.61-65.

Hagne I, Witt Engerstrom I, Hagberg B (1989) EEG development in Rett syndrome. A study of 30 cases. Electroencephalography and Clinical Neurophysiology, 72, 1-6.

Halley G, Julu POO, et al (1995) Cardiac vagal tone and behavioural state in the well full term neonate Pediaric research. 37A, 62.

Hanefeld F. (1985) The clinical pattern of the Ret syndrome. Brain \& Development. 7, 320-325.

Heinen, F Korinthenberg R (1996) Does transcranial magnetic stimulation allow early diagnosis of Rett syndrome? Neuropediatrics. 27, 223-224.

Hendrich B (2000) Human genetics: Methylation moves into medicine. Current Biology. 10, R60-R63.

Hitchins MP, Rickard S, Dhallaa F, de Vries B, Winter R, Pembrey ME, Malcolm S (2004) Investigation of UBE3 and MECP2 in Angelman syndrome and patients with features of AS. American Journal of Medical Genetics. 125A. 2,167-172.

Holm, V. A. (1986) Physical Growth and development in patients with Rett Syndrome. American Journal of Medical Genetics 24.119-26.

Horicke S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. (2004) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett Syndrome. Nature Genetics.37,31-40.

Hulten M, Kerr AM (letter) (1991) Genomic imprinting. Lancet. 338, 188 189.

Huppke P, Held M, Laccone F, Hanefeld F. (2003) The spectrum of phenotypes in females with Rett syndrome. Brain and Developemnt 25. 5, 346-351.

Ishikawa A, Goto T, Narasaki M, Yokochi K, Kitahra H, Fukuyama, Y (1978) A new syndrome (?) of progressive psychomotor deterioration with peculiar stereotyped movement and autistic tendency: a report of three cases. Brain and Development. 3, 258.

Jellinger K. Seitelberger F (1986) Neuropathology of Rett syndrome. American Journal of Medical Genetics, S1,259-288.

Jellinger K, Armstrong DD, Zoghbi HY, Peṛcy AK (1988) Neuropathology of Rett syndrome. Acta Neuropathologica (Berlin). 76, 142-58.

Jian L, Archer HL, Ravine D, Kerr AM, Klerk N, Christodoulou J, Bailey MES, Laurvick C, Leonard H (2005) The p.R270X mutation and mortality in Rett Syndrome. European Journal of Human Genetics.13.11,1235-1238.

Johnsrude C, Glaze DG, Schultz RJ, Friedman R. (1995) Prolonged QT intervals and diminished heart rate variability in patients with Rett Syndrome (abstract). PACE: Pacing and Electrophysiology. 18,889.

Johnston MV, Hohmann C, Blue ME (1995) Neurobiology of Rett syndrome. Neuropediatrics. 26,119-122.

Jones PL, Veenstra GJC, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCp2 recruit histone to repress transcription. Nature Genetics. 19, 187-191.

Julu POO (1992) A linear scale for measuring vagal tone in man. Journal of Autontomic Pharmacology. 12, 109-115.

Julu POO, Delamont RS, Jamal GA (1993) The vagal tone during nonprogressing non-REM sleep in sleep deprived human subjects. Journal of Physiology (London). 459,146.

Julu POO, Hansen S, Barnes A, Jamal, GA (1996) Continuous measurement of the cardiac component of arterial baroreflex (ccbr) in realtime during isometric-exercise in human volunteers. Journal of physiology, London. 497P, 7-8.

Julu, P.O., Kerr, A.M., Hansen, S., Apartopoulos, F. and Jamal, G.A. (1997). Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry, 6 Suppl 1, 47-54.

Julu POO, Kerr AM, Hansen S, Apartopoulos F, Jamal G. (1998) Cardiorespiratory instability in Rett Syndrome suggests medullary serotononergic dysfunction. In: Witt Engerstrom I, Kerr AM meeting report. Workshop on Autonomic Function in Rett Syndrome Swedish Rett Centre, Froson, Sweden, May 1998. Brain and Development 20: 323-6.

Julu POO, Kerr AM, Apartopoulos F, Al- Rawas S, Witt Engerstrom I, Engerstrom L, Jamal GA, Hansen S (2001) Characterisation of breathing and associated autonomic dysfunction in the Rett Disorder. Archives of Disease in Childhood. 85, 29-37.

Julu POO (2001) The central autonomic disturbance in Rett Syndrome. In: Rett Disorder and the Developing Brain. Eds Kerr AM \& Witt Engerstrom I. Oxford. Oxford University Press, 131-181. ISBN 0192630830

Kalscheuer VM, Tao J, Donnelly A, Holloway G, Schwinger E, Kubart S, Menzel C, Hoeltzenbein M, Tommwerup N, Eyre H, Harbord M, Haan E, Sutherland GR, Ropers HH, Gecz J (2003) Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am Hum Genet 72.6, 1401-1411.

Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. American Journal of Physiology. 218.4. 1030-1037.

Kaufmann WE, Naidu S, Budden S (1995) Abnormal expression of microtubule-associated protein 2 (MAP-2) in neocortex in Rett syndrome. Neuropediatrics, 26, 109-113.

Kaufmann WE, Taylor C., Hohmann CF, Sanwal IB, Naidu S (1997) Abnormalities in neuronal maturation in Rett syndrome neocortex: preliminary molecular correlates. European Child \& Adolescent Psychiatry. 6, 75-77.

Kaufmann WE (2001) Cortical Development in Rett syndrome, molecular, neurochemical and anatomical aspects. In: ed Kerr AM \& Witt Engerstrom. Rett Disorder and the Developing Brain. Oxford. Oxford University Press. 85-109.

Kerr AM, Stephenson JPB (1985) Rett's Syndrome in the West of Scotland. British Medical Journal, 291, 579-582.

Kerr AM, Stephenson JBP (1986) A study of the natural history of Rett syndrome in 23 girls. American Journal of Medical Genetics, 24,77-83.

Kerr AM, Montague J, Stephenson JBP (1987) The hands, and the mind, pre-and post-regression in Rett syndrome. Brain and Development, 9,487490.

Kerr AM (1987) Report on the Rett Syndrome Workshop: Glasgow Scotland, 24-25 May 1986. Journal of Mental Deficiency Research. 31, 93-113.

Kerr AM, Amos P, Etchells A, Holmes T and Stephenson JBP. (1988). A low cost method for prolonged simultaneous video recording of ambulant subject and electroencephalograph: the Quarriers System. Journal of Mental deficiency research. 32,497-500.

Kerr AM, Southall D, Amos P, Cooper R, Samuels M, Mitchell J, Stephenson MBP (1990) Correlation of electroencephalogram, respiration and movement in the Rett syndrome. Brain and Development 12, 61-68.

Kerr AM (1991) Rett Syndrome. Fifth Annual Report of the British Paediatric Surveillance Unit, section.3.8

Kerr A (1992) A review of the respiratory disorder in the Rett syndrome. Brain and Development, 14 (suppl), 43-45.

Kerr AM (1992) Rett Syndrome British longitudinal study (1982-1990) and 1990 survey. In: Mental Retardation and Medical Care: Congress proceedings, April 21-24 1991. Ed J.J. Roosendaal. Uitgeverij Kerckbosch. Zeist ISBN 9067201219. 143-145.

Kerr AM, Robertson PE, Mitchell J (1993) Rett Syndrome and the $4^{\text {th }}$ metatarsal. (letter) Archives of Disease in Childhood. 68, 433.

Kerr A. (1994) Medical concerns in people with severe learning difficulties: report on a vision week and Symposium at the Royal College of Physicians and Surgeons of Glasgow, Scotland 8-12 March 1993. Journal of Intellectual Disability Research. 38, 85-95.

Kerr AM, Mitchell JM, Robertson P (1995) Short fourth toes in Rett Syndrome: a biological indicator. Neuropediatics, 26, 72-74.

Kerr AM. Early Clinical signs in the Rett Disorder (1995) Neuropediatrics 26, 67-71.

Kerr AM, Armstrong DD, Prescott RJ, Doyle D, Kearney DL, (1997) Analysis of deaths in the British Rett Survey, European Child and Adolescent Psychiatry. 6, 71-74.

Kerr AM, Julu POO, Hansen S, Apartopoulos F. (1998) Serotonin and Breathing Dysrhythmia in Rett Syndrome. In: Perat MV ed, New Developments in Child Neurology Bologna: Monduzzi Editore, 191-195.

Kerr AM, Julu POO, Hansen S, Apartopoulos F (1998) Results from Rett autonomic assessments during the workshop . In: Meeting report. Workshop on Autonomic Function in Rett Syndrome Swedish Rett Centre, Froson, Sweden, May 1998. Eds. Witt Engerstrom I, Kerr AM. Brain \& Development. 20, 323-326.

Kerr AM (2000) Behaviour in the Rett Disorder. In: Developmental Disability and Behaviour. Eds Gillberg C \& O'Brien. G. Lavenham. McKeith Press. ISBN 1898683182

Kerr AM, Nomura Y, Armstrong D, Anvret M, Bekichenko PV, Buddeen S, Cass H, Christodoulou J, Clarke A, Ellaway C, d'Esposito M, Franke U, Hulten H, Julu P, Leonard H, Naidu S, Schanen, C, Webb T, Witt Engerstrom I, Yamashita Y and Segawa M. (2001) Guidelines for reporting clinical features in cases with MECP2 mutations. Brain and Development. 23.4, 208-211.

Kerr AM \& Burford B (2001) Towards a full life with Rett disorder. Paediatric rehabilitation. 4. 4,157-168.

Kerr AM, Belichenko P, Woodcock T, Woodcock M (2001) Mind and Brain in Rett disorder. Brain and Development. 23, S44-S49.

Kerr AM, Witt Engerstrom I. (2001) The clinical background. In: Rett Disorder and the Developing Brain. Ed Kerr AM \& Witt Engerstrom I. Oxford University Press, Oxford. ISBN 0192630830. 1-26.

Kerr AM, Witt Engerstrom I. (2001) The Developmental Perspective. In: Rett Disorder and the Developing Brain. Ed Kerr AM \& Witt Engerstrom I. Oxford. Oxford University Press. ISBN 0192630830. 349-360.

Kerr AM (2002). Outcome in Rett Syndrome. Outcomes in neurodevelopmental and genetic disorders. Ed Goodyer I \& Howlin P. Cambridge University Press, Cambridge. ISBN 052179721 7.241-271.

Kerr AM. (2002) Annotation: Rett Syndrome: recent progress and implications for research and clinical practice. Journal of Child Psychology and Psychiatry 43.3.277-287.

Kerr AM, McCulloch D, Oliver K, McLean B, Coleman E, Law T, Beaton P, Wallace S, Newell, E, Eccles T, Prescott RJ (2003). Medical needs of people with intellectual disability require regular reassessment and the provision of client and carer held reports.
Journal of Intellectual Disability Research 47, 134-145.
Kerr AM, Webb P, Prescott R \& Milne Y. (2003) Results of Surgery for scoliosis in Rett Syndrome. Journal of Child Neurology.18, 703-708.

Kerr AM (2003) Individuals with Rett Disorder and the role of the physician. Primary Psychiatry. 10. 2, 59-62.

Kerr AM, Cass H, Weekes L, Slonims V, Bridgeman G and Wisbech A (2003) Clinical checklist for patients with Rett Disorder. In: Physician Patient resource series. Primary Psychiatry. 10, 32-33.

Kerr AM \& Prescott R (2005) Predictive Value of the early clinical signs in Rett disorder. Brain \& Development.27, 20-24.

Kerr AM, Archer HL, Evans J, Gibbon F (2005) People with Mutation Positive Rett Disorder who converse. Journal of Intellectual Disability Research. 49.3. on line early doi10.111/ j1365/2788. 2005. 00786.X <www.blackwellpublishing.com>

Leonard H, Bower C (1998) Is the girl with Rett Syndrome normal at birth? Developmental Medicine and Child Neurology. 40, 115-121.

Leonard H, Thomson MM, Lasson E, Fyfe S, Leonard S, Ellaway C, Christodoulou J, Bower C(1999) Metacarpophaloangeal pattern profile and Bone age in Rett Syndrome: Further radiological clues to the diagnosis. American Journal of Medical Genetics, 83, 88-95.

Leonard H, Thomson MR, Glasson E, Fyfe S, Leonard S, Ellaway C et al (1999) A population based approach to the investigation of osteopenia in Rett syndrome. Developmental Medicine and Child Neurology. 41.323328.

Loder RT, Lee C, Stephens, Richards B (1989) Orthopaedic aspects of Rett Syndrome: a multicentre review. Journal of Pediatric Orthopedics, 9, 557-562.

Longo I, Russo L, Meloni I, Ricci I, Ariani F, Pesucci C, Giordano CT, Canitano R, Hayek G, Zappella M, Neri G, Renieri A, Gurrieri F. (2004) Three Rett patients with both MECP2 and 15q11-13 rearrangements. European Journal of Human Genetics. 12. 8, 682-685.

Lugaresi E, Cirignotta (1982) An unusual type of respiratory apraxia. In: Henri Gastaut and the Marseilles school's Contribution to the Neurosciences. Ed. Broughton RJ. Amsterdam. Elsevier. 317-322.

Lugaresi E, Cirignotta F, Montana P (1985) Abnormal breathing in the Rett syndrome. Brain and Development. 7, 329-333.

Macleod HA, Morse D, Burford B (1993) Computer support for behavioural event recording and transcription. In: Psychology Teaching Review. 2,115-119.

McArthur A, Budden SS (1998) Sleep dysfunction in Rett syndrome: a trial of exogenous melatonin treatment. Developmental Medicine and Child Neurology. 40, 186-192.

McCulloch DL, Sludden PA, McKeown K, Kerr AM (1996) Vision care requirements among intellectually disabled adults a residence based study. Journal of Intellectual Disability research. 40. 2, 140-150.

Mari F, Caselli R, Russo S, Coglianti F, Ariani F, Longo I, Bruttini M, Meloni I, Pescussi C, Schurfeld K, Toti Pl Tassini M, Larizza L, Hayek G, Zappella M, Renieri A (2005) Germline mosaicism on Rett Syndrome identified by prenatal diagnosis. Clinical Genetics. 67.3, 258-260.

Matarazzo V, Ronnett GV (2004) Temporal and regional differences in the olfactory proteome as a consequence of MeCP2 deficiency. Proceedings of the National Academy of Sciences of the United States of America. 1-1. 7763-7768.

Mc Geer PL, McGeer EG, Kawamata T. (1991) Reactions of the immune system in chronic degenerative diseases. Canadian Journal of Neurological Science .18,376-379.

Meloni, I., Bruttini, M., Longo, I., Mari, F., Rizzolio, F., D'Adamo, P., Denvriendt, K., Fryns, J. P., Toniolo, D., and Renieri, A. (2000). A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males. Am J Hum Genet 67, 982-985.

Messahel S, Pheasant AE, Pall H, Kerr AM (2000) Abnormalities in urinary pterin levels in Rett Syndrome. European Journal of Paediatric Neurology. 4, 211-217.

Miltenberger-Miltenyi G, Laccone F (2003) Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Human Mutation 22. $2,107-115$.

Mnatzakanian GN, Lohi H, Munteanu K, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA. (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome.Nature Genetics 36. 4, $339-41 \& 5,540$.

Morton RE, Bonas R, Minford J, Kerr A and Ellis RE. (1997) Feeding ability in Rett Syndrome. Developmental Medicine \& Child Neurology. 39, 331-335.

Mount RH, Hastings R, Reilly S, Cass H, Charman T (2001) Behavioural and emotional features in Rett syndrome. Disability and rehabilitation. 23. 3-4, 129-138.

Mullaney BC, Johnston MV Blue ME. (2004) Developmental expression of methyl- CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123. 4, 939-949.

Murphy DB, Weise S, Purfiend P, Schmundt D, Mattei MG, SchulzSchaffer W, Thies U (1994) Human brain factor 1, a new member of the fork head gene family. Genomics. 21, 551-557.

Naidu, S. (1997) Rett Syndrome: a disorder affecting early brain growth. Annals of Neurology, 42,1,3-10.

Nan XS, Meehan RR, Bird A (1993) Dissection of the methyl-CpGbinding domain from the chromosomal protein MeCP2. Nucleic Acids Research. 21, 4886-4892.

Nan X, Campoy F, Bird A (1997) MECP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88, 471-481.

Nan XS, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG binding protein MeCP2 involves a histone deacetylase complex. Nature. 393, 386389.

Nomura Y, Segawa M, Hasegawa M. (1984) Rett syndrome - clinical studies and pathophysiological considerations. Brain \& Development 6. 475-486.

Nomura Y, Segawa M, Higurashi M (1985) Rett syndrome- an early catecholamine and indolamine deficient disorder? Brain \& Development, 7, 334-341.

Nomura Y, Segawa M (1986) Anatomy of Rett syndrome. American Journal of Medical Genetics Supplement. 1, 289-303.

Nomura Y, Honda K, Segawa M (1987) Pathophysiology of Rett syndrome. Brain \& Development, 9, 506-513.

Nomura Y, Segawa M (1990a) Characteristics of motor disturbances of the Rett syndrome. Brain \& Development, 12, 27-30.

Nomura Y, Segawa M (1990b) Clinical features of the early stage of the Rett syndrome. Brain \& Development. 12, 16-19.

Nomura Y, Kimura K, Arai H, Segawa M (1997) Involvement of the autonomic nervous system in the pathophysiology of Rett syndrome. European Child \& Adolesecent Psychiatry. 6, 42-46.

Nomura Y \& Segawa M (2001) The monoamine hypothesis in Rett syndrome. In: Rett Disorder and the Developing Brain. Ed Kerr AM \& Witt Engerstrom I. Oxford. Oxford University Press. ISBN 0192630830. 1-26.

Nuber UA, Kriaucionis S, Roloff TC, Guy J, Selfridge J, Steinhoff C, Schulz R, Lipkowitz B, Ropers HH, Holmes MC, Bird A. (2005) Upregulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Human Molecular Genetics .14.15, 2247-2256.

Opitz JM (1986) Editorial Comment: Rett Syndrome: Some comments on terminology and diagnosis. American Journal of Medical Genetics. 24,2737.

Opitz JM, Lewin SO (1987) Rett syndrome - a review and discussion of syndrome delineation and syndrome definition. Brain \& Development. 9, 445-450.

Orrico, A., Lam, C., Galli, L., Dotti, M. T., Hayek, G., Tong, S., Poon, P. M., Zappella, M., Federico, A., and Sorrentino, V. (2000). MECP2 mutation in male patients with non-specific X-linked mental retardation. Federation of European Biochemical Societies Letter 481, 285-288.

Paterson DS, Thomson EG, Belliveau RA, Antalffy BA, Trachenberg FL, Atrmstrong DD, Kinney HC, (2005) Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett Syndrome: potential implications for clinical autonomic dysfunction. Journal of Neuropathology experimental Neurology. 64.11,1018-27.

Pescucci C Meloni I Bruttini M Ariani F, Longo I, Mari F, Canitano R, Hayek G, Zappella M and Renieri A. (2003) Chromosome 2 deletion
encompassing the MAP2 gene in a patient with autism and Rett like features. Clinical Genetics 64.6, 497-501.

Philippart,M. (1990). The Rett syndrome in males. Brain and Development, 12, 33-36.

Prechtl HFR. (1984) Continuity of neural functions from prenatal to postnatal life. Oxford: Blackwell Scientific Publications.

Prechtl HFR. (1997) State of the art of a new functional assessment of the young nervous system. An early predictor of Cerebral Palsy. Early Human Development. 50, 1-11.

Prechtl HFR. (1999) General Movement Assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Developmental Medicine \& Child Neurology.43, 836-842.

Prechtl HFR. (2001) Prenatal and early post natal development of human motor behaviour. In: Handbook of Brain and behaviour in human development. Eds Kalverboer AF, Gramsbergen A. Amsterdam Kluwer, 415-427.

Ravn K, Bieber Nielsen J, Skjeldal OH, Kerr AM, Hulten M, Schwartz M. (2005) Large genomic rearrangements in MECP2. Human Mutation Mutation in brief \#791. on line. Wiley/Liss inc DOI:10.1002/humu. 9320.

Ray A, Haldane J (1965) The genetics of a common Indian digital abnormality. Proceedings of the National Academy of Science. USA.10501053.

Rett, A. (1966). Uber ein eigenartiges hirnatrophisches Syndrome bei hyperammonamie im Kindsalter. Wiener Medizinische Wochenschrift, 116,723-726.

Rett, A. (1977). Cerebral atrophy associated with hyperammonaemia. In: Handbook of clinical neurology. eds. P.J.Vinken \& G.W. Bruyn. Amsterdam. North Holland Publishing Company. 305-329.

Riikonen R (2001) Neurotrophic factors in the pathogenesis of Rett Syndrome In: Rett Disorder and the Developing Brain. Ed Kerr \&Witt Engerstrom. Oxford. Oxford University Press. 125-129

Riikonen R (2003) Neurogenic factors in the pathogenesis of Rett Syndrome. Journal of Child Neurology 18.10, 693-697.

Samaco RC, Nagarajan RP, Braunschweig D, LaSalle JM. (2004) Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Human Molecular Genetics 13. 6, 629-639.

Samaco RC, Hogart A, Lasalle JM (2005) Epigenetic overlap in autismspectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of $U B E 3$ and $G A B R A B 3$. American Journal of Medical Genetics. 132A. 2, 117-120.

Saunders K, McCulloch D \& Kerr AM (1995) Visual function in Rett Syndrome. Developmental Medicine and Child Neurology. 37, 496-504.

Schanen NC, Dahle EJR, Capozzoli F, Hom VA, Zoghbi HY, Francke U. (1997) A new Rett family consistent with X-linked inheritance expands the X chromosome exclusion map. American Journal of Human Genetics. 61 634-641.

Schanen C, Franke U (1998) A severely affected male born into a Rett Syndrome kindred supports X-linked inheritance and allows extension of the exclusion map. American Journal of Human Genetics. 63, 267-269.

Segawa M, Nomura Y (1992) Polysomnography in Rett syndrome. Brain and Development. 14, S46-54.

Sirianni N, Naidu S, Pereira J, Pillotto RF, Hoffman EP. (1998) Rett Syndrome: confirmation of X-linked dominant inheritance and localization of the gene to Xq28 American Journal of Human Genetics. 63, 1552-1558.

Schwartzman JS, Zatz M, Vasquez L, Gomez R, Koiffmann C, Friiedman C, Otto P. (1999) Rett Syndrome in a boy with a 47 XXY karyotype American J of Hum Genet. 64, 1781-1785.

Sekul EA, Moak JP, Schultz R, Glaze DG, Dunn JK, Percy AK (1994) Electrocardiographic findings in Rett Sydrome: an explanation of sudden death. Journal of Pediatrics. 125,80-82.

Shahbazian MD, Zoghbi HY. (2001) Molecular genetics of Rett Syndrome and clinical spectrum of MECP2 mutations. Current Opinions in Neurology .14, 171-176.

Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome: $M E C P 2$ levels display tissue and cell-specific differences and correlate with neuronal maturation. Human Molecular Genetics. 11.2,115-124.

Shabazian MD, Sun Y, Zoghbi HY. (2002) Balanced X chromosome inactivation patterns in the Rett Syndrome brain. American Journal of Medical Genetics 111.2, 164-168.

Shibayama A, Cook EH, Feng J, Glanzmann C, Yan J, Craddock N, Jones IR, Goldman D, Heston LL, Sommer SS. (2004) MECP2 structural and 3'UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. American Journal of Medical Genetics 128.1, 50-53.

Smeets E, Schollen E, Moog U, Mtthijs G, Herbergs J, Smeets H, Curfs L, Schrander-Stumpel C, Fryns JP. (2003) Rett syndrome in adolescent and adult females: clinical and molecular genetic findings American Journal of Medical Genetics 122A.3, 227-233.

Southall D, Kerr AM, Tirosh E, Amos P, Lang M, Stephenson JBP. (1988) Hyperventilation in the awake state, potentially treatable component of Rett Syndrome. Archives of Disease in Childhood. 63,1039-1048.

Trevarthen E, Moser HW, Opitz JM and the Rett Syndrome diagnostic criteria work group (1988) Diagnostic Criteria for Rett Syndrome. Annals of neurology. 2, 425-428.

Vacca M, Filippini F, Budillon A, Rossi V, Mercadante G, Manzati E, Gualandi F, Bigoni S, Trabanelli C, Pini g, Calzolari E, Ferlini A, Meloni I, Hayek G, Zappella M, Renieri A, D'Urso M, D'Esposito M, MacDonald F, Kerr AM, Dhanjal S and Hulten M. (2001) Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females. Journal of Molecular Medicine. 2001. 78. 11, 648-655.

Vacca M, Filippini F, Budillon A, Rossi V, Mercadante G, Manzati E, Gualandi F, Bigoni S, Trabanelli C, Pini g, Calzolari E, Ferlini A, Meloni I, Hayek G, Zappella M, Renieri A, D'Urso M, D'Esposito M, MacDonald F, Kerr AM, Dhanjal S and Hulten M. (2001) MECP2 gene mutation analysis in the British and Italian Rett Syndrome patients: hot spot map of the most recurrent mutations and bioinformatic analysis of a new MECP2 conserved region. Brain and Development. 23, S246-250.

Verma NP, Ramesh L, Chheda RL, Nigro MA, Hart ZH (1986) Electroencephalographic findings in Rett Syndrome. Electro encephalography \& clinical neurophysiology. 64, 394-401.

Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie LD, Archer H, Evans J, Clarke A, Pelka GJ, Tam PPL, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gecz J (2004) Mutation of CDKL5 cause a severe neurodevelopmental Disorder with Infantile Spasms and
mental retardation. American Journal of Human Genetics. 75, 1079 1093.

Wenk G L, Hauss-Wegrzyniak B (1999) Altered Cholinergic function in the basal forebrain of girls with Rett syndrome. Neuropediatrics. 30, 125129.

Wilken B, Lalley P, Bischoff AM, Christen H.J, Behnke J., Hanefeld, F, Richter DW (1997) Treatment of apneustic respiratory disturbance with a serotonin-receptor agonist. Journal of Pediatrics, 130, 89-94.

Witt Engerstrom I., Forslund M (1992) Mother and daughter with Rett Syndrome. Developmental Medicine \& Child Neurology. 34, 1022-1023.

Witt Engerstrom I, Kerr AM (1998) Workshop on Autonomic function in Rett Syndrome. Swedish Rett Centre, Froson, Sweden, May 1998. Brain and Development. 5, 323-326.

Wright M, Van der Linden ML, Kerr AM, Burford B, Arrowsmith G and Middleton RL. (2003) Motion Analysis of stereotyped hand movements in Rett Syndrome. Journal of Intellectual Disability Research 47. 2, 85-89.

Young JI, Zoghbi HY (2004) X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of Rett syndrome. American Journal of Medical Genetics 74. 3, 511-520.

Xiang F, Zhang Z, Clarke A, Pereira J, Naidu S, Sarojini B, DelozierBlanchet CD et al. (1998) Chromosome mapping of Rett syndrome: a likely candidate region on the telomere of Xq. Journal of Medical Genetics. 35, 297-300.

Zappella M. (1992) The Rett girls with preserved speech. Brain and Development.14, 998-1001.

Zappella M (1997) The preserved speech variant of the Rett complex: a report of 8 cases. European Child \& Adolescent Psychiatry. 6, 23-25.

Zoghbi HY, Milstein S, Butler IJ (1989) Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome. Annals of Neurology. 25, 56-60.

APPENDIX A: ILLUSTRATIVE MATERIAL, FIGURES AND TABLES

Section 1: Literature and Background

1.2.1 Clinical features described by Andreas Rett (Rett 1977, by kind permission of \mathbf{N} Holland publishing company)

1.3.1 Diagnostic criteria proposed by Hagberg (Hagberg et al 1985, by kind permission of Brain \& Development)

1. Female sex
2. A normal pre- and perinatal period; essentially normal psychomotor development through the first 6, often 12-18 mos of life
3. Normal head circumference at birth Deceleration of head growth (and therefore by interference, brain growth) between 6 mos-4 yrs of age
4. Early behavioral, social and psychomotor regression (loss of achieved abilities); development of communication dysfunction and signs of dementia
5. Loss of acquired purposeful hand skill through ages 1-4
6. Hand wringing-clapping-"washing hand" stereotypies appearing between ages 1-4
7. Appearance of gait apraxia and truncal apraxia/ ataxia through ages 1-4
8. Diagnosis tentative until 3-5 yrs of age

1.3.2 Criteria for exclusion proposed by Hagberg (Hagberg et al 1985, by kind permission of Brain \& Development)

1. Visceromegaly, other signs of organ storage
2. Retinopathy or optic atrophy before age 6
3. Congenital microcephaly
4. Perinatally acquired brain impairment

1.3.3 Scheme of main characteristics proposed by Hagberg (Hagberg et al 1985, by kind permission of Brain \& Develópment)

A. Early history

Pre-, peri- and early postnatal period uneventful
Birthweight, length and head circumference normal
B. Onset of developmental deviations

At 6 mos~1-2 yrs of age
Disappearance of achieved abilities
hand skill, use of hands,
communication,
inner language,
emotional contact
C. Stereotypies from onset stage

Peculiar hand movements
wringing,
clapping,
"hand-washing"
Teeth grinding
Body rocking-stooping gait
Episodic "press" hyperventilation
D. Active stage of rapid deterioration

At $1-3$ yrs of age
Period with rapid social regression
Successively developed severe dementia
Usually a stage of pronounced autistic behavior
Jerky truncal ataxia/apraxia
Epilepsy in ~ $75-80 \%$
E. Late stage of motor disability

Adolescents in wheel chairs or bedridden, $\sim 75 \%$
Severe scoliosis, ~ 100%
Hypotrophic small feet-growth retardation
Normal puberty development otherwise
Bilateral pyramidal tract signs

1.3.4 Criteria for classic Rett syndrome agreed in Gothenberg in 1987 (Kerr, Witt Engerstrom and Hagberg)

1. No serious complications during pregnancy, birth or the neonatal period and conforming to accepted standards during at last 4 months.
2. OFC within or close to the normal range and increasing at the normal rate for at least the first 4 months but suboptimal growth at some stage thereafter
3. Subtle evidence of slowing in psychomotor development in the first year with failure to acquire mature hand use beyond the 12 month level and speech beyond single utterances
4. Unexplained loss of hand use and skills over weeks or months, associated with social withdrawal and deterioration in non-verbal communication.
5. Characteristic repetitive hand movements consisting of hand wringing/ squeezing, clapping/ tapping, washing/rubbing,
6. Following regression:-
a) lack of postural control
b) minimal and incoordinate voluntary hand use
c) no useful speech although improved non-verbal communication
d) mental handicap which is severe or profound and essentially static
e) Sudden spells of agitated behaviour which may include panic, laughter or altered respiration
7. Absence of any other known disorder and of dysmorphic features

1.3.5 Criteria for classic Rett syndrome 1988 (Trevarthen et al \& Rett Syndrome diagnostic criteria work group, by kind permission of Annals of Neurology)

Necessary Criteria

Apparently normal prenatal and perinatal period
Apparesty normal psychomotor development through the frrst 6 monchs ${ }^{\text {b }}$
Normal head circumference at birch
Deceleration of head growth between ages 5 months and 4 years
Loss of acquired purposeful hand skills berween ages 6 and 30 months, temporally associnted with communication dysfunction and social withdrawal
Development of severely impaired expressive and receptive language, and presence of apparent severe psychomotor retardation
Stereorypic hand movements such as hand wringing squeezing, clapping/tapping, mouthing and "washing"/ rubbing automatisms appearing after purposeful hand skills are lost
Appearance of gair apraxia and truncal apraxiazaxaia between ages 1 and 4 years
Diagnosis tentative uncil 2 to 5 years of age

Supportive Criteria
 Breathing dysfunction

Periodic apnea during wakefulness
Intermitrent hyperventilation
Breach-holding spells
Forced expulsion of air or salivz
EEG abnormalicies
Slow waking background and intermittent rhychmical slowing (3-5 Hz)
Epileptiform discharges, with or withour clinical seizures
Seizures
Spasticity, often with associated development of muscle wasting and dystonia
Peripheral vasomotor disturbances
Scoliosis
Growth retardation
Hyporrophic small feer
Exclusion Criteria ${ }^{2}$
Evidence of incrauterine growth retardation
Organomegaly or other signs of storage disease
Recinopathy or optic atrophy
Microcephaly at birth
Evidence of perinatally acquired brain damage
Existence of idencifiable metabolic or other progressive neurological disorder
Acquired neurological disorders resulting from severe infections or head trauma

[^0]
1.3.6 Criteria circulated in the British Paediatric Surveillance unit study 1990

a) No other disease, dysmorphism or major adverse factor before, during or after birth
b) Initial development within broadly accepted limits of normal until $9-12$ month level
c) Loss of acquired speech and hand use at approximately 1-2 years and withdrawal, without evident systemic illness.
d) Thereafter apparent profound stable mental handicap with minimal or no purposeful use of the hands or language
e) Prominent hand stereotypy (clapping, squeezing or patting)
f) Stiff or clumsy gait/ posture
g) OFC growth in the normal range for at least 4 months after birth with later suboptimal growth

Other characteristics: intent gaze, involuntary movements (frequently jerky) involving the face, trunk and limbs, brish tendon reflexes with ankle clonus and increasing muscle tone, in creasing lower limb deformities and scoliosis, spontaneous awake hyperventilation/ apnoea cycles, bursts of slow waves on e.e.g., seizures.

1.3.7 Modifications to the criteria in 2001 (Kerr et al 2001) by kind permission of Brain \& Development

1. Apparently normal pre and perinatal period with normal head circumference at birth.
2. Suboptimal postnatal growth of head circumference [11,15-18].
3. Some early developmental progress, which may be slight, [11,16-18].
4. Skill regression in early childhood (hand use, speech, oral motor).
5. Poor intentional hand use and locomotor skills 111,18,191.
6. Stereotyped repetitive hand movements (with fixed position of the hands).
7. After regression, essentially stable severe intellectual disability $[1,11,16,20]$.

1.3.8 Four clinical stages described by Hagberg 2002 (by kind permission of Mental Retardation and Developmental paediatrics)

Original Staging System	Later Additions
Stage I: early onset stagnation Onset age: 6 months to 1.5 years Developmental progress delayed Developmental pattern still not significantly abnormal Duration: weeks to months	Onset from 5 months of age Early postural delay Dissociated development "Bottom-shufflers"
Stage II: developmental regression Onset age: 1-3 or 4 years Loss of acquired skills/communication Mental deficiency appears Duration: weeks to months, possibly 1 year	Loss of acquired skills: fine fingei, - babble/words, active playing Occasionally "in another world" Eye contact preserved Breathing problems still modest Seizures in only 15%
Stage III: pseudostationary period Onset: after passing stage II Some communicative restitution Apparently preserved ambulant ability Unapparent, slow neuromotor regression Duration: years to decades	"Wake up" period Prominent hand apraxia/dyspraxia
Stage IV: late motor deterioration Onset: when stage III ambulation ceases Complete wheelchair dependency Severe disability: wasting and distal distortion Duration: decades	Subgrouping introduced Stage IV A: previous walkers, now non-ambulant Stage IV B: never ambulant

1.3.9 The changing trend in predominant muscle tone abnormality (Kerr 1995) by kind permission of Neuropediatrics.

(Georg Thieme Verlag KG)

1.3.10 Definition of 'formes frustes' (Hagberg and Witt Engerstrom 1986) by kind permission of American Journal of Medical Genetics.

1. Female sex; and at least 13 years old
2. Normal pre-, peri-, neonatal period. Development apparently normal in lst year of life
3. Period of distict developmental decline Loss of hand skill - playing
Loss of learned words-sentences
4. Signs in teenage years of:

Mental retardation - moderate or severe Apraxia (partial)
Dysphasia
Stereotypies (atypical)
Additional stage IV signs
5. Extensive lab. investig. unrevealing

1.3.11 Items recommended for inclusion in describing new cases relating to MECP2 mutations: International Guideline. (Kerr et al. 2001), by kind permission of Brain \& Development)

Section 2: Subjects and Methods - general

2.2.1 BIS Scoring system for Health, Severity and Feeding difficulty (Kerr et al 2003
by kind permission of the Journal of Child Nourology)

Score	0	1	2
Severity			
Feeding difficulty	0-2	3-8	9+
Tone group	Near normal	Dystonic	Hypo-or hypertonic
Locomotor skill	Solo now	Solo ever	Never solo
Scoliosis	None	Slight	Moderate/severe/operated
Epilepsy	Never	Ever	Currently
Health score			
Weight			
Child/adult	> 10th percentile/> 35 kg	3rd-10th percentile/20-34 kg	< 3rd percentile/<20 kg
Seizure episodes	0	Infrequent	Frequent
Chest episodes	0	1	More than one
Other episodes	0	1	More than one
Wellness	Well	Fair	Poor
Feeding score			
	Shape or posture: no problem	Some problem	Severe problem
	Mouth closure: no problem	Some problem	Severe problem
	Chews well	Chews poorly	Does not chew
	Swaliows well	Some problem	Severe problem
	No obstructing movements	Some problem	Sėvere problem
	No vomiting/regurgitation	Some problem	Severe problem
	Secretions no problem	Some problem	Severe problem
	Appetite no problem	Some problem	Severe problem
	Drinking no problem	Some problem	Severe problem
	Feeds self	Constant supervision	Totally dependent

The scores are calculated using data from the parent/carer and clinician. Feeding score is expressed in points out of 20. Severity and health scores are expressed as or chief carer on the individual's state of health over the last 12 months.
In some studies the severity and health scores are expressed as \%, For example. 2 / 10 becomes 20%

Section 3: Epidemiology

-Age when skill acyuited/age when skill lost (if lost completely).
tEquivecal.
3.1.2 Occipito-frontal circumferences in 19 cases of Rett syndrome (Kerr \& Stephenson 1985, with kind permission of the British Medical Journal)

FIG 4-Occipitofrontal circumference in 19 cases of Rett's syndrome.
3.1.3. Diagrammatic representation of developmental progress in Rett Syndrome (Kerr \& Stephenson 1985, with kind permission of the British Medical Journal)

4.1.1 Observations from four pre-regression films. Ages are those at which
behaviour was first evident

Hypotonia		Excess of waving or patting	General incoordination	Abnormal alternating hand movements	Best hand use	Hands together or separate		Age at onset of regression	$\begin{aligned} & \text { Age } \\ & \text { now } \end{aligned}$	
		$\stackrel{A t}{\text { regression }}$				Now				
1	Yes		2 mos suspicious 7 mos certain	7 mos	22 mos	Grasped toy	Together	Together	24 mos	7 yrs
2	Yes	11 mos	11 mos	12 mos	Grasped toy	Together	Separate	18 mos	12 yrs	
3	No	9 mos	15 mos	15 mos	Grasped and shook object	Together	Separate	22 mos	14 yrs	
4	No	6 mos	15 mos	No	Picked up sweet, fingers open	Together	Together	15 mos	6 yrs	

4.1.2 Pre-regression histories obtained from families in $\mathbf{2 0}$ girls

$\begin{aligned} & \text { Patients } \\ & \text { nos } \end{aligned}$	Hypotonia	$\begin{gathered} \text { Jerky } \\ \text { incoordination } \end{gathered}$	Cleverest hand use	Walked alone	Number of words	$\begin{aligned} & \text { 2-word } \\ & \text { phrase } \end{aligned}$	Age at onset of egression	$\begin{aligned} & \text { Age } \\ & \text { now } \end{aligned}$
1	No	Yes	Picked up toy	No	None	No	9 mos	11 yrs
2	No	No	Flicked pages of book	No	12	No	11 mos	5 yrs
3	Yes	No	Fed with cup	No	4	No	12 mos	6 yrs
4.	No	No	Held mug	No	4	No	12 mos	6 yrs
5	No	No	Turned book pages	36 mos	3	No	15 mos	17 yrs
6	Yes	No	Clapped on request	No	2	No	15 mos	14 yrs
7	No	No	Picked up feathers	48 mos	10	One	15 mos	6 yrs
8	No	No	Picked up toy	17 mos	7	No	18 mos	13 yrs
9	Yes	No	Picked up toy	No	2	No	18 mos	16 yrs
10	No	No	Turned book page	No	None	No	18 mos	12 yrs
11	Yes	Yes	Fed with spoon	No	None	No	18 mos	16 yrs
12	Yes	Yes	Fed self with spoon	30 mos	20	One	18 mos	11 yrs
13	Yes	No	Fed with biscuit	No		No	18 mos	27 yrs
14	No	No	Drank from can Switched on TV	13 mos	3	Nò	18 mos	12 yrs
15	No	No	Turned book page	24 mos	3	No	20 mos	12 yrs
16	No	No	Picked up cup	15 mos	7	No	20 mos	10 yrs
17	No	No	Opened cupboard	24 mos	6	No	21 mos	15 yrs
18	No	No	Picked up fluff Turned pages	12 mos	7	No	23 mos	11 yrs
19	No	No	Turned book pages	No	4	No	24 mos	15 yrs
20	No	No	Fed with biscuit	20 mos	10	No	30 mos	7 yrs

4.2.1 Suggested factors contributing to the Rett regression event (Kerr 1995, with kind permission of Neuropediatrics

- The child has reached her developmental celling
- Programmed cell death prunes early infancy neural networks.
- Myellnation reveais the extent of the cortical incompetence.
- Cellular immune processes may attack abnormal neurones.
- The incompetent cortex falls to control mature subcortical mythms.
- Subcortical movement mythms interfere with the use of skills.
- Selzures and non-selzure vacant spells interfere with contact.
- Non-selzure EEG disturbance may intermupt neural pathways.
- Dyspraxic breathing leads to hypocarbia, hypoxia, abdominal distenslon and feeding difficulty.
- Agitation exacerbates repetitive movements and distress.
- Parental frustration, anxiety or rejection is felt by the child.

4.2.2 A model to illustrate the hypothetical effect of the central receptive processing defect upon patterns of behaviour in Rett disorder (Kerr 1995, with kind permission of Neuropediatrics

4.3.1 Health visitors' reviews: numbers of video samples receiving button presses throughout the first year of life. (Burford \& Kerr 1995, by kind permission of the Journal of Intellectual Disability research)

Group	Number of times samples viewed	Number receiving presses	Number not receiving presses	Percentage receiving presses	Percentage not receiving presses
Rett syndrome Control	608	278	330	45.7	54.3

4.3.2 Health visitors' reviews: Percentage of button presses for video of Rett
and normal infants in the three age bands in the first year. (Burford \& Kerr
1995 , by kind permission of the Journal of Intellectual Disability research)

Group	Age band (months)								
	0-4			5-8			9-12		
	Number of infants	Percentage*	Total number	Number of infants	Percentage*	Total number	Number of infants	Percentage*	Total number
Rett	9	38	262	11	35	165	11	63	181
Control	8	15	192	9	13	141	8	3	145

*The percentage of all button presses made for the infant group at the specified age band.

4.3.3 Midwives reviews: Numbers of samples receiving button presses in the first month of life (Burford \& Kerr 1995, by kind permission of the Journal of Intellectual Disability research)

	Number of times samples viewed	Number receiving presses	Number not receiving presses	Percentage receiving presses	Percentage not receiving presses
Rett	170	83	87	48.8	18.8
Control	80	15	65	81.2	

4.3.4 Categories of comment explaining button presses. (Burford \& Kerr 1995, by kind permission of the Journal of Intellectual Disability research)

Category	Examples
Appearance Refers to visual impact, without need for movement; would be able to tell from a still photograph	Poor colour, head shape, snape of eyes, odd features, facial expression, ear shape or position, tongue visible (but not thrusting)
Posture Refers to way body, or part of body (e.g. hand), is held; would be able to tell from a still photograph	Floppy, rigid, way is sitting, shape of fingers - clench, cross, spread, hand position, foot position
Movement Refers to moving parts, both qualitative aspects and skill of performance	Active/inactive, jerky, jittery, wobbly, lack of movement (e.g. no foot movement), hands, tongue thrusting
Includes purposeful and spontaneous movements and reflexes	Contact Refers to interest and responsiveness to people and environment (e.g. toys or sounds)

4.3.5 Proportion of health visitors' comments according to the categories given in 4.3.4 (Burford \& Kerr 1995, by kind permission of the Journal of Intellectual Disability research)

Category	Age group (months)					
	0-4		5-8		9-12	
	Number	Percentage ${ }^{\text {- }}$	Number	Percentage ${ }^{\text {- }}$	Number	Percentage ${ }^{\text {e }}$
Rett Group						
Appearance	48	33	35	37	53	27
Posture	35	24	17	18	40	20
Movement	22	15	19	20	52	26
Contact	41	28	23	24	53	27
Total number	146	-	94	-	198	-
Control group ${ }^{\text {d }}$						
Appearance	17	49	3	17	,	-
Posture	12	34	7	39	2	-
Movement	1	3	7	39	1	-
Contact	5	14	1	5	1	-
Total number	35	-	18	-	5	-

- Percentages rounded to the nearest whole number
'Although the number of comments ($n=58$) on infants with normal dewelopment is small, these are presented in percentage format to allow comparison between the two groups of infants. The number of comments on infants with normal development at 9 i 2 months was too small for meaningful inclusion in the pereentages

4.3.6 The proportion of midwives comments according to the categories given in 4.3.4. (Burford \& Kerr 1995, by kind permission of the Journal of Intellectual Disability research)

Category	Group			
	Rett group		Control group ${ }^{\text {1 }}$	
	Number	Percentage*	Number	Percentage*
Appearance	28	25	4	25
Posture	37	34	1	6
Movement	30	27	6	37
Contact	15	14	5	31
Total number	110	-	16	-

*Percentages rounded to the nearest whole number
'Although the numbers in the control group were very small, the percentage format is used to permit comparison.
4.4.1 The absence or presence of various signs within the first 6 months of life in 22 girls with Rett (Einspieler et al 2005, by kind permission of Pediatric Research)
. The absence (O) or presence (Θ) of various abnormal signs within the first six months of life of 22 girs with Rett disorder.

		General Motor Performance				The Hand		The Face			
Case	Mutation	Abnormal General Movements	Postural Stiffness or Slumped Posture	Tremor	Body Stereotypies	Abnormal Finger Movements	Hand Stereotypies	Asymmetric Eye Opening and Closing	Tongue Protrusion	$\begin{aligned} & \text { Bizarre } \\ & \text { Smile } \end{aligned}$	Bursts of Abnormal Facial Expression
		$\begin{gathered} 100 \% \\ (N=16) \end{gathered}$	$\begin{gathered} 68 \% \\ (N=19) \end{gathered}$	$\begin{gathered} 28 \% \\ (N=18) \end{gathered}$	$\begin{gathered} 15 \% \\ (N=13) \end{gathered}$	$\begin{gathered} 52 \% \\ (N=21) \end{gathered}$	$\begin{gathered} 42 \% \\ (N=19) \end{gathered}$	$\begin{gathered} 56 \% \\ (N=18) \end{gathered}$	$\begin{gathered} 62 \% \\ (N=21) \\ \hline \end{gathered}$	$\begin{gathered} 32 \% \\ (\mathrm{~N}=19) \end{gathered}$	$\begin{gathered} 42 \% \\ (N=19) \end{gathered}$
11	not tested	-	\bigcirc	*	${ }^{-}$	O	\bigcirc	-	\bigcirc	\bigcirc	0
12	T158M	*	0	O	O	\bigcirc	0	0	0	0	0
6	not tested	*	*	*	-	\bigcirc	-	-	-	-	-
7	not tested	-	*	*	-	-	\bullet	-	-	0	-
8	R255X	-	*	*	*	0	\bullet	-	0	-	-
2	806delG	-	-	0	\bigcirc	O	0	0	0	-	-
5	R168X	-	-	\bigcirc		\bigcirc	0	\bigcirc	0	0	0
10	Q2444X	-	0	0	O	\bullet	0	0	0	-	0
13	P152R	-	0	\bullet	-	0	0	. 0	-	0	0
21	R168X	-	-	0	*	0	\bigcirc	O	-	0	0
4	trunc. del.	-	-	0	0	-	0	O	0	0	-
16	not tested	-	-	0	0	0	0	-	-	0	0
3	negative	-	-	O	*	-	0	-	-	0	0
20	subst. 401	-	-	0	-	-	\bullet	0	0	0	-
22	negative	-	-	-	O	0	0	-	-	0	0
17	T158M	-	0	0	0	-	-	-	-	-	0
9	not tested	-	0	\bigcirc	\bigcirc	-	-	-	-	-	-
15	not tested	*	-	0	-	-	-	-	-	0	-
19	negative	-	-	0	\bigcirc	-	-	-	-	0	-
\checkmark	-		.			\therefore		\because			
18	Q244X	-	-	-	0	-	-	-	-	-	O
1	not tested	-	-	-	0	-	-	-	-	-	-
14	R168X	-	-	-	\bullet	\bullet	\bullet	-	-	-	-

The number of infants (N) is given for whom a particular sign could be reliably assessed due to the situation video taped.

* indicates that the recording did not allow a proper assessment.

The cases are ranked according to an increasing number of abnormal signs.
trunc. del., truncating deletion 1116-1201.
subst. 401, substitution at 401 (not reported in the same format as the other cases but a pathological mutation).
4.4.2 Number of infants in 2-month epochs to show the first appearance of the various abnormal signs observed in 22 babies with Rett (Einspieler et al 2005, by kind permission of Pediatric Research)

	General Motor Performance				The Hand		The Face			
Age	Abnormal General Movements	Postural Stiffness or Slumped Posture	Tremor	Body Stereotypies	Abnormal Finger Movements	Hand Stereotypies	Asymmetric Eye Opening and Closing	Tongue Protrusion	Bizarre Smile	Bursts of Abnormal Facial Expression
Birth until 2 months	10	8	3	1	3	2	5	8	2	2
3 to 4 months	4	3	1	-	2	2	3	2	-	3
5 to 6 months	2	2	1	1	6	4	2	3	4	3

4.4.3 The quality of generalised movements in 14 girls with Rett during the first 4 months post term (Einspieler et al 2005, by kind permission of Brain \& Development)

N, normal; PR, poor repertoire of GMs; TR, tremor; CS, cramped-synchronised GMs; AF, abnormal fidgety movements; F-, absence of FMs. - . no recording: CR, classic Rett syndrome; RnonC. Rett syndrome not elassic; trunc. del., truncating deletion 1116-1201
4.4.4 Individual developmental trajectories in eight girls with Rett during the first 4 months of life. (Einspieler et al 2005, by kind permission of Brain \& Development)

Individual developmental general movement trajectories of eight girls with Rett disorder. The quality of writhing general movements (left) is followed by the quality of fidgety general movements (right). N , normal; PR, poor repertoire of general movements; CS, cramped synchronised general movements; AF, abnormal fidgety movements; F-, absence of fidgety movements
4.5.1 Stereotyped hand movements in a girl with Rett syndrome.

Time curve, derived from three-dimensional motion analysis, of the markers on the right wrist (solid line) and left wrist (broken line). (Wright et al 2003, by kind permission of the Journal of Intellectual Disability Research)

4.5.2 Frequency analysis of motion data showing the dominant frequencies at 1.2 and 2.4 Hz . The vertical scale shows the power at any particular frequency. (Wright et al 2003, by kind permission of the Journal of Intellectual Disability Research)

4.5.3 Two dimensional video taken from an informal video recording when the subject of 4.6.1. was 3 years old. The oscillations are well marked indicating that early video screening is informative in Rett syndrome. (Wright et al 2003, by kind permission of the Journal of Intellectual Disability Research)

Two-dimensional 2D) video data taken from an informal video shot when the subject was 3 years of age. The oscillations are well marked, indicating that early video screening is informative in Rett syndrome.
4.6.1 How the Rett behaviours fit the 'map' of behaviours in developmental disorder. (Kerr 2000, also invited lecture RSM) by kind permission of MacKeith Press.

4.6.2 Speculation on how early subcortical influences on the developing cortical neurones may predict later functioning of the sensorimotor feedback (Kerr 2000, also invited lecture RSM) by kind permission of MacKeith Press.

Section 5: Investigations I

5.1. Quarrier's system for simultaneous ambulatory video-e.e.g. recording (Kerr et al 1988) by kind permission of Journal of Intellectual Deficiency Research.

Medilog 9000 lape recorder a) monitor b)	conventional headbox \& eeg Irolley	camera \& stand	videogram	timer \& stopwalch	video recorder	TV monitor	equipment 1987
£5000		£. 1000	£2500	£730	£518	£200	approx. cost to us of new equipment
					isodation mains	nit GU500	

5.2.1 Method for recording behaviour, respiration and e.e.g. (Kerr et al 1990) by kind permission of Brain \& Development.

5.2.2 Clinical details for 18 people with Rett Syndrome in a study of respiration (Southall et al 1988) by kind permission of Archives of Disease in Childhood.

Case No	Age (yeurs)	Occipitofrontal head circumference (\%)	Motor seizures	Scoliosis	Fuot deformity	Guseous ubdominal distension	Past history of hyperventlation	Currem treatment
Group 1:								
1	6	3-10	Yes	Yes	Yes	Nu	Yes	Carbemazepine
2	12	3-10	Yes	Yes	Yes	Yes	Yes	Carbemazepine
3	11	<3	No	Yes	Yes	Yes	Yes	Salbutanol
4	10	$\ll 3$	Yes	Yes	Yes	Ycs	Yes	Sudiumi valproate
5	7	10	No	No	Nu	Yes	Yes	Nune
6	16	<<<3	No	Yes	Yes	Yes	Yes	Nune
7	7	<3	Yes	Yes	No	Yes	Yes	Clonizupam, carbemazepine
8	12	<3	Yes	Yes	Yes	Yes	Yes	Carbemazepine
$9 *$	6	10-25	Yes	No	No	No	Yes	Prednisulone
10^{*}	6	3	Yes	Yes	Yes	Yes	Yes	Carbemazepine
Group 2:								
11	17	25	Yes	Nu	Yes	Yes	Yes	Carbemazupine
12	14	<3	No	Yes	Yes	Yes	Yes	None
13	16	3	Yes	No	Yes	Yes	Yes	Sodium valproate
14	13	$\ll 3$	Yes	Yes	Yes	Yes	Yes	Sodium valproate
Group 3:								
15^{*}	6	25-50	Yes	Yes	Yes	Nu	No	Carbemazepine
16	7	<3	Yes	Yes	Yes	Yes	Nu	Sudium valproate, trimeprazine tartrate
17	14	$\ll 3$	No	Yes	Nu	Yes	No	Nunc
18°	6	<3	Yes	Yes	Yes	No	No	Clunazepam

-Atypical features present.
group 1: hypotonic, group 2: dystonic, group 3:severely hypertonic
5.2.3 Selected physiological data for 18 people with Rett Syndrome in a study

of respiration (Southall et al 1988) by kind permission of Archives of Disease in Childhood.																			
Measurement	Case No										11	$12 \times$	13	- 1	15	16	17	18	Rannce in 18 controls
	1	2	3	4	s	6	7	8	9										
Duration of recording (hours)	${ }^{1+3}{ }^{\circ}$	13.2	12.9	$13.2{ }^{\circ}$	${ }^{13.8}{ }^{\circ}$	${ }^{11.5}$	$14.7{ }^{\circ}$	0.9	16.9	17.1	10.4	$0 \cdot 0$	0.5	${ }^{1+4}$	$1+7$.	1.5	0.4	0.5	6.010 :2. 5
Lowest values when awake dioxide (mm Hg)	24		32	18			8	${ }_{2}^{21}$	18	${ }_{3}^{13}$	$\stackrel{\text { NR }}{ }$	42	${ }^{36}$	51	+3.	th	${ }^{3}$	37	
End tidal Carbon dioxide (volume \%)	2.2												+2	1.4	+5	4	+.8	4.19	+6
Transcutancous carbon dioxide (mm Hg)																			
End tidal carbon dioxide (volume \%) Longest apnocic pause when awake	${ }_{\substack{\text { s.4 } \\ 49}}^{\substack{\text { S }}}$	59 98 78	${ }_{27}^{53}$		74.20	${ }_{43}^{4.0}$	38 44 34	$\begin{aligned} & \text { NR } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & S_{4}^{4.8} \\ & 60 \end{aligned}$	${ }_{27}^{5.3}$	${ }_{84}^{6.4}$	$\begin{aligned} & \text { NR R } \\ & \substack{24} \end{aligned}$	$\begin{aligned} & \text { NR } \\ & 21 \end{aligned}$	$\underset{\substack{\text { NR } \\ 4}}{4}$		$\begin{aligned} & \text { NR } \\ & \text { in } \end{aligned}$	$\underset{\sim}{\text { NR }}$		$\begin{aligned} & \text { NR } \\ & 50.200 .4 \\ & 10.4 \end{aligned}$
Lowest oxysen sauration when awake (\%)	${ }^{\%}{ }_{60}$	<50.	92	<so	<50	6	70	92	<50	${ }_{\text {<cs }}^{\text {Sos }}$	${ }_{\text {yo }}^{\text {yo }}$	${ }^{\text {Y/ }}$	${ }^{45}$	\%	$\stackrel{4}{4}$	\cdots	${ }^{98}$	$\stackrel{98}{8}$	
	Yes	Ycs	Yes	Yos	Yes	Yos	Yes	Yos	No	Ycs	Nonc								
	${ }^{13.5}$	1778	${ }_{\text {NR }}$	${ }_{0}^{5.45}$	${ }_{0}^{1.71}$	${ }_{\substack{13.8 \\ 0.42}}$	${ }_{0}^{17.0}$	${ }_{\text {SR }}^{\text {St. }}$	${ }_{0}^{1.7}$	9.1. 0.13	$\stackrel{11.3}{\text { NR }}$	${ }_{N / 8} 17.8$	NR		+ ${ }_{\text {NR }}$	$\underset{N}{2 \cdot 0}$	NR	${ }_{\text {NR }}^{\text {d. }}$	${ }_{\mathrm{NR}}{ }^{10} 0.75$

5.2.4 Selected biochemical data on 10 people with Rett Syndrome in a study of respiration (Southall et al 1988) by kind permission of Archives of Disease in Childhood.

Measurement	Case No								Normal range
	1	2	4	5	6	7	9	10	
Plasma concentrations (mmovi):									
Chloride	109	110	NS	110	109	110	105	NS	92-109
Ionised calcium	1.13	1.25	0.67	NM	1.24	$1 \cdot 26$	1.24	$1 \cdot 19$	1.19-1.31
Phosphate	1.6	1.6	1.7	1.4	1.5	1.6	1.9	1.8	0.7-1.4
Lactate	2.1	1.4	2.5	3.4	$1 \cdot 1$	2.0	$2 \cdot 2$	1.8	0.7-1.8
- Arterial:									
pH	7.48	7.51	7.60	7.59	7.47	7.49	7.55	NS	7.35-7.45
Bicarbonate (mmol/)	17	22	15	13	18	20	21	NS	22-26
Carbon dioxide (mm llg)	30	24	16	13	25	23	22	NS	$35-45 \mathrm{~mm} \mathrm{Hg}$
Base excess	-1.0	-0.9	-1.5	-4.1	-2.8	-2.4	0.5	NS	$-2.0-+2.0 \mathrm{mmol} /$

-Samples taken during hyperventilation; $N S=$ not sampled; plasma concentrations of potassium. sodium, and magnesium were all normal.
5.2.5 Interrupted printout of an overnight recording showing the transition between waking and sleeping. It can be seen that the CO2 level falls during hyperventilation. (Southall et al 1988) by kind permission of Archives of Disease in Childhood.

5.2.6 A section of an awake recording showing episodes of apnoea, each associated with a valsalva manoeuver. (Southall et al 1988) by kind permission of Archives of Disease in Childhood.

|Section of recording when awake (case 2). Four episodes of apnoca each associated with Valsalva manoeuvre (V) are shown, the longest reading 77 seconds (from A to B) during which there is a small fall in oxygen saturation (to 90%). Preceding each pause the end tidal carbon dioxide is reduced by a period of hyperventilation to about 2.4 volume $\%$. After the prolonged pause $(A B)$ the end tidal carbon dioxide reaches 5.0 volume $\%$. Throughout recording the transcutaneous carbon dioxide is about 32 mm Hg . Each apnoeic episode hegins at end of inspiration. Lung volume is maintaingd (by Valsalva manoctures) until positions E where there is sudden expiration of gas and the immediate onset of hypervehtilation. During periods of hyperventilation and the carly part of the apnoeic pause (Valsalva manocuvre) there is a comparative hradycardia. Increase in heart rate hegins within six seconds of onset of the pause. About 26 seconds (position S) into the prolonged apmoeic episode ($A B$) the heart rate slows again.
5.2.7 A prolonged apnoeic pause during which the oxygen level fell and a
(Sonthall et al 1988) by kind permission of Archives of Disease in Childhood.

5.2.8 A section of day time recording in which a period of normal breathing is followed by intermittent hyperventilation. (Southall et al 1988) by kind permission of Archives of Disease in Childhood.
(02 saturation (\%)
Section of daytime recording (case 5). An episode of breathing without hyperventilation (A to B) is followed by
periods of hyperventilation (as shown by end tidul carbon dioxide and the increased amplitude und frequency of the
breathing movements) and apnoeic pauses. Hyperventation episodes are accompanied by a progressive fall in
truncutaneous carbon dioxide. There is no evidence of hypoxaemia preceding the onset of hyperventilutian (oxygen suturation 98-100\%).

Case number (*1)	$1 * 5$ (9)	2 (1)	$\begin{gathered} 3^{* 6} \\ (10) \end{gathered}$	4 (5)	5 (7)	6 (4)	7 (3)	8 (2)	9 (8)	10 (6)	$\begin{gathered} 11 \\ (11) \end{gathered}$	$\begin{aligned} & 12 * 7 \\ & (15) \end{aligned}$	$\begin{aligned} & 13 * 8 \\ & (18) \end{aligned}$	14 (16)
Age (years)	6	6	6	7	7	10	11	12	13	16	17	6	6	7
Hyperventilation present	+	+	+	+	+	+	+	+	+	+	-*9	-	-	-
Lowest CO_{2} recorded *2	1.8/18	2.2/24	2/13	1.4/13	1.6/8	2.1/18	4.2/33	2.2/26	2.4/26	2.2/20	3.8/NR	4.5/44	4/37	4.4/46
Apnoeic pauses present* 3	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lowest oxygen recorded*4	< 50	60	< 50	<50	70	< 50	92	<50	92	66	80	94	98	97
EEG paroxysms at $11 / 2-4 \mathrm{~Hz}$	+	+	+	+	+	-	-	+	-	-	-	-	-	+
Increased in normal CO_{2}	+	+	+	+	+	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { 4-6 Hz EEG } \\ & \text { activity } \end{aligned}$	$\stackrel{+}{\text { UR }}$	$\stackrel{+}{\text { UR }}$	$\stackrel{+}{\text { UR }}$	$\begin{aligned} & + \\ & \mathrm{R} \end{aligned}$	$\stackrel{+}{\text { UR }}$	$\stackrel{+}{\text { UR }}$	$\begin{aligned} & + \\ & \mathrm{R} \end{aligned}$	$\stackrel{+}{\text { UR }}$	+	+	$\stackrel{+}{\text { UR }}$			
Paroxysmal 4-6 Hz activity	-	-	-	-	-	+ ${ }^{10}$	-	+	-	-	+	-	-	-
Paroxysmal limb movement with resp. dysrhythmia	+	+	-	+	+	+	-	-	-	-	-	-	-	-

[^1]5.3.2 Encephalograms in Rett syndrome. (Kerr et al 1990) reproduced by kind permission of Brain \& Develonment)
$-=-\cdots=$

2, -2,戌
 scomen

 $\left\{\begin{array}{l}\{ \\ \{ \\ \{ \\ \{ \end{array}\right.$
 :

Electroencephalograms in cases of Rett syndrome. Examples show the EEG in cases 4 (LM) and $5(S A)$ during hyperventilation
a) and c); and during normal breathing b) and d). Example e) shows the theta rhythm in case 10 (KR).
 $\frac{2}{2}$

5.3.3 Parallel recordings of e.e.g. breathing and behaviour in Rett syndrome. (Kerr et al 1990) reproduced by kind permission of Brain \& Development)

Parallel records of e.e.g., breathing and behaviour in case 5.1,2 and 3 are recordings during a period of respiratory dysrhythmia. 4,5 and 6 were recorded during alert normal breathing (while rebreathing). Small letters indicate respiratory activity corresponding to the photographs. In case 5 the paroxysms of movement + occurred not only during periods of respiratory dysrhythmia but specifically during the episodes of hyperventilation in these periods. During normal breathing, movements diminished.

5.3.4 Comparing the occurrence of non-epileptic e.e.g. paroxysms during normal and dysrhythmic breathing. (Kerr et al 1990) reproduced by kind permission of Brain \& Development)

Comparison of non-epileptic EEG paroxysms
occurring during periods of normal and dysrhythmic
breathing in four cases

Case	Time sec	$\underset{\text { vol\% }}{\operatorname{ETCO}}$	$n o^{E E}$	bursts $\%$ of time		vemen of tim $+$	
Respiratory dysrhythmia:							
1	741 (2)	1.9-3	1	<1	92	3	5
2	1,784 (4)	2.8-3.5	14	3	38.	56	6
4	1,108 (3)	2-3	2	2	63	35	3
5	1,264 (3)	2-3	1	<1	54	46	0
Normal breathing: alert							
1	124 (2)	4-5	5	8	0	48	52
2	239 (1)	4.9	9	8	0	22	78
4	389 (2)	3.8-4	Contin.	100	0	32	68
5	985 (2)	3.1-4.4	36	57	0	98	2
Normal breathing: asleep or drowsy							
1	448	4-5	25	16			
2	623	4-5	40	24			
4	597	3.7-5	Contin.	61			
5	150	4.7-4.9	9	29	$=$		

In case 5 movement ++ coincided with HV and + with apnoeic pauses. () Brackets indicate the numbers of periods analysed.
5.4.1 The normal breathing pattern in a girl with Rett syndrome and a normal control. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

Normal breathing pattern in a girl with Rett's syndrome and a healthy control. The depths of breathing are equal and inspirations are sharp and shor, while expirations are nearly biphasic

5.4.2 Breathing dysrhythmias seen in Rett syndrome. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

momeses vame M M

Breathing dysthythmias in Retr's syndrome. Breath holding were often ended with a sharp burst of expiration. Central apnoea tended to interrupt normal breathing, while hyperventilation was often followed by apnoea or Cheyne-Stokes breathing. Biot's breathing and short regular breath holds were rare. Deep breathing often followed long breath holds, tachypnoea and rapid shallow breathing were interspersed among the other dysrhythmias
5.4.3 Normal breathing in Rett and controls: average rates. There was no statistical difference between these $p>0.2$. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

5.4.4 Compares the averages of BP in all Rett and normal girls. There was no statistically significant difference the two ($p>0.1$)

\Continuous and simultaneous recording of heart rate (HR) and mean arterial blood pressure (mean BP) in a giri with Retr's syndrome (Rett) and a normal healthy girl (Normal) at rest and during normal breathing are shown. A sharp drop in HR at R within the vertical broken lines in the normal girl was in response to a brisk rise in BP which was successfully comected back to the baseline level. There are no such responses in the Rett girl. The BP in the Rett girl remained below 70 mmHg while BP varied between $75-85 \mathrm{mmHg}$ in the normal girr

5.4.6
 (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

, Continuous and simultaneous recording of cardiac vagal tone (CVT) and mean arterial blood pressure (mean BP) in a girl with Rett's syndrome (Rett) and a normal healthy girl (Normal) during normal breathing are shown. There was a sustained high level of CVT at R enclosed within the vertical broken lines in the normal gir in response to a sharp rise in BP, but no such responses in the Rett gir

5.4.7
| Compares the averages of the resting CVT in three groups of children. The level of CVT in the Rett girls was about equal to a previously reported neonatal level (4) and significantly lower than in controls (${ }^{*} \mathrm{p}<0.001$)

5.4.8 The effects of hyperventilation on sympathetic-vagal balance in Rett and normal girls. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

Effects of hyperventilation on sympatho-vagal balance in a normal and one Rett girl are shown. Sympathetic activity is represented by the mean arterial blood pressure (BP). Cardiac vagal tone (CVT) was measured in units of a linear vagal scale (LVS). The periods during which the two girls were hyperventilating are marked (H) and enclosed within broken vertical lines. Note the sustained increase in CVT in the normal girl contrary to vagal withdrawal in the Rett girl during hyperventilation. The heart rate (HR) dropped below 80 beats/min during hyperventilation in the normal girl, but it stayed above 100 beats/min in the Rett girl. There was-agitation, distress and vocalisation as the BP peaked during hyperventilation in the Rett girl
5.4.9 The effects of breath holding on sympathetic-vagal balance in Rett and normal girls. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

Abstract

Effects of breath holding on sympatho-vagal balance and baroreflex function in a normal and one Rett girf are shown. Sympathetic activity is represented by the mean arterial blood pressure (mean BP). Cardiac vagal tone (CVT) was measured in units of a linear vagal scale (LVS). Cardiac response to baroreflex (CRB) is the change in pulse interval per unit change in systolic BP and is measured in $\mathrm{ms} / \mathrm{mmHg}$. The periods during which the two girls were holding their breaths are enclosed within the broken vertical lines. Note the smooth withdrawal of CVT and CRB leaving the entire cardiovascular control to the sympathetic system during breath holding in both girls. This manoeuvre unmasked the inadequate restraint of the sympathetic system in the Rett girl indicated by oscillation of her BP and exaggerated changes in the heart rate (HR)

5.4.10 Comparing the reaction of mean arterial blood pressure (BP) and cardiac vagal tone (CVT) to hyperventilation in Rett and in a normal volunteer. (Julu et al 1997) reproduced by kind permission of the European Journal of Child and Adolescent Psychiatry.

Continuous and conctarent records of mean arterial blood pressure (BP) and a measure of cardiac vagal tone expressed in units of a LVS. The upper pair of traces are examples obtained from a normal 8 year old girl to show the reaction to voluntary hyperventilation (H). The lower pair of traces are examples obtained from an 8 year old gird with Retr syndrome to show the reaction to her spontaneous hyperventilation (H).
5.5.1
Respiratory and autonomic results according to age group. (Julu et al
reproduced by kind permission of Archives of Disease in Childhood.

Agc group	Mean age (ycars)	No in group	CVTLVS	$\begin{aligned} & \text { CSB } / \mathrm{mm} \mathrm{Hg}) \end{aligned}$	Normal breathing (\%)	Inadequatc breathing (\%)	Forced breathing (\%)	Apneustic breathing (\%)	Valsalva (\%)	Tone type	Reported epilepsy	Pre/now walking solo
Up to 5 y	3.6	7	3.9 (0.4)	2.4 (0.5)	26.7 (7.7)	9.6 (4.7)	24.2 (8.0)	37.0 (13.6)	0.2 (0.3)	$\begin{aligned} & \text { Hypo }=1 \\ & \text { Norm }=6 \\ & \text { Hyper }=0 \\ & \text { Dys }=0 \end{aligned}$	2	1/2
$6-9 y$	7.6	13	4.2 (0.6)	3.4 (0.9)	18.7 (4.8)	14.4 (3.7)	21.4 (5.4)	32.6 (6.3)	5.8 (2.0)	$\begin{aligned} & \text { Hypo }=6 \\ & \text { Norm }=3 \\ & \text { Hyper }=0 \\ & \text { Dys }=4 \end{aligned}$	7	8/8
$10-18$ y	12.3	15	3.8 (0.4)	3.0 (0.4)	26.4 (3.6) ${ }^{\text {' }}$	19.7 (4.1) ${ }^{\text {t }}$	21.3 (5.4) ${ }^{1}$	14.3 (2.8)'	10.4 (3.5) ${ }^{\prime}$	$\begin{aligned} & \text { Hypo }=1 \\ & \text { Norm }=2 \\ & \text { Hyper }=3 \\ & \text { Dys }=9 \end{aligned}$	12	10/10
> 18 y	28.5	12	6.0 (1.2)	4.5 (1.2)	37.6 (7.2) ${ }^{\text {² }}$	$18.4{ }^{(2.9)}{ }^{2}$	8.6 (1.6) ${ }^{2}$	13.4 (4.7) ${ }^{\text {2 }}$	20.7 (6.6) ${ }^{\text {2 }}$	$\begin{aligned} & \text { Hypo }=0 \\ & \text { Norm }=0 \\ & \text { Hyper }=4 \\ & \text { Dys }=8 \end{aligned}$	9	9/7

[^2]5.5.2 Apneustic breathing style (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

: Apneustic breathing scyle. Top: breath hold-a single fast full inspiration followed by a delayed fast expiration. Middle: regular breath holds episodes of breath holding. Bottom: protracted inspiration-a prolonged and continuous inspiration ended abruptly by full expiration (achieved fast, often forcefully), insufficient to obstruct venous return. Amplitude measured in arbitrary units.
5.5.3 Forceful breathing style (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

, Forceful breathing style. Top: deep
breathing-episode of exaggerated inspirations followed immediately by exaggerated expirations without causing central apnoea; rate below 35 breaths $/ \mathrm{min}$, depth must be well above average for that person. Middle: tachypnoea -episode of rapid inspirations followed immediately by expirations without causing central apnoea. Rate 35-45 breath per minute, depth average or greater for that person. Bottom: hyperventilation-episode of exaggerated inspirations followed immediately by equally exaggerated expirations contributing directly to a central apnoea. Amplitude measured in arbitrary units.

5.5.4 Inadequate breathing style (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

- Inadequate breathing style. Top: rapid shallow jreathing-episode of shallow inspiration followed
immediately by equally shallow expiration; rate above 35 breaths/min, depth below average for that person. Middle: shallow breathing-episode of shallow inspiration followed immediately by equally shallow expiration; rate below 35 breaths/min, depth must be below average for that person. Bottom: central apnoea-cessation of breathing movement at the end of expiration. Amplitude measured in arbitrary units.
5.5.5 Valsalva breathing style(Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

5.5.6 Less common breathing styles (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

Figure 6 Less frequent breathing rhythms. Top:
Cheyne-Stokes breathing-periodic breathing interrupted by central apnoea during which the breathing movements increases gradually in amplitude and decay again into apnoea. Bottom: Biot's breathing-abrupt apnoea followed by equally abrupt regular breathing in which both the apnoea and the regular breathing have variable durations. Amplitude measured in arbitrary units.

- 아 아 이 아 0

reach statistical significance, except in a few
style in the $10-18$ year group. Although there is individual variation and the age group differences do not reach statistical significance axi
instances (see text), these trends have been well maintained throughout the 56 recordings made. Values are means; error bars $=S E M$.

5.5.8 Cardiac vagal tone and cardiac sensitivity to baroreflex according to age of the subject. (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

7 Autonomic measurements in Rett subjects and controls. The Rett subjects are also atvided into age groups. Compared with controls, the mean cardiac vagal tone in the combined Rett group was reduced ($p<0.002$), as it was in the various age groups with the exception of the over 18 group. The cardiac sensitivity to baroreflex was also reduced ($p<0.01$) in the combined Rett group and in the age groups with the exception of the over 18 group. Values are means; error bars $=S E M$. CSB, resting sensitivity to baroreflex; CVT, resting cardiac vagal tone measured in the linear vagal scale; LVS, linear vagal scale.
5.5.9 Effects of hyperventilation on sympatho-vagal balance in a normal
person and one with Rett syndrome(Julu et al 2001) reproduced by kind
permission of Archives of Disease in Childhood.

5.5.10 Effects of breath holding on sympatho-vagal balance in a normal person and one with Rett syndrome (Julu et al 2001) reproduced by kind permission of Archives of Disease in Childhood.

Effects of breath holding on sympathovagal balance and baroreflex function in a Rett case and a control. The periods of breath holds are enclosed by broken vertical lines. Note the normal smooth withdrawal of cardiac vagal tone and which leaves the cardiovascular control to the sympatheric system. In the Rett case, this manoeuvre unmaskedithe
inadequate restraint of the sympathetic system, indicated by oscillation of blood pressure and exaggerated changes in heart rate. BP, mean arterial blood pressure representing sympathetic activity; CVT, cardiac vagal tone (measured in linear vagal scale (LVS)); HR, heart rate.

5.6.2 E.e.g from a girl of 16 years with classic Rett Syndrome showing persistent monorhythmic theta. (Cooper et al 1998) reproduced by kind permission of European Journal of Child Neurology

5.6.3 E.e.g. from a girl aged 12 years showing widespread repetitive spike discharges. (Cooper et al 1998) reproduced by kind permission of European Journal of Child Neurology

5.6.4 Diagram to illustrate the coexistence of epilepsy, non-epileptic vacant spells and respiratory dysrhythmia. (A.Kerr) (Cooper et al 1998) reproduced by kind permission of European Journal of Child Neurology

5.6.5 A possible sequence of events in the generation of the Rett Syndrome (Kerr 1990) reproduced by kind permission of Brain \& Development0

5.6.6 Mechanisms which may contribute to the vacant spells in Rett Syndrome (Kerr 1990) reproduced by kind permission of Brain \& Development)

Section 6: Investigations II

6.1.1 Neurophysiological observations on eight girls with Rett Syndrome (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

Subject	1	2	3	4	5	6	7	8
Age (years)	5	7	8	8	8	9	16	26
Height (cm)	111	108	121	121	111	116	136	152
Arm length $\mathrm{C}_{\text {s }}$ to fifth finger tip (cm)	59	55	66	64	60	63	78	75
Length $\mathbf{C} 5$ to midpoint biceps brachii (cm)	19	18	22	21	20	21	26	25
Scoliosis	+	+	+	+	+	+	+	+
Hyperventilation	+	+	+	-	+	+	+	$+$
Walking independently	$+$	-	-	+	+	$+$	-	$+$
Increased biceps reflexes	+	$+$	+	$+$	$+$	$+$	+	+
Increased patellar reflexes	$+$	+	$+$	+	$+$	+	$+$	+
Increased ankle reflexes	+	$+$	+	+	+	$+$	+	$+$
Ankle clonus	+	+	$+$	+	+	-	-	+
Babinski sign	-	-	-	-	-	-	-	-
Spasticity	+	$+$	+	$+$	$+$	$+$	$+$	$+$
$\begin{aligned} & \text { Definitions } \\ & +=\text { present } \\ & -=\text { not present } \end{aligned}$								
Hyperventilation: intermittent hyperventilation and breath-holding. ${ }^{26}$ Spasticity: velocity dependent increase of muscie tone following stretch. ${ }^{25}$								

6.1.2 Motor action potentials following electromagnetic stimulation of the cervical spine and motor cortex in Rett and normal subjects (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)
(A) Biceps brachii

[^3]

$\xrightarrow[\text { of motor action potentials }]{\begin{array}{c}\text { Onset latencies }\end{array}}$
of motor action potentials
following electromagnetic
stimulation of the motor
cortex in relation to age of
subjects. The filled and
median values for normal
subjects in contracted and
relaxed muscles,
respectively. The hatched
area defines for normal
subjects the interquartile
subjects the interguartile
range in contracted muscle
and the stippled area the
interquartile range in
relaxed muscle. The
triangles indicate data for
the Rett subjects in relaxed
muscle.

6.1.4 Onset latencies of motor action potentials in relation to conduction distance (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

Onset latencies of motor action potentials following electromagnetic stimulation of motor cortex in relation to conduction distance. The filled and open circles indicate the median values for normal subjects in contracted and relaxed muscles, respectively. The hatched area defines for normal subjects the interquartile range in contracted muscle and the stippled area the interquartile range in relaxed muscle. The triangles indicate data for the Rett subjects in relaxed muscle.

6.1.5 Durations of motor action potentials following electromagnetic stimulation of the motor cortex in Rett and normal subjects related to age (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

Durations of action potentials following electromagnetic stimulation of motor cortex in relation to age of subjects. The filled and open circles indicate the median values for normal ;bjects in contracted and .! laxed muscles, respectively. The hatched area defines for normal subjects the interquartile range in contracted muscle and the stippled area the interquartile range in relaxed muscle. The triangles indicate data for the Rett subjects in relaxed muscle.

6.1.6 Recordings of the phasic stretch reflex in normal and Rett subjects. (Eyre et al 1990) reproduced by kind permission of Journal of Neurology
Neurosurgery and psychiatry)

6.1.7 Onset latencies of phasic stretch reflexes in biceps brachii in relation to ages in Rett and normal subjects (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

' Onset latencies of phasic stretch reflexes in the biceps brachii in relation to age of subjects. The filled and open circles indicate the median values for normal subjects in contracted and relaxed muscles, respectively. The hatched area defines for normal subjects the interquartile range in contracted muscle and the stippled area the interquartile range in relaxed muscle. The triangles indicate data for the Rett subjects in relaxed muscle.
6.1.8 Onset latencies of phasic stretch reflexes in biceps brachii in relation to conduction distance in Rett and normal subjects (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

Onset latencies of phasic stretch reflexes in biceps brachii in relation to conduction distance. The filled circles indicate the median values for normal subjects. The open area defines for normal subjects the interquartile range. The data have not been plotted with respect to contracted and relaxed muscle, because of the overlap of arm length up to the age of four years. However, all the data relating to distances above 10 cm relate to contracted muscle. The triangles indicate data of the Rett subjects in relaxed muscle.

Durations of phasic stretch reflexes in biceps brachii in relation to age of subjects. The filled ard open circles indicate the median values for normal subjects in contracted and relaxed muscles, respectively. The hatched area defines for normal subjects the interquartile range in contracted muscle and the stippled area the interquartile range in relaxed muscle. The triangles indicate data for the Rett subjects in relaxed muscle.
6.1.9 Durations of phasic stretch reflexes in biceps brachii in relation to age in Rett and normal subjects (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)
6.2.1 Photograph of a the foot of an adult with Rett syndrome showing the shortened 4th ray (Kerr et al 1995) reproduced by kind permission of Neuropediatrics

Photograph of the foot of a Rett adult with the fourth toe anomaly. The metatarsal is most clearly shortened with variable involvement of the digit. The other foot was also affected.
6.2.2 Radiograph of a the foot of an adult with Rett syndrome showing the shortened 4th ray (Kerr et al 1995) reproduced by kind permission of Neuropediatrics

Radiograph of the foot of a Rett adult with the fourth toe anomaly showing shortening of the fourth metatarsal. The anomaly was present but less marked on the other foot. Surgery had been carried out for metatarsus varus (bunion).
6.2.3 Diagram to indicate points at which Rett disorder, Downs syndrome and other prenatal conditions might interfere with the normal development of both brain and limbs (Kerr et al 1995) reproduced by kind permission of Neuropediatrics

6.3.1 The distribution of astigmatic error and ametropia in subjects with Rett syndrome. (Saunders et al 1995) reproduced by kind permission of Developmental Medicine and Child Neurology.

6.3.2 Binocular VEP to 60 'check pattern in normal and Rett subjects (Saunders et al 1995) reproduced by kind permission of Developmental Medicine and Child Neurology.

TTypical binocular VEP. recorded to onset of a 60° check pattern, in a subject with Rett syndrome.
6.3. Tables comparing latencies and amplitudes of negative and positive waveform components of VEPs in response to 60 check patterns in people with Rett syndrome and controls. (Saunders et al 1995) reproduced by kind permission of Developmental Medicine and Child Neurology.

TABLE I
Latencies (in milliseconds) of negative and positive waveform components of VEPs in response to 60^{\prime} check stimuli in children with Rett syndrome and controls

Rett Mean (SD)					Control		Mean	SD	p
N60	54.27	(19.17)	54.06	(12.33)	0.9705				
P100	88.00	(29.13)	95.44	(17.59)	0.3963				
N120	102.00	(18.85)	121.82	(25.61)	0.0819^{*}				

*Significant at the 10 per cent level.

TABLE II
Amplitudes (in microvolts) of negative and positive waveform components of VEPs in response to 60^{\prime} check stimuli in children with Rett syndrome and controls

Rett					Control		p
	Mean	$(S D)$	Mean	$S D$			
N60	-3.78	(5.97)	-1.06	(3.01)	0.1130		
P100	10.45	(6.98)	17.16	(11.11)	0.0843^{*}		
N120	-1.78	(5.49)	1.48	(5.35)	0.2123		

6.4.1 The biosynthesis and function of biopterin and neopterin

6.4.2 Urinary neopterin levels in Rett subjects, their sisters and controls. (Messahel et al 2000). reproduced by kind permission of European Journal of Paediatric Neurology

Úrinary neopterin values in Rett syndrome subjects, their sisters and controls ($\mu \mathrm{mol}$ neopterin $/ \mathrm{mol}$ creatinine)

Patient group	$\leqslant 5$ years	$6-10$ years	$11-21$ years	Over 21 years
Rett patients	$3692 \pm 1086^{*}$	$1128 \pm 129^{*}$	$1067 \pm 126^{*}$	879 ± 152
	$(\mathrm{n}=7)$	$(\mathrm{n}=9)$	$(\mathrm{n}=12)$	$(\mathrm{n}=12)$
Controls	1003 ± 311	668 ± 168	665 ± 103	534 ± 264
	$(\mathrm{n}=8)$	$(\mathrm{n}=7)$	$(\mathrm{n}=8)$	$(\mathrm{n}=6)$
Sisters	1482 ± 750	-	1159	701 ± 194
	$(\mathrm{n}=3)$		$(\mathrm{n}=2)$	$(\mathrm{n}=3)$

Values are given as mean \pm SE
*Significantly different from corresponding control group ($p \leqslant 0.05$)

6.4.3 Urinary biopterin levels in Rett subjects, their sisters and controls. (Messahel et al 2000). reproduced by kind permission of European Journal of Paediatric Neurology

Urinary biopterin values in Rett syndrome subjects, their sisters and controls (mmol biopterin/mol creatinine)

Patient group	$\leqslant 5$ years	$6-10$ years	$11-21$ years	Over 21 years
Rett patients	2027 ± 742	495 ± 164	$456 \pm 64^{* *}$	$261 \pm 64^{*}$
	$(\mathrm{n}=7)$	$(\mathrm{n}=9)$	$(\mathrm{n}=12)$	$(\mathrm{n}=12)$
Controls	427 ± 135	1083 ± 320	1397 ± 215	1423 ± 871
	$(\mathrm{n}=8)$	$(\mathrm{n}=7)$	$(\mathrm{n}=8)$	$(\mathrm{n}=6)$
Sisters	792 ± 656	-	168	$186 \pm 70^{*}$
	$(\mathrm{n}=3)$		$(\mathrm{n}=2)$	$(\mathrm{n}=3)$

[^4]
Section 7: Genetic progress

7.1.1 Map of the MECP2 mutations in people with Rett disorder (Cbeadle
et al 2000). reproduced by kind permission of Human molecular genetics.

\therefore (a) Map of MECP2 mutations in RTT patients. Missense mutations are denoted by blue circles above the gene and nonsense mutations by red squares and deletions by green arrows (indicating the region deleted) below the gene. Recurrent mutations are denoted by symbols adjoined by lines at identical positions on the gene. Novel mutations are in bold font. MBD. methyl-CpG-binding domain; TRD, transcription repression domain. (b) Detailed map of missense mutations found in the methyl-cytosine binding domains and transcription repression domains of human MeCP2 (H-MeCP2; GenBank P51608), mouse MeCP2 (M-MeCP2; GenBank AAC68880). Xenopus laevis MeCP2 (X-MeCP2; GenBank AAD02651) and chicken MeCP2 (C-MeCP2; GenBank Y14166). Conserved amino acids are coloured in blue and similar amino acids are coloured in red.
7.2.1 Diagram of the exon - intron structure of $M E C P 2$ and position of
mutations (Vacca et al 2001). reproduced by kind permission of Journal of molecular medicine
MECP2 gene exon-in-

Mron structure and mutation po-
sitions are shown. The 3^{\prime}-un-
translated region (UTR) is not
to scale. Novel mutations are
highlighted in a bold oval. Spe-
cific protein domains are boxed
and their amino acid positions
are reported at the bottom.
new domain of potential func-
tional significance, rich in his-
tidine and proline residues, is
shown as a vertically lined box

CEN

7.3.1 A family with two sisters with R133C mutations in MECP2 and Rett disorder. Their mother has the same mutation shown in peripheral blood leucocytes with completely skewed X inactivation and normal intelligence (Gill et al 2003).reproduced by kind permission of the Journal of Medical Genetics

7.4.1 Proportions of cases from BIS (Glasgow) and other sources in whom mutations were identified (Charman et al 2005 in press) reproduced by kind permission of the European Journal of Human Genetics.

	N	Have mutation (\%)	No Mutation
Clinical diagnosis			
Set A (Glasgow):			
Classic Rett syndrome	57	51 (89.5\%)	6
Atypical Rett syndrome	5	1 (20\%)	4
Set B (Other):			
Classic Rett syndrome	83	65 (78\%)	18
Atypical Rett syndrome	45	18 (40\%)	27
Overall:			
Classic Rett syndrome	140	116 (82.9\%)	24
Atypical Rett syndrome	50	19 (38\%)	31

7.4.2a) Age of onset of regression and of reported seizures in cases with and without identified mutations; b) Unusual clinical features for cases with and without identified mutations (Charman et al 2005 in press) reproduced by kind permission of European Journal of Human Genetics.

	Mutation identified N (row \%)	No mutation identified N (row \%)	$\begin{aligned} & \text { Total } \\ & N \end{aligned}$
Age of onset of regression ${ }^{\text {a }}$			
Before 6 months	5 (33.3\%)	10 (66.7\%)	15
6 to 30 months	115 (81.0\%)	27 (19.0\%)	142
After 30 months	9 (75.0\%)	3 (25.0\%)	12
Age offirst seizures ${ }^{\text {b }}$			
Before 12 months	3 (18.8\%)	13 (86.7\%)	16
12 to 60 months	50 (74.6\%)	17 (25.4\%)	67
After 60 months	22 (75.9\%)	7 (24.1\%)	29

b) Unusual clinical features for cases with and without identified mutations		
Mutation identified		
$N($ row $\%)$	No mutation identified	Total
	$N($ row $\%)$	N

Event or illness that may have caused neurological deficit Y es	$11(44.0 \%)$		
No	$120(74.1 \%)$	$42(56.0 \%)$	25
			162
Facial dysmorphism	$15(55.5 \%)$	$11(44.4 \%)$	26
Yes	$100(73.5 \%)$	$36(26.5 \%)$	$\mathbf{1 3 6}$
No			

a) $p<.001$

- $p<.001$
c) $p<.01$

7.4.3 Analysis of clinical features according to the type of mutation a) by number of diagnostic criteria present, b) by BIS and RSBQ severity scores (maximum severity $=10$); c) by age at onset of regression and of first reported seizure (Charman et al 2005 in press) reproduced by kind permission of European Journal of Human Genetics.

a) Typicality of presentation by mutation type and location

	Early truncating Mean (SD)		N	Missense Mean (SD)	N	Late truncating Mean (SD)	
N Number of Necessary diagnostic features present $6.73(0.62)$ 56 $6.64(0.63)$ 50 $6.25(0.93)$ 28 Number of Supportive diagnostic features present $4.27(1.29)$ 56 $4.54(1.33)$ 50 $4.07(0.77)$ 28							

b) Severity of outcome by mutation type and location

	Early truncating		Missense Mean (SD)		N		Late truncating	
	Mean (SD)	N	Mean (SD)	N				
BIRS severity score $^{\text {b }}$	$6.78(2.66)$	51	$5.44(2.76)$	48	$4.43(2.46)$	28		
RSBQ Hand factor score $^{\text {c }}$	$8.89(1.80)$	52	$7.93(2.72)$	42	$6.76(3.11)$	28		

c) Age of onset for cases by mutation type and location

	Early Truncating N (row \%)	Missense N (row \%)	Late Truncating N (row \%)	Total N
Age of onset of regression				
Before 6 months	4 (80\%)	1 (20\%)	0 (0\%)	5
6 to 30 months	46 (40.4\%)	43 (37.7\%)	24 (21.1\%)	114
After 30 months	3 (30.0\%)	4 (40.0\%)	3 (30.0\%)	10
Age of first seizures				
Before 12 months	2 (67.3\%)	0 (0\%)	1 (33.3\%)	3
12 to 60 months	21 (42.0\%)	20 (40.0\%)	9 (18.0\%)	50
After 60 months	7 (31.8\%)	11 (50.0\%)	4 (18.2\%)	22

a) $\mathbf{p}<.05$
b) $p<001$

- $\mathrm{p}<.01$
7.4.4 Necessary and supportive criteria associated with commonly occurring mutations (Charman et al 2005 in press) reproduced by kind permission of European Journal of Human Genetics.

Boxplot displaying number of necessary diagnostic criteria (left) and number of supportive criteria (right) for patients with each of 6 common mutations. Shaded box indicates the interquartile range and thick black line the median of each distribution. Whiskers indicate the highest and lowest values observed, except for outliers ($O=1.5$ to 3 boxlengths from the upper or lower edge of the box; $*=>3$ boxlengths from the upper or lower edge of the box). $\mathrm{N}=$ number of patients with each mutation.
7.4.5 BIS (BIRS) severity score and RSBQ hand factor scores for commonly occurring individual mutations (Charman et al 2005 in press) reproduced by kind permission of European Journal of Human Genetics.

Boxplot displaying number of BIRS severity score (left) and RSBQ hand factor score (right) for patients with each of 6 common mutations. Shaded box indicates the interquartile range and thick black line the median of each distribution. Whiskers indicate the highest and lowest values observed, except for outliers ($\mathrm{O}=1.5$ to 3 boxlengths from the upper or lower edge of the box; ${ }^{*}=>3$ boxlengths from the upper or lower edge of the box). $\mathrm{N}=$ number of patients with each mutation.
7.4.6 Age of onset of regression and age at onset of reported seizures related to individual mutations (Charman et al 2005 in press) reproduced by kind permission of European Journal of Human Genetics.

Boxplot displaying age at onset of regression in months (left) and age at onset of first seizure (right) for patients with each of 6 common mutations. Shaded box indicates the interquartile range and thick black line the median of each distribution. Whiskers indicate the highest and lowest values observed, except for outliers $(O=1.5$ to 3 boxlengths from the upper or lower edge of the box; ${ }^{*}=>3$ boxlengths from the upper or lower edge of the box). $\mathrm{N}=$ number of patients with each mutation.

8.1 Analysis of respiratory rhythms in TK before and two months after commencing treatment with buspirone.(Kerr et al 1998) reproduced by kind permission of Monduzzi Editori.

Type of breathing	\% of total record		brief explanation of terms			
	Before Buspirone	After Buspirone				
Normal	25.3	66.2	Ramp inspiration and Expiration			
Atypical	11.2	2.7	unclassified			
Shallow breathing	5.5	4.2	Low amplitude <35 brth/min			
Rapid shallow	2.6	3.1	Low amplitude >35 brth/min			
Tachypnoea	0.2	1.6	$35-45$ brth/m, no central apnoea			
Deep breathing	18.4	1.5	<35 brth/m, no central apnoea			
Hyperventilation	2.5	2.3	Rapid brths with central apnoea			
Cheyne-Stokes	9.5	6.9	periodic breathing			
Biot's breathing	0.0	0.5	abrupt apnoea and abrupt brths			
Apnoea	2.3	0.8	Cessation of breathing in expiration			
Regular breath-holds	2.2	6.7	succession of breath-holds			
Breath-hold	3.8	2.2	delay in expiration			
Protracted Inspiration	16.4	1.2	No change in BP or pulse			
Valsalva's manoeuvre	0.0	0.0	Signs of reduced venous return			
Autonomic indices					Mean resting values	Normal range for age
Cardiac vagal tone (linear scale)	6.7	6.6	$6-19$			
Heant rate (beats/m)	93	96				
Baroreflex sensitivity (ms/mmHg)	5.4	4.6	$70-97$			
Mean arterial pressure (mmHg)	82	83.6	$5-14$			

Footnote: Breaths per minute=brth/min: expiration=exp: Transcutaneous
blood gases remained in the normal range during both recordings
8.2.1 Scoliosis by age group and severity (Kerr et al 2003). reproduced by kind permission of Brain \& Development

[^5]8.2.3 Change in function after scoliosis surgery in 50 people with classic Rett
(Kerr et al 2005). reproduced by kind permission of Brain \& Development.
Figure 2. Change in function after scoliosis surgery in 50 people with classic Rett syndrome. Columns indicate altered function attributed by the parent to scoliosis surgery. "Chest" indicates changes in lung complaints, "general" indicates a change in general wellbeing, and "family" indicates effects on the

8.3.3 Comparing possible early signs in autistic spectrum disorder, Angelman Syndrome and Rett syndrome. (Kerr et al 2003). reproduced by kind permission of Primary Psychiatry.

$\frac{\text { Age }}{0-6 \text { months }}$	Autism	Angeimen's sundrome Disorder	Rett Disorder
	Brith unvemarkable	May be light compared to stbings	Blith unremarkable
	Not dysmorphic	Fari if gene deletion present	Not dysmorphic
	OFC remainṣ normal Placld	Plaglo/brachycephaty common Birth OFC normal, decelerating	Bith and neonatal OFC normai. decelerating
	Poor orenting, smiling, and vocalishng'	Poor feeding, regurgitation.	Occastonally slow feeding
	Normal response to objects' ${ }^{\text {a }}$	Fals to thive	Usuaty thives
	Abnormal movements (posslbly)	Placid, lacking babble	Plack but babbles
	EEG normal	Smiles eaty	Smule normal or tote
		Tunk hypotonla, limb hypertonia	Responds to faces
		Movement poor and jerky	Usually hypotonta
		Eplepsy-solaom attacks	Posture and movements restricted
		EEG typica--bllateral synchronous	Epllepsy uncommon
		2 Hz splke and wave	EEG normal or immature
7-12 months	Rather poor response to people. oversion to touch.	Contented A ultle developmental progress	Contented until regression Allitle developmentol progress
	Developmental progress	Smaling	Smillng, likes faces
	Lack of soctal smlling	No babble or words	Babble or real words until regression
	Poor orlentation to name.	Dysmorphic (small chin, wide mouth)	Lack of exploration
	Lookng of people less.	'Commando crowl' or shuffle	Not fronky dysmorphic
	less shared attention"	Jerry movements	Shuffe, rarely true crawing
	Uitile interest in sociai games	OFC decelerates	Increasing stereotyped limb
	Repettive movements	Regresslon only with seture	movements
	OFC normal		OFC decelerates
			May regress at 4-12 months wilhout setzure
1-2 years	Odd postures and pieferences	Slow motor mliestones, sits at 13 months. stands with broad base. no waking Epllepsy problematic, status common. typlcal EEG No speech, quiet Inappropriate laughter OFC decelerates (microcephaly 60\%) Night sleep disturbed	s. Walks late If at ull
	(eg. finger filicking, toating objects). lgnores people		Development stognates until regression
	Poor shared attention		Acute reduction in hand use and
	Pretend play is repettive or obsent		communication usually at
	Lack of words		1-2 years of age. wilhout lliness
	Regresslon af 15-20 months in some chldren with loss or reduction in speech. soctal contact. and affect		At 2 years of age or later:
			Resplration becomes inegular
			EEG becomes abnormal with slow wave and sppkes
			Clinical epliepsy in some
			OFC growth may resume
			(final Ov. 2SD)
			Night sleep disturbed
			Unexplained crying eplsodes

OFC=ocelpitoftontal ckcumference: EEG=electroencephatogran: find av . $2 S D=$ final overoge at second standord devition
Note: Not on symptoms are present th every disorder case and absence of these teatures does not exchude a diognods. However. owareness of these possible earty devtations will ald detection ond improve support for the child and family.
hiormation was supplied by Dr. JII Cloyton-Sralth (Angotman's syndrome disorder). Drs. Tony Charman and Fiona Knott (Autlsm). Dr. Brorwen Burford Rett disorder). Ths table was constructed in consultation with them.
Kert AM. Pimary Psyctiatry. Vol 10. No 2. 2003
9.1.1 Reported deaths among 31 people with classic Rett syndrome (Kerr et al 1997). reproduced by kind permission of European Child and Adolescent psychiatry.

Column 1 gives percentage of deaths reported with this type of cause

Fig. 1 Deaths among 31 classic cases by age and type of cause: 'Frail' (F) = wasted with contractures and usually major foeding difficulty: 'Seizure' (S)=associated severe seizure disorder. 'General' $(\mathrm{G})=$ causes such as accident or tumour which might affect a normal person. 'Unexpected' (U)=sudden unexpectod death. 'Index of Severity of RS' is derived from foeding difficulty score, muscle tone distur-
bance, presence of seizure and scotiosis and walking ability. Index of
Health' is derived from reports of health over the past 12 months.
Health' is derived from reporss of health over the past
Higher percentage indicate greater severity and poorer healeh
9.1.2 Autopsy reports in nine deaths of people with classic Rett syndrome. (Kerr et al 1997) reproduced by kind permission of European Child and Adolescent psychiatry.

Case	Age	Circumstances	PM report	Brain W1	Golgi
1	19	S	basal lung congestion ${ }^{2}$	1170 g	b
2	20	F	bronchopneumonia ${ }^{2}$	975 g	\bigcirc
3	11	U	no abnormality	927 g	b.e
4	3	U (night)	no gross abnormality ${ }^{2}$	not given	\bullet
5	11	\cup (night)	H Infl isolated, nil gross ${ }^{2}$	$1120{ }_{8}$	\bigcirc
6	5	\cup (night)	no evident cause of death	970 g	-
7	33	U	no gross abnormality	915 g	\bigcirc
8	15	F	areas of atelectasis	900 g	
9	11	F	bronchopneumonia	956 g	

[^6]9.2.1 Kaplan Meyer curves for people with Classic Rett grouped by preregression severity. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

Kaplan-Meier survival curves for people with classic Rett grouped according to 1) severity scores before regression and 2) severity scores at 5-9 years. The numbers of people being followed up at 0-5 (pre-regression), $-10,-15,-20,-25$ and -30 years in figure $\mathrm{l}:$ are 463 , $351,257,180,119,78$ and 33 respectively; and in figure 2'. are 285,201, 133, 87, 38 and 16 respectively.
The cases included in these figures are all 'classic' therefore the period 0.5 years describes only the period before the onset of their regression (see text).

9.2.2 Kaplan Meyer curves for people with Classic Rett grouped by early postregression severity. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

9.2.3 Deaths related to the severity before the final episode. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

type of death	SS range	mean SS	median SS	$N=59$
debilitated	$30-100 \%$	90%	90%	35
Seizure related $30-100 \%$	70%	70%	5	
general	$30-100 \%$	60%	70%	7
unexpected	$20-100 \%$	71%	75%	12

| Deaths related to the severity score before the final episode
$\mathrm{SS}=$ severity score. It can be seen that among those who have died those who are debilitated (weak, thin and in poor general health) are in the most severe group before the episode culminating in death.

9.2.4 The change in severity scores with age in individuals with classic and non classic Rett. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

Mean levels of severity scores with age in people with classic Rett (solid line) and Rett non classic (dotted line), grouped according to pre-regression severity scores. For classic cases the period 0-5 years describes only the period before the onset of their regression. For non-classic cases who have not regressed this interval described the situation before 5 years (see text).
9.2.5 Box plots of severity scores at age $\mathbf{1 0 - 1 4}$ years a) and at $\mathbf{1 5 - 1 9}$ years b) in relation to pre-regression severity scores in people with classic Rett. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

Box plots of severity scores at age 10-14 years (a) and 15-19 years (b) in relation to pre-regression severity scores in people with classic Rett. Each box represents the interquartile range with the horizontal line in the box denoting the median. The 'whiskers' represent the range of values after any outliers have been removed (ref 14)
9.2.6 Most frequently occurring mutations in the study population related to most recent severity scores. (Kerr \& Prescott 2005) reproduced by kind permission of Brain \& Development

Mutation protein	mean severity score	$\mathrm{N}=$
T158M	77%	29
R255X	67%	20
R168X	66%	27
R270X	66%	21
R106W	65%	7
P152R	61%	6
R306C	53%	16
R133C	36%	18

9.3.1.Survival with R270X mutation compared with all other mutations. (Jian et al in press 2005) reproduced by kind permission of European Journal of Human Genetics

9.3.2.The distribution of 8 common and other collected mutations on MECP2 by deceased status in Australian and UK cases of Rett disorder. (Jian L et al in press 2005) reproduced by kind permission of Eur J Hum Genet
The final figures in this table have been added to indicate the percentage of cases of each mutation who are known to have died. (Jian Let al in press 2005) reproduced by kind permission of European Journal of Human Genetics

Mutation	$\begin{gathered} \text { Age } \\ \text { Median (range) } \end{gathered}$	Australian cases		UK cases		Total (\%)
		Deceased	Alive	Deceased	Alive	
p.R106W	11.0 (2.0-27.6)	1	5	1	9	16 (3.0)
pr R133C	15.2 (4.0-41.0)	0	10	0	24	34 (6.5)
p.T158M	13.0 (2.0-40.0)	1	20	2	42	65 (12.4)
p.R168X	10.9 (2.0-42.0)	0	20	1	37	58 (11.1)
p.R255X	9.0 (2.0-40.0)	0	13	2	27	42 (8.0)
p.R270X	12.6 (2.0-30.0)	4	10	1	29	44 (8.4)
p.R294X	13.1 (2.0-40.0)	0	17	0	16	33 (6.3)
p.R306C	17.0 (3.0-39.0)	1	10	0	19	30 (5.7)
Others	12.0 (1.0-54.0)	1	61	8	132	202 (38.6)
All		8	166	15	335	524 (100.0)

9.4.1. Mutation positive people who converse: Comparison of cases and controls. For derivation of health and severity scores see Figure 2.2.1 \& Kerr et al 2003. Low scores indicate less severe disease and high scores more severe disease (maximum 10). 2- age at onset of regression, 3 ability to feed self with cup or spoon, + Wilcoxon Rank Sum Test, I Fisher's Exact Test, 1 six of the 13 cases had not regressed so the upper quartile is not calculable. (Kerr et al 2005) by kind permission of Journal of Intellectual Disability Research

Variable	Cases	Controls	p-value
Mean age at update(yr) (SD)	$22.4(8.6)$	$20.0(8.8)$	0.27^{*}
Mean severity score (SD)	$2.2(1.9)$	$6.8(2.4)$	$<0.001^{*}$
Mean feeding score (SD)	$1.6(0.8)$	$3.2(1.8)$	$<0.001^{*}$
Mean health score (SD)	$0.8(1.2)$	$3.2(2.4)$	$<0.001^{*}$
Median age at regression (mths) (IQR) ${ }^{2}$	$36(6$ no reg)	$17(12,24)$	$<0.001^{*}$
Centile head circumference <3 (\%)	$0 / 13(0 \%)$	$40 / 95(42 \%)$	$0.004 \dagger$
Injury to self	$4 / 13(31 \%)$	$38 / 109(35 \%)$	$1.00 \dagger$
Injury to others	$4 / 13(31 \%)$	$19 / 107(18 \%)$	$0.44 \dagger$
Able to walk unsupported at 10-15 yrs (\%)	$11 / 13(85 \%)$	$49 / 109(45 \%)$	$0.014 \dagger$
Able to self-feed at 10-15 yrs (\%) ${ }^{3}$	$12 / 13(92 \%)$	$12 / 108(11 \%)$	$<0.001 \dagger$
True words before regression or age 5 (\%)	$12 / 13(92 \%)$	$75 / 108(69 \%)$	$0.014 \dagger$
Epilepsy ever (\%)	$2 / 13(15 \%)$	$81 / 110(74 \%)$	$<0.001 \dagger$
Vacant spells (\%)	$10 / 13(77 \%)$	$91 / 107(85 \%)$	$0.67 \dagger$
Night-time sleep disturbed	$7 / 12(58 \%)$	$79 / 108(73 \%)$	$0.44 \dagger$
Handedness (Lef/Right/Both)	$6 / 2 / 4$	$34 / 27 / 18$	$0.49 \dagger$
Classic Rett (\%)	$3 / 13(23 \%)$	$100 / 110(90 \%)$	$<0.001 \dagger$
C terminal deletions	$5 / 13(38 \%)$	$9 / 110(8 \%)$	$0.014 \dagger$
R133C	$5 / 13(38 \%)$	$7 / 110(6 \%)$	$0.006 \dagger$

9.4.2. Mutation positive people who converse: Molecular Genetic Results: MECP2 gene analysis and X-chromosome inactivation ratios for the study group. (Kerr et al 2005) by kind permission of Journal of Intellectual Disability Research

Case	Mutation (protein)	Mutation (sequence)	X inactivation ratio
1	R133C	c.397C $>\mathrm{T}$	$34: 66$
2	R133C	c.397C $>\mathrm{T}$	$23: 77$
3	P 389 X	c.1164-1207del44bp	$28: 72$
4	P 389 X	c.1164-1207del44bp	$45: 55$
5	R133C	c.397C $>\mathrm{T}$	$41: 59$
6	P389X	c.1164-1207del44bp	$40: 60$
7	P389X	c.1164-1207del44bp	$17: 83$
8	R168X	c.502C $>\mathrm{T}$	not informative
9	G269fsX288	c.803delG	$15: 85$
10	P388 393del	c.1162-1179del18bp	$38: 52$
11	R133C	c.397C $>\mathrm{T}$	insufficient DNA
12	R133C	c.397C $>\mathrm{T}$	$49: 51$
13	R168X	c.502C $>\mathrm{T}$	not informative

9.4.3. Drawings and writing by cases a) case 8, b) case 10. (Kerr et al 2005) by kind permission of Journal of Intellectual Disability Research

9.4.4. Reported skills of mutation positive people who can converse (Kerr et al
2005) by kind permission of Journal of Intellectual Disability Research

Skill	Case I	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case II	Case 12	Case 13
Understand speech	Single words	Sentences	Sentences	Sentences	Sentences	Single words	Sentences	Sentences	Senrences	Sentences	Sentences	Sentences	Sentences
Obay speech Use words	SIngle	Yes Sentences	Yes Sentences	Yes Parts of word	Yes Sentences	No Phrases	$\begin{aligned} & \text { Yes } \\ & \text { Single } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Phrases } \end{aligned}$	Yes Sentences	$\begin{aligned} & \text { Yes } \\ & \text { Phrases } \end{aligned}$	Yes Phrases	Yes Sentences	Yes Sentences
Use sign language	No	No	No	Makaton	No	No	No	Makaton	N/A	No	Dinner, toilet, good morning	N/A	N/A
Answer (word/sign)	No	Yas	Yes	Yes	Yes	Yes	Yes	Yes	In sentences	Yes	In phrases	Yes	In sentences
Write	No	No	No	Yes	Yes	No	No	Yes	Yes	No	Scribbie	Yes	Yes
Read	No	Yos	No	Yes	No	No	No	Yes			Few single words	Yes, copy	Yes, romance novels
Count	No	Recite	No	Recite	Recire	No	$\begin{aligned} & \text { Recites to } \\ & 20 \end{aligned}$	Yes	Yes	Recite	To. 10, missing	Yes	Yes, Including
Drawing	No	No	No	Yes	Yes (scribbie)	No	No	Yes	Yes	Yes	Scribble	Yes	Yes
Affectionate	Yes	Yas	Yes	Yes									
Prefers objects	No												
Anxious	No	Yes	No	Yes	Occaslonally	Yes							
Angry	No	No	No	Rarely	Yes	No	No	No	No	Rarely	Somedmes	No	Rarely but with reason
Distressed by	$\begin{gathered} \text { Big dog. } \\ \text { anger } \end{gathered}$	Fallure, strange	Nothing	Fallure. injustice	Noise, unexplained	Conflict	Anger.sad faces. foise	Crowds. nolse	Crowds	Noise	Loud noise,	Being told off	Being told off
Relaxed by	Bath	Music	Always relaxed	Dancing to music	Nothing	Massage	Massage	Swimming	Read, walk. pet care	Massage	Talk about nice events	$\begin{aligned} & \text { Cúddles, } \\ & \text { video } \end{aligned}$	Reading
Learns from	Situation	Instruction	Instruction	instruction	Instruction	Stwation	Stcuation	Situation	Using music	Situation	Example	Instruction	and experience
Shows initlative	No	A litele	No	Allide	A litue	A litede	No	No	Litrle	No	No	Litule	Some
Remembers people	Yes	Well	Yes	Yes	Yes	Yes							
Remembers places	Yes	No	Poor	Yes	Yes	Yes	Yes						
Remembers names	No	Yes	Well	Yes	Yes	Yes	Yes						
Laughs at	Slapstick	Slapstick	Slapstick	Slapstick	Nothing reported	Slapstick	Silly songs	Slapstick	Simple jokes	Slapstick	Incongruity	Slapstick	Nothing reportad
Entertainment	Sung to	Takking	Talking	Music	Talk \& sing	Talking, music	Watching people	Swimming	Familiar company	$\begin{aligned} & \text { Sit in café } \\ & \text { watching } \end{aligned}$	Quiet family party	Hiking	Dancing, swimming
TV favourites	Simpsons	Mary Popplns	Harry Potter	Tweeniles	Mr Bean	Sports	Spors	None	Older musicals	None	Stinging	Mr Bean, varlous	Soap operas
Response to music	Enloys	Enjoys	Sings	Enjoys	Enjoys	Enjors	Enjoys	Enjoys	Enjoys	Enjoys	Enjoys if quiet	Enloys	Enjoys somedmes
Songs	Enjoys	Recites	Sings words	Enjoys	Sings words	Enjors	Enjoys	Sings words	Sings well	Recites	Sings well	Sings well	Sling words

9.5.1 Proportions of those acquiring speech and retaining clear words in 265 cases (classic and atypical) in BIS (Kerr, Belichenko et al 2001, by kind permission of Brain \& Development)

9.5.2 Comparison of the characteristics of adults with and without speech from
BIS (Kerr, Belichenko et al 2001, by kind permission of Brain \& Development)

(ase	Status	Yr	OFC	Regr	Speech	Self F	Resp	Fsc	Tone	Walk S	Ep	Scol	$S(\%)$	Vis	Hear	Contact	Agit	Music	Sleep
1	$\mathrm{R}^{* *}$	37	55	36	Yes/Yes	Yes	Yes	1	N	Yes	No	No	0	Yes	Yes	Yes	Yes	Yes	NK
2	$\mathrm{R}^{* *}$	32	56	36	Yes/Yes	Yes	Yes	2	Dys	Yes	Yes	No	30	Yes	Yes	Yes	Yes	Yes	NK
3	CR	26	53	9	Yes/Yes	Yes	Yes	9	Dys	No	Yes	Mild	70	Yes	Yes	Yes	Yes	Yes	Yes
4	CR	37	53	24	Yes/Yes	No	Yes	5	N	Yes	No	Op	30)	Yes	Yes	Yes	Yes	Yes	Yes
5	CR	28	52	18	Yes/Yes	Yes	Yes	5	N	Yes	No	Op	30)	Yes	Yes	Yes	Yes	Yes	Yes
6	$\mathrm{R}^{* *}$	17	52	None	Yes/Yes	Yes	Yes	0	N	Yes	No	No	0	Yes	Yes	Yes	Yes	Yes	Yes
7	CR	28	53	18	Yes/Yes	Yes	Yes	3	N	Yes	Yes	Mild	40)	Yes	Yes	Yes	Yes	Yes	Yes
8	R^{\prime}	24	56	8 yr	Yes/Yes	Yes	Yes	5	N	Yes	No	No	10	Yes	Yes	Yes	Yes	Yes	No
9	R^{\prime}	31	52	9 yr	Yes/Yes	Yes	Yes	0	Dys	Yes	No	No	10)	Yes	Yes	Yes	Yes	Yes	No
10	$\mathrm{R}^{* *}$	31	49	None	Yes/Yes	Yes	Yes	1	N	Yes	No	No	0	Yes	Yes	Yes	Yes.	Yes	Yes
Mean		29	53					3.1					22\%						
11	CR	37	52	24	$\mathrm{No} / \mathrm{No}$	No	Yes	5	Hyp	No	No	Sev	70	Yes	Yes	Yes	Yes	Yes	NK
12	$C R$	24	54	24	Yes/No	No	Yes	4	Dys	Yes	No	Op	40	Yes	Yes	Yes	Yes	Yes	Yes
13	CR	23	51	36	$\mathrm{No} / \mathrm{No}$	No	Yes	6	Hyp	No	Yes	Mild	70	Yes	Yes	Yes	Yes	Yes	Yes
14	CR	28	54	24	$\mathrm{No} / \mathrm{No}$	No	Yes	7	Dys	No	Yes	Mild	60	Yes	Yes	Yes	Yes	Yes	Yes
15	CR	19	49	15	Yes/No	No	Yes	5	Dys	No	No	Op	60	Yes	Yes	Yes	Yes	.Yes	Yes
16	CR	32	51	15	$\mathrm{No} / \mathrm{No}$	Yes	Yes	10	Dys	Yes	Yes	Sev	70	Yes	Yes	Yes	Yes	Yes	Yes
17	CR	19	50	11	$\mathrm{No} / \mathrm{No}$	No	Yes	6	Dys	Yes	Yes	Mod	60	Yes	Yes	Yes	Yes	Yes	Yes
18	$C R$	37	51	18	Yes/No	No	Yes	5	Dys	No	No	Mod	50	Yes	Yes	Yes	Yes	Yes	Yes
19	$C R$	30	52	24	$\mathrm{No} / \mathrm{No}$	No	Yes	6	Dys	Yes	No	Sev	40	Yes	Yes	Yes	Yes	Yes	Yes
20	Rep	21	54	18	$\mathrm{No} / \mathrm{No}$	No	Yes	0	Dys	No	Yes	Mild	60	Yes	Yes	Yes	Yes	Yes	Yes
Mean		27	52					5.4					58\%						

${ }^{2}$ Cases I and II are monozygotic twins with a mutation at 255 . $\mathrm{CR}=$ classic Rett syndrome. $\mathrm{R}=$ atypical Rett. *Indicates no evidence of fall off in OFC. ${ }^{* *}$ Indicates no regression. ${ }^{\dagger}$ Indicates late regression. Ep (case no. 20) indicates epilepsy before regression. OFC = occipito'ffrontal circumference in cm. Regr $=$ age in months at onset of regression. Speech/ indicates words used in early infancy and now. self $F=$ able to feed unassisted with a spoon. resp $=$ irregularity of breathing. Fsc $=$ feeding score (see results section). tone $=$ predominant abnormality of muscle tone at present, $N=$ mildly increased, Dys $=$ dystonic, Hyp = severely hypertonic. walk $S=$ walks unassisted. Ep $=$ epilepsy now present. Scol $=$ scoliosis, Mod $=$ moderate, $\operatorname{Sev}=$ severe. $S(\%)=$ severity score (see results section) higher\% indicates greater severity. Vis: Hear = vision: hearing good. Contact indicates seeking face to face contact. Agit = agitation with severe unexplained excitement and sadness. Music = particularly responsive to selected music. Sleep = sleep disturbance, waking at night or sleeping by day. $N K=$ not known.
9.6.1 Occipito-frontal circumference measurements for people with classic Rett Syndrome at birth and after 18 months (Kerr 2002) reproduced by kind permission of Cambridge University Press

OFC, occipito-frontal circumferance.
9.6.3 Changing skills with age in a cohort of adults with classic Rett syndrome (Kerr 2002) reproduced by kind permission of Cambridge University Press
cohort aged 15-40 years with additional early childhood data

	Pre-regression				
	$5=46-80$ $(\%)$	$5=10$ years $n=80$ $(\%)$	$15-20$ years $n=20-64$, $(\%)$	$25-30$ years $n=15-25$ $(\%)$	$35-40$ years $n=6-9$ $(\%)$
Reported skill					

9.6.4 Comparing behaviour in 10 people in adolescence and adulthood (Kerr 2002) reproduced by kind permission of Cambridge University Press

	Adolescent (n)	Adult (n)
Reported by family/carer	10	10
Agitation	4	5
Injury to self	0	3
Injury to others	4	9
Night sleep disturbed	7	7
Day time sleep	10	9
Irregular breathing	5	9
Gascous distension	1	5
Menstrual difficulty		9

9.5.5 Good and poor health circles in Rett syndrome. (Kerr 2002) reproduced by kind permission of Cambridge University Press

The diagram illustrates how attention or failure to attend to these aspects of care lead to cycles of good or poor health

APPENDIX B: SURVEY DATASET

Bndsh istes Survy : $\mathrm{n}=1238:$ courcee and critent tor Rell status: November 2005

curnus C OFC tod anly

Bis	doforth	dud		ngoupd	AK amm	AK dereo	Kerta	mun	toot	cerano	c	FCtor	aly	yep		+reo	ragre	frat	OTher ask
31	28/3/1987	2	2	7	8181993		HSQ			CA	$\stackrel{3}{ }$	1	1	1	1	1	1	non	2.
32	210/1985	2		0			$0 \cdot 1$			Rnanc		1	2	1		1	2		2
33	15תn9973	2	2	25	28n0/2083		mulr93.'95,'98			O ${ }_{\text {P }}$	101	1	1	1	2	1	1	non	2
34	10ヶ21975	1	2	21	16 M 989		-			$\bigcirc 8$	501	1	1	1	2	1	1	28	2
35	278/1952	2	2	48			muth 93,'98	2	none (AC)	Rnonc	501	2	1	1	2	1	1	2 yr .	2
38	30711977			0						unkrown									
37	13/8/1988	1	2	18	28M0/1989	23Mn991. 8187894.	mult '93. 94403	1	P302L(AC)	$\bigcirc 8$	$\stackrel{31}{ }$	1	1	1	2	1	1	8y	2
38	27/4/1973	1		0			Inv			inc CR									
39	18ヶ21981	2	2	18	521882	17\%n'1995, 10nnceo, 15nn997	HSQ.98	1	C4730TT:T158M	CA	$<3 \mathrm{r}$	1	1	1	2	1	1	gyr	2
40	12/5/1978	2		0	1/10/1987	28/107988	0			CA		1	1			1	1	$2 y$	
41	18/5/978	2	2	21	140/1987		HSQ'98			Ca	10.	1	1	1	2	1	1	$4 y$	2
42	18889878	2		27	1/10/1992	18/81897.	mult. 97,98,02	1	K3521s×366	CA	50.	9	1	1	2	1	1	$3 y$	2
43	129/1984			0			Q'00.			$\mathrm{lnc} C R$		9				1	1		2
44	23/8/1982	2	2	18	22M/1991	22nn991: 2911209	HSC'98	1	c880c>t:R294X	CA	10.	3	1	1		1	1	3-4	2
45	20/5/1980	1		19	110/1991		mulr93,95,'97		;	CR	NK	1	1	1	2	1	1	2y	2
46	2Rn982	2		18	110/1980		HSQ.'99	1	c316C>T:R106W	CR	NR	9	1	1	9	1	1	NK	2
47	2215/1984	2		18	1/111987	1пол991,1/1оп $994.1 / 1 / 1995.1 / 220$	muth 98.00			OR	25.	1	1	1	2	1	.	12y	2
48	27/31981			10			- 0			$C 8$	<10	1	1			1	1		
49	25/8/1981			0			inv			R inanc									
50	20M/1978	2		0	5/5M883	1212 M 987	mut			CB	2nd	$3{ }^{\text { }}$	1	1	2	1	1	4.8	2
51	2110/1978	1	2	19	1/4п989					cr	< 3	1	1	1	2	1	1	8y	2
52	7818976	1	2	20	1/10/1989	1/10/1991	HSO			CR	NK	3	1	1	9	1	1	3y	2
53	6881971	2		0			inv			unknown									
54	14/8/1987	2		0			$\alpha 90$.	1	S68x (WGH)	C	3 m	1	1	1		1	1	$5 y$	
55	2/81885			0			inv	2	mine(AC)	unknown									
56	2018/1969			0						unknown									
57	9/21983			18	1510/1993	15/81994. $28 / 81998$	inv			\bigcirc	3 ra	3	1	1	2	1	1	$?$	
58	19/31988			0						uniknown									
59	4771982	2		18	21812000		HSQ. ${ }^{\circ}$	2	ACnone	CB	2-5	9	1	1	2	1	1	non	2
80	28/0/1980	2	2	34	13/8/1994		inv			OR	nk	1.	1	1	2	1	1		2

Ers dotbuth	ded	mam	Noupd	AK	AKdateo	Kara	mut	toex	\pm		OfC	antyat		Name			Aras	oreas
121 8п211984	2		15	1/4/989	1018n892,1718, ${ }^{\text {a }}$,	HSO. ต9	1	a5020 T:	\cdots	501	9	1	1	2	1	1	5 yr	2
122 870ח975	2	2	28	$19 \times ก 993$		mull.90,'96,98,00			CR	ar	3	1	1	2	1	1	зу	2
123 107111988	2	2	12	$77 n 1883$	278987, Зпоп997, 1/1п997.	Q.97	1	TT5SM MB)	\bigcirc	3 d	1	1	1	2	1	1	5.0	2
124 38п949	1	2	39	367887		Hos			©	2xd	3	1	1	2	1	1	10y	2
125 2181973			30			Hsa'm			\bigcirc	nk	9	1	1	9	1	1	$4{ }^{4}$	2
$1265 / 51979$	2		20	гзпн991	5R1992	mull: 94.98			Rmanc	50%	2	1	1	2	2	1	non	2
127 2188/1980	2	2	0	7Π \%988	2л181987,25n1/1988,12/5/992,18/1	- 88.98			\bigcirc	cr	1	1	1	2	1	1	3y	2
128 13881975	2	2	22	18/41984		mutio.rscar			CR	$25 t$	1	1	1	2	1	1	non	2
129 18181987	1		7	1781994		inv			\propto	en	3	1	1	2	1	1	2 y	2
130 22441985	2	1	20	1404891	178n995, 22818989.	mun '91. '9,986,97:04			\bigcirc	10.	1	1	1	2	1	1	12 y	2
131 18ח/1983	2	2	17	14017889	11/n989,21882000,444/2001	mull:'90, 93×95998.9800	1	1157del140p (CS)	CR	er	1	1	1	2	1	1	15	2
132 288/1978	2		18			HSQ'ss			noth		9	2	1	1	1	1	109	1.
133 8лп 1882			0	1поп991	1781997	ars.			\propto	ar	1	1	1		1	1	12 m	2
14/51971	1	2	28	18лп993		hso			व ${ }_{\text {a }}$	en	1	1	1	2	1	1	$7 y$	2
135 187n982	1		5	157988	111987	a inv			\bigcirc	\&	1	1	1	9	1	1	nk	2
138 924972	2		30	11119987	11/22000,291r2002.	mull:95980002	1	C7E3CT: R255x	\bigcirc	3 d	1	1	1	2	1	1	${ }^{3 y}$	2
137 2/4п974	2	2	16	10111/1883	10M11983, 2188990	$0 \cdot 83$			∞	cr	3	1	1	2	1	1	1.8	2.
138 7пп969	2		${ }^{28}$	14ก989	22\%/1991	Hsaso			\bigcirc	en	3	1	1	2	1	1.	9yr	2
$13918 / 4 / 979$			18	18 18999		inv			${ }_{\mathrm{nc}} \mathrm{CR}$		9	1	1		1	1		
140 Аялявз	2		12			mut 92. 95			Rnanc	50.	2	1	9	2	1	1	non	2
141 өзн987	2	2	13	25\%/992		0.92	1	R188x(AC)(188d'E	${ }_{6}$	10%	1	1	1		1	1	?	2
142 12/10/1975	1	2	0	21781884		-			${ }_{\sim}^{8}$	501	1	1	1	1	1	1	5.0	2.
143 117ก1986			0			-			unienow									
144 29\%11/977	1		0						Rnanc	101	1	1	9	9	9	1	8 80	1.
145 2221987	2		4	110/1990		0.91	1	c4730x: T168M	$1 \mathrm{nc} \mathrm{CR}^{\text {cher }}$		1	1	1	2	1	1		
148 2881984	2	2	19	285/5993		mulrs5,98,03	1	1157-1197d96.41b	Rnanc	501	2	1	1	2	1	1	non	2
147 2821984	2		0				2	AC nonetound	unkrown									
148 25/4/1981	2		17	30818988	1пп989.58пп99, 13/8п995,30п1^9	0.92	1	cas7ctrivisca	Rnanc	10.	1	1	1	2	1	1	non	1
149 10/4/1985	2		13	68п\%991	301114997. 12н0г002,1102R003	0.91	1	сз370triv3ca	Rnonc	50.	2	1	1	2	1	17	3y	1.
150 8811/1978	1		2	2281/897	толяя	mutt 91,99	1	C3160.t:R108W	\bigcirc	ar	1	1	1	2	1	1	14	2

151	5/91977			0						unknown	nk	2	1	9		1	1		2
152	19н0/1970	2		${ }^{23}$	1180899	12819991	mult. 83,95,98	2	det not	\propto	2.5	9	1	1	2	1	1	$6 y$	2
153	15п1883	2		9	2 2Mn991	1870/1991	-90.			\bigcirc	4	1	1	1		1	1	nx	2
154	2988/1974	2		28	29891983	17н2n995,13/31998, 5\%0R2001	mult.'94,'98.98	1	P1528 (Glasgow)	∞	∞	1	1	1	2	1	1	${ }^{3 y}$	2
155	8 8яя999	2	2	28	1101982		mult $.94,98,98,99$	2	(AC)(d'Enotiound	∞	and	1	1	1	2	1	1	non	2
158	1821970	2		30	1/ก1889	1118/1991	muti:93,95,'98,98,98	2	none(AM)	Cr_{8}	10.	1	1	1	2	1	1	$7 y$	2
157	6п21985	2		10	187/1995		a.inv	1	G2576x287(MB)	\bigcirc		1	1		2	1	1		2
158	13/4/1973	2		28	157988	1787995, 20188000	mut' 88.95 .98	1	R255x(MB)	∞	$3-1$	1	1	1	2	1	1	12.	2
159	2381973	1		0	22 п1991		inv			©		-	1			1	1	$3 y$	1.100
160	175/9888	1		6	128/1991		inv			∞									
181	10181982	2		18			mull. $98,955,98$	1	nono(MB)188(ater	${ }_{8}$	nk	9	1	1	1	1	1	non	2
162	14/898988	2	1	15	197991	2914R992. 17חn998, 18882000.	mut. 90. '98,	1	R133C (MB)	\bigcirc	3 d	1	1	1	2	1	1	4yr	2
163	2117197			15			091			${ }_{\mathrm{HCO}}^{\mathrm{CP}}$	3rd	1	1	1	9	1	1		
164	5/44974	1		0			inv			unkrown	nk	9	${ }^{9}$	3	9	9	9	nk	9
165	2910/1980	2		1	74119995		inv			Ca	3 rd	1	1	1	2	1	1	4	2
188	540/1972			0			lnv			unkrown	nk	9	9	9	9	8	9	nk	9
187	20731988	2		14	20181999		HSQ 93			Ca_{8}	3 cd	1	1	1	2	1	1	5y	2
188	8/119872	2		30	141818984	258/1898	mult: 94.98	1	T158M (Glagat)	\bigcirc	501	9	1	1	2	1	1	18	2
170	278/1870	2	2	25	11 กn994		mutt '94,985,98		1	\propto_{8}	∞	1	1	1	2	1	1	${ }^{14 y}$	2
171	1981974	2		25			mult.'85,'96:98			α_{8}	nk	9	1	1	9	1	1	non	2
169	315/1993	2	1	8	15881995	18ВВп998. 1попо99.	mut. '85, 98, 98	1	C244X (MB) ${ }^{\text {MH }}$)	C^{8}	10.	1	1	1	2	1	1	1.3	2
172	308/1984			0						unkrown									
173	33/987			18			Hscros	2	nono (AC)	R manc	751	NK	2	1	1.w1	1	17	non	1.
174	5пп979	1	2	17	3 361989	178/1995	HsQ. 98			\bigcirc	251	9	1	1	2	1	1	9y	2
175	13/5/1982			0			0.90			${ }_{\text {c }}$		1	1	1		1	1		
178	187981		2	14	170/1989	14n983	HSO. 96			\cdots	10.	3	1	1	2	1	1	$7{ }^{7}$	2
17	710/1975			18			091			$\mathrm{nc} \mathrm{CA}^{\text {a }}$	nk	9	1	1	9	1	1	nk	2
178	238/197			0			092			\bigcirc			1			1		2	
179	218/1974			15						\cdots	nk	\bigcirc	1	1	2	1	1	nk	2
180	5/4M987	2		18	1281991		Hsa'ce		awateo	R max	251	3	1	1	2	1	1	amo	2

Brtish isies Survey: n=1238:80urces and crtiona for Rett status: November 2005

Brits isies Survey: $\mathrm{n}=1236$ oources and crteria for Rett status: November 2005

Brituch ises Survey: $\mathrm{n}=1238$:80uries and crtierfa for Rem status: November 2005
BIS survey coda in

Brtush Isles Survey: n a 1236 :sourees and intona tor Rert status: November 2005
BIS survey code in

aus

391	28/31975	2		24			HSO'99
392	28/11/1985	2	1	9	265/1992		muth 91,'94
393	7181978			0			091
394	88п7888			6		.	inv
395	21/8/1978	2		28	2914/1992		HSO94
396	1810/1884	2		13	15/81994		mul '94 95'97.
397	2012/1889	2		3	19н0/1991	5221992	-
398	213/1971	17	2	28	18лол991	1/111995, 21/n1998	mult.'93',98
399	12/4/1991	2	1	4	324892		mut
400	$13 / 2$ 1987	1		15	110/1991	1лоп982,1/1ол984.	Inv
401	17/5/1987			8	1870/1991		
402	12M0ת1888	2	2	11	15 M/892	25/5/1898,24/10/2001.	mulr93,'95,96,'89
403	25/2M967			0			inv
404	28/81988	2		8	21111992		HSQ'94
405	24M1/1987	2	2	15	22411992		mut '95.02
408	75M988	2	2	15	2241892		Hsa. ${ }^{101}$
407	гямопят	2		25			mult.'98,'02
408	14/5/1970	1	2	29	211/1882		mult 95,98
409	49Н989	2		7	1/10/1982	1/10/1998	0
410	15/31962	1	2	30	21/11992		
411	4п2л988	2		6	229/1892		
412	8/4M983		2	18	21117893	2818M998	mut' 98
413	7 7n990			3	201/1982	71202.	HSO '02
414	2483989			13	2018/2001		HSOOM
415	4/51979			17			HSO'm
418	30181893	2		8	8318999		HSQ.'89
417	281111988	2	2	8	1401982		HSO'93
418	28/31989		2	4	201/1993		inv
418	123/1988	2	2	12	111071992	11M1994	muth:'97. '98,
420	42M988		2	8	8881993		Inv

Brs	dof brat	dod		coupd	aK am	AK droo	Kara	mus	reos	cotar	c		lyat	drear				arat	acter an
451	18/1/1989	2		14	1n0/1992	30 M1995	HSQ ${ }^{10000}$	1	P270x (MB)	©	-	3	1	1	2	1	1	non	2
452	23п111971	2		0			Inv			unknown									
453	8л2л988			8	1 110M982		Inv			$\bigcirc 8$				1					
454	19ПП1988	2	2	8	8771893	.	HSQ'SB			CR	10.	3	1	1	1	1	1	2.6	1.
455	2810/1994	2		7	$3 / 1 / 2000$		Hsa	2	none (AC)	notr	50.		1		1	1sil	1	9 m	1.
456	8ппи990			0			inv			unknown									
457	30/4/1988	2		13	4M19999		HSa,89	2	nono(AC)	R inac	$25 t$	1		1		1	2	Ouk	1.58
458	8/5/1984			13			HSa'88			\cdots			1		9	1	1	18	2
459	5187885	1	2	10	28/5/1982	10187892. 15/81898	Hsa			Rionc	10.	1	1	1	2	1	17	3 m	1.
480	30п1/1993	2	2	7	158/1999		mult. '89,00			CA	3 rd	1	1	1	0	1	1	6 y	2
481	30/4/1891	2		7			HSC'97			C_{8}			1	1	9	1	1	6y	1.
462	29/12/1985	2	2	12	25/5/1992	17/6/1997	mut. '94, 97.	1	R306C(MB)	CR	$\left\langle{ }^{3}\right.$	1	1	1	9	1	1	$7 y$	2
463	9пत985			0			inv			unknown									
464	2281978	2		20	12M/1994		mult,'94,'95, '97, '98	2	none(AC)(CS)	CR	501	1	1	1	2	1	1	$15 y$	2
485	2010/1978			14	110/1992					inc C R									
468	6п2M994	2		7	301/2001		inv	1	c880Cst/R294X	CR	ar	1	1	1	1	1	1	non	2
487	98 H 984	2	2	30	17M11995	1111/1999	HSQ. ${ }^{23}$		awated	$\bigcirc 8$	ar	1	1	1	9	1	1	2 y	2
488	28 ¢1982	2	1	3	1111/1995		HSQ.'95,1/1012003			CR	10.	9	1	9	2	1	1	non	2
469	7881985	2	2	16	1/10/1994	301/2001	mulr95.00	1	P302R	C_{8}	cr	9	1	2	2	1	1		9
470	25M1/1897			0			inv		$1 \mathrm{VS2}+95 \mathrm{G}<\mathrm{A}(\mathrm{AC})$	unknown									
471	2M0/1979	2		0			inv			$C R$									
472	28/8/1972			0			inv			unknown									
473	16701983	2	2	32	9ヶก996		HSQ.'95			C8	$25 t$	1	1	1	2	1	1	2.0	2
474	26/8/1994			0						nota				1					
475	25/8/1983	2		9	12/5/1992		inv			not A	$25 t$	θ	1	2		1	1	non	1.
476	364892		2	3			inv			CR	3 3rd	1	1	1	2	1	1		
477	1/17989			0			inv			$C 8$									
478	175/1990			0						unknown									
479	10ヶ2/1980	2	2	21	1818990	1/11/1999,	Q. 90.	1	R133C	\bigcirc	3rd	1	1	1	2	1	1	11y	2
480										unknown									

Bntigh Itles Survey: $\mathrm{n}=1236$ sources and crtiona for Rent satus: Novernber 2005

Britsh IItas Survey: no 1238 .burres and citiona for Retr staus: November 2005

511	188¢979	2	2	0	58\%992		HSa'98			not 8	50	2	1	1	1	1	2	10 m	1.1ra
512	30551989	2	2	7	951995		mul. 95,96			Rnanc	501	2	1	1	2	2	2	non	2
513	24101987		2	11	20пп993		H5C98			\bigcirc	ar	1	1	1	2	1	1	$5-8$	
514	4/7982	2		31	1лм993		inv			Rnanc	50	1	1		1	1	2		2
515	15/41967	1		0						$\mathrm{mc} \mathrm{CP}^{\text {P }}$	nk	9	3	1		1	1	nk	2
518	17ח11989	2	2	10	$201 / 1993$		murra4;95:88,98			\bigcirc	10.	9	1	1	2	1	1	non	2
517	13/8/1990	2		10	14011998	1402001. 12 H0R2002	mut. 94,98.00	1	c783CT:TR255x	\propto_{8}	Sr	1	1	1	9	1	1	3y	2
518	23нил985		1	17	1401898	1812001	mut 99.01			∞	$25 t$	1	1	1	1	1	1	$14 y$	2
519	28121987		2	0	1401992	257n1983				\bigcirc	10.		1	1		1	1		
520	188r9990	2		7	галал992	7Rн996,315/1997	HSO'87	2	nono (WGH)	©	31	1	1	1	1	1	1	non	2
521	2221989	2		6	140/1992	16nп995, 12402002,1402003	$\bigcirc \cdot 83$			CR_{8}	101	3	1	1	2	1	1	non	2
522	2818/1982	2	2	35	19 n 1993		Hsa. 97			©	10.	9	1	1	2	1	1	non	2
523	$92 \mathrm{m960}$	1	2	41	$181 / 1983$		mult'95,98.00	2	$\underline{m o g}(\mathrm{AC})$	C^{8}	-	1	1	1	2	1	1	$2 y$	2
524	157n1972		2	21	28 пп993		Inv			\bigcirc	10	3	1	1	2	1	1	$7 y$	2
525	1018/1980	2		6	21/11883	140/1996	HSO. 96	1	TISEM MB)	Ca_{8}	3 d	1	1	1	2	1	1	$4 y$	2
528	31121988	2	2	6	201/1993		Hsa. 94	1	п 300 C (MB) ${ }^{\text {PT } 197}$	C^{8}	31	1	1	1	2	1	1	non	2
527	2714/883		2	11	$87 n 993$		inv			\bigcirc	10	3	1	1	2	1	1	зу	2
528	1318/1988		2	27	170/1982					1 CHCR		9	9	1	2	1	9		
528	88пвя8	2	2	10	170/1992	23818995	Hsa. 95		i	\bigcirc	25.	1	1	1	2	1	1	non	2
530	137/1888	2		8	1 1701992		Hsa.94			R max	ar	1	1	1	1.	1	2	non	2
531	92п1979	2		16	138/1994		Inv			$\square 8$	cr	1			2				
632	17M21981	2	2	37	1914984		mulr93. 85.98	1	R133CMB)	$\bigcirc 8$	ar	1	1	1	2	1	1	18	2
533	28 ¢я 92	2	2	44	$281 / 1993$		HSO. 98			\bigcirc	cr	3	1	1	9	1	1	10y	1
534	$97 \% 881$	2	2	16	21n1993	14^1/997	mult. 93.195 .98	2	150 duplication	Rimac	10.	1	1	1	1.10	1	1	an	1.
535	140п878			0			093			franc	501	2	1			1	1		
538	28 101984	2		9			0.83	1	3180.T	Rnanc		2	1			1	1		2
537	288/1990	2		6	5Mn995		Hsa's8			nots	10.	1	2	1	1	1	2	10	2.80
538	2711/1984	1		14			HSO. 98	2	none(AC)	A Banc	ar	1	1	1	2	1		2 z	1.
539	25 H972	2		27	245/1984	151896,287201991	mults5,98			$\triangle 8$	-	1	1	1	2	1	1	10	
540	1знөя9	2	1	10	2510/1993	140л998.17887998	mult '93, 95,98			\propto	501	3	1	1	2	1		$5 y$	

Bitteh ister Survey: na 1238. bourcee and crtierla tor Rett status: Noverber 2005

Bntish Istes Survey $n=1236$ sources and crtient for Retl status: November 2005

Brs	d of brith	d	d	moupd	ax mmow	AK dateo	кета 0		mut	tom	atruse	c	OFC			dypre		meon	racroo	Iras	Other aet
661	4/6n991	2		12	15/8/1895		HSQ.'95				R nonc	>50	2			2	2	2	2	non	2
682	$2 \pi n 978$	2		0							not R										
683	28M1/1974	2		15	2010/1883	г24n988, 1/8M989.					not R	>10	2	1		1	2	2	2	7 y	1.
664	11 M904			28	1/4^988						not A							1			
865	2018/1971	2	2	28	197n1993		mull.'95'98		1	208(de)(MH)	$\bigcirc 8$	3 rd	3	1		1	1	1	1	non	2
668	259/1988		2	5	24/5/1993						$\cdots 8$	cor				1		1	1	non	
667	308/1988			15	31/12001		inv				R monc	501	2	1		1	2	1	1	18	1.sed
668	6M12000			0			inv		1	c.1157-1188dal32	unknown	nk									
669		2								(d'E) none tound	unknown										
670	267n981			18			HSO				CA	10.	9	1		1	2	1	1	2.2	2
671	28/8/1988			7			inv				unknown										
872	28/5/1887			-			inv		1		CR							1		non	
673	3218883			0			Inv				unknown										1.
874	1111973			23	18/8/1995						CR	en	1	1		1	2	1	1	non	2
875	12811987	2	1	12	1718/1985	19/812001	mull,'95'98		1	P37618×400 (MB)	CR	10.	1	1		1.	2	1	18	non	2
878	21/6/1987	2	2	28	5/81895		inv		1	R308C	c	10	3	1		1	9	1	1	10y	2
877	10ח11983	2		3	888ก995	10n/1996	HSO. '96		2	R270x(MB)	CA	en	1	1		1	9	1	1	non	2
878	14/5/1991	2	1	8	21/8/1995	1818/1898,1998	mult. 95,'96		1	c502Cst:R188X	Rnonc	ar	1	1		1	2	1	1	10	1. T
878	3011/1991	2		4	7818895		inv		1	IVS2-9A>G-8nt	Ca	er	1	1		1		1	1		
880	18/21991	2		8	818и895		mult.'95,'98		2	none ($A C$)	R nonc	10.	1	$\cdot 1$		1	1	1	1	20	2.
881	122181883	2	2	9	784995	23/81895, 15Mn997. 10122000	mult				Rinanc	ar	2	2		1	2	1	1	1 mo	1.
682	6өл990	2		7	17/8/1997		HSQ. '97.				CP_{8}	$25 t$	1	1		1	2	1	1	non	2
683	28181970	2	2	28	25/71995		HSO '96				CA	2 an	1	1		1	2	1	1	2y	2
684	1110/1991	2		5	9пก898		HSQ. ${ }^{98}$,		1 ค	R106W (MB)	Cs	3 d	1	1		1	2	1	1	non	2.
685	21311882	2		18	17/8/1988		HSQ.'98				CR	$25-$	9	1		1	2	1	1	6y	2
886	17/8/1971			24			HSCOS				OR	nk	1	1		1	8	1	1	$3 y$	2
687	7RM987	2	2	9	1/1/1995	9nn996	Hsa.'ss				Rinonc	cr	1	1		1	2	1	1	4 mo	1.
688	137/1988		1	9			inv				unknown									non	
889											unknown										
890	13/1/1993	2	1	5	25M0/1995	9MOn998, 1/012001, 12M0/R002	mut. '95, '97, 98		1 A	R188X(MH)tunc	\bigcirc	3 d	1	1		1	2	1	1	non	2

BIs	dotbrn		'1	intor	∞.upd	ax omm	akdano	Kara	mur	toen	Oentu	c	OFC	arlyath	aypora	$\times \infty$	amoo		tras	ather por
691	1311/1991	2		5		2711/1995		Inv	2	nome(AC)	Rnanc	cr	1	1	1	1	1	1	7.8	1.8ar
692	1311/1991	2		5		2711/1995		inv	2	none(AC)	Rnanc	10.	1	1	1	1	1	1	7.8	1.
693				5				Hsa's8			unknown		1	1	1		1	1	amo	$1 . \mathrm{dll}$
694	1811/1993	2	2	2		1111/1995	5/24996,23ног2001,12M012002	mul. 95 ;98,	1	Resssx (MM)	\bigcirc	3 d	1	1	1	1	1	1.	non	2
695	145/1991	1		8		1781998		inv	2	none(AC)	Rnonc	ar	1	1	1	2	1	1	$1{ }^{19}$?
696	29\%21981	2		21		9пп996	13пп998. 1440R2001.29\%R2002	mulras,97	1	c397cx: R133C	\bigcirc	501	9	1	1	2	1	1	3y	2
697	29151988	2		8		8 ¢п1998		inv	17	no murisalis yos	Rnonc	∞	1	1	1	2	1	17	10 m	2
688	289/1988	2		8		18л21995	19н295	Hsa'ss	2	neg (AC)	Rnanc	25	1	1	1	1	1	2	3 3no	2
899	10881993			0				inv			unknown									
700	2211973			31		10n/1998					Rnonc	901	2	1	1	2	1	1	26	2
701	1770/1988			${ }^{28}$		1418/1994		nv			${ }_{\mathrm{nf}}^{\mathrm{CO}} \mathrm{CR}$		9	1	1	1	1	1		2
702	4пп992	2		11		1111/1995	124012002	inv	1	exon4.3	© ${ }_{\text {c }}$	ar								
703	287/1987	2	2	35		1111/1985	30712002.	murr95,98,02	2	no mur (salis)	Rnanc	501	9	1	1	2	1	1	119	2
704	18871989			0		11111/995					unknown									
705	195/1987			9		10111/995					unkrown	$25 t$								
708	12Л21951	2	2	47		11111995	9пп996,10нол998,12ног2002	mult'86.'98			\bigcirc	3 rd	3	1	1	2	1	1	$5 y$	2
707	12л21938	1		59		1111/1995		Inv			${ }_{\mathrm{nc}}^{\mathrm{C}} \mathrm{CR}$			1	1		1	9		1.
708	4554983	2		21		18122003		inv	2	(ACMone	${ }_{\sim}^{\text {a }}$	3 rd	3	+	1		$?$	1		
709	911/1984	2		14		1111995		mult 95.98			${ }_{\mathrm{nc}}^{\mathrm{CO}} \mathrm{CR}$	3rd	3	9	1	9	1	1	10y	2
710	288/1988	2		28		9пก998		Hsars			R nanc	10.	\bigcirc	1	,	2	1	1	nk	2
711	28 2993	2		10		10 n 1998		HSO'OS	1	R255x(MB)	∞	3 d	1	1	1	2	1	,	3y	1.po
712	105/1984	2	2	15		10пत1998		mulr95,'98,98	2	not tand	Rnonc	3 3rd	2	1	1	2	1	2	18y	2
713	107/1988	2	2	32		18/81998	1/10/2001	mult95,'88,99	1	R308CMB)	R nonc	501	1	1	1	2	1	1	18y	1.
714	17M0/1993	2		5		9пก998		mut. 98.98			©	\&	1	1	1	2	1	1	non	2
715	123/987	2		30		18/871996		Hs\%'ss			©	2 ar	1	1	1	2	1	1	$7 y$	2
718	11ヶ\%999		2	27				Inv			unknown									
717	4/11/888			0				Inv		awated	unknown	nk		2					${ }^{4 y}$	
718	218/1981	2		15		өпп996		Hsa 98			Rnonc	ar	1	1	1	2	1	1	amo	$1.0 a r$
718	$4 / 51973$	1	2	23		өпก1998		H50.85.			${ }^{\circ}$	10.	3	1	1	2	1	1	4y	2
720	15/9/981			0							unknown									

Brtish Isies Survey: na 1236:80urcos and crtena for Rett status: Novermber 2005

Ker Q
HSCOOS
lnv mult.'96,'02
HSQ.'96
HSQ. '98.
mult 98.97
HSO:O2
HSO'SB
 $\mathfrak{t} \overrightarrow{\underline{E}} \mathfrak{\geq}$

 722 20л2л993 24 723 1Кмөвя 7 25 म11977 22 48ム970 $2 \quad 2 \quad 32$ 30 11 $1991 \quad 2 \quad 5$
 2010/1893 \qquad
Briush Istes Survey: $n=1238$:sources and crtaria for Rett status: November 2005

Brs	dot birth	ded		~0upd	AK mm	AK datioc	Kart 0	mus	200t	0	c Of		at	dypar		ctam	rogre	Irats od	Chere mex
751	8R1985	2	2	32	18/81996		HSQ.'98			\bigcirc	cr	3	1	1	2	1	1	4 y	2
752	28/71988			28	178/1996					$n \mathrm{not}$		1	2	2		1	2	non	
753	29/8/1985	2		15	188/1998		mult 98,99	2	none (Manchester)	not R	4	1	1	1	2	1	1	17y	1 me
754						.				unknown									
755	20121988	2		10	188/1996		Inv			CP_{1}	3 ra	1	1	1	2	1	1	2 yr	2
756	123/1994	2		8	18/8/1986	140n899,140/2003	mutt.'98, '98	1	T53nsC (MH)	\cdots	$25 t$	1	1	1	2	1	1	3 yr	2
757	14M1992	2		5	18/8/1898		inv			~ 8	10.	3	1	1	2	1	1	non	2
758	19/811994			2	18/871898		Inv			$C 8$	4	1	1	1	2	1	1	non	2
759	4898894	2		3	17/6/1997		mult. '98,'97	1	G252s×287(MB)	C°	$\stackrel{\square}{4}$	1	1	1	1	1	1	non	2
760	13/1/1983	2		3	17/8/1998		HSQ.'86			C^{\prime}	3 rd	1	1	1	2	1	1	non	2
781	21/10/1994	2		5	24/8/1999		HSO's9			unknown	109	9	1	1	2	1	1	$2 y$	9
762	18/8/1961	2		35	19/8/1996		HSQ.'96	2	neg (MB)	Rionc	ar	1	2	1	2	1	2	non	1.
763	5M0/1994	2		4	17/8/1988	13/01998.1/9H998,1/10R201.	mut. 97. '98,	1	R160x (MH)	Cr	3 rd	1	1	1	2	1	1	2.1	2
764	7Mn995	2		4	13M0/1898	13/111898,15/012001,1/102003	mutt. $78.97 .98,02$.	1	R270x(AC)	C_{8}	$<_{3}$	1	1	1	2	1	1	$5 y$	2
785	28/4M989	2		15	14M0/1998		HSQ.'98	1	c397CTTR133C	R inonc	50.	9	1	2	2	1	1	non	2
768	17\%2/1989	2		7	15 H1997		HSQ.'96			OR	10.	1.	1	1	9	1	1	$5 y$	2.
767	182/1890			0			inv			unknown									
788	12лом948	1		0						not R			1	1		2	1	4 yr	1.
769	24/8/1973			0			inv			unk									
770	12551959		2	43	18/8/1998	72R2002	mut '99,02			CR	3 d	9	1	1	2	1	1	non	2
771	11/2M982			0			inv			unknown									
772	21M/1992	2		7	16/87999		inv			CP	$\triangle 3$	1	1	1		1	1	18 m	2
773	18181990	2		12	1/10/1996		HSO 'Ce	1	pos(MB)	\bigcirc	3 d	1	1	1	2	1	1	2 y	2
774	14/11/1957	2	2	45	14ヶ17998	124012002,110/2003	mulr98,'98,02	1	exons 1.2	inccr	501	9	1	1	2	1	1	non	2
775	1111956			0			Inv			C^{\prime}									
78	13 ก1972			0						unkrown	nk	θ	9	9	9	9	9		9
777	291984			13	12M0/1994	1/10/1998	HSQ'96			CP	en	1	1	1	2	1	1	2 y	2
778	810/1987			10	16п0л1998		HSO'98			CA	50.	1	1	1	2	1	1	non	2
77	27n011893	2	2	5	15 M/1897		mull. 98.98	2	none(AC)	R inanc	10.	2	1	1	2	1	2	non	1.
780	17/21892	2		7	15/19997		mut' '96.'98	2	none(AC)	Rinanc	10.	1.	1	2	2	1	2	5 yr	2.

Bntush istes Survey: na 1236:80urces and crterna for Retl status: November 2005

 mult.'97:'88,00.03
mult '97.98.04

\qquad 17n2/1898 - 17/1296
$21 / 21997 \quad 212 / 1997$
140M899,12лог002

 $\begin{array}{ccc}\text { dofbrth } & \text { ded } & 11 \\ 189 / 1988 & 2 & 11\end{array}$

Brtish istes Survey: $\mathrm{n} \mathbf{1 2 3 6}$. 80 urees and crtoria for Rett status: November 2005

BIS	dof brh		${ }_{\text {od }}{ }^{\text {Intmon }}$	Qoupd	ak mew	AK datioe	Kara	mut	toor	0 Otano	$c 0$	Ofe	orlyan	dyepra	\times mod	U000	regre	Aras 3	other not
811	1510\%992	2		13	1716/1997		HSQ.'97.04	1	1157der 446 p	$C A$	3 drd	1	1	1	2	1	1	13	2
812	г9п1891	2		7	188/1997		HSQ. 97	2	none(AC)	not R	10.	1	2	1	1	1	2	10 m	1
813	541/1988			0						unksown									
814	1/14989			0						unknown									
815	1119972			0			inv			Inc CA									
818	20181957		2	40	178/1897		HSO			$\mathrm{inc} \mathrm{CR}^{\text {P }}$	∞	3	1	1	2	1	1	$8 y ?$	2
817	14ヶ21988	2		8	178/1997		HSO\%'	2	none (AC)	R inot	2.5	1	1	1	1	1	1	non	1.
818	10181892	2		10	137/1998		mull.'98,'02	2	none($A C$)	not R	$25 t$	9	1	1	1	2	1	By?	1.00
819	28/51891	2		7	1818/1997		HSQ.'97		$?$ awated	R inome	10.	9	1	1	2	1	1	non	2
820	17/5/1994	2	2	8	178/1997	11012001, 12412003	HSO'97	1	c7538dC(AC)	R nonc	501	1.	1	1	2	1	1	7 y	1.
821	125/1994	2		4	178/1997		HSO'97			not R	10.	9	1	2	1	1	2	non	1.
822	278197979	2		19	1888/1997		munt. 97.198 .02	2	none ($A C$)	not A	$\triangle \mathrm{ar}$	3	1	1	2	1	2	4 mo	2
823	28/47995	2		3	178/1997		mull ${ }^{\text {95,'97 }}$	1	R255x \times (MH)	$\bigcirc 8$	$25 t$	1	1	1	2	1	1	non	2
824	23/8/1996	2		1	178/1997		HSO		uncerain	Inc CR		1	1	1		1	1	non	2
825	3118/1991	2		6	17818997		HSO			Rinor	50-	2	1	1	1	1	2	non	1.
828	21/8/1891	2	1	11	18/8/1997	30M12002	mult97.'98.'01	1	Coo base 401	Rinonc	250	2	1	1	2	1	1	7 y	2
827	10/8/1978			24	19\%12000		hso			$\mathrm{lnc} \mathrm{CH}^{\text {a }}$	en	3	1	1	2	1	1	me	2
828	15/5/1989	2		14	1/11/2000		'02	2	none(AC)	CA	4 Br	1	1	1	2	1	1	$4 y$	2
829	28/8/1989	2	0	9	13 Н998	3/798	HSQ 's8			Rinonc sor	901	2	1	1	2	1	1	non	2
830	101111994	2		4	2010/1997	14/1/1998.	mutt 97,'98			CA	251	1	1	1	2	1	1	non	2
831	1810/1890	1		11				1	c730CsT:Q244X	CR								$4 y$	
832	2018/1992		1	12			HSO.'97.03	2	none UCLA	Rinonc 5	50t	1	1	1	2	1	1	24 m	1.50 l
833	13/11995	2	2	6	1/1/1997	18/8/1998	inv	1	c120-127nsG (AC)	CA 2	2.5	9	1	1	2	1	1	14	2
834	3/818887			11			HSQ'07			\bigcirc		1	1	1	2	1	1	12	2
835	23/1/1980	2		18			inv			notr 5	501	2				1		non	1.po
838	1/nH885		2	14	5/4/1999		inv			notr 3	3 dr	1	2	1	1	1	2	non	1.
837	11/5/1995	2		3	13/11995		Inv			$\bigcirc 8$		3	1	1		1	1		2.but
838	27/4/1989	2		9	13M/1898		HSQ 's8			Rnonc	41	1	2	2		1	1	non	1
838	18/3/1991	2		7	13 пп898		HSO.'98		awated	not R 10	10.	2	1	2	2	2	2	2 mo	2
840	29/4/1970	2		34	14/1/1898		multres. 02,04	1	c1164-1207del44b	Rionc 50	50	2	1	1	2	1	2	non	2

Bnust Istas Sumyy n=1238 .ources and crtena tor Retr satus: November 2005

			Imm																
Brs	dofbrith	${ }_{0}$		coupd	AK cew	AK dateo	Kara	mut	troer	crane		OFC ${ }^{\text {bad }}$	arlyat	dympr	a mos	ensoo	rayro	aree 8	Other nex
841	$10 \cap$ H978	2		2	14 M 1998		HSO' $\%$.			not R	and	1	2		2	1	2	non	1.
842	21/4/9971			27	14^/1998		HSO98			c	en	1	1	1	2	1	1	$3 y$	
843	305/1978	2		22	14 M 1998		mut '98,01	2	(d'E) mone,mutsTK $^{\text {a }}$	Rnonc	50	1.	2	1	2	1	1	Qve	1.
844	10M0/1990	2		9	14ヶM1898	201822001	murss.'01	2	($\mathrm{J}^{\prime} \mathrm{E}, \mathrm{AC}$)none	OR	\bigcirc	1.	1	1	2	1	1	non	2
845	305/1984	2		34	14лn898		HSCOM			$C 8$		9	1	1	9	1	1	non	2
848	42R1940		2	58			mulrs8.'99			$\mathrm{inc} C R$	nk	9	8	1	θ	1	9	$2 y$	9
847	875M984	2	2	14	23M/1981	28/3H999,14/8/1999,140/1999	mun' '8,'я9	2	not found(AC)	R inonc	@	1	1	1	2	1	1	0×0	1.
848	13/2/1988	2		12	24M/1998		HSO'98			Rinac	10.	1	1	1	2	1	1	8 mo	2
849	7818983	2		5	17/8/1998		HSQ.'s	1	position to come	08	3_{3}	1	1	1	2	1	1	non	2
850	8/5M895	2		4	6/11/1998		HSQ. 98	2	none (AC.MB)	R ionc	2.5	1	1	1	2	1	2	15	2
851	31/10/1994	2		5	15/8/1989		HSO' 88			$\mathrm{inc} \mathrm{CR}^{\text {P }}$	251	1	1	1	2	1	2	$4 y$	2
852	81111977			0			lnv	2	2 but looking stlll	R inat					2	1		8 mo	
853	27/811893	2		7	23/81998		muir98,00	1	C918CTT; R308C	C	<3r	1	1	1	2	1	1	non	2
854	$47 \pi 991$	2	2	11	$37 \mathrm{nc98}$	4RM999.2-818999,2018R000,31/120	mutr98. '99.	1	c115-1200del144	C	901	2	1	1	1	1	1	non	2
855	13M972	2		27	21/8/1998		HSO'98			C	10.	3	1	1	2	1	1	non	2
858	13/8/1937	2		16			HSQ.;98,'02	2	none (Beiglum) MB	Rronc	<50	1	1	1	9	1	2	non	2
857	28/4/1938	2		13	18/8/1998		HSO. ${ }^{98}$	2	none (AC)	Rinorc	-3r	1	1	1	2	1	1	15	1.58
858	28/8/1988	2	2	14	1918/1998	7/81998,11/n1898,11/8/2002	HSO. ${ }^{98}$	2	not tound (AC)	C^{\prime}	en	1	1	1	2	1	1	15	2
859	28881995	2	2	8	18/8/1998	121012002	H80.98	2	negatve (AC)	Rnonc	50 t	2	2	1	1	1	1	non	2
880	3/4/1994			5	23/81998					Rimanc	10t	1	1	2	2	1	1	4 m	1
881	108/1985	2		3	16/8/1998		inv			$C 8$	501	3	1	1		1	1	dou	2
882	287/1893	2		7	17/8/1998	191/2000	HSQ. ${ }^{100}$	2	polymorphisma 388	lnc CR	en	3	1	1	2	1	1	3y	$1 . p 0$
863	22/4/1991	2		13	19\%/1999	23/8/9998, 1/10/88	mulr98.03	1	115-1197del 41	CR	3 d	1	1	1	2	1	1	6y	2
864	24711980	2		8	26/8/1998		HSQ 98	2	nore(AC)none	Rionc	251	1	1		2	2	2	?	2
885	30л21892	2		7	1/11/1999		HSQ'99	1	1157ddel4	$C 8$	10.	9	1	1	1	1	1	$5 y$	2
868	2813/1995	2		8	$301 / 2000$		inv	1	c508 CST; A188X	Rnonc	ar	1	1	1		1	2	tow	1.601
887	11/51988	2		13			HSQ. ${ }^{98}$	2	none(AC)	C^{\prime}		9	1	9		1	1		2
868	31/71992	2		7	28/81998		inv	1	Top dal (WOH)	Rnonc	10.		1	1		1	1	$3 y$	
869	71317995	2	2	4	13 \%899		HSO\%\%	1	R188X(AC)	\sim_{8}	$10 t$	1	1	1	2	1	1	non	2
870	128/1995	2	1	8	3011/1998	1401999, 15M0R2001.. 12н0R2002	H30'so	1		\propto	10.	1	1	1	2	1	1	non	2

B1S	dof dirth	dued	,	-a 0 upd	ak amw	AK deroo	Kma a	mut	toot	ceatuo	C Of	5 cm	ny Ct	yeoreo	4000	∞	1090	arats of	areor sea
871	13M0/1995			8			HSQ '03		none ($A C$) but del	not R	Ur	nk	1	1	2	1	1	8-8	1.
872	15/8/1991			10	19172000		HSQ. 0			CR	er	1	1		2	1	1	$2 y$	2
873	19111/998	2	1	7	1410/1998	124012002	HSC988	1	CA73CT:T158M	$\bigcirc 8$	10.	1	1	1	2	1	1	$8-1$	2
874	29ח/1985	2		35	140/1998	1\%0/1999	Hsares		M-	$C 8$		3	1	1	2	1	1.	nk	
875	102/1998	2		7	1110/1898	1240R200, 1/10/2003	inv	1	T158M(MH)	Or	\cdots	1	1	1	2	1	2	2 y	2
878	$28 / 211997$	2	2	4	208/2000	20812000	inv	2	not found(AC) still	CR	50	1	1	1	2	1	1		2. but
877	3/011993			0						unknown						1	2	amo	
878	714^1998	2		3	72R2003		inv	1	C473CT: T158M	OR	3 nd	1	1	1		1	1	non	1. R
879	13/4/1987			0			Inv	2	none (AC)	$\operatorname{not} R$	75.						2	$3 y$	
880	18ת21995	2		8	1/111999		HSC989,03	1	c302COT; P10IL	C	3 d	1	1	1	2	1	1	6y	2.
881	28/4/7993			10	15/0/2001	121012002	inv			Rnanc	an		1	1	1	1	1	ano	2
882	3013/1988			0			inv			not A									1.
883	23/8M995	2	1	4			Hsa	2	none(AC)	C	25-	1	1	1	2	1	1	3.5	2
884	1111891			0			inv			unknown									
885	25/8/1990	2		13	20/8/2001		HSO 01.03	1	C502C T:R188X $^{\text {P }}$	$C 8$	31	1	1	1	2	1	1	$?$	2
888	3018/1988	2		12	20/8/2000		mult '99,'00	2	no mutation(MB)	R inanc	10.	1	1	1	1	1	2	89	2
887	12M/1987			13	18/8/1999		lnv			Rnonc	25-	9	1	1	2	1	1	$6{ }^{6}$	2
888										unkrown									
889	13/21972			28			HSC's ${ }^{\text {a }}$			Rionc	nk	9	3	1	9	1	3	3 mo	2
890	2221991			9	15/817999					not R	25 t			1		2			1.
891	3 311997	2	1	3	22181899		lnv	1	c.865A T/K289X	$C A$	101	1	1	1		1	1		2
- 892	10ヶ/1897			0			inv		awated	unknown									
883	13//1994			6	17ß12000		HSO			Rinac	50	1	1	1	2	2	1	$3 y$	1.
894	30M0/1989			10	2281/1999		Inv			Rnonc	25.		2	1	1	1	1	10 w	1.11 gh
895	13/1988	2		12	16/81899		Inv	2	none (AC)	R nonc	501	1	1	1	1	1	$2 ?$	$3-4$	2
898	6/5M993			7			inv			unknown						1		bin	
897	15Пn1974	2		28	20182000		HSOOO	1	c502CT:	Rranc	501	2	1	1	2	1	1	non	1.
898	11/1935			${ }^{68}$			inv			unknown									
898	28M1/1976			23			HSQ '99			incer	en	1	1	1	nk	1	1	$21 y$	1.
900	4/81971	2		30			HSOOT			08	nk	3	1	1	9	1	1	$3 y$	2

Bntush isies Survey: $n=1238$:cources and critena tor Ronl status: November 2005

$\begin{gathered} \text { Bis } \\ 901 \end{gathered}$	d of bith 1/8/1963	died2		-goupa	ax mw	AK duseo	Kerta	mut		utatur CR	c OFC mid omycoth			dy	ax mot	0tareo	regroo	arots	other aot
				0															
902	26ヶก1979	2		0						\cdots									
903	1741/1987	2		11	28/4/1898					$C 8$	101			1	1.pr			4 y	
904	24/4/1982	2		17						\sim_{A}	10.								
905	251/1991	2		0						$\bigcirc \mathrm{A}$									
908	17/4/1991	2		0						\cdots									
907	12M1/1987	2		0						C^{8}									
908	2714/1997	2	1	6	$181 / 2000$	12 R 000	HSQ:00	1	c502c>t:R188X	08	3 d	1.	1	1	1	1	1	2 y	2
909	11/4/1895	2		5	12R2000		HSCOS	2	negative	inc CR	10.	1	1	1		1	2	19	2
910	9пп1993			0						unknown						1	1		
911	31/10/1995	2	2	8	181/2000	1/2R000,31/R2001,15/10/2001,	mut '99.00			CB	Ar	1	1	1	2	1	1	$2 y$	2
912	1/14998	2		5	14M0/2001	1210/2002	Inv	1	pos (AC)	OR	$\stackrel{31}{ }$		1		1	1			
913	225/1990	2		0				2	nono(AC)	unknown									
914	8M0/1989	2		0					none($A C$)	unknown									
915	1841/1998	2		3	30112001		HSCOO	2	negatve(AC) 7 MH	Rinanc	101	1	2	1	2	1	1	12 n	1.
918	18/2/1892	2		9	201812000		HSO. 00	2	none (AC)	R inonc	10.	1	2		1	1	2	non	2
917	4881895	2		6	2018/2000		inv	1	G2696x19	CA		2	1	1		1	1	non	2
918	1714/1991	2	2	12	181812002		HSO '@	1	C808CTT:R270X	R inonc	10.	2	1	1	2	1	1	12	1.
919	25/71997	2	2	4	19112000	11800.	HSO. 00			CR	3 c	1	1	1		1	1	14	2
820	201/1998	2	2	3	19112000	12R2000	HSCOOO	1	c4730:T158M	CR	ar	1	4	1	2	1	1	non	2
921	23/81880	2		42	19\%12000	1/2002	HSO. 00	1	c3988>A:R133H	lnc CR	3 rd	3	1	1	2	1	1	non	2
922	93 ¢994	2		7	14/11/2000		inv	2	none, testing for	CR	en	1	1	1	2	1	1		2
923	- 81211998	2		4	19112000		HSOOO	2	none (AC)	Rinonc	3 d	1	2	2	1	2	2	non	2
924	17M0/1896	2		6	201812000	12102002, 7M0R005	HSQ. 00	1	exon4	C^{\prime}	3 ar	2	1	1	2	1	1	mo	1.18 d
925	28 ¢1995	2		0	940/1898	15M0R001,22M0R2001	HSQ. '0r	1	1157del44(MH)	CR	3 rd	1	1	1	2	1	1	non	2
928	3пп1997	2	1	5	191/2000	12R2000	mult.00,'02	1	C244X(MH)	C^{8}	ar	1	1	1	2	1	1	18	2
927	5/0/1997	2	2	6	19 /2000	10222000, 12M0R002	HSQ '00			CR	3 rd	1	1	1		1	1	non	2
928	1911/1988			12	181/2000		HSO ${ }^{\prime} 0$			unknown	凶r	1	1	1	2	1	1	non	2
929	15/11/1893	2		7	201812000		H8Q.'00		polymorphism?	$\bigcirc 8$	3 rd	1	1	1	2	1	1	$3 y$	2
930	2M21997	2		4	$301 / 2001$		Inv			$\bigcirc 8$			1	1		1	1		2

Brtlist Istes Survey: $n=1236$:sources and crteria for Rett status: November 2005

\circ
$\frac{5}{8}$

Bitlsh istes Survey: $n=1236$ scources and criterla for Roth status: November 2005

 1 det exan 3(DR) and unknown 1 del exan 3(DR) and unknow
2 c1215CTT:P405P(unknow 1 c473Cx:T158M(A unknown 1 c763CST:R255X unknown 1 c307C>T:R133C c783ctipR256x(A unknown ce8sct:R270X(A unknown 1 c.808CTT:R270x(unknown <ur
unouxun $9<02 \pi+E S n i$ ipd $\begin{array}{ll}\text { c1372CTT:R485C } & \text { unknown } \\ \text { c1097-1203 unknown }\end{array}$ C473CTTTT158M(A unknown
no mulation? PQ
c1128CT:P37ES(unknown
1 c897CTT,T299T(A unknown

cभdolg (AC)
C984CSG:P322(A unknown

\mathbf{O}
0
O.
号
inv
a
HSO

HSCOC | 8 |
| :--- |
| 8 |
| 8 | $\vec{~}$ selzure, oth

Kerr a
-
$+$$\stackrel{\geqq}{\leq}$

12M0/2002 140/2003
$1118 / 2002$
星 $8=$
12
11 182002 8

$\begin{array}{ll}1023 & 287 ก 998 \\ 1024 & 2078 / 1997\end{array}$ 26211998
991987
$28 \pi n 978$
281994
$193 / 1999$
221998
8
๑

$+\circ 9$ \qquad
-

$\begin{array}{ll}1 & \text { C783CTT:R255×\& unknown } \\ 1 & \text { c1164-1208dol45? unknown }\end{array}$
 $\begin{array}{lll}\text { no met (MB) } & \text { unkn } \\ \text { c1184-1207dol44 } & \text { unknown } \\ \text { C918C.T:R308C(A } & \text { nc CR }\end{array}$

戸

Inv
HSCOO
8
8
号

ㄹ
$\underline{\underline{c}}$

?

18982003 1n0/2003
diod ${ }^{\text {Intant }}$
early cith=Ret de
$\frac{\text { BIS }}{1051} \frac{\text { dofbith }}{27 / 41998}$
$\begin{array}{ll}1052 & 3 / 81971 \\ 1053 & 1 \text { nn998 }\end{array}$
1054 15/5/1998
$\begin{array}{ll}1055 & 18 / 10 / 1997 \\ 1058 & 24 \pi 1 / 1997\end{array}$
$\begin{array}{ll}057 & \text { 68/R2001 } \\ 058 & 15 / 4 / 1983\end{array}$
1059 19Пก1989
1060 14п0л 896
\sim
4n111988

1051 27/4/1998 0
\circ
 $\circ 00000$

BIS	dofluth		iv	ax mm	AKdere	Kera	mut											athe oux
1081	вппөя	2	4	11882002	1402003	HSAOR	1	440p dal	\propto	3 3rd	1	1	1	2	1	1	15m	2
1082	1987992	2	10			HSO Ye	1	P152R (MB)	OR	nk	3	1	1	9	1	1	$9 y$	2
1083	3189980	2	0						unknown									
1084	19กn1990	2	0			inv			unknown									
1095	9яカ981	2	42			нsa'cs	1	R188x	$\stackrel{\sim}{8}$	nk	3	1	1	9	1	1	$7 y$	2
1088	258/1899	2	14			Hsa'ce	2	none (AC)	\propto	501	nk	1	1	9	1	1	8 y	2
1087	2л21899	2	3	11812002		Hsa. ©e	1	$5020 \mathrm{~T}_{\text {t (AC) }}$	\bigcirc	3 cd	1	1	1	2	1	1	$2 y$	2
1088	18/5/1987	2	18	11/82002		HSQ:02	2	negatve(DR)	Rame	50	2	1	1	2	1	1	blt	1.po
1089	114980	2	13			HSQ:O2			not A		nk	2	2	2.	2	11 y	non	1
1080	2321991	2	12	12812002		inv			Rnanc	ar	3	1	1		1	1		2
1091	25\%0/1949	2	53	12812002		inv			inc Ca	3rd	3	1	1	2	1	1	non	2
1082	187n1954	2	48	12812002		Inv			inc $\mathrm{CR}^{\text {c }}$	4r	3	3	1	2	1	3	4 mo	1.01a
1098	6144998	2	0			inv	2	none Huppke	Unknown			1					2y	
1094	3073999	2	0			inv			unkown									
1095	295/1994	2	9	12412003		hsace	2	none (AC)	not R	∞	1	1	1	1.	1	1	non	1.
1098	2791997	2	0			inv	1	R168x	Cr									
1097	17ก21988		0				1	no mutation, pay	unknown									
1098	278/1998		4			HSO ${ }^{\circ} \mathrm{CB}$	1	C484Dg:F155C	\bigcirc	nk	9	1	1	9	1	1	non	2
1098	2483999		3					C14917 (AC)	$\mathrm{nc} \mathrm{CPR}^{\text {d }}$	50		1			1	9	9	1.
1100	14011998		0					c8800x): R294x (\%	unkrown									
1101	2870/1999		4				1	c880С¢T: R284X	\propto	$n k$	9	1	1	9	1	1	3y	2
1102	1081994		0				2	del exon 3.2 to	unkrown									
1103	17818000		3			Hsa'0s	1	c4730T:T158M	unknown	nk	9	1	1	9	1	1	2 y	2
1104	1488/1998		0				1	c3160 T: R108W	unknown									
1105	188日1898		0				1	C12340A: V417	unknown									
1108	$183 / 1894$		0				1	c80804t:R270x	unknom									
1107	2512000	2	0	17 H 22003		1 ln	1	c9160stra300C	C	3 3rd	1	1			1	1	14	2
1108	10181988		0				1	c318C¢6:A108G	uninom									
1109	17312000	2	4	10M02003		HSO' ${ }^{\prime}$	1	c80808T; R270x	$\mathrm{inc} \mathrm{CR}^{\text {d }}$	501	9	1	1	9	1	1	non	2
1110	182/1998		0					c271 CTPSSS?	unknow									

Brits istes Survey: na 1238 :00urcee and criteria for Rett status: November 2005

Bntsh Istas Survy: $\mathrm{n}=12356$:80urces and cmenta tor Ren salus: November 2005

 Ressx
R168x
postive (USA)
R255x
T1589
R133C
L3881sx5
R133C (AC)
R133C (AC)
negaive Kara
Hso'O4
inv
British Istes Suvivy: $n=1236$:cources and citteria for Rett status: November 2005

APPENDIX C: STUDY DATASETS

Dataset 3.1:West of Scotland study

Explanation of Symbols:

BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant V =infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably $C R, R$ nonC=Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	3.1	d of birth	status	died	d of death		test	Kerr Q	AK saw	AK dates
3	1	8/5/1980	व	2				193	2518/1983	1/11/2000
33	1	$15 / 1 / 1973$	${ }_{\text {c }}$	2				mult93,'95,'98	2611012083	
50	1	2011/1976	${ }^{\text {c }}$	2				mut	5/5/1983	12/201987
87	1	1218/1977	${ }_{\square}^{\text {c }}$	2				muit '93, '94,'95	20/10/1983	8/4/1986, 5/12/1987, 11/6/1994, 1/6/1996, $28 / 11997$
89	1	11/8/1980	${ }_{\sim}^{\text {a }}$	2		2	none (MB) checking	mudt'85, '93, '03	7711983	6/6/1986,22011987,20/12/1988,21त/1993,1/11/1999.
100	1	13/4/1975	\cdots	1	1/1/1997			mut	24/5/1884	
106	1	289/1978	¢	2				O	9/2/1981	10/5/1984,1/1/1985, 2/12/1987
127	1	216/1980	CA	2				a'86-96	7711986	228/1987,25/11/1988,12/5/1892,1/6/1996,
128	1	13/9/1975	c	2				mult Q.HSC'97	1814/1984	
137	1	24/1974	C	2				0'83	10/11/1983	10/11/1983, 21/6/690
142	1	12MO1975	cos	1	14/5/1987			Q	21/6/1984	
154	1	29/8/1974	CA	2		1	P152R (Glasgow)	mudt. 94.196 .198	29/91983	17M21995.13/31996, 5/10/2001
226	1	10/10/1980	${ }^{\text {c }}$	2				व84-88	14/6/1984	18 П/1987,163/1988.
301	1	8/11/1974	${ }_{\text {c }}$	1	6/121998			HSa	899/1983	29/10/1985, 16/7/1987,30/11/1988,11/1/1993,28/7/1993
303	1	3019/1970	क	2				mult '86.96	9/11/1983	$1615 / 1992$
329	1	2016/1971	${ }_{\text {a }}$	1	25/3/987			Q	12/4/9984	
360	1	23/4/1969	\square°	2				[SO	28 711984	2716/1997
367	1	22121981	©	1	918/4995			mutio	$28 / 11984$	
539	1	25/1972	\square^{\prime}	2				mult'95.'98	24/5/1984	1/5/1996.26/22/1991

Dataset 3．2：Study of natural history of Rett Syndrome

Explanation of Symbols：

BIS＝Survey code number， $1=$ yes， $2=$ no， $3=$ presumed present， 9 or nk or no entry＝not known，AK saw＝first examination， AK dates＝subsequent examinations，infant $\mathrm{V}=$ infant video， Kerr $\mathrm{Q}=$ health questionnaire，（ $\mathrm{HSQ}=$ single，mult＝multiple） age upd＝age at update， $\mathrm{CR}=$ classic Rett，incCR＝incomplete data， probably $C R, R$ nonC＝Rett not classic，not $R=$ not Rett， mut＝mutation tested（no entry＝not tested），test＝result
further data for all cases in the Survey is shown in Appendix B

BIS	3.2	d of birth］	status	died	d of death	mut	test	Kerr Q	AK saw	AK dates
3	1	$8 / 5 / 1980$	CA	2				＇83	25／8／1983	1／11／2000
33	1	$15 / 71973$	CR	2				mult＇83，＇85，＇88	26／10／2083	
50	1	$20 \pi 1976$	Ca	2				mult	5／5／1983	12121887
87	1	$12 / 81977$	CA	2				mudl＇03，＇94，＇95	20／10／1983	8／4／1888，5／12／987，11／8／1894，1／8／1898，28／7／1897
89	1	11／8\％980	C	2		2	none（MB）checling	mult．＇85．＇93， 03	$7 \pi 71883$	8／671988，227त1887，20／12亿1888，21／71993，1／11／1899，
100	1	13／4／975	OA	1	11119897			mudt	24／5／1884	
106	1	28181978	¢	2				Q	9／21881	10／5／1984，1／17985， 2121987
127	1	21／81980	CR	2				Q＇88－96	7771888	22／8／1987，25／11／1988，12／5／1882，18／1996．
128	1	$13 / 91975$	C	2				mut Q， HSO 97	18／4／1984	
137	1	2147974	CA	2				0.83	10／11／1083	10／11／983．218／890
142	1	12 10／1975	CA	1	14／5／1987			Q	21／81984	
154	1	28181874	CR	2		1	P152R（Glesgow）	mult．＇94，＇96．＇98	29／81983	17／2／1995．13／3／996．5／0／2001
221	1	28／8／1872	C口	2				mult93，01	$1 / 141898$	28／7197
226	1	1010 H 88 d	व	2				Q＇84．＇88	14／81984	
301	1	8 111974	CR	1	6त2万1988			HSO	81871983	
303	1	30191970	С	2				mull＇88，96	8／111983	18／51892
308	1	$3015 / 1959$	CA	1	$4 \pi 71982$			Q	$175 / 1888$	
329	1	2018／1971	व्म	1	25／31987			Q	12／471884	
360	1	23／41989	C	2				HSC	28 万71984	27／8／1897
367	1	2221981	Cr	1	8181895			mulia	$26 \pi 71884$	
370	1	$12 \pi 1 \pi 878$	${ }^{\text {Ca }}$	2				0	14711085	6／8M986
495	1	18／11／883	\％od	2		delt	dei 15	0	6 611／1894	5171998
539	1	216亿̈ 872	CA	2				muilr05，98	24／5／1984	1／57996，281224991

Dataset 4.1: Hands and Mind in Rett Syndrome

Explanation of Symbols:
BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult $=$ multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably $C R, R$ non $C=$ Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	4.1	d of bith	status	died	d of death	mut	test	Kerr Q	AK saw	AK dates
3	1	8151980	CR	2				'93	25/81983	11112000
33	1	$15 / 7 \pi 973$	CR	2				mult'93,'95,'98	26/10/2083	
50	1	20^11976	CR	2				mult	5/5/1883	12त2M887
87	1	12/8/1977	C	2				mult '83, '94,'95	201101983	[8/4/1988. 5/72/987. 11/8/1994, 1/8/9898, 28/71897
89	1	$11 / 8 / 1880$	व	2		2	none (MB) checidng	mull '65, '93, 03	7171083	
100	1	13/4/1975	CA	1	1/1/1987			mult	24/51984	
127	1	21761980	$\square_{\text {c }}$	2				0'88.98	$777 \pi 986$	22/8/1987,26/111888,12/5/892,1/8/1898.
128	1	13/81975	Ca	2				mult 0.13SO997	18/4/1984	
142	1	12 HOR 975	CR	1	14/5/1987			0	21/8/1984	
154	1	29/8/1974	C	2		1	P152R (Glasgow)	mull.'94.'96.'98	29/91983	17/229995.13/3/1996, 5/10/2001
193	-	8イ01972	Ca						$1 / 101985$	
221	1	28/81972	CR	2				mulr'93,'01	1/4/1986	28त197
227	1	1731874	वa	1	20/8/1994			HSO	2877886	
234	1	24/8M980	Ca	2		1	C763CT:R255X(AC	mul '91,'94,'98	1/10/1988	28/81988. 1 18/1889, 126/7991,
257	1	8151980	व	2		1	C473CT; T158M \&	mult'83,95,'00	$1 / 10 / 1888$	21/71987,28/3/890,19/2/1991,21/8/2000
259	1	24771859	CA	2				Q'88	$7 / 2 / 1986$	30/3/2001,19/4/2002
301	1	8 8111974	CA	1	812п1998			- $4 \times$	819H283	
303	1	30191970	С9	2				mull '88,'96	9 ¢111983	18/51892
335	T	25/5/1971	CA	2				C'84	28/8/1984	1.9.1986,217n7987
380	1	23/4/1989	Cor	2				HSO	2877084	27/6/1997
367	1	2221981	¢	?	9/8A995			mulio	287त1884	
370	1	12/111979	CR	2				0	14/11/1885	618/988
539	1	2/51972	CR	2				mutros,98	24/51984	

Dataset 4.3: Nurse recognition of deviation

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $\mathrm{V}=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably $C R, R$ non $C=$ Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	4.3	d of birth	status	died	d of death		test	Kert Q	AK saw	AK dates
79	1	1321987	व ${ }^{\text {a }}$	1	9/4/2001	1	T158M (Manctiesta)	mull ' $93,194,96,99$	6707890	1 170 1994.
234	1	248/1880	व	2		1	C763CTi; $2255 \times 14 \mathrm{C}$	mult '91,'94.'98	1 101988	28/89988, 1/8/989, 12/3691.
301	1	B'1/1974	व	1	6 6,21898			HSO	88171983	
307	1	153/1884	c	2		1	800]dG(AC)	mull. $983,98.97$	110 Cl 987	
312	1	9Rत070	CR	2				O991 in	170斤989	
468	1	28 C 992	CR	2				HSO. 96.171012003	11/171995	
546	1	13/1/1891	व8	2		1	doi exan 4	munt 93,94,03	28त107693	
595	1	897984	C8	2		1	R2S5X	murta4,98		
690	1	13 1171893	व	2		1			25п0\%\%985	9707898, 1/02001, 12102000
826	1	218/1891	Anomc	2		1	C10 G base 401	mult97,'98,'01	18881897	301R202
870	1	128/1905	¢	2		T		HSC'99	30¢11/898	
873	1	18 11/1986	c	2		1	C473CT: T158M	HSCO\%	1410\%998	121012002
908	1	27141897	¢	2		1		HSa.OO	$18 \pi 12000$	$1 \overline{12000}$
926		3 /7n897	¢	2		1	Q244X (MF)	mull. 00,02	18 HR 2000	1122000

Dataset 4.4: Abnormal general movements in Rett

Explanation of Symbols:
BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $\mathrm{V}=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	4.4	d of birth	status	died	d of death	mua	test	Kerr Q	AK saw	AK dates
8	1	2733987	CA	2				mult 90, 94,195	- 10 8890	23Mn991.21nत992.
79	1	$13 / 22887$	${ }_{0}$	1	9/42001	1	T159M Manctiester)	mult ' $93,194,196,98$	810/1890	1110 Cl 94.
169	1	3137993	${ }_{8}$	2		1	C244×(MB)(MH)	muth '95, ${ }^{968,98}$	15/6/1995	
209	1	28 M/1889	क	2		1	T158M	mult 91.03	11/881891	$17 \pi 10985$
234	1	24/89880	${ }_{\text {c }}$	2		1		mulr '91,94,98	in(1888	28/89898, 187989, 12/81091.
301	1	$8 / 11 / 1874$	©	1	6/124898			HSO	89గ1883	29/10/1986,16/71987,30/1/1988,11/ก1993,28/71993
307	1	153/3064	©	2		1	808delG(AC)	mulla. $93,85,97$	180/1887	
312	1	922070	व	2				091 lnv	1701089	
348		2 201980	©	2				Inv	20 H 1893	
431	1	28/107897	Anonc	2		2	nol lound (AC)	HSa'or	8812001	
468	1	218 H 982	OR	2				HSO. 95.1 M10 ${ }^{\text {a }}$	11M171895	
546	1	13/11/891	${ }_{\text {a }}$	2		1	dol exan 4	mult ${ }^{183,94,103}$	28/0/1893	
550	1	2013n990	¢	2		1	dea exon 3 -4 Intreliy	mutt. ${ }^{183,94,96}$	1510/1893	4220995,42त̇939
678	1	14/5/891	R n anc	2		1	C502COT:R160X	mutt '95,'96	218/1895	1818/1996,1998
690	1	$13 / 11$ 1893	${ }^{\text {a }}$	2		$1-$		mult. $85,197.98$	25\%M1895	
826		21/84891	Rnonc	2		1	CoG base 401	mult97,'98, 01	18/8/1997	30112002
870	1	12188995	$\bar{\square}$	2		1		HSO'so	3011/998	
873		18/11/1989	${ }^{\circ}$	2		1	C473CT; T158M	HSa98	147\% 1898	12स10/2002
883		23/8M895	CA	2		2	nonen (\bar{C})	HSO		
908	1	$27 / 44897$	C	2		1		HSQ.OO	19\%12000	1212000
926	1	3 Зत̇997	¢	2		1	Q244×(M-)	mult 000.02	1812000	1212000
964	1	$20 / 5 \pi 998$	\square_{8}	2			1118-1201del 86	HSCOO	1 1 120001	11112001, 20/42001.87104
972	1	15/10/997	Rnac	2		2	not tound (AC)	mut '01,03	$31 / 12001$	
978	1	14888895	¢	2			uncertan resuli	HSCOM	30/12001	30/12001

Dataset 5.2 \& 3: Hyperventilation in awake state \& Correlation of events

Explanation of Symbols:

BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $\mathrm{V}=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably $C R, R$ nonC=Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	5.2	d of birth	status	died	dd of death	mut	test	Kers Q	AK saw	AK dates
2	1	24/31981	c	2				Q'86	2451988	24/711987,11/
3	1	8/671980	${ }_{\sim}^{\circ}$	2				'23	25/81983	1/1/1/2000
6	1	978/1976	$\bar{\square}$	2				Q	20/71987	1211094
20	1	22/8/1977	OR	2		1		mult.'91,'94,'96,'98,'	24/67988	21/8/2000,24/10/2001,15/0/2001, 12/0/2002.
29	1	2151970	Cr	2		1	P1528(MB)	HSQ ${ }^{188}$	$14 / 711987$	
33	1	15/71973	C	2				muit $93,96,98$	2810/2083	
50	1	20111878	OR	2				muit	$5 / 5 / 1983$	$12 / 12 \pi 887$
88	1	14/10/1985	CR	2		2	not found (MB)(AC)	HSQ. 85	1/419889	28/81893
89	1	11/191880	\cdots	2		2	none (MB) checking	mult. '85, 93, 03	7771883	6181888,2271987,20/2/1888,21/71093,1/11/1990.
106	,	29/81978	OR	2				a	9221981	10/51984,1111985, 2గ211987
123	1	10/11/1886	\square°	2		1	T158M (MB)	Q. ${ }^{6} 7$	7771893	27/8/97, 310/1897, 1/11/697,
127	1	21/81980	¢	2				Q'88-98	77711886	22/8/987,25/11/1888,12/6/1982,1/8/1896,
137	1	214M974	OR	2				0×83	10/111983	
154	1	29/81974	OR	2		1	P152R (Giaggow)	mutt.'94, '96.'98	29/81983	17/2/1995, 13/31896, 5/10/2001
162	1	14181888	\cdots	2		1	R133C MB)	mutt 90, '98,	18/1891	29/4/1892, 17/7M1998, 1/82000, 1/11/2000
181	1	18अ1988	Anca	1				090	1101990	
22.1	1	288\%1972	CR	2				mulf93,01	$1 / 4 / 1888$	$28 / 197$
226	1	1010/1980	CR	2				व84-88	14/6/1984	187त1987,163/1888.
257	1	$618 / 1980$	CR	2		1	C473CST:T168M \&	mudro3,'96,00	1/107986	21/71987,283/1890,18/2/1991,21/6/2000
258	1	7111987	OR	2				mut's ${ }^{\text {a }}$	11811983	
262	1	$4 / 4 / 8885$	CR	2		1	R188X(AC)(WGH)	mult	11101888	1919R004
282	1	377881	CR	2		1	107n frame	mult.'8293,'86,'98	$24 / 71987$	
301	1	88111974	C	1	8/2/1998			- A S	8811963	
303	1	30/91970	\cdots	2				mutt '86,'96	9/11/1983	1815/9992
335	1	$25 / 5 \mathrm{H} 971$	CR	2				Q'84	28181984	1.9.1888,21त7987
360	1	23/4/1969	व	2				HSO	$28 / 71984$	27/8/1897
366	1	23 MOH 981	Ṙnac	2		1	C810C.T;R300C (AC)	mulr. 92.98	4278982	14/8/1994,110r1998
367	1	22 20961	व ${ }_{\text {a }}$	1	9/8/1895			multa	28/7T1984	
380	1	6/21985	CR	2		1	P3021	mult 94,95, 96,98	7831891	26/त1996,5/0R2001
402	1	12/10/1988	${ }^{\text {a }}$	2				mult93,'96,'96,'99	15/1/1892	25/51998,2410/2001.
487	1	8/8/1874	R nonc	2		1	44bpdel.1183-Wes	Q.'88.inv	8/8/1888	10/10/1890, 1/5/1892,
540	1	1/31989	¢ ${ }^{\circ}$	2				mult.'83.'95.'88	25101093	1/10/1898,17/6/1898

Dataset 5.4: Functional evidence of brain stem immaturity

Explanation of Symbols:
BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $\mathrm{V}=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult $=$ multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	5.4	d of bith	status	died	d of death	mut	test	Kerr Q	AK saw	AK dates
262	1	4/4/1985	\cdots	2		1	R168X(AC)(WGH)	mult	1/10/1987	19/9R2004
347	1	301/1082	Rnonc	2		2	not found (Wessex	mult.	1/10/1982	187/1895,18/8/1898
380	1	8/2^1985	OR	2		1	P302L	mutt. '94, $95,486,98$	7/81891	28/718996.5H10/2001
402	1	12/0/1988	CA	2					15^11982	25/5/1898,24/0/2001.
510	1	28/7/1989	${ }^{\text {a }}$	2				mut.	5/8/1982	1/1964.1/188,1/12000
738	1	14/4/1992	OR	2		1	R255X	IInv	1/81998	$30 / 7 \pi 898$
783	1	1414/1894	CR	2				HSCPO8	$17 \pi 24898$	17/12/98

Dataset 5.5: Characterisation of breathing

Explanation of Symbols:

BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
In this study four more cases were included from Sweden for which data is not in the BIS

BIS	5.5	d of bith	status	died	d of death	mut	test	Kerr Q	AK saw	AK dates
9	1	22 M978	${ }^{\circ}$	2				mut 195,98	28/8י8987	ब/8त997
33	$1-$	16/n973	C_{8}	2				mutt'93,95,'98	28\%02083	
75	1	$28 / 24885$	${ }^{\text {a }}$	2				HSa'87	110 T 89	110л899
83	1	$277 \pi 197$	Anonc	2				linv	23717897	20/81899
87	1	128197	¢	2				muin 93, 984,96	2010/1983	
123	1	$10 \mathrm{H17} 1986$	${ }^{\circ}$	2		1	T156M MB)	Q. 97	77 M 993	271897, अ1071987, 1/1/1897.
148	1	25/41981	Ancoc	2		1	$\cdots 397 \operatorname{ctri33CAC}$	a. 82	30881988	
149	,	10/471985	T	2		1	Cancotili3cac	O.'81	888/991	30/1111997, 12/012002.1702003
162	1	14/8గ988	$\stackrel{\square}{\text { a }}$	-		1	8133C (M8)	mut. $90,198$.	18 H991	27/41982, 17\%గ698, 1/82000, 1/1/2000
182	1	28181888	${ }_{\text {O }}$	1	131820005			munt.'94,'95,'87.'98.'	170/991	
194	1	77 M 985	©	2		1	$18 \mathrm{CST}(\mathrm{AC)}$ P306C	mutt '63,94, 97.	उत/981	10/894. 18/17895, 1/1/1695, 305/1997.
221		28/81972	${ }^{\circ}$	2				murte3, 01	11471988	287T19
258	1	7711987	ca	2				mutrs ${ }^{\text {a }}$	18/9883	
262		4/4/1885	${ }^{\text {a }}$	2		1		mut	1701987	18912004
347		$30 \Pi 18882$	Anonc	2		2	not tound (Wessex	mult.	1 T 01892	18/n1895.16/8n696
359		11781888	Anonc	2				mutios	28 M0n987	1/8/898,28/1/1097,1/8/898,1/1/1/899,18/2003
360	1	23/41989	${ }^{\circ}$	2				HSO	26/71984	2718 M997
380	1	В2\%885	O	2		1	P3021	mult '94,'95,'96,98	7818981	28/त1098,5/0R2001
381	1	10/11/1987	${ }^{\circ}$	1	$1{ }^{1 / 42003}$			mutit' 9 .	4481991	18/5/1892.1/1997.13/11/898,4/8/2000
397	1	20121889	the Cr	2				\bigcirc	18701891	5271882
402	1	1220 Cl 98	${ }_{\text {a }}{ }^{\text {a }}$	2				muit93.'95.'96.'99	1571982	25/5/998,24ก012001.
409	1	4/81989	${ }^{\text {a }}$	2		1	158(d'E)	\bigcirc	1 COH 892	1 MOH 938
427	-	28/5/973	O	2				Hsa	25121892	1912 H 898
502	1	6/51989	CR	2		1	1152dā1440p(AC)	munti:'03,'94,'98,'97,'	4787892	1/1/1997.110R2001
508	1	14/221978	${ }_{\text {ch }}$	2				mutt 94,98	4/8/1992	14/9/993,118/1894,14881898,1/2/1998,13/1/1999.
510		288त989	व	2				mult.	5/87992	1/194,1/186,1/12000
568	-	18887887	O	2		1	R188×(M8)	HSO.'98	151671994	28/31898
631	1	21861880	${ }^{\text {c }}$	2		2	Heno(M8)	HSQ.'94	$5 \longdiv { 1 8 1 9 9 5 }$	18881898,1/11/1997
635	1	2711/1991	ch	2		1	792-804d013.1	mut '95, 96.	2 H 21994	
650	1	2412/898	${ }^{\text {c }}$	2		\bar{T}	F2200 (AC)		24/218982	
653	1	1131893	©	2		1	F270x (MB)	mut	18171995	19/601, 15/101.23/001. 12/01021/1004
690	1	13/11 1883	${ }^{\circ} \mathrm{C}$	2		1	F168X(M-) Trunc	mutt '95, 97, 98	25 M01896	8701898, 110 2001,121012002
712	1	105 H984	Rnonc	2		2	not tound (Wessex)	mutr95.98, 98	10 H1898	6/8/897.18/3/898.9R2000,1/0/2003
728	1	20701893	${ }^{\text {c }}$ - ${ }^{\text {a }}$	2				mut '96,97	2010\%993	
738	1	14/4/882	${ }^{\circ}$	2		1	R2S5X	Inv	1/8/1996	$30 \Pi \pi 898$
783	1	14/4त894	ca	2				HSCO's		$17{ }^{17286}$
797	1	28144891	व	2		1	1164.1207 del 44 (A	muth 98. 97. 98.	15 /n997	2891997.21/82000.
803	1	14/818980	व	2				mut '97,98,04	10/0-1997	12102002
806		171881894	व	2		1		HSO. 97	178/8994	14/31897, 1/1/2000
809	-	$2211 / 894$	$4 \mathrm{inc} \mathrm{Ca}^{\text {a }}$	2				HSO. 97	11111087	
820		171518994	A nanc	2		1	c $7530 \mathrm{ACP}(\mathrm{AC}$)		17881897	1/102001. 121R203
8×9	1	28/8/989	Anonc	2				HSO's8	$13 / 1998$	3/188
833	1	13/11895	व	2		1	c128-127nsG (AC)	Inv	1 111n997	18187898
854	1	$47 n 891$	OR	2		1	c1157-1200del144	mutrse. 89.	3 \% 1898	42/1893,22/8/899,20/812000,31/12001, 30112002
858	1	2881988	O_{1}	2		2	not found (AC)	HSO 98	19/87998	788, 1998.11 / 1998.11 1/2002
901	i	$1 / 81963$	Ca	2						
902	1	28111979	O_{8}	2						
903	1	171111887	$\mathrm{C}^{\text {a }}$	2					2814/898	
904	,	24/41982	वR	2						
905	1	$25 / 17091$	क	2						
906		17/4/1891	क	2						
907	11	12 n 1 1987		2						

Dataset 5.6: Critical examination of e.e.g....

Abstract

Explanation of Symbols: BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result further data for all cases in the Survey is shown in Appendix B Longitudinal data is shown for the presence of epilepsy in the final column. Each digit represents a five year period, except the first which represents the period before regression if regression occurred, $1=$ epilepsy present, $2=$ no epilepsy present

BIS	5.6	d of bith	status		d of death		test	Kerr Q	AK saw	AK dates
2	1	24331881	${ }_{\square}$	2				$\square^{\prime} 88$	$245 / 1888$	24/71887.1118/1891
3	1	8551980	क	2				83	258/1883	in1/2000
6	1	9ran978	${ }^{\text {a }}$	2				a	$20 / 1688$	12 12094
16	1	27124083	क	2		2	nonom8)	HSO. 98	[24/8/1888	23nत991
25	1	2871880	¢	2				व\%	$23 / 11891$	29\%1093
29	1	2151970	C	2		1	P152R (MB)	HSA. 98	148711887	28/n988,18/6/1882, 1/87098, 19.9.2004
37	1	13181888	${ }^{\circ}$	1	5/12005	1	P30®2 (AC)	mull. 93.9403	2880/1889	
40	1	12551978	${ }^{\circ}$	2				a	1 H 01987	28月071989
41	1	18/51978	C_{8}	2				HSC: 98	$110 / 1887$	
44	1	23818882	क	2		1			22तก891	22ת1991: 29n 2009
50	1	20118976	${ }^{\text {a }}$	2				math	5/5M983	12 2ת1987
62	1	2124975	C	1	$23 / 11 / 1998$			HSO 90,98	1970/1991	
63	1	3/21980	व	2				munt '90,98		
78	1	14181979	\square_{8}	2				Inv	20\%6/1891	
81	1.	101881880	$\stackrel{\circ}{8}$	2		1	C50ectipatisx	व\%	$21 / 11892$	
87	1	128月977	क	2				mult '88, '94,'95	20101883	
88	1	14/701885	O_{8}	2		2	not lound MB)(AC)	HSO. 98	1/41989	288/1893
89	1	111817880	\square^{8}	2		2	none (MB) checking	mati: 885 , '03, '03	$7 \pi \overline{1983}$	
100		13/4\%1975	${ }_{\text {O }}$	1	1111997			muit	245/3984	
106		28/81978	c	2				0	9128881	
113	1	5/5M977	©	2		1		HSS, '94	20818991	11 H 1894
116		$24 / 111887 \mathrm{C}$	${ }^{\text {c }}$	2				Q: 91	20171894	13/11/991. 14/8/1994
123		$10 \mathrm{H1} 18888 \mathrm{C}$	${ }_{\text {c }}$	2		1	T158M(MB)	0.87	$77 \pi 963$	271897, 3 $1018897,11111997$.
127		21811880	C	2				Q'88-96	7π 71988	
128	1	13/9/875	O	2				muth O, H SO97	18447984	
131		18771883	¢	2		1	1157dal 14 bbp (C8)	mult 'co,'03'95'98'9	1701889	11/1/994,21/812000,4/4/2001
137		2/41874	${ }_{\text {a }}$	2				O'83	10/111883	10\%1/1883. $21 / 8 \mathrm{H} 890$
142		12 HOH 975 C	Ca	1	14/5/987			Q	21/81884	
146	1	2/89984	R nanc	2		1	1157-1197del.41bp(frudr95,'90.03	28151893	
154		281881874	c	2		1	P152R (Glaagow)	mulit.94,'98.98	28971883	177121895, 13/31898. 570/2001
157		8M21085	${ }^{\circ}$	2		1	G2624×287(MB)	Q.inv	18 H 1895	
162		1419 He88	©	2		1	(133C (MB)	mult 80, 98,	18 H 881	29/4T882 17n7898, 1/62000, 1/112000
165		20त10r890	${ }^{\circ}$	2				Inv	7 T 111895	
181		$18 / 31888$	HCCr	-				Q'80	11017890	
186		12 ก01884	${ }^{\circ}$	-				0'82.	24/81887	18/81897.21/6R200
197	1	18/5/964	Ananc	2		1	c703COST,R255x(A	HSa04	2221891	
198	1	18/5గ964	वA	1	14/52003	1	C783CTT:R255x(AC)	,	2021891	
207		14/81880	c	2		1	T158M (\%W)	mutt '94 '95.96,'98	$23 / 11891$	
209		281/1989	${ }_{\text {a }}$	2		1	T158M	mutit 91.103	11/81891	17 1711985
$2 \mathrm{L2}$	1	8151978	c	1	[27/12689			0	12H1/1897	i/87898
225	1	4 42980	¢	2				Q	181988	110 H 892
226	1	10 HOH 880	${ }^{\circ}$	2				O'84'88	14887884	
250	1	7 THOH 883	${ }^{\text {c }}$	2				${ }^{\text {Inv }}$	3181889	1118/1891
254	1	[6/57988	क	2		1	Y141x(Aberdeen)	mulit' $90,194,95,96$,	25881890	
257	1	8651980	¢	2		1	C473GT:T158M\&	mult93,95,00	11011988	
258	-	771887	cos	2				multig	181983	
262	1	4/4\%1885	\square^{\prime}	2		1	R168x(AC)(WGH)	mult	110/1887	19812004
269	1	18\%01988	Ananc	2				व\%	1281991	
282	1	3/78881	CA	2		1	107n frame	mult:'8293,95,'98	24717887	1117989,1/17882.
300	1	18183885	O	2		1	F270X (MB)	mufti 938.	23 1/991	2211893
301	1	8\%11974	व ${ }_{\text {a }}$	1	8 CH 21898			$\mathrm{HSO}^{\text {a }}$	8971983	
303	1	3081970	©	2				mintit '88.'96	$9 \mathrm{M1/1983}$	181/51892
306	1	13/8M978	©	2		1	F270x(MB)	HSQ.'95	13919978	1/4K891
307	1	153/1884	${ }_{\sim}^{\circ}$	2		1	8000dod(AC)	mult. $78.935,97$	1 TOH 1887	
329	7	2018/971	\bigcirc	+	26/3/1987			0	11/4/1984	
330	1	7731873	CA	2				0		
335	1	25/5/971	${ }_{\square}$	2				O'B4	28/3R984	1.9.1988.21/त1987
340	1	12 Cr 988	©	2				0.91	23/11991	अ2त892
356	${ }^{1}$	381980	a	2		1	F2OEX ((W,AC, MH)	1080,88	1 10,1887	
360	1	23/4H969	${ }^{\circ}$	2				Hsa	28/71084	2781897
367	1	221981	c	1	9/8M895			mutio	$28 / 71984$	
378		3010 H 973	${ }^{\circ}$	1	23 1118893			O'so	$114 \% 889$	1 B 7890
380	1	ब22085	${ }^{\circ}$	2		1	P302L	mull '94,95,'80,98	78 M991	28/71898,5/0/2001
391	$1{ }^{1}$	28371975	${ }^{\circ}$	2				HSO'\%		
402	1	12 Hon 988	O	2				Imuris3,85,98,98	15 n 1982	25/57898.24/i0/2009.
405	${ }^{1}$	24त110987	${ }^{\circ} \mathrm{A}$	2		1	R300C (Nossex)	mant '96. 08	22,1092	
479	1	10n21080	${ }^{\circ}$	2		1	R133C	0.90.	1818990	1/111989.
539	1	251972	a	12				mutr9s, 98	245/8884	15/898,28620]991
540	1	13 H989	${ }^{\text {a }}$	2					25/0/1093	$11018896.178 / 1998$
544	1	18851990	${ }^{\text {a }}$	2				mult '83,'98,99,'01	211/893	18BR2001
546		13 1/1989	¢	2		1	det exem 4	fratt 93.94 .03	2810/1893	
550	1	29391990	\cdots	2		1	del exon $3-4$ (intualy	mult '93,94,96	15/0/1993	4221995,427999
553	1	8851991	${ }_{\text {c }}$	2		1	m68X (MB)	mant. 93,00	$24 \pi n 894$	444R001. $12 \mathrm{HOR200e}$
573	1	74 H882	¢	2		2	neg (AC)	man 94,98	14×31894	112001
577		28871890	${ }^{\circ}$	2		1		HSO. ${ }^{\text {P5 }}$	183/7895	18187896.
636	1	28811989	Anonc	2				inv	11001894	
690	1^{1}	13 M1/ 893	OR	2		1	R188×M M Itunc	munt. 95, 97.198	25101898	9101098. 11012001. 121012002
694		18 1717883		2		1	R2S5X (M-1)	mant '95,98.	111111898	

Dataset 6.1:Neurophysiological observations on the corticospinal projections to upper limb

Explanation of Symbols:
BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $C R=$ classic Rett, incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B

BIS	6.1	d of birth	status	died	d of death	mut	test	Kerr Q	AK saw	AK dates
68	1	10/31962	CA	2		1	1157ddi41bp (d'E	mudt.'94.'\%5.'98	29/10/1988	
101	1	28/5M981	CA	2		2	none (AC)	HSO 98	$1 / 111888$	
148	1	25/4/1981	R nanc	2		1		Q. 82	30/8/1988	1/त/989,5/8/1892,13/6/1905,30/1/1997,12/0/2002
149	1	10/4/1985	R nonc	2		1	$\mathrm{C}^{397 C O T R 133 C}$ (AC	Q.'91	ब/8V991	30/11/997. 12/10/2002,1/10/2003
234	1	24/8/1980	CR	2		1	c783CTT:R255x(A	mut ' $91.194,98$	1/10/1986	28887988, 18/1989, 12/8/1901.
239	1	7171978	CA	1	1121889	2	($\overline{A C}$) not lound	Q'99	$1 / 197988$	10/8/1992,8/4/7898
257	1	6/6/1980	CR	2		1	C473CTT: T158M\&	mint'93,'85,'00	1/10/1988	21/7/987,28/3/8900,18/2/1991,21/8/2000
263	1	14/0त1971	\square°	2		$\overline{1}$	158(d'E)	1 HSCO 1	24/5/1988	1 1/n987,291988,19/8/2001
356	1	3/9/1980	C9	2		1	R255X	O'90,'88	1/10/1987	1/8/1088,1/4/1989,1510/2001,1/10/2003

Dataset 6.2: Short 4th ray in Rett Syndrome

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates $=$ subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably $C R, R$ nonC=Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
In this dataset, the final column records any other suggested cause for the brain disorder.
The dataset contains additional cases with short 4th ray recorded after the project.

Dataset 6.3: Visual function in Rett Syndrome

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $\mathrm{V}=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
The final column in this dataset shows the severity score for cases. The severity score calculation is shown in figure 2.2.1, Appendix 1 The score is out of 10 points, higher number indicating greater severity. In this dataset maximum severity is shown as 100%

BIS	6.3	d of birth	status	died d	d of death	mut	lest	Kert Q	AK saw	AK dates
33	1	15万万1973	CA	2				mur93,95.98	26/0\% 2083	
89	1	1119 T 980	ch	2		2	none (MB) creaking	meth '85, 93, 03	$77 \pi 983$	
154	1	296/1974	c	2		1	P1528 (Geegow)	mutt: 98.96 ,98	20191983	171221996,13/31996, 51002001
221	1	283/1972	C	2				murss.01	$141 / 1906$	$28 / 7197$
262	1	441965	\bar{C}	2		1	R16aX(ACXWGF)	mant	17107987	19132004
301	1	$8{ }^{\text {¢ } 111974}$	C	$1-$	6/12 1998			HSO	697963	
303	1	30181970	CR	2				muit 66.96	9 T 11983	$16 / 581992$
360	1	23471969	Cr	2				185	26 ПT084	$27 / 61997$
385	1	21671976	CA	2				HSCr94	2914/1992	
402	1	12 HO 1988	CR	2				mut93,85,'96,99	15/11982	$25 / 5 \times 1998,24 / 1012001$.
508	1	1421976	CA	2				mult 94,98	446/1992	14/91993.11/8/994.14/81998.1/12/1998.13/11/

Dataset: 6.4: Urinary pterins in Rett Syndrome

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably $C R, R$ nonC=Rett not classic, not $R=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
European cases were included in this project which were not registered in BIS

BIS	8.4	d of bith	status	dled	d of death	mut	test	Kert Q	AK saw	AK dates
22	1	1271980	$\bar{\sim}$	2		1		mult 80994.35 ,	22111992	
30	1	39M97	C	2		1	R255X and	13096	151965	1п4987.1401992 1101994.
118	1	$4 / 651990$	Ca	2				H50	10.61393	$11 / 1 / 2004$
184	1	7711985	C	2		1		mult 93,94, 97,	उसत99	
220	1	317001986	Ca	2				mult 83, 95.	$22 \pi 11991$	1/107952 21n 993
274	1	315 Fi980	$\overline{\text { a }}$	2		1	C8800 T.R294x(0)	melt'94,08	1711987	1/107989.146/1994.1/101996.11/62000
346	1	12 1/1991	ca	2				muth 's3,95	96/1993	18/11/2004
388	5	6807982	O	2				O. 92.	11101991	
357	1	20n2H969	nc CA	2				0	19\%0n991	5/2n992
399	1	124/1991	not A	$\overline{2}$		2	(AC)(GE) nome	mint	32.7992	
447	1	12711990	${ }_{\square}$	2				munt 94.97	25/5/1992	11/11994,17\%161997
473	1	$16 / 10 \mathrm{HEa}$	Ca	2				H50. 95	9 9 11996	
498	1	671064	$\bar{\sim}$	2		1	$\square 7$	moute 97, 00.	1851886	
502	1	$6{ }^{6} 51989$	$\bar{\sim}$	2		1	11526(1440. ${ }^{\text {AC }}$	mat. $93,94,96,979$	$416 \pi 992$	1/111997.1/1072001
516	1	17त゙त1969	C^{8}	2				mut94,95,'96,'98	$201 / 1993$	
525	1	1081895	$\bar{\sim}$	2		1	T158M(MB)	1 HSO 96	$21 / 1 / 1893$	1/101998
537	1	2931590	not	2				150.90	5\%11996	
543	1	$168 / 1991$	C	2		1	Cose ${ }^{2}$ (M1)	munt	11 H त1994	11001996,4/92000,1510/2001. 121012002
546	1	13 \%111897	व	2		1	dol $\operatorname{exos} 4$	mutt. '93, 94 , 03	28H01993	
550	1	2981990	${ }_{\text {ch }}$	2		1	delel exan3-4	muth. $93,94.96$	15101938	4213995,421999
551	1	$13 \mathrm{H2} 1890$	${ }^{\circ}$	2		1	¢455	HSA94	111/1994	11111896
553	1	851997	c	2		1	Ai6ax (MB)	mutisa, ${ }^{\text {a }}$	24111994	44/2001. 1210/2002
567	1	186\%1990	c					Inv	121/1994	
573	1	7 711992	C	2		2	nog(AC)	munt '94,96	143/1994	$1 / 12001$
598	1	2001991	Amanc	2				mall'94,'95	14136994	
853	1	$13 / 1993$	${ }_{\text {CR }}$	2		1	R270X (MB)	murt	18 H14995	
706	1	12R2R951	CR	2				muli'96.'96	11/11ก996	911 996.10/10/1998.121022002
791	1	19441994	Ch	2		12	negative Mil?	muti 96.198 .103	15H1997	170N999, 120102002

Dataset：7．1：Long read sequence analysis

Explanation of Symbols：

BIS＝Survey code number， $1=$ yes， $2=$ no， $3=$ presumed present， 9 or nk or no entry＝not known，AK saw＝first examination， $A K$ dates＝subsequent examinations，infant V ＝infant video， Kerr $\mathrm{Q}=$ health questionnaire，（ $\mathrm{HSQ}=$ single，mult＝multiple） age upd＝age at update， $\mathrm{CR}=$ classic Rett ，incCR＝incomplete data， probably CR, R nonC $=$ Rett not classic，not $\mathrm{R}=$ not Rett ， mut $=$ mutation tested（no entry $=$ not tested），test＝result
further data for all cases in the Survey is shown in Appendix B
This dataset contains further cases investigated after project 7.1

BIS		d of bith	status		d of deat		lest	Кеп Q	AK saw	AK dates
792	T	239\％992	not	1	$4 \pi 12003$	2	nono（AC）	muth 97.98 .08	13141998	
797	1	2214799	${ }^{\circ}$	2		5	$1164.120700644 \sqrt{\text { a }}$	Imatt 96．97，98，	$151 / 1997$	28191997，21／67200．
800	1	21／1994	Ronac	2		2	$\operatorname{son} \times\left(C^{\text {c }}\right.$	mudi．97，98，00．03	15／7／1997	10 n 2000
812	1	2971997	not	2		2	$\operatorname{mon}\left(A^{\prime}\right)$	HSO．${ }^{\text {a }}$	18881997	
817	i	14／121969	Anonc	2		2	nono（AC）	$\mathrm{HSCO}^{\text {ch }}$	1788 9997	
818	1	1031898	not	2		2	nomo（AC）	mut 98：02	13 3 H998	
822	＇	2781979	not	2		2	Heno（AC）	mut．97．98．0e	$188 / 651997$	
828	1	$1{ }^{15 / 5} 1998$	요	2		－	nomod ${ }^{\text {c }}$ ）	∞	17112000	
831	i	19MOM990	\％	1	1712003	1	c73006T：CR44X			
833	＇	13／1／1995	क	2		1	C126－12506G（AC）	Inv	17171997	16161998
844	1	10／10r990	¢	2		2	loe，Actane	mutre8：01	1471998	20812001
847	1	GE5／984	Rnanc			2	notamod（AC）	mun 98.90	23111991	263／1999．146611899，110 999
849	1	78 ¢993	${ }_{\text {O }}$	2		1	position tocomo	HSO：${ }^{\text {Pa }}$	$1718 / 199$	
850	1	W15H995	Anorc			2	nono（AC．MB）	HSO．＇98	671／998	
853	1	2184988	¢	2		1		mudras． 00	231681998	
854	1	$47 \pi 991$	O	2		1	c1 157－12000d14	mursis． 99.	ЗПН998	4R21999．2167999．20／672000．31
858	1	288191988	A	2		2	notiound（AC）	HSO． 98	$19 \% 61996$	778／1998．1174i998．11512002
858	1	$2 \times 3 \times 1905$	Anonc	2		2	nogadiva（AC）	Hso：38	1616198	12012000
884	1	3471990	Ananc	2		2	ninorach mano（OR）	HSO9	26161998	
868	1	28 3H995	Anonc	2		1	0502 CT：AIBEX	linv	30172000	
867	1	1113 H 968	©	2		2^{-}	Inono（AC）	HSO． 98		
868	1	773 \％995	${ }_{\sim}^{\circ}$	2		1		HSCOs	13／999	
871	1	131101996号	－no				nomo（AC）but da	HSOM		
873	＇	1911／1996	${ }^{\circ}$	2		，	CA736T：T T 5 EM	HSCrso	14 H0H898	121012002
878	1	2621997	O	2		2		liv	20152000	201612000
878	1	7741896	O	2		1	व473CT： 11588 M	Inv	722003	
880	1	18121895	（ ${ }^{\text {a }}$	2		，	C0026T：P101L	HSC99：03	171／8989	
885	1	2¢\＄1930	－	2		－	c50206t：R168X	HSO 01.	20132001	
885	1		Ainac			2	nono（AC）	finv	16165999	
897	17	$155 / 1974$	Anonc	2		T	csacosi：	HSCOO	20162000	
008	1	2141897	O	2		－	C5020thi6ax	Hsa．m	19012000	1122000
013	i	2251930	unknow	2		2	nomo（AC）			
914	1	8 8071899	anknow	2		2				
915	1	18／1／1998	R	2		2		1scoo	30112001	
916	－	162n992	Tinac	2		2	mono（AC）	Hsa．m	20062000	
918	1	17441981	$\mathrm{Aranc}^{\text {a }}$	2		1	－0006ST：R270x	HSOM	806／2008	
820	i	20 ／1／1988	O	2		1	¢0730¢Ti 158 M	HSccoo	19，12000	1122000
922	1	9331994	Os	2		2	nome lesthg ior	Im	14／112000	
931	1	2031998	nech			1	Tissm（AC）	H8COM	198／R2001	
938	1	111212997	Iniknow			2	morol（AC）			
938	1	$24 \overline{10} 1097$		2		1		Inv	$17812000{ }^{-}$	$1 \mathrm{Bra000}$
938	1	3 7994	O	2		1	c397chit 2001 d 44	HSOM0	18182001	
942	1	14711／1995	ca	2		1		Hsa．me	19142002	
943	1	43 M1995	©	2		1	Dosbal ${ }^{\text {a }}$（	HSQ．01：02\％	20,512000	
944	1	171768997	Anenc	2		2		Hsom	20nr200	
946	1	20゙イi979	Anonc	2		2	Tridentrost（AC）	Hisom	20／52000	
947	1	11781996	OR	2		1	1164－120780149M	HScios	200612000	
955	1	2489897	Rranc	2		2	nono（AC）	Hso．00．03	3041200	
857	1	2811989	－	2		1	1．R290x（AC）	HSOOT	［30612009	
858	1	188399	व	2		1	7 nome（MB）	1－SO． 02	$11 / 12000$	
884	1	20151996	व	2		1	－116－12096d 86	Heaco	12172001	$11712000.20 / 42001.66104$
885	1	927998	¢	2		1	1157－197dedila	mant 00.02 .03	1712000	5102001199204
967	1	10／81975	${ }^{\circ}$	2		1	R270x（WGH）nog	1sac．©	21202001	
888	1	2 210\％ 999	9，${ }_{\text {anc }}$	2		1	वatemen 4 Orime	munti 00：01	30／12009	12 HOROOQ .18120008171072003
870	1	2131981	Bnanc	2		2	nono $A C$ shil	Hisso	31712009	
072	11	1510 ¢ 199	万̈ñac	2		2	not found（AC）	matioive	$31 / 12001$	
873	－	$1 \overline{1134983}$	Unisom			2	nono（AC）	Iim		
974	－	2110\％1988	¢	2		1		jinv	30Ar200	
978	1	14971996	व	2			uncoritán feest	｜hsom	307r200	30nr2001
978	1		Aranc	${ }^{2}$		2	monotac）	¡मsoon	3072000	
980	1	20̈81990	fanac			1	50020：	Hiseor	［3171200i	1
983	1	2110\％967	$\mathrm{A}_{\text {inanc }}$			1	108800t R294x	HScrol		

Bis		d of bith	staus		d of death		lest	Kerr Q	AK saw	AK dates
1	1	1／10／1979	Anonc	2		2	nono（AC）		अ／6n991	21n71994
11	1	$24 / 71960$	unknow	2		$1{ }^{-\cdots}$	Cobecsi：	linv		
20	1	218197	O	2		9		mati 91．94．96．98：	$24 / 5 / 1986$	
21	1	146／9978	C	2		$1{ }^{-1}$	ATOW（AC） 108 dE	mutit 93，95，98	14861978	30131992
22	1	12नก1980	\bigcirc	2		¢	0401c．asijaca	mutat 8 8098：95．	2111992	
28	1	13 21976	¢	2		A		HSAS8	16701999	12－102008
28	1	2271990	O	2		O	0808 CTITR270x	mutt． 986.98.	$181 / 11898$	
37	1	131361986	व	1	5niz005	P		mentiso 99003	28 MO 1989	
39	1	18 H 2 （1981	¢	2		－	d73CT：TIS ${ }^{\text {a }}$	HSCO：96	5721992	
44	1	23／81982	©	2		d	c8B00t R 294 x	HSC98	2／16991	［2／17991： 2×112001
48	1	यद̈n982	${ }^{\circ}$	2		cas	Calccoliniosw	14S0：9	11101990	
58	1	47万982	¢	2		2	AC none	HSO ${ }^{\text {¢ }}$	21／62000	
71	1	2185093	©	2		2	AC not lound	090		
73	1	13／31974	OA	1	13 2nic92	T1	O654657dala	C991		
81	1	10881900	${ }^{\circ}$	2		1	－502cosi：R168X	09	सताल992	
87	1	2211987	$\mathrm{inc}_{\text {CA }}$	2		d	C502CAT：R168X	inv	3164989	
98	1	20 H 2984 C	${ }^{\text {a }}$	2		1	O16CT：	व\％1	$1 / 10199$	
113	1	5／5H977	व	2		1	C7630tR25sixe日）	HSO． 94	2008199	11116994
118	1	17331985	${ }^{8}$	2		1	－80060¢T：R270x（A	HSO98	216F1893	
120	1	$105 / 1978$	ncca	2		1	1002 C			
121	1	बन21984	C	2		1	－50ecsi：	Hisa 99	1144989	10167992 17／6－1995．1616\％999．
136	1	92M972	व	2		1	c763C1：R2S5X		1／111987	1122000，2912002
141	1	931967	व	2		1	R168x（AC） 1680 ，	O＇se		
145	1	2／23987	nech	2		1	C4730： 7158 M	व＇91	170\％990	
146	1	г8\％984	Amenc	2		1	1157－1197del 416 p	mutros， 96.03	26151993	
147	1		Unknow			2	AC nono found			
148	1	25144981	Anonc	2		1	2398ctri33Cac	a＇s2	30／807888	
149	1	10141985	Ananc			1	O3TCTRI33CAC	a＇9	EBEA991	$301111997.121020021 / 102003$
150	1	6／119978	क	$1-$	201912000	1	व316CT：${ }^{\text {P100W }}$	maxt 91.98	2／81987	1h\％h989
155	1	891969	¢	2		2		matt．94．96．＇98．＇99	140／1882	
156	1	18／2970	${ }^{\text {a }}$	2		2	monotiv）	must＇93，95．＇96．＇98：	17in989	11 CH M99
161	1	10／91982	${ }^{\text {व }}$	2		1	none（MB） 168 （rex	madt． 22.95 .98		
173	1		Ananc			2	nono（AC）	HECOS		
181	1	1871974	क	2		${ }^{-1}$	D808C6T：R270x．	${ }^{\text {Inv }}$	$174 \pi 989$	2341999
194	I		व8	2		19		mult 93.94 ． 97.	3－17991	10M994．18MA995，1／1／1995，30／5／997．
197	1	18／51964	Ananc	2		1	c763CCST：R2Ssxi｜	HSCOO4	इ221991	
188	1	18851964	O_{8}	T	14／512003	$1-1$	C763C6T：R2Sbx ${ }^{\text {a }}$	O	2021991	
188	1	17 17983	${ }^{\text {a }}$	2		${ }^{-}$	C316C0T：R109W	HSOO9	19\％1993	
209	1	26inise	व	2		1	T158M	mant＇9．03	$11 / 161991$	$17 \overline{17 M 995}$
234	1	24／6h980	O	2			c763CT：R238x（A）	mun 91．94，98	1MOM 1986	
233	－	$77 \mathrm{ng79}$	¢	1	1M21993	2	（AC）noltound	Q＇es	19\％1988	101011982.841998
249	1	3170n983	（ ${ }^{\text {a }}$	2		2	nono（fe MBAC）	mun 93.94 .95	20ıin993	inoniset 1966n895
258	1	20131985	C	2		i	－ 73 ST （AC）	HSam	M01932	16nn995．31／12001．inor2001．1702003
262	1	4／41985	${ }^{\text {a }}$	2		1	AIEax（AC）WGH	man	1／101987	191812004
273	1	2111966	9nanc	2		2	（AC）none tand	HS9	144n989	491989
276	1	92988	${ }_{\text {c }}$	2		2	not found（MB）	mudt＇98，98， 98	22187991	
282	1	3／h881	${ }^{\circ}$	2		1	10 An frame	mutit．9293，＇95．＇98	24 Th1387	1／1n989．1nn992．
284	1	14137803	${ }^{\circ}$	2		i	c302Cas：P101HK	arso．	208199	11nn994
287	1	144978	Rinac			2	mono ${ }^{\text {ch }}$ ）	inv		
288	1	16SM976	unknow	1	6720998	2	${ }^{\text {AC）nome tound }}$	inv		
291	1	4411890	${ }_{9}$	2		1		matt 94，95，97．	2п－2995	
298	1	1442 M 979	grionc	2		$1{ }^{-1}$	Ins33Csa（mosatc	隹	8Г6त993	77n993．11n12004
302	i	28381979	व	2		1		α_{91}	25151992	
307	1	1533964	व	2		1	80ededicac）	muti． 88.955 .97	1／10¢987	
318	1	18165987	䂙	2		2	$\operatorname{mog}(\underline{C})$	muti 94.97 .98	21กగ1994	
322	1	43 M 983	व	2		T		）muti．＇94	217inse	
356	1	391980	c	2		1	TR2350	990．88	11101987	
366	1	23 Нол981	1 Anonc	2		1	calicc．t： 13066	muat 92.188	42 H 892	14481994， 1 H0 1996
339	1	12141999	nok	2		T	（ACXCE日 rome	ment	अ2n992	
416	1	30，8\％939	C	2		1	c50ecsi：	HSa，mo	$83 / 899$	
422	$\overline{1}$	16 Mn9er	${ }^{\text {a }}$	2		1	O800CST：	HSCOS		
431	1		R Ranc	2		2	not founa（AC）	HSOM	6／6R001	
432	1	2437999	Rinac		19712001	1	0473GT：T150M	1－50．09		
440	1	5／4／1977	Hat	2		2	（AC）nose tound	0	18 M1／9992	
441	1	$28 / 71899$	Rinonc	2		1		HSO． 01.04	$23 / 102001$	30712002
445	1	17／31973	nok A	2		2	AC nonotand	1082	1881111992	
455	1	28 H0H994	4nor	2		2	nomo（AC）	HSO	3112000	
457	1	30 F－688	Anonc	2		2		1－50．mo	417898	
484	1	$2 \mathrm{ZMM978}$	${ }^{\text {c }}$	2			nond ACXCS	munit．94，95：97，98	1211998	
488	1	612\％994	${ }_{\sim}^{\circ}$	2		1		Iinv	30112001	
491	1	$20 / 37970$	Rnonc	2		2	$\operatorname{nog}(A C)$	HSO：97．03	2971997	
497	1	16M17989	$\mathrm{c}_{\text {cr }}$	2		1	C760CsT：	O92		
488	1	87n984	${ }^{\circ}$	2		1	47367		$1 / 5$ S986	11／6M991．31／n9905．11／5h001，1702001．
502	1	651969	${ }^{\circ}$	2		$]^{1}$	1152boti 440 （AC）	mutt＇93，94，＇96，＇97．	－4619992	$1 / 111987.1102001$
517	1	13 Fh930	व	2		1	C760csif：R250	moxt 94，96，00	$1 \mathrm{HONO96}$	1102001． 12 HO 2002
536	1	2M0n904	Afinc	2		1	अ6्लT	10：80		
538	1	27171080	Ananc	1	1002004	2	monalac）			
551	1	13／221980	cos	2		1	${ }^{\text {chas }}$	Hisor	11／4999	$1 \mathrm{M1H995}$
559	1	212390	not	2		2	nonemC	finv	12 T （199	
580	－	2121990	not	2		2	noso（AC）	yiv	12 \％n998	
562	1	2 F ／1961	nox ${ }^{\text {a }}$	2		2	（AC）nanotand	IInv	21nc994	
584	－	141897983	Ananc	2		，	Cashatifli33C	mint 98.98	12 Kr394	157002001．
565	1	$1{ }^{17}$ Man 980	Orinc	2		2	roma（C）	mut 98.95 .95 .97 .00	1114994	18181997
577	1	2 CH 1990	\square°	${ }^{2}$		1	5020 TACMAIGAX	HSO．9s	18 181998	19867996.
580	1	30 ／117989	SAnonc	2		1	C3016A：	HSCNS		
587	1	W1n891	¢	2		i	D5020．7：R160x	inv	$14 / 8 / 51994$	15661995
618	1	7 F Fi992	睘	2		1	1157－12006d460p	1 1×80	31851994	
630	1	1012 T 990	90anam			2	nono AC）	un	11641996	
649	1	12595982	－ncca			1	crisoctialat	jinv	18 1\％998	
650	1	24121992	$3{ }^{\text {c }}$（	12		1	R220x（AC）	mulat 95.97	24／121992	
678		1453991	Ananc			1	C5026T：A168	must 95.96	21818909	181867996.1998

Dataset: 7.2: Mutation analysis in British \& Italian population

Explanation of Symbols:
BIS=Survey code number, $1=$ yes, $2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates=subsequent examinations, infant $V=i n f a n t ~ v i d e o$, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably CR, R nonC=Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
The column 'd'E' gives the cases study numbers in this project

BIS	$d^{\prime} E$	dod bithl	d of death	stahus	mut	test	KertQ	AK saw	AK dates
20	1	2281977		CR	1	917¢ M(AC)R306H(AC)	mudi' '91,'94,98,98.00	245 F986	21/612000,24/10/2001.15/10
21	1.M16	14851978		CA	1	R109W(AC)109(GE)	muti 89.95 .98	143/1978	30131992
22	1.1.35	12त17980		CA	1		muth '8099,'95,	22111992	
28	$1 . \mathrm{N} 14$	1321976		ca	1	R16EX(AC)(CEI6B)	HSCOS	18701989	121072002
88	1.518	103/1962		CA	1	1157del141bp (JE	meth.94.95.38	29\%61966	
78	1. 1.17	19\%11983	29H21994	CR	1	1880]	mati 93,96	151987	
104	1.N19	2621981		Cr	1	R133C(1) ${ }^{\text {(1) }}$	mudt $93,98,95,98,00$	$11 / 10394$	
109	T.N4	910 1983		Finac	1	A133C(JE, M-W)	HSOM	110\%1890	11891991.16 6189
113	T.L20	$5 / 851977$		$C^{\text {a }}$	'	c763ctriessxat	HSO.94	2016/1891	11110994
131	1.822	18171983		CA	1	11570 el44bp (CS)	mutit' $90.95985 \cdot 988900$	110/1889	11/17994.21/882000.41420
141	$1 . \mathrm{N} 6$	9319387		\cdots	1	A168x (ACX168f')	O'se	25551892	
152	1.5	19\%01970		C_{1}	2	IE not foundineg $A C$)	munt $930,95,98$	$1 / 64989$	12661991
155	1.7	8/9/1969		CR	2	(AC) ${ }^{\text {d }}$) not found	miat $98.196 .98,99$	110\%998	
161	1.18	10811982		CR	1	none(MB)188(dEntW)	mutic.92,95.98		
208	1.YESN	$26 / 17889$		${ }_{\text {c }}$	1	T158\% (AC) 1586 E)47369T	matiog.03	11/61899	17711885
212	1.M23	13 /19933		Ch	1	10¢の)	HSCOS	1/101990	
234	1.1233 L	24/8/980		${ }^{\circ} \mathrm{P}$	1		muth 91.94.98	1101986	
241	1.1.24	85/1973		$\mathrm{CH}^{\text {a }}$	1	11398'E	mur94.04	15/6\%994	
249	1.1534	3110/983		C	2	Hono(de. MB.AC)	mutt 93.94. 56.01.	20nत1893	1701994. 19881996
263	$1 . \mathrm{NTO}$	14M0/971		CA	1	15\%(\%)	HSCOM	24511988	1/19987.29/988.19/6/200
268	1.P9	8/71978		CA	1	(3065E)	H30.93	1/11/995	
282	1.511	आत1981		C	1	107n trame	mult. 9293.95 .98	$24 / 71987$	1111989.1/n992
307	1.125	15/31984		C_{1}	1	006dedG(AC)	mutt. 93, 95,197	170\%987	
322	1.826	43F983		CR	1		munt. ${ }^{\text {a }}$ 94	21111992	
408	1.Y20N	49\%909		${ }^{\text {ch }}$	1	158(नE)	\square	170\%1992	1\%O998
417	T.Y14N	26/111889		C_{8}	1	(15806E)	Hsas ${ }^{\text {a }}$	1401992	
502	1.r32	65/1989		\cdots	1		mult' '33,'94,'96.97.99\%'	4/3/1998	11111897.1/n0200
685	1.1.21	20167971		CA	i	200(TEXMH)	mutit 85898	19 H1793	
689	1. 1.35			untrow	2	(fre) nome found			
843	1.37	3051978		A nanc	2	(dEEnone.mutsTK	muti 98.01	$14 \% 11998$	
844	1.38	10nonssa		\cdots	2	(0 E. AC)nom	mutres.or	14171998	20/62009

Dataset：7．4：Dimensional phenotypic analysis．．．

Explanation of Symbols：

BIS＝Survey code number， $1=$ yes， $2=$ no， $3=$ presumed present，
9 or nk or no entry＝not known，AK saw＝fịrst examination， AK dates＝subsequent examinations，infant $\mathrm{V}=$ infant video， Kerr $\mathrm{Q}=$ health questionnaire，（ $\mathrm{HSQ}=$ single，mult＝multiple） age upd＝age at update， $\mathrm{CR}=$ classic Rett ，incCR＝incomplete data， probably CR， R non $\mathrm{C}=$ Rett not classic，not $\mathrm{R}=$ not Rett， mut＝mutation tested（no entry＝not tested），test＝result
further data for all cases in the Survey is shown in Appendix B The column R gives code numbers for the study．
The column S Score gives severity score（max 100% ，see fig 2．2．1）

BIS	R．．	d of birth	status	died	d of death	mut	test	Kert Q	AK saw	AK dates
1	33	1H01979	8 nanc	2		2	mane（AC）	HSas 9	387997	21／1／994
8	31	27317887	C_{1}	2				muth＇90，94， 95	8HF990	231n991，21／n698．
10	252	155／979	necr	2				Q． 30		
14	253	1654989	Ananc	2				Inv		
15	32	14151978	C_{8}					ment 91.95	97 A1996	
16	27	2782983	C_{8}	2		2	none（MB）	HSa 98	24／61988	231999
18	26	28H17979	CA	2				muth 98．94，	4／6／1992	18171996
20	46	2ran977	CA	2		1	970samafrioch	matt 91，98，96，98，	24.51986	21／672000，24 $10 \mathrm{RO01.15/102001}. \mathrm{1210/2002}$.
21	50	14／6／978	C	，		1	A106W（AC）106［ ${ }^{\text {de }}$	muth＇98， 96.198	1461978	3033992
27	42	23111974	${ }_{\text {c }}$	1	24832001			mutios．98	16107889	
28	38	$22 \pi \sim 1980$	CA	2		1	COOB CT：RLTOX	moth 96．98．	18 A1／1933	11101999，12102002
29	1	21／5／1970	CA	2		1	P152A（MB）	HSO49	$14 / 7$ T1987	
32	254	2701985	Ärac	2				$0 \% 1$		
35	255	2781952	Rnanc	2		2	nono（AC）	mudt＂93．98		
37	36	13／31986	${ }_{\text {c }}$	1	5712005	1	P30EEAC）	mult． 93.9403	28101089	20，
38	51	18i2n981	C8	2		1	O473CT：T158M	HSO． 96	5211982	
42	47	1813976	C	2		1	K352\％$\times 366$	muit．＇97．98．02	110\％992	1816 ¢997．
48	44	2201982	C	2		1	O16CTiRITOEW	HSO． 99	140 H990	
47	37	22311884	CR	2				muti 96,00	$1 / 111987$	1／101991．110 $994.11111995 .1 / 212000,1210 / 20$
53	52	688i971	untrow	2				Inv		
59	¢	471698	CA	2		2	AC nore	HSC 00	21／62000	
60	80	28月01900	C_{1}	2				Inv	$13 / 611994$	
70	68	421963	Cs	2			（MB）ametred	muir95，96：98，00	$1 / 11990$	2011991．
71	67	218／1983	CA	2		2	AC nox lound	O90		
75	256	28／21985	\cdots	2				H－3097	11701989	11701909
77	74	$18 / 71982$	ca	2				0×0		
78	59	14881979	C	2				Inv	20619991	
78	${ }^{66}$	1321987	C	1	942001	1	T158M	muth．93，＇94，96．＇99	6H0n980	11.1081894.
80	6	16 ¢ 1980	Ca	2				muit 96，98，＇97， 00	11／67991	17781985，
82	58	13／71973	R nome	2			N＋T？	mul94，＇98，${ }^{\text {co }}$	$15 / 1986$	221n991．1／10／1991．15／10／1893，23／1／1992，31／1／
83	27	2771977	A nocnc	2				Giv	$23 / 711991$	20881899
84	76	19月21987	C	2				a＇so	2241991	110／8891．110 ${ }^{\text {a }}$ 996．
86	258	1111／1978	nech	2				Qr		
88	6		ch	2		2	notand（MBXAC）	1－SO 96	141489	26／61933
89	427	11／31980	CR	2		2	nono（MB）criecking	madt $855,93,03$	7714983	
85	383	$23 / 44985$	C_{8}	2				madt＇98，97	19M17993	
97	345	$22 \pi 1987$	hacr	2		1	C502CST： 1168 x	Inv	3／351969	
99	112	7715198	C	2		2	none Whalla	mutscis	14 K1／997	
103	8	20441973	C	2		1	missense T158M	HSQ ${ }^{\text {as，}}$	17 T 11895	14\％1998
104	B3	2827891	¢	2		1	न133C（ ${ }^{\text {dex }}$（ME）		$111 / 19394$	
105	80	21 T 11198	${ }^{\text {CR }}$	2		1		TSA． 98	15／1986	
107	79	5／3／1977	CR	2		1		max＇94，＇95	1519606	1／441899
116	87	24तи11967	C^{8}	2				Q＇91	$20 \pi 71994$	13／111991，1467994
121	346	8 812 21984	cr	2		1	CSOECST：	1－150． 9	14／1969	10／87892．17／6／1995．16／671999．
122	90	80\％ 1975	\cdots	2				mati． 90.96 .98 .03	19nत1993	
123	10	100111906	C	2		1	Ti589（MB）	0.97	7717993	27697．3M01997． 1 117997．
128	259	55／7979	R nac	2					23\％n391	5／21992
131	98	1671593	व	2		1	1157derli46p（CS）	muit 90.9395969	1707989	11／11994．21／612000．4442001
136	100	9 CH 972	${ }_{\text {c }}$	2		1		mith＂96380002	1741987	11／212000．291／2002．
137	250	2419974	${ }_{\text {c }}$	2				$0 \% 3$	10 114983	1011n983．21／3n990
145	348	2201987	nica	2		1	C6730x Tis8m	वצ	170n990	
148	349	2071984	R	2		1	1157－1197del． 416 bp	7madr95．＇96．08	26551593	
148	104	25451981	Branc	2		1	COTOTRİISCAC	0＇92	3087968	
149	105	104 1988	R nome	2		1	COMCSTRI3SCAC	Q＇91	6831997	3011／1997．12102002，1101000
150	110	6／1／1978	क	1	20192000	1	C3180 T：R10sw	matt 9，\％	22801987	1301989
152	108	1810ヶ970	${ }^{\text {c }}$	2		2	OEE	muth 93.95 .98	1641969	12／67991
153	261	15 1／1983	C8	2				090.	2211991	18801991
154	125	298／1974	Ca	2		1	P152R（Gasgow）	mudt＇94．96．98	20／8／1983	1772／1996．13／31996．57102001
155	116	8919909	¢	2		2	（AC）（tEnot found	muth＇94，96，96，99	1104992	
156	134	182గ970	C	2		2	nono（AV）	muth 93，＇95．＇96，＇98．＇	11 H999	11／6／1991
157	205	｜6л		12		1		Q．inv	18и71995	i

BIS		dof bith	status		dof death		lest	Kerra	$\overline{\text { AK saw }}$	AK dates
1331	221	621971	unknow					Im		
337	25	1791999	${ }_{\sim}^{\text {a }}$	2				mant 91.98	12661991	
340	232	1271987	C	2				$0 \cdot 91$	23M1991	उ2न 998
345	245	1440¢979	${ }^{\circ}$	2				mult 95.96 .98	$114 \mathrm{k} 89^{2}$	21／nis98
347	27	उопh 882	Ananc	2		2	not land Wossox	mats	inom992	1817895.1881986
349	272	18 117960	${ }^{\circ} \mathrm{A}$	2				mat＇91，98	23ni1991	
354	$2{ }^{2}$	$17 \mathrm{~T} / 1986$	OA	2				व\％ 1		
356	243	391980	©	2		1	$\underline{2553}$	090：88		
358	24	298／1985	\square_{1}	2		1	4736．TT15 ${ }^{\text {a }}$	math 94． 95.97.	i4n909	1700990
386	247	23лон981／	A nanc	2		1	｜a96C．：T：R306C	mutisz＇98	42－1092	14687694．110 1988
388	240	6181982	क	2				0．92．	180／1991	
375	24	日̇M1971	$\square^{\text {a }}$	2				HSCOB		
376	242	Min973	Ananc	2				mult＇s8：00	3181992	
380	352	621988	c	2		1	P302	muth 24：95，96，987	788199	26 Fin996．5102009
381	274	10 117887	C	1	1412003			munt 91.	497891	$16 / 51992.1 / 11997.13$／117998，4912000
383	229	5 528974	Uniknow					nov		
388	275	30911988	${ }^{\text {a }}$	2				Hisosa		
387	276	27n2980	Ananc	2				metit 99.98		
392	27	28n113908	a nonc	2				mut 9.94	2551992	
388	4	18月0n984	${ }^{\text {a }}$	2		1	T1589 miseanio	mult 94989797.	1566／994	
308	45	213／1971	व ${ }^{\text {A }}$	17		－	ded exon $3-4 \mathrm{Ma-}$	mut＇93．98	$19 \mathrm{Con99}$	
400	155	13／21987	nc Cr	－	12m12002			linv	170\％991	inons92．inom994．
405	1354		${ }^{\text {a }}$	2		1	R306C（Wessox）	man＇ 966.02	2211992	
408	$3{ }^{355}$	75 A988		$\overline{2}$		2	nono（AC）	HSa 01	$22 n 11932$	
409	${ }^{356}$	$49 \% 9 \times 9$	${ }_{\sim}^{\circ}$	2		1	158（大E）	ă	iñon992	170／996
416	124	3091993	${ }^{\text {a }}$	2		${ }^{-1}$	5020cr：	H5a． 99	8031999	
447	357	26 1 1 9eg	${ }^{\text {ca }}$	2		1	（15886）	1－15093	140M692	
418	30	เгз ${ }^{\text {a }}$	C_{8}	2				mant 97． 98.	170／8992	111／17994
429	169		C	2				HSSO00	110\％992	
431	1358		Anac			2	Inalound（AC）	1 HSO	6162001	
433	70	69 M988	¢					mutr94．98，＇98	1140 ¢992	ब2य1998，1866／998．
437	278	14／41963	c ${ }^{\text {a }}$	2				mult 95.15		
441	359	2667994	Rnanc	2		1	A133CuTVocosx	1 SSO 01．04	23 102009	30712008
447	220	$127 \pi 990$	${ }^{8}$	2				mavi 94， 87	25151892	11／n994，1766 897
449	71	ए2． 1 9eg	${ }^{\text {a }}$	2		1	（308C（M8）	HSO． 94	816n994	13 ／1999
451	251	1811／989	${ }^{\circ}$	2		1	F270x（MB）	HSOM0300	110－1992	30／1／1998
452	5	23M1n97	Unckow	2				Hiv		
454	384	$197 \pi 986$	${ }_{\text {c }}$	2				H5S9	\％71993	
457	279	30471988	Ananc			2	nono（AC）	＋189，99	4त19998	
482	17		${ }_{\text {c }}$			1	R308C（MB）	mant 94． 97.	$2551 / 7992$	17888997
484	97	2291978	${ }^{\text {a }}$	2		2	mono（ACyCs）	muthi94，95，97，98	12717994	
487	123	9611964	${ }^{\text {a }}$				evaribod	HSO． 93	17 H／1996	1／111999
488	143	283988	${ }^{\text {a }}$	2				HSO．95，1／1002003	111114988	
489	360	$78 / 1985$	${ }^{\circ}$			1	P3028	mustos， 0	170\％994	30／12001
473	145	16HOH96	${ }^{\text {c }}$	2				HSSO． 95		
483	9	1051976	\％	1	512004	1	R270x（MB）	HSO． 88.08	22Mn991	2 Mriss
487	249	83／1974	Anoch	2		1		o＇＇86．1nv	6161986	
491	280	20181970	Anac	2		2	$\operatorname{meg} \times(\mathrm{Cl}$ ）	HSQ97．03	29n1997	
492	281	74／1983	unknow	2				tiv		
488	64	67 Cl 964		2		1	435ci	math 97．00．		11／65991．31719986．11／6／1001．1／10R2001．
502	165	65\％ 989	${ }_{8}$	2		1	（15280144bp（AC）	mutit $93,94,96.97$ ：	46 ／999	1／119997．14012007
512	282	30551989	R Coma					mout＇95，96	951998	
514	283	47 T 968	Amanc	2				Inv	11.11893	
517	126	1316 F 990	CR	2		1		mott．94，96．00	140л996	11000001． 12 HOR
522	103	22861962	as	2				HSO． 97	11971993	
523	${ }^{246}$	92×880	${ }^{\text {a }}$	－	2601002003	2	neg（AC）	munti 95.958	19 HM993	
525	3	1018 n 990	¢	2		1	T1509（M）	HSCO 96	21 Ini993	17\％$\overline{696}$
526	5	31M2H388	${ }_{\text {a }}$	2		1		1 HSC 9	2ой 993	
528	248	6661986	C					HSQ． 5 S	110 H 992	20161996
530	286	13 तп998	Ananc	2				14SO．94	inom992	
1532	196		a	2		1		mudras．＇95． 98	¢9月71994	
533	285	28万952	${ }^{\text {a }}$	2				HSQ 30	26 तn993	
534	7	97 H 981	R¢mā	2		2	150 aptication n 人	（ muthl 93.195 .98	21nत993	14／71997
536	286	2980 M 989	Sinam	2		－	अ座穴	1ass		
538	287	27111984	Anome	1	10×22004	2	mono ${ }^{\text {a }}$ ）	HSO．${ }^{\text {P8 }}$		
540	${ }^{176}$	1231989	¢	2				mutt 93.959	25 CHO 938	110M996．176／1988
542	288	8M22955	HeCr	2				inv	19\％0и989	
543	109	$16 \mathrm{~A} / 1991$	${ }^{\circ}$	2		1	Cosex（M19	math	11\％H994	
544	289	16551990	$\mathrm{C}_{\text {A }}$	2				munti＇93，＇96，99．01	2nin993	19612001
546	118	$13 \mathrm{M} 1 \mathrm{H991}$	$1{ }^{\text {a }}$	2		1	dotexam	mutt＇s9．94．03		
550	161	2981890	${ }^{\text {c }}$	2		1	dol exon ${ }^{\text {a }}$－	matt 938.94 .96	15H0\％933	42－1995．421999
551	36	13M21989	${ }^{\text {c }}$	2		1	0455	HSOM	11 H／994	$171 / 1995$
553	131	8 85， 991	\propto°			T	R168）（MB）	mut 93.00	24／1994	4／42001．12702002
555	202	8 8r970	${ }_{8}$			1	T158M（MB）	mun． 93.959	1570／993	
556	117	15HM691	¢	2				HSQ938	115 H／991	15HOH993
557	\＄8	2Sin992	hach	2				mintro3：94，96．97：	［15H01993	
558	98	12 Mr 890	C	2				mati 33,98		
561	200	11151861	${ }^{\text {Ananc }}$	2				Hsa． 96	22न994	
562	21	2071981	तबल	2		2	（AC）nometand	Inv	217 In994	
563	9	24881962	Cl_{8}	2		1	Resuxims）	［math 98，98，98，	111HतS94	
564	¢	14 Pr963	Rinac	2		1		math 98.98	12	15702001.
585	z_{2}	11\％0ヶ980	Oninac	2		5	mano（AC）	mudt $98,95,97.00$	111n994	18／6म997
568	${ }^{6}$	19518899	©	2				HSO． 34	1114993	
568	216	181819897	व	，		－	R1eax（MB）	HSS．${ }^{\text {a }}$	${ }^{15651934}$	2631939
570	362		Onot	2		2	nono（ADSomb）	HSO9	ionh994	
573	160	$77 n 1938$	व	2		2	nogac）	medt 93.96	1483899	inizor
575	233	$16 / 1$／391	Anomi	2				inv	17 KH 995	10R01999，170R2003
577	115	$28 / 17890$	व	2		1	5086 （ACIR16ax	HSO．95	18 HM995	19183996．
582	${ }^{217}$	1921691	untrom							
583	174	19 M 1891	¢	2		1	11570 ditan	mut 980	1 171／997	16599822n0R001
591	294	18 19948	A	2				jiv	$31 / 31993$	
582		29190s	Arac					Inv	141599	

BIS		d od bith	status d		dot dealh	mut	test	KerrQ	AK saw	AK dates
631	244	2181990	CB^{-2}	2		2	nono（MB）	HSO． 94	566idigs	18／8／996．1／11／1997
632	i63 1	18ионя9	ch^{-2}	2				mul 94.98	16nत095	
834	82	2483670	क ${ }^{\text {a }}$	1	2172000			mull：95：96：97， 969	$1 \mathrm{HO1994}$	
835	Q	$27 \overline{11 n 991}$	C ${ }^{2}$	2		1	792－804dd 13.1	mufit 95， 96.	2п2и1994	
838	301	$26 / 11989$	R nanc 2	2				Hiv	1полі94	
840	102	3in0＾967	Añó	2				年	іпоня	17171898
842	129	2П2\％992	क ${ }^{-1}$	2				mili ${ }^{\text {a }}$ ， 98	24nn995	14414998.
844	40	3170\％980	Anact 2	2				unv－	16 Mn995	
848	231	2251984	C^{2}	2		1	न306C（MB）	1509\％，02	177n1995	17186199
650	35		Ca^{2}	2		T	FR270x（AC）	math 95.97	24＾21999	
653	43	131993	ch 2	2		1	F270x（MB）	munt	1811995	196\％M，15／101．231001，1210．0．1／1004
654	302	114／1990	Ānanc 2	2		－	yee．no dotats	mont 95.96 .98	66\％ 1995	
657	303	1381889	Anenc 2	2				anv	17 Mr 1995	917096
858	106	218H992	A nonc 2	2		2	nane be（Dennis）	HSO． 9 S	12 H 12003	
880	309	2391981	Ananc 2	2		T－	नि133C（E）	H39．96	25 M993	5702000
861	305	4 8 A 989	Ananc 2	2				HSC． 95	15181995	
685	98	20181971	C 2	2		1	208（dE）（M－）	mut 9598	19 ／11993	
675	98	12881987	ca 2	2		1	P3760x400（MB）	mutil9598	17661895	19162000
678	906	2161967	C ${ }^{2}$	2		，	${ }^{18300 C}$	limo	516／1996	
677	18	1071893	c 2	2		2	F2270x（MB）	HSS．${ }^{\text {\％}}$	616／1996	10 M 1996
678	365	145／1991	R nanc 2			1	－502COT：R168X	mail＇95，96	2181995	1815 1996.1998
680	307	162 H991	Anach 2			2	nomo（AC）	mut＇95，＇98	681938	
681	308	122 H 993	A manc 2					Tmuth	7181996	2367995，15119997． 10212000
882	212	681990	CA 2	2				HSQ ${ }^{\text {a }}$ 97．	17861997	
684	］	11non99	$\mathrm{C}_{6}{ }^{2}$	2		1	RT0 ${ }^{\text {a }}$（MB）	HSO 96.	976996	
685	111	2131982	C 2	2				HSO． 98	178， 1998	
687	182	$72 \pi 1887$	A nact 2	2				1PSO．95	1 1／11995	917896
890	12	13／1／9999	${ }^{\text {c }}$	2		1	R168x（Mh）	math＇96．97．98	25101998	
891	330	13／118991．	A nanc 2	2		2	norop（AC）	lav	27 n 11995	
682	310	13M1暞	A man C 2	2		2	Heno（AC）	Linv	27\％11995	
884	189	19月14883	cal 2	2		4	R2255（ NW ）	maxt＇95，＇98，	11 N 1 19998	5121996，23M020001．12102002
686	130	29\％29981	ca ${ }^{2}$	2			1239705 R133C	murss， 97	9 ¢R898	13Mn989，14A072001，28712002
697	235	2951988	Ananc $\frac{1}{2}$	2		17	no mutsisili yoe	lov	$81 / 1998$	
698	188	2681988	A inach 2			2	neg（AC）	1－SO 96	18 n 21885	191295
702	183	4715989	CA ${ }^{2}$	2		1	exon4．3	Inor	11／11995	12M12002
703	13	$267 \pi 1967$	$\mathrm{A}_{\text {inach }}$			2	no mun（Salis）	mur95．98．＇02	11 M1／9995	30H12002．
706	234	$12 \mathrm{n} 2 \mathrm{n95}$	Ca^{2}	2				mut＇ 96.98	$11 / 1 / 1995$	
709	208	9717384	ne Ch ${ }^{2}$					mut＇ 96,98	171／1995	
711	®1	2en993	OA	2		1	R255x（M8）	H90\％	10ヶ／1996	
712	146	10.51984		2		12	not tound Wessex）．	mut 95.96 .98	$150 \pi n 996$	
$7 \overline{713}$	236	10 IT1968	Ananc ${ }^{\text {a }}$	2		IT		mudres．98．89	$1{ }^{18} \overline{61996}$	17102001
714	215	1770\％19s3	${ }^{\text {ca }} 2$	2				mant＇96，＇98	9 9\％1996	
718	147	2191881	Rinac 2	2				HSO ${ }^{\text {\％}}$ S	9 9／1996	
718	34	1451973	Ca	T－	1712003			HSa95．	9 971996	
722	141	гой	${ }^{\text {ca }} 1$	2		i－	dot $\operatorname{excos} 34.1$（09）	math＇96．97	17667897	
724	209	25 Mi97］	A nonç 2	2		2	nomoc（MB）	maftiso，98，02：03	8तֹ1996	
725	185	43 B 1870	व ${ }^{1}$	2		1		muti＇96：02	antic9	12rincoce
728	356	$3011 n 989$	${ }^{\text {a }}$	2		－	T158M	HSC． 96	18 SM936	271397
727	®	198 Br 993	C	2				HSQ 98.	1 nO n 994	11701994．1816／1996．13M01996． 1 H0／2001
733	385	1591988	R nome 2	2		1	yos（AC）	muth 96.98	20131996	
734	367	$25 / 4 / 1991$	C	2		1	10800．．T：R270X	Guv	$18 / 851996$	
735	226	15×196	©	2				mut＇96：98	1783 9996	
736	311	23381981	Anenc／2	2				1rsa． 96	24661996	31／51996
740	28	244／1984	Ca	2		2	nono（MB）	muth＇ 198.01	181／6998	29162001
742	75	65M984	ca	2				muris．98	18／6－996	
748	312	2251973	R inach 2	2		$\sqrt{2}$	$\underline{\operatorname{mog}} \overline{A C)}$	biv	1786 ／896	MOKi99
749	313	1719909	Ananc 2			2	$\operatorname{mog}(\mathrm{AC})$	Inv	1786A996	
750	314	172月1978	hech 2					Inv	$17 \overline{61996}$	
751	315	बतन ${ }^{\text {ases }}$	व ${ }^{\text {a }}$	2				HSOM9	18183996	
755	316	20127089	\square^{2}	2				Tnv	188／B1896	
756	124	1233894	ca 2	2		i		muti 96.98	1867996	
757	¢		Ca	－				niv	181818996	
759	133	481994	C	2		1	©2524x287（MB）	muti 96.97	176 ／997	
782	237	18881961	Anome ${ }^{\text {a }}$	2		2	nog（M8）	HSa． 96	1966996	
763	107	5rion994	ca ${ }^{2}$	2		1	168x（M－H）		176\％1996	
764	152	771995	Ca^{2}	2		1	R2T0x（AC）	mutit．76，97，98，02．	13 H01996	
765	317	$28 / 4 / 389$	Ananc	2		1	cascotiriss		174 （1） 9996	
788	186	$17 \mathrm{H} 2 \mathrm{H9O9}$	$\mathrm{Ca}^{\text {a }}$	2				HSO． 96	15HM997	
773	140	1891890	CR	2		1	pos（M）	Hisa me	170n996	
778	178	27 CH 939	aranc	2		2	neno $\left(1 C^{\prime}\right.$	medt ${ }^{196.98}$	15 Mn997	
780	177	17 12－1992	R inac 2	2		2	nome（AC）	matt 96， 98	15 M 1997	
781	138	18801988	noca	2		1	P2940（TW）	HSCO 9		
782	368	2391892	mat	1	4712003	2	nono（AC）	muth：97．98．03	13 MM998	
784	310	53／1970	Rnonc	2				HSCOS 6	14411997	
785	154	2101883	－	2				Truth 96．98．03	141418987	इMarzoor
797	7	28441898	क	2		1	11641201814414	mith 96．＇97．＇se．	15HM997	2697997，21／57200．
800	213	211418996	Anact	2		2	noro（AC）	mant $977,98,00.03$	15／n997	10×22000
801	3×9	23］sis95	Ranc	2		2		Hiv	15HM997	
804	159		व	2						
806	7	178H998	Ca	2		1		HSC ${ }^{\text {ag }}$	1716\％1999	143／1997，1／112000
807	184	97n99	Anonc	2		2	nono MECP2	madi 96.02	13 H 1998	14Rत1999
808	319	2241898	R ${ }_{\text {nach }}$	2				1 PSO .97	20812000	
808	30	2－211994	\％	2				HSa． 97	1／1119997	
817	199	15 HOH 988	${ }^{\text {cas }}$	2		1	11570 d 468	HSCO．97：04	17818997	
817	330	$14 \times 2 \pi 96$	An ${ }_{\text {anc }}$	2		1	nomo（AC）		1786H997	
819	132	2815\％991	Ananc	2			7 amataod	$\mathrm{rasan}^{\text {S }}$	$18 \mathrm{BE} \times 997$	
820	23	${ }^{17151999}$	Ancic	2		1	cT53dob（AC）	18097	1786×1997	M1702001．1212003
821	330	1251999	HaR	2				${ }^{18097}$	17881997	
822	22	27801979	not	2		2	nomot A C）	mint 97，98，02	181867997	1－－－－－－－－－－1）
823	190	28141995	व̄	2		1	R2S5x（M）	meat ${ }^{1} 95.97$	1786 M997	
888	95	21ancer	A nonc	2		1	Cob bbase 401	muir97．98．01	181861997	30Mn＇2008
828	197	155／1989	$\square_{\text {c }}$	12		－	［neno（AC）	102	［1／12000	

BIS		dof drth	stalus		dot death		lest	Kerr O	AK saw	AK dales
863	198	2241091	O	-		-	1157.11970641	mursoios	19¢п1999	2184998. 11010
884	373	$24 \pi \overline{990}$	ananc	2		2	nonot ACmono (DA)	18098	28®71998	
885	73	30121992	CA	2		$1-$	11570944	HSO.99	іпіня999	
866	374	2831998	Ȧ nac	2		$1-$	508CT: 18168	inv	30 n 2000	
887	326	1151986	©	2		$2-$	norox (AC)	HSO2 ${ }^{108}$		
888	335	31/n992	A nanc	2		$1-$	70pd (Wan	liv	$288 \pi / 1998$	
886	376	731999	c	2		1	A16ex(AC)	Hiscoso	$\overline{18} 9$	
870	41	12009995	CA	2		i^{--1}	04500.P16\%90	HSO99	30 त11998	
871	3711	$13 \mathrm{HOM} 8 \mathrm{~S}^{\text {a }}$	Hat				noro (AC) beda	HSOM		
878	378	26121997	${ }_{\text {c }}$	2		2	not lound (AC) exat	hav	206518000	20162000
880	379	16\%2n995	䂙	2		1	Ca0ecri: PMI	HSOC99,03	11111999	
885	380	25191990	¢	2		1	c50ecctiflicex	HSO01.03	20662001	
886	3263	308J1988	Ananc	2		2	no mutationM ${ }^{\text {a }}$	matt'99.00	20661000	
885	381	13 \#1988	Ranc			2	nono (AC)	unv	1866 H899	
008	3272	274त1997	${ }_{\sim}$	2		-	C5020-7:168X	HSO.00	19712000	1 T 212000
911	613	31пол9ss	Cr	2				mutit 99.00	$19 \pi \mathrm{rcos0}$	
912	328	incosa	©	2		1	Poos(AC)	ninv	14n02001	121012002
915	382	16 119930	Anorc			2	negatuox $A C$ TM	Hscroo	30n12001	
818	329	18 ¢ 1992	Anach	2		2	nono (AC)	Hsa.co	20162000	
978	386	17 A /991	A nanc	2		1	coobestifarix	Hisome	111612002	
918	3302	25 [त1997	${ }_{\sim}^{\circ}$	2				itisa.jo	19712000	17100.
820	387	$20 n / 1998$	व	2		1	C130ttis8m	HSCHO	19712000	122000
922	3889	9ß/4994	व	2		2	none teresting tor	niv	14 n 12000	
025	158	2911996	O	2		1		HSOM	9 SOH 998	15/102001,2010 2009
026	3313	3त1997	C	2		1	C24x ${ }^{\text {(MFO }}$	ment'00,0	$19 \pi 12000$	1122000
929	3321	15म1/998	${ }^{\text {c }}$	2			podymophism?	HSO.00	20132000	
831	339	2031998	Hech	2		1	T1583(AC)	HScor	19612001	
038	3302	24411897	${ }^{\text {ch }}$	2		$1-$		niv	1912000	1812000
838	333	3 M 11994	a			1	039 CTT 12070144	HSam	1612001	
944	391	1765997	R nanc			2	nond $A C$ bund	HSOM	2 T 12001	
945	1914	48 H 989	${ }^{\text {a }}$	2		1	A46812X 464 (Mtzal	Hsano	20612000	
953	334	3033992	Anax			1	moedic	HSC. 01	$31 / 22001$	12701202
955	${ }^{335} 2$	24AM997	ARanc			2	nono (AC)	HSQC.00.03	$30 \mathrm{nin001}$	
958	338		unknow			2	no mm			
957	332	8 \%nici98	${ }_{8}$	2		T-	1.R234 ${ }^{\text {(AC) }}$	HSCOOT	$30 \pi{ }^{2} 2001$	
958	16	18 1899	CA_{8}	2		i^{-}	7 n nonem(1)	HSQ M.	¢й12000	
983	393	18167998	a	2		2	nonre (WGHtrione	Inv	$15 \mathrm{HOR2001}$	
984	394	20.51996	ch	2		1	1116 -120]de ${ }^{\text {es }}$	Hscroo	intraoi	1/12001. 20M12001.6104
985	395	9121998	व8	2		$1-$	1157-11970611(A	mult '00.œ:'09	Thit2000	51020011991204
986	396	6 An999	$\square_{\text {a }}$	2		2	nono Weasen)	मिsco	19162001	
988	337	2170ヶ998	Rmonc			1		mention:01	30\%12001	
972	3971	15Н0л997]	R manc	2		2	notland (AC)	mult 01.03	31/R2001	
973	1221	113/1983	undrow			2	nona (AC)	hav		
978	48	10л0п969	${ }^{\text {a }}$	-				HSam	30 n 20001	30112001
979	338	18 1/1999	Anonc			2	nome(AC)	HSC.01	30122001	
880	399	2981998	a marc			1	c5020:	HSO.vi	31120001	
981	398	471997	$\overline{\mathrm{A}} \mathrm{Conc}$	2		2	polymaphism	मiscoi	8442009	
982	399	$296 \mathrm{Br99}$	Tinac	2		2	nogativo	matt '01: $<$: 08	19662001	12102008 1 1 OR2003
985	400	$1865 / 1896$	Rnonc	2		2		Imin		
886	401	$104 / 1991$	¢	2		1	21 CA: D97e	lav	10¢72001	
987	340	20n1n9*s	Sunkram				awatiod	miv		
988	402	125H999	c	2		1	A106W(Wessox)	HSOOT.03	196/2001	12/02000 1702003
989	403	19Ноняse	${ }^{\circ}$	2		1	का12C.T:R168	HSCOO	19652001	
880	404	218\%966	a	2		1	397CTT.R133CAC	1/SO 01.03	20712001	
981	405	З119987	a	2		2	nol lound (7meora)	HSCOM	20662001	
983	3317	781988	Rпme			2	none	HSa. ${ }^{\text {P }}$	$11 / 22001$	9193009
988	32	$12 \pi / 3999$	ca	2		1	R270x	HSOCR	17 T 2003	
1008	406	2431898	nech			2	nonod (C)	mv	29712002	(1r200
1007	407	14 H 958	Ananc			1	positue R2riox ${ }^{\text {a }}$,	Inv	5 HO 12001	
1008	408	2041999	necr	2		i	postive (Hodenaf)	mintion. 0^{3}	inor2004	
1010	$4{ }^{40}$	285M1938	a	2		1	${ }^{8} 880 \mathrm{R} 294 \times$ (19)	HSCOOT	14 190200	
1012	410	1570\% 898	$\square^{\text {cas }}$			T	410 esodal	In'	11/102002	12702002
1013	411	27818988	क	2		1	C5026TT:RIEOX	180\%	20112002	
1014	343	249 M996	Anonc	2		2	mono (AC)	HSA. 08	29112002	
1015	412	2164994	c	2		1	1008609T:R270X	HSa\%	१17072002	12 H 12002
1016	101	205 H 995	c	2		1	44 basospar del	HSO.v2	$30 \cdot 12002$	9312002
1017	413	2ЗM998	ch	2		1		Hscrol	29712002	
1018	414	1281997	व	2		1	muastion Moy	HSCOR	29112002	
1019	415	2321989	A name	2		2	nono (AC)	HSCOOP	30h12002	
1020	116	17551996	not A			2	none (Manctiestar)	HSame	29112002	29172002
1022	417	4121988	A name	2		1	c502001.R168x	HSCCOR	29712002	1 NO 2000
1031	488	22n998	unkeom			1	C808ctitineox	Inv	12 A 2R002	inar200
1032	214	9 H 1992	unto							
1042	419	12029989	${ }^{\text {c }}$,		1	Ordic (AC)	HSCOCR	12702008	11002006
1084	20	155/9999	O	2		2	nono tand (AC)	HSOU2	118612002	
1067	21	8 An906	व	1	1̈й200	I	Cobecot:R16ax	Inv		
1088		7801996	untrom			2	nomat(M8)	Inv		
1072	344	2221999	Anac			,	A168x 8 70pde	HSCms		
1075	\%	20441995	unisow							
1076	¢	$277 n 989$	Untion							
1077	98	$317 \mathrm{ng78}$	Uninow							
1078	114	571883	undrom							
1078	139	13 13п9991	unknou					ovo		
1080	142	5HM998	untrom							
1081	122	6nत999	व	2		1	4880 dad	1rsame	11612002	17002003
1082	${ }^{193}$	1989992	Ca	2		11	P1528 (188)	HSOO		
1083	204	31/1980	untrow							
1084	211	Јїппı90	Jumiow	2				Mv		
1085	230	98196	c	2		1	R168X	HSOM		
1086	239	25\%M969	a	2		2	nono (AC)	HSame		
1087	423	2n2m999	${ }^{\text {a }}$	2		1	Sceat (AC)	$1 \mathrm{BSO}{ }^{\text {a }}$	111612002	
1088	484		Ananc	12		2	nogetvo(Da)	HSO.02	111818002	
1090	425	2321891	Pronc					\cdots	12612002	
1113	426	33812000	-	2		11	Postivo (Aug 02$)$	HSOM	122112003	

593	$\left.\right\|^{158}$	289／1988	［ar	2			nono（whoren）	H5S．01	14／8／1994	26／611998
594	137	1211 Mi979	C－					mut＇ 94.96		
598	296	ब习习⿱㇒冋1990	A nanc	2				HSO． 94		
597	363	9月1699	O	2		1	ascecsi：R16ax	nv	1483／1994	15／En1998
588	297	210\％1891	R nanc	2				mut 94.95	144611994	
800	250	30म2H970	Ca	2				mut＇94，＇95	148／31994	
801	298	31／31972	B nanc	2				mutt 94.95 .98	13183994	
602	11	62ri973	¢	1	217102001	2	$\log (\mathrm{AC})$			
605	195			2		2			146n994	
							nogatusmen	mut 94.68	14831994	1210R2002
	354	118 B 1887	CR	2				mutrst．02	15184994	1818002
611	228	29511992	Cr	2				mut＇94．＇97	$28 / 51992$	1110n996．15n11997
818	299	З2̈967	A nanc	2		2	nono（AC）	muntion，96，96，98	14／31994	
618	184	7151892	क	2		1	1157－1200001446p	HSO． 02	361994	1／1011996．11／6／2002．1270／2002．2712006
822	$2{ }^{2} 3$	65H991	CA	2		1	$0 \cdot 7 x$（M）${ }^{\text {a }}$	mutt＇9\％＇96，＇98	16H17995	ज1／1996．11001996， 15 H10／2009．
623	88	12\％1／8929	CA	2		1	R2rox（NW）	mutt＇96．95，98．＇00	16 ／1995	1011H896．13／11998，10222000
826	175	1913／1990	CR	2				HSO99		
627	300	26418885	not A	2			beloncod irversion	madt＂96，98		
629	54	6л22991	${ }_{\text {CR }}$	2				muft 94，${ }^{\text {＇98，}}$	170 Cl 994	18nగ999，14102001，121012000
830	${ }^{179}$	10\％1／n994		2				muta 97.96	［20M0n997］	114 n 1998.
833	181	13 nn995	${ }_{\sim}$	2		1	c126－127nsa（AC）	hv	$1111 / 1897$	16／67698
835	321	23 M11900	nod A	2				niv		
837	94	11515995	CA	2				Inv	13M／1995	
838	166	$183 / 199$	not	2			ave atad	HSa． 98	13H／1998	
840	162	294\％970	R nanc	2		1	c1184－1207d 4461	mutr98． 0° ¢O4	14 n 1098	
844	372	10H0riso	${ }^{\text {ch }}$	2		2		multex， 01	14111998	20182001
847	227	$65 / 1984$	Pinonc	2		2	not found（AG）	mati＇38， 98	23 H 1991	$28131999,14 / 6 \mathrm{~B} 999,1 / 101999$
849	135	78an993	क	2		1	postion to come	159．98	1788998	
850	322	65 ／1966	A nonc	2		2	noxn（AC，MB）	HSO．${ }^{\text {a }}$	6 （118898	
853	208	27811893	${ }^{\text {a }}$	2		1	916CST： 1300 C	mulse．00	2361998	
854	201	477891	c	2		1	C1157．12008di44	mutrse ${ }^{\text {a }}$ ，	अ	
856	323	13561987	A nanc	2		2	nono（BCdgum）MB	HSO：98．02		
857	${ }^{\circ} 5$	26 141986	Ananc	2		2	nome（AC）	HSO 98	16818998	
858	49	26981988	${ }_{8}$	2		2	not fouma（AC）	1RSQ 98	19181998	778И998．11／71998．11／62002
859	324	28931995	Bnom	2		2	negative（AC）	HSa． 96	16867998	12H012002
881	182	10／87995	${ }^{\text {c }}$	2				ninv	1686	
862	56	$28 / 1993$	hach	2		2	Podymorprisme 386	HSQ ． 0	17761998	19／12000
158	${ }^{128}$	［13441973	cos	2	15／6／2004	1	P255x（MB）	Inatr． 86.195 .98	$115 / 1986$	1775月995． 20668000
181	118	10917982	¢	2		1	nono（MB） $1680{ }^{\text {a }}$	mult． $92.195,98$		
162	13	1431988	$\bar{\square}$	$\overline{2}$		1	R133C（MB）	mati 90． 98.	$\overline{19 / 1991}$	2094n992，17\％ก1998，1／672000．1／12000
184	127	5441974	unionow	1				Imv		
187	238	20131986	CA	2				1－50．93	2081899	
188	121	8114972	\cdots	2		1	T158M（Glasgow）	muth＇94．＇s ${ }^{\text {c }}$	14161994	25611996
171	120	19564974	¢	2				mudt． 25.96 ＇96．98		
169	2	31 3H993	व	2		1	C244x（MBXM－	mavt＇96，96， 98	158／1995	
182	138	288／9988	C	1	13／82006			muti＇9，＇95；＇97＇98：	TH01991	
185	15	3331980	${ }^{\text {ch }}$	2		1	125203. del 41 （M8）	HSC98	11818199	141619994
188	350	3／31885	OR	2		1	व73CTITTISEME	$1-1500$	11001992	
184	14	7717988	${ }^{\text {CR }}$	2		1	918CST（AC）A306a	min 33．94．97．	3п1991	
201	262	677976	hacr	2				0×0	311／1995	18．1．1995
206	144	14／10\％9e2	${ }^{\circ}$	2		1	T 158 m （MB）	muth． 955.96 .98 .102	thon9e6	
208	283	788／983	not A	2		2	ocel ip	mut＇98．＇95．＇98	13661991	
208	153	26 H1989	${ }^{\circ}$	2		1	T1583	mutic 91,103	11864991	17176998
210	157	21 1106978	${ }^{\text {CR }}$	1	17／3R008			mult＇．94，98，＇02	irich987	21nत1992
212	151	$13 \pi 71983$	C	2		1	1014E）	HSCOSS	11 Com 990	21111993.11001994.
217	150	10 H H986	${ }^{\circ}$	2				mutit．98， 98.	1 1 N0／991	1018／1952
218	149	19 Mris80	CA	2		1	R306\％（MB）	143098.03		
220	148	31 TOH 888	C	2				mout 93， 95.	2 2n11991	170月992，24n1993
225	170	422990	${ }_{\square}$	2				050	$1 / 6 / 1969$	1／10／1998
232	172	$3{ }^{3} 1981$	c ${ }^{\text {a }}$	2				｜nv	1719887	1111989.
234	171	24661980	a	2		1		mint 9 9，94，98	170\％1886	288月988，1／6／1989，12／6n991，
242	264	12／9909	untrow	2				Inv		
249	173	31707963	Ca	2		2	nono（d＇E．MB．AC）	mett 93， 94.	20111893	1／101994．18831996
251	265	291980	व	2		2	$\operatorname{nog}(\mathrm{AC})$	a＇86．6v	7781995	30182001，21661996
254	167	55 ¢1988	व	2		1	Y141X（ADendeen）	muitt＇90．＇94，95，＇96，	．125161990	
258	168	203／1985	${ }_{\text {c }}$	2		1	473 CT T（AC）	HSCM	$1 \mathrm{HOH992}$	
259	286	2471959	\cdots	2				$0{ }^{9} 8$	72 2986	30312001．194／2008
288	180	1810月968	Bnanc	2				081	1281999	
270	287	19121974	${ }^{\text {Ca }}$	2				mult＇98，98		
276	20	9n21987	व	2		2	nox found（MB）	mutit 94，95， 38	2264991	
277	187	1839 ${ }^{\text {a }}$	व	2				muth＇95，＇98．00	23M14991	10111996．1522000
278	21	109／1982	C	2		，	495－1164da6m9．	munt＇98，96， 96	1510n994	1／114996，1／10／996，1／10200\％．
282	194	3 7／1981	क	2		1	107n trame	mat＇s293，95，＇98	$24 \pi / 1987$	1／1／1989，1／17992．
284	210	143 M 983	Cr	2		1	C302GA：PTHKA	Oso．	218／991	111 त 999
289	207	151991976	Uutonow	1	6123998	2	AC）rone tound	Im		
291	113	47 n 980	${ }_{\sim}^{\circ}$	2		1	C8770al．128888x	muth 90．88， 97.	228198	
294	72	158／3909	व	1	$17 / 572001$			3v	8867959	
287	19	887976	${ }_{\sim}^{\circ}$	2		1	Р152月（м8）	min＇${ }^{\text {c }}$ \％ 38	1831983	
298	258	14त21978	R nanc	2		1	is33csamosal	／rw	10671933	$771593811 / 12004$
300	2	18384986	${ }^{\text {c }}$	2		1	Pž70x（MB）	mint 838.	23 N 9391	2त17893
306	200	138 F 976	CA	2		1	P2700（ MB ）	HSa．8s	13 M／976	1／41991
307	203	153H1964	C ${ }^{\text {a }}$	2		：	Bosselc（AC）	munt 93.955 .97	11001987	
312	239	9R2970	व	2				091 lmv	110798	
322	29	481883	$\overline{8}$	2		1	8800 T T：R294x（AC）	muth． 94	21／11992	
325	351	21119985	¢	2		1	dedexan 3	HSOM0	21612000	
328	20	98 M 977	CR	2				mudit 90.955		

Dataset:8.2 Results of Surgery for Scoliosis

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=n o, 3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, AK dates=subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett , incCR=incomplete data, probably CR, R non $\mathrm{C}=$ Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
S Sc ore gives severity score (see figure 2.2.1, appendix A) EpL =epilepsy longitudinal ($1=$ resent, $2=$ not present) hand skill $\mathrm{L}=$ hand skill longitudinal ($1=$ spoon/mug, 2 fingers, 3 none) scol $\mathrm{L}=$ scoliosis longitudinal ($1=$ none, $2=$ slight, $3=$ marked, $4=$ severe, $5=$ operated.

Longitudinal fields record one digit for every five years throughout life except the first which refers to pre-regression if the individual regressed

BIS	d of bith ${ }^{\text {st }}$	status	S score	mut	lest	epL	1000 skil	hand skll	scoll
26	$13 / 21876$	Cr	40\%	1	R168X(ACXOE1B8)	2.22	21.11.	13.33	11125
30	3 3 91977	C	80\%	1	P255X and	2.11	22	222	12.34
46	22H982	C	100\%	1		9.11	82.22	33.33	92.45
52	718 H 976	C	90\%			21.11	12.2	13.33	12.45
101	20/5/1981	$\mathrm{C}^{\text {a }}$	90\%	2	neno (AC)	21.11	22	2333	1245
103	20141973	${ }^{8}$	100\%	1	missense T158M	2.12.1	2222	222.1	12.45 .5
108	688875	व	80\%			21.11 .11	22222	${ }^{13.33 .33}$	19.45 .55
113	5F3197 ${ }^{\text {c }}$	¢	50\%	1	c76309:R235xबE	2.11.	22.	13.33.	11.45
138	7114969	C	80\%			21.11.11.	22.22 .22	22.22.2.	11.2555.
185	3/31980	Cr	80\%	1	1152-93.091.41(MB)	21.11	11.2	1222	14.55
212	13771983	क	90\%	1	10106	21.11	2.2	12.22	13.55
218	193M980	$\mathrm{C}_{\text {A }}$	00\%	1	R306\% (MB)	11.11 .1	11.11 .1	12.22	93.55 .5
231	23/81982	वn	50\%			228	12.2	93.33	11.46
283	14/10/1971	व	100\%	1	158(d'E)	21.11.11	22.222	13.33 .33	11.55.55
275	ब16H976	O	90\%			21.12.2	22.22 .2	23.33 .3	99.55 .5
. 280	17/61977	Cr	100\%			2.11	2.22	23.33	12.45
308	13181976	c	90\%	1		2.12	11.2	33.33	99.45
314	3iनh1982	C	90\%	1	R2S5X(TW)	2.11	2.22	33.33	15.55
363	13/71976	${ }_{\text {c }}$	50\%			2222	11.1222	19.33 .38	19.55.56
413	$711 / 1990$	${ }^{\text {c }}$	70\%			22	2.2	33.3	12.5
423	16/5/9971	c	90\%			2.11 .11	2.22 .22	93.33 .33	17.25 .55
451	18/11/7989	CA	80%	1	R270 ${ }^{\text {(MB) }}$	22	22	233	15.6
473	1610 1963	O	40\%.			2.11.22.9	1211.11 .9	12.2222	11.1245.5
483	10551976	CA	60\%	1	R270지(MB)	2.11 .1	22.23	13.33 .3	1245.5
500	15\%06971	ncca	70\%			21.11	212	11.11	94.55
548	3/31977	${ }^{\text {O }}$	90\%			2.1	22.2	23.3	95.5
842	$21 / 41971$	व	80\%			2.11	22.22	23.33	11.12
858	28/971988	${ }_{\text {O }}$	90\%	2	not found (AC)	21.1	2.2	222	14.4
000	$4{ }^{48} 1971$	O	70\%			21.11.1	21.992	23.33 .3	99.45 .5
1021	810/1974	C ${ }_{\text {a }}$	10\%			21.11.91	2.22 .2	23.33 .33	11.29 .33
8	$27 / 3 / 1987$	\square°	50%			2.2.	2.1	13.33	13.55
21	14/6/978	${ }_{\square}^{\text {a }}$	80%	1	A106W(AC)106(dE	21.11	21.12	122	1245
27	$23 / 11 / 1974$	CB^{8}	100\%			2.11.12	2.22 .22	19.33.33	12.45 .55
45	2015/9980	C_{8}	90\%			21.11	228	83.33	12.34
76	$197 \pi 1983$	C_{8}	100\%	1	1686E)	2.1	22.2	23.3	14.5
87	12 B 197	C	40%			22.2	11.11 .1	11.11 .9	11.24 .5
88	11/91980	C	100%	2	\|none (MB) checking	21.121	22.22	23.33 .3	12.45 .5
122	810.975	${ }_{\text {c }}$	60\%			2.11.11	11.11 .11	12.2.21	11.34.55
1330	2/41985	क	90\%			2.1	11.22	12.22	12.55
131	$16 / 71983$	O	80%	1	1157 delitibp (CS)	21.11	12.22	13.33	13.45
136	921972	क	00\%	1	C6CT:R2SX	2.11 .11	11.11 .11	13.33 .33	11.55.55
150	6/11978	OR	90%	,		21.11.	2.22	12.26	23.45
171	196/1974	OR	60\%			22.2	2.22	13.33	99.45.
188	$25 / 37976$	nc Ca-	70\%			9211.1	99.82.1	99.11 .1	99.95 .5
184	$7 \pi \times 1{ }^{\text {a }}$	${ }_{\text {c }}$	70%	1	916 CTIAC)R300Q	2. 19	11.11	22.2	12.25
207	14/8/1980	CR	80\%	1	T158M (\%)	21.11.	11.22	23.33	11.45
209	26 /11989	CR	80\%	1	T158M	स. 1	2.2	123	13.5
210	21101978		100\%			2.11	22	23.33.	94.55.
233	28 \%1981	${ }_{\text {c }}$	50\%			222.17	21.11 .19	11.11 .39	1235.69
234	246871980	${ }_{\text {c }}$	70\%	1	C7E3CT:R255x(A	22.2	2.22	13.33	15.55
278	10/31982	${ }_{\text {c }}$	70\%	1	495-1164del669.	22.29	222	23.3	1255
282	371981	${ }^{\text {c }}$	100%	1	107n trame	2.11	22	23.33	14.55
297	88/1978	C_{8}	40%	1	P15\%8(M8)	2211.1	11.12.1	99.11 .1	13.45 .5
367	2ூ21981	C_{8}	100\%			2.1	22.2	122	14.5
373	1211ヶ971	$1{ }^{\circ}$	70\%			22.22 .2	22.22	23.33 .3	13.45 .5
405	24/11ก987	${ }^{\text {c }}$	60\%	1	R306C (Weasex)	222	22.2	13.3	13.3
488	718985	CA	30\%	1	P3088	22.2	11.1	12.2	122
550	29/3/990	कि	100\%	1	dol exan3-4	2.1	222	23.3	12.4
555	$82 / 270$	ci	80\%	1	Ti58M (MB)	21.11	22.2	19.33	11.45.
602	821973	CA	40\%.	2	neg(AC)	22222	11.11.11	11.11 .11	15.55 .58
608	11/6/1987	${ }_{\text {c }}$	90\%			21.1	22.2	13.3	12.3
653	1813893	CA	80\%	1	R270X (MB)	22	22.2	12.	14.
011	311004995		90\%			21.	22.	23.	13.

Dataset： 9.1 \＆2：Analysis of deaths in BIS

Explanation of Symbols：
BIS＝Survey code number， $1=$ yes， $2=$ no， $3=$ presumed present， 9 or nk or no entry＝not known，AK saw＝first examination， AK dates＝subsequent examinations，infant $\mathrm{V}=$ infant video， Kerr $\mathrm{Q}=$ health questionnaire，（ $\mathrm{HSQ}=$ single，mult＝multiple） age upd＝age at update， $\mathrm{CR}=$ classic Rett，incCR＝incomplete data， probably $C R, R$ non $C=$ Rett not classic，not $R=$ not Rett， mut＝mutation tested（no entry＝not tested），test＝result
further data for all cases in the Survey is shown in Appendix B
This dataset lists all deaths reported to BIS in people with CR It includes cases referred to in studies 9.1 and 9．4．
PM indicates autopsy but not necessarily tissue donation
The column D indicates donations of tissue to co－author DA S Score gives severity score（see figure 2．2．1 Appendix A） The column headed＇Death T ＇indicates the type of death， $\mathrm{F}=$ frail $\mathrm{U}=$ unexpected， $\mathrm{S}=$ epilepsy associated， $\mathrm{G}=$ general causes

BIS	d of bith	status	died	deathT	d of death		test	Kerr Q	AK saw	AK dates
24	263M987	O	\square^{-1}	G	17111／1994			Inv	12\％3991	
27		O		9	243 Lr 2001			matt 95.98	18 HOR 989	
34	1012M975	©	，	5	13 ／111995			\bigcirc	16／989	
37	$1136 / 1988$	\％	1		515005	1	P3024（AC）	mati 939.9403	28月0Н989	23n71981． 1864984.
38	27141973	$\mathrm{ha}_{\text {ch }}$	1	F	7 72й99			jav		
45	20157980	क	i	F	inom9s			murs 93.95 .97	іпи\％／999	
51	1110n976	a	1	F	1147995				14／1999	
52	778 P 978	क	1	F	बतनकड9			HSO	140ヶ969	поняя
62	212A975 ${ }^{\text {a }}$	क	1	0	$23 / 14398$			HSO 90．98	19поп99	
67	1421971	ncer	1	F	17 n 992					
88	14／51973	क	1	F	2101990			1092		
73	13／91974	¢	1	F	1321998	1	54－657dGAAG．	व91		
76	19 ／n983	\％	1	J	2／12994	1	168dE）	mult 98.95	$115 / 1987$	
78	13 2／1887	¢	，	F	9412001	T	T158M	muth 93．94．96．＇90	670／1990	1попоя4．
80	1774988	Ananc	1	F－	т			muth＇93． 96	2141992	
91	16A2m985	¢	－	9	277101998			Tinv	76 1993	
100	13／41975	${ }_{\sim}^{\circ}$	－	F	$111 / 1997$			muth	24.51984	
112	123M9es	व		U	141119969					
124	3331949	©	T	F				HSQ	36，987	
128	18／81987	©	T	F	11 HR997			niv	178N994	
134	145म977	C	I	F	664M997			HSO		
835	18 H1908	व	1	F	317त996			Oinv	15 ／986	$117 n 387$
842	1210／1975	क	1	U	14157987			－	2188984	
144	28M17977	R Canc	1	3	23M2M985					
150	6 611978	व		F	20392000	1	O16CMT；${ }^{\text {a }}$	mave 9190	2281987	
159	23 3\％i973	O	＋	F	201／62008			mv	22介1991	
180	175H9e8	©	＋	9	11714994			unv	12 123991	
164	544ri974	Invonw		U				hiv		
174	S7n979	OR	，	U	12M0\％995			HSa 98	$336 / 1989$	17761995
181	183988	hecr	1					aso	inokis90	
182	\％risiss	${ }^{\circ}$	－		13182006			mutit．94，95＇．97\％＇98：		30\％／8992 10\％1／1997．15／102001
195	$25 / 97973$	Introm		9	1221220002			Inv		
198	$18 / 57984$	${ }^{\text {ar }}$	－	F	14／572003	1			202en991	
202	957875	$\mathrm{nc} \mathrm{C}_{\text {a }}$	1	9	$153 / 31893$			arso		
205	91497	©	1	s	W21998			HSO．95		
210	2170M978	\％	1	u	17352008			munt 94.98 .02	1110／987	zimase
222	$8{ }^{151978}$		1	F	स1121999			O	12 121998	11／6R998
227	173／1974	क	1	6	2007394			HSO	$28 / 2988$	
228	431963	O	i	6	THत995			${ }^{\text {HSCss }}$	356\％999	15 Mch 938
228	$27 / 181974$	O	1	F	77\％			－		
237	917872	व	1	J	2299994				${ }^{15667994}$	
238	717879	O	1	F	11221998	2	（AC）not land	व\％9	18 S 988	1016n9928／4H1999
253	770\％980	©	1	F	1174999			\bigcirc	665\％986	
255	2ल17884	${ }^{\text {ch }}$	－	U	11／4990			0		
280	1776n971	व	1	F	2तn996			HASC．96：08	1MOM991	10
286	9 921971	व	1	－	18 IR2003					
289	12539797	Unomom	1	－	612\％98	2	ACIInonotound	Inv		
283	951984	－	1	9	$1{ }^{15} 70$ ¢ 992					
294	15इßा9	오	1	F	171512001			Iov	81611983	！
295	17761982	क－	1	［F］	1778／1998			Hasa		

298	14／12／1979	not R	1	F	15／51894			1090	81811993	
301	ब114974	क ${ }^{\text {a }}$	1	F	8122096			HSO	8791983	
308	30／51958	व	i	j	471992			－	$1 / 51988$	
308	W121984	cr	1		$13 / 121899$			inv	12611991	1／1011998
313	6161973	क	1	\bar{F}	3／31990				万1071909	
318	$163 / 3960$	inkrow 1	1	U	1912002					
329	20161971	ch	1	F	$2{ }^{2} 31887$			$\bar{\square}$	12／1／984	
357	2893884	Ch	1	F	1／101896			O－15996		
361	18181975	क	1	F	25151891			$0 \cdot 06.95$	1751986	
364	17గ1880	¢	1	F	12／3898			meit 9095		
365	177121980	O－	1	F	12Fi1992			091		
367	221981	${ }_{8}$	1	F	9818995			mitio	$28 / 71984$	
389	2971988	${ }_{\sim}^{\text {a }}$	1	F	4／4त996			HSO． 94	31361992	$4 / 41996$
372	10 ／h1984	CA	1	F	31／1／1997			cas	1701987	17／1969．226H $991.15 / 8 / 1995$
373	1211／1971	OR		U	1412001			must＇ 93.96 .98	11681983	
378	3010H973	${ }^{\text {c }}$	1	F	$2 \mathrm{M111933}$			व90	$1 / 14 / 1989$	1861890
381	10t114987	${ }^{\text {Ca }}$	1	U	1／4／2003			munt：＇91．	4／91999	18／51992．14त997．13M11998．4912000
388	24／4／1973	finca	1	S	1／1／1891					
398	2131971	${ }^{\text {c }}$	17			1	del exon 34 MH	mut＇93：98	19h0n991	111119955，21－11992
400	13／24987	$\mathrm{n}_{\mathrm{C}} \mathrm{C}$	1	0	12 l 112002			Inv	｜1101991	110／992．1701994．
408	1415 P1970	${ }_{\text {a }}$	1	5	112001			mult＇95，98	［211／1992	
410	15／3／1962	${ }^{\circ}$	1	a	201101993				211／1998	
432	24／31999	Anonc	1	9	19／1／2001	1	04736T：T15	H50．01		
438	12／4／980	Anonc	1		6712003			HSC98	178811998	
459	$5 \longdiv { 5 1 9 8 5 }$	Anonc	1	9	17122002			HSO	2615／1992	1016n992 15／6n995
483	$10 / 581976$	${ }_{\square}$	1		512004	T	P270x（MB）	HSO．98，02	2 Cr 1	25 ／11993
498	$11{ }^{11 / 4974}$	hc CA	？	IF	$1 \overline{218997}$					
500	15／10\％1871	hacr	1	F	17112005			HsCas	10.681992	20111994
503	71101972	Unikow	1	F	$23 / 3 / 1998$					
504	23 M1885	not A	1	F	18／111996				103／1987	
515	15／4／1967	HCCA	1	U	1310n992					
523	P2R1960	\cdots	1	10	281020003	2	neg（AC）	mult．＇95．＇96．＇00	19811983	
538	$27 / 111984$	A nonc	1		10／22004	2	nono（AC）	HSO． 98		
547	$22 \pi 947$	व	1	IF	14／5／2001			munt＇ 93,98	886／1894	
578	11 171961	rach	1	9	1112003			HSC98	15 171994	
602	6 ［21973	¢		G	$21 / 102000$	2	$\operatorname{neg}(A C)$	muth 94． 98.	14／8／1994	
610	$4 \sqrt{2} 988$	¢	1	${ }^{-1}$	17151997			HSa	15／1994	
633	24／1982	not ${ }^{\text {R }}$	1	9	44त1996			\bigcirc	28 R1988	
634	24881970	Ch	1	F	2112000			mutt．＇95．＇96．＇97．989	1701894	
638	24／5／988	Unknow	1	9	281712002					
685	14／51999	Anonc	1	F	9719997	2	nono（AC）	inv	71681996	
707	$12 / 2 / 1836$	品CCA	1	F	17 H 996			Imv	11n119986	
718	$4 \sqrt{151973}$	C	1	5	11912003			HSQ95．	9M1996	
747	27121978	Unknow	1	${ }^{6}$	1 T 10881					
788	12／10 ${ }^{\text {248 }}$	禹 A	1	9	271968					
788	201／1962	${ }_{\square}$	1	G	15／1M987					
782	2／3／1992	noth	1	S	4712003	2	nono（AC）	munit97．98：03	$113 \pi 71998$	
831	19／10／999	${ }^{\circ} \mathrm{C}$	1	\underline{G}	1112003	1	C7300 TTM244X			
833	$11 / 16{ }^{1 / 568}$	untnow	1	U	13×22000					
884	17×11975	C	1	U	2412001					
1087	897988	¢	1	5	1888／2002	T	COECTTM168	inv		
1074	EJA1977	Uniknow	1	O	22312002					
1172	26712001	R norc	1	9	12552000	1	132 bp del	Hsacos		
1714	13331971	Anorc	1	9	$1 / 5 / 2003$	2	none（Yorkhill）	HSOC	3087693	
1181	15771994	R inonc		F	3／4R2004	1	P270x（ Jcs	HSCOO4		

Dataset: 9.4: People with mutation positive Rett syndrome who converse

Explanation of Symbols:
BIS=Survey code number, $1=y e s, 2=$ no, $3=$ presumed present, 9 or nk or no entry=not known, AK saw=first examination, $A K$ dates $=$ subsequent examinations, infant $V=$ infant video, Kerr $\mathrm{Q}=$ health questionnaire, ($\mathrm{HSQ}=$ single, mult=multiple) age upd=age at update, $\mathrm{CR}=$ classic Rett, incCR=incomplete data, probably CR, R non $\mathrm{C}=$ Rett not classic, not $\mathrm{R}=$ not Rett, mut=mutation tested(no entry=not tested), test=result
further data for all cases in the Survey is shown in Appendix B
The column sp st indicates study 9.4
S Sc ore gives severity score (see figure 2.2.1, appendix A) EpL =epilepsy longitudinal ($1=$ resent, $2=$ not present)
hand skill $L=$ hand skill longitudinal ($1=$ spoon/mug, 2 fingers, 3 none) scol $\mathrm{L}=$ =scoliosis longitudinal ($1=$ none, $2=$ slight, $3=$ marked, $4=$ severe, $5=$ operated.

Longitudinal fields record one digit for every five years throughout life except the first which refers to pre-regression if the individual regressed

APPENDIX D: SURVEY QUESTIONNAIRE AND DATA COMPUTER HELD

Health Data stored in the British Survey BIS (BIRS)

Completed health questionnaires (HSQs) a copy of which is attached, are retained for each individual with Rett syndrome or suspected Rett syndrome. Parents/carers who completed the HSQs are provided with a copy. Data from clinical examinations, reports and completed HSQs, is entered on a free standing computer with fully informed parental consent. This list indicates the items stored.

Items marked (L) are entered once in every five year period throughout life. One digit represents one five year period with the exception of the first in children who regressed, in whom the first digit refers to the period before onset of regression: e.g. comL. 11.11.11.11.11. indicates that words were used until 50 years; handsL 12.22.33. indicates that the person used spoon or mug before regression (or before age 5 if there was no regression), used only finger after that until 20 years and thereafter did not use the hands for self feeding.

Unique BIS code
Personal identification
Dates of birth and death
sex
Grandparents' dates of birth / death
Parents' dates of birth
Siblings of parents
siblings, miscarriages, dates
Any mental or brain or genetic disorders
Parents' age completing full time education
Regular medical advisers
Health questionnaires (HSQ) invited, completed
dates seen by AK
Video recorded
Infant video donated
Health during gestation
Adverse birth circumstances
Gestation weeks
Birth weight
Age to sit unsupported
Age of full crawling
Age of solo walking - for how long
List of words spoken (before regression or 5 y)
Ability to self feed, fingers, spoon, mug, none (before regression)
Age when disability suspected
First skill lost- if any, at what age
Rett status
Date of Rett diagnosis if made, by whom
Presence of some early development
Occurrence and if any, age at onset of regression
Dyspraxia

Hand stereotypy
Birth OFC
All other OFC measure to present
Other positive medical investigations, reports \& dates
Any diagnosis made other than Rett
All genetic reports - including MECP2
Weights \& heights with ages
Feeding difficulty items \& score (see figure 2.2.1)
also L see explanation above)
Abdominal distension, aerophagy
Epilepsy diagnosed
E.e.g and reports of e.e.g (entered for 5 year periods)

Deep breathing/ hyperventilation noticed
Breath holding noticed
non-epileptic vacant spells thought to occur
cold blue feet, how constantly
predominant respiratory rhythm (if monitored)
understanding of speech yes/ no (L see explanation above)
use of speech, single words, sentences in context
(L see explanation above)
reception or expression by other means
walking unsupported (yes / no) (L see explanation above)
Contractures / joints displaced hips, knees, ankles, feet
Scoliosis or kyphosis (L see explanation above)
Distress due to scoliosis (walking, sitting, standing etc)
Is a brace worn with dates and duration of wear
Distress/ discomfort due to brace (walking, sitting etc...)
Scoliosis surgery with date, place, surgeon
Change after surgery for better or worse (walking, sitting etc...)
Problems during scoliosis surgery
problems after scoliosis surgery
Change in the scoliosis since surgery
unexplained excitement or sadness
Injury to self or others
sleep disturbance at night or day
General health good, fair or poor (last 12 months)
All episodes of illness in last 12 months
All current medications including alternative therapies
Presence of squint (strabismus) ever / now
Any defect in hearing diagnosed - reports
Puberty onset signs, menarche, regularity
Date of death
place of death
reported cause of death
PM report if any
state of health before final illness

BRITISH ISLES RETT SURVEY:HEALTH QUESTIONNAIRE.

Dept Peycholocicel Medicine. Garthavel Royal Hoepital 1055 Greal Weetern Ploud, Giangow G12 0XH
Plesee answer yes(1), no(2). dont know(3) if box provided. Otherwise circie or write in answers. Put a line through a question it not relevant but plesee dont leave blanks. Do ise extra pages. Withe in bleck

PERSONAL DATA :- date of complotion by family:-
Name of person
Survoy code

Usual address
teino.

How many people normatly live in this dwelling?

postal code \qquad

School or day centre address (say it none).

Reaplacare: avallable (stiont trom care)	used	frequency and type
		\therefore
Person completing the questionnaire (name) Address il different from above;		relationship
Mother's ettric group	tather's ettric group	
Age at completion of tull time ecucation: tather		mother
General Practitioners Name Address	,	

Other regular medical advisers (with hospitals or centres)

All types of therapy antended (e 9 physio.musk. atc. in or out of school). with frequency for each

FEATURES OF RETT SYNDROME:use boxes ($1=y$ es, $2=n 0,3=$ don't know) Please discouss these points with your doctor. It an answer is "no" please give briek detaits
a) Was she/he tree from other neurotogical disorders or intumies during devatopment which might have caused ther mertal handicaps? (apart from Ret Syndrome probioms)?

b) Was the development within the normal range for the first few months of lite?

c) Following the initial progress was there deterioration in speech. hand use and personal contact without obvious serious illness?

d) Is there now severe stable mental handicap with minimal use of the hands and speech?
1.1

e) If there repetitive hand moverment (clapping, squeezing or patting)?

f) Is there any difficulty in maintaining an upright posture?

g) Was the head size considered normal in the tirst 4 months? (give it it you can)
-
was she premature (give weeks)?
What was the birth weigtri?
until what age?
/Did s/he ever crawl with hands and knees / feet, tummy off the ground?
From what age?
Did s/he ever sit steadily on the floor without any support?
From what age?

Has the new test for MI:(Y? mutations been donce?
(give the result if you cim)

Where?

GROWTH.
PFease give present welght (kg)
Standing height (cm)

Please measure and write in the lengths from the midline at the base of the neck, along each arm straight to the finger tips (centimeters preferred)

NUTRITION
The foilowing factors may contribute to difficulty in feeding. Please select the degree of difficulty due to each factor which is encountered in feeding this person.


```
SEIZURES (EPILEPTIC FITS)
Have there over been trie seizures? age at first seioure?
Please describe seizures
Do you think they are triggened in some way? by what?
Frequency over the last year (number in a typical day, week or month)?
Has electro encephalography (e.e.g.) been carried out?
Where? By whom?
Report?
BREATHING ABNORMALITY & VACANT SPELLS
Has this person ever hyperventilated (deep, fast breathing)?
If so, at what age did it start?
Does it still happen? (if not say when it stopped)
Did s/he ever hold her breath for long periods?
Al what age did this start?
Does it still happen? (if not say when it stopped)
Have there ever been "funny turns" (vacant spells) which do not appear to be epileptic fits?
When was the most recent of these?
Please describe them and give frequency
```

Do these seem related to the breathing irregularity?
How do you deal with them?

Are the feet cold and blue'?
Constantly?
Occasionally?

(5)

PRESENT SKILLS: use boxes ($1=y 03,2=n 0,3=d o n ' t$ know) \& commont -Underntanding communication: Does his girl or woman understand:--

Does she use real words? (understandable by anyone) please say which and howmany. Are they used in context?
Hand use: Can this person :-
Eat with a spoon or mug unaided?
Eat using fingers unaided?

Help him/herself by using the hands in any way?
Which hand is most useful? \quad Right both the same
Getting about: Can s/he.
Sit without support?

stand unaided?	with support?
walk unaided?	with suppor?

Move about the floor in another way? Describe

(6)

JOINTS AND .POSTURE

Scollosis:

It there has been any curviture of the spine (scoliosis) when first was it noticed?

If anyone has ever given you measurements of the scollosis angle. If so, please give them all with dates or ages.

Please try to draw the PRESENT shape of the spine:
(It will hetp if you can draw the curve you see from behind when this person. is situing, or take a photo for me after marking the central bony points of the spine with washable ink).

Example drawing of back
please make your drawing here
Please state whether you consider the curve NOW to be:-
..- sfight moderate severe

In your opinion does the present scollosis cause her distress or difticulty with the foliowing (not counting difficulties due to a brace):-

Walling?
Stanoing?

Siting?

Lying down?

Eating?

Dhgesting food?

Passing stoots?
Breathing?

Other comments?

Back support Has a back brace or support been worn now or ever? (please describe it çiving dates and/ or durations of uset

(7)

If a brace is wom now, does the brace Hsett cause distress or difficulty during:-
Walking? Standing?

Siting?

Lying down?

Eating?
Drgestingiood?

Passing stoots?
Breathing?

Other comments?

Operatlons:
Has scoliosis (back) surgery been camied out? \quad where?
When? \quad Surgeon's name?

If an operation has been carried out to correct scollosis:-
Did operation alter general well-being for the better? or for the worse? or not at all?

State the effects of surgery on the following stating:- better' or 'worse' or 'no change':-
Weight changes (figures and dates it possible) Changes in lung complaints

Changes in walking
Changes in standing

Changes in sitting
Changes in lying down

Changes in eating
Changes in digestion of food

Changes in passing stools
Effects on the family

(8)

Did the scollosis operation cause other probtems (describe problems \& give durations):During the operation?

Directly after the operation?

Since then?

Has the curve got worse since the operation?

Other joints

Is there displacement of either hip joint:-- right? left?

Can you straighten the hip joints completely: -- right? left?

Can you straighten the knees fully:--- right?
left?

Can you place the feet at right angles to the legs \cdot night? left?

Has there been any surgery to these joints? Which joints? When? Where? Surgeon? Hospital? Did it hep?


```
BEHAVIOUR & MOODS use boxes (1=yes, 2=no, 3=don't know) & comment.
Does this person, have unexplained perlods of excltement or agitation
Please describe them
How often do they occur?
How long do they continue
Does anything bring them on?
Does anything make them worse?
Does anything help?
Does this person have unexplained attacks of sadness
Please describe them
Höw often do they occur?
How long do they continue
Does anything bring them on?
Does anything make them worse?
Does anything help?
Does Injury result from her activitles:
Injury to self (please describe)
What makes this worse?
What reduces it?
Injury to others? (please describe)
Isthe sleep regutarly disturbed ?
At what time (times) of night?
For how long is she awake?
What does s/he do when she wakens during the night?
What do you do when \(s /\) he sakens you at night?
When do you usually put her to bed in the eveningt?
When does s/he usually waken in the morning?
Do you usually waken him/her? or does she usually waken spontaneously?
Doos s/he usually sieep in daytime? at what time(s) of day
for how long? do you waken her or let her waken herself?
```


GENERAL HEALTH:-
Has this person's general health in the last 12 months boen:-good? fair? bad?
Please list all admissions to hospital in the last 12 months
Reason for admission date admitted
date discharged

Please list other episodes of acute illness or longstanding health disorders and which have given trouble in the last year with dates and durations of episodes:Problem date of onset of this episode
duration of episode

Please list all medications in the last 12 months (conventional and unconventional) Condition treated Medication Dose Date started finished

Vision: Has a squint ever been noticed?

at what age (s)
Is this still present?

Has any other visual defect been detected? Are spectacles worn?

Hearing: Does this person have defective hearing?
Please state abnormal tests. it carried out
(In female) Puberty: Has breast fullness appeared?

\[\)| Has pubic hair appeared? | at what age? |
| :--- | :--- |
| Are breast and body hairs fully adult? | at at age? |
| Has menstruation started? | from what age? |
| It started. is it regular? | from what age? |

\]

Family details:-
Please complete, or bring up to date, the family tree on the last page. There is no need to repeat
information already given but please give any new family developments, pregnancies. Births, deaths or
illnesses.

State any major change in circumstances in the care arrangements for this person in the last 12 months

The section below refers to the inclusion of the health information you have provided in the British Isles survey for Rett Syndrome. For more details please read the accompanying information sheet

May I have your permission to ask your doctors and surgoons for further information? Yes/ No
May I share the information with doctors collaborating closely with me in Rett research? Yes / No
My I include this information in scientific publications (separated from names)? Yes/ No
Are you willing for me to keep the health data you have given me on my computer? Yes/ No
1 My computer has no automatic link to any other and none is planned.
Date signed
your relationship to the person
I bavet have not already made a copy of the questionnaire for myself (please do this if you can)
The health information which I hold with the permission of families provides a valuable foundation for research into the causes and treatment of Rett Syndrome because it represents the experience of a large number of girls and women, raises questions which direct much of the research and provides answers to many practical questions regarding the difficulties which girls and families have to deal with, making it possible for me to produce advice for families and professionals.

PLEASE DONT FORGET TO COMPLETE THE FAMMY TREE OW THE BACK OF This sheset on ermig it up to date if You have sent one PREVIOUSLY. Fite te th exmapio to demonatrate how. to comprove n.

APPENDIX E: SUBJECT INFORMATION SHEETS AND CONSENT FORMS

Typical material for recent projects:

Format has varied according to situations and projects

CONSENT FORM for

\qquad date of birth \qquad
Title: The British Isles Survey for Reft Syndrome A descriptive study of Rett disorder throughout life

Please initial the boxes as appropriate and sign below

1. I confirm that I have read and understand the information sheet dated 6.5 2003 for the above study and have had the opportunity
 to ask questions
2. I understand that participation is voluntary and that I am free to withdraw my consent at any time, without giving any reason, without the medical care or legal rights of this person being affected

3. I understand that sectionsof the medical notes of this person may be looked at by responsible individuals working with Dr Alison Kerr where it is relevant to this research. I give my permission for such
 individuals to have access to these records
4. I agree to inclusion of the person named above in this study

| name of the person giving consent | date | signature |
| :--- | :---: | :---: | :---: |

relationship to the individual (narent, or welfare guardian)

Dr Alison Kerr
researcher

signature

I While this is typical material for recent projects the format has varied according to the project and situations

What is the British Survey for Rett Syndrome? The survey for Rett syndrome is the national register of people who have been diagnosed with the Rett Syndrome. For each individual, concise data is stored on a free standing project computer to indicate the health of the individual and the severity of the condition. Any video donated by families expressly for research is also stored in a secure room at Glasgow University.

What is the purpose of the survey? It was formed because it was realised that far too little was known about the condition for effective treatment to be developed. Also the diagnosis was being made in many cases long after the severity of the condition was appreciated, causing great distress among families and uncertainty among professionals. The survey aims to gather concise information for each person on the problems encountered, diagnostic tests, and indications of the health of each person. This accumulated information will give a clearer picture of the life time problems of Rett syndrome and will lead to the formation of further key questions which can find their answers through new research studies. For example we are concerned to chart the early difficulties of babies born with Rett so that the condition can be recognised earlier and can be more effectively supported. We need to know the long term outcome of surgical correction for scoliosis so that informed decisions can be taken when and how to operate.

Abstract

About taking part. The family or carer of every person known to have the disorder is invited to contribute information because it will require large numbers in order to understand the special problems of people of different ages with different levels of severity. For example some people require specialised treatment for scoliosis, feeding difficulties, breathing or heart irregularity. It is only if many peopie contribute information that the usual outcomes of such intervention will become clear so that families and doctors can be offered informed advice on management. Taking part involves completing the enclosed questionnaire with consent for that information to be included with the survey data. If you choose to consult me for clinical advice on Rett syndrome I will request your permission to include any new clinical data with that data. No one is obliged to take part and everyone is free to withdraw from the study at any time. Withdrawal does not in any way restrict your opportunities to seek my advice.

What will happen to the results of the survey? The information gathered will be shared with my closely collaborating professional colleagues and will be presented in a series of scientific publications in which identities will be masked. If a situation is so rare that the identity of the individual might be evident then that family will be offered the choice to refuse participation. Articles based on the survey information will be provided to the Rett Associations

Who is organising and funding the survey? I developed the survey and have conducted it since 1988. The survey itself is not funded and my work on it is voluntary, however the two British Rett Assocations have facilitated my work by providing helpful contact with fanilies and funding my service to them. I receive advice from Professor Angus Clark, geneticist, at Cardiff Institute of Medical Genetics, Dr Bronwen Burford, psychologist, at Glasgow University and Professor Robin Prescott, statistician, at Edinburgh University. Thank you for reading this summary about the project. Please feel free to ask me if you have further questions.

Dr Alison M Kerr OBE FRCP FRCP\&CH

Senior lecturer, honorary consultant in paediatrics and learning disability

 Academic centre, Glasgow University Department of Psychological Medicine Gartnavel Royal Hospital, 1055 Great Western Road, Glasgow G12 0XH
Tel 0141211 0281, fax 357 4899, amk5m@clinmed.ala.ac.uk

questionnaire speech in Rett 04
January 2004

Dear
Re: Speech in Rett
We are reviewing the progress of girls with Rett syndrome who have useful speech because there is so much to be learned from these people and their families which will help in the development of more effective ways to support learning in everyone with Rett.

From your earlier reports we realise that your daughter has been able to use speech meaningfully and we will be very grateful if along with this fresh Rett survey health questionnaire you are willing to answer to some new questions about speech and learning in your daughter. If she can answer simple questions in words or signs it will be helpful if you can explain the questions to her and write down and explain her answers for us - great if she is able to write any answers herself!! Please feel free to add any information you consider relevant - such observations are really welcome. If there are questions which do not apply just put a line through them or comment.
Please return completed the questionnaires to Dr Kerr at the address above.
What we find will be published in a scientific paper with the identity of individuals masked.
We do hope to hear from you but will quite understand if you cannot help.
Yours sincerely,

$$
\text { Alison Kerr } \quad \text { Hayley Archer }
$$

Speech in Rett disorder:

If you can help in the project please complete this permission slip:-
I.
.full name \qquad signature \therefore date
do give my permission for scientific publications to include the information I am providing on speech and learning in people with Rett. I understand that identities will be masked.
Please state your relationship to the person with Rett. \qquad

Dr Alison M Kerr FRCP FRCP\&CH
Senior lecturer, honorary consultant in paediatrics and learning disability Academic centre, Glasgow University Department of Psychological Medicine Gartnavel Royal Hospital, 1055 Great Western Road, Glasgow G12 0XH tel/ans 01412110281 , fax 357 4899, amk5m@clinmed.gla.ac.uk

Dear
Re:
As you may know, since 1982 I have been engaged in research into Rett Syndrome and other disorders with strong clinical similarities. This work relies on my own observations and those of families and professional colleagues and is directed to understand what happens over a life time with the disorder in people with different levels of severity, how the health of the individual is affected by the care provided and the bases for the similarities to other conditions. During the next few years I hope to complete the publication of this collected information. Publications will carry no individual identification.

Although the number of the people reported to have Rett syndrome in the British Survey is now large (over 1000), the number in each subgroup is still quite small, for example those at just one age, those who have had a particular form of medical or surgical treatment or those with any one of the many known mutations on the MECP2 gene. This is why I am continuing to offer the questionnaire. I do appreciate that some families or carers will be unable to agree to assist me.

I will be much obliged if you consider it appropriate to complete the enclosed questionnaire or to pass it on to the family or a colleague who is more directly involved. If you have any questions about the study or about Rett Syndrome I will be glad to try to answer them

With kind regards,

[^7]
Autonomic Assessment for people with Rett Syndrome.

Alison Kerr: Academic Centre, University of Glasgow Department of Psychological Medicine, Royal Gartnavel Hospital, Great Western Road, Glasgow G12 OXH

This is a non-invasive outpatient procedure lasting about two hours. It is directed to measure respiratory rhythm and brain stem regulation of pulse rate and blood pressure. The patient is seated and sensors are placed in contact with the skin. Nothing pierces the skin. All the recordings are viewed continuously on monitors and stored with a time trace for analysis. Families and the referring physician are invited to be present. Patients usually seem to enjoy the event and sometimes fall asleep. The assessment is conducted by Dr Peter Julu, neuro-physiologist, Dr Stig Hansen, senior physicist and an e.e.g. technician.

The e.e.g. is monitored using a light rubber cap with a contact gel injected though holes in the cap. This records the spontaneous electrical activity on the surface of the brain, which is usually abnormal and often epileptogenic in Rett. Breathing movements are measured through a stretch sensitive band round the lower chest and upper abdomen. Thirteen different respiratory rhythms have been described in Rett. Most people with Rett display several of these and there are characteristic changes with age. Blood pressure and pulse are monitored through a finger sensor and heart action is recorded by electrocardiogram. Blood levels of oxygen and carbon dioxide are measured though skin sensors on the chest. Activity is recorded on time-locked video.

The central autonomic (brain stem) control of cardioinhibitory activity is monitored by the NeuroScope which calculates cardiac vagal tone from the e.c.g. R-R intervals, beat by beat. The cardiac vagal tone is expressed in arbitrary units on a linear vagal scale. Taken altogether these measurements allow recognition of the characteristic abnormality of brain stem control in the Rett disorder and provide insight into the effects of that disturbance on the individual being assessed. All measures are displayed on monitors throughout a one hour recording period and stored for later analysis. In Rett, vagal tone is characteristically low, often at neonatal levels and central autonomic regulation of cardio-respiratory function is weak. Several types of non-epileptic vacant spells may occur due to interruption or abnormal activation of brain stem control mechanisms.

On the basis of what is found the family and physician are advised on management. The assessment assists planning of intervention and provides an objective measure of its efficacy. It helps to differentiate epilepsy (also present in about 50% of people wich Rett) from non-epileptic vacant spells which are even more common and readily mistaken for minor or partial epilepsy.

Developed in Glasgow, this neuro-physiological assessment is now offered by Dr Peter Julu at Central Middlesex Hospital, London for people with Rett Syndrome and other conditions involving disordered central cardio-respiratory regulation on referral by the physician. It is also established in the Rett Centre, Sweden, and recently in Sydney, Australia.

Dr Alison M Kerr OBE FRCP RFRCP\&CH

Honorary senior lecturer and consultant in paediatrics and learning disability Academic centre, Glasgow University Department of Psychological Medicine Gartnavel Royal Hospital, 1055 Great Western Road, Glasgow GI2 0XH Tel 01412110281 , fax 357 4899, amk5m@clinmed.gla.ac.uk

I am sending you a copy of the health questionnaire for Rett syndrome and will be very pleased if you can find time and are willing to complete it as far as you can for this person and return it to me at the above address.

As you may know, since 1982 I have been working with the Rett Associations to see and advise people with Rett syndrome and their families and professionals and to carry out research. The research is directed to understand what happens over a life time with the disorder in people with different levels of severity in order to develop more effective support. I am also concerned to find out how the health of the individual is affected by the care already being provided. Although the number of the people in the British Survey is now large (over 1000), the number in each subgroup with special problems or skills is still quite small, for example those at just one age, those with special problems of epilepsy, breathing irregularity or scoliosis, those with speech and those who have had a particular form of medical or surgical treatment. In order to develop more effective support for each person we need to know more about each group of people and this is why I am inviting you to complete the questionnaire.

I do appreciate that some families or carers will be unable to agree to this. Whether you can agree or not please feel free to discuss my request and the questionnaire with your medical advisers and to ask me further questions if you wish.

The results of the survey study will be published in scientific journals and also in the newsletters of the Rett Associations, care being taken to ensure that individual identities are not disclosed.

With kind regards,

Alison Kerr

[^0]: ${ }^{4}$ Modified from Hagberg et al [8].
 ${ }^{6}$ Development may appear to be normal for up co 18 months.

[^1]: *1) Brackets after case numbers give case numbers for our first paper. *2) Figure above the line is end-tidal carbon dioxide in volumes \% (normal >4); below the line is transcutaneous carbon dioxide $m \mathrm{mHg}$ (normal $>35 \mathrm{~mm}$). $* 3$) Active expiratory apnoeic pauses, all included Valsalva-like manoeuvers. *4) \% saturation (normal $>97 \%$). *5,*6,*7,*8) Cases with minor atypical features; *5) Better than expected
 use of hands. ${ }^{* 6}$) Threatened miscarriage in pregnancy *7 and *8) Earlier stereotypic hand movements had almost disappeared. *9) Hyperventilation recorded in the past. *10) Abnormality increased when end-tidal CO_{2} was normal. UR: unreactive EEG, R: reactive EEG. Anticonvulsant drugs: Carbamazepine (cases $2,3,5,8,9,11,12$), sodium valproate (cases 6,14), clonazepam (cases 5,13). NR: not recorded.

[^2]: Values are mean (SEM).
 Number in group $=10$. Breathing rhythws: mean (SEM) per cent of monitored time spent in each rhythm
 Tone type: Number of subjects with hypo(tonia), normal tone, hyper(tonia), and dys(tonia) given.
 Reported eptiepsy: Number in grop Prc/now walking solo: Number of subjects who had walked pre-regres
 CSB, mean sensitivity to baroreflex; CVT, mean cardiac vagal tone.

[^3]: 6.1.3 Onset latencies of motor action potentials following electromagnetic stimulation of the motor cortex in relation to the ages of subjects (Eyre et al 1990) reproduced by kind permission of Journal of Neurology Neurosurgery and psychiatry)

[^4]: Values are given as mean $\pm \mathrm{SE}$
 Significantly different from corresponding control group, *p $<0.05,{ }^{* *}$ p <0.005

[^5]: Figure 1. Scoliosis by age group and severity. Data for some people are recorded in
 more than one age period so that the graph shows the reported severity of scoliosis in these individuals in each age period and not the present age of all of the individuals recorded in the survey.

[^6]: - pallor of S nigra commented upon
 golgi staining of dendritic growth in frontal, temporal, hippocampal. occipital areas (sec text)
 - fetal disperison of AV node. aberrant nodal cells. fatty infiltration of AV node and bundle of his

[^7]: Alison Kerr

