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Abstract

It is well known that at thermal equilibrium (whereby a system has settled into a steady

state with no energy or mass being exchanged with the environment), the microstates of

a system are exponentially weighted by their energies, giving a Boltzmann distribution.

All macroscopic quantities, such as the free energy and entropy, can be in principle

computed given knowledge of the partition function. In a nonequilibrium steady state,

on the other hand, the system has settled into a stationary state, but some currents

of heat or mass persist. In the presence of these currents, there is no unified approach

to solve for the microstate distribution. This motivates the central theme of this work,

where I frame and solve problems in nonequilibrium statistical physics in terms of

random walk and diffusion problems.

The system that is the focus of Chapters 2, 3, and 4 is the (Totally) Asymmetric

Simple Exclusion Process, or (T)ASEP. This is a system of hard-core particles making

jumps through an open, one-dimensional lattice. This is a paradigmatic example

of a nonequilibrium steady state that exhibits phase transitions. Furthermore, the

probability of an arbitrary configuration of particles is exactly calculable, by a matrix

product formalism that lends a natural association between the ASEP and a family of

random walk problems.

In Chapter 2 I present a unified description of the various combinatorial interpretations

and mappings of steady-state configurations of the ASEP. As well as deriving new

results, I bring together and unify results and observations that have otherwise been

scattered in the combinatorics and physics literature. I show that particular particle

configurations of the ASEP have a one-to-many mapping to a set of more abstract

paths, which themselves have a one-to-many mapping to permutations of numbers.

One observation from this wider literature has been that this mapped space can

be interpreted as a larger set of configurations in some equilibrium system. This

naturally gives an interpretation of ASEP configuration probabilities as summations
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of Boltzmann weights. The nonequilibrium partition function of the ASEP is then a

summation over this equilibrium ensemble, however one encounters difficulties when

calculating more detailed measures of this state space, such as the entropy.

This motivates the work in Chapter 3. I calculate a quantity known as the Rényi

entropy, which is a measure of the partitioning of the state space, and a deformation of

the familiar Shannon entropy. The Rényi entropy is simple for an equilibrium system,

but has yet to be explored in a classical nonequilibrium steady state. I use insights

from Chapter 2 to frame one of these Rényi entropies — requiring the enumeration

of the squares of configuration weights — in terms of a two-dimensional random walk

with absorbing boundaries. I find the appropriate generating function across the full

phase diagram of the TASEP by generalising a mathematical technique known as

the obstinate kernel method. Importantly, this nonequilibrium Rényi entropy has a

different structural form to any equilibrium system, highlighting a clear distinction

between equilibrium and nonequilibrium distributions.

In Chapter 4 I continue to examine the Rényi entropy of the TASEP, but now

performing a time and space continuum limit of the random walk problem in Chapter 3.

The resultant problem is a two-dimensional diffusion problem with absorbing boundary

conditions, which once solved should recover TASEP dynamics about the point in the

phase diagram where the three dynamical phases meet. I derive a generating function,

sufficiently simple that its singularities can be analysed by hand. This calculation

entails a novel generalisation of the obstinate kernel method of Chapter 3: I find a

solution by exploiting a symmetry in the Laplace transform of the diffusion equation.

I finish in Chapter 5 by introducing and solving another nonequilibrium system, termed

the many-filament Brownian ratchet. This comprises an arbitrary number of filaments

that stochastically grow and contract, with the net effect of moving a drift-diffusing

membrane by purely from thermal fluctuations and steric interactions. These dynamics

draw parallels with those of actin filament networks at the leading edge of eukaryotic

cells, and this improves on previous ‘pure ratchet’ models by introducing interactions

and heterogeneity in the filaments. I find an N -dimensional diffusion equation for the

evolution of the N filament-membrane displacements. Several parameters can be varied

in this system: the drift and diffusion rates of each of the filaments and membrane, the

strength of a quadratic interaction between each filament with the membrane, and the

strength of a surface tension across the filaments. For several interesting physical cases

I find the steady-state distribution exactly, and calculate how the mean velocity of the

membrane varies as a function of these parameters.
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Lay summary

Statistical physics endeavours to explain the tangible, collective observables of a system

(such as its energy) by looking at how the system behaves on average at a microscopic

level. In this thesis, I investigate the statistical physics of systems that have some

sort of outside force applied, but have been given a long time to settle, known as

nonequilibrium steady states. The statistical physics method for completely isolated

equilibrium systems have been known since the late 1800’s. The inclusion of an outside

force, however, introduces surprisingly large complexity to the underlying mathematics,

and these nonequilibrium steady states are being solved — that is, the microscopic

details are ascertained — on a case-by-case basis, often with much difficulty.

One such system that forms the basis of a lot of this work is called the “asymmetric

simple exclusion process”. This has dynamics not dissimilar to that of vehicles on a

single-lane, one-way road: particles enter from one end, move along a line, and leave

from the other end. This is nonequilibrium as there is a flow of particles, and is one of

few such systems that have been solved. In this work I use the mathematical formalism

that solves this traffic-like system to deeper explore the microscopic details, thinking

about the system as a representation of some more abstract mathematical structure.

Using this structure, I find some new properties of the process, and highlight ways in

which this model is fundamentally different to any isolated equilibrium system.

I then look at a second system, called the “many-filament Brownian ratchet”. This

model comprises a large number of growing and shrinking rods that act together

to displace a membrane, not by pushing it, but instead by ratcheting it. This is

nonequilibrium because the system as a whole is moving over time, but in this work we

show that it is in fact possible to solve this system — and crucially, determine how fast

the membrane will move — even when the filaments are interacting with one another.

This system draws parallels with cell movement in living organisms, where one observes

polymer networks growing and shrinking to move cell membranes, at the microscopic

level.
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Chapter 1

Introduction

1.1 Overview

In a physical system, macrostates are quantities that can be directly observed.

Examples of macrostates include energy and volume, which are measurable using

standard laboratory devices. However, knowledge of these observables does not give

the observer an understanding about the underlying physics of the system in question.

For this, one must investigate the finer details of the system, specifically the system’s

microstates. A microstate, or configuration, is an exact description of every individual

component of a system, and even a system with modest complexity will have an

incomprehensibly large number of accessible microstates. Statistical mechanics is the

analysis of microstates, in order to explain the measured values of different macroscopic

variables.

The process of determining the macroscopic behaviour of an equilibrium system is now

a standard technique. We begin with the most simple example: a system A in thermal

equilibrium with a large heat bath B. On average, no net heat is being transferred

between A and B, and the total energy E = EA + EB is constant. The microstates of

the combined system AB obey the principle of equal a priori probability : at equilibrium,

every accessible microstate is equally probable. This leads to a statistical definition of

temperature in the full system [4]:

T =
∂EA

∂(kB logWA)
=

∂EB

∂(kB logWB)
(1.1)

with kB = 1.3806JK−1 the Boltzmann constant, andWA, WB the number of microstates
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of A and B with energies EA, EB respectively. Suppose we are interested in the state

of A only, specifically the probability P of finding system A in a particular microstate

C, with energy E(C), taking no interest in the state of the bath. Using our definition

of a temperature, one derives the famous result

P(C) =
1

Z
exp

(
−E(C)
kBT

)
(1.2)

where

Z =
∑
C

exp

(
−E(C)
kBT

)
(1.3)

is the equilibrium partition function [4]. At a glance this is an innocuous normalisation

factor, but from the definition of the Gibbs-Shannon entropy [5] it is in fact closely

related to the free energy F = 〈E〉 − ST :

S = −kB
∑
C
P(C) logP(C) (1.4)

= −kB
∑
C
P(C)

(
log

1

Z
− E(C)
kBT

)
(1.5)

= kB logZ +
〈E〉
T

(1.6)

F = −kBT logZ . (1.7)

Using Maxwell’s relations — the set of equations that relates all macroscopic

thermodynamic quantities in terms of partial derivatives of one another — Eq. (1.7)

serves as a gateway for which all macroscopic statistics of the system can be derived [4].

While it remains impossible to determine the exact microstate at any point in time,

the equilibrium statistical mechanics approach gives us a complete understanding of

the macroscopic properties of the system.

This formalism was established on the assumption that there was no net transfer of

heat or mass between systems A and B. Nature, however, is rarely this accommodating.

Real-world systems are often entirely characterised by currents of mass or heat, such

as the flow of cars in traffic, radiation from a hot object, or self-induced motility

in biological systems. These all fall into a larger family of nonequilibrium regimes.

In general these systems have no notion of a statistical temperature (as we had in

Eq. (1.1)), and the principle of equal a priori probability does not hold [6].

Without this standard approach, we are compelled to look at a more general master

equation formalism for the microstate probabilities P(C). A master equation is not a
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closed-form solution for P, but rather an expression that describes the time evolution

of P as a function of the various dynamics in the system. The principle aim, then,

is to solve the master equation for P. However, this is in general a very challenging

problem. A subset of these nonequilibrium systems settle in the long time limit into a

nonequilibrium steady state. In this state, while currents still persist, the probability

distribution has stabilised. This introduces a simplification to the master equation, as

we can eliminate any time dependence. The work in this thesis falls within this subset

of solvable nonequilibrium steady states.

In this chapter, we take an exploration of the physical and mathematical themes

that are central to the work around nonequilibrium steady states, and techniques we

will use to learn more about them. Naturally, we begin by formalising the master

equation approach to solving nonequilibrium systems in Section 1.2, and highlight the

simplification that arises in the steady state.

In Section 1.3, we focus on a specific system called the (totally) asymmetric simple

exclusion process, or (T)ASEP [7]. The model comprises a one-dimensional lattice

of particles hopping from left to right, and is among the simplest nonequilibrium

processes one could devise. What is remarkable, then, is that the solution that this

model admits has embedded a deep, intricate mathematical structure that is yet to be

fully understood, despite it being known for nearly thirty years. We will introduce this

model, and in particular discuss the matrix product formalism; this is the mathematical

approach that solves the steady-state master equation. Using this formalism we

then perform some introductory calculations, including the nonequilibrium partition

function.

The partition function is a measure of the probability distribution of the ASEP,

explicitly the sum of weights of all possible microstates. Another, more intricate

measure of the probability distribution is the entropy. Usually the ‘entropy’ refers

to the Gibbs-Shannon entropy that we saw in Eq. (1.4), as a measure of information.

In the context of nonequilibrium steady states, however, we are interested in what is

known as Rényi entropy [8]. This is a generalisation of the Gibbs-Shannon entropy,

and we discuss its properties in Section 1.4.

We shall see that a calculation of the Gibbs-Shannon entropy of the ASEP would

entail a very complicated enumeration problem (unlike the equivalent problem in an

equilibrium system). On the other hand, it turns out the Rényi entropy of the TASEP

is more analytically tractable. By a particular interpretation of the matrix product

formalism, we can interpret whether a site is occupied or not in terms of the different
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directions a random walker can move. This allows us to write the Rényi entropy as

a random walk problem, and is an example of a running theme in the thesis as a

whole: the solving of statistical physics problems by writing them as enumerations of

random walks, and solving those random walks. In order to prepare us for formulating

and solving these problems, we describe in Section 1.5 how a random walk problem is

written using the master equation formalism, and the procedure of taking continuum

limits to reduce the walk to a diffusion in continuous time.

As well as in the ASEP, this random walk formulation proves crucial in Chapter 5, where

we investigate another system entirely. We call this a many-filament Brownian ratchet,

and is a network of growing and shrinking filaments, interacting with a constraining

fluctuating membrane. Over time, this system exhibits a phenomenon which we term

ratcheting : the membrane moves at a velocity (and perhaps direction) different to

its natural drift, exclusively due to steric interactions with the filaments and thermal

fluctuations, with no work being done to push the membrane [9]. Despite being an

interacting many-dimensional system, we are able to find cases where the underlying

algebra dramatically simplifies and makes the steady state exactly solvable. We find

this by writing the steady state as a random walk problem, relating to the separations

between the membrane and each of the filaments.

For random walks that can not be obviously solved directly, another common and

very successful approach is to use generating functions. These are functions that have

a desired quantity (e.g. a total number of walks of a certain length) embedded as

coefficients of the series expansion in another conjugate variable [10]. We introduce

these functions in Section 1.6, as well as the mathematical formalism and notation we

use for writing, solving and inverting them, as well as using them to perform asymptotic

analyses. In later chapters we analyse several physical quantities by calculating and

analysing their corresponding generating functions.

We finish this literature review in Section 1.7 by returning to the ASEP, and taking a

more detailed look at the matrix product formalism. Specifically, we make three simple

observations of the matrix product formalism. These all allude to a deeper, underlying

mathematical interpretation, which turns out to be combinatorial in nature. This

serves as a preliminary to Chapter 2, where we present and formalise the steady-state

distribution in finer detail.
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Figure 1.1 The TASEP. Particles enter at rate α, hop right at rate 1, and exit at rate
β. The exclusion property means that particles can not overtake each other.

1.2 Nonequilibrium steady states and the master equation

Given a set of configurations C, we define the probability of observing a system in

a particular C at time t as P(C, t). This probability obeys a master equation, which

describes how the configuration probability changes as a function of time. This equation

will depend on the transition rates R(C → C′) at which the system can change from a

given configuration to another [11–13]:

∂tP(C, t) =
∑
C′ 6=C
P(C′, t)R(C′ → C)−

∑
C6=C′
P(C, t)R(C → C′) . (1.8)

This equation comprises gain terms of the form P(C′, t)R(C′ → C) — a product of the

probability of being in C′, and the rate at which the microstate moves into C from C′.
Similarly the loss terms P(C, t)R(C → C′) are products of the rate of moving away

from C to some other C′, and the probability of being in C to begin with. A steady-state

distribution is the solution to the master equation in the case ∂tP(C, t) = 0, assuming

the distribution stabilises in the long time limit.

In the master equation (1.8) we have assumed that the space of configurations C is

discrete. This will indeed be the case for the ASEP (which has 2N configurations

corresponding to binary occupation variables for each of the N sites), but for the

Brownian ratchet which forms the basis of Chapter 5 we find the configuration is

specified by a set of displacements, in a continuous space. In turn there is a formalism

for writing these gain and loss terms in a continuous system [12], see Section 1.5.3.

1.3 The asymmetric simple exclusion process

We now specify the dynamics and important properties of the asymmetric simple

exclusion process (ASEP). The ASEP is a stochastic, open 1D system, defined on

a lattice of N sites (Figure 1.1, and later Figure 1.4). This system has consistently

attracted interest since the latter half of the 20th century as a simple model of driven

diffusion [14–16], interface growth [17, 18] and biological transport [6, 15, 19]. In this
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work we focus on the single-lane, single-particle variant. This has turned out to be

a seminal model upon which a variety of generalisations have been introduced and

studied, including models with multiple classes of particle [20–25], lattices with defects

[26–29], and generalised update procedures [30–35].

In the ASEP, particles are introduced from a left reservoir at rate α when the first

site of the lattice is available, and make unit hops left and right stochastically, at rates

q ≥ 0 and 1 respectively. Particles are then absorbed from the right-most site of the

lattice by a right reservoir at rate β. The exclusion property forbids particles from

overlapping or overtaking.

In the long time limit, this traffic-like system approaches a nonequilibrium steady state.

This steady state is characterised by a stabilisation in the time-averaged left-to-right

current of particles, which we denote J , and a density profile (〈τ1〉, 〈τ2〉, . . . 〈τN 〉), where

〈τi〉 is the time-averaged occupation of site i.

We begin with a detailed analysis of the totally asymmetric system (TASEP, Figure 1.1),

and later in Section 1.3.5 introduce the symmetric (q = 1) and partially asymmetric

(0 < q < 1) systems (PASEP, SSEP respectively, Figure 1.4). These three systems are

variants of one another, with different particle hopping rates.

1.3.1 Matrix product ansatz

A TASEP configuration is written C = (τ1, τ2, . . . τN ), where τi = 1 if site i is occupied,

and τi = 0 if it is not. In the original work [36], Derrida, Evans, Hakim and Pasquier

make the ansatz that the steady-state probability of observing the TASEP in a given

configuration C is described as an inner product of vectors with an ordered product of

matrices:

P(C) =
〈W |

∏N
i=1Xi(τi)|V 〉
ZN

, (1.9)

where Xi(τi) is a matrix representation of the occupation of site i. The 〈W | and |V 〉
are vectors, that reduce the product to a scalar. ZN is the system-size-dependent

normalisation factor that we will see can be interpreted as a nonequilibrium partition

function.

Given this ansatz, what remains is to find appropriate forms of Xi, 〈W |, |V 〉, by

analysis of the master equation. It turns out that when occupied sites are given a

matrix representation Xi(1) = D, and vacant sites a representation Xi(0) = E, the
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master equation is satisfied when the matrices obey the following reduction relations:

D|V 〉 =
1

β
|V 〉 , (1.10)

〈W |E =
1

α
〈W | , (1.11)

DE = D + E , (1.12)

〈W |V 〉 = 1 . (1.13)

This is a quadratic algebra [37] that is able to reduce any string of D and E matrices

into a summation of normal-ordered terms 〈W |E . . . ED . . .D|V 〉, that can be directly

evaluated, to find the weight of any configuration in the steady state as a function of

α, β.

In the original work, the authors demonstrate that probabilities of the matrix product

form in Eq. (1.9) give a set of microstates for which ∂tW(C) = 0, given that the

representations D, E, 〈W |, |V 〉 satisfy the reduction relations (1.10)–(1.13). Note

that this does not make all configurations equally likely, only their probabilities

remain stationary. We omit the full algebraic proof of Eq. (1.9) and the reduction

relations (1.10)–(1.13), but present an example of writing the master equation for a

particular configuration.

Suppose C = (0, 1, 0, 1, 0). This is a 5-site system with two particles at sites i = 2, 4.

Using the matrix product form of the weights in Eq. (1.9), the steady-state weight of

C is obtained by using the reduction relations (1.10)–(1.13):

W(01010) = 〈W |EDEDE|V 〉 (1.14)

= 〈W |(EDED + EDEE)|V 〉 (1.15)

= 〈W |(EDD + EED + EDE + EEE)|V 〉 (1.16)

= 〈W |(EDD + EED + ED + EE + EEE)|V 〉 (1.17)

=
1

αβ2
+

1

α2β
+

1

αβ
+

1

α2
+

1

α3
. (1.18)

These weights are dependent on α, β only, as they are the only parameters in the

system that can be varied.

Configuration C evolves in accordance with the master equation (1.8). We make this

explicit by writing all out all configurations that are one particle jump away from C
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Figure 1.2 The six configuration transitions that either enter (top row), or exit (bottom
row) C = (0, 1, 0, 1, 0).

(See Figure 1.2):

∂tW(01010)

=W(01100) +W(10010) +βW(01011)−W(01010)−W(01010)−αW(01010)

(1.19)

where the rates R = α, β, 1 for particles that enter, leave and move through the system

respectively. The positive gain terms refer to the configurations that enter C with a

single jump, and the negative loss terms are from the ways of leaving C. Using this,

the master equation is given in matrix product form:

∂tW(01010) = 〈W |EDDEE|V 〉+ 〈W |DEEDE|V 〉+ β〈W |EDEDD|V 〉

− 〈W |EDEDE|V 〉 − 〈W |EDEDE|V 〉 − α〈W |EDEDE|V 〉 . (1.20)

Using Eqs. (1.10)–(1.13), one can eventually show this sum of matrix product terms to

be zero. The weight is therefore stationary, and the steady-state weight of C is indeed

given by Eq. (1.18).

1.3.2 Explicit matrix representation

We have so far used the reduction relations (1.10)–(1.13) in a formal way to calculate

configurational weights — that is, without reference to any explicit representation of

the matrices D and E, and the vectors 〈W | and |V 〉, but simply using how they relate

to one another. One can go on to calculate physical observables, such as the current and

density profile, in this way [36]. However, it is often helpful to write out D, E, 〈W |, |V 〉
explicitly. With one trivial exception (see Section 1.3.4), no finite-size matrices obey

relations (1.10)–(1.13) and we instead resort to semi-infinite representations, of which
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several are known. For our purposes, the most useful representation is [36]

D =



1 1 · · · · ·
· 1 1 · · · ·
· · 1 1 · · ·
· · · 1 · · ·
...

...
...

...
. . .


, E =



1 · · · · · ·
1 1 · · · · ·
· 1 1 · · · ·
· · 1 1 · · ·
...

...
...

...
. . .


, (1.21)

with the boundary vectors

〈W | =
√

1− ab
(
1, b, b2, b3, . . .

)
, |V 〉 =

√
1− ab

(
1, a, a2, a3, . . .

)T
. (1.22)

Here we have employed the shorthand

a =
1− α
α

, b =
1− β
β

. (1.23)

Notice that the representations of D and E in Eq. (1.21) are reminiscent of quantum

mechanical ladder operators [38]; these matrices may act on a state ket

|n〉 = (0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . . )T (1.24)

to transform it into a superposition of |n〉 and |n± 1〉:

D|n〉 = |n〉+ |n− 1〉 , E|n〉 = |n〉+ |n+ 1〉 . (1.25)

This observation is the genesis of several random walk interpretations that we associate

to the TASEP in this work.

1.3.3 TASEP partition function

The nonequilibrium partition function

ZN =
∑
C
W(C) (1.26)

= 〈W |(D + E)N |V 〉 (1.27)

is a sum of the weights of the 2N TASEP configurations of length N , as the binomial

expansion of (D + E)N yields all permutations of {D,E}N . As well as normalising

configuration weights, the analytic properties of the nonequilibrium partition function
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are, much like its equilibrium counterpart, indicative of the phase dynamics of the

system, and allows us to calculate macroscopic quantities.

For the TASEP, ZN is exactly calculable via the matrix product formalism. For now,

we quote this result from Ref. [36]:

ZN =
N∑
p=1

p∑
q=0

p(2N − p− 1)!

N !(N − p)!

(
1

α

)q ( 1

β

)p−q
. (1.28)

See Section 1.6.2 for a full derivation of ZN , in the context of generating functions.

1.3.4 Phase diagram

The formula for ZN in Eq. (1.28) is exact, but it is not clear how the function scales

for large values of N . In Section 1.6.3 we discuss how we can derive this via generating

functions, but for now we quote the scaling obtained directly from analysis of Eq. (1.28)

in Ref. [36]:

ZN ∼


β(1−2α)

(β−α)(1−α) [(α(1− α)]−N (i) if α < 1/2, α < β

α(1−2β)
(α−β)(1−β) [β(1− β)]−N (ii) if β < 1/2, β < α

4αβ(α+β−1)√
π(2α−1)2(2β−1)2

4NN−
3
2 (iii) if α, β > 1/2 .

(1.29)

We see three different regions in the α–β plane where ZN has different asymptotic

scaling behaviour. When N is large, then, we expect the functional form of ZN to

change sharply when moving across the boundary between two regions. We identify

these sharp changes as dynamical phase transitions. We term these three phases the (i)

low density (LD), (ii) high density (HD) and (iii) maximal current (MC). These phases

are characterised by nonanalytic changes in the bulk density profile 〈τi〉 and current J .

These phases converge at the tricritical point α = β = 1/2.

Let us calculate the steady-state current J . As J is constant across every site in the

system, we are free to calculate it as the current through site N . This is a product of

the site-N density 〈τN 〉 and the rate β at which particles leave site N [36]:

J =
β〈W |(D + E)N−1D|V 〉
〈W |(D + E)N |V 〉

(1.30)

=
〈W |(D + E)N−1|V 〉
〈W |(D + E)N |V 〉

(1.31)

=
ZN−1

ZN
(1.32)
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which is the ratio of two partition functions for TASEPs of size (N−1), and N . Taking

the asymptotic forms of ZN in Eq. (1.29), we find for J

J ∼


α(1− α) LD

β(1− β) HD

1/4 MC .

(1.33)

We present the phase diagram of the TASEP in Figure 1.3, accompanied with typical

density profiles 〈τi〉. For any site i, the average occupation is exactly calculable by the

matrix product approach (see Ref. [36] for more details and exact results) as:

〈τi〉 =
1

ZN
〈W |(D + E)i−1D(D + E)N−i|V 〉 (1.34)

which is a sum of probabilities over all configurations where site i is occupied. The

profile is dependent on α, β and the system size N . It can be shown that the bulk

densities seen away from the boundaries approaches α, (1 − β) and 1/2 in the LD,

HD and MC phases respectively, with the tails of the profiles taking different forms in

different phases — see Ref. [7] for a more comprehensive discussion.

We see in the structure of the phase diagram in Figure 1.3 a symmetry along the line

α = β. This is a manifestation of a more general particle-hole symmetry in this system

that equally applies to the PASEP and SSEP: the dynamics of particles moving to

the right are identical to the dynamics of holes moving to the left [7]. The system of

particles moving left-to-right though the lattice is identical to a system of holes moving

from right to left, with an entry rate β and exit rate α. In this regard, the high density

phase is the counterpart, for holes, of the low density phase and the low density phase

is the counterpart, for holes, of the high density phase. Evidence of this particle-hole

symmetry is in the manifest α–β symmetry in the partition function in Eq. (1.28) and

in turn the particle current in Eq. (1.30) (as the current of particles to the right is equal

to the current of holes to the left).

We also mention that higher-order correlations can be written using the matrix product

formalism as per Eq. (1.34). For example, the second order 〈τi1τi2〉 (with i1 > i2) is

given by [39]

〈τi1τi2〉 =
1

ZN
〈W |(D + E)i1−1D(D + E)i2−i1−1D(D + E)N−i2 |V 〉 . (1.35)
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Figure 1.3 Left: phase diagram of the TASEP with overlay of current. Right: example
density profiles.

Factorisation line

There is one line in the phase diagram, α + β = 1, where the matrix product algebra

simplifies significantly. Along this line, the matrix product of 〈W |(DE−ED)|V 〉 is [40]

〈W | (DE − ED) |V 〉 = 〈W | (D + E − ED) |V 〉 (1.36)

=
1

β
+

1

α
− 1

αβ
(1.37)

=
1

αβ
(α+ β − 1) = 0 (1.38)

thus, when between a 〈W | and |V 〉, D and E can be treated as commuting scalars in this

specific case. Here, configuration probabilities follow a Bernoulli distribution [41], and

any calculations involving the matrix product formalism are trivial. We refer to this as

the factorisation line. The tricritical point α = β = 1/2 lies on this line, where every

configuration has equal probability. This line will prove useful as a consistency check

for later calculations we perform over the whole phase diagram; upon fixing α = β = 1,

we should always recover this trivial Bernoulli measure.

1.3.5 The partially asymmetric and symmetric simple exclusion processes

We are also interested in two generalisations of the TASEP. These are termed the

partially asymmetric and symmetric simple exclusion processes (PASEP and SSEP

respectively).

The PASEP assumes the same dynamics as the TASEP, with the additional feature
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Figure 1.4 The PASEP.

that particles may also hop left at a rate q, except at the left-most site (Figure 1.4).

Like the TASEP, the steady-state distribution of this system is exactly calculable by a

matrix product approach. However, the resultant reduction relations have an additional

factor of q compared to relations (1.10)–(1.13) [36]:

D|V 〉 =
1

β
|V 〉 , (1.39)

〈W |E =
1

α
〈W | , (1.40)

DE = qED +D + E , (1.41)

〈W |V 〉 = 1 . (1.42)

This q-generalisation introduces significant algebraic complexity [42–44], and as a

result the partition function of the PASEP is rather complicated (see Ref. [42] for

details). However, several macroscopic quantities can still be derived, including the

phase diagram (Figure 1.5) [42]. One finds that there are still three main dynamical

phases, but now the tricritical point is at α = β = (1− q)/2. Notice that in the limit of

q → 1, the tricritical point moves to α = β = 0, and there are no phase transitions. In

this limit — the SSEP — particles have no directional preference when making jumps

in the bulk. While the q-general case is technically challenging, many calculations

simplify when q = 1, as we later see in this section with the partition function.

Explicit matrix representation

Like our discussion in Section 1.3.2, the reduction relations (1.39)–(1.42) can be used in

a formal way to calculate physical quantities in the PASEP. However it is often useful

to have an explicit matrix representation of these matrices, of which several are known.
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Figure 1.5 Phase diagram of the PASEP.

The following is a generalisation of the representation in Eqs. (1.21), (1.22) [7, 42, 45]:

D =
1

1− q



1
√

1− q · · · · ·
· 1

√
1− q2 · · · ·

· · 1
√

1− q3 · · ·
· · · 1 · · ·
...

...
...

...
. . .


, (1.43)

E =
1

1− q



1 · · · · · ·
√

1− q 1 · · · · ·
·

√
1− q2 1 · · · ·

· ·
√

1− q3 1 · · ·
...

...
...

...
. . .


, (1.44)

with the boundary vectors

〈W | = κ

(
1,

a√
1− q

,
a2√

(1− q)(1− q2)
,

a3√
(1− q)(1− q2)(1− q3)

, . . .

)
,

(1.45)

|V 〉 = κ

(
1,

b√
1− q

,
b2√

(1− q)(1− q2)
,

b3√
(1− q)(1− q2)(1− q3)

, . . .

)T
.

(1.46)
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κ is a normalisation factor defined such that 〈W |V 〉 = 1, and we use the shorthand (a

q-generalisation of Eq. (1.23))

a =
1− q − α

α
, b =

1− q − β
β

. (1.47)

In this representation, recover Eqs. (1.21), (1.22) by setting q = 0. These indi-

vidual representations diverge as q → 1, however any scalar product of the form

limq→1〈W |DEDDE . . . |V 〉 is well-defined, and gives the correct SSEP configuration

weight. Other representations are possible, see Ref. [7]. Like in Section 1.3.2, one

can draw a parallel between this matrix representation and, in this case, the ladder

operators for a q-deformed quantum harmonic oscillator, a fact that was exploited in

References [42, 45] to calculate physical properties for the PASEP.

Partition function of the SSEP

We now calculate the partition function of the SSEP. We present perhaps the most

straightforward of several approaches [46–48], following that of Vanicat in Ref. [47].

We first write ZN

ZN = 〈W |CN |V 〉 = 〈W |(D + E)CN−1|V 〉 (1.48)

where C ≡ D+E. We now use Eq. (1.41) to derive the following commutation property

for q = 1

[D,C] = D(D + E)− (E +D)D (1.49)

= C (1.50)

which implies that DC = C(D + 1). Repeating this (N − 1) times gives

DCN−1 = CN−1(D +N − 1) (1.51)

which we insert into Eq. (1.48) and apply the reduction relations (1.39)–(1.42)

ZN = 〈W |CN−1(D +N − 1)|V 〉+ 〈W |ECN−1|V 〉 (1.52)

=

(
1

α
+

1

β
+N − 1

)
ZN−1 . (1.53)
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Given that Z0 = 〈W |V 〉 = 1, this recursion is easily solved to give

ZN =
Γ
(

1
α + 1

β +N
)

Γ
(

1
α + 1

β

) (1.54)

with Γ(x) = (x− 1)! the usual gamma function. Using Stirling’s approximation [10] we

can straightforwardly write the asymptotic expansion of ZN as

ZN ∼
√

2π

Γ
(

1
α + 1

β

)N− 1
2

(
1
α + 1

β +N

e

)(
1
α

+ 1
β

+N
)
. (1.55)

The partition function for the SSEP here and the partition function for the TASEP

(Eq. (1.28)) measure the size of the state space of the 2N configurations of particles

and holes. In this work we are particularly interested in more intricate measures of the

probability distribution, relating to the partitioning of these state spaces. This leads

us naturally onto a discussion of one such measure, known as the Rényi entropy, which

we introduce in a more general manner, away from exclusion processes.

1.4 Rényi entropy

Suppose we have a system with a set of M accessible configurations, {C}, with

associated probabilities {P(C)}, normalised so that
∑
C P(C) = 1. From this, one

can construct the familiar Gibbs-Shannon entropy that we saw in Eq. (1.4) [49]:

S = −
∑
C
P(C) logP(C) ,

that specifies the level of microscopic uncertainty implied by the system macrostate. It

is easy to show that Eq. (1.4) has several properties that one would postulate a measure

of uncertainty to have [50–52]:

1. S(p, 1− p) is continuous on p ∈ [0, 1];

2. S(p1, . . . pM ) is symmetric on exchanging any two pi;

3. S is minimised with a distribution {P(C)} = (1, 0, . . . 0);

4. S is maximised with a distribution {P(C)} = (1/M, . . . 1/M);
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5. S(p1, . . . pM−1, tpM , (1 − t)pM ) = S(p1, . . . pM ) + pMS(t, 1 − t), a “grouping”

property which implies:

(a) S(P1 ? P2) = S(P1) + S(P2).

This final property is additivity : for two independent systems with joint distribution

P1 ? P2, the total entropy is the sum of the entropies of the two individual systems,

isolated. Furthermore, it can be shown that the Gibbs-Shannon entropy is the only

measure that satisfies all of these properties [8, 53, 54].

This leads us to the Rényi entropy [8]. Rényi entropy is a deformation of the Gibbs-

Shannon entropy, where a new parameter λ tunes the sensitivity of the function to the

details of the probability distribution. It is defined as

Hλ =
1

1− λ
log
∑
C
P(C)λ . (1.56)

Although valid for any base of logarithm, we use the natural logarithm in this work.

1.4.1 Properties of the Rényi entropy

Structurally, Eq. (1.56) is similar to the Gibbs-Shannon entropy: for any positive λ it

satisfies Postulates 1–4, and the weaker postulate 5(a) [8]. We can recover the Gibbs-

Shannon entropy from Eq. (1.56) in the limit λ→ 1:

lim
λ→1

Hλ = lim
λ→1

log
∑
C P(C)e(λ−1) logP(C)

1− λ
= −

∑
C
P(C) logP(C) = S . (1.57)

The Rényi entropy is a nonincreasing function of λ: for λ1 > λ2, Hλ1 ≤ Hλ2 . Knowledge

of H0 and any Rényi entropy Hλ>1 then gives upper and lower bounds on the Gibbs-

Shannon entropy [55, 56].

While the Gibbs-Shannon entropy is the only measure that satisfies the full set of

postulates, the Rényi entropy is a more general function of how the state space is

divided amongst the set of microstates (perhaps more succinctly put as the partitioning

of the partition function). By increasing λ, Hλ places more weight on more probable

configurations, which is made clear with two extreme cases. First, H0 is simply the

logarithm of the number of configurations with a nonzero probability, and H∞ is a

measure of only the largest probability in the set {P(C)} (or probabilities in the presence

of degeneracies) [52]. Thus, by knowing Hλ for different values of λ, the Rényi entropy

probes finer details of a probability distribution than the Gibbs-Shannon entropy alone.
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The exponential of the Rényi entropy is

eHλ =

[∑
C
P(C)λ

] 1
1−λ

. (1.58)

To interpret this, consider two extremes of the probability distribution. For a system

whereby a single configuration has probability 1, eHλ = 1. Conversely, for a system with

M equally likely configurations, eHλ = M . Thus we interpret eHλ as an effective number

of configurations or, equivalently, a measure of how localised the system is within its

configuration space. In ecology, the effective numbers in Eq. (1.58) are known as Hill

numbers [57] and give measures of the diversity of a biological community [58, 59].

The λ = 2 case of Eq. (1.56) is the focus of Chapters 3 and 4. We therefore make this

explicit here:

H2 = − log
∑
C
P(C)2 . (1.59)

This is often referred to in the literature as the collision entropy [60], and the

corresponding effective number

eH2 =
1∑

C P(C)2
(1.60)

as the inverse participation ratio [61, 62] (or in the context of diversity of a biological

system, Simpson’s reciprocal index [63]). This is a commonly used measure of quantum

localisation of a wavefunction ψ, where P(C)2 = |ψ|4 [64, 65].

1.4.2 Rényi entropy at equilibrium

For an equilibrium system, we saw in Eq. (1.2) that microstate probabilities are

exponentially weighted by their energy, normalised by a partition function Z(T ), now

making the temperature dependence explicit. In this case, the Rényi entropy is readily

calculable for all λ as [66]

Hλ =
1

1− λ
log

1

Z(T )λ

∑
C

e
−λE(C)

kBT (1.61)

=
1

1− λ
log

Z(Tλ )

Z(T )λ
. (1.62)

Intriguingly, Hλ involves the ratio of two partition functions Z(T ), Z(T/λ) at different

temperatures. Equivalently, using the definition of equilibrium free energy in Eq. (1.7),
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Hλ is proportional to the free energy difference between the two temperatures,

Hλ =
F (T/λ)− F (T )

kBT (1/λ− 1)
. (1.63)

We can interpret F (T/λ) − F (T ) as the amount of work one can extract from the

system between these two temperatures [66].

This form of the entropy has consequences for equilibrium systems that exhibit phase

transitions. Suppose there is a transition at some temperature T = T ∗. Then, in

the thermodynamic limit, there is a nonanalyticity in the partition function Z(T ∗).

Consequently, in Eq. (1.62) we will find not just the usual nonanalyticity at the critical

temperature T ∗, but also a secondary transition at T = λT ∗, away from the critical

temperature. These particular properties of Hλ rely on the fact that the temperature

T appears as the linear argument of an exponential function in the statistical weights.

With any deviation away from such a distribution — as occurs in a nonequilibrium

steady state — Eq. (1.62) may no longer apply. As such we consider the equilibrium

Rényi entropy as a special case.

Given this particular property, we are interested in how the Rényi entropy manifests in

the case of a classical nonequilibrium steady state, where the probability distribution

is well-defined but there is no notion of a temperature. This is the motivation behind

the work we present in Chapters 3 and 4, where we calculate the Rényi entropy of the

TASEP, being a paradigmatic example of such a system. This calculation requires

writing the sum of configuration weights in terms of a random walk problem. In

preparation for this, we now present a discussion of the formulation of random walk

problems.

1.5 Random walks and diffusion processes

A random walk is a stochastic process whereby a walker (say, a particle) takes steps,

where each step is sampled from a distribution of possible steps. Note that the walk

can be in an arbitrary number of spatial dimensions. In a given time period, a single

manifestation of a walk can not be predicted, but the full ensemble of walks has well-

defined statistics. Here, we are interested in how the probability distribution — the

probability of finding a random walker at a certain place at a certain time — is expressed

as a function of the mechanics of the walk. Given a description of a walk, we will see how

to formalise and write master equations that the underlying probability distribution

must obey. For the scope of this thesis we may assume Markov-like dynamics, that is
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Figure 1.6 Three types of one-dimensional random walks: (i) Discrete time, discrete
space; (ii) Continuous time, discrete space; (iii) Continuous time,
continuous space.

the current step is independent of any previous steps.

The random walk is a standard mathematical model of stochastic dynamics, with a

scope well beyond what we discuss here. The pedagogical introduction we provide here

— including the continuum limit of a random walk — echoes those presented in, for

example, References [67–71].

A random walk can be specified over continuous or discrete time and distance scales.

In this thesis we will encounter three different types of walk:

� Discrete time, discrete space: steps are guaranteed to occur at fixed time intervals.

At each interval, the step is randomly sampled from a known distribution. These

steps move the walker from one lattice site to another;

� Continuous time, discrete space: steps occur stochastically at known rates. These

steps move the walker from one lattice site to another;

� Continuous time, continuous space: a diffusion-like process takes place, with

infinitessimally small steps — not on a lattice — taken over infinitesimally small

time periods. A classic example of this is Brownian motion.

Furthermore, the walker may possibly only be defined within a restricted region of

space. If there are regions in space that a walker can not access, one must specify how

it behaves when it comes to a boundary that separates a valid region from an invalid

one. In this thesis we will encounter two types of boundary:

� Absorbing : if a walker makes a step that takes it into an invalid region, then the

walk terminates at the point it crossed the boundary, and may not return;

� Reflecting : on the instant that the walker touches the boundary, the walk

dynamics instantaneously change so as to force the walker to move along or away

from the boundary.
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Although we encounter three different types of walk in this thesis, we will always begin

to formulate our master equations from a discrete time, discrete space walk. In order

to then obtain equations in continuous space and/or time, we will take what is known

as a continuum limit of the discrete walk. We introduce a spacing between lattice sites

and/or time intervals, and then take the limit of these spacings being small, such that

the length and/or time scale can be interpreted as continuous. In this section we will

present a comprehensive example of taking a continuum limit in space and time, which

we will refer back to in later sections. Our example walker will be in a 2D space, but

the principles straightforwardly extend to arbitrary dimension, as we discuss further in

Chapter 5.

1.5.1 Setting up a random walk

Let us define a 2D random walker in the discrete space (i1, i2). Suppose that over each

of a total of N discrete intervals, this walker can make any lattice step sampled from the

step set {↗, ↓, ←}. This walk that we use as an example is known as a Kreweras walk

[72]. This step set has an associated probability distribution {p↗, p↓, p←} that sums

to unity: p↗+p↓+p← = 1. Furthermore, the walker must remain in the upper-quarter

plane of the space: i1 ≥ 0, i2 ≥ 0. These dynamics are illustrated in Figure 1.7, left.

We would like to find

P(i1, i2;N) ≡ P
(
i1, i2| i(0)

1 , i
(0)
2 ;N

)
(1.64)

which we define as the probability of finding the walker at position (i1, i2), given it

started at some initial position (i
(0)
1 , i

(0)
2 ) and has taken N steps.

First consider the situation where i1 > 0, i2 > 0, away from the boundaries, which we

define as the bulk. The master equation that P obeys in the bulk is independent of

any boundary conditions. The probability of finding the walker at (i1, i2) after (N + 1)

steps can be written as a sum of all possible ways of entering it, on the (N + 1)th step:

P(i1, i2;N + 1) =

p↗P(i1 − 1, i2 − 1;N) + p←P(i1 + 1, i2;N) + p↓P(i1, i2 + 1;N) . (1.65)

This is a master equation, comprising the probabilities of being at positions one step

away from (i1, i2), multiplied by the probability of making the appropriate step to get

to (i1, i2). It is a recursion relation on the two coordinates (i1, i2) and the step count N .
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Figure 1.7 The continuum limit of a lattice walk in discrete time (left) yields a diffusion
in continuous time and space (right).

1.5.2 Boundary conditions

The bulk master equation (1.65) does not apply when the walker is on a boundary. This

is because when either of i1 or i2 = 0 the master equation would include ill-defined

probabilities (specifically P(−1, i2;N), P(i1,−1;N), P(−1,−1;N)). The equations

that describe P on the boundary then depend on whether the boundaries are absorbing

or reflecting.

Absorbing boundary conditions

Let us first consider the case of absorbing boundaries. Here, the walker behaves no

differently on the boundaries as it does in the bulk, and can take any step from its

original step set. However, if such a step takes it to either i1 = −1 or i2 = −1, then it

is absorbed and the walk finishes. The boundary conditions are then simply written

P(−1, i2;N) = P(i1,−1;N) = 0 . (1.66)

This has the consequence of the ‘loss’ of probability from the valid region over time as

walks are absorbed:

∑
i1≥0

∑
i2≥0

P(i1, i2;N) ≤ 1 . (1.67)
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Reflecting boundary conditions

We now take the case where the mechanics of the walk are changed upon reaching a

boundary, so as to prevent the walker from crossing it. Unlike the absorbing case, there

are a multitude of ways of changing the dynamics to force this [73–76]. In this example,

we will change the dynamics such that any step that would take the walker past the

boundary is replaced by a non-movement step, and instead the walker remains in place.

This forces the walker to move either along or away from the boundary, which can be

interpreted as reflecting.

For our specific example, this manifests as a non-movement with probability p← on

the i1 = 0 boundary, a non-movement with probability p↓ on the i2 = 0 boundary,

and a non-movement with probability (p← + p↓) at i1 = i2 = 0. These three modified

dynamics introduce three new equations that the probability distribution must satisfy:

P(0, i2;N + 1) = p←P(1, i2;N) + p↓P(0, i2 + 1;N) + p←P(0, i2;N) , (1.68)

P(i1, 0;N + 1) = p←P(i1 + 1, 0;N) + p↓P(i1, 1;N) + p↓P(i1, 0;N) , (1.69)

P(0, 0;N + 1) = p←P(1, 0;N) + p↓P(0, 1;N) + (p↓ + p←)P(0, 0;N) . (1.70)

In this regime, the quadrant probability remains constant:

∑
i1≥0

∑
i2≥0

P(i1, i2;N) = 1 , ∀N (1.71)

as walks continue indefinitely without being absorbed.

1.5.3 Continuum limit

The bulk recursion relation (1.65) is written in terms of a discrete length of walk N

and a discrete lattice (i1, i2). Over each unit, a step is chosen from the probability

distribution {p↓, p←, p↗}. Suppose now we want to investigate the random walk

where, instead of steps occurring at discrete intervals, steps occur stochastically at

prescribed average rates. For this, we take the continuum limit of Eq. (1.65) in N .

Time continuum limit

The walk so far has been defined by a number of steps N . To associate a time-like

scaling to this walk, we introduce a continuous spacing λ with dimensions of time, such
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that steps occur every time an interval λ has elapsed. We then define τ as the total

elapsed time after N steps:

τ = Nλ . (1.72)

We are free to write the probability P in terms of this new variable τ :

P(i1, i2;N) −→ P(i1, i2; τ) . (1.73)

We now take this time spacing λ to be small. We can write the probability of having

taken one more step from τ as P(i1, i2; τ + λ). If we treat λ as small, we can make the

approximation

P(i1, i2; τ + λ) ≈ P(i1, i2; τ) + λ∂τP(i1, i2; τ) +O(λ2) . (1.74)

We can apply this approximation to the bulk equation (1.65) to obtain

P(i1, i2; τ) + λ∂τP(i1, i2; τ) +O(λ2) =

p↗P(i1 − 1, i2 − 1;N) + p←P(i1 + 1, i2;N) + p↓P(i1, i2 + 1;N) . (1.75)

Having introduced this spacing λ, we now introduce a new set of variables r, defined

such that

pi = λri . (1.76)

ri is interpreted as a rate: if step i occurs with probability pi, then the step is occurring

at mean rate ri, as the step set is sampled at each time interval λ. In order to prevent

these rates from diverging as λ → 0, we alter the probabilities such that they no

longer sum to unity, and a step does not always occur after every interval. Now, the

walker will take one of the three steps with respective probabilities {p↓, p←, p↗} =

{λr↗, λr→, λr↓}, but can also not move, with probability 1− λ(r↗ + r→ + r↓). With

these dynamics, Eq. (1.75) reads

P(i1, i2; τ) + λ∂τP(i1, i2; τ) +O(λ2) =

λr↗P(i1 − 1, i2 − 1;N) + λr←P(i1 + 1, i2; τ) + λr↓P(i1, i2 + 1; τ)

+ (1− λ[r↗ + r→ + r↓])P(i1, i2; τ) . (1.77)
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We find cancellation at O(λ0). Eliminating a common factor of λ and then taking the

limit as λ→ 0, we acquire an equation in continuous time:

∂τP(i1, i2; τ) = −(r↗ + r↓ + r←)P(i1, i2; τ) + r↗P(i1 − 1, i2 − 1; τ)

+ r←P(i1 + 1, i2; τ) + r↓P(i1, i2 + 1; τ) . (1.78)

This continuum equation describes the time evolution of P(i1, i2; τ) in terms of the

rates at which probability current flows in and out of (i1, i2). This is precisely the form

of Eq. (1.8) with gain and loss terms. This approach is equally applied to equations

that describe dynamics on the boundary.

Space continuum limit

Eq. (1.78) is still defined on a discrete lattice. We now introduce continuous spatial

variables to this walk. This follows the same setup as the time limit. We first assume

that sites on our 2D lattice are separated by distance a, where a is a new variable with

dimensions of length. We then define (x1, x2) as spatial variables that describe the

displacement of (i1, i2) from the origin, given this lattice spacing:

x1 = i1a , x2 = i2a . (1.79)

We are free to write the probability in terms of these new coordinates

P(i1, i2; τ) −→ P(x1, x2; τ) . (1.80)

We rewrite Eq. (1.78) in terms of these new variables

∂τP(x1, x2; τ) = −(r↗ + r↓ + r←)P(x1, x2; τ) + r↗P(x1 − a, x2 − a; τ)

+ r←P(x1 + a, x2; τ) + r↓P(x1, x2 + a; τ) . (1.81)

If we treat this length scale a to be small, we can make the following Taylor expansions:

P(x1 ± a, x2; τ) =

(
1± a∂1 +

1

2
a2∂2

1

)
P(x1, x2; τ) +O(a3) , (1.82)

P(x1, x2 ± a; τ) =

(
1± a∂2 +

1

2
a2∂2

2

)
P(x1, x2; τ) +O(a3) . (1.83)
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After some algebra, we find that, for small a, Eq. (1.81) may be written

∂τP(x1, x2; τ) = a [(r← − r↗) ∂1 + (r↓ − r↗) ∂2]P(x1, x2; τ)

+
1

2
a2
[
(r↗ + r→) ∂2

1 + (r↗ + r↓) ∂
2
2 + 2r↗∂1∂2

]
P(x1, x2; τ) +O(a3) (1.84)

or alternatively as a matrix product

∂τP(x1, x2; τ) = a
(
r← − r↗, r↓ − r↗

)( ∂1

∂2

)
P(x1, x2; τ)

+
1

2
a2 (∂1, ∂2)

(
r↗ + r← r↗

r↗ r↗ + r↓

)(
∂1

∂2

)
P(x1, x2; τ) +O(a3) . (1.85)

As in the time continuum limit, we will introduce parameters that are scaled by the

spacing a, then take the limit a → 0. However, this time we are compelled to retain

both O(a) and O(a2) terms in Eq. (1.85). To see this, consider the case where the step

rates are equal: r← = r↗ = r↓. Then, the leading order terms on the right-hand side

of Eq. (1.84) vanish, and we would be left with ∂τP = O(a2). To obtain a well-defined

expression for P then, we must make the following assumption on the rates [70]:

r← − r↗ = O(a) , (1.86)

r↓ − r↗ = O(a) . (1.87)

We can then define a set of parameters that scale with the lattice spacing a:

µ = a

(
r← − r↗
r↓ − r↗

)
, S =

a2

2

(
r↗ + r→ r↗

r↗ r↗ + r↓

)
. (1.88)

µ has dimensions of length/time, and can be interpreted as a deterministic drift velocity

vector. The stochastic element of the walk is seen in S: the entries of S have dimensions

of length2/time. This is interpreted as a diffusivity, or a rate of change of squared

displacement. We term S a diffusion matrix.

We incorporate these new parameters into Eq. (1.81) and take the limit a→ 0 to give

∂τP(x1, x2; τ) =
(
µ · ∇+∇ · (S∇)

)
P(x1, x2; τ) . (1.89)

To summarise, Eq. (1.89) is a diffusion equation, and is the time and space continuum

limit of the original master equation (1.65). From the form of the parameters in

Eq. (1.88), it is straightforward to see how this method generalises for other step sets
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(different entries in µ, S), and higher dimensionality (for an N -dimensional walk, µ, S

are of size (N × 1), (N ×N) respectively). Note that for any dimension, the diffusion

equation remains second order — any higher-order terms are suppressed.

This same continuum limit method can be applied to the boundary dynamics, say

Eqs. (1.68)–(1.70), to find the appropriate continuum limit boundary conditions. For

reflecting boundaries the equations turn out to be only first order in space. We will

see an example of this in Chapter 5, Section 5.2.2, where in fact this property of the

boundary conditions allows us to exactly solve the steady-state diffusion problem.

Using this formalism we are able to clearly define a set of equations that the probability

distribution for a random walk must satisfy. The challenge, however, is in solving the

set of equations. One tool that we will use in this thesis is known as the generating

function. We now discuss the basic principles of these functions, and the formalism we

adopt for later analysis.

1.6 Generating functions and asymptotic analysis

Take an infinite sequence of terms (A0, A1, A2, . . . ), where successive AN are linked by

some relation (e.g. AN+1 = 2AN + 3). A common problem one may encounter is as

follows: given we know a recursion relation between different AN and a known value to

iterate from (e.g. A0 = 1), how do we find a closed-form expression for AN? We saw

an example of this in Eq. (1.65), albeit a recursion in three variables.

These problems can often be tackled by generating functions. Instead of finding AN

directly, one aims to calculate the (closed-form) function defined by

F(z) =
∑
N≥0

zNAN (1.90)

= A0 + zA1 + z2A2 + z3A3 + . . . (1.91)

where the coefficient of zN in the formal series expansion of F(z) is AN . As a trivial

example, for the sequence of terms (1, 1, 1, . . . ), the generating function is F(z) =

(1− z)−1 = 1 + z + z2 + z3 + . . . .

Two challenges then arise: first, in calculating F(z) from the recursion relation (if

possible), which we will illustrate by an example. Secondly, the inversion of F(z) to

extract a general expression for the coefficient AN , or the asymptotic analysis to find

the scaling behaviour of AN as N becomes large.
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Figure 1.8 A Dyck path.

1.6.1 Generating function calculation — a simple example

For this short example we take the opportunity to introduce Dyck paths, which turn

out to be very closely related to the TASEP (see Section 1.7.2).

A Dyck path is a path comprising an arrangement of N up steps (‘↗’) and N down

steps (‘↘’), starting and terminating at zero, without crossing below zero. Note that

the first step must be an up step, and the final step a down step.

We would like to find CN , the number of possible Dyck paths that can be drawn of

length 2N (we take 2N as the total number of steps must be even). Let us define the

generating function of CN

F(z) =
∑
N≥0

zNCN . (1.92)

We can define a recurrence relation for CN from a self-similarity property in the

structure of a Dyck path: any Dyck path of length 2(N + 1) can be written as an

up step, followed by a Dyck path of length 2k, a down step, then a second Dyck path

of length 2(N − k). k can take values from 0 to N . This leads to the recursion relation

for the number of paths CN+1 [77]:

CN+1 =

N∑
k=0

CkCN−k . (1.93)

We now multiply both sides through by zN , sum over allN , and with some manipulation
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of the summation indices obtain

∑
N≥0

CN+1z
N =

∑
N≥0

N∑
k=0

CkCN−kz
N (1.94)

1

z

∑
N≥0

CN+1z
N+1 =

∑
k≥0

∑
N≥k

CkCN−kz
N (1.95)

1

z

∑
N≥0

CNz
N − C0

 =
∑
k≥0

∑
N ′≥0

CkCN ′ z
N ′+k . (1.96)

Given that C0 = 1, this is written in terms of the generating function

F(z) = xF2(z) + 1 (1.97)

which is solved to give

F(z) =
1−
√

1− 4z

2z
. (1.98)

We take the negative sign of the square root to ensure C0 = 1. The coefficients in

the expansion of F(z) about zero are the number of Dyck paths that can be drawn of

increasing lengths. In this simple example, the coefficients CN can be found exactly

from the formal expansion of F(z), and turn out to be the familiar Catalan numbers [10]

F(z) = 1 + x+ 2x2 + 5x3 + 14x4 + . . . (1.99)

=
∑
N≥0

1

N + 1

(
2N

N

)
zN . (1.100)

To summarise this exercise, while the recurrence relation (1.93) did not offer an obvious

solution, the generating function obeyed a simple relation in Eq. (1.97) that permitted

direct solution.

1.6.2 Generating function of the TASEP partition function

With our knowledge of generating functions, we now return to the TASEP and derive

the partition function, as we previously stated without calculation in Eq. (1.28). We

use a neat approach shown by Depken [78]: first, define the generating function of

Eq. (1.27) as Z:

Z(z) =
∑
N≥0

〈W |(D + E)N |V 〉zN . (1.101)
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Noticing the geometric series in powers of z(D + E), we rewrite this as

Z(z) = 〈W | 1

1− z(D + E)
|V 〉 . (1.102)

Now we use the reduction relation DE = D + E from Eq. (1.12) to find the relation

(1− ηD)(1− ηE) = 1− η(D + E) + η2DE (1.103)

= 1− η(1− η)(D + E) . (1.104)

Solving z = η(1− η)⇒ η(z) = 1
2(1−

√
1− 4z),

Z(z) = 〈W | 1

1− η(z)E

1

1− η(z)D
|V 〉 (1.105)

=
1

1− η(z)
α

1

1− η(z)
β

(1.106)

= 1 +

(
1

α
+

1

β

)
z +

(
1

α
+

1

β
+

1

α2
+

1

β2
+

1

αβ

)
z2 + . . . (1.107)

taking the negative root of η(z) to ensure Z(0) = 1. The coefficient of zN in the series

expansion (1.107) of Z(z) is the N -site TASEP partition function, Eq. (1.28).

Formal expansion

We must now formally expand Z(z). Let us define {zN}F(z) as “the coefficient of

zN in the Taylor expansion of F(z)”. Taking Z, a power series of the denominator of

Eq. (1.106) gives

Z(z) =
∑
q≥0

∑
q′≥0

(
1−
√

1− 4z

2z

)q′+q ( z
α

)q ( z
β

)q′
. (1.108)

This form allows us to use a known result from the mathematical literature (Eq. (2.5.16)

in Ref. [10]), which is derived by a general binomial expansion:

(
1−
√

1− 4z

2z

)ζ
=
∑
k≥0

ζ(2k + ζ − 1)!

k!(ζ + k)!
zk (1.109)

with ζ = q + q′ to rewrite

Z(z) =
∑
q≥0

∑
q′≥0

∑
k≥0

(q′ + q)(2k + q′ + q − 1)!

k!(q′ + q + k)!
zk
(
z

α

)q( z
β

)q′
(1.110)
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which is now an explicit power series in z. To find the coefficient {zN}Z(z), we impose

the parameter restriction q′ + q + k = N , fixing q′ = N − k − q

ZN = {zN}Z(z) (1.111)

=

N∑
k=0

N−k∑
q=0

(N − k)(N + k − 1)!

N ! k!

(
1

α

)q ( 1

β

)N−k−q
. (1.112)

Finally, a variable change N − k = p recovers Eq. (1.28):

ZN =
N∑
p=1

p∑
q=0

p(2N − p− 1)!

N !(N − p)!

(
1

α

)q ( 1

β

)p−q
.

1.6.3 Asymptotic analysis of a generating function

In Chapters 3 and 4 we calculate generating functions that do not admit an obvious

formal series expansion. For these, we instead use asymptotic methods to establish how

the coefficients AN scale as N grows large. Here we state the outcomes of asymptotic

analysis of a generating function, following formalism laid out in Ref. [10].

For a function F(z) as defined in Eq. (1.90), the leading-order asymptotic scaling of

AN is determined by the value of z closest to the (complex) origin, z∗, such that F(z∗)

is nonanalytic [10].

For the case of this being a first order (or simple) pole, we perform a series expansion

about this pole to acquire

F(z) =
g−1

z − z∗
+
∑
j≥0

gj(z − z∗)j (1.113)

where g−1 is the residue of the pole, and gj are higher-order coefficients in the

expansion. This expansion can be shown to imply the following asymptotic scaling

of the coefficients AN :

AN ∼ −
g−1

z∗
(z∗)−N . (1.114)

In the case of a branch point — a discontinuous imaginary contribution — being the

first singularity, a series expansion about z∗ yields an imaginary term:

F(z) = ihk(z − z∗)k +
∑
j≥0

hj(z − z∗)j (1.115)
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where k is non-integer and hk is real. In this case, the coefficients AN scale as

AN ∼
hk (z∗)k

Γ(−k)
N−(k+1)(z∗)−N . (1.116)

As a short example, let us return to our Catalan number generating function in

Eq. (1.98). The first singularity here is a branch point at z∗ = 1/4, about which a

series expansion gives

1−
√

1− 4z

2z
= 2− 4i(1− 4z)

1
2 +O (1− 4z) . (1.117)

This corresponds to an asymptotic form in Eq. (1.116) with k = 1/2, hk = −4:

CN ∼
(−4)(1/4)

1
2

Γ(−1/2)
N−(1/2+1)(1/4)−N =

4N
√
πN3/2

. (1.118)

Similarly, one can perform an asymptotic analysis of the TASEP partition function

generating function, Eq. (1.106), to recover the asymptotic scaling stated in Eq. (1.29).

In this case (and as we will encounter in Sections 3.6, 4.2.2, and 4.4), there is an

additional complication as the dominant singularity changes for different values of α,

β. This in turn leads to the three dynamical phases.

1.7 Combinatorics in the ASEP

In Chapter 2 we will show how the ASEP state space has an intricate combinatorial

structure arising from the matrix product formalism. Having now introduced the ASEP

and the formalism behind random walks, as a preliminary to Chapter 2 we end with

some simple observations of the ASEP that allude to a deeper combinatorial structure.

1.7.1 Combinatorial factors in α = β = 1 SSEP and TASEP partition

functions

First, in Section 1.3.5, we saw the result in Eq. (1.54) for the partition function of the

SSEP:

ZN =
Γ
(

1
α + 1

β +N
)

Γ
(

1
α + 1

β

) .
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In the case α = β = 1, this expression reduces to

ZN = (N + 1)! . (1.119)

In other words, the sum of (integer) weights of the 2N SSEP configuration weights is

(N + 1)!. This suggests that the configuration space of the SSEP with α = β = 1 can

be related to a uniform distribution over the space of permutations. In Section 2.3 we

will see that this is the case.

We now turn to the TASEP (the case q = 0). Although the underlying ASEP reduction

relation DE−qED = D+E (Eq. (1.41)) simplifies when setting q = 0, evaluation of the

partition function proves more challenging in the case of general α and β. Nonetheless,

we found from a formal expansion of its generating function in Section 1.6.2 the result

[7, 78, 79]

ZN =
N∑
p=1

p(2N − p− 1)!

N !(N − p)!

p∑
q=0

(
1

α

)q ( 1

β

)p−q
.

This time, setting α = β = 1 reduces the partition function to

ZN =

N∑
p=1

p(p+ 1)(2N − p− 1)!

N !(N − p)!
(1.120)

=
2

N

N∑
p=1

(
p+ 1

2

)(
2N − p− 1

N − 1

)
(1.121)

=
2

N

(
2N + 1

N + 2

)
(1.122)

=
(2N + 2)!

(N + 2)!(N + 1)!
(1.123)

=CN+1 (1.124)

where we have evaluated the sum using the Chu-Vandermonde identity [80]

∞∑
p=−∞

(
p+ a

c

)(
b− p
d

)
=

(
a+ b+ 1

c+ d+ 1

)
. (1.125)

CN+1 is the (N + 1)th Catalan number, the number sequence we saw in Section 1.6.1,

relating to an enumeration of Dyck paths. These numbers are very well-known in

combinatorics in general, solving at least 60 counting problems [81].

We can also obtain this Catalan number result rather directly from the explicit matrix

representation, when we write them in terms of ladder operators. First, let us denote a
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ladder operator as g, and state kets |n〉 from Eq. (1.24) with the following properties:

g|n〉 = |n− 1〉, g†|n〉 = |n+ 1〉, |−1〉 = 0, and 〈n|k〉 = δnk. From this, and on

setting α = β = 1, the explicit matrix representations of D and E detailed in

Section 1.3.2, Eq. (1.21) can be written

D = 1 + g , E = 1 + g† . (1.126)

Using this, we can then write the following recursion relation for C = D + E when

acting on a state bra 〈n|

〈n|CN |m〉 = 〈n− 1|CN−1|m〉+ 2〈n|CN−1|m〉+ 〈n+ 1|CN−1|m〉 . (1.127)

As |0〉 = (1, 0, 0, . . . )T is the ground state, we have the boundary conditions

〈−1|CN |m〉 = 〈n|CN |−1〉 = 0 . (1.128)

It is simple to check that this recursion and boundary conditions are satisfied by [36]

〈n|CN |m〉 =

(
2N

N + n−m

)
−
(

2N

N + 2 + n+m

)
. (1.129)

Furthermore, for α = β = 1 the vectors 〈W |, |V 〉 (Eq. (1.22)) reduce to 〈0|, |0〉
respectively. To convert Eq. (1.129) to an expression for the TASEP partition function,

then, we set n = m = 0 to arrive at

ZN = 〈0|CN |0〉 =

(
2N

N

)
−
(

2N

N + 2

)
= CN+1 . (1.130)

To summarise, for two different variants of the ASEP the results (1.119), (1.124) give

two number sequences (N+1)! = 1, 2, 6, 24, 120, 720, . . . and CN+1 = 1, 2, 5, 14, 42, 132, . . .

that are ubiquitous in enumerative combinatorics.

1.7.2 TASEP partition function in terms of bicoloured Motzkin and Dyck

paths

The second observation is a connection between the TASEP and enumeration problems

concerning Dyck paths and what are known as bicoloured Motzkin paths [79, 82, 83].

Let us write the partition function in Eq. (1.130) with ladder operators reinstated:

ZN = 〈0|(2 + g + g†)N |0〉 . (1.131)
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Figure 1.9 A bicoloured Motzkin path (left), and its equivalent Dyck path (right).

We can interpret this as an enumeration of paths. Specifically, Eq. (1.131) is the number

of walks in the nonnegative plane that start and return to the origin coordinate 0, with

N steps from the set {↗, ↘, ×, · }: ↗ and ↘ arise from the ladder operators g†, g

respectively, and ‘×’, ‘·’ are distinct non-movement steps from the ‘2’ term. These are

bicoloured Motzkin paths.

To recall, Dyck paths comprise only up and down unit steps, starting and ending at

the origin without going below zero. Each Dyck path of length 2(N + 1) is equivalent

(that is, maps one-to-one) to a bicoloured Motzkin path of length N and vice versa.

To transform a Motzkin path to a Dyck path we associate to:

� each × an up step followed by a down step (↗,↘) ;

� each · a down step followed by an up step (↘,↗) ;

� each ↘ two down steps (↘,↘) ;

� each ↗ two up steps (↗,↗) ;

and finally bookend each walk an with up and down step. See Figure 1.9 for an example.

We have seen that the number of Dyck paths of length 2N is the Catalan number

CN [81, 84]. To see this directly (that is, without calculating a generating function)

note that the total number of paths that start and terminate at zero is
(

2N
N

)
. The

number of invalid paths—paths that cross below zero—is counted by reflecting these

paths about the axis at the point they first hit −1. These reflected paths all terminate

at −2 (Figure 1.10), and the total number of such paths is
(

2N
N−1

)
. The number of

valid paths is then
(

2N
N

)
−
(

2N
N−1

)
= 1

N+1

(
2N
N

)
= CN .

For the case α = β = 1, each of these paths are equally weighted. Therefore the

partition function ZN is just an enumeration of all valid paths and is equal to CN+1,

consistent with Eq. (1.124).
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Figure 1.10 Left: a Dyck path, consisting of equal numbers of up steps and down steps
such that the path never goes below 0. Right: a walk that starts and ends
at 0, but goes below, and its reflection about the point it first touches −1,
which then terminates at −2.

1.7.3 Ballot numbers and the one-transit walk

The third observation, staying with the TASEP, is that the partition function in

Eq. (1.28) contains the combinatorial factor

BN,p =
p(2N − p− 1)!

N !(N − p)!
. (1.132)

This is sometimes referred to as a ballot number [82, 85, 86], and is the solution to the

following enumerative problem: the number of Dyck paths that can be drawn of length

2N that return to the origin exactly p times (including the final return). An example

of this is shown in Figure 1.11.

Now, for each of these walks with p returns, we create a set of (p + 1) walks whereby

the walk is inverted about zero at the qth return, taking q = (0, 1, . . . p), again see

Figure 1.11. Now, finally we associate to each of these new inverted walks a factor of

(1/α)q(1/β)p−q. By this construction, these walks can return to the origin multiple

times, and cross it at most once. Such walks have been considered in the context of the

TASEP in Ref. [82] and is called a one-transit walk. A weight 1/α is applied to each

return from above, and 1/β to each return from below. Summing the weights over all

such walks then gives the TASEP partition function in Eq. (1.28) [79, 82].

In this picture, we see very clearly the connection to an equilibrium partition function

over an extended configuration space. Recall that in the TASEP, there are 2N

configurations of particles and holes. The corresponding set of one-transit walks

contains CN+1 configurations, which exceeds 2N : this is clearly seen in Eq. (1.118).

Each walk has a weight that can be interpreted as a Boltzmann factor; rewriting

α̃ = lnα, β̃ = lnβ, the weight for a walk with given p and q can be written as

e−qα̃−(p−q)β̃. Summing over multiple such Boltzmann-like weights gives the TASEP

partition function, Eq. (1.28).

As we further discuss in Section 2.2, the mapping from TASEP configurations to one-
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Figure 1.11 Dyck paths and one-transit walks. The first row illustrates the three Dyck
paths with 2N = 8 steps and p = 3 returns. The second row illustrates the
four one-transit walks corresponding to the first Dyck path: the Dyck path
inverted at each return to make a set of p + 1 = 4 one-transit walks, each
with associated weights.

transit walks and other combinatorial objects is one-to-many. That is, while each

walk can be uniquely identified with a TASEP configuration, the converse is not true.

Another way to look at this is as the TASEP defining a partitioning of an extended

configuration space. The partition function is invariant under this partitioning. Other

measures such as entropies, however, are sensitive to it. We investigate this in more

detail later in Chapter 3, Section 3.7.1 where we compare the Rényi entropy of the

one-transit walk to the TASEP.

The three observations in this section point to a deeper underlying combinatorial

structure of the matrix product solution to the ASEP stationary state. Now, we will

formalise and develop equivalent combinatorial interpretations of the matrix product

weights. See Figure 1.12 for a schematic illustration of the mappings between these

interpretations.
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Figure 1.12 Schematic of the combinatorial mappings to be outlined in Chapter 2. An
example ASEP configuration (left column) has a one-to-many mapping to
certain “dominated paths” (middle column), which themselves appear to
have a one-to-many mapping to permutations of numbers that follow certain
rules (right column).
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Chapter 2

Combinatorial mappings of

exclusion processes

2.1 Orientation

In Chapter 1 we saw how the ASEP admitted exact solution in the steady state by

a matrix product approach. Upon fixing the parameters α = β = 1, with increasing

system size we see the emergence of various number sequences in expressions of the

partition function. Some of these we have already seen, and include:

� factorials n! (which count permutations);

� Eulerian numbers
〈
n
k

〉
(which count subsets of permutations [87]);

� Catalan numbers Cn (which count a variety of objects, including the number

Dyck paths);

� ballot numbers Bn,k (which count subsets of Dyck paths);

� Narayana numbers T (n, k) (which count different subsets of Dyck paths to ballot

numbers [88]).

These number sequences are ubiquitous within enumerative combinatorics. Why should

so many combinatorial sequences arise in a nonequilibrium physics problem?

The main contribution of this chapter is a collection and unification of mathematical

results that are scattered across the literature, in order to answer this question.
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We have already seen in Section 1.7 some features of the ASEP that allude to

a combinatorial structure. Here, by an analysis of explicit representations of the

matrix product formalism, we will see the existence of one-to-many mappings from

arrangements of particles in the ASEP to elements of some larger set of objects (often,

but not exclusively, paths on a lattice). The combinatorial factors outlined above then

correspond to various ways of counting these objects. Moreover, known results for these

counting problems can be used to obtain physical results for the ASEP, sometimes

more quickly than within the matrix product formalism. Using these problems we

present some novel derivations for quantities in the ASEP, a highlight being the TASEP

partition function in the form of a determinant of an (N ×N) matrix.

An interesting property of the mapping is that the weights associated with the objects

in the larger space tend to be rather simple combinations of model parameters and can

be interpreted as Boltzmann weights. The weight of an ASEP configuration is obtained

by summing over the weights of a subset of objects in the larger space, which yields an

interpretation of nonequilibrium weights as sums of equilibrium weights.

As implied in Section 1.7.1, we see the combinatorial structure is at its clearest in the

α = β = 1 TASEP where Catalan numbers arise. The case α = β = 1, q = 0 is the

focus of Section 2.2, where we show a mapping between nonequilibrium configurations

and path enumeration problems, in particular a dominated path interpretation, which is

new. In Section 2.3 we discuss a combinatorial problem of permutations that the SSEP

(q = 1) maps to. In Section 2.4 we show how these mappings generalise to the full α,

β, q parameter space. One can associate a q-dependent weight to the permutations of

Section 2.3, thus generalising to the PASEP. It then remains to encode the other two

parameters α, β into these mappings, which we discuss in Section 2.4.4.

2.2 α = β = 1 TASEP

Of all the different variants of the exclusion process introduced in Chapter 1, the

α = β = 1 TASEP proves to be the most analytically tractable system as the weights

of configurations are integers. We outline a one-to-one mapping between configurations

of the TASEP and a class of length-N paths, and introduce a measure of dominance

[89–91] to find the weight of the configuration. This mapping proves equivalent to

several others, including to Motzkin paths which arises naturally from the explicit

matrix representation (1.43)–(1.46) in the discussion of Section 1.7.2. We frame the

state space in terms of the path dominance mapping, as the translation from TASEP
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Figure 2.1 Left: the path T with the three equivalent specifications (2.2), (2.3) and (2.4).
Right: two paths T , T ′. Here, T dominates T ′.

configuration to path is simple in this case and offers an intuitive link between the

weight of a configuration and the area its path encloses.

2.2.1 Mapping to a dominated path problem

Consider the set of discrete paths T ∈ {↑,→}N that begin at (0, 0), and end at (Q,P ),

with P +Q = N steps in total. The total number of paths is

N∑
P=0

(
N

P

)
= 2N . (2.1)

A path T can be defined by its set of steps. For example, the path shown in Figure 2.1,

left, can be specified as

T = (↑, ↑, →, ↑, →, ↑, →, →, →) . (2.2)

Alternatively we can specify, for each value of the x-coordinate (0, 1, . . . Q) the maximal

y-coordinate of the path. For the path T above, we would have

y(T ) = (2, 3, 4, 4, 4, 4) . (2.3)

Equally, we could specify the maximal x-coordinate for each value of the y-coordinate

(0, 1, . . . P ):

x(T ) = (0, 0, 1, 2, 5) . (2.4)

41



Figure 2.2 The weight of the path (↑, ↑,→,→) is 6, as 6 distinct paths can be drawn
within its perimeter.

With this formalism established, we can now define what is meant by dominance [89–

91]. Take two paths T , T ′ which both terminate at (Q,P ). T dominates T ′ (denoted

T � T ′) if T ′ lies completely on or below T (see Figure 2.1, right). In terms of

the maximal x and y-coordinates, T � T ′ if x
(T )
i ≤ x

(T ′)
i for all i, or, equivalently,

y
(T )
i ≥ y(T ′)

i for all i. By this definition, T dominates itself, and it is also possible that

for two paths, neither dominates the other; if the paths cross then neither path lies

completely under the perimeter of the other. We emphasize that this formalism only

applies to paths of the same length that have the same start and end points.

This leads to the following combinatorial problem: how many paths W(T ) in total does

T dominate?

This quantity can be written out iteratively, accumulating all possible dominated paths

as T grows step by step. Formally, this is

W(T ) =

y0∑
n0=0

y1∑
n1=n0

y2∑
n2=n1

· · ·
yQ−2∑

nQ−2=nQ−3

yQ−1∑
nQ−1=nQ−2

1 (2.5)

which is a set of Q nested sums. Take, for example, T = (↑, ↑,→,→), yT = (2, 2, 2).

This has a weight of 6, found by manually drawing all dominated paths (Figure 2.2),

or from the summation

W(T ) =
2∑

n0=0

2∑
n1=n0

1 =
2∑

n1=0

1 +
2∑

n1=1

1 +
2∑

n1=2

1 = 3 + 2 + 1 = 6 . (2.6)

This problem is of interest to us as each path of length N maps uniquely to a

length-N ASEP configuration. Specifically, an ASEP configuration with occupied sites

(j1, j2, . . . jP ) maps to a path T where steps (j1, j2, . . . jP ) are ↑, and the remaining

steps are →. In other words, for a given dominant path T , we can read off the TASEP

configuration by going along the path and translating each upward step to a particle,

and each rightward step to a hole.

The weight of a TASEP configuration then turns out to be given byW(T ), the number
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Figure 2.3 Graphical representation of Eqs. (2.11), (2.12). Adding a → to the start or
a ↑ to the end of a path does not change its weight (i.e., the number of paths
it can dominate).

of paths that T dominates. For brevity, we will also refer toW(T ) as the weight of the

path. For example, the path in Figure 2.2 maps to C = (1, 1, 0, 0), which indeed has a

weight of 6:

〈W |DDEE|V 〉 = 〈W |D(D + E)E|V 〉 (2.7)

= 〈W |DDE +DEE|V 〉 (2.8)

= 〈W | (D[D + E] + [D + E]E) |V 〉 (2.9)

= 〈W |(DD +D + E +D + E + EE)|V 〉 = 6 . (2.10)

We can formalise this by showing that the weight of a path in Eq. (2.5) satisfies a set

of reduction relations equivalent to Eqs. (1.10)–(1.13). More formally, we require

W(→, T ) =W(T ) , (2.11)

W(T , ↑) =W(T ) , (2.12)

W(T(1), ↑,→, T(2)) =W(T(1), ↑, T(2)) +W(T(1),→, T(2)) , (2.13)

where the notation W(T(1), T(2), . . .) denotes concatenation of the path segments

T(1), T(2), . . . . Eqs. (2.11) and (2.12) are equivalent to 〈W |E = 〈W | and D|V 〉 = |V 〉
respectively, and are trivial by inspection (Figure 2.3). Relation (2.13) is the equivalent

of DE = D + E (see Figure 2.4) and requires more work, but can be derived directly

from the summation formula (2.5), however this is rather complicated and as such we

defer this to Appendix A.

We now highlight three results that first originated in the path dominance literature

and that we can exploit to give insights into the TASEP without any additional work.
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Figure 2.4 Graphical representation of Eq. (2.13).

Most probable configuration

The first result is a simple observation, and is that for a length-N path with P ↑ steps,

the most dominant path is T ∗ = (↑, . . . ↑,→, · · · →), with weight

W(T ∗) =

(
N

P

)
(2.14)

as this rectangular path encloses all others. The equivalent TASEP configuration

C = (1, . . . 1, 0, . . . 0) is P particles stacked to the left, and is the most probable

configuration with P particles. Furthermore, the most probable configuration overall

will be N/2 particles followed by N/2 holes (if N is odd, the dN/2e and bN/2c-
particle configurations are equally most probable). In the matrix formalism, this weight

corresponds to the decomposition of the string 〈W |DPEN−P |V 〉 using the reduction

relations (1.10)–(1.13).

At the other extreme, any configuration with P particles stacked to the right has the

minimum weight of 1. This is because the only path that T ∗ = (→, · · · →, ↑, . . . ↑)
dominates is itself, though in the matrix product formulation this is already trivial

given 〈W |E . . . ED . . .D|V 〉 = 1.

Weight with fixed particle number and Narayana numbers

Given this mapping, the total weight of configurations CP with P particles is the total

weight of all paths that terminate at (N −P, P ). In the path dominance literature this

is known [91]:

∑
CP

W(CP ) =
N !(N + 1)!

(N − P )!(N − P + 1)!P !(P + 1)!
(2.15)

=

(
N

P

)2

−
(

N

P + 1

)(
N

P − 1

)
= T (N + 1, P + 1) (2.16)
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where T (n, k) is a Narayana number [88] (Table 2.1, sequence A001263 in the OEIS

[92]). Consequently
∑n

k=1 T (n, k) = Cn, and we find from Eq. (2.15) that

ZN =

N∑
P=0

∑
CP

W(CP )

 =

N∑
P=0

T (N + 1, P + 1) = CN+1 (2.17)

as previously.

We also provide the derivation of this result within the matrix product formalism: first,

define G(N,P ) as the sum of all unique orderings of P D-matrices and (N − P ) E-

matrices. Using the ladder operator matrix representation in Eq. (1.126), the following

recursion relation holds [93]:

〈n|G(N,P )|m〉 = 〈n|G(N − 1, P − 1)|m〉+ 〈n|G(N − 1, P − 1)|m〉

+ 〈n+ 1|G(N − 1, P − 1)|m〉+ 〈n− 1|G(N − 1, P )|m〉 (2.18)

with boundary conditions

〈−1|G(N,P )|m〉 = 〈n|G(N,P )|−1〉 = 0 . (2.19)

The recursion and boundary conditions are solved by

〈n|G(N,P )|m〉 =

(
N

P

)(
N

P + n−m

)
−
(

N

P + 1 + n

)(
N

P − 1−m

)
. (2.20)

As we did in Section 1.7.1, we set n = m = 0 to find the appropriate expression for the

sum of TASEP weights for P particles, recovering Eq. (2.15):

∑
CP

W(CP ) = 〈0|G(N,P )|0〉 =

(
N

P

)2

−
(

N

P + 1

)(
N

P − 1

)
(2.21)

=
N !(N + 1)!

P !(P + 1)!(N − P )!(N − P + 1)!
. (2.22)

Summing over all configurations then recovers Eq. (1.130):

ZN =
N∑
P=0

[(
N

P

)2

−
(

N

P + 1

)(
N

P − 1

)]
(2.23)

=

(
2N

N

)
−
(

2N

N + 2

)
= CN+1 (2.24)
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H
HHH

HHn
k

1 2 3 4 5 6 7
∑

1 1 1
2 1 1 2
3 1 3 1 5
4 1 6 6 1 14
5 1 10 20 10 1 42
6 1 15 50 50 15 1 132
7 1 21 105 175 105 21 1 429

Table 2.1 The first few Narayana numbers T (n, k) from Eq. (2.15). Row sums give the
Catalan numbers.

where we have used the Vandermonde identity [94]

∞∑
p=−∞

(
a

c+ p

)(
b

d− p

)
=

(
a+ b

c+ d

)
. (2.25)

Determinant form of configuration weight

The final, and perhaps most significant result is that Narayana [88] (and later Kreweras

[90]) has shown in this path dominance problem that the weight of a path can be written

as a determinant:

W(T ) = det M , Mnm =

(
ym−1 + 1

1 + n−m

)
, n,m = 1, 2, . . . Q , (2.26)

or equivalently (‘turning the path on its side’)

W(T ) = det M ′ , M ′nm =

(
Q− xP−m + 1

1 + n−m

)
, n,m = 1, 2, . . . P . (2.27)

With the mapping from paths, this in turn provides an analytic formula for the weight of

any TASEP configuration. Remarkably, however, ten years prior to the matrix product

formalism being derived, Shapiro and Zeilberger had derived this same determinant

formula for the configuration weight of the α = β = 1 TASEP in Ref. [95].

Let us recall the example path from Eq. (2.2), Figure 2.1. Using the first determinant
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formula, this has weight from its y-coordinates in Eq. (2.3)

W(T ) = det



3 1 · · ·
3 4 1 · ·
1 6 5 1 ·
· 4 10 5 1

· 1 10 10 5


= 117 (2.28)

and equivalently using its x-coordinates in Eq. (2.4)

W(T ) = det


4 1 · ·
6 5 1 ·
4 10 6 1

1 10 15 6

 = 117 . (2.29)

This path T maps to the TASEP configuration

C = (1, 1, 0, 1, 0, 1, 0, 0, 0) (2.30)

which then implies that the determinants in Eqs. (2.28) and (2.29) are equivalent to

the matrix product

W(C) = 〈W |DDEDEDEEE|V 〉 . (2.31)

This reveals a deeper link between the matrix product approach and the reduction

relations (1.10)–(1.13) with an elegant determinant structure.

Probing these determinants further, notice from this example that reading down each

column reveals the (ym−1 + 1)th row in Pascal’s triangle. It is also ‘nearly’ a lower-

diagonal matrix, and a simple example of a Hessenberg matrix [96]. Taking Eq. (2.28),

this gives a simplified recursive determinant formula (adapted from Theorem 2.1 of

Ref. [97]):

det M =

Q∑
r=1

(−)Q−rMQr det M(r−1) (2.32)

=

Q∑
r=1

(−)Q−r
(
yr−1 + 1

Q− r + 1

)
det M(r−1) (2.33)

where M(r−1) is the (r − 1)th minor of M .

In the context of the TASEP, this determinant formula has since been improved upon

47



to encode α and β, see Section 2.4.2 and Ref. [98].

2.2.2 Other representations

We refer to an ordered pair of two paths where one dominates the other as a dominated

path. As previously noted in Section 2.2.1, the total number of dominated paths is

given by the Catalan number CN+1. This set of dominated paths is the extended

configuration space. This space can be equivalently expressed in terms of bicoloured

Motzkin paths or “complete configurations”, as we now discuss.

Bicoloured Motzkin paths

From the matrix representation in Eqs. (1.21), (1.22), we have already seen that

bicoloured Motzkin paths naturally arise [83, 99]. Here we establish the link between

these walks and the dominated path formalism.

The full partition function ZN is the number of unique dominated paths. Consider one

such configuration with two paths T � T ′. Denote the ith steps of T , T ′ as T (i), T ′(i)
respectively.

Comparing the two paths, on each step we have four possible outcomes, which we track

with a height difference h ≥ 0, that must start and end at zero:

� T (i) = ↑ and T ′(i) =→. The paths diverge, ∆h = +1 ;

� T (i) =→ and T ′(i) = ↑. The paths converge, ∆h = −1 ;

� T (i) = T ′(i) = ↑. The paths run parallel vertically, ∆h = 0 ;

� T (i) = T ′(i) =→. The paths run parallel horizontally, ∆h = 0 .

Over each step, h can therefore change by ±1, or zero in two distinct ways (denoted

with ‘·’ and ‘×’). The partition function is then equivalently the number of paths

moving left to right of length N , from the step set {↗,↘, · ,×}, that start and end at

zero, without going below zero (as T � T ′). This is then an enumeration of bicoloured

Motzkin paths.

Extending this, the weight of a length-N configuration C with sites (j1, j2, . . . jP )

occupied is the number of length-N bicoloured Motzkin paths that can be drawn from

{↗, ·} at steps (j1, j2, . . . jP ), and {↘,×} in the remaining steps. This maps each
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Figure 2.5 Calculation of the TASEP partition function for N = 3. For each
configuration (left column), we draw draw all combinations of length-N
paths that dominate another (centre column), and their equivalent bicoloured
Motzkin path (right column).

Motzkin path one-to-one to a dominated path. See Figure 2.5 for an example, where

we write all N = 3 configurations in terms of Motzkin paths.

This Motzkin path interpretation aligns neatly with the ladder operator representation

we quote in Eq. (1.126). For other explicit representations, other path interpretations

naturally arise. Brak et al. present a comprehensive set of these alternative walks in

[99], as well as encoding weights to generalise for α, β, q.

Markov chain of “complete configurations”

Duchi and Schaeffer [100] express this same space of CN+1 configurations as a set of

closed, two-row systems, which they term complete configurations. Furthermore, they

define a Markov process in this space that reproduces ASEP dynamics on the top row

of the system.
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Figure 2.6 Example of a complete configuration in [100] (left) and its equivalent Motzkin
path (centre) and dominated path (right). The top row of the complete
configuration shows that these correspond to C = (1, 0, 1, 0, 0, 0, 1).

Each of these complete configurations comprise N particles and N holes (which they

refer to as “black” and “white” particles), arranged across two rows of length N . The

particles may be arranged in any way across both rows, given the constraint that there

are always at least as many particles as holes in the first i columns, i = 1, 2, . . . N (the

“positivity condition”). The top-row configuration is the ASEP state that the complete

configuration maps to.

The Markov process that the authors construct is a clockwise flow of these N particles

around both rows, with ASEP-like hopping on the top row, and a set of bottom-

row dynamics (involving long-range “sweeps” of clusters of particles or holes) so as to

preserve the positivity condition. The top row of these closed configurations replicate

open TASEP dynamics. In particular, we note that a feature of a complete configuration

is that if the top-left site is empty, the bottom-left row is occupied — otherwise the

positivity condition would be violated. This means that a particle can always enter the

top row at a rate α, just as in the TASEP. Similarly, if the top-right site is occupied,

the bottom-right site must be empty, allowing particles to exit the top row at rate β,

again as in the TASEP.

Here we expand on how each complete configuration in this two-row system maps to

a Motzkin path or dominated path. With reference to Figure 2.6, if we assign to each

column with (τtop; τbottom) entries a ↗ for (1; 1), a ↘ for (0; 0), a ‘·’ for (1; 0) and ‘×’

for (0; 1), then configurations are once again a set of bicoloured Motzkin paths once

the positivity condition is imposed. Corteel and Williams have since introduced a

Markov chain that reproduces PASEP dynamics (where the additional parameter q is

introduced), using a larger set of (N + 1)! configurations [101].

2.3 α = β = 1 SSEP

Our discussion so far has been limited to the TASEP (q = 0). We now move from the

totally asymmetric case to the totally symmetric case where particles can hop either

50



direction in the bulk at equal rates, by setting q = 1.

We previously showed that when α = β = 1, the SSEP partition function is ZN =

(N +1)!, see Eq. (1.119). This combined with the analysis of the TASEP in Section 2.2

suggests that the 2N configurations of the SSEP may map to an even larger set of

(N + 1)! ≥ CN+1 ≥ 2N configurations. This indeed turns out to be the case; consider

the integers (1, 2, . . . N,N + 1), of which there are (N + 1)! permutations. The 2N

configurations of the SSEP define a partitioning of these (N + 1)! permutations.

2.3.1 Mapping to a permutation problem

The following mapping was first identified and formally proven by Corteel and Williams

[101] in the context of a Markov chain of permutations. Here we focus only on the

mapping from the SSEP to permutations using a slightly different but equivalent

formalism to [101]. We present a more detailed analysis (in the context of the PASEP)

in Section 2.4.1.

Consider a permutation of the numbers (1, 2, . . . N,N+1), denoted (i1, i2, . . . iN , iN+1).

Reading this string of numbers left-to-right, we say that in has been raised by in+1

if in+1 > in. This time, we are interested in the following problem: how many

permutations are there where only a particular set of numbers (j1, j2, . . . jP ) are raised?

This proves to be equivalent to the weight of a length-N SSEP configuration with

particles at sites (j1, j2, . . . jP ). We illustrate this with an example. The SSEP

configuration C = (0, 1, 0, 0), has N = 4 sites, and P = 1 particle at position j1 = 2.

This has a weight of 7, calculated directly with the reduction relations (1.39)–(1.42)

for q = 1:

W(C) = 〈W |EDEE|V 〉 (2.34)

= 〈W |E(ED +D + E)E|V 〉 (2.35)

= 〈W |(EE[ED +D + E] + E[ED +D + E] + EEE)|V 〉 (2.36)

= 7 . (2.37)

As anticipated, there are also 7 permutations of (1, 2, 3, 4, 5) where only j1 = 2 is raised

(the underline highlights where a number has been raised):

5 4 2 3 1, 4 3 2 5 1, 4 2 5 3 1, 3 2 5 4 1, 5 2 4 3 1, 2 5 4 3 1, 5 3 2 4 1 .
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If the SSEP indeed maps to these permutations, we should expect to find an equivalent

set of reduction relations like that of the SSEP in Eqs. (1.39)–(1.42). We show this

in Section 2.4.1, in fact for the more general DE = qED + D + E, where weights as

powers of q are associated with each permutation.

Having established this mapping, we can quickly derive the steady-state density profile

and arbitrary-order correlations between sites. We also use a result in the literature on

the combinatorics of permutations, which allows us to find the probability of finding P

particles in the system.

Steady-state density profile

The average steady-state occupation of site i (Eq. (1.34))

〈τi〉 =
1

ZN
〈W |(D + E)i−1D(D + E)N−i|V 〉

is equivalently the fraction of permutations of (1, 2, . . . N,N+1) where i is raised. Note

that we do not care whether any other integers are raised. One slight complication is

that i can only be raised if it is not at the final position within the permutation. From

this interpretation we can very quickly calculate the full density profile. If i is not in the

final position, i can be raised by any of (i+ 1, i+ 2, . . . N,N + 1) from the N numbers

other than i, giving a fraction (N + 1 − i)/N . We then multiply by the fraction of

permutations where i is not in the final position which is N/(N + 1). We thus obtain

〈τi〉 =
N + 1− i

N

N

N + 1
= 1− i

N + 1
(2.38)

recovering the known linear density profile [102].

Arbitrary-order correlation functions

We can extend this approach to calculate higher-order correlations between different

sites without having to perform any explicit matrix calculation. First, consider the

correlation from Eq. (1.35)

〈τi1τi2〉 =
1

ZN
〈W |(D + E)i1−1D(D + E)i2−i1−1D(D + E)N−i2 |V 〉

where i2 > i1. This is equivalently the fraction of permutations of (1, 2, . . . N+1) where

both i1 and i2 are raised.
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First, i2 can be raised by any of the (N + 1− i2) numbers from (i2 + 1, . . . N + 1), and

the fraction of suitable permutations is then (N + 1 − i2)/(N + 1). In this subset, i1

can be raised by any of the (N + 1 − i1) numbers from (i1 + 1, . . . N + 1), excluding

the number that raised i2. The fraction of valid permutations here is then (N − i1)/N .

Combined, we then recover the result from [46, 102]

〈τi1τi2〉 =

(
N + 1− i2
N + 1

)(
N − i1
N

)
=

(
1− i2

N + 1

)(
1− i1

N

)
. (2.39)

By the same interpretation this can be extended to an arbitrary order correlation

between K different sites iK , iK−1, . . . i1, where iK > iK−1 > · · · > i1 [48, 103]:

〈
τiKτiK−1 . . . τi2τi1

〉
=

K∏
k=1

(
N + 1 + k −K − ik
N + 1 + k −K

)
=

K∏
k=1

(
1− ik

N + 1 + k −K

)
.

(2.40)

Weight with fixed particle number and Eulerian numbers

The sum of all weights of configurations CP with exactly P particles is the number of

permutations of (1, 2, . . . N,N + 1) whereby a total of P numbers are raised. We state

the result from the combinatorial literature [104, 105]:

∑
CP

W(CP ) =

〈
N + 1

P

〉
(2.41)

where〈
n

k

〉
=

k+1∑
j=0

(−)j
(
n+ 1

j

)
(k + 1− j)n (2.42)

is known as an Eulerian number (Table 2.2, sequence A008292 in the OEIS [106]), and

has several neat properties reminiscent of binomial coefficients, such as the recursion

[87] 〈
n+ 1

k

〉
= (n+ 1− k)

〈
n

k − 1

〉
+ (k + 1)

〈
n

k

〉
. (2.43)
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H
HHH

HHn
k

0 1 2 3 4 5 6
∑

1 1 1
2 1 1 2
3 1 4 1 6
4 1 11 11 1 24
5 1 26 66 26 1 120
6 1 57 302 302 57 1 720
7 1 120 1191 2416 1191 120 1 5040

Table 2.2 Table of the Eulerian numbers 〈nk 〉 from Eq. (2.42). Row sums yield the
factorials.

The generating function G(t, z) of Eq. (2.42) is succinct [87]:

G(t, z) =
∑
N≥0

∑
P≥0

〈
N + 1

P

〉
tNzP

(N + 1)!
(2.44)

=
1− et(z−1)

t
(
et(z−1) − z

) (2.45)

= 1 +
1

2!
t(z + 1) +

1

3!
t2
(
z2 + 4z + 1

)
+

1

4!
t3
(
z3 + 11z2 + 11z + 1

)
+ . . .

(2.46)

where {tNzP }G(t, z) is the probability of finding exactly P particles in a length-N

SSEP. Finally, the summation over Eulerian numbers for fixed N is equivalent to the

N -site partition function, and gives the factorial [107]

N∑
P=0

〈
N + 1

P

〉
= (N + 1)! . (2.47)

This is trivial in the context of Eulerian numbers, as it is simply the summation of all

permutations of (N + 1) integers.

2.4 Generalised parameter mappings

Up to now, we have focused on the parameter restriction α = β = 1, q = 0, 1. To

generalise for α, β, q, we do not need to expand beyond the state spaces of dominated

paths and permutations already introduced, however we now associate weights in terms

of α, β, q, raised to integer powers. The highlight of the following is the nice result that

a closed-form formula has been derived for the weight of a general TASEP configuration.
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2.4.1 α = β = 1 PASEP and weighted permutations

A closed-form expression for the PASEP partition function is known, see Ref. [42].

We omit the details of the expression here, but this function implies an interpolation

between the q = 1 and q = 0 mappings identified so far in Sections 2.2 and 2.3. We

therefore first expand on the results of Section 2.3.1 by showing how an arbitrary q is

encoded into the mapping of SSEP configurations to permutations, first shown in [108].

We remain with our slightly different formalism introduced earlier.

Take a permutation (i1, i2, . . . iN , iN+1) where a set of numbers (j1, j2, . . . jP ) in the

permutation are raised. Reading left-to-right, we now associate to each raise a factor

qr, where r is the number of integers to the right of j1 that fall between it and the

number that raised it. This ties into a q-generalisation of Eulerian numbers known as

Eulerian polynomials, introduced in Ref. [109].

As an example, one (of many) permutations that maps to the configuration C =

(0, 1, 1, 1, 0, 0, 0) is 2 6 3 8 4 7 5 1, which has three numbers (2, 3, 4) that are raised,

corresponding to occupied sites 2, 3 and 4. This has weight q7 = q3 · q3 · q: 2 could have

been raised by (3, 4, 5), 3 could have been raised by (4, 5, 7), and 4 could have been

raised by 5.

We show that this weighted permutation problem obeys an equivalent set of reduction

relations to that of the PASEP, Eqs. (1.39)–(1.42) (for α = β = 1). Let us first define

WN+1

(
j
)

(2.48)

as shorthand for the total weight of permutations of (1, 2, . . . N,N + 1) where the

numbers j = (j1, j2, . . . jP ) are raised. The reduction relation (1.40), 〈W |E = 〈W |
has an equivalent form

WN+2

(
j + 1

)
=WN+1

(
j
)

(2.49)

which is trivial to show: for each permutation on the LHS, increase every number by

1, then append the whole permutation with a 1. This gives each permutation on the

RHS, with all weights unchanged. Similarly for Eq. (1.39), D|V 〉 = |V 〉,

WN+2

(
j
)

=WN+1

(
j
)

(2.50)

which can be seen as each permutation on the LHS, prepended with an (N + 2),

corresponds to a permutation on the RHS. Again, all weights are unchanged.
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Permutation W Consecutive? New permutation W
1 5 3 4 2 q3 No 2 5 3 4 1 q2

3 5 1 4 2 q2 No 3 5 2 4 1 q1

5 1 3 4 2 q1 No 5 2 3 4 1 q0

1 4 3 5 2 q2 No 2 4 3 5 1 q1

1 3 5 4 2 q2 No 2 3 5 4 1 q1

4 1 3 5 2 q1 No 4 2 3 5 1 q0

3 4 1 5 2 q1 No 3 4 2 5 1 q0

3 4 2 1 5 q0 Yes 2 3 1 4 q0

4 3 5 1 2 q0 Yes 3 2 4 1 q0

5 2 1 3 4 q0 Yes 4 1 2 3 q0

4 2 1 3 5 q0 Yes 3 1 2 4 q0

3 5 2 1 4 q1 Yes 2 4 1 3 q1

2 1 5 3 4 q2 Yes 1 4 2 3 q2

3 5 4 1 2 q1 Yes 2 4 3 1 q1

5 3 4 1 2 q0 Yes 4 2 3 1 q0

2 1 4 3 5 q1 Yes 1 3 2 4 q1

Table 2.3 Demonstration of the reduction relation for the configuration C = (1, 0, 1, 0),
by the reduction DEDE = qEDDE+DDE+EDE. W(1010) is the number
of permutations of (1, 2, 3, 4, 5) where 1 and 3 are raised.

Finally, the reduction relation (1.41), DE = qED +D + E has an equivalent form

WN+1

(
j

1
, k, j

2

)
= qWN+1

(
j

1
, k + 1, j

2

)
+WN

(
j

1
, k, j

2
− 1
)

+WN

(
j

1
, j

2
− 1
)

(2.51)

with all entries of j1 less than k, and all entries of j2 greater than (k + 1). Here,

W(a, b, c) denotes a concatenation of the strings a, b, c.

We prove this by first identifying all LHS permutations where (j1, k, j2) are raised (and

(k+1) is not), and k, (k+1) do not appear consecutively. We then switch the positions

of k, (k+ 1) in each of these. This then yields all permutations where (j1, k+ 1, j2) are

raised, and k is not.

From the association of weights that we have already outlined, each of these these new

permutations has a weight that is a power of q less than the original permutation. This

is the first term of the RHS.

This leaves the permutations on the LHS where k and (k+ 1) do appear consecutively.

If we take these permutations, remove the (k+ 1) entry and reduce all integers greater

than k by one, we are left with a set of permutations of length N where (j1, j2 − 1)

are raised, and k may or may not be raised. This is the sum of the final two terms of

the RHS. See Table 2.3 for a full example of this decomposition, taking configuration
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Figure 2.7 Partition function (D + E)N expressed as a ‘staircase’ path.

C = (1, 0, 1, 0).

2.4.2 Determinant form of TASEP weight with general α, β

Mandelshtam has generalised the determinant form of a TASEP configuration weight

in Eq. (2.27) for arbitrary α, β (Corollary 5.2 in [98], modified to be consistent with

notation used here):

W(C) =
det M

αQβP
(2.52)

where the entries of M

Mnm = βm−nα−xn−1

{
αxm

[(
Q− xm
m− n

)
+ β

(
Q− xm
m− n+ 1

)]

+αxm−1

xm−xm−1−1∑
l=0

αl
[(
Q− xm−1 − l
m− n− 1

)
+ β

(
Q− xm−1 − l

m− n

)]}
,

(2.53)

with n, m = 1, . . . P , and the xn, xm are the coordinates associated to an ASEP

configuration in Section 2.2.1.

Using this, we find a novel expression for the TASEP partition function, in the form of

a determinant.
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Determinantal form of the partition function

Given that

(D + E)N = (DE)N = (DE) . . . (DE)︸ ︷︷ ︸
N

, (2.54)

the partition function is the weight of a single ‘staircase’ path of length 2N (see

Figure 2.7). For this path, xm = m, ∀m, and Eqs. (2.52), (2.53) eventually reduce

to

ZN = det M (N) (2.55)

M (N)
nm =

(
m− 1

n−m

)(
1

α
+

1

β

)
+

(
m− 1

n−m− 1

)
1

αβ
+

(
m− 1

n−m+ 1

)
, (2.56)

=



[
1
α + 1

β

]
1 · · · · ·

1
αβ 1 +

[
1
α + 1

β

]
1 · · · ·

·
[

1
α + 1

β

]
+ 1

αβ 2 +
[

1
α + 1

β

]
1 · · ·

· 1
αβ 1 + 2

[
1
α + 1

β

]
+ 1

αβ 3 +
[

1
α + 1

β

]
· · ·

· ·
[

1
α + 1

β

]
+ 2

αβ 3 + 3
[

1
α + 1

β

]
+ 1

αβ · · ·
...

...
...

...
. . .


N×N

(2.57)

where we see rows of Pascal’s triangle in the coefficients of 1, [1/α+ 1/β], 1/αβ when

reading down columns of M (N). We now show that Eq. (2.55) and the partition function

are equivalent. M (N) is a Hessenberg matrix [96], which allows its determinant, which

we define

det M (N) ≡ Z ′N (2.58)

to be expressed in a recursive form using Eq. (2.32), from Theorem 2.1 in [97]

Z ′N =
N∑
r=1

(−)N−rZ ′r−1

[(
r − 1

N − r − 1

)
1

αβ
+

(
r − 1

N − r

)(
1

α
+

1

β

)
+

(
r − 1

N − r + 1

)]
.

(2.59)

We will show that Z ′N and the TASEP partition function ZN in Eq. (1.28) have the

same generating function, thus making them equivalent. Define this generating function
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in η as Z

Z(η) =
∑
N≥0

Z ′N ηN . (2.60)

From Eq. (2.59) and knowing Z0 = 1,

Z(η) = 1+
∑
N≥1

N∑
r=1

ηN (−)N−r
[(

r − 1

N − r − 1

)
1

αβ
+

(
r − 1

N − r

)(
1

α
+

1

β

)
+

(
r − 1

N − r + 1

)]
Z ′r−1 .

(2.61)

We switch the order of summation and relabel the dummy index M = N − r,

Z(η) = 1+
∑
r≥1

Z ′r−1η
r
∑
M≥0

(−η)M
[(

r − 1

M − 1

)
1

αβ
+

(
r − 1

M

)(
1

α
+

1

β

)
+

(
r − 1

M + 1

)]
.

(2.62)

Evaluating the summation in M ,

Z(η) = 1+
∑
r≥1

Z ′r−1η
r

[
−η(1− η)r−1 1

αβ
+ (1− η)r−1

(
1

α
+

1

β

)
+

1

η

(
1− (1− η)r−1

)]
(2.63)

which we write in terms of the original generating function Z

Z(η) = 1 +
∑
r≥1

Z ′r−1(1− η)r−1ηr−1

[
η

(
1

α
+

1

β

)
− η2

αβ
− 1

]
−
∑
r≥1

Z ′r−1η
r−1

(2.64)

=

[
η

(
1

α
+

1

β

)
− η2

αβ
− 1

]
Z (η(1− η)) + Z(η) . (2.65)

This is factorised to give

Z (η(1− η)) =
1(

1− η
α

)(
1− η

β

) . (2.66)

Substituting z = η(1 − η) ⇒ η(z) = 1
2

(
1−
√

1− 4z
)
, we recover Eq. (1.106), the

known generating function for ZN . We choose the negative root of η(z) to ensure

Z(0) = 〈W |V 〉 = 1.
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Figure 2.8 The weight of the path T = (↑,→,→, ↑), corresponding to the TASEP
configuration C = (1, 0, 0, 1). Both have weight W(T ) = 1/α2β + 1/αβ +
1/β2 = 〈W |DEED|V 〉.

2.4.3 α, β generalisation of path dominance problem

Following on from the determinant in Eq. (2.52), there is a straightforward generalisa-

tion to α, β in the dominated path interpretation of TASEP weights. In the context

of the original reference [98] these are referred to as “weighted Catalan paths”, which

translate into our formalism as follows: each dominated path has an associated weight

(1/α)p(1/β)q, where p is the number of horizontal steps where both paths run together,

and q is the number of up steps the dominated path takes at the end of the walk. See

Figure 2.8 for an example.

2.4.4 Mappings for general α, β, q

We have arrived at the most general case of general α, β, q. There is a natural

interpretation in terms of bicoloured Motzkin paths that arises from an explicit matrix

representation. Otherwise, the most notable progress here has been by Corteel and

Williams, who derive a generalised version of the path representation of configurations

in Section 2.2.1, termed permutation tableaux.

At this level of generality, there are few new physical insights that have been made

other than establishment of the mapping.
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Figure 2.9 Weight of the Motzkin path (×, ↗, ↗, · , ↘, ×, ↘). This maps to the
configuration C = (0, 1, 1, 1, 0, 0, 0).

Weighted bicoloured Motzkin paths

In this context, the natural explicit representation to use is [7]

D =
1

1− q



1 + b
√
c0 · · · · ·

· 1 + bq
√
c1 · · · ·

· · 1 + bq2 √
c2 · · ·

· · · 1 + bq3 · · ·
...

...
...

...
. . .


, (2.67)

E =
1

1− q



1 + a · · · · · ·
√
c0 1 + aq · · · · ·
· √

c1 1 + aq2 · · · ·
· · √

c2 1 + aq3 · · ·
...

...
...

...
. . .


, (2.68)

〈W | = (1, 0, 0, · · · ) , |V 〉 = (1, 0, 0, · · · )T , (2.69)

with a and b defined in Eq. (1.47), and cn = (1 − qn+1)(1 − abqn). D and E then

operate on a state ket |n〉 as

D|n〉 =
1

1− q
(
√
cn−1|n− 1〉+ (1 + bqn)|n〉) , (2.70)

E|n〉 =
1

1− q
(
√
cn+1|n+ 1〉+ (1 + aqn)|n〉) . (2.71)

Note that this representation is distinct from Eqs. (1.43)–(1.46).

This representation associated weights to the bicoloured Motzkin paths [43, 99, 110]

(or equivalently, dominated paths). In Section 2.2.2 we inferred that the weight of

a configuration C with sites (j1, j2, . . . jP ) occupied is an enumeration of bicoloured

Motzkin paths of length N , with steps (j1, j2, . . . jP ) from {↗, ·}, and the remaining
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steps from {↘, ×}. The same formalism applies here, except for each step we associate

weights:

� a ↗ from height n to (n+ 1) has weight
√
cn/(1− q) ;

� a ↘ from height (n+ 1) to n has weight
√
cn/(1− q) ;

� a × at height n has weight (1 + bqn)/(1− q) ;

� a · at height n has weight (1 + aqn)/(1− q) .

The weight of the path is then the product of these weights. See Figure 2.9 for an

example. Note that ↗ and ↘ always appear in pairs, eliminating the square root in

factors of
√
cn.

As a final remark, for α = β = 1 we conjecture that these Motzkin paths themselves

have a one-to-many mapping to the weighted permutations in Section 2.4.1. The weight

of a configuration C with sites (j1, j2, . . . jP ) occupied is the total weight of permutations

where the numbers (j1, j2, . . . jP ) are raised. More specifically, the weight of a bicoloured

Motzkin path with steps at (j1, j2, . . . jP ) from {↗, ·} and steps at (k1, k2, . . . kP ) from

{↘, ·} appears to be the weight of permutations where the numbers (j1, j2, . . . jP ) are

raised by (k1, k2, . . . kP )+1. See Table 2.4 for an example. This additional partitioning

would mean that ASEP configurations have a one-to-many mapping to bicoloured

Motzkin paths, which themselves each have a one-to-many mapping to permutations

(as was illustrated in Figure 1.12). For each bicoloured Motzkin path, exactly one

mapped permutation will have weight q0 = 1, and all others a positive power of q. This

would interpolate between the path dominance mapping of the TASEP (q → 0), and

the permutation mapping of the SSEP (q → 1).

Permutation and staircase tableaux

For completeness, we mention that Corteel and Williams [108, 111, 112] have mapped

the most general case of α, β, q to a problem in an area known as tableaux combinatorics.

We refer the reader to Ref. [108] for the original work, and Refs. [111, 112] for a

more generalised case of staircase tableaux that encodes two extra parameters γ, δ (so

particles may also enter from the right, and leave from the left).

The details are beyond the scope of this work, but to sketch their approach the authors

take ASEP configurations as paths drawn in Section 2.2.1, and construct a grid across

the area the path bounds (a Young diagram). Each entry of this grid can take a value
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Configuration

Dominated path

Motzkin path

Weight
(1+b)(1+a)(1+a)(1+b)

(1−q)4
(1+b)

√
c0(1+aq)

√
c0

(1−q)4
(1+b)(1+a)

√
c0
√
c0

(1−q)4

= 1 = (1 + q)2 = 1 + q

Raised 2, 3

Raised by 3, 4 4, 5 3, 5

Permutations; weights 5 2 3 4 1; 1 3 4 2 5 1; 1 4 2 3 5 1; 1
2 4 3 5 1; q 2 3 5 4 1; q
3 5 2 4 1; q
2 5 3 4 1; q2

Table 2.4 Mapping of the configuration C = (0, 1, 1, 0) into dominated paths and Motzkin
paths, which themselves map to a set of permutations that follow certain rules.

of α, β, q or 1 (or a generalised hop-right rate u), with a set of rules as to which values

can go where. The weight of this permutation tableaux is then the product of all of the

entries. Each ASEP configuration has associated a set of tableaux, and the weight of

the configuration is the sum of weights of these tableaux.

2.5 Summary

In this chapter we have explored the connection between the stationary weights of

configurations in a paradigmatic nonequilibrium statistical mechanical system (the

asymmetric simple exclusion process) and combinatorial enumeration problems, such

as counting lattice paths. The earliest solutions of the TASEP appealed to recursion

relations [40, 113] between configurational weights which can be expressed more

powerfully in terms of reduction relations for matrices [36], as described in Section 1.3.

Both the application of recursion relations and the reordering of matrices implicitly

define some kind of counting problem. However it is not necessarily obvious from the

outset what is being counted.

The most straightforward way to relate the matrix product solution to a lattice path

enumeration problem is to exploit a representation of the matrices in terms of the

identity, and (in general, q-deformed) raising and lowering operators (Section 1.3.5). A

63



particular configuration of the ASEP can then be related to a set of Motzkin paths,

in which the identity, raising and lowering operators generate steps that are either

horizontal, rise upwards, or fall down. Since the matrices are semi-infinite, the paths

may not fall below the origin. Thus one set of objects that are being enumerated by

the ASEP normalisation is the set of all paths subject to this constraint. This in turn

yields a connection to the Catalan numbers, which solve a large number of enumeration

problems [81].

Perhaps one of the most appealing representations of a configurational weight in the

TASEP (the version of the process in which particles can hop only to the right) is in

terms of dominated paths (Section 2.2.1), which is new. Here, a configuration of the

TASEP is converted to a path on the square lattice by drawing (in sequence) a vertical

step for each particle and a horizontal step for each empty site (hole). The number of

paths that fall below this dominant path, and that have the same start and end point,

then gives the weight of the TASEP configuration when α = β = 1.

Here we see clearly the general phenomenon whereby a configurational weight in the

TASEP is given by a sum over a set of objects with simpler weights that live in a larger

space. In the specific case of the dominated paths, the larger space is the set of all

lattice paths of a fixed length, and the weights are a power of α multiplied by a power

of β. As discussed in Sections 1.7.3 and 2.4.2, we can think of this as a Boltzmann

weight, in which α and β are the exponential of energetic contributions associated with

specific steps along the paths.

From a practical point of view, the mapping to enumeration problems can expedite

the calculation of physical quantities. For example, we saw in Sections 2.2 and 2.3

that once the mapping is established, results from enumerative combinatorics can be

used to establish certain quantities more easily than deriving them from scratch via

the matrix product solution. This leads us naturally to the theme of the next chapter.

In Section 1.4 we introduced the Rényi entropy, which involves an enumeration of

configuration weights raised to a power. For the TASEP, this measure proves very

challenging to evaluate using the matrix product formalism directly. However, by

building upon the interpretations of the explicit matrix representations discussed here,

we are able to solve an equivalent combinatorial problem.
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Chapter 3

Rényi entropy of the TASEP

3.1 Orientation

Having opened with an exploration of the links between the ASEP and a family of

combinatorial lattice enumeration problems, in this chapter we present a calculation

that capitalises on one of these mappings. We use the random walk interpretation of

the matrix product formulation of the TASEP to derive a new measure of the TASEP

state space: the λ = 2 Rényi entropy, introduced in Eq. (1.59),

H2 = − log
∑
C
P(C)2 .

This quantity is technically challenging to calculate as it involves raising each of

the microstate probabilities P(C) to a power; in the language of our combinatorial

mappings, H2 is a measure of how the larger set of dominated paths is partitioned

amongst the set of TASEP configurations.

The bulk of this chapter is a technical calculation of the generating function Q of the

sum of squared TASEP weights, which after normalising leads to this particular Rényi

entropy. We will use an explicit matrix representation of the TASEP to map this

problem to a two-dimensional random walk problem with absorbing boundaries.

Because the generating function of this two-dimensional walk has in turn two counting

variables, we will see that there are too many degrees of freedom to solve for Q directly

from the single recurrence relation. Instead, the solution of this problem entails a

generalisation of what is known in the mathematical literature as an obstinate kernel
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method [72, 114]. We identify a symmetry within the recurrence relation, which we

exploit to obtain an additional set of equations for Q. Combined, these equations

contain enough information to directly solve for the generating function.

Once we have obtained a closed-form solution for the generating function, we use

standard asymptotic methods to obtain the λ = 2 entropy for all three phases of the

TASEP. By the interpretation of the exponential of the Rényi entropy in Eq. (1.58),

this provides an effective number of participating configurations in each phase [57].

We find that the leading-order behaviour of this entropy corresponds with that of a

Bernoulli measure, and that the form of the leading correction reflects the range of the

correlations present in each of the phases.

Finally, we show that the nonequilibrium phase transitions in the TASEP give rise to

an analytical structure of the Rényi entropy that distinguishes itself from that seen

in equilibrium systems. We will revisit the one-transit walk introduced in Chapter 2.

The Rényi entropy is in this case elementary as, despite it sharing a partition function

with the TASEP, it is an equilibrium system [66]. Importantly, we find a different

form to the Rényi entropy, with the three phases giving rise to five different scaling

regions in the phase diagram. This draws a clear distinction between equilibrium and

nonequilibrium probability distributions.

3.2 Preliminaries

3.2.1 Sum of squared weights as a tensor product, generating function

The λ = 2 Rényi entropy requires the sum of squared weights of all N -site

configurations. In the matrix product formalism, the sum takes the form of a tensor

product,

∑
C
W(C)2 = 〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)N |V 〉 ⊗ |V 〉 . (3.1)
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As a familiarisation exercise, we first explicitly calculate this quantity for N = 0, 1, 2

by applying the reduction relations (1.10)–(1.13) directly:

〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)0|V 〉 ⊗ |V 〉 = 1 , (3.2)

〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)1|V 〉 ⊗ |V 〉 =
1

β2
+

1

α2
, (3.3)

〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)2|V 〉 ⊗ |V 〉 (3.4)

= 〈W | ⊗ 〈W |(DD ⊗DD + EE ⊗ EE + ED ⊗ ED +DE ⊗DE)|V 〉 ⊗ |V 〉

= 〈W | ⊗ 〈W |(DD ⊗DD + EE ⊗ EE + ED ⊗ ED (3.5)

+D ⊗D + E ⊗ E +D ⊗ E + E ⊗D)|V 〉 ⊗ |V 〉

=
1

β4
+

1

α4
+

1

α2β2
+

1

β2
+

1

α2
+

2

αβ
. (3.6)

We wish to generalise these expressions to arbitrary N . However, using the reduction

relations these rapidly become intractable. We see the additional technical challenge of

this problem over the partition function if one makes an attempt to derive a “reduction

relation” for the tensors D ⊗D, E ⊗ E. The product

(D ⊗D)(E ⊗ E) = DE ⊗DE (3.7)

= (D + E)⊗ (D + E) (3.8)

= D ⊗D + E ⊗ E + E ⊗D +D ⊗ E . (3.9)

In comparison to simple matrix relation DE = D + E we find no simple reduction in

terms, having generated two more irreducible tensors (E ⊗D), (D ⊗ E).

Instead, then, we define the generating function of Eq. (3.1), as Q, which is a function

of α, β, and a counting parameter z that tracks system size N

Q(z;α, β) =
∑
N≥0

〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)N |V 〉 ⊗ |V 〉 zN . (3.10)

The generating function Q(z;α, β) itself is found by interpreting the tensor product

expressions in Eqs. (3.1), (3.10) as random walks on a lattice. Before this full

calculation, however, we analyse the Rényi entropy along the factorisation line

introduced in Section 1.3.4, which proves to be trivial.
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Exact solution along factorisation line

We saw in Section 1.3.4 that along the factorisation line α+ β = 1, D and E commute

[36]. Configuration probabilities then follow a Bernoulli distribution, and each of the

N sites are independently, individually occupied with probability ρ = α = 1− β. With

this, the sum of configuration weights to an arbitrary power λ is an elementary binomial

sum

∑
C
P(C)λ =

N∑
P=0

(
N

P

)[
ρP (1− ρ)N−P

]λ
(3.11)

= (ρλ + (1− ρ)λ)N (3.12)

and we find the full Rényi entropy exactly

Hλ =
N

1− λ
log
(
ρλ + (1− ρ)λ

)
. (3.13)

We note that at the tricritical point α = β = ρ = 1/2, Hλ = N log 2, independent of λ.

This corresponds to the trivial case where every configuration has probability 2−N .

Along this factorisation line the statistics of the TASEP are mean-field in nature, with

no correlations between neighbouring sites. This explains the triviality of these two

results. We will use this line as a useful consistency check when deriving more technical

results across the full phase diagram later.

3.3 Mapping to a random walk

We now turn to formulating a random walk problem from the explicit ladder operator

representations of D, E, 〈W |, |V 〉 as defined in Eq. (1.21):

D = 1 + g , E = 1 + g† ,

D|k〉 = |k〉+ |k − 1〉 , E|k〉 = |k〉+ |k + 1〉 ,

〈k|D = 〈k|+ 〈k + 1| , 〈k|E = 〈k|+ 〈k − 1| . (3.14)

The boundary vectors 〈W |, |V 〉 then contain all α, β dependence (Eq. (1.22)).

Before using these ladder interpretations to frame Eq. (3.1) as a random walk, we work

through the simpler case of the partition function generating function, which we have

already encountered in Section 1.6.2. The intention here is twofold: first, it gives an
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Figure 3.1 Example of the bicoloured Motzkin path, now with generalised start and end
coordinates. This walk begins at i = 0 and terminates at k = 2. The walk
can not move below the boundary at 0 but may touch it.

opportunity to apply a conventional kernel method [115] to solve a recurrence relation,

and in turn helps justify the attribution of the ‘obstinate’ label to the 2D calculation

that follows. Secondly, it serves as the 1D case of a more general λ-dimension random

walk relevant to higher-order Rényi entropies.

3.3.1 Introductory example: calculation of partition function generating

function by a kernel method

Using the relations in Eq. (3.14), we write the partition function ZN from Eq. (1.27)

explicitly as a double summation:

ZN = (1− ab)
∑
i≥0

∑
k≥0

aibk〈i|
(
g + g† + 2

)N
|k〉 . (3.15)

Using our knowledge of combinatorial properties of the TASEP from Chapter 2, we

immediately notice that this is a generalisation of bicoloured Motzkin paths [83].

Specifically, the element 〈i|
(
g + g† + 2

)N |k〉 that appears in Eq. (3.15) counts the

number of paths of length N from the step set {↑, ↓, ×, ·} (with × and · distinct

non-movement steps) that start at i and end at k, remaining in the upper plane. See

Figure 3.1 for an example of such a walk. Eq. (3.15) is then a generating function in a

and b over all possible start and end coordinates.

We take the generating function of the partition function from Eq. (1.101) :

Z(z) ≡
∑
N≥0

zN 〈W |(D + E)N |V 〉

=
∑
N≥0

zN (1− ab)
∑
i≥0

∑
k≥0

aibk〈i|
(
g + g† + 2

)N
|k〉 (3.16)
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which in turn can be calculated using a kernel method (see Ref. [115] for details and

further examples), as we now describe.

Define {bk} (Z(z)/(1− ab)) = µk(z; a) as:

µk(z; a) ≡
∑
N≥0

zN
∑
i≥0

ai〈i|
(
g + g† + 2

)N
|k〉 (3.17)

from which we obtain a recursion relation on µk by applying the operator (g + g† + 2)

to the bra 〈i|. Following the relations in Eq. (3.14), we find

µk(z; a) =
∑
i≥0

ai〈i|k〉+
∑
N≥1

zN
∑
i≥0

ai (〈i+ 1|+ 〈i− 1|+ 2〈i|)
(
g + g† + 2

)N−1
|k〉

(3.18)

=ak +
∑
N ′≥0

zN
′+1
∑
i≥0

ai (〈i+ 1|+ 〈i− 1|+ 2〈i|)
(
g + g† + 2

)N ′
|k〉

(3.19)

=ak + z
∑
N ′≥0

zN
′

[∑
i′≥1

ai
′−1〈i′|

(
g + g† + 2

)N ′
|k〉 (3.20)

+
∑
i′′≥−1

ai
′′+1〈i′′|

(
g + g† + 2

)N ′
|k〉+ 2

∑
i≥0

ai〈i|
(
g + g† + 2

)N ′
|k〉

]

=ak + z(2 + a+ ā)µk(z; a)− zāµk(z; 0) (3.21)

where we have introduced the notation ā = 1/a that will be used throughout this

chapter. Rearranging Eq. (3.21) gives for µk(z; a)

µk(z; a) =
zµk(z; 0)− ak+1

z(2a+ a2 + 1)− a
(3.22)

=
zµk(z; 0)− ak+1

z (a−A−(z)) (a−A+(z))
(3.23)

where we have factorised the denominator in a. We refer to the denominator as the

kernel. The roots A±(z) of the kernel are functions of z:

A±(z) =
1− 2z ±

√
1− 4z

2z
(3.24)

with A−(z)A+(z) = 1. Thus µk(z; a) exhibits a priori two poles at a = A±(z). However,

as we now argue, one of these poles must be cancelled by the numerator which furnishes

the condition that fixes the undetermined function µk(z; 0) in Eq. (3.23).

From Eq. (3.17), we see that µk(z; a) is a series with nonnegative powers of z and a.
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Looking at the denominator of Eq. (3.23), we see that since A+(z) → 1/z as z → 0,

a Taylor expansion of this factor about z = 0 and a = 0 yields nonnegative powers.

However, A−(z) → 0 as z → 0, which generates a spurious 1/a term. Since µk(z; 0)

depends on z (and not on a), the only way to eliminate this divergence is to cancel the

pole (a − A−(z)) when a → z. This condition fixes µk(z; 0) = A−(z)k+1/z and gives

our closed-form expression for µk(z; a):

µk(z; a) =
A−(z)k+1 − ak+1

z (a−A−(z)) (a−A+(z))
. (3.25)

We insert this into the full generating function, Eq. (3.16), and evaluate the geometric

sum

Z(z) = (1− ab)
∑
k≥0

(
A−(z)k+1 − ak+1

z (a−A−(z)) (a−A+(z))

)
bk (3.26)

=
1

z(a−A+(z))(bA−(z)− 1)
. (3.27)

Reintroducing η(z) = 1
2(1−

√
1− 4z), we have

z = η(1− η) , A+ =
1− η
η

, A− =
η

1− η
, (3.28)

and Eq. (3.27) can be expressed in a form manifestly symmetric in (a, b)

Z(z) =
1

[1− (1 + a)η(z)] [1− (1 + b)η(z)]
(3.29)

=
1

1− η(z)
α

1

1− η(z)
β

recovering the known expression, Eq. (1.106) from Section 1.3.3. We mention at this

point that the geometric series in Eq. (3.27) will have a finite radius of convergence. We

perform the calculation assuming we are within this radius of convergence, and extend

the domain of the resulting generating function to the full phase diagram (all values of

a > −1, b > −1 of the TASEP) by analytic continuation.

In fact, for the remainder of this chapter we use the variables a and b in place of α, β for

simplicity. To help visualise this variable space, we have produced the phase diagram

in terms of the transformed (α, β) 7→ (a, b) in Figure 3.2.
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Figure 3.2 The phase diagram of the TASEP in the space a = (1−α)/α, b = (1−β)/β.
The point α = β = 1, marked by a cross, maps to a = b = 0. The new lower
bound of −1 emerges as limα→∞(1− α)/α = −1.

3.3.2 Generating function for the sum of squared weights

Building on this simpler example, we now turn to the tensor expression in Eq. (3.10)

for the sum of squared weights. Here, the tensors act on 〈i| ⊗ 〈j| as

〈i| ⊗ 〈j| (D ⊗D) = 〈i| ⊗ 〈j|+ 〈i| ⊗ 〈j + 1|+ 〈i+ 1| ⊗ 〈j|+ 〈i+ 1| ⊗ 〈j + 1| ,
(3.30)

〈i| ⊗ 〈j| (E ⊗ E) = 〈i| ⊗ 〈j|+ 〈i| ⊗ 〈j − 1|+ 〈i− 1| ⊗ 〈j|+ 〈i− 1| ⊗ 〈j − 1| .
(3.31)

These correspond to possible steps of a walk on a two-dimensional lattice spanned by

the coordinates i and j. We use this explicit representation to write Eq. (3.1)

∑
C
W(C)2 = (1− ab)2

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

aiajbkbl〈i| ⊗ 〈j|(V + 2)N |k〉 ⊗ |l〉 (3.32)

where V denotes the sum over the tensor operators that correspond to the steps {↗, →
, ↑, ↙, ←, ↓} on a lattice. This time, the element 〈i|⊗〈j|(V+2)N |k〉⊗|l〉 is equivalent

to the number of distinct length-N paths from the step set V ∪ {·, ×}, where the walk

remains in the upper-quarter plane. See Figure 3.3 for an example.

Variable transformation

It is helpful to make a change of variables that eliminates the two non-movement steps,

leaving only the six steps in V. To this end, we define a generating function R in

the variable t, that counts the number of walks comprising N steps from the step set
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Figure 3.3 Example of a 2D walk from the step set {↗,→, ↑,↙,←, ↓}. The walk may
touch the axes, but not cross them.

{↗, →, ↑, ↙, ←, ↓}, that begin at (i, j) and end at (k, l), remaining in the upper-

quarter plane:

R(t;x, y, v, w) =
∑
N≥0

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

tNxiyjvkwl〈i| ⊗ 〈j|VN |k〉 ⊗ |l〉 . (3.33)

The five variables (t, x, y, v, w) track the path length N , its start coordinates (i, j) and

its end coordinates (k, l), respectively. To relate Q from Eq. (3.10) to R, we use the

identity

∑
N≥0

zN (X + Y )N =
∑
N≥0

∑
P≥0

(
N

P

)
(zX)P (zY )N−P (3.34)

=
∑
P≥0

(zX)P

(1− zY )P+1
(3.35)

for commuting objects X and Y . Then,

Q(z;α, β) =
∑
N≥0

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

zN (1− ab)2aiajbkbl〈i| ⊗ 〈j|(V + 2)N |k〉 ⊗ |l〉

=
(1− ab)2

1− 2z

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

ai+jbk+l
∑
P≥0

(
z

1− 2z

)P
〈i| ⊗ 〈j|VP |k〉 ⊗ |l〉

=
(1− ab)2

1− 2z
R
(

z

1− 2z
;
1− α
α

,
1− α
α

,
1− β
β

,
1− β
β

)
. (3.36)

Thus R and Q are related by the transformation t = z/(1− 2z), z ∈
[
0, 1

2

)
. We focus

on finding an expression for R, generalising a result from Bousquet-Mélou, where the

end point of this six-step walk was fixed at the origin, k = l = 0 [114].

73



3.3.3 Recurrence relation

We now determine the recurrence relation that R(t;x, y, v, w) obeys. We apply the

leftmost V operator in Eq. (3.33) to 〈i| ⊗ 〈j|,

R(t;x, y, v, w) =
∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

xiyjvkwlδikδjl (3.37)

+
∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0

∑
N≥1

tNxiyjvkwl
[
〈i+ 1|〈j|+ 〈i− 1|〈j|+ 〈i|〈j + 1|

+ 〈i|〈j − 1|+ 〈i+ 1|〈j + 1|+ 〈i− 1|〈j − 1|
]
V(N−1)|k〉|l〉

where we suppress the tensor product ‘⊗’ symbol to lighten the notation. The first

term is the N = 0 contribution, and the second N ≥ 1 term makes explicit the six

possible steps the walk can take. We rewrite Eq. (3.37) in terms of R itself,

R(t;x, y, v, w) =
1

(1− xv)(1− yw)
+ tx̄ȳR(t; 0, 0, v, w)

− t(x̄ȳ + x̄)R(t; 0, y, v, w)− t(x̄ȳ + ȳ)R(t;x, 0, v, w)

+ t(x + x̄ + y + ȳ + xy + x̄ȳ)R(t;x, y, v, w) , (3.38)

and we reiterate that we use the notation x̄ = 1/x and ȳ = 1/y. By completing the

summations in Eq. (3.37), the we are left with of counter terms e.g. R(t; 0, y, v, w). To

refer back to our introductory discussion on random walks in Section 1.5, Eq. (3.38)

is a master equation for 〈i| ⊗ 〈j|VN |k〉 ⊗ |l〉 in discrete space and path length, with

a summation over these three coordinates, with absorbing boundary conditions (e.g.

〈i| ⊗ 〈j|VN |−1〉 ⊗ |l〉 = 0) enforced.

Moving forward, in a similar way to the 1D example in Section 3.3.1, we define a kernel

K(x, y, t) and introduce a shorthand Kxy

K(x, y, t) ≡ Kxy = 1− t(x+ x̄+ y + ȳ + xy + x̄ȳ) (3.39)

and Eq. (3.38) becomes

KxyR(t;x, y, v, w) =
1

(1− xv)(1− yw)
+ tx̄ȳR(t; 0, 0, v, w)

− t(x̄ȳ + x̄)R(t; 0, y, v, w)− t(x̄ȳ + ȳ)R(t;x, 0, v, w) . (3.40)

By making the substitution (x, y, v, w)→ (a, a, b, b), we find a simplification using the
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symmetry of the walk along the diagonal

a2KaaR(t; a, a, b, b) =
a2

(1− ab)2
+ tR(t; 0, 0, b, b)− 2t(1 + a)R(t; a, 0, b, b) .

(3.41)

We see from Eq. (3.41) that an expression for R(t; a, 0, b, b) is sufficient to find the

more general R(t; a, a, b, b), the generating function for the random walk, and in turn

Q(z;α, β), the generating function for the TASEP squared weight enumeration with

arbitrary α, β. However, therein lies the difficulty in this problem. With the kernel as a

function of two variables x, y, there is insufficient information in this single recurrence

relation to fix the right hand side terms of Eq. (3.40) by a pole-cancelling method, as

used in the introductory example of the partition function in Section 3.3.1. Instead, we

must turn to the more sophisticated method seen in Refs. [72, 114, 116] which exploits

a symmetry property of the kernel to solve for R.

Overview of the obstinate kernel method

We first give a brief description of the obstinate kernel method that eventually solves

Eq. (3.40) [116]:

1. Identify a set symmetries of the kernel: coordinate transformations of x, y under

which K(x, y) remains invariant;

2. Exploit this symmetry to eliminate an unknown function in the recurrence

relation;

3. Perform a formal series expansion of the simplified recurrence relation in both

positive and negative powers of the variable y;

4. Read off and extract the coefficient of y0, eliminating any dependence on y;

5. Perform a formal series expansion of this new relation in positive and negative

powers of x;

6. Read off and extract either the coefficient of x0 or the positive powers in x,

depending on the desired generality, to find a closed-form expression for a

generating function on the RHS of Eq. (3.40).

With this roadmap, we first analyse the kernel, identifying its roots and symmetry

properties.
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3.3.4 Symmetry and factorisation of the kernel

The kernel in Eq. (3.39) has the following symmetry property:

K(x, y, t) = K(x, x̄ȳ, t) = K(x̄ȳ, y, t) (3.42)

where it is easily seen that these two parameter transformations leave the kernel

invariant.

We now define the two roots of the kernel K in the variable y as Y−(x, t), Y+(x, t)

(the choice of y over x is arbitrary given the symmetry of the problem) and write it in

factorised form

Kxy = − t(1 + x)

y
(y − Y−(x, t)) (y − Y+(x, t)) , (3.43)

Y±(x, t) =
1− t(x̄+ x)±

√
∆(x, t)

2t(1 + x)
, (3.44)

∆(x, t) = 1− 6t2 + t2(x2 + x̄2)− 2t(1 + 2t)(x+ x̄) , (3.45)

where Y−(x, t)Y+(x, t) = x̄. ∆(x, t) is termed the discriminant, which can also be

factorised: as a product of its roots in x,

∆(x, t) = ∆0∆+(x, t)∆+(x̄, t) , (3.46)

∆0(t) =
t2

X−(t)X+(t)
, (3.47)

∆+(x, t) = (1−X−(t)x)(1−X+(t)x) . (3.48)

The roots X−(t), X+(t) are functions of t alone

X±(t) =
2t+ 1

2t
±
√

3t+ 1

t
−
√

2t+ 1

2t

√
1 + 6t± 4

√
t(3t+ 1) . (3.49)

We refer to the kernel K, the discriminant ∆ and their respective roots Y±, X±

throughout the proceeding calculation. Knowing these roots, we can rework the

reciprocal of the kernel:

1

K(x, y, t)
=

y√
∆(x, t)

Y−(x, t)− Y+(x, t)

(y − Y−(x, t))(y − Y+(x, t))
(3.50)

=
y√

∆(x, t)

[
1

1− ȳY−(x, t)
+

y

Y+(x, t)− y

]
(3.51)

=
1√

∆(x, t)

[
1

1− ȳY−(x, t)
+

1

1− yȲ+(x, t)
− 1

]
. (3.52)
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Eq. (3.52) is in a form that permits a straightforward power series expansion in y.

For later reference we define two more quantities that we use when performing the

transformation from t-space back to z, re-integrating the two non-movement steps into

the random walk, as per Eq. (3.36)

Λ±(z) ≡ 2zX±

(
z

1− 2z

)
(3.53)

= 1± 2
√
z(1 + z)− 2

√
z +

1

4
±
√
z(1 + z) , (3.54)

Γ(α, z) ≡ Γ(α) = ∆+

(
1− α
α

,
z

1− 2z

)
(3.55)

=

[
1− 1− α

2zα
Λ−(z)

] [
1− 1− α

2zα
Λ+(z)

]
. (3.56)

3.4 Generating function for the α = β = 1 weights, Q(z; 1, 1)

We now present a full calculation of the generating function for the case α = β = 1,

corresponding to Q(z; 1, 1). With reference to Figure 1.3, this is a point in the maximal

current phase. Under this restriction, expressions simplify considerably from the case

of general α and β. By working through this particular case in detail we aim to clearly

outline this obstinate kernel method, while the algebra remains comparatively simple.

We find that with increasing generality of the generating function, the algebra becomes

more elaborate, but the principles of the calculation remain the same. In this simpler

case, our solution follows closely the method of Ref. [114].

For further brevity, define

R0(x, y) ≡ R(t;x, y, 0, 0) (3.57)

whereby we now have any functional t dependence as implicit. Because we have set

v = w = 0 (the equivalent of fixing β = 1 in the TASEP) the recurrence relation (3.40)

reduces to

xyR0(x, y) =
1

Kxy
[xy − t(1 + x)R0(x, 0)− t(1 + y)R0(0, y) + tR0(0, 0)] . (3.58)

It is at this point we use the symmetry property in Eq. (3.42) of the kernel to obtain
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from Eq. (3.58) two transformed expressions

ȳR0(x, x̄ȳ) =
1

Kxy
[ȳ − t(1 + x)R0(x, 0)− t(1 + x̄ȳ)R0(0, x̄ȳ) + tR0(0, 0)] ,

(3.59)

x̄R0(x̄ȳ, y) =
1

Kxy
[x̄− t(1 + x̄ȳ)R0(x̄ȳ, 0)− t(1 + y)R0(0, y) + tR0(0, 0)] .

(3.60)

We then take the linear combination of Eqs. (3.58) + (3.59)− (3.60) to give

xyR0(x, y) + ȳR0(x, x̄ȳ)− x̄R0(x̄ȳ, y)

=
1

Kxy
[tR0(0, 0)− 2t(1 + x)R0(x, 0) + xy + ȳ − x̄] . (3.61)

This exploitation of the kernel symmetry is the key step in solving an otherwise

insufficient recurrence relation (3.58); by making this combination, we have eliminated

R0(0, y) and R0(0, x̄ȳ). Crucially, we are now able to find closed-form expressions for

the generating functions R0(0, 0), R0(x, 0) by extracting coefficients of certain powers

of x and y from Eq. (3.61). This is because we have used the kernel symmetry to make

nearly all y-dependence in Eq. (3.61) explicit [114].

With this in mind, we rewrite Eq. (3.61), this time using the reciprocal of the kernel in

Eq. (3.52)

xyR0(x, y) + ȳR0(x, x̄ȳ)− x̄R0(x̄ȳ, y)

=
1√

∆(x)

[
1

1− ȳY−(x)
+

1

1− yȲ+(x)
− 1

]
×

[tR0(0, 0)− 2t(1 + x)R0(x, 0) + xy + ȳ − x̄] . (3.62)

We are able to now formally write Eq. (3.62) as a power series in y, anticipating both

positive and negative powers of y.

We first want R0(0, 0). Knowing that this is a function of t alone, we need to isolate

the x0y0 coefficient from Eq. (3.62). Having made most of the y-dependence explicit,

we begin by extracting the y0 component.
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3.4.1 y0 coefficient extraction

By making explicit the power series on the LHS of Eq. (3.62)

LHS (3.62) =
∑
i≥0

∑
j≥0

∑
N≥0

[
xi+1yj+1 + xi−jy−j−1 − x−i−1yj−i

]
tN 〈i|〈j|VN |0〉|0〉 (3.63)

we simply read off the y0 component as

{
y0
}

LHS (3.62) = −x̄
∑
i≥0

∑
N≥0

x̄itN 〈i|〈i|VN |0〉|0〉 ≡ −x̄R(d)
0 (x̄) (3.64)

where R(d)
0 (x) is the generating function for walks comprising steps from V =

{↗,→, ↑,↙,←, ↓}, from the origin, remaining in the upper-quarter plane and

terminating on the diagonal. We now turn to the RHS of Eq. (3.62), which we also

write as a formal power series

RHS (3.62) =
1√

∆(x)

∑
i≥0

y−iY−(x)i +
∑
j≥0

yjY+(x)−j − 1

×
[tR0(0, 0)− 2t(1 + x)R0(x, 0) + xy + ȳ − x̄] (3.65)

and read off the y0 component to leave

−x̄R(d)
0 (x̄) =

1√
∆(x)

[tR0(0, 0)− 2t(1 + x)R0(x, 0)− x̄+ 2xY−(x)] (3.66)

having used Y+(x)Y−(x) = x̄. From Eq. (3.66), and the factorisation of the discriminant

in Eq. (3.46) it is a simple matter to determine R0(0, 0).

3.4.2 x0 coefficient extraction, Q(z; 1, 1) result

With the explicit form for the root Y− and factorised discriminant (Eqs. (3.44), (3.46)

respectively), we can rearrange Eq. (3.66) into the form

√
∆+(x̄)

[x
t
− (1 + x̄)R(d)

0 (x̄)
]

=
1√

∆0∆+(x)

[
(1 + x)tR0(0, 0)− 2t(1 + x)2R0(x, 0) +

x

t
− 2− x̄− x2

]
(3.67)
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having separated the bulk of x̄ terms to the LHS, and the x terms to the RHS. We now

perform two expansions with the factorised form of the discriminant, Eq. (3.46):

√
∆+(x̄) = 1− 1

2
(X− +X+)x̄+O(x̄2) , (3.68)

1√
∆+(x)

= 1 +
1

2
(X− +X+)x+O(x2) , (3.69)

and extract the x0 component of Eq. (3.67) to find

−1

2
(X++X−)−R0(0, 0) =

1√
∆0

[
tR0(0, 0)− 2tR0(0, 0)− 2 +

1

2
(X+ +X−)

]
. (3.70)

It is now a matter of simple algebraic manipulation to find for R0(0, 0)

R(t; 0, 0, 0, 0) = R0(0, 0) (3.71)

=
1

2t

(X− +X+)−
√
X−X+ (4 +X− +X+)√
X−X+ − 1

(3.72)

= 1 + 3t2 + 4t3 + 26t4 + 80t5 + 387t6 +O
(
t7
)

(3.73)

in terms of the roots of the discriminant X−(t), X+(t) in Eq. (3.49), recovering the

known series expansion in [114]. To recall, R(t; 0, 0, 0, 0) generates the numbers of 2D

walks of N steps from the step set {↗,→, ↑,↙,←, ↓} in the upper quadrant that start

and finish at the origin. To find the corresponding generating function for the sum of

squared weights in a TASEP of length N , we apply the transformation (3.36)

Q(z; 1, 1) =
1

1− 2z
R
(

z

1− 2z
; 0, 0, 0, 0

)
(3.74)

to acquire a complicated preliminary expression involving square roots of the terms in

Eq. (3.54), which we simplify by denesting the square roots. This requires extensive

use of the identity

√
2

√
A+B

√
C =

√
A+

√
A2 −B2C +

√
A−

√
A2 −B2C (3.75)

which reduces a nested square root into a sum of two square roots, if A2 − B2C is a

perfect square. We eventually find Eq. (3.74) in the simplest form to be

Q(z; 1, 1) =
1

4z2

[
3
√

2z

√
1− 2z −

√
1− 8z +

√
2(1 + z)

√
1− 2z +

√
1− 8z − 4z − 2

]
.

(3.76)
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This generating function is a series in positive powers of z, as required. Expanding

about the origin, we find

Q(z; 1, 1) = 1 + 2z + 7z2 + 30z3 + 146z4 + 772z5 + 4331z6 +O
(
z7
)
. (3.77)

Eq. (3.76) is the first key result from this calculation. The coefficients in the power

series expansion (3.77) match with the enumerated sums of squared TASEP weights,

in the case α = β = 1, for systems of size N = (0, 1, 2, 3, . . . ).

Link to path dominance problem

On further investigation, this set of coefficients {qN} = {1, 2, 7, 30, 146, 772, 4331, . . . }
matches with those of sequence A196148 in the OEIS [117], which take the form

qN =
N∑
P=0

(2N + 1)!(N + 1)!

(2P + 1)!(2N − 2P + 1)!(P + 1)!(N − P + 1)!
. (3.78)

From this OEIS reference, we find that expression (3.78) is the known solution to an

equivalent problem in the path dominance problem that we discussed in Chapter 2,

Section 2.2.1. Specifically, the summand in Eq. (3.78) is the total number of distinct

triples of paths comprising P ‘↑’ steps and (N−P ) ‘→’ steps, where one path dominates

the two others [89]. Having already proven the equivalence between these two problems,

we obtain the more precise result that the summand of Eq. (3.78) is the sum of squared

weights for the subset of configurations with P particles.

With this we return to the main derivation. To summarise so far, we have in Eq. (3.76)

a generating function for the sum of squared weights at the point α = β = 1 on the

phase diagram. With the same method of applying the kernel symmetry in Eq. (3.61)

and extracting coefficients, we now extend this approach to find generating functions

first for arbitrary α but β = 1, and subsequently for arbitrary α, β (see Figure 3.4 for

the corresponding lines in the phase diagram).

3.4.3 x+ coefficient extraction, obtaining Q(z;α, 1)

Having found R(t; 0, 0, 0, 0), we now generalise to R(t; a, a, 0, 0). Once we make a

variable transformation, this corresponds to the generating function along the line

β = 1 which traverses the low density and maximal current phases as α is varied. Given

the recursion relation (3.58), this requires R(t;x, 0, 0, 0) (by symmetry, R(t; 0, y, 0, 0)
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Figure 3.4 The lines and regions in the phase diagram that the generating function
covers with increasing generality. The trivial factorisation line (FL) is
included.

follows). We return to Eq. (3.62), and obtain an expression for R0(x, 0) by considering

the positive powers of x. The LHS is elementary:

{
x+
}

LHS (3.67) =
x

t
(3.79)

where {x+} denotes “the positive powers in x within”. The RHS is more involved, and

we explicitly subtract any O(x̄) terms:

{
x+
}

RHS (3.67) =
1√

∆0∆+(x)

[
t(1 + x)R0(0, 0)− 2t(1 + x)2R0(x, 0)− 2

− x2 − x̄+
x

t

]
+

1√
∆0

[
tR0(0, 0) + 2 + x̄+

1

2
(X− +X+)

]
. (3.80)

This gives us an expression for R0(x, 0) in terms of the known R0(0, 0)

R0(x, 0) = − 1

2t(1 + x)2

[(√
∆0∆+(x)− 1

) x
t

+ 2− t(1 + x)R0(0, 0)

+ x2 + x̄−
√

∆+(x)

(
tR0(0, 0) + 2 + x̄+

1

2
(X− +X+)

)]
. (3.81)

From this, the steps to finding Q(z;α, 1) are straightforward. Using Eq. (3.58), we

acquire R0(x, y) = R(t;x, y, 0, 0) from this new result, whereby we find the generating

function for the sum of squared weights for the general α, β = 1 case after applying
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the transformation (3.36). With further algebraic manipulation, we eventually find

Q(z;α, 1) =
1

1− 2z
R
(

z

1− 2z
;
1− α
α

,
1− α
α

, 0, 0

)
(3.82)

= − α2

z(1− α)
−

√
Γ(α)α5

(
1 + 1

1−α +
2
√

Λ−Λ+

2z−
√

Λ−Λ+
− 2z(1−α)√

Λ−Λ+α

)
α2(1− α)2 − z (α2 + (1− α)2)

(3.83)

= 1 +

(
1 +

1

α2

)
z +

(
2 +

2

α
+

2

α2
+

1

α4

)
z2 +O

(
z4
)
. (3.84)

The coefficients of this power series in z are the sums of squared weights of the

TASEP for increasing system size with β = 1, and match with those calculated in

Eqs. (3.2), (3.3), (3.6) using the matrix reduction relations.

By the symmetry between α and β, we also have from Eq. (3.82) Q(z; 1, β), whereby

α is fixed and β is variable. This gives us information along two lines in the phase

diagram, crossing at α = β = 1.

3.5 Generating function for general α, β weights, Q(z;α, β)

We come at last to the generating function across the full phase diagram, Q(z;α, β),

for which we require an expression for R(t; a, a, b, b). To attempt to keep the notation

concise, we now redefine

R(x, y) ≡ R(t;x, y, b, b). (3.85)

This function obeys the recurrence relation (3.40)

KxyR(x, y) =
1

(1− bx)(1− by)
+tx̄ȳR(0, 0)−t(x̄ȳ+x̄)R(0, y)−t(x̄ȳ+ȳ)R(x, 0) . (3.86)

This is essentially Eq. (3.58) only for factors of b = (1− β)/β in the first term. While

this is a more elaborate relation, we are able to employ the same approach to it as in

Section 3.4: exploiting the symmetry of the kernel Kxy to obtain a simplified expression,

from which we can extract coefficients to obtain a closed form for the generating

function. However, compared to the β = 1 case of Section 3.4, these additional factors

of b add a surprising degree of algebraic complication to the calculation.
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Nonetheless, we use the symmetry property of the kernel in Eq. (3.42) to arrive at

xyR(x, y) + ȳR(x, x̄ȳ)− x̄R(x̄ȳ, y)

=
1√

∆(x)

[
1

1− ȳY−(x)
+

1

1− yȲ+(x)
− 1

][
xy

(1− bx)(1− by)

+
ȳ

(1− bx)(1− bx̄ȳ)
− x̄

(1− bx̄ȳ)(1− by)
+ tR(0, 0)− 2t(1 + x)R(x, 0)

]
(3.87)

which recovers Eq. (3.62) in the case b = 0. We then extract the y0, x+ components from

Eq. (3.87), to obtain a closed-form expression for R(t; a, a, b, b). This is an algebraically

tedious task, however it follows the same method employed in Section 3.4 and as such

we defer the details of this coefficient extraction to Appendix B.1.

3.5.1 Q(z;α, β) result

Having performed this coefficient extraction, we find an expression for R(t; a, a, b, b),

which we quote in Appendix B.1, Eq. (B.31). With further algebraic manipulation, we

obtain the full generating function Q(z;α, β) recalling the transformation (3.36)

Q(z;α, β) =
(1− ab)2

1− 2z
R
(

z

1− 2z
,
1− α
α

,
1− α
α

,
1− β
β

,
1− β
β

)
eventually arriving at

Q(z;α, β) = − α2β2

z(α+ β − 2αβ) + (α+ β − 1− αβ)αβ
+

√
Γ(α)Γ(β)

Λ−Λ+
×[

(1− α− β)αβz2z0(α)z0(β)

4(z0(α)− z)(z0(β)− z)(1− α)2(1− β)2(z[α+ β − 2αβ] + αβ[α+ β − 1− αβ])

]
×[

− 2
√

1− 8z(1− α− β)2 + 8z(α+ β − 2αβ)− 2(α+ β − 2αβ − 1)2

− (1− α− β)
(√

1− 8z + (1− 2α)(1− 2β)
)√

2 + 8z + 2
√

1− 8z

]
(3.88)

where

z0(γ) =
γ2(1− γ)2

γ2 + (1− γ)2
(3.89)

and we have also used the definitions in Eqs. (3.54), (3.56). This is the most general

result of this chapter. It would be of no surprise if further simplifications to this

generating function were found. However, for the purpose of finding the asymptotic
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scaling of the power series of of Q(z;α, β), Eq. (3.88) is sufficient.

Before analysing the full generating function in detail, we notice immediately that upon

fixing the function along the factorisation line, β = 1− α, we recover

Q(z;α, 1− α) =
1

1− z
(

1
α2 + 1

(1−α)2

) (3.90)

=
∑
N≥0

zN
(

1

α2
+

1

(1− α)2

)N
(3.91)

from the first term in Eq. (3.88); the second term vanishes. This recovers a generating

function for the sum of squared weights, for the case discussed in Section 3.2.1 of a

Bernoulli distribution, as one would expect given the dynamics along the factorisation

line [36]. This serves as one verification of our method. In addition, one can compute

the series expansion of Q(z;α, β) in z, to verify that its coefficient series is indeed the

sums of squared weights for increasing system size, the first few having been directly

evaluated in Eqs. (3.2), (3.3), (3.6).

3.6 Asymptotic analysis

To summarise, we now have in Eq. (3.88) a closed-form expression for the generating

function for the sum of squared TASEP weights, Eq. (3.10)

Q(z;α, β) =
∑
N≥0

〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)N |V 〉 ⊗ |V 〉zN .

We use this to find the scaling of the sum of squared probabilities, with a view to finding

an expression for the λ = 2 Rényi entropy from Eq. (1.59). We use standard asymptotic

methods, following the formalism outlined in Section 1.6 [10]. Based on the form of

Q(z;α, β) in Eq. (3.88), and Q(z; 1, 1) in Eq. (3.76), we expect poles at z = z0(α),

z = z0(β), and a branch point at z = 1/8. Furthermore, we expect the changing of

dominant nonanalyticities to coincide with the phase transitions of the TASEP.

3.6.1 Low density phase α < 1/2, α < β

In the low density phase, the first singularity we identify in Q(z;α, β) is a simple pole,

at z = z0(α) as defined in Eq. (3.89). We find an elaborate expression for g−1 presented

in Appendix B, Eq. (B.32). As there is an α-dependence in the location of the pole
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Figure 3.5 Surface plot of Eq. (B.32), the residue g−1 at z = z0(α). This vanishes
moving into the maximal current phase. In the shaded region α > β, a
different pole at z = z0(β) dominates.

z0(α), the value of α affects the Rényi entropy to the leading order.

The vanishing of the residue at α = 1/2, shown in Figure 3.5, indicates that Q(z;α, β)

is well-behaved at z0(α) at this point in the maximal current phase. When probing

further we find beyond α = 1, β = 1 that z0(α) again becomes a pole, however not as

the singularity closest to the origin.

Focusing on the α < 1/2 region, knowing the position and magnitude of the pole, along

with the residue, we use Eq. (1.114) to find the asymptotic scaling of the sum of squared

weights

∑
C
W(C)2 ∼ − g−1

z0(α)

(
α2 + (1− α)2

α2(1− α)2

)N
. (3.92)

To normalise these squared weights into squared probabilities, we divide through

Eq. (3.92) by the partition function ZN (α, β) in Eq. (1.27), squared. Within the low

density phase we know the asymptotic form from Eq. (1.29) to be

ZN ∼
β(1− 2α)

(β − α)(1− α)

(
1

α(1− α)

)N
from which we obtain the sum of squared probabilities,

∑
C
P(C)2 ∼ g−1(1− α)2(β − α)2

β2(1− 2α)2

(
α2 + (1− α)2

)N
. (3.93)

The λ = 2 Rényi entropy H2 follows, which to leading order is

H2 = − log
∑
C
P(C)2 ∼ −N log

(
α2 + (1− α)2

)
+O(1) (3.94)
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and an effective number of configurations with eH2

eH2 ∼ β2(1− 2α)2

g−1(1− α)2(β − α)2

(
1

α2 + (1− α)2

)N
. (3.95)

3.6.2 High density phase β < 1/2, β < α

By the symmetry of the generating function and of the dynamics of particles and holes

in the TASEP, the corresponding results in the high density phase are an (α, β)→ (β, α)

mirror of those found in the low density phase.

3.6.3 Maximal current phase α > 1/2, β > 1/2

We find in this phase the dominant singularity to be a branch point, at z1 = 1/8.

A series expansion of Q(z;α, β) about this branch point shows the emergence of an

imaginary contribution:

Q (z;α, β) = ih 3
2
(α, β)

(
z − 1

8

) 3
2

+
∑
j≥0

hj

(
z − 1

8

)j
. (3.96)

This indicates an algebraic singularity of order k = 3/2. We find h 3
2
, that we quote

in Appendix B.2, Eq. (B.33). Using Eq. (1.116), we find the asymptotic scaling of the

sum of squared weights

∑
C
W(C)2 ∼

h 3
2

(
1
8

) 3
2

Γ
(
−3

2

) 8N

N
5
2

. (3.97)

We normalise this to obtain the sum of squared probabilities using the appropriate

asymptotic expression for the partition function from Eq. (1.29)

ZN ∼
4αβ(α+ β − 1)√
π(2α− 1)2(2β − 1)2

4N

N
3
2

to obtain a final expression

∑
C
P(C)2 ∼ 1

F (α, β)

√
π

2

√
N

2N
(3.98)
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Figure 3.6 Surface plot of Eq. (B.34), F (α, β). Going deeper into the maximal current
phase, the effective number of participating configurations eH2 decreases,
towards a constant. F is divergent on the phase boundaries, however the
effective number is well behaved for all α, β > 1/2.

where the prefactor F (which we quote in the Appendix B.2, Eq. (B.34), see also

Figure 3.6) has no dependence on system size N . Thus the large-N scaling of H2 is

H2 = − log
∑
C
P(C)2 ∼ N log 2− 1

2
logN +O(1) . (3.99)

For large system sizes, the leading contributions to the Rényi entropy become

independent of α, β. For the effective number of participating configurations eH2 [63],

however, α and β arise in the multiplicative factor F (α, β)

eH2 ∼ F (α, β)

√
2

π

2N√
N
. (3.100)

To interpret this scaling with system size, recall that the maximal current phase has

bulk density ρ = 1/2. Consider now the asymptotic form of the binomial coefficient [10]

(
N
N
2

)
∼
√

2

π

2N√
N

(3.101)

and note the same scaling with N as the effective number in Eq. (3.100).

Illustrated in Figure 3.6, the prefactor F is a decreasing function of α and β,

approaching a nonzero constant. In other words as the reservoir parameters increase,

the effective number of participating configurations decreases towards a minimum value.
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Figure 3.7 Surface plot of the asymptotic scaling of the Rényi entropy H2, across the
phase diagram.

For some special cases we obtain neat results for this effective number:

eH2(α, α) ∼
√

6
(√

3 + 2α− 1
)2

2(2α− 1)
(√

3 + 2(2α− 1)
) [√ 2

π

2N√
N

]
, (3.102)

eH2(1, 1) ∼
√

6

[√
2

π

2N√
N

]
, (3.103)

eH2(∞,∞) ∼ 1

4

√
6

[√
2

π

2N√
N

]
. (3.104)

3.6.4 Rényi entropy across the phase diagram

These results are summarised with a surface plot of H2 across the phase diagram in

Figure 3.7. We find a plateau in this Rényi entropy in the maximal current phase, that

arises from the branch point with no α or β dependence.

3.6.5 Bounds on Gibbs-Shannon entropy

The Rényi entropy Hλ is a nonincreasing function of λ [8]. With our results for H2, and

knowing that H0 (a trivial measure of the number of accessible TASEP microstates) is

N log 2 across the whole phase diagram, we find bounds on the Gibbs-Shannon entropy

(Eq. (1.4)) across the phase diagram:

N log 2 ≥ S(α, β) ≥ −N log
(
α2 + (1− α)2

)
LD , (3.105)

N log 2 ≥ S(α, β) ≥ −N log
(
β2 + (1− β)2

)
HD , (3.106)

N log 2 ≥ S(α, β) ≥ N log 2− 1

2
logN MC . (3.107)
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3.7 Discussion

In Eq. (3.88), we have an elaborate but exact formula for the generating function of the

sum of squared weights for the TASEP. In the particular case α = β = 1 this simplifies

and allows a finite sum expression for the sum of squared weights, Eq. (3.78).

From these expressions we have derived in Eqs. (3.94), (3.99) the large-N behaviour of

the λ = 2 Rényi entropy. As we shall discuss, the leading order terms in these entropies

are what one would obtain from a Bernoulli measure — the system at the same particle

density, with correlations absent. While one may anticipate this as the leading order

term, the corrections to this order are reflective of correlations in the NESS, which take

different forms in the different phases [39]. These in turn give the effective number of

participating configurations, Eqs. (3.95), (3.100).

In the high and low density phases, it is known that second-order density correlations

(Eq. (1.35)) decay exponentially with distance [39]. In turn, we find the correction to

the Bernoulli measure expression to be O(1). In the maximal current phase, however,

there is a long-range power law decay: for sites i1 and i2 with respective occupations τi1 ,

τi2 , 〈(τi1−1/2)(τi2−1/2)〉 ∼ |i1− i2|−
1
2 [39]. We in turn find an O(logN) correction in

this phase. These corrections represent nonadditive contributions to the Rényi entropy.

It would be interesting to establish how the corrections to the Rényi entropy are

intrinsically related to the nature of correlations — specifically, whether one can infer

the correction to the Rényi entropy of a system, from the correlations it exhibits.

3.7.1 Rényi entropy of the one-transit walk

One of the motivations of the work in this chapter was how the Rényi entropy manifests

in a classical NESS, in comparison with an equilibrium system. We therefore return

to the one-transit walk [79], discussed in Chapter 1, Section 1.7.3. To recall, this is

an equilibrium system of CN+1 configurations, of relevance here because it shares a

partition function with the nonequilibrium TASEP (Eq. (1.28)), which we repeat for

convenience:

ZN =

N∑
p=1

p∑
q=0

p(2N − p− 1)!

N !(N − p)!

(
1

α

)q ( 1

β

)p−q
.

We are interested in how the Rényi entropy changes given a different partitioning of

the same state space, in particular one with weights that are explicitly Boltzmann-like.
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Here, the Rényi entropy is straightforward: using

∑
C
W(C)λ =

N∑
p=1

BNp

p∑
q=0

[(
1

α

)q ( 1

β

)p−q]λ
(3.108)

= ZN (αλ, βλ) (3.109)

the entropy of the one-transit walk,

Hλ =
1

1− λ
log

ZN (αλ, βλ)

ZN (α, β)λ
(3.110)

is exactly calculable across the full parameter spectrum of α, β, λ given knowledge of

the partition function (as one expects from an equilibrium system) [66]. However, this

alludes to the unique feature of the equilibrium Rényi entropy: in the limit of large N

we find nonanalyticities in ZN along the lines

� α = β < 1/2 (LD ↔ HD transition) ;

� α = 1/2, β > 1/2 (LD ↔ MC) ;

� β = 1/2, α > 1/2 (HD ↔ MC) ;

which draw out the phase diagram in Figure 1.3. However, we then anticipate further

nonanalyticities from the ZN (αλ, βλ) term, along

� αλ = βλ < 1/2 ;

� αλ = 1/2, βλ > 1/2 ;

� βλ = 1/2, αλ > 1/2 .

For the case λ = 2 we apply the known asymptotic forms of the partition function in

Eq. (1.29) to the Rényi entropy formula in Eq. (3.110) to find to leading order in N

(Figure 3.8)

H2 ∼



N log
(
(1− α2)/(1− α)2

)
(i) if α < β, α < 1/2

N log
(
(1− β2)/(1− β)2

)
(ii) if α > β, β < 1/2

N log
(
(4α)2(1− α2)

)
(iii) if α < β, 1/2 < α < 1/

√
2

N log
(
(4β)2(1− β2)

)
(iv) if α > β, 1/2 < β < 1/

√
2

N log 4 (v) if α, β > 1/
√

2

(3.111)
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Figure 3.8 Surface plot of the asymptotic scaling of the Rényi entropy H2 of the
equilibrium one-transit walk, across the phase diagram.

giving five different scaling regions in Hλ. As expected from Eq. (1.62), for each phase

transition in the partition function, we find two nonanalyticities in the Rényi entropy.

The absence of these secondary lines in the TASEP, then, serves as a verification that

the microstate distribution can not be furnished as an equilibrium-like distribution with

a temperature-like parameter, otherwise secondary lines would appear in the Rényi

entropy.

A question that naturally arises is whether there is a deep underlying reason for this

to be the case. The presence of the secondary transition relies on each and every

microstate having a Boltzmann weight; a perturbation of a single microstate weight

away from this leads to Eq. (3.110) no longer holding. As such, the Rényi entropy may

serve as a test as to whether a system is in or out of equilibrium, given its microstate

distribution.

3.7.2 Higher-order Rényi entropies

This path enumeration approach to sums of TASEP weights can be generalised to

arbitrary integer power. Extending the tensor product formalism in Eq. (3.1), the sum

of weights to the λth power can be written

∑
C
W(C)λ = 〈V |⊗λ(D⊗λ + E⊗λ)N |V 〉⊗λ (3.112)

where A⊗λ denotes the repeated tensor product

A⊗λ = A⊗ · · · ⊗A︸ ︷︷ ︸
λ

. (3.113)
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From the explicit ladder operator representation of D and E in Eq. (3.14), this then

is equivalent to a problem of enumerating the λ-dimension walks in the upper orthant,

comprising the 21+λ steps from

λ∏
q=1

(1 + gq) +
λ∏
q=1

(1 + g†q) . (3.114)

Even in two dimensions, the step set {↑, ↓, →, ←, ↙, ↗} has proven one of the more

challenging step sets to solve. The enumeration of λ = 3 octant walks in general is a

current area of research [118], but for this particular classification of walk in λ = 3 or

higher, no analytical techniques are known. Nonetheless, our work on the λ = 2 case

gives us an insight, and allows us to make some conjectures about these higher-order

entropies.

We showed in Section 3.2.1 that along the factorisation line α + β = 1 we can write

in Eq. (3.13) a simple expression for all Rényi entropies. This is simply the result of a

Bernoulli measure for the stationary state. We notice that in the case λ = 2 the same

expression gives the leading-order term in the exact expressions (3.94), (3.99), when we

take ρ to be the density within the bulk of the system, ρ = α, (1− β), 1/2 in the high

density, low density and maximal current phases respectively. We thus conjecture that

in the low density and high density phases, the leading scaling with system size N for

all Rényi entropies is given by a Bernoulli measure, Eq. (3.13):

LD Hλ =
N

1− λ
log
(
αλ + (1− α)λ

)
+O(1) , (3.115)

S = −N (α logα+ (1− α) log (1− α)) +O(1) , (3.116)

HD Hλ =
N

1− λ
log
(
βλ + (1− β)λ

)
+O(1) , (3.117)

S = −N (β log β + (1− β) log (1− β)) +O(1) . (3.118)

Within the maximal current phase we conjecture that for all λ ≥ 1, the leading

behaviours are

Hλ ∼ N log 2− 1

2
logN +O(1) , (3.119)

eHλ ∝ 2N√
N
, (3.120)

so that the leading correction is logarithmic in system size with the prefactor 1/2

arising from the square root. To understand this conjecture we note that the behaviour

of the effective numbers in Eq. (3.120) would be the asymptotic scaling of the binomial
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coefficient
(
N
N/2

)
. This binomial coefficient gives the number of half-filled configurations,

which are the configurations expected to dominate the maximal current phase.

As a check of the conjecture for the high and low density phases in Eqs. (3.115)–

(3.118), we consider the λ → ∞ entropy, H∞. Taking this limit for the case of a

Bernoulli measure, Eq. (3.13), we find

H∞ = lim
λ→∞

N

1− λ
log
(
ρλ + (1− ρ)λ

)
=

−N log (1− ρ) if ρ < 1
2

−N log ρ if ρ > 1
2 .

(3.121)

Generally, assuming no degeneracy in the maximum probability max {P (C)} within

the distribution, H∞ is equal to − log (max {P (C)}). In the low density phase of the

TASEP, for large system sizes, the most probable of the 2N available configurations is an

entirely empty system, that has weightW = 〈W |E · · ·E|V 〉 = (1/α)N . By normalising

the weight of this empty configuration with Eq. (1.29), we find H∞ in this phase to be

H∞ ∼ −N log(1− α)− log
(1− α)(β − α)

β(1− 2α)
(3.122)

thus the leading-order term is the Bernoulli measure result, Eq. (3.121). The high

density result is obtained by similar means, where the most probable configuration is

one with every site occupied. Thus the Bernoulli measure result correctly gives the

leading-order term for at least the cases λ = 2,∞ (and trivially λ = 0).

3.8 Summary

In this chapter, we have performed a calculation of the λ = 2 Rényi entropy of the

TASEP for arbitrary entry and exit rates α, β, by deriving the generating function of the

sum of squared TASEP weights. Using an explicit matrix representation, we mapped

the sum of squared TASEP weights to a two-dimension random walk problem in the

upper-quarter plane with absorbing boundaries, which we solved using a generalisation

of the obstinate kernel method.

From an asymptotic analysis of the generating function we have found the Rényi entropy

to have different scaling for different values of α, β, coinciding as anticipated with the

known phase diagram. The leading term of the entropy is consistent with the bulk

density across the three phases, with the second order correction indicative of the

correlations present. This entropy is structurally distinct to that of any equilibrium

system, highlighting a distinction between equilibrium and nonequilibrium probability

distributions.
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Chapter 4

Rényi entropy of the TASEP in the

continuum limit

4.1 Orientation

In the previous chapter, we found the λ = 2 Rényi entropy of the TASEP by using

the obstinate kernel method [114]. A drawback of this method was the density of the

required algebra; while we eventually found in Eq. (3.88) a closed-form expression for

the generating function Q for the sum of squared TASEP weights, it was too unwieldy

to invert exactly. This is a motivation for the work in this chapter, where we attempt

to solve the continuum limit of this sum of squared weights problem. We take the

discrete walks with absorbing boundaries that we solved in Chapter 3, and investigate

their continuum limit behaviour. This leads us to diffusion processes.

The primary motivation of taking the continuum limit is that random walk problems

often simplify in in the continuum limit, as we essentially take an approximation of

the random walk [67]. We saw in Section 1.5.3 that, upon associating time and length

scales to a discrete walk, the master equation describing the probability distribution

can be written as an infinite Taylor series. This involves derivatives with respect to

space and time coordinates. In the continuum limit, we take the limit of these length

scales approaching zero, upon which all terms higher than the first derivative in time

and second derivatives in space vanish. This simplifies the problem, and often allows a

closed-form solution to be found. One clear example of this simplification will be seen

in Chapter 5.
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Following a similar structure to Chapter 3, before presenting the full two-dimensional

calculation we first examine the partition function in this continuum limit. From the

bicoloured Motzkin path problem in Section 3.3.1, we find the equivalent continuum

problem here to be a 1D diffusion with absorbing boundaries, and the probability

distribution function is solved directly by a method of images. Extending to the sum of

squared weights, we find a 2D diffusion with absorbing boundary conditions, from which

we seek the time-dependent probability distribution. This diffusion is anisotropic, in

a way that makes it resistant to solution by any image-based approach. Instead, we

find the relevant Laplace transform by a novel method. This method, like the obstinate

kernel method, exploits the symmetry of a kernel to simplify a functional relation that

otherwise has insufficient information to be solved.

In fact, the steps in this calculation are analogous to the obstinate kernel method, but

applied to a continuous space. Because of this close relation, we will frequently cross-

reference and draw comparison with parts of the calculation in the previous chapter.

After a variable transformation, we find from the resulting Laplace transform a function

that approximates the generating function , which we denote QC , in the vicinity of

the tricritical point α = β = 1/2 of the TASEP phase diagram, where the three

dynamical phases coincide. We will define this as the scaling region. In contrast with

the discrete case, this continuum result is sufficiently simple that we can simply read

off its nonanalyticities. Using this, we recover to second order the known asymptotic

behaviour of the sum of squared TASEP weights about the triple point.

We begin with calculation of the TASEP partition function in the continuum limit.

4.2 Introductory calculation: continuum limit of partition

function

We saw in Section 3.3.1 that from an explicit matrix representation, the generating

function of the TASEP partition function can be written out explicitly (introducing a

subscript D to denote “discrete”)

ZD(z) ≡
∑
N≥0

ZNz
N

= (1− ab)
∑
N≥0

∑
i≥0

∑
k≥0

zNaibk〈i|(g + g† + 2)N |k〉 . (4.1)
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We recall the shorthand a = (1−α)/α, b = (1−β)/β. From Chapters 2 and 3 we know

that the summand of Eq. (4.1) is an enumeration of bicoloured Motzkin paths, which

we can write in terms of a probability P:

P(k|i;N) =
〈i|(g + g† + 2)N |k〉

4N
. (4.2)

P(k|i;N) is the probability of finding a 1D walker at position k after taking N steps

from i from the evenly-weighted step set {↑, ↓, ×, · }, with an absorbing boundary

P(−1|i;N) = 0. The factor 4N is the number of distinct walks of length N , in the

absence of this absorbing boundary.

With this, we rewrite Eq. (4.1)

ZD(z) =

∑
N≥0

∑
i≥0

∑
k≥0 z

Naibk4NP(k|i;N)∑
p≥0(ab)p

. (4.3)

We rewrite (1− ab) as 1/
∑

p≥0(ab)p.

The probability obeys the master equation

P(k|i;N + 1) =
1

2
P(k|i;N) +

1

4
P(k − 1; i;N) +

1

4
P(k + 1|i;N) . (4.4)

We now take the time and space continuum limit of this relation. We scale the path

length N to a continuous time-like variable τ , and the lattice coordinates i, k to

coordinates x, x(0) on a continuous space. Using the method outlined in Section 1.5.3

(see also Figure 1.6), we arrive at the diffusion equation

∂τP(x|x(0); τ) =
1

4
∂2
xP(x|x(0); τ) . (4.5)

The factor of 1/4 arises from the two non-movement steps; every other step on average

is a non-movement, which in the continuum limit corresponds to a lower diffusivity.

With this interpretation of P in the continuum limit, Eq. (4.1) has a corresponding

continuum limit form, found by replacing each summation with an integral spanning

the new space, and replacing the probability with the continuous probability density

function:

ZC(z) =

∫∞
0 dτ

∫∞
0 dx(0)

∫∞
0 dx zτax

(0)
bx4τP

(
x|x(0); τ

)∫∞
0 dp (ab)p

. (4.6)

We introduce the subscript C to denote the continuum limit. Having replaced these

discrete summations with integrals over the same space, the numerator of Eq. (4.6)
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is now a Laplace transform in disguise. Adopting a more familiar notation, then, we

define a new quantity G as the explicit Laplace transform of the distribution

G(s;u, f) ≡
∫ ∞

0
dτ e−sτ

∫ ∞
0

dx(0) e−fx
(0)

∫ ∞
0

dx e−ux P(x|x(0); τ) (4.7)

which relates to ZC(z) as

ZC(z) =
G(− log 4z;− log b,− log a)∫∞

0 dp (ab)p
. (4.8)

For a closed-form expression for ZC(z), we essentially require the Laplace transform in

x, x(0) and τ of the distribution P(x|x(0); τ) that obeys Eq. (4.5).

Scaling region

Before proceeding, we consider when we should expect results from this continuum

limit approach to converge to the discrete result. Comparing the continuum limit

equation (4.6) to that derived from the matrix product approach in Eq. (4.3), we wish

to approximate geometric sums of the form

∑
k≥0

ck =
1

1− c
, |c| < 1 (4.9)

by integrals∫ ∞
0

dk ck = − 1

log c
, 0 < c < 1 (4.10)

using the natural logarithm. This result diverges as c→ 1, which we see from a series

expansion about c = 1:

− 1

log c
=

1

1− c
− 1

2
− 1

12
(1− c) +O(1− c)2 . (4.11)

This expansion tells us that Eqs. (4.9) and (4.10) both have poles at c = 1, with residue

1, thus the continuum integral provides a reasonable approximation to the discrete

summation in this scaling region. For the integrals in Eq. (4.6), this corresponds to

the vicinity of a = b = 1, or equivalently α = β = 1/2 (see Figure 3.2). We therefore

expect the following approximations to converge near this region of the phase diagram,

where the three dynamical phases converge.
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4.2.1 Solution for ZC(z;α, β)

We return to the problem of solving this one-dimensional diffusion, specifically, an

expression for the Laplace transform G in Eq. (4.7). We present two different

approaches: first, we directly solve the diffusion equation for P by a standard method of

images [70]. Secondly, we find G directly, by a method analogous to the kernel method

[115], employed in Section 3.3.1. This second method proves a useful introductory

exercise for what we later employ to solve the equivalent two-dimensional squared

weights problem.

Solution by images

As well as satisfying Eq. (4.5), the probability distribution has a delta function initial

condition, centred at x(0)

P(x|x(0); 0) = δ(x− x(0)) (4.12)

and an absorbing boundary at x = 0

P(0|x(0); τ) = 0 . (4.13)

Eq. (4.5) has the fundamental solution, that is one neglecting the boundary conditions:

P(x|x(0); τ) =
1√
πτ

e−(x−x(0))2/τ (4.14)

which is easily checked by differentiation. This is of course a normalised Gaussian

distribution centred at x(0), with a width that grows with time τ . We then satisfy the

boundary condition (4.13) by placing a negative image at −x(0), outside of the physical

region:

P(x|x(0); τ) =
1√
πτ

(
e−(x−x(0))2/τ − e−(x+x(0))2/τ

)
, (4.15)

see Figure 4.1. At x = 0, the two terms cancel and the boundary probability is zero at

all times. The total area under the physical curve is equal to or less than that of the

fundamental curve because, over time, probability is lost at the absorbing boundary.

With this solution for P, we would then take Laplace transforms to arrive at an

expression for G, which entails a straightforward set of integrals. However, we will
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Figure 4.1 A physical solution (blue, filled), to the 1D diffusion equation, with a
fundamental solution (blue, dashed) combined with an image (red, dashed)
beyond the physical region x > 0.

instead consider our second approach to find G, which avoids having to solve for P
directly.

Solution by a kernel method

We return to the original diffusion equation (4.5), and take Laplace transforms. To

lighten the notation, we introduce the shorthand L̂ for a Laplace transform:

L̂τ [ · ] ≡
∫ ∞

0
dτ e−sτ [ · ] , (4.16)

L̂x(0) [ · ] ≡
∫ ∞

0
dx(0) e−fx

(0)
[ · ] , (4.17)

L̂x[ · ] ≡
∫ ∞

0
dx e−ux[ · ] , (4.18)

with a set of conjugate variables (s, u, f) for (τ, x, x(0)) respectively. For convenience

we quote two well-known Laplace transform identities that will be used (here λ is the

conjugate variable of c) [119]:

L̂ [∂cf(c)] = L̂ [f(c)]− f(0) , (4.19)

L̂
[
∂2
c f(c)

]
= λ2L̂ [f(c)]− λf(0)− [∂cf(c)]c=0 . (4.20)

To begin, then, the Laplace transform of the diffusion equation (4.5) in the variable τ

is

sL̂τP − δ(x− x(0)) =
1

4
L̂τ∂2

xP (4.21)
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having used the initial condition (4.12). We now transform in x(0):

sL̂tL̂x(0)P − e−fxθ(x) =
1

4
L̂tL̂x(0)∂

2
xP , (4.22)

and finally in x:(
s− 1

4
u2

)
G(s;u, f) =

1

f + u
− 1

4
L̂τ L̂x(0)

[
∂x′P(x′|x(0); τ)

]
x′=0

(4.23)

having applied the boundary condition (4.13). This gives the Laplace transform of P
in terms of the derivative of P evaluated at the boundary (which is not necessarily zero

even though P is).

This functional equation (4.23) draws parallels with the relation we saw in the discrete

case in Section 3.3.1, Eq. (3.22). There, we employed a pole-cancelling method to fix

an unknown quantity. We identify a similar method here.

We notice that G(s;u, f) exhibits a priori two poles in s at s = u2/4. In this case, if

we simply set u =
√

2s we cancel the LHS:

0 =
1

f + 2
√
s
− 1

4
L̂τ L̂x(0)

[
∂x′P (x′|x(0); τ)

]
x′=0

. (4.24)

We immediately find the last term in Eq. (4.23), and thus an explicit solution for G:

G(s;u, f) =
1

s− 1
4u

2

(
1

f + u
− 1

f + 2
√
s

)
(4.25)

=
4

(f + u) (f + 2
√
s) (u+ 2

√
s)
. (4.26)

Notice that this is manifestly symmetric in the respective conjugate variables u and f

for the initial and final coordinates. From this expression, we obtain a simple closed

form for ZC(z;α, β) with a set of variable changes as for Eq. (4.8)

ZC(z;α, β) =
G (− log 4z;− log b,− log a)∫∞

0 dp (ab)p
(4.27)

=
4(

log b− 2
√
− log 4z

) (
log a− 2

√
− log 4z

) . (4.28)

4.2.2 Asymptotic analysis

We now analyse ZC to obtain the asymptotic scaling of the partition function ZN ,

treating ZC as if it were an approximation to the exact generating function ZD. We
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expect to recover physical properties of the TASEP close to the triple point α = β =

1/2. As usual for the asymptotic analysis we use formalism established in Section 1.6.3.

Before proceeding with the detail, we can read off from Eq. (4.28) the nonanalyticities

we expect to see: there are two potential zeros in (log b − 2
√
− log 4z), (log a −

2
√
− log 4z), and a branch point at z = 1/4. By showing which of these are present

and/or dominant for different α, β, we will recover the TASEP phase diagram.

Low density phase α < 1/2, α < β (a > 1, a > b)

We begin in the low density phase. Within this region, the dominant singularity in

ZC(z) is a simple pole, at the point

log a− 2
√
− log 4z = 0 . (4.29)

If a < 1 (beyond the LD phase), log a < 0 and this has no solution. Within the LD

phase a > 1, we find

z∗ =
1

4
exp

(
−1

4
log2 a

)
. (4.30)

This is a monotonically decreasing function of a. If both a, b are greater than 1, then,

the dominant pole is from whichever of a or b is largest. A Taylor series of ZC about

this pole yields

ZC(z) =
2z∗ log a

log (b/a)

1

(z − z∗)
+O

(
(z − z∗)0

)
(4.31)

which gives the asymptotic scaling of the partition function in this phase

ZN ∼
2 log a

log (a/b)

[
4 exp

(
1

4
log2 a

)]N
. (4.32)

Given this, we obtain an expression for the current from the ratio J = ZN−1/ZN

JC =
1

4
exp

[
−1

4
log2

(
1− α
α

)]
(4.33)

=
1

4
−
(
α− 1

2

)2

− 2

3

(
α− 1

2

)4

+O

((
α− 1

2

)6
)
. (4.34)

To clarify, JC is an estimation of the asymptotic scaling of the current for large system

sizes. However, we already know the exact asymptotic scaling from analysis of the

102



partition function (Eq. (1.33)):

JD ∼
1

4
−
(
α− 1

2

)2

. (4.35)

To second order about α = 1/2, then, we recover the appropriate scaling of the current

(see Figure 4.2).

High density phase β < α, β < 1/2

Using the α ↔ β symmetry in the TASEP, the result in the high density phase is an

(α, β)→ (β, α) mirror of the low density phase.

Maximal current phase α > 1/2, β > 1/2 (−1 < a < 1, −1 < b < 1)

In this phase, neither of the two aforementioned poles exist, and instead the dominant

singularity is a branch point at z∗ = 1/4 at order k = 1/2. A Taylor expansion about

this point yields

ZC(z) =
4

log a log b
+

16 log ab

(log a log b)2
i(z − z∗)

1
2 +O (z − z∗) (4.36)

thus in this phase, the partition function scales as

ZN ∼ −
4√
π

log ab

(log a log b)2

4N

N
3
2

. (4.37)

This scaling law ZN ∝ 4NN−
3
2 is the same as we calculated in the discrete case,

Eq. (1.29). This time the current J is simply

JC ∼
1

4
(4.38)

which is the known asymptotic limit in the maximal current phase.

To summarise this exercise, we have calculated a continuum limit approximation of the

partition function generating function by a rescaling of the original bicoloured Motzkin

paths from Section 3.3.1 to a one-dimensional diffusion. By either solving the diffusion

directly or using a kernel ‘trick’, we have found a very simple result for ZC in Eq. (4.28),

where the asymptotic scaling of ZN is clear by inspection. This approximation of the

generating function recovers the phase diagram and current scaling (Figure 4.2) around

α = β = 1/2.
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Figure 4.2 Asymptotic form of the current J = ZN−1/ZN , across the LD-MC phase
transition (with β > 1/2). The dotted grey line indicates the LD-MC phase
transition.

This calculation was straightforward as the underlying diffusion was one dimensional,

with a single absorbing boundary. We will now see how the equivalent generating

function for the sum of squared weights of the TASEP entails a much more elaborate

calculation.

4.3 Sum of squared weights calculation

We seek the continuum limit generating function for the sum of squared weights of the

TASEP. To make progress, we employ a novel method analogous to the obstinate kernel

method that was the focus of Chapter 3, and successfully find a closed-form solution

for the generating function.

4.3.1 Taking a continuum limit

To recall, the sum of squared TASEP weights QN =
∑
CW(C)2 has a corresponding

generating function that can be written explicitly (Eq. (3.32))

QD(z) =
∑
N≥0

QNz
N

=

∑
N≥0

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0 z

Nai+jbk+l〈i|〈j| (V + 2)N |k〉|l〉(∑
p≥0(ab)p

)2 (4.39)
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where 〈i|〈j| (V + 2)N |k〉|l〉 is an enumeration of 2D paths. Like the 1D case, we define

a probability

P(k, l|i, j;N) =
〈i|〈j| (V + 2)N |k〉|l〉

8N
. (4.40)

P(k, l|i, j;N) is the probability of finding a walker at (k, l), after N steps from the

evenly-weighted step set {↗, →, ↑, ↙, ←, ↓, ×, · }, having started at (i, j), in the

upper-quarter plane with absorbing boundaries. This probability obeys the master

equation

P(k, l|i, j;N + 1) =
1

4
P(k, l|i, j;N) +

1

8
P(k − 1, l|i, j;N) +

1

8
P(k, l − 1|i, j;N)

+
1

8
P(k + 1, l + 1|i, j;N) +

1

8
P(k − 1, l − 1|i, j;N)

+
1

8
P(k + 1, l|i, j;N) +

1

8
P(k, l + 1|i, j;N) (4.41)

as well as two absorbing boundaries

P(−1, l|i, j;N) = P(k,−1|i, j;N) = 0 . (4.42)

We rewrite QD(z) in terms of this probability

QD(z;α, β) =

∑
N≥0

∑
i≥0

∑
j≥0

∑
k≥0

∑
l≥0 z

Nai+jbk+l8NP(k, l|i, j;N)(∑
p≥0(ab)p

)2 (4.43)

from which we wish to take a continuum limit. Taking the master equation (4.41),

we define rescaled coordinates (x1, x2), (x
(0)
1 , x

(0)
2 ) from (k, l) (i, j), and a time-like

variable τ from the walk length N . Following the method in Section 1.5.3, upon taking

the continuum limit in these five variables we arrive at the diffusion equation

∂τP(x1, x2|x(0)
1 , x

(0)
2 ; τ) =

1

4

(
∂2

1 + ∂2
2 + ∂1∂2

)
P(x1, x2|x(0)

1 , x
(0)
2 ; τ) (4.44)

using the shorthand ∂i = ∂/∂xi. We lighten the notation and suppress the initial

condition: P(x1, x2|x(0)
1 , x

(0)
2 ; τ) ≡ P(x1, x2; τ). In the continuum limit, Eq. (4.44)

represents 2D diffusion in the upper-quarter plane with an induced anisotropy from the

∂1∂2 term (Figure 4.3). P has initial condition centred at (x
(0)
1 , x

(0)
2 ):

P(x1, x2; 0) = δ
(
x1 − x(0)

1

)
δ
(
x2 − x(0)

2

)
(4.45)

and absorbing boundary conditions on the two axes:
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Figure 4.3 Reducing the 2D random walk to a continuous diffusion problem, with bias
along the diagonal. We now have two boundary conditions that bound the
walk to the upper-quarter plane.

P(0, x2; τ) = P(x1, 0; τ) = 0 . (4.46)

We now find the continuum expression for QD(z) in terms of this diffusion by replacing

each summation in Eq. (4.43) with an integral spanning the new space, and the random

walk probability with a continuous distribution:

QC(z) ≡
∫∞

0 dτ
∫∞

0 dx
(0)
1

∫∞
0 dx

(0)
2

∫∞
0 dx1

∫∞
0 dx2 (8z)τ ax

(0)
1 +x

(0)
2 bx1+x2P(x1, x2; τ)(∫∞

0 dp (ab)p
)2 .

(4.47)

Like the 1D case, this has a more natural interpretation in terms of Laplace transforms,

and we define

G(s;u, v, f) ≡ G(s;u, v) (4.48)

=

∫ ∞
0

dτ

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx
(0)
1

∫ ∞
0

dx
(0)
2 e−sτ−f(x

(0)
1 +x

(0)
2 )−ux1−vx2P(x1, x2; τ)

relating back to QC via the transformation

QC(z) =
G(− log 8z;− log b,− log b,− log a)(∫∞

0 dp (ab)p
)2 . (4.49)

The aim of the following calculation is to find an explicit expression for this function

G. We use the shorthand G(s;u, v), dropping the explicit dependence on f as it is not

manipulated in the proceeding calculation.

We have now set up the problem. To find an expression for the continuum limit

approximation to the sum of squared weights generating function, we are required
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Figure 4.4 Mapping the anisotropic diffusion in the upper-quarter plane to isotropic
diffusion in a wedge, with opening angle 2π/3.

to find the Laplace transform of the pdf that satisfies the diffusion equation (4.44),

initial condition (4.45) and boundary conditions (4.46). A natural first attempt to

solve this diffusion equation is by a method of images, as we did for the 1D problem in

Section 4.2.1. We show however that in this instance one is forced to place images in

the physical region, and the method proves ineffective.

4.3.2 Attempt at solution by images

Eq. (4.44) is anisotropic diffusion. We are free to make a coordinate transformation to

new coordinates (X1, X2) under which diffusion is isotropic:

x1 =
1

2

(√
3X1 +X2

)
, X1 =

1√
3

(x1 + x2) ,

x2 =
1

2

(√
3X1 −X2

)
, X2 = x1 − x2 . (4.50)

In this space, Eqs. (4.44)–(4.46) become

∂τP(X1, X2; τ) =
(
∂2

1 + ∂2
2

)
P(X1, X2; τ) , (4.51)

P(X1, X2; 0) = δ(X1 −X(0)
1 )δ(X2 −X(0)

2 ) , (4.52)

P(X1,−
√

3X1; τ) = P(X1,
√

3X1; τ) = 0 . (4.53)

Here, ∂i = ∂/∂Xi. This forcing of isotropy has a consequence of transformed

boundaries: x1 = 0 maps to the line X2 = −
√

3X1, and x2 = 0 maps to the line

X2 =
√

3X1. Illustrated in Figure 4.4, the domain of this new problem is a wedge of

opening angle 2π/3.
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As this is isotropic diffusion, we can easily write the fundamental solution P∗

P∗(X1, X2; τ) =
1

4πτ
e
− 1

4τ

(
[X1−X(0)

1 ]2+[X2−X(0)
2 ]2

)
(4.54)

where differentiating shows this satisfies the diffusion equation (4.51) and initial

condition (4.53). To also satisfy the boundary conditions (4.52), we systematically

insert images so as to cancel probability on both boundaries [120]. For convenience, we

rewrite (X1, X2) in a polar basis (r, θ)

X1 = r cos θ , X2 = r sin θ . (4.55)

From a fundamental solution centred at (X
(0)
1 , X

(0)
2 ) = (r0 cos θ0, r0 sin θ0), we place

images at radius r0 from the origin:

� To satisfy the boundary condition at θ = π/3, we place a negative image I1 at

θ = 2π/3− θ0;

� To cancel I1 on the θ = −π/3, boundary, place a positive image I2 at θ =

2π/3 + θ0;

� To cancel I2 on the θ = π/3 boundary, place a negative image I3 at θ = −θ0;

� To cancel I3 on the θ = −π/3 boundary, place a positive image I4 at θ = −2π/3+

θ0;

� To cancel I4 on the θ = π/3 boundary, place a negative image I5 at θ = −2π/3−θ0.

This final image I5 then cancels the fundamental solution on the θ = −π/3 boundary.

The combination of the fundamental solution and the five images satisfies the diffusion

equation and boundary conditions. However, the method of images fails in this instance

as the image I3 is in the physical region |θ| < π/3, thus violating the initial condition

and introducing negative probability in the physical region. This is illustrated in

Figure 4.5, and is a known problem for wedge domains with an opening angle mπ/n

for m and n coprime [120].

Instead of solving for the pdf P directly, we turn to solving for a Laplace transform.
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Figure 4.5 By systematically applying images to satisfy the boundary conditions, one
resorts to placing a negative image I3 inside the physical region.

4.3.3 Solution by a kernel method

We return to the original diffusion equation (4.44) and take Laplace transforms. Ahead

of this, we associate to our five variables five conjugate variables:

(τ, s) , (x1, u) , (x2, v) ,
(
x

(0)
1 , f

)
,

(
x

(0)
2 , f

)
. (4.56)

We also introduce the following shorthand for Laplace transforms:

L̂τ [ · ] ≡
∫ ∞

0
dτ e−sτ [ · ] , (4.57)

L̂x1 [ · ] ≡
∫ ∞

0
dx1 e−ux1 [ · ] , (4.58)

L̂x2 [ · ] ≡
∫ ∞

0
dx2e−vx2 [ · ] , (4.59)

L̂
x
(0)
1

[ · ] ≡
∫ ∞

0
dx

(0)
1 e−fx

(0)
1 [ · ] , (4.60)

L̂
x
(0)
2

[ · ] ≡
∫ ∞

0
dx

(0)
2 e−fx

(0)
2 [ · ] . (4.61)
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Notice that we use the same conjugate variable in the Laplace transforms in x
(0)
2 and

x
(0)
1 as they both relate to the variable a in the expression for QC(z), see Eq. (4.47).

We begin with a Laplace transform of Eq. (4.44) in τ :

sL̂τP − δ(x1 − x(0)
1 )δ(x2 − x(0)

2 ) =
1

4

(
∂2

1 + ∂2
2 + ∂1∂2

)
L̂τP (4.62)

having used the initial condition (4.45). Following this, we perform a Laplace transform

in x1:

sL̂τ L̂x1P − e−ux
(0)
1 δ(x2 − x(0)

2 )

=
1

4
(u2 + u∂2 + ∂2

2)L̂τ L̂x1P −
1

4

[
∂1L̂τP

]
x1=0

− 1

4

[
∂2L̂τP

]
x1=0

(4.63)

using the x1 = 0 absorbing boundary condition (4.46). Next, a transform in x2(
s− 1

4
[u2 + v2 + uv]

)
L̂τ L̂x1L̂x2P

= e−ux
(0)
1 −vx

(0)
2 − 1

4
L̂τ L̂x2 [∂1P]x1=0 −

1

4
L̂τ L̂x1 [∂2P]x2=0 (4.64)

using the x2 = 0 boundary condition. Finally, we perform transforms over x
(0)
1 , x

(0)
2 ,

using the same conjugate variable f for both transforms, to finally arrive at

K(u, v)G(s;u, v) =
1

(u+ f)(v + f)
− F (u)− F (v) (4.65)

having defined the kernel

K(u, v) ≡ s− 1

4
(u2 + v2 + uv) (4.66)

and the unknown functions

F (λ) ≡1

4
L̂τ L̂x(0)1

L̂
x
(0)
2

∫ ∞
0

dx2 e−λx2
[
∂x′1P(x′1, x2; τ)

]
x′1=0

(4.67)

=
1

4
L̂τ L̂x(0)1

L̂
x
(0)
2

∫ ∞
0

dx1 e−λx1
[
∂x′2P(x1, x

′
2; τ)

]
x′2=0

, (4.68)

with equivalence arising knowing the symmetry of the diffusion along the diagonal.

On the LHS of Eq. (4.64) we have the desired function G(s;u, v) and a quadratic

K(u, v). There is also a second unknown function F involving the derivative of P on

the boundary. We can draw a parallel between this and Eq. (3.40) that we saw in the

previous chapter — the main recursion relation that describes the generating function

in the discrete case.
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We solved Eq. 3.40 by the obstinate kernel technique, and for Eq. (4.65) we use a novel,

related method. In this case, we find the algebra to be less elaborate, and the final

result for G more concise.

Outline of calculation

As we did in Chapter 3, we provide a roadmap of the calculation to follow:

1. Factorise and identify a set of symmetries in the kernel; transformations in the

(u, v) variables under which the kernel remains invariant;

2. Use this kernel symmetry in order to obtain from Eq. (4.65) two more relations

involving the functions G(s;u, v), F (u), and F (v);

3. Combine these three equations to eliminate F (v);

4. Write the simplified relation in terms of an integral over the space of x2;

5. Isolate the domain of the integral so as to eliminate any v-dependence;

6. Write the relation in terms of an integral over the space of x1;

7. Isolate the domain of the integral that is convergent for u > 0, to find a closed-

form expression for F (u), and also F (v) by symmetry;

8. Substitute F (u) and F (v) into Eq. (4.65) to find a closed-form expression for

G(s;u, v).

We begin by analysing the kernel.

4.3.4 Symmetry and factorisation of the kernel

The kernel in Eq. (4.66) is a quadratic in the variables u and v, in contrast with the

discrete case (Eq. (3.39)), where the kernel was a quartic. We factorise in the variable

v to find two simple roots ω+(u), ω−(u):

K(u, v) = [v − ω−(u)] [v − ω+(u)] , (4.69)

ω±(u) = −1

2
u±

√
4s− 3

4
u2 (4.70)

≡ −1

2
u±

√
∆u . (4.71)
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We have defined the discriminant

∆u = 4s− 3

4
u2 (4.72)

which also has a trivial factorisation:

∆u =
3

4

(√
16s

3
+ u

)(√
16s

3
− u

)
(4.73)

≡∆0∆+
u ∆−u (4.74)

where

∆0 =
3

4
, ∆+

u =

√
16s

3
+ u , ∆−u =

√
16s

3
− u . (4.75)

Comparing these formulae to the factorisation in the discrete case (Section 3.3.4), we

anticipate a less algebraically complicated calculation to follow.

We find a three-fold symmetry in the kernel:

K(u, v) = K(−u− v, v) = K(−u− v, u) . (4.76)

These are a set of variable transformations that leave the kernel invariant. We can then

write two more expressions from Eq. (4.65):

K(u, v)G(s;u,−u− v) =
1

(f + u)(f − u− v)
− F (u)− F (−u− v) , (4.77a)

K(u, v)G(s;−u− v, v) =
1

(f − u− v)(f + v)
− F (−u− v)− F (v) . (4.77b)

Now, the combination of Eqs. (4.65) + (4.77a)− (4.77b) yields

G(s;u, v) +G(s;u,−u− v)−G(s;−u− v, v)

=
1

K(u, v)

[
f − 2u

(f + u)(f + v)(f − u− v)
− 2F (u)

]
(4.78)

eliminates the unknown functions F (v), F (−u − v). Aside from the G functions,

all dependence on v is now explicit. This simplification draws parallels with the

combination of terms in Eq. (3.61). We will now perform a procedure analogous to

extracting positive power series, except now we are operating in a continuum limit. We

term this domain extraction.

In the original relation (4.65), we implicitly assumed that G(s;u, v) had a well-defined
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integral representation within the domains s, v, u, f ≥ 0 (Eq. (4.48)). It follows that

every term of Eq. (4.65) should also have a well-defined integral form in the same

domain. However, the variable transformations in Eqs. (4.77a), (4.77b) have introduced

new terms with different domains of convergence:

� Eq. (4.65): well-defined integral form for u ≥ 0, v ≥ 0;

� Eq. (4.77a): variable change (u, v) → (u,−u − v): well-defined integral form for

u ≥ 0, −u− v ≥ 0 =⇒ v ≤ 0;

� Eq. (4.77b): variable change (u, v) → (−u − v, v): well-defined integral form for

v ≥ 0, −u− v ≥ 0 =⇒ u ≤ 0.

The combination of expressions in Eq. (4.78) eliminates F (v), but mixes three different

sets of domains. We then write Eq. (4.78) entirely in an integral form, then extract

from this the part that lies within the required domain. We seek an expression for

F (u), which is well-defined for u > 0, and has no v-dependence.

4.3.5 v domain extraction

We first obtain the component of Eq. (4.78) that is independent of v. This is in analogy

with the {y0} extraction in Section 3.4.1.

We explicitly write the LHS of Eq. (4.78) as the integral

LHS (4.78) =

∫ ∞
0

dτ

∫ ∞
0

dx
(0)
1

∫ ∞
0

dx
(0)
2

∫ ∞
0

dx1

∫ ∞
0

dx2 e
−sτ−f

(
x
(0)
1 +x

(0)
2

)

×
[
e−ux1−vx2 + e−ux1−(−u−v)x2 − e−(−u−v)x1−vx2

]
P(x1, x2; τ) . (4.79)

We isolate regions of integration so as to eliminate v. For the first two terms, this

occurs for x2 = 0. However, the boundary condition P (x1, 0; τ) = 0 allows us to drop

these terms entirely. For the final term, we eliminate v by choosing x1 = x2. We are

then left with (where ‘→’ denotes this isolation)

LHS (4.78)→−
∫ ∞

0
dτ

∫ ∞
0

dx
(0)
1

∫ ∞
0

dx
(0)
2

∫ ∞
0

dx(0) e
−sτ−f

(
x
(0)
1 +x

(0)
2

)
+u(x1+x2)P(x1, x1; τ)

(4.80)

≡−G(d)(−u) . (4.81)

G(d) is a function of the probability distribution (the superscript ‘(d)’ denotes the

diagonal). As it has a well-defined integral form within the domain u ≤ 0, we anticipate
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it will be discounted when isolating the u > 0 domain later, so we will not consider its

details here.

We now move to the RHS of Eq. (4.78)

RHS (4.78) =
1

K(u, v)

(
f − 2u

(f + u)(f − u− v)(f + v)
− 2F (u)

)
(4.82)

which we also wish to write as an integral. For this, we write 1/K(u, v) as a partial

fraction decomposition in the variable v

K(u, v) =
1

2
√

∆u

(
1

v − ω−(u)
+

1

ω+(u)− v

)
(4.83)

which as an integral is written

1

K(u, v)
=

1

2
√

∆u

∫ ∞
0

dλ
[
e−(v−ω−)λ + e−(ω+−v)λ

]
. (4.84)

For u > 0, the two roots of the kernel ω+(u), ω−(u) are positive and negative

respectively (and both zero at u = 0), thus ω+(u) − v ≥ 0 within the domain v ≤ 0,

and v − ω−(u) ≥ 0 within the domain v ≥ 0.

This partial fraction decomposition has yielded two integrals that are convergent under

different domains of v. We again draw analogy to the discrete case: the series expansion

of the kernel in Eq. (3.65) was in both powers of y and 1/y, which will be well-defined

in different radii of convergence. From this, we now extract the part of Eq. (4.84) that

is independent of v, simply fixing λ = 0:

1

K(u, v)
→ 1

2
√

∆u
[1 + 1] =

1√
∆u

. (4.85)

We apply this same method throughout the RHS of Eq. (4.78): with some algebra, this

is written as a partial fraction decomposition in v:

RHS (4.78) =
(f − 2u)

2
√

∆u(f + u)K(u,−f)

(
2
√

∆u

2f − u

[
1

f + v
+

1

f − u− v

]

− 1

v − ω−(s, u)
− 1

ω+(s, u)− v

)
− 1√

∆u

(
1

v − ω−(u)
+

1

ω+(u)− v

)
F (u) .

(4.86)

Writing this in an integral representation in the variable v and extracting the part
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independent of v, we get

RHS (4.78)→ (f − 2u)

2
√

∆u(f + u)K(u,−f)

(
2
√

∆u

2f − u
[1 + 1]− 1− 1

)
− 1√

∆u
(1 + 1)F (u)

(4.87)

=
(f − 2u)

(f + u)K(u,−f)

(
2

2f − u
− 1√

∆u

)
− 2√

∆u
F (u) . (4.88)

This has eliminated any v-dependence from Eq. (4.78), leaving us with

−G(d)(−u) =
(f − 2u)

(f + u)K(u,−f)

(
2

2f − u
− 1√

∆u

)
− 2√

∆u
F (u) . (4.89)

We are nearly at a closed-form expression for F (u), but for the matter of eliminating the

unknown G(d)(−u); this is well-defined for u ≤ 0, so we can eliminate it by extracting

the parts of Eq. (4.89) that are well-defined for u > 0. This step of the calculation is

in analogy with the {x+} extraction in the discrete case (Section 3.4.3), and much like

the discrete case this proves to be a more involved step.

We see from Eq. (4.89) that u-terms are buried in the square root of the discriminant
√

∆u =
√

4s− 3u2/4. This term is not straightforwardly written as an integral, so we

instead derive a pair of formulae that allows us to proceed without having to write any

explicit integral for the discriminant.

4.3.6 Two required formulae

First, define a general function g(−u), written so as to emphasise that it is convergent

in the domain u ≤ 0. Suppose this has some integral representation

g(−u) =

∫ ∞
0

dλ1 euλ1W(λ1) (4.90)

with an unspecified weight functionW. We now multiply by a second function 1/(c+u),

c ≥ 0, that has a well-defined integral representation for c ≥ 0, u > 0:

g(−u)

c+ u
=

∫ ∞
0

dλ1 euλ1W(λ1)

∫ ∞
0

dλ2 e−(c+u)λ2 . (4.91)

Here we have mixed two different domains in u. The challenge now is to extract the

part of Eq. (4.91) that is well-defined in the domain u > 0. We isolate values of λ1, λ2
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that keeps the prefactor of u nonpositive. Here, this is λ1 < λ2:

g(−u)

c+ u

u>0→
∫ ∞

0
dλ1

[∫ ∞
λ1

dλ2 e−(c+u)λ2

]
euλ1W(λ1) (4.92)

=

∫ ∞
0

dλ1

[
e−(c+u)λ1

c+ u

]
euλ1W(λ1) (4.93)

=
1

c+ u

∫ ∞
0

dλ1 e−cλ1W(λ1) (4.94)

=
g(c)

c+ u
. (4.95)

We use the notation
u>0→ to denote “isolating the (u > 0)-convergent part”. In practice,

this function g(−u) is the root of the discriminant
√

∆−u = (
√

16s/3−u)1/2, Eq. (4.75).

Importantly, we did not specify any details about the weight function W. We can

therefore apply this identity taking g(−u) =
√

∆−u , without considering how
√

∆−u

could be written as an integral.

The second formula relates to functions of the form h(u) within the u > 0 domain, with

some representation

h(u) =

∫ ∞
0

dλ1 e−uλ1W(λ1) (4.96)

again with an unspecified weight W. We multiply h(u) with 1/(c − u), c ≥ 0, which

has a well-defined integral representation in the u ≤ 0 domain:

h(u)

c− u
=

∫ ∞
0

dλ1 e−uλ1W(λ1)

∫ ∞
0

dλ2 e−(c−u)λ2 . (4.97)

Isolating the u > 0 domain demands λ1 > λ2:

h(u)

c− u
u>0→

∫ ∞
0

dλ1 e−uλ1W(λ1)

[∫ λ1

0
dλ2 e−(c−u)λ2

]
(4.98)

=

∫ ∞
0

dλ1 e−uλ1W(λ1)

[
1− e−(c−u)λ1

c− u

]
(4.99)

=
1

c− u

∫ ∞
0

dλ1

[
e−uλ1W(λ1)− e−cλ1W(λ1)

]
(4.100)

h(u)

c− u
u>0→ 1

c− u
[h(u)− h(c)] (4.101)

recovering the original function, minus a counter term h(c). Once again, we did not

have to specify any details of the weight function W of h(u), and in practice this

function will correspond to 1/
√

∆+
u .

Equipped with the two formulae (4.95), (4.101) we are ready to isolate the u > 0
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component of our main relation.

4.3.7 u > 0 domain extraction

We return to Eq. (4.89). First, we multiply through by a factor of
√

∆−u to obtain

−
√

∆−uG
(d)(−u) =

(f − 2u)

(f + u)K(u,−f)

(
2
√

∆−u
2f − u

− 1√
∆0∆+

u

)
− 2√

∆0∆+
u

F (u) . (4.102)

Importantly, the LHS is entirely well-defined within the u ≤ 0 domain; if we were

to then extract the u > 0 domain of this equation, we would eliminate the unknown

G(d)(−u). We rewrite Eq. (4.102) as a partial fraction decomposition in u, to allow us

to apply our two formulae (4.95), (4.101). With elaborate but straightforward algebra

we eventually find

−
√

∆−uG
(d)(−u) = (4.103)

− 2√
∆0∆+

u

F (u)− 2

K(f, f)

[ √
∆−u

2f + (−u)

]
+

2

K(f, f)

[√
∆−u

f + u

]

− 3f√
∆0K(f, f)

[
1√

∆+
u (f + u)

]
− f + 2ω−(f)√

∆fK(f, f)

[ √
∆−u

−ω−(f) + (−u)

]

+
(2f + ω−(f)) (f + 2ω−(f))

2
√

∆fK(f, f)
√

∆0

[
1√

∆+
u (−ω−(f) + (−u))

]

+
(2f + ω+(f)) (f + 2ω+(f))

2
√

∆fK(f, f)
√

∆0

[
1√

∆+
u (ω+(f) + u)

]
− f + 2ω+(f)

K(f, f)
√

∆f

[ √
∆−u

u+ ω+(f)

]
.

We use square brackets to highlight terms with a dependence on u. The LHS is trivial,

and we find

LHS (4.103)
u>0→ 0 . (4.104)
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For the RHS we use our identities (4.95), (4.101), to find term-by-term

RHS(4.103)
u>0→ − 2√

∆0∆+
u

F (u)− 0 +
2

K(f, f)

√
∆−−f

(f + u)
− 3f√

∆0K(f, f)

1√
∆+
u (f + u)

+ 0 +
(2f + ω−(f)) (f + 2ω−(f))

2
√

∆fK(f, f)
√

∆0

1

−ω−(f)− u

 1√
∆+
u

− 1√
∆+

(−ω−(f))


+

(2f + ω+(f)) (f + 2ω+(f))

2
√

∆fK(f, f)
√

∆0

1√
∆+
u (u+ ω+(f))

− f + 2ω+(f)

K(f, f)
√

∆f

√
∆−(−ω+(f))

u+ ω+(f)
(4.105)

where we recall that for f > 0, ω−(f) < 0, ω+(f) > 0. With further algebraic

manipulation and denesting of square roots, this expression simplifies to

F (u) =

√
3
√

∆+
f

√
∆+
u

(√
4s−

√
3u
)

2K(u,−f)(f + u)
(√

4s+
√

3f
) − f − 2u

2(f + u)K(u,−f)
(4.106)

which is finally an explicit expression for F (u). We can now return to the central

problem, and write an explicit form for the full Laplace transform G. We use Eq. (4.65)

to find

G(s;u, u, f) =
1

K(u, u)

(
1

(f + u)2
− 2F (u)

)
(4.107)

=
1

(4s− f2 − u2 + fu) (f + u)2
(4.108)

−

√
f +

√
16s
3

√
u+

√
16s
3

√
3 (4s− f2 − u2 + fu) (f + u)

(√
4s
3 + f

)(√
4s
3 + u

) .
We now take this Laplace transform derived from the diffusion equation, and make the

appropriate variable transformation to acquire the continuum limit generating function

QC(z) for the sum of squared TASEP weights.

Eq. (4.108) is manifestly symmetric in (u, f), which implies we will recover (α, β)

symmetry, which serves as one check that this method has been successful.

118



4.3.8 Solution for QC(z;α, β)

With the expression for G in Eq. (4.108), we recall how this relates to the continuum

limit TASEP generating function QC(z) from Eq. (4.49):

QC(z) =
G(− log 8z;− log b,− log b,− log a)

(
∫∞

0 dp (ab)p)2
.

Under this variable change we find

QC(z) =
1− log2 ab

√
3
√

3 log a−
√
−48 log 8z

√
3 log b−

√
−48 log 8z

(3 log a−
√
−12 log 8z)(3 log b−

√
−12 log 8z)

log a log b− log2 a− log2 b− 4 log 8z
. (4.109)

This is the main result of this chapter. In comparison to the calculation in Chapter 3,

we have a much more analytically tractable function from a less involved calculation.

We treat QC(z) as an approximation to the exact discrete generating function QD(z)

in Eq. (3.88), and perform an asymptotic analysis to find the asymptotic scaling of∑
CW(C)2. Pleasingly, the simplicity of Eq. (4.109) allows us to identify by inspection

how the three phases of the TASEP will emerge.

As in Section 4.2.2 for the partition function, we expect to recover asymptotic TASEP

dynamics in a scaling region around α = β = 1/2.

4.4 Asymptotic analysis

For the asymptotic analysis, we again use notation established in Section 1.6.3. Before

formally expanding, we take advantage of the simple form of QC(z) to identify where

and how we expect different singularities to arise.

The dominant singularities of Eq. (4.109) are contained in the term

1(
3 log a−

√
−12 log 8z

) (
3 log b−

√
−12 log 8z

) . (4.110)

There are also additional poles from the denominator of QC(z), but these are not

dominant. Eq. (4.110) has a pole situated at z∗(α) for

3 log

(
1− α
α

)
−
√
−12 log (8z∗(α)) = 0 (4.111)

and an equivalent z∗(β). This has solution for 0 < α < 1/2 only, as log ([1− α]/α) is
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negative for 1/2 < α < 1. In this case, the solution

z∗(α) =
1

8
exp

[
−3

4
log2

(
1− α
α

)]
, 0 < z∗ < 1/8 . (4.112)

The pole associated with β has identical properties. As z∗ is a monotonically increasing

function of α, β, the dominant pole is associated with the smallest of α or β.

The second singularity in Eq. (4.110) is a branch point;
√
−12 log 8z is purely imaginary

for z > 1/8. Here, then, the poles vanish, and this branch point is the dominant

singularity.

This gives three different regions:

� α < 1/2, α < β: dominant pole is z∗(α);

� β < 1/2, β < α: dominant pole is z∗(β);

� α, β > 1/2: branch point at 1/8;

which of course correspond to the LD, HD and MC phases. We now probe these in

detail.

4.4.1 Low density phase α < 1/2, α < β (a > 1, a > b)

In this region, the simple pole at z∗(α) (Eq. (4.112)) is dominant, about which a series

expansion yields

QC(z) =

√
3z∗ log2(ab)(log a)

3
2

√
log (a2/b)

2 log (a/b)
[
2 log2(a) + log(b) log (a/b)

] 1

(z − z∗(α))
+O

(
(z − z∗(α))0

)
.

(4.113)

This corresponds to the asymptotic scaling

∑
C
W(C)2 ∼

√
3 log2(ab)(log a)

3
2

√
log (a2/b)

2 log (b/a)
[
2 log2(a) + log(b) log (a/b)

] [8 exp

(
3

4
log2 a

)]N
. (4.114)

From the sum of squared weights as QN =
∑
CW(C)2, we define the ratio

L ≡ QN−1

QN
(4.115)
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which indicates how the sum of squared weights scales with increasing system size.

We know the exact asymptotic scaling from the discrete case (subscript ‘D’), using

Eq. (3.92):

LD ∼
α2(1− α)2

α2 + (1− α)2
(4.116)

=
1

8
− 3

2

(
α− 1

2

)2

+ 5

(
α− 1

2

)4

+O

((
α− 1

2

)4
)
. (4.117)

In comparison, we find from our continuum limit calculation (subscript ‘C’)

LC ∼
1

8
exp

[
−3

4
log2

(
1− α
α

)]
(4.118)

=
1

8
− 3

2

(
α− 1

2

)2

+ 8

(
α− 1

2

)4

+O

((
α− 1

2

)4
)
. (4.119)

We therefore recover this ratio to second order, about α = 1/2, as we did for the

asymptotic scaling of the current (Section 4.2.2).

4.4.2 High density phase β < 1/2, β < α (b > 1, b > a)

Once again, the symmetry of α and β in this problem allows us to write the high density

result as the (α, β)→ (β, α) mirror of the low density phase.

4.4.3 Maximal current phase α > 1/2, β > 1/2 (a < 1, b < 1)

In this region, the dominant singularity is a branch point at z∗ = 1/8. A series

expansion of QC(z) around this point yields

QC(z) = A0 +A1 (z − z∗)− 128
√

2 log3(ab)

9(log a log b)7/2
i (z − z∗)

3
2 +O (z − z∗)2 (4.120)

with real coefficients A0,1 and an imaginary contribution at order k = 3/2. This

expansion implies the asymptotic behaviour

∑
C
W(C)2 ∼ − 2 log3 ab

3
√
π (log a log b)7/2

N−
5
2 8N . (4.121)

This is the same scaling with system size as found in the discrete case, Eq. (3.97). The

ratio L is simply 1/8 in both instances.
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Figure 4.6 Asymptotic form of the ratio QN−1/QN . The LD-MC transition occurs at
the dotted line.

4.5 Summary of results

We summarise by listing the asymptotic scaling for the quantities ZN , J = ZN−1/ZN ,

QN , L = QN−1/QN , and finally the Rényi entropy H2, predicted by both the exact

and continuum generating functions:

� Sum of weights ZN =
∑
CW(C)

ZN,D ∝


(

1
α(1−α)

)N
(LD)

4N

N3/2 (MC)
, (4.122)

ZN,C ∝


(
4 exp

[
1
4 log2

(
1−α
α

)])N
(LD)

4N

N3/2 (MC)
; (4.123)

� Ratio J = ZN−1/ZN (current)

JD ∼

α(1− α) (LD)

1
4 (MC)

, (4.124)

JC ∼


1
4 exp

[
−1

4 log2
(

1−α
α

)]
(LD)

1
4 (MC)

; (4.125)

� Sum of squared weights QN =
∑
CW(C)2

QN,D ∝


(
α2(1−α)2

α2+(1−α)2

)N
(LD)

8N

N5/2 (MC)
, (4.126)

QN,C ∝


(
8 exp

[
3
4 log2

(
1−α
α

)])N
(LD)

8N

N5/2 (MC)
; (4.127)
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Figure 4.7 Asymptotic form of the Rényi entropy H2. The LD-MC phase transition
occurs at the dotted line.

� Ratio L = QN−1/QN

LD ∼


α2+(1−α)2

α2(1−α)2
(LD)

1
8 (MC)

, (4.128)

LC ∼


1
8 exp

[
−3

4 log2
(

1−α
α

)]
(LD)

1
8 (MC)

. (4.129)

For both J = ZN−1/ZN , L = QN−1/QN , (Figures 4.2, 4.6) the continuum results

converge to the known result around α = 1/2, and have characteristically similar curves

within the LD phase.

We can also calculate the Rényi entropy from Eq. (1.59), H2 = − log
(
QN/Z

2
N

)
(Figure 4.7):

H2,D ∼

N log
(
α2 + (1− α)2

)−1
+O(1) (LD)

N log 2− 1
2 logN +O(1) (MC)

, (4.130)

H2,C ∼

N
(
log 2− 1

4 log2
(

1−α
α

))
+O(1) (MC)

N log 2− 1
2 logN +O(1) (LD)

. (4.131)

Taking Figure 4.7 at a glance, the Rényi entropy is troubling: Figure 4.7 shows that

the continuum and discrete entropies converge at α = 1/2 as expected. However, the

continuum limit result suggests an entropy that rapidly becomes negative deeper into

the LD phase. We identify this an artefact of the loss of discretisation of the TASEP

configurations; H2 can be interpreted as the logarithm of an effective number, therefore
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a negative entropy implies an effective number between 0 and 1. In the exact (discrete)

case, the lowest possible effective number is 1, and the minimum entropy is zero. In

the continuum limit, however, the probability density is free to approach zero, and

the logarithm of this effective number therefore diverges. More generally, there is a

concept of differential entropy [121, 122] and even differential Rényi entropy [123, 124]

for dealing with continuous probability distributions.

4.6 On higher-order weight enumerations

The advantage of this continuum approach over the exact approach of Chapter 3 is

that the equations involved are far more analytically tractable, whilst still recovering

TASEP phase dynamics. For this reason, one may ask how this continuum approach

could extend to calculating higher-order weight sums. By kernel methods, the partition

function proved simple and the sum of squared weights was also calculable. However,

these kernel methods do not appear to extend to any higher dimension. In this section

we give a more general discussion about these higher weight sums in the context

of kernel methods and orbit sums [114]. We do this in the context of the previous

continuum calculation, but the principles originated from, and equally apply to, work

on discrete walks [114, 125, 126].

4.6.1 Orbit sums

Let us return to the equation for the Laplace transform G(s;u, v) that we solved in the

two-dimensional case in Eq. (4.65):

K(u, v)G(s;u, v) =
1

(f + u)(f + v)
− F (u)− F (v) ,

K(u, v) = s− 1

4

(
u2 − v2 − uv

)
.

We solved this by exploiting the symmetry property in Eq. (4.76):

K(u, v) = K(−u− v, v) = K(u,−u− v) .

This symmetry can be stated more formally in the context of variable mappings.

Specifically, there are two mappings M1, M2 of the variables u and v that leave the
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kernel invariant:

M1 : (u, v) 7→ (u,−u− v) , (4.132)

M2 : (u, v) 7→ (−u− v, v) . (4.133)

Furthermore, successive applications of M1 and M2 will also leave the kernel invariant.

We then successively apply M1 M2 alternatively to (u, v):

(u, v)
M17→ (u,−u− v)

M27→ (v,−u− v)
M17→ (v, u)

M27→ (−u− v, v)
M17→ (−u− v, u)

M27→ (u, v)

(4.134)

arriving back at (u, v). This sequence of mappings is known in the literature as an

orbit, and as we have returned to (u, v) this is a finite orbit. For each of these variable

transformations, we are free to write a new equation from Eq. (4.65):

K(u, v)G(u, v) =
1

(f + u)(f + v)
− F (u)− F (v) , (4.135a)

K(u, v)G(u,−u− v) =
1

(f + u)(f − u− v)
− F (u)− F (−u− v) , (4.135b)

K(u, v)G(v,−u− v) =
1

(f + v)(f − u− v)
− F (v)− F (−u− v) , (4.135c)

K(u, v)G(v, u) =
1

(f + v)(f + u)
− F (v)− F (u) , (4.135d)

K(u, v)G(−u− v, v) =
1

(f − u− v)(f + v)
− F (−u− v)− F (v) , (4.135e)

K(u, v)G(−u− v, u) =
1

(f − u− v)(f + u)
− F (−u− v)− F (u) . (4.135f)

The orbit sum is then defined in the literature as the alternating sum of these six

equations [114]:

(4.135a) + (4.135b)− (4.135c) + (4.135d)− (4.135e) + (4.135f) . (4.136)

For the majority of these types of problem that form a finite orbit, this orbit sum

cancels all terms involving F , leaving on several functions of G over different domains,

from which G(u, v) is extracted. However, the orbit sum for our particular diffusion

completely cancels on both sides. This problem is then referred to as an obstinate

kernel. In this case we have instead taken a half-orbit sum

(4.135a) + (4.135b)− (4.135c)
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to yield Eq. (4.78), a slight but not full simplification that yields, with more work, a

closed form for F (u) and therefore G(u, v).

With this notion of an orbit sum established, we give a qualitative discussion on the

calculation of the sum of cubed weights.

4.6.2 Attempt at solving 3D diffusion — sum of cubed weights

We have seen that the continuum limit partition function has the underlying diffusion

equation (4.5)

∂τP =
1

4
∂2

1P

which arises from the continuum limit of the recursion relation describing Eq. (1.27)

∑
C
W(C) = 〈W |(D + E)N |V 〉 .

Similarly, there is an underlying two-dimensional diffusion equation (4.44) for the sum

of squared weights

∂τP =
1

4

(
∂2

1 + ∂2
2 + ∂1∂2

)
P

which arises from the continuum limit of the recursion relation describing Eq. (3.1)

∑
C
W(C)2 = 〈W | ⊗ 〈W |(D ⊗D + E ⊗ E)N |V 〉 ⊗ |V 〉 .

Following this, one can show that the three-dimensional diffusion

∂τP =
1

4

(
∂2

1 + ∂2
2 + ∂2

3 + ∂1∂2 + ∂1∂3 + ∂2∂3

)
P (4.137)

emerges upon taking the continuum limit of the recursion relation describing the sum

of cubed weights

∑
C
W(C)3 = 〈W |⊗ 〈W |⊗ 〈W |(D⊗D⊗D+E⊗E⊗E)N |V 〉⊗ |V 〉⊗ |V 〉 . (4.138)

Like the one and two-dimensional cases, this has a delta function initial condition

centred at (x
(0)
1 , x

(0)
2 , x

(0)
3 ), and absorbing boundaries on x1, x2, x3 = 0. This is diffusion

in 3D space, with anisotropy introduced from the ∂1∂2, ∂2∂3, ∂1∂3 terms. Taking a set

of Laplace transforms over six initial and final coordinates and the time τ , one arrives
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at an equation of characteristic form

K(u, v, w)G(s;u, v, w) =
1

(f + u)(f + v)(f + w)
−F (u, v)−F (v, w)−F (u,w) (4.139)

where (τ ;x1, x2, x3) have conjugate variables (s;u, v, w), and the initial coordinates all

have conjugate variable f . Like in the 2D case of Eq. (4.65), G is the time and space

Laplace transform of P, and F is a function of the derivative of P evaluated on one of

the three axes. This time, the kernel

K(u, v, w) = s− 1

4

(
u2 + v2 + w2 + uv + uw + vw

)
(4.140)

is a quadratic in u, v and now additionally w. Considering the symmetry of this new

kernel in the context of orbits, we find three mappings M1, M2, M3 that leave the

kernel invariant:

M1 : (u, v, w)
M17→ (u, v,−u− v − w) , (4.141)

M2 : (u, v, w)
M27→ (u,−u− v − w,w) , (4.142)

M3 : (u, v, w)
M37→ (−u− v − w, v, w) . (4.143)

These mappings, when applied successively, yield an orbit of length 12:

(u, v, w)
M17→ (u, v,Γ)

M27→ (u,w,Γ)
M37→ (v, w,Γ)

M17→ (v, w, u) (4.144)

M27→ (v,Γ, u)
M37→ (w,Γ, u)

M17→ (w,Γ, v)
M27→ (w, u, v)

M37→ (Γ, u, v)
M17→ (Γ, v, w)

M27→ (Γ, v, w)
M37→ (u, v, w)

(with Γ = −u − v − w), from which we would acquire 12 different equations from the

original relation (4.139). The orbit sum of these terms is again zero. Furthermore,

with the introduction of a third variable we are not able to find any partial orbit sum

(or any combination of these equations for that matter) which provide a simplification

what would allow us to isolate domains. On the discrete side, these 3D problems are a

current area of research [118, 126].

4.6.3 Continuum limit for higher-order weight enumerations

The main advantage of working in a continuous space over the exact discrete random

walks in Chapter 3 is the relative simplicity of the algebra; the continuum limit

generating function in Eq. (4.109) is written in one line, and we can identify the

various phases of the TASEP by inspection. This difference stems from the kernels
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in both instances: in the discrete case (Eq. (3.39)) it is a quartic function, whereas the

continuum kernel (Eq. (4.66)) is only quadratic, giving a simpler factorisation.

This may then be a more attractive starting point for calculating higher-order Rényi

entropies. We saw in Section 3.7.2 that the sum of TASEP weights to arbitrary integer

power,
∑
CW(C)λ, is an enumeration of walks in the upper λ-dimensional orthant,

comprising the 21+λ steps from the operators

λ∏
q=1

(1 + gq) +

λ∏
q=1

(1 + g†q)

which emerge from the explicit representation from Eq. (1.21), D = 1 + g, E =

1 + g†. This has products of up to λ different ladder operators along different axes.

Alternatively, one can show in the continuum limit that this reduces to the following

diffusion equation

∂τP =
1

8

λ∑
n=1

λ∑
m=1

(1 + δnm)∂n∂mP (4.145)

=
1

8
(∂1 ∂2 ∂3 . . . ∂λ)



2 1 1 · · · 1

1 2 1 · · · 1

1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2





∂1

∂2

∂3

...

∂λ


P (4.146)

where products of more than two differential operators have vanished in the continuum

limit. Although the kernel method does not seem to extend beyond λ = 2, the

behaviour of this diffusion with increasing dimensionality may be an interesting problem

to investigate by other methods.

4.7 Summary

From the random-walk interpretation of the matrix product formalism, the enumeration

of TASEP weights can be written in terms of random walk problems. We have shown in

this chapter that we recover physical features of the TASEP when instead considering

the time and space continuum limits of these random walks.

The partition function is an enumeration of bicoloured Motzkin paths. In the continuum

limit, these become a simple 1D diffusion with a single absorbing boundary. This is

straightforward to solve by images or otherwise. An asymptotic analysis of the Laplace

128



transform of the time-dependent pdf recovers the three dynamical phases of the TASEP,

and correctly predicts the particle current to second order.

The sum of squared weights is an enumeration of 2D paths from the step set {↗,→
, ↑,↙,←, ↓,×, ·}. In the continuum limit, we found this walk reduced to anisotropic

diffusion in the upper-quarter plane, with absorbing boundaries along the two axes.

This diffusion problem proves stubborn to any image-based method, and we instead

solve for a Laplace transform of the probability distribution, by a novel method that

draws parallels with the obstinate kernel method of Chapter 3. This involves a mixing

of different functions that converge within different domains, then extracting the part

of the expression that is convergent within a certain domain. We are still to hone in

on the precise analytic details of this new technique, but we are confident that we have

the correct answer; first, we recover a nontrivial α–β symmetry that was broken earlier

in the problem, and secondly the predicted asymptotic scaling of
∑
CW(C)2 matches

the result from Chapter 3 to second order. In contrast with the discrete case, this

continuum function is much simpler to analyse, and can be done by hand.

We finished with a discussion about the enumeration of the sum of cubed weights in

the continuum limit, and how this problem would require solution of a 3D anisotropic

diffusion. This problem would demand a new technique; our kernel method does not

appear to extend to higher dimensions. However, when considering higher integer power

weight enumerations in general, the resultant λ-dimensional diffusion problem appears

promising to investigate further, even if by techniques away from the kernel methods

discussed here.

We showed in Section 4.2 that the scaling region of this continuum limit is in the

vicinity of α = β = 1/2. Although this allows us to predict the phase behaviour of

the TASEP, the coincidence of this scaling region with the triple point is not obvious,

and opens up some more general questions concerning the physical significance of these

diffusion processes. The taking of a continuum limit of a random walk to acquire a

diffusion process is a standard technique. The random walks seen here, however, stem

from representations of physical phenomena — namely, whether a particle is on a site

or not.

The lattice on which the random walk is defined stems from the array of numbers in

the matrix representations, which are labelled with discrete indices. By introducing

a lattice spacing and taking that spacing to zero, we depart from any ‘matrix’ in

the usual sense as these indices are no longer discrete. Furthermore, the walk length

arises from the product of a finite number of matrices which each represent a site on
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the TASEP. The introduction of a continuous time eliminates any notion of a finite

product, and in turn of any discrete sites. In this chapter we have performed particular

calculations in the limit, but it would be interesting to look more fundamentally at

the physical implications of this limit. With the loss of discreteness, we speculate

that the approximate analysis in this chapter of the partition function and sum of

squared weights in Eq. (4.28) could be an exact analysis, for some other related driven

continuum system.
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Chapter 5

Many-filament diffusive Brownian

ratchet

5.1 Orientation

In this chapter, we depart from the exclusion processes that have formed the bulk of the

work presented so far. We shift focus to a different system entirely; one that pertains to

the movement of a drift-diffusing membrane by a network of stochastically growing and

shrinking filaments. The exclusion interactions involved lead us to term this system a

diffusive Brownian ratchet. Our interest in this model originated from an observation;

when writing the dynamics of the Brownian ratchet, one can interpret its evolution

in time as a diffusion, with similar dynamics to the two-dimensional diffusion we saw

in Chapter 4. The major difference here is that the boundaries are reflecting, and we

will see that with this boundary condition we can solve the steady-state diffusion with

much greater generality, and in turn the Brownian ratchet as a whole.

Broadly, a Brownian ratchet comprises a ratchet-and-pawl device in a surrounding

medium [127, 128]. Its theoretical interest stems from it providing a mechanism to

move a fluctuating object without directly exerting any forces on it. Instead, it is

thermal fluctuations and steric interactions that generate the motion [129, 130] in a

manner that is consistent with the second law of thermodynamics. In mathematical

terms, the standard Brownian ratchet may be formulated as a drift-diffusive problem

for the single spatial coordinate of the ratchet-pawl separation [9]. More recently many-

filament systems involving several spatial coordinates have been introduced and studied

[131–143].
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Membrane

Filament 1

Filament 2

Filament 3

Figure 5.1 Visualisation and simulation of a continuum ratchet system with N = 3
filaments. Top: diagram of a three-filament system. Each filament (blue,
thin) may have a different diffusion constant Dn and drift µn. Bottom:
realisation of the system over time, with the time axis running vertically
downwards. The membrane (red, thick) naturally drifts left, but the entire
system moves right in the steady state, as a result of thermal fluctuations and
steric interactions between the three filaments (blue, thin) and the membrane.

One possible manifestation of a such a many-component ratchet system in nature may

be at the boundaries of eukaryotic cells. On the ∼µm length scale, one observes

filaments of joined protein monomers known as actins, arranged in a spatially-extended

network. These filaments grow and contract in order to move and morph the leading

edge of cells [144–146]. The rate of growth of the network is moderated by, among

other factors, surrounding monomer concentration [147–149]. One end of the actin

filament (the barbed end) elongates at a much higher rate than the other (the pointed

end), associating a directionality to the growth [150, 151]. Consequently, the network

appears to “treadmill” in one direction with monomers dissociating on the trailing edge

[152]. For the bulk movement of a leading edge (lamellipodia), this network tends to

be crosslinked, improving the rigidity of the network [144, 153, 154]. There are also

individual “spikes” out of the cell (filopodia), in which the interior actin filaments form

a parallel bundle [155, 156].

The model that we will introduce and solve here is shown in Figures 5.1 and 5.3. We

have an array of N filaments that grow and shrink in a continuous space, constrained

by a rigid drift-diffusing membrane. Our model incorporates three major extensions to
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previous continuum models [131, 133]:

1. Each filament is characterised by its own polymerisation velocity and variance;

2. The filaments move under an effective potential with respect to the membrane;

3. The filaments have lateral interactions with neighbouring filaments.

The interactions in this model are generally attractive; the filaments are attracted to

the membrane and/or to each other. Importantly, in the steady state we find this

high-dimensional model to be exactly solvable, for many physically relevant parameter

choices. As we will discuss in detail, the essence of this solution is that for these

parameter choices, the second-order steady-state equation can be reduced to a set of

directly integrable first-order equations.

This model falls into a class that we refer to as pure ratchets [139]. The defining

property of these systems is that the membrane moves under thermal fluctuations,

and the network grows quickly to occupy any space left vacant [9, 131–134]. The key

phenomenon that can arise from these pure ratchets, then, is that a membrane that has

a natural drift in one direction, may have a net movement in the opposite direction,

arising exclusively from steric interactions and thermal fluctuations. This is to be

distinguished from other models where filaments directly exert forces, and do work to

move the membrane [135–143].

The microscopic dynamics of a real filament network, involving for example tread-

milling, crosslinking and heterogeneity, is very complex [144, 145, 147, 156–160]. We

emphasize that we are not attempting to model these specific dynamics in detail but

instead consider generic heterogeneous filaments, along with interaction potentials to

effectively encapsulate this dynamical complexity. The interactions here are attractive,

but do not contribute directly to the membrane motion itself. This is a coarse-grained,

effective description of more complicated biological, microscopic effects which may force

the filament network to evolve within the locality of the membrane, allowing us to

interpret the system as a nonequilibrium steady state.

In all of the studies discussed so far, a key observable of interest is the steady-state

velocity of the membrane. With the model we introduce here, we gain exact insight

into how the various physical properties of the filaments affect the ability of the overall

network to move the fluctuating membrane. We show, with analytical expressions, how

the membrane velocity increases with an increasing harmonic attraction of filaments to

the membrane, but decreases on introducing a surface tension that pulls neighbouring
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filaments towards one another. The velocity also increases on increasing the diffusion

constant of the membrane.

This chapter is organised as follows. In Section 5.2, we introduce and motivate our

system by taking the continuum limit of a lattice Brownian ratchet [9, 137]. This leads

us to a differential equation for the pdf over the displacements between the membrane

and each of the filaments. We solve this pdf and derive the membrane velocity, first

in Section 5.3 for a single filament, then in Section 5.4 for the case where N filaments

have a constant drift, and finally in Section 5.5 for N filaments and additional quadratic

interactions. In particular in Section 5.5.1 we consider a restoring force towards the

membrane and in Section 5.5.2 we consider surface tension across the filament bundle

leading edge. We show in Section 5.6 how these diffusion problems can be related back

to the ASEP, and finally we summarise in Section 5.7.

5.2 Model derivation

Our starting point is a lattice model of a Brownian ratchet in continuous time, where

the discrete lattice represents discretised monomers of the filament. We start from a

lattice model, as the boundary conditions arising from the exclusion interaction between

the filaments and the membrane arise more naturally within the discrete formulation

than if one uses a continuum description at the outset.

The dynamics of this lattice model are as seen in Figure 5.2: the rigid membrane makes

unit steps to the left and right at rates defined as (m+ l) and m respectively. Similarly,

filament n (n = 1, . . . N) shrinks (depolymerises) and grows (polymerises) across unit

steps at rates qn and (qn + rn) respectively. The steps are only permitted when a

hard-core exclusion interaction is satisfied: the membrane must stay to the right of

the right-most filament(s). Thus, the system exhibits ratcheting, where the membrane

moves at a velocity different to its inherent drift — perhaps in the opposite direction

entirely — as a result of thermal fluctuations and steric interactions. The polymer

filaments to not exert a force on contact with the membrane, or vice versa. The rate

rn represents the speed of the filament growth and may depend upon the displacement

of the filament from the membrane.

Assume now that the system has settled into a steady state, in which the displacements

between the filaments and the membrane have stationary distributions. We define

i = (i1, i2, . . . iN ), in ≥ 0 as a vector of integer displacements between each of the N

filaments and the membrane. From here on we treat these displacements i as the system
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Figure 5.2 The lattice Brownian ratchet model, which is the starting point of the
continuum model we solve in this chapter. On a lattice, each of the N
filaments (blue) polymerise and depolymerise, at the rates shown. The
membrane (red) also makes jumps left and right. in ≥ 0 is the integer
displacement between filament n and the membrane. In the event of a
filament touching the membrane (bottom), the membrane may only move
right at the usual rate, and the filament in contact may only contract at its
usual rate. The dynamics of the other filaments are unaffected.

configuration, although the whole system will in general have a net velocity (unless it

is in a stalled state). Define Pi as the stationary probability of observing the system

with displacements i under the steady-state condition ∂tPi = 0. Assume now we are

in a bulk configuration: in > 0, ∀n, so no filaments are in contact with the membrane.

By considering all possible ways the system can enter and leave configuration i, the

stationary solution obeys a master equation of the form in Eq. (1.8)

0 = −

[
2m+ l +

N∑
n=1

(2qn + rn)

]
Pi +mPi−1

+ (m + l)Pi+1 +
N∑
n=1

[
qnPi−n̂ + (qn + rn)Pi+n̂

]
. (5.1)

Here n̂ is defined as the unit vector along component n, and 1 ≡
∑N

n=1 n̂.

We now consider the case where filament k makes contact with the membrane and

ik = 0, in6=k > 0. The membrane can now only move to the right, and filament k can

only move to the left. In this case, the master equation has fewer terms as fewer moves
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are possible, and reads

0 = −

m+ qk +
N∑
n=1
n6=k

(2qn + rn)

Pi + (m+ l)Pi+1

+

N∑
n=1
n6=k

qnPi−n̂ +

N∑
n=1

(qn + rn)Pi+n̂ (5.2)

for any k = 1, 2, . . . N . It is the continuum limit of this equation that furnishes the

appropriate boundary condition for the differential equation we now derive.

We take the limit in which the length of each filament, as well as the position of

the membrane, is treated as a continuous random variable. Note that it is in the

direction perpendicular to the membrane that the continuum limit is taken; the number

of filaments remains discrete (and fixed). We introduce an explicit lattice spacing a

such that x = (x1, x2, . . . xN ) = ai. The continuum limit equations then arise following

the convention laid out in Section 1.5: taking a to be small, and performing a series

expansion of the master equation for small a. From Eq. (5.1) we obtain a drift-

diffusion equation and from Eq. (5.2) a set of N boundary conditions. In this limit,

the probability approaches a continuous distribution in x, that we denote P(x). The

resulting continuous space system is illustrated in Figure 5.3.

5.2.1 Diffusion equation

Beginning with the bulk relation, the master equation (5.1) is written in terms of

x = (x1, x2, . . . xN ) = ai as

0 = −

[
2m+ l +

N∑
n=1

(2qn + rn(xn))

]
P(x) +mP(x− a1) + (m+ l)P(x+ a1)

+
N∑
n=1

qnP(x− an̂) +
N∑
n=1

[qn + rn(xn + a)]P(x + an̂) . (5.3)
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Figure 5.3 The complete continuum Brownian ratchet system that we address. Each of
the filaments (blue) are growing and shrinking by a diffusion process with
coefficient Dn, and drift µn. The membrane (red) moves with diffusion
coefficient DM and drift µM towards the filaments. xn is the displacement
between filament n and the membrane. Filament n may then also be attracted
to the membrane by a spring force with strength κ, and also may have a
surface tension-like interaction with neighbouring filaments with strength ν.

In the limit of a small lattice spacing a, we now perform a Taylor expansion of P to

second order in a, over each of the N degrees of freedom. This expansion is written

0 ≈ −

[
2m+ l +

N∑
n=1

(2qn + rn(xn))

]
P(x)+m

(
1− a

N∑
n=1

∂n +
1

2
a2

N∑
n=1

N∑
k=1

∂n∂k

)
P(x)

+(m+l)

(
1 + a

N∑
n=1

∂n +
1

2
a2

N∑
n=1

N∑
k=1

∂n∂k

)
P(x)+

N∑
n=1

qn

(
1− a∂n +

1

2
a2∂2

n

)
P(x)

+

N∑
n=1

(
qn +

[
1 + a∂n +

1

2
a2∂2

n

]
rn(xn)

)(
1 + a∂n +

1

2
a2∂2

n

)
P(x) (5.4)

using the shorthand ∂n ≡ ∂/∂xn. All O(a0) terms cancel, and we collect terms in

powers of a1 and a2 to give

0 ≈ a

(
N∑
n=1

[∂nrn(xn) + (rn(xn) + l)∂n]P(x)

)
(5.5)

+ a2

([
m+

1

2
l

] N∑
n=1

N∑
k=1

∂n∂kP(x) +

N∑
n=1

[(
qn +

1

2
rn(xn)

)
∂2
n +

1

2
∂2
nrn(xn)

]
P(x)

)
.

As laid out in Section 1.5.3, we now define a set of diffusion and drift rates, first for
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the membrane (subscript ‘M ’)

µM = al , µ
M
≡

N∑
n=1

µM n̂ , DM = a2m . (5.6)

For the filaments, define

∂nV (x) = arn , Dn = a2qn . (5.7)

In Eqs. (5.6) and (5.7), ∂n ≡ ∂/∂xn and the biases (or drifts) rn derive from a potential

V (x). Note that, as discussed in Section 1.5.3 with Eq. (1.88), the drift coefficients

scale with the lattice spacing, and the diffusion coefficients DM , Dn with the lattice

spacing squared [70].

With these definitions, we rewrite Eq. (5.5) with leading-order terms only to obtain

our diffusion equation:

0 =
N∑
n=1

∂n

(
∂nV (x) + µM +DM

N∑
k=1

∂k +Dn∂n

)
P(x) . (5.8)

5.2.2 Reflecting boundary conditions

Starting from Eq. (5.2), that applies when a filament is in contact with the membrane,

we can follow a similar procedure to obtain a boundary condition on the diffusion

equation. This time we do not get full cancellation at O(a0), so we need only expand

to first order to obtain:

0 ≈

[
−

(
m+ qk +

N∑
n=1
n 6=k

(2qn + rn(xn))

)
P(x) + (m+ l)

(
1 + a

N∑
n=1

∂n

)
P(x)

+

N∑
n=1
n6=k

qn (1− a∂n)P(x) +

N∑
n=1

(qn + [1 + a∂n] rn(xn)) (1 + a∂n)P(x)

]
xk=0

(5.9)

which simplifies to

0 ≈

[
(l + rk(xk))P(x) + a

(
qk∂k +

N∑
n=1

[∂nr(xn) + (m+ l + rn(xn))∂n]

)
P(x)

]
xk=0

.

(5.10)
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Now using the definitions in Eqs. (5.6) and (5.7) of the drift and diffusion rates, we

ultimately find

0 =

[(
µM + ∂kVk(xk) +Dk∂k +

N∑
n=1

DM∂n

)
P(x)

]
xk=0

(5.11)

which, for all k = 1, 2, . . . N is the set of reflecting boundary conditions (5.11).

These boundary conditions combined with the bulk equation (5.8) fully determine the

stationary distribution of filament displacements in our model. Let us express these in

a vector-matrix form as we saw in the example in Eq. (1.89): Eq. (5.8) is equivalently

written

∇ ·
(
∇V (x) + µ

M
+ S∇

)
P(x) = 0 (5.12)

where µ
M

is specified in Eq. (5.7) and

S =


DM +D1 DM . . . DM

DM DM +D2 . . . DM

...
...

. . .
...

DM DM . . . DM +DN

 (5.13)

is the diffusion matrix of the system. From this we see the diffusion of the membrane

couples the different xn, as indicated with nonzero off-diagonal entries in S. We then

have a spatially-dependent drift −∇V (x) − µ
M

. The sign indicates a negative drift,

towards the origin i.e. the filaments and the membrane drift towards one another.

We can also rewrite the set of N zero-current conditions (5.11) as one equation[(
∇V (x) + µ

M
+ S∇

)
P(x)

]
x=(0,...0)

= (0, . . . 0) . (5.14)

We refer to this set of N equations as zero-current boundary conditions, because the

equation fixes the probability current at the boundaries to be zero. To see this, note

that the stationary diffusion equation (5.12) can be written as 0 = ∇·J where J is the

N -component probability current vector and the nth component of the operator ∇ is

∂n. Then Eq. (5.14) is the condition that the nth component of the current Jn is zero

at the boundary xn = 0, ∀n.

We now highlight the key property of the steady-state equations (5.12) and (5.14),

that makes this system exactly solvable under certain conditions. The boundary

condition (5.14) for filament n holds at xn = 0. However, if Eq. (5.14) were to hold not
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just at the boundary but also into the bulk, that is(
∇V (x) + µ

M
+ S∇

)
P(x) = (0, . . . 0) (5.15)

then the bulk equation (5.12) would also be satisfied. In scenarios where this occurs,

we can reduce the problem to a set of first-order equations that satisfies both equations.

We note that for the more general problem of reflected Brownian motion with general

boundary interactions, solutions can not generally be found in closed-form, at least

in two dimensions [75, 161]. Therefore the assumption that Eq. (5.12) holds in the

bulk xn ≥ 0, that is that the stationary solution has a zero probability current

everywhere, should be thought of as an ansatz. In a one-filament system this is

necessarily the case, however in a higher-dimensional system it is possible to have

solutions that only have zero current at the boundaries. We will therefore find certain

restrictions on model parameters that are consistent with the zero-current ansatz. The

fact that some particular parameter combinations satisfy this ansatz and some do not is

interesting; the systems that do not satisfy this ansatz must contain circulatory currents

of probability through the bulk, which one would expect yields a more complex steady-

state distribution.

5.2.3 Membrane velocity formula

We are particularly interested in obtaining expressions for the mean membrane velocity

vM as a function of the various parameters in the system. In the continuum limit, it is

not obvious what a formula for the membrane velocity would look like as a function of

P(x). We can however write a simple expression for the velocity in the discrete case,

so we take a continuum limit of this.

In the discrete system, the membrane will move at an average velocity −l when no

filaments are in contact with it, and at velocity +m in any configuration i(c) where one

or more filaments are in contact (see Figure 5.2):

vM = −l(1− Pcontact) +mPcontact (5.16)

= −l + (m+ l)
∑
i(c)

Pi . (5.17)

By convention, vM is positive if the membrane is moving to the right. Here, Pcontact

is the total probability of the membrane being in contact with any filament i.e. a sum

over all configurations i(c) where one or more filament contacts the membrane. In the

continuum limit, however, we can neglect configurations with more than one contact as
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Figure 5.4 (Left) the single filament we solve in Section 5.3. (Right) the equivalent
Brownian motion — a drift-diffusing 1D particle in a harmonic potential
with a reflecting boundary at zero.

the probability that two filaments end at exactly the same point in continuous space is

vanishingly small. With this simplification and the parameters in Eq. (5.7), we obtain

from Eq. (5.17) in the continuum limit

vM = −l(1− Pcontact) +mPcontact (5.18)

≈ −l + (m+ l)
N∑
n=1

 N∏
m=1
m6=n

∑
m≥0

P(i|in=0)

 (5.19)

≈ −µM +

(
DM

a
+ µM

) N∑
n=1

 N∏
m=1
m6=n

(∫ ∞
0

dxm
a

)
aNP(x|xn=0)

 , (5.20)

where P(x|xn=0) is the pdf evaluated at xn = 0. Taking this to leading order in a we

then find

vM = −µM +DM

N∑
n=1

 N∏
m=1
m6=n

(∫ ∞
0

dxm

)
P(x|xn=0)

 . (5.21)

This equation has an intuitive form: the membrane tends to move left at speed µM (as

indicated by the first term), but is then biased right by an amount that increases with

increasing contact between the membrane and filaments (as indicated by the boundary

integrals in the second term). We note that vM can take either sign: the membrane

can move in either direction. If vM = 0 the system has stalled.

Before solving the general N -filament case, as a familiarisation exercise we first solve

the ratchet system in the case of a single filament, and calculate the membrane velocity,

which even for a single filament turns out to be surprisingly complex.
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5.3 Introductory example: single filament

Take a single filament that grows and contracts stochastically, with a constant drift

µ1 towards the membrane along with a restoring force κx1 and diffusion constant D1.

The membrane has a diffusion constant DM , and a drift µM towards the filament. We

stress that there is an asymmetry in this interaction: the restoring force κx1 attracts the

filament to the membrane, but not vice versa. This is equivalent to a one-dimensional

drift-diffusion, in a harmonic potential and a reflecting boundary at zero [162, 163], see

Figure 5.4.

Here, the zero-current boundary condition implies that Eq. (5.14) must hold for all x1,

which in this 1D case reads

0 = [κx1 + µ1 + µM + (D1 +DM )∂1]P(x1) . (5.22)

This is straightforwardly integrated to give

P(x1) = A−1 exp

(
−

1
2κx

2
1 + (µ1 + µM )x1

D1 +DM

)
. (5.23)

The normalisation A is fixed by the condition
∫∞

0 dx1 P(x1) = 1 which yields

A =
√
π

√
D1 +DM

2κ
ec

2
erfc (c) (5.24)

where erfc(α) = 2/
√
π
∫∞
α dt e−t

2
is the complimentary error function, and c = (µ1 +

µM )/
√

2κ(D1 +DM ). With this, we use Eq. (5.21) to find the membrane velocity

vM = −µM +DMP(0) (5.25)

= −µM +
DM

√
2κ

D1+DM
exp

(
− (µ1+µM )2

2κ(D1+DM )

)
√
π erfc

(
µ1+µM√

2κ(D1+DM )

) . (5.26)

We plot vM for various filaments in Figure 5.5. vM is a monotonically increasing

function of κ. For the example µ1 = 1, D1 = 5 (red, dashed), we see that the membrane

can have a positive, negative or zero velocity depending on the value of κ. Thus a large

enough restoring force will always lead to a positive velocity. In the case µM + µ1 = 0,

for which the filament and membrane drift towards each other only due to the linear
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Figure 5.5 Analytic membrane velocity vM (5.26) for a single filament system, for
four different filaments. vM is a monotonically increasing function of the
restoring force constant κ. Against the same membrane (µM = 1, DM = 1),
we see that a less diffusive (filled vs. dashed), higher drift (blue vs. red)
filament is the most effective at moving the membrane.

restoring κx1, Eq. (5.26) reduces to

vM = −µM +
DM√
π

√
2κ

D1 +DM
(5.27)

and the velocity deviates from the free velocity −µM as the square root of the force

constant κ. This scaling law is in fact general for N filaments, which we show in

Section 5.5.1.

The membrane velocity in Eq. (5.26) is surprisingly elaborate given the simplicity of the

system, and we will later see it becomes increasingly difficult to analytically normalise

the pdf and calculate vM with increasing numbers of filaments. This is not the case,

however, in the absence of restoring forces (κ = ν = 0), as we now show.

5.4 Constant drift solution for many filaments

We now solve the system for N filaments, in the case of a linear potential V (x), implying

constant drifts for each filament:

V (x) = µ
F
· x , µ

F
≡

N∑
n=1

µnn̂ , (5.28)

with the subscript ‘F ’ denoting the filaments. The zero-current condition (5.15) now

reads (
µ
M

+ µ
F

+ S∇
)
P(x) = 0 . (5.29)
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To solve this, let us trial the normalised distribution

P(x) =

(
N∏
n=1

λn

)
e−λ·x (5.30)

with an undetermined λ = (λ1, . . . λN ). This solution has exponential decay of the

filament-membrane separations with decay constants λn and the distributions for

individual filaments are decoupled, despite the fluctuating membrane coupling the xn

to one another. Substituting this trial solution into Eq. (5.29) leads to the condition

on λ

µ
M

+ µ
F
− Sλ = 0 (5.31)

which in turn implies

λ = S−1
(
µ
M

+ µ
F

)
. (5.32)

This gives exact expressions for the (λ1, . . . λN ) in terms of the drifts, and diffusion

constants embedded within S. Furthermore, the entries of S−1 are explicitly calculable

for any N via the Sherman-Morrison formula [164]:

(S−1)nk = D−1
n

(
δnk −

D−1
k

D−1
M +

∑N
n′=1D

−1
n′

)
. (5.33)

With further algebra, the components of λ reduce to

λn = D−1
n

(
µn +

µMD
−1
M −

∑N
n′=1 µn′D

−1
n′

D−1
M +

∑N
n′′=1D

−1
n′′

)
(5.34)

giving an explicit solution for P(x) as a function of the diffusion and drift parameters of

the system. We see that λn, the exponential decay constant for the separation, increases

with drift µn but decreases with diffusion constant Dn. However the dependence on

the drift and diffusion constants of the other filaments appears rather complicated.

We shall see that these interdependencies are best understood when we consider the

membrane velocity.

5.4.1 Mean membrane velocity

We initially assume that all λn > 0 (see Section 5.4.2 for discussion of when this does

not hold). With the decoupled exponential form in Eq. (5.30) of P(x), the membrane
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velocity from Eq. (5.21) is straightforward to calculate as

vM = −µM +DM

N∑
n=1

 N∏
m=1
m6=n

(∫ ∞
0

dxm

)( N∏
n′=1

λn′

)
e−λ·x|xn=0

 (5.35)

= −µM +DM

N∑
n=1

λn (5.36)

=
−µMD−1

M +
∑N

n=1 µnD
−1
n

D−1
M +

∑N
n′=1D

−1
n′

. (5.37)

Eq. (5.37) is the central result of this section and gives the membrane velocity in terms

of all the constituent filament and membrane parameters (µ1, . . . µN ), (D1, . . . DN ),

µM , DM .

The exponential decay constants λn in Eq. (5.34) can then be written

λn =
µn − vM
Dn

(5.38)

with the numerator of λn being the difference between the drift of filament n and

the net velocity of the membrane determined by the whole system. As this difference

decreases, the average separation 〈xn〉 = λ−1
n naturally increases.

The membrane stalling drift µ∗M is defined as the drift for which vM = 0:

µ∗M = DM

N∑
n=1

µn
Dn

. (5.39)

This can be interpreted in terms of the ratcheting mechanism. µ∗M increases as the drift

of each filament µn increases. Thus the membrane must have large drift to the left to

stall the ratchet mechanism arising from more strongly polymerising filaments. However

µ∗M decreases as each Dn increases. Thus greater variability of the polymerisation

process reduces any ratcheting effect. On the other hand, increasing the membrane

diffusion constant DM increases vM and thus requires an increase in membrane drift

to stall the ratchet mechanism. This is because the fluctuations in membrane position

due to a large DM afford more opportunity for polymerisation near the membrane.

5.4.2 Steady-state condition

A property of the membrane-filament system is that it may not reach a steady state. If

at least one of the λn is negative, then P(x) is not normalisable, indicating the absence
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of a steady state. Physically, this arises from one or more of the filaments drifting away

from the membrane in perpetuity. Thus the requirement for a steady state in which

the filaments travel with the membrane is that λn > 0 for all n = 1, . . . N .

To determine when this requirement holds, note that the sign of each λn in Eq. (5.34)

is dependent on each and every other filament. Given these interdependencies, we then

need to determine whether the full system forms a steady state.

Let us label the filaments 1, . . . N in order of decreasing drift, such that µ1 ≥ µ2 ≥
· · · ≥ µN . We first check if the filament with the highest drift, filament 1, would form

a steady state with the membrane, if it were the only filament in the system. From the

form of λn in Eq. (5.34) for N = 1, this gives the trivial condition µ1 +µM > 0. If this

is satisfied, filament 1 participates in the steady state because it moves towards the

membrane. If it does not, the membrane and the filament drift apart, and no steady

state is formed. Furthermore, as µ1 ≥ µ2 · · · ≥ µN , none of the filaments settle into a

steady state.

We now add filament 2. We check if λ2 > 0. From the form of λn for N = 2, this gives

the condition µ2 >
(
−µMD−1

M + µ1D
−1
1

)
/
(
D−1

1 +D−1
M

)
. If this is satisfied, filament 2

also participates in the steady state. If it is not, the single filament-membrane system

runs away from filament 2, and also the remaining filaments.

We repeat this process sequentially, and assuming that the condition has been satisfied

by all filaments up to (n− 1), we add filament n. The requirement for λn > 0 is

µn >
−µMD−1

M +
∑n−1

n′=1 µn′D
−1
n′

D−1
M +

∑n−1
n′′=1D

−1
n′′

. (5.40)

We find a result that, in retrospect, is self-consistent and physically intuitive: filament

n will participate in the steady state if µn is greater than the steady state membrane

velocity in Eq. (5.37) from the system of the (n−1) faster filaments. This is independent

ofDn; the diffusivity of a filament does not affect whether it can ‘catch up’ with a system

in the long term.

Each additional participating filament contributes to increasing vM . We must then

sequentially add filaments by decreasing drift, until a filament is found that is slower

than vM up to that point. Then, that filament and all lower-velocity filaments

do not participate in the steady state, and the pdf P(x) is constructed from the

participating filaments only. This procedure is illustrated in Figure 5.6, where filaments

are sequentially added, and a new vM is calculated on the addition of each filament.
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Figure 5.6 Sequentially adding filaments to a system with a membrane with µM = 5, by
decreasing velocity. All diffusion parameters are set to 1 for simplicity. In
this example, filament 6 is slower than the membrane when it is added, so
filaments 1–5 form a steady state and other filaments fall away.

In the case of a large number of identical filaments D1, . . . DN = DF , µ1, . . . µN = µF ,

we find

vM =
−µMD−1

M +NµFD
−1
F

D−1
M +ND−1

F

(5.41)

≈ µF −
1

N

DF

DM
(µM + µF ) . (5.42)

We see that the membrane velocity converges to the filament drift µF as the number of

filaments N →∞, and all filaments participate. This specific case has been previously

derived in Refs. [131, 133].

This ends our discussion of the constant drift case, having derived the pdf and

membrane velocity in Eqs. (5.30) and (5.37) respectively, along with steady state

conditions. We now go on to add restoring forces to the system.

5.5 Quadratic potential solution

We now introduce interactions between components of the system that take the form

of linear restoring forces, deriving from quadratic potentials. As we now show, this

system is also exactly solvable within the zero-current ansatz for several parameter

combinations.

We add a second term to the potential V (x):

V (x) = µ
F
· x+

1

2
xTΓx (5.43)

=
N∑
n=1

µnxn +
N∑
n=1

N∑
m=1

1

2
Γnmxnxm . (5.44)
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Γ is a symmetric matrix that describes interactions at quadratic order. Each diagonal

element of the quadratic term represents a harmonic potential for the separation

between a filament and the membrane. The off-diagonal terms represent couplings

between the different filaments.

Under this potential, Eq. (5.15) reads(
µ
M

+ µ
F

+ Γx+ S∇
)
P(x) = 0 . (5.45)

Given this new form of the potential, we choose as a trial solution the pdf

P(x) = A−1e−λ·x−
1
2
xTGx . (5.46)

The exponent contains all possible linear and quadratic combinations of the xn. A is

a normalising constant and G is a to-be-determined symmetric matrix. Inserting this

trial solution in to Eq. (5.45) yields

µ
M

+ µ
F

+ Γx− S (λ+Gx) = 0 . (5.47)

This implies a solution for λ

λ = S−1
(
µ
M

+ µ
F

)
which is the same as Eq. (5.32), in the constant drift case. The solution for G is given

as

G = S−1Γ . (5.48)

As G is symmetric, for Eq. (5.46) to be a valid solution, the matrix product S−1Γ must

be symmetric. This is not the case for an arbitrary interaction matrix Γ, which suggests

that for several filaments the xn = 0 zero-current conditions (5.15) do not extend into

the bulk generally. There may be additional currents in the bulk, and the filament-

membrane displacements evolve as a more complex nonequilibrium steady state, which

does not admit an exponential probability distribution.

In light of this, we seek particular potentials for which G = S−1Γ is symmetric.

With reference to the forces illustrated in Figure 5.3, we address two cases. First

in Section 5.5.1, a system where the filaments are attracted to the membrane by a

restoring spring-like force with strength κ. Then in Section 5.5.2 we introduce an

additional surface tension with strength ν.
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As an aside, with these additional interactions Eq. (5.46) becomes a multivariate normal

distribution [165]. If the pdf was defined over all space, one could straightforwardly

normalise these functions via Gaussian integrals. However, for the ratchet system the

domain of P(x) is restricted to the upper orthant xn ≥ 0, and the normalisation factors∫∞
0 dx1 . . .

∫∞
0 dxN P(x) are far more challenging to evaluate than the usual integral

over all space [165]. Regardless of this we can still analyse P(x) and in particular find

scaling laws for vM .

5.5.1 Restoring force between filaments and the membrane

We can incorporate a harmonic potential with strength κ > 0. This is by design an

asymmetric interaction which attracts each filament to the membrane, but not vice

versa. We hope to encapsulate the features of a larger membrane moving in a viscous

medium, and a rapidly-evolving network of actins with a variable rate of association

and dissociation [145].

This interaction is incorporated with the diagonal matrix

Γ =



κ · · · · · · ·
· κ · · · · · ·
· · κ · · · · ·
...

...
...

. . .

· · · κ ·
· · · · κ


. (5.49)

With this simple interaction matrix, the matrix G in Eq. (5.46) is simply G = κS−1,

which is symmetric as S−1 is symmetric (see Eq. (5.33)). Then with the form of λ in

Eq. (5.32), we can write the full solution P(x) from Eq. (5.46) as

P(x) = A−1e−
1
2
bTS−1b (5.50)

where

b = κ
1
2x+ κ−

1
2

(
µ
M

+ µ
F

)
. (5.51)

As each of the filaments is now in a harmonic trap with respect to the membrane, all

filaments will participate in the steady state i.e. none lag behind. Mathematically this

is seen as the pdf approaches zero as any of the xn → ∞, given κ > 0. Finally, note

that unlike the linear drift case in Eq. (5.30), these quadratic potential systems contain
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combinations of the form xnxm in the pdf, implying that the distribution does not

decouple over filaments.

Although these multivariate normal distributions are challenging to normalise exactly

for large N , we are still able to extract the leading-order scaling for the membrane

velocity, as a function of κ.

Velocity scaling law

We now argue that the introduction of a harmonic interaction introduces a
√
κ

enhancement to the membrane velocity. For the steady-state pdf in Eq. (5.50), the

normalisation constant A is found by requiring

N∏
n=1

(∫ ∞
0

dxn

)
P(x) = 1 . (5.52)

We now perform two variable changes. First taking x′ = κ
1
2x,

A =
N∏
n=1

(
κ−

1
2

∫ ∞
0

dx′n

)
e
−
(
x′+κ−

1
2 [µ

M
+µ

F
]
)T
S−1

(
x′+κ−

1
2 [µ

M
+µ

F
]
)

(5.53)

and then x′′ = x′ + κ−
1
2

(
µ
M

+ µ
F

)
,

A = κ−
N
2

N∏
n=1

(∫ ∞
κ−

1
2 (µM+µn)

dx′′n

)
e−x

′′TS−1x′′ . (5.54)

When κ is large, we can approximate the lower bound of each of the N integrals to

extract the dominant κ-dependence

A ≈ κ−
N
2

N∏
n=1

(∫ ∞
0

dx′′n

)
e−

1
2
x′′TS−1x′′ (5.55)

≡ Bκ−
N
2 . (5.56)

We define B as a constant, independent of κ. Similarly, the membrane velocity formula

(Eq. (5.21)) is a set of (N−1)-dimensional integrals. We can then use a similar argument
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Figure 5.7 Numerically-integrated membrane velocity as a function of
√
κ for four

different N = 3 filament systems (a)—(d). For each of these parameter
sets, the straight lines indicate a vM ∝

√
κ scaling relationship for large κ.

(a) DM = 1, µM = −1, DF = 1, µ
F

= (1, 3, 1), ν = 2;
(b) DM = 1, µM = 3, D1 = 2, D2 = 1/2, D3 = 3, µ

F
= (−2, 5, 2), ν = 0;

(c) DM = 1/2, µM = 2, D1 = 1/2, D2 = 2, D3 = 1, µ
F

= (1, 2, 1), ν = 0;
(d) DM = 1/2, µM = 5, DF = 1, µ

F
= (2,−1,−1), ν = 1.

to find an overall scaling for the membrane velocity

vM = −µM +DM

N∑
n=1

 N∏
m=1
m6=n

(∫ ∞
0

dxm

)
P(x|xn=0)

 (5.57)

≈ −µM + C
√
κ . (5.58)

C is another κ-independent constant. We expect the correction to the normalisation

in Eq. (5.56) to be of order κ−(N+1)/2, corresponding to an O(κ0) correction to the

velocity. To support this, we present in Figure 5.7 the numerically-integrated membrane

velocities against
√
κ for four N = 3 filament systems, each with different sets of

diffusion and drift parameters. In all four cases we observe a linear scaling with
√
κ

for large κ. In the case −µM = µ1 = µ2 = · · · = µN , the lower bounds of the integrals

in Eq. (5.54) are precisely zero, and the approximations in Eqs. (5.56), (5.58) become

exact, an example of which we saw in Eq. (5.27).

5.5.2 Surface tension

We now add an attractive harmonic interaction between neighbouring filaments. This

serves to equalise the length of neighbouring filaments, and thus models a surface

tension in the filament bundle.
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This additional interaction leads to a new term in the potential V (x):

V (x) = µ
F
· x+

1

2
κ

N∑
n=1

x2
n +

1

2
ν

N−1∑
n=1

(xn+1 − xn)2 , (5.59)

where the parameter ν specifies the strength of the surface tension. The interaction

matrix is then

Γ =



κ+ ν −ν · · · · · ·
−ν κ+ 2ν −ν · · · · ·
· −ν κ+ 2ν · · · · ·
...

...
...

. . .

· · · κ+ 2ν −ν
· · · −ν κ+ ν


. (5.60)

With these interactions, the matrix G = S−1Γ that appears in the stationary solution

(5.46) is symmetric only if the N filament diffusivities each take the same value, which

we denote DF . This implies any more general diffusivities fall outside of the zero-

current ansatz and do not admit a solution of the form in Eq. (5.46). Taking this case

of all filament diffusivities being equal, then, we find the entries for G

Gnm = κD−1
F

(
δnm −

D−1
F

D−1
M +ND−1

F

)
+ νD−1

F (2δnm − δn,m−1 − δn,m+1 − δn1δm1 − δnNδmN ) . (5.61)

Taking this form of G (and λ in Eq. (5.32)), we have in Eq. (5.46) the pdf for a ratchet

system with inhomogeneous drift terms, a restoring force to the membrane, and a

surface tension. Note that we have assumed that filaments 1 and N are each only

coupled to one neighbour, but one can couple them together by adding entries of −ν
into the top-right and bottom-left entries of Γ. This system can also be shown to have

a symmetric form of G = S−1Γ and satisfies the zero-current ansatz.

Example: two filaments with quadratic interactions

To illustrate the effect of a surface tension on the system, we exactly normalise the pdf,

and calculate the membrane velocity for the N = 2 filament case, with both quadratic

interactions included. For two filaments with µM = µ1 = µ2 = 0, Eq. (5.46) is explicitly
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Figure 5.8 (Left) the interacting two-filament system that we address. (Right) the
equivalent Brownian motion — a diffusion in a quadratic potential dependent
on ν and κ, with reflecting boundaries along the two axes.

P(x) = A−1 exp

(
−ν (x1 − x2)2

2DF
− κ

(
x2

1 + x2
2

)
(DF +DM )− 2DMx1x2

2DF (DF + 2DM )

)
. (5.62)

Here, the filaments move towards the membrane by the restoring force only and the

evolution may be modelled as a zero-drift Brownian motion in a quadratic potential,

see Figure 5.8. In this case, the normalisation constant A, obtained by integrating over

all x1, x2 > 0, has the exact form

A =

√
DF (DF + 2DM )

κ(κ+ 2ν)

[
tan−1

(
DF ν +DM (κ+ 2ν)√

κ(κ+ 2ν)DF (DF + 2DM )

)
+
π

2

]
(5.63)

where we have used Eq. (4.3.2) in Ref. [166] to evaluate the integral. Then, the

membrane velocity follows using Eq. (5.21):

vM =

√
2πDM

√
κ(κ+2ν)

DF (κ+ν)+DM (κ+2ν)

tan−1

(
DF ν+DM (κ+2ν)√

κ(κ+2ν)DF (DF+2DM )

)
+ π

2

. (5.64)

This function is plotted in Figure 5.9. For a fixed κ, the membrane velocity decreases

as the surface tension strength increases. The limit of vM as ν →∞ is

lim
ν→∞

vM =
DM√
π

√
2κ

DF /2 +DM
. (5.65)

In this limit the two filaments are tightly bound and resemble a single filament
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Figure 5.9 Analytic membrane velocity as a function of κ, for a two-filament system
at four different surface tension strengths ν. On increasing ν the filaments
become less effective at moving the membrane, with the limiting case ν →∞
effectively a one-filament system , see Eq. (5.65).

(Eq. (5.27)), with diffusion constant DF /2.

Finally, for the case ν = 0 (i.e. where there is no surface tension), the velocity reduces

to

vM =
2
√

2πDM

√
1

DF+DM

tan−1

(
DM√

DF (DF+2DM )

)
+ π

2

√
κ (5.66)

which is proportional to
√
κ, as claimed in Section 5.5.1.

More than two filaments

In the case of more than two filaments, it is difficult to calculate the normalisation

constant A in (5.46) in a closed form. Therefore, to investigate this case, we turn to

numerical evaluation of both the normalising integral and the integrals that appear in

Eq. (5.21) for the membrane velocity. We plot the membrane velocity as a function

of surface tension strength for fixed drift and diffusion rates in Figure 5.10. For

all N = 2, 3, 4, we find that the membrane velocity decreases with surface tension,

asymptotically approaching a constant.

There is a simple physical interpretation of this result. The ratcheting mechanism

means that only a single filament need be in contact with the membrane in order to

force it to move right. By introducing a surface tension, there will always be a force on

the closest filament from its neighbours that pulls it away from the membrane, making

the filament network as a whole less efficient at ratcheting the membrane.
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Figure 5.10 Membrane velocity as a function of surface tension strength ν for up to N =
4 filaments, calculated by numerical integration of the pdf in Eq. (5.46).
While increasing N increases vM , the velocity decreases with ν for all three
systems as they become less effective at moving the membrane.

5.6 Link to diffusion problems in exclusion processes

As a short aside, we make an observation that links the diffusion problems discussed

here, and those encountered before in the context of the TASEP in Chapter 4. If we

return to our bulk ratchet diffusion equation (5.12) and set DM = D1 = · · · = DN =

1/8, the (N ×N) diffusion matrix (Eq. (5.13)) reads

S =
1

8



2 1 1 · · · 1

1 2 1 · · · 1

1 1 2 · · · 1
...

...
...

. . .

1 1 1 2


. (5.67)

What is interesting is that this is the same matrix that characterises the diffusion in

Section 4.6.3, Eq. (4.146), pertaining to the continuum limit generating function for

the sum of TASEP weights raised to the N th power (note a clash in notation: here,

N denotes the power the weights are raised to and not the length of a TASEP). In

other words, the underlying diffusion dynamics are the same for both problems. The

differences between the two are that the TASEP diffusion process is time-dependent

with absorbing boundaries, and the ratchet diffusion is in the steady state, with

reflecting boundaries and a negative drift.
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5.7 Summary

In this chapter we have derived the steady-state distribution of a pure continuum

ratcheting system of N heterogeneous filaments, constricted by a membrane. This

model exhibits ratcheting, whereby a membrane moves at a velocity different to its

inherent drift, solely due to thermal fluctuations and steric interactions between it

and the filaments. This provides a more comprehensive, general formalism than

earlier continuum models [131, 133]. We have shown that the N filament-membrane

displacements evolve by an N -dimensional drift-diffusion process, and derived the

corresponding steady-state differential equation with a set of zero-current boundary

conditions.

We then identified a number of these ratchet systems whereby the second-order

differential equation reduces to a set of first-order equations, which can be directly

integrated. In these systems, the zero-current boundary conditions holds at the bound-

ary (equivalently, when a filament makes contact with the membrane), but also extends

into the bulk of the system. This zero-current condition holds for a variety of systems

including physically relevant cases of fixed filament drift (linear filament-membrane

interaction potentials), quadratic filament-membrane and quadratic filament-filament

interaction potentials.

For these cases, we have found explicit expressions for the probability distribution

of filament displacements (e.g. Eqs. (5.30) and (5.34) for the constant drift case)

and from these one can derive expressions for the membrane velocity. In the case of

an arbitrary number N of heterogeneous filaments, each with its own fixed drift and

diffusion constant, we have obtained in Eq. (5.37) an explicit and transparent expression

for the membrane velocity vM , and in Eq. (5.58) a scaling law for when the filaments are

also attracted to the membrane by a restoring force. Eq. (5.37) reveals, among other

things, how the ratcheting mechanism is enhanced by greater membrane diffusion.

For the case of constant-drift filaments, the probability distribution (Eq. (5.30))

decouples among each of the N filaments. However, a subtlety arises in that it is not

obvious as to whether a collection of filaments will actually form a steady state. A new

filament will only participate if its growth velocity is greater than the prior membrane

velocity. Conversely, one new high-velocity filament can disrupt a pre-existing steady

state, by pulling the system away from other lower velocity filaments. Which filaments

participate is a collective outcome of the set of filaments, and may be determined by

carefully considering the filaments in decreasing order of drift velocity (Figure 5.6).
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For the case of a quadratic interaction potential, all filaments will participate in the

steady state. While it is a challenge to normalise the multivariate normal distribution in

Eq. (5.46) for large N we find in Eq. (5.58) that a harmonic attraction to the membrane

increases the velocity by an amount proportional to the square root of the force constant

κ, to leading order. It is physically intuitive that the velocity would increase as the

attractive force increases, however the specific scaling with
√
κ is less obvious.

Finally, we have introduced a surface tension element between neighbouring filaments,

and shown that vM decreases as a result. Intuitively, a surface tension will always pull

the right-most filament away from the membrane, giving the membrane more space to

freely move left. This suggests that the filament network most efficiently moves the

membrane when each filament moves independently of one another.

An interesting problem that arises from this work is that some particular parameter

combinations have zero probability current in the bulk, and some do not. In these

non-ansatz-satisfying systems, one might expect circulatory — perhaps oscillatory —

flows of probability current in the bulk. A natural progression from the work presented

here would be to further probe these more complex systems, and how the tuning of

these parameters gives rise to additional bulk currents.

This system is exactly solvable and the expressions for the membrane velocity vM

are analytic, for an arbitrary number of filaments. In contrast, the discrete ratchet

system in Figure 5.2 does not admit a separable solution. To more closely resemble

the dynamics of real actin networks, and to extend beyond the pure ratchet model

considered here, it would be desirable to encode some type of direct contact force

between the filaments and membrane beyond hard-core exclusion [167]. The challenge

is that for any non-instantaneous contact (such as tethering filaments to the membrane

[135]), the zero-current boundary conditions no longer hold. More generally, the zero-

current condition is characteristic of a nonequilibrium steady state, that is, one that

is maintained through a constant input and subsequent dissipation of energy and for

which a general theoretical formalism remains elusive [168].
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Chapter 6

Conclusion

In this thesis we have presented and solved several statistical mechanics problems, of

systems that settle into a nonequilibrium steady state. We have solved these problems

by writing them in terms of random walks, and in turn solving those random walks.

The first system we investigated was the asymmetric simple exclusion process. This

paradigmatic nonequilibrium system is very simply posed, but has a surprisingly

intricate steady-state solution which offers a natural extension to random walk

problems. In Chapter 2 we gave a comprehensive discussion of the links between the

steady-state distribution obtained via the matrix product approach, and a more general

family of combinatorial problems. We saw that the state space of the 2N configurations

of particles and holes can be expressed as a partitioning of a set of 1
N+2

(
2N+2
N+1

)
≥ 2N

more abstract mathematical objects, be it dominated paths, bicoloured Motzkin paths

or complete configurations. We observed that these appear to further map to a space

of (N + 1)! ≥ 1
N+2

(
2N+2
N+1

)
≥ 2N number permutations. Many of these mappings and

observations had been scattered in earlier mathematics and physics literature. In this

chapter we brought these mappings together under a unified mathematical structure. In

addition, we introduced a new representation of the TASEP stationary state space, in

terms of dominated paths. We write a TASEP configuration as a path, with a sequence

of up and right steps in accordance with the sequence of particles and holes. Then, we

proved that the weight of that configuration is the number of distinct paths that could

be drawn under its perimeter. Under this mapping it is very clear how combinatorial

numbers such as the Catalan and Narayana sequences emerge. This, combined with

work in the combinatorial literature, allowed us to derive some new results, a highlight

being a novel determinantal expression for the partition function.
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One clear outcome of Chapter 2 was that the nonequilibrium steady-state distribution

of the ASEP could not be fashioned into any sort of equilibrium probability distribution

— that is, exponentially weighted with a temperature-like exponent. This rendered any

conventional statistical mechanics methods ineffectual when calculating measures such

as the Gibbs-Shannon entropy. However, building on what we learned in Chapter 2,

we derived in Chapter 3 the λ = 2 Rényi entropy of the totally asymmetric variant of

the ASEP, the TASEP. The main technical challenge here was an enumeration of 2N

squared TASEP configuration weights. From the ladder operator interpretation of the

matrix product formalism, we expressed this enumeration as a two-dimensional random

walk problem with absorbing boundaries. We solved the generating function (counting

over starting coordinates, final coordinates and walk length) of this two-dimensional

walk. This entailed a generalisation of a mathematical technique known as the obstinate

kernel method, and we solved the generating function by exploiting a symmetry in the

underlying recurrence relation.

The λ = 2 Rényi entropy calculation was quite technical and the final generating

function could not be obviously inverted by hand. We showed in Chapter 4 that the

space and time continuum limit of the 2D random walk was also solvable, by a novel

method that appeared step-by-step to be analogous with the obstinate kernel method of

Chapter 3. The resultant Laplace transform in this case was concise and intuitive, and

further analysis yielded predictions of properties of the TASEP such as phase dynamics

and current, that converged to the physical case within a scaling region where the

three dynamical phases coincided. We discussed how this could be a more analytically

tractable method for the matter of evaluating higher-order Rényi entropies.

In Chapter 5 we investigated another system entirely, in the many-filament continuum

Brownian ratchet. This system comprised a network of stochastically growing

and shrinking filaments and a constricting drift-diffusing membrane. We saw the

phenomenon of the membrane moving in a direction opposite to its natural drift by

a ratcheting mechanism, induced by thermal fluctuations and steric interactions only.

Such a system may be observed in reality, at the leading edge of eukaryotic cells, where

a network of actins grows and shrinks to move and morph the cell membrane. We

modelled the ratchet in the steady state as an N -dimensional Brownian motion with

reflecting boundary conditions, by treating the system as a time evolution of the vector

of N displacements between the membrane and filaments. This diffusion has similar

dynamics to the diffusion we saw when calculating the Rényi entropy of the TASEP in

the continuum limit, except with different boundary conditions. The diffusion problem

here reduced to a set of first-order equations which could be directly integrated, for
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a variety of nontrivial sets of parameters, including couplings between neighbouring

filaments, and the filaments to the membrane, by quadratic potentials.

The work presented here shows that many problems in paradigmatic nonequilibrium

steady states can be expressed in terms of random walk (and more generally,

combinatorial) problems, some of which have been solved here. However, many more

are still to be explored. For example, we showed how the sum of TASEP weights

to arbitrary integer power λ could be formulated as a random walk problem in λ

dimensions (or a λ-dimension diffusion in the continuum limit). These higher-dimension

walks have not been investigated in detail, but would in turn give higher-order Rényi

entropies, and would tell us more about the steady state distribution. More generally,

having defined the TASEP, PASEP and SSEP state spaces as partitionings of larger

state spaces in accordance with certain mathematical constructs, we can write problems

concerning these systems (e.g. Rényi entropies and correlation functions) as well-defined

combinatorial problems. Elsewhere, in the continuum Brownian ratchet problem, we

found a family of parameter combinations where the underlying diffusion problem

reduced to first order. Naturally, our attention turns to the other cases, where the

zero-current boundary conditions do not extend into the bulk of the system and we

can not directly integrate the diffusion equation. This indicates a more complex steady

state, however the work presented here allows us to write the diffusion equation and

reflecting boundary conditions for these more complicated systems. The main challenge

now the matter of solving them. It would be interesting to learn why some ratchet

systems form simple steady states, and the nature of those that do not.

Even more generally, we made the relatively simple observation that for an equilibrium

system, a phase transition corresponds to a pair of discontinuities in the Rényi entropy,

with respect to temperature, or a temperature-like variable. In a nonequilibrium

system, however, each phase transition yields just a single discontinuity. Given a system

with a phase transition, then, knowledge of its probability distribution is alone enough

to determine whether it is in or out of equilibrium, by computing the Rényi entropy.

Obviously, for our case the ASEP is nonequilibrium by construction. However, perhaps

there are systems where one can observe and construct a probability distribution, and

see sharp transitions in macroscopic observables when tuning certain parameters, but

not actually know the underlying mechanics of the system. The Rényi entropy could

at least indicate whether the dynamics are equilibrium or nonequilibrium.
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Appendix A

Demonstration of DE = D + E in

path dominance problem

We saw in Section 2.2.1 that an ASEP configuration C can be uniquely defined by

the set of x or y-coordinates (x0, x1, . . . xP ), (y0, y1, . . . yQ) that its equivalent path T
traces. We now show that the weight of a path W(T ), defined as the number of paths

it dominates, has an equivalent property to the matrix reduction relation in Eq. (1.12),

DE = D + E. This, combined with Eqs. (2.11) and (2.12), would then show that the

weight of the TASEP configuration is the weight of its equivalent path, W(C) =W(T ).

Let us split the path T into T = (T(1), ↑,→, T(2)). From this, we must show

W(T ) =W
(
T(1), ↑, T(2)

)
+W

(
T(1),→, T(2)

)
.

This is Eq. (2.13) (illustrated in Figure 2.4), and is equivalent to the matrix relation

DE = D + E.

If T has a set of y-coordinates (y0, y1, y2, . . . yi−1, yi, yi+1, . . . yQ−1, yQ), Eq. (2.13) is

equivalently

W(y0, y1, y2, . . . yi−1, yi, yi+1, . . . yQ−1, yQ)

=W(y0, y1, y2, . . . yi−1, yi+1, . . . yQ−1, yQ)

+W(y0, y1, y2, . . . yi−1, yi − 1, yi+1 − 1, . . . yQ−1 − 1, yQ − 1) . (A.1)
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We first write W
(
T(1),→, T(2)

)
using the summation formula (2.5)

W
(
T(1),→, T(2)

)
=

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi−1∑
ni=ni−1

yi+1−1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1

(A.2)

and rework this expression so to ‘complete’ each of the ni, ni+1, . . . nQ−1 summations

sequentially:

W
(
T(1),→, T(2)

)
=

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi∑
ni=ni−1

yi+1−1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1

−
y0∑

n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yi+1−1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1


(A.3)

=

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi∑
ni=ni−1

yi+1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1

−
y0∑

n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yi+1−1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1


−

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1

 (A.4)

=

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi∑
ni=ni−1

yi+1∑
ni+1=ni

yi+2∑
ni+2=ni+1

· · ·
yQ−1∑

nQ−1=nQ−2

1

−
y0∑

n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yi+1−1∑
ni+1=ni

yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1


−

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yi+2−1∑
ni+2=ni+1

· · ·
yQ−1−1∑

nQ−1=nQ−2

1


...

−
y0∑

n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

 yQ−1−1∑
nQ−1=nQ−2

1


−

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

(1) . (A.5)
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This nested expression then telescopes down to two sums, which can be identified as

W
(
T(1),→, T(2)

)
=

y0∑
n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi∑
ni=ni−1

yi+1∑
ni+1=ni

yi+2∑
ni+2=ni+1

· · ·
yQ−1∑

nQ−1=nQ−2

1

−
y0∑

n0=0

y1∑
n1=n0

· · ·
yi−1∑

ni−1=ni−2

yi+1∑
ni+1=ni

yi+2∑
ni+2=ni+1

· · ·
yQ−1∑

nQ−1=nQ−2

1

(A.6)

=W (T )−W
(
T(1), ↑, T(2)

)
(A.7)

which is the desired result, Eq. (2.13).
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Appendix B

Details of Q(z;α, β)

B.1 Extraction of coefficients for obtaining R(t; a, a, b, b)

In this section we present the full calculation of extracting coefficients to obtain, from

the recursion relation in Eq. (3.40), a closed-form expression for the generating function

R(t; a, a, b, b), for the number of walks beginning and terminating at points on the

diagonal. We return to Eq. (3.87), which we restate for convenience:

xyR(x, y) + ȳR(x, x̄ȳ)− x̄R(x̄ȳ, y)

=
1√

∆(x)

[
1

1− ȳY−(x)
+

1

1− yȲ+(x)
− 1

][
xy

(1− bx)(1− by)

+
ȳ

(1− bx)(1− bx̄ȳ)
− x̄

(1− bx̄ȳ)(1− by)
+ tR(0, 0)− 2t(1 + x)R(x, 0)

]
.
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B.1.1 y0 coefficient extraction

Extraction of the y0 component is this time more involved. If we take a cross term of

Eq. (3.87) as an example, we obtain the y0 coefficient with an explicit series expansion[
1

1− ȳY−(x)
+

1

1− yȲ+(x)
− 1

] [
xy

(1− bx)(1− by)

]

=
x

1− bx

∑
n≥0

(ȳY−)n +
∑
m≥0

(yȲ+)m − 1

y∑
p≥0

(by)p

 (B.1)

=
x

1− bx
∑
n≥1

∑
p≥0

y1+p−nY n
− b

p +O(y) (B.2)

=
x

1− bx
∑
n≥1

Y n
− b

n−1 +O(y) +O(ȳ) (B.3)

=
xY−(x)

(1− bx)(1− bY−(x))
+O(y) +O(ȳ) . (B.4)

Applying this same method throughout, the y0 component of Eq. (3.87) is

− x̄R(d)(x̄) =
1√

∆(x)

[
tR(0)− 2t(1 + x)R(x) +

2xY−(x)

(1− bx)(1− bY−(x))

− 2bx̄Y−(x)

(1− b2x̄)(1− bY−(x))
− x̄

1− b2x̄

]
(B.5)

where we have further condensed the notation and introduced R(x) ≡ R(x, 0), R(0) ≡
R(0, 0) and

R(d)(x) ≡
∑
N≥0

∑
i≥0

∑
k≥0

∑
l≥0

tNxibk+l〈i|〈i|VN |k〉|l〉 . (B.6)

Considering the explicit form of Y−(x) in Eq. (3.44), one can rearrange the term

Y−(x)

1− bY−(x)
= −1

2

t(2b+ 1 + 2bx+ x2)− x+ x
√

∆(x)

(1 + b)tx2 + (t+ b(bt− 1))x+ b(1 + b)t
(B.7)

whereby the quadratic in the denominator factorises in a way similar to the kernel

(1 + b)tx2 + (t+ b(bt− 1))x+ b(1 + b)t = (1 + b)t(x− bY−(b, t))(x− bY+(b, t)) .

(B.8)
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Using this, the full equation may be rearranged into the form

√
∆+(x̄)

[
−(1− bY−(b)x̄)R(d)(x̄) +

x

(1 + b)t(x− bY+(b))

(
x

1− bx
− bx̄

1− b2x̄

)]
=

1√
∆0∆+(x)

[
(x− bY−(b)) (tR(0)− 2t(1 + x)R(x))

− t(2b+ 1 + 2bx+ x2)− x
(1 + b)t(x− bY+(b))

(
x

1− bx
− bx̄

1− b2x̄

)
− 1− bY−(b)x̄

1− b2x̄

]
(B.9)

where we have also multiplied through by a factor (x− bY−(b)). At this point we note

the impact of introducing the additional factors of b into this calculation. Comparing

Eq. (B.9) to the β = 1 case in Eq. (3.66), we encounter a significantly more involved

expression for this case, which we aim to extract the positive powers of x from.

B.1.2 x+ coefficient extraction

We now find the x+ coefficient from Eq. (B.9). This is algebraically complicated, so we

first split the expression into six terms (suppressing the explicit dependence of (b, t) in

Y+(b, t), Y−(b, t))

(B.9) : T1 + T2 = T3 + T4 + T5 + T6 , (B.10)

T1 = −
√

∆+(x̄)(1− bY−x̄)R(d)(x̄) , (B.11)

T2 =

√
∆+(x̄)

(1 + b)t

x

x− bY+

(
x

1− bx
− bx̄

1− b2x̄

)
, (B.12)

T3 =
1√

∆0∆+(x)
(x− bY−) (tR(0)− 2t(1 + x)R(x)) , (B.13)

T4 = − 1√
∆0∆+(x)

(
t(2b+ 1 + 2bx+ x2)− x

(1 + b)t(x− bY+)

[
x

1− bx

])
,

(B.14)

T5 =
1√

∆0∆+(x)

(
t(2b+ 1 + 2bx+ x2)− x

(1 + b)t(x− bY+)

[
bx̄

1− b2x̄

])
, (B.15)

T6 = − 1√
∆0∆+(x)

1− bY−x̄
1− b2x̄

. (B.16)
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We now extract coefficients term by term. In this we use a number of identities involving

the discriminant, found by considering formal power series, that we quote here:

{
x+
} x̄2√

∆+(x)(1− cx̄)
(B.17)

=
1

1− cx̄

(
x̄2√

∆+(x)
− c̄2√

∆+(c)
− (x̄2 − c̄2)− 1

2
(X− +X+)(x̄− c̄)

)
,

{
x+
} x̄√

∆+(x)(1− cx̄)
=

1

1− cx̄

(
x̄√

∆+(x)
− c̄√

∆+(c)
− (x̄− c̄)

)
(B.18)

{
x+
} 1√

∆+(x)(1− cx̄)
=

1

1− cx̄

(
1√

∆+(x)
− 1√

∆+(c)

)
, (B.19)

{
x+
} x√

∆+(x)(1− cx̄)
=

1

1− cx̄

(
x√

∆+(x)
− c√

∆+(c)

)
, (B.20)

{
x+
} x2√

∆+(x)(1− cx̄)
=

1

1− cx̄

(
x2√

∆+(x)
− c2√

∆+(c)

)
, (B.21)

{
x+
} x√∆+(x̄)

1− cx
=
x
√

∆+(c)

1− cx
. (B.22)

Again, {x+} denotes ‘the positive powers in x within’. Here, c may be any constant

independent of x. Applying these, we now find the {x+} component of each term.

{x+}T1 = 0 , (B.23)

{
x+
}
T2 =

x
√

∆+(b)

t(1 + b)(1− b2Y+)(1− bx)
, (B.24)

{
x+
}
T3 =

(
x− bY−√
∆0∆+(x)

− bY−√
∆0

)
tR(0)−

(
2t(1 + x)(x− bY−)√

∆0∆+(x)

)
R(x) ,

(B.25)
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{
x+
}
T4 = − 1√

∆0(1 + b)(1− b2Y+)t

{[
(2b+ 1)t

(
1

(1− bx)
√

∆+(x)
− 1

)]

+

[
(2bt− 1)x

(1− bx)
√

∆+(x)

]
+

[
tx2

(1− bx)
√

∆+(x)

]
+

[
(2b+ 1)t

1− bY+x̄

(
1√

∆+(x)
− 1√

∆+(bY+)

)]

+

[
2bt− 1

1− bY+x̄

(
x√

∆+(x)
− bY+√

∆+(bY+)

)]
+

[
t

1− bY+x̄

(
x2√

∆+(x)
−

b2Y 2
+√

∆+(bY+)

)]

−

[
(2b+ 1)t

(
1√

∆+(x)
− 1

)]
−

[
(2bt− 1)x√

∆+(x)

]
−

[
tx2√
∆+(x)

]}
, (B.26)

{
x+
}
T5 =

1√
∆0(1 + b)(Y+ − b)t

{
bY+

[
(2b+ 1)t

1− bY+x̄

(
x̄2√

∆+(x)
−

Y 2
−√

∆+(bY+)

− (x̄2 − Y 2
−)− 1

2
(x̄− Y−)(X− +X+)

)
+

2bt− 1

1− bY+x̄

(
x̄√

∆+(x)
− Y−√

∆+(bY+)

− (x̄− Y−)

)
+

t

1− bY+x̄

(
1√

∆+(x)
− 1√

∆+(bY+)

)]
− b2

[
(2b+ 1)t

1− b2x̄

(
x̄2√

∆+(x)

− b̄4√
∆+(b2)

− (x̄2− b̄4)− 1

2
(x̄− b̄2)(X−+X+)

)
+

2bt− 1

1− b2x̄

(
x̄√

∆+(x)
− b̄2√

∆+(b2)

− (x̄− b̄2)

)
+

t

1− b2x̄

(
1√

∆+(x)
− 1√

∆+(b2)

)]}
, (B.27)

{
x+
}
T6 = − 1√

∆0(1− b2x̄)

(
1− bY−x̄√

∆+(x)
− 1− b̄Y−√

∆+(b2)
+ bY−(x̄− b̄2)

)
. (B.28)

With Eqs. (B.23)–(B.28), an explicit expression for R(x) = R(t;x, 0, b, b) is found with

a rearrangement of terms. Using the recursion relation in Eq. (3.41), and putting in an
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explicit form for R(t; a, 0, b, b), we acquire a preliminary expression for R(t; a, a, b, b)

(a− bY−)a2Kaa√
∆0∆+(a)

R(t; a, a, b, b) =
a2(a− bY−)

(1− ab)2
√

∆0∆+(a)
+
bY−tR(t; 0, 0, b, b)√

∆0

+
1√

∆0(1 + b) (1− b2Y+) t

{
a
√

∆0∆+(b)

1− ab
+ (2b+ 1)t

(
1

(1− ab)
√

∆+(a)
− 1

)

+
(2bt− 1)a

(1− ab)
√

∆+(a)
+

ta2

(1− ab)
√

∆+(a)
+

(2b+ 1)t

1− ābY+

(
1√

∆+(a)
− 1√

∆+(bY+)

)

+
(2bt− 1)

1− ābY+

(
a√

∆+(a)
− bY+√

∆+(bY+)

)
+

t

1− ābY+

(
a2√

∆+(a)
− (bY+)2√

∆+(bY+)

)

− (2b+ 1)t

(
1√

∆+(a)
− 1

)
− (2bt− 1)a√

∆+(a)
− ta2√

∆+(a)

}

− bY+√
∆0(1 + b)(Y+ − b)t

{
(2b+ 1)t

1− ābY+

[
ā2√

∆+(a)
−

Y 2
−√

∆+(bY+)
−
(
ā2 − Y 2

−
)

− 1

2
(ā− Y−) (X− +X+)

]
+

(2bt− 1)

1− ābY+

[
ā√

∆+(a)
− Y−√

∆+(bY+)
− (ā− Y−)

]

+
t

1− ābY+

[
1√

∆+(a)
− 1√

∆+(bY+)

]}

+
b2√

∆0(1 + b)(Y+ − b)t

{
(2b+ 1)t

1− āb2

[
ā2√

∆+(a)
− b̄4√

∆+(b2)
−
(
ā2 − b̄4

)
− 1

2

(
ā− b̄2

)
(X− +X+)

]
+

(2bt− 1)

1− āb2

(
ā√

∆+(a)
− b̄2√

∆+(b2)
−
(
ā− b̄2

))

+
t

1− āb2

(
1√

∆+(a)
− 1√

∆+(b2)

)}

+
1√

∆0 (1− āb2)

(
1− ābY−√

∆+(a)
− 1− b̄Y−√

∆+(b2)
+ bY−

(
ā− b̄2

))
. (B.29)

This is highly nested. By using the form of the factorised kernel in Eq. (3.52), however,

with extensive algebra we can rewrite Eq. (B.29) more concisely as

a2b2KābKaaR(t; a, a, b, b)

=
abKaa

(1− ab)2
−
√

∆0∆+(a)∆+(b)(ā− Y−)ab

(1− ab)(b− Y−)

−
√

∆+(a)∆(b)
[
b2 − (1 + 2b− b2)t− (1 + b)2tbY+

]√
∆+(bY+)(1 + b)bKbb

+

√
∆+(a)∆+(b)t(ā− Y−)

(
b2
√

∆0 − t t−(2b+1)
√

∆0

t−
√

∆0

)
bKbb

. (B.30)
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We now use a symmetry property: reversing the start and end points of our six-

path walk does not change the number of paths between them. This is seen in the

TASEP weights as an invariance on exchanging α, β. We then know that R(t; a, a, b, b)

and R(t; b, b, a, a) must be equivalent. Exploiting this, and simplifying a number of

the nested square root expressions by the denesting formula in Eq. (3.75) we make

Eq. (B.30) manifestly symmetric in a, b:

R(t; a, a, b, b)

=
1

(1− ab)2abKāb
−
√

∆+(a)∆+(b)(1 + ab)t2

a3b3KaaKbbKāb
−

√
∆+(a)∆+(b)t

(1− ab)a2b2KaaKbb
√
X−X+

+

√
∆+(a)∆+(b)t

a3b3KaaKbbKāb
√
X−X+

[
(a+ b)t

√
X−X+ + 1√
X−X+ − 1

+
ab

2

(
1 + 2t+

√
1− 4t− 12t2

)]
.

(B.31)

B.2 Residues of Q(z;α, β)

In this section we quote results for the residues of the generating function Q(z;α, β),

which we obtain with a series expansion about the relevant singularity. To begin,

expanding about the pole z0(α) = α2(1 − α)2/(α2 + (1 − α)2) strictly within the low

density phase α < β, α < 1/2 as per Eq. (1.113) (elsewhere, either the generating

function is analytic at z0(α), or the pole is subdominant) we find a residue

g−1 = −
(

1− 2α

1− α

)3/2 β2√
β (α2 + (1− α)2)− α2

×2(1− α)α2(1− α− β) +
(
2α2β + β − αβ − α2 − 1

) (
1 +

√
1− 4(1− α)2α2

)
4
√
α(α− β) [(1− α)α+ (α2 + (1− α)2) (1− β)β] (α2 + (1− α)2)

×
√

2(1− α)2α2 + (1− β)
(√

1− 4(1− α)2α2 − 1
)
×√

2(1− α)2α2 + (1− α)
(√

1− 4(1− α)2α2 − 1
)
. (B.32)
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About the branch point at z1 = 1/8, within the maximal current phase α > 1/2,

β > 1/2 we expand the generating function as per Eq. (1.115) to find the residue

h 3
2

=

[
512
√

2α2β2(1− α− β)2

9 (1 + 2β − 2β2) (1 + 2α− 2α2) ((1− 2α)(1− 2β))7/2

]
× 1√(

112− 64
√

3
)
αβ +

(
60
√

3− 104
)

(α+ β)− 56
√

3 + 97

×
[(

64
√

3− 96
)
α2β2 +

(
28
√

3− 18
)
αβ +

(
36− 20

√
3
) (
α2 + β2

)
+
(

48− 40
√

3
) (
α2β + αβ2

)
+
(

11
√

3− 21
)

(α+ β) + 7
√

3− 12

]
. (B.33)

We quote the factor F (α, β) that we obtain when considering the effective number eH2

(Eq. (3.100)) in the maximal current phase

1

F (α, β)
=

√
(1− 2α)(1− 2β)

3
√

2 (1 + 2α− 2α2) (1 + 2β − 2β2)
× 1√(

112− 64
√

3
)
αβ +

(
60
√

3− 104
)

(α+ β)− 56
√

3 + 97

×
[(

64
√

3− 96
)
α2β2 +

(
28
√

3− 18
)
αβ +

(
36− 20

√
3
) (
α2 + β2

)
+
(

48− 40
√

3
) (
α2β + αβ2

)
+
(

11
√

3− 21
)

(α+ β) + 7
√

3− 12

]
. (B.34)

This function is shown in Figure 3.6.
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