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Abstract 

In the theory of dynamic programming (DP) the elimination of non-optimal ac-

tions is an important topic. For many DP problems the calculation is slow and 

action elimination helps to speed up the calculation. 

A great part of this thesis is dedicated to the development of action elimination 

procedures for various classes of DP problems. Common to all these action elim-

ination procedures is that they are based on local optimality conditions. Among 

the classes of DP problems looked at are deterministic allocation problems and 

stochastic problems with either continuous or discrete state and action spaces. 

For DP problems with continuous state and action space the action elimination 

procedures are based on the Fritz-John first order optimality conditions. For 

problems with discrete state and action space the action elimination procedures 

are based on local optimality conditions for discrete problems. It is shown that 

action elimination based on local optimality conditions usually leads to a speed-up 

of one order of magnitude. 

Chapters 7 and 8 discuss a constrained non-linear oil production optimiza-

tion problem. In this problem most functions involved are continuous but a few 

functions contain discontinuities, which seriously undermines the scope of local 

optimization. A hybrid algorithm combining a dual method, DP and local op-

timization is proposed and computational results are presented. These results 

are then compared to those of another hybrid algorithm, which combines Tabu 

Search and local optimization. 
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Chapter 1 

Introduction 

The study of dynamic programming, as we know it today, started at around 1940 

and a lot of the initial work had been done by Bellman and Wald. Dynamic 

programming (DP) can be viewed as recursive programming since common to 

all dynamic programming optimization problems is a functional optimality equa-

tion which leads to a recursive solution method. In numerous papers Bellman 

identified optimality conditions of optimization problems and through his work 

on functional equations, dynamic programming and the principle of optimality 

became well known. Stochastic sequential decision problems are closely linked to 

stochastic DP. The modern study of stochastic sequential decision problems be-

gan with Wald's work on sequential statistical problems during the Second World 

War. Today the existing theory on DP is vast, especially on stochastic DP which 

is closely related to Markov decision processes. 

Common to all DP formulations are states and actions. Let S be the set of 

states that a system can occupy and let A be the set of actions that can be taken. 

When a system is in state s E S then typically the set of actions that can be taken 

is A 3  C A. Taking action a 3  E A 3  from state s leads to a transition of the system 

to a new state . E S and incurs a reward (or cost) r(s, a3 ). This is the common 

ingredient of DP problems. However, this is not enough information to define an 

optimization problem. Different classes of DP problems extend this framework in 

different ways. For example, in deterministic DP problems 9 is defined by s and 

a3 , i.e. the new state of the system is determined by the old state and by the 

action that has been taken. In stochastic DP problems 9 is stochastic with the 

probability distribution depending on s and a3 . For some problems the number of 

transitions of states is finite, for others it is infinite, again for others the number 

of transitions is finite with probability one. Also the objective function varies 

depending on the problem. 

For many deterministic, finite horizon (i.e. finite number of transitions of 
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states) DP problems the objective can be written as 

maximize E r(s, a) + R(s)  

where so  is a given initial state, a i  e A 8 , n is the number of transitions, si+1  = 
a) and R(s) is a terminal reward. The maximization in (1.1) takes place 

over Let's assume that the objects S, A 8 , r and R are such that the 

maximum in 1.1 exists. 

For many stochastic, finite horizon DP problems the objective can be formu-

lated as 

	

maximize 
E( 	

r(s, a) + R(s)) 	 (1.2) 

where now 5i+1  is a random variable with the distribution depending on si  and 

on ai  E A3 . The maximization in (1.2) takes place over all policies of choosing 

actions, which means that maximization takes place over all functions 'it such that 

ai  = 'ir(i, s 2 ). 'it determines which action is taken when in the i-th decision period 

the state occupied by the system is s. 
For many stochastic, infinite horizon DP problems the objective can be written 

as 
00 

	

maximize 	
(
E air(si ,ai )) 

where 0 < c < 1 is a discount factor. To ensure convergence, assume that the 

function r is bounded. 

A lot of problems can be written in one of the forms (1.1), (1.2), (1.3) or in 

one of these forms when they are slightly changed. The DP optimality condition 

to (1.1) consists of a value function 

Fo (s) := 

Fj (s) := max { 
	

r(s, a) + R(s) : sj = 	for j > 1 
{a}_ 

and then establishing the functional equation 

Fj (s) = max {r(s, a) + F3 _ 1 (9(s, a))}. 
aEA 3  

(1.4) 

Then the optimal objective value of (1.1) is F(s o ) and can be calculated recur-

sively using (1.4). Having found F(so ) the optimal path of states and actions of 

problem (1.1) are found as follows: s 1  and a0  are the state and action for which 

F. (so ) = r(s o , ao ) + Fn- 1 (s 1 ), 

(1.3) 
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where a0  E A 30  and s 1  = (so , ao ). Similarly 82 and a1  are the state and action 

for which 

F_1  (s 1 ) = r(si , ai ) + F. -2 (S2), 

where a 1  e A 81  and s2  = ( s i ,a i ). And so on 

For the objective (1.2) of a stochastic, finite horizon problem the value function 

is 

Fo (s) 	R(s), 

(s) := max {E 	r(s, a) + R(s) sn_i = S for j > 1 
i=n—i 

where ir is a policy of choosing actions, which means that ir is a function and 

ai  = 7r(i, s). The maximization in the above definition takes place over the set of 

policies. The functional equation is 

F3 (s) = max{r(s,a)+1EF3 _ 1 ((s,a))} 
aEA 3  

where .(s, a) is a random variable now. The argument a, which achieves the 

maximum in the RHS, defines (j, s) where i is an optimal policy. 

For the objective (1.3) of a stochastic DP problem with infinite horizon the 

value function and functional equation are 

00 

	

F(s) 	max {E (Oz ir(si , ai ) 8 0  = 

F(s) = max {r(s, a) + aEF(.(s, a))}. 
aEA 3  

For many DP problems the state space S can be partitioned into subsets S 0 , Si, 
S2 ,... such that when s E Si (for some i > 0) and any action a E A 8  is taken then 

the system next occupies a state . satisfying 9 E In such case the problem 

has decision periods or stages. 

For many DP problems the difficulty is identifying suitable states, actions 

and stages. The next section discusses two introductory examples, the first one 

is straightforward, the second one has some entertainment value and shows the 

difficulty of finding states, actions and stages. 

1.1 Two introductory examples 

1.1.1 Shortest path problem 

Consider the shortest path problem of getting from node 7 to node 0 in the acyclic 

graph of Figure 1.1 where traversing each arc has a specific cost. A suitable 
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stage 0 	stage 1 	 stage 2 	 stage 3 

Figure 1.1: A shortest path problem 

definition of state is 

state i : getting from node i to node 0. 

This means every node is associated with a state. A suitable definition of a value 

function would be 

the cost of the cheapest way from node i to 0 

A suitable definition of action to be taken from state i is 

A(i) := next node to be visited from node i on a cheapest route. 

The states of this problem can be partitioned into stages. State 0 is the only 

state of stage 0, states 1,2,3 belong to stage 1, states 4,5,6 belong to stage 2 and 

state 7 is the only state of stage 3. The DP optimality equation can be written 

as 

F(i) = min f (cost of going from node i to j) + F(j) : state j belongs to } 
the stage one before that which state i belongs to 

In words: the optimal route from node i to 0 consists always of a first arc traversal 

towards node 0 and then to carry on from there on the cheapest possible route to 

0. The DP calculation is straightforward, F(0) = 0 and having calculated F for 

all states of stage k the recursion yields F for all states of stage k + 1. It turns out 

that F(7)=8 which means that the cheapest route has cost 8. The optimal path 

can be obtained by working the optimal actions backwards starting from state 7. 

If the problem is of the same shape but larger, with stages 0, 1, 2, ..., m, m ± 1 

and with n nodes in each of stages 1, 2, ..., m, and if every node is connected to 

every node of the neighbouring stage, then there are nm  different paths from one 

end of the network to the other end. The work involved in the DP calculation is 

0(mn 2 ), i.e. a lot less than total enumeration when m and n are large. 



S  
5 I 

Figure 1.2: A spinning wheel game 

1.1.2 A spinning wheel problem 

Consider the game, illustrated in Figure 1.2, where a spinning wheel has as pos-

sible outcomes the decimal digits 0,1,2,.. .,9. All possible outcomes have equal 

probability. The wheel is spun four times and after each spin a player has to put 

the outcome digit into one of the four boxes. The aim is to have a large four 

digit number at the end. What is the best strategy for placing the digits? For 

example, if the first spin returns a 9 the player would (if he or she is sensible) 

place it into the first box from the left. If at any time a spin returns a 0 the player 

would place it into the last box which is still free. But what should be done if 

the first or second spin returns a 6 or 7? 

Two DP approaches to this problem will be discussed. The first approach is 

easier to perceive but less elegant than the second one. A good objective in this 

game is to achieve a high expectation of the final four digit number. In the first 

approach let's identify a state as 

(pl,p2,p3,p4) 

where each of p1 , P2, P3, P4 corresponds to one of the objects 0, 0, 1, 2, 3, 4, 5, 

6, 7, 8, 9. A state (p1,p2,p3,p4) is interpreted as the four places being presently 

filled in with Pi, P2, p3 , p4  from left to right. If p i  = 0 then place i contains no 

digit and is free. The states can be grouped into stages, stage j being the set of 

those states (p1,p2,p3,p4)  such that exactly j of Pi, P2, P3, P4 are equal to the 

object 0, i.e. those states which have exactly j free places left. A suitable value 

function is 

F(p1 ,p2,p3,p4) := expectation of the four digit number at the end 

given that the game starts with the places being P1,P2,P3,P4 

and given that an optimal placing-strategy is applied. 
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Let r be the random variable of the result of a spin. The DP optimality equation 

can be written as 

F (pi, P2, P3, p) = E 
( 

max 
{ 

F(r, P2, P3, p4)I[p1 = D], F (P1,  r, p, P4)' 2 = 01, 

F(pi ,p2 ,r,p4 )I 3  = 0], F(pi) p2 ,p3 ,r)I[p4  =  E:]] ~ ) 
where I[. .] is the indicator function taking value 1 if the argument is true and 

o otherwise. For states of stage 0 the value of F is simply the number 1000Pi 

+100P2  +10P3 +4. Knowing F for all states of stage j the value of F can be 

calculated for all states of stage j + 1 using the above recursion. F(0, 0, 0, 0) 

is the maximal expectation of the four digit number in the spinning wheel game 

when using an optimal strategy. Doing this DP calculation an optimal placing 

strategy can be discovered. There are 114  states and probably nobody would like 

to do this DP calculation by hand. 

Another DP approach, which allows a solution by hand, is the following: First 

of all observe that each place can be given a value. The first place has value 10 3 , 

the second one has value 102,  the third one has value 101  and the last has value 

1. Let a state be identified by 

(i,A 1 ,...,A) 

where i = 1,2,3,4 and A 1 , ..., A i  are values of free places with A 1 , ..., A i  arranged 

in decreasing order. For instance, the state (3, A 1 , A 2 , A 3 ) corresponds to there 

being three free places with values A 1 , A 2 , A 3 . Let the value functions be 

A) := maximal expectation of the end number when 

a spinning wheel game is played, there are i free places 

and the values of the places are A 1 , ..., A. 

The DP optimality equation is 

A) = E
( 

max {rA + F_1 (B 1 , .., B_i) : Bk = Ak  for  k <j, 
3E {1,..,i} 

Bk = Ak +1 for k > 

where r is the random variable of the result of a spin. Let's outline the DP 

calculation. 

F, (A,) = JE(rA i ) = 4.5A 1  

because if there is one free place only then there is no choice but to place the 

first spin in this free place and the expectation of a spin is 4.5. Now consider a 
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state (2, A 1 , A 2 ). By assumption A 1  > A 2 . If r is placed in the first place then 

the expectation of the end number is 

rA 1  + F1(A2) (= rA + 4.5A 2 ). 

If r is placed in the second place then the expectation of the end number is 

F1 (A 1 ) + rA2 (= 4.5A + rA 2 ). 

Therefore it is optimal to place r in the first place if r > 4.5 and in the second 

place if r < 4.5. Then 

F2  (A,, A 2 ) = JE (F1  (A,)+ rA 2  Ir < 4) P(r < 4) 

+JE(rAi  H-F1 (A 2 ) Ir > 5)P(r > 5) 

= (4.5A 1  +2A2) + (7A 1  +4.5A2 ) 

= 

By looking at the last line one can identify the optimal strategy of placing a spin 

when three free places are left: If r, the result of a spin, is greater than f (Z. e. if 

r = 6,7,8,9) it is placed in the first free place, if 	> r >(i.e. if r = 4,5) it 4 4
is placed in the second free place and otherwise it is placed in the last free place. 

Calculating F3  (A,, A 2 , A 3 ) in a similar way as F2  (A,, A 2 ) has been calculated, 

one finds 

F3  (A,, A 2 , A 3 ) 
= 129 

--A 1  + 
9 

A 2  + 
51 

 
20 	2 	20 

From this, one can read off the optimal strategy for where to place the first spin 

in the spinning wheel game with four free places: if r = 7, 8, 9 (i.e. r > J) it is 

put in the first, if r = 5,6 (i.e. 4J > r > ) it is put in the second, if r = 3,4 

(i.e. > r >) it is put in the third and if r = 0,1,2 (i.e. > r) it is put in20 2 	20

the last place. One finds 

F4  (A,, A2,A3,A4) 
= 200 

1383 
A 1  + 

200 
1057 

A 2  + 
743 

A 3  + 
417 

A4. 
200 	200 

With A 1  = iO3 , A 2  = 102 ,  A 3  = 10, A 4  = 1 the expectation of the four digit 

number under an optimal strategy in the spinning wheel game turns out to be 

7482.735. If the outcomes of the spins were placed at random then the expected 

value of the four digit number would be 4999.5. 



1.2 Motivation for action elimination based on 
local optimality conditions 

The first half of the thesis develops action elimination procedures based on local 

optimality conditions for various classes of DP problems. In this section the 

motivation for this is given and difficulties of the implementation are outlined. 

Consider the allocation problem 

maximize 	>fj(xi) 	 (1.5) 

subject to 	xi  = i-i, 	 (1.6) 

xEZ, x2 >O for all i 	 (1.7) 

where ii E Jf\T and f, are functions X -+ R. These problems can be done with 

DP when the states are (j, k) with j, k E X , 1 <j <r and 0 < k <n. The state 

(j, k) is the state of allocating k units of the resource among the first j functions 

f. The value function and the optimality conditions are 

F(k) := max ff(x) : 	= k, x e , 0 <x Vi  
{}=1 	j=1 	 i=1 

F(k) = rnax{fi (xi)+Fi_ i (k_xi) :xE, o<x<k}. 	(1.9) 
Xj  

The DP calculation initialises F, (k) = f, (k) and having calculated F3 _ 1  (k) for 

all relevant k for some j, it calculates F3 (k) using (1.9). Assume without loss of 

generality (WLOG) that f(x) ~: 0 for all i when x2  > 0, let M be an upper 

bound on f(x) for all i when x2  > 0 and assume (WLOG) that f(—l) = —rM 

for all i. Let (±, ±2, .., ±) be an optimal allocation for this problem. A necessary 

optimality condition is 

min max{f(±) - ft (± - 1), f(± + 1) - ft (±01 	(1.10) 
1<i<r 

> max min{f(±) - f(± - 1), f(± + 1)  
- 1<i<r 

This will be derived in a more general form in chapter 5. Condition (1.10) is 

related to the Kuhn-Tucker conditions for a continuous problem of the form 

(1.5),(1.6) with differentiable functions f. This can be seen by replacing all 

occurrences of "1" by Sx in (1.10) and dividing the whole inequality by ox. 

min max { fj(j) - f(±, - Ox) 	f2(± + Ox) 
- f(±2) 

} 

 
1<1<r 	 Ox 

max min  { fj(j) - f(± - Ox) 	f(±t + Ox) 
- f(±) 

} 

 
1<i<r 	 Ox  



In the limit as ox - 0 this inequality reduces to 

• {dfj} 

> 	Idf, 	

} 

mm - 	 - max 
1<i<r dx 	 1<i<r dx 

	

from which it follows that 	= A for all 1 < i < r for some A, which are 

the Kuhn-Tucker conditions for a continuous problem of the form (1.5),(1.6) with 

differentiable functions f. 
Going back to the discrete problem (1.5)-(1.7), it will be shown in chapter 5 

that if condition (1.10) is not satisfied then there exist indices j and k such that 

i ~ k and 

f( + 1) 
- f() > fk(Xk) - fk(±k - 1). 

Then the point (xi, x, .., x) with 

= 

I 

	

Xk
* 
	Xk - 1, 

= 	for all i =A j, i 54 k 

is feasible and has a higher objective than (ii, , ..., ) since 

r 

	

= 	

= 

	

f(x) = 	f(xfl +f(x)+fk(x) 
i=1 	 i54j,ii4k 

	

= 	fj) + f j ) + (f(x) 
- fj)) 

i54j,i54k 

+fk(k) + (fk(x) - fk(ik)) 

	

= 	fi(i) +(f(+1)—f()) 

- (fk(k) - fk(k -1 )) 

SO (x 1 , X2 , Xr) is not locally optimal. Notice that the definition of F3 (k) in (1.8) 

is itself an optimization problem of the form (1.5)-(1.7). Hence an optimality 

condition similar to (1.10) must hold for the optimal arguments achieving the 

maximum in the RHS of (1.8). When F(k) is calculated using recursion (1.9), 

k + 1 possible values for x j  must be checked. In this thesis it will be shown how 

to use optimality conditions of the form (1.10) in order to determine F3 (k) with 

fewer than k + 1 checks for different values of x3. 



If the domain of x i  in problem (1.5),(1.6) is continuous instead of discrete 

and if the functions f2 are differentiable is it possible to use first order optimality 

conditions to speed up the DP process? If on top of that the constraint (1.6) is 

replaced by 

= q 

where w i  are differentiable functions, is it still possible to exploit first order opti-

mality conditions? How about the case when x 2  e 1R with ni  e iN (instead of 

X i  E JR) and q e R', w i  e Mm?  Do there exist certain classes of stochastic DP 

problems for which first order optimality conditions can be exploited? 

All of these questions have a positive answer and they are discussed in the 

first half of this thesis. For a lot of classes of DP problems the complexity and 

the computational time of DP can be reduced by one order of magnitude by 

exploiting first order optimality conditions to eliminate actions. 

1.3 Statement of the Fritz-John conditions 

A central topic in this thesis is the action elimination in DP based on first order 

optimality conditions. The Fritz-John first order optimality conditions will be 

used frequently and therefore these conditions should be stated. In the problem 

	

maximize 	1(x) 

	

subject to 	u(x) < 0 	for i = 1, 2, .., k 

c(x)=0 	for i= 1,2,..,m 

let x e JR and let the functions f, u, c i  be differentiable functions 1Rl 	P. If 

i is a local optimum then there exist dual multipliers A E JRk+rn  and A 0  E 101 11 
such that 

k 	 m 

	

A 0Vf() = 	AVu(i) + 

	

Ai  > 0 	forik, 

	

Aju(ri) = 0 	for i <k. 

When A0  = 1 these conditions are also called Kuhn-Tucker conditions. If the 

gradients Vu() of active inequality constraints (i.e. for which u() = 0) and the 

gradients of the equality constraints Vc i (±), .., V m (i) are linearly independent 

then the Fritz-John conditions always hold with A 0  = 1, i. e. they hold as Kuhn-

Tucker conditions. The conditions Au(±) = 0 for i < k are called complementary 

slackness conditions. 
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These first order optimality conditions are widely used in optimization theory. 

A derivation and discussion of these conditions can be found in [7] and [10]. 

1.4 Motivations for this thesis 

This Ph.D started with the task of efficiently solving gaslift allocation problems 

which arise in the oil production industry. The problems looked at had the 

following two forms: 

max E fh(xh) 
	

(1.11) 

subject to >Xh < 41 , 	 (1.12) 

where Xh E IR, Xh > 0, fh : JR—* JR for h = 1,...,r, and 

or (1.11), (1.12) and the additional constraint 

>Chfh(Xh) 
	

(1.13) 

where the Ch are constants. fh(xh) is the oil rate flowing out of well h when the 

injection rate of gas into that well is Xh. (1.11) is the objective function and 

(1.12) is the constraint describing the limit on the available total injection gas 

rate. Usually, the fluid flowing out of a well does not only consist of oil but also of 

waste (like water, sulphur ...) which has to be separated from the oil and disposed 

of. Often the waste is proportional to the oil with the proportionality constant 

depending on the well. (1.13) is a constraint expressing the waste separation 

capacity. Usually the functions fh  have a discontinuity. (A typical shape for these 

functions is given in Figure 2.1.) Due to the discontinuities local optimization 

techniques are not suitable for problems of the form (1.11), (1.12) and in particular 

for problems which also include (1.13) as a constraint. 

These gaslift allocation problems can be solved by DP (which will be shown 

in chapter 2). The study of methods to speed up the DP calculation of gaslift 

allocation problems lead to action elimination based on first order optimality 

conditions. 

Then it was realised that this kind of action elimination is more general and 

it was applied to other classes of DP-problems. (Chapters 5 and 6.) 

In the optimization of oil production networks problems of the form (1.11), 

(1.12), (1.13) are only subproblems. In the last part of the Ph.D a more compli-

cated oil production problem was looked at. This problem also considers com-

pressors, flow through pipes and the associated pressure drop in addition to the 
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gaslift allocation. The problem was modelled and a solution procedure for it was 

developed. 

1.5 Outline of the following chapters 

Chapter 2 introduces the basic idea of how to use first order optimality condi-

tions as the basis for action elimination. The class of problems considered are 

deterministic allocation problems. Most important in chapter 2 are the sections 

2.2, 2.3 and 2.4. 

Chapter 3 discusses discretisation issues in combination with FJ action elim-

ination. Section 3.1 presents a discretisation scheme which works well in combi-

nation with FJ action elimination and gives good results for allocation problems 

with a large number of possible allocation destinations. Section 3.2 shows how 

FJ action elimination can be applied with interpolation DP methods. 

Chapter 4 shows difficulties of applying FJ action elimination to problems 

with multi dimensional state and action spaces such that it results in a speed-up 

of the DP. Various techniques are discussed to overcome these difficulties. 

Chapter 5 looks at deterministic discrete allocation problems. For a class of 

discrete allocation problems with linear constraints necessary optimality condi-

tions are derived. These optimality conditions are taken as the basis for action 

elimination. 

Chapter 6 discusses certain types of stochastic DP problems which allow action 

elimination based on first order optimality conditions. 

Chapters 2-6 are closely related, they all have in common the action elimi-

nation based on local optimality conditions. Chapter 7 and 8 do not relate to 

the previous chapters except that a subproblem in an algorithm in chapter 8 is 

solved by DP with FJ action elimination and variable grid discretisation scheme 

(chapter 3). 

Chapter 7 discusses a dual algorithm in a framework such that the results 

of this chapter can be applied to an industrial problem in chapter 8. Chapter 8 

deals with an oil production problem with some functions involved having discon-

tinuities, which seriously undermine the scope of local optimization. An approach 

combining the dual algorithm of chapter 7 with local optimization is tried in order 

to overcome the difficulties posed by the discontinuous functions. 
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Chapter 2 

Fritz-John action elimination 

2.1 Introduction 

Dynamic programming (DP) can be applied to find a global optimum of a wide 

range of problems, but for many potential applications it is too slow to be of 

practical use. This chapter introduces a new action elimination method for a 

class of problems with differentiable objective and constraint functions. The 

action elimination can reduce the work in the inner computational loop of the 

DP method and is based on the Fritz-John conditions. 

This chapter deals with separable optimization problems of the following form. 

max 	 fh(xh) 	 (2.1) 

subject to 	wh(xh) = 	, 	 ( 2.2) 

where Xh E ]R?111, fh : ]RT 	JR, Wh : IR7'h -* 1R for h = 1, ..., r, and 4 e ]R 

The problem divides into r stages. The variables are partitioned among the 

stages, and the objective function and each of the constraint functions is a sum 

of functions each of which depend only on variables from one stage. Each stage's 

contribution to the objective and to the constraints is therefore independent of 

the variables of the other stages. 

Many allocation problems have the form given by (2.1) and (2.2). For example, 

in gaslift allocation problems in oil production optimization Xh is the rate of 

gaslift to well h, fh(xh) is the oil production rate of well h (depending on the 

gaslift rate xh)  so the objective function (2.1) is the total oil production rate. 

The constraints (2.2) certainly include the gaslift availability constraint of the 

form Eh Xh = G where G is the total rate of gaslift, sometimes they include 

a water handling capacity constraint and other constraints. Nishikiori et al [12] 
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give a full description of such problems. Note that in [12] an optimization method 

is applied which only leads to a local optimum whereas dynamic programming 

would lead to a global optimum. 

The problem (2.1) and (2.2) has a natural formulation as a dynamic program-

ming problem. To derive this formulation first define 

Qi =  { q E m: Xh E nh for 1 < h i such that 	Wh(Xh) =q 

h=1 	 I 
which is the set of values for q for which the constraint (2.4) is feasible, then 

define the value function F for all i, 1 < < r and q E Q, by 

Problem P2 (q): 

F(q) 	max >fh(xh) 	 (2.3) 
Xl,X2,..,Xj 

subject to 	wh(xh) = q, 	 (2.4) 

and for q 0 Qi  define F(q) := -Do. F(q) is the optimal value for a subproblem 

with i stages and constraint right hand side q. Note that every subproblem is 

of the same structure as the original problem given in (2.1), (2.2) . With this 

notation, the optimal value of the original problem is Fr (). Furthermore, there 

is a bijective relation between states (q, i) and subproblems P(q). In DP the 

vector x2  is called the action at stage i. For i > 1, problem (2.3) and (2.4) can 

be rewritten as 

F(q) max 	{f(x) 	max I 	fh(xh) : 	Wh(Xh) = q - w(x)} 
x t 	 X1'---'Xi-1 	

h=1 	 h=1 

q - w(x) E 

which yields the DP optimality equation 

F(q) = max {f(x 2) + F_ 1  (q - w(x)) x 2  E JR'} 
	

(2.5) 
Xi 

Note that the above recursion holds not only for q E Q2 but also for q V Q. The 

reason for this is that F(q) = -oo for q V Q2 by definition and 

q V Q 	(q- w(x)) Q-i Vxi E JR7' 

A computational scheme for the problem would involve first finding the function 

F1  and then using the DP recurrence (2.5) to calculate F2  for stages i = 2, ..., r 
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using the previously calculated values of F2 _ 1 . By using the definition of Qi  and 
of F1  (q) it is found that 

Fi (q) = - 00 if wi (x i ) 54 q VXi E 1R 1 , 

F, (q) = max {f 1 (x 1 ) : w 1 (x 1 ) = q} if 3x i  E 1/?" with w 1 (x i ) = q. 
xj EJR' 

Except for problems with very special structure the functions F2  cannot be 

found exactly and so must be approximated. The most common approach is to 

replace the continuum of values for q by a finite number of discrete values and 

also to replace each continuous optimization problem for the optimal action xh 

at stage h, by a search over a finite number of discrete values. This approach has 

the advantage of being able to find an approximate global optimum for problems 

where the functions fh  and 'Wh are arbitrary piecewis& smooth functions, how-

ever except for problems where m and all the nh are small it is computationally 
intractable. 

Historically, Bellman's book [1] was the origin for the research area of dynamic 

programming as we know it today. Gilmore and Gomory [9] were the first to use 

action elimination for the labelling (or reaching) method, which will be described 

in section 2.3, by exploiting special structure in knapsack models. The action 

space in such models is discrete. Lagrange multipliers have been known for two 

centuries, but they were used only for continuous problems in the beginning. 

Everett [5] suggested their use for problems with integer variables and Fox and 

Landi [8] used them in dynamic programming. Most of their examples are discrete 

and the conjunction with Fritz John conditions or the corresponding optimality 

conditions in the theory of subdifferentials are not given. 

In the next two sections problems are considered in which the functions fh 

and 'Wh are differentiable. A new method is presented that uses the Fritz-John 

(FJ) optimality conditions for action elimination, i.e. to reduce the number of 
actions x 2  which have to be examined in the maximization step (2.5) at each 

stage. Thereafter, the theory will be extended and the new algorithm modified to 

allow general functions fh  and wh.  For suitable problems this action elimination 

method reduces the solution time significantly. The complexity of DP is reduced 

by at least one order of magnitude, with the precise reduction depending on the 

structure of the specific problem. This chapter provides a general introduction 

to this new method. There are many possible ways of implementing the method 

and details are given of the implementation of a few example problems. For some 

of these a comparison of solution times for DP with and without the FJ action 

elimination is given. 
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2.2 General Theory of the FJ Action Elimina-
tion 

In this section the FJ conditions are stated for problem (2.1) and (2.2) in the 

case when all the functions are differentiable, and it is shown how to use the FJ 

conditions for action elimination in DP. 

Let Ao E JR and A e JRtm be the multipliers associated with the objective 

function and constraints of problem (2.3) and (2.4). Further let Vfh  be the 

h x 1 gradient matrix of fh  and VWh denote the m X nh Jacobian matrix of wh. 

The Fritz-John (FJ) conditions for problem (2.3) and (2.4) are 

Ao(Vfh(xh))T = A T Vw h (x h ), for h = 1, ..., i, 	 (2.6) 
2 

Wh(Xh) = q, 	 (2.7) 
h=1 

A 0  = 0 or A 0  = 1, 	 (2.8) 

N, A) =A 0 	 (2.9) 

The FJ conditions are necessary conditions for local optimality. If A 0  = 1 they 

become the Kuhn-Tucker (KT) conditions, which hold at any optimal solution 

at which the constraint gradients are linearly independent. (See [7], chapter 9 or 

[10] Chapter 4.) 

For given state (q, i) and vector of actions x i  where 	 = (X T 
x?' , x', ..., 

let B(q, x) be the set of all vectors (A 0 , A) with Ao E IR, A E 1R'T such that 

(A 0 , A) and x 2  satisfy the FJ-conditions (2.6)-(2.9). Let x_ 1  be like x 2  except 

that the last component is missing, i.e. xi 1  = (XT , xi'. . . xi 1 ). Now notice that 

for i > 2 the set of properties in (2.6)-(2.9) defining the set B_ 1  (q - w(x), x 2 _ 1 ) 

is fully contained in the set of properties defining B(q, x i ). Furthermore the 

properties which are amongst those defining B2  (q, x) but not amongst those 

defining B 2 _ 1  (q - w(x), x_ 1 ) are 

A0(Vf(x2))T = ,\ TVw.(x) 
	

(2.10) 

Define N(x) by 

N(x) 	{(A 0 , A) A 0  e 10, 11, A E IRtm, (2.10)is satisfied} 

With this definition and the previous observations, it follows that for i > 2 

B2  (q, x) = B_ 1  (q - w(x 2 ), x_ 1 ) fl N(x) 
	

(2.11) 

In the proposed algorithm the above equation will be used to define (A 0 , A) sets 

for states recursively. 
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2.3 Action elimination using the Fritz-John con-
ditions 

The most common way to implement dynamic programming is generally known 

as recursive fixing [3], [4]. This is illustrated by the program below which shows 

the step of going from stage i - 1 to stage i for i > 2. Let A(q) denote the 

optimal action for state (q, i). 

for all qe JRtm do 

F(q) := -00 

for all xi e Ri do 

if F(q) < F2 _ 1  (q - w(x)) + f(x 2 ) then 

F(q) := F 1 (q - w(x)) + f(x) 

A i  (q):=xi  

end if 

end do x 

end do q 

The outer loop cycles over all states at stage i and the inner loop finds the optimal 

action for the current state being considered in the outer loop. 

The following alternative implementation is generally referred to as reaching or 

the labelling procedure (See [3], [4]). 

for all q E JR set F2 (q) 	-00 

for all q E jRtm do 

for all xi E 1R do 

if F(q+w(x)) <F2 _ i (q) + f(x) then 

F(q+w(x)) = F 1 (q) + f(x) 

A(q+w(x)): = x i  

end if 

end do x2  

end do q 

In the recursive fixing method the outer loop fixes a state (q, i) of stage i and 

the inner loop is used to determine F(q). In the labelling method the outer loop 

fixes a state (q, Z' -   1) of stage i - 1 and the inner loop does all comparisons of the 

dynamic programming calculation, in which F_1  (q) is involved. The difference 

between the two methods is that the nested loops are swapped. 
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When F_i (q) = — oc then all the DP comparisons of the form 

F(q + w(x)) <F2_ i (q) + f(x) 

are superfluous. This observation can be exploited within the labelling method 

to reduce computation. The second line of the above procedure can simply be 

replaced with: 

for all q c JRtm for which F_ 1 (q) > -00 do 

In the future this modification will always be implemented where it is appropriate. 

Since the state space in this description is infinite, the above loops are actually 

infinite loops. In practice a discretisation has to be introduced to make the sets 

of states and actions finite. 

It is now shown how the action elimination takes place. The new algorithm 

will employ a function of states B(q) defined by 

B(q) = B(q, ), 

where ii  is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B(q). By combining (2.11) and (2.10) we can 

replace (2.5) with 

F(q) = max {f(x) + F_ i (q - w(x)) : 3(A 0 , A) E B_ 1  (q - w(x)) 
sJR 

such that (A O , A), xi  satisfy (2.10)1 (2.12) 

Replacing (2.5) with (2.12) is the essence of the action elimination! 

In order to implement (2.12) efficiently the labelling procedure is used for 

going from stage Z' -   1 to stage i (for i > 2), as shown in the following procedure. 

Procedure 2.3.1 

for all q E JRtm set F2 (q) := - oo  

for all q E JRtm for which F 1 (q) > —cc do 

for all x e 1R' for which El (A O , A) e B i (q) 

such that (A O , A), x i  satisfy (2.10) do 

if F(q + w(x)) < F. 1 (q) + f(x) then 

F(q + w(x)) := F 1 (q) + f(x) 

A(q+w(x)) :=x 

B2  (q + w(x)) := B 1 (q) fl N(x) 

end if 

end do x 

end do q 

IL;' 



Note that for the FJ action elimination to be efficient there must be a quick way 

to identify those xi E 1RT 1  which satisfy (2.10) for any given (A 0 , A) e B_ i (q). 

If the amount of work required to do that is not less than running through all 

x i  E JRT , then the FJ action elimination is not useful. 

Next, it will be explained why in the action elimination process it is sufficient 

to choose B(q) = B(q,) where xiii  is any optimal vector for subproblem (q,i). 

Suppose that iii is an optimal vector for subproblem (q, i) and is given by 	= 

(if, 	, . . . , fl. Further suppose that ii is an optimal vector to the (original 

whole) problem (2.1) and (2.2) and is given by xT =. . . , ) and its 

optimal path passes through state (q, i). Then by the DP-optimality equation 

the vector x given by 

is also optimal for the (original whole) problem (2.1) and (2.2). But the action 

elimination process with B(q) = B(q, x) does cover the actions necessary to 

discover x as an optimal vector for problem (2.1) and (2.2). Hence result. 

2.4 Extension to general functions 

In this section the method of the previous section is extended to allow general 

functions fh, Wh and to allow Xh to be defined over a general set. When Dh is a 

set then let the boundary of Dh be denoted by aDh. 

Theorem 2.4.1 Consider the problem (2.1) and (2.2) with the additional con-

straints that xh e Dh for all h where Dh C 1J?Ih,  and let ui be a global solution to 

the problem where iiT = . . . ,). Let I be the set of indices such that for 

h E I, fh  and wh are differentiable at h  and 1h  0 DDh . Then there exists (A 0 , A) 

such that 

Ao(Vfh(ih))T = ATV wh ( h ) for all h E I, 	(2.13) 

A 0 e{0,1} , A1Rm, (A 0 ,A)0. 

Proof: 

Define 

q* :=q->wh(xh) 
hI 

Then consider the problem 

max 	fh(xh) 
	

(2.14) 
hEl 
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subject to 	Wh(Xh) 
= q* 	 (2.15) 

hEl 

Xh e Dh Vh e I. 	 (2.16) 

This problem is solved by Xh = Xh for h E I since ii solves (2.1),(2.2) with the 

additional constraint that Xh E Dh Vh. Therefore the point Xh = Xh for h e I is 

a local solution. Furthermore, Wh and fh  are differentiable at Xh = Xh for h e I. 

Since (2.14)-(2.16) are of the same form as (2.1)-(2.2) there exists (Ao,  A) such 

that the FJ-conditions (2.6)-(2.9) applied to problem (2.14)-(2.16) are fulfilled 

when Xh = Xh for all h e I. 0. 

If fh  or Wh have discontinuities then it is possible that problem (2.1)-(2.2) 

does not have a maximum but a supremum. If is a point at which fh  or Wh is 

discontinuous then the FJ conditions can not be used to eliminate §ih. In the DP 

recursion it is necessary to always include and a neighbourhood around h , i. e. 

to always check actions corresponding to h  and a neighbourhood. The action 

elimination DP algorithm will now be presented for the case that the functions 

fh, Wh have some non-differentiable points. We use the optimality condition from 

the last theorem. The procedure of going from stage i - 1 to stage i for i > 2 is: 

Si := {y c Di  w i  or fi  is not differentiable at y} 

such that Ix—yI<€} 

for all q e jRtm set F(q) := -00 

for all q e JRtm with F_ 1 (q) > —oc do 

for all xi e D2 \ (8D U S) for which 3(A 0 , A) E B_ 1  (q) 

such that (A O , A), x i  satisfy (2.10) do 

if F(q + w(x)) < F_ 1 (q) + f(x) then 

F(q + w(x)) := F i (q) + f(x) 

A(q + w(x)) :=x i  

B(q + w(x)) := B... i (q) fl N(x) 

end if 

end do x2  

for all xi E aDi  U 3i  do 

if F(q + w(x)) < F2 _ 1 (q) + f(x2) then 

F2  (q + w(x)) := F2_ 1 (q) + f(x) 

A(q+w(x)) :=x 

B(q+w(x)) := B_ 1 (q) 
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end if 

end do x 

end do q 

The purpose of defining Si is to have actions on every side of a discontinuous 

point x e S. In the definition of 3i  the parameter E is positive and arbitrarily 

small. Of course, the more non-differentiable points the functions w, fi  have and 

the more points there are on the boundary of D, the less effective is the action 

elimination. 

2.4.1 Practical Implementation 

For most problems it is only practical to implement the action elimination if the 

set B_ 1  (q) has only one element. Usually, if Problem P_1  (q) is feasible the set 

B_ 1  (q) has one element or an infinite number of elements. If Problem P2 _ 1  (q) 
is infeasible then B_1 (q) is the empty set. If B2 _ 1  (q) has one element and x i  is 

such that (A 0 , A), x i  satisfy (2.10) where (A 0 , A) e B_ 1 (q) then 

B_ 1 (q) C N(x) 

and hence 	B_ i (q) fl N(x) = B_ 1 (q). 

The following procedure of going from stage Z' -   1 to stage i (for i > 2) only makes 

use of the action elimination when the set B_ i (q) has one element. It is based 

on the previous procedure and the above observations about B_ i (q). 

Si := { y E Di  wi  or fi  is not differentiable at y} 

:={xeD:yeS such that ix —y<f} 

for all q e JRtm set F(q) := —oc 

for all q e JRtm for which F_i (q) > —oc do 

if B_ i (q) has exactly one element then do 

J := {x : x e D\SZ , 	A) e B_ 1  (q) and x satisfy (2.10)} 

for all Xi E 3i U 9Di  U J do 

if F(q + w(x)) < F_1 (q) + f(x) then 

F(q + w(x)) := F 1 (q) + f(x) 

A(q + w(x)) 	x i  

B(q + w(x)) 	B_ i (q) 

end if 

end do x 
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else (if B_ i (q) has more than one element) 

for all x. E Di  do 

if F2  (q +w(z)) < F_i (q) + f1  (x) then 

F(q ± w(x)) := F i (q) + f(x) 

A(q+w(x)) :x 

if x 3i  U 9Di  then 

B(q + w(x)) := B2 _ i ( q) fl N(x) 

else 

B(q+w(x)) := B_ 1 (q) 

end if 

end if 

end do x 

end if 

end do q 

Most often the FJ optimality conditions hold as Kuhn-Tucker conditions. i.e. 

most often the dual multipliers )) satisfy )o = 1. The efficient calculation 

of the set J (in line 6 of the previous procedure) usually involves a considerable 

amount of coding. Moreover, often the two cases A O  = 0 and AO  = 1 for )) E 

B_ 1 (q) have to be considered separately. The amount of coding necessary to 

calculate J when A 0  = 0 is not worth the effort for many applications. The reason 

for this is that A 0  = 0 can only be if the gradients of the constraint functions are 

linearly dependent at the optimal solution point. (This is a property of the FJ-

conditions.) In many applications the number of variables is larger than the 

number of constraints, and the constraint functions are all of a different form. 

But then it is very unlikely that the gradients of the constraint functions are 

linearly dependent at the optimal solution point. 

Another practical implementation of going from stage i - 1 to stage i (for 

i > 2) only makes use of the action elimination when the set B2 _ 1  (q) has one 

element (A 0 , A) and for this element A 0  = 1. This amounts to changing line 5 of 

the previous procedure to: 

if B2_ 1  (q) has exactly one element (A 0 , A) and A0  = 1 then do 
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2.5 Inequality constraints 

In this section problem (2.1), (2.2) with the additional constraints Xh E Dh Vh is 

considered where the equality constraints are replaced by inequality constraints. 

i.e. the problem considered is 

	

max >fh(Xh) 	 (2.17) 

subject to 	Wh(Xh) < 	, 	 ( 2.18) 

	

Xh e Dh 	Vh, 	 (2.19) 

There are two approaches to deal with this problem using FJ-DP. 

Approach A: 

Apply FJ-DP to problem (2.1), (2.2) with the additional constraint (2.19) as de-

scribed in the previous sections. At the end scan the value function Fr  to find 

the solution to (2.17)-(2.19). i.e. the optimal objective value to (2.17)-(2.19) is 

max{Fr (q) q < 41 q 

where the inequality sign between the two vectors q and 4 is used component-wise 

i. e. the i-tb component of q is less than or equal to the i-tb component of 4 for 

every i : 1 < i < m. 

Approach B: 

The subproblem corresponding to state (q, i) which defines F2  (q) is changed. F(q) 

is now defined by (2.3),(2.4) but with the equality sign in (2.4) being changed 

into a '<' sign and the additional constraint (2.19). The DP-recursion (2.5) still 

holds. The Fritz John conditions for subproblem (q, i) are 

	

A0  = 0 	or A 0  = 1, 	 (2.20) 

	

(A 0 , A) =,4 0 	 (2.21) 

	

A > 0 	 (2.22) 

	

AT(w(x) - q) = 0, 	 (2.23) 

for h = 1, ..., i, if fh, Wh are differentiable at Xh and Xh i9Dh then 
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)o(Vfh(xh))T = A T Vw h (x h ), 	 (2.24) 

where Vfh  is the nh x 1 gradient matrix of fh  and VWh denotes the m x nh 

Jacobian matrix of Wh. For given state (q,%') and vector of actions x i  where 

= (xf, x, ..., xfl, B(q, x) now is the set of all vectors (A 0 , A) with A0  e 

JR A e JRtm such that ()o,  A) and x i  satisfy the FJ-conditions (2.20)-(2.24). 

The FJ-DP algorithm now employs a function of states B(q) defined by 

B(q) = B2  (q, ), 

where ii  is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B2 (q). An FJ-DP algorithm can be applied to 

problem (2.17)-(2.19) which imposes these modified definitions of F2 (q) and B(q) 

in the initialisation step (i.e. when defining F, (q), B 1  (q) Vq) and then uses any 

one of the procedures of sections 2.4 and 2.4.1 for going from stage %' -  1 to stage i. 

Both approaches A and B work and solve problem (2.17)-(2.19). Approach B 

uses stricter FJ conditions than approach A since it has the additional condition 

(222). 1. e. Approach B uses FJ conditions which have the potential to eliminate 

more non optimal actions. However, in comparison to approach A approach B 

defines F(q) > —oc for more states (q, i). This is bad since more work has to be 

done to go from stage i to stage i + 1 when there are more states (q, i) of stage i 

for which F(q) > — oo. This more work of approach B can even be of one order of 

magnitude. For example, if m = 2 (i.e. there are two constraints) and n1  = 1 (i.e. 

E JR) then approach A defines Fi (q) > —oc for a one dimensional subspace of 

states in the two dimensional state space of stage 1, whereas approach B defines 

F1 (q) > — cc for a two dimensional subspace of states in the two dimensional 

state space of stage 1. 

Let's summarise the comparative advantages of approaches A and B. Ap-

proach A defines F(q) > —cc for fewer states (q,i), approach B uses stricter 

FJ conditions and therefore has the potential of eliminating more non-optimal 

actions. It is possible to design a method which has both of these good features 

of approaches A and B. In the sequel this method is described. 

Approach C: 

The definition of B(q) is as in approach B. The definition of F2 (q) is, in some 

sense, a blend of that in approach A and that in approach B. Precisely: F(q) is 

the optimal objective value of 

X1=,Xt 
I fh(xh) 
	

(2.25) 
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subject to >wh(Xh) < q, 	 (2.26) 

Xh E Dh for h= 1,...,i (2.27) 

if there exist vectors x 1 , x2 , ..., Xi which solve problem (2.25)-(2.27) and for which 

(2.26) holds as equality (in every component), if such vectors do not exist then 

F(q) := —oo. For this definition of F2 (q) the DP recursion (2.5) holds if F1 (q) > 

—cc but fails in general if F2 (q) = — cc. With these definitions of F(q) and B(q) 

apply an FJ-DP algorithm to problem (2.1),(2.2) and the additional constraint 

Xh E Dh Vh which uses any one of the procedures of section 2.4 or 2.4.1 plus the 

following steps 

for all q E JRtm do 

if F1 (q) > — cc then 

if 14 < q with F() > F(q) then F2 (q) 	—cc 

end if 

end do 

added at the end when going from stage i—i to stage i. A procedure of section 2.4 

or 2.4.1 for going from stage i - 1 to stage i basically implements the recursion 

(2.5) but (2.5) only holds when F(q) > —cc, as mentioned before. Hence, in 

general a procedure of section 2.4 or 2.4.1 calculates F(q) correctly if F(q) > 

—cc and incorrectly in general if F1 (q) = —cc. Adding the above steps to a 

procedure of section 2.4 or 2.4.1 insures that F(q) is also calculated correctly 

when F2 (q) = — cc. The specific definitions of F(q) and B(q) must be imposed 

in the initialisation step i. e. when defining F1  (q), B 1  (q) Vq. At the end of this 

FJ-DP algorithm scan the value function F to find the solution to problem (2.17)-

(2.19) i.e. the optimal objective value to problem (2.17)-(2.19) is 

max{F(q) q 
q 

The optimal distribution vectors , 	which solve this problem are found 

by working the actions A(q) backwards along the optimal path of states starting 

from state (q* , r) where 

q* = argmax{Fr (q) : q < 61. 
q 

2.5.1 Problems with equality and inequality constraints 

Next a problem with inequality and equality constraints will be considered and an 

efficient FJ-DP method will be outlined. The equality constraints are dealt with 
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as in previous sections and the inequality constraints are dealt with according to 

approach C of the previous section. Consider: 

max 	 fh(xh) 	 (2.28) 

subject to 	Wh(Xh) 	, 	 (2.29) 

	

= 2, 	 (2.30) 

	

Xh e Dh 	Vh, 	 (2.31) 

where Dh C ]Rnlh fh : IR -4 JR, Wh : Eh _4 JR1 Vh : JRh 	]]m2  for 

h=1,...,r, and EJRm1 , 2elRm 2 . 

The definition of F1  (q, z) to be used in the FJ-DP method is the following: F(q, z) 

is the optimal objective value of 

	

max 	fh(Xh) 
X1,X2,..,Xj 

	

subject to 	Wh(Xh) 

V/ (X/) 

Xh e Dh 

(2.32) 

q, 	 (2.33) 

= z, 	 (2.34) 

for h=1,...,i 	 (2.35) 

if there exist vectors x1,x2, - - -, Xi which solve problem (2.32)-(2.35) and for which 

(2.33) holds as equality, if such vectors do not exist then F(q, z) = — oo. For this 

definition the DP recursion 

	

F(q, z) = max {f(x 2 ) + F2 _ 1  (q - w(x), z - vi (xi)) 	 (2.36) 
XiEDi 

holds if F(q, z) > — oo and does not hold in general if F(q, z) = — oo. For given 

state (q, z, i) and vector of actions x 2  where xT = (x, x, ..., XT), B(q, z, x) 

is the set of all vectors s. o , A, p)  with Ao  E IR, ) E 1R 712' p E JR72  such that 

(),)jt) and xi  satisfy the FJ-conditions (2.20),(2.22), (2.23),(2.34), 

(A o ,A,/L) 54 0 and 

for h = 1, ..., i, if fh, Wh, Vh are differentiable at Xh and Xh 3D,,, then 

.Ao(Vfh(xh))T 	)Tvw(x) + ,aTVvh(xh) 
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where Vfh  is the rth x 1 gradient matrix of fh, VWh denotes the m 1  x nh Jacobian 

matrix of 'Wh and VVh denotes the rn2 X nh Jacobian matrix of Vh. The FJ-DP 

algorithm now employs a function of states B2  (q, z) defined by 

B(q,z) 

where ii is the optimal vector for subproblem (q, z, i) that the algorithm has 

computed at the time of defining B2  (q, z). These definitions of F(q, z) and B1  (q, z) 

must be imposed when defining F1 (q,z), B i (q,z) V(q,z) initially. When going 

from stage Z' -   1 to stage i for i > 2 a procedure similar to one of those in section 

2.4 or 2.4.1 is used to implement (2.36). At the end of the implementation of (2.36) 

if for a state (q, z, i) F(q, z) > —x and 34 < q such that z) > F(q, z) then 

one must redefine F(q, z) := —oo in order to enforce the correct definition of 

F(q, z). The optimal objective value to problem (2.28)-(2.31) is 

max{Fr (q, 2): q 
q 

2.6 A single constraint example 

In this section an example, which is similar in form to the gaslift allocation prob-

lem mentioned in the introduction, will be shown in order to illustrate the details. 

This example is highly non-linear. The theory in the previous sections was for 

continuous variables. In practice, however, a discretisation must be introduced. 

The discretisation which will be used is one to approximate the continuous im-

plementation of FJ-DP. The finer the discretisation is, the smaller the error of 

the approximated solution will be. 

Consider the problem: 

maximizef(x) := 

subject to 	X h = 	, 	 ( 2.37) 

XhEJR, XhE[O,dh] 	1<h<r, 

where r = 50 and 4 = 1000. The functions fi  of the example are characterised by 

four numbers a, b, Cj, di  in the following way: 

fj(x)-{0 	

if  
if c 	x 

x<c 
d

, 

- 	 , 	
(2.38) 

log(a + x) + b  

The numbers a, b, c, d, defining the functions fi  are given in Table 2.1. 
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i 	I ai  I b2  c1  d 

1 -9 20 11 42 
2 -18 20 20 41 
3 -8 40 10 34 
4 -8 40 13 40 
5 -16 2 19 40.5 
6 -5 4 11.5 32.8 
7 -9 5 15.7 41.9 
8 -18 3.7 25 49 
9 -8 4 15.2 37.4 

10 -8 5 20.9 39 
11 -16 2.9 26.8 40.2 
12 -5 4 15 30.3 
13 -9 5 28 40.2 
14 -18 2.8 29.5 48.7 
15 -8 4 25 30 
16 -8 5 27.1 38.6 
17 -16 10 30 47.1 
18 -5 10 23.7 30 
19 -9 5 22.8 41.5 
20 -18 15 35.3 43.7 
21 -8 10 25.3 53.1 
22 -8 5 30.47 47.3 
23 -16 5 30.1 40.1 
24 -5 6 25.3 37.9 
25 -9 5 10 45.8 

i I 	ai  I 	b2  c2 J d2  

26 -18 2 20.7 46 
27 -8 4.2 10.2 30.9 
28 -8 5.1 10.7 49 
29 -16 2.9 20 46.8 
30 -5 3.4 10 34 
31 -9 5 15 40 
32 -17.1 2 25 40 
33 -8 4 15.3 30.9 
34 -8.9 5 20.3 40.9 
35 -16 3.2 30.7 50 
36 -5 3.8 15.3 30 
37 -9 5 27.2 47.9 
38 -18 2.7 30 36.8 
39 -8 4.2 24.6 30 
40 -7.3 4.6 28 43.7 
41 -16 7.8 30.2 47.5 
42 -5 6.9 25.3 30 
43 -9 5 18.4 40 
44 -18 10 35.9 40.5 
45 -8 7.3 25 37.9 
46 -7.1 7.7 31.2 49 
47 -16 5.8 30 37.9 
48 -5 6 25 30 
49 -15 8.1 20 40 
50 -10 5 14.7 37.9 

Table 2.1: Coefficients for the functions fi  in (2.38) 

f(x) 

Figure 2.1: shape of fi  functions 



In the notation of section 2.4, D2  = [0, d] Vi, so aD j  = {0, di  1. Each fi  is 

differentiable except at the point Cj . For optimal i the necessary optimality 

conditions from (2.13) are: 

3(A0 , A) with Ao e {0, 1}, A E JR, (A 0 , A) 	(0,0) such that for every i 

Ao—(x)=A 	if 
dx 

If A0  = 0 in the above condition then it implies A = 0, but this contradicts 

(A 0 , A) 	(0, 0). Hence A 0  = 1. Therefore the necessary condition simplifies to: 

df, 
A such that for every i : 	—(x2 ) = A 	if x 	O, 	c,x j  =A d. 

dx 

Graphically, this condition simply says that at the optimal solution all the func-

tions f, for which the argument is in the interior of the feasible set and is a point 

at which fi  is differentiable, have the same gradient. Note that since the f2 func-

tions are built of log-functions, there is a quick way (in this case even analytic) 

to identify those x, e JR for which -(x) = A when A is known. Hence the FJ dx 
action elimination will be very effective. 

For dynamic programming we introduce a discretisation of the x-axis. The 

interval [0, ] is split into m equal subintervals, of length J. 

	

4 	1000 

Let n be called the discretisation number. Only x i  values of the form x i  = k6 

with k E 1T/ are considered. 

For the continuous version of the problem discussed earlier the states, value 

function and actions are (q, i), F2  (q), A i  (q) respectively, where q e JR and i E 1/V. 

For the discrete version of the problem the notation (j, i), Pi  (j), A 2  (j) will be used 

for states, value function and optimal actions respectively. 

Definition 2.6.1 

(j, i) is the state considering the first i functions fh  only, 	= j8 and each 

x1  is either zero or a positive multiple of J. 

= maximal value of 	fj (x j ) where x e JR2  and belongs to state (j, i). 

A1(j) = computed number of units (8) that x 2  takes, when x e JR2  and x belongs 
to state (j, i) and 	f1(x1) = 

Some remarks on these definitions: (j, i) can be thought of as a finite set of vectors 

x E JR. Fj  (j) is the solution of a maximization problem with finite search space. 

A 2 (j) is a discrete action. 
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As observed before the example in this section is such that (2.13) implies 

that the FJ-conditions always hold with A 0  = 1. Furthermore for this example 

B2  (q) takes two possible forms: Either B(q) = {( 1, A)} for some A e JR or 

B2  (q) = {(1, A) : A e JR}. However, when B(q) = {(1, A) : A E RI, the 

action elimination step will actually not eliminate any actions that ordinary DP 

considers. Hence in this case the action elimination step will not be used. For 

simplification a function A of the states will be used instead of the B-sets in 

the description of the following algorithm. For any state, if B(q) = {( 1, A)} 

for some A E JR then A(q,i) will be defined to be this unique A-value, and if 

B(q) = {( 1, A) : A e ]R} then A(q, i) will be said to be undefined. Only if 

A(q, i—i) is defined will the FJ-action elimination be used. Step 3 of the algorithm 

below is based on the procedure in section 2.4.1 

Algorithm 2.6.2 

Choose ri E V and set 8 := 

S1  := { all special points of fi  in [0, d1 ]} = 10, c1 , d 1 } 

Q:={[],[] 	:ySi} 

forj:=0 ton do 

if j8 < d then 

Pi (1) := fi (j6) 

if j ç' Q then
dfi 

 (A AU, 1) := 
dx 

else 

A(j, 1) := undefined 

end if 

else 

i(j) 

end if 

end do j 

i:=2 

for j := 0 to n set Pi  (j) := —cc 

Si:= { all special points of f2 in [0, d]} = 10, c, d} 

Q:={[],[] 	:yESi } 
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for j e {O, 1, ...,n} for which F_1  (j) > —oo do 

if )(j,i— 1) is defined then 
dfi  

for all k E I [ Y j, [y ] :yE J}UQdo 

if (j + k) <_(j) + f(k) then 

Pi  (J + k) := j_(j) + f(kö) 

A(j + k) := k 

A(]'+ k, 	—1) 

end if 

end do k 

else (if )(j, i - 1) is not defined) 

for k =0 to min(n - j, [j) do 

if (j + k) <2_(j) + f(H) then 

j(j + k) := ii(j) + f(k) 

A(j + k) := k 

if k ' Q then 

dx 
else (if k e Q) 

)(j +k,i) := undefined 

end if 

end if 

end do k 

end if 

end do j 

if i < r increase i by one and return to 3) 

s:=n 

for i := r down to 1 do 

:= A(s)5 

s := s - A(s) 

end do i 

stop 

Step 1 is the initialisation of DP, step 3 is based on. the procedure of section 2.4.1 
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n I ordinary DP (secs) I FJ-DP (secs) P, (n) 

100 0.04 0.06 432.81 
200 0.16 0.13 447.33 
500 0.87 0.35 456.79 

1000 3.14 0.68 458.23 
2000 12.41 1.52 459.35 

10000 326.43 7.64 460.12 

Table 2.2: computational results 

and calculates the value function (j) and the optimal action A(j) for the states 

in stage i, step 5 calculates the optimal distribution vector x. Fr(fl) is accepted 

as the optimal value of the objective. Observe that x is restricted to the grid, 

which implies that all components of x are an integer multiple of J. 

The above FJ-DP algorithm was used to solve problem (2.37) for various 

discretisation numbers n. The results are compared with those of DP without 

action elimination and are given in Table 2.2. For the same discretisation number 

n the ordinary DP and the FJ-DP algorithms gave the same optimum Fr (fl). 

Since it takes 0(1) amount of work to identify those x i  e JR for which (xi ) = A dx 

when A is known, we expect the complexity of the FJ-DP for this problem to 

be 0(n). The complexity of ordinary DP is 0(n2 ). Our run time results are 

consistent with this analysis. 

This example has a similar form to the gaslift allocation problem with gaslift 

availability constraint only, described in the introduction. The main difference is 

that in a gaslift problem the functions f2 are normally not logarithmic functions 

given analytically but functions given numerically as a set of points. 

2.6.1 Finding points with a particular derivative of f 
For the FJ-action elimination in Algorithm 2.6.2 there must be a procedure which 

gives all points x2  for a given value of A such that 

df 
dx 

(2.39) 

In the last example this was done analytically since the functions fi  were of 

a suitable analytic form. However, if the solution of (2.39) can not be done 

analytically this can be done fast numerically by preprocessing the function f2 

before doing the DP-calculation of going from stage i - 1 to stage i. For example, 

if the functions f2 were arbitrary piecewise smooth functions the preprocessing of 

the functions f2 could be done as follows: the domain of x i  is split into subsets, 

such that on each subset the function f2 is either convex or concave. Then for 
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each subset a function x(A) is approximated where x(A) satisfies 

= A 
dx 

x(A) can be calculated for a list of increasing or decreasing A-values efficiently 

using Newton's method or binary bisection. Alternatively, (2.39) can be solved 

approximately to within e of the true solution by simply applying binary bisection 

to every convex or concave subset of the domain of x. This method with € = 

was implemented for the previous example problem and the results for different 

discretisation numbers n are given below. n FJ - DP , binary bisection (secs) J _F (72) 

100 0.07 432.81 
200 0.29 447.33 
500 0.53 456.79 

1000 0.91 458.23 
2000 1.80 459.35 

10000 9.98 460.12 

When comparing this table with Table 2.2 it is found that the result Fr (ri) is 

as before for the considered discretisation numbers n. This is not surprising. 

When (2.39) with A > 0 is solved by binary bisection to within € = of the 

true solution the work necessary is 0 (logn). Hence the complexity of the FJ-DP 

algorithm now is expected to be 0(nlogn). The results of the table are consistent 

with this analysis. 

2.6.2 A modified example 

Algorithm 2.6.2 uses a regular discretisation with step size 6 for the action space 

and for the state space in each stage. Furthermore, the problem solved has one 

linear constraint with all coefficients being equal to one. This has the consequence 

that when the constraint function is evaluated at any discretisation point x the 

result is a value which is a discretisation point of the state space. It is important 

to realise that this property is not true in general. In this subsection an example 

is given which makes this point clear. In general it is not enough to have some 

discretisation points in the state space but it is necessary to subdivide the state 

space into subintervals. Consider this problem: 

maximizef(x) := 	fh(xh) 

subject to 	Wh(Xh) = 	, 	 ( 2.40) 

Xh E JR, Xh E [0, dhl 	1 <h < r, 
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where the functions fh, Wh are JR -+ R. The functions fh, Wh are everywhere 

differentiable on [0, dh] except at finitely many points. Let's also assume that 

wh(xh) > 0 and that W '  (Xh) 7~ 0 for all Xh e [0, dh] and that > 0. These 

assumptions simplify the description of Algorithm A.M. Let Nh be the set of 

points at which either fh  or Wh is not differentiable. For optimal i the necessary 

optimality conditions from (2.13) are: 

(A 0 , A) with A o  E {0, 11, A E JR, (A0 , A) 	(0,0) such that for every i 

A 0f,'() = Aw) 	if x, 54 0, 	 Ni . 

If A 0  = 0 in the above condition then it implies A = 0 since w(x) 	0 for all 

x, E [0, d] by assumption, but this contradicts (A 0 , A) 0 (0, 0). Hence A 0  = 1. 

Therefore the necessary condition simplifies to: 

A such that for every i: f(x) = Aw) if 	0, x 	d, x 	N2 . 

It is important to be aware of the differences between the definitions below and 

those of Definition 2.6.1. 8 is again defined by 8 := 1  where n is the discretisation 

number. 

Definition 2.6.3 

(j, i) is the state considering the first i functions fh  only, 

(J -  1)8 < Eih= l  Wh(Xh) <j6 and each Xh e Dh for 1 <h < i. 

F(j) =maximal value ofE'h=l fh(xh)  where x E JR2  belongs to state (j, i). 

j(j) =computed approximation to F2 (j). 

A i  (j) =computed real value that x 2  takes, when x E JR2  and x belongs to state 

i) and >ifh(xh) Pi (j) 

Pi(j) 	Wh(Xh) where x e R' is the computed vector which belongs to state 

(j, i) and for which E ih= l  fh(Xh) = 

Some remarks on these definitions: (j, i) can be thought of as an infinite set of 

vectors x E IRi. F2 (j) is the solution of a maximization problem with infinite 

search space. DP does finite computation, it can not compute F2 (j) exactly in 

general. DP will approximate F2  (j), the approximation is denoted by F j(j). Ai  (J)

is a real valued action. By definition p 2 (j) satisfies: 

(3, -1)8<p2 (j) <j8. 
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Suppose x (2 JR is the computed vector which belongs to state (j, i) and for 

which E'h= l fh(Xh) = ( j). In the DP process i + 1 dimensional vectors of the 

form (x, x+1) will be considered and using pi(j)  such i + 1 dimensional vectors 

can be assigned to the right state of stage i + 1. 

The algorithm in Appendix A is an implementation of FJ-DP for problem 

(2.40), its structure is similar to the previous algorithm (Algorithm 2.6.2) and in 

particular step 3 is again based on the procedure in section 2.4.1. 

If the discretisation number m is sufficiently large and if problem (2.40) is 

infeasible then the algorithm will return Fr (fl) = — oo. Notice that in general the 

result of this algorithm x' does not satisfy the equality constraint exactly but 

contains a discretisation error with the following bound: 

-<Wh(X) < 

2.6.3 Remarks on storage issues 

In the FJ-DP algorithm of the previous section (the algorithm is explicitly given 

in Appendix A) the following objects are used: 

A i  (i), pi  (j) and A(j, i) for 1 < i < r, 0 < j < n. However, it is not 

necessary to store all of these objects. When step 3 of the algorithm is executed 

the only objects used there are ji(j), Fi (j), A i  (J), p1(j), pi  (J), A (j, j - 1), 

)(j, i) for 0 < j < ii. The objects A(j) for t < i, 0 < j < n will be needed in 

step 5, but Ft(j), pt  (J), )(j, t) for t < i - 1, 0 < j < n are no longer needed. 

Hence the algorithm only needs the following storage: 

2(n + 1) values (instead of r(n + 1) values) for each of the objects F, p, ) and 

r(n + 1) values for A. 

2.6.4 Calculating numerically the action set when state 
and action space are both one dimensional 

This subsection is a generalisation of the first part of section 2.6.1. The general 

deterministic DP problem with one dimensional state and action space in each 

stage is: 

maximize f(x) : = fh(xh) 

subject to 	Wh(Xh) = 

XhE]R, XhEDh 	1<hr, 
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where the functions fh, Wh are piecewise differentiable functions JR -+ 111 with 

finitely many non-differentiable points. Let Nh be the set of points x E Dh at 

which either fh  or 'Wh is not differentiable. Suppose that this problem is solved 

by DP using some discretisation scheme where the state space and action space 

are discretised in n units. DP without action elimination needs 0(n2 ) operations 

to do the calculation of going from stage i - 1 to stage i for i > 2. FJ-DP, when 

implemented with a procedure from section 2.4.1, has to calculate about ri times 

sets J of the form 

J := {z: X  D, A 0 f(x) = Aw(x)} 

for given (A 0 , A). Often the functions f, wi  do not allow the points x of J to be 

calculated analytically. In the sequel it is shown how this can be done numeri-

cally. For this it is assumed that the functions f, w i  are piecewise continuously 

differentiable not just piecewise differentiable. The two cases A 0  = 0 and A 0  = 1 

have to be considered separately. Let's first consider A 0  = 0: in this case A 0 

since the FJ conditions demand (A 0 , A) (0, 0). This means the calculation of J 

reduces to that of J0  where 

Jo  := {x : x e D, w(x) = O} 

Pick a small number € > 0 where € must satisfy ly - zJ > 2€ for all y, z E N and 

y 54 z. Define 

X + := {x : X  D,x = y+€,y E N} 

and X_:={x:xED,x=y—€,yENil. 

The elements of J0  can be calculated approximately by running once through the 

discretised actions x e Di  and through the points of X +  and X_ and looking at 

the corresponding values of w. If a < b, a is a discretisation point or a e X, b 

is a discretisation point or b e X_, a and b are close and either 

w(a) <0 and w(b) > 0, 

or w(a) > 0 and w(b) <0 

then a fixed number of binary bisection steps or a few iterations of Newton's 

Method will approximately find a point x E J0  which lies between a and b. The 

work involved to find the points of J0  approximately this way is 0(n). 

For the case A 0  = 1 it is good to get some information about the behaviour of 
f.(x) 	

i 	
z. 

w(x) 
before doing the DP step of going from stage —i to stage . By running once 
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maximizef(x) := 

subject to 

h 

2h + 1fh(xh) 
h=1 

h+1 
2h + 1fh(xh) 

h=1 

Xh 

Xh E JR, Xh E [0,dh ] 

through the discretisation points of D, X and X_ non-overlapping maximal 

intervals can be determined such that on each of these intervals f2 and wi  are 
f(x) i differentiable and 
---- 

s either  increasing or decreasing. After that, when doing 
Wi  

the DP step of going from stage i - 1 to stage i, on every interval the solutions of 

f,'(x) 
=A 

W '. (X) 

can be found by the bisection method. This way the elements of J, for any 

given A, can approximately be found with O(logn) operations. Hence, it can 

be expected that the work of going from stage i - 1 to stage i of FJ-DP takes 

O(n log rt) operations. 

2.7 Example with two constraints 

In this section an example is given with n i  = 1 and m = 2. 

Consider the problem: 

= 	1, 	 (2.41) 

= 

 

42, 

1 <h < r, 

where r = 15, 41  = 60 and 42 = 150. Let the functions f2 be those given in (2.38) 

with the numbers a, b, c, d2  taken again from Table 2.1. The domain of x i  can 

be taken as Di  = [0, d2 ]. For optimal the necessary optimality conditions from 

(2.13) are: 

(A 0 , A) with A 0  E 10, 11, A E 1R 2 , (A 0 , A) ~ (0,0) such that for every i 

A02 idf, 
	- 	 i+1 df, 

—(x i ) - A l2 . 	—(x i ) + A 2 	if Xj 0, 	c,x j  d2 . 
dx 	z +ldx 

This condition implies the following condition 

dfi  - 
dx 

(2i + 1)A 2  
iA 0  - (i + 1)A 1  

if 	 and iA o —(i+1)Ai =A0. 

This optimality condition is the basis for the FJ action elimination when DP 

goes from stage i - 1 to stage i in this problem with one dimensional action 

and two dimensional state space. Problem (2.41) has been implemented and the 
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n I ordinary DP (secs) I FJ-DP (secs) [speed-up I F,(n) 

20 0.14 0.09 1.56 45.58 
50 1.59 0.62 2.56 47.80 

100 10.54 2.67 3.95 48.50 
200 79.37 12.02 6.60 48.51 

Table 2.3: computational results 

computational results are shown in Table 2.3. The discretisation used discretises 

D1  in n regular subintervals and also each of the two dimensions of the state space 

in n regular subintervals. Exactly the same discretisation scheme was used for 

ordinary DP and FJDP. r(fl)  is the computed optimal objective value when the 

discretisation number is n. For the same discretisation number n the computed 

optimal objective value of ordinary DP and of FJ-DP were always the same. For 

the FJ-DP it is crucial to quickly find all xi E Di  satisfying 

df, 
—(xi ) ii 	 (2.42) 
dx 

for any given ji, (p depends on i, A0 , A 1 , A2 ). In this example equation (2.42) 

can be solved analytically with 0(1) work since the functions fi  are made of 

logarithmic functions. If (2.42) had to be solved numerically it would require at 

most O(logn) work since binary bisection could be used. (By investigating fi 
before doing the DP recursion, in practice the numerical solution of (2.42) can 

still be done with 0(1) work.) For the results shown in Table 2.3 (2.42) was 

solved analytically. 

The complexities of ordinary DP and FJ-DP on this problem are as follows: 

there are 0(n2 ) states in each stage. Ordinary DP checks 0(n) actions from each 

state when going from stage i - 1 to stage i. There are r stages. Hence the 

complexity of ordinary DP is expected to be 0(m 3 ). For FJ-DP the analysis is 

trickier. Note that in stage 1 only 0(n) states are actually defined with value 

function not equal to —oo because the action space is one-dimensional and is 

mapped into the state space of stage 1. The action elimination can only eliminate 

actions when B(q) has finitely many elements (A 0 , A). By looking at (2.6) one 

can see that B, (q) always has infinitely many elements because (A 0 , A) is in B i (q) 

if (A 0 , A) satisfies one equation, but A E JR2 . For i > 2 it can be expected 

that B2 (q) is finite for most states since then (A 0 , A) E B2 (q) if (A0 , A) satisfies i 

equations, %'. e. (A 0 , A) satisfies a number of equations which is at least as big as 

the dimension of A. Note that since A 0  is restricted to 10, 11 only the dimension 

of A is important to determine how many equations are necessary so that the set 

of (A 0 , A) satisfying the equations is finite. When going from stage 1 to stage 2 

Z.] 



FJ-DP checks 0(n) actions from each of 0(n) states. Therefore the transition 

from stage 1 to stage 2 takes 0(n2 ) operations. When going from stage i - 1 to 

stage i for i > 3 FJ-DP checks 0(1) actions from most of the 0(n2 ) states in 

stage i - 1 and checks 0(n) actions from some of the states in stage i - 1. It is 

reasonable to assume that "some of the states" in the last sentence is of order 

0(n), i.e. one order of magnitude less than the total number of states in stage 

i - 1. Therefore, the transition to the next stage can be expected to be 0(n2 ). 

There are r - 1 transitions of stages to be done. Hence the total complexity of 

FJ-DP on this problem is expected to be 0(m 2 ). The computational results of 

Table 2.3 support this estimate. 

2.8 Conclusions 

An action elimination procedure for deterministic dynamic programming prob-

lems based on first order optimality conditions has been presented in this chapter. 

The class of problems considered were of the form (2.1),(2.2) with some or all 

equality constraints in (2.2) possibly being inequality constraints instead. The 

efficiency of the action elimination depends on the interior of the domain Di  be-

ing large in comparison to the boundary DD. Another condition for the action 

elimination to be efficient is that there is a quick method to identify those x i  e Di  
which satisfy (2.10) for any given )). 

Section 2.2 presented the theoretical basis for the action elimination based 

on the FJ conditions. Then section 2.3 showed how to practically implement 

the action elimination when going from stage i - 1 to stage i in a DP recursion. 

Section 2.4 showed that it is not necessary that the functions in (2.1),(2.2) are 

differentiable everywhere in order to apply FJ action elimination. This is impor-

tant because this extension increases considerably the applicability of FJ action 

elimination. 

Section 2.5 discussed how to handle inequality constraints in an efficient way. 

Sections 2.6 and 2.7 showed details of implementations of example problems. The 

computational results support the claim that FJ action elimination reduces the 

computation time by an order of magnitude. 
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Chapter 3 

Discretisation issues 

3.1 Variable grid FJ-DP method 

In this section a variable grid discretisation for FJ-DP will be presented. It will be 

illustrated by applying it to solve problem (2.37). The discretisation step length 

for x i  E Di  is q and for the argument of the value function F2  it is 8. These 

discretisation step lengths are given by 

	

It 
= _ 	and 8j

di 
	 mm (>i 	dh, c) 

	

n 	 n 

where n is the discretisation number. The motivation for this is to have about n 

discretisation points for x 2  and for the argument of the value function F2  in the 

relevant region of these objects. This idea is taken from interpolation methods. 

As will be seen at the end this discretisation for the FJ-DP achieves a much better 

result Fr (Ti) than the discretisation used in Algorithm 2.6.2, particularly when n 

is small. There are subtle differences between the definitions of states, actions, 

value function below and those of Definition 2.6.1. The main differences are that 

the state space is subdivided into a finite number of subintervals rather than a 

finite number of discretisation points being picked from the state space, secondly, 

the discretisation length 8 varies with the stages. 

Definition 3.1.1 

(j, i) is the state considering the first i functions fh  only, 

(i - 1)6i < E ih=l  Xh <— 1'6i  and each Xh e Dh for 1 < h < i. 

F 1 (j) =maximal value of E'h=lfh(xh)  where x e JR belongs to state (j, i). 

(j) =computed approximation to F2 (j). 

A1 (j) =computed real value that x 2  takes, when x e ]R and x belongs to state 

(j,i) and F=ifh(xh)  =F2 (j) 
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Pi(j) =h=1 	 where x E JRt  is the computed vector which belongs to state 

(j, i) and for which E ih= l fh(Xh) = 	(j). 

Some remarks on these definitions: (j, i) can be thought of as an infinite set of 

vectors x E 1R. F2 (j) is the solution of a maximization problem with infinite 

search space. F(j) is approximated by i (j). A(j) is a real valued action. By 

definition p2 (j) satisfies: 

U — Wi <p1 (j) <jc5. 

p2 (j) is introduced for the correct assignment of vectors of the form (x, x+) to 

states when x E JRt is the computed vector which belongs to state (j, i) and for 

which f i (x) = 
The algorithm below is based on Algorithm 2.6.2, but it uses the variable grid. 

Algorithm 3.1.2 

Choose n e XV 

d1 	min(di ,) 
= i 

Ti 	 Ti 

S1  := { all special points of fi  in [0, d1 ]} = { 0, c 1 , d1 } 

Q:={ [][1 	:Si} 
6 1 	6 1  

forj:=Oton do 

f1(j1) 

A1 (j) := j 

Pi U) :=j€ 

if j Q then A(j, 1) := 
dx 

else )(j, 1) := undefined 

end do j 

i:=2 

for j := 0 to n set 	(j) := -00 

Si:= { all special points of f, in [0, d]} = {0, Cj, d} 

min(, d, ) 	:=
di 

Q:=],[1 	:yES1 
Li 	Ei ) 

for j E 10, 1, ..., n} for which F_1  (j) > — oo do 

if )(j, i - 1) is defined then 
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dfi  
J := { 	:0< x <di , 	(x) = A(j,i - i)}

dx 
for all xEJUS1  do 

k 	
1 p 1 (j) + x 

Ji  
if k < n and (k) <_i(j) ± f(x) then 

i-i(j) + f(x) 

A(k) := a; 

Pi(k) :=p_i (j)+x 

\(k, i) := \(j, j - 1) 

end if 

end do a; 

else (if )(j, j - 1) is not defined) 

fort :=O to n do 

k 	r-'() 
+ 

ji 
if k < n and Pi  ( k) <-i(j)  + f(te1 ) then 

'i-i(j) + f2 (te) 

A(k) := t€ 

Pi(k) := pi-, (j) + t€ 

if t 0 Q then 

)(k, i) := 
dx 

else (if t e Q) 

i\(k,i) := undefined 

end if 

end if 

end do t 

end if 

end do j 

if i < r increase i by one and return to 3) 

ifFr (fl)>OOdO 

S := n 

:= pr (n) 

for i:= r down to 1 d 

x :=A(s) 
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Pnew := Pold - A i  (s) 

[p 
8i- 1 

end do i 

end if 

stop 

As in Algorithm A.0.1, if the discretisation number n is sufficiently large and if 

problem (2.37) were infeasible then the algorithm would return Fr (n) = - 00. 

The result x" does not satisfy the equality constraint exactly but contains a 

discretisation error with the following bound: 

q r <zq 	 (3.1) 

The reason for using the variable grid is to achieve good results Fr  (n) for relatively 

small discretisation numbers n. However, smaller n means that 6, is larger and 

hence the above bound implies that the violation of the equality constraint by x" 

can be larger. This suggests that it is a good idea to do a local optimization with 

x as starting point after the DP when n is small. 

3.1.1 Computational results 

For the discretisation numbers 20,40,60,80,100,200,500 Algorithm 3.1.2 was run. 

Equations of the form (2.39) were solved analytically. The results are given 

in Table 3.1. Comparing the results of Table 3.1 with those of Table 2.2 it is 

Fr(fl) j pr(fl) (=x) I run time (secs) 

20 393.57 986.93 0.03 
40 433.93 985.22 0.03 
60 450.30 999.56 0.05 
80 451.80 994.76 0.07 

100 453.37 995.35 0.11 
200 456.77 998.59 0.24 
500 457.08 999.85 0.59 

1000 457.06 999.16 1.39 
2000 457.24 999.87 2.58 

10000 460.03 999.98 14.27 

Table 3.1: Results of FJ-DP with variable grid 

clear that the variable grid FJ-DP method gives much better results for small 

discretisation numbers n than does the fixed grid FJ-DP method of section 2.6. 
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Secondly, for the same discretisation number n the run time of the variable grid 

FJ-DP is roughly twice the run time of the fixed grid FJ-DP method. As can 

be seen from the table the computed optimal vector x violates the constraint 

= 1000. The constraint violation satisfies (3.1) where Jr  is always equal 

to=. 

For the discretisation numbers 20, 30, 40.....1000 (always increasing by ten) 

Algorithm 3.1.2 with a local optimization added at the end with x  as starting 

point was run. The results are shown in Table 3.2. For those discretisation 

numbers of the form n = 10k with k e IV and 2 < k < 100 for which the result 

is not explicitly shown in this table the computed optimal objective value was 

always greater than 459.1. The optimal objective value of problem (2.37) is 460.12 

(rounded to 2 decimals). Surprisingly, the discretisation numbers 150,430,440 

and 970 worked considerably worse than other discretisation numbers of similar 

magnitude. The reason for the bad performance of these discretisation numbers 

is not that they are too small but that in the DP process some optimal actions 

are eliminated. The next example will deal with this issue. 

n I optimal objective value 

20 401.72 
30 428.49 
40 440.28 
50 454.58 
60 457.26 
70 456.75 
80 456.20 
90 456.11 

100 457.10 
110 456.22 

n I optimal objective value 

120 459.12 
130 460.12 
140 459.21 
150 457.10 

430 457.45 
440 456.12 

970 456.12 

Table 3.2: Results of FJ-DP with variable grid and local optimization added 

3.1.2 Problems with the basic variable grid FJ-DP method 

In this section a small example is used to illustrate the type of problem with 

Algorithm 3.1.2 which led to the bad performance of the discretisation numbers 

150,430,440 and 970. At the heart of the problem is that optimal actions are 

eliminated which can happen if for some state (j, i) the dual multiplier )(j, i) 

is defined when its value is actually not acceptable as a shadow price for the 

value function F. This often happens in a stage i when Ei  << 8. Consider the 



problem: 

	

maximize 	f(x i ,x 2 ,x3 ) := fl(xi) + f2 (x 2 ) + f3 (x 3 ) 

	

subject to 	x 1  + x2  + x3  = 6, 	 (3.2) 

C [0,3],x2  E [0,3],x3  E [0,3] 

where the functions fl, f2, f3  are given by 

fo 	ifO<x<1, 
fix) 

= 	0.9+0.lx if 1<x<3 

fo if0<x<2, 
f2 (X) = 
	if2<x<3 

f3 (X) = \/x+0.1 

By sketching these functions and by inspection it can be seen that the optimal 

point i of this problem has components = 1, i2 = 2, x3  = 3 which gives 

3.76 as objective value (to two decimals rounded). Let a variable grid algorithm 

similar to Algorithm 3.1.2 be applied to this problem and let the discretisation 

number be ri = 3. The values for q, 6 i  will be 

€3 1 

53 =2 

Step 1 (the initialisation step) determines p1 (j), A 1 (3), p1 (J) and )(j, 1) for 

j = 0,1,2,3 as follows: 

state (j,1) 1i(i) A1(j)  I P1(3) )(j,1) 

(0,1) 0 0 0 undefined 
(1,1) 1 1 1 undefined 
(2,1) 1.1 2 2 0.1 
(3,1) 1.2 3 3 undefined 

Then step 3 calculates F2 (1),  A 2  (j), P2  (j) and .A(j, 2) for j = 0, 1, 2, 3 as: 

state (j,2) 1  F2 (j) A 2  (j) I P2(3) )(j,2) 

(0,2) 0 0 0 undefined 
(1,2) 1.1 0 2 0.1 
(2,2) 2.1 2 4 0.1 
(3,2) 2.2 2 5 undefined 

And for the states of stage 3 it calculates: 



state (j,3) 1 F3 (A 1 A3  (J) I P3  (1) \(j,3) 

(0,3) 0.32 0 0 undefined 
(1,3) 1.45 2 2 0.35 
(2,3) 2.42 0 4 0.1 
(3,3) 3.25 1 6 0.35 

From the actions A(j) and values of pi(j) step 5 calculates the optimal allocation 

vector x as 

= (3,2,1) 

which gives 3.25 (to two decimals) as objective value. The calculated approxi-

mation to the optimal point x  is quite far away from the optimal point (1,2,3). 

Let's try to find out why the algorithm failed to find the point (1,2,3) or why it 

didn't find a point which is closer to the optimal point. 

Suppose the algorithm had found the point (1,2,3). The optimal path of point 

(1,2,3) would have to pass through the states (1,1), (2,2) and (3,3). For these 

states 
Pi 

 A i  (j), pi  (A and A(j,i) should be: 

state (j,i) I Pi(i) I A i  (A I pi  (j) I 	)(j,i) 
1 undefined 

(2,2) 2 2 3 undefined 
(3,3) 3.76 3 6 undefined 

Looking back at the previous tables the following is observed: For state (1,1) the 

algorithm calculated i(j), A i  (j), pi  (j) and A(j, i) as desired but for states (2,2) 

and (3,3) it did not. Both vectors (x 1 , x2 ) = (1, 2) and (x 1 , x2 ) = (2, 2) belong 

to state (2,2), both these vectors were checked in the DP process and the second 

vector has a slightly higher resulting objective value and hence defines F2(2), 

A2 (2), p2( 2) and )(2, 2). Departing from state (2,2) all actions were eliminated 

except x 3  = 0 and x3  = 3 because )¼(2, 2) = 0.1 and the function f3  has no 

discontinuous points and no point in the interval (0,3) with gradient 0.1. The 

action x 3  = 3 from state (2,2) would lead to state (4,3) which is outside the 

considered range. If the algorithm had left )(2, 2) undefined instead of setting 

A(2, 2) = 0.1 then from state (2,2) the actions x 3  = 0, x3  = 1, x3  = 2 and x3  = 3 

would have been checked and the algorithm would have found the point (2,2,2) 

as result which is closer to the optimal point (1,2,3) than (3,2,1) is. The point 

(2,2,2) has objective value 3.55. Observe that A(2,2) = 0.1 is not acceptable as 

shadow price since 

F2 (1) = 1.1 ~6 F2 (2) + )(2, 2)(p2(i) - P2(2)) = 1.9 



This is the case because the second components of the two vectors corresponding 

to F2(1) and to F2 (2) lie on different sides of the discontinuous point x 2  = 2. 

The variable grid FJ-DP algorithm can overcome this problem in the following 

way: Lagrange multipliers also have an interpretation as shadow prices. One can 

impose that A(j, i), when defined, must be acceptable as shadow price. 

Property 3.1.3 When in Algorithm 3.1.2 A(]',%') is defined then 

Fj  (k) > -00 

IF(k) - F(j) - )(j,i) (pi  (k) -(i))I 	'IA(j,i) (pi  (k) _pj(j)) 

must hold fork = j - 1 if j > 0 and fork = j + 1 if j < n. 'y > 0 is a fixed 

tolerance. 

Usually a value for 'y between one and two is suitable. Algorithm 3.1.2 can be 

improved by imposing Property 3.1.3 with, for example, = 1.5 in the following 

way: 

Algorithm 3.1.4 

same as step 1 of Algorithm 3.1.2 

same as step 2 of Algorithm 3.1.2 

same as step 3 of Algorithm 3.1.2 

for j:=Otondo 

if \(j, i) is defined and Property 3.1.3 does not hold then 

A(j, i) := undefined 

end if 

end do j 

same as step 4 of Algorithm 3.1.2 

same as step 5 of Algorithm 3.1.2 

3.1.3 DP with variable grid but no action elimination 

A DP method with variable grid but no FJ action elimination does not work so 

well as with action elimination. This is because in some sense ordinary DP is too 

greedy. In general it is good to have Pi (j),pj(j) associated with state (j, i) such 
that these two values together make state (j, i) an attractive state to depart 

from and take some action when doing the next DP-recursion from state i to 
stage i + 1. When doing the DP calculation of going from stage i - 1 to stage i 



it is not good to maximize j(j)  irrespective of optimality conditions. Ordinary 

DP would try to make F(j) as large as possible even on the expense that x does 

not satisfy the FJ conditions where x E JR2  is the computed vector belonging to 

state (j,i) with Eih. 1 fh(xh) = j(j). Ordinary DP would tend to not 'waste 

resources' i.e. to make p(j), in the case of problem (2.37), close to iJi  in the 

attempt to increase F2 (j). By doing so the computed optimal vector x e JR2  

for the subproblem corresponding to state (j, i) would violate the FJ optimality 

conditions. Furthermore, this move away from satisfying the FJ conditions can 

be quite big since Ei and 6i have different scales in general. But once the FJ 

property is destroyed for a state in stage i it is destroyed for all states in later 

stages whose optimal path passes through this particular state in stage i. Such 

local moves away from satisfying the FJ conditions would, of course, add up. At 

the end, with ordinary DP and a variable grid, it is likely that the computed 

optimal distribution is far away from satisfying the FJ optimality conditions. 

3.1.4 A further improvement 

In this subsection a further improvement for Algorithm 3.1.2 is discussed. Algo-

rithm 3.1.2 solves problem (2.37), i.e. the objects below refer to problem (2.37). 

Suppose x 1 , x2  e 1?2  (for some i), 

F1 = > fh(4), 

F2  = 	fh(X), 	12 

and )i  and )2  are the dual variables corresponding to x', x 2  respectively. Fur-

thermore, x 1 , x 2  both belong to the same state (j, i), 1. e. 131,132  satisfy 

	

(j-1)ö <j3i 	i6 

	

(j-1)ö, <12 	36j 

If x 1  and x 2  are possible vectors to determine 	(j), p2 (j), ,\(j, i) which one shall 

be preferred? Algorithm 3.1.2 prefers x 1  to x 2  if 

(3.3) 

If F1  is just a very little bigger than F2  but A, is much less than )2  and P1 > 13 
then in fact F2  should be preferred to F1  since it makes state (j, i) a better starting 

state for the determination process of states of stage i + 1. This is because the 

shadow price A is higher for x 2 . A better rule which also uses the information 



contained in A 1 , A2 , j3, P2  is the following: 

prefer x' to x2 i f 

	

Pi  > F2+A(p1 -P2) 	 (3.4) 

where 	
A

'  if P1 <P2 
'2 if1>2 

And if A is not defined then prefer x 1  to x2  if F1  > A. Decision rule (3.4) 

performs better than rule (3.3). 

3.1.5 Computational results 

An algorithm like Algorithm 3.1.4 which uses decision rule (3.4) instead of (3.3) 

was run with a local optimization added at the end. The results are shown in 

Table 3.3. Discretisation numbers of the form n = 10k with k E .KV, 22 < k < 100 

(which are not shown in the table) always had as result an objective value greater 

than 459.5 and moreover only for six such discretisation numbers (all six less than 

500) was the result not equal to 460.12, which is the optimum of problem (2.37). 

i. e. This algorithm seems to be robust with respect to increasing discretisation 

numbers. 

n optimal objective value 

20 438.06 
30 453.60 
40 451.07 
50 455.65 
60 453.41 
70 457.10 
80 459.71 
90 459.22 

100 459.14 
110 458.81 

n optimal objective value 

120 459.14 
130 459.22 
140 459.22 
150 459.22 
160 459.12 
170 459.14 
180 460.12 
190 459.63 
200 459.14 
210 460.12 

Table 3.3: Results of Algorithm 3.1.4 with rule (3.4) and local optimization added 

3.2 FJ action elimination applied to interpola-
tion methods 

In this section the FJ action elimination is discussed when it is applied to an 

interpolation method. The problem considered in this section is problem (2.1), 

(2.2) with the additional constraint (2.19). Suppose this problem is solved with 



a DP interpolation method which uses a discretisation of the state space and 

action space like the one of section 4.1 (described there in the first paragraph) 

and the discretisation is regular in each component of q in the state space (q, i) 

of stage i. The vector 6, which is a rn-dimensional vector of positive real values, 

characterises the grid of discretisation points in the state space of stage i. In 

other words: The discrete state (ii, 2, ..., im , i) corresponds to the real state (q, i) 

where the k-th component of q is 

qk = Jk8i,k. 

An interpolation method approximates F(q) only for discretised states (q, i). Let 

j(q) be the calculated approximation to F(q) for discretised states (q, i). Also 

actions A(q) are calculated only for discretised states (q, i). When going from 

stage i - 1 to stage i the following recursion is used: 

j(q) = max{ j1 (q - w(x)) + f(x) : xi  is a discretised action of Di 1 (3.5) 
Xi 

Typical for interpolation methods is that when x i  is a discretised action of D 

then (q—wj(xj), i — i) is not a discretised state. In order to use the recursion (3.5) 

an interpolation method uses an interpolation function (q) which interpolates 

j(q) at discretised states (q, i) and which is continuous. Z'. e. for discretised states 

(q,i), Pi (q) is calculated by 

j(q) = rnax{1_ 1 (q - w(x)) + f(x) : x i  is a discretised action of Di  1 (3.6) 
Xi  

Having calculated j(q) for all discretised states of stage i the interpolation func-

tion Pi  (q) is established, which completes the step of going from stage i - 1 to 

stage i. In the sequel it is discussed how FJ action elimination can be applied to 

interpolation methods. 

The maximization in the RHS of (3.6), ignoring for a moment that x i  must 

be a discretised action, can be reformulated as the following problem: 

maximize 	1 _1()+f(x) 	 (3.7) 

subject to 	4 + w(x) = q 	 (3.8) 

In this problem 4 e JRtm and x2  e JRnui are the free variables. The FJ conditions 

to this problem are 

= ), 	 (3.9) 

A0(Vf(x))T = ATVw(x) 	 (3.10) 

= q, 	 (3.11) 

0, 	 (3.12) 

AO  = 0 or 1 	 (3.13) 
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where VF i (t) is a rn-dimensional gradient column vector, Vf(x 1 ) is a n-

dimensional gradient column vector and Vw(x) is the rn x ni Jacobian matrix of 

wi  at x. Notice that if A O  = 0 then (3.9) implies ) = 0 which contradicts (3.12). 

Hence the conditions (3.9)-(3.13) simplify to 

= )., 	 (3.14) 

(Vf 2 (x))T = ATVw(x) 	 (3.15) 

= q, 	 (3.16) 

Next a procedure of an interpolation DP method with FJ action elimination is 

given for going from stage i - 1 to stage i for i > 2. After that this procedure will 

be explained. For simplicity let's assume that every subproblem corresponding to 

a state (q,i) is feasible and that for all discretised states T(j 1 ,j2 , ...,jm) > —oo 

after the algorithm has completed the step of going from stage i - 1 to stage i. 

for all (jl,j2, ...,j) E Xm do F( 	... ,j,) := - 00 

Si  := aDj  U {x : x E D2 , w i  or f2 is not differentiable at x} 

if Si has an infinite number of elements then 

let 3i  be a finite representative set of elements in S i  

else 

:= S 

end if 

for all (jl,j2,...,jrn) E Xmdo 

G:= {q: q E Rm , 	- 3ki-1,k I < 8i-1k for 1 <k <rn} 
2 	- - 

define A E JRtm such that for 1 < k < rn 	 (q) Vqe C 
aqk  

define ) E JRtm such that for 1 < k 	
- 

rn: 	 (q) Vq E G 
Dqk 

J := {x, : x, e DZ \SZ , x i  is a discretised action of D 2 , EL\ with 

A < .\ <) such that ) and x i  satisfy (3.15)1 

for all x e S U J do 
k qk + W,(X) 

Q:={q:qEG, 	 EX for1km} 
6i,k 

for all q E Q do 

for 1 <k <m
(X)  

let (t 1 , t2, ..., tm) e 	such that tk 
= qk + W 

 
6i,k 

if F(t1 ,t2 , ...,tm) < P-i (q) + f(x) then 

Fj  (t 1 , t2 , ..., tm) := 	_1(q) + f(x) 



A i  (t i , t2, ..., t,) := x 

end if 

end do 

end do 

end do 

Discretised states (q, i) are also denoted by (jl,j2, ...,j, i) where each A E 7' for 

1 < k < m and the relationship between (q,i) and (ji ,j2 , ...,jm ,) is qk= 3käi,k 

for 1 < k < m. The procedure contains both objects (q, i) and (ii, 2, ..., jm) i). 

The procedure tries to calculate F(j1,j2, ...,jm)  for every discretised state of 

stage i. The procedure uses the labelling method (or reaching). It involves not 

only values of the value function F_1  or F_1  at discretised states of stage i - I. 

Therefore, in some sense, the outer loop in the labelling method does not cycle 

through discretised states of stage i - 1 but through areas around discretised 

states of stage i - 1. These areas around discretised states of stage i - 1 cover 

the relevant state space of stage i - 1. In the procedure this is seen in lines 8 

and 9. Line 8 is a loop through discretised states of stage i - 1 but line 9 defines 

a box G of states of stage i - 1 around the discretised states of the embracing 

loop. Lines 10 and 11 define lower and upper bounds (A, ) for the components of 

VF- 1 (q) on G. Of course, the tighter the bounds are, the greater the potential 

for action elimination. J is defined as the set of those discretised actions x i  for 

which (3.15) can hold with a A satisfying A < A < A. Discretised actions x i  at 

which fi  and w 2  are differentiable and which are not in J can not be optimal 

actions to be taken from a state (q, 1 -  1) with q E G as the FJ conditions can not 

be fulfilled. Hence only x i  E J U -9i need to be considered as actions from states 

(q, i - 1) with q e C. Q (line 15) is the set of those q E C such that taking the 

discretised action x from the embracing loop leads to a discretised state of stage 

i. Usually, interpolation methods have increasing discretisation step lengths for 

the state space for increasing stages. i.e. usually 6. Hence typically Q 
has no element or one element. This means that the loop (for all q e Q do  ...) is 

a small loop. 

When (3.6) is reformulated by (3.7), (3.8) it is ignored that x i  is constrained 

to be a discretised action of D. Therefore the optimality conditions (3.14)-(3.16) 

are arrived at under the assumption that x i  is a free variable, not constrained 

to be a discretised action. This means that the algorithm only works well if the 

density of discretisation points in the action space Di  is large enough, in some 

sense, in comparison to the density of discretisation points in the state space of 

stage i - 1. 
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3.3 Conclusions 

This chapter discussed two effective discretisation schemes for allocation prob-

lems of the form (2.1),(2.2) when r is large and showed how to apply FJ action 

elimination with these schemes. 

For large problems with many stages variable grid and interpolation methods 

are usually the best discretisation schemes. However, interpolation methods have 

the problem that actions must be interpolated when working backwards the op-

timal path of states in order to get the solution vector i. This can cause trouble 

when the problem is highly non-linear or discontinuous at some points. Variable 

grid methods do not have this problem. Variable grid methods and interpolation 

methods generally calculate an optimal vector i which does not satisfy equality 

constraints exactly since a discretisation error is incurred. There is also this prob-

lem with inequality constraints if they should hold as equalities at the solution. 

To overcome this problem a local optimization procedure can be added at the end 

of a variable grid or an interpolation method. It is problem dependent whether 

the variable grid method or the interpolation method is better. 
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Chapter 4 

Allocation problems with multi 
dimensional state and action 

aMMOM 

In this section details of the FJ action elimination will be discussed for problems of 

the form (2.1) and (2.2) with m> 2 i.e. with more than one constraints. Unlike in 

sections 2.6 and 3.1, discretised implementations will not be given in full. So far, 

the objects x, wi  were always vectors with dimension n, m respectively and it was 

not necessary to explicitly refer to single components of x, w. In this section this 

is necessary and it will be done using a second subscript. For example, the vector 

x2  has components The components of wi are denoted in similar 

fashion. Since rn > 2 in this section the vector 4 has components 2, 42 ....., q. 

For completeness and easier reference problem (2.1) and (2.2) together with the 

exact conditions on the variables and functions is stated: 

max 	 fh(xh) 	 (4.1) 

subject to 	Wh(Xh) = 	, 	 (4.2) 

xhEDh 	Vh:1<h<r 	 (4.3) 

where Dh C Jfh, fh : 'R' - 11?, Wh : 1R 	]R and fh, Wh are piecewise 

differentiable for h = 1, ..., r, and 4 E JRtm . The following definitions of objects 

will make it clear how a practical implementation can be derived from Algorithms 

A.0.1 or 3.1.2 through some extensions and modifications. These definitions are 

extensions of Definition 3.1.1. In Definition 3.1.1 (and Algorithm 3.1.2) the state 

space is one dimensional and hence the discretisation step length of the state 

space in the i—tb stage 6i  is a positive real number. Now the state space is 

rn—dimensional and therefore 6 i  is a rn—dimensional vector of positive real num-

bers. As with xi  and w, the components of Ji  are indicated using a second 
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subscript. 

Definition 4.0.1 

(j 1 ,j 2 , 	i) is the state considering x 1 , z 2 , ...,Xi such that 

(jk - 1)S,k < E ih= l wh,k(Xh) 	for all k: 1 < k < m 

and each Xh E Dh for 1 < h <i. For every k, j E X. 

F(j1,j2, ...,jm)  =maximal value of 	fh(xh) 

where (XI, X2, ...,x 2 ) belongs to state (jl,J2,  ...,jm,i). 

i(jl,j2, ... ,jm) =computed approximation to F( il,i2, ••.,im). 

A1 (j i) j 2 , ... ,j) =computed value that x i  takes, when (X1, X2, ...
)
x) 

belongs to state (j1,j2, ... ,jm,i) 

and 	h=lfh(xh) = i(jl,j2) ... ,jrn). 

. A(j 1 ,j2 , ...,jm)  e 1R. 

(ji,j2, ... )jm) =set of elements (A 0 , A) such that A o  e {O, 1}, 

A E JRtm (A 0  A) =A 0, if fh, 'wh are differentiable at Xh and h < i 

then Ao(Vfh(xh))T = A T Vwh(xh)} where (x 1 , x2
, 11 11 

x) 

are the computed vectors which together belong to state 

(j'J2 ..., Im, i) and for which E ih = 1  fh(xh) = ijl,32, ..., jm). 

pi(j1,j2 7  .",jm) = 	w,(x,) where (x 1 , x2 , ..., x) are the computed 

vectors which together belong to state (ii, j2, ..., m) i) 

and for which >:h-1 fh(xh) = Fi (j 1) j2 , •••)• 

Some remarks on these definitions: (ii, 2, ..., m, i) can be thought of as an in-

finite set of vectors. F(j1 , j2, ..., j) is the solution of a maximization problem 

with infinite search space. F(j1 ,j2 , ...,jm) is approximated by i(jl,j2, ...,jm). 

A(j 1 ,j2 , ...,jm) is a real valued action vector. B i (ji,j2, ...,jm) is the set of dual 

variables (A 0 , A) which together with the computed optimal solution x 1 , x 2 , ..., Xi 

of the subproblem corresponding to state (j 1 ,32 , .., j, i) satisfy the FJ condi-

tions. By definition Pi(jl,j2, ...,jm) satisfies: 

(jk - 1) ,k <Pi,k(31,32, ...,im) 	Jk8i,k for k = 1,2,..., m 

pi (ii, 2, ..., 3m) is introduced for the correct assignment of (x 1 , x2 , ..., xj , xi) 

to states when (x 1 , x21 ..., x) are the computed vectors which belong to state 

(jl,j2, ...,j, i) and for which > fh(xh) = ...,  IM) . 

55 



4.1 Calculating the action set when m 2  = m 

Suppose that for problem (4.1)-(4.3) ni = m for some i < r , a FJ-DP algorithm 

is applied to the problem and the values for F, A, B, Pt have been already cal-

culated for all states (j i ,j2 , ... ,j,t) with t < i — i 1. e. the FJ-DP algorithm has 

already advanced to stage i - 1. Suppose that the discretisation of the state space 

used is such that in each stage jj takes Zk different values for 1 < k < m and that 

xi E Di  is discretised such that the component x,5  takes d5  different values for 

1 < s < n, i.e. D has at most J.J d8  discretisation points. When FJ-DP goes 

from stage i - 1 to stage i then it has to calculate the actions which have to be 

checked from state (i', ...,j, i—i). This means for to, A) E z-i(ji, 32, ..., irn) 

it has to calculate all x i  e Di  satisfying 

A 2 	() + ... + A 
t9Wi,m 

Am 	(xi ) 	(4.4) 
axi"

A0 	(xi ) = A 1 	(x2 ) + 

for all s:1<s<ri 

The quick solution of the above ni simultaneous equations in x 2  depends a lot on 

problem specific information available. If no additional information is available 

and the solution has to be found numerically the question is whether FJ-DP is 

any faster than ordinary DP. 

Suppose the solutions to the above equations have to be found numerically. 

Let's discuss how this can be done such that FJ-DP is faster than ordinary DP. 

For this it is assumed that the functions f, w, are piecewise continuously differen-

tiable, not just piecewise differentiable. One good method would be the following: 

Before doing the DP step of going from stage i - 1 to stage i run once through 

the discretised actions x i  to get additional information. The two cases A 0  = 0 

and A0  = 1 have to be looked at separately. Let's first do the case A 0  = 0. Look 

at 

_______ 	 l9Wi,2 	 DWi, m  
0 = A 1 	(x2 )+ A 2 	(xi ) + ... + Am 	(xi) for s = 1, 2, ...,n 	(4.5) 

for each discretisation point xi E Di  and decide whether these ri (= rn) linear 

equations in A 1 , A2 , ..., .A m  allow a solution (A 1 , A 2 , ..., Am ) ~ 0 or almost allow 

such a solution or do not allow such a solution. If they allow such a solution 

include this point x i  in a set P0  which initially is empty. If they almost allow 

such a solution then use a local search method like Newton's Method to find a 

close point which satisfies (4.5) for some (A 1 , A 27  ...) Am ) 54 0 and include this point 

in P0 . It is expected that the number of elements of P0  is at least one order of 

magnitude less than the number of discretisation points x 2  E D. 
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For the case A 0  = 1 solve the following n, (= m) simultaneous linear equations 

in A 1 , A 2 , ..., A,,, for every discretised action x i  if possible and if there is a unique 

solution. 

afi (xi) = 
	

(x i ) + 	(x i ) + ... + A, 	(xi ) 	(4.6) 
xi, s 	 xi,s 	 xi, s 	 xi, s  
for all s : 1 < s < n, 

In this way a finite number of one-dimensional search intervals of maximal length 

of the form 

	

It := {(a+0(b—a),c2 ,c3 ,...,c) :0<0< 1} 	 (4.7) 

can be established such that a, b e JR, c1 is a discretised value of the component 

xij  for 2 <1 < n,, the functions f, wi  are differentiable on It  and A is increasing 

or decreasing on It. 
Ordinary DP simply checks every discretised action x i  e D2  as a possibly op-

timal action to be taken from state (j 1 , j2, ..., m, - 1). This requires 0 (fl 1  dk) 

operations. Assuming that B_ 1 (j 1 ,j2 , ...,jm) has only one element (A 0 , A) FJ-DP 

only checks those values of x 1  C D2  satisfying (4.4) as possibly optimal actions to 

be taken from state U1, j2 ...,j, i — i). Assuming that the space of points x 2  E D 
where f2 or w i  is not differentiable has at least one dimension less than the set D 
itself, if A 0  = 1 then FJ-DP can find the points x i  E D2  approximately satisfying 

(4.4) and having a discretised value for the component x j , 1  where 2 < I < n2  with 

expectedly 0 (log d1 
11 

L2 dk) operations since on the intervals It  binary bisection 

can be used to find a point x 2  with A 1  being equal to A 1 . The establishing of 

the search intervals It  causes O(fl 1  dk) amount of work. If A 0  = 0 then FJ-DP 

only has to check the actions xi E P0  as possibly optimal actions to be taken 

from state (ii, j2, ..., m, j - 1). Since P0  is most likely to have much fewer than 

f ni  
1k=1 dk points, FJ-DP does less work than ordinary DP when A 0  = 0. However, 

the case A 0  = 0 is usually very rare. Hence FJ-DP is expected to take 0(fl 1  dk) 

+ 0(fl 1  Zk log d1 fTk=2 dk) operations to go from stage i - 1 to stage i, Ordinary 

DP takes 0(flt 1  zk fl1 dk) operations for this. 

If among {d 1 , d2 , ..., dni d1 is the largest it is a good idea to establish the 

search intervals it  along the axis of x2 , 1  instead of x, 1 . In this way the complexity 

is reduced by making better use of the binary bisection search. 

When giving the complexity of FJ-DP the 'expected complexity' was given. 

This is because two assumptions were necessary. Firstly that the number of states 

U1, j2, im, i — 1) of stage i — i for which B_1(j1,j2, ...,jm)  has more than one 

element is of magnitude less than the total number of states of stage i - 1 (which 

is at most HI Zk), secondly that the space of points x i  e Di where fi  or wi is 

not differentiable has at least one dimension less than the set D2  itself. 

57 



4.2 Finding the action set when ni > m 

Suppose that for problem (4.1)-(4.3) ni  > m for some i < r, a FJ-DP algorithm is 

applied to the problem and the values for F, A, B, Pt have been already calcu-

lated for all states (i', J2 i ..., j, t) with t < i - 1. Suppose that the discretisation 

of the state space and action space is the same as in subsection 4.1. When FJ-DP 

goes from stage i - 1 to stage i then it has to find the actions which have to be 

checked from state 01, j2, ...,j, i — i). This means for (A 0 , A) e z—i(ji, 2, ... ,m) 
it has to find all x 2  e Di  satisfying (4.4). If this can be done analytically, good. 

In the sequel it is shown how this can be done numerically such that FJ-DP is 

faster than ordinary DP. 

Before doing the DP step of going from stage %' -  1 to stage i run once through 

the discretised actions x i  to get additional information. The two cases A O  = 0 and 

A O  = 1 have to be looked at separately. For the case A 0  = 0 look at (4.5) for each 

discretisation point x i  e D 2  and decide whether these n2  (> m) linear equations in 

) 1, ..., A m  allow a solution (A 1 , A2)  ..., 5'm) 0 or almost allow such a solution 

or do not allow such a solution. If they allow such a solution include this point x 

in a set Po  which initially is empty. If they almost allow such a solution then use 

a local search method like Newton's Method to try to find a close point which 

satisfies (4.5) for some (i', 
") 5'tm) 54 0 and include this point in P0 . 

For the case A O  = 1 look at (4.6) for each discretisation point x i  E Di and, 

as before, decide whether these n (> m) linear equations in A1, '2, ..., A m  allow 

a solution or almost allow a solution or do not allow a solution. If they allow a 

solution include this point x i  in a set P1  which initially is empty. If they almost 

allow a solution then use a local search method like Newton's Method to try to 

find a close point x i  which satisfies (4.6) for some A1, '2, ..., A m  and include this 

point in P1 . 

It is expected that the number of elements of P0  and of P1  is at least one 

order of magnitude less than the number of discretisation points x, e D. In-

stead of checking every discretisation point x 2  E D2  as a possibly optimal ac-

tion from state (jl,j2, - 1) only the points in Po  are checked if A 0  = 0 

and only the points in P1  are checked if A 0  = 1 when (A0 , A) is the only ele-

ment of B_ 1 (j 1 ,j2 ..... jm ). Hence when the action set is found numerically FJ 

DP is expected to need 0(fl 1 dk)  operations to establish the sets Po , P1  and 

0 (fl 1  Zk Max (Po,  1  P1 )) operations to calculate Tj, A, Bi,pj  for all states of 

stage i. 



4.3 Calculating the action set when ri <m 

Suppose that for problem (4.1)-(4.3) n2  <rn for some i < r , a FJ-DP algorithm 

is applied to the problem and the values for F, A, B, Pt have been already cal-

culated for all states (ii,32, ..., j, t) with t < i - 1. When FJ-DP goes from stage 

i - 1 to stage i then it has to calculate the actions which have to be checked 

from state (jl,j2, - 1). This means for (A 0 , A) E z_1(j1,j2, ...,jm) it 

has to calculate all x, E Di  satisfying (4.4). A good numerical procedure to do 

this has not been found for the case that no special information about the func-

tions fi  and w 2  can be exploited. One problem is that when Ac = 1 then (4.6) 

is a non-homogeneous set of n2  (< m) linear equation in A 1 ....., Am  which has 

more variables than equations i.e. usually (4.6) allows infinitely many solutions 

(A 1 , A2, ..., )'m) for every discretisation point x 2 . This makes it hard to exploit 

information collected by running initially through the discretised actions x 2  E D2  

in order to then use this information to speed up the calculations of actions which 

have to be checked from states U1, j2, ...,Jm,'1  1). 

4.4 A special case for ni  <m 

In the last subsection the difficulty was outlined of finding a good numerical proce-

dure for calculating the actions which have to be checked from state (ii, 2, ", 3m, 

1) when FJ-DP goes from stage i - 1 to stage i, ni < rn and no special struc-

ture of the functions f2 and w 2  can be exploited. One kind of structure of the 

functions f, wi will be discussed in this section. This structure allows a good 

numerical procedure for calculating the actions which have to be checked from 

state 01, j2) ... ,j, i - 1) when FJ-DP goes from stage i - 1 to stage i. 

Suppose that f2 and wi linearly depend on k functions gj , i (xj ), 9j ,2(xj),..., 

gi , k (x j ) and gj ,j(Xj) E JR for 1 <j < k. Let gj(xj) E JRk  with components gj , i (x j ), 

g2,2(x 2 ),..., g2 ,k(1 2 ) and 

f(x 2) = cg(x 2 ), 	 (4.8) 

w(x) = Ag(x) 	 (4.9) 

k < n+1 	 (4.10) 

where c2  e IRk  and A 2  is an m x k matrix. Inserting these relationships into (4.4) 

yields equations of the form 

ag2 	59i,2 (x i ) + A3 
D9 
	
ôgk 

axi"
(xi) 	(4.11)/ti 	

,1
(x i ) = L2 	x i ) + ... + [k

axis 
 

 axi,s  
for all s : 1 < s < n 



where IL 1 , 	are all depending on c, A 2  and (A0 , A). When FJ-DP goes from 

stage i - 1 to stage i then it has to calculate the actions which have to be checked 

from state (j1,1* 2, ... ,j, i — 1). This means for 	A) E z-1(11)j21 ... ,jm) it has 

to calculate all x 2  E D2  satisfying (4.4). In our case these actions can be found by 

calculating all x 2  E D2  satisfying (4.11) after having computed ILk from 

c, A 2  and (A O , A). 

If k = n 2  + 1 the actions x 2  e D2  satisfying (4.11) for a given A 0 , A) E 

i—l(j1,j2, ...,jm) can be found quickly when the functions gj,1, g2 ,,..., Yi,k are 

investigated before doing the DP recursion of going from stage i - 1 to stage i. 

The idea is to use the method described in section 4.1 for the finding of all x 2  E D2  

satisfying (4.11). The method described in section 4.1 finds all x2  E D2  satisfying 

(4.4) for a given (A 0 , A). In section 4.1 m = ri hence (4.4) consists of n2  equations, 

each containing n, + 1 dual variables (namely Ao, A 1 ,..., Am ) and n2  ± 1 functions 

(namely 

fi, 

Wi,1, Wi,2,..., Wi,m). Compare this to (4.11) which also consists of n 2  

equations, each containing n + 1 dual variables (namely IL1, /L2,...,  Pk) and n2  + 1 

functions (namely 9j,i, 9i,2,.•, 92 ,,). In section 4.1 the method described there 

deals separately with the cases A 0  = 0 and A O  = 1. The method for finding all 

x, e D, satisfying (4.4) when A O  = 0 in section 4.1 can be applied for the finding 

of all x2  e D2  satisfying (4.11) when IL, = 0. The method for finding all x 2  e D2  

satisfying (4.4) when A 0  = 1 in section 4.1 can be applied for the finding of all 

x 2  e D2  satisfying 

/L2 3g, 2 	IL3 9g, 3 	 ILk (9g 2 ,k 
axi's(xi) = ----(x i) + - 	(xi) + ± 

ji 	
(xi ) 	(4.12) 

i 's 

for all s : 1 < s <ri2  

when ,u $ 0. But when 	0 then x 2  satisfies (4.12) if and only if it satisfies 

(4.11). Hence, when k = n, + 1 then the method of section 4.1, described there 

for the finding of all x 2  E D2  satisfying (4.4) given (A 0 , A), can also be used for 

the finding of all x2  E D, satisfying (4.11) given (A 0 , A). 

If k < n2  + 1 then the actions x 2  E D2  .satisfying (4.11) for a given (A 0 , A) 

can be obtained using the method of section 4.2, which finds the actions x 2  E D2  

satisfying (4.4) for given (A 0 , A) when n2  > m. The argument for the suitability 

of the method described in section 4.2 is similar to the argument of the previous 

paragraph. 

The example of section 2.7 has the structure described by (4.8),(4.9) which 

will be explained in the sequel. In problem (2.41) fh  is not used in the same way 

as it is used in (4.1)-(4.3). In order to avoid confusion let's restate the problem 

(2.41) renaming fh  there with Sh. Let's also replace the dummy variable h by i. 



So problem (2.41) has the form 

r 
i 

maximize 	s2 (x2) 
2i + 1 

i=1 
r. + 1 

subject to 	 s(x1) 
2z + 1 

i=1 
r 

Xi 

x 2 EJR, xe[0,d] 

 

 

1 <i < T, 

(4.13) 

with si being functions JR -+ 11?, 41  E JR, 42 E JR. Now, problem (4.13) corre-

sponds to the general problem form (4.1)-(4.3) by setting 

i 
f(z) 

= 2+iSi(xi), 	 (4.14) 

/ 	s(x) '\ 
w(x) = I 	T 

" 	xi 	) 	
(4.15) 

(4.14),(4.15) correspond to the form (4.8),(4.9) by setting 

ci 	(- 	0 )' 

9i (Xi)
- ( Si (Xi) 

- 	xi )' 

- 	2i+1 
( 	

I A, 	
i±L 

- 	0 	1) .  

Since here k = 2, ri2  = 1 and m = 2 we have k = n + 1. Hence the problem of 

section 2.7 possesses the structure (4.8)-(4.10). 

4.5 Conclusions 

In FJ-DP it is very important to have a quick method to find all actions xi E 

D, that satisfy (2.10) or equivalently (4.4) for any given (\o,  )). The speed-up 

achieved by the action elimination essentially depends on this. In this chapter it 

was discussed how to numerically find the actions satisfying (4.4) such that the 

action elimination results in a speed-up of DP. 

For the cases ni = m and ni > m methods have been shown which solve (4.4) 

fast enough to make FJ-DP faster than ordinary DP. For the case ni  <rn a good 

numerical way for solving (4.4) has only been found for the special situation when 

the functions f2 and w, linearly depend on at most n + 1 linearly independent 

functions JRfli R. 
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Chapter 5 

Discrete problems 

In this section discrete allocation problems will be discussed and it will be shown 

how the FJ action elimination can be applied. The class of problems considered 

is: 

max 	 fh(xh) 	 (5.1) 

subject to 	wh(xh) = 	, 	 ( 5.2) 

Xh e Dh 	for h = 1, 2, ..., r 	 (5.3) 

The FJ conditions are first order optimality conditions for differentiable functions 

but the class of problems above involves discrete and therefore not differentiable 

functions. The FJ action elimination can be applied by using interval arithmetic 

for derivative approximations. This point needs further explanation. 

The FJ conditions employ partial derivatives. Since f, wi are only defined 

for discrete points x i  E X'i there are only forward and backward differences. 

However, the view is taken that there always exist continuous and differentiable 

interpolating functions f : JR -4 JR and tT : 1R' —* JRtm such that 

the value of f2 coincides with that of fi  and the value of wi coincides with 

that of E) i  for all arguments x 2  E 

the partial derivatives of fi  and Cvi  at x 	are bounded by the forward 

and backward difference approximations with step length 1. 

The requirement b) will be explained. For x i  E Z 	1k(xj) (where Xj,k is 

again the k-th component of vector x 2 ) has the forward difference approximation 

of step length 1 f(x + ek) - f(x) where ek is the k-th unit vector i.e. the 



vector with the k-th component equal to 1 and the other components equal to 

0. Similarly the backward difference approximation is f2 (x) - - ek). For 

x 2  e D, (x + ek) e D, (x - ek) e Di  let 

	

:= max{f(x + ek) - fi(x), f(x) - 	- ek)}, 

	

a := min{f2 (x + ek) - f(x), f(x) - 	- ek)}, 

if xi  e D1 , (x + ek) E D, (z - ek) V Di  let 

a := f(x + ek) - 

if x2  E D, (x + ek) V D, (x - ek) E D2  let 

:= f(x) - 	- ek), 

and if xi e D, (x + ek) 0 D, (x - ek) 0 Di  let 

(The definitions of id and a are achieved in the cases (x + ek) Di  and (x - ek) 

D, by thinking of f(x + ek) and f2(x - ek) respectively as being equal to —oc.) 

does not exist in the classical meaning of partial derivatives since fi  is a 

discrete and hence not a differentiable function. Define 

	

afi 
 (x i ) := [a,] 	 (5.4) 

t9Xj , k 

i.e. fi(x ) is an interval with the boundaries being determined by the forward 

and backward difference approximations to the classical partial derivative. The 

requirement b) above for the partial derivative -(x) is simply: 

aj 	___ 
(x i ) e 	(x i ) 

IgXi,k f9Xj,k 

The intervals bounding the partial derivatives !'(x)  can be found in similar 

but not identical way. Let 

max {w,3(Xi + ek) - 	 - 	- ek)}, 

min {w, 3  (Xi + ek) - w 2 , (x), w ,  (x) - w,3  (Xi - ek)}, 
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(Note that this definition for Zi and a is irrespective of x i  e Di  or xi  0 D, unlike 

in the previous definition leading to'k(xj).)  Define 

owij 	 - 

(x 2 ) := [g, a]. 
uXj,k 

X,k(j) 
for x e 	be the bounding interval for 	'-(x) where 	is, again, the 

j-th component of vector ti. In the sequel it is described how a discrete version 

of FJ action elimination is applied to problem (5.1)-(5.3). The description will 

be theoretical (like in sections 2.1-2.5) in the sense that the state space will be 

continuous. (In sections 2.1-2.5 the state space and action space were continuous, 

but problem (5.1)-(5.3) imposes a discrete action set.) 

For DP applied to problem (5.1)-(5.3) the subproblem corresponding to state 

(q,i) is 

F(q) 	max E fh(xh) 	 (5.5) 
X1,X2,...,Xj 

	

subject to E Wh(Xh) = q, 	 (5.6) 

	

xhEDh for h=1,2,...,i 	 (5.7) 

where q E JRtm and all other quantities are as in (5.1)-(5.3). If this subproblem is 

infeasible then define F(q) := —oo. The DP recursion is 

F(q) = max {f 2 (x) + F2_i(q - 
XiEDi 

(5.8) 

For the discrete problem the meaning of B(q, xi ), where x = (x, x, ...)  Xi 

is different from that for continuous problems which was described in section 2.2. 

Let Vfh(xh)  be the nh-dimensional column vector of intervals where the k-th 

component isfk(xh).  Let Vwh(xh) be the m X h  matrix of intervals where the 

	

k)-th entry is 	-'(xh). The set B(q, x) is the 	set of (Ao,  )) where Ao  = 0 or 

1 and ) E Rtm which satisfy 

	

\o (Vfh (xh)) T  fl AVw,(x,) E 0, 	for h = 1, ..., i, 	(5.9) 

	

)7,  Wh(Xh) = q, 	 (5.10) 

	

A0  = 0 	or A0  = 1, 	 (5.11) 

	

N, A) 7~ 0 	 (5.12) 

In (5.9) the intersection sign applies to the k-th component of the vector left of it 

and to the k-th component of the vector right of it for every k : 1 < k < nh. The 



not-equality sign in (5.9) applies to every component of the LHS nh-dimensional 

vector of intervals. More explicitly, (5.9) says that 

A0 _afh 	

(j=1aw) 

00 	 (5.13) 
aXh , k 

for every l<h<i, 1<k<nh 

where the expression in big brackets and the expression )ok(xh)  are evaluated 

according to the rules of interval arithmetic. Let x2_1 be like x i  except that the 

last component is missing, i.e. x? 11 = (xr,x ... xi 1 ). For i > 2 the set of 

properties in (5.9)-(5.12) defining the set B_ 1 (q - w(x), x 1 ) is fully contained 

in the set of properties defining B(q, xi). Furthermore the properties which 

are amongst those defining B2  (q, x 2 ) but not amongst those defining B_ 1 (q - 

are 
A o (Vf( x ))T 0 	 (5.14) 

Let N(x 2 ) be the set of all (A 0 , A) which satisfy (5.14). It follows that for i > 2 

B(q, x) = B_ 1 (q - w(x), x1) fl N(x 2 ). 

The DP action elimination algorithm employs a function of states B(q) defined 

by 

B2  (q) = B(q, i,), 

where x, is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B2 (q). The essence of the action elimination is to 

replace (5.8) with the recursion below. 

F2 (q) = max{f(x) + F_1 (q - w(x)) : (A 0 , A) e B_ 1 (q - w(x)) 
XiEDi 

such that (A0 , A), x 2  satisfy (5.14)} 	(5.15) 

The argument for this action elimination for discrete problems of the form (5.1)-

(5.3) is the following: suppose that fh and 'thh are defined for xh e ]fflh and 

are interpolating functions for fh  and 'Wh respectively. Further suppose that the 

problem 

max E fh(xh) 

subject to 	t(Xh) = 

were solved by using DP with (continuous) FJ action elimination (as described in 

sections 2.1-2.5) but the action space has been discretised and the set of discretised 
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actions Xh corresponds to Dh. The solution of this discretised DP problem is the 

same as the solution of (5.1)-(5.3) since fh, Wh are the interpolating functions of 

fh and Wh respectively. Applying the FJ conditions (2.6)- (2.9) in state (q, i) for 

the functions fh, Wh together with the uncertainty about the partial derivatives 

Of fh, Wh expressed by 

(xh) E 
09A

afh (Xh) for all 1 <k < nh 
OXh,k 	&Xh,k 

Wh , 	______ 
and 	

a 	
(Xh) E 	(Xh) for all 1 < k <nh,  1 <j <m 

yields the conditions (5.9)- (5.12). These conditions in turn suggest the replace-

ment of (5.8) with (5.15). In order to implement the recursion (5.15) for going 

from stage i - 1 to stage i (for i > 2) Procedure 2.3.1 of section 2.3 is used with 

the third command (lines 3 and 4) being replaced with 

for all xi E Di  for which 3 (A o , A) e B_ 1  (q) 

such that (A 0 , A), x i  satisfy (5.14) do 

Conditions (5.9)-(5.12) define the set B(q, x 2 ). When implementing this ac-

tion elimination in practice the question is how to obtain a more useful description 

or classification for the set B(q, x) than (5.9)-(5.12). Even to work with a set 

B(q, x) which is a superset of B(q, x 2 ) might be preferable to working with 

B(q, x) if the description of B(q, x) is simple. 

If 	> m then the number of interval relations in (5.9), or equivalently 

in (5.13), is at least as big as the number of components of vector A. Consider 

the following set of linear interval-arithmetic equations in (A 0 , A): 

(x,) = 	 (xh) 	 (5.16) 
aXh , k 	 DXh,k 

j=1  

for every l<k<nh, 1 < h < i 

It is possible to deduce from this set of equations confidence intervals for A for the 

two cases A 0  = 0 and A 0  = 1 using Gaussian elimination in interval arithmetic. 

In this way it is possible to calculate confidence regions for every component of A 

for the case A 0  = 0 and for the case A 0  = 1 which define a superset B(q, x) for 

B(q, xi ). 

The following procedure is a practical implementation for going from stage 

i - 1 to stage i. Let 

Ei (q) = .j(q,ii) 



where iii is the vector which defines B(q) i.e. for which 

B(q) = B2  (q, 

ii is the optimal vector for subproblem (q, i) that the algorithm has computed 

at the time of defining B(q). The idea behind the following procedure is to not 

use action elimination if -'1  nh < m, to compute . i ( q) for the first time if 

	

nh >— m and 	< m, and thirdly, to use action elimination when 

>=iflh >— m. 

for all q E ]R set F2 (q) := — 00 

	

if 	<m then 

for all q e JRtm for which F_1 (q) > — oo do 

for all xi E D2  do 

if F(q + w(x)) < F_i (q) + f(x) then 

F(q + w(x)) := F 1 (q) + f(x) 

A(q + w(x)) := x i  

end if 

end do x 

end do q 

else (if E nh >— m) 

for all q E JRtm for which F_1 (q) > — oo do 

<m then calculate E_ 1 (q) 

for all x2  E Di  for which (A 0 , A) E E_ 1 (q) 

such that (A O , A), x i  satisfy (5.14) do 

if F(q + w(x)) < F_1 (q) + f(x) then 

F(q + w(x)) := F_1 (q) + f(x) 

A i  (q + w(x)) := x i  

j(q + w(x)) := j_i(q) n N(x) 

end if 

end do x2  

end do q 

end if 
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5.1 Finding the action set 

As for the continuous case FJ action elimination, for the discrete case action 

elimination DP algorithm it is important to find the action set corresponding to 

a state (q, i - 1) and set B_ 1  (q) quickly. The action set now are those x i  E Di  for 

which (5.14) is fulfilled for some A 0 , A) e _i (q). The calculation of the action 

set has to be done numerically. Methods analogous to those in subsections 4.1, 4.2 

and 4.3 can be used. The main adaptation necessary is to use interval arithmetic 

instead of real arithmetic when solving systems of linear equations (4.5) or (4.6). 

In the case n, = m the search intervals It  in (4.7) have to change their properties. 

In the continuous case It  are such that A j  is increasing or decreasing. Such a 

meaning of It  depends on A j  E R. In the discrete case, after having solved (4.6) 

for A using interval arithmetic, there are only confidence intervals for A 1  on I. 

A useful property to give to it  in the discrete case can be to let the confidence 

interval beginning of A 1  be increasing or decreasing. Such search intervals it  can 

be useful in the repeated calculations of action sets. In general it is even harder to 

design quick methods for the numerical calculation of action sets in the discrete 

case than it is in the continuous case. 

5.2 A useful ordering of intervals 

When designing some quick method to calculate numerically the action sets cor -

responding to states (q, i - 1) with B 1  (q) as (A 0 , A) set, a subproblem arising 

usually is the following: Given a finite set A of intervals (of the form [si , s2 ]) and 

a finite set B of intervals find to each interval I E B all intervals I E A for which 

JflI5iO. 	 (5.17) 

If I = [a, ], I = [b, b] then the conditions 

b<a and a<b 

are necessary and sufficient conditions for (5.17). It may be good to first order 

the intervals of A in a way which makes it possible to find those intervals of 

A faster which satisfy (5.17) for any given I e B. In the sequel an ordering of 

intervals in A will be shown with help of a little example to illustrate the method. 

Example 

Consider the following intervals: 

[1,3],[2,9], [3, 4], [2, 51, [3,5] 



[1,3] 	[2,5] 	[2,9] 	[3,5] 	[3,4] 
[1,3] 	[2,5] 	[2,9] 	[2,9] 	[2,9] 

- 

	

 
Order them in the following two dimensional way: 	

[1,3] [2,5] [3,5] [3,5] 
- 	

- 	[1,3] [2,5] [2,5] 
- 	- 	- 	[1,3] 	[3,4] 
- 	- 	- 	- 	[1,3] 

In the top row the intervals are ordered so that the interval beginnings are in-

creasing. Below the horizontal line column i is the following: The first i intervals 

of the top row ordered so that the interval ends are decreasing from top to bot-

tom. If now, for example, I = [2,3] and one wants to find all of the above five 

intervals which have a non-empty intersection with I then one does the following: 

look in the top row for the interval which is as close to the right side as possible 

such that its interval beginning is < the interval end of I, ie. 3. 

This interval is [3,4], the last entry in the top row. Then stay in this column, move 

one interval down,( ie. to [2,9]), check whether this interval's end is > interval 

beginning of I. If no, stop. If yes, then this interval has a non-empty intersec-

tion with I, move in the same column to the next interval down and repeat the 

checking on this interval. And so on.... 

Clearly, this leads directly to all intervals with non-empty intersection with 

I, once the correct interval in the top row has been found. But to find this top 

row entry only requires 0(logk) operations using bisection search, k being the 

number of search intervals. 

To establish the table requires the following work: 0(klogk) operations to 

establish the top row using heap sort and 0(k 2 ) to establish the rest, since one 

can use column i - 1 when establishing column i. All one has to do is to insert 

in column i - 1 one more interval and shift the rest. So when establishing the 

columns under the horizontal line, working from left to right, only 0(k) operations 

for each column are needed. 

5.3 Example with computational results 

Consider the following problem of the form (5.1)-(5.3): 

	

max >fh(xh) 	 (5.18) 

subject to E Xh = , 	 ( 5.19) 

	

Xh E X2,  0 1h,1 <40 	Vh, 	 (5.20) 

0 	Xh,2 < 40 	Vh, 	 (5.21) 



where 4 e JR2  is given by 4T = ( 150, 70), r = 6 and the functions f : 	JR 

are given by 

(x) { \/x 1  + x2  + n2 	 if x2  <25 

- /i- -x2 + n2 + n(xi  - x2 ) if x2  > 25 

This problem has been implemented once with action elimination and once with-

out. The results are as follows: 

run time (secs) computed optimal objective 

with action elimination 	108.11 	 72.16 
no action elimination 	268.30 	 72.16 

speed-up achieved = 268.30= 2.48 
108.11 

The discretisation of the state space (q, i) was, of course, chosen to be q e 
0 < q1  < 150, 0 < q2  < 70 for all i : 1 < i < 6. As this problem has linear 

constraints with positive integer coefficients all states obtainable belong to this 

set of discretised states. If in (5.20) the right hand bound (i.e. 40) is replaced by 

a bigger number, for example by 60, then the ratio of run times of DP with and 

without action elimination changes in favour of the action elimination DP as can 

be seen from the following results: 

run time (secs) I computed optimal objective 

with action eli7m_in_at_ionF 	134.41 	 114.04 
no action elimination 1 	423.85 	 114.04 

speed-up achieved = 423.85= 3.15 
134.41 

Conditions (5.9)-(5.12) are actually optimality conditions for problem (5.18)-

(5.21). This will be proved next. 

5.4 Derivation of a necessary local optimality 
condition 

Theorem 5.4.1 If in problem (5.1)- (5.3) Wh(Xh) = Xh Vh then for all subprob-

lems (5.5)-(5.7) there exists (A o , A) with AO = 1, A E JRtm such that (A0, A) and 

the optimal solution vector x, where iiT=
...,),  satisfy (5.9)-(5.12). 

Proof: 

First of all notice that Wh(xh) = Xh Vh implies that all nh = m. In order to 
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show that (5.9), or equivalently (5.13), holds for some 	)) define the difference 

operators A, L by 

Ag(x) : 	max{g(x+ek)—g(x), g(x)—g(x—ek)}, 

Ag(x) := min{g(x+e k ) - g(x), g(x) —g(x - ek)} 

where g is a function ZZ' —+ JR and ek is again the k - th unit vector. When these 

operators are applied to fh  then redefine 

zfh(xh) := +00 
	

if (Xh —  ek) V Dh, 

Afh(xh) := — 00 
	

if (xh + ek) Dh. 

This redefinition of the operators A, A applied to fh  is useful in order to be 

in line with the definition of f1 (xh) given in (5.4). With the above definition 
aXh Ik 

of the operators , A 

Dfh 
(xh) = [/ Ik  

aXh,k 

Let 

ak := max {Afh ( h )} 	 (5.22) 
h:1<h<i 

bk := min {Afh(h)} 	 (5.23) 
h:1<h<i 

Suppose that ak > bk for some k. Then let s be the argument of h which achieves 

the maximum in (5.22) and let t be the argument of h which achieves the minimum 

in (5.23). Then 

Ak- fI(-;M > 

Since from the definition of , A 

L\f h ( h ) ~ Af() 	Vh 

it follows that s 0 t. Putting these arguments together: ak > bk for some k 

implies that there exist indices s and t with s =A t, 1 < s < i, 1 < t < i such that 

Tf8() ~ 	L f8 () > Aft() ~ Lft(t) 

From this it follows that 

f8( + ek) - fs(s) > f t (~ t ) — 	— ek). 
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Then the point (±', x2 ,  , ii) which is given by 

it = 

= 

= 1j 	for all jt,js,1<j<i 

satisfies 

j Xh>Xh 

	

and the objective value for 	12, .., ±) is 

	

fh(h) = 	fh(h) +(fs(±s+ek)_fs(±s)) 

+ (ft (±t - ek) - ft (±t)) 

> 

and hence ii i  is not optimal, which contradicts the assumption. Therefore 

ak <bk for all k. Then there exist Ak E JR such that 

ak <_ Ak bk. 

The definition of ak and bk implies 

/fh(±h) A k  < Afh(±h) Vh and Vk 

k 	
19A (±) Vh and Vk 	 (5.24) 

Since wh(xh) = Xh it is the case that 

Whj 
(Xh) 	[1,1] if j =k 	and 

UXh,k 

Whj 
(JXh,k (xh)=[O,O] if3$k. 

Hence 

___ = [ A k ,A k I 
j=1 aXh,k 

This combined with (5.24) implies that (5.13) holds with ) = 1. Remember that 

(5.13) is equivalent to (5.9). Hence there exists (A 0 , A) such that iii  and (A 0 , A) 

satisfy (5.9)-(5.12). 0 

However, for general discrete problems of the form (5.1)-(5.3) it is not neces- 

sary that there exists (A 0 , )) such that the optimal vector and (A 0 , A) satisfy 

(5.9),(5.11), (5.12). 
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5,5 Counterexample 

In this subsection a discrete DP problem is given for which there does not ex-

ist A0 , A) such that the optimal vector and (A 0 , A) satisfy (5.9),(5.11), (5.12). 

Consider the problem 

	

maximize 	f 1 (x 1 ) + f2 (X2) ( 5 . 25 ) 

	

subject to 	3x 1  + x2  = 8, 	 (5.26) 

X1, X2 E Z, X1, X2 > 0, 	 (5.27) 

where the functions fl , 12 : X -+ it? are given by 

X 01234 
f, (x) 0 1 5 8 1 
f2  (x) 0 1 3 5 1 

and f, (x) = f2  (x) = 1 for x > 4. As can be seen easily, the optimal vector to this 

problem is (X1, X2) = (2, 2). However, for (2,2) condition (5.9), or equivalently 

(5.13), is: 

A 0 [3,4] fl A[3,3] 	0 	and 

A 0 [2,2] nA 1 [1,1] 	0. 

If A0  = 0 then it implies A 1  = 0 which contradicts (A 0 , A 1 ) 0. If A0  = 1 then the 

second relation above implies A 1  = 2 which contradicts the first relation above. 

However, if in problem (5.25)-(5.27) the RHS of (5.26), i.e. 8, is replaced with 7 

then the optimal vector (x 1 , x2 ) = (2, 1) does satisfy (5.9)-(5.9) for some (A 0 , A 1 ) 

since (5.9) is 

	

A0[3,4]flA1[3,3]=,40 	and 

A 0 [1,2]nA 1 [1,1] 	0 

and this is satisfied, for example, for (A 0 , A 1 ) = ( 1, 1) or (A 0 , A 1 ) = ( 1, ). Also if 

the RHS of (5.26), i.e. 8, is replaced with 9 then the optimal vector (X1, X2) = 

(2, 3) satisfies (5.9)-(5.12) for some (A 0 , A 1 ) (for example when (A 0 , A 1 ) = ( 1, 1)). 

For general problems of the form (5.1)-(5.3) if one looks at the subproblems 

corresponding to states (q,i), given by (5.5)-(5.7), it is found that for a lot of 

subproblems the optimal vector xui. satisfies (5.9)-(5.12) for some (A 0 , A), but for 

some subproblems the optimal vector i i  does not satisfy (5.9)-(5.12) for any 

(A0 , A). The proportion of subproblems satisfying (5.9)-(5.12) for some (A 0 , A) to 

those subproblems which do not satisfy (5.9)-(5.12) for any (A 0 , A) depends on 

the functions Wh. Broadly speaking, the observation was made that if 
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for different h but fixed j, k are non-intersecting and far apart, then there are 

proportionately more subproblems (q, i) whose optimal vector x 2  does not satisfy 

(5.9)-(5.12) for any (A o , A). 

5.6 Modified discrete action elimination algo-
rithm 

The counter-example of the last subsection is an example on which the discrete 

action elimination DP algorithm fails to discover the optimal solution. This 

example is so simple that this method does not seem to be appropriate for general 

problems of the form (5.1)-(5.3). However, the discrete action elimination method 

appears to be good when it is extended and combined with local search methods 

in the following way: 

First, apply the discrete action elimination DP algorithm to problem (5.1)-

(5.3) such that the value function Fr (q) is computed for all discretised values of 

q in some neighbourhood of 4, i.e. for all q for which 

(5.28) 

T has to be estimated and chosen beforehand. Then, for every q satisfying (5.28) 

do a local search to problem (5.1)-(5.3) taking the computed optimal vector of 

the subproblem corresponding to state (q, r) as the starting point. 

5.7 Conclusions 

This chapter discussed action elimination based on local optimality conditions for 

discrete deterministic allocation problems of the form (5.1)-(5.3). 

A special case is wh(xh) = xh and for this case the necessary local optimality 

conditions (5.9)-(5.12) were derived in Theorem 5.4.1. These conditions involve 

forward and backward differences and look similar to the FJ conditions for con-

tinuous problems. The action elimination presented, which is based on these local 

optimality conditions, always works in this case. 

For the general case when Wh(Xh) =A  Xh conditions (5.9)-(5.12) are not neces-

sary optimality conditions. A counterexample was given, there DP with action 

elimination based on conditions (5.9)-(5.12) failed to find the optimum. 

In section 5.6 a modified discrete action elimination algorithm was outlined. 

In this algorithm heuristics are applied. Some limited computational experimen-

tation gave some encouraging results but more work has to be done in this area. 
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In particular it was found that it is hard to estimate an appropriate value for the 

parameter T in advance. 
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Chapter 6 

Stochastic problems 

In this chapter stochastic problems will be discussed and conditions will be for-

mulated which allow action elimination based on first order optimality conditions. 

There are different classes of stochastic DP problems: infinite or finite horizon, 

continuous or discrete state and action space problems. Discrete time Markov 

decision processes are underlying all the problems discussed in this chapter. 

6.1 Infinite horizon, continuous state and action 

The intention of this section is to introduce the basic idea underlying action 

elimination for stochastic problems. Let's first look at infinite horizon, continuous 

state and action space problems. Let S = 1/' be the state space, let A = JR 

be the action space. (Notice that S and A are unbounded and that A does not 

depend on s E S. This is unrealistic but useful for simplifying the presentation 

of the basic idea.) Let P be a set of probability distributions on S with the 

properties below. In this subsection let Y = 1R7 . (In the next subsection Y will 

be more specific.) 

Property 6.1.1 

For every y e Y there exists exactly one P E P which is associated with y. 

Let P(y) be the P e P which is associated with y. 

If Ep is the expectation operator for the probability distribution P then 

]Ep()f is continuous and differentiable with respect to y, when f is any 

bounded function S -+ R. 

If from state s e S the action a e A is taken then the transition to the next 

state is determined by the probability distribution P(s - a). 
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Just for clarity of notation, if p(s) is the probability density function of the 

distribution P E P then 

Epf = f P(s)f(s)ds 

Let the instantaneous reward of taking action a from state s be r(s, a) where 

r(s, a) is a bounded function S x A - JR and r is differentiable with respect to 

the argument a. Consider the following problem: 

00 

maximize the expectation of E a3 r(s, a) 	 (6.1) 

where a is a discount factor with 0 < a < 1, so  is the initial state of the system, 

{s}o is the Markov process induced by the sequence of actions {a}o.  This 

means the optimization is over the space of policies for taking actions. It is well 

known that for such infinite horizon, stationary Markov decision processes there 

exists an optimal policy it for taking actions which is Markovian, stationary and 

deterministic. i.e. ii is a function S - A such that observing the system in 

period j to be in state sj  it is optimal to take action a 3  = 7(s3 ). (See Puterman 

[13] sections 4.4 and 5.5) Let v(s) be the optimal objective value of problem (6.1) 

when the initial state so = s. The DP optimality equation for problem (6.1) is: 

v(s) = max{r(s, a) + alEp(s _ a)v}, 	 (6.2) 
aEA 

it(s) = argmax{r(s,a) +aJEp(s _ a)v} 	 (6.3) 
aEA 

In the sequel it is shown how to use action elimination based on first order op-

timality conditions for a value iteration step. Value iteration approximates v(s) 

by v 2 (s) and it(s) by 7r(s) after iteration i. The iteration is as follows: 

v 1 (s) = max{r(s, a) + aJEp(s _ a)vj } Vs e S 	 (6.4) 
aEA 

and the policy itj1 of choosing actions after iteration i + 1 is: 

ir i (s) = argrnax{r(s, a) + aJEp(s _ a)vj } Vs e S 	(6.5) 
aEA 

A first order optimality condition for the maximization in the RHS of (6.4) is: 

Va (r(s, a) + aJEp(s _a)vj ) = 0 
	

(6.6) 

where V a  is the gradient operator with respect to a E IRE. (6.6) can be rewritten 

as 

Var(s, a) - aV(JEp( )v) = 0, 	 (6.7) 

y = s—a 	 (6.8) 
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where V, is the gradient operator with respect to y E 1R1 . (6.4) can be imple-

mented using recursive fixing or the labelling procedure (also called reaching. See 

the beginning of section 2.3.) The recursive fixing implementation does not allow 

action elimination using (6.6), or equivalently (6.7), (6.8), whereas the labelling 

procedure does. The labelling procedure which implements (6.4), (6.5) without 

action elimination is: 

for all s e S set v+i(s) := — 00 

for all y e Y do 

for all a E A do 

if vii (y + a) <r(y + a, a) + allp(y ) vi then 

Vj+i(y + a) := 7-  ( y + a, a) + cilEp()Vj 

(y +a) :=a 

end if 

end for 

end for 

The labelling procedure using (6.7), (6.8) for action elimination is as above except 

that line 3 is replaced by the following two lines: 

J:= {x E A: V aT(y + X, x) = aV(1Ep()v)1 

for all a E J do 

This action elimination procedure shows the basic idea of action elimination for 

stochastic problems, which is based on first order optimality conditions. In this 

presentation the state space S and action space A are unbounded, which is not 

realistic for real world problems. And of course, the loops in the procedure above 

are infinite loops, and for any implementation a discretisation scheme must be 

used. 

For bounded state and action spaces some modifications must be done which 

are similar to the modifications of section 2.4. In section 2.3 the basic action 

elimination procedure for problems of the form (2.1),(2.2) was introduced and 

the state and action spaces were unbounded. In section 2.4 the necessary modi-

fications were shown when the action space in problem (2.1),(2.2) is restricted. 

6.2 Extension to bounded state and action spaces 

In the previous section the state space and action space were both JR, i.e. un- 

bounded. In this section it is assumed that the state space S C ]R' and that S 



is bounded. Also it is assumed that the action space is restricted in the following 

way: A 5  is the set of actions which can be taken from state s, A 5  C IR and A 5  

is bounded and closed. Taking action a e A 5  from state s leads to a stochastic 

transition to a new state determined by the probability distribution P(s - a) on 

S, P(s - a) C P. P satisfies Property 6.1.1. There exists a P(y) for every y E Y 

where 

Y := {y e Rn : 3s E S, a E A 5  such that y = s - a} 	(6.9) 

Let r(s, a) be a piecewise differentiable function. The objective is, again, 

(6.1). Again, let v(s) be the optimal objective value of (6.1) when the initial 

state s0  = s, let ir(s) be the optimal action from A 5  to be taken when the state 

of the system is s. The new DP optimality equations are similar to (6.2),(6.3): 

	

v(s) = max{r(s, a) + aJEp( s _ a)v}, 	 (6.10) 

	

7r (s) = argmax{r(s,a) +CJEp(s _ a)v} 	 (6.11) 
aEA 3  

For the value iteration let v(s) and 7r(s) be, again, the approximating functions 

for v(s) and it(s) respectively after iteration i. The iteration now is 

	

v +i(s) = max{r(s, a) + a]Ep(s _a)'vj} Vs e S, 	(6.12) 
aE A3  

	

= argmax{r(s, a) + cEJEp(s _ a)vi} Vs e S. 	(6.13) 
aE A 3  

Let (6.14) be the following logical statement: 

Va T does not exist at (s, a) 	 (6.14) 

When s e S and a e A 5  is optimal for the maximization in the RHS of (6.12) 

then a necessary first order optimality condition is: 

a e 9A 5  or [a E A S \aA S  and [(6.6) or (6.14)]] 

The brackets '[]' are used to indicate the order of the logical connectives 'and' 

and 'or'. The action elimination will use this condition. However, it is not easy 

to see how to use this condition within the labelling procedure. In order to see 

this let's replace (6.6) with the equivalent condition [(6.7) and (6.8)]. The above 

logical expression is equivalent to 

a E 0A 5  or [a c A S \ÔA S  and [[(6.7) and (6.8)] or (6.14)]] 

In the labelling procedure the outer loop cycles through all values y e Y and the 

inner loop cycles through values of a. The above condition makes it possible to 
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reduce the inner loop over a. In the above expression (6.8) can be used to replace 

all other occurrences of s with y + a. This might look a little bit artificial but 

it gives a motivation for the objects C,, and B which will be defined next and 

which will be used in the action elimination procedure. 

C,, := {a: 3S e S such that a E AS\aAS,  y = s - a} 	(6.15) 

In words: C, is the set of actions a which, when taken from some state s, lead to 

a transition of state determined by the probability distribution P(y) and a is in 

the interior of A 5 . 

B:_—{a:sESsuchthataEaA 5 , Y=s—a} 	 (6.16) 

In words: B is the set of actions a which, when taken from some state s, lead to 

a transition of state determined by the probability distribution P(y) and a is on 

the boundary of A 5 . 

Next, the value iteration step using the labelling procedure with action elim-

ination will be shown. 

Procedure 6.2.1 

for all s E S set v+1(s) := —00 

for all y E Y do 

C:={a:s E S such that aEA5 \ôA 5 , y=s — a} 

B :={a:asE S such that aE0A 5 , y=s — a} 

J := {x E C, : V ar(y + x, x) = aV(Ep( )v) or Var does not exist at (y ± x 

for all a e B U J do 

if Vji(y + a) <r(y + a, a) + ceEp(y ) vi then 

Vi+i(y + a) := r(y + a, a) + aJEp()V 

lrj+i(y+a) :=a 

end if 

end for 

end for 

This procedure is faster than an ordinary value iteration procedure without action 

elimination if the sets Cy , B can be found quickly from the structure of a problem 

and if J can be found quickly. 
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6.3 A special type of reward function 

In this section a special type of reward function is looked at which allows a very 

simple implementation of action elimination within recursive fixing. The setting 

is as in the previous section 6.2 described there in the first paragraph. 

Consider a reward function r of the following form: 

r(s,a) = f(s) +g(s — a) 	 (6.17) 

where f and g are functions 1R'—+ R. So f only depends on the present state 

and g, in some sense, depends only on the distribution determining the next state. 

The first order optimality condition (6.6) becomes: 

Va(f(S) + g(s — a) + cJEP(s _ a)Vi) = 0 

This is equivalent to 

V(g (y) + aIEp()v) = 0, 	 (6.18) 

y  = s—a. 	 (6.19) 

Notice that (6.18) does not depend on s and not on a. Now (6.14) is equivalent 

to 

Vg(y) does not exist at y = s - a 	 (6.20) 

Taking action a from state s can only be optimal if 

a E aA, or [a E A S \DA S  and [(6.20) or [(6.18) and (6.19)]]] 	(6.21) 

This optimality condition can easily be implemented in the recursive fixing method 

as follows: 

Procedure 6.3.1 

Q:= {y E Y : Vg(y) + aV(1Ep()v) = 0 

or Vg(y) does not exist} 

for all s E S do 

v+i(s) := — 00 

J:={aeA3 \3A 3 :yEQ such that y=s—a} 

for all a E 5A U J do 

if v+i(s) < r(s, a) + QJEP(sa)Vi then 
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v+1 (s) 	r(s, a) + a]EP(s _ a)vj 

ir+i(s) 	a 

end if 

end for 

end for 

Note that if line 5 in above procedure is replaced with 

for all a E A 8  do 

and lines 1 and 4 are deleted then this is the ordinary recursive fixing method, 

which is the most straightforward implementation for recursion (6.12). 

Regarding the true solution v(s) and 7r(s) the following can be said. The RHS 

of (6.10) is like the RHS of (6.12) with the only difference that vi is replaced 

with v. Hence, if in (6.21) all occurrences of vi are replaced with v then this is a 

optimality condition for the optimal action a = ir(s) from state s. Therefore, if 

Q {y E Y : Vg(y) + cV(Ep()v) = 0 

or Vg(y) does not exist} 

then either 

71(s) e 3A 8  or 

[u(s) e AS\9A8  and y = s - 71(s) for some y e Q]. 

Broadly speaking, this says that the policy ur tries to obtain a transition of state 

corresponding to a set of preferred probability distributions on S. 

6.4 Example 

In this section an example from water reservoir management is discussed to illus-

trate the theory of the previous two sections. 

Consider a water reservoir for which the state is determined by the water 

level. Z'. e. n = 1 for this problem. If the reservoir is empty then the state is 

0. The maximal height of the water level is H, because water flows over a dam 

if too much water is in the reservoir. This means that the state space can be 

characterised by 

8= [0, H] 

At day j in the morning water can be released from the reservoir. If from state 

Si action a3  is taken, which corresponds to releasing the amount of water which 



decreases the water level by a 3  in height, then the new water level is s3  - a3 . Of 

course 0 <a3  < s3 . This means 

A 5 =[0,s] VsES. 

The release of water happens instantaneously and yields a reward r(S, ai). r is 

a bounded function. During the next 24 hours fresh water from streams flows 

into the reservoir, it rains and some water from the reservoir evaporates. Let 

{X} 0  be a sequence of independent, identically distributed random variables 

with normal distribution N(, a2 ). The state s 1  of the reservoir the following 

morning, before water is released, is given by 

0 	 ifs 1 —a+X<0, 
5i+1 = 	H 	if s - a + Xi  > H, 	 (6.22) 

si  - a + Xi  otherwise. 

When the initial state is s o then the long term expected maximal discounted 

revenue is given by (6.1) with 0 < a < 1. The transition rule (6.22) is satisfied if 

P(y) is a normal distribution N(y + ,a, 0,2 ) and the domain of the approximating 

functions vi is extended for s S by 

v i  (s) := vi  (0) 	for s < 0, 

v i  (s) := vi  (H) 	for s > H. 

With this extension of vi and with y = s - ai  it is the case that 

f
°° 1 	(x-,--y) 2  

1Ev(s +i) = JEp()Vi =
co 	

2r2 v2(x)dx 

and the fact that N(IL + y, 0,2 ) is not a probability distribution on S but on 

(—oo, oo) is taken care of. In order to apply Procedure 6.2.1 for this water reser-

voir problem Y, C y , B must be found. Using (6.9),(6.15),(6.16) one finds 

Y= [0,H], 

CO = CH = 0, 

C=(0,H—y] for yE (0,H), 

B0  = [0,H], 

B = {0} for y  (0,H]. 

A practical procedure for a value iteration step with action elimination for this 

problem is the following procedure which is based on Procedure 6.2.1. If Proce-

dure 6.2.1 is applied to this problem directly then line 2 is the start of a loop 

y e [0, H]. The procedure below is obtained by splitting this loop into two loops 



y e {O} and y E (0, H]. Line 1 in Procedure 6.2.1 and the execution of the loop 

y e {0} first is equivalent to line 2 below. 

for all y E Y compute 1Ep()v 

for all s e S set v+i(s) := r(s, s) + aEp(o)vi and irj+i(s) := s 

for all yE (0,HIdo 
3 	 d 

J 	{x e Cy : 	± x, x) = c — (Ep()v) 

or 
a

—r does not exist at (y + x, x)} 

for allaE JU{0}do 

if vii (y + a) <r(y + a, a) + ozEp( y ) vi then 

Vj+i(y + a) := r(y + a, a) + aJEp()v 

d+1(y + a) := a 

end if 

end for 

end for 

So far the reward function r in this problem has not been specified. Assume 

that the reward r(s, a) comes from hydroelectric power generation. Let the po-

tential energy stored in the water reservoir with water level s be g(s). Decreasing 

the water level by a from a water level s the energy produced is g(s) - g(s - a), 

hence 

r(s,a) = K(g(s) - g(s - a)) 

for some constant K. This reward function falls under the special case (6.17), 

therefore section 6.3 can be applied, i.e. Procedure 6.3.1 can be used instead of 

Procedure 6.2.1. 

If on top of revenue from hydroelectric power generation the released water 

is also sold and if the reservoir has vertical shores and a flat ground then the 

amount of water released is proportional to the action a. This means 

r(s,a) = K 1 (g(s)—g(s—a))+K 2a 

= Kig(s) + K2 s - Kig(s - a) - K 2 (s - a) 

where K 1 , K2  are constants. Again, r is of the special form (6.17). 

6.5 Action elimination when DA = A 5  

In this section the action elimination procedure is discussed for problems where 

i9A 8 	A 8 . Notice that if 3A 3  = A 8  for all s E S then Procedure 6.2.1 is in 



essence a labelling procedure with no action elimination taking place. Often for 

problems with 3A 5  A 8  and special structure action elimination can still be 

used. The key idea is that even for optimal actions a E A 3  there often exist 

necessary optimality conditions which can be used for action elimination. Let's 

look at an example to see what is meant. 

Let S  JR2  be given by S = [O, H1 } x (0, H 2]. Let A 3  for s ES be given as 

A 3  = {(ai , a2 ) e JR2  : — s 1  < a 1  < H1 - 8 1, —S2 < a < H2  - s2 , a 1 a2  = O} 

where s = (s 1 , 8 2 ). Taking action a E A 5  from state s leads to a stochastic 

transition to a new state determined by the probability distribution P(s - a) on 

S. From (6.9) 

Y = 5 = [o, H1 ] x [0, H2 1 

A necessary optimality condition for the maximization in the RHS of (6.12) is 

a E {(—s )  0), (H1  - Si )  0), (0, — 82), (0, H2  - 82)} 
a 

or 	(r (8, a) + aJEp(s _a)Vi) = 0 	 (6.23) 
al 

or 	
19 

(r(8, a) + aJEp(s _ a)Vi) = 0 	 (6.24) 

where a 1 , a2  are the first and second components of a E JR2 . When setting 

Y = s - a (6.23) and (6.24) are 

a 	 a 
—r(y+a,a)—a JEp()v 0, 
(9a, Dy1  

a 	 a  
—r(y + a, a) a

ay2 	

= 
EP()V 2  0 

where Yi, Y2 are the first and second components of y E JR2 . These conditions can 

be used for action elimination within the labelling procedure. 

6.6 Infinite horizon, discrete state and action 
space 

The material and framework in this section is similar to that of section 6.2 but 

there are important differences. It is assumed that the state space S C X and 

the action space A 3  C '. Taking action a E A 3  from state s leads to a stochastic 

transition to a new state determined by the probability distribution P(s - a) on 

S. Let Y be the set 

Y := {y E Xn:  3 S E S, 3a E A 3 ,y = .s - a} 



Since actions are discrete the meaning of interior and of boundary of A 3  must 

be given. Let ek be the k-th unit vector in 7Z i.e. the vector with the /c-th 

component equal to 1 and the other components equal to 0. The boundary of A 3  

is 

:= {a E A 8 : 3k with 1 <k <ri such that (a + ek) A 3  

or (a - ek) A 3 } 

The interior is A S \aA S . Again, let v(s) be the optimal objective value of (6.1) 

when the initial state s0 = s, let it(s) be the optimal action from A 3  to be 

taken when the state of the system is s. The DP optimality equations are (6.10) 

and (6.11). The value iteration is (6.12) and (6.13) where v 2 (s), ir2 (s) are the 

approximating functions for v(s), it(s) respectively after iteration i. If a is optimal 

for the maximization in the RHS of (6.12) then there are two possibilities: the 

first is a E DA 3 , the second is 

a e A S \DA S , 

r(s, a + ek) + a]Ep(s _ a_ ek )vj < r(s, a) + cdEp(s_a)v j  Vk, 	(6.25) 

r(s, a - ek) + aEp(s_a+ek)vj < r(s, a) + aJEp( s _a)vi Vk. 	(6.26) 

Define the difference operators , i 	operating on the functions r(s, a) and 

]Ep()f by 

	

Lr(s, a) 
	= r(s,a+ek)—r(s,a), 

	

Ar(s, a) 
	= r(s, a) — r(s, a — ek), 

	

AEP()f 	= iEP(y+ek)f - ]EP()f, 

	

AIEp()f 	= 1EP()f JEP(y e k )f. 

Notice that 

Ar(s,a) = Ar(s, a - ek), 

A k ]EP(y )f = AJEp( y _ e )f. 

With these definitions (6.25) is equivalent to 

Ar(s,a) <aLEp( s _ a)Vj Vk 

and (6.26) is equivalent to 

Ar(s,a) ~ cI1EP( s _ a)v i  Vk. 



After setting y = s - a 

Ar(y+a,a) 
	aA-Ep(y )vi Vk, 	 (6.27) 

Ar(y + a, a) ~ cA]Ep( )v Vk. 	 (6.28) 

Let C',, and B be given by (6.15) and (6.16) respectively. Next, the value iteration 

step using the labelling procedure with action elimination will be shown. This 

procedure is identical to Procedure 6.2.1 except of line 5 (which defines the set 

J). In the next section the procedure below is referred to and used for an example 

which is why the procedure will be given in full. 

Procedure 6.6.1 

for all s e S set v+i(s) := — 00 

for all y E Y do 

C:={a:seSsuchthataeA8 \aA 3 , y=s — a} 

B:={a:sESsuchthataE3A8 , y=s — a} 

J := {x E C y  : (6.27) and (6.28) hold} 

for all a E B U J do 

ifv21 (y+a) <r(y+a,a) +a]Ep()vj then 

Vj+i(y + a) := r(y + a, a) + cilEP()V 

lrj+i(y+a) :=a 

end if 

end for 

-end for 

Like for continuous action and state space problems, if the reward function 

has the form 

r(s,a) =f(s)+g(s—a) 

then it is possible (and easier) to implement the action elimination with recursive 

fixing. Then (6.27) and (6.28) reduce to 

g(y - ek) - g(y) 	ckEP(Y)vj Vk, 	 (6.29) 

g(y) - g(y + Ck) 	c/IEp()v Vk. 	 (6.30) 

One can use Procedure 6.3.1 with line 1 being replaced with 

Q := {y E Y: (6.29) and (6.30) hold}. 



6.7 Example with computational results 

In this section an example problem is given to illustrate the theory of the last 

section. Consider the problem where there are n + 1 places numbered from 0 to 

n. The aim is to reach place 0 with minimal cost (or maximal negative cost) from 

place n. When one is currently at a place with number s one can decide how 

much to jump closer to place 0. However, deciding to jump a places from place 

s towards 0 results in a stochastic transition to a new place which only depends 

on s - a. The cost of each jump depends on the current place s and on how far 

one wants to jump i.e. on a. This is the rough description of the problem, the 

exact mathematical description of the problem follows next. 

Let the state space S be given as 

S = Is E Z : 0 < s <n} 

where n determines the size of the problem. Let the sets A 3  be given by 

A 3  = {a G Z: 0 < a < s}. 

This means that 

A 5 = {0,s}, 

Y={yEZ:0<y<n} 	(=S). 

Let the probability distribution P(y) be characterised by the probability density 

function py (s). State zero is an absorbing state, this means 

( 1 ifs=0 
po(s) 

= j... 0 otherwise 

When 0 <y <n let 

i
ifs=y /1 

py (5) 	Z ifs=y±1 
0 otherwise 

and 

' 	ifs=m 

p(s)= Y0  ifs=n-1 
 otherwise 

So when f is a function S -+ 1R then 

JEP()f =s)f(s) 
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_I run time Method 1 (secs) I run time Method 2 (secs) result 

20 4.00E-02 5.00E-02 -56.33 
50 0.16 9.99E-02 -154.47 

100 0.67 0.29 -331.08 
200 2.35 0.75 -698.09 
500 18.18 2.21 -1749.91 

1000 94.71 7.33 -3055.04 
2000 491.26 15.72 -4504.54 

Table 6.1: computational results 

Let r(s, a) be given by 

r(s,a) = —(s+i) —a 

Let the objective be (6.1) with s0  = n and a = 0.99. Let this problem be solved by 

the Modified Policy Iteration Algorithm. Method 1 does the policy improvement 

step using recursive fixing with no action elimination. Method 2 does the policy 

improvement step using Procedure 6.6.1. Methods 1 and 2 are identical regarding 

the initial choice of v0  (s) and parameters which must be set in the Modified Policy 

Iteration Algorithm. Since recursive fixing and Procedure 6.6.1 are equivalent 

Method 1 and Method 2 compute the same result. For different choices of ri, 

which determines the size of the problem, the results are shown in Table 6.1. 

These results suggest that for this problem the complexity of Method 1 is one 

order of magnitude larger than that of Method 2. 

Next, some details of Procedure 6.6.1 applied to this problem are discussed. 

In line 3 of Procedure 6.6.1 the sets C for y e Y are 

CO  = C. = 0, 

C={aE:0<a<n—y} for0<y<n. 

In line 4 the sets B are 

B 0  = { a E X: 0 <a < 

B={0} for 0<yn. 

Crucial for the speed-up of Procedure 6.6.1 in comparison to recursive fixing with 

no action elimination is that the set J can be found quickly. When y = 0 or y = n 

then J = 0 since C, = 0 in this case. When 0 <y <n then J can be found faster 

than by checking all a E C, whether (6.27) and (6.28) hold. In (6.27) and (6.28) 

only k = 1 is possible since S C .' and A 3  C X. 

3 	3 

7r(y + a, a) = —(a + 1) + a 



Ar(y + a, a) is strictly decreasing in a since 

d 	 3 	31 
<0 when a>0 

da 

Further 

Ar(y+a,a) = A tr(y+ a  — 1,a— 1) 

since Ljr(y + a, a) = —a + (a - 1). Therefore 

Aj'r(y + a, a) <7r(y + a, a). (6.31) 

Now, since r(y + a, a) = —a is monotonically decreasing and /s.jEr(y  + a, a) 

is a difference approximation to r(y + a, a) the following relation holds: aa 

r(y +a, a) > r(y + x, x) > Ar(y + a + 1, a ± 1) 	(6.32) 
aa 

when aE Sandx ElRwitha< x < a+1. 

a 
+ x, x) = 

can be solved analytically for x. This and relation (6.32) can be used to find the 

smallest a e C for which (6.27) is fulfilled. By checking (6.28), then increasing 

a by one and checking (6.28) and so on until (6.28) fails for the first time, the set 

J can be found quickly. 

6.8 Finite horizon problems 

Consider the problem 

maximize E (i rj(s, a) + TN(SN)) 	 (6.33) 

where {s5} 0  is the Markov process induced by the sequence of actions {a} 1  

corresponding to some decision policy. So the optimization is over the set of all 

decision policies. s0 is the initial state of the process. The state space is S and 

the set of actions possible to take from state s E S is A 5 . The action space is 

A = USES AS. The functions r3  are functions S X A jR for J < N, rN is a 

function S -+ R. Tpj is the terminal reward. Taking action a j  from state s 3  

leads to a stochastic transition to a new state 53+i  determined by the probability 

distribution Pj1(s - a3 ) on S. Define 

vo(s) := TN(S) 	Vs E  S 

and 	vi  (s) = max 	 a) + TN(SN) Ni = 

	

Vs E S 

SIR 



when i > 0. So the optimal solution of (6.33) has the objective value VN(SO). The 

DP optimality equation can be derived using conditional expectations and it is 

v+i(s) = max {riy_ j_i(s, a) + JEpN_i(s_a)Vi} Vs E S. 
aEA 5  

This is similar to recursion (6.12). Hence, for doing the above recursion one can 

use the ideas and methods of sections 6.2, 6.3 if S C ]R7  and A 3  C ]R' or of 

section 6.6 if S C and A 3  C . 

6.9 Conclusions 

This chapter discussed action elimination based on local optimality conditions for 

stochastic problems. The ideas were similar as in previous chapters, however, the 

appropriate framework had to be set up. For stochastic problems a lot of structure 

in the problem is required in order to be able to apply the action elimination. 

Many real world problems have this structure. Further classes of stochastic DP 

problems allowing action elimination based on first order optimality conditions 

can probably be found. 

For a class of infinite horizon problems with continuous state and action space 

and for a class of infinite horizon problems with discrete state and action space 

the details of action elimination based on local optimality conditions were shown. 

For classes of finite horizon problems it was shown how previous ideas can be 

applied. 

The computational results of a discrete problem showed that the action elim-

ination can reduce the computation time by one order of magnitude. 
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Chapter 7 

A perturbation method in a dual 
algorithm 

7.1 The dual method 

Consider the following problem: 

maximize 	f(x) 	 (7.1) 

subject to 	u(x) < 0, 	 (7.2) 

C(X) = 0 	 (7.3) 

x E X 	 (7.4) 

where X C ]R, the functions f, u, c are f : IR' -+ JR, U : 1R -+ 1Rc ,  and 

C: 	
jm Define the Lagrangian function 

L(A, ) := max{f(x) - ATu(x) - Tc(x)} 	 (7.5) 
xEX 

where A E Rk ,  p E ]fm This means that the constraints (7.2) and (7.3) are 

relaxed. L(A, jt) is a convex function. This will be proved next. 

Lemma 7.1.1 L(A, u) is convex in A and . 

Proof: 

Let 0 < q < 1 and (A1, ) :~ (A, i2)  where A 1 , A 2  E IRk and Al,  [L2 E jjm Then 

L(qA i  + (1 - q)A2 , t/-"i  -I- (1 - 

= max{f(x) - (A+ (1— )A)u(x) - 
(OPI  (1— 

xEX 

= max{q(f(x) - Au(x) - ILfc(x)) + (1 - q5)(f(x) - Au(x) - 
XEX 

< qmax{f(x) - Au(x) —ILTc(x)}  + (1— q5)max{f(x) - Au(x) - ILc(x)} 
xEX 	 xEX 

= cbL(A i ,IL i ) 	+(i—q)L(A 2 ,IL 2 ) 	E1. 
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Suppose that the problem (7.1)-(7.4) is such that there exists a method with 

which L(A, ) can be computed for every choice of A, i. The dual problem of 

problem (7.1)-(7.4) is 

	

minimize 	L\, ) 	 ( 7.6) 

	

subject to 	A> 0. 	 (7.7) 

Lemma 7.1.2 If A > 0 then L(A, ) is an upper bound for the optimal objective 

value of problem (7.1)-(7.4). 

Proof: 

Suppose x is feasible for problem (7.1)-(7.4). By definition of L(A, jt) 

L\, ) > f(x) - ATu(x) - jTc(x) = f(x) - ATu(x) 

Since A > 0 and u(x) < 0 it follows that ATu(x) < 0 and hence L(A, ) > 

f 	D. 

This means that the dual problem (7.6), (7.7) is the minimization of upper bounds 

on the optimal objective value of problem (7.1)-(7.4). Let A, fi be a solution to 

the above dual problem. The dual method first solves the dual problem, and then 

tries to find a "good" point for the original problem (7.1)-(7.4) by picking I 

from the set S where 

S:=  IX: x E X, f(x) - Tu(x) - Tc(x) = L(, )}. 

If ± satisfies constraints (7.2) and (7.3) and is complementary slack (ie. ATu(±) = 

0 ) then it solves the original problem. This will be proved below. However, 

there is no guarantee that ± satisfies (7.2),(7.3) and the complementary slackness 

condition. Often the set S has more than one element. 

Theorem 7.1.3 (Lagrange's Sufficiency Theorem) Suppose there exists A, 

and ± such that 

± E argmax{f(x) - ATu(x) - Tc(x)} 
xEX 

c(±) = 0, 

u(±) < 0, 

A > 0, 

ATu(±) = 0. 

Then ± solves problem (7.1)-(7.4). 
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Proof: 

By Lemma 7.1.2 L(\, 1a) is an upper bound for the optimal objective value of 

problem (7.1)-(7.4). From the properties of it follows that 1 is feasible for 

problem (7.1)-(7.4) and that 

L(\, t) = f(±) - \Tu() 	'c() = f() 	D. 

The next Lemma shows the effect of changing a Lagrange multiplier. As the 

previous results of this section it has been known for a long time. 

Lemma 7.1.4 Let ,2 = A, + Eei  where e, is the i—th unit vector and e e JR with 

e>0. Let X1, X2 satisfy 

x 1  e argmax{f(x) - )u(x) - jiT c(x)}, 	 (7.8) 
xEX 

E argmax{f(x) - Au(x) - Tc(x)} 	 (7.9) 
xEX 

Then u(x 2 ) < u(xi), where u(x) is the i-th component of u(x). 

Proof: 

f(xi) - Tc(x) 
- = f(xi) - 	 \ru(xi) - (2 

- )'u(x) (7.10) 

f(x2) - 'c(x) 
- u(x2) = f(x2) - ,Tc(x) 

- \u(x2) - 	 - A1)Tu(x2) (7.11) 

From (7.9) it follows that LHS of (7.10) < LHS of (7.11). This implies 

f(x) - pTc(x) 
- Au(Xi) 

- (2 
- 1 )'u (x1 ) 

< f(x) - tT c(x 2 ) - )u(x2) - (\2 - )Tn(x) 

f(xi) - 'c(x) 
- )u(x 1 ) - (f (X2) - iTc(x2) 

- 	 u(x 2 )) (7.12) 

~ ( - 
)T(() 

- U(X2)) 

From (7.8) it follows that 0 <LHS of (7.12). 

= 0 < 

= 	0 < f(u(xi) - u(x 2 )) 

= 	u2 (x 2 ) < u2 (x 1 ) 	EL 

Corollary 7.1.5 Let t2 = ,u1  + Eei  where e i  is the i—th unit vector and e > 0. 

Let X1, X2 satisfy 

E argmax{f(x)—A Tu(x)—jc(x)}, 
XEX 

E argmax{f(x) - ATu(x) 
- c(x)}. 

xEX 

Then c(x 2 ) < c(x 1 ). 

UP 



Proof: It is similar to the proof of Lemma 7.1.4. 0. 

The next theorem exhibits a subtangent from the subdifferential set DL(A, i). 

Theorem 7.1.6 Consider the subdifferential set aL(A, l) and let 1 satisfy 

E argmax{f(x)—) T'u(x)—ft T c(x)}. 
sEX 

(—u() 
Let  = 	

). 

Then p is a subtangent vector of 3L(,), i.e. p E 

i.e. 

L 	L+pT() 	 (7.13) 

for all ) e IRk 	E JRtm 

Proof: 

By definition of L(), 

L(, ) ~! f() - 	 - 'c() 	 (7.14) 

Now, (7.13) and (7.14) are equivalent because (7.13) 

L(, ) > L(, j) - u()T(A 
- ) - c((t 

- 

L(, ) ~ f() - u() - iTc() -  U( - )T( 
- ) - c(( 

- 

L(A,) > f() - A  TU( :~ )  - pTc() 

The last line is identical to (7.14). 0. 

7. 1.1 Example 

Consider the following problem: 

maximize 	f, (X1)+ f2 (X2) 

subject to 	81 (XI) + 82 (X2) - 1.5 < 0, 

a;i + x2  = 1, 

X1, X2 > 0 

where the functions fl, f2, 81, 82 are given as 

fl x)  — 

 

{o 

ifx<1 
- 3 ifx>1 

{ 0 

ifx<1 
- 

f2 (X) — 2 ifx>1 

{ 

0 ifx<1 
- s1(x)  — 2 ifx>1 

s2(x)—{ 

0 ifx<1 
- 1 ifx>1 
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It is clear from inspection that this problem has the unique solution (x 1 , x2 ) = 

(0, 1). With the notation of (7.1)- (7.4) let X be the set X = {(x 1 , x2) : x 1 , x2  >— 
0, x 1  + x2  = 1}. Then for this problem the dual function L(A) is defined by 

L(A) = max {fl (x i ) + f2 (x2 ) - A(s i (x i ) + 82 (x2 ) - 1.5) 
{x ,x2} 

X1 +x2  = 1,x 1  >— 0,x 2  ~! 01 	(7.16) 

In this simple example L(A) can be found explicitly for every A. 

L A - 3-0.5A ifA<1 
( -i 2+0.5A ifA>1 

The dual problem is 

minimize 	L(A) 

subject to 	A > 0 

The solution to the dual problem is A = 1. However, for A = 1 there are two 

arguments (x 1 ,x2 ) which achieve the maximum in the RHS of (7.16), namely 

(1, 0) and (0, 1). Of these (0, 1) is the optimum to problem (7.15) whereas (1, 0) 

is an infeasible point. For A < 1 and A > 1 the arguments (x 1 , x2 ) which achieve 

the maximum in the RHS of (7.16) are (1, 0) and (0, 1) respectively. It is worth 

mentioning that the solution to the dual problem A = 1 and the solution to the 

primal problem (x 1 , x2 ) = (0, 1) are not complementary slack. 

If the evaluation of L(A) in (7.16) were done using dynamic programming and 

if the dual problem were solved numerically with a local optimization algorithm, 

then the dual method applied to problem (7.15) could return as result either 

(x 1 ,x2 ) = (1,0) or (x 1 ,x2 ) = (0,1). 

7.2 Visualising the dual problem 

In this section a problem of the form (7.1)- (7.4) with only one constraint being 

relaxed is looked at. Consider the problem 

maximize f(x) 	 (7.17) 

subject to c(x) = 0, 

X E X, 

where X E 1R, f and c are functions 1R -+ JR. Define the following new 

function: 

J() := max{f(x) : c(x) = xEX 
(7.18) 

Rrel 



Figure 7.1: 

i.e. 7 is a function JR -+ R. If is such that there exists no x e X with c(x) 

then define f() := -. Note that 7(0) is the optimal objective value of problem 

(7.17). Also let the Lagrangian be 

L(p) := max{f(x) - pc(x)} 	 (7.19) 
xEX 

where p E R. The dual problem is 

minimize L(p). 	 (7.20) 

Assume, again, that there is a method with which for every p e JR it is possible 

to determine L(p) and x(p) where x(p) is the argument achieving the maximum 

in the RHS of (7.19). 

In the sequel different shapes of the function f will be discussed. In Figure 7.1 

several features are worth mentioning. The function f() can be non smooth and 

discontinuous since the functions f(x) and e(x) are general non-linear functions. 

Even when f(x) and c(x) are continuous it is possible that f() is discontinuous. 

From definitions (7.18) and (7.19) it follows that 

L(p) = max{f(x) - pc(x)} 
xEX 

= max max{f(x) - pc(x) : c(x) = 
C xEX 

= max{J() - p}. 

In Figure 7.1 the evaluation of L(p) for p = —1 is considered. f - p is constant 

on straight lines with slope p. On two different straight lines with slope p the 

value f - A—c is bigger on the line which lies above the other. Hence L(p) can 

be associated with the straight line 7 - p = K (where K is a constant) which 

intersects the graph f() and which lies above all other straight lines with slope p 

intersecting the graph 7(h). The straight line associated with L(p) intersects the 
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Figure 7.2: 

C 

Figure 7.3: 

7-axis in the point (0, L(p)) and the graph 7(d) in the point A. Let be an ar-

gument which achieves the maximum in the RHS of (7.19). Then the coordinates 

of the point A in Figure 7.1 are (c(), f()). 
In Figure 7.2 the curve f() is smooth at z = 0 and the function L( 4u) is 

minimized for one value of i-i, i-i = /i. The straight line with slope ft associated 

with L(j) intersects the graph 7(e) at the point A with coordinates (0,7( 0)). 
When 

	

E argmax{f(x) - ic(x)} 	 (7.21) 
xEX 

then c() = 0 and f() = L(A). This means that i solves problem (7.17), since 

every L(p) is an upper bound on the optimal objective value of problem (7.17). 

(This follows from Lemma 7.1.2.) 

In Figure 7.3 the graph 7(e) is non-smooth at Z = 0. /Li and /12 are the slopes 

of the two straight lines. In Figure 7.3 all T1 with < IL2 solve the dual 

problem (7.20). 

In the example of Figure 7.4 L(/1) is minimized by it. The straight line asso-

ciated with L(l) intersects the graph 7(z) at two points A 1  and A 2 . This means 



C 

Figure 7.4: 

that there exist i l  and 2  such that 

J .Z i  e argmax{f(x) - jtc(x)} 	for i = 1,2 	 (7.22) 
xEX 

and (c(l 1 ), f(i))  are the coordinates of point A 1  and (c(2), f(2))  are those of 

A 2 . Note that c( 1 ) 0, c() 0  0. So i i  and 2  are solutions with a duality gap. 

Further, since (0, 7(0)) lies in a valley of the graph f() there exists no IL such 

that the straight line associated with L() intersects the graph f() at ( 0 ,7(0)). 
More formally: there exist no p and § such that 

E argmax{f(x)—c(x)} 
xEX 

and 	c() = 0. 

If L(y) is evaluated with a method which also returns as result exactly one x() 

with 

E arg max {f(x) - ie(x)} 	 (7.23) 
sEX 

then in the example of Figure 7.4 it is pure luck which of ,x 2  is returned as 

x(/i). This remark is important because in later sections Dynamic Programming 

will be used to evaluate a Lagrangian function and exactly one optimal argument 

x will be returned for every Lagrangian evaluation. In Figure 7.4 the point A 1  

is closer to the 7-axis than A 2 . Therefore § j  is a better approximation to the 

solution of problem (7.17) than x2 , where , x2  satisfy (7.22) and give rise to 

the coordinates of A 1  and A 2  respectively. In order to find the argument i 

satisfying (7.21) and being nearest to the 7-axis (i.e. with Ic(i)j being smallest) 

the following perturbation method can be applied: 

When A minimizes L(t) and a Lagrangian evaluation method returns x() as 

the optimal argument of the Lagrangian evaluation, set ft = + fe(x([L)) where 

E > 0 and c is small. Evaluate L(ii)  and look at c(x(i)). If 

c(x(,i))I < Ic(x(11))I 



f 

T.  

U 

Figure 7.5: 

then accept x() as the optimal argument of the Lagrangian evaluation of L(/Ji). 

Note that if c(x(111)) > 0 then 

c(x(,Tl)) <c(x(/1)) 

by Corollary 7.1.5. If c(x(i)) < 0 then c(x()) > c(x(l)) by the same Corollary. 

In some sense this perturbation method assures that both sides of the valley in 

Figure 7.4 are checked. 

Now let's look at an inequality constraint problem. 

	

maximize f(x) 	 (7.24) 

	

subject to u(x) 	0, 

x E X, 

where X e JRfl, f and u are functions 1R' -+ R. Define the equivalent to (7.18) 

and (7.19): 

J() := max{f(x) : u(x) = 
xEX 

If U is such that there exists no x e X with u(x) = 2 then define f() := —oo. 

The Lagrangian is 

L(A) := max{f(x) - Au(x)} 
xEX 

where A E R. The dual problem is 

minimize L(A) 

subject to A > 0. 

In Figure 7.5 the point B corresponds to the optimal solving problem (7.24), 

i.e. B has coordinates (u(),f()). The points A,, A 2  are those corresponding to 
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ii 

U 

Figure 7.6: 

optimal arguments i in the Lagrangian evaluation of L(A) where A solves the dual 

problem. A 1 , A 2  and the corresponding arguments §, I2 are found by perturbing 

A as in the equality constraint problem discussed before. 

In Figure 7.6 B is again the point corresponding to the optimal solving 

problem (7.24), i.e. B has coordinates (u(), f()). Since the dual problem has 

the constraint ,\ > 0 the dual method finds B and ff in the example of Figure 7.6. 

7.3 Perturbation method in general 

In the previous section it was described how to find the points A 1 , A 2  in the 

example of Figure 7.4 by perturbing A , where ft is the solution point of the dual 

minimization problem (7.20). To be able to do this is important when ( 0 ,J(0 )) 
lies in a valley of the graph J() and when there is an evaluation method for L() 

which returns only one optimal argument x() satisfying (7.23) but not the whole 

set 

argmax{f(x) - pc(x)}. 
xEX 

However, the illustrations of the previous section used examples with one dimen-

sional constraint space. It is necessary to generalise the perturbation method for 

problems with two or more constraints. 

Let's look at problems of the form (7.1)-(7.4). The definition of f is (a gener-

alisation of (7.18)): 

J(i, ) := max{f(x) : u(x) = i, c(x) = 	 (7.25) 
xEX 

where now 	 IR and f is a function ]Rc+mTh -+ JR. If there is no x E X 

such that u(x) = i and c(x) = Z then define 7(U, -6) := —oo. The Lagrangian 

L(A, ji) is given by (7.5) where A E R k ,  tL EJRtm The dual problem is given by 
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(7.6) and (7.7). From (7.5) and (7.25) the following relation can be derived: 

L(A,) = max{f(x) - ATu(x) - Tc(x)} 
xEX 

max max{f(x) - .ATu(x) - iiTc(x) : u(x) 	i, c(x) = u,c xEX 

Assume that there is a method which for every A e iRk  ii E jj? determines 

L(A,1) and a 

e argmax{f(x) - ATu(x) I.L'c(x)} 
xEX 

(7.26) 

as corresponding optimal argument. Let (A, A) be a solution point of the dual 

problem (7.6),(7.7). Let S be the set of all optimal arguments x E X of the 

maximization problem corresponding to the evaluation of L(, ). i.e. 

S := argmax{f(x) - \'u(x) - /jTC()} 	 (7.27) 
xEX 

The aim is now to obtain a i E S such that I l()+I I and lIc()II are small, where 

u is the vector u with all negative components replaced by zero. u()+ and 

c()I being small means that the violations of constraints (7.2),(7.3) of the point 

are small. Analogous to the examples in Figures 7.2-7.6 the following can be 

said about a multi-constrained problem of the form (7.1)-(7.4). 

Consider the space ]fk+m+1  where the first k axes correspond to components 

of U, the next m axes correspond to components of Z and the m + k ± 1-th axis 

corresponds to 7. In this space the hyperplane given by 

f— T —il T =L(), 	 (7.28) 

where (, jTi) is a solution point of the dual problem, touches the graph f(, ) 
given by (7.25) at at least one point. Furthermore, if constraints (7.2)-(7.4) are 

feasible then the hyperplane lies above the graph J(n, ) in the direction of the 

f-axis, i.e. 

L(A,/) +5T+.AT ~ i() 	Vii,. 	 (7.29) 

If constraints (7.2)-(7.4) are feasible and if there exists no point A with coordinates 

(u(x), c(x), f(x)) for some x E X which lies on the hyperplane (7.28) and the 

graph 7(i, ) and for which u(x) < 0 and c(x) = 0 then the hyperplane touches 

the graph J(i, ) at more than one point. In this case a perturbation method is 

necessary in order to find a i E S with 11u()+11 and c()jI small. The difficulty 

is how to choose perturbation directions such that in consecutive perturbations 

102 



Figure 7.7: 

no x E S is discovered twice and yet the whole space of relevant perturbation 

directions is covered. This point will be illustrated by the following example. 

Consider a problem of the form (7.1)-(7.4) with k = 1 and m = 1. Figure 

7.7 shows the (z,,J) space projected onto the (U, Z) space where A 1 ,A 2 ,A 3  are 

three points in the (ii, , 1) space where the hyperplane given by (7.28) touches 

the graph 7(U , ë). This means that at A 1 , A 2 , A 3  (7.29) holds as an equality. 

Suppose that an evaluation method for L(A, /1) returns the optimal argument 

x(5, i) e S which corresponds to the point A 1 , i.e. the coordinates of A 1  are 

(u(x(,j)),c(x(5,)),f(x(AJ))). Among A 1 , A 2 , A 3  only the point A 3  corre-

sponds to a primal feasible x e S. The normal vector of hyperplane (7.28) is 

\1 

The perturbation of this vector in direction 

corresponds to setting 

/ —u(x(5,ft)) 
—c(x(5,ft)) 

0 

A = 
= 

(7.30) 

for some small e > 0. The hyperplane with normal vector equal to this perturbed 

normal vector which touches 7(i1, ) and lies above f(, ) in direction of the 

7-axis is given by 

f ATU 	L(A,p). 
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This hyperplane touches 7(i, ) in a point close to A 2  since among A 1  ,A 2  ,A 3  the 

point A 2  lies furthest away from the origin in the direction of perturbation (7.30). 

This means that the point ) returned by the evaluation method for L(.A, ,a) 

will give rise to the coordinates of a point close to A 2  in the (, , f) space. Now, 

having found A 1  and A 2 , if in a similar way the normal vector of hyperplane 

(7.28) is perturbed in direction 

/ —u(x(.AJL)) \ 
—c(x(A, 4) J 	 (7.31) 
\oJ 

then a point close to A 1  will be found since among A 1 ,A 2 ,A 3  the point A 1  lies 

furthest away from the origin in the direction of perturbation (7.31). The point A 1  

had been found before, therefore the perturbation direction (7.31) is not good. 

A better second perturbation vector is one which is orthogonal to the vector 

(A2  - A1 ) and whose scalar product with A1  and A 2  is negative as shown in 

Figure 7.7. Such a perturbation vector ensures that among A 1 , A 2 , A 3  none of the 

already found points A 1 , A 2  is furthest away from the origin in the perturbation 

direction, hence neither A 1  nor A 2  will be found next. 

The following is an algorithmic description of the perturbation process: 

Procedure 7.3.1 

Let x0  = x(., ) where  (., i) is an optimal point of the dual problem 

(7.6),(7.7). Let 

a0
- ( 

u(xo) 

 ) - 	C(XO) 

i.e. a0  is a k + 'in dimensional vector. 

If 'u(x0) <0, c(xo) = 0 and 5Tu(xo) = 0 then set i = 0 and go to step 8. 

There are I indices j such that A j  = 0 (for some 1 > 0). For each of such 

indices j include the /c+m dimensional unit vector with 1 as j-th component 

in the set B, i.e. B is a set of k + m dimensional unit vectors and B has 1 

elements. (If 1 = 0 then B = 0) 

set i = 0 and D0  = 0. 

Pick a k + m dimensional perturbation vector Pi+i  54 0 which satisfies 

T ap+i < u, 

vTpj+i = 0 	for all v e D, 
vTp+1 < 0 	for all v e B. 

If no such vector exists go to step 8. 
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Pick a small € > 0 and set 

A ( 	= I  
J 

I 	Pi+i, 
L 

xj+i = 

/ u(x1) 
\\ 

a+i = 	
c(x+1) )• 

If u(x) < 0, c(x) = 0 and 5'u(xi) = 0 then increase i by one and go to 

step 8. 

Set D 1  = Di  U {a 1  - ao }. 

Increase i by one and return to step 4. 

Let E be an ordered set with elements x 0 , x 1 ,... x. The order of elements 

in E is given by the magnitude of I lu(x) + I I + I lc(x) I, i.e. if Jc, x E E and 

<x then 

Hu() + H + 1141)1 	u (x*) + l + H c ( x *)H. 

Stop. 

Step 1 defines the fist argument x 0  e S which gives rise to the coordinates of a 

point in the (11, , 7) space for which (7.29) holds as equality, a 0  is the coordinate 

vector of this point projected onto the (11, ) space. If u(x 0 ) < 0, c(xo) = 0 and 
Tu(x0) = 0 then x 0  is a global optimum by Lagrange's Sufficiency Theorem 

(Theorem 7.1.3). In this case there is no need to carry on with the procedure, 

therefore the procedure goes to step 8 and then terminates. 

Step 2 deals with those components of A which are on the boundary of the 

dual feasibility region. In these components perturbation can only take place in 

one direction in order to avoid the perturbed vector ( 
A 
 ) being dual infeasible 

by having a negative component in A. By defining the set B in step 2 and by 

requiring in step 4 that satisfies v Tpj+i  < 0 for all v e B it is achieved that 

the perturbed vector \ ( A 
J 

is dual feasible. 
1 

Step 4 defines a new perturbation direction Pi+i  The two conditions imposed 

on Pi+i,  that apj1 <0 and vTp+i = 0 for all v e D2 , imply that a'pj1  <0 for 

all 0 < k < i since D2  contains all vectors of the form ak - a 0  for 1 < k < i. The 

formal derivation of this is: 

Lemma 7.3.2 If aTp1+i < 0 and (a' - aflp+i  = 0 for all 0 	k 	i then 

a'pj1  <O for all O<k<i. 
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Proof: 

T 	T T T\ 
akpi+1 = akp+1+a — ao)pi+l 

= (a' - a')pji + apj+i 

T 
= a2 p2+i 

<0. 

Step 5 does the perturbation of 
( 	 ) 

in direction Pi+i,  i.e. the normal 

vector 

( 

j 

 ) 

of hyperplane (7.28) is perturbed in direction 
( 

Pi+i 

 ), 

and 

	

/ u(x+i) \ 	 - 

gets x2i  which approximates a E S. ( c(x2+i)  ) is a point of the  

\ f(x2i ) I 
/u() \ 

space approximating the point f c()  ) for which (7.29) holds as equality and 

f() I 
which is furthest away from the origin in the direction of perturbation 

( 	 ). 

/ u(x + ) \ 
a 1  is the point ( c(x+i) I projected onto the (ii, ) space. At the end of step 

\. f(x) ) 
5 there is a stopping criterion which is identical to the one at the end of step 1. 

Step 6 defines D+1 as the set of vectors which the next perturbation direction 

must be orthogonal to. Note that for i> 1 

D2  = jai  - a0 , a2  - a0 , ..., a2  - ao J. 

After this procedure one picks the point among x 0 ,x 1 ,..., x2  which least violates 

the constraints (7.2), (7.3), 1. e. for which I I u(x) + H + IIc(x)H is least, and accepts 

it as an approximation to the solution point of problem (7.1)-(7.4). This will be 

the first element of E, where E is defined in step 8. 

At this stage the set E does not seem to be of any use. Later on, Algorithm 

8.4.1 will use Procedure 7.3.1 and there the set E will be useful. 

Procedure 7.3.1 is always guaranteed to terminate. The reason for this is that 

the vectors 

a 1  - a0 , a2  - a0 , ..., a2  - a0  

are linearly independent (this will be proved in Theorem 7.3.4). These vectors 

are k + m dimensional vectors. This implies that i < k + m. When i = k + m 

then in step 4 there can not exist a vector Pi+i ~ 0 satisfying p 1 v = 0 for all 
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v E D2  because 

{ a1  - a0 , a2  - a0 , ..., a - ao } = D2 . 

This leads to termination of Procedure 7.3.1. 

Next the proof will be provided that a 1  - a0 , a2  - a0 , ..., a - a0  are linearly 

independent. First we need an auxiliary lemma. 

Lemma 7.3.3 The point a 1  as defined in step 5 of Procedure 7.3.1 satisfies 

a 1pj1 > 0. 

Proof: 

x 1  is an optimal argument for L(\, i) 

and a 1  in step 5 it follows that 

From this and the definitions of ( 

 11  ) 

L(A,) = f(u(xi),c(x+i)) - )\T u (x+i) - i T c (x ) 	 (7.32) 

= f(u(x+1), c(xj+i)) - T u ( x ) - Tc(x) + EPiai+l. 

If a component j of ) is zero then the corresponding component of Pi+1 is less 

than or equal to zero because B (defined in step 2) contains a unit vector e3  with 

1 as j-th component and Pi+i satisfies epj+l < 0 (required in step 4). Hence 

(\, ) is dual feasible. By the dual optimality of (5, ) 

L(A,) > L(A,) 

Inserting (7.32) in LHS gives 

f (u(x+i), c(x+i)) - T u (x ) - Tc(x) + epiaj+l > L(, ) 

' ep 1 a 	~ 	L(\, 11) 	- 	 (f(u(x+1), c(x+i)) - T u (x ) - iTT c (x+1)) 

By definition of L(, ) we have RHS> 0. 

= 	Epiai+l > 0 

Since e > 0 it implies p 1 aj1 > 0. 	D. 

Theorem 7.3.4 The set of vectors ja i  - a0 , a2  - a0 , ..., a2  - ao }, where a3  for 

0 < j < i are defined in steps 1 and 5 of Procedure 7.3.1, is a set of linearly 

independent vectors. 

Proof: 

The proof is done by induction. For the case i = 1 it must be shown that 

a1  - a0  0 0, 1. e. that a 1  0 a0 . This will be shown by contradiction. Assume 
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a1  = a0 . We have ap1  <0 from the requirement in step 4. But from Lemma 

7.3.3 afpi  ~ 0 . Contradiction. 

Now assume that the theorem holds for some i > 1. It must be shown that 

if Procedure 7.3.1 does not terminate before defining a+i  then  a+i - a0  is lin-

early independent from a 1  - a0 , a2  - a0 , ..., a - a0 . Let's prove this, again, by 

contradiction. 

If 	a 1  - a0  = 	 - ao ) 

for some scalars aj  then 

i 

p- 1 (aj+i  - ao ) = 	c jp 1 (aj  - ao ). 	 (7.33) 
j=1 

LHS of (7.33) > 0 since p 1 aj1  > 0 by Lemma 7.3.3 and p 1 a0  <0 by Lemma 

7.3.2 and by step 4 of Procedure 7.3.1 which ensures that Pi+1  satisfies the con-

ditions of Lemma 7.3.2. 

RHS of (7.33) = 0 since p 1 (aj  - ao ) = 0 for 1 <j <i by the condition on Pi+1 
in step 4. (Remember that (a - ao ) (E D2  for 1 < j < i.) Contradiction. E:J. 

Corollary 7.3.5 The vectors a 0 , a1 . ..... a are all different, where a3  for 0 < j < 
i are defined in steps 1 and 5 of Procedure 7.3.1. 

Proof: 

By Theorem 7.3.4 a1  - a0 , a2  - a0 ,..., a - a0  are linearly independent. This implies 

that a3  - a0  0 for 1 j < i. This means that a0  is different from a 1 , a2 ,..., a. 

Now assume that ak = a3  for some j,k satisfying 

1 	j < i, 

1 <k 

j$k. 

Then ak - a0  = a - a0  and hence a1  - a0 , a2  - a0 ,..., a - a0  are linearly dependent. 

Contradiction to Theorem 7.3.4, hence ak =A a3 . 	U. 

Corollary 7.3.5 is important because it shows that the perturbation method of 

Procedure 7.3.1 is efficient in the sense that every perturbation finds a new point 

of the (ii, c, f) space where (7.29) holds as equality. This implies that every 

perturbation finds a new vector I E S where S is defined in (7.27) 
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7.4 Conclusions 

The main result of this chapter is the perturbation procedure Procedure 7.3.1. 

The usual dual method for solving problem (7.1)-(7.4) solves the dual problem 

(7.6),(7.7) and then accepts x(\, A) as the optimal point of problem (7.1)-(7.4), 

where x(\, /t) is a computed point satisfying (7.26) and (, ) is a solution point 

of the dual problem. If x(A, i) is feasible and complementary slack then by 

Lagrange's Sufficiency Theorem x(\, ü) solves problem (7.1)-(7.4). 

In the case that x(, /1) is not feasible and complementary slack then typically 

there exist several points which are equally likely to be good near optimal points 

to problem (7.1)-(7.4). Procedure 7.3.1 discovers several of these near optimal 

points (at most it finds m + k points). The usual dual method would compute 

only one of these near optimal points. 
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Chapter 8 

A model for the Lagoven problem 

8.1 Prototype hybrid algorithm 

The Lagoven problem can be formulated as follows: 

maximize 	f(x,v) (8.1) 

subject to 	ui(x,v) <0, (8.2) 

u2(x,v) <— 0, (8.3) 

ci(x,v) = 0, (8.4) 

c2(x,v) = 0, (8.5) 

xEX,vEV (8.6) 

where X C 1R1 , V C 1R12,  the functions f, u1, u2, c1, c2 are f : ]Rfll+fl2 

U1 : ]Rnh+2 , Rk,, U2 : 1R1+2 	ff?k2, C1 : lRfh+n2 —p 	2 : ]Rfll+n2 _+ JRm2 

Define the following Lagrangian 

:= max{f(x,v) - )Tu(xv) - T c1 (x,v ) 
xEX 

u2(x,v) < 0,c2(x,v) = 0} 	 (8.7) 

where A e JRkl 	E ]fjTfl1 This means that only constraints (8.2) and (8.4) are 

relaxed. Suppose that there exists a method to evaluate L(A, fL) for every ), 

and v E V. If v E V is fixed then it is possible to use the dual method to find a 

good x for problem (8.1)-(8.6). ie. pick x e S where 

S :={x:xEX,f(x,v)_ Tui(x,v)_/ Tci(x,v)=Lv (,fi), 	(8.8) 

u2(x,v) <0, c2(x,v) = 01 

and where (\, fi) solves the dual problem 

minimize 	L(A, fL) 	 (8.9) 

subject to 	.A 2  0. 

110 



Suppose problem (8.1)-(8.6) is nonlinear and continuous with a lot of local op-

tima. An algorithm will be presented to find a good local optimum (x, v) using 

the dual method and a local optimization procedure (like SQP or SLP). The lo-

cal optimization procedure used is one which minimizes the sum of constraint 

violations in the case that it can not find a feasible point. If the dual method is 

done with a numerical method and if the set S. c, has more than one element then 

usually the numerical method will only return one element from S as the result 

x. So for the below algorithm let's assume that there is a numerical method to 

evaluate L(A, ), but this method always returns exactly one value for x which 

achieves the maximum in the RHS of (8.7). Next a basic algorithm is shown 

which combines a local search method applied to problem (8.1)-(8.6) with the 

dual method given by (8.7), (8.8), (8.9). 

Algorithm 8.1.1 

choose an integer n> 0. 

Use some method to obtain starting values for the vectors x, v and store 

these as x 0 , v 0  respectively. 

For i=ltondo 

With v = v_ 1  apply the dual method given by (8.9). The result is an 

optimal dual vectors (A, fi). Apply the perturbation procedure (Procedure 

7.3.1) to 	The result is a set 

where 1 <r < k + m1  and E C S_ 1 . 

For all j with 1 < j < r do a local optimization of problem (8.1)-(8.6) 

with (i, v i -- 1 ) as a starting point. The result are locally optimal points 

(±, i). (If the local optimization routine can not find a feasible point, 

it minimizes the sum of constraint violations instead.) From the points 

..., (i r , 1'r) pick the best one with respect to constraint satisfaction 

and objective value and store it as (x i , v i ). 

Ifv,=v3  for some  <ithen go to step 8. 

continue i. 

From the points (x0 , v 0 ), ..., (x i , v) pick the best one with respect to con-

straint satisfaction and objective value and return it as the result to problem 

(8.1)-(8.6). Stop. 
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Steps 1 and 2 are initialisation steps. Essentially, within the i—loop (steps 3-7) 

dual optimization and local optimization are alternatingly applied. The idea is 

that the dual method in step 4 is often capable of 'escaping' from a bad local op-

timum. The algorithm produces a sequence of points (x 0 , vo ), (x 1)  v i ), . . . , (x2 , v 2 ) 

where i < n. Each of these points corresponds either to a local optimum of 

problem (8.1)-(8.6) or to a point which locally minimizes the sum of constraint 

violations in (8.2)-(8.6). At the end of the algorithm the best local optimum 

produced is accepted as the final result to problem (8.1)-(8.6). If the stopping 

condition in step 6 is fulfilled but the algorithm were to carry on then in the 

next iteration the algorithm would find (x 1 , v +i ) (x +1 , v 1 ) with j < i, and 

it would just keep on repeating previous computation. Usually, if the stopping 

condition in step 6 is fulfilled then j = i - 1 and (xi , v) corresponds to a 'good' 

local optimum, where, of course, 'good' local optimum means a local optimum 

with a relatively high objective value. 

8.2 Description of the Lagoven problem 

In Lake Maracaibo in Venezuela there is a big oil production field, its description 

is the topic of this chapter. The operation of this oil production field gives rise 

to a non-convex, non-continuous optimization problem. A simplified model and 

ways to find good solutions to the corresponding optimization problem will be 

presented. 

Figure 8.1 shows the simplified architecture of a oil production field. The 

lines in the figure stand for pipes, wells are represented by a circle. To each 

well gas is injected from one gas manifold. The injection of gas into a well 

has the effect of increasing the production rate of the well. The change of the 

production rate of the well depends on the injection rate of gas. Gas manifolds 

are represented by squares below the circles representing wells. A mixture of oil 

water and gas comes out of a well and is delivered to a flowstation. Flowstations 

are represented by squares above the circles representing wells. At a flowstation 

water and oil is separated from the gas, which is going back into the system. Each 

fiowstation has a limit on the rate of water that it can separate. Each flowstation 

i is operated at its own pressure Pf,i.  (The index f stands for flowstation.) There 

are k flowstations. The rate of gas flow from flowstation i back into the system is 

q1, 2 . (As before, the index f stands for flowstation.) The gas from the flowstations 

comes together at a node where the pressure is p.  From there the gas flows to the 

compressor. The rate of gas flow to the compressor is q1 . At the entry point to the 

compressor the pressure is P2  The compressor burns some of the incoming gas in 
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Figure 8.1: Model of the oil field 
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order to increase the pressure. Where the gas leaves the compressor, the pressure 

is p3. Some of the out-flowing gas leaves the system and is sold, this flow of gas is 

q. The price for one unit of gas is c. The out-flowing gas staying in the system 

is q3 . This gas flows to a node where the pressure is p. From this node the gas 

is delivered to m different gas manifolds. The rate of flow of gas to gas manifold 

i is qg j. (The index g stands for gas manifold.) Gas manifold i is operated at 

pressure p9 ,j . There are ri wells and they are numbered from left to right. Wells 

1, 2 ... n, receive the lift gas from gas manifold 1. Wells ri1  + 1..... , ni ± ri2  receive 

the lift gas from gas manifold 2. If 

z 1 :=0, Zi 	
~7  nj  for i>2, 

then wells z + 1, ..., z + ni  receive lift gas from gas manifold i. (Notice that 
EM 

J n3  = n) The rate of lift gas injection into well i is x. (xi  > 0). 

Well i is connected to flowstation ir(i). ie 7 is a function from 11, 2, ...n} to 

{1, 2, ..., k}. Well i is connected to gas manifold q(i). ie 0 is a function from 

{ 1, 2,...n} to {1, 2, ..., m}. (From what was said about the connection of gas 

manifolds with wells, it follows that (i) = j for z < i < z3  + n3 .) The flow rate 

of oil coming out of well i is 

f (xi,  Pg ,(i), Pf,ir(i)) 

The flow rate of gas coming out of well i is 

gj (xi, Pg,(i), Pf,ir(i)). 

The flow rate of water coming out of well i is 

Si(xi) P g , cb(i), Pf,ir(i)). 

ie. f, gj  and si  are functions JR3  - JR for 1 < i < n. Also, the functions f, 

gj  and si  are always non-negative. Along the pipes pressure drop takes place. 

The pressure drop in the pipe connecting flowstation i with the node where the 

pressure is P1  can be described by 

wf,j(pf ,j,qf ,j,pi) = 0 

wf, i  is a function relating the pressures at the two ends of the pipe with the flow 

of gas through it. It is a continuous function JR3 -+ R. (The index f, again, 

stands just for flowstation.) Similarly, the pressure drop in the pipe connecting 

the node where the pressure is Pi  with the compressor can be described by 

wi(p1,q1,p2) = 0, 
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w 1  is a continuous function JR3  —+ R. The pressure drop in the pipe connecting 

the compressor with the node where the pressure is p4 can be described by 

w 2 (p3 ,q3 ,p4 ) = 0, 

W2 is a continuous function JR3  —+ R. The pressure drop in the pipe connecting 

the node where the pressure is p4  with gas manifold i can be described by 

'wg , j (p4, qg ,j,pg,j) = 0 

(The index g stands for gas manifold.) w_q ,i is a continuous function JR3  —+ R. 

There is, of course, also pressure drop in the pipes connecting wells to fiowstations 

and to gas manifolds, but these pressure drops are already incorporated in the 

functions f, gj and si  for i = 1, 2, ..., n, hence there is no need to include these 

pressure drops explicitly in the mathematical formulation. The compressor burns 

some of the incoming gas in order to increase the pressure. The action of the 

compressor can be described by 

h(p2 ,p3 ,qi ,q4 ) = 0 

where h is a continuous function JR4  —* JR and q4  is the rate of gas being burnt 

by the compressor. From the mass balance at the compressor it follows that 

q4 = q, — q2 — q3. Before the whole optimization problem is formulated, one more 

object must be defined. Let 

Q(j) = {i: 1 <i < n,ir(i) = j} 

So Q(j) is the set of indices of wells which are connected to fiowstation J. The 

optimization problem will be formulated now: 

n 

maximize 	cq2  + 
	

(8.10) 
i= 1 

subject to 	.Sj(Xi,Pg,cb(i),Pf,j) 
	—S 3 <0 Vj:1<j<k, (8.11) 

iEQ(j) 

gj (x i , Pg,(i), 	—q1, 3 =0 Vj:1<j<k, (8.12) 
iEQ(j) 

wf, j (pf, j ,qf, j ,pi ) = 0 Vi:1<i<k, 	 (8.13) 

qf,j 	—q 1 =0, 	 (8.14) 

w 1 (p 1 ,q1 ,p2 ) = 0, 	 (8.15) 

q1  — q 2  — q 3  — q 4  = 0, 	 (8.16) 

h(p2 ,p3 ,q1 ,q4 ) = 0, 	 (8.17) 
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w2(p3,q3,p4) = 0, 	 (8.18) 
Tn 

q9 , 	—q3=O, 	 (8.19) 
i=1 

wg,j(p4,q g,j,p g ,j) = 0 Vi: 1 	i < m, 	 (8.20) 
zj+nj 

	qg ,jE Xi - 	
= 0 Vj : 1 <j m, 	 (8.21) 

i=zj+1 

q 1 ,q2,q3,q4 ~! 0, 	 > 0 Vi 	 (8.22) 

(8.10) is the objective function, (8.11) describes the separation constraint at the 

flowstations where S is the limit on the rate of water arriving at flowstation 

j, (8.12) describes the conservation of gas at the flowstations, (8.13) describes 

the pressure drop in the pipes connecting a flowstation with the point where 

the pressure is Pi,  (8.14) describes the conservation of gas at the point where 

the pressure is Pi,  (8.15) describes the pressure drop in the pipe connecting the 

point where the pressure is P1  with the point where the pressure is P2,  (8.16) 

describes the conservation of gas at the compressor, (8.17) describes the constraint 

describing the influence of the compressor (ie. the burning of some gas in exchange 

for an increase in pressure), (8.18) describes the pressure drop constraint of the 

pipe connecting the points where the pressures are p3 and P4  respectively, (8.19) 

describes the conservation of gas at the point where the pressure is p,  (8.20) 

describes the pressure drop in the pipes connecting the point where the pressure 

is p4 with gas manifolds, and finally, (8.21) describes the conservation of gas at 

the gas manifolds. This completes the circle of the network. (8.22) describes the 

positivity constraints for the flow variables. 

The functions f, si  and gi  are typically non-continuous. For fixed a, b E IR, 

the functions f(x,a,b),s(x,a,b) and g(x,a,b), which are now functions in x 

only, have one common point where the functions are discontinuous. 

Let this point be x * (a, b). 	 (8.23) 

x is continuous in a and b. When a, b are fixed the functions f(x, a, b),s(x, a, b), 

gj (x, a, b) are continuous in x on the intervals (—oo, x) and [x, oo). The other 

functions in the problem are everywhere continuous. The variables in this problem 

are x 1 , X2 ... X, Pg,1,Pg,2, •••,Pg,m, q9,1,  q9,, ..., q9,, Pf, 1, Pf,2,  ...,Pf,k, q1,1, q1,2, ..., qf,k, 

P1,P2,P3,P41 q1 , q2 , q3 , q4 . Let these variables be grouped together in vectors as x, 

Pg, qg, Pf, q1, p, q. The obvious way to tackle this problem is to try a local op-

timization technique like sequential linear programming or sequential quadratic 

programming. However, the discontinuities of the functions f, s, gj make this 

approach problematic because one has to decide at which side of the discontinu-

ity the first argument of these functions shall be. It is easy to see that a lot of 
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combinations arise. A hybrid algorithm including a local optimization technique 

(ie. sequential linear or quadratic programming), dynamic programming and the 

dual method will be proposed. This hybrid algorithm is of the form described in 

section 8.1. 

8.3 Description and solution approach of a sub-
problem 

In this section a subproblem of the optimization problem of the previous section 

will be described and a dual algorithm for its solution will be discussed. Consider 

the following subproblem: 

n 

maximize{ }= 	f (xi , Pg,(i), Pf,ir(i)) 
	

(8.24) 
j=1 

subject to 	sj (Xj,p g,(j),pf,j) - S2 	0 Vj : 1 < j < k, 	(8.25) 
iEQ(j) 

9j(Xj,Pg,(j),Pf,j) - q1,j = 0 
iEQ(i) 

zj+nj 

x.=q9 ,3  Vj:1jm, 
i=z +1 

X i  > 0 Vi 

Vj:1<j<k, 	(8.26) 

(8.27) 

(8.28) 

The optimization in this subproblem is in the variables {x} 1  only, all other 

variables are fixed. In terms of Figure 8.1, this subproblem just looks at the area 

between the gas manifolds and the fiowstations. Notice that constraint (8.25) is 

equivalent to (8.11) and (8.26) is equivalent to (8.12). (8.27) is identical to (8.21). 

For the dual algorithm a Lagrangian function will be defined where constraints 

(8.25) and (8.26) will be relaxed. 

In 

L(, p) := max 	f(x, Pg,(i), Pf,(i)) 

k 

- 	A( 	Sj(Xj,p g ,(j),pf,j) 	- S) 
j 1 	iEQ(i) 

k 

- 	ji3 ( 	gj(xj,pg,0(j),pf,j) 	- 

i=1 	iEQ(i) 

zj+nj 

E xi = qg,j  Vj: 1 <j <m, and xi  > 0 Vi 	 (8.29) 
i=zj+1 	 ) 
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A and u are k dimensional vectors, their components are given by AT = (.\i, A2, ..., Ak) 

and ji'' = (,-ti, I2, -••, /Lk). (and all A, p i  e JR) 
For every i : 1 < i < rt there exists exactly one j : 1 < j < k such that 

i E Q(j). From the definition of Q(j) it follows that 

i E Q(j) e=r(i) =j 

Hence the following equivalence holds: 

A( 	Sj(Xj,P g,(j),Pf,j) 	- S) 

j=1 	ieQ(j) 

AjSi(Xi,P g,(i),Pf,j) - 

j1 iEQ(j) 	 j=1 

E= 	E A( i)s i (x i ,Pg,( i),pf ,(i)) - 

j=1  iEQ(j) 	 j=1 

n 	 k 

= 	Air(j)Sj(Xi,Pg,çL,(j),Pf,ir(j)) - 	A 3 S 	 (8.30) 
jz1 	 j1 

Similarly: 

gj(xj,pg,(j),pf,j) 	- qf,j) 	 (8.31) 
j=1 	iEQ(j) 

=

k 

i)9ui,,i)j - 

	

j jqf 

Inserting (8.30) and (8.31) in (8.29): 

L(A, 	max{}1 
{ 	

fj(Xj,pg,(j),pf,(i)) 

- 	A ir(i)Si(Xi,P g ,(i),pf, ir(i)) + E AS 

i=1 	 j=1 - 	i)9i (Xi  ,Pgi ) f ( i)) + E /Ljqj ,j 

zj+nj 

	 I x,=q9 ,3  Vj:1<j<m, and x > 0 Vi 	 (8.32) 
z=z3 +i  

L(A, t) can be evaluated numerically by dynamic programming. In order to see 

how let's define 

T3  (A, ) := max 	 :1: fi(Xi,Pg,(i),Pf,ir(i)) 
{xjj+i l i=zj+l 
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Zj+flj 

- 	'\() Si (x i , Pg,(i), Pf,ir(i)) 
i=z +1 

zj+nj 

- 	i: 	j)gj(xj,pg,(j),pf,(j)) 

2=Zj +1 

zi +nj 

xj=q9,, and x>O Vi:z+ 1 izj+n 

i=zj+1 

T(A,) is well defined for  : 1 <j m. 

Now define 

(8.33) 

f (x i ) 	fi  (xi,  Pg,q5(i) Pf,ir(i)) - 	r(i) Si (x i , Pg,(i), Pf,7r(i)) - 1(i)gi (x i , Pg,(i), Pf,ir(i 34 ) 

Then 
(zj  +n 

= max Zj+Thj j(x) 
{x,}_. +1  

zj+nj 	
) 

x i = q,, and x>O Vi:zj+1<i<zj+n 	 (8.35) 
i=z,+i 	 ) 

From this it can be seen that it is possible to enumerate Ti (A, t) approximately 

by dynamic programming using n3  stages and one-dimensional continuous action 

and state spaces. The finer the discretisation one uses the better the numerical 

solution will be. Further, since the functions f1 are continuous and differentiable 

everywhere except at one point the Fritz-John action elimination can be applied 

which speeds up the algorithm. From the previous definitions it can be seen that 

	

rn 	 k 

L(A, ) = 	Tj (\, i) + 	+ tj qf ,j ) 	 (8.36) 

	

j=1 	 j=1 

Hence it is clear that L(A, jt) can be evaluated numerically using dynamic pro-

gramming. L(\, i) is a convex function, this has been proved in Lemma 7.1.1. It 

is important to recognise that the evaluation of L(\, ji) can not be done analyt-

ically, it must be done numerically (using dynamic programming). Even though 

L(A, i) is convex, in general L(\, ) is non-smooth. A subtangent of L\, ji) is 

available. Next a subtangent of L(, ji) and its derivation will be given. 

Theorem 8.3.1 Let (A,4) e 1R 1  x JRk  let I satisfy (8.39) and p be a 2k-

dimensional vector with components 

pi = Si  - 	i Si(Ii,Pg,c(i),Pf,i), 

iEQ(j) 

Pk+j = qf,i - E gj(xj,pg,(j),pf,j) 

iEQ(i) 
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for 1 < J < k. Then p is a subtangent vector of the subdifferential set 9L(5, 1T1), 

%. e. 

L(, 	L()+PT ( i) 

for a11) E ]1?k A  iRk 

Proof: 

The theorem is a direct consequence of Theorem 7.1.6. In order to apply results 

of section 7.1 it must be shown that problem (8.24)-(8.28) is of the problem form 

(7.1)-(7.4) and that the definition of jt) in (8.29) is of the form (7.5): 

(8.24) is of the form (7.1), (8.25) is of the form (7.2) and (8.26) is of the form 

(7.3) (setting for m = k) since in (8.24)-(8.26) only {x}L 1  are variables and 

p9, Pi,  q1 and {S}1  are fixed parameters. (8.27) and (8.28) are of the form 

(7.4) since in the definition of L\, j) in (8.29) the constraints (8.27) and (8.28) 

are not relaxed. (8.27) and (8.28) can be thought of as conditions defining a set 

X. Having established correspondences between (8.24)-(8.28) and (7.1)-(7.4) it is 

clear that the definition of L(A, i) in (8.29) is of the form (7.5) and hence that all 

results, methods and procedures of section 7.1 can be applied to the subproblem 

(8.24)-(8.28). 

In the previous paragraph it has been said that (8.25) is of the form (7.2). 

More explicitly, this means that u(x) in (7.2) is the vector with components 

u(x) = 	Sj(Xj,p g ,(j),Pf,j) 	- Si 	for 1 < j :5 k. 

iEQ (j) 

Also (8.26) being of the form (7.3) with m = k in (7.3) means that c(x) in (7.3) 

is the vector with components 

c(x) = 	gj(Xj,pg,(j),pf,j) 	- q1,j 	for 1 < j < k. 
iEQ(j) 

Using these expressions for u(x) and c(x) in Theorem 7.1.6 yields Theorem 8.3.1. 

D. 

L(A, 	is well defined. The dual problem of subproblem (8.24)-(8.28) is 

	

minimize 	L(.A, p) 	 (8.37) 

	

subject to 	.A > 0. 	 (8.38) 

This problem can be solved using a local optimization technique. A cutting plane 

method is suitable for solving the dual problem because L\, ) is convex and 
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because at every point (\, ji) the evaluation of L(A, ji) also provides an optimal 

argument ji) in the RHS of (8.32) and this in turn provides a cutting plane 

(Theorem 8.3.1). Since L(A, ji) is a convex function every local optimum is a 

global optimum. 

Let ) and ji be the solution vectors to problem (8.37) and (8.38), their com-

ponents be given by )T = 
(i i 2, ..., Ak) and 1T 

= (Al, /12, ..., Ilk). Let 1 be 

an argument in (8.29) which achieves the maximum when ), ,i are replaced by 

A, j1. The components of I are given by iT = (x 1 , i2, ...,  §). From the last two 

sentences: 

E arg max 

k 

- i: 	i: Sj(Xj,Pg,cb(j),Pf,j) 	- S) 
j=1 	iEQ(j) 

- 	
j( 	gj(Xj,pg,(j),f,j) 	- qf,j) 

j=1 	iEQ(j) 

zj+nj 

x i  = qq ,j  Vj:1<j<m, and x>O Vi 	 (8.39) 

) 

If x 	i satisfies (8.25) and (8.26), and also satisfies the complementary 

slackness condition 

Sj(Xj,P g ,(j),Pf,j) - S) = 0 Vj : 1 < j < k 
iEQ(j) 

then I solves subproblem (8.24)-(8.28) by Lagrange's sufficiency theorem. How-

ever, in general there is no guarantee that the conditions of the last sentence are 

fulfilled by i. ii is an element of a set of optimal arguments which often has 

more than one element. In order to find an element iI from the set in (8.39) 

which violates constraints (8.25), (8.26) only a little the perturbation method of 

Procedure 7.3.1 can be applied. In order to see how this can be done exactly it 

is useful to have in mind how subproblem (8.24)-(8.28) can be put into the prob-

lem form (7.1)-(7.4) to which Procedure 7.3.1 applies the perturbation method. 

In the proof of Theorem 8.3.1 it is described how (8.24)-(8.28) corresponds to 

(7.1)-(7.4). 

In section 7.1 it was always assumed that there exists a method for the evalu-

ation of L(A, ji) for every choice of \, ji) which also returns an optimal argument 

x(A, ji) satisfying (7.26). In this section it has been shown that DP provides such 

an evaluation method for ji) as defined in (8.29). 
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8.4 Proposition of a hybrid algorithm 

In this section a hybrid algorithm is presented for the Lagoven problem given 

by (8.10)- (8.22). It is based on Algorithm 8.1.1 in section 8.1. The vector v of 

section 8.1 corresponds to Pg,  q9 , p1, q1, p, q. The various steps will be discussed 

in more detail after presenting the algorithm. 

Algorithm 8.4.1 

choose an integer N> 0. 

Use some method to obtain starting values for x,p9 , q9 , p1, q1, p, q. Store 

these starting values as vector Yo  by setting 

a; 

pg 

qg 

Yo Pi 
q1 
P 
q 

For k = 1 to N do 

With values of Pg,  q9, pf,  q1 taken from Yk-1  solve the dual problem (8.37),(8.38) 

of subproblem (8.24)-(8.28). The result is an optimal dual vector  

Having solved the dual problem apply the perturbation method of Proce-

dure 7.3.1 to 	The result is a finite ordered set E with r elements 

where every i e E satisfies (8.39). 

For each E E do a local optimization as follows: 

Use as starting point a vector y with x-component ± and p 9 , q9, pf ,  qj, p, q 
components equal to those of lIk-1• 

Let I be the set of indices 

± ~
! X(Pg,çb(i),Pf,7r(i))} 

where the meaning of x* (a, b) is taken from (8.23). 

Apply a local optimization routine (SLP or SQP) to problem (8.10)-

(8.22) with the additional constraints 

Xj ~! : 	 Pf,rr(i)) Vi E I 

xi  < X(Pg , çj,( j),Pf,( j)) - € Vi 	I 
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where E > 0 is a small tolerance parameter. If the algorithm can not 

find a feasible point then it minimizes the sum of constraint violations 

instead. 

The result of these r local optimizations are locally optimal points , , 

From these points pick the best one with respect to constraint satisfaction 

and objective value and store it as yk 

If Yk = Yj for some  <k then go to step 8. 

continue k. 

From the points yo, ..., Yk pick the best one with respect to constraint sat-

isfaction and objective value and return it as the result to problem (8.10)-

(8.22). Stop. 

Steps 1 and 2 are initialisation steps. Step 4 does an optimization of a sub-

problem with variables x only, the optimization method applied can cope with 

discontinuities of the functions f, gj and s. Step 5 applies a local optimization 

procedure like SQP or SLP to the whole Lagoven problem and since local opti-

mization algorithms cope badly with discontinuous points, additional constraints 

are being imposed to insure that the discontinuous points do not obstruct the 

local optimization process. The algorithm generates vectors Yo, Yi, ..., Yk where 

k < N. Not all of these vectors necessarily correspond to feasible points of the 

Lagoven problem (8.10)-(8.22), but in practice usually they do. Those vectors 

which correspond to feasible points are locally optimal. Steps 4 and 5 amend 

each other in the following sense: Step 4 involves the dual method in combi-

nation with dynamic programming which is described in section 8.3 and step 5 

involves a local optimization algorithm. The method of section 8.3 copes well 

with the discontinuities of the functions f, g, s, whereas local optimization algo-

rithms cope badly with discontinuous points. Secondly, the method of section 8.3 

only optimizes over the vector x and it is not good at satisfying all constraints 

exactly, whereas a local optimization algorithm optimizes over all variables (i.e. 

x, p9 , q9 , pf, qj, p, q) and generally it is good at satisfying all constraints exactly, 

given that the starting point is almost feasible. 

This algorithm is very similar to Algorithm 8.1.1 in section 8.1. The dual 

method in the algorithm of section 8.1 is not specified whereas it is specified in 

this algorithm. 

Recall that E is a set of optimal arguments ii satisfying (8.39) where 

is a solution to the dual problem (8.37),(8.38) which is the dual problem to sub-

problem (8.24)-(8.28). E is an ordered set, the order being according to the sum 
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of constraint violations in (8.25),(8.26) by an element ± E E. The first element 

± e E is the one with the smallest sum of constraint violations, the last element 

± the one with the largest sum of constraint violations. It can be expected that 

an element ± E E with small sum of constraint violations is better as a starting 

point for the local optimization in step 5 than another element x e E with larger 

sum of constraint violations. This is a heuristic argument which Algorithm 8.4.1 

does not rely on. 

In Algorithm 8.4.1 the vectors p9 , q9, Pf,  q1, p, q play the role of v in Algorithm 

8.1.1. 

8.4.1 Initial values for x,p9 ,q9 ,pf,qj,p,q 

In this section a method to find initial values for x,pg ,qg ,pf,qf,p, q in step 2 of 

Algorithm 8.4.1 is presented. Basically the idea is to apply a local search method 

to a continuous problem which approximates the non-continuous problem (8.10)-

(8.22). 

In problem (8.10)-(8.22) in praxis the functions f, s,, g, w1,, w i , h, w2 , W g ,j 

are functions with the characteristic that when all arguments are zero then the 

function value is zero. This implies that the point 

Pg 
qg 
Pi =0 
q1 

P 
q 

is feasible for problem (8.10)-(8.22). 

Remember that the functions f, s, gj  have discontinuities which is the rea-

son why Algorithm 8.4.1 has been proposed instead of simply applying a local 

optimization routine to problem (8.10)-(8.22). In order to find initial values for 

x,p 9 ,q9 ,pf,qf,p, q , which is needed in step 2 of Algorithm 8.4.1, do the following 

process: 

Construct CONTINUOUS functions f, ., which approximate the func-

tions f, 5, gj respectively. When all arguments are zero then f2, ., 	 shall 

take the value zero (like f, 5, gj do). 

Apply a local optimization routine to problem (8.10)-(8.22) with the func-

tions f, 5, gj being replaced by f, s, ji  respectively. Use as starting 
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point 

X 

pg 
q9  

P 	=0. 
q1 

P 
q 

3) The result of the previous step is a point which is locally optimal for prob-

lem (8.10)-(8.22) with the functions f, s, gj  being replaced by f, s j , 
respectively. Let this point define the initial values of a;, p9 , qg, Pi ,  qf ,  p, q 

in step 2 of Algorithm 8.4.1. 

8.5 Perturbation and discontinuities 

In this section a special situation is described. This kind of situation appears 

when solving the Lagoven problem (8.10)-(8.22) with Algorithm 8.4.1. In section 

8.6 problems of Algorithm 8.4.1 will be discussed and removed. For the clearer 

understanding of section 8.6 it is necessary to be aware about the special case 

described in this section. 

Consider the following optimization problem in two variables a; and y. 

maximize 	f(x,y) 

subject to 	v(x) - y = 0, 	 (8.40) 

x>0 , y>O 

where a;, y E IR, f : JR 2  -+ IR, v : JR -+ R. Suppose that 

v(0) = 0, 

v(x) > a 
	

for all a; > 0 

where a is a nonzero positive real number. i. e. v is discontinuous at a; = 0. Let 

this problem be solved by an algorithm which alternatingly solves (8.40) in a; 

only using the dual method (with perturbation of the optimal dual variables) and 

then applies a local optimization in a; and y, taking the solution of the previous 

dual method (local optimization) as the starting point of the local optimization 

(dual method). Suppose that at the beginning of a dual method y = 0. The dual 

method minimizes L() where 

L() := max{f(a;, y) - ji(v(a;) — y)} 
x>O 
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T 

Figure 8.2: 

Figure 8.2 shows what the f() plot could look like where 

max{f(x, y) : v(x) - y = x>O 

and f() := —oo if there exists no x > 0 such that v(x) - y = . Notice that in 

Figure 8.2 J() = —oo for Z < 0 and for 0 < < a because v(x) - y = 0 only for 

x = 0 and for no x> 0 is 0 < v(x) - y < a. This is because of the assumptions 

made about v(x) and because y = 0. L(y) is minimized for all M > ft as can be 
(x\ (o\ 

seen from Figure 8.2. Point A arises from 
Y 	0 J = 	j. It is desirable that the 

\J 	\ 
dual method not only discovers A but also B in order to get over the discontinuity 

of v(x) at x = 0. If the minimization routine used for the minimization of L() 

returns ft as optimal solution then the perturbation method, which is the next 

step of the dual method, will discover B. If the minimization routine returns a 

a>> ft as optimal solution then the perturbation method will not discover B. A 

good trick to ensure that the dual method discovers B is the following: replace y 

in the definition of L(p) by which satisfies: 

ify>0 then y=y, 

ify=0 then O<<a. 

When L(t) with this definition , i.e. 

L(u) := max{f(x, ) - ,u(v(x) - x>O 

is minimized then the only optimal solution is ft which can be seen from Figure 

8.3. Notice that f() in Figure 8.3 is f() from Figure 8.2 shifted by to the left. 

Since now the minimization routine for the minimization of L(t) can only return 

ft as optimal solution, the perturbation method will discover B when perturbing 
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Figure 8.3: 

____~\, j 

7si 	 'Ig i  

Xi 

Figure 8.4: 

8.6 Problems of the hybrid algorithm and how 
to remove them 

Algorithm 8.4.1 of the last section is an algorithm for the solution of problem 

(8.10)-(8.22). It combines a local search method like SLP or SQP with the dual 

solution procedure of subproblem (8.24)-(8.28) which is described in section 8.3. 

In practice, when combining the dual solution procedure with the local search 

method some problems arise. All these problems have to do with the point x(a, b) 

at which the functions f(x, a, b), s(x, a, b), and gj (X, a, b), when considered as 

functions of x only, are non-continuous. Figures 8.4-8.5 show some typical plots 

of these functions. The main characteristic to be noticed about the functions f, 
s, gj is the following: when x * (a, b) > 0 then for all x < x* (a, b) 

f(x,a,b) = 0, 	 (8.41) 

s(x,a,b) = 0, 	 (8.42) 

9i (x, a, b) = 0. 	 (8.43) 
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Figure 8.5: 

Suppose that after a local optimization in Algorithm 8.4.1 qg,j = 0 for some j 

and 

x(a,b) >0 
	

(8.44) 

for all a, b and for all i with q(i) = j (or equivalently z3  + 1 < i < z3  +n). i.e. for 

all wells i, which receive lift gas from gas manifold j, the discontinuity point x 

of the functions f, s, gi  is greater than zero for all choices of pressures at the gas 

manifold and at the fiowstation which well i is connected to. Further suppose that 

at this stage Algorithm 8.4.1 is at a feasible point. Then constraints (8.21) and 

(8.22) imply that x i  = 0 for all i with z3 +1 < i < z3  +n3  (or equivalently q(i) = j). 
The next step in Algorithm 8.4.1 is to solve subproblem (8.24)-(8.28) with the dual 

method using DP for the evaluation of L(A, Since in the definition of fL) 

the constraint (8.21) (the same as constraint (8.27)) appears as a non-relaxed 

constraint, DP actually only considers the zero allocation x 2  = 0 for all wells i 

with z + 1 < i < z + n3 . This implies that the result of the dual method applied 

to subproblem (8.24)-(8.28) is a distribution x with x i  = 0 for z3  + 1 < i < z3  ±n3 . 
The next step in Algorithm 8.4.1 is a local optimization applied to problem (8.10)-

(8.22) with a starting point that has x i  = 0 for z3  + 1 < i < z3  + ri3 . The local 

optimization is not able to cross the discontinuity point x. Hence the computed 

optimal point of the local optimization will satisfy 

X (p9,, pj,) 	for z3  + 1 < i < z3  + ri2 . 

This means that fj , gi  and si  are all zero by assumptions (8.41)-(8.43) and (8.44). 

This in turn means that the computed optimal point of the local optimization 

yields 

x2 =0 	for z3 -i-1<i<z-i-ri 	 (8.45) 
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since it is not locally optimal to waste lift gas by injecting gas with a small rate 

into wells, which don't produce with this rate of lift gas injection. The statement 

of the last sentence can be seen by looking at Figure 8.1. Assume that there 

qg,i > 0 but that the gas lift allocation from the first gas manifold to wells is such 

that none of the wells produce. Then instead, it would be better to reduce q9 , 1  

to zero, keep the pressure P4  unchanged, decrease q3 by qg,i  and reduce P3  such 

that the pressure drop constraint between p3  and p4  is satisfied. If P3  is smaller 

it means that the compressor has to work less, but then the compressor has to 

burn less gas. The less gas is burned, the more gas can be sold. i.e. q2 can be 

increased by the amount of gas, which the compressor burns less, plus by q9 , 1 . 

This follows from (8.16), which is the mass balance constraint at the compressor. 

(Remember hat q4 stands for the amount of gas burned by the compressor.) This 

change would increase the objective and all constraints would still be satisfied. 

All the arguments of this paragraph imply that if in Algorithm 8.4.1 Yt  is feasible 

for some t and its x-component satisfies (8.45) for some j then all yk  for k > t 

will also have x-component satisfying (8.45) for that J. This, of course, is a bad 

feature with a serious impact on the quality of solutions of Algorithm 8.4.1. 

The following definition of L(A, p) is better than (8.29) for the dual solution 

approach of subproblem (8.24)-(8.28). This definition replaces q9 ,i  in (8.27) by 

and relaxes this equality constraint. (Recall the material of section 8.5) 

	

L(A, p) := max 	f(x, Pg ,(i), Pf,(i)) 

	

{x}1 	
i=1 

k 
- 	 )( 	si(Xi,P g,(i),Pf,j) 	- S) 

j=1 	iEQ(j) 

k 

- 	pj( 	9i (Xi, Pg,çb(i), pjj) 	- qf,j) 

j=1 	iEQ(j) 

m 	Zj+flj 

- 	/lk+3 ( E Xi - 
j=1 	i=z+1 

) 

x 2  <q Vj, x i  > 0 Vi 	 (8.46) 
i-zj+1 	

) 

In (8.29) A e iRk, 	jj.k whereas in (8.46) )s.  E iRk  p 
jjk+rn  (8.46) looks like 

(8.29) except that the last line in (8.29) is changed and one more line is added. 

is chosen such that it satisfies: 

	

if qg,j > 0 then dg,j = qg,j, 
	 (8.47) 

if qg ,j = 0 then q,j > 0 
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and < X(Pg,j,f, i,.(i)) 	for all i with 

Zj + 1 < i < z3  + n3 	and X(Pg,j,Pf,ir(i)) > 0. 

The purpose of replacing qgj  by q,j  and relaxing the constraints 	 - 
= 0 in L(A, ) is to avoid the kind of scenario described in the previous 

paragraph, where Algorithm 8.4.1 gets stuck with the zero allocation of lift gas 

to certain groups of wells. The non-relaxed constraints 

zi  +flj 

X i  < q Vj, 	 (8.48) 
i=z +1 

X i  > 0 Vi 

play the role of X in (7.5), 2'. e. these constraints define a set X over which the 

maximization in {x} 1  in (8.46) takes place. An essential condition for the dual 

method to work is that q is strictly greater than 4gj . The larger q is, the larger 

can be the constraint violation in (8.27) by § in Algorithm 8.4.1 step 4. If for a 

I e E in Algorithm 8.4.1 step 4 

zj +nj  

±j >> qg,j for some j 
	

(8.49) 
i=zj+1 

then this can be a problem for the local optimization in step 5. In this case 

it can well be, looking at Figure 8.1, that q3  has to be increased by the local 

optimization to satisfy the mass balance constraint at node p4 . Other constraints 

are likely to imply a higher value for the pressures P3, P2 and a higher value for 

the gas flow q1 . It is not hard to see that if (8.49) is the case for a E E then 

the local optimization in step 5, taking 1 as a starting point, is likely to have 

difficulties in converging to a feasible point of problem (8.10)-(8.22). The other 

case that for some ± e E in step 4 of Algorithm 8.4.1 

zi +nj 

ii  <<q9 ,i  for some 
i=z +1 

does not cause problems for the local optimization in step 5. In this case, looking 

at Figure 8.1, the local optimization can achieve feasibility by decreasing q3 , p 

and increasing q, which even increases the objective function. The purpose of 

the non-relaxed constraint (8.48) in (8.46) is to limit the constraint violation of 

the kind (8.49). Some computational evidence for this argument will be given 

in the computational results section 8.7.1. Good experience has been made with 

choosing q in the following way: 

A = max{x(p g ,j ,pf, (j) ) : z3  + 1 < i < z3  + ri2 } 
z 

q = max{A,O 9 ,3 } where 1.2 < 0 < 2. (8.50) 
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In words: q should be at least as large as every discontinuity point x of the 

wells, which are connected to gas manifold j, and at least between and 

2,3 . 

It must be shown that L(A, t) as defined in (8.46) can be evaluated by DP. 

With definition (8.46) manipulations can be done, which are very similar to (8.32)-

(8.36). Note that (8.30), (8.31) still hold unchanged. Let's define t). The 

definition below is similar to (8.33). 

zj+nj 

) := max 	Zj+flj 

{ 

{xj} 1 =.+1 

zj+nj 

Y. 
- 	

Pg ,(i), Pf,ir(i)) 

i=z +1 

zj+nj 

- 	I 	j)gj(xj,pg,(j),pf,(j)) 

i=zj+1 

zj+nj 

	

Xi 	- qg ,j) 
i=z + 1 

zi +Tij 

x 2 <q, x>0 Vzj +1iz3 +n3  
i=zj+1 

L(A,p) and 7(A,j.t) are related, again, by (8.36). Therefore, if T\,i) can be 

computed with DP then so can be L\, ). Defining f(x) by (8.34) 

zj+nj 	 zj+nj 

= max Zi+fli I 	 - I-tk+j 	xi - 
{x2

} Zj+l 
i=z1+1 	 i=zj+1 

zi +flj 

X i <-  q3* , x>0 Vz+1< izj+n 
i=zj+1 

In order to show that T3  (A, j.) can be evaluated with DP let's define the value 

function 

( +t 

Ft (q) := max Zj+t 	 j(x) 
{xj}. +i  

zi +t 

x,=q and x>0 Vi with z j +1<i<zj +t 
i=zj+1 

Ft (q) has the DP recurrence relation: 

Ft (q) = max 	 + Ft_ i (q - 
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Therefore F,, (q) can be calculated for all q > 0 using DP. Notice that 

77j , ) = max {F(q) - 	- O<q<q 

This shows that Tj (A, i) can be calculated with DP. Hence L(A, u) can be cal-

culated using DP. The function fi  is at every point continuous and differentiable 

except at Therefore FJ-DP can be applied for the computation 

of F,,j  (q). As for the discretisation, a variable grid method is good and has been 

used. 

Another problem of Algorithm 8.4.1 is similar to the problem described so far. 

This problem again is caused by the discontinuity points x. Let's look at 

gj (x j ,pg ,,(j),pf, j ) 	 ( 8.51) 
iEQ(j) 

for some j. This expression appears in (8.12) which describes the gas balance 

constraints at the fiowstations. Pg ,(i), P!,3 and q1,3  are variables in problem (8.10)-

(8.22) but are fixed parameters in the subproblem (8.24)-(8.28). The set of values 

taken by (8.51), when Pg ,(i), Pf,j are fixed and x 2  varies, is not connected in gen-

eral. The reason for this is that gj(xj,pg,(j),pf,j), when considered as a function 

of x2  only, is not continuous everywhere and hence the set of values taken by 

(8.51), as xi  varies, is not connected in general. The reason for combining the 

dual method of subproblem (8.24)-(8.28) with a local optimization of problem 

(8.10)-(8.22) is to make possible changes in x 2  across the discontinuity points x'. 

Since g2  > 0 for all arguments the smallest value that (8.51) can have is zero. 

Suppose that in Algorithm 8.4.1 after a local optimization qf,j = 0 for some j 

and constraint (8.12) is satisfied by the present point Yt  (for some t). This implies 

that 

gj(Xj, Pg,ç/(j),Pf,j) = 0 	for all i e Q(j), 

i.e. for all i corresponding to a well which is connected to fiowstation j. When 

gj  = 0 it is very likely that 

X i  < X(P g,(i),Pf,j) 	for i E 

which in turn implies x i  = 0 because it is not locally optimal to waste lift gas by 

injecting gas with a small rate into wells, which don't produce with this rate of 

lift gas injection. Then it is very likely that in the set of values, that 

i 	 - qf,j 
iEQ(j) 
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can take, zero is an isolated element and zero is the smallest element. But then 

it is better to replace q1,3  in the definition of L(A, t) by 4f ,j  which satisfies: 

	

if qf,j > 0 then dfj = qi,j , 
	 (8.52) 

if qj,3  = 0 then qr,3  > 0 

and df ,j  < gj (x(pg,(j),pf, j ),pg,( j),pf ,j ) 	for all i with 

ir(i) = j 	and gj (x(p g,(j),pf ,j ),pg,(j),pf ,j ) > 0. 

(Recall again section 8.5.) The best definition of L(A, p) is (8.46) with q1,3  replaced 

by 

L(, ) := max { 
	

f(x, Pg,(i), Pf,(i)) 
j=1 

k 
- 	

'i( 	Si(xi,Pg,(i),pf,j) 	- Si) 
j1 	iEQ(i) 

k 
- 	

( 	gj(xj,pg,(j),pf,j) 	- f,i) 
i' 	iEQ(i) 

M 	 Zj+flj 

	

- 	/ik+( E x, - 
j=1 	i=z+1 

zj+nj 	 Si 
X i  < q Vj, x > 0 Vi 	 (8.53) 

i=z+i 	 ) 

Again, qf,j  is chosen such that it satisfies (8.52), q,j  such that (8.47) and q such 

that (8.50). The dual method of solving subproblem (8.24)-(8.28) followed by 

the perturbation method (Procedure 7.3.1) works best when defining L, p)  by 

(8.53). L(A, i) as defined in (8.53) can be evaluated by DP because (8.53) differs 

from (8.46) only in that qf ,j  is replaced by df ,j  and because L(A, [t) as defined 

in (8.46) can be evaluated by DP (this has been shown before). For L, jt) as 

defined in (8.53) there is, again, a subtangent available, which makes it possible 

to solve the dual problem (8.37)-(8.38) with a cutting plane method. This will 

be shown by the next theorem which is similar to Theorem 8.3.1. 

Theorem 8.6.1 Let (.A, ) E JR x jRk+m  let ± be an argument which achieves 

the maximum in the definition of L(A, ) according to (8.53), i.e. 1 maximizes 

the RHS of (8.53) with ), ji being replaced by A, it respectively. Also let p be a 

2k + rn-dimensional vector with components 

Pj = S - 	ii: Sj(rj,pg,(j),pf,j) 	for 1 < j 	k, 
iE Q(i) 
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Pk+j = 4f,j- 
	

gj(i,pg,(j),pf,j) 	for 1 < j < k, 
iEQ(j) 

P2k+j = tg,j - zj+nj 

	

for l<j<m. 
i=zj+1 

Then p is a subtangent vector of the subdifferential set aL(A, j), i.e. 

L(A,/)>L()+PT( -) 

for all A e Rk,  jL E jjk+m 

Proof: 

The proof is similar to the proof of Theorem 8.3.1. D. 

8.7 Computational results 

In this section some representative computational results of implementations of 

the Lagoven model are given. Two kinds of results are presented. 

In the first subsection results are given of constructed problems, which basi-

cally means that the functions involved in problem (8.10)-(8.22) are constructed. 

However, these functions are constructed so as to have an analytical descrip-

tion and to have shapes and characteristics similar to the "real world" functions. 

The constructed problems allow to use a standard SQP subroutine as the local 

optimization routine in step 5 of Algorithm 8.4.1. 

In the second subsection computational results of real world problems are 

presented. Edinburgh Petroleum Services Ltd. (BPS), an oil consultancy and 

software company, is interested in the solution of Lagoven-type problems. EPS 

has developed software which models pipes and oil wells. From given data of 

pipes, oil wells and compressors this software can piecewise linearly approximate 

pressure drop functions of pipes, production functions of wells and functions de-

scribing the compressor activity (like the function h in (8.17)). EPS also has a 

SLP local optimization code. Results of problems of the form (8.10)-(8.22) will 

be presented, where the functions f, s, gj, w1,, w, h, w 2 , w9,, are piecewise 

linear functions which correspond to real wells, pipes and compressors. EPS has 

developed an algorithm for problems of the type (8.10)-(8.22) which is a hybrid 

algorithm of Tabu Search and local optimization. The results of Algorithm 8.4.1 

will be compared to those of the BPS hybrid algorithm. 
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8.7.1 Results of constructed problems 

The results of this section are results of Algorithm 8.4.1 applied to the constructed 

problems P-Artl and P-Art2, which are problems of the form (8.10)-(8.22). The 

functions f, s, gj , wj , , w, h, w2, wg,i and water capacities S i  of P-Artl and 

of P-Art2 are given in the Appendix, section B. In this version of Algorithm 

8.4.1 the initial point Yo  in step 2 is obtained by the method described in section 

8.4.1, i.e. Yo is the computed solution point of a smoothed problem. The optimal 

objective function value of the smoothed problem, let it be called A, is useful as a 

measure of the performance of Algorithm 8.4.1. Algorithm 8.4.1 tries to overcome 

the difficulties that a local optimization has with the discontinuous functions f, 
s, gj. The smoothed problem replaces f, 8, 9z by continuous functions f, .j, 
which approximate f, s,  gi respectively. Therefore it can be expected that A, the 

computed optimal objective value of the smoothed problem, approximately is an 

upper bound on the optimal objective value computed by Algorithm 8.4.1. Table 

8.1 gives the results of problem P-Artl when step 1 of Algorithm 8.4.1 chooses 

N = 10. yo  of Table 8.1 is feasible for the smoothed problem but infeasible for 

the actual problem. The objective value given for Yo  is the one corresponding to 

the smoothed problem. The definition of jt) used corresponds to (8.53). 

Table 8.2 shows the results corresponding to problem P-Art2. 

In Table 8.1 no convergence can be observed but in Table 8.2 it can be. 

Convergence is not expected in general. In Table 8.2 the algorithm only computed 

Yo, Yi, Y2, y3 and Y4  because it found 

Y3 - Y411 < 6, 

6 > 0 being a small tolerance parameter, and hence the stopping condition in 

step 6 of Algorithm 8.4.1 led to termination. 

An important observation is that some Yk  (1 < k < 10) have an objective 

function value that comes very close to or even surpasses the computed optimal 

objective function value of the smoothed problem. A second important obser-

vation is that in both tables (Table 8.1 and Table 8.2) the objective value at 

yi comes rather close to the computed optimal objective value of the smoothed 

problem, i.e. to the objective value given in the tables for i = 0. This is an 

observation which has been made in various other problems, some of these are 

shown in Table 8.3, and which suggests that the computed optimal solution point 

of the smoothed problem is a good starting point for Algorithm 8.4.1. In fact, 

due to this observation the results of subsection 8.7.2 are obtained using N = 1 

as the parameter in step 1 of Algorithm 8.4.1. 

Next, some computational evidence is given that it is good to include the non- 
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i I objective value at y j  

0 211.97 

208.67 
-- 188.27 
-- 205.07 
-;j-  176.62 
7; 178.67 
7; 160.12 

183.74 
7; 185.48 
7; 179.69 
10 180.94 

Table 8.1: Results of problem P-Artl, L(.A, jt) defined by (8.53) 

i I objective value at y2  

_p_ 263.28 

1 261.73 
-:1 155.23 
7; 264.0025 
7; 264.0029 
7; (264.0029) 

(264.0029) 
-;;- (264.0029) 
7; (264.0029) 

91  (264.0029) 
101 (264.0029) 

Table 8.2: Results of problem P-Art2, L\, ji) defined by (8.53) 

Problem 
name 

number of wells,gas 
manifolds, flowstations 

computed objective of 
smoothed problem  

objective at Yi 

Q1 25, 3, 3 274.23 264.01 
Q2 25, 3, 3 283.78 281.38 
Q3 30, 3, 3 289.41 282.27 
Q4 30, 3, 3 326.14 318.33 
Q5 30, 3, 4 399.27 376.76 
Q6 30, 3, 4 418.44 411.44 

Table 8.3: objective at Yi  is close to the computed optimal objective of the 
smoothed problem 
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relaxed constraints (8.48) in the definition of L(\, ji) in (8.53). In section 8.6 this 

point has been discussed and arguments for the inclusion of constraints (8.48) in 

the definition of L(A, 
) 

have been given. The following definition of L(.\, p)  is 

like (8.53) but without constraints (8.48). 

L(,) 	max 
{ 	

fi(Xi,pg,(i),Pf,(i)) 
{x 2 }= 1  

k 

- 	 A( 	Sj(Xj,Pg,b(i),Pf,j) 	- S) 
j1 	iEQ(j) 

k 

—p( 	gj(Xj,pg,(j),Pf,j) 	
- 

j1 	iEQ(j) 

M 	 Zj+flj 

- 	 k+j( T, Xi - g,j) : x ~! 0 Vi} 	 (8.54) 
j=1 	i=zj+1 

Table 8.4 shows the results when Algorithm 8.4.1 is used for problem P-Artl with 

jt) being defined by (8.54) instead of by (8.53), this being the only difference 

to the version which obtained the results of Table 8.1. 

Table 8.5 shows the results when Algorithm 8.4.1 solves problem P-Art2 with 

L(A, i) being defined by (8.54) instead of by (8.53), this being the only difference 

to the version which obtained the results of Table 8.2. 

The comparison of the results of Table 8.1 to those of Table 8.4 and of the 

results of Table 8.2 to those of Table 8.5 supports the arguments given for the in-

clusion of the non-relaxed constraints (8.48) in the definition of L(.A, ii). However, 

definition (8.54) does not give too bad results, either. The results of Table 8.4, 

for example, are only marginally worse than those of Table 8.1, and in Table 8.5 

the maximum objective value of a Ilk  (k > 1) is 254.28 in comparison to 264.0029 

in Table 8.2. However, notice that in Table 8.5 the objective value achieved by 

yi  is only 209.62 in comparison to 261.73 in Table 8.2 which is unsatisfactory 

when expecting that the objective value at y is close to the computed optimal 

objective value of the smoothed problem. 

8.7.2 Results of EPS's test problems 

In this section results of test problems from Edinburgh Petroleum Services Ltd 

are given. Algorithm 8.4.1 with N = 1 in step 1 is applied to six test problems, 

which are called P1, P2, ..., P6. These test problems are of the form (8.10)-(8.22), 

so that Figure 8.1 is a graphical description of these problems. The numbers of 

wells, gas manifolds and fiowstations for each problem is given in Table 8.6. 

When Algorithm 8.4.1 evaluates L(\, i) (while solving the dual problem in step 

137 



i I objective value at y 

0 211.97 

=1 208.59 
-i 163.30 
-- 165.39 

 205.98 
164.79 
165.39 
205.99 

-- 164.79 
— j-  165.39 
10 206.44 

Table 8.4: Results of problem P-Artl, 	/2) defined by (8.54) 

i I objective value at y, 

01 263.28 

209.62 
-- 208.71 
-- 254.28 

 186.15 
-- 166.66 
-- 170.03 

249.29 
172.79 

-- 247.99 
10 167.75 

Table 8.5: Results of problem P-Art2, L(A, 	defined by (8.54) 

138 



4) by DP with a variable grid and FJ action elimination, the speed depends 

(about linearly) on the discretisation number. The test problems are run with 

discretisation numbers 30 and 100. The results also include runs of EPS's hybrid 

algorithm. 

EPS's hybrid algorithm combines Tabu Search with local optimization. This 

algorithm can be briefly outlined as follows: The Tabu Search searches over the 

set of subsets of 

i. e. it searches over the set of subsets of wells. (Recall that n is the number of 

wells in the problem.) When the Tabu Search chooses a subset I of {1, 2, ..., n} it 

calls the local optimization routine which solves problem (8.10)-(8.22) with the 

additional constraints 

X i  > X(P g,b(j),Pf,(j)) Vi e I 

0 ViI. 

(Remember that the functions f, s, g2  are such that when x i  < X(P g ,Ø(i),Pf,(i)) 

then it is at least as good to set x 2  = 0.) 

Table 8.7 shows the run times and the computed optimal objective value of 

EPS's Tabu Search and of Algorithm 8.4.1 with discretisation numbers 30 and 

100 for the variable grid DP. Also the results of the local optimization of the 

smoothed problems are shown. The results suggest that, overall, the quality of 

solutions of Algorithm 8.4.1 is comparable with those of the Tabu Search. For 

large problems the run times are favourable for Algorithm 8.4.1, whereas for small 

problems the Tabu Search is faster. 

When comparing the computed objective values two surprises can be observed. 

The first surprise is that in problem P4 Algorithm 8.4.1 with DP and discreti-

sation number 100 yields an objective value which is about 45% larger than the 

result of the same method with discretisation number 30. This can be explained 

by the fact that when DP evaluates the Lagrangian L(A, ti), even only a small 

change in precision (caused by the different discretisation number) can result in 

a corresponding optimal argument x(A, ji) which is very different. In particular 

this different x(A, j) can represent a very different switch on-off pattern for the 

oil wells. This means that the next local optimization of the whole problem uses 

a different switch on-off pattern for the wells. This can be seen by looking at 

step 5 in Algorithm 8.4.1. A different optimal argument for L\, ji) in general 

means a different Ji in step a), this in turn means a different set I in step b) and 

hence a different local optimization in step c). It should also be noticed that in 
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problem I  number of wells I  number of gas manifolds number of flowstations 

P1 10 3 3 
P2 13 4 3 
P3 35 7 6 
P4 50 7 6 
P5 70 11 10 
P6 100 18 16 

Table 8.6: number of wells, gas manifolds, flowstations for each EPS test problem 

problem local optimization on 
smoothed problem 

run time I objective value 

Tabu Search 

run time I objective value 

P1 6.9 (secs) 8.847520E-4 26(secs) 8.890263E-4 
P2 24(secs) 6.701470E-4 36 (secs) 7.024592E-4 
P3 27(secs) 7.222792E-3 271 (secs) 7.338544E-3 
P4 48 (secs) 9.962784E-3 1110(secs) 9.756659E-3 
P5 29(secs) 1.014839E-2 3131(secs) 1.013346E-2 
P6 95 (secs) 1.238716E-2 10383(secs) 1.247742E-2 

problem Algorithm 8.4.1 with DP 
discretisation number 30 
run time I 	objective value 

Algorithm 8.4.1 with DP 
discretisation number 100 

run time 	objective value 

P1 53(secs) 8.748920E-4 112 (secs) 8.748920E-4 
P2 115(secs) 7.027255E-4 242 (secs) 7.027257E-4 
P3 282(secs) 7.112659E-3 765 (secs) 7.427997E-3 
P4 666(secs) 9.912660E-3 1479(secs) 1.444160E-2 
P5 1603(secs) 1.112866E-2 5357(secs) 1.101909E-2 
P6 3199(secs) 2.032732E-2 6438 (secs) 1.862933E-2 

Table 8.7: Results of EPS's test problems 

140 



problem P4 Algorithm 8.4.1 with DP and discretisation number 100 yields an 

objective value which is about 43% larger than the results of Tabu Search and 

of the local optimization on the smoothed problem. Unlike in problem P4, in 

problem P6 Algorithm 8.4.1 with DP and discretisation number 100 yields an 

objective value which is worse than the result of the same method with discreti-

sation number 30. The explanation for this is that when L(A, i) is calculated less 

accurately then Algorithm 8.4.1 can also return a different starting point for the 

local optimization, which in fact is a better starting point. There is an element 

of randomness. The important point is that the more accurately L(A, p) is cal-

culated the larger the likelihood that Algorithm 8.4.1 finds a good starting point 

for a local optimization. 

The second surprise in Table 8.7 are the results of problem P6. The computed 

optimal objective value of Algorithm 8.4.1 with DP and discretisation number 30 

is more than 50% higher than the one computed by Tabu Search. This (and also 

the result of problem P4) is to be explained, I believe, by the search space becom-

ing too large and too irregular ("many hills and valleys") for Tabu Search. The 

search space for Tabu Search in this problem has 2100  elements, one element being 

a subset I of the set {1, 2, ..., 100}. This search space is 2 °  times larger than the 

search space of problem P5. One also has to remember that Tabu Search essen-

tially is a random search doing local moves each time. In comparison, Algorithm 

8.4.1 uses a lot more structure by using a dual method and by decomposing the 

problem. Also it is important to mention that the implementation of the Tabu 

Search looks at the computed optimal objective value of the smoothed problem 

as an indicator for when to stop. Table 8.7 shows this quite clearly. Hence, when 

there exists a solution of the problem with a much higher objective value than the 

computed optimal objective value of the smoothed problem then Tabu Search is 

likely to stop prematurely. 

At least one of the versions of Algorithm 8.4.1 with DP always yields a higher 

objective value than Tabu Search does except for problem P1. The computa-

tion time of the Tabu Search increases faster with the size of the problem than 

Algorithm 8.4.1 with DP does. 

When comparing the two versions of Algorithm 8.4.1 it can be observed that 

the run time of the version with discretisation number 100 is about 2-3.5 times 

the one of the version with discretisation number 30. Except for problems P3, 

P4 and P6 the computed optimal objective values of the two versions are similar. 

However, in problems P3 and in particular P4 the solution of the version with 

discretisation number 100 is a lot better, whereas in problem P6 it is worse. 
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8.8 Conclusions 

In this chapter an oil production optimization problem has been discussed. In 

this problem some functions involved have discontinuities. To overcome the prob-

lems arising from the discontinuities Algorithm 8.4.1 has been proposed, which 

combines the dual method of a subproblem with local optimization. 

It has been shown, by presenting results of several example problems, that 

Algorithm 8.4.1 gives good results. The Lagoven problem is a non-linear opti-

mization problem with some functions involved having discontinuities and there 

are not many alternative suitable optimization methods. In particular, not many 

alternative methods have been implemented. Edinburgh Petroleum Services Ltd 

has developed a method combining Tabu Search and local optimization. Algo-

rithm 8.4.1 has been compared to this alternative implementation. For large 

problems Algorithm 8.4.1 seems to give better results in shorter time whereas for 

small problems the Tabu Search appears to perform better. 
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Chapter 9 

Conclusions and possible future 
work 

The first half of the thesis presented an action elimination procedure for DP which 

uses first order optimality conditions and which reduces the run time by one order 

of magnitude for large problems. This action elimination technique was applied to 

the following classes of DP problems: discrete and continuous allocation problems, 

discrete and continuous stochastic problems with either finite or infinite horizon. 

Several examples with computational results were given. 

First, the theory and basic principles of this action elimination procedure were 

introduced and explained for a class of deterministic and continuous allocation 

problems. 

Then issues were discussed which are important for the efficient implementa-

tion of the action elimination procedure, like discretisation schemes and effective 

methods for finding solutions to the Fritz-John equations for any given Lagrange 

multipliers. 

After that, deterministic discrete allocation problems were studied. For a 

class of discrete allocation problems with linear constraints necessary optimality 

conditions were derived. These optimality conditions are similar in form to the 

Fritz-John conditions for differentiable problems and were taken as the basis for 

action elimination. 

Certain types of stochastic DP problems were discussed which allow action 

elimination based on first order optimality conditions. For problems with a reward 

function of a special form, the theory of the action elimination gave insight about 

the nature of the optimal solution by identifying target states. Water reservoir 

problems often have a reward function of this special form. This discussion, I feel, 

is far from being complete. Further classes of stochastic DP problems allowing 

action elimination based on first order optimality conditions can probably be 

found. 
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The second half of the thesis discussed a dual algorithm in a framework such 

that the results could be applied to an industrial problem. The main result 

of the discussion of the dual method was a perturbation procedure, which was 

added to the usual dual method. The usual dual method for solving a non-

linear problem returns one point x of the primal search space. This point x need 

not be primal feasible but it can be a "good" point with respect to objective 

function value and constraint satisfaction and hence suited as a starting point for 

a local optimization. The perturbation procedure (Procedure 7.3.1) is a method 

to not only find one point x as the result of the dual method but several points, 

where each of these points is equally likely to be a good starting point for a local 

optimization. Therefore it is good to run, for each point x, a local optimization 

with x as starting point. 

In chapter 8 an oil production optimization problem was discussed. This prob-

lem was decomposed and a subproblem was solved by the dual method with per-

turbation procedure. The algorithm developed was compared to another method 

which uses Tabu Search and local optimization. It was found that in general the 

algorithm developed performs better than the Tabu Search method, in particular 

for large problems. I believe that the dual method with the perturbation pro-

cedure added can be applied to other non-linear and discontinuous optimization 

problems. This could be a fertile area for future work. One such other possible 

application will be briefly outlined. 

In the oil industry the following design problem arises, see Figure 9.1. There 

are a number of oil wells which naturally produce, i. e. no gas is injected into the 

wells. The wells can be connected to any one of the flowstations. The problem is 

to decide which well to connect to which flowstation. The wells produce oil and 

waste. Some of the waste is separated at the flowstations. When one connection 

pattern of wells-to-flowstations is fixed then the optimization is a continuous 

problem suitable for SLP or SQP. A natural subproblem is the optimization of the 

connection pattern when all other variables are fixed. Good connection patterns 

could possibly be found by the dual method with perturbation. Having decided 

on a new connection pattern a local optimization can be applied to the whole 

system. Then the continuous variables can be fixed again, the dual method with 

perturbation applied and hence the process can be repeated. 
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• 	rest of the oil 

production 

network 

flowstation 

OE 	E15DD 	wells 
................ .. 

Figure 9.1: A connection problem 
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Appendix A 

Algorithm A.0.1 

Choose n E PV and set ö := 2.. 

N1  := {x x e [0, d1 ], fi  or w 1  is not differentiable at x} 

S1 	N1  U {O, d 1 } 

Q:={[],[1 	:yS i } 

for k:=Oton set Fi (Ic):=—oo 

for j := 0 to n do 

if 0 < d then 

k := [wi(j8)1 

f1 (jö) 

A 1  (k):=j6 

pi (k) := wi (3'5) 

if j t  Q then 

A(k, 1) 	f l,  (j )
w(j6) 

else 

A(k, 1) := undefined 

end if 

end if 

end do j 

i:=2 

for k := 0 to n set F(k) := -00 

:= {x : x E [0, di], ft or wi  is not differentiable at x} 

Si := N u{0,d} 

Q:={[],f1 	:y8} 
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for  e {0,1,...,n} for which F2 _ i (j) > —oo do 

if A(j,i— 1) is defined then 

	

j := { : x 	,O < x < di , f(x) = A(j,i - 1)w(x)} 

for allxEJUS do 

k 	r-'() + w(x) 
6 

if k <n and Pi  ( k) <-i(j)  + f(x) then 

:= i-,(j) + f(x) 

A(k) := x 

A (k) := pj i(j) + w(x) 

	

\(k,i) 	A(j,i —1) 

end if 

end do x 

else (if ).(j, j - 1) is not defined) 

for t := 0 to n do 
k •- rPi- 1(j)hj(tö) 

6 
if k <n and Pi  ( k) <_i(j) + f2 (6) then 

:= ji(j) + f(t6) 

A(k) := 6 

A (k) := pi- 1  (j) + w(t6) 

if t V Q then 

fl,  W) 
W(t8) 

else (if t E Q) 
\(k, i) := undefined 

end if 

end if 

end do t 

end if 

end do j 

if i <r increase i by one and return to 3) 

if Fr (n) > — oo do 

S := n 

Pr (T1) 
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Appendix B 

The problems of subsection 8.7.1 use the following types of functions in (8.10)- 

(8.22): The pressure drop functions w 1  and w 2  (in (8.15), (8.18)) are of the form 

w 1 (pi ,qi ,p2 ) = p -  q — p, 

w 2 (p3 ,q3 ,p4 ) = p—q—p. 

The pressure drop functions 'Wf , j and w9 , (in (8.13), (8.20)) are of the form 

	

2 	q 	2 w1, (Pf,i,  qf,j, Pi) = 	- 	 - p1, 

	

2 	q9, 	2 
Wg,i(P4, qg,i, Pg,i) = P4 - 	 - Pg ,i 

The function h describing the compressor activity (in (8.17)) is taken as 

	

h(p2 ,p3 ,q1 ,q4 ) = (p 	P2)li - 500q4 (q4  +2). 

The discontinuity point x and the well production functions f, s, gj depend on 

their arguments and on three well specific parameters a, b, c. 

50 

	

X(P g,(j),Pf,(j)) = 10 + 	
-i--(p 

	

1 + e200i g(t) 	5 

a2  
i(Pg,c(i),Pf,ir(i)) 	= 60+ 	

(Pf7(i)_P9(i)) 

	

1+e 	15a 

0 	 if X < X(Pg,(j),Pf(j)) 

20+ (x + i)be  + a 
( 	 + 1)C2 if X(Pg,(i),Pf,(i))100 

pg ,(i) 

L (xi , Pg,(i), Pf,(i)) = 

	

~ i (Pg,i) , Pf,(i)) 

Ij (i (Pg,(i), Pf,ir(i)), Pg,cb(i), Pf,ir(i)) 	if 	(Pg,(i), Pf,ir(i)) < Xi 
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0 

(Pg,c5(i) 
+ (x + l)c + a \ 100 s (x i , Pg,(i), Pf,(i)) 

= 	{ 

+f (x i , Pg,(i), Pf,(i)) 

Si 	(Pg,c(i), Pf,ir(i)), Pg,(i), Pf,ir(i)) 

J O   
(Pg , çb(i) 

9i(Xi,P g ,(i),Pf,(i)) = 
' x i  + (x + 1)ci + a 	100 + 

gj  ( 	(Pg,Ø(i) ,  Pf,7r(i)), Pg,j(i) Pf,ir(i))  

if X < X (Pg,çb(i), Pf,ir(i) 

if x (Pg,(i), Pf,ir(i)) 

(Pg,/(i)) Pf,ir(i) 

if 	(Pg,(i), Pf,ir(i)) < X 

if x < X(Pg,q5(i),Pf,7r(i)) 

if Xi*  (Pg,O(i), Pf,ir(i)) :!~ X 

i(Pg,(i), Pf,ir(i)) 

if i(Pg,f(i),pf,(i)) < x 2  

The two artificial problem, called P-Artl and P-Art2, have twenty wells, two 

gas manifolds and three flowstations. The parameters of wells a 2 , b, c2  and 

connections of wells to gas manifolds and fiowstations (i.e. q(i) and 7r(i)) are 

given in Table B.I. The gas price in the objective function is 

The two problems P-Artl and P-Art2 are different in that they have different 

water capacities at the flowstations. For their optimal solutions the water capacity 

constraints are active. Problem P-Art 1 has water capacities 

S1  = 50, 

52 = 90, 

S3  = 90. 

Problem P-Art2 has water capacities 

S1  = 80, 

82 = 90, 

83  = 120. 
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b, c L() 7r (z 

1 20 0.62 0.35 1 2 
2 10 0.7 0.7 1 1 
315 0.6 0.3 1 3 

10 0.45 0.3 1 1 
520 0.3 0.2 1 2 
6 15 0.5 0.4 1 3 
710 0.5 0.3 1 2 
87 0.5 0.4 1 1 
9 10 0.65 0.4 1 3 
108 0.8 0.7 1 1 

......± I ai  bi 	I cj1(i) 1 ir(i) 

11 15 0.5 0.8 2 2 
12 5 0.85 0.6 2 3 
13 20 0.5 0.5 2 1 
14 15 0.4 0.7 2 2 
15 10 0.6 0.5 2 3 
16 7 1 0.5 2 2 
17 10 0.5 0.4 2 1 
18 8 0.8 1 2 3 
19 15 0.45 0.5 2 3 
20 5 0.8 0.9 2 1 

Table B.1: Data for f, s, gj  in P-Artl and P-Art2 
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