
Dynamic Programming using local
optimality conditions for action

elimination

Erich Wolfgang Steiner

Doctor of Philosophy
University of Edinburgh

1999

'C

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Erich Wolfgang Steiner)

Acknowledgements

Firstly, I would like to thank Dr. Ken McKinnon who has supervised my research

throughout, and with whom it has been a pleasure to work, both on a personal

level and work-wise. With his thoroughness and different ways of looking at

mathematical issues he has provided me with a lot of motivation.

Thanks are also due to Dr. Thomas Archibald who has read and checked a

large part of the final draft of this thesis suggesting various improvements.

Some of the theoretical results in this thesis have been applied to a "real

world" model from Edinburgh Petroleum Services Ltd., and it has taken a lot

of time and patience to obtain computational results. Here special thanks must

be given to Jan Läwen. I would also like to thank the company as a whole for

providing a friendly environment.

Last but not least I would like to thank the Department of Mathematics and

especially my colleagues in the optimisation group who often helped me with

computer and software problems and provided a very friendly atmosphere.

Abstract

In the theory of dynamic programming (DP) the elimination of non-optimal ac-

tions is an important topic. For many DP problems the calculation is slow and

action elimination helps to speed up the calculation.

A great part of this thesis is dedicated to the development of action elimination

procedures for various classes of DP problems. Common to all these action elim-

ination procedures is that they are based on local optimality conditions. Among

the classes of DP problems looked at are deterministic allocation problems and

stochastic problems with either continuous or discrete state and action spaces.

For DP problems with continuous state and action space the action elimination

procedures are based on the Fritz-John first order optimality conditions. For

problems with discrete state and action space the action elimination procedures

are based on local optimality conditions for discrete problems. It is shown that

action elimination based on local optimality conditions usually leads to a speed-up

of one order of magnitude.

Chapters 7 and 8 discuss a constrained non-linear oil production optimiza-

tion problem. In this problem most functions involved are continuous but a few

functions contain discontinuities, which seriously undermines the scope of local

optimization. A hybrid algorithm combining a dual method, DP and local op-

timization is proposed and computational results are presented. These results

are then compared to those of another hybrid algorithm, which combines Tabu

Search and local optimization.

Table of Contents

List of Tables 	 iv

List of Figures 	 v

Chapter 1 	Introduction 1

1.1 Two introductory examples 3

1.1.1 	Shortest path problem 3

1.1.2 	A spinning wheel problem 5

1.2 Motivation for action elimination based on local optimality conditions 8

1.3 Statement of the Fritz-John conditions 10

1.4 Motivations for this thesis 11

1.5 Outline of the following chapters 12

Chapter 2 	Fritz-John action elimination 13

2.1 Introduction 13

2.2 General Theory of the FJ Action Elimination 16

2.3 Action elimination using the Fritz-John conditions 17

2.4 Extension to general functions 19

2.4.1 	Practical Implementation 21

2.5 Inequality constraints 23

2.5.1 	Problems with equality and inequality constraints 25

2.6 A single constraint example 27

2.6.1 	Finding points with a particular derivative of f 32

2.6.2 	A modified example 33

2.6.3 	Remarks on storage issues 35

2.6.4 	Calculating numerically the action set when state and ac-

tion space are both one dimensional 35

2.7 Example with two constraints 37

2.8 Conclusions 39

1

Chapter 3 	Discretisation issues 40
3.1 	Variable grid FJ-DP method 40

3.1.1 	Computational results 43

3.1.2 	Problems with the basic variable grid FJ-DP method 	. 44

3.1.3 	DP with variable grid but no action elimination 47

3.1.4 	A further improvement 48

3.1.5 	Computational results 49

3.2 	FJ action elimination applied to interpolation methods 49

3.3 	Conclusions 53

Chapter 4 Allocation problems with multi dimensional state and

action space 54
4.1 Calculating the action set when n, = m 56

4.2 Finding the action set when ni > m 58
4.3 Calculating the action set when n, <in 59

4.4 A special case for n2 <m 59

4.5 Conclusions 61

Chapter 5 Discrete problems 	 62

	

5.1 	Finding the action set 68

5.2 A useful ordering of intervals68

5.3 Example with computational results69

5.4 Derivation of a necessary local optimality condition70

5.5 Counterexample73

5.6 Modified discrete action elimination algorithm74

5.7 Conclusions74

Chapter 6 	Stochastic problems 76
6.1 Infinite horizon, continuous state and action space 76

6.2 Extension to bounded state and action spaces 78

6.3 A special type of reward function 81

6.4 Example 82

6.5 Action elimination when OA, = A 5 84

6.6 Infinite horizon, discrete state and action space 85

6.7 Example with computational results 88

6.8 Finite horizon problems 90

6.9 Conclusions 91

11

Chapter 7 A perturbation method in a dual algorithm 	 92

	

7.1 	The dual method92

7.1.1 	Example95

	

7.2 	Visualising the dual problem96

7.3 Perturbation method in general101

	

7.4 	Conclusions 109

Chapter 8 A model for the Lagoven problem 110

8.1 Prototype hybrid algorithm 110

8.2 Description of the Lagoven problem 112

8.3 Description and solution approach of a subproblem 117

8.4 Proposition of a hybrid algorithm 122

8.4.1 	Initial values for X, g , q9,pf, q1,p, q 124

8.5 Perturbation and discontinuities 125

8.6 Problems of the hybrid algorithm and how to remove them . . 127

8.7 Computational results 134

8.7.1 	Results of constructed problems 135

8.7.2 	Results of EPS's test problems 137

8.8 Conclusions 142

Chapter 9 Conclusions and possible future work 	 143

Appendix A 	 146

Appendix B 	 149

Bibliography 	 152

111

List of Tables

2.1 	Coefficients for the functions fi in (2.38)28

2.2 	computational results32

2.3 	computational results38

3.1 Results of FJ-DP with variable grid43

3.2 Results of FJ-DP with variable grid and local optimization added 44

3.3 Results of Algorithm 3.1.4 with rule (3.4) and local optimization

added.................................49

6.1 	computational results89

8.1 Results of problem P-Artl, 	
)

defined by (8.53) 136

8.2 Results of problem P-Art2, L(A, j) defined by (8.53) 136

8.3 objective at y 	is close to the computed optimal objective of the

smoothed problem 136

8.4 Results of problem P-Artl, L\, 	
)

defined by (8.54) 138

8.5 Results of problem P-Art2, L\, 	
)

defined by (8.54) 138

8.6 number of wells, gas manifolds, fiowstations for each EPS test prob-

lem................................... 140

8.7 Results of EPS's test problems 140

B.1 Data for f, s, gj in P-Artl and P-Art2151

iv

List of Figures

1.1 A shortest path problem 	 4

1.2 	A spinning wheel game5

2.1 	shape of fi functions28

7.1 97

7.2 98

73 98

7.4 99

7.5 100

7.6 101

77 103

8.1 	Model of the oil field 113

8.2 126

8.3 127

8.4 127

8.5 128

9.1 	A connection problem 145

V

Chapter 1

Introduction

The study of dynamic programming, as we know it today, started at around 1940

and a lot of the initial work had been done by Bellman and Wald. Dynamic

programming (DP) can be viewed as recursive programming since common to

all dynamic programming optimization problems is a functional optimality equa-

tion which leads to a recursive solution method. In numerous papers Bellman

identified optimality conditions of optimization problems and through his work

on functional equations, dynamic programming and the principle of optimality

became well known. Stochastic sequential decision problems are closely linked to

stochastic DP. The modern study of stochastic sequential decision problems be-

gan with Wald's work on sequential statistical problems during the Second World

War. Today the existing theory on DP is vast, especially on stochastic DP which

is closely related to Markov decision processes.

Common to all DP formulations are states and actions. Let S be the set of

states that a system can occupy and let A be the set of actions that can be taken.

When a system is in state s E S then typically the set of actions that can be taken

is A 3 C A. Taking action a 3 E A 3 from state s leads to a transition of the system

to a new state . E S and incurs a reward (or cost) r(s, a3). This is the common

ingredient of DP problems. However, this is not enough information to define an

optimization problem. Different classes of DP problems extend this framework in

different ways. For example, in deterministic DP problems 9 is defined by s and

a3 , i.e. the new state of the system is determined by the old state and by the

action that has been taken. In stochastic DP problems 9 is stochastic with the

probability distribution depending on s and a3 . For some problems the number of

transitions of states is finite, for others it is infinite, again for others the number

of transitions is finite with probability one. Also the objective function varies

depending on the problem.

For many deterministic, finite horizon (i.e. finite number of transitions of

1

states) DP problems the objective can be written as

maximize E r(s, a) + R(s)

where so is a given initial state, a i e A 8 , n is the number of transitions, si+1 =
a) and R(s) is a terminal reward. The maximization in (1.1) takes place

over Let's assume that the objects S, A 8 , r and R are such that the

maximum in 1.1 exists.

For many stochastic, finite horizon DP problems the objective can be formu-

lated as

	

maximize
E(

r(s, a) + R(s)) 	 (1.2)

where now 5i+1 is a random variable with the distribution depending on si and

on ai E A3 . The maximization in (1.2) takes place over all policies of choosing

actions, which means that maximization takes place over all functions 'it such that

ai = 'ir(i, s 2). 'it determines which action is taken when in the i-th decision period

the state occupied by the system is s.
For many stochastic, infinite horizon DP problems the objective can be written

as
00

	

maximize 	
(
E air(si ,ai))

where 0 < c < 1 is a discount factor. To ensure convergence, assume that the

function r is bounded.

A lot of problems can be written in one of the forms (1.1), (1.2), (1.3) or in

one of these forms when they are slightly changed. The DP optimality condition

to (1.1) consists of a value function

Fo (s) :=

Fj (s) := max {
	

r(s, a) + R(s) : sj = 	for j > 1
{a}_

and then establishing the functional equation

Fj (s) = max {r(s, a) + F3 _ 1 (9(s, a))}.
aEA 3

(1.4)

Then the optimal objective value of (1.1) is F(s o) and can be calculated recur-

sively using (1.4). Having found F(so) the optimal path of states and actions of

problem (1.1) are found as follows: s 1 and a0 are the state and action for which

F. (so) = r(s o , ao) + Fn- 1 (s 1),

(1.3)

2

where a0 E A 30 and s 1 = (so , ao). Similarly 82 and a1 are the state and action

for which

F_1 (s 1) = r(si , ai) + F. -2 (S2),

where a 1 e A 81 and s2 = (s i ,a i). And so on

For the objective (1.2) of a stochastic, finite horizon problem the value function

is

Fo (s) 	R(s),

(s) := max {E 	r(s, a) + R(s) sn_i = S for j > 1
i=n—i

where ir is a policy of choosing actions, which means that ir is a function and

ai = 7r(i, s). The maximization in the above definition takes place over the set of

policies. The functional equation is

F3 (s) = max{r(s,a)+1EF3 _ 1 ((s,a))}
aEA 3

where .(s, a) is a random variable now. The argument a, which achieves the

maximum in the RHS, defines (j, s) where i is an optimal policy.

For the objective (1.3) of a stochastic DP problem with infinite horizon the

value function and functional equation are

00

	

F(s) 	max {E (Oz ir(si , ai) 8 0 =

F(s) = max {r(s, a) + aEF(.(s, a))}.
aEA 3

For many DP problems the state space S can be partitioned into subsets S 0 , Si,
S2 ,... such that when s E Si (for some i > 0) and any action a E A 8 is taken then

the system next occupies a state . satisfying 9 E In such case the problem

has decision periods or stages.

For many DP problems the difficulty is identifying suitable states, actions

and stages. The next section discusses two introductory examples, the first one

is straightforward, the second one has some entertainment value and shows the

difficulty of finding states, actions and stages.

1.1 Two introductory examples

1.1.1 Shortest path problem

Consider the shortest path problem of getting from node 7 to node 0 in the acyclic

graph of Figure 1.1 where traversing each arc has a specific cost. A suitable

91

stage 0 	stage 1 	 stage 2 	 stage 3

Figure 1.1: A shortest path problem

definition of state is

state i : getting from node i to node 0.

This means every node is associated with a state. A suitable definition of a value

function would be

the cost of the cheapest way from node i to 0

A suitable definition of action to be taken from state i is

A(i) := next node to be visited from node i on a cheapest route.

The states of this problem can be partitioned into stages. State 0 is the only

state of stage 0, states 1,2,3 belong to stage 1, states 4,5,6 belong to stage 2 and

state 7 is the only state of stage 3. The DP optimality equation can be written

as

F(i) = min f (cost of going from node i to j) + F(j) : state j belongs to }
the stage one before that which state i belongs to

In words: the optimal route from node i to 0 consists always of a first arc traversal

towards node 0 and then to carry on from there on the cheapest possible route to

0. The DP calculation is straightforward, F(0) = 0 and having calculated F for

all states of stage k the recursion yields F for all states of stage k + 1. It turns out

that F(7)=8 which means that the cheapest route has cost 8. The optimal path

can be obtained by working the optimal actions backwards starting from state 7.

If the problem is of the same shape but larger, with stages 0, 1, 2, ..., m, m ± 1

and with n nodes in each of stages 1, 2, ..., m, and if every node is connected to

every node of the neighbouring stage, then there are nm different paths from one

end of the network to the other end. The work involved in the DP calculation is

0(mn 2), i.e. a lot less than total enumeration when m and n are large.

S
5 I

Figure 1.2: A spinning wheel game

1.1.2 A spinning wheel problem

Consider the game, illustrated in Figure 1.2, where a spinning wheel has as pos-

sible outcomes the decimal digits 0,1,2,.. .,9. All possible outcomes have equal

probability. The wheel is spun four times and after each spin a player has to put

the outcome digit into one of the four boxes. The aim is to have a large four

digit number at the end. What is the best strategy for placing the digits? For

example, if the first spin returns a 9 the player would (if he or she is sensible)

place it into the first box from the left. If at any time a spin returns a 0 the player

would place it into the last box which is still free. But what should be done if

the first or second spin returns a 6 or 7?

Two DP approaches to this problem will be discussed. The first approach is

easier to perceive but less elegant than the second one. A good objective in this

game is to achieve a high expectation of the final four digit number. In the first

approach let's identify a state as

(pl,p2,p3,p4)

where each of p1 , P2, P3, P4 corresponds to one of the objects 0, 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. A state (p1,p2,p3,p4) is interpreted as the four places being presently

filled in with Pi, P2, p3 , p4 from left to right. If p i = 0 then place i contains no

digit and is free. The states can be grouped into stages, stage j being the set of

those states (p1,p2,p3,p4) such that exactly j of Pi, P2, P3, P4 are equal to the

object 0, i.e. those states which have exactly j free places left. A suitable value

function is

F(p1 ,p2,p3,p4) := expectation of the four digit number at the end

given that the game starts with the places being P1,P2,P3,P4

and given that an optimal placing-strategy is applied.

5

Let r be the random variable of the result of a spin. The DP optimality equation

can be written as

F (pi, P2, P3, p) = E
(

max
{

F(r, P2, P3, p4)I[p1 = D], F (P1, r, p, P4)' 2 = 01,

F(pi ,p2 ,r,p4)I 3 = 0], F(pi) p2 ,p3 ,r)I[p4 = E:]] ~)
where I[. .] is the indicator function taking value 1 if the argument is true and

o otherwise. For states of stage 0 the value of F is simply the number 1000Pi

+100P2 +10P3 +4. Knowing F for all states of stage j the value of F can be

calculated for all states of stage j + 1 using the above recursion. F(0, 0, 0, 0)

is the maximal expectation of the four digit number in the spinning wheel game

when using an optimal strategy. Doing this DP calculation an optimal placing

strategy can be discovered. There are 114 states and probably nobody would like

to do this DP calculation by hand.

Another DP approach, which allows a solution by hand, is the following: First

of all observe that each place can be given a value. The first place has value 10 3 ,

the second one has value 102, the third one has value 101 and the last has value

1. Let a state be identified by

(i,A 1 ,...,A)

where i = 1,2,3,4 and A 1 , ..., A i are values of free places with A 1 , ..., A i arranged

in decreasing order. For instance, the state (3, A 1 , A 2 , A 3) corresponds to there

being three free places with values A 1 , A 2 , A 3 . Let the value functions be

A) := maximal expectation of the end number when

a spinning wheel game is played, there are i free places

and the values of the places are A 1 , ..., A.

The DP optimality equation is

A) = E
(

max {rA + F_1 (B 1 , .., B_i) : Bk = Ak for k <j,
3E {1,..,i}

Bk = Ak +1 for k >

where r is the random variable of the result of a spin. Let's outline the DP

calculation.

F, (A,) = JE(rA i) = 4.5A 1

because if there is one free place only then there is no choice but to place the

first spin in this free place and the expectation of a spin is 4.5. Now consider a

III

state (2, A 1 , A 2). By assumption A 1 > A 2 . If r is placed in the first place then

the expectation of the end number is

rA 1 + F1(A2) (= rA + 4.5A 2).

If r is placed in the second place then the expectation of the end number is

F1 (A 1) + rA2 (= 4.5A + rA 2).

Therefore it is optimal to place r in the first place if r > 4.5 and in the second

place if r < 4.5. Then

F2 (A,, A 2) = JE (F1 (A,)+ rA 2 Ir < 4) P(r < 4)

+JE(rAi H-F1 (A 2) Ir > 5)P(r > 5)

= (4.5A 1 +2A2) + (7A 1 +4.5A2)

=

By looking at the last line one can identify the optimal strategy of placing a spin

when three free places are left: If r, the result of a spin, is greater than f (Z. e. if

r = 6,7,8,9) it is placed in the first free place, if 	> r >(i.e. if r = 4,5) it 4 4
is placed in the second free place and otherwise it is placed in the last free place.

Calculating F3 (A,, A 2 , A 3) in a similar way as F2 (A,, A 2) has been calculated,

one finds

F3 (A,, A 2 , A 3)
= 129

--A 1 +
9

A 2 +
51

20 	2 	20

From this, one can read off the optimal strategy for where to place the first spin

in the spinning wheel game with four free places: if r = 7, 8, 9 (i.e. r > J) it is

put in the first, if r = 5,6 (i.e. 4J > r >) it is put in the second, if r = 3,4

(i.e. > r >) it is put in the third and if r = 0,1,2 (i.e. > r) it is put in20 2 	20

the last place. One finds

F4 (A,, A2,A3,A4)
= 200

1383
A 1 +

200
1057

A 2 +
743

A 3 +
417

A4.
200 	200

With A 1 = iO3 , A 2 = 102 , A 3 = 10, A 4 = 1 the expectation of the four digit

number under an optimal strategy in the spinning wheel game turns out to be

7482.735. If the outcomes of the spins were placed at random then the expected

value of the four digit number would be 4999.5.

1.2 Motivation for action elimination based on
local optimality conditions

The first half of the thesis develops action elimination procedures based on local

optimality conditions for various classes of DP problems. In this section the

motivation for this is given and difficulties of the implementation are outlined.

Consider the allocation problem

maximize 	>fj(xi) 	 (1.5)

subject to 	xi = i-i, 	 (1.6)

xEZ, x2 >O for all i 	 (1.7)

where ii E Jf\T and f, are functions X -+ R. These problems can be done with

DP when the states are (j, k) with j, k E X , 1 <j <r and 0 < k <n. The state

(j, k) is the state of allocating k units of the resource among the first j functions

f. The value function and the optimality conditions are

F(k) := max ff(x) : 	= k, x e , 0 <x Vi
{}=1 	j=1 	 i=1

F(k) = rnax{fi (xi)+Fi_ i (k_xi) :xE, o<x<k}. 	(1.9)
Xj

The DP calculation initialises F, (k) = f, (k) and having calculated F3 _ 1 (k) for

all relevant k for some j, it calculates F3 (k) using (1.9). Assume without loss of

generality (WLOG) that f(x) ~: 0 for all i when x2 > 0, let M be an upper

bound on f(x) for all i when x2 > 0 and assume (WLOG) that f(—l) = —rM

for all i. Let (±, ±2, .., ±) be an optimal allocation for this problem. A necessary

optimality condition is

min max{f(±) - ft (± - 1), f(± + 1) - ft (±01 	(1.10)
1<i<r

> max min{f(±) - f(± - 1), f(± + 1)
- 1<i<r

This will be derived in a more general form in chapter 5. Condition (1.10) is

related to the Kuhn-Tucker conditions for a continuous problem of the form

(1.5),(1.6) with differentiable functions f. This can be seen by replacing all

occurrences of "1" by Sx in (1.10) and dividing the whole inequality by ox.

min max { fj(j) - f(±, - Ox) 	f2(± + Ox)
- f(±2)

}

1<1<r 	 Ox

max min { fj(j) - f(± - Ox) 	f(±t + Ox)
- f(±)

}

1<i<r 	 Ox

In the limit as ox - 0 this inequality reduces to

• {dfj}

> 	Idf, 	

}

mm - 	 - max
1<i<r dx 	 1<i<r dx

	

from which it follows that 	= A for all 1 < i < r for some A, which are

the Kuhn-Tucker conditions for a continuous problem of the form (1.5),(1.6) with

differentiable functions f.
Going back to the discrete problem (1.5)-(1.7), it will be shown in chapter 5

that if condition (1.10) is not satisfied then there exist indices j and k such that

i ~ k and

f(+ 1)
- f() > fk(Xk) - fk(±k - 1).

Then the point (xi, x, .., x) with

=

I

	

Xk
*
	Xk - 1,

= 	for all i =A j, i 54 k

is feasible and has a higher objective than (ii, , ...,) since

r

	

= 	

=

	

f(x) = 	f(xfl +f(x)+fk(x)
i=1 	 i54j,ii4k

	

= 	fj) + f j) + (f(x)
- fj))

i54j,i54k

+fk(k) + (fk(x) - fk(ik))

	

= 	fi(i) +(f(+1)—f())

- (fk(k) - fk(k -1))

SO (x 1 , X2 , Xr) is not locally optimal. Notice that the definition of F3 (k) in (1.8)

is itself an optimization problem of the form (1.5)-(1.7). Hence an optimality

condition similar to (1.10) must hold for the optimal arguments achieving the

maximum in the RHS of (1.8). When F(k) is calculated using recursion (1.9),

k + 1 possible values for x j must be checked. In this thesis it will be shown how

to use optimality conditions of the form (1.10) in order to determine F3 (k) with

fewer than k + 1 checks for different values of x3.

If the domain of x i in problem (1.5),(1.6) is continuous instead of discrete

and if the functions f2 are differentiable is it possible to use first order optimality

conditions to speed up the DP process? If on top of that the constraint (1.6) is

replaced by

= q

where w i are differentiable functions, is it still possible to exploit first order opti-

mality conditions? How about the case when x 2 e 1R with ni e iN (instead of

X i E JR) and q e R', w i e Mm? Do there exist certain classes of stochastic DP

problems for which first order optimality conditions can be exploited?

All of these questions have a positive answer and they are discussed in the

first half of this thesis. For a lot of classes of DP problems the complexity and

the computational time of DP can be reduced by one order of magnitude by

exploiting first order optimality conditions to eliminate actions.

1.3 Statement of the Fritz-John conditions

A central topic in this thesis is the action elimination in DP based on first order

optimality conditions. The Fritz-John first order optimality conditions will be

used frequently and therefore these conditions should be stated. In the problem

	

maximize 	1(x)

	

subject to 	u(x) < 0 	for i = 1, 2, .., k

c(x)=0 	for i= 1,2,..,m

let x e JR and let the functions f, u, c i be differentiable functions 1Rl 	P. If

i is a local optimum then there exist dual multipliers A E JRk+rn and A 0 E 101 11
such that

k 	 m

	

A 0Vf() = 	AVu(i) +

	

Ai > 0 	forik,

	

Aju(ri) = 0 	for i <k.

When A0 = 1 these conditions are also called Kuhn-Tucker conditions. If the

gradients Vu() of active inequality constraints (i.e. for which u() = 0) and the

gradients of the equality constraints Vc i (±), .., V m (i) are linearly independent

then the Fritz-John conditions always hold with A 0 = 1, i. e. they hold as Kuhn-

Tucker conditions. The conditions Au(±) = 0 for i < k are called complementary

slackness conditions.

10

These first order optimality conditions are widely used in optimization theory.

A derivation and discussion of these conditions can be found in [7] and [10].

1.4 Motivations for this thesis

This Ph.D started with the task of efficiently solving gaslift allocation problems

which arise in the oil production industry. The problems looked at had the

following two forms:

max E fh(xh)
	

(1.11)

subject to >Xh < 41 , 	 (1.12)

where Xh E IR, Xh > 0, fh : JR—* JR for h = 1,...,r, and

or (1.11), (1.12) and the additional constraint

>Chfh(Xh)
	

(1.13)

where the Ch are constants. fh(xh) is the oil rate flowing out of well h when the

injection rate of gas into that well is Xh. (1.11) is the objective function and

(1.12) is the constraint describing the limit on the available total injection gas

rate. Usually, the fluid flowing out of a well does not only consist of oil but also of

waste (like water, sulphur ...) which has to be separated from the oil and disposed

of. Often the waste is proportional to the oil with the proportionality constant

depending on the well. (1.13) is a constraint expressing the waste separation

capacity. Usually the functions fh have a discontinuity. (A typical shape for these

functions is given in Figure 2.1.) Due to the discontinuities local optimization

techniques are not suitable for problems of the form (1.11), (1.12) and in particular

for problems which also include (1.13) as a constraint.

These gaslift allocation problems can be solved by DP (which will be shown

in chapter 2). The study of methods to speed up the DP calculation of gaslift

allocation problems lead to action elimination based on first order optimality

conditions.

Then it was realised that this kind of action elimination is more general and

it was applied to other classes of DP-problems. (Chapters 5 and 6.)

In the optimization of oil production networks problems of the form (1.11),

(1.12), (1.13) are only subproblems. In the last part of the Ph.D a more compli-

cated oil production problem was looked at. This problem also considers com-

pressors, flow through pipes and the associated pressure drop in addition to the

11

gaslift allocation. The problem was modelled and a solution procedure for it was

developed.

1.5 Outline of the following chapters

Chapter 2 introduces the basic idea of how to use first order optimality condi-

tions as the basis for action elimination. The class of problems considered are

deterministic allocation problems. Most important in chapter 2 are the sections

2.2, 2.3 and 2.4.

Chapter 3 discusses discretisation issues in combination with FJ action elim-

ination. Section 3.1 presents a discretisation scheme which works well in combi-

nation with FJ action elimination and gives good results for allocation problems

with a large number of possible allocation destinations. Section 3.2 shows how

FJ action elimination can be applied with interpolation DP methods.

Chapter 4 shows difficulties of applying FJ action elimination to problems

with multi dimensional state and action spaces such that it results in a speed-up

of the DP. Various techniques are discussed to overcome these difficulties.

Chapter 5 looks at deterministic discrete allocation problems. For a class of

discrete allocation problems with linear constraints necessary optimality condi-

tions are derived. These optimality conditions are taken as the basis for action

elimination.

Chapter 6 discusses certain types of stochastic DP problems which allow action

elimination based on first order optimality conditions.

Chapters 2-6 are closely related, they all have in common the action elimi-

nation based on local optimality conditions. Chapter 7 and 8 do not relate to

the previous chapters except that a subproblem in an algorithm in chapter 8 is

solved by DP with FJ action elimination and variable grid discretisation scheme

(chapter 3).

Chapter 7 discusses a dual algorithm in a framework such that the results

of this chapter can be applied to an industrial problem in chapter 8. Chapter 8

deals with an oil production problem with some functions involved having discon-

tinuities, which seriously undermine the scope of local optimization. An approach

combining the dual algorithm of chapter 7 with local optimization is tried in order

to overcome the difficulties posed by the discontinuous functions.

12

Chapter 2

Fritz-John action elimination

2.1 Introduction

Dynamic programming (DP) can be applied to find a global optimum of a wide

range of problems, but for many potential applications it is too slow to be of

practical use. This chapter introduces a new action elimination method for a

class of problems with differentiable objective and constraint functions. The

action elimination can reduce the work in the inner computational loop of the

DP method and is based on the Fritz-John conditions.

This chapter deals with separable optimization problems of the following form.

max 	 fh(xh) 	 (2.1)

subject to 	wh(xh) = 	, 	 (2.2)

where Xh E]R?111, fh :]RT 	JR, Wh : IR7'h -* 1R for h = 1, ..., r, and 4 e]R

The problem divides into r stages. The variables are partitioned among the

stages, and the objective function and each of the constraint functions is a sum

of functions each of which depend only on variables from one stage. Each stage's

contribution to the objective and to the constraints is therefore independent of

the variables of the other stages.

Many allocation problems have the form given by (2.1) and (2.2). For example,

in gaslift allocation problems in oil production optimization Xh is the rate of

gaslift to well h, fh(xh) is the oil production rate of well h (depending on the

gaslift rate xh) so the objective function (2.1) is the total oil production rate.

The constraints (2.2) certainly include the gaslift availability constraint of the

form Eh Xh = G where G is the total rate of gaslift, sometimes they include

a water handling capacity constraint and other constraints. Nishikiori et al [12]

13

give a full description of such problems. Note that in [12] an optimization method

is applied which only leads to a local optimum whereas dynamic programming

would lead to a global optimum.

The problem (2.1) and (2.2) has a natural formulation as a dynamic program-

ming problem. To derive this formulation first define

Qi = { q E m: Xh E nh for 1 < h i such that 	Wh(Xh) =q

h=1 	 I
which is the set of values for q for which the constraint (2.4) is feasible, then

define the value function F for all i, 1 < < r and q E Q, by

Problem P2 (q):

F(q) 	max >fh(xh) 	 (2.3)
Xl,X2,..,Xj

subject to 	wh(xh) = q, 	 (2.4)

and for q 0 Qi define F(q) := -Do. F(q) is the optimal value for a subproblem

with i stages and constraint right hand side q. Note that every subproblem is

of the same structure as the original problem given in (2.1), (2.2) . With this

notation, the optimal value of the original problem is Fr (). Furthermore, there

is a bijective relation between states (q, i) and subproblems P(q). In DP the

vector x2 is called the action at stage i. For i > 1, problem (2.3) and (2.4) can

be rewritten as

F(q) max 	{f(x) 	max I 	fh(xh) : 	Wh(Xh) = q - w(x)}
x t 	 X1'---'Xi-1 	

h=1 	 h=1

q - w(x) E

which yields the DP optimality equation

F(q) = max {f(x 2) + F_ 1 (q - w(x)) x 2 E JR'}
	

(2.5)
Xi

Note that the above recursion holds not only for q E Q2 but also for q V Q. The

reason for this is that F(q) = -oo for q V Q2 by definition and

q V Q 	(q- w(x)) Q-i Vxi E JR7'

A computational scheme for the problem would involve first finding the function

F1 and then using the DP recurrence (2.5) to calculate F2 for stages i = 2, ..., r

14

using the previously calculated values of F2 _ 1 . By using the definition of Qi and
of F1 (q) it is found that

Fi (q) = - 00 if wi (x i) 54 q VXi E 1R 1 ,

F, (q) = max {f 1 (x 1) : w 1 (x 1) = q} if 3x i E 1/?" with w 1 (x i) = q.
xj EJR'

Except for problems with very special structure the functions F2 cannot be

found exactly and so must be approximated. The most common approach is to

replace the continuum of values for q by a finite number of discrete values and

also to replace each continuous optimization problem for the optimal action xh

at stage h, by a search over a finite number of discrete values. This approach has

the advantage of being able to find an approximate global optimum for problems

where the functions fh and 'Wh are arbitrary piecewis& smooth functions, how-

ever except for problems where m and all the nh are small it is computationally
intractable.

Historically, Bellman's book [1] was the origin for the research area of dynamic

programming as we know it today. Gilmore and Gomory [9] were the first to use

action elimination for the labelling (or reaching) method, which will be described

in section 2.3, by exploiting special structure in knapsack models. The action

space in such models is discrete. Lagrange multipliers have been known for two

centuries, but they were used only for continuous problems in the beginning.

Everett [5] suggested their use for problems with integer variables and Fox and

Landi [8] used them in dynamic programming. Most of their examples are discrete

and the conjunction with Fritz John conditions or the corresponding optimality

conditions in the theory of subdifferentials are not given.

In the next two sections problems are considered in which the functions fh

and 'Wh are differentiable. A new method is presented that uses the Fritz-John

(FJ) optimality conditions for action elimination, i.e. to reduce the number of
actions x 2 which have to be examined in the maximization step (2.5) at each

stage. Thereafter, the theory will be extended and the new algorithm modified to

allow general functions fh and wh. For suitable problems this action elimination

method reduces the solution time significantly. The complexity of DP is reduced

by at least one order of magnitude, with the precise reduction depending on the

structure of the specific problem. This chapter provides a general introduction

to this new method. There are many possible ways of implementing the method

and details are given of the implementation of a few example problems. For some

of these a comparison of solution times for DP with and without the FJ action

elimination is given.

15

2.2 General Theory of the FJ Action Elimina-
tion

In this section the FJ conditions are stated for problem (2.1) and (2.2) in the

case when all the functions are differentiable, and it is shown how to use the FJ

conditions for action elimination in DP.

Let Ao E JR and A e JRtm be the multipliers associated with the objective

function and constraints of problem (2.3) and (2.4). Further let Vfh be the

h x 1 gradient matrix of fh and VWh denote the m X nh Jacobian matrix of wh.

The Fritz-John (FJ) conditions for problem (2.3) and (2.4) are

Ao(Vfh(xh))T = A T Vw h (x h), for h = 1, ..., i, 	 (2.6)
2

Wh(Xh) = q, 	 (2.7)
h=1

A 0 = 0 or A 0 = 1, 	 (2.8)

N, A) =A 0 	 (2.9)

The FJ conditions are necessary conditions for local optimality. If A 0 = 1 they

become the Kuhn-Tucker (KT) conditions, which hold at any optimal solution

at which the constraint gradients are linearly independent. (See [7], chapter 9 or

[10] Chapter 4.)

For given state (q, i) and vector of actions x i where 	 = (X T
x?' , x', ...,

let B(q, x) be the set of all vectors (A 0 , A) with Ao E IR, A E 1R'T such that

(A 0 , A) and x 2 satisfy the FJ-conditions (2.6)-(2.9). Let x_ 1 be like x 2 except

that the last component is missing, i.e. xi 1 = (XT , xi'. . . xi 1). Now notice that

for i > 2 the set of properties in (2.6)-(2.9) defining the set B_ 1 (q - w(x), x 2 _ 1)

is fully contained in the set of properties defining B(q, x i). Furthermore the

properties which are amongst those defining B2 (q, x) but not amongst those

defining B 2 _ 1 (q - w(x), x_ 1) are

A0(Vf(x2))T = ,\ TVw.(x)
	

(2.10)

Define N(x) by

N(x) 	{(A 0 , A) A 0 e 10, 11, A E IRtm, (2.10)is satisfied}

With this definition and the previous observations, it follows that for i > 2

B2 (q, x) = B_ 1 (q - w(x 2), x_ 1) fl N(x)
	

(2.11)

In the proposed algorithm the above equation will be used to define (A 0 , A) sets

for states recursively.

16

2.3 Action elimination using the Fritz-John con-
ditions

The most common way to implement dynamic programming is generally known

as recursive fixing [3], [4]. This is illustrated by the program below which shows

the step of going from stage i - 1 to stage i for i > 2. Let A(q) denote the

optimal action for state (q, i).

for all qe JRtm do

F(q) := -00

for all xi e Ri do

if F(q) < F2 _ 1 (q - w(x)) + f(x 2) then

F(q) := F 1 (q - w(x)) + f(x)

A i (q):=xi

end if

end do x

end do q

The outer loop cycles over all states at stage i and the inner loop finds the optimal

action for the current state being considered in the outer loop.

The following alternative implementation is generally referred to as reaching or

the labelling procedure (See [3], [4]).

for all q E JR set F2 (q) 	-00

for all q E jRtm do

for all xi E 1R do

if F(q+w(x)) <F2 _ i (q) + f(x) then

F(q+w(x)) = F 1 (q) + f(x)

A(q+w(x)): = x i

end if

end do x2

end do q

In the recursive fixing method the outer loop fixes a state (q, i) of stage i and

the inner loop is used to determine F(q). In the labelling method the outer loop

fixes a state (q, Z' - 1) of stage i - 1 and the inner loop does all comparisons of the

dynamic programming calculation, in which F_1 (q) is involved. The difference

between the two methods is that the nested loops are swapped.

17

When F_i (q) = — oc then all the DP comparisons of the form

F(q + w(x)) <F2_ i (q) + f(x)

are superfluous. This observation can be exploited within the labelling method

to reduce computation. The second line of the above procedure can simply be

replaced with:

for all q c JRtm for which F_ 1 (q) > -00 do

In the future this modification will always be implemented where it is appropriate.

Since the state space in this description is infinite, the above loops are actually

infinite loops. In practice a discretisation has to be introduced to make the sets

of states and actions finite.

It is now shown how the action elimination takes place. The new algorithm

will employ a function of states B(q) defined by

B(q) = B(q,),

where ii is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B(q). By combining (2.11) and (2.10) we can

replace (2.5) with

F(q) = max {f(x) + F_ i (q - w(x)) : 3(A 0 , A) E B_ 1 (q - w(x))
sJR

such that (A O , A), xi satisfy (2.10)1 (2.12)

Replacing (2.5) with (2.12) is the essence of the action elimination!

In order to implement (2.12) efficiently the labelling procedure is used for

going from stage Z' - 1 to stage i (for i > 2), as shown in the following procedure.

Procedure 2.3.1

for all q E JRtm set F2 (q) := - oo

for all q E JRtm for which F 1 (q) > —cc do

for all x e 1R' for which El (A O , A) e B i (q)

such that (A O , A), x i satisfy (2.10) do

if F(q + w(x)) < F. 1 (q) + f(x) then

F(q + w(x)) := F 1 (q) + f(x)

A(q+w(x)) :=x

B2 (q + w(x)) := B 1 (q) fl N(x)

end if

end do x

end do q

IL;'

Note that for the FJ action elimination to be efficient there must be a quick way

to identify those xi E 1RT 1 which satisfy (2.10) for any given (A 0 , A) e B_ i (q).

If the amount of work required to do that is not less than running through all

x i E JRT , then the FJ action elimination is not useful.

Next, it will be explained why in the action elimination process it is sufficient

to choose B(q) = B(q,) where xiii is any optimal vector for subproblem (q,i).

Suppose that iii is an optimal vector for subproblem (q, i) and is given by 	=

(if, 	, . . . , fl. Further suppose that ii is an optimal vector to the (original

whole) problem (2.1) and (2.2) and is given by xT =. . . ,) and its

optimal path passes through state (q, i). Then by the DP-optimality equation

the vector x given by

is also optimal for the (original whole) problem (2.1) and (2.2). But the action

elimination process with B(q) = B(q, x) does cover the actions necessary to

discover x as an optimal vector for problem (2.1) and (2.2). Hence result.

2.4 Extension to general functions

In this section the method of the previous section is extended to allow general

functions fh, Wh and to allow Xh to be defined over a general set. When Dh is a

set then let the boundary of Dh be denoted by aDh.

Theorem 2.4.1 Consider the problem (2.1) and (2.2) with the additional con-

straints that xh e Dh for all h where Dh C 1J?Ih, and let ui be a global solution to

the problem where iiT = . . . ,). Let I be the set of indices such that for

h E I, fh and wh are differentiable at h and 1h 0 DDh . Then there exists (A 0 , A)

such that

Ao(Vfh(ih))T = ATV wh (h) for all h E I, 	(2.13)

A 0 e{0,1} , A1Rm, (A 0 ,A)0.

Proof:

Define

q* :=q->wh(xh)
hI

Then consider the problem

max 	fh(xh)
	

(2.14)
hEl

19

subject to 	Wh(Xh)
= q* 	 (2.15)

hEl

Xh e Dh Vh e I. 	 (2.16)

This problem is solved by Xh = Xh for h E I since ii solves (2.1),(2.2) with the

additional constraint that Xh E Dh Vh. Therefore the point Xh = Xh for h e I is

a local solution. Furthermore, Wh and fh are differentiable at Xh = Xh for h e I.

Since (2.14)-(2.16) are of the same form as (2.1)-(2.2) there exists (Ao, A) such

that the FJ-conditions (2.6)-(2.9) applied to problem (2.14)-(2.16) are fulfilled

when Xh = Xh for all h e I. 0.

If fh or Wh have discontinuities then it is possible that problem (2.1)-(2.2)

does not have a maximum but a supremum. If is a point at which fh or Wh is

discontinuous then the FJ conditions can not be used to eliminate §ih. In the DP

recursion it is necessary to always include and a neighbourhood around h , i. e.

to always check actions corresponding to h and a neighbourhood. The action

elimination DP algorithm will now be presented for the case that the functions

fh, Wh have some non-differentiable points. We use the optimality condition from

the last theorem. The procedure of going from stage i - 1 to stage i for i > 2 is:

Si := {y c Di w i or fi is not differentiable at y}

such that Ix—yI<€}

for all q e jRtm set F(q) := -00

for all q e JRtm with F_ 1 (q) > —oc do

for all xi e D2 \ (8D U S) for which 3(A 0 , A) E B_ 1 (q)

such that (A O , A), x i satisfy (2.10) do

if F(q + w(x)) < F_ 1 (q) + f(x) then

F(q + w(x)) := F i (q) + f(x)

A(q + w(x)) :=x i

B(q + w(x)) := B... i (q) fl N(x)

end if

end do x2

for all xi E aDi U 3i do

if F(q + w(x)) < F2 _ 1 (q) + f(x2) then

F2 (q + w(x)) := F2_ 1 (q) + f(x)

A(q+w(x)) :=x

B(q+w(x)) := B_ 1 (q)

20

end if

end do x

end do q

The purpose of defining Si is to have actions on every side of a discontinuous

point x e S. In the definition of 3i the parameter E is positive and arbitrarily

small. Of course, the more non-differentiable points the functions w, fi have and

the more points there are on the boundary of D, the less effective is the action

elimination.

2.4.1 Practical Implementation

For most problems it is only practical to implement the action elimination if the

set B_ 1 (q) has only one element. Usually, if Problem P_1 (q) is feasible the set

B_ 1 (q) has one element or an infinite number of elements. If Problem P2 _ 1 (q)
is infeasible then B_1 (q) is the empty set. If B2 _ 1 (q) has one element and x i is

such that (A 0 , A), x i satisfy (2.10) where (A 0 , A) e B_ 1 (q) then

B_ 1 (q) C N(x)

and hence 	B_ i (q) fl N(x) = B_ 1 (q).

The following procedure of going from stage Z' - 1 to stage i (for i > 2) only makes

use of the action elimination when the set B_ i (q) has one element. It is based

on the previous procedure and the above observations about B_ i (q).

Si := { y E Di wi or fi is not differentiable at y}

:={xeD:yeS such that ix —y<f}

for all q e JRtm set F(q) := —oc

for all q e JRtm for which F_i (q) > —oc do

if B_ i (q) has exactly one element then do

J := {x : x e D\SZ , 	A) e B_ 1 (q) and x satisfy (2.10)}

for all Xi E 3i U 9Di U J do

if F(q + w(x)) < F_1 (q) + f(x) then

F(q + w(x)) := F 1 (q) + f(x)

A(q + w(x)) 	x i

B(q + w(x)) 	B_ i (q)

end if

end do x

21

else (if B_ i (q) has more than one element)

for all x. E Di do

if F2 (q +w(z)) < F_i (q) + f1 (x) then

F(q ± w(x)) := F i (q) + f(x)

A(q+w(x)) :x

if x 3i U 9Di then

B(q + w(x)) := B2 _ i (q) fl N(x)

else

B(q+w(x)) := B_ 1 (q)

end if

end if

end do x

end if

end do q

Most often the FJ optimality conditions hold as Kuhn-Tucker conditions. i.e.

most often the dual multipliers)) satisfy)o = 1. The efficient calculation

of the set J (in line 6 of the previous procedure) usually involves a considerable

amount of coding. Moreover, often the two cases A O = 0 and AO = 1 for)) E

B_ 1 (q) have to be considered separately. The amount of coding necessary to

calculate J when A 0 = 0 is not worth the effort for many applications. The reason

for this is that A 0 = 0 can only be if the gradients of the constraint functions are

linearly dependent at the optimal solution point. (This is a property of the FJ-

conditions.) In many applications the number of variables is larger than the

number of constraints, and the constraint functions are all of a different form.

But then it is very unlikely that the gradients of the constraint functions are

linearly dependent at the optimal solution point.

Another practical implementation of going from stage i - 1 to stage i (for

i > 2) only makes use of the action elimination when the set B2 _ 1 (q) has one

element (A 0 , A) and for this element A 0 = 1. This amounts to changing line 5 of

the previous procedure to:

if B2_ 1 (q) has exactly one element (A 0 , A) and A0 = 1 then do

22

2.5 Inequality constraints

In this section problem (2.1), (2.2) with the additional constraints Xh E Dh Vh is

considered where the equality constraints are replaced by inequality constraints.

i.e. the problem considered is

	

max >fh(Xh) 	 (2.17)

subject to 	Wh(Xh) < 	, 	 (2.18)

	

Xh e Dh 	Vh, 	 (2.19)

There are two approaches to deal with this problem using FJ-DP.

Approach A:

Apply FJ-DP to problem (2.1), (2.2) with the additional constraint (2.19) as de-

scribed in the previous sections. At the end scan the value function Fr to find

the solution to (2.17)-(2.19). i.e. the optimal objective value to (2.17)-(2.19) is

max{Fr (q) q < 41 q

where the inequality sign between the two vectors q and 4 is used component-wise

i. e. the i-tb component of q is less than or equal to the i-tb component of 4 for

every i : 1 < i < m.

Approach B:

The subproblem corresponding to state (q, i) which defines F2 (q) is changed. F(q)

is now defined by (2.3),(2.4) but with the equality sign in (2.4) being changed

into a '<' sign and the additional constraint (2.19). The DP-recursion (2.5) still

holds. The Fritz John conditions for subproblem (q, i) are

	

A0 = 0 	or A 0 = 1, 	 (2.20)

	

(A 0 , A) =,4 0 	 (2.21)

	

A > 0 	 (2.22)

	

AT(w(x) - q) = 0, 	 (2.23)

for h = 1, ..., i, if fh, Wh are differentiable at Xh and Xh i9Dh then

23

)o(Vfh(xh))T = A T Vw h (x h), 	 (2.24)

where Vfh is the nh x 1 gradient matrix of fh and VWh denotes the m x nh

Jacobian matrix of Wh. For given state (q,%') and vector of actions x i where

= (xf, x, ..., xfl, B(q, x) now is the set of all vectors (A 0 , A) with A0 e

JR A e JRtm such that ()o, A) and x i satisfy the FJ-conditions (2.20)-(2.24).

The FJ-DP algorithm now employs a function of states B(q) defined by

B(q) = B2 (q,),

where ii is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B2 (q). An FJ-DP algorithm can be applied to

problem (2.17)-(2.19) which imposes these modified definitions of F2 (q) and B(q)

in the initialisation step (i.e. when defining F, (q), B 1 (q) Vq) and then uses any

one of the procedures of sections 2.4 and 2.4.1 for going from stage %' - 1 to stage i.

Both approaches A and B work and solve problem (2.17)-(2.19). Approach B

uses stricter FJ conditions than approach A since it has the additional condition

(222). 1. e. Approach B uses FJ conditions which have the potential to eliminate

more non optimal actions. However, in comparison to approach A approach B

defines F(q) > —oc for more states (q, i). This is bad since more work has to be

done to go from stage i to stage i + 1 when there are more states (q, i) of stage i

for which F(q) > — oo. This more work of approach B can even be of one order of

magnitude. For example, if m = 2 (i.e. there are two constraints) and n1 = 1 (i.e.

E JR) then approach A defines Fi (q) > —oc for a one dimensional subspace of

states in the two dimensional state space of stage 1, whereas approach B defines

F1 (q) > — cc for a two dimensional subspace of states in the two dimensional

state space of stage 1.

Let's summarise the comparative advantages of approaches A and B. Ap-

proach A defines F(q) > —cc for fewer states (q,i), approach B uses stricter

FJ conditions and therefore has the potential of eliminating more non-optimal

actions. It is possible to design a method which has both of these good features

of approaches A and B. In the sequel this method is described.

Approach C:

The definition of B(q) is as in approach B. The definition of F2 (q) is, in some

sense, a blend of that in approach A and that in approach B. Precisely: F(q) is

the optimal objective value of

X1=,Xt
I fh(xh)
	

(2.25)

24

subject to >wh(Xh) < q, 	 (2.26)

Xh E Dh for h= 1,...,i (2.27)

if there exist vectors x 1 , x2 , ..., Xi which solve problem (2.25)-(2.27) and for which

(2.26) holds as equality (in every component), if such vectors do not exist then

F(q) := —oo. For this definition of F2 (q) the DP recursion (2.5) holds if F1 (q) >

—cc but fails in general if F2 (q) = — cc. With these definitions of F(q) and B(q)

apply an FJ-DP algorithm to problem (2.1),(2.2) and the additional constraint

Xh E Dh Vh which uses any one of the procedures of section 2.4 or 2.4.1 plus the

following steps

for all q E JRtm do

if F1 (q) > — cc then

if 14 < q with F() > F(q) then F2 (q) 	—cc

end if

end do

added at the end when going from stage i—i to stage i. A procedure of section 2.4

or 2.4.1 for going from stage i - 1 to stage i basically implements the recursion

(2.5) but (2.5) only holds when F(q) > —cc, as mentioned before. Hence, in

general a procedure of section 2.4 or 2.4.1 calculates F(q) correctly if F(q) >

—cc and incorrectly in general if F1 (q) = —cc. Adding the above steps to a

procedure of section 2.4 or 2.4.1 insures that F(q) is also calculated correctly

when F2 (q) = — cc. The specific definitions of F(q) and B(q) must be imposed

in the initialisation step i. e. when defining F1 (q), B 1 (q) Vq. At the end of this

FJ-DP algorithm scan the value function F to find the solution to problem (2.17)-

(2.19) i.e. the optimal objective value to problem (2.17)-(2.19) is

max{F(q) q
q

The optimal distribution vectors , 	which solve this problem are found

by working the actions A(q) backwards along the optimal path of states starting

from state (q* , r) where

q* = argmax{Fr (q) : q < 61.
q

2.5.1 Problems with equality and inequality constraints

Next a problem with inequality and equality constraints will be considered and an

efficient FJ-DP method will be outlined. The equality constraints are dealt with

25

as in previous sections and the inequality constraints are dealt with according to

approach C of the previous section. Consider:

max 	 fh(xh) 	 (2.28)

subject to 	Wh(Xh) 	, 	 (2.29)

	

= 2, 	 (2.30)

	

Xh e Dh 	Vh, 	 (2.31)

where Dh C]Rnlh fh : IR -4 JR, Wh : Eh _4 JR1 Vh : JRh]]m2 for

h=1,...,r, and EJRm1 , 2elRm 2 .

The definition of F1 (q, z) to be used in the FJ-DP method is the following: F(q, z)

is the optimal objective value of

	

max 	fh(Xh)
X1,X2,..,Xj

	

subject to 	Wh(Xh)

V/ (X/)

Xh e Dh

(2.32)

q, 	 (2.33)

= z, 	 (2.34)

for h=1,...,i 	 (2.35)

if there exist vectors x1,x2, - - -, Xi which solve problem (2.32)-(2.35) and for which

(2.33) holds as equality, if such vectors do not exist then F(q, z) = — oo. For this

definition the DP recursion

	

F(q, z) = max {f(x 2) + F2 _ 1 (q - w(x), z - vi (xi)) 	 (2.36)
XiEDi

holds if F(q, z) > — oo and does not hold in general if F(q, z) = — oo. For given

state (q, z, i) and vector of actions x 2 where xT = (x, x, ..., XT), B(q, z, x)

is the set of all vectors s. o , A, p) with Ao E IR,) E 1R 712' p E JR72 such that

(),)jt) and xi satisfy the FJ-conditions (2.20),(2.22), (2.23),(2.34),

(A o ,A,/L) 54 0 and

for h = 1, ..., i, if fh, Wh, Vh are differentiable at Xh and Xh 3D,,, then

.Ao(Vfh(xh))T)Tvw(x) + ,aTVvh(xh)

26

where Vfh is the rth x 1 gradient matrix of fh, VWh denotes the m 1 x nh Jacobian

matrix of 'Wh and VVh denotes the rn2 X nh Jacobian matrix of Vh. The FJ-DP

algorithm now employs a function of states B2 (q, z) defined by

B(q,z)

where ii is the optimal vector for subproblem (q, z, i) that the algorithm has

computed at the time of defining B2 (q, z). These definitions of F(q, z) and B1 (q, z)

must be imposed when defining F1 (q,z), B i (q,z) V(q,z) initially. When going

from stage Z' - 1 to stage i for i > 2 a procedure similar to one of those in section

2.4 or 2.4.1 is used to implement (2.36). At the end of the implementation of (2.36)

if for a state (q, z, i) F(q, z) > —x and 34 < q such that z) > F(q, z) then

one must redefine F(q, z) := —oo in order to enforce the correct definition of

F(q, z). The optimal objective value to problem (2.28)-(2.31) is

max{Fr (q, 2): q
q

2.6 A single constraint example

In this section an example, which is similar in form to the gaslift allocation prob-

lem mentioned in the introduction, will be shown in order to illustrate the details.

This example is highly non-linear. The theory in the previous sections was for

continuous variables. In practice, however, a discretisation must be introduced.

The discretisation which will be used is one to approximate the continuous im-

plementation of FJ-DP. The finer the discretisation is, the smaller the error of

the approximated solution will be.

Consider the problem:

maximizef(x) :=

subject to 	X h = 	, 	 (2.37)

XhEJR, XhE[O,dh] 	1<h<r,

where r = 50 and 4 = 1000. The functions fi of the example are characterised by

four numbers a, b, Cj, di in the following way:

fj(x)-{0 	

if
if c 	x

x<c
d

,

- 	 , 	
(2.38)

log(a + x) + b

The numbers a, b, c, d, defining the functions fi are given in Table 2.1.

27

i 	I ai I b2 c1 d

1 -9 20 11 42
2 -18 20 20 41
3 -8 40 10 34
4 -8 40 13 40
5 -16 2 19 40.5
6 -5 4 11.5 32.8
7 -9 5 15.7 41.9
8 -18 3.7 25 49
9 -8 4 15.2 37.4

10 -8 5 20.9 39
11 -16 2.9 26.8 40.2
12 -5 4 15 30.3
13 -9 5 28 40.2
14 -18 2.8 29.5 48.7
15 -8 4 25 30
16 -8 5 27.1 38.6
17 -16 10 30 47.1
18 -5 10 23.7 30
19 -9 5 22.8 41.5
20 -18 15 35.3 43.7
21 -8 10 25.3 53.1
22 -8 5 30.47 47.3
23 -16 5 30.1 40.1
24 -5 6 25.3 37.9
25 -9 5 10 45.8

i I 	ai I 	b2 c2 J d2

26 -18 2 20.7 46
27 -8 4.2 10.2 30.9
28 -8 5.1 10.7 49
29 -16 2.9 20 46.8
30 -5 3.4 10 34
31 -9 5 15 40
32 -17.1 2 25 40
33 -8 4 15.3 30.9
34 -8.9 5 20.3 40.9
35 -16 3.2 30.7 50
36 -5 3.8 15.3 30
37 -9 5 27.2 47.9
38 -18 2.7 30 36.8
39 -8 4.2 24.6 30
40 -7.3 4.6 28 43.7
41 -16 7.8 30.2 47.5
42 -5 6.9 25.3 30
43 -9 5 18.4 40
44 -18 10 35.9 40.5
45 -8 7.3 25 37.9
46 -7.1 7.7 31.2 49
47 -16 5.8 30 37.9
48 -5 6 25 30
49 -15 8.1 20 40
50 -10 5 14.7 37.9

Table 2.1: Coefficients for the functions fi in (2.38)

f(x)

Figure 2.1: shape of fi functions

In the notation of section 2.4, D2 = [0, d] Vi, so aD j = {0, di 1. Each fi is

differentiable except at the point Cj . For optimal i the necessary optimality

conditions from (2.13) are:

3(A0 , A) with Ao e {0, 1}, A E JR, (A 0 , A) 	(0,0) such that for every i

Ao—(x)=A 	if
dx

If A0 = 0 in the above condition then it implies A = 0, but this contradicts

(A 0 , A) 	(0, 0). Hence A 0 = 1. Therefore the necessary condition simplifies to:

df,
A such that for every i : 	—(x2) = A 	if x 	O, 	c,x j =A d.

dx

Graphically, this condition simply says that at the optimal solution all the func-

tions f, for which the argument is in the interior of the feasible set and is a point

at which fi is differentiable, have the same gradient. Note that since the f2 func-

tions are built of log-functions, there is a quick way (in this case even analytic)

to identify those x, e JR for which -(x) = A when A is known. Hence the FJ dx
action elimination will be very effective.

For dynamic programming we introduce a discretisation of the x-axis. The

interval [0,] is split into m equal subintervals, of length J.

	

4 	1000

Let n be called the discretisation number. Only x i values of the form x i = k6

with k E 1T/ are considered.

For the continuous version of the problem discussed earlier the states, value

function and actions are (q, i), F2 (q), A i (q) respectively, where q e JR and i E 1/V.

For the discrete version of the problem the notation (j, i), Pi (j), A 2 (j) will be used

for states, value function and optimal actions respectively.

Definition 2.6.1

(j, i) is the state considering the first i functions fh only, 	= j8 and each

x1 is either zero or a positive multiple of J.

= maximal value of 	fj (x j) where x e JR2 and belongs to state (j, i).

A1(j) = computed number of units (8) that x 2 takes, when x e JR2 and x belongs
to state (j, i) and 	f1(x1) =

Some remarks on these definitions: (j, i) can be thought of as a finite set of vectors

x E JR. Fj (j) is the solution of a maximization problem with finite search space.

A 2 (j) is a discrete action.

29

As observed before the example in this section is such that (2.13) implies

that the FJ-conditions always hold with A 0 = 1. Furthermore for this example

B2 (q) takes two possible forms: Either B(q) = {(1, A)} for some A e JR or

B2 (q) = {(1, A) : A e JR}. However, when B(q) = {(1, A) : A E RI, the

action elimination step will actually not eliminate any actions that ordinary DP

considers. Hence in this case the action elimination step will not be used. For

simplification a function A of the states will be used instead of the B-sets in

the description of the following algorithm. For any state, if B(q) = {(1, A)}

for some A E JR then A(q,i) will be defined to be this unique A-value, and if

B(q) = {(1, A) : A e]R} then A(q, i) will be said to be undefined. Only if

A(q, i—i) is defined will the FJ-action elimination be used. Step 3 of the algorithm

below is based on the procedure in section 2.4.1

Algorithm 2.6.2

Choose ri E V and set 8 :=

S1 := { all special points of fi in [0, d1]} = 10, c1 , d 1 }

Q:={[],[] 	:ySi}

forj:=0 ton do

if j8 < d then

Pi (1) := fi (j6)

if j ç' Q then
dfi

 (A AU, 1) :=
dx

else

A(j, 1) := undefined

end if

else

i(j)

end if

end do j

i:=2

for j := 0 to n set Pi (j) := —cc

Si:= { all special points of f2 in [0, d]} = 10, c, d}

Q:={[],[] 	:yESi }

30

for j e {O, 1, ...,n} for which F_1 (j) > —oo do

if)(j,i— 1) is defined then
dfi

for all k E I [Y j, [y] :yE J}UQdo

if (j + k) <_(j) + f(k) then

Pi (J + k) := j_(j) + f(kö)

A(j + k) := k

A(]'+ k, 	—1)

end if

end do k

else (if)(j, i - 1) is not defined)

for k =0 to min(n - j, [j) do

if (j + k) <2_(j) + f(H) then

j(j + k) := ii(j) + f(k)

A(j + k) := k

if k ' Q then

dx
else (if k e Q)

)(j +k,i) := undefined

end if

end if

end do k

end if

end do j

if i < r increase i by one and return to 3)

s:=n

for i := r down to 1 do

:= A(s)5

s := s - A(s)

end do i

stop

Step 1 is the initialisation of DP, step 3 is based on. the procedure of section 2.4.1

31

n I ordinary DP (secs) I FJ-DP (secs) P, (n)

100 0.04 0.06 432.81
200 0.16 0.13 447.33
500 0.87 0.35 456.79

1000 3.14 0.68 458.23
2000 12.41 1.52 459.35

10000 326.43 7.64 460.12

Table 2.2: computational results

and calculates the value function (j) and the optimal action A(j) for the states

in stage i, step 5 calculates the optimal distribution vector x. Fr(fl) is accepted

as the optimal value of the objective. Observe that x is restricted to the grid,

which implies that all components of x are an integer multiple of J.

The above FJ-DP algorithm was used to solve problem (2.37) for various

discretisation numbers n. The results are compared with those of DP without

action elimination and are given in Table 2.2. For the same discretisation number

n the ordinary DP and the FJ-DP algorithms gave the same optimum Fr (fl).

Since it takes 0(1) amount of work to identify those x i e JR for which (xi) = A dx

when A is known, we expect the complexity of the FJ-DP for this problem to

be 0(n). The complexity of ordinary DP is 0(n2). Our run time results are

consistent with this analysis.

This example has a similar form to the gaslift allocation problem with gaslift

availability constraint only, described in the introduction. The main difference is

that in a gaslift problem the functions f2 are normally not logarithmic functions

given analytically but functions given numerically as a set of points.

2.6.1 Finding points with a particular derivative of f
For the FJ-action elimination in Algorithm 2.6.2 there must be a procedure which

gives all points x2 for a given value of A such that

df
dx

(2.39)

In the last example this was done analytically since the functions fi were of

a suitable analytic form. However, if the solution of (2.39) can not be done

analytically this can be done fast numerically by preprocessing the function f2

before doing the DP-calculation of going from stage i - 1 to stage i. For example,

if the functions f2 were arbitrary piecewise smooth functions the preprocessing of

the functions f2 could be done as follows: the domain of x i is split into subsets,

such that on each subset the function f2 is either convex or concave. Then for

01

each subset a function x(A) is approximated where x(A) satisfies

= A
dx

x(A) can be calculated for a list of increasing or decreasing A-values efficiently

using Newton's method or binary bisection. Alternatively, (2.39) can be solved

approximately to within e of the true solution by simply applying binary bisection

to every convex or concave subset of the domain of x. This method with € =

was implemented for the previous example problem and the results for different

discretisation numbers n are given below. n FJ - DP , binary bisection (secs) J _F (72)

100 0.07 432.81
200 0.29 447.33
500 0.53 456.79

1000 0.91 458.23
2000 1.80 459.35

10000 9.98 460.12

When comparing this table with Table 2.2 it is found that the result Fr (ri) is

as before for the considered discretisation numbers n. This is not surprising.

When (2.39) with A > 0 is solved by binary bisection to within € = of the

true solution the work necessary is 0 (logn). Hence the complexity of the FJ-DP

algorithm now is expected to be 0(nlogn). The results of the table are consistent

with this analysis.

2.6.2 A modified example

Algorithm 2.6.2 uses a regular discretisation with step size 6 for the action space

and for the state space in each stage. Furthermore, the problem solved has one

linear constraint with all coefficients being equal to one. This has the consequence

that when the constraint function is evaluated at any discretisation point x the

result is a value which is a discretisation point of the state space. It is important

to realise that this property is not true in general. In this subsection an example

is given which makes this point clear. In general it is not enough to have some

discretisation points in the state space but it is necessary to subdivide the state

space into subintervals. Consider this problem:

maximizef(x) := 	fh(xh)

subject to 	Wh(Xh) = 	, 	 (2.40)

Xh E JR, Xh E [0, dhl 	1 <h < r,

33

where the functions fh, Wh are JR -+ R. The functions fh, Wh are everywhere

differentiable on [0, dh] except at finitely many points. Let's also assume that

wh(xh) > 0 and that W ' (Xh) 7~ 0 for all Xh e [0, dh] and that > 0. These

assumptions simplify the description of Algorithm A.M. Let Nh be the set of

points at which either fh or Wh is not differentiable. For optimal i the necessary

optimality conditions from (2.13) are:

(A 0 , A) with A o E {0, 11, A E JR, (A0 , A) 	(0,0) such that for every i

A 0f,'() = Aw) 	if x, 54 0, 	 Ni .

If A 0 = 0 in the above condition then it implies A = 0 since w(x) 	0 for all

x, E [0, d] by assumption, but this contradicts (A 0 , A) 0 (0, 0). Hence A 0 = 1.

Therefore the necessary condition simplifies to:

A such that for every i: f(x) = Aw) if 	0, x 	d, x 	N2 .

It is important to be aware of the differences between the definitions below and

those of Definition 2.6.1. 8 is again defined by 8 := 1 where n is the discretisation

number.

Definition 2.6.3

(j, i) is the state considering the first i functions fh only,

(J - 1)8 < Eih= l Wh(Xh) <j6 and each Xh e Dh for 1 <h < i.

F(j) =maximal value ofE'h=l fh(xh) where x E JR2 belongs to state (j, i).

j(j) =computed approximation to F2 (j).

A i (j) =computed real value that x 2 takes, when x E JR2 and x belongs to state

i) and >ifh(xh) Pi (j)

Pi(j) 	Wh(Xh) where x e R' is the computed vector which belongs to state

(j, i) and for which E ih= l fh(Xh) =

Some remarks on these definitions: (j, i) can be thought of as an infinite set of

vectors x E IRi. F2 (j) is the solution of a maximization problem with infinite

search space. DP does finite computation, it can not compute F2 (j) exactly in

general. DP will approximate F2 (j), the approximation is denoted by F j(j). Ai (J)

is a real valued action. By definition p 2 (j) satisfies:

(3, -1)8<p2 (j) <j8.

34

Suppose x (2 JR is the computed vector which belongs to state (j, i) and for

which E'h= l fh(Xh) = (j). In the DP process i + 1 dimensional vectors of the

form (x, x+1) will be considered and using pi(j) such i + 1 dimensional vectors

can be assigned to the right state of stage i + 1.

The algorithm in Appendix A is an implementation of FJ-DP for problem

(2.40), its structure is similar to the previous algorithm (Algorithm 2.6.2) and in

particular step 3 is again based on the procedure in section 2.4.1.

If the discretisation number m is sufficiently large and if problem (2.40) is

infeasible then the algorithm will return Fr (fl) = — oo. Notice that in general the

result of this algorithm x' does not satisfy the equality constraint exactly but

contains a discretisation error with the following bound:

-<Wh(X) <

2.6.3 Remarks on storage issues

In the FJ-DP algorithm of the previous section (the algorithm is explicitly given

in Appendix A) the following objects are used:

A i (i), pi (j) and A(j, i) for 1 < i < r, 0 < j < n. However, it is not

necessary to store all of these objects. When step 3 of the algorithm is executed

the only objects used there are ji(j), Fi (j), A i (J), p1(j), pi (J), A (j, j - 1),

)(j, i) for 0 < j < ii. The objects A(j) for t < i, 0 < j < n will be needed in

step 5, but Ft(j), pt (J),)(j, t) for t < i - 1, 0 < j < n are no longer needed.

Hence the algorithm only needs the following storage:

2(n + 1) values (instead of r(n + 1) values) for each of the objects F, p,) and

r(n + 1) values for A.

2.6.4 Calculating numerically the action set when state
and action space are both one dimensional

This subsection is a generalisation of the first part of section 2.6.1. The general

deterministic DP problem with one dimensional state and action space in each

stage is:

maximize f(x) : = fh(xh)

subject to 	Wh(Xh) =

XhE]R, XhEDh 	1<hr,

35

where the functions fh, Wh are piecewise differentiable functions JR -+ 111 with

finitely many non-differentiable points. Let Nh be the set of points x E Dh at

which either fh or 'Wh is not differentiable. Suppose that this problem is solved

by DP using some discretisation scheme where the state space and action space

are discretised in n units. DP without action elimination needs 0(n2) operations

to do the calculation of going from stage i - 1 to stage i for i > 2. FJ-DP, when

implemented with a procedure from section 2.4.1, has to calculate about ri times

sets J of the form

J := {z: X D, A 0 f(x) = Aw(x)}

for given (A 0 , A). Often the functions f, wi do not allow the points x of J to be

calculated analytically. In the sequel it is shown how this can be done numeri-

cally. For this it is assumed that the functions f, w i are piecewise continuously

differentiable not just piecewise differentiable. The two cases A 0 = 0 and A 0 = 1

have to be considered separately. Let's first consider A 0 = 0: in this case A 0

since the FJ conditions demand (A 0 , A) (0, 0). This means the calculation of J

reduces to that of J0 where

Jo := {x : x e D, w(x) = O}

Pick a small number € > 0 where € must satisfy ly - zJ > 2€ for all y, z E N and

y 54 z. Define

X + := {x : X D,x = y+€,y E N}

and X_:={x:xED,x=y—€,yENil.

The elements of J0 can be calculated approximately by running once through the

discretised actions x e Di and through the points of X + and X_ and looking at

the corresponding values of w. If a < b, a is a discretisation point or a e X, b

is a discretisation point or b e X_, a and b are close and either

w(a) <0 and w(b) > 0,

or w(a) > 0 and w(b) <0

then a fixed number of binary bisection steps or a few iterations of Newton's

Method will approximately find a point x E J0 which lies between a and b. The

work involved to find the points of J0 approximately this way is 0(n).

For the case A 0 = 1 it is good to get some information about the behaviour of
f.(x) 	

i 	
z.

w(x)
before doing the DP step of going from stage —i to stage . By running once

36

maximizef(x) :=

subject to

h

2h + 1fh(xh)
h=1

h+1
2h + 1fh(xh)

h=1

Xh

Xh E JR, Xh E [0,dh]

through the discretisation points of D, X and X_ non-overlapping maximal

intervals can be determined such that on each of these intervals f2 and wi are
f(x) i differentiable and

s either increasing or decreasing. After that, when doing
Wi

the DP step of going from stage i - 1 to stage i, on every interval the solutions of

f,'(x)
=A

W '. (X)

can be found by the bisection method. This way the elements of J, for any

given A, can approximately be found with O(logn) operations. Hence, it can

be expected that the work of going from stage i - 1 to stage i of FJ-DP takes

O(n log rt) operations.

2.7 Example with two constraints

In this section an example is given with n i = 1 and m = 2.

Consider the problem:

= 	1, 	 (2.41)

=

42,

1 <h < r,

where r = 15, 41 = 60 and 42 = 150. Let the functions f2 be those given in (2.38)

with the numbers a, b, c, d2 taken again from Table 2.1. The domain of x i can

be taken as Di = [0, d2]. For optimal the necessary optimality conditions from

(2.13) are:

(A 0 , A) with A 0 E 10, 11, A E 1R 2 , (A 0 , A) ~ (0,0) such that for every i

A02 idf,
	- 	 i+1 df,

—(x i) - A l2 . 	—(x i) + A 2 	if Xj 0, 	c,x j d2 .
dx 	z +ldx

This condition implies the following condition

dfi -
dx

(2i + 1)A 2
iA 0 - (i + 1)A 1

if 	 and iA o —(i+1)Ai =A0.

This optimality condition is the basis for the FJ action elimination when DP

goes from stage i - 1 to stage i in this problem with one dimensional action

and two dimensional state space. Problem (2.41) has been implemented and the

37

n I ordinary DP (secs) I FJ-DP (secs) [speed-up I F,(n)

20 0.14 0.09 1.56 45.58
50 1.59 0.62 2.56 47.80

100 10.54 2.67 3.95 48.50
200 79.37 12.02 6.60 48.51

Table 2.3: computational results

computational results are shown in Table 2.3. The discretisation used discretises

D1 in n regular subintervals and also each of the two dimensions of the state space

in n regular subintervals. Exactly the same discretisation scheme was used for

ordinary DP and FJDP. r(fl) is the computed optimal objective value when the

discretisation number is n. For the same discretisation number n the computed

optimal objective value of ordinary DP and of FJ-DP were always the same. For

the FJ-DP it is crucial to quickly find all xi E Di satisfying

df,
—(xi) ii 	 (2.42)
dx

for any given ji, (p depends on i, A0 , A 1 , A2). In this example equation (2.42)

can be solved analytically with 0(1) work since the functions fi are made of

logarithmic functions. If (2.42) had to be solved numerically it would require at

most O(logn) work since binary bisection could be used. (By investigating fi
before doing the DP recursion, in practice the numerical solution of (2.42) can

still be done with 0(1) work.) For the results shown in Table 2.3 (2.42) was

solved analytically.

The complexities of ordinary DP and FJ-DP on this problem are as follows:

there are 0(n2) states in each stage. Ordinary DP checks 0(n) actions from each

state when going from stage i - 1 to stage i. There are r stages. Hence the

complexity of ordinary DP is expected to be 0(m 3). For FJ-DP the analysis is

trickier. Note that in stage 1 only 0(n) states are actually defined with value

function not equal to —oo because the action space is one-dimensional and is

mapped into the state space of stage 1. The action elimination can only eliminate

actions when B(q) has finitely many elements (A 0 , A). By looking at (2.6) one

can see that B, (q) always has infinitely many elements because (A 0 , A) is in B i (q)

if (A 0 , A) satisfies one equation, but A E JR2 . For i > 2 it can be expected

that B2 (q) is finite for most states since then (A 0 , A) E B2 (q) if (A0 , A) satisfies i

equations, %'. e. (A 0 , A) satisfies a number of equations which is at least as big as

the dimension of A. Note that since A 0 is restricted to 10, 11 only the dimension

of A is important to determine how many equations are necessary so that the set

of (A 0 , A) satisfying the equations is finite. When going from stage 1 to stage 2

Z.]

FJ-DP checks 0(n) actions from each of 0(n) states. Therefore the transition

from stage 1 to stage 2 takes 0(n2) operations. When going from stage i - 1 to

stage i for i > 3 FJ-DP checks 0(1) actions from most of the 0(n2) states in

stage i - 1 and checks 0(n) actions from some of the states in stage i - 1. It is

reasonable to assume that "some of the states" in the last sentence is of order

0(n), i.e. one order of magnitude less than the total number of states in stage

i - 1. Therefore, the transition to the next stage can be expected to be 0(n2).

There are r - 1 transitions of stages to be done. Hence the total complexity of

FJ-DP on this problem is expected to be 0(m 2). The computational results of

Table 2.3 support this estimate.

2.8 Conclusions

An action elimination procedure for deterministic dynamic programming prob-

lems based on first order optimality conditions has been presented in this chapter.

The class of problems considered were of the form (2.1),(2.2) with some or all

equality constraints in (2.2) possibly being inequality constraints instead. The

efficiency of the action elimination depends on the interior of the domain Di be-

ing large in comparison to the boundary DD. Another condition for the action

elimination to be efficient is that there is a quick method to identify those x i e Di
which satisfy (2.10) for any given)).

Section 2.2 presented the theoretical basis for the action elimination based

on the FJ conditions. Then section 2.3 showed how to practically implement

the action elimination when going from stage i - 1 to stage i in a DP recursion.

Section 2.4 showed that it is not necessary that the functions in (2.1),(2.2) are

differentiable everywhere in order to apply FJ action elimination. This is impor-

tant because this extension increases considerably the applicability of FJ action

elimination.

Section 2.5 discussed how to handle inequality constraints in an efficient way.

Sections 2.6 and 2.7 showed details of implementations of example problems. The

computational results support the claim that FJ action elimination reduces the

computation time by an order of magnitude.

39

Chapter 3

Discretisation issues

3.1 Variable grid FJ-DP method

In this section a variable grid discretisation for FJ-DP will be presented. It will be

illustrated by applying it to solve problem (2.37). The discretisation step length

for x i E Di is q and for the argument of the value function F2 it is 8. These

discretisation step lengths are given by

	

It
= _ 	and 8j

di
	 mm (>i 	dh, c)

	

n 	 n

where n is the discretisation number. The motivation for this is to have about n

discretisation points for x 2 and for the argument of the value function F2 in the

relevant region of these objects. This idea is taken from interpolation methods.

As will be seen at the end this discretisation for the FJ-DP achieves a much better

result Fr (Ti) than the discretisation used in Algorithm 2.6.2, particularly when n

is small. There are subtle differences between the definitions of states, actions,

value function below and those of Definition 2.6.1. The main differences are that

the state space is subdivided into a finite number of subintervals rather than a

finite number of discretisation points being picked from the state space, secondly,

the discretisation length 8 varies with the stages.

Definition 3.1.1

(j, i) is the state considering the first i functions fh only,

(i - 1)6i < E ih=l Xh <— 1'6i and each Xh e Dh for 1 < h < i.

F 1 (j) =maximal value of E'h=lfh(xh) where x e JR belongs to state (j, i).

(j) =computed approximation to F2 (j).

A1 (j) =computed real value that x 2 takes, when x e]R and x belongs to state

(j,i) and F=ifh(xh) =F2 (j)

40

Pi(j) =h=1 	 where x E JRt is the computed vector which belongs to state

(j, i) and for which E ih= l fh(Xh) = 	(j).

Some remarks on these definitions: (j, i) can be thought of as an infinite set of

vectors x E 1R. F2 (j) is the solution of a maximization problem with infinite

search space. F(j) is approximated by i (j). A(j) is a real valued action. By

definition p2 (j) satisfies:

U — Wi <p1 (j) <jc5.

p2 (j) is introduced for the correct assignment of vectors of the form (x, x+) to

states when x E JRt is the computed vector which belongs to state (j, i) and for

which f i (x) =
The algorithm below is based on Algorithm 2.6.2, but it uses the variable grid.

Algorithm 3.1.2

Choose n e XV

d1 	min(di ,)
= i

Ti 	 Ti

S1 := { all special points of fi in [0, d1]} = { 0, c 1 , d1 }

Q:={ [][1 	:Si}
6 1 	6 1

forj:=Oton do

f1(j1)

A1 (j) := j

Pi U) :=j€

if j Q then A(j, 1) :=
dx

else)(j, 1) := undefined

end do j

i:=2

for j := 0 to n set 	(j) := -00

Si:= { all special points of f, in [0, d]} = {0, Cj, d}

min(, d,) 	:=
di

Q:=],[1 	:yES1
Li 	Ei)

for j E 10, 1, ..., n} for which F_1 (j) > — oo do

if)(j, i - 1) is defined then

41

dfi
J := { 	:0< x <di , 	(x) = A(j,i - i)}

dx
for all xEJUS1 do

k 	
1 p 1 (j) + x

Ji
if k < n and (k) <_i(j) ± f(x) then

i-i(j) + f(x)

A(k) := a;

Pi(k) :=p_i (j)+x

\(k, i) := \(j, j - 1)

end if

end do a;

else (if)(j, j - 1) is not defined)

fort :=O to n do

k 	r-'()
+

ji
if k < n and Pi (k) <-i(j) + f(te1) then

'i-i(j) + f2 (te)

A(k) := t€

Pi(k) := pi-, (j) + t€

if t 0 Q then

)(k, i) :=
dx

else (if t e Q)

i\(k,i) := undefined

end if

end if

end do t

end if

end do j

if i < r increase i by one and return to 3)

ifFr (fl)>OOdO

S := n

:= pr (n)

for i:= r down to 1 d

x :=A(s)

42

Pnew := Pold - A i (s)

[p
8i- 1

end do i

end if

stop

As in Algorithm A.0.1, if the discretisation number n is sufficiently large and if

problem (2.37) were infeasible then the algorithm would return Fr (n) = - 00.

The result x" does not satisfy the equality constraint exactly but contains a

discretisation error with the following bound:

q r <zq 	 (3.1)

The reason for using the variable grid is to achieve good results Fr (n) for relatively

small discretisation numbers n. However, smaller n means that 6, is larger and

hence the above bound implies that the violation of the equality constraint by x"

can be larger. This suggests that it is a good idea to do a local optimization with

x as starting point after the DP when n is small.

3.1.1 Computational results

For the discretisation numbers 20,40,60,80,100,200,500 Algorithm 3.1.2 was run.

Equations of the form (2.39) were solved analytically. The results are given

in Table 3.1. Comparing the results of Table 3.1 with those of Table 2.2 it is

Fr(fl) j pr(fl) (=x) I run time (secs)

20 393.57 986.93 0.03
40 433.93 985.22 0.03
60 450.30 999.56 0.05
80 451.80 994.76 0.07

100 453.37 995.35 0.11
200 456.77 998.59 0.24
500 457.08 999.85 0.59

1000 457.06 999.16 1.39
2000 457.24 999.87 2.58

10000 460.03 999.98 14.27

Table 3.1: Results of FJ-DP with variable grid

clear that the variable grid FJ-DP method gives much better results for small

discretisation numbers n than does the fixed grid FJ-DP method of section 2.6.

43

Secondly, for the same discretisation number n the run time of the variable grid

FJ-DP is roughly twice the run time of the fixed grid FJ-DP method. As can

be seen from the table the computed optimal vector x violates the constraint

= 1000. The constraint violation satisfies (3.1) where Jr is always equal

to=.

For the discretisation numbers 20, 30, 40.....1000 (always increasing by ten)

Algorithm 3.1.2 with a local optimization added at the end with x as starting

point was run. The results are shown in Table 3.2. For those discretisation

numbers of the form n = 10k with k e IV and 2 < k < 100 for which the result

is not explicitly shown in this table the computed optimal objective value was

always greater than 459.1. The optimal objective value of problem (2.37) is 460.12

(rounded to 2 decimals). Surprisingly, the discretisation numbers 150,430,440

and 970 worked considerably worse than other discretisation numbers of similar

magnitude. The reason for the bad performance of these discretisation numbers

is not that they are too small but that in the DP process some optimal actions

are eliminated. The next example will deal with this issue.

n I optimal objective value

20 401.72
30 428.49
40 440.28
50 454.58
60 457.26
70 456.75
80 456.20
90 456.11

100 457.10
110 456.22

n I optimal objective value

120 459.12
130 460.12
140 459.21
150 457.10

430 457.45
440 456.12

970 456.12

Table 3.2: Results of FJ-DP with variable grid and local optimization added

3.1.2 Problems with the basic variable grid FJ-DP method

In this section a small example is used to illustrate the type of problem with

Algorithm 3.1.2 which led to the bad performance of the discretisation numbers

150,430,440 and 970. At the heart of the problem is that optimal actions are

eliminated which can happen if for some state (j, i) the dual multiplier)(j, i)

is defined when its value is actually not acceptable as a shadow price for the

value function F. This often happens in a stage i when Ei << 8. Consider the

problem:

	

maximize 	f(x i ,x 2 ,x3) := fl(xi) + f2 (x 2) + f3 (x 3)

	

subject to 	x 1 + x2 + x3 = 6, 	 (3.2)

C [0,3],x2 E [0,3],x3 E [0,3]

where the functions fl, f2, f3 are given by

fo 	ifO<x<1,
fix)

= 	0.9+0.lx if 1<x<3

fo if0<x<2,
f2 (X) =
	if2<x<3

f3 (X) = \/x+0.1

By sketching these functions and by inspection it can be seen that the optimal

point i of this problem has components = 1, i2 = 2, x3 = 3 which gives

3.76 as objective value (to two decimals rounded). Let a variable grid algorithm

similar to Algorithm 3.1.2 be applied to this problem and let the discretisation

number be ri = 3. The values for q, 6 i will be

€3 1

53 =2

Step 1 (the initialisation step) determines p1 (j), A 1 (3), p1 (J) and)(j, 1) for

j = 0,1,2,3 as follows:

state (j,1) 1i(i) A1(j) I P1(3))(j,1)

(0,1) 0 0 0 undefined
(1,1) 1 1 1 undefined
(2,1) 1.1 2 2 0.1
(3,1) 1.2 3 3 undefined

Then step 3 calculates F2 (1), A 2 (j), P2 (j) and .A(j, 2) for j = 0, 1, 2, 3 as:

state (j,2) 1 F2 (j) A 2 (j) I P2(3))(j,2)

(0,2) 0 0 0 undefined
(1,2) 1.1 0 2 0.1
(2,2) 2.1 2 4 0.1
(3,2) 2.2 2 5 undefined

And for the states of stage 3 it calculates:

state (j,3) 1 F3 (A 1 A3 (J) I P3 (1) \(j,3)

(0,3) 0.32 0 0 undefined
(1,3) 1.45 2 2 0.35
(2,3) 2.42 0 4 0.1
(3,3) 3.25 1 6 0.35

From the actions A(j) and values of pi(j) step 5 calculates the optimal allocation

vector x as

= (3,2,1)

which gives 3.25 (to two decimals) as objective value. The calculated approxi-

mation to the optimal point x is quite far away from the optimal point (1,2,3).

Let's try to find out why the algorithm failed to find the point (1,2,3) or why it

didn't find a point which is closer to the optimal point.

Suppose the algorithm had found the point (1,2,3). The optimal path of point

(1,2,3) would have to pass through the states (1,1), (2,2) and (3,3). For these

states
Pi

 A i (j), pi (A and A(j,i) should be:

state (j,i) I Pi(i) I A i (A I pi (j) I)(j,i)
1 undefined

(2,2) 2 2 3 undefined
(3,3) 3.76 3 6 undefined

Looking back at the previous tables the following is observed: For state (1,1) the

algorithm calculated i(j), A i (j), pi (j) and A(j, i) as desired but for states (2,2)

and (3,3) it did not. Both vectors (x 1 , x2) = (1, 2) and (x 1 , x2) = (2, 2) belong

to state (2,2), both these vectors were checked in the DP process and the second

vector has a slightly higher resulting objective value and hence defines F2(2),

A2 (2), p2(2) and)(2, 2). Departing from state (2,2) all actions were eliminated

except x 3 = 0 and x3 = 3 because)¼(2, 2) = 0.1 and the function f3 has no

discontinuous points and no point in the interval (0,3) with gradient 0.1. The

action x 3 = 3 from state (2,2) would lead to state (4,3) which is outside the

considered range. If the algorithm had left)(2, 2) undefined instead of setting

A(2, 2) = 0.1 then from state (2,2) the actions x 3 = 0, x3 = 1, x3 = 2 and x3 = 3

would have been checked and the algorithm would have found the point (2,2,2)

as result which is closer to the optimal point (1,2,3) than (3,2,1) is. The point

(2,2,2) has objective value 3.55. Observe that A(2,2) = 0.1 is not acceptable as

shadow price since

F2 (1) = 1.1 ~6 F2 (2) +)(2, 2)(p2(i) - P2(2)) = 1.9

This is the case because the second components of the two vectors corresponding

to F2(1) and to F2 (2) lie on different sides of the discontinuous point x 2 = 2.

The variable grid FJ-DP algorithm can overcome this problem in the following

way: Lagrange multipliers also have an interpretation as shadow prices. One can

impose that A(j, i), when defined, must be acceptable as shadow price.

Property 3.1.3 When in Algorithm 3.1.2 A(]',%') is defined then

Fj (k) > -00

IF(k) - F(j) -)(j,i) (pi (k) -(i))I 	'IA(j,i) (pi (k) _pj(j))

must hold fork = j - 1 if j > 0 and fork = j + 1 if j < n. 'y > 0 is a fixed

tolerance.

Usually a value for 'y between one and two is suitable. Algorithm 3.1.2 can be

improved by imposing Property 3.1.3 with, for example, = 1.5 in the following

way:

Algorithm 3.1.4

same as step 1 of Algorithm 3.1.2

same as step 2 of Algorithm 3.1.2

same as step 3 of Algorithm 3.1.2

for j:=Otondo

if \(j, i) is defined and Property 3.1.3 does not hold then

A(j, i) := undefined

end if

end do j

same as step 4 of Algorithm 3.1.2

same as step 5 of Algorithm 3.1.2

3.1.3 DP with variable grid but no action elimination

A DP method with variable grid but no FJ action elimination does not work so

well as with action elimination. This is because in some sense ordinary DP is too

greedy. In general it is good to have Pi (j),pj(j) associated with state (j, i) such
that these two values together make state (j, i) an attractive state to depart

from and take some action when doing the next DP-recursion from state i to
stage i + 1. When doing the DP calculation of going from stage i - 1 to stage i

it is not good to maximize j(j) irrespective of optimality conditions. Ordinary

DP would try to make F(j) as large as possible even on the expense that x does

not satisfy the FJ conditions where x E JR2 is the computed vector belonging to

state (j,i) with Eih. 1 fh(xh) = j(j). Ordinary DP would tend to not 'waste

resources' i.e. to make p(j), in the case of problem (2.37), close to iJi in the

attempt to increase F2 (j). By doing so the computed optimal vector x e JR2

for the subproblem corresponding to state (j, i) would violate the FJ optimality

conditions. Furthermore, this move away from satisfying the FJ conditions can

be quite big since Ei and 6i have different scales in general. But once the FJ

property is destroyed for a state in stage i it is destroyed for all states in later

stages whose optimal path passes through this particular state in stage i. Such

local moves away from satisfying the FJ conditions would, of course, add up. At

the end, with ordinary DP and a variable grid, it is likely that the computed

optimal distribution is far away from satisfying the FJ optimality conditions.

3.1.4 A further improvement

In this subsection a further improvement for Algorithm 3.1.2 is discussed. Algo-

rithm 3.1.2 solves problem (2.37), i.e. the objects below refer to problem (2.37).

Suppose x 1 , x2 e 1?2 (for some i),

F1 = > fh(4),

F2 = 	fh(X), 	12

and)i and)2 are the dual variables corresponding to x', x 2 respectively. Fur-

thermore, x 1 , x 2 both belong to the same state (j, i), 1. e. 131,132 satisfy

	

(j-1)ö <j3i 	i6

	

(j-1)ö, <12 	36j

If x 1 and x 2 are possible vectors to determine 	(j), p2 (j), ,\(j, i) which one shall

be preferred? Algorithm 3.1.2 prefers x 1 to x 2 if

(3.3)

If F1 is just a very little bigger than F2 but A, is much less than)2 and P1 > 13
then in fact F2 should be preferred to F1 since it makes state (j, i) a better starting

state for the determination process of states of stage i + 1. This is because the

shadow price A is higher for x 2 . A better rule which also uses the information

contained in A 1 , A2 , j3, P2 is the following:

prefer x' to x2 i f

	

Pi > F2+A(p1 -P2) 	 (3.4)

where 	
A

' if P1 <P2
'2 if1>2

And if A is not defined then prefer x 1 to x2 if F1 > A. Decision rule (3.4)

performs better than rule (3.3).

3.1.5 Computational results

An algorithm like Algorithm 3.1.4 which uses decision rule (3.4) instead of (3.3)

was run with a local optimization added at the end. The results are shown in

Table 3.3. Discretisation numbers of the form n = 10k with k E .KV, 22 < k < 100

(which are not shown in the table) always had as result an objective value greater

than 459.5 and moreover only for six such discretisation numbers (all six less than

500) was the result not equal to 460.12, which is the optimum of problem (2.37).

i. e. This algorithm seems to be robust with respect to increasing discretisation

numbers.

n optimal objective value

20 438.06
30 453.60
40 451.07
50 455.65
60 453.41
70 457.10
80 459.71
90 459.22

100 459.14
110 458.81

n optimal objective value

120 459.14
130 459.22
140 459.22
150 459.22
160 459.12
170 459.14
180 460.12
190 459.63
200 459.14
210 460.12

Table 3.3: Results of Algorithm 3.1.4 with rule (3.4) and local optimization added

3.2 FJ action elimination applied to interpola-
tion methods

In this section the FJ action elimination is discussed when it is applied to an

interpolation method. The problem considered in this section is problem (2.1),

(2.2) with the additional constraint (2.19). Suppose this problem is solved with

a DP interpolation method which uses a discretisation of the state space and

action space like the one of section 4.1 (described there in the first paragraph)

and the discretisation is regular in each component of q in the state space (q, i)

of stage i. The vector 6, which is a rn-dimensional vector of positive real values,

characterises the grid of discretisation points in the state space of stage i. In

other words: The discrete state (ii, 2, ..., im , i) corresponds to the real state (q, i)

where the k-th component of q is

qk = Jk8i,k.

An interpolation method approximates F(q) only for discretised states (q, i). Let

j(q) be the calculated approximation to F(q) for discretised states (q, i). Also

actions A(q) are calculated only for discretised states (q, i). When going from

stage i - 1 to stage i the following recursion is used:

j(q) = max{ j1 (q - w(x)) + f(x) : xi is a discretised action of Di 1 (3.5)
Xi

Typical for interpolation methods is that when x i is a discretised action of D

then (q—wj(xj), i — i) is not a discretised state. In order to use the recursion (3.5)

an interpolation method uses an interpolation function (q) which interpolates

j(q) at discretised states (q, i) and which is continuous. Z'. e. for discretised states

(q,i), Pi (q) is calculated by

j(q) = rnax{1_ 1 (q - w(x)) + f(x) : x i is a discretised action of Di 1 (3.6)
Xi

Having calculated j(q) for all discretised states of stage i the interpolation func-

tion Pi (q) is established, which completes the step of going from stage i - 1 to

stage i. In the sequel it is discussed how FJ action elimination can be applied to

interpolation methods.

The maximization in the RHS of (3.6), ignoring for a moment that x i must

be a discretised action, can be reformulated as the following problem:

maximize 	1 _1()+f(x) 	 (3.7)

subject to 	4 + w(x) = q 	 (3.8)

In this problem 4 e JRtm and x2 e JRnui are the free variables. The FJ conditions

to this problem are

=), 	 (3.9)

A0(Vf(x))T = ATVw(x) 	 (3.10)

= q, 	 (3.11)

0, 	 (3.12)

AO = 0 or 1 	 (3.13)

50

where VF i (t) is a rn-dimensional gradient column vector, Vf(x 1) is a n-

dimensional gradient column vector and Vw(x) is the rn x ni Jacobian matrix of

wi at x. Notice that if A O = 0 then (3.9) implies) = 0 which contradicts (3.12).

Hence the conditions (3.9)-(3.13) simplify to

=)., 	 (3.14)

(Vf 2 (x))T = ATVw(x) 	 (3.15)

= q, 	 (3.16)

Next a procedure of an interpolation DP method with FJ action elimination is

given for going from stage i - 1 to stage i for i > 2. After that this procedure will

be explained. For simplicity let's assume that every subproblem corresponding to

a state (q,i) is feasible and that for all discretised states T(j 1 ,j2 , ...,jm) > —oo

after the algorithm has completed the step of going from stage i - 1 to stage i.

for all (jl,j2, ...,j) E Xm do F(... ,j,) := - 00

Si := aDj U {x : x E D2 , w i or f2 is not differentiable at x}

if Si has an infinite number of elements then

let 3i be a finite representative set of elements in S i

else

:= S

end if

for all (jl,j2,...,jrn) E Xmdo

G:= {q: q E Rm , 	- 3ki-1,k I < 8i-1k for 1 <k <rn}
2 	- -

define A E JRtm such that for 1 < k < rn 	 (q) Vqe C
aqk

define) E JRtm such that for 1 < k 	
-

rn: 	 (q) Vq E G
Dqk

J := {x, : x, e DZ \SZ , x i is a discretised action of D 2 , EL\ with

A < .\ <) such that) and x i satisfy (3.15)1

for all x e S U J do
k qk + W,(X)

Q:={q:qEG, 	 EX for1km}
6i,k

for all q E Q do

for 1 <k <m
(X)

let (t 1 , t2, ..., tm) e 	such that tk
= qk + W

6i,k

if F(t1 ,t2 , ...,tm) < P-i (q) + f(x) then

Fj (t 1 , t2 , ..., tm) := 	_1(q) + f(x)

A i (t i , t2, ..., t,) := x

end if

end do

end do

end do

Discretised states (q, i) are also denoted by (jl,j2, ...,j, i) where each A E 7' for

1 < k < m and the relationship between (q,i) and (ji ,j2 , ...,jm ,) is qk= 3käi,k

for 1 < k < m. The procedure contains both objects (q, i) and (ii, 2, ..., jm) i).

The procedure tries to calculate F(j1,j2, ...,jm) for every discretised state of

stage i. The procedure uses the labelling method (or reaching). It involves not

only values of the value function F_1 or F_1 at discretised states of stage i - I.

Therefore, in some sense, the outer loop in the labelling method does not cycle

through discretised states of stage i - 1 but through areas around discretised

states of stage i - 1. These areas around discretised states of stage i - 1 cover

the relevant state space of stage i - 1. In the procedure this is seen in lines 8

and 9. Line 8 is a loop through discretised states of stage i - 1 but line 9 defines

a box G of states of stage i - 1 around the discretised states of the embracing

loop. Lines 10 and 11 define lower and upper bounds (A,) for the components of

VF- 1 (q) on G. Of course, the tighter the bounds are, the greater the potential

for action elimination. J is defined as the set of those discretised actions x i for

which (3.15) can hold with a A satisfying A < A < A. Discretised actions x i at

which fi and w 2 are differentiable and which are not in J can not be optimal

actions to be taken from a state (q, 1 - 1) with q E G as the FJ conditions can not

be fulfilled. Hence only x i E J U -9i need to be considered as actions from states

(q, i - 1) with q e C. Q (line 15) is the set of those q E C such that taking the

discretised action x from the embracing loop leads to a discretised state of stage

i. Usually, interpolation methods have increasing discretisation step lengths for

the state space for increasing stages. i.e. usually 6. Hence typically Q
has no element or one element. This means that the loop (for all q e Q do ...) is

a small loop.

When (3.6) is reformulated by (3.7), (3.8) it is ignored that x i is constrained

to be a discretised action of D. Therefore the optimality conditions (3.14)-(3.16)

are arrived at under the assumption that x i is a free variable, not constrained

to be a discretised action. This means that the algorithm only works well if the

density of discretisation points in the action space Di is large enough, in some

sense, in comparison to the density of discretisation points in the state space of

stage i - 1.

52

3.3 Conclusions

This chapter discussed two effective discretisation schemes for allocation prob-

lems of the form (2.1),(2.2) when r is large and showed how to apply FJ action

elimination with these schemes.

For large problems with many stages variable grid and interpolation methods

are usually the best discretisation schemes. However, interpolation methods have

the problem that actions must be interpolated when working backwards the op-

timal path of states in order to get the solution vector i. This can cause trouble

when the problem is highly non-linear or discontinuous at some points. Variable

grid methods do not have this problem. Variable grid methods and interpolation

methods generally calculate an optimal vector i which does not satisfy equality

constraints exactly since a discretisation error is incurred. There is also this prob-

lem with inequality constraints if they should hold as equalities at the solution.

To overcome this problem a local optimization procedure can be added at the end

of a variable grid or an interpolation method. It is problem dependent whether

the variable grid method or the interpolation method is better.

53

Chapter 4

Allocation problems with multi
dimensional state and action

aMMOM

In this section details of the FJ action elimination will be discussed for problems of

the form (2.1) and (2.2) with m> 2 i.e. with more than one constraints. Unlike in

sections 2.6 and 3.1, discretised implementations will not be given in full. So far,

the objects x, wi were always vectors with dimension n, m respectively and it was

not necessary to explicitly refer to single components of x, w. In this section this

is necessary and it will be done using a second subscript. For example, the vector

x2 has components The components of wi are denoted in similar

fashion. Since rn > 2 in this section the vector 4 has components 2, 42, q.

For completeness and easier reference problem (2.1) and (2.2) together with the

exact conditions on the variables and functions is stated:

max 	 fh(xh) 	 (4.1)

subject to 	Wh(Xh) = 	, 	 (4.2)

xhEDh 	Vh:1<h<r 	 (4.3)

where Dh C Jfh, fh : 'R' - 11?, Wh : 1R]R and fh, Wh are piecewise

differentiable for h = 1, ..., r, and 4 E JRtm . The following definitions of objects

will make it clear how a practical implementation can be derived from Algorithms

A.0.1 or 3.1.2 through some extensions and modifications. These definitions are

extensions of Definition 3.1.1. In Definition 3.1.1 (and Algorithm 3.1.2) the state

space is one dimensional and hence the discretisation step length of the state

space in the i—tb stage 6i is a positive real number. Now the state space is

rn—dimensional and therefore 6 i is a rn—dimensional vector of positive real num-

bers. As with xi and w, the components of Ji are indicated using a second

54

subscript.

Definition 4.0.1

(j 1 ,j 2 , 	i) is the state considering x 1 , z 2 , ...,Xi such that

(jk - 1)S,k < E ih= l wh,k(Xh) 	for all k: 1 < k < m

and each Xh E Dh for 1 < h <i. For every k, j E X.

F(j1,j2, ...,jm) =maximal value of 	fh(xh)

where (XI, X2, ...,x 2) belongs to state (jl,J2, ...,jm,i).

i(jl,j2, ... ,jm) =computed approximation to F(il,i2, ••.,im).

A1 (j i) j 2 , ... ,j) =computed value that x i takes, when (X1, X2, ...
)
x)

belongs to state (j1,j2, ... ,jm,i)

and 	h=lfh(xh) = i(jl,j2) ... ,jrn).

. A(j 1 ,j2 , ...,jm) e 1R.

(ji,j2, ...)jm) =set of elements (A 0 , A) such that A o e {O, 1},

A E JRtm (A 0 A) =A 0, if fh, 'wh are differentiable at Xh and h < i

then Ao(Vfh(xh))T = A T Vwh(xh)} where (x 1 , x2
, 11 11

x)

are the computed vectors which together belong to state

(j'J2 ..., Im, i) and for which E ih = 1 fh(xh) = ijl,32, ..., jm).

pi(j1,j2 7 .",jm) = 	w,(x,) where (x 1 , x2 , ..., x) are the computed

vectors which together belong to state (ii, j2, ..., m) i)

and for which >:h-1 fh(xh) = Fi (j 1) j2 , •••)•

Some remarks on these definitions: (ii, 2, ..., m, i) can be thought of as an in-

finite set of vectors. F(j1 , j2, ..., j) is the solution of a maximization problem

with infinite search space. F(j1 ,j2 , ...,jm) is approximated by i(jl,j2, ...,jm).

A(j 1 ,j2 , ...,jm) is a real valued action vector. B i (ji,j2, ...,jm) is the set of dual

variables (A 0 , A) which together with the computed optimal solution x 1 , x 2 , ..., Xi

of the subproblem corresponding to state (j 1 ,32 , .., j, i) satisfy the FJ condi-

tions. By definition Pi(jl,j2, ...,jm) satisfies:

(jk - 1) ,k <Pi,k(31,32, ...,im) 	Jk8i,k for k = 1,2,..., m

pi (ii, 2, ..., 3m) is introduced for the correct assignment of (x 1 , x2 , ..., xj , xi)

to states when (x 1 , x21 ..., x) are the computed vectors which belong to state

(jl,j2, ...,j, i) and for which > fh(xh) = ..., IM) .

55

4.1 Calculating the action set when m 2 = m

Suppose that for problem (4.1)-(4.3) ni = m for some i < r , a FJ-DP algorithm

is applied to the problem and the values for F, A, B, Pt have been already cal-

culated for all states (j i ,j2 , ... ,j,t) with t < i — i 1. e. the FJ-DP algorithm has

already advanced to stage i - 1. Suppose that the discretisation of the state space

used is such that in each stage jj takes Zk different values for 1 < k < m and that

xi E Di is discretised such that the component x,5 takes d5 different values for

1 < s < n, i.e. D has at most J.J d8 discretisation points. When FJ-DP goes

from stage i - 1 to stage i then it has to calculate the actions which have to be

checked from state (i', ...,j, i—i). This means for to, A) E z-i(ji, 32, ..., irn)

it has to calculate all x i e Di satisfying

A 2 	() + ... + A
t9Wi,m

Am 	(xi) 	(4.4)
axi"

A0 	(xi) = A 1 	(x2) +

for all s:1<s<ri

The quick solution of the above ni simultaneous equations in x 2 depends a lot on

problem specific information available. If no additional information is available

and the solution has to be found numerically the question is whether FJ-DP is

any faster than ordinary DP.

Suppose the solutions to the above equations have to be found numerically.

Let's discuss how this can be done such that FJ-DP is faster than ordinary DP.

For this it is assumed that the functions f, w, are piecewise continuously differen-

tiable, not just piecewise differentiable. One good method would be the following:

Before doing the DP step of going from stage i - 1 to stage i run once through

the discretised actions x i to get additional information. The two cases A 0 = 0

and A0 = 1 have to be looked at separately. Let's first do the case A 0 = 0. Look

at

_______ 	 l9Wi,2 	 DWi, m
0 = A 1 	(x2)+ A 2 	(xi) + ... + Am 	(xi) for s = 1, 2, ...,n 	(4.5)

for each discretisation point xi E Di and decide whether these ri (= rn) linear

equations in A 1 , A2 , ..., .A m allow a solution (A 1 , A 2 , ..., Am) ~ 0 or almost allow

such a solution or do not allow such a solution. If they allow such a solution

include this point x i in a set P0 which initially is empty. If they almost allow

such a solution then use a local search method like Newton's Method to find a

close point which satisfies (4.5) for some (A 1 , A 27 ...) Am) 54 0 and include this point

in P0 . It is expected that the number of elements of P0 is at least one order of

magnitude less than the number of discretisation points x 2 E D.

56

For the case A 0 = 1 solve the following n, (= m) simultaneous linear equations

in A 1 , A 2 , ..., A,,, for every discretised action x i if possible and if there is a unique

solution.

afi (xi) =
	

(x i) + 	(x i) + ... + A, 	(xi) 	(4.6)
xi, s 	 xi,s 	 xi, s 	 xi, s
for all s : 1 < s < n,

In this way a finite number of one-dimensional search intervals of maximal length

of the form

	

It := {(a+0(b—a),c2 ,c3 ,...,c) :0<0< 1} 	 (4.7)

can be established such that a, b e JR, c1 is a discretised value of the component

xij for 2 <1 < n,, the functions f, wi are differentiable on It and A is increasing

or decreasing on It.
Ordinary DP simply checks every discretised action x i e D2 as a possibly op-

timal action to be taken from state (j 1 , j2, ..., m, - 1). This requires 0 (fl 1 dk)

operations. Assuming that B_ 1 (j 1 ,j2 , ...,jm) has only one element (A 0 , A) FJ-DP

only checks those values of x 1 C D2 satisfying (4.4) as possibly optimal actions to

be taken from state U1, j2 ...,j, i — i). Assuming that the space of points x 2 E D
where f2 or w i is not differentiable has at least one dimension less than the set D
itself, if A 0 = 1 then FJ-DP can find the points x i E D2 approximately satisfying

(4.4) and having a discretised value for the component x j , 1 where 2 < I < n2 with

expectedly 0 (log d1
11

L2 dk) operations since on the intervals It binary bisection

can be used to find a point x 2 with A 1 being equal to A 1 . The establishing of

the search intervals It causes O(fl 1 dk) amount of work. If A 0 = 0 then FJ-DP

only has to check the actions xi E P0 as possibly optimal actions to be taken

from state (ii, j2, ..., m, j - 1). Since P0 is most likely to have much fewer than

f ni
1k=1 dk points, FJ-DP does less work than ordinary DP when A 0 = 0. However,

the case A 0 = 0 is usually very rare. Hence FJ-DP is expected to take 0(fl 1 dk)

+ 0(fl 1 Zk log d1 fTk=2 dk) operations to go from stage i - 1 to stage i, Ordinary

DP takes 0(flt 1 zk fl1 dk) operations for this.

If among {d 1 , d2 , ..., dni d1 is the largest it is a good idea to establish the

search intervals it along the axis of x2 , 1 instead of x, 1 . In this way the complexity

is reduced by making better use of the binary bisection search.

When giving the complexity of FJ-DP the 'expected complexity' was given.

This is because two assumptions were necessary. Firstly that the number of states

U1, j2, im, i — 1) of stage i — i for which B_1(j1,j2, ...,jm) has more than one

element is of magnitude less than the total number of states of stage i - 1 (which

is at most HI Zk), secondly that the space of points x i e Di where fi or wi is

not differentiable has at least one dimension less than the set D2 itself.

57

4.2 Finding the action set when ni > m

Suppose that for problem (4.1)-(4.3) ni > m for some i < r, a FJ-DP algorithm is

applied to the problem and the values for F, A, B, Pt have been already calcu-

lated for all states (i', J2 i ..., j, t) with t < i - 1. Suppose that the discretisation

of the state space and action space is the same as in subsection 4.1. When FJ-DP

goes from stage i - 1 to stage i then it has to find the actions which have to be

checked from state 01, j2, ...,j, i — i). This means for (A 0 , A) e z—i(ji, 2, ... ,m)
it has to find all x 2 e Di satisfying (4.4). If this can be done analytically, good.

In the sequel it is shown how this can be done numerically such that FJ-DP is

faster than ordinary DP.

Before doing the DP step of going from stage %' - 1 to stage i run once through

the discretised actions x i to get additional information. The two cases A O = 0 and

A O = 1 have to be looked at separately. For the case A 0 = 0 look at (4.5) for each

discretisation point x i e D 2 and decide whether these n2 (> m) linear equations in

) 1, ..., A m allow a solution (A 1 , A2) ..., 5'm) 0 or almost allow such a solution

or do not allow such a solution. If they allow such a solution include this point x

in a set Po which initially is empty. If they almost allow such a solution then use

a local search method like Newton's Method to try to find a close point which

satisfies (4.5) for some (i',
") 5'tm) 54 0 and include this point in P0 .

For the case A O = 1 look at (4.6) for each discretisation point x i E Di and,

as before, decide whether these n (> m) linear equations in A1, '2, ..., A m allow

a solution or almost allow a solution or do not allow a solution. If they allow a

solution include this point x i in a set P1 which initially is empty. If they almost

allow a solution then use a local search method like Newton's Method to try to

find a close point x i which satisfies (4.6) for some A1, '2, ..., A m and include this

point in P1 .

It is expected that the number of elements of P0 and of P1 is at least one

order of magnitude less than the number of discretisation points x, e D. In-

stead of checking every discretisation point x 2 E D2 as a possibly optimal ac-

tion from state (jl,j2, - 1) only the points in Po are checked if A 0 = 0

and only the points in P1 are checked if A 0 = 1 when (A0 , A) is the only ele-

ment of B_ 1 (j 1 ,j2 jm). Hence when the action set is found numerically FJ

DP is expected to need 0(fl 1 dk) operations to establish the sets Po , P1 and

0 (fl 1 Zk Max (Po, 1 P1)) operations to calculate Tj, A, Bi,pj for all states of

stage i.

4.3 Calculating the action set when ri <m

Suppose that for problem (4.1)-(4.3) n2 <rn for some i < r , a FJ-DP algorithm

is applied to the problem and the values for F, A, B, Pt have been already cal-

culated for all states (ii,32, ..., j, t) with t < i - 1. When FJ-DP goes from stage

i - 1 to stage i then it has to calculate the actions which have to be checked

from state (jl,j2, - 1). This means for (A 0 , A) E z_1(j1,j2, ...,jm) it

has to calculate all x, E Di satisfying (4.4). A good numerical procedure to do

this has not been found for the case that no special information about the func-

tions fi and w 2 can be exploited. One problem is that when Ac = 1 then (4.6)

is a non-homogeneous set of n2 (< m) linear equation in A 1, Am which has

more variables than equations i.e. usually (4.6) allows infinitely many solutions

(A 1 , A2, ...,)'m) for every discretisation point x 2 . This makes it hard to exploit

information collected by running initially through the discretised actions x 2 E D2

in order to then use this information to speed up the calculations of actions which

have to be checked from states U1, j2, ...,Jm,'1 1).

4.4 A special case for ni <m

In the last subsection the difficulty was outlined of finding a good numerical proce-

dure for calculating the actions which have to be checked from state (ii, 2, ", 3m,

1) when FJ-DP goes from stage i - 1 to stage i, ni < rn and no special struc-

ture of the functions f2 and w 2 can be exploited. One kind of structure of the

functions f, wi will be discussed in this section. This structure allows a good

numerical procedure for calculating the actions which have to be checked from

state 01, j2) ... ,j, i - 1) when FJ-DP goes from stage i - 1 to stage i.

Suppose that f2 and wi linearly depend on k functions gj , i (xj), 9j ,2(xj),...,

gi , k (x j) and gj ,j(Xj) E JR for 1 <j < k. Let gj(xj) E JRk with components gj , i (x j),

g2,2(x 2),..., g2 ,k(1 2) and

f(x 2) = cg(x 2), 	 (4.8)

w(x) = Ag(x) 	 (4.9)

k < n+1 	 (4.10)

where c2 e IRk and A 2 is an m x k matrix. Inserting these relationships into (4.4)

yields equations of the form

ag2 	59i,2 (x i) + A3
D9
	
ôgk

axi"
(xi) 	(4.11)/ti 	

,1
(x i) = L2 	x i) + ... + [k

axis

 axi,s
for all s : 1 < s < n

where IL 1 , 	are all depending on c, A 2 and (A0 , A). When FJ-DP goes from

stage i - 1 to stage i then it has to calculate the actions which have to be checked

from state (j1,1* 2, ... ,j, i — 1). This means for 	A) E z-1(11)j21 ... ,jm) it has

to calculate all x 2 E D2 satisfying (4.4). In our case these actions can be found by

calculating all x 2 E D2 satisfying (4.11) after having computed ILk from

c, A 2 and (A O , A).

If k = n 2 + 1 the actions x 2 e D2 satisfying (4.11) for a given A 0 , A) E

i—l(j1,j2, ...,jm) can be found quickly when the functions gj,1, g2 ,,..., Yi,k are

investigated before doing the DP recursion of going from stage i - 1 to stage i.

The idea is to use the method described in section 4.1 for the finding of all x 2 E D2

satisfying (4.11). The method described in section 4.1 finds all x2 E D2 satisfying

(4.4) for a given (A 0 , A). In section 4.1 m = ri hence (4.4) consists of n2 equations,

each containing n, + 1 dual variables (namely Ao, A 1 ,..., Am) and n2 ± 1 functions

(namely

fi,

Wi,1, Wi,2,..., Wi,m). Compare this to (4.11) which also consists of n 2

equations, each containing n + 1 dual variables (namely IL1, /L2,..., Pk) and n2 + 1

functions (namely 9j,i, 9i,2,.•, 92 ,,). In section 4.1 the method described there

deals separately with the cases A 0 = 0 and A O = 1. The method for finding all

x, e D, satisfying (4.4) when A O = 0 in section 4.1 can be applied for the finding

of all x2 e D2 satisfying (4.11) when IL, = 0. The method for finding all x 2 e D2

satisfying (4.4) when A 0 = 1 in section 4.1 can be applied for the finding of all

x 2 e D2 satisfying

/L2 3g, 2 	IL3 9g, 3 	 ILk (9g 2 ,k
axi's(xi) = ----(x i) + - 	(xi) + ±

ji 	
(xi) 	(4.12)

i 's

for all s : 1 < s <ri2

when ,u $ 0. But when 	0 then x 2 satisfies (4.12) if and only if it satisfies

(4.11). Hence, when k = n, + 1 then the method of section 4.1, described there

for the finding of all x 2 E D2 satisfying (4.4) given (A 0 , A), can also be used for

the finding of all x2 E D, satisfying (4.11) given (A 0 , A).

If k < n2 + 1 then the actions x 2 E D2 .satisfying (4.11) for a given (A 0 , A)

can be obtained using the method of section 4.2, which finds the actions x 2 E D2

satisfying (4.4) for given (A 0 , A) when n2 > m. The argument for the suitability

of the method described in section 4.2 is similar to the argument of the previous

paragraph.

The example of section 2.7 has the structure described by (4.8),(4.9) which

will be explained in the sequel. In problem (2.41) fh is not used in the same way

as it is used in (4.1)-(4.3). In order to avoid confusion let's restate the problem

(2.41) renaming fh there with Sh. Let's also replace the dummy variable h by i.

So problem (2.41) has the form

r
i

maximize 	s2 (x2)
2i + 1

i=1
r. + 1

subject to 	 s(x1)
2z + 1

i=1
r

Xi

x 2 EJR, xe[0,d]

1 <i < T,

(4.13)

with si being functions JR -+ 11?, 41 E JR, 42 E JR. Now, problem (4.13) corre-

sponds to the general problem form (4.1)-(4.3) by setting

i
f(z)

= 2+iSi(xi), 	 (4.14)

/ 	s(x) '\
w(x) = I 	T

" 	xi) 	
(4.15)

(4.14),(4.15) correspond to the form (4.8),(4.9) by setting

ci 	(- 	0)'

9i (Xi)
- (Si (Xi)

- 	xi)'

- 	2i+1
(

I A, 	
i±L

- 	0 	1) .

Since here k = 2, ri2 = 1 and m = 2 we have k = n + 1. Hence the problem of

section 2.7 possesses the structure (4.8)-(4.10).

4.5 Conclusions

In FJ-DP it is very important to have a quick method to find all actions xi E

D, that satisfy (2.10) or equivalently (4.4) for any given (\o,)). The speed-up

achieved by the action elimination essentially depends on this. In this chapter it

was discussed how to numerically find the actions satisfying (4.4) such that the

action elimination results in a speed-up of DP.

For the cases ni = m and ni > m methods have been shown which solve (4.4)

fast enough to make FJ-DP faster than ordinary DP. For the case ni <rn a good

numerical way for solving (4.4) has only been found for the special situation when

the functions f2 and w, linearly depend on at most n + 1 linearly independent

functions JRfli R.

61

Chapter 5

Discrete problems

In this section discrete allocation problems will be discussed and it will be shown

how the FJ action elimination can be applied. The class of problems considered

is:

max 	 fh(xh) 	 (5.1)

subject to 	wh(xh) = 	, 	 (5.2)

Xh e Dh 	for h = 1, 2, ..., r 	 (5.3)

The FJ conditions are first order optimality conditions for differentiable functions

but the class of problems above involves discrete and therefore not differentiable

functions. The FJ action elimination can be applied by using interval arithmetic

for derivative approximations. This point needs further explanation.

The FJ conditions employ partial derivatives. Since f, wi are only defined

for discrete points x i E X'i there are only forward and backward differences.

However, the view is taken that there always exist continuous and differentiable

interpolating functions f : JR -4 JR and tT : 1R' —* JRtm such that

the value of f2 coincides with that of fi and the value of wi coincides with

that of E) i for all arguments x 2 E

the partial derivatives of fi and Cvi at x 	are bounded by the forward

and backward difference approximations with step length 1.

The requirement b) will be explained. For x i E Z 	1k(xj) (where Xj,k is

again the k-th component of vector x 2) has the forward difference approximation

of step length 1 f(x + ek) - f(x) where ek is the k-th unit vector i.e. the

vector with the k-th component equal to 1 and the other components equal to

0. Similarly the backward difference approximation is f2 (x) - - ek). For

x 2 e D, (x + ek) e D, (x - ek) e Di let

	

:= max{f(x + ek) - fi(x), f(x) - 	- ek)},

	

a := min{f2 (x + ek) - f(x), f(x) - 	- ek)},

if xi e D1 , (x + ek) E D, (z - ek) V Di let

a := f(x + ek) -

if x2 E D, (x + ek) V D, (x - ek) E D2 let

:= f(x) - 	- ek),

and if xi e D, (x + ek) 0 D, (x - ek) 0 Di let

(The definitions of id and a are achieved in the cases (x + ek) Di and (x - ek)

D, by thinking of f(x + ek) and f2(x - ek) respectively as being equal to —oc.)

does not exist in the classical meaning of partial derivatives since fi is a

discrete and hence not a differentiable function. Define

	

afi
 (x i) := [a,] 	 (5.4)

t9Xj , k

i.e. fi(x) is an interval with the boundaries being determined by the forward

and backward difference approximations to the classical partial derivative. The

requirement b) above for the partial derivative -(x) is simply:

aj 	___
(x i) e 	(x i)

IgXi,k f9Xj,k

The intervals bounding the partial derivatives !'(x) can be found in similar

but not identical way. Let

max {w,3(Xi + ek) - 	 - 	- ek)},

min {w, 3 (Xi + ek) - w 2 , (x), w , (x) - w,3 (Xi - ek)},

63

(Note that this definition for Zi and a is irrespective of x i e Di or xi 0 D, unlike

in the previous definition leading to'k(xj).) Define

owij 	 -

(x 2) := [g, a].
uXj,k

X,k(j)
for x e 	be the bounding interval for 	'-(x) where 	is, again, the

j-th component of vector ti. In the sequel it is described how a discrete version

of FJ action elimination is applied to problem (5.1)-(5.3). The description will

be theoretical (like in sections 2.1-2.5) in the sense that the state space will be

continuous. (In sections 2.1-2.5 the state space and action space were continuous,

but problem (5.1)-(5.3) imposes a discrete action set.)

For DP applied to problem (5.1)-(5.3) the subproblem corresponding to state

(q,i) is

F(q) 	max E fh(xh) 	 (5.5)
X1,X2,...,Xj

	

subject to E Wh(Xh) = q, 	 (5.6)

	

xhEDh for h=1,2,...,i 	 (5.7)

where q E JRtm and all other quantities are as in (5.1)-(5.3). If this subproblem is

infeasible then define F(q) := —oo. The DP recursion is

F(q) = max {f 2 (x) + F2_i(q -
XiEDi

(5.8)

For the discrete problem the meaning of B(q, xi), where x = (x, x, ...) Xi

is different from that for continuous problems which was described in section 2.2.

Let Vfh(xh) be the nh-dimensional column vector of intervals where the k-th

component isfk(xh). Let Vwh(xh) be the m X h matrix of intervals where the

	

k)-th entry is 	-'(xh). The set B(q, x) is the 	set of (Ao,)) where Ao = 0 or

1 and) E Rtm which satisfy

	

\o (Vfh (xh)) T fl AVw,(x,) E 0, 	for h = 1, ..., i, 	(5.9)

	

)7, Wh(Xh) = q, 	 (5.10)

	

A0 = 0 	or A0 = 1, 	 (5.11)

	

N, A) 7~ 0 	 (5.12)

In (5.9) the intersection sign applies to the k-th component of the vector left of it

and to the k-th component of the vector right of it for every k : 1 < k < nh. The

not-equality sign in (5.9) applies to every component of the LHS nh-dimensional

vector of intervals. More explicitly, (5.9) says that

A0 _afh 	

(j=1aw)

00 	 (5.13)
aXh , k

for every l<h<i, 1<k<nh

where the expression in big brackets and the expression)ok(xh) are evaluated

according to the rules of interval arithmetic. Let x2_1 be like x i except that the

last component is missing, i.e. x? 11 = (xr,x ... xi 1). For i > 2 the set of

properties in (5.9)-(5.12) defining the set B_ 1 (q - w(x), x 1) is fully contained

in the set of properties defining B(q, xi). Furthermore the properties which

are amongst those defining B2 (q, x 2) but not amongst those defining B_ 1 (q -

are
A o (Vf(x))T 0 	 (5.14)

Let N(x 2) be the set of all (A 0 , A) which satisfy (5.14). It follows that for i > 2

B(q, x) = B_ 1 (q - w(x), x1) fl N(x 2).

The DP action elimination algorithm employs a function of states B(q) defined

by

B2 (q) = B(q, i,),

where x, is the optimal vector for subproblem (q, i) that the algorithm has com-

puted at the time of defining B2 (q). The essence of the action elimination is to

replace (5.8) with the recursion below.

F2 (q) = max{f(x) + F_1 (q - w(x)) : (A 0 , A) e B_ 1 (q - w(x))
XiEDi

such that (A0 , A), x 2 satisfy (5.14)} 	(5.15)

The argument for this action elimination for discrete problems of the form (5.1)-

(5.3) is the following: suppose that fh and 'thh are defined for xh e]fflh and

are interpolating functions for fh and 'Wh respectively. Further suppose that the

problem

max E fh(xh)

subject to 	t(Xh) =

were solved by using DP with (continuous) FJ action elimination (as described in

sections 2.1-2.5) but the action space has been discretised and the set of discretised

65

actions Xh corresponds to Dh. The solution of this discretised DP problem is the

same as the solution of (5.1)-(5.3) since fh, Wh are the interpolating functions of

fh and Wh respectively. Applying the FJ conditions (2.6)- (2.9) in state (q, i) for

the functions fh, Wh together with the uncertainty about the partial derivatives

Of fh, Wh expressed by

(xh) E
09A

afh (Xh) for all 1 <k < nh
OXh,k 	&Xh,k

Wh , 	______
and 	

a 	
(Xh) E 	(Xh) for all 1 < k <nh, 1 <j <m

yields the conditions (5.9)- (5.12). These conditions in turn suggest the replace-

ment of (5.8) with (5.15). In order to implement the recursion (5.15) for going

from stage i - 1 to stage i (for i > 2) Procedure 2.3.1 of section 2.3 is used with

the third command (lines 3 and 4) being replaced with

for all xi E Di for which 3 (A o , A) e B_ 1 (q)

such that (A 0 , A), x i satisfy (5.14) do

Conditions (5.9)-(5.12) define the set B(q, x 2). When implementing this ac-

tion elimination in practice the question is how to obtain a more useful description

or classification for the set B(q, x) than (5.9)-(5.12). Even to work with a set

B(q, x) which is a superset of B(q, x 2) might be preferable to working with

B(q, x) if the description of B(q, x) is simple.

If 	> m then the number of interval relations in (5.9), or equivalently

in (5.13), is at least as big as the number of components of vector A. Consider

the following set of linear interval-arithmetic equations in (A 0 , A):

(x,) = 	 (xh) 	 (5.16)
aXh , k 	 DXh,k

j=1

for every l<k<nh, 1 < h < i

It is possible to deduce from this set of equations confidence intervals for A for the

two cases A 0 = 0 and A 0 = 1 using Gaussian elimination in interval arithmetic.

In this way it is possible to calculate confidence regions for every component of A

for the case A 0 = 0 and for the case A 0 = 1 which define a superset B(q, x) for

B(q, xi).

The following procedure is a practical implementation for going from stage

i - 1 to stage i. Let

Ei (q) = .j(q,ii)

where iii is the vector which defines B(q) i.e. for which

B(q) = B2 (q,

ii is the optimal vector for subproblem (q, i) that the algorithm has computed

at the time of defining B(q). The idea behind the following procedure is to not

use action elimination if -'1 nh < m, to compute . i (q) for the first time if

	

nh >— m and 	< m, and thirdly, to use action elimination when

>=iflh >— m.

for all q E]R set F2 (q) := — 00

	

if 	<m then

for all q e JRtm for which F_1 (q) > — oo do

for all xi E D2 do

if F(q + w(x)) < F_i (q) + f(x) then

F(q + w(x)) := F 1 (q) + f(x)

A(q + w(x)) := x i

end if

end do x

end do q

else (if E nh >— m)

for all q E JRtm for which F_1 (q) > — oo do

<m then calculate E_ 1 (q)

for all x2 E Di for which (A 0 , A) E E_ 1 (q)

such that (A O , A), x i satisfy (5.14) do

if F(q + w(x)) < F_1 (q) + f(x) then

F(q + w(x)) := F_1 (q) + f(x)

A i (q + w(x)) := x i

j(q + w(x)) := j_i(q) n N(x)

end if

end do x2

end do q

end if

67

5.1 Finding the action set

As for the continuous case FJ action elimination, for the discrete case action

elimination DP algorithm it is important to find the action set corresponding to

a state (q, i - 1) and set B_ 1 (q) quickly. The action set now are those x i E Di for

which (5.14) is fulfilled for some A 0 , A) e _i (q). The calculation of the action

set has to be done numerically. Methods analogous to those in subsections 4.1, 4.2

and 4.3 can be used. The main adaptation necessary is to use interval arithmetic

instead of real arithmetic when solving systems of linear equations (4.5) or (4.6).

In the case n, = m the search intervals It in (4.7) have to change their properties.

In the continuous case It are such that A j is increasing or decreasing. Such a

meaning of It depends on A j E R. In the discrete case, after having solved (4.6)

for A using interval arithmetic, there are only confidence intervals for A 1 on I.

A useful property to give to it in the discrete case can be to let the confidence

interval beginning of A 1 be increasing or decreasing. Such search intervals it can

be useful in the repeated calculations of action sets. In general it is even harder to

design quick methods for the numerical calculation of action sets in the discrete

case than it is in the continuous case.

5.2 A useful ordering of intervals

When designing some quick method to calculate numerically the action sets cor -

responding to states (q, i - 1) with B 1 (q) as (A 0 , A) set, a subproblem arising

usually is the following: Given a finite set A of intervals (of the form [si , s2]) and

a finite set B of intervals find to each interval I E B all intervals I E A for which

JflI5iO. 	 (5.17)

If I = [a,], I = [b, b] then the conditions

b<a and a<b

are necessary and sufficient conditions for (5.17). It may be good to first order

the intervals of A in a way which makes it possible to find those intervals of

A faster which satisfy (5.17) for any given I e B. In the sequel an ordering of

intervals in A will be shown with help of a little example to illustrate the method.

Example

Consider the following intervals:

[1,3],[2,9], [3, 4], [2, 51, [3,5]

[1,3] 	[2,5] 	[2,9] 	[3,5] 	[3,4]
[1,3] 	[2,5] 	[2,9] 	[2,9] 	[2,9]

-

	

Order them in the following two dimensional way: 	

[1,3] [2,5] [3,5] [3,5]
- 	

- 	[1,3] [2,5] [2,5]
- 	- 	- 	[1,3] 	[3,4]
- 	- 	- 	- 	[1,3]

In the top row the intervals are ordered so that the interval beginnings are in-

creasing. Below the horizontal line column i is the following: The first i intervals

of the top row ordered so that the interval ends are decreasing from top to bot-

tom. If now, for example, I = [2,3] and one wants to find all of the above five

intervals which have a non-empty intersection with I then one does the following:

look in the top row for the interval which is as close to the right side as possible

such that its interval beginning is < the interval end of I, ie. 3.

This interval is [3,4], the last entry in the top row. Then stay in this column, move

one interval down,(ie. to [2,9]), check whether this interval's end is > interval

beginning of I. If no, stop. If yes, then this interval has a non-empty intersec-

tion with I, move in the same column to the next interval down and repeat the

checking on this interval. And so on....

Clearly, this leads directly to all intervals with non-empty intersection with

I, once the correct interval in the top row has been found. But to find this top

row entry only requires 0(logk) operations using bisection search, k being the

number of search intervals.

To establish the table requires the following work: 0(klogk) operations to

establish the top row using heap sort and 0(k 2) to establish the rest, since one

can use column i - 1 when establishing column i. All one has to do is to insert

in column i - 1 one more interval and shift the rest. So when establishing the

columns under the horizontal line, working from left to right, only 0(k) operations

for each column are needed.

5.3 Example with computational results

Consider the following problem of the form (5.1)-(5.3):

	

max >fh(xh) 	 (5.18)

subject to E Xh = , 	 (5.19)

	

Xh E X2, 0 1h,1 <40 	Vh, 	 (5.20)

0 	Xh,2 < 40 	Vh, 	 (5.21)

where 4 e JR2 is given by 4T = (150, 70), r = 6 and the functions f : 	JR

are given by

(x) { \/x 1 + x2 + n2 	 if x2 <25

- /i- -x2 + n2 + n(xi - x2) if x2 > 25

This problem has been implemented once with action elimination and once with-

out. The results are as follows:

run time (secs) computed optimal objective

with action elimination 	108.11 	 72.16
no action elimination 	268.30 	 72.16

speed-up achieved = 268.30= 2.48
108.11

The discretisation of the state space (q, i) was, of course, chosen to be q e
0 < q1 < 150, 0 < q2 < 70 for all i : 1 < i < 6. As this problem has linear

constraints with positive integer coefficients all states obtainable belong to this

set of discretised states. If in (5.20) the right hand bound (i.e. 40) is replaced by

a bigger number, for example by 60, then the ratio of run times of DP with and

without action elimination changes in favour of the action elimination DP as can

be seen from the following results:

run time (secs) I computed optimal objective

with action eli7m_in_at_ionF 	134.41 	 114.04
no action elimination 1 	423.85 	 114.04

speed-up achieved = 423.85= 3.15
134.41

Conditions (5.9)-(5.12) are actually optimality conditions for problem (5.18)-

(5.21). This will be proved next.

5.4 Derivation of a necessary local optimality
condition

Theorem 5.4.1 If in problem (5.1)- (5.3) Wh(Xh) = Xh Vh then for all subprob-

lems (5.5)-(5.7) there exists (A o , A) with AO = 1, A E JRtm such that (A0, A) and

the optimal solution vector x, where iiT=
...,), satisfy (5.9)-(5.12).

Proof:

First of all notice that Wh(xh) = Xh Vh implies that all nh = m. In order to

70

show that (5.9), or equivalently (5.13), holds for some)) define the difference

operators A, L by

Ag(x) : 	max{g(x+ek)—g(x), g(x)—g(x—ek)},

Ag(x) := min{g(x+e k) - g(x), g(x) —g(x - ek)}

where g is a function ZZ' —+ JR and ek is again the k - th unit vector. When these

operators are applied to fh then redefine

zfh(xh) := +00
	

if (Xh — ek) V Dh,

Afh(xh) := — 00
	

if (xh + ek) Dh.

This redefinition of the operators A, A applied to fh is useful in order to be

in line with the definition of f1 (xh) given in (5.4). With the above definition
aXh Ik

of the operators , A

Dfh
(xh) = [/ Ik

aXh,k

Let

ak := max {Afh (h)} 	 (5.22)
h:1<h<i

bk := min {Afh(h)} 	 (5.23)
h:1<h<i

Suppose that ak > bk for some k. Then let s be the argument of h which achieves

the maximum in (5.22) and let t be the argument of h which achieves the minimum

in (5.23). Then

Ak- fI(-;M >

Since from the definition of , A

L\f h (h) ~ Af() 	Vh

it follows that s 0 t. Putting these arguments together: ak > bk for some k

implies that there exist indices s and t with s =A t, 1 < s < i, 1 < t < i such that

Tf8() ~ 	L f8 () > Aft() ~ Lft(t)

From this it follows that

f8(+ ek) - fs(s) > f t (~ t) — 	— ek).

71

Then the point (±', x2 , , ii) which is given by

it =

=

= 1j 	for all jt,js,1<j<i

satisfies

j Xh>Xh

	

and the objective value for 	12, .., ±) is

	

fh(h) = 	fh(h) +(fs(±s+ek)_fs(±s))

+ (ft (±t - ek) - ft (±t))

>

and hence ii i is not optimal, which contradicts the assumption. Therefore

ak <bk for all k. Then there exist Ak E JR such that

ak <_ Ak bk.

The definition of ak and bk implies

/fh(±h) A k < Afh(±h) Vh and Vk

k 	
19A (±) Vh and Vk 	 (5.24)

Since wh(xh) = Xh it is the case that

Whj
(Xh) 	[1,1] if j =k 	and

UXh,k

Whj
(JXh,k (xh)=[O,O] if3$k.

Hence

___ = [A k ,A k I
j=1 aXh,k

This combined with (5.24) implies that (5.13) holds with) = 1. Remember that

(5.13) is equivalent to (5.9). Hence there exists (A 0 , A) such that iii and (A 0 , A)

satisfy (5.9)-(5.12). 0

However, for general discrete problems of the form (5.1)-(5.3) it is not neces-

sary that there exists (A 0 ,)) such that the optimal vector and (A 0 , A) satisfy

(5.9),(5.11), (5.12).

72

5,5 Counterexample

In this subsection a discrete DP problem is given for which there does not ex-

ist A0 , A) such that the optimal vector and (A 0 , A) satisfy (5.9),(5.11), (5.12).

Consider the problem

	

maximize 	f 1 (x 1) + f2 (X2) (5 . 25)

	

subject to 	3x 1 + x2 = 8, 	 (5.26)

X1, X2 E Z, X1, X2 > 0, 	 (5.27)

where the functions fl , 12 : X -+ it? are given by

X 01234
f, (x) 0 1 5 8 1
f2 (x) 0 1 3 5 1

and f, (x) = f2 (x) = 1 for x > 4. As can be seen easily, the optimal vector to this

problem is (X1, X2) = (2, 2). However, for (2,2) condition (5.9), or equivalently

(5.13), is:

A 0 [3,4] fl A[3,3] 	0 	and

A 0 [2,2] nA 1 [1,1] 	0.

If A0 = 0 then it implies A 1 = 0 which contradicts (A 0 , A 1) 0. If A0 = 1 then the

second relation above implies A 1 = 2 which contradicts the first relation above.

However, if in problem (5.25)-(5.27) the RHS of (5.26), i.e. 8, is replaced with 7

then the optimal vector (x 1 , x2) = (2, 1) does satisfy (5.9)-(5.9) for some (A 0 , A 1)

since (5.9) is

	

A0[3,4]flA1[3,3]=,40 	and

A 0 [1,2]nA 1 [1,1] 	0

and this is satisfied, for example, for (A 0 , A 1) = (1, 1) or (A 0 , A 1) = (1,). Also if

the RHS of (5.26), i.e. 8, is replaced with 9 then the optimal vector (X1, X2) =

(2, 3) satisfies (5.9)-(5.12) for some (A 0 , A 1) (for example when (A 0 , A 1) = (1, 1)).

For general problems of the form (5.1)-(5.3) if one looks at the subproblems

corresponding to states (q,i), given by (5.5)-(5.7), it is found that for a lot of

subproblems the optimal vector xui. satisfies (5.9)-(5.12) for some (A 0 , A), but for

some subproblems the optimal vector i i does not satisfy (5.9)-(5.12) for any

(A0 , A). The proportion of subproblems satisfying (5.9)-(5.12) for some (A 0 , A) to

those subproblems which do not satisfy (5.9)-(5.12) for any (A 0 , A) depends on

the functions Wh. Broadly speaking, the observation was made that if

73

for different h but fixed j, k are non-intersecting and far apart, then there are

proportionately more subproblems (q, i) whose optimal vector x 2 does not satisfy

(5.9)-(5.12) for any (A o , A).

5.6 Modified discrete action elimination algo-
rithm

The counter-example of the last subsection is an example on which the discrete

action elimination DP algorithm fails to discover the optimal solution. This

example is so simple that this method does not seem to be appropriate for general

problems of the form (5.1)-(5.3). However, the discrete action elimination method

appears to be good when it is extended and combined with local search methods

in the following way:

First, apply the discrete action elimination DP algorithm to problem (5.1)-

(5.3) such that the value function Fr (q) is computed for all discretised values of

q in some neighbourhood of 4, i.e. for all q for which

(5.28)

T has to be estimated and chosen beforehand. Then, for every q satisfying (5.28)

do a local search to problem (5.1)-(5.3) taking the computed optimal vector of

the subproblem corresponding to state (q, r) as the starting point.

5.7 Conclusions

This chapter discussed action elimination based on local optimality conditions for

discrete deterministic allocation problems of the form (5.1)-(5.3).

A special case is wh(xh) = xh and for this case the necessary local optimality

conditions (5.9)-(5.12) were derived in Theorem 5.4.1. These conditions involve

forward and backward differences and look similar to the FJ conditions for con-

tinuous problems. The action elimination presented, which is based on these local

optimality conditions, always works in this case.

For the general case when Wh(Xh) =A Xh conditions (5.9)-(5.12) are not neces-

sary optimality conditions. A counterexample was given, there DP with action

elimination based on conditions (5.9)-(5.12) failed to find the optimum.

In section 5.6 a modified discrete action elimination algorithm was outlined.

In this algorithm heuristics are applied. Some limited computational experimen-

tation gave some encouraging results but more work has to be done in this area.

01

In particular it was found that it is hard to estimate an appropriate value for the

parameter T in advance.

75

Chapter 6

Stochastic problems

In this chapter stochastic problems will be discussed and conditions will be for-

mulated which allow action elimination based on first order optimality conditions.

There are different classes of stochastic DP problems: infinite or finite horizon,

continuous or discrete state and action space problems. Discrete time Markov

decision processes are underlying all the problems discussed in this chapter.

6.1 Infinite horizon, continuous state and action

The intention of this section is to introduce the basic idea underlying action

elimination for stochastic problems. Let's first look at infinite horizon, continuous

state and action space problems. Let S = 1/' be the state space, let A = JR

be the action space. (Notice that S and A are unbounded and that A does not

depend on s E S. This is unrealistic but useful for simplifying the presentation

of the basic idea.) Let P be a set of probability distributions on S with the

properties below. In this subsection let Y = 1R7 . (In the next subsection Y will

be more specific.)

Property 6.1.1

For every y e Y there exists exactly one P E P which is associated with y.

Let P(y) be the P e P which is associated with y.

If Ep is the expectation operator for the probability distribution P then

]Ep()f is continuous and differentiable with respect to y, when f is any

bounded function S -+ R.

If from state s e S the action a e A is taken then the transition to the next

state is determined by the probability distribution P(s - a).

76

Just for clarity of notation, if p(s) is the probability density function of the

distribution P E P then

Epf = f P(s)f(s)ds

Let the instantaneous reward of taking action a from state s be r(s, a) where

r(s, a) is a bounded function S x A - JR and r is differentiable with respect to

the argument a. Consider the following problem:

00

maximize the expectation of E a3 r(s, a) 	 (6.1)

where a is a discount factor with 0 < a < 1, so is the initial state of the system,

{s}o is the Markov process induced by the sequence of actions {a}o. This

means the optimization is over the space of policies for taking actions. It is well

known that for such infinite horizon, stationary Markov decision processes there

exists an optimal policy it for taking actions which is Markovian, stationary and

deterministic. i.e. ii is a function S - A such that observing the system in

period j to be in state sj it is optimal to take action a 3 = 7(s3). (See Puterman

[13] sections 4.4 and 5.5) Let v(s) be the optimal objective value of problem (6.1)

when the initial state so = s. The DP optimality equation for problem (6.1) is:

v(s) = max{r(s, a) + alEp(s _ a)v}, 	 (6.2)
aEA

it(s) = argmax{r(s,a) +aJEp(s _ a)v} 	 (6.3)
aEA

In the sequel it is shown how to use action elimination based on first order op-

timality conditions for a value iteration step. Value iteration approximates v(s)

by v 2 (s) and it(s) by 7r(s) after iteration i. The iteration is as follows:

v 1 (s) = max{r(s, a) + aJEp(s _ a)vj } Vs e S 	 (6.4)
aEA

and the policy itj1 of choosing actions after iteration i + 1 is:

ir i (s) = argrnax{r(s, a) + aJEp(s _ a)vj } Vs e S 	(6.5)
aEA

A first order optimality condition for the maximization in the RHS of (6.4) is:

Va (r(s, a) + aJEp(s _a)vj) = 0
	

(6.6)

where V a is the gradient operator with respect to a E IRE. (6.6) can be rewritten

as

Var(s, a) - aV(JEp()v) = 0, 	 (6.7)

y = s—a 	 (6.8)

77

where V, is the gradient operator with respect to y E 1R1 . (6.4) can be imple-

mented using recursive fixing or the labelling procedure (also called reaching. See

the beginning of section 2.3.) The recursive fixing implementation does not allow

action elimination using (6.6), or equivalently (6.7), (6.8), whereas the labelling

procedure does. The labelling procedure which implements (6.4), (6.5) without

action elimination is:

for all s e S set v+i(s) := — 00

for all y e Y do

for all a E A do

if vii (y + a) <r(y + a, a) + allp(y) vi then

Vj+i(y + a) := 7- (y + a, a) + cilEp()Vj

(y +a) :=a

end if

end for

end for

The labelling procedure using (6.7), (6.8) for action elimination is as above except

that line 3 is replaced by the following two lines:

J:= {x E A: V aT(y + X, x) = aV(1Ep()v)1

for all a E J do

This action elimination procedure shows the basic idea of action elimination for

stochastic problems, which is based on first order optimality conditions. In this

presentation the state space S and action space A are unbounded, which is not

realistic for real world problems. And of course, the loops in the procedure above

are infinite loops, and for any implementation a discretisation scheme must be

used.

For bounded state and action spaces some modifications must be done which

are similar to the modifications of section 2.4. In section 2.3 the basic action

elimination procedure for problems of the form (2.1),(2.2) was introduced and

the state and action spaces were unbounded. In section 2.4 the necessary modi-

fications were shown when the action space in problem (2.1),(2.2) is restricted.

6.2 Extension to bounded state and action spaces

In the previous section the state space and action space were both JR, i.e. un-

bounded. In this section it is assumed that the state space S C]R' and that S

is bounded. Also it is assumed that the action space is restricted in the following

way: A 5 is the set of actions which can be taken from state s, A 5 C IR and A 5

is bounded and closed. Taking action a e A 5 from state s leads to a stochastic

transition to a new state determined by the probability distribution P(s - a) on

S, P(s - a) C P. P satisfies Property 6.1.1. There exists a P(y) for every y E Y

where

Y := {y e Rn : 3s E S, a E A 5 such that y = s - a} 	(6.9)

Let r(s, a) be a piecewise differentiable function. The objective is, again,

(6.1). Again, let v(s) be the optimal objective value of (6.1) when the initial

state s0 = s, let ir(s) be the optimal action from A 5 to be taken when the state

of the system is s. The new DP optimality equations are similar to (6.2),(6.3):

	

v(s) = max{r(s, a) + aJEp(s _ a)v}, 	 (6.10)

	

7r (s) = argmax{r(s,a) +CJEp(s _ a)v} 	 (6.11)
aEA 3

For the value iteration let v(s) and 7r(s) be, again, the approximating functions

for v(s) and it(s) respectively after iteration i. The iteration now is

	

v +i(s) = max{r(s, a) + a]Ep(s _a)'vj} Vs e S, 	(6.12)
aE A3

	

= argmax{r(s, a) + cEJEp(s _ a)vi} Vs e S. 	(6.13)
aE A 3

Let (6.14) be the following logical statement:

Va T does not exist at (s, a) 	 (6.14)

When s e S and a e A 5 is optimal for the maximization in the RHS of (6.12)

then a necessary first order optimality condition is:

a e 9A 5 or [a E A S \aA S and [(6.6) or (6.14)]]

The brackets '[]' are used to indicate the order of the logical connectives 'and'

and 'or'. The action elimination will use this condition. However, it is not easy

to see how to use this condition within the labelling procedure. In order to see

this let's replace (6.6) with the equivalent condition [(6.7) and (6.8)]. The above

logical expression is equivalent to

a E 0A 5 or [a c A S \ÔA S and [[(6.7) and (6.8)] or (6.14)]]

In the labelling procedure the outer loop cycles through all values y e Y and the

inner loop cycles through values of a. The above condition makes it possible to

79

reduce the inner loop over a. In the above expression (6.8) can be used to replace

all other occurrences of s with y + a. This might look a little bit artificial but

it gives a motivation for the objects C,, and B which will be defined next and

which will be used in the action elimination procedure.

C,, := {a: 3S e S such that a E AS\aAS, y = s - a} 	(6.15)

In words: C, is the set of actions a which, when taken from some state s, lead to

a transition of state determined by the probability distribution P(y) and a is in

the interior of A 5 .

B:_—{a:sESsuchthataEaA 5 , Y=s—a} 	 (6.16)

In words: B is the set of actions a which, when taken from some state s, lead to

a transition of state determined by the probability distribution P(y) and a is on

the boundary of A 5 .

Next, the value iteration step using the labelling procedure with action elim-

ination will be shown.

Procedure 6.2.1

for all s E S set v+1(s) := —00

for all y E Y do

C:={a:s E S such that aEA5 \ôA 5 , y=s — a}

B :={a:asE S such that aE0A 5 , y=s — a}

J := {x E C, : V ar(y + x, x) = aV(Ep()v) or Var does not exist at (y ± x

for all a e B U J do

if Vji(y + a) <r(y + a, a) + ceEp(y) vi then

Vi+i(y + a) := r(y + a, a) + aJEp()V

lrj+i(y+a) :=a

end if

end for

end for

This procedure is faster than an ordinary value iteration procedure without action

elimination if the sets Cy , B can be found quickly from the structure of a problem

and if J can be found quickly.

Me

6.3 A special type of reward function

In this section a special type of reward function is looked at which allows a very

simple implementation of action elimination within recursive fixing. The setting

is as in the previous section 6.2 described there in the first paragraph.

Consider a reward function r of the following form:

r(s,a) = f(s) +g(s — a) 	 (6.17)

where f and g are functions 1R'—+ R. So f only depends on the present state

and g, in some sense, depends only on the distribution determining the next state.

The first order optimality condition (6.6) becomes:

Va(f(S) + g(s — a) + cJEP(s _ a)Vi) = 0

This is equivalent to

V(g (y) + aIEp()v) = 0, 	 (6.18)

y = s—a. 	 (6.19)

Notice that (6.18) does not depend on s and not on a. Now (6.14) is equivalent

to

Vg(y) does not exist at y = s - a 	 (6.20)

Taking action a from state s can only be optimal if

a E aA, or [a E A S \DA S and [(6.20) or [(6.18) and (6.19)]]] 	(6.21)

This optimality condition can easily be implemented in the recursive fixing method

as follows:

Procedure 6.3.1

Q:= {y E Y : Vg(y) + aV(1Ep()v) = 0

or Vg(y) does not exist}

for all s E S do

v+i(s) := — 00

J:={aeA3 \3A 3 :yEQ such that y=s—a}

for all a E 5A U J do

if v+i(s) < r(s, a) + QJEP(sa)Vi then

F;"

v+1 (s) 	r(s, a) + a]EP(s _ a)vj

ir+i(s) 	a

end if

end for

end for

Note that if line 5 in above procedure is replaced with

for all a E A 8 do

and lines 1 and 4 are deleted then this is the ordinary recursive fixing method,

which is the most straightforward implementation for recursion (6.12).

Regarding the true solution v(s) and 7r(s) the following can be said. The RHS

of (6.10) is like the RHS of (6.12) with the only difference that vi is replaced

with v. Hence, if in (6.21) all occurrences of vi are replaced with v then this is a

optimality condition for the optimal action a = ir(s) from state s. Therefore, if

Q {y E Y : Vg(y) + cV(Ep()v) = 0

or Vg(y) does not exist}

then either

71(s) e 3A 8 or

[u(s) e AS\9A8 and y = s - 71(s) for some y e Q].

Broadly speaking, this says that the policy ur tries to obtain a transition of state

corresponding to a set of preferred probability distributions on S.

6.4 Example

In this section an example from water reservoir management is discussed to illus-

trate the theory of the previous two sections.

Consider a water reservoir for which the state is determined by the water

level. Z'. e. n = 1 for this problem. If the reservoir is empty then the state is

0. The maximal height of the water level is H, because water flows over a dam

if too much water is in the reservoir. This means that the state space can be

characterised by

8= [0, H]

At day j in the morning water can be released from the reservoir. If from state

Si action a3 is taken, which corresponds to releasing the amount of water which

decreases the water level by a 3 in height, then the new water level is s3 - a3 . Of

course 0 <a3 < s3 . This means

A 5 =[0,s] VsES.

The release of water happens instantaneously and yields a reward r(S, ai). r is

a bounded function. During the next 24 hours fresh water from streams flows

into the reservoir, it rains and some water from the reservoir evaporates. Let

{X} 0 be a sequence of independent, identically distributed random variables

with normal distribution N(, a2). The state s 1 of the reservoir the following

morning, before water is released, is given by

0 	 ifs 1 —a+X<0,
5i+1 = 	H 	if s - a + Xi > H, 	 (6.22)

si - a + Xi otherwise.

When the initial state is s o then the long term expected maximal discounted

revenue is given by (6.1) with 0 < a < 1. The transition rule (6.22) is satisfied if

P(y) is a normal distribution N(y + ,a, 0,2) and the domain of the approximating

functions vi is extended for s S by

v i (s) := vi (0) 	for s < 0,

v i (s) := vi (H) 	for s > H.

With this extension of vi and with y = s - ai it is the case that

f
°° 1 	(x-,--y) 2

1Ev(s +i) = JEp()Vi =
co 	

2r2 v2(x)dx

and the fact that N(IL + y, 0,2) is not a probability distribution on S but on

(—oo, oo) is taken care of. In order to apply Procedure 6.2.1 for this water reser-

voir problem Y, C y , B must be found. Using (6.9),(6.15),(6.16) one finds

Y= [0,H],

CO = CH = 0,

C=(0,H—y] for yE (0,H),

B0 = [0,H],

B = {0} for y (0,H].

A practical procedure for a value iteration step with action elimination for this

problem is the following procedure which is based on Procedure 6.2.1. If Proce-

dure 6.2.1 is applied to this problem directly then line 2 is the start of a loop

y e [0, H]. The procedure below is obtained by splitting this loop into two loops

y e {O} and y E (0, H]. Line 1 in Procedure 6.2.1 and the execution of the loop

y e {0} first is equivalent to line 2 below.

for all y E Y compute 1Ep()v

for all s e S set v+i(s) := r(s, s) + aEp(o)vi and irj+i(s) := s

for all yE (0,HIdo
3 	 d

J 	{x e Cy : 	± x, x) = c — (Ep()v)

or
a

—r does not exist at (y + x, x)}

for allaE JU{0}do

if vii (y + a) <r(y + a, a) + ozEp(y) vi then

Vj+i(y + a) := r(y + a, a) + aJEp()v

d+1(y + a) := a

end if

end for

end for

So far the reward function r in this problem has not been specified. Assume

that the reward r(s, a) comes from hydroelectric power generation. Let the po-

tential energy stored in the water reservoir with water level s be g(s). Decreasing

the water level by a from a water level s the energy produced is g(s) - g(s - a),

hence

r(s,a) = K(g(s) - g(s - a))

for some constant K. This reward function falls under the special case (6.17),

therefore section 6.3 can be applied, i.e. Procedure 6.3.1 can be used instead of

Procedure 6.2.1.

If on top of revenue from hydroelectric power generation the released water

is also sold and if the reservoir has vertical shores and a flat ground then the

amount of water released is proportional to the action a. This means

r(s,a) = K 1 (g(s)—g(s—a))+K 2a

= Kig(s) + K2 s - Kig(s - a) - K 2 (s - a)

where K 1 , K2 are constants. Again, r is of the special form (6.17).

6.5 Action elimination when DA = A 5

In this section the action elimination procedure is discussed for problems where

i9A 8 	A 8 . Notice that if 3A 3 = A 8 for all s E S then Procedure 6.2.1 is in

essence a labelling procedure with no action elimination taking place. Often for

problems with 3A 5 A 8 and special structure action elimination can still be

used. The key idea is that even for optimal actions a E A 3 there often exist

necessary optimality conditions which can be used for action elimination. Let's

look at an example to see what is meant.

Let S JR2 be given by S = [O, H1 } x (0, H 2]. Let A 3 for s ES be given as

A 3 = {(ai , a2) e JR2 : — s 1 < a 1 < H1 - 8 1, —S2 < a < H2 - s2 , a 1 a2 = O}

where s = (s 1 , 8 2). Taking action a E A 5 from state s leads to a stochastic

transition to a new state determined by the probability distribution P(s - a) on

S. From (6.9)

Y = 5 = [o, H1] x [0, H2 1

A necessary optimality condition for the maximization in the RHS of (6.12) is

a E {(—s) 0), (H1 - Si) 0), (0, — 82), (0, H2 - 82)}
a

or 	(r (8, a) + aJEp(s _a)Vi) = 0 	 (6.23)
al

or 	
19

(r(8, a) + aJEp(s _ a)Vi) = 0 	 (6.24)

where a 1 , a2 are the first and second components of a E JR2 . When setting

Y = s - a (6.23) and (6.24) are

a 	 a
—r(y+a,a)—a JEp()v 0,
(9a, Dy1

a 	 a
—r(y + a, a) a

ay2 	

=
EP()V 2 0

where Yi, Y2 are the first and second components of y E JR2 . These conditions can

be used for action elimination within the labelling procedure.

6.6 Infinite horizon, discrete state and action
space

The material and framework in this section is similar to that of section 6.2 but

there are important differences. It is assumed that the state space S C X and

the action space A 3 C '. Taking action a E A 3 from state s leads to a stochastic

transition to a new state determined by the probability distribution P(s - a) on

S. Let Y be the set

Y := {y E Xn: 3 S E S, 3a E A 3 ,y = .s - a}

Since actions are discrete the meaning of interior and of boundary of A 3 must

be given. Let ek be the k-th unit vector in 7Z i.e. the vector with the /c-th

component equal to 1 and the other components equal to 0. The boundary of A 3

is

:= {a E A 8 : 3k with 1 <k <ri such that (a + ek) A 3

or (a - ek) A 3 }

The interior is A S \aA S . Again, let v(s) be the optimal objective value of (6.1)

when the initial state s0 = s, let it(s) be the optimal action from A 3 to be

taken when the state of the system is s. The DP optimality equations are (6.10)

and (6.11). The value iteration is (6.12) and (6.13) where v 2 (s), ir2 (s) are the

approximating functions for v(s), it(s) respectively after iteration i. If a is optimal

for the maximization in the RHS of (6.12) then there are two possibilities: the

first is a E DA 3 , the second is

a e A S \DA S ,

r(s, a + ek) + a]Ep(s _ a_ ek)vj < r(s, a) + cdEp(s_a)v j Vk, 	(6.25)

r(s, a - ek) + aEp(s_a+ek)vj < r(s, a) + aJEp(s _a)vi Vk. 	(6.26)

Define the difference operators , i 	operating on the functions r(s, a) and

]Ep()f by

	

Lr(s, a)
	= r(s,a+ek)—r(s,a),

	

Ar(s, a)
	= r(s, a) — r(s, a — ek),

	

AEP()f 	= iEP(y+ek)f -]EP()f,

	

AIEp()f 	= 1EP()f JEP(y e k)f.

Notice that

Ar(s,a) = Ar(s, a - ek),

A k]EP(y)f = AJEp(y _ e)f.

With these definitions (6.25) is equivalent to

Ar(s,a) <aLEp(s _ a)Vj Vk

and (6.26) is equivalent to

Ar(s,a) ~ cI1EP(s _ a)v i Vk.

After setting y = s - a

Ar(y+a,a)
	aA-Ep(y)vi Vk, 	 (6.27)

Ar(y + a, a) ~ cA]Ep()v Vk. 	 (6.28)

Let C',, and B be given by (6.15) and (6.16) respectively. Next, the value iteration

step using the labelling procedure with action elimination will be shown. This

procedure is identical to Procedure 6.2.1 except of line 5 (which defines the set

J). In the next section the procedure below is referred to and used for an example

which is why the procedure will be given in full.

Procedure 6.6.1

for all s e S set v+i(s) := — 00

for all y E Y do

C:={a:seSsuchthataeA8 \aA 3 , y=s — a}

B:={a:sESsuchthataE3A8 , y=s — a}

J := {x E C y : (6.27) and (6.28) hold}

for all a E B U J do

ifv21 (y+a) <r(y+a,a) +a]Ep()vj then

Vj+i(y + a) := r(y + a, a) + cilEP()V

lrj+i(y+a) :=a

end if

end for

-end for

Like for continuous action and state space problems, if the reward function

has the form

r(s,a) =f(s)+g(s—a)

then it is possible (and easier) to implement the action elimination with recursive

fixing. Then (6.27) and (6.28) reduce to

g(y - ek) - g(y) 	ckEP(Y)vj Vk, 	 (6.29)

g(y) - g(y + Ck) 	c/IEp()v Vk. 	 (6.30)

One can use Procedure 6.3.1 with line 1 being replaced with

Q := {y E Y: (6.29) and (6.30) hold}.

6.7 Example with computational results

In this section an example problem is given to illustrate the theory of the last

section. Consider the problem where there are n + 1 places numbered from 0 to

n. The aim is to reach place 0 with minimal cost (or maximal negative cost) from

place n. When one is currently at a place with number s one can decide how

much to jump closer to place 0. However, deciding to jump a places from place

s towards 0 results in a stochastic transition to a new place which only depends

on s - a. The cost of each jump depends on the current place s and on how far

one wants to jump i.e. on a. This is the rough description of the problem, the

exact mathematical description of the problem follows next.

Let the state space S be given as

S = Is E Z : 0 < s <n}

where n determines the size of the problem. Let the sets A 3 be given by

A 3 = {a G Z: 0 < a < s}.

This means that

A 5 = {0,s},

Y={yEZ:0<y<n} 	(=S).

Let the probability distribution P(y) be characterised by the probability density

function py (s). State zero is an absorbing state, this means

(1 ifs=0
po(s)

= j... 0 otherwise

When 0 <y <n let

i
ifs=y /1

py (5) 	Z ifs=y±1
0 otherwise

and

' 	ifs=m

p(s)= Y0 ifs=n-1
 otherwise

So when f is a function S -+ 1R then

JEP()f =s)f(s)

88

_I run time Method 1 (secs) I run time Method 2 (secs) result

20 4.00E-02 5.00E-02 -56.33
50 0.16 9.99E-02 -154.47

100 0.67 0.29 -331.08
200 2.35 0.75 -698.09
500 18.18 2.21 -1749.91

1000 94.71 7.33 -3055.04
2000 491.26 15.72 -4504.54

Table 6.1: computational results

Let r(s, a) be given by

r(s,a) = —(s+i) —a

Let the objective be (6.1) with s0 = n and a = 0.99. Let this problem be solved by

the Modified Policy Iteration Algorithm. Method 1 does the policy improvement

step using recursive fixing with no action elimination. Method 2 does the policy

improvement step using Procedure 6.6.1. Methods 1 and 2 are identical regarding

the initial choice of v0 (s) and parameters which must be set in the Modified Policy

Iteration Algorithm. Since recursive fixing and Procedure 6.6.1 are equivalent

Method 1 and Method 2 compute the same result. For different choices of ri,

which determines the size of the problem, the results are shown in Table 6.1.

These results suggest that for this problem the complexity of Method 1 is one

order of magnitude larger than that of Method 2.

Next, some details of Procedure 6.6.1 applied to this problem are discussed.

In line 3 of Procedure 6.6.1 the sets C for y e Y are

CO = C. = 0,

C={aE:0<a<n—y} for0<y<n.

In line 4 the sets B are

B 0 = { a E X: 0 <a <

B={0} for 0<yn.

Crucial for the speed-up of Procedure 6.6.1 in comparison to recursive fixing with

no action elimination is that the set J can be found quickly. When y = 0 or y = n

then J = 0 since C, = 0 in this case. When 0 <y <n then J can be found faster

than by checking all a E C, whether (6.27) and (6.28) hold. In (6.27) and (6.28)

only k = 1 is possible since S C .' and A 3 C X.

3 	3

7r(y + a, a) = —(a + 1) + a

Ar(y + a, a) is strictly decreasing in a since

d 	 3 	31
<0 when a>0

da

Further

Ar(y+a,a) = A tr(y+ a — 1,a— 1)

since Ljr(y + a, a) = —a + (a - 1). Therefore

Aj'r(y + a, a) <7r(y + a, a). (6.31)

Now, since r(y + a, a) = —a is monotonically decreasing and /s.jEr(y + a, a)

is a difference approximation to r(y + a, a) the following relation holds: aa

r(y +a, a) > r(y + x, x) > Ar(y + a + 1, a ± 1) 	(6.32)
aa

when aE Sandx ElRwitha< x < a+1.

a
+ x, x) =

can be solved analytically for x. This and relation (6.32) can be used to find the

smallest a e C for which (6.27) is fulfilled. By checking (6.28), then increasing

a by one and checking (6.28) and so on until (6.28) fails for the first time, the set

J can be found quickly.

6.8 Finite horizon problems

Consider the problem

maximize E (i rj(s, a) + TN(SN)) 	 (6.33)

where {s5} 0 is the Markov process induced by the sequence of actions {a} 1

corresponding to some decision policy. So the optimization is over the set of all

decision policies. s0 is the initial state of the process. The state space is S and

the set of actions possible to take from state s E S is A 5 . The action space is

A = USES AS. The functions r3 are functions S X A jR for J < N, rN is a

function S -+ R. Tpj is the terminal reward. Taking action a j from state s 3

leads to a stochastic transition to a new state 53+i determined by the probability

distribution Pj1(s - a3) on S. Define

vo(s) := TN(S) 	Vs E S

and 	vi (s) = max 	 a) + TN(SN) Ni =

	

Vs E S

SIR

when i > 0. So the optimal solution of (6.33) has the objective value VN(SO). The

DP optimality equation can be derived using conditional expectations and it is

v+i(s) = max {riy_ j_i(s, a) + JEpN_i(s_a)Vi} Vs E S.
aEA 5

This is similar to recursion (6.12). Hence, for doing the above recursion one can

use the ideas and methods of sections 6.2, 6.3 if S C]R7 and A 3 C]R' or of

section 6.6 if S C and A 3 C .

6.9 Conclusions

This chapter discussed action elimination based on local optimality conditions for

stochastic problems. The ideas were similar as in previous chapters, however, the

appropriate framework had to be set up. For stochastic problems a lot of structure

in the problem is required in order to be able to apply the action elimination.

Many real world problems have this structure. Further classes of stochastic DP

problems allowing action elimination based on first order optimality conditions

can probably be found.

For a class of infinite horizon problems with continuous state and action space

and for a class of infinite horizon problems with discrete state and action space

the details of action elimination based on local optimality conditions were shown.

For classes of finite horizon problems it was shown how previous ideas can be

applied.

The computational results of a discrete problem showed that the action elim-

ination can reduce the computation time by one order of magnitude.

91

Chapter 7

A perturbation method in a dual
algorithm

7.1 The dual method

Consider the following problem:

maximize 	f(x) 	 (7.1)

subject to 	u(x) < 0, 	 (7.2)

C(X) = 0 	 (7.3)

x E X 	 (7.4)

where X C]R, the functions f, u, c are f : IR' -+ JR, U : 1R -+ 1Rc , and

C: 	
jm Define the Lagrangian function

L(A,) := max{f(x) - ATu(x) - Tc(x)} 	 (7.5)
xEX

where A E Rk , p E]fm This means that the constraints (7.2) and (7.3) are

relaxed. L(A, jt) is a convex function. This will be proved next.

Lemma 7.1.1 L(A, u) is convex in A and .

Proof:

Let 0 < q < 1 and (A1,) :~ (A, i2) where A 1 , A 2 E IRk and Al, [L2 E jjm Then

L(qA i + (1 - q)A2 , t/-"i -I- (1 -

= max{f(x) - (A+ (1—)A)u(x) -
(OPI (1—

xEX

= max{q(f(x) - Au(x) - ILfc(x)) + (1 - q5)(f(x) - Au(x) -
XEX

< qmax{f(x) - Au(x) —ILTc(x)} + (1— q5)max{f(x) - Au(x) - ILc(x)}
xEX 	 xEX

= cbL(A i ,IL i) 	+(i—q)L(A 2 ,IL 2) 	E1.

92

Suppose that the problem (7.1)-(7.4) is such that there exists a method with

which L(A,) can be computed for every choice of A, i. The dual problem of

problem (7.1)-(7.4) is

	

minimize 	L\,) 	 (7.6)

	

subject to 	A> 0. 	 (7.7)

Lemma 7.1.2 If A > 0 then L(A,) is an upper bound for the optimal objective

value of problem (7.1)-(7.4).

Proof:

Suppose x is feasible for problem (7.1)-(7.4). By definition of L(A, jt)

L\,) > f(x) - ATu(x) - jTc(x) = f(x) - ATu(x)

Since A > 0 and u(x) < 0 it follows that ATu(x) < 0 and hence L(A,) >

f 	D.

This means that the dual problem (7.6), (7.7) is the minimization of upper bounds

on the optimal objective value of problem (7.1)-(7.4). Let A, fi be a solution to

the above dual problem. The dual method first solves the dual problem, and then

tries to find a "good" point for the original problem (7.1)-(7.4) by picking I

from the set S where

S:= IX: x E X, f(x) - Tu(x) - Tc(x) = L(,)}.

If ± satisfies constraints (7.2) and (7.3) and is complementary slack (ie. ATu(±) =

0) then it solves the original problem. This will be proved below. However,

there is no guarantee that ± satisfies (7.2),(7.3) and the complementary slackness

condition. Often the set S has more than one element.

Theorem 7.1.3 (Lagrange's Sufficiency Theorem) Suppose there exists A,

and ± such that

± E argmax{f(x) - ATu(x) - Tc(x)}
xEX

c(±) = 0,

u(±) < 0,

A > 0,

ATu(±) = 0.

Then ± solves problem (7.1)-(7.4).

93

Proof:

By Lemma 7.1.2 L(\, 1a) is an upper bound for the optimal objective value of

problem (7.1)-(7.4). From the properties of it follows that 1 is feasible for

problem (7.1)-(7.4) and that

L(\, t) = f(±) - \Tu() 	'c() = f() 	D.

The next Lemma shows the effect of changing a Lagrange multiplier. As the

previous results of this section it has been known for a long time.

Lemma 7.1.4 Let ,2 = A, + Eei where e, is the i—th unit vector and e e JR with

e>0. Let X1, X2 satisfy

x 1 e argmax{f(x) -)u(x) - jiT c(x)}, 	 (7.8)
xEX

E argmax{f(x) - Au(x) - Tc(x)} 	 (7.9)
xEX

Then u(x 2) < u(xi), where u(x) is the i-th component of u(x).

Proof:

f(xi) - Tc(x)
- = f(xi) - 	 \ru(xi) - (2

-)'u(x) (7.10)

f(x2) - 'c(x)
- u(x2) = f(x2) - ,Tc(x)

- \u(x2) - 	 - A1)Tu(x2) (7.11)

From (7.9) it follows that LHS of (7.10) < LHS of (7.11). This implies

f(x) - pTc(x)
- Au(Xi)

- (2
- 1)'u (x1)

< f(x) - tT c(x 2) -)u(x2) - (\2 -)Tn(x)

f(xi) - 'c(x)
-)u(x 1) - (f (X2) - iTc(x2)

- 	 u(x 2)) (7.12)

~ (-
)T(()

- U(X2))

From (7.8) it follows that 0 <LHS of (7.12).

= 0 <

= 	0 < f(u(xi) - u(x 2))

= 	u2 (x 2) < u2 (x 1) 	EL

Corollary 7.1.5 Let t2 = ,u1 + Eei where e i is the i—th unit vector and e > 0.

Let X1, X2 satisfy

E argmax{f(x)—A Tu(x)—jc(x)},
XEX

E argmax{f(x) - ATu(x)
- c(x)}.

xEX

Then c(x 2) < c(x 1).

UP

Proof: It is similar to the proof of Lemma 7.1.4. 0.

The next theorem exhibits a subtangent from the subdifferential set DL(A, i).

Theorem 7.1.6 Consider the subdifferential set aL(A, l) and let 1 satisfy

E argmax{f(x)—) T'u(x)—ft T c(x)}.
sEX

(—u()
Let = 	

).

Then p is a subtangent vector of 3L(,), i.e. p E

i.e.

L 	L+pT() 	 (7.13)

for all) e IRk 	E JRtm

Proof:

By definition of L(),

L(,) ~! f() - 	 - 'c() 	 (7.14)

Now, (7.13) and (7.14) are equivalent because (7.13)

L(,) > L(, j) - u()T(A
-) - c((t

-

L(,) ~ f() - u() - iTc() - U(-)T(
-) - c((

-

L(A,) > f() - A TU(:~) - pTc()

The last line is identical to (7.14). 0.

7. 1.1 Example

Consider the following problem:

maximize 	f, (X1)+ f2 (X2)

subject to 	81 (XI) + 82 (X2) - 1.5 < 0,

a;i + x2 = 1,

X1, X2 > 0

where the functions fl, f2, 81, 82 are given as

fl x) —

{o

ifx<1
- 3 ifx>1

{ 0

ifx<1
-

f2 (X) — 2 ifx>1

{

0 ifx<1
- s1(x) — 2 ifx>1

s2(x)—{

0 ifx<1
- 1 ifx>1

95

(7.15)

It is clear from inspection that this problem has the unique solution (x 1 , x2) =

(0, 1). With the notation of (7.1)- (7.4) let X be the set X = {(x 1 , x2) : x 1 , x2 >—
0, x 1 + x2 = 1}. Then for this problem the dual function L(A) is defined by

L(A) = max {fl (x i) + f2 (x2) - A(s i (x i) + 82 (x2) - 1.5)
{x ,x2}

X1 +x2 = 1,x 1 >— 0,x 2 ~! 01 	(7.16)

In this simple example L(A) can be found explicitly for every A.

L A - 3-0.5A ifA<1
(-i 2+0.5A ifA>1

The dual problem is

minimize 	L(A)

subject to 	A > 0

The solution to the dual problem is A = 1. However, for A = 1 there are two

arguments (x 1 ,x2) which achieve the maximum in the RHS of (7.16), namely

(1, 0) and (0, 1). Of these (0, 1) is the optimum to problem (7.15) whereas (1, 0)

is an infeasible point. For A < 1 and A > 1 the arguments (x 1 , x2) which achieve

the maximum in the RHS of (7.16) are (1, 0) and (0, 1) respectively. It is worth

mentioning that the solution to the dual problem A = 1 and the solution to the

primal problem (x 1 , x2) = (0, 1) are not complementary slack.

If the evaluation of L(A) in (7.16) were done using dynamic programming and

if the dual problem were solved numerically with a local optimization algorithm,

then the dual method applied to problem (7.15) could return as result either

(x 1 ,x2) = (1,0) or (x 1 ,x2) = (0,1).

7.2 Visualising the dual problem

In this section a problem of the form (7.1)- (7.4) with only one constraint being

relaxed is looked at. Consider the problem

maximize f(x) 	 (7.17)

subject to c(x) = 0,

X E X,

where X E 1R, f and c are functions 1R -+ JR. Define the following new

function:

J() := max{f(x) : c(x) = xEX
(7.18)

Rrel

Figure 7.1:

i.e. 7 is a function JR -+ R. If is such that there exists no x e X with c(x)

then define f() := -. Note that 7(0) is the optimal objective value of problem

(7.17). Also let the Lagrangian be

L(p) := max{f(x) - pc(x)} 	 (7.19)
xEX

where p E R. The dual problem is

minimize L(p). 	 (7.20)

Assume, again, that there is a method with which for every p e JR it is possible

to determine L(p) and x(p) where x(p) is the argument achieving the maximum

in the RHS of (7.19).

In the sequel different shapes of the function f will be discussed. In Figure 7.1

several features are worth mentioning. The function f() can be non smooth and

discontinuous since the functions f(x) and e(x) are general non-linear functions.

Even when f(x) and c(x) are continuous it is possible that f() is discontinuous.

From definitions (7.18) and (7.19) it follows that

L(p) = max{f(x) - pc(x)}
xEX

= max max{f(x) - pc(x) : c(x) =
C xEX

= max{J() - p}.

In Figure 7.1 the evaluation of L(p) for p = —1 is considered. f - p is constant

on straight lines with slope p. On two different straight lines with slope p the

value f - A—c is bigger on the line which lies above the other. Hence L(p) can

be associated with the straight line 7 - p = K (where K is a constant) which

intersects the graph f() and which lies above all other straight lines with slope p

intersecting the graph 7(h). The straight line associated with L(p) intersects the

97

Figure 7.2:

C

Figure 7.3:

7-axis in the point (0, L(p)) and the graph 7(d) in the point A. Let be an ar-

gument which achieves the maximum in the RHS of (7.19). Then the coordinates

of the point A in Figure 7.1 are (c(), f()).
In Figure 7.2 the curve f() is smooth at z = 0 and the function L(4u) is

minimized for one value of i-i, i-i = /i. The straight line with slope ft associated

with L(j) intersects the graph 7(e) at the point A with coordinates (0,7(0)).
When

	

E argmax{f(x) - ic(x)} 	 (7.21)
xEX

then c() = 0 and f() = L(A). This means that i solves problem (7.17), since

every L(p) is an upper bound on the optimal objective value of problem (7.17).

(This follows from Lemma 7.1.2.)

In Figure 7.3 the graph 7(e) is non-smooth at Z = 0. /Li and /12 are the slopes

of the two straight lines. In Figure 7.3 all T1 with < IL2 solve the dual

problem (7.20).

In the example of Figure 7.4 L(/1) is minimized by it. The straight line asso-

ciated with L(l) intersects the graph 7(z) at two points A 1 and A 2 . This means

C

Figure 7.4:

that there exist i l and 2 such that

J .Z i e argmax{f(x) - jtc(x)} 	for i = 1,2 	 (7.22)
xEX

and (c(l 1), f(i)) are the coordinates of point A 1 and (c(2), f(2)) are those of

A 2 . Note that c(1) 0, c() 0 0. So i i and 2 are solutions with a duality gap.

Further, since (0, 7(0)) lies in a valley of the graph f() there exists no IL such

that the straight line associated with L() intersects the graph f() at (0 ,7(0)).
More formally: there exist no p and § such that

E argmax{f(x)—c(x)}
xEX

and 	c() = 0.

If L(y) is evaluated with a method which also returns as result exactly one x()

with

E arg max {f(x) - ie(x)} 	 (7.23)
sEX

then in the example of Figure 7.4 it is pure luck which of ,x 2 is returned as

x(/i). This remark is important because in later sections Dynamic Programming

will be used to evaluate a Lagrangian function and exactly one optimal argument

x will be returned for every Lagrangian evaluation. In Figure 7.4 the point A 1

is closer to the 7-axis than A 2 . Therefore § j is a better approximation to the

solution of problem (7.17) than x2 , where , x2 satisfy (7.22) and give rise to

the coordinates of A 1 and A 2 respectively. In order to find the argument i

satisfying (7.21) and being nearest to the 7-axis (i.e. with Ic(i)j being smallest)

the following perturbation method can be applied:

When A minimizes L(t) and a Lagrangian evaluation method returns x() as

the optimal argument of the Lagrangian evaluation, set ft = + fe(x([L)) where

E > 0 and c is small. Evaluate L(ii) and look at c(x(i)). If

c(x(,i))I < Ic(x(11))I

f

T.

U

Figure 7.5:

then accept x() as the optimal argument of the Lagrangian evaluation of L(/Ji).

Note that if c(x(111)) > 0 then

c(x(,Tl)) <c(x(/1))

by Corollary 7.1.5. If c(x(i)) < 0 then c(x()) > c(x(l)) by the same Corollary.

In some sense this perturbation method assures that both sides of the valley in

Figure 7.4 are checked.

Now let's look at an inequality constraint problem.

	

maximize f(x) 	 (7.24)

	

subject to u(x) 	0,

x E X,

where X e JRfl, f and u are functions 1R' -+ R. Define the equivalent to (7.18)

and (7.19):

J() := max{f(x) : u(x) =
xEX

If U is such that there exists no x e X with u(x) = 2 then define f() := —oo.

The Lagrangian is

L(A) := max{f(x) - Au(x)}
xEX

where A E R. The dual problem is

minimize L(A)

subject to A > 0.

In Figure 7.5 the point B corresponds to the optimal solving problem (7.24),

i.e. B has coordinates (u(),f()). The points A,, A 2 are those corresponding to

100

ii

U

Figure 7.6:

optimal arguments i in the Lagrangian evaluation of L(A) where A solves the dual

problem. A 1 , A 2 and the corresponding arguments §, I2 are found by perturbing

A as in the equality constraint problem discussed before.

In Figure 7.6 B is again the point corresponding to the optimal solving

problem (7.24), i.e. B has coordinates (u(), f()). Since the dual problem has

the constraint ,\ > 0 the dual method finds B and ff in the example of Figure 7.6.

7.3 Perturbation method in general

In the previous section it was described how to find the points A 1 , A 2 in the

example of Figure 7.4 by perturbing A , where ft is the solution point of the dual

minimization problem (7.20). To be able to do this is important when (0 ,J(0))
lies in a valley of the graph J() and when there is an evaluation method for L()

which returns only one optimal argument x() satisfying (7.23) but not the whole

set

argmax{f(x) - pc(x)}.
xEX

However, the illustrations of the previous section used examples with one dimen-

sional constraint space. It is necessary to generalise the perturbation method for

problems with two or more constraints.

Let's look at problems of the form (7.1)-(7.4). The definition of f is (a gener-

alisation of (7.18)):

J(i,) := max{f(x) : u(x) = i, c(x) = 	 (7.25)
xEX

where now 	 IR and f is a function]Rc+mTh -+ JR. If there is no x E X

such that u(x) = i and c(x) = Z then define 7(U, -6) := —oo. The Lagrangian

L(A, ji) is given by (7.5) where A E R k , tL EJRtm The dual problem is given by

101

(7.6) and (7.7). From (7.5) and (7.25) the following relation can be derived:

L(A,) = max{f(x) - ATu(x) - Tc(x)}
xEX

max max{f(x) - .ATu(x) - iiTc(x) : u(x) 	i, c(x) = u,c xEX

Assume that there is a method which for every A e iRk ii E jj? determines

L(A,1) and a

e argmax{f(x) - ATu(x) I.L'c(x)}
xEX

(7.26)

as corresponding optimal argument. Let (A, A) be a solution point of the dual

problem (7.6),(7.7). Let S be the set of all optimal arguments x E X of the

maximization problem corresponding to the evaluation of L(,). i.e.

S := argmax{f(x) - \'u(x) - /jTC()} 	 (7.27)
xEX

The aim is now to obtain a i E S such that I l()+I I and lIc()II are small, where

u is the vector u with all negative components replaced by zero. u()+ and

c()I being small means that the violations of constraints (7.2),(7.3) of the point

are small. Analogous to the examples in Figures 7.2-7.6 the following can be

said about a multi-constrained problem of the form (7.1)-(7.4).

Consider the space]fk+m+1 where the first k axes correspond to components

of U, the next m axes correspond to components of Z and the m + k ± 1-th axis

corresponds to 7. In this space the hyperplane given by

f— T —il T =L(), 	 (7.28)

where (, jTi) is a solution point of the dual problem, touches the graph f(,)
given by (7.25) at at least one point. Furthermore, if constraints (7.2)-(7.4) are

feasible then the hyperplane lies above the graph J(n,) in the direction of the

f-axis, i.e.

L(A,/) +5T+.AT ~ i() 	Vii,. 	 (7.29)

If constraints (7.2)-(7.4) are feasible and if there exists no point A with coordinates

(u(x), c(x), f(x)) for some x E X which lies on the hyperplane (7.28) and the

graph 7(i,) and for which u(x) < 0 and c(x) = 0 then the hyperplane touches

the graph J(i,) at more than one point. In this case a perturbation method is

necessary in order to find a i E S with 11u()+11 and c()jI small. The difficulty

is how to choose perturbation directions such that in consecutive perturbations

102

Figure 7.7:

no x E S is discovered twice and yet the whole space of relevant perturbation

directions is covered. This point will be illustrated by the following example.

Consider a problem of the form (7.1)-(7.4) with k = 1 and m = 1. Figure

7.7 shows the (z,,J) space projected onto the (U, Z) space where A 1 ,A 2 ,A 3 are

three points in the (ii, , 1) space where the hyperplane given by (7.28) touches

the graph 7(U , ë). This means that at A 1 , A 2 , A 3 (7.29) holds as an equality.

Suppose that an evaluation method for L(A, /1) returns the optimal argument

x(5, i) e S which corresponds to the point A 1 , i.e. the coordinates of A 1 are

(u(x(,j)),c(x(5,)),f(x(AJ))). Among A 1 , A 2 , A 3 only the point A 3 corre-

sponds to a primal feasible x e S. The normal vector of hyperplane (7.28) is

\1

The perturbation of this vector in direction

corresponds to setting

/ —u(x(5,ft))
—c(x(5,ft))

0

A =
=

(7.30)

for some small e > 0. The hyperplane with normal vector equal to this perturbed

normal vector which touches 7(i1,) and lies above f(,) in direction of the

7-axis is given by

f ATU 	L(A,p).

103

This hyperplane touches 7(i,) in a point close to A 2 since among A 1 ,A 2 ,A 3 the

point A 2 lies furthest away from the origin in the direction of perturbation (7.30).

This means that the point) returned by the evaluation method for L(.A, ,a)

will give rise to the coordinates of a point close to A 2 in the (, , f) space. Now,

having found A 1 and A 2 , if in a similar way the normal vector of hyperplane

(7.28) is perturbed in direction

/ —u(x(.AJL)) \
—c(x(A, 4) J 	 (7.31)
\oJ

then a point close to A 1 will be found since among A 1 ,A 2 ,A 3 the point A 1 lies

furthest away from the origin in the direction of perturbation (7.31). The point A 1

had been found before, therefore the perturbation direction (7.31) is not good.

A better second perturbation vector is one which is orthogonal to the vector

(A2 - A1) and whose scalar product with A1 and A 2 is negative as shown in

Figure 7.7. Such a perturbation vector ensures that among A 1 , A 2 , A 3 none of the

already found points A 1 , A 2 is furthest away from the origin in the perturbation

direction, hence neither A 1 nor A 2 will be found next.

The following is an algorithmic description of the perturbation process:

Procedure 7.3.1

Let x0 = x(.,) where (., i) is an optimal point of the dual problem

(7.6),(7.7). Let

a0
- (

u(xo)

) - 	C(XO)

i.e. a0 is a k + 'in dimensional vector.

If 'u(x0) <0, c(xo) = 0 and 5Tu(xo) = 0 then set i = 0 and go to step 8.

There are I indices j such that A j = 0 (for some 1 > 0). For each of such

indices j include the /c+m dimensional unit vector with 1 as j-th component

in the set B, i.e. B is a set of k + m dimensional unit vectors and B has 1

elements. (If 1 = 0 then B = 0)

set i = 0 and D0 = 0.

Pick a k + m dimensional perturbation vector Pi+i 54 0 which satisfies

T ap+i < u,

vTpj+i = 0 	for all v e D,
vTp+1 < 0 	for all v e B.

If no such vector exists go to step 8.

104

Pick a small € > 0 and set

A (= I
J

I 	Pi+i,
L

xj+i =

/ u(x1)
\\

a+i = 	
c(x+1))•

If u(x) < 0, c(x) = 0 and 5'u(xi) = 0 then increase i by one and go to

step 8.

Set D 1 = Di U {a 1 - ao }.

Increase i by one and return to step 4.

Let E be an ordered set with elements x 0 , x 1 ,... x. The order of elements

in E is given by the magnitude of I lu(x) + I I + I lc(x) I, i.e. if Jc, x E E and

<x then

Hu() + H + 1141)1 	u (x*) + l + H c (x *)H.

Stop.

Step 1 defines the fist argument x 0 e S which gives rise to the coordinates of a

point in the (11, , 7) space for which (7.29) holds as equality, a 0 is the coordinate

vector of this point projected onto the (11,) space. If u(x 0) < 0, c(xo) = 0 and
Tu(x0) = 0 then x 0 is a global optimum by Lagrange's Sufficiency Theorem

(Theorem 7.1.3). In this case there is no need to carry on with the procedure,

therefore the procedure goes to step 8 and then terminates.

Step 2 deals with those components of A which are on the boundary of the

dual feasibility region. In these components perturbation can only take place in

one direction in order to avoid the perturbed vector (
A
) being dual infeasible

by having a negative component in A. By defining the set B in step 2 and by

requiring in step 4 that satisfies v Tpj+i < 0 for all v e B it is achieved that

the perturbed vector \ (A
J

is dual feasible.
1

Step 4 defines a new perturbation direction Pi+i The two conditions imposed

on Pi+i, that apj1 <0 and vTp+i = 0 for all v e D2 , imply that a'pj1 <0 for

all 0 < k < i since D2 contains all vectors of the form ak - a 0 for 1 < k < i. The

formal derivation of this is:

Lemma 7.3.2 If aTp1+i < 0 and (a' - aflp+i = 0 for all 0 	k 	i then

a'pj1 <O for all O<k<i.

105

Proof:

T 	T T T\
akpi+1 = akp+1+a — ao)pi+l

= (a' - a')pji + apj+i

T
= a2 p2+i

<0.

Step 5 does the perturbation of
()

in direction Pi+i, i.e. the normal

vector

(

j

)

of hyperplane (7.28) is perturbed in direction
(

Pi+i

),

and

	

/ u(x+i) \ 	 -

gets x2i which approximates a E S. (c(x2+i)) is a point of the

\ f(x2i) I
/u() \

space approximating the point f c()) for which (7.29) holds as equality and

f() I
which is furthest away from the origin in the direction of perturbation

().

/ u(x +) \
a 1 is the point (c(x+i) I projected onto the (ii,) space. At the end of step

\. f(x))
5 there is a stopping criterion which is identical to the one at the end of step 1.

Step 6 defines D+1 as the set of vectors which the next perturbation direction

must be orthogonal to. Note that for i> 1

D2 = jai - a0 , a2 - a0 , ..., a2 - ao J.

After this procedure one picks the point among x 0 ,x 1 ,..., x2 which least violates

the constraints (7.2), (7.3), 1. e. for which I I u(x) + H + IIc(x)H is least, and accepts

it as an approximation to the solution point of problem (7.1)-(7.4). This will be

the first element of E, where E is defined in step 8.

At this stage the set E does not seem to be of any use. Later on, Algorithm

8.4.1 will use Procedure 7.3.1 and there the set E will be useful.

Procedure 7.3.1 is always guaranteed to terminate. The reason for this is that

the vectors

a 1 - a0 , a2 - a0 , ..., a2 - a0

are linearly independent (this will be proved in Theorem 7.3.4). These vectors

are k + m dimensional vectors. This implies that i < k + m. When i = k + m

then in step 4 there can not exist a vector Pi+i ~ 0 satisfying p 1 v = 0 for all

106

v E D2 because

{ a1 - a0 , a2 - a0 , ..., a - ao } = D2 .

This leads to termination of Procedure 7.3.1.

Next the proof will be provided that a 1 - a0 , a2 - a0 , ..., a - a0 are linearly

independent. First we need an auxiliary lemma.

Lemma 7.3.3 The point a 1 as defined in step 5 of Procedure 7.3.1 satisfies

a 1pj1 > 0.

Proof:

x 1 is an optimal argument for L(\, i)

and a 1 in step 5 it follows that

From this and the definitions of (

 11)

L(A,) = f(u(xi),c(x+i)) -)\T u (x+i) - i T c (x) 	 (7.32)

= f(u(x+1), c(xj+i)) - T u (x) - Tc(x) + EPiai+l.

If a component j of) is zero then the corresponding component of Pi+1 is less

than or equal to zero because B (defined in step 2) contains a unit vector e3 with

1 as j-th component and Pi+i satisfies epj+l < 0 (required in step 4). Hence

(\,) is dual feasible. By the dual optimality of (5,)

L(A,) > L(A,)

Inserting (7.32) in LHS gives

f (u(x+i), c(x+i)) - T u (x) - Tc(x) + epiaj+l > L(,)

' ep 1 a 	~ 	L(\, 11) 	- 	 (f(u(x+1), c(x+i)) - T u (x) - iTT c (x+1))

By definition of L(,) we have RHS> 0.

= 	Epiai+l > 0

Since e > 0 it implies p 1 aj1 > 0. 	D.

Theorem 7.3.4 The set of vectors ja i - a0 , a2 - a0 , ..., a2 - ao }, where a3 for

0 < j < i are defined in steps 1 and 5 of Procedure 7.3.1, is a set of linearly

independent vectors.

Proof:

The proof is done by induction. For the case i = 1 it must be shown that

a1 - a0 0 0, 1. e. that a 1 0 a0 . This will be shown by contradiction. Assume

107

a1 = a0 . We have ap1 <0 from the requirement in step 4. But from Lemma

7.3.3 afpi ~ 0 . Contradiction.

Now assume that the theorem holds for some i > 1. It must be shown that

if Procedure 7.3.1 does not terminate before defining a+i then a+i - a0 is lin-

early independent from a 1 - a0 , a2 - a0 , ..., a - a0 . Let's prove this, again, by

contradiction.

If 	a 1 - a0 = 	 - ao)

for some scalars aj then

i

p- 1 (aj+i - ao) = 	c jp 1 (aj - ao). 	 (7.33)
j=1

LHS of (7.33) > 0 since p 1 aj1 > 0 by Lemma 7.3.3 and p 1 a0 <0 by Lemma

7.3.2 and by step 4 of Procedure 7.3.1 which ensures that Pi+1 satisfies the con-

ditions of Lemma 7.3.2.

RHS of (7.33) = 0 since p 1 (aj - ao) = 0 for 1 <j <i by the condition on Pi+1
in step 4. (Remember that (a - ao) (E D2 for 1 < j < i.) Contradiction. E:J.

Corollary 7.3.5 The vectors a 0 , a1 a are all different, where a3 for 0 < j <
i are defined in steps 1 and 5 of Procedure 7.3.1.

Proof:

By Theorem 7.3.4 a1 - a0 , a2 - a0 ,..., a - a0 are linearly independent. This implies

that a3 - a0 0 for 1 j < i. This means that a0 is different from a 1 , a2 ,..., a.

Now assume that ak = a3 for some j,k satisfying

1 	j < i,

1 <k

j$k.

Then ak - a0 = a - a0 and hence a1 - a0 , a2 - a0 ,..., a - a0 are linearly dependent.

Contradiction to Theorem 7.3.4, hence ak =A a3 . 	U.

Corollary 7.3.5 is important because it shows that the perturbation method of

Procedure 7.3.1 is efficient in the sense that every perturbation finds a new point

of the (ii, c, f) space where (7.29) holds as equality. This implies that every

perturbation finds a new vector I E S where S is defined in (7.27)

101-01

7.4 Conclusions

The main result of this chapter is the perturbation procedure Procedure 7.3.1.

The usual dual method for solving problem (7.1)-(7.4) solves the dual problem

(7.6),(7.7) and then accepts x(\, A) as the optimal point of problem (7.1)-(7.4),

where x(\, /t) is a computed point satisfying (7.26) and (,) is a solution point

of the dual problem. If x(A, i) is feasible and complementary slack then by

Lagrange's Sufficiency Theorem x(\, ü) solves problem (7.1)-(7.4).

In the case that x(, /1) is not feasible and complementary slack then typically

there exist several points which are equally likely to be good near optimal points

to problem (7.1)-(7.4). Procedure 7.3.1 discovers several of these near optimal

points (at most it finds m + k points). The usual dual method would compute

only one of these near optimal points.

109

Chapter 8

A model for the Lagoven problem

8.1 Prototype hybrid algorithm

The Lagoven problem can be formulated as follows:

maximize 	f(x,v) (8.1)

subject to 	ui(x,v) <0, (8.2)

u2(x,v) <— 0, (8.3)

ci(x,v) = 0, (8.4)

c2(x,v) = 0, (8.5)

xEX,vEV (8.6)

where X C 1R1 , V C 1R12, the functions f, u1, u2, c1, c2 are f :]Rfll+fl2

U1 :]Rnh+2 , Rk,, U2 : 1R1+2 	ff?k2, C1 : lRfh+n2 —p 	2 :]Rfll+n2 _+ JRm2

Define the following Lagrangian

:= max{f(x,v) -)Tu(xv) - T c1 (x,v)
xEX

u2(x,v) < 0,c2(x,v) = 0} 	 (8.7)

where A e JRkl 	E]fjTfl1 This means that only constraints (8.2) and (8.4) are

relaxed. Suppose that there exists a method to evaluate L(A, fL) for every),

and v E V. If v E V is fixed then it is possible to use the dual method to find a

good x for problem (8.1)-(8.6). ie. pick x e S where

S :={x:xEX,f(x,v)_ Tui(x,v)_/ Tci(x,v)=Lv (,fi), 	(8.8)

u2(x,v) <0, c2(x,v) = 01

and where (\, fi) solves the dual problem

minimize 	L(A, fL) 	 (8.9)

subject to 	.A 2 0.

110

Suppose problem (8.1)-(8.6) is nonlinear and continuous with a lot of local op-

tima. An algorithm will be presented to find a good local optimum (x, v) using

the dual method and a local optimization procedure (like SQP or SLP). The lo-

cal optimization procedure used is one which minimizes the sum of constraint

violations in the case that it can not find a feasible point. If the dual method is

done with a numerical method and if the set S. c, has more than one element then

usually the numerical method will only return one element from S as the result

x. So for the below algorithm let's assume that there is a numerical method to

evaluate L(A,), but this method always returns exactly one value for x which

achieves the maximum in the RHS of (8.7). Next a basic algorithm is shown

which combines a local search method applied to problem (8.1)-(8.6) with the

dual method given by (8.7), (8.8), (8.9).

Algorithm 8.1.1

choose an integer n> 0.

Use some method to obtain starting values for the vectors x, v and store

these as x 0 , v 0 respectively.

For i=ltondo

With v = v_ 1 apply the dual method given by (8.9). The result is an

optimal dual vectors (A, fi). Apply the perturbation procedure (Procedure

7.3.1) to 	The result is a set

where 1 <r < k + m1 and E C S_ 1 .

For all j with 1 < j < r do a local optimization of problem (8.1)-(8.6)

with (i, v i -- 1) as a starting point. The result are locally optimal points

(±, i). (If the local optimization routine can not find a feasible point,

it minimizes the sum of constraint violations instead.) From the points

..., (i r , 1'r) pick the best one with respect to constraint satisfaction

and objective value and store it as (x i , v i).

Ifv,=v3 for some <ithen go to step 8.

continue i.

From the points (x0 , v 0), ..., (x i , v) pick the best one with respect to con-

straint satisfaction and objective value and return it as the result to problem

(8.1)-(8.6). Stop.

111

Steps 1 and 2 are initialisation steps. Essentially, within the i—loop (steps 3-7)

dual optimization and local optimization are alternatingly applied. The idea is

that the dual method in step 4 is often capable of 'escaping' from a bad local op-

timum. The algorithm produces a sequence of points (x 0 , vo), (x 1) v i), . . . , (x2 , v 2)

where i < n. Each of these points corresponds either to a local optimum of

problem (8.1)-(8.6) or to a point which locally minimizes the sum of constraint

violations in (8.2)-(8.6). At the end of the algorithm the best local optimum

produced is accepted as the final result to problem (8.1)-(8.6). If the stopping

condition in step 6 is fulfilled but the algorithm were to carry on then in the

next iteration the algorithm would find (x 1 , v +i) (x +1 , v 1) with j < i, and

it would just keep on repeating previous computation. Usually, if the stopping

condition in step 6 is fulfilled then j = i - 1 and (xi , v) corresponds to a 'good'

local optimum, where, of course, 'good' local optimum means a local optimum

with a relatively high objective value.

8.2 Description of the Lagoven problem

In Lake Maracaibo in Venezuela there is a big oil production field, its description

is the topic of this chapter. The operation of this oil production field gives rise

to a non-convex, non-continuous optimization problem. A simplified model and

ways to find good solutions to the corresponding optimization problem will be

presented.

Figure 8.1 shows the simplified architecture of a oil production field. The

lines in the figure stand for pipes, wells are represented by a circle. To each

well gas is injected from one gas manifold. The injection of gas into a well

has the effect of increasing the production rate of the well. The change of the

production rate of the well depends on the injection rate of gas. Gas manifolds

are represented by squares below the circles representing wells. A mixture of oil

water and gas comes out of a well and is delivered to a flowstation. Flowstations

are represented by squares above the circles representing wells. At a flowstation

water and oil is separated from the gas, which is going back into the system. Each

fiowstation has a limit on the rate of water that it can separate. Each flowstation

i is operated at its own pressure Pf,i. (The index f stands for flowstation.) There

are k flowstations. The rate of gas flow from flowstation i back into the system is

q1, 2 . (As before, the index f stands for flowstation.) The gas from the flowstations

comes together at a node where the pressure is p. From there the gas flows to the

compressor. The rate of gas flow to the compressor is q1 . At the entry point to the

compressor the pressure is P2 The compressor burns some of the incoming gas in

112

q2

npressor

D 	 q,

q3

Figure 8.1: Model of the oil field

113

order to increase the pressure. Where the gas leaves the compressor, the pressure

is p3. Some of the out-flowing gas leaves the system and is sold, this flow of gas is

q. The price for one unit of gas is c. The out-flowing gas staying in the system

is q3 . This gas flows to a node where the pressure is p. From this node the gas

is delivered to m different gas manifolds. The rate of flow of gas to gas manifold

i is qg j. (The index g stands for gas manifold.) Gas manifold i is operated at

pressure p9 ,j . There are ri wells and they are numbered from left to right. Wells

1, 2 ... n, receive the lift gas from gas manifold 1. Wells ri1 + 1..... , ni ± ri2 receive

the lift gas from gas manifold 2. If

z 1 :=0, Zi 	
~7 nj for i>2,

then wells z + 1, ..., z + ni receive lift gas from gas manifold i. (Notice that
EM

J n3 = n) The rate of lift gas injection into well i is x. (xi > 0).

Well i is connected to flowstation ir(i). ie 7 is a function from 11, 2, ...n} to

{1, 2, ..., k}. Well i is connected to gas manifold q(i). ie 0 is a function from

{ 1, 2,...n} to {1, 2, ..., m}. (From what was said about the connection of gas

manifolds with wells, it follows that (i) = j for z < i < z3 + n3 .) The flow rate

of oil coming out of well i is

f (xi, Pg ,(i), Pf,ir(i))

The flow rate of gas coming out of well i is

gj (xi, Pg,(i), Pf,ir(i)).

The flow rate of water coming out of well i is

Si(xi) P g , cb(i), Pf,ir(i)).

ie. f, gj and si are functions JR3 - JR for 1 < i < n. Also, the functions f,

gj and si are always non-negative. Along the pipes pressure drop takes place.

The pressure drop in the pipe connecting flowstation i with the node where the

pressure is P1 can be described by

wf,j(pf ,j,qf ,j,pi) = 0

wf, i is a function relating the pressures at the two ends of the pipe with the flow

of gas through it. It is a continuous function JR3 -+ R. (The index f, again,

stands just for flowstation.) Similarly, the pressure drop in the pipe connecting

the node where the pressure is Pi with the compressor can be described by

wi(p1,q1,p2) = 0,

114

w 1 is a continuous function JR3 —+ R. The pressure drop in the pipe connecting

the compressor with the node where the pressure is p4 can be described by

w 2 (p3 ,q3 ,p4) = 0,

W2 is a continuous function JR3 —+ R. The pressure drop in the pipe connecting

the node where the pressure is p4 with gas manifold i can be described by

'wg , j (p4, qg ,j,pg,j) = 0

(The index g stands for gas manifold.) w_q ,i is a continuous function JR3 —+ R.

There is, of course, also pressure drop in the pipes connecting wells to fiowstations

and to gas manifolds, but these pressure drops are already incorporated in the

functions f, gj and si for i = 1, 2, ..., n, hence there is no need to include these

pressure drops explicitly in the mathematical formulation. The compressor burns

some of the incoming gas in order to increase the pressure. The action of the

compressor can be described by

h(p2 ,p3 ,qi ,q4) = 0

where h is a continuous function JR4 —* JR and q4 is the rate of gas being burnt

by the compressor. From the mass balance at the compressor it follows that

q4 = q, — q2 — q3. Before the whole optimization problem is formulated, one more

object must be defined. Let

Q(j) = {i: 1 <i < n,ir(i) = j}

So Q(j) is the set of indices of wells which are connected to fiowstation J. The

optimization problem will be formulated now:

n

maximize 	cq2 +
	

(8.10)
i= 1

subject to 	.Sj(Xi,Pg,cb(i),Pf,j)
	—S 3 <0 Vj:1<j<k, (8.11)

iEQ(j)

gj (x i , Pg,(i), 	—q1, 3 =0 Vj:1<j<k, (8.12)
iEQ(j)

wf, j (pf, j ,qf, j ,pi) = 0 Vi:1<i<k, 	 (8.13)

qf,j 	—q 1 =0, 	 (8.14)

w 1 (p 1 ,q1 ,p2) = 0, 	 (8.15)

q1 — q 2 — q 3 — q 4 = 0, 	 (8.16)

h(p2 ,p3 ,q1 ,q4) = 0, 	 (8.17)

115

w2(p3,q3,p4) = 0, 	 (8.18)
Tn

q9 , 	—q3=O, 	 (8.19)
i=1

wg,j(p4,q g,j,p g ,j) = 0 Vi: 1 	i < m, 	 (8.20)
zj+nj

	qg ,jE Xi - 	
= 0 Vj : 1 <j m, 	 (8.21)

i=zj+1

q 1 ,q2,q3,q4 ~! 0, 	 > 0 Vi 	 (8.22)

(8.10) is the objective function, (8.11) describes the separation constraint at the

flowstations where S is the limit on the rate of water arriving at flowstation

j, (8.12) describes the conservation of gas at the flowstations, (8.13) describes

the pressure drop in the pipes connecting a flowstation with the point where

the pressure is Pi, (8.14) describes the conservation of gas at the point where

the pressure is Pi, (8.15) describes the pressure drop in the pipe connecting the

point where the pressure is P1 with the point where the pressure is P2, (8.16)

describes the conservation of gas at the compressor, (8.17) describes the constraint

describing the influence of the compressor (ie. the burning of some gas in exchange

for an increase in pressure), (8.18) describes the pressure drop constraint of the

pipe connecting the points where the pressures are p3 and P4 respectively, (8.19)

describes the conservation of gas at the point where the pressure is p, (8.20)

describes the pressure drop in the pipes connecting the point where the pressure

is p4 with gas manifolds, and finally, (8.21) describes the conservation of gas at

the gas manifolds. This completes the circle of the network. (8.22) describes the

positivity constraints for the flow variables.

The functions f, si and gi are typically non-continuous. For fixed a, b E IR,

the functions f(x,a,b),s(x,a,b) and g(x,a,b), which are now functions in x

only, have one common point where the functions are discontinuous.

Let this point be x * (a, b). 	 (8.23)

x is continuous in a and b. When a, b are fixed the functions f(x, a, b),s(x, a, b),

gj (x, a, b) are continuous in x on the intervals (—oo, x) and [x, oo). The other

functions in the problem are everywhere continuous. The variables in this problem

are x 1 , X2 ... X, Pg,1,Pg,2, •••,Pg,m, q9,1, q9,, ..., q9,, Pf, 1, Pf,2, ...,Pf,k, q1,1, q1,2, ..., qf,k,

P1,P2,P3,P41 q1 , q2 , q3 , q4 . Let these variables be grouped together in vectors as x,

Pg, qg, Pf, q1, p, q. The obvious way to tackle this problem is to try a local op-

timization technique like sequential linear programming or sequential quadratic

programming. However, the discontinuities of the functions f, s, gj make this

approach problematic because one has to decide at which side of the discontinu-

ity the first argument of these functions shall be. It is easy to see that a lot of

116

combinations arise. A hybrid algorithm including a local optimization technique

(ie. sequential linear or quadratic programming), dynamic programming and the

dual method will be proposed. This hybrid algorithm is of the form described in

section 8.1.

8.3 Description and solution approach of a sub-
problem

In this section a subproblem of the optimization problem of the previous section

will be described and a dual algorithm for its solution will be discussed. Consider

the following subproblem:

n

maximize{ }= 	f (xi , Pg,(i), Pf,ir(i))
	

(8.24)
j=1

subject to 	sj (Xj,p g,(j),pf,j) - S2 	0 Vj : 1 < j < k, 	(8.25)
iEQ(j)

9j(Xj,Pg,(j),Pf,j) - q1,j = 0
iEQ(i)

zj+nj

x.=q9 ,3 Vj:1jm,
i=z +1

X i > 0 Vi

Vj:1<j<k, 	(8.26)

(8.27)

(8.28)

The optimization in this subproblem is in the variables {x} 1 only, all other

variables are fixed. In terms of Figure 8.1, this subproblem just looks at the area

between the gas manifolds and the fiowstations. Notice that constraint (8.25) is

equivalent to (8.11) and (8.26) is equivalent to (8.12). (8.27) is identical to (8.21).

For the dual algorithm a Lagrangian function will be defined where constraints

(8.25) and (8.26) will be relaxed.

In

L(, p) := max 	f(x, Pg,(i), Pf,(i))

k

- 	A(Sj(Xj,p g ,(j),pf,j) 	- S)
j 1 	iEQ(i)

k

- 	ji3 (gj(xj,pg,0(j),pf,j) 	-

i=1 	iEQ(i)

zj+nj

E xi = qg,j Vj: 1 <j <m, and xi > 0 Vi 	 (8.29)
i=zj+1)

117

A and u are k dimensional vectors, their components are given by AT = (.\i, A2, ..., Ak)

and ji'' = (,-ti, I2, -••, /Lk). (and all A, p i e JR)
For every i : 1 < i < rt there exists exactly one j : 1 < j < k such that

i E Q(j). From the definition of Q(j) it follows that

i E Q(j) e=r(i) =j

Hence the following equivalence holds:

A(Sj(Xj,P g,(j),Pf,j) 	- S)

j=1 	ieQ(j)

AjSi(Xi,P g,(i),Pf,j) -

j1 iEQ(j) 	 j=1

E= 	E A(i)s i (x i ,Pg,(i),pf ,(i)) -

j=1 iEQ(j) 	 j=1

n 	 k

= 	Air(j)Sj(Xi,Pg,çL,(j),Pf,ir(j)) - 	A 3 S 	 (8.30)
jz1 	 j1

Similarly:

gj(xj,pg,(j),pf,j) 	- qf,j) 	 (8.31)
j=1 	iEQ(j)

=

k

i)9ui,,i)j -

	

j jqf

Inserting (8.30) and (8.31) in (8.29):

L(A, 	max{}1
{ 	

fj(Xj,pg,(j),pf,(i))

- 	A ir(i)Si(Xi,P g ,(i),pf, ir(i)) + E AS

i=1 	 j=1 - 	i)9i (Xi ,Pgi) f (i)) + E /Ljqj ,j

zj+nj

	 I x,=q9 ,3 Vj:1<j<m, and x > 0 Vi 	 (8.32)
z=z3 +i

L(A, t) can be evaluated numerically by dynamic programming. In order to see

how let's define

T3 (A,) := max 	 :1: fi(Xi,Pg,(i),Pf,ir(i))
{xjj+i l i=zj+l

118

Zj+flj

- 	'\() Si (x i , Pg,(i), Pf,ir(i))
i=z +1

zj+nj

- 	i: 	j)gj(xj,pg,(j),pf,(j))

2=Zj +1

zi +nj

xj=q9,, and x>O Vi:z+ 1 izj+n

i=zj+1

T(A,) is well defined for : 1 <j m.

Now define

(8.33)

f (x i) 	fi (xi, Pg,q5(i) Pf,ir(i)) - 	r(i) Si (x i , Pg,(i), Pf,7r(i)) - 1(i)gi (x i , Pg,(i), Pf,ir(i 34)

Then
(zj +n

= max Zj+Thj j(x)
{x,}_. +1

zj+nj 	
)

x i = q,, and x>O Vi:zj+1<i<zj+n 	 (8.35)
i=z,+i)

From this it can be seen that it is possible to enumerate Ti (A, t) approximately

by dynamic programming using n3 stages and one-dimensional continuous action

and state spaces. The finer the discretisation one uses the better the numerical

solution will be. Further, since the functions f1 are continuous and differentiable

everywhere except at one point the Fritz-John action elimination can be applied

which speeds up the algorithm. From the previous definitions it can be seen that

	

rn 	 k

L(A,) = 	Tj (\, i) + 	+ tj qf ,j) 	 (8.36)

	

j=1 	 j=1

Hence it is clear that L(A, jt) can be evaluated numerically using dynamic pro-

gramming. L(\, i) is a convex function, this has been proved in Lemma 7.1.1. It

is important to recognise that the evaluation of L(\, ji) can not be done analyt-

ically, it must be done numerically (using dynamic programming). Even though

L(A, i) is convex, in general L(\,) is non-smooth. A subtangent of L\, ji) is

available. Next a subtangent of L(, ji) and its derivation will be given.

Theorem 8.3.1 Let (A,4) e 1R 1 x JRk let I satisfy (8.39) and p be a 2k-

dimensional vector with components

pi = Si - 	i Si(Ii,Pg,c(i),Pf,i),

iEQ(j)

Pk+j = qf,i - E gj(xj,pg,(j),pf,j)

iEQ(i)

119

for 1 < J < k. Then p is a subtangent vector of the subdifferential set 9L(5, 1T1),

%. e.

L(, 	L()+PT (i)

for a11) E]1?k A iRk

Proof:

The theorem is a direct consequence of Theorem 7.1.6. In order to apply results

of section 7.1 it must be shown that problem (8.24)-(8.28) is of the problem form

(7.1)-(7.4) and that the definition of jt) in (8.29) is of the form (7.5):

(8.24) is of the form (7.1), (8.25) is of the form (7.2) and (8.26) is of the form

(7.3) (setting for m = k) since in (8.24)-(8.26) only {x}L 1 are variables and

p9, Pi, q1 and {S}1 are fixed parameters. (8.27) and (8.28) are of the form

(7.4) since in the definition of L\, j) in (8.29) the constraints (8.27) and (8.28)

are not relaxed. (8.27) and (8.28) can be thought of as conditions defining a set

X. Having established correspondences between (8.24)-(8.28) and (7.1)-(7.4) it is

clear that the definition of L(A, i) in (8.29) is of the form (7.5) and hence that all

results, methods and procedures of section 7.1 can be applied to the subproblem

(8.24)-(8.28).

In the previous paragraph it has been said that (8.25) is of the form (7.2).

More explicitly, this means that u(x) in (7.2) is the vector with components

u(x) = 	Sj(Xj,p g ,(j),Pf,j) 	- Si 	for 1 < j :5 k.

iEQ (j)

Also (8.26) being of the form (7.3) with m = k in (7.3) means that c(x) in (7.3)

is the vector with components

c(x) = 	gj(Xj,pg,(j),pf,j) 	- q1,j 	for 1 < j < k.
iEQ(j)

Using these expressions for u(x) and c(x) in Theorem 7.1.6 yields Theorem 8.3.1.

D.

L(A, 	is well defined. The dual problem of subproblem (8.24)-(8.28) is

	

minimize 	L(.A, p) 	 (8.37)

	

subject to 	.A > 0. 	 (8.38)

This problem can be solved using a local optimization technique. A cutting plane

method is suitable for solving the dual problem because L\,) is convex and

120

because at every point (\, ji) the evaluation of L(A, ji) also provides an optimal

argument ji) in the RHS of (8.32) and this in turn provides a cutting plane

(Theorem 8.3.1). Since L(A, ji) is a convex function every local optimum is a

global optimum.

Let) and ji be the solution vectors to problem (8.37) and (8.38), their com-

ponents be given by)T =
(i i 2, ..., Ak) and 1T

= (Al, /12, ..., Ilk). Let 1 be

an argument in (8.29) which achieves the maximum when), ,i are replaced by

A, j1. The components of I are given by iT = (x 1 , i2, ..., §). From the last two

sentences:

E arg max

k

- i: 	i: Sj(Xj,Pg,cb(j),Pf,j) 	- S)
j=1 	iEQ(j)

- 	
j(gj(Xj,pg,(j),f,j) 	- qf,j)

j=1 	iEQ(j)

zj+nj

x i = qq ,j Vj:1<j<m, and x>O Vi 	 (8.39)

)

If x 	i satisfies (8.25) and (8.26), and also satisfies the complementary

slackness condition

Sj(Xj,P g ,(j),Pf,j) - S) = 0 Vj : 1 < j < k
iEQ(j)

then I solves subproblem (8.24)-(8.28) by Lagrange's sufficiency theorem. How-

ever, in general there is no guarantee that the conditions of the last sentence are

fulfilled by i. ii is an element of a set of optimal arguments which often has

more than one element. In order to find an element iI from the set in (8.39)

which violates constraints (8.25), (8.26) only a little the perturbation method of

Procedure 7.3.1 can be applied. In order to see how this can be done exactly it

is useful to have in mind how subproblem (8.24)-(8.28) can be put into the prob-

lem form (7.1)-(7.4) to which Procedure 7.3.1 applies the perturbation method.

In the proof of Theorem 8.3.1 it is described how (8.24)-(8.28) corresponds to

(7.1)-(7.4).

In section 7.1 it was always assumed that there exists a method for the evalu-

ation of L(A, ji) for every choice of \, ji) which also returns an optimal argument

x(A, ji) satisfying (7.26). In this section it has been shown that DP provides such

an evaluation method for ji) as defined in (8.29).

121

8.4 Proposition of a hybrid algorithm

In this section a hybrid algorithm is presented for the Lagoven problem given

by (8.10)- (8.22). It is based on Algorithm 8.1.1 in section 8.1. The vector v of

section 8.1 corresponds to Pg, q9 , p1, q1, p, q. The various steps will be discussed

in more detail after presenting the algorithm.

Algorithm 8.4.1

choose an integer N> 0.

Use some method to obtain starting values for x,p9 , q9 , p1, q1, p, q. Store

these starting values as vector Yo by setting

a;

pg

qg

Yo Pi
q1
P
q

For k = 1 to N do

With values of Pg, q9, pf, q1 taken from Yk-1 solve the dual problem (8.37),(8.38)

of subproblem (8.24)-(8.28). The result is an optimal dual vector

Having solved the dual problem apply the perturbation method of Proce-

dure 7.3.1 to 	The result is a finite ordered set E with r elements

where every i e E satisfies (8.39).

For each E E do a local optimization as follows:

Use as starting point a vector y with x-component ± and p 9 , q9, pf , qj, p, q
components equal to those of lIk-1•

Let I be the set of indices

± ~
! X(Pg,çb(i),Pf,7r(i))}

where the meaning of x* (a, b) is taken from (8.23).

Apply a local optimization routine (SLP or SQP) to problem (8.10)-

(8.22) with the additional constraints

Xj ~! : 	 Pf,rr(i)) Vi E I

xi < X(Pg , çj,(j),Pf,(j)) - € Vi 	I

122

where E > 0 is a small tolerance parameter. If the algorithm can not

find a feasible point then it minimizes the sum of constraint violations

instead.

The result of these r local optimizations are locally optimal points , ,

From these points pick the best one with respect to constraint satisfaction

and objective value and store it as yk

If Yk = Yj for some <k then go to step 8.

continue k.

From the points yo, ..., Yk pick the best one with respect to constraint sat-

isfaction and objective value and return it as the result to problem (8.10)-

(8.22). Stop.

Steps 1 and 2 are initialisation steps. Step 4 does an optimization of a sub-

problem with variables x only, the optimization method applied can cope with

discontinuities of the functions f, gj and s. Step 5 applies a local optimization

procedure like SQP or SLP to the whole Lagoven problem and since local opti-

mization algorithms cope badly with discontinuous points, additional constraints

are being imposed to insure that the discontinuous points do not obstruct the

local optimization process. The algorithm generates vectors Yo, Yi, ..., Yk where

k < N. Not all of these vectors necessarily correspond to feasible points of the

Lagoven problem (8.10)-(8.22), but in practice usually they do. Those vectors

which correspond to feasible points are locally optimal. Steps 4 and 5 amend

each other in the following sense: Step 4 involves the dual method in combi-

nation with dynamic programming which is described in section 8.3 and step 5

involves a local optimization algorithm. The method of section 8.3 copes well

with the discontinuities of the functions f, g, s, whereas local optimization algo-

rithms cope badly with discontinuous points. Secondly, the method of section 8.3

only optimizes over the vector x and it is not good at satisfying all constraints

exactly, whereas a local optimization algorithm optimizes over all variables (i.e.

x, p9 , q9 , pf, qj, p, q) and generally it is good at satisfying all constraints exactly,

given that the starting point is almost feasible.

This algorithm is very similar to Algorithm 8.1.1 in section 8.1. The dual

method in the algorithm of section 8.1 is not specified whereas it is specified in

this algorithm.

Recall that E is a set of optimal arguments ii satisfying (8.39) where

is a solution to the dual problem (8.37),(8.38) which is the dual problem to sub-

problem (8.24)-(8.28). E is an ordered set, the order being according to the sum

123

of constraint violations in (8.25),(8.26) by an element ± E E. The first element

± e E is the one with the smallest sum of constraint violations, the last element

± the one with the largest sum of constraint violations. It can be expected that

an element ± E E with small sum of constraint violations is better as a starting

point for the local optimization in step 5 than another element x e E with larger

sum of constraint violations. This is a heuristic argument which Algorithm 8.4.1

does not rely on.

In Algorithm 8.4.1 the vectors p9 , q9, Pf, q1, p, q play the role of v in Algorithm

8.1.1.

8.4.1 Initial values for x,p9 ,q9 ,pf,qj,p,q

In this section a method to find initial values for x,pg ,qg ,pf,qf,p, q in step 2 of

Algorithm 8.4.1 is presented. Basically the idea is to apply a local search method

to a continuous problem which approximates the non-continuous problem (8.10)-

(8.22).

In problem (8.10)-(8.22) in praxis the functions f, s,, g, w1,, w i , h, w2 , W g ,j

are functions with the characteristic that when all arguments are zero then the

function value is zero. This implies that the point

Pg
qg
Pi =0
q1

P
q

is feasible for problem (8.10)-(8.22).

Remember that the functions f, s, gj have discontinuities which is the rea-

son why Algorithm 8.4.1 has been proposed instead of simply applying a local

optimization routine to problem (8.10)-(8.22). In order to find initial values for

x,p 9 ,q9 ,pf,qf,p, q , which is needed in step 2 of Algorithm 8.4.1, do the following

process:

Construct CONTINUOUS functions f, ., which approximate the func-

tions f, 5, gj respectively. When all arguments are zero then f2, ., 	 shall

take the value zero (like f, 5, gj do).

Apply a local optimization routine to problem (8.10)-(8.22) with the func-

tions f, 5, gj being replaced by f, s, ji respectively. Use as starting

124

point

X

pg
q9

P 	=0.
q1

P
q

3) The result of the previous step is a point which is locally optimal for prob-

lem (8.10)-(8.22) with the functions f, s, gj being replaced by f, s j ,
respectively. Let this point define the initial values of a;, p9 , qg, Pi , qf , p, q

in step 2 of Algorithm 8.4.1.

8.5 Perturbation and discontinuities

In this section a special situation is described. This kind of situation appears

when solving the Lagoven problem (8.10)-(8.22) with Algorithm 8.4.1. In section

8.6 problems of Algorithm 8.4.1 will be discussed and removed. For the clearer

understanding of section 8.6 it is necessary to be aware about the special case

described in this section.

Consider the following optimization problem in two variables a; and y.

maximize 	f(x,y)

subject to 	v(x) - y = 0, 	 (8.40)

x>0 , y>O

where a;, y E IR, f : JR 2 -+ IR, v : JR -+ R. Suppose that

v(0) = 0,

v(x) > a
	

for all a; > 0

where a is a nonzero positive real number. i. e. v is discontinuous at a; = 0. Let

this problem be solved by an algorithm which alternatingly solves (8.40) in a;

only using the dual method (with perturbation of the optimal dual variables) and

then applies a local optimization in a; and y, taking the solution of the previous

dual method (local optimization) as the starting point of the local optimization

(dual method). Suppose that at the beginning of a dual method y = 0. The dual

method minimizes L() where

L() := max{f(a;, y) - ji(v(a;) — y)}
x>O

125

T

Figure 8.2:

Figure 8.2 shows what the f() plot could look like where

max{f(x, y) : v(x) - y = x>O

and f() := —oo if there exists no x > 0 such that v(x) - y = . Notice that in

Figure 8.2 J() = —oo for Z < 0 and for 0 < < a because v(x) - y = 0 only for

x = 0 and for no x> 0 is 0 < v(x) - y < a. This is because of the assumptions

made about v(x) and because y = 0. L(y) is minimized for all M > ft as can be
(x\ (o\

seen from Figure 8.2. Point A arises from
Y 	0 J = 	j. It is desirable that the

\J 	\
dual method not only discovers A but also B in order to get over the discontinuity

of v(x) at x = 0. If the minimization routine used for the minimization of L()

returns ft as optimal solution then the perturbation method, which is the next

step of the dual method, will discover B. If the minimization routine returns a

a>> ft as optimal solution then the perturbation method will not discover B. A

good trick to ensure that the dual method discovers B is the following: replace y

in the definition of L(p) by which satisfies:

ify>0 then y=y,

ify=0 then O<<a.

When L(t) with this definition , i.e.

L(u) := max{f(x,) - ,u(v(x) - x>O

is minimized then the only optimal solution is ft which can be seen from Figure

8.3. Notice that f() in Figure 8.3 is f() from Figure 8.2 shifted by to the left.

Since now the minimization routine for the minimization of L(t) can only return

ft as optimal solution, the perturbation method will discover B when perturbing

126

Figure 8.3:

____~\, j

7si 	 'Ig i

Xi

Figure 8.4:

8.6 Problems of the hybrid algorithm and how
to remove them

Algorithm 8.4.1 of the last section is an algorithm for the solution of problem

(8.10)-(8.22). It combines a local search method like SLP or SQP with the dual

solution procedure of subproblem (8.24)-(8.28) which is described in section 8.3.

In practice, when combining the dual solution procedure with the local search

method some problems arise. All these problems have to do with the point x(a, b)

at which the functions f(x, a, b), s(x, a, b), and gj (X, a, b), when considered as

functions of x only, are non-continuous. Figures 8.4-8.5 show some typical plots

of these functions. The main characteristic to be noticed about the functions f,
s, gj is the following: when x * (a, b) > 0 then for all x < x* (a, b)

f(x,a,b) = 0, 	 (8.41)

s(x,a,b) = 0, 	 (8.42)

9i (x, a, b) = 0. 	 (8.43)

127

Figure 8.5:

Suppose that after a local optimization in Algorithm 8.4.1 qg,j = 0 for some j

and

x(a,b) >0
	

(8.44)

for all a, b and for all i with q(i) = j (or equivalently z3 + 1 < i < z3 +n). i.e. for

all wells i, which receive lift gas from gas manifold j, the discontinuity point x

of the functions f, s, gi is greater than zero for all choices of pressures at the gas

manifold and at the fiowstation which well i is connected to. Further suppose that

at this stage Algorithm 8.4.1 is at a feasible point. Then constraints (8.21) and

(8.22) imply that x i = 0 for all i with z3 +1 < i < z3 +n3 (or equivalently q(i) = j).
The next step in Algorithm 8.4.1 is to solve subproblem (8.24)-(8.28) with the dual

method using DP for the evaluation of L(A, Since in the definition of fL)

the constraint (8.21) (the same as constraint (8.27)) appears as a non-relaxed

constraint, DP actually only considers the zero allocation x 2 = 0 for all wells i

with z + 1 < i < z + n3 . This implies that the result of the dual method applied

to subproblem (8.24)-(8.28) is a distribution x with x i = 0 for z3 + 1 < i < z3 ±n3 .
The next step in Algorithm 8.4.1 is a local optimization applied to problem (8.10)-

(8.22) with a starting point that has x i = 0 for z3 + 1 < i < z3 + ri3 . The local

optimization is not able to cross the discontinuity point x. Hence the computed

optimal point of the local optimization will satisfy

X (p9,, pj,) 	for z3 + 1 < i < z3 + ri2 .

This means that fj , gi and si are all zero by assumptions (8.41)-(8.43) and (8.44).

This in turn means that the computed optimal point of the local optimization

yields

x2 =0 	for z3 -i-1<i<z-i-ri 	 (8.45)

128

since it is not locally optimal to waste lift gas by injecting gas with a small rate

into wells, which don't produce with this rate of lift gas injection. The statement

of the last sentence can be seen by looking at Figure 8.1. Assume that there

qg,i > 0 but that the gas lift allocation from the first gas manifold to wells is such

that none of the wells produce. Then instead, it would be better to reduce q9 , 1

to zero, keep the pressure P4 unchanged, decrease q3 by qg,i and reduce P3 such

that the pressure drop constraint between p3 and p4 is satisfied. If P3 is smaller

it means that the compressor has to work less, but then the compressor has to

burn less gas. The less gas is burned, the more gas can be sold. i.e. q2 can be

increased by the amount of gas, which the compressor burns less, plus by q9 , 1 .

This follows from (8.16), which is the mass balance constraint at the compressor.

(Remember hat q4 stands for the amount of gas burned by the compressor.) This

change would increase the objective and all constraints would still be satisfied.

All the arguments of this paragraph imply that if in Algorithm 8.4.1 Yt is feasible

for some t and its x-component satisfies (8.45) for some j then all yk for k > t

will also have x-component satisfying (8.45) for that J. This, of course, is a bad

feature with a serious impact on the quality of solutions of Algorithm 8.4.1.

The following definition of L(A, p) is better than (8.29) for the dual solution

approach of subproblem (8.24)-(8.28). This definition replaces q9 ,i in (8.27) by

and relaxes this equality constraint. (Recall the material of section 8.5)

	

L(A, p) := max 	f(x, Pg ,(i), Pf,(i))

	

{x}1 	
i=1

k
-)(si(Xi,P g,(i),Pf,j) 	- S)

j=1 	iEQ(j)

k

- 	pj(9i (Xi, Pg,çb(i), pjj) 	- qf,j)

j=1 	iEQ(j)

m 	Zj+flj

- 	/lk+3 (E Xi -
j=1 	i=z+1

)

x 2 <q Vj, x i > 0 Vi 	 (8.46)
i-zj+1 	

)

In (8.29) A e iRk, 	jj.k whereas in (8.46))s. E iRk p
jjk+rn (8.46) looks like

(8.29) except that the last line in (8.29) is changed and one more line is added.

is chosen such that it satisfies:

	

if qg,j > 0 then dg,j = qg,j,
	 (8.47)

if qg ,j = 0 then q,j > 0

129

and < X(Pg,j,f, i,.(i)) 	for all i with

Zj + 1 < i < z3 + n3 	and X(Pg,j,Pf,ir(i)) > 0.

The purpose of replacing qgj by q,j and relaxing the constraints 	 -
= 0 in L(A,) is to avoid the kind of scenario described in the previous

paragraph, where Algorithm 8.4.1 gets stuck with the zero allocation of lift gas

to certain groups of wells. The non-relaxed constraints

zi +flj

X i < q Vj, 	 (8.48)
i=z +1

X i > 0 Vi

play the role of X in (7.5), 2'. e. these constraints define a set X over which the

maximization in {x} 1 in (8.46) takes place. An essential condition for the dual

method to work is that q is strictly greater than 4gj . The larger q is, the larger

can be the constraint violation in (8.27) by § in Algorithm 8.4.1 step 4. If for a

I e E in Algorithm 8.4.1 step 4

zj +nj

±j >> qg,j for some j
	

(8.49)
i=zj+1

then this can be a problem for the local optimization in step 5. In this case

it can well be, looking at Figure 8.1, that q3 has to be increased by the local

optimization to satisfy the mass balance constraint at node p4 . Other constraints

are likely to imply a higher value for the pressures P3, P2 and a higher value for

the gas flow q1 . It is not hard to see that if (8.49) is the case for a E E then

the local optimization in step 5, taking 1 as a starting point, is likely to have

difficulties in converging to a feasible point of problem (8.10)-(8.22). The other

case that for some ± e E in step 4 of Algorithm 8.4.1

zi +nj

ii <<q9 ,i for some
i=z +1

does not cause problems for the local optimization in step 5. In this case, looking

at Figure 8.1, the local optimization can achieve feasibility by decreasing q3 , p

and increasing q, which even increases the objective function. The purpose of

the non-relaxed constraint (8.48) in (8.46) is to limit the constraint violation of

the kind (8.49). Some computational evidence for this argument will be given

in the computational results section 8.7.1. Good experience has been made with

choosing q in the following way:

A = max{x(p g ,j ,pf, (j)) : z3 + 1 < i < z3 + ri2 }
z

q = max{A,O 9 ,3 } where 1.2 < 0 < 2. (8.50)

130

In words: q should be at least as large as every discontinuity point x of the

wells, which are connected to gas manifold j, and at least between and

2,3 .

It must be shown that L(A, t) as defined in (8.46) can be evaluated by DP.

With definition (8.46) manipulations can be done, which are very similar to (8.32)-

(8.36). Note that (8.30), (8.31) still hold unchanged. Let's define t). The

definition below is similar to (8.33).

zj+nj

) := max 	Zj+flj

{

{xj} 1 =.+1

zj+nj

Y.
- 	

Pg ,(i), Pf,ir(i))

i=z +1

zj+nj

- 	I 	j)gj(xj,pg,(j),pf,(j))

i=zj+1

zj+nj

	

Xi 	- qg ,j)
i=z + 1

zi +Tij

x 2 <q, x>0 Vzj +1iz3 +n3
i=zj+1

L(A,p) and 7(A,j.t) are related, again, by (8.36). Therefore, if T\,i) can be

computed with DP then so can be L\,). Defining f(x) by (8.34)

zj+nj 	 zj+nj

= max Zi+fli I 	 - I-tk+j 	xi -
{x2

} Zj+l
i=z1+1 	 i=zj+1

zi +flj

X i <- q3* , x>0 Vz+1< izj+n
i=zj+1

In order to show that T3 (A, j.) can be evaluated with DP let's define the value

function

(+t

Ft (q) := max Zj+t 	 j(x)
{xj}. +i

zi +t

x,=q and x>0 Vi with z j +1<i<zj +t
i=zj+1

Ft (q) has the DP recurrence relation:

Ft (q) = max 	 + Ft_ i (q -

131

Therefore F,, (q) can be calculated for all q > 0 using DP. Notice that

77j ,) = max {F(q) - 	- O<q<q

This shows that Tj (A, i) can be calculated with DP. Hence L(A, u) can be cal-

culated using DP. The function fi is at every point continuous and differentiable

except at Therefore FJ-DP can be applied for the computation

of F,,j (q). As for the discretisation, a variable grid method is good and has been

used.

Another problem of Algorithm 8.4.1 is similar to the problem described so far.

This problem again is caused by the discontinuity points x. Let's look at

gj (x j ,pg ,,(j),pf, j) 	 (8.51)
iEQ(j)

for some j. This expression appears in (8.12) which describes the gas balance

constraints at the fiowstations. Pg ,(i), P!,3 and q1,3 are variables in problem (8.10)-

(8.22) but are fixed parameters in the subproblem (8.24)-(8.28). The set of values

taken by (8.51), when Pg ,(i), Pf,j are fixed and x 2 varies, is not connected in gen-

eral. The reason for this is that gj(xj,pg,(j),pf,j), when considered as a function

of x2 only, is not continuous everywhere and hence the set of values taken by

(8.51), as xi varies, is not connected in general. The reason for combining the

dual method of subproblem (8.24)-(8.28) with a local optimization of problem

(8.10)-(8.22) is to make possible changes in x 2 across the discontinuity points x'.

Since g2 > 0 for all arguments the smallest value that (8.51) can have is zero.

Suppose that in Algorithm 8.4.1 after a local optimization qf,j = 0 for some j

and constraint (8.12) is satisfied by the present point Yt (for some t). This implies

that

gj(Xj, Pg,ç/(j),Pf,j) = 0 	for all i e Q(j),

i.e. for all i corresponding to a well which is connected to fiowstation j. When

gj = 0 it is very likely that

X i < X(P g,(i),Pf,j) 	for i E

which in turn implies x i = 0 because it is not locally optimal to waste lift gas by

injecting gas with a small rate into wells, which don't produce with this rate of

lift gas injection. Then it is very likely that in the set of values, that

i 	 - qf,j
iEQ(j)

132

can take, zero is an isolated element and zero is the smallest element. But then

it is better to replace q1,3 in the definition of L(A, t) by 4f ,j which satisfies:

	

if qf,j > 0 then dfj = qi,j ,
	 (8.52)

if qj,3 = 0 then qr,3 > 0

and df ,j < gj (x(pg,(j),pf, j),pg,(j),pf ,j) 	for all i with

ir(i) = j 	and gj (x(p g,(j),pf ,j),pg,(j),pf ,j) > 0.

(Recall again section 8.5.) The best definition of L(A, p) is (8.46) with q1,3 replaced

by

L(,) := max {
	

f(x, Pg,(i), Pf,(i))
j=1

k
- 	

'i(Si(xi,Pg,(i),pf,j) 	- Si)
j1 	iEQ(i)

k
- 	

(gj(xj,pg,(j),pf,j) 	- f,i)
i' 	iEQ(i)

M 	 Zj+flj

	

- 	/ik+(E x, -
j=1 	i=z+1

zj+nj 	 Si
X i < q Vj, x > 0 Vi 	 (8.53)

i=z+i)

Again, qf,j is chosen such that it satisfies (8.52), q,j such that (8.47) and q such

that (8.50). The dual method of solving subproblem (8.24)-(8.28) followed by

the perturbation method (Procedure 7.3.1) works best when defining L, p) by

(8.53). L(A, i) as defined in (8.53) can be evaluated by DP because (8.53) differs

from (8.46) only in that qf ,j is replaced by df ,j and because L(A, [t) as defined

in (8.46) can be evaluated by DP (this has been shown before). For L, jt) as

defined in (8.53) there is, again, a subtangent available, which makes it possible

to solve the dual problem (8.37)-(8.38) with a cutting plane method. This will

be shown by the next theorem which is similar to Theorem 8.3.1.

Theorem 8.6.1 Let (.A,) E JR x jRk+m let ± be an argument which achieves

the maximum in the definition of L(A,) according to (8.53), i.e. 1 maximizes

the RHS of (8.53) with), ji being replaced by A, it respectively. Also let p be a

2k + rn-dimensional vector with components

Pj = S - 	ii: Sj(rj,pg,(j),pf,j) 	for 1 < j 	k,
iE Q(i)

133

Pk+j = 4f,j-
	

gj(i,pg,(j),pf,j) 	for 1 < j < k,
iEQ(j)

P2k+j = tg,j - zj+nj

	

for l<j<m.
i=zj+1

Then p is a subtangent vector of the subdifferential set aL(A, j), i.e.

L(A,/)>L()+PT(-)

for all A e Rk, jL E jjk+m

Proof:

The proof is similar to the proof of Theorem 8.3.1. D.

8.7 Computational results

In this section some representative computational results of implementations of

the Lagoven model are given. Two kinds of results are presented.

In the first subsection results are given of constructed problems, which basi-

cally means that the functions involved in problem (8.10)-(8.22) are constructed.

However, these functions are constructed so as to have an analytical descrip-

tion and to have shapes and characteristics similar to the "real world" functions.

The constructed problems allow to use a standard SQP subroutine as the local

optimization routine in step 5 of Algorithm 8.4.1.

In the second subsection computational results of real world problems are

presented. Edinburgh Petroleum Services Ltd. (BPS), an oil consultancy and

software company, is interested in the solution of Lagoven-type problems. EPS

has developed software which models pipes and oil wells. From given data of

pipes, oil wells and compressors this software can piecewise linearly approximate

pressure drop functions of pipes, production functions of wells and functions de-

scribing the compressor activity (like the function h in (8.17)). EPS also has a

SLP local optimization code. Results of problems of the form (8.10)-(8.22) will

be presented, where the functions f, s, gj, w1,, w, h, w 2 , w9,, are piecewise

linear functions which correspond to real wells, pipes and compressors. EPS has

developed an algorithm for problems of the type (8.10)-(8.22) which is a hybrid

algorithm of Tabu Search and local optimization. The results of Algorithm 8.4.1

will be compared to those of the BPS hybrid algorithm.

134

8.7.1 Results of constructed problems

The results of this section are results of Algorithm 8.4.1 applied to the constructed

problems P-Artl and P-Art2, which are problems of the form (8.10)-(8.22). The

functions f, s, gj , wj , , w, h, w2, wg,i and water capacities S i of P-Artl and

of P-Art2 are given in the Appendix, section B. In this version of Algorithm

8.4.1 the initial point Yo in step 2 is obtained by the method described in section

8.4.1, i.e. Yo is the computed solution point of a smoothed problem. The optimal

objective function value of the smoothed problem, let it be called A, is useful as a

measure of the performance of Algorithm 8.4.1. Algorithm 8.4.1 tries to overcome

the difficulties that a local optimization has with the discontinuous functions f,
s, gj. The smoothed problem replaces f, 8, 9z by continuous functions f, .j,
which approximate f, s, gi respectively. Therefore it can be expected that A, the

computed optimal objective value of the smoothed problem, approximately is an

upper bound on the optimal objective value computed by Algorithm 8.4.1. Table

8.1 gives the results of problem P-Artl when step 1 of Algorithm 8.4.1 chooses

N = 10. yo of Table 8.1 is feasible for the smoothed problem but infeasible for

the actual problem. The objective value given for Yo is the one corresponding to

the smoothed problem. The definition of jt) used corresponds to (8.53).

Table 8.2 shows the results corresponding to problem P-Art2.

In Table 8.1 no convergence can be observed but in Table 8.2 it can be.

Convergence is not expected in general. In Table 8.2 the algorithm only computed

Yo, Yi, Y2, y3 and Y4 because it found

Y3 - Y411 < 6,

6 > 0 being a small tolerance parameter, and hence the stopping condition in

step 6 of Algorithm 8.4.1 led to termination.

An important observation is that some Yk (1 < k < 10) have an objective

function value that comes very close to or even surpasses the computed optimal

objective function value of the smoothed problem. A second important obser-

vation is that in both tables (Table 8.1 and Table 8.2) the objective value at

yi comes rather close to the computed optimal objective value of the smoothed

problem, i.e. to the objective value given in the tables for i = 0. This is an

observation which has been made in various other problems, some of these are

shown in Table 8.3, and which suggests that the computed optimal solution point

of the smoothed problem is a good starting point for Algorithm 8.4.1. In fact,

due to this observation the results of subsection 8.7.2 are obtained using N = 1

as the parameter in step 1 of Algorithm 8.4.1.

Next, some computational evidence is given that it is good to include the non-

135

i I objective value at y j

0 211.97

208.67
-- 188.27
-- 205.07
-;j- 176.62
7; 178.67
7; 160.12

183.74
7; 185.48
7; 179.69
10 180.94

Table 8.1: Results of problem P-Artl, L(.A, jt) defined by (8.53)

i I objective value at y2

p 263.28

1 261.73
-:1 155.23
7; 264.0025
7; 264.0029
7; (264.0029)

(264.0029)
-;;- (264.0029)
7; (264.0029)

91 (264.0029)
101 (264.0029)

Table 8.2: Results of problem P-Art2, L\, ji) defined by (8.53)

Problem
name

number of wells,gas
manifolds, flowstations

computed objective of
smoothed problem

objective at Yi

Q1 25, 3, 3 274.23 264.01
Q2 25, 3, 3 283.78 281.38
Q3 30, 3, 3 289.41 282.27
Q4 30, 3, 3 326.14 318.33
Q5 30, 3, 4 399.27 376.76
Q6 30, 3, 4 418.44 411.44

Table 8.3: objective at Yi is close to the computed optimal objective of the
smoothed problem

136

relaxed constraints (8.48) in the definition of L(\, ji) in (8.53). In section 8.6 this

point has been discussed and arguments for the inclusion of constraints (8.48) in

the definition of L(A,
)

have been given. The following definition of L(.\, p) is

like (8.53) but without constraints (8.48).

L(,) 	max
{ 	

fi(Xi,pg,(i),Pf,(i))
{x 2 }= 1

k

- 	 A(Sj(Xj,Pg,b(i),Pf,j) 	- S)
j1 	iEQ(j)

k

—p(gj(Xj,pg,(j),Pf,j) 	
-

j1 	iEQ(j)

M 	 Zj+flj

- 	 k+j(T, Xi - g,j) : x ~! 0 Vi} 	 (8.54)
j=1 	i=zj+1

Table 8.4 shows the results when Algorithm 8.4.1 is used for problem P-Artl with

jt) being defined by (8.54) instead of by (8.53), this being the only difference

to the version which obtained the results of Table 8.1.

Table 8.5 shows the results when Algorithm 8.4.1 solves problem P-Art2 with

L(A, i) being defined by (8.54) instead of by (8.53), this being the only difference

to the version which obtained the results of Table 8.2.

The comparison of the results of Table 8.1 to those of Table 8.4 and of the

results of Table 8.2 to those of Table 8.5 supports the arguments given for the in-

clusion of the non-relaxed constraints (8.48) in the definition of L(.A, ii). However,

definition (8.54) does not give too bad results, either. The results of Table 8.4,

for example, are only marginally worse than those of Table 8.1, and in Table 8.5

the maximum objective value of a Ilk (k > 1) is 254.28 in comparison to 264.0029

in Table 8.2. However, notice that in Table 8.5 the objective value achieved by

yi is only 209.62 in comparison to 261.73 in Table 8.2 which is unsatisfactory

when expecting that the objective value at y is close to the computed optimal

objective value of the smoothed problem.

8.7.2 Results of EPS's test problems

In this section results of test problems from Edinburgh Petroleum Services Ltd

are given. Algorithm 8.4.1 with N = 1 in step 1 is applied to six test problems,

which are called P1, P2, ..., P6. These test problems are of the form (8.10)-(8.22),

so that Figure 8.1 is a graphical description of these problems. The numbers of

wells, gas manifolds and fiowstations for each problem is given in Table 8.6.

When Algorithm 8.4.1 evaluates L(\, i) (while solving the dual problem in step

137

i I objective value at y

0 211.97

=1 208.59
-i 163.30
-- 165.39

 205.98
164.79
165.39
205.99

-- 164.79
— j- 165.39
10 206.44

Table 8.4: Results of problem P-Artl, 	/2) defined by (8.54)

i I objective value at y,

01 263.28

209.62
-- 208.71
-- 254.28

 186.15
-- 166.66
-- 170.03

249.29
172.79

-- 247.99
10 167.75

Table 8.5: Results of problem P-Art2, L(A, 	defined by (8.54)

138

4) by DP with a variable grid and FJ action elimination, the speed depends

(about linearly) on the discretisation number. The test problems are run with

discretisation numbers 30 and 100. The results also include runs of EPS's hybrid

algorithm.

EPS's hybrid algorithm combines Tabu Search with local optimization. This

algorithm can be briefly outlined as follows: The Tabu Search searches over the

set of subsets of

i. e. it searches over the set of subsets of wells. (Recall that n is the number of

wells in the problem.) When the Tabu Search chooses a subset I of {1, 2, ..., n} it

calls the local optimization routine which solves problem (8.10)-(8.22) with the

additional constraints

X i > X(P g,b(j),Pf,(j)) Vi e I

0 ViI.

(Remember that the functions f, s, g2 are such that when x i < X(P g ,Ø(i),Pf,(i))

then it is at least as good to set x 2 = 0.)

Table 8.7 shows the run times and the computed optimal objective value of

EPS's Tabu Search and of Algorithm 8.4.1 with discretisation numbers 30 and

100 for the variable grid DP. Also the results of the local optimization of the

smoothed problems are shown. The results suggest that, overall, the quality of

solutions of Algorithm 8.4.1 is comparable with those of the Tabu Search. For

large problems the run times are favourable for Algorithm 8.4.1, whereas for small

problems the Tabu Search is faster.

When comparing the computed objective values two surprises can be observed.

The first surprise is that in problem P4 Algorithm 8.4.1 with DP and discreti-

sation number 100 yields an objective value which is about 45% larger than the

result of the same method with discretisation number 30. This can be explained

by the fact that when DP evaluates the Lagrangian L(A, ti), even only a small

change in precision (caused by the different discretisation number) can result in

a corresponding optimal argument x(A, ji) which is very different. In particular

this different x(A, j) can represent a very different switch on-off pattern for the

oil wells. This means that the next local optimization of the whole problem uses

a different switch on-off pattern for the wells. This can be seen by looking at

step 5 in Algorithm 8.4.1. A different optimal argument for L\, ji) in general

means a different Ji in step a), this in turn means a different set I in step b) and

hence a different local optimization in step c). It should also be noticed that in

139

problem I number of wells I number of gas manifolds number of flowstations

P1 10 3 3
P2 13 4 3
P3 35 7 6
P4 50 7 6
P5 70 11 10
P6 100 18 16

Table 8.6: number of wells, gas manifolds, flowstations for each EPS test problem

problem local optimization on
smoothed problem

run time I objective value

Tabu Search

run time I objective value

P1 6.9 (secs) 8.847520E-4 26(secs) 8.890263E-4
P2 24(secs) 6.701470E-4 36 (secs) 7.024592E-4
P3 27(secs) 7.222792E-3 271 (secs) 7.338544E-3
P4 48 (secs) 9.962784E-3 1110(secs) 9.756659E-3
P5 29(secs) 1.014839E-2 3131(secs) 1.013346E-2
P6 95 (secs) 1.238716E-2 10383(secs) 1.247742E-2

problem Algorithm 8.4.1 with DP
discretisation number 30
run time I 	objective value

Algorithm 8.4.1 with DP
discretisation number 100

run time 	objective value

P1 53(secs) 8.748920E-4 112 (secs) 8.748920E-4
P2 115(secs) 7.027255E-4 242 (secs) 7.027257E-4
P3 282(secs) 7.112659E-3 765 (secs) 7.427997E-3
P4 666(secs) 9.912660E-3 1479(secs) 1.444160E-2
P5 1603(secs) 1.112866E-2 5357(secs) 1.101909E-2
P6 3199(secs) 2.032732E-2 6438 (secs) 1.862933E-2

Table 8.7: Results of EPS's test problems

140

problem P4 Algorithm 8.4.1 with DP and discretisation number 100 yields an

objective value which is about 43% larger than the results of Tabu Search and

of the local optimization on the smoothed problem. Unlike in problem P4, in

problem P6 Algorithm 8.4.1 with DP and discretisation number 100 yields an

objective value which is worse than the result of the same method with discreti-

sation number 30. The explanation for this is that when L(A, i) is calculated less

accurately then Algorithm 8.4.1 can also return a different starting point for the

local optimization, which in fact is a better starting point. There is an element

of randomness. The important point is that the more accurately L(A, p) is cal-

culated the larger the likelihood that Algorithm 8.4.1 finds a good starting point

for a local optimization.

The second surprise in Table 8.7 are the results of problem P6. The computed

optimal objective value of Algorithm 8.4.1 with DP and discretisation number 30

is more than 50% higher than the one computed by Tabu Search. This (and also

the result of problem P4) is to be explained, I believe, by the search space becom-

ing too large and too irregular ("many hills and valleys") for Tabu Search. The

search space for Tabu Search in this problem has 2100 elements, one element being

a subset I of the set {1, 2, ..., 100}. This search space is 2 ° times larger than the

search space of problem P5. One also has to remember that Tabu Search essen-

tially is a random search doing local moves each time. In comparison, Algorithm

8.4.1 uses a lot more structure by using a dual method and by decomposing the

problem. Also it is important to mention that the implementation of the Tabu

Search looks at the computed optimal objective value of the smoothed problem

as an indicator for when to stop. Table 8.7 shows this quite clearly. Hence, when

there exists a solution of the problem with a much higher objective value than the

computed optimal objective value of the smoothed problem then Tabu Search is

likely to stop prematurely.

At least one of the versions of Algorithm 8.4.1 with DP always yields a higher

objective value than Tabu Search does except for problem P1. The computa-

tion time of the Tabu Search increases faster with the size of the problem than

Algorithm 8.4.1 with DP does.

When comparing the two versions of Algorithm 8.4.1 it can be observed that

the run time of the version with discretisation number 100 is about 2-3.5 times

the one of the version with discretisation number 30. Except for problems P3,

P4 and P6 the computed optimal objective values of the two versions are similar.

However, in problems P3 and in particular P4 the solution of the version with

discretisation number 100 is a lot better, whereas in problem P6 it is worse.

141

8.8 Conclusions

In this chapter an oil production optimization problem has been discussed. In

this problem some functions involved have discontinuities. To overcome the prob-

lems arising from the discontinuities Algorithm 8.4.1 has been proposed, which

combines the dual method of a subproblem with local optimization.

It has been shown, by presenting results of several example problems, that

Algorithm 8.4.1 gives good results. The Lagoven problem is a non-linear opti-

mization problem with some functions involved having discontinuities and there

are not many alternative suitable optimization methods. In particular, not many

alternative methods have been implemented. Edinburgh Petroleum Services Ltd

has developed a method combining Tabu Search and local optimization. Algo-

rithm 8.4.1 has been compared to this alternative implementation. For large

problems Algorithm 8.4.1 seems to give better results in shorter time whereas for

small problems the Tabu Search appears to perform better.

142

Chapter 9

Conclusions and possible future
work

The first half of the thesis presented an action elimination procedure for DP which

uses first order optimality conditions and which reduces the run time by one order

of magnitude for large problems. This action elimination technique was applied to

the following classes of DP problems: discrete and continuous allocation problems,

discrete and continuous stochastic problems with either finite or infinite horizon.

Several examples with computational results were given.

First, the theory and basic principles of this action elimination procedure were

introduced and explained for a class of deterministic and continuous allocation

problems.

Then issues were discussed which are important for the efficient implementa-

tion of the action elimination procedure, like discretisation schemes and effective

methods for finding solutions to the Fritz-John equations for any given Lagrange

multipliers.

After that, deterministic discrete allocation problems were studied. For a

class of discrete allocation problems with linear constraints necessary optimality

conditions were derived. These optimality conditions are similar in form to the

Fritz-John conditions for differentiable problems and were taken as the basis for

action elimination.

Certain types of stochastic DP problems were discussed which allow action

elimination based on first order optimality conditions. For problems with a reward

function of a special form, the theory of the action elimination gave insight about

the nature of the optimal solution by identifying target states. Water reservoir

problems often have a reward function of this special form. This discussion, I feel,

is far from being complete. Further classes of stochastic DP problems allowing

action elimination based on first order optimality conditions can probably be

found.

143

The second half of the thesis discussed a dual algorithm in a framework such

that the results could be applied to an industrial problem. The main result

of the discussion of the dual method was a perturbation procedure, which was

added to the usual dual method. The usual dual method for solving a non-

linear problem returns one point x of the primal search space. This point x need

not be primal feasible but it can be a "good" point with respect to objective

function value and constraint satisfaction and hence suited as a starting point for

a local optimization. The perturbation procedure (Procedure 7.3.1) is a method

to not only find one point x as the result of the dual method but several points,

where each of these points is equally likely to be a good starting point for a local

optimization. Therefore it is good to run, for each point x, a local optimization

with x as starting point.

In chapter 8 an oil production optimization problem was discussed. This prob-

lem was decomposed and a subproblem was solved by the dual method with per-

turbation procedure. The algorithm developed was compared to another method

which uses Tabu Search and local optimization. It was found that in general the

algorithm developed performs better than the Tabu Search method, in particular

for large problems. I believe that the dual method with the perturbation pro-

cedure added can be applied to other non-linear and discontinuous optimization

problems. This could be a fertile area for future work. One such other possible

application will be briefly outlined.

In the oil industry the following design problem arises, see Figure 9.1. There

are a number of oil wells which naturally produce, i. e. no gas is injected into the

wells. The wells can be connected to any one of the flowstations. The problem is

to decide which well to connect to which flowstation. The wells produce oil and

waste. Some of the waste is separated at the flowstations. When one connection

pattern of wells-to-flowstations is fixed then the optimization is a continuous

problem suitable for SLP or SQP. A natural subproblem is the optimization of the

connection pattern when all other variables are fixed. Good connection patterns

could possibly be found by the dual method with perturbation. Having decided

on a new connection pattern a local optimization can be applied to the whole

system. Then the continuous variables can be fixed again, the dual method with

perturbation applied and hence the process can be repeated.

144

• 	rest of the oil

production

network

flowstation

OE 	E15DD 	wells
................ ..

Figure 9.1: A connection problem

145

Appendix A

Algorithm A.0.1

Choose n E PV and set ö := 2..

N1 := {x x e [0, d1], fi or w 1 is not differentiable at x}

S1 	N1 U {O, d 1 }

Q:={[],[1 	:yS i }

for k:=Oton set Fi (Ic):=—oo

for j := 0 to n do

if 0 < d then

k := [wi(j8)1

f1 (jö)

A 1 (k):=j6

pi (k) := wi (3'5)

if j t Q then

A(k, 1) 	f l, (j)
w(j6)

else

A(k, 1) := undefined

end if

end if

end do j

i:=2

for k := 0 to n set F(k) := -00

:= {x : x E [0, di], ft or wi is not differentiable at x}

Si := N u{0,d}

Q:={[],f1 	:y8}

146

for e {0,1,...,n} for which F2 _ i (j) > —oo do

if A(j,i— 1) is defined then

	

j := { : x 	,O < x < di , f(x) = A(j,i - 1)w(x)}

for allxEJUS do

k 	r-'() + w(x)
6

if k <n and Pi (k) <-i(j) + f(x) then

:= i-,(j) + f(x)

A(k) := x

A (k) := pj i(j) + w(x)

	

\(k,i) 	A(j,i —1)

end if

end do x

else (if).(j, j - 1) is not defined)

for t := 0 to n do
k •- rPi- 1(j)hj(tö)

6
if k <n and Pi (k) <_i(j) + f2 (6) then

:= ji(j) + f(t6)

A(k) := 6

A (k) := pi- 1 (j) + w(t6)

if t V Q then

fl, W)
W(t8)

else (if t E Q)
\(k, i) := undefined

end if

end if

end do t

end if

end do j

if i <r increase i by one and return to 3)

if Fr (n) > — oo do

S := n

Pr (T1)

147

Appendix B

The problems of subsection 8.7.1 use the following types of functions in (8.10)-

(8.22): The pressure drop functions w 1 and w 2 (in (8.15), (8.18)) are of the form

w 1 (pi ,qi ,p2) = p - q — p,

w 2 (p3 ,q3 ,p4) = p—q—p.

The pressure drop functions 'Wf , j and w9 , (in (8.13), (8.20)) are of the form

	

2 	q 	2 w1, (Pf,i, qf,j, Pi) = 	- 	 - p1,

	

2 	q9, 	2
Wg,i(P4, qg,i, Pg,i) = P4 - 	 - Pg ,i

The function h describing the compressor activity (in (8.17)) is taken as

	

h(p2 ,p3 ,q1 ,q4) = (p 	P2)li - 500q4 (q4 +2).

The discontinuity point x and the well production functions f, s, gj depend on

their arguments and on three well specific parameters a, b, c.

50

	

X(P g,(j),Pf,(j)) = 10 + 	
-i--(p

	

1 + e200i g(t) 	5

a2
i(Pg,c(i),Pf,ir(i)) 	= 60+ 	

(Pf7(i)_P9(i))

	

1+e 	15a

0 	 if X < X(Pg,(j),Pf(j))

20+ (x + i)be + a
(+ 1)C2 if X(Pg,(i),Pf,(i))100

pg ,(i)

L (xi , Pg,(i), Pf,(i)) =

	

~ i (Pg,i) , Pf,(i))

Ij (i (Pg,(i), Pf,ir(i)), Pg,cb(i), Pf,ir(i)) 	if 	(Pg,(i), Pf,ir(i)) < Xi

149

0

(Pg,c5(i)
+ (x + l)c + a \ 100 s (x i , Pg,(i), Pf,(i))

= 	{

+f (x i , Pg,(i), Pf,(i))

Si 	(Pg,c(i), Pf,ir(i)), Pg,(i), Pf,ir(i))

J O
(Pg , çb(i)

9i(Xi,P g ,(i),Pf,(i)) =
' x i + (x + 1)ci + a 	100 +

gj ((Pg,Ø(i) , Pf,7r(i)), Pg,j(i) Pf,ir(i))

if X < X (Pg,çb(i), Pf,ir(i)

if x (Pg,(i), Pf,ir(i))

(Pg,/(i)) Pf,ir(i)

if 	(Pg,(i), Pf,ir(i)) < X

if x < X(Pg,q5(i),Pf,7r(i))

if Xi* (Pg,O(i), Pf,ir(i)) :!~ X

i(Pg,(i), Pf,ir(i))

if i(Pg,f(i),pf,(i)) < x 2

The two artificial problem, called P-Artl and P-Art2, have twenty wells, two

gas manifolds and three flowstations. The parameters of wells a 2 , b, c2 and

connections of wells to gas manifolds and fiowstations (i.e. q(i) and 7r(i)) are

given in Table B.I. The gas price in the objective function is

The two problems P-Artl and P-Art2 are different in that they have different

water capacities at the flowstations. For their optimal solutions the water capacity

constraints are active. Problem P-Art 1 has water capacities

S1 = 50,

52 = 90,

S3 = 90.

Problem P-Art2 has water capacities

S1 = 80,

82 = 90,

83 = 120.

150

b, c L() 7r (z

1 20 0.62 0.35 1 2
2 10 0.7 0.7 1 1
315 0.6 0.3 1 3

10 0.45 0.3 1 1
520 0.3 0.2 1 2
6 15 0.5 0.4 1 3
710 0.5 0.3 1 2
87 0.5 0.4 1 1
9 10 0.65 0.4 1 3
108 0.8 0.7 1 1

......± I ai bi 	I cj1(i) 1 ir(i)

11 15 0.5 0.8 2 2
12 5 0.85 0.6 2 3
13 20 0.5 0.5 2 1
14 15 0.4 0.7 2 2
15 10 0.6 0.5 2 3
16 7 1 0.5 2 2
17 10 0.5 0.4 2 1
18 8 0.8 1 2 3
19 15 0.45 0.5 2 3
20 5 0.8 0.9 2 1

Table B.1: Data for f, s, gj in P-Artl and P-Art2

151

Bibliography

R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Mod-

els. Prentice-Hall, 1987.

E. V. Denardo. Dynamic Programming Models & Applications. Prentice-
Hall, 1982.

E. V. Denardo and B. L. Fox. Shortest-route methods: Reaching, pruning

and buckets. Operations Research, 27:161-186, 1979.

H. Everett. Generalized Lagrange multiplier method for solving problems of

optimum allocation of resources. Operations Research, (11):399-413, 1963.

E.W.Steiner and K.I.M.McKinnon. Dynamic programming using the Fritz-

John conditions. To appear in European Journal of Operational Research.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

B. Fox and D. Landi. Searching for the multiplier in one-constrained opti-

mization problems. Operations Research, 18:253-262, 1970.

P. Gilmore and R. Gomory. The theory and computation of knapsack func-

tions. Operations Research, 14:1045-1074, 1966.

S. Mokhtar, D. Hanif, and C. Shetty. Nonlinear Programming, Theory and

Algorithms. John Wiley & Sons, second edition, 1993.

G. Nemhauser. Introduction to Dynamic Programming. Wiley, 1966.

N. Nishikiori, R. Redner, D. Doty, and Z. Schmidt. An improved method

for gas lift allocation optimization. Journal of Energy Resources Technology-

Transactions of the ASME, 117(2):87-92, 1995.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

152

