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ABSTRACT 

 

The cancer stem cell hypothesis has recently re-emerged as a compelling paradigm 

for the development and progression of neoplastic disease.  The hypothesis proposes 

that a specific subset of “cancer stem cells” (CSC), believed to share many features 

with normal stem cells, is exclusively responsible for maintaining tumour growth and 

driving progression.  If the CSC hypothesis applies, it may require re-evaluation of 

the clinical approach to neoplasia.  Spontaneous cancer in the domestic dog 

represents a significant welfare problem, with dogs developing many tumours 

strongly reminiscent of those affecting humans.  This study sought to investigate 

whether cells with characteristics of CSC are identifiable in canine cancer. 

 

Assays to identify, isolate and characterise CSC were adapted to the canine system, 

and cancer cell lines and spontaneous tumours of diverse origin evaluated for the 

presence of candidate populations.  Whilst analysis of surface expression patterns did 

not identify specific subpopulations within canine cancer cell lines, these were 

detectable in cells derived directly from primary tumours.  Assays for stem cell-

associated drug resistance mechanisms could also be used to identify subsets of 

putative canine CSC.  Formation of “tumourspheres” by canine cancer cell lines was 

found to be highly density-dependent, so a potentially unreliable method of isolating 

CSC.  Expression of the cell surface glycoprotein CD44 was associated with cellular 

proliferation status, although it may not represent a stable canine CSC marker.  The 

NFκB survival pathway, associated with apoptosis resistance of some putative CSC, 

was constitutively active in canine cancer cell lines; suppression using specific 

inhibitors could reduce cell viability, indicating that this may represent a rational 

therapeutic target. 

 

Overall, these studies demonstrated that CSC assays may be adapted to the canine 

model system, although they require rigorous interrogation to distinguish apparent 

CSC attributes from basic biological properties.  Cell lines have provided a stable 

background upon which to optimise assays, but appear less likely to demonstrate 

discrete CSC subpopulations.  Putative CSC subsets may be more readily identifiable 
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within heterogeneous primary tumour cells.  The application of some of these 

adapted assays within a clinical setting may enable further characterisation of 

individual patients’ tumours, and inform therapeutic regimes for improved treatment 

outcomes. 
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Introduction 
 

The concept of the “tumour stem cell” has existed in one form or another for many 

decades.  However, over the past fifteen years, this idea has crystallised into a 

subject of intense interest, as well as considerable debate.  The cancer stem cell 

hypothesis proposes that a specific subset of cells within a tumour is exclusively 

responsible for sustaining its growth, acting in a manner similar to the stem cells in 

normal tissues.  If this is the case, it could have profound implications for cancer 

therapy.   

 

Here is presented the theory underlying, and some of the key evidence in support of, 

the cancer stem cell hypothesis.  Mechanisms and markers which may identify the 

putative cancer stem cell (CSC) are examined, and the controversies surrounding the 

hypothesis discussed.  Also explored is the concept that, where the CSC hypothesis 

is applicable, it may require re-evaluation of the clinical approach to neoplastic 

disease.  

 
Stem Cells and Cancer Stem Cells 
 

In normal adult mammalian tissues, a balance exists between the loss and the 

production of cells which maintains the steady state of normal tissue renewal.  The 

rate of turnover varies according to the tissue in question, with some being constantly 

renewed (e.g. epithelia and cells of the haematopoietic system), and some formed 

during development and thereafter showing little regenerative capacity (e.g. neural 

tissue) under physiological conditions.   

 

Within a given tissue, a hierarchy exists within the cell population in terms of the 

ability to divide and provide new cells for tissue renewal.  At the apex of this 

hierarchy is the Tissue Stem Cell (TSC, also Adult Stem Cell), which can produce all 

the cells of the tissue in question.  This TSC gives rise to more committed precursor 

or “transit-amplifying” cells, which are more numerous and cycle more frequently 

than the stem cells, but are restricted in terms of the cell types they can produce.  The 

majority of cells are terminally differentiated and have tissue-specific functions, but 
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do not have the ability to divide or differentiate (Figure 1) (Weissman, 2000; Reya et 

al., 2001; Pardal et al., 2003; Sell, 2004). 

 

This process of determination, by which progeny at different levels in the hierarchy 

acquire the differentiated properties of the functional tissue, but gradually lose the 

ability to proliferate and become restricted in their potential, remains poorly 

understood.  Sell describes the structure of a tissue as analogous to a tree, with the 

scarce pluripotent TSC represented by the trunk, the progenitor/transit amplifying 

cells the branches, and the numerous differentiated tissue cells the leaves; the falling 

of the leaves is likened to the process of apoptosis, whereby proliferation is balanced 

by controlled loss (Sell, 2004). 

Embryonic stem cells (ESC) are described as “totipotent” – that is, their progeny can 

go on to form any cell type in the developed individual.  Somatic or adult stem cells, 

i.e. those present in formed tissues, have a more restricted differentiation pattern and 

are termed “multi-” or “pluripotent” (these terms are frequently used 

interchangeably).  The germinal stem cell, which produces the sex cells (oocytes / 

spermatozoa) is the third kind of normal stem cell (Sell, 2004).  These rare cells 

share the two defining properties which have become accepted as definitive of stem 

cells – firstly, they have the capacity for unlimited self-renewal, and secondly, they 

are capable of multilineage differentiation to generate the mature cells of a particular 

tissue (Reya et al., 2001).  Stem cells may self renew by dividing symmetrically 

(producing two identical stem cells) or asymmetrically (producing an identical stem 

cell and a more differentiated progeny cell) (Figure 2).  By virtue of this unlimited 

self-renewal capacity, a stem cell can continue to divide (though often infrequently 

and interspersed by periods of quiescence) for the lifetime of the host.   
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Figure 1 – Hierarchical organisation of normal tissue - schematic. 
A -  Stem cells exist at the apex of a cellular hierarchy in normal tissues.  Successive 
differentiation through a variable number of transit amplifying stages results in the 
generation of terminally differentiated cells with tissue-specific function. 
B – Hierarchical tissue organisation, exemplified in the haematopoietic system.  Schematic 
illustrating critical stages of lineage divergence.  As well as self-renewing, haematopoietic 
stem cells (HSC) may produce common myeloid or lymphoid progenitors (CMP / CLP), 
which in turn give rise to the precursors of the respective terminally differentiated cell types.  
MEP – megakaryocyte-erythroid precursor; GMP – granulocyte-macrophage precursor; Pro-
T – Pro-T cell; Pro-B – Pro-B cell.  
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Figure 2 – Stem cell division patterns.  Asymmetrical division gives rise to an 
identical stem cell (self-renewal) and a more differentiated daughter cell, maintaining 
the stem cell pool.  Symmetrical division may lead to formation of two identical stem 
cells (self-renewal), increasing the stem cell pool, or two more differentiated 
progeny, with consequent depletion of the stem cell component. 
 
 

 

Cancer can be viewed as the acquisition by a cell/tissue of 6 fundamental properties 

(Hanahan and Weinberg, 2000) - 

• Self-sufficiency in growth signals 

• Insensitivity to growth-inhibitory (antigrowth) signals 

• Evasion of apoptosis 

• Limitless replicative potential 

• Sustained angiogenesis 

• Tissue invasion and metastasis 

 

This has classically been viewed as a multistep process, whereby cells initially 

accrue mutations enabling proliferation in an unregulated manner, and subsequently 

those allowing invasion of surrounding tissues and spread to distant sites (Hanahan 
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and Weinberg, 2000).  Early or premalignant manifestations are recognised for many 

cancers, where cells display several characteristics of the later malignant neoplasm 

but act in a less aggressive fashion until further transformation allows growth and 

spread, such as carcinoma-in-situ, or early colonic polyps seen in Familial 

Adenomatous Polyposis (Leedham et al., 2005).   

 

However, many phenomena recognised in cancer in vivo and in vitro have been hard 

to reconcile with this notion of one cell which, having acquired sufficient mutations, 

may proliferate to create multiple identical clones of itself.  These include the 

observations that in vitro, a limited proportion of cells will demonstrate the capacity 

to proliferate to form clones, and that in vivo models frequently require inoculums of 

many thousands to millions of cells to induce tumour formation (Bruce and Van Der 

Gaag, 1963; Hamburger and Salmon, 1977; Griffin and Lowenberg, 1986).  This 

heterogeneity amongst populations of genetically identical (albeit abnormal) cancer 

cells is also apparent histologically, particularly in more “well-differentiated” 

tumours, which often have a well-defined structural microanatomy that includes all 

the elements of the corresponding normal tissue.  

 

The stochastic or “clonal evolution” model ascribes heterogeneity in the cancer cell 

population to ongoing genetic / genomic instability, combined with the effects of the 

microenvironment, leading to aberrant replication and the generation of multiple 

cancer cell phenotypes (Nowell, 1976; Clarke et al., 2006; Dick, 2008).  It holds that 

all cells within a tumour are competent for tumourigenesis – that any cell has the 

potential to proliferate and give rise to more cancer cells - but that the probability of 

an individual cell achieving this is limited – hence “stochastic”.  Another way in 

which heterogeneity might arise within a tumour is if the normal pyramidal process 

of proliferation and differentiation becomes deranged, such that a hierarchy of cells 

is produced, but in a dysregulated manner.  This is the basis of the cancer stem cell 

hypothesis (Reya et al., 2001) (Figure 3, Figure 4). 

 

The hypothesis postulates that a specific subset of cells exists within a tumour, which 

have the capacity both to self-renew and to differentiate into all the different cell 
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types which make up the tumour.  The progeny of these “cancer stem cells” (CSC) 

have more restricted potential – as such, in the same way as normal tissues are 

derived through successive differentiation and amplification from the stem cell 

component, the tumour is ultimately maintained by the CSC (Clarke et al., 2006) 

(Figure 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Models of tumour heterogeneity  
A – Cancer stem cell paradigm - CSC (red), through successive differentiation steps, 
give rise to all of the different cell types within the tumour, and may also self-renew 
to produce other CSC.  Progeny cells have more restricted potential. CSC are thus 
biologically distinct from the majority of tumour cells and sustain tumour growth and 
progression.  These inherent properties may be predicted, allowing the identification 
and prospective isolation of tumourigenic cells. 
B – Clonal evolution paradigm – Heterogeneity arises through the acquisition of 
additional mutations (genetic / epigenetic) under the influence of intrinsic and 
extrinsic factors such as genetic instability, the environment or drug therapy.  This 
results in distinct tumour cell populations based on the prevailing selective pressures.  
All cells may be inherently tumourigenic, but behaviour is stochastic and cannot be 
accurately predicted.  
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Figure 4 – The CSC hypothesis can account for observations of tumour behaviour 
A – When dissociated and plated in vitro, some cancer cells do not form colonies; 
when transplanted in vivo, a large number of cancer cells must be inoculated in order 
to form a tumour.  The CSC model predicts that only CSC, and not more 
differentiated progeny, have the unlimited self-renewal potential and multilineage 
differentiation capacity required to propagate the malignancy. 
B – Even after apparent elimination of a tumour, disease may recur following cancer 
therapy.  The CSC model predicts that this is due to the survival of CSC, which if not 
eradicated may recapitulate disease, leading to relapse. 
C – Not all cells which disseminate from the primary tumour will form active 
metastases, but metastases show the cellular heterogeneity seen within the primary 
tumour.  The CSC model predicts that dissemination of CSC - but not restricted 
progeny - to distant sites may result in the formation of secondary tumours with 
phenotypic characteristics of the primary tumour. 
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Origins of the Cancer Stem Cell Hypothesis 

 

The idea that cancer results from the abnormal growth of primitive cells with 

extensive differentiation potential is not new.  As far back as the 1800s, the 

pathologists Virchow, Cohnheim, Durante and Beard contributed to the formulation 

of the “Embryonal Rest” hypothesis, proposing that cancer arises from embryonic 

cells which become displaced during development and persist in adult tissues (Sell, 

2004; Huntly and Gilliland, 2005).  Experiments with both haematopoietic and solid 

malignancies between the 1960s and the 1980s demonstrated that, in vitro and in 

vivo, only a small percentage of cells isolated from a tumour was clonogenic, i.e 

within a tumour there was variability in the ability of cells to proliferate (Bruce and 

Van Der Gaag, 1963; Hamburger and Salmon, 1977; Griffin and Lowenberg, 1986; 

Huntly and Gilliland, 2005). 

 

If heterogeneity amongst tumour cells results from the “hijacking” of normal 

differentiation processes, clear parallels can be drawn between the behaviour of 

normal tissue stem cells and the putative CSC.  The degree to which the cell types 

within a tumour may be remarkably reminiscent of those in the normal system is 

epitomised in teratocarcinoma.  The presence of strikingly “normal” tissues, such as 

formed teeth, hair, brain, muscle, skin, eyes, bone and intestine, within 

teratocarcinomas suggests that these tumours arise from abnormalities affecting a 

multi- or totipotent cell (Sell and Pierce, 1994; Reya et al., 2001; Huntly and 

Gilliland, 2005).   

 

Several prominent investigators in the 1970s and 1980s, notably Van Potter, Barry 

Pierce and Stewart Sell, argued that this (and by extension other tumours including 

carcinomas) might be brought about through superimposition of malignancy upon 

normal stem cells, with resultant “maturation arrest” creating a caricature of the 

normal tissue (Potter, 1978; Potter, 1987; Sell and Pierce, 1994).  

 

Supporting this were observations made in many tumour types that cancer cells could 

show characteristics of more than one lineage, suggesting that transformation had 
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occurred in a multipotential cell (Sabbath et al., 1985; Gorai et al., 1997; Hellmen et 

al., 2000).  Investigations were restricted, however, by a limited understanding of the 

normal stem cell hierarchy.  More recently, advances in the field of cell biology have 

renewed interest in stem cells and their properties, and facilitated more detailed 

examination both of their regenerative potential and how they might be involved in 

carcinogenesis (Weissman, 2000; Pardal et al., 2003).  

 

Evidence for Existence of the Cancer Stem Cell 

 

Haematopoietic stem cells and leukaemia stem cells 
 

The normal haematopoietic stem cell (HSC) is probably the best-defined of the adult 

TSC, although still not fully characterised (Figure 1B).  As well as lacking the cell 

surface markers associated with specific, terminally differentiated haematopoietic 

lineages (Lin), these cells express the cell surface marker CD34, but not CD38 

(expression of which occurs later in the differentiation process).  HSC were first 

demonstrated by their ability to reconstitute the bone marrow of lethally irradiated 

mice (Till and McCullough, 1961).  Mirroring this work, experiments using severe 

combined immunodeficient (SCID) mice, which lack B and T cells, indicated that 

normal HSC become engrafted in the bone marrow and could proliferate to 

recapitulate mature human haematopoietic lineages (Baum et al., 1992; Vormoor et 

al., 1994).   

 

Work by John Dick and colleagues demonstrated that transplantation of these mice 

with cells from human haematopoietic malignancies could be performed in the same 

way.  SCID mice injected with cells from human acute lymphoblastic leukaemia 

(ALL) developed disease with a similar course to that seen in man (Kamel-Reid et 

al., 1989), and similar recapitulation of human disease was seen for chronic phase 

and blast crisis chronic myeloid leukaemia (CML), and for acute myeloid leukaemia 

(AML) (Lapidot et al., 1994; Sirard et al., 1996).  Significantly, however, it was 

found that when cells from human AML were fractionated according to cell surface 

marker expression, inoculation of the CD34+CD38 subset produced disease similar 
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to that of the unsorted cells.  Moreover, CD34+CD38+ cells and CD34 cells did not 

produce leukaemia in the recipient.  The frequency of these “SCID Leukaemia-

Initiating Cells” (SL-IC) was estimated as 1 in 250000 total cells by limiting dilution 

assay (Lapidot et al., 1994). 

  

However, the SCID mouse model had a number of limitations, precluding definitive 

demonstration of tumour recapitulation properties, and it was possible to show these 

similarities between the SL-IC and normal HSC for only one leukaemia subtype.  It 

was only after the development of the non-obese diabetic (NOD)/SCID mouse, 

which has additional immune response deficits (e.g. lack of Natural Killer cell 

activity and complement activation), that the engraftment experiments could be 

refined to show that SL-ICs had properties which met the definition of CSC.  One of 

the problems with the SCID model had been the need to transplant large numbers of 

host cells to ensure engraftment in the recipient.  It was demonstrated that 10 to 20 

times fewer cells were required in the NOD-SCID mice to achieve the same level of 

engraftment (Bonnet and Dick, 1997). 

 

Experiments using the NOD/SCID model system showed that, for a range of AML 

subtypes, both unfractionated bone marrow samples and purified CD34+CD38- cells 

could reproduce the phenotype of the original human tumour in the recipient animal.  

This was seen even when the CD34+ purified fraction represented a tiny (0.2%) 

proportion of blast cells in the human tumour.  In the NOD/SCID recipient mouse, 

the heterogeneous human-derived blast population (with CD38 expressed by almost 

all cells, even when transplanted cells had been CD38) seemed to evoke normal 

haematopoietic differentiation.   

 

Cells could be further transplanted into a secondary recipient, once again 

recapitulating the tumour; self-renewal was inferred by calculations suggesting that 

the SL-IC population must have expanded 30-fold.  Thus, the CD34+CD38 fraction 

specifically possessed both self-renewal and multilineage differentiation capacity.  

These findings were compelling evidence that for AML, transformation had occurred 

at the stage of the primitive stem cell, and that the heterogeneous leukaemic 
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population represented the differentiated but proliferation-restricted progeny of this 

cell, in the manner of the parent-progeny relationships seen for normal HSC (Bonnet 

and Dick, 1997). 

 

A similarly hierarchical organisation, with a distinct, leukaemogenic stem cell (LSC) 

population, has since been reported for many different forms of haematological 

malignancy (Cozzio et al., 2003; Jamieson et al., 2004; Passegue et al., 2004).  As 

well as demonstration that tumourigenicity is held within specific sorted cellular 

fractions, some studies have introduced specific gene mutations into isolated 

haematopoietic cell types, and shown that only certain of these are capable of 

producing disease.  For example, Passegue et al. (2004) showed that in a murine 

model of CML, inactivation of the transcription factor JunB in HSC, but not more 

committed cells, resulted in a myeloproliferative disorder with marked expansion of 

the granulocyte progenitor compartment and progression to blast crisis.  Only 

transplantation of JunB-deficient HSC, and not myeloid precursors, could 

recapitulate the disease in immunosuppressed recipients (Passegue et al., 2004).  

Although the function of JunB in myeloid neoplasia is not yet fully understood, more 

recent work has indicated that in the normal situation it acts to limit the proliferation 

of HSC whilst not affecting self-renewal potential, thus controlling the production of 

myeloid progenitors (Santaguida et al., 2009).  Therefore, whilst the malignancy 

manifests itself in this myeloid compartment, it originates from a lesion occurring 

more proximally in the developmental hierarchy. 

 

Cancer stem cells in solid tumours  

 

The extension of the CSC hypothesis to solid tumours has been more challenging 

experimentally.  Probably the most significant factor in the demonstration of 

hierarchical organisation within haematopoietic malignancies has been an 

appreciation of that within the normal system, which is more clearly defined than 

that in most solid tissues.  Importantly, cell surface markers for normal stem cells 

and their more differentiated progeny have been identified, facilitating the isolation 

and comparison of distinct populations. 
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For many solid tissues, understanding of the normal relationships between 

progenitors and progeny remains more limited, and assays which reliably identify 

stem cells have yet to be developed.  A further obstacle is the physical nature of the 

tissues.  Not only are cells generally larger and more fragile than blood cells, but 

often less accessible – for example, whilst blood or bone marrow sampling is likely 

to occur on multiple occasions during the course of a haematological disorder, solid 

tumour tissue is often available only at the time of surgery (and/or biopsy).  This 

introduces either the requirement for immediate dissociation and analysis, which 

may be technically challenging as well as deleterious to viability, or initial expansion 

in culture, which may lead to a less accurate representation of cellular composition.  

In either case, the complex architecture and interplay between the various elements 

(including stromal and vascular components) of the mass, as well as its relationship 

to surrounding normal tissue, is unlikely to be well represented.  

 

One technique which has become central to many studies investigating CSC in solid 

tumours is the “Neurosphere” assay.  The system was developed and first reported in 

1992 by Reynolds et al, as a means of propagating normal neural stem cells.  They 

found that, under serum-free, low-density culture conditions and supplemented with 

epidermal growth factor (EGF), stem and progenitor populations of embryonic rat 

striatal cells could proliferate as clonal, spheroid clusters (neurospheres) whereas 

most (>99%) cells died (Reynolds et al., 1992; Reynolds and Weiss, 1992).   

 

Not only did neurosphere cells express the neuroepithelial stem cell marker nestin, 

but they had the capacity to differentiate into distinct populations expressing neuron-

specific enolase (NSE) and glial fibrillary acidic protein (GFAP), markers for the 

neuronal and astrocytic lineages respectively.  Dissociation of spheres and re-seeding 

led to generation of secondary spheres, at greater frequency than that seen when 

using unfractionated cells.  Thus, the assay conditions and presence of EGF seemed 

to select for multipotent stem cells, defined by their capacity for self-renewal and 

multilineage differentiation (Reynolds et al., 1992).  Critically, the technique 
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presented a means by which primitive progenitors might be isolated, identified and 

propagated in culture. 

 

As well as contributing towards the characterisation of normal (and by extension 

cancerous) neural stem cells, the neurosphere technique has been widely adapted as a 

means of enriching putative stem and progenitor cells from a wide variety of normal 

tissues and tumours.  The ability to propagate a putative CSC population as 

“tumourspheres” for further characterisation is particularly significant where tumour 

tissues might only be accessible on a single occasion.  The assay has limitations, and 

observations must be carefully interpreted (Reynolds and Rietze, 2005; Singec et al., 

2006) – nonetheless, along with flow cytometry, it has provided the basis for many 

reports of CSC identification. 

 

Between 2000 and 2003, three separate reports from Eric Holland and colleagues 

reported that neural progenitor cells underwent transformation (increased 

proliferation (Fults et al., 2002), tumour formation (Holland et al., 2000; Dai et al., 

2001)) more readily than more differentiated cell types, in experiments inducing 

overexpression of the proto-oncogene Myc, the oncogenes Ras and Akt, and platelet 

derived growth factor (PDGF).  It was also reported for the first time that using the 

neurosphere technique, cells could be derived from human brain tumours which 

showed self-renewal and multilineage differentiation capacity but were 

transcriptionally distinct from normal neurosphere-forming clones (through 

expression of mediators of the Notch signalling pathway, associated with cell fate 

determination and self-renewal) (Ignatova et al., 2002). 

 

2003 saw publication of the first evidence for the hypothesis that, within a solid 

tumour, all of the tumourigenic potential might be held by a fraction of the cells 

(Al-Hajj et al., 2003).  Al-Hajj et al. used flow cytometry to separate cells from 

human primary and metastatic breast carcinomas according to the expression of cell 

surface markers.  For all but one tumour, cells in the CD44+CD24-/lowLineage- 

fraction required much lower inoculums (ten to fifty times fewer cells) than the 

unsorted population to form tumours in immunosuppressed mice.  Tumourigenicity 
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was further enhanced by additionally selecting for those cells expressing high levels 

of ESA (epithelial surface antigen, epCAM).   

 

Significantly, CD24+Lineage- cells were unable to form tumours except in one 

subject.  CD44+CD24-/low Lineage- cells could be serially passaged in mice, forming 

tumours from which further CD44+CD24-/lowLineage- cells could be isolated (i.e. 

self-renewal capacity), as could be the other nontumorigenic cell populations found 

in the original tumour (i.e. multilineage differentiation) (Al-Hajj et al., 2003).  The 

ability to demonstrate these two cardinal CSC properties in vivo was considered a 

breakthrough in the demonstration of the CSC hypothesis, and this remains one of 

the most frequently cited experimental reports in the field.  Critical also was the fact 

that these cells had been prospectively identified – confirming the concept that it 

might be possible to accurately predict the identity of the solid tumour CSC, making 

it a relevant clinical target. 

 

Much of the earliest published work on prospective isolation of tumourigenic CSC 

relates to brain and breast cancer.  The isolation was reported of brain tumour stem 

cells from a number of human nervous system cancers including astrocytomas, 

glioblastoma multiforme, medulloblastomas and ependymomas.  The cells formed 

neurosphere clones in serum-free culture in the presence of mitogenic growth factors, 

and showed multipotent differentiation capacity when placed back into adherent 

culture, with the ability to form all of the lineages seen in the initial tumour (Ignatova 

et al., 2002; Hemmati et al., 2003; Singh et al., 2003; Galli et al., 2004; Singh et al., 

2004). 

 

Expression of the foetal neuronal stem cell marker CD133 was also associated with 

these putative CSC populations (Hemmati et al., 2003; Singh et al., 2003; Singh et 

al., 2004).  The in vivo ability of neurosphere (Hemmati et al., 2003; Galli et al., 

2004) or CD133+ cells (Singh et al., 2004) to recapitulate the primary tumour mass 

was tested by subcutaneous and/or intracranial (orthotopic) transplantation in 

rodents.  The resulting xenografts showed striking similarities to the tumours from 
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which the progenitors were derived, albeit with a “peculiar histomorphology” in 

some cases (Galli et al., 2004). 

 

CSC with transplantable tumourigenic capacity were also isolated from human breast 

cancers according to their ability to form spheroid clones in vitro.  A low-adherence, 

clonal density serum-free in vitro culture system had been developed in the 

laboratories of Max Wicha, and could be used to propagate “mammospheres”, 

enriched in mammary stem/progenitor cells, from normal human mammary tissue.  

As with the neurosphere assay, most primary mammary epithelial cells died under 

these conditions, but a few generated spheroidal colonies of cells.  These were 

capable of self-renewal (passage), and of differentiation into the three cellular 

lineages seen in adult mammary tissue (Dontu et al., 2003).  

 

Extending this, Ponti et al described derivation of mammosphere-forming cells from 

human primary breast tumours and the well-characterised human luminal breast 

carcinoma cell line MCF-7, which could be serially passaged in vitro.  Cells within 

mammospheres were reported as having a predominantly CD44+CD24Low/- surface 

expression pattern, consistent with the findings of Al-Hajj et al, and also to express 

the embryonic stem cell-associated transcription factor Oct4.  Isolated 

CD44+CD24Low/- cells formed xenografts in immunocompromised mice, 

phenotypically similar to the human breast tumours from which they originated 

(Ponti et al., 2005).   

 

Similarly, the identification of candidate CD44+α2β1-integrinHigh normal prostate 

stem cells (Collins et al., 2001) facilitated the purification of a population of putative 

prostatic CSC.  These cells also expressed the brain tumour stem cell-associated 

surface marker CD133 (Richardson et al., 2004).  Although it had been observed in 

many of the brain cancer reports that the frequency of putative CSC appeared to 

positively correlate with the aggressiveness of the tumour, no association was found 

between the frequency of prostatic CSC and Gleason score (by which primary 

prostate tumours are graded) or metastatic status (Collins et al., 2005).   
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Since these initial reports, putative CSC populations have been reported for primary 

cells and cell lines representing a wide range of solid tumours, including lung, liver, 

pancreatic, gastric, colon, nasopharyngeal, head and neck, ovarian and endometrial 

cancers, osteosarcoma and melanoma (Chu et al., 1997; Bapat et al., 2005; Fang et 

al., 2005; Gibbs et al., 2005; Dalerba et al., 2007; Harper et al., 2007; Li et al., 2007; 

Ma et al., 2007; Monzani et al., 2007; O'Brien et al., 2007; Ricci-Vitiani et al., 2007; 

Atsumi et al., 2008; Fujii et al., 2008; Chan et al., 2009; Hubbard et al., 2009).   

 

Prospective Isolation – How can you tell it’s a Cancer Stem Cell? 

 

Surface phenotype 

 

A wide variety of surface markers, singly or in combination, has been used to isolate 

putative CSC from tumour cells and cell lines.  These include CD34, CD44, CD49, 

CD117, CD123 and CD133 (Bonnet and Dick, 1997; Singh et al., 2004; Collins et 

al., 2005; Jin et al., 2006; Suetsugu et al., 2006; Li et al., 2007; Ma et al., 2007; 

Monzani et al., 2007; Chiou et al., 2008; Hong et al., 2008; Hurt et al., 2008; Yang 

and Chang, 2008; Zhang et al., 2008a; Jin et al., 2009; Takaishi et al., 2009).  Other 

putative CSC subsets are characterised by their lack of expression of certain markers 

(such as CD38 for AML stem cells, or CD138 for those of multiple myeloma) 

(Bonnet and Dick, 1997; Matsui et al., 2004).  Indeed, although the seminal breast 

cancer work done by Al-Hajj is frequently cited as evidence of CD44’s status as a 

putative CSC marker, the report shows that CD44+CD24+ cells did not show 

enhanced tumourigenicity – indeed, many specimens were predominantly CD44+ - 

suggesting that CD24 expression level is more significant in this model (Al-Hajj et 

al., 2003). 

 

Markers tested for a given tumour have frequently been selected based on their 

ability to isolate tumourigenic fractions in other tumour types.  CD133, for example, 

has been reported to enrich for CSC in tumours from a variety of tissues including 

colon, lung, liver and melanoma (Ma et al., 2007; Monzani et al., 2007; O'Brien et 

al., 2007; Chen et al., 2008), although prior to early brain tumour stem cell reports it 
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was recognised primarily as a marker of primitive haematopoietic, endothelial and 

neural cells (Handgretinger et al., 2003; Hristov and Weber, 2004; Hess et al., 2006).   

 

The utility of CD133 expression as a CSC marker is a subject of some debate, 

particularly as detection method appears to have considerable bearing upon results 

(Bidlingmaier et al., 2008; Smith et al., 2008; Boegl and Prinz, 2009), as does 

glycosylation status of the protein.  Indeed, whilst data from two groups, published 

simultaneously in 2007, described isolation of tumourigenic CD133+ colon CSC 

(O'Brien et al., 2007; Ricci-Vitiani et al., 2007), other investigators reported soon 

after this that they had found CD133- cells to show similar activity to the CD133+ 

fraction (Shmelkov et al., 2008).  This is critical – arguably, to substantiate the CSC 

hypothesis (by confirming hierarchical organisation within a tumour), it is as 

important to show that specific cells are not tumourigenic as to show that others are. 

 

It is becoming clear that there is unlikely to be a universal CSC marker.  

Significantly, the function of some surface markers employed in CSC isolation, 

including CD133 and CD34, remains unclear.  Also, it is not always clear why a 

given expression pattern should be associated with more tumourigenic cells – for 

example, although a CD24low/ phenotype is reported for many putative CSC 

populations, CD24 has been associated with enhanced proliferation, motility and 

invasion of cells in breast cancer as well as other solid and haematopoietic tumours 

(Baumann et al., 2005; Lim and Oh, 2005; Kim et al., 2007).   

 

Conversely, tumourigenic pancreatic and colorectal carcinoma cells are described 

which express high levels of CD24 (Li et al., 2007; Vermeulen and al., 2008), and 

work by Shipitsin et al suggested that the CD24+ cells of some human breast tumours 

were genetically distinct from (rather than the progeny of) CD44+ cells (Shipitsin et 

al., 2007).  Thus, it appears that CSC markers may vary, not only between tumours 

of diverse origin, but possibly also between individual types and/or subtypes (or even 

individual tumours) derived from the same tissue.  This will necessitate testing with a 

wide range of candidate markers to establish and refine the surface phenotype of 

putative CSC.   
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Certain biological associations can inform these choices – for example, CD44, whilst 

not a defined epithelial stem cell marker, is generally expressed more heavily in the 

basal layers of epithelia (including prostatic and breast), where self-renewing cells 

are located (Alho and Underhill, 1989; Abbasi et al., 1993; Collins et al., 2001).  

Similarly, whilst CD34 is expressed in haematopoietic and endothelial tissues (Baum 

et al., 1992; Asahara et al., 1997), it seems unlikely that it would identify stem (or 

any other) cells of mesenchymal or epithelial origin, as it is not associated with these 

cell types at any stage of differentiation.  Nonetheless, cancer is a disorder 

characterised by cellular mutation, and derangements of normal surface phenotype 

are likely. 

 

Functional assays 

 

As well as providing a platform for analysis of surface phenotype, flow cytometry is 

widely used to investigate the utility of functional stem cell assays for detecting 

CSC.  The most frequently described of these is a technique which assesses efflux of 

Hoechst 33342 through demonstration of a “side population”. 

 

The side population (SP) phenotype was first identified in haematopoietic stem cells 

– when incubated with the fluorescent substrate Hoechst 33342, a minority subset of 

murine bone marrow mononuclear cells (BMMNC) were able to efflux the dye, and 

showed low Hoechst fluorescence at flow cytometry (Goodell et al., 1996).  These 

Hoechst-dull cells, representing approximately 0.05% of whole murine BMMNC, 

fell to the side of the bright-staining main population of cells and were 

predominantly positive for the murine HSC marker Sca-1 but negative for markers of 

more differentiated cells.  When isolated by FACS, cells in the SP were enriched for 

repopulating capacity; intriguingly, the cells were negative for the classical HSC 

marker CD34, and have thus been postulated to represent an even more primitive 

CD34- population of HSC (Goodell et al., 1996).   

 

Subsequently, the technique was used to identify putative normal stem cell 

populations in a variety of tissue types.  The dye-efflux SP phenotype for 
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haematopoietic and several other tissue progenitor cells has been associated both in 

vitro and in vivo with expression of the ATP binding cassette (ABC) transporter 

ABCG2 (Zhou et al., 2001; Scharenberg et al., 2002), thought to facilitate these 

cells’ long lifespan by allowing them to efflux toxic substances.  Critically, this 

membrane transporter protein also plays an important role in multiple drug resistance 

in cancer (Bunting, 2002; Doyle and Ross, 2003). 

 

In 2004,Kondo et al described the presence of an SP phenotype in several cancer cell 

lines upon Hoechst efflux analysis, including the well-characterised rat C6 glioma 

and human MCF-7 breast carcinoma.  The SP fraction (0.4%) of C6 glioma was 

increased in serum-free neurosphere culture, showed multilineage differentiation 

capacity and was more tumourigenic than non-SP cells (Kondo et al., 2004).  The 

same year, Hirschmann-Jax et al reported an SP phenotype in 5/5 human 

neuroblastoma cell lines and 15/23 (65%) of primary human neuroblastomas, as well 

as a variety of human tumour cell lines including those of breast, colon, ovary and 

brain (Hirschmann-Jax et al., 2004).  The technique has since been used to isolate SP 

cells from many tumours and cancer cell lines, and variously reported to enrich for 

cells showing CSC-associated attributes such as surface marker expression, drug 

resistance and tumourigenicity (Wang et al., 2007; Chua et al., 2008; Engelmann et 

al., 2008; Matsui et al., 2008; Wu and Alman, 2008). 

 

The demonstration of this phenotype in a subpopulation of tumour cells is consistent 

with the concept of a CSC fraction, with stem cell-associated properties, which may 

escape from cytotoxic challenge and mediate relapse after chemotherapy.  Other 

assays developed to identify HSC based on resistance mechanisms, such as 

expression of the enzyme aldehyde dehydrogenase (ALDH), have been employed to 

identify putative CSC populations in cancer (Pearce et al., 2005; Ginestier et al., 

2007; Matsui et al., 2008, Preffer and Dombkowski, 2009).  

 

Which Cell is the Target for Transformation?  
 

The term “cancer stem cell” to describe a cell with the functional capacity to 

maintain tumour growth has led to considerable confusion within the CSC field.  For 
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a cell to be considered a stem cell, it must have two cardinal properties – the ability 

to self renew, and the ability to give rise to all of the cell types within the relevant 

tissue.  This also applies to CSC.  This does not, however, equate to an assertion that 

the CSC must have arisen from the transformation of a normal stem cell.  Although 

alternative nomenclature has been suggested, including terms such as “Tumour-

Initiating Cell” and “Tumour-Propagating Cell”, these have not necessarily helped to 

resolve this misconception (Clarke et al., 2006; Jordan, 2009).  

 

An improved understanding of how stem cells are arranged within normal tissues has 

enabled experiments using targetted expression / deletion strategies, to determine the 

cell in which mutations initially arise.  Region-specific p53 mutation implicated 

neural stem and/or transit-amplifying populations in the subventricular zone of the 

brain as the source of glioma precursors in a murine model – whilst not in itself 

conveying a growth advantage, the mutation was permissive for further oncogenic 

mutations in affected cells (Wang et al., 2009).   

 

Similarly, facilitated by identification of a normal LGR5+ stem cell compartment at 

the crypt base in normal colon, it was found that knockout of the APC tumour 

suppressor in these cells (but not more differentiated transit-amplifying cells) 

resulted in rapidly expanding adenomas (Barker et al., 2009).  Nonetheless, as even 

proponents of the hypothesis will point out, in a fully developed tumour, further 

mutations are likely to occur.  Thus, the CSC maintaining the tumour will not 

necessarily be the same cell that sustained the initial oncogenic “hit” (Clarke et al., 

2006).   

 

As discussed, many of the attributes of normal stem cells make them attractive 

candidates for malignant transformation into CSC.  They are “pre-programmed” for 

self-renewal and multilineage differentiation.  They persist and continue to divide for 

the lifetime of the host, allowing them more opportunity to accrue transforming 

mutations in tissues where turnover is rapid, such as epithelia.  In many cases, 

isolated putative CSC are phenotypically similar (e.g. expression of cell surface 

markers) to the corresponding normal tissue stem cell.  The functional attributes 
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which might enable putative CSC to persist after therapy, such as drug efflux 

capacity and (more speculatively) quiescence, are features of many normal stem cell 

populations (Reya et al., 2001).  

 

At the same time, multipotent stem cells represent a small minority of cells within a 

tissue.  An individual stem cell would be a very small target population for the 

accumulation of sufficient mutations to confer a neoplastic phenotype.  Also, 

pathways controlling normal stem cell function, such as the Wnt-β-catenin pathway, 

show specific mutations in many cancers (Reya et al., 2003; Reya and Clevers, 2005) 

– this would perhaps be unexpected if normal stem cell processes had simply been 

co-opted during tumourigenesis.  Moreover, normal stem cell resistance mechanisms 

such as enhanced DNA repair capacity, quiescence or resistance to xenotoxic 

substances, might be expected to protect them from acquiring mutations, with their 

downstream progeny more susceptible. 

 

Polyak and Hahn propose 3 models for the origin of CSC (Polyak and Hahn, 2006) 

(Figure 5): 

 

1) A mutation causes dysregulation of asymmetric division in a tissue stem cell 

(TSC), and is passed on to all progeny.  Progression to full transformation 

occurs in this progeny population as further mutations are acquired. 

2) The TSC itself acquires mutations sufficient for malignancy, and passes these 

on to all progeny. 

3) The transit-amplifying cells or more differentiated progeny accrue mutations 

leading to dedifferentiation and acquisition of stem-cell like properties; TSCs 

themselves are not involved. 

 

Evidence exists to support all of these mechanisms as a potential source of CSC. 
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Figure 5 – Origin of the CSC 
A – Initial mutation arises in tissue stem cell and is passed on to progeny; acquisition 
of further mutations by progeny leads to full neoplastic transformation. 
B – All of the mutations required for neoplastic transformation occur in tissue stem 
cell, and are passed on to progeny. 
C – Initial and subsequent mutations, including the capacity for unlimited self-
renewal, arise in more differentiated cell types - tissue stem cells are not involved.   
 
(Adapted from Polyak and Hahn, 2006 Nature Medicine, 12, 296-300). 
 
 

For example, both primitive HSC and committed myeloid progenitors produce a 

transplantable murine model of AML when transduced with a Mixed Lineage 

Leukaemia (MLL) fusion gene.  Moreover, the phenotypic characteristics were 

identical in leukaemias derived from transplanted HSCs, common myeloid 

progenitors (CMP) or granulocyte-macrophage progenitors (GMP), suggesting that 

transformation could occur in both primitive or more committed cells (Cozzio et al., 

2003).  Similarly, whilst development of malignant gliomas in vivo occurred more 

readily upon induction of autocrine PDGF signalling in neural progenitors, induction 

in differentiated astrocytes also induced tumour formation in mice, enhanced by loss 

of function of the Ink-4a tumour suppressor locus (Dai et al., 2001). 

 

By contrast, mutation of the CEBPA transcription factor (seen in 7-10% of human 

AML) in a murine model appears to have the HSC as the target for transformation.  

This produces a “pre-leukaemic” state whereby cells show slight increases in 

proliferative capacity.  However, in this leukaemia subtype, the leukaemia stem cell 

A C B 
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(LSC) arises downstream in the myeloid compartment, although it has a specific 

expression profile (CD117+, Sca1-, Mac1+) which is distinct from either HSC or 

myeloid progenitors (Kirstetter et al., 2008; Bereshchenko et al., 2009).   

 

A preleukaemic cell was also reported in elegant studies of childhood B-cell ALL in 

a pair of monochorionic twins, one of whom had developed leukaemia as the result 

of a chromosomal translocation generating an abnormal fusion protein (TEL-AML1).  

Low numbers of TEL-AML1-positive cells were also detected in the peripheral 

blood of the normal twin.  The disease is associated with production of an aberrant 

CD34+CD38-/lowCD19+ cancer-propagating clone – again, low numbers of cells with 

this phenotype could be detected in the normal twin, although analysis of V-D-J 

recombination status indicated that the cell was at an earlier stage of differentiation 

than the LSC observed for the leukaemic twin.  Collectively, the results of this study 

suggested that the initial fusion mutation had arisen at HSC or pro-B cell stage, 

leading to a preleukaemic cell, with progression to disease in the leukaemic twin 

after additional loss of the normal TEL allele (Hong et al., 2008). 

 

Although the “dedifferentiation” of a committed cell into one with more primitive, 

stem-like properties might seem an unlikely event, it has been shown in the fruit fly 

Drosophila melanogaster that cells during early development can be induced to 

revert to germinal stem cells (Kai and Spradling, 2004).  Moreover, rather than full 

reversion to a TSC, the cardinal property to be acquired by a more committed cell, if 

it is to function as a CSC, is self renewal – as will be discussed further, de novo 

alterations affecting self renewal capacity are frequently observed in cancer.  For 

example, β-catenin is the downstream effector protein of Wnt signalling, associated 

with self-renewal and proliferation.  In CML, increased nuclear β-catenin was 

reported in myeloid progenitors as the disease advanced to blast crisis, whilst levels 

in HSCs remained stable.  In vitro self-renewal capacity was demonstrated both by 

GMPs from leukaemic patients, and by normal GMPs with forced β-catenin 

expression, suggesting that disease might originate in a more committed cell if it 

acquired stem cell-like attributes (Jamieson et al., 2004). 
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It has also been proposed that, rather than unlimited self-renewal capacity being 

conferred by gain-of-function mutations, it may in fact be a “default” pathway (seen, 

for example, in most single-celled organisms).  Thus, if tissue specialisation relies on 

a balance between self-renewal, differentiation and cell death, any cell in which 

apoptosis is prevented or differentiation is blocked (the effects of many of the 

mutations seen in cancer) could act as a self-renewing CSC (Passegue et al., 2003). 

 

Observations made in cancer may contribute to understanding of normal stem cell 

hierarchies.  For example, one hallmark feature of CML is the Philadelphia 

chromosome – this truncated chromosome 22 results from a reciprocal translocation 

with chromosome 9, and produces the BCR-ABL fusion protein.  The protein occurs 

in multiple haematopoietic lineages in CML, suggesting that the translocation event 

arises in a HSC (Daley, 2004; Jamieson et al., 2004).  Studies of normal 

haematopoiesis have recently suggested that there exists an even more primitive 

population of precursors within the bone marrow, the putative “haemangioblast”, 

which gives rise to both haematopoietic and endothelial lineages (Schatteman and 

Awad, 2004).  Consistent with this, demonstration of BCR-ABL expression in 

endothelial cells from a CML patient may point to the mutational event having 

occurred in a cell preceding the HSC in the haematological hierarchy, with greater 

differentiation potential (Gunsilius et al., 2000).   

 

Potential role of Mesenchymal Stem Cells in cancer 

 

Adult mesenchymal stem cells (MSC) are widespread in normal bone marrow (hence 

the alternative terminology “bone marrow-derived stromal cells”, BMSC); they have 

also been isolated from other tissues, including adipose tissue.  These cells show 

remarkable plasticity, with multilineage potential including adipogenic, 

chondrogenic and osteogenic differentiation capacity (Pittenger et al., 1999).  They 

also have the ability to mobilise and migrate in the circulation to distant sites, in 

response to tissue stress including chronic inflammation and injury, where they may 

promote repair processes including angiogenesis (Lapidot et al., 2005).  These cells 

do not express telomerase and show limited self-renewal in vitro (Zimmermann et 
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al., 2003), undergoing replicative senescence after multiple passage (Baxter et al., 

2004), although some evidence suggests that they may be susceptible to 

transformation in long-term culture, resulting in immortalisation (Rubio et al., 2005; 

Izadpanah et al., 2008). 

 

MSC show a number of similarities with tumour cells, including an 

“undifferentiated” phenotype, proangiogenic influence and a propensity for 

migration.  The complex, co-ordinating mechanisms involved in the recruitment of 

MSC to distant sites are also reported to influence the migration and metastasis of 

cancer cells.  For example, interactions between the CXCR4 cell surface receptor and 

site-specific secretion of its ligand SDF-1 are thought to influence MSC trafficking 

(Chamberlain et al., 2007).  As CXCR4 may be expressed on the surface of cancer 

cells, and SDF-1 is highly expressed in tissues including lymph node, lung, liver and 

bone, this could explain the propensity for metastatic spread to these organs 

(Ceradini and Gurtner, 2005; Kucia et al., 2005).   

 

In a murine breast cancer xenograft model, the motility, invasion and metastatic 

ability of human MDA-MB-231 cells was enhanced by MSC, through interaction of 

the CCR5 receptor on the tumour cells with its chemokine ligand CCL5, secreted by 

the MSC (Karnoub et al., 2007).  Data published by Galie et al showed that the 

mesenchymal tumour cell component of some carcinomas had a common molecular 

signature with MSC, and co-implantation of cancer cells with MSC favoured tumour 

growth in syngeneic rodents - it was postulated that this was the result of 

proangiogenic effects (Galie et al., 2008).  

 

Moreover, studies have suggested that MSC recruited to tumours may actively 

participate in the neoplastic process.  In a murine model of Helicobacter pylori-

induced gastric carcinoma, it was found that MSC migrating to the tumour site from 

bone marrow could contribute towards the abnormal mucosa.  It was demonstrated 

that, rather than a cell fusion event occurring between MSC and gastric tumour cells, 

the MSC acquired a gastric mucosal phenotype with upregulation of epithelial 
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markers (Houghton et al., 2004).  Thus, it appears that for some tumours, recruitment 

of these multipotent stem cells may play a role in progression. 

 

Signalling mechanisms regulating CSC function 

 

Many of the signalling pathways and genetic mechanisms dysregulated in cancer are 

involved with the regulation of normal stem cell function.  HOX transcription factors, 

the Wnt-βcatenin, Notch and Sonic Hedgehog (SHh) pathways, and the Polycomb 

gene Bmi-1 are important in fate determination, self-renewal and other stem cell 

properties.  Consistent with this, alterations in expression have been reported in 

putative CSC populations of tumours of both the haematopoietic system and solid 

tissues (Taipale and Beachy, 2001; Lessard and Sauvageau, 2003; Pardal et al., 2003; 

Behbod and Rosen, 2005; Huntly and Gilliland, 2005; Zhao et al., 2009). 

 

Bmi-1 

Bmi-1 is a member of the Polycomb group of transcriptional repressor proteins, 

which acts through the ink-4a locus to downregulate the tumour suppressors encoded 

there – p16INK4a and p19ARF.  Bmi-1 overexpression in mouse embryonic fibroblasts 

leads to their immortalisation, and in co-operation with ras can cause neoplastic 

transformation (Jacobs et al., 1999).  Correspondingly, loss of expression is 

associated with reduced proliferative capacity, in both normal haematopoietic 

precursors derived from foetal liver cells, and leukaemic stem cells in a mouse model 

of acute myeloid leukaemia (Lessard and Sauvageau, 2003).  Bmi-1-/- leukaemias 

were not transplantable into secondary recipients, although this capacity could be 

rescued by introduction of a retroviral Bmi-1 provirus.  Interestingly, this Bmi-1-

mediated rescue was also seen in Bmi-1-/- clones with defects in the expression of 

p16INK4a and p19ARF, indicating additional pathways through which the molecule 

exerts its effects (Lessard and Sauvageau, 2003).   

 

Glinsky et al investigated the role of Bmi-1 in human prostate cancer using 

microarray analysis; elevation in expression was reported for all tested cancer cell 

lines, with more metastatic tumour types showing greater increases.  An 11-gene 
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signature, associated with Bmi-1 function in normal stem cells, was expressed in 11 

different types of cancer, and consistently predicted metastasis and poor prognosis 

(Glinsky et al., 2005). 

 

Notch 

The four Notch transmembrane receptors found in mammals are activated by their 

ligands Delta and Jagged, as well as other members of the DSL (Delta, Serrate and 

Lag-3) family.  Activation of the pathway results in transcription of target genes, 

associated with processes such as cell fate determination during development, and 

self-renewal in adult tissues (Weng and Aster, 2004).   

 

Notch signalling has been demonstrated as oncogenic in mouse models of T-cell 

Acute Lymphoblastic Leukaemia (T-ALL) (Hoemann et al., 2000), and can 

collaborate with the c-neu/erbB2 oncogene in the development of mammary tumours 

(Dievart et al., 1999).  Dontu et al showed that activation of Notch signalling 

promoted self-renewal and proliferation of normal mammary stem/progenitor cells 

cultured in mammospheres, but had no effect on fully committed mammary 

epithelial cells, suggesting that it exerts its oncogenic potential at the progenitor level 

(Dontu et al., 2004).   

 

Microarray analysis of CD34+CD38- LSC from AML has indicated overexpression 

of Jagged-2, with inhibition of Jagged and Notch signalling reducing LSC growth in 

colony forming assays (Gal et al., 2006).  Interestingly, loss-of-function Notch 

pathway mutations are also reported to contribute to neoplastic transformation, 

demonstrating that the role of Notch-activated gene expression is context dependent 

(Nicolas et al., 2003).  For example, in one study of cortical glial tumours, Jagged-2 

was expressed by neurospheres derived from normal, but not malignant, tissue 

(Ignatova et al., 2002). 

 

Wnt and β-catenin 

One of the signalling transduction processes most frequently associated with putative 

CSC populations is Wnt-β-catenin.  Wnt signalling influences cell migration and 
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developmental patterning, proliferation and survival, through the binding of β-

catenin to the LEF/Tcf transcription factors and activation of downstream genes 

(Wodarz and Nusse, 1998; Taipale and Beachy, 2001).   

 

β-catenin, which has a very short half-life, is normally sequestered in the cytoplasm 

by a “destruction complex” which phosphorylates the protein, targetting it for 

ubiquitin-mediated degradation by the proteasome.  The destruction complex 

comprises four proteins including the APC tumour suppressor, mutation of which is 

a critical factor in human colon cancer.  The binding of Wnt proteins to their Frizzled 

cell surface receptors inhibits this multiprotein complex, permitting cytoplasmic 

accumulation of β-catenin and translocation to the nucleus to activate gene 

expression (Taipale and Beachy, 2001; Reya et al., 2003; Reya and Clevers, 2005).  

Overactivation of the pathway with increased nuclear β-catenin has been reported in 

haematological and solid malignancies, including those of intestine, prostate, ovary, 

brain and skin (Pardal et al., 2003). 

 

Overexpression of β-catenin in transgenic murine HSCs is reported to increase their 

self-renewal capacity (Reya et al., 2003).  Similarly, the pathway has been 

implicated in the self-renewal of LSC – for example, the progenitor population of 

CML shows increased β-catenin levels, and self renewal of these cells is inhibited in 

vitro by enforced expression of the Wnt signalling antagonist Axin (Jamieson et al., 

2004).  Moreover, inhibition of β-catenin in CML progenitors in vivo prevented 

transplantation of the disease to secondary murine recipients (Hu et al., 2009).  The 

authors postulated that the survival and self renewal capabilities conferred by Wnt 

signalling might contribute to resistance of some CML LSC to the tyrosine kinase 

inhibitor imatinib mesylate.   

 

For a number of solid tissues including breast and intestinal epithelia, aberrant Wnt 

signalling has been demonstrated preferentially to induce tumourigenesis in 

progenitor populations.  For example, in conditional knockout experiments in a 

murine model of colon cancer, targetted deletion of APC in LGR5+ intestinal crypt 

stem cells resulted initially in β-catenin accumulation within these cells, and was 
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associated with increased proliferation.  Within days, foci of β-cateninHigh cells were 

observed within the transit-amplifying compartment, leading to the formation of β-

cateninHigh microadenomas, although LGR5-positive cells remained confined to the 

crypt base suggesting maintenance of a developmental hierarchy (Barker et al., 

2009).  Interactions between Wnt-β-catenin signalling and the Notch pathway (Fre et 

al., 2009), and also the CSC-associated cell surface receptor CD44 (Zeilstra et al., 

2008), have also been implicated in early intestinal tumourigenesis.  

 

Wnt signalling has also been reported to mediate drug resistance in cancer and 

putative CSC populations.  Activation of Wnt signalling in human hepatocellular 

carcinoma (HCC) was reported to induce resistance to 5-Fluorouracil (5-FU) in vitro.  

Moreover, a subpopulation of cells, which express the cell surface marker OV6, can 

be isolated from primary human HCC and cell lines, and shows enhanced Wnt 

signalling as well as increased tumourigenicity and reduced sensitivity to 

chemotherapy.  Inhibition of β-catenin decreases the proportion of these putative 

progenitors and increases their drug sensitivity, suggesting that Wnt plays a role in 

the self-renewal and survival of OV6+ putative HCC progenitor cells (Yang et al., 

2008). 

 

Markers / regulators of pluripotency – Oct4 and Nanog 

Upregulation of tissue-specific “stemness” indicators is reported for many CSC 

populations.  For example, nestin is an intermediate filament protein and a marker 

for neuroepithelial precursors (Lendahl et al., 1990); increased expression has been 

reported in undifferentiated normal and brain tumour-derived neurospheres 

(Reynolds et al., 1992; Hemmati et al., 2003; Singh et al., 2003), as well as putative 

melanoma CSC (Na et al., 2009) – the latter is consistent with the origin of 

melanocytes in the embryonic neural crest.   

 

More controversial has been the identification of CSC based on expression of the 

embryonic stem cell-associated transcription factors Nanog and Oct4 (also Oct 3/4 or 

POU5F1).  Critical to self-renewal and pluripotency of ESC (Chambers and Smith, 

2004; Loh et al., 2006; Liang et al., 2008; Torres and Watt, 2008), they are also 
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expressed in germ cells, but this is strongly suppressed in more differentiated cell 

types by promoter hypermethylation (Lengner et al., 2007; Cantz et al., 2008).  

 

The expression of Oct4 by a putative CSC population was first reported by Ponti et 

al, in their study of breast cancer-derived mammosphere cells (Ponti et al., 2005).  

Gibbs et al derived “sarcospheres” from osteosarcomas and chondrosarcomas, which 

showed upregulation of both Oct4 and Nanog, which reduced if tumourspheres were 

allowed to differentiate in standard serum-contaning, adherent culture (Gibbs et al., 

2005).  Demonstration of Oct4 and Nanog expression has since been used to 

substantiate reports of putative CSC isolation in numerous studies. 

 

Expression of both was associated with outcome and survival time in oral cancer, 

with Nanog proving the worse prognostic indicator of the two (Chiou et al., 2008).  

Bourguignon et al use immunoprecipitation to demonstrate interactions between 

Nanog and the stem cell-associated marker CD44 and its ligand hyaluronan 

(Bourguignon et al., 2008).  Webster et al found nuclear Oct4 expression in all 

examined canine tumours (29 tumours, 11 tumour types) using 

immunohistochemistry (Webster et al., 2007), and Wilson et al reported upregulation 

of both Nanog and Oct4 on tumoursphere populations derived from canine 

osteosarcoma (Wilson et al., 2008). 

 

More recently, considerable debate has arisen over the expression of these proteins, 

particularly Oct4, in adult stem or CSC populations.  A cell with preexisting 

pluripotency / self-renewal capability is an attractive candidate for transformation to 

a CSC.  However, their role in normal adult TSC remains controversial (Berg and 

Goodell, 2007).  A recent comprehensive study involving both conditional knockout 

and eGFP reporter models demonstrated that Oct4 is not required for somatic stem 

cell pluripotency (Lengner et al., 2007). 

 

Oct4 was previously detected in mixed teratomas and embryonal carcinomas formed 

in murine models upon implantation of ESC, and in certain types of germ cell 

tumour (Gidekel et al., 2003; Looijenga et al., 2003).  Notably, however, in both of 
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these studies (published prior to the rush of interest in Oct4 as a potential CSC 

marker) almost every non-germ cell tumour evaluated was Oct4-negative (in a tissue 

microarray performed by Looijenga et al, examining over 3600 tumours of over 100 

types, only two lung tumours and one kidney tumour tested positive for Oct4 

(Looijenga et al., 2003)).  It is possible that, in considering entire tumour cell 

populations rather than those enriched for putative CSC, expression by a minority 

subset was not detected.  

 

However, a number of factors suggest a high likelihood of false positives when 

interrogating samples for these “stemness markers”.  These include the transcription 

of non-functional pseudogenes (Looijenga et al., 2003; Suo et al., 2005; Liedtke et 

al., 2007; Liedtke et al., 2008), and splice variants with cytoplasmic localisation 

which are therefore unlikely to have relevant transcription factor activity (Takeda et 

al., 1992; Liedtke et al., 2008).  Immunological detection may also pick up other 

members of the POU gene family due to protein sequence homology, particularly 

where polyclonal antibodies are employed (Lengner et al., 2007).  Cantz et al. 

demonstrated elegantly that overzealous processing of immunofluorescence images 

can create apparent staining from non-specific and background signal (Cantz et al., 

2008).  Moreover, at mRNA level, it is likely that there is a background level of RT-

PCR signal which does not represent true transcription factor function (Lengner et 

al., 2007; Cantz et al., 2008). 

 

Evaluation of some of the evidence for Oct4 or Nanog expression as markers of CSC 

reveals inconsistencies, which may reflect the confounding factors outlined above. 

For example, in the study by Gibbs et al., protein is detected by both Western blot 

and immunohistochemistry in cell lines that show no mRNA signal at RT-PCR.  

Moreover, Oct4 localisation in some tumourspheres shown cannot be identified, but 

appears to be pancellular rather than nuclear (Gibbs et al., 2005). 

 

Despite “irrational exuberance” (Berg and Goodell, 2007) in some of the reporting 

with regards these proteins, Hochedlinger et al demonstrated in an adult mouse 

model that ectopic Oct4 expression in somatic tissues could induce dysplasia, with 
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progenitor cell expansion and increased β-catenin expression (Hochedlinger et al., 

2005).  The significance of expression has been further emphasised recently by 

groundbreaking reports that introduction of Oct4 and Nanog expression in terminally 

differentiated cell types, in combination with other mediators such as Sox2, can 

generate “induced pluripotent stem cells” (iPS cells) (Takahashi and Yamanaka, 

2006; Takahashi et al., 2007; Yu et al., 2007).  Thus, the potential role for Oct4 and 

Nanog in cellular transformation warrants investigation.  However, it has become 

clear that apparent expression must be analysed critically, preferably using a 

multimodal approach including confirmation of nuclear localisation, and using 

appropriate controls.  

 

Telomeres, telomerase and cancer stem cells 

When grown in culture, the phenomenon of senescence limits the replicative 

potential of cells, in that eventually the cells will stop dividing (Hanahan and 

Weinberg, 2000).  This is partly governed by the gradual loss of the protective 

telomeres, tandem repeats of a 6 bp sequence which are present at the ends of 

chromosomes.  DNA polymerases cannot fully replicate the 3’ end of the DNA 

strand, such that upon each cell division there is a loss of 50-100 bp at each end of 

every chromosome.  The telomeres buffer this loss but, as they are of finite length, 

they gradually become shorter through the life of a dividing cell – this protective 

mechanism means that the cell will be directed to senescence or apoptosis after a 

certain number of divisions (Argyle and Nasir, 2003; Ju and Rudolph, 2006). 

 

This “end replication problem” is mitigated by the expression of of Telomerase, an 

enzyme which catalyses the addition of telomeric repeat sequences on to the ends of 

chromosomes.  High levels of telomerase are characteristic of embryonic stem cells 

(Thomson et al., 1998); low levels have been reported in adult stem cells from a 

variety of tissues, although telomerase activity in these populations is more 

controversial and cannot be considered a stem cell marker per se (as upregulation 

may occur in tissues where cells undergo rapid expansion) (Hiyama and Hiyama, 

2007).  
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Telomerase is also expressed in over 80% of human cancers, and is presumed to 

confer unlimited cell cycling ability.  Paradoxically, many tumours show 

foreshortened telomeres.  A two-step process has been proposed, whereby early 

telomere shortening promotes chromosomal instability and mutation, and then 

telomerase activity stabilises the telomeres to allow uncontrolled replication.  In most 

haematological malignancies, short telomeres and telomerase activity are detected; 

telomerase activity between twice and 50 times that of normal haematopoietic 

precursors has been reported (Ju and Rudolph, 2006). 

 

Although increased telomerase activity has been reported in some putative CSC 

populations in comparison to non-CSC (for example, in the SP cells of some 

oesophageal carcinoma cell lines, or glioblastoma multiforme-derived neurospheres 

– (Lee et al., 2006; Zhang et al., 2008b), a definitive association is not well 

established.  It has been suggested that if CSC are more quiescent cells, the activity 

of mechanisms to preserve telomere length is less critical than in more rapidly 

dividing cells.   

 

However, the novel inhibitor of telomerase activity GRN136L (Imetelstat) is 

reported to show activity against putative CSC of pancreatic and prostatic cancer in 

vitro, and breast cancer and glioblastoma both in vitro and in vivo.  This is 

significant, as it suggests that telomerase inhibition may prove a useful strategy for 

targetting resistant tumourigenic subpopulations (Hochreiter et al., 2006; 

Bhagwandin and Shay, 2009; Marian et al., 2010a; Marian et al., 2010b). 

 

CSC, Metastasis and the Epithelial-Mesenchymal Transition 

 

The most lethal effects of neoplastic disorders frequently relate to the capacity of 

cancer cells to migrate to distant sites and form secondary tumours.  The cellular 

heterogeneity of these metastases often reflects that seen in the primary tumour.  

However, disseminated cells may remain detectable in remote tissues without 

showing further development (Reya et al., 2001).  According to the CSC hypothesis, 

only CSC have the capacity to propagate malignancy, manifesting as local invasion 
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over short distances, and metastatic spread for longer migrations.  Non-CSC may 

disseminate and become lodged in tissues, but will not form active metastases 

(Brabletz et al., 2005). 

 

Although one study of CSC in breast cancer found that the prevalence of the putative 

CD44+CD24-/low tumour stem cell phenotype in breast tumours did not correlate with 

tumour progression or prognosis, it was associated with a tendency for distant 

metastasis upon recurrence (Abraham et al., 2005).  The presence of disseminated 

tumour cells in breast cancer can be detected with immunohistochemistry for 

cytokeratins (CK).  Balic et al assessed CK+ bone marrow samples from 50 early 

breast cancer patients and found that all specimens had detectable CD44+CD24-/low 

cells, with prevalence (33-100%) much greater than that seen in primary tumour 

masses, again associating the putative breast CSC population with a tendency toward 

metastasis (Balic et al., 2006).   

 

The “Epithelial-Mesenchymal Transition” (EMT) has attracted recent interest as a 

mechanism by which CSC may be associated with metastasis.  This is a normal 

process during embryonic development, whereby epithelial cells lose polarity and 

adopt a motile phenotype (accompanied by characteristic changes, particularly 

downregulation of the cell adhesion molecule e-cadherin), allowing migration in the 

extracellular environment (Shook and Keller, 2003).  There appear to be multiple 

parallels between this conversion between cellular states as it occurs in 

embryogenesis, and that observed during progression of carcinomas (Thiery, 2002).   

 

It is proposed that EMT enables carcinoma cells to escape the confines of the 

normally structured epithelial environment, facilitating local invasion and also 

breach of the basement membrane, leading to intravasation and distant 

dissemination.  At distant sites, extravasation may be followed by the reverse process 

of mesenchymal-epithelial transision (MET), leading to the formation of secondary 

carcinomas (Figure 6).  Many signalling pathways which influence EMT, including 

Wnt-βcatenin, transforming growth factor-β (TGFβ) and those initiated by receptor 

tyrosine kinases EGFR and FGFR, are dysregulated in cancer (Thiery, 2002). 
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Figure 6 – Proposed role of epithelial-mesenchymal transition in carcinoma 
metastasis 
A – Normal epithelial organisation with intact basement membrane 
B – Dysplasia with local proliferation leads to adenoma formation and thence 
carcinoma in situ, but basement membrane remains intact. 
C – EMT facilitates breaching of the basement membrane – local invasion – and 
subsequent intravasation into blood vessels or lymphatics. 
D – At distant sites, extravasation followed by mesenchymal-epithelial transition 
(MET) results in formation of secondary carcinoma. 
 
(Adapted from Thiery, 2002 Nature Reviews – Cancer, 2, 442-454). 
 

 

Some recent evidence has suggested that EMT may generate CSC (Mani et al., 2008; 

Hennessy et al., 2009; Santisteban et al., 2009).  Mani et al demonstrated 

upregulation of mesenchymal markers in normal and neoplastic mammary cells with 

the putative CSC phenotype CD44HighCD24Low/-.  Immortalised normal (HMLE) or 

transformed (HMLER) mammary epithelial cells were exposed to TGFβ, or the 

EMT-inducing transcription factors Snail or Twist overexpressed.  This resulted in a 

predominantly CD44HighCD24Low/- phenotype, the ability to form mammospheres, 

A B 

D 
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and (for HMLER) increased tumourigenicity.  The acquisition of these properties is 

proposed as a mechanism by which CSC arise in epithelial tumours, and may explain 

their greater propensity to give rise to metastasis (Mani et al., 2008). 

 

It is significant, however, that this is a highly manipulated model.  The neoplastic 

HMLER cells investigated had been artificially transformed by insertion of the vRas 

oncogene into HMLE cells; interestingly, “HMLEN” cells, transformed using the 

Her2/Neu oncogene, showed similar phenotypic changes and the ability to form 

mammospheres when induced to EMT, but were no more tumourigenic than the 

control cells.  Moreover, HMLER control cells also induced tumours, albeit with less 

efficiency than HMLER-EMT cells.  Lesions produced by both were similar 

squamous metaplasias, suggesting that induction of EMT was not necessarily 

associated with an invasive breast tumour phenotype.  Whilst suggesting a 

mechanism which may result in the generation of cells with enhanced metastatic 

capability, it is less clear why or if EMT should confer the cardinal CSC properties 

of self renewal or multilineage potential per se (Mani et al., 2008).  Further work 

may shed more light on a role for EMT in the origin of CSC. 
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CSC Controversies and Alternative Hypotheses 

 

Although there is now considerable evidence to support the concept of CSC, there 

has been a great deal of debate about both their existence and their clinical relevance.  

Not unexpectedly, some of this has arisen from the rather overzealous interpretation 

of data evident in some reports of putative CSC.  However, there are also more 

fundamental difficulties in reconciling the idea of a cancer cell hierarchy with 

experimental evidence, particularly for solid tumours. 

 

As discussed above, a number of different features may suggest that a cancer cell is a 

CSC (Figure 7).  However, the working definition of CSC is, “those cells within a 

tumour exhibiting unlimited self-renewal capacity, and which can give rise to all of 

the various cell types making up the parental tumour upon serial transplantation in 

immunocompromised recipients”.  Importantly, this is a functional definition (self 

renewal and multilineage differentiation capacity), and not one based on any other 

anticipated stem cell feature such as surface phenotype.  As previously discussed, 

although it may be the case for some tumours, the CSC is not necessarily a 

transformed stem cell.  

 

The generally accepted “gold standard” method of defining CSC is serial 

transplantation in laboratory animals, in order to demonstrate self-renewal (passage) 

and the recapitulation of the tumour.  This relies heavily upon the assumption that 

the formation of a tumour xenograft is influenced only by the nature of the implanted 

cells.  However, the potent effects imparted by the environment or “niche” in which 

a cell exists cannot be disregarded when considering the evolution of a tumour 

(Mueller and Fusenig, 2004; Bjerkvig et al., 2005; Polyak and Hahn, 2006). In 

normal tissues, the stem cell niche provides important extracellular controls and cues 

additional to the stem cells’ own intrinsic program.   

 

Similarly, tumour cells interact with surrounding stroma in a reciprocal manner, and 

can influence the stroma such that it is more conducive to tumour growth (Mueller 

and Fusenig, 2004; Perry and Li, 2007).  Significantly, the inability of a cell to  
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Figure 7 – Summary of biological features which may be associated with CSC and 
used in their identification or isolation. 
 
 

Resistance 
mechanisms 

Drug efflux pumps 
Drug detoxification 
Survival signalling 
DNA repair capacity 

 

In vitro behaviour 
Serum-free growth 

Tumoursphere passage 
(self-renewal) 
Multilineage 
differentiation 
(multipotency) 

  

In vivo behaviour 
Tumourigenicity 

Passage - 2° tumour 
(self-renewal)  

Recapitulation of 
original tumour 
(multipotency) 

SC-associated 
signalling / protein 

expression 
(Self-renewal) 
(Multipotency) 

SHh, Notch, Wnt, 
Bmi-1; Oct4? Nanog? 

Cell surface 
phenotype 

Tissue-specific 
(e.g. CD34) 

Tissue-diverse? 
 (e.g. CD133) 

Slow cell cycle 
kinetics / 

Quiescence? 
Activation of 
telomerase? 

CSC 



Chapter 1 – The Cancer Stem Cell Hypothesis – Theory, Evidence and Implications 

 40 

survive or proliferate when inoculated as a xenograft (particularly where this is not 

orthotopic, i.e. at the natural tumour site) may not accurately reflect its potential in 

the original tumour, where it is surrounded by a network of supportive cells, and 

subject to local cell-cell interactions (Hill, 2006; Adams and Strasser, 2008).  Several 

authors raised the possibility that “CSC” markers may merely enrich for a population 

of cells with these functional capabilities – i.e. the ability to survive in a foreign host 

(Hill, 2006; Fillmore and Kuperwasser, 2007; Adams and Strasser, 2008). 

 

A short report by Kelly et al demonstrated that unsorted inoculums of as few as 10 

cells could reliably reproduce murine lymphoma in histocompatible, non-irradiated 

mice; indeed, in 3 of 8 recipients injected with a just single cell, lymphoma also 

developed (Kelly et al., 2007).  Overall, results suggested that, far from the idea of a 

“rare cancer stem cell”, a large proportion of cells in some tumours could act as 

CSC.  The authors postulated that the small proportion of leukaemia-initiating cells 

found in, for example, AML, may reflect the ability of human cells to survive in a 

murine environment.  Proponents of the CSC hypothesis were eager to point out that, 

despite the fact that it had frequently been emphasised in reports, rarity is not a 

defining feature of CSC (Kennedy et al., 2007).  Nonetheless, the report establishes 

that the particular transplantation model used in a set of experiments is likely to have 

profound effects on apparent tumourigenicity of cancer cells (Kelly et al., 2007). 

 

This was further emphasised by a seminal study on human melanoma from the 

laboratory of Sean Morrison.  It was reported that, in NOD/SCID murine recipients, 

tumour formation was inefficient and required the inoculation of hundreds of 

thousands of cells.  In stark contrast to this, in more immunosuppressed hosts 

(NOD/SCID/Il2Rg-/- or “NOG” mice, which also lack the Interleukin-2 gamma 

receptor), efficiency was several orders of magnitude greater – indeed, single 

unsorted melanoma cells could form tumours (Quintana et al., 2008).   

 

This also had particular significance as the first report of solid tumour formation by a 

single cell (Quintana et al., 2008).  All published putative CSC markers, whilst 

enriching for tumourigenicity, still required the inoculation of hundreds to thousands 
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of cells to produce a tumour.  Furthermore, close inspection of much tumourigenicity 

data suggests the influence of undefined variables or inhibitory effects (Kern and 

Shibata, 2007).  For example, in reports of colon cancer stem cells, sorted CD133+ 

cells produced tumours more efficiently than unfractionated cells, even when the 

actual number of CD133+ cells within the unsorted inoculum was greater (O'Brien et 

al., 2007).  Similar numerical discrepancies are found in many reports of putative 

CSC, and draw attention to the need to question carefully why a cell may appear 

“tumourigenic” or “non-tumourigenic” (Hill, 2006; Kern and Shibata, 2007). 

 

One good example of this was the demonstration by Taussig et al that the CD38 

antibody used in flow cytometric fractionation of AML samples had a profound 

inhibitory effect on engraftment in immunosuppressed mice.  Inhibition was Fc 

receptor-mediated and could be overcome using specific immunosuppressive 

antibodies.  This not only permitted engraftment, but also demonstrated LSC activity 

in the CD34+CD38+ fraction, which would otherwise have been considered “non 

tumourigenic” (Taussig et al., 2008).  If treatment strategies are to be based upon the 

premise that certain cells within a tumour have distinct characteristics or are more 

significant to disease progression, it is critical that these distinctions do not arise 

artefactually.   

 

Thus, there are limitations when using xenograft tumour models to infer that only a 

specific subset of tumour cells may propagate disease, and that all of the other cells 

are incapable of doing so.  The major alternative hypothesis of clonal evolution 

proposes that tumourigenic cells may continually evolve, based on selective 

pressures, leading to genetically and epigenetically distinct subsets which are not 

necessarily hierarchically organised.  Described initially in 1979 by Nowell, the 

model thus ascribes the heterogeneity and progression of tumours to the inherent 

instability of cancer cells, rather than the influence of a stable dominant 

subpopulation (Nowell, 1976) (Figure 3B).   

 

As well as being a foundation of the CSC hypothesis, the observation that some 

cancer cells are more tumourigenic than others is also consistent with the clonal 
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evolution model (Nowell, 1976).  Notably, differences between subpopulations do 

not always appear to arise as a result of a stable, intrinsic parent-progeny relationship 

between CSC and the rest of the tumour (Shackleton et al., 2009).  For example, 

studies of heterogeneous cellular subpopulations breast cancer cells demonstrated 

that, whilst CD44+CD24low/- cells did show more “stemness”-associated 

characteristics and correlated with indicators of prognosis, CD24+ cells were not only 

prevalent in distant metastases in drug-refractory patients but also showed a distinct 

genetic signature.  This suggested that they represented a divergent subpopulation, 

rather than simply the terminally differentiated progeny of the CD44+ cells (Shipitsin 

et al., 2007).   

 

Whilst the CSC paradigm does seem to apply to some malignancies, in others clonal 

evolution or a combination of processes may more closely account for tumour 

behaviour.  Importantly, evidence from both haematological and solid tumours has 

indicated the potential for clonal evolution of tumourigenic CSC subsets (Barabe et 

al., 2007; Hermann et al., 2007).  Thus, it is becoming apparent that it may be overly 

simplistic to consider a single cancer stem cell phenotype, without accounting for the 

continued evolutionary changes that are likely to occur within the life history of any 

individual tumour (Shackleton et al., 2009) (Figure 8).  
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Figure 8 – Tumour progression may involve features of both the CSC and clonal 
evolution paradigms.  The original tumourigenic CSC (CSC1) which gives rise to 
restricted, nontumourigenic progeny (Progeny1) may undergo further mutation under 
the influence of intrinsic or extrinsic influences (such as drug therapy), leading to the 
generation of a distinct, self-renewing tumourigenic CSC (CSC2).  This in turn gives 
rise to distinct progeny (Progeny2).  If these mutated CSC have a growth advantage 
they may become dominant within the tumour.   
Therapy based on targetting prospectively identified CSC1 may be evaded by CSC2. 
 

 

Clinical Relevance of the CSC Hypothesis 

 

If a population of CSC is responsible for the propagation of a tumour, these cells 

must be eliminated to effect a cure.  Conventional cancer chemotherapy has focussed 

on eradication of the tumour mass, based on the principle that rapidly dividing cells 

are preferentially eliminated – this targets cancer cells, but unfortunately also other 

tissues with a high cell turnover (such as hair, gut epithelium and blood), resulting in 

some of the unpleasant side effects associated with treatment.  However, it is not 

only this dose-limiting morbidity which results in treatment failure, as some cancer 

cells are inherently resistant to the effects of anticancer agents.  

 

The CSC hypothesis can account for the occurrence of relapse after therapy, 

sometimes years after apparent eradication of disease.  Cancer cells with stem cell 

CSC1 

Progeny1 

CSC2 

Progeny2 



Chapter 1 – The Cancer Stem Cell Hypothesis – Theory, Evidence and Implications 

 44 

characteristics might be expected to be more resistant than other tissue cells – 

putative CSC may be more quiescent cells (Holyoake et al., 1999), and often display 

characteristics conferring a survival advantage, such as the activation of pro-survival 

signalling pathways or expression of multidrug transporter proteins.  The hypothesis 

also suggests that for successful cancer treatment, if the mutated clone is to be 

eradicated within an individual, the priority target cell population must be the CSC.  

This is likely to require changes to strategies currently used in the clinical setting 

(Reya et al., 2001; Sell, 2004; Behbod and Rosen, 2005; Misaghian et al., 2009) 

(Figure 4B). 

 

Isolated populations of putative CSC have shown increased resistance to the effects 

of conventional anticancer strategies such as chemotherapy and ionising radiation 

(Baumann et al., 2008; Chua et al., 2008; Diehn et al., 2009; Hirsch et al., 2009; 

Tanei et al., 2009).  However, investigations have also revealed agents which may 

selectively inhibit the CSC fraction.  The development of assays for prospectively 

isolating and propagating CSC has facilitated large-scale drug screening; in some 

cases, substances not previously considered as anticancer agents have shown a 

remarkable activity against these specific subpopulations (Guzman et al., 2005; 

Diamandis et al., 2007; Gupta et al., 2009b; Zhou et al., 2009b). 

 

Promising strategies for directed targetting include inhibition of stem cell-specific 

mechanisms such as self-renewal pathways, and immunological techniques using 

monoclonal antibodies to specific cell surface markers.  Interference with the support 

imparted by the niche may also render CSC more susceptible to eradication 

(Hideshima et al., 2002; Studebaker et al., 2008).  Differentiation therapy using 

agents such as retinoic acid, whereby CSC might be forced down a symmetrical 

division pathway to produce two daughter cells, thus depriving a tumour of self-

renewal potential, has been suggested as a logical CSC-directed strategy.  However, 

whilst this is effective in a majority of cases of human acute promyelocytic 

leukaemia, responses in other malignancies have been variable (Sell, 2004; Lotem 

and Sachs, 2006).   
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The simplest interpretation of the CSC hypothesis suggests a “dandelion root” 

analogy, such that a tumour will be successfully eradicated if the CSC fraction is 

destroyed.  However, mathematical models and experimental data suggest that 

targetting only CSC may not be sufficient to eliminate disease, particularly if these 

show any evolutionary plasticity in the face of challenge (Kern and Shibata, 2007).  

A successful strategy will probably require simultaneous eradication of both CSC 

and bulk tumour components (Dingli and Michor, 2006).  Indeed, marked synergistic 

effects between conventional and CSC-selective agents have been demonstrated, 

often permitting considerable reductions in dose of individual cytotoxic drugs 

(Guzman et al., 2002; Zhou et al., 2008; Zhou et al., 2009b). 

 

Thus, the CSC hypothesis introduces the possibility that it may be possible to 

overcome the two major obstacles to successful cancer therapy – patient morbidity, 

and relapse after treatment.  This will require precise identification and complete 

elimination of cells with potential to form new tumours – simply reducing the 

number of residual cancer-propagating cells is unlikely to prove clinically beneficial 

if these may then repopulate the tumour.  However, evidence suggests that a greater 

understanding of the role of CSC in neoplasia, facilitated by refinements in detection 

techniques and assays, will enable the development of improved therapeutic 

strategies and increase the likelihood of achieving complete and enduring clinical 

remissions. 

 

Comparative Oncology – Spontaneous Cancer in the Dog as a Disease Model 

 

Spontaneous cancer is the major cause of non-age-related death in the domestic dog, 

with one in three pet dogs developing cancer during their lifetime.  Dogs develop a 

wide range of spontaneous neoplasms, many of which mirror those seen in humans 

in terms of disease course, histology, biological behaviour, and response to 

treatment.  Notably, some canine tumours, such as complex mammary carcinomas, 

show more similarity to human disease than those occurring in other species 

(Hellmen et al., 2000; Munson and Moresco, 2007). 
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The publication of the canine genome in 2005 demonstrated considerable homology 

between canine and human sequences – approximately the same number of genes 

have been identified in both species, and most are 1:1 orthologues.  Significantly, 

overall homology is greater than that between human and mouse (Lindblad-Toh et 

al., 2005; Karlsson and Lindblad-Toh, 2008).  Although still less well characterised 

than the murine system, other aspects of canine cell biology appear to be more 

representative of the situation in humans.  For example, the telomeres of mice are 

many times longer than those of humans, limiting their utility in models of normal 

and neoplastic telomere dynamics; by contrast, canine telomeres are of comparable 

length (Wright and Shay, 2000; Nasir et al., 2001).  With improvement in diagnostic 

modalities, it has become clear that there are also multiple parallels on a molecular 

and genetic level between canine and human cancers.  Similar alterations, disease 

markers and therapeutic targets are observed in both species (Sagartz et al., 1996; 

Argyle and Nasir, 2003; Boomkens et al., 2004; Dickerson et al., 2005; Jubala et al., 

2005; Wilkerson et al., 2005; Alvarez et al., 2007; Kisseberth et al., 2007; Gelain et 

al., 2008; Rivera et al., 2009).   

 

The use of laboratory animals in cancer research, whilst seen by most in the field as a 

necessary and inevitable means of investigation, is a major welfare concern.  In 

many respects, spontaneous cancer in the dog is a more representative model of 

human disease than experimentally-induced tumours in laboratory rodents or 

primates (Kimmelman and Nalbantoglu, 2007; Munson and Moresco, 2007; Paoloni 

and Khanna, 2008).  The growth of human tumour xenografts in immunosuppressed 

animals will give little insight into the influence of the immune system on the 

pathogenesis of cancer.  Artificial introduction of mutations to produce models of 

disease in a controlled laboratory setting frequently results in rapid development of 

tumours with a predictable and specific pathogenesis.  By contrast, spontaneous 

canine tumours arise in animals living in the same environment as humans (therefore 

subject to similar diverse influences), with gradual acquisition of mutations, leading 

to the development of more comparable, naturally heterogeneous tumours (Rutteman 

et al., 1988; Augustin-Voss et al., 1990; Hellmen et al., 2000; Kirpensteijn et al., 

2002; Zacchetti et al., 2003; Webster et al., 2007; Karlsson and Lindblad-Toh, 2008; 
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Paoloni and Khanna, 2008).  Although some breeds show predisposition to certain 

cancers (and despite the recently highlighted problems associated with intensive 

breeding to achieve pedigree standards) the pet dog population overall is outbred, 

with a far more diverse genetic background than inbred laboratory rodent strains.   

 

The comparative study of disease processes occurring in humans and pet dogs is of 

mutual benefit.  Most of the treatment modalities used in human oncology have been 

adapted successfully to treat canine patients; similarly, clinical trials in dogs have 

informed developments in the human field.  With the continued adaptation and use of 

investigative techniques in the canine system, comparative oncology can provide 

insights into cancer biology, which may improve understanding of disease and aid 

development of new therapies, in both dogs and humans (Guzman et al., 2007; 

London et al., 2009). 

 

Data obtained from the study of several tumour types has implicated cells with stem-

like characteristics in the progression of some canine malignancies.  Analysis of 

expression patterns in canine haemangiosarcoma (Lamerato-Kozicki et al., 2006), 

and mammary spindle cell carcinomas and osteosarcomas (Hellmen et al., 2000), 

suggested that disease had originated from a transformed precursor cell.  Using 

assays adapted from those used in the study of human tumours, such as tumoursphere 

formation and the demonstration of tumourigenicity in immunosuppressed mice, 

putative CSC populations have been reported for canine osteosarcoma, mammary 

carcinoma, glioblastoma and acute myeloid leukaemia (Guzman et al., 2007; Wilson 

et al., 2008; Cocola et al., 2009; Stoica et al., 2009).   
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Cancer Stem Cells in Canine Cancer - Hypothesis and Research Questions 
 

The following studies sought to interrogate the validity of the cancer stem cell model 

in the context of canine neoplasia.   

 

 

HYPOTHESIS – Canine neoplasms are organised as cellular hierarchies, 

maintained by specific subpopulations of self-renewing cancer stem cells, which 

have the ability to give rise to all of the cell types within the tumour. 

 

 

Primary research questions were formulated as follows, in order to test this 

hypothesis. 

 

1) Is there evidence cells with stem cell-like properties play a role in the 

pathogenesis of canine cancer?  Can these be prospectively isolated? 

 

The study aimed to evaluate canine cancer cell lines and spontaneous tumours for 

evidence of putative CSC populations.  This was to be accomplished by adapting 

assays used in seminal studies of CSC in other species, specifically flow cytometry 

(using assays for both expression pattern and functional capacity) and tumoursphere 

culture.   

 

2) What are the characteristics of the cells within these subpopulations?  Do 

they fulfil CSC criteria? 

 

Candidate subpopulations were to be analysed for phenotypic and functional 

characteristics, to support their definition as CSC.  These include: 

Phenotypic -  Expression of markers associated with undifferentiated cells 

Functional - Existence as a specific, stable subpopulation 

 Self-renewal potential 

 Multilineage differentiation potential 
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3) Are CSC clinically relevant?  Do they show enhanced resistance mechanisms 

or survival capacity? 

 

Isolated subpopulations were to be assessed for sensitivity to commonly used 

anticancer agents, to determine whether this might underlie evasion of conventional 

therapy or relapse. 

 

4) What mechanisms underlie resistance of CSC?  Are there means by which 

they can be eliminated along with non-CSC, or preferentially targetted? 

 

Mechanisms by which stem cell-like cancer cells might evade therapy, and the 

potential for specific inhibition of CSC subpopulations, were to be investigated. 
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Details are given of techniques and experimental procedures used throughout the 

course of investigations.  General laboratory reagents and buffers were obtained from 

Sigma-Aldrich (Poole, UK) unless otherwise stated.   

 

Cell Culture - Cell Lines 

 

Canine cell lines assessed in the course of this work were the adherent cultures 

CML10 melanoma, D17 osteosarcoma, J3T glioma, REM134 mammary carcinoma 

and SB haemangiosarcoma, and the suspension culture 3132 B-cell lymphoma.  For 

some experiments, the feline adherent mammary carcinoma cell line Cat-MT, and 

the human adherent mammary carcinoma cell line MCF-7 were also evaluated.  

Details of source and culture conditions are given in Table 1. 

 

All cell culture manipulations were performed within a Class 2 Biological Safety 

Cabinet. Culture media, foetal calf serum (FCS), Trypsin-EDTA and supplements 

were obtained from Gibco / Invitrogen (Paisley, UK) unless otherwise stated.  

Penicillin-Streptomycin (10000IU/ml-10mg/ml) was obtained from Sigma-Aldrich.  

Culture flasks and plates were obtained from Nunc (Rochester, NY, USA) and TPP 

(Trasadingen, Switzerland).  All cell lines were cultured at 37°c in a humidified 

atmosphere with 5% CO2. 

 

Culture media 

 

DMEM-HG – Dulbecco’s modified Eagle’s medium - 4.5g/l d-glucose, L-glutamine,  

 sodium pyruvate (Gibco 41966) + 10% FCS + 1% Pen-Strep 

DMEM-LG -  Dulbecco’s modified Eagle’s medium - 1g/l d-glucose, Glutamax-I,  

 sodium pyruvate (Gibco 21885) + 10% FCS + 1%  Pen-Strep 

RPMI1640/FCS/PS- Roswell Park Memorial Institute-1640 medium - L-glutamine,  

 25mM HEPES (Gibco 52400) + 10% FCS + 1% Pen-Strep 

EBM-2 / EGM-2 – Endothelial Basal Medium-2 with EGM-2 SingleQuots (Lonza,  

  Basel, Switzerland) 
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Table 1 – Origin and source of cell lines used in experiments, and growth media 
used for culture.   
 
 
 
 
 

Cell Line Origin Source  Culture medium 

CML10 Canine melanoma 
Courtesy of Prof. Lauren 

Wolfe, Auburn University, 
AL, USA 

DMEM-LG 

D17 Canine osteosarcoma 
American Type Culture 

Collection, Manassas VA, 
USA (#CCL-183) 

DMEM-LG 

J3T Canine glioma 

Courtesy of Micheal 
Behrens, Translational 

Genomics Research 
Institute (TGen), Phoenix 

AZ, USA 

DMEM-HG 

REM134 Canine mammary 
carcinoma 

Courtesy of Prof. Roderick 
Else, University of 

Edinburgh (Else, 1982; 
Norval, 1984 a, b) 

DMEM-HG 

SB 
Canine 

haemangiosarcoma 
(cutaneous) 

Courtesy of Prof. Stuart 
Helfand, University of 

Wisconsin, Madison WI, 
USA (Akhtar, 2004) 

EBM-2 / EGM-2 

3132 Canine B-cell 
lymphoma 

Prof. David Argyle, 
University of Edinburgh 

(Strandstrom, 1979) 

RPMI1640 
/FCS/PS 

CatMT Feline mammary 
carcinoma 

Courtesy of Prof. Roderick 
Else, University of 

Edinburgh 
DMEM-HG 

MCF-7 Human mammary 
carcinoma 

European Collection of Cell 
Cultures (#86012803) DMEM-HG 



Chapter 2 - Materials and Methods 

 53 

Thawing cryopreserved cells 

 

Cryopreserved cells were retrieved from storage in liquid nitrogen and held on dry 

ice until placed into culture.  Vials were thawed rapidly until only a single ice crystal 

remained, and the contents transferred to a 50ml conical centrifuge tube.  Complete 

medium was added dropwise with swirling to double the volume of the suspension, 

and this process repeated until the total volume within the tube was at least 20ml.  

Cells were washed twice in complete medium with gentle centrifugation (250g), 

resuspended in 7.5ml complete medium and transferred to a vented-cap T25 flask for 

culture.  Flasks were incubated until subculture (80-90% confluence).  After 48 hours 

in culture, medium was aspirated, the cells washed with PBS and fresh medium 

added to the flask.  In general, for slowly-growing cells, culture medium was 

changed in this manner every 4-5 days until confluence. 

 

Subculture – Adherent cells 

 

Complete medium and PBS were prewarmed to 37°C.  Medium was aspirated from 

the monolayer and cells washed twice with PBS.  After aspirating PBS, the 

appropriate volume of 0.25% Trypsin-EDTA (T25 flask – 1ml, T75 flask – 2ml, 

T150 – 3ml) was added and the flask rocked to coat the monolayer.  Excess trypsin 

was aspirated and the flask placed in the incubator.  Tapping of the flask to loosen 

cells was avoided to reduce clumping.  Once cells had become detached, complete 

medium (T25 – 5ml, T75 – 5-10ml, T150 – 10ml) was used to wash the cells from 

the base of the flask.  Cell counts were performed at this stage as required.  Cells 

were subcultured at 80-90% confluence (generally twice weekly), using a split ratio 

guided by initial assessment of population growth or seeding absolute cell numbers 

as required for assays. 

 

Subculture – Suspension cultures 

 

Cells could be counted directly from suspension cultures allowing the appropriate 

fraction or number of cells to be subcultured.  Cells for subculture were washed once 
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in complete medium, and seeded as required. 

 

Cell counting   

 

Cell counts were performed using a haemocytometer (improved Neubauer ruling – 

central square volume 1x10-4 ml; grid volume 9x10-4 ml).  10µl cell suspension 

mixed with 10µl 0.4% trypan blue (Sigma-Aldrich) was pipetted into each side of the 

counting chamber.  Cells excluding trypan blue were counted within the central 

square of each side of the chamber, and the cell count calculated as 

 

 Number of cells/ml suspension = (Count 1 + Count 2) x 104 

 

For very low cell numbers, cells were resuspended in a small volume (0.5-1ml) for 

counting, and/or cells within the large grid were counted, with the calculation 

amended accordingly.  Counts were performed in triplicate for assays where cell 

count represented the endpoint result. 

 

For counts of primary haematopoietic cells (performed after Ficoll density gradient 

centrifugation), White Cell Diluting Fluid (crystal violet 1% w/v, glacial acetic acid 

2% v/v) rather than trypan blue was used in a 1:1 ratio with the cell suspension, to 

lyse residual erythrocytes and stain leukocyte nuclei. 

 

Cryopreservation 

 

Cells were washed and resuspended in complete medium at approximately 6x106/ml.  

Freezing medium (90% FCS, 10% dimethylsulphoxide (DMSO)) was freshly 

prepared.  Both freezing medium and cells were held on ice during preparation to 

minimise the toxic effects of DMSO.  An equal volume of freezing medium was 

added to the cell suspension dropwise with swirling to achieve a final concentration 

of 5% DMSO.  Aliquots of 1ml (approximately 3x106 cells) were made in cryovials 

and placed in a precooled (4°C) cryopreservation canister (Mister Frosty, Nalgene, 

Nunc), which was immediately transferred to -70°C.  After at least several hours 
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(allowing for cooling at -1°C/minute within the cryopreservation canister) vials were 

transferred to liquid nitrogen for long-term storage). 

 

Primary Cells 

 

Solid tissue 

 

Solid tissue was harvested into DMEM-LG.  Samples were minced finely using 

scissors and further with a scalpel and forceps, and washed twice with DMEM-LG in 

50ml conical tubes.  Samples were either resuspended at this stage in DMEM-LG 

and transferred into T25 culture flasks (4-5 flasks from a 0.5cm3 block of tissue) or 

resuspended in 10ml 0.25% Trypsin-EDTA and incubated at 37°C for 15 minutes 

with occasional agitation to facilitate dissociation, followed by a further wash in 

20ml DMEM-LG and transfer into T25 culture flasks.  Culture flasks were either 

untreated or precoated with 1% Fibronectin in distilled water (2ml per T25 culture 

flask and allowed to dry).  Larger tissue pieces were initially plated along with 

dissociated cells. 

 

After 48 hours, flasks were examined for adherent cells and checked for signs of 

bacterial contamination.  If contamination was heavy, flasks were discarded.  Where 

it was suspected, medium was removed, the base of the flask washed twice with 

PBS-1% Pen-Strep, and fresh medium added.  Solid tissue pieces were generally lost 

from the flask at this stage.   

 

Medium was changed twice weekly and replaced with 50% fresh:50% conditioned 

medium (growth medium from flasks centrifuged at 400g to remove debris) after 

gently washing adherent cells twice with PBS.  At 80-90% confluence, cells were 

transferred to larger (T75) culture flasks after dissociation of the monolayer using 

0.05% Trypsin-EDTA, and then subcultured as necessary.  50% conditioned medium 

was used for medium changes and plating at subculture up to 5-7 passages.  Where 

numbers permitted, cells were cryopreserved at each passage up to 20 passages. 
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kt-osa1-5 are populations of adherent cells derived by the author from the excised 

primary osteosarcoma of an eight-year-old female entire Rottweiler (see Chapter 3).  

Cells were cultured in DMEM / 10% FCS / 1% Pen-Strep.  kt-osa1, kt-osa4 and kt-

osa5 were subcultured repeatedly and maintained as continuous cell lines.  kt-osa2 

and kt-osa3 populations were expanded in adherent culture for assays but not carried 

forward to subculture.  

 

Isolation of bone marrow mononuclear cells (BMMNC)  

 

Bone marrow was obtained immediately post-mortem from animals euthanased for 

unrelated reasons.  Where aspiration was not possible due to post-mortem circulatory 

stasis, the proximal humerus was split at the intertubercular groove using an 

osteotome, and marrow extracted with a sterile spoon.  Marrow (2-10ml) was 

collected into heparinised 50ml conical tubes and diluted 1:1 with PBS at room 

temperature.  Mononuclear cells were isolated by Ficoll-Paque (Amersham 

Biosciences / GE Healthcare, Little Chalfont, UK) density gradient centrifugation, 

with cells collected from the interface washed twice in PBS, passed through a 40µm 

cell strainer and counted in white cell diluting fluid using a haemocytometer.  Cells 

were resuspended in the appropriate medium or buffer for flow cytometric analysis, 

or in DMEM-LG for culture of bone marrow-derived stromal cells. 

 

Bone marrow-derived stromal cell culture 

 

BMMNC were isolated from whole canine bone marrow as described.  Cells were 

plated in DMEM-LG in uncoated T25 or T75 culture flasks.  Although adherent cells 

were obtained using the seeding densities of 1.6-5.4 x 104/cm2 recommended by 

Kadiyala et al (Kadiyala et al., 1997), yields were improved at higher inocula (1.5 x 

105 cells/cm2 (Kamishina et al., 2006)). 

 

Medium was changed twice weekly and replaced with 50% fresh:50% conditioned 

medium after gently washing adherent cells twice with PBS.  At 80-90% confluence, 

cells were subcultured after dissociation of the monolayer using 0.05% Trypsin-
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EDTA.  After two or three passages, cells arrested and showed no further growth. 

 

Isolation of peripheral blood mononuclear cells (PBMNC) 

 

Whole blood (2-5ml) was collected into heparinised glass tubes and diluted 1:1 with 

PBS at room temperature.  Mononuclear cells were isolated by Ficoll density 

gradient centrifugation and resuspended in the appropriate medium or buffer for flow 

cytometric analysis. 
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Flow Cytometry 
 
Fluorochrome-conjugated antibodies were obtained from BD Biosciences (San Jose, 

CA, USA), Biolegend (San Diego, CA, USA) and eBioscience (San Diego, CA, 

USA) – Table 2. Staining was performed in conical 15ml polypropylene centrifuge 

tubes (TPP, Trasadingen, Switzerland) or round-bottomed 5ml polystyrene tubes 

(BD Falcon, Bedford, MA, USA). 

 

 
Table 2 - Fluorochrome-conjugated antibodies used for flow cytometry. 
FITC – Fluorescein Isothiocyanate; PE – R-Phycoerythrin; APC – Allophycocyanin. 
PeCy5 is a tandem conjugate combining R-Phycoerythrin and a cyanine dye. 
 

 
Table 3- Concentration of fluorochrome-conjugated antibodies  
† Staining volume 20µl where “test” concentration predetermined by manufacturer. 
Optimal staining concentration for antibodies were determined for each cell line by 
initial titration experiments.  

Antibody 
(Cat #) Specificity Clone Isotype Fluorophore Manufacturer 

CD24 
(311103) Human ML5 Mouse IgG2aκ FITC BioLegend 

Iso-CD24 
(400209)   Mouse IgG2aκ FITC BioLegend 

CD34 
(559369) Canine 1H6 Mouse IgG1κ PE BD Biosciences 

Iso-CD34 
(556650)   Mouse IgG1κ PE BD Biosciences 

CD44 
(100307) Mouse / Human IM7 Rat  

IgG2bκ PE BioLegend 

Iso-CD44  
(400607)   Rat  

IgG2bκ PE BioLegend 

CD117 
(559879) Human YB5.B8 Mouse IgG1κ PeCy5 BD Biosciences 

Iso-CD117 
(550618)   Mouse IgG1κ PeCy5 BD Biosciences 

CD133 
(17-1331) Mouse 13A4 Rat  

IgG1κ APC eBioscience 

Iso-CD133 
(17-4301)   Rat  

IgG1κ APC eBioscience 

Antibody Concentration 
mg/ml 

Recommended /  
106 cells / 100µl 

µl stock/ 10µl staining 
volume 

CD24 Not provided “Test” † “Test” † 
CD34 0.5 ≤ 1µg 2 
CD44 0.2 ≤ 0.25µg 1.25 

CD117 0.2 n/a 1.25 

CD133 0.2 ≤ 0.125µg 0.625 
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Protocol for antibody titration 

 

Directly-conjugated antibodies (maintained at 4°C / wet ice, protected from light) 

Facs-DMEM - DMEM (Gibco 41966) + 2% FCS + 0.1% Sodium Azide 

Facs-PBS - For antibody dilutions : PBS + 1% FCS + 0.1% Sodium Azide 

Propidium Iodide (PI) – Dead cell discriminator - 200µg/ml in ddH2O 

  

Doubling dilutions of test antibody and concentration-matched isotype control 

antibody were made in Facs-PBS, with manufacturers’ recommended concentration 

as the initial dilution (Tables 3 & 4).  Cells were harvested in complete medium, 

counted by trypan blue exclusion and centrifuged at 300g, 4ºc for 5 minutes.  

Supernatant was decanted and cells resuspended in Facs-DMEM at 1 x 106/ml.  

Aliquots of cell suspension were made, with samples for each test concentration, 

isotype-matched controls and at least one unstained sample.  Samples were 

centrifuged at 4ºc, 250 g for 5 mins and resuspended in 100µl cold Facs-DMEM. 

 

10µl antibody / appropriate isotype control dilution was added (see Table 4).  Tubes 

were flicked gently to mix and placed on ice, in the dark.  After 30-45 minutes, 

copious cold Facs-DMEM was added to each sample and cells washed by 

centrifugation at 4ºc , 250g, for 5 minutes.  Samples were resuspended in 300µl cold 

Facs-DMEM, and held on ice, in the dark, pending flow cytometry.  PI was added 

just prior to flow cytometry at 2µg/ml for dead cell discrimination if required. 

 

Optimal concentration of test antibody was determined for each cell line, such that 

the fluorescence of the concentration-matched isotype control sample was equivalent 

to that of the unstained aliquot.   

 
Antibody/106 cells (10µl) Dilution 

0.25µg 3µl stock solution + 21µl PBS+ (1) 
0.125µg 12.5µl dilution 1 + 12.5µl PBS+ (2) 

0.0625µg 12.5µl dilution 2 + 12.5µl PBS+ (3) 

 plus isotype controls at same dilutions – 4, 5, 6 
 
Table 4 - Example of dilution series for antibody titration - PE Anti-CD44 (P44 1-6) 
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Flow cytometers and software used for acquisition are shown in Table 5. 
 

Cytometer Acquisition Software Application 

FACSCalibur CellQuestPro 

Surface marker analysis 
Rhodamine efflux 

Aldefluor fluorescence 
DNA content analysis 

Cell cycle analysis (PI) 

FACSAria 

 
 

FACSDiva 
 
 

FACS (Cell Sorting) 
Hoechst efflux analysis 

DCV efflux analysis 
Aldefluor analysis 

LSRII 

 
 

FACSDiva 
 
 

Hoechst efflux analysis 
Simultaneous cell cycle (DAPI) / 

surface marker analysis 

 
Table 5 – Cytometers and acquisition software used for flow cytometric analysis (all 
BD Biosciences). 
 

Post-acquisition analysis was performed using FlowJo (Treestar, Ashland, OR, 

USA). 

 

Antibody staining protocol 

 

Surface staining experiments were performed as for antibody titration protocol, using 

optimised concentrations for antibody in the test sample.  Control samples (cells 

incubated with equivalent concentration of isotype-matched control antibody / 

unstained cells) were evaluated for every experiment.  At least 100000 events were 

acquired for analysis. 

  

Cell sorting 

 

Sort-DMEM : DMEM (Gibco 41966) + 2% FCS + 2% Pen-Strep 

Collect-DMEM : DMEM (Gibco 41966) + 20% FCS + 2% Pen-Strep 

 

For cell sorting, sodium azide was omitted from the staining medium to reduce 
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inhibitory effects on cell growth.  Pen-Strep was added to medium as a biocidal 

agent.  The concentration of FCS in the collecting medium was increased such that, 

when diluted with sorted cells+sheath fluid, it would approximate that of the cells’ 

growth medium (10%). 

 

Cells were harvested in complete medium, passed twice through a 40µm cell 

strainer, counted by trypan blue exclusion and resuspended at 1x106/ml in Sort-

DMEM.  The number of cells required for staining/sorting was calculated using the 

anticipated percentage of total cells.  1.5x this number of cells (to allow for cell 

losses) was aliquotted into a 15ml conical tube; aliquots of 1x106 cells were made for 

Unstained and Isotype control samples.  Cells were centrifuged and resuspended in 

ice-cold Sort-DMEM at 1x106 cells/100µl. 

 

Antibody concentrations were determined from previous titrations.  Isotype control 

antibody was diluted in Facs-PBS and added in a 10µl staining volume.  Test 

antibody was added directly to the cell suspension at the appropriate corresponding 

concentration.  Samples were incubated on ice, in the dark, for 30-45 minutes.  Cells 

were washed with copious ice-cold Sort-DMEM and resuspended in ice-cold Sort-

DMEM according to cell number: 

 

Isotype / Unstained – Resuspend in 300µl 

Test – Resuspend at up to 1x107 cells/ml  

 

Samples were held on ice, in the dark, pending FACS.  Cells were collected into 

tubes containing Collect-DMEM (at least 2ml for each 1x106 cells to be isolated). 

 

Fixation of antibody-stained cells for flow cytometry 

 

PBS-Fix – PBS + 1% Paraformaldehyde (PFA) (Sigma-Aldrich)  + 0.1% Sodium 

Azide 

 

Cells were prepared and incubated with antibody as for antibody staining protocol.  
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After washing with copious Facs-DMEM and centrifugation (5 minutes, 4°C, 300g) 

supernatant was decanted and the cell pellet flicked gently to resuspend in residual 

fluid. 

 

0.5ml ice-cold PBS-Fix was added to each tube and samples were incubated on ice, 

in the dark, for at least 15 minutes.  Cells were centrifuged (5 minutes, 4°C, 300g), 

resuspended in 0.5ml PBS-Fix and stored at 4°C, in the dark, for up to 2 weeks 

pending flow cytometry.  If cells showed a tendency to clump, they were 

resuspended in PBS for storage and passed through a 40µm cell strainer prior to 

analysis.  Just prior to flow cytometry, cells were washed twice with 2ml ice-cold 

PBS and resuspended in 300µl PBS for analysis. 

 

N.B.  As PFA fixation causes the death of all cells, use of PI as an indicator of 

viability is not feasible for fixed samples. 

 

Cell Cycle / DNA content analysis 

 

Ribonuclease A (RNAse A) (Sigma-Aldrich) - 100µg/ml in ddH20 

Propidium Iodide (PI)- 50µg/ml in PBS or 

4’,6-Diamidino-2-phenylindole dihydrocloride (DAPI) (Sigma-Aldrich) - 2µg/ml in 

PBS 

 

Cells were harvested, washed and resuspended in cold PBS and counted using trypan 

blue exclusion. Aliquots of equal cell number (for comparison between samples) 

were placed into 15cm conical tubes.  Samples were centrifuged (5 minutes, 4°C, 

300g) and resuspended in 1ml cold PBS.  3ml ice-cold (-20°C) absolute ethanol (i.e. 

final concentration 70-75%) was added dropwise while vortexing, to minimise cell 

clumping.  Samples were placed on ice for at least 30 minutes and were stored at this 

stage for up to two weeks prior to staining and cytometry. 

 

Cells were washed twice with PBS – samples were centrifuged at 800g, with 

supernatant carefully decanted leaving a greater than normal amount of residual fluid 
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for the first wash, to reduce cell losses (cells become lighter and more flocculant 

upon storage in ethanol).  For PI staining (binds dsRNA), 50µl of 100µg/ml RNAse 

A was added; samples were flicked gently to mix, and incubated at 37°C for 15 

minutes.  200µl PI was added for a final concentration of 40µg/ml.  For DAPI 

staining, cells were resuspended in 250µl PBS, and 250µl DAPI added to each tube 

for a final concentration of 1µg/ml.  RNAse was not required, as DAPI does not bind 

RNA.  Samples were analysed by flow cytometry.  At least 25000 events were 

acquired for analysis. 



Chapter 2 - Materials and Methods 

 64 

Low-density, Serum-free Culture for Tumourspheres 

 

N2/MC medium: DMEM/Ham’s F12 base medium (Sigma-Aldrich) 

 0.8% Methylcellulose (Sigma-Aldrich) 

 N2 supplement (Invitrogen) -  Insulin 5µg/ml 

 (Bottenstein and Sato, 1979) Transferrin 100µg/ml 

  Putrescine 100µg/ml 

  Progesterone 20µg/ml 

  Sodium selenite 30µg/ml 

 Recombinant human epidermal growth factor (Invitrogen) 5ng/ml 

 Recombinant human basic fibroblastic growth factor (Invitrogen)  

 5ng/ml 

 

Cells were harvested as for subculture, and live cells counted by trypan blue 

exclusion.  For three wells of a six-well plate, 2.4x105 cells were washed in PBS and 

resuspended in 4ml N2/MC (60000 cells/ml), to allow for volume losses associated 

with manipulating the viscous medium.   

 

1ml N2/MC was placed into each of three wells of an UltraLow Attachment 6-well 

plate (Corning Life Sciences, Corning NY, USA) and 1ml cell suspension added to 

each well to give a final concentration of 60000 cells in 2ml N2/MC per well.  Plates 

were incubated at 37°C / 5% CO2 / 100% humidity.  12µl epidermal growth factor 

(EGF 100µg/ml in ddH2O) and 12µl basic fibroblastic growth factor (bFGF 

100µg/ml in ddH2O) were added every 48 hours.  Cells were monitored for sphere 

formation, and passaged at 7-14 day intervals, depending on the rate of proliferation 

and sphere growth. 

 

Tumoursphere passage protocol 

 

2ml PBS was added to each well of tumourspheres and the plate rocked to aid in 

aspiration of viscous medium.  Cells and medium were aspirated from the wells, 

transferred to 15ml conical centrifuge tubes and the base of the well washed with a 
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further 1ml PBS to collect any residual spheres.  Tumourspheres were washed gently 

(1000rpm, 5 minutes) using at least an equal volume of PBS.  Supernatant was 

aspirated carefully to avoid disturbing the cell pellet.  Cells were resuspended in 

0.5ml 0.05% Trypsin-EDTA and incubated at 37°c for 10-15 minutes, with 

occasional agitation.  0.5ml complete adherent culture medium was added and the 

suspension triturated gently 20 times using a pipette, avoiding the creation of 

bubbles. 

 

To reduce the persistence of cellular aggregates after tumoursphere dissociation, the 

cell suspension was passed twice through a 40µm cell strainer (BD Falcon).  Live 

cells were counted using trypan blue exclusion.  For assays such as flow cytometry 

and drug sensitivity, cell numbers were adjusted and resuspended appropriately at 

this stage for further use.  For passage, an aliquot was taken, washed in PBS and 

resuspended at 60000 cells/ml in N2/MC for replating.  Tumourspheres between 5th 

and 10th passage were used for assays. 

 

Transferring tumourspheres to adherent culture 

 

2ml PBS was added to each well of tumourspheres and the plate rocked to aid in 

aspiration of viscous medium.  Cells and medium were aspirated from the wells, 

transferred to 15ml conical centrifuge tubes and the base of the well washed with 

1ml PBS to collect any residual spheres.  Tumourspheres were washed gently (200g, 

5 minutes) using at least an equal volume of PBS.  Supernatant was aspirated 

carefully to avoid disturbing the cell pellet.  Cells were resuspended in 7.5ml 

adherent culture medium and transferred to T25 culture flasks. 
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Chemosensitivity Assays 

 

Cells were assessed for sensitivities to different chemotherapy drugs over a range of 

concentrations to include those achieved in plasma within a clinical setting. 

 

 
Drug  

(Manufacturer) TPC (µg/ml) FW TPC (µM) Reference 

Doxorubicin 
(Pharmacia / Pfizer) 0.006 - 0.09 543.52 0.011 – 0.160 Regenthal et al, 1999 

Mitoxantrone 
(Baxter Healthcare) 0.63 - 0.95 * 444.481 1.42 - 2.14 Canal et al, 1993 

Carboplatin 
(Bristol-Myers Squibb) 10-25 371.25 26.9 - 67.3 Regenthal et al, 1999 

Cyclophosphamide 
(Baxter Healthcare) 10-25 279.1 35.8 – 89.6 Regenthal et al, 1999 

Vincristine 
(Hospira UK) 0.001-0.02† 824.96 0.001-0.02 

0.002-0.01† 
Van den Berg et al, 1982; 

Sethi et al, 1981 
 
Table 6 – Therapeutic plasma concentrations (TPC) for humans of commonly-used 
chemotherapy drugs (*Mitoxantrone at 15mg/m2 dose; †Approximate values derived 
from pharmacokinetic data). 
 
 
 
Cells were harvested, counted, resuspended in complete medium and plated in black 

96-well culture plates at 50µl / 5x103 cells per well.  Plates were incubated at 37ºc, 

5% CO2.  After 24 hours, drug dilutions were made up in complete medium at 2x 

final concentration, with volume-matched vehicle controls where appropriate, and 

50µl of each dilution added to triplicate wells.  50µl of medium only was added to 

triplicate wells as a control.  50µl of medium only was added to the outer wells of 

each plate, which were excluded from the assay.  Plates were incubated at 37°C, 5% 

CO2 for a further 72 hours. 

 

The CellTiterGlo ATP luminescence cell viability assay (Promega, Madison WI, 

USA) was used according to the manufacturer’s protocol.  This uses a 96-well plate 

format and determines ATP content (a measure of cellular metabolic activity) in 

treated wells as compared to untreated controls, which shows good correlation with 

cell viability (Bosanquet, 1993; Andreotti et al., 1995; Cree et al., 1995).   
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Briefly, reagents and plates were equilibrated to room temperature (for 2 hours and 

30 minutes respectively), and 100µl of CellTiterGlo reagent added to each test well.  

After 2 minutes on an orbital plate shaker and 10 minutes incubation/equilibration at 

room temperature, luminescence was measured using a microplate reader (Victor3 

Wallac 1420 Multilabel Counter – PerkinElmer, Waltham MA USA) 

 

Viability was calculated as a percentage of the control wells and dose-response 

curves fitted using nonlinear regression with GraphPad Prism 5.0b (GraphPad 

Software, San Diego CA, USA).  Where comparisons were being made between 

drug sensitivities of different cell populations, best-fit values for IC50 were compared 

using an extra-sum-of-squares F test (p < 0.05). 
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Western Blotting 

 

Preparation of cell pellets 

 

To prepare cell pellets for lysis, medium was discarded from 80-90% confluent 

monolayer and cells washed with ice-cold PBS.  Cells were harvested by scraping 

into 1ml ice-cold PBS, transferred to chilled (4°C) Eppendorf tubes and placed on 

ice.  For suspension cultures, cells were washed twice with ice-cold PBS, 

resuspended in 1ml ice-cold PBS, transferred to chilled (4°C) Eppendorf tubes and 

placed on ice.  Samples were spun for 5 minutes / 200g in a precooled (4°C) 

microcentrifuge.  Supernatant was carefully aspirated.  Samples could be lysed at this 

stage, or pellets snap frozen in liquid nitrogen, and stored at -70°C pending lysis. 

 

Cell lysis 

 

Nonidet-P40 (NP40) Lysis Buffer -  0.1% NP40 5mM dithiothrietol (DTT) 

 150mM KCl 25mM HEPES pH 7.4 

 50mM NaF  

Buffer was dispensed into aliquots (450µl) and stored at -20°C. 

 

10x Protease inhibitor cocktail – cOmplete Mini (Roche, Mannheim, Germany) - one 

tablet dissolved in 1ml ddH2O.   

Solution was dispensed into aliquots (50µl) and stored at -20°C. 

 

At each use, one aliquot of each was thawed, and 1 volume of 10x protease inhibitor 

cocktail added to 9 volumes NP40 lysis buffer. 

 

All manipulations were performed on ice.  Approximately twice the pellet volume of 

freshly-prepared lysis buffer/protease inhibitor mix was added to each sample, and 

the suspension mixed by pipetting.  For frozen pellets, after adding lysis 

buffer/protease inhibitor the pellet was allowed to thaw on wet ice prior to mixing.  

Samples were held on ice for 15 minutes and then centrifuged for 15 minutes at 
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16000g / 4°C.  The supernatant (cell lysate) was aspirated into a fresh, chilled (4°C) 

Eppendorf tube.  Protein concentration was determined using the Bradford assay, and 

cell lysates snap frozen in liquid nitrogen and stored at -70°C. 

 

Bradford Assay for protein quantification 

 

Bradford Reagent (Quick Start, Bio-Rad) 

Protein Standards - Bovine gamma globulin 2mg/ml stock (Bio-Rad) and dilutions 

 

Bradford reagent was allowed to equilibrate to room temperature, and protein 

standards prepared by serial dilution in ddH2O.   

For each cell lysate to be tested, 20µl of a 1:10 dilution was prepared in ddH2O. 

 

For each standard and each lysate to be tested, 250µl of Bradford reagent was added 

to triplicate wells of a 96-well plate, and 5µl of protein solution added.  Samples 

were gently agitated on an orbital plate shaker to mix and allowed to stand at room 

temperature for 5-10 minutes.  Absorbance at 595nm was determined for each well 

using a microplate reader.  Mean absorbance for standards was calculated and plotted 

to produce a calibration curve, from which protein concentration of tested lysates 

was determined. 

 

Western Blotting - reagents / materials 

 

1.5M Tris pH 8.8 

1M Tris pH 6.8 

10% w/v sodium dodecyl sulphate (SDS) (Sigma-Aldrich) in ddH2O 

10% w/v ammonium persulphate (APS) (Sigma-Aldrich) in ddH2O 

N,N,N’,N’-tetramethylethylenediamine (TEMED) (Sigma-Aldrich) 

30% w/v acrylamide / 0.8% bis-acrylamide mix (ProtoGel, National Diagnostics, 

Hull, UK) 

Washing buffer – PBST-WB (PBS + 0.1% Tween 20) 

Blocking solution – PBST-WB + 5% w/v skimmed milk powder 
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ECL reagent (Amersham ECL, GE Healthcare, Chalfont St Giles, UK) 

Prestained molecular weight marker [Prestained SDS-PAGE Standards, Broad range 

(Bio-Rad) / Full Range Rainbow Molecular Weight Marker (GE Healthcare)] 

Nitrocellulose membrane (Amersham Hybond ECL, GE Healthcare) 

Radiographic film (Amersham Hyperfilm-ECL, GE Healthcare) 

 

Buffers 

 

Running buffer (pH 8.3)-  25mM Tris  

 190mM glycine 

 0.1% SDS 

Transfer buffer (pH ≥8) -  25mM Tris 

 190mM glycine 

 20% v/v methanol 

 

2x Loading buffer (pH 6.8) - 100mM Tris pH 6.8  

 4% SDS 

 0.2% bromophenol blue 

 20% w/v glycerol 

 200mM DTT (add prior to loading) 

 

Polyacrylamide gel preparation 

 

10% resolving polyacrylamide gels were prepared (based on anticipated protein 

product size of 15-100kDa), along with 5% stacking gels, on the day of 

electrophoresis.  All components other than APS and TEMED were mixed for 

resolving and stacking gels as detailed in Table 7, and plates and casting equipment 

prepared.   

 

APS and TEMED were added to the resolving gel components to initiate 

polymerisation immediately before casting.  After mixing by inversion, the gel was 

cast between glass plates; ddH2O was overlaid to inhibit the formation of bubbles.  
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Once set (approximately 15 minutes) the water was decanted, and APS and TEMED 

added to the stacking gel components.  This was overlaid on the resolving gel and a 

comb placed for sample separation.  Once set, the comb was removed and wells 

washed with ddH2O in preparation for addition of samples.  Apparatus was set up for 

electrophoresis with the prepared gel and sufficient running buffer. 

 

 
Table 7 - Preparation of polyacrylamide gels.  Volumes shown are to make up 5ml 
and 3ml of resolving and stacking gel, respectively. 
 

Sample preparation 

 

Cell lysates were allowed to thaw on ice.  Based on the predetermined protein 

concentration, the volume of cell lysate for required protein quantity per well was 

calculated.  This was transferred to a fresh Eppendorf tube and mixed 1:1 with 2x 

loading buffer.  Samples were denatured at 95-98°C in a heat block for 3 minutes 

before loading.  A molecular weight marker (volume as recommended by 

manufacturer) was loaded into at least one well of each gel. 

 

Sample separation and transfer 

 

Samples were run at 180V at room temperature for 45 minutes, or until loading 

buffer had reached the end of the gel.  Gels were removed from electrophoresis 

apparatus and separated from glass plates.  Gels were layered with nitrocellulose 

membrane between sheets of blotting paper and sponges, which had been presoaked 

in transfer buffer, and a glass rod rolled over the assembly to exclude bubbles.  This 

Component For 10% Acrylamide 
Resolving Gel (ml) 

For 5% Acrylamide 
Stacking Gel (ml) 

ddH2O 1.9 2.1 
30% Acrylamide mix 1.7 0.5 

1.5M Tris (pH 8.8) 1.3 n/a 
1.0M Tris (pH 6.8) n/a 0.38 

10% SDS 0.05 0.03 
10% APS 0.05 0.03 
TEMED 0.002 0.002 
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was placed into a transfer cassette.  Samples were transferred overnight at 20mA at 

room temperature, with stirring. 

 

Blocking and primary antibody incubation 

 

Unconjugated primary antibodies were obtained from Abcam (Cambridge, UK), 

Dako (Glostrup, Denmark) and Novus Biologicals (Littleton, CO, USA).  All washes 

were performed at room temperature with gentle agitation. 

 

Membranes (blots) were removed from the transfer assembly and washed for 1 

minute in PBST-WB.  Blots were incubated with Ponceau S stain (0.1% w/v in 5% 

v/v acetic acid) at this stage to ensure the presence of protein.  After staining, blots 

were washed 2-3 times in PBST-WB and then blocked in blocking solution for 30 

minutes at room temperature. 

 

Primary antibodies were diluted in blocking solution, initially according to the 

manufacturer’s recommendation and thereafter to optimised concentrations (Table 

8).  Blots were incubated with primary antibody at 4°C overnight in a humidified 

chamber. 

 
 

Antibody Clonality / 
Isotype Manufacturer Species Specificity Dilution 

ABCG2 
Clone BXP-21 

Mouse 
Monoclonal Abcam Human 1:200 

c-Kit Rabbit 
Polyclonal Dako Human 1:200 

Oct4 Rabbit 
Polyclonal Abcam Human 1:200 

Nanog Rabbit 
Polyclonal Abcam Human / Mouse 1:200 

β-actin 
Clone AC-15 

Mouse 
Monoclonal Abcam 

Xenopus; cross-reactivity 
incl Human / Mouse / 

Canine 

1:5000 – 
1:10000 

GAPDH Rabbit 
Polyclonal 

Novus 
Biologicals 

Bovine; cross-reactivity 
incl Human / Mouse 

1:100 – 
1:200 

 
Table 8 – Primary antibodies for western blotting / immunofluorescence 
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Secondary antibody incubation 

 

Blots were washed for 3 x 5minutes in PBST-WB.  Horseradish peroxidase- (HRP-) 

conjugated secondary antibodies were obtained from Dako (Swine anti-Rabbit-HRP; 

Rabbit anti-Mouse-HRP).  The appropriate secondary antibody was diluted 1:1000 in 

blocking solution and applied to the membrane.  After incubation at room 

temperature for 1 hour, blots were washed for 3 x 5 minutes in PBST-WB. 

 

Chemiluminescent detection 

 

ECL reagent was prepared according to the manufacturer’s instructions and applied 

to blots.  After 1-2 minutes, excess reagent was drained and blots transferred to a 

Saran wrap folder secured within a film cassette.  In a darkroom, radiographic film 

was loaded into the cassette and allowed to expose for 2-20 minutes depending on 

signal strength.  After developing, the molecular weight marker sizes were labelled 

on to the radiographic film to allow determination of protein band size.  

Alternatively, after draining excess reagent, chemiluminescent signal was visualised 

using a ChemiDoc XRS imaging system equipped with QuantityOne software (Bio-

Rad); a corresponding image was captured indicating the position of the molecular 

weight marker. 

 

Loading control 

 

Loading controls were performed to check for even protein loading between wells 

where comparisons were to be made between expression levels in different samples.  

Blots were washed for 3 x 5minutes in PBST-WB.  Anti-human β-actin antibody was 

diluted in blocking solution and applied to the membrane.  After incubating for 2h at 

room temperature, washing, incubation with secondary swine anti-mouse-HRP and 

chemiluminescent detection were performed as described. 
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Immunofluorescence 

 

Primary antibodies for immunofluorescence analysis are detailed in Table 8.  

Antibodies were tested initially at the manufacturer’s recommended concentration 

and thereafter at optimised dilutions.  For each cell type and marker to be assessed, 

sufficient coverslips / slides were prepared for controls as well as at least two test 

samples (Table 9). 

 
Sample Primary Antibody Secondary Antibody 

Test Yes Yes 

Autofluorescence control No  
(Blocking solution only) 

No  
(Blocking solution only) 

Secondary-only control –  
Non-specific binding 

No 
(Blocking solution only) Yes 

 
Table 9 – Test and control samples prepared to assess expression of each marker, by 
a given cell type, using immunofluorescent staining 
 
 
Coverslip preparation for adherent cell cultures 

 

13mm diameter coverslips (VWR International, West Chester, PA) were prepared by 

acid-washing prior to use in immunofluorescence experiments.  4ml concentrated 

hydrochloric acid was added to 25ml distilled water, and coverslips washed in the 

solution on an orbital shaker.  After 1 hour, coverslips were rinsed thoroughly with 

distilled water (approximately 20 changes), and then washed for a further 30 minutes 

in sterile distilled water.  Water was decanted and replaced with absolute ethanol 

(molecular biology grade).  Coverslips were stored under absolute ethanol at 4°C 

until required. 

 

Preparation of adherent cells 

 

Cells were grown in complete medium in 3.5cm or 10cm culture plates into which 

had been placed the required number of acid-washed coverslips (see protocol for 

coverslip preparation).  Once cells had grown to 70-80% confluence, the medium 
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was removed and the monolayer and coverslips washed twice with ice-cold PBS.  

Coverslips were transferred using forceps to glass Petri dishes for fixation, ensuring 

that they remained “cell side up”. 

 

Preparation of tumoursphere cells 

 

Passage 5-10 tumourspheres were harvested and washed once in PBS as for passage.  

The cell pellet was resuspended in 1ml cold PBS and held on ice pending cytospin 

preparation.   

100µl aliquots of tumoursphere suspension were transferred onto charged slides 

(Snowcoat X-tra Adhesive, Surgipath, Richmond IL) at 300rpm (3 minutes) using a 

Shandon Cytospin 2 (Fisher Scientific, Loughborough, UK).  Slides were transferred 

immediately to glass Coplin jars for fixation/permeabilisation. 

 

Fixation and permeabilisation of samples 

 

Washing buffer – PBST-IF (PBS + 0.05% Tween 20) 

All washes were performed at room temperature with gentle agitation. 

 

1) Methanol - Acetone 

 

Slides or coverslips in glass containers were fixed in ice-cold (-20°C) methanol 

inside a -20°C chest freezer.  After 5 minutes, methanol was decanted and replaced 

with ice-cold (-20°C) acetone for 5-10 minutes to permeabilise cells 

(permeabilisation times were optimised, with longer incubations used where 

necessary for nuclear antigens).  Slides or coverslips were washed in PBST-IF (3 x 5 

minutes) prior to blocking and antibody staining.  

 

2) PFA - TritonX-100 

 

4% PFA was prepared freshly from 12% frozen stocks by thawing and diluting with 

PBS.  Slides or coverslips were fixed in 4% PFA at room temperature for 10 
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minutes, washed twice in PBS and then permeabilised with 0.1% v/v TritonX-100 

(Sigma-Aldrich) in PBS for 5-10 minutes at room temperature (permeabilisation 

times were optimised, with longer incubations used where necessary for nuclear 

antigens).  Samples were washed with PBST-IF (2 x 5 minutes) prior to blocking and 

antibody staining. 

 

Blocking and antibody staining 

 

Blocking buffer – PBST + 2% goat serum 

DAPI nuclear counterstain – 0.2µg/ml in PBS (1:50000 dilution of 5µg/µl stock) 

Mowiol 4-88 mounting medium (Calbiochem/Merck KGaA, Darmstadt, Germany) 

 

Samples were blocked in blocking buffer for 1 hour at room temperature.  Primary 

antibody was diluted in blocking solution (Tables 8 & 9).  Samples were incubated 

overnight with primary antibody (or blocking solution only for secondary only / 

autofluorescence controls) at 4°C in a humidified chamber, and washed 2x 5min with 

PBST.  

 

All subsequent manipulations were carried out protected from light.  Fluorescein 

Isothiocyanate- (FITC-) conjugated secondary antibodies were obtained from 

Abcam, Cambridge, UK (goat anti-mouse-FITC) and Jackson Immunoresearch 

Laboratories, West Grove, PA (goat anti-mouse-FITC).  The appropriate secondary 

antibody was diluted 1:200 – 1:1000 in blocking solution and applied to samples (or 

blocking solution only for autofluorescence controls).  After incubation in a darkened 

humidified chamber at room temperature for 1 hour, slides / coverslips were washed 

for 5 minutes in PBST-IF followed by 5 minutes incubation at room temperature 

with DAPI nuclear counterstain.   

 

Samples were washed 2 x 5minutes with PBST, mounted using Mowiol (samples on 

coverslips were inverted onto glass slides; samples on slides were covered with 

22mm square coverslips) and allowed to harden at 4°C prior to examination by 

fluorescence microscopy. 
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Microscopy 

 

Photomicrographs were captured with a Leitz Fluovert microscope (Leitz, Wetzlar, 

Germany) equipped with a Nikon Coolpix 4500 camera, or a Zeiss Axiovert 40 

microscope (Carl Zeiss, Jena, Germany) equipped with a cooled CCD camera and 

Axiovision software.  Fluorescent images were captured using a Zeiss Axiovert 40 

microscope and all post-acquisition image processing was performed using 

Axiovision software (Carl Zeiss, Jena, Germany).  
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INTRODUCTION 

 

As well as the cardinal properties of self-renewal and multilineage differentiation 

capacity, cancer stem cells might be expected to share features with normal tissue 

stem cells, in terms of both phenotype and behaviour.  These include:  

 

- Unlimited self-renewal capacity - give rise to multiple progeny. 

- Multilineage differentiation capacity - reconstitute the tissue from which they 

are derived. 

- Persist in tissues within a supportive microenvironment (“niche”). 

- Enhanced resistance to toxic agents. 

 

It seems logical that some of the markers used to identify these specialised properties 

in normal stem cells may be applicable to the search for subpopulations in cancer. 

 

Flow cytometry is used in almost every piece of published research describing the 

identification or isolation of cancer stem cells.  Flow cytometry is a fast and 

quantitative means of analysing and sorting cells at an individual level, and allows 

separation according to multiple criteria simultaneously.  This makes it ideal for 

defining heterogeneity amongst populations of cells (Baumgarth and Roederer, 2000; 

Shapiro, 2003).  Moreover, using multiple parameters it can identify very small 

subpopulations precisely, enabling recognition of potentially rare stem cells (Preffer 

and Dombkowski, 2009; Tarnok et al., 2010).  Flow cytometry is an effective 

technique for immunophenotyping cells derived from both solid and haematological 

canine malignancies (Greenlee et al., 1987; Vernau and Moore, 1999; McDonough 

and Moore, 2000; Culmsee et al., 2001; Weiss, 2001; Akhtar et al., 2004; Jubala et 

al., 2005; Wilkerson et al., 2005).   

 

The use of flow cytometry to identify cancer stem cells can be broadly divided into 

two categories – definition according to surface marker phenotype, and 

demonstration of stem cell-associated functions. 
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Identification of Cancer Stem Cells using Cell Surface Markers 

 

The list of cell surface antigens used to identify putative cancer stem cells is 

extensive.  In some cases, these are well-established markers of normal stem and 

progenitor cells (for example, CD34 in the haematopoietic system).  For others (e.g. 

CD133, CD44) the situation is less clear – although they have received considerable 

attention as cancer stem cell markers for a wide variety of tumour types, they have 

not been definitively associated with repopulating ability in many of the 

corresponding non-neoplastic tissues.  

 

The cell surface antigens chosen for this study have been associated with the cancer 

stem cell fraction of multiple tumour types, by many investigators.  

 

CD34 is a cell surface sialomucin and is one of the most important markers of 

primitive haematopoietic cells.  Although its function has not been fully elucidated, 

progressive downregulation occurs during differentiation, and the CD34+ fraction of 

bone marrow has been shown to be highly enriched (although not exclusively 

responsible) for repopulating activity in multiple species including human, mouse 

and dog (Sutherland et al., 1990; Brown et al., 1991; Baum et al., 1992; McSweeney 

et al., 1998; Suter et al., 2004).  In seminal studies of leukaemic stem cells (LSC) in 

acute myeloid leukaemia, the CD34+CD38– fraction was shown to be more 

tumourigenic than the CD34–CD38+ fraction, and the marker has since been used to 

isolate LSC in other haematological malignancies (Lapidot et al., 1994; Bonnet and 

Dick, 1997; Cox et al., 2004; Hong et al., 2008).  CD34 is also a marker of 

endothelial progenitor cells (Hristov and Weber, 2004; Rustemeyer et al., 2006).  

Expression in some canine leukaemias (McSweeney et al., 1998; Vernau and Moore, 

1999; Wilkerson et al., 2005; Gelain et al., 2008) and haemangiosarcomas 

(Lamerato-Kozicki et al., 2006) is reported. 

 

CD44 is a near-ubiquitously expressed cell surface transmembrane glycoprotein 

whose major ligand is hyaluronate .  It is involved in cell-cell and cell-matrix 

adhesion and so plays roles in organ structure, cell homing and migration.  As well 
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as the standard form, multiple variants exist as a result of alternative exon splicing 

and post-translational modification, and these are preferentially expressed by 

haematopoietic cells (Sneath and Mangham, 1998; Goodison et al., 1999).  Aberrant 

expression of CD44, particularly the variant isotypes, occurs in many types of 

cancer, particularly in association with invasion and metastasis (Goodison and Tarin, 

1998; Herrera-Gayol and Jothy, 1999a; Marhaba and Zoller, 2004).  CD44 was first 

associated with cancer stem cells when the CD44+CD24low/– fraction of human breast 

tumours was shown to harbour most of their tumourigenic potential (Al-Hajj et al., 

2003).  It has since been used for prospective CSC isolation in a variety of tumour 

types (Collins et al., 2005; Jin et al., 2006; Li et al., 2007; Prince et al., 2007; 

Honeth et al., 2008; Yang and Chang, 2008; Shimada et al., 2009; Takaishi et al., 

2009). 

 

CD24 is a glycosylphosphatidylinositol-linked cell surface protein expressed by 

haematopoietic cells and some neuronal and epithelial tissues (Baumann et al., 2005; 

Lim and Oh, 2005).  Following the demonstration by Al-Hajj et al that the 

tumourigenicity of CD44+ breast cancer cells lay within the CD24Low/– fraction (Al-

Hajj et al., 2003), the markers have been used in combination to isolate putative 

CD44+CD24low/– cancer stem cells from multiple tumours and cancer cell lines.  It 

has been suggested that higher levels of CD24 expression are associated with more 

differentiated cell types, such as luminal breast cancers (Sheridan et al., 2006; 

Fillmore and Kuperwasser, 2007).  In pancreatic cancer, however, CD24+ fractions 

were more tumourigenic than CD24— cells (Li et al., 2007); similarly, a study of 

colon cancer stem cells found that CD24 expression correlated more closely with 

clonogenicity than CD44 (Vermeulen and al., 2008).  Moreover, the molecule is 

associated in its own right with tumour progression, invasive and metastatic 

properties (Baumann et al., 2005; Kim et al., 2007; Shipitsin et al., 2007).   

 

The tyrosine kinase receptor CD117 (c-Kit) (Yarden et al., 1987) is expressed by 

certain subsets of normal haematopoietic progenitor cells (Ogawa et al., 1991; Okada 

et al., 1991; Huss et al., 1995; Niemeyer et al., 2001), and also some more 

committed cells including mast cells, melanocytes, ductal mammary epithelium and 
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some neural subsets (Crosier et al., 1993; Matsuda et al., 1993; London et al., 1996; 

Morini et al., 2004).  Its ligand is stem cell factor (SCF, also known as steel factor, 

Kit ligand and mast cell growth factor).  Ligand binding leads to activation of 

downstream signalling cascades with roles in cell growth and differentiation (Nocka 

et al., 1990; Williams et al., 1990; Tsai et al., 1991; Shull et al., 1992; Schuening et 

al., 1993).  Along with other tyrosine kinases such as epidermal growth factor 

receptor (EGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-

derived growth factor receptor (PDGFR), dysregulation of CD117 may occur in 

cancer through overexpression, mutation, chromosomal translocation or autocrine 

activation (due to production of ligand by tumour cells or stroma).  Alterations of 

expression are reported for multiple human cancers (Wang et al., 1989; Ikeda et al., 

1991; Lerner et al., 1991; Sekido et al., 1991; Strohmeyer et al., 1991; Natali et al., 

1992; Turner et al., 1992; Rygaard et al., 1993; Toyota et al., 1993; Satzger et al., 

2008; Mansuroglu et al., 2009), as well as mast cell tumours, haemangiosarcomas 

and gastrointestinal stromal tumours in the dog (London et al., 1996; London et al., 

1999; Fosmire et al., 2004; Morini et al., 2004; Lamerato-Kozicki et al., 2006). 

Putative CD117+ cancer stem cell populations have been reported for acute myeloid 

leukaemias, oral squamous cell and ovarian carcinomas (Chiou et al., 2008; 

Kirstetter et al., 2008; Zhang et al., 2008a). Tyrosine kinase receptors have become 

the focus of much attention since the advent of small molecule and monoclonal 

antibody cancer therapies, which allow more precise targetting of the cells which 

express them (Gleixner et al., 2007; London et al., 2009; Yan et al., 2009; Zhang et 

al., 2009a).  

 

CD133 (Prominin-1) is a pentaspan transmembrane glycoprotein, originally 

recognised on CD34+ haematopoietic stem cells; neural stem cells and endothelial 

progenitors are also CD133+ (Uchida et al., 2000; Kobari et al., 2001; Handgretinger 

et al., 2003; Salven et al., 2003; Pfenninger et al., 2007).  CD133 has been 

extensively associated in the literature with putative cancer stem cell populations, in 

multiple tumour types including brain, lung, prostate, hepatocellular, stomach and 

colorectal cancers, melanoma and leukaemia (Singh et al., 2004; Collins et al., 2005; 

Monzani et al., 2007; O'Brien et al., 2007; Chen et al., 2008; Ma et al., 2008; Smith 
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et al., 2008; Cox et al., 2009).  The function of the protein has not been determined, 

and its status as a cancer stem cell marker remains controversial (Kern and Shibata, 

2007; Bidlingmaier et al., 2008; LaBarge and Bissell, 2008).  It has been suggested 

that in some cases, detectable expression may reflect angiogenesis and the presence 

of endothelial or other supportive cells rather than the tumour cells themselves (Kelly 

et al., 2007; Adams and Strasser, 2008).  In addition, tumourigenic activity exists in 

both the CD133+ and CD133- fractions of glioblastomas and colon cancers, each 

showing distinct molecular and behavioural characteristics (Beier et al., 2007; 

Shmelkov et al., 2008).   It appears that the molecule may be more widely expressed 

on normal epithelia than previously recognised (LaBarge and Bissell, 2008).  

Definitive identification of expression is confounded by practical issues, such as the 

orientation of tissues within histological sections, and variable glycosylation status of 

epitopes.  Available monoclonal antibodies detect one of two major epitopes, AC133 

and AC141, which may not necessarily produce concordant staining patterns 

(Bidlingmaier et al., 2008).   

 

Alternatives to Flow Cytometry for Surface Marker-based Isolation - MACS 

 

Magnetic cell sorting (MACS), using commercially available beads conjugated to 

CD133 and CD34 antibodies, has become popular as a means of isolating small 

populations of putative stem or cancer stem cells, as it permits larger samples to be 

processed at greater speed than can be achieved with fluorescence activated cell 

sorting (FACS).  This leads, however, to cells being “blindly” selected - non-specific 

binding may occur due to unrelated processes which increase cellular adhesion 

within the separation column, and cannot be distinguished from specific 

immunoreactivity (by contrast with flow cytometry, where non-specific binding and 

dead cells can be readily discriminated).  Thus, without subsequent verification of 

the purity of the separated fraction(s) by flow cytometry, it is an unreliable method 

of isolation.  This is particularly germane when studying cells from a species other 

than that to which the antibody was raised, or when target cells constitute a rare-

event population.  The technique was therefore not used in this study.   
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Identification of Cancer Stem Cells using Functional Assays 

 

Efflux of fluorescent substrates 

 

Normal haematopoietic stem cells express membrane transporter proteins, which 

may play a protective role by enabling these cells to efflux substances which would 

otherwise prove toxic to the cells (Zhou et al., 2001; Bunting, 2002; Hadnagy et al., 

2006).  This property may be exploited in order to identify these cells - those capable 

of pumping out specific fluorescent substrates will appear dull compared to the main 

population of cells when analysed using flow cytometry or fluorescence microscopy.  

Fluorescent dyes used for this purpose include Rhodamine123, a substrate of 

P-Glycoprotein (P-gP) (Spangrude and Johnson, 1990; Chaudhary and Roninson, 

1991), and Hoechst 33342, a substrate of ABCG2 (also known as breast cancer 

resistance protein, BCRP) (Scharenberg et al., 2002).  

 

P-gP and ABCG2 are members of the ATP-Binding Cassette (ABC) superfamily, a 

large group of proteins with a common ability to bind ATP as an energy source for 

the transport of molecules across the cell membrane (Bunting, 2002).  Expression of 

ABC transporters by neoplastic cells has long been recognised as a major problem in 

clinical cancer therapy, affording multidrug resistance (MDR) – that is, the ability for 

tumour cells to evade not only the cytotoxic effects of a particular drug or class of 

drugs, but also those of otherwise unrelated chemotherapeutics, through the 

expression of a single protein (Licht et al., 1994; Wuchter et al., 2000; Gottesman et 

al., 2002; Doyle and Ross, 2003; Leonard et al., 2003).  Thus, it might be expected 

that assays for dye efflux properties should be appropriate to identify subpopulations 

of cancer cells with stem cell-like properties, which may persist after therapy. 

 

Hoechst 33342 exclusion : the Side Population assay 

 

In 1996, Margaret Goodell et al described a method for flow cytometric isolation of 

progenitor-like cells from murine bone marrow, by virtue of their ability to exclude 

the fluorescent dye Hoechst 33342.  The “Side Population” (SP) cells of Hoechstlow 
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fluorescence can be seen as a small (0.05% in murine bone marrow) population of 

cells to the left of the majority G0-G1 population on a blue vs. red profile (Goodell et 

al., 1996).  The SP follows a characteristic arc, due to an increase in the ratio of 

blue:red emission for this subset, rather than tracing directly from the main 

population to the plot origin.  Human and murine bone marrow SP cells are 

predominantly CD34–Lineage–, i.e. showing limited correlation with populations 

isolated according to expression of the classic HSC marker CD34.  However, the 

enrichment of engraftment / reconstitution potential within isolated SP fractions is 

comparable with that achieved by fractionation according to surface marker 

expression (Goodell et al., 1996; Goodell et al., 1997; Challen and Little, 2006).  The 

technique has been adapted to identify cells with repopulating ability in a number of 

normal tissues. 

 

Whilst ABCG2 has been demonstrated as a molecular determinant of the SP 

phenotype (Zhou et al., 2001), there is some overlap between the roles of different 

membrane transporters, and it appears that other characteristics may influence cells’ 

presence in the side population (Naylor et al., 2005).  For example, in human 

umbilical cord blood (Alt et al., 2009) and murine embryonic stem cells (Zhou et al., 

2001) ABCG2 expression correlates poorly with the SP phenotype, and ABCG2 

knockout mice demonstrate normal haematopoiesis (Zhou et al., 2001).  Evidence 

obtained through gene-knockout experiments in mice also suggests that other 

mechanisms may lead to the appearance of this characteristic profile (Jonker et al., 

2005).   

 

Although originally defined as a means of isolating normal haematopoietic 

repopulating cells from murine bone marrow, side population analysis has become a 

commonly used method to identify putative cancer stem cells.  The side population 

of numerous malignancies and cancer cell lines has been shown to possess properties 

such as colony formation, stem cell-associated gene expression, tumoursphere-

forming capacity, chemo-/radioresistance and tumourigenicity, exceeding those of 

the main population (Hirschmann-Jax et al., 2004; Kondo et al., 2004; Wang et al., 

2007; Zhou et al., 2007; Addla et al., 2008; Engelmann et al., 2008; Loebinger et al., 
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2008; Bleau et al., 2009; Fukuda et al., 2009).  The size of the SP fraction identified 

within many tumours and cell lines is variable, sometimes considerably greater than 

that in corresponding normal tissues; one study showed a range of 4 - 37% in human 

neuroblastoma cell lines and 0.8 - 51% in primary neuroblastomas (Hirschmann-Jax 

et al., 2004).  Also, the shape of the profile is less consistent than that of the standard 

SP profile seen for murine BMMNC. 

 

For this reason, it is important that the side population is defined not only by its 

appearance, but by its reduction when ABC transporter function is inhibited using 

drugs such as verapamil, reserpine, or Fumitremorgin-C (Eaker et al., 2004).  C6 rat 

glioma cells cultured with platelet-derived growth factor (PDGF) showed a SP-like 

appearance on a flow cytometric dot plot, but this was not blocked by verapamil – 

the experimenters accepted that this was therefore “not a bona fide side population” 

(Kondo et al., 2004).  The assay itself is very sensitive and requires careful titration 

with regards cell type and species, in order to ascertain optimal staining 

concentrations and times (Goodell et al., 1997) – for example, a larger than expected 

SP may actually represent understaining of the majority population.  A review of the 

literature revealed only two published reports describing use of the Hoechst 33342 

exclusion assay with canine cells, in the analysis of dental pulp and of normal liver 

(Iohara et al., 2006; Arends et al., 2009). 

 

As with every CSC assay, the underlying biology of the phenomenon is not fully 

understood, leading to some uncertainties in interpretation of results.  Proliferation 

status may affect dye efflux capacity, such that it can identify quiescent cells (such as 

HSC in bone marrow) but may less readily discriminate between actively cycling 

cells (Spangrude and Johnson, 1990; Uchida et al., 2004; Stingl et al., 2006).  In 

studies of prostatic cancer cell lines and a xenograft tumour, Patrawala et al found 

that whilst the SP showed enhanced tumourigenicity, this did not correlate with 

ABCG2 expression - ABCG2– cells had tumourigenic capacity equivalent to 

ABCG2+ cells, and also expressed certain stem cell-associated genes not seen in the 

ABCG2+ subset.  The incomplete overlap between ABCG2-expressing cells and SP 
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was attributed in this report to differences in cell cycling time (Patrawala et al., 

2005). 

 

Studies of normal murine mammary epithelial cells found poor correlation between 

SP and stem cell identity / repopulating ability as defined by cell surface markers 

(Shackleton et al., 2006; Stingl et al., 2006).  Similarly, overlap between Hoechst-

effluxing and surface marker-defined CSC populations in cancer may be limited (Fan 

et al., 2006), and in some cancers there is no association between side population and 

CSC properties (Lichtenauer et al., 2008). 

 

It has been pointed out that, since Hoechst 33342 can be toxic to some cells (Fried et 

al., 1982; Durand and Olive, 2001), enhanced replicative capacity in a Holow 

subpopulation is perhaps not surprising, and may be secondary to the nature of the 

assay itself rather than a feature of the cells isolated per se (Hadnagy et al., 2006; 

Hill, 2006).  Zheng et al demonstrated that growth and clone formation of C6 glioma 

cells incubated in the presence of Hoechst was reduced and that this in itself could 

account for differential behaviour of side vs main population cells in tumourigenicity 

assays (Zheng et al., 2007).  Conversely, other investigators have shown equivalent 

growth or viability in cells which retain and those which efflux Hoechst (Murase et 

al., 2009; Zhang et al., 2009b) 

 

Thus, the appearance of a SP is a useful guideline for stem-like properties, but is not 

reliable when considered alone. As not all SP cells are stem cells (Triel et al., 2004; 

Addla et al., 2008) (and as with any assay purporting to identify stem or cancer stem 

cells), it is important to validate any isolated SP cells using phenotypic markers 

and/or functional analysis for stem cell-like properties.  This relies on an 

appreciation of the expected phenotype of a stem or progenitor cell in the tissue 

under scrutiny.  It is also important to recognise that the growth kinetics and 

characteristics of cell lines are likely to be different from primary tissues in terms of 

expected SP (Zheng et al., 2007).   
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For optimal excitation, analysis of Hoechst 33342 (ex 350nm, em 461nm) requires an 

ultraviolet laser.  In addition to these being available only on high-end flow 

cytometers, high power UV radiation has greater potential to cause DNA damage, 

and thus be deleterious to cell viability.  Simpson et al showed that the presence of a 

side population, albeit with a less defined profile, may be determined using a violet 

laser (Simpson et al., 2006).  In addition, VybrantDyeCycleViolet, a fluorescent 

substrate used for cell cycle analysis of viable cells, can also identify the SP in 

haematopoietic cells and may prove more suitable for live cell isolation (Telford et 

al., 2007). 

 

Rhodamine 123 efflux 

 

Rhodamine 123 is another fluorescent substrate used to identify subsets of bone 

marrow cells enriched for haematopoietic stem cell activity (Visser and de Vries, 

1988; Spangrude and Johnson, 1990; Baum et al., 1992; Phillips et al., 1992; 

Zijlmans et al., 1995; Bertoncello and Williams, 2004).  Rhodamine 123 efflux has 

been demonstrated in canine haematopoietic progenitors (Niemeyer et al., 2001; 

Suter et al., 2004; Wijewardana et al., 2007).  This capability is afforded by P-

glycoprotein (P-gp), an ABC membrane transporter pump encoded by the MDR1 

gene (Steingold et al., 1998; Zhou et al., 2001).  In addition, point mutations in 

ABCG2 [specifically, substitution of threonine for arginine at amino acid 482 – 

ABCG2482T] alters substrate specificity to permit Rhodamine 123 efflux (Honjo et 

al., 2001; Robey et al., 2003; Alqawi et al., 2004). 

 

Rhodamine efflux analysis has been used less widely than side population analysis in 

the identification of putative CSC populations (Monzani et al., 2007; Wu et al., 

2007).  Nonetheless, it seems logical that it might similarly demonstrate the existence 

of subpopulations of stem-like cells with enhanced drug efflux / resistance capacity.  

Moreover, its suitability for the analysis of canine cells has been demonstrated, and 

logistically it has a major advantage over Hoechst 33342 in that its fluorescence 

characteristics (ex 488nm em 520nm) permit analysis using standard benchtop flow 

cytometers. 
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Activity of intracellular enzymes – Aldehyde Dehydrogenase  

 

Identification of haematopoietic cells expressing high levels of aldehyde 

dehydrogenase, ALDH, is now a recognised flow cytometric method of identifying 

human HSC (Kastan et al., 1990; Storms et al., 1999; Armstrong et al., 2004; Hess et 

al., 2004; Christ et al., 2007); in fact, ALDH expression correlates better with 

repopulating ability than side population in the human system (the converse is true 

for murine HSC) (Pearce and Bonnet, 2007)(K. Samuel, University of Edinburgh - 

pers. comm.).  This enzyme imparts the resistance shown by hHSC to alkylating 

agents such as cyclophosphamide (Gordon et al., 1985; Sahovic et al., 1988).   

 

The Aldefluor (Stem Cell Technologies, Grenoble, France) assay is available as a 

commercial kit, and detects high levels of the isoenzyme ALDH-1A1.  Optimised to 

identify human HSC, the assay has been reported to discriminate candidate stem cell 

populations within other tissues including breast, brain and colon, and to identify 

endothelial and mesenchymal progenitors (Gentry et al., 2007; Ginestier et al., 2007; 

Huang et al., 2009b).  Cells from other species, including dog, have also been 

investigated with results suggesting that the assay may be applicable in diverse 

model systems (Fiordalisi et al., 2005).  The fluorescent assay substrate, Bodipy-

Aminoacetaldehyde (BAAA), can diffuse freely across plasma membranes - in the 

presence of ALDH-1A1 it is converted to Bodipy-Aminoacetate (BAA), a polar 

molecule which is retained within the cell. ALDH-positive cells can be identified as 

a bright population which is diminished in the presence of a specific inhibitor, 

diethylamino-benzaldehyde (DEAB).  Normal human haematopoietic progenitors 

appear as an ALDHbright Side-Scatterlow subset (Storms et al., 1999). 

 

As with membrane transporter-mediated efflux, intracellular detoxification 

mechanisms allowing evasion of the effects of chemotherapy drugs might be 

expected to identify persistent cancer stem cells.  Aldehyde dehydrogenase 

expression has been used to identify putative CSC in malignancies including colon, 

prostate, breast and lung tumours, acute myeloid leukaemia and multiple myeloma 

(Pearce et al., 2005; Ginestier et al., 2007; Matsui et al., 2008; Carpentino et al., 
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2009; Huang et al., 2009b; Jiang et al., 2009; Li et al., 2010; Morimoto et al., 2009; 

Tanei et al., 2009), and in some cases has been demonstrated as a negative 

prognostic indicator (Ginestier et al., 2007; Jiang et al., 2009; Li et al., 2010; 

Morimoto et al., 2009).   

 

This study sought to apply these flow cytometric techniques to the canine model 

system, to identify candidate canine CSC subpopulations. 
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MATERIALS AND METHODS 

 

Cell Surface Phenotyping 

 

Immunophenotyping was performed using fluorophore-conjugated test antibodies 

using a direct (one-stage, no secondary antibody) technique, as described in 

Materials and Methods chapter.  For each cell line and marker, optimal antibody 

concentration was determined by titration.  Antibody specificity, fluorophore and 

source are detailed in Materials and Methods chapter (Table 2). 

 

Hoechst 33342 Efflux / Side Population Analysis 
 

Hoechst 33342 (Sigma) – 1mg/ml (1µg/µl) in ddH20 

Hoechst-DMEM – DMEM + 2% FCS + 10mM HEPES 

Hoechst-HBSS – HBSS + 2% FCS + 10mM HEPES 

Verapamil (Sigma) – 5mM (100x) in absolute ethanol 

 

Cells were harvested in complete medium, counted, centrifuged and resuspended in 

prewarmed (37°C) Hoechst-DMEM at 1x106 cells/ml.  Aliquots of 1x106 cells were 

placed in 15ml conical centrifuge tubes, with at least 2 aliquots (test + control) per 

sample.  50µM Verapamil (5µl of 100x stock) was added to control samples and all 

tubes preincubated at 37°C waterbath for 10-15 minutes.  Hoechst 33342 was added 

at 5µg/ml* (5µl of 1mg/ml stock) to all samples.  Samples were incubated at 37°C, 

with regular mixing, for 90 minutes*. 

 

All tubes were placed on ice immediately after incubation; cells were centrifuged at 

300g / 4°C / 5 minutes, resuspended in 1ml ice-cold Hoechst-HBSS and held on ice 

pending flow cytometry.  PI was added just prior to flow cytometry at 2µg/ml for 

dead cell discrimination.  At least 50000 - 100000 events were aquired for analysis 

except where, as stated, this was precluded by low cell numbers 

 

* Standard conditions from Goodell et al. (Goodell et al., 1996) 
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Conditions were optimised for each cell line by varying Hoechst concentration and 

incubation time.. 

 

DyeCycle Violet staining protocol 

 

(Modified from Telford et al (Telford et al., 2007)) 

Vybrant DyeCycle Violet 5mM solution in ddH2O (Molecular Probes / Invitrogen) 

 

As for Hoechst 33342 analysis with some modifications: 

Cells were suspended in Hoechst-HBSS at 1 x 106/ml and prewarmed at 37°C +/- 

verapamil (10-15 minutes).  DyeCycle Violet (DCV) was added to 10µM from 5mM 

stock – i.e. 2µl added to 1ml cell suspension.  (Resolution is possible at 5µM - but 

Telford et al report more reproducible at this higher concentration).  After 90minutes 

incubation at 37°C, samples were centrifuged at 300g, 4°C for 5 minutes and 

resuspended at 1x106 cells/ml in cold Hoechst-HBSS.  PI (2µg/ml) was added just 

prior to flow cytometry for dead cell discrimination. 

 

† Telford et al stained aliquots of 5x106 cells/ml.  Due to limited available cell 

numbers and to allow comparison with Hoechst 33342 we used 1x106/ml. 

 

Rhodamine Efflux Analysis 

 

Rhodamine 123 (Sigma) - 1mg/ml in absolute ethanol 

PBS-Rho – PBS + 2% FCS 

 

Cells were harvested in complete medium, counted by trypan blue exclusion and 

resuspended at 1x106/ml in PBS-Rho.  Two aliquots of 1x106 cells were labelled 

“Test” and “Control” and placed on ice.  Rhodamine 123 was diluted 1:50 in PBS to 

20µg/ml (200x) and added to cells at a final concentration of 0.1µg/ml (5µl per ml of 

cell suspension).  Cells were placed in a waterbath at 37°C, in the dark, for 30 

minutes (loading) and then washed twice with 2ml of ice-cold PBS-Rho.  
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Control samples were resuspended in 1ml ice-cold PBS-Rho and placed on ice, in the 

dark, for 40-60 minutes.  Test samples were resuspended in 2ml PBS-Rho and placed 

in a waterbath at 37°C, in the dark, for 40-60 minutes (efflux). 

 

All samples were centrifuged at 4°C, 300g for 5 minutes, resuspended in 300µl ice-

cold PBS-Rho, and held on ice, in the dark, pending analysis by flow cytometry.  PI 

was added just prior to flow cytometry at 2µg/ml for dead cell discrimination if 

required.  At least 100000 events were acquired for analysis. 

 

Aldefluor Staining Protocol for ALDH Expression 

 

Aldefluor Test Kit (Aldagen, Stem Cell Technologies, Grenoble, France) 

 Comprises Aldefluor substrate, diethylamino-benzaldehyde  

 (DEAB) inhibitor, Aldefluor buffer 

 

Cells were harvested in complete medium, counted, centrifuged and resuspended in 

Aldefluor buffer‡ at 1x106 cells/ml.  Two tubes were labelled “Test” and “Control”.  

1ml cell suspension was placed in “test” tube.  5µl DEAB inhibitor was placed in 

“Control” tube and the lid replaced tightly.   

 

5µl (1.5µM)‡ Aldefluor substrate was added to cell suspension in “Test” tube and 

mixed.  Immediately, 0.5ml of the mixture was withdrawn and placed in the 

“Control” tube.  Tubes were incubated at 37°C, in the dark, for 30-60 minutes (not 

exceeding 60 minutes).  After incubation, samples were placed on ice and 

centrifuged at 4°C, 300g for 5 minutes.  The supernatant was discarded and cells 

resuspended in 500µl fresh ice-cold Aldefluor buffer, and held on ice pending flow 

cytometry. PI was added just prior to flow cytometry at 2µg/ml for dead cell 

discrimination.  At least 100000 events were acquired. 

 

‡ Fiordalisi Modification (Fiordalisi et al., 2005) 

 0.1% Sodium Azide / 50µM Verapamil added to Aldefluor buffer. 

 Concentration of Aldefluor substrate increased to 4.8µM  
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Western blots, derivation of kt-osa1-5 from a spontaneous canine osteosarcoma and 

isolation of normal canine BMMNC and leukaemic canine BMMNC / PBMNC were 

performed as described in Materials and Methods chapter. 
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RESULTS 

 

Analysis of Surface Marker Expression on Canine Cancer Cell Lines 

 

Each of the canine cancer cell lines was assessed for expression of the stem cell-

associated surface markers CD34, CD44, CD117 and CD133 and CD24.  Of the 

antibodies used, CD34 (anti-canine, clone 1H6) is species-specific (McSweeney et 

al., 1998) and CD44 (anti-mouse/human, clone IM7) has confirmed canine cross-

reactivity (Neame and Isacke, 1993; Sandmaier et al., 1998).  The use of the 

antibodies to CD133 (anti-mouse, clone 13A4) and CD117 (anti-human, clone 

YB5.B8) has been reported in the immunophenotyping of canine cancer cells 

(London et al., 1999; Lamerato-Kozicki et al., 2006). 

 

Binding of the CD34, CD117 and CD133 antibodies to canine cells was confirmed 

using normal canine bone marrow mononuclear cells (BMMNC).  Staining pattern 

and relative position of stained cells on light scatter (Forward Scatter FSC vs Side 

Scatter SSC) are shown in Figures 1 and 2.  Positive cells represented 0.8-1%, 0.1% 

and 0.2% of BMMNC, respectively.  Unstained and isotype-matched controls 

supported specificity of antibody binding. The majority of CD34+ and CD133+ cells 

were SSCLow, indicating relatively low cellular complexity, and of these the majority 

were also FSCLow (FSC is an indicator of relative cell size) - haematopoietic 

stem/progenitor cells are predominantly recognised as FSCLowSSCLow cells.  CD117+ 

cells were distributed more evenly across the scatter profile, which may reflect 

expression of the antigen on more differentiated cellular subsets. 

 

For all of the canine cancer cell lines, and for the feline mammary carcinoma cell 

line CatMT, staining for CD34, CD117 and CD133 was negative.  Figure 3 gives an 

example of how antibody binding was assessed.  Live cells were selected for analysis 

using the scatter profile, followed by assessment of fluorescence for test sample, 

unstained cells (to define the baseline for intrinsic cellular fluorescence, i.e. 

autofluorescence) and isotype-matched control antibody (to assess levels of non-
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specific binding).  None of the cell lines showed binding of test antibody beyond 

isotype control levels. 
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Figure 2 - Plots to show relative position of normal canine BMMNC stained for 
CD34 (top), CD117 (middle) and CD133 (bottom) on light scatter profile.  Cells 
positive for each marker are shown in black, overlaid on to total acquired cells.   
Figures indicate percentage of stained cells in each quadrant of plot.  For CD34 and 
CD133, the majority of cells are SSC-low, and most of these are also FSC-low.  
CD117+ cells are distributed more evenly across the scatter profile. 
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Figure 3 - Example of standard gating strategy used to determine surface expression 
by canine cancer cell lines. 
Figure shows assessment of CD117 expression for 3132 canine lymphoma cell line. 
 
Top left - Dead cells and debris are excluded from analysis using light scatter 
characteristics (FSC vs SSC profile).  Staining on test sample (top right) is negative, 
as assessed by comparison of percentage positive cells with unstained (bottom left) 
and isotype control (bottom right) samples. 
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Staining for CD24 was also negative, or equivalent to that seen with isotype-matched 

controls, in all tested cell lines.  The antibody to CD24 showed a tendency towards 

non-specific binding, with an affinity to dead cells for some cell lines - apparent 

weak positive staining on a small population of cells was lost when dead cells and 

debris were excluded from the analysis (using the FSC-SSC profile +/- addition of 

propidium iodide as a dead cell discriminator) (Figure 4).  Although the 3132 B-cell 

lymphoma cell line showed strong CD24 staining, this was matched by the isotype 

control despite serial titration / increased levels of blocking protein; this suggests that 

these cells have an affinity for this class of antibody (Figure 5).  It is likely that an 

alternative antibody will be required for investigation of this marker with canine 

cells.  

 

All canine cancer cell lines tested were CD44+.  For all of the cell lines, positivity 

was manifest as a shift in the entire population along the fluorescence axis rather 

than segregation of a specific subpopulation of stained cells.  As shown in Figure 6, 

whilst the level of expression (CD44 staining brightness) varied between cell types, 

for all of the cell lines the frequency of positive cells was >97%, indicating 

expression on almost all cells.  The human MCF-7 mammary carcinoma cell line 

demonstrated a lower frequency of positive staining for CD44 (48.9%), with a 

greater proportion of cells staining positive for CD24 (73.7%), in agreement with 

published findings (Sheridan et al., 2006; Fillmore and Kuperwasser, 2008) 

(Figure 7). 

 

Thus, for the canine cancer cell lines examined, specific subpopulations of cells 

expressing CSC-associated markers were not identified.  Where antibody staining 

was positive (e.g. CD44), it led to an increase in the fluorescence of the whole 

population, rather than on a specific subset of positive cells.  
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Demonstration of a Hoechst-effluxing Side Population within Canine Cancer 

Cell Lines 

 

Normal canine BMMNC were tested for the presence of a side population profile, 

according to the protocol of Goodell et al (Goodell et al., 1996).  Although the 

expected profile could be demonstrated, with a SP of 0.084 – 0.1% of live cells 

(Figure 8), this was inconsistent.  In particular, the response to the addition of 

verapamil was unpredictable, and did not reproducibly lead to reduction or loss of 

the SP – on one occasion, the frequency of cells in the SP gate was greater, and the 

profile more defined, in the presence of verapamil than in the test sample.  The 

human MCF-7 breast carcinoma cell line was examined for the presence of a SP – 

this was seen reproducibly, representing 0.3 – 0.8% of live cells (Figure 9). 

Canine cancer cell lines were analysed for Hoechst 33342 efflux, with titration of 

both substrate concentration and incubation time to optimise assay conditions (Table 

1).  All of the cell lines showed a candidate SP, diminished or lost in the presence of 

verapamil, on at least one occasion.  In the protocol as developed by Goodell et al to 

define repopulating cells in murine BMMNC, and in most subsequent reports of SP 

analysis, cells are incubated for 90 minutes at 5µg/ml Hoechst (“standard 

conditions”).  3132 lymphoma cells showed best definition of SP under these 

conditions, having 3.2% of cells within the gate compared to 0.3% for the verapamil 

control - a candidate SP (0.9%) was also visualised after 60 minutes’ incubation at 

this concentration of Hoechst (Table 2).   

 

REM134 canine mammary carcinoma cells showed best definition of SP (2.41% of 

live single cells) at 2.5µg/µl Hoechst, with a slightly longer incubation (120 minutes) 

(Table 3, Figure 10).  Indeed, incubation under standard conditions gave a greater 

percentage of cells in the SP gate of the verapamil control (0.87%) than in the test 

sample (0.51%).  Increased incubation times were associated with increased cell 

death (as determined by uptake of propidium iodide by intact cells) – at 120 minutes, 

cell death was greater than 20% for both 2.5 and 5µg/ml Hoechst, increasing to 

50.9% at 180 minutes / 5µg/ml Hoechst.   
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 Light Scatter Profile: Propidium Iodide: Signal Area vs Width: 
 Select Intact Cells Select PI-ve Live Cells Select Single Cells 
 

 
 
Figure 8 – Hoechst 33342 efflux 
analysis identifies a side population 
in normal canine bone marrow 
mononuclear cells.  
 
Top panels – Standard gating 
strategy used to select only intact, 
live single cells for analysis.  
Sufficient events were acquired for 
at least 100000 PI— cells. 
 
Upper Left – Test sample – a 
defined side population represents 
0.1% of live single cells. 
 
Lower Left – Control sample - side 
population is reduced in the 
presence of the ABC transporter 
inhibitor verapamil. 
 
 
 
 
 
 
 

0.1% 

0.04% 
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Figure 9 – Hoechst 33342 efflux 
analysis of human MCF-7 
mammary carcinoma cell line 
demonstrates a side population. 
 
Upper Left – Test sample – SP of 
0.8%.  The appearance of an SP 
for this cell line was 
reproducible, representing 
between 0.3% and 0.8% of live 
single cells. 
 
Lower Left – SP is reduced in the 
presence of verapamil inhibitor. 
 
 
 
 
 
 
 
 
 

0.8% 

0.3% 
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Cell Line Origin Hoechst (µg/ml) Time (min) 

3132 Haematopoietic 5 90 
REM134 Epithelial 2.5 120 
CML10 Neurectodermal 5 120 

SB Endothelial 5 120 
D17 Mesenchymal 5 90 

CatMT Epithelial 5 60 
 
Table 1 – Optimal conditions for SP discrimination for canine, and feline CatMT, 
cancer cell lines 
 
 
 
Hoechst 

(µg/ml) 
Time 

(min) 
TEST 

SP (%) 
TEST 

Dead (%) 
VERAP 

SP (%) 
VERAP 

Dead (%) 
Comments 

5 60 0.9 9.2 0.0 9.7 
SP present, reduced 

with verapamil 

5 90 3.2 14.5 0.3 12.8 
SP present, reduced 

with verapamil 

5 120 0.0 20.1 0.0 38.9 
No SP.  Increased 

cell death 

2.5 90 22.0 17.6 9.6 10.5 
Many cells in SP 

region 

2.5 120 8.4 17.9 5.7 16.7 
Many cells in SP 

region 

 
Table 2 – Summary of titration of assay conditions for SP analysis of 3132 canine 
lymphoma cells.  This was one of the cell lines chosen for further investigation (see 
text and figure 15).  Subsequent assays were performed at 5µg/µl Hoechst / 90 
minutes incubation, for optimal differentiation between test sample and verapamil 
control. 
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Hoechst 

(µg/ml) 
Time 

(min) 
TEST 

SP (%) 
TEST 

Dead (%) 
VERAP 

SP (%) 
VERAP 

Dead (%) 
Comments 

5 60 1.96 11.4 0.42 10.8 
Poorly-defined 

profile 

5 90 0.51 18.5 0.87 15.7 
SP increases with 

verapamil 

5 120 0.55 26.7 0.27 24.0 
Poorly-defined 

profile 

5 180 3.58 50.9 1.17 32.0 
Streak to origin.  

Cell death ++ 

2.5 90 0.88 14.4 0.34 16.6 
Poorly-defined 

profile 

2.5 120 2.41 23.2 0.2 18.6 
Best definition of 

SP profile 

10 90 0.12 17.2 0.24 23.5 
SP increases with 

verapamil 

 
Table 3 – Summary of titration of Hoechst efflux by REM134 canine mammary 
carcinoma cells.  The size of the SP, where seen, is variable (0.55 – 2.41% of live 
cells).  Cell death increases with incubation time. 
 
 

 
Figure 10 – SP profile of REM134 cells at 2.5µg/ml Hoechst / 120 minutes 
incubation (left), reduced by verapamil (right).  Similar profiles were seen at 5µg/ml 
/ 60 minutes and 5µg/ml / 180 minutes.  These results were replicated on only one 
subsequent occasion despite repeated attempts, and never when the assay was scaled 
up for cell sorting. 

2.41% 0.2% 
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The CML10 melanoma and SB haemangiosarcoma cell lines showed optimum 

resolution of SP, compared to corresponding verapamil controls, at 5µg/ml Hoechst / 

120 minutes incubation.  For both of these cell lines, the Hoechst staining profile was 

unusual, with two distinct populations each giving rise to a candidate SP arm (Figure 

11).  On a standard Hoechst efflux profile for normal bone marrow, the SP originates 

from the G0G1 population; the G2/M population appears twice as far from the plot 

origin on the linear scale, as its cells contain twice the amount of DNA.  The profiles 

seen for CML10 and SB may therefore indicate a Hoechst-effluxing SP within both 

G0G1 and G2/M populations.  Alternatively, the unusual profiles may be indicative of 

aneuploidy within these cell lines, whereby the upper population includes G0/G1 cells 

with increased DNA content.  CML10 showed a similar, but less defined, SP profile 

after 90 minutes’ incubation with 5 or 10µg/ml Hoechst, but at 2.5µg/ml, the 

verapamil control had a greater proportion of cells in the SP region (1.66%) than the 

test sample (0.018%).  SB showed this “reversal” of profiles at all other tested 

timepoints / Hoechst concentrations.   

 

D17 osteosarcoma cells showed a SP only under standard conditions, representing 

9.2% of live single cells; although substantial compared to the SP of normal bone 

marrow, this was reduced by verapamil (5.6%), and greater frequencies of SP have 

been reported for other cancer cell lines.  However, this was not replicated when the 

cells were retested using the same assay conditions – cells were present in the SP 

gate for the control but not the test sample (Figure 12).  This inconsistency between 

experiments was a frequent and frustrating finding when testing canine cells using 

this assay.   

 

As well as reversal of expected profiles, verapamil in some cases caused the entire 

population to shift from its location in the test sample, complicating interpretation.  

Gates to define the SP for each test sample are set according to its loss in the 

corresponding verapamil sample, and so should be similarly located in relation to the 

main (non SP) population for accurate quantification.  This may indicate that other 

ABCG2 inhibitory drugs may be more suitable for use in this assay for analysis of  
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Figure 11 – Hoechst Efflux 
analysis of CML10 canine 
melanoma (upper) and SB 
canine haemangiosarcoma  
 (lower) cell lines.  
Incubation time is 120 
minutes.  
Although both lines showed 
best definition of SP 
compared to verapamil 
control under these assay 
conditions, an unusual 
double profile gave rise to 
two candidate SP arms. 
 
 
 
 
 
 
 
 
 
Figure 12 – Inconsistent Hoechst 
staining profile for D17 canine 
osteosarcoma cells tested on 
separate occasions.   
Hoechst 5µg/ml, 90 minutes 
incubation. 
Upper panels – Numerous cells 
in SP region; population reduced 
by verapamil. 
Lower panels – No defined SP in 
test sample, but verapamil 
control has many cells in SP 
region.  
 

Hoechst 5µg/ml 
Hoechst + 

verapamil 50µM 

0.23% 

0.008% 

0.00% 

0.87% 

0.015% 

0.01% 

0.64% 

1.39% 

9.2% 5.6% 

SP? SP? 
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canine cells.  However, the appearance of the SP itself in the test sample, despite 

optimisation of the protocol for each cell line, was also erratic. 

 

Intriguingly, the assay appeared to identify SP cells in the feline mammary 

carcinoma cell line CatMT reasonably consistently, showing more systematic 

changes in the SP size with varying substrate concentration and incubation time.  

These feline cells appeared sensitive to the toxicity of Hoechst, particularly in 

combination with verapamil.  At 10µg/ml Hoechst and 90 minutes’ incubation, the 

proportion of non-viable (propidium iodide-positive) cells in the test and verapamil 

control samples was 35.8% and 84.0%, respectively, as compared to 5.6% and 5.8% 

at 2.5µg/ml, and 10.4% and 14.3% at 5µg/ml (Figure 13, Table 4).   

 

 

 

 

 
Figure 13 – Side population of CatMT feline mammary carcinoma cell at 2.5µg/ml 
Hoechst / 60 minutes incubation.  Although SP varied between samples, profile and 
population size were much more consistent than those seen with canine cells. 
 
 

1.21% 0.086% 
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Hoechst 

(µg/ml) 
Time 

(min) 
TEST 

SP (%) 
TEST 

Dead (%) 
VERAP 

SP (%) 
VERAP 

Dead (%) 
Comments 

5 60 1.21 4.7 0.086 8.0 
Best definition of 

SP profile 

5 90 0.85 10.4 0.083 14.3 
Good 

profile 

5 120 0.34 13.6 0.096 19.5 
Less defined 

 profile 

5 180 0.9 25.2 0.03 65.7 
Less defined, 

increased cell death 

2.5 90 0.82 5.6 0.39 5.8 
Good 

profile 

2.5 120 0.91 9.0 0.018 9.2 
Good 

profile 

10 90 0.013 35.8 0.015 84.0 
Cell death++ esp. 

with verapamil 

 
Table 4 - Summary of titration of Hoechst efflux by CatMT feline mammary 
carcinoma cells.  Most samples show a side population which is reduced in the 
presence of verapamil. SP represents 0.82 – 1.21% of live cells depending on assay 
conditions.  Higher concentrations of Hoechst, especially when combined with 
longer incubations, lead to increased cell death. 
 
 

DyeCycle Violet identifies an SP-like profile within canine BMMNC 

 

DyeCycleViolet (DCV) was tested as an alternative substrate for canine bone 

marrow, 3132 lymphoma and MCF-7.  The bone marrow showed a SP of 0.12%, 

reduced by verapamil (Figure 14).  Although this was less well defined than the 0.08 

– 0.1% population detected with Hoechst (Figure 8), this suggests that DCV may 

have potential as an alternative substrate for SP analysis in canine cells.  The test was 

performed using cryopreserved BMMNC, and live cells represented 46.9% of total 

events; in the sample stained in parallel with Hoechst 33342, viability was 27.9% of 

total cells.  DCV may prove a less toxic alternative to Hoechst for side population 
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analysis – further work is required to evaluate this.  However, 3132 cells showed no 

SP profile, although this had been detected with Hoechst.  Moreover, whilst MCF-7 

showed an apparent SP of 1.3% (more frequent than the Hoechst SP of 0.3-0.8%, 

Figure 9), this was present in the verapamil sample also (1.26%) (data not shown). 

 

 

Figure 14 - Vybrant 
DyeCycle Violet (DCV) 
identifies an SP-like 
population in normal canine 
BMMNC (top), which is 
reduced in the presence of 
verapamil (bottom).   
 
 
 
62000 events acquired for 
test sample (46.9% intact 
PI-ve). 
 
Gates have been placed 
conservatively due to the 
low cell numbers - the SP 
may in fact be larger than 
that shown (dotted line). 
 
 

SP      0.12% 

SP      0.053% 
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The 3132 lymphoma and REM134 mammary carcinoma cell lines were selected for 

further investigation of the side population.  The former was chosen as the assay was 

originally developed to identify progenitors within populations of haematopoietic 

cells, the latter as its use has been described in the study of both normal breast and 

breast cancer stem cells in other species (Alvi et al., 2003; Dontu et al., 2003; 

Hirschmann-Jax et al., 2004; Kondo et al., 2004; Patrawala et al., 2005; Zhou et al., 

2007; Engelmann et al., 2008; Tanaka et al., 2009).   

 
Hoechst staining of 3132 cells could be visualised using not only ultraviolet (355nm, 

BD LSRII) but also violet (407nm, BD FACSAria) excitation.  The latter profile was 

less defined, requiring comparison with the verapamil control to accurately define 

the SP cells – however, when collected and reanalysed using the 355nm laser, the 

sorted SP cells occupied the correct position on a standard UV excitation plot (Figure 

15).  This is significant, as it shows that SP analysis of canine cells may be 

performed using cytometers equipped with violet lasers, more generally available on 

both analytic and sorting cytometers.  

 

Sorted side population and main population / unfractionated cells were to be 

compared for characteristics such as surface phenotype, growth characteristics and 

drug sensitivity.  The assay was scaled up accordingly, increasing the number of 

cells incubated to yield sufficient SP cells for further analysis.  However, despite 

multiple attempts for both cell lines, defined and reproducible SP profiles were not 

obtained, even when key experimental conditions such as passage number and 

cellular confluence were comparable.  Thus, whilst a SP may be identified within 

canine bone marrow and cancer cell lines, the assay produces inconsistent results - 

these are difficult to replicate, particularly with large scale incubations.  
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Figure 15 – Side population analysis of 3132 lymphoma cells – Hoechst 5µg/ml / 90 
minutes 
 
Above, Upper Panels – Ultraviolet (355nm) excitation – SP-like profile 
Above, Lower Panels – Violet (407nm) excitation – SP profile defined using 
verapamil control.  SP and representative non-SP populations gated as shown and 
isolated. 
 
Below – Re-analysis of sorted fractions.  Left – SP; Right – non-SP. 
SP (sorted using violet excitation profile) enriched in appropriate gate on ultraviolet 
plot (44.8%) as compared to non-SP population (2.7%). 
 
 
 
 
 
 
 
 
 
 
 

Hoechst 5µg/ml Hoechst + Verapamil 

2.7% 44.8% 

0.1% 

0.3% 3.2% BD LSRII 
 
UV excitation 
(355nm) 

FACSAria 
 
Violet 
excitation 
(407nm) 

Reanalysis of 
SP / non-SP 
 
UV excitation 

1.3% 
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ABCG2 expression by canine cancer cell lines 

 

In light of the SP profiles seen intermittently for each canine cancer cell line, cell 

lysates were analysed for expression of the ABCG2 drug transporter shown to be 

responsible for the phenomenon in many cell types.  D17, REM134, 3132 and SB, as 

well as J3T canine glioma and the feline CatMT and human MCF-7 mammary 

cancer cell lines showed a band of the predicted size (73kDa) on Western blot 

analysis (Figure 16).   

 

Figure 16 – Western blot demonstrating ABCG2 expression by cancer cell lines.  
Band of predicted size (73kDa) seen for canine cell lines, as well as human MCF-7 
mammary carcinoma and feline CatMT mammary carcinoma.  20µg protein per lane. 
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Rhodamine 123 Identifies an Effluxing Population Within Canine BMMNC, but 

not 3132 Lymphoma Cells 

 

Normal canine bone marrow was analysed for the efflux of Rhodamine 123.  13.2 – 

14.7% of live cells showed a fluorescence shift in test as compared to control 

samples (which are placed on ice after Rho123 loading to inhibit ABC transporter 

activity), suggesting efflux capacity (Figure 17a).  This is a substantial population; 

other investigators have found that analysis of Rho123 efflux may detect committed 

progenitor cells.  Backgating analysis of these cells showed them to originate 

predominantly from a FSClowSSClow position on the total bone marrow scatter plot 

(Figure 17b).  

73kDa 
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As Rhodamine123 efflux is an established technique for examination of 

haematopoietic cells, 3132 lymphoma cells were selected for investigation using this 

assay.  Analysis of ungated (total) cells defined a Rholow subpopulation - when test 

samples were compared with controls, the peak fluorescence of this subset was seen 

to shift, suggesting efflux (Figure 18a).  However, upon gating to exclude dead cells, 

using the scatter profile and/or the dead cell discriminator propidium iodide, this 

population was lost from the analysis (Figure 18b).  This indicates that for 3132 

canine lymphoma cells, apparent Rhodamine123 exclusion occurs due to reduced 

uptake of stain amongst non-viable cells rather than bona fide efflux by a population 

of stem-like cells.  The further loss of stain shown by this subset in test samples may 

be a result of diffusion kinetics; leakage of stain due to loss of membrane integrity is 

likely to occur more slowly in controls, as they are held on ice after the initial 

loading phase. 
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Assessment of Aldehyde Dehydrogenase Activity in Canine Cancer Cell Lines 

 

The commercial Aldefluor kit is optimised for the detection of human 

haematopoietic stem and progenitor cells, which appear on a plot of side scatter vs 

ALDH (Aldefluor) fluorescence as a discrete ALDHBrightSSCLow population.  

Fiordalisi et al reported that a subpopulation of ALDHBrightSSCLow cells was 

detectable in canine bone marrow using a slightly modified protocol  - 0.1% sodium 

azide and 50µM verapamil were added to all buffers and the Aldefluor substrate 

concentration was increased to 4.8µM (hereafter referred to as “Fiordalisi 

modification”) (Fiordalisi et al., 2005).  Normal canine BMMNC were analysed 

using both the modified and the manufacturer’s standard protocol.  The assay was 

performed on several different occasions, with BMMNC from different normal 

individuals.   

 

A candidate ALDHBrightSSCLow HSC population was not identified under either set of 

assay conditions (Figure 19).  Using the standard protocol, a slightly wider variation 

in the ALDH fluorescence of granulocytic myeloid cells was noted in the test sample 

compared to the control sample, although maximal brightness was comparable.  A 

similar shift in the fluorescence of committed cells has been noted for murine bone 

marrow (Pearce and Bonnet, 2007).  There were few distinctions between test and 

control sample profiles using the Fiordalisi modification, which did not enhance 

detection of putative HSC, nor did exclusion of myeloid cells from the analysis.  This 

suggests that Aldefluor may not prove to be a reliable technique for identification of 

normal canine HSC. 
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Where used in the cancer stem cell literature, the assay seeks to identify ALDHBright 

cells lost in the presence of DEAB, with less emphasis placed on light scatter 

properties (as these may be less characteristic than those of HSC).  Nonetheless, 

none of the canine cancer cell lines investigated for this study demonstrated 

ALDHBright populations when examined using either the standard protocol or the 

Fiordalisi modification (Figure 20). 
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Evaluation of CSC-Associated Phenotypes in Spontaneous Canine Neoplasia 

 

i) Primary Osteosarcoma 

 

An eight year old female entire Rottweiler was presented to the Hospital for Small 

Animals, Royal (Dick) School of Veterinary Studies, for investigation of a right 

hindlimb lameness of 2 weeks’ duration, refractory to analgesia with the non-

steroidal anti-inflammatory drug meloxicam.  Radiography and computed 

tomography were suggestive of osteosarcoma, which was confirmed histologically 

by bone biopsy.  The tumour was excised by hindquarter amputation – no 

chemotherapy was given prior to surgery.  Although preoperative clinical staging 

was not suggestive of metastatic disease, the dog developed neurological signs 

within a few weeks of surgery and was euthanased on the grounds of suspected brain 

metastasis and poor quality of life. 

 

Cells obtained from this tumour were expanded in culture, yielding five flasks of 

adherent cells (kt-osa 1-5), three of which were subcultured and maintained as cell 

lines by repeated passage (kt-osa1, kt-osa4 and kt-osa5).  The cells displayed marked 

morphological heterogeneity, not only between but also within populations (Figure 

21 (i)-(iii)).  Cells migrating directly from tumour tissue, and also following 

subculture, displayed a mixture of morphologies including epithelioid, fusiform, 

palisading fibroblastic and multinucleate.  Large, atypical cells were seen 

occasionally amongst all isolates (Figure 21 (ii)).  A tetraploid population observed 

at DNA analysis – Figure 22 – could reflect these multinucleate cells, but may 

indicate chromosomal aneuploidy; karyotypic analysis has not been performed.  

Each population was derived from the total proliferating cells in each flask, without 

selection or cloning, to try and preserve the heterogeneity observed at initial 

derivation.  However, upon repeated subculture each line displayed a reduction in 

heterogeneity, with one morphology predominating (Figure 21 (iii)).  When kt-osa1, 

kt-osa4 and kt-osa5 cells were cultured in low-density, serum-free conditions with 

epidermal growth factor (EGF) and basic fibroblastic growth factor (bFGF), 

tumoursphere formation was seen for all three populations (Chapter 4). 
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B 

C 

A 

Figure 21(i) – Representative images 
showing heterogeneity of kt-osa cells at 
derivation. Bar = 100µm 
A – kt-osa1 – cells of mixed morphology 
migrate from tumour tissue to form 
monolayer. 
B – kt-osa2 –slender fibroblast-like cells, 
with elongated processes, arranged in 
palisades. 
C – kt-osa4 – adjacent areas of elongated 
and more epithelioid cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21(ii) – Variation in cellular morphology in kt-osa populations at derivation. 
A – kt-osa4 – slender fusiform / spindle cells.  B – kt-osa4 – large multinucleate cell. 
C – kt-osa1 – large round cells with prominent nucleoli and perinuclear granules 
D – kt-osa5 – large atypical cell.   Bar = 20 µm 

D C 

A 
A 

D C 

B 



Chapter 3 - Flow cytometry to identify canine CSC 

 124 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fi
gu

re
  2

1(
iii

) –
 R

ed
uc

ed
 m

or
ph

ol
og

ic
al

 h
et

er
og

en
ei

ty
 a

nd
 m

or
e 

or
de

rly
 a

rr
an

ge
m

en
t o

f k
t-o

sa
 m

on
ol

ay
er

s w
ith

 re
pe

at
ed

 
su

bc
ul

tu
re

 in
  v

itr
o.

 
A

 –
 k

t-o
sa

1 
(p

as
sa

ge
 5

); 
B

 –
 k

t-o
sa

4 
(p

as
sa

ge
 5

); 
C

 –
 k

t-o
sa

5 
(p

as
sa

ge
 3

). 
D

 –
 k

t-o
sa

1 
(p

as
sa

ge
 1

2)
; E

 –
 k

t-o
sa

4 
(p

as
sa

ge
 1

3)
; F

 –
 k

t-o
sa

5 
(p

as
sa

ge
 1

0)
. 

B
ar

 =
 1

00
 µ

m
 

F 
E 

D
 

C
 

B
 

A
 



Chapter 3 - Flow cytometry to identify canine CSC 

 125 

 
 

 
 
 
Figure 22 - DAPI-stained DNA content of canine osteosarcoma cell lines. 
D17 are predominantly diploid, consistent with the reported karyotype (2n=78).   
A significant proportion of kt-osa1, kt-osa4 and kt-osa5 cells show increased DNA 
content suggestive of DNA tetraploidy. 
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Cell surface markers 

 

All tested populations derived from the primary canine osteosarcoma were 

predominantly (>97%) positive for CD44, both at initial expansion in adherent 

culture and after subculture for 26 passages.  The pattern of expression – an overall 

fluorescence shift of the bell-shaped histogram – mirrored that seen in the established 

canine cancer cell lines (Figure 23). 

 

 
Figure 23 - Histograms representing expression of CD44 on kt-osa populations 
derived from canine osteosarcoma, at early (A) and later (B) passage.   
Passage number is indicated in brackets.   
Representative unstained / isotype control samples (kt-osa1) shown for comparison. 
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When examined at early passage (subculture 1-2) for expression of CD133, a small 

subpopulation (0.034%) of kt-osa1 cells demonstrated positive staining compared to 

the isotype-matched control (0.007%) (Figure 24).  Cell numbers in both cases were 

low (35 positive cells vs 7 for isotype; ≥100000 cells analysed per sample).  

Nonetheless, four passages later this positive staining had reduced to less than the 

non-specific binding seen in the isotype control sample (0.005% vs 0.011% 

respectively).  kt-osa4 (tested at passage 6) and kt-osa3 cells (which were never 

subcultured) were negative for this marker. 

 

A subpopulation of the three cell lines kt-osa1, kt-osa4 and kt-osa5 stained positive 

for CD117 (c-kit) (Figure 25) as compared to unstained or isotype control samples.  

When analysed against a blank fluorescence channel (FL-1) to increase the 

sensitivity of detection (by revealing staining otherwise masked in a histogram by 

cellular autofluorescence), the proportions of positive cells were 1.25% (kt-osa1), 

0.31% (kt-osa4) and 0.035% (kt-osa5).  Intriguingly, it was found that when cells 

were retested for expression of this marker only 4-5 passages later, the level of 

staining had reduced markedly such that kt-osa1 showed only 0.2% positive cells, 

and kt-osa4 was now CD117-negative.   

 

Thus, CD44 was expressed throughout each of the populations derived from this 

tumour - the staining pattern did not appear to be affected by repeated subculture in 

vitro - but, as for cell lines, the marker did not identify heterogeneous cellular 

subpopulations.  Conversely, staining for CD117 and CD133 was restricted to a 

small fraction of cells amongst some, but not all, of the populations.  The 

identification of small, positive-staining populations in these cells contrasted with the 

observations for the established cancer cell lines, where staining of discrete cellular 

subsets was never seen.  However, these small populations diminished over time in 

culture, in parallel with a conspicuous loss of morphological heterogeneity. 
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Functional assays 

 

kt-osa1, kt-osa4 and kt-osa5 were tested for Hoechst efflux capacity.  A side 

population was seen for kt-osa1 - as with the established cancer cell lines tested 

previously, the profile was highly variable – when tested on a single occasion, the SP 

of one sample represented 0.38% of live single cells, and that of another 1.95%, 

despite cells being obtained from the same culture.  However, cells in the SP region 

for both samples were considerably more frequent than in the corresponding 

verapamil control (0.014%) (Figure 26).  The latter two cell lines did not 

demonstrate a SP. 

 
Figure 26 - Hoechst efflux analysis of kt-osa1 canine osteosarcoma cells. 
Upper plot - Test sample; Lower plot - Control sample (+50µM verapamil) 
 

When the three populations were tested for the ability to efflux Rhodamine, all 

showed a minority population with reduced fluorescence in both test and control 

samples after gating for live cells based on light scatter characteristics (Figure 27).  

Histogram analysis suggested efflux for kt-osa1 and kt-osa4 – for the former, the 

Rholow population was considerably larger for the test sample as compared to the 

control; for the latter, the Rholow test sample showed reduced fluorescence.  

However, upon addition of propidium iodide and analysis of PI— cells only, the 

Rholow subpopulation was lost in all cases, indicating that, as with the 3132 cell line, 

these were non-viable cells.  The Rholow cells were distributed throughout the 

FSCvsSSC plot – this further emphasises the importance of stringent dead cell 
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discrimination when using this assay in canine cells to avoid artefacts, particularly 

when looking for rare-event populations. 

 

Nonetheless, both kt-osa1 and kt-osa4 showed an overall fluorescence shift by all 

cells in the test sample as compared to the control (Figure 27).  This may indicate the 

expression of multidrug transporters such as P-glycoprotein or ABCG2.  This assay 

was performed when all cell lines had been subcultured at least ten times (kt-osa1 – 

passage 12-13; kt-osa4 – passage 13-14; kt-osa5 – passage 10-11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - kt-osa1, kt-osa4 and kt-osa5 tested for efflux of Rhodamine 123. 
Histograms representing level of fluorescence.  C=Control, T=Test sample. 
Left plots - Analysis of cells within "Live" gate based on light scatter profile.  All 
three populations show a subset of cells with reduced fluorescence ("Rho-low") 
compared to main population. 
Right plots - Exclusion of dead cells by gating out PI+ve cells results in loss of 
Rho-low subset.  kt-osa1 and kt-osa4 test samples show loss of fluorescence, 
suggesting efflux of Rho123. 
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When examined using Aldefluor, kt-osa1 and kt-osa4 also showed a small 

subpopulation of ALDHBright cells, absent from the DEAB control, at early passage.  

For kt-osa1, this represented 0.06% of live cells at subculture 2; at subculture 3 this 

had reduced to 0.01% (Figure 28a).  For kt-osa4, the 0.08% of ALDHbright cells seen 

at subculture 3 had been all but lost four passages later (Figure 28b).  It is 

acknowledged that, for both populations, the fluorescence of cells identified as 

“ALDH positive” was weak in comparison to that shown by HSC when the assay is 

used to evaluate human haematopoietic cells, and may not represent genuine 

expression.  Nonetheless, no differential between control and test samples had been 

seen for any of the established cancer cell lines, and so the visualisation of these 

slightly brighter cells in the test sample for kt-osa1 and kt-osa4 was notable.  

 

A summary of the cancer stem cell-associated properties shown by kt-osa 

populations is shown in Table 5. 
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ii) Acute Lymphoblastic Leukaemia 

 

A four month old male entire Hovawart was presented to the HFSA, R(D)SVS as 

systemically unwell with polyuria/polydipsia, hypercalcaemia, thrombocytopenia 

and leukocytosis (22x109/l), largely composed of large, fragile lymphoblasts.  A 

diagnosis of acute lymphoblastic leukaemia was made based on cytological 

examination of peripheral blood and bone marrow smears .  Within 48h of 

presentation the total white cell count had fallen to 2x109/l.  Mononuclear cells were 

isolated from a bone marrow aspirate (BMMNC) and peripheral blood (PBMNC) 

obtained as part of the clinical staging process at initial examination, and analysed 

using flow cytometry. 

 

A CHOP chemotherapy protocol (cyclophosphamide / doxorubicin / vincristine / 

prednisolone) was instituted; the puppy’s owners requested a minimally invasive 

clinical approach and no further bone marrow aspirates were taken.  PBMNC were 

isolated for re-evaluation at eight and nine weeks after treatment began.  

Unfortunately, after an initial good response to therapy, the puppy suffered a clinical 

relapse and was euthanased at the owners’ request on grounds of poor prognosis and 

quality of life. 

 

Cell surface markers 

 

In common with many other studies of leukaemia and leukaemic stem cells (LSC), 

CD34 was positive on a subpopulation of both PBMNC (0.14%) and BMMNC 

(0.37-0.44%).  Interestingly, and contrasting with the findings in normal bone 

marrow where CD34+ cells tended to be FSCLowSSCLow, these cells showed much 

more varied light scatter properties, which may indicate increased cell size and 

cellular complexity associated with abnormal blast cells and/or aberrant surface 

marker expression associated with the disease process (Figure 29).  By contrast with 

some reports of human paediatric ALL, CD133 was negative (Cox et al., 2009), as 

was CD117 (data not shown). 
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Functional assays - ALDH activity 

 

BMMNC were analysed for ALDH activity, using the standard protocol and the 

Fiordalisi modification.  An ALDHBright population, representing 1.83% of live 

BMMNC, was identified under standard assay conditions (Figure 30a).  By contrast 

with the ALDHBrightSSCLow cells expected in normal bone marrow, these cells were 

SSCMed-High – possibly reflecting, as with the unexpected distribution of CD34+ cells, 

increased nuclear complexity associated with large, abnormal blasts.   
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Gates were set conservatively when quantifying this ALDHBright population, to 

reduce the likelihood of including normal myeloid cells (in light of their slightly 

wider distribution in normal bone marrow test samples).   As such, the contribution 

of normal cells to the observed ALDHBright population cannot be ruled out in the 

absence of more detailed cell surface phenotyping.  However, the cells identified 

were at least a log decade brighter than the brightest cells in the control sample, a 

greater differential than was seen for normal bone marrow.  Moreover, the 

ALDHBright population (2.38%) was also detected using the Fiordalisi modification 

(for which normal myeloid cells showed no variation in fluorescence between test 

and control samples).  Although smaller than that seen within BMMNC, this 

ALDHBright population was also visualised upon examination of PBMNC (standard = 

0.4%, Fiordalisi = 0.54%) (Figure 30b).   

 

Gating of specific populations within the intact cell gate suggested that non-myeloid 

/ lymphocytic cells also expressed ALDH.  Upon exclusion of granulocytic myeloid 

cells from the analysis, 0.6% of cells in the test sample showed increased ALDH 

fluorescence compared to the corresponding control (Figure 31).  Again, 

simultaneous analysis of cell surface phenotype would be required to substantiate 

these observations, as cells cannot be reliably identified on the basis of light scatter 

properties alone.  However, these results suggest that cellular subpopulations 

expressing ALDH may be identified within BMMNC and PBMNC in canine ALL. 
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Eight weeks after therapy began, PBMNC were re-examined using the standard 

protocol.  Having shown an initial good response to therapy, the puppy had begun to 

show signs of relapse, including an increased serum ionised calcium level.  Once 

again, an ALDHBrightSSCMed-High population was clearly defined, and was larger than 

at previous evaluation (3.54% of live cells).  A subset of cells in the lymphoid region 

of  the light scatter profile also demonstrated  One week later, the animal was 

showing further clinical signs of deterioration, with a dramatic reduction in total 

white blood cell count.  Notably, the proportion of live intact PBMNC on the scatter 

profile had reduced considerably (10-20% as compared to 50-70% at initial 

evaluation), most likely the result of increasing cellular fragility.   

 

 

 
 

 

 

On this occasion, the ALDHBrightSSCMed-High PBMNC population (2.09%) was 

isolated by FACS (Figure 32); the cells were assessed for in vitro chemosensitivity to 

the alkylating agent cyclophosphamide, compared to the main population of cells 

(Figure 33).  Overall viability was poor, as evidenced by the low luminescence 
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values obtained.  The ALDHBrSSCMed-High cells showed greater viability; however, 

when survival of each population was assessed as a proportion of the corresponding 

untreated control cells, ALDHBrSSCMed-High cells and main population cells showed 

similar responses to the drug.  Although therapeutic plasma levels of 

cyclophosphamide in dogs are not well documented, the drug was tested over a range 

of concentrations to incorporate levels achieved in humans at therapeutic doses (35.8 

- 89.6µM) (Regenthal et al., 1999).  However, there was very little response by either 

population to cyclophosphamide at concentrations below 100µM. 

 

Functional assays - Hoechst 33342 efflux 

 

PBMNC were also analysed for Hoechst efflux capacity.  However, staining was 

poor in the vast majority (97%) of intact cells, which appeared towards the origin of 

the Hoechst blue vs red plot, and no defined side population could be visualised 

(Figure 34).  It is unclear why these cells did not successfully stain with Hoechst.  

This may have arisen as a consequence of substrate toxicity and cell fragility, or 

interference with Hoechst interaction by the drugs being administered as 

chemotherapy.  It is also possible that Hoechst efflux capacity was a feature of most 

cells in this aggressive haematopoietic malignancy. 
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Figure 33 – Canine ALL PBMNC sorted for ALDH fluorescence and treated with 
cyclophosphamide. 
Above – Absolute cell viability as measured by ATP luminescence. 
Below – Relative cell viability as a proportion of corresponding untreated control 
cells. 
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Figure 34 – Hoechst efflux analysis of canine ALL PBMNC. 
A, B – Hoechst staining profile for intact cells : uptake by only 3% of cells 
C, D – Selection of only live PI-ve cells – loss of Hoechst-stained G0/G1 population. 
E, F – Intact, live single cells selected for analysis.  Only 0.58% have taken up dye 
and appear in expected position on standard Hoechst blue-red plot. 
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DISCUSSION 

 

The aim of this study was to identify candidate cancer stem cell populations in 

canine tumours.  A rapidly evolving field of interest, the CSC hypothesis could have 

significant implications for the clinical approach to canine neoplasia.  It was hoped 

that optimisation of published techniques using canine cancer cell lines would allow 

evaluation of markers for their utility in CSC identification, and their functional 

significance in differentially-expressing populations.   

 

Cellular subpopulations within canine cancer cell lines 

 

None of the canine cancer cell lines demonstrated stable subpopulations of cells 

expressing CD24, CD34, CD117 or CD133.  Conversely, in each line CD44 was 

expressed by almost all cells.  These cell surface markers selected for this study are 

among those cited most commonly when using flow cytometry to isolate CSC in 

other model systems, such as human and murine.  However, others such as CD20, 

CD123, ESA (epCAM) and integrins are also used (Guzman et al., 2001; Collins et 

al., 2005; Fang et al., 2005; Li et al., 2007; Matsui et al., 2008; Moshaver et al., 

2008; Jin et al., 2009; Munz et al., 2009), and it is possible that investigation of 

alternative antigens would identify positive subpopulations within these cell lines.  

For example, it has been proposed that lymphoma may arise from malignant 

transformation of germinal centre B-cells (Kuppers, 2005; Klein and Dalla-Favera, 

2008), whose expression pattern is CD19+ CD20+ CD38+ CD77+ , and so these 

markers could be investigated for 3132. 

 

Nevertheless, the finding that cell lines tended to display an “all or none” staining 

pattern, with an overall shift by all cells for positive staining, is not unexpected.  Cell 

lines are ostensibly clonal populations, which may originate from single cancer cells 

depending on the experimental procedures used in their derivation.  There is an 

inevitable loss of the parental tumour’s heterogeneity with repeated passage in 

culture, as dominant populations outgrow others that proliferate less rapidly.   
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Stable heterogeneity within cell cultures may exist as the result of an equilibrium 

between individual clones, whereby the relative proportions are stable with respect to 

each other (Poste et al., 1981; Ye et al., 2005).  However, not only might this 

equilibrium be altered by interventions which preferentially select for the survival 

and growth of certain clones (Poste et al., 1981), cellular expression patterns may be 

affected by both cell-intrinsic and extrinsic factors, including basic determinants 

such as culture medium and growth substrate (Luo et al., 2006; Stockholm et al., 

2007).  It has been suggested, and seems logical, that in a continuous cell line 

maintained using normal culture techniques, a small subpopulation of bona fide 

cancer stem cells would be rapidly overwhelmed by the growth of the majority 

population within a few passages (Zheng et al., 2007).  Thus it would be expected 

that, within a cell line, a CSC population must represent a substantial fraction (or 

show a higher growth rate than non-CSC) to avoid being lost. 

 

In many cases within the CSC literature, cellular subpopulations in cell lines have 

been “derived” through flow cytometric gating, separating cells according to 

expression level even where there is no clear demarcation between positive vs 

negative or low vs high expression (Sheridan et al., 2006; Atsumi et al., 2008; 

Fillmore and Kuperwasser, 2008).  This technique was used in a later study to 

investigate the significance of CD44 expression in canine cancer cell lines (Chapter 

5).  Where cells express more than one candidate marker, multicolour analysis 

enables simultaneous examination such that cells with different combinations of 

surface marker may be isolated and assessed for CSC properties.  Although this was 

intended for this study, it was not feasible as only one of the cell surface markers 

(CD44) was stably expressed on any of the cell lines. 

 

It is recognised that cellular proliferation status may influence functional assays such 

as Hoechst 33342 and Rhodamine 123 efflux.  These have been described most 

extensively as methods to mark out haematopoietic stem cells from bone marrow, in 

which environment these cells are more likely to be slow-cycling or quiescent 

(Spangrude and Johnson, 1990; Bertoncello and Williams, 2004; Uchida et al., 2004; 

Stingl et al., 2006).  The preservation of stable quiescence is less likely within the in 



Chapter 3 - Flow cytometry to identify canine CSC 

 147 

vitro environment, and this may explain why these assays did not produce consistent 

results.   

 

Hoechst 33342 may itself be used as a DNA-binding dye for cell cycle analysis, but 

in the context of efflux analysis, the SP cells definitively do not appear as part of any 

stage of the classic cell cycle profile (as they lie between the plot origin and the G0G1 

population).  Simultaneous staining with Hoechst and another indicator of cell cycle 

status may demonstrate whether there is an association between side population and 

particular stages of the cell cycle (Benchaouir et al., 2004; Stingl et al., 2006; 

Kamohara et al., 2008; Oates et al., 2009).  Substrates such as Pyronin-Y (which 

gives a measure of RNA content, and can thus be used to identify quiescent cells) 

may be suitable for analysis of live cells. Alternatively, the SP cells could be 

collected, fixed immediately, and analysed using standard cell cycle reagents with 

non-overlapping fluorescence spectra, such as propidium iodide.   

 

The expression of ABCG2 in itself did not seem sufficient to ensure the consistent 

presence of a SP profile, as protein was detected in all of the canine cell lines tested.  

As the relative proportions of proliferating cells will change in a cell culture during 

exponential growth, this might influence the presence or magnitude of a SP (Masters 

and Stacey, 2007).  It is an acknowledged limitation of the presented Hoechst efflux 

data that, when experiments with a given line were repeated, cells were tested at 

different (if comparable) levels of passage.  This variation may have contributed to 

the failure to observe SP on some occasions.  Stringent passage protocol - with cells 

tested at the same passage and the same level of confluence on every occasion - may 

give more consistent results, and should be investigated.   

 

Nevertheless, that the feline Cat-MT and human MCF-7 mammary carcinoma cell 

lines reproducibly demonstrated a SP, whilst this was only intermittently seen for 

each of the canine cell lines, suggests that this may not be a reliable assay for the 

evaluation of canine cells.  The preliminary results obtained from feline cells using 

the Hoechst efflux protocol are encouraging and warrant further investigation.  

Inconsistency in results obtained through Hoechst efflux analysis of cells other than 
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murine bone marrow is not unique to this study (G. McLachlan, M. Waterfall, 

University of Edinburgh; J. Mountford; University of Glasgow – pers. comm.), and 

this is reflected in published data.  For example, although many studies describe the 

existence of a side population within MCF-7 cells, its size varies enormously (0.2 – 

7.5%) between reports (Kondo et al., 2004; Patrawala et al., 2005; Zhou et al., 2007; 

Engelmann et al., 2008; Liu et al., 2008; Steiniger et al., 2008; Yin et al., 2008; 

Tanaka et al., 2009).  

 

Although analysis of the canine cell lines did not identify any stable CSC 

subpopulations, experiments did help to highlight important aspects of protocol when 

looking for potentially rare cellular subsets, particularly when adapting assays to the 

canine system: 

 

• Controls must be adequate, particularly when using antibodies raised to 

epitopes of other species.  Of those used in this study, only CD34 was raised 

to canine protein, and CD44 had documented canine crossreactivity.  Testing 

against normal bone marrow allowed confirmation of reactivity.  Negative 

controls (isotype / unstained) are important particularly to rule out non-

specific interactions, which might easily be interpreted as true positive 

binding (e.g. with magnetic bead sorting), and autofluorescence. 

• Dead cell discrimination was similarly important.  For example, CD24low/– 

cells are frequently associated with CSC-like attributes such as enhanced 

tumourigenicity.  In this study, had cells been fractionated on this basis, the 

“CD24+” cells would have performed poorly in assays when compared to 

negative cells, as a result of non-specific binding by the antibody to non-

viable cells.  Propidium iodide allows identification of dead/necrotic cells, 

but not those in earlier stages of apoptosis – the latter may be achieved 

through addition of other agents such as Annexin V (Vermes et al., 1995). 

• Sufficient events must be collected to rule out the influence of biological 

noise, particularly where positive cells are only weakly fluorescent, do not 

appear as a “population” with regards light scatter, or where positive cell 

numbers are very small. 
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• Protocol (e.g. antibody concentrations, gating and instrument settings) should 

be consistent between experiments. Flow cytometry is a powerful technique 

but, as with all fluorescence-based modalities, the absolute brightness shown 

by an individual cell is affected by multiple factors – comparisons should be 

consistent to prevent misinterpretation.  Results should be reproducible.   

 

Unlike more “precious” primary tumour cells, cell lines provide a readily available 

and relatively consistent (and, for some cell types/species, well characterised) 

system, and are thus invaluable for the adaptation and optimisation of assays.  They 

provide a reproducible biological model with which to determine the cellular 

behaviour associated with a given phenotype.  Experiments to investigate the 

implications of CD44 expression on canine cancer cells are described in Chapter 5. 

 

Cellular subpopulations identified within primary canine tumour cells 

 

By contrast with the cell lines, cells from both of the spontaneous tumours examined 

in this study demonstrated small subpopulations of cells with CSC-associated 

phenotypes.  In the case of the primary osteosarcoma, cells were obtained on a single 

occasion and expanded in culture for assessment.  Whilst small subpopulations of 

cells expressing markers such as CD117 and CD133 were identified soon after 

derivation, these were gradually lost upon successive passage.  It was striking that 

these changes took place within a relatively short time – for example, CD117 

expression by kt-osa1 reduced by over 80% between passages 5 and 10, and 

expression by kt-osa4 was lost completely.  That this occurred in parallel with a 

marked reduction in morphological variation suggests that one cell type within each 

population had become dominant at the expense of other minority subsets, or that the 

conditions of in vitro culture directly inhibited these expression patterns.  Thus, over 

time in culture, each cell line seems to have become less representative of the 

heterogeneous composition of the primary tumour.   

 

The Rhodamine 123 efflux demonstrated by kt-osa1 and kt-osa4 warrants further 

evaluation of expression of drug resistance proteins, such as P-glycoprotein or 
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ABCG2482T, by these cells (Steingold et al., 1998; Doyle and Ross, 2003; Robey et 

al., 2003). It is possible that, had this been evaluated at derivation, a smaller 

proportion of cells would have shown Rho efflux capacity, and that these had 

become dominant within the culture at the time of testing (kt-osa5 cells did not efflux 

Rho, so this was not a feature of all cells within the tumour).  If the overall Rho 

efflux shown by these populations was due to outgrowth of a membrane transporter-

expressing clone, this was not a cell concurrently expressing the other CSC-

associated markers CD117, CD133 or ALDH.   

 

Notably, a variety of CSC-associated phenotypes were identified amongst these cells 

using flow cytometry, by contrast with the established canine cancer cell lines; in 

addition, a proportion of kt-osa1, kt-osa4 and kt-osa5 cells were capable of forming 

tumourspheres when plated in low-density, serum-free culture (described in Chapter 

4).  Subpopulations identified by different methods represented different proportions 

of the parental population, indicating incomplete overlap between phenotypes.  This 

could be assessed using simultaneous analysis of cell surface and functional markers.   

 

The results obtained through investigation of the kt-osa populations raise some 

interesting points.  It is clear that such investigations are best performed soon after 

derivation of primary cells to ensure that small subpopulations do not become 

overwhelmed, or stem cell-associated expression patterns suppressed, in culture.  

Cells were not cloned, in an attempt to preserve as much heterogeneity as possible 

for analysis.  The derivation and characterisation of clones originating from single 

cells might allow longer term maintenance in culture of individual phenotypes.  

Equally, however, this introduces an element of selection (in terms of which cells 

survive the cloning process), again resulting in a skewed representation of tumour 

composition.  Additionally, cloning prevents the interactions between heterogeneous 

cell types that will occur in the parental tumour tissue and may support CSC 

survival.  Thus, whilst both techniques have a role in evaluation of CSC phenotypes 

in solid tumours, overall it is likely that the most representative picture of phenotypic 

composition, and so greatest likelihood of identifying CSC subsets, will be obtained 

by analysing cells at derivation. 
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If cancer cell lines are maintained by cancer stem cells, it is also clear that those 

maintaining kt-osa1, kt-osa4 and kt-osa5 were not those expressing the CSC-

associated markers CD117 or CD133 soon after derivation.  Given the significance 

ascribed to these markers in the CSC literature, this may not accurately reflect the 

situation within the primary tumour.  It is also interesting that the five populations of 

cells derived from this canine osteosarcoma each demonstrated distinct stem cell-

associated expression patterns and cellular functions, despite having originated from 

a small (1cm3) piece of tumour tissue. 

 

Unlike solid tumours, where cells are generally only available at the time of surgical 

resection or biopsy unless expanded in vitro, it is possible to evaluate primary cells 

from bloodborne malignancies ex vivo throughout the course of disease.  This has the 

obvious advantages of permitting more frequent examination and reducing the 

likelihood of culture-induced artefact.  Also, cells isolated from blood or bone 

marrow are more likely to represent the neoplasm as a whole than those derived from 

a piece of tissue taken from one region of a heterogeneous solid tumour.  If subjects 

are undergoing treatment, clearly this may result in changes to cellular characteristics 

or to the relative proportions of heterogeneous subsets over time.  In the context of 

the CSC hypothesis, this information could be valuable for defining resistant cellular 

phenotypes, and modifying therapeutic interventions accordingly. 

 

The Aldefluor assay has been shown to identify tumourigenic subpopulations in a 

variety of malignancies, both solid and haematopoietic (Pearce et al., 2005; Ginestier 

et al., 2007; Matsui et al., 2008; Carpentino et al., 2009; Huang et al., 2009b; Jiang 

et al., 2009; Li et al., 2010; Tanei et al., 2009); rationale for use of the assay is 

stronger in the latter, as the expression of ALDH1A1 by a subset of normal human 

haematopoietic repopulating cells has been more fully characterised (Kastan et al., 

1990; Storms et al., 1999; Armstrong et al., 2004; Hess et al., 2004; Christ et al., 

2007).  The appearance of an ALDHBright population in the BMMNC of a dog with 

acute lymphoblastic leukaemia could represent a candidate leukaemic stem cell 

population, and changes in the proportion of this population during treatment with a 
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chemotherapy protocol incorporating the alkylating agent cyclophosphamide may 

reflect this.   

 

There is only one report available of this assay being used in the canine system, to 

identify normal canine HSC (Fiordalisi et al., 2005).  The study was presented as an 

abstract and  ALDHBrightSSClow cells were not fully characterised.  Conversely, in the 

work presented here, Aldefluor did not identify a candidate ALDHBrightSSCLow HSC 

population within normal canine BMMNC, when used according to either the 

manufacturer’s protocol or that detailed by Fiordalisi et al.   

 

The principle behind the Aldefluor assay is oxidation by intracellular ALDH of the 

BAAA substrate, and specifically the ALDH1-A1 isoform expressed by normal 

human HSC (for which the system is optimised).  ALDH1 and ALDH3 have been 

detected using this assay in human tumour cell lines.  However, not all members of 

the ALDH superfamily are capable of oxidising the substrate, and indeed some cell 

lines which express ALDH1-A1 do not convert BAAA (Foster et al., 2003 / 

manufacturers’ data).  Thus, the failure to detect an ALDHBrightSSCLow population 

within normal canine BMMNC using this commercial assay does not necessarily rule 

out the presence of ALDH activity within normal canine HSC, although it does 

appear that Aldefluor may not provide a reliable means by which to isolate these 

cells.  Further investigation of this could include assessment of ALDH expression at 

mRNA (RT-PCR) or protein (immunoblot) level, or spectrophotometric 

measurement of enzyme activity, in canine haematopoietic progenitors isolated on 

the basis of other features such as CD34 expression (Niemeyer et al., 2001) or 

rhodamine efflux (Wijewardana et al., 2007).  Similarly, although the ALDH 

fluorescence of the “positive” cells for kt-osa1 and kt-osa4 was weak, it remains 

possible that these cells expressed a canine isoform with poor enzymatic activity 

towards BAAA. 

 

By contrast, the ALDHBrightSSCMed-High cells identified within the BMMNC and 

PBMNC of a dog with ALL were readily visualised as considerably brighter than the 

main population of cells.  Although induction of ALDH expression in cancer cell 
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populations by exposure to alkylating agents in vitro is reported (Sreerama and 

Sladek, 1994), at the point where these cells were first evaluated, this dog was 

chemotherapy-naïve.  It is reported that, in comparison to that shown by normal 

haematopoietic cells, ALDH activity in tumour cells is high (Sreerama and Sladek, 

1997).  Upregulation of ALDH - from levels undetectable in normal BMMNC to 

those producing the bright fluorescence seen at Aldefluor analysis of ALL 

mononuclear cells - may have been a part of the disease process.   

 

Although the viability of sorted ALDHBrightSSCMed-High cells from this case of 

leukaemia was greater than that of the main population, these cells did not 

demonstrate enhanced resistance to cyclophosphamide in vitro.  However, the active 

metabolite of cyclophosphamide, 4-hydroxycyclophosphamide, is produced through 

hepatic metabolism of the prodrug in vivo.  It is therefore unlikely that the use of 

cyclophosphamide in this assay was representative.  

4-hydroxyperoxycyclophosphamide (4-HC) may be used as an alternative in cell 

culture assays, as it is converted to 4-hydroxycyclophosphamide in vitro (Teicher et 

al., 1996), and would have more accurately demonstrated whether these cells showed 

resistance to alkylating agents.  An alternative possibility is that exposure of all cells 

in vivo to cyclophosphamide had selected for non-resistant cells prior to testing in 

vitro. 

 

Unfortunately, the dog succumbed to disease before these ALDHBrightSSCMed-High 

cells could be fully characterised, limiting the conclusions which may be drawn from 

the data.  Clone-forming capacity of the ALDHBrightSSCMed-High population was not 

demonstrated.  Also, the leukaemic animal examined was juvenile (4-6 months old) - 

no normal bone marrow from animals of a comparable age was examined, and so the 

possibility that the profile seen is age-related rather than a feature of disease cannot 

be excluded.   

 

Nonetheless, it is tempting to speculate that, as the leukaemic CD34+ subset showed 

increased FSC / SSC in comparison with those of normal bone marrow, these cells 

could have been part of the ALDHBrightSSCMed-High population, which was similarly 
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distributed across the scatter profile.  Ideally, CD34 and Aldefluor would have been 

evaluated simultaneously, to see whether positive populations correlated, and might 

represent a leukaemic stem cell subset.  Combined surface marker staining / ALDH 

detection would also have allowed more accurate segregation of populations, to 

further characterise both the ALDHBrightSSCMed-High cells and also the SSCLow subset 

with increased Aldefluor fluorescence (identified when the myeloid region was 

excluded from analysis).   

 

Although for normal haematopoietic cells there is incomplete overlap between 

subsets identified using ALDH, Hoechst efflux and CD34 (Goodell et al., 1996; 

Goodell et al., 1997; Pearce and Bonnet, 2007; Addla et al., 2008), both ALDH and 

side population analyses can be used to enrich drug resistant CD138- multiple 

myeloma stem cells (Matsui et al., 2008).  To this author’s knowledge, there are no 

reports describing ALDH activity in subsets of canine neoplastic cells.  If this proves 

to be a valid assay for detecting subsets of cancer cells with drug detoxifying 

properties, there could be important clinical ramifications in terms of selected 

treatment protocol.  Moreover, the assay is reasonably straightforward (compared, 

for example, to the Hoechst 33342 efflux protocol) and requires only a standard 

488nm laser, available on most cytometers.  Significantly, the population was seen 

not only in bone marrow but also peripheral blood, and so testing or ongoing 

assessment need involve procedures no more invasive to the patient than blood 

sampling involved in the standard monitoring of cancer chemotherapy.   

 

In conclusion, this study demonstrates that published protocols to investigate the 

CSC hypothesis may be adapted for use in the canine model system.  Cancer cell 

lines provide a stable background for adaptation and optimisation of these assays for 

canine cells, allowing investigation of the implications of specific markers or 

expression patterns.  However, stable, discrete cellular subpopulations are less 

readily identified.  Conversely, analysis of primary tumour cells presents practical 

challenges, but these are more likely to demonstrate stable heterogeneous 

subpopulations, some of which may represent CSC.   
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Whether the result of a specific CSC population, heterogeneous clonal evolution, or a 

combination of processes, resistance to anticancer agents and persistence of cancer 

cells after therapy are major clinical problems.  The ultimate aim in cancer stem cell 

investigations is to identify, and find ways of specifically targetting, cells which may 

be responsible for driving disease progression or causing relapse after treatment.  

Flow cytometry may provide a rapid and readily accessible means of characterising 

and monitoring clinical disease.  If subpopulations can be isolated from spontaneous 

tumours, in vitro susceptibility testing may inform more individualised treatment 

regimes (Twentyman et al., 1989; Bosanquet, 1993), to increase the likelihood of 

clinical efficacy and reduce the more generalised adverse effects of antiproliferative 

agents.  The assays described in this study thus warrant further investigation within 

the clinical setting. 
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INTRODUCTION 

 

Identifying Cancer Stem Cells in Solid Tumours 

 

Normal stem cells exist at the apex of a hierarchy within tissues.  This progresses, 

through a variable number of transit-amplifying steps, to the terminally differentiated 

cells making up the majority of the tissue (Weissman et al., 2001).  This results in 

phenotypic and functional heterogeneity such that, in order to characterise them 

specifically, stem cells must be separated from the bulk population.  The scarcity of 

normal tissue stem cells thus imposes a challenge – that is, how to obtain sufficient 

numbers of cells from a tissue with which to perform assays.   

 

If phenotypic and/or functional markers have been characterised, these may be used 

for isolation – however, there is likely to be overlap between surface marker profiles 

of cells at successive stages of differentiation, as this represents a continuum (as 

manifest by the haematopoietic system).  Ideally, stem cells could be isolated and 

propagated in culture, allowing the generation of stable populations to compare with 

the progenitor and terminally differentiated components of a tissue.  However, this 

relies upon the ability to maintain the cells in an undifferentiated state rather than 

permitting their development along any of their programmed lineages. 

 

As well as permitting further investigation of the biology and regenerative potential 

of normal stem cells, techniques to isolate self-renewing, multipotent cells should 

provide a platform for investigating the role of CSC in tumours.  The differentiation 

pathways of the haematopoietic system, and the progression from haematopoietic 

stem cells (HSC) through divergent lineages to produce fully differentiated effector 

cells, are reasonably well characterised (Weissman et al., 2001).  This has been 

central to the investigation of putative CSC in haematological malignancies.  Assays 

widely used to identify normal HSC, such as expression of CD34 and efflux of 

Hoechst 33342, have been extended to identify subsets of stem-like cells responsible 

for tumour maintenance.  Equally, appreciation of the normal haematopoietic 

hierarchies, and associated surface phenotypes, has provided compelling evidence 
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for CSC originating in more committed lineages (Bonnet and Dick, 1997; Cozzio et 

al., 2003; Jamieson et al., 2004; Matsui et al., 2004; Bonnet, 2005; Taussig et al., 

2005; Gal et al., 2006; Nishida et al., 2009).  

 

The extension of the cancer stem cell hypothesis to solid tumours has been more 

challenging experimentally, not least because for many, the identity of the 

corresponding normal tissue stem cell and its progression through to terminally 

differentiated cells has yet to be fully understood.  Reliable methods to isolate 

normal, and consequently malignant, tissue stem cells are less well developed.  

Another problem is the physical nature of the tissues.  Cells from solid tissues and 

tumours are often larger and more fragile than blood cells (and less accessible for 

sampling), and creation of viable single-cell suspensions is challenging.   

 

Moreover, the biology of solid tumours is less well understood than the 

haematological malignancies, which more often follow a well-recognised, lineage-

specific course.  Solid tumours are often markedly heterogeneous, displaying 

multiple phenotypes within a single mass.  As well as intrinsic interactions between 

malignant cells, the stroma and microenvironment are critical in the development of 

this heterogeneity - this is complicated further by involvement of cells from other 

tissues through angiogenesis, inflammation and, more recently recognised, the 

recruitment of mesenchymal stem cells or endothelial progenitors to sites of 

neoplastic growth (Hiscox and Jiang, 1997; Houghton et al., 2004; Mueller and 

Fusenig, 2004; Nolan et al., 2007). 

 

Propagating Solid Tissue Stem Cells – the Neurosphere Assay 

 

The ability to isolate and propagate normal neural stem cells in vitro using the 

“neurosphere” technique represented a breakthrough in cell culture.  Reynolds et al 

demonstrated that in the absence of serum and the presence of a mitogenic growth 

factor (epidermal growth factor, EGF), single cells with self-renewal and 

multilineage differentiation capacity proliferated as clusters in which the progeny 

showed similar stem cell-like properties.  The “unique observation” of spheroidal 
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growth was not seen in serum-containing cultures, in which cells grew in a flat 

monolayer (Reynolds et al., 1992; Reynolds and Weiss, 1992).   

 

Reynolds and Weiss derived neurospheres from Embryonic Day 14 mouse striata, 

and performed clonal and population analyses in order to define more accurately the 

proportion of cells capable of self-renewal and multilineage differentiation.  In initial 

cultures, approximately 1% of cells were capable of sphere formation.  However, 

when these were dissociated, up to 49% of cells could form secondary spheres, 

demonstrating a considerable enrichment of growth factor-responsive precursors 

(putative neural stem or progenitor cells) (Reynolds and Weiss, 1996).   

 

Secondary spheres were examined at each stage to assess their ability to differentiate 

into neurons, astrocytes and oligodendrocytes, confirming multipotency and further 

supporting the concept that the sphere-forming, EGF-responsive precursors were 

indeed stem cells.  The authors showed that the growth pattern was maintained over 

multiple passages and, therefore, that these cells were capable of generating large 

numbers of progeny (Reynolds and Weiss, 1996). 

 

The authors have been careful to encourage a degree of parsimony in the 

interpretation of their findings – not least in their recognition that spheres may arise 

from and comprise not only stem but also more differentiated progenitor cells, 

particularly at early passages (Reynolds and Rietze, 2005).  Nonetheless, the assay 

has been adopted in the search for stem cell populations in a wide variety of normal 

solid tissues, including breast, prostate and retinal epithelium (Tropepe et al., 2000; 

Dontu et al., 2003; Xin et al., 2007). 

 

Tumoursphere Culture to Identify Cancer Stem Cells in Solid Tumours 

 

CSC are postulated to be capable of self-renewal and differentiation along diverse 

lineage pathways, and (more speculatively) to have improved capacity for survival in 

less permissive environments.  As such, the neurosphere assay has been widely 

adapted by cancer cell biologists in the hope that it might allow isolation of primitive 
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stem-like cancer cells from solid tumours (Figure 1).  Candidate CSC populations 

have now been described for many tumour types on this basis.  “Tumourspheres” 

have been derived from both primary tumours and tumour cell lines, and sphere-

forming cells analysed for properties including expression of surface markers, 

transcription factor activity, resistance to drugs, and enhanced tumourigenicity 

(Ignatova et al., 2002; Hemmati et al., 2003; Singh et al., 2003; Fang et al., 2005; 

Gibbs et al., 2005; Fujii et al., 2007; Harper et al., 2007; Ricci-Vitiani et al., 2007; 

Fillmore and Kuperwasser, 2008; Wilson et al., 2008; Bisson and Prowse, 2009; 

Stoica et al., 2009). 

 

Tumoursphere populations have been shown to express many stem cell-associated 

markers at levels exceeding those shown by corresponding non-sphere-forming cells.  

These include cell surface molecules such as CD133, CD117, CD44 and integrins 

(Singh et al., 2003; Collins et al., 2005; Chiou et al., 2008; Zhang et al., 2008a), 

transcription factors such as Oct4 and Nanog (Gibbs et al., 2005; Ponti et al., 2005), 

and membrane transporter proteins such as ABCG2 (Bisson and Prowse, 2009; Bleau 

et al., 2009).  For example, upregulation of the normal neural stem cell marker 

Nestin is widely used to demonstrate expansion of a stem cell compartment in 

normal neurosphere culture, and this is also seen in brain malignancies (Hemmati et 

al., 2003; Singh et al., 2003; Galli et al., 2004; Dell'Albani, 2008).   
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Figure 1 – Principle of the tumoursphere assay for CSC identification and 
propagation 
(a) Dissociated cells cultured in serum-free conditions supplemented with growth 
factors. 
(b) Putative CSC, but not differentiated cells, proliferate as clonal spheroid colonies. 
(c) Tumoursphere-forming cells show capacity to differentiate into all cell types seen 
within parental tumour or cell line. 
(d) Tumoursphere-forming cells may be dissociated and placed back into culture, and 
self-renew to form further tumoursphere colonies. 
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Potential advantages of tumoursphere culture techniques 

 

Work published by Lee et al in 2006 suggested that cells from primary glioblastomas 

cultured in serum-free neurosphere conditions were, in fact, more representative of 

the tumour than were those propagated using conventional methods.  They also 

found that they remained more stable over time in terms of growth pattern, 

telomerase activity, genomic and karyotypic stability, colony formation and 

tumourigenicity.  The sphere-derived tumours were histologically more infiltrative 

(hence more similar to primary glioblastomas) than those from standard glioma cell 

lines such as U87MG.  The results suggested that the expression of “glioblastoma-

defining genes” is lost upon serial passage in serum-containing conditions, and that 

serum-free spheroid cultures reflect the original tumour more faithfully (Lee et al., 

2006).  Similarly, De Witt Hamer et al examined gene expression profiles in primary 

and cultured human glioblastoma, and reported that the correlation between sphere 

cultures and their parental tumours was greater than that for corresponding adherent 

cultures (De Witt Hamer et al., 2008).   
 

A major benefit in using the sphere technique to isolate putative CSC is the ability to 

propagate them continuously in culture, allowing not only detailed analysis of their 

properties but also enabling large-scale drug screening.  Enhanced activity against 

the tumoursphere cells, as compared to the corresponding adherent (putatively more 

differentiated) counterparts, may allow identification of compounds which 

selectively target CSC populations (Diamandis et al., 2007). 

 

Potential problems associated with the tumoursphere technique 

 

Several features of neurosphere, and by extension tumoursphere, culture systems 

complicate the interpretation of the data acquired.  Transit-amplifying progenitor 

populations, as well as bona fide stem cells, may survive and proliferate - Reynolds 

and Rietze advise that spheres between passages 5-10 should be used in assays, to 

allow the senescence of these more limited progenitors and reduce their influence on 

results (Reynolds and Rietze, 2005).  Nonetheless it is recognised that some degree 
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of differentiation, and also spontaneous apoptosis, does occur within spheres, so they 

cannot be viewed as a totally “pure population” of stem cell-like cells.  

 

Additionally, spheres show a tendency to clump and coalesce in culture, even when 

components such as methylcellulose are added to the medium to increase its 

viscosity.  This makes precise analysis of clonality difficult, as it cannot be inferred 

that every sphere originated from a single cell.  An elegant study by Singec and 

colleages in 2006 used timelapse microscopy to show the fusion of neurospheres, 

and also cocultures of cells labelled with either EGFP or β-galactosidase to 

demonstrate that most spheres plated at “clonal density” (5 cells/µl) comprised the 

progeny of more than one cell.  Indeed, even at densities as low as 0.5 cells/µl, much 

lower than those used in most published tumoursphere experiments, over 40% of 

spheres were polyclonal (Singec et al., 2006).  

 

Staying round or going flat?  Adherent cultures of brain tumour stem cells 

 

A recent report by Pollard and colleagues described the culture of putative glioma 

CSC using adherent, rather than suspension, culture conditions.  Cells from primary 

tumours were grown in neural stem cell medium on laminin-coated tissue culture 

plastic, and proliferated as a monolayer, expressing markers associated with neural 

stem cells.  Additionally, they showed fewer signs of differentiation and apoptosis 

than parallel neurosphere cultures, and more readily established cell lines.  The 

authors postulated that improved access to growth factors was responsible for many 

of these apparent improvements to the neurosphere culture method, and that 

increased uniformity and easier manipulation of cells represent a significant advance 

with regards not only propagation but also utility for screening drugs which may 

target CSC (Pollard et al., 2009b).  However, there remain several questions as to the 

validity of this technique, not least that of the identity of the homogeneous 

population of cells selected and propagated – as pointed out in a not-unexpected 

response from Reynolds and Vescovi, 

 

“Lack of differentiation markers in a given cell is in no way equated to being a stem 
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cell.  Without evidence demonstrating that each cell cultured under these conditions 

(or the progeny of these cells) is able to exhibit cancer stem cell characteristics (i.e., 

extensive self-renewal, generation large number of progeny, multilineage 

differentiation capability, and tumor formation), the assessment that the culture 

contains a homogeneous cancer stem cell population is unfounded.” (Reynolds and 

Vescovi, 2009) 

 

Pollard and colleagues, whilst defending their findings on the most part, do concede 

in their reply to this critique that, “additional clonal data would be valuable” (Pollard 

et al., 2009a). 

 

Interpretation of Data Gathered from Tumoursphere Culture 

 

Within the published literature, there is a great degree of variability in the culture 

conditions used to derive spheres (Chaichana et al., 2006).  Whilst DMEM:F12 is 

commonly employed as a base medium (Reynolds and Weiss, 1992; Singh et al., 

2003), commercial serum-free formulations or conditioned media are also used by 

some investigators (Dontu et al., 2003; Collins et al., 2005; Sansone et al., 2007), 

with or without the addition of methylcellulose or agar to increase viscosity 

(Kukekov et al., 1999; Ignatova et al., 2002; Gibbs et al., 2005).  Serum-replacement 

supplements such as Bottenstein’s N2 (Bottenstein and Sato, 1979; Reynolds and 

Weiss, 1992; Gibbs et al., 2005) or B27 (Hemmati et al., 2003; Sansone et al., 2007) 

are also variously used, as are additional growth factors (such as epidermal growth 

factor (Reynolds et al., 1992; Dontu et al., 2004), basic fibroblastic growth factor 

(Hemmati et al., 2003; Galli et al., 2004), leukaemia inhibitory factor (Hemmati et 

al., 2003; Singh et al., 2003), stem cell factor [KIT] (Collins et al., 2005), neuronal 

survival factor (Singh et al., 2003)) at a range of concentrations and in an assortment 

of combinations.  Indeed, in some instances serum itself is used in the culture 

medium (Kukekov et al., 1999; Fang et al., 2005).  Different substrates are 

described, with some experiments employing standard culture vessels, and others 

those coated with substances such as poly-l-ornithine (Reynolds and Weiss, 1992), or 

commercial low-attachment plates (Gibbs et al., 2005).  As addressed by Singec et 
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al, the cell density used to afford “clonal” conditions also varies between reports 

(Singec et al., 2006).   

 

The result of this diversity is that it is often rather difficult to pinpoint the criteria 

being used by investigators to define “tumourspheres”, or what then indicates that 

they represent a stem cell population (Chaichana et al., 2006).  A good example of 

this is the recent report by Stoica and colleagues of a canine glioblastoma whose 

cells grow as nonattached “neurospheres” in both serum-free and serum-containing 

cultures (Stoica et al., 2009).  When compared to adherent cells, both populations of 

canine glioblastoma neurospheres show increased expression of CD133 (although 

the experimenters use an anti-mouse antibody with no isotype control, such that 

nonspecific binding cannot be ruled out).  However, clonogenicity of both sphere-

forming and adherent cells was found to be 100%, and all cell types produced 

tumours in nude mice, with no evidence of enhanced tumourigenicity amongst either 

neurosphere population.  The decisive factors by which the neurospheres are 

designated the “cancer stem cells” are therefore unclear (Stoica et al., 2009). 

 

The percentage of cells with clone-forming (sphere-forming) capacity is interpreted 

as an indicator of self-renewal.  Zheng et al concluded from clonal and population 

analysis of the C6 rat glioma cell line that it is “mainly composed of cancer stem 

cells”, owing to the fact that almost 100% of cells formed spheres, and that primary 

and secondary spheres were equally tumourigenic.  They reported reduced clone-

forming ability in serum-free medium, with cells becoming quiescent until serum-

supplemented, at which point further expansion occurred.  Thus, culture conditions 

appeared to exert a significant effect on the apparent self-renewal capacity and “stem 

cell” behaviour (Zheng et al., 2007).  Conversely, whilst Kondo et al also showed the 

effects of different culture conditions / growth factors on sphere-forming capability 

of C6 cells, they estimated the CSC population as only 0.4%, based on Hoechst 

efflux (Kondo et al., 2004).   

 

The surface glycoprotein CD133 is often referred to as a “stem cell marker”, and has 

been shown to be expressed more heavily in sphere cultures than corresponding 
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adherent cells for a variety of normal tissues and tumours, including those of brain, 

colon, lung, prostate, and malignant melanoma (Singh et al., 2003; Collins et al., 

2005; Monzani et al., 2007; Ricci-Vitiani et al., 2007; Tirino et al., 2009).  By 

contrast, however, Shmelkov et al found that CD133+ and CD133- metastatic colon 

cancer cells formed spheres in culture, and that CD133- cells expressed higher levels 

of CD44, another stem cell-associated marker (Shmelkov et al., 2008).  In another 

report examining primary and secondary glioblastomas, both sphere-forming 

CD133+ and adherently-growing CD133- cells were similarly tumourigenic (Beier et 

al., 2007).  These are just a few examples of some of the conflicting data within the 

tumoursphere literature. 

 

Thus, formation of spheres by cells in vitro must be critically assessed in each 

instance, and backed up with further evidence for (cancer) stem cell identity, such as 

multipotentiality, self-renewal and expression of appropriate markers. 

 

The growth of tumour cells as multicellular spheroids is not a new concept, although 

investigations previously had concentrated on how such three-dimensional cultures 

might more closely mimic the behaviour of cells in vivo rather than on any 

propensity to enrich for stem or progenitor cell populations (Freyer and Sutherland, 

1980; Durand, 1981; Toburen, 1981; Olive and Durand, 1985; Desoize and Jardillier, 

2000; Alajati et al., 2008).  Nonetheless, Durand and Olive point out that, depending 

on the growth conditions, “virtually any proliferating cell can be induced to grow as 

multicell spheroids.” (Durand and Olive, 2001)  This is particularly relevant when, as 

has been seen so frequently in recent CSC literature, the “ability to form spheres” is 

reported as a direct indicator of a CSC population.  Moreover, there is evidence that 

some degree of resistance to apoptosis and hence certain chemotherapeutic drugs, 

combined with impaired penetration of drugs into spheres, contributes to drug 

resistance in three-dimensional cultures regardless of any intrinsic CSC-like 

properties (Durand, 1981; Toburen, 1981; Olive and Durand, 1985; Kerbel et al., 

1994; Olive and Durand, 1994; Olive et al., 1997; Weaver et al., 2002).  
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It has been shown previously that, like human osteosarcoma, the canine 

osteosarcoma cell line D17 produces spheroidal colonies in serum-free, low-

adherence, growth factor-supplemented conditions (Wilson et al., 2008).  The 

proportion of cells which could form these “sarcospheres” was estimated as 0.2 – 

0.5%.  Spheres showed increased immunostaining for the embryonic stem cell-

associated markers Oct4, Nanog and STAT3, and adherent cultures greater 

expression of Stro-1, a cell surface marker which might represent more differentiated 

cells (although it may be associated also with mesenchymal stem cells, and with 

preosteoblasts) (Simmons and Torok-Storb, 1991; Gronthos et al., 1999; Gibbs et al., 

2005; Chamberlain et al., 2007; Wilson et al., 2008). 

 

If the propagation of canine cancer cells in low-density, serum-free culture selects 

for the growth of CSC, this would not only allow propagation and detailed 

characterisation of tumourigenic cells, but could also provide a platform for drug 

screening, to identify CSC-selective agents.  Following on from the work of Wilson 

et al, this study aimed to determine whether canine cancer cell lines derived from 

diverse solid tumours are capable of forming tumourspheres, and whether these 

represent the expansion of a specific subpopulation of CSC.  Clonal and population 

analyses were performed to determine the frequency of sphere-forming cells within 

the parental population, and tumourspheres were assessed for the expression of CSC-

associated markers and resistance to commonly-used chemotherapy drugs.   
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MATERIALS AND METHODS 

 

Tumoursphere Culture 

 

Growth medium and standard conditions for low-density, serum-free tumoursphere 

culture are described in Materials and Methods chapter.    

 

For some cell lines, the effects of additional or alternative growth factor 

supplementation were assessed: 

-B27 supplement (Invitrogen) – Substituted for N2 supplement (B27/MC) or 1:1 

with B27 (N2-B27/MC) in growth medium. 

-Recombinant canine vascular endothelial growth factor (VEGF) (R&D Systems, 

Minneapolis MN, USA); 10µg/ml in PBS.  Added with EGF and bFGF at 5-15ng/ml 

(1-3µl/well) every 48h. 

 

Tumoursphere passage protocol 

 

Wilson et al describe passage of D17 tumourspheres as follows: formed spheres were 

transferred to adherent conditions, the cells grown as a monolayer and then 

dissociated, and seeded once again into sphere culture (Wilson et al., 2008).  

However, it was considered that this methodology might not be expected to enrich 

for a putative stem cell-like population with repeated passage - the normal 

differentiated cell population might once again expand upon transfer to permissive 

culture conditions, re-establishing the cellular identity of the parental line.  An 

alternative passage protocol, described in Materials and Methods chapter, was 

devised whereby formed spheres at 7-14 days in vitro (d.i.v.) were dissociated to 

single cells, counted and plated directly back into tumoursphere culture conditions.  
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Limiting Dilution Assay for Population Analysis of Tumourspheres 

 

For analysis of the relationship between cell density and tumoursphere formation in 

bulk culture, D17 and SB cells were resuspended in N2/MC medium at 6x104 

cells/ml as for standard tumoursphere culture.  Serial doubling or tripling dilutions of 

this suspension were made in N2/MC.  1ml of each suspension was added to 1ml of 

N2/MC medium in triplicate wells of UltraLow Attachment 6-well plates and cells 

incubated as for tumoursphere culture (37°C, 5% CO2).   

 

12µl EGF, 12µl bFGF ± 2µl VEGF (SB only) were added every 48 hours.  After 7 

days in culture, tumourspheres were harvested and the number of cells in each well 

counted by trypan blue exclusion.  Where low cell numbers precluded counting of 

individual wells, contents were pooled and the mean cell number/well calculated. 

 

Limiting Dilution Assay for Clonal Analysis of Tumourspheres 

 

Single cell suspensions were created of confluent adherent monolayers and/or 

tumourspheres.  Viable cells were quantified using trypan blue, and cells 

resuspended at 1 x 106 cells/ml in N2 medium, with or without methylcellulose 

depending on the assay.   

 

Dilutions of the cell suspension were made to achieve the required final cell number 

for 200µl per well.  Cell suspensions were dispensed into the innermost 32 wells of 

UltraLow Attachment 96-well plates (Corning), with PBS only in the outer wells, to 

reduce possible plate-edge effects.  

 

Plates were incubated at 37°c, 5% CO2, 100% humidity.  After 72h, growth factors 

were added (1.2ng EGF, 1.2ng bFGF, ±VEGF).  Wells were scored for the presence 

and number of spheres after approximately 7 and 14 days in vitro.  
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Flow cytometric assessment of surface expression, Western blotting, 

immunofluorescence and chemosensitivity assays were performed as described in 

Materials and Methods chapter. 
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RESULTS 

 

Canine Cancer Cells can Proliferate as Spheres in Serum-Free, Low-Adherence, 

Growth Factor-Supplemented Conditions 

 

Canine cancer cell lines D17 osteosarcoma, SB haemangiosarcoma, REM134 

mammary carcinoma and CML10 melanoma were cultured on a low-adherence 

substrate in N2/MC medium, in the presence of EGF and bFGF (“standard 

conditions”).  Clusters of cells began to form within 24-48 hours of plating, and 

expanded over time as compact tumourspheres (Figure 2).  With continued 

expansion, tumourspheres began to coalesce, forming larger spheres and often 

extensive, irregular aggregates (Figure 3).  When tumourspheres were transferred to 

standard (uncoated) tissue culture plates in serum-containing medium, they attached 

to the substrate, the resultant adherent cells once again forming a monolayer with 

morphology similar to that of the original cell line (Figure 4). 

 

Cell numbers yielded under standard conditions permitted repeated subculture of 

D17 and REM134 tumourspheres beyond 5 passsages, and these lines were therefore 

used in most assays.  Rather than expansion in adherent conditions at each passage 

using the method of Wilson et al (Wilson et al., 2008), tumourspheres were 

subcultured using the adapted sphere passage protocol to maximise enrichment of 

any putative CSC population without expansion of adherent (putatively more 

differentiated) cells.  Proliferation of CML10 and SB cells was more limited, and 

often poor after subculture.  All cell lines other than REM134 sporadically failed to 

proliferate under tumoursphere conditions, either at first plating or at subculture.  

Cells would remain apparently quiescent, gradually becoming dense and granular 

and failing to proliferate.  
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Figure 2 – Tumoursphere formation by canine cancer cell lines. 
A – D17 osteosarcoma (8 days in vitro) 
B – SB haemangiosarcoma (14 d.i.v.) 
C – REM134 mammary carcinoma (8 d.i.v.) 
D - CML10 melanoma (11 d.i.v.).   
[A – D: Bar = 100µm] 
E – D17 (8 d.i.v.) 
F – REM134 (4 d.i.v.) 
[E, F: Bar = 20µm] 
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Figure 3 – (Left) D17 tumourspheres at 8 d.i.v. showing tendency towards fusion 
and coalescence (Bar 100µm).  (Right) Cellular connections between D17 spheres, 
noted as an incidental finding at immunofluorescence microscopy.  The positive 
fluorescence signal is a DAPI nuclear counterstain (Bar 20µm). 
These images emphasise that counting tumourspheres in bulk culture is likely to be 
an unsatisfactory means to quantify the proportion of tumoursphere-forming cells. 
 
 

 
Figure 4 – D17 sphere after transfer to standard serum-containing culture conditions, 
demonstrating outgrowth of adherent cells.  Left – Bar = 100µm; Right – Bar = 
50µm. 
 
 
 
 



Chapter 4 – Tumoursphere culture to isolate canine CSC 

 174 

Determinants of Tumoursphere Formation 

 

Some investigators have suggested that, rather than selection of a pre-existing stem 

cell population, addition of mitogenic growth factors or use of specialized media 

may directly alter expression pattern, and thus be responsible for some of the 

phenotypic changes associated with sphere formation (Cicero et al., 2009).  Equally, 

although the addition of serum within classical neurosphere cultures leads to 

multilineage differentiation, and its absence promotes stem and progenitor cell self-

renewal, it is unclear whether or not the differentiation of CSC similarly relies on the 

presence of serum.   

 

Although these questions were not extensively addressed as part of this study, it was 

observed that one of the significant factors in producing the canine tumoursphere 

phenotype was the low-adherence substrate.  D17 cells, plated under standard 

tumoursphere conditions but without additional growth factor supplementation, 

formed expanding tumourspheres (Figure 5).  Moreover, when D17 or SB cells were 

plated in N2 medium on conventional (uncoated) tissue culture vessels, the cells 

attached to the substrate and proliferated as a monolayer despite the absence of 

serum.   

 

 
Figure 5 – D17 tumourspheres forming with no EGF or bFGF supplementation.   
Cells were still growing well as tumourspheres at 11 d.i.v. – i.e. D17 can form 
tumourspheres in the absence of supplementary growth factors. 
Left – 3 d.i.v.;  Right – 11 d.i.v. 
Bar = 100µm 
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Conversely, attachment of D17 tumourspheres to the substrate, with outgrowth of 

adherent cells, was observed even under low-adherence conditions when the 

spheroids became large and settled to the bases of the wells (Figure 6). Thus, the 

absence of serum from culture medium does not necessarily preclude the adherent 

growth of canine cancer cells, and absence of growth factor supplementation does 

not preclude the formation or expansion of tumourspheres.  

 

The addition of the mitogenic growth factors bFGF and EGF did appear to have 

direct effects on cellular phenotype.  D17 cells were cultured in conventional, serum-

containing adherent conditions and supplemented with growth factors at 

concentrations equivalent to those employed in sphere culture (“D17 AdherentGF”).  

Cell morphology was markedly altered, with cells developing along “cords” rather  

than as a smooth monolayer, often with pronounced spindle-like processes, and 

showing a tendency to clump into tumoursphere-like aggregates (Figure 7).  With 

increasing confluence, these spheres tended to detach from the substrate and became 

suspended in the medium, suggesting a predominance of intercellular adhesion over 

that to the culture substrate.  

 
 
 

 
Figure 6 – D17 cells in tumoursphere culture demonstrating attachment and 
proliferation despite low-adherence substrate.  Bar = 100µm 
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Figure 7 – (A) Standard adherent and (B-D) D17 AdhGF cells.  B, C – 8 d.i.v.; D – 
11 d.i.v. Note altered morphology and tendency for intercellular adhesion, 
overcoming that for attachment to substrate such that cells gradually become 
suspended as floating spheroids – i.e. D17 cells can form tumourspheres in the 
presence of serum..  Bar = 100µm. 
 
 

 

Preliminary studies were conducted to assess the growth of SB haemangiosarcoma 

and CML10 melanoma cells in alternative serum-free media, or with additional 

growth factor supplementation.  Tumoursphere formation in N2/MC medium was 

compared with that containing an alternative serum-replacement supplement, B27, 

and also medium containing both supplements (N2-B27/MC).  Although B27 

contains slightly lower levels of some N2 constituents - the precise concentrations 

are not disclosed by the manufacturers - it also contains additional factors not present 

in N2, and has been used by a number of experimenters in sphere culture (Dontu et 

A B 
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al., 2003; Hemmati et al., 2003; Chaichana et al., 2006; Pellegatta et al., 2006; 

Sansone et al., 2007). Growth of both SB and CML10 was poor in medium 

supplemented only with B27; spheres formed were fewer, smaller and less compact 

than in other media, and the cells within these loose clusters appeared granular and 

poorly viable.  Tumourspheres produced by CML10 cells were largest and most 

numerous in the growth medium containing both supplements (N2-B27/MC).  For 

SB cells, proliferation as tumourspheres in N2-B27/MC was equivalent to that in 

N2/MC (Figure 8 A-F).   

 

Expression of receptors for vascular endothelial growth factor (VEGF) is reported 

for both haemangiosarcoma (and specifically SB cells (Akhtar et al., 2004)) and 

malignant melanoma (Liu et al., 1995).  The addition of VEGF at increasing 

concentrations (5nM, 10nM, 15nM) enhanced growth of SB cells leading to the 

formation of larger and more numerous tumourspheres, particularly when combined 

with N2-B27 supplementation.  There was a less marked enhancement in the 

formation of tumourspheres by CML10 cells (Figure 8 G-L).  These results suggest 

that the observation of “tumoursphere formation” by a given cell line is influenced 

by the selected combination of culture medium, substrate and supplemental growth 

factors. 
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Figure 8 – Tumoursphere formation by SB haemangiosarcoma and CML10 
melanoma in response to additional supplementation.   
(Upper) – Proliferation in medium containing N2, B27 or a combination of both 
serum-replacement supplements. 
(Lower) – Proliferation in alternative media with additional growth factor 
supplementation (15nM VEGF). 
Bar = 100µm 
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Microscopic Observations and Clonal and Population Analyses suggest that 

Growth of Canine Cancer Cells as Spheroids results from Cellular Aggregation 

and not Autonomous Self-Renewal 

 

According to the principle of the neurosphere assay, enrichment of cancer stem and 

progenitor cells occurs through selection of cells capable of first surviving in serum-

free conditions, and their subsequent self-renewal to create clonal spheres of similar 

cells.  If the formation of tumourspheres by cancer cells in low-density conditions 

represents cell-autonomous self-renewal of individual cells, it should be possible to 

quantify the proportion of replication-competent cells on a single cell level. 

 

Isolated D17 cells do not form tumourspheres 

 

Clonal analysis was performed in order to assess the ability of individual tumour 

cells to form tumourspheres.  D17 tumourspheres at fifth passage were dissociated 

and plated into 96-well plates at 30, 3, 1 and 0.3 cells per well.  Although small 

clusters of cells formed in some wells, no tumourspheres developed in any well even 

at 30 cells/well, and by 9 d.i.v. most cells were shrunken and showed no signs of 

replication.  This was in sharp contrast to the cluster formation seen at 24-48 hours 

after plating, and the development of large tumourspheres by 7 d.i.v., under standard 

conditions. 

 

The limiting dilution assay was repeated at densities of 200, 100 and 50 cells per 

well.  Both D17 adherent cells and dissociated tumourspheres (passage 8) were 

assessed for sphere-forming capacity, in case tumoursphere passage had enriched a 

population of clonogenic cells.  However, for both sphere and adherent cells, sphere 

formation at low densities was very poor - even at 200 cells per well, any spheroids 

were small (no more than 2-3 cells in diameter) and not comparable with those seen 

under bulk culture conditions (Figure 9). 

 

For adherent cells, 13/32 wells showed evidence of proliferation at 200 cells/well 

(40% positive wells).  Tumoursphere cells performed better at this density, with 
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25/32 wells (78%) showing a cell cluster – this may support the concept of 

enrichment of a putative tumoursphere-forming CSC population by successive 

passage, although the effect might also be influenced by incomplete tumoursphere 

dissociation and the persistence of cellular aggregates, or adaptation of cells to 

tumoursphere culture conditions during successive passage.  However, cluster 

formation was reduced to 3/32 (9%) at 100 cells/well and 2/32 (6%) at 50 cells/well 

(Figure 10).  This is strongly suggestive of a density-dependent effect, as otherwise it 

would be expected that there would be a linear relationship between number of cells 

per well and wells containing spheres, from which could be calculated the minimum 

number of cells required per well to yield at least one sphere (Singh et al., 2003).  

 

In fact, there appears to be an initial plateau at low cell densities, where very few 

cells will replicate, followed by an increasing tendency to form spheres as cell 

density increases (Figure 10).  SB cells produced no spheres in any well at either 50, 

100 or 200 cells per well upon limiting dilution, even with additional growth factor 

supplementation (VEGF 10ng/ml).  

 

Most limiting dilution assays were carried out using N2 medium without 

methylcellulose, to permit more accurate manipulation of small fluid volumes.  

Notably, when D17 cells were plated in methylcellulose-containing medium at 50, 

100 and 200 cells per well, no cell replication was seen and no tumourspheres 

formed, at even the highest density.  This observation supports the concept that 

tumoursphere formation and expansion by D17 cells is promoted by initial cell-cell 

contact – within the small wells of a 96-well plate, the viscous methylcellulose has 

more of an immobilising effect than in a 6-well plate, where cells tend to gravitate 

towards the edges of wells.   

 

 
Figure 9 – D17 limiting dilution 
assay.  200 cells/well in 96 well 
plate at 7 d.i.v. 
No tumourspheres comparable to 
those in bulk culture were seen in 
any well. 
Bar = 100µm 
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Figure 10  – Non-linear relationship between number of cells plated per well of a 
96-well plate and tumoursphere formation, for D17 adherent and tumoursphere cells.   
y axis represents the proportion of wells in which no spheres form, for a given 
number of cells per well (x axis).  For cell-autonomous and density-independent 
tumoursphere formation, a linear relationship is expected.  This allows linear 
regression lines to be plotted, with the x axis intercept indicating the number of 
cells/well required to ensure at least one sphere in each well. 
Wells were scored after 14 days in vitro; any tumourspheres formed were much 
smaller than  those seen in bulk culture after a similar incubation period. 
 

Single REM134 cells do not form spheres comparable to those in bulk cultures, 

and serial tumoursphere passage does not enrich for sphere formation 

 

REM134 cells, which like D17 readily formed and expanded as tumourspheres under 

standard conditions, also failed to show comparable proliferative ability in a single 

cell assay.  In order to test the hypothesis that successive passage of spheres would 

enrich for a cancer stem cell population, dissociated adherent and tumoursphere 

(passage 6) cells were plated in low-adherence 96-well plates at 1 cell per well.  

Wells were scored after 24 hours for the presence of single cells, and sphere 

formation assessed at days 8 and 16 of incubation.   

 

Of 44 single adherent cells, only 4 (9.09%) showed any sign of replication.  Of 52 

single sphere cells, fewer proliferated, with only 3 spheres (5.77%) at 8 d.i.v. and 2 

(3.85%) at 16 d.i.v., one of the spheres scored at the earlier assessment having 

broken down (Figure 11).  Thus, REM134 adherent cells form tumourspheres at the 

single-cell level, at a frequency which might be expected for a putative CSC 
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population, but serial passage as tumourspheres does not enrich for sphere-forming 

capacity.  Again, the tumourspheres formed were smaller than the large compact 

bodies formed in the standard 6-well assay (proposed to originate from single tumour 

cells) (Figure 12).  These results indicate discrepancies between tumoursphere-

forming efficiency at the level of single cells versus bulk culture, suggesting that cell 

density exerts a profound effect. 

Figure 11 – Tumoursphere formation at the single-cell level by REM134 adherent 
and tumoursphere cells.  Wells confirmed as containing a single cell after 1 day in 
vitro, and scored for tumoursphere formation at 8 and 16 d.i.v.. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 12 - REM134 tumoursphere formation in single cell assay at 16 d.i.v.   
Left – Derived from single adherent cell; Right – Derived from single sphere cell 
Bar = 100µm 
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Sphere formation in bulk tumoursphere cultures is density dependent 

 

The influence of cell density on tumoursphere-forming efficiency was further 

investigated at the population level.  D17 and SB haemangiosarcoma cells were 

plated in the 6-well format, at standard density (6 x 104 cells /well / 2ml) and serially 

diluted cell concentrations.  If replication as spheres is a cell-autonomous process, 

the proportion of cells proliferating as spheres is hypothetically the same, and so 

overall population doubling should show a constant relationship to initial inoculums.   

 

(Population Doubling = 3.32 x [log(cells yielded) – log(cells seeded)]) 

 

As seen in Figure 13, this was not the case, this non-linear relationship again 

indicating a density-dependent effect on cell proliferation.  For D17, fewer than 

3250-5000 cells per well in tumoursphere culture led to a negative population 

doubling – that is, overall cell numbers declined – whereas above this density, an 

overall expansion was seen.  For SB, the cutoff was higher at approximately 19000 

cells per well. 

 

Population analysis over serial tumoursphere passage at standard density (60000 

cells per well) suggested an exponential population expansion, with equivalent 

proliferation capacity at each subculture.  Population doublings were calculated for 

each passage, and the theoretical total cell yield over time (if all cells had been 

placed back into culture) determined (Figure 14).  Whilst it might be expected that 

gradual enrichment of a (putatively more slowly-dividing) stem cell-like 

subpopulation might lead to alterations in growth kinetics, the results suggested that 

the cells within tumourspheres not only underwent exponential growth over time 

producing a large number of progeny, but also that the rate of proliferation was 

reasonably constant.   
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Figure 13 – Density-
dependent growth of 
D17 and SB cells in 
tumoursphere conditions.  
Graph shows 
Log(Cells/Well) vs 
Population Doublings.  
x-axis intercept indicates 
minimum number of 
cells required per well of 
a 6-well plate to produce 
an overall population 
expansion..   

 

 
 
Figure 14 – Exponential growth of D17 and REM134 cells as tumourspheres. 
A and B show exponential growth curves for D17 and REM134 cells, respectively, 
based on estimated cumulative cell number (as if all cells had been cultured at each 
passage).  Population doubling time calculated from each curve = 2.5 days. 
C - Plotting Time vs Log(Cells) gives a similar straight line for each cell line. 
 

B 

A 

C 
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In addition, the degree of expansion suggested that most plated cells were capable of 

replicating to contribute towards total cell number, at both early and later passages.  

This was supported by the microscopic observation that for both D17 and REM134, 

most cells appeared to participate in cluster formation soon after seeding (Figure 15).   

 

Together, these results suggest that sphere formation in canine cancer cell lines, 

rather than representing the autonomous self-renewal of individual stem-like cells, is 

the result of cellular aggregation and proliferation at permissive cell densities. 

 
 

 
Figure 15 – Cells proliferating as tumourspheres are not rare in bulk culture.   
 
A – D17 cells at 2 d.i.v (phase contrast). 
B – REM134 cells at 4 d.i.v. (brightfield). 
C – D17 cells at 2 d.i.v. (brightfield). 
D – REM134 cells at 4 d.i.v. (brightfield). 
 
All cells seeded at 60000/well.  A, B - Bar = 200µm.  C, D - Bar = 100µm. 
 

A 

D C 

B 
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Expression Patterns do not suggest that Spheres formed by Canine Cancer Cell 

Lines Represent a Specific Stem Cell-Like Population 

 

Flow cytometry 

 

D17 and REM134 tumourspheres were dissociated and analysed by flow cytometry.  

The FSC vs SSC profile of sphere cells was less defined than that of the adherent 

cells (Figure 16).  There was a greater range of cell size (large cells containing 

pronounced vacuoles were often visible at light microscopy in sphere cultures) and 

complexity, in part due to the persistence of cellular aggregates despite the 

suspension having been passed through a 40µm cell strainer prior to analysis.  There 

was more debris and non-viable material present in the sphere cell suspension, 

probably reflecting not only apoptosis in the cultures, but also the longer period of 

enzymatic exposure and mechanical trituration required to dissociate the spheres as 

compared with adherent cultures.  Sphere cells showed a greater tendency towards 

autofluorescence than did adherent cells, necessitating stringent analysis to 

distinguish antibody binding from artefact. 

 

D17 spheres did not demonstrate significant upregulation of the stem cell-associated 

markers CD34, CD133 or CD117.  Both sphere and adherent cultures were CD34-ve.  

Whilst the frequency of CD133+ tumoursphere cells (0.59%) was greater than that of 

adherent cells (0.065%), this was equivalent to the level of binding for the isotype 

control antibody (0.58%) (Figure 17).  Similarly, although 0.2% of tumoursphere 

cells were positive for CD117, compared to 0.14% of adherent cells, the isotype 

control antibody stained 0.24% of cells.  This demonstrates a tendency of 

tumoursphere cells to non-specific binding, most likely exaggerated in the presence 

of cellular aggregates, debris and early apoptosis. 

 

REM134 tumoursphere cells were assessed for expression of the putative mammary 

CSC marker CD44.  The proportion of CD44+  tumoursphere cells (71%) was lower 

than that of the adherent cells (98%), i.e. reduced expression of a stem cell-

associated marker on tumoursphere-forming cells for this cell line (Figure 18). 
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Figure 16 – Tumourspheres 
show greater variation in size 
and complexity than adherent 
cells, as demonstrated by 
wider distribution on Forward 
vs Side Scatter profile (Upper 
plots). 
Tumoursphere cells show 
greater inherent fluorescence 
(autofluorescence) than 
adherent cells, as demonstrated 
on bivariate fluorescence plot 
of unstained cells (Lower 
plots). 
Acquisition performed using 
same instrument settings for 
both cell types. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 – Representative plots showing assessment of surface staining on 
tumoursphere cells.  D17 tumourspheres (lower plots) do not contain an increased 
frequency of cells positive for the CSC-associated marker CD133, as determined by 
comparison with isotype-matched control antibody, than D17 adherent cells (upper 
plots). 
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Figure 18 – REM134 tumoursphere cells (lower plots) show a reduced frequency of 
CD44+ cells, as determined by comparison with isotype-matched controls, than 
REM134 adherent cells (upper plots).  Acquisition performed using same instrument 
settings for both cell types. 
 
 

Western Blot 

 

Lysates of D17 adherent, and adherent-GF and tumoursphere cells were examined 

using Western blotting for expression of Oct4, Nanog and c-Kit.  The expected 

product size for each protein was 43kDa, 39kDa and 120-155kD respectively.  Non-

specific bands occurred frequently and were generally larger than the expected 

product size.  No candidate protein products for Nanog or c-Kit were seen for any of 

the populations despite multiple attempts to optimise antibody concentrations (data 

not shown).  When probed for Oct4, a protein product of approximately the predicted 

size could be detected for all three cell types, although this was not the major band.   

In comparison to the β-actin loading control, D17 Adh-GF cells or tumourspheres 

did not appear to show significant upregulation of this product in comparison with 
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adherent cells (Figure 19).  A single band for Oct4, of the predicted size, was 

detected for adherent bone marrow-derived stromal cells at initial derivation, 

although not when lysates of passaged cells were tested (Figure 19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19 – Western blot analysis for expression of Oct4.   
A - Bone marrow-derived stromal cells prior to subculture demonstrate expression; 
no candidate band seen for D17 adherent, AdhGF or tumoursphere cells at this 
concentration of primary antibody. 
B – Where bands of appropriate size are detected, these are not the major protein 
band.  There is no evidence of increased expression of Oct4 by D17 AdhGF or 
tumoursphere cells, in comparison to D17 adherent cells. 
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This data suggests that D17 osteosarcoma cells cultured as tumourspheres do not 

show increased expression of the stem cell-associated markers Oct4, Nanog or c-Kit 

at a protein level, nor do the growth factors EGF and bFGF lead to their direct 

upregulation. 

 

Immunofluorescence 

 

Cytospin preparations of REM134 and D17 tumourspheres were examined using 

immunofluorescence microscopy for the expression of c-Kit, Oct4 and Nanog.  

GAPDH and β-actin were employed as positive controls and DAPI as a nuclear 

counterstain.  A methanol/acetone protocol for fixation-permeabilisation was found 

to be superior to paraformaldehyde/Triton X-100 – penetration of spheroids by 

antibodies was more homogenous, and background fluorescence reduced.  As with 

flow cytometry, tumourspheres showed increased autofluorescence, particularly if 

fixation was not followed immediately by antibody staining (Figure 20).  Multiple 

titrations were performed to optimise fixation / permeabilisation and staining 

protocols.  

 

Bone marrow-derived stromal cells were cultured as mesenchymal stem cells to act 

as positive control populations expressing Oct4, Nanog and cKit.  However, whilst 

occasional strongly positive-staining cells were detected, corresponding phase 

contrast images suggested that these were in fact dead or apoptotic cells becoming 

detached from the monolayer  (Figure 21).  

 

Both D17 and REM134 tumourspheres showed positive immunofluorescence with 

Oct4, comparable to that demonstrated by Wilson et al. for D17 spheres (Figure 22).  

However, examination at higher magnifications showed that staining was confined to 

the cytoplasm, a defined unstained area in each cell corresponding with the position 

of the nucleus (Figure 23). Oct4 acts as a nuclear transcription factor, and the 

cytoplasmic localisation of the protein in the D17 and REM134 tumourspheres 

therefore does not support its role in maintaining pluripotency and self-renewal 

capacity within this culture system. 
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Figure 20 –  
D17 sphere demonstrating 
autofluorescence, having been neither fixed 
nor stained.   
Fluorescent signal was also detectable 
through DAPI and rhodamine channels. 
 
 
 
 
 
 

 
Figure 21 – Immunofluorescent staining of Bone Marrow-derived Stromal Cells  
demonstrating that apparent positivity (FITC fluorescence, centre panels) for Nanog 
and Oct4 is the result of non-specific antibody binding to dead or dying cells.   
From top - β-actin, Nanog, Oct4.   
Note that cells with increased FITC fluorescence in each of the central panels 
correspond with cells showing nuclear condensation (left panels, DAPI) which are 
detaching from the monolayer (right panels, phase contrast).   
Bar = 20µm. 
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Figure 22 – D17 
spheres show 
positive staining 
for Oct4.  c-Kit 
and Nanog do not 
bind above 
background levels.  
 
(a), (b) – GAPDH 
(c), (d) – Oct4 
(e), (f) – c-Kit 
(g). (h) – Nanog 
 
Left panels show 
DAPI nuclear 
counterstain. 
 
(i) – Secondary 
antibody only 
negative control 
(j) – No antibody 
autofluorescence 
negative control 
 
Images have been 
captured using 
equal exposures 
for each 
fluorochrome.  
There has been 
minimal to no 
postacquisition 
processing of the 
raw linear data. 
 
Bar = 20µm 

(a) 

(j) (i) 

 (h) (g) 

(f) (e) 

(d) (c) 

(b) 
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Figure 23 – Immunofluorescent staining proposed to represent expression of 
pluripotency-associated transcription factors is inappropriately localised in D17 and 
REM134 tumourspheres.   
Upper Panels – DAPI nuclear counterstain (left) and Oct4-FITC staining (right) of 
D17 tumoursphere.  Positive signal is distinctly localised to the cytoplasm, with no 
nuclear staining.   
Lower Panels – DAPI nuclear counterstain (left) and Nanog-FITC staining of 
REM134 tumoursphere.  Positive signal is cytoplasmic, with a peri- but not 
intranuclear pattern.  The FITC image was taken with a long (6 second) exposure, 
and processed to reduce background and enhance the weak fluorescence for the 
purposes of this figure. 
Bar = 20µm 
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Although weak staining for Nanog and c-Kit could be visualised in both REM134 

and D17 tumourspheres, this was similar to that seen in negative control samples.  It 

was possible, using long exposures and post-acquisition image manipulation, to 

enhance the fluorescent signal, but this was accompanied by increased background 

staining, and could be achieved to a similar degree with negative control samples.  

This indicates nonspecific binding and autofluorescence, rather than specific positive 

staining (Figure 24, 25).  Notably, where Nanog staining was exaggerated in this 

manner, fluorescence was cytoplasmic/perinuclear, so once again inappropriately 

localised for a transcription factor (Figure 23).   

 

These results suggest that D17 and REM134 canine tumourspheres do not express 

the embryonic stem cell-associated nuclear transcription factors Oct4 or Nanog, or 

the cell surface marker c-Kit (CD117).  
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Figure 24 – Autofluorescence and non-specific background signal may contribute to 
apparent immunofluorescent positivity of D17 spheres if exposure factors are not 
consistent. 
(a) GAPDH [positive control] (b) Oct4 (c) c-Kit and (d) secondary-only [negative 
control] were exposed for 2 seconds.   
(e) and (f) are long (8 seconds) exposures of c-Kit and negative control samples,  
respectively, leading to the appearance of weak positive staining in both samples. 
Bar = 100µm 
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Tumourspheres Formed by Canine Cancer Cell Lines Display No Significant 

Alterations in Sensitivity to Commonly Used Anticancer Drugs 

 

Sensitivity of D17 sphere and adherent cells to conventional chemotherapy drugs 

was evaluated by an ATP luminescence assay.  A cancer stem cell population might 

be expected to show increased resistance to conventional chemotherapeutic drugs 

(Diamandis et al., 2007; Todaro et al., 2007; Wright et al., 2008; Zhang et al., 

2008a; Zhou et al., 2009a).  However, as shown in Figure 26, the drug sensitivity 

profiles of both cell types were very similar, with no significant differences between 

the IC50 values of D17 sphere and adherent cells for either doxorubicin (adherent 

8.66nM, tumoursphere 9.44nM; p = 0.69) or mitoxantrone (adherent 63.7nM, 

tumoursphere 42.2nM; p = 0.27).  REM134 sphere and adherent cells also showed 

almost equivalent sensitivity to doxorubicin (adherent 12.6nM, tumoursphere 

12.2nM; p = 0.96) (Figure 26 C).   

 

Thus, for REM134 and D17 cell lines, culture as tumourspheres in serum-free, 

growth factor-supplemented conditions does not select for cells with increased 

resistance to the conventional chemotherapeutic drugs doxorubicin and 

mitoxantrone. 
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Figure 26 – Viability of D17 adherent and tumoursphere cells in response to 
increasing concentrations of the conventional cytotoxic drugs doxorubicin (A) and 
mitoxantrone (B), and REM134 adherent and tumoursphere cells in response to 
doxorubicin (C). 

A 

B 

C 
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Distinct Tumoursphere Populations may be Cultured from an Individual 

Spontaneous Canine Tumour 

 

Cells of kt-osa1, kt-osa4 and kt-osa5, three populations derived from a single 

spontaneous primary canine osteosarcoma, were cultured in standard tumoursphere 

conditions after initial expansion in adherent culture.  Cells of all three populations 

formed tumourspheres, although the size and frequency of these varied between the 

cultures, consistent with the morphological heterogeneity observed both within and 

between the three cell populations under adherent conditions (Figure 27).  

 

Microscopic observation suggested that a smaller proportion of kt-osa1, kt-osa4 and 

kt-osa5 cells participated in tumoursphere formation, compared to the more frequent 

cellular clusters seen when D17 and REM134 were cultured under standard 

conditions.  However, as shown in Figure 28A, fusion of clusters also contributed to 

the growth of some spheroids.  As tumourspheres of kt-osa1 and kt-osa4 populations 

expanded, a defined pellucid region was observed surrounding the spheroid – the 

significance of this was not determined, but may indicate secretion by constituent 

cells, for example of proteinaceous or lipid factors (Figure 28B).  Cell numbers 

yielded at subculture were greatest for kt-osa1 and least for kt-osa4.  Tumourspheres 

could be dissociated and cells seeded back into serum-free conditions for further 

growth as tumourspheres (Figure 28C). 

 

When tumourspheres were harvested and replated back into conventional, serum-

containing conditions, they attached to the substrate with subsequent outgrowth of 

adherent cells (Figure 29).  These showed morphological heterogeneity, with a 

mixture of elongated fusiform / fibroblastic and more epithelioid cell types, as well 

as occasional multinucleate and atypical cells, reminiscent of that seen in the parental 

population.  This data suggests that cells derived from primary tumours may be 

cultured as tumourspheres in low-density, serum-free conditions, and that the cells 

comprising them may reproduce the morphological heterogeneity of the parental 

population when placed back into conventional adherent culture.  
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Figure 27 -  
Tumoursphere 
formation by kt-osa 
cells. 
 
A – kt-osa1 
B – kt-osa5  
Bar = 200µm 
 
C – kt-osa4 
Bar = 50µm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 28 – Tumourspheres formed by kt-osa populations. 
A – kt-osa1 tumourspheres showing clustering and coalescence as noted also for  

continuous cell lines.  
B – Pellucid area surrounding a kt-osa1 tumoursphere.  This was observed around  
 larger tumourspheres in initial kt-osa1 and kt-osa4 cultures.  
C – kt-osa5 tumourspheres at passage 2.  kt-osa4 tumoursphere cells failed to  

proliferate after subculture; kt-osa1 and kt-osa5 tumourspheres were passaged  
twice prior to growth arrest.   

Bar = 100µm. 

A 

C 

B 

A C B 
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Figure 29 – 
Transfer of kt-osa4 
tumourspheres to 
conventional 
serum-containing 
culture. 
Outgrowth of 
adherent cells to 
form a monolayer 
with morphological 
heterogeneity 
similar to that seen 
in original adherent 
culture. 
Bar = 100µm 
 
 
 
 
 
 
 
 
 
 
 

 
 

Population expansion as tumourspheres, however, was limited for all three 

populations.  Overall cell numbers declined and growth stalled at second (kt-osa4) or 

third (kt-osa1, kt osa5) passage, precluding further assays or subculture.  Further 

tumoursphere cultures were initiated from each population, at which point kt-osa1, 

kt-osa4 and kt-osa5 had undergone 11, 12 and 9 subcultures in adherent conditions, 

respectively.  As described in Chapter 3, increased morphological homogeneity and 

diminution of small cellular subsets within the adherent populations was becoming 

evident upon repeated passage in vitro. 

 

Interestingly, there were some distinctions between these and the tumourspheres 

cultured sooner after initial derivation of the primary cells.  kt-osa4 and kt-osa5 

tumourspheres showed greater proliferative capacity, the former producing larger 

spheroids and the latter more numerous, than kt-osa1 (Figure 30).  By contrast with 
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A C B 

the tumourspheres cultured soon after derivation of the three populations, at 

subculture kt-osa5 yielded the greatest cell numbers and kt-osa1 the lowest.  No 

pellucid region was seen surrounding kt-osa1 or kt-osa4 tumourspheres.   

 

Population expansion was again low - overall cell numbers diminished to preclude 

culture beyond second passage, and no further characterisation of these 

tumoursphere populations was undertaken.  However, these results suggest repeated 

passage in vitro may produce alterations in the nature of derived tumoursphere 

populations.  Thus, information regarding putative CSC subsets within a given 

tumour may be more representative if obtained through direct tumoursphere culture 

of primary cells. 

 

 
 

 
Figure 30 – Tumourspheres derived from kt-osa cells passaged 9-12 times in 
adherent culture conditions. 
A – kt-osa1 (4 days in vitro); B – kt-osa4 (5 d.i.v.); C – kt-osa5 (4 d.i.v.). 
kt-osa1 tumourspheres derived from later passage adherent cells failed to proliferate 
after subculture; kt-osa4 and kt-osa5 grew for a further passage prior to growth 
arrest.   
Bar = 100µm. 
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DISCUSSION 

 

The neurosphere assay has become a standard protocol in the isolation and expansion 

of normal neural stem cells.  The principle that low-adherence, serum-free culture in 

the presence of mitogenic growth factors promotes the expansion of progenitor 

populations and inhibits their differentiation has been extended to other tissue types, 

such as normal breast and prostate, in order to try and isolate normal tissue stem 

cells.  It is now also widely used by those investigating the stem cell theory of cancer 

in solid tumours.   

 

Evidence to support the assertion that tumourspheres are composed of stem cells 

includes surface marker expression as demonstrated by flow cytometry or magnetic 

cell sorting, mRNA expression by RT-PCR, protein expression by Western blotting 

or immunoprecipitation, and microscopic techniques such as immunofluorescence or 

immunocytochemistry.  Many studies have shown that sphere cells have altered 

resistance to cytotoxic agents such as chemotherapy drugs and radiation – where 

enhanced, this would explain the persistence of CSC after treatment, and where 

reduced, could identify potential CSC-targeting therapies (Todaro et al., 2007; 

Baumann et al., 2008; Chen et al., 2008; Fillmore and Kuperwasser, 2008; Zhang et 

al., 2008a).   

 

In order for a selected population to satisfy the CSC hypothesis, cells must 

demonstrate two fundamental traits – the capacity for unlimited self-renewal, and the 

potential to recapitulate all lineages seen within the tumour.  Whilst serial 

transplantation assays to demonstrate tumourigenicity in immunocompromised 

laboratory animals remain the accepted “gold standard” for both of these conditions 

(although there are numerous reservations regarding this assertion (Hill, 2006; 

Fillmore and Kuperwasser, 2007; Kelly et al., 2007; Quintana et al., 2008; 

Shackleton et al., 2009)), in vitro data should at least strongly support the existence 

of these attributes in any putative cancer stem cell population. 
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The results in this study suggest that tumoursphere formation by the investigated 

canine cancer cell lines is dependent (at least partially) on cell-cell interaction, rather 

than autonomous self-renewal capability of individual cells.  Supporting this are the 

observations that a) any proliferation occurring at low densities resulted in fewer and 

much smaller clusters of cells than at high densities, and b) at high densities, most 

cells appear to participate in cluster formation, whereas at low densities, few cells 

proliferate.   

 

A linear relationship between number of cells seeded vs number of spheres formed, 

which should allow assessment of the frequency of sphere-forming cells by limiting 

dilution assay (Singh et al., 2003), was not apparent for the canine cancer cell lines 

examined. This contrasts with reports of tumoursphere formation by cells derived 

from primary brain and colon tumours, where the proportion of sphere-forming cells 

remains constant when cell density is altered (Singh et al., 2003; Vermeulen and al., 

2008; Xu, 2009).   

 

The large tumourspheres seen for all of the canine cancer cell lines in bulk culture 

were never observed in the 96-well format.  According to the principle of the 

neurosphere technique, tumoursphere size should also be independent of cell density, 

as each sphere is supposed to arise from a single cell.  Secondary spheres, formed 

after dissociation and replating of a single sphere, are expected to be identical to 

those of the initial culture (Reynolds and Weiss, 1996; Dontu et al., 2003; Singh et 

al., 2003; Zheng et al., 2007), allowing assessment of how many clonal cells are 

present in a “typical” sphere.   

 

The great disparity between proliferation of D17 and REM134 cells in bulk culture 

and at the single cell level not only precluded this single sphere analysis, but also 

suggested that mechanisms of cluster formation and growth in the two situations may 

not be comparable.  The formation of small tumourspheres by a minority of REM134 

cells in the single cell assay does suggest that individual cells are capable of 

proliferation in serum-free conditions.  This may indicate a stochastic event due to 

unrelated processes, such as cell cycle status at the time of plating.  It could also be 
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argued that this may represent self-renewal of a defined CSC population, and that the 

tumourspheres were many times smaller than those in bulk culture because no fusion 

could occur with other cells.  

 

However, if each sphere cell represents a stem-like cell as a result of self-renewal of 

a selected population, spheres should arise more frequently from dissociated spheres 

than from the parental adherent cells (Reynolds and Weiss, 1996; Singh et al., 2003).  

This was not the case with any of the cell lines examined here – in particular, fewer 

REM134 tumoursphere cells showed signs of proliferation in the single cell assay 

than did adherent cells.  Thus, successive passage of REM134 cells as tumourspheres 

does not appear to lead to enrichment of clonal self-renewing cells.  

 

Clonal and population analyses therefore suggest that derivation of tumourspheres 

from canine cancer cell lines may not be an appropriate model with which to 

investigate the CSC hypothesis.  Similar inconsistencies are seen in reported data for 

tumourspheres derived from cell lines.  Using single cell analysis of “prostaspheres” 

derived from LNCaP and C4-2B prostate carcinoma cell lines, Bisson et al found 

that only a small minority of sphere cells generated daughter spheres (Bisson and 

Prowse, 2009).  Of the 1000 cells in a typical C4-2B sphere, only 2 gave rise to 

spheres upon dissociation.  Moreover, the number of LNCaP spheres generated 

reduced with serial passage.  The immunofluorescence data in the study shows an 

LNCaP sphere with one cell positive for ABCG2, and a C4-2B sphere with two or 

three CD133+ cells.  Although the corresponding images of adherent cells are 

negative for these markers, it is difficult to see how this is consistent with the 

concept of tumourspheres as an enriched population of self-renewing stem cells 

(Bisson and Prowse, 2009). 

 

In many ways, it is difficult to reconcile the notion of a population of immortalised, 

genetically identical cells with the concept that sphere culture should enrich for a 

pre-existing cancer stem cell subset.  This is particularly germane when considering 

commercial cell lines passaged over many generations or those which have been 
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clonally derived, less likely to represent the heterogeneity seen within the cells of the 

parental tumour.  

 

However, distinct cellular phenotypes do seem to be maintained within some 

continuously cultured cancer cell lines. The phenotype of some clonal cells has been 

reported to “switch” according to environmental factors and stochastic cell-cell 

interactions, creating distinct subpopulations with contrasting characteristics 

(Stockholm et al., 2007).  For example, the ARPE-19 cell line (a spontaneously 

transformed model of human retinal pigment epithelium) shows variability in cellular 

morphology and differentiation, influenced by aspects of culture protocol including 

plating density and feeding schedule.  Whilst all cells grew in either serum-

containing or serum-free media, the medium composition significantly altered 

expression patterns (Luo et al., 2006). 

 

Similarly, some cells of the rat C6 glioma cell line showed inability to form clones in 

serum-free conditions (Zheng et al., 2007).  Whilst this may suggest enhanced cancer 

stem cell-like properties in the clone-forming cells, in an immortalised line of 

genetically identical cells this differential may also be due to epigenetic variation, 

which can represent fluctuating rather than stable change (Chang et al., 2008; Brock 

et al., 2009).  Indeed, tumourigenicity could be demonstrated in all of the C6 cells 

under serum-containing conditions.  Thus, whilst the serum-free medium did not 

support clone formation in some cells at the time of plating, it did not identify a 

subpopulation of inherently more tumourigenic cells (Zheng et al., 2007). 

 

The principle of culturing tumorspheres from both primary tumours and cell lines is 

that cells capable of growing as spheres have increased tumourigenic potential.  

However, as noted by Singec et al, “Any dividing cell from virtually any tissue in 

serum-free medium on a nonadherent substrate will form floating cell clusters, with 

intercellular adhesiveness predominating.” (Singec et al., 2006)  In fact, this has been 

exploited extensively in cancer cell lines in the creation of 3-d cultures, using 

manipulations including agitation or low-adherence substrates to induce spheroid 
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formation (Freyer and Sutherland, 1980; Durand, 1981; Olive et al., 1993; Olive et 

al., 1997).  

 

As the ready proliferation of cancer cell lines as clusters is a well-recognised 

phenomenon, it seems vital to ensure that “sphere formation”, proposed to represent 

the properties of an individual specialised cell, is not the result of cellular 

aggregation.  As well as the limiting dilution assays used in this study, timelapse 

microscopy of cells in culture, or use of expressed cell markers such as green 

fluorescent protein, can be used to indicate that a sphere represents symmetrical self-

renewal of a specific CSC, rather than proliferation facilitated by cell-cell interaction 

(Singec et al., 2006).  The results of the limiting dilution assays for REM134, D17 

and SB cells support the latter of these possibilities.  

 

Inference of “stemness” from the tendency of cells to form suspended spheres per se 

appeared to be questionable.  For the D17 cell line, this phenotypic variation was 

strongly influenced by specific culture conditions – on a low adherence substrate, 

most cells grew as spheres, whereas in equivalent medium but on normal plates, cells 

attached and proliferated.  Moreover, sphere-like aggregates were seen in 

overconfluent adherent cultures, and towards late passage.  Addition of EGF and 

bFGF to serum-containing D17 cultures seemed to increase the tendency towards 

intercellular adhesion, and reduce attachment of cells to the culture plate.  It is 

possible that this combination of mitogenic growth factors directly alters the cell-cell 

and cell-matrix adhesion characteristics of these cells.  Indeed, Cicero et al showed 

that sphere-forming cells from murine retinal pigment epithelium were not, as 

previously suggested, a selected population of bona fide retinal stem cells.  Rather, 

dissociation of the tissue and exposure to growth factor-supplemented medium led 

directly to changes in gene expression, including the upregulation of the neural stem 

cell marker nestin (Tropepe et al., 2000; Cicero et al., 2009). 

 

The potential for specific culture conditions to affect the sphere-forming behaviour 

of cancer cell lines was also apparent in the responses of CML10 and SB cell lines to 

different combinations of serum replacement and concentrations of VEGF.  Similar 
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variation has been noted by other experimenters in response to changes in 

supplementation (Na et al., 2009).  A multiplicity of culture conditions and 

supplements has been used to derive putative progenitors using the sphere assay 

(Chaichana et al., 2006).  If tumourspheres are to be considered a candidate CSC 

population, it will therefore be important to determine whether these diverse culture 

conditions are enhancing tumoursphere formation by the same cells, or whether they 

are permissive for the growth of distinct cellular subsets. 

 

Neither REM134 nor D17 tumourspheres showed increased expression of the stem 

cell-associated surface markers CD34, CD133 or CD117 at flow cytometry.  Lack of 

expression of the HSC-associated antigen CD34 is predictable for these solid 

tumour-derived cell lines.  Inasmuch as expression of CD117 and CD133 has been 

reported for the putative CSC populations of diverse tumours (Singh et al., 2003; 

Monzani et al., 2007; Ricci-Vitiani et al., 2007; Chen et al., 2008; Smith et al., 2008; 

Zhang et al., 2008a), increased expression by tumoursphere populations in this study 

might have further supported the notion that they represented stem-like cells.  

However, as the markers were not expressed on any of the parental cell lines, it is 

again perhaps not surprising that they were not demonstrated on the spheres – the 

assay theoretically enriches for a pre-existing subpopulation – and so in itself this 

does not preclude the concept that sphere cells might be stem-like.   

 

The changes in the expression of CD44, present almost ubiquitously on REM134 

adherent cells and downregulated on tumourspheres, were unexpected.  Candidate 

cancer stem cells exist within the CD44+ compartment in a variety of tumours, 

including breast, prostate, colon, pancreas, stomach, ovary and HNSCC (Al-Hajj et 

al., 2003; Collins et al., 2005; Li et al., 2007; O'Brien et al., 2007; Zhang et al., 

2008a; Takaishi et al., 2009).  Therefore, the reduced frequency of CD44+ cells 

within REM134 tumourspheres was intriguing, as it was one of the few observations 

which distinguished tumoursphere from adherent cell populations.  The role of CD44 

as a potential CSC marker was further investigated in separate experiments 

(Chapter 5). 
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The weak 43kDa band detected for the transcription factor Oct4 at western blot of 

D17 adherent, Adh-GF and tumoursphere lysates did not indicate upregulation in 

tumoursphere populations or in response to growth factor exposure.  Moreover, at 

immunofluorescence analysis of tumoursphere populations, detected protein was 

inappropriately localised to the cytoplasm.  Expression of Nanog was not 

demonstrated for adherent, AdhGF or tumoursphere populations by Western blot, or 

for tumoursphere cells by immunofluorescence. The results of the Oct4 and Nanog 

Western blot and immunofluorescence analyses seem to contradict those of Wilson 

et al., where both RNA and protein were reported as being detected in D17 

tumoursphere cells.   

 

However, close examination of the RT-PCR results in that study suggest that 

transcription levels were greater for adherent cell than tumoursphere populations - in 

particular, D17 tumourspheres show no band for Oct4.  Whilst the 

immunofluorescence images of Wilson et al. do seem to show increased staining for 

both Oct4 and Nanog for tumourspheres, image resolution does not allow any 

analysis of the subcellular localisation of the proteins (Wilson et al., 2008).  It is 

possible, therefore, that the spheres are demonstrating the cytoplasmic fluorescence 

observed in this study.  High levels of transcription and translation of non-functional 

pseudogene products is characteristic of both Oct4 and Nanog, which may contribute 

towards this localisation of fluorescent signal. 

 

It may be significant that the previous report of D17 tumoursphere culture shows a 

population of cells which has been expanded at each passage in adherent culture, 

rather than enriched through repeated subculture as spheres – it is possible that 

changes in gene expression led to upregulation of these markers.  Also, as shown by 

Cantz et al., careful interpretation of immunofluorescence images of tumourspheres 

is required to avoid falsely enhancing background signal, particularly considering 

their high levels of autofluorescence and non-specific antibody binding (Cantz et al., 

2008).   

 

Canine bone marrow-derived stromal cells were cultured as part of this study to act 
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as positive control populations, as expression of both Oct4 and Nanog has been 

reported in MSC of other species (Tondreau et al., 2005; Greco et al., 2007), but the 

cells were negative by immunofluorescence for both markers, and lysates showed a 

band for Oct4 only at an early stage after derivation.  In fact, this is consistent with 

reports by other investigators (Lengner et al., 2007; Liu et al., 2009).  Liu et al. 

describe expression of Oct4 as being initially low and further reduced upon culture 

ex vivo of human MSC, and Nanog as, “almost undetected even at early passage” 

(Liu et al., 2009).  Indeed, expression of embryonic stem cell-associated proteins 

such as Oct4 and Nanog in adult stem cell and CSC populations has been called into 

question by a number of investigators (Berg and Goodell, 2007; Lengner et al., 2007; 

Zangrossi et al., 2007; Cantz et al., 2008; Liedtke et al., 2008).  

 

Nonetheless, whilst polyclonal antibodies were used to maximise the chances of 

cross-species detection, and the β-actin and GAPDH controls indicated successful 

protocol, failure of the Oct4 and Nanog antibodies to bind to canine epitopes cannot 

be ruled out.  Ideally canine embryonic stem cells would be used as a positive 

control, and also allow comparison of expression level (several studies have shown 

that a basal level of signal in ostensibly negative samples can confound results 

(Lengner et al., 2007; Zangrossi et al., 2007; Cantz et al., 2008)).  These were not 

available at the time of the study.  

 

There were no significant differences between the responses of adherent and 

tumoursphere populations to doxorubicin or mitoxantrone, consistent with the 

concept that tumourspheres may represent an alternative, culture-induced phenotypic 

manifestation of the same cell type, rather than a specific CSC population.  However, 

it seems likely that a number of factors may confound assays attempting to compare 

the drug sensitivities of sphere and adherent cells. 

 

For example, in this study, chemosensitivity assays compared resistance of 

dissociated sphere and adherent cells.  The ATP luminescence system necessitated 

the use of opaque-walled black plates, which are not available with a low-adherence 

coating. Although D17 and REM134 spheres had been through multiple passages (8 
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and 6, respectively) prior to plating, it is likely that once the cells were dissociated 

and plated on an uncoated substrate they adopted an adherent, rather than 

tumoursphere, morphology.  Once attached, a population of sphere-forming putative 

stem cells would be expected to begin differentiating to recapitulate the parental cell 

line.  Although other investigators have reported differential sensitivities using this 

assay, and some enrichment may remain prior to the addition of drug, such methods 

are unlikely to compare a pure population of sphere cells with a pure population of 

adherent cells (Todaro et al., 2007; Zhou et al., 2007; Zhou et al., 2009b).   

 

Drug sensitivity testing by MTT assay, which measures cell viability through 

colourimetric detection on transparent plates, would permit the use of commercial 

low-adherence 96-well plates for the tumoursphere cells.  In this format, however, 

the assay is confounded by the distinct morphologies of the two cell types being 

tested.  Cells grown as three-dimensional spheroids show changes in sensitivity to 

multiple anticancer agents including ionising radiation, chemotherapeutic drugs and 

photodynamic therapy (Freyer and Sutherland, 1980; Durand, 1981; Olive and 

Durand, 1985; Olive et al., 1993; Olive et al., 1997). 

 

Position within the sphere has some influence on this – external, more rapidly 

cycling cells are likely to be more sensitive to antiproliferatives, and drugs must 

diffuse into the spheroid to access the innermost cells (Kansal et al., 2000).  Cells at 

the centre of a sphere are also likely to be relatively hypoxic compared to those at the 

periphery, and this reduced oxygen tension is well established as a factor in 

resistance to radiotherapy, (Teicher, 1994; Brown and Wilson, 2004; Vaupel and 

Mayer, 2005).  There is also a “Contact Effect”, which leads to profound changes in 

cell sensitivity even after 3-d cultures have been disaggregated.  Alterations to cell 

shape and polarisation, nuclear shape and chromatin structure are reported to occur 

in three-dimensional culture systems, influencing signalling and apoptosis resistance 

mechanisms (Olive and Durand, 1985; Olive and Durand, 1994; Durand and Olive, 

2001; Weaver et al., 2002). 
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Elegant experiments have demonstrated that large 3-d spheroids are more resistant to 

doxorubicin than smaller spheres or cells in a monolayer, and that disaggregated 

spheroids retain this enhanced drug resistance.  Similarly, even small 3-d spheroids 

and cells cultured in close contact show increased resistance to ionising radiation for 

many cell types (Freyer and Sutherland, 1980; Sutherland, 1988).  

 

In the context of the tumoursphere assay, these reports of dramatic changes in 

cellular resistance due to the architecture of a culture must be acknowledged.  It is 

possible that they could influence some of the apparent changes in sensitivity 

reported between monolayer cultures and their corresponding tumourspheres in the 

cancer stem cell literature, particularly for cell lines.   

 

Moreover, one premise of the cancer stem cell hypothesis is that CSC are resistant to 

cytotoxic treatments as a result of relative quiescence, and the serum-free conditions 

of tumoursphere culture are likely to encourage slower cell growth.  Cells in the 

centre of 3-d spheroids created by the aggregation of whole cell lines in suspension 

culture are inherently less proliferative than those at the periphery (Durand and 

Olive, 2001).  This is likely to be the case also in tumoursphere culture. 

 

This variation in cell cycle status is implied by the wider distribution of light scatter 

(FSC vs SSC) noted at flow cytometry for dissociated tumourspheres (growth phase 

will influence both cell size and nuclear complexity).  Less synchronous growth of 

cells within tumourspheres may also influence results in assays such as serial 

transplantation.  If cells cultured as spheroids are distributed differently through the 

phases of the cycle, this could have an effect on apparent engraftment potential.  

Whilst asynchronous proliferation may more closely resemble the situation within a 

tumour, it must be considered when comparing the behaviour of the cells to other 

populations (Kansal et al., 2000).  

 

Thus, if a tumoursphere system is to be used to characterise putative cancer stem 

cells, cellular heterogeneity cannot be disregarded.  If, as with neurospheres, they 

comprise a population of nonidentical cells in terms of viability, stage of 
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differentiation and growth phase, many variables could account for differential 

behaviour in assays.   

 

Therefore, whilst tumoursphere culture may be useful for propagating CSC from 

some populations, further selection and enrichment is probably required in order to 

gather meaningful data.  If comparisons are to be made between CSC and a bulk 

population, the assay conditions for the two should be comparable – this again 

advocates either further selection of cells from spheres prior to testing, or direct 

isolation from bulk cultures after characterisation using the tumoursphere assay, to 

eliminate the effects of contrasting culture conditions and architecture. 

 

It may be valuable to investigate further methods of maintaining candidate tumour 

stem cell populations in adherent cultures, as in some respects this could represent a 

more satisfactory platform to evaluate CSC against their differentiated progeny in 

drug screens.  The cells are exposed more uniformly to insult when arranged as a 

monolayer, and may be more consistent in terms of their stage of differentiation 

(Pollard et al reported less heterogeneity in adherent glioma stem cells than in 

corresponding suspension/sphere cultures) (Pollard et al., 2009b).  Moreover, cells 

are more likely to be in a similar phase of growth to their neighbours, avoiding the 

influence on sensitivity of position in the cell cycle.  

 

The use of three-dimensional spheroids is valuable in demonstrating that cells in vivo 

do not behave as a monolayer.  However, as Durand notes, in order to gain the most 

useful information from this phenomenon, it,  

 

“makes little sense to acknowledge that 3-d systems contain a multitude of 

different microenvironments but then simply to look at the net response 

without knowing which cells respond or why.” (Durand and Olive, 2001) 

 

Fluorescent dyes such as Hoechst 33342 differentially diffuse into 3-d cultured 

spheroids, allowing the location of the cell within the sphere to be identified after 

disaggregation.  Subsequent labelling with fluorescent antibodies to markers of 
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interest, and simultaneous detection by flow cytometry, could enable the architecture 

of a heterogeneous sphere to be more accurately determined in terms of the range of 

cellular phenotypes it comprises, and their distribution within it.   

 

Given the wealth of data already gathered using 3-d culture systems, this could be 

combined with analysis of tumoursphere-forming putative cancer stem cells.  Cells 

fractionated according to localisation, phenotype, growth phase, or a combination of 

factors, could be assessed for properties such as drug sensitivity or clonogenicity.  

Greater understanding of the interactions of heterogeneous cells within a 

tumoursphere may also provide insight into the arrangement of putative cancer stem 

cells within the tumour niche. 

 

Tumourspheres derived from heterogeneous primary tumours may be a more 

appropriate model of cancer stem cells than those derived from cell lines.  For all of 

the tumourspheres derived from the primary canine osteosarcoma in this study, cells 

had undergone some expansion in serum-containing culture conditions.  However, 

the populations were not derived from cloned cells, and as such demonstrated 

considerable heterogeneity at early passage, as evidenced by microscopic 

observation and flow cytometric analyses (Chapter 3).  Notably, for the population 

proliferating most readily in initial tumoursphere culture, kt-osa1, adherent cells had 

demonstrated a greater frequency of CD117+, side population and CD133+ cells at 

flow cytometry than the other two populations. 

 

As morphological heterogeneity and surface marker-defined subpopulations of the 

three adherent populations declined with duration in vitro, it is tempting to speculate 

that this was related to the altered tumoursphere characteristics noted at later passage 

– for example, kt-osa1 cells losing expression of both CD117 and CD133, and also 

becoming less proliferative in tumoursphere culture.   

 

Unfortunately, both early- and late-derived spheres failed to proliferate after two or 

three passages and were not characterised.  This could be interpreted as lack of the 

self-renewal ability which is required to define a CSC in this assay.  However, some 
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investigators have reported that the natural heterogeneity and gene expression 

patterns of the primary tumour are better preserved using tumoursphere culture, and 

that irreversible changes occur upon adherent culture in serum-containing conditions.  

Thus a detrimental effect of the initial expansion of kt-osa populations in serum-

containing culture cannot be ruled out.  Further studies of tumourspheres derived 

directly from canine tumours are indicated.   

 

In conclusion, the data presented here emphasise that any model based on the 

hypothesis that tumourspheres derived from cancer cell lines comprise self-renewing, 

stem-like cells must be carefully interrogated to ensure that this is indeed the case, 

rather than a culture artefact.  The basic biology of 3-d cultures must be considered, 

when interpreting apparent differences between these and adherent cells.  As 

elegantly stated by Singec, 

 

“One must recognize the utility of the neurosphere assay while not going 

beyond the limits of its sensitivity and specificity; that is, not conferring upon 

this common tissue culture phenomenon a significance beyond that entitled 

by its biology…  Sphere formation is a useful culturing tool, not a metric.” 

(Singec et al., 2006) 

 

Nonetheless, where genuinely permissive for the growth of specific cellular subsets, 

tumoursphere culture may be valuable for identifying putative CSC within 

populations of canine cancer cells, allowing their propagation and further 

characterisation.   

 

Although cancer cell lines are invaluable investigative tools, it appears less likely 

that tumoursphere formation will signify proliferation by a stable subpopulation of 

cells.  Direct culture of tumourspheres from primary tissue may be a more 

representative model for identifying CSC within heterogeneous populations, and 

warrants further investigation. 
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INTRODUCTION 

 

CD44 

 

CD44 is a cell surface transmembrane glycoprotein, highly conserved in mammalian 

species (Goodison et al., 1999).  The gene is located on human chromosome 11, and 

on chromosome 18 in the dog; homology between the canine and human sequence is 

reported as 85-90% (greater than that between canine and rodent) (Milde et al., 1994; 

Sandmaier et al., 1998).  Ten constant exons code for the standard form of the 

protein – alternative splicing of a further ten variant extracellular domain exons, as 

well as post-translational modification such as glycosylation, produces a number of 

variant forms (Screaton et al., 1992) – the size of the molecule therefore varies (80-

200kDa) (Figure 1).  CD44 expression is almost ubiquitous, with tissue-specific 

factors regulating alternative splicing - the standard form (CD44s) predominates 

except in haematopoietic cells such as lymphocytes, which express variant forms 

(CD44v) (Marhaba and Zoller, 2004).   

 

The major ligand of CD44 is hyaluronate (HA) (Aruffo et al., 1990), a 

polysaccharide molecule ubiquitously expressed on extracellular matrix.  CD44 also 

 
 
 
 
 
 
 
E = Extracellular domain 
V = Variant exons 
T = Transmembrane domain 
C = Cytoplasmic domain 
 
Figure 1 – Schematic diagram showing structure of CD44 gene.  Ten constant exons 
(grey) are transcribed to produce the standard form (CD44s).  An additional ten 
extracellular domain exons may be incorporated by alternative splicing, producing 
multiple variant isoforms of the protein (CD44v). 
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binds a number of other extracellular ligands including collagen, fibronectin, 

osteopontin and selectin.  The molecule is thus associated with cell-matrix and cell-

cell interactions, with a role in organ structure, cell homing and migration (Sneath 

and Mangham, 1998; Goodison et al., 1999; Marhaba and Zoller, 2004).  As well as 

its cell adhesion functions, CD44 (and its variant isoforms in particular) has been 

shown to interact with a range of signal transduction processes.  CD44 itself has no 

catalytic activity, but the extracellular domain has consensus sequences for a wide 

range of signalling molecules including receptor tyrosine kinases such as EGFR, 

growth factors such as bFGF and VEGF, and matrix metalloproteases (Marhaba and 

Zoller, 2004).   

 

CD44 in Cancer 

 

Gunthert et al showed in 1991 that transfection of CD44 isoforms with variant exons 

6 or 7 could confer metastatic potential to otherwise non-metastatic rat pancreatic 

carcinoma cells (Gunthert et al., 1991).  Altered expression of CD44 has since been 

reported for many types of malignancy, particularly in association with invasion and 

metastasis (Sneath and Mangham, 1998; Herrera-Gayol and Jothy, 1999b).  

Dysregulation of CD44 expression has been reported in canine neoplastic disorders 

including benign and malignant mammary tumours, malignant melanoma and 

malignant histiocytosis (Alldinger et al., 1999; Serra et al., 2004; Madrazo et al., 

2009; Paltian et al., 2009). 

 

Several studies suggest that cancer progression is more strongly associated with 

aberrant expression of variant isoforms than with the standard form.  It is notable that 

CD44v isoforms are expressed on normal haematopoietic cells, given the many 

similarities between the metastatic process and that of lymphocyte migration and 

homing.  Monoclonal antibodies to CD44 have been shown to inhibit infiltration by 

malignant lymphoma cells in mouse models in a tissue- and isoform-specific manner 

(Naor et al., 2008).  However, expression of CD44v is not the sole form of 

dysregulation seen in cancer, with some tumours showing altered expression of the 

standard form (Sneath and Mangham, 1998).    
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Given its role in cell-cell and cell-matrix interaction, altered CD44 expression may 

disturb the normal structural organisation within solid tissues.  Aberrant expression 

may also lead to disruption of epithelial-mesenchymal interactions within tissues to 

facilitate invasion (Goodison et al., 1999), and promote aggregation of cells and 

subsequent entrapment within capillary networks as part of the metastatic process.  

CD44-HA binding may lead to morphological changes in the cytoskeleton, 

mediating processes such as migration and extravasation (Marhaba and Zoller, 

2004). 

 

Interaction between CD44 (particularly variant isoforms) and its ligands may lead to 

suppression of apoptosis, through mechanisms such as the PI3K/Akt survival 

pathway or activation of anti-apoptotic Bcl family members such as Bcl-2 and Bcl-

Xl (Marhaba and Zoller, 2004).  Stable transfection of the human colon cancer cell 

line SW620 with the CD44v3-10 isoform conferred increased resistance to apoptosis 

induced by etoposide (Lakshman et al., 2004).  Another study of CD44-mediated 

apoptosis resistance investigated the murine colon cancer model 

C57BL/6J(APC min/+), which is tumour-prone due to a heterozygous point mutation 

in the APC tumour suppressor gene.  Knockout of the CD44 gene resulted in 

increased apoptosis at the crypt base, and reduced formation of aberrant crypts.  This 

suggests that the expression of CD44 might enhance cellular survival where 

apoptosis would otherwise occur in response to altered growth signals (Zeilstra et al., 

2008). 

 

CD44 as a Cancer Stem Cell Marker 

 

In seminal experiments published in 2003, cells from human breast tumours (either 

directly dissociated or passaged in NOD/SCID mice) were depleted of lineage-

positive cells, and sorted according to expression of CD44 and CD24 using flow 

cytometry.  It was found that tumourigenicity lay within the the CD44+CD24-/low 

subset, and could be further enriched by isolating cells within this fraction expressing 

ESA (EpCAM) (Al-Hajj et al., 2003).  However, it is noteworthy that for both 



Chapter 5 – CD44 as a marker of canine CSC 

 220 

passaged and unpassaged cells, CD44+CD24- cells efficiently formed tumours 

whereas CD44+CD24+ cells did not, indicating that CD44 in isolation in this model 

did not significantly enrich for tumourigenicity.  For example, where 104 passaged 

cells were injected orthotopically, CD44+CD24-/low cells produced tumours in 10/10 

mice, compared to 0/10 for CD44+CD24+ (and 3/12 for unsorted cells).  Similarly, 

11/13 mice injected with primary CD44+CD24-/low cells developed tumours, 

compared to only 1/13 for CD44+CD24+ cells (Al-Hajj et al., 2003).   

 

CD44 expression, either as a single marker or in conjunction with others such as 

CD24, ESA, CD133 and α2β1-integrin, has since been reported to identify cancer 

stem cells in a wide variety of primary tumours and cancer cell lines, including those 

of stomach (Takaishi et al., 2009), colon (Dalerba et al., 2007), pancreas (Li et al., 

2007), breast (Ponti et al., 2005; Fillmore and Kuperwasser, 2008), ovary (Zhang et 

al., 2008a), prostate (Collins et al., 2005) and bladder (Chan et al., 2009), and in 

acute myeloid leukaemia (Jin et al., 2006), melanoma (Dou et al., 2007) and 

squamous cell carcinoma (Prince et al., 2007).  In a number of studies, an association 

has been demonstrated between CD44 expression and growth as “tumourspheres” in 

serum-free culture, with increased expression on tumourspheres or enrichment of 

tumoursphere-forming capability amongst CD44+ cells (Collins et al., 2005; Fillmore 

and Kuperwasser, 2008; Hurt et al., 2008; Wright et al., 2008; Zhang et al., 2008a; 

Takaishi et al., 2009).  CD44-HA interaction may promote resistance to 

chemotherapeutic agents through induction of the P-glycoprotein membrane pump 

transporter (Bourguignon et al., 2008).  Direct targeting of cd44-expressing putative 

cancer stem cells, with gene knockout strategies or CD44-specific monoclonal 

antibodies, reduces tumour formation in some murine models of cancer (Jin et al., 

2006; Zeilstra et al., 2008).  

 

The aim of this study was to investigate the biological significance of CD44 

expression in canine cancer cell lines, to establish whether it might represent a 

relevant cancer stem cell marker and thus a potential target for therapy. 
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MATERIALS AND METHODS 

 

Antibody Staining 

 

Antibody staining was performed as described in Materials and Methods chapter.  

Phycoerythrin-conjugated CD44 rat anti-mouse/human antibody (clone IM7, 

BioLegend) or isotype-matched control antibody was added at an optimised 

concentration, as determined by titration for each cell line.  Clone IM7 has well-

documented canine crossreactivity, and recognises the standard form of CD44 and its 

variants (Neame and Isacke, 1993; Sandmaier et al., 1998).   

 

For cell sorting, penicillin-streptomycin was substituted for sodium azide to reduce 

inhibitory effects on cell growth (Sort-DMEM : DMEM / 2% F.C.S. / 2% penicillin-

streptomycin).  Sorting gates were set at the highest (CD44high) and lowest (CD44low) 

extremes of the staining distribution, each collecting 10% of cells within the FSC-

SSC live gate.    

 

Simultaneous Surface Marker and Cell Cycle Analysis 

 

Cells were harvested at 65-80% confluence as assessed visually by microscopy, 

except Cat-MT cells, which had achieved almost 100% confluence at the time of 

harvest.  Cells were prepared and incubated with antibody as described previously.  

After washing with copious FACS-DMEM, cells were fixed in PBS / 0.5% 

paraformaldehyde / 0.1% sodium azide for 15 minutes on ice, and resuspended in 

1ml ice-cold PBS.  3ml ice-cold (-20°c) absolute ethanol was added dropwise while 

vortexing, to minimise cell clumping.  Samples were held on ice for at least 30 

minutes.  Cells at this stage could be stored at 4°c, in the dark, for up to 48h pending 

DNA staining.   

 

DAPI [ex-max 350nm; em-max 461nm] (Sigma) was used for DNA staining to 

afford minimal spectral overlap with phycoerythrin [ex-max 496nm, 546nm; em-max 

578nm].  Cells were washed twice with PBS, resuspended in 250µl PBS, and 250µl 
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DAPI (2µg/ml in PBS) added to each tube for a final concentration of 1µg/ml.  

Samples were analysed by flow cytometry, with 10% of cells at each extreme of the 

CD44 staining distribution gated and analysed for DAPI fluorescence.  At least 

25000 events were acquired for analysis. 

 

Surface staining, cell sorting and simultaneous CD44-cell cycle analysis were 

performed, respectively, on FACSCalibur [CellQuestPro software], FACSAria and 

LSRII [FACSDiva software] cytometers (all BD Biosciences).  Post-acquisition 

analysis was performed using FlowJo (Treestar). 

 

To determine levels of surface antigen expression, relative Mean Fluorescence 

Intensity (ΔMFI) was calculated by subtracting the MFI of the unstained aliquot from 

that of the antibody-stained aliquot.  For CD44High and CD44Low/- populations this 

was expressed as a percentage of the ΔMFI of unfractionated cells.  For 

tumourspheres this was expressed as a percentage of the ΔMFI of the corresponding 

adherent cell population. 

 

Colony Formation Assay 

 

5 x 103 cells were collected of each of CD44high and CD44low/- fractions, and of the 

unstained sample.  Cells were washed twice in complete medium and resuspended at 

500 cells/ml.  For each fraction, 500 cells were plated in each of five 10cm-diameter 

culture plates, in 7ml of complete medium.  Plates were incubated until macroscopic 

colonies were visible (9 days).  Plates were washed twice with PBS, and fixed for 1 

hour at room temperature in 4ml absolute methanol.  Colonies were stained for 1 

hour at room temperature with 70% methanol / 2% crystal violet and rinsed 

thoroughly with water.  Colonies were counted using a ChemiDoc XRS imaging 

system and Quantity One software (Bio-Rad). Statistical analyses were performed 

using GraphPad Prism (GraphPad Software).  Statistical significance for colony 

formation assays was calculated using a One-Way ANOVA (Kruskal-Wallace) for 

all groups and Mann-Whitney U-test for 2 groups (p = 0.05). 
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Tumoursphere Formation Assay 

 

Sorted CD44high and CD44low/- cells were resuspended in N2/MC medium and plated 

in UltraLow Attachment 6-well plates (Corning) at 60000 cells / 2ml N2/MC per 

well.  Plates were incubated at 37°c in a humidified atmosphere with 5% CO2.  12µl 

EGF (100µg/ml) and 12µl bFGF (100µg/ml) were added every 48 hours. 

 

Drug Sensitivity Testing 

 

Sorted CD44high and CD44low/- cells were resuspended in complete medium at 1x105 

cells/ml and plated in black 96-well culture plates (Corning) at 5x103 cells per well.  

A chemosensitivity assay to evaluate the viability of each population in response to 

increasing concentrations of doxorubicin was performed as described in Materials 

and Methods chapter.  Briefly, after 24 hours’ incubation, doxorubicin dilutions were 

added to triplicate wells.  50µl of medium only was added to triplicate wells as a 

control.  Plates were incubated for a further 72 hours before assessment of viability 

by ATP luminescence assay.  Viability was calculated as a percentage of untreated 

controls, and dose-response curves fitted using four-parameter nonlinear regression 

with GraphPad Prism software.  Best-fit values for IC50 were compared using an 

extra-sum-of-squares F test (p < 0.05).  
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RESULTS  

 

CD44 Expression in Canine Cancer Cell Lines Does Not Identify Positive 

Subpopulations 

 

Established canine cancer cell lines representing tumours of diverse origin (REM134 

mammary carcinoma, D17 osteosarcoma, J3T glioma, SB haemangiosarcoma, 3132 

B-cell Non-Hodgkins lymphoma) were assessed for surface expression of CD44.  

Feline (CatMT) and human (MCF7) mammary carcinoma cell lines were also 

evaluated.  All tested cell lines showed CD44 expression; in all cases, positive 

staining was manifest as a shift in the entire population along the CD44-PE 

fluorescence axis, rather than the separation of a defined subpopulation of cells 

(Figure 2).   

 

Although expression level (as determined by titration of test/control antibodies) 

varied between the canine and feline cell lines, almost all cells were positive.  As 

shown in Figure 2, the frequency of CD44+ cells, as compared to isotype-matched 

control antibody, ranged from 97.4% (REM134) to 99.8% (CML10).  By contrast, 

the frequency of CD44+ cells was lower for the human MCF-7 breast cancer cell line, 

at 49% (Figure 3). 

 

All populations derived from the primary canine osteosarcoma showed a similarly 

high frequency of CD44+ cells, both at initial expansion prior to subculture (kt-osa2, 

99.5% CD44+) and throughout early and later passage (see Figure 4).  These 

populations were not cloned and showed considerable morphological heterogeneity 

in culture, although this was reduced upon repeated subculture (as discussed in 

Chapter 3).  kt-osa4, tested at passage 6, showed the lowest frequency of CD44+ cells 

(97.2%); at passage 26, these cells were >99% CD44+.  

 

Thus, CD44 was expressed robustly and near-ubiquitously in all the canine cancer 

cell populations tested, including those recently derived from a spontaneous tumour, 

with no discrimination of specific CD44+ subpopulations .   
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Figure 2 – Overlay of histograms illustrating CD44 surface expression by canine 
(and feline CatMT) cell lines.  Representative unstained and isotype control samples 
(REM134) are also shown.  Table shows frequency of CD44+ cells as compared to 
corresponding controls for each cell line. 
 
 
 

 
 
Figure 3 – Histogram of CD44 expression for MCF-7 human mammary carcinoma 
cell line, demonstrating lower frequency of CD44+ cells than seen for canine cancer 
cell lines.  Relevant isotype and unstained control samples shown for comparison. 

Cell Line 
CD44 Positive  

(%) 
REM134 97.37 

D17 98.33 
CML10 99.76 

SB 99.58 
3132 99.12 

CatMT 99.28 

CD44+ 
48.99% 



Chapter 5 – CD44 as a marker of canine CSC 

 226 

 
Figure 4 – Histograms showing CD44 expression for kt-osa canine osteosarcoma 
cell populations and representative control samples, at early (A) and late (B) passage. 
Tables show frequency of CD44+ cells as compared to corresponding controls for 
each population. 
 
 
 
 

 Cell Line 

CD44 Positive  
(%) 

kt-osa1 (p26) 100.0  

kt-osa4 (p26) 99.1  

kt-osa5 (p26) 99.0  

  
Cell Line   

CD44 Positive    
( % )   

kt - osa2   (p0)   99.5   
kt - osa1   (p1)   98 .0   
kt - osa4   (p6)   97.2   
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It had been intended to define subsets within the CD44+ population using concurrent 

CD24 staining (mouse anti-human clone ML5).  However, the antibody showed a 

high degree of non-specific binding, with a particular affinity for non-viable cells, 

risking the artefactual appearance of enhanced proliferative capacity amongst the 

CD24low population (discussed in Chapter 3).  Therefore, in order to determine the 

possible implications of CD44 expression, cells were isolated from the extremes of 

the staining distribution using FACS, and subjected to further assays. 

 

Flow Cytometric Sorting of REM134 CD44High and CD44Low/- Fractions 

 

The REM134 canine mammary carcinoma cell line was chosen for investigation 

because of the significance ascribed to this marker in other studies of 

breast/mammary cancer and cancer stem cells (Herrera-Gayol and Jothy, 1999a; Al-

Hajj et al., 2003; Abraham et al., 2005; Fillmore and Kuperwasser, 2008; Honeth et 

al., 2008; Wright et al., 2008; Buess et al., 2009; Madrazo et al., 2009; Marangoni et 

al., 2009; Paltian et al., 2009).  This cell line was established from the primary mass 

of a metastatic canine mammary carcinoma and has been shown to be serially 

tumourigenic in nude mice, producing poorly differentiated, locally invasive 

tumours.  The cells have an epithelioid morphology, abnormal karyotype (average 

130 chromosomes/cell) and are negative for oestrogen and progesterone receptors 

(Else et al., 1982; Norval et al., 1984b; Norval et al., 1984a). 

 

Cells showing the lowest and highest levels of CD44 expression (each representing 

10% of live cells) were collected using FACS (Figure 5A).  90% of CD44Low/- cells 

and 100% of CD44High cells were positive by comparison with the unstained fraction.  

The relative Mean Fluorescence Intensity (ΔMFI), an indicator of cell surface 

antigen expression, was calculated by subtracting the MFI of the unstained aliquot 

from that of each stained fraction.  The magnitude of the ΔMFI of CD44Low/- cells 

was 14%, and CD44High cells 263%, of that of unfractionated cells (Figure 5B).   

 

Sorted cells were re-analysed to assess purity (Figure 5C).  Sorting efficiency was 

maintained at 94-99% during the procedure – nonetheless, when fractions were 



Chapter 5 – CD44 as a marker of canine CSC 

 228 

reassessed, a small proportion of cells fell outwith the gates used for collection, 

despite this being performed immediately after sorting.  More marked for CD44High 

cells, bleaching of the PE fluorophore during FACS is likely to have contributed to 

this observation.  However, the effect was less apparent for the CD44low/- cells, and 

some ungated cells of this fraction showed increased (rather than reduced) 

fluorescence.  This suggested that CD44 expression may be transient or temporally 

fluctuating.   

Figure 5 – FACS of REM134 canine mammary carcinoma based on CD44 
expression. 
A - Histogram of CD44 expression by REM134 cells.  Shaded histograms show  
 representative unstained (pale) and isotype control (dark, just seen) samples.   
 Markers indicate placement of gates for FACS of CD44-stained cells. 
B – Relative median fluorescence intensities (ΔMFI) for CD44High (H) and CD44Low/-  
 (L/-) fractions, as compared to unfractionated (U) cells. 
C - Assessment of purity of CD44Low/- (left) and CD44High (right) fractions.  A small  
 proportion of sorted cells consistently fell outwith the gate used for collection,  
 despite high sorting efficiency.   
 

C 

A B 
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REM134 CD44high Cells Proliferate More Rapidly in Culture than CD44low/- 

Cells 

 

Equal numbers of sorted CD44high and CD44low/- cells were seeded in culture plates at 

standard densities (3.5 x 104 cells/cm2).  As shown in Figure 6, CD44high cells after 

24h in culture had attached to the substrate, were adopting an elongated morphology 

and showing signs of early proliferation.  By contrast, many CD44low/- cells remained 

small, rounded and unattached at this stage.  Although by 96h in vitro, both CD44low/- 

and CD44high cells were proliferating to form a monolayer, this was sparse for the 

CD44low/- as compared to the CD44High fraction.  Cell counts at 48h suggested that a 

proportion of CD44Low/- cells had died, with a calculated population doubling (3.32 x 

[log(cells yielded)-log(cells seeded)] ) of -1.27, compared to 1.21 for CD44High cells.  

Population doublings calculated at 96h were 1.95 for CD44Low/- and 3.68 for 

CD44High cells, giving a cumulative doubling time of 49h and 26h, respectively 

(compared with 3.22 doublings / 30h doubling time for the corresponding 

unfractionated cells). 

 

REM134 CD44high Cells Show Enhanced Colony Formation as Compared to 

CD44low/- or Unfractionated Cells 

 

Sorted CD44high and CD44low cells were assessed for colony forming ability.  An 

equal number of cells from the unstained sample were collected to control for 

deleterious effects of the sorting procedure on cell viability.  Representative culture 

plates are shown in Figure 7 and results summarised in Figure 8.  Of the three cell 

types, mean colony formation / 500 cells was greatest for CD44High cells, at 175 ± 16 

(p = 0.0091).  There was no significant difference between the number of colonies 

formed by unfractionated cells (74 ± 12) and CD44Low cells (70 ± 15), although 

subjectively CD44Low/- cells produced smaller colonies (Figure 7B).  Together, these 

results suggest that REM134 CD44High cells show an increased proliferative capacity 

when compared to both CD44Low/- and unfractionated cells. 
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 CD44Low/- CD44High 

Figure 6 – Adherent growth of REM134 cells sorted for CD44 expression level 
Left– CD44low/- cells; Right– CD44high cells. Bar = 100µm 
Populations plated at equivalent densities to compare growth after sorting.  
Representative images showing growth after 24h (upper) and 96h (lower). 
 

Figure 7 - Representative 10cm-diameter culture dishes showing colony formation 
by (A) unfractionated, (B) CD44low/- and (C) CD44high REM134 cells.   
Mean colony formation / 500 cells was 74 ± 12.5 (unfractionated),70 ± 14.5 
(CD44Low/-), and 175 ± 16.3 (CD44High). 

A C B 
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Figure 8 – Graph to illustrate increased colony formation by REM134 CD44High 
cells, as compared to CD44Low/- and unfractionated cells (p = 0.0091).  There was no 
significant difference between the colony forming abilities of the latter populations. 
 

REM134 CD44high cells Proliferate as Tumourspheres in Serum-Free Culture, 

Whereas CD44low/- Cells Do Not 

 

Sorted CD44high and CD44low/- cells were cultured in low-density, serum-free 

conditions and supplemented with the mitogenic growth factors EGF and bFGF.  

This “tumoursphere” assay is widely used in the investigation of cancer stem cells, 

and is proposed to enrich for self-renewing CSC and progenitors within some tumour 

cell populations and cancer cell lines.  The REM134 canine mammary carcinoma 

cell line shows robust proliferation as spheroidal colonies under these culture 

conditions; when dissociated and analysed by flow cytometry, the cells comprising 

these spheroid colonies show reduced expression of CD44 (82.4% CD44+) when 

compared to the corresponding adherent cell population (97.8% CD44+) (Figure 9).  

ΔMFI for tumoursphere cells, representing levels of surface antigen expression, was 
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82.3% that of adherent cells, suggesting downregulation of CD44 on REM134 cells 

cultured as tumourspheres as well as reduced frequency of positive cells.  However, 

this is partially attributed to an increase in the relative autofluorescence of the cells 

from the tumourspheres. 

 

 
 
Figure 9 – Frequency of CD44 expression by REM134 canine mammary carcinoma 
tumourspheres (A) is reduced in comparison with adherent cells (B).  Intact “live” 
gate strategy is shown for each population.  Analysis of both populations performed 
using the same instrument settings.  ΔMFI for tumoursphere cells is 82.3% that of 
corresponding adherent cells. 
 

A 

B 

CD44+ 
82.4% 

CD44+ 
97.8% 
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There was a marked contrast between the growth characteristics of sorted REM134 

CD44Low/- and CD44High in serum-free culture (Figure 10).  CD44High cells readily 

expanded as spherical colonies, similar to those seen when total REM134 cells are 

cultured under these conditions.  By contrast, CD44low cells showed no proliferation 

at all and remained as single cells up to 10 days in vitro.  When assessed at this stage 

by trypan blue exclusion, all of the cells within the CD44Low wells stained with the 

dye, indicating that they were no longer viable.   

 
 
 CD44Low/- CD44High 

Figure 10 – Tumoursphere formation by sorted REM134 CD44low/- (left) and 
CD44high (right) cells. 
Representative images showing growth after eight (upper) and ten (lower) days’ 
culture. 
(Upper: 50x objective, Bar = 200µm; Lower: 100x objective, Bar = 100µm) 
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CD44 Expression by Progeny of REM134 CD44high and CD44low/- Cells Returns 

Towards the Pattern Shown by Unfractionated Cells 

 

To assess the potential of CD44low/- and CD44high populations, equal numbers of 

sorted cells were allowed to proliferate under standard adherent culture conditions, 

and reanalysed by CD44 surface staining after 48h and 96h in vitro.  At 48h 

incubation, both CD44High and CD44Low/- populations / progeny retained some of the 

red fluorescent signal from the initial antibody staining, having a higher baseline 

fluorescence than cells which had never been treated with antibody (Figure 11).  The 

CD44 molecule has a surface half-life of 15-17h (Neame and Isacke, 1993); signal 

could also originate from internalised antibody-antigen complexes. 

 

The frequency (% positive cells) (Figure 11A) and surface antigen level (ΔMFI) 

(Figure 11B) of CD44 expression was compared to that of a corresponding unstained 

control aliquot, from each population. At 48h, the ΔMFI for progeny of CD44High 

cells was 154.8% of that of unfractionated cells, whereas that for CD44Low/- cells was 

69.7%, demonstrating that surface expression level was maintained by the CD44High 

cells, but to a lesser extent than at the time of sorting.  However, frequency of 

expression for cells derived from both CD44High (95.0%) and CD44Low/- (97.9%) was 

similar to that of the unfractionated population (98.7%) The frequency of CD44+ 

cells as compared to the unstained sample was actually slightly lower amongst the 

progeny of CD44High cells (95.0%) than for the CD44Low/- (97.9%) and 

unfractionated (98.7%) populations (Figure 11A) despite the fact that at the time of 

sorting CD44High cells had been 100% CD44+ and CD44Low/- cells ≤90% CD44+ 

(Figure 5A). 

 

After 96h in vitro, the baseline fluorescence of CD44low cells’ progeny was almost 

equivalent to that of unstained cells, whilst CD44high cells remained slightly brighter.  

At this stage, the ΔMFI of CD44Low/- cells had increased to 89.9% of that of 

unfractionated cells; for CD44High cells this remained greater at 159.9%, suggesting 

that CD44High cells maintained an increased level of surface antigen expression at 

this timepoint.  However, once again, the frequency of CD44+ cells within progeny 
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Figure 11 – A - Progeny of REM134 CD44High and CD44Low/- cells show a similar 
frequency of CD44 to unfractionated cells, when compared with a corresponding 
unstained aliquot.  Black – CD44 stained aliquot; grey – unstained aliquot. B – ΔMFI 
(surface expression level) for CD44Low/- (L/-) and CD44High (H) progeny (relative to 
corresponding unstained aliquot), in comparison to progeny of unfractionated cells 
(U), after 48h and 96h in culture. 

48h 
culture 

96h 
culture 

Unstained 

CD44High 

CD44Low/- 

 A 

B 
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of both sorted CD44High (95.3%) and CD44Low/- (96.3%) cells approximated that for 

unfractionated cells (98.4%), with less difference between the two sorted populations 

than at 48h (Figure 11).   

 

Thus, whilst the progeny of cells expressing high levels of CD44 show an increased 

level of surface antigen after 96h in culture, both CD44High and CD44Low/- cells 

recapitulate the frequency of expression seen within the parental line.  Moreover, 

changes between the time of sorting and after culture suggest a return by both 

fractions towards the pattern of expression shown by the parental line. 

 

REM134 CD44high and CD44low/- Cells Show Equivalent Sensitivity to 

Doxorubicin  

 

Sorted CD44low/- and CD44high cells were assessed for sensitivity to the 

chemotherapy drug doxorubicin.  Enhanced resistance to conventional 

chemotherapeutics has been demonstrated in putative CSC populations (Kruger et 

al., 2006; Ma et al., 2007; Gupta et al., 2009b; Tanei et al., 2009), including those 

identified according to CD44 expression (Fillmore and Kuperwasser, 2008; Takaishi 

et al., 2009).  Doxorubicin is an anthracycline antibiotic, which binds to DNA by 

intercalation to inhibit DNA synthesis, and also acts upon Topoisomerase II, leading 

to DNA strand scission (Minotti et al., 2004; Chun et al., 2007).  However, the drug 

sensitivity curves for REM134 CD44high and CD44low/- cells were similar, with no 

significant differences between the IC50 values (CD44low/- = 1.60nM, CD44high 

1.32nM; p = 0.6105) (Figure 12).  

 
 
 
 
 
Figure 12 – Sensitivity curves 
for REM134 CD44High and 
CD44Low/- cells treated with 
increasing concentrations of 
doxorubicin.  
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CD44 Expression and Cell Cycle Distribution in Canine Cancer Cell Lines 

 

Simultaneous analysis of CD44 and DNA staining was undertaken for REM134 

cells, and cell cycle profiles for unfractionated, CD44low/- and CD44high cells 

compared. There was a marked difference between the cell cycle distributions of 

CD44low/- and CD44high cells (Figure 13).  The majority (70.6%) of CD44low/- cells 

were in G0/G1, with a much smaller proportion (13.0%) in the G2/M phase of the 

cycle.  The unfractionated sample also showed a preponderance of G0/G1 (53.2%) 

cells, with 28.2% in G2/M phase.  Conversely, 57.6% of CD44high cells were in G2/M 

(cell division) phase of the cell cycle, as compared to only 22.2% in the 

resting/growth G0/G1 phase.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13 – Cell cycle distribution of unfractionated (A), B- CD44Low/- (B) and 
CD44High (C) REM134 cells, as assessed by DAPI dsDNA staining.  
D – Table showing percentage of cells in each stage of the cell cycle. 
E – Graph to illustrate proportion in each phase of the cell cycle for unfractionated 
(U), CD44Low/- (L/-) and CD44High (H) cells. 

REM134 Subset 
G0/G1 
(%) 

S 
(%) 

G2/M 
(%) 

A  
Unfractionated 53.2 18.3 28.2 

B  
CD44Low/- 70.6 15.9 13.0 

C  
CD44High 22.2 20.1 57.6 

A 

C 

B 

E 

D 
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Analysis of CD44 expression level and cell cycle distribution was performed for the 

canine cancer cell lines D17 osteosarcoma and J3T glioma, the canine osteosarcoma-

derived populations kt-osa1, kt-osa4 and kt-osa5, and for the feline mammary 

carcinoma cell line Cat-MT.  As shown in figure 14, for all cell types there was a 

clear contrast between cell cycle profiles of CD44low/- and CD44high populations, with 

the former consistently demonstrating a greater proportion of cells in G0/G1, and the 

latter the G2/M phase of the cycle.  Data is summarised in Tables 1 and 2 and Figure 

15.   

 

 

Figure 14 – Cell cycle profiles of CD44Low and CD44High cells for canine, and feline 
Cat-MT, cancer cell lines.  Prevalence of G2/M-phase cells greater in CD44High (red 
histogram) than CD44Low (blue histogram) fraction for all cell lines. 
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CD44Low CD44High 

Cell Line 
G0/G1 (%) S (%) G2/M (%) G0/G1 (%) S (%) G2/M (%) 

REM134 70.6 15.9 13.0 22.2 20.1 57.6 

D17 71.2 16.2 10.9 56.6 19.0 23.0 

J3T 92.6 2.8 4.3 60.9 6.7 32.2 

kt-osa1 64.8 19.1 15.8 28.4 19.6 51.6 

kt-osa4 68.9 16.4 14.2 28.9 13.8 57.0 

kt-osa5 60.2 19.2 20.0 24.2 17.6 57.7 

CatMT 84.7 8.4 5.8 34.2 17.4 48.3 

 
Table 1 – Frequency of cells in each phase of the cell cycle for CD44Low and 
CD44High fractions of canine cancer cell lines, and feline Cat-MT cells.  All cell lines 
show increased proportion of G0/G1 cells in CD44Low fraction, and G2/M cells in 
CD44High fraction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 – Ratios demonstrating proportion of cells in G0/G1 and G2/M phases of the 
cell cycle for CD44Low and CD44High fractions.  CD44Low subset contains greater 
proportion of cells in resting/growth phase; CD44High subset shows increased 
proportion of dividing cells. 

Cell Line G0/G1  
CD44Low:CD44High 

G2/M  
CD44High:CD44Low 

REM134 3.2 4.4 

D17 1.3 2.1 

J3T 1.5 7.5 

kt-osa1 2.3 3.3 

kt-osa4 2.4 4.0 

kt-osa5 2.5 2.9 

CatMT 2.5 8.3 



Chapter 5 – CD44 as a marker of canine CSC 

 240 

 

 
 
Figure 15 - Barcharts illustrating relative proportions of CD44Low and CD44High cells 
in phases of the cell cycle.  L = CD44Low; H = CD44High.   
 A – D17; B – J3T; C – kt-osa1; D - kt-osa4; E – kt-osa5; F – Cat-MT. 
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For D17, although the CD44High fraction still showed a greater proportion of cells in 

G0/G1 than in G2/M, it contained more than twice as many cells in the actively 

dividing phase than the CD44Low/- fraction (ratio G2/M for CD44High:CD44Low/- = 

2.1:1).  CD44High cells of J3T glioma and CatMT cell lines showed approximately 

eight times as many cells in this part of the cell cycle than CD44Low/- cells. 

 

In the CD44High fraction of all cell lines other than D17 and J3T, the proportion of 

cells in G2/M exceeded that in G0/G1. Distortion of the cell cycle profile due to the 

large G2/M peak in these fractions precluded accurate determination of the cut-off 

between S- and G2/M phase.  However, the combined proportion of G2/M and S-

phase cells was always greater in the CD44High fraction.  By contrast, in the 

CD44Low/- fraction of all populations, a majority of cells were in resting/growth phase 

(Table 2, Figure 15).  

 

These results suggest that in cultured canine cancer cells, CD44 expression is 

associated with position in the cell cycle, with increased expression levels shown by 

proliferating cells, and lower levels by those in G0/G1 phase. 
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DISCUSSION 

 

According to the cancer stem cell hypothesis, the elimination of specific cancer stem 

cell subpopulations with enhanced tumourigenic capacity is critical in preventing 

disease relapse. In dogs, as in humans, cancer therapy is confounded by the two 

major problems of relapse and metastatic spread; spontaneous cancer in the dog 

represents a valuable comparative model of human disease.  Notwithstanding the 

debate surrounding the hypothesis, it is rational to try and identify and characterise 

markers identifying CSC, or clonally evolved subpopulations, which might possess 

enhanced malignant capabilities or persist after therapy.  CD44 is a candidate for 

such investigation, as it has documented associations with processes involved in 

cancer progression, such as invasion, metastasis and drug resistance (East and Hart, 

1993; Herrera-Gayol and Jothy, 1999b; Tzankov et al., 2003; Zhang et al., 2003; 

Marhaba and Zoller, 2004; Abraham et al., 2005; Krause et al., 2006; Sheridan et al., 

2006; Shipitsin et al., 2007; Buess et al., 2009). 

 

All of the canine cancer cell populations examined in this study showed CD44 

expression on >97% of cells, including those recently derived from a primary 

tumour.  A similar staining pattern was seen in non-neoplastic canine bone marrow-

derived stromal cells (data not shown).  As the staining pattern did not distinguish a 

specific subpopulation of CD44+ cells, the biological significance of CD44 

expression was examined using flow cytometry to separate those cells with the 

highest surface levels from those with the lowest.  It was considered that collecting 

cells from the extremes of the staining distribution, rather than using gates to bisect 

it, might reveal more clearly any contrasting characteristics associated with different 

expression levels. 

 

Our investigations indicated that CD44 expression in cultured canine cells is 

associated with proliferative status and position in the cell cycle.  The proportion of 

G2/M cells in the CD44High fraction was consistently greater than that in the CD44Low 

fraction, which in turn showed a consistently larger proportion of cells in G0/G1 

phase.  Moreover, in five out of seven cell types examined, more of the cells in the 
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CD44High fraction were in G2/M phase than in G0/G1.  For two cell lines (D17, J3T) 

the proportion of cells in G0/G1 was greater than that in G2/M for both fractions.  

Although aspects of culture technique, such as the level of confluence at which cells 

are harvested, may affect the balance between different phases of the cell cycle, the 

canine cells in this study were analysed at similar stages of exponential growth.  It is 

likely that the growth characteristics of individual cell types influence the 

relationship between CD44 expression and proliferation.   

 

Nonetheless, for all cell types, there were at least twice (and up to eight times) as 

many G2/M cells in the CD44high than in the CD44low/- fraction.  Accordingly, 

REM134 CD44High cells proliferated more readily in culture soon after plating than 

CD44Low/- cells, and showed superior colony forming ability and tumoursphere 

formation.  In the absence of cell cycle data to account for these differences in 

biological behaviour, the latter observations in particular could be interpreted as 

suggestive of CSC identity.   

 

This association of CD44 with proliferative status is consistent with the observed 

downregulation CD44 observed when REM134 mammary carcinoma cells are 

cultured as tumourspheres, where proliferation is likely to be less synchronous, and 

the proportion of quiescent and apoptotic cells is greater than in corresponding 

monolayer cultures (Kansal et al., 2000).  A similar observation was made by Chiou 

et al, who described downregulation of CD44 on tumourspheres derived from high 

grade human oral squamous cell carcinomas (Chiou et al., 2008). 

 

In the literature, other markers for candidate CSC populations, such as CD133, have 

been associated with proliferation status in cell lines (Chen et al., 2008; Tirino et al., 

2008).  Whilst some investigators have reported an association between CD44 

expression and cellular proliferation (Alho and Underhill, 1989; Abbasi et al., 1993), 

others have found only partial (Fukuse et al., 1999) or no concordance (Furuta et al., 

1996) between CD44 and the proliferation marker PCNA.   
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Al-Hajj et al showed no difference in cell cycle status between the tumourigenic and 

non-tumourigenic subpopulations isolated from one of the specimens described in 

their report on breast cancer stem cells (Al-Hajj et al., 2003).  Moreover, Buess et al 

found that expression of M-phase cell cycle genes was actually decreased in the 

CD44+CD24- fraction of ex-vivo breast tumour cultures as compared to the CD44-

CD24+ fraction (Buess et al., 2009).  Slower cell cycle kinetics were demonstrated in 

the CD44+CD24- fraction of human breast and prostatic tumour cell lines (Fillmore 

and Kuperwasser, 2008; Hurt et al., 2008). 

 

According to the cancer stem cell hypothesis, the CSC can give rise to cells with the 

phenotypic heterogeneity seen in the parental population, whereas non-CSC do not 

have this capacity.  Thus, cells within a tumourigenic subpopulation expressing a 

CSC-specific marker should be capable of differentiating into non-cancer stem cells 

negative for that marker, but not vice versa.   

 

x+  ⇒  x+  and  x–  whereas x–  ⇒  x– 

 

Although REM134 CD44high cells (a greater proportion of which are in the process of 

active proliferation) demonstrate enhanced colony forming ability when seeded at 

very low densities, both CD44low/- and CD44high cells return to the frequency 

distribution seen for unfractionated cells after a short period at standard culture 

densities.  Zheng et al demonstrated a similar effect when C6 rat glioma cells were 

sorted for the putative CSC marker CD133 (Zheng et al., 2007). Although the 

relative MFI, representative of the level of antigen expression, remained greater for 

rapidly proliferating CD44High cells, the CD44Low/- fraction gave rise to progeny 

whose surface expression level increased towards that of the bulk population with 

time in culture.  This was accompanied by increased proliferative potential after 

initial poor growth.  This suggests that the level of antigen expression on the 

CD44Low/- subpopulation was related to their proliferative status at the time of 

isolation, rather than to a putatively “more differentiated” non-CSC status.  This is 

further supported by the results from the drug sensitivity assay, where no resistance 

advantage was associated with high CD44 expression levels. 
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Unless expression of a given cancer stem cell marker is stable, its relevance in the 

context of the CSC hypothesis is questionable (Visvader and Lindeman, 2008; Gupta 

et al., 2009a).  If an individual cell may oscillate rapidly between “CSC” and “non-

CSC” phenotypes, it is difficult to see how the marker used will reliably identify a 

specific subpopulation of tumourigenic cells, as opposed to those which are more 

likely to survive or proliferate at the time of a particular assay. 

 

This applies particularly for cell lines, ostensibly clonal entities, if certain 

subpopulations are to be defined as the “cancer stem cells” within a putative 

hierarchy (Kondo et al., 2004; Setoguchi et al., 2004; Patrawala et al., 2005; 

Hadnagy et al., 2006; Atsumi et al., 2008; Fillmore and Kuperwasser, 2008; Huang 

et al., 2009a).  In a clonal population, non-genetic heterogeneity for a given antigen 

may arise through fluctuation of surface expression levels around the mean (Chang et 

al., 2008; Brock et al., 2009).  Whilst this may alter the context-dependent fate of a 

cell, it may not equate to that cell being biologically distinct, in terms of the 

definitive CSC properties of self-renewal and tissue-specific differentiation potential.  

It is significant that, as CD44high cells demonstrate such enhanced growth capabilities 

in in vitro assays, these might have translated to produce apparently enhanced 

tumourigenicity in “gold standard” in vivo transplantation assays in 

immunocompromised rodents, through the effective selection of a population of 

more actively proliferating cells at a given moment in time.   

 

The results of the assay in which sorted CD44high and CD44low cells were cultured 

and restained suggest that neither population is necessarily destined to give rise to 

progeny with a particular proliferative tendency or surface expression pattern, but 

rather that CD44 may be more heavily expressed by any cell when it is proliferating.  

Similarly for tumoursphere formation, it seems rational that actively dividing cells 

might more successfully survive when plated in low-density conditions, whilst those 

plated during a resting phase might senesce, particularly if cell-cell contact is 

important for successful proliferation.  Put simplistically, a cell undergoing division, 

which finds itself in low-density culture, is likely to have at least one other cell to 
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support it soon after plating.  As discussed in a balanced review by Shackleton et al, 

it is important to distinguish cellular potential from context-dependent fate when 

inferring cancer stem cell identity (Shackleton et al., 2009). 

 

As discussed in Chapter 4, the tumoursphere assay was developed for primary neural 

stem cell culture (Reynolds et al., 1992; Reynolds and Weiss, 1992), and there exist 

some fundamental reservations regarding its interpretation and validity when applied 

to other systems, including cancer cell lines (Singec et al., 2006; Zheng et al., 2007; 

Shipitsin and Polyak, 2008).  A marked density-dependence of proliferation is seen 

for several canine cancer cell lines when grown under these conditions, including 

REM134, in limiting dilution assays.  It has also been observed that many canine cell 

lines form tumourspheres more readily from subconfluent cultures, still in rapid 

exponential expansion, than from those closer to confluence.   

 

This suggests that, for some canine cancer cell lines, tumoursphere formation is not 

truly reflecting cell-autonomous growth by a specific CSC population. As a cell 

adhesion molecule, it is possible that increased surface expression levels of CD44 

contribute to the superior performance of CD44High REM134 cells in assays such as 

colony or tumoursphere formation, by promoting intercellular interactions.  

 

The transition of individual cells between phases of the cell cycle is likely to occur 

more rapidly in an immortal cell line, and at more regular intervals, than within a 

naturally occurring tumour.  Whilst in vitro manipulations such as subculture and 

medium changes will also have a significant influence, this does not preclude the 

value of cell lines for investigating characteristics associated with even transiently 

expressed phenotypes, which might be more stable in a tumour in vivo.   

 

However, it would seem important to evaluate this data parsimoniously, to prevent 

the inference of “cancer stem-ness” where more basic biological reasons might 

account for observed cellular behaviour.  For example, whilst there were no 

significant differences between the sensitivities of REM134 CD44high and CD44low 

cells to doxorubicin, it is not considered to be a cell cycle-specific agent.  Where 
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response to chemotherapeutic drugs is used to assess the sensitivity of a putative 

CSC population, agents such as plant alkaloids or antimetabolites (Todaro et al., 

2007; Fillmore and Kuperwasser, 2008; Zhou et al., 2008; Gupta et al., 2009b) might 

be expected to show differential cytotoxicity if the CSC marker is associated with a 

particular phase of the cell cycle.   

 

It is interesting that all cultured canine cells in this study robustly expressed CD44.  

If CD44-mediated intercellular interactions actively promote proliferation (East and 

Hart, 1993), the combination of cellular proximity and frequent division within a cell 

line may sustain overall expression at a level higher than that in the natural situation.  

A limitation of this study is that all of the cells analysed had undergone at least initial 

expansion in vitro.  Further studies are therefore indicated using directly dissociated 

primary samples, to assess the relevance of CD44 in vivo.  

 

Also, whilst studies to evaluate the significance of CD44 expression in canine 

spontaneous mammary tumours have been inconclusive, these have employed either 

the IM7 clone used here (which does not discriminate between standard and variant 

forms) or antibodies which recognise only CD44s (Madrazo et al., 2009; Paltian et 

al., 2009).  In some human tumours including breast carcinomas, CD44 (particularly 

variant isoforms) has been localised to proliferative areas, such as the colonic crypts 

or the invasive tumour front (Abbasi et al., 1993; Herrera-Gayol and Jothy, 1999a).  

Immunohistochemical or transcriptional analysis discriminating CD44s from its 

variants might provide further insight into the implications of expression in canine 

cancer. 

 

The results of this study suggest that CD44, if stably expressed by specific cells in 

spontaneous tumours, might be associated with enhanced proliferative potential, in 

which case it may yet identify cancer stem or dominant tumour cell populations.  If 

so, it represents a potential therapeutic target.  Strategies to disrupt the molecule such 

as anti-CD44 antibodies could readily be developed and tested in vitro on canine 

cancer cell lines and then primary cells (Jin et al., 2006).  Additionally, high levels of 

CD44 might indicate more rapidly growing tumours and provide valuable prognostic 
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information.  It would be important to distinguish infiltrating leukocytes, likely to 

express CD44v, from tumour cells, and this could be achieved using flow cytometric 

gating to exclude CD45+ cells.  Examination of other markers in conjunction with 

CD44, such as CD24 or integrins, might select for a subset of cells with additional 

tumourigenic attributes, particularly in primary tumours where there is likely to be a 

greater diversity of cellular phenotypes.  

 

In summary, expression of CD44 by canine cancer cell lines is associated with 

proliferative status.  Although this results in the enrichment within the CD44high 

fraction of cells showing apparent cancer stem cell properties, transient and 

fluctuating expression means that CD44 cannot be considered a bona fide cancer 

stem cell marker in the canine cell lines examined here, as it does not distinguish a 

specific cellular subpopulation.  Further studies of CD44 expression, particularly in 

primary tumours and metastases, should help to define whether CD44 expression 

identifies CSC or subpopulations of tumour cells with enhanced neoplastic 

characteristics, and may help to elucidate its role in canine cancer progression and 

metastasis. 
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INTRODUCTION 

 

Anticancer drug development is a huge industry, with an ever-increasing array of 

chemotherapy agents available.  Within the clinical setting, however, elimination of 

cancer to produce complete remissions is all too frequently the exception rather than 

the rule.  Conventional cytotoxic agents, still the mainstay of most cancer 

chemotherapy protocols, target rapidly proliferating cells.  Whilst these are highly 

effective in some cases, drug resistance (both inherent and acquired) frequently leads 

to eventual treatment failure and relapse.  Moreover, off-target effects on susceptible 

normal tissues such as epithelia, neural and haematopoietic cells result in dose-

limiting toxicities, morbidity and mortality.   

 

Recent years have seen the development of an increasing number of targetted 

therapies, such as small molecule tyrosine kinase inhibitors and monoclonal 

antibodies, used as single agents or as part of combination chemotherapy regimes.  

Although these often produce fewer adverse effects, careful patient selection is often 

required to see clinical benefits, and overall survival times in many cases have shown 

little improvement (Sandler et al., 2006; Heinemann et al., 2008; Burris, 2009; Yan 

et al., 2009).  Moreover, resistance is seen to these agents also (Stegmeier et al., 

2010).  For example, the Bcr-Abl tyrosine kinase inhibitor imatinib mesylate 

(Gleevec, Novartis) produces excellent clinical responses in chronic myeloid 

leukaemia.  However, cells carrying the Bcr-Abl fusion protein persist even in 

patients showing clinical remission, leading to the prospect of recurrence upon 

withdrawal of treatment (Holyoake et al., 1999; Bhatia et al., 2003; Misaghian et al., 

2009). 

 

Thus the cancer stem cell hypothesis, where applicable, has very important 

implications for the clinical approach to cancer.  The model can account for tumour 

recurrence despite apparently good initial responses to conventional therapy, but also 

makes clear that if CSC are responsible for residual disease, they must be eliminated 

to afford a cure.  Moreover, more precise targetting of these cells might help to avoid 

some of the more generalised adverse effects of antiproliferative agents, reducing 
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patient morbidity.  Even if CSC are more resilient in the face of treatment than the 

bulk tumour cell population, it may be possible to exploit their inherent resistance 

mechanisms as a means of selectively eradicating them. 

 

NFκB Signalling as a Resistance Mechanism – and Potential Drug Target 

 

The NFκB (Nuclear Factor kappa-light-chain enhancer of activated B cells) family 

of transcription factors comprises five proteins - RelA (p65), RelB, c-Rel, NFκB1 

(p105/p50) and NFκB2 (p100/p52) – each with a common 300-amino acid Rel 

homology domain (RHD). NFκB1 and NFκB2 are synthesised as large precursors 

(p105 and p100, respectively) which are post-translationally cleaved to the active 

p50 and p52 forms by an ATP-dependent process of polyubiquitinylation and 

proteasomal degradation (Ghosh et al., 1998; Ghosh and Karin, 2002; Packham, 

2008).   

 

NFκB was first characterised in B lymphocytes but is expressed ubiquitously in 

eukaryotic cells.  It is largely held in the cytoplasm in latent (inactive) form by 

proteins of the IκB family, whose n-terminal ankyrin repeat regions mask the nuclear 

localisation signal of NFκB.  Removal of the IκB-mediated repression allows 

translocation of NFκB to the nucleus, where it activates target genes.  This is 

achieved through phosphorylation of IκB by the upstream kinase IκB-kinase, IKK, 

leading to ubiquitin-dependent proteasomal degradation of IκB and the release of 

NFκB (Ghosh and Karin, 2002; Ravi and Bedi, 2004).  Induction of NFκB-mediated 

signalling therefore does not require new protein synthesis, permitting rapid 

transmission of signals from the cytoplasm to the nucleus.  

 

NFκB proteins function as homo- and heterodimers, functioning on the most part as 

transcriptional activators, although p50 and p52 homodimers act as transcriptional 

repressors. Activation occurs through either the “canonical” or the “alternative” 

(“noncanonical”) pathway, the former involving primarily RelA-p50 heterodimers 

and the latter, RelB-p52 heterodimers.  Canonical signalling is mediated through 

activation of the IKK complex, comprising IKKα, IKKβ and IKKγ subunits, of 
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which IKKβ is most significant in this context.  The alternative pathway is activated 

by IKKα (Figure 1).  Target genes are involved in a diverse array of cellular 

processes such as inflammation and immunoregulation (e.g. IL-2, IL-6, TLR-2), cell 

cycle progression (e.g. cyclins D1 and D2, c-myc), cell survival (e.g. the anti-

apoptotic mediators Bcl-2 and Bcl-XL), angiogenesis (e.g. VEGF, Cox-2) and drug 

efflux (MDR-1) (Zhou and Kuo, 1997; Lee et al., 1999; Hideshima et al., 2002; 

Bentires-Alj et al., 2003; Ravi and Bedi, 2004; Keats et al., 2007; Packham, 2008).   

 

Aberrant activation of NFκB signalling occurs in many haematological and solid 

malignancies, including B- and T-lymphocytic and myeloid leukaemia, Hodgkins 

and non-Hodgkins lymphoma, multiple myeloma, melanoma, breast, colon and 

prostate cancers (Rayet and Gelinas, 1999; Greten and Karin, 2004; Keats et al., 

2007; Compagno et al., 2009; Lee et al., 2009; Pratt et al., 2009; Zheng et al., 2009).  

Genetic alterations such as amplification, mutation and chromosomal translocation 

may promote NFκB or IKK activity, or inhibit the repressive function of IκB 

proteins, and may affect both canonical and alternative pathways.  Additionally, 

many other signalling pathways dysregulated in cancer, such as those involving 

Notch, Ras, PTEN/PI3k/Akt, STAT3 and E2F1, interact with NFκB to promote its 

transcriptional activity (Mayo et al., 1997; Romashkova and Makarov, 1999; Ravi 

and Bedi, 2004; Barbie et al., 2009; Downward, 2009; Lee et al., 2009; Zheng et al., 

2009).  Constitutive activation of the pathway may also result from autocrine 

stimulation of cell surface receptors by growth factors, or the activity of viral 

oncoproteins such as the Tax protein of Human T-cell Leukaemia virus (HTLV-1) 

and the EBNA-1 protein of Epstein-Barr virus (Ravi and Bedi, 2004; Packham, 

2008). 

 

NFκB signalling in neoplasia promotes uncontrolled cellular growth and 

proliferation through its activation of antiapoptotic and prosurvival mediators, and its 

promotion of the cell cycle; proangiogenic effects may also promote invasion and  
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Figure 1 – Canonical and alternative pathways for activation of NFκB-mediated 
gene transcription. 
The canonical pathway involves phosphorylation, with ubiquitinylation and 
proteasomal degradation, of the IκB repressor by the IKK complex (primarily 
IKKβ).  This releases NFκB (primarily p65/RelA-p50 heterodimers) for 
translocation to the nucleus and activation of target genes. 
The alternative pathway is initiated through IKKα-mediated phosphorylation of 
p100, with resultant proteasomal degradation to p52.  RelB-p52 heterodimers 
translocate to the nucleus to activate target genes. 
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metastasis (Rayet and Gelinas, 1999; Darnell, 2002; Greten and Karin, 2004).  NFκB 

also interferes with the activity of the p53 tumour suppressor and upregulates its 

negative regulator MDM2 (Tergaonkar et al., 2002).  Activation of NFκB signalling 

thus confers increased resistance to the induction of apoptosis by anticancer agents, 

and may also directly upregulate drug resistance mechanisms such as the MDR1 

drug transporter pump (Zhou and Kuo, 1997; Bentires-Alj et al., 2003).   

 

Critically, exposure to chemotherapy drugs including taxanes, vinca alkaloids, 

anthracyclines and topoisomerase inhibitors may induce NFκB activity.  Individual 

drugs may activate signalling through effects on different points in the pathway – for 

example, doxorubicin may directly mobilise the IKK complex (Bottero et al., 2003), 

but can also promote IKK-independent degradation of IκB (Das and White, 1997; 

Tergaonkar et al., 2003).  Thus, induction of NFκB signalling plays a significant role 

in the development of resistance to chemotherapy (Nakanishi and Toi, 2005). 

 

NFkB Inhibition as a Therapeutic Strategy 

 

The NFκB pathway thus represents a rational therapeutic target, as inhibition may 

not only slow the progression of disease but also increase the sensitivity of neoplastic 

cells to proapoptotic therapies.  Mechanisms of intervention include specific 

inhibitors targetting IKK or NFκB, proteasome inhibitors (which prevent the 

degradation of IκB or p105 / p100 processing) and siRNA knockdown strategies, 

with specific targets dependent on which arm of the pathway (canonical / alternative 

/ both) is active.  For example, in a study of Barrett’s Oesophagus cell lines, 

resistance to radiation-induced apoptosis was circumvented using siRNA specific for 

RelA, indicating that this resistance was mediated through activation of the canonical 

pathway (Hormi-Carver et al., 2009).  Conversely, the alternative pathway may play 

a role in some aggressive prostatic cancers, and Xu et al reported that siRNA 

knockdown of RelB decreased the tumourigenicity of PC-3 prostatic carcinoma cells 

(Xu et al., 2009). 
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Importantly, however, the complex interactions between different NFκB family 

members and those between NFκB and other regulatory processes must be 

considered.  For example, canonical NFκB pathway activation is a feature of all 

multiple myeloma (MM) cell lines - some also show alternative pathway activity.  

Hideshima et al demonstrated that whilst inhibition of either IKKβ (canonical) or 

IKKα (alternative) inhibited cellular growth, only IKKβ blockade was associated 

with reduced activation of NFκB (Hideshima et al., 2009a).  This suggests IKKα 

may have alternative targets in this context, or that there is crosstalk between the 

pathways.  

 

Similarly, the proteasome inhibitor Bortezomib is licensed for use in MM, and has 

shown good clinical efficacy.  Through inhibiting degradation of the IκB repressor, 

and processing of p105 or p100, the drug may inhibit activity of both the canonical 

pathway and the alternative pathway (Richardson et al., 2006; Keats et al., 2007; 

Packham, 2008).  Notably, however, the drug produces greater growth inhibition 

than that achieved through specific NFκB blockade in MM cells.  Moreover, recent 

evidence has suggested that bortezomib may in fact induce activation of canonical 

NFκB signalling in some MM cell lines and tumour cells, indicating that interference 

with other (NFκB-independent) mechanisms mediated by the proteasome contributes 

to its antitumour activity (Hideshima et al., 2002; Nakanishi and Toi, 2005; 

Richardson et al., 2006; Hideshima et al., 2009b).   

 

Proteasome inhibitors and other suppressors of NFκB signalling may also reverse 

NFκB-mediated chemoresistance, showing co-operative effects with standard 

therapies (Mabuchi et al., 2004; Nakanishi and Toi, 2005; Packham, 2008).  

Critically, as chemotherapy drugs may induce NFκB activation, inhibition of the 

pathway may offset this to restore sensitivity to their cytotoxic effects (Cusack et al., 

2001; Avellino et al., 2005; Nakanishi and Toi, 2005).  For example, Cusack et al 

reported that pre-treatment of human colorectal cancer cells with bortezomib 

inhibited the induction of NFκB by SN-38 (a metabolite of the topoisomerase-1 

inhibitor irinotecan), significantly enhancing its growth inhibitory effects in vitro.  

Accordingly, in a xenograft model in vivo, irinotecan alone led to 48% reduction in 
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growth of human colon tumours whereas when combined with bortezomib, the 

reduction was 94% (Cusack et al., 2001).  Inhibition of the pathway may also reduce 

protective effects of the tumour niche, by blocking NFκB-mediated cytokine release 

(Hideshima et al., 2002). 

 

It is important to note that, because of the complex interactions between NFκB and 

other signalling pathways, the consequences of inhibition are context dependent and 

will not necessarily produce an anticancer effect.  For example, in lung cancer cell 

lines and a murine lung cancer model expressing oncogenic Ras, inhibition of NFκB 

led to apoptosis, and reduced tumourigenicity (Meylan et al., 2009).  By contrast, 

Dajee et al found that in human epidermis (grown as xenografts in murine hosts), 

blockade of NFκB signalling in combination with oncogenic Ras led to the formation 

of large tumours (Dajee et al., 2003). 

 

Can NFκB Activity be Exploited to Eradicate CSC? 

 

Data suggests that NFκB activation may occur as an early event preceding malignant 

transformation, in diverse cell types including mammary epithelium and 

mesenchymal stem cells (Rayet and Gelinas, 1999; Izadpanah et al., 2008).  

Certainly, the pre-existence of an anti-apoptotic mechanism within a cell makes it 

hypothetically an attractive target for transformation, and could also facilitate the 

persistence of a resistant population of tumourigenic cells. 

 

There is growing interest in the NFκB pathway as a means of selectively targetting 

cancer stem cells.  NFκB interacts with a number of stem cell-associated signalling 

processes, including Nanog, STAT3 and Wnt/β-catenin (Torres and Watt, 2008; 

Hideshima et al., 2009a).  The CD34+ progenitors of human acute myeloid 

leukaemia (AML) show constitutively active NFκB signalling – by contrast, 

unstimulated normal CD34+ haematopoietic progenitors do not express NFκB 

(Guzman et al., 2001; Majeti et al., 2009).    
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NFκB inhibition to target LSC in acute myeloid leukaemia  

 

A series of reports from Guzman et al provided compelling evidence that NFκB 

inhibition in AML may selectively target leukaemia stem cells (LSC) whilst sparing 

normal haematopoietic progenitors.  The proteasome inhibitor MG132 induced 

apoptosis in CD34+ LSC but showed little inhibition of normal CD34+ cells (Guzman 

et al., 2001).  Moreover, a complementary effect was seen with the anthracycline 

idarubicin – at levels where the individual toxicity of each drug was relatively low, 

the combination resulted in almost 90% cell kill.  Induction of apoptosis was also 

mediated by upregulation of p53-regulated genes such as Bax and p21 (Guzman et 

al., 2002).  A similar selectivity towards LSC was reported for the IKK inhibitor 

parthenolide (Guzman et al., 2005), and its orally bioavailable dimethylamino 

analogue DMAPT (Guzman et al., 2007).   

 

As part of the DMAPT study, the authors assessed the in vitro and in vivo activity of 

the drug in spontaneous canine leukaemias (Guzman et al., 2007).  Isolated 

mononuclear cells of seven of eight canine leukaemia samples tested positive for 

NFκB activation, and exposure to DMAPT in vitro reduced both NFκB activity and 

cell survival.  Three dogs with CD34+ (≥40% of PBMNC) spontaneous leukaemia 

were treated with intravenous and/or oral DMAPT.  Results showed reduced 

numbers of CD34+ progenitors and an increase in circulating neutrophils, suggesting 

an increase in the proportion of more differentiated cells (although circulating WBC 

numbers showed no clear reduction).  Significantly, immunofluorescent staining of 

blast cells for NFκB suggested a reduction in expression levels.  Although overall 

clinical outcomes in this study were poor, the dogs were in advanced disease or had 

extremely high circulating WBC at the point where treatment began (≤96.5x109/l).  

The reported reduction in the CD34+ progenitor population and expression of NFκB 

by circulating blasts suggests that concomitant treatment with conventional agents 

(with activity against the main population of blasts) might prove more successful 

when treating this extremely aggressive canine disease (Guzman et al., 2007).   
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NFκB inhibition to target CSC in breast cancer 

 

Studies by Zhou et al have shown preferential inhibition of putative breast CSC by 

NFκB inhibitors (Zhou et al., 2008; Zhou et al., 2009b).  Tumoursphere and side 

population cells derived from the human MCF-7 breast carcinoma cell line showed 

greater reduction in viability than the bulk (unselected) populations upon treatment 

in vitro with NFκB inhibitors; by contrast, sphere and SP cells were more resistant to 

the conventional chemotherapy drug paclitaxel than the majority population.  

Treatment of mice inoculated with MCF-7 cells using a combination of the NFκB 

inhibitor PDTC and paclitaxel led to greater inhibition of tumour formation than 

either drug given alone, although it should be noted that the results suggested 

additive (rather than synergistic) drug effects (Zhou et al., 2008).   

 

Similarly, the small molecule 8-quinolinol (8-Q) showed preferential inhibitory 

activity against a highly-selected population of putative MCF-7 CSC (tumourspheres 

derived from SP).  Notably, 8-Q-mediated inhibition of NFκB activity was similar 

for both bulk and sphere cells in this study, suggesting alternative mechanisms of 

action contribute to the drug’s CSC selectivity.  In vivo, the combined effect of 8-Q 

and paclitaxel against tumour formation by bulk MCF-7 cells was again greater than 

that of either drug alone (Zhou et al., 2009b).  Thus, it may be possible to exploit the 

inherent resistance mechanisms of CSC to produce better clinical outcomes.   

 

CSC as a Moving Target – are Stem Cell-Associated Resistance Mechanisms 

Inherent or Acquired? 

 

Consistent with their long lifespan, normal stem cells show several features which 

render them inherently less sensitive to toxic insults, such as relative quiescence, 

resistance to apoptosis, enhanced DNA repair capacity and expression of membrane 

transporters and intracellular mediators which permit elimination or degradation of 

toxic substances.  If a CSC arises through bona fide transformation of a normal stem 

cell, it might be expected to have similar capabilities (arguably, of course, some of 

these features might equally be expected to reduce the susceptibility to 
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transformation in the first place).  Where a cancer stem cell has arisen through 

dedifferentiation of a more committed cell, the situation is less clear, although the 

hypothesis is not inconsistent with the acquisition of traits conveying a growth 

advantage, through multistage transformation.   

 

Although these properties are cited to explain their persistence, not all are 

definitively associated with CSC.  For example, quiescence has long been 

appreciated as a factor in resistance (Weisenthal and Lippman, 1985; Secchi, 1990), 

with resting G0 cells recognised as surviving drug and radiation treatment.  However, 

whilst the putative CSC populations in some studies are slow-cycling or show an 

increased G0 population (Holyoake et al., 1999; Guzman et al., 2002; Hadnagy et al., 

2006; Szotek et al., 2006; Addla et al., 2008; Hurt et al., 2008), others show more 

rapid proliferation (Loebinger et al., 2008; Moserle et al., 2008; Tirino et al., 2008).   

 

Similarly, whilst expression of membrane transporters such as ABCG2 and P-gP is 

inherent to some stem cell populations, there is not a direct correlation between 

expression of these drug efflux pumps and CSC identity, or with the presence of an 

SP profile (Chaudhary and Roninson, 1991; Zhou et al., 2001; Scharenberg et al., 

2002; Triel et al., 2004; Patrawala et al., 2005; Stingl et al., 2006; Addla et al., 2008; 

Lichtenauer et al., 2008).  The acquisition of multidrug resistance following 

cytotoxic chemotherapy is a well-recognised phenomenon in cancer, and a major 

clinical problem (Licht et al., 1994; Heenan et al., 1997; Doyle et al., 1998; 

Steingold et al., 1998; Abolhoda et al., 1999; Wuchter et al., 2000).  Classically this 

has been considered to result from the selection of cells which have undergone 

genetic changes, such as upregulation of membrane transporters, allowing them to 

survive drug treatment and repopulate the tumour with resistant clones (Figure 2) 

(Dean et al., 2005). 

 

Alternatively, CSC which already possess such attributes will be inherently resistant 

and so capable of both self-renewal and recapitulation of progeny populations.  

There may be combination of processes at work, whereby CSC evolve further 

evasive mechanisms in the face of toxic challenge, leading to the development of 
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Figure 2 – Models for drug resistance in tumours. 
A – Drug therapy selects for cells which have evolved resistance mechanisms such 
as membrane transporter pumps, which may then repopulate the tumour. 
B – Drug therapy eliminates the bulk of tumour cells, but inherently resistant CSC 
persist and repopulate the tumour. 
C – CSC survive therapy and evolve further resistance mechanisms, repopulating the 
tumour with drug-resistant variant progeny. 
D – All cells are inherently resistant (or inherently sensitive).  Drug therapy does not 
select for any particular population. 
 
(Adapted from Dean, Fojo and Bates, 2005 Nature Reviews Cancer, 5, 275-285). 
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CSC variants – a “moving target”.  Finally, in some cancers there is little evidence of 

differential response to chemotherapy drugs.  Germ cell tumours tend to show 

extreme sensitivity to protocols incorporating platinum compounds with good overall 

response rates (despite being prime candidates for having arisen from stem cells), 

suggesting that therapy has eliminated the CSC component (Polyak and Hahn, 2006).  

Conversely, renal cell cancers tend to express P-gP throughout the tumour such that 

the bulk and any putative CSC are similarly unaffected by treatment (Dean et al., 

2005).  Interestingly, when van der Pol et al investigated drug transporter expression 

in minimal residual disease in AML, drug treatment had not changed the actual 

expression level of drug transporters, nor selected for a specific population of cells 

with increased expression – most cells expressed the relevant protein (van der Pol et 

al., 2003).  This suggests that resistance may be associated with the degree of 

functional activity of transporters expressed throughout the population, rather than 

their expression by specific cells. 

 

Drug resistance may be induced in vitro through incubation of continuous cell lines 

in the presence of increasing concentrations of cytotoxic agents (Coley, 2004).  The 

ABCG2 drug transporter, most frequently associated with SP, was first characterised 

in vitro in MCF-7 breast carcinoma cells chronically exposed to doxorubicin (Doyle 

et al., 1998).  Uozurmi et al developed three drug resistant variants of the canine GL-

1 B-cell lymphoma cell line, through long-term doxorubicin challenge (Uozurmi et 

al., 2005).  Western blot analysis suggested progressive upregulation of a ~180kDa 

protein, suggested to be canine PgP - the cells showed resistance to both doxorubicin 

and vincristine.  Interestingly, vincristine is generally recognised as being transported 

by ABCG2 (73kDa) rather than P-gP, and on the Western blots presented with the 

report, a protein product of between 66 and 97kDa is also apparent (Uozurmi et al., 

2005).  

 

It follows, then, that Hoechst SP may be an inducible phenomenon both in vivo and 

in vitro.  In the literature, there are reports of SP in primary tumour cells isolated at 

the time of excision (Addla et al., 2008; Wu and Alman, 2008; Zhang et al., 2009b) 

and at relapse (Hirschmann-Jax et al., 2004), but much less data which examines 
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whether SP changes through the duration of treatment.  Notably, in the study of 

relapsed tumours, the SP constituted a large proportion (≤51%) of total cells.  The 

side population of neurospheres derived from a PTEN-deficient mouse glioma model 

was increased by temozolomide treatment in vitro (Bleau et al., 2009).  The drug 

produced a similar effect on human glioma cell lines, accompanied by increased 

numbers of progenitor-like cells.  However, this was not affected by ABCG2 

knockdown - co-expression of other ABC transporters may therefore have 

contributed to the response (Chua et al., 2008).   

 

If the goal of therapy based on the CSC hypothesis is to identify and target defined 

cellular subpopulations, it is important to know whether these will remain constant 

during the tumour’s lifetime, or whether and how they might change – that is, 

whether or not treatment might induce or modulate the CSC phenotype. 

 

In the following experiments, CSC-associated mechanisms of drug resistance were 

investigated in canine cancer cells.  We sought to establish whether NFκB signalling 

is active in canine cancer cells, and the effects on cell viability of blocking this with 

selective inhibitors.  As NFκB may promote resistance to apoptosis induced by 

conventional cytotoxic drugs, which may themselves upregulate NFκB signalling, 

combinations of NFκB inhibitors and doxorubicin were evaluated for 

complementary or synergistic anticancer effects (Nakanishi and Toi, 2005).  

Additionally, cells chronically exposed to doxorubicin were evaluated for altered 

sensitivity to NFκB inhibition.  As interference with the pathway allows selective 

eradication of putative CSC in some cancers, cellular subpopulations isolated 

according to CD44 surface expression or tumoursphere formation were tested for 

differential susceptibility to NFκB inhibitors. 

 

The effect of cytotoxic chemotherapy on CSC phenotype was also explored.  Rather 

than representing a consistent and predictable therapeutic target, CSC may evolve 

additional survival mechanisms in the face of cytotoxic challenge (Dean et al., 2005; 

Adams and Strasser, 2008).  The SP phenotype has been reported in the context of 

the CSC hypothesis as a phenomenon associated with a specific pre-existing 
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subpopulation of stem-like cells.  The effects on SP of chronic exposure to 

chemotherapy were evaluated. 
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MATERIALS AND METHODS 

 

Cell Viability Assays 

 

Assessment of chemosensitivity / sensitivity to NFκB inhibitors was performed using 

the standard ATP luminescence protocol previously described (Materials and 

Methods chapter).  Cells were seeded at a density of 5x103 cells/well except where 

specified (see Results).  As well as standard untreated controls, additional vehicle 

controls were analysed for NFκB inhibitors to identify any inhibitory effects of the 

DMSO carrier.  For each dilution of drug in medium, a volume-equivalent dilution 

was made of DMSO only.  Once inhibitory effects were confirmed as DMSO-

independent, a single vehicle control (volume-equivalent to the highest drug 

concentration) was included on each plate.  Results were analysed using Microsoft 

Excel and GraphPad Prism. 

 

NFκB inhibitors tested were IKK Inhibitor II Wedelolactone (WDL), IKK Inhibitor 

VII, and InSolution NFκB inhibitor (ISNI) (all from Calbiochem / Merck).   

 

Extraction of Nuclear Protein for EMSA Assays 

 

Buffers for nuclear protein extraction 

 

Buffers were prepared and stored at 4°C.  At each use, 1 volume of 10x protease 

inhibitor cocktail [cOmplete Mini (Roche) - one tablet dissolved in 1ml ddH2O] was 

added to 9 volumes nuclear extraction buffer. 

 

Buffer 1 - 25mM HEPES 

 5mM KCl 

 0.5mM MgCl2 

 1x protease inhibitor cocktail 
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Buffer 2 - 25mM HEPES 

 5mM KCl 

 0.5mM MgCl2 

 1% (v/v) NP-40 

 1x protease inhibitor cocktail 

Buffer 3 – 1:1 mixture of Buffer 1 and Buffer 2 

Buffer 5 -  25mM HEPES 

 10% (w/v) Sucrose 

 350mM NaCl 

 0.01% (v/v) NP-40 

 1x protease inhibitor cocktail 

 

Cells were harvested and pelleted as for preparation of cell lysates.  After discarding 

the supernatant, the pellet was resuspended in 200µl of Buffer 1.  200µl of Buffer 2 

was added, the suspension mixed gently by pipetting and rotated at 4°C for 15 

minutes, followed by centrifugation in a prechilled (4°C) microcentrifuge at 600g for 

1 minute. 

 

The resultant supernatant (cytoplasmic protein) was transferred to a fresh chilled 

eppendorf tube.  200µl of Buffer 3 was added to the pellet, followed by gentle 

mixing and centrifugation at 4°C / 600g for 1 minute.  Supernatant was discarded 

and the pellet resuspended in in 250µl of Buffer 5 (including protease inhibitor mix); 

the suspension was rotated at 4°C for 1 hour followed by centrifugation at 4°C / 

16000g for 10 minutes.  The resultant supernatant (nuclear protein) was transferred 

to a fresh chilled eppendorf tube.  Protein was quantified for cytoplasmic and nuclear 

protein extracts using the Bradford assay. 

 

Electrophoretic Mobility Shift Assay (EMSA) for NFκB Activity 

 

Double stranded NFκB consensus oligonucleotide was obtained from Promega.  

EMSA assays were performed using the DIG Gel-Shift Kit 2nd Generation (Roche, 

Mannheim, Germany) according to the manufacturer’s protocol:   



Chapter 6 – Drug resistance mechanisms of canine CSC 

 266 

End-labelling of oligonucleotide sequences with digoxigenin (DIG) 

100ng dsNFκB or control oligonucleotide was incubated at 37°C in labelling buffer, 

with 0.05mM digoxigenin-11-ddUTP (DIG-ddUTP), 5mM CoCl2 and 20 U/µl 

terminal transferase, for 15 minutes before placing on ice.  2µl 0.2M EDTA (pH 8.0) 

was added to stop the reaction.  ddH2O was added to a final concentration of 4ng/µl 

of labelled oligonucleotide.  Labelled oligonucleotides were stored at -20°C. 

Gel-shift binding reaction 

Samples for the gel shift binding reaction were set up and mixed on ice according to 

the manufacturer’s protocol.  Briefly, for each cell line being tested, 5-10µg nuclear 

extract was mixed in binding buffer with 0.4ng/µl DIG-labelled NFκB 

oligonucleotide, 1µg/µl poly [d(I-C)] and 0.1µg/µl poly-L-lysine.  In addition, for 

each line, competition control with specific unlabelled probe (addition of 0.1µg/µl 

unlabelled NFκB oligonucleotide) and supershift (addition of 1µg/µl specific NFκB 

RelA/p65 antibody – added prior to labelled probe) reactions were performed.  

Negative control contained no nuclear extract, and for at least one cell line in each 

experiment, additional specificity control reactions (competition control with non-

specific Oct2A oligonucleotide; supershift reaction with non-specific p53 antibody) 

were performed.  Samples were incubated at 15-20°C for 15 minutes and held on ice 

prior to gel electrophoresis. 

Gel electrophoresis and electroblotting 

Samples were mixed with 5X Hi-Density TBE sample buffer (TBE running buffer 

(Invitrogen) with 0.1% bromophenol blue and 15% w/v Ficoll 400), and run on a 

pre-electrophoresed non-denaturing polyacrylamide gel (Novex Precast 6% DNA 

Retardation Gel, Invitrogen) in 0.5x TBE running buffer.  Samples were transferred 

to a positively charged nylon membrane (Roche), followed by ultraviolet 

crosslinking of oligonucleotides at 120mJ/cm2.  The membrane could be dried at this 

stage, and stored at 2-8°C pending chemiluminescent detection. 

Chemiluminescent detection 

Washing buffer, maleic acid buffer and detection buffer (DIG Wash and Block 

Buffer Set, Roche) were prepared according to the manufacturer’s instructions.  

Blocking solution (blocking reagent 10% w/v in maleic acid buffer), antibody 

solution (Anti-Digoxigenin-AP, 1:10 000 in blocking solution) and CSPD working 
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solution (1:100 in detection buffer) (DIG Gel-Shift Kit 2nd Generation, Roche) were 

prepared freshly according to the manufacturer’s instructions.  Incubations were 

performed at 15-25°C with gentle agitation.  The membrane was rinsed briefly in 

washing buffer and incubated in blocking solution for 30min, followed by 30min 

incubation in antibody solution.  The membrane was washed twice (2x15min) in 

washing buffer and equilibrated for 5min in detection buffer.  CSPD working 

solution was applied and the membrane incubated at 37°C for 10min to enhance the 

luminescent reaction between CSPD and the alkaline phosphatase antibody 

conjugate.  The membrane was exposed to radiographic film (Hyperfilm ECL, GE 

Healthcare) for 15-25min at room temperature to visualise the luminescent signal. 

 

Cell Cycle Analysis / Cell Morphology After NFκB Inhibition 

 

D17 and REM134 cells in complete medium were seeded in T25 culture flasks at 

densities comparable to those used in 96-well plate assays (1.56x104 cells/cm2).  

After 24h, 40µM WDL or 3.5nM ISNI were added and cells incubated for a further 

72h.  Photomicrographs were captured using an Axiovert 40 CFL microscope, with 

Axiovision software.  Cell fixation, propidium iodide staining and cell cycle analysis 

were performed as previously described (Materials and Methods chapter). 

 

Drug Combination Assays 

 

The effects of simultaneous treatment with doxorubicin and NFκB pathway 

inhibitors WDL (REM134) or ISNI (D17) were assessed by cell viability assay.  For 

REM134, the disparity between the range of concentrations over which drug showed 

activity precluded testing at a constant drug ratio.  Responses were tested over a 

range of doxorubicin concentrations superimposed on a constant concentration of 

WDL.  For D17, the drugs were tested at a constant ratio of 1:10 and 1:100 

ISNI:doxorubicin.  Relevant medium only, single drug and DMSO vehicle controls 

were included on each plate. 
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Development of Drug-Resistant Cell Lines 

 

3132 lymphoma cells and MCF7 human mammary carcinoma cells were cultured in 

the presence of gradually increasing concentrations of doxorubicin, as described by 

Coley (Coley, 2004).  Cells were plated to achieve 20% confluence after 24h 

incubation (37°C, 5% CO2, 100% humidity), at which point doxorubicin and 5µM 

verapamil were added.  At confluence, cells were harvested, washed in complete 

medium, counted and replated, and drugs added again at 24h / 20% confluence.  A 

population of the parental cells from which the drug-adapted cells were derived was 

cultured in parallel (“3132Par” / “MCF7Par”), as a control for comparative assays.  

The doxorubicin concentration was increased once cells had been subcultured at a 

given concentration for 2-3 passages with no further growth retardation.  A 

population of treated cells was maintained at the previous concentration as a 

“backup” in case the increased concentration resulted in non-recoverable loss of 

viability.  Stable growth at 5nM doxorubicin was achieved within 4-5 weeks / 8 

passages and cells were subcultured at least twice more prior to assays.   

 

Western blot analysis and Hoechst 33342 / Rhodamine123 efflux analysis were 

performed as previously described (Materials and Methods / Chapter 3). 
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RESULTS 

 

Sensitivity of Canine Cancer Cell Lines to Chemotherapy Drugs 

 

The in vitro sensitivities of 3132, SB, REM134 and D17 canine cells, and human 

MCF-7 cells, to commonly used chemotherapy drugs were established by cell 

viability assay.  There is little available information detailing expected serum 

concentrations of these drugs when used in dogs – drug effects were assessed over a 

range of concentrations based initially on levels achieved at therapeutic doses in 

humans (TPC=Therapeutic Plasma Concentration) (Materials and Methods chapter, 

Table 6).   

 

Preliminary studies were conducted with 5x102 cells per well of a 96-well plate, but 

these very low cell numbers gave IC50 values well below expected therapeutic serum 

concentrations.  The existence of an “inoculum effect”, whereby cytotoxicity is 

affected by cell density due to factors such as binding site saturation and 

acidification of the medium, is well documented for in vitro responses of cells to 

certain drugs (including doxorubicin and vincristine, though not carboplatin) 

(Ohnuma et al., 1986).  It is also likely that seeding at very low cell densities results 

in more variation in cell number seeded per well (proportional to the target density).  

Cell viability assays such as MTT and ATP-luminescence show good linearity up to 

1x106 cells per well (Twentyman et al., 1989; Andreotti et al., 1995; Cree et al., 

1995 / manufacturers’ data).  At 5x103 cells per well, errors were found to be smaller 

and IC50 values more representative of plasma concentrations achieved in vivo,  and 

so seeding at this density was used for further investigations.  Results are 

summarised in Table 1 and Figures 3 - 4. 
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Drug Cells IC50 

3132 5.49nM 

D17 116.6nM 

REM134 32.18nM 

MCF7 91.87nM 

Doxorubicin 
 

D17* 8.65nM 

3132 0.63nM 

D17 202.2nM 

REM134 18.02nM 
Mitoxantrone 

MCF7 19.42nM 

3132 ~0.65nM 

D17 3.26nM 

REM134 5.77nM 
Vincristine 

MCF7 8.33nM 

3132* 3.55µM 

SB* 4.33µM Carboplatin 

REM134 168.1µM 
 
Table 1 – Calculated IC50 values of chemotherapy drugs for canine (and human 
MCF-7) cancer cell lines.  All cell viability assays were performed at a density of 
5x103 cells per well except where indicated by * (5x102 cells / well). 
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Figure 3 – Cell 
viability of canine  
(and human MCF7) 
cancer cell lines in 
response to increasing 
concentrations of   
(A) doxorubicin and 
(B) mitoxantrone. 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
Figure 4 – Cell 
viability of canine 
(and human MCF7) 
cancer cell lines in 
response to increasing 
concentrations of  
(A) vincristine and 
(B) carboplatin. 
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D17 osteosarcoma cells showed the highest IC50 values for doxorubicin and 

mitoxantrone.  For doxorubicin, D17 had an IC50 of 116.3nM when seeded at 5x103 

cells per well, exceeding that shown by MCF-7 (91.9nM) and more than three times 

that of REM134 (32.17nM) and twenty times that of 3132 (5.5nM) (Figure 3A).  

Even at low inoculums (5x102 cells per well), the IC50 of doxorubicin for D17 was 

8.65nM.   

 

For mitoxantrone, D17 showed an IC50 of 200.1nM, much higher than that of MCF-7 

(19.43nM), REM134 (6.47nM) and 3132 (0.63nM).  For this drug, even at the lower 

inoculum of 500 cells per well D17 was considerably more resistant than the other 

cell lines (IC50 = 43.54nM) (Figure 3B).  Notably, all tested cells (including MCF-7) 

showed IC50 values for mitoxantrone well below initial maximum serum 

concentrations achieved at clinical doses in humans (15mg/m2 ⇒ 0.63-0.95µg/ml ≡ 

1.42-2.14µM) (Canal et al., 1993).  This may reflect differences between the 

pharmacokinetics of the drug in vitro (where drug is applied directly to the cells and 

concentration is sustained) and in vivo, where the drug shows high levels of plasma 

protein binding, accumulation within and slow release from lymphocytes, and 

decreasing plasma concentrations as the drug is redistributed and excreted in bile and 

urine.  

 

3132 lymphoma cells showed greatest drug sensitivity overall, with the lowest IC50 

values for doxorubicin, mitoxantrone and vincristine.  They appeared particularly 

sensitive to vincristine (Figure 4A) – viability reduced dramatically with small 

increases in concentration and response to equivalent levels of drug varied between 

experiments [the latter was noted with other cell lines including D17 and MCF-7 but 

was most marked for 3132].  REM134 was the least sensitive of the canine cell lines 

to vincristine (IC50 5.7nM).   

 

Canine Cancer Cell Lines Show NFκB Transcription Factor Activity 

 

NFκB activation in the canine cancer cell lines D17, J3T, REM134 and SB, and also 

human MCF-7 and feline Cat-MT cells, was assessed by electrophoretic mobility 
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shift assay (EMSA).  This assay uses digoxigenin-labelled (DIG-labelled) NFκB 

DNA consensus sequence as a probe, to assess whether the protein is present within 

nuclear extract (as a result of induced or, for unstimulated cells, constitutive 

activation).  A specific band (DIG-labelled probe bound to nuclear NFκB protein) 

was present for all cell lines (Figure 5).  In addition, specificity of the reaction was 

confirmed - reduction in the DIG-labelled band was seen in the presence of 

unlabelled probe (which binds in competition with labelled oligonucleotide), and a 

supershift observed upon addition of a specific NFκB p65 (RelA) antibody (which 

binds the protein-DNA complex, retarding its movement through the gel).  Thus, 

canine cancer cell lines demonstrate constitutive activation of the nuclear 

transcription factor NFκB. 
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 SB 
1   2   3   4   5   6 

Nuclear extract – + + + + + 
Competition control - 
Unlabelled specific probe  – – + – – – 
Unlabelled non-specific 
probe – – – + – – 
Supershift – Specific p65 
(RelA) antibody – – – – + – 
Non-specific (p53) 
antibody – – – – – + 

 D17 
2    3    5 

REM134 
2    3    5 

J3T 
2    3    5 

MCF-7 
2    3    5 

Cat-MT 
2    3    5 

Nuclear extract + + + + + + + + + + + + + + + 
Competition control - 
Unlabelled specific probe  – + – – + – – + – – + – – + – 
Supershift – Specific p65 
(RelA) antibody – – + – – + – – + – – + – – + 

Supershift Band 

Specific Band 1 

Nonspecific Band 

Specific Band 2 

Supershift Band 

Specific Band 1 
Nonspecific Band 

Specific Band 2 

Free Probe 

Figure 5 – Representative EMSA 
blots demonstrating nuclear 
NFκB activity in canine (and 
human and feline mammary) 
cancer cell lines. 
 
A – SB haemangiosarcoma 
showing test and control gel shift 
binding reactions.  “+” and “–“ 
refer to components added to or 
omitted from standard reaction.  
DIG-labelled probe is included in 
all lanes. 
1 – Negative Control 
2 – Test – Specific band 
3 – Competition control probe 
4 – Non-specific probe 
5 – Supershift – specific antibody 
6 – Non-specific antibody 
 
B – Test and specificity reactions 
for other cell lines. 

A 

B 

Reactions: 
1 – Negative control – no nuclear extract.  No specific band. 
2 – Test – DIG-labelled NFκB consensus oligonucleotide binds nuclear NFκB protein.  Two specific 
bands representing probe-transcription factor complexes are seen due to the heterodimeric nature of 
NFκB.  The larger of these (“Specific band 2”) is more diffuse in canine/feline than in human cells.   
3 – Unlabelled NFκB oligonucleotide competes for binding with labelled probe – loss of specific band. 
4 – Non-specific (Oct2A) oligonucleotide does not compete for binding with labelled probe. 
5 – Supershift – specific p65 antibody binds probe- NFκB complex and retards progress in the gel. 
6 – Nonspecific antibody – does not bind probe-transcription factor complex – no supershift band. 
A non-specific band is seen in all samples, including negative control. 
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Inhibition of NFκB in Canine Cancer Cell Lines 

 

The effects of inhibition of the NFκB pathway in D17, REM134 and SB canine cells 

were assessed by cell viability assay.  InSolution NFκB Activation Inhibitor (ISNI) 

is a quinazoline compound that directly inhibits the transcriptional activation NFκB 

(Tobe et al., 2003).  The effects of two indirect inhibitors acting more proximally in 

the pathway were also tested – these agents inhibit the activity of IKK, hence 

preventing the phosphorylation and degradation of IκB.  IKK Inhibitor II 

Wedelolactone (WDL) is derived from the herbal medicine Eclipta Alba, and inhibits 

both IKKα  and IKKβ (Li et al., 2003; Kobori et al., 2004).  Similarly, IKK Inhibitor 

VII is a benzamido-pyrimidine compound that inhibits activity of IKKα, IKKβ, and 

the IKK complex, with slight selectivity for IKKβ / IKK complex, and as such may 

block NFκB activation by both canonical and alternative pathways (Waelchli et al., 

2006).  Results are summarised in Table 2 and Figures 6-7. 

 

 
 

Drug Cells IC50 

D17 2.82µM 
IKK Inhibitor VII 

SB 2.50µM 

D17 97.46µM 

REM134 19.71µM IKK Inhibitor II 
Wedelolactone (WDL) 

SB 3.84µM 

D17 2.85nM 

REM134 2.69nM 
InSolution NFκB 

activation  
inhibitor (ISNI) 

SB 0.34nM 

 
Table 2 – Calculated IC50 values of NFκB pathway inhibitors for canine cancer cell 
lines.  All cell viability assays were performed at a density of 5x103 cells/well 
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Figure 6 – Cell viability of canine cancer cell lines in response to indirect inhibition 
of NFκB activation - (A) IKK inhibitor VII and (B) WDL. 
 

 
Figure 7 – Cell viability of canine cancer cell lines in response to direct inhibition of 
NFκB activation – ISNI. 

A 

B 
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SB was the most sensitive of the three cell lines to inhibition of the pathway, with 

D17 showing least sensitivity, although both of these cell lines were relatively 

resistant to the effects of IKK Inhibitor VII.  For this drug, viability was maintained 

up to high concentrations before a sudden drop-off in the micromolar range (SB IC50 

2.2µM, D17 IC50 2.4µM) (Figure 6A).  Published IC50 values for the (ATP-

dependent) activity of this drug, based on responses by human HeLa cervical 

carcinoma cells, are in the nanomolar range (IKKβ 40nM, IKK complex 70nM, 

IKKα 200nM) (Waelchli et al., 2006).  Vehicle control samples indicated that the 

activity against the canine cancer cell lines was a drug-related toxicity rather than a 

DMSO carrier effect.  Nonetheless, IC50 values for canine cells were orders of 

magnitude greater than those for human and rodent cells.  It is possible that the drug 

is more specific for IKK in these species, or that effects on canine cell viability at 

these high concentrations were not mediated through inhibition of NFκB signalling.   

 

D17 cells were also resistant to WDL – cell viability was almost 50% at 100µM - 

compared to REM134 (IC50 19.71µM) and SB (IC50 3.8µM) (Figure 6B).  Maximal 

inhibition of REM134 cells by WDL was approximately 60% - at tested 

concentrations ≥100µM, vehicle control samples demonstrated that the DMSO 

carrier was having an inhibitory effect on the cells, and comparison of total responses 

with vehicle control responses indicated that the sigmoid drug inhibition curve had 

reached its lower plateau by this point.  Inhibition of IKK by WDL in SB cells 

resulted in greater loss of viability, which was <5% (4.81%) at 20µM.    

 

ISNI was active against all of the tested canine cell lines at nanomolar 

concentrations.  The IC50 values for D17, REM134 and SB cells were 2.9nM, 3.5nM 

and 0.34nM, respectively.  Inhibition reached a plateau in all cases, with at least 40% 

viability remaining as drug levels were increased (Figure 7).  These results suggest 

that viability for each of the cell lines is at least partially dependent on the anti-

apoptotic and pro-survival influence of NFκB activity.  SB showed greater 

susceptibility to inhibition of IKK than to direct inhibition of NFκB activity.  This 

discrepancy suggests that IKK activity may influence other cell survival processes in 

this cell line.  For D17, the failure of IKK inhibition to produce the same cell-
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inhibitory effects as direct inhibition of NFκB transcriptional activation suggests that 

constitutive NFκB activity in this cell line is independent of IKK, and that alterations 

in the pathway may occur more distally (for example through defective IκB activity). 

 

NFκB may transactivate mediators of cell cycle progression, such as Cyclins D1 and 

D2 (Ghosh and Karin, 2002; Greten and Karin, 2004; Ravi and Bedi, 2004).  The cell 

cycle profiles of ISNI- and WDL-treated D17 and REM134 cells were analysed.  

Results were similar for both cell lines.  Direct inhibition of NFκB transcriptional 

activation (ISNI) did not produce alterations in cell cycle distribution (Figure 8).  

Inhibition of IKK (WDL) resulted in an increased proportion of cells in G2/M phase, 

which suggests that this drug may exert NFκB-independent effects on cellular 

proliferation.  The drug also appeared to affect the integration of PI into DNA, 

leading to reduced definition of the cell cycle distribution profile (Figure 9).  As well 

as reduction in the density of the monolayer, cells treated with both drugs 

(particularly WDL) demonstrated altered morphology (Figure 10). 
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Figure 8 – D17 cells treated with 3.5nM ISNI.   
Gating strategy to select intact (A), single (B) cells for cell cycle analysis (C).   
Proportion of cells in each phase of the cell cycle, as well as hypodiploid peak 
(indicating apoptosis), is similar for control and treated cells 
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Figure 9 – REM134 cells treated with 40 µM WDL.   
Gating strategy to select intact (A), single (B) cells for cell cycle analysis (C).  
Increased proportion of treated cells are in G2/M, with fewer in G0/G1 or S phase 
compared to control.  D17 cells showed a similar cell cycle distribution in response 
to WDL treatment. 
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Figure 10 – Photomicrographs (100x objective) showing canine cancer cells after 
72h treatment with NFκB pathway inhibitors. Bar = 100µm. 
Upper panels – REM134 cells, untreated (A) and treated with 40µM WDL (B).  
Treated cells lose their normal regular epithelioid morphology and organisation, and 
are enlarged with prominent processes.  Many show two adjacent nuclei, consistent 
with the increased proportion of cells in G2M seen on cell cycle profile.   
Lower panels – D17 cells, untreated (C) and treated with 3.5nM ISNI (D).  Overall 
monolayer density is reduced.  Morphologically, treated cells are more spindle-
shaped, again with processes, but changes are less marked than with WDL. 
 

Can Suppression of NFκB Signalling Potentiate the Effects of Conventional 

Chemotherapy on Canine Cells? 

 

Synergy between the antiproliferative effects of NFκB pathway inhibitors and more 

conventional cytotoxic drugs has been demonstrated in some cancers and cancer cell 

lines (Cusack et al., 2001; Mabuchi et al., 2004; Avellino et al., 2005; Nakanishi and 

Toi, 2005).  Upregulation of anti-apoptotic signalling in response to cytotoxic 

challenge may be offset by concurrent suppression of NFκB activity.  Alternatively, 

complementary activity may represent inhibition of both bulk progeny and CSC 

D C 

A B 
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components.  REM134 and D17 cells were treated with combinations of an NFκB 

pathway inhibitor and doxorubicin, to assess whether this potentiated the inhibitory 

effects of either drug given individually.   

 

REM134 cells were tested against combinations of doxorubicin and WDL – results 

are presented in Figure 11.  Concentrations of doxorubicin were varied against a 

background of 5µM WDL (a relatively non-toxic dose).  Not only was there no 

apparent synergy between the two drugs, but in combination with 5µM WDL, the 

IC50 of doxorubicin (19.9nM) was significantly greater than that of doxorubicin 

alone (6.1nM) (p < 0.0001) (Figure 11A).   

 

At an increased background concentration of 20µM WDL, there was a reduction in 

overall cell viability due to its inhibitory effect.  However, the IC50 for doxorubicin 

against this background of NFκB inhibition increased to 108.8nM (p < 0.0001), 

representing a fifty-fold increase – the sigmoid curve for doxorubicin + WDL shifts 

considerably to the right.  Thus, in the presence of WDL, much greater 

concentrations of doxorubicin were required for the same proportional effect on 

viability.  For example, 1nM doxorubicin alone reduced viability by 44.6 ± 1.6%; in 

the presence of 20µM WDL, 1nM doxorubicin resulted in only 6.3 ± 2.1% loss of 

viability in addition to the background inhibition by WDL.  This suggests that the 

effect of combining these drugs is in fact antagonistic (Figure 11B). 

 

D17 were tested against combinations of doxorubicin and ISNI.  Predetermined IC50 

values fell within the nanomolar range for both drugs, with those for doxorubicin 

approximately 40-fold greater than those for ISNI.  The drugs were tested in 

combination at concentration ratios of 1:10 and 1:100 ISNI:doxorubicin.  Neither 

combination resulted in significantly greater cytotoxic effects than those of 

doxorubicin alone  (Figure 12).  At a 1:10 ISNI: doxorubicin ratio, the calculated 

IC50 value (75.4nM) was slightly lower than that for doxorubicin-only controls 

(91.8nM) but this difference was not significant (p = 0.11), and the fitted curves are 

very similar (Figure 12A).   
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Combination Doxorubicin 
only IC50 / nM 

Doxorubicin + 
WDL  

IC50 / nM 

Significant 
Difference? p-value 

Doxorubicin + 
WDL 5µM 6.14 19.92 Yes <0.0001 

Doxorubicin + 
WDL 20µM 2.01 108.8 Yes <0.0001 

 
 
Figure 11 – WDL antagonises the cytotoxic effect of doxorubicin on REM134 cells.   
A – Increasing concentrations of doxorubicin on a background of 5µM WDL (a 
relatively non-toxic dose).  Viability of cells exposed to the drug combination is 
greater than that of cells exposed to doxorubicin only.   
B – Background concentration of 20µM WDL.  When normalised to account for the 
inhibitory effect of WDL (“vs WDL only”), the sigmoid curve for the combination 
lies considerably to the right of the doxorubicin-only curve.   

A 

B 



Chapter 6 – Drug resistance mechanisms of canine CSC 

 284 

 

 
 
 

Combination Doxorubicin 
only IC50 / nM 

Doxorubicin + 
ISNI IC50 / nM 

Significant 
Difference? p-value 

ISNI : Dox 
1:10 91.77 75.35 No 0.112 

ISNI : Dox 
1:100 93.03 98.46 No 0.699 

 
Figure 12 – ISNI does not enhance the cytotoxic effect of doxorubicin on D17 cells 
A – Concentration ratio of 1:10 ISNI:doxorubicin  
B – Concentration ratio of 1:100 ISNI:doxorubicin 
 
There is no significant reduction in IC50 of doxorubicin when combined with ISNI at 
either ratio.  

A 

B 
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Again, rather than apparent synergy or even an additive effect, results suggested that 

the two agents may antagonise each other’s effects.  For example, mean inhibition of 

viability by ISNI only at 10nM was 27.3±1.5%, and by doxorubicin only at 100nM 

was 49.2±0.6%, yet the combination resulted in only 48.0±1.5% inhibition.  

Similarly, although 100nM ISNI alone produced 36.6±3.1% inhibition, and 1000nM 

doxorubicin 85.3±0.5%, the two drugs together led to only 78.3±0.7% loss of 

viability.  At a combination ratio of 1:100 ISNI:doxorubicin, the IC50 (98.8nM) was 

in fact slightly greater than for doxorubicin-only controls (92.9nM), again suggesting 

antagonism, although the difference between the curves was not statistically 

significant (p = 0.70) (Figure 12B).   

 

These results suggest that for D17 and REM134 cell lines, inhibition of NFκB 

activity does not augment the cytotoxic effect of doxorubicin. 

 

Does NFκB Inhibition Preferentially Target Putative CSC Subsets in Canine 

Cancer? 

 

NFκB pathway inhibitors have shown greater selectivity towards CSC than the bulk 

population of some tumours (Guzman et al., 2005; Guzman et al., 2007; Zhou et al., 

2008; Zhou et al., 2009b).  Two putative canine CSC subpopulations – REM134 

tumoursphere cells and REM134 CD44High cells - were assessed for their responses 

to inhibition of IKK (WDL) and direct suppression of NFκB (ISNI).   

 

There were no significant differences between the responses of REM134 

tumoursphere and adherent cells to ISNI (adherent =3.3nM, tumoursphere = 2.5nM) 

(Figure 13A).  The IC50 values for WDL were also very similar (IC50 adherent = 

13.53µM, tumoursphere = 12.99µM) (Figure 13B).  Thus, NFκB inhibitors WDL 

and ISNI show similar activity against REM134 tumoursphere and adherent cells, 

with a considerable proportion of tumoursphere cells unaffected by both drugs at 

maximal activity. 
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Drug REM134 
Adherent 

REM134 
Tumoursphere 

Significant 
Difference? p - value 

ISNI IC50 / 
nM 3.30 2.52 No 0.189 

WDL IC50 / 
µM 13.53 12.99 No 0.603 

 

Drug REM134 
CD44Low 

REM134 
CD44High 

Significant 
Difference? p - value 

ISNI IC50 / 
nM 6.96 16.25 No 0.35 

WDL IC50 / 
µM 26.76 46.89 Yes <0.0001 

 
Figure 13 – NFκB pathway inhibition does not selectively eliminate putative CSC 
populations derived from REM134 
Upper panels –  
Response of REM134 adherent and tumoursphere cells to ISNI (A) or WDL (B). 
Lower panels –  
(C) No significant difference between the responses of REM134 CD44High and 
CD44Low cells to ISNI.   
(D) CD44High cells are less sensitive to WDL than CD44Low cells.  Viability of both 
populations is almost 50% at maximal inhibitory concentrations. 

A B 

C D 
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FACS-sorted REM134 CD44High and CD44Low cells did not show significantly 

different responses to direct NFκB inhibition by ISNI (Figure 13C).  Moreover, 

CD44High cells were significantly more resistant to WDL than CD44Low cells, with 

IC50 values of 46.9µM and 26.8µM, respectively (p = <0.0001) (Figure 13D).  Thus, 

this putative CSC marker identifies cells with reduced, not greater, sensitivity to 

NFκB inhibition.  However, whilst the CD44Low population responded to lower 

concentrations of drug, viabilities of both populations at maximal inhibition were 

similar, at almost 50%.  Treatment with WDL produces alterations in the cell cycle 

profile with an increase in G2M phase cells, and the CD44High phenotype is 

associated with active proliferation in REM134 cells (Chapter 5).  It is therefore 

possible that this result represents a cell-cycle-specific effect rather than inhibition of 

a CSC subpopulation (particularly as direct NFκB inhibition did not produce 

differential effects). 

 

Can Exposure to Cytotoxic Drugs Modulate the CSC Phenotype? 

 

3132 cells were cultured in the presence of increasing concentrations of doxorubicin.  

Over a period of several weeks, stable growth at a concentration of 5nM was 

achieved.  This is close to the measured IC50 for 3132, (5.5nM), and the drug-adapted 

population (“3132Drug”) could be repeatedly subcultured, proliferating at a rate 

comparable to that of the drug-free parental cells (“3132Par”).  Assays were 

performed at this level of adaptation, as further increases in drug concentration 

resulted in growth retardation, cell clumping and cell death.  Equivalent populations 

of MCF-7 cells (MCF-7Par and MCF-7Drug) were also cultured in parallel to the 

3132 cells.  

 

Chemoresistance of cells chronically exposed to cytotoxic drugs 

 

3132Drug cells showed increased resistance to doxorubicin, mitoxantrone and 

vincristine as compared to 3132Par cells.  Although the overall shifts in the sigmoid 

curve for doxorubicin and mitoxantrone were small, IC50 values for the drug-adapted 
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population were at least double those of the drug-free cells (Figure 14).  For 

doxorubicin, 3132Drug showed an IC50 of 22.4nM (95% confidence interval 14.3 – 

35.1nM) where that of 3132Par was 10.6nM (95% confidence interval 6.88 – 

16.27nM, p = 0.0158).  For mitoxantrone, the IC50 of 3132Drug was 0.824nM (95% 

confidence interval 0.502 – 1.353nM); that of 3132Par was 0.298nM (95% 

confidence interval 0.133 - 0.672nM, p = 0.0286).  When treated with vincristine 

both 3132Par and 3132Drug cells showed poor viability even at picomolar 

concentrations such that IC50 values were not obtained, but survival of 3132Drug 

cells was significantly greater at each level of drug (p = 0.0313, Wilcoxon signed 

rank test).   

 

Under equivalent experimental conditions, there were no significant differences 

between the responses of MCF-7Par and MCF-7Drug cells (data not shown).  

Interestingly, when tested at low inoculums (500 cells/well) the IC50 values of MCF-

7Drug were greater for doxorubicin (20.75nM vs 5.878nM for 3132Par, p = 0.003) 

and mitoxantrone (12.59nM vs 0.4155nM for 3132Par, p = 0.0049) (Figure 15 A, B).  

Although viability in the presence of vincristine was poor under these conditions, 

MCF-7Drug cells showed greater survival than MCF-7Par (p = 0.0078, Wilcoxon 

signed rank test) (Figure 15C).  At this lower cell density, the IC50 of doxorubicin for 

parental cells (5.9nM) is close to the level of exposure in culture; at 5000 cells/well, 

the IC50 of doxorubicin is considerably greater (>90nM).  This further emphasises 

the influence of cell density on these assays and during the process of drug 

adaptation.  It is likely that chronic exposure of MCF-7 cells to greater 

concentrations of drug would be required to produce appreciable resistance at higher 

cell densities. 
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A 

B 

C 

Figure 14 – Increased resistance 
of 3132 cells chronically exposed 
to doxorubicin  
(3132Drug) as compared to 
untreated  
(3132Par) cells. 
 
A - Doxorubicin 
B - Mitoxantrone 
C - Vincristine 
 
Although the level of resistance is 
modest, IC50 values of 3132Drug 
for both doxorubicin and 
mitoxantrone are at least twofold 
greater than for 3132Par cells. 
 
Viability of both populations was 
poor 
upon exposure to vincristine.  
However, the survival of 
3132Drug cells was again 
greater than that of 3132Par cells. 
 
 
 
 
 
 
 
 

 
 

Drug 3132Par 3132Drug Significant 
Difference? p - value 

Doxorubicin 
IC50 / nM 10.58 22.44 Yes 0.0158 

Mitoxantrone 
IC50 / nM 0.298 0.824 Yes 0.0268 

Vincristine  
IC50 / nM - - Yes* 0.0313* 

 
* Populations compared using Wilcoxon signed ranks test; 2-tailed p - value 
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Figure 15 - Increased resistance of 
MCF7 cells chronically exposed to 
doxorubicin  
(MCF7Drug) as compared to 
untreated  
(MCF7Par) cells, assessed at 500 
cells/well. 
 
A - Doxorubicin 
B - Mitoxantrone 
C - Vincristine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Drug MCF7Par MCF7Drug Significant 
Difference? p - value 

Doxorubicin 
IC50 / nM 5.87 20.75 Yes 0.003 

Mitoxantrone 
IC50 / nM 0.416 12.59 Yes 0.0049 

Vincristine  
IC50 / nM - - Yes* 0.0078* 

 
* Populations compared using Wilcoxon signed ranks test; 2-tailed p - value 
 
 

A 

B 

C 
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Side population and rhodamine efflux analysis of drug-adapted cells 

 

Hoechst 33342 efflux assays were performed to compare drug-free and drug-adapted 

cells.  MCF-7Par cells showed an SP-like population of 0.7-0.8%, which was 

reduced in the presence of verapamil.  The SP frequency within MCF-7Drug cells 

was greater, representing 1.0-1.6% of cells, and again reduced in the presence of 

verapamil (Figure 16).  Whilst 3132Par cells did not demonstrate any SP profile, 

3132Drug cells showed a candidate population of 0.3%, which was reduced in the 

presence of verapamil (Figure 16).  As was frequently found when analysing 

Hoechst efflux in canine cells, the appearance of this profile was not absolutely 

consistent, and on one occasion an SP profile was seen in the 3132Drug verapamil 

control sample.  Nonetheless, these results suggest that for both MCF-7 and 3132 

cells, chronic adaptation to cytotoxic drugs may induce an SP-like profile. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 – Increased SP within cells chronically exposed to doxorubicin. 
 Above – MCF7Par (left) and MCF7Drug (right) cells. 
 Below – 3132Par (left) and 3132Drug (right) cells.  
 

0.8% 1.6% 

0.0% 0.3% 
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Rhodamine123 efflux may be mediated by either P-gP or ABCG2482T (Honjo et al., 

2001; Robey et al., 2003).  3132Par and 3132Drug cells were tested for Rhodamine 

123 efflux.  As with previous Rho efflux analyses of these cells, a discrete Rholow 

subpopulation was seen, but this was lost when dead cells were excluded based on 

light scatter profile or propidium iodide fluorescence.  When the analysis included 

only live 3132Par and 3132Drug cells, Rho123 fluorescence was equivalent for both 

test and control (no efflux period) samples (Figure 17).   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 – Chronic exposure of 3132 cells to 5nM doxorubicin does not induce 
Rhodamine efflux capacity. 
Overlaid histograms showing Rho123 fluorescence of test (red) and control (blue) 
cells. 
A, B – 3132Par ; C, D – 3132Drug.  Analysis including only intact / live PI-ve cells 
as indicated. 

Live Gate – 
FSC/SSC 

Live Gate – 
PI Negative 

3132Drug 

3132Par 
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Thus, chronic treatment of 3132 or MCF-7 cells with 5nM doxorubicin increased the 

frequency of SP cells, but did not induce appreciable Rho123 efflux capacity.  

 

Expression of ABCG2 by drug-adapted cells 

 

ABCG2 expression by 3132Par, 3132Drug, MCF-7Par and MCF-7Drug cells was 

analysed using Western blot analysis.  A protein band of the predicted size (73kDa) 

was seen for each population.  Neither 3132Drug or MCF-7-Drug cells demonstrated 

any appreciable upregulation of protein expression - signal strength was equivalent 

to that of the β-actin loading control for all samples (Figure 18).  Thus, despite the 

induction/enhancement of an SP-like profile in 3132 and MCF-7 cells by chronic 

treatment with 5nM doxorubicin, no clear changes in ABCG2 expression are 

apparent at this level of drug adaptation. 
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Figure 18 – ABCG2 detection by Western blot analysis of 3132 and MCF-7 cells 
chronically exposed to doxorubicin.  
 

 

Inhibition of NFκB in drug-adapted cell lines 

 

Resistance to chemotherapy drugs may be mediated by upregulation of antiapoptotic 

regulators such as NFκB (Das and White, 1997; Tergaonkar et al., 2002; Bottero et 

al., 2003).  3132Par and 3132Drug cells were assessed for sensitivity to ISNI and 

WDL to assess whether or not chronic exposure to doxorubicin led to increased 

73kDa 

42kDa 

ABCG2 

β-actin 
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dependence on NFκB signalling.  Inhibitory activity of both drugs was similar for 

3132Par and 3132Drug, with no significant difference between IC50 values (Figure 

19).  Similarly, there were no significant differences between responses of 

MCF-7Par and MCF-7Drug to ISNI (to which both populations were resistant) or 

WDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drug 3132Par 3132Drug Significant 
Difference? p - value 

ISNI IC50 / 
nM 16.30 7.53 No 0.486 

WDL IC50 / 
µM 8.42 7.75 No 0.181 

 
Figure 19 – 3132Drug cells do not show increased sensitivity to inhibition of NFκB 
signalling. 
A – ISNI NFκB activation inhibitor; B – WDL IKK inhibitor. 
IC50 values of both drugs are slightly lower for 3132Drug cells, but these differences 
are not significant. 

0.0% 

A 

B 
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DISCUSSION 
 

NFκB as a Therapeutic Target in Canine Cancer  

 

All of the canine cancer cell lines examined in this study demonstrated nuclear 

NFκB transcriptional activity.  In most cases inhibition of signalling resulted in only 

partial reduction in cell viability – this is consistent with the findings of other 

investigators (Hideshima et al., 2002; Zhou et al., 2008; Zhou et al., 2009b).  The 

supershift seen at EMSA with specific antibody to RelA/p65 demonstrates activation 

of the canonical pathway; compensatory non-canonical (alternative) signalling 

cannot be ruled out.  The IKK inhibitors used in this study suppress both IKKα and 

IKKβ activation, so should inhibit both arms of the pathway.  Whilst it is possible 

that genetic alterations of these proteins or their target (IκB) could reduce 

susceptibility, direct inhibition of NFκB transcriptional activation also produced a 

subtotal reduction in cell viability for all of the cell lines.  This suggests that, as a 

population, the cells are not entirely dependent on the anti-apoptotic / pro-survival 

activity of NFκB for viability and proliferation, but that survival is compromised 

where the pathway is inhibited. 

 

An alternative possibility for the subtotal response of the cell lines to NFκB 

inhibition is that only a subset of cells is reliant on signalling, with blockade leaving 

others relatively unaffected.  Suppression of NFκB activity is reported to inhibit 

putative CSC, with more limited efficacy against the bulk cancer cell population, in 

some malignancies including canine leukaemia (Guzman et al., 2007; Zhou et al., 

2008).   

 

Two cellular subpopulations of REM134 mammary carcinoma cells – tumoursphere 

and CD44High cells – were examined for increased sensitivity to inhibition of IKK 

and NFκB.  NFκB pathway inhibitors did not selectively inhibit REM134 

tumoursphere cells, by contrast with the findings of Zhou et al (who reported that 

putative CSC, derived as tumourspheres from the human mammary MCF-7 cell line, 

were preferentially inhibited by NFκB blockade) (Zhou et al., 2008).  The REM134 
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CD44High cells were in fact more resistant to WDL than CD44Low cells.  It seems 

likely that this effect is to some extent cell cycle-dependent, and may occur via 

NFκB-independent mechanisms, as there was no differential response to direct 

NFκB inhibition with ISNI.  Moreover, although there was a shift in the response 

curve, almost 50% viability remained for both populations.  The author 

acknowledges that neither tumoursphere formation or CD44 expression have been 

demonstrated to be reliable indicators of CSC identity for this cell line.  Nonetheless, 

it is interesting that cytotoxicity of WDL was evident at lower concentrations for 

CD44Low cells, which are predominantly in G0/G1, than for actively proliferating 

cells, by contrast with the in vivo activity of many conventional chemotherapy 

agents.  This may indicate potential for selective eradication of slow-cycling 

subpopulations of canine cancer cells. 

 

Although according to the hierarchical CSC paradigm it should be possible to treat a 

tumour by eradicating only the stem cell component – the “dandelion root” – it is 

more likely that therapy must eliminate both the parent and the progeny cells for 

successful outcome (Kern and Shibata, 2007; Jordan, 2009; Zhou et al., 2009a).  

Mathematical modelling suggests that elimination of only CSC would produce only 

slow clinical responses, allowing the opportunity for development of further 

mutations (Dingli and Michor, 2006) and progression of disease may occur in vivo 

even where the CSC compartment is selectively and markedly reduced (Guzman et 

al., 2007).   

 

The effect of combining NFκB inhibition and conventional cytotoxic therapy was 

investigated, to assess whether actions on different cellular subpopulations produced 

a complementary effect.  Synergy between drugs is a topic of considerable debate, as 

the term is often rather overused – definitively, it refers to the situation where the 

effect of a drug combination is greater than the sum of either alone, i.e. more than 

additive (Chou and Talalay, 1983; Chou, 1998).  Complex pharmacological methods 

such as the isobologram or Chou-Talalay combination index may be used to 

demonstrate true synergy (Chou and Talalay, 1983).  Nonetheless, in the context of 

this study, even an additive effect resulting from mutually exclusive drug effects 
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could be relevant (i.e. if NFκB inhibition preferentially eliminated a specific CSC 

subset, or enabled reduction of doxorubicin concentrations for a given cytocidal 

effect). 

 

However, for both REM134 and D17 cells, inhibition of NFκB signalling not only 

failed to increase the efficacy of doxorubicin, but appeared to antagonise its 

cytotoxicity.  WDL at 40µM was shown to modulate the cell cycle profile, increasing 

the proportion of cells in G2/M.  Where drugs affect cell cycle distribution, marked 

sequence-dependent effects are seen for some combinations – for example, marked 

cell cycle-associated resistance is seen when flavopiridol (which arrests cell cycle 

progression) is given prior to paclitaxel (an M-phase specific taxane) (Shah and 

Schwartz, 2001).  However, the effects of doxorubicin are not cell cycle phase-

specific – moreover, even at a WDL concentration with minimal effects on REM134 

viability (5µM), the IC50 of doxorubicin was increased threefold.   

 

Treatment with ISNI did not alter the cell cycle profile, yet antagonism was also seen 

when this drug was combined with doxorubicin – the inhibitory effect was less than 

the sum of that caused by either drug alone.  Further work would be required to 

ascertain why inhibition of NFκB resulted in reduced sensitivity to doxorubicin.  It 

remains possible that combinations using alternative inhibitors of the pathway, or 

different cytotoxic agents, could show synergistic activity. 

 

Mechanisms of Acquired Drug Resistance and Effects on the CSC Phenotype 

 

Chronic exposure of 3132 cells to 5nM doxorubicin resulted in increased resistance 

to doxorubicin, mitoxantrone and vincristine.  The more consistent appearance of an 

SP profile for 3132Drug cells implicates upregulation of membrane pump transporter 

function.  The ABCG2 transporter permits doxorubicin and mitoxantrone efflux, and 

commonly (although not exclusively) mediates the SP phenotype (Bunting et al., 

2000; Zhou et al., 2001; Scharenberg et al., 2002; Jonker et al., 2005).  Although 

there was no marked upregulation of ABCG2 protein expression, it is acknowledged 
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that the resistance levels achieved in this study were modest - continued adaptation 

to higher concentrations of doxorubicin could result in a greater differential.   

 

Expression of ABCG2 protein by MCF-7Drug cells was also similar to that of 

parental cells.  ABCG2 was originally characterised in MCF-7 through chronic 

adaptation to doxorubicin, but drug levels achieved were orders of magnitude greater 

(1µg/ml≡1.8µM) than those used in this study (5nM) (Doyle et al., 1998).  There are, 

however, no reports in the literature of whether this adaptation results in changes to 

the SP phenotype – we have shown that even comparatively low levels of drug 

exposure result in a consistent increase in the proportion of cells in the SP, and that 

this is reduced by verapamil. 

 

P-gP expression may also confer anthracycline resistance, and in some cells is 

responsible for an SP phenotype (Bunting et al., 2000).  Moreover, no single ABC 

protein has the capacity to efflux all three drugs to which the cells showed enhanced 

resistance (neither P-gP nor ABCG2 efflux vincristine, unlike the multidrug 

resistance protein MRP (ABCC1)) (Dean et al., 2005).  It is therefore possible that 

additional resistance mechanisms were induced during the course of drug induction.  

Although 3132Drug cells showed no increase in sensitivity to inhibition of NFκB, 

the contribution of other survival pathways (such as Ras/Akt or mTOR) could be 

investigated further using protein expression studies and specific inhibitors of 

signalling. 

 

Nonetheless, alteration of SP profile for both 3132 and MCF-7 cells suggests that for 

canine cancer cell lines, appearance of a cell in the SP is dependent on more than just 

the presence or absence of ABCG2 expression.  If only the cells expressing the 

relevant pump appear in the SP, then for the 3132Drug cells this would represent a 

very small (0.3 – 0.6%) proportion of the population as a whole.  It seems unlikely 

that survival of such a minority subset could produce the differential 

chemosensitivity seen when 3132Drug cells were treated with cytotoxic agents.  

Additionally, the increase in SP frequency correlated with an increase in overall 

resistance despite no apparent upregulation of transporter expression.   
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The results of the drug induction study are more suggestive that SP in cell lines may 

be an indicator of the functional activity of membrane transporters, rather than 

expression by a distinct population of cells.  This is supported by the findings of 

other investigators.  Although ABCG2 expression may distinguish the SP cells of 

normal bone marrow (Zhou et al., 2001), in some human cancer cell lines, cells 

isolated according to presence in the SP show different properties from those isolated 

according to ABCG2 expression (Patrawala et al., 2005).  Moreover, Hu et al found 

that in hepatocellular carcinoma cell lines, ABCG2 was diffusely expressed amongst 

the population, and that SP cells did not show greater clonogenicity than non-SP 

cells.  However, the SP cells did exhibit decreased drug retention and increased 

pump activity (Hu et al., 2008).  The implications of SP in cell lines may therefore 

be different from those in primary tissues. 

 

If all cells express low levels of ABCG2 yet only certain of these appear in the SP, it 

questions the concept that the SP itself marks out a specific, resistant CSC population 

within a cell line.  The results presented here suggest that SP frequency may be more 

representative of the drug efflux capacity within the population as a whole.  This 

could be further investigated using specific surface staining for ABCG2, to 

determine directly the frequency of cells expressing the protein.  Moreover, 

investigations should be extended to primary neoplastic cells.  The implications of 

SP in cancer remain incompletely understood and may be context dependent.  

However, if the Hoechst efflux assay can identify altered drug sensitivity occurring 

due to altered membrane pump function, prior to demonstrably increased protein 

expression, it could represent a potentially valuable means of assessing the existence 

or development of drug resistance within tumours. 

 
It is accepted that there are limitations to the interpretation of the results obtained 

through these studies of chronic doxorubicin exposure, because the degree of drug 

adaptation was relatively modest, with levels close to the IC50 of the parental cell 

line.  Development of drug-resistant cell lines is a protracted process; many of the 

lines described in the literature have been adapted to exposure over a period of many 

months or years (Taylor et al., 1991; Doyle et al., 1998; Coley, 2004; Uozurmi et al., 
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2005; Yang et al., 2005).  In practice, increasing the concentration of doxorubicin for 

3132Drug cells beyond low nanomolar concentrations proved challenging, and 

resulted frequently in cessation of proliferation followed by cell death.  The 

adaptation of canine lymphoma cell lines to drug exposure has been reported 

(Uozurmi et al., 2005); however, 3132 cells were generally very sensitive to all 

tested cytotoxic drugs, and it may be more rewarding to attempt drug adaptation of 

one of the more robust lines (e.g. REM134) to further investigate the effects of 

chronic exposure. 

 

Implications of CSC-Associated Resistance Mechanisms  

 

The CSC paradigm opens up the possibility that the cells responsible for tumour 

progression might be selectively destroyed, improving clinical outcomes and also 

patient welfare during therapy.  In this context, the ability to prospectively identify 

such cells is paramount.  Although initial reports of LSC isolation showed great 

promise in this regard, it is now clear that there is unlikely to be any single reliable 

marker of “cancer stemness”, particularly for solid tumours. 

 

Elimination of LSC as defined by surface markers such as CD44 and CD123 has 

shown promise in some models of haematological malignancy (Jin et al., 2006; Jin et 

al., 2009).  The use of surface markers to define tumourigenic cells in the context of 

targetted treatment is complicated by their lack of specificity or sensitivity, 

particularly for solid tumours.  Some are overly permissive, with expression seen 

within tumourigenic and non-tumourigenic populations.  Other markers or 

combinations may be too restrictive, such that a significant proportion of 

tumourigenic cells exists outwith the selected population.  Moreover, if continued 

clonal evolution of tumourigenic cells is accompanied by changes in expression 

profile (Shipitsin and Polyak, 2008), this could allow escape from treatments which 

target CSC on the basis of surface phenotype.    

 

As CSC are functionally defined, it may be more rational to target specific functional 

properties such as unlimited self renewal or enhanced antiapoptotic and survival 
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mechanisms.  Multiple cellular signalling pathways have been implicated as 

contributing to the self renewal potential of CSC, including Notch, Wnt/β-catenin, 

Bmi-1 and Hedgehog, and much work has focussed on developing means to 

selectively inhibit these pathways (Lessard and Sauvageau, 2003; Glinsky et al., 

2005; Gal et al., 2006; Liu et al., 2006; Peacock et al., 2007; Malanchi et al., 2008; 

Zeilstra et al., 2008; Majeti et al., 2009; Misaghian et al., 2009; Tanaka et al., 2009; 

Zhao et al., 2009).  Self renewal is an essential capability for normal stem cells, and 

it is essential that for these cells it is not inhibited if they are to repopulate normal 

tissues after insults incurred during cancer therapy.  Finding agents with this kind of 

selectivity is likely to prove challenging.   

 

Anti-apoptotic and survival mechanisms such as PI3K / Akt / mTOR and NFκB are 

aberrantly activated in many cancers, and inhibition of these pathways has been 

demonstrated as a potential means of selectively inhibiting CSC (Guzman et al., 

2005; Dancey, 2006; Zhou et al., 2007; Hambardzumyan et al., 2008; Zhou et al., 

2008; Bleau et al., 2009; Dubrovska et al., 2009).  Hypothetically, as targets they 

may pose less risk to normal stem cells than the inhibition of self-renewal 

mechanisms.  Cancer cells which have accrued genetic mutations, DNA damage and 

other abnormalities which would cause self destruction, i.e. apoptosis, in an 

otherwise normal cell, may be considered as existing under an increased level of 

cellular stress (Evan and Vousden, 2001).  “Unmasking” of these stresses by 

inhibiting the compensatory survival mechanisms could tip these abnormal cells into 

apoptosis, but should be less inherently problematic for (normal stem) cells which do 

not carry additional mutations.   

 

Thus, NFκB inhibition may be a means of targetting CSC without unacceptable side 

effects on repopulation capacity in normal tissues.  Nonetheless, NFκB signalling 

plays an important role in mediating immune and inflammatory responses (Ghosh et 

al., 1998), and any strategy for inhibiting the pathway would have to address the 

potential for immunocompromising the patient. 
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In this study, constitutive NFκB nuclear activity was demonstrated in all of the tested 

canine cancer cell lines.  Moreover, inhibition of this activity resulted in an overall 

reduction in cell viability.  Although the specific combinations of NFκB inhibitors 

and doxorubicin did not show complementary effects for the REM134 and D17 cell 

lines, further investigation may reveal alternative combinations of NFκB inhibitor / 

cytotoxic drug which produce more promising results, through suppression of anti-

apoptotic survival mechanisms.   

 

Marked selectivity of NFκB inhibitors for putative CSC, shown in some studies, was 

not demonstrated.  However, there are inherent difficulties in isolating stable specific 

CSC populations from cell lines, as previously addressed.  Evaluation of primary 

tumour cells may prove more valuable in this regard - as these are more likely to 

demonstrate true heterogeneity, evaluation in vitro of the responses of distinct 

subpopulations might more closely reflect differential sensitivity to NFκB blockade.  

This may help to identify tumours where this could be included as part of a 

combined chemotherapy regime. 

 

The appearance of an SP for 3132Drug cells and its increase on MCF-7 is 

significant, as it suggests that properties used to identify CSC may be acquired or 

modulated during the life history of a tumour.  Again, the inherent lack of 

heterogeneity within continuous cancer cell lines may not adequately represent the 

natural situation in spontaneous tumours in vivo.  It is likely that SP analysis of 

primary cells, both before and during chemotherapy, might give more insight into 

how drug resistance is acquired, and by which cells.  There is increasing recognition 

that CSC are unlikely to be a static entity, and that continued clonal evolution is 

likely, particularly in the face of cytotoxic challenge (Clarke et al., 2006; Adams and 

Strasser, 2008; Visvader and Lindeman, 2008; Shackleton et al., 2009).  If therapies 

are to be directed specifically to CSC populations, any potential for these to change 

over time must be addressed.  

 

If a specific subpopulation of cancer cells is identifiable by the expression of drug 

efflux ABC proteins, this could be exploited to target these cells.  Many ABC 
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inhibitors have been characterised, showing varying levels of selectivity and potency 

for different members of the superfamily (Doyle and Ross, 2003; Dean et al., 2005).  

Although showing promise in vitro, clinical trials with ABC inhibitors such as 

verapamil and cyclosporine have been largely disappointing (Fojo and Bates, 2003; 

Dean et al., 2005).  However, work has concentrated on expression in the context of 

the entire cellular population, rather than expression by specific CSC.  Also, most 

trialled strategies have been aimed at inhibition of P-gP, whereas resistance of many 

putative CSC subsets is mediated by other transporters such as ABCG2.   

 

It has been proposed that devising ways to target specific subpopulations of cells 

with specific inhibitors could prove more rewarding, although the means of 

achieving this remain undetermined (Dean et al., 2005; Jordan, 2009).  It may be 

possible to exploit phenomena such as “collateral sensitivity”, whereby cells 

expressing drug resistance pumps are paradoxically sensitive to certain agents, as 

part of combination strategies targetting CSC (Turk et al., 2009).  Of course, when 

considering inhibition of membrane transporters such as ABCG2, it is vital to 

address the effects on normal stem cells, particularly those where tissue turnover is 

rapid.  Their ability to efflux cytotoxic agents helps them to survive chemotherapy 

and repopulate vulnerable tissues like intestinal epithelium and haematopoietic cells, 

so blanket inhibition of this capability might render patients unacceptably sensitive 

to the effects of anticancer agents.  

 

Signalling mechanisms which may be aberrantly upregulated in CSC, such as those 

controlling differentiation, self-renewal or survival, may also directly modulate the 

activity of membrane transporter pumps.  NFκB may upregulate P-gP, and 

suppression of signalling may inhibit their expression and enhance uptake of 

chemotherapy drugs (Zhou and Kuo, 1997; Bentires-Alj et al., 2003).  Hedgehog 

signalling is reported to enhance expression of ABCG2 and P-gP in carcinoma cell 

lines; inhibition of the pathway with cyclopamine, combined with low dose 

chemotherapy, inhibits transporter expression and activity to increase overall cell kill 

(Sims-Mourtada et al., 2007).  The serine-threonine kinase Akt, involved in multiple 

signalling mechanisms including the PI3K / Akt / mTOR pathway, may modulate the 
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SP of hepatocellular carcinoma cell lines: Akt inhibition was reported to reduce the 

SP, inhibiting drug efflux capacity of these cells (Hu et al., 2008).  Thus, targetting 

of the proliferation or survival mechanisms of CSC as part of combination 

chemotherapy regimes may provide additional benefits through inhibiting their drug 

resistance mechanisms. 

 

Interestingly, it appears that novel tyrosine kinase inhibitors (TKI) such as imatinib  

and the EGFR inhibitors gefitinib (Iressa, AstraZeneca) and erlotinib (Tarceva, 

Genentech) may also act to inhibit the function of ABCG2 and P-glycoprotein, 

increasing the sensitivity of drug-resistant cell lines to conventional drugs 

(Nakamura et al., 2005; Yang et al., 2005; Shi et al., 2007; Chu et al., 2008).  These 

effects are reported in combination with diverse chemotherapeutics, such as the 

intercalating agents doxorubicin (Chu et al., 2008) and mitoxantrone (Nakamura et 

al., 2005; Shi et al., 2007), the mitotic spindle poison paclitaxel (Shi et al., 2007), the 

topoisomerase I inhibitor etoposide (Yang et al., 2005) and the topoisomerase II 

inhibitors irinotecan and topotecan (Nakamura et al., 2005).  Moreover, efficacy is 

reported even where cells do not overexpress the relevant tyrosine kinase (Nakamura 

et al., 2005), suggesting a direct inhibitory effect on the transporter.   

 

Two TKIs have been recently licensed for use in veterinary medicine.  Toceranib 

(Palladia, Pfizer) and masitinib (Masivet, ABScience) have been released for 

treatment of canine mast cell tumours, based on their activity against c-Kit (Pryer et 

al., 2003; Hahn et al., 2008).  Efficacy is reported towards other tumour types, and 

may also relate to inhibition of other tyrosine kinases – for example, toceranib may 

suppress PDGFRβ and VEGFR2 (London et al., 2003; London et al., 2009).  Drug 

resistant canine cancer cell models should provide a platform to assess whether these 

TKIs modulate the activity of membrane transporter pumps, and might therefore 

show potential in drug combinations aimed at targetting resistant or CSC 

populations. 

 

In summary, despite continuing controversy over what identifies a CSC, the goal of 

treatment must be to eliminate all cells which may drive progression or persist after 
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therapy.  Therefore, it is perhaps more important to focus not on specific phenotypic 

identifiers, but what makes these cells resistant.  Whatever the mechanism 

underlying heterogeneity within a given tumour, any cell with inherently increased 

resilience to treatment is more likely to persist, and thus have the opportunity to 

garner further mechanisms of resistance.  Moreover, a reduction in tumour size may 

result in an increased growth fraction and decreased doubling time, increasing the 

proportion of cycling cells and the risk of further resistance developing (Dingli and 

Michor, 2006).  

 

Thus, rapid and simultaneous eradicaton of all tumourigenic subpopulations will 

reduce the potential for further mutation of surviving cells – conversely, therapies 

that show only an increased selectivity towards putative CSC, but fail to completely 

eradicate them, may not ultimately produce better clinical outcomes.  The clinical 

relevance of the CSC hypothesis lies largely in the fact that, whatever their 

phenotype, certain cells survive treatment.  It therefore makes sense that identifying 

and exploiting their resistance mechanisms may be the most successful means to 

eliminate them. 
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According to the cancer stem cell hypothesis, eradication of specific CSC 

subpopulations is critical to the successful treatment of neoplasia, without risk of 

recurrence.  Notwithstanding the debate surrounding the hypothesis, it is rational to 

try and identify and characterise CSC, or clonally evolved subpopulations, which 

might possess enhanced malignant capabilities or persist after therapy.  In dogs, as in 

humans, cancer therapy is confounded by the two major problems of relapse and 

metastatic spread, and so spontaneous cancer in the dog represents a valuable 

comparative model of human disease.  

 

In this study, evaluation of the surface expression patterns of cancer cell lines did not 

reveal discrete candidate CSC populations.  In the canine (and human and feline) cell 

lines tested, the flow cytometry histogram for a given marker appeared as a bell-

shaped curve, from the lowest to the highest level of expression, rather than as a 

positively-stained population separate from the bulk.  In a population of clonal cells, 

this distribution for a given antigen may arise through fluctuation of expression 

levels around the overall population mean (Brock et al., 2009).  A foundation of the 

CSC hypothesis is that the CSC and non-CSC populations are biologically distinct, 

with different inherent properties.  For the cell lines examined here, expression of 

stem cell-associated surface markers (CD24, CD34, CD44, CD117, CD133) 

demonstrated no such distinctions.  Cells were either negative for the tested antigen, 

or where positive (i.e. expression of CD44) showed transient and fluctuating surface 

expression levels in association with proliferation status. 

 

Similarly, studies of drug efflux or detoxification capacity failed to demonstrate 

distinct and consistent subpopulations of cells with enhanced resistance mechanisms.  

Although Hoechst efflux analysis identified a side population within the tested 

cancer cell lines, the inconsistency of the assay precluded further isolation and 

evaluation of these cells.  Moreover, the relationship between SP and expression of 

drug efflux pumps remains ambiguous.  Evidence presented here from the study of 

drug resistant cells, as well as by other investigators, suggests that in cell lines 

appearance of a cell in the SP is multifactorial.  Whilst the magnitude of the SP may 

indicate the overall functional activity of membrane transporters, cells within a 
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population of inherently similar ABCG2+ cells may fall within the SP according to 

transient factors such as proliferation or developmental status.  Thus, although 

presence within the SP may indicate the status of individual cells at a particular 

timepoint, it may not reflect a biologically distinct cellular subpopulation. 

 

Although heterogeneity may exist within cell lines, the existence of biologically 

discrete subpopulations within clonal populations, which have been passaged over 

many generations, is less likely than in primary cells.  Whilst the resurgence of the 

paradigm has been accompanied by numerous reports of putative CSC in well-

established tumour cell lines, the concept that cell lines are maintained by a specific 

subpopulation of self-renewing cells remains contentious (Locke et al., 2005; Zheng 

et al., 2007; Yoo and Hatfield, 2008).  For example, the formation of colonies in soft 

agar by only a limited proportion of cells has been suggested as evidence of this 

biological distinction (Lou and Dean, 2007).  However, the evidence obtained 

through studies of CD44 expression by canine cancer cell lines strongly suggests that 

transient factors such as proliferation status can have a profound effect on colony 

formation.  Thus, apparent heterogeneity in cellular behaviour within cell lines is not 

necessarily the result of a predetermined hierarchy.  Modelling of the population 

dynamics within continuous cell lines suggests that a situation in which the bulk of 

cells are unable to replicate extensively, but are propagated by a limited 

subpopulation, may not be sustainable (Figure 1).  

 

Moreover, within continuous cell lines, novel phenotypes may arise as a result of 

extrinsic influences, which will include culture conditions and technique.  This may 

be one reason behind the conflicting data obtained through investigation by different 

groups (even for well characterised cell lines such as human MCF-7 mammary 

carcinoma (Kondo et al., 2004; Patrawala et al., 2005; Zhou et al., 2007; Engelmann 

et al., 2008; Steiniger et al., 2008; Tanaka et al., 2009) or rat C6 glioma (Kondo et 

al., 2004; Zheng et al., 2007)), and further confounds interpretation of the literature.  

Undoubtedly, cell culture techniques became more refined during the course of 

conducting the experiments presented here, due to greater operator experience. 
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Figure 1 – Modelling the maintenance of a rare and specific CSC population within a cell 
line.  Model assumes that non-stem cells may participate in population expansion, as must be 
the case in logarithmic growth.  Symmetrical division of stem cells maintains overall 
proportion through exponential expansion (A).  If stem cells must divide asymmetrically to 
produce non-stem cells, then the overall propoportion of stem cells will be reduced even 
over a limited number of divisions (B), unless proliferation rate of stem cell fraction is 
significantly greater, or non-stem cells and their descendents die soon after proliferation.  
(Adapted from Zheng et al, 2007 Cancer Research, 67 (8), 3691-7). 
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Investigation of the effects of culture protocol (including cellular confluence at 

harvest, culture medium and split ratio) may help to elucidate how this may affect 

the results of assays for CSC, such as Hoechst-effluxing SP or expression of cell 

surface markers.  Nevertheless, it appears that continuous cell lines have limitations 

when investigating concepts of cellular heterogeneity and hierarchies in neoplasia, as 

stable and intrinsic biological distinctions between cells are less likely to be evident 

than in spontaneous tumours.   

 

By contrast, within the kt-osa populations derived from a primary canine 

osteosarcoma, discrete subpopulations expressing CSC-associated antigens such as 

CD117 and CD133 could be identified.  The comparatively rapid reduction in these 

subpopulations over time in adherent culture suggests that heterogeneous expression 

patterns will be best represented in primary cells derived directly from tumours in 

vivo.  This is particularly germane when considering rare-event and / or putatively 

slow-cycling populations.  However, this also presents practical challenges, not only 

in terms of access to samples, but also when considering the cell numbers that will 

need to be isolated in order to carry out comparative assays. 

 

Tumoursphere culture represents a potential means of expanding putative CSC ex 

vivo for further characterisation.  Many studies have reported the use of the assay as 

successfully isolating candidate CSC populations from cancer cell lines, and all of 

the canine cell lines examined showed some degree of tumoursphere formation.  

However, clonal and population analyses for the cell lines tested in this study 

suggested that this did not represent proliferation of a biologically distinct population 

of canine tumour cells.  Proliferation as tumourspheres by a fixed proportion of CSC 

should result in a linear relationship between cell density and sphere formation - this 

was not seen for any of the tested cell lines.  The formation of tumourspheres by 

CD44High, but not  CD44Low/-, REM134 cells also indicated the influence of other 

factors, such as cell cycle/proliferation status at plating.   

 

It is accepted that these ambiguities may be specific to the cell lines examined in the 

study, but the findings certainly emphasise how results obtained through 
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tumoursphere culture must be carefully interpreted (Visvader and Lindeman, 2008).  

For example, claims that sphere formation equates to CSC proliferation should at 

least be qualified by clonal analysis, to demonstrate self-renewal capacity (as this is 

one of the principal cellular characteristics for which low-density, serum-free culture 

hypothetically selects).   

 

In comparison to the continuous cell lines, for which most cells appeared to 

participate in tumoursphere formation in bulk cultures, observations of tumoursphere 

formation by kt-osa populations were more suggestive of selective proliferation by 

certain cells.  Morphological distinctions between spheres derived from early and 

later-passage cells again suggest that tumoursphere culture of cells derived directly 

from tumours may more accurately reflect their heterogeneous composition.  

Notably, however, proliferation of kt-osa cells in low-density culture was limited, 

and did not permit propagation beyond 2-3 passages, despite the fact that the cells 

were derived from an aggressive metastatic tumour which led rapidly to the death of 

the patient.   

 

Thus, whilst the fitness of cells to proliferate as tumourspheres in low-density serum-

free culture is frequently cited as evidence of a CSC population, it is clear that the 

tumour-propagating cells of some malignancies may not be isolated using this assay.  

Additionally, whilst tumoursphere culture may be a useful means of expanding 

putative CSC populations for characterisation, multiple factors (such as differences 

in growth phase, drug penetration and oxygenation, and the persistence of contact-

related resistance in 3-D cultures) would suggest that direct comparison of 

tumoursphere and adherent cultures may not give reliable results when inferring 

differential sensitivities to anticancer agents.   

 

The demonstration of an ALDHBright population within the BMMNC and PBMNC of 

a dog with leukaemia (and also weakly positive cells within the kt-osa populations at 

early passage) also supports the concept that subpopulations may be more readily 

identified within primary cells than cell lines – none of the tested canine cell lines 

tested positive using the Aldefluor assay.  It is acknowledged that the role of ALDH 
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in normal canine stem and progenitor cells is not well established - whilst it appears 

to identify stem-like cells of multiple human tissues, its potential as a marker of 

undifferentiated cells in other species remains to be determined.  Nonetheless, these 

findings suggest heterogeneity within these primary cell populations for drug 

detoxification capacity, and the ALDHBright population increased during the course of 

treatment with the alkylating agent cyclophosphamide.   

 

Significantly, the Aldefluor assay did not demonstrate a strong candidate for normal 

HSC within normal canine BMMNC.  Similarly, CD34+ leukaemic BMMNC 

showed a scatter profile distribution distinct from that expected for normal HSC.  

This is consistent with the now widely accepted concept that the CSC is not 

necessarily equivalent to a transformed tissue stem cell, and as such, the tumour-

propagating cell will not necessarily display the same phenotypic characteristics as 

the stem cell which maintains the corresponding normal tissue.  However, the 

functional capacity of ALDH to detoxify xenobiotic substances suggests that the 

Aldefluor assay may represent a potential means of identifying drug resistant cells, 

which may exert a critical influence on the biological behaviour of a tumour.  

 

Thus, the results obtained through the course of these studies suggest that attempts to 

prospectively isolate subpopulations of putative CSC should concentrate on primary 

tissues.  Of course, whilst the studies examined several canine cancer cell lines of 

diverse origin, this does not rule out the existence within other lines of stable, 

biologically distinct CSC fractions - but the lack of demonstrably discrete 

subpopulations within cell lines is by no means exclusive to this study.  However, 

cell lines remain invaluable for developing techniques and assays, especially when 

optimising sensitive assays for characterisation of “precious” primary cells, which 

may be available on a limited basis. 

  

One of the most enticing prospects raised by the CSC hypothesis was the possibility 

that there might be a consistent and universal marker (for example, CD133 or 

presence of a side population) enabling identification of the tumour-propagating 

fraction.  It has now become clear that there exists considerable variation both 
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between and within tumours and tumour types.  This will complicate interpretation 

of results obtained from primary samples – this is particularly relevant to studies of 

canine neoplasia, where detailed immunophenotyping data from large numbers of 

similar tumours is less readily available than for comparable human disease.  Thus, 

cell lines also have an important place when assessing the implications of certain 

phenotypes.  For example, in not just one but six canine (and one feline) cancer cell 

lines, an association between CD44 and cellular proliferation status was 

demonstrated.   

 

The data gathered through studies of CD44 expression in canine cancer cell lines 

suggest that, as a transiently-expressed marker of proliferating cells, it may have 

limited utility as a CSC identifier.  Interestingly, other studies where data suggests 

that the putative CSC marker may be proliferation-associated include the seminal 

brain tumour stem cell work published by Singh et al in 2003.  In that study, CD133+ 

cells showed increased proliferative capacity and tumoursphere formation compared 

with CD133- cells; moreover, when sorted cells were tested for purity, that of the 

CD133- population was much higher than the CD133+ subset (CD133- 92.6 – 97.3%; 

CD133+ 46.9 – 79.8%), which may indicate transient expression.  Notably, these 

were cells derived from primary tumours, rather than cell lines (Singh et al., 2003).  

The association of CD44 with proliferation does not preclude its potential as a 

prognostic indicator in cancer. Published observations have been equivocal, but have 

involved limited characterisation of variant isoforms, and on the basis of the findings 

presented here, the molecule warrants further investigation in canine tumours. 

 

The demonstration of NFkB activation in multiple canine cancer cell lines similarly 

merits further investigation of the impact that this pro-survival pathway may have on 

the progression of canine neoplasia.  Although it was unexpected to see antagonistic 

effects between the tested NFkB inhibitors and doxorubicin, assessment of other 

compounds may reveal drugs with more promise in this regard (published drug 

screens generally involve selection of a lead compound for further testing, which 

may suggest that of those assayed, not all produce the anticipated results!).  The 

tested inhibitors showed little selectivity for populations derived from the REM134 



Chapter 7 – Cancer stem cells in canine tumours 

 314 

mammary carcinoma cell line on the basis of putative CSC markers (tumoursphere 

formation / CD44 expression), but it appears that these models may not isolate 

biologically distinct cellular subsets.  It remains possible that ex vivo sensitivity 

testing of specific cellular fractions directly derived from spontaneous tumours will 

demonstrate a greater differential effect.  However, these findings emphasise the 

complexity of the pathway, and its multiple context-dependent interactions with 

other signalling mechanisms, such that it may be difficult to predict the outcomes 

associated with its suppression in diverse cell types (Hideshima et al., 2009). 

 

The key implication of the CSC hypothesis for cancer therapy lies in the concept that 

the behaviour of cancer cells will be predictable, based on their status as CSC 

(tumourigenic) or non-CSC (non-tumourigenic).  This implies that therapy could 

effectively “ignore” certain cells within a tumour – as long as treatment eliminates 

the tumour-propagating CSC population, the rest of the cells should be unable to 

sustain the malignancy and the tumour will regress.  There is now sufficient evidence 

to support the existence of cellular hierarchies within multiple tumour types, 

particularly haematopoietic malignancies.  However, it is now widely accepted that 

CSC themselves may mutate, and their phenotypic profile change over time.  It could 

be argued that, as a consequence, it will never be possible definitively to predict 

which cells represent the CSC fraction such that all other cells may be considered 

non-tumourigenic.  Moreover, an individual tumour may comprise more than one 

tumourigenic population.  This has led some commentators, such as the eminent 

cancer biologist and clinician Isaiah Fidler, to conclude that even where the 

hierarchical CSC model applies, specific therapeutic targetting of CSC is unlikely to 

improve clinical outcomes (Rowan, 2009).   

 

Even staunch proponents of the CSC hypothesis concede that the published literature 

has become confused, leading not only to difficulty when evaluating its implications, 

but also increased scepticism.  This has arisen not least as a result of 

overinterpretation of the model.  Indeed, in a recent interview John Dick, leader of 

the group which performed the seminal work on stem cell hierarchies in AML, 

welcomed some of this controversy: 
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“Controversy sparks better and better science. What it does is it actually 

eliminates sloppy thinking.  There's been a real rush onto the cancer stem cell 

bandwagon in the last couple of years. People are talking about cancer stem 

cells here, there and everywhere, and in any old cell line. There was a huge 

slippage in the kind of criteria and rigor. People were using this terminology 

without any thought or any rigor based on some cell-surface marker or 

something like that." (Baker, 2009) 

 

Fundamentally, characterisation of CSC must be based on their functional properties 

– that is, self-renewal and the capacity to differentiate into all relevant cell lineages.  

This may be supported by evidence of other CSC-associated properties, such as 

expression patterns associated with normal tissue or embryonic stem cells, growth in 

low-density tumoursphere conditions or the appearance of a side population – 

however, in order to substantiate a claim that a cancer cell is a CSC, these alone are 

not sufficient.  Equally, where some cells show self-renewal capacity and 

multipotentiality but are no more resistant to standard therapies, or indeed if all cells 

within the population may show these properties (such as with some cancer cell 

lines), the CSC hypothesis will not be clinically relevant. 

 

Nonetheless, against a background of consistently high rates of recurrence after 

therapy, the CSC hypothesis draws attention to the concept that eradication of 

specific cellular subpopulations, with different potencies and vulnerabilities, may be 

required to eliminate some cancers.  This ties in with an increasing recognition that 

the most successful treatment outcomes in cancer are likely to be obtained through 

tailoring therapeutic regimes to individual tumours.  The acknowledgement of clonal 

evolution amongst CSC populations complicates the issue of direct targetting – 

although the “dandelion root” concept of CSC-based therapy suggests that 

elimination of only these cells should be sufficient to destroy a tumour, this will only 

be a safe approach where it can be proven definitively that the remaining cells have 

no tumourigenic potential.  It can be argued that, owing to the caveats associated 

even with “gold standard” methodologies such as serial transplantation in laboratory 
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animals, there are currently no assays sufficient to provide this level of evidence.  

Thus, CSC-based therapies are likely to be most successful as part of a combination 

regime which includes destruction of the bulk population.  Moreover, even where the 

hypothesis is applicable, it is unlikely to replace the need for thorough 

characterisation and vigilant monitoring of cancer. 

 

If CSC show clonal variation within and between tumours, the assessment of 

spontaneous, naturally heterogeneous tumours such as those occurring in the pet dog 

population may provide more relevant information than more homogeneous, 

artificially-induced neoplasms in laboratory animals.  Although human tumour 

xenografts may be propagated in immunosuppressed murine hosts, the cellular 

population is likely to have undergone a degree of selection for growth in a foreign 

environment; moreover, interactions with host factors such as the tumour niche and 

immune system will be dissimilar to those experienced by the parental tumour.   

 

The assays developed during the course of these studies should enable more detailed 

assessment of clinical cases, to characterise cellular heterogeneity within 

spontaneous canine tumours.  Using a panel of flow cytometric markers, cells may 

be characterised according to surface phenotype – not only will this demonstrate the 

presence of subpopulations expressing CSC-associated markers, but testing over the 

course of treatment (for example with haematological malignancies) may indicate 

whether certain cellular subpopulations appear to be more resilient to a given 

treatment protocol.  Isolation by FACS and/or expansion in tumoursphere culture, 

with ex vivo sensitivity testing of specific subsets, may build up a picture of how 

putative CSC respond to specific interventions, helping to inform therapeutic 

choices.   

 

Moreover, assessment of tumours throughout the course of treatment using assays for 

CSC properties may help to determine the progression of disease, or monitor the 

development of chemoresistance.  For example, analysis of Hoechst efflux by drug-

exposed cells showed that the frequency of SP cells may increase as resistance 

develops.  SP, rhodamine efflux and Aldefluor analysis of spontaneous tumours may 
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suggest a likely drug sensitivity profile or identify resistant subsets, allowing 

selection of agents which will be more likely to eliminate neoplastic cells and 

avoidance of those which may permit persistence of putative CSC. 

 

The cancer stem cell hypothesis remains a topic of great interest and debate, with 

considerable scope for further investigation.  Through following the literature, and in 

the course of these investigations, it has become clear that the CSC model is not the 

straightforward, universal paradigm that many had perhaps hoped it would be – in 

the words of John Dick,  

 

“There was a lot of hype of CSC being the answer to everything. Now we are 

in the phase of asking, "How valid is it? How universal is it?"” (Baker, 2009) 

 

However, where CSC hierarchies exist in tumours, they may present novel ways to 

confront major clinical challenges in cancer, such as metastasis and disease relapse.  

Not only will naturally heterogeneous spontaneous cancer in the dog provide a 

suitable model for human disease, advances in understanding will also serve to 

improve the welfare of canine patients.  It is hoped that the work presented here will 

provide a basis upon which can be built further insight into the CSC hypothesis, and 

the role of tumour cell hierarchies in cancer. 
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Abstract

Cancer is a disease of all vertebrate species and has been well documented throughout history with fossil records indicating that dino-
saurs of the Jurassic period suffered from the disease. The Greek physician, Galen is accredited with describing human tumours as having
the shape of a crab, with leg like tendrils invading deep into surrounding tissues – hence the term cancer. Today cancer can be defined as
any malignant growth or tumour caused by abnormal and uncontrolled cell division that is able to invade tissues locally and spread to
other parts of the body through the lymphatic system or the blood stream. This is obviously a simplistic attempt at describing a complex
disease that can utilize a myriad of biological pathways to sustain growth and proliferation. Dissecting these pathways has been the chal-
lenge of cancer researchers for decades in the search for new treatment strategies. This review attempts to condense our understanding of
cancer and to offer insights into an alternative theory regarding the existence of true cancer stem cells and how this will inform the devel-
opment of new therapeutics.
! 2007 Elsevier Ltd. All rights reserved.
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Introduction

Fundamental to our basic understanding of mammalian
physiology is the concept of homeostasis. If we consider the
body as a multi-cellular unit, then cells within this unit
form part of a specialized society that cooperates to pro-
mote survival of the organism. In terms of homeostasis, cell
division, proliferation and differentiation are strictly con-
trolled and a balance exists between normal cell birth and
natural cell death (Argyle and Khanna, 2006). In simple
terms, cancer can be considered as a breakdown in cellular
homeostasis leading to uncontrolled cell division and pro-
liferation, which ultimately leads to a disease state.

The mechanisms of this breakdown are the subject of
intense research, especially considering the high incidence
of cancer in both humans and domestic animals. However,

despite the fact that cancer is a common disease, and con-
sidering the number of cells making up an organism, the
change from normal cell to cancer cell is actually a very
rare event (Evan and Littlewood, 1998). This is because
evolution has allowed the development of many fail-safe
mechanisms within the cell that react to DNA damage by
arresting the cell cycle (to allow repair) or allow the cell
to die naturally. In this short synopsis of cancer biology
we will consider the current understanding of cancer biol-
ogy and discuss some of the ways that this is leading to
informed drug development. Further, we will consider the
role of stem cells in cancer and how they are challenging
conventional wisdom.

The pathways to cancer: A stochastic model

For many years, cancer researchers have considered a
stochastic model of cancer development (McCance and
Roberts, 1999). In this model, cancer formation is the
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phenotypic end result of a whole series of changes that may
have taken a long period of time to develop. Following an
initiation step produced by a cancer forming agent on a
cell, there follows a period of tumour promotion (Fig. 1).
The initiating step is rapid and affects the genetic material
of the cell. If the cell does not repair this damage, then pro-
moting factors may progress the cell toward a malignant
phenotype. In contrast to initiation, progression may be a
very slow process, and may not even manifest in the life-
time of the animal.

Over the past four decades, cancer research has gener-
ated a rich and complex body of information revealing that
cancer is a disease involving dynamic changes in the gen-
ome. Each stage of multi-step carcinogenesis reflects
genetic changes in the cell with a selection advantage that
drives the progression towards a highly malignant cell.
The age-dependent incidence of cancer suggests a require-
ment for between four and seven rate limiting stochastic
events to produce the malignant phenotype.

Oncogenes

Seminal to our understanding of cancer biology has
been the discovery of the so called ‘‘cancer genes’’, or onco-
genes, and tumour suppressor genes. Mutations that pro-
duce oncogenes with dominant gain of function, and
tumour suppressor genes with recessive loss of function
have been identified through their alteration in human
and animal cancer cells and by their elicitation of cancer
phenotypes in experimental models. The initial observation
came in 1910 when Rous demonstrated that a filterable
agent (later classified as a retrovirus termed avian leukosis
virus) was capable of producing lymphoid tumours in

chickens. Retroviral sequences that are responsible for
transforming properties are called viral oncogenes (v-onc).
Viral oncogenes were subsequently shown to have cellular
homologues called cellular oncogenes (c-onc). Later the
term proto-oncogene was used to describe cellular onco-
genes that do not have transforming potential to form
tumours in their native state but can be altered to lead to
malignancy.

Most proto-oncogenes are key genes involved in the
control of cell growth and proliferation and their roles
are complex. For simplicity, their sites and modes of action
in the normal cell can be divided as follows: growth factors,
growth factor receptor, protein kinases, signal transducers,
nuclear proteins and transcription factors (Hanahan and
Weinberg, 2000) (Table 1 and Fig. 2). The conversion of
a proto-oncogene to an oncogene is a result of somatic
events in the genetic material of the target tissue. The acti-
vated allele of the oncogene dominates the wild-type allele
and results in a dominant gain of function. This means that
only one allele has to be affected to obtain phenotypic
change and is in contrast to tumour suppressor genes where
both alleles have to be lost for phenotypic change. The
mechanisms of oncogene activation include the following.

Chromosomal translocation

Where proto-oncogenes are translocated within the gen-
ome (i.e. from one chromosome to another), their function
can be altered. In human chronic myeloid leukaemia
(CML), a chromosomal breakpoint produces a transloca-
tion of the c-abl oncogene on chromosome 9 to a gene
on chromosome 22 (bcr). The bcr/abl hybrid gene produces
a novel transcript whose protein product has tyrosine

Initiation

Promotion Promotion Promotion

Metastasis
Cancer cell

Any normal cell

Fig. 1. The stochastic model of carcinogenesis: Cancer formation is the phenotypic end result of a whole series of changes that may have taken a long
period of time to develop. They can occur in any cell type in the body. Following an initiation step produced by a cancer forming agent on a cell, there
follows a period of tumour promotion. Each stage of multi-step carcinogenesis reflects genetic changes in the cell with a selection advantage that drives the
progression towards a highly malignant cell. The age-dependent incidence of cancer suggests a requirement for between four and seven rate limiting,
stochastic events to produce the malignant phenotype.
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kinase activity and can contribute to uncontrolled cellular
proliferation (Heaney and Holyoake, 2007). This tyrosine
kinase activity has become a major target for therapeutic
intervention, with many drugs such as imatinib (a tyrosine
kinase inhibitor) in human clinical trials.

Gene amplification

Amplification of oncogenes (i.e. multiple gene copies)
can occur in a number of tumour types and has been dem-

onstrated in domestic animal cancers. As an example, the
MDM2 proto-oncogene has been identified in dogs and
horses and has been shown to be amplified in a proportion
of canine soft-tissue sarcomas (Nasir et al., 2001).

Point mutations

These are single base changes in the DNA sequence of
proto-oncogenes leading to the production of abnor-
mal proteins. For example, point mutations in the Ras

Table 1
Oncogenes can be growth factors, growth factor receptors, protein kinases, signal transducers, nuclear proteins and transcription factors

Oncogene class Examples

Growth factors Platelet derived growth factor (PDGF)
Epidermal growth factor (EGF)
Insulin like growth factor-1 (ILGF-1)
Vascular endothelial growth factor (VEGF)
Transforming growth factor-b (TGF-b)
Interleukin-2 (IL-2)

Growth factor receptors PDGF-receptor (PDGF-R)
EGFR-receptor (erbB-1)
ILGF-1 receptor (ILGF-R)
VEGF-receptor (VEGFR)
IL-2 receptor (IL-2R)
Hepatocyte growth factor receptor (met)
Heregulin receptor (neu/erbB-2)
Stem cell factor receptor (kit)

Protein kinases Tyrosine kinase e.g.: bcr-abl, src
Serine-threonine kinase e.g.: raf/mil, mos

G-Protein signal transducers GTPase e.g.: H-ras , K-ras , N-ras

Nuclear proteins Transcription factors, e.g., ets, jun, fos, myb, myc, rel

Growth 
factors

Growth factor
receptors

Signal transduction

Nuclear and 
transcription factors

Cell growth and proliferation

Fig. 2. Oncogenes are normal cellular genes involved in cell growth and proliferation: Most proto-oncogenes are key genes involved in the control of cell
growth and proliferation and include growth factors, growth factor receptors, protein kinases, signal transducers, nuclear proteins and transcription
factors. The conversion of a proto-oncogene to an oncogene is a result of somatic events in the genetic material of the target tissue. The activated allele of
the oncogene dominates the wild-type allele and results in a dominant gain of function. The mechanisms of oncogene activation include chromosomal
translocation, gene amplification, point mutations, and viral insertions.
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proto-oncogene are a consistent finding in a number of
human tumours (Konstantinopoulos et al., 2007).

Viral insertions

Studies of the tumour causing viruses allowed for the
discovery of oncogenes. In some circumstances proto-
oncogene function can be damaged by the insertion of viral
elements. A more detailed account of viral oncogenesis is
given below.

Tumour suppressor genes

Changes in genes can lead to either a stimulatory or
inhibitory effect on cell growth and proliferation. The stim-
ulatory effects are provided by the proto-oncogenes
described above. Mutations or translocations of these
genes produce positive signals leading to uncontrolled
growth. In contrast, tumour formation can result from a
loss of inhibitory functions associated with another class
of cellular genes called the tumour suppressor genes. The
Retinoblastoma gene (Rb) was the first gene to inform
mechanisms of tumour suppressor genes (Weinberg, 1995).

The retinoblastoma tumour suppressor Rb is the princi-
pal member of a family of proteins that also encompass
pRb2/p130 and p107. Rb plays a central role in regulating
cell cycle progression in G1 and disruption of Rb function
has been found to be a common feature of many human
cancers as well as the classical retinoblastoma tumour.
Rb function can be abrogated by point mutations, dele-
tions, or by complex formation with viral oncoproteins
such as SV40 large T antigen or adenoviral E1a protein
(Knudsen et al., 2006). In a cell with only one normal allele
of a tumour suppressor gene such as Rb, that allele usually
produces enough tumour suppressor product to remain
normal. Mutations in tumour suppressor genes behave
very differently from oncogene mutations. Whereas activat-
ing oncogene mutations are dominant to wild-type (they
emit their proliferating signals regardless of the wild-type
gene product), suppressor mutations are recessive. Muta-
tion in one gene copy usually has no effect, as long as a rea-
sonable amount of wild-type protein remains (Fig. 3).

The discovery of the p53 gene, another tumour suppres-
sor, revolutionised our understanding of molecular oncol-
ogy (Harris, 1996). p53 is a gene whose product is
intimately involved in cell cycle control; it has been
described as the guardian of the genome, by virtue of its
ability to promote cell cycle arrest or apoptosis depending
on the degree of DNA damage (Fig. 4). Consequently, the
p53 tumour suppressor gene plays an important role in cell
cycle progression, regulation of gene expression and in the
cellular response mechanisms to DNA damage.

Under normal physiological conditions, wild type p53
can bind specific DNA sequences and regulate transcrip-
tion of a number of genes involved in cell cycle progression
and apoptotic pathways including p21waf1/cip1 and bax. The
p53-mediated mechanisms are responsible for tumour sup-

pression and prevent accumulation of potentially onco-
genic mutations and genomic instability. Failure by p53
to activate such cellular functions may ultimately result
in abnormal uncontrolled cell growth leading to tumori-
genic transformation (Fuster et al., 2007). p53 is the most
frequently inactivated gene in human neoplasia with func-
tional loss commonly occurring through gene mutational
events including non-sense, mis-sense and splice site muta-
tions, allelic loss, rearrangements and deletions (Lane,
1992; Levine, 1997). However, p53 function can also be
abrogated by several non-mutational mechanisms includ-
ing nuclear exclusion, complex formation with a number
of viral proteins and through over expression of the cellular
oncogene MDM2 (mouse double minute-2) (Haupt et al.,
1997).

Oncogenenic viruses provided the first evidence that
genetic factors play a role in the development of cancer
(Jarrett and Onions, 1992). These viruses are a diverse
group of pathogens that include all the major families of
the DNA viruses and a class of RNA viruses known as
Retroviruses. Although diverse, one almost universal fea-
ture is the importance of a DNA stage in the replication
of the viral genome.

Retroviruses and cancer

Retroviruses are important oncogenic viruses of cats,
cattle and chickens, the studies of which have been seminal
to our understanding of viral and non-viral oncogenesis.
The structure and basic replication cycle of a typical retro-
virus is shown in Fig. 5. Retroviruses can promote carcino-
genesis through the activation of cellular oncogenes by
integrating adjacent to them. A good example of this is

Rb

Normal cell with both alleles present
Normal Rb production

Cell with only one allele.  Rb is still 
produced but the cell is at greater risk of 
acquiring a second mutation

Cell with both alleles missing.
Retinoblastoma cell has no Rb
protein production

Rb

Fig. 3. In contrast to oncogene mutations, suppressor effects are recessive.
Normal cell (a). Mutation in one copy (b) usually has no effect but the cell
is at risk. Cells with both alleles affected produce no tumour suppressor
effects (c).
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the myc gene, which is frequently activated in B-cell
tumours of chickens caused by avian leukosis virus
(ALV) and feline T cell lymphomas caused by feline leu-
kaemia virus (FeLV). (Neil et al., 1984). Myc is an onco-
gene intimately associated with cell cycle progression and
proliferation. When there is viral insertion close to the
myc locus, the gene becomes controlled by the powerful
viral promoters leading to up-regulated myc expression
and prevention of cells entering Go of the cell cycle (Fig. 6).

In cattle, a leukaemia/lymphoma complex occurs both
as a sporadic and an enzootic form, the latter being associ-
ated with infection with bovine leukaemia virus (BLV)

(Gillet et al., 2007). In contrast to FeLV and ALV, BLV
has a remarkable cell association and is only found in the
latent form in B cells. Although all three viruses (ALV,
FeLV, BLV) are considered type C retroviruses (based on
electron microscopy), BLV cases have no free virus in the
blood. In further contrast to the feline virus, BLV also con-
tains an additional tax gene to gag, pol and env. This gene
regulates the transcription of the pro-virus, which is often
transcriptionally silent. When it is activated, the first
mRNA produced encodes the tax protein, which activates
other cellular proteins that bind the LTR and up-regulate
transcription. Consequently, the expression of the tax

transcriptional
activation

p21
GADD45
Cyclin G

bax

Cell cycle 
arrest

Apoptosis

DNA damage
e.g. ionising radiation

Stabilisation
of p53ATM

pathway

MDM2

Fig. 4. p53 is considered a genomic guardian: The p53 tumour suppressor gene plays an important role in cell cycle progression, regulation of gene
expression and in the cellular response mechanisms to DNA damage. Under normal physiological conditions, wild type p53 can bind specific DNA
sequences and regulate transcription of a number of genes involved in cell cycle progression and apoptotic pathways including p21waf1/cip1 and bax. The
p53-mediated mechanisms are responsible for tumour suppression and prevent accumulation of potentially oncogenic mutations and genomic instability.
Failure by p53 to activate such cellular functions may ultimately result in abnormal uncontrolled cell growth leading to tumorigenic transformation. p53 is
the most frequently inactivated gene in human neoplasia with functional loss commonly occurring through gene mutational events including non-sense,
mis-sense and splice site mutations, allelic loss, rearrangements and deletions.

Viral RNA

Proviral DNA

Integration to 
host DNA

Genomic RNA

mRNA

Core proteins

Retrovirus

Virus assembly and 
budding

LTR LTR

gag pol env

Fig. 5. The structure and replication lifecycle of a typical retrovirus. The retrovirus is a double stranded RNA virus, which, on entry to the cell, reverse
transcribes into proviral DNA. This DNA can integrate into the host genome.
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protein acts as a positive feedback loop in the replication
cycle BLV. The tax protein can also trans-activate certain
cellular genes that may be involved in tumour production.

The DNA viruses

Many DNA viruses have been associated with the devel-
opment of cancer in animals and humans. In particular, the
papilloma viruses (which are small DNA viruses) have long
been known to cause wart lesions, which can become
malignant depending on a number of several other predis-
posing factors (Carrillo-Infante et al., 2007). Most often,
wart lesions are overcome by the immune system and dis-
appear from the animal over a 6-month period. The life
cycle of the virus is tightly coupled with the differentiation
process of the epithelial cell and, in certain circumstances,
the benign wart can persist and ultimately become trans-
formed to become a squamous cell carcinoma.

The most extensively studied of the papilloma viruses
are the bovine papilloma viruses (BPV) and these have
also been used as model systems to study the role of
co-carcinogens in the development of cancer (Gaukroger
et al., 1993). BPV fall into two groups: Subgroup A,
comprising the fibropapillomaviruses BPV-1, 2 and 5,
and Subgroup B, comprising the epitheliotropic papillom-
aviruses BPV 3, 4 and 6. BPV-2 is the common virus of
common cutaneous warts in cattle. The high risk viruses
have early gene products known as E6 and E7, which can
immortalise cells and thus contribute to the development
of malignancy. However, as we have discussed, the pro-
gression to produce a malignant cell requires a number
of genetic insults in addition to the effects of E6 and
E7 proteins. These proteins can bind to both p53 and
Rb proteins thereby conferring a further growth advan-
tage of the infected cell.

In healthy cattle the papillomas normally regress, but in
cattle exposed to co-carcinogens, there is a positive correla-
tion between warts and the development of cancer. BPV-2
has been associated with bladder cancer in cattle and BPV-
4 is associated with a syndrome of upper alimentary tract
cancer in bracken fed cattle. Bracken fern is a co-carcino-
gen where cattle are infected with papilloma virus.

Field cases of alimentary tract cancer were found to
occur at high frequency in areas such as the Nasampolai
Valley in Kenya and the Western Highlands of Scotland
where the cattle were grazing on bracken (Pteridium aquil-
inum) infected land. Bracken-fed cattle become chronically
immunosuppressed, develop chronic enzootic haematuria
and bladder tumours and show a high incidence of alimen-
tary tract cancers. The development of papillomas at this
site and the concurrent transformation to cancer is through
the immunosuppressive and carcinogenic effects of the ses-
quiterpene pterosins and pterosides present in bracken
(Campo et al., 1992, 1994). Additional agents such as pta-
quiloside and a-ecdysone, are also found in bracken and
are associated with producing changes in cells such as chro-
mosomal aberrations. More recently, it has been demon-
strated experimentally that the components of bracken
fern may activate viral oncogenes such as E7 to drive the
cells towards malignancy. Further, activation of the ras
proto-oncogene and inactivation of the p53 tumour sup-
pressor gene may also have a role to play in the pathogen-
esis of this disease.

In contrast to the papilloma viruses, herpes viruses are
large DNA viruses and are known to cause Marek’s disease
in chickens. The herpes viruses are the subject of extensive
studies in man through their involvement in epstein barr
virus (EBV) associated lymphomas and Kaposi’s sarcoma.

Cancer arises through multiple molecular mechanisms

From the preceding section we can conclude that (1)
cancer is a genetic disease, involving fundamental changes
in the cell at the genetic level; (2) changes in oncogenes or
tumour suppressor genes may contribute to carcinogenesis,
and (3) one mechanism by which tumours can arise is
through infection with oncogenic viruses.

However, the last two decades of cancer research has
demonstrated that, despite the many potential causes of
cancer and carcinogenic pathways, transformation of a
normal cell into a malignant cell actually requires very
few molecular, biochemical and cellular changes. These
changes can be considered as the acquired capabilities of
a cancer cell that allow it to be regarded as displaying a

myc

Viral gene integrated into genome Myc levels 
increase

Go is blocked

Promotion of 
carcinogenesis

Fig. 6. Oncogenesis through insertional mutagenesis. In this scenario, the myc gene comes under control of the integrated retroviral promoters. There is a
failure of cells to enter Go of the cell cycle, leading to uncontrolled proliferation.
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malignant phenotype. Further, despite the wide diversity of
cancer types, these acquired capabilities appear to be com-
mon to all types of cancer. An optimistic view of increasing
simplicity in cancer biology is further endorsed by the fact
that all normal cells, irrespective of origin and phenotype,
carry similar molecular machineries that regulate cell pro-
liferation, differentiation, aging and cell death.

Consequently, we can consider that the vast array of
cancer genotypes is a manifestation of only seven altera-
tions in cellular physiology that collectively dictate malig-
nant growth (Hanahan and Weinberg, 2000). These
characteristics are acquired during the process of carcino-
genesis and can be considered as:

(1) A self sufficiency in growth
(2) An insensitivity to anti-growth signals
(3) An ability to evade programmed cell death

(apoptosis)
(4) Limitless replicative potential (mainly through reacti-

vation of telomerase)
(5) An ability to sustain angiogenesis
(6) An ability to invade and metastasise
(7) An ability to evade host immunity (Fig. 7)

It is important to stress that the pathways for cells
becoming malignant are highly variable. Mutations in cer-
tain oncogenes can occur early in the progression of some
tumours, and late in others. As a consequence, the acquisi-
tion of the essential cancer characteristics may appear at
different times in the progression of different cancers. Fur-
thermore, in certain tumours, a specific genetic event may,
on its own, contribute only partially to the acquisition of a
single capability, whilst in others it may contribute to the
simultaneous acquisition of multiple capabilities. Irrespec-
tive of the path taken, the hallmark capabilities of cancer
will remain common for multiple cancer types and will help

clarify mechanisms, prognosis and the development of new
treatments.

A challenge to the stochastic model of carcinogenesis: The
cancer stem cell theory

For decades, the accepted model of carcinogenesis has
been a stochastic model, whereby any cell in the body
has the potential for malignant transformation. However,
this model is sometimes difficult to reconcile with what
happens in the animal body. The majority of cells making
up the various organ systems have a finite life-span, dic-
tated largely through progressive telomeric attrition at each
cell division. The question then arises as to how a cell
would live long enough to acquire the number of mutations
required to become a cancer cell? A challenge to the sto-
chastic model is the cancer stem cell (CSC) theory, which
suggests that cancer is, in fact, a true stem cell disease
(Reya et al., 2001).

Stem cells are cells that have the ability to self-renew and
are capable of asymmetric cell division, giving rise to
another stem cell and a cell that gives rise to the phenotyp-
ically diverse range of cell types in the body (Moore and
Lemischka, 2006). In the normal body we identify two
broad classes of stem cells, namely embryonic stem cells
(ESC) that are present in the inner cell mass of the early
embryo and give rise to all cell types in the body, and adult
stem sells (ASC) that are tissue specific and are responsible
for cell replenishment in that organ system. The CSC the-
ory states that malignant transformation occurs in the
adult stem cell and gives rise to a cancer stem cell (Al-Hajj
and Clarke, 2004) (Fig. 8). This would reconcile how a cell
would survive long enough to acquire the appropriate
number of genetic changes, as stem cells are long-lived.

Many parallels can be drawn between normal adult
stem cells and cancer stem cells in terms of clonality and

Self sufficiency in growth signals

Insensitive to anti-growth signals
Sustained angiogenesis

Limitless replicative potential
Resistance to apoptosis

Immune evasion
Ability to invade and metastasise

Fig. 7. The pathways to cancer. Despite the complexity of cancer as a disease, it can be defined on the basis of the acquisition of seven fundamental
characteristics: self sufficiency in growth, an insensitivity to anti-growth signals, an ability to evade programmed cell death (apoptosis), limitless replicative
potential (mainly through reactivation of telomerase), an ability to sustain angiogenesis, an ability to invade and metastasise, and an ability to evade host
immunity.

D.J. Argyle, T. Blacking / The Veterinary Journal 177 (2008) 311–323 317



asymmetric division, the implication being that this very
small population of CSCs gives rise to daughter cancer cells
that represent the bulk of a tumour mass. In support of
this, it has been demonstrated that when cancer cells of
different types are subjected to both in vitro and in vivo
assays, that only a small minority of cells are able to pro-
liferate extensively (Reya et al., 2001). This has given rise
to the concept that tumours are composed of both CSCs,
which have a large proliferative capacity, and a daughter
population of cells, with a limited proliferative potential.

Do cancer stem cells exist?

The evidence for true CSCs was first documented for
haematopoietic malignancies such as acute myeloid leukae-
mia (AML) and multiple myeloma. Using a NOD-SCID
(severe combined immunodeficient) mouse model of
AML, isolation of cells with a CD34++CD38! phenotype
(representing only 0.2% of the tumour population) could
reproduce the phenotype of the original tumour in a recipi-
ent animal. The heterogeneous AML population required
far more cell numbers to achieve this result (Park et al.,
1971; Huntly and Gilliland, 2005; Kamel-Reid et al.,
1989; Lapidot et al., 1994; Sirard et al., 1996; Bonnet and
Dick, 1997).

Similar studies have also been performed to show that
cells of solid tumours are phenotypically heterogeneous
and only a small proportion of cells are clonogenic in cul-
ture and in vivo (Fidler and Kripke, 1977; Fidler and Hart,
1982; Heppner, 1984; Nowell, 1986; Southam and Brunsch-
wig, 1961). For example, only 1 in 1,000 to 1 in 5,000 lung
cancer, ovarian cancer and neuroblastoma cells have been
found to form colonies in soft agar. A number of reports
have now emerged that suggest that cancers of the brain,

colon, breast, pancreas and prostate arise from trans-
formed stem cells (Reynolds et al., 1992; Ignatova et al.,
2002; Hemmati et al., 2003; Singh et al., 2003, 2004; Balic
et al., 2006; O’Brien et al., 2007). Taking either tumour tis-
sues or cell lines, researchers have subjected cells to serum-
free, low density culture conditions and demonstrated
selection of colonies of cells (spheres) that exhibit stem cell
properties, defined by their capacity for self-renewal, gene
expression profiles, and their ability to recapitulate the
tumour in model systems.

As an example, Dontu et al. (2003) reported a low-
adherence, clonal density serum-free culture system which
could be used to propagate ‘‘mammospheres’’, enriched
in mammary stem/progenitor cells, in vitro from normal
human mammary tissue. In this assay system, most pri-
mary mammary epithelial cells died under these conditions,
but a few generated colonies of cells capable of self-renewal
(passage) and differentiation into the three cellular lineages
seen in adult mammary tissue.

Al-Hajj et al. (2003) used flow cytometry to separate
cells from human primary and metastatic breast carcino-
mas according to the expression of cell surface markers.
It was shown that CD44+CD24-/lowLineage- cells (i.e. those
expressing primitive cellular markers) required initial cell
inoculums of 2–10% of those required for unsorted cells
to form tumours in immunosuppressed mice.

These studies have highlighted that using either a
‘sphere’ assay or sorting by flow cytometry (FACS), it is
possible to identify a small, sub-population of cells that
have stem cell properties. However, despite the evidence
supporting the theory that cancer is initiated and propa-
gated by cells with stem-like characteristics, it remains
unclear whether the CSC is a normal tissue stem cell which
has undergone malignant transformation, or a more differ-

Mature  cancer cells with limited proliferative capacity

Self renewal

Self renewalNormal stem cell

Premalignant stem cell
Cancer stem cell

Differentiation

Fig. 8. The cancer stem cell theory: This theory challenges the stochastic model presented in Fig. 1 and suggests that malignant transformation is restricted
to adult stem cells. Progression to a full malignant cell then leads to the formation of an asymmetrically dividing cancer cell capable of self-renewal and the
production of daughter cells. In a similar way to the production of committed cells from normal stem cells, daughter cancer cells have a limited
proliferative capacity.
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entiated cell which has acquired more primitive, stem-like
characteristics as a result of mutation or dedifferentiation.
Many of the attributes of normal stem cells make them
attractive candidates for malignant transformation into
CSCs – they are programmed for self-renewal and multilin-
eage differentiation; they persist and continue to divide for
the lifetime of the host, allowing them more opportunity to
accrue transforming mutations; isolated tumour-initiating
cells show many phenotypic similarities to the correspond-
ing normal tissue stem cell (e.g. cell-surface markers, pro-
tein expression, telomerase activity).

Polyak and Hahn (2006) proposed three models for
development of malignancy involving stem cells:

(1) A mutation causes dysregulation of asymmetric divi-
sion in a tissue stem cell (TSC) and is passed on to all
progeny; progression to full transformation occurs in
this population as further mutations are acquired.

(2) The TSC itself acquires mutations sufficient for
malignancy, and passes these on to all progeny.

(3) The transit-amplifying cells or more differentiated
progeny accrue mutations leading to dedifferentiation
and acquisition of stem-cell like properties; TSCs
themselves are not involved.

The present evidence suggests that (1) and (2) are more
likely, but more work is required to truly identify the target
cell.

Evidence for cancer stem cells in the dog

Using similar culture techniques, the authors have iso-
lated CSCs from canine osteosarcomas (Wilson et al., in
press). In addition we have achieved similar results with
canine lymphoma, melanoma and haemangiosarcoma
(unpublished results). These cells were characterized by
their ability to grow in harsh culture conditions, and
through their expression of proteins such as Nanog and
Oct 3/4 that are responsible for the maintenance of pluri-
potency. The identification of such cells in the dog opens
up opportunities for the identification of therapeutic path-
ways to target these cells, and further supports developing
the dog as a model to study human disease.

The niche environment

In vivo studies in mouse models have highlighted the
importance of the niche environment during tumour initia-
tion and development (Polyak and Hahn, 2006; Mueller
and Fusing, 2004; Bjerkvig et al., 2005). The acquisition
of the malignant phenotype by stem cells, may in part be
a reflection of the cellular environment. For example,
regions of severe oxygen deprivation (hypoxia) arise in
tumours due to rapid cell division and aberrant blood ves-
sel formation. The hypoxia-inducible factors (HIFs) medi-
ate transcriptional responses to localised hypoxia in normal
tissues and in cancers and can promote tumour progression

by altering cellular metabolism and stimulating
angiogenesis.

Recently, HIFs have been shown to activate specific sig-
nalling pathways such as Notch and the expression of tran-
scription factors such as Oct4 that control stem cell self
renewal and multipotency. As the CSC theory evolves, it
may suggest that a hypoxic environment may support the
initiation of cancer in adult stem cell populations (Keith
and Simon, 2007).

Mobilisation and metastasis

Studies on haematopoietic stem cells have shown that
normal bone marrow stem cells possess the capacity to
mobilise and migrate in the circulation to distant sites in
response to tissue damage and stress with complex, co-
ordinated homing mechanisms being involved (Lapidot
et al., 2005). Stem cells from different tissues share common
genetic programmes (Terskikh et al., 2001) and bone mar-
row stem cells display plasticity allowing them to differen-
tiate into a variety of cell types (Bjerkvig et al., 2005; Kucia
et al., 2005). There are many similarities between the mech-
anisms governing the migration of normal stem cells and
the metastatic dissemination of tumour cells, such as the
interaction between the cell surface CXCR4 receptor and
its ligand, stromal-derived factor (SDF)-1, secreted by the
niche (Macpherson et al., 2005). Cancer cells may dissemi-
nate to distant sites but never develop into true metastases
despite remaining detectable in remote tissues (Brabletz
et al., 2005). It would seem plausible within the CSC theory
that the formation of metastatic deposits within tissues
may require migration of CSCs into an appropriate niche
environment. There is also recent evidence to suggest that
the formation of metastatic deposits is intimately linked
with the bone marrow. Kaplan et al. (2005) suggests that
the primary tumour may signal the bone marrow to mobi-
lise cells to various sites in the body to create a niche envi-
ronment for metastatic deposition.

Are non-haematopoietic cancers bone-marrow-derived?

Most of the work on CSCs has been based upon an
assumption that cancers are derived from adult stem cells.
An alternative hypothesis has been suggested by some
workers that implicate the bone marrow as the site from
where cancer cells are derived. In elegant work by Hough-
ton et al. (2004) using a mouse model of gastric cancer,
marker cell studies showed that carcinoma cells in forming
gastric carcinomas had their origins as haematopoietic
cells. The implications of this are immense but much more
work is required to validate this theory.

Cancer stem cells and the implications for therapy

If a population of CSCs is responsible for the propaga-
tion of a tumour, then this has huge implications for ther-
apy. The evidence suggests that daughter cells, which make
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up the bulk population of tumours, may be sensitive to the
effects of conventional treatments such as radiation and/or
chemotherapy (Fig. 9). However, stem cell populations
tend to harbour strong resistance mechanisms, entering
periods of quiescence during which they are resistant to
strategies aimed at eradicating cycling cells.

Many molecular mechanisms have been identified in
association with stem-like behaviour in cancer cells. Often
these mirror the differential expression patterns that mark
out normal tissue stem cells. The side population (SP) phe-
notype was first identified in haematopoietic stem cells
(HSCs), when a subset of cells with low uptake of the
dye Hoechst 33342 was isolated by FACS and found to
be enriched for HSCs (Goodell et al., 1997). The dye-efflux
SP phenotype for haematopoietic and several other tissue
progenitor cells has been shown both in vitro and in vivo
to be conferred by the ATP binding cassette (ABC) trans-
porter ABCG2 (Zhou et al., 2001; Scharenberg et al.,
2002), which has also been identified for its role in multiple
drug resistance (Bunting, 2002), and shown to confer to
breast cancer cells the ability to efflux chemotherapeutic
drugs (Doyle and Ross, 2003). This would tie in with the
high frequency of cancer relapse following initial remission
after chemotherapy.

If conventional therapies are not appropriate for killing
CSCs, then it would follow that alternative pathways in
these cells need to be identified. Mutations in many of
the signalling pathways and genetic mechanisms regulating
normal stem cells have been demonstrated in human can-

cers. Polycomb genes, particularly Bmi-1, HOX transcrip-
tion factors, and the Wnt-bcatenin, Notch and Sonic
Hedgehog (SHh) pathways, are important in self-renewal
and other functional stem cell properties, and may offer
an opportunity for therapeutic targeting (Huntly and Gilli-
land, 2005; Taipale and Beachy, 2001; Pardal et al., 2003;
Behbod and Rosen, 2005).

Other treatment modalities might also preferentially tar-
get putative CSCs. Transiently inactivating the causative
oncogene in transgenic mouse model of osteogenic sarco-
mas can cause the tumours to regress, with reactivation
leading to apoptosis (Jain et al., 2002). It would seem log-
ical that forcing CSCs down a symmetrical division path-
way, whereby two more committed daughter cells are
produced, would deprive a tumour of its self renewal
potential and effect a cure. Differentiation therapy with ret-
inoids is effective in a majority of cases of human acute pro-
myelocytic leukaemia, although responses in other
malignancies have been variable (Sell, 2004).

Treatments directed solely at CSCs, however, may not
have an effect on the differentiated progenitor and daughter
cells. Therefore, the bulk of the tumour may remain intact
while the CSCs are being destroyed – the dandelion phe-
nomenon (Huff et al., 2006). This theory states that cutting
off a dandelion at the roots, or treating the bulk of the
tumour, takes away the disease that one can see, however
the weed will still re-grow because the root has not been
destroyed. Conversely, destroying the root, or CSCs, of
the weed leaves the flower above soil initially. However,

Stable disease

Complete cure

Conventional
therapy

Tumour shrinks
Failure to kill stem cells 
means the tumour will 
grow back

Cancer stem cell

Daughter cancer cell

Target stem cell and daughter population

Fig. 9. Cancer stem cells may inform new therapies: Currently conventional cancer therapies are directed at non-stem cell populations. Consequently, any
tumour has the capacity to re-grow the original cancer. Therapies targeted at the cancer stem cell and the daughter cells would have the capacity to cause
either stable disease or complete tumour eradication.
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as the root dies, the portion above ground will eventually
wither and die without the root.

According to the dandelion phenomenon of CSC ther-
apy, a treatment regimen may be abandoned prematurely
if we only consider remission of the tumour bulk. This
response is likely to lag behind the destruction of CSCs.
Conversely, treatment of chronic phase CML with imatinib
mesylate has achieved high rates of complete remission
despite the fact that BCR/ABL-expressing progenitors
are spared (Bhatia et al., 2003). This may indicate the sig-
nificance of the niche provided to a stem cell by its sur-
rounding daughter cell population – removal of paracrine
factors in targeting the tumour bulk may sometimes be suf-
ficient to arrest the progress of disease (Polyak and Hahn,
2006).

Given that clinical response may not be an ideal way to
monitor for response to therapies that target CSCs, overall
survival is left as a common monitoring criteria. This
requires long study times that can be impractical. Animal
models are an ideal way to continue to use survival as cri-
teria for determining effectiveness of therapy. Animal mod-
els of spontaneously occurring tumours often progress
much faster than the human form of the disease. Many
canine tumour models are very similar or even identical
to their human counterparts (Gorlick et al., 2003; Khanna
et al., 2006) and the natural canine model may represent an
ideal testing ground for novel compounds directed at the
CSC.

Future perspectives

The identification of CSCs in both humans and dogs has
been a defining moment in cancer research. If the theory is
correct, then future efforts must be made to characterise
these cells with a view to identifying therapeutic targets.
In our laboratory we have already begun the laborious task
of characterising canine stem cells using microarray tech-
nology and marker analysis. However, it is highly likely
that elimination of these cell populations will require tar-
geting of self-renewal pathways that may be common to
normal stem cells. As with most cancer treatments, we will
be left developing drugs whose efficacy will depend on the
degree of ‘off target’ effects.
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        Introduction 

 Cells   of muticellular organisms form part of a 

 specialized society that cooperates to promote sur-

vival of the organism. In this, cell division, prolif-

eration and differentiation are strictly controlled 

and a balance exists between normal cell birth and 

cell death. Inextricably linked to this fundamental 

concept is the role of the adult stem cell (ASC) 

whose progeny and microenvironment make up 

the anatomical structure that coordinates normal 

homeostatic production of functional mature cells. 

ASCs have been best characterized in the haemato-

poietic system but exist in all major organ systems. 

These cells are characterized by a capacity for self-

renewal, being undifferentiated but capable of 

multilineage differentiation, slowly cycling cells 

but clonogenic, and capable of asymmetric divi-

sion. Further, ASC reside in particular  ‘ niche ’  en-

vironments that support an appropriate 

spatiotemporal dialogue between ASC and micro-

environmental cells in order to fulfi l the lifelong 

demands for normal differentiated cells.  1   

 For decades, advances in molecular techniques 

have allowed us to dissect the mechanisms of carci-

nogenesis, most work focusing on the accepted 

model of multistage carcinogenesis underpinned 

by progressive genetic changes that drive malig-

nant transformation. In this model, any cell in the 

body has the potential for malignant transforma-

tion. More recently, attention has focused on an 

alternative model where the tumour is maintained 

by a cancer stem cell (CSC) which gives rise to a 

tumour composed mostly of daughter cancer cells 

and a small number of CSCs that drive tumour 

growth and expansion.  

  Cancer stem cells 

 The CSC theory probably represents a modern 

day interpretation of a similar proposal made by 

 Virchow and Cohnheim nearly 150 years ago, pro-

posing that cancer resulted from activation of dor-

mant embryonic tissue. This theory was reawakened 

in the 1960s and 1970s with suggested theories of 

maturation arrest in tissue-specifi c stem cells,  2,3   

and then ultimately with the identifi cation of the 

leukaemic stem cell in seminal experiments per-

formed by Fialkow  et al.  in the late 1960s.  4   In the 

current context, the CSC can be considered a cell 

that has the ability to self renew and is capable of 

asymmetric cell division, giving rise to another 

 malignant stem cell and a cell that gives rise to the 

phenotypically diverse tumour cell population 

(  Fig.   1). 

 Proof that CSC exists as a phenotypically differ-

ent population of cancer cells requires isolation of 

different populations of cancer cells and demon-

stration that one or more groups are effi cient at 

producing tumours while other groups lack this 

ability.  5   However, these cells cannot be defi nitively 

called CSC until it is possible to show that a single 

transplanted cancer cell can give rise to a diverse 

population of cancer cells within a tumour.  5    

  Evidence for CSC 

 Many parallels can be drawn between normal ASC 

and CSC in terms of clonality and asymmetric divi-

sion (  Fig.   2). Further, it has been shown that when      * These authors contributed equally to this review.   
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cancer cells of different types are subjected to both 

 in vitro  and  in vivo  assays, that only a small minor-

ity of cells are able to proliferate extensively.  6   This 

has given rise to the concept that tumours are com-

posed of both CSC, which have a large proliferative 

capacity, and a daughter population of cells, with a 

limited proliferative potential. 

 The evidence for true CSC was fi rst documented 

for haematopoietic malignancies such as acute my-

eloid leukaemia (AML) and multiple myeloma. In 

seminal studies, it was found that when mouse my-

eloma cells were obtained from mouse ascites, and 

subjected to  in vitro  colony-forming assays, only 1 

in 10 000 to 1 in 100 cancer cells were able to form 

colonies.  7   The normal haematopoietic stem cell 

(HSC), whose nature has still not been fully char-

acterized, was fi rst shown according to its ability to 

reconstitute the bone marrow of lethally irradiated 

           Figure   1.     Two general models of cancer presented. In both (A) and (B) there is tumour cell heterogeneity. However, in 
(A) many different cancer cell phenotypes have the potential to proliferate extensively to cause a tumour. In (B) we predict 
that a small subset of cancer cells [the cancer stem cell (CSC)] are the only population that can form a new tumour upon 
transplantation.   

           Figure   2.     Parallels can be drawn between normal stem cell development and cancer stem cell development. Both pathways 
share properties of self-renewal and asymmetric division. Ultimately both pathways give rise to cells with limited prolifera-
tive potential.   
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mice. Mirroring this work, experiments using se-

vere combined immunodefi cient (SCID) mice in-

dicated that normal haematopoietic stem cells 

become engrafted in the bone marrow of these im-

munodefi cient animals (which lack B and T lym-

phocytes) such that all mature lineages, other than 

T-cells, were produced. Furthermore, transplanta-

tion of cells from human AML, chronic myeloid 

leukaemia (CML) and acute lymphoblastic leukae-

mia (ALL) could be performed in the same way 

and recapitulate the human cancer in the recipient 

mouse.  8 – 11   

 However  , the SCID mouse model had a num -

ber of limitations, which prevented defi nitive dem-

onstration that the  ‘ SCID leukaemia-initiating cell ’  
(SL-IC) could recapitulate tumours; similarities 

between HSC and SL-IC cell-surface markers could 

only be shown for one leukaemia subtype.  10   It was 

only after the development of the non-obese dia-

betic (NOD)/SCID mouse, which has additional 

immune response defi cits (e.g. natural killer cell 

activity, complement activation), that the engraft-

ment experiments were refi ned to allow Dick and 

colleagues to show properties in the SL-ICs which 

met the defi nition of CSC. One problem with the 

SCID model was the need to transplant large num-

bers of host cells to ensure engraftment in the re-

cipient. It was shown that 10 – 20 times fewer cells 

were required in the NOD – SCID mice to achieve 

the same level of engraftment.  12   

 The resulting experiments showed that, for a 

range of AML subtypes, both unfractionated bone 

marrow samples and purifi ed CD34 +  CD38  −   cells 

could reproduce the phenotype of the original hu-

man tumour in the recipient animal. This was seen 

even when the CD34 +  purifi ed fraction represented 

a tiny (0.2%) proportion of blast cells. The hetero-

geneous human-derived blast population, with 

CD38 expressed in most, even when transplanted 

cells had been purifi ed according to the absence of 

this cell-surface marker, seemed to evoke normal 

haematopoietic differentiation. Cells could be fur-

ther transplanted into a secondary recipient, reca-

pitulating the tumour; it was calculated that the 

SL-ICs population must have expanded 30-fold, 

providing further evidence for self-renewal prop-

erties. These fi ndings were compelling evidence for 

AML being a stem cell disorder.  12    

  CSCs and solid cancers 

 The CSC theory has only been applied to solid can-

cers in recent years, although similar studies had 

been performed to show that cells of solid tumours 

are phenotypically heterogeneous and only a small 

proportion of cells are clonogenic in culture and 

 in vivo .  13 – 17   For example, only 1 in 1000 to 1 in 

5000 lung cancer, ovarian cancer and neuroblas-

toma cells were found to form colonies in soft agar 

in studies performed in the 1970s. Despite this, the 

extension of the CSC hypothesis to solid tumours 

has been more challenging experimentally. Normal 

haematopoietic differentiation is better understood 

than the corresponding process in most solid tis-

sues  –  importantly, cell-surface markers for normal 

haematopoietic stem cells and their progeny have 

been identifi ed, allowing their isolation. For many 

solid tissue stem cells, assays have yet to be devel-

oped. A further problem is the physical nature of 

the tissues. Cells from solid tissues are often larger 

and more fragile than blood cells, cells are often 

less accessible for sampling, and creation of viable 

single-cell suspensions is challenging. 

 In 1992, Reynolds showed that a <1% subpopu-

lation of embryonic striatal cells were viable after 5 

days  in vitro  when plated in serum-free, low-density 

culture in the presence of the mitogen epidermal 

growth factor (EGF). These EGF-responsive striatal 

progenitors initially divided to form clusters of cells 

(neurospheres), with most of the constituent cells 

showing immunoreactivity for nestin (a cytoskele-

tal intermediate fi lament protein expressed in neu-

roepithelial stem cells). After 14 divisions, the 

clusters had continued to expand, and now two dis-

tinct populations of daughter cells stained positive 

for neurone-specifi c enolase and glial fi brillary 

acidic protein, markers for the neuronal and astro-

cyte lineages, respectively. Thus, the assay condi-

tions and presence of EGF seemed to select for 

multipotent stem cells, defi ned by their capacity for 

self-renewal and multilineage differentiation.  18   

 Experiments using modifi cations of this system, 

some exerting additional selection pressure by sus-

pending cells in methylcellulose in low-adherence 

culture wells have been widely used to test the CSC 

hypothesis in solid tumours.  19,20   Experiments in-

ducing over-expression of the proto-oncogene 
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Myc, Ras, Akt and platelet-derived growth factor 

(PDGF) showed that neural progenitors under-

went transformation (increased proliferation  21   and 

tumour formation  22,23  ) more readily than more 

differentiated cell types. 

 Subsequently, reports were published of the isola-

tion of CNS CSC from a variety of human cancers 

including astrocytomas, glioblastomas, medullo-

blastomas and ependymomas, by virtue of the ability 

of the cells to form neurosphere clones in serum-free 

culture in the presence of pleiotropic growth factors, 

and to differentiate into cells phenotypically similar 

to the lineages seen in the initial tumour.  19,24 – 26   

 The foetal neuronal stem cell marker CD133 was 

widely expressed on these multipotent tumour 

cells.  24,25   Karyotypic abnormalities and aberrant 

differentiation profi les indicated that they were not 

normal neural stem cells migrating within the tu-

mour,  25   but part of the tumour cell population. 

The  in vivo  ability of putative tumour stem cells to 

recapitulate the primary tumour mass was tested, 

by implanting cells isolated by sorting for CD133  26   

or growth in serum-starved, clonal density condi-

tions  27   into immunosuppressed mice, subcutane-

ously and/or intracranially. The resulting xenografts 

showed striking similarities to the tumours from 

which the progenitors were derived  26,27   albeit with 

a  ‘ peculiar histomorphology ’  in some cases.  27   

 Dontu  et al.  in 2003 reported a low-adherence, 

clonal density serum-free culture system, which 

could be used to propagate  ‘ mammospheres ’ , en-

riched in mammary stem/progenitor cells,  in vitro  

from normal human mammary tissue. As with the 

neurosphere assay, most primary mammary epi-

thelial cells died under these conditions, but a few 

generated colonies of cells capable of self-renewal 

(passage) and differentiation into the three cellular 

lineages seen in adult mammary tissue.  28   

 Mammosphere initiating cells were contained 

within the side population (SP) of cells capable of 

excluding Hoechst 33342 dye and showed upregula-

tion of genes coding for membrane and cytoskeletal 

proteins, transcription factors, signalling and cell 

adhesion molecules, cell cycle regulators and metal-

loproteinases when compared with cells grown in 

differentiating conditions.  28   The mammosphere 

system was used to show that activation of the Notch 

signalling pathway (Notch has been implicated as a 

proto-oncogene) affected lineage specifi cation, and 

promoted self-renewal and proliferation of mam-

mosphere cells. Conversely, alterations in signalling 

did not have any signifi cant effect on fully commit-

ted mammary epithelial cells.  29   

 Al-Hajj  et al.  used fl ow cytometry to separate 

cells from human primary and metastatic breast 

carcinomas according to the expression of cell-

 surface markers. In some cases, tumour cells were 

derived directly from patients and in others they 

had undergone one or two passages in mice. In 

all but one tumour, it was shown that CD44 +  

CD24 −  /low Lineage  −   cells required initial cell inocu-

lums of 2 – 10% of those required for unsorted 

cells to form tumours in immunosuppressed 

mice. CD24 + Lineage cells were unable to form 

 tumours except in one subject. The CD44 +  

CD24  − /low Lineage population showed similar cell 

cycle distribution to the nontumorigenic cells, ex-

cluding this as the cause of  tumorigenicity. CD44 +  

CD24  − /low Lineage  −   cells could be serially passaged 

in mice,  forming tumours from which further 

CD44 +  CD24  − /low Lineage  −   cells could be isolated 

(i.e. self-renewal capacity) as well as the other non-

tumorigenic cell populations found in the original 

tumour (i.e. multilineage differentiation).  30   

 It is interesting, given the use of metastatic breast 

cancer cells (pleural effusion) in eight out of 

the nine tumour types investigated, that in another 

study the prevalence of the putative CD44 +  

CD24  − /low  tumour stem cell phenotype in breast 

tumours did not correlate with tumour progres-

sion or prognosis. A greater prevalence  was  associ-

ated, however, with a tendency for distant 

metastasis upon recurrence.  31   The presence of dis-

seminated tumour cells in breast cancer can be de-

tected with immunohistochemistry for cytokeratins 

(CK). Balic  et al.  assessed CK+ bone marrow sam-

ples from 50 patients with early breast cancer and 

found that all specimens had detectable CD44 +  

CD24  − /low  cells, with prevalence (33 – 100%, median 

65%) much greater than that seen in primary tumour 

masses, again associating the putative breast CSC 

population with a tendency towards metastasis.  32   

 Gibbs  et al.  describe  ‘ sarcospheres ’  created in 

low-adherence, serum-free culture from a variety of 

osteosarcomas and chondrosarcomas  20    –  these phe-

notypically distinct tumours occur primarily in 
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childhood and adulthood, respectively, yet the ex-

pression patterns and behaviour of the putative bone 

sarcoma stem cells were very similar. Self-renewal 

properties and multilineage gene expression were 

demonstrated, along with expression of the proteins 

Oct 3/4 and Nanog, associated with pluripotency 

and self-renewal in embryonic stem cells, and shared 

attributes with normal mesenchymal stem cells.  20   

 Seaberg and van der Kooy showed the signifi -

cance of serial passaging in the identifi cation of 

stem cells.  33   Early progenitor cells have limited 

self-renewing capabilities; however, they are able to 

form secondary and even tertiary spheres in non-

adherent serum-starved-media conditions typi-

cally reserved for isolation of stem cell populations. 

It is important to differentiate these early progeni-

tor cells from true CSC by serially passaging them 

many times. CSCs should, theoretically, be capable 

of indefi nite self-renewal under these conditions 

with very little change in their ability to self renew 

as well as form differentiated progeny.  34   

 Two groups of investigators have found that the 

minority CD133 + -cell population from human co-

lon carcinomas can reproduce the primary tumour 

in immunusuppressed mice, whereas CD133  −   cells 

do not have this capacity. Dick and colleagues 

showed that all human colon cancer-initiating cells 

(CC-IC) were CD133 + , and that while 1 in 57 000 

unsorted tumour cells were CC-IC, this was en-

riched to one in less than 300 CD133 +  cells.  35   Un-

limited self-renewal potential and capacity for 

differentiation into all cell types seen in the pri-

mary tumour was established  in vivo  with serial 

transplantation in mice and also  in vitro  with a se-

rum-free sphere culture system.  35,36    

  CSC regulators and markers 

  ABCG2 

 Many molecular mechanisms have been identifi ed 

in association with stem-like behaviour in cancer 

cells. Often these mirror the differential expression 

patterns that mark out normal tissue stem cells. 

The   SP phenotype was fi rst identifi ed in haemato-

poietic stem cells, when a subset of cells with low 

uptake of the dye Hoechst 33342 was isolated by 

fl uorescence-activated cell sorting (FACS) and found 

to be enriched for HSCs.  37   The dye – effl ux SP phe-

notype for haematopoietic and several other tissue 

progenitor cells has been shown both  in vitro  and  in 

vivo  to be conferred by the ATP-binding cassette 

(ABC) transporter ABCG2,  38,39   which has also been 

identifi ed for its role in multiple drug resistance,  40   

and shown to confer to breast cancer cells the ability 

to effl ux chemotherapeutic drugs.  41   

 This would tie in with the high frequency of can-

cer relapse following initial remission after chemo-

therapy, and a SP was detected in approximately 

30% of cultured tumour cell lines from a variety of 

tissues including breast, colon, ovary and glioma. 

SP cells from breast, prostate and brain cancers 

were shown to be more tumorigenic than non-SP 

cells. However, when sorted according to ABCG2 

expression, both ABCG2 +  and ABCG2  −   cells were 

tumorigenic to similar degrees. It was postulated 

that ABCG2 +  cells are tumour progenitors with 

more rapid turnover but that they themselves arise 

from more primitive, slow-cycling cells within the 

ABCG2  −   population with more long-term self-

 renewal capacity.  42    

  Signalling pathways 

 Mutations in many of the signalling pathways and 

genetic mechanisms regulating normal stem cells 

have been shown in human cancers. Polycomb 

genes, particularly  Bmi-1 ,  HOX  transcription fac-

tors, and the Wnt –  � -catenin, Notch and Sonic 

Hedgehog pathways, are important in self-renewal 

and other functional stem cell properties; altera-

tions in expression have been implicated in tu-

mours of both blood and solid tissues.  8,43 – 45    

  Bmi-1 

 Bmi-1 is a member of the Polycomb group of tran-

scriptional repressor proteins, which acts through 

the  ink4a  locus to downregulate the tumour sup-

pressors encoded there  –  p16 INK4a  and p19 ARF  

(  Fig.   3). Bmi-1 over-expression in mouse embry-

onic fi broblasts leads to their immortalization, and 

in co-operation with  ras  can cause neoplastic trans-

formation.  46   Correspondingly, under-expression is 

associated with reduced proliferative capacity in 

both normal haematopoietic precursors derived 

from foetal liver cells and leukaemic stem cells in a 
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mouse model of AML.  47   Bmi-1  − / −   leukaemias 

were not transplantable into secondary recipients, 

although this capacity could be rescued by intro-

duction of a retroviral  Bmi-1  provirus. Interest-

ingly, this Bmi-1-mediated rescue was also seen in 

Bmi-1  − / −   clones with defects in the expression 

of p16 INK4a  and p19 ARF , indicating additional 

pathways through which the molecule exerts its 

effects.  47   Glinsky  et al.  investigated the role of 

Bmi-1 in human prostate cancer using microarray 

analysis; elevation in expression was seen in all 

cancer cell lines, with greater increases seen in 

more metastatic tumour types. An 11-gene signa-

ture associated with Bmi-1 function in normal 

stem cells was found to be expressed in 11 different 

types of cancer, and consistently to predict metas-

tasis and poor prognosis.  48    

  Notch 

 The four Notch transmembrane receptors found 

in mammals are activated by their ligands Delta, 

Jagged and other members of the DSL (Delta, 

 Serrate and Lag-3) family. Binding initiates a 

signalling pathway, which leads to the activation 

of the CSL transcription factor, along with master-

mind-like (MAML) co-activators  . This leads to 

transcription of genes associated with processes 

such as cell fate determination during develop-

ment and self-renewal in adult tissues.  49   

 Notch signalling has been shown to be onco-

genic in mouse models of T-cell acute lymphoblas-

tic leukaemia (T-ALL),  50   and can collaborate with 

the c-neu/erbB2 oncogene in the development of 

mammary tumours.  51   Dontu  et al.  showed that ac-

tivation of Notch signalling promoted self-renewal 

and proliferation of normal mammary stem/pro-

genitor cells cultured in mammospheres, but had 

no effect on fully committed mammary epithelial 

cells, suggesting that it exerts its oncogenic poten-

tial at the progenitor level.  29   Interestingly, loss-of-

function mutations have been shown to contribute 

to neoplastic transformation,  52   showing that notch-

activated gene expression has varied roles depend-

ing on the context.  49   

 This may account for the differential expression 

of the Notch ligands, Delta and Jagged-1 and 2 be-

tween neurosphere clones derived from normal 

brain and glial tumour tissue.  Delta  expressed by 

normal tissue and neurosphere clones which had 

been allowed to attach to a substrate, but not sus-

pended neurospheres;  Jagged-2  was expressed by 

normal clones but not those originating from tu-

mours.  19   Conversely  , recent microarray analysis 

of CD34 +  CD38  −   leukaemic stem cells (LSC) from 

AML has indicated over-expression of  Jagged-2 , 

           Figure   3.     Bmi-1 signalling: Bmi-1 inhibits the transcription of two cyclin-dependent-kinase inhibitors, INK4A (p16) and 
ARF (p14). If INK4A is blocked, Retinoblastoma Protein (RP) becomes phosphorylated and inactivated by a complex of 
Cyclin-dependent kinase 4 (CDK4) and Cyclin D. This allows cells to enter the cell cycle. If ARF is blocked, MDM2 inhibits 
p53-dependent expression of genes that cause apoptosis  .   
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with  inhibition of  Jagged  and  Notch  signalling re-

ducing LSC growth in colony-forming assays.  50    

  Wnt and  � -catenin 

 Wnt   signalling infl uences cell migration and de-

velopmental patterning, proliferation and sur-

vival, through the binding of  � -catenin to the 

LEF/Tcf transcription factors and activation of 

downstream genes (  Fig.   4). The binding of Wnt 

proteins to their Frizzled cell-surface receptors 

inhibits the cytoplasmic  ‘ destruction complex ’  in 

which  � -catenin is normally held, allowing it 

to accumulate in the cytoplasm and translocate 

to the nucleus. Over- expression of  � -catenin in 

transgenic murine HSCs increased their self-re-

newal capacity; over time, while controls appeared 

to differentiate down myelo-monocytic lineage, 

an increased proportion of the  � -catenin-trans-

duced HSC population remained as lineage nega-

tive, proliferative cells. Inhibition of Wnt-signalling 

suppressed HSC growth between four- and seven-

fold, suggesting that the pathway is required 

for normal HSC function.  51   It remains possible, 

 however, that this is an  in vitro  phenomenon and 

that  in vivo , alternative mechanisms are involved 

and Wnt is less signifi cant.  44   

 Wnt   signalling is also involved in self-renewal 

of epithelial cells in other tissues [e.g. skin, intes-

tine and central nervous system (CNS)]; over-

 activation of the pathway and increased nuclear 

 � -catenin has been implicated in colon, prostate, 

ovarian, CNS and skin tumours as well as haema-

tological malignancies.  44   The   Adenomatous Poly-

posis Coli (APC) tumour suppressor gene mutated 

in familial adenomatous polyposis is part of the  � -

catenin destruction complex inhibited by Wnt sig-

nalling. It has been proposed that both germline 

and somatic mutations of APC confers a selective 

advantage to a cell, with increased proliferation in 

response to the Wnt-pathway dysregulation, but 

that APC function must not be so impaired so as to 

lead to apoptosis. Evidence exists for both the  ‘ top 

down ’  model of colon cancer, whereby somatic 

APC  mutation occurs fi rst at the luminal surface 

and spreads down into the crypts, and the  ‘ bottom 

up ’  model, where the mutation is propagated in, 

and spreads from the stem cell located in the crypt 

           Figure   4.     Wnt binds to Frizzled (FRZ) receptors and activates Dishevelled (DSH). This disrupts a  � -catenin destruction 
complex and allows  � -catenin to accumulate and translocate to the nucleus. In the nucleus  � -catenin binds to LEF/Tcf 
transcription factors leading to expression of target genes (e.g. c-MYC) that promote survival, proliferation and cellular 
migration.   
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base  –  obviously the latter being more easily recon-

ciled with the CSC hypothesis.  52    

  Telomeres and telomerase 

 When grown in tissue culture, the phenomenon of 

 senescence  limits the replicative potential of cells, in 

that eventually the cells will stop dividing.  53   This is 

partly governed by the gradual loss of the protec-

tive telomeres, tandem repeats of a 6-bp sequence, 

which are present at the ends of chromosomes. 

DNA polymerises cannot fully replicate the 3 '  end 

of the DNA strand, such that upon each cell divi-

sion there is a loss of 50 – 100 bp at each end of every 

chromosome. The telomeres buffer this loss but 

are of fi nite length, so they gradually become 

shorter through the life of a dividing cell  –  this pro-

tective mechanism means that the cell will be di-

rected to senescence or apoptosis after a certain 

number of divisions.  54,55   

 Stem cells circumvent this  ‘ end replication prob-

lem ’  with the expression of low levels of  Telomer-

ase , an enzyme which catalyses the addition of 

telomeric repeat sequences on to the ends of chro-

mosomes, such that they have lifelong replicative 

potential. Telomerase is also expressed in over 80% 

of human cancers, and has been presumed to con-

fer unlimited cell cycling ability. Conversely, many 

tumours show foreshortened telomeres. A two-

step process has been proposed, whereby early 

telomere shortening promotes chromosomal in-

stability and mutation, and then telomerase activ-

ity stabilizes the telomeres and allows uncontrolled 

replication. In most haematological malignancies, 

short telomeres and telomerase activity are de-

tected; telomerase activity levels of between 2 and 

50 times that of normal haematopoietic precursors 

has been shown.  55    

  Protein expression 

 The protein products of normal stem cells have 

been seen to be differentially expressed within tu-

mours, with populations enriched for putative 

CSC showing higher levels of expression. Nestin is 

an intermediate fi lament protein and a marker for 

neuroepithelial precursors  56  ; in undifferentiated 

clonal neurospheres from both normal brain  18   

and brain tumour tissue  24,25   increased immuno-

reactivity is seen. Nanog and Oct 3/4 are homeo-

proteins involved in self-renewal and pluripotency 

of embryonic stem cells, with immunoreactivity 

demonstrable on tumour sections. Sarcospheres 

grown from osteosarcomas and chondrosarcomas 

show preferential expression of these proteins; 

the proportion of positively staining cells de-

creases as the spheres grow out and cells begin to 

differentiate.  20     

  Which cell is the target for 
transformation? 

 Despite the evidence supporting the theory that 

cancer is initiated and propagated by cells with 

stem-like characteristics, it remains unclear 

whether the CSC is a normal tissue stem cell, which 

has undergone malignant transformation, or a 

more differentiated cell, which has acquired more 

primitive, stem-like characteristics as a result of 

mutation or dedifferentiation. 

 As discussed, many of the attributes of nor -

mal stem cells make them attractive candidates 

for malignant transformation into CSC  –  they are 

programmed for self-renewal and multilineage 

 differentiation; they persist and continue to divide 

for the lifetime of the host, allowing them more 

 opportunity to accrue transforming mutations; 

isolated tumour-initiating cells show many pheno-

typic similarities to the corresponding normal 

 tissue stem cell (e.g. cell-surface markers, protein 

expression and telomerase activity). 

 At the same time, pluripotent stem cells repre-

sent a small minority of cells within a tissue. An in-

dividual stem cell would be a very small target 

population for the accumulation of suffi cient mu-

tations to confer a neoplastic phenotype.  57   Also, 

mutations of pathways which control normal stem 

cell function, such as the Wnt –  � -catenin pathway, 

are seen in many cancers  57,58    –  this would perhaps 

be unexpected if normal stem cell processes had 

simply been co-opted to lead to tumorigenesis, 

rather than independent acquisition of such func-

tions through mutation. It has been suggested that 

normal stem cells may be protected from the 
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effects of mutations, but that these may manifest in 

their more downstream progeny.  8   

 Certainly evidence exists that tumour-initiating 

cells may lie in a more committed cell population 

than the CSC. Both committed myeloid progeni-

tors and haematopoietic stem cells produce a trans-

plantable murine model of AML when transduced 

with a mixed lineage leukaemia fusion gene. More-

over, the phenotypic characteristics and stage of 

maturation arrest was identical in leukaemias de-

rived from transplanted HSCs, common myeloid 

progenitors or granulocyte – macrophage progeni-

tors (GMP).  59   Analysis of the different cellular 

compartments in CML showed increased nuclear 

 � -catenin in myeloid progenitors as the disease ad-

vanced to blast crisis, while levels in HSCs remained 

stable. Also  in vitro  self-renewal capacity was shown 

both by GMPs from leukaemic patients and nor-

mal GMPs with forced  � -catenin expression.  60   

(It is of note that the cellular compartments in the 

leukaemic samples were defi ned according to the 

surface marker phenotypes of the normal haema-

topoietic hierarchy  –  this may be inappropriate, 

given that markers of normal differentiation would 

be expected to show derangement in leukaemia, 

particularly at blast crisis stage.) 

 Polyak and Hahn  57   propose three models for 

 development of malignancy involving stem cells: 

(1) a mutation causes dysregulation of asymmetric 

division in a CSC and is passed on to all progeny; 

progression to full transformation occurs in this 

population as further mutations are acquired; (2) 

the CSC itself acquires mutations suffi cient for ma-

lignancy, and passes these on to all progeny; and (3) 

the transit-amplifying cells or more differentiated 

progeny accrue mutations leading to dedifferentia-

tion and acquisition of stem-cell-like properties; 

CSCs themselves are not involved. 

 Although the dedifferentiation of a committed 

cell into one with more primitive, stem-like prop-

erties seems an unlikely event, it has been shown in 

 Drosophila melanogaster  that cells differentiating in 

four- to eight-cell cysts during early development 

can be induced to revert to germinal stem cells.  61   

Autocrine signalling of PDGF has been implicated 

for its role in the development of human gliomas. 

Over-expression in not only neural progenitors 

but also (albeit with less effi ciency) differentiated 

astrocytes  in vitro  leads to increased proliferation, 

and  in vivo  can induce tumour formation in mice; 

this is enhanced by loss-of-function of the  Ink4a  

locus.  23   

 It has been proposed that perhaps, rather than 

unlimited self-renewal capacity being conferred on 

CSC by gain-of-function mutations, that it is in 

fact a  ‘ default ’  pathway (seen, for example, in most 

single-celled organisms). If tissue specialization re-

lies on a balance between self-renewal, differentia-

tion and cell death, then could any cell in which 

apoptosis is prevented or differentiation is blocked 

(the effects of many of the mutations seen in can-

cer) act as a self-renewing CSC?  62   

 Recently, interesting fi ndings have suggested 

that there exists an even more primitive population 

of precursors within the bone marrow, the putative 

 ‘ haemangioblast ’ . One hallmark feature of CML, 

present in 95% of patients, is the Philadelphia 

chromosome  –  this truncated chromosome 22 re-

sults from a reciprocal translocation with chromo-

some 9, and produces the BCR – ABL fusion protein. 

The protein is found in multiple haematopoietic 

lineages in CML, suggesting that the translocation 

event arises in an HSC; however, demonstration of 

BCR – ABL expression in endothelial cells from a 

patient with CML may point to the mutational 

event having occurred in a cell preceding the HSC 

in the haematological hierarchy, with greater dif-

ferentiation potential.  63   Certainly, as more is un-

derstood about the stem cell hierarchies present in 

normal tissues, understanding of the role of stem 

or stem-like cells in cancer will be enhanced.  

  The importance of the niche 

 The potent effects imparted by the environment in 

which a cell exists, or  ‘ niche ’ , cannot be disregarded 

when considering the evolution of a tumour.  57,64,65   

The tumour interacts with its surrounding stroma 

in a reciprocal manner similar to the communica-

tions between cells in normal tissues, and can infl u-

ence the stroma such that it is more conducive 

to tumour growth. Indeed, epithelial tumour for-

mation can be enhanced by inducing mutations in 

cleared (epithelial cell-free) stromal environments, 

and then introducing normal untreated epithelial 

cells.  64   
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 Normal bone marrow stem cells possess the ca-

pacity to mobilize and migrate in the circulation to 

distant sites in response to tissue damage and stress; 

complex, co-ordinated homing mechanisms are 

involved.  66   Stem cells from different tissues share 

common genetic programs,  67   and bone marrow 

stem cells display plasticity allowing them to dif-

ferentiate into a variety of cell types.  65,68   There are 

many similarities between the mechanisms gov-

erning the migration of normal stem cells and the 

metastatic dissemination of tumour cells, such as 

the interaction between the cell-surface CXCR4 

 receptor and its ligand, stromal-derived factor 1, 

secreted by the niche.  69   

 Cancer cells may disseminate to distant sites; 

however, while this may lead to the formation of 

metastases (whose cellular heterogeneity frequently 

resemble that of the primary tumour  70  ), some of 

these migrating cells never develop further but re-

main detectable in remote tissues.  6   It has been pro-

posed that it is the migration of the CSC population 

which allows the expansion of the tumour mass  –  

manifesting as local invasion over short distances 

and metastatic spread for longer migrations.  70    

  The cell fusion hypothesis 

 An alternative mechanism proposed for the appar-

ent plasticity shown by stem cells is cell fusion. Fu-

sion of bone marrow stem cells with a variety of 

different cell types has been shown  in vivo  and  

in vitro . If this hypothesis is extended to cancer, the 

fusion of a stem cell with a somatic cell carrying 

mutations could result in a cell with genetic and 

karyotypic abnormalities, which has the properties 

of a CSC.  65   The case for cell fusion remains equivo-

cal. It has been best shown in models involving 

severe tissue injury; it remains to be established 

whether it occurs in diploid, adult cells  in vivo  in 

the absence of cell damage.  71    

  Implications for cancer therapy 

 If a population of CSC is responsible for the propa-

gation of a tumour, then these must be eliminated 

to effect a cure (  Fig.   5). This may not be achieved 

by conventional strategies, which target rapidly di-

viding cells  –  stem cells may enter periods of quies-

cence during which they will be resistant to 

strategies aimed at eradicating cycling cells. This is 

evident in the treatment of acute leukaemias, in 

which total bone marrow ablation followed by re-

constitution is required in a signifi cant proportion 

of patients.  71   Guzman  et al.  report the use of MG-

132, a proteasome inhibitor, and idarubicin, an 

anthracycline, in preferential targeting of leukae-

mic stem cells in  in vitro  and  in vivo  models of 

AML  –  the cells are driven to apoptosis, but normal 

HSCs are spared.  72   

 Other treatment modalities might also preferen-

tially target putative CSC. Transiently inactivating 

the causative oncogene in transgenic mouse model 

of osteogenic sarcomas can cause the tumours to 

regress, with reactivation leading to apoptosis.  73   It 

would seem logical that forcing CSC down a sym-

metrical division pathway, whereby two more 

committed daughter cells are produced, would de-

prive a tumour of its self-renewal potential and ef-

fect a cure. Differentiation therapy with retinoids is 

effective in a majority of cases of human acute pro-

myelocytic leukaemia, although responses in other 

malignancies have been variable.  71   

 Treatments directed solely at CSCs, however, 

may not have an effect on the differentiated pro-

genitor and daughter cells. Therefore, the bulk of 

the tumour may remain intact while the CSCs are 

being destroyed. Jones    et al.  describes this theory 

as the dandelion phenomenon. 74  This theory states 

that cutting off a dandelion at the roots, or treating 

the bulk of the tumour, takes away the disease that 

one can see, however, the weed will still regrow be-

cause the root has not been destroyed. Conversely, 

destroying the root, or CSC, of the weed leaves the 

fl ower above soil initially. However, as the root 

dies, the portion above ground will eventually 

wither and die without the root. 

 According to this dandelion phenomenon of CSC 

therapy, a treatment regimen may be abandoned 

too quickly if the only judge of a response to therapy 

is a remission of the bulk of the tumour. This re-

sponse is likely to lag behind the destruction of CSC. 

Conversely, treatment of chronic phase CML with 

imatinib mesylate, a tyrosine kinase inhibitor, has 

achieved high rates of complete remission despite 

the fact that BCR – ABL-expressing progenitors are 

spared.  75   This may indicate the signifi cance of the 
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niche provided to a stem cell by its surrounding 

daughter cell population  –  removal of paracrine fac-

tors, in targeting the tumour bulk, may sometimes 

be suffi cient to arrest the progress of disease.  57   

 Given that clinical response may not be an ideal 

way to monitor for response to therapies that target 

CSC, overall survival is left as common monitoring 

criteria. This requires long study times that can be 

impractical. Animal models are an ideal way to 

continue to use survival as criteria for determining 

effectiveness of therapy. Animal models of sponta-

neously occurring tumours often progress much 

faster than the human form of the disease. Many 

canine tumour models are very similar or even 

identical to their human counterparts,  76,77   and the 

natural canine model may represent an ideal testing 

ground for novel compounds directed at the CSC.    
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