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Çigdem Beyan
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2014



Abstract
Fish behaviour analysis is a fundamental research area in marine ecology as it is help-

ful for detecting environmental changes by observing unusual fish patterns or new fish

behaviours. The traditional way of analysing fish behaviour is by visual inspection

using human observers, which is very time consuming and also limits the amount of

data that can be processed. Therefore, there is a need for automatic algorithms to iden-

tify fish behaviours by using computer vision and machine learning techniques. The

aim of this thesis is to help marine biologists with their work. We focus on behaviour

understanding and analysis of detected and tracked fish with unusual behaviour detec-

tion approaches. Normal fish trajectories exhibit frequently observed behaviours while

unusual trajectories are outliers or rare trajectories.

This thesis proposes 3 approaches to detecting unusual trajectories: i) a filtering

mechanism for normal fish trajectories, ii) an unusual fish trajectory classification

method using clustered and labelled data and iii) an unusual fish trajectory classifi-

cation approach using a clustering based hierarchical decomposition.

The rule based trajectory filtering mechanism is proposed to remove normal fish

trajectories which potentially helps to increase the accuracy of the unusual fish be-

haviour detection system. The aim is to reject normal fish trajectories as much as pos-

sible while not rejecting unusual fish trajectories. The results show that this method

successfully filters out normal trajectories with a low false negative rate. This method

is useful to assist building a ground truth data set from a very large fish trajectory

repository, especially when the amount of normal fish trajectories greatly dominates

the unusual fish trajectories. Moreover, it successfully distinguishes true fish trajec-

tories from false fish trajectories which result from errors by the fish detection and

tracking algorithms.

A key contribution of this thesis is the proposed flat classifier, which uses an outlier

detection method based on cluster cardinalities and a distance function to detect un-

usual fish trajectories. Clustered and labelled data are used to select feature sets which

perform best on a training set. To describe fish trajectories 10 groups of trajectory

descriptions are proposed which were not previously used for fish behaviour analy-

sis. The proposed flat classifier improved the performance of unusual fish detection

compared to the filtering approach.

The performance of the flat classifier is further improved by integrating it into a

hierarchical decomposition. This hierarchical decomposition method selects more spe-

cific features for different trajectory clusters which is useful considering the trajectory

i



variety. Significantly improved results were obtained using this hierarchical decompo-

sition in comparison to the flat classifier. This hierarchical framework is also applied

to classification of more general imbalanced data sets which is a key current topic in

machine learning. The experiments showed that the proposed hierarchical decompo-

sition method is significantly better than the state of art classification methods, other

outlier detection methods and unusual trajectory detection methods. Furthermore, it is

successful at classifying imbalanced data sets even though the majority and minority

classes contain varieties, and classes overlap which is frequently seen in real-world

applications.

Finally, we explored the benefits of active learning in the context of the hierar-

chical decomposition method, where active learning query strategies choose the most

informative training data. A substantial performance gain is possible by using less la-

belled training data compared to learning from larger labelled data sets. Additionally,

active learning with feature selection is investigated. The results show that feature se-

lection has a positive effect on the performance of active learning. However, we show

that random selection can be as effective as popular active learning query strategies in

combination with active learning and feature selection, especially for imbalanced set

classification.
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Lay Summary

Fish behaviour analysis is helpful for detecting environmental changes by observing

unusual fish motions or new fish behaviours. The traditional way of analysing fish

behaviour is by visual inspection using human observers. However, this is very time

consuming and also limits the amount of data that can be processed. Fish behaviours

can be identified by using computer vision and machine learning techniques which

results in automatic analysis. The aim of this thesis is to help marine biologists with

their work. We focus on detection of unusual fish trajectories from natural underwater

videos. Unusual trajectories are rare trajectories while normal fish trajectories are

frequently observed behaviours.

Firstly, the fish trajectories were defined in terms of primitive motions which con-

sider the orientation of the fish. Using these primitive motions, we proposed a method

which aims to reject as many normal fish trajectories as possible while not rejecting

unusual fish trajectories. This method was used to obtain a data set which was used

to test the performance of other proposed methods from a very large fish trajectory

repository. Secondly, an unusual fish trajectory detection method was proposed. Fish

trajectories were described by using 10 groups of descriptions such as location, veloc-

ity based features, etc. The features that performed the best were used to group the

trajectories. Then, unusual trajectories were detected using a method based on the size

of the groups and the distance between trajectories in a group. After selecting the best

features for different trajectory groups, significantly improved results were obtained

compared to previously proposed methods. This method was also applied to data sets

which have two types of data where one type has much less data compared to oth-

er type. In such a case, a problem usually occurs because traditional methods tend

to be biased towards the more common data. The results showed that the proposed

approach’s performance is better than the state of art methods. Finally, this method

was integrated with a methodology called active learning which tries to maximise the

performance while decreasing the amount of data used. By combining active learning

with just the best performing features we showed how to obtain better results with less

training.
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Chapter 1

Introduction

The study of marine ecosystems such as observing coral reefs is important for under-

standing environmental effects caused by global warming, pollution, etc. Analysing

fish behaviour is one approach to detecting environmental changes. This analysis may

consist of detecting changes in behaviour pattern of fish or by finding unusual be-

haviours. For instance, by analysing the behaviour of fish hovering over coral, the

health of the coral can be determined. However, investigating underwater environ-

ments is very challenging since it needs long-term monitoring and automatic analysis,

whereas the traditional approach requires manual processing, which is very labour in-

tensive and time consuming.

Underwater video surveillance systems can help marine biologists monitor marine

life while computer vision and pattern recognition techniques can help them to auto-

matically analyse the output of these systems, which is a huge amount of (tera-scale)

underwater videos. Using these large-scale data, higher level interpretations can be ex-

tracted by automatically detecting, tracking and recognising fish to collate knowledge.

Marine biologists can benefit from the data to analyse species abundance and distribu-

tions, assess environmental changes, understand predator-prey relationships, etc.

1.1 Underwater Video Surveillance Approaches and the

Fish4Knowledge Project

There are many approaches to observing fish behaviour in their natural environment.

Net casting with acoustic sensors [8] is a popular method to observe fish and deter-

mine their abundance [9]. Diving to observe underwater using photography, hand-held

1
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video devices and optical systems to investigate fish behaviour are popular as well.

Additionally, acoustic systems, echo-systems and sonar have been used for fish moni-

toring [10]. The main disadvantage of these systems is disturbing fish as they are very

sensitive to their environment which results in unusual fish behaviour. Moreover, it is

hard to capture large amounts of data which makes a comprehensive analysis difficult

e.g. long-term monitoring is also impossible and the captured data might not include

substantial information [9].

In recent years, as digital video recording systems become cheaper, collecting da-

ta in natural underwater environments with a fixed camera set up which continuously

records underwater videos has become possible. For instance, in the Fish4Knowledge
project embedded video cameras were used to capture underwater videos at different

locations of the Taiwanese Coral Reef such as Third Taiwanese Power Station [11].

The Fish4Knowledge project includes methods to capture, store, analyse and query

underwater videos. The aim is to analyse very large amounts of long-term video using

computer vision, pattern recognition, database management, semantic web and work

flow technologies [12]. The computer vision part of the Fish4Knowledge system cov-

ers components for fish detection, fish tracking and fish species recognition. Using

the results of these components, it is possible to analyse fish behaviour. All the fish

trajectory data sets used in this thesis are from the Fish4Knowledge project repository.

The fish detection and tracking [9] and fish recognition [13] components were utilised

to obtain fish trajectories while all the trajectories were manually inspected to be sure

that there are no false detections, false tracking or false recognitions.

1.2 Problem Description

In computer vision research, behaviour understanding studies have commonly pre-

sented research on human behaviour analysis, traffic surveillance, and nursing home

surveillance. These approaches can be classified in two categories:

• Prominent activity recognition,

• Unusual event detection [14].

In the first category, the system has a definite knowledge of the activities and when

activity is detected, it can be classified in terms of the known activity description [14].

However, this may cause a rapid growth in the number of behaviour models in the real-

world use [14, 15]. On the other hand, for unusual event detection, the system usually
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does not have any prior knowledge about the behaviours and data is usually analysed

by clustering the behaviours to detect normal (usual) or rare behaviours or modelling

possible normal behaviours.

The aim of our work is to present an unusual fish trajectory detection system
that analyses natural underwater environment videos. The methods proposed in this

thesis classify the trajectories as normal and unusual. Normal fish trajectories are

defined as the trajectories which contain frequently observed trajectories while unusu-

al trajectories are defined as the trajectories that are rare or outliers. By using the

proposed methods, we want to help marine biologists with their work. For instance,

by detecting rare behaviours, an unknown behaviour of a fish which might be due to

an environmental change can be detected. Furthermore, the proposed methods can be

seen as a preliminary work to understanding specific behaviours of fish species such as

feeding, predator-prey, reproduction, etc. In this thesis, we analyse previously detect-

ed and tracked fish [9], hence fish detection and tracking are beyond the scope of this

thesis.

1.2.1 Definitions

• Trajectory: The displacements of objects that are typically considered as posi-

tions in 2 dimensions over time.

• Action: Simple motion patterns which happen in a short time by a single object

[16].

• Activity: Complex sequence of actions that last a longer time and may include

more than one agent [16].

• Event: Occurrence of an activity in a specific place and time [17].

• Behaviour: Activities and events in a specific context.

In the literature, trajectory can be used interchangeably with the terms action, activity,

event and behaviour. Similarly, in this thesis, even though we analyse trajectories, we

sometimes use words behaviour or event to refer them.

Additionally, the definition of unusual is a bit ambiguous in the literature. The

words: abnormal, rare, outlier, suspicious, anomaly can be used interchangeably

with unusual (see Chapter 2 for examples). In this thesis, we use unusual meaning not
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common, not frequently observed, rare and outlier (see Section 4.1.3). On the other

hand, normal means frequently observed and common.

1.3 Challenges

The difficulties for fish trajectory analysis using underwater videos are mainly two-

fold:

• The challenges which directly affect the detection of unusual fish trajectories:

When we compare fish trajectories in underwater videos with the other unusual

behaviour detection systems (for instance traffic surveillance, human unusual

trajectory detection and home surveillance), there are certain differences:

– Fish in the open sea can freely move in 3 dimensions, there are no defined

rules or roads such as exist in a traffic surveillance scenario.

– Fish are usually not goal-oriented which produces highly complex trajec-

tories in contrast to people or vehicles.

– Fish usually make erratic movements due to currents in the sea which in-

creases the complexity of the trajectories and also makes the encoding of

the behaviours more difficult than is in human or animal behaviour recog-

nition [18]

– The huge amount of data: The Fish4Knowledge repository has tera-scale

video data. Due to the failures in fish detection, tracking and recognition

components, it is hard to automatically obtain ground-truth data for fish tra-

jectory analysis. A method which quickly scans huge amounts of data and

filters out tracking failures was needed. The proposed method in Chapter 3

was used with this purpose as well.

• The challenges which indirectly affect the detection of unusual fish trajectories:

As fish trajectory analysis depends on fish detection and tracking any difficulty

that affect these components affects detection of unusual fish trajectories.

– Complex background, foreground objects and low quality of video: Due to

sudden light changes in underwater scenes, bad weather conditions (such

as storms, typhoons), murky water and swaying plants, etc. [19].
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– Multiple fish occlusions due to the third dimension in the scene while all

the processed images are in 2 dimensions [19].

These difficulties make gaps and noise in the trajectories. Furthermore, collec-

tion of the ground-truth data for fish trajectory analysis also becomes more diffi-

cult due to the number of tracking failures which happen due to above challenges

(based on the manual examination, we estimate that only 75% of the trajectories

are fully correct). These resulted in a manual sanity check of the output of the

fish tracking and recognition components to obtain the fish trajectory data sets.

1.4 Thesis Statement and Claims

The central goal of this research project can be stated as follows:

Using multiple features extracted from fish trajectories in underwater videos and

methods based on clustering, feature selection and outlier detection, unusual fish tra-

jectories can be detected (which is also an imbalanced data classification problem).

The underlying claims to realise this goal can be defined as follows:

1. Given that there is a huge amount of fish trajectories (considering the Fish4Knowledge

repository especially) and the number of normal fish trajectories is much bigger

than the number of unusual trajectories, a rule based method could be used to

extract normal trajectories while keeping unusual trajectories which should re-

sult in a less imbalanced data set.

2. Individual fish of the same species behave similarly (meaning that the spatio-

temporal characteristics and the shape of the trajectories are similar) in the

same underwater locations (such as open sea, above the coral, below the coral)

at the same time period of the day (such as morning) otherwise their behaviour

could be unusual. This problem could be solved with:

• A clustering based method, where clustered and labelled data are used

together to select best feature set and unusual trajectories are determined

by using an outlier detection method.
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• An automatically generated hierarchical decomposition method (based on

clustering, feature selection and outlier detection) which allows selecting

more specific features for different trajectory clusters.

To verify the first claim, fish trajectories from different distances, species, locations

and time of the day are involved. To verify the following two claims, fish trajectories

belonging to a single fish species, the same camera fields of view (which varies slightly

due to repositioning after typhoons or camera lens cleaning) and time of the day are

considered. All used data sets involve sub-varieties for normal and unusual trajectories

and are highly imbalanced.

The other claims of this research project can be stated as follows:

3. Given that the classification with imbalanced data sets is an important problem

in machine learning (since the real-world data sets are generally imbalanced),

the proposed hierarchical decomposition method to detect unusual fish trajecto-

ries could be used more generally as a solution of this problem.

4. The proposed hierarchical decomposition method can be integrated with active

learning. This can result in equivalent performance with less training data by

using a proper query strategy which determines the most informative unlabelled

training data samples and better feature subsets to build a hierarchy.

To verify the third claim, different imbalanced data sets from different fields such as

biology, physics, etc. and synthetic data sets were used. To classify the test samples

different heuristics were applied and evaluated using the constructed hierarchy. Simi-

larly, to support the last claim, different imbalanced data sets including fish trajectory

and pedestrian trajectory sets were used.

1.5 Organisation of the Thesis

This thesis is mainly about unusual fish trajectory detection which is performed in a

supervised way using fish previously detected and tracked from the underwater videos.

One aim is to help marine biologists with their work. The proposed methods allow the

biologist to focus on data that is potentially unusual which is valuable especially con-

sidering the amount of data that they have to analyse. Additionally, since the proposed
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methods help to detect rare trajectories this might help marine biologist to detect more

interesting behaviours, maybe even behaviour changes for a specific species.

The remainder of that document is structured as follows:

Chapter 2 gives a comprehensive overview and comparison of existing works

in the area of fish behaviour understanding, unusual trajectory detection, imbalanced

data classification, hierarchical methods and active learning.

Chapter 3 presents a rule based method for filtering normal fish trajectories.
Normal fish trajectories were defined in terms of primitive motions where the aim is

to filter out normal trajectories as much as possible while not filtering out any unusual

fish trajectories. This novel approach is useful to quickly scan the large fish trajectory

repository to determine normal and unusual trajectories which can also be used to build

a ground-truth data set. Additionally, its unusual fish trajectory detection performance

is better than many other algorithms. The work presented in this chapter has been

published or accepted to be published as follows:

• Beyan C., Fisher R. B. (2012), A Filtering Mechanism for Normal Fish Trajecto-

ries, In Proceedings of International Conference on Pattern Recognition (ICPR),

pp. 2286-2289, Tsukuba Science City, Japan.

• Beyan C., Fish Behavior Analysis, In Fish4Knowledge: Collecting and Analyz-

ing Massive Coral Reef Fish Video Data, Chen-Burger et al. (Editors), Springer,

in preparation.

Chapter 4 focuses on extracting novel multiple features from fish trajectories.
The proposed method is based on clustering where clustered and labelled data are

used to select the best features to detect unusual trajectories as outliers in the clusters.

This novel method has improved performance compared to the method given in Chap-

ter 3 and it is also the foundation for the method presented in Chapter 5. The work

presented in this chapter has been published or accepted to be published as follows:

• Beyan C., Fisher R. B. (2013), Detecting Abnormal Fish Trajectories using Clus-

tered and Labelled Data, In Proceedings of International Conference on Image

Processing (ICIP), pp. 1476-1480, Melbourne, Australia.
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• Beyan C., Fish Behavior Analysis, In Fish4Knowledge: Collecting and Analyz-

ing Massive Coral Reef Fish Video Data, Chen-Burger et al. (Editors), Springer,

in preparation.

Chapter 5 illustrates a novel hierarchical decomposition method for mainly
fish trajectory detection. The hierarchy construction is based on clustering, outlier

detection and feature selection. Different feature sets and different data samples are

used at different levels of the hierarchy. The advantage of this method is to allow

selecting more specific features once the data focuses onto specific subclasses. The

proposed method was tested with pedestrian data set as well and different aspects of

the proposed method such as the heuristics that it uses to classify test trajectories were

examined. The work presented in this chapter has been published or accepted to be

published as follows:

• Beyan C., Fisher R. B. (2013), Detection of Abnormal Fish Trajectories Using a

Clustering Based Hierarchical Classifier, In British Machine Vision Conference

(BMVC), Bristol, UK.

• Beyan C., Fish Behavior Analysis, In Fish4Knowledge: Collecting and Analyz-

ing Massive Coral Reef Fish Video Data, Chen-Burger et al. (Editors), Springer,

in preparation.

• Beyan C., and Fisher R. B., Hierarchical Decomposition for Unusual Fish Tra-

jectory Detection, In Computer Vision and Pattern Recognition in Environmental

Informatics, Zhou et al. (Editors), IGI Global, in preparation.

Chapter 6 addresses classification with imbalanced data sets. The method pro-

posed in Chapter 5 is applied to various imbalanced data sets and also synthetic data

sets. It is compared with the state of art classification methods for imbalanced data.

The results and various statistical analysis show that the proposed method generally

performs significantly better than the state of art methods. It performs well even when

classes have sub-varieties, classes are overlapping and more imbalanced. The work

presented in this chapter has been accepted to be published as follows:

• Beyan C., Fisher R. B., Classifying Imbalanced Data Sets Using Similarity

Based Hierarchical Decomposition, Pattern Recognition, to appear.
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Chapter 7 focuses on active learning with feature selection and integration
of the proposed hierarchical decomposition method with active learning. Various

active learning query strategies and random selection are compared with each other.

It is observed that active learning with feature selection achieved better performance

than without feature selection although random selection is generally as good as active

learning query strategies. Additionally, we integrated the hierarchical decomposition

method with active learning. The results show that with a proper active learning query

strategy, the desired performance (such as the performance which is very close to the

obtained performance with passive learning) could be obtained with less training data.

Chapter 8 discusses the results and the contributions of this thesis and outlines
future works.

1.6 Original Contributions

The next chapters present the following original contributions:

1. A novel normal fish trajectory filtering method: This is the first algorithm for

filtering normal fish trajectories in data from an unconstrained open sea environ-

ment.

2. A novel unusual fish trajectory detection method based on clustering, outlier de-

tection and feature selection: Both labelled and clustered data are used together

for classification of trajectories which makes this method novel. Additionally,

novel trajectory descriptions which were not previously used for fish behaviour

analysis were proposed. The best classification performance (until the following

method) was obtained for unusual fish trajectory detection in natural underwater

videos.

3. A novel hierarchical decomposition method which uses similarity of the data to

build the hierarchy: This method is different from previously proposed solution-

s for unusual fish trajectory detection and the class imbalance problem. It does

not require any data pre-processing step as many other imbalanced data classi-

fication approaches do. This hierarchical decomposition method is novel as the

hierarchy is constructed using the similarity of labelled data subsets at each level

of the hierarchy with different levels being built by different data and feature

subsets. This is in contrast to previous research that uses the same feature set for
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every level of the hierarchy or a flat classifier. This method is the most accurate

approach to detect unusual fish trajectories in underwater videos.

4. Fish behaviour analysis in natural underwater scenes is very limited and the pro-

posed methods are the only methods that aim to detect unusual fish trajectories

using natural underwater videos.

5. Throughout this thesis, the largest fish trajectory data set which is the largest

labelled trajectory data set as well was collected and used in our experiments.

6. A comprehensive investigation for active learning with feature selection: The

literature is very limited in terms of active learning with feature selection. The

existing studies about active learning with feature selection all belong to the

natural language processing field where the feature space is implicitly changing

and the features were manually determined. We investigated active learning with

feature selection without aiming at any specific application area where the fea-

ture space is automatically determined by the feature selection algorithm. Many

popular active learning query strategies and random selection were utilised for

the analysis.

7. A novel approach to integrate the proposed hierarchical decomposition method

with active learning: Using this approach, the best performance was obtained

with less training data. This method is possibly the simplest method conceptu-

ally while some other approaches need a learning stage to estimate the probabil-

ities from the distance between data samples.



Chapter 2

Literature Review

In this chapter, overviews of previous research about fish behaviour understanding

(Section 2.1), unusual trajectory detection (Section 2.2), imbalanced data classification

(Section 2.3), hierarchical classifiers and hierarchical decomposition (Section 2.4) and

active learning (Section 2.5) are given.

Studies on fish behaviour analysis are investigated based on the application area.

Unusual trajectory detection methods are summarised in terms of trajectory represen-

tations and the learning methods used. Studies about imbalanced data classification are

presented by their methods and evaluation metrics. Additionally, hierarchical decom-

position is distinguished from hierarchical classifiers with example studies from the

literature. Lastly, active learning particularly for imbalanced data classification and

active learning with feature selection, is addressed.

2.1 Fish Behaviour Understanding

Fish behaviour monitoring and understanding studies using computer vision and ma-

chine learning techniques are becoming popular not only in marine biology but also in

artificial intelligence. However, the number of studies in this field is still limited com-

pared to the number of approaches for fish detection, tracking and recognition. Studies

for fish behaviour analysis can be categorised as:

• Studies considering fish as individuals or as a school,

• The number of fish or fish species that are examined,

• The video capturing environment (fish tank, aquarium, aquaculture sea cage,

natural environment, etc.),

11
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• The application area of the study (detecting unusual fish trajectories, water quali-

ty monitoring using fish behaviour, fish stress factor identification, quantification

of fish behaviour, video classification using fish motion patterns and so forth).

In this section, we review the fish behaviour understanding methods in terms of

their application area.

Existing studies generally focus on water quality monitoring and chemical contam-

inant detection based on the behavioural stress responses of fish [20, 21, 22, 23, 24, 25].

For instance, Thida et al. [20] used trajectory shape features with a signed-distance

function. Using incremental spectral clustering, fish trajectories were grouped and

the location of fish and the swimming directions were determined in the clean water.

Those trajectories were used to determine the abnormal trajectories in the toxic water

where a threshold defines the normality score and any trajectory having a score under

that threshold is classified as abnormal. Similarly, recurrence plots were used to anal-

yse the swimming pattern of fish in the presence of chemicals in the water [24]. It is

assumed that the behaviour of a fish in polluted water should be changed over time

compared to the same fish in the clean water. The fish trajectories were represented as

no movement, up, down, right and left movement. A string representing each trajectory

in terms of those movements was obtained for each trajectory. Strings were compared

with Levenshtein and Hamming distances and used to build the recurrence plots to

detect unusual swimming patterns. A real time automatic fish school behaviour moni-

toring system was presented by Chew et al. [25]. In that study, two equal sized tanks

(one for clean water one for contaminated water) having 20 fish in each with the same

environmental conditions (such as illumination) were used. Position and the size of

the fish school were determined using a simple background subtraction algorithm. The

activity level of the fish school was determined using the overall speed of fish and the

complexity of the path of the school. Additionally, the school distribution in different

parts of the tank was found and the distribution in the clean water and the contaminated

water were compared. The results showed that the fish school in the contaminated tank

tended to swim away from the central area of the tank. Other studies which considered

different stress factors also exist and it is known that high stocking density is one of the

major factors that causes fish stress [26]. For instance, Papadakis et al. [23] considered

the stocking density and proposed a computer vision system to observe the behaviour

variability of Sparus aurata. This species was monitored before and after feeding time

during the day. The time that fish spent to inspect the net and the number of bites on

the new surface were determined. The results in that study [23] showed that there is a
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connection between fish behaviour, stocking density, and net condition. Fish feeding

is influenced by stocking density and by the social interactions of fish.

A different application area in this field is automatically monitoring fish behaviour

in aquaculture sea cages and detecting anomalies to help the farm operators. For in-

stance, Pinkiewicz et al. [27] presented a system which monitors 30 random fish in

aquaculture sea cage throughout the day. With the features such as coordinates of fish

bounding box, the size of the bounding box and eccentricity ratio, fish were tracked

using a Kalman filter. Fish trajectories were represented in terms of average swimming

speed and the direction. Using a threshold for calculated trajectory features, normal

and abnormal behaviours were distinguished.

For quantification of zebrafish behaviour Kato et al. [28] presented an image pro-

cessing based system. Multiple fish were tracked individually in a single aquarium.

The interaction of two zebrafish were investigated in terms of chasing behaviour. Chas-

ing was defined by the distance, approach and the angle of the two fish. This study is

useful as it can be used as a tool to detect disorganised schooling in larger areas with

many fish which is important for fish ecology.

A recent problem in this area and also the problem that we are interested in is au-

tomatic fish motion pattern analysis in underwater environments [18, 29]. Spampinato

et al. [18] proposed an Adaptive Gaussian Mixture Model with the Adaptive Mean

Shift algorithm to detect and track fish in underwater videos. Fish species were recog-

nised using affine invariant descriptors to describe texture and shape based features

(third moment, fourth moment, Fourier descriptors, and curvature scale space and so

forth). Fish trajectories were sub-sampled using Douglass-Peucker algorithm and then

clustered using I-kMeans. Fish species were associated with the extracted trajectories.

This study can be seen as a preliminary work since it did not include any evaluation of

the trajectory analysis. However, it is still important as it uses underwater videos and

shows the importance of fish behaviour analysis in that field. On the other hand, using

fish motion patterns, the underwater videos were classified [29]. Fish trajectory was

modelled in terms of fish swimming speed, direction, periodicity and escape response

time. Using three sea depths, six behaviour patterns of fish were defined. A new video

was identified in terms of sea depth using the motion pattern. To do that: optical flow

was used to detect the fish and optical flow vectors were clustered using an agglomer-

ative hierarchical clustering method. Then, a tracking step were applied. Histograms

of fish displacements were extracted and by using a Random Forest classifier differ-

ent fish motion patterns were identified for video classification. In a different study,
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Spampinato and Palazzo [9] applied an HMM to detect tracking faults (wrong trajecto-

ries) which occur due to background plant movements, object occlusions, and tracker

mis-associations. Correct and false trajectories were first scaled by multi-dimensional

scaling (MDS) and then clustered using k-means. For the k clusters, k HMMs were

trained. If the maximum likelihood of a new trajectory using the k HMMs is lower

than a threshold, then the new trajectory was classified as incorrect. This study is dif-

ferent in terms of it’s aim but important as it presents an anomaly detection framework

using fish trajectories.

In summary, the majority of works analysed the fish trajectories in a fish tank [25],

aquarium [20] or an aquaculture sea cage [27] which actually makes the analysis sim-

pler as it decreases the number of fish behaviours, the variety of fish behaviours and

most importantly eliminates the effects of habitat on the behaviour of fish. A few stud-

ies analysed videos of natural habitat underwater environments [18, 29, 9]. Some stud-

ies focused on behaviour of individual fish [18, 21, 22] while other studies considered

fish schools [20, 25]. Most of the studies analysed only one species like [27, 25, 28, 30]

while some of them considered more species [18].

2.2 Related Works on Unusual Trajectory Detection

Trajectories describe the displacements of objects and are typically considered as po-

sitions in 2 dimensions over time. Unusual trajectory detection studies can be cate-

gorised based on:

• The trajectory representation methods that they utilised,

– Using raw trajectory positions, reproducing trajectory positions such as by

polynomial fitting, etc.

– Extracting multiple features from trajectories such as velocity, acceleration

and shape based features, etc.

– Combinations of these.

• The learning method that they used

– Unsupervised,

– Supervised,

– Semi-supervised.
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2.2.1 Trajectory Representation Methods for Unusual Trajectory De-

tection

To reproduce trajectories from the original tracks, Morris and Trivedi [17] categorised

possible methods as:

• Vector quantization,

• Polynomial fitting,

• Multi-Resolution Decomposition,

• Hidden Markov Model (HMM),

• Subspace Methods,

• Spectral Methods, and

• Kernel Methods.

Those methods were used to represent trajectories for trajectory clustering, path

modelling, unusual trajectory detection, automatic activity analysis, and activity recog-

nition. Here, we discussed only the methods that were used for unusual trajectory

detection.

Polynomial fitting such as Least Square Polynomials, Chebyshev Polynomials and

Cubic B-spline curves try to fit simple 2D curves to trajectories. For instance, Sillito

and Fisher [31] proposed a semi-supervised anomalous trajectory detection method

using cubic B-spline fitting. Li et al. [32] adapted the proposed B-spline approach in

[31] to represent trajectories. Similarly, Makris and Ellis [33] applied spline fitting to

extract common pathways from a set of pedestrians’ trajectories. Spline fitting does

not need machine learning methods but the accuracy depends on the chosen number

of control points. If an incorrect number of points is chosen some trajectory dynamics

might not be represented correctly. This might result in ignoring sharp changes in

trajectory which may influence the discrimination of trajectories.

Haar representations and the Discrete Fourier Transform (DFT) are the most fre-

quently used multi-resolution techniques. For instance, Naftel and Khalid [34] used

the DFT to map trajectory time series to the frequency domain. Using Self Organising

Map (SOM), trajectories were clustered in the chosen feature space. Anomalous tra-

jectories were found as the trajectories sufficiently distant from all identified trajectory
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clusters. Although the DFT representation is simple, it is unable to represent the tem-

poral occurrence of frequency changes in a signal as it only represents the frequency

content. Additionally, it was not successful at representing complex trajectories [34].

An alternative representation approach is using Hidden Markov Models (HMM)

[35, 36, 37]. Suspicious human activities in a scene were identified as a part of a

surveillance system which is capable of detecting and tracking people as well [37].

In that study [37], all possible normal activities were represented using HMMs. Any

activity with low likelihoods from all the HMMs was classified as anomalous. The

HMM is useful if the trajectory length is fixed for all trajectories. However, usually the

lengths of trajectories are not equal. Therefore, to use HMM trajectory interpolation

might be needed. Moreover, HMM based representations need training data to define

the states and transition matrices.

Principal Component Analysis (PCA) is a well known subspace method which us-

es eigenvectors to project data into a lower dimension space. Using PCA was used

by Bashir et al. [38] to represent segmented trajectories. The trajectories were seg-

mented into atomic actions by perceptual discontinuities (which possibly occur due

to occlusions and noise) in the trajectory using velocity and acceleration. All similar

activities were then used to form a single data matrix and the principal components of

this matrix were used to find a compact representation. Lastly, trajectories were clas-

sified using a HMM where an unusual trajectory can be found with the same approach

as given above [37]. PCA is useful as it provides a compact representation but the

number of components should be determined carefully as it is possible to lose a part of

the trajectory information.

To compare popular trajectory representation methods Sillito and Fisher [39] used

a fixed arc-length vector representation and applied Haar wavelet coefficients, DFT,

Chebyshev polynomial coefficients and cubic B-spline to pedestrian trajectories, vehi-

cle trajectories, hand trajectories and pen trajectories. These techniques were evaluated

in terms of class separability while this metric is useful to evaluate an unusual trajec-

tory detection method. The Haar representation was found to be better than the DFT

while the highest separability values were obtained by Chebyshev or B-spline repre-

sentations.

The most popular trajectory representation methods for unusual trajectory detec-

tion are summarised with their advantages, disadvantages and example references in

Table 2.1.
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Table 2.1: Comparison of the most popular trajectory representation methods for un-

usual trajectory detection with example references.

Method Advantage Shortcoming Reference

Cubic B-spline Does not need learning. Accuracy depends on choosing the correct num-

ber of control points.

[31, 33, 32]

HMM Successful if the trajectory length is constant. Needs training data to define the states and tran-

sition matrix.

[35, 36, 37]

PCA Provides a compact representation using eigen-

vectors.

Accuracy depends on correct number of PCA

components.

[38]

Haar Does not need learning. Not able to represent complex trajectories. [34]

DFT Very simple. Does not represent the temporal occurrence of

trajectories.

[39]

As mentioned above, rather than explicitly reproducing the trajectories, the tra-

jectories can be represented by the multiple features derived from the trajectories

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. For example, Zhong et al. [40] used colour

and texture histograms. Behaviour patterns were classified as normal and unusual us-

ing the co-occurrence of these features. Porikli and Haga [41] proposed to use object

based and frame based features together to detect abnormal behaviours. In that study,

object based features includes the histogram of aspect ratio, orientation, speed, colour

size of the object, the HMM trajectory representation, duration, length, displacement

and global direction of the trajectory. As frame based features histogram of orien-

tations, location, speed, size of objects were used. In the literature, extracting such

multiple features from raw trajectories is very common for unusual trajectory detec-

tion. Some of interesting studies are addressed in Section 2.2.2 while discussing their

proposed learning methods.

2.2.2 Learning Methods for Unusual Trajectory Detection

Unusual trajectory detection algorithms are commonly unsupervised. Unusual trajec-

tories are those that are not similar (close) to any known clusters using a pre-defined

distance threshold or are trajectories that are similar to clusters that have few trajecto-

ries. An earlier work in this category is [50] which used Self Organising Maps (SOM)

to detect unusual trajectories. In that study, the trajectories were translated into a fea-

ture vector in terms of time smoothed positions and instantaneous velocity. The Eu-

clidean distance between trajectories and clusters and a pre-defined distance threshold

were used to find the unusual trajectories. A trajectory having a distance larger than a

threshold was classified as unusual. Differently, Hu et al. [42] presented a hierarchical
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trajectory clustering method to detect abnormal trajectories and make behaviour pre-

dictions. The position, the velocity and the size of the object were used to describe

trajectories. At the first level of the hierarchy, trajectories were clustered using spatial

information. At the second level, clustered trajectories were grouped according to tem-

poral information. Abnormal trajectories were defined as the trajectories that belong

to clusters having few samples. Another unsupervised unusual trajectory detection

method was proposed by Izo and Grimson [51]. Normal and unusual trajectories were

individually clustered using the Normalised Cuts Spectral Clustering algorithm. To

represent the trajectories, a feature vector composed of the area of the object’s bound-

ing box, the speed, the direction of motion and the object position in the image were

used. To classify a new trajectory, it was projected into the spectral embedding space

of the obtained clusters and matched with the clusters. 4-D histograms in terms of 2-D

trajectory position and the instantaneous velocity were used for unusual event detec-

tion in [52]. First trajectories were clustered using a GMM with an outlier removal

which considers the direction of motions and then 4-D histograms were analysed to

examine the local characteristics of the trajectory. The number of clusters were deter-

mined by the finite mixture models [53]. Outlier removal was presented with a split

and merge procedure which was based on the Bhattacharyya distance. A new trajec-

tory was classified as normal or unusual by comparing its features with the histograms

that were obtained using training data and the thresholds that are specific to each clus-

ter. A 3-stage unsupervised hierarchical trajectory and activity learning process with

an abnormal trajectory detection method was presented in [15]. The trajectory points

and the velocity extracted from the trajectory were used. In the first stage, interest-

ing nodes were learned by a GMM. In the second stage, the routes which represent

each trajectory cluster were extracted using Longest Common Subsequence (LCSS)

distance and spectral clustering. Following this, the dynamics of activities were en-

coded using HMMs. The abnormal trajectories were determined by comparing the

trajectory’s log-likelihood with a threshold. This study is important as it gives a very

nice flow for the trajectory learning process and unusual trajectory detection system as

a sub-problem of trajectory learning. In [54], multiple features such as velocity, direc-

tional distance, target trajectory mean, initial target position, speed, acceleration, PCA

transformed trajectory points and trajectory turns were used to cluster the trajectories

and then to detect anomalies. The Mean-shift algorithm was applied to normalised tra-

jectory features to obtain trajectory clusters. The abnormal trajectories were defined as

outliers to the clusters that are different from the other trajectories in the same cluster
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or the trajectories that belong to a cluster which has few samples. In a recent work

[55], trajectories were examined at three levels as spatial, directional and object type

(vehicles and pedestrians) and different clustering methods for each level were applied

for unusual traffic behaviour detection. For the spatial level, a trajectory similarity

matrix using the Hausdorff distance was extracted and spectral clustering was applied.

For the directional level, start and end points of the trajectories were used and a GMM

was applied. For the type level, based on the object’s class, k-means clustering was

applied. The output of those levels were combined as multi-level motion patterns. Ab-

normalities were detected as the trajectories that do not fit to any motion patterns that

were found during training.

As an alternative to clustering, topic models can also be used to detect unusual

trajectories. For instance, Probabilistic Latent Semantic Analysis (pLSA) was used in

[56]. By using pLSA the co-occurrence of motion paths was determined and unusual

paths were found. An unusual activity occurs if the pLSA predicts it as being very

rare or if it has a log-likelihood below a threshold. Similarly, Varadarajan and Odobez

[57] also used pLSA with the location, the direction and the shape features extracted

from trajectories. Abnormality detection was performed by different metrics such as

log-likelihood, Kullback-Leibler divergence and Bhattacharyya distance. For instance,

when the log-likelihood is used, normal trajectories have a high log-likelihood while

an abnormal trajectory does not fit any learned topic. As a different topic model Latent

Dirichlet Allocation (LDA), which was applied in an unsupervised way for unusual

trajectory detection, can be used [58, 59]. In those studies, trajectories were grouped

by LDA and represented by HMMs.

In contrast to the studies detecting unusual trajectories with an unsupervised ap-

proach, there are other studies that utilise semi-supervised or supervised methods.

Support Vector Machines (SVM) [60], HMM [43, 44, 45], and Dynamic Bayesian

Networks (DBN) [46, 47, 48, 49] are the popular classifiers which were applied in a

supervised or semi-supervised way using the trajectories either fully labelled as normal

and unusual or only as normal.

As an example, Ivanov et al. [60] used velocity and acceleration features extracted

from trajectories to detect unusual activities such as running or careless driving. In

that study, a SVM was used and a model was trained using typical normal and unusu-

al trajectories. The learned model was used to detect new unusual activities. Xiang

and Gong [46] found natural groupings of trajectories using the eigenvectors of the

behaviours’ affinity matrix. They presented a time accumulative reliability measure to
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detect abnormalities. Once a sufficient number of trajectories that belong to the same

behaviour class is observed (which is determined by the reliability measure) the nor-

mal trajectories were determined on-the-fly without manual labelling in order to detect

the abnormalities. In detail, a trajectory was defined in terms of the centre of bound-

ing box of detection, the width and the height of the bounding box, its shape (filling

ratio of foreground pixels within the bounding box associated with the blob) and the

first order moment. The number of behaviour classes and the behaviour patterns were

automatically determined using Bayesian Information Criterion (BIC) with a GMM.

These behaviour patterns were used to find the natural groupings and each group was

represented by a DBN with Multi-Observation Hidden Markov Model (MOHMM)

topology. For each detection of a new trajectory, the log-likelihood of it was deter-

mined by the MOHMM model. Then, all log-likelihoods were used to determine the

abnormality of the trajectory by comparing the reliability measure which is based on

a threshold. The same authors explored that method more deeply in [47] by compar-

ing the performance of a behaviour model trained using an unlabelled data set with a

behaviour model trained using the same but labelled data set. The results showed that

the trained model using an unlabelled data set is better than the trained model using

the same but labelled data set for detecting abnormalities from an unseen video. The

proposed method in [46, 47] was adapted in [48] to use incremental learning to detect

anomalies in the video. In that study [48], instead of using a reliability measure, the

likelihood ratio test (LRT) was used to detect anomalies. The advantage of that study

is learning the model incrementally (based on expectation maximisation) and online

with a small initial training set. Another study [49] aimed to detect and discriminate

different types of anomalies based on their temporal duration and order using a Cas-

cade Dynamic Bayesian Network (CasDBN). Behaviours were modelled by defining

atomic actions in terms of the actions’ order and temporal duration. The features: the

blob centre, the width, the height of the bounding box, the occupancy, the ratio of the

dimension, the mean optical flow of the bounding box and the scaled optical flow were

used. It was assumed that normal behaviour should follow a typical order of atomic

actions with certain durations while a deviation in temporal order or temporal dura-

tion causes an anomaly. Three kinds of anomalies: i) the behaviour patterns which

are visually different from what have been observed from the training set, ii) the be-

haviours that are ambiguous since they have rare occurrence and iii) the behaviours

supported by only very weak visual evidence were considered. Different DBN mod-

els were constructed to model the behaviours with a two-stage CasDBN. In the first
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stage, a first-order HMM was used to model temporal order while in the second stage,

a MOHMM was used to model the temporal duration. To detect and discriminate dif-

ferent classes of anomalies, thresholds specific to each stage were used for comparing

a sample with the normalised log-likelihood of the behaviour. A different and un-

common supervised learning based unusual trajectory detection method was presented

in [32]. Using trajectory sparse reconstruction linear reconstruction coefficients were

found from labelled data. Normal trajectories were defined as the trajectories produced

by the people walking from one exit to another while unusual behaviours represents

activities such as fighting, falling down, leaving packages, etc. Although this study is

different in terms of the supervised learning method, it was very sensitive to chosen

thresholds.

As an example of semi-supervised unusual trajectory detection method, Sillito and

Fisher [31] proposed using a GMM to learn normal and unusual trajectories. When a

trajectory is classified as unusual by the model, the human operator decided whether

or not the trajectory is normal and based on this, the model was incrementally updated.

The trajectories which were classified as normal never went to the human operator to

be labelled. A trajectory was classified as unusual by the model if its Mahalonobis

distance to the closest component of the GMM exceeds a pre-defined threshold. The

advantage of this system is the capability of classifying new trajectories at any time

during the training. Differently, Luhr et al. [44] and Duong et al. [45] presented semi-

supervised methods for nursing home and smart home systems respectively. They both

utilised variations of HMMs such as a fully connected explicit state duration HMM

(ESD-HMM) and Switching Semi-HMM (S-HMM). Both of these studies detected

anomalies based on the order of the activities and the durations of the activities. As a

different approach, a weakly-supervised joint topic model (WS-JTM) which is based

on LDA was used to find rare and subtle behaviours (defined as the sparse behaviours

among typical behaviours and not repeated enough to be modelled precisely) [61]. The

advantage of that work [61], is being able to detect rare behaviours even with a few

training data and being able to detect the anomalies which have very small spatio-

temporal deviations.

In summary, here we reviewed the most interesting research on the unusual tra-

jectory detection problem. Most of the works are unsupervised and usually based on

clustering, although there is not any single clustering method that was particularly suc-

cessful. For those methods, using the similarity between the trajectories and the known

clusters with a pre-defined threshold is the most common way to detect unusual tra-
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Table 2.2: Most popular learning methods for unusual trajectory detection

Method Reference

Clustering [50, 62, 36, 41, 63, 64, 42, 51, 65, 31, 52, 66, 54, 67, 68,

69, 70, 71, 72, 15, 73, 74, 75, 55]

HMM and Variants [44, 45, 43, 76, 77, 78, 79, 15, 80]

DBN [46, 47, 48, 49]

SVM [81, 14, 82, 60, 83]

Topic Models [56, 57, 84, 58, 59, 61, 85, 75]

jectories. On the other hand, first applying clustering and then modelling each cluster

with a HMM to detect the unusual trajectories as the trajectories having low-likelihood

is a frequent approach as well. The popular learning methods with the corresponding

references are summarised in Table 2.2.

2.3 Related Works on Imbalanced Data Classification

Applications utilising imbalanced data sets are diverse such as text categorisation,

medical diagnosis, fault detection, fraud detection, video surveillance, image anno-

tations, anomaly detection [86, 87, 88, 89]. The diversity in applications has led to

different solutions over the years. Approaches are traditionally divided into four cate-

gories: i) algorithmic level, ii) data level, iii) cost-sensitive methods and iv) ensembles

of classifiers.

• Algorithmic Level: In this approach, the classifier is forced to converge to a

decision threshold biased to an accurate classification of the minority class such

as by adjusting the weights for each class. For instance, in [90] a weighted

Euclidean distance function was used to classify the samples. Similarly, a SVM

with a kernel function biased to the minority class was presented in [91, 92, 93,

94] to improve the minority class prediction.

• Data Level: Re-sampling the data in order to handle the problems cause by the

imbalanced nature of data is the data level approach. This approach does not

modify the existing classifier and is applied as a pre-processing technique. The

training data set can be re-sampled by over-sampling the minority class samples

[95, 96] and/or under-sampling the majority class samples [97, 98, 99].
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One of the most popular re-sampling approaches is SMOTE [95] which synthe-

sised new minority class instances. In this approach, for each minority class

sample a new sample was created on the line joining it to the nearest minority

class neighbour. As it did not replicate minority examples but created new sam-

ples, it overcame over-fitting. Previously, it has been combined with many clas-

sifiers such as SVM [94, 100], Naive Bayes [95], C4.5 [87, 95], Random Forest

[101, 102]. Even though it is popular and works better than only under-sampling

the majority class, it does not always achieve better classification performance

compared to the original classifiers as observed in [102]. A possible reason for

this can be that the newly generated samples might cause class overlapping or

because it gives each minority class sample equal importance and does not pay

more attention to the samples for which classification is harder. There are some

improved versions of SMOTE to overcome its shortcomings such as Borderline-

SMOTE [103], SMOTEBoost [104], and modified SMOTE [105]. For instance,

Borderline-SMOTE [103] assumed that the data samples close to the decision

boundary are more important as they might cause misclassification and use those

samples to create new samples.

Even though re-sampling techniques are independent of the classifier, it is usu-

ally hard to determine the optimal re-sampling ratio automatically. It might be

problematic to over-sample minority classes yet keep the distribution the same,

especially in real-world applications where overlaps between minority and ma-

jority classes are highly likely. Therefore, over-sampling potentially results in

over-fitting [106]. Moreover, when over-sampling is applied, the computation-

al cost is also increasing which is not well suited to very large data sets. On

the other hand, while under-sampling the majority class, it is usually difficult to

keep the new distribution of the majority class as similar as the distribution that

it is sub-sampled from. Additionally, it is possible to throw away some useful

samples and thus increase variance in estimating model parameters [107].

• Cost-sensitive Methods: This approach was usually applied by earlier studies

where different costs are assigned to training examples of the majority and the

minority classes [108, 109]. The classifier is biased toward the minority class

with a higher mis-classification costs while it tries to minimise the total classifi-

cation error for both classes. However, it is difficult to set the cost properly and

it may depend on the characteristics of the data sets. The standard public classi-
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fication data sets do not contain the costs [86, 87] and over-training is possible

when searching to find the most appropriate cost. Different cost functions were

combined with the classifiers such as k-nearest neighbours (kNN) [110], SVM

[111], decision trees [112], logistic regression [113]. For instance, in [113] the

classification performance of logistic regression for mine classification was im-

proved compared to pure logistic regression, although it was still not successful

with the data sets that have very few minority class samples.

• Ensembles of Classifiers: This category has been popular in the last decade. In

general there are two main approaches: bagging and boosting. Bagging contains

different classifiers which are applied to subsets of the data [114]. Alternatively,

in boosting, the whole set is used to train classifiers in each iteration while more

attention is given to the classification of the samples that are misclassified in the

previous iteration. This is done by adjusting the weights toward their correct

classification. The most well known boosting method is AdaBoost [115].

Even though ensembles are frequently used for classification of imbalanced data

sets, they are not able to handle the imbalanced data sets by themselves. And

they require one or a combination of the approaches that are mentioned above

such as re-sampling data (SMOTEBoost [104], EUSBoost [87] etc.). For in-

stance, Radivojac et al. [116] presented bagging with over-sampling for a bioin-

formatics application. Liu et al. [117] proposed a double ensemble classifier by

combining bagging and boosting. In that study, EasyEnsemble and BalanceCas-

cade were used for bagging in the first ensemble and also for each bag AdaBoost

[115] was used. Sampling and ensemble techniques were again combined in

[118]. This method is similar to SMOTEBoost [104] as being simpler, faster and

performing better. It removes the majority class samples until the training set

become balanced, assuming that classification of balanced data sets are better.

However, the results showed that making the data set completely balanced can

sometimes result in lower performance. Pure SVM was compared with ensem-

bles of SVM in [119]. With ensembles of SVM the minority class prediction

was increased. In that study [119], Boosting-SVM with Asymmetric Cost found

as the best compared to methods such as SMOTEBoost [104], random under-

sampling with SVM and SVM-SMOTE [95].

In summary, the number of proposed approaches in this field is very large, and

the studies are interesting, as imbalanced data sets implies a significant challenge for
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Table 2.3: Confusion matrix for a two-class problem

Prediction as Minority Class

(Positive Class)

Prediction as Majority Class

(Negative Class)

Minority Class

(Positive Class)

True Positive (TP) False Negative (FN)

Majority Class

(Negative Class)

False Positive (FP) True Negative (TN)

machine learning and data mining applications. The evaluation criteria used is also as

important as the methods to make a good and fair evaluation to determine the success-

ful and/or unsuccessful methods. Therefore in Section 2.3.1, we discuss the suitable

evaluation metrics for imbalanced data classification.

2.3.1 Evaluation Metrics for Imbalanced Data Classification

The choice of appropriate evaluation criteria (such as feature selection criterion to lead

the training process and/or the metric to evaluate the performance of the classifiers) is

very important when dealing with imbalanced data sets since it might cause to ignore

classification of minority class examples due to processing them as noise [86, 87].

For a two-class problem, the confusion matrix shown in Table 2.3 is used to define

evaluation metrics.

The most common metric is the accuracy (Eq. 2.1) which is calculated as the

sum of correctly predicted minority and majority samples over the total amount of

samples. However, for imbalanced data sets, accuracy is not suitable and is not used as

it misguides the classifier and ignores the importance of minority class since it is under-

represented [86, 87, 94, 100]. Using accuracy might even lead to total misclassification

of the minority class if the imbalance ratio (the number of the minority class samples

over the number of the majority class samples) is very low and the data is highly

overlapping.

ACC =
T P+T N

T P+FN +T N +FP
(2.1)

For this reason, many alternative metrics have been proposed for evaluation of im-

balanced classification. Those metrics are based on True Positive Rate (TPrate) which

represents the percentage of positive samples (the minority class samples) correctly
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classified (Eq. 2.2), True Negative Rate (TNrate) which represents the percentage of

negative samples (the majority class samples) correctly classified (Eq. 2.3), False Pos-

itive Rate (FPrate) which represents the percentage of negative samples misclassified

(Eq. 2.4), False Negative Rate (FNrate) which represents the percentage of negative

samples misclassified (Eq. 2.5) and Positive Predictive Value (PPValue, Precision)

which represents the percentage of predicted positive samples (Eq. 2.6).

T Prate =
T P

T P+FN
(2.2)

T Nrate =
T N

T N +FP
(2.3)

FPrate =
FP

FP+T N
(2.4)

FNrate =
FN

FN +T P
(2.5)

PPValue =
T P

T P+FP
(2.6)

The geometric mean of T Prate and T Nrate (GeoMean) [97] (Eq. 2.7) which

encourages equal classification for both classes, the adjusted geometric mean (A-

GeoMean) [120] (Eq. 2.8) which increases the T Prate as high as possible by keeping

the reduction of T Nrate as low as possible, the Area Under Receiver Operating Char-

acteristic curve (AUC) [121] (Eq. 2.9), which corresponds to the area that is created by

the probability of T Prate and FPrate and the F-measure (F-1 score) [100] (Eq. 2.10)

which uses the T Prate and PPvalue are the most common and effective metrics for

imbalanced data set classification [86, 87, 100, 122, 123]. Among these metrics, it is

hard to distinguish the best one but the most common two metrics are GeoMean and

AUC.

In our work, we used T Prate, T Nrate, GeoMean, AGeoMean and AUC as they are

suitable and popular metrics for the work we deal with.

GeoMean =
√

T Prate×T Nrate (2.7)

AGeoMean =


GeoMean+T Nrate×Nn

1+Nn
, TPrate >0

0, TPrate = 0
(2.8)
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where Nn refers to proportion of the negative class (majority examples).

AUC =
1+T Prate−FPrate

2
(2.9)

F−Measure =
2×T Prate×PPValue

T Prate+PPValue
(2.10)

2.4 Related Works on Hierarchical Classifiers and Hier-

archical Decomposition

Classification using hierarchical methods can be divided into two categories [124]:

• Hierarchical Classifiers: A pre-defined hierarchy such as a taxonomy exists

and the classes are organised using this taxonomy as a tree or a graph.

• Hierarchical Decomposition: There is no pre-defined hierarchy and the hierar-

chy is created during training using factors such as similarity of data.

Hierarchical classifiers have been addressed in many studies [125, 126, 127, 128].

For instance, a tree shaped class taxonomy was used for a multi-class problem where

any existing learning method can be adapted for single learning tasks [126]. Binarised

and split-based structured label learning approach were described and a loss function

for evaluation of the resulting structured classifiers were defined. Li et al. [127] pre-

sented a method which uses taxonomy for automatic music genre classification. In that

paper [127], the taxonomy is in terms of the relationship between the genres. Addi-

tionally, automatic taxonomies were built using the similarity matrix from linear dis-

crimination. Classification in large taxonomies was re-visited with improved results in

[128]. In that work [128], solutions for error propagation which affects the classifica-

tion of the lower levels of the hierarchy and the complex decision boundaries occurring

in the higher levels of the hierarchy were studied. For hierarchical protein function pre-

diction Silla et al. [129] proposed a method which uses a fixed taxonomy. Given that

taxonomy, selecting the best classifier, selecting the best feature representation given

a fixed classifier and selecting the best classifier and the best feature representation

together were compared.

Hierarchical decomposition is as popular as hierarchical classifiers and in this sec-

tion we pay more attention to them as we also propose a hierarchical decomposition

technique. The most common approach for hierarchical decomposition is dividing
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a multi-class problem in a hierarchical way to obtain binary hierarchical problems

[124]. In this technique, a hierarchy can be created using the similarity of the class-

es. For instance, classes were divided in a hierarchical way in [130] where similar

classes are grouped together and the multi-class classification problem turned to bina-

ry classification problem for hyper-spectral data analysis. In that study, a set of classes

recursively partitioned into two groups and the best feature set that distinguishes those

two group was found at the same time. In a similar study [131], hierarchical max-

cut unsupervised decomposition was presented for multi-class classification. In that

method, classes were partitioned into two subsets until one class label was obtained

at the leaf node based on class similarities. As the classifier, SVM was applied at

each node to find the best discrimination function for binary meta-classes. Therefore,

that method was called as hierarchical SVM. The comparisons with the state of art

methods on hyper-spectral data showed that, that method [131] performed accurate-

ly. In a different application area but a similar concept, the SVM based hierarchical

method which is based on clustering was used for text mining using the similarities

between features [132]. Using the hierarchy, the problem was divided into smaller

problems and therefore a smaller and more specific set of features were selected for

each sub-problem. This increased the accuracy and efficiency [132]. Freitas et al.

[133] proposed generation of meta-classes on-the-fly without using a fixed taxonomy

for handwriting recognition. Using the disagreement of the characters and Euclidean

distance between the confusion matrices, a two level hierarchy was built where the

leaf node were constructed by the similarity of the meta-class level. Epshtein and Ull-

man [134] used the relationship between features to construct an automatic hierarchy.

The same feature extraction procedure was applied at all levels of the hierarchy. The

top-level features were broken into their smaller components and for all levels of the

hierarchy different features, sub-features and their specific parameters were learned

using the training samples. The results showed that dividing features into a hierarchy

performs better than using features as a whole. Entropy based feature selection com-

bined with hierarchical clustering was applied to construct binary hierarchy in [135].

Different feature subsets were used at different levels of the hierarchy. At each level of

the hierarchy SVM was used. The results showed that, that method [135] is better than

one-against-one hierarchical decomposition for multi-class audio event classification

for health-care applications.

Studies such as [13, 132, 134, 136] showed that hierarchical methods can have bet-

ter classification performance compared to flat classification techniques. In summary,
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hierarchical methods have been used for classification in different application areas.

They are preferred especially if the problem is a multi-class problem, high-dimensional

data exist and the data set is large.

2.5 Related Works on Active Learning

Active learning is a field of data mining and machine learning which considers the

cost of data labelling [137]. The goal of active learning is to achieve better learning

performance with fewer training instances [138, 139]. When unlabelled data is abun-

dant, labelled data is limited and labelling is expensive, active learning is very useful.

Active learning seek to choose the most informative unlabelled training instances with

a query strategy. This requires labelling only selected instances which decreases the

labelling cost in contrast to passive learning where the labels of all training examples

are required.

Based on how the queried instances are sampled, active learning has 3 subtypes: i)

membership query synthesis, ii) stream based selective learning, iii) pool based sam-

pling [138]. In membership query synthesis, queried instances are artificially created

therefore they might not have appropriate labels [140]. On the other side, with stream

based selective learning, and pool based sampling, the queried instances are always

real examples which means their labels can be provided by the expert. In stream based

selective learning, the learner decides to query or discard the instances while in pool

based sampling queries are selected from a pool of unlabelled samples. The main dif-

ference from stream based selective learning is the large amount of unlabelled samples

during the query time [140]. As the most popular type of active learning is pool based

sampling and it is the most relevant technique for imbalanced data classification, in this

thesis (including the experiments and the literature review) we consider pool based ac-

tive learning and refer to it as active learning. The details of pool based active learning

are given in Section 7.1.

In this section, an overview of related works on pool based active learning in terms

of imbalanced data set classification is given. Additionally, active learning with feature

selection is also investigated.

Active learning has been examined in different domains and several studies have

addressed this problem. The majority of the studies in this field specifically focused

on imbalanced data set classification. In this thesis, we also focus on active learning

for imbalanced data sets, although we made some experiments on balanced data sets
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as well.

For imbalanced data sets, there are two main techniques for using active learning

[139]:

• Balance the training set and then apply one of the standard query strategies (in-

stance selection approach which defines the rule that is applied to select infor-

mative instances at each iteration of the active learning) such as uncertainty,

• Propose a novel query strategy which is specific to imbalanced data classifica-

tion.

For instance, Haines et al. [141] preferred the first technique where minority class

samples were synthetically over-sampled to make the data set balanced and then, un-

certainty sampling was applied to the balanced data set. Similarly, Bootstrap based

over-sampling is combined with uncertainty based sampling and used to eliminate class

imbalance for word sense disambiguation [142]. Doyle et al. [143] selected informa-

tive instances considering the class balance for histopathology annotation. They first

determined the most uncertain samples, labelled them, then randomly selected samples

which make the training set balanced. Holub et al. [144] advocated using uncertainty

based selection using different uncertainty schemes such as least confident instance,

margin and entropy.

The most popular query strategy is uncertainty [145]. Alternatively, a method based

on a SVM classifier was proposed in [146]. In this work [146], informative instances

were determined by the distance to the SVM hyperplane where samples close to hy-

perplane are more informative compared to the rest of the samples. Li et al. [147]

proposed a new query strategies called co-testing and self-selecting for imbalanced

sentiment classification. The proposed strategies were compared with random selec-

tion, margin based selection [146], uncertainty and certainty. In that work [147], co-

testing was defined as the strategy which selects the informative samples those have

a low confidence score where the confidence score is based on the class prediction of

different classifiers. Self-selecting selects k uncertain sample sets and then randomly

select samples from each class inside of the uncertain sample sets to make the training

set balanced as Doyle et al. [143] were applied. The results showed that margin-based

selection [146], uncertainty and self-selecting did not perform better than random s-

election while co-selecting was better than random selection in 2 domains out of 4

domains with a slight improvement.
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Attenberg et al. [148] showed that for the data sets which have very few minority

class samples with much class overlapping, it is hard to get reliable posterior probabil-

ities especially at the first stages of the active learning. To handle this, Uguroglu [139]

proposed a new strategy which is called maximum probability. In that study [139],

instances were selected with higher probability to be from the minority class in order

to keep the training set balanced. The location of the samples was not considered and

in case of wrong probability estimation it was assumed that the samples which were

mistaken as minority class are highly informative majority class samples.

Another very popular query strategy is expected error reduction, which was first

proposed by Roy and McCallum [149]. This query strategy tries to estimate the future

error of a learning model when unlabelled instances are combined with the current

labelled training data and uses the remaining unlabelled instances as the validation set.

The aim is to select the instances with minimal expected error. Each instance is tried

with all possible labels using the current trained model. Therefore, even though this

method is successful, it is one of the most computationally expensive query strategies.

To the best of our knowledge, the expected error reduction query strategy in active

learning has not been specifically used for imbalanced data classification. However,

it was combined with many learning methods such as Naive Bayes [149], Gaussian

Random Fields [150] and SVM [151].

Information density based selection was proposed in [152] and became a popular

query strategy. In this strategy, informative instances are not only those which have

high uncertainty score but also those which have high similarity score when similari-

ty is calculated in terms of the distance between each unlabelled samples. Similar to

expected error reduction, this strategy has not been specifically used for imbalanced

data classification yet. For instance, in [152], information density was compared with

uncertainty, query-by-committee [153] and random selection using 6 evaluation cor-

pora. The results showed that information density is usually more successful than

others and can be recommended. In this thesis, we applied this strategy to compare

its performance with other strategies for active learning with feature selection and also

combined it with different classifiers.

As seen, none of these works focused on active learning in combination with fea-

ture selection. Additionally, there is not much work on active learning with feature

selection, although in the literature, there is a vast amount of research on active learn-

ing and feature selection individually.

To the best of our knowledge, previous studies about active learning with feature
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selection all belong to the natural language processing field (especially text classifica-

tion) such as [154, 155, 156]. In those studies, the feature space is implicitly changing

since features are based on word frequency and any new training data means changes

in the feature space. Moreover, those studies usually did not compare active learning

performance with and without feature selection (using all features in the training set)

but instead tried to find a way to determine the best features manually using a human

expert. The increase in active learning effectiveness by determining the best features

was addressed in [154] for text categorisation. However, in [154] features were se-

lected by human annotators while selected instances were being labelled. Similarly, in

[155], features were ranked using cluster based feature selection and then best features

were selected by users for document clustering. This study also showed that selecting

effective features guides active learning positively. Differently, Bilgic [157] proposed

an adaptive dimensionality reduction technique that determines the proper number of

dimensions for each active learning step. The results of active learning with/without

dimensionality reduction showed that active learning with dimensionality reduction

performed significantly better than without dimensionality reduction. Moreover, even

though paper [157] did not aim to compare different query strategies, it can be inferred

from the results that random selection with dimensionality reduction was never worse

than other query strategies. Okabe et al. [156] proposed an active learning and fea-

ture selection based method for interactive spam filtering. In that study [156], Naive

Bayes was used as the classifier. As the feature selection algorithm, information gain

was used which is perhaps more suitable for text classification. The reported results

showed that feature selection affects the active learning performance positively. How-

ever, no comparison with random instance selection was included while uncertainty

selection and error reduction sampling were used.

2.6 Summary

As seen fish behaviour understanding studies are mainly about water quality moni-

toring and chemical identification in fish tanks or aquaria. However, fish behaviour

analysis in natural underwater scenes is very limited while it is more challenging due

to the reasons given in Chapter 1. On the other hand, there is a large amount of work

on unusual trajectory detection. These works can be distinguished based on the tra-

jectory representation method and the learning method. Based on the review, we can

see that fish behaviour analysis using natural underwater videos is very limited and an
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unusual fish trajectory approach using those videos has not yet been addressed. In this

thesis, we investigate unusual fish trajectory detection from underwater videos. As the

trajectory representation we are using trajectory positions and also extract novel mul-

tiple features from fish trajectories. All the proposed methods are based on supervised

learning which is rare compared to unsupervised unusual trajectory detection methods.

Imbalanced data classification is also a very popular area especially in pattern

recognition and machine learning since many real world data sets are implicitly im-

balanced and traditional methods are not very successful with these data sets. As given

above there are many different approaches to handle class imbalance. In this thesis, we

propose a hierarchical decomposition method (Chapter 5) for imbalanced data classi-

fication which is different from previously proposed solutions to the class imbalance

problem. Additionally, it does not require any data pre-processing step as many other

solutions need. The proposed hierarchical decomposition method is also novel as the

hierarchy is constructed using the similarity of labelled data subsets at each level of the

hierarchy with different levels being built by different data and feature subsets. This

is in contrast to previous research that uses the same feature set for every level of the

hierarchy or a flat classifier (the most similar work is [124] but it uses a fixed taxonomy

which we do not use).

Active learning is a successful approach to provide faster learning with lower la-

belling cost. It is also one of the solutions for imbalanced data sets classification. As

seen, there are popular query strategy methods such as uncertainty [145] and recent

strategies are generally based on it. On the other hand, feature selection is a well-

studied subject which generally increases the classification performance by selecting

the best features and decreases the size of the feature space. However, the literature is

very limited in terms of active learning with feature selection. In this thesis, we main-

ly integrate the proposed hierarchical decomposition method (Chapter 5) with active

learning using the popular query strategies. Additionally, feature selection is also inte-

grated with active learning in Chapter 7 while performance of standard query strategies

and random selection are examined which has not yet been investigated by any other

study.
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A Filtering Mechanism for Normal Fish

Trajectories

Unusual trajectories are generally defined as outliers or rare trajectories and outlier

detection can be based on clustering. In this perspective, clusters with small numbers

of elements are expected to represent rare trajectories and samples that are different

from the other samples in the same cluster are considered as outliers [54]. On the other

hand, many traditional clustering algorithms create clusters having similar amounts of

samples and merge the small clusters to the closest cluster. Therefore, although clus-

tering based outlier detection approach is reasonable, when the number of trajectories

is huge like hundred thousands, millions etc. or the number of normal trajectories

is much bigger than the number of unusual trajectories, such as 100 times bigger (or

more), normal trajectories can dominate unusual trajectories and extracting small clus-

ters and detecting outliers might be inaccurate. This might be even worse if classes

contain sub-classes even though they are considered as the same class or sub-classes

are overlapping.

With this assumption and considering the huge amount of data that the Fish4Knowledge

repository has (see Chapter 1), in this chapter we present a rule based trajectory filter-

ing mechanism to extract normal fish trajectories. The aim of this filtering mechanism

is to reject normal trajectories as much as possible (ideally all) while not rejecting any

unusual trajectories. This approach is very useful and very fast when scanning the

large trajectory repository especially to filter out normal trajectories and detect possi-

ble unusual trajectories. This method was used to make the ground-truth data set for

testing the other methods presented in Chapters 4 and 5. Moreover, this method is also

not bad at detecting unusual fish trajectories (especially for the data sets presented in

34
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Chapters 4 and 5).

3.1 Methodology

In this section, we give the definition of the fish trajectories and present the filtering

mechanism. The fish trajectories are directly used by the proposed method in this chap-

ter and multiple features are extracted from them to be used by the proposed methods

in Chapters 4 and 5.

3.1.1 Trajectory Description

The tracker [19] gives the trajectories for fish moving across the image. For any fish i

tracked through n frames, a trajectory is defined as the centre of fish bounding boxes

as given in Eq. 3.1.

Ti = {(x f1,y f1),(x f2,y f2), ...,(x fn,y fn)} (3.1)

where (x,y) refers to the fish’s position in the image (centre of fish bounding box) and

fn is the frame number in the corresponding video.

3.1.2 Proposed Filtering Mechanism

In Figure 3.1, the block diagram of the filtering mechanism is given. This procedure

is like a cascade classifier. First, all fish trajectories are filtered by Filter 1. In each

step, the trajectories satisfying the rule (filtered) are defined as normal trajectories

(such as Normal1, Normal2 in Figure 3.1). The trajectories which do not satisfy the

rule (not filtered) are called the remainders of the corresponding filter (Remainder1,

Remainder2 in Figure 3.1) and are used as inputs to the following filter. This is contin-

ued until all the filters are used. At the end, the remainders of the last filter are called

unusual trajectories.

3.1.3 Definition of Filters

Filters are defined in terms of the direction of the motion (left to right, right to left,

up to down and down to up; which are also in terms of straight and/or cross motions

as defined below) and/or being stationary (see the description given below). They are

defined as one, two and three length combinations of the direction of the motion and
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Figure 3.1: The block diagram of the rule based normal fish trajectory filtering method

being stationary such as moving right to left (length is one), moving right to left and

then being stationary (length is two), moving left to right and then up to down (length

is two), being stationary for a while, then moving down to up and then left to right

(length is three), etc. Similar trajectories like going left to right and right to left are

modelled by same filter. Altogether 21 rules were defined as given in Figure 3.2.

The filters given in Figure 3.2 are based on left to right, right to left, up to down,

down to up and stationary. They are defined in terms of straight and/or cross motions
(defined by Type 1, Type 2 and Type 3 as given below) or being stationary as follows.

We assume that the origin of the image is the top-left corner.

• Left to Right (a,b): ∀ (x fi,y fi) i = a to b: [ x fi ≤ x fi+1 ∧ (Type 1 ∨ Type 2 ∨
Type 3) ] where fa is the first frame number of the trajectory segment and b is

the last frame number of that segment.

• Right to Left (a,b): ∀ (x fi,y fi) i = a to b: [ x fi ≥ x fi+1 ∧ (Type 1 ∨ Type 2 ∨
Type 3) ] where fa is the first frame number of the trajectory segment and b is

the last frame number of that segment.

• Up to Down (a,b): ∀ (x fi,y fi) i = a to b: [ y fi ≤ y fi+1 ∧ (Type 1 ∨ Type 2 ∨
Type 3) ] where fa is the first frame number of the trajectory segment and b is

the last frame number of that segment.

• Down to Up (a,b): ∀ (x fi,y fi) i = a to b: [ y fi ≥ y fi+1 ∧ (Type 1 ∨ Type 2 ∨
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Filter No Description Filter No Description 

1 Left to right (1, N, p) 14 Up to down (1, a, p), stationary (a, b, p), left to right (b, N, p) 

  Right to left (1, N, p)   Up to down (1, a, p), stationary (a, b, p), right to left (b, N, p) 

2 Up to down (1, N, p)   Down to up (1, a, p), stationary (a, b, p), left to right (b, N, p) 

  Down to up (1, N, p)   Down to up (1, a, p), stationary (a, b, p), right to left (b, N, p) 

3 Stationary (1, N, p) 15 Up to down (1, a, p), left to right (a, b, p), stationary (b, N, p) 

4 Left to right (1, a, p), stationary (a, N, p)   Up to down (1, a, p), right to left (a, b, p), stationary (b, N, p) 

  Right to left (1, a, p), stationary (a, N, p)   Down to up (1, a, p),  left to right (a, b, p), stationary (b, N, p) 

5 Left to right (1, a, p), up to down (a, N, p)   Down to up (1, a, p), right to left (a, b, p), stationary (b, N, p) 

  Left to right (1, a, p), down to up (a, N, p) 16 Left to right (1, a, p), stationary (a, b, p), left to right (b, N, p) 

  Right to left (1, a, p), up to down (a, N, p)   Left to right (1, a, p), stationary (a, b, p), right to left (b, N, p) 

  Right to left (1, a, p), down to up (a, N, p)   Right to left (1, a, p), stationary (a, b, p), right to left (b, N, p) 

6 Stationary (1, a, p), left to right (a, N, p)   Right to left (1, a, p), stationary (a, b, p), left to right (b, N, p) 

  Stationary (1, a, p), right to left (a, N, p) 17 Left to right (1, a, p), up to down (a, b, p), left to right (b, N, p) 

7 Stationary (1, a, p), up to down (a, N, p)   Left to right (1, a, p), up to down (a, b, p), right to left (b, N, p) 

  Stationary (1, a, p), down to up (a, N, p)   Left to right (1, a, p), down to up (a, b, p), left to right (b, N, p) 

8 Up to down (1, a, p), left to right (a, N, p)   Left to right (1, a, p), down to up (a, b, p), right to left (b, N, p) 

  Up to down (1, a, p), right to left (a, N, p)   Right to left (1, a, p), up to down (a, b, p), right to left (b, N, p) 

  Down to up (1, a, p), right to left (a, N, p)   Right to left (1, a, p), up to down (a, b, p), left to right (b, N, p) 

  Down to up (1, a, p), left to right (a, N, p)   Right to left (1, a, p), down to up (a, b, p), right to left (b, N, p) 

9 Up to down (1, a, p), stationary (a, N, p)   Right to left (1, a, p), down to up (a, b, p), left to right (b, N, p) 

  Down to up (1, a, p), stationary (a, N, p) 18 Stationary (1, a, p), left to right (a, b, p), stationary (b, N, p) 

10 Left to right (1, a, p), stationary (a, b, p), up to down (b, N, p)   Stationary (1, a, p), right to left (a, b, p), stationary (b, N, p) 

  Left to right (1, a, p), stationary (a, b, p), down to up (b, N, p) 19 Stationary (1, a, p), up to down (a, b, p), stationary (b, N, p) 

  Right to left (1, a, p), stationary (a, b, p), up to down (b, N, p)   Stationary (1, a, p), down to up (a, b, p), stationary (b, N, p) 

  Right to left (1, a, p), stationary (a, b, p), down to up (b, N, p) 20 Up to down (1, a, p), stationary (a, b, p), up to down (b, N, p) 

11 Left to right (1, a, p), up to down (a, b, p),  stationary (b, N, p)   Up to down (1, a, p), stationary (a, b, p), down to up (b, N, p) 

  Left to right (1, a, p), down to up (a, b, p), stationary (b, N, p)   Down to up (1, a, p), stationary (a, b, p), down to up (b, N, p) 

  Right to left (1, a, p), up to down (a, b, p), stationary (b, N, p)   Down to up (1, a, p), stationary (a, b, p), up to down (b, N, p) 

  Right to left (1, a, p), down to up (a, b, p), stationary (b, N, p) 21 Up to down (1, a, p), left to right (a, b, p), up to down (b, N, p) 

12 Stationary (1, a, p), left to right (a, b, p), up to down (b, N, p)   Up to down (1, a, p), left to right (a, b, p), down to up (b, N, p) 

  Stationary (1, a, p), left to right (a, b, p), down to up (b, N, p)   Up to down (1, a, p), right to left (a, b, p), up to down (b, N, p) 

  Stationary (1, a, p), right to left (a, b, p), up to down (b, N, p)   Up to down (1, a, p), right to left (a, b, p), down to up (b, N, p) 

  Stationary (1, a, p), right to left (a, b, p), down to up (b, N, p)   Down to up (1, a, p), left to right (a, b, p), up to down (b, N, p) 

13 Stationary (1, a, p), up to down (a, b, p), left to right (b, N, p)   Down to up (1, a, p), left to right (a, b, p), down to up (b, N, p) 

  Stationary (1, a, p), up to down (a, b, p), right to left (b, N, p)   Down to up (1, a, p), right to left (a, b, p), up to down (b, N, p) 

  Stationary (1, a, p), down to up (a, b, p), left to right (b, N, p)   Down to up (1, a, p), right to left (a, b, p), down to up (b, N, p) 

  Stationary (1, a, p), down to up (a, b, p), right to left (b, N, p) 

   

Figure 3.2: The descriptions of 21 rules. 1 represent the first fish detection, a is the

ath fish detection (the end of first segment that is also the beginning of the second

trajectory segment), b refers to bth fish detection (the end of second segment that

is also the beginning of the third trajectory segment), N is the last fish detection in the

whole trajectory and p is the parameter that is used to define the search area for straight

and/or cross motions and being stationary (see text for definition).
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Type 3) ] where fa is the first frame number of the trajectory segment and b is

the last frame number of that segment.

• Stationary (a,b): ∀ (x fi,y fi), i = a + 1 to b (x fi − x fa)
2 + (y fi − xya)

2 ≤ p2

where (x fa,y fa) is the centre of the first detection’s bounding box for a given

trajectory segment, b is the last frame number of that trajectory segment and p (is

a parameter, see Section 3.3 for the pixel values used) is the radius of a circular

search area where the centre is the first detection’s bounding box. Figure 3.3d

shows the circular area with the bounding boxes for a stationary segment. Being

stationary is defined this way considering the fact that a fish cannot stay at the

same point in most of the cases due to the sea currents.

The filters are defined in terms of 1 to 3 instances of left to right, right to left, up

to down, down to up or being stationary conditions. A trajectory is analysed in terms

of 1, 2 or 3 subsegments by using the filters with the above definitions but without

considering the extra Type 1, Type 2 and Type 3 conditions (defined below). For a

trajectory having two segments, the first segment should obey the first rule of the filter

and the trajectory point (a+1) that no longer obeys the first part of the filter defines the

last point of first segment which is also the first point of the second segment (shown

as a in the Figure 3.2). From trajectory point a, the rule in the second part of the filter

should be obeyed through to the end of the trajectory. For a trajectory having three

segments, the trajectory point (a+1) that no longer obeys the rule of the first segment

of the filter defines the last point of the first segment which is also the first point of

the second segment (shown as a in the Figure 3.2) and the trajectory point (b+1) that

no longer obeys the rule of the second segment of the filter defines the last point of

the second segment which is also the first point of the third segment (shown as b in

the Figure 3.2). After the trajectory is segmented in terms of the basic motions, the

non-stationary segments are checked if they satisfy at least one of these rules:

• Type 1: All centres of the fish bounding boxes over the given trajectory segment

are inside a rectangular area (search area) that is determined by the centre of the

first bounding box of that segment. There are 4 types of area depending on the

type of the segment (Figure 3.3a shows the rectangular area with the bounding

boxes for a left to right segment). The corners of the rectangular area are:

– Left to Right: [ (x fa,y fa− p), (x fa + p,y fa− p), (x fa,y fa + p), (x fa + p,y fa +

p) ]
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– Right to Left: [ (x fa,y fa− p), (x fa− p,y fa− p), (x fa− p,y fa + p), (x fa,y fa +

p) ]

– Up to Down: [ (x fa − p,y fa), (x fa − p,y fa + p), (x fa + p,y fa + p), (x fa +

p,y fa) ]

– Down to Up: [ (x fa− p,y fa− p), (x fa− p,y fa), (x fa + p,y fa), (x fa + p,y fa−
p) ]

where p is a parameter (see Section 3.3 for the pixel values used) and (x fa,y fa)

is the first detection’s bounding box centre in that segment. These search areas

are illustrated in Figure 3.4a.

• Type 2: The centre of the fish bounding box in frame fi is inside a rectangular

area (search area) which is determined by the detection bounding box in frame

fi−1 while the fish is going only one direction in that segment of the trajectory

(Figure 3.3b shows the rectangular areas with the bounding boxes for a right

to left segment). This rule is similar to the previous rule. The corners of the

rectangular area are:

– Left to Right: [ (x fi−1,y fi−1 − p), (x fi−1 + p,y fi−1 − p), (x fi−1,y fi−1 + p),

(x fi−1 + p,y fi−1 + p) ]

– Right to Left: [ (x fi−1,y fi−1− p), (x fi−1− p,y fi−1− p), (x fi−1− p,y fi−1 + p),

(x fi−1,y fi−1 + p) ]

– Up to Down: [ (x fi−1− p,y fi−1), (x fi−1− p,y fi−1 + p), (x fi−1 + p,y fi−1 + p),

(x fi−1 + p,y fi−1) ]

– Down to Up: [ (x fi−1 − p,y fi−1 − p), (x fi−1 − p,y fi−1), (x fi−1 + p,y fi−1),

(x fi−1 + p,y fi−1− p) ]

where p is a parameter (see Section 3.3 for the pixel values used) and (x fi−1,y fi−1)

is the previous detection’s bounding box centre in that segment. These search

areas are illustrated in Figure 3.4a.

• Type 3: The centres of the fish bounding boxes over the given trajectory segment

are inside a rectangular area (search area) which is determined by the centres

of first and last detection’s bounding box boundaries in that trajectory segment

while fish is going only one direction (Figure 3.3c shows the rectangular area

with the bounding boxes which is for an up to down segment). The corners of

the rectangular area are:
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Figure 3.3: Example illustrations for straight and/or cross movements: a) Type 1 for

left to right, b) Type 2 for right to left, c) Type 3 for up to down and d) being stationary.

From the first to the last detection the bounding boxes are shown with black, green, pink

and orange, respectively. The shaded areas are the search areas which is rectangular

for Type 1 (shown as black shaded), Type 2 (shown with the same colour of shading

with the corresponding bounding box), Type 3 (shown as black shaded) and circular for

being stationary (shown as black shaded).

– Left to Right or Right to Left and y fa < y fb: [ (x fa,y fa), (x fb,y fa), (x fb,y fb +

p), (x fa,y fb + p) ]

– Left to Right or Right to Left and y fa > y fb: [ (x fa,y fa), (x fb,y fa), (x fb,y fb−
p), (x fa,y fb− p) ]

– Up to Down or Down to Up and x fa < x fb: [ (x fa,y fa), (x fa,y fb), (x fb +

p,y fb), (x fb + p,y fa) ]

– Up to Down or Down to Up and x fa > x fb : [ (x fa,y fa), (x fb− p,y fa), (x fb−
p,y fb), (x fa,y fb) ]

where p is a parameter (see Section 3.3 for the pixel values used), (x fa ,y fa)

is the first detection’s bounding box centre and (x fb,y fb) is the last detection’s

bounding box centre in that segment. These search areas are illustrated in Figure

3.4b.
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Figure 3.4: Illustration of the search area (red shaded area) for each type of the straight

and/or cross movements. p is a parameter that defines the search area. a) For Type

1 (x fa,y fa) is the centre of the first detection and for Type 2 it is the centre of every

detection from i = 2 to b where b is the end of that trajectory segment. b) For Type

3, (x fa,y fa) is the centre of the first detection (bounding box is shown with blue) and

(x fb,y fb) is the centre of the last detection (bounding box is shown with green) of a

given trajectory segment.
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3.2 Data Set

The proposed method was tested using 271 sample underwater videos (320x240 res-

olution, 5 frames per second) from the Fish4Knowledge repository which includes 4

different locations and 2486 trajectories (46 unusual, 2440 normal) belonging to 10

different species. The normal and unusual trajectories are determined based on visual

inspection. In this context, freely swimming fish were considered as normal trajecto-
ry since this is the most frequent behaviour in the data set. In this data set, the unusual
trajectories were: i) fish stationary for a long time (compared to the detection length)

inside of coral: this kind of a behaviour is assumed to be an eating behaviour hence d-

ifferentiated from swimming, ii) biting at coral (also interaction with plankton, Figure

3.5c), iii) fish suddenly (usually in one frame) diving (Figure 3.5d), iv) fish sudden-

ly (usually in one frame) changing direction, v) fish turning around in an area like

a predator. Example normal (blue) and unusual trajectories (red) in this data set are

shown for four camera locations in Figure 3.6 to give a clearer idea about the data set.

Different normal and unusual behaviours can be observed in each location. The fish

trajectories are complex compared to other trajectory problems (e.g. pedestrians, vehi-

cles, etc.). For instance, there are no well defined clusters of trajectories which often

exist in a pedestrian scenario as pedestrians use similar paths to walk. However, fish

can appear anywhere in the underwater. Additionally, normal and unusual trajectories

are overlapping in terms of trajectory points.

The data set used in this chapter is different than the data sets used in Chapters 4 and

5. This data set covers many fish species and 4 different camera locations. However,

the data sets used in Chapters 4 and 5 belong to a single species (Dascyllus reticulatus)

from a single camera location as we found that the fish behaviour might change from

species to species (there are specific behaviours which belong to specific fish species)

and can be affected by the geographic properties of the underwater environment. On

the other hand, the method proposed in this chapter will be compared with the methods

presented in Chapters 4 and 5 using the data sets presented in those chapters (see

Chapters 4 and 5 for results).

3.3 Experimental Work

To evaluate the proposed filtering mechanism a 9-fold cross validation was performed.

Train (8/9) and test (1/9) sets were constituted randomly where the normal and unusual
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Figure 3.5: (a-b) Examples of normal fish trajectories which are classified by the pro-

posed method, (c-d) Examples of unusual fish trajectories.

trajectories were distributed equally.

During training, for each filter the best parameter (given as p in Section 3.1.3)

which defines the search area is found. The best p value for each filter is the one which

does not filter out any unusual trajectories. In the case of having more than one p value

which does not filter out any unusual trajectories, the one that filtered the most normal

trajectories is selected. If there are no p values which do not filter out any unusual

trajectories, then that filter is not used and the process continues with the following

filter. In this chapter, the parameter p was used as {2, 4, 8, 10, 16 and 20} pixels. The

best p value of each filter can be different.

During testing, the filters with the best p values (found during training) are used to

classify new trajectories. Filters that were removed during training are not used during

testing.

3.4 Results

The performance of the proposed method is given in Table 3.1 with the average T P,

T N, FP, FN values (see Section 2.3.1 for descriptions) and the standard deviation-

s considering cross validation folds (after the ± sign). In this section, the positive

class represents the unusual trajectories and the negative class represents the normal
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 Unusual Trajectories                Normal Trajectories 

Location 1 

  

Location 2 

  

Location 3 

  

Location 4 

 

 
 

No  

Unusual  

Trajectory 

Figure 3.6: Example unusual (red) and normal (blue) trajectories for 4 different camera

locations
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Table 3.1: Performance of the rule based normal fish trajectory filtering method

Prediction as Normal
(Filtered)

Prediction as Unusual
(Maintained)

Normal 101.78 ±9.24 169.33 ±9.30

Unusual 0.67 ±0.87 4.44 ±1.01

trajectories to be consistent with the evaluations given in the following chapters.

The results show that 38% of normal trajectories were detected by the filtering

mechanism with 99% precision while 13% of the unusual trajectories were also de-

tected and filtered out as normal trajectories (which ideally should have been zero).

However, we believe that this is still a good result since data set used contains differ-

ent fish species and camera locations which cause more variation in the fish behaviour.

Additionally, filters and parameters are defined without considering the type of unusual

trajectories to propose a general mechanism which is independent of the data.

3.4.1 Comparison with a State of Art Method

The proposed method is also compared with method [18] since it is the most applica-

ble/similar study that can be compared. When applying that method, first trajectories

are linearly interpolated to fill the gaps between detections. Then the Douglas-Peucker

algorithm is applied to reduce the number of points that each trajectory has. When ap-

plying Douglas-Peucker algorithm, it is assumed that the maximal Euclidean distance

allowed between the new line and a vertex is one. The trajectories were clustered us-

ing k-means with the number of clusters from 2 to 150. The unusual trajectories were

determined by being in a small cluster. A small cluster has fewer trajectories than the

mean – one standard deviation of the all cluster cardinalities. The best result of that

method [18] was obtained when the number of clusters is 142 which gave the mean

and the standard deviation of the cluster cardinalities as 17.51 and 8.89, respectively.

The GeoMean (see Section 2.3.1 for description) was used as the evaluation metric

to compare the proposed method with method [18]. According to the results in Table

3.1 the proposed method has 0.57 GeoMean while method [18] has 0.29 GeoMean.

The paired t-test (α=0.05) using the GeoMean results also showed that the proposed

method presents significantly better results compared to [18].

The poor results of method [18] also showed that it is hard to distinguish normal
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and unusual fish trajectories using trajectory points only as there are many overlapping

descriptions between the two classes. This motivated us to define other features which

are extracted from trajectories such as velocity and shape based features and to propose

the methods given in Chapters 4 and 5.

3.5 Conclusions

As a conclusion, the proposed rule based filtering method is the first algorithm for

filtering normal fish trajectories in an unconstrained open sea environment. It is suc-

cessful at filtering out many normal trajectories while filtering out only a few unusu-

al trajectories (ideally should be zero). This method has been used as a preliminary

method to collect ground truth data especially unusual trajectories (remember that the

aim is to reject normal trajectories as much as possible while not rejecting any unusual

trajectories) thanks to being fast and having low false negative rate (0.13 corresponds

to the GeoMean given above which is for the data set used in this chapter).

As future work, this method can be combined with any unusual fish trajectory

detection method which might increase the detection performance. It can be applied

especially when the number of normal fish trajectories is much greater than the number

of unusual fish trajectories (to make the data set less imbalanced) or when the number

of trajectories is very large (to decrease the amount of data if the unusual trajectory

detection method used is not scalable).



Chapter 4

Detecting Unusual Fish Trajectories

Using Clustered and Labelled Data

(Flat Classifier)

This chapter presents an approach to detecting unusual fish trajectories using multiple

features which are extracted from the fish trajectories. The proposed method is main-

ly based on clustering. An outlier detection method based on the sample size of the

clusters and a distance function is applied to each cluster to find the unusual trajecto-

ries. Clustered and labelled data are used together to select the best feature set (that

provides the best classification performance) during training. The learned feature set

and the outlier detection parameters are used to classify the new fish trajectories. For

the rest of this thesis we refer to this proposed method as the flat classifier.

This chapter presents two innovations:

• A novel approach to unusual trajectory detection,

• Improved performance especially compared to the proposed method in Chapter

3 on unusual fish trajectory detection in unconstrained conditions.

The obtained improved results are significant considering the challenges of under-

water environments, low video quality, and erratic movement of fish. The proposed

method also presents the foundation for the method presented in Chapter 5.

47
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Figure 4.1: Overview of the flat classifier

4.1 Methodology

The proposed method contains four steps:

1. Feature extraction (including the pre-processing of the trajectory and Principal

Component Analysis (PCA) of extracted features),

2. Clustering,

3. Outlier detection,

4. Feature selection which is embedded in the clustering and outlier detection.

The overview of the proposed method is given in Figure 4.1.

First, features from fish trajectories are extracted. Then, feature selection is applied

using a training set. Feature selection is evaluated using clustering and outlier detec-

tion. For each set of features, clustering and outlier detection are applied to detect the

outliers. The best set of features (with the best outlier detection parameter) which are

chosen during training are used to classify new fish trajectories as normal or unusual.
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4.1.1 Feature Extraction

The challenges of fish detection and tracking in the underwater environment such as

sudden light changes, bad weather conditions (e.g. storms, typhoons), murky water

and multiple fish occlusions [19] sometimes cause gaps in the fish trajectory. To handle

this, before extracting features, all trajectories are linearly interpolated (see trajectory

definition in Section 3.1). Then 10 groups of features as given below are extracted. In

total, 776 features are obtained in the feature extraction step. These features are gen-

erally correlated with each other. Therefore to prevent possible over-training and the

curse of dimensionality, after normalising the features, Principal Component Analysis

(PCA) is applied to each group of features individually. Here, it should be stated that

applying PCA to each feature groups individually provided better performance com-

pared to applying PCA to all features. This reduce the dimensionality of the data and

also remove the correlations between features. While applying PCA, to obtain a useful

set of components the smallest number of components that represent 90% of the sum

of all eigenvalues is used. As a result of applying PCA to for the data set given in

Section 4.2, 140 features are obtained as the feature set. The extracted features are

defined as follows:

4.1.1.1 Curvature Scale Space (CSS) Based Features

As a trajectory representation CSS was first introduced in [158]. CSS is a multi reso-

lution technique which is calculated using the curvature at every point on the curve by

the formula given in Eq. 4.1. This trajectory description is shaped based, rotation and

translation invariant. The curvature at point fi is calculated using:

K fi =
x′fiy
′′
fi− y′fix

′′
fi

(x′2fi + y′2fi)
3/2 (4.1)

where (x,y) refers to the fish’s positions in an image (centre of fish bounding box) and

fi is the frame number.

To find the CSS, a Gaussian kernel is used. At each level of space the standard

deviation (σ) of Gaussian kernel is increased, the (x fi,y fi) are smoothed and the curva-

ture of that level is found. The CSS is represented with a binary image which is called

a CSS image. In that image, white pixels represents the zero crossings at each scale

level. As σ increases, the trajectory shrinks, the curve becomes smoother and zero

crossing points on CSS image decreases. At the end, the curve becomes convex with
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Figure 4.2: Example trajectories (left) and corresponding CSS images (right)

no zero crossings. Example fish trajectories with corresponding CSS images are given

in Figure 4.2.

Statistical properties (mean and variance of length of the curves, number of zero

crossings for each σ, total number of curves, mean and variance of σ in peak points,

mean and variance of σ at starting points of each curve) are extracted from CSS image

to use as features. Additionally, for each σ value, statistical features of absolute curva-

ture are extracted. In our experiments σ was taken from one to 20 while increasing it

with 0.1. In total 580 features are obtained.

4.1.1.2 Moment Descriptors Based Features

Moment invariants are well known, successful descriptors for recognising objects and

patterns and can be used to distinguish the shape of fish trajectories. Therefore, we

utilise the affine moment invariants proposed in [159] in addition to moments (Eq.

4.2), central moments (Eq. 4.3) and translation and scale invariant moments (Eq. 4.4).

In total 55 features (10 from the affine moment invariants, 15 from each of moments,

central moments and translation and scale invariant moments where the moment order

was taken up to 4) are extracted from those moment descriptors.

Mpq =
n

∑
i

x fi
py fi

q (4.2)

µpq =
n

∑
i
(x fi− xc)

p(y fi− yc)
q where cx =

1
n

n

∑
i=1

x fi and cy =
1
n

n

∑
i=1

y fi . (4.3)
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npq =
µpq

µpq
1+ p+q

2
for p, q=0, 1, 2... (4.4)

where p and q are order of moment over trajectory point (x fi,y fi) through the trajectory

length n.

4.1.1.3 Velocity and Acceleration Based Features

Even though a fish trajectory is spatially similar to normal trajectories due to its speed

and/or speed change, it may be an unusual trajectory. Therefore using velocity and

acceleration based features can be useful.

Statistical properties: mean, standard deviation, minimum, maximum, number of

zero crossings, number of local minima and maxima of velocity and acceleration are

extracted in three dimensions considering the fact that fish can swim in three dimen-

sions in an open sea. Since the trajectory description in the Fish4Knowledge repository

is in two dimensions, we estimate the position in the third dimension using the width

(w fi) and height (h fi) of the fish detection bounding box at frame fi using the formula

given in Eq. 4.5. In total 42 features (7 statistical properties × 3 dimensions × 2; one

for velocity and other for acceleration) are obtained.

z fi =
1√

w fih fi
(4.5)

4.1.1.4 Turn Based Features

Trajectory turning at frame i is defined as the orientation of the trajectory between

consecutive trajectory points, which is calculated as given in Eq. 4.6 [54, 160]. It

can be used to describe a fish trajectory in terms of its shape. Statistical properties

are extracted from the trajectory turning values: mean, standard deviation, minimum,

maximum, number of zero crossings, number of local minima and maxima. In total 7

features are obtained.

θi =


arctan

{y fi+1−y fi
x fi+1−x fi

}
, (x fi+1− x fi)> 0

arctan
{y fi+1−y fi

x fi+1−x fi

}
+360, (x fi+1− x fi)≤ 0,(y fi+1− y fi)≥ 0

arctan
{y fi+1−y fi

x fi+1−x fi

}
−360, (x fi+1− x fi)≤ 0,(y fi+1− y fi)< 0

(4.6)

where (x fi+1− x fi)
2 + (y fi+1− y fi)

2 6= 0 and θi ∈ [-360, +360).
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Figure 4.3: Properties of the vicinity (adapted from [1])

4.1.1.5 Centred Distance Function (CDF)

CDF is an invariant shape descriptor that gives the distance of each point in a trajectory

from the centre of the trajectory (Eq. 4.7, [158]). As features the statistical properties

(mean, maximum, minimum, standard deviation, number of mean crossings, number

of local minima and maxima, skewness and kurtosis) are extracted from two and three

dimensional CDFs to describe trajectories. In total 18 features (9 from 2D CDF and 9

from 3D CDF) are defined.

cd f 2D( fi) =

√
(x fi− xc)

2 +(y fi− yc)
2

cd f 3D( fi) =

√
(x fi− xc)

2 +(y fi− yc)
2 +(z fi− zc)

2

fi = 1,2, ...n

(4.7)

where xc and yc are as given in Eq. 4.3 while zc is similar to them, and z fi is as given

in Eq. 4.5.

4.1.1.6 Vicinity Features

Properties extracted from the trajectory vicinity were introduced in [1] for handwriting

recognition but to the best of our knowledge they were never used to represent other

kinds of trajectories. We adapted this description to represent fish trajectories. In

Figure 4.3, the properties of the vicinity {∆x fix fi , ∆y f jy f j} for the points (x fi,y fi) and

(x f j ,y f j) where j = i+ 2 are given. In our experiments we extracted these properties

for each group of three consecutive points (such as (x f1,y f1), (x f2,y f2), (x f3 ,y f3)) along

the complete trajectory.

Three different group of properties [1]:
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• Aspect of vicinity: Different than [1], this is defined in two ways as given in Eq.

4.8,

Type1 :
∆y fiy f j −∆x fix f j

∆y fiy f j +∆x fix f j

Type2 :
∆y fiy f j

∆x fix f j

(4.8)

for the points (x fi,y fi) to (x f j ,y f j).

• Vicinity curliness: The length of the trajectory from point (x fi,y fi) to (x f j ,y f j)

in the vicinity divided by maximum {∆x fix f j , ∆y fiy f j},

• Vicinity linearity: the average square distance of each point in the vicinity to the

straight line from the last and the first vicinity point (shown with purple lines in

Figure 4.3)

are extracted to define the shape of the fish trajectories.

Statistical measures are extracted from those properties including mean, standard

deviation, skewness, kurtosis, number of mean crossings, number of local minima,

number of local maxima, maximum, minimum, median. In total, 40 features (10 mea-

sures for each group of aspect of vicinity with type1, aspect of vicinity with type2,

vicinity curliness and vicinity linearity) are obtained from trajectory vicinity.

4.1.1.7 Loop Features

Due to the erratic motion of fish and the currents in the undersea, fish trajectories are

generally very complex and contain many loops. Motivated by this, fish trajectories

are described by the number of loops, maximum, minimum and median of number of

points in a loop. The existence of a loop in a trajectory is found as illustrated in Figure

4.4. Reaching the common point (shown with purple) from any point in the loop (such

as the point shown as rounded black) through to the final point of the trajectory (shown

as rounded red) and from that black point through to the starting point of the trajectory

(shown as rounded green) determines a loop. Since it is hard to detect the fish exactly

in the same place twice or more, the common point is detected by obtaining two lines

one from any two consecutive points (such as while going from a point to the starting

point) and another from any other two consecutive points (such as while going from a

point to the end of the trajectory). Then, the possible intersection of them is checked.

If there is an intersection point and that point is between the points that form those lines
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Figure 4.4: A trajectory with a loop.

Figure 4.5: Example fish trajectories with loops.

(while not one of those points), this makes it the common point. In total, 4 features are

obtained. Some example images with fish trajectories having loops are given in Figure

4.5.

4.1.1.8 Fish Pass by Features

Fish trajectories are affected by the geographical properties of the underwater envi-

ronment and their trajectories can be different in different locations. Therefore, while

finding normal and unusual trajectories those properties can be useful to consider. In

this thesis, we divide the underwater environment into three areas: open sea, under the

coral and above the coral (Figure 4.6). We manually segmented each video scene once

and utilise segmentations to obtain the features corresponding to all fish trajectories

of a video. As features, the percentage of time being in different locations and the

percentage of time crossings from one location to another are considered. In total 12

features are obtained: the percentage of time in the open sea, the percentage of time

under the coral, the percentage of time above the coral, the percentage of time crossing

from under the coral to under the coral, the percentage of time crossing from under

the coral to above the coral, the percentage of time crossing from under the coral to
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Figure 4.6: Segmented regions of the underwater image; black for open sea, red for

above the coral and green for under coral

the open sea, the percentage of time crossing from above the coral to above the coral,

the percentage of time crossing from above the coral to under the coral, the percentage

of time crossing from above the coral to the open sea, the percentage of time crossing

from the open sea to under the coral, the percentage of time crossing from the open

sea to the open sea and the percentage of time crossing from the open sea to above the

coral.

4.1.1.9 Features Based on Displacement on the Location

Using the segmented locations given in Figure 4.6, statistical properties: mean, maxi-

mum, minimum, standard deviation, and median of average displacement in different

locations are found to define trajectories. In total, 15 features (5 statistical properties

for 3 locations) are obtained from this description such as maximum average displace-

ment in the open sea, standard deviation of average displacement in under the coral.

4.1.1.10 Features Based on Normalised Size of Bounding Box

Fish can frequently change their posture (even for adjacent frames). To distinguish

the erratic random motions, aggressive motions and sudden movement of a fish, its

posture can be used. To model this, a function using the ratio of width of the fish

bounding box (w fi) to its height (h fi) at each fish detection ( fi) is defined. This func-
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Table 4.1: The number of extracted features before and after PCA for the fish trajectory

data set given in Section 4.2.

Feature Group # of features
before PCA

# of features
after PCA

CSS Based Features 580 76

Moment Descriptors Based Features 55 13

Velocity and Acceleration Based Features 42 12

Turn Based Features 7 3

Centred Distance Function (CDF) 18 8

Vicinity Features 40 13

Loop Features 4 2

Fish Pass by Features 12 6

Features Based on Displacement

on the Location

15 5

Features Based on Normalised Size

of Bounding Box

3 2

Total 776 140

tion is z-normalised to eliminate the effect of small and big fish differences. By using

this function, as features: the number of one crossings (i.e. from values smaller than

one to values bigger or equal to one or vice versa), number of local minima and num-

ber of local maxima are extracted. In total 3 features are extracted.

To sum up, the total number of features for each group before and after PCA are

given in Table 4.1 for the fish trajectory data set given in Section 4.2.

4.1.2 Clustering

For clustering, Affinity Propagation (AP) [161] is used. AP has been applied as a

clustering method in various studies including anomaly detection.

AP selects the cluster centres from the actual data points which are called cluster

exemplars. The method uses the pair-wise similarity of each pair of data points which

is the negative of the Euclidean distance between these points. The objective function

of AP tries to find the exemplars that maximise the overall sum of similarities between
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all exemplars and their data points given the similarity matrix. There are two kinds of

messages between data points [161]:

• Responsibility (r): It is from data point i to data point j that represents the ac-

cumulated evidence for how appropriate it would be for data point j to be the

exemplar for data point i.

• Availability (a): It represents how appropriate it would be for data point i to

choose data point j as its exemplar.

At the beginning, the availabilities are zero (a(i,k) = 0) and the responsibilities are

calculated as given in Eq. 4.9.

r(i, j) = s(i, j)−max j′ 6= j{a(i, j′)+ s(i, j′)} (4.9)

where r refers to responsibility, a refers to availability, i, j are data points and s is the

similarity.

For the later iterations, as some data points’ exemplars are found, the availabilities

are decreased by using the formula given in Eq. 4.10.

a(i, j) = min
{

0,r( j, j)+ ∑
i′ /∈{i, j}

max{0,r(i′, j)}
}

(4.10)

This message-passing procedure is terminated when i) a fixed number of iterations

is reached, ii) the value of messages becomes lower than a threshold or iii) after the

exemplars and data points stay constant for a certain number of iterations. In our study,

we apply the last strategy by taking the maximum number of iterations as 4000.

AP has many advantages over traditional clustering methods such as its fast pro-

cessing speed, being non-parametric (different than k-means), not requiring initialisa-

tion (different than SOM), not depending on sample order (different than hierarchical

clustering) and scalability (which makes our methods scalable as well). However, in

our case the main reasons for using this method are its ability:

• to produce smaller clusters,

• to produce uneven sized clusters with minimum error rate [161]

which are compatible with the outlier detection method (Section 4.1.3) that we use.
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4.1.3 Outlier Detection

An outlier is defined as a datum which is distant from other data points in the same

cluster. Most of the time, the cardinality of the outliers is smaller than the other data

points in the same cluster. On the other hand, an unusual trajectory can be defined as

one that deviates from other trajectories in its cluster or the one which builds a cluster

with a few other unusual trajectories.

In this thesis, we adapted the outlier detection method from [54] and use it to detect

unusual fish trajectories. We assume two types of outliers:

1. Those located in small clusters,

2. Those in dense clusters but far from cluster exemplars.

To detect the small and dense clusters, a threshold is defined based on the cardinal-

ity of all clusters. A cluster which has fewer trajectories (data samples) than 10% of

the median cardinality of clusters or a cluster that has only one trajectory (data point) is

defined as a small cluster. All trajectories that belong to such a cluster are classified as

unusual trajectory. Otherwise, the cluster is a dense cluster, and outliers are detected

using the Euclidean distance between the trajectory features and the cluster exemplar.

Small clusters are illustrated as the clusters having boundaries with thick lines while

dense clusters are the clusters having boundaries with dashed lines in Figure 4.7. In

dense clusters, a trajectory which is far away compared to threshold τ = µ+wσ (with

mean (µ), weight (w) and standard deviation (σ) of all distances between all trajectories

and the cluster exemplar) is defined as an outlier (unusual trajectory). Otherwise, it

is defined as normal trajectory (see Figure 4.7). This threshold is different and spe-

cific for a given cluster and is calculated from the training data for that cluster.

4.1.4 Feature Selection

For feature selection Sequential Forward Feature Selection (SFFS) [162] is applied,

embedded in clustering and outlier detection. Feature selection provides better feature

subsets which also decreases the chance of over-fitting. It eliminates irrelevant, redun-

dant features. Moreover, it might filter out the features which misguide the clustering.

Different from the standard procedure for SFFS, we use the mean of T Prate (repre-

sents unusual trajectory detection) and T Nrate (represents normal trajectory detection)

as suggested in [97] rather than the accuracy (see Section 2.3.1 for descriptions and the

reason why accuracy is not suitable).
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Figure 4.7: A representation of clustered data. For small clusters, boundaries are

shown with thick lines and dense clusters’ boundaries are shown with dashed lines.

Outlier detection in dense clusters: samples which are inside of the inner circle are

classified as the normal trajectories whereas the rest of the samples are classified as

the unusual trajectories, given threshold τ.

Feature  

Subset 

Generation 

Feature Subset 
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Selected 

Subset 
Stopping 
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Subset Current Best 
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Figure 4.8: Sequential Forward Feature Selection (adapted from [2])

Feature selection is applied as follows: Given the current set of features, an addi-

tional feature is added to create a new candidate feature subset. Using this extended

feature set, clustering and outlier detection are performed. The mean of T Prate and

T Nrate are found using the ground-truth labels of trajectories (feature subset evalu-

ation). All possible additional features are added to the feature set in the same way.

The feature set is extended by the feature which gives the best performance (current

best subset). Adding features to the current best subset stops when the classification

performance (mean of T Prate and T Nrate) on the training set decreases compared to

the previous feature subset (stopping criterion) and the final subset is defined by the

previous feature subset (selected subset). Those steps are illustrated in Figure 4.8.

The experiments given in this chapter explored different feature selection algo-

rithms as well. We applied the Laplacian score [163] and Multi-cluster approach [164],
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that are filtering feature selection algorithms (meaning that class labels are not being

used). The results showed that SFFS performs better than these filtering methods even

though it is much slower. We tried different feature selection criteria as well, such as

F-measure, accuracy, mutual information etc. using the GeoMean as the evaluation

metric. Those criteria did not perform as well as the mean of T Prate and T Nrate (see

Section 2.3.1 for definitions of evaluation metrics).

4.2 Data Set

The proposed method was tested using 683 trajectories (652 normal, 31 abnormal)

from 15 hours of video (320x240 resolution, 5 frames per second) which belong to

Dascyllus reticulatus in the Taiwanese coral reef (the most frequent species, about 150

times more common than the least common observed one while in total 15 different

species were recognised [11]). This data set is different than the one presented in

Section 3.2 as it belongs to only one species and one location. Considering that the

fish behaviour can change during the time of the day and Dascyllus reticulatus is more

active in the morning, we used the videos that were captured in the morning. On the

other hand, the variety of normal and unusual fish trajectories are similar to the data

set in Section 3.2. The trajectories of freely swimming fish were considered as normal

behaviour as it is the most frequent behaviour while rare (unusual) trajectories which

were not observed as much as normal trajectories such as: fish suddenly (in one frame)

changing direction, interaction with coral, aggressive movements of fish (sometimes

due to another fish or because of being frightened) were considered.

4.3 Results

In the testing phase, the new trajectories are classified using the outlier detection pa-

rameter w and the best feature set that are found during the training. In detail, first

clustering is applied to the testing trajectories using the best features that are found

in training. Outlier detection is applied using corresponding w parameter to detect

unusual fish trajectories.

To evaluate the proposed flat classifier 5-fold cross validation was performed. Train-

ing and test sets were constituted randomly with the normal and unusual trajectories

distributed equally in each set. The outlier detection threshold w is taken as {-1, -0.3,

0, 0.3, 0.6, 0.9, 1, 2, 3, and 6}. For the best performance of the flat classifier (which
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Fold       Average of TPrate and TNrate   

1 0.65 0.61 

     

  

2 0.60 0.65 0.69 0.71 0.73 0.70 

 

  

3 0.57 0.65 0.69 0.72 0.78 0.82 0.84 0.82 

4 0.57 0.59 0.62 0.68 0.75 0.74 

 

  

5 0.59 0.58             

 

Figure 4.9: Mean of T Prate and T Nrate after the feature is added at each iteration of

SFFS (Training). Best feature selection criterion value is emphasised as bold.

is obtained when w is 3), different features were selected in each fold during training.

However, in 4 of 5 folds, the same feature from loop features category (Section 4.1.1.7)

was selected as the first feature. The mean of T Prate and T Nrate while features were

adding one by one including the value that ended SFFS [162] is given for each fold in

Figure 4.9.

The proposed flat classifier was compared with the methods given in Table 4.2.

The alternative feature selection methods Laplacian Score [163] and Multi-cluster ap-

proach [164] give a ranking of features from the best feature to worst feature. In these

experiments, we used the same number of features as the number of features used for

the flat classifier (Proposed M2) for each corresponding fold.

Table 4.3 shows the best results of each method in terms of the GeoMean with the

corresponding T Prate and T Nrate. For each evaluation metric the standard deviations

(over the 5 cross validation folds) are also given after ± sign. The best results in terms

of each evaluation metric are emphasised in bold-face.

The proposed flat classifier which integrates SFFS as the feature selection method

(Proposed M2) performed the best in terms of the T Prate (unusual trajectory detec-

tion rate) and the GeoMean (overall trajectory detection rate). Proposed M2 Alter3

performed as well as Proposed M2 in terms of the GeoMean which is expected as the

F-measure (Section 2.3.1) is a recommended metric for imbalanced data set classifi-

cation. However, as we pay more attention to unusual fish trajectory detection com-

pared to normal trajectory detection, we believe that Proposed M2 is better than Pro-

posed M2 Alter3 as it has better T Prate. On the other hand, Proposed M3 Alter4 was

bad at unusual fish trajectory detection while performed better at normal fish trajec-

tory detection. It can also seen that the unusual fish trajectory detection is improved
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Table 4.2: Methods that are used for comparison.

Method Description Abbreviation

Filtering

Mechanism

As described in Chapter 3. Proposed M1

Flat Classifier

SFFS is used for feature selection while crite-

rion is mean of T Prate and T Nrate and w={-
1, -0.3, 0, 0.3, 0.6, 0.9, 1, 2, 3, and 6}.

Proposed M2

Flat Classifier

Alternative 1

Laplacian Score [163] is used for feature se-

lection, the number of features is taken as the

same with Proposed M2, and w={-1, -0.3, 0,

0.3, 0.6, 0.9, 1, 2, 3, and 6}. To construct

the k-Nearest Neighbours graph k is taken as

5 (default setting).

Proposed M2 Alter1

Flat Classifier

Alternative 2

Multi-cluster approach [164] is used for fea-

ture selection, the number of features is tak-

en as the same with Proposed M2 and w={-
1, -0.3, 0, 0.3, 0.6, 0.9, 1, 2, 3, and 6}. To

construct the k-Nearest Neighbours graph k is

taken as 5 and the number of eigenvectors is

taken as 5 (default setting).

Proposed M2 Alter2

Flat Classifier

Alternative 3

SFFS is used for feature selection while crite-

rion is F-measure and w={-1, -0.3, 0, 0.3, 0.6,

0.9, 1, 2, 3, and 6}.
Proposed M2 Alter3

Flat Classifier

Alternative 4

SFFS is used for feature selection while crite-

rion is accuracy and w={-1, -0.3, 0, 0.3, 0.6,

0.9, 1, 2, 3, and 6}.
Proposed M2 Alter4
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Table 4.3: Best results of each method in terms of average GeoMean with the cor-

responding T Prate and T Nrate. The best results are emphasised in bold-face. The

standard deviations considering the cross-validation folds are also given after the ±
sign.

Method T Prate T Nrate GeoMean

Proposed M1 0.65 ±0.19 0.61 ±0.02 0.63 ±0.10

Proposed M2 0.78 ±0.08 0.64 ±0.10 0.71 ±0.06

Proposed M2 Alter1 0.77 ±0.28 0.51 ±0.03 0.62 ±0.13

Proposed M2 Alter2 0.61 ±0.22 0.49 ±0.02 0.54 ±0.10

Proposed M2 Alter3 0.70 ±0.10 0.72 ±0.03 0.70 ±0.04

Proposed M2 Alter4 0.58 ±0.16 0.71 ±0.02 0.63 ±0.09

over the method from Chapter 3 (Proposed M2 versus Proposed M1). Additional-

ly, it is seen that filtering feature selection methods (Proposed M2 Alter1 and Pro-

posed M2 Alter2) are not as suitable as SFFS since they performed poor.

Some examples of misclassified unusual trajectories (FN) and misclassified normal

trajectories (FP) are given in Figure 4.10. Those misclassified unusual trajectories

include aggressive fish and fish suddenly diving under the coral. On the other hand,

misclassified normal trajectories belong to freely swimming fish whose trajectories are

complex.

4.4 Conclusions

In this chapter, we represented fish trajectories with novel descriptors which were never

used before (except velocity) for fish behaviour analysis. Clustered and labelled data

were used together to select the best feature set and classify trajectories as normal or

unusual. As seen from the results, the flat classifier improved performance of unusual

fish detection compared to filtering mechanism which was presented in Chapter 3. The

proposed flat classifier is also good at detecting normal trajectories which may help

marine biologists by eliminating many normal trajectories with relatively low error

rate. This characteristic of the flat classifier allows the marine biologists to focus on

data that is potentially unusual which is valuable especially considering the amount of

data that they might have to consider. Moreover, the flat classifier’s unusual trajectory

detection performance can be useful especially to detect more interesting behaviours
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Figure 4.10: Examples of misclassified unusual trajectories (top) and misclassified nor-

mal trajectories (bottom). Trajectories are shown with blue while the last detections of

the fish are shown with a red bounding box.
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or even behaviour changes for a specific fish species.

The performance of the flat classifier is improved by integrating it into a hierarchi-

cal decomposition method as presented in Chapter 5. This hierarchical decomposition

method should allow selecting more specific features for different trajectory clusters

which can be useful considering the trajectory variety that exists even for a single fish

species.



Chapter 5

Detection of Unusual Fish Trajectories

Using a Clustering Based Hierarchical

Decomposition

A novel hierarchical decomposition method to detect unusual fish trajectories is pre-

sented in this chapter. The basics of the proposed hierarchical decomposition method

are the same as the method presented in Chapter 4. Therefore, clustering of data based

on selected features without initially using the known labels is the key to partitioning

the data into separable subsets. The hierarchy is automatically generated using the

clustered and labelled trajectories together during training unlike research that uses a

fixed hierarchy that is based on features or classes. Additionally, different from the

traditional way that uses the same feature set for every level of hierarchy or a flat clas-

sifier (Chapter 4), different data and feature sets at different level of the hierarchy are

used which allows more specific features to be used once the data focuses onto specific

subclasses.

The main contributions of this chapter are:

• A novel approach for unusual fish trajectory detection which builds a feature or

class taxonomy independent hierarchy,

• Significantly improved performance on unusual fish trajectory analysis from un-

constrained underwater videos.

66
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5.1 Methodology

The proposed hierarchy decomposition method utilises i) clustering, ii) outlier detec-

tion and iii) feature selection (as given in Chapter 4) to build the hierarchy. To au-

tomatically construct the hierarchy during training, clustering and outlier detection

is combined with feature selection. The data is partitioned using the selected features

which are determined by feature selection, outlier detection and the ground-truth labels

of the training data. In other words, the clustered and labelled data are used together to

determine the best feature set for a subset of training data at each level of the hierarchy.

The details of the proposed method are given below.

5.1.1 Hierarchy Decomposition

At each level of the hierarchy, data is first clustered using the best feature subset which

is determined by adding a single feature at each iterations of the feature selection (see

Section 4.1.4). After clustering, outlier detection is applied to each cluster and outlier-

s (unusual trajectories) for the current level of the hierarchy are found. Then, using

the ground-truth data for each cluster, misclassified normal or unusual trajectories are

found (if they exist). The clusters which do not contain any misclassified trajectory are

kept for that level and the corresponding trajectories are not used for construction of

the rest of the hierarchy. Such clusters are called perfectly classified cluster. On the

other hand, a cluster which has at least one misclassified trajectory no matter unusual

or normal (called misclassified cluster) is used to continue the hierarchy construc-

tion. Using the clusters that have misclassified trajectories, the hierarchy construction

recurses in the same way. By repeating clustering, outlier detection and feature selec-

tion, the hierarchy construction continues until there is no cluster which is perfectly

classified or all trajectories are perfectly classified.

In summary, at each level of the hierarchy, different trajectories are used and to

distinguish those trajectories, different feature subsets are utilised. Once a trajectory

that belongs to a perfectly classified cluster at any level of the hierarchy is detected, it

is never used for hierarchy construction at the next levels.

The leaf nodes of the hierarchy contain either: perfectly classified clusters (mostly

observed at the upper levels of the hierarchy) or misclassified clusters (only observed

in the leaf nodes belong to the last level of the hierarchy).
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A cluster called perfectly classified can be either:

• Perfectly classified mixed cluster: Contains unusual and normal trajectories.

All trajectories are correctly classified using the outlier detection threshold.

• Perfectly classified pure normal cluster: A dense cluster which contains on-

ly normal trajectories which are correctly classified using the outlier detection

threshold.

• Perfectly classified pure unusual cluster: Contains only unusual trajectories

which are correctly classified, due to being in small clusters. We assume that

small clusters contain only unusual trajectories.

A cluster called misclassified can be either:

• Misclassified mixed cluster: A dense or small cluster which contains both un-

usual and normal trajectories with at least one trajectory wrongly classified using

the outlier detection threshold.

• Misclassified pure normal and dense cluster: Contains only normal trajecto-

ries with at least one trajectory wrongly classified as an unusual trajectory using

the outlier detection threshold.

• Misclassified pure normal and small cluster: Contains only normal trajecto-

ries with at least one trajectory wrongly classified as an unusual trajectory due

to being in a small cluster.

• Misclassified pure unusual cluster: A dense cluster that contains unusual tra-

jectories with at least one trajectory wrongly classified as a normal trajectory

using the outlier detection threshold.

Illustration of hierarchy construction is given in Figure 5.1 and the pseudo-code for

that is given in Figure 5.2.

5.1.2 New Trajectory Classification Using the Constructed Hierar-

chy

A new trajectory is classified using the constructed hierarchy with all perfectly clas-

sified clusters and misclassified clusters at all levels, the selected feature subsets for

each level and the outlier detection thresholds for each cluster. It is rule based and
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Figure 5.1: Hierarchy Construction
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Input: Training Set: X ={X1, X2,…XN} 

           Ground-truth labels: G ={G1, G2,…GN} 

           Size of training set: N 

           Features: F ={f1, f2,…,fM} % all possible features 

           Total number of features: M 

           Feature Selection Criterion Function: E 

           Outlier detection thresholds: w  

Output: Hierarchy H ={ Total number of levels: L 

                                      Selected Feature Subsets: selFea ={sf1, sf2,… sfL }, where sfi  ϵ F  

                                      Perfectly Classified Clusters: Cperfect ={CP1, CP2,… CPL} 

                                      Misclassified Clusters: Cmis ={CM1, CM2,…CML } 

                                                                         where CPi  and CMi   set of all subsets of X 

begin: 

     for z=1:size(w) 

         wz=w(z); % current outlier detection threshold 

         current_level=1 

         while current_level >=1 

                   if current_level ==1 

                              remaining_samples=X; 

                   else 

                              remaining_samples=samples(CMcurrent_level-1); 

                   end 

                   featureSelection_converged=false; 

 

                   sfcurrent_level ={};   =F;    % all features 

 

                   while (NOT featureSelection_converged) 

                              for fi      

                                    [C] =Clustering (remaining_samples, (sfcurrent_level   { fi }));  

                                                                                                     

                                    [CPi, CMi] =OutlierDetection (C, wz);      

 

                                 ei =evaluate( CPi , CMi , G); 

 

                            end 

                              select j=                

                            sfcurrent_level= sfcurrent_level  { fj} 

                               =   \ { fj} 

                            featureSelection_converged =E( sfcurrent_level ) ≤ E( sfcurrent_level  \ { fj}) 

                   end 

                   H. L =current_level; 

                   H. Cperfect(H.L) =CPj-1; 

                   H. Cmis(H.L) =CMj-1; 

                   H. selFea(H.L) =sfcurrent_level  \{ fj}; 

 

                   if notEmpty(H.Cperfect (H.L)) and size(samples(H.Cperfect ))  N  

                                                                            % there is at least one perfectly classified cluster 

                                                                            % and the total number of perfectly classified 

                                                                            % samples are not equal to N 

                                         current_level =current_level+1; 

                   else 

                               current_level =0; 

                   end 

          end 

       end 

end 

 

Figure 5.2: The pseudo-code for hierarchy construction
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Figure 5.3: Cluster types: perfectly classified clusters, misclassified clusters. A per-

fectly classified cluster can be a) perfectly classified mixed, b) perfectly classified pure

normal, c) perfectly classified pure unusual. A misclassified cluster can be d) mis-

classified mixed, e) misclassified pure normal when the cluster is a dense cluster, f)

misclassified pure normal when the cluster is a small cluster, g) misclassified pure un-

usual. Diamonds represent the unusual trajectories while circles represent the normal

trajectories. The outlier detection thresholds for dense clusters are shown with dashed

red circles.

based on finding the closest cluster at each level of the hierarchy. The closest cluster is

found using the Euclidean distance between the new trajectory and the cluster exem-

plars with the selected features for that specific level, including misclassified clusters

as well. Therefore, at each level in the hierarchy, the closest cluster can be:

• Perfectly classified mixed cluster (Figure 5.3a),

• Perfectly classified pure normal cluster (Figure 5.3b),

• Perfectly classified pure unusual cluster (Figure 5.3c),

• Misclassified mixed cluster (Figure 5.3d),

• Misclassified pure normal and dense cluster (Figure 5.3e),

• Misclassified pure normal and small cluster (Figure 5.3f) or

• Misclassified pure unusual cluster (Figure 5.3g) as described above.

Based on the closest cluster and the position in the closest cluster, the class decision

for the new trajectory can be:



Chapter 5. Detection of Unusual Fish Traj. Using a Hierarchical Decomposition 72

• Unusual trajectory,

• Candidate normal trajectory or

• No effect on the decision.

At each hierarchy level (with its clusters, outlier detection thresholds, and selected

features) and a new trajectory:

• The closest cluster is a perfectly classified pure unusual cluster which makes the

new trajectory an unusual trajectory and classification stops (there is no need

to look at any other level of the hierarchy).

• The closest cluster is a perfectly classified mixed cluster and the new trajectory

is further than the outlier detection threshold of that cluster which makes the

new trajectory an unusual trajectory and classification stops (there is no need

to look at any other level of the hierarchy).

• The closest cluster is a perfectly classified pure normal cluster and the distance

between the new trajectory and the corresponding cluster’s centre is smaller than

the outlier detection threshold of that cluster. This makes the new trajectory a

candidate normal trajectory. The new trajectory goes to the next level of the

hierarchy.

• The closest cluster is a perfectly classified pure normal cluster and the new tra-

jectory is further than the outlier detection threshold of that cluster. This makes

the new trajectory an unusual trajectory and classification stops (there is no

need to look at any other level of the hierarchy).

• The closest cluster is a perfectly classified mixed cluster and the distance be-

tween the new trajectory and cluster centre is smaller than the threshold, then

the new trajectory is a candidate normal trajectory. The new trajectory goes
to the next hierarchy level.

• The closest cluster is a misclassified cluster (pure or mixed) then the new tra-

jectory proceeds to the next level. This does not have any effect on the clas-
sification of the new trajectory unless all the closest clusters at each level are

misclassified clusters.



Chapter 5. Detection of Unusual Fish Traj. Using a Hierarchical Decomposition 73

Figure 5.4: New trajectory classification using the hierarchy.

Those rules are illustrated in Figure 5.4.

In summary, even a single level’s decision as unusual trajectory is enough to clas-

sify the new trajectory as an unusual trajectory regardless of the level of the hierarchy.

On the other hand, if there is no decision as an unusual trajectory at any level and if the

decision of at least one level is candidate normal then the class of the new trajectory

is declared to be normal. However, it is possible that the closest cluster at each level

of the hierarchy is a misclassified cluster. In this case, we use the ground-truth labels

of the training trajectories and apply the following rules, starting from the top of the

hierarchy:

• The closest cluster at the current level contains all normal trajectories by looking

at the ground-truth class labels: If the new trajectory is further than the rest of

the samples in that cluster this makes it an unusual trajectory and classification
stops here. Otherwise the data goes to the next hierarchy level.

• The closest cluster contains all unusual training trajectories by the ground-truth:

The new trajectory is classified as an unusual trajectory and classification
stops here.

• The closest cluster contains both normal and unusual training trajectories: In

this case, we apply the nearest neighbour rule which makes the class of the new

trajectory the same as the closest training sample’s class. If the class is an un-
usual class then classification stops. Otherwise, the data goes to the next level
to apply above rules.
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Figure 5.5: New trajectory classification when the decisions of all levels are no effect

on decision.

• If the new trajectory reaches the last level and could not be classified using the

rules given above, then it is classified as a normal trajectory.

These rules are illustrated in Figure 5.5.

Other heuristics than we use (decision as an unusual trajectory at any level stop-
s classification of the new trajectory while decision as a normal trajectory send the
new trajectory to the next level), can also be applied. For instance, the inverse heuris-

tic: any decision as normal trajectory stops classification regardless of the level of the

hierarchy while a decision as an unusual trajectory send the new sample to the next

hierarchy level can be applied. Alternatively, majority voting on the decisions at each

level can determine the final class of the new trajectory. The experiments comparing

different heuristics are given in Section 5.2.2.2.

The flow chart of the proposed heuristic for the classification of a new trajectory

using the previously constructed hierarchy is given in Figure 5.6.

5.2 Experimental Work

The proposed method was compared with the state of art classification algorithm-

s, outlier detection methods and trajectory analysis methods. The evaluations were

performed using the fish trajectory data set and the pedestrian data set in terms of

GeoMean (Eq. 2.7) with the corresponding T Prate (represents unusual trajectory de-
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Figure 5.6: The flow chart of classification of a new trajectory using a previously (during

training) constructed hierarchy. Decisions are all shown with rounded rectangles either

with single or double line. Rounded rectangles with double lines represent the final

class of the new trajectory whereas single line rounded rectangles indicate provisional

decisions.
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Figure 5.7: (a-b) Normal fish trajectory examples, (c-d) Unusual fish trajectory exam-

ples.

tection, Eq. 2.2) and T Nrate (represents normal trajectory detection, Eq. 2.3).

5.2.1 Data Sets

The proposed methods and all the methods were applied to 3102 fish trajectories (3043

normal, 59 unusual trajectories). To the best of our knowledge, this data set is the
largest fish trajectory data set and the largest labelled trajectory data set in gener-

al (http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/). Data includes

trajectories of Dascyllus reticulatus. Data was collected from 93 different videos hav-

ing 320x240 resolution, 5 frames per second and captured in the morning. The normal

and unusual behaviours are determined by visual inspection and also examined by ma-

rine biologists.

The most usual and frequent behaviours in the data set are: fish hovering over the

coral (Figure 5.7a) and freely swimming fish in the open sea (Figure 5.7b). On the

other hand, unusual trajectories are: fish suddenly (in one frame) changing direction

(predator avoidance, Figure 5.7c), fish biting at coral (also interaction with plankton,

Figure 5.7d), fish diving quickly between the coral branches when frightened or to hide

from predators, and aggressive fish which are moving fast. A trajectory that has normal

and unusual segments is assumed as unusual.

http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/
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Figure 5.8: Data set which belongs to 1st of September 2009 in the Forum Pedestrian

database [3]. Examples of normal (blue) and abnormal trajectories (red).

The proposed method was also applied to a pedestrian trajectory data set in the Fo-

rum Pedestrian database (http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/,

[3]). In this database, the field of the view of the camera was divided into regions as:

main entrance to the building, lifts, access to the Atrium, access to the hall, staircase,

reception desk and four exits. A trajectory is classified as normal i) if it represents a

clear goal such as going from one exit to another and ii) the goal was achieved in an

efficient way which means with a trajectory close to a straight line. Otherwise, it was

labelled as abnormal. The first rule is more serious than the second rule as there are

some cases that a normal trajectory does not meet the second rule but obeys the first

rule [3].

The data set from the 1st of September 2009 (which is one of the largest sets) was

chosen to analyse. This set includes 1624 normal trajectories and 718 abnormal tra-

jectories that were captured from different people. Examples of normal and abnormal

trajectories from this data set are shown in Figure 5.8. The normal and abnormal tra-

jectories were labelled by the implementation in [3]. The labelling of the data set was

also manually inspected.

Features, similar to those for fish trajectory data set were extracted (Section 4.1.1):

velocity and acceleration based, vicinity based, curvature scale space based, centre

distance function in 2 dimensions based, loop based, moment based, and turn based.

Additionally, trajectory points after cubic B-spline fitting and the statistical features

(mean, standard deviation, minimum, maximum, median, the number of local minima,

the number of local maxima, skewness and kurtosis) which are extracted from the

deviation between the reconstructed trajectory and the original trajectory were also

used. Each trajectory was approximated with a cubic spline with 6 control points

http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
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using the implementation in [31]. Altogether 758 features were obtained. To prevent

possible over-training or curse of dimensionality, PCA was applied to each group of

features individually (except the trajectory points that are obtained after cubic B-spline

fitting) as described in Section 4.1.1. As a result, 57 features were obtained.

5.2.2 Results

The results presented in this section can be divided into 4 subsections:

• Comparison with the state of art methods using the fish trajectory data set,

• Results when alternative hierarchy decomposition methods are applied to the fish

trajectory data set,

• Results when outlier removal and normalised fish trajectory features are used,

• Comparison with the state of art methods using the Forum pedestrian database

[3].

For all experiments presented in this section, 9-fold cross validation was performed.

Training, validation and test sets were constituted randomly and the normal and un-

usual trajectories were distributed equally in each set. For the methods combined with

SFFS (Section 4.1.4), validation sets were used to pick the best feature set for each

method individually. For others including the proposed methods, validation sets were

not used. The training and testing sets were kept the same for all methods.

5.2.2.1 Comparison with the state of art methods using the fish trajectory data

set

The proposed hierarchical decomposition method was compared with the proposed

methods in Chapters 3 and 4, the state of art classification methods, other popular

outlier detection and trajectory analysis methods using fish trajectory data set. The

definitions of these methods with the applied parameters are given in Table 5.1.

The best results of the methods using fish trajectory data set are given in terms of

the GeoMean with the corresponding T Prate and T Nrate in Table 5.2. Additionally,

to compare the methods more precisely, the approximated T Prate results for the fixed

T Nrate = 0.88 which was found by Proposed M3 are also given. The approximated

T Prate are obtained using the formula given in Eq. 5.1 (see Section 2.3.1 for defini-

tions), AUC value of each method and the fixed T Nrate. Rearranging equation and
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Table 5.1: Methods that are used for comparison.

Method Description Abbreviation

k-Nearest

Neighbours

k={1, 2, 3, 4, 5, 10, 15, 25} were used as the common parameters. kNN

kNN with

Feature

Selection

The same k values with the kNN were used while sequential SFFS was applied as given

in Section 4.1.4.

kNN wFea

Support Vec-

tor Machine

As the kernel function, a radial basis function with varying kernel parameters was used.

Hyper-planes were separated by Sequential Minimal Optimisation. All features were

used.

SVM

SVM with

Feature

Selection

Applied as given in the SVM description but integrated with SFFS as given in Section

4.1.4.

SVM wFea

Random

Forest with

Balanced

Training

[165]

A number of trees {10, 30, 50, 70, 100, 120, 150, 200, 500, 1000} were tested and the

trees were grown without pruning. For node splitting, the Gini index [166] was used.

All unusual trajectories were kept, and subsets of the normal trajectories were chosen

randomly to build the decision trees. The number of normal trajectories in the chosen

subset was equal to the number of total unusual trajectories. All features were used.

RF BT

RF BT with

Feature

Selection

Applied as given in the RF BT description but integrated with SFFS as given in Section

4.1.4.

RF BT wFea

Unsupervised

Modelling

of Object

Tracks [51]

Normalised Cuts spectral clustering was applied to unusual and normal trajectories in-

dividually and each cluster of behaviour was modelled as a mixture of Gaussian in the

spectral embedding space. A new trajectory was classified by projecting it into the spec-

tral embedding space for normal and unusual classes and based on the likelihood that the

new track was classified as a normal or unusual trajectory. Different sigma values such

as {1, 10, 20 etc.} and different number of cluster sizes {10, 15, 20, 30, 40, 50, 60, 80,

90} for normal and usual clusters were tested.

UMOT

Local

Outlier

Factor [167]

It is a density based method which considers a sample to be an outlier if its surround-

ing space contains few samples. It does not use any clustering technique. Training is

performed only using normal classes. During validation normal and unusual class tra-

jectories are used and the best feature set is selected using sequential forward feature

selection. The neighbourhood is defined with a parameter called k. k was taken as {1, 3,

5, 10, 15, 20 and 25}.

LOF

Filtering

Mechanism

As described in Chapter 3. Pixels size {2, 4, 8, 16, 20} were taken to define the search

area.

Proposed M1

Flat

Classifier

As described in Chapter 4. The outlier detection parameter w was taken as {-1, -0.3, 0,

0.3, 0.6, 0.9, 1, 2, 3, 6}.
Proposed M2

Hierarchical

Decomposi-

tion

The outlier detection parameter w was taken as {0, 0.3, and 1}. Proposed M3
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Table 5.2: Best results of each method in terms of average GeoMean with the corre-

sponding T Prate and T Nrate when fish trajectory data set is used. Approximated

(Approx.) T Prate is calculated for fixed T Nrate = 0.88. The standard deviations (con-

sidering cross validation folds) of the methods are also given after ± sign. The best

results are emphasised in bold-face.

Method T Prate T Nrate GeoMean Approx.T Prate

kNN 0.26 ±0.08 0.99 ±0.01 0.50 ±0.09 0.37

kNN wFea 0.37 ±0.28 0.99 ±0.01 0.60 ±0.27 0.48

SVM 0.21 ±0.07 0.99 ±0.01 0.45 ±0.07 0.32

SVM wFea 0.81 ±0.16 0.93 ±0.03 0.86 ±0.09 0.86

RF BT 0.87 ±0.01 0.93 ±0.06 0.90 ±0.03 0.92

RF BT wFea 0.88 ±0.01 0.91 ±0.10 0.89 ±0.05 0.91

UMOT 0.57 ±0.20 0.85 ±0.11 0.70 ±0.04 0.54

LOF 0.62 ±0.17 0.97 ±0.01 0.77 ±0.08 0.71

Proposed M1 0.80 ±0.20 0.77 ±0.04 0.78 ±0.09 0.66

Proposed M2 0.81 ±0.17 0.76 ±0.02 0.78 ±0.09 0.70

Proposed M3 0.94 ±0.10 0.88 ±0.02 0.91 ±0.05 0.94

substitute terms allow us to approximate the T Prate given the AUC and T Nrate. For

each evaluation metric the standard deviations (considering cross validation folds) are

also given after the ± sign. The best results of each evaluation metric are emphasised

in bold-face.

AUC =
1+T Prate−FPrate

2
T Prate = 2AUC−T Nrate

(5.1)

The results showed that the proposed hierarchical decomposition method (Proposed M3)

had the highest unusual fish trajectory detection rate (T Prate) and the highest Approx.

T Prate while it was also the best method overall (GeoMean). For the proposed method

the best performance was observed when the outlier detection threshold w is 1. The

depth of the hierarchy was at most 11 while at least 3 for the 9-folds. Paired t-tests

were applied to the GeoMean data between each method and the proposed method.

The proposed method performed significantly better than all methods except RF BT ,

RF BT wFea and SV M (α=0.05).
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5.2.2.2 Results when alternative hierarchy decomposition methods are applied

to the fish trajectory data set

The proposed method was evaluated by applying different heuristics that are used to

classify the new trajectories (Alter1− 4). The effect of having different levels with

different subsets of trajectories and features was shown by applying all selected fea-

tures from the different levels as they were selected in a single level and for all training

trajectories (SingleLevProposed). The features selected by the proposed method were

evaluated using the SV M classifier (SV MwPropFea). Additionally, the benefit of the

outlier detection algorithm was tested by keeping the same heuristic but replacing the

decision maker by SV M (Hie SV M,Hie SV M Alter1). These methods are defined in

more detail in Table 5.3. The best results in terms the GeoMean with correspond-

ing T Prate, T Nrate and the Approx. T Prate when T Nrate = 0.88 are given in Table

5.4. For each evaluation metric the standard deviations (considering cross validation

folds) are also given after the ± sign. The best results of each evaluation metric are

emphasised in bold-face.

As seen in Table 5.4, Proposed M3 was the best in terms of the GeoMean, T Prate

and Approx. T Prate. SVM wPropM3Fea also performed well which means that the

selected features by Proposed M3 are representative to detect unusual fish trajecto-

ries. SingleLev Proposed M3 did not perform as well as Proposed M3 which means

that utilising different features for different trajectory subsets is more successful. Pro-

posed M3 Alter1 and Proposed M3 Alter4 did not perform as well as Proposed M3

and Proposed M3 Alter2 and Proposed M3 Alter3. That is because T Nrate of them

were not as good as T Prate of them which decreased the GeoMean as well. Hie SVM

did not perform significantly worse than Proposed M3 but on average Proposed M3

was better with higher T Prate. Similar to Proposed M3 Alter1, Hie SVM Alter1 al-

so tended to classification of normal class therefore its T Nrate was greater than the

T Nrate of Hie SVM but its T Prate was much worse, which made its GeoMean worse

than the GeoMean of Hie SVM.

5.2.2.3 Results when outlier removal and normalised fish trajectory features are

used

To further explore the features used to represent fish trajectories (given in Section

4.1.1), some pre-processing steps were applied. A 5% outlier removal was applied to

each feature and then each feature was normalised by subtracting its mean and dividing
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Table 5.3: Definition of alternative hierarchical decomposition methods.

Method Description Abbreviation

Hierarchical

Decomposition

Outlier detection parameter w was taken as {0, 0.3 and 1}.The heuristic is: a de-

cision as a unusual trajectory at any level stops the classification of the new

trajectory and the new trajectory become unusual, while a decision as a normal
trajectory sends the new trajectory to the next hierarchy level.

Proposed M3

Single level

classification

using features

selected by

Proposed M3

A single level of clustering and outlier detection were applied, but using all of the

features selected by all levels of Proposed M3, and without further feature selection.

Hence, the new hierarchy has only one level with the selected features of original

Proposed M3. Outlier detection parameter w was taken as {0, 0.3 and 1}.

SingleLev Proposed M3

Proposed M3

Alternative

Heuristic 1

Outlier detection parameter w was taken as {0, 0.3 and 1}. The heuristic is: a

decision as a normal trajectory at any level stops the classification of the new

trajectory and it become normal, while a decision as an unusual trajectory sends
the new trajectory to the next hierarchy level.

Proposed M3 Alter1

Proposed M3

Alternative

Heuristic 2

Find the closest cluster at each level using corresponding features. Then, find the
closest cluster of all which might be from any level of the hierarchy. If the closest

cluster is a perfectly classified cluster then, a decision as unusual trajectory makes

the new trajectory unusual and a decision as normal trajectory makes the new tra-

jectory normal. If the closest cluster is a misclassified cluster then, ground-truth

labels are used as Proposed M3 applies. As outlier detection parameter w was tak-

en as {0, 0.3 and 1}.

Proposed M3 Alter2

Proposed M3

Alternative

Heuristic 3

Apply Proposed M3, but instead of classifying the new trajectory as unusual with an

unusual trajectory decision of any level, classify the new trajectory using majority
voting. If the number of levels classifying the trajectory as unusual and normal are

equal, then the new trajectory is unusual. Outlier detection parameter w was taken

as {0, 0.3 and 1}.

Proposed M3 Alter3

Proposed M3

Alternative

Heuristic 4

Apply Proposed M3, but instead of classifying the new trajectory as unusual with an

unusual trajectory decision of any level, classify the new trajectory using majority
voting. If the number of levels classifying the trajectory as unusual and normal are

equal then the new trajectory is normal. Outlier detection parameter w was taken

as {0, 0.3 and 1}.

Proposed M3 Alter4

SVM using

features

selected by

Proposed M3

The features selected by Proposed M3 in all levels are utilised. SVM was applied

with the settings given in Table 5.1.

SVM wPropM3Fea

Hierarchical

SVM

Applying Proposed M3 but using SVM as the classifier instead of the proposed

outlier detection algorithm. SVM was applied with the settings given in Table 5.1.

Hie SVM

Hierarchical

SVM

Alternative

Heuristic 1

Applying heuristic Alter1 but using SVM as the classifier instead of outlier detec-

tion algorithm. SVM was applied with the settings given in Table 5.1.

Hie SVM Alter1
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Table 5.4: Best results for the alternative hierarchy decomposition methods in terms of

average GeoMean with the corresponding T Prate and T Nrate when the fish trajectory

data set is used. Approximated (Approx.) T Prate is calculated for fixed T Nrate =

0.88. The standard deviations (considering cross validation folds) of the methods are

also given after the ± sign. The best results are emphasised in bold-face.

Method T Prate T Nrate GeoMean Approx.T Prate

Proposed M3 0.94±0.10 0.88±0.02 0.91±0.05 0.94

SingleLev Proposed M3 0.58±0.16 0.90±0.03 0.72±0.10 0.60

Proposed M3 Alter1 0.37±0.16 0.97±0.01 0.59±0.13 0.40

Proposed M3 Alter2 0.92±0.02 0.80±0.17 0.85±0.09 0.84

Proposed M3 Alter3 0.88±0.10 0.91±0.02 0.89±0.05 0.90

Proposed M3 Alter4 0.48±0.21 0.96±0.02 0.68±0.17 0.53

SVM wPropM3Fea 0.89±0.11 0.86±0.05 0.87±0.06 0.86

Hie SVM 0.92±0.10 0.82±0.09 0.86±0.02 0.86

Hie SVM Alter1 0.36±0.34 0.98±0.03 0.59±0.34 0.41

by the corresponding standard deviation (z-score normalisation). The methods given

in Table 5.5 were applied to pre-processed features and compared with the results

using the un-processed features used in previous experiments (Table 5.6). For each

evaluation metric the standard deviations (considering cross validation folds) are also

given after ± sign. The best results of each evaluation metric are emphasised in bold-

face.

According to results given in Table 5.6, when the pre-processed fish trajectory fea-

tures were used, for all methods T Prate (unusual trajectory detection) decreased and

T Nrate (normal trajectory detection) increased except SVM. For the GeoMean, per-

formance of Proposed M3 wPreProFea was slightly better but since its T Prate was

worse than Proposed M3, features without pre-processing can be preferred. For Pro-

posed M2 the GeoMean did not change when pre-processed features were used but

since the T Prate decreased for this method, using the pre-processed features is still

worse. We hypothesise that removing the outliers during training has somehow dam-

aged the ability to detect the unusual trajectories, as observed with the decreases in the

T Prate.
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Table 5.5: Applied methods using pre-processed (outlier removed and normalised) fish

trajectory features.

Method Description Abbreviation

Flat Classifier As defined in Table 5.1 using outlier

removal and normalised fish trajec-

tory features.

Proposed M2 wPreProFea

SVM As defined in Table 5.1 using outlier

removal and normalised fish trajec-

tory features.

SVM wPreProFea

Hierarchical

Decomposition

As defined in Table 5.1 using outlier

removal and normalised fish trajec-

tory features.

Proposed M3 wPreProFea

Table 5.6: Best results of the methods in terms of average GeoMean with the cor-

responding T Prate and T Nrate for the fish trajectory data set with and without pre-

processed features. The standard deviations (considering cross validation folds) of the

methods are also given after the ± sign. The best results are emphasised in bold-face.

Method T Prate T Nrate GeoMean

Proposed M2 0.81 ±0.17 0.76 ±0.02 0.78 ±0.09

Proposed M2 wPreProFea 0.75 ±0.10 0.81 ±0.02 0.78 ±0.05

SVM 0.81 ±0.16 0.93 ±0.03 0.86 ±0.09

SVM wPreProFea 0.77 ±0.20 0.90 ±0.06 0.83 ±0.10

Proposed M3 0.94 ±0.10 0.88 ±0.02 0.91 ±0.05

Proposed M3 wPreProFea 0.88 ±0.13 0.96 ±0.05 0.92 ±0.08
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Table 5.7: Methods that are used for comparison when using the pedestrian data set

[3].

Method Description Abbreviation

Hierarchical

Decomposition

The outlier detection parameter w

was taken as {-1, 0, 0.3, 0.6, 1 and 2}.
Proposed M3

Hierarchical

Decomposition

Alternative 1

As given in Table 5.1 but with outlier

detection parameter

w={-1, 0, 0.3, 0.6, 1 and 2}.

Proposed M3 Alter1

Support Vector Machine

with Feature Selection

As given in Table 5.1. SVM wFea

Random Forest with

Balanced Training [165]

As given in Table 5.1. RF BT

RF BT with

Feature Selection

As given in Table 5.1. RF BT wFea

Local Outlier Factor

[167]

As given in Table 5.1. LOF

5.2.2.4 Comparison with the state of art methods using the Forum Pedestrian

Database [3]

To show that the proposed hierarchical decomposition method is not limited to fish

trajectory analysis but a general unusual trajectory detection method as well, we ap-

plied it to the pedestrian data set [3] as given in Section 5.2.1. The performance of

the proposed method was compared with RF BT , RF BT wFea, SV M wFea as they

performed about as well as the Proposed M3 when the fish trajectory data set is used

(Section 5.2.2.1). Additionally, LOF [167] was also considered since this method was

one of the most popular outlier detection methods and was applied in [168] as one of

the state of art methods for that pedestrian data set. The parameter settings used for

each method are given in Table 5.7.

The best results of the methods are given in Table 5.8 in terms of the GeoMean

with the corresponding T Prate and T Nrate. Approximated T Prate is calculated when

T Nrate = 0.87 which was obtained by Proposed M3. For each evaluation metric the

standard deviations (considering cross validation folds) are also given after the± sign.

The best results of each evaluation metric are emphasised in bold-face. For this data

set the best performance of the Proposed M3 was observed when the outlier detection
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Table 5.8: Best results of each method in terms of average GeoMean with the cor-

responding T Prate and T Nrate when the pedestrian trajectory data set is used.

Approximated (Approx.) T Prate is calculated for fixed T Nrate = 0.87. The stan-

dard deviations (considering cross validation folds) of the methods are also given after

the ± sign. The best results are emphasised in bold-face.

Method T Prate T Nrate GeoMean Approx.T Prate

Proposed M3 0.87 ±0.06 0.86 ±0.05 0.86 ±0.02 0.87

Proposed M3 Alter1 0.63 ±0.13 0.96 ±0.02 0.77±0.08 0.68

SVM wFea 0.83 ±0.03 0.79 ±0.04 0.81 ±0.01 0.74

RF BT 0.80 ±0.02 0.86 ±0.03 0.83 ±0.02 0.78

RF BT wFea 0.79 ±0.04 0.81 ±0.05 0.80 ±0.04 0.72

LOF 0.53 ±0.07 0.95 ±0.02 0.71 ±0.04 0.57

threshold w is 0.3. The depth of the hierarchy was at most 5 while mostly 3 for the

9-folds.

For this data set, the proposed method performed the best to detect unusual tra-

jectories (T Prate, Approx. T Prate) and also in terms of the GeoMean. Paired t-tests

were applied between each method and the proposed method using the GeoMean re-

sults. These showed that the proposed method was significantly better than the other

methods (α=0.05).

5.3 Conclusions

In this chapter, we presented a hierarchical decomposition method which constructs

the hierarchy based on clustered and labelled trajectories using the similarity of trajec-

tories. Different feature sets were applied to different subsets of the trajectories at the

different levels formed the hierarchy.

The results showed that the proposed method had a significantly better performance

compared to the methods presented in Chapters 3 and 4, state of art classification meth-

ods and unusual trajectory detection methods especially in terms of the unusual fish

trajectory detection rate (T Prate). Besides, its high normal fish trajectory detection

rate (T Nrate) is helpful for marine biologists since it allows filtering out many normal

trajectories with a low error rate and allows them to focus more on unusual trajecto-

ries which are important given that they have huge amounts of data. The proposed



Chapter 5. Detection of Unusual Fish Traj. Using a Hierarchical Decomposition 87

algorithm’s performance was also validated on the pedestrian trajectory data set. The

results showed that the proposed hierarchical decomposition method was significantly

better than the state of art methods. The experiments applied using different heuristics

to classify a new trajectory also showed that the proposed heuristic (Section 5.1.2) is

the best for unusual trajectory detection.

On the other hand, the proposed method is also computationally efficient at classi-

fying a new trajectory as it is only based on distance calculations while traversing the

built hierarchy. In Chapter 6, we investigate the performance of the proposed method

on imbalanced data sets from various application areas and also with synthetic data

sets to better understand its performance.



Chapter 6

Classifying Imbalanced Data Sets

Using Similarity Based Hierarchical

Decomposition

In recent years, classification with imbalanced data sets has become one of the key

topics in machine learning and data mining due to its challenges especially for real-

world applications. Data sets are dominated by normal examples where there is a small

amount of unusual examples [87, 95, 123]. In class imbalance problems, usually, the

samples are grouped into binary classes. The well-represented class is called the ma-
jority class and the under-represented class is called the minority class. In such a

case, a problem usually occurs because traditional classification algorithms tend to be

biased towards the majority class [89, 100]. Even though being imbalanced is not al-

ways a problem, for instance for a case where the classes are separable, imbalanced

data sets usually contain overlapping regions where the prior probabilities of the two

classes are almost equal [169]. Small disjuncts (samples of different classes that lie in

the overlap region), and small sample size with high feature dimensionality [96] are

frequently observed challenges in imbalanced data sets causing classification errors.

Issues such as the feature selection criterion and/or the criterion to evaluate the perfor-

mance are also important when dealing with imbalanced data sets. A comprehensive

discussion about this is given in Section 2.3.1.

In this chapter, we apply the hierarchical decomposition method presented in Chap-

ter 5 to imbalanced data set classification problems although not dedicated to any appli-

cation field specifically. The proposed method with its alternative-1 version (see Table

5.3 for details) was applied to 20 public imbalanced data sets (Section 6.1.1) which are

88
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Table 6.1: Pre-processing algorithms that are used.

Method Description

Feature Selection SFFS method [162] with the criterion of the mean of T Prate

and T Nrate was used as described in Section 4.1.4.

SMOTE [95] Number of neighbours were selected as to make the data set’s

imbalance ratio (the number of minority class samples over

majority class samples [87, 89]) equal to 1. If this was not

possible (when imbalance ratio is too small), then we took the

number of neighbours equal to the number of minority class

samples which made the set as balanced as it can be.

Balanced

Training [165]

This was only applied with Random Forest. All minority sam-

ples were kept, and subsets of the majority class were chosen

randomly to build the decision trees. The number of majority

class examples in the chosen subset was equal to the number

of total minority class data samples.

from different fields and 300 synthetic data sets (Section 6.1.2). The proposed method

is compared with popular supervised methods in combination with algorithmic level

and data level approaches (see Section 2.3 for description). The comparison with syn-

thetic data sets allowed to understand the performance of the proposed method in detail

and in different conditions. The results showed that the proposed method’s classifica-

tion performance is better than the state of art methods. It is especially successful if

the minority class is sparser than the majority class. It has accurate performance even

when classes have sub-varieties and minority and majority classes are overlapping.

Moreover, its performance is also good when the class imbalance ratio (the number of

the minority class samples over the number of the majority class samples) is low, i.e.

classes are more imbalanced.

6.1 Experimental Works and Results

To evaluate the classification performance of the proposed method, the experiments can

be divided into two sections: i) experiments using public imbalanced data sets and ii)

experiments using synthetic data sets. In both sections the pre-processing algorithms

that are given in Table 6.1 were applied.
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6.1.1 Experiments and Results using Public Imbalanced Data Sets

In this section, the data sets that were used and the state of the art imbalanced data

classification algorithms that were applied to compare with the proposed hierarchi-

cal decomposition method are given. The results are evaluated in terms of different

metrics. Moreover, different statistical tests were applied to assess the performance

significance between the proposed method and the state of art methods.

6.1.1.1 Data Sets

Twenty popular imbalanced data sets were used to evaluate the effectiveness of the

proposed method. The data sets are from different fields such as biology, physics,

medicine, etc. The number of features (#Fea.), the total number of samples (#Sam.),

the total number of minority and majority samples (#Min.,#Ma j.), the imbalance ratio

(IR=the number of minority class samples over majority class samples [87, 89]) and the

corresponding citations for each data sets (Re f .) are given in Table 6.2. While choosing

these data sets, we tried to cover the range of variety in the data sets. The selection

was based on: unique data set name (as many of the data sets are combinations of the

same data set but with different class combinations), a range of IR values (from 0.57

to 0.02), variation in the amount of class overlap (as given in the KEEL repository

[170]), a varying number of samples (from 106 to 7420) and variation in the number

of features (from 7 to 294).

The Hepato data set [4] originally had 4 classes, the Scene data set [173] originally

had 6 classes and the Satimage data set [7] originally had 7 classes. For those data

sets, we chose the smallest class as the minority class and collapsed the rest of the

classes into one in order to obtain a two-class imbalanced data set. The other data sets

(Pima [4, 5], Ionosphere [171, 7], Appendicitis [172] and data sets from the KEEL

repository [170]) originally had binary classes or they were supplied as binary by the

given references therefore we used those data sets as they are provided.

6.1.1.2 Results

To evaluate the proposed method 2-fold cross validation with the Appendicitis data set

[172] (because this data set is small) and 5-fold cross validation for the rest of the data

sets was performed. The data sets from the KEEL repository [170] were provided as

5-fold already. We used the testing sets of the corresponding data sets as provided but

to obtain the validation sets (which is needed for feature selection especially) we ran-
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Table 6.2: Summary of used imbalanced data sets.

Data Sets #Fea. #Sam. (#Min,#Ma j.) IR Re f .

Ionosphere 34 351 (126, 225) ∼ 0.57 [7, 171]

Pima 8 768 (268, 500) ∼ 0.50 [4, 5]

Vehicle1 18 4230 (1085, 3145) ∼ 0.35 [170]

Vehicle2 18 4230 (1090, 3140) ∼ 0.35 [170]

Vehicle0 18 4230 (995, 3235) ∼ 0.31 [170]

Hepato 9 536 (116, 420) ∼ 0.28 [4]

Appendicitis 7 106 (21, 85) ∼ 0.25 [172]

Satimage 36 6435 (626, 5809) ∼ 0.11 [7]

Glass2 9 1070 (85, 985) ∼ 0.09 [170]

Ecoli-0-1-4-7 vs 2-3-5-6 7 1680 (145, 1535) ∼ 0.09 [170]

Ecoli-0-1-4-7 vs 5-6 6 1660 (125, 1535) ∼ 0.08 [170]

Cleveland-0 vs 4 13 865 (65, 800) ∼ 0.08 [170]

Scene 294 2407 (177, 2230) ∼ 0.08 [173]

Yeast-1 vs 7 7 2295 (150, 2145) ∼ 0.07 [170]

Ecoli4 7 1680 (100, 1580) ∼ 0.06 [170]

Oil 49 937 (41, 896) ∼ 0.05 [6]

Glass5 9 1070 (45, 1025) ∼ 0.04 [170]

Yeast5 8 7420 (220, 7200) ∼ 0.03 [170]

Yeast-1-2-8-9 vs 7 8 4735 (150, 4585) ∼ 0.03 [170]

Winequality-red-8 vs 6-7 11 4275 (90, 4185) ∼ 0.02 [170]
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domly divided the supplied training sets into 4-folds where the minority and majority

class samples were distributed equally. This gave us data sets having equal amounts of

samples for testing and validation with 3 times bigger training sets. Similarly, for the

rest of the data sets using 5-fold cross validation, training, validation and testing sets

were constituted randomly where minority and majority class samples were distributed

equally.

The proposed hierarchical decomposition method is compared with the state of the

art methods given in Table 6.3 in combination with feature selection and imbalanced

data set handling approaches: SMOTE [95] and Balanced Training [165]. For each

method the same training, validation and testing sets were used. Therefore, for the

standard version of the methods (kNN, C4.5, NB, SV M, RF BT and Proposed) and all

versions of them with SMOT E the same training and testing sets were used while for

the methods with feature selection validation sets were used as well to pick the best

feature set for each method on each data set (except the proposed method which uses

the training set to pick the best feature subset).

The results in terms of the average GeoMean (Eq. 2.7), the average AGeoMean

(Eq. 2.8) and the AUC (Eq. 2.9) are given in Table 6.4, 6.5 and 6.6 respectively for

each method and each data set. The average performances of each method in terms

of evaluation metrics considering all data sets are also given in these tables. For each

evaluation metric the standard deviations (considering the folds in cross validation) are

also given after the ± sign. The best results in terms of each evaluation metric on each

data set are emphasised in bold-face.

The results shows that the performance of the proposed method was the best on 13

of 20 data sets for GeoMean, 12 of 20 data sets for AGeoMean and 10 of 20 data sets

for AUC out of 16 other classification methods. The next best method was SVM with

(7, 8, 4) out of 20 data sets in terms of GeoMean, AGeoMean and AUC respectively.

All other methods were worse. The proposed method generally performed better in

terms of GeoMean if the IR is low (such as Winequality-red-8 vs 6-7 [170], Yeast-1-

2-8-9 vs 7 [170] and Oil data sets [6]). The high performance in terms of AGeoMean

also shows that the proposed method is good at majority class classification while as

good as other methods for classification of minority class (can be infer from GeoMean

results). Additionally, the proposed method performed well enough in terms of AUC

which can be supported by the statistical test results given in Section 6.1.1.3. Average

results over the 20 data sets also show that the proposed method is the best method for

each of the three metrics.
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Table 6.3: State or art methods and their combinations with pre-processing algorithms

that are used for comparison.

Method Description Abbreviation

k-Nearest Neighbours

kNN with

Feature Selection

kNN with SMOTE

kNN with SMOTE and

Feature Selection

k={1, 2, 5, 10, 15, 20, 25} were used as the

common parameters. For any k value which

gave local maximum we applied intermediate

k values as well. For instance, if we obtain

the best performance when k=5 but the perfor-

mance decreased sharply when k=10 then we

tried k=6, 8 as well (which did not happen a

lot).

kNN

kNN wFS

kNN SMOTE

kNN SMOTE wFS

C4.5

C4.5 with SMOTE

Quilan’s C4.5 code was used. Percentage of

incorrectly assigned samples at a node (confi-

dence level) was taken as {0.05, 0.1, 0.2, 0.3}.

C4.5

C4.5 SMOTE

Naive Bayes

NB with

Feature Selection

NB with SMOTE

NB with SMOTE and

Feature Selection

As distributions: the normal distribution, k-

ernel density estimation with different kernels

such as normal, box, Epanechnikov etc. were

tested with equal prior probabilities.

NB

NB wFS

NB SMOTE

NB SMOTE wFS

Support Vector Machine

SVM with

Feature Selection

SVM with SMOTE

SVM with SMOTE and

Feature Selection

As the kernel function, a radial basis func-

tion with varying kernel parameters was used.

Hyper-planes were separated by Sequential

Minimal Optimisation.

SVM

SVM wFS

SVM SMOTE

SVM SMOTE wFS

Random Forest with

Balanced Training

RF with Balanced

Training and

Feature Selection

A number of trees {10, 50, 100, 150, 200, 500,

1000} were tested and the trees were grown

without pruning. For node splitting, the Gini

index [166] was used.

RF BT

RF BT wFS

Hierarchical

Decomposition

As the outlier detection parameter w {-1, -0.3,

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9, 1, 1.5, 2, 2.5,

3} were tested.

Proposed
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Table 6.4: Best results of each method in terms of the average GeoMean. The best

results on each data set are emphasised in bold-face. The standard deviations consid-

ering the folds in cross validation are also given after the ± sign.
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Table 6.5: Best results of each method in terms of the average AGeoMean. The best

results on each data set are emphasised in bold-face. The standard deviations consid-

ering the folds in cross validation are also given after the ± sign.
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Table 6.6: Best results of each method in terms of the average AUC. The best results

on each data set are emphasised in bold-face. The standard deviations considering the

folds in cross validation are also given after the ± sign.
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6.1.1.3 Statistical Tests

Statistical tests were applied using the GeoMean, AGeoMean, and AUC results to com-

pare the different methods appropriately. Parametric and non-parametric tests were

carried out as suggested in the literature [174, 175, 176] and as applied in other studies

related to imbalanced data set classification such as [87]. We used Wilcoxon paired

signed-rank test [177] and paired t-test as pairwise comparison tests to find out if there

is a significant difference between the proposed method and any other method. As a

multiple comparison test, we applied the Friedman test [176] to determine the statis-

tical significance between methods given in Table 6.3. When we found a statistical

difference between the methods and the proposed method, we applied the Holm post-

hoc test [178] to test if the proposed method is significantly better than the others or

not.

• Wilcoxon paired signed-rank test [177]: Ranks the absolute differences in

performances of two classifiers for each data set. Then relate the signs in front

of the ranks and compare the total ranks of positive (R+) and negative (R−)

differences by finding the minimum of R+ (Eq. 6.1) and R− (Eq. 6.2) and

comparing it with the appropriate critical value. If the minimum of R+ and R−

is equal or less than a critical value, the difference between the classifiers is

significant and the one having larger rank is better than the other [176].

R+ = ∑
di>0

rank(di)+
1
2 ∑

di=0
rank(di) (6.1)

R− = ∑
di<0

rank(di)+
1
2 ∑

di=0
rank(di) (6.2)

where di is the difference between the performance scores of the two classifiers

on i-th data set.

• Paired t-test [176]: It considers the differences between the paired values of two

classifiers for each data set by looking at the variation of corresponding values

and produces p-value which determines how likely it is that the two values are

from the same population [174, 176]. The paired values are the performances

on each fold from the two compared algorithm. This test can be used to justify

if the performances of the two algorithms are significantly different or not. The

p-value determines if the comparison is significant or not and also indicates how
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significant it is: If the proposed method is better, then the smaller the p-value,

the more significantly better it is. Conversely, if any other method is better, then

the smaller value of p shows how much better it is than the proposed method.

For all tests, the significance level is taken as 0.05.

• Friedman test with Iman-Davenport Extension [176]: Methods are ranked on

each data set according to their performance (best performance takes the lowest

rank). For each classifier the sum of its ranks on all data set is calculated. Fried-

man’s and Iman-Davenport statistics are calculated using the formulas given in

Eq. 6.3 and Eq. 6.4. The statistics are compared with the corresponding value

in the F-distribution table. If the value in the F-distribution table is smaller than

the found statistics, then the null hypothesis (all classifiers perform the same and

the observed differences are random) is rejected and this means that there is a

significant difference between the compared methods.

χ
2
F =

( 12
Nk(k+1)

k

∑
j=1

(R j)
2)−3N(k+1) (6.3)

where R j the sum of j-th method’s ranks on all data sets. N is the total number

of data sets. k is the total number of methods.

FID =
(N−1)χ2

F

N(k−1)−χ2
F

(6.4)

which is distributed according to F distribution with k− 1 and (k− 1)(N− 1)

degrees of freedom.

• Holm post-hoc test [178]: Is based on the value z given in Eq. 6.5. The p-value

is obtained from the normal distribution corresponds to z and the adjusted alpha

(described below). A p-value smaller than the corresponding adjusted alpha

means that the null hypothesis is rejected; meaning that there is a significant

difference between the compared methods.

zi = (Rproposed−Ri)/

√
k(k+1)

6N
(6.5)

where zi is the value of i-th method, k refers to the number of methods (which is

17), N refers to the number of data sets (which is 20).

The results of Wilcoxon’s Signed rank test on the GeoMean, AGeoMean and AUC

data is given in Figure 6.1. In this figure, R+ represents the rank of proposed method
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Methods 
GeoMean AGeoMean AUC 

      Sig.       Sig.       Sig. 

kNN 210 0 yes 210 0 yes 208 2 yes 

kNN wFS 210 0 yes 209 1 yes 190 0 yes 

kNN SMOTE 166 24 yes 176 14 yes 149 22 yes 

kNN SMOTE wFS 205 5 yes 200 10 yes 188 2 yes 

C4.5 210 0 yes 205 2 yes 190 0 yes 

C4.5 SMOTE 184 6 yes 206 4 yes 204 6 yes 

NB 205 5 yes 209 1 yes 171 0 yes 

NB wFS 206 4 yes 210 0 yes 171 0 yes 

NB SMOTE 187 3 yes 210 0 yes 190 0 yes 

NB SMOTE wFS 153 0 yes 209 1 yes 210 0 yes 

SVM 107 46 yes 98 38 yes 130 23 yes 

SVM wFS 187 23 yes 183 7 yes 187 3 yes 

SVM SMOTE 151 20 yes 171 19 yes 167 23 yes 

SVM SMOTE wFS 183 27 yes 204 6 yes 209 1 yes 

RF BT 111 42 yes 186 24 yes 136 35 yes 

RF BT wFS 192 18 yes 205 5 yes 171 0 yes 

 

Figure 6.1: Comparing methods with the proposed method using Wilcoxon’s Signed

rank test using the GeoMean, AGeoMean and AUC. R+ (Eq. 6.1) represents the rank

of the proposed method and R− (Eq. 6.2) represents the rank of the compared method

while α is taken as 0.05. Significance (Sig.) is shown as “yes” if there is a significant

difference, otherwise it is shown as “no”.

and R− represents the rank of the compared method. α is taken as 0.05. If the min-

imum of R+ and R− is equal or less than critical value (52, for 20 data sets), then

the difference between the classifiers is significant and the one having larger rank is

better than the other [176]. We show the significance as “yes” if there is a significant

difference, otherwise show it as “no”.

As seen from the results, according to Wilcoxon’s Signed rank test the proposed

method is significantly better than all other methods using all data sets in terms of all

metrics.

The average ranks used in the computation of the Friedman test for the metric-

s GeoMean, AGeoMean and AUC are shown in Figure 6.2. In this figure the best

rank (smallest one) is shown in bold. Additionally, The Friedman and Iman-Davenport

statistics are given. For the calculation using GeoMean, the critical value of the F-

distribution (16.304) is 2.010 when α= 0.05, which is smaller than the Iman-Davenport

(18.470) statistic meaning that the null hypothesis of Friedman (given above) is reject-

ed by a high level of significance. Similarly, for AGeoMean and AUC, Iman-Davenport

statistic are 10.810, and 16.200 respectively which are larger than 2.010 which also
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AVERAGE 

RANK 

USING 

ALL 

DATASETS 

kNN 
kNN 

wFS 

kNN 

SMOTE 

kNN 

SMOTE 

wFS 

C4.5 
C4.5 

SMOTE 
NB NB wFS 

NB 

SMOTE 

GeoMean 

AGeoMean 

AUC 

12.85 

11.43 

13.05 

14.58 

12.98 

13.8 

5.95 

6.53 

5.45 

9.63 

9.35 

9.48 

14.75 

11.75 

14.65 

10.18 

9.48 

11.42 

10.6 

10.23 

9.6 

11.83 

12.58 

10.82 

9.93 

9.9 

8.85 

 
NB 

SMOTE 

wFS 

SVM 
SVM 

wFS 

SVM 

SMOTE 

SVM 

SMOTE 

wFS 

RF 

BT 

RF 

BT 

wFS 

Proposed 

 

GeoMean 

AGeoMean 

AUC 

11.1 

11.88 

10.9 

3.75 

3.65 

4.6 

6.83 

7.90 

8.95 

7.28 

7.98 

6.73 

8.55 

10.18 

9.18 

3.75 

4.83 

4.05 

8.08 

9.63 

8.9 

3.4 

2.78 

2.58  

Friedman statistic for GeoMean= 157.72 

Iman-Davenport statistic for GeoMean=18.47  

F (16,304) =2.01, α=0.05, the null hypothesis of Friedman is rejected by a high level of significance. 

Friedman statistic for AGeoMean= 116.01 

Iman-Davenport statistic for AGeoMean= 10.81 

F (16,304) =2.01, α=0.05, the null hypothesis of Friedman is rejected by a high level of significance. 

Friedman statistic for AUC= 147.26 

Iman-Davenport statistic for AUC=16.20 

F (16,304) =2.01, α=0.05, the null hypothesis of Friedman is rejected by a high level of significance. 

 

Figure 6.2: The average ranks used in the computation of the Friedman test for the

metrics GeoMean, AGeoMean and AUC respectively. Lower rank means better perfor-

mance. The best performance is shown in bold.

means that the null hypothesis is rejected.

Since the Friedman test results showed a high significance, we applied the post-

hoc Holm test. Figure 6.3 shows the Holm test results using the performance results in

terms of the GeoMean, AGeoMean and AUC respectively. In this figure, zi is calculated

as given in Eq. 6.5. The p-value is based on the normal distribution and Holm adjusted

alpha (shown as Holm in this figure) equals to 0.005/i. Hypothesis given as ”rejected”

means a significant difference between the compared methods and this happens if the

p-value is smaller than the corresponding Holm value. Negative values of z means that

the proposed method performed better than the compared method.

As seen in Figure 6.3, the proposed method is the best over all comparisons (all z

values are negative) and it is significantly better than all methods except SV M SMOT E,

SV M wFS, kNN SMOT E, RF BT and SV M in terms of the GeoMean, is significantly

better than all methods except RF BT , and SV M in terms of the AGeoMean, and is

significantly better than all methods except kNN SMOT E, SV M and RF BT in terms

of the AUC. In other words, the Holm test results show that the proposed method is
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i Methods zi p_value Holm Hypothesis 

16 C4.5 -7.1076 0.0001 0.0031 Rejected for Proposed 

15 kNN wFS -6.9981 0.0001 0.0033 Rejected for Proposed 

14 kNN -5.9178 0.0001 0.0036 Rejected for Proposed 

13 NB wFS -5.2759 0.0001 0.0038 Rejected for Proposed 

12 NB SMOTE wFS -4.8219 0.0001 0.0042 Rejected for Proposed 

11 NB -4.5088 0.0001 0.0045 Rejected for Proposed 

10 C4.5 SMOTE -4.2427 0.0001 0.0050 Rejected for Proposed 

9 NB SMOTE -4.0861 0.0001 0.0056 Rejected for Proposed 

8 kNN SMOTE wFS -3.8982 0.0001 0.0063 Rejected for Proposed 

7 SVM SMOTE wFS -3.2251 0.0013 0.0071 Rejected for Proposed 

6 RF BT wFS -2.9276 0.0034 0.0083 Rejected for Proposed 

5 SVM SMOTE -2.4266 0.0152 0.0100 Not Rejected 

4 SVM wFS -2.1448 0.0320 0.0125 Not Rejected 

3 kNN SMOTE -1.5969 0.1103 0.0167 Not Rejected 

2 RF BT -0.2192 0.8265 0.0250 Not Rejected 

1 SVM -0.2192 0.8265 0.0500 Not Rejected 

                               (a) 

i Methods zi p_value Holm Hypothesis 

16 kNN wFS -10.2000 0.0001 0.0031 Rejected for Proposed 

15 NB wFS -9.8000 0.0001 0.0033 Rejected for Proposed 

14 NB SMOTE wFS -9.1000 0.0001 0.0036 Rejected for Proposed 

13 C4.5 -8.9750 0.0001 0.0038 Rejected for Proposed 

12 kNN -8.6500 0.0001 0.0042 Rejected for Proposed 

11 NB -7.4500 0.0001 0.0045 Rejected for Proposed 

10 SVM SMOTE wFS -7.4000 0.0001 0.0050 Rejected for Proposed 

9 NB SMOTE -7.1250 0.0001 0.0056 Rejected for Proposed 

8 RF BT wFS -6.8500 0.0001 0.0063 Rejected for Proposed 

7 C4.5 SMOTE -6.7000 0.0001 0.0071 Rejected for Proposed 

6 kNN SMOTE wFS -6.5750 0.0001 0.0083 Rejected for Proposed 

5 SVM SMOTE -5.2000 0.0001 0.0100 Rejected for Proposed 

4 SVM wFS -5.1250 0.0001 0.0125 Rejected for Proposed 

3 kNN SMOTE -3.7500 0.0002 0.0167 Rejected for Proposed 

2 RF BT -2.0500 0.0404 0.0250 Not Rejected 
1 SVM -0.8750 0.3816 0.0500 Not Rejected 

                         (b) 

i Methods zi p_value Holm Hypothesis 

16 C4.5 -7.5617 0.0001 0.0031 Rejected for Proposed 

15 kNN wFS -7.0294 0.0001 0.0033 Rejected for Proposed 

14 kNN -6.5597 0.0001 0.0036 Rejected for Proposed 

13 C4.5 SMOTE -5.5421 0.0001 0.0038 Rejected for Proposed 

12 NB SMOTE wFS -5.2133 0.0001 0.0042 Rejected for Proposed 

11 NB wFS -5.1664 0.0001 0.0045 Rejected for Proposed 

10 NB -4.3992 0.0001 0.0050 Rejected for Proposed 

9 kNN SMOTE wFS -4.3209 0.0001 0.0056 Rejected for Proposed 

8 SVM SMOTE wFS -4.1331 0.0001 0.0063 Rejected for Proposed 

7 SVM wFS -3.9922 0.0001 0.0071 Rejected for Proposed 

6 RF BT wFS -3.9609 0.0001 0.0083 Rejected for Proposed 

5 NB SMOTE -3.9296 0.0001 0.0100 Rejected for Proposed 

4 SVM SMOTE -2.5988 0.0094 0.0125 Rejected for Proposed 

3 kNN SMOTE -1.8004 0.0718 0.0167 Not Rejected 

2 SVM -1.2681 0.2048 0.0250 Not Rejected 

1 RF BT -0.9237 0.3557 0.0500 Not Rejected 

                        (c) 

Figure 6.3: Holm test results for the comparison between proposed method and the

other methods using the a) GeoMean, b) AGeoMean c) AUC results.
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significantly better than {11 of 16}, {14 of 16} and {13 of 16} methods when results

of the GeoMean, AGeoMean and AUC are used respectively.

In addition to those statistics, the paired t-test was applied to see how well the pro-

posed method performs compared to each other method for each data set considering

the performances in each cross validation fold. We used the results of the GeoMean

as it had the worst statistics for the proposed method when the Holm test was applied

(it was not significantly better than 5 of 16 methods). The paired t-test results between

each method and the proposed method for GeoMean is given in Table 6.7 in terms of

p-value. In this table, a p-value equal or smaller than 0.05 means there is a signifi-

cant difference. Results showing a significant advantage to the proposed method are

shown in bold-face and results showing significantly worse performance by the pro-

posed method are shown in italics (though there are no such instances). High values

of p (> 0.5) mean that the two methods performed nearly the same. Mid-values of p

(0.05 < p ≤ 0.5) mean that the proposed method performed better for each fold, but

the performance of the other method was also very close to the proposed method for at

least one fold.

As seen from paired t-test results (Table 6.7), the proposed method performed sig-

nificantly better than the rest of the methods in 94 tests out of 320 tests when each

data set and pairs of methods are considered separately. On the other hand, it per-

formed worse (but not significantly worse) than another method in 36 tests (out of

320 tests). The proposed method never had significantly better performance than

SV M and RF BT . However, it performed significantly better than kNN SMOT E,

kNN SMOT E wFS, NB SMOT E wFS and SV M wFS 2, 3, 4 and 3 times out of 20

respectively.

6.1.1.4 Summary of Experiments with Public Imbalanced Data Sets

In this section, we compared the performance of the proposed hierarchical decompo-

sition method with state of art methods using 20 different public imbalanced data set.

The evaluation was done in terms of the GeoMean, AGeoMean and AUC. The pro-

posed method performed the best in all metrics. Statistical tests were also applied to

the results. The Wilcoxon’s Signed rank test and Friedman test with Iman-Davenport

extension showed that the proposed method is significantly better than the rest for all

metrics. However, the Holm test and the paired t-test showed that the proposed method

is not significantly better than all methods. The paired t-test showed that the proposed

method is not significantly better than SV M and RF BT although it is better on average
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Table 6.7: Paired t-test results between each method and the proposed method using

the GeoMean results.
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for the majority of the results.

6.1.2 Experiments and Results with Synthetic Data Sets

To show the proposed method’s performance in detail and understand when it performs

better than the other methods synthetic imbalanced data sets were also used. The

experiments were applied with data sets generated using Gaussian Mixture Models

(GMM) with;

• Different number of features: 2, 5 and 10,

• Different imbalance ratios:

0.67 (300 samples from majority class, 200 samples from minority class),

0.33 (300 samples from majority class, 100 from minority class),

0.17 (300 samples from majority class, 50 samples from minority class)

• Different combinations for the standard deviation of majority and minority class

distributions.

For both the majority and minority classes, a mixture of two equally weighted

normal distributions was created as the baseline data set (see Figure 6.4a for 2 features).

To create other data sets, we changed the covariance of the components for each class

by multiplying the variance of each component with a constant α coefficient while

keeping the mean of each component constant. Then, we sampled the same number of

samples with the baseline data set for both the majority class and the minority class.

For small values of α, the majority and minority classes are tighter and separable as

two different classes whereas for the bigger values of α, the data sets overlap with the

different components of classes and the classes themselves are sparser. In total, we

obtained 100 different data sets while taking all pairs of α= {1, 2, 4, 8, 16, 32, 64,

128, 256, 512} for minority and majority classes. For the baseline data set, αminority

and αma jority are equal to 1 and the mean and co-variance of distributions are selected

randomly. Figure 6.4 shows examples of data set for the same set of class centres and

for different combinations of α with 2 features.

6.1.2.1 Results

For all experiments in this section, SFFS (Section 4.1.4) is applied to choose the

best feature subset for fair comparison since there is no prior information about fea-

tures. All the experiments were run with proposed method, SV M wFS, NB wFS,
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Figure 6.4: Examples of train-test pairs when the number of features is 2. Samples

belong to majority class is shown with blue while samples belong to minority class is

shown with red. Data sets having a) αminority=1 and αma jority=1, b) αminority=4 and

αma jority=128, c) αminority=256 and αma jority=8 and d) αminority=512 and αma jority=4

for the same set of class centres. The class centres are varied on each cross validation

fold.

RF BT wFS, SV M SMOT E wFS, and NB SMOT E wFS with the settings given in

Table 6.3. The training, validation and test sets consist of 50%, 25% and 25% of the

samples. The majority class samples and minority class samples were distributed ap-

propriately to each set. All experiments were repeated 30 times with different data

instances. Therefore, for each fold the centres of the classes are also varied.

The performance of the proposed hierarchical decomposition method and compar-

ison methods are shown in Figure 6.5 with 16 of the 100 pairs of α values which are

enough to show the overall behaviour of methods with different numbers of features as

2, 5 and 10 with 300 samples from the majority class and 50 samples from the minority

class. The GeoMean is used to show the results as it showed the worst performance

(but still better than other methods) for the proposed method in Section 6.1.1.2.

As well as classifying each sample according to the proposed method or compar-

ison methods, we also calculated the posterior probabilities of test samples using the

GMM that the corresponding data set was created from including all training, valida-

tion and test samples and we then classify each test sample according to the highest

posterior probability while taking the prior probabilities equally. In other words, we

calculated the class decisions using the GMM that the data set is created from itself as
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a classifier, which should model the asymptotic performance. We named this GMM
as the optimal classifier (GMM OC) which should show the maximum achievable
performance for a given data set. The optimal classifier helps us to understand how

difficult it is to classify the data set. For instance, a low value of the geometric mean for

GMM OC means that the data distributions are overlapping. Conversely, high values

mean separable classes whose classification should be easier. The results of GMM OC

are also given in Figure 6.5 where the results are sorted from best performance to worse

performance of GMM OC.

The performance in terms of average GeoMean of the proposed method compared

to other methods is summarised in Figure 6.6. In this figure, different data sets are

grouped by their αminority and αma jority ratios (for instance αminority=1, αma jority=1 and

αminority=512, αma jority=512 are put into same group). For each group, the number of

experiments (each experiment consist of 30 data folds over the same data set) that the

proposed method performed better (the proposed method had the best performance on

average over all folds) is given over the total number of experiments for each group.

The total performance of the proposed method over total number of data sets using

each feature set is also given as TOTAL. The results where proposed method performed

better in the majority of the experiments is coloured with light green. The results where

proposed method performed worse than at least one other method in the majority of

the experiments is coloured with orange and the results where the proposed method

performed as well as the other methods (within ±0.02 of each other) are shown with

pink colour.

Based on the experimental results in Figures 6.5 and 6.6, independently of the

number of features, the performance of the proposed method increases when αminority

is larger than αma jority meaning that the minority class is sparser than the majority class

compared to data sets where the majority class is sparser than the minority or when they

are equal. For the data sets where αminority and αma jority are equal (or very close) and

large enough (such as 128, 256) the minority class becomes inliers instead of being

outliers. Therefore, the proposed method fails. On the other hand, when the number

of features is increased even with a low ratio of αminority to αma jority, the proposed

method performs better (mostly the best). It performs similarly to other methods with

a high value of αminority and αma jority ratios, and it performs worse than the rest for

small values of αminority and αma jority ratios especially when the number of features is

small such as 2. Considering all generated data sets, the proposed method performs

better than the rest of the methods when the ratio of αminority and αma jority is at least
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(a) 

 

(b) 

 

(c) 

Data set 1: αminority=1 αmajority=1 Data set 64: αminority=64 αmajority=8 Data set 75: αminority=128 αmajority=16 Data set 93: αminority=512 αmajority=4 

Data set 45: αminority=16 αmajority=16 Data set 65: αminority=64 αmajority=16 Data set 83: αminority=256 αmajority=4 Data set 95: αminority=512 αmajority=16 

Data set 54: αminority=32 αmajority=8 Data set 73: αminority=128 αmajority=4 Data set 84: αminority=256 αmajority=8 Data set 94: αminority=512 αmajority=8 

Data set 55: αminority=32 αmajority=16 Data set 74: αminority=128 αmajority=8 Data set 89: αminority=256 αmajority=256 Data set 96: αminority=512 αmajority=32 
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Figure 6.5: The best results of methods in terms of the average of GeoMean for 16

different data sets created by different values of α for the minority and majority classes.

The error bars show the standard deviations of the performance considering the 30 data

folds for each data set. The number of features is a) 2, b) 5, c) 10, and the number of

samples for the majority class is 300 while the number of samples in the minority class

is 50. The data sets given on the horizontal axis refer to the index number of data set

given in the legend which uses different combinations of αminority and αma jority and are

sorted by the performance of GMM OC by decreasing order.
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αminority/αmajority 2 features 5 features 10 features 

1:512 0/1 0/1 0/1 

1:256 0/2 0/2 0/2 

1:128 0/3 0/3 0/3 

1:64 0/4 0/4 1/4 

1:32 0/5 0/5 2/5 

1:16 0/6 0/6 3/6 

1:8 0/7 0/7 4/7 

1:4 0/8 2/8 4/8 

1:2 0/9 3/9 5/9 

1:1 1/10 4/10 5/10 

2:1 3/9 4/9 5/9 

4:1 2/8 3/8 4/8 

8:1 2/7 4/7 4/7 

16:1 2/6 4/6 5/6 

32:1 3/5 4/5 5/5 

64:1 3/4 4/4 4/4 

128:1 3/3 3/3 3/3 

256:1 2/2 2/2 2/2 

512:1 1/1 1/1 1/1 

TOTAL 22/100 38/100 57/100 

 

Figure 6.6: Summary of the performance in terms of the GeoMean for different feature

sets having 100 different data sets for each, grouped by αminority and αma jority ratios.

Orange columns show when the proposed method performed worse, green columns

show when the proposed method performed better, pink columns show when the pro-

posed method performed about equal (see text for more detail).

32 with 2 features, at least 8 with 5 features and at least 0.0625 with 10 features.

Those ratios (32, 8 and 0.0625) suggest that with more features, it is possible to have

better performance by the proposed method even with low αminority and αma jority ratios,

meaning less sparse minority class data.

Observing that the proposed method potentially performs better than the rest of

the methods when αminority > αma jority, the methods with different imbalance ratios

(Nminority/Nma jority, where N represents the number of samples) were also compared.

Imbalance ratios 0.67, 0.33 and 0.17 were used where the majority class has 300 sam-

ples and the minority class has 200, 100 and 50 samples respectively. We also varied

the ratio of αminority and αma jority as 32, 64 and 128. 30 trials were run for each exper-

iment as well.

In Figure 6.7, similar performances of the methods (i.e. when within ± 0.02) are

shown as “ALL”. For 2 features, in the ALL cases, the methods achieved approximately

0.70 average GeoMean. For 5 and 10 features, ALL cases were obtained when the

performances of methods were over 0.96 for average GeoMean. For the cases when the

proposed method performed substantially better than the rest of the methods, we stated

how much better it performed compared to the next best method with the performance
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 αminority/αmajority= 32 αminority/αmajority= 64 αminority/αmajority= 128 

Nminority/Nmajority=0.67 Proposed (+0.06) Proposed (+0.06) Proposed (+0.07) 

Nminority/Nmajority=0.33 ALL Proposed (+0.03) Proposed (+0.04) 

Nminority/Nmajority=0.17 ALL Proposed (+0.03) Proposed (+0.05) 

(a) 
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(-0.06) 

SVM_SMOTE_wFS 

NB_SMOTE_wFS 

(-0.06) 

ALL 

Nminority/Nmajority=0.33 ALL ALL ALL 

Nminority/Nmajority=0.17 Proposed (+0.09) Proposed (+0.16) Proposed (+0.06) 

(b) 

 
 

 αminority/αmajority= 32 αminority/αmajority= 64 αminority/αmajority= 128 

Nminority/Nmajority =0.67 ALL ALL ALL 

Nminority/Nmajority=0.33 ALL ALL ALL 

Nminority/Nmajority=0.17 Proposed (+0.12) Proposed (+0.13) ALL 

(c) 

 

Figure 6.7: Best classification performance of methods in terms the average GeoMean

using data sets with different imbalance ratios (Nminority/Nma jority) when αminority is

{256, 256, 512} and αma jority is {8, 4, 4} which makes the ratios equal to 32, 64 and

128 respectively. Number of features is a) 2, b) 5, c) 10. ALL means that all classifiers

had essentially equal performance.

difference in terms of average GeoMean after “+” sign. Similarly, if the performance

of the proposed method was worse than any method then the name of the best classifier

with the performance difference in terms of average GeoMean is given after “-” sign.

For example, for 10 features when Nminority/Nma jority=0.17 and αminority/αma jority=32

the proposed method performed 0.96 in terms of average GeoMean while the next

best method was SV M with 0.84. Therefore, this is shown as Proposed (+0.12).

On the other hand, for 5 features, Nminority/Nma jority=0.67 and αminority/αma jority=32,

SV M SMOT E wFS and NB SMOT E wFS performed the best with 0.96 in terms of

average GeoMean while the proposed method performed 0.90 and this is shown as

SV M SMOT E wFS NB SMOT E wFS (−0.06). To sum up these results, the proposed

method performed better when the number of features is increased (for instance, for

Nminority/Nma jority=0.67 and Nminority/Nma jority=0.32, it performed 0.83 with 2 features,

0.90 with 5 features and 0.97 with 10 features). Additionally, it performed better than

the other methods when the imbalance ratio is low such as 0.17.



Chapter 6. Classifying Imbalanced Data Sets Using a Hierarchical Decomposition 110

6.2 Conclusions

In this chapter, the hierarchical decomposition method introduced in Chapter 5 is pre-

sented as an imbalanced data set classification method. Outlier detection was used to

detect minority class samples assuming that the minority class samples in each cluster

are outliers by cardinality or by their distance to the cluster centre. The key observation

and the justification for using a hierarchy was that some features allow partitioning of

some samples which then allows other features to be useful on the remaining samples.

Compared to other imbalanced data set classification methods in the literature (Sec-

tion 2.3), the proposed method does not need the support of any cost function, algo-

rithmic or data level algorithm to handle imbalanced data sets. On the other hand,

since it does not use all the data samples to build up the hierarchy at each level, it can

be considered close to bagging. In our case, the bags are defined by the performance

of the classifier and building up the hierarchy continues with the incorrectly classified

samples in contrast to random subsets as happens in bagging. Moreover, it is different

from boosting by using a subset of data in addition to not using a weight to support

the classification of misclassified samples.

The computational complexity during training of the proposed method is much

more than that of the other methods which can be seen as a shortcoming. To decrease

the training time complexity, feature selection can be implemented in parallel on a task

farming architecture with the methodology given in [2]. However, more importantly,

the proposed method’s testing complexity is as efficient as the other methods, as it

requires only a few distance calculations between the closest clusters at each level and

the new data point.

In conclusion, the proposed hierarchical decomposition method is successful at

classifying imbalanced data sets even though the majority and minority classes con-

tain varieties, and classes overlap which is frequently seen in real life applications. It

performs much better if the minority class samples are sparse compared to the major-

ity class samples where popular classification methods generally fail. It also performs

well when the ratio between minority and majority class samples is low. In Chapter

7, we investigate the integration of the proposed hierarchical decomposition method

with active learning where a substantial performance increase can be obtained while

using less labelled training data compared to learning from larger labelled data sets.

Additionally, we address active learning with feature selection.



Chapter 7

Active Learning with Imbalanced Data

Sets

Thanks to technological improvements, data acquisition is not as difficult as it was

and this has increased the amount of data in many domains. However, even though

the amount of data is bigger, much of the data is unlabelled and labelled data is very

limited or even does not exist. The traditional way of labelling data is to ask experts to

label them which is difficult and very time consuming. Similarly, in our project one of

the most time consuming parts was labelling the fish trajectories as normal or unusual.

Moreover, the proposed methods (Chapters 3, 4 and 5) require labelled training data as

they are all supervised learning methods. Therefore, utilising unlabelled trajectories in

addition to already labelled trajectories for learning is necessary. A possible solution

can be using active learning (AL), where a few informative unlabelled instances are

chosen to be labelled by the expert and used to update the model. The labelling cost

is decreased since the experts only need to label the selected instances. Additionally,

in [138], it is also shown that active learning can achieve higher classification per-

formance with fewer training instances compared to passive learning which uses all

training data and requires the labels of all training data for learning.

In this chapter, we investigate how to integrate the proposed hierarchical decompo-

sition method (Chapter 5) with active learning. We claim that through using a proper

active learning query strategy and corresponding feature subset combinations at differ-

ent active learning iterations, substantial performance (see definition in Section 7.3.3.1)

can be obtained with less training data.

Since the proposed hierarchical decomposition method includes feature selection

and to the best of our knowledge active learning with feature selection has never been

111
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investigated as deeply as here, we first address active learning with feature selection

(especially for imbalanced data sets) using different classifiers (Section 7.2.2). Then,

we integrate the hierarchical decomposition method with active learning.

7.1 Active Learning

Active learning (AL) considers the cost of data labelling [137]. When unlabelled data

is abundant and labelled data is limited, active learners seek to choose the most in-

formative unlabelled training instances with a query strategy. Selected instances are

first labelled by an expert and then combined with previously labelled data to update

a model. The aim is to maximise the learning performance while decreasing the cost

of labelling [137, 138, 139, 179]. As mentioned in Section 2.5, active learning has 3

subtypes. In this thesis, we consider pool based active learning and refer to it as active

learning.

The basic working principle of pool based active learning is:

• Train a model using the existing labelled data.

• Using the model and a query strategy, select some instances from the unlabelled

data.

• Label the selected samples (informative samples).

• Combine the newly labelled instances with the previously labelled training set

and repeat all these steps until you reach a stopping criterion (such as a decrease

in classification performance, having a certain amount of labelled training data,

etc.).

This is illustrated in Figure 7.1.

As seen in Section 2.5, different studies proposed specific AL query strategies tuned

to the application that they tackle. However, there are also very popular general query

selection strategies such as i) uncertainty, ii) information density, and iii) maximum

probability. Those popular query strategies are successful and recent strategies are

actually based on them. However, no one query strategy is the best for all data sets

[138, 139]. We summarised the 3 key query strategies in addition to random selection:
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training set 

Classification 
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 Train  

a model 

Figure 7.1: Pool Based Active Learning

• Uncertainty [145]: The active learner selects the instance that the learned model

is least confident about which means most uncertain. This approach is based on

posterior probabilities. For binary imbalanced data sets the posterior probability

of being from the majority class and posterior probability of being from the mi-

nority class are used to calculate the uncertainty of each instances. Similarly, for

binary balanced data sets the posterior probability of being from the positive and

negative classes are used. One way to calculate uncertainty is utilising entropy

(Eq. 7.1) where bigger entropy means more uncertainty. The entropy was found

using:

E(x) =−
c

∑
i=1

pi(x)log2 pi(x) (7.1)

where c is the number of classes which is 2 in our case, p refers to posterior

probabilities and x means an unlabelled instance.

• Maximum Probability [139]: This strategy is specific for imbalanced data sets

where the training data is balanced by selecting the instances that the model

gives high posterior probability to be from the minority class.

• Information Density [152]: In this strategy, the informative instances are not

only those which are uncertain (having bigger entropy) but also those which

are more representative. Being representative is defined in terms of similarity.

Different metrics can be used as the similarity measure. In our work, we used

the inverse of the Euclidean distance. The information density of an instance
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was calculated as:

sim(x1,x2) =
1

1+d(x1,x2)

ID(x) = E(x)
[ 1
U

U

∑
i=1,xi 6=x

sim(x,xi)
] (7.2)

where U is the total size of the unlabelled instances, x and xi refer to unlabelled

training samples, d is the Euclidean distance and E(x) is the entropy as defined

in Eq. 7.1.

• Random Selection: Selecting any random unlabelled training sample to label

without considering any criterion such as posterior probabilities, similarity, etc.

This is not an AL query strategy but should be applied as it is the benchmark.

7.2 Active Learning with Feature Selection

Active learning aims to provide faster learning with a lower labelling cost. By selecting

suitable training data for active learning, it is possible to increase classification perfor-

mance on imbalanced data sets compared to passive learning [143, 146, 147, 180].

In this work, we are not presenting a novel query strategy to select informative in-

stances. Instead, we apply the most common query strategies no matter if the set is

imbalanced or balanced. On the other hand, feature selection is a well-studied subject

which generally increases the classification performance by selecting the best features

and decreases the size of the feature space.

Motivated by the successful performance of these two methodologies, we integrate

feature selection with active learning and apply them to classification of balanced and

imbalanced data sets. In the literature, there is a vast amount of research on active

learning and feature selection individually. However, there is not much work which

combines these two methodologies together. To the best of our knowledge, previous

studies about active learning with feature selection all belong to the natural language

processing field (especially text classification). A review on this topic is given in Sec-

tion 2.5.

In this section, we claim that a proper feature selection criterion (especially for

imbalanced data classification which forces the classifier to pay attention to the clas-

sification of the minority class or both classes equally) can give better classification
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performance compared to active learning without feature selection and also passive

learning. Motivating from this claim, we want to answer the following two questions:

1. How is the performance of active learning affected when it is integrated with

feature selection?

2. What is the best active learning query strategy (including random selection)

when it is integrated with feature selection?

To answer the first question, the performances of active learning (uncertainty [145],

maximum probability [139], information density [152]) and random selection with/without

feature selection are compared. What we conclude is that better classification perfor-

mance can be obtained by applying active learning with feature selection. Additionally,

the computational time of AL with/without feature selection and the number of selected

features during AL with feature selection is investigated to determine the efficiency. To

answer the second question the performance of 3 query strategies and random selection

integrated with feature selection are compared with each other. What we conclude is

there is no significantly better algorithm.

7.2.1 Methodology

As the feature selection method, the Sequential Forward Feature Selection Method

(SFFS) as given in Section 4.1.4 was used. Feature selection is integrated with active

learning as (Figure 7.2):

• For each labelled training set, apply feature selection starting with an empty set

of features.

• Train a model based on the best feature subset of the training set at a specific

iteration of active learning.

• Determine the most informative samples using the model and the query strategy.

• Label the selected samples and extend the training set with them.

• Repeat these steps until an active learning stopping criterion is achieved.
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Figure 7.2: Active Learning with Feature Selection

7.2.2 Experimental Work

For the experiments presented in this section, we continued iterating active learning

until all training data was labelled to investigate the methods completely. As classifier-

s we used Naive Bayes (NB) and a Support Vector Machine (SV M).

Naive Bayes (NB): By being simple, efficient and providing posterior probabilities

which helps to determine the informative instances, NB is suitable for our purpose. Ad-

ditionally, it has good performance in many imbalanced problems such as [181, 182]

and the data sets used in this study. NB was applied using kernel density estimation

with a normal kernel smoother. The prior probabilities were uniform for all classes.

Support Vector Machine (SV M): As the kernel function, a radial basis function

was applied. Using the MAT LAB f itcsvm function [183] the scale values of the kernel

functions were found automatically. The data was standardised (normalised) before

applying SV M. MAT LAB f itPosterior function [183] allowed us to find the poste-

rior probabilities which were used by the AL query strategies to find the informative

samples.

7.2.2.1 Data Sets

Five imbalanced data sets and two balanced data sets from different application do-

mains were used to evaluate the effectiveness of active learning with feature selection.

The number of features (#Fea.), the total number of samples (#Sam.), the total number

of minority (#Min.) and majority samples (#Ma j.) (positive and negative classes for

balanced data sets), the imbalance ratios (IR; the number of minority class samples
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Table 7.1: Used Balanced and Imbalanced Data Sets

Data Sets #Fea. #Sam. (#Min,#Ma j.) IR Re f .

Pima 8 768 (268, 500) ∼ 0.50 [4, 5]

Oil 49 937 (41, 896) ∼ 0.05 [6]

Satimage 36 6435 (626, 5809) ∼ 0.11 [7]

Forum Pedestrian

Database

57 2342 (718, 1624) ∼ 0.44 Section 5.2.1

Fish Trajectory 179 3102 (59, 3042) ∼ 0.02 Section 5.2.1

Satimage 2 36 3041 (1508, 1533) ∼ 0.99 [7]

Yeast 8 926 (463, 463) 1 [7]

(positive class samples for balanced data sets) over majority class samples (negative

class samples for balanced data sets)) and the corresponding citations for each data sets

(Re f .) are given in Table 7.1.

The Satimage data set was used as described in Section 6.1.1.1. To obtain the

Satimage 2 data set, we used classes 1 and 7 of the original Satimage data set as given

in [7]. As the other balanced data set, samples of classes: 3, 4, 5 and 10 of the Yeast [7]

data set are collapsed and used as a single class while class 1 was chosen as the other

class. The fish trajectory and the Forum pedestrian database were used as described

in Section 5.2.1. The other data sets (Pima [4, 5] and Oil [6]) were supplied as binary

classes by the given references.

7.2.2.2 Experimental Design

For the Pima [4, 5], Oil [6], Satimage [7], Satimage 2 [7] and Yeast [7] data sets,

results were averaged across 5-fold cross validation. For the Forum pedestrian and

the fish trajectory data sets, we applied 9-fold cross validation (to be consistent with

the previous chapters). Training (3/5 or 7/9), validation (1/5 or 1/9) and testing (1/5

or 1/9) sets were formed randomly with the same class distributions. The validation

set is used during feature selection to determine when to stop feature selection. For

the experiments concerning only active learning, the same training and testing sets

with active learning with feature selection are used. The minority (positive class for

balanced data sets) and majority class (negative class for balanced data sets) samples

were distributed equally to each set.

At each cross validation fold, 1 sample from the minority class and 1 sample
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Table 7.2: The number of samples selected at each iteration of active learning for dif-

ferent data sets and classifiers.

Classifiers Pima Oil Satimage Forum
Pedestrian

Fish
Trajectory

Satimage 2 Yeast

NB 5 5 25 5 25 25 5

SVM 5 5 25 25 25 25 5

from the majority class were randomly chosen as the initial labelled training set.

The given query strategy was then used to pick samples from the remainder of the

training data set. The number of chosen samples at each iteration of active learning

and random selection is given in Table 7.2. As seen, for larger data sets more samples

were chosen. We did not apply any early stopping criterion and active learning

iterations continued until all training samples were labelled.

For all the experiments presented in this section the evaluation metric is GeoMean

(Eq. 2.7). For the experiments when NB is used as the classifier, uncertainty [145],

maximum probability [139], information density [152] and random selection were u-

tilised. As uncertainty [145] and maximum probability [139] did not usually preformed

as well as information density [152] and random selection (see Sections 7.2.3 and 7.3),

the experiments with SV M was performed using only information density [152] and

random selection.

7.2.3 Results when Naive Bayes is used as the classifier

Figures 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, and 7.9 show testing performances (as average of

folds) at each iteration of active learning with/without feature selection for Pima [4, 5],

Oil [6], Satimage [7], the Forum pedestrian database, the fish trajectory, Satimage 2

[7] and Yeast [7] data sets respectively. In these analysis, the evaluation metric is

GeoMean (Eq. 2.7).

7.2.3.1 How is the performance of active learning affected when it is integrated

with feature selection?

By looking at the performance comparisons given in Figures 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,

and 7.9:

• For the Pima data set [4, 5], active learning with feature selection reached the
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Figure 7.3: Results in terms of the GeoMean for the Pima data set [4, 5] using NB.

Active learning with feature selection (top) and without feature selection (bottom). Red

for uncertainty, blue for maximum probability, black for random selection and green for

information density.
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Figure 7.4: Results in terms of the GeoMean for the Oil data set [6] using NB. Active

learning with feature selection (top) and without feature selection (bottom). Red for

uncertainty, blue for maximum probability, black for random selection and green for

information density.
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Figure 7.5: Results in terms of the GeoMean for the Satimage data set [7] using NB.

Active learning with feature selection (top) and without feature selection (bottom). Red

for uncertainty, blue for maximum probability, black for random selection and green for

information density.
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Figure 7.6: Results in terms of the GeoMean for the Forum Pedestrian Database using

NB. Active learning with feature selection (top) and without feature selection (bottom).

Red for uncertainty, blue for maximum probability, black for random selection and green

for information density.
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Figure 7.7: Results in terms of the GeoMean for the fish trajectory data set using NB.

Active learning with feature selection (top) and without feature selection (bottom). Red

for uncertainty, blue for maximum probability, black for random selection and green for

information density.
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Figure 7.8: Results in terms of the GeoMean for the Satimage 2 data set [7] using NB.

Active learning with feature selection (top) and without feature selection (bottom). Red

for uncertainty, black for random selection and green for information density.
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Figure 7.9: Results in terms of the GeoMean for the Yeast data set [7] using NB. Active

learning with feature selection (top) and without feature selection (bottom). Red for

uncertainty, black for random selection and green for information density.



Chapter 7. Active Learning with Imbalanced Data Sets 126

best performance quicker than only active learning and especially in early stages

of active learning better performance was obtained with selected features com-

pared to using all features.

• For the Oil data set [6], significantly better performance was obtained when

active learning is combined with feature selection.

• Overall, 3% better performance was observed when feature selection is integrat-

ed with active learning compared to only active learning in the Satimage data set

[7].

• Similarly, for the Forum Pedestrian data set, better performance was obtained

even in very early stages. In general, in this data set performance with feature

selection was 2-3% better than without feature selection.

• For the fish trajectory data set, the performance of active learning with feature

selection was much better than without feature selection and the results showed

that feature selection is required for this data set.

• For the Satimage 2 data set [7], it is easy to see that feature selection improved

active learning performance as active learning with feature selection always per-

formed better than only active learning.

• And lastly, for the Yeast data set [7], active learning with feature selection very

frequently performed better than only active learning.

Over the 7 data sets, we can see that using feature selection with all of the query

strategies reached the peak performance earlier, and in most cases, achieved better

performance than without feature selection. However, it is also noticeable that the

performance of random selection improved when feature selection was applied.

In summary, feature selection has a positive effect on the performance of active

learning and random selection. To better interpret the results, we applied the paired
t-test. Paired t-test results showed the performance differences of each query strate-

gy (uncertainty, maximum probability and information density) and random selection

when feature selection is applied and not applied with active learning and random se-

lection (Table 7.3). The pairings are the performance after each iteration (uses different

training data but the same testing data). The paired t-test provides a significance value
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Table 7.3: Paired t-test of the AL query strategies and random selection with/without

feature selection when NB is the classifier (see text for more detail)

Data set
M1: Uncert wFS
M2: Uncert woutFS

M1: MaxProb wFS
M2: MaxProb woutFS

M1: InfoDen wFS
M2: InfoDen woutFS

M1: Random wFS
M2: Random woutFS

Total #
of iterations

Pima

M1�M2

no significance

M2�M1

16
M1:70 M2:6

0

8
M1:62 M2:22

0

4
M1:72 M2:16

0

2
M1:82 M2:8

0

93

Oil

M1�M2

no significance

M2�M1

107
M1:6 M2:0

0

90
M1:23 M2:0

0

75
M1:37 M2:1

0

85
M1:28 M2:0

0

113

Satimage

M1�M2

no significance

M2�M1

13
M1:131 M2:5

7

39
M1:80 M2:15

22

19
M1:106 M2:13

18

2
M1:154 M2:0

0

156

Forum

Pedestrian

Database

M1�M2

no significance

M2�M1

0

M1:254 M2:80

0

44
M1:271 M2:17

2

0

M1:219 M2:115

0

0

M1:223 M2:111

0

334

Fish Trajectory

M1�M2

no significance

M2�M1

44
M1:55 M2:0

0

3
M1:89 M2:7

0

58
M1:40 M2:1

0

38
M1:60 M2:1

0

99

Satimage 2

M1�M2

no significance

M2�M1

39
M1:31 M2:4

0

N/A

49
M1:24 M2:1

0

47
M1:27 M2:0

0

74

Yeast

M1�M2

no significance

M2�M1

14
M1:88 M2:10

0

N/A

13
M1:91 M2:8

0

10
M1:102 M2:0

0
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which shows whether a method is significantly better than the other method. For all

tests, the significance level (p-value) is taken as 0.05.

In Table 7.3, Uncert means uncertainty, MaxProb is used for maximum probabil-

ity, In f oDen means information density, Random is used for random selection while

M1 refers to method with feature selection (wFS) and M2 refers to method without

feature selection (woutFS) for paired t-test. M1 � M2 shows the number of active

learning iterations where the performance of wFS is significantly better than the per-

formance of woutFS for a specific data set. Similarly, M2�M1 shows the number of

active learning iterations that the performance of woutFS is significantly better than the

performance of wFS. “no significance” shows the number of iterations where the p-

value between the compared methods is above 0.05. Obtaining significant differences

is difficult since it requires a method which is always better than the other method in

all folds. Hence, a method which is worse only in one fold results in no significance

between the methods. For the “no significance” case we showed the number of active

learning iterations that a method performed better than the other considering “the av-

erage performance” over cross validation folds. N/A means not applicable and is used

for the maximum probability strategy when the data set is balanced.
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As can be seen from the results, the performances of all AL query strategies and

also random selection improved (either significantly or on average) when feature se-

lection is combined with active learning. Moreover, for the Oil [6] and Satimage 2 [7]

data sets, feature selection is very beneficial since for any query strategy and random

selection as well, the performance with feature selection was significantly better than

performance without feature selection in a majority of the iterations.

Given that feature selection has a positive effect on the performance of AL and

random selection, the following issues are important to consider as well:

• What is the number of selected features for AL and random selection when fea-

ture selection is integrated? A small number of selected features is better as

fewer features will need to be extracted from all future data samples when the

trained model is in use (after active learning is stopped such as by early stop-

ping).

• What is the computational time with/without feature selection? It is obvious that

feature selection requires additional time but considering the performance gain,

the time complexity might be negligible.

Table 7.4 gives the average and standard deviation (after the ± sign) of the num-
ber of selected features over all iterations of active learning with feature selection and

passive learning, when averaged over all cross-validation folds. Additionally, the total

number of different features selected in over all folds for each query strategy, which

shows the variety of features usable during active learning (AL) is also given. In this

table, Uncert means uncertainty, MaxProb is used for maximum probability, In f oDen

means information density and Random is used for random selection.

The obtained results show that not many features were selected by SFFS [162]

compared to the total number of features. Hence, we see that active learning and ran-

dom selection with feature selection requires fewer features to reach the performance

discussed above. On the other hand, the high values of the variety of the features show

that most of the features were used at different stages of training. In conclusion, in

addition to providing better performance, feature selection is also useful as fewer fea-

tures are needed in the testing stage where the active learning is stopped.

Active learning cycle with and without feature selection are compared in terms

of their elapsed times using random selection. The results are given in Table 7.5 as
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Table 7.4: Number and variety of selected features for AL and random selection with

feature selection

Data set: Total #
of features

Average and standard
deviation (after the ±
sign) of the # of select-
ed features over AL
iterations and cross
validation folds

Average and standard de-
viation (after the ± sign)
of the # of selected features
over cross validation folds
in passive learning

Variety of selected
features

Pima: 8

Uncert: 2.37 ± 1.6

MaxProb: 2.71 ± 1.59

InfoDen: 2.71 ± 1.6

Random: 2.75 ± 1.61

7 ± 0

Uncert: 8

MaxProb: 8

InfoDen: 8

Random: 8

Oil: 49

Uncert: 7.02 ± 6

MaxProb: 6.9 ± 6.61

InfoDen: 5.05 ± 5.27

Random: 1.93 ± 0.35

1.6 ± 0.55

Uncert: 49

MaxProb: 49

InfoDen: 49

Random: 44

Satimage: 36

Uncert: 3.44 ± 0.51

MaxProb: 3.31 ± 0.70

InfoDen: 3.33 ± 0.58

Random: 3.70 ± 0.48

3 ± 0.72

Uncert: 35

MaxProb: 36

InfoDen: 33

Random: 30

Forum Pedestrian

Database: 57

Uncert: 3.26 ± 0.34

MaxProb: 3.08 ± 0.38

InfoDen: 3.38 ± 0.34

Random: 2.86 ± 0.31

3.33 ± 1.41

Uncert: 31

MaxProb: 31

InfoDen: 31

Random: 30

Fish Trajectory:

179

Uncert: 3.05 ± 0.35

MaxProb: 3.10 ± 0.35

InfoDen: 3.22 ± 0.51

Random: 3.21 ± 0.45

3.11 ± 1.36

Uncert: 133

MaxProb: 134

InfoDen: 149

Random: 138

Satimage 2: 36

Uncert: 3.65 ± 0.44

InfoDen: 3.55 ± 0.45

Random: 3.48 ± 0.46

3.8 ± 0.97

Uncert: 29

InfoDen: 28

Random: 23

Yeast: 8

Uncert: 2.6 ± 0.44

InfoDen: 2.68 ± 0.45

Random: 2.87 ± 0.43

2.83 ± 0.83

Uncert: 8

InfoDen: 8

Random: 8



Chapter 7. Active Learning with Imbalanced Data Sets 130

Table 7.5: The comparison in computation time (average and standard deviation (af-

ter the ± sign) over different cross validation folds) between AL with/without feature

selection (using Random Selection)

Data set Time with SFFS (min.) Time without SFFS (min.)

Pima 1.14 ± 0.25 0.49 ± 0.07

Oil 11.62 ± 3.04 2.06 ± 0.12

Satimage 237.25 ± 1.48 19.54 ± 1.24

Forum Pedestrian

Database

121.38 ± 35.10 12.24 ± 1.07

Fish Trajectory 349.57 ± 167.07 21.62 ± 1.20

Satimage 2 28.54 ± 6.14 2.70 ± 0.07

Yeast 1.91 ± 0.18 0.31 ± 0.01

average and standard deviation (after the± sign) of the elapsed training time in minutes

averaged over different folds.

The results showed that, in the worst case (fish trajectory data set; the biggest data

set in terms of feature dimensionality) active learning with feature selection is 16 times

slower than only active learning. In the best case (Pima [4, 5]) active learning with fea-

ture selection is 2 times slower than pure active learning. In conclusion, there is a

computational cost for the improved performance when using feature selection. This

cost could be reduced by implementing feature selection in parallel on a task farming

architecture with the methodology given in [2].

7.2.3.2 What is the best active learning query strategy (including random selec-

tion) when it is integrated with feature selection?

When feature selection is combined with AL we investigated what the best query s-

trategy (including random selection) for each data set was. To do that, we applied the

paired t-test to the evaluation metric (GeoMean) for each AL query strategy and ran-

dom selection paired with another query strategy and random selection at each iteration

of AL (Table 7.6).

The paired t-test results in Table 7.6 compared all query strategies and random

selection using given data sets. There is no single significantly better algorithm. Ran-

dom selection is often better than uncertainty (such as Forum Pedestrian data set),



Chapter 7. Active Learning with Imbalanced Data Sets 131

Table 7.6: Paired t-test of the query strategies and random selection when feature

selection is integrated and NB is used as the classifier (see text for more detail)

Data set
M1: Uncert
M2: Random

M1: Uncert
M2: MaxProb

M1: Uncert
M2: InfoDen

M1: MaxProb
M2: Random

M1: MaxProb
M2: InfoDen

M1: InfoDen
M2: Random

Total #
of iterations

Pima

M1�M2

no significance

M2�M1

3

M1:52 M2:30

6

8
M1:58 M2:25

0

0

M1:28 M2:58
5

0

M1:36 M2:46
9

0

M1:10 M2:66
15

2
M1:69 M2:19

1

93

Oil

M1�M2

no significance

M2�M1

0

M1:46 M2:64
1

1

M1:83 M2:26

1

0

M1:52 M2:58
1

0

M1:17 M2:87
7

0

M1:27 M2:78
6

0

M1:42 M2:69
0

113

Satimage

M1�M2

no significance

M2�M1

0

M1:20 M2:113
21

73
M1:52 M2:20

0

8
M1:78 M2:61

1

0

M1:1 M2:49
104

1

M1:26 M2:63
59

0

M1:15 M2:104
35

156

Forum

Pedestrian

Database

M1�M2

no significance

M2�M1

8

M1:151 M2:128

45

195
M1:110 M2:26

1

10

M1:123 M2:178
18

2

M1:26 M2:116
178

2

M1:45 M2:58
227

16

M1:133 M2:139
44

334

Fish

Trajectory

M1�M2

no significance

M2�M1

0

M1:47 M2:48
2

0

M1:57 M2:40

0

3

M1:52 M2:38

4

2

M1:45 M2:47
3

1
M1:47 M2:49
0

1

M1:42 M2:48
6

99

Satimage 2

M1�M2

no significance

M2�M1

5
M1:54 M2:13

0

N/A

2
M1:35 M2:35

0

N/A N/A

6
M1:54 M2:12

0

74

Yeast

M1�M2

no significance

M2�M1

9
M1:62 M2:37

2

N/A

3

M1:64 M2:40

3

N/A N/A

6
M1:59 M2: 42

3
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maximum probability (such as Satimage [7], Forum Pedestrian) and information den-

sity (such as Satimage [7], Forum Pedestrian). Information density is often better than

uncertainty and maximum probability (such as Satimage [7], Forum Pedestrian). Ad-

ditionally, in the early stages of active learning with feature selection for data sets such

as Forum Pedestrian and Yeast [7], random selection performed better (details can be

seen in Figures 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, and 7.9).

Overall, we conclude that when feature selection is used, random selection is sta-

tistically as good as each of the AL query strategies especially for imbalanced data

sets. The results suggest that feature selection improves classification performance of

all AL query strategies however it also improves the performance of the random selec-

tion.

As random selection was effective with the feature selection setting, we investigat-

ed it in detail. The standard deviations (considering the folds in cross validation) of

each with/without feature selection iteration are given as the mean plus error bars in

Figures 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 for the data sets Pima [4, 5], Oil

[6], Satimage [7], Forum pedestrian database, fish trajectory, Satimage 2 [7] and Yeast

[7] data sets respectively.

As seen from the results the standard deviation of random selection decreased as
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Figure 7.10: The mean plus error bars for the Pima [4, 5] data set using random selec-

tion. With feature selection (top) and without feature selection (bottom).

Figure 7.11: The mean plus error bars for the Oil [6] data set using random selection.

With feature selection (top) and without feature selection (bottom).
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Figure 7.12: The mean plus error bars for the Satimage [7] data set using random

selection. With feature selection (top) and without feature selection (bottom).

Figure 7.13: The mean plus error bars for the Forum Pedestrian Database data set

using random selection. With feature selection (top) and without feature selection (bot-

tom).
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Figure 7.14: The mean plus error bars for the fish trajectory data set using random

selection. With feature selection (top) and without feature selection (bottom).

Figure 7.15: The mean plus error bars for the Satimage 2 [7] data set using random

selection. With feature selection (top) and without feature selection (bottom).



Chapter 7. Active Learning with Imbalanced Data Sets 135

Figure 7.16: The mean plus error bars for the Yeast [7] data set using random selection.

With feature selection (top) and without feature selection (bottom).

the size of the labelled training data was increased. This decrease was usually larger in

without feature selection compared to with feature selection where standard deviations

became almost stable in the earlier stages of active learning. It also means that random

selection with feature selection not only performs well on average but also performs

well in each fold of the cross validation.

7.2.4 Results when a Support Vector Machine is used as the clas-

sifier

The experiments using the NB classifier showed that random selection performs as

good as AL query strategies when feature selection is integrated. However, the perfor-

mance improvement that feature selection provided to the AL query strategies is also

important. It may be the case that the benefits are seen only when a simple classifier

like NB is used. Therefore, we further investigate active learning with feature selection

using another classifier, SV M, to see if it is possible to obtain similar results or not.

SV M has many advantages such as i) being effective in high dimensional spaces

and ii) being effective when the number of features is greater than the number of sam-

ples. Due to those advantages for SV M integration with feature selection might not
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Figure 7.17: Results in terms of the GeoMean for the Pima data set [4, 5] using SV M.

Active learning with feature selection (top) and without feature selection (bottom). Black

for random selection and green for information density.

be necessary or not even useful (which can also seen in Table 6.4 where SV M wFS

performed worse than SV M).

Figures 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, and 7.23 show the testing performances

(as the average of cross validation folds) at each iteration of active learning with/without

feature selection for Pima [4, 5], Oil [6], Satimage [7], the Forum pedestrian, the fish

trajectory, Satimage 2 [7] and Yeast [7] data sets respectively. In these analysis, the

evaluation metric is GeoMean (Eq. 2.7) similar to the previous analysis.
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Figure 7.18: Results in terms of the GeoMean for the Oil data set [6] using SV M. Active

learning with feature selection (top) and without feature selection (bottom). Black for

random selection and green for information density.
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Figure 7.19: Results in terms of the GeoMean for the Satimage data set [7] using SV M.

Active learning with feature selection (top) and without feature selection (bottom). Black

for random selection and green for information density.
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Figure 7.20: Results in terms of the GeoMean for the Forum Pedestrian Database using

SV M. Active learning with feature selection (top) and without feature selection (bottom).

Black for random selection and green for information density.



Chapter 7. Active Learning with Imbalanced Data Sets 140

Figure 7.21: Results in terms of the GeoMean for the fish trajectory data set using SV M.

Active learning with feature selection (top) and without feature selection (bottom). Black

for random selection and green for information density.
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Figure 7.22: Results in terms of the GeoMean for the Satimage 2 data set [7] using

SV M. Active learning with feature selection (top) and without feature selection (bottom).

Black for random selection and green for information density.
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Figure 7.23: Results in terms of the GeoMean for the Yeast data set [7] using SV M.

Active learning with feature selection (top) and without feature selection (bottom). Black

for random selection and green for information density.
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7.2.4.1 How is the performance of active learning (including random selection)

affected when it is integrated with feature selection?

The performance comparisons given in Figures 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, and

7.23 shows that:

• For the Pima data set [4, 5], in the early stages (such as until 100 samples exit

in the training data) information density with feature selection performed better

than without feature selection. However, in the latter stages, information density

with feature selection did not perform (even though it is not significantly) as

well as without feature selection. On the other hand, the performance of random

selection with feature selection generally performed better than random selection

only.

• For the Oil data set [6], information density with feature selection performed

much better than without feature selection. The performance of random selec-

tion with feature selection was also better than without feature selection. But

the improvement obtained when feature selection was applied with random se-

lection was not as much as the improvement in information density with feature

selection.

• For the Satimage data set [7], the performance of information density with fea-

ture selection was better than without feature selection only in the very early

stages (until ≈ 100 samples in the training data) of AL. However, its perfor-

mance in early stages was not really as good as its performance in the latter

stages. Random selection with feature selection, on the other side, performed

better than without feature selection until ≈ 700 samples in the training set and

showed the best performance in those stages as well. However, in the latter

stages performance of random selection with feature selection decreased and it

did not perform better than random selection only.

• For the Forum Pedestrian data set, integrating feature selection with AL and ran-

dom selection always performed better than AL and random selection without

feature selection. Especially, information density with feature selection was

quicker to reach the best performance compared to information density only.

The results showed that feature selection is essential for this data set, particulary

in the early stages of learning.
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• For the fish trajectory data set, the performance of active learning and random

selection with feature selection was much better than without feature selection

and the results showed that feature selection is required for this data set.

• For the Satimage 2 data set [7], active learning and random selection with feature

selection reached the best performance quicker than without feature selection.

• And lastly, for the Yeast data set [7], the performance of active learning and

random selection with feature selection was much better than without feature

selection and the results showed that feature selection is required for this data

set.

In summary, it can be seen that using feature selection with information density

generally achieved better performance than without feature selection (the performance

of without feature selection was overall better in Satimage data set [7] and for the later

stages of AL in the Pima data set [4, 5]). Moreover, similar to the results with the NB

classifier, the performance of random selection improved as well when feature selec-

tion was applied (except Satimage data set [7]). However, different than the results

with NB, the improvement in information density performance is greater than random

selection when feature selection is integrated.

The paired t-test (p-value=0.05) was applied to determine the performance signifi-

cance (if exists) and the results are given in Table 7.7. The pairings are the performance

after each iteration (uses different training data but the same testing data).

In Table 7.7, In f oDen means information density, Random is used for random

selection while M1 refers to method with feature selection (wFS) and M2 refers to

method without feature selection (woutFS) for paired t-test. M1 � M2 shows the

number of active learning iterations where the performance of wFS is significantly

better than the performance of woutFS for a specific data set. Similarly, M2 � M1

shows the number of active learning iterations that the performance of woutFS is sig-

nificantly better than the performance of wFS. “no significance” shows the number

of iterations where the p-value between the compared methods is above 0.05. For the

“no significance” case we showed the number of iterations that a method performed

better than the other considering “the average performance” over cross validation folds.

The results of the paired t-test show that the performance of information density

generally improves (either significantly or on average) when feature selection is com-
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Table 7.7: Paired t-test of the information density and random selection with/without

feature selection when SV M is used as the classifier

Data set
M1: InfoDen wFS
M2: InfoDen woutFS

M1: Random wFS
M2: Random woutFS

Total #
of iterations

Pima

M1�M2

no significance

M2�M1

16

M1:21 M2:39
17

8
M1:52 M2:29

4

93

Oil

M1�M2

no significance

M2�M1

45
M1:45 M2:22

1

15
M1:45 M2:53
0

113

Satimage

M1�M2

no significance

M2�M1

3

M1:5 M2:99
49

10

M1:45 M2:85
16

156

Forum

Pedestrian

Database

M1�M2

no significance

M2�M1

15
M1:53 M2:0

0

10
M1:58 M2:0

0

68

Fish Trajectory

M1�M2

no significance

M2�M1

52
M1:46 M2:1

0

49
M1:46 M2:1

0

99

Satimage 2

M1�M2

no significance

M2�M1

13
M1:11 M2:50
0

16
M1:37 M2:18

3

74

Yeast

M1�M2

no significance

M2�M1

22
M1:90 M2:0

0

15
M1:96 M2:1

0

112
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bined with active learning (except data sets Pima [4, 5], Satimage [7] and Satimage 2

[7]). However, random selection integrated with feature selection performs better than

random selection only as well (except Satimage data set [7]). When the improvements

of information density is compared with random selection, it is observed that the im-

provement of information density is more significant (such as for Oil data set [6], infor-

mation density with feature selection performed significantly better than information

density in 45 iterations while random selection with feature selection performed sig-

nificantly better than random selection in 15 iterations).

What is the best active learning query strategy (including random selection)
when it is integrated with feature selection?

The performance of information density and random selection is compared when

feature selection is integrated. The paired t-test was applied to the evaluation metric

(GeoMean) for each information density and random selection pair in the 7 data sets

(Table 7.8).

The result given in Table 7.8 shows that there is no significantly better method be-

tween information density and random selection. Only one exception can be seen with

the Pima data set [4, 5], where random selection performed significantly better than

information density in 18 iterations of 93 iterations. On the other hand, information

density performed better than random selection in 5 of 7 data sets (the data sets except

Pima [4, 5] and Yeast [7]). However, in the very early stages (such as when 10% of the

training data is used) of active learning with feature selection for the data sets Pima

[4, 5], Satimage [7], Satimage 2 [7] and Yeast [7] (4 of 7 data sets) random selection

performed better on average.

7.2.5 Summary and Discussion for Active Learning with Feature

Selection

In this section, we investigated the effect of feature selection on active learning and we

applied this methodology to classification of balanced and imbalanced data sets. Even

though active learning and feature selection have been examined many times individu-

ally, and are both effective for balanced and imbalanced data set classification, fusion

of these two has only been investigated in the natural language processing field where

the feature space is implicitly changing since features are based on word frequency.

In those studies, the best features at each stage of the active learning are determined
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Table 7.8: Paired t-test of information density and random selection when feature se-

lection is integrated and SV M is used as the classifier

Data set
M1: InfoDen
M2: Random

Total #
of iterations

Pima

M1�M2

no significance

M2�M1

0

M1:16 M2:57
18

93

Oil

M1�M2

no significance

M2�M1

3
M1:67 M2:40

1

113

Satimage

M1�M2

no significance

M2�M1

4
M1:94 M2:54

2

156

Forum

Pedestrian

Database

M1�M2

no significance

M2�M1

2
M1:36 M2:28

0

68

Fish

Trajectory

M1�M2

no significance

M2�M1

1

M1:51 M2:44

1

99

Satimage 2

M1�M2

no significance

M2�M1

6
M1:40 M2:25

1

74

Yeast

M1�M2

no significance

M2�M1

2

M1:46 M2:60
2

112



Chapter 7. Active Learning with Imbalanced Data Sets 148

by a human expert and there is no comparison between using all features or only the

selected features during active learning (see Section 2.5 for review).

The experiments with NB classifier using five imbalanced and two balanced data

sets showed that by applying active learning with feature selection better classification

performances can be obtained both for query strategies and random selection partic-

ularly in the early stages of active learning which results in less labelling. However,

random selection is as effective as AL query strategies when they are combined with

feature selection especially for imbalanced data sets. In this context, with feature s-

election, random selection performed better than information density and uncertainty

in 4 of 7 data sets and performed better than maximum probability in 5 of 5 data sets

while there is no single significantly better method.

The experiments with the SV M classifier showed that integrating feature selection

with information density and random selection generally improved the performance

of them. This improvement is important given that SV M is effective in high dimen-

sional spaces as well. In contrast to the results obtained when the NB classifier was

applied, the performance improvement from feature selection is generally greater for

information density than random selection. The number of iterations showing the sig-

nificant performance is also greater (5 of 7 data sets) for information density compared

to random selection when methods with/without feature selection are compared (Table

7.7). However, there is no significantly better method when feature selection is inte-

grated. In 5 of 7 data sets, information density with feature selection performed better

than random selection with feature selection, although random selection with feature

selection performed better in early stages of active learning (in 4 of 7 data sets).

When active learning strategies and random selection are compared in case of fea-

ture selection integration, there is no significantly better algorithm no matter which the

classifier is. This is because obtaining significant differences is difficult as it requires a

method which is always better than the other methods in all folds. It can be even more

difficult for active learning since the training data is different (there is a high train-

ing set variability between random selection and other active learning query strategies)

while methods are evaluated in the same testing data. On the other hand, there can be

more important reasons (such as due to the characteristic of the data) which limits the

performance of active learning against to random selection as discussed below.

Similar to the results presented here, several studies showed that it can be difficult

for active learning query strategies to outperform random selection [146, 148, 157, 184,

185]. For instance, Bilgic [157] proposed a technique which is based on dimension-
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ality reduction and determines the number of dimensions at each active learning step.

The results of active learning with/without dimensionality reduction showed that ac-

tive learning with dimensionality reduction performed significantly better than without

dimensionality reduction. However, random selection with dimensionality reduction

never performed worse than other query strategies with dimensionality reduction as

well. Related to pure active learning (without feature selection or dimensionality re-

duction), in [184], the conditions that might affect the performance of active learning is

discovered and the question of “when does active learning work” (compared to random

selection) is tried to be answered. However, their analysis showed that for only 6% to

11% of the iterations active learning strategies are better than random selection even

with different active learning query strategies, classifiers and different evaluation met-

rics. In a different study [148], the challenges that results in poor performance of active

learning are listed. One of the challenges is having an imbalanced class distribution
where active learning strategies find few samples from minority class. However, this

challenge exist for random selection as well. The more important challenge is having

disjuncts (sub-varieties of classes with a very small amount and overlapping) which

are difficult to find by random selection but active learning strategies actually avoid

finding them (such as information density which tries to select the most uncertain but

also most similar sample to the other unlabelled samples) [148]. The data sets having

overlapping also cause unreliable posterior probabilities especially at the early stages

of the active learning which might lead the learning insufficiently. Given those chal-

lenges and existing studies presenting that the performance of random selection is as

good as active learning query strategies, the obtained not significantly better but better

in average performance of active learning query strategies (especially when SV M is

applied) when AL is integrated with feature selection should considered as important.

Moreover, the reason of not having significantly better performance by AL may be due

to i) the disjuncts and ii) overlapping between different classes. To prove this, as fu-

ture work, novel active learning query strategies that address these challenges should

propose and the performances of them should be compared with random selection

(with/without feature selection).

Another concern about active learning with feature selection can be determining a

stopping criterion. As can be seen from results (also the plots given in [156]), active

learning with feature selection results are not as smooth as results only with active

learning. This might be because of the change in feature space at each step of active

learning (even though it is not very common especially at the later stages of active
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learning). However, the maximum performance rate is reached very quickly for all

query strategies when feature selection is used especially when NB is used as the clas-

sifier. This suggests that training can be stopped rather quickly, but it is unclear how to

define where to stop precisely. This can be investigated as future research as well.

7.3 Hierarchical Decomposition Method Integrated with

Active Learning

In this section, the proposed hierarchical decomposition method is integrated with ac-

tive learning. To do that, a novel setting which calculates class probabilities as they

are needed to select informative samples by the active learning query strategies is pro-

posed. The aim is to obtain good performance using less training data (i.e. the per-

formance close to the performance that is obtained when all training data is used, see

Section 7.3.3.1 for exact definition). In pure active learning applications (where the

feature space is constant for all iterations of active learning) the performance generally

increases as more training data is added unless there is noise in data labels. Howev-

er, for the hierarchical decomposition method since it is possible that the hierarchy

changes with different training samples and feature combinations at different levels,

better classification performance can be obtained using less training data compared to

using all training data.

Here, we investigate two issues:

1. Is it possible to obtain substantial performance with less training data compared

to using all available training data when active learning (including random selec-

tion) is integrated with hierarchical decomposition using the proposed setting?

2. What is the best active learning query strategy (including random selection)

when active learning is integrated with hierarchical decomposition using the pro-

posed setting?

7.3.1 Proposed Setting

Active learning with hierarchical decomposition can be applied similarly to the de-

scription given in Section 7.2. The only different part is the calculation of scores of

being from the majority and the minority classes which should be determined for each
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unlabelled training sample to select the most informative samples. This difference is

because the hierarchical decomposition method is not a probabilistic method.

The following steps are proposed to integrate hierarchical decomposition with ac-

tive learning:

• Build the hierarchy as defined in Section 5.1.1 using the existing labelled data.

• Using the hierarchy and a query strategy, select informative instances from the

unlabelled data. For each unlabelled sample, the probability of being from the

majority class and the minority class are found. To do that, for each level of

hierarchy including the misclassified clusters and the selected features for that

hierarchy level, the closest cluster is found. If the closest cluster does not have

enough samples to estimate the probabilities, then, it merges with the closest

clusters until a set containing more than one majority and one minority class

sample is obtained. Next, a Gaussian Mixture Model (GMM) is estimated with

two components, one component for the majority class samples and the other

component for the minority class samples. Here, we assume that the combined

clusters are close to each other. The GMM is used to find the probability of being

from the majority class and the minority class for each unlabelled data sample.

The same steps are repeated at each level of the hierarchy. The final score of

being from the majority class is found by the product rule [186] which is by

multiplying the probabilities of being from the majority class at each level of the

hierarchy (Eq. 7.3).

S f inal(Ma j|x) =
HL

∏
hl=1

Phl(Ma j|x)

S f inal(Min|x) =
HL

∏
hl=1

Phl(Min|x)
(7.3)

where Phl(Ma j|x) means the probability of being from the majority class at hi-

erarchy level hl, Phl(Min|x) means the probability of being from the minority

class at hierarchy level hl for the unlabelled training sample x where the total

number of hierarchy levels is HL. S f inal(Ma j|x) and S f inal(Min|x) represent the

final scores of sample x which are used by the AL query strategies to determine

the informative samples.

Similarly, the final score of being from the minority class is also found. By using

the product rule, we assume the decisions of the different levels are independent



Chapter 7. Active Learning with Imbalanced Data Sets 152

 

Train a model 

L= Labelled 

Training Set 

Label selected 

samples 

informative 

samples 

Classification 

Model U= Unlabelled 

training set 

Query Strategy 

P1(maj|x) 

P1(min|x) 

 
P2(maj|x) 

P2(min|x) 

 
P3(maj|x) 

P3(min|x) 

 

Sfinal(maj|x)= P1(maj|x) P2(maj|x) P3(maj|x) 

Sfinal(min|x)= P1(min|x) P2(min|x) P3(min|x) 

 

 

 

Figure 7.24: Hierarchical Decomposition Method Integrated with Active Learning

from each other. Once the final scores are found any query strategy presented in

Section 7.2 is applied and the most informative samples are selected.

• Label the selected informative samples.

• Combine the new labelled instances with the previously labelled training set and

repeat all these steps until an active learning stopping criterion is achieved.

The proposed setting is illustrated in Figure 7.24.

7.3.2 Data Sets and Experimental Design

Since the hierarchical decomposition method was proposed for imbalanced data set

classification, in this section we only use the imbalanced data sets: Pima [4, 5], Oil [6],

Satimage [7], the Forum pedestrian and the fish trajectory data sets (Section 5.2.1) for

evaluation. The AL query strategies: uncertainty, maximum probability, information

density given in Section 7.1 and random selection were compared.

At each cross validation fold (using the same cross validation scheme as given in

Section 7.2.2.2), 9 samples from the minority class and 9 samples from the ma-
jority class were randomly chosen as the initial labelled training set. The given query

strategy was then used to pick samples from the remainder of the training data set. At

each iteration of active learning, 5 samples were chosen using the given query strategy

for the Pima [4, 5], 25 samples were chosen using the Oil [6] and 50 samples were

chosen using the Satimage [7], the Forum pedestrian and the fish trajectory data sets.
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Since the training complexity of the hierarchical decomposition method is more than

NB and SV M, the numbers of selected samples at each AL iteration are more than the

numbers of selected samples at each AL iteration of active learning with feature se-

lection. An early stopping criterion was not applied and the active learning iterations

continued until all training samples were labelled.

As the outlier detection threshold {0.6, -0.3, -0.3, 1, 0.3} were taken for the data

sets Pima [4, 5], Oil [6], Satimage [7], the fish trajectory and the Forum pedestrian

data sets respectively. During testing alternative-1 version (see Table 5.3 for details)

of the hierarchical decomposition heuristic was applied to Pima [4, 5], Oil [6] and

Satimage [7] data sets while the heuristic given in Figure 5.2 was applied to the Forum

pedestrian and the fish trajectory data sets to provide the consistency with the results

given in previous chapters.

7.3.3 Results

Figures 7.25, 7.26, 7.27, 7.28 and 7.29 show the testing performances (as the average

of the folds) as a function of the number of trained data used at each iteration of active

learning with hierarchical decomposition for Pima [4, 5], Oil [6], Satimage [7], the

Forum pedestrian and the fish trajectory data sets respectively. In these analysis, the

evaluation metric is GeoMean (Eq. 2.7).

7.3.3.1 Is it possible to obtain substantial performance with less training data?

Substantial Performance: The consecutive performances (from any AL iteration to

the end of all iterations) having GeoMean ≥ 95% of the performance of passive learn-

ing (the last iteration of the AL) by any AL query strategy. The 95% performance

threshold is shown with a horizontal cyan line and the starting iteration of the substan-

tial performance is shown with vertical cyan line for each data set (see Figures 7.25,

7.26, 7.27, 7.28 and 7.29).

Best Performance: The highest performance (GeoMean) in any iteration by any AL

query strategy (including random selection). This is the magenta line in the Figures

7.25, 7.26, 7.27, 7.28 and 7.29.

To answer the given question, it is enough to show that there is at least one AL
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Figure 7.25: Active learning with hierarchical decomposition results in terms of the

GeoMean for the Pima data set [4, 5]. Red for uncertainty, blue for maximum probabil-

ity, black for random selection and green for information density. The horizontal cyan,

vertical cyan and magenta lines show the 95% of performance that was obtained when

all training data is used, the size of training set where the substantial performance starts

and best performance, respectively (see text for more detail).

Figure 7.26: Active learning with hierarchical decomposition results in terms of the

GeoMean for the Oil data set [6]. Red for uncertainty, blue for maximum probability,

black for random selection and green for information density. The horizontal cyan and

magenta lines show the 95% of performance that was obtained when all training data

is used and best performance, respectively (see text for more detail).



Chapter 7. Active Learning with Imbalanced Data Sets 155

Figure 7.27: Active learning with hierarchical decomposition results in terms of the

GeoMean for the Satimage data set [7]. Red for uncertainty, blue for maximum proba-

bility, black for random selection and green for information density. The horizontal cyan,

vertical cyan and magenta lines show the 95% of performance that was obtained when

all training data is used, the size of training set where the substantial performance starts

and best performance, respectively (see text for more detail).

Figure 7.28: Active learning with hierarchical decomposition results in terms of the

GeoMean for the Forum pedestrian data set. Red for uncertainty, blue for maximum

probability, black for random selection and green for information density. The horizontal

cyan, vertical cyan and magenta lines show the 95% of performance that was obtained

when all training data is used, the size of training set where the substantial performance

starts and best performance, respectively (see text for more detail).
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Figure 7.29: Active learning with hierarchical decomposition results in terms of the

GeoMean for the fish trajectory data set. Red for uncertainty, blue for maximum proba-

bility, black for random selection and green for information density. The horizontal cyan,

vertical cyan and magenta lines show the 95% of performance that was obtained when

all training data is used, the size of training set where the substantial performance starts

and best performance, respectively (see text for more detail).

strategy which satisfies the given substantial performance condition. Here, we used

the results of information density to satisfy the substantial performance criterion. For

all data sets, the best performances were reached before all training samples was used

(5 of 5 data set). On the other hand, the substantial performances level was reached

before the last AL iteration for all except the Oil data set [6] (4 of 5 data set). This

shows that it is often possible to obtain a good performance with less data compared

to using all training data. In detail:

• For the Pima data set [4, 5] with the given settings the best performance was

observed when the model was trained with 383 samples (out of 461) which per-

formed 0.86 GeoMean using information density as the query strategy. The

GeoMean when all training data was used is 0.79. Substantial performance

(GeoMean ≥ 0.75) was achieved after training with 258 samples.

• For the Oil data set [6] with the given settings, the best performance was ob-

served when the model was trained with 293 samples (out of 563) which per-

formed 0.83 GeoMean using information density. The GeoMean when all train-

ing data was used is 0.82 and there is no substantial performance by any AL
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Table 7.9: The minimum percentage of training data that is needed to obtain substantial

performance and the percentage of training data that the best performance is reached

with the corresponding AL strategy and random selection. Random is for random se-

lection and In f oDen is for information density.

Performance Pima Oil Satimage Forum
Pedestrian

Fish
Trajectory

Best 83%

(In f oDen)

52%

(In f oDen)

70%

(Random)

43%

(In f oDen)

66%

(In f oDen)

Substantial 56%

(In f oDen)

− 82%

(In f oDen)

64%

(In f oDen)

92%

(In f oDen)

strategy.

• For the Forum data set with the given settings, the best performance was ob-

served when the model was trained with 718 samples (out of 1666) which per-

formed 0.96 GeoMean using information density. The GeoMean when all train-

ing data was used is 0.86. Substantial performance (GeoMean ≥ 0.81) was

achieved after training with 1068 samples.

• For the fish trajectory data set with the given settings, the best performance was

observed when the model was trained with 1618 samples (out of 2452) which

performed 0.998 GeoMean using information density. The GeoMean when all

training data was used is 0.91. Substantial performance (GeoMean ≥ 0.87) was

achieved after training with 2268 samples.

• Only for the Satimage data set [7], the best performance was observed using

random selection when the model was trained with 2718 samples (out of 3862)

which performed 0.93 GeoMean. The GeoMean when all training data was used

is 0.84. Substantial performance (GeoMean ≥ 0.80) was achieved after training

with 3168 samples.

To summarise, the best and substantial performances are given with the percentage

of data used for the each data set in Table 7.9. This shows that generally it is possible

to achieve reasonable performance using less training data than available in those data

sets. Detecting when one has achieved substantial (or best) performance and can then

stop training is a different question that is future work.
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Table 7.10: Paired t-test results of the query strategies and random selection for hierar-

chical decomposition integrated with AL (see text for more detail)

Data set
M1: Uncert
M2: Random

M1: Uncert
M2: MaxProb

M1: Uncert
M2: InfoDen

M1: MaxProb
M2: Random

M1: MaxProb
M2: InfoDen

M1: InfoDen
M2: Random

Total #
of iterations

Pima

M1�M2

no significance

M2�M1

0

M1:36 M2:52
0

4
M1:56 M2:27

1

3
M1:31 M2:52
2

0

M1:24 M2:58
6

1

M1:16 M2:66
5

0

M1:52 M2:24

2
90

Oil

M1�M2

no significance

M2�M1

0

M1:13 M2:8

0

0

M1:9 M2:12
0

1
M1:8 M2:12
0

0

M1:16 M2:4

1

0

M1:10 M2:11
0

2
M1:12 M2:7

0

23

Satimage

M1�M2

no significance

M2�M1

1

M1:31 M2:42
2

3
M1:55 M2:17

1

0

M1:42 M2:32

2

0

M1:11 M2:60
5

0

M1:19 M2:54
3

0

M1:29 M2:47
0

78

Forum

Pedestrian

Database

M1�M2

no significance

M2�M1

2

M1:10 M2:18
2

1

M1:10 M2:19
2

0

M1:12 M2:17
3

2

M1:17 M2:11

2

2
M1:13 M2:16
1

3
M1:18 M2:11

0

34

Fish

Trajectory

M1�M2

no significance

M2�M1

1
M1:23 M2:24
0

1

M1:24 M2:22

1

1

M1:14 M2:27
6

2
M1:18 M2:28
0

0

M1:11 M2:35
2

2

M1:32 M2:12

2

50

7.3.3.2 What is the best active learning query strategy (including random selec-

tion) when active learning is integrated with hierarchical decomposition?

To determine what the best AL query strategy including random selection for each

data set was, paired t-tests were applied to the evaluation metric for each AL query

strategy and random selection paired with another query strategy and random selection

at each iteration of AL (Table 7.10). In Table 7.10, Uncert means uncertainty, MaxProb

is used for maximum probability, In f oDen means information density, Random is

used for random selection. M1� M2 shows the number of active learning iterations

where the performance of M1 is significantly better than the performance of M2 for a

specific data set. Similarly, M2� M1 shows the number of active learning iterations

that the performance of M2 is significantly better than the performance of M1. “no

significance” shows the number of iterations where the p-value between the compared

methods is above 0.05.

The paired t-test results given in Table 7.10 show that over all query strategies, ran-

dom selection and data sets, there is no significantly better algorithm (similar to the

results obtained in Sections 7.2.3 and 7.2.4). For the Pima data set [4, 5] information

density performed the best while random selection was the next best. Similarly, for the

Oil data set [6] information density performed the best but this time maximum proba-

bility performed better than random selection and uncertainty. For the Satimage data

set [7] random selection performed the best in majority of the times while uncertainty

was the next best. For the Forum pedestrian data set information density performed the

best while the next best method was maximum probability. For the fish trajectory data
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set information density performed the best while random selection was the following

best.

To conclude, information density performed the best in 4 of 5 data sets even
though there is no significantly better AL query strategy including random se-
lection. The second best in overall was random selection which performed better than

information density in 29%, 30%, 60%, 32%, and 28% of the iterations for the data sets

Pima [4, 5], Oil [6], Satimage [7], Forum pedestrian, and fish trajectory respectively.

7.3.4 Further Analysis

This section is to understand the algorithmic behaviour (not classification performance)

of hierarchical decomposition method when it is integrated with active learning. In

this context, the number of selected features and the number of hierarchy levels are

investigated.

Table 7.11 gives the average and standard deviation (after the± sign) of the number

of selected features over different levels of the hierarchies for different active learning

iterations and passive learning considering cross-validation folds.

The obtained results show that not many features were selected at each level by

SFFS [162] compared to the total number of features. However, it was observed that

the selected features at different levels of the hierarchy and different iterations of the

active learning varied.

In Table 7.12, the average number of hierarchy levels over different active learning

iterations and passive learning were given with the standard deviations (after the ±
sign) considering cross validation folds.

As seen, for the Pima [4, 5], Oil [6] and Satimage [7] data sets the constructed

hierarchies have less levels compared to the Forum pedestrian and the fish trajectory

data sets who use more features compared to other three data sets. For the Pima [4, 5]

and Oil [6] data sets the constructed hierarchies had 2 levels for the majority of the

active learning iterations while at maximum 6 levels were obtained. For the Satimage

data set [7] the numbers of hierarchy level were generally 1. By looking to the number

of hierarchy levels it can be observed that the proposed hierarchical decomposition

method is not suitable for classification of the Satimage data set [7] where the result

given in Table 6.4 also supports this. For the Forum pedestrian data set, the depth of

the hierarchy was 2 for the majority of the active learning iterations while at maximum

7 levels were obtained. For the fish trajectory data set, the depth of the hierarchy was



Chapter 7. Active Learning with Imbalanced Data Sets 160

Table 7.11: Number of selected features for hierarchical decomposition integrated with

AL and random selection

Data set: Total #
of features

Average and standard deviation (after
the ± sign) of the # of selected features
over different levels of hierarchy, AL it-
erations and cross vallation folds

Average and standard deviation (after
the ± sign) of the # of selected features
over different levels of hierarchy and
cross validation folds in passive learn-
ing

Pima: 8

Uncert: 3.10 ± 2.25

MaxProb: 3.00 ± 1.93

InfoDen: 3.64 ± 2.32

Random: 3.46 ± 2.38

3.6 ± 1.52

Oil: 49

Uncert: 5.26 ± 2.55

MaxProb: 5.08 ± 2.73

InfoDen: 4.21 ± 2.75

Random: 4.55 ± 2.68

8.75 ± 3.30

Satimage: 36

Uncert: 1.19 ± 0.47

MaxProb: 1.33 ± 0.65

InfoDen: 1.25 ± 0.54

Random: 1.20 ± 0.45

1.60 ± 0.55

Forum Pedestrian

Database: 57

Uncert: 12.36 ± 7.57

MaxProb: 13.28 ± 8.13

InfoDen: 11.17 ± 6.55

Random: 13.23 ± 7.74

15.00 ± 8.47

Fish Trajectory:

179

Uncert: 13.05 ± 8.63

MaxProb: 19.37 ± 11.21

InfoDen: 14.03 ± 7.57

Random: 10.79 ± 7.53

15.56 ± 10.57
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Table 7.12: Number of hierarchy levels for hierarchical decomposition integrated with

AL

Data set
Average and standard deviation
(after the ± sign) of the # of hi-
erarchy levels over AL iterations
and cross validation folds

Average and standard deviation
(after the ± sign) of the # of hier-
archy levels over cross validation
folds in passive learning

Pima

Uncert: 1.51 ± 0.75

MaxProb: 1.55 ± 0.77

InfoDen: 1.70 ± 0.87

Random: 1.65 ± 0.87

1.60 ± 0.55

Oil

Uncert: 1.37 ± 0.71

MaxProb: 1.24 ± 0.60

InfoDen: 1.72 ± 0.82

Random: 1.28 ± 0.58

1.60 ± 0.55

Satimage

Uncert: 1.05 ± 0.30

MaxProb: 1.08 ± 0.30

InfoDen: 1.17 ± 0.43

Random: 1.51 ± 0.14

1.20 ± 0.45

Forum

Pedestrian

Database

Uncert: 2.50 ± 1.18

MaxProb: 2.60 ± 1.20

InfoDen: 2.37 ± 1.01

Random: 2.40 ± 1.02

3.00 ± 1.00

Fish

Trajectory

Uncert: 4.66 ± 2.63

MaxProb: 4.28 ± 3.01

InfoDen: 5.49 ± 2.80

Random: 4.75 ± 2.72

6.11 ± 3.10
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5 for the majority of the active learning iterations while at maximum 14 levels were

obtained.

7.3.5 Summary and Discussion for Hierarchical Decomposition Method

integrated with Active Learning

In this section, we investigated integrating the hierarchical decomposition method

(Chapter 5) with active learning. This required estimating the scores of being from the

majority and the minority classes which is needed to apply the active learning query

strategies to select informative samples. The probabilities were found by a GMM be-

long to the closest cluster in a single hierarchy level to an unlabelled sample. The

GMM of a cluster was found using the majority class samples and the minority class

samples in that cluster as two different components. For each unlabelled data, at each

hierarchy level the probabilities of being from majority class and the probabilities of

being from minority class were found. Then, those probabilities for each class were

combined with the product rule which provides the final scores. The results showed

that with such a setting it is possible to obtain substantial performance using different

active learning query strategies with less training data compared to using all available

training data (passive learning). However, as future work other approaches such as

using logistic regression to find the probabilities from unlabelled data and cluster dis-

tances (even though this needs labelled validation data as well) can be integrated and

also compared with the proposed setting.

The statistical tests showed that there is no significantly better active learning query

strategy (including random selection) but information density was the best for the ma-

jority of the data sets. The reasons that there are no significantly better results for

active learning may be the same as the reasons discussed in Section 7.2.5. Therefore,

as future work, the hierarchical decomposition method should be integrated with new

query strategies which for instance address the given challenges in Section 7.2.5, and

which may provide significantly better results over random selection.

As another future work, this integration might be useful for collecting ground truth

data set from a very large data repository (e.g. Fish4Knowledge repository) in a much

quicker way as active learning strategies choose the most informative instances to be

labelled and implicitly filter out other unlabelled samples.
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7.4 Conclusions

In this chapter, we investigated feature selection integrated with active learning and the

hierarchical decomposition method integrated with active learning.

The experiments showed that applying active learning with feature selection results

in better classification both for active learning query strategies and random selection

no matter the classifier used (Naive Bayes and SVM and especially for Naive Bayes).

When the Naive Bayes classifier is used, with feature selection, it is possible to obtain

better performance even in very early stages of active learning. Additionally, while

using the Naive Bayes, random selection generally performed as well as active learning

strategies: uncertainty, information density and maximum probability. When SVM is

used as the classifier, information density with feature selection performed better (but

not significantly) than random selection with feature selection in the majority of the

experiments.

For hierarchical decomposition with active learning, the proposed setting (to find

the scores of being from the majority and minority classes) was successful to obtain

substantial or best performances using different active learning strategies even with

fewer training data compared to using all training data. The results showed that in-

formation density was the best for the majority of the data sets while statistical tests

showed that there was no significantly better active learning query strategy and random

selection can sometimes perform just as well.

In conclusion, for both methods (active learning integrated with feature selection

and the hierarchical decomposition method integrated with active learning) better ac-

tive learning query strategies need to be developed to obtain significantly better perfor-

mance than random selection.



Chapter 8

Conclusions

This thesis has explored three novel supervised learning frameworks for detection of

unusual fish trajectories. The hierarchical decomposition framework, which performed

the best out of these three, is the main focus of this thesis. This framework is also a

general method for imbalanced data classification and uses clustered and labelled data.

When applied to classifying fish trajectories, this framework used subsets of features

extracted from fish trajectories.

The preceding chapters present the following original contributions:

1. A novel method to filter out large amount of normal fish trajectories with low

time complexity.

2. A novel approach to unusual fish trajectory detection using novel trajectory de-

scriptions which have not previously been used for fish behaviour analysis.

3. A novel approach to unusual fish trajectory detection which builds a feature or

class taxonomy independent hierarchy. Additionally, this approach is a general

method for imbalanced data set classification.

4. A comprehensive evaluation of active learning with feature selection using most

popular query strategies and random selection. Results showed that query s-

trategies used and the random selection perform better when feature selection is

integrated with active learning. A novel approach to integrate the proposed hi-

erarchical decomposition method with active learning which results in best and

substantial performance with less training data.

These contributions are summarised in the reminder of this chapter, together with

a discussion of their limitations and future work.

164
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8.1 Main Contributions, Limitations and Future Work

8.1.1 A Filtering Mechanism for Normal Fish Trajectories

Main Findings
The fish trajectories used in this thesis relies on the Fish4Knowledge repository which

contains tera-scale underwater videos, meaning a much larger number of trajectories.

When the number of trajectories is huge like this and the number of normal trajectories

is much bigger than the number of unusual trajectories, normal trajectories can domi-

nate unusual trajectories and detecting unusual trajectories become harder. To address

this issue and quickly scan large number of trajectories, primitive fish motions were

modelled as given in Chapter 3. The proposed rule based filtering method is the first al-

gorithm for filtering normal fish trajectories in an unconstrained open sea environment

with a low FNrate (the positive class represents unusual trajectories and negative class

represents normal trajectories). It was observed that this method is very efficient and

can be used to collect ground truth data (even though the results still need a manual

inspection). Additionally, the proposed method was able to distinguish true fish tra-

jectories from the false fish trajectories which arise due to failures of the fish detection

and tracking algorithms (which are affected by plant movements, object occlusions,

typhoons and murky water, etc).

The results of the proposed filtering mechanism which were obtained using three

different data sets (in Chapters 3, 4 and 5) showed that its unusual and normal trajectory

detection rates are much better when it was applied to a single fish species from a single

camera location.

The experiments presented in Chapter 3 showed that it is hard to distinguish nor-

mal and unusual fish trajectories using trajectory points as there are many overlapping

descriptions between two classes. This motivated us to define other features which

are extracted from trajectories such as velocity and shape based features which is the

foundation of the methods presented in Chapters 4 and 5.

Limitations and Future Work
For straight and/or cross motions and being stationary, the pixel parameter was selected

from {2, 4, 8, 16 and 20} to define the search area. The applied setting was reasonable

by looking at the performance during training but on the other hand, an evolutionary

or other search algorithms can be used to find better pixel parameter values.

As future work, the effectiveness of the proposed filtering method as a preliminary
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step of an unusual trajectory detection method could be tested using much larger la-

belled fish trajectory data sets (such as more than 10 thousands, millions) to see if it

is possible to improve the unusual fish trajectory detection rate of that method. More-

over, improved and/or additional rules which might consider the velocity, orientation

of the fish etc. can be defined to decrease the false filtering.

8.1.2 The Flat Classifier

Main Findings
Given the challenges of the fish trajectory data (see Section 1.3), it is hard to distin-

guish normal and unusual fish trajectories using trajectory points alone. Therefore,

novel trajectory descriptors were defined to describe trajectories. The trajectories were

clustered using the best features chosen by the feature selection algorithm which uses

labels of the trajectories. This flat classifier is a novel approach for unusual trajectory

detection particulary since it uses labelled and clustered data together. It is based on

clustering the data samples and then using several outlier detection rules. Improved

performance especially compared to the proposed method in Chapter 3 was obtained

for unusual fish trajectory detection in unconstrained underwater conditions. The suc-

cessful results of the flat classifier motivated us to integrate it into a hierarchical de-

composition method as given in Chapter 5.

Limitations and Future Work
Since the proposed method is based on clustering, it was necessary to encode trajec-

tories with a fixed length vector form. To do that, the extracted properties (such as

velocity, turn etc.) were used in terms of their statistical properties (mean, variance

etc.) which fixed the vector length of the trajectory representation no matter the length

of the trajectory.

The outlier detection parameter was taken as {-1, -0.3, 0, 0.3, 0.6, 0.9, 1, 2, 3,

and 6} for the experiments given in this chapter and these values were good enough to

obtain good performances. However, as an alternative evolutionary algorithms can be

adapted to find the optimal outlier detection threshold.

For feature selection, SFFS was used. This is a wrapper type feature selection

method (method uses training and validation data labels to select best features). The

comparisons between filter type feature selection methods and SFFS showed that filter

based feature selection methods are not as successful as SFFS. SFFS was efficient and
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effective with its substantial processing speed and the utility of the selected features.

However, other wrapper type feature selection methods can also be adapted to train the

proposed flat classifier.

As future work, the proposed method can also be applied to larger labelled fish

trajectory data sets which might also include other fish species, camera locations and

the time of the day.

8.1.3 Clustering Based Hierarchical Decomposition

Main Findings
A novel hierarchical decomposition method was proposed. This method uses outlier

detection in combination with clustering to detect unusual fish trajectories and also to

classify imbalanced data sets. This new hierarchical decomposition method does not

use any fixed hierarchy based on features and/or classes. By being based on cluster-

ing, it is different from common hierarchical methods which use supervised learning.

Different feature spaces are used to build the hierarchy. The hierarchy decomposition

method significantly improved performance on unusual fish trajectory analysis. Fur-

thermore, results obtained when the proposed method was applied to imbalanced data

sets showed that the proposed method is successful especially when the distribution of

the minority class is sparser than the majority class. It performs well when the class

imbalanced ratio (the number of minority class samples over majority class samples)

is low. It is successful if the majority and minority samples are highly overlapping

and even when both classes contain varieties (such as having a mixture of distributions

or having subclasses). Furthermore, the proposed method does not need the support

of any cost function, algorithmic or data level algorithm (see Section 2.3) to handle

imbalanced data sets.

The key observation and the justification for using a hierarchy is that some features

allow partitioning of some samples, which then allows other features to be useful on

the remaining samples. Therefore, this results in more specific features to be used once

the data focuses onto specific subclasses. The proposed method comes up with multi-

ple decision boundaries which are equal to the number of clusters in a hierarchy level.

Those boundaries help the classification of data especially if the data is highly over-

lapping, and the imbalanced ratio between minority (unusual) and majority (normal)

classes is high.

As presented in Chapter 5, the new trajectories or the new data samples can be
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classified using different heuristics. If the aim is rare class detection such as unusual

fish trajectory detection, then the heuristic “decision as an unusual trajectory at any

level stops classification of the new trajectory while decision as a normal trajectory

send the new trajectory to the next level” should be used since this heuristic produce

better T Prate (minority class classification) with high T Nrate (majority class classifi-

cation). Other heuristics given in the same chapter usually results in better T Nrate as

compared to T Prate.

The computational complexity of the proposed hierarchy decomposition method

during training is high as it includes SFFS which is not very efficient especially for

high dimensional data sets. This can be seen as a disadvantage but by implementing it

in parallel on a task farming architecture as given in [2] this can be overcome. On the

other hand, more importantly, the proposed method’s testing complexity is low which

only requires a few distance calculations between the closest clusters at each level and

the new trajectory (data point).

Limitations and Future Work
The high training computational complexity of the proposed hierarchical decompo-

sition method is one of the biggest limitations. As mentioned above, especially for

high dimensional data sets, feature selection part of the proposed method should be

parallelised for efficiency.

Being based on a heuristic can be seen as a shortcoming since it might be hard to

decide which heuristic should be applied. At least for rare class detection, we propose

using the heuristic given in Figure 5.2 and successful performance was shown using

different data sets. On the other hand, for the interested readers different heuristics can

be proposed and applied.

As future work, the proposed method can be applied to larger labelled fish data

sets which might also include other fish species, camera locations and the time of the

day. Even though its performance was tested using 20 public imbalanced data sets

and 300 synthetic data sets, it can still be tested with more imbalanced data sets where

especially the dimensionality of the data sets is higher.

8.1.4 Active Learning with Imbalanced Data Sets

Main Findings
The integration of the proposed hierarchical decomposition method with active learn-
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ing was examined. It was observed that with a proper active learning query strategy,

best performance can be obtained with less training data. This implies that data collec-

tion for ground truth construction can be realised more efficiently where active learning

query strategies determine the most informative instances. Moreover, active learning

with feature selection was also investigated. To the best of our knowledge, this was

the most comprehensive examination of active learning with feature selection. The re-

sults showed that by using feature selection the performance of active learning for all

query strategies and random selection reached the peak performance earlier by achiev-

ing better performance than active learning without feature selection. Additionally, it

was observed that the performance of random selection is generally as good as other

active learning query selection methods.

Limitations and Future Work
The results of active learning with feature selection and hierarchical decomposition in-

tegrated with active learning did not perform significantly better than random selection.

Future work should investigate the use of better query strategies.

Active learning with feature selection results are not as smooth as results without

feature selection. This might be because of the change in feature space at each step

of active learning. However, the maximum performance rate is reached very quickly

for all query strategies when feature selection is used (especially when Naive Bayes is

used as the classifier). This suggests that training can be stopped rather quickly, but

it is unclear how to define when to stop precisely. This can be investigated as future

research as well.

The analysis both for active learning with feature selection and also for integration

of the hierarchical decomposition method into active learning can be enlarged using

more data sets, even though the data sets used in Chapter 7 cover different imbalanced

ratios, varied in terms of class overlap, the number of samples, the number of features.

To see the improvement that feature selection provides to active learning, data sets

having larger dimensionality can also be applied where the feature selection should

have even greater benefit. Moreover, other query strategies can also be investigated.

Since the training of the hierarchical decomposition method and the proposed set-

ting for its integration with active learning has high time complexity, at each iteration

of the active learning more informative samples were chosen to be labelled compared

to the analysis with Naive Bayes and Support Vector Machine. Even with these set-

tings, we were still able to show that substantial performance can be obtained with less
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training data. As future work, the same experiments can be repeated by choosing fewer

samples at each active learning iteration.

Lastly, it was shown that the proposed approach for integration of the hierarchical

decomposition method with active learning which involves calculating a GMM from

the closest cluster is useful and successful. However, as future work other approaches

such as using logistic regression to estimate the probabilities from distances can be

integrated and also compared with the proposed approach.
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