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Abstract

The actions of protein kinase C (PKC) on several aspects of cellular control

of Ca2+ movement were investigated in rat anterior pituitary cells. Depolarising

concentrations of K+ induced influx of 45Ca2+ into rat anterior pituitary prisms and into

cells of the GH3 rat anterior pituitary cell line. These responses were used as models to

investigate the effects of activators and inhibitors of PKC. Depolarisation-induced

45Ca2+ influx into anterior pituitary prisms and GH3 cells was inhibited by the 'L'-type

Ca2+ channel blocker, nimodipine with equal potency in both tissues; suggesting that

similar 'L'-type Ca2+ channels were being utilised in both preparations. Activators of

PKC such as phorbol 12,13-dibutyrate (PDBu) and 4B-phorbol 12,13-didecanoate (46-

PDD) enhanced K+-induced 45Ca2+ influx in anterior pituitary pieces, but inhibited K+-

induced 45Ca2+ influx into GH3 cells. The modulation seen with these phorbol esters

was stereo-specific and concentration-dependent and of a similar time course in both

tissues. The phorboid, mezerein, and some related phorbol esters could mimic PDBu

at enhancing K+-induced 45Ca2+ influx into anterior pituitary pieces, whereas the same

compounds did not mimic the action of PDBu in GH3 cells, but instead enhanced K+-

induced 45Ca2+ influx into GH3 cells. Furthermore, the PDBu-induced enhancement

of K+-evoked 45Ca2+ influx into anterior pituitary pieces and the PDBu-induced

inhibition of K+-evoked 45Ca2+ influx into GH3 cells was reversed by the PKC

inhibitors, staurosporine and H7, but not their less active congeners K252a and

HA 1004 respectively. However, the PDBu-induced response in anterior pituitary was

distinguished by the greatly reduced potency of H7 but not the other antagonists.

Examples of two classes of endogenous activators of PKC, the diacylglycerol, 1,2-

dioctanoyl-ivz-glycerol (DOG) and the fatty acid, arachidonic acid (AA) each selectively

mimicked PDBu on only one of the two PKC-mediated responses. In anterior

pituitary, DOG (but not AA) could mimic PDBu; whereas in GH3 cells, only AA (but

not DOG) could mimic PDBu. The maximal inhibitory effect of AA in GH3 cells was

greater than that which could be achieved by phorbol esters. Evidence was obtained in
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support of a dual action of AA: (i) enhancement of PKC (perhaps a-isoform) activity

(which also occurs with PDBu) and (ii) the raising of cytosolic Ca2+ concentrations

(by AA but not PDBu). The data thus indicated that 'L'-type Ca2+ channels may be

subject to dual and reciprocal modulation in vivo by at least two distinct forms of PKC.

The working hypothesis proposed was that these phenomena may represent actions of

sequence isoforms of PKC. A programme of experiments was therefore carried out to

elucidate the biochemical pharmacology of particular PKC isoforms with the aim of

assigning an isoform identity to the PKCs regulating Ca2+ channels here. In specific

[3H]-PDBu binding studies using cytosol preparations from tissues with known

content of PKC isoforms, AA, at concentrations > 50 pM, was seen to enhance

specific [3H]-PDBu binding only to preparations with very high content of a-isoform
of PKC, whereas short, saturated acyl chain diglycerides (particularly DOG) displaced

[3H]-PDBu binding with distinctly lower affinity for the a-isoform of PKC, compared

to the other PKC isoforms investigated. Furthermore, in kinase enzyme activity studies

in vitro, preparations from tissue with a mixture of all known isoforms of PKC were

activated more potently by DOG than were those highly enriched in the a-isoform of

PKC. Therefore, DOG may have reduced affinity for and be poorly-active at a-PKC.

This may underly disparities in the effects of phorbol esters and diglycerides observed

at certain PKC-mediated responses in whole cells/tissues. Enzyme activity studies on

partially-purified PKCs also revealed an H7-insensitive, PKC activity. This was seen

in the Ca2+-independent activity of cytosol preparations from male and female rat

anterior pituitary, female rat midbrain and rat lung. This H7-resistant PKC may be that

which mediates the facilitatory modulation of K+-induced 45Ca2+ influx into anterior

pituitary cells and certain other PKC-mediated events in these cells. The

pharmacological properties of this PKC, especially H7-resistance, do not match those

described for any of the isoforms so far investigated in detail (a, 13, y, e).

Furthermore, the tissue-distribution of this H7-resistant PKC does not match the

distribution of any other known PKC isoform, and may represent a novel form

(perhaps sequence isoform) of PKC or an unknown PKC-like kinase.
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CHAPTER 1

Introduction



1.0. Rationale for Anterior pituitary cell Ca2+channels

as a model for protein kinase C isoform action

Current investigation within our laboratory has revealed various

pharmacologically distinct profiles of rat anterior pituitary function. For example, in

studies measuring the secretion of growth hormone and luteinising hormone, and in the

priming phenomenon of luteinising hormone releasing hormone, various disparities

between the pharmacological profdes of protein kinase C function have been observed

using the PKC modulators, H7,1,2-dioctanoyl-sn-glycerol and mezerein.

Voltage-dependent Ca2+ channels are present in both rat anterior pituitary

and GH3 cells (see section 1.3). Anterior pituitaries contain a mixed population of cells

including mainly (approximately 50%) somatotrophs and some gonadotrophs, which

are both known to possess marked 'L'-type Ca2+ channel activity (see Mason et al,

1988; Thorner et al, 1988). Similarly in GH3 cells, an 'L'-type Ca2+ channel activity is

present (Marchetti and Brown, 1988). The exact composition of voltage-dependent

Ca2+ channels in both preparations is at present uncertain, especially since the existence

of the newly discovered 'P'- and 'Bl'-type Ca2+ channels remains to be characterised

in both tissues, however the presence of 'T'- a nd possibly 'N'-type Ca2+ channels in

GH3 cells has been reported (Marchetti and Brown, 1988; Suzuki and YoshiOka,

1987). The major component of Ca2+ channel activity in both preparations still remains

of the 'L'-type due to the favourable conductance and poor inactivation of the channel

(see Table 1.2, in section 1.3).

Activation of PKC can either lead to an increase or decrease in 'L'-type

Ca2+ channel activity (see section 1.3) and the two distinct PKC-phosphorylation sites

on the 'L'-type Ca2+ channel (ai and 6 subunits) may represent the sites of either the

inhibitory or facilitatory influence on the channel caused by PKC. It is not

unreasonable to assume that the dual modulation of the 'L'-type Ca2+ channel in these

preparations may be due to the opposing actions of distinct isoforms of PKC. It is also
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hoped that the observation of any similar pharmacological profiles of protein kinase C

between 'L'-type Ca2+ channel function in anterior pituitary cells and anterior pituitary

functional studies (eg, secretion studies carried out in parallel) may represent separate

ways of investigating the same forms of PKC.

It is for these reasons, that the effect of PKC modulators on depolarisation-

induced 45Ca2+ influx into rat anterior pituitary prisms and GH3 cells was investigated,

with a hope that the models may reveal differing actions of distinct forms (perhaps

sequence isoforms) of PKC. Such models would enable any pharmacological

differences to be characterised and to provide supplementary investigations into the

neuroendocrine effects of PKC modulators on anterior pituitary which ran concurrently

with the investigations here. Ultimately, any pharmacological distinctions between

differing forms of PKC could be exploited in an array of tests in an attempt to reveal

any PKC isoform-specific sites or functions that may operate in the rat anterior pituitary

gland in vitro.

The following sections outline those fields, knowledge of which was

essential to the investigations carried out within this thesis.

1.1. Signalling through phosphoinositide-hydrolysis

In the 1950s it was first recognised that the stimulation of cell surface

receptors could lead to an increased metabolic turnover in the inositol phospholipids of

cells (Hokin and Hokin, 1953). It was demonstrated in pigeon pancreatic slices that

carbachol induced a rapid incorporation of 32P orthophosphate into the phospholipids,

phosphatidylinositol (Ptdlns) and phosphatidic acid. It later became evident that this

incorporation of 32P resulted from the enhanced breakdown and re-synthesis of inositol

phospholipids, which also occurs in many different cells to extracellular signals such as

certain hormones, neurotransmitters, antigens, growth factors and many other

biologically active substances (Michell, 1975; Fishers al, 1984; Downes and Michell,

1985). It was proposed by Durrell et al (1969) that the increased phosphoinositide

3



metabolism may be part of the function of the receptor. Although originally thought to

be a consequence of the Ca2+ signal that was seen, it was not until 1975 that Michell

postulated that this inositol phospholipid breakdown (caused by receptors that raised

intracellular Ca2+ levels) is what actually causes the gating of Ca2+; while having

previously shown that the phospholipids phosphatidylinositol 4-phosphate

(PtdIns(4)P) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) are produced

from Ptdlns by sequential phosphorylation of the myo-inositol moiety (Michell and

Hawthorne, 1965; Kai et al, 1966). In 1983, Streb et al demonstrated that the water-

soluble molecule inositol-1,4,5-trisphosphate (Ins(l,4,5)P3), one of the products of

PtdIns(4,5)P2 hydrolysis by phosphoinositide-specific phospholipase C (PI-PLC) (see

Figure 1.1), acts as a messenger to mobilize Ca2+ from intracellular stores, probably

the endoplasmic reticulum. The other product of PtdIns(4,5)P2 hydrolysis, 1,2-

diacylglycerol being a lipid is presumed to remain in membranes, where it causes the

activation of protein kinase C (PKC) (Nishizuka, 1983; 1984a; 1984b; 1984c; 1986).

The formation of the substrate for PI-PLC, PtdIns(4,5)P2, occurs initially

by phosphorylation of the inositol structure Ptdlns at its 4-position to produce

PtdIns(4)P. This phospholipid can then by phosphorylated at the 5-position to produce

PtdIns(4,5)P2, which is the parent molecule for Ins(l,4,5)P3 and diacylglycerol

production. Both phosphorylation reactions occur through specific kinases (Michell,

1975). PtdIns(4,5)P2 can be either dephosphorylated by specific phospho-

monoesterases back to PtdIns(4)P and Ptdlns, which has become known as the "futile

cycle" which occurs mainly in the absence of receptor stimulation of PtdIns(4,5)P2

hydrolysis (Berridge and Irvine, 1984).

The existence of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)

has been detected in response to N-formylmethionylleucylphenylalanine (f-met-leu-

phe), and the production of this novel phosphoinositide was suggested to occur by

phosphorylation of PtdIns(4,5)P2 by a 3-kinase (Carpenter and Cantley, 1990; Stevens

et al, 1991) although PtdIns(3,4,5)P3 could also occur by a 5-kinase acting on
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Figure 1.1. Diagram of the PI-PLC generation of Ins(l,4,5)P3 and

1,2-diacyl-sn-glycerol from PtdIns(4,5)P2-

The site of potential hydrolysis by phospholipase Ai (PLAi), phospholipase A2

(PLA2), phospholipase C (PLC) and phospholipase D (PLD) is indicated. The

polyphosphoinositide shown here contains stearic and arachidonic acid as acyl chains

and is known to occur physiologically and is a preferred substrate for PI-PLC (Downes

and Michell, 1985), however, other combinations of acyl chains occur, which are other

possible substrates for the enzymes shown. The figure is adapted from Downes and

Michell (1985) and Meldrum etal (1991).
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PtdIns(3,4)P2, as was proposed for platelets (Majerus et al, 1990). The function of

PtdIns(3,4,5)P3 is unknown (especially as it is metabolically 'expensive' to make) as

this novel phosphoinositide is not a good substrate for PI-PLC (Meldrum et al, 1991).

The formation of various inositol phosphates and diacylglycerol from

phosphatidylinositols is catalysed by the Ca2+-dependent enzyme, PI-PLC. However,

PI-PLC is not a single entity, but exists as a large family of isoenzymes (a, 13, y and 8

families) with varying requirements for Ca2+ to achieve maximal activity (Crooke and

Bennett, 1989; Rhee et al, 1989; Meldrum et al, 1991). The PI-PLC isoenzymes are

localized throughout the body in both cytosol and membranes and generally have a

greater substrate preference for PtdIns(4,5)P2 than for PtdIns(4)P or Ptdlns. Some of

the PI-PLC isoenzymes are activated by GTP analogues and it is generally accepted that

PI-PLC activity (at least for 61 isoform (Taylor et al, 1991)) is controlled by a specific

guanine nucleotide-binding (G) protein(s), which can be pertussis toxin-blocked or -

insensitive (Medrum et al, 1991; Simon et al, 1991). In general, those receptors which

are considered to interact with the second messenger-producing enzymes are thought to

do so not directly, but by activating a specific G protein first, which then transduces the

signal to the second messenger-producing enzymes (Neer and Clapham, 1988; Simon

et al, 1991). Thus extracellular signals can remain outside the cell and influence

intracellular events by utilising transduction processes which control the intracellular

concentrations of a variety of second messenger molecules, which function to achieve

the signal-specific cellular response. G proteins also exist as a family of subtypes

(Simon et al, 1991) which can interact with ion channels as well as second messenger-

producing enzymes (Rosenthal and Schultz, 1987; Neer and Clapham, 1988). G

proteins are heterotrimers containing an a-, 6- and y-subunit. The By-subunits do not

readily dissociate in vitro and have an uncertain function. Once receptor activated, the

a-subunit of a G protein dissociates from the By-subunits and binds GTP. The a-

subunit is now active and carries out its regulatory function until its intrinsic GTPase

activity cleaves the terminal phosphate of GTP to leave GDP. The a-subunit now has

5



high affinity for the By-subunits again and once they are bound, the holoenzyme is now

inactive and ready to restart its cycle of receptor-induced activity again (Graziano and

Gilman, 1987). Cholera and pertussis toxins can also ADP-ribosylate specific amino

acid residues on the a-subunits of certain G proteins, producing either inactive or

continually active G protein a-subunits (Graziano and Gilman, 1987). The identity of

the G protein(s) which activate PI-PLC enzymes has been unclear until more recently, a

new class of G protein seems to be able to fulfil the role of activating PI-PLCs. The

more convincing activators of PI-PLC appear to be the Gq class of G proteins

(Strathman and Simon, 1990; Simon et al, 1991; Smrcka et al, 1991), and it was

reported that a-subunits of these G proteins activated the Bl-isozyme, but not the yl- or

8l-isozymes of PI-PLC (Taylor et al, 1991). It is possible that each PI-PLC

isoenzyme has a specific G protein activator (if indeed one is needed) and the continued

discovery of more classes of G proteins may see further types which play a role in

phosphoinositide-signalling processes (Simon et al, 1991).

The PI-PLC catalysed hydrolysis of PtdIns(4,5)P2 results in the formation

of Ins(l,4,5)P3, which binds to its own specific receptor (Snyder and Supattopone,

1989). The Ins(l,4,5)P3 receptor has high selectivity for Ins(l,4,5)P3 (Kp = 40 nM)

over other inositol phosphate metabolites and Ins(l,4,5)P3 binding is reduced by

physiological concentrations of Ca2+ ions (Kj = 500 nM) (Worley et al, 1987). It has

been proposed by Irvine (1991), that the Ins(l,4,5)P3 receptor could contain an

allosteric site for Ca2+ on its lumenal surface, which potentiates the action of

Ins(l,4,5)P3. Such an interaction could account for Ca2+-dependent Ca2+ release from

these calcium stores (Berridge and Irvine, 1990), and was proposed to be the

mechanism of the spontaneous Ca2+-release in Ca2+-overloaded hepatocytes (Missiaen

et al, 1991). This Ins(l,4,5)P3 receptor appears to be localised on the rough

endoplasmic reticulum (a store of Ca2+ ions) and consists of four identical 260 kD

subunits, which form a Ca2+-channel complex (Snyder and Supattapone, 1989). The

Ins(l,4,5)P3 receptor is also selectively phosphorylated by cyclic AMP-dependent
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protein kinase, which reduces 10 fold the potency of Ins(l,4,5)P3 as a calcium-

releaser. The Ins(l,4,5)P3 second messenger molecule is metabolised to

dephosphorylated myoinositol (Berridge and Irvine, 1989). The enzymes which

dephosphorylate inositol phosphate (inositol phosphate phosphatases) and in particular,

the enzyme, inositol polyphosphate-1-phosphatase, are sensitive to non-competitive

inhibition by Li+ ions which is activity-dependent (Berridge and Irvine, 1989).

Lithium treatment gradually results in the depletion of cellular inositol stores, indirectly

causing a reduction in the ability of the cells to produce Ins(l,4,5)P3 (Berridge et al,

1982), presumably most marked for formerly overactive responses. This function of

Li+ is interesting as it may explain the actions of lithium, which is presently used

clinically to treat manic-depressive illness.

Ins(l,4,5)P3 can be further phosphorylated to inositol 1,3,4,5-

tetrakisphosphate (Ins(l,3,4,5)P4) which itself is reported to possess a second-

messenger function in some systems, in that it may promote the transfer of calcium into

Ins(l,4,5)P3-sensitive Ca2+ pools (Berridge and Irvine, 1989). The formation of

Ins(l,3,4,5)P4 could occur by hydrolysis by PI-PLC of the more recently discovered

phosphoinositide, PtdIns(3,4,5)P3 (Stevens and Irvine, 1991; Carpenter and Cantley,

1990; Majerus et al, 1990; Omann and Saklar, 1989; Whitman et al, 1988).

PtdIns(3,4,5)P3 as well as PtdIns(3,4)P2 are not normally present at significant levels

in quiescent, unstimulated cells, however they can be generated upon cell stimulation

(Traynor-Kaplan et al, 1988; Auger et al, 1989; Kucera and Rittenhouse, 1990). The

activity of a Ptdlns(3) kinase enzyme has been associated with a number of tyrosine

kinase oncogene products and growth factor receptors (Kucera and Rittenhouse, 1990;

Bjorge et al, 1990; Fukui et al, 1989); however the role of these novel

phosphoinositides may well be important, but remains poorly understood, especially as

they do not appear to be good substrates for any of the PI-PLC enzymes thus far

investigated (Meldrum et al, 1991). It is possible that PtdIns(3,4,5)P3 could be cleaved

to produce Ins(l,3,4,5)P4 without the production of Ins(l,4,5)P3, from which
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Ins(l,3,4,5)P4 is normally derived. Inositol pentakisphosphates and inositol

hexakisphosphates are produced within cells (Berridge and Irvine, 1989), but their

function is unknown, although it has been suggested that they are extracellular signals

(Vallejo etal, 1987).

Irrespective of which phosphoinositide is acted upon by PI-PLC, and

irrespective of which inositol phosphate(s) are derived and which of their metabolites

occur, the remaining portion of the phosphoinositide molecule after PI-PLC activity, is

always diacylglycerol. Diacylglycerol is an endogenous activator of PKC, and

completes the second of the two signalling processes which are utilised by receptors

which act through polyphosphoinositide hydrolysis to access this "bifurcating

pathway".

1.2. The control of protein kinase C activity

1.2.1. Protein kinase C

Protein kinase C was identified by Nishizuka and his co-workers in 1977

(Takai et al, 1977; Inoue et al, 1977) as a proteolytically-activated protein kinase which

had no obvious role at that time. It was later shown to be a Ca2+-activated,

phospholipid- (particularly phosphatidylserine) dependent enzyme (Takai et al, 1979a)

which was modulated by diacylglycerol, resulting in a greatly increased affinity for

Ca2+ (Takai et al, 1979b; Kishimoto et al, 1980). Thereby, diacylglycerols can

effectively activate protein kinase C without any change in Ca2+ levels (Kaibuchi et al,

1981). The enzyme is known to be ubiquitously distributed in tissues and organs (Kuo

et al, 1980). In tissues other than brain, the enzyme, extracted in the presence of Ca2+

chelators, is recovered mainly from the soluble fraction as the inactive form (Kikkawa

et al, 1982; Girard et al, 1986) and can be translocated to the membranous fraction in a

Ca2+ dependent fashion when cells are stimulated (Kraft and Anderson, 1983; Hirota et

al, 1985; Wolf et al, 1985). Activation of protein kinase C requires a diacylglycerol in

a 1,2-sn configuration, with various fatty acid chain length compositions, but those
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diacylglycerols containing unsaturated fatty acids are the most active (Mori et al, 1982).

The 2,3-sn- and 1,3-diacylglycerol stereoisomers are incapable of modulating activity

of the enzyme, whereas 1,2-rac or sn diacylglycerol can activate PKC (Rando and

Young, 1984; Boni and Rando, 1985). Extensive analyses of the activation

requirements for PKC have resulted in a two step model of activation (Bazzi and

Nelsestuen, 1988; Hannun and Bell, 1990). Firstly, soluble PKC (which is inactive

and readily interacts with MgATP) binds anionic phospholipids (especially

phosphatidylserine) and Ca2+,which results in PKC becoming membrane-associated.

This membrane-associated form of PKC is what is known as translocated, but has

relatively low kinase activity. Diacylglycerols or phorbol esters can then induce greater

PKC activity. High levels of diacylglycerol/phorbol ester and Ca2+ cause the PKC to

become membrane-inserted and lose most of its co-factor requirements for activity.

Mg2+ ions are necessary for enzyme activity, and the stoichiometry of the interaction of

the co-factors in vitro is 4 - 10 phosphatidylserine molecules to one

diacylglycerol/phorbol ester molecule to one Ca2+ ion for every monomeric PKC

molecule (Hannun et al, 1986a; Ganong et al, 1986; Hannun and Bell, 1990).

The earlier biochemical characterisation of protein kinase C indicated that it

consisted of a single polypeptide chain with molecular weight of approximately 77 kD

with two functionally different domains, which could be separated by Ca2+-dependent
thiol proteases (Kikkawa et al, 1982; Kishimoto et al, 1983). One fragment was

hydrophobic in nature and could bind to membranes, whereas the other smaller

fragment was the hydrophilic catalytic region which was fully active without either

Ca2+, phospholipids or diacylglycerol. This limited proteolysis to produce a regulatory

and catalytic subunit respectively, could be performed by calpain and was known as

proleolytic 'activation', as it created an unregulated constitutively-active kinase

molecule which later became known as PKM (Kishimoto et al, 1983). It is still unclear

as to the physiological role of this proteolysis, but it may contribute to sustained kinase

activity which is necessary in situations of maximal stimulation. Membrane-bound

9



PKC was more susceptible to this proteolytic activation (Kishimoto et al, 1983). Both

the holoenzyme and the catalytic-fragment of the proteolytically-cleaved kinase can

phosphorylate in vitro serine and threonine residues (but not tyrosine residues) on a

vast number of proteins from most tissues (Nishizuka et al, 1984; Nishizuka, 1986;

and see Table 1.1). In addition to these other proteins, PKC can also phosphorylate

itself at several sites (Huang et al, 1986; Mochly-Rosen and Koshland, 1987; Newton

and Koshland, 1990; Flint et al, 1990) which leads to the enhanced activity of the

enzyme.

The characterisation of PKC, notably by Nishizuka's group, and the

separate characterisation of the receptor for the phorbol ester tumour promoters (Niedel

etal, 1983; Sando and Young, 1983; Ashendel et al, 1983; Leach et al, 1983) revealed

that protein kinase C enzymatic activity and phorbol ester binding activity co-purified,

ultimately to homogeneity. Steric similarities exist between the 12- and 13-position

side-groups in many phorbol ester molecules and the 2- and 3-acyl chains in

diacylglycerols, one of the endogenous activators of PKC (Nishizuka, 1984a). Indeed,

1,2-diacylglycerols displace the binding of 12,13-phorbol ester ligands to PKC (Leach

et al, 1983) providing evidence that phorbol esters mimic diacylglycerols and activate

PKC at its diacylglycerol binding site. The identification of protein kinase C as the

major target for the phorbol ester tumour promoters implicated the importance of

protein kinase C in cell growth, differentiation and neoplasia; typical actions of the

phorbol ester tumour promoters. The oncogene v-raf is distantly related to PKC and

other serine and threonine kinases (Moelling et al, 1984; Sutrare et al, 1984). This fact,

in addition to the high specificity of phorbol ester tumour promoters for activating

PKC, strongly furthermore implicates a role for PKC in normal and disordered cell

signalling states.
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Table 1.1. Table of the known and possible substrates of protein

kinase C in vivo.

The data for this table were compiled from information supplied by Nishizuka (1986),

Campbell et al (1988), Shearman et al (1990), Huang (1989), Bushfield et al, (1990)

and Katada et at (1985).



Table 1.1

Receptor proteins
epidermal growth factor receptor
insulin receptor
somatomedin C receptor
transferrin receptor
interleukin-2 receptor
nicotinic acetylcholine receptor
B-adrenergic receptor
immunoglobulin E receptor

Membrane proteins
Ca2+-transport ATPase
Na+/K+ ATPase
voltage-dependent Na+-channel
K+-channels (voltage-dependent, Ca2+-activated, M, S and Type III)
Na+/H+ exchange system
'L'-type Ca2+ channel (ai- and B-subunits)
'N'-type Ca2+ channel
T'-type Ca2+ channel
CP-channels (outwardly rectifying and GABAa complex)
glucose transporter
GTP-binding protein (at least Gi2 and G0)
HLA antigen
chromaffin granule-binding protein
synaptic B50 (Fl) protein

Contractile and cytoskeletal proteins
myosin light chain
troponin T and I
vinculin
filamin
caldesmon
cardiac C-protein
microtubule-associated proteins (MAP-2 and tau)

Enzymes
glycogen phosphorylase kinase
glycogen synthase
phosphofructokinase
B-hydroxy-B-methylglutaryl-coenzyme A reductase
tyrosine hydroxylase
NADPH oxidase
cytochrome P450
guanylate cyclase
DNA methylase
myosin light chain kinase
initiation factor 2

Other proteins
neuromodulin (also designated P-57, GAP(growth associated protein)-43, pp46,

B-50 or F-l)
fibrinogen
retinoid-binding proteins
vitamin D-binding protein
ribosomal S6 protein
GABA modulin
stress proteins
myelin basic protein
high-mobility group proteins
middle T antigen
pp60src protein
p87, pl7
myristolated alanine-rich C kinase substrate (MARCKS)
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1.2.2. Protein kinase C isoenzymes

The discovery by Nishizuka's group in 1977 of protein kinase C led to its

original classification as a Ca2+-activated, phospholipid-dependent protein kinase.

Since that time, it has become evident that protein kinase C consists of a family of more

than one subspecies (Nishizuka, 1988). Initial screening of various complementary

DNA (cDNA) libraries revealed four subspecies of a calcium-dependent nature (Parker

et al, 1986; Coussens et al, 1986; Knopf et al, 1986; Ono et al, 1986; Kikkawa et al,

1987; Ohno et al, 1987; Kubo et al, 1987; Ohno et al, 1988a). This group of PKC

isozymes (known as the A-series (see Figure 1.2)) all required Ca2+ for activation and

contained isoforms which were designated as a, 61, 611 and y (61 and 611 being

alternative-splice variants from the same gene (Ono et al, 1987a)). The coding

sequences for this group of PKC cDNAs contain four conserved (CI - C4) and five

variable (VI - V5) regions. Using a mixture of a, 611 and y cDNA probes under lower

stringency conditions, three further subspecies of PKC were identified and were

designated as the 5, e and t, isoforms of protein kinase C (Ono et al, 1987b; Ono et al,

1988a; Ohno et al, 1988b; Schaap et al, 1989). This group of PKC-isoenzymes was

collectively known as the B-series PKC-isoforms which were of considerable interest

as they did not require Ca2+ for their kinase activation. The coding sequences for the

B-group cDNAs revealed broadly equivalent conserved and variable regions, but the

C2 region which is highly conserved among the A-group PKCs, is absent from group

B-PKCs and may be the region responsible for conferring Ca2+-dependency on the

enzymes. The CI region consistently contains a pseudosubstrate sequence (in a-PKC,

for example, Arg-Lys-Gly-Ala-Leu-Arg-Gln-Lys), which may be responsible for

maintaining the enzyme's kinase region in an inactive state in the absence of activators

(House and Kemp, 1987). Substitution of the alanine residue with serine converts the

inhibitory substrate peptide equivalent to this sequence into an excellent substrate for

phosphorylation. The CI region of the enzyme also contains a tandem repeat cysteine-
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rich Zn2+-finger sequence, Cys-X2-Cys-Xi3(i4)-Cys-X2-Cys-X7-Cys-X7-Cys (where
X represents any amino acid), found in many metalloproteins and DNA-binding

proteins that are involved in transcriptional regulation (Berg, 1986). In the case of

PKC however, the sequence is considered to be the site of phorbol ester binding to

PKC (Ono et al, 1989). Interestingly, it has also been reported that PKC also has the

ability to bind to DNA (Testori etal, 1988) and is present in rat liver nuclei (Masmoudi

et al, 1989). The V3 region of the PKC family appears to join the catalytic and

regulatory domains (Parker et al, 1986; Coussens et al, 1986) and encompasses

calpain- and trypsin-sensitive sites of the enzymes which appear to be critical in the

proteolytic degradation of the PKCs (Kishimoto et al, 1989; Huang et al, 1989). There

is evidence that different subspecies may be degraded at different rates (Kishimoto et al,

1989). The C3 region of the enzymes contains a sequence which is typical of a

consensus sequence in ATP-binding proteins. Interestingly, a second consensus ATP-

binding site sequence is also present in the C4 region of the a- and B, but not the y

isoforms (Huang, 1989).

It appears (at least for the Ca2+-dependent PKCs), that it is necessary for

them to translocate to and bind to membraneous phospholipids (notably

phosphatidylserine, phosphatidylinositol or phosphatidylglycerol prior to their

activation (Huang, 1989; Schaap and Parker, 1990)). It is in this membrane-bound

state, that diacylglycerols or phorbol esters are considered to stabilize the membrane-

associated PKC and activate the enzyme fully (Bazzi and Nelsestuen, 1988). It is less

clear however, how the more recently discovered Ca2+-independent PKCs will be

encouraged to translocate and activate (should this be necessary), according to this

oversimplified scheme of PKC translocation and activation.

All PKC isoforms thus far discovered, show differential and distinctive

tissue and cellular distribution (Nishizuka, 1988a). Protein kinase C-a and PKC-B are

widely distributed throughout the body, with highest levels being found in the central

nervous system and in spleen. Naor et al (1989) demonstrated that a- and B-PKC, but
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Figure 1.2. Simplified diagram of the sequences of each of the seven

sequenced PKC isoforms.

These isoenzymes of PKC have been grouped into two classes, those considered to

require Ca2+ for their activation (a, 61, 611 and y isoforms, termed the A series), and

those isoenzymes considered to be calcium-independent with respect to their activation

kinetics (5, £ and t, isoforms, termed the B series). The shaded regions indicate the

regions with marked homology between the isoenzyme sequences (termed conserved,

C) and the unshaded regions indicate sequences with variable (V) homology amongst

the isoenzyme sequences. This figure is adapted from Huang (1989).
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not y-PKC, would induce luteinising hormone release from permeabilised

gonadotrophs. The y-isoform of PKC is found in high levels in the central nervous

system (Shearman et al, 1988) but is absent from peripheral tissue. However, in the

U937 promonocytic (non-neuronal) cell line, y-PKC is absent, but it has been shown to

be induced by TPA treatment (Strulovici et al, 1989). Similar results were found in the

related cell line, HL-60, in which PKC-y was expressed using either

dimethylsulphoxide or retinoic acid (Makowske et al, 1988). The B-group series of

PKCs are found to be differentially distributed throughout the body, but are most

highly expressed in the central nervous system (Nishizuka, 1988) and it is possible that

they can be distinguished from the A series isoforms by their down regulation

behaviour. Treatment of thymocytes with phorbol ester, down-regulates PKC-8,

without any down-regulation of PKC-e, however, thrombin induced the down-

regulation of both isoforms (Strulovici et al, 1991). This result indicates that

differential regulation of isoforms can occur in vivo. PKC-isoforms may also have

specific localisations at the subcellular level (Nishizuka, 1988) which raises the

question as to whether isoform-specific phosphorylation targets exist in cells or

whether PKC isoform-dependent cell-functions occur, and indeed whether

pharmacological tools can be developed by which to selectively interfere with these

PKC isoform-selective actions, and give us a fuller understanding of PKC isoform-

specific functions?

1.2.3. Protein kinase C pharmacology

The idea that the isoforms of protein kinase C (PKC) may display distinct

pharmacological properties is of considerable interest, as pharmacological agents with

sufficiently selective action would be useful for characterisation of the cellular actions

of PKC isoforms and may provide novel therapeutic opportunities. Due to PKC being

involved in cellular processes such as cell growth/differentiation and tumourogenesis,

drugs which can successfully modulate PKC function may be of benefit clinically, for
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example in the treatment of cancer, memory loss and neuronal damage (see Nishizuka,

1984a; Nishizuka, 1988; Blumberg, 1988).

Protein kinase C was originally classified by Nishizuka and his co-workers

in 1977 as a calcium-activated, phospholipid-dependent protein kinase. Since that time,

Ca2+-activated, phospholipid-dependent PKC has been discovered to represent part of

a family of at least seven isoforms (Nishizuka, 1988), four (a, 61 and 611 and y) being

calcium-dependent (termed A series), and three (8, e and Q being calcium-independent

(termed B series) with regard to their activation. Thus, one simple pharmacological

distinction between PKC isoforms is already evident, and agents which activate PKC

without raising cytosolic calcium levels (for example diacylglycerols) if they are

generated by means outwith phosphoinositide hydrolysis (or applied exogenously),

should preferentially activate the Ca2+-independent (B-series) isoforms of PKC, over

those isoforms which additionally require Ca2+ for their activation (A-series) and may

lead to a quite distinct array of PKC-mediated actions (proposed by Parker et al, 1989).

Phosphoinositide hydrolysis in response to receptor activation would thus be likely to

result in the activation of both A and B series PKC isoforms. There are, however,

already evidence which conflicts with these logical predictions. In HeLa cells, which

possess a-, 6- and e-PKC isoforms, interferon-a does not cause the hydrolysis of

phosphoinositides but induces phosphatidylcholine (PC) hydrolysis (Pfeffer et al,

1990). Phosphatidylcholine hydrolysis induced by interferon-a selectively induces the

activation/translocation of the 6 (calcium-dependent)-isoform of PKC (Pfeffer et al,

1990). It would be expected that the e (calcium-independent)-isoform of PKC should

selectively be activated as PC hydrolysis would produce diacylglycerol (which activates

PKC) and the apparently inert choline phosphate. Thus there may well be further

aspects of the endogenous regulation of different PKC isoforms yet to be elucidated.

Isoform differences are also evident when considering the phospholipid-

dependence of PKC. Huang et al (1988) showed that y-PKC was more susceptible

than a- or 6-PKC to activation by a variety of phospholipids including
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phosphatidylserine, phosphatidylglycerol, phosphatidic acid and cardiolipin. The

purified y-isoform of PKC was also more susceptible than the a- or B-isoforms to an

inactivation process elicited by the same phospholipids which occurs in the absence of

Ca2+ (Huang and Huang, 1990). Activation of PKC isoforms by fatty acids which

show some discrimination between different isoforms has also been described.

Arachidonic acid (AA), as well as some other unsaturated fatty acids, have been shown

to activate PKC in the absence (McPhail et al, 1984; Murakami and Routtenberg, 1985;

Leach and Blumberg, 1985; Murakami et al, 1986; Hanson et al, 1986; Sekiguchi et al,

1987; Sekiguchi et al, 1988; Seifert et al, 1988; Naor et al, 1988a; Shearman et al,

1989a; Burns et al, 1990) or the additional presence (Shinomura et al, 1991) of

diacylglycerol. Naor et al (1988a) have shown that purified hypothalamic PKC

isoforms responded differently in their activation by AA. In the absence of CaCl2

(0.3 mM), neither the a- nor the B-isoform of PKC was stimulated significantly by

AA, whereas the y-isoform displayed a biphasic stimulation to increasing

concentrations of AA, with highest activity at 12 |iM AA. In the cell free system in the

presence of calcium, y-PKC activity to AA was unchanged, but a-PKC was activated

in a concentration-dependent manner with increasing doses of AA (up to 100 |iM AA,

which induced 70% of the maximal phorbol-elicited a-PKC activity). The 6-isoform

of PKC is also activated by fatty acids, but to a lesser extent than a-PKC (Sekiguchi et

al, 1987; Sekiguchi et al, 1988; Naor et al, 1988a). Linoleic acid is also a good

activator of y-PKC and oleic acid shows moderate ability to activate y-PKC, but lipoxin

A4 is as potent (if not more so) as AA in the activation of the PKCs (Hanson et al,

1986; Shearman etal, 1989a).

Some PKC isoform differences are also apparent in activation via the site

recognised endogenously by diacylglycerols (Nishizuka, 1984a) and exogenously by

phorbol esters (Blumberg, 1988), although the basis for such discrepancies and the

PKC isoforms responsible have rarely been identified. The diacylglycerol analogue,

1,2-dioctanoyl-sn-glycerol (DOG), has been shown to mimic selectively only one
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response of the phorbol ester-induced changes in activity of cardiac 'L'-type Ca2+-
channels (Lacerda et al, 1988). Similarly, phorbol ester-stimulated interleukin IB

messenger ribonucleic acid (mRNA) induction and protein phosphorylation patterns

could be only partially mimicked by DOG (Strulovici et al, 1989). It has been reported

that B-PKC(s) are more sensitive to activation by diacylglycerols in the absence of Ca2+

than a- ory-PKC (Nishizuka, 1988; Sekiguchi et al, 1988), however, other reports

which used expressed BII-PKC state that this isoform is less sensitive to activation by

diacylglycerol in either the absence or presence of Ca2+ (Burns et al, 1990). The

diacylglycerols DOG and l,2-didecanoyl-£«-glycerol were able to stimulate mouse

epidermal PKC activity to maximal levels similar to those seen with the phorbol ester,

phorbol 12-myristate 13-acetate (PMA) and a structurally related analogue of PMA,

mezerein (Smart et al, 1989). Mezerein is an activator of PKC, but its range of

biological actions do not fully mimic that of other biologically active phorbol esters

such as PMA (Blumberg, 1988; Jaken et al, 1983a). The phorbol esters, of which

PMA is typical, act as full tumour promoters, produce inflammation and induce

ornithine decarboxylase activity amongst many other actions. In contrast, mezerein and

indeed certain phorbol ester analogues such as 12-deoxyphorbol 13-isobutyrate (DPB),

phorbol 12-myristate 13-acetate 4-0-methyl ether (MPMA) and phorbol 12-retinoate 13-

acetate (PRA), display some of of the PMA-induced responses, but not the full, broad

spectrum, activity of the latter (Blumberg, 1988; Dunn and Blumberg, 1983). The

selective biological nature of mezerein was lost in an unsaturated analogue of mezerein,

octahydromezerein (Sharkey et al, 1989) as assessed by murine skin tumour promotion

and [3H]-PDBu binding studies. The selective nature of mezerein could possibly be

due to its preferential association of a 'cryptic' state of down-modulated PKC (with

reduced affinity to phorbol esters) described by Jaken et al (1983b). However, the

postulate by Jaken et al (1983b) was before the knowledge that various forms

(including sequence isoforms) of PKC existed, and mezerein to this date remains to be

a curious compound of current investigation, with the precise mechanism of its
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selective nature being poorly understood. Mezerein, DPB, MPMA and PRA show

selectivity in binding to one or more of the multiple phorbol ester binding sites

previously identified using [3H]-DPB and [3H]-phorbol 12,13-dibutyrate (PDBu)

binding in mouse skin (Delctos etal, 1980; Driedger and Blumberg, 1980; Dunn and

Blumberg, 1983), which may represent different forms/isoforms of PKC.

It has also been reported that phorbol esters have different affinities towards

purified PKC isoforms (Sekiguchi etal, 1988; Naor, 1990; Marais and Parker, 1989)

where PMA was a more potent activator of B-PKC than of a-PKC and y-PKC, being

less well activated by PMA. The Km values for the purified a, 6i and y isoforms of

PKC showed only modest differences in affinity towards PMA, and Vmax values

calculated per mole of purified protein gave no suggestion of reduced efficacy at any of

the PKC subspecies tested (Marais and Parker, 1989). Resiniferatoxin (RTX) is a

naturally occurring diterpene which is structurally related to phorbol esters and is

known to be an analogue of capsaicin (the irritant in red pepper, which causes release

of neuropeptides (including substance P) from small primary afferent neurones)

(Szallasi and Blumberg, 1989a; de Vries and Blumberg, 1989). Although much

weaker than PMA, RTX (and certain analogues) can act as weak activators of PKC

(Driedger and Blumberg, 1980; Ellis et al, 1987; Ryves et al, 1989). Like mezerein,

RTX shows only a narrow portion of the total spectrum of biological activity seen with

the conventional phorbol ester PMA (Szallasi and Blumberg, 1990) and may selectively

act on one or more of the PKC isoforms. A kinase activity similar to the PKCs but

selectively activated by RTX and only very poorly by phorbol esters has been described

but not fully characterised (Ryves et al, 1989; Evans et al, 1991).

It has been suggested that phorbol esters such as PMA could have actions

which are PKC-independent and may in part involve activation of phospholipases A2

and D (Kolesnick and Paley, 1987; Kiss et al, 1987; Billah and Anthes, 1990). It may

be therefore that the excess actions of phorbols over mezerein and other analogues are

spurious with respect to interactions with PKC subtypes. Nevertheless, it remains
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possible that some of the apparently selective agents such as mezerein or RTX may act

on a protein kinase which is either one of the PKC isoforms or is related to the PKC

family and is highly sensitive to mezerein and RTX, but rather less sensitive to PMA.

The same could also be true of the PKC-activating compound, bryostatin, which is

structurally unrelated to phorbol esters but can fully mimic some, but not all, of the

activities of PMA (Kiss et al, 1987; Zwelling et al, 1991). In GH4C5 cells, bryostatin

and DOG were shown to have differing specificities on a number of actions (including

cell stretching, prolactin release and prolactin synthesis) induced by these PKC

activators; however, bryostatin could displace f^HJ-PDBu binding and activate PKC

with the same ability as PMA (Ramsdell et al, 1986). The authors concluded that these

activators of PKC (bryostatin and DOG) could be selectively activating multiple forms

of the kinase.

Some less-well investigated activators of PKC include aplysiatoxin and

teleocidin, with its derivative (-)-indolactam V and its less active enantiomer (+)-

indolactam V (Fujiki et al, 1984) which show differences in affinity between models of

PMA-induced tumour promotion and were suggested to be possibly acting differentially

towards different PKC isoforms. Jeffrey and Liskamp (1986) used computer

molecular modelling techniques to study a range of phorbol ester-related compounds

with known carcinogenic properties, including PMA, PRA, mezerein, teleocidin and

4B-PDD. It was from these initial studies and from their own structural analyses that

Wender et al (1988) predicted that the newly-synthesised compounds ADMB (3-(N-

acetylamino)-5-(N-decyl-N-methylamino)benzylalcohol) and DHI (6-(N-decylamino)-

4-hydroxymethylindole) should act as activators of PKC. The prediction proved

correct in that both ADMB and DHI bound to PKC in competition with PDBu and acted

to exert PKC-mediated effects, but with reduced affinity compared to diacylglycerols

(Wender et al, 1988). These compounds have been used little since because of their

low potency, but have helped provide evidence for the key atomic structure necessary

to generate an active phorbol ester pharmacophore. In addition to an hydroxyl group in
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the B-configuration at position 4 of the phorbol structure (see structures section),

Gschwendt et al (1991) concluded that a carbonyl (C=0) group at position 3, and

hydroxyl (OH) groups at positions 9 and 20 of phorbol esters are essential for binding

to the putative phorbol ester binding site within PKC(s), however, the authors admit

that other positions may well also be crucial and that their interpretation could well turn

out to be simplistic.

Other activators of PKC with interesting profdes of activation include the

phorbol esters, 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA); Sapintoxin A

and a-sapanin acetate (Brooks et al, 1987; Brooks et al, 1990) which vary in their

dependence on Ca2+ for activation of PKC, and somewhat on their activation of

hydroxyapatite-separated PKC subspecies. Brooks et al (1990) concluded that the

actions of DOPPA were selectively on an as yet unidentified isoform of PKC, which is

not only present in platelets, but also in GH3 cells (Brooks et al, 1987). More recently,

Evans et al (1991) concluded that DOPPA was a selective activator of B-PKC although

e and C, isoforms were untested as such, and the purified enzyme fractions affirmed to

represent a, B and y isoforms were in fact admitted to be contaminated by varying

proportions of B series PKC isoforms.

A functional inhibition of PKC activity has been observed by a variety of

agents which interfere with the interaction of PKC with Ca2+/phospholipids,

diacylglycerols/phorbol esters, ATP or by inhibiting interaction of PKC with its protein

substrate. There are limitations in the specificity of the aforementioned interactions, in

that not only PKC, but other protein kinases, utilise some of these mechanisms of

activation, and in many cases pharmacological agents with selectivity for PKC over

other protein kinases would seem difficult to derive. Inhibition of the interaction of

Ca2+ and phospholipids with PKC can be achieved by agents such as trifluoperazine,

dibucane, adriamycin, polymixin B and melittin which are thought to disrupt the

binding of Ca2+ to the PKC/phospholipid complex (Hidaka and Hagiwara, 1987;

Huang, 1989), but these are also as effective at inhibiting Ca2+/calmodulin-dependent
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protein kinases. Due to their poor selectivity, these compounds are rarely used as

inhibitors of PKC.

Sphingosine is an 18 carbon sphingolipid which is a natural component of

membranes. Sphingosine competes with the Ca2+/phospholipid and the diacylglycerol

interaction with PKC and is a potent inhibitor of PKC activity (Hannun et al, 1986) but

is also reported to be equally effective at inhibiting Ca2+/calmodulin-dependent kinases

(Jefferson and Schulman, 1988) and has been termed a non-specific inhibitor of PKC

(Huang, 1989). Agents which have been cited as being inhibitors of PKC acting by

interfering with the interaction of diacylglycerol/phorbol esters are cremophor EL (Zhao

etal, 1989), l-0-hexadecyl-2-0-methyl-rac-glycerol (AMG-C16) (Kramer etal, 1989)

and calphostin C (Kobayashi et al, 1989), and they are purported to exhibit reasonable

selectivity for PKC over other kinases (in particular calphostin C, which had 1,000

times greater an affinity for inhibition of PKC than for inhibition of cyclic AMP-

dependent and tyrosine-specific protein kinases).

Competition with ATP for the nucleotide binding site in PKC is the

mechanism of inhibition that is thought to be used by H7 (l-(5-isoquinolinesulfonyl)-2-

methylpiperazine) and related isoquinolines (Ohta et al, 1988). As the ATP-binding site

is highly conserved between the kinases, it would be expected that inhibitors using the

ATP binding region as a site of action would not be able to exert any selectivity for

PKC. However, H7 does have some selectivity towards PKC over a variety of other

kinases (Hidaka et al, 1984) but only when comparing the actions of H7 to that of a

control analogue (HA 1004) which has similar inhibitory activity to H7 for myosin light

chain kinase, cyclic GMP- and cyclic AMP-dependent protein kinases, but a reduced

inhibitory activity for PKC when compared to H7. It is interesting to note, that a- and

B-PKC (but not y-PKC) have an additional region within the sequence representing a

second putative ATP-binding site as well as the characterised ATP-binding site

sequence found on all seven PKC isoforms (see Figure 1.2; Huang, 1989).
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Like H7, the microbial products staurosporine and K252a inhibit PKC

apparently in a manner competitive with ATP (Kase et al, 1987; Nakadate et al, 1988),

but are thought to interact not solely at the ATP-binding region but also by interacting

directly with the catalytic domain of PKC to exert its inhibitory actions (Huang, 1989).

Staurosporine, although a potent kinase inhibitor, can in no way be considered a

specific inhibitor of PKC and, when assessing PKC activity, needs to be used in

comparison to its control analogues such as K252a, which have reduced inhibitory

actions at PKC but similar potencies to kinases other than PKC (Riiegg and Burgess,

1989). Recently, more selective analogues of staurosporine have been synthesised

which display over 100 times greater selectivity than staurosporine for inhibition of

PKC compared to cyclic AMP-dependent and Ca2+/calmodulin-dependent protein

kinases (such as the compound termed Ro318220; Davis et al, 1989), but, as yet, these

compounds are not commercially available.

Staurosporine and H7 are generally regarded as being unable to inhibit

particular PKC-isoforms selectively (Schaap and Parker, 1990); however, H7 has been

shown to inhibit selectively certain aspects of phorbol ester-stimulated actions, without

any effect on other phorbol ester-induced processes. In mouse epidermal cells, H7

inhibited selectively PMA-stimulated ornithine decarboxylase induction, but failed to

inhibit (at the same concentrations) PMA-induced reduction in epidermal growth factor-

binding, whereas sphingosine inhibited both PMA-stimulated responses with similar

affinity (Nakadate et al, 1989). Phorbol ester-stimulated ornithine decarboxylase

induction and oedema production in mouse skin could not be inhibited by

staurosporine, but phorbol ester-stimulated protein phosphorylation was inhibited by

staurosporine and H7 (Yamamoto et al, 1989). The staurosporine analogue, K252a

was found to inhibit a mixture of partially-purified, unidentified (probably a, 6 and y

isoforms (Gschwendt et al, 1989a)) PKC from mouse brain. In contrast, a purified

PMA-stimulated, calcium-independent protein kinase from porcine spleen (termed p76-

kinase) was found to be less sensitive to inhibition with K252a, this inhibitor having
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over 100 fold less affinity at inhibiting p76-kinase than other PKC(s) from mouse brain

(Gschwendt et al, 1989a; Gschwendt et al, 1989b). These apparently selective actions

of the inhibitors H7 or staurosporine and its derivatives may be due to a

pharmacologically-selective nature of these compounds between PKC isoforms (or

related kinases). Another explanation for these selective effects of these PKC inhibitors

may be due to phorbol esters having actions in cells which are independent of PKC

activation (see section 1.2.5) and consequently unresponsive to kinase inhibitor.

It has been reported that differences in potency of certain PKC inhibitors

may be due to the ineffectiveness of certain types of PKC inhibitors towards PKM, the

catalytically-cleaved kinase domain of PKC which lacks regulation from Ca2+,

diacylglycerol/phorbol esters or phosphatidylserine (see section 1.2.1). It was reported

(Junco et al, 1990; Bosca et al, 1990) that agents which inhibit PKC by interacting with

its kinase region (eg, H7 and staurosporine) had markedly reduced potency at inhibiting

PKM in contrast to another PKC inhibitor, quercetin, which is widely considered to act

also by competing with ATP for its binding site on PKC and other kinases (Horn et al,

1985; Nakadate et al, 1985; Ferriola et al, 1989). The authors also reported that

quercetin while potently inhibiting PKM, only poorly inhibited PKC activity. These

findings are at total variance with previous, more comprehensive reports that quercetin

(and its analogues) are relatively potent inhibitors of PKC (Horn et al, 1985; Nakadate

et al, 1988; Ferriola et al, 1989) and thus must be viewed with some caution.

Other inhibitors of PKC have been reported (for reviews, see Huang, 1989;

Epand and Lester, 1990) which include suramin (Hensey et al, 1989), aminoacridines

(Hannun and Bell, 1988) and chelerythrine which is purported to be a moderately

selective inhibitor of PKC compared to other kinases (Herbert et al, 1990). Many of

these agents mentioned however inhibit PKC activity only at very high concentrations,

where non-specific effects are considered to be a distinct possibility. Their modes of

inhibitory action are at present poorly investigated and any consideration of PKC-

isoform selectivity of the compounds remains to be addressed.
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An interaction with the protein substrate binding region is suggested to be

the mechanism of action of certain peptides which resemble the pseudosubstrate

sequences of the PKCs (House and Kemp, 1987; see also section 1.2.1). In elegant

work by House et al (1989), a 29 amino acid peptide was synthesised which

corresponded to part of the putative substrate binding region of PKC which interacts

with the pseudosubstrate sequence. They found that this peptide enhanced PKC

activity presumably by binding to and 'masking' the pseudosubstrate region of the

enzyme and removing the inhibitory influence that the endogenous pseudosubstrate

region exerts on PKC activity (House et al, 1989). Peptides which resemble the

putative pseudosubstrate region in PKC can act as inhibitors of the enzyme activity

(Alexander et al, 1990; Eichholtz et al, 1990). Pseudosubstrate peptides with the

appropriate replacement of serine for alanine will convert an inhibitory peptide into a

substrate peptide for PKC (House and Kemp, 1987). Although the pseudosubstrate

region for PKC varies among the known PKC isoforms, no significant isoform-

selective inhibition of particular isoforms by specific pseudosubstrate peptides has yet

been shown.

Magainin-2 acts as a substrate for PKC and an analogue, magainin B, can

inhibit a- and B-PKC slightly more selectively than y-PKC (Nakabayashi et al, 1990).

However, the inhibitory effect of magainin B is thought not to be mediated solely at the

PKC substrate site, but also to involve interference with phospholipid and

diacylglycerol effects on the PKC isoforms. Modest isoform differences are also

evident when comparing the substrate affinities of a-, B- and y-isoforms of PKC

(Marais and Parker, 1989; Burns et al, 1990). Differences are most evident when

using poly (lysine-serine), histone and pseudosubstrate-derived peptides as the acceptor

substrates, with y-PKC tending to have greater affinity for these substrates compared to

the a, BI or BII isoforms. However, the serine-substituted pseudosubstrate peptide of

e-PKC (e-peptide) showed more marked differences in affinity as a substrate with

isoform-affinities for the substrate being a > Bl > y (Marais and Parker, 1989).
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Although the selectivity of PKC-isoforms for these substrates is not large,

in vivo the differences may be amplified by means of the existence of very highly

specific target proteins and their regulated subcellular availability to various PKC

isoforms. Differences in the requirements of particular PKC-isoforms for

diacylglycerols and other auxiliary endogenous activators (such as AA) and the

question of Ca2+-dependence, may also contribute in providing a large specificity for

endogenous target proteins in cells (Nishizuka, 1988; Huang, 1989; Parker et al,

1989). The contribution of such factors may result in a physiological 'fine-tuning' of

PKC function and a possibility of selective pharmacological intervention.

1.2.4. Arachidonic acid: its production, metabolism and actions

Arachidonic acid is a 20-carbon lipid, containing four cis carbon double bonds in the 5,

8, 11 and 14 positions and which can be released from the esterified stores of cellular

membrane phospholipids by the action of the enzyme phospholipase A2 (PLA2)

(Needleman et al, 1986), (see Figure 1.1). Phospholipase A2 can act on a wide variety

of phospholipids as substrates, and is generally regarded as a Ca2+-dependent enzyme

(Shimizu and Wolfe, 1990), although Ca2+-independent forms of PLA2 have been

proposed (Loeb and Gross, 1986) and may represent a Ca2+-independent route of

arachidonate production (Axelrod et al, 1988). A number of distinct forms of PLA2 are

present in mammalian cells which may serve either signalling or other functions (Clark

et al, 1991a). Phospholipids (in particular phosphoinositides) may contain

arachidonate at the 2-position acyl chain (Meldrum et al, 1991), so arachidonate may be

released in any response involving PLA2 activation. There is also some evidence for

forms of PLA2 with significant preference for phospholipids with 2-position

arachidonate chains (Clark et al, 1991a). Consequently, diglycerides may contain an

arachidonic acid acyl chain and phospholipase C-mediated production of diglycerides

from phosphoinositides or phosphatidylcholine can occur. Arachidonic acid present in

these arachidonyldiglycerides could be liberated by the action of diglyceride lipase
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(Irvine, 1982; Loeb and Gross, 1986) although the amount of arachidonate generated

through this route in any physiological situation is uncertain. Physiological inhibition

of PLA2 is reportedly achieved by the lipocortin family of proteins which can be

induced by glucocorticoids (Flower, 1988); however, a direct action of lipocortin (and

related peptides) on PLA2 has been questioned (Whitehouse, 1989) and it is possible

that lipocortins may simply limit availability of substrate for PLA2. Activation of PLA2

may be achieved physiologically by a protein known as PLA2-activating protein (Clark

et al, 1987; Crooke et al, 1989) which has been cloned and may be the endogenous

factor which is mimicked by the wasp venom peptide, mellitin in its activation of PLA2

(Clark et al, 1987; Clark et al, 1991b). PLA2-activating protein is also a substrate for

PKC, which induces phosphorylation and increased activity of PLA2-activating protein

and thus increases PLA2 activity (Calignano et al, 1991).

As well as second messenger modulation of PLA2, activation of the enzyme

can be driven by receptor-mediated processes. Several receptors including ai-

adrenergic (Burch et al, 1986; Han et al, 1987; Schimmel, 1988), Mi- and M3-

muscarinic (Conklin et al, 1988), NMDA-glutamatergic (Dumuis et al, 1988), Bi-

bradykinin (Slivka and Insel, 1987) and also the GABAg, vasoactive intestinal peptide

and Hi-histaminergic receptors (Axelrod et al, 1988) have been shown to stimulate

release of AA, as has the light-activation of rod outer segments found in the bovine

retina (Jelsema, 1987). As well as protein kinase C-mediated enhancement of

ionomycin (a Ca2+ ionophore)-induced PLA2 activity (Halenda and Rehm, 1987;

Froissart et al, 1989), which may be due to the action of PKC via a G protein (Akiba et

al, 1990), guanine nucleotide binding (G)-protein activation of PLA2 has been shown

(Nakashima et al, 1987). This G protein-mediated activation of PLA2 was proposed to

be caused by the By-subunits and not the a-subunit of the G protein-linked receptor-

mediated response in rod outer segments, as assessed by adding purified G protein

(transducin) subunits and measuring AA production (Jelsema, 1987; Jelsema and

Axelrod, 1987; Axelrod et al, 1988). Activation of PLA2 by By subunits was also
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implicated in rat atrial membranes, since addition of By subunits induced the opening of

a K+-channel which was alternatively opened by a metabolite of AA (Kim et al, 1989).

This opening of the K+-channel by By subunits did not occur in atrial patches incubated

with an antibody which blocks PLA2 activity. Thus receptor-mediated activation of

PLA2 is a mechanism by which various receptors can generate AA, but the exact G

protein-mechanism of PLA2 activation is still controversial (Axelrod et al, 1988;

Shimizu and Wolfe, 1990), as indeed is the mechanism by which PKC causes

activation of PLA2 (Slivka and Insel, 1987; Akiba et al, 1990).

Arachidonic acid (AA) may be produced by mechanisms other than PLA2

activity on phospholipids, for example de novo synthesis or triglyceride metabolism,

but once generated, AA can be metabolised to a vast range of bioactive compounds

(Shimizu and Wolfe, 1990). The main routes of metabolism of AA are: via the cyclo-

oxygenase enzyme (prostaglandin endoperoxide synthase) to generate prostaglandin

G2, the precursor for all prostaglandins and thromboxanes; via the 5-, 12- or 13-

lipoxygenase enzymes to generate leukotrienes, lipoxins and hydroperoxy acids; via the

cytochrome P450 mono-oxygenase complex to epoxyeicosatrienoic acid or via auto-

oxidation to hydroperoxy acids. The cyclo-oxygenase, lipoxygenase and cytochrome

P45O enzymes are sensitive to blockade by a range of more or less selective

pharmacological-inhibiting agents such as indomethacin (and other non-steroidal anti¬

inflammatory drugs), nordihydroguaiaretic acid and piperonyl butoxide respectively

(Chang et al, 1987; Flower, 1988; Taylor and Clarke, 1986; Luini and Axelrod, 1985).

The range of biological activities of the AA metabolites even exceeds the

vast number of AA metabolites thus far detected. AA metabolites have a crucial role in

the control of the oestrous cycle in mammals, exerting their effects at the levels of

hypothalamus, anterior pituitary, ovary and uterus (for reviews see Poyser, 1977;

Poyser, 1978; Behrman, 1979). Arachidonic acid and its metabolites may be involved

in the control of pituitary hormone release, since 8,9-EET induces secretion of oxytocin

and 5,6-EET causes secretion of somatostatin from the median eminence and secretion
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of thyroid stimulating hormone, prolactin and luteinizing hormone (LH) from pituitaries

(Ojeda et al, 1989; Shimizu and Wolfe, 1990). The AA metabolites LTC4 and PGE2

evoke luteinizing hormone-releasing hormone (LHRH) release from the median

eminence and LH release from anterior pituitary, whereas PGD2 inhibits LHRH release

as well as inhibiting release of prolactin and LH from pituitaries (Kinoshita et al, 1982;

Ogeda et al, 1982; Hulting et al, 1985). Hedqvist (1977) was one of the first to

introduce the concept that AA and its metabolites could leave cells and interact with

extracellular eicosanoid receptors to act as local messengers for neighbouring cells.

However, use of a range of inhibitors of AA metabolism have excluded the effect of

eicosanoids in the present studies, and although it is well established that metabolites of

AA may have a role in hypothalamic-pituitary function as well as a variety of

physiological processes but presumably not in the present studies.

It has now become clear that AA does not always have to be metabolised to

have a biological action. Both McPhail et al (1984) and Seifert et al (1987) showed

that AA itself, as well as its metabolites, could activate protein kinase C extracted from

whole brain. Nishizuka and his co-workers further characterised this AA-mediated

activation of PKC in cell-free systems to show that the y-isoform (and to a lesser extent

the a-and 13-isoforms) of PKC was potently activated by AA and some of its

metabolites, notably 12-HPETE and Lipoxin A4 (12(5)-hydroxy-5,8,10,14-

eicosatetraenoic acid and 5(S),6(R),15(S)-trihydroxy-7,9,13-tr<2Az.y, 1 l-cis

eicosatetraenoic acid respectively) (Naor et al, 1988a; Shearman et al, 1989a). The AA-

induced activation of a-PKC was greater than B-PKC but both were concentration-

dependent and apparent only in the presence of calcium, however AA activation of y-

PKC was biphasic with highest activation occurring at 12 |uM AA and also occurred in

the absence of free calcium ions (Naor et al, 1989a). Inhibition of Ca2+/calmodulin-

dependent protein kinase II can also occur with both AA and its metabolites in cell free

systems, without any inhibition of type I or III Ca2+/calmodulin kinase or cyclic AMP-

dependent protein kinase (Piomelli et al, 1989).
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Direct activation of smooth muscle K+-channels by AA and its metabolites

has been shown in reconstituted vesicles (Ordway et al, 1989), which does not require

metabolic conversion of AA or its activation of G-proteins or kinases. Similar results

were seen in atrial K+-channels (Kim et al, 1989; Kurachi et al, 1989) although the

action of AA to enhance the channel activity could be ascribed to a metabolite. Airway

epithelial Ch-channels are inhibited by both AA and its metabolites (Hwang et al, 1990;

Anderson and Welsh, 1990) but this may be due to an indirect effect on the channel via

kinase enzymes. Squid giant axon Na+-currents are also inhibited by AA and its

metabolites but only at very high concentrations, where these lipids may be affecting

the membrane environment surrounding the channel and thus affecting its activity

(Ordway et al, 1991). Likewise, AA inhibits glutamate uptake into glial cells possibly

by increasing membrane fluidity (Barbour et al, 1989), a phenomenon which may

perhaps contribute to anoxia-induced neuronal death and neuronal long term-

potentiation mechanisms.

Arachidonic acid has been reported to both stimulate phosphoinositide

hydrolysis (Murphy and Welk, 1989; Negishi et al, 1990) and to inhibit

phosphoinositide hydrolysis (Chaudhry et al, 1989) through a mechanism which is

unresponsive to the metabolising enzyme inhibitors, indomethacin and

nordihydroguaiaretic acid. The exact mechanisms for these AA-mediated actions is

uncertain, however as PI-PLC may be a Ca2+-stimulated enzyme (Meldrum et al,

1991), a raised intracellular calcium concentration could lead to phosphoinositide

hydrolysis. In a mechanism which is independent of phosphoinositide hydrolysis, AA

itself (Chan and Turk, 1987; Beaumier et al, 1987) as well as its metabolites and

linoleic acid, but not arachidic acid (Chow and Jondal, 1990) can release intracellularly

stored Ca2+ from a pool(s) which includes the inositol 1,4,5-trisphosphate-sensitive

pool, leading to a raised intracellular Ca2+ concentration. The Ca2+-mobilizing effect

of AA described in these reports was apparently not caused by compromising

membrane fluidity/permeability (assessed using other lipid analogues of AA), or by
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inhibiting the Ca2+-ATPase Ca2+ extrusion mechanism (since AA did not affect Ca2+-
ATPase activity).

In summary, AA can be metabolised to a range of compounds which have

major roles in cell function. Alternatively, AA can act itself (without being

metabolised), on a range of signalling processes. Both AA and some of its metabolites

have the ability to activate PKC(s) and thereby any cellular process which generates AA

has the potential to activate PKC through a non-diacylglycerol-dependent route.

1.2.5. Alternative routes of diglyceride and fatty acid production

Classically, the routes of generation of diacylglycerol and free fatty acid

(such as AA) were considered to be through PI-PLC and PLA2 activity respectively (as

described in sections 1.1 and 1.2.4). However, there is increasing evidence that

diacylglycerols and fatty acids (including AA) can be produced through mechanisms

other than those outlined previously. The next section will focus on the regulation and

function of the pathways which could lead to the activation of protein kinase C by

means other than PI-PLC-induced diacylglycerol production or PLA2-induced

arachidonic acid production.

In 1981, Mufson et at showed in mouse fibroblasts labelled with

[3H]-choline, that stimulation with phorbol esters caused a released of radioactive

choline and phosphocholine. They concluded from this work that the source of this

choline was labelled phosphatidylcholine (PC). Phorbol esters (as well as insulin,

insulin-like growth factors I and II, vasopressin and thyrotropin-releasing hormone can

stimulate the synthesis of PC (Warden and Friedkin, 1985; Kolesnick, 1987) by a

mechanism which involves the translocation from cytosol to endoplasmic reticulum and

activation of the rate-limiting enzyme for PC synthesis, cytidine triphosphate:

phosphocholine cytidyltransferase (CT) (Pelech and Vance, 1984). However, the

importance of this receptor-stimulated PC synthesis is unclear as phorbol esters have

also been shown to stimulate the breakdown of PC and the production of lyso-PC,
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phosphatidic acid, diacylglycerol, phosphocholine and choline (Ito and Klein, 1987;

Cabot et al, 1988; Pelech and Vance, 1984; Grove and Schimmel, 1982; Daniel et al,

1986) and whether the PC synthesis is required just for replenishment or is secondary

to its hydrolysis is unknown.

It is now clear that not only can phospholipase D (PLD)-induced hydrolysis

of PC occur (to produce phosphatidic acid and choline) but also PLD-induced

hydrolysis of phosphatidylethanolamine and phosphoinositides, as well as PLC-

induced hydrolysis of PC and phosphatidyethanolamine can occur (Billah and Anthes,

1990) (see Figure 1.1). In addition to phorbol ester-stimulated PC hydrolysis, agonist-

stimulated PC breakdown has also been shown. In 1985, Bocckino et al published

evidence that, in vasopressin-stimulated hepatocytes, diacylglycerol formation was

occurring through a pathway in addition to that through a phosphatidylinositol-specific

phospholipase C (PI-PLC) pathway. The diacylglycerol produced from PI-PLC

activity was enriched in arachidonate and stearate whereas the vasopressin-stimulated

diacylglycerol was composed mainly of palmitic, oleic and linoeic acid side chains.

The same agonist-stimulation of PC hydrolysis could also be shown by adrenaline and

angiotensin-II. Furthermore, it was observed that the time course for formation of

these non phosphoinositide-derived diacylglycerols was delayed; being markedly later

than the production of diacylglycerols by stimulation with other Ca2+-mobilising agents

which primarily caused activation of PI-PLC and subsequently a peak-production of

inositol 1,4,5-triphosphate (IP3) (Charest et al, 1985), although the concentration-

dependence of both vasopressin-induced diacylglycerol and IP3 production was

similar. It was concluded that diacylglycerol production caused by vasopressin was

occurring via hydrolysis of some additional phospholipid other than phosphoinositide

as substrate (perhaps PC) (Bocckino et al, 1985). Thus, receptor stimulation of PC

hydrolysis was occurring, and it was later clarified that the resulting production of

phosphatidic acid was not occurring through de novo incorporation of radioactivity

into diacylglycerol and its conversion then to phosphatidic acid, but being instead
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D (PLD) mechanism (Bocckino et al, 1987) which produces free choline and

phosphatidic acid directly from PC (Pelech and Vance, 1989).

Phosphatidic acid can be readily dephosphorylated by the enzyme

phosphatidic acid phosphohydrolase (which is actually activated by PKC) to produce

diacylglycerol - another PKC activator (Billah and Anthes, 1990; and see Figure 1.3).

The extent to which phosphatidic acid to diacylglycerol is a requirement for receptor-

mediated responses and the extent to which PLD-generated diacylglycerols have the

ability to activate PKC are issues of current controversy (Billah et al, 1991; Leach et al,

1991). Diacylglycerol may also be produced by mechanisms other than those outlined

above. For example, by de novo synthesis or by triglyceride metabolism into

diglycerides, albeit with a stereo-configuration which may have no influence on PKC

activity.

Although Bocckino et al (1985) did not demonstrate an agonist which

produces hydrolysis of phosphoinositides only (and not PC), cases of receptor-

mediated PC-hydrolysis without phosphoinositide-hydrolysis are reported, for example

by interleukin-1 and interleukin-3, which both apparently stimulate PC hydrolysis

(Roscoff et al, 1988; Pelech and Vance, 1989) without hydrolysing phosphoinositides

(Roscoff et al, 1988; Whetton et al, 1988) thereby producing diacylglycerol which may

activate PKC without generating inositol phosphates, as occurs in PI-PLC activity.

However, the agonists which generate PC hydrolysis (via a PLC or PLD activity) are

generally those which can also activate PI-PLC activity (Pelech and Vance, 1989;

Loffelholz, 1989; Billah and Anthes, 1990; Exton, 1990; Billah et al, 1991).

Although PC hydrolysis by PLC or PLD can be induced as a secondary

consequence of the action of PKC presumably activated by PI-PLC activity

(Loffelholz, 1989; Kiss and Anderson, 1989; Billah et al, 1989; Exton, 1990; Martin et

al, 1990; van Blitterswijk et al, 1991a; van Blitterswijk et al, 1991b; Billah et al, 1991).

Protein kinase C-independent (Billah et al, 1989; Billah et al, 1991) as well as

'partially' PKC-independent (Sandeman et al, 1991) hydrolysis of PC by PLC or PLD,
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has been reported. Therefore, it is uncertain whether receptor-mediated PLC or PLD

hydrolysis of PC (or phosphoinositides or phosphatidylethanolamine (Billah and

Anthes, 1990)) occurs as a consequence of initial PI-PLC activity (which raises

intracellular Ca2+ and activates PKC) in all systems. Indeed, expression of the 61

isoform of PKC in fibroblasts enhanced PLD-mediated hydrolysis of PC (Pai et al,

1991), whereas a-thrombin stimulation of fibroblasts leads to phosphoinositide plus

PC hydrolysis at higher concentration of a-thrombin, but only PC hydrolysis occurs at

lower agonist concentrations of a-thrombin (Leach et al, 1991). Therefore, it seems

that receptor-mediated PC hydrolysis (and generation of diacylglycerol to activate PKC)

can occur separately from receptor-mediated phosphoinositide hydrolysis, and although

PKC-induced PC-specific PLC or PLD activation may occur, PC hydrolysis can also

occur independently to produce diacylglycerol without a concomitant production of

Ca2+-mobilizing inositol phosphates.

Billah and Anthes (1990) have proposed that multiple forms of PLD exist

because of the variation in modulation of PLD found in different cell types and activated

by a wide variety of hormones, growth factor, etc. It appears that Ca2+ influx,

activation of G proteins with non hydrolysable GTP analogues and activation of PKC

by phorbol esters or diacylglycerols can all play a role in enhancing PLD activity.

It has been proposed that phorbol esters may have some activity in

activating PLD in a process which is independent of PKC (Billah and Anthes, 1990).

Diacylglycerols have also been proposed to act independently of PKC to stimulate

PLA2 activity or to stimulate PC synthesis involving activation of phosphocholine

cytidyltransferase (CT), but curiously, these actions of diacylglycerol were not matched

using phorbol esters instead of diacylglycerol in GH3 cells (Kolesnick and Paley, 1987;

Kolesnick and Hemar, 1990) and the physiological significance as to this action of

diacylglycerol can only be pondered. Phorbol ester can stimulate PLD activity which is

independent of direct phosphorylation, or which is not inhibited by PKC inhibitors

(Billah and Anthes, 1990), but a direct action of PKC on PLD is not necessary for
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Figure 1.3. Diagram of the possible routes of diacylglycerol and free

fatty acid production.

The production of diacylglycerol and arachidonic acid can lead to the activation of

PKC, although which isoforms are preferentially activated by specific lipids is at

present uncertain. The free fatty acids shown are arachidonic acid and stearic acid, but

the species of fatty acid generated clearly depends on the acyl chain composition of the

phospholipid from which the molecule is derived. The molecules which are indicated

by an asterisk are those which have been previously shown to activate PKC. The

figure is adapted from Pelech and Vance (1989).



 



PKC-mediated enhancement of PLD activity. However, the possibility that phorbol

esters may directly activate PLD cannot be ignored. The PKC-independent effects of

diacylglycerols mentioned above may be reflected in the observation that both phorbol

esters and diacylglycerols can activate the CT enzyme, whereas only diacylglycerols (at

>58 jaM) caused a characteristic translocation of the enzyme, but this may be due to a

lipid-diluting effect of the diacylglycerol (Kolesnick and Hemar, 1990), leading to the

conclusion that the diacylglycerol is acting independently of PKC. If the lipid-dilution

effect of diacylglycerol accounts for its non-PKC activity which is not seen with

phorbol ester, then it may be an action of the diacylglycerol which is in additional to its

PKC-activation properties, which led to the inference that PLA2 activity was PKC-

independent too (Kolesnick and Paley, 1987). However, it is clear that diacylglycerol-

activated PKC could alternatively cause a secondary activation of PLA2 as has been

seen in other systems (Halenda and Rehm, 1987; Froissart et al, 1989; Akiba et al,

1990).

The choline which is produced by PLD hydrolysis of PC has no known

signalling function (except for acetylcholine resynthesis (Hattori and Kanfer, 1985;

Pelech and Vance, 1989)), however, phosphatidic acid has been shown to partially

activate PKC in cell free systems (Huang et al, 1988) which may explain several

second messenger roles attributed to phosphatidic acid which include acting as a Ca2+-

ionophore or at least enhancing agonist-mediated Ca2+ entry (Serhan et al, 1981;

Putney et al, 1980) or that it may have an involvement in secretory processes as a

'fusogen' (Simmonds and Halsey, 1985; Liscovitch and Amsterdam 1989).

There exist phospholipase C (PLC) enzymes which are not specific for

phosphoinositides and can hydrolyse PC (Edgar and Freysz, 1982; Irving and Exton,

1987; Clark et al, 1986; Martin et al, 1987) as well as PLC enzymes which can

hydrolyse phosphatidylethanolamine and phosphatidylglycerol in addition to

phosphoinositides and PC (Matsuzawa and Hostetler, 1980). The PC-hydrolysing

phospholipase C enzymes are not as extensively studied as the PI-PLC isoenzymes, but
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initial studies indicate that PC-hydrolysing PLC may be similar to PLD in terms of the

ways it can be modulated (ie, receptor-linked activation, possibly involving multiple

factors including Ca2+, diacylglycerol, protein kinase C and a G protein(s) (Billah and

Anthes, 1990; Exton, 1990; Billah et al, 1991). Hydrolysis of PC by PC-hydrolysing

PLC will produce phosphocholine (again with unknown function) and, like PI-PLC

activity, diacylglycerol, but in this case of course with a fatty acid composition which

could be dissimilar to the diacylglycerol preferentially produced by PI-PLC activity

(Thomson, 1969; Bell et al, 1979). Phosphatidylcholine can compose up to 50% of

total cellular phospholipid content and may be the source by which saturated

diacylglycerol production can be achieved, as the phosphoinositide pool is more limited

(Billah and Anthes, 1990). It also appears that the potential consequence of PC

hydrolysis (that is PKC activation without concomitant Ins(l,4,5)P3-induced rise in

intracellular calcium), could be achieved, thus allowing a significantly different profile

of intracellular consequences from those elicited by phosphoinositide hydrolysis

(outlined in Parker et al, 1990).

The presence of diacylglycerol is thought to be the principal means by

which activation of PKC can occur. A major route of diacylglycerol removal is its

phosphorylation by the enzyme 1,2-diacylglycerol kinase to convert the second

messenger molecule into phosphatidic acid (PA) (Hokin and Hokin, 1963; Lapetina and

Hawthorne, 1971). An inhibitor of diacylglycerol kinase, R59022 (6-[2-[4-[(4-

fluorophenyl) phenylmethylene]-l-piperidinyl]ethyl]-7-methyl-5//-thiazolo[3,2-

a]pyrimidin-5-one) has been used to raise intracellular diacylglycerol levels (de

Chaffoy de Courcelles et al, 1985; Nunn and Watson, 1987; Muid et al, 1987),

however, serious concern as to the selectivity of this agent have been expressed by

others (Mahadevappa and Sicilia, 1988; Nasmith and Grinstein, 1989; Joseph and

Krishnamurthi, 1989). The generated PA can then be recycled into forming

phosphoinositides via a cytidine monophosphate (CMP)-phosphatidic acid

intermediate. The CMP moiety is replaced by inositol to then generate
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phosphatidylinositol, the precursor for various phosphoinositides (see Figure 1.1;

Michell, 1975; Downes and Michell, 1985). Diacylglycerol, in addition to activating

PKC and being phosphorylated to phosphatidic acid, can also be a substrate for lipase

activity, which would liberate the acyl chains which compose the diacylglycerol (Chau

andTai, 1981; Irvine, 1982; Downes and Michell, 1985; Axelrod et al, 1988).

Diacylglycerol lipase activity followed by monoglyceride lipase activity is

able to deacylate the fatty acid-acyl chains form the glycerol backbone of a

diacylglycerol (Bell et al, 1979; Chan and Tai, 1987), thus generating the free fatty

acids which composed the diacylglycerol molecule. Diacylglycerol lipase is a poorly

investigated enzyme and its substrate specificities are not fully understood (Bell et al,

1979) although diacylglycerol containing stearic acid in the 1-position plus arachidonic

acid in the 2-position is the major diglyceride derived from phosphoinositide hydrolysis

(Thomson, 1969; Bell et al, 1979), at least in brain and platelets. Thus, diacylglycerols

can be degraded into their separate fatty acid from which they are composed (in the case

of phosphoinositide-derived diacylglycerol, usually l-steroyl-2-arachidonoyl-j,«-

glycerol). Clearly the most important fatty acid that might be liberated by this pathway

would be arachidonic acid (AA) which, amongst other actions, serves as the precursor

for eicosanoid synthesis (see section 1.2.4). Protein kinase C activation by AA can

occur (MacPhail et al, 1985; Seifert et al, 1988; Naor et al, 1988a), but other fatty acids

such as linoleic acid, oleic acid and palmitoleic acid are also capable of activating PKC

(Seifert et al, 1988). Since the glyceride chain composition of diacylglycerol varies

depending on the source of phospholipid it was derived from (for example vasopressin

stimulates the accumulation of diglyceride species with various acyl complements in

hepatocytes, presumably through PC hydrolysis (Bocckino et al, 1985)), then not only

AA, but a range of potentially relevant fatty acids may be produced by the action of the

diacylglycerol lipase pathway, although the relative contribution of this pathway in

signalling events is difficult to assess. A useful tool in assessing the contribution of the

diglyceride lipase pathway in cell systems is the diglyceride lipase inhibitor l,6-di(0-
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(carbamoyl)cyclohexaneoxime)hexane (RHC80267). Chang et al (1988) found that

luteinizing hormone-releasing hormone-induced hormone release from pituitary was

markedly inhibited by RHC80267, indicating a significant role of the diglyceride lipase

pathway. However, concerns as to the specificity of RHC80267 were expressed and it

seems most likely that the diacylglycerol kinase pathway may be the major pathway of

diacylglycerol removal, as has been implicated earlier (Downes and Michell, 1985).

In conclusion, diacylglycerol production cannot occur only from

phosphoinositide breakdown, but also from the hydrolysis of other phospholipids

which are present in the membranes of cells. However, the metabolism of

diacylglycerol does not definitely terminate its PKC-activating function, as several of

the possible lipid metabolites of diacylglycerol (PA, AA and other free fatty acids) are

also capable of activating PKC.

1.3. Mechanisms of cellular Ca2+ entry

Regulation of the intracellular calcium concentration is crucial for a variety

of cellular actions such as contraction, secretion, energy metabolism, neurite

outgrowth/retraction and gene transcription (Shearman et al, 1989b). Calcium is also a

major signal for the activation of Ca2+/calmodulin-dependent protein kinase and for the

activation of protein kinase(s) C (A series at least). Changes in intracellular calcium

concentrations can be achieved by mobilisation of intracellular calcium stores (Berridge

and Irvine, 1984) or by increasing the permeability of the plasma membrane to allow

calcium ions to flow down their concentration gradient into the cell (Meldolesi and

Pozzan, 1987). A super family of ion channels exist, and molecular cloning analysis of

their primary sequence enables comparison of all channels and their division into

smaller groups. Voltage-operated (such as Na+, K+, and some Ca2+ channels) and

ligand-operated channels (such as the nicotinic acetylcholine (a non-specific cation

conductor) and GABAa receptor associated channels) show marked diversity between

the two groups but both have conserved regions which are considered to form into
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transmembrane a-helical segments, that form a ring structure to act as the channel pore

(Maelicke, 1988; Catterall, 1988). Influx of Ca2+ is known to occur either through

voltage-operated or ligand-operated calcium channels which can be further divided into

two subgroups: receptor-operated channels such as the ATP-activated Ca2+ channels

found in rabbit ear artery smooth muscle (Benham and Tsien, 1987); or second-

messenger-operated channels like those altered by Ca2+ in neutrophils (Von Tscharner

et al, 1986), thrombin-activated channels in platelets (Zschauer et al, 1988), and the

inositol-1,4,5-trisphosphate-sensitive Ca2+ channels in T-lymphocytes and mast cells

(Kuno and Gardner, 1987; Penner et al, 1988).

Voltage-sensitive calcium channels are known to be quite heterogeneous in

nature (Miller, 1987; and see Table 1.2). Tsien, Fox and their colleagues defined at

least three types of calcium currents in chick dorsal root ganglion neurones (Nowycky

et al, 1985). These three different types of calcium currents were classified as T

(transient), N (neuronal) and L (long-lasting). Each of these three voltage-dependent

currents had characteristic conductances and activation/inactivation states as well as

varying sensitivity to calcium-channel-blocking agents. Weak depolarisations of the

dorsal root ganglionic neurone membrane potential to around or above -70 mV induces

the T-type component of the calcium currents. This T-type current is known to have a

conductance level of approximately 8 pS (defined in single channel patch-clamp

recordings) which is resistant to dihydropyridines and is poorly and reversibly blocked

by co-conotoxin (Tsien et al, 1988). As the name suggests, T (transient)-Ca2+ channels

have a rapid inactivation rate (tau approximately 20 - 50 ms) which is in a voltage-

dependent manner (close faster at more depolarised potentials), but quickly reactivate

following repolarisation of the cell. Nickel ions are more potent blockers of T-type

Ca2+ conductances than Cd2+ ions. The L-type Ca2+ channels in dorsal root ganglion

neurones have a much larger conductance (approximately 25 pS) than T-channels, and

inactivate only very slowly (tau > 500 ms) and single-channel analysis on cardiac

L-type Ca2+ channels shows that a depolarising prepulse can in fact increase the
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probability of open time for the channels (Pietrobon and Hess, 1990). Thus, of any

calcium influx caused in response to cell depolarisation, the majority of the current may

be carried by L-channels, but only if the depolarisation is strong enough, as the L-type

channel opens between -10 and +20 mV membrane potential. The L-type Ca2+ channel

is sensitive to the dihydropyridine calcium channel modifiers of which there are

antagonists, such as nimodipine, or agonists, such as the compound BAY K8644 as

well as being blocked by the phenylalkylamine and benzothiazepine classes of

compounds (Hoffman et al, 1987). L-type calcium channels are more sensitive to

block by Cd2+ ions than Ni2+ ions, and are resistant to block by co-conotoxin (Tsien et

al, 1988). The 'N'-type current was defined as being neither 'T' or 'L' and channel

opening occurred at relatively intermediate depolarisations of membrane potential to

around -20 mV. The single channel analysis of the 'N'-current revealed a conductance

of approximately 13 pS with a moderate inactivation rate (tau approximately 50 - 80

ms). Like 'T'-channels, 'N'-currents were resistant to dihydropyridine modulation,

but like 'L'-, 'N'-channels were more sensitive to blockade by Cd2+ ions than Ni2+

ions and co-conotoxin induced a persistent block of the channel. All three types of

channel are activated by depolarisations greater than or equal to their individual

thresholds for activation, but are strongly inactivated by membrane potentials more

negative than the threshold levels. The 'N' and 'L' channels preferentially conduct

Ba2+ rather than Ca2+, whereas 'T' channels allow Ba2+ and Ca2+ to pass without

preference.

However, as with almost all pharmacological tools, the dihydropyridines

have non-specific sites of action. The effect of dihydropyridines on 'L'-type calcium

channels display a very high affinity (Kd in the nanomolar range) but dihydropyridines

are also known to interact at lower affinity with many other cellular entities including:

nucleoside transporters; Na+/K+ ATPase; Ca2+-ATPase; Na+-Ca2+ exchanger;

calmodulin; cyclic AMP phosphodiesterase and the Ca2+-H+ antiport enzyme (Zemig,
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Table 1.2. Table of the pharmacological properties of the known

voltage-activated calcium channels.

The data for this table were compiled from that of Tsien et al (1988; 1991).



Table1.2
■P-
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Voltage-activatedCa2+-channeltype
'L'

•N«

irpi

.p.

•Br

Approximatesinglechannelconductance (withBa2+aschargecarrier)

25pS

13pS

8pS

0.2pA

1pA

Relativeconductance

Ba2+>Ca2+
Ba2+>Ca2+
Ba2+=Ca2+
Ba2+>Ca2+

Ba2+>Ca2+

Activationrange(mV)
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-70topositive
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-10topositive

Approximateinactivationrate(tau)
veryslow

(>500ms)
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(50-80ms)
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(20-50ms)
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(>500ms)

slow
(200ms)

Dihydropyridine-sensitivity

sensitive

resistant

resistant
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modestinhibition withBayK8644, noeffectof nifedipine

co-conotoxin-block

resistant

persistent

weak, reversible

resistant

resistant

Crudefunnelwebspider-sensitivity
sensitive

sensitive

sensitive

sensitive
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1990). Considering the affinity of dihydropyridines for a cationic channel, it may not

be surprising that these agents also have some affinity for other ionic-interacting

structures found within cells. Interestingly, dihydropyridines also have affinity for the

non L-type Ca2+ channel found in osteoblasts (Guggino et al, 1988; Guggino et al,

1990) and various differences exist in the modulation of L-type channels (Hoffman et

al, 1987) suggesting possibly more than one type of L-channel, which now seems

certain due to the slight differences found between purified 'L'-type channels from

brain, skeletal and cardiac muscle (Tsien et al, 1991) Thus care must be used if

classifying dihydropyridine-sensitive Ca2+ channels as the 'L'-type Ca2+ channel

described above.

In 1986, Flockererzi et al purified the dihydropyridine binding site from

skeletal muscle t-tubules which consisted of three peptides with different relative

molecular masses, and showed it to be a functional calcium channel when incorporated

into phospholipid vesicles. Tanabe et al (1987) elucidated the primary amino acid

sequence of part of the dihydropyridine-binding site (the ion channel portion) from the

complementary DNA of its messenger RNA and later showed that expression of the

complementary DNA for the complete dihydropyridine binding site could restore the

excitation-contraction coupling and slow calcium current that was absent in cultured

skeletal muscle cells from mice with muscular dysgenesis (Tanabe et al, 1988). The

dihydropyridine-binding calcium channel is known to consist of at least four (perhaps

five) subunits designated the ai, a2, B, y (and 8) (Campbell et al, 1988). The

complete primary structure of all of these subunits has not been determined but the ai

subunit is known to contain the dihydropyridine binding domain and may be the ion-

conducting and voltage-sensing unit of the channel. The oci and B subunits of this 'L'-

type calcium channel contain sites for phosphorylation by cyclic AMP-dependent

protein kinase and protein kinase C. The ai subunit can also be phosphorylated by a

Ca2+/calmodulin-dependent protein kinase and the y subunit may also have a regulatory

role in the channel activity (Campbell et al, 1988). From functional studies it appears
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that phosphorylation of this channel by cyclic AMP-dependent protein kinase is

necessary for normal responses of the channel to membrane depolarisation and that

such phosphorylation by cyclic AMP-dependent protein kinase enhances and maintains

the 'L'-type channel activity (Armstrong and Eckert, 1987; Hoffman et al, 1987).

Calcineurin, a calcium-activated phosphatase (Armstrong, 1989) which is present in

GH3 cells (Faber et al, 1987), acts to reduce the dihydropyridine-sensitive channel

activity by removal of phosphate from the ai-subunit of the channel. 'L'- and 'T'-type

Ca2+-channels are present in GH3 cells, and reduce their channel activities upon PKC

phosphorylation (Marchetti and Brown, 1988). Whereas 'L'-type channels decrease

activity to PKC phosphorylation in GH3 cells, and in other tissues (DiVirgilio et al,

1986; Lewis and Weight, 1988; Rosenthal et al, 1988; Rane et al, 1989)

phosphorylation of 'L'-channels by PKC in other systems leads to an increase in

channel activity (DeRiemer et al, 1985; Strong et al, 1987; Fish et al, 1988; Velasco and

Peterson, 1989).

Another regulatory mechanism apparent in dihydropyridine-sensitive

calcium channel has been described by Dolphin and Scott (1988) and is the GTP-

dependence of dihydropyridine-agonist enhancement of 'L'-type channel activity.

Internal bathing of whole cell, voltage-clamped dorsal root ganglionic neurones with a

non-hydrolysable analogue of GTP, GTP-y-S (a G-protein activator (Graziano and

Gilman, 1987)) massively enhanced Bay K8644 potentiation of barium currents.

Curiously, pretreatment of the cells with pertussis toxin to inactivate certain G-proteins

(Graziano and Gilman, 1987), causes Bay K8644 to reduce the channel currents. It

was concluded that dihydropyridines can act as agonists or antagonist on 'L'-type Ca2+
channels depending on the inactivation state of the channel and that this channel

inactivation state is governed by pertussis toxin-sensitive G-proteins as well as

membrane potential.

These conclusions do not take into account more recently discovered Ca2+-
channels which has activation characteristic similar to the 'L'-type channel (Mori et al,
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1991; Tsien et al, 1991; and see Table 1.2). These newly-discovered Ca2+-channels

could be found in brain and heart tissue and were designated as the 'P'-type and 'BI'-

type channels. Like the 'L'-type Ca2+-channel, these channels activated at high

depolarisations with relatively slow inactivation kinetics. However, unlike the 'L'-

channel, the 'P'- and 'Bl'-channels are mostly insensitive to modulations by

dihydropyridines and unlike the 'N'-type Ca2+-channel, the 'P'- and 'Bl'-channels are

insensitive to co-conotoxin and have slow inactivation kinetics. Therefore voltage-

sensitive Ca2+-channels cannot simply be characterised as 'N'-, 'L'- or 'T'-types and

the more recently discovered 'P'-type and 'Bl'-type Ca2+-channels must also be

considered, however functional studies on these channels (eg, effect of

phosphorylation) have still to be published.

Along these lines, are other studies on the 'L'-type calcium channels in

dorsal root ganglion neurones where neuropeptide Y and bradykinin can inhibit the

voltage-activated Ca2+ currents (Ewald et al, 1988; Ewald et al, 1989). Pretreatment of

the cells with pertussis toxin abolishes the hormonal inhibition of the calcium-currents

and hormone-stimulated channel inhibition can only be restored to varying extents by

reconstitution with one or more purified G-protein a-subunits (ao, ail, and a;2). Go-

like proteins have also been implicated in the regulation of Ca2+ currents by opioids in

neuroblastoma x glioma hybrid cells (Hescheier et al, 1987) and by dopamine in snail

neurons (Harris-Warrick et al, 1988). It is not clear whether these G-protein subunits

interact directly with the channel or an associated structure or via some other secondary

messenger system. Thus 'L'-type Ca2+ channels are heavily modulated ion channels.

Stimulation of phosphoinositide hydrolysis by receptors results in the

production of two second messengers: a diacylglycerol messenger (for example

l-stearoyl-2-arachidonoyl-s/i-glycerol) which stimulates protein kinase C activity

(Nishizuka, 1984a); and inositol 1,4,5-trisphosphate (Ins(l,4,5)P3) which stimulated

release of intracellular Ca2+ into the cytoplasm by binding to its integral receptor/ion

channel complex found in the membranes of a fraction of the endoplasmic reticulum
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(Berridge and Irvine, 1989). Emptying of these Ins(l,4,5)P3-sensitive stores of their

calcium was proposed by Putney (1986) to be intimately linked with the Ca2+ influx

into the cell that was seen during receptor stimulated phosphoinositide hydrolysis.

Controversy surrounds the exact mechanisms by which receptor stimulation leads to the

influx of Ca2+ across the plasma membrane. The influx of extracellular calcium may or

may not be a consequence of emptying of calcium stores by agonist-stimulated

Ins(l,4,5)P3 (Taylor, 1990).

Unlike ATP-stimulated Ca2+ currents in rabbit ear artery smooth muscle

cells (Benham and Tsien, 1987), which is thought to be a receptor/calcium channel

complex as its activation does not require the action of a soluble second messenger,

other types of receptor-mediated calcium influx, such as thrombin or histamine-

stimulated Ca2+ influx in human umbical-vein endothelial cells (Hallam et al, 1988),

requires the preliminary action of receptor-produced Ins(l,4,5)P3 to empty calcium

stores. Indeed, thrombin-stimulated calcium channels have been isolated

electrophysiological^ (Zschauer et al, 1988). This latter, second-messenger-mediated

type of calcium influx may occur through gap junctions (Taylor, 1990) and/or various

calcium pools (eg, Ins(l,4,5)P3-, caffeine- or thapsigargin-sensitive calcium stores)

which may communicate or require modulation by GTP-binding proteins (Gill et al,

1986) in order to refdl Ins(l,4,5)P3-depleted stores, but the true route of calcium entry

is unknown, and may depend on the agonist which stimulates the receptor-operated

calcium entry (Rink, 1991). Morris et al (1987) showed that an inositol 1,3,4,5-

tetrakisphosphate (Ins(l,3,4,5)P4), a metabolite of Ins(l,4,5)P3 by Ins(l,4,5)P3-3-

kinase (a Ca2+/calmodulin-dependent enzyme) was necessary for receptor-stimulated

calcium influx and acts in unison with Ins(l,4,5)P3. Irvine (1991) has also proposed

that the Ins(l,4,5)P3 and the Ins(l,3,4,5)P4 receptor sites communicate to control the

amount of extracellular-calcium influx into Ins(l,4,5)P3-sensitive calcium stores.

However, Ins(l,3,4,5)P4 decays with a half-life of 40 s after termination of a

muscarinic stimulation in the parotid gland (Hughes et al, 1988) yet Ca2+ pools that are
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emptied by stimulation in the absence of extracellular Ca2+ refill similarly whether Ca2+
is restored rapidly or 20 minutes after addition of atropine (Takemura and Putney,

1989). Furthermore, in acinar cells, application of Ins(2,4,5)P3, an analogue which

can release intracellular calcium stores but is poorly metabolised by the 3-kinase

enzyme (resulting in little or no Ins(2,3,4,5)P4 production), was sufficient to induce

Ca2+ entry into the cells (Bird et al, 1991). However, only small amounts of

Ins(2,3,4,5)P4 may be necessary to facilitate Ins(2,4,5)P3-induced calcium entry.

Hence, although Ins(l,4,5)P3 is responsible for emptying Ca2+ stores, neither it nor

Ins(l,3,4,5)P4 may be directly involved in controlling calcium entry but may have a

modulatory role in receptor-stimulated calcium influx (Hallam and Rink, 1989;

Berridge and Irvine, 1989).

The development of receptor-operated calcium entry inhibitors such as SKF

96365 (Rink, 1991) will contribute to a better understanding of the mechanisms

involved. Unfortunately SKF 96365 has poor specificity, being able to block voltage-

operated calcium channels also. So it seems that at least for the near future, the

mechanisms of second-messenger-mediated Ca2+ influx will remain to be poorly

understood and will continue to be a subject of active investigation.

1.4. Anterior pituitary cells

The pituitary gland (or hypophysis) is attached to the base of the brain by

the hypophysial stalk which is itself composed of pituitary tissue and which brings the

gland into a close anatomical and functional relationship with the hypothalamic region

of the central nervous system (Harris, 1955). The endocrine function of the posterior

pituitary is essentially governed by innervating nerves which originate from the

paraventricular and supraoptic nuclei regions of the hypothalamus. However,

extensive earlier studies which involved directly electrically stimulating the

hypothalamus and pituitary, and measuring the function of the anterior lobe of the

gland, led to the conclusion that direct neural innervation into the anterior pituitary was
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not the mechanism by which its function was controlled. Instead, it was postulated that

neurohumoral substances were released from nerve endings in the median eminence

and that these substances travelled to the anterior pituitary to increase or decrease the

gland activity (Harris, 1955). Since that time, it has become evident that the hypothesis

of Harris was correct (see Fink, 1986 for review) and factors which influence the

control of anterior pituitary function are released from the median eminence and do

indeed travel to the anterior pituitary gland via hypophysial portal blood vessels. The

hypothalamus receives controlling innervation from many regions of the brain and

translates environmental information (such as mental state, circadian rhythms, sunlight

and diet) to the anterior pituitary, which in turn dictates the endocrinological progress of

physiological processes such as growth, stress, water retention, fertility and metabolic

rate (Murad and Haynes, 1980). Regions within the hypothalamus such as the preoptic

area and the medio-basal hypothalamus communicate to the median eminence to govern

the release of a wide range of factors (neuropeptides and certain of the classical

neurotransmitters) into the hypophysial portal blood vessels. In addition to this direct

hypothalamic-hypophysial system of communication via the portal blood vessels,

pituitary control is also influenced by external factors such as circulating adrenocortical-

and gonadal-steroids and thyroidal hormones (Schally, 1973; Murad and Haynes,

1980).

The anterior pituitary is known to consist mainly of some five or six

different hormone-secreting cell types and to be the site of release of at least six

different circulating hormones (Denef, 1982). The anterior pituitary hormones are:

luteinising hormone (LH) and follicle-stimulating hormone (FSH, both of which are

synthesised and released from gonadotrophs); growth hormone (GH, from

somatotrophs); prolactin (from mammotrophs); adrenocorticotrophic hormone (ACTH,

from corticotrophs); and thyroid-stimulating hormone (TSH, from thyrotrophs). There

also exists a population of somato-mammotrophs which secrete both GH and prolactin

(Herlant, 1964; Farquhar et al, 1975; Denef, 1982). Whether these should be
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considered as a lineage distinct from somatotrophs and mammotrophs or just a central

portion of a continuous spectrum of a family of similar cells is a problem that remains

to be solved. The known hypothalamic factors which dictate the release of these

hormones are mainly (but not entirely) peptidergic molecules. Two such peptidergic

factors are the decapeptide luteinising hormone-releasing hormone (LHRH, pyro-Glu-

His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) and (TRH, pyro-Glu-His-Pro-NH2)

which stimulate the release of LH/FSH and TSH/GH/PRL respectively. The receptors

for both of these hormones are known to control hydrolysis of polyphosphoinositides

as their mechanisms of signalling in the anterior pituitary (Schrey, 1985; Drummond,

1986).

Initially, LHRH was thought to stimulate LH release from gonadotrophs by

signalling involving cyclic AMP, however this hypothesis was soon discredited and

cyclic AMP is thought to have a modulatory function on hormone release. Instead, it

became clear that Ca2+ had a crucial involvement in LHRH-induced LH release, as

manipulation of calcium concentrations showed a crucial involvement of the ion for

LHRH-induced hormone exocytosis from gonadotrophs (for reviews, see Conn et al,

1980; Conn, 1989). Metabolism of phosphoinositides stimulated by LHRH was

reported in dispersed anterior pituitary cells (Snyder and Bleasdale, 1982) and in

populations of enriched gonadotrophs (Raymond et al, 1984; Andrews and Conn,

1986). Indeed, it was later shown that in pituitary, LHRH stimulated a PI-PLC

enzyme activity to hydrolyse PtdIns(4,5)P2 into Ins(l,4,5)P3 (Schrey, 1985; Mitchell

et al, 1988) and that the cytosolic calcium concentrations of gonadotroph-enriched cell

populations were raised as a consequence (Naor et al, 1988b; Limor et al, 1987).

Further evidence in support of this mode of signalling came from results showing that

LHRH stimulated an increase in diacylglycerol production in purified gonadotrophs

(Andrews and Conn, 1986) and that PKC translocation occurred by LHRH stimulation

(Hirota et al, 1985; McArdle and Conn, 1986). A role of raised Ca2+ and activated

PKC has been implicated in LHRH-induced LH release; however, a crucial role for
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PKC instead of a modulatory role in LH secretion is a controversial issue (Conn,

1989). Apart from this evidence that LHRH receptors in pituitary signal through

phosphoinositide hydrolysis, it has been shown that LHRH can stimulate a

phospholipase D activity to produce phosphatidic acid and subsequently diacylglycerol

(Liscevitch and Amsterdam, 1989), but the physiological consequences of these events

are uncertain at present.

The secretion of LH and FSH induced by LHRH may involve arachidonic

acid (AA) and/or certain of its metabolites (Naor et al, 1983), but as with cyclic AMP,

AA and its metabolites are thought to perhaps function as modulators, rather than

mediators, of LHRH function in gonadotrophs, particularly in times of high secretory

activity. In the GH3 somato-mammotroph cells, LHRH has been reported to activate

'L'-type Ca2+-channels and thereby raise cytosolic calcium levels, thereby providing a

possible mechanism for LHRH-induced LH release (Rosenthal et al, 1988). However,

more extensive studies by Mason and his co-workers revealed in gonadotrophs that

LHRH does not induce a major depolarisation of the cell membrane (such as would be

required to open 'L'-channels) nor increased 'L'-channel activity (reviewed in Mason et

al, 1988). Instead, LHRH increased membrane 'noise' and induced a small

depolarisation of 2 - 5 mV, suggesting the opening of non-voltage activated, second-

messenger operated channels, however no second-messenger has been identified to

mimic this LHRH action on gonadotrophs.

Curiously, endothelin was recently reported to be almost as good a

secretagogue in purified gonadotrophs as LHRH (Stojilkovic et al, 1990) and also

appeared to signal via phosphoinositide hydrolysis, but any physiological role of this

secretagogue regulating gonadotroph function is as yet unproven.

The interests of the present project lie in the mechanism of action

neuropeptides signalling through phosphoinositide hydrolysis; especially in the role of

PKC in cellular responses and how they relate to physiological consequences in the

anterior pituitary gland. One particular aspect of interest is the 'self-priming'
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phenomenon of LHRH, which is the mechanism by which LHRH induces an increase

in gonadotroph responsiveness (Aiyer et al, 1974). This is an essential factor in

bringing about the LH 'surge' of release from the pituitary which triggers ovulation in

both animals and humans (Fink, 1986). Protein kinase C has been implicated in the

self-priming effect of LHRH (Johnson et al, 1988). In our laboratory, we are

investigating the role of the PKC(s) mediating the LHRH-self-priming and comparing

the properties and actions of those PKC(s) to the PKC(s) involved in unprimed, normal

LHRH-induced LH release. Ovulation is the process by which ovarian follicles rupture

to release an ovum which is subsequently taken through the fallopian tubes, where

fertilisation may occur. Ovulation is triggered by the LH 'peak' or 'surge' (Fink, 1986;

Fink, 1988). The high levels of LH released from the anterior pituitary during the LH

'surge' are preceded by high levels of circulating oestrogens (mainly oestradiol-176)

and low levels of progesterone (Fink, 1986; Fink, 1988).

The hypothalamic release of LHRH is pulsatile in nature, and although the

frequency of LHRH release is increased near the LH surge, the amount of LHRH

released is far too small to account for the amount of LH secreted from the pituitary

(Fink et al, 1982). The increase in pituitary responsiveness is initiated by circulating

oestrogen, is further intensified by the ovarian secretion of progesterone during the

early part of the LH surge, and also by the 'priming' effect of LHRH (Fink, 1988).

The role of the priming effect of LHRH is to co-ordinate the increase in hypothalamic

LHRH release and the increased responsiveness of the pituitary so that both events

result in a massive surge of LH release form the pituitary, a consequence of maximal

effects occurring simultaneously, and thus initiating ovulation in female mammals.

Oestrogen induces several proteins in the rat ventromedial hypothalamus,

one of which is known as hormone-induced protein-70 kD (HIP-70), which is

expressed in the midbrain central gray area of the brain, and is thought to facilitate

female sexual behaviour, but only in the presence of oestrogen (Pfaff, 1980; Sakuma

and Pfaff, 1980). Curtis et al (1985) reported that LHRH induced a protein with a
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molecular size of 69 kD in female rat pituitary tissue (LHRH-70A). Further

investigation showed that HIP-70 and LHRH-70A were the same protein (Mobbs et al,

1990a) and that this protein showed some structural homology to, and may indeed be

the a-isoform of phosphoinositide-specific phospholipase C (Mobbs et al, 1990b).

Interestingly, PLCa is structurally divergent from the other isoforms of PI-PLC (ie, 8,

y, 8 and e; Rhee et al, 1989) and doubts have been expressed by some groups as to

whether the cloned cDNA for PLCa really encodes a functional PI-PLC enzyme

(Meldrum et al, 1991). Nevertheless, these facts are consistent with earlier work in

which Mitchell et al (1988) showed an increase in LHRH-induced inositol

trisphosphate production (a product of phosphoinositide-specific phospholipase C) in

LHRH-primed pituitaries, without a change in LHRH receptor number. One aspect of

the LHRH-priming effect on pituitary may have been revealed but the precise

mechanisms of LHRH self priming remains to be ascertained. Nevertheless, a form of

PKC with some distinctive characteristics appears to be responsible (Fink et al, 1990).

Certain aspects of the present project are thus concerned with investigating the

properties and other cellular actions of that form of PKC which is responsible for

bringing about LHRH priming.

Biochemical studies on pituitary cell types have been dogged with problems

of cell-specificity, because of the heterogeneous nature of gland. One way of

overcoming the problems of cell type-specificity is the use of clonal anterior pituitary

cell lines. Until the late stages of the present project, no gonadotrophic cell line existed.

However, by use of transgenic-animal technology, Mellon and her colleagues managed

to produce several strains of murine clonal cell lines with the properties of

gonadotrophs (Windle et al, 1990; Horn et al, 1991). However, as with all

transformed cell lines, one is never sure of what extent the cell line function actually

matches the physiology of the normal, untransformed cell type. For example, one of

these cell lines, the aT3-l line, express high affinity LHRH receptors, but however

does not synthesise or secrete the 8 subunits of LH or FSH (Windle et al, 1990). It is
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anticipated that in the future, either these (or novel) lines of gonadotrophic cells will

help in the biochemical characterisation of gonadotroph function.

Clonal lines of GH- and prolactin-producing tumour cells from anterior

pituitary were established in 1965 (Tashjian et al, 1968) from a radiation-induced rat

pituitary tumour termed MtT/W5 (Takemoto et al, 1962). Various strains of the tumour

cells were generated (Buonassisi et al, 1962; Tashjian et al, 1970) and all were found to

secrete prolactin, with most of the strains (including the GH3 and GH4C1 strains) also

secreting GH (Tashjian, 1979). The somato-mammotrophic clonal cell line, GH3,

possesses TRH, oestrogen, M2-muscarinic and bombesin receptors among others

(Hinkle and Tashjian, 1973; Tashjian, 1979; Yagisawaela/, 1989; Drummond, 1986).

It was using the GH3 cell line that the discovery was made that TRH was able to induce

the release of prolactin (Tashjian et al, 1971) which was later shown to be present in a

variety of species and be perhaps a physiologically relevant process (Leong et al,

1983).

It became evident mainly by use of the GH cell lines, that TRH-receptor

signalling mechanisms were of the class which mobilised Ca2+ (for review, see

Gershengorn, 1982). Despite considerable early efforts to show that TRH stimulated

cyclic AMP production, any TRH-induced rise in cyclic AMP appears to be indirect and

not result directly in hormone secretion. It soon became evident that TRH-stimulation

of hormone release was a calcium-dependent process (Vale et al, 1977; Tashjian et al,

1978). Using 45Ca2+-preradiolabelled GH3 cells (Gershengorn et al, 1981; Moriarty

and Leuschen, 1981), it was shown that lack of TRH response in somatotrophs

incubated in low Ca2+ medium was due to loss of Ca2+ from a cell-associated pool(s)

and that Ca2+ influx was necessary for TRH-induced hormone secretion. It soon

became clear that TRH, which could stimulate the incorporation of 32P into

phosphoinositides in GH3 cells (Rebecchi et al, 1981; Drummond and Macphee,

1981), was primarily signalling through the phosphatidylinositide hydrolysis pathway.

Stimulation of GH3 cells with TRH resulted in the production of diacylglycerol



(Macphee and Drummond, 1984; Rebecchi et al, 1988) from the receptor-induced

hydrolysis of PtdIns(4,5)P2 as well as inositol trisphosphate (Rebecchi and

Gershengom, 1983; Martin, 1983; Drummond et al, 1984). It was furthermore clear

that the PtdIns(4,5)P2 hydrolysis was not secondary to a raised intracellular calcium

concentration (Schlegel et al, 1984). Similar observations that TRH signals through

phosphoinositide metabolism have been made in normal anterior pituitary cells

(Hollingshead et al, 1985). It is now clear that TRH produces Ins(l,4,5)P3 to release

calcium stores and raise intracellular- calcium (Drummond, 1984; Drummond, 1986;

Mason et al, 1988; Thorner et al, 1988) and that the initial peak raised calcium is

transient and due to Ins(l,4,5)P3-induced release of intracellular calcium, whereas the

more sustained secondary plateau of raised intracellular calcium is due to influx of

extracellular calcium partly through dihydropyridine-sensitive Ca2+-channels (Albert

and Tashjian 1984a; Albert and Tashjian, 1984b; Schegel and Wollheim, 1984;

Gershengorn and Thaw, 1985) with the remaining component of the 'plateau' raised

calcium occurring either through non 'L'-type Ca2+-channels or by a PKC-mediated

reduction in extrusion processes (Mason et al, 1988; Drummond, 1986). The precise

mechanism of the raised cytosolic calcium 'plateau' is unclear but may also involve an

increase in spontaneous Ca2+-action potential frequency (Mason et al, 1988;

Drummond, 1986; Thorner et al, 1988 for reviews), but is probably not due to any one

specific mechanism.

Thus, GH3 cells have proved to be a useful tool in understanding the

mechanisms of a Ca2+-mobilising-receptor function and of TRH-induced

biochemistry/electrophysiology in anterior pituitary cells. GH3 cells are still used as an

extremely useful model for investigating events in stimulus-secretion coupling and

signal transduction.
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The work in this thesis was performed with the following aims:

(i) To assess the effects of PKC on 'L'-type Ca2+-channels in anterior pituitary

and GH3 cells.

(ii) To investigate the pharmacological properties of the distinct modes of

modulation observed in (i) above.

(iii) To assess the possibility that AA may act in a similar fashion to phorbol

esters to enhance PKC activity in GH3 cells.

(iv) To characterise the pharmacological properties of distinct PKC isoforms

which may be involved in 'L' channel regulation, by means of ligand

binding and kinase activity assays on tissues enriched in various PKC

isoforms.
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CHAPTER 2

Materials and methods



2.1. Materials

Standard laboratory chemicals were of Analar grade obtained from BDH

Chemicals Ltd, Poole, Dorset, UK. COB-Wistar rats were purchased from Charles

River UK Ltd, Margate, Kent, UK. GH3 were obtained from Flow Laboratories Ltd,

Irvine, Strathclyde, UK. I-10, LC-540 and R-2C Leydig cell lines and COS 7 cells

were obtained from the European Collection of Animal Cell Cultures, PHLS Centre for

Applied Microbiology & Research, Porton Down, Salisbury, UK.

45CaCl2 (specific activity = 17 mCi/mg) was supplied by Amersham

International pic, Amersham, Bucks, UK. [20-3H(N)]-phorbol 12,13-dibutyrate([3H]-

PDBu) (specific activity approximately 19 mCi/mmol), [5,6,8,9,11,12,14,15-3H(N)]-
arachidonic acid([3H]-AA) (specificity approximately 240 Ci/mmol) and adenosine

triphosphate-y-35S(ATP-y-35S) (specific activity approximately 1256 Ci/mmol) were

supplied by Du Pont, Dreieich, Germany. Foetal bovine serum was obtained from

Flow Laboratories Ltd, Irvine, Strathclyde, UK. Ham's F-10 Medium with

1-glutamine (Ham, 1963). Alpha modification of Minimal Essential Medium (a-MEM)

(without ribonucleosides and without deoxyribonucleosides), Dulbecco's modification

of Minimal Essential Medium (DMEM) (with 1-glutamine and 4500 mg/1 d-glucose,

without sodium pyruvate) (Dulbecco and Freeman, 1959), Hank's Balanced Salt

Solution (HBSS) (without phenol red) (Hank and Wright, 1949) and Trypsin (0.25%

(v/v)) in a solution of (0.4 g/1 KC1, 2.2 g/1 NaHC03, 6.8 g/1 NaCl and 1.0 g/1 glucose)

were supplied by Gibco-BRL, Paisley, Strathclyde, UK. Penicillin, streptomycin, 1-

glutamine, bovine serum albumin (essential fatty acid-free), arachidonic acid (AA)

(sodium salt), AA-methyl ester, linoleic acid, PDBu, NDGA, 8-Br-cyclic GMP

(sodium salt), N-methyl d-glucamine, 2-mercaptoethanol, E-64, leupeptin, lysine-rich

histone-IIIS, myelin basic protein, sodium orthovanadate (Na3V04), indomethacin and

Indo-l-acetoxymethylester (Indo-l-AM), cremaphor EL, gossypol, sphingosine and

phosphatidylserine were all purchased from the Sigma Chemical Company Ltd, Poole,
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Dorset, UK. Piperonyl butoxide was supplied by the Aldrich Chemical Company Ltd,

Gillingham, Dorset, UK. SKF-525A ('Proadifen') was obtained from Research

Biochemicals Inc Natick, Massachusetts, USA. N-methylthyrotropin-releasing

hormone (N-methyl TRH) and 'a-peptide' (Arg-Phe-Ala-Arg-Lys-Gly-Ser-Leu-Arg-

Gln-Lys-Asn-Val ([Ser25]PKC-a)) were purchased from Peninsula Laboratories Inc.,

St Helens, Merseyside, UK. The (+) and (-) enantiomers of indolactam-V and DHI

were purchased from LC Services Corporation, Woburn, MA, USA. AMG-C16 was

supplied by Bachem, Bubendorf, Switzerland. H7 and HA1004 were obtained from

Seikagaku America Inc., St Petersburg, Florida, USA. Staurosporine and K252a were

supplied by Kyowa Medex Co Ltd, Tokyo, Japan. Ionomycin was purchased from

Novabiochem (UK) Ltd, Nottingham, Notts, UK. The enzyme inhibitors, ETYA and

Ro318220 were gifts from Roche Products Ltd, Welwyn Garden City, Herts, UK.

2.2. Methods

2.2.1. Animals

Male COB-Wistar rats (>250 g) were maintained under controlled lighting

(lights on from 05.00 to 19.00 h) and temperature (22°C) and allowed free access to

diet 4IB (Oxoid Ltd, Basingstoke, Hants, UK.) and tap water. Rats were killed by

cervical dislocation and tissue was rapidly dissected out and homogenised as

appropriate.

2.2.2. Cell Culture

All cell cultures were grown in a humidified atmosphere of 95% air/5% CO2

at a constant temperature of 37°C, and received fresh medium every 3-4 days. GH3

and I-10 Leydig cells were grown in Ham's F-10 medium supplemented with 15%

foetal bovine serum (heat-inactivated), 1 mM 1-glutamine, 100 U/ml penicillin and 0.1

mg/ml streptomycin. LC-540 Leydig cells were grown in a-MEM medium

supplemented with 10% foetal bovine serum (heat-inactivated), 1 mM 1-glutamine,
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100 U/ml penicillin and 0.1 mg/ml streptomycin. R-2C Leydig cells were cultured in

Ham's F-10 medium supplemented with 15% foetal bovine serum (y-irradiated), 2 mM

1-glutamine, 100 u/ml penicillin and 0.1 mg/ml streptomycin. COS 7 cells were grown

in DMEM supplemented with 10% foetal bovine serum (heat-inactivated), 100 U/ml

penicillin and 0.1 mg/ml streptomycin. GH3 cells were harvested by agitation (medium

+ cells replaced with fresh medium), washed once by resuspension centrifugation

(1,000 g, 10 min, 25°C) and finally resuspended at the appropriate density in the

required medium. Cell lines were used at > 90% confluency, except for GH3 cells,

which were used when maximally (50 - 70%) confluent. Except for GH3 cells, which

were continually harvested from the same flask, all cell lines were split when 100%

confluent and seeded at low density in fresh flasks. I-10, LC540, and R-2C Leydig

cells and COS 7 cells were harvested by trypsin-digestion: medium was removed from

the flask and replaced with 5 ml of 0.25% (v/v) trypsin solution (37°C) which was

allowed to cover the monolayer for 15 - 30 s before removal. Flasks were then

incubated for 10 - 20 min at 37°C before cells were detached from the culture flask and

neighbouring cells by agitation using the appropriate fresh growth medium. The cell

suspension was washed and finally resuspended at the appropriate density in the

required medium for assaying purposes, or split into new flasks for cell-splitting

purposes.

Cell lines were frozen for storage in liquid N2 by resuspending harvested

cells at an estimated density of 107 cells/ml in 95% foetal bovine serum (heat-

inactivated) + 5% dimethylsulphoxide. The cell suspension was aliquoted in a labelled

cryostat tube and placed in a closed polystyrene box (room temperature). The closed

box containing the sealed cryostat tubes was placed at -70°C for 3 - 5 h before being

transferred into liquid N2. Frozen cells were recovered from liquid N2 by placing the

frozen cryostat tube straight into a beaker of water (37°C) and thawed. The cryostat

tube was then sterilized by wiping with 70% ethanol and the cell suspension was

transferred using a sterile syringe and wide gauge needle into a pre-warmed (37°C)
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flask of appropriate growth medium. Dimethylsulphoxide was removed after cells

were allowed 24 h recovery, by total replacement of growth medium with fresh growth

medium. From this stage, cells were grown as normal.

2.2.3. Calcium Influx Studies (see Figure 2.4)

GH3 cells were diluted to a density of 5 x 106 cells/ml in 'calcium uptake

medium' (concentrations in mM: NaCl, 154; KC1, 5.4; CaCl2, 1.5; d-glucose, 11;

HEPES, 6; pH adjusted to 7.4 with Tris base and supplemented with 0.05% BSA).

Alternatively, one quartered hemipituitary was used per assay tube for studies of

45Ca2+ influx into anterior pituitaries. Aliquots of this suspension (0.5 ml/tube) or one

hemipituitary (in 0.5 ml calcium uptake medium) were preincubated (30 min, 37°C, O2

atmosphere) before a 10 min incubation (37°C, O2) with drugs or solvent alone.

Tissue was then exposed to 1 ml of calcium uptake medium containing either low K+-

(5.4 mM final concentration) or high K+-(60 mM) with 4 (iM 45CaCl2 (approximately

3 (iCi/tube). After 30 s (37°C), 45Ca2+ uptake was halted by quenching with 3 ml of

ice-cold 2 mM EGTA (Ca2+-free) calcium uptake medium and tissue was separated by

vacuum-filtration through Millipore SCWP cellulose acetate/nitrate filters (8 |im pore

size) underlain by GF/B filters on Millipore 1225 sampling manifolds (Millipore UK

Ltd., Harrow, Middlx., UK). Samples were washed once immediately with 3 ml ice-

cold EGTA calcium uptake medium and then washed a further three times for 2 min

each in the same medium. The radioactivity associated with the cellulose filters and

cells was determined by liquid scintillation counting. Preliminary experiments on GH3

cells matched similar extensive studies on anterior pituitary prisms (Mitchell et al, 1988)

revealing that these conditions gave the optimal signal to noise ratio (as shown in

Figures 2.1 and 2.2). Typically, non-specific adsorbtion to cell surfaces and filters

accounted for around 400 dpm as determined in zero-time blanks, in which cells were

incubated as normal, but EGTA quench was added to the tube before the 30 s

incubation with 45Ca2+. The amount of non-specific adsorbtion remained constant
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Figure 2.1. Time-course of basal and high-potassium-stimulated

accumulation of 45Ca2+ in GH3 cells.

45Ca2+ accumulation into GH3 cells was measured for the indicated time under basal

(5.4 mM K+) or high K+ (60 mM K+) bathing conditions. Cells were preincubated

(37°C, O2 atmosphere) for 30 min prior to exposure to 45Ca2+ in either high or basal

K+-containing 'calcium uptake medium'. Influx of 45Ca2+ into GH3 cells was halted

by quenching with 2 mM EGTA (no Ca2+)-containing 'calcium uptake medium',

immediate filtration and then extensive washing as described in the text. The 45Ca2+

presented to the cells here was 4 times greater than normally used, being 12 (iM (~ 12

qCi/tube). The data represent the means of 2 separate determinations, with each value

(dpm) varying by < 20%. Stimulated 45Ca2+ influx was maximal at 30 s, with 60 s

showing no further increase in influx over basal rates of influx.
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Figure 2.2. Effect of the number of washes with EGTA-containing

'calcium uptake medium' on the amount of 45Ca2+ accumulation in GH3

cells.

Cells were preincubated (30 min, 37°C, O2 atmosphere) before exposure to basal (5.4

mM) or high (60 mM) K+-containing 'calcium uptake medium' and 45Ca2+ for 30 s.

Each wash was for a 2 min period with 3 ml of EGTA-containing 'calcium uptake

medium' (4°C) and is in addition to the initial 3 immediate washes with 3 ml of ice-cold

EGTA-containing 'calcium uptake medium'. The values were calculated by collecting

and counting the successive wash eluates and recalculating the initial value (100% at

zero 2 min washes) from the final counts in the filtered cells plus those counts in the

eluates. The data represent the means of 2 determinations.



%ofinitially-retained45Ca2+(nowashes) stillretainedafternwashes &<y>co ooo



Figure 2.3. Effect of various stimuli on 45Ca2+ accumulation into

GH3 cells.

The figure displays the 45Ca2+ accumulation into GH3 cells after a 30 min

preincubation (37°C, O2 atmosphere) under the conditions indicated: basal (control

with 'calcium uptake medium' alone); N-methyl TRH (1 )lM in 'calcium uptake

medium')-; high K+ (60 mM K+-containing 'calcium uptake medium')- or ionomycin

(30 jiM dissolved in dimethyl formamide (0.3% final) in 'calcium uptake medium').

Influx of 45Ca2+ was measured for a 30 s period before halting with ice-cold EGTA-

containing 'calcium uptake medium' as described in the Methods section. The dotted

line represents the mean accumulation to cell-surfaces and filters as determined in two

zero-time blanks. Accumulation to filters alone in the absence of cells typically

accounts for around 350 dpm (30 fmoles 45Ca2+ per 106 cells per min) of 45Ca2+. The

data represent the mean ± SEM of 4 determinations for the basal, high K+ and

ionomycin assay conditions, and of 12 determinations for the N-methyl TRH assay

condition. Each stimulus produed a statistically significant increase in 45Ca2+
accumulation over basal levels (P < 0.05, Mann-Whitney U-test).
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Figure 2.4. Flow diagram of the 45Ca2+ influx methodology used

our studies.
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from 5 to 60 s incubation with 45Ca2+ at 37°C and was independent of a high K+

stimulus being present (Figure 2.1). Accumulation in 30 s (37°C) of 45Ca2+ to filters

alone (ie, in the absence of cells) accounted for around 350 dpm. Basal 45Ca2+
accumulation in GH3 cells linearly increased with time from 5 to 60 s (Figure 2.1).

High K+-stimulation of GH3 cells led to an accumulation of 45Ca2+ above basal influx

at 5, 10, 15 and 30 s incubation, however the increased rate of uptake was maximal at

30 s. Incubation with high K+ for 60 s showed 45Ca2+ accumulation which was

greater than basal, but the rate of accumulation was similar to the basal rate of 45Ca2+

accumulation, indicating that a maximal stimulation of 45Ca2+ influx into GH3 cells

occurred with 30 s incubation of 60 mM K+. In further experiments, 30 s incubation

periods with stimulus and 45Ca2+ were used, as this incubation time generated the

maximum signal to noise ratio. The stimulus-induced influx of 45Ca2+ in excess of

basal controls was maximal within 30 s, suggesting that it represented a specific

stimulus evoked flux rather than adsorption or steady accumulation by storage pools.

Figure 2.3 demonstrates the effects of various stimuli on 45Ca2 +

accumulation into GH3 cells. Incubation for 30 s with 30 |lM ionomycin showed the

greatest 45Ca2+ influx over basal accumulation, among the the stimuli tested. 60 mM

K+-stimulation and 1 |iM N-methyl TRH-stimulation for 30 s accounted for 37 ± 15%

and 14 ± 8 % of ionomycin-stimulated 45Ca2+ influx respectively.

2.2.4. Calcium Efflux Studies (see Figure 2.6)

Harvested GH3 cells were resuspended at a concentration of 1 x 107

cells/ml in calcium uptake medium containing 0.05% BSA and incubated for 20 min

(37°C, O2) before addition of 1 ml of medium containing 6 |iM 45Ca2+ (approximately

4.5 (iCi/tube). Samples were incubated for 1 hr at 37°C under O2 before loading onto

separate GF/B filters which had been pre-washed with calcium uptake medium under

gentle vacuum on a Millipore 1225 sampling manifold (eluate discarded). Cells were

then washed three times for 2 min with 3 ml of pre-warmed (37°C), pre-oxygenated

58



Figure 2.5. Effect of ionomycin on 45Ca2+ efflux from preloaded

GH3 cells.

Aliquots of GH3 cells were loaded in 'calcium uptake medium' with 6 |iM 45Ca2+ (~

4.5 |iCi/tube) for 1 h (37°C) under O2 before being loaded onto separate filters under

vacuum. The filters were washed 3 times for 2 min with prewarmed (37°C) 'calcium

uptake medium' and the eluates were discarded. The end of the 3rd 2 min wash is

denoted as time = 0 min. The eluate of each successive 2 min wash with 'calcium

uptake medium' was collected and counted for 45Ca2+ radioactivity. The presence in

the 'calcium uptake medium'-wash of 30 |iM ionomycin after the 3rd collected fraction,

is indicated by the solid line, which was present until the end of the experiment.

Control efflux levels are measured in the presence of the solvent for ionomycin,

dimethylformamide (1% final). The data represent the mean ± SEM of 3

determinations.



Figure 2.5

time (min)



Figure 2.6. Flow diagram of the 45Ca2+ efflux methodology used

our studies.
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calcium uptake medium alone and the eluates discarded. There then followed a further

8 washes of 2 min each with pre-warmed calcium uptake medium containing the

appropriate inhibitor or solvent for controls. Each successive 2 min wash with 3 ml of

calcium uptake medium was collected and the radioactivity in each fraction measured by

liquid scintillation counting. The 4th and subsequent washes contained the stimulus.

Inhibitors (if investigated) were present in the washes from the start of each run.

In preliminary experiments, an ionomycin (100 jiM) stimulus was applied

during various washes to assess the best time of introducing a stimulus to the cells. It

was found that when rate of extrusion from GH3 cells was highest (ie, at the start of the

washing procedure), the rapid loss of 45Ca2+ was quite variable (even when expressed

as a percentage of the total radioactivity collected), probably representing the removal of

largely extracellularly bound 45Ca2+ in the first several washes. Therefore, the first

three washes were discarded and the ionomycin (or other stimulus) was introduced to

the cells at the 7th (4th collected) wash (Figure 2.5) as the efflux of 45Ca2+ had

stabilised, and replicates of basal efflux and stimulated efflux levels were more similar.

If the stimulus was introduced later, after even more extensive washing, the evoked

response in excess of basal efflux was diminished.

2.2.5. Cytosolic Calcium Measurements (see Figure 2.8)

Cytosolic Ca2+ concentrations were measured by use of the calcium

fluorescent dye Indo-1 (Grynkiewicz et al, 1985). Indo-1 is an indicator dye which,

when excited with a wavelength of ~ 330 nm, will emit light with a characteristic

spectrum of a maximum intensity at 490 nm. However, Indo-1 which binds Ca2+ is

cell-impermeant. Thus the acetoxymethyl ester, Indo-1-AM, which is cell permeable,

can load into cells and is trapped there by intracellular esterase action on Indo-1-AM to

liberate Indo-1. GH3 cells were loaded with 10 |iM Indo-l-AM for 45 min in culture

medium at 37°C, 95% air, 5% CO2. Cells were then harvested, washed and

resuspended in Hank's Balanced Salt Solution (HBSS). A 30 min incubation in the
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dark at room temperature was then given to allow more complete hydrolysis of

intracellular Indo-l-AM. To remove extracellular dye, the suspension was then

centrifuged (1,000 g, 10 min, 25°C) and the cell pellet was again resuspended in HBSS

at a concentration of 5 x 106 cells/ml. A sample (2.5 ml) of the cell suspension was

loaded into a quartz cuvette which was stirred magnetically and maintained at a constant

temperature of 37°C. Fluorescence was measured in a Shimadzu RF-5000

spectrofluorophotometer. Excitation was at 332 nm (band width = 5 nm) and emission

was measured at 400 nm (band width = 5 nm). Emission wavelengths were not ratioed

between 400 and 490 nm so that the possibility of introducing significant

autofluorescence artefacts in the final signal (Luckhoff, 1986) would be reduced. A

fluorescence value was taken every 2 s and at the end of each experiment, 10 pM

ionomycin followed by 10 mM MnCl2 (final concentrations) were added to give a

measure of the maximum and minimum fluorescent values of the cuvette contents

respectively. An assessment of extracellular fluorescence resulting from dye leakage

was made according to the method proposed by Rink and Pozzan (1985). Thus,

appropriate corrections were made for the small changes in basal fluorescence induced

by the addition of 100 pM MnCl2 which were rapidly and fully reversed by the Mn2+-
chelator DTPA (200 pM). The experimental values for cytosolic Ca2+ concentrations

were calculated according to Grynkiewicz et al (1985) and Luckhoff (1986) as shown

(Figure 2.7).

This method represents the treatment of GH3 cells needed to obtain an

optimal signal of cytosolic calcium concentration using Indo-1 as a Ca2+-indicator.

After loading with Indo-l-AM, the cells require to be washed sufficiently so as to

remove extracellular dye ester and this manoeuvre is important to reduce

autofluorescence since any Indo-1 indicator present extracellularly (in the presence of

1.26 mM Ca2+), which would significantly reduce the signal to noise ratio for cell

responses. The number of washes needed to be optimised so enough GH3 cells were

still present finally in the cuvette, and a reasonable fluorescence signal was measured.
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Figure 2.7. Calculation of cytosolic calcium concentration from

Indo-l-loaded GH3 cells.

GH3 cells were loaded with 10 pM Indo-l-AM for 45 min in their culture flasks (37 °C,

5% CC>2/95% air/humidified atmosphere) and were harvested, washed and resuspended

in Hank's balanced salt solution. After a 30 min incubation in the dark at room

temperature, fluorescence measurements and calcium concentration calculations were

performed as described in the Methods section. The fluorescence signal was allowed to

stabilise before the experiment commenced. The trace is representative also of two

others. The trace represents a typical result of a calibration procedure, including

assessment of extracellular dye leakage, as conducted on cell sample aliquots in

parallel. The addition of agents to the cuvette was as follows:

(a) Mn2+ (100 pM final)

(b) CaDTPA (200 pM)

(c) ionomycin (15 pM)

(d) Mn2+ (5 mM)

The abscissa scale bar represents 1 min. Cytosolic Ca2+ concentration was calculated

as follows:

Grynkiewicz et al (1985)

[Ca2+] = F - Fmin x Kd
Fmax - F

where: Kd = 250 nM for Indo-1: Ca2+
F = sample fluorescence

Fmax = value after ionomycin (at c) to permeabilise to external Ca2+

Fmin = value after ionomycin and then saturating Mn2+ to quench
all Ca2+-induced fluorescence.



Figure 2.7. (continued)

Rink & Pozzan (1985)

Correction procedure for dye leakage was calculated as follows:

Addition of a low concentration of extracellular Mn2+ (100 |iM) will quench Ca2+

signal due to dye leakage and addition of the highly selective Mn2+ allowing further

manipulations to proceed:

True = F:apparent
- leak

True Fmax

True Fmin

(where leak = reduction from Fapparent after Mn2 +
(100 |iM) at (a) which should be reversed by Ca DTPA
(200 |iM) at (b)).

= Fmax apparent " Fak
= Fmin apparent" correction factor (CF)

(where CF = Vi i.22 x leak)

The constant for CF is derived from the relative
fluorescence of Ca:Indo-l complex and of Ca2+-free:Indo-l
(or Mn2+:Indo-l complex) at the relevant wavelengths
(Grynkiewicz et al, 1985).

In the present example:

Fapparent -

Fmax apparent =

Fmin apparent -

leak =

68 units

139 units

10 units

24 units

Thus:

basal [Ca2+]i = F - Fmin x

Fmax - F

= (68 - 24) - (10 - 1/11.22 x 24) x 250
139 -24) - 68 - 24

= 44 - 8 x 250
115- 44

= 36 x 250
71

= 127 nM
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Figure 2.8. Flow diagram of the methodology used to assess

cytosolic calcium concentration in GH3 cell populations.



Figure 2.8
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*
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*
30 min 'hydrolysis' incubation in dark at room temperature

*
centrifugation (1000 g, 10 min, 25°C) and cell pellet resuspended at

5 x 106 cells/ml in Hank's balanced salt solution

*
2.5 ml aliquot of cell suspension into a

quartz cuvette (37°C) being magnetically stirred

*
fluorescence signal allowed to stabilize before experiment

(excitation at 332 nm, emission at 400 nm)

*
at end of experiment, 10 (iM ionomycin added,

then 10 mM MnCl2 added to give values of
maximum and minimum fluorescence respectively

<4- take record
calculation of intracellular Ca2+ ion concentration from recording



Loading of GH3 cells needs to be reasonably quick so as the Indo-1 is mainly in the

cytosol, and not sufficiently hydrolysed in organelles such as calcium stores, to which

Indo-1-AM eventually permeates. Finally, the amount of Indo-1 within the cells should

not be too high or else formaldehyde (a biproduct of its formation) may accumulate to a

toxic concentration within the cytosol (product information from R P Haughland,

Molecular Probes Catalogue, 1989).

The fluorescent Ca2+-dye Quin-2 (Drummond, 1985) was used in earlier

studies on GH3 cells, but since the signal to noise ratio obtained was poor, the dye was

replaced by trials with the improved Ca2+-indicators Fura-2 and Indo-1, which have

greater wavelength shifts upon Ca2+-binding, show much stronger fluorescence and

provide better information as to 'total' cytosolic calcium concentration and not 'relative'

cytosolic calcium concentration. However, Fura-2-AM was poorly hydrolysed within

GH3 cells, whereas Indo-1-AM hydrolysis within GH3 cells was sufficient to produce

an effective signal of their cytosolic Ca2+ levels.

2.2.6. [3H]-arachidonic acid release studies

Release of [3H]-arachidonic acid ([3H]-AA) into the incubation medium

from preloaded GH3 cells was measured by lipid extraction and reverse-phase

chromatography on octadecylsilyl silica using the solvent system first described by

Powell (1982). GH3 cells were grown to maximal (approximately 70%) confluency in

35 mm-diameter culture wells in Ham's F-10 medium supplemented with 15% foetal

bovine serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Eighteen hours before

the experiment, each multiwell of GH3 cells had its medium replaced with 2 ml/well of

minimal essential medium (MEM) with 100 U/ml penicillin, 0.1 mg/ml streptomycin

and approximately 1 |iCi of [3H]-AA. Cells were then incubated in a radioactive-

incubator for 18 h at 37°C (95% 02/5%C02, humified atmosphere) in order to label

cellular lipids with [3H]-AA. Prelabelled cells then had their medium removed, were

washed twice for 2 min with 2 ml of prewarmed (37°C) MEM plus 1% bovine serum
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albumin (essential fatty acid-free) (BSA) while in a shaking water bath (37°C) and with

an atmosphere of 95% 02/5%C02. After these initial washes, the medium was

replaced with 1 ml/well of MEM plus 0.5% BSA which was supplemented with

nothing, 1 |iM final N-methyl TRH (dissolved in distilled water (0.3% final)) or 30 |iM

final ionomycin (dissolved in dimethylformamide (0.3% final)) to assess basal, N-

methyl TRH-stimulated or ionomycin-stimulated levels of [3H]-AA release

respectively. After a 15 min (37°C, 95% 02/5%C02) incubation in a shaking water

bath with the appropriate stimuli, the medium from each well was removed and stored

on ice. The monolayer of cells was washed twice with 1 ml/well of MEM plus 1%

BSA (both washes discarded). The monolayer of cells was then scraped using a

silicated rubber plunger from a 1 ml syringe into 0.5 ml of MEM plus 0.5% BSA. This

scraping procedure was repeated into another 0.5 ml of MEM plus 1% BSA and both

aliquots were pooled and stored on ice until homogenisation with a 1 ml glass hand

homogeniser. All syringes, centrifuge tubes and homogenisers had been previously

coated with sigmacote (Sigma) and left to dry overnight in a fume hood. Both the 1 ml

of cellular homogenate and the 1 ml of medium from the incubation with stimulus had

2 ml of ethanol added, vortexed, a further 3.7 ml of distilled water added before

vortexing and centrifugation (5,000 g, 10 min, 4°C). The supernatant from each

centrifuged sample had the pH adjusted to approximately 3 with 1 M HC1. A sample of

200 |il was retained for radioactive counting, and 4 ml of each sample was loaded onto

separate Seppak Cis cartridges (Waters chromatography division, Millipore Corp,

Milford, MA, USA) which had been previously primed by passing through 5 ml of

absolute ethanol, then 5 ml of distilled water. 20 ml of 30% ethanol in distilled water

followed by 20 ml of distilled water was passed through each loaded column and the

elutions discarded. Elution of [3H]-AA was then performed by passing 10 ml of

petroleum ether through each column (eluate collected). Elution of [3H]-AA
metabolites occurs by passing 20 ml of petroleum ether/chloroform in a 1:1 mixture,
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again the eluate was collected. The amount of G-radioactivity in a 4 ml aliquot of each

fraction was determined by liquid scintillation counting.

The separation of [3H]-AA and its metabolites described was the same as

that defined by Powell (1982). Further calibrations using fresh [3H]-AA through the

Seppak Ci8 cartridges, independently determined that 83% of the total [3H]-AA was

eluted at the appropriate step, and that no marked contamination of fresh [3H]-AA
occurred in any other fraction (F J Thomson and R Mitchell, unpublished

observations). The values of [3H]-AA and [3H]-AA metabolites liberated into the

incubation medium were expressed as a % of the total [3H]-AA loaded onto columns

for both medium plus cell homogenate. Due to the high variability from day to day in

the absolute incorporation of [3H]-AA into GH3 cells, the values were expressed as a

% of the basal release of [3H]-AA from control determinations performed on the same

multiwells, on the same day.

2.2.7. [3H]-phorbol 12,13-dibutyrate binding studies (seeFigure2.11)

In binding studies, rats were killed by cervical dislocation and tissue was

rapidly dissected over ice. Specific binding of [3H]-PDBu ([3H]-phorbol 12,13-

dibutyrate) to membranes was performed as described by Declos et al (1980), on

weighed tissue which had been homogenised in 100 vol of 50 mM Tris HC1 (pH 7.4).

Chopped tissue was homogenised using a Ystral high frequency homogeniser and was

then ultracentrifuged (38,000 g, 1 h, 4°C) to separate membranous and cytosolic

fractions. The supernatant from the spin was discarded and the pellet was resuspended

using the Ystral homogeniser in 50 mM Tris HC1 (pH 7.4) with 4 mg/ml bovine serum

albumin (essential fatty acid-free) (BSA) to a concentration which gave total binding of

approximately 5 -10% of total radioactivity present. The membraneous suspension (50

|il) was aliquoted into tubes on ice containing: 400 |il 50 mM Tris HC1 (pH 7.4) + 4

mg/ml BSA; 50 ql of [3H]-PDBu (5 nM final concentration, approximately 0.03

pCi/tube); 2.5 jlxI of drug at 100 times the required final concentration and 2.5 ql
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dimethylformamide (1% final (which had no effect on levels of total or non-specific

binding)) or PDBu (20 pM final) in dimethylformamide for measurement of total or

non-specific binding levels respectively. Tubes were capped, vortexed and incubated

(30 min, 37°C) before being centrifuged (16,000 g, 5 min, 4-C) and the supernatant

aspirated. The tip of the tube containing the pellet was cut off using a scalpel blade and

left to dissolve overnight in 10 ml of scintillation fluid (Emulsifier-Safe, Packard Ltd,

Groningen, Netherlands) before being counted for 8-radioactivity in a Beckman LS

1801 counter.

Cytosolic [3H]-PDBu binding was performed in a method similar to that

described by Leach et al (1983). Dissected tissue was homogenised in 2 volumes of

50 mM Tris HC1 (pH 9.0) containing 1 mM phenylmethylsulfonyl fluoride and 1 mM

MnCl2 and ultracentrifuged (100,000 g, 1 h, 4°C). The pellet was discarded and the

supernatant was again ultracentrifuged (120,000 g, 1 h, 4°C). The supernatant from

the second spin was regarded as cytosol and stored at -40°C until use. Cytosol was

diluted in 'assay buffer' (50 mM Tris HC1 (pH 7.4), 4 mg/ml BSA, 1 mM CaCl2 and

75 mM magnesium acetate) to a concentration which gave total binding of

approximately 5 - 10% of total radioactivity present (assessement as shown in Figure

2.9), then 25 pi was incubated (30 min, 37°C) with 200 pi of phosphatidylserine

(sodium salt) in assay buffer (1 mg/ml final concentration), 25 pi [3H]-PDBu (5 nM

final, approximately 0.03 pCi per tube), various concentrations of the investigated

compound, dimethylformamide or 20 pM unlabelled PDBu final in dimethylformamide

(1% final, which had no effect on the levels of total or non-specific binding) for total

and non-specific binding respectively. Protein was precipitated on ice by addition of

100 pi of 12 mg/ml bovine gamma-globulin and 300 pi of 24% polyethyleneglycol

8,000 in 50 mM Tris HC1 (pH 7.4) (1.8 mg/ml and 11% final concentrations

respectively), capped and vortexed vigorously. After 20 min (4°C), assay tubes were

spun (12,000 g, 5 min, 4°C), aspirated and the radioactivity in each pellet was

determined by being dissolved overnight in 10 ml scintillation fluid, then liquid
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scintillation counted for B-radioactivity. Phosphatidylserine, diglycerides and

arachidonic acid (AA) were dissolved in chloroform and dried under a stream of N2

before sonication with a Ystral high frequency homogeniser (2 x 30 s, setting 4)

followed by two full strength 30 s pulses in an MSE micro-tip sonicator. Various

concentrations of diacylglycerols or AA were added to the assay in a mixed micellar

method where the drug concentration was diluted by mixing with micelles which

contained phosphatidylserine alone. High chain length diacylglycerols were unable to

fully dissolve in dimethylformamide or other suitable solvents at convenient

concentrations, and were therefore applied to binding studies in a mixed micellar

method. However, l^-dioctanoyl-SH-glycerol (DOG) is more soluble in

dimethylformamide and in some of the binding studies 0.5 - 500 |lM DOG was applied

dissolved in the solvent (1% final). Other investigated compounds were dissolved in

dimethylformamide unless otherwise indicated. Differences in potency of DOG were

observed between the mixed micellar and solvent-dissolved application of DOG, with

the mixed micellar application of DOG being of lower potency. The potency of DOG

when applied in solvent was thought to represent a more realistic estimate of the true

potency of DOG for PKC as there was more possibility experimentally, for loss of

phosphatidylserine and DOG in the mixed micelle method (for example, to glass tube

surfaces). In vivo however, the lipid composition of membranes is likely to influence

the value in a manner which may well be better investigated by a mixed micellar

approach.

In binding studies where both the membraneous and cytosolic binding of

[3H]-PDBu was investigated from the same tissue, the tissue was homogenised in 10

vol of 50 mM Tris HC1 (pH 9.0), 1 mM phenylmethylsulfonyl fluoride and 1 mM

MnCl2 and ultracentrifuged (120,000 g 1 h, 4°C). The supernatant was used for

cytosolic binding as described above, and the pellet was washed three times with 2 ml

of 50 mM Tris HC1 (pH 7.4) + 4 mg/ml BSA before being resuspended in 50 mM Tris
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Figure 2.9. Tissue concentration-dependence of total and non¬

specific binding of [3H]-PDBu to rat frontal cerebral cortex cytosol.

The tissue-concentrations expressed relate to the wet weight of frontal cerebral cortex

tissue from which the cytosol preparation was derived. The various concentrations of

cytosol preparation are dilutions in 'homogenisation buffer' from the original cytosol

preparation. Total binding of [3H]-PDBu (dpm) was assessed in the presence of

dimethylformamide (<1% final) and non-specific binding (nsb) was defined in the

presence of 20 |iM unlabelled PDBu dissolved in dimethylformamide. Other assay

conditions are the same as described in the Methods section. The total amount of

radioactivity presented to each assay tube was in the order of 129,000 dpm. The data

represent the means of 2 determinations, with values varying by < 20%.
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Figure 2.10. Concentration-response relationship for PDBu-

displacement of [3H]-PDBu binding to rat frontal cerebral cortex

cytosol.

Total binding was determined in the presence of dimethylformamide (<1% final) and

non-specific binding was determined as the amount of [3H]-PDBu binding remaining in

the presence of 20 pM unlabelled PDBu dissolved in dimethylformamide (<1% final).

The data represent the mean ± SEM of 4 determinations. The insert shows the

information provided from the non-linear curve-fitting program 'P-fit' using an

asymmetric sigmoid (allosteric Hill kinetics) fit. The 'P' value in the insert is the Hill-

slope value which tends towards 1, which is consistent with the involvement of a single

binding site.
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Figure 2.11. Flow diagram of [3H]-PDBu binding methodology used

in our studies.



Figure 2,11

adult male rats

1
various regions homogenized in 2 vol of 50 mM Tris HC1

(pH 9.0), 1 mM phenylmethylsulfonyl fluoride, 1 mM MnCl2

i
ultracentrifuged

(100,000 g, 1 h, 4°C then 120,000 g, 1 h, 4°C)

pellet
(membrane)

supernatant from 2nd spin
(cytosol) - stored at -40°C until use

1
50 mM Tris HC1 (pH 7.4)
4 mg/ml bovine serum albumin
(essential fatty acid-free)
1 mM CaCl2 75 mM Mg acetate

I

1 mg/ml phosphatidyl serine/
arachidonate or diglyceride (mix
micelle), 5 nM3H-PDBu (0.03 jxCi/
tube), dimethylformamide (<0.1%
final) or 20 (iM PDBu in
dimethylformamide (for total and
non-specific binding respectively)

capped, vortexed and incubated (30 min, 37°C)

i
proteins precipitated on ice with 12 mg/ml bovine
gamma globulin + 24% polyethylene glycol 8000

1 20 min (4°C)

spin tubes (12,000 g, 5 min, 4°C)

1
supernatant aspirated and pellet 3H-PDBu
counted the next day by liquid scintillation



HC1 (pH 7.4) + 4 mg/ml BSA and assayed as described above for membraneous [3H]-
PDBu binding.

Analysis of binding data was performed as shown in Figure 2.10.

2.2.8. Protein kinase C activity assay (see Figure 2.19)

Rats were killed by cervical dislocation and dissected tissues were

homogenised in 2 volumes of 'Kuo' Buffer (20 mM Tris HC1 (pH 7.5) 50 mM 2-

mercaptoethanol, 2 mM EDTA and 1 mM phenylmethylsulphonyl fluoride) containing

0.01% leupeptin and 20 pM E-64 and then centrifuged (16,000 g, 20 min, 4°C). The

supernatant was collected (pellet discarded) and recentrifuged (16,000 g, 5 min, 4°C).

The second supernatant was regarded as cytosol and was partially purified by loading

onto 1.5 ml DE52 diethylaminoethyl cellulose (Whatman Biosystems Ltd, Maidstone,

Kent, UK) (pH 7.5) held in a Bio-Rad Poly-Prep Chromatography column (Bio-Rad

Laboratories, Richmond, CA, USA) in a cold-room and prewashed with 9 column

volumes of 'Kuo' buffer + 0.01% leupeptin + 20 pM E-64. The cytosol was allowed

to run through before washing with a further 9 column volumes of 'Kuo' buffer +

0.01% leupeptin + 20 pM E-64. The partially purified cytosol was eluted with 3

column volumes of 'Kuo' buffer + 0.01% leupeptin + 20 p.M E-64 + 150 mM NaCl.

Phosphatidylserine vesicles were produced by dissolving

phosphatidylserine in chloroform then blowing the glass tube dry under a stream of

N2- The phosphatidylserine 'film' was scraped into 'Tris-EGTA' buffer (20 mM Tris

HC1 (pH 7.5) with 0.5 mM EGTA) at a stock concentration of 400 p,g/ml. The

phosphatidylserine/Tris-EGTA mixture was kept on ice before sonication in a Ystral

high frequency homogeniser (2 x 30 s, setting 6) followed by sonication in a microtip

sonicator (1 min, full power). In mixed micelle experiments with detergent-defined

micellar structure, the suspension had Nonidet P-40 added (usually 0.16% final in

stock solution) and was vortexed for 2 min before allowing to settle at room

temperature for a minimum of 15 min.
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The PKC activity assay was similar to the methods of Huang et al (1988),

Hannun et al (1985) and Marais and Parker (1989), on which the developed method

here is based. All assay dilutions were performed in 'Tris-EGTA' buffer. Generally,

15 - 25 (0.1 of partially purified cytosol (DE52, 0-150 mM NaCl fraction) was added

finally to notched Sarstedt 1.5 ml Eppendorf tubes (Sarstedt Ltd, Beaumont Leys,

Leics, UK) containing (final concentrations): 1.25 mM MgCl2, 100 (ig/ml

phosphatidylserine with 0.04% Nonidet P-40, 1.25 mg/ml histone III-S or 1.25 mg/ml

myelin basic protein or 10 (J.M a-peptide as substrate, and 100 |0.M ATP-y-35S (0.177

jiCi/tube). The Ca2+-independent PDBu-activated kinase activity was measured in the

presence of PDBu (1 |oM final) and EGTA (5.5 mM final). Total PKC activity, that is

calcium-dependent activity superimposed on Ca2+-independent activity, was measured

in the presence of PDBu and either 100 nM or 100 |iM-free Ca2+. The appropriate

calcium ion concentration to add in order to achieve the correct ffee-Ca2+ concentration

was estimated using Ca2+/EGTA buffering software (provided by B L Ginsborg). The

actual free Ca2+ concentration present in an appropriate mix of the assay constituents

was assessed by spectrofluorophotometric analysis using the Ca2+-indicator Indo-1 and

some adjustment from the standard Ca2+:EGTA buffering values was required to

compensate for other chelators and traces of divalents in the assay. Such a free Ca2+

concentration-activity response relationship is shown in Figure 2.15. The calcium

concentrations were set to achieve 100 nM and 100 |iM free-Ca2+ in the assay; chosen

so as to represent typical cells of the basal cytosolic Ca2+ concentrations and a

maximally-activating value respectively. The final assay volume was 100 fil when

cytosol was added to pre-warmed (30°C) tubes containing the other assay constituents.

Reactions were started by centrifugation in a bench-top centrifuge to allow all the assay

ingredients which were separately 'spotted' to mix in the bottom of the tube, then

incubated for 15 min at 30°C. Reactions were usually stopped by addition of 20 (il of

ice-cold 0.1 M ATP in 0.1 M EDTA (pH 7.0) to cool the preparation, to chelate both

Ca2+ and Mg2+, and to dilute-out the ATP-y-35S in the reaction mixture (Mochley-
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Rosen and Koshland, 1987). In experiments using a-peptide as substrate, reactions

were stopped by addition of 20 p.1 ice-cold 24% trichloroacetic acid to precipitate

proteins, followed by being placed on ice for 20 min and then spun (16,000 g, 15 min,

4°C). A 50 pi aliquot of each stopped sample (or 50 pi of supernatant from spin when

using a-peptide as acceptor) was spotted onto a 4 cm2 piece of Whatman P81 cellulose

phosphate ion-exchange chromatography paper which strongly binds proteins and

peptides with more than two basic amino acid residues (Kemp, 1979) (Whatman

International Ltd, Maidstone, Kent, UK), and washed (3x2 min, room temperature) in

10 ml of 75 mM H3PO4 in order to wash away any unbound 35S. Papers were dried

overnight in a fume hood before counting in liquid scintillation fluid for B-radioactivity.

The difference in kinase activity between tubes containing 5.5 mM

EGTA/1 pM PDBu and those with 5.5 mM EGTA alone was considered as calcium-

independent kinase activity. The additional increment in kinase activity in tubes

containing CaCl2/PDBu above those with EGTA/PDBu was considered as calcium-

dependent kinase activity.

ATP-y-35S was used as the phosphate donor instead of ATP-y-32P, since

ATP-y-35S is known to be a good substrate for many protein kinases (Eckstein, 1985).

The thiophosphorylated substrates produced are more resistant to subsequent

phosphatase activity (Coyne et al, 1987; Wagner and Vu, 1989) however,

thiophosphorylation occurs at a slower rate than phosphorylation with 32P (Wise et al,

1982b). The radio-isotope 35S is a lower energy B-particle emitter than 32P and is

therefore also safer to work with. Initial work on the development of the PKC activity

assay was performed on partially purified midbrain cytosol which was partially purified

by 'salting-out' the PKC with ammonium sulphate in order to remove endogenous

inhibitors and phosphatases which would obscure any results (Rodriguez-Pena and

Rozengurt, 1984). This was performed on cytosol preparations in 'Kuo' buffer

(stirred on ice) by slowly adding solid ammonium sulphate to a concentration of 21%

and allowing the crystals to dissolve. The suspension was then centrifuged (16,000 g,
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20 min, 4°C). The pellet was discarded and the supernatant put back on ice, stirred and

had another 24% (45% total) ammonium sulphate slowly added to it. The suspension

was again centrifuged (16,000 g, 20 min, 4°C) and the pellet was weighed,

resuspended in 2 vol of 'Kuo' buffer and added to the above kinase assay to measure

the 21 - 45% ammonium sulphate-'cut' PKC activity. Although a reasonable PKC

activity was obtained using the ammonium sulphate-'cut' purification methodology

(Figure 2.12), it was abandoned in favour of the DE52-partial purification method

which was much less time consuming and easier to standardise. Furthermore, any

influence of high levels of ammonium sulphate on PKC activity would be absent.

DE52 (diethylaminoethyl cellulose) is an ion-exchange resin which acidic proteins

(including PKC) stick well to (Wise et al, 1982a). Other non-acidic proteins can be

washed through the column (partially-purified) using an increasing NaCl concentration

in the eluting buffer. PKC(s) consistently elutes from the column a characteristic NaCl

concentration (Mochley-Rosen and Koshland, 1987). Using both DE52-purified (0 -

80 mM NaCl) and ammonium sulphate-'cut'-purified (21 - 45% ammonium sulphate)

PKC, thiophosphorylation kinetics were known to be linear up to 30 min (Figure

2.12), therefore a 15 min incubation time at 30°C was used to ensure enough signal for

analysis, but certainly to be within the linear range. It was estimated that under our

assay conditions where the protease inhibitors leupeptin and E-64 were included not

only in the homogenisation and purification steps, but also in the PKC activity assay,

PKC degradation was minimal within 15 min, since no evidence for loss of regulated

kinase activity or further appearance of kinase activity was apparent in the time course

experiments (Figure 2.12). A major concern was the state of the PKC in the assay, as

a marked amount of kinase activity was present with phosphatidylserine alone,

indicating that an unregulated catalytic fragment of PKC could be present. As

discussed by Hannun et al (1985) and Huang et al (1988), the physical interactions

occurring between Ca2+ and acidic phospholipids (such as phosphatidylserine) which

can result in the formation of undefined multilamellar complex micelles and the partial
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preactivation of PKC in a phorbol ester/diacylglycerol-independent manner. The

presentation of phosphatidylserine in fixed composition micelles generated by certain

detergents can overcome this problem without a marked deleterious effect of the

detergent on the kinase (Hannun et al, 1985; Huang et al, 1988). Workers using

sonicated phosphatidylserine alone (such as Nishizuka's group) thus usually have

results with a high basal activity in the presence of phosphatidylserine/Ca2+ alone and

see relatively less phorbol ester/diacylglycerol regulation than in the study or those of

others (Hannun et al, 1985; Huang et al, 1988; Marais and Parker, 1989). Thus, the

inclusion of either Triton X-100 (0.25%) or Nonidet P-40 (0.04%) detergents within

the phosphatidylserine micelles provides a more uniform lipid environment for PKC

and removed the unstimulated PKC activity in the presence of phosphatidylserine

alone, with no detriment to total PKC activity until concentrations of Nonidet P-40 of

0.05% or greater (Figure 2.14). Increasing the micellar concentration of

phosphatidylserine resulted in an increase in both Ca2+-dependent and Ca2+-

independent PKC activity, despite the constant presence of 0.04% Nonidet P-40

(Figure 2.16).

On the basis of work in the literature (Fearon and Tashjian, 1985) it was

originally thought that the 0 - 80 mM NaCl fraction of DE52-purified male rat midbrain

cytosol may well contain all of the PKC extractable from the tissue. The specific [3H]-
PDBu binding in the prewash, the 0-80 mM NaCl and the 80 - 200 mM NaCl revealed

that specific [3H]-PDBu binding was present not only in the 0-80 but also in the 80 -

200 mM NaCl elution fractions with small amounts also present in the prewash.

Further extensive studies were performed on the PKC activity of the prewash, 0 - 50,

50 - 100, 100 - 150 and the 150 - 300 mM NaCl elution fractions from the DE52

column loaded with male midbrain (Figure 2.13). No phorbol ester-stimulated kinase

activity could be found in the prewash, with all other fractions containing kinase

activity (for histone at least), however the 150 - 300 mM NaCl elution fraction kinase

was not stimulated by either PDBu or Ca2+, suggesting that it could be a proteolytically
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Figure 2.12. Time-course of partially-purified male rat midbrain

cytosol.

Male rat midbrain cytosolic PKC activity partially-purified by either a 21 - 45%

ammonium sulphate 'cut' (a) or 0 - 80 mM NaCl elution from DE52 (b) was measured

using a-peptide as a substrate. The a-peptide kinase activity was halted as described in

the Methods section. The assay conditions represent either no additions (5.5 mM

EGTA final, open circles), phosphatidylserine (PS, 8 pg/ml sonicated vesicles and 5.5

mM EGTA final), open squares, PS (8 |ig/ml) + Ca (600 pM Ca2+/500 pM EGTA

final, triangles), PS (8 pg/ml) + PDBu (100 nM PDBu final) and 5.5 mM EGTA

(closed circles), or PS (8 pg/ml final) + PDBu (100 pM final) + Ca (600 pM Ca2+/500

pM EGTA final (closed squares)). The data shown in section (a) represent the mean of

2 determinations which varied by < 20%, whereas the data in (b) represent the mean ±

SEM of 4 determinations. Enzyme kinetics were linear at 15 min. Note maximal

enzyme activity was greater with DE52-purified PKC.
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Figure 2.13. Kinase activity of, and [3H]-PDBu binding to PKCs in

various elution fractions from male rat midbrain cytosol partially-

purified on DE52.

Kinase activity in the presence of PS (8 pg/ml phosphatidylserine final), PS + PDBu

(100 nM final) or PS + PDBu + Ca (600 pM Ca2+/500 pM EGTA final) using a-

peptide (a) or histone (b) as substrates. The levels of [3H]-PDBu binding (c) to the

various DE52-elutions was also determined. Total binding was assessed in the

presence of dimethylformamide (<1% final) and non-specific binding (nsb) was

assessed in the presence of 20 pM PDBu (final concentration) dissolved in

dimethylformamide. The cytosolic [3H]-PDBu binding assay was performed as

described in section 5.2, in the presence of 300 pg/ml phosphatidylserine (final)

reconstituted in 20 mM Tris HC1 (pH 7.5) + 0.5 mg/ml bovine serum albumin buffer,

and in the additional presence of 1 mM Ca2+ (+Ca2+) or Ca2+-ffee (-Ca2+) conditions

respectively. Non-specific binding was determined in Ca2+-free conditions although

the presence of Ca2+ produced no perceptible change to the levels of non-specific

binding. The DE52 column elutions were performed with 'Kuo' buffer (20 mM Tris

HC1 (pH 7.5), 50 mM 2-mercaptoethanol, 2 mM EDTA and 1 mM

phenylmethylsulphonyl fluoride) which was supplemented with the indicated

concentration of NaCl. The elutions from zero salt to high salt were performed

sequentially. Each of the determinations was performed from a separate DE52-column

loaded with separate rat midbrain cytosol preparations (ie, each elution used in (a), (b)

and (c) were from individual rats and not determinations of kinase activity and [3H]-
PDBu binding from the same elution). The data represent the means of 2

determinations, which generally varied by < 25%. Note that almost all the PDBu-

stimulated kinase activity eluted from the column between 0 and 150 mM NaCL
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Figtfrg 2,14. Effect of Nonidet-P40 concentration on the kinase

activity of partially-purified male rat midbrain.

Partially-purified (0 - 150 mM NaCl, DE52) male rat midbrain kinase activity was

determined in the presence of no additions (only 5.5 mM EGTA) (a), PS (100 pg/ml

phosphatidylserine final (b)), PS + Ca2+ (600 pM Ca2+/500 pM EGTA final (c)), PS +

PDBu (1 pM final (d)) or PS + PDBu + Ca2+ (e). Note the increased micellar

concentration of phosphatidylserine (8 pg/ml final in previous work) which is due to its

dilution with the Nonidet-P40 and the increase is to maintain a concentration of the lipid

great enough to support PKC activity. The markings on the columns indicate the

concentration of Nonidet-P40 in the micelles (0.03% - 0.06%). Histone was used as a

substrate. The data represent the means of 2 determinations, with values generally

varying by < 20%. Note that PS alone no longer induces a substantial increase in

kinase activity.
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Figure 2.15. Effect of Ca2+ concentration on PKC activity of

partialy-purified male rat midbrain.

Concentration-response relationship for free Ca2+ ion concentration and partially-

purified (with 0 - 150 mM NaCl on DE52) male rat midbrain cytosolic PKC activity

using histone as a substrate. The free Ca2+ concentration was calculated by a program

to assess Ca/Mg/H/EGTA complex formation kindly provided by Professor Bernard L

Ginsborg, and was confirmed independently by spectrofluorometry using Indo-1 salt

as described in the text of section 2.2.9. The level of activity in the absence of 1 jiM

(final) PDBu but in the presence of phosphatidylserine (100 (ig/ml) and 0.04%

Nonidet-P40, is approximately at the levels of the abscissa (ie, slightly less than 3,000

dpm). Data show the PKC activity in the presence of 1 (iM PDBu, with the additional

presence (squares) or absence (circles) of the calmodulin inhibitor 5-iodo-Cs (20 |iM

final) generously supplied by Dr Sheila McNeil. The data represent the mean of 2

determinations, which generally varied by < 20%.
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Figure 2.16. Effect of phosphatidylserine concentration on PDBu-

stimulated kinase activity of partially-purified male rat midbrain.

Concentration-response relationships for PDBu-stimulated partially-purified (0 - 150

mM NaCl, DE52) midbrain kinase activity (using histone as a substrate), at various

phosphatidylserine concentrations, as indicated in the insert. Kinase activity was

determined in calcium-free (5.5 mM EGTA final, (a)) or in the presence of calcium

(600 pM Ca2+/500 |iM EGTA final (b)). The indicated micellar phosphatidylserine

concentrations are in the added presence of 0.04% Nonidet-P40 throughout. The data

are the means of 2 determinations, with values varying by < 20%.
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Figure 2.17. Effectiveness of the substrates histone-IIIS and

a-peptide for PKC-mediated thiophosphorylation in a calcium-dependent

fashion.

Partially-purified (0 - 150 mM NaCl. DE52) male rat midbrain kinase activity towards

histone and a-peptide. The final concentrations of substrate used was 1.25 mg/ml for

histone-IIIS and 10 pM for a-peptide. The assay conditions shown indicate no

additions (5.5 mM EGTA) (a), PS (100 pg/ml phosphatidylserine + 0.04% Nonidet-

P40 final + 5.5 mM EGTA) (b), PS + PDBu (1 pM final) (c), PS + PDBu + Ca2+ (600

pM Ca2+/500 pM EGTA) (d) and PS + PDBu + Ca + 5-iodo-C8 (30 pM final of a

selective calmodulin inhibitor generously provided by Dr Sheila McNeil) (e). The data

represent the means of 2 determinations, with < 25% variation. Note that PKC activity

towards a-peptide as a substrate appears to be markedly inhibited by 5-iodo-C8 and

that PKC activity displays calcium-dependence with histone (but not a-peptide) as

substrate, although 35S incorporation into a-peptide is far greater than the incorporation

into histone.
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Figure 2.18. Effectiveness of histone-IIIS and myelin basic protein as

thiophosphorylation substrates and the calcium-dependence of these

events.

Partially-purified (0 - 150 mM NaCl, DE52) PKC from male rat midbrain cytosol was

tested using histone-IIIS (a) and myelin basic protein (b) as a substrate. The

concentration of substrate used was 1.25 mg/ml for both histone and myelin basic

protein. Calcium-free conditions (-Ca2+) were produced with excess EGTA (5.5 mM

final) and activity with calcium (+Ca2+) was determined with 600 p.M Ca2+/500 |iM

EGTA (approximately 100 (iM free final Ca2+ ion concentration). The concentration-

response relationships to PDBu indicate that histone is quite calcium-dependent in its

substrate kinetics, unlike myelin basic protein which was again, able to incorporate

more [35S]-thiophosphate than histone. The data represent the means of 2

determinations, which generally varied by < 25%.



 



Figure 2.19. Flow diagram of methodology used to assess partially-

purified PKC activity used in our studies.
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cleaved catalytic fragment of PKC with unregulated kinase activity (also known as

PKM, which is known to elute from DE52 at higher salt concentrations than native

PKC (Mochley-Rosen and Koshland, 1987)). These results are consistent with

cleaved regulatory and catalytic fragments of PKC being present. However, the

prewash (which contains the cleaved regulatory fragments of PKC that can still bind

PDBu) was discarded. Only the 0-150 mM NaCl elution fraction was taken from the

DE52, ignoring the protein left on the column (which contains the catalytic fragment of

PKC that shows unregulated kinase activity) (Mochley-Rosen and Koshland, 1987).

In this way, our approach recovered the vast majority of native PKC in the cytosol

while ensuring that the PKC breakdown products were not being assayed along with

the PKC.

Figures 2.17 and 2.18 demonstrate the ability of the substrates histone

III-S, a-peptide and myelin basic protein to be used as substrates for rat midbrain

cytosolic PKC in a Ca2+-dependent fashion. These data suggest that only histone III-S

confers Ca2+-dependency upon PKC activity, and the merits of using it as a substrate

are discussed further in chapter 6.

2.2,9. Protein assay

Protein content was determined by use of the Pierce Coomassie protein

assay kit (Pierce, Rockford, IL, USA) which is a ready-to-use Coomassie Blue-

containing reagent solution which is based on the Bradford (1976) method of protein

concentration determination. The protein standard used was bovine serum albumin

(essential fatty acid-free) (BSA) diluted in the appropriate assay medium (usually 'Kuo'

buffer; see section 2.2.8) to give standard concentrations of protein in the range 125 to

2,000 |ig/ml. A 100 pi aliquot of each standard or unknown (or buffer alone for blank)

had 5 ml of the Protein Assay Reagent added (which consists of Coomassie Blue G-

250 dye, phosphoric acid, methanol, water and a solubilizing agent) and each sample

was mixed well by repeated inversion. The absorbance at 595 nm of each sample was
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determined using a Cecil Instruments CE 292 digital ultraviolet spectrophotometer after

standardising the absorbance to deionized, distilled water. The absorbance values for

blanks were subtracted from each sample absorbance. The protein concentrations for

the unknown samples were determined against the standard curve, which was

consistently linear with the standard protein concentrations used.

2.2.10. Data analysis

Concentration-response data were analysed, by a non-linear, iterative,

individually-weighted curve-fitting program ('P-fit'; Biosoft, Cambridge, Cambs,

UK). The values quoted represent the calculated means of either an EC50 (effective

concentration which produces 50% of the maximal response) or IC5o(concentration

which inhibits 50% of the maximal response), with errors representing the standard

errors of the mean (SEM).

Where appropriate, the statistical significance of changes was assessed by

Mann-Whitney U-test. This is a nonparametric statistical analysis test which makes no

assumptions of a normal distribution of data and errors. It is therefore a convenient

statistical test to analyse both raw data, and data which is transformed (eg, ratioed to

some control value) as is mostly presented here. Although the Mann-Whitney U-test is

not the most powerful test to detect small differences, it does not demand the

constraints on data distribution of the Student's t test, which can be violated easily in

practice, nor does it produce the false positives which can arise from the Wilcoxon test

or the matched pair t-test (Kranth, 1983). To apply the test, all the data have to be

assigned a rank order of magnitude (eg, number 1 for lowest value to number n for the

highest value (n = total number of values in both data groups being compared)). The

rank orders in both groups are summed, and the statistical significance for the

appropriate number of values in each group, can be determined using a Mann-Whitney

or Wilcoxon significance table. Significance was accepted at probability values of

P < 0.05.
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All averaged data presented throughout this thesis are expressed as the mean

± standard error of the mean (SEM) of greater than two values. The n values quoted

are the number of independent, individual experiments from which the mean values and

errors are calculated. In some of the method development studies, results are indicated

as the mean from two experiments. The individual values generally differed by no

more than 20% and are plotted directly in some figures.
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CHAPTER 3

The effect of activators and inhibitors of

protein kinase C on depolarisation-induced

calcium influx into rat anterior pituitary

cells



3.1. Introduction

Since its initial discovery in 1977 by Nishizuka's group, Ca2+-activated,

phospholipid-dependent kinase (protein kinase C (PKC)) has been extremely well

characterised both in terms of its molecular biology and particularly, its biochemistry

(Nishizuka, 1984a; Nishizuka, 1988; Huang, 1989; Parker et al, 1989). In comparison

with this, the pharmacology of PKC has been far less well characterised over the last

14 years. A major step in the study of the enzyme came in 1983, when Niedel et al

published evidence almost simultaneously with other laboratories, that PKC was the

major receptor for the phorbol ester class of tumour promoters. This fact spurred much

research into the enzyme for two reasons: (i) that the enzyme now had a relatively

specific tool for studying its activation and function, and (ii) the fact that PKC was the

major receptor for a carcinogen, implicated its role in tumorigenesis. A major

contribution to the understanding in PKC pharmacology has come from research by

Blumberg and his colleagues (see Blumberg, 1988 for review). It soon became evident

that various phorbol esters could interact differently with a number of different phorbol

ester binding sites (Dunn and Blumberg, 1983; Jaken et al, 1983) and it was suspected

that PKC was not a single enzyme entity but existed in multiple forms. In 1986, Parker

et al and Coussens et al published the primary sequence of PKC and provided

evidence that multiple isoforms of PKC existed, each being products from different

genes. Soon after these reports, it was established that at least seven isoforms of PKC

could be detected (for review see Nishizuka, 1988). Four of the isoforms (a, 131,13II

and y (the 81 and 811 isoforms being mRNA splice-variants)) contained a putative Ca2+-

binding domain, whereas three isoforms (8, 8 and Q did not. Use of PKC isoform-

specific antibodies and mRNA in situ hybridisation technology, revealed the PKC

isoforms to be differentially distributed through both the body and cells (Nishizuka,

1988) and it was suspected that PKC isoform-specific cellular substrates contributed to

physiologic cell-specific actions of PKC. Although some interesting pharmacological
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differences amongst some of the PKC isoforms have been described (Naor et al,

1988a; Naor, 1990; Evans et al, 1991), our knowledge of any selective pharmacology

remains extremely basic. Most work has centred around purified enzymes or PKC

isoforms generated from their cDNAs-cellular systems when investigating the

pharmacology, co-factor requirements and substrate targets of PKC isoforms. Such

studies have provided an invaluable basis as to further research on PKC, but further

characterisation of the properties of PKC isoform, especially their modulation and

actions in a cellular context, required their investigation in more physiological models.

In the present study, we have attempted to provide models of endogenous

PKC isoform actions in functioning cells and to provide some pharmacological

characterisation of the models of PKC isoform function. It has been reported that

activation of PKC can lead to either an increase or decrease in 'L'-type Ca2+ channel

activity which is dependent upon the cell type investigated (see section 1.3). Since the

PKC isoform-content varies among cell types, it is our hypothesis that differences in

PKC isoform among the cells may be the basis by which this cell-specific dual

modulation of the 'L'-type Ca2+ channel occurs. Furthermore, 'L'-type Ca2+ channels

are relatively easily accessible to biochemical investigation due to their voltage-

activation, slow inactivation and dihydropyridine-sensitivity (see section 1.3). Opening

of 'L'-type Ca2+ channels can be blocked by inclusion of the dihydropyridine,

nimodipine. The chosen model for our initial studies was high K+-depolarisation-

induced influx of 45Ca2+ into both rat anterior pituitary pieces and the rat anterior

pituitary GH3 clonal cell line. The effects of preincubation with various activators

and/or inhibitors of PKC are investigated.

3.2. Specific methodology

High K+-induced 45Ca2+ influx was as described in section 2.2.3. All of

the agents investigated were added to the assay dissolved in dimethylformamide (1%

final) with the exceptions of arachidonic acid, which was added to the assay dissolved
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in ethanol (0.4% final). H7 and HA 1004 were added to the assay dissolved in distilled

water (5 |il per 500 |il of 'calcium uptake medium'). Parallel controls for the effects of

vehicle were always carried out and the vehicles at the concentrations used had no

detectable effect on any of the cellular parameters measured.

3.3. RESULTS

Calcium influx studies on anterior pituitaries prisms and GH3 cells

populations

The development of the 45Ca2+ influx protocol and an account of the

distribution of radioactivity has been discussed in section 2.2.3. Briefly, under the

conditions employed, non-specific adsorbtion of 45Ca2+ to the filters and cells (as

measured in zero time blanks) typically accounted for around 400 dpm of the calcium

accumulation. The concentration of GH3 cells within the assay was adjusted to match

the amount of calcium influx observed in anterior pituitary pieces for 30 s (a time which

displayed a maximal signal-noise ratio). Thirty second incubation of quartered,

hemisected anterior pituitary prisms or GH3 cells (at a density of 2.5 x 106/0.5 ml) in

the presence of 45Ca2+-containing medium but in the absence of an influx stimulus,

accounted for the accumulation of 550 - 600 dpm of 45Ca2+. A 60 mM K+ stimulus

for 30 s induced both anterior pituitary pieces and GH3 cells to typically accumulate

1400 - 1800 dpm of 45Ca2+ (120 - 155 fmoles of 45Ca2+/hemisected anterior

pituitary/min or 45Ca2+/106 GH3 cells/min) in addition to control influx of 45Ca2+ over

the same period. The K+-stimulated 45Ca2+ movement into both anterior pituitaries and

GH3 cells was inhibited to a similar extent by the voltage-sensitive, 'L'-type Ca2+-
channel blocker, nimodipine (Tsien et al, 1988) with IC50S = 3 ± 2 and 5 ± 2 nM

respectively (n = 4) (Figure 3.1). A statistically significant (P < 0.05, Mann-Whitney

U-test) inhibition of 45Ca2+ influx into both preparations was achieved with

concentrations of nimodipine of 10 nM and greater. Greater than 85% of K+-induced

45Ca2+ influx in both preparations was inhibited by 1,000 nM nimodipine, indicating
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the route of calcium influx into both preparation was similar. The remaining 15% of

the 45Ca2+ influx into both anterior pituitary and GH3 cells may be occurring through

some other nimodipine-insensitive, voltage-activated Ca2+-channel, which can

contribute significantly to the influx of 45Ca2+ within 30 s.

Effect of phorbol esters (PDD and PDBu) on K+-induced Ca2+ influx

into anterior pituitary and GH3 cells

GH3 cells were originally investigated in the hope that they were a

convenient model to mimic rat anterior pituitary Ca2+-influx, but a major difference in

PKC-modulation of 'L'-type Ca2+-channel function became evident. Activators of

protein kinase C such as 46-phorbol 12,13-didecanoate 4B-(PDD) and phorbol 12,13-

dibutyrate (PDBu) (Blumberg, 1988) modulated the influx of K+-induced 45Ca2+
influx into both anterior pituitary prisms and into GH3 cells. In anterior pituitary

prisms, (Figure 3.2) 10 min preincubation with PDBu (3 - 1,000 nM) and 4B-PDD (10

- 1,000 nM) enhanced K+-induced 4^Ca2+ influx in a concentration-dependent manner.

The maximal enhancement seen with 1,000 nM of either PDBu or 4B-PDD was 280 ±

17 and 282 ± 26% of control K+-induced 45Ca2+ influx (n = 8 and 4 respectively) with

EC50 values of 55 ± 22 and 75 ± 33 nM. The enhancement of K+-induced 45Ca2+

influx with 300 and 1,000 nM PDBu and 100 and 1,000 nM 4B-PDD was statistically

significantly different (P < 0.05) from control K+-induced 45Ca2+ influx levels. At

concentrations of 100 and 1,000 nM, 4a-PDD (the less-active stereoisomer of 46-

PDD) did not significantly enhance the K+-induced calcium influx (104 ± 10 and 143 ±

22% of control K+-induced calcium influx respectively, n = 4) but was significantly

different (P < 0.05) from the enhancement of influx seen with 4B-PDD at the same

concentrations. In contrast, K+-induced 45Ca2+ influx into GH3 cells (Figure 3.3) was

inhibited in a concentration-dependent fashion by 10 min preincubation with PDBu (3 -

1,000 nM) and 4B-PDD (3 - 300 nM) producing influx levels of 49 ± 4 and 56 ± 8% of

control K+-induced influx (n = 8 and 4) respectively at the highest concentration tested.
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The calculated IC50 values for PDBu and 4B-PDD were 17 ± 12 and 26 ±18 nM

respectively and the inhibition of influx by PDBu (300 and 1,000 nM) and 4B-PDD

(300 nM) was significantly different (P < 0.05) from control influx levels. Again, 4a-

PDD (3 - 300 nM) poorly mimicked 4B-PDD and did not significantly reduce calcium

influx levels (90 ± 7% of control K+-induced 45Ca2+ influx at 300 nM 4a-PDD) and

the levels of inhibition by 300 nM 4a-PDD were statistically different (P < 0.05) from

the inhibition levels seen with 4B-PDD at the same concentration. Neither PDBu nor

PDD had any effect on basal 45Ca2+ accumulation (in either pituitary tissue or GH3

cells) throughout the concentration range used.

Although not markedly different between preparations, the EC50 and IC50

values for PDBu and 4B-PDD were slightly higher in anterior pituitary pieces than in

GH3 cells, which could be accounted for by drug accessibility, but may also reflect a

slightly less PDBu/4B-PDD-sensitive PKC which is involved in the enhancement of

K+-induced 45Ca2+ influx into pituitary, compared to the PKC involved in inhibiting

depolarisation-induced calcium influx into GH3. Nevertheless, in these two tissues

PDBu and 4B-PDD can enhance or inhibit nimodipine-sensitive calcium influx in a

concentration-dependent and stereo-specific manner, thereby providing two convenient

and distinct models for PKC function in anterior pituitary cells.

Since the effect of PDBu on 'L'-type calcium influx was different between

the two preparations, and since Lacerda et al (1988) found that the phorbol ester-

induced increase and decrease in 'L'-type channel activity in myocytes was time-

dependent, the time-course of the PDBu-effect in both preparations was investigated

(see Figure 3.4). Preincubation of both preparations for 20 min with 300 nM PDBu

did not markedly alter the levels of channel activity from those levels seen with 300 nM

PDBu pretreatment for 10 min (n = 2). In anterior pituitary, including 300 nM PDBu

in the influx measurement period only (defined as 30 s preincubation with PDBu)

enhancement of KMnduced 45Ca2+ influx (although to a lesser extent than with 10 min

preincubation). Similarly, in GH3 cells, 30 s preincubation with 300 nM PDBu
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resulted in an inhibition of K+-induced 45Ca2+ influx, which again was to a lesser

extent than the inhibition seen with 10 min preincubation with PDBu. Preincubation

times of 30 s or greater with 300 nM PDBu in both tissues was significantly (P < 0.05)

different from levels of influx of 45Ca2+ at zero preincubation time. Clearly therefore,

the 'L'-type channel activity in either preparation did not change from enhancement to

inhibition, (or vice-versa) with PDBu within 30 s (the limit of reducing the

preincubation time of drugs). The half-maximal effect of PDBu in anterior pituitary

was estimated to occur at 38 ± 12 s preincubation (n = 6). The corresponding time for

half-maximal effect of PDBu in GH3 cells was 44 ± 16 s (n = 6), not markedly

different from anterior pituitary pieces. Thus, although the characteristic effect of

PDBu on both models is different, no temporal difference in action of PDBu could be

seen.

Effect of 1,2-dioctanoyI-sn-glycerol on K+-induced 45Ca2+ influx into

anterior pituitaries and GH3 cells

l,2-diacyl-57i-glycerols are endogenous activators of PKC (Nishizuka,

1984) and by nature, are highly lipophilic and therefore difficult to dissolve fully in

aqueous solutions. The synthetic diacyglycerol analogues 1-oleoyl 2-acetyl-M-glycerol

(OAG) and the saturated acyl chain analogue l,2-dioctanoyl-s«-glycerol (DOG) are

more hydrophilic than naturally occurring diacylglycerols (Blumberg, 1988) and are

still capable of activating PKC (Ebeling et al, 1982), however, OAG is known to have

actions which may be independent of PKC (Hockberger et al, 1989). Through the

concentration range 3-100 |lM, DOG acted in anterior pituitary in a similar manner to

PDBu and 4B-PDD to enhance in a concentration-dependent fashion, K+-induced

45Ca2+ influx to a level of 210 ± 15% of control K+-induced influx (n = 4) by 100 jaM

DOG. The EC50 concentration of DOG in anterior pituitary was 46 ± 8|iM and the

levels of influx were significantly (P < 0.05) different from control K+-induced levels

with 30 and 100 |iM DOG (Figure 3.5). In contrast however, DOG (3 - 100 p.M) was
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ineffective at modulating K+-induced 45Ca2+ influx into GH3 cells. No significant

reduction in influx levels were seen up to 100 |0.M with a response of still 96 ± 4% of

control K+-induced influx levels at the highest concentration of DOG used (n = 4).

Even DOG (3 - 100 (iM) purchased from Novabiochem (UK) Ltd instead of the Sigma

Chemical Company, failed to elicit an inhibition of K+-induced calcium influx into GH3

cells (n = 2). (The DOG from the new source was equally effective in anterior pituitary

pieces (n = 1)).

Diacylglycerols of higher saturated acyl chain length such as 1,2-dilauroyl-

rac-glycerol (12 carbons) (3 - 100 (iM) at higher concentrations clearly reached their

solubility limit once dispersed from stock into the 'calcium uptake medium'. This

precipitation was reflected in an apparently increased accumulation of 45Ca2+ in the

filter blanks in the assay (112 - 141% of control K+-induced influx at 100 (J.M) (n = 2),

and caution must be exercised when performing the calcium influx studies to be aware

of any such factors which may influence non-specific label retention by the filters.

Unfortunately, 1,2-didecanoyl-rac-glycerol (10 carbon saturated acyl chain) just began

to show turbidity in the 'calcium uptake medium' at 30 and 100 |0.M and thus gave

slight but artefactual increases in the apparent Ca2+ influx with GH3 cells of 106 -

111% of control K+-induced influx (n = 2 in each case). Calcium influx studies

performed in the absence of tissue, indicated that diacylglycerol analogues with

saturated acyl chain lengths longer than 8 showed at higher concentrations, greater

accumulation of 45Ca2+ to filters alone than the control accumulation in the presence of

solvent alone (n = 2). The saturated acyl chain diacylglycerol analogue, 1,2-

dihexanoyl-^n-glycerol (100 |iM), like DOG, was also unable to mimic PDBu and 48-

PDD to reduce K+-induced influx into GH3 cells (90 ± 8% of control K+-induced

influx (n = 4)), but acted similarly to PDBu, 4B-PDD and DOG in anterior pituitaries to

enhance K+-induced 45Ca2+ influx to 189 ± 18% of control K+-induced influx levels

(n = 4). Neither DOG nor 1,2-dihexanoyl-^-glycerol had any effect on basal 45Ca2+
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accumulation by either pituitary tissue or GH3 cells throughout the concentration range

used.

Effect of other putative protein kinase C activators on K+-induced Ca2+

influx

The activity of a range of phorbol ester analogues on PKC and its function

has been extensively assessed in Blumberg's laboratories. Phorbol esters are a class of

tumour promoting compounds, and the major receptor for phorbol esters was found to

be PKC (Niedel et al, 1983; Sando and Young, 1983; Ashendel et al, 1983; Leach et al,

1983). Further investigation into the binding characteristics of a range of phorboid

analogues (eg, mezerein, phorbol 12-myristate 13-acetate 4-0-methyl ether (MPMA),

phorbol 12-retinoate 13-acetate (PRA), deoxyphorbol 12,13-isobutyrate (DPB))

suggested that more than one [3H]-PDBu binding site existed, and that some phorboid

analogues were selective in their interaction with the multiple PKC-binding sites (Dunn

and Blumberg, 1983). The same phorboid analogues could selectively elicit only

certain actions of the PDBu-effect on a range of models, for example, inflammation,

tumour promotion and ornithine decarboxylase induction. The effect of mezerein,

MPMA, PRA and DPB was investigated on both anterior pituitary pieces and GH3 cell

K+-induced 45Ca2+ influx models (Figure 3.6). In anterior pituitary, mezerein (10 -

1,000 nM) mimicked PDBu and 413-PDD at enhancing K+-induced 45Ca2+ influx in a

concentration-dependent manner (EC50 = 128 ± 26 nM) to give an enhancement of

influx to 195 ± 18% of control K+-induced 45Ca2+ influx (n = 4) at the highest

concentration of mezerein used. The enhancement by mezerein was significantly

different (P < 0.05) from control K+-induced influx into anterior pituitary at

concentration of 50 nM and greater. Mezerein (10 - 1,000 nM) was unable to mimic

PDBu and 4B-PDD in GH3 cells at reducing K+-induced 45Ca2+ influx, but to our

surprise, enhanced K+-induced 45Ca2+ influx into GH3 in a concentration-dependent

fashion (EC50 = 26 ± 17 nM), increasing influx levels to 172 ± 4% of control at the
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highest concentration used (n = 4). The enhancement of influx into GH3 cells with 50

nM and greater was significantly different (P < 0.05) from control K+-induced influx

levels.

Preincubation of anterior pituitary with MPMA (10 - 1,000 nM) or PRA (10

- 1,000 nM) resulted in a concentration-dependent enhancement of K+-induced 45Ca2+

influx, with calculated EC50S = 8 ± 5 nM and 3 + 6 nM (n = 4) respectively. At

1,000 nM, MPMA and PRA enhanced K+-induced influx into pituitary to 193 ± 9%

and 216 ± 16% of control K+-induced 45Ca2+ influx levels respectively, with the

difference in 45Ca2+ influx levels from control K+-induced levels being statistically

significant (P < 0.05) at concentrations of MPMA and PRA of 10 nM and greater. In

GH3 cells, MPMA and PRA mimicked the effect of mezerein by concentration-

dependently enhancing K+-induced 45Ca2+ influx but to a lesser extent than mezerein

(123 ± 9% and 121 ± 3% of control K+-induced influx at 1,000 nM, n = 4) with EC50

= 124 ± 162 nM and 32 ± 24 nM respectively. At 1,000 nM MPMA and PRA, the

difference in influx levels in GH3 cells from control K+-induced influx levels was

statistically significant (P < 0.05). Finally, DPB was less effective at modulating K+-

induced 45Ca2+ influx into anterior pituitary and GH3 cells, than the other phorbol ester

analogues tested. Whereas DPB (10 - 1,000 nM) could modestly enhance K+-induced

45Ca2+ influx into anterior pituitary in a concentration-dependent manner (EC50 = 16 ±

26 nM, n = 4) to levels of enhancement (130 ± 5% of control K+-induced influx at

1,000 nM DPB) markedly lower than those seen with MPMA and PRA at the same

concentration. Furthermore, DPB (10 - 1,000 nM) was ineffective at modulating K+-

induced influx into GH3 cells (n = 4), with no significant difference from control K+-

induced influx levels, even at 1,000 nM DPB. The enhancement by DPB at 200 and

1,000 nM in anterior pituitary pieces was significantly (P < 0.05) different from control

K+-induced 45Ca2+ influx levels. None of the phorboid PKC activators tested here had

any effect on basal 45Ca2+ accumulation in either pituitary tissue or GH3 cell at the

concentrations used.

83



The analysis of phorboid analogue effects was not sufficiently extensive,

nor some of the changes of sufficient magnitude to enable the curve-fitting program to

generate accurate values for EC50S, but a number of striking qualitative differences can

be readily seen.

Not only can some modified phorbol esters such as DPB mimic the effect of

DOG on pituitary and GH3 cells to enhance and be ineffective on K+-induced influx

respectively, but some phorboids (mezerein, MPMA and PRA) are able to enhance

influx into both anterior pituitary and GH3 cells, unlike PDBu and 4G-PDD which

show an inverse modulation of 'L'-channel activity within the two preparations. The

enhancement of K+-induced 45Ca2+ influx into both preparations by any of the phorbol

ester analogues was not caused by precipitation of the drugs within the filters (as

described before) as 1,000 nM concentrations of each drug did not alter 45Ca2+
accumulation to filters in the absence of any tissue (n = 2).

Arachidonic acid (AA) had been shown to activate a, 6- and y-PKC to

varying extents in cell free systems (Naor et al, 1988a) as well as having an array of

other cellular actions (Wolfe and Shimizu, 1990). Preincubation of anterior pituitary

pieces with AA (3 - 100 |lM) for 10 min before exposure to high K+ and 45Ca2+, had

no significant effect on K+-induced 45Ca2+ influx levels (Figure 3.7), with maximal

enhancement of 120 ± 15% of control K+-induced 45Ca2+ influx levels with 100 |lM

AA (n = 4). In contrast in GH3 cells, AA (1 - 100 fiM) fully inhibited K+-induced

45Ca2+ influx in a concentration-dependent manner (IC50 = 19 ± 3 |iM) to inhibition

levels of 3 ± 2% of control K+-induced 45Ca2+ influx at 100 |iM AA (n = 4 - 12). The

inhibition of K+-induced 45Ca2+ influx into GH3 cells by 30 and 100 |iM AA was

significantly (P < 0.05) different from control values. Activation of PKC with PDBu

results in only approximately 50% maximal inhibition in GH3 cells. The mechanisms

for this greater inhibition of K+-induced 45Ca2+ influx by AA will be discussed in the

following chapter.
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Effect of staurosporine and H7 on the modulation by PDBu of

K+-induced 45Ca2+ influx into anterior pituitary and GH3 cells

Inhibition of PKC can be achieved by a number of agents, including

staurosporine (Kase et al, 1987) and H7 (Hidaka et al, 1984) which not only inhibit

PKC but indeed most protein kinases with varying degrees of potency. The

hydrophilic properties of PDBu make it an ideal phorbol ester (Blumberg, 1988) which

has sufficiently high lipophilicity to be cell permeable and active, and sufficiently high

hydrophilicity to be of use in the laboratory. The actions of phorbol esters are quite

selective towards PKC (Blumberg, 1988) and thereby inhibition by H7 and

staurosporine of PDBu-induced actions should represent their inhibition of PKC

activity (or PKC-mediated actions). The ability of PDBu to enhance anterior pituitary

and reduce GH3 cell K+-induced 45Ca2+ influx can be reversed in a concentration-

dependent manner by staurosporine. In anterior pituitary prisms (Figure 3.8),

staurosporine (1 - 1,000 nM) reversed, in a concentration-dependent fashion, the 300

nM PDBu-induced enhancement of K+-evoked 45Ca2+ influx, with an IC50 = 19 ± 8

nM (n = 4 - 6). The reversal of PDBu-induced enhancement was statistically different

(P < 0.05) for concentrations of 10 - 1,000 nM staurosporine, with 13 ± 11% of the

PDBu-effect remaining at the highest concentration of staurosporine used. In contrast,

K252a (300 - 10,000 nM), an analogue of staurosporine with reduced potency of

inhibition towards PKC, but with similar inhibitory potency on other kinases (Kase et

al, 1987) was unable to significantly reverse the effect of 300 nM PDBu on K+-induced

45Ca2+ influx into anterior pituitary prisms until 10,000 nM, with a maximal inhibition

of the PDBu-effect of 34 ± 10% of control influx at the highest concentration used (n =

6). The inhibition of the PDBu-induced enhancement of K+-stimulated 45Ca2+ influx

in anterior pituitary pieces by staurosporine, was significantly (P < 0.05) different from

the inhibition of the PDBu-response by K252a at 1,000 nM concentration of the drugs.

Similarly, staurosporine was able to reverse the inhibition by 300 nM PDBu of K+-
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induced 45Ca2+ influx into GH3 cells. The reversal of the PDBu-effect by

staurosporine (1 - 1,000 nM) was concentration-dependent, giving 92 ± 9% inhibition

of the PDBu-effect at the highest concentration, with a calculated IC50 =15 + 10 nM (n

= 6). The reversal by staurosporine of 300 nM PDBu-induced inhibition of K+-evoked

45Ca2+ influx into GH3 cells was significantly different from control influx levels at

concentrations of 10 nM and greater. Reversal by K252a (300 - 10,000 nM) was again

poor, with 72 ± 8% inhibition at the highest concentration (n = 4). The difference in

reversal by staurosporine and K252a in GH3 cells was statistically significant (P <

0.05) at 300 and 1,000 nM concentrations of the drugs.

Thus, staurosporine reversed the response of PDBu in both anterior

pituitary and GH3 cells but was the PDBu-response was less sensitive to K252a. This

indicated that PDBu-responses are indeed mediated by PKC, as the pharmacology of

both responses was as would be expected for PKC-mediation. Investigation with a

new PKC inhibitor, Ro318220 which unlike staurosporine, is reported to have over

100 times greater inhibitory activity towards PKC than the other kinases tested (Davis

et al, 1989). Inclusion of Ro318220 (1 -30 pM) reversed in a concentration-dependent

manner (IC50 = 8 ± 4 pM) the effect of 300 nM PDBu on K+-induced 45Ca2+ influx

into anterior pituitary pieces (Figure 3.9) resulting in an 85 ± 8% inhibition of control

K+-induced 45Ca2+ influx levels at the highest concentration used (n = 4). Similarly,

in GH3 cells, the effect of 300 nM PDBu was reversed by Ro318220 (1 - 30 pM) in a

concentration-dependent manner (IC50 = 7 ± 4 pM) resulting in a 92 ± 11% inhibition

of control K+-induced 45Ca2+ influx levels at the highest concentration used (n = 4).

Both in anterior pituitary pieces and GH3 cells, the inhibition of control K+-induced

45Ca2+ influx was significantly (P < 0.05) for concentrations of Ro318220 of 5 pM

and greater. At the concentrations used, Ro318220 had no effect on basal 45Ca2+
accumulation in either pituitary or GH3 cells.

The reversal of the PDBu effect by Ro318220 (which is generally regarded

as a selective PKC inhibitor) further indicates that both the PDBu-induced enhancement
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or inhibition of K+-induced 45Ca2+ influx into anterior pituitary prisms and GH3 cells

respectively is indeed mediated by PKC.

Another protein kinase C inhibitor, H7, has a quite different structure to

staurosporine, and has relatively lower potency (Hidaka et al, 1984). Reversal of the

PDBu-induced effect on K+-evoked 45Ca2+ influx into both anterior pituitaries and

GH3 cells could be achieved by H7 (Figure 3.10). In anterior pituitary prisms, H7 (10
- 100 pm) reversed 300 nM PDBu-induced enhancement of K+-evoked 45Ca2+ influx

in a concentration-dependent manner with maximal inhibition of the PDBu-effect of 86

± 15% inhibition at the highest concentration used (n = 8). The IC50 was unexpectedly

very high at 62 ± 6 pM. The reversal by H7 of the PDBu-response on K+-induced

45Ca2+ influx into anterior pituitaries was statistically different (P < 0.05) from control

levels with 100 pM H7. A structural analogue of H7, HA1004, has relatively reduced

potency of inhibition of PKC, but with similar potencies toward other kinases (Hidaka

et al, 1984). The effect of PDBu in anterior pituitary was poorly reversed by HA1004

(2 - 200 pM), with a 45 ± 11% inhibition of the PDBu-response at the highest

concentration of HA1004 used (n = 4) which was significantly (P < 0.05) different

from control K+-induced influx. The difference in levels of inhibition of the PDBu-

induced enhancement of K+-stimulated 45Ca2+ influx into anterior pituitary pieces by

H7 and HA1004, was statistically significant (P < 0.05) at a concentration of 100 pM

of the drugs. In GH3 cells, the 300 nM PDBu-induced inhibition of K+-evoked

45Ca2+ influx was reversed by H7 more potently than reversal of the PDBu-response in

anterior pituitary prisms. The reversal of the PDBu-induced inhibition of K+-

stimulated influx into GH3 cells by H7 (5 - 50 pM) was concentration-dependent,

giving a 88 ± 11% inhibition of the PDBu-effect at the highest concentration of H7

used, and a calculated IC50 value of 10 ± 2 pM (n = 4), markedly more potent than the

corresponding IC50 in anterior pituitary. The reversal of the effect of PDBu on GH3

cells by H7 was statistically significant (P < 0.05) with all the concentrations of H7

used. When using HA 1004 (20 - 200 pM), the reversal of the PDBu-response in GH3
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cells was again very poor, with an inhibition of 52 ± 12% at the highest concentration

(n = 4). The difference between the inhibition of the PDBu-response in GH3 cells by

H7 and HA 1004, was statistically significantly at 20 and 50 (J.M concentration of the

drugs.

Thereby, HA 1004 does not potently reverse the PDBu-induced responses in

anterior pituitary of GH3 cell calcium influx, whereas H7 does reverse the responses.

However, the potency of H7 varied between the two tissues, being of expected potency

(Schaap and Parker, 1991) in GH3 cells, but with a lower potency in anterior pituitary.

In contrast with the selectivity shown by H7, neither staurosporine, Ro318220, K252a

nor HA1004 showed any difference in IC50 on the two PDBu responses. Neither H7,

staurosporine nor Ro318220 at their highest concentration used had any effect alone on

basal or K+-induced 45Ca2+ accumulation.
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Figure 3.1. Concentration-dependent inhibition by nimodipine of

K+-induced 45Ca2+ influx into anterior pituitary prisms and GH3 cells.

Typically, basal accumulation of 45Ca2+ accounted for around 50 fmoles 45Ca2+/hemi-

pituitary or 106 GH3 cells/min of which non-specific adsorbtion to filter and cell

surfaces accounted for 34 fmoles 45Ca2+/min. Stimulation with 60 mM K+ increased

accumulation to around 120 fmoles 45Ca2+/hemipituitary or 106 GH3 cells/min

(approximately 1600 dpm per assay). 45Ca2+ represented 1 part in 375 of the total

Ca2+ concentration. Anterior pituitary prisms (circles) or GH3 cells (squares) were

preincubated with nimodipine (or solvent (dimethylformamide, 1% final) alone for

control measurements) for 10 min before exposure to 60 mM K+-containing medium

with radioactive Ca2+. After 30 s, 45Ca2+ influx was halted as described in the

Methods section. The data represent the means ± SEM of 4 determinations.

Significant (P < 0.05) inhibition of K+-induced 45Ca2+ influx was achieved with

concentrations of nimodipine of 10 nM and greater.
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Figure 3.2. Concentration-dependent enhancement by phorbol esters

of K+-induced 45Ca2+ influx into rat anterior pituitary prisms.

Rat anterior pituitary prisms were preincubated for 10 min with PDBu (squares),

4(3-PDD (closed circles) or 4a-PDD (open circles) before exposure to 60 mM K+-

containing medium. 45Ca2+ influx was measured as described in the Methods section.

None of the compounds had any effects on basal 45Ca2+ influx at the concentrations

used. The data represent the means ± SEM from 4 - 8 determinations. Significant (P <

0.05) enhancement of K+-induced 45Ca2+ influx levels were produced by PDBu and

46-PDD at concentrations of 100 nM and greater.
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Figure 3.3. Concentration-dependent inhibition by phorbol esters of

K+-induced 45Ca2+ influx into GH3 cells.

GH3 cells were preincubated for 10 min with PDBu (squares), 4(3-PDD (closed circles)

or 4a-PDD (open circles) before exposure to 60 mM K+-containing medium. 45Ca2+
influx was measured as described in the Methods section. None of the compounds had

any effects on basal 45Ca2+ influx at the concentrations used. The data represent the

means ± SEM from 4 - 8 determinations. Significant (P < 0.05) inhibition of K+-

induced 45Ca2+ influx was achieved by PDBu and 4B-PDD at concentrations of

300 nM and greater.
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Figure 3.4. Time-course of the PDBu modulation of 45Ca2+ influx

into rat anterior pituitary prisms and GH3 cells.

Anterior pituitary prisms (circles) and GH3 cells (squares) were preincubated with

300 nM PDBu for the indicated time before exposure to 60 mM K+. The

preincubation time with PDBu is inclusive of the 30 s 45Ca2+ influx measurement

period. The data represent the means ± SEM of 6 determinations. All of the data

points are significantly (P < 0.05) different from zero time levels of K+-induced 45Ca2+

influx.
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Figure 3.5. Concentration-dependent enhancement by DOG of K+-

induced 45Ca2+ influx into rat anterior pituitary prisms and inability of

DOG to modulate K+-induced 45Ca2+ influx into GH3 cells.

Anterior pituitary prisms (circles) and GH3 cells (squares) were preincubated for 10

min with the indicated concentration of DOG (dissolved in dimethylformamide, 1%

final) before exposure to 60 mM K+-containing medium. 45Ca2+ influx was measured

as described in the Methods section. There was no effect of 100 |iM DOG on basal

45Ca2+ influx, or on non-specific adsorbtion of 45Ca2+ to filter blanks. The data

represent the means ± SEM of 4 determinations. In anterior pituitary pieces, DOG at

30 and 100 (iM eliciated a significant (P < 0.05) enhancement of K+-induced 45Ca2+
influx levels.
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Figure 3.6. Effect of mezerein, MPMA, PRA and DPB on K+-

induced 45Ca2+ influx rat anterior pituitary prisms and GH3 cells.

Mezerein (a), MPMA (b), PRA (c) and DPB (d) were preincubated with the tissue for

10 min (37°C, O2 atmosphere) before exposure of anterior pituitary pieces (circles) or

GH3 cells (squares) to 60 mM K+-containing 'calcium uptake medium' and 45Ca2+.

Influx was halted as described in the Methods section. Each agent was dissolved in

dimethylformamide (1% final) and at the concentrations used, had no effect on basal

45Ca2+ accumulation or on accumulation of 45Ca2+ by filters alone. The data represent

the means ± SEM of 4 determinations. Significant (P < 0.05) enhancement of K+-

induced 45Ca2+ influx was achieved by concentrations of mezerein of 50 nM and

greater in both preparations, however a significant enhancement of influx occurred in

anterior pituitary prisms only with the concentrations of MPMA and PRA used, and

with DPB at 200 and 1000 nM.
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Figure 3.7. Effect of arachidonic acid on K+-induced 45Ca2+ influx

into rat anterior pituitary pieces and GH3 cells.

Anterior pituitary prisms (circles) and GH3 cells (squares) were preincubated for 10

min with AA (dissolved in dimethylformamide, < 0.4% final) before exposure to 60

mM K+ and 45Ca2+ as described in the Methods section. Arachidonic acid at the

concentrations used had no effect on basal 45Ca2+ accumulation or on 45Ca2+

accumulation by filters alone. The data represent the means ± SEM of 4 - 12

determinations. The inhibition of K+-induced 45Ca2+ influx into GH3 cells by 30 and

100 |lM AA was statistically significant (P < 0.05).
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Figure 3.8. Ability of staurosporine and K252a to inhibit the effect

of PDBu on K+-induced 45Ca2+ influx in rat anterior pituitary and GH3

cells.

Concentration-response relationships for staurosporine (filled symbols) and K252a

(open symbols) to reverse the effect of 300 nM PDBu to enhance or inhibit K+-induced

45Ca2+ influx into anterior pituitary prisms (circles) or GH3 cells (squares)

respectively. The inhibition by 10,000 (iM K252a and by concentrations of

staurosporine of 10 nM and greater, were significantly (P < 0.05) different from

control K+-induced 45Ca2+ influx levels in both anterior pituitary and GH3 cells. The

data represent the means ± SEM of 4 - 8 determinations.
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Figure 3.9. Ability of Ro318220 to inhibit the effect of PDBu on

K+-induced 45Ca2+ influx into rat anterior pituitary and GH3 cells.

Concentration-response relationships for inhibition by Ro318220 of the effect of 300

nM on K+-induced 45Ca2+ influx into rat anterior pituitary prisms (circles) or GH3 cells

(squares). The inhibition by concentrations of Ro318220 of 5 p,M and greater was

significantly (P < 0.05) different from control K+-induced 45Ca2+ influx levels in both

anterior pituitary pieces and GH3 cells. The data represent the mean ± SEM of 4

determinations.
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Figure 3.10. Ability of H7 and HA1004 to inhibit the effect of PDBu

on K+-induced 45Ca2+ influx into rat anterior pituitary and GH3 cells.

Concentration-response relationships for inhibition by H7 (filled symbols) or HA 1004

(open symbols) of the effect of 300 nM PDBu on K+-induced 45Ca2+ influx into rat

anterior pituitary prisms (circles) or GH3 cells (squares). The inhibition by 200 pM

HA1004 was significantly (P < 0.05) different from control K+-induced 45Ca2+ influx

levels. The inhibition by concentration of H7 of 3 pM and greater in GH3 cells,

produced an inhibition which was significantly (P < 0.05) different from control influx

levels, however only the level of inhibition by 100 pM H7 in anterior pituitaries was

significantly (P < 0.05) different from control K+-induced 4^Ca2+ influx levels. The

data represent the mean ± SEM of 4 - 8 determinations.
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3.4. Discussion

Measurement of 45Ca2+ movement into anterior pituitary prisms and GH3

cell populations is a convenient method of investigating Ca2+ channel properties into

both cell preparations. Since the general principle of the assay is to use 45Ca2+ as a

tracer to represent movements of 45Ca2+ (present at mM levels in extracellular fluid),

there is consequently a major dilution of the specific activity of the label. Apart from

influx experiments where the external tracer may be expected to distribute rapidly into

equilibrium with unlabelled calcium, it is not certain that the 45Ca2+ will equilibrate

rapidly and equally with all cellular pools without very extended incubation.

Nevertheless, in influx experiments (Figure 2.1) where the signal above the noise is

maximal within 30 s, such considerations of exchange rates into sequestered pools

seem unlikely to bear major influence on the data. The experimental signal to noise

ratio will depend partly on the technical reproducibility that can be achieved using

reasonable levels of tracer in an experiment, clearly on the amount of tissue reasonably

available per experiment and also on optimising the quench/wash procedure (Figure

2.2) and the time-course in order to obtain the greatest signal above basal. The steady

linear accumulation of 45Ca2+ over several minutes of basal conditions seems likely to

represent movement into more slowly-exchanging, larger capacity pools than the

cytosol. Depolarisation-induced entry is rapidly saturable (other rapid time-course

experiments in the laboratory have shown that the signal actually approaches maximum

by as little as 9 - 12 s) and then remains apparently constant for several minutes. It

may, of course, be that the stimulus-responsive pool is a route of transit of 45Ca2+ into

the slowly sequestering pools during this time but its characteristics seem fully

consistent with its representing largely the cytosol - the expected initial destination of

Ca2+ entry in response to K+, TRH and the other stimuli investigated. Successful

measurement of 45Ca2+ entry into anterior pituitary tissue can also be hindered by the

use of lipophilic compounds close to the limit of their solubility in aqueous solution or,
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more particularly, in the ice-cold EGTA wash (eg, with arachidic acid), leading to

partial blocking of filters and non-specific retention of label. In such cases it is clearly

not possible to investigate such compounds with the protocol used here. Thereby

caution must always be used (Mitchell et al, 1991) to ensure that the agents used (at the

appropriate concentrations) do not alter apparent 45Ca2+ accumulation.

Electrophysiological measurements of calcium channel activity can clearly provide a

useful counterpart which is in many ways far superior to the present studies. Indeed,

the effects of a range of PKC-related compounds is being investigated on 'L'-type Ca2+
channel activity in GH3 cells in collaborative experiments with Drs R J Martin, L

Patmore and A M Evans. However, these electrophysiological investigations have their

limitations too. Whilst being extremely accurate and sensitive in comparison to the

relatively more 'crude' measurement of 45Ca2+ influx, electrophysiological

measurements are technically harder to set up and are not as readily amenable to

extensive pharmacological analysis. There may be technical difficulties such as

obtaining cells dispersed from pituitary tissue without damaging receptor channels by

the necessary enzymes, and the need for some caution in procedures to eliminate the

much larger K+ currents which would normally obscure Ca2+ currents.

Electrophysiological measurements do not provide useful information on total calcium

influx/efflux and do not inform us of the 'overall' picture of cellular calcium handling,

which may be achieved if employing a range of techniques (eg, 45Ca2+ influx/efflux,

electrophysiology and intracellular free-calcium ion concentration (measurement using

calcium indicator dyes)). The outward K+ gradient sustained across the plasmalemma

will be substantially decreased by an extracellular concentration of 60 mM K+. This

challenge would be expected to shift the cellular membrane potential from in the order

of -60 mV to a more positive membrane potential, sufficiently depolarised to activate all

of the known voltage-activated Ca2+ channels (van Breemen et al, 1973). Such a

depolarisation is indeed sufficient to activate fully any voltage-activated channels which

exist in anterior pituitary cells and which might be detectable in our protocol, since
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45Ca2+ entry is maximal with a 60 mM K+ stimulus showing no further increases at 90

or 120 mM (R Mitchell, unpublished observations) in both rat anterior pituitaries and

GH3 cells. Both preparations are known to contain T- and 'L'-type Ca2+ channels

(see section 1.5). In the present protocol, influx of 45Ca2+ into anterior pituitary tissue

is measured over a period of 30 s. T-type Ca2+ channels open only very transiently

(tau = 20 - 50 ms) whereas 'L'-type Ca2+ channels remain open for much longer

periods of time (tau > 500 ms) in response to a continued depolarisation-stimuli (see

Table 1.2). Thus the influx of 45Ca2+ over 30 s into both preparations in response to

high K+ seems likely to represent influx which occurs mainly through 'L'-type Ca2+
channels. This contention is supported by the finding that high K+-induced influx into

both anterior pituitary pieces and GH3 cells is inhibited in concentration-dependent

fashion and with similar high potencies by the dihydropyridine, nimodipine (Figure

3.1). Dihydropyridines such as nimodipine can inhibit 'L'-type Ca2+ channel activity,

however the influx of 45Ca2+ into both preparations although being potently blocked, is

not quite completely inhibited by nimodipine at 1 |iM. The remaining small amount of

K+-induced 45Ca2+ influx (approximately 15% in both preparations) may represent a

small proportion of the 'L'-type Ca2+ channel activity in the tissues which is

unblockable by nimodipine. Alternatively, the remaining nimodipine-insensitive

45Ca2+ influx may occur through a distinct voltage-activated channel(s) which is

present in both preparations. One candidate for such a channel is the 'T'-type Ca2+
channel, and in fact, 'T'-type Ca2+ channels have been reported to show some

(modest) sensitivity to blockade by dihydropyridines (Bean, 1985; Bean et al, 1986).

Other work however, indicates that in the related GH4C1 cell line, nimodipine has no

effect on the 'T'-channel currents present, but totally blocks 'L'-currents (Cohen and

McCarthy, 1985). The existence of 'N'-type Ca2+ channels in both preparations is

uncertain, however 'N'-type Ca2+ channels are also inactivate rather quickly and their

contribution to the total 45Ca2+ influx over 30 s should also be minimal. What may be

a more likely explanation for the dihydropyridine-insensitive K+-induced 45Ca2+ influx
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into both preparations is the presence of other more-recently discovered types of

voltage-activated Ca2+ channels (see section 1.3). High voltage-activated Ca2+
channels which are nimodipine-insensitive and slowly inactivate, have been

characterised by Llinas and colleagues (who termed their channel the 'P'-type Ca2+

channel) and Mori et al (1990) (who termed their channel the 'Bl'-type channel -

which could possibly be the same channel). The original classification of voltage-

activated Ca2+ channels into 'L', 'N' and T now seems to be an oversimplification of

the types of Ca2+ channels that exist. For example, differences exist in cardiac, skeletal

muscle and brain 'L'-type Ca2+ channels (for review see Tsien et al, 1991). Although

the presence of Ca2+ channel types other than 'L', 'N' and 'T' in anterior pituitary cells

has yet to be investigated, it is possible that such a dihydropyridine-insensitive, slow-

inactivating channel (as has been described or has yet to be discovered) may exist in rat

anterior pituitary tissue.

The complete structure of the dihydropyridine-sensitive channel from

skeletal muscle has been determined and it is known that two separate sites for PKC

phosphorylation exist on different subunits (ai and 6) of this 'L'-channel. Activation

of PKC by incubation with PDBu in anterior pituitary pieces leads to an enhancement

of K+-induced 45Ca2+ influx, whereas, in GH3 cells, PDBu reduced the K+-induced

influx of 45Ca2+ (Figures 3.2 and 3.3) In both preparations PDBu has no effect on

basal accumulation in the tissue. In anterior pituitary prisms, the enhancement by

PDBu of K+-induced 45Ca2+ influx is also blocked by nimodipine with similar potency

to that seen on control K+-induced influx (R Mitchell, unpublished observations).

Furthermore, ionomycin-induced 45Ca2+ influx into anterior pituitary pieces of GH3

cells is unaffected by phorbol ester preincubation. This suggests that the phorbol ester-

response is to enhance 'L'-channel activity in anterior pituitary pieces, and not simply

enhance general calcium uptake and sequestration mechanisms or inhibit Ca2+ extrusion

mechanisms. The reason for this inverse modulation seen between the two tissues in

response to PDBu could be that the dihydropyridine-sensitive, 'L'-type Ca2+ channels
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in the two tissues may be in some way different and responds in opposing ways to

PDBu activation of PKC. There is no evidence in direct support of this, in contrast to

other possibilities (see below). Another possibility is that PKC-independent effects

may be more prevalent in one tissue preparation, leading to apparent differences in

Ca2+ channel modulation characteristics (eg, phorbol esters have been reported to

modulate phosphatidylcholine metabolism in GH3 cells, independently of PKC

(Kolesnick and Hemer, 1990 and see section 1.2.5). However, the time-courses of the

PDBu effects on GH3 cells and anterior pituitary pieces are consistent with the action of

a kinase, also that the pharmacology of both influences (ie, produced by PDBu and 48-

PDD, but not by the PKC-inactive isomer 4a-PDD and blocked by PKC antagonists) is

entirely consistent with both modulations being primarily mediated by phorbol-

stimulated PKC activity, and not a non-specific influence of the phorbol esters tested.

Alternatively, either tissue preparation may possess some PKC-induced regulatory

mechanism which is not present in the other tissue preparation, which leads to the

opposite PKC-mediated modulation becoming apparent, but no such mechanism has

been reported. It is further theoretically possible along these lines that the characteristic

history of the tissue types may have set a tonic influence on channel function prior to

the experiments; by, for example, phosphorylating (by PKA, PKC or other kinases) or

dephosphorylating the channel. There is no evidence to specifically support such a

possibility, nor do we have evidence to indicate that PKC is directly phosphorylating

the 'L'-channel, but it would clearly be of interest to investigate these points further. In

fact, we do have evidence that both in pituitary tissue and GH3 cells (with no apparent

distinction between them) that the basal 'L'-channel function does indeed require tonic

activity of a kinase (that is staurosporine and not H7-sensitive, and down regulated by

prolonged PDBu-incubation; ie, presumably a PKC) (MacEwan et al, 1991). Work by

Pelech et al (1990; 1991) showed that treatment of rabbit platelets with phorbol ester or

platelet-activating factor leads to the covalent modification of membrane-associated

PKC, leading to changes in its activation characteristics (eg, by Ca2+ and
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phospholipids). These forms of PKC may be simply those forms found when PKC is

autophosphorylated and tends to become membrane-inserted (see section 1.2.1).

Although the various modified states of PKC (8-isoform was investigated) were never

more fully characterised as to their pharmacological properties, it is entirely possible

that differences in pharmacological profiles seen on 45Ca2+ influx studies in anterior

pituitary cells could reflects the differential action of distinct forms (not sequence

isoforms) of PKC as discussed by Pelech et al. However, this possibility seems

unlikely as a spectrum of characteristic effects of different activators exists within the

same cell type (eg, PDBu to mezerein in GH3 cells) which presumably have their PKCs

in the same 'modification' state from experiment to experiment. In various tissues,

PKC activation can result in enhanced (DeRiemer et al, 1985; Strong et al, 1987; Fish

et al, 1986; Velasco and Petersen, 1989) or reduced (DiVirgilio et al, 1986; Lewis and

Weight, 1988; Marchetti and Brown, 1988; Rosenthal et al, 1988; Rane et al, 1989)

'L'-channel activity, and what seems a more likely explanation for the dual modulation

here is that the same (or similar) 'L'-channel exists in rat anterior pituitary pieces and

GH3 cells, and that distinct forms of PKC (perhaps sequence isoforms) have opposing

modulatory roles on the 'L'-channel function (with similar time-courses) by their action

on the distinct PKC-phosphorylation sites on the channel subunits. The proportion of

certain PKC-isoforms is markedly different between the two tissue preparations (see

section 5.4) and it may be that it is the proportion of a certain isoform(s) (which may

act to enhance or reduce 'L'-channel activity) and the net influence of the said

proportion of PKC-isoform which governs the tissue-specific effect of PKC activation

of 'L'-type Ca2+ channel activity. Supportive of this 'PKC-isoform/dual-modulation'

theory is the fact that not all activators of PKC will produce the response seen with

PDBu on 'L'-channel function in the models. The range of PKC activators used in this

chapter give varying extents of modulation in anterior pituitary prisms and GH3 cells,

which fails to support the theories other than the last-mentioned above concerning the

mechanism for dual modulation of 'L'-channel function.
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The contention that it is the relative influence/proportion of distinct PKC

isoforms which governs the 'direction' of PKC modulation of 'L'-channel function,

also carries the prediction that in certain tissues which have the appropriate proportion

of the necessary PKC-isoforms, activation of PKC by PDBu would lead to the

inhibitory and facilitatory PKC-influences being balanced and cancelling each other out

to give the appearance of PKC being ineffective at modulating 'L'-channel function.

What can also be derived by interpreting the data in the context of our original theory is

that certain PKC-activating agents seem very likely to be acting selectively to influence

the PKC isoform(s) which is (are) responsible for either the enhancement or inhibition

of the channel activity. Both the experiments reported here and further studies attempt

to assign a PKC-isoform(s) identity to the inhibitory and facilitatory PKC-influences on

'L'-type Ca2+ channel activity in our anterior pituitary cell models.

The phorbol ester PDBu is acting in our two models to produce an

inhibitory and facilitatory modulation of 'L'-type channel function in GH3 cells and

anterior pituitary pieces respectively. It is believed that PDBu and PMA (phorbol 12-

myristate 13-acetate) do not display any PKC isoform selective nature as assessed by

its similar affinity for the multiple [3H]-PDBu/[3H]-DPB binding sites found in mouse

skin (Dunn and Blumberg, 1983). Furthermore, the affinity of PDBu and PMA on two

models of PKC activity in osteosarcoma cells was identical, but the phorbol-analogue,

mezerein, showed marked differences in potency at the two apparently PKC-mediated

effects (Jaken et al, 1983). Mezerein also displayed differential affinity towards the two

phorbol ester-binding sites in mouse skin (Dunn and Blumberg, 1983). In the present

experiments, PDBu (and PMA; R Mitchell, unpublished observations) display both the

inhibitory and facilitatory influence on Ca2+ channel function in our two models,

whereas mezerein displays only a facilitatory profile in both GH3 cells and anterior

pituitary prisms (see Figure 3.6). Taken together, the most probable explanation of the

differences in these phorbol ester actions is that PDBu and PMA are acting with similar

affinity towards the PKC isoforms which are present in these cells and control the
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activity of 'L'-type Ca2+ channel function. Mezerein, on the other hand, may have

greater affinity towards the PKC isoform(s) which controls the facilitatory modulation

of 'L'-channel function, and reduced activity towards the PKC isoform(s) which

inhibits 'L'-channel function. Displacement of [3H]-PDBu binding in lung and frontal

cerebral cortex cytosols (regions enriched in a and 6 isoforms respectively) by

mezerein, displays similar affinities for displacement in both regions (see section 5.3).

This would suggest that the PKC-isoform(s) which may be selectively activated by

mezerein to promote pituitary 'L'-channel activity may not be prominently present in rat

lung or frontal cerebral cortex cytosols, or that the compound has similar affinity

towards the PKC-isoforms found in lung and frontal cerebral cortex, but could display

different efficacy (ie, partial agonist) properties at some of the isoforms. It is thus

possible that mezerein is a less efficacious activator of the PKC which is responsible

for inhibiting 'L'-channel activity than at the PKC responsible for facilitation of the

channels. Other unknown factors could potentially alter the effectiveness of mezerein.

Clearly, more analysis of the selective actions of mezerein was required, and so its

effects on PKC activity from various tissues is currently being investigated (Johnson et

al, 1991; Mitchell et al, 1992). To some extent, DPB, MPMA and PRA mimicked the

selective profile of mezerein on K+-induced 45Ca2+ influx into GH3 cells and anterior

pituitary pieces (see Figure 3.6). It is probable that these phorbol analogues show a

similar affinity for the PKC isoform(s) which mezerein selects for, but are not as potent

or selective as mezerein. Unlike mezerein and MPMA and PRA, DPB does not

enhance K+-stimulated 45Ca2+ influx into GH3 cells but modestly mimics the action of

mezerein, MPMA and PRA in anterior pituitary 45Ca2+ influx studies. The reason for

DPB not enhancing K+-induced 45Ca2+ influx into GH3 cells may simply reflect the

less selective nature of DPB on the two PKC-forms (tending to be intermediary in its

selectivity in comparison to PDBu and mezerein). The magnitude of the DPB-induced

modulation of K+-induced 45Ca2+ influx into both preparations is also far less than the

magnitude of enhancement of 45Ca2+ influx seen in anterior pituitary tissue with other
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agents such as PDBu and mezerein. In conclusion, our two systems which investigate

K+-induced 45Ca2+ influx into anterior pituitary cells probably represent two separate

models of differential function of distinct PKC isoforms, with PDBu and PMA

showing no selective nature between the two PKC isoform-influences, and mezerein

showing distinct selectivity for the form(s) of PKC which control the enhancement of

'L'-type Ca2+ channel function. The agents MPMA, PRA and DPB show intermediate

activity in selecting for the PKC isoform(s) which is involved in facilitating 'L'-channel

activity in both anterior pituitary prisms and GH3 cells, however as yet, no definite

identity can be ascribed to the form(s) of PKC which enhances 'L'-channel activity. In

contrast, the isoforms of PKC which are probably involved in the reduction of 'L'-type

Ca2+ channel activity are better understood. In GH3 cells at least, AA can activate an

isoform(s) of PKC resulting in a reduction of 'L'-channel activity (this will be

discussed in greater detail in the following chapter). It is now clear that AA can

potently activate the y-isoform of PKC, with the a and 6 isoforms of PKC being less

potently activated by AA (the a isoform being better activated than the 8 isoform:

Sekiguchi et al, 1987; Naor et al, 1988a; Sekiguchi et al, 1988; Shearman et al, 1989a;

Burns et al, 1990; Shinomura et al, 1991). However, it is also known that anterior

pituitary and GH3 cells do not possess y-PKC but do contain a- and B-PKC (Naor,

1990). The isoform which produces a facilitation for inhibition in 'L'-channel activity

cannot be y as it is absent from both tissues. Unfortunately, at present no

comprehensive information exists as to the influence of AA on, or the existence in

pituitary cells of the B series isoforms of PKC and thus any interpretation cannot

include the influence of these isoforms. The inhibitory PKC(s) which is responsible

for inhibiting 'L'-type Ca2+ channel activity could therefore be a- or B-PKC (or both),

and as AA only poorly enhances 'L'-channel activity in anterior pituitary pieces (see

Figure 3.7), then it reasonable to assume that if in anterior pituitary pieces AA is

selectively activating certain isoforms of PKC, then the isoform(s) with the greatest net

influence in this tissue which is responsible for enhancing 'L'-channel activity, is
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poorly responsive to AA. However, the direct influence of AA on PKC-mediated

actions in anterior pituitary pieces has not been determined. The diacylglycerol, DOG

has been reported only to selectively mimic certain properties of phorbol esters and

other longer chain diglycerides (Sekiguchi et al, 1988; Lacerda et al, 1988; Strulovici et

al, 1989) and in our studies too, DOG can mimic only PDBu at enhancing 'L'-channel

function in anterior pituitary pieces without influencing 'L'-channel activity in GH3

cells (see Figure 3.5). This is consistent with the findings of Lacerda et al (1988)

who reported that cardiac 'L'-type Ca2+ channel activity is both inhibited and enhanced

by phorbol ester (the two profiles being temporally separated), whereas DOG could

mimic only the enhancement of 'L'-channel activity (as is seen here in anterior pituitary

pieces) without influencing the inhibitory effect on 'L'-channel activity (as seen here in

GH3 cells with DOG). As assessed in [3H]-PDBu binding studies here (see Chapter

5), DOG has reduced affinity towards a-PKC. Thereby, it may be th a-isoform of

PKC which is responsible for the inhibitory influence on 'L'-type Ca2+ channels in

pituitary cells. However, other work from our laboratory suggests that DOG is a

relatively poor activator of both a- and B-PKC, and that the phorbol ester, DOPPA (see

section 1.2.3) which is reported to selectively activate B-PKC (Evans et al, 1991), can

also induce an inhibition of 'L'-channel activity in both GH3 cells and anterior pituitary

pieces (R Mitchell, unpublished observations). Thus it is probable that a- and perhaps

also B-PKC (at least), but not y-PKC, are the isoforms of PKC which are responsible

for the inhibition of 'L'-type Ca2+ channel function in anterior pituitary pieces and GH3

cells.

Both the inhibitory influence on 'L'-type Ca2+ channel function in GH3

cells and the facilitatory influence on 'L'-type Ca2+ channel function in anterior

pituitary pieces induced by PDBu have similar time courses of onset (see Figure 3.4).

Lacerda et al (1988) found that stimulation of myocytes with phorbol ester induced an

inhibitory and facilitatory modulation of 'L'-type Ca2+ channel activity which were

separated temporarily (enhancement seen at 5 s, inhibition viewed at 20 min) and that
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DOG induced only an enhancement of 'L'-type Ca2+ channel activity. Our protocol

here is too crude to see any significant change in 45Ca2+ influx when measured after a 5

s stimulus, however both the inhibitory and facilitatory modulations seen in our two

different tissues showed very similar temporal profiles of channel modulation.

The facilitatory and inhibitory profiles of 'L'-channel modulation in anterior

pituitary pieces and GH3 cells respectively, again both showed similar potencies with

respect to inhibition of the PDBu responses with staurosporine, K252a (see Figure 3.8)

and to the more PKC-selective inhibitor Ro318220 (see Figure 3.9) with a

pharmacological profile which would suggest the involvement of PKC, as would be

expected in a PDBu-induced response. The inhibition by PDBu of K+-induced 45Ca2+
influx into GH3 cells was inhibited more potently by the kinase inhibitor H7 than its

control analogue HA1004 (see Figure 3.10) again suggesting the involvement of PKC;

whereas the PDBu-induced enhancement of 'L'-type Ca2+ channel activity in anterior

pituitary pieces was far less potently inhibited by H7 (Figure 3.10) These data would

suggest that the PKC isoform(s) which is activated by PDBu treatment and is

responsible for the facilitatory modulation of the 'L'-type Ca2+ channel function in

anterior pituitary prisms is an isoform which displays in general the expected

pharmacological profile for PKC-selective kinase inhibitors. However, unlike the PKC

isoform which causes an inhibition of 'L'-channel activity in GH3 cells (which displays

the expected high sensitivity to H7), the facilitatory isoform which is present in anterior

pituitary pieces shows a distinct and characteristic resistance to inhibition by H7.

Curious mismatches in PKC pharmacology have been noted before, with PKC

inhibitors such as H7, staurosporine and K252a having similar potency of inhibition on

a range of PKC-mediated responses, but with some phorbol ester-induced responses

showing differential sensitivity towards the inhibitor (see section 1.2.3). These

previous reports did not mention the possibility that certain isoforms of PKC may have

reduced sensitivity to inhibition to certain PKC inhibitors, such as is seen here with

H7. Indeed, work by Schaap and Parker (1990) on purified e-PKC and on a mixture
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of a, B and y isoforms showed no difference in sensitivity to H7. In general, it has

been assumed that H7 probably does not inhibit selectively any PKC isoforms due to

the extensive sequence homology of the ATP-binding domain (at which H7 is thought

to act) amongst the isozymes identified so far. However, a- and B-PKC are known to

contain an additional consensus ATP-binding sequence which may alter their sensitivity

to H7 (Huang, 1989). The prediction that a- or 6-PKC may have altered sensitivity to

H7 due to their additional ATP-binding sequence does not seem to be the case, as the

inhibition of 'L'-type Ca2+ channel activity seems to be mediated by a- and B-PKC,

and this PDBu-induced response is potently inhibited by H7. Indeed, it is the

enhancement of 'L'-type Ca2+ channel activity by PDBu which shows the insensitivity

to reversal by H7 and thus the H7-insensitive isoform(s) of PKC does not appear to be

a- and/or B-PKC as these isoforms are responsible for the inhibition of 'L'-type

channel activity. Another prediction which results from these data is that the

isoforms(s) which mezerein selectively activates to enhance 'L'-channel activity could

be the same H7-insensitive isoform, or alternatively, both the mezerein-sensitive and

H7-insensitive isoforms are distinct entities but both are able to enhance 'L'-channel

activity. Prelimenary data from our laboratory suggest that the mezerein-sensitive, H7-

insensitive kinases(s) may be the same entity, as recent studies on KMnduced 45Ca2+
influx into GH3 cells indicate that the enhancement of 'L'-type Ca2+ channel activity by

mezerein shows low sensitivity to inhibition by H7 (R Mitchell, unpublished

observations). The experiments described in detail in Chapter 6 indicate that an H7-

insensitive (but staurosporine- and Ro318220-sensitive) form of PKC does exist, and

that its distribution is limited to male and female anterior pituitary, female midbrain and

lung and that this H7-insensitive form of PKC (or related kinase) is relatively Ca2+-

independent with respect to its activation characteristics (see section 6.3). The

distribution of this H7-insensitive PKC does not match the distributions of the thus far

reported isoforms of PKC (A and B series) and may in fact represent a novel PKC (or
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related kinase) which has been discovered through pharmacological strategies (see

Chapter 6).
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CHAPTER 4

Effects of arachidonic acid in GH3 cells



4.1. Introduction

Arachidonic acid (AA) has a wide variety of cellular actions, some of which

are mediated by the fatty acid itself, and others which are mediated by products of its

metabolism (see section 1.2.5). One such action of AA (and certain of its metabolites)

is to activate protein kinase C (PKC) (McPhail et al, 1984; Murikami and Routtenberg,

1985; Murikami et al, 1986), however AA can activate certain isoforms of PKC better

than others. The activation of PKC isoforms by AA has been restricted to studies on

a, 61, 611 and y isoforms, with the general consensus being that y-PKC is more

potently activated by AA than the a- or 6-isoforms (a and 6 activate only in the

presence of Ca2+). Furthermore, the consensus of opinion is that a-PKC is generally

better activated by AA than 6-PKC (Sekiguchi etal, 1987; Naor et al, 1988a; Sekiguchi

et al, 1988; Shearman etal, 1989a; Burns etal, 1990; Shinomura et al, 1991).

In chapter 3, our two models of PKC isoform-action showed some quite

distinct pharmacological profiles for activators of PKC such as 1,2-dioctanoyl-sn-

glycerol and mezerein. When tested on our two models of rat anterior pituitary cells

K+-induced 45Ca2+ channel modulation by PKCs, AA showed a quite distinct profile

(Figure 3.7). Whereas phorbol 12,13-dibutyrate (PDBu) could markedly enhance K+-

induced 45Ca2+ influx into anterior pituitary pieces and reduce K+-induced 45Ca2+
influx into GH3 cells, AA was able only to mimic the effect of PDBu on GH3 cells.

The selectivity of AA shown in our two models could indicate that AA is acting

selectively on the PKC profile which reduces 'L'-type Ca2+ channel activity (if AA is

activating PKC) and is indeed a PKC isoform-selective agent, as has been reported on

studies with AA on purified PKC isoforms (Sekiguchi et al, 1987; Sekiguchi et al,

1988; Naor et al, 1988a; Shearman et al, 1989a; Shinomura et al, 1991) and PKC

isoforms from their cDNA-expression systems (Burns et al, 1990). However, to our

knowledge, no action of AA to activate PKC in a normal (more 'physiological') system

has been reported and it may be that in our studies, AA is acting analogous to PDBu in
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GH3 cells to reduce 'L'-channel 45Ca2+ influx by activating PKC. Such a possibility

was investigated. Whereas PDBu will induce an inhibition of K+-induced 45Ca2+
influx into GH3 cells of around 50% maximum (Figure 3.3), AA can induce a full

inhibition of K+-evoked 45Ca2+ influx into GH3 cells (Figure 3.7). The mechanism by

which the full inhibition of influx into GH3 cells with AA (but not PDBu) was also

studied.

4.2. Specific methodology

Studies on K+-induced 45Ca2+ influx into GH3 cells were performed as

described in section 2.2.3 and 45Ca2+ efflux studies on GH3 cells were as described in

section 2.2.4. Measurement of intracellular free-Ca2+ concentration was performed as

outlined in section 2.2.5. The concentration of AA and AA-methyl ester used in the

fluorimetric studies (17 (iM) was a concentration added in the solvent ethanol (0.4%

final concentration in cuvette) which produced no record of a precipitatory artefact (as

described in section 4.3). The release of [3H]-AA from prelabelled GH3 cells was as

mentioned in section 2.2.6. In studies in which GH3 cells had their PKC down-

regulated, the protocol followed was similar to that previously reported on GH3 cells

(Ballester and Rosen, 1985). GH3 cell culture flasks (containing 20 ml of growth

medium) were incubated for 24 h with 300 nM PDBu dissolved in dimethylformamide

(0.01% final) or dimethylformamide alone for control-treated cells. Cells were then

centrifuged (1,000 g 10 min, 25°C) and the cell pellet was washed three times by

resuspension and centrifugation (1,000 g, 10 min, 25°C) in either 'calcium uptake

medium' for 45Ca2+ studies or Hank's balanced salt solution for fluorimetric studies, in

order to remove the PDBu.

The solvents used were: dimethylformamide (<1% final) for PDBu,

staurosporine, K252a, NDGA, ETYA, indomethacin, SKF525A, piperonyl butoxide

and ionomycin; ethanol (< 0.4% final) for AA, AA-methyl ester, linoleic acid; and

distilled water for N-methyl TRH, H7, HA1004 and 8-Br-cyclic GMP. In experiments
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involving N-methyl d-glucamine, GH3 cells were washed and resuspended in the

appropriate medium that was Na+-free, which was replaced by N-methyl d-glucamine

(154 mM). At the concentrations used, solvents alone had no apparent effect on GH3

cells.

4.3. Results

The effect of arachidonic acid on K+-induced 45Ca2+ influx into GH3

cells

Preincubation of anterior pituitary pieces for 10 min with AA (3 - 100 pM)

resulted in no significant alteration in K+-induced 45Ca2+ influx, with the greatest

change being to 120 ± 15% of control K+-induced 45Ca2+ influx at 100 pM AA (n =

4). Arachidonic acid is known to selectively activate certain isoforms of PKC (Naor et

al, 1988a), but is unable to mimic the effect of PDBu and 46-PDD on K+-induced

45Ca2+ influx into anterior pituitary (Figure 3.7). However, 10 min preincubation of

GH3 cells with AA (1 - 100 pM) inhibited K+-induced 45Ca2+ influx in a

concentration-dependent manner (IC50 =19 + 3 pM, n = 4 - 12). In contrast to the

maximal 50% inhibition induced by PDBu or 46-PDD on K+-induced 45Ca2+ influx

into GH3 cells (Figure 3.3), AA will fully inhibit K+-induced 45Ca2+ influx into GH3

cells (3 ± 3% of control K+-induced influx at 100 pM AA), with the inhibition of influx

being statistically significant (P < 0.05) from control K+-induced 45Ca2+ influx levels

with 30 and 100 pM AA. The reasons for the greater inhibition of K+-induced 45Ca2+
influx into GH3 cells produced by AA than that with PDBu alone, are investigated in

this chapter.

Basal influx into GH3 cells preincubated for 10 min with 30 or 100 pM AA

was not significantly altered from control basal 45Ca2+ influx, measured in the presence

of the solvent ethanol (0.4% final) (104 ± 3 and 108 ± 6% of control basal influx

respectively (n = 4)). The trend towards a marginal increase in basal accumulation at

the highest AA concentrations was matched by a similar increase over control 45Ca2+
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accumulation to filters in the absence of GH3 cells with 100 pM AA. Correspondingly,

the assay tubes containing 100 pM AA were noted to have a slight oily 'film' which

presumably caused the small increase in filter accumulation of 45Ca2+. Measurements

to assess the precipitation of AA at various concentrations were performed by

measuring the turbidity of a series of concentrations of AA in 'calcium uptake medium',

as assessed by light-scattering in a spectrofluorophotometer using excitation, and

emission wavelengths at 520 nM. Under these conditions (calcium uptake buffer

containing 0.4% ethanol vehicle), no detectable increase in light-scattering could be

detected up to and including 32 pM AA. However, marked turbidity (and presumably

precipitation) were noted with 100 pM AA. Thus with AA, the greater inhibition of

45Ca2+ influx than PDBu could not be accounted for by precipitation of AA, as the

inhibitory concentration response curve was nearly complete with 30 pM AA (Figure

4.1) (which had no precipitation in 'calcium uptake medium'). Furthermore,

precipitation of compounds results in an apparent increase in 45Ca2+ accumulation to

filters and cells, not the reduction in 45Ca2+ accumulation seen with high concentrations

of AA.

Several structural analogues of AA were tested to ascertain the specificity of

the AA-induced inhibition of K+-induced 45Ca2+ influx into GH3 cells. The analogue

AA-methyl ester was reported to be unable to activate PKC (Seifert et al, 1988), as well

as being poorly metabolised to AA by esterase enzymes (Chan and Turk, 1987).

Concentrations of AA-methyl ester of 30 and 100 pM, preincubated with cells for 10

min, could not mimic the effect of AA on K+-induced 45Ca2+ influx into GH3 cells (87

± 3 and 78 ± 5% of control K+-induced influx levels respectively, n = 4), although

both reductions of K+-induced 45Ca2+ influx were statistically significant (P < 0.05).

In light-scattering experiments with a spectrofluorophotometer, AA-methyl ester

showed slight turbidity at 32 pM (with very significant precipitation at 100 pM AA-

methyl ester), similar to the results with AA. Therefore, substantial precipitation was

not a cause for the inability of AA-methyl ester to match the inhibition of K+-induced
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influx by AA. Interestingly, the combination of 30 pM AA methyl ester and 300 nM

PDBu, almost completely inhibited K+-induced 45Ca2+ influx levels into GH3 cells to

14 ± 2% of control K+-induced influx (n = 4; Figure 4.1). Thus, AA-methyl ester and

PDBu together can mimic the effect of AA alone on K+-induced 45Ca2+ influx into

GH3 cells. Arachidic acid is similar in structure to AA, but contains no unsaturated

carbon-carbon bonds. Unfortunately, arachidic acid in the concentration range used

(30 and 100 pM) could not be used to assess the specificity of the AA-induced

inhibition of 45Ca2+ influx, as it precipitated rapidly in the quench/wash procedure with

the ice-cold EGTA. Precipitation of arachidic acid was so extensive that it caused the

filters to clog and so produce marked retention of label (equivalent to 1,077 and

1,369% of control K+-induced 45Ca2+ accumulation, n = 2). The effect of arachidic

acid to precipitate and clog the filter could also be seen in the absence of cells (n = 1).

Linoleic acid is a fatty acid of 18 carbons with two unsaturated bonds (AA has 4

unsaturated bonds and 20 carbons), which was reported to activate PKC, but to an

extent which was lesser than the activation by AA at the same concentrations (Seifert et

al, 1988). Linoleic acid (30 pM) did not significantly" reduce K+-induced 45Ca2+

influx into GH3 cells (79 ± 14% of control K+-stimulated influx, n = 4). The effect of

100 pM linoleic acid on the assay could not be determined with any certainty as the

linoleic acid could not be fully dissolved in ethanol at sufficient concentration to keep

below the vehicle concentration limit needed in the assay tube. Thus AA-methyl ester

and probably also linoleic acid could not fully mimic the effect of AA on RMnduced

45Ca2+ influx into GH3 cells, although some small degree of inhibition was observed.

The fact that this result does not correlate accurately with their reported activities on

PKC and the expected synergy between AA-methyl ester and PDBu suggest that PKC

activation by AA cannot fully account for its complete inhibition of 4^Ca2+ influx into

GH3 cells.
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The effects of H7 and staurosporine on AA-induced inhibition of 45Ca2+

influx into GH3 cells

In GH3 cells, the PDBu-induced inhibition of K+-induced 45Ca2+ influx is

fully reversed by the PKC inhibitors H7 and staurosporine. The effect of these two

kinase inhibitors was examined on the inhibition of 45Ca2+ influx into GH3 cells

caused by AA. Inclusion of H7 (2 - 50 |iM) in the 10 min preincubation of cells with

AA (30 (J.M) before measurement of K+-induced 45Ca2+ influx into GH3 cells, (Figure

4.2) reversed the AA-induced inhibition in a concentration-dependent manner (IC50 =

14 ± 4 jiM n = 12). The inhibition of K+-induced 45Ca2+ influx caused by 30 pM AA

(23 ± 9% of control K+-induced influx, n = 12) was significantly (P < 0.05) reversed

by 50 |iM H7, returning to levels of 88 ± 14% of control K+-induced influx. This

reversal of the response to 30 pM AA in GH3 cells was not seen with a congener of H7

that has reduced affinity for PKC, HA 1004 (2 - 50 |iM). This compound showed no

significant reversal of the effect of AA at the highest concentration of HA 1004 tested

(28 ± 8% of control K+-induced influx levels at 50 pM, n = 8). The effect of 30 pM

AA on K+-induced 45Ca2+ influx into GH3 cells was reversed by staurosporine (5 -

300 nM) in a concentration-dependent fashion (Figure 4.3), resulting in an IC50 = 52 ±

15 nM, n = 8). The reversal of 30 pM AA-induced inhibition was significant (P <

0.05) at 100 and 300 nM staurosporine, which respectively gave levels of 78 ± 9 and

83 ± 14% of control K+-induced 45Ca2+ influx. A congener of staurosporine that has

reduced affinity for PKC, K252a (5 - 300 nM) did not significantly reverse the AA-

induced inhibition of influx, with the highest concentration used giving an influx still

reduced to 31 ± 8% of control K+-induced 45Ca2+ influx (n = 4). Staurosporine or H7

alone had no effect on K+-induced 45Ca2+ influx or basal influx levels through the

concentration ranges tested.
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The effect of procedures to down-regulate PKC on AA-induced

inhibition of K+-evoked 45Ca2+ influx into GH3 cells

Incubation of GH3 cells with 300 nM PDBu for 24 h is reported to result in

a > 50% reduction of PKC levels and reduced PKC-mediated responses (Ballester and

Rosen, 1985). Application of a similar protocol here resulted in the magnitude of the

K+-induced 45Ca2+ influx into GH3 cells being somewhat reduced (29 ± 9% of control

influx), but it was very clear that the ability of AA (3 - 100 |aM) to inhibit KMnduced

45Ca2+ influx was reduced (Figure 4.4). The potency of inhibition by AA was reduced

to an IC50 of 98 ± 19 (iM, (n = 6) when compared to that in control cells treated with

dimethylformamide (0.01% final volume in culture flask) alone (IC50 = 27 ± 4 (iM, n =

6). The percentage inhibition of K+-induced 4^Ca2+ influx by 30 }lM AA in PDBu-

treated cells, was statistically different (P < 0.05) from that in control-treated cells at the

same concentration of AA. However, at 100 |iM AA, a significant reduction in K+-

induced 45Ca2+ influx in PDBu-treated cells was apparent (47 ± 9% of control K+-

induced influx), indicating that some AA-induced inhibition of influx is still possible in

PKC-down regulated GH3 cells.

These data and the reversal of the AA-response by H7 and staurosporine

(but not HA 1004 or K252a) indicate a role for PKC in the AA-induced inhibition of

K+-induced 45Ca2+ influx into GH3 cells. The problem still remained to be explained

that PDBu-activation of PKC will only result in around 50% inhibition of K+-

stimulated calcium influx into GH3 cells, whereas AA will fully inhibit influx, although

the AA-response is fully reversed by PKC inhibitors.

Time-course of AA-induced inhibition of K+-stimulated 45Ca2+ influx

into GH3 cells

Testing the hypothesis that activation of PKC may be involved in the AA-

induced inhibition of K+-evoked 45Ca2+ influx, the time-course of the AA-response

into GH3 cells was investigated. Incubation of cells for 30, 45 and 90 s (inclusive of
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the 30 s 45Ca2+ influx measurement period) with 30 (iM AA, time-dependently reduced

K+-induced 45Ca2+ influx into GH3 cells (Table 4.1). The reduction in 45Ca2+ influx

was statistically significant (P < 0.05) from control K+-induced 45Ca2+ influx levels at

each time-point measured. With 30 s AA, the K+-induced influx was inhibited to 52 ±

6% of control K+-induced calcium influx levels (n = 4). The half-time for the maximal

response to occur to AA was of a similar half-time for the maximal response for PDBu

to occur (Figure 3.4), further consistent with a PKC mediation of the effect of AA. An

effect of AA (or a metabolite) to activate K+-channels (Kurachi et al, 1989; Kim et al,

1989; Ordway et al, 1991) and thereby hyperpolarise the cell could account for the

inhibition of depolarisation-induced 45Ca2+ influx into GH3 cells. Such a mechanism

seems unlikely, since the effect of AA on K+-channels is maximal within seconds

(Ordway et al, 1989; Ordway et al, 1991) unlike the time-course of the response to AA

in GH3 cells (Table 4.1) which is half-maximal at around 30 s. Perhaps more

consistent with our observations are the findings by Kim et al (1989) and Kurachi et al

(1989) who observed that their activation of K+-channels by a metabolite of AA

occurred about 1 min after application of AA. However, as will be demonstrated later

(Table 4.2), inhibitors of AA metabolism do not effect the response to AA in GH3

cells, and the inhibition of K+-induced 45Ca2+ influx appears to be a direct action of

AA itself. Furthermore, evidence here for the role of PKC in the AA action would

suggest that such a mechanism on K+ channels would have no more than a modest

contribution to the effect of AA to inhibit 45Ca2+ influx through 'L'-channels in GH3

cells.

Effect of inhibitors of eicosanoid metabolism on the inhibition by AA of

K+-evoked 45Ca2+ influx into GH3 cells

Major routes of AA metabolism occur via the lipoxygenase, cyclo-

oxygenase and cytochrome P450 enzyme pathways (Shimizu and Wolfe, 1990; also see

section 1.2.4). As many of the metabolites of AA have biological activity, we
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investigated the possibility that AA-metabolites may be responsible for the complete

inhibition of K+-induced 45Ca2+ influx into GH3 cells. The cyclo-oxygenase and

lipoxygenase inhibitor ETYA (10 (iM) (Taylor and Clark, 1986), the lipoxygenase

inhibitor NDGA (30 |iM) (Taylor and Clark, 1986) and the cytochrome P450 inhibitors

piperonyl butoxide (30 pM) and SKF525A (10 |lM) (Luini and Axelrod, 1985) were

included in the preincubation for 10 min with 30 |iM AA (Table 4.2). None of these

agents caused any significant alteration in the inhibition of K+-induced 45Ca2+ influx

into GH3 cells with 30 pM AA (0 ± 10, 15 ± 12, 8 ± 13 and 4 ± 6% alteration of the

AA response with ETYA, NDGA, piperonyl butoxide and SKF525A respectively (n =

6, 6, 4 and 4)). Thus the inhibition of K+-stimulated 4^Ca2+ influx into GH3 cells by

AA does not appear to be due to a metabolite of one of these pathways and probably is

mostly due to AA itself.

Effects of arachidonic acid on general aspects of Ca2+-handling in GH3

cells

It was possible that AA may be influencing Ca2+-extrusion processes as

well as influx mechanisms. If AA enhanced the extrusion rate of 45Ca2+ as well as

inhibiting 'L'-type Ca2+-channel influx, then this could be a possible mechanism

underlying the complete inhibition of 45Ca2+ influx into GH3 cells caused by AA.

In order to assess the possible role of changes in the activity of the

Na+/Ca2+-exchanger and Ca2+-ATPase enzymes in the AA-response, we used the large

inpermeant monovalent cation N-methyl d-glucamine (replacing Na+ in the medium,

154 mM) and Na3VC>4 (1 mM in normal 'calcium uptake medium') which are reported

to block the respective calcium-transport mechanisms (Gill et al, 1981; Di Polo et al,

1979). In the presence of 100 jiM AA, K+-induced influx was reduced to 8 ± 6% of

control K+-induced 4^Ca2+ influx levels (n = 4). N-methyl d-glucamine and Na3V04

had no clear effect on the AA-induced inhibition of influx: in the presence of each, AA

(100 |lM) inhibited K+-induced influx to 30 + 6 and 16 ± 2% of control K+-induced
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influx respectively (n = 4; Table 4.3). However, K+-induced 45Ca2+ influx in the

presence of both Ca2+ extrusion inhibitors was raised to 130 ± 8% of control K+-

induced influx levels (n = 4). Therefore, the slight rises in 45Ca2+ accumulation with

N-methyl d-glucamine (and Na3VC>4) in the presence of AA appear to reflect a general

rise in 45Ca2+ accumulation in GH3 cells, and not in any way a specific reversal of the

AA-induced by the agent. Thus AA appears to exert its effects on K+-induced 45Ca2+
influx in GH3 cells at a step(s) prior to extrusion of 45Ca2+ (at least through the Ca2+-
extrusion enzymes investigated).

Effects of AA on N-methyl TRH- and ionomycin-induced 45Ca2+ influx

into GH3 cells

The effect of arachidonic acid of both N-methyl TRH- and ionomycin-

induced 45Ca2+ influx into GH3 cells was investigated to see whether the AA-induced

inhibition of K+-induced 45Ca2+ influx into GH3 cells was particular to a K+-stimulus

for calcium influx or was a general phenomenon of modifying calcium influx caused by

any stimuli. Thyrotropin releasing hormone (TRH) receptors are present on GH3 cells.

Activation of these receptors leads to hydrolysis of phosphoinositides and calcium

influx (Drummond, 1986). Incubation of GH3 cells with potent TRH agonist [N-

methyl]2-TRH (N-methyl TRH) and 45Ca2+ for 30 s, caused an influx of 45Ca2+

(Figure 2.3 and Table 4.6). The amount of N-methyl TRH-induced 4^Ca2+ influx was

31 ± 9% of the influx of 45Ca2+ seen with 60 mM K+-containing medium (n = 12).

The effect of preincubation with 50 |lM AA for 10 min prior to exposure to the N-

methyl TRH stimulus, was to reduce slightly the influx of 45Ca2+ into GH3 cells to 73

± 12% of the control response to N-methyl TRH-induced 45Ca2+ influx (n = 12),

although this apparent reduction did not reach statistical significance. Ionomycin is a

compound which implants itself into membranes and acts as Ca2+ ionophore, allowing

Ca2+ to flow down its concentration gradient (into GH3 cells under these conditions).

Incubation of GH3 cells with 30 pM ionomycin for 30 s caused influx of 45Ca2+ into
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GH3 cells to levels which were significantly (P < 0.05) above basal or K+-stimulated

influx levels (257 ± 40% of control K+-induced 45Ca2+ influx, n = 4). Preincubation

of GH3 cells with 50 |iM AA for 10 min before exposure to ionomycin reduced 45Ca2+

influx to 83 ± 10% of control ionomycin-induced 45Ca2+ influx levels (n = 4), a

reduction in influx which was not significantly different from control ionomycin-

induced responses. However, in the same experiments 10 min preincubation of GH3

cells with 50 (0.M AA before 30 s exposure to 60 mM K+, reduced the K+-induced

45Ca2+ influx to levels of 3 ± 14% of control K+-induced 45Ca2+ influx levels (n = 4).

The reduction by AA of K+-induced 45Ca2+ influx into GH3 cells was statistically

significant (P < 0.05). Therefore, the AA-induced reduction of K+-stimulated 45Ca2+
influx into GH3 cells is not matched by the AA-induced reductions in N-methyl TRH-

and ionomycin-induced 45Ca2+ influx. This suggests that the AA-inhibition of 45Ca2+
influx is not just an AA-induced change in Ca2+ handling of the cells, but is relatively

specific towards K+-stimulated influx. Both this observation and the failure of N-

methyl d-glucamine or Na3VC>4 (Na+/Ca2+ exchange and Ca2+-ATPase inhibitors

respectively) to modify the AA-induced inhibition of K+-stimulated 45Ca2+ influx into

GH3 cells, suggest the effect of AA is not just occurring by a change in Ca2+-extrusion

processes (or Na+/Ca2+ exchanger/Ca2+-ATPase at least). The main route of K+-

induced 45Ca2+ influx into GH3 cells is through a nimodipine-sensitive 'L'-type Ca2+

channel, and this channel is known to be modulated by PKC (Campbell et al, 1988).

Thus, activation of PKC by AA could account for the decrease in K+-induced 45Ca2+

influx into GH3 cells (similar to the reduction seen with PDBu) and could explain why

the ionomycin-induced 45Ca2+ is insensitive to modulation by AA, as PKC would not

interact with the ionophore. The TRH-induced influx of Ca2+ into GH3 cells within

30 s is largely dihydropyridine-insensitive and TRH-induced influx consists of both

'L'-type Ca2+-channel and non 'L'-type Ca2+-channel/receptor-operated Ca2+-channel

mechanisms (Mitchell et al, 1989). Therefore, any AA-induced reduction of N-methyl

TRH-stimulated 45Ca2+ influx here may reflect the minor component of the stimulated
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influx occurring through an 'L'-type Ca2+-channel; and an effect of AA on this minor

'L'-channel component which is similar to that seen for K+-induced 45Ca2+ influx but

manifests itself as only a slight reduction of the total N-methyl TRH-induced 45Ca2+
influx in 30 s.

Effect of 8-Bromo cyclic GMP on K+-induced 45Ca2+ influx into GH3

cells

It was reported that AA could activate guanylate cyclase (Glass et al, 1977),

the enzyme responsible for the production of cyclic-GMP. Cyclic-GMP activates

cyclic-GMP-dependent protein kinase which could in principle be responsible for the

full reduction in K+-induced 45Ca2+ influx into GH3 cells. The cell-permeable

activator of cyclic-GMP-dependent protein kinase, 8-Br-cyclic GMP (3 - 100 (J.M) was

totally unable to mimic the effect of AA on K+-induced 45Ca2+ influx into GH3 cells

(Table 4.4). At no point throughout the concentration range used, did 8-Br-cyclic

GMP significantly alter K+-induced 45Ca2+ calcium influx (n = 4). We therefore could

find no evidence that presumed activation of cyclic GMP-dependent protein kinase in

GH3 cells reduces K+-induced 45Ca2+ influx and, therefore no support for the

hypothesis that AA activation of guanylate cyclase could account for the effect of AA on

K+-induced calcium influx.

Effect of AA on 45Ca2+ extrusion from GH3 cells

The cytosolic free calcium concentration is governed by the rate of both

calcium influx and extrusion from this cellular compartment (Blaustein, 1988).

Changes in this dynamic equilibrium will alter the cellular cytosolic calcium

concentration. Raised cytosolic calcium will result in the extrusion of more Ca2+ as the

extrusion enzymes compensate to try to maintain a steady concentration of calcium in

the cytosol. Our hypothesis was that AA could raise cytosolic Ca2+ concentrations, as

was found to be the case in other cell types (Chan and Turk, 1987; Beaumier et al,

1987; Chow and Jondal, 1990). The continued presence of ionomycin (30 (iM) in the
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bathing medium increased the rate of 45Ca2+ efflux from GH3 cells to levels of 1148 ±

39 dpm greater than basal efflux levels (n = 3; Figure 2.5). The period of increased

rate of efflux with ionomycin was complete within 4 min, as the efflux rate had

returned to basal efflux levels by the next measurement. The continued presence of 50

pM AA in the bathing medium induced a rise in 45Ca2+ efflux from GH3 cells of 318 ±

56, 545 ± 34 and 168 ± 64 dpm above basal efflux levels (n = 3; Figure 4.5) in each

consecutive efflux fraction-collection (2 min each) respectively, before returning to

basal levels of efflux despite the continued presence of 50 pM AA. The total efflux of

45Ca2+ induced by 50 pM AA from each collection accounted for 36 ± 3% of the total

dpm recovered with 30 pM ionomycin (Table 4.5). This suggests an action of AA to

release a limited capacity pool of accumulated 45Ca2+ rather than an ongoing process.

When a number of inhibitors of AA metabolism were present from the beginning of

fraction collection, ETYA (10 (iM), SKF 525A (10 pM) had no measurable effect on

45Ca2+ efflux rates (96 ± 9 and 96 ± 12% of control AA-induced 45Ca2+ efflux levels

respectively (n = 3)), although 10 pM NDGA slightly reduced the effect of 50 pM AA

to 69 ± 20% of the total rise in 45Ca2+ extrusion by AA (n = 3). However, the effect

of NDGA could not be considered definitive, being only apparent on the peak-fraction.

Furthermore, another cyclo-oxygenase inhibitor, indomethacin (10 pM) was ineffective

at altering the 45Ca2+ efflux response of AA (98 ± 18% of control AA-induced 45Ca2+
efflux (n = 3)). Thus, it seems that the raised 45Ca2+ efflux from GH3 cells induced by

AA may well be due to AA itself and not a metabolite. Replacement of 154 mM Na+ in

the medium with N-methyl d-glucamine had no effect on the increased efflux of 45Ca2+
induced by 50 pM AA (n = 3) whereas the presence of 1 mM Na3V04 completely

blocked the increase in 45Ca2+ efflux from GH3 cells by AA (1 ± 6% of control AA-

induced 45Ca2+ efflux, n = 3).

At a concentration of 300 nM, PDBu produced no measurable increase in

45Ca2+ efflux from GH3 cells (2 ± 4% of ionomycin-induced efflux, n = 3) and the

presence of the PKC inhibitor H7 (30 pM) did not affect the increase in 45Ca2+ efflux
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in response to 50 (iM AA (102 ± 8% of the control response to AA in the absence of

H7, n = 3). This suggested that the effect of AA on 45Ca2+ efflux did not involve a

mechanism of PKC activation which is consistent with the lack of effect of H7. Since

there have been reports that PKC can activate Ca2+-ATPase (Drummond, 1984), it

seems that the increase in 45Ca2+ efflux here shown by AA but not PDBu, reflects

something other than a change in the activity of the Ca2+-ATPase. Entirely consistent

with all these points is the evidence that AA can mobilise intracellular Ca2+pools (Chan

and Turk, 1987; Beaumier et al, 1987; Chow and Jondal, 1990). It seems quite likely

that the AA-induced 45Ca2+ efflux simply reflects clearance of the elevated cytosolic

Ca2+ concentration caused by AA, rather than a particular change in extrusion

processes per se. Further experiments would of course be required to establish this in

detail. It is clear, however that the effect on efflux here of AA is not underlying the

change in 45Ca2+ influx since the two phenomena display differential sensitivity to H7

and Na3VC>4, and the effect of AA on 45Ca2+ influx is only partially mimicked by

PDBu.

Effect of AA on cytosolic calcium levels in GH3 cells

To further investigate the possible effects of AA on cellular Ca2+ stores,

cytosolic Ca2+ concentrations were measured in GH3 cells using the Ca2+-indicator dye

Indo-1. All experiments were performed separately at least three times (with the

exception of the PKC down-regulated GH3 cell studies which were performed twice).

All results are representative for each experiment, with the data not varying outwith

30% of the value shown. Unfortunately, staurosporine showed large fluorescence

artefacts at the wavelengths used and could not be investigated. High concentrations of

AA also induced marked instantaneous rises in the apparent fluorescence signal and

therefore we tested a range of concentrations of AA until reaching the limit of

fluorescence artefact at the wavelengths used. A concentration of 17 |iM AA with a

solvent (ethanol) limit of 0.4% (v/v) did not change fluorescence in the absence of cells
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or Indo-1 at the wavelength measured. This is in agreement with the turbidity

experiments at which concentration of AA < 32 (J.M showed no light scattering artefact,

measured at 520 nM. Ethanol at 0.4% concentration had no effect on basal cytosolic

Ca2+ fluorescence on GH3 cells, or on a response of the cells to 40 mM (final

concentration) K+ solution. Arachidonic acid (17 |iM) induced a rise in cytosolic

calcium concentrations from resting [Ca2+]j levels of around 200 nM to approximately

250 - 300 nM (Figure 4.6). This AA-induced rise in [Ca2+]i was apparent immediately

after addition of the compound and took 1 to 2V2 min to plateau to its maximum level,

where it was maintained. Addition of high K+ (40 mM final) stimulus resulted in a

transient rise in [Ca2+]i to peak concentrations of approximately 1,000 nM, plateauing

to approximately 500 nM in the presence of solvent alone (0.4% ethanol) applied 4 min

previously. The rise in [Ca2+]j seen with high K+ was similar in magnitude and

temporal pattern as that of Drummond (1984) who stimulated GH3 cells with high K+

while measuring [Ca2+]j using Quin-2 as a Ca2+-indicator. When a high K+ challenge

was applied to GH3 cells at least 4 min after the addition of 15 |iM AA, there was a

much diminished transient rise in intracellular calcium (to levels of approximately 300

nM, in comparison of the control rise in [Ca2+]i to 1,000 nM seen in the presence of

ethanol alone). In the presence of the PKC inhibitor, H7 (30 |lM, pre-incubated with

the GH3 cells in the cuvette for > 6 min), the rise in intracellular calcium induced by AA

(17 |iM) was still present and was comparable to the rise seen in the absence of H7.

However, the response to K+ in the presence of both AA and H7, was returned to

levels comparable to those seen in response to K+ in the presence of ethanol alone

(Figure 4.6). The action of AA to raise intracellular Ca2+ concentrations was thought

to be independent of PKC, as 300 nM PDBu did not induce any discernible rise in

basal (approximately 200 nM) GH3 cell cytosolic Ca2+ concentration (Figure 4.7). In

these experiments, high K+ induced a peak rise in cytosolic calcium concentration to

approximately 600 nM, the peak then plateauing to concentrations of approximately 400

nM (in the presence of 0.1% dimethylformamide, included IV2 rnin earlier (Figure
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4.7(a)). The role of PKC was implicated in the reduction of high K+-evoked raised

[Ca2+]i, as the effect of PDBu (applied 2V2 niin previously) on this K+-induced rise in

[Ca2+]i was to reduce the magnitude (both peak and plateau levels) (Figure 4.7(b)) to

levels (which were approximately half those in control experiment) which were similar

to those seen in K+-induced 45Ca2+ influx studies with GH3 cells (approximately 50%;

Figure 3.3). This effect of PDBu to inhibit K+-induced rises in cytosolic [Ca2+] was

reversed by inclusion of 30 |iM H7, 2 min prior to the start of the recording (Figure

4.5(c)). Furthermore, AA-methyl ester, which is a poor activator of PKC (Seifert et al,

1988) but can release stored Ca2+ pools (Chan and Turk, 1987), raised intracellular

Ca2+ levels to similar levels (approximately 50 nM) seen with 17 (iM AA, but could not

induce any reduction in the high K+-induced rise in cytosolic Ca2+ concentrations,

which plateaued at approximately 800 nM (Figure 4.8(b)). Similarly, in GH3 cells

which had been pre-treated for a prolonged period with 300 nM PDBu to down-

regulate PKC levels (Figure 4.8(c,d)), a rise in [Ca2+]j in response to 17 (tM AA was

still apparent but showed only a small reduction in the response to high K+

(approximately 200 nM rise in [Ca2+]j; Figure 4.8(d)) compared to the response to high

K+ with ethanol alone in PKC down-regulated cells (Figure 4.8(c)). The reasons for

the markedly reduced effect of high K+-concentrations to raise cytosolic calcium

concentrations (and K+-induced 45Ca2+ influx levels) are uncertain. The AA analogue,

AA-methyl ester (17 |iM) in 0.4% ethanol also had no fluorescence artefact at the

wavelength used. The magnitude and temporal pattern of the response to AA-methyl

ester to raise cytosolic calcium levels, was similar to that seen for AA, and therefore

unlike AA, AA-methyl ester is a convenient tool for raising [Ca2+]i levels in GH3 cells

without activating PKC. Thus AA and AA-methyl ester will raise [Ca2+]i in GH3 cells

(and PKC down-regulated GH3 cells), but only AA will markedly reduce any rise in

cytosolic calcium to a subsequent K+-stimulus. The effect of AA to reduce the K+-

induced rise in [Ca2+]i is reversed by H7 and is greatly diminished from PKC-down

regulated GH3 cells. These results are consistent with AA (and AA-methyl ester)
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raising [Ca2+]i independently of PKC activation. In contrast, the activation of PKC by

AA (and PDBu) may be responsible for the inhibition of K+-induced 45Ca2+ influx into

GH3 cells, with AA being able to fully inhibit K+-induced 45Ca2+ into GH3 cells by

utilising both mechanisms. Furthermore, the reduced ability of PKC-down regulated

GH3 cells to respond to a depolarisation stimulus may represent a reduced activity of

the 'L'-type Ca2+ channel (similar to the effect found in the 45Ca2+ influx studies).
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Figure 4.1. Concentration-response data for the inhibition of

depolarisation-induced calcium influx in GH3 cells by fatty acids.

Cells were exposed to 45Ca2+ for 30 s at 37°C and calcium influx was stopped as

described in the Methods section. Cells were preincubated with arachidonic acid (AA,

filled circles), arachidonic acid-methyl ester (AA-methyl ester, open circles), linoleic

acid (square) 300 nM PDBu (open triangle) or with 300 nM PDBu plus 30 pM AA-

methyl ester (closed triangle) for 10 min at 37°C before exposure to 60 mM K+ and

45Ca2+. Values represent means ± SEM, n = 4 - 12. Statistically significant (P <

0.05) inhibition of K+-induced 45Ca2+ influx was achieved by 30 and 100 pM AA,

PDBu alone or PDBu + AA-methyl ester. The concentration-response curve for AA

here is the same as seen in Figure 3.7.
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Figure 4.2. Reversal by H7 but not HA1004 of the inhibition by AA

of depolarisation-induced calcium influx into GH3 cells.

GH3 cells were exposed to 45Ca2+ for 30 s at 37°C and calcium influx was stopped as

described in the Methods section. H7 (filled squares) and HA1004 (open squares)

were added immediately prior to addition of AA (30 |iM), then cells were preincubated

for 10 min at 37°C before exposure to 60 mM K+ and 45Ca2+. Control K+-induced

45Ca2+ influx data in the presence of AA is shown by the circle. Values represent

means ± SEM, n = 8 - 12. Both H7 and HA1004 at 50 |iM had no effect alone on

basal or K+-induced 45Ca2+ influx. The inhibition of K+-induced 45Ca2+ influx due to

AA was significantly reversed by 50 |iM H7 (P < 0.05).
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Figure 4.3. Reversal by staurosporine but not K252a of the

inhibition by AA of depolarisation-induced calcium influx into GH3

cells.

GH3 cells were exposed to 45Ca2+ for 30 s at 37°C and calcium influx was stopped as

described in the Methods section. Staurosporine (filled squares) and K252a (open

squares) were added immediately prior to addition of AA (30 (iM) then cells were

preincubated for 10 min at 37°C before exposure to 60 mM K+ and 45Ca2+. Control

K+-induced 45Ca2+ influx data in the presence of AA is shown by the circle. Values

represent means ± SEM, n = 4 - 8. Both staurosporine and K252a at 300 nM had no

effect alone on basal or K+-induced 45Ca2+ influx. The inhibition of K+-induced

45Ca2+ influx due to AA was significantly reversed by 100 and 300 nM staurosporine

(P < 0.05).
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Figure 4.4. Effect of PKC-down regulation of GH3 cells on

arachidonic acid inhibition of depolarisation-induced calcium influx.

GH3 cells were cultured for 24 h with 300 nM PDBu in dimethyl formamide (0.01%

final volume, filled circles), dimethylformamide alone (open circles) or nothing

(triangles) and then extensively washed by centrifugation and resuspension in 'calcium

uptake medium' (3 x 10 min, 1000 g, 25°C). Arachidonic acid was added 10 min

before a 30 s exposure to 60 mM K+ and 45Ca2+. Values represent means ± SEM, n =

6. The reduction in 45Ca2+ influx caused by AA (30 pM) was significantly attenuated

by prolonged preincubation with PDBu compared to its solvent alone (P < 0.05).
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Figure 4.5. Effect of arachidonic acid on calcium efflux from GH3

cells.

Measurement of 45Ca2+ efflux was performed as described in the Methods section.

Cells were batch-perfused in either the presence (triangles) or absence (filled circles) of

10 |iM NDGA. Arachidonic acid (50 |J.M) in ethanol (or ethanol alone for control,

0.1% (open circles)) was added to the medium from 6-16 min where indicated by the

line. Values represent the means ± SEM, n = 3.



 



Figure 4.6. Effect of arachidonic acid on the cytosolic calcium

concentration in GH3 cells.

Cells were prepared and intracellular Ca2+ levels estimated by Indo-1 fluorescence as

described in section 2.2.5. Arachidonic acid (AA, 17 |iM) in ethanol (b and c) or

ethanol alone (a) were added where indicated by the first (shorter) arrows. Ethanol at

concentrations of up to 0.4% (as used) had no apparent effect on basal or K+-induced

increments in calcium concentrations. At the concentration used, AA produced no

turbidity artefact in fluorescence records made in the absence of cells. At the second

(longer) arrow, KC1 was added to a final concentration of 40 mM. Addition of 40 mM

NaCl rather than KC1 had no effect. Part (a) illustrates a typical response to K+ in the

presence of ethanol, the vehicle for AA (0.4%) which had no effect alone at this

concentration. In (b), AA induced a rise in basal Ca2+ levels and a diminution of the

subsequent response to 40 mM K+. In (c), when 30 |lM H7 had been present from the

start of the record, the AA-induced rise in basal Ca2+ levels was still present, but the

diminution by AA of the response to K+ was reversed. There was no apparent effect of

H7 alone. Staurosporine could not be tested because of the unfavourable fluorescence

spectrum of the compound. Each trace is representative of at least 3 similar results.

The abscissa represents time with each scale bar indicating 1 min.
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Figure 4.7. Effect of PDBu on the cytosolic calcium concentration in

GH3 cells.

Cells were prepared on intracellular Ca2+ levels estimated by Indo-1 fluorescence as

described in section 2.2.5. The effect of 300 nM PDBu (b and c; shorter arrows) or

0.1% dimethylformamide (a; shorter arrow) was assessed on a subsequent stimulus of

40 mM K+ (final concentration; longer arrows). The trace in (c) is similar to that in (b),

except that 30 (iM H7 was present in the cuvette, 2 min prior to the start of the trace.

The scale bar indicates a time of 1 min. 300 nM PDBu dissolved in dimethylformamide

(0.1% final) had no apparent fluorescent artefact in the absence of cells. The results are

representative of three similar experiments.
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Figure 4.8. Effect on the cytosolic calcium concentration of GH3

cells of AA-methyl ester and of AA on PKC down-regulated GH3 cells.

Cells were prepared and intracellular Ca2+ levels estimated by Indo-1 fluorescence as

described in section 2.2.5. Treatment of GH3 cells to down-regulate PKC levels was

as described in section 5.2, with preparation of cells for fluorometric studies as normal

from culture flasks of PKC down-regulated GH3 cells. The effect of 17 |iM AA-

methyl ester (b; shorter arrow) or 0.4% ethanol (a; shorter arrow) on a subsequent 40

mM K+ (a and b; longer arrows) stimulus was investigated on GH3 cells cytosolic

Ca2+ concentration. In GH3 cells that had their PKCs down-regulated by 24 h, 300

nM PDBu (c and d), the effect of 17 p.M AA (d; shorter arrow) or 0.4% ethanol (c;

shorter arrow) on a subsequent 40 mM K+ (c and d; longer arrows) stimulus was also

investigated. The time scale is the same as Figure 4.8. Addition of 17 [iM AA or AA-

methyl ester dissolved in 0.4% ethanol (final concentration) had no apparent

fluorescence artefact in the absence of cells. The traces in (a) and (b) are representative

of three similar experiments, whereas the recordings in (c) and (d) are typical of one

other experiment.
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Table 4.1. Time course of inhibition of depolarisation-induced

calcium influx by arachidonic acid (AA) into GH3 cells.

Values represent means ± SEM, n = 4 - 6. The total 45Ca2+ accumulated in the

presence of 60 mM K+ was typically around 1600 dpm per assay, whereas basal

45Ca2+ accumulation was around 600 dpm, of which non-specific adsorbtion to the

filter and cell surfaces (determined in zero-time blanks) was responsible for around 400

dpm. 45Ca2+ accumulation was measured over 30 s and the incubation times with AA

are inclusive of the 30 s influx measurement period. Incubations were at 37°C and

45Ca2+ influx was stopped as described in the Methods section. Statistically significant

inhibition of K+-induced 45Ca2+ influx occurred with 30, 45 and 90 s AA-incubation

(P< 0.05).



Table4.1

Conditions

45Ca2+accumulation(fmoles/106cells/min)
non-specificadsorbtion(zero-timeblank)

34±2

basal

50±4

basal,100|iMAA(10min)

54±6

60mMK+

120+8

60mMK+,30|iMAA(30s)

86±6

60mMK+30(iMAA(45s)

64±3

60mMK+,30|lMAA(90s)

52±3



Tahle 4.2. Effect of inhibitors of arachidonic acid metabolism on

its inhibition of depolarisation-induced calcium influx.

GH3 cells were exposed to 30 |iM AA alone, or in combination with 10 (iM ETYA, 30

(J.M NDGA, 10 |iM SKF 525A or 30 |iM piperonyl butoxide for 10 min before and

during addition of 60 mM K+ plus 45Ca2+ medium. None of these drugs caused any

significant alteration in the inhibition of K+-induced 45Ca2+ accumulation due to 30 |lM

AA or had any apparent effect on basal K+-induced 45Ca2+ influx alone. Values

represent the means ± SEM, n = 4 - 8.



Table4.2

Drugconcentration

%ofcontrolK+-induced45Ca2+influxremaining
60mMK+mediumalone

100%

+30(lMarachidonicacid

23±9%

+30|iMarachidonicacid+10|iMETYA

23±4%

+30|iMarachidonicacid+30(iMNDGA

35±8%

+30|J.Marachidonicacid+10|iMSKF525A

26±3%

+30|iMarachidonicacid+30(iMpiperonylbutoxide

29±5%



Table 4.3. Effect of inhibitors of calcium extrusion processes on

ability of arachidonic acid to reduce depolarisation-induced calcium

influx into GH3 cells.

GH3 cells were harvested and then resuspended in either normal 'calcium uptake

medium' with or without 1 mM Na3VC>4 or sodium-free 'calcium uptake medium' with

N-methyl d-glucamine replacing sodium (154 mM). Cells were incubated with or

without 100 pM arachidonic acid for 10 min before exposure to 60 mM K+ and 45Ca2+
medium as described in the Methods section. Values represent the means ± SEM,

n = 4. Neither K+-induced 45Ca2+ nor the inhibition of that response by AA were

significantly altered by Na3VC>4 or N-methyl d-glucamine.



Tahle4.3
hO hO

Conditions

%ofcontrolK+-induced45Ca2+influxremaining
60mMK+

100%

60mMK+,N-methyld-glucamine+Na3V04

130±8%

60mMK+100|iMAA

8±6%

60mMK+,100(J.MAA,N-methyld-glucamine

30±6%

60mMK+,100|iMAA,Na3V04

16±2%



Table 4.4. Inability of 8-Br cyclic GMP to mimic arachidonic acid

at inhibiting K+-induced 45Ca2+ influx into GH3 cells.

Measurement of K+-induced 45Ca2+ influx into GH3 cell populations was performed as

described in the Methods section. Various concentrations of 8-Br cyclic GMP were

preincubated (37°C) for 10 min before exposure of the GH3 cells to high (60 mM) K+

and 45Ca2+. The data represent the means ± SEM of 4 determinations.



Table4.4
K>

Treatment

%ofcontrolK+-induced45Ca2+influx
K+(60mM)

100%

+8-BrcyclicGMP(3(iM)

110±6%

+8-BrcyclicGMP(10[iM)

114±4%

+8-BrcyclicGMP(30|lM)

112±8%

+8-BrcyclicGMP(100|iM)

110±11%



Table 4.5. Effect of various agents on 45Ca2+ efflux from GH3

cells.

The increase in rates of efflux over basal, induced by 30 |iM ionomycin, is defined as

100%. Arachidonic acid was dissolved in ethanol, H7 and Na3VC>4 in distilled water,

and all other compounds in dimethylformamide (0.1% final), and 0.1% solvent alone

showed no change in the rate of 45Ca2+ efflux from GH3 cells. Inhibitors were present

for 6 min before exposure of the GH3 cells to AA and the total rise in efflux rates over

each of the remaining fractions (not at a single time point) is used to calculate the efflux

as a % of ionomycin-induced efflux. The data represent means ± SEM of 3

determinations.



Tahle4.5
K)

Addition

45Ca2+Efflux(%ofionomycin-inducedefflux)
ionomycin(30pM)

100%

basal

0%

PDBu(300nM)

2±4%

AA(50pM)

36±3%

AA+Na+-free/N-methyld-glucamine(154mM)

37±4%

AA+Na3V04(1mM)

0±4%

AA+NDGA(10pM)

25±5%

AA+indomethacin(10pM)

35±2%

AA+ETYA(10pM)

33±3%

AA+piperonylbutoxide(10pM)

36±6%

AA+SKF525A(10pM)

33±4%

AA+H7(30pM)

38±2%



Table 4.6. Effect of arachidonic acid on calcium influx into GH3

cells induced by 60 mM K+, N-methyl TRH and ionomycin.

GH3 cell 45Ca2+ influx was measured as described in the Methods section. Cells were

preincubated with 50 pM arachidonic acid 10 min before exposure to either 60 mM

K+-, 1 pM N-methyl TRH- or 30 pM ionomycin-containing 45Ca2+ 'calcium uptake

medium' for 30 s at 37°C. Values represent the means ± SEM, n = 4 - 12. The effect

of AA on the response to K+, but not ionomycin or N-methyl TRH was statistically

significant (P < 0.05).



Table4,6
ho

Stimulus

accumulation (fmoles/lO^cells/min)

%inhibitionofstimulus-evoked
incrementin45ca^+influxby50)iMAA

-AA

+50jiMAA

nil

50±10

49±15

-

60mMKC1

120+18

52±18

97±16%

1fiMN-methylTRH

72±6

66±4

23±11%

30|iMionomycin

230±28

198±19

17±10%



Table 4.7. Effect of N-methyl TRH and ionomycin on the liberation

of [3H]-arachidonic acid from preloaded GH3 cells.

GH3 cells grown on multiwell plates were loaded with [3H]-AA and assayed for [3H]-
AA liberation as described in section 2.2. The amount of [3H]-AA and its metabolites

were detected under basal (<1% dimethylformamide), N-methyl TRH (1 |iM)-

stimulated or ionomycin (30 |iM, dissolved in dimethylformamide)-stimulated

conditions. The levels of ionomycin-induced liberation of both [3H]-AA and [3H]-AA
metabolites were significantly (P < 0.05) raised above basal liberation levels. The data

represent the means ± SEM, with the number of determinations for each result in

parentheses.



Table4,7

[3H]-AAliberated(%ofbasalrelease)
Treatment

[3H]-AA

[3H]-AAmetabolites

basal

100%

100%

(12)

(12)

N-methylTRH(1|iM)

138±24%

110±15%

(11)

(11)

ionomycin(30(iM)

195±29%

151±21%

(8)

(9)



4.4. Discussion

Arachidonic acid and its metabolites have a wide range of biological actions

(see section 1.2.4). One such action of arachidonic acid and some of its metabolites is

to activate PKC. An initial report by McPhail et al (1985) showed that AA could

activate PKC, and implied a function for AA in signal transduction mechanisms which

involved PKC enzyme activity. This initial report was supported by others who found

that AA and certain of its metabolites could also activate partially-purified PKC from

brain (Murakami and Routtenberg, 1985; Murakami et al, 1986; Seifert et al, 1988).

However more information has recently been provided with respect to highly-purified

isoforms of PKC and the extent to which each of these isoforms (or at least the A series

which are the only series investigated so far) is activated by AA (Sekiguchi et al, 1987;

Naor et al, 1988a; Shearman et al, 1989a; Sekiguchi et al, 1988; Burns et al, 1990;

Shinomura et al, 1991). Although slight differences exist between these reports, it is

the general consensus that AA more potently activates y-PKC than a- or B-PKC and its

activation of y-PKC is biphasic (greatest activation at around 12 pM AA) in the absence

or presence of Ca2+ ions. Activation of a- and G-PKC by AA is reported to be

concentration-dependent and occurs only in the presence of Ca2+ ions. The a-isoform

of PKC is generally better activated by AA than the B-isoform. All of these studies

were carried out on partially purified PKCs and to our knowledge, no physiological

correlate of AA activation of PKC has been shown, although the importance of such an

event has been anticipated (Nishizuka, 1988; Shinomura etal, 1991).

Arachidonic acid has no clear effect on K-induced 45Ca2+ influx into rat

anterior pituitary pieces but fully inhibited K+-induced 45Ca2+ influx into GH3 cells

(see Figure 3.7). Since AA is known to selectively activate certain PKC isoforms (as

described above) and an enhancement and inhibition of 'L'-channel function in anterior

pituitary prisms and GH3 cells respectively could indicate the involvement of distinct

forms of PKC, AA might be selectively activating those isoforms which predominate in
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GH3 cells, and are involved in an inhibition of 'L'-type Ca2+ channel activity rather

than PKC-mediated enhancement of 'L'-channel activity, as is usually seen in anterior

pituitary prisms. However, unlike PDBu which only produces a maximal inhibition of

K+-induced 45Ca2+ influx of around 50% (see Figure 3.3), AA can fully inhibit K+-

induced 45Ca2+ influx. The involvement of PKC in the AA-induced inhibition of

45Ca2+ influx into GH3 cells was investigated in this chapter as was the mechanism by

which AA can modulate K+-induced 45Ca2+ influx into GH3 cells in a manner which

was greater than the maximal inhibition of K+-induced 45Ca2+ influx into GH3 cells

produced by PDBu.

Arachidonic acid has been reported to activate guanylate cyclase and

therefore increase cellular cyclic GMP levels (Glass et al, 1977). Raised cyclic GMP

levels would activate cyclic GMP-dependent protein kinases which could enhance

efflux mechanisms and therefore could account for the reduction in apparent 45Ca2+
influx which is caused by AA. However, incubation of GH3 cells with the cell-

permeable analogue of cyclic GMP, 8-Bromo-cyclic GMP, had no effect up to 100 jiM

on the K+-induced influx of 45Ca2+ (Table 4.4). Therefore, the mechanism by which

AA fully inhibits K+-induced 45Ca2+ influx into GH3 cells is probably not activation of

guanylate cyclase. It has been reported that AA (and some of its metabolites can inhibit

Ca2+/calmodulin-dependent kinase II (Piomelli et al, 1989) which perhaps accounts for

the mechanism of AA in pituitary cells. However the lack of effect of calmodulin

antagonists on K+-induced 45Ca2+ influx in anterior pituitary pieces (Johnson et al,

1990) and also in GH3 cells (R Mitchell, unpublished observations) suggest that any

such action does not contribute in a significant way to the inhibition of influx caused by

AA here. The AA-induced inhibition of K+-stimulated 45Ca2+ influx into GH3 cells

was reversed by the PKC inhibitors H7 and staurosporine, but not by their control

analogues HA 1004 and K252a respectively (see Figures 4.2 and 4.3). The

pharmacology of the reversal of AA-induced inhibition (where the AA-induced

response can be almost fully reversed by the PKC inhibitors), indicates a critical
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involvement of PKC in the full inhibition of K+-induced 45Ca2+ entry seen with AA

(ie, the inhibition of calcium entry occurs almost exclusively by a PKC-mediated

process and not a process induced by AA which is additional to PKC activation). The

protocol used here to down-regulate PKC levels has been previously shown by

Ballester and Rosen (1985) to reduce PKC levels and PKC-mediated responses.

Prolonged treatment of GH3 cells with PDBu in order to down-regulate PKC levels

resulted in a marked reduction in KMnduced 45Ca2+ influx. This reduction in 'L'-type

Ca2+ channel function implicates a role for PKC in maintaining the 'L'-channel in a

fully active state and these implications require further investigation. In GH3 cells

which had been so treated to down-regulate PKC, the critical involvement of PKC in

the AA-induced 45Ca2+ influx was again seen (see Figure 4.4), although again AA-

mediated inhibition of K+-induced 45Ca2+ influx was still possible but with greatly

reduced potency. This may be due to appreciable amounts of activatable PKC still

being present after the PKC down-regulation process or may be due to the reduction of

K+-induced 45Ca2+ influx by AA occurring through a process which is in some part

independent of PKC activation. The latter possibility may be less convincing, as AA-

inhibition of K+-induced 45Ca2+ influx into GH3 cells is fully reversed by PKC

inhibitors (but not by their control analogues (see above)); furthermore, our present

protocol would not deplete all PKC from GH3 cells but only reduce PKC levels and its

actions (Ballester and Rosen, 1985). Agents with some structural similarity to AA such

as linoleic acid and AA-methyl ester, are rather poorer activators of PKC, than AA

(Seifert et al, 1988). The structurally-related compounds could not appreciably mimic

AA at inhibiting K+-induced 45Ca2+ influx (see Figure 4.1) further suggesting an effect

of AA on PKC in GH3 cells. The temporal pattern of the AA-induced inhibition of K+-

stimulated 45Ca2+ influx is not dissimilar to the temporal pattern seen with the PDBu-

induced inhibition of K+-stimulated 45Ca2+ influx into GH3 cells. Likewise, the

potencies for reversal by H7 and staurosporine of the effect of PDBu and AA match,

again suggesting a role for PKC in the AA-response.
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Inhibitors of AA metabolism were without effect on the AA-response (Table

4.2) indicating that it may be AA itself and not a metabolite which is responsible for the

inhibition of K+-induced 45Ca2+ influx seen, although the specific involvement of

metabolic products of AA cannot be ruled out on the basis of a few of metabolic

inhibitors. Inhibitors of Ca2+-extrusion processes were also without effect on the AA-

response (Figure 4.3); with the slight apparent reversal of the AA-inhibition of K+-

induced 45Ca2+ influx seen with N-methyl-d-glucamine and Na3VC>4 probably

reflecting a slowing in the extrusion of the radioactive calcium, which was also seen

with the inhibitors in the absence of AA (Table 4.3). Therefore, the reduction of K+-

induced 45Ca2+ influx seen with AA in GH3 cells cannot simply be due to an

enhancement of extrusion processes (or at least those investigated here) by AA in

addition to the inhibition of 'L'-channel activity.

45Ca2+ efflux studies are a method for investigating the rate by which

calcium is extruded (against its concentration gradient) from pre-loaded cells and is a

useful method which can complement studies in which the entry of radioactive calcium

under certain conditions is also assessed. Together, 45Ca2+ influx and efflux studies

provide a good overall picture of the calcium-flux mechanisms which occur in GH3

cells but both have their disadvantages in that they require incubations with high

specific activities of 45Ca2+. Efflux studies are further hindered by the need for rather

lengthy incubation times to allow sufficient labelling of exchanging intracellular calcium

stores which can be deleterious to the viability of the tissue investigated. A

methodology which has been developed more recently than radioactive ion flux

measurements is the assessment of cytosolic calcium concentrations by use of newly-

developed fluorescent Ca2+-indication dyes such as Fura-2 and Indo-1. Both dyes are

more powerful tools for investigating calcium-handling mechanism than their

predecessor dye, Quin-2, and for reasons explained in section 2.2.5, Indo-1 was the

preferred dye for use in GH3 cells.
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In the fluorimetric studies, AA raised basal cytosolic calcium concentrations

in GH3 cells. This finding was matched by the 45Ca2+ efflux studies in GH3 cells, in

which AA induced an increase in the rate of preloaded 45Ca2+ extruded from the cell.

Presumably, the increased rate of calcium efflux reflects the rise in cytosolic calcium,

which is seen in the fluorimetric studies, and the calcium extruded is simply the

buffering mechanisms of the cells, extruding the raised concentration of calcium (some

of which is radioactive). The effect of 50 pM AA on 45Ca2+ efflux from GH3 cells

was to induce a increased rate of calcium efflux which was considerably less (about

36%) than the calcium efflux induced by 100 pM of the calcium ionophore ionomycin

(see Figure 4.5 and Table 4.5), suggesting that AA acts to mobilise calcium from a

distinct subset of stores within GH3 cells. The efflux response to AA was completely

prevented by Na3VC>4 (Table 4.5), which is known to block Ca2+-ATPase enzyme

activity (DiPolo et al, 1979). The efflux response to AA was unaffected by Na+-

replacement with N-methyl-d-glucamine which blocks Na+/Ca2+ exchanger

mechanisms (Gill et al, 1981). Thus, the efflux of 45Ca2+ induced by AA appears to

be extruded specifically by Ca2+-ATPase activity and not through a Na+/Ca2+

exchanger mechanism of calcium extrusion. The AA-induced rise in 45Ca2+ efflux

rates was not blocked by inhibitors of its metabolism suggesting that it may be AA itself

and not a metabolite which is responsible for the increased calcium efflux. The

metabolic inhibitor, NDGA which inhibits both cyclo-oxygenase and lipogenase

metabolic pathways, slightly inhibited the response to AA. However, the significance

of this effect of NDGA was always in question as the inhibition is seen only at one time

point and other cyclo-oxygenase and lipogenase inhibitors, indomethacin and ETYA

respectively, were without effect. The effect of AA to raise 45Ca2+ efflux rates from

GH3 cells appears to be independent of AA's ability to activate PKC, as PDBu was

unable to mimic AA at inducing 45Ca2+ efflux. The response to AA was also

unaffected by incubation of the cells with the PKC inhibitor H7, again suggesting the

lack of PKC (or other kinases) in the AA-induced 45Ca2+ efflux in GH3 cells.
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Similarly, in the cytosolic calcium concentration measurements, PDBu could not raise

basal cytosolic calcium concentrations in GH3 cells. Curiously, in the related cell line,

GH4C1, Albert et al (1987) found that phorbol esters could raise cytosolic calcium

levels, but the reasons for this discrepancy between GH3 and GH4C1 cells are

unknown. Both AA and AA-methyl ester were able to raise cytosolic calcium levels

(see Figures 4.6 and 4.7) which is in agreement with other work in which Chan and

Turk (1987) demonstrated that these fatty acids could release intracellular calcium

stores. Prior addition of AA (but not AA-methyl ester) caused a diminution of the rise

in calcium concentrations subsequently induced by 40 mM K+ (not 60 mM as in influx

studies due to a high stock concentration being necessary for fluorimetric studies).

This reduction by AA (but not AA-methyl ester) of K+-induced calcium influx, matches

the 45Ca2+ influx studies (Figure 4.1). It appears that, as discussed earlier, the

reduction in calcium channel influx in response to depolarising-concentrations of K+, is

dependent on PKC, as the AA-induced reduction in K+-evoked raised cytosolic calcium

concentrations can be reversed by the PKC inhibitor H7 (see Figure 4.6). Incubation

of GH3 cells with PDBu will also reduce K+-induced increases in cytosolic calcium,

which can again be reversed by H7 (Figure 4.7), but AA-methyl ester (although raising

cytosolic calcium to similar levels as AA)does not influence subsequent K+-induced

rises in cytosolic calcium (Figure 4.7). In accordance with this, GH3 cells which had

PKC levels down-regulated by prolonged PDBu treatment were still able to show rises

in basal cytosolic calcium concentrations with AA and AA-methyl ester, but no

diminution in the subsequent K+-response. This is supportive of the contention that

AA and AA-methyl ester raise cytosolic Ca2+ independent of PKC function, but that the

AA-induced reduction in K+-evoked increases in cytosolic calcium concentration may

involve activation of PKC. The pharmacological differences seen here with (AA and

AA-methyl ester match the differences in ability of these fatty acids to activate PKC

with AA-methyl ester being inactive (Seifert et al, 1988)).
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It therefore appears that AA is having at least two actions in GH3 cells: (i)

an ability to activate the PKC isoforms which are responsible for reducing 'L'-channel

activity (at least a- and B-isoforms, as discussed in section 3.4), and (ii) the ability of

AA to raise cytosolic calcium levels. Activation of PKC can be achieved by PDBu but

not AA-methyl ester, and raising cytosolic calcium concentrations can be achieved by

AA-methyl ester but not PDBu. Arachidonic acid can achieve both PKC activation and

raise cytosolic calcium levels. It appears that these two actions of AA are responsible

for the full inhibition of K+-induced 45Ca2+ influx, as pre-incubation of GH3 cells with

both PDBu and AA-methyl ester (at concentrations which do not induce full inhibition

individually) resulted in the full inhibition of K+-induced 45Ca2+ influx, thus fully

mimicking the response of the cells to AA (see Figure 4.1). In conclusion, it appears

that AA fully inhibits K+-induced 45Ca2+ influx into GH3 by its ability both to activate

the PKC isoforms mediating the reduction in calcium influx and by raising cytosolic

calcium concentrations. As the isoforms responsible for a reduction in 'L'-channel

activity are possibly the a- and B-isoforms, then the ability of AA to increase cytosolic

calcium ion concentrations in addition to activating a- and B-PKC may lead to a- and

B-PKC (which are Ca2+-dependent with respect to their activation) somehow becoming

more active with AA than with PDBu. Treatment of GH3 cells with PDBu does not

raise cytosolic calcium concentrations, therefore the a- and B-isoforms of PKC will be

activated by PDBu under conditions of basal Ca2+. However, given sufficient

concentrations of the activator, basal cytosolic Ca2+ concentrations (in the order of 1 -

200 nM) may still be enough to maximally activate the a- and B-isoforms of PKC and

lead to their full activity (and perhaps a complete reduction in 'L'-channel activity as

occurs with AA). For these reasons, a PKC activity assay was developed in which the

activity of the enzyme was assessed under conditions of zero Ca2+/EGTA (which is

physiologically irrelevant), basal cytosolic Ca2+ concentrations (100 nM free Ca2+) or

stimulated cytosolic Ca2+ concentrations (100 pM free Ca2+) (see section 6.2). The

results indicate that PDBu-induced activity of PKC(s) from midbrain for any set
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concentration of PDBu (eg, 300 nM) with basal cytosolic Ca2+ levels is considerably

greater than the appropriate PKC activity in the presence of excess EGTA. Therefore,

more physiologically-relevant information may be derived from assessing PKC activity

at basal in vivo calcium concentrations rather than comparing the activity of the enzyme

in excess EGTA conditions. Although basal calcium concentrations can induce enzyme

activity with 300 nM PDBu, raised calcium concentrations elicit larger amounts of PKC

activity with 300 nM PDBu which is consistent with AA being able to raise cytosolic

Ca2+ concentrations and fully activate the PKCs which inhibit 'L'-channel function

whereas PDBu alone can produce only a 50% maximal inhibition. Another factor which

may contribute to the full inhibition of 'L'-channel influx seen with AA and not PDBu,

is that AA may be more selectively activating the isoforms of PKC which induce an

inhibition of 'L'-type Ca2+ channel activity rather than activating the isoform(s) of PKC

which results in enhanced 'L'-type Ca2+ channel activity, as is usually seen in anterior

pituitary prisms (but not markedly with AA, see Figure 3.7).

The activation of PKC by AA resulting in a reduced 'L'-type Ca2+ channel

activity may be a process of physiological relevance. Although not statistically

significant, stimulation of GH3 cells with N-methyl TRH caused a release of [3H]-AA

(previously incorporated into GH3 cell phospholipids) to be liberated into the bathing

medium (see Table 4.7). Metabolites of AA could also be detected in the medium.

Thus, N-methyl TRH may induce the generation of AA in GH3 cells. N-methyl TRH-

induced AA production might serve as a negative feedback mechanism by which the

amount of Ca2+ influx is restricted once TRH receptors are activated. Activation of

PKC is already known to reduce the TRH-induced influx of Ca2+ (Drummond, 1985)

and since it has been recently reported that AA and diacylglycerol can synergise

together to activate PKC (Shinomura et al, 1991) a functional role for AA to reduce

Ca2+ influx (and enhance other PKC-directed events) seems more probable. The effect

of the AA-activated PKC seems to be restricted mostly to 'L'-type Ca2+ channel influx,

as AA only fully blocks K+-stimulated 45Ca2+ influx, but not ionomycin- or N-methyl
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TRH-stimulated influx (see Table 4.6). The ineffectiveness of AA on ionomycin-

induced 45Ca2+ influx into GH3 cells indicates that the AA effect is not mediated by

enhanced Ca2+ efflux mechanisms (as discussed above) whereas the slight reduction in

total N-methyl TRH-induced 45Ca2+ influx may simply reflect the minor amount of

TRH receptor-induced influx of calcium which may occur through 'L'-type Ca2+
channels (Mitchell et al, 1989). In this way, mechanisms may act to exert a significant

amount of selectivity between different receptor-mediated responses, and result in a

'fine-tuning' of cellular function.
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CHAPTER 5

Attempts to characterise phorbol

dibutyrate-binding to distinct protein

kinase C isoforms



5.1. Introduction

1,2-Diacylglycerols are one of the endogenous activators of protein kinase

C (PKC), whereas arachidonic acid (AA) is another more recently discovered

endogenous activator of PKC (Nishizuka, 1988). The mechanism by which 1,2-

diacylglycerols activate PKC is to bind to a specific binding site which is found on the

enzyme. This 1,2-diacylglycerol-binding site is also the site on the enzyme for the

interaction of the phorbol ester class of tumour promoters (Blumberg, 1988). Phorbol

esters, such as phorbol 12,13-dibutyrate (PDBu) can bind with high affinity and

specificity to PKC, and its binding to PKC is competitive with 1^-diacyl-sw-glycerols

(Nishizuka, 1984; Blumberg, 1988). More lipophilic phorbol esters such as phorbol

12-myristate 13-acetate (PMA) may be more potent at activating PKC than other less

lipophilic analogues such as PDBu, but they also display more non-specific interactions

with cell components other than PKC (eg, membranes (Blumberg, 1988)). For this

reason, PDBu is the phorbol ester of choice in our studies.

Radioisotope-labelled PDBu is now the most commonly used radioligand

for PKC-binding studies. For example, work in Blumberg's laboratories has

extensively characterised [3H]-PDBu binding to PKC. Some structural similarity

between the 12- and 13-positions of phorbol esters and the 1- and 2-positions of 1,2-

diacyl-sn-glycerols could account for a similar mechanism of action between both lipids

(Nishizuka, 1984), however, the exact sites of structural similarity between 1,2-

diacylglycerols and phorbol esters is not certain (Gschwendt et al, 1991). The

mechanism by which 1,2-diacylglycerols displace [3H]-PDBu binding was assessed to

be of a competitive mechanism, and not one simply of 1,2-diacylglycerols simply

perturbing the lipid environment that was required by binding activity (Sharkey and

Blumberg, 1985). The stoichiometry of the co-factor-requirements of PKC in vivo

was discerned by Bell and colleagues to be one Ca2+ ion to one diacylglycerol or

phorbol ester molecule to 4 - 10 phosphatidylserine molecules for every molecule of
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monomeric PKC (Hannun et al, 1986; Ganong et al, 1986; Hannun and Bell, 1990).

The mechanism by which AA interacts with PKC is less certain. The interaction of AA

with PKC has been suggested to be both competitive with 1,2-diacylglycerols (Leach

and Blumberg, 1985), partly competitive with 1,2-diacylglycerols (Sharkey and

Blumberg, 1985) or competitive with phosphatidylserine, not 1,2-diacylglycerols

(Murakami and Routtenberg, 1985). Preparations of cell membranes were for a time

the only available method to study PKC, as specific [3H]-PDBu binding to cytosolic

tissue was always low. In 1983, Leach et al described a method of presenting

phosphatidylserine vesicles to cytosolic PKC, which enabled marked specific

[3H]-PDBu binding to occur. It was, therefore, necessary for PKC to be surrounded

by a phospholipid environment in order for its ability to specifically bind phorbol esters

(and presumably 1,2-diacylglycerols).

In this chapter, we have adopted the methodology of Leach et al (1983) to

investigate the interaction of PKC with the putative PKC isoform-selective agents

which were investigated on K+-induced 45Ca2+ influx into rat anterior pituitary and

gh3 cells (Chapter 3).

5.2. Specific methodology

Specific [3H]-PDBu to membranous and cytosolic PKC was performed as

described in section 2.2.7, with the exception of studies on the Ca2+-dependency of

[3H]-PDBu binding in Table 5.3 and Figure 5.13, which were as follows. Cytosol

was prepared by homogenisation of tissue in 2 vol of ice-cold 'Kuo' homogenisation

buffer (20 mM Tris HC1 (pH 7.5), 50 mM 20-mercaptoethanol, 2 mM EDTA plus 1

mM phenylmethylsulfonyl fluoride). The homogenate was then spun (16,000 g, 20

min, 4°C). The pellet was discarded and the supernatant was spun again (16,000 g, 5

min, 4°C). The supernatant from the second spin was considered as cytosol and stored

on ice. Cytosolic [3H]-PDBu binding was assessed in the presence of 300 |ig/ml

(final) phosphatidylserine micelles reconstituted in 20 mM Tris HC1 (pH 7.5)
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supplemented with 0.5 mg/ml bovine serum albumin (essential fatty acid-free) and 5

nM [3H]-PDBu (approximately 0.03 jiCi/tube). Assay tubes were supplemented with

either 1 mM CaCl2 or 5 mM EGTA (final concentrations). In some assay tubes, DTPA

(0.5 mM final) may have been additionally present with the Ca2+ or EGTA. Total and

non-specific binding was determined in the presence of dimethylformamide (1% final)

alone or in the presence of 20 JJ.M PDBu dissolved in dimethylformamide respectively.

The cytosol (25 |il) was added to the tubes (final volume 250 |il) which were then

capped, vortexed and incubated for 30 min at 37°C. Precipitation of cytosolic proteins

with bovine -y-globulin and polyethylene glycol 8,000, centrifugation and aspiration

was performed as described in the Methods section (2.2.7), which accounts the usual

specific cytosolic [3H]-PDBu methodology. This method of [3H]-PDBu binding,

which attempted to determine the Ca2+-dependency of specific [3H]-PDBu binding to

PKC, was termed the 'Kuo' method of [3H]-PDBu binding.

Phosphatidylserine was dissolved in chloroform, dried under a stream of

N2 and reconstituted into the appropriate buffer using a Ystral high frequency

homogeniser (3 x 30 s, setting 3). Various compounds were added to the assay

dissolved in dimethylformamide (<1% final) unless otherwise indicated (H7 was

added to the assay dissolved in distilled water). Compounds such as arachidonic acid

and long acyl chain diglycerides were added to the assay with phosphatidylserine in the

mixed micellar method described in section 2.2.7.

5.3. Results

Effects of phorbol ester-analogues on [3H]-PDBu binding

Rat lung, frontal cerebral cortex and cerebellum are reported to be tissues

relatively enriched in a-,13- and y-PKC respectively (73, 63 and 52% of PKC isoform-

content (Shearman et al, 1988)). In an attempt to characterise any pharmacological

differences of various compounds at this binding site, the binding of [3H]-PDBu in the

three tissues was used to estimate the properties of a, 6 and y isoforms of PKC, and
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the effects of a number of activators of PKC on the specific [3H]-PDBu binding was so

investigated. Initial experiments were carried out measuring specific binding of [3H]-
PDBu in membranes from male rat frontal cerebral cortex and cerebellum. In these

tissues, specific [3H]-PDBu binding was displaced by PDBu (1 to 200 nM) in a

concentration-dependent manner, resulting in calculated IC50 = 22 ± 2 and 19 ± 4 nM

respectively (n = 3; Figure 5.2). In view of the interesting results in the 45Ca2+ influx

studies with anterior pituitary and GH3 cells and of their possible PKC isoform-

selective nature, the effect of mezerein and MPMA were investigated on [3H]-PDBu

binding in frontal cerebral cortex and lung membranes. The compounds displaced

specific [3H]-PDBu in a concentration-dependent manner giving IC50 concentrations of

8.7 ± 1.3 and 207 ± 10 nM respectively in frontal cerebral cortex (n = 3). Therefore,

these phorboid analogues displaced PDBu binding to PKC in frontal cerebral cortex

membranes, as expected, because of their structural similarities. Specific binding of

[3H]-PDBu binding to rat lung membrane was too low to determine accurately a

binding displacement value for PDBu (n = 3), therefore, liver and spleen (tissue

enriched in a-(69%) and 6-(67%)PKC) membranes were tested, but specific

[3H]-PDBu binding to the membrane fractions of these membraneous tissues was also

too low (n = 3; Figure 5.1) to be of analytical use. It was at this point that all

experimental efforts for investigating PDBu binding were transferred to studies on

specific [3H]-PDBu binding from the cytosol of various tissues with known PKC-

isoform content (Shearman et al, 1988). The move was successful, as not only was

there signal available from frontal cerebral cortex and cerebellum cytosols, but

sufficient specific [3H]-PDBu was accessible in lung cytosol (Figure 5.3), although

higher tissue concentrations of lung cytosol were required. Specific [3H]-PDBu

binding in lung, frontal cerebral cortex and cerebellum cytosols was displaced by PDBu

(1 - 200 nM) in a concentration-dependent fashion with similar potencies for all three

tissues (IC50 = 6 ± 1, 5 ± 2 and 7 ± 1 nM respectively, n = 4) indicating that the

sensitivity to PDBu in all three preparations was similar, potent and of the same
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potency reported previously (Leach et al, 1985). Again, the phorbol ester analogues,

mezerein and DPB (which showed interesting profiles of modulation in the anterior

pituitary and GH3 cell 45Ca2+ influx studies) were investigated. In cytosol from male

rat frontal cerebral cortex and lung, mezerein displaced specific [3H]-PDBu with very

high potency (IC50 = 0.6 ±0.1 and 0.7 ±0.1 nM respectively (n = 4)). As was seen

with PDBu, mezerein was more potent at displacing [3H]-PDBu binding in cytosolic

than membrane fractions and therefore the shift in sensitivity to the agents is probably

due to the altered assay conditions. No difference in affinity for PDBu binding

displacement existed between frontal cerebral cortex and lung cytosol with either PDBu

or mezerein. The similar affinities of mezerein in the [3Hj-PDBu binding displacement

experiments in the two tissues tested could be due to several factors: (i) that the PKCs

present in the two cytosols have no difference in affinity towards mezerein (or, indeed,

PDBu) and that mezerein may possess altered efficacy towards some PKC-isoforms;

(ii) the PKC(s) which are responsible for the mezerein-action in anterior pituitary cells

are not present in frontal cerebral cortex and lung cytosols or (iii) the mezerein activity

in anterior pituitary cells 45Ca2+ influx studies, is not caused by different PKC-

isoforms. For these reasons, any assessment of the possible PKC isoform-selectivity

of mezerein would be better served by investigation in a PKC activity assay. The

affinity of DPB was higher in lung cytosol than in frontal cerebral cortex cytosol

(IC5CP 15 ± 1 and 44 ± 2 nM respectively (n = 6)). Thus a more DPB-sensitive PKC

isoform(s) may be present in lung cytosol than in frontal cerebral cortex. However,

mezerein showed a similar profile to DPB in 45Ca2+ influx studies. As mezerein

showed no difference in sensitivity in the binding studies and DPB was less promising

than mezerein at being PKC isoform-selective in the 45Ca2+ influx studies, further

investigation of DPB on displacement of specific [3H]-PDBu binding was abandoned.
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Effect of a variety of protein kinase C activators and inhibitors on

[3H]-PDBu binding in rat frontal cerebral cortex, cerebellum and lung

cytosol preparations

As certain lipid activators of PKC were shown to be PKC isoform-selective

in the 45Ca2+ influx and [3H]-PDBu binding studies, the effects of various other PKC

activators and inhibitors were investigated on cytosol from lung, frontal cerebral cortex

and cerebellum (regions enriched in a-, 6- and y-PKC respectively) to assess whether

any were acting in a PKC isoform-selective manner. The PKC inhibitor gossypol

(Nakadate et al, 1988) (10 - 250 pM) caused a concentration-dependent displacement of

specific cytosolic [3H]-PDBu binding in rat frontal cerebral cortex, cerebellum and lung

cytosols with IC50S of 120 ± 12, 131 ± 12 and 150 ± 27 pM respectively (n = 3;

Figure 5.5). In rat lung, frontal cerebral cortex and cerebellum cytosols, the inhibitor

sphingosine (Nakadate et al, 1988, 10 - 250 pM) displaced phorbol ester binding in a

concentration-dependent manner, with IC50 values of 206 ±21, 180 + 8 and 192 + 7

pM respectively (n = 4; Figure 5.5). The active isomer of the PKC activator

(-)-indolactam-V (Fujiki et al, 1984) at concentrations of 3 - 100 pM in lung, frontal

cerebral cortex and cerebellum cytosols, displaced specific cytosolic [3H]-PDBu

binding to 20 ± 1, 24 ± 1, 20 ± 1% of control specific binding by 100 pM

(-)-indolactam-V, with IC50S = 0.2 ± 0.1, 0.2 ±0.1 and 0.4 ± 0.2 pM respectively (n

= 3; Figure 5.5). The (+) isomer of indolactam-V is the inactive enantiomer of the

PKC activator. (+)-Indolactam-V from 3-100 pM could not produce 50%

displacement of specific binding even at the highest concentration used. In lung,

frontal cerebral cortex and cerebellum cytosols, (+)-indolactam-V at 100 pM inhibited

specific [3H]-PDBu binding to 91 ± 5, 97 ± 8 and 87 ± 10% of total binding

respectively (n = 3; Figure 5.5). Therefore, the above PKC modulators do indeed

seem to be directing their action towards the [3H]-PDBu binding site on PKC, but none

of them seem to be displaying any PKC isoform-selective characteristics in the tissues
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tested here. A purported PKC inhibitor, Cremaphor EL (Zhao et at, 1989), at dilutions

of 10~4 to 1()~7 in dimethylformamide had little effect on cytosolic binding in frontal

cerebral cortex, cerebellum and lung 90 ± 3, 94 ± 2 and 114 ± 5 of control specific

[3H]-PDBu binding levels at 10-4 dilution respectively (n = 3). l-0-Hexadecyl-2-0-

methyl-rac-glycerol (AMG-C16) is a diacylglycerol analogue which is reported to have

PKC inhibitory actions (Kramer et al, 1989). In view of the PKC isoform-selective

nature of the diacylglycerol, DOG, we investigated AMG-C16 to see if it acted as a

PKC isoform-selective inhibitor. From 10 - 300 pM, AMG-C16 had a slight

potentiatory effect on [^HJ-PDBu binding in lung and frontal cerebral cortex cytosols.

At 300 pM AMG-C16, specific I^HJ-PDBu binding in lung, frontal cerebral cortex and

cerebellum cytosol was 111 ±8, 120 ± 7 and 95 ± 8% of control specific binding

levels respectively (n = 3; Figure 5.4). The potentiatory effect of AMG-C16 was more

evident in conditions of reduced (Vioth) phosphatidylserine in the micelles (from 1

mg/ml to 100 pg/ml). Under those conditions, AMG-C16 (10 - 100 pM) caused a

concentration-dependent increase in specific l3H]-PDBu binding to cytosol from lung,

frontal cerebral cortex and cerebellum cytosols, reaching levels of 196 + 6, 210 ± 25

and 181 ± 14% (n = 3; Figure 5.4(b)) of total specific binding levels with 100 pM

AMG-C16 present. In the case of lung cytosol, 300 pM AMG-C16 continued to

concentration-dependently enhance binding to levels of 245 ± 25% (n = 3) of control

specific binding, whereas, in frontal cerebral cortex and cerebellum cytosol, 300 pM

AMG-C16 started to displace the enhanced phorbol binding to levels of 205 ±11 and

173 ± 21% (n = 3) of control specific ^H-PDBu binding levels. Therefore, AMG-C16

seems to have a complex dual effect on cytosolic [^HJ-PDBu binding, with it being able

to replace the role of phosphatidylserine in allowing cytosolic [3H]-PDBu binding to

occur; and displacing [3H]-PDBu binding at higher concentrations. The latter

observation is expected because of the structural analogy to diacylglycerols, however

the displacement occurred in frontal cerebral cortex and cerebellum cytosols only and

was not apparent in lung. This apparently tissue-specific effect may not be due to any
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PKC isoform-selective influence, but simply that PKC from lung cytosol is more

susceptible than frontal cerebral cortex and cerebellum cytosols to lipid enhancement of

[3HJ-PDBu binding in the absence of phosphatidylserine (as seen with AA later in this

section). 6-(N-decylamino)-4-hydroxymethylindole (DHI) is another reported PKC

activator (Wender et al, 1988) which is designed around the presumed active

configuration with diacylglycerols and phorbol esters. However, DHI from 20 - 600

pM only slightly displaced specific [3H]-PDBu binding in a concentration-dependent

fashion in lung, frontal cerebral cortex and cerebellum cytosols, where 600 pM DHI

produced specific binding levels of 101 ± 4, 92 ± 9 and 94 +11% of control specific

binding levels respectively (n = 3; Figure 5.4). The PKC inhibitors H7 (Hidaka et al,

1984) and staurosporine (Kase et al, 1987) were unable to displace specific [3H]-PDBu

binding (Figure 5.4). Both H7 (3 - 100 pM) and staurosporine (0.1-3 pM) could not

displace specific cytosolic PDBu binding in lung cytosol (102 ± 9 and 94 ± 6%),

frontal cerebral cortex cytosol (92 ± 5 and 102 ± 4%) or cerebellum cytosol (94 ± 7 and

99 ± 4% respectively at 100 pM H7 and 3 pM staurosporine (n = 3)). These results

are not surprising, as both H7 and staurosporine are thought to interact with PKC, not

at its [3H]-PDBu binding site, but near to its ATP-binding site in the catalytic domain of

the enzyme (Huang, 1989).

In summary, although there are a number of PKC activators and inhibitors

which are reported to interact with specific [^H]-PDBu binding sites, none of the

inhibitors show any obvious isoform-selectivity on the binding studies here. As H7 is

known to have actions which may be PKC isoform-selective, and no influence of H7

could be seen in the PDBu binding studies, then a PKC activity assay would perhaps

be more fruitful in revealing any PKC isoform-selective agents.
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Effect of diacylglycerol analogues on [3H]-PDBu binding in rat frontal

cerebral cortex, cerebellum and lung cytosol preparations

In the 4<5Ca2+ influx studies into anterior pituitary pieces and GH3 cells,

1,2-dioctanoyl-sn-glycerol mimicked PDBu at enhancing K+-induced influx into

anterior pituitary pieces but was ineffective at mimicking the action of PDBu in GH3

cells. In order to assess any selective nature of DOG, the affinity of DOG to displace

specific [3H]-PDBu binding from cytosols with known PKC isoform-content was

investigated. The sn-1,2-entantiomers of diacylglycerols are able to activate PKC (see

section 1.2.1) with the sn-2,3- and 1,3-configurations being inactive. The sn-

configuration is a system of characterisation of diglyceride analogues which

stereospecifically numbers the acyl chains joined to a glycerol backbone (IUPAC-IUB

Commission on Biochemical Nomenclature (1978) J Lipid Res 19: 114-128), enabling

a differentiation of stereoisomers (1,2-sn being the mirror-image of 2,3-sn). The rac-

designation signifies that both stereoisomers are present in equal amounts (X-denoting

an undefined stereoisomer). Both 1,2-dioctanoyl-s/i-glycerol (DOG) and 1,2-

dioctanoyl-rac-glycerol throughout the concentration range 0.5 - 500 (iM displaced

specific [3H]-PDBu binding in frontal cerebral cortex, cerebellum and lung cytosols

(Figure 5.7). Little difference could be seen when comparing the affinity of PDBu-

displacement by l,2-dioctanoyl-j'«-glycerol and 1,2-dioctanoyl-raoglycerol, with the

rac-configuration being only slightly less potent. In frontal cerebral cortex cytosol,

s«-DOG and rac-DOG displaced specific l3HJ-PDBu binding in a concentration-

dependent manner with similar affinities (IC50 = 21 ± 1 and 25 ± 2 |J.M (n = 6 and 3)

respectively). The same was true of the affinities of s/j-DOG and rac-DOG in

cerebellum cytosol (IC50 = 20 ± 2 and 25 ± 2 pM (n = 6 and 3) respectively).

Interestingly, both the sn- and /ac-configurations of DOG displaced [3H]-PDBu

binding in lung cytosol in a concentration-dependent fashion, but the affinities for

displacement were significantly ((P < 0.05) for sn-DOG) lower than those observed in
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frontal cerebral cortex or cerebellum (estimated IC50S in lung of 1722 + 598 and 1894

±710 fiM (n = 6 and 3) respectively). Therefore, consistent with theory, the rac-DOG

mixture showed a slightly lower potency of action than the s/i-DOG isomer alone. The

large difference in affinity of DOG in lung and frontal cerebral cortex/cerebellum

cytosols could be due to a PKC isoform-selective action of DOG which was reflected in

the selective actions of DOG in the 45Ca2+ influx studies. To test whether the tissue

difference was consistent, we tested a range of diacylglycerol analogues with different

acyl-chain composition on displacement of specific [3HJ-PDBu binding in lung, frontal

cerebral cortex and cerebellum cytosols (Figure 5.6). 1,2-Dilauroyl-rac-glycerol did

not dissolve fully at higher concentrations in dimethylformamide, which led to

incomplete and erratic reversal of specific [3H]-PDBu binding in cytosols from all three

tissues (n = 2). Therefore, to test less hydrophilic diacylglycerol derivatives than

DOG, a mixed micellar method of [3H]-PDBu binding was developed. In this

procedure, a range of diacylglycerol analogues were dissolved in chloroform, dried and

reconstituted into micelles along with phosphatidylserine which was present throughout

the assay. Various concentrations of diglycerides (or AA) were added to the assay in

the mixed micellar method where the drug concentration was diluted by mixing with

micelles which contained phosphatidylserine only. The binding characteristics of the

diacylglycerols was investigated on [3H]-PDBu binding using lung, frontal cerebral

cortex and cerebellum cytosols. The 1,2-diacylglycerol analogues tested contained

matched saturated acyl chains, with chain lengths from 6-18 carbons (C6:0 - C18:0)

and a matched unsaturated acyl chain diglyceride, 1,2-dioleoyl-s/z-glycerol (CI8:1,

cis9). Also tested was the mixed acyl chain diacylglycerol, l-stearoyl-2-arachidonoyl-

s/z-glycerol (C18:0/20:4, |cis,cis,cis,cis]-5,8,ll,14) which is reported to be a naturally

occurring diacylglyceroi analogue and is produced upon phosphoinositol-specific

phospholipase C activity (Meldrum et al, 1991). The displacement of specific [3H]-
PDBu binding by the diacylglycerols with unsaturated acyl chains occurred with high

potency in lung, frontal cerebral cortex and cerebellum cytosols, the IC50S being similar
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at 23 ± 6, 14 ± 2 and 11 ± 2 pM for 1,2-dioleoyl-sn-glycerol in the respective tissues

(n = 4) and 6 ± 2, 4 ± 1 and 4+1 pM for l-stearoyl-2-arachidonoyl-sn-glycerol (n =

4). This result indicates that unsaturated chain diglycerides do not have selective

affinity for the PKC in the tissues tested. However, saturated acyl chain diacylglycerol

analogues showed generally lower potency in lung cytosol than in cytosol form rat

frontal cerebral cortex and cerebellum. The IC50 values for displacement by the

diacylglycerol analogues of specific [3H]-PDBu binding in frontal cerebral cortex and

cerebellum cytosols ranged from 17 ± 3 pM to 176 ± 19 |iM (n = 4), whereas for the

same diglyceride analogues, the IC50 values in lung cytosol ranged from 46 ± 9 pM to

estimated IC50 values of 1354 ± 451 pM (n = 4). The potency of all the saturated acyl

chain diacylglycerol analogues tested in lung cytosol, was markedly lower than that

displayed in frontal cerebral cortex and cerebellum cytosols (the latter two cytosols

consistently gave similar values). For the saturated analogues, there was a biphasic

relationship between acyl chain length and affinity for the [3H]-PDBu binding site; the

optimal chain length being 14 carbons in all three tissues. This biphasic relationship

was similar to that found previously (Ebeling et al, 1982; Hannun et al, 1986;

Sekiguchi et al, 1988), where the biphasic relationship was attributed to the

hydrophilicity of the acyl chain and to the optimal fit of the diacylglycerol-binding site

within PKC. The difference in affinity between lung and frontal cerebral

cortex/cerebellum cytosols was most marked with diacylglycerols containing acyl chain

lengths of 6 - 10 carbons; DOG (8 carbons) showing the greatest separation in affinity.

The reduced affinity for DOG in lung cytosol was not due to its degradation occurring

in lung only, as DOG (0.5 - 500 pM) preincubated for 30 min (37°C) in lung, frontal

cerebral cortex and cerebellum cytosols showed similar high affinities to displace [3H]-
PDBu binding when subsequently tested with lung, frontal cerebral cortex and

cerebellum cytosols (Table 5.1).

As well as using lung, frontal cerebral cortex and cerebellum cytosols

(Figure 5.7), the affinity of DOG (0.5 - 500 pM) (added to the assay dissolved in
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dimethylformamide) for specific [3H]-PDBu binding was investigated in cytosols from

tissues with known PKC-isoform content (Figure 5.8). As [3H]-PDBu binding was

not fully displaced in some tissues, and IC50 concentrations for DOG were greater than

the maximum concentration of DOG used, the data are expressed as the amount of

specific [3H]-PDBu binding remaining with 500 p.M DOG, although full concentration

response curves were always determined as far as possible. Cytosol from cerebellum,

frontal cerebral cortex, spleen, spinal cord, testes, liver, lung, kidney, sciatic nerve and

COS 7 cells have been reported to contain 14, 17, 32, 47, 48, 69, 73, 82, 93 and

100% a-isoform of PKC respectively (Shearman et al, 1988; Kosaka et al, 1988).

Using the cytosol from these tissues, the amount of specific [3H]-PDBu binding

remaining at 500 |iM DOG was determined to be 5 ± 2, 9 ± 2, 15 ± 1, 26 ± 3, 55 ± 4,

70 ± 2, 70 ± 3, 65 ± 2, 89 ± 6 and 70 ± 6% of control specific binding levels

respectively (n = 6). An inverse relationship existed between the amount of

[3H]-PDBu binding displaced by 500 (j.M DOG and the reported proportion of a-PKC,

suggesting that DOG has reduced affinity towards a-PKC. However, it is important to

consider that the reported PKC isoform content of the tissues only takes into

consideration the a, B and y isoforms of PKC, and not the more recently discovered 8,

e and £ isoforms.

Effect of arachidonic acid on [3H]-PDBu binding in rat cytosol

preparations

Since AA was known to selectively activate certain forms of PKC (Naor et

al, 1988a) and AA appeared to be acting as a selective activator of certain PKCs in the

43Ca2+ influx experiments, we assessed its ability to interact with [3H]-PDBu binding

in regions enriched in different isoforms. Arachidonic acid (0.2 - 200 |lM) added to the

binding assay from concentrated stocks in ethanol and in the presence of

phosphatidylserine did not displace specific [3H]-PDBu binding from rat lung, frontal

cerebral cortex and cerebellum cytosols, regions relatively enriched in a-, B- and y-
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PKC respectively. The binding levels in the presence of phosphatidylserine for lung,

frontal cerebral cortex and cerebellum cytosol with 200 pM AA were 109 ± 5, 100 ± 6

and 100 ± 6% of control specific binding levels (n = 3; Figure 5.9). Experiments were

also carried out to assess the ability of AA (0.2 - 200 pM added to the assay dissolved

in ethanol) to substitute for the role of phosphatidylserine, which is reportedly

necessary to enable cytosolic PKC [3H]-PDBu binding (Leach et al, 1983). The AA

could not markedly substitute for the permissive role of phosphatidylserine in lung,

frontal cerebral cortex or cerebellum cytosols, with [3H]-PDBu binding levels with 200

|iM AA of 24 ± 2, 8 ± 2 and 10 ± 3% of control specific binding levels in the presence

of phosphatidylserine respectively (n = 4; Figure 5.11). It is interesting to note that the

PKC from lung cytosol was somewhat more susceptible to AA here than the PKC from

frontal cerebral cortex or cerebellum cytosols. As with experiments examining

diacylglycerol effects on [3HJ-PDBu binding, solubility limitations of AA in ethanol

encouraged us to employ a mixed micellar method of [3H]-PDBu binding in order to

investigate the effect of higher concentrations of AA (0.5 - 500 pM) here. The specific

[3H]-PDBu binding in lung cytosol was increased to levels of up to 159 ± 9% of

control specific binding by AA and had not plateaued by the highest concentration used

(n = 4; Figure 5.10). In contrast, the [3H]-PDBu binding in frontal cerebral cortex and

cerebellum cytosols was not significantly enhanced by 0.5 - 500 pM AA (109 ± 7 and

110 ± 2% of control specific binding levels with 500 pM AA respectively (n = 4)).

Interestingly, lung cytosol has a higher content of a-PKC than does frontal cerebral

cortex and cerebellum cytosols (Shearman et al, 1988), and thus cytosols from various

tissues with known a-PKC content were used to assess whether any relationship

existed between AA (0.5 - 500 pM)-induced enhancement of specific [3H]-PDBu

binding and the content of a-PKC in the tissue tested (Figure 5.12). A marked AA

(500 pM)-induced enhancement of binding occurred not only in lung, but also with

cytosols from kidney, sciatic nerve and COS 7 cells (139 ± 3, 238 + 20 and 248 ± 17%

of control specific binding levels respectively (n = 4)). Interestingly, the 4 tissues
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which displayed an enhancement of [3H]-PDBu binding by AA were the 4 tissues with

the highest a-PKC content of the 10 tissues tested. However, no simple linear

relationship existed between AA-induced enhancement of binding and a-PKC content

(or 8- or y-PKC content either); and once more, caution must be used, as only the a-,

B- and y-PKC content of the tissues is considered, and not that of any other known

PKC isoform.

The concentrations of AA at which enhancement of [3H]-PDBu binding

occurs are extremely high (typically 50 - 500 pM without plateauing) and are higher

than those concentrations of AA needed in cellular responses involving PKC, for

example the inhibition of K+-induced 45Ca2+ influx into GH3 cells (IC50 = 19 ± 3

pM). The specificity of the AA-induced enhancement of binding was then investigated.

Cytosolic PKC from lung, frontal cerebral cortex and cerebellum, which had been

partially purified using DE52 diethylaminoethyl cellulose, showed enhancements of

specific [3H]-PDBu binding with 500 pM as crude cytosols (mean % of control

specific [3H]-PDBu binding of 145, 113 and 108 respectively, n = 2). Fatty acids with

similar structures to AA, such as arachidic acid, AA-methyl ester and linoleic acid, were

tested on [3H]-PDBu binding in lung, frontal cerebral cortex and cerebellum cytosols,

to see whether they could mimic AA. In frontal cerebral cortex and cerebellum

cytosols, the slight enhancement of binding with 500 pM AA (109 ± 7 and 110 + 2%

of control specific binding levels respectively) showed a similar trend with arachidic

acid, AA-methyl ester and linoleic acid (all at 500 pM). Thus the slight enhancement

was mimicked by all the AA analogues, indicating that the enhancement of [3H]-PDBu

binding in frontal cerebral cortex and cerebellum cytosols by AA may be due to its

lipophilic actions. In contrast, the marked signal enhancement of binding with 500 pM

AA in lung cytosol enabled us to assess quantitatively with reasonable accuracy, the

ability of the AA-related lipids to mimic AA here. Linoleic acid (500 pM) was almost

as good as AA at enhancing [3H]-PDBu binding in lung cytosol (90 ± 1% of the effect

of AA at the same concentration, n = 4. However, AA-methyl ester and arachidic acid
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(both at 500 pM) either poorly mimicked or could not mimic the action of AA in lung

(30 ±12 and 2 ± 2% of the effect of AA at the same concentration, n = 4). These

structural requirements matched those described by Seifert et al (1988) for activation of

PKC from whole brain cytosol by analogues of AA. However, the concentrations of

the fatty acids required to show an effect on lung cytosol binding are higher than those

described by Seifert et al (1988) on PKC activity. The activation of PKC by AA and

linoleic acid, but not arachidic acid and AA-methyl ester, recorded by Seifert et al

(1988) was in experiments performed in the absence of phosphatidylserine. It is

interesting that their PKC activation and the enhancement of lung cytosol [3H]-PDBu

binding here should display similar pharmacologies, but at different concentrations of

phosphatidylserine, perhaps indicating an interaction of the phosphatidylserine and AA

effects on PKC. Leach and Blumberg (1985) showed that AA displaced [3H]-PDBu

binding in whole mouse brain cytosol, but only at concentrations of phosphatidylserine

that are extremely submaximal for [3H]-PDBu binding (Leach et al, 1983), particularly

20 pg/ml. However, at 200 pg/ml phosphatidylserine, the AA-induced displacement of

[3H]-PDBu was markedly reduced (Leach and Blumberg, 1985). When we reduced

the phosphatidylserine concentration in our [3H]-PDBu binding assay from 1,000 to

750 fig/ml, we too observed a modest displacement of [3H]-PDBu binding to lung,

frontal cerebral cortex and cerebellum cytosols by AA (0.5 - 500 pM), but only at very

high AA concentrations (82 ± 6, 65 ± 15 and 56 ± 15% of control specific binding

levels with 500 pM AA respectively, n = 4 (Figure 5.11 (b))). Thus the AA-

displacement of [3H]-PDBu binding to cytosolic PKC is dependent upon

phosphatidylserine concentration. Consistent with this idea was previous reports that

AA could substitute for the permissive role of phosphatidylserine in PKC activation

(Murakami and Routtenberg, 1985; Murakami et al, 1986). The interaction of AA,

phosphatidylserine and PKC is obviously a complex one which requires more work to

fully characterise; however, the fatty acid enhancement of [3H]-PDBu binding seen
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here in regions enriched in a-PKC (as well as the correlation of DOG displacement of

binding and a-PKC content) may serve as a tool for predicting a-PKC content.

Effect of DOG and AA on specific [3H]-PDBu binding to rat anterior

pituitary and GH3 cell cytosol and membrane preparations

The effects of the two agents (ie, AA and DOG which had shown selectivity

between PKCs both in 45Ca2+ influx experiments and in [3H]-PDBu binding studies)

were tested in the binding assay using anterior pituitary and GH3 cell cytosols, in an

attempt to estimate the relative content of a-PKC in these tissues. Arachidonic acid

(0.5 - 500 |iM) enhanced specific [3H]-PDBu binding in both cytosols in a

concentration-dependent manner. The level of enhancement of binding in anterior

pituitary and GH3 cell cytosols with 500 pM AA was 120 ± 7% and 141 ± 10% of

control specific [3H]-PDBu binding levels respectively (n = 4). Using the correlation

for AA (500 pM)-induced enhancement of [3H]-PDBu binding and cytosolic a-PKC

content, this would suggest that anterior pituitary cytosol contains between 48 - 66%

a-PKC (Table 5.2). This value is in agreement with that reported previously (Naor,

1990) of 59 ± 8% a-PKC in anterior pituitary cytosol, as assessed by immunoblot

analysis with various PKC-isoform antibodies. Similarly, with GH3 cell cytosol

contains between 68 - 80% a-PKC, whereas Naor (1990) reported that GH3 cell

cytosol contained around 83% a-PKC. Displacement of specific [3H]-PDBu binding

in both anterior pituitary and GH3 cells cytosols by DOG (0.5 - 500 pM) was

concentration-dependent (IC50 = 112 ± 34 and 541 ± 89 pM respectively, n = 6). The

amount of specific [3H]-PDBu remaining at 500 pM DOG in anterior pituitary and GH3

cell cytosols was 35 ± 6 and 60 ± 8% respectively. Using the % binding remaining at

500 pM DOG and a-PKC content correlation would suggest that anterior pituitary

cytosol contained between 40 and 53% a-PKC, whereas in GH3 cytosol, the amount

of a-PKC present should be between 65 and 82%. The amount of a-PKC in anterior

pituitary and GH3 cell cytosol estimated by the DOG/a-PKC correlation thus match

152



those estimated values from the AA/a-PKC correlation, and are close to the relative

amount of a-PKC detected by immunoblot analysis in the two cytosols as determined

by Naor (1990). Therefore, the two pharmacological correlations presented here may

be useful tools for assessing the a-PKC content of a tissue cytosol with unknown

isoform content, although again it must be stressed that the reported PKC isoform

contents only assess a-, 6- and y-PKC isoforms. The evidence available from the

literature suggests that both anterior pituitary and GH3 cells (or the related strain,

GH4C1 cells) contain no y-PKC, but possess a-, 0- and e-PKC with other isoforms

unknown (Kiley et al, 1990). The approach to estimate PKC isoform content shown

here may be a useful one with AA, since AA has only been shown to influence the A

series of isoforms (y and a in particular (Nishizuka, 1988)). However, there is no

evidence that AA cannot influence any of the B series isoforms too. Attempts to derive

proportional a-PKC content for correlating DOG effects are more fraught with

difficulty as it seems most unlikely that diglycerides such as DOG would not interact

with B series isoforms, and their complement in most tissues remains unknown.

Using membranes from anterior pituitary and GH3 cells in [3H]-PDBu

binding studies revealed nothing informative about the relative isoform amount (partly

due to the amount of specific [3H]-PDBu binding being far lower than the levels found

in cytosol). Arachidonic acid (0.5 - 500 |iM, added to the assay dissolved in ethanol)

did not markedly enhance specific [3H]-PDBu binding levels in anterior pituitary or

GH3 cell membranes (115 ± 8 and 103 ± 2% of control specific binding levels

respectively, n = 4). Unlike results with cytosols, anterior pituitary and GH3 cells gave

[3H]-PDBu binding displacement by DOG (0.5 - 500 (iM added to the assay dissolved

in dimethylformamide) only at exceedingly low potency. It appears that the proportion

of a-isoform in the membranes of these tissues (or at least the responsiveness of the

[3H]-PDBu binding sites to AA and DOG) differs greatly from that in cytosol. It could

be that the membranes are extremely high in proportional a-PKC content, as suggested

by the DOG response, but total [3H]-PDBu binding levels were relatively low
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compared to cytosol. What seems more likely, is that physicochemical or physiological

factors may also be capable of influencing these properties, perhaps irrespective of

isoform. These findings are consistent with the work of Bazzi and Nelsestuen (1988),

who found that PKC markedly changes its regulatory characteristics once it had been

inserted into the membrane.

Calcium-dependence of specific [3H]-PDBu binding

The action of arachidonic acid (AA) to activate protein kinase C (PKC)

subspecies may depend on the presence of Ca2+ ions. For example, y-PKC is potently

activated by AA in the absence or presence of Ca2+ (Naor et al, 1988a), whereas a

(and to a lesser extent B)-PKC are activated by AA only in the presence of Ca2+. In the

hope of resolving the isoforms of PKC into either Ca2+-dependent (A series) or Ca2+-

independent (B series), the Ca2+-dependency of specific cytosolic [3H]-PDBu binding

was investigated. Using cytosolic preparations as used in the phorbol ester binding

studies above (and described in section 2.2.7), the calcium-dependency of [3H]-PDBu

binding was assessed by incubation in the presence of Ca2+ (1 mM final) or in the

absence of Ca2+ (+ 5 mM EGTA final). Under these conditions, EGTA did not reduce

the specific binding of [3H]-PDBu binding to cytosolic PKCs from frontal cerebral

cortex, cerebellum, spleen, testis, spinal cord or sciatic nerve cytosols with values for

binding being 119 ± 4, 102 ± 9, 109 ±4, 112 ± 5, 104 ± 9 and 100 ± 8, n = 3; Table

5.3) of total specific binding in the presence of Ca2+ (no EGTA) respectively. In some

tissues (lung, kidney and liver), a marked enhancement apparently occurred with

EGTA (166 ± 8, 204 ±16 and 133 ± 10% of total binding in the presence of Ca2+ (n =

3; Table 5.3 and Figure 5.13(a))). The latter three tissues, which showed the most

enhancement of [3H|-PDBu binding with EGTA, were also the tissues with the highest

incorporated erythrocyte content, as assessed by the reddish colour of the cytosolic

preparation. With a view to assessing any possible effect of Fe3+ here, a heavy metal

ion-chelator, DTPA (0.5 mM final) was included in binding assays for lung, frontal
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cerebral cortex and kidney cytosols to assess any effect of heavy metal cations on the

EGTA-induced enhancement of binding (Figure 5.13(a)). Under these conditions,

EGTA enhancement of specific [3H]-PDBu binding in lung, frontal cerebral cortex and

kidney cytosolic preparations was similar to the values found in the absence of DTPA

(156 ± 6, 112 ± 5 and 205 ± 19% (n = 3) of total specific binding in the presence of

Ca2+. In case free Mg2+ concentrations were being significantly depleted by DTPA,

and since PKC activity requires Mg2+ (Nishizuka, 1984a), additional Mg2+ (5 mM

final) was added to the binding assays of lung, frontal cerebral cortex and kidney

cytosolic preparations, but this further addition of Mg as well as DTPA did not alter

either the total binding levels or the enhancement by EGTA (n = 3). Slightly different

methods have been used previously by other groups to show Ca2+-dependence of

[3H]-PDBu to PKC (Ohno et al, 1988b; Kiley etal, 1990). We therefore used a

modified technique on that of these workers so as to more directly highlight the

question of Ca2+-dependence of specific [3H]-PDBu binding. Midbrain from male rats

was homogenised in 'Kuo' buffer as described in section 5.2, and the supernatant from

the procedure was regarded as cytosol. Employing this 'Kuo' method of binding for

midbrain cytosolic PKCs, EGTA enhanced specific [3H]-PDBu binding to levels of

129 ± 8% (n = 3; Figure 5.13(b)). In case of degradation of the binding site properties

during freeze: thawing procedures, further experiments were carried out with freshly

prepared rat material, where midbrain cytosolic PKCs were partially-purified.

Cytosolic PKCs freshly obtained from male rat midbrain, were partially purified by an

ammonium sulphate-'cut' between 21 - 45% ammonium sulphate. Using this cytosol,

EGTA (5 mM final) was still found to enhance binding modestly, with levels of 127 ±

6% of control specific binding in the presence of Ca2+ (1 mM final) (n = 3; Figure

5.13). In other experiments, the PKCs from midbrain cytosolic preparation which had

been frozen previously, were partially-purified by ion-exchange chromatography on a

1.5 ml DE-52 diethylaminoethyl cellulose column (a volume which in preliminary

experiment, gave the highest yield of specific PDBu binding). A batchwise,
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discontinuous elution was performed and after column washing, the 0-80 mM NaCl

(in 'Kuo' buffer) fraction was taken to assay specific [^HJ-PDBu binding. Specific

binding to aliquots of the DE-52 purified PKCs from midbrain cytosol accounted for

around 600 dpm. EGTA (5 mM) reduced this specific [^HJ-PDBu binding to 93 ± 6%

of control binding levels in the presence of 1 mM Ca2+ (n = 3; Figure 5.13(b)). Nor

did the presence of the protease inhibitors, 0.01% leupeptin and 20 |lM E-64 alter the

levels of specific [3H]-PDBu binding to 0 - 150 mM NaCl, DE52-purified midbrain

cytosol under conditions of no added Ca2+, low Ca2+, high Ca2+ or excess EGTA (n =

3; Figure 5.13(c)), where rat midbrain was partially-purified on DE-52 (0 - 150 mM

NaCl), having been prepared and assayed in the absence or presence of the Ca2+-
activated protease inhibitors, 0.01% leupeptin + 20 fiM E-64. For equal amounts of

initial tissue used, the yield of specific [3H]-PDBu binding in both preparations was

much higher (14250 and 34500 dpm binding in DE-52-purified preparations, without

or with protease inhibitors respectively) when compared to cytosolic preparations that

had been previously frozen (specific binding = 600 dpm). Despite the increased signal,

the fresh midbrain cytosolic preparations still failed to show any Ca2+-dependence of

binding. In experiments using fresh unpurified cytosolic preparations from midbrain,

specific binding levels in the presence of low Ca2+ (230 |iM), high Ca2+ (1.4 mM) and

EGTA (5 mM) were no different from binding in the absence of either Ca2+ or EGTA

(101 ± 1, 99 ± 1 and 102 ± 1% of control binding respectively, n = 3). Similarly,

when using cytosolic preparation from midbrain which had been partially purified with

DE-52, specific binding levels did not change in the presence of low or high Ca2+ or

EGTA (100 ± 1, 98 ± 1 and 100 ± 1% of control total binding levels in the absence of

Ca2+ and EGTA respectively (n = 3; Figure 5.13(c))). Therefore, no Ca2+-dependency
of [3H]-PDBu binding to the cytosolic preparations of PKCs, unlike the apparent Ca2+-

dependency of binding found by some workers (Ohno et al, 1988b; Kiley et al, 1990).

However, the initial indications of an increase in binding with EGTA were eliminated

by a convenient procedure which enabled us to partially-purify PKCs in a readily
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standardised manner and which was subsequently used as routine in our PKC activity

assay (see Chapter 6).

|
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Figure 5.1. Low levels of specific [3H]-PDBu binding to membranes

from non-neuronal tissues.

Total and non-specific binding (nsb) of [3H]-PDBu to membranes from frontal cerebral

cortex (fc cortex), cerebellum, spleen, liver and lung were determined. The method of

[3H]-PDBu binding was that described in section 2.2.7. The final concentrations of

membranes used in the assay were (mg/ml): frontal cerebral cortex (2); cerebellum (4);

spleen (6); liver and lung (20). The data represents the means ± SEM of 3

determinations.
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Figure 5.2. Concentration-response relationship of PDBu-

displacement of [3H]-PDBu binding to frontal cerebral cortex and

cerebellum membranes.

Frontal cerebral cortex (closed circles) and cerebellum (open circles) membraneous

[3H]-PDBu binding was performed as described in section 2.2.7. Total and non¬

specific binding levels are shown in the absence and presence of 20 JJ.M unlabelled

PDBu respectively. The final concentrations of membranes used in the assay were 2

and 4 mg/ml for frontal cerebral cortex and cerebellum respectively. The data represent

the means ± SEM of 3 determinations.
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Figure 5.3. Concentration-response relationship of PDBu-

displacement of [3H]-PDBu binding to lung, frontal cerebral cortex and

cerebellum cytosols.

Lung (squares), frontal cerebral cortex (circles) and cerebellum (triangles) cytosolic

[3H]-PDBu binding was performed as described in the Methods section. Total and

non-specific binding levels are shown in the absence and presence of 20 |iM unlabelled

PDBu respectively. The final concentrations of cytosols used in the assay were

(mg/ml): lung (200); frontal cerebral cortex and cerebellum (20). The data represent the

means ± SEM of 4 determinations. The concentration-response curve for frontal

cerebral cortex is the same as that shown in Figure 2.10.
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Figure 5.4. Effect of AMG-C16, staurosporine and H7 on specific

[3H]-PDBu binding to lung, frontal cerebral cortex and cerebellum

cytosols.

Specific [3H]-PDBu binding to lung (squares), frontal cerebral cortex (circles) and

cerebellum (triangles) cytosol preparations was performed as described in the Methods

section. The effect of AMG-C16 in conditions of normal (1 mg/ml) phosphatidylserine

(a) and low (100 |ig/ml) phosphatidylserine (b) was determined, as was the effect of

staurosporine (c) and H7 (d) under conditions of normal (1 mg/ml) phosphatidylserine

concentration. These agents were added to the assay dissolved in dimethylformamide

(1% final) except H7 which was dissolved in water. The solvents alone had no effect

on total or non-specific binding levels. The data represents the means ± SEM of 3

determinations.
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Figure 5.5. The effect of gossypol, sphingosine, indolactam-V and

DHI on specific [3H]-PDBu binding to lung, frontal cerebral cortex

(circles) and cerebellum cytosols.

The specific [3H]-PDBu binding to lung (squares), frontal cerebral cortex (circles) and

cerebellum (triangles) cytosol preparations was assessed as described in the methods

section. The effect of gossypol (a), sphingosine (b), the indolactam-V stereoisomers

((+) open symbols, (-) closed symbols (c)) and DHI (d) was determined. All agents

were added to the assay dissolved in dimethylformamide. The data represent the means

± SEM of 3 determinations, with the exception of the sphingosine data which is derived

from 4 determinations. None of these agents showed significantly (P < 0.05) different

affinity when comparing the displacement curves for all 3 tissues.
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Figure 5.6. The relationship between diacylglycerol acyl chain

length and affinity for [3H]-PDBu binding sites in lung, frontal cerebral

cortex and cerebellum cytosols.

The IC50 values for displacement of specific [3H]-PDBu binding were calculated as

described in the Methods section for a range of 1,2-diacylglycerols in lung (squares),

frontal cerebral cortex (circles) and cerebellum (triangles) cytosols. The diacylglycerols

shown are those with saturated acyl chains: l,2-dihexanoyl-s«-glycerol (6 carbons);

1,2-dioctanoyl-SAj-glycerol (8); 1,2-didecanoyl-rac-glycerol (10); 1,2-dilauroyl-

rac-glycerol (12); 1,2-dimyristoyl-rac-glycerol (14); 1,2-dipalmitoyl-.sn-glycerol (16);

1,2-distearoyl-rac-glycerol (18) and those with unsaturated acyl chain composition:

1,2-dioleoyl-srt-glycerol (18:1) and l-stearoyl-2-arachidonoyl-sn-glycerol (18/20:4).

The diacylglycerols were added to the assay, suspended by sonication with

phosphatidylserine (mixed micelles). The data represent the means ± SEM from 4

determinations, and each of the data points for lung cytosol are significantly (P < 0.05)

different from the data for frontal cerebral cortex and cerebellum cytosols.
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Figure 5.7. Regional differences in displacement by 1,2-dioctanoyl-

sn-glycerol of specific cytosolic [3H]-PDBu binding.

The effect of 1,2-dioctanoyl-^-glycerol (DOG) on specific binding in lung (squares),

frontal cerebral cortex (circles) and cerebellum (triangles) cytosols. DOG was added to

the assay dissolved in dimethylformamide. The data represent the means ± SEM from

6 determinations. The concentration-response curve for lung cytosol is significantly (P

< 0.05) different from those in frontal cerebral cortex and cerebellum at concentration

of DOG of 5 (J.M and greater.
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Figure 5.8. Relationship between tissue content of a-PKC and the

effects of 1,2-dioctanoyl-srt-glyceroI on specific cytosolic [3H]-PDBu

binding.

The mean values ± SEM for displacement by DOG of specific cytosolic [3H]-PDBu

binding is shown for: cerebellum (data point 1); frontal cerebral cortex (2); spleen (3);

spinal cord (4); testes (5); liver (6); kidney (7); lung (8); sciatic nerve (9) and COS-7

cell (10) cytosols. Responses are expressed as the % change from control specific

binding in the presence of 500 (iM sn-DOG (added in dimethylformamide). Full

concentration-response curves were always determined but the present data at a single

concentration is quoted because IC50 concentrations were not reached in some tissues.

The data represent the mean ± SEM of 6 determinations. The correlation co-efficient of

the line through the data was 0.821.
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Figure 5.9. Effect of AA added to the [3H]-PDBu binding assay

dissolved in ethanol.

The effect of AA (dissolved in ethanol, 1% final) on specific [3H]-PDBu binding to

lung (squares), frontal cerebral cortex (circles) and cerebellum (triangles) cytosols was

determined. The data represent the means ± SEM of 3 determinations.
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Figure 5.10. Regional differences in enhancement by arachidonic acid

(added to the assay in mixed micelles) of specific cytosolic [3H]-PDBu

binding.

The effect of AA (added to the assay along with phosphatidylserine (1 mg/ml final

throughout) in mixed micelles) on specific [3H]-PDBu binding to lung (squares),

frontal cerebral cortex (circles) and cerebellum (triangles) cytosols. The data represent

the means ± SEM of 4 determinations. The enhancement by 200 and 500 pM AA in

lung cytosol was significantly (P < 0.05) different from the corresponding binding

levels in frontal cerebral cortex or cerebellum cytosol preparations or indeed from lung

controls.
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Figure 5.11. Effect of AA on specific cytosolic [3H]-PDBu binding

under conditions of zero or reduced phosphatidylserine.

The effect of AA (added to the assay in mixed micelles (or dissolved in ethanol for zero

phosphatidylserine conditions)) on specific [3H]-PDBu binding to lung (squares),

frontal cerebral cortex (circles) and cerebellum (triangles) cytosols was investigate

under conditions of zero (a) and reduced (750 |ig/ml (b)) phosphatidylserine. The data

represent the means ± SEM of 4 determinations. The enhancement with 100 and 200

|lM AA of specific [3H]-PDBu binding to lung cytosol under conditions of zero

phosphatidylserine (a), was significantly (P < 0.05) different from the corresponding

binding levels seen with frontal cerebral cortex and cerebellum cytosols.
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Figure 5.12. Relationship between tissue concentration of a-PKC and

the effect of arachidonic acid on specific cytosolic [3H]-PDBu binding.

The mean values ± SEM for enhancement by AA of specific cytosolic [3H]-PDBu

binding is shown for cerebellum (data point 1); frontal cerebral cortex (2); spleen (3);

spinal cord (4); testes (5); liver (6); kidney (7); lung (8); sciatic nerve (9) and COS-7

cells (10) cytosol preparations. Responses are expressed as the % change from control

specific binding in the presence of 500 pM AA (added as mixed micelles). Full

concentration-response curves were always determined but the data at a single

concentration are quoted because EC50 values were not reached. The data represent the

mean ± SEM of 4 determinations.
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Figure 5.13. Effect of various purification steps on the EGTA-

induced enhancement of specific [3H]-PDBu binding to cytosolic PKCs.

Specific binding of [3H]-PDBu to cytosolic preparations was assessed as described in

section 5.2. In (a), the effect of EGTA (5 mM final) and EGTA (5 mM) plus DTPA

(0.5 mM final) on crude cytosol preparations from lung, frontal cerebral cortex (f.c.

cortex) and kidney was determined. Values for binding are expressed as % of specific

binding levels from the same cytosol, in the presence of 1 mM CaCl2- EGTA or DTPA

had no effect on non-specific binding levels. The enhancement of binding by EGTA on

cytosol from midbrain (b) was investigated with midbrain which was either unpurified

(i) or was partially-purified by a 21 - 45% ammonium sulphate 'cut' (ii) or by DE52 ion

exchange chromatography (0 - 80 mM NaCl (iii)). In (c), the effect of protease

inhibitors (0.01% final leupeptin and 20 |iM final E64) on the specific [3H]-PDBu

binding of DE52 partially-purified (0 - 80 mM NaCl) midbrain cytosol under conditions

of low Ca2+ (230 |iM final), high Ca2+ (1.4 mM final) or excess EGTA (5 mM final).

Values are expressed as a % of specific [3H]-PDBu binding under conditions of no

added Ca2+ or EGTA. The data represent the means ± SEM of 3 determinations.
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Tahle 5.1. The ability of 1,2-dioctanoyl-s/t-glycerol preincubated in

cytosol preparations to displace specific cytosolic [3H]-PDBu binding.

Fresh DOG (500 |iM) was preincubated with the appropriate cytosol preparation for 30

min (37°C) as of the [3H]-PDBu binding method described in the Methods section

except that [3H]-PDBu in incubation buffer was replaced with incubation buffer alone.

Protein was then precipitated with bovine y-globulin and polyethylene glycol and

pelletted by centrifugation as described. The ability of the supernatant from the spin to

displace specific [3H]-PDBu binding to cytosolic PKC from lung, frontal cerebral

cortex and cerebellum was determined as usual. The final concentration of DOG in the

second incubation assay was calculated to be 77 pM. The corresponding values for

displacement of [3H]-PDBu by 77 (J.M DOG which had not been previously

preincubated (fresh DOG) in lung, frontal cerebral cortex and cerebellum cytosols, was

estimated from Figure 5.7. All other values are the means of 2 determinations (n values

indicated in parentheses), with values varying by < 10%. Note that DOG preincubated

in lung cytosol was still markedly poorer at displacing specific [3H]-PDBu binding in

lung cytosol than in frontal cerebral cortex and cerebellum cytosols.



Table5.1

FreshDOG

DOGpreincubatedinfrontalcerebralcortexcytosol DOGpreincubatedincerebellumcytosol DOGpreincubatedinlungcytosol
EstimatedaffinityofcytosolicPKCsforDOG

(%ofspecific[^HJ-PDBubindingremainingwith 77pMDOG)
Lung

Frontalcerebralcortex
Cerebellum

-95% (6) 101% (2) 92% (2) 98% (2)

-20% (6) 52% (2) 47% (2) 50% (2)

-20% (6) 55% (2) 51% (2) 49% (2)



Table 5.2. Prediction of a-PKC content in rat anterior pituitary and

GH3 cell cytosols.

The range of % a-PKC was determined by translating the extreme error limits around

the mean (ie, mean + SEM and mean - SEM values) of the amounts of DOG

displacement and AA-enhancement of specific [3H]-PDBu binding found in anterior

pituitary and GH3 cytosols. The bottom row indicates the proportion of a-PKC found

by Naor (1990) using PKC isoform-specific antibodies. As can be seen, the values

derived from both correlations match well to the findings of Naor (1990) and confirm

that a-PKC content in GH3 cell cytosol is markedly higher than the content in rat

anterior pituitary cytosol.



Table5.2

Predicteda-PKCcontent(%)
Ratanteriorpituitarycytosol
GH3cellcytosol

FromDOG-displacementcorrelation (Figure5.8)

40 -53%

65-82%

FromAA-enhancementcorrelation (Figure5.12)

48-66%

68-80%

Naor(1990)immunoblotanalysis

59±8%

83%



Table 5.3. Effect of EGTA on levels of specific [3H]-PDBu binding

to various cytosols.

The method of binding employed was that described in section 5.2. The specific [3H]-
PDBu binding with EGTA is expressed as a % of the amount of specific [3H]-PDBu

binding in the presence of 1 mM CaCl2 in the same cytosol preparation. EGTA had no

effect on non-specific binding levels. The values represent the means ± SEM of 3

determinations.



Table5.3
0\

Q

Cytosol

[3H]-PDBubindingwithEGTA/noCa2+(%of controlspecificbindinginpresenceofCa2+)
lung

166±8%

frontalcerebralcortex

119±4%

cerebellum

102±9%

spleen

109±4%

testes

112±5%

spinalcord

104±9%

sciaticnerve

100±8%

kidney

204±16%

liver

133±10%



5.4. DISCUSSION

There is considerable evidence that the major receptor for phorbol ester

analogues is PKC (see section 1.2). Phorbol esters can bind to PKC with high affinity

and with good specificity, and thereby radioactively-labelled phorbol ester ligands can

provide an excellent means of quantifying the amount of PKC which is present in

certain tissues. Furthermore, as phorbol esters appear to bind to PKC at the

diacylglycerol-binding site of the enzyme (Sharkey and Blumberg, 1985), phorbol ester

competition binding studies can provide useful information as to the characteristics of

the diacylglycerol/PKC interaction. Phorbol esters are in general quite lipophilic and

can thus be difficult to use when they are required to be dissolved in aqueous solutions.

A more hydrophilic analogue, PDBu, is considered to be the phorbol ester analogue of

experimental choice (Blumberg, 1988) as it can dissolve well in solvents such as

ethanol but still retains its potent PKC-activating properties. Radiolabeled PDBu is

therefore the most widely used phorbol ester when investigating phorbol ester-binding

to PKC. Unlike membrane-bound PKC, cytosolic PKC requires an exogenously-

supplied phospholipid environment to enable binding of [2H]-PDBu (Leach et al,

1983). Cytosolic pHJ-PDBu binding studies therefore require this additional factor

which is not necessary when measuring [^HJ-PDBu binding to membranes. At

present, the extent to which certain isoforms of PKC require phorbol esters for

activation is not wholly clear, for example the i^-isoform may be less well activated by

PMA than the other known isoforms (Nishizuka, 1988). Originally, PKC was

characterised as a phospholipid-dependent, Ca2+-activated kinase (see section 1.2) but

with the discovery of the Ca2+-independent isoforms of PKC that are activated by

phorbol esters, this means of PKC-classification has receded and now PKCs are

classified as phospholipid-dependent, phorbol ester-activated kinases. It is possible

that other such kinases distinct from the known PKC isoforms may yet be discovered.

No such kinase has been characterised, but the possibility for these 'PKC-related'
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kinases is real. Specific binding of |3H|-PDBu may therefore contain such 'PKC-

related' kinases as well as an amount of any phospholipase D, which is suggested to be

another site for phorbol esters (see section 1.2.5). However, the high specificity of

phorbol esters for PKC(s) has yet to be conclusively refuted and [3H]-PDBu binding

remains an excellent method for investigating the presence of PKC and the

characteristics of its diacylglycerol-binding site.

Initial studies here were centred on membraneous pHj-PDBu binding from

different regions in an attempt to characterise any PKC-isoform differences which may

exist. Unfortunately, only frontal cerebral cortex and cerebellum membranes showed

enough specific binding to enable accurate analysis. This region-specific difference is

consistent with brain having the largest amounts of PKC activity (Kuo et al, 1980).

Furthermore, these regions have a high content of 13-PKC which, unlike a-PKC, tends

to translocate readily and be significantly present in membranes under basal conditions

(Pelech et al, 1991), perhaps reflecting the high amounts of specific [-^HJ-PDBu

binding to membranes in these regions. Displacement of f^H]-PDBu binding in frontal

cerebral cortex and cerebellum membranes by unlabelled PDBu yielded lower IC50

values than those for PDBu-displacement of specific pHJ-PDBu binding to cytosolic

PKC (see Figures 5.2 and 5.3). Both results match previous work investigating

PDBu-displacement of specific [3H]-PDBu binding to mouse fibroblast membranes and

brain cytosol preparations (Dunn and Blumberg, 1983 and Leach et al, 1983

respectively). Investigation of cytosolic j^HJ-PDBu binding proved useful, as high

amounts of specific binding were detected in almost all tissues tested. In cytosol

preparations from frontal cerebral cortex, cerebellum and lung, the displacement of

specific [^Hj-PDBu binding by unlabelled PDBu showed almost identical IC50 values

for all three regions (Figure 5.3).

Specific pIIJ-PDBu binding in lung, frontal cerebral cortex and cerebellum

cytosols (tissue relatively enriched in a-, 13- and y-PKC respectively) was displaced in a

concentration-dependent manner by DPB and mezerein (section 5.3), as would be
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expected of these phorbol ester analogues. The displacement of [^HJ-PDBu binding

with these compounds has been shown previously (Dunn and Blumberg, 1985),

however, here these agents which showed interesting selective-profiles on the two

models of Ca2+ influx (Chapter 3), showed little or no difference in affinity for pH]-
PDBu binding in the three tissue, suggestive of these compounds displaying no

selective affinity for various PKC isoforms (at least the isoforms present in the three

tissues investigated). Perhaps the responsible isoform(s) is present only in pituitary

(and certain other) tissues, a possibility presently being investigated within our

laboratory. One other such possibility for the similar affinities for PKC of DPB and

mezerein, but still behaving in an isoform-selective nature, is that the compounds could

be acting as partial agonists (ie, same affinity but reduced efficacy) towards certain

isoforms of PKC. However, PKC activity studies with mezerein and PDBu as

activators of PKC (M S Johnson and R Mitchell, unpublished observations) suggests

that PDBu and mezerein show similar maximal activity towards rat midbrain cytosolic

PKC and are in fact not acting as partial agonists. Curiously, the affinity for

pHJ-PDBu displacement by mezerein was markedly higher (IC50S < 1 11M) than the

concentration required for half maximal activity in the 45Ca2+ influx studies (EC50S of

> 25 11M). The reasons for this discrepancy are unclear. It is, of course, conceivable

that access is a contributory factor in whole cell preparations. It is possible, however,

that the affinity of the mezerein-interaction with [3H]-PDBu binding is not

representative of the potency of the compound to actually activate PKC in functional

assays (compare, for example, with the similarly low reduced affinity of staurosporine

in the mixed micellar PKC activity assay (see section 6.3)). Other compounds which

were investigated in [3H]-PDBu binding studies in cytosolic preparations from lung,

frontal cerebral cortex and cerebellum were the activators DHI, (-)-indolactam-V (and

its inactive stereoisomer (+)-indolactam-V) and the inhibitors cremaphor EL,

AMG-C16, H7 and staurosporine. Displacement of specific pHJ-PDBu binding

occurred with DHI, (-)-indolactam-V and (+)-indolactam-V (albeit with far lower
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affinity than its active enantiomer). Each of these compounds displayed no marked

differences in affinity for the three tissues tested suggesting they may not be PKC-

isoform-selective. Cremaphor EL is a highly viscous substance and the erratic effects it

has on [3H]-PDBu binding are probably due to the difficulties experienced in diluting

this agent and its probable non-specific effects on perturbing the lipid environment of

the PKC. The biphasic effect of the diglyceride-analogue AMG-C16 on specific [3H]-
PDBu binding to lung frontal cerebral cortex and cerebellum cytosol preparations, may

indicate that it can act in an analogous fashion to phosphatidylserine at lower

concentrations to enhance [3HJ-PDBu binding, and perhaps also mimic diacylglycerols

at higher concentrations to displace [^Hj-PDBu binding. The amount of enhancement

seen with AMG-C16 is thus dependent on the phosphatidylserine concentration in the

assay (see Figure 5.4). Similar observations were also made with the fatty acid AA

(discussed later in this section). The greater enhancement of specific |^H]-PDBu

binding by AMG-C16 in lung cytosol preparations may reflect a greater susceptibility

of a-PKC to the lipid environment surrounding the isoenzyme, although many other

interpretations could be possible. Staurosporine and H7 were unable to reverse specific

[3H]-PDBu binding in lung, frontal cerebral cortex or cerebellum cytosol preparations

(see Figure 5.4) entirely consistent with these inhibitors acting at a site on PKC which

is not the diacylglycerol/phorbol ester-binding site (see section 1.2.3). This inability of

staurosporine and H7 to affect [3H]-PDBu binding was also reported by Nakadate et al,

1988. In order to investigate any PKC-isoform selective nature of H7, it was

necessary to assess the effect of this inhibitor on a PKC activity assay; the findings of

these studies are reported in the following chapter.

Unsaturated diglycerides showed a similar high affinity for displacement of

[3H]-PDBu binding in lung, frontal cerebral cortex and cerebellum cytosols (Figure

5.6). The naturally-occurring diacylglycerols, l-stearoyl-2-arachidonyl-s/z-glycerol

and 1,2-dioleoyl-s/z-glycerol displaced specific [3H|-PDBu binding in the three tissues

with very similar potencies (analagous to PDBu displacement of binding in the three
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tissues) suggesting that neither of these diglycerides nor PDBu have differential affinity

towards the PKC-isoforms present in the three tissues. Diglycerides with saturated

acyl chains generally showed lower potency than their unsaturated acyl chain

counterparts. For the saturated analogues, there was a biphasic relationship between

acyl chain length and affinity for the [^HJ-PDBu binding site (Figure 5.6). These

findings were consistent with previous work where the biphasic nature of diglyceride

affinity was attributed to the hydrophilicity of the acyl chain and to the optimal fit of the

diglyceride at the diacylglycerol-binding site within PKC (Ebding et al, 1982; Hannun

et al, 1986; Sekiguchi et al, 1988). The IC50 values for any particular diacylglycerol

were always similar in frontal cerebral cortex and cerebellum cytosols (enriched in 13-

and a-PKC respectively) but the binding site in lung cytosol (relatively enriched in y-

PKC) displayed markedly lower affinity for all the saturated diglycerides (Figure 5.6).

The reduced affinity in lung was most marked for saturated chain lengths of 6 - 10

carbons, with DOG having the greatest separation in affinity between frontal cerebral

cortex/cerebellum and lung cytosol preparations. This reduced affinity of the saturated

diglycerides in lung cytosol was not due to their degradation in lung only, as DOG pre-

incubated in lung cytosol showed the same affinity for frontal cerebral cortex or

cerebellum binding as DOG preincubated for the same period with either frontal

cerebral cortex or cerebellum cytosols (Table 5.1). Thus, the possibility that lung-

specific degradation of saturated diglycerides (particular short-acyl chain analogues)

was responsible for their reduced affinity for the [3HJ-PDBu binding site in lung does

not seem to be a significant factor here. What may account for these differences, is that

a-PKC may have reduced affinity towards saturated diacylglycerols (but not

unsaturated diacylglycerols) and that this reduced affinity of a-PKC compared to f3-

and y-PKC, is most apparent with short-acyl chain diglycerides (particularly DOG).

This contention of a reduced affinity of DOG for a-PKC is supported by the

investigation of DOG affinity for specific |^H|-PDBu binding to a range of cytosols

with known PKC-isoform-content (Figures 5.7 and 5.8). Reduced affinity of DOG
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correlates well with the a-PKC isoform content. Such a correlation was not possible

with B- or y-PKC contents but it must be stressed that only the % content of A series

PKC-isoforms is known, and the relative contribution from B series isoforms or any

undiscovered specific PDBu binding entities is unknown. However, such a selective

nature of DOG could explain the ineffectiveness of DOG on the inhibition of 'L'-type

Ca2+ channels in GH3 cells (but not on the enhancement of 'L'-type Ca2+ channels in

anterior pituitary pieces (Figure 3.5)) as the inhibition of 'L'-channel activity may be

mediated (at least in part) by a-PKC, as judged by its AA-sensitivity (Figure 3.7).

Dissolving AA in ethanol to investigate its effects on [^Hj-PDBu binding to

lung, frontal cerebral cortex and cerebellum cytosol preparations, originally suggested

that AA was without much effect (Figure 5.9). However, employing the mixed

micellar method of adding lipids for pHJ-PDBu binding analysis, revealed that AA can

markedly enhance [3H]-PDBu binding in lung cytosol but not frontal cerebral cortex

cytosols (Figure 5.10). Arachidonic acid may be partially substituting for the role of

phosphatidylserine which enhances cytosolic pHj-PDBu binding, as binding levels in

lung, frontal cerebral cortex and cerebellum cytosols were modestly raised by AA in a

concentration-dependent fashion in the absence of phosphatidylserine, but AA could

never fully substitute for the permissive role of phosphatidylserine (Figure 5.11). The

enhancing effect of AA on [^HJ-PDBu binding interacted with the effect of

phosphatidylserine of PKC, as AA-enhancement was reduced in assay conditions in

which the phosphatidylserine concentration was lowered (Figure 5.11(b)). Under

these conditions, a slight displacement of [^Hj-PDBu binding could be seen with

higher concentrations of AA. A displacement of specific cytosolic [^HJ-PDBu binding

by AA has been described previously (Leach and Blumberg, 1985; Sharkey and

Blumberg, 1985) which has been attributed to non-competitive mechanisms.

However, the displacement of [^Hj-PDBu binding by AA occurs only with

phosphatidylserine concentrations which are extremely submaximal for [3H]-PDBu

binding to cytosolic PKC (Leach et al, 1983). Therefore, a mixed mechanism of AA
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interaction with PKC may exist: firstly, an incomplete displacement of [^HJ-PDBu

binding by A A, which is overcome by higher concentrations of phosphatidylserine, and

secondly, arachidonic acid may also partially substitute for phosphatidylserine,

although its effectiveness in the permissive role of phosphatidylserine on binding is

greatly reduced. The enhancement of [^HJ-PDBu binding by AA was tested in a range

of cytosols from various sources with known PKC isoform content (again only fully

quantitated for A series isoforms) and it was found that only tissues with high content

of a-PKC showed a marked enhancement (Figure 5.12). This may suggest that the

AA-induced activation of a-PKC (see section 1.2.3) is occurring through such a

mechanism viewed here. However, enhancement of binding occurs at concentrations

of AA which are far higher than those concentrations observed to activate PKC in other

assays (eg, the AA-induced activation of PKC in GH3 cells described in Chapter 4).

Furthermore, y-PKC is reported to be more potently activated by AA than a-PKC, but

those regions which possess y-PKC (eg, cerebellum) show no enhancement of

[3H]-PDBu binding by AA. What seems a more likely possibility, is that the AA-

induced enhancement of l^H]-PDBu binding is an allosteric or even physico-chemical

effect of AA which may be particular to a-PKC. On a similar note, Huang and Huang

(1990) have also described an inactivation of PKCs by lipids (such as

phosphatidylserine) which appears to occur predominantly with y-PKC.

In an attempt to assess the relative amount of a-PKC in our two 45Ca2+

influx models, male rat anterior pituitary and GH3 cells (Chapter 3), the effect of DOG

and AA 011 I^HJ-PDBu binding to cytosol preparations from these tissues was

determined. The predicted amount of a-PKC in both tissues was determined by

reading-off the value of % a-PKC corresponding to the % displacement by 500 pM

DOG or the % enhancement with 500 pM AA on specific pHj-PDBu binding. For

male rat anterior pituitary cytosol, the predicted amounts of a-PKC are 40 - 53% and

48 - 66% as assessed using the correlations between % displacement by 500 pM

DOG/% a-PKC and % enhancement with 500 pM AA/% a-PKC respectively. As can
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be seen, the assessments of % a-PKC match well between the two methods of

binding. Similarly well matched is the study on GH3 cell cytosol, in which the relative

% a-PKC predicted from the same correlation plots are 65 - 82% and 68 - 80% a-PKC

respectively. Since our assessment of the relative amount of a-PKC in both tissues

was carried out, a study by Naor (1990) was published in which the % a-PKC in the

two tissue cylosols was determined by PKC isoform-specific immunoblot analysis.

The quoted % a-PKC content of rat anterior pituitary and GH3 cell cytosols was 59 ±

8% and 83% respectively. These results match well with our predicted a-PKC levels

in the two tissues (Table 5.2) and therefore, determination of the affinity of DOG and

enhancement by AA could provide a useful tool for estimating the relative amount of

a-PKC in a tissue cytosol. From whatever method the % a-PKC was derived, it is

clear that GH3 cell cytosol possesses markedly greater amounts of a-PKC than does

anterior pituitary cytosol, which may account for the differences in profiles of PKC-

mediated modulation of 'L'-type Ca2+ channel activity seen in Chapter 3. If indeed

a-PKC is responsible for an inhibition of 'L'-channel activity, the higher amounts of

a-PKC in GH3 cells compared to anterior pituitary pieces, may be responsible for the

inhibition of K+-induced 4<5Ca2+ influx that is produced by PDBu treatment in GH3

cells. The net activity of the large amounts of a-PKC in GH3 cells may overcome the

PDBu-activated isoform(s) of PKC which are responsible for enhanced 'L'-channel

activity (and which may be selectively activated by mezerein in GH3 cells). In contrast,

PKCs which can facilitate the activity of 'L'-channels may be of a greater proportion in

anterior pituitary pieces, with a greater net influence than the 'L'-channel-inhibitory

isoforms of PKC which predominate in GH3 cells.

The dependence of specific |^H|-PDBu binding on Ca2+ appears to rely on

the method employed for assaying binding, with some workers being able to see

partially Ca2+-dependent binding (Ohno etal, 1988b; Kiley et al, 1990). However, we

were surprised to see that total [3H]-PDBu binding actually greater in the presence of

EGTA than total |^H|-PDBu binding in the presence of Ca2+, with 110 effect of EGTA
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on non-specific binding (Figure 5.13). Furthermore, this EGTA-induced increase in

total [3H]-PDBu binding appeared to be restricted mostly to lung, kidney, liver and

testes cytosol preparations with frontal cerebral cortex cytosolic binding showing a very

slight increase with EGTA, and [3H]-PDBu binding being unaffected by EGTA in the

other tissues tested. This EGTA induced increase in binding was not mimicked by

DTPA (a heavy metal-selective chelator, Figure 5.13). The increase in [3H]-PDBu

binding to cytosol prepared from midbrain total binding with EGTA was reduced when

employing homogenisation methods similar to other reports of Ca2+-dependent

[3H|-PDBu binding. With such methods, ammonium sulphate-fractionated midbrain

cytosol still displayed an increase in binding with EGTA (although the increase was

less than that seen in 'crude' preparations). However, this increase in binding with

EGTA was abolished when midbrain cytosol was partially-purified by ion-exchange

chromatography and was also seen for a range of Ca2+ ion concentration, and indeed

with no added Ca2+ or EGTA (Figure 5.13). In conclusion, employing any of our

methods of [2H]-PDBu binding, no Ca2+-dependency of binding could be seen, which

may be surprising since the Ca2+/phospholipid interaction of PKC is considered

essential for an optimal conformation for diacylglycerol (but perhaps not phorbol ester)-

binding to PKC (see section 1.2.1). No reasons could be discerned for the qualitative

differences between the present results and those of Ohno et al (1988b) and Kiley et al

(1990). Nevertheless, in the process of trying to derive conditions that would display

Ca2+-dependency of binding, we developed a convenient method for the purification

and enrichment of PKC which proved to be important in the procedure for measuring

PKC activity from tissues of various sources (see following chapter).
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CHAPTER 6

Attempts to characterise activation of

distinct protein kinase C isoforms



6.1. Introduction

The original classification of protein kinase C (PKC) was as a calcium-

activated, phospholipid-dependent kinase (see section 1.2.1) and since that time, kinase

activity assays have been a major means of assessing the properties of the enzyme.

This approach complements other means of studying PKC, such as [3H]-PDBu

binding, immunohistochemical analysis, mRNA in situ hybridisation, cDNA

transfection studies, mRNA microinjection and incorporation of PKC through cell-

permeabilisation. Pharmacological assessment of compounds which interact with

PKC, almost inevitably has to involve the determination of their affinity and efficacy

using a PKC activity assay. Activity studies on highly purified isoforms of PKC have

revealed that a, 6 and y subspecies are (as predicted from their sequences) indeed

Ca2+-activated, although slight differences do exist in the activation potency of Ca2+ at

each isoform (Sekiguchi et al, 1987; Sekiguchi et al, 1988; Nishizuka, 1988; Naor et

al, 1988a; Huang et al, 1988; Marais and Parker, 1989; Naor, 1990). Each of these

studies had used histone as a substrate for the isoenzymes, however, the ability of

histone to act as a substrate for B series isoforms is more controversial. Schaap et al

(1989) described how histone was a poor substrate for PKC-e expressed from its

cDNA in COS 1 cells, and also for PKC-e expressed from its cDNA by a baculovirus

vector (Schaap and Parker, 1990). It was suggested that a short chain peptide which

corresponded to the pseudosubstrate site (serine substituting for alanine) was a

preferred substrate when measuring PKC-e activity (Schaap et al, 1989). Short chain

peptides are known to be excellent substrates for PKCs, however in contrast to protein

substrate such as histone and myosin light chain, show little cofactor dependence but

kinase activity, which is both phospholipid- and Ca2+-independent (Bazzi and

Nelsestuen, 1987). Furthermore, studies on PKC-8 (Mischak et al, 1991) and an

unidentified Ca2+-independent form of protein kinase C from human platelets

(Nishizuka, 1988) showed that these isoforms used histone as a substrate. It may be
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only PKC-e that poorly phosphorylates histone but it is clear that histone is an adequate

substrate for e as this was its means of detection on expression of its cDNA (Ono et al,

1987b; Ono et al, 1988a; Ono etal, 1989b).

In mixed isoform preparations (as used mostly here), the choice of substrate

is therefore critical to observe both phospholipid- and Ca2+-stimulated PKC activity.

Substrates that will reveal such co-factor-dependence are histone, troponin I, troponin

complex and mysoin light chain (Bazzi and Nelsestuen, 1987), and one of these

substrates (histone) is the substrate of choice in our studies due to imparting Ca2+-

dependence on our kinase investigations (see section 2.2.8). The diacylglycerol, 1,2-

dioctanoyl-sn-glycerol (DOG) displayed a selective profile on our models of

K+-induced 45Ca2+ influx into rat anterior pituitary cells (see Chapter 3) and was

shown to have reduced affinity towards cytosol preparations enriched in PKC-a (see

Chapter 5). The effectiveness of DOG was investigated here in our PKC activity

assay. The PKC inhibitor, H7 also showed a preferential inhibition of the PDBu-effect

on GH3 cell K+-induced 45Ca2+ influx, rather than the corresponding modulation in

anterior pituitary prisms (see Chapter 3). However, the effectiveness of H7 as a PKC

isoform-selective pharmacological agent could not be assessed on [3H]-PDBu binding

studies (Chapter 5), as unlike DOG, the site of action of H7 is not at the [3H]-PDBu

binding site of PKC (Nakadate et al, 1988). Instead, the site of action of H7 is thought

to be at or around the ATP-binding site of PKC (Ohta et al, 1988) and therefore a PKC

activity assay is an ideal method of investigating the pharmacological properties of H7

at different forms of PKC.

6.2. Specific methodology

PKC activity assays were as described in section 2.2.7, measuring the

incorporation of [35S] thiophosphate into the substrate, histone-IIIS. Kinase activity

assessments in the absence of inhibitors had inhibitors replaced by buffer to maintain a

constant assay volume of 100 pi.
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6.3. Results

Effect of PDBu and DOG on cytosolic protein kinase C activity

The effect of phorbol 12,13-dibutyrate (PDBu) in our models of pituitary

cell K+-induced 45Ca2+ influx showed no selectivity between the two forms of

modulation (see Chapter 3). Due to the selectivity of 1,2-dioctanoyl-sn-glycerol (DOG)

seen on the models of rat anterior pituitary cell K+-induced 45Ca2+ influx, the ability of

DOG to activate cytosolic PKCs was investigated and compared to the ability of PDBu

to activate the same PKCs. The preparation used for these studies was initially rat

midbrain cytosol from which PKC-like activity had been partially-purified by DE52, as

described in section 2.2.8. Rat midbrain is a region which had been previously shown

to contain mRNA for all seven known PKC isoforms (a, BI, BII, y, 8, e and Young,

1989). Using kinases from partially-purified midbrain cytosol, PDBu (0.01 - 10 fiM)

in the presence of excess EGTA, was found to enhance [35S] thiophosphate

incorporation into histone-IIIS in a concentration-dependent manner (Figure 6.1). The

calculated EC50 for this enhancement was 906 ± 73 nM PDBu (n = 4), with the

enhancement at concentrations of 1 |iM PDBu and greater being significantly (P <

0.05) different from basal incorporation (in presence of phosphatidylserine alone). The

presence of 100 nM free Ca2+ in the assay enhanced total PKC activity (measured at 10

(J.M PDBu) from values of kinase activity in the absence of Ca2+ which were 61 ± 4%

of the maximal PKC activity in the presence of 100 nM free Ca2+ (n = 4; Figure 6.1).

In the presence of 100 nM Ca2+, PDBu (0.01 - 10 |oM) also enhanced PKC activity in

a concentration-dependent manner, resulting in an EC50 = 357 ± 89 nM. The

enhancement of PKC activity in the presence of 100 nM free Ca2+ was significantly (P

< 0.05) greater than basal activity and significantly different from activity in the absence

of Ca2+ at concentrations of PDBu of 100 nM and greater. In the presence of 100 |iM

free Ca2+, total PKC activity (measured at 10 |iM PDBu) was not enhanced above the

total PKC activity measured in the presence of 100 nM free Ca2+ (97 ± 6%) of
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maximum inducible PKC activity, n = 4; Figure 6.1). PDBu (0.01 - 10 |J.M) also

enhanced PKC activity in a concentration-dependent manner, resulting in an EC50 = 94

± 62 nM. The enhancement of PKC activity in the presence of 100 |iM PDBu was

significantly (P < 0.05) different from basal activity at concentrations of PDBu of 30

nM and greater. Activity with 100 (iM Ca2+ was also significantly greater (P < 0.05)

than the activity with 100 nM Ca2+ at 30, 100, 300 and 1,000 nM PDBu.

The diacylglycerol, DOG was also able to enhance cytosolic PKC activity

from midbrain, with the enhancement occurring in the absence and presence of 100 |iM

free Ca2+ (Figure 6.2(a)). In the absence of Ca2+ (excess EGTA), DOG (0.1 - 1,000

(iM) enhanced PKC activity in a concentration-dependent manner with an EC50 = 75 ±

21 |iM, with the maximal PKC activity in the absence of Ca2+ (measured at 1,000 |iM

DOG) being 29 ± 4% of maximal inducible PKC activity (n = 4). In the absence of

Ca2+, PKC activity was significantly (P < 0.05) enhanced above basal activity levels at

concentrations of DOG of 100 |iM and greater. However, in the presence of 100 |iM

Ca2+, DOG (0.1 - 1,000 |iM) enhanced midbrain PKC activity with an EC50 = 1.4 ±

0.6 |iM (n = 4). The enhancement of PKC activity in the presence of 100 |lM Ca2+
was significantly (P < 0.05) greater than basal activity and significantly (P < 0.05)

greater than activity in the absence of Ca2+, at concentrations of DOG of 1 (iM and

greater. The maximal inducible midbrain cytosolic PKC activity (with 1,000 |iM DOG

and 10 (iM PDBu) was of a similar magnitude for both activators. The relatively high

potency of DOG on Ca2+-stimulated activity seen in midbrain is in contrast to the effect

of DOG on COS 7 cell PKC. COS cells are reported to contain only a-PKC (Kosaka

et al, 1988; Schaap et al, 1989) and the partially-purified cytosolic PKC activity from

these cells is stimulated by DOG (0.1 - 1,000 |iM) in a concentration-dependent manner

(EC50 = 28 ± 12 |iM in the presence of 100 |iM Ca2+, n = 4; (Figure 6.2(b))). This

potency of DOG at enriched a-PKC was markedly lower than the potency of DOG in

midbrain cytosol preparations which contain a mixture of all known isoforms.

Furthermore, DOG cannot stimulate kinase activity at all in the absence of Ca2+ in
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COS 7 cell cytosol preparations, which is consistent with a-PKC being a Ca2+-

dependent enzyme (Nishizuka, 1988). The PKC activity in COS 7 cells in the presence

of Ca2+ was significantly (P < 0.05) greater than basal activity (or activity in absence of

Ca2+) with concentrations of DOG of 30 pM and greater.

Effect of H7, staurosporine and Ro318220 on cytosolic protein kinase C

activity from various tissues

Partially-purified male rat midbrain cytosol was again used as a source of

the known PKCs (Young, 1989) to examine the effects of the PKC inhibitors

staurosporine and Ro318220, which showed no selectivity in the dual regulation of

Ca2+ channels by PKC and H7, which did show selective inhibition of the response to

PKC activation in GH3 cells (see Chapter 3). Kinase activity was stimulated with 1

pM PDBu and the enhancement in activity in the absence (excess EGTA) and presence

of 100 pM Ca2+, was termed Ca2+-independent and Ca2+-dependent PKC activity

respectively.

Using PKCs from midbrain cytosol partially-purified in DE52 by elution

with 0-150 mM NaCl, H7 (10 - 300 pM) inhibited (in a concentration-dependent

manner) both Ca2+-dependent and Ca2+-independent PKC activity with similar potency

(34 ± 5 and 27 ± 9 p.M respectively, n = 4; Figure 6.3 and Table 6.1). Equivalent

results were obtained with staurosporine (30 - 1,000 nM) and Ro318220 (10 - 3,000

nM) (Figure 6.3). Staurosporine inhibited Ca2+-dependent and Ca2+-independent
PDBu-stimulated kinase activity with potencies of 450 ± 53 and 382 ± 34 nM

respectively (n = 4), whereas the potencies of Ro318220 were 252 ± 40 and 213 ± 47

nM respectively (n = 4). Therefore, no difference in potency was seen with the

inhibitors H7, staurosporine and Ro318220 between Ca2+-dependent and Ca2+-

independent PKC activity extracted from male rat midbrain.

In the light of the differential sensitivity of phorbol ester effects to H7 (but

not staurosporine or Ro318220) in male rat anterior pituitaries (Chapter 3), the
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sensitivity of PKCs from a number of tissue cytosol preparations (including male rat

anterior pituitary) to inhibition by H7 and staurosporine was investigated (Figure 6.4

and Table 6.1). PKCs partially-purified (0 - 150 mM NaCl, DE52) from cytosol

preparations of male anterior pituitary were used to test the sensitivity of Ca2+-

dependent and Ca2+-independent PDBu (1 pM)-stimulated PKC activity to the

inhibitors H7 and staurosporine. Staurosporine (10 - 1,000 nM) inhibited both Ca2+-

dependent and Ca2+-independent PKC activity in a concentration-dependent manner

(Figure 6.4(d)), with IC50 values of 107 ± 39 and 117 ± 46 nM respectively (n = 4).

At none of the tested concentrations of staurosporine were the relative amounts of

Ca2+-dependent or Ca2+-independent PKC activities significantly different. In

contrast, the concentration-dependent inhibition by H7 (10 - 300 pM) of Ca2+-

dependent PKC activity (IC5o= 17 ± 4 pM, n = 4) was of much higher potency than

the concentration-dependent inhibition by H7 of Ca2+-independent PKC activity (IC50

= 121 ± 18 pM; Figure 6.4(c)). The Ca2+-dependent and Ca2+-independent PKC

activities from male anterior pituitary cytosol were inhibited to significantly different

extents with concentrations of H7 of 30 and 100 pM. Similarly, a reduced potency of

H7 on Ca2+-independent PKC activity was also seen in partially-purified (0 - 150 mM

NaCl, DE52) cytosol preparations from male rat lung (Figure 6.4(b)), although with

not as marked a reduction in potency as seen using anterior pituitary cytosol

preparations. The inhibitor H7 (10 - 300 pM) reduced PDBu-stimulated Ca2+-

dependent and Ca2+-independent PKC activity in a concentration-dependent fashion

(IC50S = 39 ± 5 and 81 ± 10 pM) respectively (n = 4). The difference in Ca2+-

dependent and Ca2+-independent lung PKC activity was significantly (P < 0.05)

different with a concentration of 30 and 100 pM H7. However, the reduced potency of

H7 was not seen in cytosol preparations from all tissues. As described above, male rat

midbrain cytosolic PKC activity showed similar inhibitory potency of H7. This was

also the case for partially-purified PKC activity from rat spleen (Figure 6.4(a)), frontal

cerebral cortex, cerebellum and COS 7 cell cytosols (Table 6.1). Staurosporine also
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showed no difference in potency between Ca2+-dependent and Ca2+-independent PKC

activity (Table 6.1) in male midbrain and anterior pituitary cytosols, however, the

potency of staurosporine appeared somewhat greater in anterior pituitary cytosol than

the potency of inhibitors in midbrain cytosol.

The relative amounts of Ca2+-dependent PKC activity (with 100 |lM free

Ca2+ and 1 |iM PDBu) as a proportion of total PKC activity in lung, frontal cerebral

cortex, cerebellum, spleen COS 7 cell, male midbrain and male pituitary cytosols was

23 ± 9, 17 ± 4, 33 ± 3, 34 ± 6, 97 ± 12, 45 ± 4 and 54 ± 11% respectively (n = 4),

with the remainder of the total activity being Ca2+-independent.
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Figure 6.1. Effect of PDBu on partially-purified male rat midbrain

cytosolic PKC activity.

Concentration-response relationship of PDBu stimulation of PKC activity from male rat

midbrain cytosol whose PKCs were partially-purified on DE52 with 0-150 mM NaCl.

Stimulated PKC activity is shown in the absence of Ca2+ (open circles), the presence of

100 nM free Ca2+ (closed circles) or presence of 100 jiM free Ca2+ (closed squares).

The methodology employed was the same as that described in section 2.2.8. The data

represent the mean ± SEM of 4 determinations, with values expressed as a % of the

maximal activity seen. The incorporation of 35S into the substrate (histone) in the

presence of phosphatidylserine (100 |ig/ml final with 0.04% Nonidet-P40) alone was

subtracted from the data.
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Figure 6.2. Ability of DOG to stimulate partially-purified PKC

activity from male rat midbrain and COS-7 cell cytosol.

Concentration-response relationships for DOG to stimulate Ca2+-independent (open

symbols) and 100 |iM Ca2+-dependent (closed symbols) PKC activity from male rat

midbrain (a) and COS-7 cell (b) cytosolic preparations that were partially-purified for

PKCs on DE52 with 0-150 mM DE52. The methodology employed was the same as

that described in section 6.2. The incorporation of 35S into the substrate (histone) in

the presence of phosphatidylserine (100 (ig/ml with 0.04% Nonidet-P40) alone was

subtracted from the data, which are expressed as a % of the maximal PKC activity of

the tissue seen with 1 |iM PDBu and 100 |iM free Ca2+. The data represent the mean ±

SEM of 4 determinations.



Figure 6.3. Effect of H7, staurosporine and Ro318220 on PKC

activity from partially-purified male rat midbrain cytosol.

Concentration-response relationships for H7 (a), staurosporine (b) or Ro318220 (c) to

inhibit Ca2+-independent (open symbols) and 100 (iM free Ca2+-dependent (closed

symbols) PKC activity from male rat midbrain cytosol that had its PKCs partially-

purified on DE52 with 0-150 mM NaCl. The methodology employed was that

described in section 2.2.8. Incorporation of 35S into the substrate (histone) under basal

conditions (100 |ig/ml phosphatidylserine with 0.04% Nonidet-P40 alone) was

subtracted from the values of PKC activity. No significant differences between levels

of Ca2+-dependent and Ca2+-independent PKC activity was seen for either H7,

staurosporine or Ro318220. The data represent the mean ± SEM of 4 determinations.



%ofPKCactivityremaining%0fPKCactivityremaining%ofPKCactivityremaining c/>
Q)

C

-t

o

(/)
■O

o

"T

3*

(D

OH o o o o o o o

NO

O

I

o

_L_

O)

o

00ooo

NO

OO
I

o o o o o

o

o>

o

00

o

_L_

o o

_l

I

to

Q C
CD

CO



Figure 6.4. Effect of H7 on partially-purified PKC activity from

male rat spleen, lung and anterior pituitary cytosol.

Concentration-response relationships for H7 (a, b, c) and staurosporine (d) to inhibit

Ca2+-independent (open symbols) and 100 (iM Ca2+-dependent (closed symbols) PKC

activity from male rat spleen (a), lung (b) and anterior pituitary (c, d) cytosol that had

its PKCs partially-purified on DE52 with 0-150 mM NaCl. The methodology

employed was as described in section 2.2.8. Incorporation of 35S into the substrate

(histone) under basal conditions (100 (tg.ml phosphatidylserine with 0.04% Nonidet-

P40 alone) was subtracted from the values of PKC activity. The levels of inhibition

seen between Ca2+-dependent and Ca2+-independent PKC activity with 30 and 100 |iM

H7 in lung and anterior pituitary were significantly (P < 0.05) different. The data

represent the mean ± SEM of 4 determinations.
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Table 6.1. Potencies of H7 and staurosporine to inhibit PKC

activity from various male rat tissue and COS-7 cells cytosolic

preparations.

The IC50 values for H7 and staurosporine to inhibit 100 pM Ca2+-dependent and

Ca2+-independent PKC activity form the cytosols of various tissues was calculated by

the program, 'P-fit' (section 2.2.10). The cytosol from each tissue had their PKCs

partially-purified on DE52 with 0 - 150 mM NaCl, as described in section 2.2.8. The

substrate for PKC used in each assay was histone, and 35S incorporation into substrate

under basal conditions (100 pg/ml phosphatidylserine with 0.04% Nonidet) was

subtracted from 1 pM PDBu-stimulated and 1 pM PDBu plus 100 pM free

Ca2+-stimulated PKC activity (Ca2+-independent and Ca2+-independent plus

Ca2+-dependent PKC activity respectively). The data represent the mean ± SEM of 4

determinations.



Table 6.1

IC5os for H7 (pM)

cytosol Ca2+-dependent Ca2+-independent

lung 39 ±5 81 ± 10

frontal cerebral cortex 31 ±5 35 ±5

cerebellum 34 ±9 38 ± 15

spleen 19 ±3 25 ±3

COS 7 cells 36 ± 11 No signal

male midbrain 34 ±5 27 ±9

male pituitary 17 ±4 121 ± 18

IC50S for staurosporine (nM)

cytosol Ca2+-dependent Ca2+-independent
male midbrain

male pituitary

450 ± 53

101 ±39

382 ± 34

117 ±46
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6.4. DISCUSSION

Phorbol esters have been reported to have some actions which are

independent of PKC (Doerner et al, 1990; Kolesnick and Paley, 1987; Kolesnick and

Hemer, 1990; Billah and Anthes, 1990). However, these non-PKC-mediated effects

of phorbol esters either occur at very high concentrations of phorbol esters (Doemer et

al, 1990), in which the action of the compounds may be due to disruption of the lipid

environment of cells; or are poorly understood. The main action of phorbol esters,

such as PDBu, is still thought to be almost exclusively to activate PKC. In the kinase

activity assay used here, we have termed the associated kinase activity to be that of the

enzyme(s), PKC. However, it is possible that PDBu could be activating a kinase

activity which is not PKC, but some other kinase which is also activated by PDBu.

Such an enzyme has not been discovered, although Ryves et al (1989) have described

a kinase which is not PKC, is selectively activated by a structurally related compound,

resiniferatoxin and yet is also activated (although poorly (to approximately 15% of

maximum)) by phorbol esters. This resiniferatoxin-sensitive kinase does not seem to

have a role in our two models of PKC action in rat anterior pituitary cells (Chapter 3) as

resiniferatoxin is without effect on either model (R Mitchell, unpublished

observations). Thus, until disproved, the main action of PDBu here, is likely to

involve a PKC, and the kinase activity assay used in this chapter is thought to represent

PDBu-stimulated PKC activity. Also uncertain is the extent to which Ca2+-dependent
and Ca2+-independent PKC activity represents the A and B series PKC isoforms

respectively. Pelech et al (1991) have described forms of PKC-B which lose their

Ca2+-dependence and are produced upon the phosphorylation of the enzyme after PMA

stimulation of platelets. The elution from Mono Q ion-exchange chromatography

columns of the various forms of phosphorylated PKC-B was retarded, and alkaline

phosphatase treatment of these forms resulted in the production of the original PKC-B

species. These Ca2+-independent forms of PKC-B also displayed a high histone
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phosphorylating capacity. It is possible that the Ca2+-independent PKC activity

displayed here, could represent (at least in part) such Ca2+-independent forms of A

series PKC isoforms. However, several lines of evidence suggest this not to be the

case. Firstly, PDBu-stimulation of Ca2+-independent PKC activity in midbrain (which

is known to contain substantial amounts of B series isoforms) resulted in a 50%

maximal activity of the total PKC activity inducible in the added presence of Ca2+

(Figure 6.1), suggesting that a specific subset of PKCs is being activated, and the

activation of Ca2+-independent PKC activity is not simply a 'breakthrough' in activity

of Ca2+-dependent PKCs in the absence of Ca2+ at higher concentrations of PDBu

(similar results were also obtained with DOG activation of midbrain cytosolic PKCs

(Figure 6.2(a))). Furthermore, DOG-activation of a-PKC from COS 7 cells, resulted

in no increase in activity in the absence of Ca2+, with only Ca2+-dependent PKC

activity being seen, as would be expected for an A series PKC isoform. Lastly,

although histone was suggested to be a poor substrate for PKC-e (Schaap etal, 1989),

it is known that other B series isoforms can use histone as a convenient substrate (Ono

et al, 1987b; Ono et al, 1988a; Ono et al, 1989b; Nishizuka, 1988; Mischak et al,

1991), and for midbrain at least, B series isoforms of PKC are known to be present.

Activation kinetics of PKC by activators is a complex issue (Bazzi and

Nelsestuen, 1989). In Figure 6.1, it is seen that free Ca2+ at a concentration of 100 nM

(which approximates to the basal cytosolic calcium concentration within cells) is

sufficient to activate Ca2+-dependent PKCs in addition to Ca2+-independent PKCs.

This suggests that basal cytosolic Ca2+ within a cell is sufficient to activate significantly

Ca2+-dependent PKCs but only under cytosolic conditions of higher free Ca2+
concentration will the activity of PKC be enhanced sufficiently to become fully active at

lower concentrations of activator (in this case, PDBu). Thus any activator of the Ca2+-

dependent PKCs will be more efficacious under stimulated cellular conditions of high

Ca2+. Activity assays of PKC have always been carried out under conditions of high

Ca2+ or zero Ca2+ (in excess EGTA). However, physiologically, the free cytosolic
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Ca2+ concentration never would be reduced to the levels of free Ca2+ seen in the

presence of excess EGTA, and perhaps a more physiological assessment of PKC

activity should be carried out under conditions of high and low Ca2+, and not high and

zero (< 3 nM) Ca2+. The presence of 100 pM Ca2+ induced a leftward shift in the

potency of PDBu towards cytosolic midbrain PKC activity (Figure 6.1). This is

consistent with the work of others (Sekiguchi et al, 1988; Huang et al, 1988; Naor,

1990) who have also shown that high concentrations of Ca2+ enhance the activity of A

series isoforms of PKC to any set concentration of activator, but always induce the

maximal level of PKC activity seen in low Ca2+ concentrations, and never any

additional activity in the presence of high concentrations of Ca2+. The results in Figure

6.1 would suggest that PDBu has reduced potency towards Ca2+-independent forms of

PKC compared to the PDBu potency towards Ca2+-activated forms of PKC.

Furthermore, the DOG potency towards Ca2+-independent PKCs is also reduced

compared to the potency of DOG towards Ca2+-dependent forms of PKC from

midbrain cytosol (Figure 6.2(a)). It also appears that DOG is slightly less efficacious

towards Ca2+-independent forms of PKC from midbrain, as the maximal PKC activity

in the presence of Ca2+ was similar for both DOG- and PDBu-activation. However,

the maximal activity of the Ca2+-independent forms of PKC was less for DOG than it

was using PDBu as an activator. The functional significance of this is uncertain but

may represent a partially-selective profile of activation being exhibited by DOG rather

than by PDBu. In this vein, the potency of DOG to activate PKC-a from COS 7 cells

was markedly reduced compared to the potency of DOG to activate Ca2+-dependent
forms of PKC from midbrain (which contains a mixture of all known PKC isoforms

(Young, 1989)) (EC50= 28 ± 12 and 1.4 ± 0.6 pM respectively). The exact content of

PKC-a in male rat midbrain is unknown as the identification of the isoforms was

carried out by mRNA in situ hybridisation, which is not quantitative, only qualitative.

However, the presumed pure PKC-a from COS 7 cells was still activated by DOG (but

only in the presence of Ca2+). This suggests that DOG has reduced potency towards
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PKC-oc and is consistent with the findings in Chapter 5, in which the affinity of DOG

for displacement of specific [3H]-PDBu binding was reduced in cytosol preparations

with a high PKC-a content (Figure 5.8). These results are supportive of the contention

that the oc-isoform of PKC is involved in the reduction of 'L'-channel activity in

anterior pituitary cells (Chapters 3 and 4) and that DOG up to 100 |lM only poorly

activates this isoform in vitro and in cell responses (Figure 3.5).

One other putative PKC isoform-selective compound which emerged from

our studies on anterior pituitary cell K+-induced 45Ca2+ influx (Chapter 3) was the

PKC inhibitor, H7 (Figure 3.10), with the effect of PDBu on anterior pituitary prisms

being more resistant to inhibition by H7 than that in GFI3 cells. In male rat midbrain

cytosol preparations (Figure 6.3), neither H7, staurosporine nor Ro318220 showed

any disparity in their potencies of inhibition of Ca2+-independent PKC activity.

However, an 'H7-resistant' Ca2+-independent PKC activity was found in male anterior

pituitary cytosol, whereas both Ca2+-dependent and Ca2+-independent PKC activities

were inhibited by staurosporine with a similar potency (Figure 6.4). This finding was

similar to those on modulation of 'L'-channel activity by PDBu in rat anterior pituitary

prisms and GH3 cells with the enhancement of K+-induced 45Ca2+ influx into GH3

cells being less sensitive to inhibition by H7 than the H7-inhibition of the

corresponding PDBu-response in GH3 cells (staurosporine being equally sensitive on

both responses (see Chapter 3)), and it may be that it is this Ca2+-independent form

which is involved in the enhancement by PDBu of 'L'-channel activity in anterior

pituitary pieces (and possibly by other agents in GH3 cells too). Nakadate et al (1989)

have described a PKC inhibitor profile of H7 that is similar to that found here. In

mouse epidermal cells, quercetin inhibited with matched potencies, phorbol ester-

induced ornithine decarboxylase induction and phorbol ester-induced suppression of

epidermal growth factor binding. However, the phorbol ester-caused inhibition of

epidermal growth factor binding was markedly less sensitive to inhibition by H7 than

phorbol ester-induction of ornithine decarboxylase (Nakadate et al, 1989). The authors

182



suggested that the disparity with H7 could be due to the differences in substrate used by

PKC in whole mouse epidermal cells, whereas here a similar pharmacological profile

was seen with H7, but on the same substrate (histone-IIIS; Figure 6.4), and it may be

that the reduced potency to H7 in mouse epidermal cells could reflect such an H7-

insensitive form of PKC (a possibility not raised by Nakadate et al, 1989). A range of

tissue cytosol preparations was also investigated to see whether they possessed an 'H7-

resistant' kinase activity (Table 6.1). The majority of tissues tested did not possess an

'H7-resistant' PKC activity, but displayed more normal sensitivity to H7 (< 40 (iM) as

was seen for baculovirus expressed e-PKC and purified a/B/y mixtures from bovine

brain (Schaap and Parker, 1990). However, male rat anterior pituitary, lung (Figure

6.4) both contained an 'H7-resistant', Ca2+-independent PKC activity (with lung being

slightly more sensitive than pituitary). The distribution of this activity does not

coincide with the content of any particular known isoform (Ono et al, 1987a; Ono et al,

1988a; Ono et al, 1989b; Shearman et al, 1988; Young, 1989). Further extensive study

has so far not revealed any other tissues that possess a kinase activity which has

reduced affinity towards H7 inhibition (M S Johnson and R Mitchell, unpublished

observations) and it may be that this pharmacologically-distinct form of PKC is one

which is previously unclassified, is present selectively in rat anterior pituitary (and to a

lesser extent in lung) and is a novel form of PKC (possibly a novel sequence isoform).

Curiously, the sensitivity of the PDBu-stimulated kinase activities is lower

to staurosporine-inhibition (ie, IC50S >100 nM) than the potency of the inhibition by

staurosporine seen in other models (IC50S = 19 ± 8 and 15 ± 10 nM on PDBu-induced

modulation of KMnduced 45Ca2+ influx into rat anterior pituitary prisms and GH3

cells respectively (see section 3.3)) and reported by others (Kase et al, 1987). The

reasons for this reduced potency to staurosporine are unclear, but were also reported in

a mixed-micellar PKC activity assay similar to ours (Schaap and Parker, 1990) and

may represent a physicochemical interaction of staurosporine with the detergent,

Nonidet P-40. Also of interest was the fact that the potency of staurosporine in male
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and female anterior pituitary cytosol was somewhat higher than that found using male

and female midbrain cytosols (Table 6.1). The reasons for this discrepancy are

presently unclear (not being obviously reflected in the experiments on pharmacology of

Ca2+ channel regulation). Full characterisation of the different forms of PKCs

underlying these phenomena and their properties clearly warrants further extensive

study. Moreover, characterisation of a kinase activity which is particularly sensitive to

mezerein, is currently being investigated within our laboratory.
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CHAPTER 7

Overview



Overview

A large number of cellular communication molecules signal within their

target cells by transduction processes which, in part, involve the activation of protein

kinase C (PKC). Not only the various neurotransmitters, hormones and growth factors

that primarily signal through hydrolysis of phosphoinositides (Michell, 1975; Berridge

and Irvine, 1984; Downes and Michell, 1985), but also those which can induce a

hydrolysis of phosphatidylcholine (Billah and Anthes, 1990; Exton, 1990) are able to

generate diacylglycerol, which is an endogenous activator of PKC (Nishizuka, 1984a).

Both transmitters which can cause activation of the enzymes, phospholipase A2 and

phospholipase D, have the potential to generate lipid products which can activate PKC

(Axelrod et al, 1988; Pelech and Vance, 1988; Loffelhotz, 1989). It is clear that PKC

has a crucial role in the signalling of a vast array of extracellular stimuli. However,

although PKC has a large number of target proteins (see Table 1.1), extracellular

signals may act to produce 'signal-specific' responses in their target cells. This may be

achieved in part through auxiliary signalling factors (eg, concomitant production of

various inositol phosphates, steroidal environment, intracellular ionic environment and

regulation of ion channel function, metabolic sufficiency, etc), but could also be

influenced by any activator and/or substrate specificity of the isoforms of PKC (Huang,

1989; Parker et al, 1989; Pfeffer et al, 1990). The mechanisms by which extracellular

stimuli can control the activity of specific PKC isoforms is of immense interest as

clarification of these mechanisms may lead to the generation of novel classes of

therapeutically-useful compounds. Such agents may also be used to advance our basic

knowledge of cellular function/dysfunction, and thus in turn, generate novel therapeutic

opportunities. The present investigations here were an attempt to advance our

knowledge of the pharmacology of various forms of PKC, and to relate this knowledge

to physiological events in functioning cells.
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Depolarisation-induced 'L'-type Ca2+ channel activity in rat anterior

pituitary cells was used as a model of the actions of distinct forms of PKC. It was clear

(Chapter 3) that overtly similar 'L'-channels existed in rat anterior pituitary tissue and in

the GH3 anterior pituitary cell line, however activation of PKC by PDBu leads to either

an enhancement or inhibition of the 'L'-type Ca2+ channel respectively. This tissue-

specific dual modulation may be due to the differing PKC isoform content of each

tissue (Chapter 5) (although, of course, other factors such as endogenous modulators,

auto-phosphorylations or other unknown influences may contribute). The a-PKC

content of GH3 cells is markedly higher than the content of a-PKC in whole rat

anterior pituitary. The a-PKC content in each tissue could be successfully predicted by

the novel means of associations between the effects of AA and DOG on [3H]-PDBu

binding aids, discerning the content of cytosolic a-PKC in a tissue. These predictions

were closely in agreement with the work of Naor (1990) (who assessed the a-PKC

content through Western immunoblot). It is possible that distinct PKC isoforms may

enhance or inhibit 'L'-type Ca2+ channel function by influencing the phosphorylation

of separate PKC phosphorylation sites that are known to exist on the ai and 6 subunits

of the 'L'-type Ca2+ channel and such a mechanism may account for the differences

seen between rat anterior pituitary pieces and GH3 cells. A dual control by PKC was

also seen for the epithelial CL-channel (Li etal, 1989) where the differential action of

PKC isoforms was also suggested. Our evidence for a dual PKC-mediated modulation

of 'L'-type Ca2+ channels which is tissue-determined (see section 1.3) and is a result of

the prevailing PKC isoform-content of the cell (MacEwan and Mitchell, 1991) may be

of considerable importance in consideration of the control of voltage-sensitive Ca2+

(and other ion) channels in a variety of tissues.

Further support for our hypothesis that distinct forms of PKC mediate an

enhancement or inhibition of 'L'-channel activity in anterior pituitary cells comes from

work on a series of agents with apparent selectivity for different forms of PKC

(Chapter 3). Indeed, not only can an enhancement of 'L'-channel activity be seen in
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both anterior pituitary prisms and GH3 cells with compounds such as mezerein, but an

inhibition of 'L'-channel activity can be shown in both anterior pituitary prisms and

GH3 cells with the G-PKC isoform-selective phorbol ester, DOPPA (section 3.4).

Therefore, it is not assumed to be not an invariant, tonic influence on 'L'-type Ca2+

channel in anterior pituitary prisms or GH3 cells which governs an enhancement or

inhibition of the channel activity, but the outcome of at least 2 inverse influences which

are already seen to be amenable to pharmacological manipulation with putative PKC

isoform-selective compounds. The ability of DOPPA to reduce K+-induced 45Ca2+
influx into GH3 cells and anterior pituitary prisms (section 3.4) implicates a role for B-

PKC in the reduction of 'L'-channel activity, and suggests that it is not G-PKC that is

involved in enhancing 'L'-channel activity. In addition to this, arachidonic acid (AA)

could reduce 'L'-channel activity in GH3 cells. Arachidonic acid can selectively

activate the y-isoform of PKC, and to a lesser extent, the a- (and then G-) isoforms of

PKC (Naor et al, 1988a). However, y-PKC is absent from GH3 cells, but the cells do

contain at least a-, G- and e-PKC (Naor (1990) and R Mitchell, unpublished

observations), a profile which was also found in the related GH4C1 cell line (Kiley et

al, 1991). The inhibition by AA (without its metabolic conversion) of K+-induced

45Ca2+ influx into GH3 cells is mediated by PKC (Chapter 4). However, the known

content of PKC isoforms in the cells indicates that AA-activation of y-PKC is not

responsible for the inhibition of 'L'-channel activity in GH3 cells (as y-PKC is absent

from the cells), thus suggesting that it may well be a-PKC (and perhaps also G-PKC)

which is mediating the AA-induced inhibition of 'L'-channel activity in GH3 cells. The

responsiveness of 8-PKC (or other unknown isoforms of PKC in GH3 cells) to AA-

activation is unknown. It is thought that a Ca2+-dependent form of PKC (such as a or

G) is responsible for the AA-induced inhibition of 'L'-channel activity in GH3 cells, as

agents which raise intracellular calcium concentrations without activating PKC (such as

AA-methyl ester (Chapter 4 and Chan and Turk, 1987; Seifert et al, 1988)) enhanced a

PDBu-induced inhibition of K+-induced 45Ca2+ influx into GH3 cells to levels of
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inhibition similar to those seen maximally with AA (Chapter 4). Unlike AA, PDBu did

not raise intracellular Ca2+ concentrations (Chapter 4). Therefore, it seems that AA can

fully reduce K+-induced 45Ca2+ influx into GH3 cells by PKC activation (as occurs

with PDBu) with the additional raising of intracellular Ca2+ concentrations to thereby

further enhance the activity of a Ca2+-dependent form of PKC. Such a presumably

Ca2+-dependent form of PKC could well be predominantly a-PKC as the AA-

activation of a-PKC in the presence of Ca2+ is markedly greater than the activation of

B-PKC (Naor et al, 1988a).

Supportive of the contention that it is the a-isoform of PKC which mainly

mediates the inhibition of K+-induced 45Ca2+ influx into GH3 cells is the inability of

DOG to cause an inhibition of 'L'-channel activity in GH3 cells (Chapter 3). In

cytosolic [3H]-PDBu binding studies (Chapter 5), DOG was found to have a reduced

affinity towards a-PKC. Furthermore, DOG had reduced potency in activation of a-

PKC from COS 7 cells compared to its activation of a mixture of a, 61, 611, y, 8, e and

£ isoforms of PKC from rat midbrain (Chapter 6). Therefore, these reduced activities

of DOG towards a-PKC may well be sufficient to account for the inability of the

synthetic short chain diacylglycerol (up to 100 p,M) to reduce 'L'-channel activity in

GH3 cells. Due to its cell permeability, DOG is often used to activate PKC in cell

preparations, but its reduced ability to activate a-PKC as exemplified here should be

taken into account in any such cases comparing DOG with phorbol esters.

It seems that it is, therefore, mainly the a-isoform of PKC (and to some

extent the B-isoform) which is responsible for the inhibition of 'L'-type Ca2+ channels

in rat anterior pituitary cells. However, the isoform(s) which is responsible for

enhancement of 'L'-type Ca2+ channel activity in rat anterior pituitary cells is less

certain. Mezerein appears to activate selectively the form(s) of PKC which causes a

facilitation of 'L'-channel activity in both anterior pituitary prisms and GH3 cells

(Chapter 3). The PDBu-activated form of PKC which enhances 'L'-channel activity in

anterior pituitary prisms is relatively insensitive to inhibition by H7, compared to the
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PDBu-activated form(s) of PKC which inhibits 'L'-channel activity in GH3 cells

(Chapter 3). It is not known whether the mezerein-activated form of PKC is the same

'H7-insensitive' form of PKC which is activated by PDBu in anterior pituitary prisms,

or if indeed these are two separate forms of PKC which are present in pituitary cells.

Interestingly, an H7-resistant PDBu-activated PKC activity was found in cytosol from

male rat anterior pituitary (Chapter 6), but not from male rat midbrain, which was

reported to contain mRNA for all the known seven isoforms of PKC (Young, 1989).

This suggests that anterior pituitary contains a novel form of PKC or related kinase

which is neither a-, BI-, BII-, y-, 5-, e- nor £-PKC (or at least their unmodified

holoenzymes). This novel form of PKC was implicated to be involved in the

mechanism by which the LHRH self-priming phenomenon (Chapter 1.4) in female rat

anterior pituitary occurred (M S Johnson, R Mitchell and F J Thomson, unpublished

observations), but its exact targets in vivo have still to be assessed. This 'H7-

insensitive' form of PKC is thought to be a Ca2+-independent form of PKC, as it is

found in the proportion of total PKC activity that is active in the absence of Ca2+ ions.

The PKC activity which is 'H7-insensitive' has a distinct tissue distribution, with its

presence not only in the cytosolic fractions from male anterior pituitary, but also from

lung, female anterior pituitary and female midbrain. Whether the existence of the 'H7-

insensitive' PKC in female midbrain (but not male midbrain) is an issue of gender-

specific transcriptional regulation or steroidal-control is unknown. The further

characterisation of this 'H7-insensitive' PKC in terms of its biochemistry,

pharmacology and physiological roles, is a topic of current active investigation within

our laboratory.

In Chapter 4, experiments were reported that had been designed to assess

whether TRH receptor activation could lead to PLA2 activation. Although the results

did not reach statistical significance, the physiological implications of such findings

would be of great interest with respect to signalling mechanisms in GH3 cells,

especially since AA has been reported to interact with diacylglycerol to synergistically
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activate PKC isoforms (Shinomura et al, 1991) as well as directly activating some of

them alone. It is known that activation of TRH receptors on GH3 cells leads to the

production of both Ins(l,4,5)P3 and 1,2-diacylglycerol (Drummond, 1986). The exact

mechanism by which TRH receptors might induce increased AA liberation in the

present experiments is unknown. Activation of TRH receptors could perhaps lead to

the direct stimulation of phospholipase A2 (PLA2) by a putative G-protein link (a or (3y

subunits), or the AA production could be in indirect consequence of either an

Ins(l,4,5)P3-induced rise in intracellular Ca2+ concentration or a diacylglycerol-

induced activation of PKC (or both). Each of these mechanisms of PLA2 activation has

been shown in other systems (see section 1.2.4). It is also possible that AA production

is occurring as a consequence of diacylglycerol deacylation (see section 1.2.5). In

addition to the fact that AA is metabolised to eicosanoids in GH3 cells, it has been

clearly demonstrated here that AA can enhance activation of PKC within GH3 cells.

The physiological implications of this action of AA are widespread, and include a

possible role for AA in the regulation of Ca2+ channels by means of acting either as a

direct activator, or synergistic factor for certain forms of PKC. TRH receptor-

operated, influx of 45Ca2+ into anterior pituitary tissue occurs through a channel of

which only a small proportion are 'L'-type Ca2+ channels (Mitchell et al, 1989). In

GH3 cells, it has been reported that PKC can reduce TRH-induced increases in

cytosolic Ca2+ concentrations (Drummond, 1985). It could therefore be, that TRH-

induced activation of PKC will result in closing of 'L'-type Ca2+ channels (possibly in

a selective fashion via the a-isoform of PKC). Moreover, the TRH-induced

production of AA may further contribute to the closure of 'L'-type Ca2+ channels, as

was seen here for AA-induced reductions in K+-induced 45Ca2+ influx in GH3 cells

(Chapter 3). The extent to which AA and diacylglycerol synergise to activate (possibly

selected) isoforms of PKC is unclear, but each of these mechanisms will lead to a

reduction in calcium influx through 'L'-type Ca2+ channels.
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The present results support the idea that cellular actions of hormones and

neurotransmitters, which are specific for the target cell encountered, may be determined

by the regulation of the cell-specific expression of key components of the signal

transduction machinery. The expression of such components may be governed by

factors such as steroids, and indeed other secondary-messenger systems to produce a

complex and interactive network of control. Such factors are likely also to control the

expression of distinct forms of PKC in a manner which is appropriate to both the

function of the expressing cell, and the environment and history of the cell type. Once

generated, the various forms of PKC are susceptible to regulation by processes such as

phosphorylation, which will govern the activity of the enzymes and their specificity

towards various endogenous activators, inhibitors and substrates. Any differences in

the rates of degradation of different forms of PKC may also contribute to the balance of

functional outcome. The selective nature of PKC isoforms towards their substrate

targets may have an important role in vivo, resulting in such controlled processes as

secretion and electrical excitability. The modest differences seen here in our

biochemical assays in vivo, may well translate into more profound differences on

whole cell/tissue systems and in vivo due to the presence of selective endogenous

activators and distinct protein targets highly preferred by some forms of the enzyme.

The preliminary evidence obtained here for heterogeneity in the pharmacology of

distinct forms of PKC may provide leads for the development of novel therapeutic

agents.
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Lithium enhances the inhibitory effect of protein kinase C on LHRH-
induced 45Ca2+ influx into rat anterior pituitary tissue in vitro
By M. S. Johnson, D. J. MacEwan, R. Mitchell and F. J. Thomson MRC Brain
Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ

The metabolism of inositol phosphates is modified by Li+ (Allison et al. 1976), and
it has been suggested that this may underlie the therapeutic effects of Li+ in manic-
depressive disorders (Berridge et al. 1982). However, agonist-induced diacylglycerol
production is enhanced by Li+ (Drummond & Raeburn. 1984), suggesting that Li+
may modify several aspects of responses to Ca2+-mobilizing receptors, including the
activation of protein kinase C (PKC).

The influx of 45Ca2+ into prisms of male rat anterior pituitary tissue was measured
by an assay involving quenching of uptake after 30 s and extensive washing in ice-
cold EGTA-containing medium (Fink et al. 1986). The 45Ca2+ influx induced by
100 nM luteinizing hormone-releasing hormone (LHRH) but not by 300 nM
thyrotrophin-releasing hormone (TRH) was inhibited by low concentrations (3-
300 nM) of the PKC activator phorbol 12-myristate. 13-acetate (Mitchell et al. 1989).
The concentration-response curve to LHRH but not TRH was biphasic, and the
downturn at high LHRH concentrations was reversed by inhibitors of PKC (Fink
et al. 1986). Therefore the mechanism of 45Ca2+ influx induced by LHRH but not
TRH can apparently be inhibited by hormone-induced activation of PKC. In the
presence of LiCl (45 min pre-incubation), the 45Ca2+ influx due to 100 nM-LHRH, but
not 300 nM TRH or basal accumulation, was reduced, with 50% inhibition at
1-0+ 0-2 m.M (mean + s.E.M., n = 4). This effect was reversed by the PKC inhibitor H7
(30 /tM) but not by HA 1004 (Hidaka & Hagiwara, 1987). The biphasic concen¬
tration-response curve to LHRH was suppressed by 3 mM-Li+ such that the maximal
response was inhibited by approximately 50% and the downturn phase (from 100 to
1000 iim-LHRH) was amplified. It is possible that enhanced activation of PKC, as
well as modified inositol phosphate metabolism, may contribute to the therapeutic
actions of Li+ in vivo.
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Depolarization-induced 45Caz+ influx into rat anterior pituitary cells in vitro
can be modulated in two ways by protein kinase C
By M. S. Johnson, D. J. MacEwan and R. Mitchell. MRC Brain Metabolism Unit,
1 George Square, Edinburgh EH8 9JZ

The operation of voltage-sensitive Ca2+ channels can be either enhanced or
inhibited by activators of protein kinase C (PKC) (Lacerda et al. 1988). The present
experiments explore the effects of a number of PKC activators on depolarization-
induced 45Ca2+ influx into anterior pituitary cells and in the GH3 cell line.

The influx of 45Ca2+ was measured by an assay involving quenching of uptake after
30 s and extensive washing in ice-cold EGTA-containing medium (Fink et al. 1986).
The 45Ca2+ influx induced in GH3 cells by 60 mM-K+ medium was inhibited by
40-50% in a concentration-dependent manner by 4/?- but not 4a-phorbol 12,13-
didecanoate (PDD) and this effect was reversed by the PKC inhibitor staurosporine
(Hidaka & Hagiwara, 1987). Drummond (1985) also found that K+-induced elevation
of cytosolic Ca2+ in GH3 cells was inhibited by phorbol esters. In contrast, in anterior
pituitary prisms from male rats, K+-induced 46Ca2+ influx was facilitated stereo-
selectively by PDD in a staurosporine-sensitive manner. The PKC inhibitor H7
(Hidaka & Hagiwara, 1987) reversed the stimulatory effect of 300 nM-phorbol 12,13-
dibutyrate (PDBu) with an IC50 of 62+10 jum, mean + s.e.m., n = 5, but gave 50%
reversal of the inhibitory effect in GH3 cells at only 10 jlim. Dioctanoyl-sn-glycerol
(DOG), another PKC activator, at 3-100 [im, was active only in pituitary prisms,
causing facilitation. The inability of DOG to elicit inhibition was also seen by
Lacerda et al. (1988), describing dual effects of PKC on cardiac Ca2+ channels.
Pre-incubation times from 0 to 30 min caused no difference in PDBu effects here. In
both preparations nimodipine blocked the K+-induced influx with 50 % inhibition at
3-7 nM.

The two modes of influence of PKC on K+-induced 45Ca2+ influx here have different

properties which could be consistent with different iso-forms of the enzyme
(Nishizuka, 1988) being involved. It is not clear whether the locus of action in each
case is the L-type Ca2+ channel itself or some other Ca2+-handling component of the
cell.
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Inhibition of depolarization-induced calcium influx into GH3 cells by
arachidonic acid may involve direct activation of protein kinase C
By D. J. MacEwan and R. Mitchell. MRC Brain Metabolism Unit, 1 George Square,
Edinburgh EH8 9JZ

Recent evidence suggests that arachidonic acid (AA) can be produced by several
G protein-linked receptors in response to agents such as bradykinin, noradrenaline
and GABA (Axelrod et al. 1988). Arachidonic acid can be metabolized to derivatives
which modulate cellular function, for example by activation of K+ channels (Kim et
al. 1989). However, Nishizuka and his co-workers have reported that AA can
activate certain isoforms of protein kinase C (PKC) in cell-free systems (Naor et al.
1988). Here we show that exogenous AA, in the presence of inhibitors of its
metabolism, can mimic phorbol esters in reducing depolarization-induced 45Ca2+
influx into GH3 clonal pituitary cells.

GH3 cells were grown, harvested and 45Ca2+-influx measurements were performed
as previously described (Johnson et al. 1989). The 45Ca2+-influx elicited by 60 mM-K+
medium was fully inhibited by nimodipine (IC50 3-7 nsi). Arachidonic acid completely
suppressed 60 mM-K+-induced 45Ca2+ influx in a dose-dependent manner with an ICS0
of 20 ju,M (n = 12). Phorbol esters also stereoselectively inhibited calcium influx into
GH3 cells induced by K+-depolarization (Johnson et al. 1989). Like the effect of
phorbol esters, inhibition by AA was reversed by the PKC inhibitors (Johnson et al.
1989) H7 (2-50 /im) and staurosporine (5-300 nM), but not by their less active
congeners HA1004 and K252a, respectively. Calcium influx was not reduced by 8-Br
cyclic GMP (up to 100 yu), suggesting that guanylate cyclase was not participating
in the effect of AA (Glass et al. 1977). Inhibitors of AA metabolism such as
nordihydroguaiaretic acid, eicosatetraynoic acid, piperonyl butoxide and 2-diethyl-
aminoethyl-2,2-diphenylvalerate had no effect on the action of AA.

These results suggest that AA may itself act in GH3 cells to activate an isoform of
PKC which inhibits the influx of calcium through an 'L'-type voltage-sensitive
calcium channel. It is possible that not only diacylglycerols, but also AA may be
important in the physiological activation of certain PKC isoforms.
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Effects of calmodulin antagonists on neurohormone-induced 45Ca2+ influx
into rat anterior pituitary tissue in vitro
By M. S. Johnson, D. J. MacEwan, R. Mitchell and F. J. Thomson. MRC Brain
Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ

Luteinizing hormone-releasing hormone (LHRH) and thyrotrophin-releasing
hormone (TRH) both induce 45Ca2+ influx into rat anterior pituitary tissue, but
utilize different routes, which are regulated differentially by protein kinase C
(Mitchell et al. 19896). The 45Ca2+ influx induced by LHRH is largely sensitive to
nimodipine (suggesting that it may occur indirectly through voltage-sensitive Ca2+
channels), whereas the response to TRH is resistant to blockers of the known voltage-
sensitive Ca2+ channels or of the Na+/Ca2+ exchanger (Mitchell et al. 19896).
Receptor-activated Ca2+ entry (perhaps such as the response to TRH here) may
involve a synergistic action of inositol 1,3,4,5-tetrakisphosphate (InsPJ and inositol
1,4,5-trisphosphate (InsP3) (A. P. Morris et al. 1987). The production of InsP4 from
lnsP3 by a 3-kinase may be calmodulin (CM)-dependent (A. J. Morris et al. 1987).
We have therefore investigated effects of CM antagonists on neurohormone-induced
Ca2+ entry.

The rapid influx of 45Ca2+ into prisms of tissue from male rats was measured in
30 s incubations with stimuli, as described previously (Mitchell et al. 1989a). At this
time point, the stimulus-induced influx had reached a maximal increment over the
basal 45Ca2+ accumulation in each case. The influx of 45Ca2+ induced by LHRH
(100 nM) or TRH (100 um), but not by 60 mM-K+ medium, was inhibited by a new
selective CM antagonist, 5-iodo-l-C8 (MacNeil et al. 1988) at 1-30 fiM. The related,
>ut less selective compounds W7 and W5 (MacNeil et al. 1988) had similar effects
vith lower potencies. At concentrations of 100 /im, W7 and W5 also caused
significant reduction of K+-induced 45Ca2+ influx (as did pimozide at just 10 fiu),
ndicating that the specificity of these compounds is uncertain at such concentrations.
The present results suggest that an unknown CM-dependent step is indeed involved
n neurohormone-induced 45Ca2+ influx regardless of whether this occurs via known
roltage-sensitive Ca2+ channels (in the case of LHRH) or via some other route of
eceptor-activated Ca2+ entry (in the case of TRH).
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Comparison of purified D2-dopamine receptor from bovine brain and pituitary gland

2 L. CHAZOT and P. G. STRANGE

Biological Laboratory, University ofKent, Canterbury, Kent
CT2 7NJ, U.K.

-dopamine receptors extracted from bovine caudate
luclcus, using the detergent cholate. have been purified to
lpparent homogeneity by affinity chromatography on halo-
rcridol-Sepharose and wheat-germ agglutinin-agarose
:olumns (1 ]. In this report, we describe a preliminary com¬
parison of purified receptor preparations derived from other
3,-dopaminc-receptor-rich regions of bovine brain and the
pituitary gland.

A mixed mitochondrial-microsomal preparation of the
issues studied was solubilized using a sodium cholate (0.3%
v/v)/sodium chloride (1 m) combination and purified in a

-tepwisc manner on a haloperidol type II- or spiperone type
-affinity column |2, 3], followed by wheat-germ
igglutinin-agarose chromatography (11. The resulting puri-
ied Di-dopamine-reccptor preparations were compared by
tereospccific [ 11 (spiperone binding and SDS/PAGE analy-
is 111. Brpvine cerebellum was adopted as a control tissue,
vith no detectable D:-dopamine receptipr present in the

able I. Comparison of the major features observed upon SI)S/
'ACL analysis of various purified I)>-dopamine receptor prepar¬

ations

>,-dopamine receptors were solubilized from the tissues shown
nd assayed by | 'H|spiperone binding as in Hall ct al. [7|. Recep-
prs were purified from the soluble extract and analysed by
DS/PAGE as in Williamson et al. \ 11. The relative intensity of
le major bands on SDS/PAGE are indicated as follows: + +
;ry strong, + strong, — absent.

('H]spiperone binding in M,
soluble preparation

issue (fmol/mg) 95 000 145000

audatc nucleus 133 + + -

jtamen 104 + + -

Ifactory tubercle 65 + + -

—ituitary gland 1 15 + +

erebellum 2 - -

initial mixed mitochondrial-microsomal preparation (data
not shown).

Our purification scheme, adopting both types of affinity
columns, isolates an A/,95 000 glycoprotein as defined by
SDS/PAGE analysis under reducing conditions. Several lines
of evidence cited previously suggest this to be the D,-dopa-
mine receptor in caudate nucleus [ 1 ]. The lack of appearance
of an A/,95 000 species when the cerebellum was the chosen
tissue is consistent with this suggestion (Table 1).

The A/,95 000 species runs coincidcntally on SDS/PAGE
with the major glycoprotein(s) isolated from bovine putamen
(striatal) and olfactory tubercle (limbic) regions, both shown
to be rich in D .-dopamine receptors in membrane and solu¬
ble preparations (|4| and this study). The final purified prep¬
arations from these brain regions also contain stereospecific
| "H|spiperone binding of a similar magnitude to that
observed in caudate nucleus. Thus it seems that in brain the
D:-dopamine receptor purifies as an A/,95 000 species.

The major protein isolated from the pituitary gland using a
spiperone type l-affinity column, however, is an
A/, 142000- 145 000 species, although the A/,95 000 species
is also purified from this tissue. The identity of the higher
molecular mass species awaits pharmacological analysis but.
interestingly, corresponds to recent photolabelling data sug¬
gesting the existence of a A/, 140000-1 50 000 subtype of the
D,-dopamine receptor in the pituitary gland and brain |5, 6],

We thank the M.R.C. for support and Mary-Clare Mirwakl for
typing the manuscript.
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Arachidonic acid acts through protein kinase C to inhibit depolarization-induced 45Ca24 influx

AVID MacEWAN and RORY MITCHELL

'RC Brain Metabolism Unit, University Department of
'tarmacology, / (ieorge Square, Edinburgh EH89JZ, U.K.

ctivation of protein kinase C (PRC) in the GH, clonal
tuitary cell line by phorbol esters (4/j-phorbol
'.,13-didccanoate and phorbol 12,13-dibutyrate (PDBu)
it not 4a-phorbol I 2,1 3-didecanoate| results in a reduction
the J>Ca-+ influx through 'L'-type Ca:+ channels induced

■ 60 mtvt-K* medium [ 11. Briefly, GH, cells grown in Ham
10 medium with 15% (v/v) foetal bovine serum, 1 mM-L-
jtamine, 100 units of penicillin/ml and 0.1 mg of strepto-
—ycin/ml were harvested, washed and resuspended at
6x 10'' cells/ml in 'Ca: + -uptake medium' (concentrations
iiim: NaCl, 154; KCI, 5.4; CaCL, 1.5; D-glucosc, 11;

Abbreviations used: PRC, protein kinase C; PDBu. phorbol
, 13-dibutyrate; DMF. dimethylformamide.

Hepes, 6; pi I adjusted to 7.4 with Tris base and with 0.1%,
w/v. bovine serum albumin). Cells were preincubated (30
min, 37°C, 0:) before a 10 min incubation with drugs (37°C,
0;) then exposure to low-(5.4 iiim) or high-(60 miu) R +
Ca2 + -uptakc medium containing 4>CaCL (~ 3 jrCi/tube).
After 30 s, 4>Ca: + uptake was halted by quenching with ice-
cold 2 itim-EGTA (Ca: + -free) Ca: + -uptake medium and
filtration under vacuum. Cellular 45Ca: + uptake was
measured by liquid scintillation counting. Using the same
conditions as those used for experiments with phorbol esters,
a similar reduction in R f-induced Ca:+ influx was produced
by arachidonic acid [ICS(I (concentration for 50% inhibition
of response) = 20 ± 3 pm, mean±s.E.M., tt= 12]. It has been
suggested [2| that arachidonic acid (or a metabolite) may
reduce cellular Ca:+ concentrations by activating guanylatc
cyclase. Therefore, this possibility was tested in GH, cells.
8-Bromo-cyclic GMP (a cell-permeable activator of protein
kinase G) had no effect on depolarization-induced 45Ca: +

1990



633rd MEETING, LONDON ^^433
influx up to 100 at which K +-induced influx was
105 + 9% of control (mean ± s.e.m., n= 12). In contrast, the
PKC inhibitors H7 (2-50 pu) and staurosporine (5-300 nM)
dose-dependently reversed the inhibitory effect of arachi-
donic acid, but their less active congeners HA 1004 and
K252a, respectively, were inactive at the same concentra¬
tions, thus suggesting that a selective activation of PKC by
arachidonic acid in GH, cells was the mechanism of inhibi¬
tion of Ca2+ influx through "L" channels. Arachidonic acid
can be metabolized to a range of other bio-active com¬
pounds. Inhibitors of any such metabolism [nordihydro-
guaiaretic acid (30 /zm), eicosatetraynoic acid (10 pu),
piperonyl butoxide (30 /tm) and SKF525A (10 ^m)] were
unable to modify the arachidonic acid inhibition of K + -
evoked Ca2+ influx. Therefore, arachidonic acid itself rather
than any of its metabolites appears to be responsible for this
inhibition of depolarization-induced Ca2+ influx into GH,
cells.

The relative abundance of different PKC isoforms in GH,
cells is unknown, but the pituitary gland (from which the
GH, line is derived) contains both a- and ft- but not y-
isoforms [3], The a- and y- but not /3-isoforms respond to
arachidonic acid [3], suggesting that the isoform of PKC
mediating the present results with arachidonic acid may be
a. To test this hypothesis, we carried out a series of ligand-
binding studies at the phorbol ester/diacylglycerol recogni¬
tion site of cytosolic PKCs derived from regions enriched in
different isoforms. Cytosolic [3H]PDBu binding was carried
out as described by Leach et al. [4], Briefly, various regions
of male COB-Wistar rats were homogenized in 2 vol. of
50 mm-Tris-HCl (pH 9.0) containing 1 mm-phenylmethane-
sulphonyl fluoride and 1 mm-MnCL and ultracentrifuged
(100 000 g for 1 h at 4°C then 120 000 g for 1 h, at 4°C).
The supernatant from the second spin was regarded as
cytosol and stored at -40°C until use. Cytosol at a concen¬
tration which gave total binding of ~10% of total radio¬
activity present, was incubated (30 min, 37°C) with various

concentrations (0.5-500 pu) of sonicated arachidonic acid,
1 mg of sonicated phosphatidylserine/ml, [3H]PDBu ( — 0.03
/zCi/tube) and dimethylformamide (DMF) or 2 mM-PDBu in
DMF (for non-specific binding). Protein was precipitated
with 12 mg of bovine gamma globulin/ml and 24% (w/v)
polyethyleneglycol 8000. After 20 min on ice, tubes were
spun (12 000 g for 5 min at 4°C), aspirated and the radio¬
activity in each pellet was determined by liquid scintillation
counting. The binding of [3H]PDBu was not displaced by
arachidonic acid (1-500 pm) but in certain regions was allo-
sterically enhanced. This effect was marked ( + 60-135% at
500 /zm) using regions such as lung and sciatic nerve which
are highly enriched in a-isoform [5] but not (< +18% at
500 jum) in regions such as spleen and cerebral cortex
(enriched in /3-isoforms) or cerebellum (enriched in y-
isoform). Our data therefore suggest not only that
arachidonic acid (as well as diacy(glycerols) can act as a
physiological activator of PKC, but furthermore that it is the
a-isoform of the enzyme that mediates the observed arachi¬
donic acid inhibition of Ca2+ influx. It is possible that activa¬
tion of the a-isoform of PKC by arachidonic acid may be an
important physiological mechanism for the regulation of cel¬
lular function, at least in part, by inhibition of voltage sensi¬
tive Ca2+ influx.

1. Johnson, M. S., MacEwan, D. J. & Mitchell, R. (1989) J. Physiol.
(London) 418,186P

2. Glass, D. G„ Frey, W., Carr, D. W. & Goldberg, N. D. (1977) J.
Biol. Chem. 252, 1279-1285

3. Naor, Z., Shearman, M. S., Kishimoto, A. & Nishizuka, Y. (1988)
Mol. Endocrinol. 2, 1043-1048

4. Leach, K. L„ James, M. L. & Blumberg, P. M. (1983) Proc. Natl.
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Biological activity of some thyrotrophin-releasing hormone analogues substituted at the 2 position

RORY MITCHELL, DAVID MacEWAN,
-MELANIE JOHNSON, LYNNE DOUGAN and

CHRISTINE BLADON
M.R.C. Brain Metabolism Unit, University Department of
Pharmacology, 1 George Square, Edinburgh EH8 9JZ, U.K.

leceptors for thyrotrophin-releasing hormone (TRH; pGlu-
Jis-Pro-NH2) are present in a number of neuronal and endo-
trine cells. Centrally administered TRH analogues produce
inaleptic, hyperthermic and motor effects and have under-
>one limited clinical trials for spinal injury, motor neuron
lisease, circulatory shock and Alzheimer's disease [1], The
iffinities of a number of substituted TRH analogues at these
ites have been extensively studied by ligand-binding tech-
tiques [1], There is some evidence for heterogeneity of TRH
eceptors, first suggested by the somewhat differing potency
atios of TRH and |3-MeHis2|TRH on prolactin and thyro-
rophin release from pituitary tissue in vitro [2], Regional
—lifferences in the affinity of certain benzodiazapines for
"RH receptors [3] are also consistent with the contention of
eceptor heterogeneity. Most recently, studies with a number
if analogues substituted at the 2-position have shown that a
lear segregation of several in vivo actions of TRH can be
chicved with analogues such as [Nval2]TRH [4, 5], We have

Abbreviations used: TRH, thyrotrophin-releasing hormone;
Gla, pyroglutamyl; 3-MeHis, 3-methylhistidyl; Nval, norvalyi.

investigated the activity of these analogues and some novel
heteroaromatic substitutions at the 2-position in a functional
response assay for TRH receptors in vitro.

The rapid influx of 45Ca2 + into slices of anterior pituitary
tissue or cells of the GH, pituitary-derived line (as in the
present experiments) was assayed as previously described
(6]. Briefly, TRH-analogue-induced influx was stopped after
30 s by quenching with ice-cold EGTA-containing medium,
filtration and extensive washing. The response to 300 nM-
TRH was maximal within 30 s and represented in the order
of 180% increase over the basal unstimulated accumulation
of 45Ca2+ by tissue. TRH. [3-MeHis2]TRH and [Nval2]TRH
(Peninsula Laboratories Inc.) all produced similar maximum
responses of around 170-190% increase in 45Ca2+ accumu¬
lation, with approximate EC50 values (concentrations for
50% of maximal response) of 2, 16 and 200 nM, respectively.
A number of other 2-substituted TRH analogues were syn¬
thesized by solution methods (by C.B.) and their structures
verified by fast atom bombardment mass spectra and amino
acid analysis. [4-N02-His2]TRH produced only 45 ±8%
increase at a concentration of 10 /zm (mean ± s.e.m., n = 4). [l-
Furyl-Ala2]TRH, and to a lesser extent [L-pyrolyl-Ala2]-
TR11 and [L-thienyl-Ala2|-TRH were moderately active, pro¬
ducing effects of 152 ±10%, 89 ±11% and 75 ±8%
(means ± s.e.m., /i = 4—6), respectively, at a concentration of
10 pu.

The selective activation of the receptor on GH, cells by
|Nval2]TRH but not [4-NO:-His2]TRH is consistent with this
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representing one of the two receptor subtypes suggested by
data in the literature. We have described the potency of a
number of novel analogues at this receptor subtype. The
effectiveness of [Nval2]TRH at GH, cell TRH receptors is
consistent with its effectiveness in promoting prolactin
release in vivo, since GH , cells are considered to be derived
from one form of prolactin-secreting pituitary cell, the
somatomammotrophe. Recent data describing an inositol
phosphate production assay for TRH responses in GH, cells
have also suggested that [Nval2]TRH is a full agonist of
clearly lower potency than TRH [7], Experiments currently
in progress are investigating the potencies of these analogues
in causing 45Ca2+ influx in other pituitary cells and regions of
the central nervous system.
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Pyroglutamylpeptide amides in rat central nervous system: possible new class of neurotransmitter

JESUS DEL RIO-GARCIA and DEREK G. SMYTH
National Institute for Medical Research, The Ridgeway,
MillHill, London NW71AA, U.K.

Since the first hypothalmic releasing factor, pyroglutamyl-
histidylproline amide (pGlu-His-Pro-amide; thyroid hor¬
mone-releasing hormone, TRH), was identified [1, 2], there
have been a number of reports that this tripeptide occurs in
other regions of the central nervous system [3] and in certain
peripheral tissues [4, 5], Recently, a peptide with a related
structure, pGlu-Glu-Pro amide, was identified in rabbit
prostate [6] and it was shown to occur also in rabbit and
human semen [7, 8]. Since rat portal blood has been reported
to contain three TRH-immunoreactive components [9], of
which only one corresponded chromatographically to TRH,
it has become of interest to investigate whether TRH-related
peptides such as pGlu-Glu-Pro amide occur in brain. In this
communication we describe a chromatographic procedure
for distinguishing between TRH and TRH-related peptides
and we have used this method to test for the presence of
TRH-like peptides in the central nervous system of the rat. In
addition, we report chromatographic data showing that the
new forms of TRH which were found comprise at least seven
components.

Regions of brain tissues were dissected from male
Sprague-Dawley rats (200-250 g), weighed and rapidly
frozen at — 20°C. The tissues were homogenized for 2 min at
room temperature in 100 mM-hydrochloric acid or 1 m-
acetic acid containing approximately 5000 c.p.m. of '-1-
TRH (0.3 pg labelled with 1 mCi of l2-T). The resulting
suspensions were incubated in the homogenizing medium for
10 min, then were maintained for a further 10 min at 100°C
to ensure cyclization of /V-terminal glutamine. After centri-
fugation at 20000 rev./min for 30 min, the supernatants
were concentrated on a rotary evaporator in vacuo, the resi¬
dues were taken up in 1 ml of 50% (v/v) aceticNacid and the
resulting solutions were clarified by centrifugation before
chromatography on a mini-column of SP-Sephadex C25.
The columns (6 cm x 0.5 cm) were prepared in the pyri-
dinium form by washing successively with 5 ml of 1 m-HC1/
H,0/1 m-pyridine, and finally with 50% (v/v) acetic acid.
Elution was performed in 50% (v/v) acetic acid providing
eight 0.5 ml fractions and in 0.4 m-pyridine in 50% (v/v)
acetic acid to provide a further 12 fractions. The ability of
the column to resolve neutral and acidic TRH-related pep¬
tides from basic peptides was demonstrated at the pmolar
level with the aid of synthetic preparations of pGlu-Glu-Pro

Abbreviations used: TRH, thyroid hormone-releasing hormone;
pGlu, pyroglutamyl.

amide and pGlu-His-Pro amide. After chromatography of
the brain extracts on the mini-column, the acetic acid was
removed from the eluted fractions by centrifugation in vacuo
and the concentrations of TRH and TRH-related peptides
were determined by radioimmunoassay using a procedure
described previously [10],

When 100 m-HCI was used for extraction, it was found
that the TRH-immunoreactive peptides obtained were com¬
pletely retained on the cationic mini-column; their distribu¬
tion corresponded to the known distribution of TRH. The
highest concentrations were in the hypothalamus (13.9
pmol/g) and spinal cord (1 1.9 pmol/g), whereas lower con¬
centrations were observed in the olfactory bulb, cortex, mid¬
brain and other regions. In marked contrast, extraction of the
tissues in 1 m-acetic acid revealed additionally the presence
of neutral or acidic TRH-related peptides which were not
retained on the mini-column. These peptides occurred in
high concentration in the hippocampus (40.1 pmol/g), brain
stem (38.3 pmol/g) and dorsal colliculae (34 pmol/g), and
lower concentrations were observed in the cerebellum and
mid-brain. The concentrations were assigned by comparison
with a TRH standard and, since the TRH-related peptides
may be less immunoreactivc than TRH, represent minimum
values.

It is notable that TRH was extracted by 100 mM-HCI or
1 M-acetic acid in similar quantities, but the acidic or neutral
TRH-related peptides were found only in the acetic acid
extracts. The same result was observed when extraction was

carried out in 50% (v/v) acetic acid, 1 m-acetic acid at 4°C or
methanol: TRH was extracted by each of these solvents but
no TRH-related peptides were obtained. These findings
suggest that the TRH-related peptides extracted in 1 m-acetic
acid at room temperature are generated enzymically during
the course of the extraction procedure. The precursors of
these peptides do not appear to react with the TRH antisera
employed.

The TRH-immunoreactive peptides obtained by 1 m-
acetic acid extraction of two rat brains were fractionated by
gel exclusion chromatography on Sephadex G50 Superfine
in 30% (v/v) acetic acid and were separated from TRH by
passage through a column (6 cm x 2.5 cm) of SP-Sephadex
C25 (H+ form, eluted in H:0). The unretained fraction;
were combined, concentrated in vacuo and the peptide;
present were resolved by h.p.l.c. Seven TRH-immunoreac¬
tive components were observed (Fig. 1). Each of the TRH
related peptides was tested for the presence of an acidic
amino acid residue by chromatography at neutral pH on ;
mini-column of DEAE-Sephadex. Fractions I, III and I\
were found to contain acidic peptides; fractions II, V, VI anc
VII contained neutral peptides.
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183 STUDIES ON THE MECHANISM OF LURII-INDUCED 45ca2+ INfLUX IN RAT ANTERIOR PITUITARY CELLS

R. Mitchell, M.S. Johnson, D. MacEwan 4 F. Thomson, MRC Brain Metabolism Unit,
University Department of Pharmacology, 1 George Square, Edinburgh, EH8 9JZ.

The secretion of gonadotrophins in response to LIRH is attenuated by removal of
extracellular Ca? , indicating a partial requirement for Ca^+ influx in LHRM action.
Both LIRH-induced LH secretion in vitro and the rapid influx of ^S(;a2+ induced by 11RH
in anterior pituitary slices^ are inhibited (the former only partially) by
dihydropyridines. In bullfrog sympathetic ganglia and gonadotrophes, LIflH-induced
membrane depolarisation, perhaps by inhibition of preactivated outward K* ('M')
currents, may be the means of activation of voltage-sensitive Ca2+ currents. Indeed the
'M' current blocker uridine 5'-triphosphate (10-300uM) caused a concentration-dependent,
nimodipine-sensitive ^^Ca^+ influx here. This response could not be mimicked by
phorbol ester (phorbol 12-myristate 13-acetate (PMA) at concentrations below 10uM).
Furthermore, the ^Ca'" influx induced by lURH (l-100nM) was unaffected by protein
kinase C inhibitors 117 and polymyxin B (10pM), and inhibited by PMA ( 10-300nM) or by the
diacylglycerol kinase inhibitor R 59022 (10uM). Although our results suggest that
mill-induced Ca? + influx in gonadotrophes may indeed be secondary to 'M' current
inhibition, they contrast witli those in bullfrog sympathetic ganglia and NG 108-15 cells
(but not hippocampal pyramidal cells), where PKC is suggested to mediate M current
closure^.

(1) Mitchell et al. (1989) Ann. N.Y. Acad. Sci 560, 451-153.
(2) Higashida 4 Brown (1988) Nature 323, 333-335.

3. Endocrinol. 124(§uppl) : 103.

Abstract British Endocrine Society Meeting.



198 SELECTIVITY OE PROTEIN KINASE C ACTIVATORS IN THE REGULATION OF Ca2'-CHANNELS IN RAT
7\FiTFk 108 rrruTTARTTCUTC

D.J. Mar.Ewan, R. Mitchell, M.S. Johnson and E.J. Thomson, MRC Brain Metabolism Unit, 1
George Square, Edinburgh EH8 9JZ.

Protein kinase C (PKC) can be activated not only by diacy 1 glycero 1 s and pborbol esters
but also by arachiclonic acid (AA) which can selectively activate certain PKC-isoforms.
I'horbol 12,13-d ibutyrate (Pl)Bu) has previously been shown to enhance depol ar i sat ion-
induced ^Ca?' influx into rat anterior pituitary pieces, but inhibits ^Ca?'
influx into GO3 clonal cells under similar conditions', ibis influx occurs through
an L-type Ca?'-channel in both pituitary pieces and GU3 cells. Amongst a range of
PKC activators tested, on K'-induced ^-'Ca^' influx in these models, 1,2-dioctanoyl
glycerol (DOG), l?-deoxyphoi bol 13-isobu tyra te (DPI!) and AA could selectively elicit
just one of the responses. K'-induced ^Ca^' influx into pituitary pieces was
increased by 100 1 101 in the presence of IOO11M DOG and hy 30 * 5% in the presence of
I11H DI'll. DOG and DI'B were inactive in GII3 cells. In contrast, AA inhibited

K -induced I^Ca^'-inf lux into (1113 cells (ICr,o = 20pM) through activation of
PK(;2 but was inactive in pituitary pieces up to 300itM. There is evidence that both o-
and b- but not T- isoforms of PKC are present in the pituitary-'. It is possible that
the selective actions of certain PKC activators here may be due to their preferential
activation of particular PKC isofonns.

1. Johnson, M.S. et al. (1909) J. Physiol, (in press).
2. MacEwan, D. and Mitchell, R. Biochem. Soc. Trans, (in press).
3. Naor, Z. et al. ( 1900) Mol. Endocrinol. 2, 1013-10'10.

J. Endocrinol. 124(Sup|jl) J 190
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PHARMACOLOGY AND CELLULAR ACTIONS OF PROTEIN KINASE C
ISOFORMS {Eur. J. Pharmacol. 183, 750-751)

Rory Mitchell, David MacEwan, Melanie Johnson and Fiona Thomson, MRC Brain
Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ, UK

Protein kinase C (PKC) and phorbol ester binding sites are widely distributed
and are likely to play a major role in signal transduction/cellular regulation in a
number of systems. It is now clear that at least 7 isoforms of the enzyme are
encoded. However, very little is known of the physiological roles of the isoforms
and whether they display pharmacological differences that may permit selective
intervention. We have developed a number of cellular models of PKC action
allowing us to explore in a physiological context the putative selective
pharmacology of different isoforms.

Experiments were carried out on anterior pituitary cells from rat or on the GH^
cell line. It has been reported that a and p, but not y isoforms of PKC are present in
pituitary and that the pituitary-derived GH3 contains two forms of PKC mRNA.
K+-induced 45Ca2+ influx into GH3 cells and pituitary pieces (both through L
channels) are influenced quite differently by phorbol esters; the former being
inhibited and the latter enhanced by 4B but not 4a-phorbol 12, 13-didecanoate
(PDD)(Johnson, MacEwan and Mitchell, 1989). While both effects were readily
blocked by staurosporine, only that in GH3 cells was readily blocked by H7 (IC50 =
10 pM). We sought selective agonists for the two effects, finding that arachidonic
acid (AA) mimicked the effect in GH3 cells but not pituitary (being both H7- and
staurosporine-sensitive) whereas sn-1,2 dioctanoyl glycerol (DOG) and
12-deoxyphorbol 13-isobutyrate (DPB) were effective only in pituitary. Since AA
activates a and y isoforms but p is not considered to be present here, we suggest
that the effect shown by AA is via aPKC. Ligand binding studies to cytosolic PKC
showed an allosteric enhancement of [3H]-PDBu binding in a-rich but not p- or
y-rich organs and CNS regions, supporting this hypothesis. In contrast, the IC50S
for a range of diacyl glycerols, particularly DOG, in displacing [3H]-PDBu were
much lower in B-rich (or y-rich) regions than in a-rich regions, suggesting that the
facilitatory, H7-resistant profile on 45Ca2+ influx in pituitary pieces was through
B-PKC.

Models at the level of hormone secretion parallel these observations (Johnson
and Mitchell, 1989). PDBu-induced secretion of luteinising hormone (LH) but not
growth hormone (GH) is mimicked by AA. Again the former effect is H7-sensitive
but the latter resistant. Staurosporine is effective on both. The priming effect of
LH-releasing hormone (LHRH) is a unique phenomenon of increased secretory
responsiveness (Mitchell, Johnson, Ogier & Fink, 1988). This can be mimicked in
some aspects by phorbol esters and is sensitive to staurosporine yet not H7. This
profile is reminiscent of the extremely high levels of H7 required to block long-term-
potentiation and we suggest that this is characteristic of the B-isoform of PKC. It is
clear that less well-characterised isoforms may also contribute to these
phenomena to an as yet unknown extent.
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PHARMACOLOGY OF PROTEIN KINASE C ISOFORMS AND THEIR
CELLULAR ACTIONS IN ANTERIOR PITUITARY CELLS.
David MacEwan, Rory Mitchell, Melanie Johnson and Fiona Thomson.
MRC Brain Metabolism Unit, 1 George Square, Edinburgh, EH8 9JZ, UK.

The multiple isoforms of protein kinase C (PKC) may have a range of
distinct functions. We are interested in whether they can be differentially
manipulated pharmacologically in anterior pituitary cells. A number of
distinct pharmacological profiles emerge from experiments on PKC
regulation of secretion and ion fluxes in pituitary cells. Arachidonic acid
(AA), like phorbol dibutyrate (PDBu).acts through PKC in GH3 cells to
attenuate 45Ca2+ influx through 'L'-type Ca2+ channels. However, in
anterior pituitary tissue, AA, cannot mimic the PDBu-induced enhancement
of 45Ca2+ influx through 'L'-channels. Likewise, in pituitary tissue, PDBu-
induced secretion of luteinizing hormone (LH), but not growth hormone
(GH), is mimicked by AA. These PKC-mediated effects are all sensitive to
the PKC inhibitor staurosporine. However, only the influences of PKC on
GH3 (but not pituitary) Ca2+ influx and LH (but not GH) secretion were H7-
sensitive. Selectivity of dioctanoyl glycerol (DOG) and deoxyphorbol
isobutyrate (DPB) will also be discussed. These activators and inhibitors of
PKC may be selective for PKC-isoforms in functional pituitary cells.
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Protein kinase C-dependent and -independent
actions of arachidonic acid in GH3 cells

DAVID J. MacEWAN, RORY MITCHELL. MELANIE S.
JOHNSON and FIONA J. THOMSON

MRC Brain Metabolism Unit, University Department of
Pharmacology, 1 George Square, Edinburgh EH8 9JZ, UK

The influx of 45Ca2+ evoked by exposure of GH3 cells to
high K4-containing medium is mainly (-85%) through a
nimodipine-sensitive route [1], Pre exposure of GH3 cells to
arachidonic acid (AA) causes a time- and concentration-
dependent inhibition of K4-induced 45Ca24 influx which is
reversed by selective inhibitors of protein kinase C (PKC) [2]
and attenuated by down-regulation of PKC levels by 24 h
pre-treatment witn phorbol-12 13-dibutyrate (PDBu) The
inhibition of K4 induced 45Ca24 influx by AA and other
unsaturated fatty acids occurred in the folowing order of
magnitude at 30 pM: AA > linoleic acid > AA methyl ester,
which agrees with their order of potency in activation of PKC
[3] A similar inhibition of K4-induced 4jCa2* influx was
seen with 10 min PDBu treatment prior to the depolarising
stimulus (2], Either PDBu or 48 (but not a) -phorbol 12.13
didecanoate, however, caused a maximal inhibition of
depolarisation-induced 45Ca2+ influx of -50%, whereas AA
fully inhibited K4-induced 45Ca2* influx at a concentration of
100 pM. A selective inhibitor of PKC, H7 [4], fully reversed
the inhibition seen with either PDBu or AA, but HA1004, a
less potent and unselective kinase inhibitor, coutd not
reverse the effect of PDBu or AA The same distinction was

apparent with the PKC-selective and -unselective kinase
inhibitors staurosporine [5] and K252a [6] respectively.
Therefore, the involvement of PKC in AA-induced inhibition
of K4-evoked 45Ca2+ influx into GH3 cells seems likely, but
an additional (non PDBu-like) action of AA must account for
the full inhibition of 45Ca2+-influx seen with AA and not
PDBu.

Fluorimetric studies to determine the cytosolic calcium
concentrations within GH3 cell populations were performed
using the fluorescent dye lndo-1 [7], Briefly, GH3 cells were
loaded with 10 pM lndo-1 acetoxy methyl ester (lndo-1-AM)
for 45 min in culture medium (Hams F-10, 15% foetal bovine
serum, 1 mM l-glutamine, 100 u/ml penicillin and 0.1 mg/ml
streptomycin) at 37°C, 5% CO2, 95% air. Cells were
harvested, washed and resuspended in Hank's Balanced
Salt Solution (HBSS (Gibco, Paisley, U.K.)). A 30 min
incubation in the dark at room temperature was allowed to
provide more complete hydrolysis of intracellular lndo-1-AM.
Cells were washed by resuspension-centrifugation (1,000 g,
10 min, 25°C) and again resuspended in HBSS to a density
of 5 x 106 cells/ml. A sample (2.5 ml) was aliquoted to a
quartz cuvette (37°C, stirred magnetically) and the
fluorescence was measured in a Shimadzu RF-5000
spectrofluorophotometer interfaced with an IBM PS/2 55 SX
micro-computer. Excitation (332 nm, band width 5 nm) and
emission (400 nm, band width 5 nm) wavelengths were kept
constant so as to reduce the possibility of significant auto
fluorescence artefacts in the final signal [8] and a data point
was taken every 2 s.

AA (17 pM) induced a rise in GH3 cytosolic calcium
concentrations which was unaffected by the cyclo-
oxygenase and lipoxygenase inhibitor nordihydroguaiaretic
acid (NDGA, 30 pM) and to H7 (30 pM). Higher
concentrations of AA could not be tested because of vehicle
and solubility artefacts. No rise in cytosolic Ca2+ level was
apparent with 300 nM PDBu. If a 40 mM K+ challenge was
applied to the cells 5 min after addition of AA, then the K+-
stimulated rise in cytosolic Ca2+ concentration was greatly
diminished, concurring with the 45Ca2+ influx data. In the
additional presence of H7 (30 pM), the K+-induced response
was fully restored. Therefore, the initial AA-induced rise in
cytosolic calcium was insensitive to H7, whereas, the
inhibition by AA of K+-induced elevation of cytosolic Ca2+
levels was prevented by H7.

In 45Ca2+ efflux studies, where the prelabelled cells were
exposed to a 50 pM AA challenge, there was a marked
increase in the rate of 45Ca2+ release from the cells. This
increase in Ca2+ efflux seen with AA was not mimicked by
PDBu (300 nM) nor blocked by H7 (30 pM) or cyclo-

oxygenase and lipoxygenase inhibitors (indomethacin (10
pM), eicosatetraynoic acid (10 pM) or NDGA (10 pM)). The
increased 45Ca2+ efflux due to AA was blocked by the Ca2+
ATPase inhibitor Na3V04 (1 mM) but was unaffected by
replacing Na4 in the medium with N-methyl d-glucamine (in
order to inhibit the Na4/Ca24 exchanger).

The inhibition of depolarisation-induced 45Ca2+ influx by
AA seems to be mediated by PKC activation just like the
PDBu-induced inhibition of Ca2t-influx [1] Unlike PDBu, AA
can cause a rise in cytosolic calcium concentrations which is
not due to metabolism of AA, but is presumably due to AA
itself releasing intracellularly stored Ca2+, as seen in other
cellular systems [9-11], It seems likely that it is this AA-
induced nse in cytosolic calcium that underlies the activity of
AA in the 45Ca2+ efflux studies Thus the AA-stimulated rise
in Ca2' efflux may simply reflect the calcium handling
processes of GH3 cells whereby raised cytosolic calcium is
extruded from the cells via a Ca24 ATPase. but not a
Na4/Ca24 exchange mechanism. Both the fluorimetric and
45Ca24 efflux studies have shown that this AA-induced rise
in cytosolic calcium is unaffected by cyclo oxygenase or
lipoxygenase inhibitors and is not mimickod by PDBu Our
theory, therefore is that the additional inhibition of K4-
stimulated 45Ca24 influx in GH3 cells when companng AA to
PDBu action, is due to the additional ability of AA to release
intracellularly stored Ca24. This raised cytosolic calcium
concentration could act to potentiate the activation of PKC
by AA and lead to a full inhibition of nimodipine-sensitive
Ca24 entry. Other Ca24-stimulated mechanisms of
diminishing the K4-stimulated 45Ca2+ entry apart from PKC
cannot be ruled out, although the inhibition of Ca24 entry
caused by both AA and PDBu are fully H7- and
staurosporine-reversible (but not fully reversed with their
inactive congeners, HA1004 and K252a respectively, at the
same concentrations).

AA can be metabolised to a wide range of cellular
mediators which may be involved in the action of
exogenously applied AA in GH3 anterior pituitary cells, but
in the present study have remained uninvestigated. It is
likely that AA-induced release of intracellularly stored Ca24
may have a necessary role in the enhanced PKC-mediated
inhibition of 'L'-type Ca2+ channel activity seen with AA
rather than phorbol esters. A dual intracellular calcium
release and PKC activating response may be required to
see the full inhibition of 'L'-type Ca2+ channel activity. Such
synergistic dual actions of AA may result in an ability of AA
to act as a far more important physiological activator of PKC
than has been previously recognised.
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Does inositol hexakisphosphate induce Ca2+ entry
into GH3 cells?

RORV MITCHELL, DAVID MACEWAN, LYNNE DOUGAN,
MELANIE JOHNSON and FIONA THOMSON.

MRC Brain Metabolism Unit, I George Square, Edinburgh
EH89JZ

A variety of cells have recently been described to
synthesise inositol 1,3,4,5,6-pentakisphosphate (InsPs) and
inositol hexakisphosphate (InsPg), (see [1] for review). In
contrast to the lower inositol phosphates, the levels of these
inositol polyphosphates do not change rapidly in response
to Ca2+-mobilising hormones [2] However, marked
excitatory effects were reported when microinjected into the
Nucleus Tractus Solitarius of the brain stem [1], consistent
with an extracellular site cf action. Inositol polyphosphates
are known to be produced in the GH3 clonal pituitary cell
line [2], We have used the GH3 cell line to investigate
whether inositol polyphosphates might act extracellularly on
these cells to influence their mobilisation of Ca2+. The
present report describes several series of experiments,
begun originally in 1988, and our persistent difficulties in
making an unequivocal interpretation of the data.

GH3 cells were cultured and 45Ca2+ accumulation
determined as described previously [3], After 30 s at 37°C
with 2 pM 45Ca2+ .accumulation was quenched with cold
EGTA-medium before rapid filtration and washing.

Concentration-dependent increases in 45Ca4+ influx
were induced by TRH, K+ and ionomycin with peak
increments over basal controls of 148 ± 23% (100 nM TRH)
262 ± 30% (60mM K+) and 1059 ± 51% (100 pM
ionomycin), (mean ± SEM n = 4-8). lnsP6 but not its non-
physiological analogue, inositol hexasulpfiate, induced a
marked accumulation of 45Ca2+, much greater than that due
to TRH or K+, but still clearly less than that due to ionomycin.
The effect of lnsP6 was concentration-dependent showing a
statistically significant increment at 3 pM and above, and
was saturable with a maximum response of 519 ± 70%
increase over basal at 30 pM (n = 6). The 45Ca2+
accumulation due to 20 pM lnsP6 was reduced by 78 ± 4%
(n = 4) on inclusion of 100 pM digitonin in the EGTA wash
medium. Cell viability (assessed with 0.2% Trypan Blue or
0.5 pg/ml fluorescein diacetate) was 93-100% following
incubation with 150 pM lnsP6 for 30 min, (n = 4). The effect
of lnsP6 could not be mimicked by Na3PC>4. Na glutamate,
EGTA, EDTA, 2,3-diphosphoglycerate or Na hydroxide (all
at 1 mM). At 150 pM, lnsP6 caused no change in the pH of
the medium, although stock solutions of lnsP6 (K+salt) were
extremely alkaline.

The effect of 20 pM lnsP6 was unaltered by blockers of
L-and N-type voltage-sensitive Ca2+ channels (nimodipine,
9 ± 11% inhibition at 1pM and ro-conotoxin, 15 ± 8%
inhibition at 1 pM; n = 6 in each case). Polyvalent cations
however showed the following ICso's (pM concentrations
producing 50% inhibition): Gd3+, 1.2 ± 0.5; La3+, 5.7 ± 2 3 •
Cd2+, 112 ± 16 ; Co2+, 550 ± 75 ; Ni2+, 956 ± 132 . The
low potency of Ni2+ is inconsistent with the involvement of a
T-type Ca2+ channel. Replacement of Na+ with N-methyl
glucamine or the selective inhibitor of the Na+/Ca2+
exchanger (5-(N-4-chlorobenzyl)-2',4'-dimethylbenzamil) at
a concentration of 30 pM, had no effect on the response to
lnsP6. It seemed unlikely that lnsP6 was acting by
depolarising cells in view of the greater maximal response
to lnsP6 than to K+. Indeed when GH3 cells were loaded
with the potential-sensitive dye, 3,3'-dihexyl-
oxacarbocyanine iodide, the change in fluorescence
(excitation 484 nm, emission 510 nm) induced by 60 mM K+
could not be mimicked by 20 pM lnsP6- Seeking support for
the idea that cytosolic Ca2+ levels would be raised in
response to lnsP6, further experiments were carried out with
the Ca2+ fluorophore INDO-1 AM, with excitation at 332 nm
and emission at 400 nm (Ca2+-bound) and 483 nm (free
form of INDO-1). Using GH3 cells or rat hippocampal
synaptosomes, 100 pM lnsP6 but not Ins (S04)6, produced
a clear rise in fluorescence at 400 nm or in the 400:483 nm

ratio, comparable to the response to 60 mM K+. Withoutcells present lnsP6 caused an increase in fluorescence of
INDO-1 salt but this could be largely suppressed by 100pM

Mn2+ Using extracellular Mn2+ to suppress dye leakage
artefacts, a clear response to lnsP6 .still occurred with GH3
cells or synaptosomes. Surprisingly, the response to 100
pM lnsP6 was similar even if preceded by 100 pM
ionomycin. Unfortunately, lnsP6 (3-100pM) caused a clear
concentration-dependent increase in emission at 400 nm
when only medium (containing 1.5 mM Ca2+), without cells
or INDO-1 was present. Spectral analysis revealed a fairly
uniform response from 350-600 nm,indicating a non-specific
physical phenomenon.We then looked further at the
possibility of low-solubility artefacts arising in the 45Ca2+
experiments.

A hypotonic EGTA wash solution (2 mM EGTA, 6 mM
HEPES) failed to release any of the InsPg induced 45Ca2+
accumulation. Filters alone showed a small increase in
45Ca2+ retention due to 100 pM lnsP6 but less than 10% of
the response in the presence of GH3 cells. The effect of
lnsP6 on cellular Ca2+ accumulation was not reduced by
carrying out the experiment at 0°C rather than 37°C and
some 60-105% of the normal response was apparent in
zero time blanks. Preincubation of cells at 80"C for 5 min
failed to reduce the effect of lnsP6. although increasing the
temperature to 100°C caused more than 50% reduction, as
did pretreatment with 2% paraformaldehyde. Incubation
under N2, with 100 pM carbonyl cyanide m-chlorophenyl
hydrazone reduced the effect of 100 pM lnsP6 by around
60%. Although obvious turbidity could rarely be detected
by eye, 10-300 pM lnsP6 in the experimental medium
showed clear concentration-dependent increases in OD520
Another anion which forms low-solubility complexes with
Ca2+, oxalate, had similar effects from 100-10000 pM.
When 45Ca2+ experiments were carried out with oxalate,
large accumulations of 45Ca2+ were induced at equivalent
concentrations. Clear accumulation of 45Ca2+ in the
presence of oxalate was seen with filters alone. In the
presence of GH3 cells (just like with InsPe) there was a
marked increase (in the order of 5 fold) in the amount of
45Ca2+ retained. All of the effects of lnsP6 observed in our
laboratory can thus be explained as physical phenomena
without the need to invoke bio-activity.

The combination of chelation and solubility properties
shown by lnsP6 and InsPs but to a much lesser extent by
lower inositol phosphates [4] is bound to confound any
investigation of their influence on cellular Ca2+ movements.
In our opinion, both the present results and those provided
in recent reports on 45Ca2+ accumulation [5,6] and Ca2+
fluorimetry [7] cannot be considered with any validity to
demonstrate biological effects of inositol polyphosphates on
cellular Ca2+ movements.
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Differential activation of phospholipase A2 by
protein kinase C in pituitary cells
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Phorbol esters have been shown to induce secretion of
luteinizing hormone (LH) and growth hormone (GH) from
anterior pituitary tissue in vitro [1] implicating a role for
protein kinase C (PKC) in triggering and/or modulating
release of these hormones. Using pituitary tissue from pro-
oestrous female rats, we have previously shown that phorbol
12,13-dibutyrate (PDBu) induced LH release is sensitive to
the PKC inhibitors staurosporine and H7 [1], In contrast,
PDBu-induced GH release is sensitive to staurosporine only,
thus suggesting that pharmacologically distinct forms of PKC
(perhaps different structural isoforms) are involved in the
modulation of LH release rather than GH release. Further
observations that the temporal pattern of phorbol induced-
LH release differs from that of GH release led us to consider
that PKCs might exert actions on different targets in
gonadotrophes from those in somatotrophes to control
hormone secretion. Since arachidonic acid (AA) and its
metabolites have been shown to induce release of pituitary
hormones (2] we postulated that phospholipase A2 (PLA2)
may be one such target for PKC in mediating pituitary
hormone release. Here, we investigated the possibility that
pituitary PLA2 could be activated by PKC. The differential
effects of PKC- and PLA2-inhibitors on PDBu-induced
pituitary hormone release shown here suggest: (1) that only
certain forms of PKC can modulate PLA2 activity and (2) that
crosstalk between PKC and PLA2 may be an important
process in secretory responses in some but not all pituitary
cell types.

Pituitary hormone release was measured using pituitary
tissue obtained from pro-oestrous female cob wistar rats that
had been maintained under controlled lighting and
temperature. Briefly, pituitary glands were removed by
1300 h on the day of pro-oestrus and the anterior lobes
removed and hemisected. Each hemisected lobe was

placed into 2 ml of HEPES-buffered Minimal Essential
Medium containing Earfe's salts (MEM). After 30 minutes

Creincubation at 37°C, 95%02/5%CC>2 in a shaking waterath, the medium was replaced. From then onwards,
medium was changed at hourly intervals with or without the
appropriate combination of drugs. Medium LH and GH
content were measured by radioimmunoassay.

Pituitary PLA2 activity was determined by measuring pHJ-
AA release from prelabelled pituitaries. Pituitary tissue was
removed from pro-oestrous rats as described above.
Anterior pituitaries were quartered and placed in MEM (4 x
V4 per flask). After 30 minutes preincubation, the medium
was replaced with MEM containing 0.5 pCi f3H]-AA. After a
2 hour incubation period (37°C, 95% O2 5% CO2), the label
was removed and the tissue washed twice with MEM
containing 1% BSA. Tissue was then incubated for a further
hour in MEM containing 0.5% BSA with the appropriate
combination of drugs. Release of pH]-AA was measured by
extraction of the incubation medium with octadecyl silica.
Fractions containing lipids and metabolic derivatives were
sequentially eluted with the solvents described by Powell
(1982) [3]. The fraction taken to represent pHJ-AA released
from the tissue contained over 83% of authentic AA that was
added subsequent to tissue incubation and carried through
the extraction procedure.

Luteinizing hormone release from pro-oestrous anterior
pituitary tissue progressively increased over 3 consecutive
hourly incubations with PDBu (300 nM) from a level of
4.3±0.8 ng/ml (mean ±SEM,n=4) in the basal hour to
29.3±4.3ng/ml,n=4 in the third hour of incubation with PDBu.
Growth hormone release induced by PDBu was maximal by
the first hour of incubation increasing to a level of 3.14
±0.31, n = 19 fold of basal in the first hour with the phorbol.
In the presence of the PLA2 inhibitor, quinacrine (50 p.M),
PDBu-induced LH release was significantly reduced by the3rd hour of phorbol incubation from a level of secretion of
29.3±4.3ng/ml,n=4 in the absence of quinacrine to

13.2±0.9ng/ml,n=4 in the presence of quinacrine. Phorbol
12,13-dibutyrate-stimulated GH release was unaffected by
the presence of quinacrine. Similarly, PDBu (300 nM)
induced an 87 ± 8% (mean ± SEM, n = 10) increase in
pituitary PLA2 activity, an effect which was completely
blocked by quinacrine (50 pM). Phorbol 12,13-dibutyrate-
induced PLA2 activity was also significantly, but only
partially reduced to an increment of 48±11% (n=14) over
basal activity by 30 pM H7 and was completely inhibited to a
basal level of activity by 300 nM staurosporine.

The susceptibility of the PDBu-induced LH secretory
response, but not the GH secretory response, to quinacrine
indicates that in gonadotrophes, but not somatotrophes. a
PKC might act to cause hormone release by a pathway
involving increased PLA2 aclivity. The evidence that PLA2
may have a role in mediating phorbol-induced hormone
release is strengthened by the observation that PDBu
stimulates an increase in pituitary PLA2 activity.
Interestingly, the susceptibility of the PKC form(s) stimulating
pituitary PLA2 activity to PKC inhibitors matches the PKC-
inhibitor profile observed in induction ol LH but not GH
release. That is, the actions ot PDBu on LH release and
PLA2 activity are staurosporine and H7 sensitive, whereas
PDBu-stimulated GH release is susceptible to staurosporine
only. Thus it appears to be unlikely that a PKC-mediated
increase in PLA2 activity occurs in the GH secretory
response to PDBu. In contrast, in gonadotrophes, it appears
that a form of PKC is present which is capable of acting to
enhance PLA2 activity and consequently evoke hormone
release. These results lend support to other evidence (4,5)
for pharmacological heterogeneity in the functional cellular
actions of PKC(s) and further suggest that distinct forms of
PKC may have selective cellular targets.
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Modulation by phorbol 12,13-dibutyrate of dihydropyridine-sensitive hor¬
mone release from rat anterior pituitary tissue in vitro
By M. iS. .Johnson, It. Mitchei.i., I). J. MacHwan and F. J. Thomson. MHC Brain
Metabolism Unit, 1 George Square, Edinburgh EES i)JZ

Our previous studies revealed quite different influences of activators of protein
kinase C (PKC) on hormone secretion from gonadotropics and somatotropics (
(Johnson & Mitchell, 1989; Johnson el al. 1989ft). Phorbol 12,13-dibutyratc (PDBu)-
induced release of growth hormone (Gil), unlike that of luteinizing hormone (LH),
occurs rapidly and is sensitive to the L-type Ca2+ channel blocker nimodipine (NMD).
It is clear from experiments measuring 450a2+ movements that L-channels in
pituitary cells can be directly modulated by PKC (Johnson el al. 1989a). In order to
investigate further the influence of PKC on L-channels in pituitary cells we examined
phorbol ester and dihydropyridine effects on K+-induccd release of GH and LH.

Female COB/VVistar rats, that had been maintained under controlled lighting and
temperature were killed at 13.30 h of pro-oestrus and their anterior pituitary
glands removed and hemiseeted. The secret ion of Id I and Gil in vitro was measured
as described previously (Johnson el al. 1989ft). Incubation with 60 ihm-K+ medium
for 1 h caused a 6 7-fold increase in GH release over basal and a 9 2-fold increase in
LH release. In the presence of 1 /im-NMD these responses were 97% and 87% (
inhibited respectively. In the presence of 100 hm-PDBu, K+-induccd GH release was
unaltered, showing a mean increment of 5733+1236 ng GH/ml compared to
5438 + 531 ng GH/ml in controls (mean + s.E.m., n = 5). In contrast K+-induccd LH
release was amplified almost 2-fold by PDBu, showing a mean increment of
174 6+108 ng LH/ml compared to 90*5+1 P0 ng LH/ml in controls. The K+-
induecd release of GH in the presence of PDBu was reduced by 5355 + 718 ng/ml
by 1 //m-NMD whereas the corresponding LH response was only reduced by
97*3+ 8*7 ng/ml (an amount similar to the K+-induced release without PDBu
amplification). However, when PDBu-induccd hormone release was studied in the
presence of 3 /am-BAY K8644 (which had no effect alone during 1 h of incubation), f r
the LH response was greatly potentiated with an increment of 2-56-fold over that of
PDBu-induced LII release alone. The release of GH was completely unaffected. It is
possible that in gonadotropics but not in somatotropics, L-type Ca2+ channels are
recruited by PDBu in a form (Hess el al. 1984) which requires the additional influence
of another factor such as BAY K8644 before optimal activity is expressed.
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A possible role for phospholipase A2 in phorbol ester-induced release of
hormones from rat anterior pituitary tissue in vitro
By F. J. Thomson, R. Mitchell, M. S. Johnson and I). J. MacEwan. MIlC Brain
Metabolism Unit, 1 George, Square, Edinburgh EllH 9JZ

Stimulation of luteinizing hormone (EH) and growth hormone ((111) release by
phorbol 12,13-dibutyrate (IM)Bu) in vitro (Johnson & Mitchell, 1989) is consistent
with a physiological role for protein kinase (3 (PKC) in triggering or modulating
release of these hormones. Differences in the pharmacology and time course of
PDBu-induced EH and Gfl release suggest that PKO(s) may influence different
targets in gonadotropics and somatotropics. Since arachidonic acid (AA) has been
reported to induce EH release (Naor el al. 1981), we investigated the possibility that
AA production by phospholipase A2 (PLA2) may have a role in PKC-mediated EH
and GH release.

Female COB/Wistar rats that had been maintained under controlled lighting and
temperature were killed at 13.00 h on the appropriate day of the oestrous cycle.
Anterior pituitary glands were removed and hemisected. The release of EI1 and
GH in vitro was measured as described previously (Johnson & Mitchell, 1989).
Phospholipase A2 activity was determined in anterior pituitary tissue preincubated
for 1 h with [3H]arachidonic acid in minimal essential medium at 37 °0 under 95%
02/5% C02. After extensive washing, stimuli were applied for 1 h and the labelled
lipids and metabolites separated on octadccylsilyl silica (Powell, 1982).

Euteinizing hormone output increased progressively over three successive hourly
incubations with 300 nM-PDBu and was greatest using tissue from pro-oestrous or
oestrous rats. The PEA2 inhibitor quinaerine (50 /<m) significantly attenuated PDBu-
induced LH release from pro-oestrous and oestrous but not metoestrous or dioestrous
tissue. In contrast, the magnitude of PDBu-induced G1I release was unaltered
throughout the oestrous cycle and was never reduced by quinacrine. Phospholipase
A2 activity in pro-oestrous anterior pituitary tissue was stimulated 1-89 + 0-09-fold
(mean + s.E.M., n = 8) by 300 nM-PDBu. These results indicate that activation of
PEA2 by PKC can occur in some pituitary cells and may have a role in influencing
hormone release from particular cell types.
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A

Drlike
dopamine

receptor
has
been

characterized
on
the

cockroach
salivary
gland
which
appears
to

be

coupled
to
at

least
two

second

messengers
(Evans
&

Green,
1990).
One,
known
to

be

cyclic-AMP
(Grewe
&

Kebabian,
1982),

subserving
the

secretory
response
to

dopamine
(Gray
et

al.,

1984)
and
the

other,
as

yet

unknown,
subserving
the

electrical
response.
We

have
carried
out

biochemical
assays
to

determine
(i)

whether

inositol-1,4,5-trisphosphate
(IP3)

and

protein
kinase
C

(PKC)
were

present
in

the

acinar
cells
and
(ii)

the

effect
of

dopamine
on

the

levels
of

these
two

substances.
The

protocol
for
the

1P3

assay
was
as

described
by

Palmer
et
at.

(1989).
Salivary

glands
(3/tube)

were

incubated
at

room

temperature
in

physiological
solution
(see
Evans
&

Green,
1990)
in

the

absence
and

presence
of

dopamine
(10'6M)
±

the
D1

dopamine
receptor
antagonist

SCH23390
(5x10*5M).
Incubations

were

stopped
at
5

and

30s
by

addition
of

50
pi

ice

cold
10%

HCIO4
and

immediate
homogenization.
PKC
levels

were

determined
by

use
of
a

specific

[3H]-phorbol
dibutyrate
(PDBu)
binding

assay
(Leach
et

al.,

1983).
Two

groups
of

20

glands
were
pre-

incubated
in

physiological
solution
in

the

absence
and

presence
of

dopamine
(10"6M),

respectively,
for
5

min,

homogenized
in

25
vol
of

buffer
(Leach
et

al.,

1983),

centrifuged
(100,000
g,
1

hr,

4°C)
then

assayed
for

particulate
and

cytosolic
PKC.
Both
IP3

and
PKC

were

present
in

the

acinar
cells
at

rest.
In

the

presence
of

dopamine
(10_6M)
the

levels
of

IP3

were

increased
2.3

and
2.1

fold
over
control

levels
after
5

(n
=

2)

and
30
s

(n
=

2),

respectively.
These

increases
were

blocked
in

the

presence
of

SCH23390
(5x10*5M).
The

distribution
of

PKC
at

rest
was

(values
=

mean
±

s.e.mean,
n

=

6-12)
56.2
±

2.1%
in

the

particulate
and
43.8
±

3.1%
in

the

cytosolic
fraction.
After
5

min

stimulation
with

10*6M

dopamine,
total

[3H]-PDBu
levels

were
29%
of

that
in

the

unstimulated
glands.
The

distribution
of

PKC
in

the

stimulated
cells
had

also

changed
to

76.4
±

4.2%

particulate
and
23.6
±

9.0%

cytosolic.
Thus

dopamine
can

induce

translocation
and

down-regulation
of

PKC.
It

therefore
seems
quite

possible
that

activation
of

phospholipase
C

may

underlie
the

electrical
response
of

the

gland
to

dopamine.
The

inhibition
of

this

response
by

LiCI

(10mM),
an

inhibitor
of

the

phosphoinositide
cycle,
and

potentiation
by

the

G-protein
activator
NaF
(500

pM)

supports
this

conclusion.
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Heterogeneous
profiles
of

protein
kinase
C

activation
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Mitchell,
M.S.

Johnson
&

F.J.

Thomson,
MRC
Brain

Metabolism
Unit,
1

George
Square,
Edinburgh

EH89JZDepolarisation-induced
calcium

influx
in

anterior
pituitary
prisms
and
in

GH3
cells
are
both

mediated
by
a

nimodipine-

sensitive
process
and
are

modulated
in

two

waVs
by

activation
of

protein
kinase
C

(PKC)

(Johnson
et

al.,

1989).

Phorbol

12,13-dibutyrate
(PDBu)

activation
of

PKC
leads
to

an

increase
in

K+-induced
45Ca2+

influx
in

anterior
pituitary

pieces,
but
a

decrease
in

GH3
cells.

These
actions
are
also
seen
with

46-phorbol

12,13-didecanoate
(4B-PDD)
but

not

4a-PDD.
The
two

opposing
profiles
may

represent
the

actions
of

different
forms

of

PKC
on

'L'-channels
in

the
two

preparations.
A

number
of

diterpenes
have
been

described
which

differentially
display

certain
aspects
of

phorbol-like

actions,
for

example,

inflammation/tumour
promotion/omithine

decarboxylase
induction
(Dunn
&

Blumberg,
1983).
The

present

experiments
investigate
the

actions
of
a

range
of

such

analogues
in

the

Ca2+
influx

models.

45Ca2+
influx

measurements
into

anterior
pituitary
prisms
and
GH3

cells
were
as

previously
described
(MacEwan

and

Mitchell,
1990).
In

pituitary
prisms,
the

marked
facilitation
of

influx
caused
by

(10-1000nM)
PDBu

and

4I3-PDD
(~+180%

at

1000nM)
was

mimicked,
but
to
a

lesser
degree,
by

1,2-dioctanoyl-sn-glycerol
(1-100|iM)
(DOG),

mezerein,
phorbol

12-retinoate
13-acetate
(PRA),

phorbol

12-myristate
13-acetate
4-0-methyl

ether

(MPMA)
and
to
a

small
degree
by

12-deoxyphorbol
13-isobutyrate
(DPB)
(all
at

10-1000nM).
In

GH3
cells,

PDBu
and

46-PDD
reduced

K+-induced

45Ca2+
influx
by
up
to

50%
and
a

similar
effect,
of

greater
magnitude,
was

displayed
by

arachidonic
acid
(AA)

(MacEwan
and

Mitchell,
1990).
In

contrast,
DOG,
PRA,
MPMA

and
DPB

were

inactive.

Surprisingly,
the

effect
of

mezerein
in

GH3
cells
was
a

facilitation
of

K+-induced
45Ca2+

influx,

apparently
identical
to

that
in

pituitary
prisms.
The

effects
of

diterpenes
were
not

altered
by

differing
times
of

pre-incubation
nor
by

VO43-
(1mM)

or

substitution
of

Na+
by

N-methyl-d-glucamine.
The

results
are

consistent
with
the
idea
that
at

least
two

forms
of

PKC
can
exert

qualitatively

different
influences

over

'L'-type
Ca2+

channel
function.
The
two

complex
profiles
could
be

explained
if

different
relative

amounts
of

two

distinct
forms
of

PKC
were

involved
in

the
two

models.
Whilst
PDBu

and

46-PDD
were

non-selective

activators,
mezerein
and
AA

may
be

selective
activators
of

the

PKC
forms
that

facilitate
or

attenuate
45Ca2+

influx

respectively.
The

other

analogues
may
show
partial

selectively
for
the

facilitatory
effect.

Although
other

explanations
of

these
profiles
may
well
be

possible,
selective
antagonism
by

H7,
but

not

staurosporine,
of

the

effect
of

PDBu
in

GH3

cells
but

not
in

pituitary
prisms

(Johnson
et.al.,
1989)

supports
our

hypothesis.
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Differences
in

the

effect
of

putative
activators
of

protein
kinase
C

on

secretion
of

pituitary
hormones

|
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R.Mitchell,
M.S.
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and
D.J.

MacEwan
.

MRC
Brain
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Unit,
1

George
Square,
Edinburgh

.

EH8
9JZ.Secretion

of

pituitary
hormones
in

vitro
can
be

induced
by

activation
of

protein
kinase
C

(PKC)
(Johnson

and

Mitchell,

1989).
Using

several
putative
activators
and

inhibitors
of

PKC,
we

investigated
the

possibility
that

PKC-mediated

regulation
of

hormone
secretion
may
be

differentially
organised
in

distinct
pituitary
cell

types.
Anterior

pituitary
glands

were

removed
from
long
term
(4

weeks)

ovariectomised
cob

wistar
rats
and

hemisected.
Release
of

luteinizing

hormone
(LH)

and

growth
hormone
(GH),
in

vitro,
was

measured
as

previously
described
(Johnson
&

Mitchell,
1989).

Pituitary
LH

release

progressively
increased

over
3

consecutive
hourly

incubations
with

300nM
phorbol

12,13-

dibutyrate
(PDBu),

reaching
a

level

192±21
%

(n=16)
of

basal

secretion
in

the
third
hour.
In

contrast,
GH

was

rapidly

released
by

PDBu
with
a

maximal
response
in

the
first
hour

of

558±95%
(n=16)
of

basal

secretion.
PDBu-induced

release
of

both
LH

and
GH

was

unaffected
by

the

PKC

Inhibitor
H7(30pM)
but

was

attenuated
in

the

presence
of

staurosporine
(300nM).
Selective
inhibition
by

staurosporine
but

not
H7

of

certain
PKC

actions
has

been

described

previously
in

the

regulation
of

L-type
calcium
channels
by

PKC

(Johnson
efa/.,1989).
In

the

present

experiments,

200|iM

1,2-dioctanoyl
sn-glycerol

(DOG)
induced
a

small
release
of

LH
but

not
GH.

Luteinizing
hormone

release

induced
by

DOG
was

inhibited
by

staurosporine
but

was

unaffected
by

H7.

Release
of

LH

could
also
be

evoked
by

30QpM

arachidonic
acid
(AA),
but
this

effect
was

unaffected
by

PKC

inhibitors.
Release
of

GH
was

reduced
by

AA,
an

effect
which
is

also

unaltered
by

PKC

inhibitors.

The

release
of

LH

and
GH
from

pituitary
tissue

obtained
from

ovariectomized
rats
can
be

influenced
by

activation
of

PKC.

However,
the
lack
of

effect
of

H7
on
LH

release
shown
here

contrasts
with
those

effects
observed
on

PDBu

induced
LH

release
from
tissue

obtained
from
intact

pro-oestrous
rats

(Johnson
&

Mitchell,1989.).
It

appears
that
AA

can
exert

stimulatory
(LH)

or

inhibitory
(GH)

effects
on

hormone
secretion
by

means
other
than

activation
of

PKC.
This

is

consistent
with

evidence
suggesting
a

role
for
AA

metabolites
in

the

control
of

LH

and
GH

release
(Naor
et
al,

1983;

Schweitzer
et
al,

1990).
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les [15]. Transport processes such as glutamate up-
2 into glial cells may also be influenced by AA [16]
sibly by increasing membrane fluidity.
A further putative target for AA and its metabolites
trotein kinase C (PKC); of which at least seven
inct isoforms have been identified so far [17],
hizuka and his co-workers have shown that AA
If can selectively activate the y-and a-isoforms of
7! in cell-free systems [18]. Little is known however,
vhether such events may be of physiological impor-
:e.

n anterior pituitary cells, AA has been reported to
ease the secretion rates of several hormones,

einizing hormone and follicle stimulating hormone
etion were enhanced in response to exposure to

[19]. Prolactin secretion [20] and adrenocorti-
ophic hormone secretion [21] are also increased by
AA stimulus.
n the present experiments we investigated some of
cellular influences of AA on the GH3 clonal ante-
pituitary cell line; in particular the effects on

alarisation induced Ca2+ influx. In view of the
ititative differences observed in the influences of
and other PKC activators on depolarisation-in-

;d 45Ca2+ influx, we carried out further studies
+ fluorimetry; 45Ca2+ efflux) to clarify any addi-
il action of AA.

=erials and Methods

'rials

H3 cells and foetal bovine serum were obtained
Flow Laboratories, Irvine, Strathclyde, U.K.

i's F-10 medium and Hanks' balanced salt solution

supplied by Gibco-BRL, Paisley, Strathclyde, U.K.
cillin, streptomycin, L-glutamine, essential fatty
free bovine serum albumin, arachidonic acid
um salt), arachidonic acid-methyl ester, linoleic
phorbol 12,13-dibutyrate, NDGA, 8-bromo cyclic

' (sodium salt), V-methyl-d-glucamine, sodium or-

inadate, indomethacin and Indo-l-AM were all
tased from the Sigma, Poole, Dorset, U.K. Piper-
butoxide was supplied by the Aldrich, Gillingham,
et, U.K. SKF-525A ('Proadifen') was obtained
Research Biochemicals, Natick, MA, U.S.A. N-

tyl TRH was purchased from Peninsula Laborato-
St. Helens, Merseyside, U.K. H7 and HA 1004
obtained from Seikagaku America, St. Peters-
FL, U.S.A. Staurosporine and K252a were sup-

by Kyowa Medex Co., Tokyo, Japan. Ionomycin
—bought from Novabiochem (U.K.), Nottingham,

ETYA was a gift from Roche Products, Welwyn
en City, U.K. and 45Ca2+ (specific activity, 17
mg) was purchased from Amersham Interna-

I, Amersham, U.K. All other chemicals were of
lr grade.

Methods
Cell culture. GH3 cells were grown in Ham's F-10

medium supplemented with 15% foetal bovine serum,
1 mM l-glutamine, 100 U/ml penicillin and 0.1 mg/ml
streptomycin in a humidified atmosphere of 5% C02,
95% air at 37 ° C. Cells were harvested by agitation,
washed by resuspension centrifugation (1000 Xg, 10
min, 25°C) and finally resuspended at the appropriate
density in the required medium.

Calcium influx studies. Cells were diluted to a den¬
sity of 5 • 106 cells/ml in 'calcium uptake medium'
(concentrations in mM: NaCl, 154/KC1, 5.4/CaCl2,
1.5/d-glucose, 11/Hepes, 6 (pH adjusted to 7.4 with
Tris-base) and with 0.05% fatty acid-free bovine serum
albumin). Aliquots of this suspension (0.5 ml/tube)
were preincubated (30 min, 37°C, 02 atmosphere) be¬
fore a 10 min incubation (37°C, 02) with drugs or
solvent alone. Cells were then exposed to 1 ml of
calcium uptake medium containing either low K+ (5.4
mM final concentration) or high K+ (60 mM) with 4
/rM 45CaCl2 (« 3 /rCi/tube). After 30 s (37 ° C), 45Ca2 +
uptake was halted by quenching with 3 ml of ice-cold 2
mM EGTA (Ca2+-free) calcium uptake medium and
tissue was separated by vacuum-filtration through Mil-
lipore SCWP cellulose acetate/nitrate filters (8 ^.m
pore size) underlain by GF/B filters on Millipore 1225
sampling manifolds (Millipore, Harrow, U.K.). Samples
were washed once immediately with 3 ml ice-cold
EGTA calcium uptake medium and then washed a
further three times for 2 min each in the same medium.
The radioactivity associated with the cellulose filters
and cells was determined by liquid scintillation count¬
ing. Preliminary experiments on GH3 cells and exten¬
sive similar studies on anterior pituitary prisms [22]
revealed that these conditions gave the optimal signal-
to-noise ratio. The stimulus-induced influx of 45Ca2+ in
excess of basal controls was maximal within 30 s, sug¬

gesting that it represented specific response-triggered
flux rather than adsorption or steady accumulation by
storage pools. Vehicle (ethanol up to 0.4% ) was always
included in controls as appropriate and was indepen¬
dently determined to have no effect on either basal or
K+-induced 45Ca2+ accummulation.

Calcium efflux studies. Harvested GH3 cells were
resuspended at a concentration of 1 • 107 cells/ml in
calcium uptake medium containing 0.05% essential
fatty acid-free bovine serum albumin and incubated for
20 min (37°C, 02) before addition of 1 ml of medium
containing 6 yu,M 45Ca2+ (=4.5 /rCi/tube). Samples
were incubated for 1 h at 37°C under 02 before
loading onto separate GF/B filters pre-washed with
calcium uptake medium and under vacuum on a Milli¬
pore 1225 sampling manifold. Cells were then washed
three times for 2 min with 3 ml of pre-warmed (37°C)
calcium uptake medium alone. There then followed a
further eight washes with pre-warmed calcium uptake
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medium containing the appropriate inhibitor or solvent
for controls. Each successive 2 min wash with 3 ml of
calcium uptake medium ( + inhibitor) was collected.
The 4th and subsequent washes contained 50 ,u,M AA.
Radioactivity in each fraction was measured by liquid
scintillation counting.

Cytosolic calcium measurements. Cytosolic Ca2+ con¬
centrations were measured by use of the calcium fluo¬
rescent dye Indo-1 [23], GH , cells were loaded with 10
/xM Indo-l-AM for 45 min in culture medium at 37°C,
5% C02/95% air. Cells were then harvested, washed
and resuspended in Hanks' balanced salt solution. A
30 min incubation in the dark at room temperature was
then given to allow more complete hydrolysis of intra¬
cellular Indo-l-AM. The suspension was then cen-

trifuged (1000 Xg, 10 min, 25°C) and the cell pellet
was again resuspended in Hanks' balanced salt solution
at a concentration of 5 • 106 cells/ml. A sample (2.5
ml) of the cell suspension was loaded into a quartz
cuvette which was stirred magnetically and maintained
at a constant temperature of 37°C. Fluorescence was
measured in a Shimadzu RF-5000 spectrofluoropho-
tometer. Excitation was at 332 nm (band width = 5 nm)
and emission was at 400 nm (band width = 5 nm).
Emission wavelengths were not ratioed between 400
and 490 nm so that the possibility of introducing signif¬
icant autofluorescence artefacts in the final signal [24]
would be reduced. A fluorescence value was taken

every 2 s and at the end of each experiment, 10 ytxM
ionomycin followed by 10 mM MnCl2 (final concentra¬
tions) were added to give a measure of the maximum
and minimum fluorescent values of the cuvette con¬

tents, respectively. An assessment of extracellular fluo¬
rescence resulting from dye leakage was made accord¬
ing to the method proposed by Rink and Pozzan [25].
Thus, appropriate corrections were made for the small
changes in basal fluorescence induced by the addition
of 100 jxM MnCl2 which were rapidly and fully re¬
versed by 200 /rM DTPA. The experimental values for
cytosolic Ca2+ concentrations were calculated accord¬
ing to Grynkiewicz et al. [23] and Luckhoff [24], In view
of the limited solubility of AA in aqueous media, we
carried out experiments to assess light-scattering using
excitation and emission wavelengths of 520 nM and
maximum sensitivity of the fluorimeter. Under our
conditions (calcium uptake buffer containing 0.4%
ethanol vehicle) there was no detectable increase in
light-scattering up to and including 32 /xM AA. At 38
/xM AA, irreversible turbidity was detectable and by 44
,ixM this was very marked. All cell Ca2+ fluorescence
experiments were thus carried out with AA at concen¬
trations below the threshold for turbidity (Fig. 6).

Data analysis. Statistical significance of effects was
assessed by a non-parametric method (Mann-Whitney
(/-test). Concentration-response curves were analysed
by a non-linear iterative curve-fitting program ('P-fit';

Biosoft, Cambridge, U.K.). The calculated concent
tion which inhibits 50% of the maximal response (IC
is expressed, with the errors representing stand;
errors of the mean.

Results

Depolarisation with 60 mM K+ medium causei
marked influx of 45Ca2+ (see Table I) which was inl
ited in a time-dependent manner by 30 jxM AA. 1
inhibitory effect of AA was apparent without
preincubation but an additional 1 min preincubat
produced a maximal inhibitory effect. At concent
tions up to 100 /xM, AA had no effect on b;
accumulation of 45Ca2+ (104 + 8% of control at

ytxM). Inhibition of K+-induced 45Ca2+ influx by
was concentration-dependent (Fig. 1) with an I-
(concentration that gives 50% inhibition of maxi
response) of 19 ± 3 /xM. Agents with some structi
similarity to AA; AA-methyl ester (30 and 100 p
and linoleic acid (30 /xM) were unable to mimic
inhibition seen with AA (30 ytxM). The inhibitory ef-
of AA was virtually maximal by the concentration
/xM) at which AA reached the limit of its solub
under these conditions. Higher concentrations of
did not significantly affect basal 45Ca2+ accumula
(Table I) or that induced by ionomycin or M-me
TRH (Table IV) suggesting that even exceeding
solubility limit of AA had little influence on the res
of 45Ca2+ influx experiments. Furthermore, it was c
that AA-methyl ester (which was less soluble than
under our conditions; showing marked light-scatte

TABLE I

Time-course of inhibition of depolarisation-induced calcium infh
arachidonic acid (AA) into GH3 cells
Values represent means + S.E., n = 4-6. The total 45Ca2+ acc
lated in the presence of 60 mM K+ was typically around 1600
per assay, whereas basal 45Ca2+ accumulation was around 600
of which non-specific adsorbtion to the filter and cell sui

(determined in zero-time blanks) was responsible for arount

dpm. 45Ca2+ accumulation was measured over 30 s and the in
tion times with AA are inclusive of the 30 s influx measure

period. Incubations were at 37 ° C and 45Ca2+ influx was stopp
described under Materials and Methods. Statistically significant
bition of K+-jnduced 45Ca2+ influx is indicated by (* P < 0.05

Conditions 45Ca2 +
accumulation

(fmol/106 cells per min)
Non-specific adsorbtion

(zero-time blank) 34 ±2
Basal 50 + 4

Basal, 100 /xM AA (10 min) 54 + 6

60 mM K + 120 + 8
60 mM K+, 30 yxM AA (30 s) 86 + 6 *
60 mM K+, 30 /xM AA (45 s) 64 + 3 *
60 mM K+, 30 p.M AA (90 s) 52 + 3 *
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o 1

Fatty acid concentration (^M)

1. Concentration-response data for the inhibition of depolarisa-
-induced calcium influx by fatty acids. Cells were exposed "to
i2 + for 30 s at 37 ° C and calcium influx was stopped as described
er Materials and Methods. Cells were preincubated with arachi-
ic acid (AA, circles), arachidonic acid-methyl ester (AA-methyl
r, triangles) and linoleic acid (square) for 10 min at 37 °C before
tsure to 60 mM K+ and 45Ca2+. Values represent means ±S.E.,
4-12. Statistically significant inhibition of K+-induced 45Ca2 +

influx is indicated by (* P < 0.05).

Tacts by 24 yu,M) failed to mimic the inhibition of
induced 45Ca2+ influx caused by AA, even when
ed at concentrations of 30 and 100 /tM (Fig. 1).
vever, 30 yiiM AA-methyl ester in the presence of
nM PDBu reduced K+-induced 45Ca2+ influx lev-

to 14 + 2% of control K+-induced influx (n = 4).
"he inhibitory effect of 30 yu.M AA on K+-induced
ium influx (a reduction to 23 ± 9% of control K+-
tced influx) was reversed by the protein kinase C
bitor H7 (Fig. 2), with an IC50 of 14 + 4 yuM. A
>ener of H7, FLA1004, with much reduced activity
PKC inhibitor [26] was inactive at similar concen-

ons. Similarly, the potent PKC inhibitor stau-
orine also reversed the effect of 30 yu.M AA on
nduced 45Ca2+ influx (IC50 of 52 + 15 nM, see Fig.
>ut its less active congener K252a [27,28] failed to
e reversal. The reversibility of the effect of AA by
e means rules out any simple physicochemical ac-
> of AA or any chemical oxidation products that
arise during the experiment. Down-regulation of

! by treatment of GH3 cells with 300 nM phorbol
• for 24 h results in more than 50% reduction in
'

levels [29]. Using a similar protocol for PKC
i-regulation [30] by treatment of GH3 cells with
nM PDBu for 24 h, reduced the ability of AA to
>it K+-induced 45Ca2+ influx (Fig. 4).
he inhibition of K+-induced 45Ca2+ influx by 30
AA was not influenced by inhibitors of its

bolism (Table II). The cyclo-oxygenase and lipoxy-
se inhibitor ETYA (10 yuM), the lipoxygenase in-

Kinase inhibitor (^M)

Fig. 2. Reversal by H7 but not HA1004 of the inhibition by AA of
depolarisation-induced calcium influx. GH3 cells were exposed to
45Ca2+ for 30 s at 37 ° C and calcium influx was stopped as described
under Materials and Methods. H7 (filled squares) and HA1004 (open
squares) were added immediately prior to addition of AA (30 yuM),
then cells were preincubated for 10 min at 37 °C before exposure to
60 mM K+ and 45Ca2+. Control K+-induced 45Ca2+ influx data in
the presence of AA is shown by the circle. Values represent means ±
S.E., n = 8-12. Both H7 and HA1004 at 50 /rM had no effect alone
on basal or K+-induced 45Ca2+ influx. The inhibition of K+-induced
45Ca2+ influx due to AA was significantly reversed by 50 gM H7

(P < 0.05).

Kinase Inhibitor (nM)

Fig. 3. Reversal by staurosporine but not K252a of the inhibition by
AA of depolarisation-induced calcium influx. GH3 cells were ex¬
posed to 45Ca2+ for 30 s at 37 ° C and calcium influx was stopped as
described under Materials and Methods. Staurosporine (filled
squares) and K252a (open squares) were added immediately prior to
addition of AA (30 yuM) then cells were preincubated for 10 min at
37°C before exposure to 60 mM K+ and 45Ca2+. Control K+-in-
duced 45Ca2+ influx data in the presence of AA is shown by the
circle. Values represent means+ S.E., n = 4-8. Both staurosporine
and K252a at 300 nM had no effect alone on basal or K+-induced
45Ca2+ influx. The inhibition of K+-induced 45Ca2+ influx due to

AA was significantly reversed by 100 and 300 nM staurosporine
(P < 0.05).
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Arachidonic acid (jtM)

Fig. 4. Effect of PKC-down regulation on arachidonic acid inhibition
of depolarisation-induced calcium influx. GH3 cells were cultured
for 24 h with 300 nM PDBu in dimethylformamide (0.01% final
volume, filled circles), dimethylformamide alone (open circles) or

nothing (triangles) and then extensively washed by centrifugation and
resuspension in 'calcium uptake medium' (three times 10 min, 1000
X g, 25°C). Arachidonic acid was added 10 min before a 30 s

exposure to 60 mM K+ and 45Ca2+. Values represent means+ S.E.,
n = 6. The reduction in 45Ca2+ influx caused by AA (30 grM) was

significantly attenuated (*) by prolonged preincubation with PDBu
compared to its solvent alone (P < 0.05).

hibitor NDGA (30 yuM) and the cytochrome P-450
inhibitors piperonyl butoxide (30 ytxM) and SKF 525A
(10 fiM) did not significantly modify the effect of AA.

Whereas 50 /xM AA inhibited the influx induced by
60 mM K+ to 3 + 1% of control, the influx responses
to 1 yuM A-methyl TRH and 30 yuM ionomycin were
reduced by AA to only 77 ± 16% and 83 + 10% of the

TABLE II

Effect of inhibitors of arachidonic acid metabolism on its inhibition of
depolarisation-induced calcium influx

GH3 cells were exposed to 30 giM alone, or in combination with 10
/iM ETYA, 30 p.M NDGA, 10 giM SKF 525A or 30 yxM piperonyl
butoxide for 10 min before and during addition of 60 mM K+ plus
45Ca2 + medium. None of these drugs caused any significant alter¬
ation in the inhibition of K+-induced 45Ca2+ accumulation due to 30

juM AA or had any apparent effect on basal K+-induced 45Ca2 +
influx alone. Values represent the means ±S.E., n = 4-8.

Drug concentration % of control
K+-induced
45Ca2+ influx

remaining
60 mM K+ medium alone 100

+ 30 yu.M arachidonic acid 23 ± 9
+ 30 yuM arachidonic acid + 10 yuM ETYA 23 + 4
+ 30 yuM arachidonic acid + 30 yuM NDGA 35 + 8
+ 30 gM arachidonic acid+ 10 p.M SKF 525A 26 + 3
+ 30 p. M arachidonic acid + 30 p. M piperonyl 29 + 5

Butoxide

TABLE III

Effect of inhibitors of calcium extrusion processes on ability of ara
donic acid to reduce depolarisation-induced calcium influx

GH3 cells were harvested and then resuspended in either nor
'calcium uptake medium' with or without 1 mM Na3V04 or sodi
free 'calcium uptake medium' with /V-methyl-D-glucamine replai
sodium (154 mM). Cells were incubated with or without 100
arachidonic acid for 10 min before exposure to 60 mM K +
45Ca2+ medium. Values represent the means + S.E., n = 4. Neil
K+-induced 45Ca2+ nor the inhibition of that response by AA v

significantly altered by Na3V04 or V-methyl-D-glucamine.

Conditions % of control
K+-induced
45Ca2+ influx

remaining

60 mM K + 100

60 mM K+, (V-methyl-D-glucamine + Na3V04 130 ±8
60 mM K+, 100 gM AA 8 + 6

60 mM K+, 100 yuM AA, /V-methyl-D-glucamine 30 + 6

60 mM K+, 100 gM AA, Na3VQ4 16±2

respective control responses (Table IV). The effect
AA on K+-induced 45Ca2+ influx therefore relates
least mostly) to a modulation of the specific entry ro
involved in that response, not just a general alterat
of Ca2+-handling by the cell.

The cell-permeable activator of cyclic GMP-dep
dent protein kinase, 8-Br-cyclic GMP, was unable
mimic the effect of AA at any concentration ft
3-100 ytxM (data not shown). Throughout this cone
tration range of 8-Br-cyclic GMP the maximum de
tion from control K+-induced 45Ca2+ influx was 1
14% (mean ± S.E., n = 8). Sodium orthovanac
(Na3V04) and replacement of sodium with A-met
D-glucamine will effectively inhibit plasma membr
Ca2+-ATPases and the Na + /Ca2+ exchanger, res)
tively [31,32]. Neither 1 mM Na3V04 nor sodium
placement could prevent the inhibition of K+-indi
calcium influx caused by 100 gM AA (see Table
The minor elevation of Ca2+ accumulation due to

in the presence of AA that was seen with sod
orthovanadate and A-methyl-D-glucamine was
seen with K+alone. It seems likely, therefore,
these small effects reflect influences of the C
ATPase and the Na + /Ca2+ exchanger on redisti
tion of elevated Ca2+ and we could thus find
evidence that these Ca2+ transporters are involve
any specific way in the AA-induced inhibition of
stimulated 45Ca2+ influx. Since the effect on infli
AA (Table III) was unaltered in the presence
concentration of Na3V04 which fully blocked 45(
extrusion (see Fig. 5) it seems unlikely that PKC m
lation of Ca2+-ATPase activity [33] plays any major
in the inhibition of 45Ca2+ influx observed here.

In the 45Ca2+ extrusion experiments, a clea
crease in the rate of 45Ca2+ efflux was seen in resp
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time (mins)

. 5. Effect of arachidonic acid on calcium efflux from GH3 cells,
asurement of 45Ca2 + efflux was performed as described under
terials and Methods. Cells were batch-perfused in either the
sence (triangles) or absence (filled circles) of 10 p,M NDGA.
tchidonic acid (50 /xM) in ethanol (or ethanol alone for control
en circles)) was added to the medium from 6-16 min where
icated by the line. Values represent the means+ S.E., n - 3.

50 /xM AA (Fig. 5). This response was transient,
ng over within four efflux fractions, despite the
itinued presence of AA, suggesting that it originated
m the discharge of a discrete stored pool. The effect
50 |iiM AA was considerably less than (about 36%
the efflux caused by 100 /u,M ionomycin. In the

sence of 10 yuM NDGA the response to AA ap-
tred to be slightly attenuated and was completely
vented in the presence of 1 mM Na3V04 (data
itted for clarity). There was no increase in 45Ca2 +
ux rate in response to 300 nM PDBu suggesting the
i of involvement of PKC activation in this effect of

. The 45Ca2 + efflux response to AA was unaltered
10 /u,M ETYA, 10 /xM indomethacin, 30 yiiM H7 or
odium-free medium (data not shown).
Tie fluorimetric studies revealed that basal cytosolic
ium concentrations were clearly elevated by quite a
concentration (17 /xM) of AA alone (Fig. 6b and c),
as also reported by Drummond [33], phorbol esters
e ineffective. This response to AA was not inhib-
by 30 /ixM H7 (Fig. 6c) or 30 ytxM NDGA (data not

vn) but quite unlike the inhibition of K+-induced
i2+ influx caused by AA, was mimicked by AA-

—hyl ester at an equivalent concentration. The incre-
ts in calcium concentration due to AA (17 /txM),

—)u (300 nM) and AA-methyl ester (17 /jlM) were
: 11, 6±8 and 52 + 9 nM respectively (means +
, n = 3-5). The rise in cytosolic calcium induced by
iM K+ medium was markedly reduced to 14 + 9%
introl (mean + S.E., n = 4) by previous addition of
(Fig. 6b) paralleling the 45Ca2+ influx data. In the

presence of 30 ytxM H7, the rise in basal cytosolic
calcium level induced by 17 /xM AA was unaltered, but
the inhibitory effect of AA on subsequent responses to
40 mM K+ was markedly attenuated (Fig. 6c); the
mean response to K+ now being 89 ± 10% of control
(mean ± S.E., n = 3). In accordance with this, pre¬
sumed down-regulation of PKC in GH3 cells by pro-

a.

[c»], nM
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500
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100-

b.

[ca»],

500

nM 200-

100 - I t

c.

[ca»], nM

1000

500

200-

100"

Fig. 6. Effect of arachidonic acid on the cytosolic calcium concentra¬
tion in GH3 cells. Cells were prepared and intracellular Ca2+ levels
estimated by lndo-1 fluorescence as described under Materials and
Methods. Arachidonic acid (AA, 17 p.M) in ethanol (b and c) or
ethanol alone (a) were added where indicated by the first (shorter)
arrows. Ethanol at concentrations of up to 0.4% (as used) had no

apparent effect on basal or K+-induced increments in calcium con¬
centrations. At the concentration used, AA produced no turbidity
artefact in fluorescence records made in the absence of cells. At the
second (longer) arrow, KC1 was added to a final concentration of 40
mM. Addition of 40 mM NaCl rather than KC1 had no effect. Part

(a) illustrates a typical response to K+ in the presence of ethanol,
the vehicle for AA (0.4%). In (b), AA induced a rise in basal Ca2 +
levels and a diminution of the subsequent response to 40 mM K+. In
(c), when 30 ^.M H7 had been present from the start of the record,
the AA-induced rise in basal Ca2+ levels was still present, but the
diminution by AA of the response to K+ was reversed. There was no

apparent effect of H7 alone. Staurosporine could not be tested
because of the unfavourable fluoresence spectrum of the compound.
Each trace is representative of at least three similar results. The
abscissa represents time with each scale bar indicating 1 min.
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longed preincubation with PDBu (300 nM) greatly di¬
minished the effect of AA on the response to K+ but
not its elevation of basal calcium levels (data not
shown).

Discussion

Previous work has shown that activation of PKC
with phorbol esters reduces depolarisation-induced cal¬
cium entry into GH3 cells [33-35], Activation of PKC
in GH3 cells produces a reduced probability of 'L'- and
'T'-type calcium channel opening [34], Indeed, the di-
hydropyridine-binding a, subunit of L-channels can be
multiply phosphorylated by PKC [36] indicating the
possibility of direct modulatory effects of PKC on
L-channels. Since 'T'-type calcium channels open only
very transiently to a depolarisation, their contribution
towards the total 45Ca2+ influx response over 30 s here
is likely to be minimal and this idea is supported by the
K+-induced 45Ca2+ influx into GH3 cells being over
85% inhibited by the selective L-channel blocker ni-
modipine [35]. Unlike the strain of GH4C[ cells de¬
scribed by Albert et al. [37], GH3 cells exhibit no rise
in cytosolic calcium levels or in basal accumulation of
45Ca2+ in response to activators of PKC. Whilst indeed
the operation of L-type Ca2+ channels can be directly
enhanced by PKC activators in some cell types includ¬
ing anterior pituitary cells [35,38], any contribution of
such a phenomenon in the GH3 cell line is minor.
Interestingly, phorbol esters such as PDBu can only
partially inhibit depolarisation-induced calcium influx
showing a concentration-dependent and stereo-specific
maximal inhibition of 50 + 4% at 300 nM PDBu [35], in
contrast to the total inhibition observed here with AA.
Arachidonic acid-methyl ester (30 ^M), which raises
cytosolic calcium concentrations without activating
PKC, did not significantly reduce K+-induced 45Ca2 +
influx (Fig. 1). However, 30 /xM AA-methyl ester en¬
hanced the reduction of K+-induced 45Ca2+ influx
caused by 300 nM PDBu to 86 + 4%.

Furthermore, unlike PDBu, AA also has the ability
to raise cytosolic calcium concentrations in GH3 cells.
This effect is apparent in the fluorimetric studies and
probably underlies the increase in 45Ca2+ efflux rate
induced by AA. Down-regulation of PKC in GH3 cells
leads to reduced PKC-mediated responses [29], Al¬
though the potency of AA at inhibiting K+-induced
45Ca2+ influx was greatly reduced by presumed down-
regulation of PKC, the effect was not completely pre¬
vented. This probably reflects incomplete down-regu¬
lation (as would occur with the present protocol [29]),
and the contribution of an additional effect of AA,
other than direct activation of PKC. In summary, it
seems likely that AA may inhibit 45Ca2+ influx into
GH3 cells by a mechanism with at least two compo¬
nents: a direct activation of PKC which may reduce

voltage-sensitive calcium channel activity by chai
phosphorylation together with an additional releas
intracellularly-stored calcium. The latter action w(
raise cytosolic calcium concentrations (possibly in a
tion to other non-PKC-mediated actions of AA) 1<
ing to an apparently reduced response to stimuli,
ability of AA (and its methyl ester) to elevate cytos
calcium levels would explain why the inhibitory el
of AA is greater than that of PDBu, and why ,

methyl ester together with PDBu fully mimic the t
inhibition of influx seen with AA. Nevertheless, sev
lines of evidence dictate that raising cytosolic calc
levels alone does not underlie the major part of
greater effect of AA (rather than PDBu) in inhibi
K+-induced 45Ca2+ influx: (i) influx responses to o

stimuli, TRH and ionomycin (which should be eqi

susceptible to the effects of a raised cytosolic calc
concentration) were almost unmodified by AA, anc
the whole of the effect of AA was reversed by H7
staurosporine (but not their less active congeners)
manner suggesting critical involvement of PKC.
simplest unifying explanation of the data would si
to be that the additional release of Ca2+ by AA se
to promote the efficiency with which AA can inc
activation of PKC. Other explanations may of coi
be possible.

Arachidonic acid and some of its metabolites I
been reported to open potassium channels in h
[4,5] resulting in a hyperpolarisation. As here, tl
effects took seconds to minutes to develop, bui
contrast were prevented by lipoxygenase inhibit
Such relatively slow development of the effect of
here is consistent with the involvement of an enzy
mechanism such as kinase action. Similarly, maxi
effects of PDBu on GH3 cells were observed only a
a preincubation of at least 1 min. These facts couj
to the selective H7 and staurosporine reversal of
AA effect (Figs. 2 and 3) support the idea that act
tion of PKC by AA mediates the effects observed h

In cell-free systems, AA can selectively activate
a- and y-isoforms of PKC [18]. Our observations i
cate that material immunoreactive with polyclonal t
bodies for a-, (3- and e-isoforms of PKC, is preser

GH3 cells (Simpson, J., MacEwan, D.J., Mitchell,
Johnson, M.S., Thomson, F.J. and Parker, P.J., unj
lished data), similar to the profile reported in
GH4C] cell line where the y-isoform has also t
shown to be absent [39], This suggests that it ma;
the a-isoform of PKC which mediates AA actio

GH3 cells, although any role of any further PKC
forms in these cells cannot yet be excluded.

Linoleic acid and AA-methyl ester are less pc
activators of PKC than AA [40], but do cause (
release from intracellular stores [10,12], Linoleic
and AA-methyl ester only poorly mimic AA in
calcium influx studies (see Fig. 1) but AA-methyl <
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robustly mimic AA in the fluorimetric studies,
her indicating that AA-inhibition of calcium influx
not simply be due to release of calcium from intra-
ular stores.

t has been suggested [41] that lowered cytosolic
ium may result from activation by AA of guanylate
ase and thus, activation of cyclic GMP-dependent
tein kinase. This appears not to be a major factor in
AA inhibition of calcium influx seen here since

r-cyclic GMP is totally without effect up to 100 /xM.
chidonic acid and certain of its metabolites can also
bit Ca2+/calmodulin-dependent protein kinase II
, but the lack of effect of calmodulin antagonists on
induced 45Ca2+ influx in pituitary pieces [42] and

in GH3 cells (Mitchell, R. and MacEwan, D.J.,
ublished data) suggests that any action does not
ribute significantly to the inhibition of influx caused
vA here.
he components of the response to AA in GH3
may well be direct actions of AA, since inhibitors

A metabolism are without effect (Table II and Fig.
Vlthough NDGA caused a slight inhibition of AA-
ced 45Ca2+ efflux, any specific action was in doubt
use of the lack of effect with ETYA in the same

ies. The increased extrusion of 45Ca2+ occuring in
onse to AA (Fig. 5) may be almost exclusively
iated by a Ca2+-ATPase as it was completely
ted by sodium orthovanadate [31], whereas Na +
)val was without effect [32]. Table IV shows that
Joes not inhibit all stimulus-induced calcium influx
le same degree suggesting that the AA site(s) of
n is at a specific route of Ca2+ entry rather than
tlcium extrusion.

summary, arachidonic acid inhibits depolarisa-
induced calcium influx into GH3 cells by activa-
of PKC (perhaps a-isoform in particular) and by

E IV

of arachidonic acid on calcium influx induced by 60 mM K +,
'tyl TRH and ionomycin

•ell 45Ca2+ influx was measured as described under Materials
ethods. Cells were preincubated with 50 /u.M arachidonic acid
before exposure to either 60 mM K+-, 1 /aM IV-methyl TRH-

iM ionomycin-containing 45Ca2+ 'calcium uptake medium' for
37°C. Values represent the means+ S.E., n = 4-12. The effect
on the response to K+, but not ionomycin or /V-methyl TRH
itistically significant (* P < 0.05).

us 45Ca2+ accummulation % Inhibition of

(fmol/106 cells per min) stimulus-evoked
-AA + 50MM AA

increment in Ca
influx by 50 /xM AA

50 + 10 49 + 15 -

KC1 120+18 52 + 18 97+16

V-methyl
[ 72+ 6 66+ 4 23 + 11
ionomycin 230 + 28 198+19 17+10

raising cytosolic calcium concentrations. Both of these
mechanisms seem to contribute to a reduction in cal¬
cium influx. It is likely that it is arachidonic acid itself,
and not a metabolite, which mediates these effects.
This appears to be the first clear evidence linking
activation of PKC by AA with a physiologically-relevent
consequence. Further work is required to characterise
the exact PKC isoform(s) which mediate the effects of
AA here and indeed what specific substrate sites this
isoform might have. It seems clear that not only diacyl-
glycerols, but also AA may be important in the physio¬
logical activation of PKC.
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e depolarisation-induced influx of 45Ca2+ into anterior pituitary tissue and GH, cells through 'L'-type, nimodipine-sensitive channels was
'estigated. In anterior pituitary prisms, phorbol esters, activators of protein kinase C, caused an enhancement of K+-induced 45Ca2+ influx,
twever, in the GH3 anterior pituitary cell line, phorbol esters inhibited K+-induced 45Ca2+ influx. The modulation by phorbol esters in both tissues
s stereo-specific and time- and concentration-dependent. The diacylglycerol analogue, 1,2-dioctanoyl sn-glycerol was able to mimic the phorbol
er-induced enhancement of calcium influx into anterior pituitary pieces, but was ineffective in GH, cells. 1,2-Dioctanoyl .sn-glycerol may

selectively activate an isoform of protein kinase C which is responsible for enhanced 'L'-type Ca2+-channel activity.

Phorbol ester; Diacylglycerol; Protein kinase C isoform; Ca2+ influx; Rat anterior pituitary cell

INTRODUCTION

■Depolarisation of cells can cause an influx of Ca2+
o the cells through 'L'-type, voltage-sensitive calcium
annels which are known to be a site of action for a

mber of second-messenger-activated enzymes [1,2].
ese nimodipine-sensitive channels can be multiply
osphorylated by protein kinase C (PKC) [2]. In some
iparations, including GH, cells, PKC activity leads to
luced 'L'-type calcium channel activity [3-7]. Cardiac
-type calcium channels can show both an enhance-
nt and an inhibition of their activity upon PKC
ivation [8], whereas in other preparations PKC
ivation leads to an enhancement of'L'-channel activ-

[9-12]. At the present time, at least seven different
forms of PKC have been described with distinct cel-
tr expression [13]. Some of the PKC-isoforms show
tinctly different activation by agents such as phos-
flipids, arachidonic acid, other fatty acids and
hum [14-16] and show some substrate selectivity (for
iews see [13,16]).
'he present experiments investigate the effects of
C activators on the depolarisation-induced influx of

deviations: PKC, protein kinase C: EGTA, ethyleneglycol-bis-(/l-
toethyl etheU/V./V./V'./V'-tetraacetic acid; PDBu, phorbol 12,13-
tyrate; 4a-PDD, 4a-phorbol 12,13-didecanoate; 4/J-PDD, 4fi-
bol 12,13-didecanoate; DOG, 1,2-dioctanoyl ^-glycerol; OAG,
:oyl 2-acetyl OT-glycerol.

espondence address: R. Mitchell. MRC Brain Metabolism Unit,
■ersity Department of Pharmacology, 1 George Square, Edin-
h EH8 9JZ, Scotland, UK. Fax: (44) (31) 662 0240.

45Ca2+ in two different models, the GH, clonal rat ante¬
rior pituitary cell line and rat anterior pituitary tissue
prisms.

2. EXPERIMENTAL

2.1. Materials and chemicals
All standard laboratory chemicals were of Analar grade and pur¬

chased from BDH Ltd. (Glasgow, UK). Staurosporine was bought
from Novabiochem (UK) Ltd., (Nottingham, UK). GH, cells and
foetal bovine serum were obtained from Flow Laboratories (Irvine,
UK). Medium F-10 Ham was supplied by Gibco-BRL (Paisley, UK)
and radioactive 45CaCL was supplied by Amersham International
PLC (Amersham, UK) (spec. act. = 17 mCi/mg). All other materials
were purchased from the Sigma Chemical Co. (Poole, UK).

2.2. Tissue preparation
Male Wistar-COB rats (>250 g) supplied by Charles River UK Ltd.

(Margate, UK) were maintained under controlled lighting (lights on
from 05.00 to 19.00 h)and temperature (22°C) and allowed free access
to diet 41B (Oxoid Ltd., Basingstoke, UK) and tap water. Animals
were killed by cervical dislocation and anterior pituitaries were rapidly
dissected out and hemisected for use in calcium influx studies. GH3
cells were grown in medium F-10 Ham supplemented with 15% foetal
bovine serum, 1 mM L-glutamine, 100 U/ml penicillin and 0.1 mg/ml
streptomycin in a humidified atmosphere of 95% air/5% CO, at 37°C.
Cells were harvested by agitation, washed by resuspension/centrifuga-
tion (100 x g, 10 min, 25°C) and prepared for calcium influx measu¬
rement as described below.

2.3. Calcium influx measurements
Each fresh, hemisected anterior pituitary was sliced into four equal

parts and incubated in separate polypropylene tubes in 0.5 ml of
'calcium uptake medium' (concentrations in mM: NaCl 154, KC1 5.4,
CaCl2 1.5, D-glucose 11, HEPES 6, pH adjusted to 7.4 with Tris base
and with 0.05% essential fatty acid-free bovine serum albumin).
Washed, harvested GH3 cells were diluted to a density of 5 x 106

•shed by Elsevier Science Publishers B. V. 79
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cells/ml in 'calcium uptake medium' and aliquoted at 0.5 ml/tube. Both
cellular preparations were preincubated (30 min, 37°C, 02 atmo¬
sphere) before a 10 min incubation (37°C, 02) with drugs or solvent
alone. Cells were then exposed to low K+-(5.4 mM) or high K+-(60
mM) calcium uptake medium containing 4 //M 45CaCl2 (=3 //Ci/tube,
specific). After 30 s (37°C), 45Ca2+ uptake was halted by quenching
with 3 ml of ice-cold 2 mM EGTA (Ca2+-free) calcium uptake medium
and tissue was separated by vacuum-filtration through Millipore
SCWP cellulose acetate/nitrate filters (8 /rm pore size) underlaid by
GF/B filters on Millipore 1225 sampling manifolds (Millipore UK
Ltd., Harrow, UK). Samples were washed once immediately with 3 ml
ice-cold EGTA calcium uptake medium and then a further three times
for 2 min each. Cellulose filters were then counted by liquid scintilla¬
tion counting. Preliminary experiments revealed that these conditions
gave the optimal signal-to-noise ratio and that stimulus-induced in¬
flux of 45Ca2+ in excess of basal controls was maximal within 30 s,

suggesting that it represented specific response-triggered flux rather
than adsorption or steady accumulation by storage pools.

2.4. Data analysis
Concentration-response curves were analysed by a non-linear, iter¬

ative, individually-weighted curve-fitting program ('P-fit'; Biosoft,
Cambridge, UK). The values quoted represent the calculated mean
EC50 (effective concentration which produces 50% of the maximal
response), with errors representing standard errors of the mean.

3. RESULTS

Fig.
45Ca2+

1 shows that the high-K+-stimulated influx of
into both pituitary pieces and GH3 cells was

inhibited by the dihydropyridine, nimodipine in a con¬
centration-dependent fashion. The IC50 values for ni¬
modipine were 3 ± 2 and 5 ± 2 nM (n - 4) for anterior
pituitary prisms and GH, cells, respectively. Maximal
inhibition of calcium influx was seen with >100 nM

1 1 0

nimodipine (nM)

Fig. 1. Concentration-dependent inhibition by nimodipine of K+-in-
duced 45Ca2+ influx into anterior pituitary prisms and GH, cells. Typi¬
cally, basal accumulation of 45Ca2+ accounted for around 50 fmol
45Ca2+/hemi-pituitary or 106 GH, cells/min of which non-specific ad¬
sorption to filter and cell surfaces accounted for 34 fmol 45Ca27min.
Stimulation with 60 mM K* increased accumulation to around 120
fmol 45Ca2Vhemi-pituitary or 106 GH3 cells/min (approximately 1600
dpm per assay). 45Ca2+ represented 1 part in 375 of the total Ca2+
concentration. Anterior pituitary prisms (•) or GH, cells (■) were
preincubated with nimodipine (or solvent alone for control measure¬
ments) for 10 min before exposure to 60 mM K+-containing medium
with radioactive Ca2+. After 30 s, 45Ca2+ influx was halted as described
in section 2. The data represent the means ±SEM of 4 determinations.

nimodipine. In both pituitary pieces and GH3 cells
small proportion (— 15%) of the response was resistai
to block by nimodipine, perhaps occurring throuj
some route other than dihydropyridine-sensitive 'L
channels.

Preincubation for 10 min with phorbol 12,13-dibut
rate (PDBu) and 4/f-phorbol 12,13-didecanoate (4;
PDD) before 30 s exposure to high-K+ medium ai
measurement of 45Ca2+ influx caused marked changes
the depolarisation-response seen in both tissue prepar
tions. In anterior pituitary tissue, PDBu and 4/J-PD
(3-1000 nM) enhanced calcium influx in a concentr
tion-dependent manner (EC50 of 55 ± 22 nM for PDF
enhancement (Fig. 2)). The enhancement of K+-induo
45Ca2+ influx into anterior pituitary prisms seen wi
4/J-PDD, was not mimicked by its inactive enantiom
4a-PDD at the same concentrations (3-1000 nM).
the presence of maximally-effective concentrations
PDBu, or 1000 nM 4/1-PDD, K+-induced 45Ca2+ infl
was —280% of control. In contrast, in GH, cells, PDF
or 4y5-PDD (3-1000 nM) pretreatment resulted in a cc
centration-dependent inhibition of the K+-induced i
flux of calcium (IC50 of 17 ± 12 nM for PDBu inhibiti
(Fig. 3)) which also showed stereoselectivity with t
4-position isomers of PDD. The maximal inhibition
calcium influx seen with either PDBu or 4/J-PDD vt
—50% of total depolarision-evoked Ca2+ influx.

The time-courses of the two opposing influences
PDBu in the two preparations are shown in Fig. 4. Be
in anterior pituitary prisms and GH3 cells, PDBu (3
nM) induced nearly half of its maximal response w
total incubation times of 30 s (i.e. present only in 1
45Ca2+ influx measurement period). Inclusion of t

concentration (nM)

Fig. 2. Concentration-dependent enhancement by phorbol of K
duced 45Ca2+ influx into rat anterior pituitary prisms. Rat antt
pituitary prisms were preincubated for 10 min with PDBU (■),
PDD (•) or 4ot-PDD (O) before exposure to 60 mM K*-contai
medium, 45Ca2+ influx was measured as described in section 2. h
of the compounds had any effects on basal 45Ca2* influx at the
centrations used. The data represent the means ±SEM from

determinations.
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3. Concentration-dependent inhibition by phorbol esters of K+-
uced 45Ca2+ influx into GH3 cells. GH3 cells were preincubated for
min with PDBU (■), 4/j-PDD (•) or 4a-PDD (O) before exposure
60 mM K+-containing medium. 45Ca2+ influx was measured as
cribed in section 2. None of the compounds had any effects on
,al 45Ca2+ influx at the concentrations used. The data represent the

means ±SEM from 4-8 determinations.

LC inhibitor, staurosporine [17], reversed the re-
onse to 300 nM PDBu in both tissues. The PDBu
ects were inhibited by staurosporine (1-1000 nM) in
:oncentration-dependent manner, with 30 nM stauro-
orine reversing 59 ± 12 and 60 ± 17% of the 300 nM
)Bu response on K+-induced 45Ca2+ influx into ante-
>r pituitary prisms and GH3 cells, respectively (n = 8).
ith the highest concentration of staurosporine used,
significant amount of the PDBu response remained

either preparation (n = 8).
When the diacylglycerol analogue 1,2-dioctanoyl sn-
'cerol (DOG) was tested on the two systems (Fig. 5),
)G was able to mimic the enhancement by PDBu and
-PDD in anterior pituitary prisms, resulting in an
hancement to —220% of control K+-induced influx
h 100 /tM DOG. However, even up to a concentra-
n of 100//M, DOG was unable to inhibit K+-induced
la2+ influx into GH3 cells (maximum of 4% inhibition
100//M).

DISCUSSION

The data presented here show that activation of
C by phorbol esters can modulate (in a stereo-speci-
concentration- and time-dependent manner) the de-
arisation-induced influx of 45Ca2+ into both rat ante-
r pituitary prisms and GH3 cells. The K+-induced
ux of 45Ca2+ into both anterior pituitary prisms and

T3 cells was mediated mainly through a nimodipine-
sitive 'L'-channel. The remaining 15% of nimodi-
e-resistant influx represents another voltage-sensi-
■ route which may be a 'T' or 'N'-type Ca2+-channel
and/or the more recently discovered dihydropyri-
e-resistant, slow-inactivating, high voltage-activated

PDBu preincubation time (s)

Fig. 4. Time-course of the PDBu modulation of 45Ca2+ influx into rat
anterior pituitary prisms and GH3 cells. Anterior pituitary prisms (•)
and GH3 cells (■) were preincubated with 300 nM PDBu for the
indicated time before exposure to 60 mM K+. The preincubation time
with PDBu is inclusive of the 30 s 45Ca2+ influx measurement period.

The data represent the means ±SEM of 6 determinations.

Ca2+-channel described by Mori et al. [18]. However,
both this channel (designated the 'Bl'-type channel by
Mori et al.) and the 'T'-type Ca2+-channel are not to¬
tally insensitive to block by dihydropyridines [18-20]
and the presence in pituitary cells of voltage-activated
calcium channels other than 'L'- or 'T'-type is uncertain
[6], Both tissues are known to contain 'L'- and 'T'-type
Ca2+-channels although the contribution of any tran¬
siently-opening Ca2+-channels to the total influx seen in
this 30 s depolarisation-induced 45Ca2+ protocol is un¬
known.

Protein kinase C is known to modulate the activity of
other voltage-activated channels, for example a, and
y-PKC can decrease transient K+-currents in Xenopus
oocytes, whereas only a- and /TPK.C reduced transient
Na+-currents [21], Epithelial CP-channels can be either
up- or down-regulated by activation of PKC with either
phorbol esters or diacylglycerols [22]. Such regulation
of the channel may be attributable to different PKC-
isoforms phosphorylating different sites on the Cl~-
channel, one PKC-isoform increasing, and another iso-
form decreasing channel activity [22], A similar array of
PKC influences after activation with phorbol esters was
also seen in cardiac 'L'-type Ca2+-channels [8], In that
case, the time-dependent increase followed by a de¬
crease in cardiac 'L'-channel activity may involve
modulation by distinct PKC-isoforms. However, here
the PDBu-induced enhancement and inhibition of K+-
induced 45Ca2+ influx had similar time-courses in the
two preparations (Fig. 4). At least two PKC-phospho-
rylation sites exist on subunits of'L'-type Ca2+-channels
[2] but the functional effect of such subunit-specific
PKC-phosphorylation is unknown. The opposing ac¬
tions of PKC-activation on 'L'-channel influx seen here
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DOG (pM)

Fig. 5. Concentration-dependent enhancement by DOG of K+-in-
duced 45Ca2+ influx into rat anterior pituitary prisms and inability of
DOG to modulate K+-induced 45Ca2+ influx into GH, cells. Anterior
pituitary prisms (•) and GH3 cells (■) were preincubated for 10 min
with the indicated concentration of DOG before exposure to 60 mM
K+-containing medium. 45Ca2+ influx was measured as described in
section 2. There was no effect of 100,uM DOG on basal 45Ca2+ influx,
or on non-specific adsorption of 45Ca2+ to filter blanks. The data

represent the means ±SEM of 4 determinations.

may be due to different PKC-isoforms acting in oppos¬
ing ways on 'L'- channel activity. The identity of these
putative, opposing PKC-isoforms is unknown, as is the
complete PKC-isoform content of the two tissues (al¬
though both tissues contain at least a-, /?- and f-PKC,
but not y-PKC (Simpson, J., MacEwan, D.J., Mitchell,
R., Johnson, M.S., Thomson, F.J. and Parker, P.J.,
unpublished). The exact relative quantity of each of
these PKC-isoforms within the two tissues is also uncer¬

tain. Naor [23] determined that the ce- and /J-PKC con¬
tent of the two tissues varied considerably, with GH3
cells containing 83% a-PKC and anterior pituitary con¬
taining 58% ct-PKC (the remainder being /i-PKC), but
these results do not take account of Ca2+-independent
PKC isoforms [13]. The differences in absolute amount
of particular PKC isoform(s) in anterior pituitary
prisms and GH3 cells may account for the functional
differences seen here between the two preparations with
PDBu-induced modulations of Ca2+-channel activity.

Interestingly, Lacerda et al. [8] were unable to elicit
the phorbol ester-mediated inhibitory regulation of 'L'-
channels using the synthetic diacylglycerol, DOG. Like¬
wise, DOG was only able to activate the PKC-induced
enhancement of'L'-channels in anterior pituitary pieces
and was ineffective on the PKC-induced inhibition of
'L'-channel activity in GH3 cells (this effect is not due
to differential degradation of DOG between the two
tissues (MacEwan, D.J. and Mitchell, R., un¬

published)). If indeed the dual modulation of 'L'-type
Ca2+-channels seen in cardiac myocytes and in the
present study is due to differences in PKC-isoform ac¬
tion, then DOG, unlike PDBu, may only be capable of

activating particular PKC-isoforms, including that r<
sponsible for enhanced 'L'-channel activity. Tf
phorbol esters, PDBu and 4/J-PDD are capable of at
tivating both the PKC-elicited enhancement and inhib
tion of depolarisation-induced 45Ca2+ influx. Protei
kinase C-independent actions of phorbol esters and di;
cylglycerol analogues have been reported [24,25], hov
ever, the concentration of phorbol esters necessary t
see the effects are very high (>5 //M) and occur wit
PKC-inactive isomers, unlike the stereospecificity of at
tion shown here (Figs. 2 and 3). The diacylglycen
analogue, OAG was reported to depress Ca2+-chanm
activity dependent on its PKC actions [24], but DOG ;
the same concentrations could not mimic OAG ;

depressing Ca2+-currents [24] and furthermore, did nc
act to reduce 45Ca2+ influx here (Fig. 5) suj
gesting that non-PKC activity may only occur wit
OAG and not DOG.

Due to its ability to penetrate cells, DOG is often use
as an agent to reflect the actions of endogenous diglyo
rides. Our evidence suggests that DOG may be pharm;
cologically selecting for one or more PKC-isoforms an
therefore caution must be used in interpretation of v
suits arising from use of the agent.

Acknowledgement: D.J.M. is a Medical Research Council resean
student.
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SELECTIVE PHARMACOLOGY OF PROTEIN KINASE C

Rorv Mitchell. David MacEwan, Melanie Johnson and Fiona Thomson
MRC Brain Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ

Activation of protein kinase C (PKC) by diglyceride (derived in part from the
action of phospho-inositidase C) appears to play a major role in signal
transduction/cellular regulation in many systems. More than seven isoforms of PKC are
now known, which fall into two series: A; Ca2+ dependent and B; Ca2+ independent.
However whilst many targets of 'PKC' have been described, very little is known of the
physiological roles of particular isoforms and indeed whether they display
pharmacological differences that may permit selective intervention. We have
developed a number of cellular models of PKC action allowing us to explore, in a
physiological context, the putative selective pharmacology of different isoforms. With
the aim of assigning identities to the kinases active in particular models, we have
further assessed the actions of particular drugs in ligand binding and kinase activity
assays for PKC using cells and tissues enriched in particular isoforms.

One of our models for PKC(s) action is the regulation of 45Ca2+ influx through L
channels in the GH3 cell line and in anterior pituitary cells. K+- induced 45Ca2+ into
these different cells is influenced quite differently by phorbol esters; the former being
inhibited and the latter enhanced by 4 p- but not 4a-phorbol 12, 13-didecanoate (PDD)
(Johnson, MacEwan and Mitchell, 1989). While both effects were readily blocked by
staurosporine, only that in GH3 cells was readily blocked by H7 (IC50 = 10pM). We
sought selective agonists for the two effects, finding that arachidonic acid (AA)
mimicked the effect in GH3 cells but not pituitary (being both H7- and staurosporine-
sensitive) whereas sn-1,2 dioctanoyl glycerol (DOG) and 12-deoxyphorbol 13-
isobutyrate (DPB) were effective only in pituitary. It is known that a, B, e and not y
isoforms are present in both tissues, with GH3 cells being rather more enriched in a.
Since AA is reported to activate a and y isoforms, but y is not considered to be present
here, we suggest that the effect shown by AA is via aPKC. In support of this hypothesis
ligand binding studies to cystosolic PKC showed an allosteric enhancement of [3H]-
PDBu binding by AA, the magnitude of which correlates with the a content of tissue. In
contrast, the affinities for a range of diacylglycerols, particularly DOG, in displacing [3H]-
PDBu showed if anything an inverse correlation with a content suggesting that the
facilitatory, H7-resistant profile on 45Ca2+ influx in pituitary pieces was through
something other than aPKC.

Models at the level of hormone secretion parallel these observations (Johnson
and Mitchell, 1989). PDBu-induced secretion of luteinising hormone (LH) but not
growth hormone (GH) is H7-sensitive but the latter resistant, whilst staurosporine is
effective on both. The priming effect of LH-releasing hormone (LHRH) is a unique
phenomenon of increased secretory responsiveness (Mitchell, Johnson, Ogier & Fink,
1988). This can be mimicked in some aspects by phorbol esters and is sensitive to
staurosporine yet not H7. This profile is reminiscent of the very high levels of H7
required to block long-term potential (LTP). It appears that e as well as a, B and y
isoforms are H7-sensitive (Schaap and Parker, 1990) so some other form of PKC or~
related kinase may mediate the H7 resistant events observed.
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Johnson, M S, MacEwan, D J and Mitchell, R (1989), J. Physiol. (Lond.) 418. 186P.
Mitchell, R, Johnson, M S, Ogier, S A and Fink, G (1988), J. Endocrinol. 119. 293-301.
Schaap, D and Parker, P J (1990), J. Biol. Chem. 265. 7301-7303.
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CELLULAR ACTIONS OF PHARMACOLOGICALLY DISTINCT FORMS OF
PROTEIN KINASE C. F.J. Thomson*. M.S. Johnson*. D.J. MacEwan*. G.
Fink and R. Mitchell* MRC Brain Metabolism Unit, 1 George Square,
Edinburgh EH8 9JZ, U.K.

We have developed various cellular models ot protein kinase C (PKC)
action which have allowed us to explore, in a physiological context, the
selective pharmacology of different species of PKC. Depolarisation-induced
45Ca2+ influx through dihydropyridine-sensitive Ca2+ channels into anterior
rat pituitary tissue and into GH3 cells were differently influenced by phorbol
esters and putative PKC inhibitors. In GH3 cells, 4B-, but not 4a-phorbol
12,13-didecanoate (PDD) inhibited K+-induced 45Ca2+ influx in a
staurosporine- and H7-sensitive manner, in pituitary tissue, by contrast, PDD
enhanced K+-induced 45Ca2+ influx in a staurosporine-sensitive, but H7-
insensitive manner. We have also found certain PKC actions in other models
to show differential sensitivity to H7. For example, H7 blocked phorbol
12,13-dibutyrate (PDBu)-induced release of luteinizing hormone (LH) but
not growth hormone (GH), whereas staurosporine inhibited both. These
results were supported by the fact that both Ca2+-independent and Ca2+-
dependent PDBu-stimulated kinase activities were blocked with similar
potency by staurosporine, whereas Ca2+-independent kinase activity was
found to be much more resistant to H7 relative to Ca2+-dependent activity.
These pharmacologically different PKCs in anterior pituitary also differ in their
cellular targets. Phospholipase A2 (PLA2) inhibitors (eg quinacrine) blocked
PDBu-induced LH but not GH release suggesting that in gonadotrophes, but
not somatotrophes, an H7-sensitive PKC(s) can act to modulate PLA2
activity. These data suggest that PKC species may differ in their sensitivity to
PKC inhibitors, and that they may have distinct cellular targets.

Proceedings 21st Ann. Meeting Soc. Neurosci.,
New Orleans, 1991.
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.fferential actions of protein kinase C modulators on the release of hormones from
it anterior pituitary tissue in vitro:

S. Johnson, F. J. Thomson, J.L. Avery, D. J. MacEwan & P.R. Mitchell, (introduced
' G. Fink).

(C Brain Metabolism Unit, 1 George Square, Edinburgh, EH8 9JZ.

; have previously reported that phorbol 12,13-dibutyrate (PDBu)-induced release of
iteinizing hormone (LH) and growth hormone (GH) from rat anterior pituitary in
fro show different time courses and different sensitivity to the protein kinase C
■KC) inhibitors H7 and staurosporine (Johnson & Mitchell, 1989). In view of the
issibility that distinct forms of PKC may be involved, we have examined the effects

another PKC activator, mezerein (MEZ); known to mimic only some of the effects of
iorbol esters (Slaga et ai, 1980) .

ie release of LH and GH from pro-oestrous rat hemipituitaries was measured
:cording to Johnson & Mitchell (1989) . The magnitude of GH release induced by MEZ
s similar to that seen with PDBu, thus in the presence of either lOOnM PDBu or

'OnM MEZ, GH release was 2.3210.33 or 2.33+0.33 (meanls.e.m., n=4-6) fold of basal,
iwever, MEZ (lOOnM) was more effective at releasing LH, where the equivalent
gures were 3.5210.28 and 13.3511.92 fold of basal LH release respectively (n=4-6).
te release of GH induced by MEZ or by PDBu (300nM) was unaffected by H7 (30(1M) . In
ntrast, lOflM H7 inhibited the release of LH induced by MEZ and PDBu by 35110% and
115% respectively (n = 4-6).

compare the actions of these PKC modulators on kinase activity, partially
rified PKCs from male rat midbrain (reported to contain messenger RNA for all of
e known PKC isoforms; Scott Young III, 1989) were investigated using a

osphatidyl serine-dependent, histone III-S kinase assay, similar to that
scribed by Huang et al (1988) . The Ca2+-independent activity induced by MEZ and
Bu was inhibited similarly by H7 (IC50S of 2717 and 49+4 (1M, n = 4-8) . The Ca2 + -

-pendent activity induced by MEZ was notably more sensitive to H7 than that induced
PDBu (IC50S of 4+2 and 4719 pM, n=3-8) . Taken together, these data suggest that

Z may show some selectivity for activation of a Ca24-dependent PKC, which is
ghly sensitive to H7. Both this and other PKCs may participate in the LH release
duced by PKC activators.

ferences

hnson, M.S. & Mitchell, R. (1989) Biochem. Soc. Trans. 17, 751-752.
aga, T.J., Fischer, S.M., Nelsoon, K. & Gleason, G.L. (1980) Proc. Natl. Acad.
i. USA 77, 3659-3663.
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)tein kinase C may be required to maintain activity of nimodipine-sensitive Ca2+
innels in rat anterior pituitary cells in vitro.

J. MacEwan, M. S. Johnson, F. J. Thomson and R. Mitchell (introduced by G. Fink).

1 Brain Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ.

lassium-induced release of growth hormone (GH) from anterior pituitary tissue in
tro is inhibited by nimodipine (Johnson et al, 1991) . Correspondingly, K+-induced
:a2+ influx into anterior pituitary prisms and into cells of the GH3 line a-fre
nodipine-sensitive (Johnson et al, 1991; Johnson et al, 1989) . The protein kinase
(PRC) activator phorbol 12,13-dibutyrate(PDBu) also releases GH and the response
largely inhibited by nimodipine (97 ± 9% inhibition at 1 pM, mean ± s.e.m.,

= 6), suggesting that a PRC in somatotrophes can enhance the activity of
hydropyridine-sensitive Ca2t channels. The Rf-induced influx of '15Ca2+ in anterior
tuitary prisms is facilitated by PDBu and both this response and the effect of
Bu on GH release were acutely reversed by the PRC inhibitor staurosporine (3 -

0 nM) but not H7 (1 - 30 |1M) (Johnson et al, 1989; Johnson & Mitchell, 1989). The
esent experiments were carried out to investigate whether there is a tonic
fluence of PRC on these Ca2+ channels.

asurements of GH secretion and R+-induced ^Ca2* influx were made as previously
scribed (Johnson & Mitchell, 1989; MacEwan & Mitchell, 1990) . Staurosporine (300
) reduced 60 mM R'-induced GH release during 2 consecutive hours to 44 ± 13 and)0 ±
of controls after 1 hour additional preincubation with the drug (mean ± s.e.m., n

8). There was no effect of 10 pM H7, (114 ± 15% of control; mean ± s.e.m., n =
, nor did staurosporine reduce ionomycin (50 pM)-induced release (107 ± 14 and 100
12% of controls in 2 consecutive hours, mean ± s.e.m., n = 7). Correspondingly,
veral selective PRC inhibitors reduced R+-induced 45Ca2+ influx into pituitary
isms after preincubation for 60 rnin but not 10 min: for example, 300 nM
aurosporine caused 84 ± 7% and 7 ± 5% inhibition at the two time points
spectively (mean ± s.e.m., n = 4) . Ionomycin (30 pM)-induced <!5Ca2+ influx was
affected by staurosporine (300 nM for 60 min) and R^-induced 45Ca2+ influx was
ightly enhanced by H7 to 138 ± 10% of control by 20 (1M H7 for 60 min (mean ±
e.m., n = 4). Furthermore, presumed down-regulation of PRC levels in GH3 cells by
eatment with PDBu (300 nM) for 24 h reduced 60 mM R+-induced 45Ca2+ influx to 29 ±
■% of control levels (mean ± s.e.m., n = 6) .

ase results support the hypothesis that PRC activity in somatotrophes may normally
ntribute to maintaining nimodipine-sensitive Ca2+ channels in a relatively
tivated state.

ferences
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inson, M.S., Mitchell, R.,

& Mitchell, R. (1989). J. Physiol. 418, 186P.
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Staurosporine
inhibits

protein
kinase
C

(PKC)
activity
by

interacting
with,
or

close
to,
its

ATP

binding
site

(Nakadate,
et

al,

1988).
Since
the

ATP

binding
sites
of

different

serine/threonine-
and

tyrosine-specific
kinases

show

homology,

staurosporine
has

only

modest
selectivity
for

PKC

(Ruegg
&

Burgess,
1989)

suggesting
that
its

radiolabeled
derivative,

[3H]N,N-dimethylstaurosporine
([3HJDMS),
is
a

useful
tool
for

characterisation
of

different
classes
of

protein
kinase

within

a

tissue.
We

have

characterised
[3H]DMS
binding

sites
in

rat

midbrain
and
lung

cytosol
by

displacement
studies
using

the

PKC

inhibitors,
H7

and

staurosporine.

Adult
male
rat

midbrain
or

lung
was

homogenised
in

20mM
Tris-HCI
(pH7.5)

with

50mM
EtSH

,2mM
EDTA,

and
1mM

phenylmethylsulphonyl
fluoride,
then

centrifuged
(12,000g,
4°C,
20

mins).
The

supernatant
was

recentrifuged
(12,000g,

4°C,

5mins)
and
this

supernatant
taken
to

represent
cytosol.
The

binding
assay

constituents
were

50mM
Tris-HCI

(pH8.0),
1|ig/ml
bovine

gamma
globulin

(BGG),
1mM

dithiothreitol,
[3HJDMS
(5nM),
H7

or

staurosporine
and

cytosol

(Gross,
et
al,

1990).
Total
binding

was

measured
in

the

absence
of

PKC

inhibitor
and

non-specific
binding
(which

was

approximately
25%
of

total

binding)
was

defined
in

the

presence
of

3pM

staurosporine.
After
a

30

min

incubation
(4°C),

the

protein
was

precipitated
on
ice

with

1mg/ml
BGG

and
10%

polyethyleneglycol
8000

and

pelleted
by

centrifugation

(12,000g,
4°C,
5

mins).
The

pellet
was

washed
once
with
1ml
of

ice

cold

Tris-HCI
then

counted.

Staurosporine

displaced
specific

[3H]DMS
binding
to

sites
in

lung
and

midbrain
cytosol
with
Hill

slopes
of

0.58±0.07
and

0.22±0.05

respectively,
consistent
with
both

tissues
having

more
than

one
site
with

different
affinities
for

staurosporine.
Binding
to

midbrain
sites
was
more

sensitive
to

displacement
by

staurosporine
(ICso=0.23±0.06nM)

than
lung

sites

(IC50=9.38±1.93nM).
Midbrain

cytosol
contained
sites

sensitive
to

very
low

concentrations
of

staurosporine
(with

27±4%

displacement
at

just

0.02nM),
that

were

apparently
absent
in

lung.
The
H7

displacement
curves
were
similar
in

both

tissues.
However,
the

potency
of

H7

was
quite
low

with

concentrations
up
to

500pM
displacing

only

approximately

40%
of

total

binding.These
results
are

consistent
with
both
lung

and

midbrain
cytosol
containing
more
than

one

kinase

type
which

differ
in

their

affinities
for

staurosporine.
Midbrain,
but

not

lung,

appears
to

express
a

kinase
(or

set
of

kinases)
which
is

highly
sensitive
to

staurosporine,much
more
so

than
has

previously
been

reported
for

staurosporine
on

purified
kinase

activity
(Gross,

etal,
1990).

However,
H7

was

unable
to

distinguish
any
sites
unique
to

either
tissue.
The

weak

displacement
of

binding
by
H7

suggests
that
the

PKC

recognition
sites
for

staurosporine
and
H7

are
not

identical.
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Cholecystokinin-octapeptide
(CCK-8)
has
been
found
to

be

present
in

the

hypothalamus
(Beinfeld
et
al,

1981)
where
it

was

suggested
to

co-exist
with

corticotrophic-releasing
factor
(CRF)
in

medial

parvocellular
neurons
in

the

paraventricular
nucleus

(Mezey
et

at,

1985).
We

investigated
whether

CCK-8
could

induce
secretion
of

adrenocorticotrophic
hormone
(ACTH)
from
the

clonal
mouse

AtT-20
anterior
pituitary

tumour
cell
line,

and
to

see
if

any

release
may

involve

CCK-8-stimulated
inositol

phosphate
production.

Culture
of

AtT-20/D16-16
cells
and

radioimmunoassay
for

ACTH
were

performed
as

previously
described
(Hook
et
al,

1982).
For

measurement
of

inositol

phosphates,
AtT-20

cells
were

preincubated
for
48
h

in

inositol-free
culture
medium

supplemented
with
2

pCi/ml
[3H]-

inositol.
Washed,
harvested,
labelled

cells
were

incubated
at
a

cell

density
of

106

cells/ml
in

DMEM
+

0.25%
BSA

+

25

mM

HEPES
+

3

pg/ml

bacitracin
+

10

mM
LiCI.
After
drug

challenge
for

0-60
min
at

37°C,

reactions
were

stopped
by

addition
of

(1:2)

chloroform/methanol
and

vortexed.
After
20

min,

organic
and

aqueous
phases
were

separated
by

addition
of

(1:1)

chloroform/H20
then

centrifugation
(1000
g,
5

min).
The

organic
phase
was

sampled
for

radioactivity

and
the

inositol
phosphate
contained
in

the

aqueous
phase
(4°C)

were

separated
on

Dowex-formate
anion-exchange

columns.
The

radioactivity
incorporated
into

inositol,
IP-|,
IP2,
IP3

and
IP4

was

separated
by

successive
elutions
with

H2O
then

with
0.1
M

formic
acid
+

0.2,
0.4,
0.8

and
1.2
M

ammonium
formate

respectively.
As

expected,
CRF
(0.1

pM)

and

forskolin
(20

pM)

stimulated
ACTH

release
from
AtT-20

cells.

Likewise,
CCK-8

could
also

stimulate
ACTH

secretion

in
a

dose-dependent
fashion
(EC50

=

20

nM)
and
1

pM

CCK-8
induced
a

release
rate
of

133
±

34
pg

ACTH/10°
cells/h,

mean
±

s.e.m.,
n

=

12

(4.4
fold

increase
over

basal

release).
Exposure
of

AtT-20
cells
to

high
(6.8

mM)
Ca2
+

concentrations
in

the

presence
of

Li+

caused
a

time-dependent
reduction
in

radioactivity
of

the

lipid-
and

inositol-content

of

the
cells
at

60

min
to

50
±

10

and
44
±

6%
of

unstimulated
levels
(mean
±

s.e.m.,
n

=

3)

with
a

concomitant
increase
in

IP1

levels
to

250
±

10%
of

control
(n

=

3)
at

60

min,
and
a

peak
rise
in

IP2

levels
to

350
±

25%
of

unstimulated
levels
(n

=

3)
at

10

min.
Over
the

concentration
range

10-11
to

10-6
M,

CCK-8

(preincubated
for
up
to

60

min)
and
in

the

presence

of

Li+

produced
no

marked
change
in

inositol

phosphates,
inositol

or

lipid-radioactivities
(n

=

3)

These
results

further
indicate
a

role
for

CCK-8
in

ACTH
release
from

corticotrophes.
However,

although

phosphoinositide
hydrolysis
in

the

cells
could
be

detected
by

exposure
to

high

Ca2+,
no

detectable
change
in

phosphoinositide
hydrolysis

could
be

seen
with

CCK-8.
Therefore,
in

AtT-20
cells,

CCK-8
acts
as
a

secretagogue
but

produces
its

effects
by
a

cyclic

AMP-independent
(Reisine
et
al,

1985)
and
an

inositol

phosphate-independent

mechanism.Beinfeld,
M.C.,
Meyer,
D.K.,
Eskay,
R.L.,

Jensen,
R.T.
&

Brownstein,
M.J.

(1981)
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Res.
212,
51-57
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V.Y.H.,
Heisler,
S.,

Sabol,
S.L.
&

Axelrod,
J.

(1982)
Biochem.
Biophys.
Res.

Commun.
106,

1364-1371

Mezey,
E.,

Reisine,
T.D.,

Skirboll,
L.,

Beinfeld,
M.
&

Kiss,
J.Z.

(1985)
Ann.
N.Y.
Acad.
Sci.
448,

152-156

Reisine,
T.,

Rougon,
G.,

Barbet,
J.
&

Affolter,
H.-U.
(1985)
Proc.
Nat).
Acad.
£gj.

22-

22Si1
"22?-lii-



Br.
0.

Pharmacol,
(in

press)

Regional
differences
in

the

affinity
of

diacylglycerol
analogues
for

[3H]-phorbol
12,13-dibutyrate

binding
sites

D.J.

MacEwan,
R.

Mitchell,
M.S.

Johnson,
and

F.J.Thomson.
MRC
Brain

Metabolism
Unit,

University
Department
of

Pharmacology,
1

George
Square,
Edinburgh
EH8
9JZ.

Diacylglycerols
are
one
of

the

endogenous
activators
of

protein
kinase
C

(PKC)

(Nishizuka,
1988).
We

have

previously

postulated
that
the

short
chain

diacylglycerol,
1,2-dioctanoyl

sn-glycerol
(DOG)

may

selectively
activate
an

isoform(s)
of

PKC

(Johnson
et
al,

1989).
Since

phorbol
esters,
such
as

phorbol

12,13-dibutyrate
(PDBu),

are

known
to

activate
PKC

by

acting
at

the

diacylglycerol
binding

site,
we

investigated
the

effect
of
a

range
of

1,2-diglycerides
on

cytosolic
[3H]-

PDBu
binding
from

various
regions
in

the
rat

with

known
contents
of

the

different

Ca2+-dependent
PKC-isoforms.

Cytosolic
[3H]-PDBu
binding

was

performed
as

previously
described
(MacEwan
&

Mitchell,
1990).
The

range
of

1,2-

diglycerides
consisted
of

unmixed
saturated
chains
of
6

-18

carbon
atoms

(C6:o
-

C-i8:o).

1,2-dioleoyl
sn-glycerol

(DO)

(Ci8:i.
cis-9)
which
has
two

unmixed
chains
with
one

unsaturated
double
bond
in

each,
and
a

mixed

unsaturated
chain

diacylglycerol,

1-stearoyl-2-arachidonoyl
s/7-glycerol

(SAG)

(Ci8:o/C20:4.[cis,cis,cis,cis]-5,8,11,14).
When

measuring
the

IC50
for

reversal
of

specific
binding
by
0

-

500
pM
of

each

compound
in

rat

lung,
frontal

cerebral
cortex
and

cerebellum,

DO
and

SAG

showed
the

highest
affinities,
which
were
similar
in

each
of

the

three
regions

tested
(11

-

23
pM
with
DO,

and
6,
4

and
4

pM
with

SAG
for

lung,
cortex
and

cerebellum
respectively
(n

=

4)).

However,
the
IC50

values
for

C6:o
-

Cis
o

saturated
diglycerides

varied

considerably,
with
their

affinities
in

lung
being

consistently
lower
than
in

the

other

regions
for

all

the

chain
lengths
tested.

Differences
in

affinity
were
not
due
to

selective
actions
of

lipases
because
DOG

pre-incubated
in

lung
had
the

same

subsequent
affinity
for

binding
in

cortex
as

DOG

pre-incubated
in

cortex
or

cerebellum.
Plots
of

affinity
against
chain

length
were

bell-shaped
and

showed
lowest

affinity
for

[3H]-PDBu-binding
with

C6
0

and
C-i8:o
(IC50S

were
50

-

176
pM
for

C6:o.
C8:0

and
Ci8:o
in

cortex
and

cerebellum
and

1120,
1354

and
416

pM

in

lung

respectively).
The

highest
affinity
in

the

saturated
diglyceride

series
was
with
a

C14
chain

length
(IC50S
of

17
pM

for

cortex
and

cerebellum;
46

pM
in

lung).
Using

cytosol
from

various
tissues

with

known
contents
of

Ca2+-dependent

PKC-isoforms
(Shearman
et
al,

1988),
the

affinity
of

DOG
varied
not
only
using

lung,
cortex
and

cerebellum,
but

with
all

the

regions
tested
and
an

inverse

relationship
was

apparent
between
the

affinity
for

[3H]-PDBu
binding

and
the

proportion
of

a-PKC
isoform

present
in

the

tissue.

There
is

clearly
an

optimal
chain

length
and

composition
for

diacylglycerol
interaction

with

[3H]-PDBu
binding

sites,
but
it

now

appears
that

short
chain

saturated
diglycerides

such
as

DOG
may

selectively
interact

with

certain
isoforms
of

PKC.
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It

is

now

known
that
there
are
at

least
7

distinct
isoforms
of

protein
kinase
C

(PKC)

(Nishizuka,
1988)

and

messenger

RNAs
for

all

these
isoforms
have
been

detected
in

rat

midbrain
(Scott
Young
III,

1989).
We

have
been

interested
for

some
time
in

the

possibility
that
these

isoforms
may

exhibit
selective

pharmacological
properties.
This
idea
is

supported

by

the

differential
effects
of

PKC

inhibitors
on

phorbol

ester-induced
hormone

release
from

pituitary
(Johnson
&

Mitchell,

1989)
and
the

selectivity
of

some
PKC

activators
on

regulation
of

Ca2+channels
in

these
cells

(MacEwan
et
al,

1990).

To

directly
examine
the

properties
of

the

kinases,
we

used
a

mixed-micelle
histone
lll-S

kinase
assay
similar
to

that
of

Huang
et
al

(1988).

Phosphatidyl
serine-dependent

kinase
activity
from

male
rat

brain
cytosol

(partially-purified
on

DEAE

cellulose)
was

measured
in

the

presence
of

100
pM
or

zero
(<
3

nM)
free
Ca2+.
Phorbol

12,13-dibutyrate
(PDBu)

activated

Ca2+-dependent
PKCs

with
a

consensus
EC50

of
21
±
5

nM

compared
to

that
for

Ca-independent
activity
of

790
±

120
nM

(means
±

s.e.

mean,
n

=
8

-

20).

Phorbol

12-myristate
13-acetate
induced

activity
with

similar
maxima
in

each
case
and

with
a

potency
on

Ca2+-dependent
activity
around
10

fold

greater
than

on

Ca2+-independent.
Two

compounds
which

showed
selectivity
in

the

modulation
of

Ca2+

channels
by

apparently
distinct
PKCs

(MacEwan
et
al,

1991)
were
also

tested.

Deoxyphorbol
13-isobutyrate

recruited
similar
maximal
activity
of

Ca2+-independent
kinases
(93
±

3%
of

that
due

to

PDBu),
but

rather
less
(73
±

5%)
of

the

maximal
PDBu-evoked
Ca2+-dependent

activity
(mean
±

s.e.

mean,
n

=
8

-

9).

Mezerein
recruited
82
±

5%
of

the

maximal

Ca2+-independent
activity
evoked
by

PDBu
but

only
37
±

5%
of

the

Ca2+-

dependent
increment
(mean
±

s.e.

mean,
n

=

5
-

9).

The

diglyceride

1,2-dioctanoyl-sn-glycerol
(DOG)

activated
the

overall

population
of

kinases
with
a

consensus
EC50
of

0.8
±

0.3
pM
in

the

presence
of

100
pM

Ca2+.

However,
even
at

high

concentrations
(up
to
1

mM),
DOG

could
only
elicit
about
half

of

the

maximal

Ca2+-independent
activity
seen
with

PDBu
(n

=
4

-

8).

These
data

indicate
that

activity
of

Ca2+-dependent
and

independent
PKCs

can
be

differentially
elicited
by

some
PKC

activators.
Under

certain

conditions,
the

diglyceride,
(DOG)

appears
to

be

ineffective
on
a

component
of

the

Ca2+-

independent
activity
whereas
other

compounds
such
as

mezerein
may
be

ineffective
on

some
of

the

Ca2+-dependent

kinases.Huang,
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Properties and [32P] Phosphorylation Targets of a
Novel Form of Protein Kinase C in Pituitary.
D J MacEwan, J Simpson, R Mitchell, M S Johnson and
F J Thomson. MRC Brain Metabolism Unit, 1 George Square,
Edinburgh, EH8 9JZ.
A number of cellular responses in anterior pituitary cells
(such as the priming effect of LHRH and a component of
phorbol ester-induced phospholipase A2 activation) are
elicited by a form of protein kinase C (PKC) which is
distinguished by its resistance to isoquinoline PKC inhibitors
such as H7. In a mixed-micelle PKC activity assay, H7-
resistant but staurosporine-sensitive activity was observed in
cytosol from anterior pituitary and lung but not from a
number of other tissues. At least three proteins with weight
16, 16 and 25 kDa were identified as selective targets of this
novel PKC (in two-dimensional autoradiographs of anterior
pituitary tissue incubated with [32P] orthophosphate).
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ABSTRACT

The effect of 1,2-diacylglycerols on specific binding of [3H]-phorbol

2,13-dibutyrate to cytosolic protein kinase C was investigated in tissues reported

o contain different proportions of protein kinase C isoforms. In lung, frontal
erebral cortex and cerebellum cytosols (enriched in a-, (J- and y-protein kinase C

espectively) displacement of specific binding by diacylglycerols containing

insaturated acyl chains was of similar potency for each tissue. 1,2-diacylglycerols

ontaining saturated acyl chains exhibited varying affinities for [3H]-phorbol

2,13-dibutyrate binding sites in each tissue; defining an optimal acyl chain

ength of around 14 carbons in each case. However, the affinities of saturated

liglycerides were consistently lower in lung cytosol than in frontal cerebral

:ortex and cerebellum cytosols, with the greatest differences occurring at lower

Lcyl chain lengths, especially with 1,2-dioctanoyl-srt-glycerol. Binding analysis in

everal tissues with known protein kinase C isoform content, indicated that

,2-dioctanoyl-sn-glycerol may have reduced affinity towards protein kinase C-a.

Cey words: Diacylglycerols; Arachidonic acid; Phorbol ester binding; Protein

■inase C isoforms.

abbreviations: PKC, protein kinase C; PDBu, phorbol 12,13-dibutyrate; AA,

■rachidonic acid; DOG, 1,2-dioctanoyl-sn-glycerol; EGTA, ethylene glycol-bis-((3-

cninoethyl ether)N,N,N',N'-tetraacetic acid.

orrespondence address: R. Mitchell, MRC Brain Metabolism Unit, University

department of Pharmacology, 1 George Square, Edinburgh EH8 9JZ, Scotland,

-nited Kingdom.



l.INTRODUCTION

Phorbol esters are a class of tumour promoting compounds which bind
with high affinity and selectivity to protein kinase C (PKC) [1-5] which exists as a

family of at least seven isoenzymes [6]. Phorbol esters such as [3H]-phorbol
12,13-dibutyrate f[3H]-PDBu) bind to PKC at the diacylglycerol binding site of the

enzyme [4], The competitive displacement by diacylglycerols of specific

[3H]-PDBu binding can be used as a convenient means of exploring the structural

requirements of this site in different PKC isoforms.
Arachidonic acid (AA) increases the activity of the a- and y-isoforms of

PKC in cell-free systems, but is less active at the P-isoform of PKC [7]. The precise

site of action of AA on PKC is at present uncertain [8-11], as is the effect of AA on

the other three more recently discovered members of the PKC-isozyme family,

5-,e- and £-PKC [6].

The proportions of the different calcium-dependent PKC isoforms (a, P
and y) in the cytosolic component of various tissues from rat have been described

[12-14]. In the present study a range of diacylglycerol analogues was examined to

assess the effect of acyl chain composition on [3H]-PDBu-binding affinity in

several regions with varying PKC isoform content. We have also used these

tissues to compare the effects of AA and the diacylglycerol, 1,2-dioctanoyl-

sn-glycerol (DOG) on the specific binding of [3H]-PDBu, to elucidate any

relationship between their binding characteristics and the content of particular
PKC isoforms.

2. EXPERIMENTAL

2.1. Materials.

Standard laboratory chemicals of Analar grade were obtained from BDH

Chemicals Ltd, Poole, UK. Dulbecco's modification of Eagles medium with

4500mg/ml glucose, without sodium pyruvate (DMEM), Ham's F-10 medium

containing 146 mg/1 1-glutamine and foetal bovine serum were supplied by

Gibco-BRL, Paisley, UK. All other compounds and drugs were bought from the

Sigma Chemical Company Ltd, Poole, UK., except [20-3H(N)]-PDBu (specific



activity = 19.1 mCi/mmol) which was purchased from Du Pont, Dreieich,
Germany.

2.2. Animals and cells.

Male COB-Wistar rats (>250 g) were purchased from Charles River UK Ltd,

Margate, UK and were maintained under controlled lighting (lights on from
05.00 to 19.00 h) and temperature (22°C) and allowed free access to diet 41B (Oxoid

Ltd, Basingstoke, UK.) and tap water. COS 7 cells obtained from the European

Collection of Animal Cell Cultures, Porton Down, UK., were cultured in a

humidified atmosphere of 95% air/5% CO2 with DMEM supplemented with 10%

foetal bovine serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin, and were

harvested by trypsinisation. GH3 cells purchased from Flow Laboratories Ltd.,

Irvine, UK., were cultured in Ham's F-10 medium supplemented with 15%

foetal bovine serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin, and were

harvested by agitation.

2.3. Method for specific binding of [SHl-PDBu to cytosolic PKC.

Cytosolic [3H]-PDBu binding was performed in a method similar to that

described by Leach et al [4]. Rats were killed by cervical dislocation and various

regions were rapidly dissected and homogenised in 2 volumes of 50 mM

Tris HC1 (pH 9.0) containing 1 mM phenylmethylsulfonyl fluoride, 1 mM MnCl2

and ultracentrifuged (100,000g, 1 hr, 4°C). The pellet was discarded and the

supernatant was again ultracentrifuged (120,000g, 1 hr, 4°C). The supernatant

■from the second spin was regarded as cytosol and stored at -40°C until use.

■Cytosol was diluted in 'assay buffer' (50 mM Tris HC1 (pH 7.4), 4 mg/ml essential

ifatty acid-free bovine serum albumin, 1 mM CaCl2 and 75 mM magnesium

=acetate) to a concentration which gave total binding of approximately 5 - 10% of

■total radioactivity present, then incubated in a total volume of 250 pi (30 mins,

37°C) with 1 mg/ml phosphatidyl serine (sodium salt), 5 nM [3H]-PDBu (approx.
■0.03 |iCi per tube), various concentrations (0.5 - 500 pM) of either AA or

■diacylglycerol, dimethylformamide (<1% final) or 20 pM PDBu in

dimethylformamide for total and non-specific binding measurements

respectively. Protein was precipitated on ice by the addition of 100 pi 12 mg/ml
■bovine gamma-globulin and 300 pi 24% polyethyleneglycol 8000 in 50 mM Tris



1C1 (pH 7.4). After 20 mins, assay tubes were centrifuged (12,000g, 5 mins, 4°C),

spirated and the radioactivity in each pellet determined after solubilisation.

.ipids were prepared for addition to the assay as follows. Phosphatidylserine
vith or without AA or diacylglycerol were dissolved in chloroform and dried
inder a stream of N2 before being sonicated in 'assay buffer' with a Ystral high

requency homogeniser (2 x 30 s, setting 4) followed by two full strength 30 s

rnlses in an MSE micro-tip sonicator. Various concentrations of diacylglycerols
>r AA were added to the assay in a mixed micellar method where the drug
oncentration was diluted by mixing with micelles which contained

>hosphatidylserine only.
'.A. Binding-data analysis

Concentration-response curves were analysed by a non-linear, iterative,

ndividually weighted curve-fitting program ('P-fit'; Biosoft, Cambridge, UK.),
rhe values quoted represent the means with errors representing standard errors

)f the mean (S.E.M.) of IC50 values (concentration required to inhibit 50% of the

esponse) where appropriate.

RESULTS and DISCUSSION.

Displacement of specific [3H]-PDBu binding by diacylglycerols with
unsaturated acyl chains, such as l,2-dioleoyl-s«-glycerol (Ci8:i) and 1-stearoyl-

1-arachidonoyl-sn-glycerol (Ci8:o/C20:4) occurred with similar, high potency in

ung, frontal cerebral cortex and cerebellum cytosols (Figure 1), Similarly,

lisplacement with unlabelled PDBu showed virtually identical potency in lung,
Tontal cerebral cortex and cerebellum cytosols (IC50S of 6 ± 1, 5 ± 2 and 7+1 nM

espectively, n = 4). However, diglycerides with saturated acyl chains generally
ihowed lower potency than the unsaturated analogues investigated. For the
;aturated analogues, there was a relationship between chain length and affinity
ior the binding site that was biphasic. This was consistent with previous findings

15-17] where this biphasic action was attributed to hydrophilicity of the acyl
•hain and to the optimal fit at the diacylglycerol-binding site within PKC. The

■C5o values for any particular diacylglycerol were always similar in frontal
-erebral cortex and cerebellum cytosols, but the binding sites in lung cytosol



lisplayed markedly lower affinity for all the saturated diglycerides (Figure 1).
rhe reduced affinity in lung was most marked for saturated chain lengths of 6-10

:arbons, with 1,2-dioctanoyl-src-glycerol (DOG) having the greatest separation in

iffinity between frontal cerebral cortex/cerebellum and lung cytosols (Figure 1).
rhe reduced affinity for the diglycerides in lung cytosol was not due to their

legradation in lung only, as DOG preincubated for 30 min (37°C) in either lung
)r frontal cerebral cortex or cerebellum cytosol had the same high affinity when

iubsequently tested on binding to cytosol from frontal cerebral cortex and
:erebellum (data not shown).

Figure 2(a) demonstrates the differences in affinity for DOG towards lung,

rontal cerebral cortex and cerebellum cytosolic PKC. The binding method

smployed in these experiments was slightly different in that DOG was added to

he assay dissolved in dimethylformamide. Using this altered method, the IC50S

of DOG in frontal cerebral cortex and cerebellum were 21 ± 1 and 20 ± 2 pM

espectively (n = 6), whereas the IC50 in lung cytosol was over 80 fold greater. No

■narked difference could be seen when comparing the affinity of sn-DOG and a

ac-DOG mixture on specific [3H]-PDBu binding, nor did 500 pM DOG or AA

\ave any effect on non-specific binding levels (data not shown).

Figure 2(b) shows that increasing concentrations of AA (2 - 500 pM)

mhanced the specific binding in cytosol from lung, but not frontal cerebral cortex

-ind cerebellum (159 ± 9, 109 ± 7 and 110 ± 2% of control specific binding with 500

■tM AA respectively, n = 4). A marked enhancement of binding was also seen in

ciatic nerve, kidney, COS 7 cell and GH3 cell cytosols with 500 pM AA (238 ± 40,

39 ± 5, 210 ± 20 and 141 ± 10% of control specific binding respectively, n = 4). The
-nhancement of binding seen in lung cytosol with AA was mimicked to a lesser
•xtent by linoleic acid and AA-methyl ester, but not by arachidic acid (90 ± 7,

■0 ± 4 and 2 ± 2% respectively of the effect of AA at the same concentration

"500 pM), n = 4). These structural requirements match those described by Seifert
-t al, [18] for PKC activation by AA analogues in whole brain cytosol. The

■nhancement of [3H]-PDBu binding seen at 500 pM AA was not inhibited by

-ncubation with 5 mM EGTA (no Ca2+) included in the experiment (data not



hown) indicating the lack of direct Ca2+-dependency of binding under the
>resent conditions.

Blumberg and his co-workers described a non-competitive mechanism for

lisplacement by AA of [3H]-PDBu binding to mouse brain cytosol [8,9] but only
mder modified assay conditions of low phosphatidylserine concentrations

particularly at 20 Jig/ml phosphatidylserine) which are extremely submaximal
or allowing [3H]-PDBu binding to cytosolic PKC [4]. At higher

}hosphatidylserine concentrations (200 pg/ml) Leach and Blumberg [9] found
nuch weaker displacement of [3H]-PDBu binding by AA. When we altered our

issay to match their conditions (and reduced the phosphatidylserine
roncentration from 1 mg/ml to 750 |ig/ml), we too observed a modest inhibition

oy AA, with specific binding to cytosol from lung, frontal cerebral cortex and
rerebellum being reduced by 500 jiM AA to 82 ± 6, 65 ± 15 and 56 ±16% of control

ipecific binding respectively (n = 3). Whilst there is clearly a close relationship
between the site for phosphatidylserine recognition and that mediating

AA-inhibition of [3H]-PDBu binding, we found that AA (0.5 - 500 (iM) was unable

to markedly substitute for phosphatidylserine in enabling [3H]-PDBu binding to

:ytosolic PKC. Thus it appears that two different influences of AA on PKC may

be possible; firstly an inhibitory influence on the phosphatidylserine recognition

site and secondly (but only in certain tissues; Figures 2(b) and 3(b)) a facilitatory
influence on [3H]-PDBu binding mediated by some distinct site.

Figure 3 illustrates the varying degree to which DOG (a) and AA (b)

modify specific [3H]-PDBu binding throughout all the tissues investigated. In

each case a relationship can be discerned with the proportion of cytosolic PKC
which is of the a isoform [12-14]. The correlation between low potency of DOG
and a-content is reasonable (correlation co-efficient = 0.845, Figure 3(a)).

experiments with purified a-PKC [17] and on the partially purified a-PKC from
ZOS 7 cells (our unpublished observations) confirm that under certain

ronditions, DOG is an extremely poor activator of a-PKC in particular. Although
■he correlation between the AA effect and a content is less close (Figure 3(b)), it is

■>nly those tissues with high a content that show a marked enhancement by AA.

■n this case, other factors may contribute and it is important to note that the



PKC-isoform content of the tissues reported [12-14] represents only the a-, pi-, pil-
and y-isoforms of PKC and does not take into consideration the more

recently-discovered 8-, e- and ^-isoforms of PKC [6]. Therefore caution must be
exercised when attempting to assign an isoform-identity to any result. Although

y-PKC is more potently activated by AA than either a- or P-PKC [7], rat

cerebellum cytosol, a region enriched in the y-isoform, shows no marked
enhancement of binding by AA (Figure 2(a)) and the regions which showed
enhancement of binding with AA (sciatic nerve, lung, kidney, COS 7 cell and

GH3 cell cytosols) are devoid of y-PKC [12-14]. Thus, neither the degree of activity
of DOG nor that of AA could be correlated with either the p or y isoform content.

The present data suggest that DOG will act preferentially on PKC isoforms

other than the a-isoform. A calcium-dependent isoform of PKC which is

insensitive to DOG, but sensitive to AA has been implicated in the inhibition of
K+-induced calcium influx into GH3 cells [19]. The PKC isoform responsible is

e

not y-PKC as it is absent from these cells, and therefore the responsible isoform

may well be a-PKC. In contrast, the facilitation by phorbol esters of K+-induced
calcium influx into pituitary prisms was mimicked by DOG (but not by AA) [20]

suggesting the involvement of a PKC isoform other than a. Supportive of our

findings is previous work in which translocation/activation of a-PKC in U937

cells was induced by treatment with phorbol ester but not by DOG (up to 100 pM)

[21]. In myocytes, phorbol esters are able to both increase and decrease 'L'-type

Ca2+-channel activity, however DOG only mimics the phorbol ester at enhancing
channel activity, being ineffective at the inhibitory modulation of the channel

[22]. These selective effects of DOG in myocyte-Ca2+-channel studies may be due

to ineffectiveness of DOG at the PKC-isoform which has been implicated in

reducing 'L'-type Ca2+-channel activity in other cells in vitro [20].
It thus seems likely that not only in cell-free assays but also under more

physiological conditions, short chain diacylglycerols such as DOG could display a

significant degree of selectivity against activation of a-PKC; a factor which should
be taken into consideration in the interpretation of results.

Acknowledgement: D.J.M. and F.J.T. are Medical Research Council research
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ure 1. The relationship between acyl chain length of diacylglycerols and

inity for [3H]-PDBu binding sites in lung, frontal cerebral cortex and
ebellum cytosols.

^ IC50 values for displacement of specific [3H]-PDBu binding were calculated as

;cribed in the Experimental section for a range of 1,2-diacylglycerols in lung (•),
ntal cerebral cortex (•) and cerebellum (A) cytosols. The diacylglycerols shown

! those with saturated acyl chains: 1,2-dihexanoyl-sn-glycerol (6);

-dioctanoyl-sn-glycerol (8); 1,2-didecanoyl-rac-glycerol (10); 1,2-dilauroyl-

-glycerol (12); 1,2-dimyristoyl-rac-glycerol (14); 1,2-dipalmitoyl-sn-glycerol (16);

'-distearoyl-rac-glycerol (18) and those with unsaturated acyl chain

nposition: 1,2-dioleoyl-sn-glycerol (18:1) and l-stearoyl-2-arachidonoyl-

glycerol (18:0/20:4). The diacylglycerols were added to the assay as mixed
celles. The data represent the means ± S.E.M. from 4 determinations.

;ure 2. Regional differences in displacement by l,2-dioctanoyl-s«-glycerol and

hancement by arachidonic acid of cytosolic [3H]-PDBu binding

e effect of 1,2-dioctanoyl-sn-glycerol (DOG(a)) and arachidonic acid (AA(b)) on

?cific binding in lung (•), frontal cerebral cortex (•) and cerebellum (A) cytosols.

)G was added to the assay dissolved in dimethylformamide whereas AA was

ded to the assay in mixed micelles. The data represents the means ± S.E.M.
e values expressed in (a) are from 6 determinations, whereas the values in (b)

; from 4 determinations.

;ure 3. Relationship between tissue content of a-PKC and the effects of

-dioctanoyl-SM-glycerol and arachidonic acid on cytosolic [3H]-PDBu binding.

e mean values for displacement by DOG in (a) and the enhancement by AA in
of specific cytosolic binding is shown for: cerebellum (data point 1); frontal

-ebral cortex (2); spleen (3); spinal cord (4); testes (5); anterior pituitary (6); liver

; kidney (8); lung (9); GH3 cell (10); sciatic nerve (11) and COS 7 cell (12)
tosols. Responses are expressed as the % change from control specific binding
the presence of 500 (iM sn-DOG (added in dimethylformamide) or 500 |iM AA

ftded as mixed micelles). Full concentration-response curves were always
^ermined but the data at a single concentration is quoted because IC50 and EC50



concentrations were not reached in some tissues. The data represent the mean ±
11

S.E.M. of 4 - 6 determinations.
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