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Abstract 

Lattice models of quantum field theories are studied numerically and analytically 

where scalar fields interact with fermionic fields. The results of these studies are 

discussed in the context of the Higgs mechanism and the lattice fermion doubling 

problem. An introduction to the analytical and numerical techniques used in 

these studies is given. Some suggestions are given asto how this work could be 

extended. 
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Chapter 1 

Introduction 

1.1 Introduction 

It is widely believed that all the known forces of nature can be described in terms 

of quantum field theories. At all energy scales at which observations have been 

made of the physical universe around us, it is seen that the basic building blocks 

of matter are fermions, and the forces between them are mediated by bosons 

according to quantum mechanical rules. It may well be the case, at some finer 

scale than has been possible so far to study, that Supersymmetry, Superstrings 

or some other Super-phenomenon may be required to describe what happens, 

but this is pure speculation at this time. 

In our intuitive understanding of nature (so-called 'ping-pong physics'), we try 

to use our knowledge of the world around us to come to terms with quantum 

field theories, and thus we attempt to label these bosons and fern -lions as parti-

cles. Such a description is sometimes useful, because of the comforting analogy 

with everyday experience, but, for the most part, the intuitive notion of the par-

ticle is, at best, misleading, and often just plain wrong at small enough scales 

of observation. Although it is often possible to construct operators in quantum 

mechanics which create and annihilate states, which we try to interpret as op-

erators which create and annihilate particles, quantum mechanics as applied to 

quantum field theories tells us that it is actually impossible to count the number 



of particles in a physical quantum field state. 

The quantum vacuum, for instance, far from being empty, is in fact the ground 

state of the quantum field, that is the allowed state of the system with the lowest 

energy. In our (literally) particular view of the world, we attempt to understand 

this vacuum state in terms of the possibility of the creation and then annihilation 

of virtual particle pairs, allowed by the Heisenberg uncertainty principle, as 

some kind of particle 'sea', whilst there are no permanent or 'valence' particles 

in the vacuum state. Another example is the proton, which is often described 

as consisting of three 'valence' quarks, which are fermions, held together by 

gluons, which are bosons, with some 'sea' quark anti-quark pairs occasionally 

being created and annihilated. 

Quantum field theories are not bounded to such concepts, however. Instead, 

there is the formal mathematics of the effect of field operators on field states 

to consider. In practice, when physicists attempt to use mathematics to pre-

dict the behaviour of quantum field theories, the problems they encounter are 

so intractable that they tend to resort to methods owing much to the human 

intuitive particle view of nature. This is most apparent in the use of Feynman 

diagrams for evaluating some quantum field theory prediction for some quantity 

as a series expansion in one of the parameters of the theory. Whilst much has 

been achieved in the last few decades using such 'perturbative' methods, it is 

widely accepted that these are limited in what can be achieved with them. 

With the recent availability of high performance computers, it is not surprising 

that physicists have attempted to use such machines in 'non-perturbative' studies 

of quantum field theories. To do this, physicists attempt to model quantum field 

theories by replacing the continuous dimensions of space and (usually) time with 

a lattice, on which models are defined which, in some 'continuum' limit, when the 

lattice spacing is reduced to zero, have the same properties as the real quantum 

field theories. This cliscretisation is necessary to give the system a finite number 

of degrees of freedom. 

Although computers today can be made to perform many millions of calculations 

per second, simulations of quantum field theories on lattices, especially where 
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fermions are involved, as will be described later, are so numerically intensive that 

at present only extremely simple models on very small lattices have been studied. 

The work described in this thesis takes this into account, in that the models 

studied are ones in which fermionic fields interact with scalar fields in a simple 

way, and the numerical simulations performed on the computer are done on 

very small lattices. Scalar fields are the simplest form of bosonic fields. Despite 

these limitations, it is still possible to make qualitative statements about some 

aspects of quantum field theories in which scalar fields interact with fermions, 

which occurs for instance in the Standard Model, where the Higgs mechanism is 

thought to account for the generation of masses for the fermions (electrons) and 

some of the bosons (the W and Z bosons recently observed in the SPS collider 

at CERN). 

Such computer simulations can only ever give answers to specific questions we 

humans ask about the quantum field theory models being studied, they cannot 

in themselves improve our understanding of the models. Knowledge, however, 

leads to insight, and thus computational physics in the field of quantum field 

theories can be viewed as a discipline in its own right, as well as a bridge between 

the long established disciplines of theoretical and experimental physics. 

1.2 Path Integrals on the Lattice 

The formalism by which quantum field theories are transcribed into lattice mod-

els will not be discussed here. Interested readers are invited to consult texts such 

as that by Creutz [5]. Instead, an intuitive 'recipe' will be given. 

Classical field theories can be formulated in terms of classical dynamics. The 

action for a particular theory is written down and the allowed classical states 

of the system, which are the states which extremise the action, are given by 

the 'equations of motion', which are the Euler-Lagrange equations involving the 

functional derivatives of the action with respect to the classical fields and their 

space-time derivatives. It is usually possible to discretise a classical field theory 

on a lattice, in which derivatives of the fields are replaced by finite differences 
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between field variables on neighbouring lattice sites, so that the continuum action 

is regained when the lattice spacing is taken to zero. Then the lattice equations 

of motion, which are obtained by setting the functional derivatives of the action 

with respect to the lattice field variables equal to zero, will represent the true 

continuum behaviour of the field when the lattice spacing is taken to zero. 

In the quantum version of a classical field theory, the field variables in the 

classical action are replaced by field operators in the quantum action, so it is 

not possible to assign values to them in any classical way. Instead, it is possible 

to write down a partition function which is a weighted integral over all possible 

classical field values, the so called path integral. Such an integration procedure 

is well defined on a lattice, where there is a finite number of degrees of freedom, 

which are the classical values of the fields at every point on the lattice, to 

integrate over. 

So, given a classical lattice action S [J which is a functional of fields 0 (x) defined 

on lattice sites x, the classical state, which is represented by the set of values 

of 0 (x) which extremise this action, is obtained by the 'equations of motion', 

which is the set of equations: 

SO (X) 

8S 101 	0 
	

(1.1) 

for all sites on the lattice, X. 

In Minkowski space-time, the partition function for the quantum version of the 

field theory on the lattice is: 

/ 
Vq5 
	

(1.2) 

where the integration measure, Vq, is an abbreviation for the integration mea-

sure of the set of classical field variables, 0 (x): 

VqS = fldc5(x) 
	

(1.3) 

and h is Planck's constant divided by 27r. Note that in the 'classical' limit as 

h - 0, then the partition function becomes dominated more and more by the 

contribution from the set of field values which extremise the action, that is the 

set of field values which represents the classical field state. For small but finite h, 

the dominant contribution to the partition function comes from a distribution of 
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sets of field variables more or less centered around that set which represents the 

classical field state - this is what is meant by the term 'quantum fluctuations.' 

If the classical action is real, however, it is much more convenient to define the 

quantum version of the lattice field theory in Euclidean space, that is Minkowski 

time equals i times Euclidean time. After the rotation into Euclidean time, then 

the partition function, Z, becomes: 

Z = f Vcbe4 8Bk ] 	
( 1.4) 

where SE  is the Euclidean version of the action, which is conventionally defined 

as minus the Minkowski action with the change in the definition of time taken 

into consideration in the differentials with respect to time. 

If there is an observable of the quantum field theory, 0, which depends on field 

operators, then its expectation value can be evaluated using the path integral 

formulation as the weighted average of the classical version of the operator, 0 [], 
in which the field operators are replaced by the field variables, 4' (x), over all 
possible sets of values of 4' (x): 

(0  101) = I  f Do 0 [01 e -  VE-101  

In this way the weight factor 	in the integral, which is real if the action is 

real, can be interpreted in terms of a Boltzmann-like probability density factor, 

and hence /i can be interpreted in terms of a temperature. Thus a connection 

can be made between quantum field theories and statistical mechanical systems, 

though the action is used in one case and the Hamiltonian in the other. 

In future in this thesis, as is the general convention, natural units will be used 

in which h = 1. Unless otherwise stated, four dimensional Euclidean space will 

be assumed. 

Thus to perform a computer simulation of the quantum field theory to find the 

expectation value of 0 [4'] on the lattice, the integrations of equation (1.5) are 

performed by Monte Carlo numerical methods. This can be done if a computer 

program generates sets of field values, 4' (x), called 'configurations', with proba-
bility density e'511 , and the expectation value of the operator 0 will then just 

be the simple average over these configurations of the classical value of 0 [4']. 
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For example, consider a simple real scalar field theory with a continuum Minkowski 

action, SM: 

SM = f d"x {(O  (x))  (am  0 (x)) - m2çb (x)21 	 (16) 

where the summation of repeated indices is assumed, which has the equations 

of motion: 

O19114 (x) + m 2 0 (x) = 0 	 (1.7) 

If 0 (x) is interpreted in terms of a particle wave function of energy E and 
momentum p, then this means that: 

— E2 +p 2 +m2 =0 	 (1.8) 

that is the scalar 'particles' have mass m. 

In Euclidean space, the continuum action becomes: 

S f d4 {(a (x)) (Oç (x)) + m 2  (x)2] 	 (1.9) 

which can be discretised on the lattice to give, after a convenient change of scale, 

the lattice action: 

S = - 	(x) [ (x + z) + 0  (x - t)} + . 	( 
())2 	

(1.10) 2 
MIA 	 2 

where site x + ,a is the next lattice site from site x in the ju direction. The 

'hopping parameter', r., is related to the mass of the scalar field, m, in units of 
the inverse lattice spacing: 1 

8+m2  

The partition function of this lattice model can be calculated. Using the abbre-

viation for the lattice action, 5: 

S = çbPçb 	 (1.12) 

then the partition function, 2 is: 

2 = f DO e 

'-' Det[P]4 	 (1.13) 
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which can be derived by diagonalising the matrix P and then performing the 

Gaussian integrations. This result easily generalises to lattice models involving 

complex scalar fields. 

When a particle interpretation is put on a quantum field theory, information is 

obtained by studying the 'propagator' for that particle, which in essence shows 

how a particle would move from point to point in the background vacuum state of 

the quantum field. This propagator is a correlation function, it is the expectation 

value of the time ordered product of field operators at different points in space 

and time. In the path integral formulation, the propagator is just the expectation 

value of the given product with the operators replaced by the field variables. For 

example, the Euclidean propagator for the above real one-component scalar field 

theory on the lattice can easily be evaluated as the inverse of the matrix P using 
techniques described in section 1.6.1: 

((x) 0 (X2)) = 	f DO 0 (X1) 0 (X2) e 

= P 1 (x i ,x 2 ) 

	

1 	e2(x1_z2) 

= V  
P  [1_2ic 	Cos 	 i4] 

 JA 

See appendix A.1 for details of the conventions used here for the sum over the 

V lattice momentum states, p, where V is the number of sites on the lattice. 

Setting x 1  to be the origin of the lattice and summing over the spatial compo-

nents of x 2 , x, leaving the Euclidean time parameter, t, then for values of i far 

from zero and from the size of the lattice in the Euclidean time direction, L, if 
periodic boundary conditions are used for the scalar fields: 

	

( (0) (x 2 )) 	e t  + e_m_t)  
X 

where m is the mass of the scalar fields in inverse lattice units. This is an example 

of a general theorem for the zero spatial momentum Euclidean propagators of 

physical particles that states that at large Euclidean time separation they take 

on this exponential form with decay constant equal to the mass of the particle. 

This will be used in chapter 3 to fit masses to measured fermionic propagators. 
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1.3 Fermions on the Lattice 

It is possible to construct a 'classical' spinor field theory that represents ferniionic 

fields on a Euclidean lattice by naively discretising the Euclidean version of 

Dirac's equation, giving: 

(1.16) 
JA 

which can be written in a shorthand matrix-vector notation: 

MW = 0 	 (1.17) 

Thus a naive lattice fermionic action, S, can be constructed: 

S=MW 

= 	(x)7[b(x +i) —(x -s)] +m 	(z)&(x) (1.18) 

which has the 'equation of motion' given in equation (1.16). See appendix A.2 

for details of the gamma matrices used. The spinor degrees of freedom are 

represented using anticommuting Grassmann variables. 

To go from 'classical' mechanics to a quantum field theory, the same path integral 

prescription can be used as was used for the bosonic field theory in the previous 

section. The partition function for the corresponding quantum field theory, Z, 
can be found: 

Z = f DTDk e -S  

Det [M] 	 (1.19) 

using the definitions of the integrals over Grassmann degrees of freedom: 

f d7k = 0 

f d7k?k = 1 

f d(&) = 0 if n>1 	 (1.20) 
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1.3.1 Chiral Symmetry 

When m = 0, the naive fermionic action (1.18) is invariant under the set of 

global transformations: 

RP(x) - e -5 Rb(c) 

LO (x) - e 15 Lb(x) 

	

-* 	(z)R e ic115 

	

(x) L - 	(x) Le 	 (1.21) 

for arbitrary constants cxL and crR where: 

R = -(1+75) 

L = 	.(1-75 ) 	 ( 1.22) 

are matrix operators which project out 'left-handed' and 'right-handed' fermion 

states when m = 0. This is called chiral symmetry. 

An explicit fermion mass term in the action of the form: 

M ET (X)O(X) 
	

(1.23) 

breaks this chiral symmetry. This means that when interactions between the 

fermions and other fields are included when m = 0, then it is not possible for 
the fern-lions to gain an effective mass from those interactions unless either those 

interactions explicitly break the chiral symmetry of the action or if the symmetry 

is broken 'dynamically', where the ground state of the model does not possess 

the same symmetries as the action. This is the subject of much of this thesis. 

1.3.2 Fermion Doubling 

The expectation values of frmiothc observables, for instance the fermionic prop- 

agator, can be evaluated analytically using the path integral formalism by doing 
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the integral of the 'classical' operator for the observable over the ferrnionic de-

grees of freedom with weight e 5 , using techniques described in section 1.6.1: 

= f (Xl) T (X2) e- ' 

= .A4 1  (x 1 , x 2 ) 

1 ip(z1-x2) 

= 	 e 	
(1.24) V 	sin p, + m 

using suitable conventions for the sum of the allowed lattice momentum states, 

P, (see appendix A.1), where V is the number of sites on the lattice. 

Unfortunately, when the lattice spacing goes to zero, this propagator does not 

correspond to the continuum fermionic propagator in Euclidean space, which in 

momentum space is proportional to: 

( 	+ m) -i 
	

(1.25) 

because sinp,., is zero not only when p = 0, but also when p = 7r. This 

means that for every lattice direction, the effective number of fermion species 

is doubled. On a four dimensional lattice, that means there are sixteen such 

fermion species, only one of which corresponds to a physical continuum fermion 

when the lattice spacing is taken to zero. This is known as fermion doubling. 

A number of methods have been tried to cure, or at least reduce, this fern -don 
doubling. The two most popular formulations of lattice fern -dons used are Stag-
gered and Wilson fermions. 

Staggered Fermions 

In many systems it is seen that the spinor degrees of freedom can be diago 

nalised by a spinor transformation {6}, leaving four independent fermionic sys-

tems. Three of these can be discarded leaving a fermionic field with four fermion 

species. These are known as 'Staggered fermions' [7] as the spinor degrees of 

freedom are spread over binary hypercubic sublattices. 
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Define: 

b(x) 

T(X) 

- ,,Z0 
- 'o 7

1 1 
 72

1 
 73

=3  x(x) 
- 	

( x ) -v  7 
=2

7i 
Zj

7 
 =0 

- 	'3 2 	o (1.26) 

where: 

x s  = (xo,x1 7 x2,x3) 
	

(1.27) 

Thus, using the properties of the Euclidean gamma matrices used as described 

in appendix A.2, equation (1.18) can be rewritten as: 

(1.28) 

where: 

77;4  = (1,(_ WO ,  (_1)=o+=1,(_1)=o+=1+=2) 	 (1.29) 

T  this formulation, the four spinor degrees  of freedom are independent, thus 

three of them can be dropped leaving four species of fermions, three of which 

are unphysical. 

These Staggered fermions have the advantage that the resulting fermionic action 

is chirally invariant when m = 0, as described above. Another advantage is that 

the reduction by a factor of four of the fermionic degrees of freedom means that 

simulations using them tend to be much faster and use less computer memory 

than the corresponding simulations using other formulations of lattice fermions. 

It is the speed factor which accounts for their popularity. 

Wilson Fermions 

Wilson fermions [8] remove the unwanted fermionic species by giving them an 

excess mass. This is done by adding an extra momentum dependent term into 

the action: 

= 

+m >(x) 1/, ( x) 	 (1.30) 



leading to a propagator: 

= M'(xi ,x 2 ) 

= - 	 (1.31) V  
(i7,sinp, 1  + 1— cos p)+m 

JA 

When the lattice spacing is taken to zero, this is equal to the continuum fermion 

propagator as required. 

The addition of the extra momentum dependent term to the action to remove 

the doubled species of fermions in the Wilson formulation of the action (1.30) 

explicitly breaks the chiral symmetry which was present in the naive formulation 

when m = 0. When interactions with other fields are included, there is then 

no chiral symmetry to stop effective fermion mass terms being induced by the 

interactions, meaning that a zero fermion mass, m, in the action, called the 

'bare' fern-lion mass, does not necessarily correspond to zero mass fermions in 

the model. In practice, to simulate interacting massless Wilson fermions, it is 

found that the bare fermion mass parameter, m, has to be tuned. 

In fact, there is a general theorem [9,10] which states that any local extra mo-

mentum dependent fermionic term in the action for a fermionic system on a 

lattice, which gives all of the doubled fermion states an excess mass over, the 

physical state, must break chiral symmetry. 

1.3.3 Pseudo-Fermjons 

Classical fermionic fields are represented using anticommuting Grassmann vari-

ables. Unfortunately, there is no computer variable type GRASSMANN, and 

so these fermioriic fields cannot be represented directly on a computer. Instead, 

pseudo-fern-lions can be used. 

Using the definition of the partition function for a fermionic quantum field theory 

on a lattice, Z: 

Z = f E)TD%eM'L' 
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Det[M] 

f VXtDX e-xtm-lx 	 (1.32) 

where the x fields are complex scalars, called pseudo-fermions. Note that the 

fermionic matrix, M, in the fermionic action has been replaced by its inverse, 

M -1 , in the pseudo-fermionic action. 

It is often the case that Mt is as suitable a fermionic matrix in the action as M. 

This is the case for naive fermions, because if a suitable Hermitian representation 

of the Euclidean gamma matrices, is used, then the representation, is 

also suitable. Thus two sets of fermionic fields can be used in the form: 

Z = fDq1DXF1DT2DXF2exp— 1 1 Mw 1  + 2 M 2 } 

Det[MtMJ 

[V,(tVye_,t(MtM)x 	 (1 
J 

requiring only one set of pseudo-fermions, x. 

1.4 Hybrid Monte Carlo 

In this section, the Hybrid Monte Carlo algorithm [11] is described, as used 

in this thesis to perform computer simulations Of lattice models of quantum 

field theories where ferrnions interact with scalar fields. The fermionic degrees 

of freedom are simulated by using pseudo-fermions generated from a heatbath 

distribution and the scalar degrees of freedom are evolved using a molecular 

dynamics algorithm with a Monte Carlo accept/reject test to remove Monte 

Carlo time discretisation errors. This process generates scalar configurations 

with the required probability distribution over Monte Carlo time. 

Suppose the model to be simulated has an action, 8, which is a function of a 

real scalar field and fermion fields 1@ 1  and 11 .:  

= S[} + 1 M'P1  + I12Mt1P2 	 (1.34) 

where the fermionic matrix, M, is a function of 4 so that the fermions interact 

with the scalar fields. Two sets of fermioriic fields are included for reasons 
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described below. The pseudo-fermion representation is used, as described in 

section 1.3.3, so that the actual model simulated on the computer has action 8': 

S' = S[] + x' (MtM) -' X 	 (1.35) 

for pseudo-fermion vector x,  which is generated with the correct distribution 

from a gaussian noise vector, i, generated with a probability density e-7 t?7, by 
the relation x = 
The scalar fields are evolved in Monte Carlo time, r, by creating dynamics for 

, whilst keeping the pseudo-fermions, x, fixed. A random momentum vector, 

11, is generated with probability distribution e 2- 2 , and is used to define the 

dynamics of the scalar variables. There is some freedom in the choice of the 

coefficient of 11 2 , corresponding to different definitions of the Monte Carlo time, 

r. Thus a Hybrid Monte Carlo Hamiltonian, 7-1, can be written as: 

	

7-1 = 112 + S{] + xt (MtM)1 x 	(1.36) 

The fact that two sets of fermionic fields, T j  and 	are used ensures that the 
Hybrid Monte Carlo Hamiltonian, 7-1, is real, and thus a probabilistic interpre-
tation can be made of the factor e, as in statistical mechanical systems. 

In a continuous Monte Carlo time variable, r, this Hamiltonian is conserved by 

the corresponding Hamilton's equations of motion: 

dr 	811 
=11 

dil 	87-1 

= OS] + x t  (MM) - ' IMO + 	M} (MtM) ' x (1.37) a-i 

In practice, r is discretised into N intervals of size Si- , and a discrete molecular 

dynamics algorithm, in this case the Leapfrog algorithm, is used: 

1. The value of the momentum vector, 11, at time is calcu'ated, along with 

at time Si-: 
87-1 	Sr 11()=11(0)_(0) 	

2 

	

x - 	 (1.38) 
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(Sr) = (0)+ll() x Sr 	 (1.39) 

For the number of steps required, n = 1, • , N - 1: 

	

ii ((n + ) Sr) = II ((n - ) Sr) - 07-1 (nSr) x Sr 	(1.40) 

	

((m+1)Sr)=(nSr)+fl((r+l)Sr) X 8 	(1.41) 

Finally, the value of the momentum vector, II, at the end of the molecular 

dynamics steps is required: 

ll(NSr)=ll((N_)5r)_( 	
87 

NSr) x -
2 	

(1.42) 

Over the required number of steps, because of the discretisation of the Monte 

Carlo time, r, 7-1 changes by an amount Sfl, and the new scalar configuration is 

accepted with a probability of one if this is negative, and with a probability of 

e if it is positive. The Leapfrog algorithm is reversible and is area preserving 

in the extended phase space, and thus the procedure satisfies detailed balance. 

In this way, configurations are generated with probability density e 1  in the 

configuration space extended to include the momentum states represented by II, 

and hence with the required probability density in the configuration space when 

II is ignored. 

The random vectors 77 and II, along with the accept/reject test, are the stochastic 

elements of this algorithm, the molecular dynamics steps ensure that the scalar 

configuration evolves rapidly through phase space. 

So an iteration of Hybrid Monte Carlo consists of the following steps: 

Generate a gaussian noise vector 77 and set the pseudo-fermion vector x = 
Mt i. 

Measure any fermionic observables required. This is done independently 

of whether or not the next scalar configuration is -accepted. 

Do the requisite number of Molecular Dynamics steps using the Leapfrog 

algorithm keeping the pseudo-fermion vector x constant. 
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Accept or reject the scalar configuration according to the change in 7-1 over 

the Molecular Dynamics steps as described above. 

If the new configuration is accepted, then measure the new scalar observ-

ables, otherwise use the previous values. 

The generalisation of this Hybrid Monte Carlo algorithm to lattice models with 

complex rather than real scalar fields is straightforward. 

1.5 Inversion Algorithms 

When simulating a lattice quantum field theory on a computer using the Hybrid 

Monte Carlo algorithm, the vast majority of computer time is spent in solving 

large sparse sets of linear equations to find the vector X, where: 

MMX=x 	 (1.43) 

In the simulations described in this thesis, this is done by using two variants 

of the conjugate gradient algorithm [12,13,14,15,16,17], which solves the sets of 

linear equations (1.43) iteratively. 

1.5.1 Standard Conjugate Gradient 

The Standard Conjugate Gradient algorithm [18] solves for the vector X by 

minimising the modulus squared of the residual vector, Rj : 

Rj=x_MtMX. 	 (1.44) 

where X1  is the approximation to X after the ith iteration. 

Given some first approximate solution, X o , to the required solution, X, the 

algorithm improves this approximate solution by proceeding as follows: 
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X - MtMX 

P0  = R0  

while converging, ii. = 0, 1, 

a 	RI2 
1 - 

= _X + a2 P,, 

R 1  =Rj—a2 M 1 MP1 
 11:4 12 

- IRI2 

= R +1  +f3 P 

The algorithm is stopped when the modulus squared of R drops below a pre-

determined tolerance, and then the algorithm is restarted using the final value of 

X to be the first value of X in the restarted case to check that this tolerance has 

been achieved in practice. This is done because  rounding errors are cumulative 

in this algorithm - the only time that the right hand side of equation (1.43) 

occurs in this algorithm is at the beginning. 

1.5.2 Least Norm Conjugate Gradient 

The first time equation (1.43) is to be solved in the Hybrid Monte Carlo algo-

rithm, then it is known that: 

X = Mr 	 (1.45) 

Thus, in this case, equation (1.43) can be rewritten: 

MX=q 	 (1.46) 

enabling the Least Norm Conjugate Gradient algorithm to be used, which is 

known to be quicker and better conditioned [19] than the algorithm used above. 

The algorithm iteratively improves the first guess, X0 , to the solution, X, of 
equations (1.46) by proceeding as follows: 

Ro =i7—MX 0  
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po=o 
while converging, n = 0, 1,... 

= IR.. J 2  

Pi+1  = P + oMtRi 
-2 , 	 i, 

pi= 

xi+1 = x + 
= R.. - 

Again, the algorithm is stopped and then restarted when the modulus squared 

of R drops below a pre-determined tolerance. 

1.5.3 Predictor 

As so much time is spent in solving equations (1.43) when simulating lattice 

quantum field theories involving fermions using the Hybrid Monte Carlo algo-

rithm, then some method of choosing the starting vector, X 0 , close to the correct 

solution of the equations, X, will result in large savings in computer time. 

The vector X, the solution of equations (1.43), is evaluated at regular intervals 

in Monte Carlo time. The pseudo-fermion vector, x, is kept fixed throughout 

the Monte Carlo iteration, but the definition of the fermionic matrices M and 
Mt varies as the scalar fields are evolved. Given a sequence of past solutions of 
equations (1.43), then a Taylor expansion in Si-, the Monte Carlo timestep, can 

be used to find an approximate value of X in terms of these previous values. 

Given the last value of X at Monte Carlo time r - Si-, X (r - Si-), then the 
vector X at Monte Carlo time r, X (r), can be evaluated as: 

X(r)=X(r—Si-)+Q(si-) 	 (1.47) 

Similarly, given the last two vectors, X (r - Si-) and X (r - 287-), Taylor's ex-
pansion can be used to show that: 

X(r) = 2X(r_5l -)_X(7_28i)+0(5r2) 	 ( 1.48) 
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Error in pre- 

diction of X(-r) 

Coefficients of previous solutions 

X(r— Si-) X(T— 287-) X(r —3S'i-) X('r-45r) 
O(Sr) 1 
0(87-2) 2 -1 

0(8'r) 3 -3 1 

O(5r) 4 -6 4 

Table 1.1: Coefficients of solutions of the linear equations at previous Monte 

Carlo times used to find an approximate solution at this time. 

Given the last three vectors, X (r - Si-), X (r - 28T) and X (r - 38r), Taylor's 
expansion can be used to show that: 

X(r) = 3X(T - 6r)-3X(T_257-)+x(T_35T)+0(5r 3 ) 	( 1.49) 

Table 1.1 gives the coefficients of previous solutions and the error in the expres-

sion for the approximate new solution to the set of equations (1.43). It is clear 

that this can be generalised to arbitrary order if an arbitrary number of the 

previous solutions, X, are known, the coefficients of the previous solutions in 

the expression for the approximate new solution are just plus or minus a bino-

mial coefficient. In this way, a good approximation to the required solution of 

equations (1.43) can be found from previous solutions. In practice, the number 

of previous solutions that can be used is limited by the number of steps done 

in that trajectory of the Molecular Dynamics part of the Hybrid Monte Carlo 

algorithm and ultimately by the size of computer memory used, as each of the 

previous solutions has to be remembered. 

1.6 Analytical Methods 

This section introduces and explains the analytical methods for studying models 

of quantum field theories on lattices as used in this thesis. These analytical 
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methods are perturbation theory, a semi-classical treatment, a large Y expansion 

and mean field theory. 

To illustrate the techniques used, a simple lattice model will be studied as an 

example where a real one-component scalar field interacts with naive fermions 

via a Yukawa coupling. The action for this model, S, is: 

S = 	 (x) [q5(x + ) + (x -/-')] + 1  E (0 W) 

+(x)-y IV,  (x  +) —(x —ii)] +m(x)(x) 

+Y(z)qS(z)b(x) 	 (1.50) 

1.6.1 Lattice Perturbation Theory 

In this section, an introduction is given to the lattice perturbative methods used 

in this thesis. The general idea is to produce expressions for the expectation 

values of observables of the lattice quantum field theory model as an expansion 

in powers of some parameter of the model, where the expectation values of 

observables of the model can be evaluated analytically when that expansion 

parameter is zero. These perturbative expressions can then be evaluated, and 

their values compared with the expectation values measured from the computer 

simulation. This is used in this thesis as a check on the validity of the results 

obtained from the computer simulation. 

To illustrate the techniques used, perturbative expressions to order Y 2  will be 
derived for the scalar and fern -lion propagators for the simple lattice model with 

action, 5, given in equation (1.50). By using the abbreviations: 

= —'c E 0  (a,) [ (z  + /2) + (x 	+ Z ( (a,))2 

= 	( x) 	(x +t) - ( x -/2)] +m(x)(x) 

= Y(x)ç(x)(z)  

the action can be written in the shorter and more convenient form: 

S = 	+ TFT + U[]W 	 (1.52) 
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The partition function for the model when V = 0, Zo , can be .found directly, as 

described in sections 1.2 and 1.3: 

=  fE~ l—k-Dlq -D-I)exp—[ ' -I~PIP+TF'k 

Det [P] Det [F] 	 (1.53) 

It is useful to define a partition function for the model with Y = 0 in the presence 

of 'source fields' 77, ij and J for the fermion fields I', F and 4P respectively. This 

can also be evaluated explicitly: 

= f DTDXFD (D exp — 	+F'P —W - T77 - J4] 

= f iii exp - {- ( - jp') P ( - 	- l ip- ' J] 

x exp - 	- F') F ( - F_ 1 7) - 7F_ 1 771 

Det [P] Det [F] exp [. (') + (7F 1 77)J 	 (1.54) 

Noting that functionally differentiating Zo [7, q, J ]  with respect to 7, ii and J 
I' respectively b rings down a factor ', - and 4 from the exponential, then the 

full partition function for the model for all values of Y in the presence of the 

sources can be written: 

Z 	J] 	Det [P] Det [F]exp {__u 
[/] _] 

X exp [ (jp') + (yFhi)] 

	

= exp [__u 
[yJ _] Z0 IV, 77,J] 	 (1.55) 

The scalar propagator can thus be evaluated as: 

(q(xi)q(xz)) =  f VT-DO'DO 0 (X 1) 0 (X 2) e -S 

- 	1 	8 	
exp ±U 1±. S 1 

- Z0  [ 	 I_ 
,J] SJ(xi ) SJ(x 2 ) 	S 	Si J F

r 77,77 ,  z0 	 J] (1.56) 

where the symbol X 10  means 'evaluate expression X when the source fields are set 

to zero.' The perturbative expression will be found by expanding the exponential 

involving U to second order in Y, and evaluating those non-zero terms in the 

limit where the sources are set to zero. 
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These non-zero terms, dropping terms which are divided out by the factor of 
ZO 

as they arise, are: 

	

6 	81 
SJ (x 1 ) U (x2) 

(-') = P'(x 1 , x 2 ) 

- 1 	e(z1-2) 

V 	
- 2ccosJ 	

(1.57) 

6 	6 Y 2 	6 	8 	8 	6 	6 	S 
SJ(xi)6J(x2)2

Yl Y2 6(yi)8J(y1)6(y1)877(y2)6J(y2)6(y2) 

x. (jp - 'j) 2  (i'-') 2  

	

= y2 	P'(x i , y 1 )Tr [F_1(y1,y1)] P 1 (y 2 ,x 2 )Tr [F'(y2 ,y2 )] 
Yl Y2 

	

_y 2  E P' (xi ,y i )Tr {F'(y i , y2)F1(y2, )J P 1 (y 2 , x 2 ) 	(1.58) 
Y1 !t2 

The first term gives: 

	

y2 _! 	
e(z1_y1) 'iç 	_ 	f 	1 

Tr 
Y1V2 	 [1 - 	cos aJ 	[m + i7 sin p, 

x Tr f 	1 

Ii - 	cos bJ 	m + E7M Sfl q] 
 JA 

Y 2 	6(a) 	 4m 	 6(b) = 
P9ab  [i. - 2r.E cos a] [m2 + E sin  p] [i - 2,c cos 

	

JA 	 JA 	 JA 

4m 
x 	 e X1  e 2  

[m2 + E sin  q,J 
JA 

- 16m2Y2i 	 1 	 I 
- 	2 	E 	 (1.59) 

[i - 8#cJ [m2  +sin2  PIA ]j 
JA 

The second gives: 

e ' '')  

Y1 Y2 	o&pq 	- 2ic 	Cos a /U  [1 - 2ic 	cos b] 

RTI 



eiP(Y1Y2) 	 ig(y2_y1) 	1 
xTj 	 I 

{m + >I:711 sin 	[m+il-t  :, sin q12] 
j 

4T2 	 €iazl e_ 22  
- 	>8(—a-F-p_q)8(_p+q+b) 

abpq 	 i - 2ic 	cos ait] [i - 2,c 	cos b] I  
[m2  - 	sin p sin 

X 

 

[m2 + : i: sin2  Pti] [m2  + E sin2  q} 
JA 	 A 

2 	
{m2 - 	sin 	sin q,J 

i((p_q)(z1—x3))

JA  

= -wy: pq I m2 + 	sin  p] [m2 + 	sin  qs]  [i - 2ic cos(p - q)IA 

	

2 

 1A 	 JA 	 JA 

(1.60) 

Thus: 
eip(x1 — z2) 

[1_ 2!cosPJ 

2 

16m 2 Y 2  1 	1 
+ V2  P 	- 8icJ [m2 + E sin 2p] 

[m 2  - 	Sfl PIL Sfl IA} i((p_q)(x 1  — x2))
JA  4Y 2  

-w pq 

IM
2 + 	sin  PIL]  [m + 	sin  qi J I1 - 2ic 	cos(p - ) L] 

2 

 JA 	 JA 

-i-O(Y) 	 (1.61) 

In the case V = 0, this is equivalent to equation (1.14). 

Similarly, the fermion propagator can be evaluated: 

= f DTDVIDO?k (Xl - ) T(X2
. 
 ) e-' 

- 	1 	
exp I- -U 	

5 1 

- 	[VI 	 J Zo[,mJJ (1.62) 
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The non-zero terms from expanding the exponential in U, again dropping terms 

which are divided out by the factor of * as they arise, are: 

S 	S 
87(xi)Si(x2) (yF'i7) = F'(x i ,x 2 ) 

	

- 	
e(z12) 

' {m + 	Sfl 

- i>Y,A SiflPP] e(z12) 

	

E= 	

IM
2+sin2pMJ 	

(1.63) 

	

S 	S y2 	 S 	5 	5 	5 	S 
6(x1)S(x 6(yi)5J(y1)S(y1)8(y2)5J(y2) 6 (y2)Y1 Y2  2 

1 (.T P-1 	1 	h__, _) 3 
k 	 '1 

=Y 2 E F'(z1 , yi )F'(yj , y 2 )F'(y27  x2)P1 (y1, y2) 
Y1 Y2 

—V 2  E F'(xi , y j )F 1 (y1 , x 2 )P''(yi , y2 )Tr IF` (y2, Y2)] (1.64) 
Y1 Y2 

The first of the above terms gives: 

	

y2
eip(z1y1) 	 i(Y1Y2) 	 e(_x2) 

Y1 Y2 	pqra [m + E_fjA 
 sin pJ {m + i'y sin q,4J {m + 	sin rJ 

JA 	 JA 
e ia (y 1_y2) 

X 
[1 - 2,c cos a] 

	

 

Iy2 m - i>-y, sin 	[m - i>7 sin q,4} [m - i'y sin r 
JA 	 JA 	JA 

J 
= 	

pqra [m2 + 	sin  p12] {m2 + 	sin  qiiJ [m2 + 	sin  
JA 	 JA  

e2 ' e" 2  
x 	 S(—p+q+a)S(—q+r_a) 

{i. - 2icosai&J 
 JA 

M - i>-",i sin PIL]  [m - 	1 1 
- 	

sin qj rn - I  
2 

	

 I 	 JA 

	

V2 E pq 	
rn2 + sin Pi] {m2 + 1: sin2 qi I 	I 
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x 	 (1.65) 
{i - 2k cos(p - 

The other gives: 

y2 	
V 

1 	 e2 '('1  Y 1 ) 	 e(Y 1-2 ) 

-- 

Y1 V2 	pqra [m + i>y,., sinJ [m + i>-y,. sin r,2] 

1 	1 
xTrI 	 I 

[[m + i>)fiz sin  qit]] [i - 	cos ai] 

2 	 - 
i>j sin pit]  [m - 	sin r] 

=- 
pqra [,M2 + 	sin2  PM] 1m2 + 	sin  rJ - 

L 	JA 	 .1 	1 	 J 
4m 	 e2' e_1Tz2 

x 	 £( —p + r + a)5(a) 
[m2 +E sin  it]  [i - 2,c cos a it] 

 A 	 1A 

[m2 - 2i7sinp - 	sin 2 p, ] ei(z12) 
- 	4mY2 	

(1.66) - - pq 
 [

m2 + 	sin 2p] 2 [m2 + 	
S in  2q,t] 

	8] 
 A 	 JA 

Thus: 

- 	sin pJ e(x -X2) = 	
IM2 + E sin 2 P] 

 JA 

+; 	Im - i 7, SiflPiL] [m - 	71  sin it]  [m - i 7it Sifl 

V pq 	 Im 2 +sin2 p, &] 2  IM 2+ sin 2 q ] 

 JA 

x 

2iccos(p- 
IA 	 I 
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4mY2 	
[m2 - 2i -f, sin p - 	sin2P,  eiP(x12) 

JA 	 JA 

V2  ' 1M 2  + 1sin2 p] [m2 + 	sin 2qi]  [i - 81c] 
 JA 

	

+0 (y4) 	
(1.67) 

In the case Y = 0, this is equivalent to equation (1.24). 

1.6.2 Semi-Classical Treatment 

In this section, a semi-classical treatment will be given to the simple lattice 

model with action given in equation (1.50) in the case m = 0 for the sake of 

simplicity. The fermionic degrees of freedom will be integrated out analytically 

and the resulting effective scalar model will be treated classically, as described 

below. 

Writing the action for the model, as given in equation (1.50), 5, as: 

(1.68) 

where S [J and the fermionic matrix M [] are functionals of the set of scalar 

field variables, 0 (z), then the fermionic degrees of freedom can be integrated 

out analytically in the partition function, Z: 

Z = f DTDOD-0 e 

= / 
Vçb Det [M []] e_S 

= f Do e —S[(kj+Trgog, M(01] 	 (1.69) 

Thus the model is equivalent to a scalar model with action, S': 

5' = S [4} - Tr [loge  M [J] 	 (1.70) 

5' is called the effective scalar action of the model. This effective scalar model 

can then be treated classically, in that the allowed states of the system will be 
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that set of field variables 0 (x) which minimises this effective action, S', that is 

the solution of the 'equations of motion': 

sS I  
6q5(x) 
	 (1.71) 

If interest is restricted to looking for aligned states of the model, then solutions 

to equations (1.71) are required of the form 0 (x) = , where P is a constant. 

Inserting this into equation (1.71), with m = 0, then: 

	

1 	1 0 = [(1_ 8K) - 
4Y2 
	

22 + 	sin' pJ 	(1.72) 

JA 

Thus either P = 0, which corresponds to a disordered phase when quantum 

fluctuations are taken into account, or is a solution of the equation: 

4y2 
X--"% 	 1 

U - 	- 	
22+ 	sin2p 
	 (1.1S) 

JA 

Where solutions to equation (1.73) exist, then these correspond to minima of 

the effective action, Si', whilst 4' = 0 is a maximum, except in the case where the 

solution to equation (1.73) is itself 4' = 0. Thus 4' is continuous but its deriva-

tives are discontinuous at the phase transition, suggesting that this transition 

is second order in this approximation, and the equation of the phase transition 

line can be found by making the substitution 4' = 0 in equation (1.73), giving: 

1 Y 2  

	

8 2V 	
sin2 IE pj 	

(1.74) 

/4 

the disordered phase being at lower values of K, the ordered phase being at 
higher values of K. 

1.6.3 Large Y Expansion 

In this section, the effective scalar action derived in section 1.6.2 will be expanded 

as a power series in 1 . This can be used to give information about the behaviour 

of the model in the large Y limit. 
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As used in the previous section, when the fermionic degrees of freedom are 

integrated out, then the result is the determinant of the fermionic matrix, M. 
Thus the effect of the fermions on the scalar sector can be represented by a term 

in the effective action equal to —Tr [log e  M]. This can be expanded as a power 
series in 

In the infinite Y limit: 

—Tr[log M] = —Tr[log (Yq5(x) S(x, y))] 

= —2 loge M 2  + C(Y) 	(1.75) 

where C(Y) is independent of (x), and thus can be ignored. 

The logarithm of the ferxnionic matrix, M, can then be expanded in powers of 

V . Writing M as: 

Iv! (xi,r2) = F(x 1 ,x 2 ) + U(x i ,x 2 ) 	 ( 1.76) 
where: 

F(x i ,x 2 ) = 	 (X2, X1 +) - (X2, X1 - s)] +m&(z j ,x 2 ) 	( 1.77) 

and 

U(x i ,x z ) = Yq$(x1)S(x1,x2) 	 (1.78) 
then: 

—Tr [loge  M] = —Tr [loge  U] - Tr [loge  [i + U_iF]] 

= —Tr [loge  U] - Tr I U-1F - U'FU'F + 
= —2> loge  qf(x) 2  4m 	1 	2m2  

O(X 11 2Y2 	
(X) [+'] 
(1\ 

+C(Y)+O.) 	 (1.79) 

1.6.4 Mean Field Theory 

In this section, a simple mean field calculation will be described to find the 

critical value of ic in the lattice model with action given by equation (1.50) in 
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the case Y = 00 and m = 0. 

As has been shown in the previous sections, the effect of the fermions on the 

scalar sector in this model can be represented by an effective term in the scalar 

action. This gives rise to an effective scalar action, S', in the case Y = 00 and 

M = 0: 

S/ 	_ 	 (x) 2 _2log(x)2  (1.80) 

In the mean field approximation, one site on the lattice is chosen, x, and the val-

ues of the field variables on the surrounding lattice sites, 0 (z + ) and 0 (z - 
are replaced by their mean value, 4. This gives rise to a one-site partition func-

tion, Z1  (4)): 

Z1  (4)) = j do exp - [_8 	+ 	- 2log 02  

= f 

	

do 04 eXp_ {_8ic4)+21 	 (1.81) 

For consistency, 4) must equal the expectation value of q. Thus: 

= Z1((D) 
f do 0 exp — [-8K + 1 02 - 2log02] 

1 

= 1 (4)) f d 5  exp - 1_8?c 	+ 102J 	
(1.82) 

This can be solved numerically to find the allowed states in this mean field 

approximation for V = 00 and m = 0. The critical value of r., however, can be 

found analytically from this expression. 

Figure 1.1 shows diagrammatically the solutions of equation (1.82). The curve 

is the right hand side of equation (1.82) as a function of ic4), and the straight 

dashed lines are the left hand side written in the form: 

F(4)) = 1 k) 	 (1.83) 
IC 

for differing values of IC. Thus the allowed solutions of equation (1.82) are the 

intersection points of the curve and the straight line for a given value of ,c. It 

is seen that non-zero solutions of equation (1.82), corresponding to systems in 

KI 
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Figure 1.1: Diagram showing solutions of the mean field theory consistency 

equations. The allowed solutions are the intersection points of the curved and 

straight lines. 
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an aligned phase, only exist in the range 0.025 < tc < 0.125. ,c = 0.025 is the 

critical value of ,c, and the model is unstable if ic > 0.125 as a value of K = 

corresponds to massless scalar particles. 

To find the critical value of K analytically, the transition to look for is the one in 

which 4 goes from zero (in a disordered phase) to a non-zero value (in an aligned 

phase). 4P is continuous over this phase transition, though its derivatives are not, 

thus this is a second order phase transition in this approximation. To find the 

critical value of ic it is only necessary to look at the case of infinitesimal , so 

the exponentials in the integrals in the above consistency equation need only be 

expanded to first order in 4D. Thus the consistency equation (1.82) becomes: 

= Z1 () 
 f dc5 5  [1+ 8K + . e02 

8ic I d ç 6e + 

= 40K + o (t
)  2 	

(1.84) 

Thus either = 0, which corresponds to a disordered phase, or if K > 	(as 40 
alignment increases with K) then 2 > 0 which corresponds to an aligned phase. 

Thus the critical value of K in this approximation when Y = oo and m = 0 is 
0.025. 



Chapter 2 

Lattice Higgs-Yukawa Model 

2.1 Introduction 

Below the Curie temperature, the local interactions between magnetic ions in 

a ferromagnet induce a global magnetisation in the bulk material in some di-

rection. In a perfect crystalline structure, the local interactions have at least a 

discrete spatial symmetry, but the final state of the system projects out one spe-

cial direction which manifestly breaks this symmetry. This occurs because the 

magnetised state in which the symmetry is .  broken has a lower free energy than 

any state in which the symmetry is respected. This is spontaneous symmetry 

breaking. If the Standard Model is to be believed, then spontaneous symmetry 

breaking also occurs in a quantum field theory. This means that the Higgs scalar 

fields, 0, gain a non-zero expectation value in a similar manner to the way in 

which a ferromagnet gains a non-zero bulk magnetisation. 
c 

It is thought that, at some energy scale, there exists ascalar potential which is 

of the form: 

- m2 * + A (*)2 	
(2.85) 

the so-called 'Mexican Hat' potential. This potential has a global symmetry 

(which is U(l) if the scalar fields, , have only one component), but the field 

configurations with the lowest value of the action, and hence the largest con-

tribution to the partition function, do not possess this symmetry, because the 
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'Mexican Hat' potential has a maximum at 0 = 0. The underlying symmetry of 

the system is hidden, or 'broken', when the system is in its ground state. 

Because the Higgs bosons interact with other fields in the Standard Model, then 

this spontaneous symmetry breaking affects these fields. One effect is to give 

a mass to some of the gauge bosons - the W and Z particles recently detected 

in experiments using the SPS accelerator at CERN. An explicit mass term in 

the action for any gauge boson is not gauge invariant, but one can be generated 

by an interaction between the gauge bosons and a spontaneously broken scalar 

field. Another effect is that when the scalar fields gain a non-zero expectation 

value, a Yukawa interaction term in the action of the form: 

(2.86) 

acts in a similar manner to an explicit fern-don mass term: 

mbb 	 (2.87) 

thus generating masses for the fermions. This is the well-known Higgs mecha-

nism [20,21,22,23,24,25]. 

There are some problems with this mechanism, however. One problem is that 

perturbation theory tells us that the A04 term, which is necessary to induce the 

spontaneous symmetry breaking, is marginally irrelevant, and thus can have no 

effect on the large scale properties of the model. This suggests that any )0 
term in the action could only be an effective term generated from some other 

interaction at some given energy scale, because if the system was studied at 

some energy scale lower than this, then the effective, that is renormalised, value 

of ) will be smaller. 

Another problem with the mechanism is to do with the infra-red limit of the 

model in the limit in which the Yukawa coupling goes to zero. With no Yukawa 

coupling and no infra-red regulator, the massless fern -lions have an infinite cor-

relation length, corresponding to the fermion operator having zero eigenvalues. 

This means that the partition function will be zero, causing singularities in the 

measured expectation values of observables, as these are generically derived by 

differentiating the logarithm of the partition function with respect to some pa- 



rameter of the theory or some explicit source term in the action which is then 

set to zero. 

With a small Yukawa coupling, the dominant scalar field configurations con-

tributing to the path integral for the partition function will be determined by 

the ferinionic sector. It will be these scalar configurations rather than those 

which just minimise the scalar contribution to the action which are important, 

as is assumed in the Higgs mechanism mentioned above, because of the contri-

bution of the fermions to the scalar sector, which can be represented as a term 

in the effective scalar action of the form: 

 —Tr[logM] 	 (2.88) 

where M is a fermionic matrix operator, as described in section 1.6. This contri-

bution will be large if M has small eigenvalues. Thus these scalar states at small 

Yukawa coupling will most probably be radically different from the free scalar 

states when there is no .Yukawa interaction. This suggests that there exists a 

critical point at zero Yukawa coupling. 

From a purely aesthetic point of view, the Higgs mechanism is intrinsically 

unattractive, as the .Aç6 term is added 'by hand', and, for spontaneous symmetry 

breaking, the scalar fields, 0, have to be given a negative mass squared, which 

is counter-intuitive. 

At the time of writing, no-one has observed a Higgs boson. 

This chapter describes work revolving around the simulation of a very sim-

ple lattice model where naive fermions with zero bare mass interact with one-

component complex scalar fields via a form of Yukawa coupling. The phase di-

agram of the model is discovered by performing computer simulations on small 

lattices. Some analytical work is also presented which helps explain some fea-

tures of the phase diagram. The model studied is an extremely simplified model 

of a quantum field theory, when compared with the Standard Model, but some 

qualitative conclusions can be made about spontaneous symmetry breaking in 

the Standard Model from this work. 
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2.2 Action 

The action for the model studied in this chapter is: 

S = 

+ 1 M'I' 1  + 92M tXP2 	 (2.89) 

where: 

TM IF =  

+Y>(x)[q(z)R+cb*(x)L]b(z) 	(2.90) 

R = 

L = 
2 
1 (175 ) 	

( 2.91) 

defined on a four dimensional Euclidean lattice with periodic boundary condi-

tions for the scalar fields, g5. Two sets of fermions are used to facilitate the use 

of the Hybrid Monte-Carlo algorithm to simulate this model, as described in 

section 1.4. The form of the Yukawa interaction used ensures the hermiticity 

of the terms TMT, and T2M t XP2 in the action, in that if T transforms un-
der conjugation like çbtC where C is the Hermitian charge conjugation matrix 

that anticommutes with the Hermitian gamma matrix representation used (see 

appendix A), then these Yukawa terms are Hermitian. 

The lattice provides an ultra-violet cutoff for the model, but the massless fermions, 

represented by the b fields, require an additional infra-red regulator. This is in-

troduced by using anti-periodic boundary conditions for the fermions in the 

Euclidean time direction. The reason for this is explained in more detail in 

section 2.2.2 below. 

When .\ = oc, the radial degree of freedom of the scalar fields, 0 (x) and q$fr  (x), 
is fixed to unity. This is called the radially fixed case. Thus, when .\ = oo, the 
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degree of freedom is the phase angle, 9(x), and the following substitutions are 

made: 

= 

= e 0 	 (2.92) 

When A = 0, the scalar 'hopping' parameter ic is related to the bare mass, m, 

in inverse lattice units, of the scalar fields by the relation: 

1  

8+m2 	
(2.93) 

This means that for physically reasonable situations, when A = 0, where the 

bare mass squared of the scalar fields is finite and non-negative, then ic varies 
in value between 0 and I. When A = 0, the scalar sector is unstable for values 
of ic greater than or equal to one eighth, as the bare mass squared of the scalar 

fields is no longer non-negative. 

When Y = 0, the fermionic sector is chirally invariant, as described in sec-

tion 1.3.1, there being no fermionic mass term in the action, and there also 

exists independently a global U(1) symmetry in the scalar sector. For non-zero 

values of Y, the Yukawa term breaks this independence, so that the action is 

invariant under the set of global transformations: 

Rb(x) -* 	e'"R1'(x) 

Lb(x) -* 

-* 

-* 

- 	eq5(x) 

(2.94) 

for the species n = 1,2 for arbitrary constant c, when: 

q+q+q = 0 

q — q— q = 0 
	

(2.95) 

Thus the action is is invariant under certain global chiral rotations of the left 

and right handed projections of the fermionic fields ,  when this is accompanied 

by a global rotation in phase of the scalar fields. 
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Note that this symmetry is strong enough to preclude the generation of an 

effective fermion mass term of the form: 

mçbb 	 (2.96) 

unless the symmetry is broken spontaneously, as a term of this form in the 

action explicitly breaks the above symmetry. This is of greater importance to 

the model studied in the next chapter than it is to the model of this chapter. 

It is also possible to write down transformations mixing the two species of 

fermions under which the action is invariant, but these are not of interest here. 

2.2.1 Phases of the Model 

Looking at this model in terms of the scalar fields, an analogy with a magnetic 

system can be drawn. Magnetic systems, in general, can have three distinct 

phases: paramagnetic, ferromagnetic and anti-ferromagnetic. As in a paramag-

netic phase, the scalar fields can be disordered on length scales much greater 

than the lattice spacing. There is the possibility of an aligned phase, where the 

phase of the scalar fields is almost the same throughout the system as in the 

ferromagnetic phase of a magnet. There is also the possibility of an anti-aligned 

or anti-ferromagnetic phase, where the scalar fields at neighbouring lattice sites 

tend to be of opposite phase. The disordered phase is often called the symmetric 

phase, as the ground state possesses the same symmetries as the action. In the 

aligned and anti-aligned phases this is not so, there is a preferred phase angle, 

and so these are often called broken phases. In these broken phases, the ground 

state of the system does not have the same symmetries as the action, and thus 

spontaneous symmetry breaking has occurred. 

Because of the Yukawa term in the action, spontaneous symmetry breaking in 

the scalar sector results in the spontaneous symmetry breaking of the symmetries 

as stated in equations (2.94) thus effectively breaking what remains of chiral 

symmetry in this model. 
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2.2.2 Y = 0 Limit 

As has been stated in the introduction to this chapter, there are problems with 

this model in the limit Y -p 0 due to infrared divergences in the fermionic sector. 

When Y = 0, with periodic boundary conditions for the fermions, the lowest 

eigenvalue of the fermionic matrix product MtM is zero, and hence the partition 

function is zero. This is manifested in the fermionic sector by singularities in 

the fermionic propagator: 

M'(x,y) 

= Vi7sinp,, 	
(2.97) 

AA 

where V is the number of sites on the lattice and the sum over p represents the 

sum over the V allowed lattice momentum states (see section A.1 for the con 

ventions used here for momentum sums). It also means that the equations 1.43 

have no solution, thus the Hybrid Monte Carlo algorithm will not work in this 

limit. 

Therefore, to simulate this model in the limit Y -f 0, it is necessary to introduce 

an infra-red regulator to remove the singularities in this propagator. One method 

is to add an explicit fermionic mass term to the action of the form: 

mibb 	 (2.98) 

but this explicitly breaks the invariance of the action under the set of trans-

formations (2.94). This has the effect of inducing some alignment of the scalar 

fields,so that there are no true disordered phases of the model. The method 

chosen in practice to remove these singularities is to impose anti-periodic bound-

ary conditions on the fermionic fields in one direction, arbitrarily chosen to be 

the Euclidean time direction, i, so that provided there is an even number of sites 

in this direction, then sin Pt  15 never zero. 

These singularities in the fermionic propagator occur not only when p is zero, but 

also when the components of p are all multiples of ir, thus there are sixteen poles 

to the propagator corresponding to sixteen fermionic species. This is the fern-lion 
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doubling phenomena described in section 1.3.2. This is true whatever bound-

ary conditions are used when the continuum limit is taken, but anti-periodic 

boundary conditions, provided there are an even number of lattice sites in the 

direction or directions in which they are imposed, ensure that these fermionic 

states do not manifest themselves as zero modes on finite lattices. 

With the two sets of fermioriic fields being used for this model, there are a total 

of thirty two fermionic states, thirty of which are unphysical, in this system. In 

this chapter, this ferniionic doubling phenomenon is totally ignored. In the next 

chapter, however, this problem will be studied in more detail where a model 

related to this one will be used to induce masses for the unphysical fermionic 

doubles of the order of the inverse lattice spacing, so that they decouple from 

the theory in the continuum limit. 

2.3 Observables 

The expectation values of the following observables of the model are studied in 

this chapter: 

Q = V 
JA 

= 9(Q) 

P3P = 

R2 = 
xv  

P2 = 	Tr [(mmt)'J 	 (2.99) 

Q and R 2  are local and global alignment parameters respectively having expec-

tation values around zero in a disordered phase and rising with alignment. The 

expectation value of Q is negative when anti-alignment occurs but R 2  has an 
expectation value close to zero. CV corresponds to a specific heat, by analogy 

with a magnetic system, and is measured from the fluctuations in Q over Monte 
Carlo time. The expectation value of P.sP gives a measure of the amplitude of 
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the scalar fields and is unity, as has already been stated, when A = 00. P2 is a 

fermionic parameter whose expectation value gives an indication of the sum of 

the inverse eigenvalues of the fermionic matrix product MMt. All of these ob-

servables are invariant under the same transformations as the action (see section 

2.2) and are independent of the global phase of the scalar fields if spontaneous 

symmetry breaking occurs. 

Because of the large variation possible in the magnitude of the scalar fields, as 

measured by PsP, it is convenient to define a global alignment observable C: 

(R 2 ) 

(PsP) 	 (2.100) 

which is approximately zero in a disordered or anti-aligned phase, rising to unity 

in a totally aligned phase. 

Perturbative expansions for the expectation values of these observables can be 

performed in certain parameters using techniques described in section 1.6.1. For 

instance, in the regime of small Y and small A: 

eu1(z2 -xi) 

[
-2A - 2> COS ] 

JA 

P 1  

41 	
A 	

K cos P A  JJ + 	
2 
 ] 	

{. - 2A - 2  

ig(z3_xt) 

2 

" [i - 2A - 2ic cos q] 

[{sin p. - sin q,&}2J  cos((p — q)(x2 - x1)) 

V2 Pq 

 

{i sin  itJ 
{ 	

sin  It] [1 -.2A - 2,c 	cos(p - q) 
2J 

+O(A2,AY2,Y4) 	 (2.101) 
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Thus: 

cosp 	 cosq 

[]

+I 
	

IA  

q  IPIA 1_2A_2,ccosqiiJ 
$4 

X(Y2  

—4 
pq 

1 	 '1 
[ >i:  -

Al: A 

sin  p 

'4 
 I1_2A_2,cospJ 

1 	) 

[sin p,,  - sin qp]2] 	cos(p - 
JA 

2 
sin 	I I 	sin q,4J [i - 2A - 2,c 	cos(p - q)$s] 
 JA JA 

(2.102) 

{ 

COS  PJA  

]2 	

32 	
IEcosJ2 

	

JA 
'4 	 2 

	

2A - 2icos] 	 {i - 2A _2lI Cos ,] 
JA 	 JA 

xIY2

1 	 1 

	

P {sin 2p] 	 2A - 2kcospl J JA 	 I 	'4 	.1 

A I E Cos Pm  
[P 

 [ _
2A_2K COS p]J 

—16—
V2 	

'4 

2 

2 	 Fi [sin p - sin  nq21 { cos(p - q),4J 
—16

V2pq 	
sin  p,4] 	sin2 qJ {i - 2A - 2r.E cos(p - q)] 

 
[E 

(2.103) 

1 	 4 	 1 
+ TT 

(PsP) = 	

I _2A_2KcosP] - q 
[ 	

2 
_2A_2cosq} 



1 	 1 X  y2

I JA 	I 	JA 

sin  p] 1 - 2À - 	cos p14] J 
2 	 {[sin Pi .—sin q14 J 

V2 
Pq [E i2P} 

[
sin2 q] I 1 - 2À - 2,c cos(p - q)14J 

2  

(2.104) 

1 	1 	4 	1 

	

(p2) = V[l2À8j 	
8r. 

(y2
F ,  (2.105) 

	

1 	 1 

sin2  Pj 	{i - 2A - 2,c cos PJA 

neglecting terms of order .A 2 , ÀY 2  and Y 4 . 

With A = 0 for small Y: 

1Y2 1 (P2) = 	______  
[sin p] 	pq 	 2sin PJA 

JA 	
{i 2/> Cos PJ 

{sinp, — sinq,4 J 2 
y 2  

+4 	 /4 

2 r 
P 	

sin  P14j 
{ 	

sin  qis] {i - 2,c 	cos (p - q) 15J 
/4 

(2.106) 

neglecting terms of order Y 4 . 

When A = 00 in the regime of small Y and ic: 

(Q) = 8ic 

2 	[ 	{sin p14-sin q14}2]cos(p- 

2 V 	
[sin 2 p14J [sin2q14] 	

(2.107) 
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_____________ 	Y 2 	1 1 	
4v> 	 2 

(P2) = 4I:: [  
i: sin  p] - 	P 	

ri2 
ii 	

2 [sinp - sin q] 	

(2.108) 
.rç. 	IL 

pq 

+4- 
Y2 

L 	 2 

PIL] I 	q14] 

neglecting terms of order ic 2 , icY 2  and Y 4  

See appendix A.1 for details of the conventions used for momentum sums. 

In the case Y = 0 and A = oo: 

- 	(R2) = 	[i + 8,c + 0(,c2)] 	
(2.109) 

	

(CV) = 8 + Q(,c2) 	 (2.110) 

Values of these expressions can be calculated and compared with measurements 

taken from the computer simulation providing a useful check of the validity of 

the results of the computer program. 

2.4 Simulation 

A brief description is given in this section of the method by which the computer 

simulation of the Higgs-Yukawa model was performed. The general idea behind 

this simulation was to discover features of the phase diagram of the model, and 

to use this information to help draw some conclusions relevant to the standard 

model. To do this, a large number of independent simulations of the system on 

very small lattices with different parameter values were performed. 

2.4.1 Algorithm 

The models with infinite and finite A were simulated separately using the Hy- 

brid Monte Carlo algorithm. See section 1.4 for more details of this algorithm. 
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fields, 1P = f  (x)}, are as follows: 

51 

Pseudo-ferniions were generated from a heatbath distribution which were kept 

fixed whilst the scalar configuration was evolved according to a Hybrid Monte 

Carlo Hamiltonian, 71, by different molecular dynamics steps for the two cases 

of finite and infinite A with a final accept/reject test to remove finite time step 

effects. 

Molecular Dynamics for A = cc 

The N molecular dynamics steps, with time step Br, used to evolve the scalar 

degrees of freedom, ® = {8 (x)}, in the radially fixed case, are as follows: 

A scalar momentum vector, 11, is chosen from a Gaussian distribution 

with probability density proportional to e 2 . Call this time 0. Note the 
coefficient of 112 

The value of the momentum vector, II, at time is calculated, along with 

0 at time Br: 
Sr 11 

() 

= 11(0) - 	(0) x 	 (2.111) 

0 (Sr) = 0(0) +11 () x Sr 	 (2.112) 

For the number of steps required, n = 1, , N - 1: 

((n + 	8-r) = II ((n 	
jo— (nS-r) x 2 
	

(2.113) 

0 ((n + 1)Sr) = 0 (nsr) +11 ((n + ) Br) x Sr 	(2.114) 

Finally, the value of the momentum vector, 11, at the end of the molecular 

dynamics steps is required: 

11(NSr)= 11((N_ 1  )Sr) - 	(NSr)
Sr  

x - 

	

2 	80  
4 

Molecular Dynamics for Finite A 

The N molecular dynamics steps, with time step Br, used to evolve the scalar 



L A scalar momentum vector, II, is chosen from a Gaussian distribution with 

probability density proportional to e_11t11. Call this time 0. 

The value of the momentum vector at time is calculated, along with 4) 
at time Sr: 

II 
() = 

la (0) — 	-.(0) x -- 	 (2.116) 

4) (Sr) = 4) (0) + 11 
() x 

Sr 	 (2.117) 

For the number of steps required, n = 1, .. , N — 1: 

H ((
n +.) 

är) = ii ((m 
— .) 

sr) — 	(nSr) x Sr 	(2.118) 

4)((n+1)Sr)= 4)(nsr)+11((n+!)8r) x Sr 	(2.119) 

Finally, the value of the momentum vector, 11, at the end of the molecular 

dynamics steps is required: 

11(NSr)=11((N_)5.7-) -- 2 -(NSr ) >< --
Sr 
	(2.120) 

2.4.2 Implementation 

The algorithm was implemented as n copies of the system on the Edinburgh Con-

current Supercomputer, one system per Transputer plus one controlling Trans-

puter. The program was written in occam2 using thirty two bit arithmetic, 

and could be adapted to simulate the system on a four dimensional hypercube 

of various sizes, memory and computer time permitting. The pseudo-random 

number generator used was of the modulo type, with an additional shuffle stage 

to re-order the sequence of numbers generated. 

Periodic boundary conditions were used in all directions for the scalar fields, 

and in the space-like directions for the pseudo-fern -lion fields. Anti-periodic 

boundary conditions were used in the Euclidean time direction for the pseudo-

fermion fields. This meant that the model in the limit Y - 0 was accessible to 
simulation as discussed in section 2.2.2. 
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After an initial equilibration period, and before measurements were started, the 

program tried to find the optimal number of molecular dynamics steps and pre-

dictor order (see section 1.5.3) that led to the maximum acceptance probability 

in the least computer time with the total Monte Carlo time fixed to unity in the 

units used. 

2.4.3 Program Checks 

In order to verify that the program doing the simulation was giving correct 

results, the following checks on the program were performed: 

• The program was checked to ensure that the fermionic matrix product 

MM was Hermitian. This was done by generating a random pseudo-

fermion vector 77, and comparing the values of the expressions IM7 7 I 2  and 
t (wi). 

• Scalar observables were checked for invariance under the global transfor-

mations: 

(x) -* e"q5(x) 

eaq5(x) 	 (2.121) 

for arbitrary constant a. 

• The Molecular Dynamics steps were checked for reversibility to a degree of 

accuracy determined by how accurately the sets of linear equations were 

solved. This was done by evolving a scalar configuration with fixed pseudo-

fermions for a number of steps with step size Sr, and then evolving it for 

the same number of steps with step size —Sr, using the final momentum 

vector for the forward pass as the initial momentum vector for the reverse 

pass. The change in the value of the Hybrid Monte Carlo Hamiltonian 

over this process was measured. As the initial guess for the solution to 

the sets of linear equations to be solved were different in the two passes, 

then reversibility of the Molecular Dynamics steps could be verified. This 

procedure also verified that thirty two bit arithmetic was accurate enough 

for the purposes of the simulation. 
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6r=0.1 6r=0.5 

Acceptance - 0.95 - 0.3 

Q 2.328(21) 2.293(26) 

CV 115(3) 118(3) 

R 2  0.209(3) 0.203(4) 

P2 3.048(6) 3.059(8) 

Table 2.1: Measured expectation values of observables of the Higgs-Yukawa 

model at Y = 0.64, .'c = 0.02 and A = 00 on a 44  lattice as a function of the time 
step Sr with total Monte Carlo time per step fixed at 1.0. 

Sr = 0.1 ST = 0.2 I 8-r 	0.3333 

Acceptance 0.94 0.77 0.39 

Q 24.627(6) 24.629(2) 24.634(5) 

CV 190.7(14) 191.3(6) 193.5(15) 
PSP 3.6944(6) 3.6944(2) 3.6945(6) 
R 2  2.9926(8) 2.9929(3) 2.9940(7) 
P2 0.85431(15) 0.85442(7) 0.85422(14) 

Table 2.2: Measured expectation values of observables of the Higgs-Yukawa 

model at Y = 1, ,c = 0.1 and A = 0.1 on a 44  lattice as a function of the time 
step 8r with total Monte Carlo time per step fixed at 1.0. 

• Independence of the measured expectation values of observables from the 

value of the time step, Sr, and hence the acceptance probability, was ver-

ified. See tables 2.1 and 2.2. 

• Comparisons were made between the measured expectation values of oh-

servables gained from the computer simulation of the model and the values 

of the perturbative expressions listed in section 2.3. See figures 2.1, 2.2, 

2.3 and 2.4. 
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Figure 2.1: Comparison of measured expectation values with perturbative ex-

pressions for Q, CV and R 2  when Y = 0 and \ = oo for small ?c on a 6 lattice 

for the radially fixed Higgs-Yukawa model. The points are measured data, the 

lines are the values of the perturbative expressions. 
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Figure 2.2: Comparison of measured expectation values with perturbative ex-
pressions for Q and P2 when #c = 0 and ,\ = oo for small Y on a 6 lattice. The 

points are results of the simulation of the radially fixed Higgs-Yukawa model, 

the lines are the values of the perturbative expressions. 
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Figure 2.3: Comparison of measured expectation values with perturbative ex-

pressions for Q, CV, PsP and R 2  when ,c = 0.1 and Y = 0 for small ). on a 6 

lattice for the Higgs-Yukawa model. The points are measurements, the lines are 

values of the perturbative expressions. 
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2.5 Results 

To discover features of the phase diagram, a large number of independent simu-

lations of the model were performed with different sets of parameters. This was 

done in planes of parameter space, from which contour plots of the measured 

expectation value of observables could be made, giving a good overview of the 

general phase structure of the model. Lines in parameter space were also studied 

showing features of parts of the phase diagram to a higher resolution than that 

achieved in the contour plots. 

Contour plots of the measured value of the global alignment parameter, G, as 

defined in section 2.3, measured on a 44  lattice, as a function of the coefficients 

A, ,c, and Y of terms in the action stated in equation (2.89), are shown in 

figures 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11, where measurements are taken in 

the planes A= 0,A=1, A=oo,Y=0, Y=3,,c=0 and ,c=O.1 respectively. 

Values of C close to zero correspond to disordered and anti-aligned phases of the 

model. A value of C equal to unity corresponds to a totally aligned phase. Phase 

transition lines are seen and are characterised by regions in the plane where the 

contours are closely spaced showing that the value of C changes rapidly with 

a small change in the value of parameters of the model. A schematic phase 

diagram of the model on a 44 
 lattice with these boundary conditions for non-

negative values of #c is shown in figure 2.12. 

The measured expectation values along the line ,c = 0 in parameter space on 6 

lattices in the cases A = 0 and A = 00 are shown in figures 2.13 and 2.14. No 

error estimates are given in these figures. For most of the observables, the errors 

can be estimated from the scatter of the points, though for CV this is unreliable 

close to a phase transition, as it is measured from the fluctuations of Q over 

Monte Carlo time, and thus is subject to phenomena such as critical slowing 

down. From this, and from similar results taken from simulations on 44 lattices, 

the critical values of Y when ,c = 0 are measured to be 0.62(5) and 1.23(10) 

on the 44 lattice and 0.65(5) and 1.28(10) on the 6 4  lattice when A = 0. With 
A = oo, the measured critical values of Y are found to be 0.64(10) and 2.44(10) 

on the 44 lattice, and 0.68(10) and 2.48(10) on the 6 lattice when r. = 0. 
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'Figure 2.5: Contour plot of C in the A = 0 plane measured on a 44 lattice for 
the radially free Higgs-Yukawa model. 
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Figure 2.6: Contour plot of G in the it = 1 plane measured on a 44  lattice from 

simulations of the Higgs-Yukawa model. 
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Figure 2.7: Contour plot of G in the ) = oo plane measured on a 44 lattice 

measured from simulations of the radially fixed Higgs-Yukawa model. 
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Figure 2.8: Contour plot of G measured in the Y = 0 plane on a 44  lattice for 
the Higgs-Yukawa model. 
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Figure 2.9: Contour plot of G in the Y = 3 plane measured on a 44 lattice from 

simulations of the Higgs-Yukawa model. 
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Figure 2.10: Contour plot of the global alignment parameter C in the ,c = 0 plane 
measured on a 44  lattice taken from simulations of the Higgs-Yukawa model. 
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Figure 2.11: Contour plot of G in the ic = 0.1 plane measured on a 44 lattice in 
simulations of the Higgs-Yukawa model. 



Figure 2.12: Schematic piase diagram, as observed by simulation, of the 

Higgs-Yukawa model for non-negative values of ic. The aligned and disordered 

phases are denoted by the letters A and D respectively. 
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Figure 2.13: Measured expectation values of observables along the line .'c = 0
7  

A = 0 on a 6 4 
 lattice for the Higgs-Yukawa model. No error bars are given. 
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For non-negative values of it three phases are seen, two in which the scalar fields 

are disordered, and one in which the scalar fields are aligned. This latter phase 

is the broken phase. As the value of it is increased, then the degree of alignment 

in the scalar sector increases. Thus the aligned phase occurs at the larger values 

of it and the disordered phases occur at the smaller or more negative values of 

it. 

The action of the fermions on the scalar fields is always to correlate them, so that 

for a given value of it, the minimum value of the global alignment parameter, G, 
occurs when Y = 0. This is because the infra-red regulator (the anti-periodic 

boundary conditions imposed on the fermionic fields in the lattice Euclidean 

time direction) ensures that the fermions decouple from the scalar sector in the 

limit Y - 0, so that when Y = 0, the fermions have no effect on the scalar 
sector. 

It is seen that the phase structure of the model is very similar for all values of A, 

in that for all values of A between 0 and 00 there are two phase transition points 
when it = 0, the one at the smaller values of Y occurring at almost the same 
value of Y for all values of A. There seems to be no critical value of A which 

separates regions of parameter space where different phase structures exist. 

There is seen to be a well defined model in the limit Y - 00 in that for large Y, 
the measured expectation values of the observables become practically indepen-
dent of Y. In the radially fixed case, that is when A = oo, this limiting model is 

the same as the model when Y = 0, that is a classical X-Y model, so that it is 

seen that in this case the fermions decouple from the scalar sector in the infinite 

Y limit. For finite values of A a limiting model is also seen for Y -* 00, but this 
limiting model is not the same as when Y = 0. 

At negative values of it, there also exists an anti-aligned phase, but C does not 
show this because of cancellations between the values of the variables represent-

ing the scalar fields at neighbouring sites. It is difficult to find any physical 

interpretation of this behaviour in a quantum field theory, because it is unclear 

how a meaningful continuum limit could be seen when the lattice spacing is 

taken to zero. 
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2.6 Analytical Study 

It is possible to do some analytical work to study some aspects of the phase 

structure of this model using the techniques described in section 1.6. In this sec-

tion, three such calculations are discussed. In the first, an approximate equation 

of the phase transition line seen at the smaller values of Y in the case A = 0 is 

derived by looking semi-classically at the model. In the second, the critical value 

of ic is calculated using naive mean field theory arguments in the case A = 0 and 

Y = 00. In the third, the effective scalar potential for large Y is derived as an 
expansion in 

2.6.1 Semi-Classical Study 

In this study, the scalar fields in the radially free (A = 0) case are treated 

classically by finding the equations of motion of the effective scalar action after 

the fermionic degrees of freedom have been integrated out. 

Following the example calculation described in section 1.6.2, the fermionic de-

grees of freedom of the model can be integrated out analytically, giving the 

determinant of the fermionic matrix product MM. This leaves an effective 
scalar model with effective action, S': 

S I  = 
ZIA 

+*(x ) q5(x ) + A[ç4*(x)j,(x) - 1} 2  

—Tr [loge  (MtM)] 	 (2.122) 

Treating the resulting effective scalar field theory classically, the allowed stable 

states of the system correspond to minima of S', that is they are solutions of 

the equations: 

8$,  

8ç4(x) 	
0 

60*  ( X) 
=0 
	

(2.123) 
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Restricting attention to the case A = 0, then it is possible to look for such semi-

classical scalar states which are aligned states. To do this then it is necessary to 

look for solutions of equations (2.123) of the form: 

q5(x) = 

= 	
(2.124) 

for constant values of 4P and its complex conjugate . 

Solutions of this form of equations (2.123) do exist if either 

(2.125) 

or: 
1 

1— 8ic - 	Y2 II2 + > sin 2p, 
= 	 (2.126) 

U 

Where solutions to equation (2.126) exist, these solutions have a smaller value 

of the effective action than the solutions with zero scalar fields. This suggests 

that there may be two phases, one symmetric phase in which 4' = 0, which 

becomes disordered when quantum fluctuations are taken into account, and one 

where > 0, which is an aligned phase. To find the equation of the phase 

transition line separating these two phases, then the substitution 4*4 = 0 is 

made in equation (2.126). 

This procedure suggests that there is a phase transition line between disordered 

and ordered phases obeying the equation: 

1 y2 	1 
8 	2V 	

I>5ifl2pj 	
(2.127) 

U 	 J 

For a given value of Y, the ordered phase occurs at higher values of ic than this, 
the disordered phase occurring at lower values of ic, as would be expected by 

naively looking at the action. This transition is second order in this approxi-

mation, as the expectation value of the scalar observables (apart from CV) are 
continuous, but have discontinuous derivatives at the phase transition line. 

This suggests that when ,c = 0 and A = 0, there is a phase transition at Y = 
0.6038 on a 44 lattice, and at Y = 0.6252 on a 6 4  lattice. These predictions 
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are compatible with the measured values of the smaller critical values of Y of 

0.62(5) and 0.65(5) on the 44  and 6 4  lattices respectively in the case r. = 0 and 

A = 0 given in the previous section. It is clear from this, and from the form of 

equation (2.127), that the phase transition line predicted by this semi-classical 

treatment corresponds to the observed phase transition at the smaller values of 

Y. 

If, instead of using anti-periodic boundary conditions in the Euclidean time 

direction, as used in the simulation, periodic boundary conditions were used in 

all directions for the fermionic fields, then equation (2.127) suggests that Y = 0 

would be a critical point when ic = 0 and A = 0. This assertion is supported by 

the observation that the partition function of the model is zero at these values of 

the parameters. This shows that this phase transition, and hence the disordered 

phase that occurs at small values of Y, is dependent on the method by which 

the infra-red regulator is imposed. 

To make the calculation of this section more rigorous, both the stability of this 

semi-classical vacuum state and the effects of quantum fluctuations need to be 

studied in detail. It would be necessary to look at minima of the free energy 

of the effective scalar model, rather than to look just at minima of the effective 

action. 

2.6.2 Y=oc 

In this study, the mean field theory technique described in section 1.6.4 is used 

to calculate an approximate critical value of ,c when A = 0 and Y = oo. 

In the V = oo limit, that is neglecting the Dirac terms in the action (equa-

tion (2.89)), the fermionic degrees of freedom can be integrated out: 

J exp - [ 1 M 1  + 2MtII 2] 

Det[MtMJ 

(2.128) 

This is just a constant in the radially fixed case when A = oo. 
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In the case A = 0, a naive mean field theory calculation can then be performed 

to find the critical value of ?C. Choosing just one site, and replacing the scalar 

fields on neighbouring sites by average values 4 and V, which are conjugate to 

each other, the one-site partition function, Z, is: 

= f d4d (0*)4  exp - [-8k 	+ 0] + 

f drd9 r9  exp - [r2 - 16rRk cos (8 - 0)] 	 (2.129) 

where: 

= re 9  

= re'9  

= Re" 	 (2.130) 

For consistency, it is required that equals the expectation value of 0 . Thus: 

Re °  = 	
- f drdO r10 e 0  exp -[r2 - 16rR,c cos (8 - 0)] 

= 	_ei0 
f 

drd8 r 1°  cos 8 exp {2 l6rR,c cos 8] 	(2.131) 

and similarly for V. Solutions of this self-consistency equation are the allowed 

states of the system, in this approximation, and can be found numerically. 

The integral increases as the value of Rk increases, so to find the critical value 

of k at which a non-trivial solution exists to the above consistency equation, it 

is only necessary to expand the integrand to first order in R, as R varies contin-

uously from zero (in this approximation) across the phase transition. Thus: 

R = _16Rkfdrd9cos29rh1e_2 + 

5! 
= 8R ,c1--F••• 

= 40Rk+ ... 	 (2.132) 

Thus for non-trivial values of R, k > ICC where: 

1 
KC = - 

40 	 (2.133) 

R is continuous at the transition, but with discontinuous derivatives, suggesting 

that when Y = co and \ = 0, there is a second order phase transition between 
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a disordered phase (at lower values of ic), where R = 0 in this approximation, 

and an ordered phase (at higher values of ?c), where R > 0, at a critical value of 

r. = FCc = 0.025. 

A value of 1c = 0.025 when A = 0 and Y = oo is not incompatible with the 

results of the simulation, as shown in figure 2.5. 

A similar analysis can be performed to study the transition between a disordered 

and an anti-aligned phase when V = oc and A = 0. This is done by replacing the 

scalar fields 0 and 4 at the neighbouring sites by - and _*• This indicates 

an anti-aligned phase when r, is less that —0.025 in the case A = 0 and V = 

2.6.3 Effective Scalar Potential 

In this section, the effective scalar potential induced by the fermions at large 

values of V is calculated as an expansion in . in a similar manner to the 

example I expansion derived in section 1.6.3. In this case, the terms in odd 

inverse powers of V are zero because the bare mass of the fermins is zero. 

As in the previous section, the fermionic degrees of freedom can be integrated 

out analytically: 

/ V
l Vii' l V 2 ThP 2 exp_ [ 1 Mi' 1  +LMt 'P2] 

Det[MtMJ 

exp Tr [loge  (MtM)] 	 (2.134) 

Thus the effect of the fermions on the scalar sector can be represented by a 

contribution to the scalar potential, which can be written as an expansion in 

powers of 

—Tr [loge  (MtM)] = —4 log,, (V 2 5*( x )0(x )) 

1 
(x) 	*(x + j ) + 

+0 ( 1 ) 

	
(2.135) 
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In the radially fixed case, that is when )' = 00, the term in equa-

tion (2.135) simplifies to: 

- j cos(O(x) —9(x+)) 	 (2.136) Y 
MIA 

which is of the same form as the ic term in the scalar part of the action. Thus 

the effect of the fermions on the scalar sector in the radially fixed case at large 

Y is to generate an effective value of the scalar hopping parameter, ic: 

1 
eff 	Y2 (2.137) 

plus corrections of order - . This gives some indication of the form of the phase 

transition line that occurs at large values of V in the radially fixed version of 

the model. 

2.7 Discussion 

The results of simulating the Higgs-Yukawa model with action stated in equa-

tion (2.89) show clearly that its phase structure is basically the same for all 

values of .\ between 0 and oo. It is seen that spontaneous symmetry breaking 

in the scalar sector, characterised by an aligned phase, can occur as easily at 

= 0 as it does at \ = 00. Thus it is manifestly clear that the \q5 4  term in the 

action cannot be the term which is most responsible for symmetry breaking in 

this model. 

If this 	term is to be discounted as being irrelevant, then it is necessary to 

understand the dominant process by which symmetry breaking does occur in 

this model. By looking at the dependence of the phase of the model on the 

value of Y, it is clear that the fermions can and do induce symmetry breaking 

in the scalar sector. 

Equation (2.128), in section 2.6, is an explicit expression for the fermionic con- 

tribution, inside the scalar functional integral, to the partition function in the 

infinite V limit. This contribution can thus be represented by an effective po- 

76 



tential term in the scalar action in this limit: 

_4log[*(x)(x)] 	
(2.138) 

This is a constant in the A = 00 case, which explains why the fermions are seen 

to decouple from the scalar sector for large values of Y, causing the V = 00 

model to be the same as that at Y = 0 in the radially fixed model. Looking at 

the case A = 0 and Y = oo, then the total effective potential in the scalar sector 

is of the form of a 'ring mould' [26]: 

0*0 - loge [*] 	 (2.139) 

which is infinite when the scalar fields are in the only symmetric semi-classical 

state, which is = 0, so that when there is a suitable correlating term in the 

action, such as at large enough ic (of order 0.025), or when the corrections to 

the effective action for finite Y are significant, then symmetry breaking can be 

induced in the scalar sector. 

Note that an effective potential of this form is not restricted to the form of 

Yukawa coupling used in the model studied in this chapter. See, for instance, 

the example model studied in section (1.6). Thus this fermion induced spon-

taneous symmetry breaking can occur in models other than the one studied in 

this chapter. 

Thus the ferrnions induce in the scalar sector a potential, not unlike the 'Mexican 

Hat' potential in the Standard Model, which makes it energetically unfavourable 

for the scalar states to be dominated by configurations where the scalar fields 

are zero. This 'ring mould' potential comes naturally out of the interactions 

between the fermions and the scalar fields in the model and thus does not suffer 

from the same limitation as the 'Mexican Hat' potential which has to be added 

to the scalar sector 'by hand'. The Yukawa interaction is required anyway in 

the Higgs mechanism so that the spontaneous symmetry breaking in the scalar 

sector gives masses to the fermions. 

Looking in the region of negative c, as shown in figures 2.5 and 2.6, the fact that 

the two critical surfaces separating aligned from disordered phases do not seem 

to be trivially the same surface suggests that the critical phenomena associated 
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with them may well be different, so that continuum models (if any exist) built 

around these critical surfaces need not be the same. The coefficient of the 

logarithmic term in the effective scalar action is not a parameter, it is, in fact, 

related to the number of species of fermions being simulated and the number of 

lattice dimensions, thus it cannot be affected by renormalisation in the way that 

the ;\ parameter in the Higgs mechanism is. 

The analytical work outlined in section 2.6 suggests that the disordered phase 

at the smaller values of Y is in fact different from that at the larger values of Y. 
In the case A = 0, at the smaller values of Y, the scalar fields 0 fluctuate about 

zero, the pseudo-classical vacuum state. At the larger values of Y, this is not so, 
as the 'ring mould' potential makes a zero value of 0 energetically unfavourable. 

Instead, the disorder comes from the phase of the scalar fields fluctuating from 

site to site, similar to the way in which the scalar fields in the radially fixed 

model can be disordered, even though their modulus is fixed, because of the 

fluctuations in phase that can occur. 

It is noted that in the conventional treatment of the Standard Model (see for 

instance Bailin and Love [27]), the classical scalar vacuum state, about which 

quantum fluctuations are taken into account by perturbation theory, is taken 

to be that scalar state which minimises the scalar action without taking into 
account the effect of the fermions on the scalar sector. This is why the ).qf term 

has to be added 'by hand', and why the bare mass squared of the scalar fields 

has to be unphysically negative. The work performed on the greatly simplified 

model studied in this chapter tends to suggest that this procedure may well be 

mistaken. In this Higgs-Yukawa model, it is necessary to take account of the 
fermions before finding the classical vacuum state. 

To do analytical calculations involving massless fermions, it is usually necessary 

to introduce an infra-red regulator for the fermionic fields. In the Standard. 

Model, it is the generation of fermion masses by the Higgs mechanism which 

is the fermiomc infra-red regulator. The study of the Higgs-Yukawa model de-

scribed in this chapter tends to uggest that the need for a fermionic infra-red 

regulator is the cause of the symmetry breaking in the scalar sector. 
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It can be suggested that it may be possible to formulate an alternative to the 

Standard Model in which no 'Mexican Hat' potential has to be added to the 

Higgs sector, the Yukawa interaction may well be sufficient to induce the required 

spontaneous symmetry breaking so that the fermions and the gauge bosons can 

gain a mass as required. Thus there are many unanswered questions about the 

Standard Model in general, and on the role of the Higgs field in particular. 

Observations (or lack of observations) of a Higgs boson must shed light on this. 

It is clear that there is also a need for the simulation of more physically realistic 

models on physically realistic lattice sizes to try and understand the phenomena 

which occur at these energies just beyond our experimental reach at present. 

To do this, then it is first necessary to find a satisfactory way to remove the 

unphysical doubled fermion species from lattice simulations. A possible method 

by which this may be achieved is discussed in the next chapter, where a model, 

not unlike the model of this chapter, is studied. 
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Chapter 3 

Lattice Yukawa-Wilson Model 

3.1 Introduction 

In this chapter, a lattice model is studied which may be useful in understanding 

a method by which the doubled fermionic species that occur on the lattice can 

be removed. 

As explained in section 1.3.2, extra unphysical species of fermions are generated 

when fermionic fields are discretised on the lattice. These occur at non-zero 

values of the lattice momentum, so schemes for their removal use an extra mo-

mentum dependent term in the action which couples to these doubled fermions 

effectively generating masses for them of order one in inverse lattice units. In 

physical units, this means that these masses go to infinity as the lattice spacing 

is taken to zero, thus effectively removing them from the model in the continuum 

limit. 

Unfortunately, these momentum dependent terms break the chiral symmetry of 

the fermionic sector, thus there is nothing to stop effective fermionic mass terms 

of the form: 

m'I'W 	 (3.140) 

being generated when interactions with gauge fields, for instance, are included. 

This means that the bare fermion mass in the action has to be tuned if massless 



fermions are to be simulated when interactions are included to cancel, out these 

effective fermion mass terms. 

In the Higgs-Yukawa model studied in the previous chapter, the Yukawa term 

couples the chiral symmetry of the fermionic sector to the U(1) symmetry of 

the scalar sector which exist independently when Y = 0. Provided this remnant 

of chiral symmetry that exists when Y is non-zero is not broken spontaneously, 

then effective fermionic mass terms cannot be generated. 

Thus it has been suggested [28,29,30] that fermion doubles may be removed 

without the necessity of tuning bare fermion masses if auxiliary scalar fields are 

added to an interacting lattice model which couple to the fermions via a point-

split Wilson-like Yukawa term in the action. When the bare fermion mass is 

set to zero, this Yukawa-Wilson term in the action is invariant under the same 

set of transformations (2.94) as the Higgs-Yukawa model studied in the previous 

chapter, where the identification is made between the Higgs scalar fields of the 

Higgs-Yukawa model and the auxiliary scalar fields which couple to the fermions 

in the Yukawa-Wilson term. Under what circumstances this symmetry may be 

enough to prevent the generation of effective fermion mass terms is the subject 

of the work described in this chapter. 

In this chapter, the results of two simulations of a Yukawa-Wilson model are 

given. The model includes the fermionic fields and the auxiliary scalar fields, 

but does not include any other field interacting with the fermions. The first 

simulation finds features of the phase diagram of the model on a small lattice 

with zero bare fermion mass, in a similar way to the model in the previous 

chapter, to see if there is a disordered scalar phase in which the chiral symmetries 

of the action are preserved in the ground state, which will be a candidate phase 

for effective fermion mass terms to be prohibited when interactions with other 

fields are included. The second simulation looks at ferrnionic propagators on 

lattices extended in the Euclidean time direction to observe the behaviour of 

the masses of the physical fermion state and one of its doubles as a function of 

the bare fermion mass in two different phases of the model. 
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3.2 Action 

The action for the model studied in this chapter is similar to that studied in the 

previous chapter, except that the simple one site Yukawa term is replaced by a 

point-split one, and that the radial degree of freedom of the scalar fields is set to 

unity, like the A = oo version of the previous model. An explicit fermion mass 

term is also included: 

S = 
MAL 

+ 1 MW 1  + T2M tXF2 	 (3.141) 

where: 

(x) = e 8  

	

= eiO(z) 	 (3.142) 

and: 

TMIQ  
2 

MIA 

+Y 	x) [S(y, x + 	+ S(y, x - t) - 25(y, x)]  [ (a,) R + 0* (y) L} b (y) 

(3.143) 

with: 

R = 

	

L = .(1-7) 	 (3.144) 

defined on a regular four dimensional Euclidean lattice. 

In this model, explicit dynamics are added to the auxiliary scalar fields, 0, hence 

the term in the action with coefficient i, so as to help the study of the phase 

diagram, and also to permit comparisons to be made with the results of the 

previous chapter, as then this model is a direct extension of the .adially fixed 

Higgs-Yukawa model studied there. When the explicit fermion mass, m, is set to 

zero, then this action is invariant under the same set of transformations as the 
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Higgs-Yukawa model as stated in equations (2.94). The explicit fermion mass 

term breaks this symmetry. 

The action of the point-split Yukawa-Wilson term on the fermion doubled states 

can be understood by a simple mean field argument. Suppose the scalar fields 

are aligned to Some degree, so that there is a non-zero expectation value of 0 (x), 
denoted by . In a mean field approximation, the scalar field variables 0 (x) and 

* (x) can be replaced in the action by their expectation values and , which 

are complex conjugates. In this approximation the fermion propagator is: 

(b 1  (x 1 ) 1  (x 2 )) = M'(xi ,x 2 ) 

ez2) 

m +i7sinp,,, + 2Y 	cosp - 4J [R+ *L 

(3.145) 

which has only one pole for m = 0 at p = 0, as required, provided 	> 0, 
because the term: 

IE cos PM - 4] 
JA  

(3.146) 

is zero only if p = 0. Thus, when the lattice spacing is taken to zero, only the 

physical fermion state remains if the scalar fields are aligned. 

There seems to be a contradiction in purposes here. To remove the doubled 

fermion states an aligned scalar state is required, whilst for there to be no 

necessity to tune bare fermion masses, a disordered scalar state is required. This 

is a manifestation of the no-go theorem mentioned in section 1.3.2, which this 

model must circumvent if it is to be useful in removing the unphysical fermion 

doubles from lattice simulations without the necessity for tuning the bare fermion 

mass to obtain massless fermions when other interactions are included. 

Note that if the auxiliary scalar fields are set to —1, and Y = , then the action 

is equivalent to that for Wilson fermions, as specified in section 1.3.2. 
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3.3 Observables 

The expectation values of certain observables of this model are studied. These 

are basically the same as those of the Higgs-Yukawa model as stated in sec-

tion 2.3, with the additional observable P1, defined below: 

Q = 

= 0(Q) 

R2 = 
V2 

my  

P1 = 	Tr [M-1 ] 

P2 = 	Tr [(MMt)_1] 	 (3.147) 

where V is the number of sites on the lattice. The expectation value of P1 is 

zero in a chirally symmetric phase, and is non-zero in a chirally broken phase. 

All of these observables, except for P1, are invariant under the same sets of 

transformations as the action when m = 0 as stated in equations (2.94). In 

principle, on a finite lattice, these symmetries should ensure that the expectation 

value of P1 is zero when m = 0. 

Perturbative expansions can be performed in certain parameters using tech-

niques described in section 1.6.1. For instance, in the regime of small Y and 
small c, then: 

51
2m2Y2 	

cos p,,  - 4] [ cos q - 4] 
JA  (Q)=8ic-i-2 	I

[M 2 pq 	+ E sin 2 p ij [M2 + E sin 2q,L] 
JA 	 JA 

32Y2 	IE COS PJA

- 1 2 
E sin p14  sin q 	cos (p - 

+ 
V2 	Im2 + 	sin2 p] {m2  + 	sin  qJA 

(3.148) 

 JA 

pq  

(P1) 

= Im2 +sin2 p] 
 JA 
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16mY2 	
{Cos PIA 

_4]2+ 
{cos 

qp,_4]2] 	

sin p sin q 

V 2  

	

Pq
[m + 	sin 2 

PIA  ] {m2 + 	sin 2q] 

{m 2  _sinZpJ 	 -41 [E  cos 
64mY2 	 J I 	 J 	

(3.149) V 2  pq 	
{m2 + 	sin 2 PIA  ] [m2 + 	sin 2 q l 

 JA JA 	 j 

(P2)= 	 1 

' [m + 	sin  p4] 

8Y 2  

Pq 

cos p - 4] 2 

M2 + sin  p,2  

I+r  [ 	
cos 	- 4] •, ] 

M2 + E sin  q,2  
JA 

I 

	

 
16Y2 	

[cos PA - ] 	ICosq - ii- 	A 

pq 	 [m

2si

V2 
 + sin 	2 [m2 + E sin  qj3] 

JA 	 JA 

128m2Y2 	
cos p,2  _4] [cosq _4] 

JA 	 JA 

(3.150) 

	

V2 	
pq [m2 + 	Sin  

Pit] 2 {m2  + Esin  q,2] 

neglecting terms of order ,c 2 , icY 2  and Y 4 . See appendix A.1 for details of the 
conventions used for momentum sums. 

In the case m= 0 andY = 0: 

(R2 ) = 	{ i + 8n + O(r2) 	 (3.151) 

(CV) = 8 + 0(n 2) (3.152) 

From these expressions, the expectation values of the observables can be calcu-

lated and compared with values measured from the computer simulation, which 

forms a useful check on the validity of the results of the computer simulation. 



3.4 Phase Diagram 

In this section, results are given of a simulation of the Yukawa-Wilson model 

whose action is defined in equation (3.141) on a 44  lattice to discover features 

of its phase diagram in the case m = 0. It is necessary to know in what regions 

of parameter space the model is in a chirally symmetric phase, corresponding 

to disordered phases of the auxiliary scalar fields, and in what regions it is in a 

chirally broken phase, corresponding to an ordered phase, because this may well 

determine whether or not bare fermion mass tuning will be required to obtain 

massless fermions when interactions between the fermions and other bosonjc 

fields are included. 

Anti-periodic boundary conditions are used for the ferinionic fields in the Eu-

clidean time direction, periodic boundary conditions are used everywhere else. 

These boundary conditions are used here to act as an infra-red regulator for 

the fermions in the same way in which they were used for the one site Yukawa 

model studied in the previous chapter (see section 2.2.2) so that the model is, 

in principle, accessible to simulation in the limit Y - 0 with m = 0. 

The method by which the model was simulated in this case is very similar to that 

used for the radially fixed version of the one site model studied in the previous 

chapter. Many of the details mentioned there also apply to this model, so they 

will not be repeated here. One difference between this simulation and that for 

the radially fixed model of the previous chapter is that sixty four bit arithmetic 

was used rather than thirty two bit for reasons given below. 

3.4.1 Program Checks 

The program checks used for the one-site Yukawa model, as described in sec-

tion 2.4.3, were also applied to this model. 

• Independence of the measured expectation values of observables from the 

value of the time step, 6r, was verified. See table 3.1. 



8r=0.1 6r=0.5 

Acceptance 0.96 0.13 

Q 4.859(2) 4.859(3) 

CV 14.93(14) 14.67(18) 

R 2  0.5555(4) 0.5550(5) 

PbP 2.2858(9) 2.2865(9) 

Table 3.1: Measured expectation values of observables of the Yukawa-Wilson 

model with m = 0 7  Y = 0.1, and ,c = 0.05 on a 44  lattice, as a function of Sr 
with total Monte Carlo time per step fixed at 1.0. 

• Comparisons were made between measured expectation values of observ-

ables and the values of perturbative expressions. See figures 3.1 and 3.2. 

• The molecular dynamics steps were seen to be reversible to the accuracy 

with which the sets of linear equations were solved. The process by which 

this was done is the same as was used for the Higgs-Yukawa model of the 

previous chapter. It was seen that to solve the sets of linear equations 

accurately enough for the purposes of this simulation in the disordered 

phase of the model, then it was necessary to use sixty four bit arithmetic. 

3.4.2 Results 

A contour plot of the measured expectation value of the observable R 2  in the 
plane m = 0 is shown in figure 3.3. Because the radius of the auxiliary scalar 

fields is set to unity, then R 2  is equivalent to the global alignment parameter 
C used in the previous chapter, so that disordered (and hence chirally symmet-

ric) phases are characterised by expectation values of R 2  close to zero, and an 
ordered (chirally broken) phase by expectation values of R 2  of order unity for 
non-negative values of i. The measured expectation values of some of the ob-

servables along the line r. = 0 are shown in figure 3.4. No error estimates are 
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given, but some indication as to the errors in the points given can be gauged 

from their scatter. 

It is seen that the phase diagram of this Yukawa-Wilson model has basically the 

same structure as the phase diagram of the radially fixed version of the one-site 

model discussed in the previous chapter, although the critical values of Y for a 
given value of ic are different in the two models. Along the line ?C = 0, as seen 
in figure 3.4, the critical values of Y are Y = 0.08(2) and Y = 0.38(4) for the 44 

lattice. 

3.4.3 Analytical Study 

It is possible to use the semi-classical technique as described in section 1.6.2 on 
the radially free version of this model to discover some information about one 

of the phase transition lines seen in the case m = 0. This radially free version 

of the model has an additional term in the action as given in equation (3.141) 
which is: 

+ 	*(x)q5(x) 	 (3.153) 

and the constraint on the radial degree of freedom is relaxed. Experience of the 

one-site Yukawa model studied in the previous chapter suggests that this phase 

transition line will be in almost the same position in the radially free case as 

it is for the radially fixed case, the latter being the model simulated here. The 

phase transition in question is the one that occurs at the smaller values of Y as 
seen in figures 3.3 and 3.4. 

Proceeding as in the calculation described in section 2.6.1, the semi-classical 
treatment suggests that, for the radially free version of the model, there is a 

second order phase transition between a disordered phase (at lower values of ic) 

and an aligned phase (at higher values of c) obeying the equation: 

2 

 IE cos - 4] 1 2Y2  
8 	j7 	

[sin2p] 	
(3.154) 



(see section A.1 for details of the conventions used for lattice momentum sums). 

This suggests that in the radially free case, there is a phase transition at Y = 
0.0701 when tc = 0 on a 44  lattice when periodic boundary conditions are used for 

the ferniions except in the lattice Euclidean time direction, where anti-periodic 

boundary conditions are used, as is used in the computer simulation. This is 

to be compared with the measured critical value for the radially fixed model, 

which is Y = 0.08(2). As in the Higgs-Yukawa model studied in the previous 

chapter, if periodic boundary conditions are used for the fermions in all lattice 

directions, then this semi-classical calculation suggests that when ,c = 0 there 

is a critical value of Y at Y = 0. Again this is supported by the observation 

that the partition function of the model is zero at Y = 0 with these boundary 
conditions. 

3.4.4 Discussion 

Thus it is seen that there are three phases of this model when m = 0, for non-
negative values of ic, as was seen in the Higgs-Yukawa model of the previous 

chapter. Along the line ,c = 0, the auxiliary fields are disordered at small values 

of Y, meaning that this is a chirally symmetric phase. Then, at medium values 

of Y, the auxiliary fields are aligned, meaning that this is a chiraily broken 

phase, the critical value of Y between these two phases being dependent on the 

method by which the infra-red regulator is imposed in the fermionic sector. At 

large values of Y, the auxiliary fields are disordered, meaning that this phase is 

chirally symmetric. 

So the candidate phase in which bare fern -lion mass tuning may not be required 

for massless fermions, when the fern-lions interact with other bosonic fields, is 

the disordered phase that occurs at large values of Y when K = 0 and m = 0, 
the disordered phase at the small values of Y being discounted because of its 

dependence on the infra-red regulator. In the aligned phase that occurs at 

medium values of Y, the chiral symmetry is spontaneously broken, and thus it 

seems likely that bare fermion mass tuning will be needed in this phase when 

other interactions are included, as is required when using Wilson fermions. 
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3.5 Fermion Propagators 

In this section, a study is made of fermion propagators measured from simula-

tions of the Yukawa-Wilson model on a 43  x 16 lattice in the case ic = 0. Fermion 

masses are obtained by fitting decaying exponentials to the measured propaga-

tors for the physical fermion that occurs at zero momentum, and for one of the 

doubled species that occur on the lattice at a non-zero momentum value. 

The fermionic propagator: 

(& (i)1 (Y2)) 	 (3.155) 

measured from a computer simulation, is not useful in this raw form, because 

of the large number of degrees of freedom involved. So the propagators studied 

in this section are so-called 'timesliced propagators' in which Yi  is set at the 

lattice origin, and all other degrees of freedom, except the lattice Euclidean 

time component of Y2,  are summed over. 

The two timesliced propagators studied in this section, G 0 (i) and G(t), are 
defined as: 

Go  (t) 	E (& a (0) 	(x)) 
xa3 

= 	(M(0,x)) 
Xa/3 

- 	e"' (.cr (0) 	(x)) 
Xa/3 

= 	e"' (M (0, X)) 	 (3.156) 
Xaf3 

where the sum over x represents the sum over the spatial components of the 

site coordinate, x, of which x 1  is the lattice x coordinate. The free parameter 

t is the lattice Euclidean time coordinate. The spinor degrees of freedom are 

also summed over. The action of the weighted spatial sum is to project out 

contributions to the full propagator with a given spatial momentum. Thus for 

naive fermions, when Y = 0, G0(t) and C,r(t) project out the physical fermionic 

state and the doubled state with spatial momentum of ir in the lattice x direction, 

plus their doubles in the Euclidean time direction. 



Perturbation theory has been used to obtain an expression for the times]iced 

propagators in the limit of small Y in the case ic = 0 using techniques described 

in section 1.6.1: 

	

4m 	e_u1tt 
G0(t) 

•V>; 
[m2  + sin  

Pt] 

22 

	

l6mY2 	
[{cosPt _1] + [1: cosq _4] ] sin pt  sin qe_tPtt 

2r 
ptq 

	

- VN 	
[m2 + sin  Ptl 1m2  + sin  q, I ii 	14 

_____ 	IM
2 - "2 Pt] 

{ 
COS Pt - 	 - 4] e ipet 

(3.157) 

	

- VN 	

Im2 + sin  
Pt]2 

IM2 
 + 	sin  q14] 
 JA 

	

4m 	e_tt 

	

G(t)=N- 	IM 2  + sin 2 A I 

	

IM 

16mY2 	
[[cosPt  3]+ [>cosq14  4]]sinptsinqte_u1tt  

	

VN 	
-[m2 + sin2 Pt  	2  + 	sin  q14] 

AA  

.1  

	

64mY2 	
{m2 - sin  Pt]  [cos Pt - 3] 

I 
 cos - 41 e _uitt 

(3.158) 
- 

	

VNt 	 Im2 + sin 	IM 2 + sin  q14] 

plus terms of order Y 4 . Nt  is the number of sites in the Euclidean time direction 

on the lattice, and the sum over Pt represents the sum over fermionic lattice 

momentum states in that direction, as defined in appendix A.1. 

3.5.1 Implementation 

In the simulations of the Yukawa-Wilson model to look at its phase diagram, 

each Transputer simulated a separate system so that measurements of the ex- 

pectation values of observables were done with a large number of different sets of 

RR 



parameters. In this simulation, sets of seventeen Transputers are used to mea-

sure timesliced propagators for only a few sets of the parameters of the model. 

The lattice is split evenly between sixteen of the processors connected as a 4-D 

binary hypercube, with one extra processor controlling the others. Apart from 

this, the implementation is the same as before. 

After an initial period of 500 iterations, to allow for equilibration and the choice 

of optimal run parameters, configurations were saved every 10 iterations, corre-

sponding to 10 units of Monte Carlo time. For each of these saved configurations, 

columns of the inverse of the fermionic matrix M were calculated, then an av-

erage was performed over the saved configurations to produce the timesliced 

propagators. 

To get one column of the inverse fermionic matrix, a unit fermionic source, 8, can 

be placed at the origin of the lattice, and the vcctor X = MS can be calculated 

using the conjugate gradient algorithm as described in section 1.5. Because of the 

linear nature of the timesliced propagators studied, then in practice the sum over 

the spinor degrees of freedom, as well as an average over the spatial position of 

the delta function source used for the inversions, could be performed by iterating 

the conjugate gradient algorithm until the required accuracy was achieved once 

for each of the timesliced propagators studied by using suitable source vectors. 

Thus to measure the contribution to the timesliced propagators for one of these 

saved configurations, a source vector, 5, is constructed whose components are all 

zero except for those components with lattice Euclidean time coordinate equal 

to zero, where all elements are set to * for Go,  and -Le"",  for G, where V9  
is the number of spatial sites on the lattice. The vector X = M'S is then 
calculated using the conjugate gradient algorithm, and a sum is then performed 

on X over the spatial and spinor degrees of freedom. 

As in the simulation of the model to study its phase diagram, periodic boundary 

conditions were used in all directions for both the scalar and the fermionic fields, 

except in the Euclidean time direction, where anti-periodic boundary conditions 

were used for the fermionic fields. This meant that the limits Y —+ 0 and m — 
were, in principle, accessible to simulation. 



Sr = 0.3333 Sr = 0.1 

Acceptance 0.33 0.92 

Q 5.142(6) 5.151(4) 

R2  0.6071(9) 0.6080(6) 

Re P1 1.4256(6) 1.4249(7) 

Im P1 -0.0004(6) -0.0014(8) 

P2 2.0515(17) 2.0489(15) 

Table 3.2: Measured expectation values of observables of the Yukawa-Wilson 

model with m = 0.2 7  Y = 0.1, and ,c = 0.05 on a 43  x 16 lattice, as a function 
of Sr with total Monte Carlo time per step fixed at 1.0. 

3.5.2 Program Checks 

The program checks listed in section 2.4.3 were also applied here. 

• Independence of the measured expectation values of observables from the 

time-step size, Sr, and hence the Monte Carlo acceptance probability, was 

verified. See table 3.2. 

• The measured expectation values of observables and the timesliced propa-

gators were compared with values of perturbative expressions for small Y. 
See figures 3.5, 3.6, 3.7 and 3.8. 

3.5.3 Results 

Timesliced propagators were measured at two values of Y for various values of 
m and with 'c = 0. The values of Y studied were Y = 0.25 and Y = 0.5, which, 
on the 44 lattice with m = 0, were in aligned and disordered phases respectively. 
The values of m studied were m = 0 and m = 0.1 for Y = 0.25, and m = 0.2 7  
m = 0.3, m = 0.4 and rn = 0.5 for both Y = 0.25 and Y = 0.5. 
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pressions for Q and R 2  when m = 0 and Y = 0 for small ic on a 43  x 16 lattice. 
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Fits to the measured timesliced propagators were made of the form: 

= A (e-'P' - e_m1( 16_t)) 

+B (1)t (e_mt - e_m(16_t)) 	 (3.159) 

from which fermion masses m0  and rn, were found for G0 (t) and G 1.(t) respec-

tively. The second oscillatory term was included in the case Y = 0.25 to take 

account of the contribution to the timesliced propagators from the fermion state 

with momentum ir in the lattice Euclidean time direction, which was required if 

reliable values of m0  and rn, were to be obtained from the fits. 

The fits were performed by minimising x 2  for the fit over a selection of the 

timeslices: 	
- 	2 

= 	

(

Gp(t) - G(i)) 	
(3.160) o(t) 

where o-9 (t) is the statistical error in the measurement of G(t), and where the 

sum over t is a sum over a sequence of the timeslices centred about timeslice 

8. Because the set of o(t) are highly correlated, then the variance in x 2  with 

fit parameters cannot be used to give reliable estimates for their errors. The 

errors in the fit parameters were estimated by performing the fit on timesliced 

propagators with a sequence of configurations removed from the average, and 

then looking at the variance of the best fit parameters obtained by excluding 

different sequences of configurations. 

Because of the ill-conditioned nature of the fit problem, no reliable fits to G 0 (t) 
were possible in the case with Y = 0.25 and m = 0. 

The measured timesliced propagators, G 0 (i) and G,1.(t), plus fits of equation (3.159) 
for the case Y = 0.25 with rn = 0.1 and for the case Y = 0.5 with m = 0.2 are 
shown in figures 3.9 and 3.10 respectively. Tables of the mass values obtained 

from fits of equation (3.159) using a number of selections of timeslices for the 

fits are shown in tables 3.3 to 3.6 for the cases m0  when Y = 0.25, rn,1. when 
Y = 0.25, rn0  when Y = 0.5, and for m 11. when Y = 0.5 respectively. Figures 3.11 

and 3.12 show the dependence of the measured expectation values of the observ-

ables and fermion masses obtained from the fits to the timesliced propagators as 

a function of the bare fern -lion mass, m, for Y = 0.25 and Y = 0.5 respectively. 
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Bare mass 

m 

Timeslices used for fit 

1-15 2-14 3-13 

0.1 0.093(6) 0.094(17) 

0.2 0.186(2) 0.182(4) 

0.3 0.2721(12) 0.2713(18) 0.269(3) 

0.4 0.3528(7) 0.3532(13). 0.354(2) 

0.5 0.4330(6) 0.4338(10) 0.4336(17) 

Table 3.3: Values of the fermion mass measured from the zero momentum prop-

agator, C 0  (t), of the Yukawa- Wilson model for Y = 0.25 on a 43  by 16 lattice 
using fits starting at timeslices 1 to 3 where possible. 

Bare mass 

m 

Timeslices used for fit 

1-15 2-14 3-13 

0.0 0.777(16) 0.76(5) 

0.1 0.8553(12) 0.84(3) 

0.2 0.892(7) 0.878(17) 

0.3 0.944(3) 0.944(8) 

0.4 0.988(3) 0.989(4) 0.994(15) 
0.5 1.032(2) 1.032(3) 1.027(5) 

Table 3.4: Values of the fermion mass measured from their momentum prop-

agator, C,,. (t), of the Yukawa-Wilson model on a 43  by 16 lattice for Y = 0.25 
using fits starting at timeslices 1 to 3 where possible. 

As seen in figures 3.11 and 3.12, the imaginary part of the measured expectation 

value of P1 is always consistent with zero. It was also seen that this was true 

of the imaginary part of the measured timesliced propagators. 
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Bare mass 

m 

Timeslices used for fit 

1-15 2-14 3-13 4-12 

0.2 0.288(13) 0.23(2) 0.19(4) 0.21(8) 

0.3 0.306(7) 0.264(11) 0.240(19) 0.22(4) 

0.4 0.361(3) 0.328(5) 0.320(8) 0.320(16) 

0.5 0.413(3) 0.388(5) 0.388(8) 0.398(11) 

Table 3.5: Values of the fermion mass measured from the zero momentum prop-

agator, G 0  (i), of the Yukawa-Wilson model on a 43  by 16 lattice for Y = 0.5 
using fits starting at timeslices 1 to 4. 

Bare mass 

m 

Timeslices used for fit 

1-15 2-14 3-13 

0.2 1.41(6) 1.5(2) 

0.3 1.44(2) 1.45(9) 1.6(4) 

0.4 1.407(15) 1.34(3) 1.28(11) 

0.5 1.417(9) 	1 1.37(2) 1.33(6) 

Table 3.6: Values of the fermion mass measured from the ir momentum prop-

agator, G,. (t), of the Yukawa-Wilson model on a 43  by 16 lattice for Y = 0.5 
using fits starting at timeslices 1 to 3 where possible. 

3.5.4 Discussion 

At both values of Y, it is seen that the Yukawa-Wilson term induces masses 

of the order of the inverse lattice spacing for the fermion species that occur at 

non-zero momentum values for the values of m studied, but it is not clear from 

this simulatioE what happens to these masses in the limit m - 0 for Y = 0.5. 
The masses of the physical fermion species, as measured by m0 , are all of order 
M. 
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When Y = 0.25, it is seen that the scalar sector is aligned in the limit m -p 0, as 
was seen in the simulation of the model with m = 0 on the 44 lattice, implying 

that chiral symmetry is not restored in this limit. It is, in fact, spontaneously 

broken, so that the measured expectation value of P1 is non-zero. This suggests, 

at this value of Y, that the addition of interactions between the fermions and 

other bosonic fields, such as a gauge field, will require that bare fermion mass 

tuning will have to be performed if massless fermions are to be simulated as 

when Wilson fermions are used. 

In the simulation of the 44 model, in which m = 0, it was seen that at Y = 0.5 
the scalar fields were disordered. In this simulation, at non-zero values of rn, 
the scalar fields are aligned, though it may well be the case that the scalar fields 

become disordered in the limit m -p 0. If this is the case, then the breaking of the 

residual chiral symmetry of the model by the addition of an explicit fermion mass 

term induces symmetry breaking in the scalar sector, inducing excess masses for 

the fermion doubles. 

With m = 0 for Y = 0.5, with the infra-red regulator used, chiral symmetry 

may well be restored, in which case the masses of the unphysical fermion doubles 

may well be zero, as suggested by the no-go theorem mentioned in section 1.3.2. 

However, this m -p 0 limit is only accessible to simulation because of the infra-

red regulator used. Thus it may be the case that if the infra-red regulator were 

removed, then at Y = 0.5, massless fermions could formally occur in the limit 
m -+ 0, when other interactions are included along with this Yukawa-Wilson 

term is used, even though this limit were not in practice achievable, and the 

doubled fermion species could still be effectively removed in the continuum limit 

if their masses depended on the bare fermion mass, m, raised to some power less 

than one if the physical fermion mass was proportional to m. 

For example, figure 3.12 tends to suggest that the expectation value of R 2  is 
roughly proportional to m in the case Y = 0.5 for the smaller values of m stud-
ied. If the quantum fluctuations are ignored, then this leads to the speculation 

that the expectation value of 0 (x) is proportional to mi'. If this is the case, 

then the excess masses generated for the unphysical fermion species will also 

be proportional to m, whilst the mass of the physical fern -lion seems to be 
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proportional to m. 

In conclusion, a point split Yukawa term may well be the basis of a mechanism 

for removing the unphysical doubled fermion species from lattice simulations of 

quantum field theory models where fermions interact with bosonic fields without 

the necessity of tuning the bare fermion mass to any other value than zero. 
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Chapter 4 

Prospects 

In this short chapter I will suggest some ways in which the work described in 

this thesis could be extended. 

As I write, the first few results from the LEP accelerator at CERN are being 

collected. With its ability to produce large quantities of Z0  bosons, this will 

enable experimental HEP physicists to test many features of the Electroweak 

sector of the Standard Model. What is not so clear is whether or not any light 

will be shed on the scalar sector - will a Higgs boson be detected? 

The work described in chapter 2 suggests that it may well be possible to construct 

an alternative action for the Standard Model in which no A04 term is required, a 

Yukawa coupling between the scalar fields and the fermions may well be enough 

to ensure that spontaneous symmetry breaking occurs. The Higgs-Yukawa model 

of chapter 2 could easily be extended to include gauge fields to see how these 

affect the spontaneous symmetry breaking mechanism that occurs at large Y 
and to see non-perturbatively how spontaneous symmetry breaking in the scalar 

sector affects the gauge fields. 

One of the prerequisites for relating any study of a lattice model of a quantum 

field theory involving fermions to real continuum physics is the removal of the 

unphysical doubled fermion species that are generated when fermionic fields 

are naively discretised on the lattice. The work on the Yukawa-Wilson model 

described in chapter 3 suggests a method by which this may be done without 
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the necessity of tuning the bare fermion mass. This Yukawa-Wilson model can 

easily be extended to include gauge fields, U (x), which represent elements of 
the gauge group SU(N) (or U(1)) and sit on the links connecting lattice sites, 

by a fermionic term in the action [28,29,30]: 

= 	 [(R+U(x)L)(x+1)_ (R+U(x —t)L)(x_ii)] 

+Y>(x) [s(y,x+u)+s(y,x_,.)-2s(y,)]  [0 (x)R+0t (y)LJ0(y) 

(4.161) 

as well as a pure gauge term [31]: 

- 	Re Tr[Uo ] 	 (4.162) N 0  

where the sum represents the sum over elementary square tiles bounded by links 

connecting nearest neighbour sites on the lattice, called plaquettes. and U0  is 
the ordered product of SU(N) link matrices around the plaquette. 

In this way the gauge fields couple directly only to one of the two handed com-

ponents of the fern- ionic fields. With the two sets of fermionic fields used for a 

Hybrid Monte Carlo simulation, then if the auxiliary fields remove the unwanted 

fermion doubles in the continuum limit when the lattice spacing is taken to zero, 

there will remain only one left handed and one right handed fermion coupled 

to the gauge fields and one left handed and one right handed neutrino. To get 

just one neutrino in the continuum limit, a way must be found to simulate lat- 

tice models with non-Hermitian actions when the fermionic fields are replaced 

by pseudo-fern-lions, as then the Boltzmann-like factor e' that occurs in the 

Hybrid Monte Carlo algorithm is no longer guaranteed to be real and positive 

and so cannot be interpreted probabilistically. 

If any lattice model of a quantum field theory is to be used to make accurate 

predictions about the continuum quantum field theory, then it is necessary to 

take the continuum limit of the lattice model. This continuum limit occurs 

when the lattice spacing is taken to zero. For the lattice model to have a well 

defined behaviour in the limit where the lattice spacing is taken to zero, then the 

behaviour of the system must be independent of the lattice spacing in that limit. 

This means that the lattice spacing must be irrelevant in the renormalisation 

112 



group sense, which can only be the case at a phase transition. Thus continuum 

behaviour is seen by studying the lattice models close to phase transitions on 

lattices of various sizes and extrapolating results to the infinite lattice limit. For 

models involving fermions this is wishful thinking, as the computers at present 

are orders of magnitude too slow to be used for simulations of lattice models on 

the required sized lattices using the best algorithms known to date. 

It may be possible to look at the continuum limits of some pure bosonic lattice 

models, however, and thus the Y = oo limit of the Higgs-Yukawa model studied 

in chapter 2 may be amenable to study in the continuum limit, as the effect of 

the fermions on the scalar sector in this limit can be represented by a simple 

effective term in the action. 

In spite of these limitations, I have been able to-study models of quantum field 

theories on small lattices and observe phenomena not previously seen from which 

general conclusions can be drawn about the physical world about us. 
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Appendix A 

Conventions Used 

A.1 Fourier Transforms 

This section describes the conventions used in this thesis for performing discrete 

Fourier transforms on the lattice. 

Given the discrete version of the Dirac delta function on a regular hypercubic 

lattice: 

	

S(a, b) - 	eic(a_) 	 (A.163) 

where the sum over c represents the sum over lattice sites (or lattice sites plus a 

constant vector), a and b are vectors on the reciprocal lattice (plus a constant), 

or vice versa, and V is the number of sites on the lattice. Then it is possible 

to write down quantities defined at lattice points, for example 0 (x) in terms of 
sums with coefficients over momentum states: 

= E 7(p)e 	 (A.164) 

where the sum over p represent the sums over the lattice directions, p, and the 

allowed values of the lattice momenta p, where: 

27r 	2(L - 1)7r 
PM 

= 0, -,. •, 	 (A.165) 

for directions in which 4 (x) has periodic boundary conditions, and: 

PM = 

	

ir 3w 	(2L,4,-1)ir 
' 

L 	 (A.166) L IA Ju 
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for directions where it has anti-periodic boundary conditions, L. being the num-
ber of sites in that direction. 

The inverse relation is: 

(p) 	 (A.167) 

where the sum over x represents the sum over sites on the lattice. 

It is also possible to define the discrete Fourier transform of operators, repre-

sented by matrices on the lattice: 

where: 

= 
zy 

	

E= 	qL•;*(p)e_iPxM(x, y)e'(q) 
pqzy 

	

= 	
(A.168) 

pg 

1 
M(x,y) = _ e M( x,y ) e _i Y  

V2 	 (A.169) 
pg 

with the inverse relation: 

lcI(p,q) = >eiM(,y)_iY 	
(A.170) 

xy  

If M is translationally invariant, i.e. M(x, y) = 	- y) then: 

M(x - y) = 	 (A.171) 

A.2 Gamma Matrices 

The Hermitian four dimensional Euclidean Gamma matrices used in this thesis 
are: 

100 0 

010 0 
70 =  

00-10 

000-1 
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o 0 0  

o 0 iO 
7i 	= 0 —i 0 0 

—i 0 0 0 

0.•0 0 1 

72 = 0 —1 0 0 

1000 

0 0  0 

73 = —i 0 0 0 

0 iO 0 

corresponding to the directions t, x, y and z on the Euclidean lattice. 

Also: 

0010 

0001 
75 	= 

1000 

0100 

These matrices satisfy the anti-commutation relations: 

7a73 + 7j37a = 28(a,/3) (A.174) 

and have the trace properties: 

Tr[-y] = 0 

Tr [7.7,c] = 48(a,/3) 
	

(A-175) 

(A.172) 

(A-173) 

a and 3 taking on the values 0, 1, 2, 3 and 5. 

The left-handed and right-handed chiral projection operators, L and R, are 
defined as: 

L = (1-7) 

1 
R = .(1--7) 	 (A.176) 
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having the properties: 

With the trace properties: 

LL=L 

RR=R 

RL=LR 

=0 

L+R= 1 

Tr [L] 	= Tr [R] 

=2 

(A.177) 

(A-178) 
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