
Implementation of neural plasticity mechanisms on

reconfigurable hardware for robot learning

Ilias Alevizos

Master of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2011

Abstract

It is often assumed that insects are “primitive” animals, without the ability to exhibit com-

plex learning behaviour. Fortunately, their tiny brains quite often surprise us with their per-

formance. This thesis investigates the plasticity mechanisms of the insect brain through the

research method of neurorobotics, i.e., the development of a physical agent, equipped with a

silicon brain.

In order to implement such a brain, we have chosen to model it directly onto hardware.

Not only does this allow us to take advantage of the inherent hardware parallelism, but the

robot can also behave in a completely autonomous mode, without having to communicate with

the software simulator of a remote machine. FPGAs offer both the option for such a low-

level design approach and the flexibility required in computational studies of biological neural

networks. With the use of VHDL (a hardware description language), we develop a simulator

for neural networks, designed as a series of computational modules, running in parallel and

solving the differential equations which describe neural processes. It has the ability to simulate

networks with spiking neurons that follow a phenomenological model, proposed by Izhikevich,

which requires only 13 operations per 1 ms of simulation. The synaptic plasticity mechanism

can be either that of spike timing-dependent plasticity (STDP) or a modified version of STDP

which is also affected by neuromodulators. There are no constraints, as far as the connectivity

pattern is concerned. The hardware simulator is then added as a peripheral to an embedded

system so that it can be more easily controlled through software and connected to a robot. We

show that this hardware system is able to model networks with hundreds of neurons and with

a speed performance that is better than real-time. With some slight modifications, it could also

scale up to thousands of neurons, starting to approach the size of the insect brain.

Subsequently, we use the simulator in order to model a neural network with an architecture

inspired by the insect brain, representing the connectivity of the antennal lobe, the mushroom

body and the lateral horn, structures which are part of the insect’s olfactory pathway. Our

silicon brain is then attached to a robot and its limits and capabilities are tested in a series

of experiments. The experiments involve tasks of associative learning inside an arena which

is based on a T-maze set-up usually employed in behavioural experiments with flies. The

robot is trained to associate different stimuli (or combinations of stimuli) with a punishment,

as indicated by the presence of a light source. We observe that the robot can solve most of

the tasks, including elemental learning, discrimination learning, biconditional discrimination

and negative patterning but fails to solve the problem of positive patterning. It is concluded

that the architecture of the insect’s olfactory pathway has the computational efficiency to solve

even non-elemental learning tasks. However, this pattern of results does not precisely match

the fly, suggesting we have not fully understood the learning mechanisms involved. Moreover,

embedding the learning circuit in robot behaviour reveals that the simple version of STDP is

i

not the appropriate mechanism which can link neural plasticity to learning behaviour. Although

the modified version of STDP is more suitable, it remains problematic as well as sensitive to

timing issues. Therefore, we propose that STDP might function more as a “priming” process

rather than as the basic learning mechanism.

ii

Acknowledgements

Usually, acknowledgements are considered to be a gesture of gratitude towards those being

acknowledged. Or maybe, they are more like charity. The more one is willing to grant them,

the more fervently he ascertains ownership over “his” work/property. However, I will indulge

myself in the luxury of thanking two people. My supervisor, Barbara Webb, for giving me the

freedom to follow my own path while, at the same time, helping me to make my ideas more

concrete. And Jan Wessnitzer, for all the helpful discussions.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Ilias Alevizos)

iv

Table of Contents

1 Introduction 2

2 Literature review 4

2.1 The psychology of animal learning . 4

2.2 Insect brain anatomy and neurophysiology . 5

2.2.1 General view and anatomy . 6

2.2.2 Olfactory receptor neurons . 7

2.2.3 Antennal lobes and projection neurons 7

2.2.4 Mushroom bodies . 8

2.2.5 Key points . 10

2.3 Behavioural studies . 10

2.3.1 The US pathway . 11

2.3.2 Memory phases . 12

2.3.3 Dependence of memory on output from the MBs 12

2.3.4 DPM neurons . 13

2.3.5 The role of the antennal lobes . 14

2.3.6 Key points . 15

2.4 Software models of insect olfactory networks 15

2.4.1 Models of individual neurons . 15

2.4.2 Models of networks . 16

2.4.3 Models of the olfactory nervous system 17

2.4.4 Key points . 18

2.5 Hardware implementations . 19

2.5.1 FPGAs overview . 19

2.5.2 Models of individual neurons . 20

2.5.3 Models of networks . 21

2.5.4 Neurorobotic studies of learning and memory 22

2.5.5 Key points . 23

v

3 Implementing biological neural networks on FPGAs 25

3.1 Wetware . 25

3.1.1 Neuron and synapse models . 26

3.1.2 Learning mechanisms . 28

3.2 Hardware . 30

3.2.1 Architecture of the simulator . 31

3.2.2 Integrating the network within an embedded system 38

3.2.3 The graphical user interface . 41

3.3 Testing the hardware simulator . 45

3.3.1 Accuracy . 45

3.3.2 Utilization of hardware resources . 48

3.3.3 Speed performance . 49

4 Closing the loop 57

4.1 Biorobotic platform . 58

4.1.1 Experimental setup . 58

4.1.2 Sensors . 59

4.1.3 Interface to FPGA . 61

4.1.4 The robot’s “brain” . 62

4.1.5 Control algorithm . 68

4.2 Experiments and results . 70

4.2.1 Learning capabilities of the robot brain 70

4.2.2 Robot experiment 1: elemental learning 71

4.2.3 Robot experiment 2: discrimination learning 75

4.2.4 Robot experiment 3: positive patterning 75

4.2.5 Robot experiment 4: negative patterning 83

4.2.6 Robot experiment 5: CS without a “refractory” period 83

4.3 Discussion . 83

4.3.1 Some remarks with regard to the limitations of the robotic platform . . 89

4.3.2 Comparing the robot brain to the insect brain 90

4.3.3 The role of STDP . 92

4.3.4 Stimulus or “stimulus”? . 94

5 Conclusions and further work 96

5.1 Next steps . 96

5.1.1 Improving the interface . 96

5.1.2 A more flexible simulator . 97

5.1.3 Robot experiments . 100

vi

5.2 Conclusion . 102

A Appendix A: MATLAB source code for the GUI 104

B Appendix B: C source code for the Microblaze application 105

C Appendix C: VHDL source code for the neural networks hardware simulator 106

Bibliography 107

vii

List of Figures

2.1 The insect brain . 6

2.2 Inside the insect brain. The olfactory nervous system. (Davis, 2005) 9

2.3 PNs’ and KCs’ responses to 16 different odours (Perez-Orive et al., 2002) . . . 10

2.4 Phases of the fly’s memory . 13

2.5 Decorrelation of glomeruli activation after conditioning (Faber et al., 1999) . . 14

2.6 Insect brain model by Smith et al (Smith et al., 2008) 18

2.7 FPGA organization . 20

3.1 The STDP window (modification function) (Song et al., 2000a) 29

3.2 The hardware simulator as a network of cores 33

3.3 Organization of the RAM blocks . 35

3.4 Block diagram of a computational unit . 36

3.5 Block diagram of a core’s communication module 38

3.6 The two Xilinx boards with which the hardware simulator was implemented . . 39

3.7 The embedded system which supports the neural network hardware simulator . 42

3.8 GUI of MATLAB tool for building and simulating neural networks, converting

their XML descriptions to MIF and VHDL and communicating with the FPGA 44

3.9 Comparison of MATLAB and VHDL versions of the simulator for a simple

network of 4 neurons with respect to neuron membrane potentials 46

3.10 Comparison of MATLAB and VHDL versions of the simulator for a simple

network of 4 neurons with respect to synaptic conductances 47

3.11 Comparison of MATLAB and VHDL versions of the simulator for a network

of 4 neurons and one neuromodulator with respect to neuron membrane potentials 52

3.12 Comparison of MATLAB and VHDL versions of the simulator for a network

of 4 neurons and one neuromodulator with respect to neuromodulator concen-

trations and synaptic conductances . 53

3.13 Hardware resources utilized by the simulator for 4 different neural networks

consisting of 25 (blue line), 81 (green), 217 (red) and 306 (cyan) neurons as

the number of computational cores is increased 54

viii

3.14 Possible occupation pattern of RAM blocks for a network requiring 2000 RAM

addresses. Different colours indicate different cores. 55

3.15 Possible occupation pattern of RAM blocks for a network requiring 8000 RAM

addresses. Different colours indicate different cores. 55

3.16 Speed performance of the simulator for 4 different neural networks consisting

of 25 (blue line), 81 (green), 217 (red) and 306 (cyan) neurons as the number

of computational cores is increased . 56

4.1 The KOALA robot . 60

4.2 The T-maze and the arena . 60

4.3 Architecture of the neural network, used as the robot brain. Green lines corre-

spond to excitatory synapses whereas inhibitory connections are indicated by

red lines. A dotted line means that the synaptic strength of this connection can

be modified. The picture shows only one path for the neural signal. The same

path is repeated for every combination of two PNs (see text for details). 63

4.4 Transformation of neural activity from PNs to KCs 66

4.5 Block diagram of the robotic system . 69

4.6 Performance of the robot brain (measured as decrease percentage of neural

activity, see text) in an elemental learning task for a number of consecutive

trials. A+ (blue line) corresponds to the reinforced stimulus, B- (green) to the

non-reinforced. 72

4.7 Performance of the robot brain in a discrimination learning task for a number

of consecutive trials. AB+ (blue line) corresponds to the reinforced stimulus,

BC- (green) to the non-reinforced. 72

4.8 Performance of the robot brain in a positive patterning learning task for a num-

ber of consecutive trials. AB+ (blue line) corresponds to the compound rein-

forced stimulus, A- (green) and B- (red) to the separate, non-reinforced stimuli. 73

4.9 Performance of the robot brain in a negative patterning learning task for a num-

ber of consecutive trials. AB+ (blue line) corresponds to the compound non-

reinforced stimulus, A- (green) and B- (red) to the separate, reinforced stimuli. 73

4.10 Performance of the robot brain in a biconditional discrimination learning task

for a number of consecutive trials. AB+ (blue line) and CD+ (green) corre-

spond to the reinforced stimuli, AC- (red) and BD- (light blue) to the non-

reinforced. 74

4.11 Performance of the robot brain in a blocking task for a number of consecutive

trials. AB+ (blue line) and A+ (green) correspond to the reinforced stimuli, B-

(red) to the non-reinforced. 74

ix

4.12 Response of the robot brain in an elemental learning task (A+ B-) when en-

countering the CS (stimulus A) for the first time. Data recorded as spikes dur-

ing a robot experiment. Neurons 1 and 5 are PNs, corresponding to stimulus A

and B respectively, 71-75 are KCs and 81 is the CR neuron. 76

4.13 Response of the robot brain in an elemental learning task (A+ B-) when en-

countering the CS (stimulus A) for the second time. Data recorded as spikes

during a robot experiment. Neurons 1 and 5 are PNs, corresponding to stimulus

A and B respectively, 71-75 are KCs and 81 is the CR neuron. 76

4.14 Response of the robot brain in an elemental learning task (A+ B-) after several

encounters with the CS (stimulus A). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus A and B

respectively, 71-75 are KCs and 81 is the CR neuron. 77

4.15 Response of the robot brain in an elemental learning task (A+ B-) during the

last encounter with the CS (stimulus A). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus A and B

respectively, 71-75 are KCs and 81 is the CR neuron. 77

4.16 Response of the robot brain in an elemental learning task (A+ B-) when en-

countering the non-reinforced stimulus B for the first time. Data recorded as

spikes during a robot experiment. Neurons 1 and 5 are PNs, corresponding to

stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron. 78

4.17 Response of the robot brain in an elemental learning task (A+ B-) during the

last encounter with the non-reinforced stimulus B. Data recorded as spikes dur-

ing a robot experiment. Neurons 1 and 5 are PNs, corresponding to stimulus A

and B respectively, 71-75 are KCs and 81 is the CR neuron. 78

4.18 Response of the robot brain to AB before training in a discrimination learn-

ing task (AB+ BC-, 50% overlap). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 79

4.19 Response of the robot brain to AB after training in a discrimination learning

task (AB+ BC-, 50% overlap). Data recorded as spikes during a robot ex-

periment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 79

4.20 Response of the robot brain to BC before training in a discrimination learn-

ing task (AB+ BC-, 50% overlap). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 80

x

4.21 Response of the robot brain to BC after training in a discrimination learning

task (AB+ BC-, 50% overlap). Data recorded as spikes during a robot ex-

periment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 80

4.22 Response of the robot brain to AB before training in a discrimination learn-

ing task (AB+ BC-, 75% overlap). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 81

4.23 Response of the robot brain to AB after training in a discrimination learning

task (AB+ BC-, 75% overlap). Data recorded as spikes during a robot ex-

periment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 81

4.24 Response of the robot brain to BC before training in a discrimination learn-

ing task (AB+ BC-, 75% overlap). Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 82

4.25 Response of the robot brain to BC after training in a discrimination learning

task (AB+ BC-, 75% overlap). Data recorded as spikes during a robot ex-

periment. Neurons 1 and 5 are PNs, corresponding to stimulus AB and BC

respectively, 71-75 are KCs and 81 is the CR neuron. 82

4.26 Response of the robot brain to AB before training in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 84

4.27 Response of the robot brain to AB after training in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 84

4.28 Response of the robot brain to A during testing in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 85

4.29 Response of the robot brain to B during testing in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 85

xi

4.30 Response of the robot brain to A before training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 86

4.31 Response of the robot brain to A after training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 86

4.32 Response of the robot brain to B before training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 87

4.33 Response of the robot brain to B after training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 87

4.34 Response of the robot brain to AB during testing in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1

and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron. 88

4.35 Behaviour of the robot brain when a CS is presented to it without a refractory

period . 88

4.36 Modification of synapse projecting from neuron 22 to neuron 73 93

5.1 RAM organization for the future version of the hardware simulator 99

5.2 Diagram of an arena for running future robot experiments 101

xii

List of Tables

2.1 Summary of hardware implementations of biological neural networks. InF=Integrate-

n-fire, HH=Hodgkin-Huxley, FHN=FitzHugh-Nagumo. 22

4.1 Values of synapse parameters of the robot brain 65

4.2 Values of synapse parameters of the robot brain, cont. 67

4.3 Values of neuron parameters of the robot brain 67

4.4 Values of neuromodulator parameters of the robot brain 67

xiii

Nomenclature

AC Antennal Commissure

ACT Antennocerebral Tract

AL Antennal Lobe

AN Antennal Nerve

APL Anterior Paired Lateral

ARM Anaesthesia-resistant Memory

ASIC Application Specific Integrated Circuit

cAMP Cyclic Adenosine Monophosphate

CR Conditioned Response

CS Conditioned Stimulus

DPM Dorsal Paired Medial

EN Extrinsic Neuron

EPSP Excitatory Post Synaptic Potential

FIFO First In, First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GABA gamma-Aminobutyric Acid

GPU Graphics Processor Unit

IR Infra Red

KC Kenyon Cell

xiv

LH Lateral Horn

LHCN Lateral Horn Comparison Neuron

LHI Lateral Horn Interneuron

LI Local Interneuron

LTM Long-term Memory

LUT Look-up Table

MB Mushroom Body

MIF Memory Initialization File

MTM Medium-term Memory

OR Odorant Receptor

ORN Olfactory Receptor Neuron

OSN Olfactory Sensor Neuron

PN Projection Neuron

RAM Random Access Memory

STDP Spike Timing Dependent Plasticity

STM Short-term Memory

SVM Support Vector Machine

UR Unconditioned Response

US Unonditioned Stimulus

VHDL Very-high-speed integrated circuits Hardware Description Language

VLSI Very Large Scale Integration

VN Value Neuron

VNC Ventral Nerve Cord

xv

LIST OF TABLES 1

Noon
The tree gathers
the shadow upon its branches

P. Kyparissis

Chapter 1

Introduction

Explaining or, more precisely, interpreting adaptive behaviour of animals and endowing ani-

mats with such an adaptive behaviour have been long-sought goals of the fields of neuroscience

and robotics respectively. It is self-evident that approaching either one of these goals would

have a significant impact on the respective field. Roboticists have developed the field of bioin-

spired robotics by closely inspecting the mechanisms that biological organisms employ in order

to solve specific problems and then “copying” them onto robots. However, biologists have been

reluctant to move towards a roboinspired biology, although a collaboration between the two re-

search areas could result in a positive feedback loop from which both could benefit (Webb,

2001). The work presented in this thesis lies at this intersection of robotics and neuroscience,

trying to address both the issue of animal learning and that of building robots which can learn

from their experience in real world situations.

It has been argued that learning and skilful action are the distinctive features of intelligent

behaviour (Dreyfus, 2002). It is not surprising therefore that a substantial body of research

has been devoted to discovering exactly how animals, including humans, acquire new skills.

Although experiments with mammals, such as primates and rats, can provide useful insights,

the tools that are available today do not seem suitable enough for a detailed investigation of

the neural mechanisms of learning in such animals. Instead, this thesis is going to use an

insect, namely Drosophila melanogaster, as the animal model and hypothesis testing platform

since it can prove advantageous from several points of view. First, the size of the Drosophila

brain is several orders of magnitude smaller than that of mammals, rendering it much more

“tractable”. Moreover, there exist genetic tools with which an impressive degree of control

of even individual neurons is possible. On the other hand, the simplicity and accessibility of

insect brains do not prevent them from exhibiting learning capabilities beyond those of mere

reflexive responses. Equally important, at least for the purposes of this thesis, is the fact that

such a brain does not impose insurmountable obstacles, as far as its modelling on hardware is

concerned.

2

Chapter 1. Introduction 3

This is one point which distinguishes our work from previous studies in the field of neuro-

robotics. Most studies which include a brain model in their robotic platforms, especially those

that aim for a biologically plausible model, develop their simulators in software and establish

a communication link between the robot and the machine which runs the simulation. On the

contrary, the aim of the present thesis is to develop a hardware simulator by taking advantage

of the relatively recent technology of FPGAs. Our robot could thus function in a completely

autonomous manner. Notwithstanding the hardships one must endure when working directly

with hardware and proprietary technology, we hope to show that FPGAs have the potential to

become a very useful tool for neuroroboticists, once a simple user interface has been built.

Moreover, our simulator should exhibit a speed performance that is close or better than

real-time so that it may be used in robotic experiments. Using this hardware simulator, a

simplified model of the fly’s olfactory pathway is implemented and attached to a robot. The

aim is to investigate how the model behaves when it has to learn associations in a closed-loop

environment. By comparing the performance of the robot with that of flies in behavioural

experiments, we attempt to conceive and propose ways with which our current theories and

understanding of the fly’s neural plasticity mechanisms could be amended in order to account

for the observed discrepancies. The discussion of these issues will hopefully show that the

methodology of neurorobotics may offer insights and new ways of perceiving and approaching

the problems of computational neuroscience.

The thesis begins with a chapter (chap. 2) that reviews the research conducted until now on

insect learning and memory, focusing mostly on flies. The relevant modelling studies are also

reviewed, both software and hardware. Chapter 3 presents the digital design of the hardware

simulator and the embedded system which supports it. Chapter 4 describes the robotic platform

and discusses the results from the experiments with the robot. We conclude with chapter 5

which gives an overview of the possible future research paths, based on the present work.

Chapter 2

Literature review

The presentation of previous work on insect (mostly fly) learning and memory in this chap-

ter follows a top-down approach. Beginning with more abstract and psychological theories

of learning, we proceed with the neurobiology of the insect brain and behavioural studies of

learning. Finally, the relevant modelling studies, both software and hardware, are discussed.

2.1 The psychology of animal learning

The literature on theories of learning and memory is vast and keeps expanding as new tools

become available. It is not possible to cover it here. In fact, it is very hard even to simply

mention all the relevant theories, studies and discussions. Instead, we restrict ourselves to

associative theories of animal learning since these are usually tested in behavioural experiments

with insects. For a more complete review, see (Pearce and Bouton, 2001) and (Schmajuk,

2008).

The Rescorla-Wagner theory (Rescorla and Wagner, 1972) is the dominant theory that tries

to explain associative learning in psychological terms and is summarized in the next equation :

∆VA = αβ(λ−VT) (2.1)

According to this theory, the change in the associative strength of a stimulus on any trial (∆VA)

is proportional to the discrepancy between an asymptotic value of the magnitude of the US

(λ) and the sum of the associative strengths of all the stimuli present on the trial (VT). The

parameters α and β are learning rate parameters determined by the salience of the CS and the

characteristics of the reinforcer respectively. It is a theory that can explain many experimentally

observed phenomena, like blocking 1, whereas its several modifications and expansions can

provide for even more explanatory power.

1In which learning about a stimulus A first and then about the compound AB results in a weakened response to
B alone.

4

Chapter 2. Literature review 5

For example, in order to explain latent inhibition 2, Mackintosh proposed a role for attention

(Mackintosh, 1975). If (λ−VA) > (λ−VX), where VA is the associative strength of stimulus

A and VX the sum of the associative strengths of all stimuli except A, then it is assumed that

A is a good predictor of the US and more attention is paid to it. Later, Pearce and Hall made

the distinction between different forms of attention (Pearce and Hall, 1980). During learning,

attention paid to the CS serves to strengthen its associability and make it a good predictor of the

US. After learning, attention is still paid to the CS but only in order to produce the response.

The fact that it has become a good predictor of the US actually decreases the attention paid

to it. In order to address the issue of how stimuli are internally represented, Wagner proposed

the model of standard operating procedures (SOP) (Wagner, 1981). Stimuli can be in a state

of low, high or no activation and the established associations are determined by the state of the

involved stimuli.

The assumption behind these theories is that we can predict the response of a compound

stimulus simply by adding the responses to each of the constituent elements, thus the name

elemental theories of learning. Due to the difficulties of elemental theories to explain several

phenomena where combinations of stimuli are involved, the so called configural theories have

been proposed. As their name suggests, they assume that, besides representations of single el-

ements, there exist representations of combinations of elements, acting independently of their

constituents. As we’ll see later in chapter 4, the model of the insect brain for our robot im-

plements a version of the configural cue theory. An important difference though is that the

theories described above can also learn (or more precisely “unlearn”) in every trial, even in the

absence of the US (λ = 0). On the contrary, our neural network modifies its synapses only in

those training trials in which the US is present.

2.2 Insect brain anatomy and neurophysiology

Before presenting any behavioural studies and the neural correlates of insect learning, we dis-

cuss first the necessary, neurobiological framework. Due to the fact that the modality of ol-

faction is usually targeted in these studies, the following subsections focus on the olfactory

pathway. Although we refer generally to the insect brain, it should be noted that our model

organism is the fly brain and that differences between the various insect species do exist. It is

not yet known how exactly they might affect behaviour and for this reason, we will insist on

referring to a typical insect brain.

2Learning of the CS (generation of the CR) is inhibited when the CS-US trials have been preceded by preexpo-
sure to the CS alone.

Chapter 2. Literature review 6

2.2.1 General view and anatomy

The insect brain is composed of the supraesophageal ganglion and the subesophageal ganglion.

The rest of the insect nervous system, called the ventral nerve cord (VNC), runs through its

body, from the thorax to the abdomen. A distinctive feature of it, compared to mammals, is the

formation of ganglia (the segmental ganglia) at several points of its route which can function in

a more or less autonomous way. The segmental ganglia are connected with bundles of axons.

The subesophageal ganglion of the brain (also called the posterior brain) provides a link

between the supraesophageal ganglion and the segmental ganglia whereas the supraesophageal

ganglion (also called the anterior brain) constitutes by far the largest part of the brain. Three

main regions can be distinguished in the supraesophageal ganglion. The protocerebrum is the

most prominent and hosts those structures, such as the mushroom bodies, which are usually

related to information processing and control of higher functions. The optic lobes also belong

to the protocerebrum. The deutocerebrum consists of the antennal lobe and the dorsal lobe (or

antennal mechanosensory and motor centre). The antennal lobe receives input from the olfac-

tory receptor neurons in the third antennal segment and the dorsal lobe from mechanosensory

neurons in the basal antennal segments (Homberg et al., 1989). The smallest region of the

supraesophageal ganglion is the tritocerebrum whose role lies mainly in taste perception and

control of mouthparts (Rajashekhar and Singh, 1994).

(a) Various structures of the insect nervous sys-

tem (Stocker, 1994)

(b) The main components of the ol-

factory pathway (Keene and Wad-

dell, 2007)

Figure 2.1: The insect brain

Since the olfactory pathway has been studied more extensively, both in neurophysiological

and in behavioural experiments, at least as far as learning and memory are concerned, we will

mostly focus on it in the remainder of this section. This pathway starts in the antennae and

the maxillary palps (fig. 2.1) where the olfactory receptor neurons are located. Their axons

Chapter 2. Literature review 7

bundle together to form the antennal nerve (AN) and project to the antennal lobes. There, they

synapse with the dendrites of projection neurons (PN) which in turn organize themselves into

antennocerebral tracts (ACT) and terminate in the calyces of the mushroom bodies (MB) and

the lateral horns (LH) (fig. 2.2). The neurons of the mushroom bodies are called Kenyon cells

(KCs) and have dendrites in the calyces, receiving input from PNs. Their axons extend to create

the penduculus which splits to form several lobes just dorsal to the ALs. The olfactory pathway

and the functional role of the structures involved are discussed in more detail in the next sub-

sections. Several reviews are available (Keene and Waddell, 2007), (Davis, 2005), (Margulies

et al., 2005), (Davis, 2004), (Hallem and Carlson, 2004), (Heisenberg, 2003), (Heisenberg,

1998). The details presented in the next sections and the numbers given refer to the nervous

system of Drosophila.

2.2.2 Olfactory receptor neurons

The transformation of odour stimuli to electrochemical signals takes place in the third antennal

segment and the maxillary palps. The neurons responsible for this transformation are called

olfactory receptor neurons (ORNs, or olfactory sensory neurons). In Drosophila melanogaster,

around 1200 of them can be found in the antennae and another 120 in the maxillary palps

(Shanbhag et al., 1999), (Shanbhag et al., 2000). ORNs are packed together in numbers of up

to four within hair-like protrusions called sensilla.

The dendrites of ORNs host odorant receptors (ORs, seven-transmembrane-domain pro-

teins) onto which odour molecules can bind. This activates G-protein-coupled second-messenger

systems which give rise to electrical signals (Hildebrand and Shepherd, 1997), (Dobritsa et al.,

2003). It is estimated that Drosophila has around 60 odorant receptor genes (Or genes). How-

ever, some of them do not express either in the maxillary palps or the antennae. Each ORN

probably expresses only one of these genes or a very limited subset of them and each odorant

receptor is expressed in 2 to 50 ORNs with the exception of the gene Or83b which is expressed

in every ORN (Jones et al., 2005). Odorant receptors can respond to more than one odours but

they can be identified by their response spectra which are unique (Hallem et al., 2004).

2.2.3 Antennal lobes and projection neurons

After the initial phase of olfactory perception, the next stage of the processing hierarchy is

located at the antennal lobes (ALs). Signals are relayed to the ALs via the antennal nerve

(AN), a collection of about 1700 axons, mainly from ORNs of the third antennal segment.

Some of them (around 500) originate from mechanosensory receptors and do not terminate at

the AL (Stocker et al., 1990). ALs constitute the first stage of bilateral integration since around

1000 axons of the AN cross over to the contralateral lobe through the antennal commissure

(AC).

Chapter 2. Literature review 8

The ALs are organized into 43 subunits of almost spherical shape called glomeruli (Laissue

et al., 1999), (Vosshall et al., 2000). It has to be noted that glomeruli do not host any cell bodies

themselves but are instead sites where synapses are formed (Stocker et al., 1990). Cell bodies

are located near the lobe but not within the glomeruli. Each of the afferent fibres of the AN

targets only one specific type of glomerulus. Moreover, ORNs which express the same receptor

project to a single specific glomerulus (Vosshall et al., 2000), (Gao et al., 2000). Two types

of neurons comprise the postsynaptic targets of the AN axons, local interneurons (LIs) and

projections neurons (PNs). LIs are axonless neurons, usually ramifying extensively throughout

the entire lobe and can be either excitatory or inhibitory (Wilson and Laurent, 2005), (Shang

et al., 2007). On the other hand, PNs mediate the transmission of information from the ALs to

higher brain centres, such as the mushroom bodies (MBs) and the lateral horn (LH).

About 200 PNs, each having dendrites within only a single glomerulus, form with their ax-

ons the antennocerebral tracts (ACTs) (Wong et al., 2002), (Stocker et al., 1990). The numbers

of the neurons indicate a considerable convergence of about 10:1 from the ORNs to the PNs.

The inner ACT (iACT) connects the ALs with both the LHs and the calyces of the MBs (see

subsection 2.2.4) whereas the middle and outer ACTs (mACT, oACT) project directly and al-

most exclusively to the LHs. Individual PNs innervate a substantial part of the LH but a certain

stereotopy is evident. PNs from the same glomerulus have similar projection patterns and PNs

with similar projection patterns prefer neighbouring glomeruli (Marin et al., 2002).

2.2.4 Mushroom bodies

Three main regions comprise the mushroom bodies, the calyx, the penduculus and the lobes

(fig. 2.2). The MB neurons are divided in two classes, the intrinsic neurons which arborize

solely within the MBs and the extrinsic neurons which link MBs with other brain areas. The

most abundant intrinsic neurons which give MBs their characteristic shape (hence their name)

are the Kenyon cells (around 2500 in Drosophila, a 1:10 divergence from PNs to KCs). They

can be classified as γ, α′/β′ or α/β neurons according to their projection patterns in the lobes.

Their cell bodies lie in the posterior dorsal cortex of the brain (Tanaka et al., 2008). They

extend their dendrites to the anterior to form the calyx which is thought to be a main input

zone. This input is provided by the antennal lobe projection neurons, mainly through the inner

antennocerebral tract (iACT) but also, to a much lesser extent, through the outer ACT (oACT)

and the inner middle ACT (imACT) (Tanaka et al., 2008). Although in Drosophila the calyces

receive input only from the olfactory pathway, in other species, such as honeybees, they can

have visual or gustatory input as well (Fahrbach, 2006). It is also important to note that the

calyces are not the only input area of the MBs since there are extrinsic neurons that innervate

both the penduculus and the lobes (Tanaka et al., 2008), (Fahrbach, 2006). Therefore, it seems

very probable that MBs are a site of multimodal convergence.

Chapter 2. Literature review 9

Figure 2.2: Inside the insect brain. The olfactory nervous system. (Davis, 2005)

The axons of the Kenyon cells bundle together in parallel fibres and run down the penducu-

lus until they reach a bifurcation point where the lobes begin (fig. 2.2). The γ neurons are to be

found at the periphery of the penduculus, the α/β neurons at the core and the α′/β′ neurons in

between. The penduculus is innervated both by intrinsic neurons (dorsal paired medial, DPM

and anterior paired lateral, APL) and by several types of extrinsic neurons (Tanaka et al., 2008).

The pair of DPM neurons, innervating the anterior part of the penduculus, have been shown

to be important for memory stabilization (Waddell et al., 2000), (Keene and Waddell, 2007).

As far as the others are concerned, they have been only recently discovered and their role re-

mains unclear. In honeybees (but not in Drosophila), recurrent, GABAergic connections have

been observed that link the lobes with both the calyx and the penduculus (Fahrbach, 2006),

(Grunewald, 1999).

Research on the response properties of the KCs has not been extensive but the preliminary

results available are interesting enough to deserve to be mentioned. When the olfactory path-

way is not driven by any stimulus, the KCs remain remarkably quiescent (Perez-Orive et al.,

2002). This is not a trivial fact, considering that, even in the absence of stimuli, projection

neurons provide the calyx with a constant spontaneous input. When an odour is presented,

the responses of KCs are both rare and sparse, thus rendering them highly informative (Turner

et al., 2008), (Perez-Orive et al., 2002) (fig. 2.3). The response properties depend on the

lobes of the KCs with the α′/β′ lobes being the most responsive and broadly tuned (Turner

et al., 2008). Besides the excitatory input from projection neurons, KCs are also inhibited by

GABAergic lateral horn interneurons (LHIs) which arborize more diffusely and less selectively

than the PNs in the calyx. The inhibitory drive from LHIs is almost out of phase relative to

the excitatory drive from PNs and when pharmacologically blocked, results in a broadening

of KCs tuning. These properties of KCs indicate that they may act as coincidence detectors,

sparsening the odour space so that discrimination becomes more efficient (Turner et al., 2008),

Chapter 2. Literature review 10

(Laurent, 2002). Ca2+ imaging has confirmed the sparseness of the response patterns of MB

neurons. It has also showed that MBs recruit different subsets of the KCs for different odours

and that these subsets are conserved across individuals (Wang et al., 2004).

Figure 2.3: PNs’ and KCs’ responses to 16 different odours (Perez-Orive et al., 2002)

2.2.5 Key points

From the structures described above, we will later focus mostly on the MB. As explained in the

next section (2.3), is seems to be the most crucial structure for learning and memory. We will

thus attempt to incorporate the functionality of the MB in our model. One important feature

of the olfactory pathway is the observed divergence of the neural signal as it passes from the

PNs to the KCs. This allows the MB to separate stimuli more efficiently (see also the results

from modelling studies in section 2.4). Moreover, the sparse and rare activity of the KCs, with

the help of the LHIs, means that their responses are highly informative. For these reasons, our

neural network will try to model this cooperation between the PNs, the LHIs and the KCs.

2.3 Behavioural studies

It is obvious that a way to measure performance is required, in order to study learning and

memory in animals. The simplicity of the classical and instrumental conditioning paradigms

makes them quite attractive and they have come to dominate the field of learning and memory

in invertebrates. The experimental setup proposed by Tully and Quinn is considered a classic

and meets with widespread use (Tully and Quinn, 1985). First, the flies are driven into a

tube surrounded by an electrifiable grid. Odour currents can also be directed into this tube.

Therefore, delivery of odours can be combined with electric shocks so that flies can make the

association between the conditioned stimulus of an odour and the unconditioned of the shock.

They can later be tested in a similar setup with two tubes, each “emitting” a different odour

(with one of them obviously being the conditioned odour). Great emphasis has also been put on

olfactory learning rather than visual or tactile. This is not surprising, considering the biological

Chapter 2. Literature review 11

importance that odours have for insects. Moreover, or maybe because of this same reason,

the olfactory neural pathway has received much more detailed investigation than other sensory

pathways. It is therefore easier to track the neural correlates of olfactory memory. Finally,

research has mostly concentrated on a specific brain structure, the mushroom bodies (MB) (see

(Strausfeld et al., 1998) for the reasons).

The picture that is consequently drawn is that of a field dominated by olfactory classi-

cal/instrumental conditioning paradigms and learning mediated by the MBs. In the next sec-

tions the emphasis will be on these aspects of insect learning behaviour. Some caution should

nevertheless be exercised. Insects have capabilities for other complex forms of learning as well

(e.g. visual learning (Liu et al., 1999), (Schubert et al., 2002), (Tang and Guo, 2001)) and the

relation between the different sensory modalities and the MBs is not at all clear. For example,

flies can learn a task with visual cues and the MBs seem to be involved (Tang and Guo, 2001).

However, their MBs do not receive any projections from the optic lobes in contrast to honey-

bees which possess such projections and exhibit visual learning as well. Overgeneralizations

should therefore be met with some caution.

2.3.1 The US pathway

One of the central questions is how exactly the unconditioned stimulus is mediated in the

brain of an insect. Quite interestingly, it was found that a single neuron is sufficient to medi-

ate reinforcement in experiments of appetitive conditioning (Hammer, 1993). The VUMmx1

neuron, which innervates the ALs, the lateral protocerebrum and the MB calyces, responds

strongly when honeybees are provided with sucrose with a response that lasts longer than

the US. Furthermore, substituting the presentation of reward with a direct depolarization of

VUMmx1 could lead to learning. After training, the conditioned odour can trigger a response

from VUMmx1 which implies that its responsiveness depends on previously established asso-

ciations. It is believed that VUMmx1 neurons release octopamine since this neuromodulator,

when injected in ALs or MB calyces (but not lateral protocerebrum), can essentially substitute

for the US and induce learning (Hammer and Menzel, 1998).

As far as aversive learning is concerned, dopamine seems to be the neuromodulator of

interest. In fact, one study revealed that octopamine is required only for appetitive learning

whereas dopamine only for aversive (Schwaerzel et al., 2003). Through the use of imaging

tools, it was revealed that dopamine neurons projecting to the MBs (and not those projecting

to PNs) are activated when an electric shock is delivered to the animal. As is the case with

VUMmx1, dopamine neurons seem to predict punishment by exhibiting an increased response

to a conditioned odour (Riemensperger et al., 2005). An innovative technique, which allows

for a light-induced activation of either dopaminergic or octopaminergic neurons, confirmed

the above results by replacing the US with an artificial neuromodulator release (Schroll et al.,

Chapter 2. Literature review 12

2006).

2.3.2 Memory phases

The so called “genetic dissection” of memory in Drosophila has led to a distinction between

the various stages of memory formation (Tully et al., 1994) (for a review, see (Margulies et al.,

2005)). Initially, there is an acquisition phase during the training procedure affected by genes

such as linotte. Short-term memory (STM) appears during acquisition and has a lifespan of only

a few minutes, disappearing completely within the first two hours after training. Mutations

of the dunce and rutabaga (but not amnesiac) genes disrupts STM. These genes are highly

expressed in the MBs and are involved in the cAMP signalling pathway. Restoring expression

of rutabaga in the MBs of memory deficient rut mutants has been shown to be sufficient for

rescuing STM (McGuire et al., 2003). Additionally, γ lobes seem to be more important in

rescuing STM via rutabaga restoration (Zars et al., 2000). An STM trace also appears in

the glomeruli of the ALs. Conditioning of an odour recruits more PN synapses, resulting in

the activation of additional glomeruli in response to this odour. The recruitment pattern is

odour-specific. However, the responses of the recruited glomeruli decay within 7 minutes after

conditioning (Yu et al., 2004).

Middle-term memory (MTM) depends on and follows after STM, lasting for a few, at

most seven, hours, reaching its peak within the first hour after training. It can be disrupted

by anaesthesia and alterations of the amnesiac, dunce and rutabaga genes. It has to be noted

that the amnesiac gene has its major region of expression not in the MBs but in DPM neurons.

The role of DPM neurons will be discussed in 2.3.4. Anaesthesia-resistant memory (ARM)

depends on MTM, peaks within 2 hours after training and lasts for no more than 2 days. As

its name implies, it can resist anaesthesia. Mutations of the radish gene interfere with ARM.

Finally, long-term memory (LTM) appears only after spaced and not massed training, peaks

within the first day after training and can last for several days. Like ARM, it depends on MTM

but it is protein synthesis dependent and sensitive to disruptions of the dCREB2 transcription

factor. One study has suggested that LTM might be localized in the α lobes of MBs (Pascual

and Preat, 2001).

2.3.3 Dependence of memory on output from the MBs

Another obviously important issue regards the exact structures where memories are established.

Although the involvement of MBs has been confirmed, it can be argued that they simply consti-

tute a preprocessing stage and the possibility of other downstream neurons actually “hosting”

the memories cannot be excluded. This issue was addressed by selectively blocking neuro-

transmission from MBs during the different stages of memory formation and examining ex-

actly when learning performance is affected. The results from experiments of aversive learning

Chapter 2. Literature review 13

(a) Duration of the different phases (Margulies et al., 2005)

(b) Genetic dissection of Drosophila memory. Dependence of

memory on various genes (Margulies et al., 2005)

Figure 2.4: Phases of the fly’s memory

indicated that output from MBs is required only during retrieval (testing) of memories and not

during acquisition or storage (Dubnau et al., 2001). Another study was even more specific

and showed that output from the α/β lobes is required during retrieval (McGuire et al., 2001).

These findings are consistent with a model that considers MBs as the memory centre. How-

ever, a more recent study cast some doubt on this view (Krashes et al., 2007). A more detailed

investigation was carried out which revealed that, for both appetitive and aversive condition-

ing, neurotransmission from the α′/β′ lobes is necessary during acquisition and storage but

dispensable for retrieval. On the contrary and in agreement with the previous studies, output

from the α/β lobes is required only during retrieval. Therefore, it seems that the MB lobes

have a differentiated role with respect to their recruitment during learning.

2.3.4 DPM neurons

DPM neurons have acquired a unique position in the field of insect memory due to the cru-

cial role they play in MTM. It has already been mentioned above that MTM depends on the

amnesiac gene. However, unlike dunce and rutabaga, it is not expressed in the MBs. It was

discovered that it is strongly expressed in two symmetrical neurons, extrinsic to the MB, the

DPM neurons (Waddell et al., 2000). They project exclusively to the MBs and disruption of

their function results in behavioural scores similar to the amnesiac mutants. Conversely, if the

amn gene is expressed in DPM cells of amnesiac mutants, then memory is rescued.

The link between DPM neurons and MTM is furthered strengthened by the observation

Chapter 2. Literature review 14

that an MTM trace appears in their activity (Yu et al., 2005). DPM neurons respond both to the

US of electric shock and to odours. Their responses to conditioned odours after conditioning

do not differ from that to the same odours before conditioning as long as they are examined

immediately after odour presentation. However, the responses are markedly increased 30 min-

utes after conditioning. This memory trace is also lobe-specific since it is observed in the α/α′

lobes and, as expected, requires the normal function of the amnesiac gene. Considering the

above data, it is not surprising that consolidation of MTM requires a prolonged output from the

DPM neurons between acquisition and retrieval but not during acquisition or retrieval (Keene

et al., 2004), (Keene et al., 2006).

2.3.5 The role of the antennal lobes

The antennal lobes constitute an intermediate stage between sensory neurons and MBs and they

are sometimes regarded as a simple relay station. Contrary to this view, several behavioural

studies have suggested that they may play a more active role in learning. The activation patterns

of AL glomeruli are odour-specific (see subsection 2.2.3). After differential conditioning, these

patterns exhibit an increased activity for rewarded odours and decreased for the unrewarded

(Faber et al., 1999). In fact, a decorrelation between the rewarded and unrewarded odours was

observed (fig. 2.5). Similar results were obtained through direct recordings of neural-ensemble

activity in the ALs (Daly et al., 2004). Differential conditioning again leads to the recruitment

of more units responding to the reinforced odour. An interesting finding was that some units

switched polarity from inhibitory to excitatory and vice versa. Additionally, it was shown that

the temporal patterns of activity were significantly affected by conditioning. These data suggest

that a restructuring of neural activity takes place at the stage of ALs. The importance of the

temporal factor is further stressed by the fact that flies can discriminate even between odours

with the same spatial code of AL activation (DasGupta and Waddell, 2008).

Figure 2.5: Decorrelation of glomeruli activation after conditioning (Faber et al., 1999)

Chapter 2. Literature review 15

2.3.6 Key points

The purpose of the thesis is not to investigate all the different memory phases and neural pro-

cesses involved. We are mainly interested in the initial stages of memory formation which is

also the base for the later stages. Therefore, our model is going to target STM and the phase of

memory acquisition and the MB is going to be treated as a homogeneous structure. More pre-

cisely, we could say that we are going to model the α′/β′ lobes of the MB (section 2.3.3). For

this purpose, it is necessary to include a neuromodulation mechanism which can signal reward

or punishment (section 2.3.1). Our value signal in our experiments is going to be only aversive,

but, in principle, we make no distinction between aversive and appetitive reinforcement.

2.4 Software models of insect olfactory networks

A complete characterization of the neural olfactory pathway in terms of its neurophysiology

and anatomy may still be a goal set for the (perhaps not so near) future but the data gathered

so far, as described in the previous sections, have allowed researchers to build models of it

at various levels of abstraction. Besides being attempts to reproduce experimental results,

these studies have also made predictions and revealed details which were not obvious from the

experiments, a sign of success when it comes to modelling. Although the usefulness of such

models cannot be doubted, their focus usually is on low-level details of neural circuits without

direct references to their behavioural relevance. Therefore, it is time for the appearance of such

high-level models. The following sections will present the relatively few existing models.

2.4.1 Models of individual neurons

The PNs and the KCs are the neurons which have received most of the attention since they

are assumed to constitute the main channel of information transmission and processing. The

peculiar morphology of PNs, having their soma somewhat detached from their dendritic tuft

and axon, led to a detailed modelling in order to investigate the interactions between this type of

morphology and their electrical properties (Gouwens and Wilson, 2009). Using the NEURON

simulation software, a multi-compartmental model was built which included the soma, the axon

and the dendritic tuft with its multitude of branches. The model revealed that PNs probably

have only one site where spikes initiate and that this spike initiation zone lies at a location

distant to the soma. Moreover, there is a need for release sites on many dendritic branches at

synapses between ORNs and PNs since a single release site was found inefficient to propagate

the input.

Modelling of KCs has not yet included morphological details. Simulations with single-

compartmental models, this time using the SNNAP software, were equally insightful though

(Wustenberg et al., 2004). It was shown that there is no need to hypothesize the existence

Chapter 2. Literature review 16

of different subpopulations of KCs since the different spiking characteristics of KCs could be

reproduced by manipulating the ratio of gNa to gK . Investigation of the various current types

showed that the sodium current INa requires two different inactivation time constants implying

either that there might exist two different types of INa or that it goes through more stages than

previously assumed. Finally, the existence of a slow potassium current was predicted which

can regulate the threshold of the neuron.

2.4.2 Models of networks

Going beyond models of single neurons, the next step that naturally follows is modelling whole

networks. As has already been mentioned, the AL can no longer be conceived as a relay station

between the ORNs and the MBs, with evidence coming from computational models as well.

Even a relatively simple model, using a firing rate formulation, reveals that the dynamics of

the AL play an important role in the odour recognition process (Muezzinoglu et al., 2009).

This model used a neural network with firing rate neurons to simulate the AL and a support

vector machine to classify the output from the AL. Inhibition was found to be important for the

decorrelation of odours. A short- term memory trace was also observed in the AL with the sen-

sory transient during odour onset carrying a substantial amount of information. Another study

examined the effects of different patterns of interglomerular inhibitory connections and con-

cluded that contrast enhancement is most efficient when such connections are formed between

functionally similar (but not necessarily neighbouring) glomeruli (Linster et al., 2005).

More detailed models of the AL have been employed to study the fine temporal patterns of

activity that arise in the PNs and LNs. Single-compartmental Hodgkin-Huxley models of PNs

and LNs were used to build a model of the AL in order to understand how inhibition between

LNs and PNs or LNs and LNs shapes the oscillatory, synchronized PN activity (Bazhenov et al.,

2001) (see subsection 2.2.3). The simulation results indicate that PN synchronization relies on

fast GABAergic inhibition from LNs whereas the responses of PNs, whose temporal structure

is odour-specific, are shaped by LN-LN inhibitory connections. Allowing for some synaptic

plasticity in this model can explain a type of short-term memory trace that appears after succes-

sive trials (Bazhenov et al., 2005). When the AL encounters an odour for the first time, the LFP

does not exhibit any oscillations. In contrast, these oscillations appear only after a few trials,

together with a decrease of PN activity. Facilitation of both fast and slow inhibition between

LNs and PNs in the model was able to reproduce these experimentally observed phenomena.

Interestingly, if excitatory synapses were also allowed to undergo synaptic changes, then the

PN representation of odours was found to be noise-resistant. Since this synchronized activity

of PNs seems to be used by downstream KCs, a similar study, using again Hodgkin-Huxley

models, simulated the behaviour of KCs and the role of feedforward inhibition by LHIs onto

KCs (lateral horn interneurons) (Perez-Orive et al., 2004). It was confirmed that KCs act as

Chapter 2. Literature review 17

coincidence detectors, a property that is due to some active conductances they possess, besides

those of sodium and potassium for spike generation. As for the LHIs, the model suggests that

their inhibitory drive on KCs acts as a resetting mechanism which limits the time windows

of KCs, therefore resulting in their sparse and rare activity and enhancing their coincidence

detection characteristics.

2.4.3 Models of the olfactory nervous system

During the last 5 years, a tendency towards more complete models of the whole olfactory

pathway has appeared. Of course, the driving force behind such attempts is to understand the

neural correlates of the behaviour of insects in this pathway. One of the simplest behaviours

is the discrimination of different odours, on the one hand, and the clustering of similar odours

in groups on the other. A possible solution to this problem is proposed by a model which

divides the KCs population into functional subsets, each associated with a specific LHI (Sivan

and Kopell, 2004). The activity of LHIs is assumed to encode the cluster to which an odour

belongs whereas KCs provide a parallel pathway with finer discriminatory power. This model

was implemented with integrate-and-fire neurons and also showed that oscillatory PN activity

is required to account for the ability of fine discrimination.

The next step is to include a learning rule in order to explain more complex behaviours that

display the ability of learning. Such a rule, namely spike timing dependent plasticity, is used in

a model proposed by Nowotny et al (Nowotny et al., 2005). According to this rule, a synapse

is strengthened when a postsynaptic spike follows shortly after the presynaptic spike, within a

time window of tens of milliseconds, and is weakened if the timing between the spikes is re-

versed (Dan and Poo, 2004). Only the synapses between KCs and the extrinsic output neurons

of the MB were provided with this plasticity mechanism. After training, the network was able

to correctly classify a series of inputs by minimizing the distance between stimuli belonging to

the same class and maximizing the distance of stimuli belonging to different classes when the

number of input classes was kept under a certain limit. Synaptic plasticity rules which are local

by their nature can be combined with more global rules which are believed to have a significant

biological relevance in animal learning. This was the approach of a recent model, similar in

its architecture to the one just presented above (Huerta and Nowotny, 2009). Using simple

McCulloch-Pitts neurons, hebbian learning at its output synapses and a global reinforcing sig-

nal to “supervise” the hebbian learning, it could achieve performance comparable to that of

SVMs in a recognition task of handwritten digits. Of course, digits are not behaviourally im-

portant to insects but their transformation to an “odour-like” representation is straightforward

(by pixelating them) and the purpose of the model was not recognition of digits per se but the

investigation of its classification capabilities.

Although the above models attempt to simulate a significant portion of the neural pathway

Chapter 2. Literature review 18

involved in learning, it is still not obvious how they can be directly related to results from ac-

tual, behavioural experiments, as described in section 2.3. This issue is addressed by models

that explicitly try to replicate some of these results. One such model is shown in fig. 2.6 (Smith

et al., 2008). It investigates how and where in the insect brain the CS and the US converge in an

associative learning paradigm. The model views KCs as coincident detectors of synchronized,

upstream PN activity, with the help of inhibitory drive from LHIs. Short-term learning occurs

at the synapses between KCs and lobe neurons (LNs) with a plasticity mechanism based on

the interaction between presynaptic activity conveying the CS and neuromodulatory responses

from a value neuron (VN) mediating the US. Postsynaptic responses drive longer-term modifi-

cations of the synaptic conductances. Pairing PN activity patterns with VN modulatory release

was able to induce lasting synaptic modifications that could elicit a specific response from LNs

when the “conditioned” CS/PN pattern (but not a partial CS) was later presented as a test stim-

ulus. Another model of a similar architecture but with STDP as the learning rule examined the

capabilities for non-elemental associative learning (Wessnitzer et al., 2007). The simulation

setup was more similar to actual experimental setups with the activity of PNs being determined

by “visual” patterns on a rotating panel. The model could make the association between a

punishment (represented as a reflex response) and certain patterns predicting the punishment in

negative patterning, biconditional discrimination and feature neutral discrimination paradigms.

Figure 2.6: Insect brain model by Smith et al (Smith et al., 2008)

2.4.4 Key points

Our explicit goal is to try to link neural processes with observed animal behaviour. Con-

sequently, the finer, low-level details that some of the above studies investigate, like neuron

morphology and membrane currents, are not going to be considered, since we do not yet know

if and how they might affect behaviour. Our model is going to be built at a higher level of

Chapter 2. Literature review 19

abstraction. Like most of the models presented in section 2.4.3, we are going to include a

plasticity mechanism for the synapses which project from the KCs to the ENs. Additionally, a

value signal is going to be used as an indicator of the US.

2.5 Hardware implementations

Until now, there have been no attempts to implement the olfactory neural circuits of insects

on a hardware platform. In fact, the field of neural networks simulation on hardware is still

struggling with the design of more generic networks of a decent size as a proof of concept.

No standard tools exist, as is the case on the software side, which give a modeller the ability

to specify a network at a more abstract, intuitive level and then simulate it onto hardware. If

we want to have any chance of building real-time models of biological neural networks though,

then we have to take advantage of the parallelism offered by digital circuits. Just like GPUs take

the load of graphics processing off the main processor today, we might be using NPUs (neural

processing units) in the future to accelerate simulation of neural networks or achieve real-time

performance for robotics applications. In the review of the existing hardware implementations

that will follow, we will not cover the cases of microprocessor-based or ASIC solutions as these

do not seem suitable for the purposes of the current project. Instead, we will focus on FPGAs.

We will also briefly mention some of the latest developments in the field of neurorobotics, a

research methodology which combines (software or hardware) models of neural structures (or

even living neural tissues) with a robotic platform in order to more acutely investigate the neural

mechanisms of behaviour, according to the principles of embodied cognition (Krichmar, 2008)

(Weng et al., 2001) (Seth et al., 2005). Since this methodology has not been employed yet to

study (olfactory) learning in insects, we will necessarily examine implementations inspired by

other animals.

2.5.1 FPGAs overview

The main feature that distinguishes FPGAs from custom VLSI circuits is the fact that they

are “field programmable”. This means that an FPGA board can host different designs and the

process of downloading a new design to it takes only a few minutes, with the whole procedure

being controlled by appropriate software tools, available directly to the modeller. The basic

concept behind an FPGA is depicted in a simplified manner in fig. 2.7. The circuit is com-

posed of an array of independent but interconnected cells. The connections between the cells

are not permanent but programmable. In turn, each cell (usually) consists of an LUT (look-up

table) which can implement any function of its inputs and a flip-flop (fig. 2.7). Therefore,

the cell can function in both a combinatorial and a sequential mode. When a software tool

is asked to implement a circuit design, it employs placing, routing and mapping algorithms

Chapter 2. Literature review 20

in order to determine which logic cells must be used, what functions they should express and

how they are to be interconnected. The circuit itself can be designed by using hardware de-

scription languages (e.g. VHDL or Verilog) which resemble (but are not) usual programming

languages and whose source code can be synthesized into a digital design. Other, even higher

level, languages are available as subsets of ANSI C, with certain extensions (e.g. Impulse-C

or Handel-C). For a comparison between a VHDL and a Handel-C version of a multi-layer

perceptron, see (Ortigosa et al., 2006). The whole process therefore begins with the designer

writing his model in a description language which is then passed through a synthesis phase and

translated to a digital circuit. Subsequently, this circuit is mapped onto the FPGA elements

(a technology-specific stage, in contrast to the synthesis stage) and finally downloaded to the

board.

(a) Structure of an FPGA device (Maxfield,

2004)

(b) Contents of an FPGA cell (Max-

field, 2004)

Figure 2.7: FPGA organization

2.5.2 Models of individual neurons

The limited resources of FPGAs constitute a very important constraining factor in any such

design, expressed as the percentage of the circuit area or the number of slices/cells/LUTs (two

cells usually comprise a slice) that it consumes. Ghani et al (Ghani et al., 2006) proposed a

model for an integrate-and-fire neuron that omits multiplication altogether by simply counting

the presynaptic spikes until a threshold is reached for the postsynaptic spike to occur. Con-

sidering that an FPGA has only a few dedicated multipliers and that recruiting standard logic

cells for their implementation is expensive, this approach could conserve valuable resources

(it utilized 80 slices for a single neuron with 10 input synapses). On the other extreme, Graas

et al (Graas et al., 2004) implemented a detailed Hodgkin-Huxley neuron model (without any

synapses though) by using a Simulink library within MATLAB which allows for the design

of FPGA projects with blocksets. As expected, this model was much more demanding than

the previous one, occupying 44% of the 5120 slices. However, it could “simultaneously” sim-

ulate 17 different neurons via pipelining, a kind of time multiplexing whereby the datapath

(the computational part of the circuit) is divided in different stages, with buffers in between,

Chapter 2. Literature review 21

so that each neuron occupies a different stage at each clock cycle waiting to move to the next

stage at the next cycle. The same methodology was used to implement a FitzHugh-Nagumo

model with a 10 stages deep pipeline (Weinstein and Lee, 2006) and it was later embedded in

a more general framework in which the parameters were stored in RAM and constantly fed to

the neuron model (Weinstein et al., 2007).

2.5.3 Models of networks

Moving on to the simulation of networks, the most obvious approach is that of a fully parallel

design, with each neuron utilizing its own area on the board and buses of signals transferring

data among them. This approach was followed by Roggen et al (Roggen et al., 2003) who

used a cellular network of 64 neurons to control a Khepera robot in an obstacle avoidance

task. The network is called cellular due to its structure, a 2D cell array whose cells can have

connections with certain neighbouring cells. The neuron model was a discrete-time version

of integrate-and-fire neurons. The design also made use of a softcore processor (a processor

that can be instantiated onto the FPGA, just like the rest of the modules), responsible for the

communication between the robot and the network. Around 8000 logic cells were required for

the complete system, with 1/4 of them consumed by the processor. A biologically more plausi-

ble network was implemented by Upegui et al (Upegui et al., 2005), consisting of three layers

of 10 neurons each with full intralayer connectivity and full, two-way connectivity between

successive layers. A simplified, integrate-and-fire neuron was again used, with presynaptic

spike counting as a spike generation mechanism. Additionally, neurons incorporated a type of

hebbian learning as well. Almost half of about 2500 slices were needed.

A common theme that seems to be recurring during the last years is the sharing of hardware

resources by multiple neuron models. Since the computations required by a neuron module are

very demanding in terms of logic cells and dedicated arithmetic units, the implementation of

large-scale networks is not possible with fully parallel designs. On the other hand, one such

neuron module, with optimizations such as pipelining, can exhibit performance that is orders

of magnitude better than real-time. Therefore, a trade-off between speed and area consumption

arises. We can sacrifice simulation acceleration in order to gain in network size by recycling

multiple neuron models over the same computational units. According to this scheme, the

network is divided in subsets of neurons and only neurons belonging to the same subset are

updated in parallel whereas the different subsets are updated sequentially.

One design based on this idea was proposed by Ros et al. (Ros et al., 2006). The state of the

neurons and the presynaptic events are stored in RAM blocks and are repeatedly fed into the

processing units until all neurons are updated. Moreover, each computational unit is pipelined

so that 5 neurons per processing unit can be computationally active at each clock cycle. A net-

work of 1024 of integrate-and-fire neurons, partitioned in 4 processing units consumes about

Chapter 2. Literature review 22

Paper Neuron hw/sw Neurons Syn. Slices

model No No

(Ghani et al., 2006) InF HW 1 10 80

(Graas et al., 2004) HH HW 17 0 2250

(Weinstein and Lee, 2006) FHN HW 1 0 90-150

(Weinstein et al., 2007) HH HW 40 1.600 13840

(Roggen et al., 2003) InF HW 64 1.664 8000

(Upegui et al., 2005) InF HW 30 900 1250

(Ros et al., 2006) InF hybrid 1024 - 20000

(Maguire et al., 2007) InF hybrid 4200 1.964.200 -

(Pearson et al., 2007) InF HW 1120 9.120 -

Table 2.1: Summary of hardware implementations of biological neural networks. InF=Integrate-

n-fire, HH=Hodgkin-Huxley, FHN=FitzHugh-Nagumo.

20000 slices. It has to be noted though that this was a hybrid hardware-software design, us-

ing the FPGA to update the membrane potentials and the CPU for learning and communicating

spikes between neurons. The same idea was implemented with a different approach by Maguire

et al. (Maguire et al., 2007). The time multiplexing was controlled by softcore processors (Xil-

inx Microblaze in this case) which handled the transfer of neuron/synapse states from RAM to

computational units and then back to RAM. It was possible to simulate a total of 4200 neurons

with 4 Microblaze processors. Pearson et al (Pearson et al., 2007) designed a neuroprocessor

implemented fully on hardware, without the support of any processors, following the same idea.

Their model consisted of 10 neural processing elements, each being responsible for updating

112 neurons and 912 synapses, stored in RAM. A sequencer was in charge of communica-

tion and coordination between the processing elements. Table 2.1 presents a summary of the

hardware implementations described above and their requirements.

2.5.4 Neurorobotic studies of learning and memory

The field of neurorobotics is quite new, something which should not come as a surprise, con-

sidering the significant technical work required and the increased demand for computational

power by the simulated models of biological neural networks. The task of building a neuro-

robotic platform seems less and less daunting as more computational power and simpler robotic

kits become available. The community of neuroroboticists finds itself in a growing phase and

has presented, during the last 10-20 years, some very interesting examples of how animats can

help us to understand animals.

One of the most well-known neurorobotic platforms is the series of Darwin robots (Edel-

Chapter 2. Literature review 23

man, 2007). They are usually equipped with cameras, microphones, IR and other sensors and

their motor system is controlled by a simulated nervous system. The simulation follows the so-

called synthetic neural modelling approach, running on Beowulf clusters, with models which

contain tens of thousands of neuronal units (not single neurons but neural masses of about 100

neurons, represented by their mean firing rate), inspired mostly by the rat brain. It is a setup

which allows for a comprehensive recording (and therefore later processing) of the robobrain’s

activity during the experiments, something which is not feasible with living animals. The dif-

ferent versions of Darwin (currently version XI) have investigated various aspects of (rat) brain

functioning, like vision (Almassy et al., 1998), the role of hippocampus in spatial memory and

maze navigation (Krichmar et al., 2005) (Fleischer et al., 2007), perceptual categorization and

conditioning (Krichmar and Edelman, 2002).

Besides Darwin, the rat hippocampus and its place cells have attracted the attention of

many other research groups as well, trying to understand how rats create an “internal map” of

their surroundings (Arleo et al., 2004) (Banquet et al., 2005) (Milford et al., 2004) (Cuperlier

et al., 2007). The basal ganglia are another group of structures that have been embedded on a

robot and studied, with respect to their role as an action selection mechanism (Prescott et al.,

2006), whereas another study investigated the role of neuromodulation on decision making

(Sporns and Alexander, 2002). Moving beyond experiments with single robots, some research

groups have started employing ideas of evolution whereby multiple robotic agents can interact

and exchange “genetic material” in order to improve the efficiency of their neural networks

(Floreano and Keller, 2010) (Doya and Uchibe, 2005).

Unfortunately, the invertebrate-based neurorobotic studies on learning are still limited. For

example, Damper et al (Damper et al., 2000) have developed a robot model of Aplysia in order

to investigate both simple forms of learning, like habituation and sensitisation, and higher-

order conditioning. On the other hand, other aspects of insect and invertebrate behaviour have

received more attention, e.g. visual and auditory processing (Franceschini, 2008), (Horchler

et al., 2004). A large number of studies have also examined the neural mechanisms of walking,

navigation etc. (for reviews, see (Webb, 2002), (Pfeifer et al., 2007), (Ijspeert, 2008)).

2.5.5 Key points

It seems a bit surprising that FPGAs have not been more extensively used in neurorobotic stud-

ies. The technology of FPGAs is now powerful enough to allow us to model neural networks of

a substantial size and opens up new possibilities for research in the field. Our robotic platform

moves towards this direction.

Due to the fact that our hardware simulator will be required to model networks of various

sizes and connectivity patterns, it should be obvious from the above discussion that we are

going to use the idea of sharing hardware resources as well. The state of the network is going

Chapter 2. Literature review 24

to be stored in RAM blocks and a limited number of computational units should be responsible

for updating it. In order to make our simulator as technology-independent as possible, it is

going to be a purely hardware design. Communication with the “external” world should be

restricted to receiving the necessary input patterns.

Chapter 3

Implementing biological neural

networks on FPGAs

FPGAs are far from being the preferred simulation platform for most computational neurosci-

entists and there is a good reason for this reluctance. Until quite recently, developing electronic

systems directly on hardware was confined only to a few R&D groups in the academia or in the

semiconductors industry. With the advent of FPGAs, a wider user base can now conduct such

research. Moreover, they have allowed for a much greater flexibility during the design process

which can substantially facilitate rapid prototyping, a crucial factor in a field like computa-

tional neuroscience where there is great uncertainty as to which parameters, models and neural

architectures are the most important. However, the community has been reluctant to catch up

with the new technology. Working with hardware seems like a daunting task to a traditional

computer scientist with limited exposure to digital design techniques and is simply out of the

question for a biologist struggling to run a MATLAB script. In this chapter, a tool will be

presented that gives a researcher the ability to move quickly from a high-level description of a

neural network to its hardware equivalent, ready to be run on an FPGA.

3.1 Wetware

When designing a neural network, certain decisions have to be made as far as the appropriate

level of simulation is concerned. This is especially true when it comes to biological neural

networks for which achieving a predefined goal or performance is not necessarily of the high-

est priority. The network needs to have some biological relevance if it is to be useful at all

in providing us with some insight regarding the link of certain neurobiological processes to

behaviour. Choosing the right abstraction level is still a hotly debated subject, as the recent,

25

Chapter 3. Implementing biological neural networks on FPGAs 26

SyNAPSE vs BlueBrain cat fight shows 1.

What is the criterion for this choice and what exactly is our frame of reference for a “right”

abstraction level? The field of biorobotics can be of significant help on this issue. It is hard

to imagine where this, increasingly “esoteristic”, process of including more and more details

into a model can stop without having an “external” reference point, as is usual for engineers

who model physical systems. The actual behaviour of animals (and animats) may serve as a

solid reference point. Therefore, besides using what is generally known and accepted about

the wetware of the insect brain in order to build a robot with learning capabilities, this thesis

will also attempt to make an initial step towards the inverse direction, that is, to examine the

validity of these assumptions by testing their function in a real environment.

Of course, it is impossible (and probably not even desirable) to include each and every

aspect of the underlying neurobiology in our model, at least not at this initial phase of the

project. We’ll have to contend ourselves with a preliminary core of basic features that seem

to be the most behaviourally relevant, according to the current state of the research. In what

follows in this section, the choices regarding the neurobiological properties to be implemented

will be described and justified. It has to be noted that these choices are not determined only by

theoretical questions such as the above but are decisively constrained by hardware requirements

imposed by the technology of FPGAs as well as by the requirement for real-time performance

in the case of robotic experiments.

3.1.1 Neuron and synapse models

As is usual in models of neurobiological structures, the individual neuron is going to be the

basic unit for our models as well. This is not an obvious choice, as it may seem, since there

have appeared attempts to model the brain at a more mesoscopic level, using neural masses as

the fundamental building blocks (Freeman, 2008), (Freeman, 1975). However, the results from

such models are quite difficult to interpret and there is a considerable lack of experimental data

to drive a modelling attempt, at least as far as the insect brain is concerned.

Neuronal modelling is a whole field in itself and there is a great variety of available models

(Dayan and Abbott, 2001). A first dilemma is whether to use single-compartment or more

detailed, multi-compartment models. The latter choice, with respect to the goals of our research

project, would serve only to provide us with information that we would not know how to handle

since there are no experimental data linking neuron morphology with learning behaviour in

insects, although it would be an interesting research path to follow in the future. Therefore,

single-compartment models will be preferred.

From the simple integrate-and-fire to the more realistic Hodgkin-Huxley models, there is

1See http://spectrum.ieee.org/tech-talk/semiconductors/devices/blue-brain-project-leader-angry-about-cat-brain
for some objections with regard to SyNAPSE, raised by BlueBrain’s leader scientist.

Chapter 3. Implementing biological neural networks on FPGAs 27

a trade-off for each model between its biological plausibility and its computational efficiency.

A model proposed recently by Izhikevich (Izhikevich, 2003) manages to strike a nice balance

between these two requirements. While it can reproduce the firing patterns of many types of

neurons, with the right choice of the parameters, it requires just 13 operations per 1 ms of sim-

ulation, comparing favourably with other models (Izhikevich, 2004). It is a phenomenological

model which does not describe the activity of any membrane channels. Nevertheless, it can

exhibit a varied range of behaviours.

Communication between neurons is achieved of course through synaptic transmission. The

input that a neuron receives from a synapse is determined by the synaptic conductance and the

neurotransmitter concentration at the synaptic cleft. Consequently, the most basic variable that

a synaptic model should compute is that of the neurotransmitter concentration. This whole pro-

cess is relatively easy to model since it mostly depends on the presynaptic spikes arriving at the

synapse which force the neurotransmitter concentration to rise sharply, following afterwards

an exponential decay (Dayan and Abbott, 2001), (Destexhe et al., 1994).

Therefore, the neural network will be governed by the following equations :

C
dv
dt

= k(v− vr)(v− vt)−u+ I (3.1)

du
dt

= a(b(v− vr)−u) (3.2)

if v≥ 30 mV, then

{
v← c

u← u+d
(3.3)

d ps

dt
=−ps

1
ts

(3.4)

d ps = pmax(1− ps), if presynaptic spike (3.5)

i = ps ·gmax · (vrev− v) (3.6)

where v is the neuron membrane potential, u the recovery variable, vr the resting potential, vt

the threshold potential, a, b, c and d parameters of the Izhikevich model, I the total input, ps

the neurotransmitter concentration, ts the time constant of its decay, pmax the maximum neu-

rotransmitter concentration, vrev the reversal potential, gmax the synaptic conductance and i the

input from this specific synapse (I = ∑ i). More accurately, ps is not exactly the neurotrans-

mitter concentration but the probability of a postsynaptic channel being open or the percentage

of open, postsynaptic channels due to the presence of neurotransmitter and gmax is the synaptic

conductance when all postsynaptic channels have opened.

Chapter 3. Implementing biological neural networks on FPGAs 28

3.1.2 Learning mechanisms

Since Hebb proposed his simple learning rule, research on plasticity mechanisms has largely

focused on how modifications of the synaptic strength can affect memory and learning. It is

widely accepted that the engram is to be found in the synapses and the way they react to pre-

and post-synaptic activity, although other mechanisms, such as changes in neuronal intrinsic

excitability (Zhang and Linden, 2003), have been put forward as well. However, since these,

possibly complementary mechanisms, have not yet been extensively investigated, they will not

be included in our model.

The simple Hebb rule can lead to learning that suffers from problems of instability and

loss of selectivity since it can result in uncontrolled and homogeneous synaptic growth (Dayan

and Abbott, 2001). Several modifications have been proposed that can impose constraints of

synaptic saturation and competition in order to address these problems. However, many of

them are not biologically plausible. Spike timing-dependent plasticity (STDP) seems to be

a biologically realistic type of learning that can achieve both stability and competition (Song

et al., 2000b).

Until recently, there had been evidence for the presence of STDP in biological systems

(Dan and Poo, 2004), (Roberts and Bell, 2002) but it hadn’t been observed in invertebrates. A

“fortuitous observation” during in vivo recordings in the locust brain (Cassenaer and Laurent,

2007) gave rise to this possibility when a spontaneous action potential of a β lobe neuron (β-

LN) after stimulation of its presynaptic KC greatly enhanced the following EPSP. A series

of experiments confirmed that these synapses actually do behave in an STDP manner. It is

important to note that, in those experiments, all the stimuli were artificial. Therefore, it is not

clear how the observed STDP could be behaviourally relevant as far as learning and memory are

concerned. In fact, a later study (Ito et al., 2008), involving behavioural experiments, showed

that the relation of STDP to learning is not at all straightforward.

STDP is a type of Hebbian learning which depends critically on the temporal order of pre-

and post-synaptic spiking. According to STDP, an increase in synaptic strength is induced

when a presynaptic spike is quickly followed by a postsynaptic whereas synaptic depression

occurs when the order is reversed and the postsynaptic spike precedes the presynaptic. The time

window within which STDP can be observed is in the order of tens of milliseconds. STDP can

be modelled by the following equation (Song et al., 2000b) :

F(∆t) =

 A+ exp
(

∆t
τ+

)
if ∆t < 0

−A− exp
(
− ∆t

τ−

)
if ∆t ≥ 0

(3.7)

The function F(∆t) determines the amount of synaptic modification. The parameters A deter-

mine the maximum amounts of synaptic modification and the parameters τ the time windows

(pre- to post-synaptic inter-spike intervals) over which STDP can occur.

Chapter 3. Implementing biological neural networks on FPGAs 29

Figure 3.1: The STDP window (modification function) (Song et al., 2000a)

In order to implement STDP in a computational model, each synapse needs to have two

functions, M(t) and Pa(t) (Song et al., 2000b). M(t) is used to decrease the synaptic strength

whereas Pa(t) is used to increase it. M(t) is decreased by a certain amount A− whenever

the postsynaptic neuron fires and, if this is followed later by a presynaptic spike, then the

conductance is decreased by M(t)gstd p
max , where gstd p

max is the maximum value that the synaptic

conductance can acquire through STDP modification, i.e. if the conductance exceeds at some

point this value, then it is reset to it. Pa(t) is increased by A+ each time the presynaptic neuron

fires and, in case a postsynaptic spike occurs shortly afterwards, the conductance is increased

by Pa(t)g
std p
max . Both M(t) and Pa(t) decay exponentially when there is no spiking activity. The

required equations are the following :

τ−
dM
dt

=−M (3.8)

M→M−A−, if postsynaptic spike (3.9)

gmax→ gmax +M(t)gstd p
max , if presynaptic spike (3.10)

τ+
dPa

dt
=−Pa (3.11)

Pa→ Pa +A+, if presynaptic spike (3.12)

gmax→ gmax +Pa(t)gstd p
max , if postsynaptic spike (3.13)

gmax→

{
0 if gmax < 0

gstd p
max if gmax > gstd p

max
(3.14)

Chapter 3. Implementing biological neural networks on FPGAs 30

Besides STDP, another plasticity mechanism which seems to be quite significant for the

insect brain is that of neuromodulation (Schwaerzel et al., 2003). Neurons that secrete neuro-

modulators, such as dopamine and octopamine, are considered to mediate the signals of reward

and punishment in experiments of associative learning. It is still not exactly known how neu-

romodulators affect the process of synaptic strengthening or weakening. Nonetheless, since

neuromodulators play such an important role in learning, an initial attempt will be made to in-

clude this mechanism in our model, with the understanding that it is based on certain, possibly

invalid assumptions.

Inspired by (Izhikevich, 2007), another variable is added (ctag) for each synapse, which

acts as a synaptic tag. This variable follows the STDP rule but does not affect directly the

synaptic conductance. Instead, it simply “tags” a synapse as a candidate for modification, in

case a neuromodulator is released from a neuron that targets this specific synapse. The neurons

which release neuromodulators are modelled as simple triggers i.e. they “spike” when exter-

nally stimulated, with the concentration of the neuromodulator (cmod) decaying exponentially

afterwards. The change in conductance depends on both the synaptic tag and the neuromodu-

lator concentration. The following equations describe the above process in mathematical terms

:

dctag

dt
=−ctag

1
tctag

(3.15)

ctag→

{
ctag +M if presynaptic spike

ctag +Pa if postsynaptic spike
(3.16)

dcmod

dt
=−cmod

1
tmod

(3.17)

cmod → cmod + cmax
mod(1− cmod), if trigger (3.18)

dgmax

dt
= ctagcmod (3.19)

3.2 Hardware

It is not uncommon for simulations of biological neural networks to take hours or even days to

complete, even for networks of relatively small size. In order to get acceptable performance, at

least for large scale simulations, clusters have to be employed, using expensive hardware (see,

for example, the supercomputer used for the Blue Brain project, with its 4096 nodes (Markram,

2006)). This approach has also been followed in certain cases where the neural network is used

to guide the behaviour of a robot (Edelman, 2007), (Krichmar et al., 2005). However, this

Chapter 3. Implementing biological neural networks on FPGAs 31

seems to be a contradictio in terminis since autonomy is one the features that make robots what

they are. If we want robots that can behave more autonomously, then we need solutions which

are more “portable”. In this section, the capabilities and limits of one such solution will be

investigated.

The requirements that our hardware simulator should be able to meet are the following :

• It should be able to simulate networks described by the equations of section 3.1, with

neurons following the Izhikevich model and with synapses that could be fixed or plastic,

following either the STDP learning rule or the neuromodulation rule. There should be

no constraints as far as the connectivity pattern is concerned.

• With regard to the size of the network, it should have the ability to simulate networks

whose size is similar to that of the fly’s olfactory pathway (around 150 PNs and 2500

KCs, with No o f synapses
No o f neurons ≈ 10).

• The simulator should be fast enough for robotic experiments, i.e. it should achieve real-

time (or at least near real-time) speed performance.

3.2.1 Architecture of the simulator

Is it possible to build a “portable” cluster? Should we build one and what parts of a processor

are necessary in this case? Should we even insist on the idea of using a processor or could we

get increased performance if we move towards more direct hardware implementations? These

are engineering questions which would be easier to answer if we had clearly defined require-

ments for our design. Of course, requirements analysis is a standard procedure which every

software or hardware system has to go through, with great attention. The above discussion on

the wetware of the insect brain could be considered as some kind of such an analysis. It should

be obvious, though, that computational neuroscience, especially that branch which attempts

to draw links between neurobiological data and behaviour, still stands at an exploration phase

where certain assumptions might prove wrong and proposed mechanisms might be discarded

as irrelevant to learning in the future, e.g. neuronal intrinsic excitability might become more

important as a learning mechanism than modification of synaptic weights.

If we look more closely, with the eyes of an engineer and not those of a neuroscientist, we

can discern that behind all this talk about membrane potentials, synaptic clefts and neurotrans-

mitters, what remains is mainly a series of differential equations which update certain variables

of interest with each simulation step. No matter what mechanisms and models we include, it is

expected that they will also follow this pattern of the need to massively update elements which

follow the same computational path. Therefore, we could focus on this super-problem and be

relatively confident that the design could be easily amended, in case we are required to add

another mechanism or substitute one.

Chapter 3. Implementing biological neural networks on FPGAs 32

Of course, the most efficient way to solve the differential equations of our system would be

to use for each individual element (in our case, for each neuron and each synapse) dedicated

hardware resources so that all variables are updated simultaneously (see 2.5.3) and direct con-

nections for communication among the elements. This approach may work for small networks

of well-patterned connectivity, but it is impossible to scale, since it quickly consumes all hard-

ware resources and the design would be extremely hard to route for more complex connectivity

patterns. Consequently, the idea of sharing hardware resources and using RAM memory to

store the network state comes into view.

There still remains the issue of how the necessary arithmetic operations should be per-

formed. We could produce the new values from the equations by “unrolling” them and break-

ing them down into their main operations. For example, a simple equation, like (a + b) ∗ c,

can be mapped to an adder, with a and b as its inputs, followed by a multiplier, operating on c

and the result of the adder. If we introduce buffers between the different operations, we could

also pipeline this datapath (see 2.5). Although it could lead to very fast implementations, the

downside of this approach is that the datapath is fixed, suitable only for a specific equation.

Therefore, we would have to implement one such datapath for each of the 19 different equa-

tions of our model (see 3.1), with many of them remaining idle while waiting for the longer

computational paths to complete. In addition to that, a new datapath has to be included for

every new equation, e.g. in case we decide to use a different neuron model. For these reasons,

a more flexible solution would be preferable for the purposes of this project.

3.2.1.1 A network of cores

In order to take advantage of the parallelism offered by the FPGA hardware, the simulator

has been designed in the form a network of cores. The cores can work in parallel and each

of them is responsible for updating a specific part of the neural network. They are composed

of a computational unit, whose task is to perform all the necessary computations and a RAM

memory which holds the state of the neural network (the part of the network for which this

unit is responsible). A communication module is also included so that the spikes from one part

of the network may be transmitted to the other parts. The idea is that we should be able to

improve the performance of the design simply by adding more cores to it, as long as there are

available hardware resources.

In fig. 3.2, a block diagram of the whole network is depicted. The FSM’s function is to

allow communication of the network with the external world, i.e. receive external input to

certain neurons and write it to the appropriate RAM addresses and also read RAM addresses

and present their contents to the appropriate output port. This is the point of interaction between

software (drivers) and hardware. The VHDL source code which implements the network of fig.

3.2 has been written in such a way, using generate statements, so that the number of cores is a

Chapter 3. Implementing biological neural networks on FPGAs 33

simple parameter in a configuration file and can be easily modified.

Figure 3.2: The hardware simulator as a network of cores

3.2.1.2 Memory organization

Fig. 3.3 depicts the way RAM memories are organized within each core. A RAM block has

a width of 16 bits and is initially segregated into three different sections, the first of which

corresponds to the neurons of the neural network, the second to the synapses and the third to

the neuromodulators (if there are any). According to the Izhikevich neuron model, the state

of each neuron is determined by its membrane potential and its recovery variable. Moreover,

the input current is required in order to solve equation 3.1. These are the three variables that

need to be stored in RAM for each neuron. There is something that seems to be missing,

though. The parameters of the Izhikevich model (a,b,c,d,Cm,k,dt). In an attempt to eliminate

unnecessary repetitions, parameters like these and like the ones used by the equations for the

synapses and learning mechanisms, do not accompany each neuron (or each synapse). Instead,

each neuron is also characterized by its type (see 4th entry in fig. 3.3), meaning a set of values

for the parameters, defined as constants in VHDL configuration files, so that the values of

the parameters can be retrieved according to the neuron type. The rest of the memory slots

dedicated to a neuron are pointers. Most of them are pointers to the output synapses of the

neuron, essentially defining the connectivity pattern of the network, used whenever the neuron

generates a spike. Another pointer is used to indicate the group of the input synapses to the

neuron which provide the input current and another one which points to the next neuron in the

neurons’ section.

Chapter 3. Implementing biological neural networks on FPGAs 34

The synapses’ section is a bit more complicated. Although the neurons are ordered se-

quentially, the synapses follow a different ordering pattern whereby they are grouped together

according to the neuron to which they project. The synapses’ section begins with the first

synapse projecting to the first neuron (the first input synapse of the first neuron), followed by

the second input synapse and the rest of the input synapses. The second group of synapses

begins with the first input synapse of the second neuron etc. This organization was chosen in

order to facilitate the computation of the input currents. Each group has a pointer to the postsy-

naptic neuron and its membrane potential, which is required for the computation of the synaptic

currents (equation 3.6). As the synapses of a group are being updated, their synaptic current

is added to an accumulator and, upon completion of the group update, its value is stored back

to the slot indicated by the postsynaptic neuron pointer. The presence or absence of a learn-

ing mechanism, as well as its type, introduce another complication. Regardless of whether a

synapse is plastic or not, the neurotransmitter concentration is a variable always needed and,

as a result, always included in RAM for every synapse. On the other hand, the other synapse

variables (conductance, STDP variables M and Pa, synaptic tag), shown in fig. 3.3, are not al-

ways required. In fact, usually most synapses of a network have fixed conductances with only

a relatively small subset having learning capabilities. Therefore, the conductance and STDP

variables M and Pa are stored in RAM only for those synapses which follow the STDP or the

neuromodulation learning mechanism whereas the synaptic tag is stored only for those whose

plasticity depends on neuromodulators (see relevant equations in 3.1.2).

It should be obvious from the above discussion that the memory organization pattern of

the synapses renders the factor of fan-in much more important than that of fan-out. Whereas

each extra output synapse simply requires another pointer to be added, input synapses are

accompanied by a significant number of relevant variables. This means that the update cycle

for neurons with high fan-in is more costly, in terms of computation time, a fact which should

be taken into account when assigning neurons to the various cores (see also discussion about

load distribution in 3.3.3). Moreover, the fact that a neuron has to carry with it all of its input

synapses and that the neurons are ordered in a serial manner makes it possible for the RAM

blocks to be unevenly occupied. In case there are consecutive neurons with high fan-in, a

substantial portion of the RAM blocks hosting these neurons might be left unutilized.

Finally, the neuromodulators’ section is the simplest of all. For each neuromodulator, we

need just two memory slots. One of them holds the id and the type of the neuromodulator and

the other one the neuromodulator concentration. A neuromodulator affects only those synapses

whose plasticity mechanism (first entry for each synapse in the RAM block) is equal to the id

of this neuromodulator. If all bits of the plasticity mechanism are 0s, then the synapse is fixed,

whereas if they are all 1s, the simple STDP is used. All the other combinations of bits can be

used to point to a neuromodulator.

Chapter 3. Implementing biological neural networks on FPGAs 35

It should be noted that the RAMs used in this design correspond to block RAMs, residing

inside the FPGA chip which the synthesis tools infers from the VHDL source code. This allows

for a more direct, self-contained and technology independent design but it can impose serious

constraints on the size of the networks that can be implemented, especially in the case of FGPA

boards with limited hardware resources.

Figure 3.3: Organization of the RAM blocks

3.2.1.3 Computational units

The basic unit that performs all the arithmetic calculations is shown in fig. 3.4. It is composed

of a register file, an arithmetic unit, multiplexers which select the inputs to the arithmetic unit

and a finite state machine (FSM). The register file is used to hold the variables, as they are fed

to the unit (for example, the membrane potential of a neuron), the necessary parameters (e.g.

the membrane capacitance, according to the neuron type) and some intermediate, temporary

results from the arithmetic unit.

Chapter 3. Implementing biological neural networks on FPGAs 36

The main function of the FSM is to go through all the computation steps in order to up-

date the value of a variable by selecting at each cycle the correct inputs and operation for the

arithmetic unit and subsequently storing the result in the register file or using it for the next

step. For example, in order to compute the new value for the neurotransmitter concentration

(eq. 3.4) according to the Euler method, we would have to follow the computational path :

pnew
s = pold

s −dt ∗ pold
s
ts

or pold
s
ts
→ result ∗dt→ pold

s −result. First, the FSM selects the old value

of ps and the time constant (ts) as inputs to the unit from the register file and division for the

operation. The result is then used again for the next computation, a multiplication by the time

step dt and this result is subtracted from the old value of ps.

Since division is expensive, it has not been included in the operations which the arithmetic

unit can perform. Instead, the inverse of the parameter ts (and every parameter which acts as a

divisor) is used in a multiplication. Fixed point 32 bit arithmetic is used, with 16 bits devoted

to the fractional part. Of course, the values stored in RAM are 16 bits wide and they have to be

converted to 32 bits before being used by the arithmetic unit.

Figure 3.4: Block diagram of a computational unit

3.2.1.4 Communication among the cores and between the RAM blocks and the compu-

tational units

The computational units do not have direct access to the RAM blocks. They can only read the

variables that they need from an input FIFO (first in, first out) structure, execute the compu-

tational path and write the new values to an output FIFO. Another structure is responsible for

the communication between RAMs and computational units (fig. 3.5). This communication

module constantly checks the status of the input and output FIFOs. In case the input FIFO has

enough empty slots to accept data for a neuron, synapse or neuromodulator (depending on the

RAM section that is active), it uses a pointer to read this data from the RAM block and push it

Chapter 3. Implementing biological neural networks on FPGAs 37

to the FIFO. For example, when updating the neurons’ section and the input FIFO has four or

more empty slots, then the neuron type, input current, membrane potential and recovery vari-

able of the neuron pointed by a “read pointer” can be read and pushed to the FIFO. Likewise,

a “write pointer” is used, when the output FIFO holds new data, in order to update the RAM

memory with the new values.

Another crucial function of this module is the transmission and reception of spikes, i.e.

communication between the different cores. As mentioned above, the synapses that project to

the same neuron are grouped together in the RAM blocks. In addition to that, when a neuron

is assigned to a specific RAM block during the creation of the memory initialization files, the

group of its input synapses is also assigned to the same RAM block, thereby avoiding the need

to communicate the postsynaptic membrane potentials to other cores. Only spikes need to be

transmitted, since the output synapses of a neuron may be hosted in the RAM block of another

core. When the communication module detects that a neuron has generated a spike, it starts

reading the addresses of this neuron’s output synapses and passes them over to the spikes’ bus

after having requested and been given access to it (fig. 3.2). The first part of the address of an

output synapse consists of those bits that point to the core where the synapse is located whereas

the least significant bits comprise the offset inside the RAM block of this core. As an example,

if a neuron has an output synapse which is located at address 32 of core no 3, then the address

of this synapse should be “0011000000100000”, if we use the four most significant bits for

core addressing and the twelve least significant for the offset.

Each core has a FSM which listens to the spikes’ bus. Every time a new address is being

driven to the bus, each of these FSMs checks the most significant bits of the bus in order to

determine which core this synapse belongs to. If it belongs to the same core as the FSM, then

it gets registered into a spikes’ FIFO until the RAM memory is freed, at which time it can be

transferred to it. By “transferring” the spike to the RAM block, it is simply meant that the spike

bit of the synapse (stored in the same address as the synapse’s type and learning mechanism,

fig. 3.3) is set to 1. Of course, using a simple bus to transmit spikes can become quite inefficient

when we have many cores, generating many spikes, trying to access the bus at the same time

and waiting for each other. The advantage is that it is relatively simple to implement and cheap,

in terms of required slices. In a future redesign, it should be replaced by a more “intelligent”

mechanism.

Besides spikes, there is also something else that a core might need, not residing in its RAM

block. In case there are synapses whose conductance is affected by neuromodulators, then the

concentration of this neuromodulator is required in order to compute the new value for the

conductance. However, the values of neuromodulator concentrations are not transmitted, like

spikes, from the cores which have them to those that need them. In order to avoid this commu-

nication overhead, another solution was preferred. Considering that there is a limited number

Chapter 3. Implementing biological neural networks on FPGAs 38

of neuromodulators, it is more efficient to use a register file to store the neuromodulators’ con-

centrations, in addition to the RAM section dedicated to them (fig. 3.2). Each core can have

direct access to this register file, provided that another core is not attempting to access it at the

same time. After the neuromodulators’ RAM section has been updated, the new values are also

copied to the register file so that they can be used by synapses during the next update cycle.

Figure 3.5: Block diagram of a core’s communication module

3.2.2 Integrating the network within an embedded system

Since the aim of this project is to use the design described above in order to simulate a neural

network that can guide the behaviour of a robot, we can take advantage of the availability of

soft-core processors (processors which are not “hardwired” but can be configured and down-

loaded to the FPGA, just like other designs) and build an embedded system in which the neural

network can be a peripheral, attached to the processor via a bus. An embedded system can

greatly simplify the communication of the FPGA with the robot. We also need to bear in

mind that the mechanisms under investigation are those of learning and memory and not those

of either sensing or motor control. Therefore, the neural network cannot assume full control

of the robot, from the sensing stage to the final motor decisions (more on this in chapter 4).

There is a need both for pre-processing, before the sensory input is fed to the network, and for

post-processing that “interprets” the output of the network, tasks much easier to accomplish in

software than hardware.

The embedded system was built with the two boards, shown in fig. 3.6. The FPGA of

the Xilinx Spartan-3A XC3S700A board has 13.248 logic cells (5.888 slices), 360K bits of

block RAM (20 blocks) and 20 dedicated multipliers (Xilinx, 2007). On the other hand, the

XC3SD3400A FPGA is more powerful, with 53.712 logic cells (23.872 slices), 2268K bits of

Chapter 3. Implementing biological neural networks on FPGAs 39

block RAM (126 blocks) and 126 DSP48A elements (more complex than simple multipliers,

they include post- and pre-adders and have cascading capabilities) (Xilinx, 2008).

(a) Spartan-3A XC3S700AFG484 (b) Spartan-3A DSP XC3SD3400AFG676

Figure 3.6: The two Xilinx boards with which the hardware simulator was implemented

A block diagram of the embedded system for the XC3S700A board, generated by the Xilinx

Platform Studio (XPS), is presented in fig. 3.7. The system is almost identical for the the

XC3SD3400A board, with the exception of the IP core for the second serial port (this board

has only one serial port). At the centre of the system there is a Microblaze processor (Xilinx,

2009), whose initial data and instructions are stored in block RAM. Although the processor has

the ability to run without an external RAM, the internal block RAM may not be sufficient to

accommodate extensive programs. Moreover, as discussed previously, this type of RAM is also

used to store the data for the neural network, leading to a competition for blocks of internal

RAM between the processor and the network peripheral. In order to avoid these problems,

the external 512 Mbit DDR2 SDRAM has also been included in the system, together with

the interface module, so that this RAM may be loaded with the software that the processor

needs to run, leaving the internal RAM to the neural network. As a result of the fact that

XPS can program directly only the FLASH memory but not the external RAM, a FLASH

module is also present. During the “boot” process, the contents of the FLASH memory are

copied to the SDRAM and control is then transferred to the SDRAM. Of course, this bootloader

(which is automatically generated by XPS) has to reside in block RAM. A small percentage of

the internal RAM blocks must always be assigned to the processor for the instructions of the

bootloader.

Besides the network peripheral (net peripheral 0), there is also a module for the board’s

LEDs (LEDs 8bit), included here simply as a convenient way to signal possible anomalies dur-

ing robot operation. Communication of the FPGA with the external world is achieved through

the two serial ports (RS232 DTE and RS232 DCE). The DCE port has been configured at a

data rate of 115200 bits/second and connects the board with a computer from which it receives

Chapter 3. Implementing biological neural networks on FPGAs 40

commands and to which it can send data (e.g. the current state of the network). The robot is

connected to the FGPA via the DTE port, configured at 38400 bits/second (the robot’s maxi-

mum data rate). The two remaining modules are a timer (xps timer) and an interrupt controller

(xps intc), useful for measuring time, a functionality which the software cannot provide, since

the Microblaze software is a simple, monolithic application, without the support of an operating

system.

Chapter 3. Implementing biological neural networks on FPGAs 41

3.2.3 The graphical user interface

Manually creating a memory initialization file (MIF), like that of fig. 3.3, can be a very te-

dious task, except for the simplest cases. In order to automate this process, a simple tool was

developed in MATLAB (fig. 3.8) which can load a network, described in an XML file, and

subsequently create both the MIF files (one for each core) and the accompanying VHDL con-

figuration files. XML offers the advantage of describing a network in a structured way so that

a description is easy to read and possibly may be shared by different applications. It is an

approach that has already been adopted by other research groups in the computational neu-

roscience community, e.g. NeuroML is an XML-based language which can describe neural

networks at different levels of abstraction and detail in a standarized format (Gleeson et al.,

2010).
As an example, a simple network with four neurons and two synapses, with only one neuron

type and one synapse type, is described in XML in the following way :

<?xml version="1.0" encoding="utf-8"?>

<network>

<configuration>

<config_neurons>

<neuron_type>

<code>1</code>

<model>izhi</model>

<a>0.3

-0.2

<c>-65</c>

<d>8</d>

<peak>30</peak>

<rest_potential>-60</rest_potential>

<rest_recov>-14</rest_recov>

<thres_potential>-40</thres_potential>

<cap>100</cap>

<k>2</k>

</neuron_type>

</config_neurons>

<config_syns>

<synapse_type>

<code>1</code>

<gmax>7</gmax>

<gmax_stdp>20</gmax_stdp>

<vr>0</vr>

<ts>2</ts>

<pmax>1</pmax>

<Aplus>0.2</Aplus>

<Aminus>0.1</Aminus>

<tplus>50</tplus>

Chapter 3. Implementing biological neural networks on FPGAs 42

Figure 3.7: The embedded system which supports the neural network hardware simulator

Chapter 3. Implementing biological neural networks on FPGAs 43

<tminus>5</tminus>

<tc>10</tc>

<vpost_peak>30</vpost_peak>

<mode>1</mode>

</synapse_type>

</config_syns>

<config_learning>

<neuromod_type>

<code>1</code>

<tc>10</tc>

<modc_max>1</modc_max>

</neuromod_type>

</config_learning>

</configuration>

<architecture>

<layer id="1">

<neuron id="1">

<type>1</type>

<input>true</input>

<projection>

<target>3</target>

<type>1</type>

<learning>-1</learning>

</projection>

</neuron>

<neuron id="2">

<type>1</type>

<input>true</input>

<projection>

<target>4</target>

<type>1</type>

<learning>0</learning>

</projection>

</neuron>

</layer>

<layer id="2">

<neuron id="3">

<type>1</type>

<input>true</input>

</neuron>

<neuron id="4">

<type>1</type>

<input>true</input>

</neuron>

</layer>

</architecture>

Chapter 3. Implementing biological neural networks on FPGAs 44

</network>

Figure 3.8: GUI of MATLAB tool for building and simulating neural networks, converting their

XML descriptions to MIF and VHDL and communicating with the FPGA

When we need to implement a network with hundreds of neurons and thousands of synapses,

it is still difficult to describe it, even in XML format. The tool includes a “wizard” which guides

the user in a step-by-step procedure, so that the XML, MIF and VHDL files, even for large net-

works, may be produced in a matter of minutes, by making some relatively simple choices

(number of layers, number of neurons per layer, connection probabilities etc). The only hard-

ware related parameter that the user has to set is the number of cores for the FPGA simulator.

After setting this parameter, the user also has the option to choose how many neurons should

be assigned to each core. Since it may be difficult to estimate the computational load of each

processor simply by the number of neurons which have been assigned to it, the user can let the

tool determine the most efficient load distribution (see also section 3.3.3).

The tool also has the ability to simulate the behaviour of the network, albeit not very effi-

ciently, so that the results from the FPGA can be checked for consistency against those from

MATLAB. The results from the simulation can be stored for later processing but the activity of

the network can also be viewed in a graphical manner (fig. 3.8). The user can load the results

from the VHDL simulation or from the FPGA itself and switch between the two different views

(software or hardware) for a more direct comparison.

Finally, the GUI can be used to control the KOALA robot (see chapter 4). Via the FPGA,

the user can send motor commands to the robot and read the sensors as well. More important

though is the ability to display and record the activity of the neural network (neurons’ spikes)

Chapter 3. Implementing biological neural networks on FPGAs 45

while the robot is performing an experimental task. Therefore, with this GUI we have a more

or less complete interface to the FPGA and the robot.

3.3 Testing the hardware simulator

Before employing the embedded system described previously for robotic experiments, it was

first tested in order to assess both its accuracy and its performance in terms of speed and hard-

ware resources consumption.

3.3.1 Accuracy

Of course, we cannot expect from the hardware design to be able to exactly reproduce the soft-

ware simulation results. A MATLAB simulation can use high precision floating point arith-

metic whereas the hardware version presented here represents values with 16 bits and performs

fixed point calculations. When dealing with neural networks, timing may sometimes be a fac-

tor which greatly influences the waveforms of the membrane potential of neurons, e.g. a spike

arriving a few milliseconds later may fail to generate another spike at the postsynaptic neuron.

We may therefore see such discrepancies between the hardware and software versions, with

some spikes missing or others appearing, but the overall spiking (and learning) patterns should

remain similar.

For the simple network of four neurons and two synapses presented above, the results of the

software and hardware simulations are shown in fig. 3.9 and 3.10. Initially, the first two neu-

rons are triggered by an external current source for 30 milliseconds and shortly afterwards the

second two neurons for 10 milliseconds. Beginning at the time point of 100 milliseconds, the

first two neurons are again triggered for 30 milliseconds but this time no external stimulation of

the second two neurons follows. The third neuron generates a spike because the conductance

of the synapse projecting from the first to the third neuron has strengthened during the previous

100 milliseconds, following the STDP learning rule, whereas the other synapse has remained

unaffected due to a lack of a learning mechanism (see “learning” node in XML description).

As we can see in fig. 3.10, the results of the hardware version for the conductance are some-

what different than those of the software version. This is due to the timing of the third spike of

the third neuron, which is followed by two spikes of the first neuron (hence the two decreasing

steps) in the hardware case but by only one spike in the MATLAB version.

As an example of how neuromodulation works, we can consider again another network of

4 neurons with the same architecture but with STDP replaced by the learning mechanism of

neuromodulation. Fig. 3.11 and 3.12 shows the behaviour of the network for 1200 ms, with

neurons 1 and 2 being externally triggered from 1 to 100 ms and from 1001 to 1100 ms and

neurons 3 and 4 from 401 to 500 ms. There’s also a neuromodulator release “event” at the

Chapter 3. Implementing biological neural networks on FPGAs 46

(a) Membrane potential of neurons 1 to 4, MATLAB version

(b) Membrane potential of neurons 1 to 4, VHDL version

Figure 3.9: Comparison of MATLAB and VHDL versions of the simulator for a simple network of

4 neurons with respect to neuron membrane potentials

Chapter 3. Implementing biological neural networks on FPGAs 47

(a) Conductance of synapse from neuron 1 to neuron 3, MATLAB version

(b) Conductance of synapse from neuron 1 to neuron 3, VHDL version

Figure 3.10: Comparison of MATLAB and VHDL versions of the simulator for a simple network

of 4 neurons with respect to synaptic conductances

Chapter 3. Implementing biological neural networks on FPGAs 48

time point of 801 ms. Figures 3.11(a) and 3.11(b) depict the activity of the neurons for the

software and hardware versions whereas figures 3.12(a) and 3.12(b) show the neuromodulator

concentration (left) and the conductance of the synapse from neuron 1 to neuron 3 (right).

3.3.2 Utilization of hardware resources

The percentage of the available hardware resources utilized by our design is not only an in-

dicator of how efficiently it makes use of them but it also has a direct impact on the speed

performance for the simple reason that the number of computational cores to be included is a

user-modifiable parameter. Of course, the fewer slices a core requires, the more cores a board

can implement, resulting in higher speedups (although this is not a rule without exceptions, see

3.3.3).

Another feature of the design is that the number of cores does not depend directly on the

size of the network, unless there are specific requirements for the desired speedup. An increase

in the size and/or complexity of the network results in more RAM blocks being employed but

it does not affect the rest of the design, as depicted in fig. 3.13. For four networks of different

size (25, 81, 217 and 306 neurons), we generated the bitstream for five different configurations

(2, 4, 6, 8 and 10 cores). Only the XC3SD3400A FPGA was used, since the XC3S700A cannot

accommodate more than two cores. It is obvious that the number of slices is more or less the

same, regardless of network size and it is only affected by the number of cores. If we look

more carefully, we can see that there is a slight tendency for the lines of smaller networks to

lie below those of the larger ones but this is due to the fact that smaller networks usually have

less neurons receiving external input, thus requiring fewer registers to hold the values of these

inputs.

As far as the number of RAM blocks is concerned, it is clear that more blocks are required

as the size of the network increases. The number of cores also seems to influence RAM utiliza-

tion, though in different ways. For the networks with 217 and 306 neurons, a slight variation

is observed as the number of cores changes but the number of RAM blocks does not deviate

much from a “mean” value of 9 and 11 respectively. On the other hand, the smaller networks

don’t have such a “mean” value but adding more cores tends to increase the number of RAM

blocks they need. This behaviour can probably be attributed to the fact that many RAM blocks

are “underutilized” in the case of small networks.

For example, if we assume that one RAM block has 1024 addresses, with a 16 bits width,

and that we have a network distributed among 2 cores, each requiring 1000 addresses, then 2

RAM blocks are sufficient (fig. 3.14(a)). If we distribute the network among 4 cores, then we

would have to use 4 RAM blocks (each core needs at least one RAM block), but they would

only be half-full, each requiring 500 addresses (fig. 3.14(b)). If we now assume that we have

a larger network which, when distributed among 2 cores, needs 4000 addresses for each core,

Chapter 3. Implementing biological neural networks on FPGAs 49

then it would occupy 8 RAM blocks (4 per core, fig. 3.15(a)). Distributing the network among

4 cores does not affect the number of required RAM blocks however. We would still need 8 of

them (now 2 per core), all being almost full (fig. 3.15(b)).

3.3.3 Speed performance

Before discussing the results regarding the speed performance of the design, a few remarks

about the way this performance is measured are necessary. It should first be noted that all

values of the speedup are relative to real time and not to a software implementation, i.e. a

simulation with a design whose speedup value is 1 should take as long as the “real brain” to

complete (e.g. 100 milliseconds of neural activity would require 100 milliseconds of simulation

time). The reason for this decision is that the efficiency of software implementations may vary

significantly, depending on the machine they run on, the programming language used, the

coding style of the programmer etc. In addition to that, the aim of the project is to attach these

“silicon brains” to a robot and conduct behavioural experiments. Therefore, the main question

is whether the design can exhibit real-time performance so that the robotic experiments can

finish within a reasonable amount of time.

During a hardware simulation, the neural network attached to the Microblaze processor as

a peripheral (see section 3.2.2) does not run continuously. Instead, the software driver first has

to set the values for the external inputs of the network and then send an “update” command

(pulse) to the peripheral. Subsequently, the peripheral updates the state of the network in the

RAM blocks only for one simulation time step and control is then returned to the software

application. If we want to run a simulation for 100 milliseconds, with a simulation time step

of 1 ms, we have to repeat this loop 100 times, sending 100 “update” pulses. In order to

evaluate the speedup of the design, simulations were run for a specific amount of time of 500

milliseconds (500 update cycles, with a time step of 1 ms) and the time needed for each update

cycle to complete was measured, resulting in 500 such time measurements for each simulation

run. The mean value of these 500 measurements was then used to compute the speedup.

As mentioned previously (section 3.2.2), the embedded system does not have an internal

“sense of time”. How are we then supposed to measure time? Using the timer peripheral is one

way. Before sending an update pulse, the timer is started, it keeps counting while the software

application is in the wait loop and when the update cycle finishes, its value is read and stored.

This value is actually the number of clock cycles spent and not a time measurement but we can

compute time simply by multiplying by the clock period. Another way to count the number

of clock cycles is by including a hardware counter inside the network peripheral which starts

counting as soon as an update pulse arrives. Although one might think that the results obtained

from the two different ways of measuring speed performance should be identical, this is not

the case, as fig. 3.16 shows.

Chapter 3. Implementing biological neural networks on FPGAs 50

The speedup we get from the measurements of the software counter (software in the sense

that its behaviour, like starting it, stopping it and reading its value is controlled by a software

driver) are consistently lower than the ones of the internal hardware counter. In fact, the effect

is even more pronounced in the case of smaller networks. The reason for this discrepancy lies

in the delay that the software commands for the control of the external timer introduce. When

dealing with timescales of microseconds, even just a few software commands can have a visible

impact, especially when the system frequency is in the range of MHz. For the smaller networks

which can be updated faster, the proportion of the total time consumed by the software delay

(which is stable since the same software commands are executed) becomes even greater, thus

leading to more significant deviations of the software from the hardware version. Although

it would not be wrong to claim, based on the above analysis, that the results obtained from

the internal hardware counter are more accurate, we should bear in mind that the network

peripheral is always used, at least in the scope of this project, from within an embedded system

and controlled by the software that runs on Microblaze. Therefore, not only is it impossible to

ignore this software delay but the penalty that it imposes upon the whole system becomes even

more important when we have to introduce more lines of software code between successive

updates, as is the case when controlling a robot (see chapter 4).

It is also worth commenting the performance of the design for the network that has 25

neurons. Increasing the number of cores beyond 4 does not improve the speedup which remains

the same. Until now, there has been no mention of how the computational load is distributed

among the cores. Obviously, strong imbalances may appear, e.g. we may have one core being

responsible just for one neuron and another core for twenty neurons and their input synapses.

Such imbalances result in wasted cycles where some cores have to wait for the other, more

heavily loaded cores to finish. In order to distribute the total load as evenly as possible among

the cores, the MATLAB tool which creates the MIF files (see section 3.2.3) attempts to optimize

this distribution by evaluating the computational cost of each neuron and assigning the neurons

in such a way as to prevent any imbalances. The cost of a neuron does not depend only on

the number of operations for updating the membrane potential and the recovery variable but

on the cost of updating its input synapses as well (which is also different for synapses with

no plasticity mechanism, for those with STDP and for those affected by a neuromodulator)

because these synapses have to be assigned to the same core as their target neuron (section

3.2.1). This means that sometimes, when a network has neurons with many input synapses

(high-cost neurons), then the load imbalances might not be able to be corrected beyond a certain

point since the cost of a single neuron cannot be broken down. In such cases, adding more

cores does not improve the overall performance because there is always one core who has been

assigned a high-cost neuron and whose load remains the same. The performance of the other

individual cores does improve (provided there is a margin for improvement) but they have to

Chapter 3. Implementing biological neural networks on FPGAs 51

wait for the overloaded core.

Chapter 3. Implementing biological neural networks on FPGAs 52

(a) Membrane potential of neurons 1 to 4, MATLAB version

(b) Membrane potential of neurons 1 to 4, VHDL version

Figure 3.11: Comparison of MATLAB and VHDL versions of the simulator for a network of 4

neurons and one neuromodulator with respect to neuron membrane potentials

Chapter 3. Implementing biological neural networks on FPGAs 53

(a) Neuromodulator concentration and conductance of synapse from neuron 1 to neuron 3, MATLAB

version

(b) Neuromodulator concentration and conductance of synapse from neuron 1 to neuron 3, VHDL

version

Figure 3.12: Comparison of MATLAB and VHDL versions of the simulator for a network of 4

neurons and one neuromodulator with respect to neuromodulator concentrations and synaptic

conductances

Chapter 3. Implementing biological neural networks on FPGAs 54

(a) Utilization of RAM blocks

(b) Number of slices consumed

Figure 3.13: Hardware resources utilized by the simulator for 4 different neural networks con-

sisting of 25 (blue line), 81 (green), 217 (red) and 306 (cyan) neurons as the number of compu-

tational cores is increased

Chapter 3. Implementing biological neural networks on FPGAs 55

(a) Network distributed among 2 cores

(b) Network distributed among 4 cores

Figure 3.14: Possible occupation pattern of RAM blocks for a network requiring 2000 RAM

addresses. Different colours indicate different cores.

(a) Network distributed

among 2 cores

(b) Network distributed among 4 cores

Figure 3.15: Possible occupation pattern of RAM blocks for a network requiring 8000 RAM

addresses. Different colours indicate different cores.

Chapter 3. Implementing biological neural networks on FPGAs 56

(a) Speedup as measured by software counter

(b) Speedup as measured by internal hardware counter

Figure 3.16: Speed performance of the simulator for 4 different neural networks consisting of 25

(blue line), 81 (green), 217 (red) and 306 (cyan) neurons as the number of computational cores

is increased

Chapter 4

Closing the loop

There is a certain tendency in the field of computational neuroscience to study neurons and

their networks as if they were abstract, independent entities, residing in some outer space and

stoically performing computations. This whole computer science jargon (information, compu-

tation, algorithm etc) might have become a second nature to many neuroscientists and treating

the brain as a simple computational machine might seem as a self-evident methodological (if

not ontological) rule. The traps to which this computational vulgarism can lead will not be

discussed in this thesis (see (Canguilhem, 1968) and (Canguilhem, 1952) about a more general

critique of the tendency to mechanize and physicalize biology and medicine, (Day, 2001) about

a critical understanding of the concept of information 1, but also Zizek’s remarks on the par-

allels between post-modern connectionism and post-fordist capitalism (Zizek, 2009)). Instead,

we will focus our attention on another side of this approach that is problematic. The fact that

the study of neural networks in a context-free environment is able to provide us with insights

up to a certain point beyond which we can only get diminishing rewards.

To a post-aristotelean, “enlightened” mind, with its patronizing attitude towards Aristotle’s

natural philosophy, teleological explanations surely appear as unscientific. This same mind

could also claim that it is just a matter of convenience when medicine and biology use the term

“purpose” to describe the functions of cells, tissues etc and nothing teleological is implied.

1

...the historical construction of information (as fact, as re-presentation) erases
freedom in historicity, or, that is, determines freedom to be agency within a set
of known or knowable choices. (E.g., information theory’s “freedom of choice”).
Such a sense of knowledge extends to history itself, so that history is only possibil-
ity, not potentiality. Radical alterity and thus a radical sense of freedom (promised
in the Enlightenment) is foreclosed.

By extending this logic to neuroscience, we could argue that the interpretation of the brain as an information
processing machine is just a disguised form of behaviourism that cements and consolidates the outer “order of the
world” within a living organism, i.e. a radical internalization of that which is as it is, a new and more powerful form
of control (although not so new, (Marcuse, 1964)). Learning becomes almost synonymous to control, (Holzkamp,
1995).

57

Chapter 4. Closing the loop 58

Again, we will not enter into an argument about the philosophy of medicine and biology and

certainly not attempt to discuss epistemological questions about the meaning of (convenient)

explanation. However, we have reasons to believe that the activity of a neural network can

be better understood when the “purpose” (with or without quotes) of its functioning and the

behaviour of the organism whose part it is are taken explicitly into account, provided that we

do not succumb to some kind of obsolete behaviourism.

Of course, this thesis is not so ambitious as to claim that the work presented in it accom-

plishes such a task. Just a few preliminary and clumsy steps towards this goal comprise the

content of this chapter. In fact, it mostly raises some new questions rather than giving answers

to the old ones. Sometimes, reformulating old and posing new questions is already a first step

towards an (always temporary and constantly under revision) answer.

4.1 Biorobotic platform

If we are to follow this path, the question that naturally follows is how we take behaviour into

account when modelling neural networks. Building a software model of both a behaving agent

together with its “brain” and its environment is one way (Beer, 2008). One problem with this

approach is that we are usually restricted to simple “worlds” whose modelling is based on many

assumptions and which can be easily manipulated to fit our expectations. There is no doubt that

we can build more complex and realistic worlds, with some considerable effort. Alternatively,

we can simply go directly for the “real” thing, i.e. implement a physical robotic system with a

silicon “brain”.

For this purpose, we have chosen to use the KOALA robot (fig. 4.1(a), www.k-team.com).

The aim of this project is to study the neural structures that are involved in learning and not

to develop models of the fly’s motor (and certainly not flying) circuits. Therefore, a relatively

simple robot, such as the KOALA, is more than sufficient for our purposes. It is a mid-size

robot that can host an FPGA board while having a simple communication interface and motor

capabilities, allowing us to focus on the FPGA without having to deal with potentially complex

issues of motor control.

4.1.1 Experimental setup

The kind of behaviour that we would like our robot to be able to reproduce is necessarily

determined by the kind of behavioural experiments which test learning and memory in insects

(flies in our case, see 2.3). One of the most widely used experimental setups (by our group

as well) is the T-maze. Suitable mostly for conditioning experiments, its aim is to make a fly

associate certain odours (or mixtures) with an electric shock. Simple as it may seem, such

a setup is a good starting point for running biorobotic experiments, exactly because of its

Chapter 4. Closing the loop 59

simplicity.

Fig. 4.2(a) shows the T-maze in which flies are trained in experiments for various condi-

tioning paradigms while fig. 4.2(b) shows the arena which we built for our robot experiments.

Of course, there’s no point in trying to replicate the T-maze in its exact form but we tried to

keep the same overall shape. As in the case of flies in the T-maze, the robot in the arena has

two choices. It can either go to the right or to the left “testing tube”. Contrary to the T-maze

though, where training takes place before testing in a separate tube, the robot has to establish

associations while “exploring” the arena. Flies are placed in the training tube, they receive a

sequence of electric shocks in the presence of an odour and they are subsequently forced to

make a choice among the testing tubes. This experimental protocol was considered too static

and trivial for the KOALA which was let free to wander around the arena.

The aim of an experiment in the arena is to assess whether the robot can learn to associate

certain stimuli with the presence of a light source and how easy it is to discriminate between

different stimuli. A light source inside a tube (US) elicits an escape response which could be

interpreted as the unconditioned response (UR). Success is therefore defined as the acquisition

of the ability to produce a conditioned response (CR), i.e., an escape response even when the

light is turned off.

4.1.2 Sensors

As far as sensory inputs are concerned, the KOALA does not offer any olfactory sensors with

which to perceive odours. In fact, an artificial nose is probably one of the hardest sensors

to build, at least in the form of a cheap, readily available component. Therefore, we have to

substitute olfaction for another “modality” while still treating the sensory inputs as odours,

i.e. the mechanism under investigation and the corresponding neural models are still those of

olfaction and olfactory learning. For the experiments presented in this thesis, the infra-red (IR)

proximity and ambient light sensors were used in order to detect the presence of obstacles and

stimuli. Sixteen sensors are positioned around the KOALA and can measure either the light

reflected by obstacles or the ambient light (K-Team, 1999) (fig. 4.1(b)).

During operation, the robot needs to be able to distinguish between three different kinds of

stimuli. First of all, some basic obstacle avoidance functionality is required so that the robot

may keep away from the walls of the arena. This is achieved by taking IR measurements

from six of the front sensors (L1, L2, L3, R1, R2, R3). The remaining two front sensors (L0,

R0) operate only in the ambient light mode, functioning as detectors for any light sources. A

source of light in the environment, as sensed by these two sensors, acts as a punishment signal

(unconditioned stimulus, US), resulting in a neuromodulator release. “Odors” constitute the

third type of stimulus (conditioned, CS). In order to use the IR sensors as “odor” detectors

without hindering the movements of the robot inside the arena at the same time, the four side

Chapter 4. Closing the loop 60

(a) The KOALA robot, modified for the purposes of

the project

(b) Position of the IR and ambient light sensors

around the KOALA (K-Team, 1999)

Figure 4.1: The KOALA robot

(a) The T-maze, as designed by

(Tully and Quinn, 1985)

(b) The arena for the robot experiments

Figure 4.2: The T-maze and the arena

Chapter 4. Closing the loop 61

sensors (L4, L5, R4, R5) were removed from their initial positions, reconnected with longer

cables and placed on top of the KOALA, pointing upwards (fig. 4.1(a)). This repositioning

provides us with the ability to detect objects lying above the KOALA as well as their distance

from the floor (if they are sufficiently close to the sensors). Objects at different heights may

then be interpreted as different odours and an odour can also be combined with a punishment,

i.e., the odour and the punishment can be simultaneously sensed by the robot.

4.1.3 Interface to FPGA

The robot is controlled by the embedded system described in 3.2.2 through a serial connection.

Due to time constraints, only the board with the XC3S700A FPGA was employed since it is

equipped with two serial ports, rendering the establishment of communication links with both

the robot and the GUI MATLAB tool much easier. A connection between MATLAB and the

other board (XC3SD3400A) would require the instantiation of an Ethernet controller and the

use of the xilkernel operating system. The downside of running the neural network on the

XC3S700A FPGA is that only two computational cores can fit in the design (a substantial

percentage of the slices are consumed by the Microblaze processor and the controllers for the

various peripherals) and that we are limited to small networks because of the few RAM blocks

available (11 from a total of 20 RAM blocks are actually reserved again by the Microblaze).

For more advanced experiments however, it is imperative that the XC3SD3400A or an even

more powerful FPGA be used.

The second serial port connects the FPGA with the GUI tool so that we can watch and

record the activity of the neural network while running an experiment. Currently, the GUI is

capable of recording only the activity of the neurons or more precisely the spikes of neurons

(not the exact value of the membrane potential). Although the Microblaze software application

can read any memory address of the RAM blocks, it was decided that only information about

the spikes (their position in time) should be sent back to the GUI due to the low data transfer

rate of the serial connection. Assuming a rate of 115200 bits/second, if we wanted to record

the activity of ten neurons by transmitting the exact values of their membrane potential, then

we would have to send 160000 bits for 1 second of neural activity (16 bits for each value,

1000 values for each neuron in 1 second, assuming a time step of 1 millisecond, 10 neurons

in total). This means that the transmission would need almost 1.4 seconds just for 1 second

of neural activity and for only 10 neurons. On the other hand, even if we assume a spike

frequency of 20 Hz for all of the 10 neurons, then sending only the spikes’ position would

require less than 28 milliseconds (one 16 bit value is sent for each of the 20 spike positions

and for each neuron). A future design with an Ethernet connection should be able to transmit

more data about the state of the network, including for example synaptic conductances or the

neuromodulator concentration.

Chapter 4. Closing the loop 62

4.1.4 The robot’s “brain”

Ideally, we would like to be able to simulate the whole olfactory pathway of the fly’s brain

with all its different structures and connections. Even if the available hardware was powerful

enough to host a neural network of this size and complexity, we would still have to make many

assumptions since many of the involved structures, with the exception of the antennal lobes

and the mushroom body, have not been thoroughly studied. Considering the limited resources

offered by our FPGA board, the ambitions of this thesis are much more modest. Despite the

small size of our robot’s brain, we did try to build a neural network based on the fly’s brain,

including most of the structures which are part of the olfactory pathway.

In contrast to previous models, like those presented in sections 2.4.1 and 2.4.2, we are

not going to be concerned with low-level details of neuron morphology and precise timing.

We are mostly interested in how the overall architecture of the olfactory system affects its

computational properties with regard to learning and memory. Therefore, the model presented

below has more similarities with the ones discussed in section 2.4.3. All of these models are

based more or less on the same neural architecture according to which the PNs constitute the

first layer, diverging onto significantly more numerous KCs and then converging again onto

the “output” layer of the ENs. At the same time, another parallel path passes through the LH.

Our model complies with this general rule but with the important addition of an extra layer,

located in the LH as well, which connects through a “loop” the PNs and the ENs (see below

for details). Moreover, the purpose of our model is to be able to function as a “brain” of a

robotic agent, with specific behavioural requirements. This means that certain, more abstract

properties of the olfactory system, like its classification capabilities, investigated in previous

studies, are less important. For our purposes, it is necessary to have a value signal, having as

its main function the association of various stimuli, as in (Smith et al., 2008). However, the

learning mechanism that was chosen (STDP with neuromodulation) was different from those

found in previous studies due to the need to solve the so called distal reward problem. Finally,

it should also be noted that our model differs from those of section 2.4.3 in another point.

Learning occurs through synaptic weakening rather than strengthening, as explained below.

Our tiny fly brain consists of just 81 neurons, arranged in 5 layers (fig. 4.3, also fig. 3.8).

The connections displayed in fig. 4.3 constitute the fundamental functional path which an

input signal traverses from the first layer to the CR neuron. The path begins at the stage of

the projection neurons (PNs, neurons 1 to 10) but future models should also include the stage

of the olfactory sensory neurons (OSNs). As we have seen (2.3.5), the antennal lobes cannot

be conceived as a simple relay station but play a more active role in shaping the stimulus

signal. For the moment and until more neurobiological data become available that could drive

a modelling attempt, we restrict ourselves to PNs.

Projection neurons from the antennal lobes target Kenyon cells (KCs, neurons 21 to 65)

Chapter 4. Closing the loop 63

Figure 4.3: Architecture of the neural network, used as the robot brain. Green lines correspond

to excitatory synapses whereas inhibitory connections are indicated by red lines. A dotted line

means that the synaptic strength of this connection can be modified. The picture shows only

one path for the neural signal. The same path is repeated for every combination of two PNs

(see text for details).

Chapter 4. Closing the loop 64

in the mushroom bodies (MBs) both through direct connections and indirectly via the lateral

horn interneurons (LHIs, neurons 11 to 20) (see section 2.2.3). KCs are thought to act as

coincidence detectors and as a consequence their firing patterns are sparse and rare (fig. 2.3in

section 2.2.4). In order for the KCs of our network to exhibit this behaviour, the time constant

of the neurotransmitter decay for the KC to PN synapses was set to a very low value (2 ms)

so that the effect of a single PN spike vanishes quickly. Additionally, PN activity generates an

inhibitory drive, coming from the LHIs, which acts as a reset mechanism for KCs.

Some parameter tuning (with the conductances and neurotransmitter decay time constants

of the PN to LHI synapses) was necessary in order to prevent the LHIs from firing prematurely

and to delay their spikes until after the targeted KC has fired first. This behaviour was achieved

by setting the PN-LHI time constant to a significantly higher value than that of the PN-KC

synapses while lowering at the same time the value of the conductance (see table 4.1) so that

the LHI neurons require more time to build up the necessary potential. On the other hand, the

PN-KC and LHI-KC values are comparable because we want the LHI-KC inhibitory drive to

act as a resetting mechanism, having a similar but delayed and “inverted” effect with respect

to the excitatory PN-KC connections. The effect of these mechanisms is that the initial PN

activity becomes more sparse and rare upon reaching the MB. Fig. 4.4 shows this effect. While

40% of the PNs are active, only about 13% of the KCs respond (fig. 4.4(a)). Moreover, KCs

fire only once although PNs fire 4 times (fig. 4.4(b)).

Plasticity is a feature only of the synapses that project from the MB to the extrinsic neu-

rons (ENs, neurons 66 to 75). The existence of STDP among synapses that project from KCs

to ENs has been experimentally confirmed in the locust brain (Cassenaer and Laurent, 2007)

(see also discussion in section 3.1.2). The ENs are divided into to two groups with differ-

ent functionalities. One of them is the group of ENs (EN1) which project to the lateral horn

comparison neurons (LHCNs, neurons 76 to 80, grey circles in fig. 4.3), the last layer of the

network. These are the only neurons whose input synapses are plastic (dotted line in fig. 4.3).

The role of the second group (EN2) is to produce some intralayer suppressing drive by sending

inhibitory synapses to their neighbours in order to prevent widespread activation of the ENs

layer and make the winning patterns more distinct. Therefore, activity in the PNs results in the

emergence of a winning pattern among the ENs.

Due to the fact that the EN neurons have a high fan-in (from several KCs), it was necessary

for the KC-EN synaptic conductances to be set to low values in order to avoid overexcitation

of the ENs. For this reason, they were randomized within the range of 3-10 nS. The desired

timing for the learning process was achieved by using a relatively long STDP time window (50

ms) and by setting the value of the synaptic tag decay time constant in the scale of seconds

(1500 ms), as shown in table 4.1. With these values, the time difference between the CS and

the US can be up to a few seconds and a significant learning score may be observed usually

Chapter 4. Closing the loop 65

Parameter PN-KC PN-LHI LHI-KC KC-EN1 PN-LHCN EN1-LHCN

gmax (nS) 10 6 10 3-10 3 20

gstd p
max (nS) 30 30 30 30 30 30

vrev (mV) 0 0 -90 0 0 -90

ts (ms) 2 20 3 20 20 40

pmax 1 1 1 1 1 1

A+ 0.2 0.2 0.2 0 0.2 0.2

A− 0.1 0.1 0.1 0.2 0.1 0.1

τ+ (ms) 50 50 50 1 50 50

τ− (ms) 5 5 5 50 5 5

tctag (ms) 10 10 10 1500 10 10

Table 4.1: Values of synapse parameters of the robot brain

within less than 5 trials. It has to be noted that, since only the KC-EN1 synapses are plastic,

the values for the plasticity related parameters in tables 4.1 and 4.2 take effect only for these

synapses. The parameter values for the other synapses are included in tables 4.1 and 4.2 for the

sake of completeness because they may also be found in the XML file.

The role of the network’s last layer (LHCNs) is to somehow compare the activity in the

PNs layer with that in the ENs. LHCNs receive input both from the PNs (excitatory) and

the ENs (inhibitory). Prior to learning, inhibition from the ENs, as a result of a stimulus

in the PNs, manages to cancel out the excitation from the PNs. The result of learning is to

make the synapses from the MB to the ENs weaker (the synapses’ strength can only decrease)

which in turn decreases the activity of the winning ENs pattern or even make it disappear

completely. This quieting of the ENs dis-inhibits the LHCNs which can then excite the CR

neuron, signalling the importance of the (now learned) stimulus. As shown in table 4.1, the

inhibition of the EN1-LHCN connections is both stronger and more long-lasting than the PN-

LHCN excitation so that the CR neuron may start firing only when learning has been truly

substantial. In order to ensure that synapses can only become weaker, the strengthening portion

of the STDP window (fig. 3.1) has been “removed”, by setting the A+ parameter to 0 (eq. 3.7).

There has been no mention in the literature review of the existence of such neurons in the LH

or of a plasticity mechanism which only decreases synaptic strength. However, some recent

but yet unpublished data support the hypothesis about the existence of a special class of LH

comparison neurons with inputs from both the PNs and the ENs and with a learning mechanism

which is based on synaptic weakening rather than strengthening (personal communication with

Stijn Cassenaer). Tables 4.1 to 4.4 present the values for the various parameters of the network.

Chapter 4. Closing the loop 66

(a) Sparsening effect in the MB. Different layers are separated by yel-

low, dotted, vertical lines. Whereas 40% of the PNs are active (1st

layer), only 13% of the KCs respond (3rd layer).

(b) Neural activity among the KCs (bottom figure, neuron 21)

becomes more rare than among PNs (top figure, neuron 1)

Figure 4.4: Transformation of neural activity from PNs to KCs

Chapter 4. Closing the loop 67

Parameter LHCN-CR EN2-EN2 KC-EN2

gmax (nS) 15 30 3-10

gstd p
max (nS) 30 30 30

vrev (mV) 0 -90 0

ts (ms) 5 30 20

pmax 1 1 1

A+ 0.2 0.2 0

A− 0.1 0.1 0

τ+ (ms) 50 50 1

τ− (ms) 5 5 1

tctag (ms) 10 10 1

Table 4.2: Values of synapse parameters of the robot brain, cont.

a 0.3

b -0.2

c -65

d 8

vpeak (mV) 30

vr (mV) -60

vt (mV) -40

C 100

k 2

Table 4.3: Values of neuron parameters of the robot brain

cmod 1

tmod (ms) 10

Table 4.4: Values of neuromodulator parameters of the robot brain

Chapter 4. Closing the loop 68

4.1.5 Control algorithm

It has already been mentioned that the robot’s “brain” cannot assume full control of the robot

but is responsible only for establishing associations between stimuli. The necessary pre- and

post-processing (feeding the neural network with sensory input, reading its output, making

the motor decisions) are actually performed by a simple control algorithm, written in C and

running on the Microblaze processor. Fig. 4.5 shows a block diagram of the robotic system

along with the information flows controlled by the algorithm.

This algorithm is composed of three loops, each with a different time period. The innermost

loop is the simplest, its main role being the update of the network’s state for one simulation

time step (1 ms). It first checks for the presence of a stimulus (CS, US or neutral stimulus) and

then sets the network’s input, according to which stimuli are present. For example, a CS could

result in the first four input neurons being triggered or the US producing a neuromodulator

release. After setting the input, an update pulse is sent to the network peripheral and upon

completion of the update cycle the state of those neurons that have been “tagged” to be of

interest is recorded, i.e. the position of the spike (if there is one) within the recording time

window (see below, also section 4.1.3) is stored to an array.

The next loop is the one which actually decides whether there is a stimulus in the envi-

ronment or not and also determines the next motor command. It has a time period of 100 ms

and at the start of each repetition it sends a command to the KOALA in order to read its IR

and ambient light sensors. The IR values of the sensors L4, L5, R4 and R5 (see section 4.1.2)

correspond to certain stimuli, e.g. in the context of elemental learning (A+ B-), a mean value

between 150 and 300 may be interpreted as stimulus A being present whereas a mean value

between 600 and 900 as stimulus B. This way, objects at different heights can be corresponded

to different stimuli-“odours”. It has to be noted that combinations of odours (like AB) are not

directly mapped to combinations of environmental cues since we cannot combine objects at

different heights. Instead, whenever we need such combinations, we use a single object which

is simply interpreted as a compound stimulus. Likewise, the ambient light readings of the two

front sensors L0 and R0 provide us with information about the US. If the readings are above

some threshold, then it can be inferred that a light source is in the same area and the robot is

“punished” (US present, neuromodulator release).

The rest of the sensors (L1,L2,L3,R1,R2,R3) are used for obstacle avoidance. The IR

readings from these sensors can tell us whether an obstacle blocks the way and the direction

that the robot should follow in order to avoid it. However, the decision about the new direction

is not based only on the current values of the IR sensors but on the weighted sum of the last

15 values. Incorporating a small sensory “memory” like this helps us to deal with fluctuations

in the environment which could mislead the robot into a strange and repetitive behaviour (e.g.

in corners). According to these motor rules, the robot should move forward until it meets

Chapter 4. Closing the loop 69

an obstacle and turns to avoid it. There are two exceptions to this. First, if the robot has been

moving forward for 100 consecutive repetitions of the loop (10 seconds), then it takes a random

turn. Second, in case a US is present or the CR neuron has fired, an escape response is initiated

(no distinction is made between the UR and the CR). The robot turns quickly 180 degrees and

starts moving away and at the same time stops accepting new input for a certain period of time.

Finally, after reading the sensors and sending the appropriate motor commands, the loop

waits until the previous, innermost loop has repeated 100 times which corresponds to 100

network updates or 100 ms of neural activity. This kind of synchronization between the two

loops results in real-time robot behaviour by making 100 ms of behaviour correspond to 100

ms of neural activity. Of course, we could have merged the two loops by repeating this pre-

and post-processing not every 100 ms but every 1 ms, with each update cycle. Once again, the

limitations of the serial communication do not allow for something like this since the delay that

it introduces is unacceptably high. This is the reason why sensor and motor commands are sent

only once every 100 ms, a time period which is long enough to fit both the required software

instructions and the corresponding 100 network updates but short enough so that the robot does

not miss any important sensory elements.

The outermost loop has the longest period which is 1000 ms. Its function is simply to

transmit the recorded data (neuron spikes and sensor values) back to the GUI. Before the trans-

mission begins, the KOALA is shutdown (it stops moving and the two loops described above

come to a halt) and it resumes its operation after the end of the transmission. This temporary

shutdown was deemed necessary because the transmission may last from somewhere between

hundreds of milliseconds to a couple of seconds when the GUI has to empty its buffers and

write the data to temporary files.

Figure 4.5: Block diagram of the robotic system

Chapter 4. Closing the loop 70

4.2 Experiments and results

A series of experiments was run with the robotic platform presented above in order to assess

its performance in solving certain learning tasks. The number of experiments was relatively

limited. The reason for the decision not to run many additional experiments was that the current

experimental setup has certain limitations that prevent us from investigating certain interesting

issues that would be worth examining (see the discussion in section 4.3.1). These limitations

are mostly of a technical nature and should therefore be “easy” to overcome in future versions

of the platform (section 5.1).

4.2.1 Learning capabilities of the robot brain

Despite its small size, the brain of our robot has some interesting learning capabilities, under

certain restrictions. The results from testing the network for different learning paradigms are

shown in fig. 4.6 - 4.11 2. The paradigms are elemental learning (A+ B-), mixture learning

(AB+ CD-), discrimination learning (AB+ BC-), positive patterning (AB+ A- B-), negative

patterning (A+ B+ AB-), biconditional discrimination (AB+ CD+ AC- BD-) and blocking (A+

AB+) 3. These paradigms were chosen because they have also been used in behavioural ex-

periments in order to test the learning capabilities of an insect’s brain and thus provide us with

some clues about the applicability of certain, more abstract models. For example, a simple

elemental theory of learning (see section 2.1) could not account for success in a negative pat-

terning test since reinforcing both A and B would necessarily increase the associative strength

of AB.

In order to analyse how the network behaves under these paradigms, we focused our atten-

tion on the ENs. Although it is the CR neuron that is behaviourally relevant, it is not suitable

as an indicator of the gradual effect that learning has on the network. It mostly functions in

a “binary” mode, being quiescent for neutral stimuli and firing at its maximal frequency for

learned input patterns. For this reason, the information we can get from the ENs is more use-

ful. As we have already mentioned, a specific pattern emerges among the ENs as a result of

presenting the network with a neutral stimulus and training has the effect of decreasing this ac-

tivity. Therefore, the percentage of this decrease can be interpreted as a measure of robustness

whereby the best performance is achieved when the original, “naive” ENs’ pattern disappears

completely after training. The plots presented in fig. 4.6 - 4.11 show how the response of the

ENs to the various stimuli evolves during successive training trials. The score at each data

point is computed as the decrease percentage of the ENs activity, using the naive response as

2The network was simulated on the XC3S700A FPGA.
3A, B, C and D are different “odours” - input patterns. The plus symbol denotes reinforcement. The network is

considered to be successful in accomplishing a task if it responds only to the reinforced signals after some training
trials.

Chapter 4. Closing the loop 71

the base value. A score of 100% for a specific input pattern means that it does not elicit any

response at all after training.

In the case of elemental learning, we can observe that the reinforced stimulus achieves a

perfect learning score whereas the response to the neutral stimulus remains unaffected. In the

discrimination learning paradigm, stimulus AB follows the same pattern as A in the elemental

case, but the neutral stimulus (BC) is also slightly affected, as a result of its overlap (50%) with

AB. This interference between the reinforced and the neutral stimuli becomes more pronounced

in the paradigm of positive patterning. The compound stimulus AB, which the network is ex-

pected to learn, does indeed achieve a score of 100%. At the same time, however, the individual

element A becomes indistinguishable from AB (100% score) while the other element B also

displays a significant learning effect (50% score). Therefore, the network cannot solve the

task of positive patterning. On the other hand, it is more competent with negative patterning.

The two individual elements of A and B do get learned and the compound AB is affected but

we can still distinguish between the two cases. The same behaviour can be observed for the

task of biconditional discrimination where learning the reinforced stimuli again results in the

non-reinforced stimuli exhibiting a score as well but the two classes remain separate. Finally,

no blocking effect is observed, i.e. element B of the compound AB does not exhibit reduced

scores due to prior reinforcement of A.

4.2.2 Robot experiment 1: elemental learning

For the first set of robotic experiments, the robot was tested in the elemental learning paradigm.

The two stimuli (A+ B-) were set as completely distinct, i.e. there was no overlap of their input

patterns in the first layer of the PNs. Fig. 4.12 - 4.15 show how the response of the neural

network evolves as the robot encounters again and again stimulus A, followed by punishment.

The plots show the activity of eight neurons. Activity in neuron 1 signifies the presence of

the CS (stimulus A) and neuron 5 corresponds to the neutral stimulus B. The CS also activates

neurons 2, 3 and 4 and stimulus B neurons 6, 7 and 8 as well but their activity is similar to that

of neurons 1 and 5 respectively and they are not included in the plots. The next five neurons

(71 to 75) are the ENs which modify their response as a result of a training trial, as described in

section 4.1.4. The CR neuron (81) is the last neuron whose activity we have chosen to record.

Firing of this neuron “predicts” the US and makes the robot initiate an escape motor response.

Fig. 4.12 shows the response of the network when the robot encounters the CS for the first

time, fig. 4.13 is from the second encounter, after some more trials the network responds as

in fig. 4.14 and finally, the last trial results in the response of fig. 4.15. As was expected, the

initial “naive” response of the ENs gradually changes and becomes weaker (fig. 4.13) until,

at some point (fig. 4.14), the CR neuron starts firing, although some of the ENs still generate

a few spikes. For the last trial (fig. 4.15), the US is absent (light source turned off) but the

Chapter 4. Closing the loop 72

Figure 4.6: Performance of the robot brain (measured as decrease percentage of neural ac-

tivity, see text) in an elemental learning task for a number of consecutive trials. A+ (blue line)

corresponds to the reinforced stimulus, B- (green) to the non-reinforced.

Figure 4.7: Performance of the robot brain in a discrimination learning task for a number of

consecutive trials. AB+ (blue line) corresponds to the reinforced stimulus, BC- (green) to the

non-reinforced.

Chapter 4. Closing the loop 73

Figure 4.8: Performance of the robot brain in a positive patterning learning task for a number of

consecutive trials. AB+ (blue line) corresponds to the compound reinforced stimulus, A- (green)

and B- (red) to the separate, non-reinforced stimuli.

Figure 4.9: Performance of the robot brain in a negative patterning learning task for a number

of consecutive trials. AB+ (blue line) corresponds to the compound non-reinforced stimulus, A-

(green) and B- (red) to the separate, reinforced stimuli.

Chapter 4. Closing the loop 74

Figure 4.10: Performance of the robot brain in a biconditional discrimination learning task for

a number of consecutive trials. AB+ (blue line) and CD+ (green) correspond to the reinforced

stimuli, AC- (red) and BD- (light blue) to the non-reinforced.

Figure 4.11: Performance of the robot brain in a blocking task for a number of consecutive

trials. AB+ (blue line) and A+ (green) correspond to the reinforced stimuli, B- (red) to the non-

reinforced.

Chapter 4. Closing the loop 75

robot has learned that stimulus A should be avoided, as indicated by the CR neuron. On the

other hand, the training procedure has no effect on the response of the network to the neutral

stimulus (fig. 4.16 - 4.17). The response of the ENs during the last encounter with stimulus B

(fig. 4.17) remains the same as their naive response (fig. 4.16).

4.2.3 Robot experiment 2: discrimination learning

We can make the task more difficult by using stimuli which are more similar to each other.

Fig. 4.18 - 4.21 show the behaviour of the network when the two input patterns overlap by

50%. The response of the network to the reinforced stimulus AB before (first trial) and after

(last trial) training is depicted in figures 4.18 and 4.19 respectively. Similarly, for the neutral

stimulus BC, we can see the effect of learning in figures 4.20 and 4.21. The similarity of the

two stimuli does not result in any confusion and robust learning is again observed. There is

only a slight interference as far as neuron 75 is concerned (training makes it non-responsive to

BC as well) but it does not affect the activity of the CR neuron.

The robot retains the ability to make the correct associations and discriminate between

the two stimuli even if we increase the overlap to 75% (fig. 4.22 - 4.25). In fact, in this

case the response of the network to BC remains almost unchanged (compare figures 4.24 and

4.25). Although overlapping input patterns necessarily result in overlapping activity patterns

in the KCs layer (to a lesser extent than in the PNs), the lateral inhibition among the ENs

may act as an additional differentiation mechanism which has the effect of producing quite

distinct winning patterns in the ENs layer. Of course, there is also the statistical possibility that

sometimes this might work the other way around. Input patterns that are more dissimilar may

end up having “converging” ENs responses with increased chances for interference, but this is

more like an “artifact” and not a consistent behaviour of the network.

4.2.4 Robot experiment 3: positive patterning

Next, the robot was tested in a positive patterning task. Since this task requires three different

odours and our setup has only two “tubes”, we first used just one of the tubes in order to train

the robot with the reinforced stimulus AB. Subsequently, two different tests were run in which

one of the stimulus was always AB and the other was A in the first test and B in the second. As

expected, the robot was not able to solve the task. It did learn to avoid AB but it also learned

to avoid B as well. Interestingly, stimulus A remained neutral.

This is something that we could have expected too, by looking at fig. 4.26 - 4.29. Stimulus

A is not as much affected by the learning procedure as B. Fig. 4.26 - 4.29 show how the

experiments affect the responses of the robot brain. Stimulus A remains neutral only because

there still is one single spike from the ENs which inhibits the CR neuron and prevents it from

Chapter 4. Closing the loop 76

Figure 4.12: Response of the robot brain in an elemental learning task (A+ B-) when encoun-

tering the CS (stimulus A) for the first time. Data recorded as spikes during a robot experiment.

Neurons 1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs and

81 is the CR neuron.

Figure 4.13: Response of the robot brain in an elemental learning task (A+ B-) when encounter-

ing the CS (stimulus A) for the second time. Data recorded as spikes during a robot experiment.

Neurons 1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs and

81 is the CR neuron.

Chapter 4. Closing the loop 77

Figure 4.14: Response of the robot brain in an elemental learning task (A+ B-) after several en-

counters with the CS (stimulus A). Data recorded as spikes during a robot experiment. Neurons

1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the

CR neuron.

Figure 4.15: Response of the robot brain in an elemental learning task (A+ B-) during the

last encounter with the CS (stimulus A). Data recorded as spikes during a robot experiment.

Neurons 1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs and

81 is the CR neuron.

Chapter 4. Closing the loop 78

Figure 4.16: Response of the robot brain in an elemental learning task (A+ B-) when encoun-

tering the non-reinforced stimulus B for the first time. Data recorded as spikes during a robot

experiment. Neurons 1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75

are KCs and 81 is the CR neuron.

Figure 4.17: Response of the robot brain in an elemental learning task (A+ B-) during the last

encounter with the non-reinforced stimulus B. Data recorded as spikes during a robot experi-

ment. Neurons 1 and 5 are PNs, corresponding to stimulus A and B respectively, 71-75 are KCs

and 81 is the CR neuron.

Chapter 4. Closing the loop 79

Figure 4.18: Response of the robot brain to AB before training in a discrimination learning task

(AB+ BC-, 50% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Figure 4.19: Response of the robot brain to AB after training in a discrimination learning task

(AB+ BC-, 50% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Chapter 4. Closing the loop 80

Figure 4.20: Response of the robot brain to BC before training in a discrimination learning task

(AB+ BC-, 50% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Figure 4.21: Response of the robot brain to BC after training in a discrimination learning task

(AB+ BC-, 50% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Chapter 4. Closing the loop 81

Figure 4.22: Response of the robot brain to AB before training in a discrimination learning task

(AB+ BC-, 75% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Figure 4.23: Response of the robot brain to AB after training in a discrimination learning task

(AB+ BC-, 75% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Chapter 4. Closing the loop 82

Figure 4.24: Response of the robot brain to BC before training in a discrimination learning task

(AB+ BC-, 75% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Figure 4.25: Response of the robot brain to BC after training in a discrimination learning task

(AB+ BC-, 75% overlap). Data recorded as spikes during a robot experiment. Neurons 1 and

5 are PNs, corresponding to stimulus AB and BC respectively, 71-75 are KCs and 81 is the CR

neuron.

Chapter 4. Closing the loop 83

generating a sustained spiking activity (fig. 4.28) 4. Obviously, stimulus A is on the verge of

becoming aversive.

4.2.5 Robot experiment 4: negative patterning

For the task of negative patterning, the robot was first trained separately with odour A and

odour B and then tested with the choices AB vs A and AB vs B. Fig. 4.30 4.34 show the

results. Again, the robot’s behaviour is in accordance with the results from the simulation

(fig. 4.9). We can see that the robot is much more efficient at solving negative than positive

patterning. The two classes of stimuli (reinforced A, B and non-reinforced AB) are separated

quite distinctly. If we compare the response of the network to AB after it has been trained with

A and B (fig. 4.34) with the “naive” response to AB (fig. 4.26), it is clear that it is only slightly

affected by the learning process.

4.2.6 Robot experiment 5: CS without a “refractory” period

For the last experiment, we decided to modify the way the CS is fed to the neural network. In

order to achieve a “correct” timing for the neuromodulation mechanism to work, whenever the

robot encounters the CS, the input pattern corresponding to the CS is presented to the network

only for a limited amount of time, followed by a “refractory” period. During this period, the

CS is not fed to the network, although the robot might still sense it. As explained in section

4.1.5, the presentation of the US follows a similar logic. By limiting the time windows during

which the CS or the US are effective (from the perspective of the neural network), we can treat

them as “momentary” phenomena, similar to the way most, purely software, studies treat them.

Cancelling the refractory period of the CS brings us closer to a more realistic environment.

After all, the odours in a T-maze are not presented to the flies only for a brief moment. On the

contrary, the odours are always present while the electric shocks are delivered in regular time

intervals. Fig. 4.35 shows the response of the network to the presentation of the CS for the first

learning trial. It is obvious that the robot learns to associate the CS with the US after just one

trial. In fact, it was observed that during this first trial, the robot gets punished not only by the

US but subsequently by the reinforced CS. Section 4.3.3 discusses in more detail the possible

interpretations of this behaviour.

4.3 Discussion

An objection which could be raised against the whole undertaking of this chapter is that it

does not exactly come up to our initial expectations. What more have we learned out of this

biorobotics approach? Was it really worth the effort of actually building a physical, behaving

4An escape response is initiated only if the spiking frequency is higher than 2 spikes/100 ms

Chapter 4. Closing the loop 84

Figure 4.26: Response of the robot brain to AB before training in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Figure 4.27: Response of the robot brain to AB after training in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Chapter 4. Closing the loop 85

Figure 4.28: Response of the robot brain to A during testing in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Figure 4.29: Response of the robot brain to B during testing in a a positive patterning task

(AB+ A- B-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Chapter 4. Closing the loop 86

Figure 4.30: Response of the robot brain to A before training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Figure 4.31: Response of the robot brain to A after training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Chapter 4. Closing the loop 87

Figure 4.32: Response of the robot brain to B before training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Figure 4.33: Response of the robot brain to B after training in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Chapter 4. Closing the loop 88

Figure 4.34: Response of the robot brain to AB during testing in a a negative patterning task

(A+ B+ AB-). Data recorded as spikes during a robot experiment. Neurons 1 and 5 are PNs,

corresponding to stimulus A and B respectively, 71-75 are KCs and 81 is the CR neuron.

Figure 4.35: Behaviour of the robot brain when a CS is presented to it without a refractory period

Chapter 4. Closing the loop 89

agent? After all, the simulations of the network on the FPGA had already shown us its limits

and capabilities while using it on a robotic platform now seems as a nice way to torture our-

selves. Although it might have some interesting applications on the implementation of more

intelligent robotic guidance systems, it seems doubtful that it can offer any insights to basic

science. This objection cannot be discarded as simply wrong or irrelevant. Indeed, the process

of building the biorobotic platform is more like an attempt towards a straightforward imple-

mentation of what was already known than an attempt to answer questions by watching the

behaviour of the neural network. Our robot and its brain carry the burden of too much previous

knowledge.

On the other hand though, the perception of the implementation process as being simple

and straightforward is not very accurate. We have chosen to present our work in the traditional

manner where one provides simple, step-by-step instructions, so that others may be able to

repeat it, without mentioning any obstacles or difficulties that appeared. Although this might

be necessary in order not to obfuscate the whole process with too many details and confuse

the reader, it should be noted that this is exactly where one of the strengths of the biorobotics

approach lies, namely that all these various obstacles force the experimenter be fully aware of

what assumptions have been made. Therefore, there is room for theoretical discussion, maybe

not based directly on the experimental results but on the process of actually setting up the arena

and the robotic system. This is where the concept of negative or liminal scientific knowledge

might apply (Cetina, 1999).

4.3.1 Some remarks with regard to the limitations of the robotic platform

Considering the technical difficulties of building the platform, it should not come as a surprise

if we say that a straightforward implementation was intended, to some extent. VHDL is surely

a seductive language which gives the impression that designing a digital circuit is just a matter

of writing some hundreds of source code lines. This is not an inaccurate impression, as long as

we restrain ourselves to relatively simple designs which the software tools can easily synthe-

size, map and route. When we move to more complex designs, it becomes clear that some of

the programming conveniences which VHDL offers may very well turn into traps, when used

recklessly (and the temptation for convenient solutions is of course quite strong for inexperi-

enced designers) and that designing in a bottom-up manner proves much less error-prone in the

long-term (where by “bottom-up” design it is meant that the designer thinks in hardware terms

and then tries to implement the hardware architecture with the help of VHDL and not the other

way around).

Moreover, integrating the design within an embedded system and then connecting the

whole system to the robot is not a trivial task. Even some insignificant details (like the in-

ability of the FPGA to implement a serial port controller with a hardware buffer longer than

Chapter 4. Closing the loop 90

16 bytes while the robot may sometimes respond with messages greater than 16 bytes in size)

can offer plenty of hours and days of debugging “fun”, as every roboticist knows. For these

reasons, it was imperative that we first have a working system before moving to something

more complicated. The robotic platform presented in this chapter should thus be considered

as a proof of concept, a preliminary but working prototype which can later be amended in or-

der to run more meaningful (from a neurobiological point of view) experiments, suitable for

generating a more positive kind of knowledge.

Being a prototype, the platform has certain limitations which restricted the range of experi-

ments that we could run. For example, the 16-bit addressing mode of the simulator prevented us

from simulating networks with more than some hundreds of neurons. Even more important was

the fact that we had to use the less powerful FPGA board for our experiments with the robot,

as a result of the need for two serial ports. An even smaller network was thus implemented for

controlling the robot. Moreover, once synthesized, the network could not be modified, neither

with respect to its parameters nor to its architecture. As a consequence, we had very limited

flexibility as far as the range of “brains” which we could study is concerned. Finally, the use

of the IR and ambient light sensors provides us with a very poor (in terms of available stimuli)

environment in which the robot could be tested. Section 5.1 in the next chapter discusses how

these limitations could be overcome.

4.3.2 Comparing the robot brain to the insect brain

Leaving aside for the moment the robot itself, it is interesting to take a look at the properties and

capabilities of its “brain” (section 4.1.4). The results from the simulation and the experiments

indicate that the theory of associative learning which is more compatible with them is the

theory of configural cues (section 2.1). There is a significant difference though. The theories

of associative learning which are based on the Rescorla-Wagner rule predict that learning may

occur in every presentation of a stimulus, even if no US is present. Usually, these US-less trials

result in a decrease of the associative strength of the stimulus.

Contrary to this, our neural network cannot modify any synaptic weights without a US. It

functions more like a straightforward separator. A compound AB has a separate representation

of its own among the KCs (this is the main function of the MB) and this is the reason why the

network can solve the negative pattering task. The KCs which represent the individual elements

A and B “lose” their synaptic connections to the ENs but the extra KCs which correspond

exclusively to the compound AB remain intact. On the other hand, the positive patterning task

is much harder to solve because reinforcing the compound AB results in a widespread synaptic

loss that affects both the compound and the elements.

If we make the winning ENs pattern for every stimulus very distinct from that of every

other (so that the pattern generated by AB would be much more different than those by A or

Chapter 4. Closing the loop 91

B), then positive patterning would become much easier. We could probably achieve this with

certain modifications, like increasing the network size, introducing lateral inhibition among the

KCs or adding a gain control mechanism in the first layer of the PNs. However, this would be

equivalent to implementing the extreme configural cue theory according to which each stimulus

has an independent representation (AB is completely unrelated to A or B).

The issue becomes even more complicated and intriguing when we compare the perfor-

mance of our tiny brain with the learning scores of insects in actual behavioural experiments.

A recent comprehensive study of the flies’ learning abilities (Young et al., 2010) has shown

that their performance in non-elemental learning problems (negative patterning, biconditional

discrimination) is very poor. Does this mean that a tiny brain with 81 neurons is more powerful

than the fly brain with its 2500 neurons only in the MB? It could be argued that our model

has included too many assumptions which tune it to this specific problem whereas the real fly

brain has a substantially different architecture, connectivity and plasticity mechanisms. It is

also plausible that the MB serves a different function than what has been accepted until now.

However, an older study (Deisig et al., 2001) found that bees are capable of solving both nega-

tive and positive patterning tasks. Of course, it might simply be a matter of size, since the bee

brain is significantly larger than the fly brain, but our data show that brain size is unlikely to be

a crucial factor, at least as far as these relatively simple tasks are concerned.

Another possible reason for this discrepancy might have to do with the experimental setup

and procedure. Flies were trained in the T-maze and the US consisted of electric shocks (aver-

sive conditioning) whereas appetitive conditioning of the proboscis extension reflex was used

for the bees. It might be the case that aversive conditioning (especially shocking) induces some

kind of learned helplessness which renders flies incapable of solving any complex tasks while

appetitive conditioning “motivates” them to learn. In fact, there are experimental data which

support the idea that learned behaviour depends on outcome expectations (Gerber and Hendel,

2006).

Of course, this discussion naturally leads us to notions such as “attention” and “motiva-

tion”. While conceptually relevant and meaningful, these are usually employed within frame-

works which remain fundamentally cognitivist. They are mostly seen as external parameters,

functioning as gates for the input stimuli, but the basic machine metaphor for the brain remains

unchallenged. At the same time, they give off the scent of a homunculus argument. How is

attention controlled and modified? Do we need another, higher attention for this lower atten-

tion? Maybe something even more radical is required, like “intentionality” and “embodiment”

(Freeman, 2007). Maybe we need to reconsider some older and forgotten concepts, such as

the concept of “intention” (Nunez and Freeman, 1999). In any case, it seems that we need to

incorporate top-down processing mechanisms in our models in order to account for the results

we get from behavioural experiments.

Chapter 4. Closing the loop 92

4.3.3 The role of STDP

The learning rule that we used is a modified form of STDP. Essentially, it is just like STDP

but the difference is that the synaptic modifications get registered only if a neuromodulator

release follows after some seconds. The choice to use this modified form of STDP was made

because the simple STDP rule was considered unsuitable. During the initial stages of building

the robotic platform, some experiments were run with a robot brain whose learning mechanism

was the simple STDP rule. The presynaptic neurons were activated by one stimulus A and

the postsynaptic by another stimulus B which was expected to be associated with A. However,

in order to make STDP functional during robot operation, we had to slow down the neural

network so that seconds of robot behaviour corresponded to milliseconds of brain activity. It

has been argued that the causality exhibited by STDP might reflect the causality of external

events (Dan and Poo, 2004). Considering the time scales at which STDP works, this seems

very doubtful. Additional, possibly quite elaborate, neural structures would be required, with

the ability to guide the signals of the stimuli to be associated to the correct place (pre- and

post-synaptic neurons) and with the correct timing. For this reason, simple STDP was rejected

as a rule that can link learning behaviour to neural plasticity mechanisms.

The so-called distal reward problem can be solved by the modified form of STDP (Izhike-

vich, 2007), as our experiments also show. The effective time range of the learning rule can

now span over several seconds but there still remains a problem. The stimuli, both the CS and

the US, have to be presented to the network as distinct, almost instantaneous inputs and this is

why we have introduced a “refractory” period after stimulus onset in the experiments (section

4.2.6). It is highly unlikely that animals actually perceive the stimuli of their environment in

such a way. The purpose of the experiment described in section 4.2.6 was to investigate the

behaviour of the robot when the CS is presented to it in a more realistic manner. As we saw,

the robot was able to “overlearn” the CS in just a single trial.

At first glance, this might not seem as a very exciting or even interesting finding. The CS

is simply closer in time to the US and the learning effect is naturally more pronounced. Fig.

4.36 indicates that the difference between the two cases might have more serious implications.

When we tried to modify the STDP parameters so that the learning rate drops to a more normal

value, it was found that the A− parameter (see section 3.1.2) had to be decreased by two orders

of magnitude, from the value of 0.2 to 0.002. Fig. 4.36(a) depicts how the synapse from neuron

22 to neuron 73 is weakened when A− = 0.002 and the CS is constantly fed to the network,

even at the time of the neuromodulator release. The decrease percentage is about 10%. Using

the same value for A− and presenting the CS instantaneously (only for 100 ms), followed by

the US after 1 second, the synaptic modification is negligible (fig. 4.36(b)). Therefore, STDP

is unable to function in both modes.

If STDP is so sensitive to timing issues, then its link to behaviour might be less direct than

Chapter 4. Closing the loop 93

(a) CS without a refractory period

(b) “Instantaneous” CS

Figure 4.36: Modification of synapse projecting from neuron 22 to neuron 73

Chapter 4. Closing the loop 94

previously thought. For example, instead of functioning as a learning mechanism, it might

serve an auxiliary role and function as an “attention” or “priming” mechanism. We could imag-

ine a neural pathway starting with a filtering stage (dependent on top-down expectations) which

lets the novel stimuli pass through (AL?). Subsequently, these stimuli go through any required

processing (MB?) before reaching a “final” stage (ENs), via STDP synapses. In this case,

STDP could function as an attention mechanism by increasing the strength of those synapses

whose source neurons fire more persistently. The STDP timing windows could also be of sig-

nificant importance here (fig. 3.1). Besides synaptic conductances, the shape of these windows

might be modified as well so that the longest and highest of them correspond to the most salient

stimuli. The target neurons of these STDP synapses would then use the time window in order to

“recruit” some of the source neurons. A recent study has confirmed that neuromodulators have

the ability to influence the STDP time window (Zhang et al., 2009). Such a pathway should

therefore be responsible for generating a short-term memory “trace”, according to which stim-

uli are novel and how much attention they “deserve” and it should be mostly active during

acquisition. Actual storage of memories might take place in other structures, outside the MBs

or even in other lobes of the MBs (see also section 2.3.3). Although the pathway described here

is not currently supported by any neurobiological data, it provides a framework for rethinking

the role of STDP. Of course, before embarking on a project to reinvent STDP, it would be wise

to examine other, less “exotic” solutions to its timing problems, e.g. the existence of additional,

compensating structures that bring strong (long-lasting) and weak (brief) stimuli closer cannot

be excluded.

4.3.4 Stimulus or “stimulus”?

As a final note, we would like to make some comments on the concept of stimulus. From

the discussion about the robot’s control algorithm (section 4.1.5), it is evident that the robotic

platform has been built with the assumption that a stimulus follows a unidirectional path, from

the sensory stage to the neural network and finally to the motor stage with these three processes

functioning independently. Although this might be a convenient way to build robots (or at least

prototypes), it is not at all obvious that this is also the case for the fly brain. The issue of how to

connect the neural network with the sensory input raises a number of questions whose answers

are taken for granted in many modelling efforts.

One such crucial question concerns the very concept of the stimulus itself. Just like every

concept, it acquires its meaning only in relation to a system of other concepts which together

constitute a mental framework, implied in every utterance of the word “stimulus”. This frame-

work presupposes a clear-cut distinction between a living organism and its environment and an

external world neatly organized in clearly defined stimuli which the organism simply has to in-

ternally represent. Learning is thus the internal (re)arrangement of these little, tasty chunks of

Chapter 4. Closing the loop 95

external world or, in other words, the establishment of associations among them. This approach

might not be problematic when we have to deal with very well controlled environments where

we know beforehand all the possible stimuli, such as an arena for robot experiments. It is not

clear how it could work in a more realistic environment, full of uncertainties and ambiguities.

Moreover, the presence of that sneaky homunculus argument can be felt again. This time, the

role of the homunculus has been reserved for the experimenter himself.

We could then attempt to examine the active role that an organism plays in actually shap-

ing its own experiences, even at the perceptual level. Although this is not a new idea (Gibson,

1979), its implications have not been fully explored, possibly due to the fact that the theo-

retical background for modelling studies is yet not solid enough and that the available tools

of neuroscience are not as refined as they should for running the required, delicate experi-

ments. However, it seems to be gaining some additional momentum lately (Engel et al., 2001),

(Churchland et al., 1994). It is thus not unreasonable to assume that what an organism “per-

ceives” might depend significantly on what it “remembers”. If this is the case, then future

models should probably have to explicitly incorporate such top-down processes. Expressing

this in more abstract and somewhat philosophical terms, experience can be understood as some

kind of dialectical resonation between the environment and the organism which constantly

strives to achieve a maximal grip on this environment (Dreyfus, 2002). From this perspective,

perception cannot be separated neither from memory nor from motion. This does not imply

that all the aspects of an organism’s behaviour are identical or that we cannot decompose it in

order to study its parts separately. It simply means that they form a continuum, a “seamless

fabric” which makes it hard or even impossible to fully understand the parts without the whole.

Perception is the process in which certain parts of the environment that are defined
by dynamically changing receptors are joined into the structure of the organism-
environment system. Perception is a process involving the whole organism-environment
system.

...

Perception is not a linear process proceeding from the stimulus to the percept, but,
rather, a circle involving both the sensory and motor organs as well as the events
in the environment. A perceptual process does not start with the stimulus, rather
the stimulus is an end of this process. (Jarvilehto, 1999)

Chapter 5

Conclusions and further work

We conclude this thesis with a discussion about the possible future research paths and with a

summary of what has been achieved until now.

5.1 Next steps

As discussed in the previous chapter, the robotic system presented in this thesis is just a pro-

totype. Some of its limitations are not that important while some others definitely need to be

addressed. Improvements or even radical redesigns are deemed necessary, if we are to run more

complex experiments. This section presents the changes that could substantially improve our

platform and the experiments that a new setup would allow us to run.

5.1.1 Improving the interface

One of these limitations concerns the programming weaknesses of the MATLAB environment

itself. MATLAB was chosen as the platform with which the GUI was built mainly due to its

plotting and data processing capabilities. However, from a certain point of view, it resembles

FPGAs in that it is quite efficient for rapid prototyping but it does not respond equally well

when heavier programming demands are to be met. For example, the lack of any threading

capabilities which is an important feature when dealing with robot control, forces the developer

to program in an unnatural way (timers were used in order to somehow simulate threads). This

situation exacerbates the problems that arise out of the general unwillingness of MATLAB

to follow software engineering rules, resulting in systems without any obvious architecture,

looking more like a random collection of unrelated pieces of source code. Moreover, MATLAB

does not excel as far as its speed performance is concerned, with the newly introduced object-

oriented features (useful when trying to impose an architecture) making things even worse. For

these reasons, MATLAB is no longer considered appropriate and should be replaced by another

environment, such as Python (which is also free and open source, as opposed to MATLAB)

96

Chapter 5. Conclusions and further work 97

for the interface and communication with the FPGA and some C/C++ libraries for the more

computationally intensive simulation engine.

A similar problem was encountered with the software running on the Microblaze processor.

This software application is responsible for controlling the robot (sending motor commands and

reading the sensors), for sending the recorded data back to the GUI and for updating the state

of the neural network, functions which are more easily conceived as parallel processes. Since

the application is written as a single, monolithic program, we have again the problem of not

being able to assign these functions to different threads. Therefore, the future versions of our

system should make use of the xilkernel OS, a tiny operating system, developed by Xilinx (or

any other operating system, in case another FPGA platform is preferred).

Running the application from within an operating system will not only enable us to use

the Pthreads standard but will make interfacing with an Ethernet controller easier. In turn, an

Ethernet connection will allow for increased data transfer rates (e.g. 100 Mbps) and a closer

examination of the neural network’s activity during the robot experiments. Another, even more

important reason for connecting with the GUI via Ethernet is that we will then be able to

implement our system on the XC3SD3400A (or an even more powerful) FPGA.

5.1.2 A more flexible simulator

As shown in fig. 3.13, we have implemented networks of only up to 306 neurons in size with

the XC3SD3400A FPGA. It has to be noted that this upper limit was not imposed by the FPGA

itself, i.e. by a lack of hardware resources. In fact, we can see that the network with the 306

neurons consumes only 10-12 RAM blocks (fig. 3.13(a)) whereas the FPGA has a total of

126 RAM blocks. It is due to our design that we cannot implement networks with even more

neurons (depending, of course, on the synapses to neurons ratio). More specifically, the RAM

blocks of the design are organized in words of 16 bits, a width that limits the range of addresses

that can be pointed by the synapses’ indices (see 3.2.1). Therefore, if we modify the design so

that its RAM blocks are organized in 32-bit words (something which has already been done),

it is quite plausible that the XC3SD3400A FPGA will be able to accommodate a complete (or

almost complete) model of the fly’s olfactory pathway (about 2500 KCs, see 2.2).

Besides this slight modification of our digital system, work towards a more fundamental

redesign has already begun. There are many reasons for this decision. One of them is the need

to have a more complete control over the design by simplifying it (together with the VHDL

source code) and getting rid of any redundancies which result in an inefficient utilization of

the hardware resources (see also the discussion in 4.3). Each core of the current design is built

around an arithmetic unit and a finite state machine which feeds the unit with the correct inputs

until the new value of a specific variable has been computed (see section 3.2.1 and fig. 3.4).

This solution might work well when only a few variables (and therefore equations) need to

Chapter 5. Conclusions and further work 98

be updated but it becomes harder and harder to expand it in order to include more variables,

by adding more states to the finite state machine. Not only is it conceptually more difficult

to maintain a finite state machine with too many states, but additional slices are required as

well. Moreover, such big finite state machines make it more difficult for the synthesis tools to

produce the same circuit out of the VHDL code (Kelley, 2010).

We can reduce the size of the finite state machine and at the same time retain its func-

tionality by converting the computational cores to tiny processors. This conversion is not as

complicated as it may initially sound, since many of the units required for a simple processor,

like the one described in (Patterson and Hennessy, 2005), are already included in the cores of

our current design, such as the memory unit, the register file and the arithmetic unit. If the

instruction set is kept small and simple, then the control logic of the processor, implemented

as a finite state machine and functioning as an instruction decoder, may likewise be composed

of just a few states, requiring less slices. Essentially, only arithmetic, load/store and branch

instructions are necessary. A preliminary implementation of this design uses less than 15 in-

structions.

Of course, a small portion of the RAM memory should now be dedicated to storing the

series of instructions which compute the new values. The organization of the memory units for

each core should now look like that of fig. 5.1, assuming that the neural network is composed

of neurons, synapses and (possibly) neuromodulators. It starts with a metadata section in which

pointers to the other sections are stored. The next section is the one that stores the “programs”

which the processor has to run and is followed be the parameters’ section which, as implied

by its name, holds the values for the various parameters, like the time constants, the reversal

potential etc. The data for the network itself (what was previously the only section, fig. 3.3)

are held in the last section, obviously taking up most of the RAM.

Explicitly storing the parameters in the RAM, instead of using VHDL configuration files,

gives us the ability to view the implementation of the design, in terms of synthesizing, mapping

and routing the circuit, as a process distinct from loading a network. Since everything is now

stored in the RAMs, including the parameters, we can implement the design with as many cores

as we wish and later load (and reload) in the RAMs whichever network we want, provided of

course that we have a way of sending the new network to the embedded system (one way would

be over the serial port). Having the ability to quickly change the network our FPGA is supposed

to simulate might not seem as a significant improvement. If we consider though that the whole

process of implementing a new design on the FPGA might very well take 20 or more minutes

(more time-consuming for complex designs), then it becomes clear that such a feature could be

very helpful (it is really frustrating to wait 20 minutes in order to change the value of just one

parameter).

Although this new design has increased requirements, as far as the RAM blocks are con-

Chapter 5. Conclusions and further work 99

Figure 5.1: RAM organization for the future version of the hardware simulator

cerned, it is not expected that they will constitute a serious constraint or limit even further the

size of the networks that the FPGA can host. As mentioned previously, a preliminary version

has already been implemented. For the time being, it can simulate only neurons, since neither

the machine code for synapses and neuromodulators nor the spikes’ transmission mechanism

have been included, but we can get a rough idea what the requirements for the final design

are going to be. In order to simulate neurons, a RAM block needs to store three pointers in

the metadata section, 48 “assembly” instructions and 10 parameters (only one neuron type).

Considering that the data section requires (tens of) thousands of addresses for networks with

hundreds or thousands of neurons, the overhead of the metadata, machine code and parameters

sections is not significant.

With respect to the other hardware requirements of the design, besides those regarding

memory, it was found that each core now needs almost half of the slices, compared to the old

cores (fig. 3.4). Of course, this is an underestimation but the incorporation of the necessary

modules for the synapses and the neuromodulators is not expected to have a very pronounced

effect on this figure. It is essentially the spikes’ transmission module which requires more

slices whereas solving the equations for the synapses and neuromodulators requires only that

the corresponding machine code be written. Measurements for the speed performance were

not taken because the omission of synapses prevents us from making any reliable predictions.

In fact, the computational load of the synapses exceeds by far that of the neurons. It could be

argued that moving towards a more “software” based solution will probably make the design

slower. However, smaller cores also means more cores and (usually) increased performance.

Therefore, at this moment, we are not in a position to estimate the speed performance of the

new design.

Chapter 5. Conclusions and further work 100

Some other techniques could also be of use in order to improve the speed performance.

When someone watches the activity of a neural network, it is evident that there are certain time

“gaps” in which the state of a neuron or a synapse remains the same, e.g. when a neuron is (or

has returned) at its resting potential without any input currents or when a synapse is quiescent

without any pre- or post-synaptic spikes. Sometimes, a neuron or a synapse might actually

spend most of their time in such gaps of idleness. These gaps constitute wasted computational

cycles for the simulator. An event-driven simulator could address this issue by ensuring that

the computational path of each element is executed only when it is necessary.

The same approach could also be followed, at a higher abstraction level. As we have

explained in 3.3.3, the simulator, when attached to the embedded system as a peripheral, works

under direct control of the software drivers. The network is updated to its next state only when

it receives an update pulse from Microblaze. This type of “synchronization” between the main

processor and the “cluster” of neural processors allows for a complete control (useful when

someone wants to check that the peripheral works as expected) but introduces a significant

software delay (see again 3.3.3). We could eliminate this delay by letting the simulator run in

a continuous mode, without the need for pulses from the main processor for each and every

update cycle, checking at the beginning of every cycle whether there is new input or not. The

software driver should then be responsible for starting (and stopping) the network and for

sending new input values to it.

5.1.3 Robot experiments

With the improvements described in the previous section, we can be confident that our em-

bedded system would be capable of simulating neural networks close in size (and hopefully

complexity) to the olfactory system of flies. More complete models of the fly’s olfactory path-

way would open up new research paths and would allow us to examine more thoroughly some

of the assumptions which we made in order to run our experiments.

One of them concerns the way sensory data are presented to the neural network (4.3). For

the experiments presented in 4.2, we had to exert a considerable amount of control on the flow

of sensory information to the robot’s brain. By including another, sensory layer (OSNs) in our

model, a more uninterrupted and biologically plausible sensory flow would become possible.

Irrelevant as this might seem with respect to issues of memory and learning, we have reasons

to believe (or at least assume, as a hypothesis) that the problem of perception might be more

tightly linked to that of memory than usually acknowledged in many modelling studies. If

plasticity can be observed even at the perceptual level, then it is very probable that this form of

perceptual learning has a significant effect on the “higher” forms of learning. Conversely, we

could justifiably expect the existence of top-down processing mechanisms from those “higher”

memory structures (MBs) to perception (AL and OSNs). Therefore, the problem of how a

Chapter 5. Conclusions and further work 101

living organism (the fly in our case) manages to organize the stream of sensory data into stimuli

might prove relevant to how they are actually stored in its brain.

In order to achieve this tighter integration of the robot within its environment, we would

also need more advanced sensors, with the ability to give us a representation of a richer envi-

ronment. Ideally, we would like to equip the robot with olfactory sensors with which to detect

real odours. Since this is a technically very challenging task, we would have again to simulate

olfaction, but in a more realistic manner this time. A simple way to achieve this is to use a

camera but with a significant difference. Strange as it may sound, the camera should not be

directed straight ahead but downwards. An odour could be represented by small dots on the

floor, with the colour of the dots indicating different odours and their density indicating con-

centration. With certain image processing techniques, it is fairly easy to extract the dots from

the background and determine their colour and number. Even the simple technique of template

matching should suffice. The board which hosts the XC3SD3400A FPGA is equipped with a

hardware interface for a camera and a small camera as well. In fact, this was the reason why

it this FPGA kit was chosen. With such a setup, we could test the robot in arenas like the one

depicted in fig. 5.2. It is worth noting that the arena is not simply an “external” factor in these

experiments but has an important effect on the range of testable hypotheses. Not only could we

manipulate the robot’s brain (e.g. introduce plasticity in the ALs) but the environment as well.

For example, we could test mixtures of odours or how stable the “representation” of an odour

is under different concentrations, when the dots are closer or farther apart.

Figure 5.2: Diagram of an arena for running future robot experiments

In order to study the effects of top-down processing mechanisms (if there are any), we

could run a more ambitious set of experiments. The robot would then be allowed to behave

in a more exploratory mode, as in experiments with Drosophila larvae which have indicated

that learned behaviour depends on outcome expectations (Gerber and Hendel, 2006). Such

experiments would also give us the ability to investigate the relationship between memory

and motor behaviour (see 4.3), the way motor circuits interact with the “higher” structures

where motor commands initiate, the relationship between the UR and the CR and how they are

affected by neuromodulators and a series of other issues concerning motor behaviour. Finally,

it would be interesting to examine how the robot and its brain would behave if it could interact

Chapter 5. Conclusions and further work 102

with its environment, i.e. if it had the ability to actually change it according to its goals,

possibly in cooperation with other robotic agents, instead of simply sensing it in a somewhat

passive manner.

5.2 Conclusion

Throughout this thesis, we have attempted to cut across different levels of abstraction, from

logic gates of digital circuits to embedded systems and to software simulators and from neurons

and synapses to neural networks and to behaving agents, in order to catch a glimpse of the

neural correlates of learning and memory in the insect brain. Hopefully, the reader should

be by now convinced that this was not a futile attempt and that the whole process of actually

building a biorobotic platform raises questions and points to directions which would be much

more difficult to discern by following a more conventional modelling approach.

It should also be obvious that our approach entails a substantial amount of technical work.

In fact, most of our time was devoted to setting up the whole system and connecting its various

pieces together. However, we have managed to show that it is feasible to build autonomous

robots with silicon brains, using FPGAs to simulate them. It is worth noting that the design we

presented can simulate neural networks which are biologically plausible and does not make an

effort to simplify the model in order to gain in efficiency, a crucial feature when the issues to be

addressed pertain to neuroscience and not to engineering. We should bear in mind though that

what is considered today as more relevant to memory and learning might be considered less

important in some years. The field of neuroscience is rapidly evolving and it would be reckless

to design an inflexible system. This was the reason behind the decision to move towards a

more “programmable” architecture so that the new models and mechanisms which may be

discovered can be incorporated into the system with a minimal effort.

Although the robot in our experiments carried a brain of just 81 neurons, the results from

the more powerful FPGA board clearly show that it is possible to implement networks with

hundreds of neurons and a slight modification could give us the ability to test brains with

thousands or even tens of thousands of neurons in real-time, a figure which is close to the size of

the fly’s olfactory system. Moreover, the scaling behaviour of our design indicates that we can

improve its speed performance, if need be, by simply adding more cores, provided that there

are available hardware resources. We can therefore see that the technology of FPGAs, hard as it

may be to master and comprehend in depth, can become a very useful tool for neuroroboticists

in the future, especially if we consider that it keeps advancing and producing devices with

more and more slices. Although it is tempting to do so, we will refrain from providing an

estimate of how our design would perform with the latest series of Xilinx FPGAs (Virtex-6)

some of which are 10 (or even more) times more powerful than ours in terms of slices, RAM

Chapter 5. Conclusions and further work 103

blocks and DSP elements. Even these FPGAs have their limits but we could imagine a system

with multiple FPGA boards, each being responsible for simulating a specific subsystem of the

nervous system (visual, auditory, olfactory etc) and all of them working together to simulate

the whole nervous system. However, when we scale the system beyond a certain point, it is

expected that new issues may arise, e.g. the problem of communication among the cores would

probably become a severe bottleneck.

It is also doubtful that models of such a scale would be of much use, as far as under-

standing the neural mechanisms behind certain aspects of behaviour is concerned. Our robot

experiments have shown that we do not necessarily have to search for answers in models of in-

creasing complexity and scale. Even minimal models, like the one used in this thesis, can help

us gain significant insights, especially when we need to understand the links between neural

mechanisms and behaviour. Our results indicate that the architecture of the insect brain has

the “computational” power to solve even non-elemental learning tasks. We probably need to

consider what top-down mechanisms might be involved, in order to make our models com-

patible with the behavioural data. Insect learning is much more than simple reflexes. With

regard to the specific neural plasticity mechanisms that might underlie learning, our conclusion

is that STDP remains to a significant extent problematic. Although its modified version can

solve the distal reward problem in theoretical models, its applicability to more realistic situa-

tions remains doubtful. We propose that the hypothesis of STDP functioning as a “priming”

mechanism should be examined.

If computational neuroscience is now in a position where it can afford enough computa-

tional power to model the brain (human, rat, insect or otherwise) in part or even in whole, then

this might also be the time to take these silicon brains out of the “tube” and throw them into

the world (nothing in the vein of gnosticism is implied here, at least not “consciously”). Of

course, for every new collider that physicists build, neuroscientists have every right to build

a new supercomputer to model yet even more massive and detailed brain models. Or we can

remind ourselves of Canguilhem’s remarks and then take a look again at the poem with which

this thesis begins.

Appendix A

Appendix A: MATLAB source code for

the GUI

Due to space limitations, the source code has not been included to the manuscript. It can be

located at the CVS repository cvs.inf.ed.ac.uk:2401/disk/cvs/sacratio.

104

Appendix B

Appendix B: C source code for the

Microblaze application

Due to space limitations, the source code has not been included to the manuscript. It can be

located at the CVS repository cvs.inf.ed.ac.uk:2401/disk/cvs/sacratio.

105

Appendix C

Appendix C: VHDL source code for the

neural networks hardware simulator

Due to space limitations, the source code has not been included to the manuscript. It can be

located at the CVS repository cvs.inf.ed.ac.uk:2401/disk/cvs/sacratio.

106

Bibliography

Almassy, N., Edelman, G. M., and Sporns, O. (1998). Behavioral constraints in the develop-

ment of neuronal properties: A cortical model embedded in a real-world device. Cerebral

Cortex, 8(4):346–61.

Arleo, A., Smeraldi, F., and Gerstner, W. (2004). Cognitive navigation based on nonuniform

gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE

Transactions on Neural Networks, 15(3):639–652.

Banquet, J. P., Gaussier, P., Quoy, M., Revel, A., and Burnod, Y. (2005). A hierarchy of

associations in Hippocampo-Cortical systems: Cognitive maps and navigation strategies.

Neural Computation, 17(6):1339–1384.

Bazhenov, M., Stopfer, M., Rabinovich, M., Huerta, R., Abarbanel, H. D., Sejnowski, T. J.,

and Laurent, G. (2001). Model of transient oscillatory synchronization in the locust antennal

lobe. Neuron, 30(2):553–67.

Bazhenov, M., Stopfer, M., Sejnowski, T. J., and Laurent, G. (2005). Fast odor learning im-

proves reliability of odor responses in the locust antennal lobe. Neuron, 46(3):483–492.

Beer, R. (2008). The dynamics of brain-body-environment systems: A status report In Hand-

book of Cognitive Science: An Embodied Approach. P. Calvo and A. Gomila (Eds). Elsevier.

Canguilhem, G. (1952). Knowledge of Life. Fordham UP.

Canguilhem, G. (1968). Le normal et le pathologique, augmente de Nouvelles reflexions con-

cernant le normal et le pathologique.

Cassenaer, S. and Laurent, G. (2007). Hebbian STDP in mushroom bodies facilitates the

synchronous flow of olfactory information in locusts. Nature, 448:709–714.

Cetina, K. K. (1999). Epistemic Cultures. How the sciences make knowledge. Harvard Univer-

sity Press.

Churchland, P. S., Ramachandran, V. S., and Sejnowski, T. J. (1994). A critique of pure vision.

In Large-scale neuronal theories of the brain. C. Koch and J. L. Davis (Eds). The MIT press.

107

Bibliography 108

Cuperlier, N., Quoy, M., and Gaussier, P. (2007). Neurobiologically inspired mobile robot

navigation and planning. Frontiers in Neurorobotics, 1.

Daly, K. C., Christensen, T. A., Lei, H., Smith, B. H., and Hildebrand, J. G. (2004). Learning

modulates the ensemble representations for odors in primary olfactory networks. Proceed-

ings of the National Academy of Sciences of the United States of America, 101(28):10476–

10481.

Damper, R. I., French, R. L. B., and Scutt, T. W. (2000). ARBIB: An autonomous robot based

on inspirations from biology. Robotics and Autonomous Systems, 31(4):247–274.

Dan, Y. and Poo, M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron,

44(1):23–30.

DasGupta, S. and Waddell, S. (2008). Learned odor discrimination in drosophila without com-

binatorial odor maps in the antennal lobe. Current Biology, 18(21):1668–1674.

Davis, R. L. (2004). Olfactory learning. Neuron, 44(1):31–48.

Davis, R. L. (2005). Olfactory memory formation in drosophila: from molecular to systems

neuroscience. Annual Review of Neuroscience, 28:275–302.

Day, R. (2001). The Modern Invention of Information: Discourse, History, and Power. South-

ern Illinois University Press.

Dayan, P. and Abbott, L. F. (2001). THEORETICAL NEUROSCIENCE Computational and

Mathematical Modelling of Neural Systems. The MIT press.

Deisig, N., Lachnit, H., Giurfa, M., and Hellstern, F. (2001). Configural olfactory learning in

honeybees: Negative and positive patterning discrimination. Learning & Memory, 8(2):70–

78.

Destexhe, A., Mainen, Z. F., and Sejnowski, T. J. (1994). Synthesis of models for excitable

membranes, synaptic transmission and neuromodulation using a common kinetic formalism.

Journal of Computational Neuroscience, 1(3):195–230.

Dobritsa, A. A., van der Goes van Naters, W., Warr, C. G., Steinbrecht, R. A., and Carlson,

J. R. (2003). Integrating the molecular and cellular basis of odor coding in the drosophila

antenna. Neuron, 37(5):827–41.

Doya, K. and Uchibe, E. (2005). The cyber rodent project: Exploration of adaptive mechanisms

for Self-Preservation and Self-Reproduction. Adaptive Behavior, 13(2):149–160.

Bibliography 109

Dreyfus, H. L. (2002). Intelligence without representation - Merleau-Ponty’s critique of mental

representation the relevance of phenomenology to scientific explanation. Phenomenology

and the Cognitive Sciences, 1(4):367–383.

Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Disruption of neurotransmission

in drosophila mushroom body blocks retrieval but not acquisition of memory. Nature,

411(6836):476–480.

Edelman, G. M. (2007). Learning in and from brain-based devices. Science, 318(5853):1103–

1105.

Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations and synchrony

in top-down processing. Nature Reviews. Neuroscience, 2(10):704–716.

Faber, T., Joerges, J., and Menzel, R. (1999). Associative learning modifies neural representa-

tions of odors in the insect brain. Nature Neuroscience, 2(1):74–78.

Fahrbach, S. E. (2006). Structure of the mushroom bodies of the insect brain. Annual Review

of Entomology, 51:209–32.

Fleischer, J. G., Gally, J. A., Edelman, G. M., and Krichmar, J. L. (2007). Retrospective and

prospective responses arising in a modeled hippocampus during maze navigation by a brain-

based device. Proceedings of the National Academy of Sciences, 104(9):3556–3561.

Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour in robots by means of

darwinian selection. PLoS Biology, 8(1):1–8.

Franceschini, N. (2008). Towards automatic visual guidance of aerospace vehicles: from in-

sects to robots. Acta Futura, 4:12–28.

Freeman, W. (1975). Mass Action in the Nervous System. Academic Press.

Freeman, W. J. (2007). Intentionality. Scholarpedia, 2(2):1337.

Freeman, W. J. (2008). Freeman k-set. Scholarpedia, 3(2):3238.

Gao, Q., Yuan, B., and Chess, A. (2000). Convergent projections of drosophila olfactory

neurons to specific glomeruli in the antennal lobe. Nature Neuroscience, 3(8):780–5.

Gerber, B. and Hendel, T. (2006). Outcome expectations drive learned behaviour in larval

drosophila. Proceedings. Biological Sciences / The Royal Society, 273(1604):2965–2968.

Ghani, A., McGinnity, T., Maguire, L., and Harkin, J. (2006). Area efficient architecture for

large scale implementation of biologically plausible spiking neural networks on reconfig-

urable hardware. In International Conference on Field Programmable Logic and Applica-

tions, 2006. FPL ’06., pages 1–2.

Bibliography 110

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., Morse,

T. M., Davison, A. P., Ray, S., Bhalla, U. S., Barnes, S. R., Dimitrova, Y. D., and Silver, R. A.

(2010). Neuroml: A language for describing data driven models of neurons and networks

with a high degree of biological detail. PLoS Computational Biology, 6(6).

Gouwens, N. W. and Wilson, R. I. (2009). Signal propagation in drosophila central neurons.

The Journal of Neuroscience, 29(19):6239–6249.

Graas, E. L., Brown, E. A., and Lee, R. H. (2004). An FPGA-based approach to high-speed

simulation of conductance-based neuron models. Neuroinformatics, 2(4):417–36.

Grunewald, B. (1999). Morphology of feedback neurons in the mushroom body of the honey-

bee, apis mellifera. The Journal of Comparative Neurology, 404(1):114–26.

Hallem, E. A. and Carlson, J. R. (2004). The odor coding system of drosophila. Trends in

Genetics, 20(9):453–9.

Hallem, E. A., Ho, M. G., and Carlson, J. R. (2004). The molecular basis of odor coding in the

drosophila antenna. Cell, 117(7):965–79.

Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative

olfactory learning in honeybees. Nature, 366(6450):59–63.

Hammer, M. and Menzel, R. (1998). Multiple sites of associative odor learning as revealed by

local brain microinjections of octopamine in honeybees. Learning & Memory, 5(1-2):146–

56.

Heisenberg, M. (1998). What do the mushroom bodies do for the insect brain? an introduction.

Learning & Memory, 5(1-2):1–10.

Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews.

Neuroscience, 4(4):266–75.

Hildebrand, J. G. and Shepherd, G. M. (1997). Mechanisms of olfactory discrimination: con-

verging evidence for common principles across phyla. Annual Review of Neuroscience,

20:595–631.

Holzkamp, K. (1995). Lernen: subjekwissentschaftliche Grundlegung. Campus Verlag.

Homberg, U., Christensen, T. A., and Hildebrand, J. G. (1989). Structure and function of the

deutocerebrum in insects. Annual Review of Entomology, 34:477–501.

Bibliography 111

Horchler, A. D., Reeve, R. E., Webb, B., and Quinn, R. D. (2004). Robot phonotaxis in the

wild: a biologically inspired approach to outdoor sound localization. Advanced Robotics,

18(8):801–816.

Huerta, R. and Nowotny, T. (2009). Fast and robust learning by reinforcement signals: Explo-

rations in the insect brain. Neural Computation, 21(0):1–29.

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a

review. Neural Networks: The Official Journal of the International Neural Network Society,

21(4):642–653. PMID: 18555958.

Ito, I., Ong, R. C., Raman, B., and Stopfer, M. (2008). Sparse odor representation and olfactory

learning. Nature Neuroscience, 11:1177–1184.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural

Networks, 14(6):1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions

on Neural Networks, 15(5):1063–70.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and

dopamine signaling. Cerebral Cortex, 17:2443–2452.

Jarvilehto, T. (1999). The theory of the organism-environment system: III. role of efferent

influences on receptors in the formation of knowledge. Integrative Physiological and Be-

havioral Science, 34(2):90–100.

Jones, W. D., Nguyen, T. T., Kloss, B., Lee, K. J., and Vosshall, L. B. (2005). Functional con-

servation of an insect odorant receptor gene across 250 million years of evolution. Current

Biology, 15(4):R119–21.

K-Team (1999). KOALA user manual. K-Team.

Keene, A. C., Krashes, M. J., Leung, B., Bernard, J. A., and Waddell, S. (2006). Drosophila

dorsal paired medial neurons provide a general mechanism for memory consolidation. Cur-

rent Biology, 16(15):1524–1530.

Keene, A. C., Stratmann, M., Keller, A., Perrat, P. N., Vosshall, L. B., and Waddell, S. (2004).

Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron out-

put. Neuron, 44(3):521–533.

Keene, A. C. and Waddell, S. (2007). Drosophila olfactory memory: single genes to complex

neural circuits. Nature Reviews. Neuroscience, 8(5):341–54.

Bibliography 112

Kelley, K. (2010). WP361. Xilinx white paper: Maintaining repeatable results. Xilinx.

Krashes, M. J., Keene, A. C., Leung, B., Armstrong, J. D., and Waddell, S. (2007). Sequential

use of mushroom body neuron subsets during drosophila odor memory processing. Neuron,

53(1):103–115.

Krichmar, J. (2008). Neurorobotics. Scholarpedia, 3(3):1365.

Krichmar, J. L. and Edelman, G. M. (2002). Machine psychology: Autonomous behavior, per-

ceptual categorization and conditioning in a brain-based device. Cereb. Cortex, 12(8):818–

830.

Krichmar, J. L., Seth, A. K., Nitz, D. A., Fleischer, J. G., and Edelman, G. M. (2005). Spa-

tial navigation and causal analysis in a brain-based device modeling cortical-hippocampal

interactions. Neuroinformatics, 3(3):197–221.

Laissue, P. P., Reiter, C., Hiesinger, P. R., Halter, S., Fischbach, K. F., and Stocker, R. F.

(1999). Three-dimensional reconstruction of the antennal lobe in drosophila melanogaster.

The Journal of Comparative Neurology, 405(4):543–52.

Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals.

Nature Reviews. Neuroscience, 3(11):884–95.

Linster, C., Sachse, S., and Galizia, C. G. (2005). Computational modeling suggests that

response properties rather than spatial position determine connectivity between olfactory

glomeruli. Journal of Neurophysiology, 93(6):3410–3417.

Liu, L., Wolf, R., Ernst, R., and Heisenberg, M. (1999). Context generalization in drosophila

visual learning requires the mushroom bodies. Nature, 400(6746):753–756.

Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with

reinforcement. Psychological Review, 82:276–198.

Maguire, L., McGinnity, T., Glackin, B., Ghani, A., Belatreche, A., and Harkin, J. (2007).

Challenges for large-scale implementations of spiking neural networks on FPGAs. Neuro-

computing, 71(1-3):13–29.

Marcuse, H. (1964). One-Dimensional Man. Routledge.

Margulies, C., Tully, T., and Dubnau, J. (2005). Deconstructing memory in drosophila. Current

Biology, 15(17):R700–13.

Marin, E. C., Jefferis, G. S. X. E., Komiyama, T., Zhu, H., and Luo, L. (2002). Representation

of the glomerular olfactory map in the drosophila brain. Cell, 109(2):243–55.

Bibliography 113

Markram, H. (2006). The blue brain project. Nature Reviews. Neuroscience, 7(2):153–160.

PMID: 16429124.

Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs. Newnes.

McGuire, S. E., Le, P. T., and Davis, R. L. (2001). The role of drosophila mushroom body

signaling in olfactory memory. Science, 293(5533):1330–1333.

McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003). Spatiotem-

poral rescue of memory dysfunction in drosophila. Science, 302:1765–1768.

Milford, M. J., Prasser, D., and Wyeth, G. (2004). RATSLAM: a hippocampal model for

simultaneous localization and mapping. In IEEE International Conference on Robotics and

Automation, 2004., pages 403–408.

Muezzinoglu, M. K., Huerta, R., Abarbanel, H. D. I., Ryan, M. A., and Rabinovich, M. I.

(2009). Chemosensor-driven artificial antennal lobe transient dynamics enable fast recogni-

tion and working memory. Neural Computation, 21(4):1018–1037.

Nowotny, T., Huerta, R., Abarbanel, H. D. I., and Rabinovich, M. I. (2005). Self-organization

in the olfactory system: one shot odor recognition in insects. Biological Cybernetics,

93(6):436–446.

Nunez, R. and Freeman, W. J. (1999). Restoring to cognition the forgotten primacy of action,

intention and emotion. Journal of Consciousness Studies, 6(11-12):ix–xix.

Ortigosa, E., Caas, A., Ros, E., Ortigosa, P., Mota, S., and Daz, J. (2006). Hardware de-

scription of multi-layer perceptrons with different abstraction levels. Microprocessors and

Microsystems, 30(7):435 – 444.

Pascual, A. and Preat, T. (2001). Localization of long-term memory within the drosophila

mushroom bodies. Science, 294:1115–1117.

Patterson, D. A. and Hennessy, J. L. (2005). Computer Organization and Design. The Hard-

ware/Software Interface. Morgan Kaufmann, 3rd edition.

Pearce, J. M. and Bouton, M. E. (2001). Theories of associative learning in animals. Annual

Review of Psychology, 52:111–139.

Pearce, J. M. and Hall, G. (1980). A model for pavlovian learning: variations in the effective-

ness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6):532–52.

Pearson, M. J., Pipe, A. G., Mitchinson, B., Gurney, K., Melhuish, C., Gilhespy, I., and Ni-

bouche, M. (2007). Implementing spiking neural networks for real-time signal-processing

Bibliography 114

and control applications: a model-validated FPGA approach. IEEE Transactions on Neural

Networks, 18(5):1472–1487.

Perez-Orive, J., Bazhenov, M., and Laurent, G. (2004). Intrinsic and circuit properties fa-

vor coincidence detection for decoding oscillatory input. The Journal of Neuroscience,

24(26):6037–6047.

Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I., and Laurent, G.

(2002). Oscillations and sparsening of odor representations in the mushroom body. Sci-

ence, 297(5580):359–65.

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization, embodiment, and biologi-

cally inspired robotics. Science, 318(5853):1088–1093.

Prescott, T. J., Gonzlez, F. M. M., Gurney, K., Humphries, M. D., and Redgrave, P. (2006).

A robot model of the basal ganglia: behavior and intrinsic processing. Neural Networks,

19(1):31–61.

Rajashekhar, K. P. and Singh, R. N. (1994). Neuroarchitecture of the tritocerebrum of

drosophila melanogaster. The Journal of Comparative Neurology, 349(4):633–45.

Rescorla, R. A. and Wagner, A. R. (1972). A theory of pavlovian conditioning: variations in

the effectiveness of reinforcement and non-reinforcement. In A.H. Black and W.F. Prokasy

(Eds.), Classical Conditioning II: Theory and Research.

Riemensperger, T., Vller, T., Stock, P., Buchner, E., and Fiala, A. (2005). Punishment predic-

tion by dopaminergic neurons in drosophila. Current Biology, 15(21):1953–1960.

Roberts, P. D. and Bell, C. C. (2002). Spike timing dependent plasticity in biological systems.

Biological Cybernetics, 87:392–403.

Roggen, D., Hofmann, S., Thoma, Y., and Floreano, D. (2003). Hardware spiking neural

network with run-time reconfigurable connectivity in an autonomous robot. In NASA/DoD

Conference on Evolvable Hardware, 2003. Proceedings., pages 189–198.

Ros, E., Ortigosa, E. M., Ags, R., Carrillo, R., and Arnold, M. (2006). Real-time com-

puting platform for spiking neurons (RT-spike). IEEE Transactions on Neural Networks,

17(4):1050–1063.

Schmajuk, N. A. (2008). Computational models of classical conditioning. Scholarpedia,

3(3):1664.

Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Vller, T., Erbguth, K., Gerber, B., Hen-

del, T., Nagel, G., Buchner, E., and Fiala, A. (2006). Light-induced activation of distinct

Bibliography 115

modulatory neurons triggers appetitive or aversive learning in drosophila larvae. Current

Biology, 16(17):1741–1747.

Schubert, M., Lachnit, H., Francucci, S., and Giurfa, M. (2002). Nonelemental visual learning

in honeybees. Animal Behaviour, 64(2):175–184.

Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., and Heisenberg, M.

(2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory

memories in drosophila. The Journal of Neuroscience, 23(33):10495–502.

Seth, A., Sporns, O., and Krichmar, J. (2005). Neurorobotic models in neuroscience and neu-

roinformatics. Neuroinformatics, 3(3):167–170.

Shanbhag, S. R., Mller, B., and Steinbrecht, R. A. (1999). Atlas of olfactory organs of

drosophila melanogaster 1.types, external organization, innervation and distribution of ol-

factory sensilla. International Journal of Insect Morphology & Embryology, 28:277–97.

Shanbhag, S. R., Mller, B., and Steinbrecht, R. A. (2000). Atlas of olfactory organs of

drosophila melanogaster 2. internal organization and cellular architecture of olfactory sen-

silla. Arthropod Structure & Development, 29:211–29.

Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., and Miesenbck, G. (2007). Excitatory

local circuits and their implications for olfactory processing in the fly antennal lobe. Cell,

128(3):601–612.

Sivan, E. and Kopell, N. (2004). Mechanism and circuitry for clustering and fine discrimination

of odors in insects. Proceedings of the National Academy of Sciences of the United States of

America, 101(51):17861–17866.

Smith, D., Wessnitzer, J., and Webb, B. (2008). A model of associative learning in the mush-

room body. Biological Cybernetics, 99(2):89–103.

Song, S., Miller, K. D., and Abbott, L. F. (2000a). Competitive hebbian learning through spike

timing-dependent synaptic plasticity. Nature Neuroscience, 3:919–926.

Song, S., Miller, K. D., and Abbott, L. F. (2000b). Competitive hebbian learning through

spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926.

Sporns, O. and Alexander, W. H. (2002). Neuromodulation and plasticity in an autonomous

robot. Neural Networks, 15(4-6):761–774.

Stocker, R. F. (1994). The organization of the chemosensory system in drosophila

melanogaster: a review. Cell and Tissue Research, 275(1):3–26.

Bibliography 116

Stocker, R. F., Lienhard, M. C., Borst, A., and Fischbach, K. F. (1990). Neuronal architecture

of the antennal lobe in drosophila melanogaster. Cell and Tissue Research, 262(1):9–34.

Strausfeld, N. J., Hansen, L., Li, Y., Gomez, R. S., and Ito, K. (1998). Evolution, discovery,

and interpretations of arthropod mushroom bodies. Learning & Memory, 5(1-2):11–37.

Tanaka, N. K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the drosophila mush-

room body. The Journal of Comparative Neurology, 508(5):711–755.

Tang, S. and Guo, A. (2001). Choice behavior of drosophila facing contradictory visual cues.

Science, 294(5546):1543–1547.

Tully, T., Preat, T., Boynton, S. C., and Vecchio, M. D. (1994). Genetic dissection of consoli-

dated memory in drosophila. Cell, 79(1):35–47.

Tully, T. and Quinn, W. G. (1985). Classical conditioning and retention in normal and mu-

tant drosophila melanogaster. Journal of Comparative Physiology. A, Sensory, Neural, and

Behavioral Physiology, 157(2):263–77.

Turner, G. C., Bazhenov, M., and Laurent, G. (2008). Olfactory representations by drosophila

mushroom body neurons. Journal of Neurophysiology, 99(2):734–46.

Upegui, A., Andres, C., and Sanchez, E. (2005). An FPGA platform for on-line topology

exploration of spiking neural networks. Microprocessors and Microsystems, 29(5):211–223.

Vosshall, L. B., Wong, A. M., and Axel, R. (2000). An olfactory sensory map in the fly brain.

Cell, 102(2):147–59.

Waddell, S., Armstrong, J. D., Kitamoto, T., Kaiser, K., and Quinn, W. G. (2000). The amnesiac

gene product is expressed in two neurons in the drosophila brain that are critical for memory.

Cell, 103(5):805–813.

Wagner, A. (1981). SOP: A model of automatic memory processing in animal behavior. In

N.E. Spear and R.R. Miller (Eds.), Information processing in animals: Memory mechanisms

(pp. 5-47). Hillsdale, NJ: Erlbaum.

Wang, Y., Guo, H., Pologruto, T. A., Hannan, F., Hakker, I., Svoboda, K., and Zhong, Y.

(2004). Stereotyped odor-evoked activity in the mushroom body of drosophila revealed by

green fluorescent protein-based ca2+ imaging. The Journal of Neuroscience, 24(29):6507–

6514.

Webb, B. (2001). Can robots make good models of biological behaviour? The Behavioral and

Brain Sciences, 24(6):1033–1050.

Bibliography 117

Webb, B. (2002). Robots in invertebrate neuroscience. Nature, 417(6886):359–363.

Weinstein, R. K. and Lee, R. H. (2006). Architectures for high-performance FPGA implemen-

tations of neural models. Journal of Neural Engineering, 3(1):21–34.

Weinstein, R. K., Reid, M. S., and Lee, R. H. (2007). Methodology and design flow for

assisted neural-model implementations in FPGAs. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 15(1):83–93.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., and Thelen, E.

(2001). ARTIFICIAL INTELLIGENCE: autonomous mental development by robots and

animals. Science, 291(5504):599–600.

Wessnitzer, J., Webb, B., and Smith, D. (2007). A model of non-elemental associative learn-

ing in the mushroom body neuropil of the insect brain. Proceedings of the International

Conference on Adaptive and Natural Computing Algorithms, 4431/2007:488–497.

Wilson, R. I. and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked

spatiotemporal patterns in the drosophila antennal lobe. The Journal of Neuroscience,

25(40):9069–79.

Wong, A. M., Wang, J. W., and Axel, R. (2002). Spatial representation of the glomerular map

in the drosophila protocerebrum. Cell, 109(2):229–41.

Wustenberg, D. G., Boytcheva, M., Grunewald, B., Byrne, J. H., Menzel, R., and Baxter, D. A.

(2004). Current- and voltage-clamp recordings and computer simulations of kenyon cells in

the honeybee. Journal of Neurophysiology, 92(4):2589–2603.

Xilinx (2007). Xilinx DS529 Spartan-3A FPGA Family Data Sheet. Xilinx.

Xilinx (2008). Xilinx DS610 Spartan-3A DSP FPGA Family Data Sheet. Xilinx.

Xilinx (2009). Microblaze processor reference guide. Xilinx.

Young, J. M., Wessnitzer, J., Armstrong, J. D., and Webb, B. (2010). Dissecting complex

learning in drosophila: What are the limits of the fly brain? (submitted).

Yu, D., Keene, A. C., Srivatsan, A., Waddell, S., and Davis, R. L. (2005). Drosophila DPM neu-

rons form a delayed and branch-specific memory trace after olfactory classical conditioning.

Cell, 123(5):945–957.

Yu, D., Ponomarev, A., and Davis, R. L. (2004). Altered representation of the spatial code

for odors after olfactory classical conditioning; memory trace formation by synaptic recruit-

ment. Neuron, 42(3):437–49.

Bibliography 118

Zars, T., Fischer, M., Schulz, R., and Heisenberg, M. (2000). Localization of a short-term

memory in drosophila. Science, 288(5466):672–5.

Zhang, J., Lau, P., and Bi, G. (2009). Gain in sensitivity and loss in temporal contrast of

STDP by dopaminergic modulation at hippocampal synapses. Proceedings of the National

Academy of Sciences of the United States of America, 106(31):13028–13033.

Zhang, W. and Linden, D. J. (2003). The other side of the engram: experience-driven changes

in neuronal intrinsic excitability. Nature Reviews. Neuroscience, 4(11):885–900.

Zizek, S. (2009). First as tragedy, then as farce. Verso.

