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Abstract 

This thesis is about the application of the singular value decomposition to ban-

dlimited optical images in order to increase the resolution. Previous workers have 

considered only one-dimensional systems or two-dimensional systems which are sep-

arable. This thesis extends the technique to the non-separable case. An algorithm is 

presented for the computation of the singular functions of an optical system where 

object and pupil differ in shape. Numerical examples are given of both the eigen-

value decomposition and the singular value decomposition applied to images in the 

presence of noise. The singular value decomposition is shown to be superior. Finally 

the singular value decomposition is applied to real optical images generated on an 

optical bench using incoherent illumination. 
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Chapter One 

Introduction to Super-resolution 

Section 1.1 Introduction 

This thesis is about one particular technique of achieving "super-resolution". 

Super-resolution is an attempt to improve the resolving power of optical systems 

(e.g. telescopes, microscopes, cameras etc) by using digital processing. 

In this introductory chapter, we shall set super-resolution in its context. We shall 

see first of all that it is a typical member of a set of problems known as "inverse 

problems" and then go on to trace the historical development of ideas about super-

resolution up to the present day. 

Section 1.2 General characteristics of super-resolution 

1.2.1 Definition of resolution 

Consider the following schematic drawing of a generalised imaging system. See 

fig. 1.1. 

The optical system is looking at an "object" - this could be a specimen sitting 

on a glass slide in the case of a microscope, or a cluster of stars in the case of an 

astronomical telescope - and it is forming an "image" of it. In this thesis, the "object" 

and "image" will be described by two-dimensional functions which represent either 

the amplitude or intensity distribution of the wave-front across planes close to the 

object and image respectively. 

In general, the image will be similar but not identical to the object. Large scale 

features of the object will tend to be reproduced better than small-scale features. 

In fact there are usually features of the object which are so small that they do not 

appear in the image at all. "Resolution" has traditionally been defined as a measure 

of the size of the smallest feature of the object which appears in the image. For 

example, the famous Rayleigh criterion - (which is just one of several measures of 

resolution) - defines the size of the smallest feature as being the distance from the 
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FIG. 1.1 

maximum of an image of a point source to its first minimum. However, the Rayleigh 

criterion was invented before the time of image detectors which could yield accurate 

measurements of the 2D intensity variation across the image - (the Rayleigh criterion 

is based on the light-detecting ability of the human eye) - and before the time of 

digital computers which could process this data. Nowadays, we need not regard 

the Rayleigh criterion as being fundamentally unbeatable. Therefore, we can now 

introduce the idea of "super-resolution" - by which we mean the attempt to increase 

the resolution of images beyond the Rayleigh limit by use of digital processing. 

1.2.2 Inverse problems and a priori information 

An alternative way to view super-resolution is to consider it as an attempt to 

"reconstruct the object from the image". In other words, we try to put back the 

features that were lost in the transition from object to image and so find the original 

object. The problem is that there may be many different possible objects which could 
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give rise to the same (or a very similar image). We must decide which out of this 

set, is the original object. Each of the possible objects is different from the others 

but the differences are due to only the small-scale features - the large-scale features 

being the same from object to object. Since the small scale features are lost in the 

transition, the images all end up looking identical. It is therefore impossible to decide 

which of the possible objects is the true one. 

However, we can improve our chances of estimating the correct object, if we 

have some a priori knowledge about the object. This knowledge can be of a very 

simple kind eg. we may know that the object has a certain degree of smoothness, or 

that it is non-negative (eg. light intensity distributions are always non-negative.) We 

can then discard from the set of possible objects, any object which does not comply 

with our a priori information. Quite often this can greatly reduce the solution set. 

However, even with a priori information, we may still be left with a class of 

possible objects which give rise to images which are not identical but are very similar. 

A consequence of this is that a small error in our measurement of the image will result 

in a large error in our estimate of the object. Therefore, we must try to make our 

measurements as accurately as possible. 

These characteristics - the large set of possible solutions, the amplification of 

small errors and the need for a priori information - are typical of a set of problems 

known as "inverse problems" - which are common in many fields besides optics. 

Other examples include, the recovery of a three-dimensional object from its two-

dimensional projection (which is a problem solved by the brain from data provided 

by our eyes) or the estimation of the interior structure of the Earth from seismic data. 

We shall try to quantify these characteristics more precisely later in the Chapter. 

Section 1.3 Fourier theory of imaging 

1.3.1 The imaging equation 

Our first step in making our ideas about super-resolution more precise, is to 

provide a quantitative relationship between the image and the object. This relationship 
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is given by the Fourier theory of imaging. This theory is very well known and is 

well-described in many texts, especially Goodman [31], but we shall summarise the 

main elements here, in order to establish the terms we shall use later in the thesis. 

Firstly we must say a little more about the functions, f(x) and g(y) which 

were introduced in fig. 1.1. These are two-dimensional functions of the vectors 

X = (x1, x2 ) and y = (Y1 , Y2). x and y represent displacement in the object and 

image planes respectively. They are both measured in the same arbitrary units which 

I shall call "space units". In the case of coherent illumination (e.g. in microscopy), 

f(x) and g(y) could represent amplitude distributions and could therefore both 

be complex. In the case of incoherent illumination (e.g. astronomy), they could 

represent intensity distributions and would therefore both be real. For simplicity, we 

shall restrict our attention to either fully coherent or fully incoherent illumination 

although the theory can be extended to partially coherent systems. See Frieden [10] 

According to Fourier theory the object, f(x), and the image, g(y), can be 

related by the following equation. 

g(y) = fall space f(X)h(Y_X)dX 	
1.3.1 

where h(y) is known as the Point Spread Function and is defined to be the image of a 

delta-function object. This equation is very general and describes most optical systems 

- coherent, incoherent, partially coherent - including some systems with aberrations. 

The only condition is that the system should be linear and space-invariant. 

The integral on the RHS is known as a convolution integral and is sometimes 

written as 

g 	= 	f * h 
	

1.3.2 

Fourier theory allows us to express 1.3.2 in a way which we shall later find to be 

more convenient. In order to do this we must first define an integral operator known 

as the Fourier transform operator. The Fourier transform operator and its inverse are 



defined as follows 

F(k) 	
fall 

1.3.3 
1 

f(x) = 
fail space 

F(k) exp(—ix k) 

The function, F(k), is known as the Fourier transform of f(x). The Fourier trans-

form contains exactly the same information as the original function. The information 

is merely displayed in a different way. The Fourier transform is a two-dimensional 

function of the vector k = (k1 , k2). k is known as the spatial frequency and is 

measured in units which are the reciprocal of the space units used to measure x and 

y. I shall call these units frequency units. The value of the Fourier transform at k is 

the complex amplitude of the Fourier component of f(x) with spatial frequency k 

Now, according to the convolution theorem we have the following relationship. 

G(k) = F(k)H(k) 	 1.3.4 

where G(k), F(k) and H(k) represent the Fourier transforms of g(y), f(x) and h(y) as 

defined by 1.3.3. Thus we can see that the relationship between the Fourier transforms 

is much simpler than that between the original functions. This simplicity allows us 

a much greater insight into the imaging process. In fact, it allows us to break the 

imaging process down into three stages. 

Fourier transform the object, f(x), to obtain F(k). 

Multiply F(k) by H(k) to obtain G(k). 

Inverse Fourier transform G(k) to obtain g(y). 

We can now re-write equn. 1.3.1 as follows 

1 fall space 	 fa space g(y) =(2ir)2 	
exp(—iy.k) H(k) 	f(x)exp(ik.x)dxdk 

1.3.5 

I shall call equn. 1.3.5 the imaging equation and the operator defined on the RHS 

the imaging operator. I shall refer back to this equation many times throughout this 
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thesis. In chapter 2 I shall base a mathematical model of an imaging system on 1.3.5 

and then implement it on a computer by representing each of the three stages as a 

subroutine. In chapter 4 I shall base an experimental model of an imaging system on 

1.3.5 in which each of the three stages is represented as a component on an optical 

bench. 

The imaging equation is very general and should describe any linear space-

invariant imaging system. We can therefore hope that either of the models mentioned 

in the previous paragraph should be equally general and that the results derived from 

them should be typical of any linear space-invariant optical system. 

1.3.2 The transfer function 

Please notice, from equation 1.3.4 that all the information about the optical 

system is contained in the function, H(k). This function is called the "Transfer 

Function" and is, in general, complex. Transfer functions vary greatly from one 

system to another but they all have one characteristic in common: they are uniformly 

zero outside same closed boundary. This boundary is determined by the physical 

dimensions of the system e.g. in a microscope the boundary will be circular and the 

diameter will depend on the diameter of the smallest lens in the system. 

The region within this closed boundary is known as the "pass-band" or sometimes 

the "pupil". In a one-dimensional system the pass-band becomes an interval, and 

the width of this interval is called the "band-width". A function whose Fourier 

transform is zero outside some closed boundary is known as a "band-limited" function. 

Therefore the image, g(y), is a band-limited function. 

We can think of the Transfer Function as being like a "mask" which is placed 

over the Fourier plane. Those frequencies within the mask are transmitted (albeit 

with some modification) those outside are not transmitted at all. The information 

carried by those frequencies would therefore appear to be lost. But it is precisely 

these outer frequencies which carry the information about the small-scale features of 

the object. Therefore, the loss of these frequencies leads to the loss of the small-scale 



information: in other words, it leads to the finite resolution of the system. Therefore, 

the resolution limit of the system depends on the cut-off boundary in the Fourier 

plane. 

The last statement implies that if we are to achieve super-resolution we must 

somehow recover some of the lost frequencies outside the cut-off boundary. In other 

words, we must extrapolate the Fourier transform outside the cut-off boundary. For 

this reason, super-resolution is sometimes known as "band-width extrapolation". 

One might at first think that if H(k) differed from unity within the cut-off bound-

ary then this too would have an effect on the resolution. However, in principle, this 

effect can be eliminated if we know H(k). We could proceed as follows 

We Fourier transform the image, g(y), to obtain G(k). 

We calculate F(k) within the cut-off boundary by 

F(k)
G(k) 

= 

	

	 1.3.6 
H(k) 

Thus, in principle, we could always recover F(k) within the cut-off boundary provided 

we know H(k) (and it is usually possible to measure H(k) for most optical systems). 

This process is known as "deconvolution". However, in practice, this process can 

often be quite difficult to carry out especially when H(k) falls to small values, because 

then division by H(k) will be unstable and any noise in the data will be amplified. 

We shall meet this problem in chapter 4. But in the rest of this thesis, except where 

otherwise stated, I shall consider only those systems where H(k) is sufficiently large 

that this problem does not occur, i.e. I shall assume that the Fourier transform is 

accurately known within the pass-band. 

1.3.3 Analytic continuation 

We saw in the last section that super-resolution was equivalent to retrieving some 

of the lost frequencies outside the cut-off boundary. At first sight, this would seem 

to be impossible. As we saw in the section on inverse problems, there must be a 

large set of possible objects which could give rise to the same image. The Fourier 

01 



transform of each of these objects would be the same within the pass-band but could 

differ widely outside it. We are left with the problem of selecting which of this set 

is the true object. In most cases this is impossible. 

But, as we saw in the section on inverse problems, if we have some a priori 

information we can reduce the class of possible objects. There are many different 

types of a priori information which we could use but for most of this thesis I shall 

concentrate on only one type:- that we know that the object is "space-limited". A 

space-limited function is a function which is zero outside some closed boundary. 

Thus, for example, the transfer function, H(k), is a space-limited function because it 

is zero outside the pass-band. The idea of using this type of a priori information was 

first suggested in 1955 by Toraldo di Francia [15] who pointed out that the Fourier 

transform of a space-limited function is "analytic". An analytic function is defined in 

complex variable theory as a function which obeys the Cauchy-Riemann relations. It 

can be shown that all analytic functions have the following property: if an analytic 

function is known over a finite, bounded area then it is determinable everywhere. 

The process of calculating the function outside the known area is called "analytic 

continuation". 

Toraldo argued that if we know in advance that the object is space-limited then 

its Fourier transform, F(k), must be analytic and so, even though we only know that 

part of F(k) contained within the pass-band, we should be able to calculate the rest of 

F(k) using the analytic continuation property. We should thus be able to reconstruct 

the object, f(x), with, in principle, infinite resolution. 

This whole thesis is based on Toraldo's theorem. Henceforward I shall assume 

that we have the a priori information that the object is space-limited and we know 

the region within which it lies. 

1.3.4 The band-limited image of a space-limited object 

For the rest of this thesis I shall consider only objects which are space-limited 

and their band-limited images. We can now modify the imaging equation (1.3.5) to 
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incorporate the information that both the object and the transfer function are space-

limited functions. 

1 	P 

= 	(2)2 JexP(_iY .k) I f(x)exp(ik.x)dxdk 	1.3.7 7r  Jx 

I have replaced the limits on the two integrals. In equn. 1.3.5 the region of integration 

was all space, but in equn.1.3.7. the regions of integration are the finite bounded 

regions X and Q. X is the region within which we know the object to lie- this 

constitutes our a priori information. Q is the boundary of the pass-band of the optical 

system. The two Fourier integrals in equn. 1.3.7. are known as "finite Fourier 

transforms" because their regions of integration are finite rather than infinite. 

Throughout most of this chapter we shall consider one-dimensional imaging 

systems, because that is what most previous literature has been concerned with up 

till now. In 1D equn. 1.3.7. reduces to 

g(y) 
1 

 f exp(—iky)  f f(x)exp(ikx)dxdk 	1.3.8 = 
(2ir) -  

where the object lies in the interval [—x0 , xo] and the pass-band is the interval 

[—Q, Q]. 

In this section we shall look at some of the general characteristics of images 

generated by this equation. The key parameter of such an image is a dimensionless 

number called the "space-bandwidth product" and which is given the symbol, "c". It 

is defined by 

C = x0 cl 	 1.3.9 

Fig. 1.2 shows three such images at different values of c. 

In the top-most image c = oo, in other words the image is not band-limited 

at all and so is identical to the original object. We could call this the "geometrical 

image" since it is the image which would be produced according to the rules of 

geometrical optics. In this case the object is a top-hat function. 
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geometrical image 

C=4u 

C=rr 

FIG. 1.2 

The bandlimited image of a space-limited object 
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The second image is of the same object but this time c = 47r. The degradation 

due to the finite bandwidth is obvious, but please also note that the image now extends 

over all space. Most of the energy is still concentrated around the geometrical image 

region but a significant proportion is scattered over the rest of image space. 

The third image has c =7r. The image is further degraded and more of it is 

spread outside the region of the geometrical image. 

The main consequence of the finite band-width is that the information about the 

object is pushed out of the the geometrical image region and spread over the whole 

image plane. If we are to restore the object as much as possible we must make 

use of all of this information, rather than just that contained within the geometrical 

image. The significance of this fact will become clear when we come to compare the 

eigenvalue decomposition with the singular value decomposition in section 1.5. 

Section 1.4 Prolate spheroidal functions 

1.4.1 Summary 

Although Toraldo had proved that band-width extrapolation was possible he 

had not shown exactly how it could be carried out. The first indication as to how 

this might be done appeared in 1961 when Slepian and Pollak published a paper 

on the Fourier transform properties of "prolate spheroidal wave functions". These 

functions had originally been discovered as the solutions to the Wave Equation in 

prolate spheroidal co-ordinates. A comprehensive treatment of them was published 

by Rammer [18] in 1957 which included methods of computation. But, it was not 

until Slepian, Landau and Pollak began to study them that their peculiar Fourier 

transform properties were discovered. They are all stated and proved by Slepian and 

Pollak [5] and also by Frieden [11] and I shall summarise them here. 

1.4.2 Definition 

The functions 	(x) are defined by: 

f
X0 	

(x) exp(ikx) dx = 0(2Ax0 / 	(kx0/) 	1.4.1 
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This states that the functions are invariant to a finite Fourier transform. 

In other words by taking the part of 	(x) contained within the finite interval 

[—x0 , xo] and Fourier transforming it, we obtain the function over all space. 

The numbers ), are the "linear prolate eigenvalues" 

1.4.3 Eigenfunctions of the 1D imaging operator 

If we now apply a finite inverse Fourier transform to both sides of equation 1.4.1 

we obtain 

I 
exp(_iky)dkf

xO 
 (x)exp(ikx)dx = 	y) 	1.4.2 

2ir  

The operator on the LHS of equn. 1.4.2. is the 1D imaging operator which we met in 

equn. 1.3.8. Thus, equation 1.4.2 describes a 1D imaging system with bandwidth 2 

which is looking at an object of width 2xo . The functions, ?'(x), can be regarded 

as eigen-images of this system in the sense that they pass through the system unaltered 

apart from the scaling factor, An,. 

The space-bandwidth product, c, of this system is as defined in equn.1.3.9. The 

(x) and A are functions of c as well as of x. So they should really be written 

as 	c) and A,, (c) but I have suppressed this for simplicity. But the reader 

should bear in mind throughout this thesis that the 	(x) and A, depend on c, the 

space-bandwidth product. 

1.4.4 Dual orthogonality 

The most striking property of the &(x) is that they are orthogonal over two 

different regions. The 0. are orthogonal over both the interval [—x0 , x0] and the 

interval (—oo, ), i.e. both the following relationships hold 

fX
O  

(x) b(x)dx 	= 	 1.4.3 
xo 

JC00 

0.(x)  (x)dx 	Smn 	 1.4.4 
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1. 

0. 

0. 

0. 

0. 

k, order of function 

FIG. 1.3 

The eigenvalue spectrum for c = 27r 

N.B. the çb(x) form a complete set over all functions on [—x0 , xo]. They also 

form a complete set over those functions on (-, ) whose Fourier transforms are 

contained in the region [-1, l]. 

1.4.5 Symmetry properties 

Due to symmetry properties of equn.1.4.2 the 	(x) must have either odd or 

even symmetry about the origin. In fact, successive eigenfunctions have alternate 

symmetry. 

1.4.6 The eigenvalue spectrum 

Fig. 1.3 shows a graph of Ak against k, for c = 2r. 

The eigenvalues for all values of c have the following properties 

a)they are all < 1 

b)they are all > 0 

c)low-order eigenvalues are almost equal to 1 but the value falls drastically after 
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k = 2c/7r 

d)above k = 2c/7r lambda tends asymptotically to zero. 

These properties can all be seen fig. 1.3. 

1.4.7 Bandwidth extrapolation properties 

Slepian and Pollak suggested that the PSFs could be used for band-width ex-

trapolation. This was developed by the following authors: Harris[9], Barnes[8], 

Frieden[ 10], Pask[ 14], McCutchen[1 3],  Rushforth and Harris[1 2], Saleh[ 19]and  Ber-

shad[35]. All these writers give similar accounts but I shall not repeat them here 

because they are all subsumed by the account given by Bertero and Pike [1] which I 

shall repeat in detail in section 1.5. I shall make a few general points here. 

The problem encountered by all of these authors is that the resolution can only 

be increased at the expense of an increase in noise in the reconstructed object. We 

saw that this was a typical characteristic of inverse problems in section 1.2. 

All of these authors take only a theoretical approach; they sketch out a possible 

method of carrying out super-resolution but they do not actually go ahead and do it. 

Frieden [10] gives a simulation but this is only of an object which he has chosen 

carefully so it can be treated analytically. None of the authors discuss the difficulties 

of putting super-resolution into practice, eg sampling and truncation. They only 

address 1D imaging systems or 2D systems which can be separated into two 1D 

systems. 

Section 1.5 The eigenvalue decomposition and singular value decomposition 

1.5.1 Summary 

The fullest and most general account of super-resolution using prolate spheroidal 

functions is that given by Bertero and Pike. I give their argument in detail because 

it subsumes the arguments of all the previous authors. Whereas most of the previous 

treatments were restricted to the one-dimensional, continuous case Bertero and Pike's 

includes that case and the multi-dimensional discrete case as well. The argument 
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of chapter 2 of this thesis depends on this generalisation to the multi-dimensional, 

discrete case. 

Bertero and Pike achieve this generality by introducing a concept known as a 

"singular value decomposition" (SVD). This concept underlies the treatments given 

by previous authors but was not explicitly stated. SVD is an extension of the concept 

of an eigenvalue decomposition (EVD). Bertero and Pike begin their first paper [1] 

by showing that an EVD can achieve super-resolution and then going on to extend 

that idea to a SVD. Finally they compare the results of the two decompositions and 

show that SVD is significantly better in the presence of noise. 

One of the themes of this thesis will also be a comparison between SVD and 

EVD. I shall give numerical examples of the two decompositions in chapter 3. 

I shall recount Bertero and Pike's argument here. I shall present it as they 

presented it in their first paper making reference to only the 1D continuous, coherent 

case but as we shall see in chapter 2 it can be easily generalised to other cases. 

15.2 Eigenvalue decomposition 

The essence of the eigenvalue decomposition is to represent the imaging process 

by an operator and then find its eigenfunctions and values. We can then use these to 

invert the operator. 

We have already met the 1D imaging operator in equn. 1.3.8. Therefore let us 

define an operator, A, as follows 

1 	1.ci 

g(y) = (Af)(y) = 	-/ exp(—iky)dkf
X0

f(x)exp(ikx)dx 1.5.1 
27r J1  

where f(x) is the object and g(y) is the image. This is very similar to the operator 

defined in 1.3.8. The only difference is that we have restricted g(y) to lie in the same 

interval as f(x), [—x0 , x0]. In other words we are only considering the geometrical 

image region and ignoring the rest of the image which is scattered outside it. The 

reason for this is that the concept of an eigenfunction requires that the operator maps 

the same set of functions onto itself. In this case that set is L2 [—xo , x0 ], the set of 

17 



all complex valued functions on the interval [—x0 , — xo]. We require both f(x) and 

g(y) to belong to this set. 

We can write equation 1.5.1 as follows 

Af = g 	 1.5.2 

Now, we wish to find the eigenfunctions of A, defined by 

	

AUk = AkUk 	 1.5.3 

This is clearly very similar to equation 1.4.2. So the uk(x)  must be closely related 

to the prolate spheroidal functions 	(x). In fact, 

Uk(X) = Abk(x) 	 1.5.4 

where Ak are the prolate spheroidal eigenvalues which we met in equn. 1.4.1. The 

scaling factor arises because 	(x) are normalised over (—oo, ) but uk(s)  are 

normalised over [—Xe, Xe]. 

Now, because A is self-adjoint its eigenfunctions are complete and orthogonal 

over L2  [ — Xe, Xo] and its eigenfunctions are real. Furthermore, because A is positive 

definite its eigenvalues are all strictly positive. Hence, we can represent both the 

object and image as linear combinations of the Uk(S). 
00 	 cc 

f = >fkuk g 	>gkuk 	 1.5.5(a),(b) 

where fk  and 9k  are given by 

f X O 

XO 	

f 
XO 

fk = 
	

f(x)uk(x)dx gk = 
	

g(y)uk(y)dy 1.5.5(c),(d) 
ro 

Now, let us apply operator A to f as expressed in 1.5.5 

00  Af 	= A(>fkuk) using 1.5.5(a) 

00 

= >fkAuk 

00 

= 	fkAkuk using 1.5.3 



But 
Af = g 	from 1.5.2 

00 

= 	gkuk from 1.5.5(b) 

Therefore, equating co-efficients gives us 

fk = 	 1.5.6 
Ak 

which is a relationship between the object co-efficients, 1k,  and the image co-

efficients, g. It is this relationship which allows us to reconstruct the object from 

the image, or, in other words, to bring about super-resolution. We can, in principle, 

measure all the image co-efficients gj and then calculate the object co-efficients, 

fk' from them using 1.5.6. Once we know all the fk  our knowledge of the object 

is complete and so we have completely reconstructed the object from the image. 

But, the problem is that 1.5.6. involves division by Ak and as we saw in section 

1.4.6. some of the Ak are << 1 and so the division is very unstable. Any error 

in our measurement of gj will be amplified by the factor 1/Ak which could be 

very large for higher order eigenfunctions. See fig. 1.3. So we must truncate the 

summation in equn. 1.5.5(a) at some value of k where the eigenvalue, Ak is not too 

small. This value of k will depend on the signal-to-noise ratio in the image. We shall 

return to this topic in chapter 3. 

1.5.3 Singular value decomposition 

Bertero and Pike then asked themselves whether it was possible to do better in 

the presence of noise than the eigenvalue decomposition allowed. It occurred to them 

that they were not using all the information available to them in the image plane. 

As we saw EVD restricts its attention to the geometrical image region whereas the 

information about the object is spread over the whole image plane. This led Bertero 

and Pike to turn to the concept of a "singular value decomposition". A singular value 

decomposition is similar to an eigenvalue decomposition except that the operator is 
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allowed to map between two different sets of functions. For example, let us define a 

new operator, K 

1 	' 	 XO 

g(y) = (Kf)(y) = - 	exp(—iky)dk I f(x)exp(ikx)dx 1.5.7 
2 

Now, the only difference between K and the previous operator, A, is that y now 

lies on the interval (-, oo) rather than [—so, so]. But x still lies on the interval 

[—xo,xo]. Thus K maps from the set L2 [—xo ,so ] to the set L2 [—oo,00]. 

The singular functions and values are defined by the two coupled equations. 

K Uk = kVk 
1.5.8(a), (b) 

KTvk = kUk 

where Uk(S)  are defined over interval [ — Xe, Xü] and vk(y)  over (—oc, oc). 1.5.8 

is the equivalent of 1.5.3. Note that, whereas in the eigenfunction case we have only 

one set of functions, the uk(s),  we now have two sets, the uk(s)  and the vk(y). 

Now, if we premultiply 1.5.8 (a) by KT  we obtain 

KT Kuk 	£Uk 	 1.5.9 

Thus, the uk(s)  are eigenfunctions of KTK  with eigenvalues c. Now, Bertero 

and Pike go on to show that 

KTK = A 	 1.5.10 

Thus, the uk(s) are actually identical to the eigenfunctions of A which is why 

we have given them the same symbol, Uk(S). As before, they are orthogonal and 

complete over the interval [—Xe, xo]. Furthermore, we must have 

=Ak 
	 1.5.11 

Similarly, we can show that 

KKTvk =akVk 	 1.5.12 
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So, the vk(y)  are eigenfunctions of operator KKT.  This is a self-adjoint operator 

SO vk(y) are also orthogonal. N.B. The vk(y)  are complete only over the set of 

functions on (—oo, oo) which have bandwidth, 2l. They are not complete over all 

functions on (—oo, oo). 

Due to the orthogonality and completeness properties of the uk(s)  and the 

vk(y) we can express f and g as follows 

00 	 00 

f 	= 	>fkuk 	g = >gkvk 	 1.5.13(a), (b) 

where fk  and 9k  are given by 

f X 0 

xo 	 foo  
A=f(x)uk(x)dx g, 

= J 
g(y)vk(y)dy 1.5.13(c),(d) 

—00 

Notice the differences between the range of integration in 1.5.13(c) and the range of 

integration in 1.5.13(d). 

Now, in a way similar to that in the eigenfunction case, we can apply operator 

K to f as defined in 1.5.13(a). 

00 

Kf 	K(>fkuk) 

= >fKu 

00 

= 	>fkcEkvk using 1.5.8 (a) 

But, we also have 
Kf = g 	from 1.5.7 

00 

= 	>gkvk  from 1.5.13(b) 

So by equating co-efficients of vk(y)  we have 

1.5.14 
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which is the equivalent of 1.5.6. But from 1.5.11 we have 

gk 

	

A = 	1 	 1.5.15 

So again, as in 1.5.6., we have a relationship between the image co-efficients, g, 

and the object co-efficients, fk.  Again this relationship allows us to reconstruct the 

object from the image. But this time we must divide by A l2  whereas in 1.5.6. we 

had to divide by A. And since A < 1, A > A and so the division is more stable 

than in equn. 1.5.6. Thus SVD is less sensitive to noise than EVD. This is essentially 

because SVD makes use of all the information in the image plane rather than just 

that in the geometrical image region. This proves the main conclusion of Bertero and 

Pike's first paper: that SVD is superior to EVD in the presence of noise. 

Bertero and Pike go on to discuss in more detail the effects of noise on the SVD 

algorithm and derive an expression for the smallest singular value which can be used 

in the presence of a given level of noise. We shall discuss this in Chapter 3 when we 

look at my own simulations in the presence of noise. 

1.5.4 w-functions 

At this point it is convenient to introduce a third set of functions the wk. These 

exist in the Fourier plane and are defined over the region [-2, ] which is the 

pass-band of the system. They are defined by 

00 

	

Wk(k) = f 00 	

1.5.16 

i.e. they are the Fourier transforms of the vk(y).  They are complete and orthogonal 

over [—,Z]. 

We could repeat the above analysis, substituting wk(k)  for vk(y)  and sub-

stituting the Fourier transform, G(k), for the image, g(y). This would be precisely 

equivalent to the foregoing analysis. Thus we can equally well carry out SVD in 

either the Fourier plane using the wk(k)  or in the image plane using the vk(y). 
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This is because the Fourier transform and the image contain exactly the same amount 

of information, since the one is easily obtainable from the other. 

The reason I introduce the wk(k)  is that it is usually more convenient to work 

with them than with the vk(y),  since they occupy a smaller spatial region and so 

they occupy less space inside the computer. If we ever wish to compute the vk(y), 

it is usually better to compute the Wk first, and then obtain the Vk (y) from them by 

inverse Fourier transforming them. See subsection 2.3.8. 

Section 1.6 Miscellaneous topics 

1.6.1 Computation of prolate spheroidal functions 

Methods for the computation of prolate spheroidal functions are summarised in 

Frieden's review paper of 1971 [11]. All the methods he describes are based on 

deriving linear expansions of the PSFs in terms of Bessel functions. The coefficients 

can be derived from first principles and are tabulated in various standard works (e.g. 

Flammer [18]).  Frieden suggests that it might be possible to compute the functions as 

the eigenfunctions of 1.2.2 but that had not been tried up until that time. He suggests 

this might avoid "extensive computation". 

In their third paper [3] Bertero and Pike give a computational algorithm which 

is based on calculating the eigenfunctions of the operator A. They use a technique 

known as "the power method followed by Hotelling's deflation". This is described 

in more detail in Chapter 2. 

However, the method Pike and Bertero adopt of calculating the elements of 

operator A is rather obscure. I have adopted what I regard as a much simpler and 

more obvious method, and this is the main subject of Chapter 2. 

1.6.2 Two-dimensional prolate spheroidal functions 

So far we have discussed only one-dimensional imaging and one-dimensional 

prolate spheroidal functions. The extension to two-dimensions is straight-forward if 

our 2D imaging system can be separated into two 1D systems. For example, if the 
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object and pupil are both square. Then we can form 2D PSFs by multiplying together 

1D PSFs as follows 

= b(x)b(y) 
	

1.6.1 

If the object and pupil are both circular, the problem is more difficult but it can still 

be solved. This was the subject of Slepian's paper in 1964 [6]. The eigenfunctions of 

this problem are known as Generalised Prolate Spheroidal Functions (GPSW). Bertero 

and Pike also treat these two cases. 

Systems where the object and the pupil are both different and arbitrary were first 

treated by Fedotowsky and Boivin [30] in 1972. These functions can be defined as 

eigenfunctions of the equation: 

1 	
e xp(—iy k) f W ij (x)exp(ik x)dxdk 	1.6.2 

(2 )2
=   

where X is the closed, 2D region in which the object lies and Q is the closed 2D 

region which represents the pupil. 1 and X are different and arbitrary. The integral 

operator on the RHS of equn. 1.6.2. is the 2D imaging operator which we met in 

equn. 1.3.7. 

Fedotowsky and Boivin extended many of the properties of the 1D PSFs to these 

2D functions eg. dual orthogonality etc. They also extended the symmetry properties 

of the PSFs to 2D. Please recall from section 1.4.5 that the PSFs must have either 

odd or even symmetry about the origin. Fedotowsky and Boivin showed that if the 

regions X and omega both have symmetry about the origin then the 2D eigenfunctions 

must also have either odd or even symmetry about the origin. We shall find this fact 

very useful in chapter 2 because it helps to reduce the computational requirements 

for calculating the 2D eigenfunctions. 

Fedotowsky and Boivin also said that "several practical methods for calculating 

and using these functions have been developed and will be presented in a subsequent 

paper". But, as far as I know, no subsequent paper has ever appeared. So far no 
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paper has appeared from any source on the computation of 2D PSFs where object 

and pupil differ in shape. 

In Chapter 2 I shall present my algorithm for computing such functions which 

I claim to be original and the first practical algorithm which is capable of doing just 

this. 

1.6.3 Coherent and incoherent illumination 

Bertero and Pike's second paper is about incoherent illumination. In this case 

the transfer function, H(k), is no longer a simple binary function. (In fact, it is the 

auto-correlation of the corresponding transfer function for coherent illumination). See 

fig. 1.4. This presents us with a choice: we can either use the method suggested 

by Frieden [10] or that suggested by Bertero and Pike [2]. Frieden suggests that 

we deconvolve the data by dividing 0(k) by H(k), as described in section 1.3.2, and 

then proceed as for coherent images using the singular functions described above and 

using the deconvolved image for vector g. 

However, Bertero and Pike adopt a different approach. They seek to find the 

singular functions of the following equation. 

	

1 2l 	

f 
xo 

g(y) 
= - 

j exP(_ikY)H(k)dk 	f (x) exp(ikx) dx 	1.6.3 

	

27r —2I 	 Zo 

which includes the transfer function. They then apply these functions directly to 

the incoherent image without deconvolving it. The eigenvalues of this equation tend 

to follow a curve typical of that shown in fig 1.5. which shows the eigenvalues 

for a space-bandwidth product of 27r. Compare this with fig. 1.3 which shows 

the eigenvalues for a coherent system with the same space-bandwidth product. The 

coherent eigenvalues are larger than the corresponding incoherent ones. 

It is not immediately obvious whether either of these techniques will be better 

than the other. On the one hand, Frieden's technique involves division by H(k) 

which as we saw in section 1.3.2 can be unstable when H(k) approaches zero as it 

does in this case. On the other hand, Bertero and Pike's method involves division 
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Fig 1.4 

The one-dimensional, incoherent, diffraction-limited transfer function 

k, order of function 

Fig 1.5 

The eigenvalues of equn. 1.6.3 with c = 27r 



by smaller eigenvalues and so this introduces instability. It is possible that these two 

effects might cancel out. In chapter four where experimental incoherent images are 

considered I use both and compare the results. In the appendix I give a numerical 

simulation which compares the results of the two methods in the presence of Gaussian 

additive noise. 

1.6.4 Restriction of SVD to low space-bandwidth products 

Bertero and Pike [1] give a graph of the expected increase in resolution due 

to SVD against c, the space-bandwidth product, for different signal-to-noise ratios. 

This graph is reproduced in fig. 1.6. From this graph we can see that at a typical 

signal-to-noise ratio, say 100, SVD gives a significant increase in resolution only at 

values of c less than 	10. Cox and Shepherd [20] confirm this behaviour. This is 

a serious limitation on SVD and we shall discuss its implications in chap. 5 when 

we compare the performance of SVD with other super-resolution techniques. 

12 
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Fig. 1.6 

A graph of super-resolution gain against c 
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1.6.5 Experimental work 

So far I have been able to find only one paper which describes the application of 

super-resolution to real experimental images, by Walker in 1984 [38].  All the other 

papers give only computer simulations. Walker describes a 1D example where the 

data is collected by a photo-multiplier scanned through a deliberately blurred image 

of three boxes. The illumination is coherent. He uses the Gerchberg technique [39] 

to achieve super-resolution. 

The photo-multiplier has the advantage that it gives high signal-to-noise ratio 

and good dynamic range, but it is slow and awkward to gather data in that it has 

to be scanned mechanically across an image. It would be very tedious to acquire 

a 2D image in this way, since the photomultiplier would have to be scanned both 

horizontally and vertically. 

The use of coherent light means that the intensity values must be square-rooted 

to obtain the amplitude values and then assigned a phase value - either positive or 

negative. (Walker knows in advance that the object is real and therefore that the 

image must be real and so can either be positive or negative). The necessity to do 

this does not arise with incoherent illumination. 



Chapter Two 

Computing the Singular Functions 

2.1 Introduction 

One of the main objectives of my PhD was to compute truly two-dimensional 

analogues of the prolate spheroidal functions. These functions are defined by the 

equation 1.6.2 

1 	P 

= 	(2 	
exp(—iy .k) I 	(x)exp(ik.x)dxdk 	1.6.2 

x 

where X is the region within which the object lies and Q is the region within which 

the pupil lies. When X and Q are identical this equation becomes separable and the 

functions become relatively easy to compute but, if they are different the equation is 

inseparable and must be treated as a completely two-dimensional problem. 

At first sight the problem would seem to be too huge to be soluble in any 

reasonable time. For example, suppose we wished to compute the functions on a 

64x64 grid of sample points, then the integral operator defined in equation 1.6.2 

would have 64x64x64x64 = 16 million elements. To store such an operator would 

require 64Mbytes of memory. It is probably considerations such as this that have led 

previous researchers to abandon the problem. 

However, a closer examination shows that it is not so daunting as it might seem. 

For a start the operator has a huge amount of redundancy- many of the elements are 

the same. Being a convolution operator it depends only on the difference (y-x) rather 

than the individual values of y and x. So we need not store the whole array. 

In fact, we shall see that the best way to represent the operator is not as an array 

but as a sequence of subroutines, in which the Fourier transform operators in equn. 

1.6.1 are represented by Fourier transform subroutines. We therefore need to store 

only the Fourier coefficients, which for the above example could be stored in a 64x64 

complex array. 
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Even further reductions in storage and CPU time can be made if the regions X 

and ci have some symmetry. For instance, if they both have quarter-turn symmetry 

(as for example the square and circle do) then we can reduce storage and CPU by a 

factor of 4. 

Looked at in this way, the problem becomes a lot more tractable. I have suc-

ceeded in solving this problem for one particular case: when X is a square and ci is 

a circle. My method should be easy to generalise to other cases especially when both 

regions share certain symmetry properties. In principle it can be extended to regions 

of completely arbitrary shape. The remainder of this chapter describes the algorithm 

used to calculate these functions. I claim that this algorithm is original and as far as 

I know the first to solve this problem. 

Section 2.2 A discrete mathematical model of an imaging system 

2.2.1 Sampling, truncation and noise 

The key to solving equn. 1.6.2 computationally is to develop a mathematical 

model of an optical system, which retains all the essential features of the system and 

yet can be implemented inside a computer. In chapter 1 we began to build such a 

mathematical model. Our first step was to describe both the object and the image by 

two-dimensional complex functions and then to introduce Fourier theory and show 

how this provides a simple relationship between the object and the image. However, 

that model was rather abstract and idealised; - all the functions were Continuous and 

some were defined over all space i.e (—oc, oc). In the real, physical world we cannot 

measure such functions. In this chapter I want to make the model more like a real 

physical system and to include all the characteristics that an experimenter might meet 

in the laboratory. 

There are two basic sets of characteristics which we must include. The first is 

that we cannot measure continuous functions; we can only measure a function at a 

set of discrete sample points. Secondly, we cannot measure an infinite function, we 

can only measure a function over a finite range or, in other words, the function must 
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be truncated. 

The experimenter may have some choice as to how far apart he places his 

sample points and as to where he places his truncation boundary. We shall discuss 

the best choice of these parameters for a given system. We shall make one restriction, 

however, we shall only consider rectangular sampling arrays. 

What parameters are necessary to define our mathematical model completely? 

To answer this, let us recall from chapter 1 that the imaging process can be broken 

down into three stages; 

The object, f(x) is Fourier transformed to give, F(k). 

F(k) is multiplied by H(k) to give G(k). 

G(k) is inverse Fourier transformed to give g(y), the image. 

We are restricting our attention to diffraction-limited systems, therefore H(k) is 

just a binary function, which has the value unity inside a certain closed boundary 

and zero outside. Remember, that the object, f(x), is also contained within a closed 

boundary - the a priori information on which our SVD algorithm is based. Thus, our 

optical system is defined completely once we know these two boundaries - one in 

object space and one in Fourier space. 

We can think of our optical system as consisting of three planes - or "spaces" - 

the object plane (or space), the Fourier plane and the image plane. Any function which 

we deal with must exist in one of these planes. As we said in the opening paragraph 

of this section, all functions must be sampled and truncated. Therefore, we must 

choose where we are going to place the sample points and the truncation boundaries 

in each of the three planes. The sample points and boundaries need not be the same 

in each plane. However, there is a certain relationship between two neighbouring 

planes. This relationship is provided by the rules for Fourier transforming sampled 

functions. We shall discuss this in the next section. 

Section 2.2.2 The discrete fourier transform (DFT) 

The rules governing the Fourier transforms of discrete functions are discussed 
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fully by Newland[32] and Brigham[33]. I shall summarise their accounts here. I shall 

make it one-dimensional for simplicity. 

Dk  
Ji 

I 	I 	I 	I 

Fig. 2.1 A discrete function and its Fourier transform 

Fig. 2.1 shows a discrete function, f3 , and its discrete Fourier transform (DFT), 

Fk. Both functions are sampled- in other words they have values only at a discrete 

set of points- and both are truncated- in other words they are only defined over a 

finite range. Let the truncation distances in each plane be Dk and D, respectively, 

and the sample spacing in each plane dk an d3 . Then, the rules of the DFT demand 

the following relationships 

d, = - 	dk = 	 2.2.1 
Dk 	 D 

Thus, the sample spacing in one plane determines the truncation spacing in the other 

and vice versa. Clearly, the smaller the values of dk and d j  the closer the model 

approximates to the continuous case. 

The total number of sample points within one truncation cell in either plane is 

given by 

Dk 	Dj 
= 	= N 	 2.2.2 

dk 	d, 
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and is the same in both planes. 

We can now define the discrete Fourier transform pair as follows 

Fk = 	>fjexp(2irijk/N) 

2.2.3 
N-i  
E F. exp(-2irijk/N) 

It is easy to show that these two discrete operators are inverses of one another. 

Section 2.2.3 Choosing the sample spacings in the three planes 

In section 2.2.2 we saw that there was a relationship between the sample spacing 

in one plane and the truncation spacing in its Fourier transform and vice versa. In 

the light of this relationship how can we choose the best sample spacings for our 

mathematical model of an imaging system? 

Let us work in one dimension for simplicity. Let the sample spacings in the 

object plane, the Fourier plane and the image plane be d0 , dF and d1  respectively 

and the truncation spacings be D0 , DF and D1  in each of the three planes re-

spectively. Let the object lie in the region [—x0 , x0] and the pupil in [-a, Il] The 

geometrical image lies in the same region as the object. 

We can see at once that D0  and D1  must be equal. This is because by equn. 

2.2.1 they are both given by 

= D1  = - 	 2.2.4 
dF 

Thus, the truncation spacings are the same in both the object and the image planes. 

Furthermore, the sample spacings in the object and image planes must also be 

the same. This is because the operator, A, maps the sample points contained within 

the object boundary onto the sample points contained within the geometrical image 

boundary. If we are to calculate the eigenfunctions of A, then clearly the sample 

points in the image and object planes must be in a one-to-one correspondence. 
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Thus we have both 

Do  = D1  and d0  = d1 	 2.2.5 

and, once we have determined these, the sample spacing and truncation spacing in the 

Fourier plane are also determined via equn. 2.2.1. Therefore, the model really only 

has two free parameters, and, once these have been determined, the whole model is 

determined. 

What is the best way of choosing these parameters? I think that they should be 

chosen so that both D0  and DF are large with respect to the object and pupil size 

respectively. This is primarily so that truncations in the Fourier and image planes 

do not overlap to a large extent. But, it also ensures that our model is an adequate 

representation of a band-limited system and furthermore, that it incorporates our a 

priori information that the object is space-limited. 

The only way we can ensure that our model is a band-limited system is to make 

sure that a large part of the Fourier transform is thrown away, and the only way to 

do that is to make DF large compared to 2 Q, the bandwidth. 

Furthermore, the only way we can represent a space-limited object is to force it 

to sit in the centre of a large field of zeros, and this implies D0  is large compared 

with 2x0 . 

If we choose our parameters so that our model meets these two conditions then 

we can be sure that it be a reasonable approximation to a real optical imaging system. 

In the next section I shall give some typical numerical values for these parameters. 

Section 2.2.4 A particular example of a discrete model 

Let us look at a typical example of a discrete mathematical model of an imaging 

system. Let us assume that the object is square with corners at (+1, +1) space units 

and that the pupil is a circle of radius ir frequency units. 

It will make the computing simpler if we make both object and pupil occupy 

roughly similar numbers of sample points. So let us place both the object and the 
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pupil on 64x64 grids. Of course, the object being square will completely cover the 

grid, but the pupil, being circular, will leave some points uncovered. The sample 

spacing in the object plane is thus 

d0  = 

	

	 2.2.6 
32 

and the sample spacing in the Fourier plane is 

dF = 

	

	 2.2.7 
32 

The total number of points per truncation cell is given by 

N 

	

Do 	2ir 	 2ir 
2048 	2.2.8 

	

= d0 	= dOdF = (1/32)(/32) - 

We thus have to imagine the object as sitting in field of 2048x2048 points of which 

all are zero except the central grid of 64x64 on which the object sits. Similarly, the 

DFT of this object occupies 2048x2048 points but out of these only those contained 

within the pupil are let through to form the image. 

2.3 Expressing A and K as subroutines 

2.3.1 The discrete equivalents of A and K 

We can now find discrete two-dimensional equivalents of the operators, A and 

K, defined in equns. 1.5.1 and 1.5.7. We can write A as follows 

A = OFTHFO 	 2.3.1 

where F represents the DFT operator defined in subsection 2.2.2 and FT  represents 

its inverse. 0 is an operator which sets to zero all sample values outside the object 

region but leaves those inside unchanged and H is an operator which sets to zero 

all sample values outside the pupil but leaves those inside unchanged. Operator A 

maps the sample points inside the object region onto the sample points inside the 

geometrical image region. 
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Now operator K is defined as 

K = FTHFO 	 2.3.2 

and it maps the points inside the object region onto all image space, i.e. all the points 

contained within the truncation cell in image space. 

With A and K thus defined, the whole analysis given in section 1.5 carries over 

to the multi-dimensional, discrete case. We can thus define Uk and vk as given in 

equns. 1.5.3 and 1.5.8. The Uk are now defined over the object region and the vk 

are now defined over the truncation cell in image space. For example, in the discrete 

model described in subsection 2.2.4 the Uk would be vectors with 64x64 elements 

and the vk would be vectors with 2048x2048 elements. 

We have defined the operators A and K in the discrete, multi-dimensional case, in 

the rest of this section we shall consider how to express these operators as sequences 

of computer subroutines. We shall first consider the subroutine which carries out the 

DFT and then show how it can be combined with other subroutines to form A or K. 

Section 2.3.2 The finite Fourier transform routine 

In the previous section we used a 2048x2048 DFT as the basis for our math-

ematical model. But we really only used the central 64x64 elements out of those 

2048x2048. For instance, the object occupied only 64x64, the rest of the 2048x2048 

were set to zero. Similarly, the pupil occupied fewer than 64x64 sample points, the 

rest of the 2048x2048 were thrown away. 

Now what is the best way to carry out the DFT computationally? The first thing 

that comes to mind is to use a standard Fast Fourier Transform (FFT) routine. But the 

problem here is that we would have to supply such a routine with a 2048x2048 array. 

Such an array would occupy 16Mbytes of storage. A huge amount of CPU time 

would be spent moving data in and out of memory. The routine would be very slow. 

Furthermore, it would compute all 2048x2048 elements of the DFT when we really 

only need the central 64x64. The routine thus spends most of its time computing 

values which we are just going to throw away. 
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Clearly this is not an efficient solution to our problem. The solution which 

I eventually chose was to write my own routine, which I call a "Finite Fourier 

Transform routine." This routine accepts as input the central 64x64 elements of a 

2048x2048 array- (the rest of the array elements are assumed to be zero.) It then 

computes the central 64x64 elements of the 2048x2048 DF1'. This is obviously much 

more efficient since it never deals with arrays larger than 64x64. The values it does 

calculate, however, are identical to those that would be calculated by a 2048x2048 

FF1' (if we could get such a routine to work.) We have merely calculated a small 

segment of such a routine. 

The formula for such a routine is given by 

1 
 64 64 

Fk1k2 = 2048 1 >1 
31=1 32=1 

	

27ri(ji - 32.5)(k1  - 32.5) 	2iri(j2  - 32.5)(k2  - 32.5) 
f12 exp( 	

2048 	
exp( 	

2048 

where I have moved the zero order to lie at the centre of the 64x64 array at the point 

(32.5,32.5). This is because optical systems usually have their pupils centered on the 

zero order. Notice that the denominator in the exponent is still 2048, not 64, this 

is what characterises it as a 2048 DFT , whereas the limit on the summation is 64. 

This is what characterises it as a finite Fourier transform, we are only calculating 64 

elements out of 2048. 

This formula can be simplified if we know that the function to be transformed 

has either odd or even symmetry about the horizontal and vertical axes and that it is 

real. For instance, if the function is real and it has even symmetry about both axes 

then we know its Fourier transform must also be real and have even symmetry about 

both axes. We can therefore replace the complex exponentials by cosines. 

1 
 64 64 

Fk, k2 = 2048 
k1=1 k 2=1 

	

27r(j1  - 32.5)(k1  - 32.5) 	27r(j2  - 32.5)(k2  - 32.5) 
f12 cos( 	

2048 	) cos( 	
2048 
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Similarly, if the function has odd symmetry about both axes then we can replace 

the complex exponentials by sines, and if it has odd symmetry about one axis and 

even about the other than we replace one exponential by a cosine and the other by a 

sine. We shall find the ability to do this useful in subsection 2.3.5. when it will be 

necessary to find eigenfunctions with certain symmetry properties. 

Section 2.3.3 Expressing operator A as a sequence of subroutines 

We can now express operator, A, as a sequence of subroutines. For instance, 

for the particular case of the square object and circular pupil, which we discussed in 

subsection2.2.4 we can call the following subroutines 

CALL FINFT(U) 

CALL PUPIL(U) 

CALL FINFT(U) 

where U is a 64x64 array which initially contains the object sample data. FINFT 

is the finite Fourier transform routine and PUPIL is a routine which sets to zero all 

sample values outside the pupil region. 

Thus, the first subroutine calculates a 64x64 segment in the centre of the Fourier 

transform. The second subroutine, PUPIL, throws away all sample values of this 

64x64 segment outside the pupil and the third subroutine calculates the bandlimited 

image within the geometrical image region. 

If the object had not been contained within a square region but in a region of 

some other shape we could add an extra subroutine to either end of this sequence, 

thus 

CALL OBJECT(U) 

CALL FINFT(U) 

CALL PUPIL(U) 

CALL FINFT(U) 

CALL OBJECT(U) 

where OBJECT sets to zero all elements of the 64x64 array outside the object 



region. 

In the separable case where object and pupil are both contained within square 

regions we can simply call 

CALL FINFT(U) 

CALL FINFT(U) 

Thus A is expressed by a sequence of subroutines, not by an array of matrix 

elements. It is important to realise this when we come to consider the algorithm 

which computes the eigenfunctions and values. 

2.3.4 Power Method and Hotelling's Deflation 

In this section we look at the algorithm used to compute the eigenfunctions 

and singular functions. There are no algorithms available for computing singular 

functions directly but there are algorithms to compute eigenfunctions. As we have 

seen, the singular functions Uk are the eigenfunctions of the operator A = KTK. 

Therefore, we must construct an algorithm to find the eigenfunctions of this operator. 

There are many such algorithms available, but I decided to choose the simplest, and 

therefore the easiest to program, even though it is probably the least efficient. The 

algorithm I chose was the "Power Method" followed by "Hotelling's deflation". This 

is the algorithm used by Bertero, Pike et al.[3]. The method is fully described by 

Ralston[34]. 

A further reason for rejecting the more sophisticated algorithms available is that 

these algorithms assume that the operator is specified by a matrix or array, whereas, 

in our case, it is specified by a series of subroutines. There is no one array which 

completely describes our operator. Thus, it is not possible, as some of the more 

sophisticated algorithms require, to select a given set of array elements from the array 

that specifies the operator. On the other hand, in the case of our simple algorithm, 

it is very easy to adapt it to cope with an operator which is specified by subroutines 

rather than a single array. This is because, it is essentially an iterative process. 

In order for the algorithm to work we need to know that the eigenvalues are 
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widely spaced and in decreasing numerical order. We know this is true for small 

values of c in the one-dimensional case. See subsection. 1.4.6. It may not be true 

in the two-dimensional case where degenerate eigenvalues are possible. I shall deal 

with that problem below. 

The Power method is based on the following fact; if an arbitrary vector, x0 , 

say, is repeatedly multiplied by an operator, A, then the product vector, x1, will 

eventually converge on the eigenvector of A with the largest eigenvalue - the so-

called dominant eigenvector. We can then find the eigenvector with the second highest 

eigenvalue by using Hotelling's deflation. This involves forming the operator A2  

specified by 

A2  = A—Ai ui uT 	 2.3.5 

where u1  is the dominant eigenvector, which has now been normalised. A2  has all 

the same eigenvectors as A apart from u1  which has eigenvalue 0 when multiplied 

by A2 . Therefore, we can now apply the Power method to A2  and so find u2 , the 

dominant eigenvector of A2  and the sub-dominant eigenvector of A. We can then 

repeat the deflation process by forming A3  

A3 	= A2  - 	 2.3.6 

whose dominant eigenvector is now u3 . In principle, we could repeat this process 

until we had formed all the eigenvectors of A, but in practice we can only calculate the 

top few eigenvectors before the accumulation of round-off noise causes the algorithm 

to fail to converge. 

How do we adapt this algorithm so that it can cope with an operator that is 

specified by subroutines rather than an array? It is easy to calculate the dominant 

eigenvector, u1 , simply by repeatedly calling the appropriate subroutines but how 

can we carry out the deflation process? The text-books suggest that we should form 

arrays A2 , A3  etc. but clearly we cannot do this if our original operator is not 

expressed by an array in the first place. Our solution is to add an extra subroutine 
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onto the ones already specifying the original operator. Thus, for example, if we wish 

to multiply a vector x0  by A 2  we can carry this out in three stages 

A2x0  = (A—Ai ui uT)xo  
2.3.7 

= Ax0  - /\1  u1 uTxo 

The first stage is to multiply x0  by A to give a vector Xjemp. This can be 

done by the subroutines we have already described. The second stage is to form the 

scalar product, g, say, of u1  and x0 . 

g = u1Txo 

This forms part of the deflationary stage of the above equation. The third stage is to 

multiply u1  by A and g and subtract it from Xj mp, thus 

X1 	= Xtemp - Aigui 	 2.3.9 

These last two stages are carried out by our new subroutine DEFLATE. If we 

wish to form the operators A3 , A4  etc. we simply repeat the last two stages using 

the eigenvectors u2 , u3  etc. 

2.3.5 Symmetry and degenerate eigenfunctions 

With 2D functions we can have degenerate or near-degenerate eigenvalues. This 

can create a problem for our algorithm since it works best when the eigenvalues are 

widely spaced. 

The reason for the degeneracy is clear if we consider the separable case. Here 

the eigenvalues are products of 1D eigenvalues. Thus, if the 2D eigenvalue is Aij 

and the 1D values are A, and A, we have 

Aij =  A2 A3 	 2.3.10 

But, we also have 

A ji = A3 A, 	 2.3.11 
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where Aij  and Aji are the eigenvalues of two different eigenfunctions uij and 

u32 . (One is merely the other rotated through 90 degrees, but, nevertheless, they are 

different functions). Thus, we have degenerate eigenvalues. 

This creates a problem for the algorithm because it will not know onto which 

eigenfunction to converge. But we can solve this problem as follows. When we have 

degenerate eigenfunctions, any linear combination of them is also an eigenfunction 

with the same eigenvalue. Thus, we can form two new eigenfunctions as follows 

US = Uij+Uji 

2.3.12 
UA = Uij - Uji 

where the subscripts "S" and "A" stand for "symmetric" and "anti-symmetric", this 

is because us  will be symmetric about the leading diagonal and UA will be anti-

symmetric. The reason I choose these particular combinations is that it is possible 

to force our algorithm to converge only on eigenfunctions which have one particular 

symmetry property eg. symmetric or anti-symmetric about the leading diagonal. The 

algorithm will thus converge on only one of the degenerate pair and we shall have 

no problems with closely-spaced eigenvalues. 

How do we force the algorithm to do this? We have to add yet another subroutine 

to those which describe our operator. This subroutine forces its input vector to become 

either symmetric or anti-symmetric by replacing the values on one side of the diagonal 

by their images under reflection in the diagonal (having been multiplied by +1 as 

appropriate). This subroutine is called REFL and is called as follows. 

CALL REFL(U) 

CALL OBJECT(U) 

CALL FINFT(U) 

CALL PUPIL(U) 

CALL FINFT(U) 

CALL OBJECT(U) 

CALL REFL(U) 
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As mentioned before, it is possible to force the DFT routines to assume certain 

symmetries about the horizontal and vertical axes. This is described by equation 2.3.4 

where we can choose the function to be symmetric by making the Fourier kernel into a 

cosine function rather than a complex exponential or we can make it anti-symmetric 

by choosing the kernel to be a sine function. This allows us to limit further the 

number of functions onto which the algorithm can converge. Thus, for example, we 

could force the algorithm to converge only on functions which were symmetric about 

both axes and the leading diagonal. In fact, there are six sets of functions which we 

can force the algorithm to converge on. These are shown in the table below. 

Horizontal 	Vertical 	Diagonal 

S 	 S 	S 

S 	 S 	A 

A 	 A 	S 

A 	 A 	A 

A 	 S 	- 

S 	 A 	- 

In the last two cases, where the functions have opposite symmetry about the two 

axes, it is not possible for them to have any particular symmetry about the leading 

diagonal. 

We know that all the eigenfunctions must belong to one of these sets because 

of the symmetry properties of the object and pupil. As Fedotowsky and Boivin[30] 

showed, if the object and pupil are symmetric about the origin (as the square and 

circle are) then the eigenfunctions must be either symmetric or antisymmetric about 

the origin. See subsection. 1.6.3. The above six sets are the only sets allowed by 

this rule. 

If the object and pupil did not have any particular symmetry then computing 

their eigenfunctions would be very much harder using this algorithm, although, in 

principle, it could be done, given enough CPU time. This problem should be the 

43 



subject of further investigation. 

Forcing the algorithm to converge on only one set has several advantages. Firstly, 

it reduces the error in each function because the different sets are calculated inde-

pendently and therefore the accumulation of round-off error from one function to the 

next is less. Furthermore, the error is reduced because values which are supposed to 

be equal are forced to be exactly equal. Secondly, it reduces CPU time because we 

only need to calculate one quadrant of each function - the rest can be generated by 

symmetry operations. 

2.3.6 Speed of Convergemce 

The rate at which the Power method converges depends on how closely spaced 

the eigenvalues are. If the eigenvalues are widely spaced the algorithm will converge 

very rapidly on each eigenfunction in turn. If two eigenvalues are very close together 

the algorithm will take much longer to converge on the larger of the two. The latter 

tends to be the case for values of c > 4, because, in this region the top eigenvalues 

are very close together - all being nearly unity - as can be seen from figure 1.3 in 

Chapter 1. In this case we are forced to let the algorithm run for many iterations - 

perhaps as much as 2-3,000. This larger number of iterations is only necessary for 

the top one or two eigenfunctions. The rest require only a smaller number - perhaps 

100 - because they are spaced further apart. 

2.3.7 Accuracy of Eigenfunctions 

The accuracy of the computed eigenfunctions will decrease as the eigenvalue 

decreases. This is partially because errors in the previous eigenfunctions will accu-

mulate and be passed on to subsequent eigenfunctions but mainly because the smaller 

eigenvalues are very much less than L. For example, we often find eigenvalues of 

the order of io. Let us consider what happens to this eigenfunction when it is 

multiplied by the operator A. Let us suppose that initially all the elements of the 

vector are of the order of unity. After the multiplication, they are all of the order 

iO. This reduction has come about mainly as a result of the subtraction of very 



nearly equal numbers. These numbers are stored only to a certain degree of precision. 

For example, a REAL variable in FORTRAN is stored to 8 significant figures and a 

DOUBLE PRECISION variable is stored to 16 significant figures. Let us suppose, 

two nearly equal numbers, both of the order of unity, are subtracted and the dif- 

ference between them is found to be 	how accurately will this difference be 

known? If the original numbers were stored to 8 significant figures the different will 

be known to only 1 significant figure accuracy. If the original numbers were stored 

to 16 significant figures, the different will be known to 16 - 7 = 9 significant figures 

of accuracy. We can expect roughly the same degrees of accuracy in our estimation 

of our eigenvalues. Thus, for an eigenfunction stored as DOUBLE PRECISION and 

with an eigenvalue of 10 	we can expect roughly 9 significant figures of accuracy. 

2.3.8 Computing the singular functions 

We have now written an algorithm which can calculate the eigenfunctions Uk. 

What is the best way to calculate the singular functions vk?  The first way that might 

occur to us is to use equn 1.5.8(a) 

KUk = akvk 	 1.5.8(a) 

But, as we have seen above, this will result in an increase in the error in the vk, 

especially if Ak  is very much less than 1. Therefore, this is an inherently inaccurate 

way of estimating vk. 

A possible way is to calculate the Vk  directly as the eigenfunctions of KKT 

See equn. 1.5.12. But this would involve a great deal more CPU time than calculating 

Uk because the Vk  normally occupy many more sample points. 

The best way to solve this problem is to calculate the functions, wk,  which 

were introduced in subsection 1.5.4. These functions exist in the Fourier plane and 

are defined over the pupil region. They are related to the Vk by equn. 1.5.16. We 

can rewrite 1.5.16 as follows 

Vk = FTwk 	 2.3.13 
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It is easy to show that the wk are eigenfunctions of the operator 

B = HFTOFH 	 2.3.14 

We can express B using the same subroutines which we used to express A, but 

they are called in a different order. 

CALL PUPIL(U) 

CALL FINFT(U) 

CALL OBJECT(U) 

CALL FINFT(U) 

CALL PUPIL(U) 

We can then calculate the eigenfunctions of this operator just as we did for 

operator, A. These eigenfunctions are the wk.  We can then calculate the vk from 

them using equn. 1.5.16. 

2.3.9 Computing the incoherent singular functions 

In section 1.6.3 it was pointed out that for incoherent images the transfer function 

was no longer binary and that it was possible to define a new set of singular functions 

using equn. 1.6.3. 

1 2 	

dkj f(x)exp(ikx)dx 	1.6.3 
27r 2Q 

g(y) = 	exp(—iky)H(k) 
-XO 

This equation incorporates the non-binary transfer function. The transfer function for 

a one-dimensional, diffraction-limited incoherent system is shown in fig. 1.4. 

It is easy to adapt the algorithm described in this chapter to compute these 

incoherent singular functions. The operator K is defined as before by equn 2.3.2 

K = FTHFO 	 2.3.2 

except that H now represents multiplication by the non-binary transfer function. The 

Uk can now be computed as eigenfunctions of the operator 

KTK = OTFTHTHFO 	 2.3.15 
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We can represent this operator by sequence of subroutines similar to that we used to 

represent the operator A in section 2.3.3 

CALL OBJECT(U) 

CALL FINFT(U) 

CALL INC-PUPIL(U) 

CALL INC-PUPIL-TRANS(U) 

CALL FINFT(U) 

CALL OBJECT(U) 

where the subroutine INC-PUPIL carries out multiplication by the operator H 

and INC-PUPIL-TRANS carries out multiplication by its transpose. If the transfer 

function is real and symmetric it will be identical to its transpose, and we can use 

the same subroutine twice, but in chap. 4 we shall meet a transfer function which 

has an imaginary part, in which case two different subroutines are required. The wk 

are given by 

B = HTFTOFH 	 2.3.16 

and to compute them we merely reorder the above sequence of subroutines as specified 

by 2.3.16. 
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Chapter Three 

Computer Simulations 

Section 3.1 

3.1.1 Introduction 

In this chapter we shall look at some computer simulations of super-resolution. 

I have generated some fictitious "objects" inside the computer by creating arrays of 

data and then calculated the "images" of these objects using equn. 1.3.7. I have 

then applied the EVD and SVD algorithms to these images to see if they return the 

original object. This should test the internal consistency of my mathematical model 

and the EVD and SVD algorithms. However, even if the model and algorithm pass 

this test, it does not necessarily imply that they will work in the real world, when 

applied to images derived from a real optical system. We shall test that in chapter 4. 

I have also added artificial noise to the computer-generated images by adding 

a random number to each sample value. I have then applied the EVD and SVD 

algorithms to the noisy images to see if the noise has the detrimental effect predicted 

in chapter 1. 

Bertero and Pike[1]  give an analysis of the effect of noise on super-resolution. 

In their analysis they represent the object, image and noise as continuous functions 

whereas in this chapter I shall represent them as discrete functions. One has to be 

careful in carrying over the results of Bertero and Pike's continuous analysis to the 

discrete case. This is the subject of the next two subsections. In subsection 3.1.2 

I give a condensed version of Bertero and Pike's continuous analysis and in 3.1.3 I 

give my discrete analysis which parallels theirs. 

3.1.2 Bertero and Pike's analysis of the noise 

In Section 1.5 we went through Bertero and Pike's account of EVD and SVD in 

great detail. However, I did not say a great deal about the effect of noise other than 

to say that SVD was superior to EVD in the presence of noise because the singular 



values, ) , were greater than the eigenvalues, Ak.  Bertero and Pike go on to give a 

more detailed account of the effect of noise in both cases. I am now going to give a 

condensed version of that here. The analysis will be one-dimensional for simplicity. 

It can easily be generalised to two dimensions. 

The purpose of the analysis is to calculate the mean square error, </3 > , in our 

measurement of each image coefficient, gj. They make the following assumptions. 

They assume that the noise is white noise and that it is not correlated with the signal. 

They further assume that the noise and signal are additive. Therefore, the observed 

image, g(y), is related to the "true" (i.e. noise-free) image, (y), as follows 

g(y) = (y)+n(y) 
	

3.1.1 

where n(y) is the noise. Because n(y) represents white noise it has the following 

property 

<fl(y)fl*(yI) > = 	- y' ) 	 3.1.2 

Bertero and Pike go on to calculate the error due to the noise in the image 

coefficients, g,. Let us first consider the EVD case. In section 1.5 we saw that 

the gi are given by the scalar product of the image, g(y), with the eigenfunctions, 

Uk(y). 

f xO 
XO 

gk =g(y)uk (y)dy 	 1.5.5(d) 

Now, if we substitute 3.1.1 into equn. 1.5.5(d) we get 

f 
XO 	

f xO 
2;o 

gk = 
	

(y)uk (y)dy + 	rt(y)uk(y)dy
X 	 3.1.3 

gk+/k 

where g, is the observed image coefficient, k  is the "true" image coefficient and 

/3k is the error due to the noise. 

fxo 

13k = j n(y)uk(y)dy 	 3.1.4 
—2;o 



Finally, by combining 3.1.4 and 3.1.2 we get 

<i9> 	62 	 3.1.5 

Thus we have now obtained an estimate for the mean square error in each image 

coefficient, g, in the EVD case. 

Now, let us consider the SVD case. In SVD gi  is given by the scalar product 

of g(y) with the singular functions, vk(y),  thus 

00 

gk 	= f 00 

9(Y)Vk(y) dy 	 1.5.13(d) 

and now /3k  is given by 

= 
 f

00 

	

oo 
n(Y)vk(Y)dY 	 3.1.6 

But Bertero and Pike show that the value of <3 > is still given by 

3.1.7 

i.e. the mean square error, </9 >, is the same whether we use SVD or EVD. The 

reason SVD is superior is that the error is amplified by A 2  rather than by )k.  The 

value of <9 > is important because it allows us to decide which of our measured 

image coefficients are badly corrupted by noise and so must be excluded from the 

reconstruction process. 

3.1.3 Discrete analysis 

The results of the previous subsection were derived using a continuous analysis. 

In this subsection we shall derive the same results from a discrete analysis. The 

discrete analysis parallels the one given in the previous subsection. 

First of all, let us consider the type of device which might be used to detect an 

image. Let us suppose it consists of a square array of small detector elements each of 

which itself is square of area, d. Let us suppose the elements are contiguous so that 
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there are no gaps between them. For the purposes of this chapter we shall assume 

that these detectors can measure the complex amplitude of the image. In practice this 

would only be possible by using interferometric techniques but we shall ignore that 

in this chapter. 

The output from each detector is the integral of the signal falling upon it, in-

tegrated over the area of the detector. We assume that the signal does not vary 

significantly over this area. Therefore, we can obtain an estimate for the image 

sample value at the centre of the detector, g' , thus 

9 	= ! 
Idet. 

g(y)dy 	 3.1.8 
d 

where we have divided the output from the detector by the area, d, of the detector. 

In this chapter a superscript, eg. gee,  denotes a sample value whereas a subscript 

denotes either a scalar product, g,, or a particular vector, eg. tlk. 

As in equns. 3.1.1 and 3.1.3 we can use the additivity of the noise to obtain 

gk =I n(y)dy 
d del. 	 3.1.9 

= k + n  

where 	is the true sample value and n is the error due to the noise. 

J et. 

flk 	
= 	

1 

d 	
n(y) dy 	 3.1.10 

N.B. rt' is not an estimate of the value of n(y) at the detector. We can never measure 

n(y) itself- only the integral of n(y) over a certain non-zero area. 

By combining equns., 3.1.10 and 3.1.2 we can show 

<fljflk> = 	8jk 	 3.1.11 

Equn. 3.1.11 is the equivalent of 3.1.2. We can now use equn. 3.1.11 to calculate 

> for the discrete case. 
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We consider first the EVD case. Just as in Bertero and Pike's analysis, the image 

coefficients, gj , are given by the scalar product of the image with the eigenfunctions, 

Uk. 

gk = dg't4 	 3.1.12 

where the Uk have been normalised thus 

duu = 1 kk 	 3.1.13 

In 3.1.12 and 3.1.13 uj denotes the jth component of the kth eigenfunction. and 

g3  denotes the jth sample value of the image. 3.1.12 is the discrete equivalent of 

equn.1.5.5(d) but the integral has been replaced by a summation. The factor, d, is 

the equivalent of the differential, dx, in equn. 1.5.5(d). 

Just as in Bertero and Pike's case we can now invoke the additivity of the noise. 

gk = d>'u'+d>n3t4 	
3.1.14 

= gk + /9k 

This is the equivalent of 3.1.3. Now 

13k =dEnjuj 	 3.1.15 

By combining equns. 3.1.15 and 3.1.11 we can show that 

</3 > = 	 3.1.16 

which is the same result as was obtained by Bertero and Pike in equn. 3.1.5. Just 

as in Bertero and Pike's analysis we can also show that the value of < 02 > is the 

same in the SVD case as in the EVD case. 

We have now shown that both the discrete and continuous analyses give the 

same result for < 	>. 
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Section 3.2 Numerical Examples 

3.2.1 Introduction 

In this section, we consider some numerical examples of EVD and SVD. We 

shall consider one particular imaging situation. The imaging system will be the same 

which we discussed in chapter 2, i.e. the square object/circular pupil system, except 

we shall use a 16x16 grid rather than a 64x64. As in that chapter, our a priori 

information is that the object lies within a square whose corners are at the points 

(+ 1, + 1). The pupil is a circle centered on the origin of the Fourier plane and of 

radius ir frequency units. Both the object and the pupil lie on a square grid of 16x16 

sample points. So the sample spacing in the object plane is 1/8 and in the Fourier 

plane is 7r/8. The detector area, d, is therefore 1/64. 

The object consists of four delta functions of height 8units placed at the points 

(+0.4375, +0.4375) Thus it is symmetric about both the horizontal and vertical axes 

and the leading diagonal. Therefore it will be orthogonal to all the eigenfunctions 

except those in the SSS symmetry set. See fig. 3.1. 

The image within the geometrical image region is shown in fig. 3.2. The 

geometrical image region is identical to the object region and so is a square with 

corners (+1, +1) and also lies on a 16x16 grid. It is the sample values in this region 

which are used by the EVD algorithm. 

A similar argument to that given in subsection 2.2.4 leads to a value for N, the 

total number of points in the truncation cell, of 128. Thus the entire image lies on a 

128x128 grid of sample points. It is the sample values in this region which are used 

by the SVD algorithm. 

The noise consists of random numbers, flk,  added to each image sample value. 

The flk  are derived from the random numbers, ri',  generated by the NAG random 

number generator G05CAF. The r  k are uniformly distributed over the range [0,1]. 

The n   are calculated from the r k  by 

= 	(r' -0.5) 	
3.2.1 
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where t is a scaling factor introduced so that the variance of the noise distribution 

can be changed. Thus from equn 3.1.11 

62 	= d < ( k)2 	d < (rk - 0.5)2 > 	 - 0.5)2 > 

	

dt2 	- 	t2 	
3.2.2 

and the value of <(rk - 0.5)2 > turns out to be 1/12. Thus 

	

= 1/v'12 	0.288 
3.2.3 - 	t 

In most of the following subsections the value of t was chosen to be 100. Therefore, 

throughout this section I assume that we know in advance the value of e. As we 

saw from equn. 3.1.16 2  is the expected value of <> - the mean square error 

in the image coefficients due to the noise. We shall use this fact in sections 3.2.5. 

and 3.2.6 to decide which image coefficients are badly corrupted by noise and which 

aren't. 

3.2.2 A noise-free eigenvalue decomposition 

table 3.2.2 

OBJECT 
0.218580E+00 

-0.153398E+00 
0.572087E-01 

-0.424099E+00 
0.765347E-01 

-0.242735E+00 
0.320511E+00 
0.165846E+00 

IMAGE 
0.206526E+00 

-0.275864E-01 
0.722903E-03 

-0.260556E-03 
0.721735E-06 

-0.432934E-07 
0.232751E-07 
0.158165E-08 

RECON 
0.218580E+00 

-0.153398E+00 
0.572087E-01 

-0.424099E+00 
0.765347E-01 

-0.242694E+00 
0.320673E+00 
0.995860E+00 

LAMBDA 
0.944854E+00 
0.179836E+00 
0.126362E-01 
0.614374E-03 
0.943017E-05 
0.178387E-06 
0.725820E-07 
0.158823E-08 

Table 3.2.2 illustrates the eigenvalue decomposition of the object described 

above. The first column shows the scalar products of the first eight eigenfunctions 

in the SSS symmetry set with the original object. Hereafter, these will be called the 

"object coefficients". The second column shows the scalar products of the same eigen-

functions with the image of that object. Hereafter these will be known as the "image 

coefficients". The third column shows the scalar products of the same eigenfunc-

tions with the reconstructed object as produced by the EVD algorithm. These will be 
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known as the "reconstruction coefficients". The final column shows the eigenvalues 

corresponding to each eigenfunction. 

The first thing to note is that reconstruction coefficient is equal to the appropriate 

image coefficient divided by the appropriate eigenvalue. This is as we would expect 

for the EVD algorithm. The second thing to note is that the first seven reconstruction 

coefficients are equal to the corresponding object coefficient. This shows we have 

succeeded in reconstructing at least the first seven of the eigenfunctions of the original 

object. The reconstruction obtained with these functions is shown in fig. 3.3. 

This table illustrates the internal consistency of our mathematical model and 

EVD algorithm. If the algorithm had not returned exactly the same reconstruction 

coefficients as those of the original object there would clearly be something wrong 

with the algorithm. 

Note that there is an error between the reconstruction and object coefficients and 

that this increases as we go down the table. In fact the error is roughly proportional 

to 1/)tk. This error is due to the round-off error introduced during the computation 

of the eigenfunctions. See section 2.3.7. This is the reason why we use no more than 

seven functions even in a "noise-free" situation like this. After the seventh function 

the round-off error becomes too large to allow accurate reconstruction. 

3.2.3 A noise-free singular value decomposition 

table 3.2.3 

OBJECT 	 FOURIER 

	

0.218580E+00 	0.212468E+00 

	

-0.153398E+00 	-0.650514E-01 

	

0.572087E-01 	0.643089E-02 

	

-0.424099E+00 	-0.105120E-01 

	

0.765347E-01 	0.235027E-03 

	

-0.242735E+00 	-0.102521E-03 

	

0.320511E+00 	0.863490E-04 

	

0.165846E+00 	0.661047E-05 

RE CON 
0.218580E+00 
-0.153398E+00 
0.572087E-01 
-0.424099E+00 
0.765347E-01 

-0.242735E+00 
0.320511E+00 
0.165873E+00 

SQRT (LAMBDA) 
0.972036E+00 
0.424071E+00 
0.112411E+00 
0.247866E-01 
0.307086E-02 
0.422359E-03 
0.269410E-03 
0.398526E-04 

The above table demonstrates a singular value decomposition of the same object 

as in section 3.2.2. The decomposition was carried Out in the Fourier plane using 

55 



the w-functions, as described in subsection 1.5.4. Again column 1 shows the object 

coefficients. Column 2 shows the scalar products of the w functions with the Fourier 

transform of the image. These will be known as "pupil coefficients". Col. 3 shows 

the scalar product of the reconstruction generated by the SVD algorithm with the 

u functions. Col. 4 shows the singular values (which are the square root of the 

eigenvalues shown in table 3.2.2) 

The first thing to note is that the reconstruction coefficients are equal to the pupil 

coefficients divide by the singular values. The second thing to note is that all eight 

of the reconstruction coefficients are equal to the object coefficients. And, just as in 

the previous case, this illustrates the internal consistency of the SVD algorithm. 

The error in the reconstruction coefficients still increases as we go down the table, 

but it does not increase so fast as in the previous case. Here it is proportional to 

rather than Ak.  This is why more of the reconstruction coefficients correspond 

to the object coefficients. 

3.2.4 The additivity of noise 

SIGNAL 
0.212468E+00 

-0.650514E-01 
0.643089E-02 

-0.105120E-01 
0.235027E-03 

-0.102521E-03 
0.863490E-04 
0.661047E-05  

table 3.2.4 

NOISE 
-0.882588E-03 
-0-272742E-02 
-0.493974E-02 
-0.217475E-02 
-0-459366E-03 
-0-128429E-02 
-0.794539E-03 
-0-528153E-02 

SIG.+NOI 
0.211585E+00 

-0.677788E-01 
0.149115E-02 

-0.126867E-01 
-0.224339E-03 
-0.138682E-02 
-0.708190E-03 
-0.527492E-02 

We have now illustrated the internal consistency of both the EVD and SVD. We 

must now turn our attention to behaviour of both algorithms in the presence of noise. 

The noise was generated as described in subsection 3.2.1. 

Table 3.2.4 illustrates the additive property of the scalar products of image and 

noise. Column 1 shows the coefficients of the noise-free signal. Column 2 shows 

the scalar products of the u functions with the noise alone before it is added to the 
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image. Column 3 shows the scalar products of the u functions with the noise and 

image once they've been added together. As can be seen, the numbers in col.3 are 

the sum of those in cols. 1 and 2. 

The values in col.2 represent samples from the distribution of fik.  In this case 

the value of t was chosen to be 100. So from equn. 3.2.3. e = 0.288E-2. From 

equn.3.1.16 we should expect the root mean square (rms) value of the coefficients in 

col.2 to be approximately equal to E and it can be seen that they are all of that order 

of magnitude. This was was the value of e chosen for the next two subsections. 

3.2.5 A noisy eigenvalue reconstruction 

table 3.2.5 

OBJECT 
0.218580E+00 

-0.153398E+00 
0.572087E-01 

-0.424099E+00 
0.765347E-01 

-0.242735E+00 
0.320511E+00 
0. 165846E+00 

IMAGE 
0.209853E+00 

-0.292015E-01 
0.343510E-02 
0.325056E-02 

-0.172033E-02 
-0.129704E-02 

0.205778E-02 
-0.196039E-02 

RE CON 
0.214769E+00 

-0.158270E+00 
0.272798E+00 
0.529089E+01 

-0.182428E+03 
-0.727091E+04 

0.283511E+05 
-0.123432E+07 

LAMBDA 
0.944854E+00 
0.179836E+00 
0.126362E-01 
0.614374E-03 
0.943017E-05 
0.178387E-06 
0.725820E-07 
0.158823E-08 

Table 3.2.5 shows a reconstruction of the same object we have already met in 

section 3.2.2 and 3.2.3 but this time noise has been added to the image. The object 

coefficients are the same as before but this time the image coefficients are the sum 

of the previous image coefficients and the noise coefficients. The reconstruction 

coefficients are shown in col. 3. 

Comparing the reconstruction coefficients with the object coefficients, we can 

see that they do not correspond as closely as they did in the noise-free case. The 

most obvious point is that the error increases dramatically as we go down the table. 

The error in the first coefficient is approximately 0.01 of the object coefficient but 

in the eighth coefficient it is approximately 1.0E7 times the object coefficient. Thus 

only about the first two reconstruction coefficients bear any resemblance to the object 

coefficients. 
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In an experimental situation we would not know what the object coefficients 

were, so how could we tell which of the reconstruction coefficients were valid? This 

is where our knowledge that <01  > is equal to 2  is useful. In this case we know 

that 6 =0.288E-2. Now, any image coefficients which are at approximately this level 

are bound to be seriously affected by noise, and we can see from col. 2 that all the 

coefficients lower than eigenvalue 2 are at about his level, therefore we must discard 

them. But coefficient 1 is 100 times larger than 6 and coefficient 2 is 10 times larger. 

Therefore, these two are likely to be reasonably accurate. We can therefore include 

them in our summation. The reconstruction using these coefficients is shown in fig. 

3.7. 

3.2.6 A noisy singular value reconstruction 

table 3.2.6 

OBJECT 
0.218580E+00 

-0.153398E+00 
0.572087E-01 

-0.424099E+00 
0.765347E-01 

-0.242735E+00 
0.320511E+00 
0.165846E+00 

FOURI ER 
0.211585E+00 

-0.677788E-01 
0.149115E-02 

-0.126867E-01 
-0.224339E-03 
-0.138682E-02 
-0.708190E-03 
-0.527492E-02 

RE CON 
0.217671E+00 

-0.159829E+00 
0.132652E-01 

-0.511838E+00 
-0.730543E-01 
-0.328350E+01 
-0.262867E+01 
-0.132361E+03 

SQRT (LAMBDA) 
0.972036E+00 
0.424071E+00 
0.112411E+00 
0.247866E-01 
0.307086E-02 
0.422359E-03 
0.269410E-03 
0.398526E-04 

Table 3.2.6 shows a reconstruction of the same object as the one we have met 

in previous sections. But this time it is reconstructed using a singular value decom-

position. The noise level was the same as in the eigenvalue reconstruction in section 

3.2.5. 

Just as we did in the previous section, let us compare the object coefficients with 

the reconstruction coefficients. Again we see that the error increases as we go down 

the table but it does not increase so fast as in the eigenvalue case. Here the error 

in the eighth coefficient is only about 1.OE+3 times the object coefficient as opposed 

to 1.0E7 times in the previous case. Here, eigenfunctions 1, 2 and 4 are usable as 

opposed to only 1 and 2 in the previous case. We can tell they are usable by looking 



at the pupil coefficients in col.2. Any coefficients which are large compared with 

are usable. In this case E is still 0.288E-2. 

It may seem odd that reconstruction coefficient no.3 is not usable whereas no.4 

is, despite the fact that no.4 has a smaller singular value. We can see the reason if 

we look at col. 1. Object coefficient no.3 just happens to be very small compared 

to the others, whereas no.4 is large compared to the others. Therefore, no.4 is less 

severely affected by noise despite its smaller eigenvalue. We can exclude no.3 from 

the summation but include no.4. (The exclusion of no.3 doesn't actually make much 

difference to our reconstruction since its contribution is so small anyway.) The 

reconstruction using these coefficients is shown in fig. 3.5. 

We can see by comparing the results in table 3.2.6 with those in 3.2.5 that at least 

in this case SVD is superior to EVD. This is essentially because the pupil coefficients 

in the case of SVD are higher than the corresponding image coefficients in the case 

of EVD. The noise coefficients are the same in both cases. The higher values in SVD 

means that they are less severely affected by the noise. 
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fig 3.1 The original object 

fig 3.2 The bandlimited image within the geometrical image region 



fig 3.3 The reconstruction with 7 singular functions 

fig 3.4 The reconstruction with 5 singular functions 
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fig 3.5 The reconstruction with 4 singular functions 

fig 3.6 The reconstruction with 3 singular functions 



fig 3.7 The reconstruction with 2 singular functions 
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Chapter Four 

Experimental Work 

Section 4.1 Introduction 

The computer simulations carried out in the previous Chapter tested the internal 

consistency of our mathematical model and the SVD algorithm. They did not, how-

ever, test consistency with the external, real world. To do this, we must apply the 

algorithm to images from a real optical system and compare the reconstructed objects 

with the original objects. The technique is the same as in the previous chapter but we 

are now dealing with images generated by an optical system rather than a computer 

subroutine. 

In the first part of this chapter we discuss how the optical images were generated. 

We explain why incoherent rather than coherent illumination was used and discuss 

the form of the incoherent transfer function. We describe the optical bench used to 

generate the images and the equipment used to digitise them and store them in the 

computer. Finally, we discuss the distortion introduced by this equipment and the 

methods used to remove it. 

In the second part of this chapter we give some examples of degraded images 

and reconstructed objects. We compare these with the original objects and discuss 

how far the algorithm has succeeded. 

Section 4.2 The Optical System 

4.2.1 Incoherent versus coherent illumination 

The theories of incoherent and coherent imaging both follow the lines laid down 

in Chapter 1 for the Fourier theory of imaging. The main difference is that in the 

incoherent case the functions, f(x) and g(y), represent intensity distributions whereas, 

in the coherent case, they represent amplitude distributions. The intensity is the mod-

ulus squared of the amplitude. This difference is crucial when it comes to carrying 
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out experiments in the real world, for, while it is easy to measure an intensity distri-

bution directly, it is impossible to measure an amplitude distribution without the aid 

of interferometry. Therefore incoherent images can be adequately measured using a 

camera whereas coherent images require much more elaborate equipment. It is for 

this reason that I chose to carry out the experiments with incoherent illumination. 

4.2.2 The incoherent transfer function 

For a given optical system the transfer function, Hj(k), under incoherent il-

lumination is the auto-correlation of the transfer function, Hc(k),  under coherent 

illumination. Fig. 1.4 shows the incoherent transfer function for a one-dimensional 

diffraction-limited system. As was explained in section 1.6.5 we have a choice as to 

how we treat an incoherent SVD. We can either use Frieden's method or Bertero and 

Pike's method. In the appendix I show that a numerical simulation indicates that the 

latter method is better. In this chapter I use both and compare the results. 

Frieden's method requires us to deconvolve incoherent images before we can 

apply the SVD algorithm. We can do this, as described in Chapter 1, by dividing 

G(k), the Fourier transform of the incoherent image, by the transfer function, H1(k). 

- G(k) 
F(k) - H

1(k) 

where F(k) is the segment of the Fourier transform of the object within the pass-band. 

In theory, this should allow us to estimate F(k) on the interval [-2Q, 2Q]. 

However, please note that as k approaches +2l, H(k) becomes << 1, so that 

division by H(k) becomes unstable. In practice we must impose a cut-off point at a 

value of k somewhat less than 2f. So, in fact, we can only know F(k) on an interval 

shorter than [-2Q, 2]. 

Of course, it would be a mistake to assume without evidence that our optical 

system is diffraction-limited. It is always necessary to measure the transfer function 

as accurately as possible. Even in cases where the system is not diffraction-limited 

it should still be possible to deconvolve the images provided the transfer function is 

65 



known. We must bear in mind that the function may be complex if the system is 

aberrated. 

4.2.3 The Optical System 

The ultimate purpose of work on super-resolution is that it should be applied to 

"useful" optical systems such as microscopes and telescopes. However, before we 

can go on to these more complex systems we must test our algorithm on a much 

simpler system, so that, if anything goes wrong, the cause can be traced more easily. 

Such a system is shown below. 

f 	 f 	 f 	 f 	 f 

I 	I 	I 

SOURCE 	LENS 	OBJECT 	LENS 	FOURIER 	LENS 	CAMERA 
1 	 2 	PLANE 	 3 

FIG 4.1 The 6f optical system 

This arrangement is very common in the optics world and is known as a "6f" 

optical bench. Its virtue is that, while it is very simple, it can be used to model or 

simulate the behaviour of a large variety of more complex systems. In fact, in theory, 

it should be capable of simulating any LSI system. 

The reason for this generality is that the bench acts as a physical analogue of the 

mathematical model of LSI imaging given in Chapter 1. There we saw that imaging 

could be broken down into three stages: 

Fourier transformation of the object 

Multiplication of the Fourier transform by the transfer function, H(k), to give 

G(k) 



3)Inverse Fourier transformation of G(k) to give the image, g(y). 

Each of these three stages is represented on the 6f optical bench: 

Lens 2 Fourier transforms the object 

A filter in the Fourier plane performs the multiplication by H(k) to give G(k) 

Lens 3 Fourier transforms G(k) to give the image on the detector plane of the 

camera. 

As we saw in Chapter 1, the transfer function, H(k) completely characterises a 

given optical system. Therefore, our ability to simulate any particular system depends 

on our ability to reproduce the appropriate form of H(k) as a filter. This is easy for 

diffraction-limited systems, since, in that case, the appropriate filter is an aperture in 

an opaque screen. However, it becomes much more difficult when 11(k) is complex. 

In this experiment we shall restrict our attention to diffraction-limited systems. 

It is the generality of the 6f bench that allows us to hope that if the SVD algorithm 

works for it then it will also work for other optical systems such as microscopes and 

telescopes. 

4.2.4 Description of the Optical Equipment 

All the lenses, mirrors, filters etc were held in adjustable saddles mounted on an 

optical bench. The lenses were 7.5 cm diameter achromatic doublets with im focal 

length. The overall length of the bench was thus 6m. 

The incoherent source was a Hg arc lamp. This emits several spectral lines, but 

a colour filter was placed in front of it so that only one of these lines is transmitted. 

The source is thus a good approximation to mono-chromatic light. Neutral density 

filters of different transmissivities could be inserted to reduce the intensity of the 

light. The objects were 35 mm photographic transparencies made from lith film. Lith 

film has a very large contrast ratio; i.e. the transmissivity at any point is either 1 or 

0. Thus, it behaves like an aperture cut into metal sheet. Thus, all the objects used 

were binary objects. 

All the objects were designed to lie within a square of side 1mm. This is the a 
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priori information that we build into our algorithm. It has been assumed throughout 

this thesis that we know the spatial region within which the object lies. It is at this 

point, that this assumption is incorporated into the experiment. 

The other piece of information necessary for the algorithm is the bandwidth of 

the system. This is determined by the width of the filter in the Fourier plane of the 

optical bench. We have already said that we are going to restrict our attention to 

diffraction-limited systems. This implies that the filter should be an aperture i.e. a 

binary function. In this case, a rectangular aperture was used with horizontal and 

vertical widths which were independently adjustable. Thus, we could have different 

bandwidths in the horizontal and vertical directions. It is the width of the aperture 

which determines the variable Q in figure 1.4. 

= 	 4.2.1 

where h is the width of the aperture. The value of h is approximately 1mm. 

We can now give an approximate value of the space-bandwidth product, c. 

=xci 
	

4.2.2 

where X is the half-width of the object. As we have seen, X = 0.5 mm. If we 

substitute values ), = 550 nm and f = 1000 mm we obtain, c 	3.5. We must 

double this value because we are working with incoherent light. Thus, c = 7, 

Therefore, we are working in the region c < 10 where super-resolution has been 

seen to be most useful. 

We should note here that the exact position of the aperture in the Fourier plane 

does not matter. This is because positional information is lost when we take the 

auto-correlation of the pupil function to form H(k). This is in contrast to the coherent 

case where the position of the aperture relative to the optic axis would have had to 

have been accurately known. 
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4.2.5 The camera and framestore 

The image is detected by an array camera. An array camera ought to give better 

response than the more common vidicon camera. The detector elements are CCDs 

which give out a signal directly proportional to the intensity of the light incident 

upon them. Their response is linear whereas that of a vidicon is not. Furthermore, a 

vidicon suffers from spatial distortion of the image near the edges whereas an array 

camera ought not to. However, the array camera does have the drawback that it has 

a threshold intensity below which it will not respond and a maximum intensity above 

which it will give out a constant signal. This is why the neutral density filters are 

required;- to reduce the intensity of the image below the camera's maximum. 

The signal from the CCDs is read out in a horizontal raster scan and converted 

into a standard video signal. This signal is read by a framestore which acts as 

an interface device between the camera and the VAX computer. The framestore 

contains an analogue-to-digital converter which samples each line of the video signal 

and converts it into an 8-bit digital signal (i.e. on a scale of 256 grey levels). On this 

scale the camera's threshold intensity is 20-30 grey levels and its maximum intensity 

is 256 grey levels. 

There are 236 sample points per horizontal line. N.B. these do not correspond 

to the positions of the CCD elements in the camera - their positions are determined 

by the speed of the A-D converter in the framestore. On the other hand, the vertical 

sample spacing is determined by the spacing of the lines in the detector array. The 

horizontal and vertical sample spacings are not the same; respectively they are 

dH = 0.036mm dV = 0.027mm 

The framestore receives commands from the VAX entered by a user sitting at a 

VAX terminal. The software for communicating with the framestore is contained in 

a FORTRAN program called "FRM" written by Dr N.E. Fancey. The program is run 

interactively and sends commands, which have been entered at the terminal, down 



an output channel to the framestore. On the command "CTM" the framestore will 

display the continuously varying video signal on a TV monitor screen; the sample 

values are continuously updated as the video signal comes in from the camera. Once 

the user has achieved the desired image on the monitor screen, he can send the 

command "FGR". This causes the framestore to store the current set of 244 x 236 

sample values. This operation is known as "grabbing a frame". The set of sample 

values is embedded in a slightly larger 256 x 256 array. The extra array elements are 

usually set to zero but can sometimes contain random values. I shall call this 256 x 

256 array a "frame". On the command "RFS" this frame is sent down a serial channel 

to the VAX where it is stored as a 256 x 256 array of CHARACTER*1 variables in 

the program FRM. 

As well as communication software, FRM also contains numerical routines such 

as Fast Fourier Transforms (FFTs) so that the frame can be processed once it has 

been received by the VAX. It is also possible to send a frame from the VAX to the 

framestore. Thus, we can create artificial frames on the VAX and send them to the 

framestore to be displayed on the monitor screen. FRM also allows us to write a 

frame out to a datafile on the VAX so that it can be stored permanently. The frame 

can then be read back in at any subsequent time and redisplayed on the monitor 

screen. 

Together the camera, framestore, monitor and the VAX program FRM form a 

complete system for acquiring, storing, manipulating and displaying images. 

4.2.6 Background Subtraction 

The frames produced by the camera-framestore system are not ready to be put 

into the super-resolution algorithm. They contain certain unwanted features which 

must be removed. The first of these is the background illumination which has been 

deliberately introduced to raise the image above the camera's threshold level. This 

is uniform across the frame. The second set of unwanted features is a number of 

spurious electronic signals which are added to the frame as it passes through the 
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system. An example of such a signal is shown in fig. 4.2, which is a horizontal 

cross-section of a frame which has been exposed to uniform background illumination. 

Although the illumination is uniform, the camera's response is clearly not. A ripple 

of amplitude 	5 grey-levels and period 4 pixels has been added by the camera 

or the framestore. By looking at other rows from the same frame we find that the 

ripple is constant from one row to the other. 

If we look at a column from the same frame we see that here a signal has also 

been added but that this is not of such a high frequency. See fig. 4.3. Again we find 

by looking at other columns that the signal is constant from one column to another. 

In fact, if we look at the 2D Fourier transform of the frame we see that most 

of the signal is concentrated on the horizontal and vertical axes. In other words, the 

unwanted signals can be separated into horizontal and vertical components. We use 

this fact in removing these signals from the frame. 

Let us make the assumption that the unwanted signals are merely additive and do 

not distort the real signals in any other way. Then, if we can estimate the unwanted 

signals, we can simply subtract them off leaving only the real signal. In order to 

estimate the horizontal component, X(x), we take the top 40 rows and the bottom 

40 rows and average the 80 values in each column. Likewise we estimate the ver-

tical component, Y(y), by averaging the left-hand 40 columns and the right-hand 40 

columns. By multiplying these two components together, X(x)Y(y), we can obtain a 

good estimate of the unwanted signal at each point in the frame. We can then subtract 

it off. The program which carries this process out is called BACSUB. 

For this to work, we must ensure that the image does not fall into any of the 

rows or columns which are used to estimate the unwanted signal. This is easy to 

achieve in practice since all our images tend to fall within the central 40x40 pixels. 

Figs. 4.4 and 4.5 show a cross-sections across a frame containing an image 

before and after the unwanted signals have been subtracted. You can see that the 

second cross-section is much smoother than the first as we would expect. 
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Fig 4.2 

A cross-section across a frame exposed to uniform illumination 

50 	 100 	150 	200 	250 

pixel no. 

Fig 4.3 

A vertical cross-section from the frame shown in Fig. 4.2 
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Fig 4.4 

A frame containing an image before the unwanted signals have been subtracted 

10 

pixel no. 

Fig 4.5 

The same frame as in fig 4.4 after the unwanted signals have been subtracted 
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It is possible that this process may result in negative values at some pixels in the 

final frame. This is, of course, not allowed since the intensity must be always > 0. 

But I tend to leave these negative values in and treat them as being due to noise. 

The noise can be further reduced in the case of blurred images. To do this we 

make use of two facts about blurred images. The first is that in all cases the blurred 

image falls to zero within a 40x40 pixel region in the centre of the frame. Of course, 

in principle, a band-limited image extends out to infinity in all directions, but, in 

practice, it will tend to fall very quickly below the minimum intensity detectable by 

most detectors. 

The second fact is that they are band-limited i.e. the Fourier transform of the 

image is zero outside a certain known area: usually a 3000 square in the centre of 

the Fourier plane. 

We can use these two facts in the following way. First we set to zero all the 

pixels outside the 40x40 region in the centre of the image frame, because we know 

that any data outside that region must be noise. Then we Fourier transform the 

frame using a 256x256 FFT. Now, we set to zero any data outside the central 3000 

region of the Fourier plane because again we know that any data here must be noise. 

Finally we inverse transform back to the image plane. This ought to have removed a 

substantial part of the noise. 

The above procedure is not applicable to unbiurred images because they are not 

band-limited. 

Fig. 4.6 shows the result of applying the noise-reduction procedure to the same 

frame as shown in figs. 4.4 and 4.5. 

We can test this procedure by taking two different frames of the same blurred 

image grabbed at different times. Then we compare them to see how similar they are 

after applying BACSUB and the noise-reduction procedure. 

We can compare them in two ways. One way is to work out the complex 

74 



50 	100 	150 	200 	250 

pixel no. 

Fig. 4.6 

The same frame as in fig. 4.4 after the noise-reduction procedure 

correlation coefficient, p, defined by 

>:: 
\/(Ei I Ui I') (E j  I WI') 

where U2  and W2  represent the ith pixels of the two images respectively. p lies in 

the range [-1.0, 1.0] with value 1.0 indicating very high similarity and 0.0 indicating 

no similarity. 

The second method is to calculate, C, the square root of the sum of squares of 

the differences as follows 

However, we must be careful in interpreting C because there may be a scaling factor 

difference between the two images due to fluctuations in the intensity in the arc lamp. 

To remove this difficulty we should first scale both images so that their norms are 
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the same i.e. 

AI  = Iwj 2  

It was found for a typical image, the values of p and C for two different frames after 

using BACSUB were 

p = 0.9995587 C = 81.5 

Then, after the noise-reduction procedure was applied to both frames, the values 

became 

p = 0.9999779 C = 18.1 

and furthermore, the largest difference at any pixel of the frame was 0.99. i.e. the 

intensity values are accurate to better than one grey-level. This is the best we could 

hope for from such a camera system. The above values were computed over a 60x60 

region in the centre of the frame. 

In conclusion, we can say that the random error on each pixel is less than one 

grey-level and so is less than the digitisation noise caused by sorting the data into 

grey-levels in the first place. Thus we can treat the noise on the data as being Gaussian 

with variance of 	0.5 grey-level. 

4.2.7 Distortion in the camera 

However, although the Gaussian random error may be small, there may still be 

some distortion introduced by the camera, i.e. a systematic error. There is some evi-

dence for this. See figs 4.7 and 4.8. Fig. 4.7 shows a horizontal cross-section across 

two different frames. Fig. 4.8 shows a vertical cross-section across the same two 

frames. Both frames have been passed through the noise removal process described 

in the previous section. Both frames contain blurred images of the same object, the 

only difference between them is that the number of neutral density filters placed in 

the path of the light was different in each case. The images were then scaled to have 

the same norm each. 

We 



pixel no. 

Fig 4.7 

A horizontal cross-section across two frames after the noise-removal procedure 

pixel no. 

Fig 4.8 

A vertical cross-section across the same frames as in fig. 4.7 
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Now, in the absence of a systematic error changing the number of neutral density 

filters should merely result in an identical scaling of the intensity at every pixel in 

the image. Thus, after the norms of the images have been set to the same value, the 

images should be identical, but from figs. 4.7 and 4.8 they clearly are not. 

The dotted image was grabbed at the lower intensity. It seems to have spread 

vertically over a larger area than the other image. The explanation might be that the 

electronics in the system responds differently to the different rise times involved in 

the two images. 

The distortion remains constant from one frame to another. So it cannot be 

treated as random noise. It is not removed by the noise-removal procedure. 

There is some evidence that low intensity images are better than high intensity 

images. Let us take two pairs of images of the same object. Of each pair one image 

is blurred and the other unblurred. One pair is taken at high intensity (say r'.  200 

grey-levels) and the other at low intensity (- 100 grey-levels). We Fourier transform 

all four images. If we multiply the Fourier transform of the unbiurred images by the 

OTF, H(k), and calculate the correlation coefficient with the Fourier transform of 

the corresponding blurred image of the same pair, we find that the low-intensity pair 

always gives a higher correlation coefficient. In the low-intensity cases p > 0.99 

whereas in the high-intensity cases 0.9 < p < 0.99. 

I cannot think of any way of removing this distortion other than to grab images 

at those intensities which give the best results. This distortion is likely to have a much 

more adverse effect on the SVD algorithm than the random noise which we discussed 

earlier. The random noise introduced an error of at most one grey-level. From figs. 

4.7-8 we can see that the distortion introduces errors of 	4 - 5 grey-levels. 

4.2.8 Measuring the Transfer Function 

As we have already said, it is always necessary to measure the transfer function 

H(k), to test for any possible aberrations. These may be caused by imperfections in 

the lenses or misalignment of the optical system. One can never assume in advance 
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that the optical system is perfectly diffraction-limited. In this section, we discuss 

the particular method that we used to measure the transfer function and quote the 

results. We discuss possible drawbacks to this method and suggest improvements 

which would increase the accuracy but are more time-consuming. 

As we have seen in Chapter 1 the transfer function, H(k), is defined by 

H(k) = 	 4.2.3 

where G(k) is the Fourier transform of the image g(y) and F(k) is the Fourier transform 

of the object, f(x). This equation suggests that the most obvious way to measure H(k) 

is to find some object, whose transmission function, f(x), is known, and measure its 

image, g(y). We can then compute F(k) and G(k) using an FFT and finally we can 

find H(k) from equation 4.2.3. 

However, the problem is that we must find an object whose Fourier transform, 

F(k), does not have zeros within the pass-band of the system, otherwise equation 

4.2.3 will become unstable. In theory, we can always find such an object: e.g. we 

can select a circular aperture whose diameter is small enough that the first zero of 

its Fourier transform will lie outside the pass-band. The radius of the first zero is 

inversely proportional to the radius of the object. So, the smaller the object the further 

out this zero will be. This is actually the method adopted in this thesis. But, it has 

a drawback:- the smaller the spatial extent of the image, the fewer pixels are used to 

detect it and so its shape is less accurately determined. 

We could minimise this drawback to a certain extent by using a set of much 

larger objects which, because they are larger, are more accurately measured, and, 

even though they may have zeros within the passband, we can choose the objects so 

that their zeros do not lie at the same places. Thus, when we take together all the 

measurements from the whole set, we can derive a much more accurate set of values 

for the transfer function. However, this is a much more time-consuming process 

than the previous method. Unfortunately, I did not have time to carry out the more 

time-consuming procedure. 
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fig 4.9 The real part of the transfer function 

Figure 4.9 shows the real part of H(k) as measured. The imaginary part is small 

compared to the real part but it is not negligible. Therefore, the system is aberrated. 

However, this presents no serious problem provided we can measure H(k) accurately 

enough. We should always be able to recover F(k) within the pass-band by using 

equation 4.2.3. 

4.3 Comparison of original and reconstructed objects 

4.3.1 Aquiring the images 

In this section we take our experimental image and feed it into the SVD algo-

rithm. We then compare the reconstructed object with the original object in the same 

way as we did in the previous chapter where we dealt with computer-generated "ob-

jects" and "images". Just as then, we are going to compare the singular coefficients 

of the original object with the singular coefficients of the reconstructed object. We 

will then discuss how far the SVD algorithm has succeeded and the sources of any 



error. 

Let us now look at a typical object and its band-limited image. Figures 4.10 and 

4.11 show grey level plots of such an object: in this case a letter "A" (made on Lith 

film) and its band-limited image. Figure 4.10 was obtained by imaging the original 

object onto the detector array of the camera without the aperture in the Fourier plane. 

We thus obtain an image which is a reasonably close approximation to the original 

object. There will certainly be some degradation since the optical system is not perfect 

(as we saw when we measured the transfer function ; there is a certain amount of 

aberration) but this degradation is insignificant compared with the degradation we are 

about deliberately to introduce by inserting the aperture into the Fourier plane. It is 

the frame shown in Figure 4.10 which we use as our "original object". 

While frame 4.10 was being grabbed certain neutral density filters were inserted 

into the optical system to reduce the intensity of the image below the maximum 

intensity of the camera. When the aperture is inserted into the Fourier plane it 

excludes a large percentage of the light and so the image is a great deal less intense. 

Therefore, some of the neutral density filters are removed to increase the intensity 

of the image. N.B. Exactly the same operation was carried out when the transfer 

function, H(k), was measured in the previous section. Exactly the same neutral 

density filters were inserted and removed in both cases. Thus, there is no necessity 

to scale our estimate of F(k), as there would have been if the neutral density filters 

had been different in the two cases. 

Figure 4.11 shows the image we obtain once the aperture has been inserted into 

the Fourier plane and the neutral density filters have been removed. This image was 

Fourier transformed using a 256 FFT routine to obtain G(k), the Fourier transform 

within the passband. 

In order to carry out SVD by Frieden's method, i.e. using the coherent singular 

functions, we must estimate F(k) within the pass-band by dividing 0(k) by the transfer 

function. This operation is carried out on the VAX computer. 
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The files containing the original object, G(k), F(k) and H(k) are then transferred 

to EMAS. H(k) is used to compute the incoherent singular functions as described in 

section 2.3.9. F(k) is used as the input to the coherent SVD and G(k) is used as the 

input to the incoherent SVD. 

Figs. 4.12-14 show the reconstructions of object "A" using coherent singular 

functions with singular values above 0.1, 0.05 and 0.01 respectively. Figs. 4.15-17 

and show the reconstructions of this object using incoherent singular functions with 

singular values above 0.1, 0.05 and 0.01 respectively. 

Figs. 4.18 and 4.19 show another object and its image, in this case a letter "E". 

The reconstructions for this object are shown in figs. 4.20-25. 

Some of the reconstructions have clearly been badly affected by the distortion, 

particularly fig. 4.14. Others are apparently quite good eg. figs. 4.17 and 4.22 but 

we need a more objective criterion to assess the reconstruction quality. This is the 

subject of the next section. 

4.3.2 Discussion of Experimental Results 

Tables 4.1 and 4.2 show the object coefficients and reconstruction coefficients 

for the A object and the E object using the coherent singular functions. Tables 4.3 

and 4.4 show the same coefficients but using the incoherent singular functions. 

Clearly the object and reconstruction coefficients do not agree very well in either 

the incoherent or coherent cases. One might at first think that this was due to noise 

in the blurred images, but in section 4.2.6 the noise was measured and found to be 

1 greylevel. This would lead to an error of about 1 unit in the pupil coefficients 

(see chap. 3). Therefore we would expect that those singular functions where the 

singular value is about 0.9 would have an error of about 1.0, whereas we can see 

discrepancies of up to 50 -100 in some cases, even among the top-most singular 

functions, which should be the most accurately measured. Neither do the errors show 

the pattern expected due to random noise i.e. a steady increase as )k  decreases. 

Many of the higher-order singular functions seem to be more accurately measured 
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than the lower-order functions. 

The most likely explanation for this discrepancy is the distortion in the camera 

mentioned in section 4.2.7. It is difficult to predict the pattern of errors such distortion 

would produce, but it would certainly affect the low-order singular functions just as 

much as the high-order ones. This is what we see in tables 4.1-4.4. 

It is even more difficult to predict whether the incoherent or the coherent singular 

functions will give better results. In order to test which method is better we should 

count the number of singular functions which are reasonably well restored, i.e. those 

whose reconstruction coefficients come within some limit of their object coefficients. 

In tables 4.1-4.4 I have marked those functions which fall within 10 units of 

each other. I have chosen an absolute limit rather than a relative limit - I could, 

for instance, have chosen all functions which lie within 10% of each other - because 

a relative limit discriminates against those coefficients which happen to be small 

compared to the average. I would consider a reconstruction coefficient of 15 to be 

well restored when the original is 10 even though the relative error is 50%. This is 

because they are both small with respect to the average which is 	100. 

We can present the number of well-restored functions as follows 

Image Coherent Incoherent 

A 	20 	29 

E 	9 	30 

This would suggest that the incoherent functions were better. 

Another measure of goodness-of-fit is to calculate the sum of the squares of the 

differences over the first 30 singular functions. 

The results are as follows 

Image Coherent Incoherent 

A 	11807 	4865 

Again the incoherent functions are better. 
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Finally we can look at the reconstructed objects and find the correlation coeffi-

cient with the original in all four cases. 

The results are as follows. Firstly for reconstructions with singular values > 0.1 

Image Coherent Incoherent 

A 	0.845 	0.875 

E 	0.813 	0.891 

Secondly for reconstructions with singular values > 0.05 

Image Coherent Incoherent 

A 	0.859 	0.896 

E 	0.827 	0.895 

Thirdly for reconstructions with singular values > 0.01 

Image Coherent Incoherent 

A 	0.723 	0.862 

E 	0.702 	0.862 

In every case the incoherent functions are better. For comparison the correlation 

coefficients of the blurred images with the original objects are 0.821 for A and 0.812 

for E. 

These results appear inconsistent with the visual appearance of the reconstruc-

tions, eg. fig. 4.22 appears very similar to the original object, yet it has a low 

correlation coefficient. This is probably explained by the spurious high intensities 

around the edges of 4.22. 

In summary, the discrepancies between the reconstructed objects and the original 

objects are probably caused by distortion in the camera-framestore system and not 

by noise - Gaussian, Poisson or otherwise. The incoherent singular functions give a 

better reconstruction than the coherent ones. 



Table 4.1 

singular object reconstruction 	difference 
value coefficient 	coefficient 

0.99986 779.81653 780.00189 0.18536 
0.99969 -201.56616 -255.83763 54.27147 
0.99569 128.19354 148.01115 19.81761 
0.99498 -147.38097 -158.86098 11.48001 
-0.99480 -7.13563 -7.76843 0.63280 
0.99083 8.95982 18.61282 9.65300 
0.95200 8.59160 -13.64705 22.23865 

-0.94735 -15.88266 -20.54638 4.66372 
0.93528 -129.07303 -154.95367 25.88065 
0.93512 -193.04417 -165.86646 27.17772 
0.93138 130.99170 147.56567 16.57397 
0.89052 -55.29791 -64.94203 9.64412 
0.75069 -113.72530 -107.45815 6.26715 
0.74703 22.56014 27.05872 4.49858 
0.70221 17.32973 30.46861 13.13888 
0.68257 39.80496 46.89472 7.08976 
-0.68245 108.01588 116.46363 8.44775 
0.67973 -68.95851 -88.45247 19.49396 
-0.64990 28.31269 33.65222 5.33953 
0.51247 -2.97465 -6.33977 3.36512 
0.39783 21.55294 75.38470 53.83176 
-0.39589 8.79401 -2.45541 11.24942 
0.37213 53.58462 60.90078 7.31616 
0.31308 19.26572 29.90482 10.63910 
0.31302 205.96979 207.55907 1.58928 
0.31177 -86.55023 -102.91745 16.36722 
0.29809 5.20459 31.65096 26.44637 

-0.27158 -30.90416 -24.22013 6.68403 
0.23506 0.16486 -0.22334 0.38820 
0.13904 105.14939 136.32819 31.17879 
0.13836 -35.03479 -43.21393 8.17914 
0.13006 -80.65472 -120.96232 40.30760 
0.12457 -28.02561 -2.87018 25.15543 
0.09492 38.60055 47.92625 9.32570 
0.09300 17.42200 -23.70356 41.12556 
-0.09299 -162.40649 -168.40131 5.99481 	t 
0.09262 56.94916 76.90064 19.95148 
-0.08855 9.77504 14.78006 5.00502 	t 
0.06983 -5.66318 -30.20978 24.54660 
0.04354 43.52828 -56.20618 99.73446 

-0.03701 16.04651 12.81151 3.23500 	t 
0.03669 -30.44319 124.74892 155.19211 

-0.03651 6.11629 -28.16105 34.27734 
0.03432 -3.31703 154.85272 158.16975 

-0.02505 3.06062 -25.67078 28.73140 
0.02089 40.00661 648.95477 608.94818 
0.02089 -172.19637 -86.95854 85.23782 
0.02081 -4.40799 100.47966 104.88765 
0.01989 54.74364 -21.91137 76.65501 
0.01569 6.33920 63.56225 57.22305 
0.01293 -21.97884 82.81652 104.79536 
0.01149 5.88445 31.52985 25.64540 
0.00831 -16.30542 196.52303 212.82845 
0.00386 -57.37170 -659.15649 601.78479 

-0.00386 129.98897 345.02130 215.03239 
0.00384 50.28517 252.79474 202.50957 
-0.00367 -85.91872 187.38342 273.30212 
-0.00341 -8.49281 -103.10224 94.60943 
0.00291 -10.18778 -565.87921 555.69141 
0.00290 -2.40659 -544.05347 541.64685 

-0.00154 39.70573 29.50434 10.20139 
0.00077 -1.55668 1832.59863 1834.15527 
0.00054 -13.04620 579.06042 592.10663 
-0.00014 1.03839 -3535.09277 3536.13110 
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Table 4.2 

singular object reconstruction 	difference 
value coefficient coefficient 

0.91591 688.97897 683.82426 5.15471 
0.83719 -211.35939 -223.65143 12.29205 
0.76344 -113.24873 -126.96664 13.71791 
0.72419 153.82450 144.43225 9.39226 

-0.69782 17.23751 9.18777 8.04974 
0.60363 -44.09956 -55.53886 11.43930 
0.59831 -99.56517 -104.67788 5.11271 
0.57051 292.19067 291.14688 1.04378 
0.52147 103.95495 84.69216 19.26279 

-0.49871 16.53857 19.96868 3.43011 
0.47940 -142.05598 -145.98076 3.92478 
0.45109 203.25656 193.44888 9.80768 
0.39959 27.99695 30.30255 2.30560 
0.38953 -48.63171 -66.28180 17.65009 
0.37938 46.00238 53.44022 7.43783 
0.37268 -0.39796 -5.50711 5.10915 

-0.35605 -113.82977 -149.07194 35.24217 
-0.31622 -3.13682 0.63416 3.77098 
0.30799 -91.42124 -118.60323 27.18199 
0.30166 -91.10935 -93.13954 2.03019 
0.29861 -24.49926 -17.89663 6.60263 

-0.25446 -26.32876 -48.50944 22.18069 
0.25144 24.95846 32.14020 7.18175 
0.24735 -8.97458 -5.19058 3.78400 
0.23631 -37.17774 -41.70507 4.52733 
0.23420 44.20923 27.59458 16.61465 
0.22609 239.32028 231.97563 7.34464 
0.20388 -10.05577 -23.73695 13.68117 
0.19557 94.37234 104.47675 10.10441 

-0.19521 -12.26164 -4.78915 7.47249 	'1 
0.18790 -129.63440 -133.96302 4.32862 
0.16158 112.96081 107.82046 5.14035 

-0.16134 33.74148 55.26915 21.52766 
0.14610 44.46536 59.58387 15.11851 
0.14588 67.18609 59.14262 8.04347 

-0.13354 -153.82375 -187.30636 33.48260 
0.12947 22.92333 23.78272 0.85939 
0.12829 65.37055 92.70123 27.33069 
0.11551 -11.66191 -5.95092 5.71098 
0.10245 -25.71956 -32.31510 6.59554 

-0.09960 -32.66031 -34.58870 1.92839 
-0.09544 -112.78065 -138.82756 26.04691 
0.08147 -81.93421 -95.92028 13.98607 
0.07692 -38.01633 -10.36642 27.64990 
0.07647 -9.71508 -7.62012 2.09496 
0.07031 101.52450 25.11232 76.41219 
0.06325 33.82405 55.65409 21.83005 
0.06082 -60.14788 -94.37816 34.23027 

-0.06051 -6.99508 -14.09455 7.09947 
0.05025 122.45219 108.51716 13.92503 
0.04812 29.98696 20.82451 9.16244 
0.04026 -31.58057 7.04413 38.62471 

-0.03736 1.06128 34.37221 33.31093 
0.03357 28.05584 -128.48014 156.53598 
0.03186 43.18091 77.78068 34.59978 

-0.03068 -44.79057 197.83885 242.62943 
0.02654 113.56280 132.65615 19.09335 
0.02533 -3.17964 -15.26692 12.08729 

-0.02193 -123.85000 2.13367 125.98367 
0.01967 -8.82993 32.78002 41.60995 
0.01757 55.99099 158.87251 102.88152 

-0.01390 -75.38834 -177.02639 101.63805 
0.01106 -21.86123 -81.59066 59.72943 

-0.00858 27.31357 212.55330 185.23972 



Table 4.3 

singular object reconstruction 	difference 
value coefficient coefficient 

0.99986 722.99280 703.18970 19.80310 
0.99969 46.99235 20.75820 26.23415 
0.99569 372.72870 356.66623 16.06247 
0.99498 88.05326 115.48068 27.42742 

-0.99480 -42.88035 -59.08782 16.20747 
0.99083 -21.17209 3.41468 24.58677 
0.95200 -94.44568 -135.46123 41.01555 

-0.94735 10.71413 -1.61696 12.33109 
0.93528 -192.93297 -199.63560 6.70264 
0.93512 -8.36020 6.65501 15.01521 
0.93138 -96.54527 -103.53133 6.98605 
0.89052 31.54552 47.33224 15.78672 
0.75069 33.21903 49.70102 16.48199 
0.74703 -77.91582 -68.37629 9.53953 
0.70221 -3.65382 -19.14701 15.49319 
0.68257 -109.14474 -124.44189 15.29715 

-0.68245 24.82502 36.00320 11.17818 
0.67973 -6.37569 -23.43113 17.05544 

-0.64990 -7.31295 -1.15906 6.15389 
0.51247 56.54103 46.45458 10.08645 
0.39783 18.15454 9.48509 8.66945 

-0.39589 5.31281 18.32521 13.01240 
0.37213 -7.09121 4.36377 11.45498 
0.31308 67.74558 56.63664 11.10894 
0.31302 2.97838 10.61656 7.63818 
0.31177 34.23706 21.06571 13.17135 
0.29809 -14.09099 -11.79528 2.29571 
-0.27158 -1.86140 -10.13145 8.27005 
0.23506 3.50591 20.58120 17.07529 
0.13904 -271.08072 -185.99567 85.08505 
0.13836 130.60468 111.41199 19.19269 
0.13006 66.86873 40.08825 26.78048 
0.12457 1.35568 -18.83525 20.19093 
0.09492 -81.52227 -55.56000 25.96227 
0.09300 162.87785 86.41583 76.46202 

-0.09299 -14.94933 10.44726 25.39659 
0.09262 34.74912 56.13332 21.38420 

-0.08855 5.92755 -12.69229 18.61984 
0.06983 -52.38124 -37.17914 15.20210 
0.04354 -21.31795 -20.10336 1.21459 
-0.03701 1.00875 41.32473 40.31598 
0.03669 47.44357 274.06281 226.61923 
-0.03651 -7.43154 -63.15173 55.72019 
0.03432 -16.96745 111.18098 128.14842 

-0.02505 3.01162 62.42525 59.41363 
0.02089 33.32594 459.18063 425.85471 
0.02089 -3.93611 43.52869 47.46480 
0.02081 12.54368 255.30440 242.76071 
0.01989 0.29871 -78.93842 79.23714 
0.01569 -8.18370 56.06810 64.25180 
0.01293 57.73847 -1.99606 59.73453 
0.01149 10.97672 122.56929 111.59257 
0.00831 3.90790 86.77235 82.86445 
0.00386 -189.45328 -528.37061 338.91733 
-0.00386 -1.83534 192.89001 194.72536 
0.00384 -59.37821 427.07205 486.45026 
-0.00367 2.11336 116.82750 114.71414 
-0.00341 -1.83559 82.93154 84.76713 
0.00291 -4.04875 -222.44473 218.39598 
0.00290 37.69435 -49.55513 87.24948 
-0.00154 0.52180 200.50966 199.98785 
0.00077 -6.23947 830.73322 836.97266 
0.00054 -12.72417 -580.76599 568.04181 

-0.00014 -0.05809 2394.00342 2394.06152 



Table 4.4 

singular object reconstruction 	differenc 
value coefficient coefficient 

0.91591 696.69073 694.25989 2.43084 
0.83719 8.98840 -12.78349 21.77190 
0.76344 45.10680 64.12693 19.02014 
0.72419 -70.96959 -70.69867 0.27092 
-0.69782 -29.33692 -35.75967 6.42275 
0.60363 56.37465 48.46464 7.91002 
0.59831 84.20093 81.74516 2.45577 
0.57051 420.93695 419.38819 1.54875 
0.52147 -2.97905 -18.39647 15.41742 

-0.49871 -22.26146 -19.18263 3.07883 	1 
0.47940 -41.59974 -50.88753 9.28779 	1 
0.45109 -38.96907 -42.11910 3.15002 	1 
0.39959 -53.16683 -49.46192 3.70491 	'1 
0.38953 126.13566 127.99366 1.85800 	1 
0.37938 16.53555 52.22409 35.68854 
0.37268 59.48275 61.03444 1.55170 	1 

-0.35605 -27.20501 -31.20924 4.00423 	1 
-0.31622 2.49240 -8.40300 10.89540 
0.30799 71.58434 73.13982 1.55548 	'1 
0.30166 363.75601 343.14040 20.61560 
0.29861 -27.59023 -31.11356 3.52333 	T 

-0.25446 -26.78551 -38.71896 11.93345 
0.25144 -138.59131 -125.01392 13.57740 
0.24735 89.17847 117.23170 28.05324 
0.23631 8.93736 28.36616 19.42880 
0.23420 -15.95153 8.20048 24.15201 
0.22609 -2.24467 -5.09934 2.85468 	T 
0.20388 -82.99679 -92.68975 9.69295 	T 
0.19557 -11.01461 -14.68339 3.66878 	T 

-0.19521 -12.68403 -18.44211 5.75808 	T 
0.18790 205.36934 209.52057 4.15123 	T 
0.16158 20.05301 29.91611 9.86310 	1 

-0.16134 3.55371 -5.03720 8.59091 	T 
0.14610 201.61341 199.91630 1.69711 	1 
0.14588 -18.31161 0.38573 18.69734 
-0.13354 -7.59198 -12.76598 5.17400 	T 
0.12947 -3.00233 -12.08058 9.07825 	1 
0.12829 -148.04353 -167.10541 19.06187 
0.11551 45.19638 31.90587 13.29051 
0.10245 1.04481 9.57470 8.52989 	T 

-0.09960 -14.13178 -26.44605 12.31427 
-0.09544 -7.87917 -5.49709 2.38208 	T 
0.08147 39.11351 59.67347 20.55995 
0.07692 -86.07177 -147.91639 61.84462 
0.07647 -71.84078 -77.46396 5.62317 	T 
0.07031 8.92401 14.10471 5.18070 	T 
0.06325 -13.04124 25.38438 38.42561 
0.06082 -0.99050 -14.29072 13.30022 

-0.06051 -1.08919 -19.10330 18.01411 
0.05025 -1.81442 -3.07227 1.25785 	1 
0.04812 -49.66442 -62.36002 12.69560 
0.04026 21.81344 105.46999 83.65656 

-0.03736 -1.51811 39.55442 41.07254 
0.03357 187.33403 -76.68665 264.02075 
0.03186 -10.66552 -23.66090 12.99538 
-0.03068 2.17652 68.35998 66.18346 
0.02654 15.90195 -2.67885 18.58080 
0.02533 -17.09328 -47.51629 30.42300 

-0.02193 8.24348 -35.14616 43.38965 
0.01967 1.16183 67.61196 66.45013 
0.01757 -39.84493 37.09917 76.94409 

-0.01390 -0.59836 -98.54047 97.94211 
0.01106 25.43482 133.53030 108.09547 

-0.00858 0.65907 186.46541 185.80634 



Fig 4.10 

The original A object 

Fig 4.11 

The blurred image of the A object 
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Figs. 4.12 and 4.13 

Reconstructions of A using coherent singular functions, ) k > 0.1 and Ak  > 0.05 

Fig 4.14 

A reconstruction of A using coherent singular functions, Ak > 0.01 

KE 



Figs. 4.15 and 4.16 

Reconstructions of A using incoherent singular functions, Ak ~! 0.1 and Ak >— 0.05 

Fig 4.17 

A reconstruction of A using incoherent singular functions, Ak > 0.01 
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Fig 4.18 

The original E object 

Fig 4.19 

The blurred image of the E object 
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Figs. 4.20 and 4.21 

Reconstructions of B using coherent singular functions, Ak > 0.1 and Ak > 0.05 

Fig 4.22 

A reconstruction of E using coherent singular functions, Ak >— 0.01 
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Figs. 4.23 and 4.24 

Reconstructions of E using incoherent singular functions, Ak > 0.1 and Ak ~! 0.05 

Fig 4.25 

A reconstruction of E using incoherent singular functions, Ak > 0.01 



Chapter Five 

Other Algorithms for Super-Resolution 

5.1 Introduction 

In this chapter we shall consider some possible developments of the SVD al-

gorithm to include other types of a priori information. We shall also look at other 

algorithms different to SVD which carry out super-resolution. The first of these is the 

Gerchberg algorithm which uses the same a priori information as SVD. Then we shall 

look at the Bayesian techniques: maximum entropy and conditional autoregression. 

The Bayesian techniques use different a priori information from SVD. 

The main theme of the chapter will be the effect of different a priori information. 

The different techniques use different types of a priori information. We shall see how 

this is built into the different algorithms and how it affects the final reconstructed 

objects. 

5.2 Developments of SVD 

5.2.1 Introduction 

SVD uses only one form of a priori information viz, the finite size of the object. 

We have seen that SVD suffers from two problems: sensitivity to noise and restriction 

to low space-bandwidth products. It might be possible to overcome these problems if 

we could assume additional a priori information eg. non-negativity, smoothness etc. 

One way of doing this has been shown by Sasaki and Yamagami [36] and another by 

Maeda and Murata [40]. Both methods are iterative. 

5.2.2 Sasaki and Yamagami 

The method of Sasaki and Yamagami is as follows. They assume that the first p 

singular vectors can be estimated accurately but that the rest are badly corrupted by 

noise. Thus the coefficients, fk,  k = 0, 1, 2...p are known to within an error of 

where e is the standard deviation of the noise (assumed Gaussian) but the remaining 
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fk, k = p + 1. are unknown. We must use some form of additional a priori 

information to estimate these. There is a number of different forms of information 

we could use but Sasaki and Yamagami consider only non-negativity. 

They adopt an iterative procedure in each loop of which the following steps 

occur. 

We form an estimated object, f from the first q singular vectors, where 

q>p 
= 	

5.2.1 

As I have said above, the values of fk  for p < k < q will be corrupted by noise 

at the start of the iteration procedure but we hope that as the iteration proceeds this 

noise will be filtered out. 

All the negative pixel values in f are set to zero to give a new object vector, 

z. 

z is decomposed into its singular vectors 

Zk 	Z.Uk k = O,q 	 5.2.2 

The first p values of Zk are compared to the first p values of fk.  If 

fkZk < 
6
-  k = O,p 	 5.2.3 
Ak 

then the iteration stops. If not we set the values of fk,  k > p equal to the corre-

sponding values of Zk 

fk 	= Zk 	k = p+ 1,q 

The iteration then returns to step 1. 

Sasaki and Yamagami show that this iteration must eventually converge, thus 

producing a solution vector, z, whose top p singular components have the known 

values, fk  k = 1,p and which also satisfies the non-negativity constraint. Sasaki 
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and Yamagami give a 1D numerical example of this procedure and show that it does 

in fact yield accurate estimates of the object components, fk,  for k > p. In other 

words, it has increased the resolution beyond that achievable by pure SVD without 

the additional non-negativity constraint. 

However, I would make the following comment on this method. Sasaki and 

Yamagami do not state how to choose q- which is the total number of singular 

vectors we can expect to restore. In their example they set q=N - the number of 

pixels in the object. N is also the number of singular vectors necessary to completely 

describe the object. In their example N=10. But they cannot surely be claiming to 

restore the entire set of singular vectors in every case. There must be a limit even 

though this limit may be greater than that in the case of pure SVD and this limit must 

depend on the noise level, E. Sasaki and Yamagami give no consideration to this 

problem. 

5.2.3 Maeda and Murata 

Maeda and Murata adopt another approach. First of all they make a slight modi-

fication to the SVD process itself. Instead of merely dividing each image coefficient, 

gk, by )¼k,  they multiply by 

Ak 

A2 	2 5.2.4 

where c is called the "regularising parameter". Its effect is to damp out the higher-

order singular vectors. This process is effectively equivalent to truncating the sum-

mation as we have always done up till now. 

Maeda and Murata use the following notation 

= Hg 	 5.2.5 

to represent the formation of the reconstructed object, f, from the original image, g. 

They call the operator, H+,  the "pseudo-inverse" of H. Thus H+  represents the 

process of first decomposing g into singular vectors, multiplying by 5.2.4 and then 

reconstructing f. 
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Maeda and Murata then go on to show that if we have an initial estimate, f, 

for the original object we can calculate a better estimate, i , given by 

= 	 5.2.6 

where At is a correction vector given by 

Af 	H(g - Hf) 	 5.2.7 

This step is used in the iteration procedure. We can now describe that procedure. 

Each loop consists of the following steps. 

We take an initial estimate, fk,  and then impose our a priori information on 

it. For instance, we could set all the negative components to zero, as in the case of 

Sasaki and Yamagami, or we could smooth it, if we have a priori information about 

smoothness. 

We calculate the correction vector, L\fk, given in equn 5.2.7. 

We calculate a new estimate 

k+1 	= k + Lfk 	 5.2.8 

and return to step (1) 

The iteration terminates when 

Ig - HfkM - Mg - H1k+1 11 < €1 	 5.2.9 

and 

LfkM < 152 
	 5.2.10 

where E I  and E2 are predetermined values. 

At each iteration the value of c in equn. 5.2.4 is incremented.This is because as 

the number of iterations increases the value of zfk is increasingly affected by noise. 
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By increasing the value of a the higher-order singular vectors are damped down. 

Since it is the higher-order vectors which are affected most by the noise this helps to 

repress the effect of the noise on L14. Maeda and Murata suggest multiplying a 

by a constant, c (> 1.0), at each iteration. Thus 

= ckao 	 5.2.11 

Maeda and Murata show that this procedure will converge in most circumstances. 

They give 1D and separable 2D numerical examples showing that the iterative 

procedure gives better results than pure SVD without the additional a priori informa-

tion. 

I would make the same comment on Maeda and Murata as I did on Sasaki and 

Yamagami. They do not specify how many extra singular vectors we could expect to 

estimate in the presence of noise. In the case of Maeda and Murata that is equivalent 

to specifying a0 , which determines the effective number of singular vectors in the 

reconstruction. Maeda and Murata do not tell us how to choose a0 . Presumably we 

are to carry out a number of numerical simulations for different values of a0  and 

choose the value which works best. Maeda and Murata do not consider this problem. 

5.2.4 The Gerchberg algorithm 

The Gerchberg algorithm [39] is a different way of carrying out super-resolution. 

It uses exactly the same a priori information as pure SVD i.e. the finite spatial extent 

of the object. Therefore, one would expect it to give similar if not identical results 

to pure SVD. 

The method is effectively restricted to coherent images. It is iterative. Before 

the iteration begins the band-limited image is Fourier transformed. This gives us the 

Fourier transform, G(k), of the image within the pass-band. This is assumed to be 

known reasonably accurately, with an error of e on each sample point. This function, 

G(k), is stored permanently throughout the whole process. 

The raw image, g(y), provides our first estimate of the original object, F. Each 

loop of the iteration consists of the following steps 
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We take our estimated object, f, and impose the known spatial limit on it, 

i.e. we set to zero any values of f outside the known spatial limit. 

f is Fourier transformed to obtain an estimated Fourier transform, F(k), 

of the object. 

The part of P(k) within the pass-band is replaced by G(k). G(k) is known 

to be the correct value of F(k) within the pass-band. 

E(k) is inverse Fourier transformed to give a new f and we return to step 

(1) 

As the number of iterations increases so does the degree of super-resolution but, 

as with SVD, so does the amplification of the noise. Therefore the iteration has to 

be truncated at a point where the noise has not begun to swamp the signal. 

The reason that this method is inapplicable to incoherent images can be seen 

from step (3). At this step it is essential to be able to equate 0(k) with F(k) within 

the pass-band. But as we have seen with incoherent images this is not possible. We 

would have to divide G(k) by H(k) within the pass-band. But this is an ill-conditioned 

process and results in the amplification of noise. For this reason it is inappropriate to 

use the Gerchberg algorithm on incoherent images. Thus SVD is a more appropriate 

algorithm for incoherent images since we do not need to divide 0(k) by 11(k). 

In the case of coherent images SVD and the Gerchberg algorithm should yield 

very similar results but, as far as I know, this has not been tested in practice. I would 

expect SVD to be much faster computationally since it involves only the computation 

of scalar products whereas Gerchberg involves computing two FFTs per iteration, and 

there may be as many as 50-100 iterations per image. Thus SVD has the advantage 

for real-time applications or applications where a large number of different images 

need to be processed quickly. 
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5.3 Bayesian Techniques 

5.3.1 Outline of Bayesian arguments 

There is a class of image processing algorithms which use statistical or Bayesian 

arguments. This class includes the Maximum Entropy method (MaxEnt) and the con-

ditional autoregression method (CAR). MaxEnt and CAR were not designed specifi-

cally as super-resolution algorithms. Their originators, Gull and Skilling and Ripley, 

scarcely ever use that term. However, it is obvious that the methods have similar 

aims to the super-resolution techniques. They all seek to improve image quality by 

using a priori information. It is in the type of a priori information that the main 

differences can be seen. The arguments of all these methods follow the following 

lines. 

Let the observed image be represented by a vector, g. Let the original object, 

which we are trying to reconstruct, be represented by a vector, f. Then as we saw 

in chap.1 

g = Hf+n 	 5.3.1 

where H is a blurring matrix and n is additive Gaussian noise. 

As we saw in chap. 1 the problem is to find f given g. This is an inverse 

problem where there is a large class of possible solutions, f, each of which could 

have given rise to g. As we saw there, in order to make this problem easier we 

can use a priori information. All the Bayesian techniques assign to each member, 

f, of the solution class a probability, P(fg). We seek that member f which 

has the largest probability P(fjg). This probability depends (a) on how closely 

f corresponds to our a priori information and (b) on how well f could have given 

rise to g. P(f 1 g) is given by Bayes' Theorem 

P(fg) x P(f)P(gf) 	 5.3.2 

The probability, P(f), incorporates our a priori information: if f corresponds 

to our a priori information then P(f) is high, if not then it is low. P(gf) measures 
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how well f could have given rise to g. In other words, it measures how well f fits 

the data, g. 

It is usual to represent the two components on the RHS of equn.5.3.2 as expo-

nential functions. Thus 

P(f) X 	
1 

exp(---- U(f)  ) 	 5.3.3 
2tc3  

where U( f) can be regarded as an "energy". Examples of f which correspond to our 

a priori information have low energy, those which do not have high energy. K, is a 

scaling parameter which we shall consider later. 

And, in the case of additive Gaussian noise 

P(gf) 	x 	
1 

exp(—.--- jig - HfM 2 ) 	 5.3.4 

where K,, is the variance of the noise. Similar forms are possible in the cases of 

Poisson and level-dependent Gaussian noise. 

If we now substitute these into 5.3.2 and take logs of both sides we obtain 

L 	= 	—21n(P(fIg)) = corist + -U(f) + -   -Ig - Hf 	5.3.5 

It is this functional which we must minimise to obtain the most likely member of the 

solution class. Notice 5.3.5 has the typical Lagrangian form 

L = 	 5.3.6 

for minimising a function, U, subject to a constraint, C. In the case of Gaussian noise 

C 	= 	- Hf 2 	 5.3.7 

and its value determines how well our solution, f, fits the given data, g. The value 

of U determines how well f corresponds to our a priori information. 

The parameter A is a Lagrange multiplier. In 5.3.5 A = i/i. The value 

of A determines the trade-off between how closely our solution will fit the a priori 

102 



information and how closely it will fit the data. If we choose a small value of A the 

solution will fit the a priori information very closely. If, on the other hand, we choose 

a large value the solution will fit the data closely. The value of A is determined 

both by i (which is a measure of the noise in the data) and ic3  which is part of 

the a priori information. Usually r,, is quite easy to determine since it is merely the 

variance of the noise. But it is often not easy to know the best value of K, . This 

leaves an uncertainty about the best value of A to use. 

The simplest solution is to set some limit for the value of C, say Cairn, and 

increase A until C < Ca irn . For instance, in the case of additive Gaussian noise 

we could set Cairn = Na'c where N is the number of pixels. This is because we 

would expect on average a square error of t on each pixel. 

If we were to increase A further than this and so force C to be substantially 

less than Cairn then we would be forcing the solution, f, to fit the data much 

more closely than the noise would warrant. In other words, we would be forcing the 

solution to fit the noise. This would cause spurious features to appear in the solution. 

Therefore, we should choose that value of A which causes C to be just less than 

Cairn 

All Bayesian techniques follow this form. It is in their choice of a priori infor-

mation and hence the energy functional, U( f), that they differ. 

5.3.2 Maximum Entropy 

The maximum entropy method (MaxEnt) was first suggested by Jaynes [27] as 

a solution to various problems in statistical mechanics. It was first applied to images 

by Frieden [28,29] who used it only on numerical examples. Its main proponents 

now are Gull and Skilling [26] who have developed it into a sophisticated algorithm 

and applied it to many large images from radio astronomy, medical imaging etc. 

The maximum entropy method assumes that we have a priori information that 

the object is everywhere positive. We can assume this if the illumination is incoherent 

and the vectors g and f represent intensity distributions. Thus the maximum entropy 
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method is restricted to incoherent illumination. 

The key step in the argument is to make the intensity distribution, f, equivalent 

to a probability distribution, p. We can do this as follows 

fi A 	
E fi 	

=
5.3.8 

fi  

where c = Ei  f2. Thus all the values of pi  lie between 0 and 1 and the sum, 

Epi = 1, as is required of a probability distribution. The values, p2 . are interpreted 

as "the probability that the next photon will come from pixel i." 

We can now assign to any vector, f, an "entropy", S. given by 

S = _>pj log(p j) 	 5.3.9 

This quantity was first put forward by Gibbs to represent our uncertainty about the 

state of a thermodynamic system, e.g. molecules of gas in a box. Shannon [24] also 

used it to represent our uncertainty (or lack of information) about a message source 

in communication theory. Here it represents our uncertainty about which part of the 

image the next photon will come from. 

Gull and Skilling argue that we must find the object which has the maximum 

possible entropy and yet which is consistent with the data. If we were to accept an 

object which had less than the maximum entropy we would be assuming information 

about the object which was not justified by the data. 

Gull and Skilling show that the probability, P(f) , of any object, f, is given by 

P(f) cc exp(S(f)/2ic8) 	 5.3.10 

where rz, is a constant which needs to be determined for each image. This has the 

same form as equn. 5.3.3, therefore it is the entropy functional, S( f), which is used 

as the energy, U(f), in equn. 5.3.5. This gives us 

L = 	
1 

Pi 	+ —g—Hf 2 	 5.3.11 
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where t is the variance of the additive Gaussian noise. In other words, we must find 

the object, f, which has the maximum entropy subject to the constraint Jg - Hf IV < 

Cairn 

Ripley [41] has criticised this idea on the grounds that the entropy functional 

depends only on the marginal distribution of grey-levels and not on their spatial 

distribution, i.e. if we permute the pixels in the object, f, the entropy would remain 

unaltered. Gull and Skilling partially meet this criticism by incorporating a prior 

model, m, into the entropy as follows 

S = —  plog(pm) 	 5.3.12 

m could for example include information about spatial correlation between pixels. 

m could be a Markov random field (MRF). (See section 5.3.4) Shannon [24] gives 

examples of how to calculate the entropy of an MRF. 

There are various computational approaches to minimising 5.3.11. Gull and 

Skilling use a modified version of the conjugate gradient technique [26].  This is an 

iterative hill-climbing technique. During each iteration it searches for the point along 

a certain search vector at which 5.3.11 is minimised. At the next iteration it uses the 

previous minimum as a starting point and searches along a vector conjugate to that 

of the previous iteration. This method is somewhat laborious to program. 

Molina and Ripley [42] take a different approach, which was first suggested by 

Gull and Daniel [43].  They argue that in order to minimise L it should be stationary 

with respect to both p and o, thus 

at 

	

= 0 Vz 	 5.3.13 
api 

ÔL 

	

and - = 0 	 5.3.14 
aa 

Equn. 5.3.13 gives us 

Pi 	0Cexp(Aa 
DC  

-j-) 	 5.3.15 
Oi 
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where A = 	a is defined in equn. 5.3.8 and 

ac - HT(g - Hf) 	 5.3.16 
af 

Equn. 5.3.14 gives us 

ÔC 
- 	cx (aHp_ g)THp  

,9a 	aa 

=> a = gTHp/Hp2 	 5.3.17 

We can find the solutions to these equations iteratively. If we start with arbitrary 

values of p and a we can calculate new values using 5.3.15 and 5.3.17 and repeat 

until they converge. In practice the scheme will only converge when the starting 

values are reasonably close to the final result. A smoothed version of the original 

image is usually good enough. It will then converge in 20-30 iterations. 

5.3.3 Conditional Autoregression Method 

The conditional autoregression (CAR) technique was suggested by Ripley [41] 

This method again assumes that the object, f, and image, g, are positive and so is 

also restricted to incoherent imaging. It further assumes that the object has a certain 

smoothness, i.e. that there are no abrupt variations between neighbouring pixels. 

We can incorporate this idea by assuming that the object, f, can be modelled by a 

Markov random field (MRF). 

In a MRF we regard the values, f, of all the pixels as being random variables 

such that P(f, f, j 	i) depends only on the set of f3  which are neighbours of 

pixel i. This is clearly a good method of modelling smoothness because we can assign 

a high probability, P(f, I f), to values of f, which are close to the given values of 

the neighbouring pixels: this avoids abrupt variations between pixels. 

Ripley adopts a type of MRF known as a conditional autoregression (CAR). 

In a CAR the pixel values, f2, are assumed to follow a Gaussian distribution with 

variance tc and an expected value given by 

E(ff,ji) = >Cjjfj 
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where C is given by 

Cij = 1/N 	if i and j are neighbours 
5.3.18 

= 	0 	if not 

and N is the number of nearest neighbours (usually four or eight) 

Let us now consider the probability, P(f), of the whole object vector rather 

than the probabilities, P(f),  of the individual object pixels. Ripley [44] shows that 

P(f) follows a multivariate normal distribution given by 

P(f) x exp(__fT(I - C)f) 	 5.3.19 
2,c3  

and this clearly falls into the pattern of equn. 5.3.3 with the energy, U( f), defined 

by 

U(f) = fT(J - C)f 	 5.3.20 

The value of U(f) tends to be low for smooth objects- i.e. objects which correspond 

to our a priori information- and high for rough objects. 

We substitute this functional for U( f) in equn.5.3.5 and obtain 

L 	= 	const. + 	jig - Hf 2  + 	- C)f 	5.3.21 

then proceed as for MaxEnt i.e. we differentiate equn. 5.3.21 and set it equal to zero. 

Ripley obtains the following expression 

(HTH + Al - AC)f = HTg 	 5.3.22 

where A = i/i. Equn. 5.3.22 can be re-arranged to give the following iterative 

scheme 

k+i 	= (1 - a)Cfk + a[HT(g - Hf k ) + fk] 	5.3.23 

where a = t/(t, + ,c). This scheme converges within 20-30 iterations provided 

we start from a suitable starting point. 
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5.3.4 Examples of MaxEnt and CAR 

Figs. 5.1-8 show some examples of MaxEnt and CAR reconstructions. These 

reconstructions were generated by programs written by me with assistance from Prof. 

B.D.Ripley. The programs were based on the algorithms described in the previous 

two sections. The raw data for the reconstructions was provided by the Instituto 

de Astrofisica de Andalucia. The raw data were astronomical images of galaxies 

recorded by CCD arrays at the end of a telescope. The images are 	256 * 256 

pixels and the grey-levels range from 0-20000. The blurring in the images is not 

caused by the band-limited nature of the telescope but by the motion of the Earth's 

atmosphere. The blurring has been well studied and can be modelled by the following 

point spread function 

h(r) 	= 	
7r 7'[1 + (r/ro)2 ] 

where r is the radial distance from the origin and 9 and r0  are constants which can 

be determined from the images. In the case of these images the above function leads 

to an effective bandwidth of r'. 120, in units of 7r/128 radians. The object in the 

image has a spacewidth of 256 pixels. Thus these images have a one-dimensional 

space-bandwidth product of 

ir 256 120 
C 	-- = 607r 

128 2 2 

The noise in the original image is signal-dependent and is given by 

var(n) = 200 + 0.5g 

where n, and g, are the noise and signal values at the ith pixel. 

Figs. 5.1-8 are half-tone dot representations of the images. They contain effec-

tively only 50 grey-levels and tend to obscure some of the differences between the 

different reconstructions. Much more detail can be seen on a 256 grey-level repre-

sentation on a video screen, but these are sufficient to show the broad features I want 

to talk about. 



Fig. 5.1 shows the blurred image. Figs. 5.2-4 show MaxEnt reconstructions for 

different values of A. The noise is seen as speckle most easily visible around the 

edges of the galaxy, although it is of course present throughout the whole image. In 

fig. 5.2 the noise has been reduced but at the expense of smoothing the image, i.e. 

reducing the resolution. As A increases the restoration is made to fit the data more 

closely and so more structure appears. However, beyond a certain point the algorithm 

is merely being made to fit noise and so the new structure which appears is spurious. 

This is the case in fig. 5.4 where most of the apparent fine detail is probably not there 

in the original object. Figs. 5.5-8 represent a similar set of reconstructions from the 

CAR technique. 

Thus, to summarise, in MaxEnt and CAR we are again seeing a trade-off between 

super-resolution and noise. By trying to increase the super-resolution we also amplify 

the noise - just as we saw in the case of SVD. Figs. 5.3 and 5.7 probably represent 

the ideal balance between super-resolution and noise. 

5.4 Comparisons and Conclusions 

In this chapter we have looked at some developments of SVD and some other 

techniques of achieving super-resolution. One of the main themes of the chapter has 

been the way the different techniques use different types of a priori information and 

the effect this has on the reconstructed image. 

Both CAR and MaxEnt assume positive data, i.e. incoherent illumination, 

whereas SVD can cope with both coherent and incoherent illumination. CAR makes 

the further assumption of image smoothness. Neither MaxEnt nor SVD assume this. 

SVD assumes that the object is space-limited. This is also a tacit assumption 

made by CAR and MaxEnt. Clearly it is impractical for them to cope with infinite 

objects. The vectors representing the object and image must be truncated somewhere 

and, although it is in principle possible for the object to extend outside the edge of the 

vector, this tends to produce peculiar edge effects. Therefore, both CAR and MaxEnt 

tend to be happier when the object is well contained within the vectors f and g. 
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Figs. 5.1 and 5.2 

The blurred image and reconstruction with .A = iO 

Figs. 5.3 and 5.4 

Reconstructions with A = 10-6  and A = 10-5 
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Figs. 5.5 and 5.6 

The blurred image and reconstruction with A = 0.05 

Figs. 5.7 and 5.8 

Reconstructions with A = 0.1 and A = 0.4 
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Thus SVD makes the least number of assumptions of all three methods. This 

gives it an advantage in that it can cope with coherent as well as incoherent light 

whereas the others cannot, but as we have seen, it has two disadvantages: it is not very 

robust with respect to noise and it cannot cope with large space-bandwidth products. 

But, as we saw in section 5.3.4, both MaxEnt and CAR can cope with noisy images 

and large space-bandwidth products. This is because the additional assumptions built 

into the other methods cut down the class of possible solutions and make them more 

robust. 

We saw how Sasaki and Yamagami and Maeda and Murata incorporated further 

assumptions into SVD. They claim that this makes SVD more robust with repect to 

noise as we would expect from the above argument. They do not mention whether it 

allows SVD to cope with larger space-bandwidth products, but I expect that it probably 

will. No direct comparision of the methods of Sasaki et al. with MaxEnt has been 

done. It would be interesting to see if they all yield the same reconstructed object 

from the same blurred image, when they all make the same a priori assumptions. 

In summary, pure SVD is flexible in that it can be applied to both coherent and 

incoherent illumination. However, it is not robust. We can make it more robust by 

incorporating other a priori information, at the expense of reducing its flexibility. 

SVD is a much faster process than MaxEnt and CAR because it involves only 

the computation of a few scalar products whereas the other methods are iterative. In 

both MaxEnt and CAR each iteration involves calculating several Fourier transforms 

and so can take several CPU minutes. SVD thus has the advantage of speed. 
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Chapter Six 

Conclusions and Future Work 

Section 5.1 Summary of thesis 

In this thesis I have done three main things: a) I have presented an algorithm 

for the computation of the singular functions of a two-dimensional imaging system 

where object and pupil differ in shape. b) I have presented numerical examples of 

SVD and EVD with and without additive noise. c)I have presented results of an 

experimental test of SVD using incoherent illumination. 

5.1.1 Computing the Singular Functions 

In chapter two I described my algorithm for computing the singular functions of 

a two-dimensional imaging system where the object and pupil differ in shape. All pre-

vious workers have computed the singular functions only for either one-dimensional 

systems or for two-dimensional systems where object and pupil have the same shape. 

The essence of the algorithm is to express the imaging operator, A, as a sequence 

of subroutines. The most important subroutine is called the "finite Fourier transform" 

subroutine and it calculates a finite region in the centre of the Fourier transform of 

a finite object. The singular functions of this operator were found using the power 

method followed by Hotelling's deflation. 

5.1.2 Numerical Examples 

In chapter three I presented some numerical examples of SVD and EVD. These 

were computer simulations based on the system with square object and circular pupil. 

Firstly I presented examples of EVD and SVD without noise. I showed that they 

both returned values of the reconstruction coefficients which were equal to those of 

the original object. This demonstrated the internal consistency of the algorithms. Sec-

ondly I added random numbers to the images and then carried out the reconstructions 

again. SVD was seen to be superior to EVD in that more of the singular coefficients 

of the object could be estimated. 
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5.1.3 Experimental Work 

In chapter four I presented results of an experimental test of SVD. Images were 

generated using an optical bench. The images were deliberately bandlimited by 

placing an aperture in the Fourier plane. Incoherent illumination was used. The 

object and pupil were both rectangular, therefore separable singular functions were 

used. SVD was carried Out using both coherent and incoherent singular functions. 

The reconstruction coefficients were compared to the object coefficients for both 

techniques. Three different objective tests were applied to the reconstructed objects 

to see how well they had been restored. The incoherent method was found to be 

better. Discrepancies between the object and reconstruction coefficients were thought 

to be due to distortion in the camera/framestore system. 

Section 5.2 Suggestions for future work 

5.2.1 Other shapes of object and pupil 

So far I have calculated the singular functions only for the case of the square 

object and circular pupil. This is a relatively simple case since both regions have 

quarter-turn symmetry and, as we saw in chapter two, this greatly simplifies the 

algorithm. The more general case where the object and pupil have no particular 

symmetry would be much harder to compute. We would not be able to simplify 

the finite Fourier transform routine as we did in equn. 2.3.6 by substituting sines or 

cosines for the complex exponentials. Furthermore, it would be difficult to separate 

degenerate or near-degenerate eigenfunctions as we did in chapter two by sorting 

the functions into different symmetry sets. This would mean that the power method 

would take a very long time to converge. Further work needs to be done on solving 

these problems. 

5.2.2 Comparison of SVD with other techniques 

In chap. 5 we looked at some other techniques for achieving super-resolution: 

the Gerchberg algorithm, MaxEnt and CAR. It would be useful to compare the re- 
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constructions given by these techniques with those given by SVD when starting from 

the same blurred image. 

Both SVD and Gerchberg assume the same a priori information, viz, that the 

object is space-limited. We should then expect that the two algorithms should give 

identical reconstructions when given the same starting data. We could test this by 

taking a reconstruction produced by the Gerchberg algorithm and finding the scalar 

product of it with each of the singular functions, Uk.  These scalar products should 

be identical to the reconstruction coefficients given by SVD. 

In chap. 5 we saw that MaxEnt and CAR could cope with much larger space-

bandwidth products than pure SVD but it is possible that when other forms of a priori 

information are built into SVD that its performance would then be comparable. My 

SVD algorithm could be developed along the lines suggested by Sasaki and Yamagami 

and Maeda and Murata and then applied to the same images as we saw in chap. 5. 

We could then compare the results with MaxEnt and CAR. 

5.2.4 Experimental Work 

The experiment described in chapter four used incoherent illumination. A further 

experiment might use coherent illumination. This would be much more difficult to 

carry out since we would need to measure the complex amplitude of the image rather 

than merely its intensity. This requires the use of interferometry. The most likely 

application for this would be scanning laser microscopy. A design for such a system 

has been put forward by Hunter [37]. 

SVD is well-suited for processing coherent images. This is one of its advantages 

over techniques such as Maximum Entropy which require the object and image to be 

non-negative, and are thus suitable only for incoherent images. 
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Appendix A 

Incoherent vs. Coherent Singular Functions in the Presence of Noise 

In incoherent imaging the transfer function is no longer a simple top-hat function 

but has the form shown in fig. 1.4. We are now faced with a choice. We can either 

follow the path suggested by Frieden in which we divide the Fourier transform, 

G(k), of the image by the transfer function, H(k), and then use the coherent singular 

functions to carry out the SVD. Or we can follow the path suggested in Bertero 

and Pike's second paper, in which we carry out the SVD using incoherent singular 

functions. 

It is not obvious which of these two methods will be better in the presence of 

noise. The first has the problem that H(k) has values which are close to zero and so 

division becomes unstable. The second has the problem that the singular values are 

smaller than in the first method and so division by them is less accurate. 

Let us consider a noise distribution, n(k), such that 

<n(k)n*(kl) > = 	- k') 	 A.1 

We can calculate the contribution made by this noise to the two techniques. 

First, let us consider Frieden's technique. Let /3k  be the scalar product of the 

kth singular function with the noise 

20 	n(x) 
(x) 	dx 	 A.2 

= 	 H(x) 

Then the time-averaged value of /3k  is given by 

2n 
<II3k2> =  62< 	'çb(x)çb(x) 

dx> 	 A.3 
f211 H*(x)H(x) 

We can calculate the value of A.3 numerically. But we have to avoid the problem 

of dividing by zero at the points k = +2g. To do this 32 equally spaced sample 

points were placed on the interval [-2Q,2l] with the left-hand sample point at 

116 



k = —31/16. A.3 was approximated by a discrete scalar product over these points. 

There is thus no need to calculate the value of the integrand of A.3 at k = +2g. 

The contribution of the noise to the final reconstructed object is given by 

V/< J#kF>  

Ak 

where Ak is the singular value. The quantity in equn A.4 is tabulated in the right-hand 

side of table A. 1. for each of the first nine singular functions with the space-bandwidth 

product, c = 27r. e has been set equal to unity. 

In the second technique the coefficient, /3k,  of the kth singular function with 

the noise is given by 

/3k 	j
k(X)fl(X)dX 	 A.5 

-2Q 

where q, is the kth incoherent singular function. The time-averaged value of /3k  is 

given by 

< IN 12> = 	 A.6 

and the contribution to the final reconstructed image is given by 

62 	

A.7 

where a, is the incoherent singular value - different from Ak in equn. A.4. These 

values are tabulated on the LHS of table A. 1, again for c = 27r. As can be seen the 

incoherent values are smaller so the incoherent method is superior to the coherent 

method for this particular value of c. 

The values shown in table A.1 were calculated for one particular value of c, 27r. 

I cannot find a general proof which shows that the incoherent fucntions are better for 

all values of c. However, I can say that table A.1 is typical for values of c in the 

range where SVD is useful. 
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Table A.1 

Function No. Coherent Incoherent 

1 1.5 1.2 

2 3.1 1.6 

3 7.3 2.4 

4 16.0 4.2 

5 36.3 9.6 

6 101.6 27.9 

7 346.2 101.8 

8 1378.5 448.2 

9 6255.0 2290.4 
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