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Abstract 

In a Scottish family, a t(1;11) (q42;q14) translocation between chromosome 1 and 11, is linked 

with mental illness. People carrying this translocation are diagnosed with mental illnesses such 

as schizophrenia, schizoaffective disorder, bipolar disorder and recurrent major depressive 

disorder. The DISC1 gene localised on the chromosome 1 is known to be disturbed by this 

translocation. The DISC1 protein is involved in neurite outgrowth, cortical development, cell 

proliferation, differentiation, migration, mitochondrial activity, and cytoskeletal organisation 

and function. Multiple animal models have been created to study the effect of disrupting 

DISC1 on brain development and mental illness. Rodent models have shown critical changes 

in behaviour, brain function and structure, as well as alterations in various molecular pathways. 

These modifications are consistent with an involvement for DISC1 in psychiatric disorders. 

However, none of these Disc1 mouse models accurately model any known causal events. 

This thesis aims to characterise a new mouse model of the derived chromosome 1 carrying a 

modified endogenous Disc1 gene, in order to reproduce the human transcript obtained from 

the chromosome 1 after the translocation happens. While MRI analysis of its brain structure 

showed no gross changes, histological analysis of brain structure revealed an enlargement of 

the lateral ventricles and a trend towards smaller cortical layer and corpus callosum thickness 

in heterozygous mice. There was also increased apoptosis in the prefrontal cortex of these 

mice.  Investigation of cell density, GABAergic neuron density and hippocampal neural 

precursor proliferation and migration showed no significant change. Cultured homozygous 

mutant cortical neurons showed impaired neuronal outgrowth and somal hypertrophy. Lastly, 

RNAseq analysis and gene ontology analysis revealed disturbed RNA expression of numerous 

genes including genes involved with transport mechanisms, vesicular trafficking, cell 

signalling and communication in the cortex as well as genes involved with transport 

mechanisms and the electrical activity of the neurons in the hippocampus. Moreover, in both 

these regions, these alterations are more prominent in the synapse. 

Overall, the t(1;11) (q42;q14)  translocation seems to lead to subtle structural changes in the 

brain, neuronal outgrowth impairment and major changes in RNA expression. The latest 

suggests critical alteration in molecular pathways such as signalling pathway and synaptic 

pathway indicating that Disc1 is necessary for neuronal signalling and synaptic activity. As 

those characteristics are known to be strongly affected in psychiatric disorders, this indicates 

that the Der1 mice model could be a great model to study the underlying genetic and molecular 

pathway leading to developing those disorders. These results support the hypothesis that 

DISC1 is a susceptibility gene for the development of mental disorders. 
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Lay summary 

A translocation between chromosomes 1 and 11 was found in a Scottish family which seems 

to be linked with mental disorders. A translocation happens when pieces of DNA are 

exchanged between two chromosomes of the genome where the broken ends of the two 

chromosomes are then reconstructed with the wrong chromosome. When this event happens, 

genes are disrupted, and their proteins can malfunction. Members of this family carrying the 

translocation t(1;11) appear to be predisposed to develop psychiatric illness when compared 

to unaffected individuals in the family. The Disrupted in Schizophrenia 1 (DISC1) gene, was 

discovered to be affected on chromosome 1 in these individuals. Numerous studies on DISC1 

have revealed its involvement with the development and physiological functioning of the 

brain. 

Multiple animal models have been created to study the effect of disrupting DISC1 on brain 

development and development of major mental illness. While these animal models have shown 

significant changes in behaviour, brain function and structure as well as in important molecular 

pathways, they do not completely recapitulate the pathology or behavioural changes seen in 

mental disorders. Therefore, to accurately model the genetic translocation seen in the Scottish 

family, a mouse model with the translocation between chromosomes 1 and 11 was created. 

This thesis aims to characterise this new DISC1 mouse model in the hope that it will prove to 

be a better mouse model for mental health disorders. The end of the gene containing an 

exposed hydroxyl group on the deoxyribose is named the 3’ half of the gene. This end of the 

DISC1 gene has been removed from a position corresponding approximately to that of the 

translocation breakpoint in humans and replaced with a segment of human chromosome 11 to 

mimic the translocation found in the Scottish family. 

Studying this mouse model has given us a better understanding of DISC1 function and its 

involvement in psychiatric disorders. The structure of the brain in these mice showed subtle 

changes due to the translocation. Moreover, it seems that the translocation affects cell death in 

the brain. RNA expression was also found to be disturbed along with impaired neuronal 

outgrowth. Overall, the translocation seems to affect the normal functioning of the brain. These 

results support the hypothesis that impaired functioning of DISC1 could be involved in the 

development of mental disorders. However, further investigation is required to completely 

understand this new mouse model. 
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1.1 Global burden of mental disorders 

Mental disorder is a worldwide burden that currently affects 450 million people (WHO, 2001). 

The latest Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has tried to re-

define the characteristics describing mental disorders in order to obtain more accurate 

diagnosis for patients suffering from mental disorder. The DSM-5 defines mental disorder as 

a significant distress found in an individual which reflects an impairment of mental capabilities 

(American Psychiatric Association, 2013). The disorders considered as mental illness can be 

quite different from one another such as: major depression disorder, bipolar disorder, 

schizophrenia and other psychoses, dementia, intellectual disabilities as well as developmental 

disorders. A various range of symptoms characterizes these disorders. This heterogeneity of 

disorders and symptoms makes mental disorders a major economic burden for our society 

(Bloom et al., 2011; Trautmann, Rehm and Wittchen, 2016). Indeed, some costs can be 

considered direct such as medical help and research on those disorders but also indirect such 

as economic loss due to incapability of patients to contribute to society (Trautmann, Rehm and 

Wittchen, 2016). The global costs of mental disorders were estimated at US$2.5 trillion in 

2010 (Trautmann, Rehm and Wittchen, 2016). In 2011, the World Economic Forum defined 

three different approaches to quantify economical cost of mental disorders: a standard cost of 

illness, an economic approach, and the value of a statistical life (figure 1.1) (Bloom et al., 

2011). 

Figure 1.1: Schematic representation of the economic costs of mental disorders 

Image adapted from EMBO report, The economic costs of mental disorders, 

Trautman et al. (2016). 
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Another way of assessing the burden caused by mental illness is by using the disability 

adjusted life years (DALYs) (WHO 2010). DALYs represents the total number of years lost 

to illness. Mental, behavioural and neurodevelopmental disorders are the third cause of global 

DALYs (WHO 2010). It has been estimated that 7.4 % of DALYs are due to mental and 

behavioural disorders  from which 34.12 % are due to depression (WHO 2010, figure 1.2).  

This shows that mental disorders are a real burden for the individuals affected and our society. 

The clinical presentations of these disorders or the biological mechanisms that underlie them 

are still not completely understood. Moreover, available treatments frequently produce side 

effects which make them difficult to support, and current treatments only provide limited 

benefits when suffering from these disorders but no curative therapies are yet available (Davis 

et al., 1980; Wang, Demler and Kessler, 2002). Therefore, it is necessary to understand the 

origin of these illnesses and their biological mechanisms in order to improve treatments and 

maybe even prevent the development of psychiatric disorders. 

 

 

Figure 1.2: Representation of the global DALYs for each disorder comprised in 

mental and behavioural disorders. From the World Health Organisation (2010). 
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1.2 The origin of mental illness 

Mental illnesses may be diagnosed as early as during childhood and adolescence. For example, 

schizophrenia can occur in childhood but is rarely observed before puberty, with its major 

onset happening in the mid-20s which correspond to early adulthood. Onset during late 

adulthood can also be observed in some cases (Howard et al. 2000; Thompson et al. 2001). 

Depression is a mental illness that can start during either childhood, adolescence, or adulthood 

(Frcpc & Frcpc 2001; Drachmann et al. 2011). While the cause of mental disorders has not yet 

been found, two factors are believed to be involved: genetics and environment. 

 

1.2.1 Genetic factors lead to higher susceptibility to mental illness 

Twin studies have been used to identify the heritability of mental health disorders, as  

monozygotic twins have the same chromosomal DNA sequence while dizygotic twins share 

50% of the DNA (Martin, Boomsma and Machin, 1997; Wong, Gottesman and Petronis, 

2005). Traits found to be shared by monozygotic twins, and not with dizygotic twins are 

believed to come from the genome. Thanks to these studies, a large range of heritable traits 

for mental disorders were discovered. This indicates that mental disorders can be a familial 

trait, due to a shared genetic background. However, since these disorders are complex their 

heritability is variable. For example, several twins studies have revealed that the heritability 

of schizophrenia is 80-85%, while for  bipolar disorders it is 85% and for major depression 

disorders it is 40-50%   (Cardno and Gottesman, 2000; Malhi, Moore and McGuffin, 2000; 

McGuffin et al., 2003; Craddock et al., 2005). Adoption and family studies have also been 

used to study the link between genetic and mental illness (Jacobs et al., 1970; Gershon et al., 

1988; Berrettini, 2000; Tsuang, 2000; Tully, Iacono and McGue, 2008). 

So far, a combination of multiple genes has been hinted to be implicated in the development 

of psychiatric disorders (Craddock et al, 2005). Moreover, it seems that the same genes may 

also be associated with several mental disorders (Blackwood et al, 2001; Craddock et al, 2005). 

This brings to light the fact that mental disorders could share similar genetic factors and 

therefore similar biological mechanism impairments. Recently, genome wide association 

studies (GWAS) have been used to discover new genetic candidates for these disorders, based 

on the idea that a combination of several common risk alleles may act together leading to 

mental disorders (Lander, 1996). GWAS consist of observing a genome-wide set of specific 

genetic variants across a large number of individuals to see whether any variants are associated 

with a phenotypic trait (Witte, 2010). As sample sizes have increased, GWAS have generated 

increasingly clear evidence for common single nucleotide polymorphisms (SNPs)  
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contributing to mental illness (Ripke et al., 2014; Ikeda et al., 2017). SNPs happens quite 

frequently through the genome, being harmless most of the time. However, analysis of the 

genomes of patients suffering from mental illness revealed that the presence of specific SNPs 

is linked to the risk of developing these disorders (Szczepankiewicz, 2013; Falola et al., 2017). 

Moreover, analysis of SNPs could help predict the severity of mental disorders (Jiao et al., 

2012). An initial GWAS for schizophrenia with 21,246 cases and 38,072 controls identified 

22 genomic regions in total, of which 14 were novel risk loci (Ripke et al., 2013). However, a 

follow up study with 36,989 cases and 113,075 controls identified 108 loci that meet genome-

wide significance, of which 83 were novel (Ripke et al., 2014). The results suggest 

dysregulation of the calcium pathway, the immune system, neuronal processes control and 

glutamatergic synaptic channel function (Ripke et al., 2014).  

Similarly, a GWAS with 1,461 patients with bipolar disorder and 2,008 controls established 

36 associated loci (Sklar, 2013). A second GWAS of 9,784 patients suffering bipolar disorder 

replicated four of these known loci from the former study and identified two novel loci (Hou 

et al., 2016). These findings suggest the implication of circadian rhythm, cell signalling and 

vesicle trafficking as well as the neuregulin pathways in bipolar disorders (Hou et al., 2016). 

A recent GWAS which included 2964 patients and 61,887 control subjects from the Japanese 

population brought to light two novel loci significantly associated with bipolar disorders 

(Ikeda et al., 2017). This study suggests that lipid abnormality may be involved in the 

pathophysiology of bipolar disorders as well as impaired cell cycle regulation, transcription 

and replication. 

However, a GWAS for major depression disorder which has been done on a total of 18,759 

individuals did not find any positive results but it was believed that the number of individuals 

studied was too low (Daly et al., 2013). Recently, a study using data from 121,380 subjects 

affected by depression revealed 15 genetic loci linked to the risk of major depressive disorder 

in individuals of European descent, with some of these loci having already been found in 

GWAS of related psychiatric traits (Hyde et al., 2016). The main results indicate that the 

regulation of synaptic function, developmental functions and neurogenesis could be impaired 

in major depression disorders (Hyde et al., 2016). A GWAS study of 130,664 cases has further 

identified 44 independent loci that met criteria for statistical significance (Major Depressive 

Disorder Working Group of the PGC, 2017). The results indicated that several functions were 

implicated in the disease such as neurite outgrowth, synaptic plasticity and immune system as 

well as neuronal calcium signalling, dopaminergic neurotransmission, glutamate 

neurotransmission, and presynaptic vesicle trafficking (Major Depressive Disorder Working 

Group of the PGC, 2017).  
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The numerous loci, function and pathways found to be affected in these studies revealed that 

the identified candidate genes seem to be shared by the different mental disorders. For 

example, genes such as CACNA1C, CACNB2, ZNF804A, ANK3, ITIH3-ITIH4 and TCF2 seem 

to be implicated in both bipolar disorder and schizophrenia (Green et al., 2010; Bhat et al., 

2012; Ripke et al., 2013; Cardno and Owen, 2014). Some of  these loci are also involved in 

autism, attention-deficit/hyperactivity disorder, and intellectual disabilities (Smoller et al., 

2013; Uher and Zwicker, 2017). 

Copy number variants (CNVs) involve deletions or duplications of sections of chromosomes 

and can be either inherited or sporadic. While GWAS results show overlap between 

schizophrenia, major depression disorders and bipolar disorder, the study of CNVs does not 

always indicate similar results. Indeed, another line of thought is that psychiatric disorders are 

caused by CNVs (Joober and Boksa, 2009; Rees, O’Donovan and Owen, 2015). 13% of the 

human genome is believed to be composed of CNVs and numerous studies have revealed that 

CNVs increase the risk of developing mental disorders, moreover concentration of rare CNVs 

in individuals with schizophrenia is higher compared with controls, but a lesser quantity of 

very large CNVs in bipolar patients was found (St Clair, 2009; Stankiewicz and Lupski, 2010; 

Grozeva et al., 2012, 2013). CNVs associated with mental disorders are numerous (Cardno 

and Owen, 2014; Kirov, 2015). However, they seem to be rarer than the variants that are the 

focus of GWAS, but they seem to have a superior effect on risk of schizophrenia when 

they occur. CNVs have been less well studied in bipolar disorder than schizophrenia and 

studies have not found a significant increase in the amount of rare CNVs in individuals with 

bipolar disorder compared with controls. Therefore, patients diagnosed with a mental disorder 

carrying large, rare deletions are more likely to be diagnosed as schizophrenics, and those 

without them are more likely to be diagnosed as having bipolar disorder (Grozeva et al., 2015). 

CNVs occurrence is quite heterogeneous between the different mental disorders with some 

CNVs more common in some illness compared to others (Green et al., 2016). A recent study 

analysed CNVs in the whole genome of patient affected by major depression and showed that 

deletion CNVs are more frequent in major depression compare to controls (Yu et al., 2017). 

Overall, psychiatric disorders are genetically heterogeneous. GWAS studies and CNVs 

analysis allowed to find multiple possible genetic risk factors for psychiatric disorders and 

pointed toward numerous similarities between the genetic of these disorders. However, genes 

modification is not the only feature which could lead to the development of psychiatric 

disorders. 
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1.2.2 Environmental factor could trigger mental disorders 

As mentioned previously, the genome may hold a partial information indicating the risk-level 

for the development of mental disorder. However, the twin studies which revealed this also 

demonstrated that an individuals’ environment is also a risk factor (Uher & Zwicker 2017; 

Polderman et al. 2015; Arseneault et al. 2011). Studies have also indicated a significant link 

between the environment and psychiatric disorders (figure 1.3) (Uher & Zwicker 2017; 

Ehrenreich 2017). Initially, research tried to link one aspect of the environment with one 

individual’s mental disorder (Deater-Deckard et al. 1998; Rutter et al. 1975). To understand 

better the range of the environmental effect on psychiatric disorders, larger and more accurate 

studies were completed, which allowed the identification of multiple environmental risk 

factors for those disorders (Uher & Zwicker 2017; Brown 2011; van Os et al. 2010).  

Figure 1.3: Environmental factors associated with mental illness 

Table from “Etiology in psychiatry: embracing the reality of poly-gene-

environmental causation of mental illness”, Uher et al. (2017) 
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It was shown that in urban area higher rates of psychiatric disorders were found compared to 

rural areas (Peen et al. 2010; Brown et al. 1975; Vassos et al. 2016). Urban life is believed to 

be associated with poverty, environmental degradation, and stress which could all be risk 

factors for mental illness. Bullying has also been linked to the development of mental disorders 

with the victims having a higher risk of developing mental disorders and this could even impact 

their own future children (Swartz & Bhattacharya 2017). 

Numerous epidemiological studies suggest that maternal infection increased the risk of 

depression, schizophrenia and major affective disorders in children, especially if the infection 

happens during the second trimester of pregnancy (Mednick et al., 1988; Boksa, 2008; 

Machon, Mednick and Huttunen, 2012). Maternal stress during pregnancy was also linked to 

depression in the offspring (Enayati et al., 2012; Murphy et al., 2017). The cumulative effect 

of both maternal stress and infection during gestation has been showed to augment even more 

the risk of developing depressive symptoms in the children during adolescence (Murphy et al., 

2017).  

Substance abuse has also been identified as a risk of developing psychiatric disorders 

especially in adolescents (Center for Behavioral Health Statistics and Quality, 2015). For 

example, cannabis use has been discovered to lead to an earlier initiation of  schizophrenia and 

a greater risk of psychosis (Manrique-Garcia et al., 2012; Donoghue et al., 2014).  

Overall, the same kind of environmental exposure can increase the risk of developing different 

mental disorders, while the same disorders could be due to different sort of environments. 

However, many individuals seem to be resistant and don’t develop any mental disorder even 

if they are exposed to multiple adverse environmental factors. This is due to the fact that each 

individual experience life in different ways. One event can make a person more vulnerable 

while this event would not affect another person possibly making her more resistant to future 

experiences (Collishaw et al., 2007; Rutten et al., 2013; Davis et al., 2016).  

No environmental factor is necessary or completely sufficient to cause any psychiatric 

disorder, in fact, the encounter of multiple environmental factors across the course of life and 

as well of multiple genetic factors are believed to act cumulatively to trigger mental disorders. 

Therefore, these gene-environment interactions seem to be the cause of the development of 

mental health disorders and it is now believed that environmental factors act on personal traits 

according to an individual’s genetic predispositions (Hopwood and Donnellan, 2011; Uher 

and Zwicker, 2017). Using 16 environmental variables known to all be very strong risk factors 

for mental, an interaction between nine SNPs and those risk factors were identified, showing 

an enrichment of genes linked to serotonin neurotransmission and neurodevelopmental 
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processes (Bernardo et al., 2016). More research is currently ongoing to fully understand the 

mechanism of gene-environment interaction which leads to psychiatric illness. This could lead 

to better therapeutic treatments and personalised medication (Halldorsdottir and Binder, 2017). 

 

1.3 Common psychiatric disorders 

Some of the most common psychiatric disorders are schizophrenia, bipolar disorder and major 

depression disorder. The biological mechanisms underlying those disorders is still not 

understood and diagnostic of patients affected by these disorders is difficult. Because of the 

lack of understanding of these illnesses, this can sometime lead to misdiagnose. Major 

depressive disorder is one of the main causes of disability worldwide with an estimated 300 

million people are affected globally, affecting more women than men (Seedat et al., 2009; 

Otte et al., 2016). In comparison, bipolar affective disorder affects about 60 million people 

and schizophrenia about 21 million people worldwide (WHO, 2017). Since these disorders can 

be hard to differentiate clinically, as they sometimes share the same symptoms and clinical 

impairment, it is necessary to discover their underlying mechanisms in order to better define 

and treat them.  

1.3.1 Characteristics of major depression disorder 

Major depression affects approximatively 4.4% of the population worldwide, and more and 

more people are getting affected (World Health Organization, 2017). It is more frequent in 

women than in men (Otte et al., 2016). It is a mood disorder that affect how the person feels, 

thinks and behaves and is characterised by persistent feeling of sadness, loss of interest, low 

self-esteem (World Health Organization, 2017). It sometimes drives patients to a point where 

they feel that life isn't worth living and may even lead to suicidal thoughts (World Health 

Organization, 2017). Major depression disorder is a real illness for which medical treatment is 

needed and it is not something you can just “get over” (US Department of Health and Human 

Services, NIH and NIMH, 2015). Unfortunately, proper treatment is still under investigation 

and no established mechanism has been found to explain all aspects of the disease. 

Patients suffering from major depression have been found to have a smaller hippocampal 

volumes (Sheline et al., 1996; Bremner et al., 2000; Cole et al., 2011). In a more recent study, 

magnetic resonance imaging (MRI) scans from 1728 major depressive disorder patients and 

7199 controls from 15 research samples worldwide were analysed, showing lower 

hippocampal volume mainly in patients with recurrent major depression disorder and no 

difference in first episode patients (Schmaal et al., 2016). Moreover, the volume reduction was 
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more pronounced in early onset patients, where the illness starts before 21 years of age. These 

results indicate a progression of the hippocampus volume loss correlating with the progression 

of the disorder (Schmaal et al., 2016). A study also shows that the shape of the hippocampus 

could be modified in major depression disorder compare to controls (Posener et al., 2003). 

However, these studies are not always consistent, and the sample sizes are often small. Adults 

suffering from major depression disorder were reported to additionally show cortical thinning 

in the frontal and temporal lobes whereas no difference in cortical thickness was found in 

depressed adolescent patients but left and right hemisphere total surface area was smaller 

(Schmaal et al., 2017). Other than the volumetric reductions of the hippocampus and cortical 

thinning, modification of the amygdala, temporal and frontal lobes, basal ganglia and cingulate 

cortex anterior have been noticed in some major depressive disorder patients (Coffey et al., 

1993; Lacerda et al., 2003; Ballmaier et al., 2004; Hastings et al., 2004; Lorenzetti et al., 

2009). However, similar to changes in the hippocampal volumes, these structural changes have 

not always been found consistently. Moreover, it seems that more persistent forms of 

depression are associated with greater change in regional brain volumes. 

Hypothalamic-pituitary-adrenal (HPA) axis activation seems to be a known feature in 

depressed patients as shown by elevated concentration of cortisol and corticotropin-releasing 

hormone (Varghese and Brown, 2001; Borges, Gayer-Anderson and Mondelli, 2013). 

Additionally, impairment of the immune system in major depressive disorder patients has been 

revealed, with patients suffering from depression showing an increase of inflammatory 

response with elevated concentration of biomarkers of inflammation (Zorrilla et al., 2001; 

Miller, Maletic and Raison, 2009; Schmidt, Shelton and Duman, 2011). It is believed that the 

peripheral changes in cortisol levels and inflammatory mechanisms might ultimately induce 

depressive symptoms by disrupting neuroplasticity and neurogenesis in the brain which are 

vital to its function. Additionally, lower levels of brain-derived neurotrophic factor (BDNF) 

and other regulators of neuroplasticity might affect behaviour through their control of 

neurogenesis and the inflammatory cytokines could lead to reduction of monoamine synthesis 

and imbalance of neurotransmitters having for consequences a modification in the brain 

function and therefore of the behaviour (Molendijk et al., 2014; Otte et al., 2016). Indeed, 

research focusing on serotonin involvement in depression indicate that serotonin level was 

decreased in patients as well as in animal models of depression (Paul-Savoie et al., 2011). 

These mechanisms increase monoamine synaptic membrane reuptake and reveals neurotoxic 

effect (Paul-Savoie et al., 2011). Lastly, it is possible that trauma could also lead to activation 

of the immune system, which in turn could cause depression. It seems that all mechanisms 

involved in depression have a very close interaction with each other and further understanding 
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of their entanglements is necessary to understand depression, with possibly a special focus on 

the inflammatory mechanisms of major depressive disorder (Otte et al., 2016; Guo and Jiang, 

2017). 

 

1.3.2 Characteristics of Bipolar disorder  

Bipolar disorder affects 60 million people worldwide (WHO, 2017) and is a brain disorder that 

usually causes extreme mood swings. It leads to patients feeling euphoric and full of energy 

wanting to do a lot of things at times, and extremely low and depressed wanting to stay 

secluded at some other times (NIMH, 2016). These distinct periods are called “mood episodes” 

(NIMH, 2016). Sometimes, low and high mood episodes can happen simultaneously, referred 

to as a “mixed feature episode” (NIMH, 2016). This inconstant mood state prevents patients 

from carrying out daily tasks and being actively part of the society. Bipolar disorder also 

affects patients’ sleep, energy, behaviour and thought process. 

There are four basic classes of bipolar disorder (NIMH, 2016), ranging from periods of manic 

episodes to depressive episodes: i) Bipolar I disorder is defined by extremely severe manic 

episodes. In this case, the episode last at least 7 days and immediate hospital care is needed. 

Moreover, a depressive phase of two weeks also occurs most of the time; ii) Bipolar II disorder 

is less intense than described previously but is also characterised by manic and depressive 

episodes; iii) Cyclothymic disorder is characterised by several periods of hypo-manic 

symptoms which are less severe manic episode and depressive symptoms lasting for at least 2 

years; iv) Other specified and unspecified bipolar and related disorders which do not fit in the 

categories previously listed. Currently, treatment to help cope with bipolar disorder exists. It 

helps patient managing the mood swings but it is still difficult for them to have a “normal life” 

(US Department of Health and Human Services, NIH and NIMH, 2015). More research about 

the mechanistic of the disorder is needed to obtain better understanding of this disorder and 

better treatment.  

Numerous studies have shown that the structure of the brain of bipolar disorder patients is 

different compared to healthy people, with each severe mood episode linked to the 

exacerbation of the brain volumetric change (McDonald et al., 2004; Altshuler et al., 2005). 

However, these studies haven’t always shown the same outcome with regards to structural 

changes of the brain. In a meta-analysis of MRI, patients affected by bipolar disorder were 

discovered to have a mild enlargement of the right lateral ventricle, but no other volumetric 

changes were noticed (McDonald et al., 2004). However, this study also revealed 

heterogeneity in the results of volumetric analysis between different studies for several other 
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regions such as the third ventricle, left sub-genual prefrontal cortex, bilateral amygdala and 

thalamus (McDonald et al., 2004). This indicate the need to form homogeneous group within 

bipolar patients in order to study this disorder accurately. Another meta-analysis of MRI 

showed a reduction of total brain volume in bipolar patients compared to healthy controls, as 

well as enlarged ventricle and globus pallidus (Arnone et al., 2009). Patients with bipolar 

disorder seem to also have significant reduced intracranial, whole brain, total grey and white 

matter volumes (De Peri et al., 2012). However, another study indicated that bipolar disorder 

patients did not have a grey matter deficit compared to healthy control (Yüksel et al., 2011). 

In an analysis which compared bipolar type I and II, it was found that patients had reduced 

total brain volumes (Maller et al., 2014). They specifically showed that only bipolar disorder 

type I had reduced volume and thickness in the medial orbitofrontal region of the right 

hemisphere and reduced thickness of the superior temporal region of the left hemisphere. 

However, only patients with bipolar type II had lower white matter integrity. Moreover, it 

seems that bipolar disorder severity correlated with brain structure abnormality (Maller et al., 

2014). This might indicate that specific abnormalities exist for specific bipolar subtypes, and 

therefore, it could be an indication on why results between studies on bipolar disorder are so 

variable. Several studies indicate that grey matter density in frontal, temporal, parietal and 

occipital lobes is reduced in patients suffering from bipolar disorder (Strakowski, DelBello 

and Adler, 2005; He et al., 2017; Hibar et al., 2018). The temporal and occipital lobes are 

necessary to process sensory and visual information respectively, therefore impairment of 

these two regions could lead to difficulties to do everyday tasks and to mood swings and their 

volume reduction seemed to be associated with a longer duration of bipolar disorder (He et 

al., 2017; Hibar et al., 2018). Additionally, reduction of the volume of the hippocampus and 

thalamus in bipolar patients seem to be consistent findings while volumetric changes of the 

amygdala have been found sometime either reduced or increased  (Blumberg, 2003; Cao et 

al., 2016; Hibar et al., 2016, 2018). Both the hippocampus and the amygdala are key regions 

of the limbic system, additionally there seem to be a decrease in white matter tracts between 

the prefrontal regions and the limbic structures might indicate that the limbic system function 

is possibly impaired (Strakowski, DelBello and Adler, 2005; Clark, Sahakian and Luke Clark, 

2008). This indicate a disruption in the connection between the different brain regions involved 

in cognition therefore indicating that cognition might be affected. 

The neurobiology of bipolar disorder is sometime quite similar to the one of major depression 

disorder and schizophrenia (Savitz and Drevets, 2009; Muneer, 2016). There are several 

hypotheses indicating that dysregulation of mitochondrial function could lead to bipolar 

disorder (Cataldo et al., 2010; Morris et al., 2017; Scaini et al., 2017) which has also been 
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suggested for schizophrenia and depression (Rajasekaran et al., 2015; Bansal and Kuhad, 

2016). Additionally, decrease in neuronal and glial density as well as in neuronal size was also 

found in bipolar disorder, the latter of which is thought to be linked with dysregulation of the 

immune system (Rajkowska, 2000; Harrison, 2002; Bearden, Zandi and Freimer, 2016). 

Further, pyramidal neurons seem to be particularly affected in bipolar disorder (Benes, Vincent 

and Todtenkopf, 2001; Liu et al., 2007). The activity of neurotransmitters, such as serotonin, 

GABA and dopamine, also appear to be altered in bipolar disorder (Maletic and Raison, 2014; 

Wang and Young, 2016).  

1.3.3 Characteristics of Schizophrenia 

According to the national institute of mental health (NIMH), schizophrenia is “a chronic and 

severe mental disorder that affects how a person feels, thinks and behave”. Individuals affected 

by this disorder have trouble managing their emotions and making decisions and have a hard 

time distinguishing what is real or not.  All this makes it very difficult for people suffering 

from schizophrenia to live in society. More than 21 million people in the world are affected 

by this disorder (WHO, 2017). Patients suffering from schizophrenia can express various 

symptoms: i) Positive psychotic symptoms such as auditory and visual hallucinations, 

paranoid delusions as well as distorted perceptions and beliefs; ii) Negative symptoms such as 

loss speech, inability to express emotion, to find happiness in everyday life and to be active 

through the day; iii) Disorganization symptoms which are characterised by confused thinking 

and speech, trouble with logical thinking and sometimes abnormal behaviour and movements; 

iv) Impaired cognition identifiable by difficulties to pay attention, to concentrate, to learn and 

to make decision and therefore indicating an impaired working memory (WHO, 2017). 

Patients affected by schizophrenia are believed to have a different brain structure and 

neurobiology. A lot of work having been done and still ongoing to understand the mechanisms 

of this disorder (Ross et al., 2006; Iritani, 2013). The hope is also to find better treatments for 

this disorder as current treatments are associated with numerous undesired secondary effect 

such as weight gain, metabolic changes and sexual dysfunction (Lally and MacCabe, 2015). 

Moreover, treatments available don’t work on every patient (Lally and MacCabe, 2015). 

Patients affected by this disorder have been shown to have larger volumes of the ventricles 

and caudate nucleus compared to healthy controls and also showed signs of cerebral atrophy 

which were related to the severity of the symptoms as well as a reduction of the volumes of 

the amygdala, hippocampus, temporal gyrus, thalamus, prefrontal cortex and prefrontal white 

matter (Johnstone et al., 1976; Young et al., 1991; Breier et al., 1992; Chua and McKenna, 

1995; Henn and Braus, 1999; Wright et al., 2000). The reduction of prefrontal white matter 
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correlated with the reduction of the amygdala and hippocampus which indicate abnormal 

connections between the limbic system and the cortex in schizophrenia (Breier et al., 1992). 

A meta-analysis used the MRI results of 771 schizophrenic patients to study brain volume 

modification, revealing that drug-naïve patients had a reduction of intracranial volume as well 

as a reduction of the total brain volume, total grey and white matter volumes , hippocampal 

volume, thalamic and caudate nucleus volume along with an increase in cerebrospinal fluid 

volume compared to controls (Haijma et al., 2013). A more recent meta-analysis of brain MRI 

scans from 2028 schizophrenia patients and 2540 controls was performed, similarly indicating 

that schizophrenic patients had smaller hippocampus, amygdala, thalamus, nucleus 

accumbens, and intracranial volumes, as well as larger globus pallidum and lateral ventricle 

volumes. The most significant changes were in the reduction of the hippocampus and the 

enlargement of the ventricles. Moreover, the putamen and globus pallidum were getting larger 

with the  progression of the disorder (Van Erp et al., 2016). Another large study of subcortical 

brain volume obtained similar results, in terms of regional volumes, but additionally indicated 

a leftward asymmetry for globus pallidum volume in schizophrenic patients. Therefore, this 

indicates that schizophrenic patients might expressed structural and connectivity differences 

between their two cerebral hemispheres (Okada et al., 2016).  

It is believed that the reduction of the white matter volume indicates an impaired 

communication between the different brain regions affected by the disorder and this problem 

of connectivity could lead to the cognitive impairments seen in schizophrenia (Kyriakopoulos 

et al., 2008; Karlsgodt et al., 2010; Klauser et al., 2017; Levitt et al., 2017). Cellular post 

mortem studies show that there was a reduction of cellular proliferation and GABAergic 

neurons (Lewis et al., 2012; Allen, Fung and Shannon Weickert, 2016; De Jonge et al., 2017). 

The dysregulation of the GABAergic pathway might be linked to the NMDA receptor 

hypofunction found in schizophrenia. Indeed, the hypothesis that NMDAR hypofunction is 

the principal mechanism behind this disease's pathophysiology is one of the most supported 

(Olney, Newcomer and Farber, 1999; Coyle, 2012; Snyder and Gao, 2013; Balu, 2016). The 

presence of NMDAR antagonist in the neuronal network leads to non-activated GABAergic 

neurons and therefore to a reduction of GABA release and disinhibition of excitatory neurons 

(Cohen et al., 2015). Multiple neuronal pathways would be then altered. (Olney, Newcomer 

and Farber, 1999; Nakazawa, 2011; Coyle, 2012). As well as an imbalance in GABAergic 

pathways, neurotransmitters such as dopamine and glutamate have also been shown to be 

affected in schizophrenia. Indeed, antipsychotics were shown to act on dopaminergic D2 

receptor to block their function (Crow et al., 1976; Kapur and Mamo, 2003). Moreover, drugs 

acting through these dopaminergic pathways such as amphetamine and cocaine can exacerbate 
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psychosis in individuals with schizophrenia (Brady et al., 1990; Howes and Kapur, 2009; 

Bramness et al., 2012). It seems that multiple causes could lead to dopamine dysregulation 

and this dysregulation is not only at the D2 receptor level but also related to the regulation of 

presynaptic dopaminergic synthesis and function which has been found increased particularly 

in the striatum of schizophrenic patients (Howes and Kapur, 2009; Howes et al., 2012). More 

research on the dopaminergic pathway and its activity in the synapse is necessary to obtain 

more insight on the role of dopamine in schizophrenia. 

Overall, these three major mental disorders share a lot of similar characteristics, but it seems 

that research has only been able to target a few specific mechanisms for each one so far. 

Therefore, more research is needed to fully understand these disorders and to discover their 

underlying mechanisms. The research previously done indicates that it is possible that different 

psychiatric disorders share similar pathogenic mechanisms, their alteration being indicated by 

similar structural and molecular changes in the brains of patients affected by these disorders. 

 

1.4 DISC 1: a risk factor of mental illness 

1.4.1 Discovery of DISC 1 

When DISC1 was first discovered, researchers found a balanced translocation between 

chromosome 1 and chromosome 11, t(1:11)(q42.1;q14.3), in the karyotype of a boy in a 

Scottish detention centre who was presenting signs of psychological disorder (Jacobs et al., 

1970). Researchers karyotyped his complete family and found the same genetic alteration in 

several individuals (Jacobs et al., 1970). A follow-up study of this family reported that the 

t(1:11) translocation was co-segregating with psychiatric disorders (David St Clair et al., 

1990). Indeed, 16 of the 34 individuals carrying the mutation were diagnosed with mental 

disorders such as schizophrenia, major depression or bipolar disorder. However, five of the 43 

unaffected family members also had other psychological issues (David St Clair et al., 1990). 

This Scottish family was investigated for four generations and the affected gene localised on 

chromosome 1 was finally named Disrupted In Schizophrenia 1 or DISC1 (Millar et al., 2000). 

Further research revealed that of the 87 members of the family who were karyotyped, 37 

carried the translocation, the clinical data of only 29 translocation carriers were available, 18 

of whom were diagnosed with a major mental illness, such as schizophrenia, bipolar disorder 

or major depression (Blackwood et al. 2001, figure 1.4). A logarithm of Odds (LOD) score 

analysis was performed to observe the degree of linkage of this gene with mental illness. 

Findings revealed that in this family, the translocation is significantly associated with 

schizophrenia with a LOD score of 3.6 (Blackwood et al., 2001). The association increases 
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when only affective disorder (i.e depression, bipolar disorder, anxiety disorder) is considered 

with a LOD of 4.5. When data from recurrent major depression, bipolar disorder or 

schizophrenia are considered together, the score reached a LOD of 7.1 (Blackwood et al., 

2001). This evidence for linkage is among the strongest reported for a psychiatric disorder, 

and therefore suggested a link between the t(1;11) translocation and psychiatric disorders 

(Blackwood et al., 2001).  

 

The translocation was not associated with any physical or neurological illnesses or 

developmental abnormalities. However, translocation carriers had prolonged latency and 

reduced amplitude of P300 event-related potential (ERP) (Blackwood et al., 2001), which are 

features commonly seen in patients of schizophrenia and  indicate deficits in the speed and the 

efficiency of the processing of information in short-term memory therefore indicating an 

impairment in working memory (Schreiber et al., 1992; Blackwood, 2000). Thus, translocation 

carriers were similar to patients with schizophrenia and clearly different to the non-carriers 

from the family and to healthy individuals in measures of short-term memory. This indicated 

that the translocation alters brain function and have a role in the development of mental 

Figure 1.4:  Representation of the family with a (1;11)(q42;q14.3) translocation 

Karyotype analysis has been performed on 87 members of this family. Shown are 58 of the 

family members for whom carrier status is known (red arrow) and whose psychiatric 

phenotype has been defined through follow-up by direct interview, general-practice 

contact, or hospital case-note review. Adapted from Blackwood et al., (2001). 
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disorders in the translocation carriers (Blackwood et al., 2001). Similarly, a recent study on 

this family showed that the translocation was significantly linked with various psychiatric 

disorders which included schizophrenia, schizoaffective disorder, bipolar disorder, and 

recurrent major depressive disorder with a LOD score 6.1 (Thomson et al., 2016).  

Mapping of translocation breakpoints was therefore conducted to determine the genes that 

might be directly affected by the translocation (Evans et al. 1995; Millar et al. 1998; Millar et 

al. 2000b; Semple et al. 2001). The translocation was found to disrupt three genes located at 

1q42.1 and 11q14.3: Disrupted in schizophrenia 1 and 2 (DISC1 and DISC2) on chromosome 

1 and DISC1 Fusion Partner 1 (DISC1FP1) on chromosome 11 (Eykelenboom et al. 2012; 

Millar et al. 2000b; Zhou et al. 2008). DISC2 is a non-coding gene that is anti-sense to DISC1 

and is believed to regulate DISC1 expression (Millar et al., 2004) and  DISC1FP1, is believed 

to be non-coding gene as well (Zhou, Geyer and Kelsoe, 2008; Zhou et al., 2010; Eykelenboom 

et al., 2012). The t(1;11) translocation has been shown to lead to the formation of  aberrant 

fusion transcripts between DISC1FP1 and DISC1, and the possible abnormal chimeric proteins 

encoded by these fusion transcripts seem to induce mitochondrial deficiencies in transfected 

cells (Eykelenboom et al., 2012).  

A GWAS analysis revealed that DISCFP1 could be associated with schizophrenia (Debono et 

al. 2012), but this result has not been replicated. However, a recent study suggests that a small 

open reading frame in DISC1FP1 is translated in the brain and might encode a small protein 

predominantly localized in mitochondria (Ji et al., 2015). Moreover, DISC1FP1 RNA 

expression was found increased in the post mortem brains of schizophrenic patients (Ji et al., 

2015). Therefore, DISC1FP1 gene could be additionally be a susceptibility gene for major 

mental disorders, possibly specific to schizophrenia (Ji et al., 2015). Additionally, if DISC2 

regulates DISC1 expression, DISC2 could then also be involved in the development of mental 

disorders and considered as a susceptibility gene (Thomson et al., 2013). 

1.4.2 DISC1 is associated with mental disorders 

As of today, DISC1 has been commonly cited as a candidate gene in psychiatric genetics 

research, with several studies providing evidence of DISC1 involvement in several psychiatric 

disorders such as schizophrenia, bipolar disorder, major depression, schizoaffective disorder 

and autism (Chubb et al., 2008; Thomson et al., 2013). The first independent suggestion for 

the involvement of the DISC locus in psychiatric disorders came from studies based on the 

Finnish population which revealed evidence for the linkage of schizophrenia and 

schizoaffective disorder to the 1q32.2–q41 region of chromosome 1, proximal to the DISC1 

gene. (Ekelund et al., 2001, 2004; Hennah et al., 2003). Additional linkage and association 
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studies analysing samples from populations in Taiwan, China, Scotland and Toronto have also 

revealed positive association between the DISC locus and mental illness (Hwu et al., 2003; 

Thomson et al., 2005; Qu et al., 2007; Rastogi et al., 2009). Further, there the DISC locus is 

known to interact with other candidate genes also linked to mental illness such as NDE1, 

NDEL1 and CIT (Hennah et al., 2007; Burdick et al., 2008; Nicodemus et al., 2010).  

However, there are also studies that show negative associations between the DISC locus and 

mental illness studies and therefore it is difficult to estimate how well this locus id associated 

with psychiatric disorders (Sullivan, 2014; Niwa et al., 2016). Indeed, some studies have failed 

to provide any convincing evidence of association between the DISC locus and mental 

disorders (Mathieson, Munafò and Flint, 2012; Fromer et al., 2014; Kranz et al., 2015). 

Therefore, further evaluation is required to understand the biological implications of this locus 

in the development of major mental illness.  

Sequencing study where the genomic DNA of 288 schizophrenic patients were analysed led 

to the discovery of five novel ultra-rare DISC1 variants R37W, S90L, T603I, G14A, and 

R418H  and confirmed the association of two variant known variants Q264R and S704C with 

schizophrenia (Song et al., 2008). Deep sequencing of the DISC1 locus in 653 individuals 

affected by schizophrenia, bipolar disorders or major depressive disorders revealed the 

presence of 2010 rare variants of which approximatively 60% were novel, including the 

R37W variant seen in other studies such as the one previously mentioned (Thomson et al., 

2014). In another family study, two children diagnosed with schizophrenia and one child 

diagnosed with schizoaffective disorder, as well as their father whom did not express any 

symptoms, were found to carry a frameshift mutation in the DISC1 gene which was 

predicted to encode a truncated protein with nine abnormal C-terminal amino acids (Sachs 

et al., 2005). Some rare DISC1 variants have also been found in individuals with autism 

spectrum disorder which suggests that DISC1 might also be involved in autism as well 

(Girirajan et al., 2013; Kenny et al., 2014; Kanduri et al., 2016). All these findings show a 

strong positive association between mutations in the DISC1 gene and increased risk of 

schizophrenia and related psychiatric disorders.  

While the genetic influence of common DISC1 variants might not be strong enough to be 

detected, numerous studies emphasise the significance of rare variants with the psychiatric 

disorders. The studies conducted so far seem to indicate a strong association between rare 

DISC1 variants and psychiatric illness. However, the debate of the importance of DISC1 

continues as long as no conclusive answer regarding DISC1 involvement in mental illness 

disorders is found (Porteous et al., 2014; Sullivan, 2014).  
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1.4.3 DISC1 biology 

a. Structure and localisation 

Initial characterisation of DISC1 predicted that the N-terminal region of the protein was 

composed of globular domains while the C-terminal region consisted of a helical domain (K. 

Millar et al., 2000). DISC1 has 13 major exons and produces a full-length transcript of around 

7.5kb. Similarities between DISC1 protein and structural proteins involved in cellular or 

intracellular transport were discovered, suggesting that DISC1 might play a similar biological 

role (K. Millar et al., 2000; Soares et al., 2011). The mouse orthologue of  DISC1, Disc1, was 

cloned and shared a 60% homology at the DNA level as well as 56% identity and 14% 

similarity at the protein level with the human gene (Ma et al., 2002). However, the full-length 

3-D structure of DISC1 is still unknown. 

Research on short constructs and domain delineation was done based on sequence analysis 

(Soares et al., 2011) and revealed that the N-terminal region, from amino acids 1-326,  contains 

two particular regions that correspond to a nuclear localization signal sequence motif and a 

serine-phenylalanine-rich motif (Ma et al., 2002; Taylor et al., 2003; Soares et al., 2011). The 

N-terminus of DISC1 is referred to as the “globular head domain” which suggests that the 

native state of DISC1 is represented as a folded 3-D structure with the N-terminal mainly 

containing excessive numbers of serine (consisting of 13-15% of residues), alanine, and 

glycine (together making up 16-23% of residues) residues (Taylor et al., 2003; Soares et al., 

2011) (Figure 1.5). Moreover, it seems to be poorly conserved across species, as compared to 

the C-terminal (Taylor et al., 2003; Chubb et al., 2008).The C-terminal domain from amino 

acids 327-854 has a helical structure with some coiled-coils (Taylor et al., 2003) and is 

believed to contain at least four regions of coiled-coils, and five “regular” R-helices (Soares et 

al., 2011). Overall, the C-terminal region seems to be composed of a series of helical packs 

and coiled-coil interactions (Leliveld et al., 2009; Soares et al., 2011) (Figure 1.5).  

A more recent study identified four novel structured regions, named D (amino acids 257-383), 

I (amino acids 539-655), S (amino acids 635-738), and C(amino acids 691-836) (Yerabham et 

al., 2017). They all incorporate coiled-coil or α- helical structures. The region D is located in 

the N-terminal section of DISC1. Further away from the N-terminal region, I and S regions 

are overlapping followed by the C domain. The first 3 regions are important for the formation 

of DISC1 oligomer, while the C domain is necessary for protein-protein interactions of DISC1 

(Yerabham et al., 2017). Moreover, the regions I, S and C should be lost or disrupted by the 

translocation t(1;11), and are therefore possibly linked to mental illness (Yerabham et al., 

2017). 
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Several studies revealed that DISC1 could self-associate through the region between amino 

acids 403 and 504 as (Brandon et al., 2004; Kamiya et al., 2005). DISC1 can also form dimers, 

octamers, multimers and insoluble aggregates when expressed in physiological conditions 

(Leliveld et al., 2008, 2009; Narayanan et al., 2011). Indeed, in patients suffering of 

psychiatric disorder, DISC1 has been detected in the form of insoluble aggregates in 20% of 

post-mortem brains (Leliveld et al., 2008). Two additional regions involved in DISC1 self-

association were discovered: the 668-747 region, and the 765-854 region (Leliveld et al., 

2009). These results indicate that DISC1 could bind to itself in order to self-regulate. 

Therefore, DISC1 aggregation in the brain, could be an indication of the presence of mental 

disorders in individual (Leliveld et al., 2008, 2009). 

Alternative splicing of DISC1 leads to numerous alternative transcripts, however, their 

function is still not understood (Millar et al., 2001; Ma et al., 2002; Taylor et al., 2003; James 

et al., 2004; Nakata et al., 2009). Four alternatively spliced human DISC1 isoforms were 

initially described -  i) the Long (L) isoform, which is the full-length transcript composed of 

13 exons, ii) the Long variant (Lv) isoform, which lacks the 66 nucleotides at the end of exon 

Figure 1.5: Structure of DISC1 

Schematic depicting mapped structure: regular R-helices in pink; coiled-coil helices 

in green; ambiguous helix in light-green and extended consensus disorder 

predictions in thick yellow lines. Position of sequence motifs and features include 

the nuclear localization signal (NLS), serine phenylalanine-rich motif (SF-rich), 

phosphorylation sites (brown triangles) and translocation break point t(1;11) at 

amino acid position 597. Murine ortholog sequence conservation is shown mapped 

below the DISC1 schematic to represent the strength of conservation for each 

sequence position in DISC1 (gaps excluded). Adapted from Soares et al., 2011. 
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11, iii) the Short (S) isoform which utilises an alternate 3' untranslated region (UTR) in intron 

9, and iv) the Extremely short (Es) isoform which contains an alternatively spliced exon 1a 

(Chubb et al., 2008). Alternative splicing is particularly important in human brain and allows 

the regulation of gene expression (Yeo et al., 2004; Pal et al., 2011). Expression of different 

splice forms of DISC1 is specific to human developmental phases.  Therefore, it is possible 

that change in the expression and the ratio of those DISC1 variants indicates that splicing 

mechanisms and splicing regulation play a role in the development of mental disorders,  

through the brain development. (Nakata et al., 2009). Indeed, expression of several variants 

was increased in schizophrenia, as compared to healthy individuals (Nakata et al., 2009). 

Additionally, intergenic splicing was discovered between DISC1 and the translin-associated 

factor X gene (TSNAX), producing low-abundance fusion transcripts from which no protein 

has yet been detected (J. K. Millar et al., 2000). 

DISC1 transcripts and the DISC1 protein have been detected in multiple tissues (Chubb et al., 

2008). DISC1 transcripts were found in the brain, heart, placenta, kidney and pancreas of adult 

humans (K. Millar et al., 2000; James et al., 2004). Reports also indicated the presence of the 

DISC1 protein in brain, heart, limbs, kidney, liver and lungs in human foetal tissue (James et 

al., 2004). Studies on adult human brain revealed the presence of DISC1 transcript in various 

regions, such as the amygdala, caudate nucleus, corpus callosum, hippocampus, substantia 

nigra, thalamus, cerebellum, cerebral cortex, medulla, and frontal lobe. (K. Millar et al., 2000). 

DISC1 protein expression showed high levels in the brain during early childhood, while it 

reduced rapidly when entering adolescence and adulthood (Lipska et al., 2006). Therefore, it 

seems that DISC1 expression varies with human brain development. 

In the hippocampus, DISC1 protein expression has been found especially in the dentate gyrus 

(K. Millar et al., 2000; James et al., 2004; Lipska et al., 2006; Chubb et al., 2008), and is 

particularly expressed in a subset of granule cells and in the pyramidal cells in layers CA1-3 

(James et al., 2004). DISC1 is also localised in multiple subcellular compartments (Chubb et 

al., 2008; Soares et al., 2011) and appears to be highly present in the mitochondria (Ozeki et 

al., 2003; Brandon et al., 2004; James et al., 2004; Millar, James, et al., 2005; Thomson et al., 

2013), and it is also found in the nucleus (Millar, James, et al., 2005; Malavasi et al., 2012), 

centrosome (Kamiya et al., 2005), Golgi and endoplasmic reticulum (Lee, Fadel, et al., 2011; 

Lepagnol-Bestel et al., 2013; Park et al., 2015). The presence of DISC1 in so many different 

regions indicates that its function might be very diverse and may affect the general 

development of the brain.  
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b. DISC1 function through its interactors 

To uncover the molecular function of DISC1, its interactome was studied. Yeast two-hybrid 

studies revealed a comprehensive set of such proteins using proteomic approach, which 

support the existence of over 200 DISC1 interactors (Millar, Christie and Porteous, 2003; 

Ozeki et al., 2003; Camargo et al., 2007; Soares et al., 2011; Bradshaw and Porteous, 2012). 

Further research also defined various functions of DISC1. Indeed, DISC1 was found to be 

involved in the regulation of intracellular signalling by interacting with the phosphodiesterase 

4B (Millar, Pickard, et al., 2005; Brandon, 2007, 2016). More specifically, this interaction is 

believed to inhibits PDE4B activity by binding to it, which prevents the degradation of cyclic 

adenosine monophosphate (cAMP). When the concentration of cAMP is increasing, DISC1 

and PDE4B dissociate allowing PDE4B to degrade cAMP and therefore the cells’ cAMP 

concentration stays regulated (Millar, Pickard, et al., 2005). This interaction between DISC1 

and PDE4B is of particular interest due to the fact that PDE4 inhibitor, rolipram, is believed 

to have anti-depressant like effects (Zeller et al., 1984; Zhang et al., 2006). Moreover, studies 

on IPSC-derived neurons from schizophrenic patients showed that cAMP signalling was 

altered (Brennand et al., 2011).  

Moreover, full-length DISC1 interacts with the transcription factor Activating Transcription 

Factor 4 (ATF4) and the presence of the variants 37W and 607F prevents DISC1 to reach the 

nucleus and reduces interaction between DISC1 and cAMP-dependant ATF4 which lead to 

the dysregulation of the transcriptional activity of ATF4 and therefore impairment in the 

regulation of cellular stress responses, emotional behaviour and memory consolidation in 

Disc1 mice model (Malavasi et al., 2012; Soda et al., 2013). Fasciculation and elongation 

protein zeta-1 (FEZ1) was also found to interact with DISC1 (Kang et al., 2011). FEZ1 is 

known to be involved in axonal and neurite outgrowth and possibly in the regulation of the 

soma size (Bloom and Horvitz, 1997; Miyoshi et al., 2003; Kang et al., 2011). Several 

studies indicated that DISC1 was involved in the regulation of neurite outgrowth and soma 

size through its interaction with FEZ1 (Miyoshi et al., 2003; Kang et al., 2011).  

It was also found that NudE-like (NUDEL), a protein involved in neuronal development, also 

interacts with DISC1 (Ozeki et al., 2003; Soares et al., 2011; Bradshaw and Porteous, 2012). 

Moreover, mutation in DISC1 prevent its binding to NUDEL and leads to the development of 

less and shorter neurites (Ozeki et al., 2003). Additionally, the complex DISC1-NUDEL was 

also found to be important for neuronal migration (Kamiya et al., 2005, 2006). These data 

show that the interaction of DISC1 and NUDEL is required for neurite outgrowth (Ozeki et 

al., 2003; Kamiya et al., 2005, 2006). Reduced interaction between DISC1-Binding Zinc-

finger protein (DBZ) and DISC1 also reduced the neurite length in PC12 primary cultured 
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hippocampal neurons (Hattori et al., 2007), and DISC1 interaction with the close homolog of 

CHL1, a member of the L1 family of neural cell adhesion molecules, also supports DISC1’s 

involvement in neuronal outgrowth regulation (Ren et al., 2016).  

DISC1 protein has been found to also interact with several motor proteins such as kinesin, 

dynein and dynactin as well as with centrosome-associated proteins like NUDEL and Lis-1 

and microtubule-associated protein (Niethammer et al., 2000; Morris et al., 2003; Taya et al., 

2007; Tsuboi et al., 2015). This indicates that Disc1 might also be involved in the regulation 

of intracellular transport of various molecules through its action on those previously named 

proteins (figure 1.6). 

By regulating neuronal trafficking it is possible that DISC1 also regulates neuro-development 

and synapse maturation (Devine, Norkett and Kittler, 2016; Tomoda, Hikida and Sakurai, 

2017). It has been shown that during embryonic development, DISC1 regulates neuronal 

migration and structural plasticity via the microtubules (Kamiya et al., 2005). Neuronal 

migration is increased when DISC1 expression in hippocampal progenitors in adults impaired 

and it appears that DISC1 interaction with NUDEL also has a role in regulating adult 

neurogenesis (Duan et al., 2007). Importantly, DISC1 interacts with GSK3β and inhibits its 

activity which reduces β-catenin phosphorylation and stabilizes β-catenin, which is involved 

in the regulation of neuronal progenitors (Mao et al., 2009; Ming and Song, 2009). Moreover, 

as mentioned previously, Disc1 interacts with NUDEL and can then form a complex with Lis1 

(Brandon et al., 2004; Kamiya et al., 2005). Lis1 is known to be very important for neuronal 

migration (Wynshaw, 2007) therefore the possibility of the formation of this complex 

including Lis1 suggests that DISC1 is involved in neuronal migration, indeed loss of DISC1 

has been showed to lead to the inhibition of neuronal migration (Kamiya et al., 2005; Duan et 

al., 2007).  

Figure 1.6: DISC1 neuronal trafficking machinery 

Schematic view of the multiple components of trafficking machinery regulated by DISC1, 

which includes cargoes, adaptor molecules, motor proteins, and cytoskeletal 

components. Adapted from Tomoda et al.2017. 
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Another partner of DISC1 is KIAA1212 , their interaction seem to prevent AKT activation 

and disturb the AKT-mTOR signalling pathway (Kim et al., 2009). This also indicates that 

DISC1 plays an important role in regulating neuronal development. Additionally, this 

interaction has been found to be involved in GABA signalling pathway. Indeed, it seems that 

interaction between extrinsic GABA and intrinsic DISC1 signalling is involved in the 

regulation of dendritic growth of new-born neurons (Kim et al., 2012). Several molecular 

interactions with DISC1 are summarised in figure 1.7 (Brandon and Sawa, 2011).  

The discovery of these numerous DISC1 interactors has allowed a more comprehensive idea 

of the DISC1’s function, with it mainly implicated in neuro-development. However, DISC1 

complexity has not been completely untangled and its mechanism of actions still need to be 

further elucidated. 

Figure 1.7: Representation of several interaction between DISC1 and several partners 

The known functions of the various DISC1 complexes are shown in the perimeter of the 

figure, and the direction of the arrows indicates their chronological order during 

neuronal development. BBS, Bardet-Biedl syndrome protein; DIXDC1, dishevelled axin 

domain containing 1; GSK3β, glycogen synthase kinase 3β; KAL7, kalirin 7; LIS1, 

lissencephaly protein 1; NDEL1, nuclear distribution protein nudE-like 1; PCM1, 

pericentriolar material 1; PDE4, phosphodiesterase type 4; PSD95, postsynaptic density 

protein 95; TNIK, TRAF2- and NCK-interacting protein kinase. Taken from Brandon & 

Sawa, 2011 
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c. Consequences of the t(1,11) mutation 

c.i The t(1:11) translocation 

As previously discussed (Section 1.4.1), the t(1;11) translocation disrupts three genes: DISC1 

and DISC2 on chromosome 1 and DISC1FP1 on chromosome 11 (Millar et al. 2000; Zhou et 

al. 2008; Eykelenboom et al. 2012). However, several studies mentioned previously indicate 

that DISC1FP1 gene could be a susceptibility gene for major psychiatric disorders. Similarly, 

as mentioned previously, DISC2 was also suggested to play a role in DISC1 function and 

therefore in mental disorders (Millar et al., 2004; Chubb et al., 2008; Thomson et al., 2013). 

Amongst those three genes affected by the translocation, DISC1 is the only disrupted gene that 

is known to encode a protein (Millar et al., 2004). Gene fusion between DISC1 and DISC1FP1 

occurs on both derived chromosomes, resulting in production of multiple aberrant chimeric 

transcripts in lymphoblastoids from translocation carriers (Eykelenboom et al., 2012). More 

specifically, the translocation leads to at least three chimeric transcripts: CP69, CP60 and CP1 

(figure 1.8) which add 69, 60 and 1 amino acids respectively to the truncated DISC1 protein 

(Eykelenboom et al., 2012). The same transcripts are also detectable in skin fibroblasts and 

induced pluripotent stem cell (iPSC)-derived neural precursor cells and neurons from 

translocation carriers (Millar lab, unpublished). These transcripts encode abnormal protein 

species, some of which deregulate mitochondrial function when artificially overexpressed in 

COS7 cells or primary cultured mouse hippocampal neurons (Eykelenboom et al., 2012). 

Although these chimeric transcripts are easily detectable in various cell lines, there is no 

evidence for the existence of the encoded aberrant proteins in tissue derived from the affected 

Scottish family. Overall, the translocation results in loss of normal DISC1 function from one 

allele (haplo-insufficiency) and has the potential to also produce aberrant DISC1 protein 

species with dominant-negative effects (Eykelenboom et al., 2012). 
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Numerous studies have shown that this translocation leads to impairments in brain structure, 

brain development and molecular mechanism (Soares et al., 2011; Bradshaw and Porteous, 

2012; Niwa et al., 2016) . Importantly, these modifications due to the translocation seem to be 

similar to those found in patients with psychiatric disorders (Ishizuka et al., 2006; Soares et 

al., 2011). 

c.ii Alteration in brain structure 

The effect of the t(1;11) translocation on white matter was investigated in seven family 

members carrying the translocation and diagnosed with psychiatric disorders and in 13 family 

members without the translocation, along with 34 clinical control patients suffering from 

psychosis, and 33 healthy individuals (Whalley et al., 2015). This analysis revealed decreased 

white matter integrity in the genu of the corpus callosum, the right inferior fronto-occipital 

fasciculus, the acoustic radiation and the fornix in patients carrying the t(1;11) (figure 1.9) as 

well as in patients suffering from psychosis (Whalley et al., 2015). Therefore, this suggest that 

the t(1;11) translocation and DISC1 are involved in the  structure of the white matter (Whalley 

et al., 2015). 

 

CP60 

CP69 

CP1 

Figure 1.8: Schematic of DISC1 and DISC1FP1 

Genomic structure showing all known exons and expressed fusion transcript between 

DISC1 (blue) andDISC1FP1 (orange).  Asterisks mark positions of translation stop codons 

predicted to be utilized in chimeric transcripts. CP60 and CP69 both terminate within 

exon 6 and CP1 terminates within exon 3a. CP60 and CP69 both lack exons 1d and 3a while 

CP1 lacks exon 1d. Additionally, the short form of exon 5 is present in CP60 while the long 

form of exon 5 is present in CP69. Adapted from Eykelenboom et al. 2012. 
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A recent study looked at structural MRI data from 12 t(1;11) translocation carriers and 18 non-

carriers from the same family, and the carriers were found to have a reduced cortical thickness 

compared to the non-carriers (Thomson et al., 2016). The study also revealed a reduced 

gyrification in the translocation carriers. Additionally, reduced left superior temporal sulcus 

cortical thickness in the temporal lobe and reduced right superior frontal sulcus local 

gyrification in the dorso-lateral prefrontal cortex were found in the translocation carriers. 

Overall this study showed that the translocation leads to reduced cortical thickness in the left 

temporal lobe and reduced gyrification in prefrontal cortex (Thomson et al., 2016). 

Furthermore, fMRI data from eight family members carrying the t(1;11) translocation and 15 

non-carriers revealed that there was no difference in working memory between the groups but 

increased activation of the left caudate nucleus was found in the translocation carriers. 

(Thomson et al., 2016). 

c.iii Molecular mechanisms 

From what is known of the structure of the DISC1 protein, it can be speculated that the t(1;11) 

translocation would prevent its interactors from binding to DISC1 and therefore lead to 

impairments across numerous molecular mechanisms.  

A study of 12 t(1;11) translocation carriers and 16 non-carriers investigated the effect of the 

translocation on glutamate and N-acetylaspartate (NAA) concentrations in the brain  and 

showed that in the right dorsolateral prefrontal cortex, translocation carriers were found to 

have a reduced level of glutamate(Thomson et al., 2016). The different subgroups of clinical 

diagnosis within translocation carriers had no difference. Additionally, there was no 

convincing change in NAA levels in the translocation carriers. This study indicates that the 

Figure 1.9: Brain schematic representing the areas affected by a decrease in white matter 

integrity, in the translocation carrier 

Genu of the corpus callosum, Fornix, Inferior fronto-occipital fasciculus and acoustic 

radiation are indicated. 
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translocation leads to glutamate deficit in the dorsolateral prefrontal cortex, but NAA 

concentration is not affected (Thomson et al., 2016). The use of human i-PSC from the 

translocation carriers will be necessary to discover the exact nature of the modification due the 

translocation on molecular mechanism.  

These findings obtained directly from the translocation carriers overlap with those shown in 

patients suffering with mental illness mentioned in Section 1.3. 

Moreover, numerous DISC1 animal models were studied and revealed similar findings. 

 

1.4.4 DISC 1 mouse model of mental disorder 

Modelling of human psychiatric disorders in animals is very challenging when considering the 

nature of the symptoms, the lack of biomarkers and lack of objective diagnostic tests. 

However, it has become easier to create rodent models of these disorders using either genetic 

tools or environmental manipulations. These animal models are very useful for understanding 

the pathophysiology of mental disorders and to discover possible treatments. Multiple mouse 

models have been created to study the effect of disrupting DISC1 on brain development and 

the development of major mental illness (Tomoda et al., 2016) (table 1.1) . Rodent models 

showed critical changes in brain function and structure, as well as in important molecular 

pathways and behaviour. However, results show great variability between models (Johnstone 

et al., 2011; Lipina and Roder, 2014).  

A natural Disc1 mutation was found in several mouse strains such as the Swiss strain and 129 

mouse strain, which carry a 25 base pair deletion mutation in exon 6 of Disc1 (Clapcote and 

Roder, 2006; Ritchie and Clapcote, 2013). This deletion induces a frame shift which results in 

13 novel amino acids, followed by a premature termination codon in exon 7. This mutation 

has been shown to block the production of the full-length protein and no truncated protein was 

found. Additionally, insertion of the premature stop codon at intron 8 has been showed to 

result in working memory impairment as well as cognitive and behavioural impairment 

(Clapcote & Roder, 2006; Koike et al. 2006). Further research on this mutation revealed that 

it was also leading to impaired proliferation, axonal targeting and dendritic growth in the 

developing dentate granule cells, as well as impaired short-term plasticity (Kvajo et al., 2011; 

Lepagnol-Bestel et al., 2013). Moreover, alterations in spontaneous locomotor activity, 

deficits in pre-pulse inhibition (PPI) and increased despair behaviour in Disc1 heterozygous 

129 strain mice were discovered (Gomez-Sintes et al., 2014) as well as behavioural 

impairment, decreased dendritic diameters, reduction in spine density and neuronal excitability 

and increased transmitter release (Juan et al., 2014). These characteristics are known to be 
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associated with psychiatric disorders, therefore, this suggest that DISC1 is involved in the 

development of psychiatric disorders. 

Similar mouse models not expressing Disc1 have been generated. A mouse model lacking 

exons 2 and 3 of the Disc1 gene was generated and showed a higher threshold for the induction 

of long-term potentiation, an amplified sensitivity to methamphetamine, a higher impulsivity 

as well as deficits of pre-pulse inhibition (Kuroda et al., 2011). Another mouse model was 

generated with a large deletion of exons 1-3 of Disc1 and showed increased expression of 

APP at the cell surface along with decreased internalization, indicating an impairment in 

the protein transport (Shahani et al., 2015). These models showed mainly cellular, molecular 

and behavioural impairments. Additionally, a Disc1 knock down using a small interfering 

RNA (siRNA) showed the importance of DISC1 for NMDAR function and expression (Wei 

et al., 2014). A Disc1 hippocampal knock-down mouse model revealed somal hypertrophy in 

neurons, accelerated dendritic outgrowth with the appearance of ectopic dendrites, mis-

positioning from overextended migration, enhanced intrinsic excitability, and accelerated 

synapse formation of new neurons (Duan et al., 2007; Kim et al., 2009). 

A transgenic mouse model exogenously expressing the human dominant-negative truncated 

DISC1 (DN-DISC1) under the CaMKII promoter showed brain structural modifications such 

as enlarged ventricles and depression like behaviour, which correlate with characteristics of 

schizophrenic patients (Hikida et al., 2007). CaMKII drives gene expression mainly in the 

pyramidal neurons of the cortex and hippocampus, which is also where endogenous DISC1 is 

preferentially expressed. In this model, the lateral ventricular volumes in these mice remained 

normal at 3 months but were enlarged at 6 months. The total brain volume in these mice was 

not affected, but an asymmetry between the left and right lateral ventricles was found in the 6-

week-old mice. Additionally, MRI analysis revealed a change in the left/right ratio in the 

hippocampus and thalamus. This suggested asymmetrical structural changes in these DN-

DISC1 mice. Reduction in parvalbumin and calretinin in DN-DISC1 mice was also noticed as 

well as impaired sensorimotor gating, hyperactivity, and an anhedonia/depression-like deficit 

(Hikida et al., 2007). The study of another transgenic mouse model also generated with a 

dominant-negative human DISC1 cDNA under expression control of the prion protein 

promoter showed that epigenetic and environmental factors interact to affect dopaminergic 

neurons (Niwa et al., 2013). Prion protein promoter does not drive the expression in specific 

cells allowing a broader expression of the inserted gene. When this transgenic mouse is 

subjected to stress, pre-pulse inhibition, and locomotor activity are impaired. Moreover, meso-

cortical projections of dopaminergic neurons are affected, and molecular changes were found. 

In this model, environmental factors enhance the alteration of neurotransmission caused by 
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the Disc1 mutation (Niwa et al., 2013). A more recent study using a conditional transgenic 

mouse expressing the human DISC1 C-terminal domain revealed that developmental 

disruption of DISC1 impairs cortical and synaptic plasticity (Greenhill et al., 2015). Another 

transgenic mouse model expressing two copies of truncated Disc1 using a Bacterial artificial 

chromosomes (BAC), showed behavioural impairments, structural modifications such as 

enlarged lateral ventricles and reduced cerebral cortex, and reduced numbers of GABAergic 

neurons in the hippocampus and the prefrontal cortex (Shen et al., 2008). Several dominant-

negative transgenic mutant DISC1 models revealed that the regulation of astrocytes was 

impaired as well as glutamate neurotransmission (Abazyan et al., 2014); differentiation and 

function of oligodendrocytes was also perturbed (Katsel et al., 2011) and CA1 pyramidal 

neurons properties were affected as well as long-term synaptic plasticity (Booth et al., 2014). 

These studies have revealed the involvement of specific cell types and show the importance 

of neuron-glia interactions in mental disorders. Other studies using DISC1 transgenic mice 

revealed alterations in neurotransmitter systems, such as glutamatergic (Dawson et al., 2015), 

cannabinoid (Ballinger et al., 2015), dopaminergic, or nicotinic neurotransmission (Kim et al., 

2015). Transgenic mouse model studies have mainly lead to alterations of anatomical brain 

structure, cellular function, and neurotransmitter regulation which are relevant to human 

psychiatric conditions.  

Mice carrying ethyl-nitroso urea-induced Disc1 missense mutations were also found to exhibit 

characteristics of mental disorders. The first two mutations discovered were a glutamine 

change onto a leucine (Q31L) and a leucine changed into a proline (L100P) (Clapcote et al., 

2007). Q31L analysis revealed accentuated depressive-like behaviour such as a deficit in the 

forced swim test while L100P mutant mice exhibited schizophrenic-like behaviour such as 

impairment in pre-pulse inhibition and latent inhibition, decrease of social interaction as well 

as more immobility in forced swim test (Clapcote et al. 2007). However, in both mutants 

DISC1 interaction with PDE4B was reduced (Clapcote et al., 2007). They also both displayed 

overall brain volume reductions with specific shrinkage of the entorhinal cortex, thalamus, and 

cerebellum (Clapcote et al., 2007). Follow up on those models revealed a reduction in neuron 

number, decreased neurogenesis, and altered neuronal distribution as well as outgrowth 

impairment of pyramidal neuron (Lee, et al., 2011). Additionally, L100P mice showed 

enhanced dopamine function (Lipina et al., 2010), altered GSK3α activity in synapses and 

reduced dendritic spine length and surface areas (Lee et al., 2011) and deficits in interneuron 

development (Lee et al., 2013). Further analysis revealed that maternal immune activation of 

L100P mice leads to an increase of interleukins in the offspring, indicating that environmental 

factors may also exacerbate phenotypes linked to mental disorders (Lipina et al., 2013).  More 
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recently, another mutation was discovered by extending the ENU (N-ethyl-N-nitrosourea) 

mutagenesis screen to a different part of the Disc1 locus to create a new mouse model where 

an aspartic acid was changed into a glycine (D453G) (Dachtler et al., 2016). This model 

showed altered GSK3β signalling as well, and behavioural impairment such as 

hyperlocomotion, anxiety and reduced social interaction in the female while male express a 

deficit in passive avoidance behaviour. 

A number of these mouse models have been designed after the t(1;11) translocation discovery, 

hoping to reproduce the effect seen by the translocation in the carriers. However, studies of 

the effect of truncated DISC1 protein expressed from the derived chromosome 1, encoded by 

exons 1-8 (K. Millar et al., 2000) revealed that the presence of fusion transcripts CP 69, CP60 

and CP1 (Eykelenboom et al., 2012) might not be as similar as hoped to the translocation. 

Indeed, only CP1 encodes a truncated protein that contains one more amino acid from the 

translocation breakpoint belonging to DISC1FP1 which happens to be the same amino acid 

which would appear after the breakpoint in wild type DISC1 protein. Therefore, it seems that 

mouse models created through bacterial artificial chromosome (BAC) (Shen et al., 2008) or 

transgenics (Hikida et al., 2007; Pletnikov et al., 2008; Jaaro-Peled et al., 2013; Greenhill et 

al., 2015), express a truncated DISC1 protein and do not rigorously replicate the t(1, 11) 

translocation. A mouse model was therefore generated to model the t(1;11) translocation 

known as the DISC1-Boymaw mouse. This mouse has a bi-cistronic human transgene with 

both fusion transcripts - DISC1-DISC1FP1 and DISC1FP1-DISC1 (Ji et al., 2015). The 

DISC1-DISC1FP1 protein seems to inhibit oxidoreductase activity, RNA expression, and 

protein synthesis. Moreover, reduction of the expression of Gad67, Nmdar1 and Psd95 was 

found in this model as well as expression of intermediate behavioural phenotypes related to 

major psychiatric disorders such as  increased and prolonged responses to ketamine, abnormal 

information processing of acoustic startle and depressive-like behaviours displayed through 

significantly more immobility time when performing the tail suspension test (Ji et al., 2015). 

All these models are summarised in table 1.1 bellow



Model  Reference  Details  Reported findings  

Swiss strain 

129 strain 

Clapcote et al., 

2007 

Ritchie et al., 

2013 

Deletion of 25bp in exon 6  

↓ working memory  

 

129 strain Koike et al, 

2006 

↓ working memory  

cognitive and behavioural alteration 

 

Juan et al., 

2014  

behavioural impairment  

↓ dendritic diameters 

↓ in spine density and neuronal excitability 

 ↑ transmitter release   

Gómez-Sintes et 

al., 2014  

↓ in PPI,  

alterations in spontaneous locomotor activity, 

↑ despair behaviour 

Disc1tm1Kara  

 

Kvajo et al., 

2011  

Truncated in exon 8 + deletion of 25bp in exon 6 

 

changes in short-term plasticity 

altered axonal targeting and dendritic growth 

↓ proliferation 

↑ c-AMP level      

Lepagnol-Bestel 

et al., 2013  

altered axonal and dendritic arborization  

Altered dendritic spines 

Disc1 (△2-3) Kuroda et al., 

2011  

Lack of exons 2 and 3  

 

higher threshold for the induction of LTP, 

↑ sensitivity to methamphetamine,  

↑ impulsivity  

↓ PPI 

Disc1 (△1-3) Shahani et al., 

2015 

Lack of exons 1 to 3  

 
↑ APP expression  

↓ APP internalization 

Impaired protein transport 
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Disc1 KO Wei et al., 2014 short-hairpin RNA (shRNA) ↑ NMDAR currents 

↑ GluN2A 

↑ NMDAR-mediated synaptic response 

Disc1 KD Duan et al, 

2007 

aberrant morphological development 

mispositioning of new dentate granule cells 

↑ excitability  

↑dendritic development and synapse formation 

Kim et al, 2009  ↑ AKT Signaling 

↑ in soma size and number of primary dendrites 

↑ dendritic growth 

Kim et al, 2015 Altered dopaminergic et nicotinic 

neurotransmission 

Transgenic 

model DISC1 

(DN-DISC1) 

Hikida et al, 

2007 

C-terminally truncated DISC1 under αCAMKII 

promotor 
↓ parvalbumin 

↑ ventricle volume 

hyperactivity 

disturbance in sensorimotor gating  

impaired olfactory-associated behavior,  

anhedonia 

Ballinger et al, 

2015 

↓ CB1R expression  

↓ fear associated response 

Jaaro-Peled et 

al 

↓ D2R binding in striatum   

↓  dopamine levels  

Transgenic 

model 

DISC1-DN-Tg-

PrP 

Niwa et al., 

2013  

C-terminally truncated DISC1 under prion protein 

promotor. 

Model under stress 

↓ PPI      

↓ locomotion response  

↓ immobility in forced swim test  

↓ extracellular dopamine  

Conditional 

transgenic mouse  

DISC1cc 

Greenhill et al, 

2015 

Inducible, reversible induction of  

c-term DISC1 aa671-852 via calcium/calmodulin-

dependent protein kinase II subunit a (aCaMKII) 

promoter controlled by tamoxifen 

 

↓ synaptic plasticity  

lack of LTP 

↓ of LTD 
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Transgenic 

mouse Disc1tr 

(Disc1tr Hemi 

mice) 

Shen et al, 2008 Overexpression of Disc1 exons 1- 

8 using bacterial artificial 

chromosome 

↑ ventricles volume     ↓ cortical thickness  

↓ neurogenesis             ↓ GABAergic neurons 

↓ latent inhibition        ↑ immobility  

↓ reduced vocalisation  

Booth et al, 

2014 

Altered CA1 property 

Altered synaptic plasticity 

Dawson et al, 

2015 

Altered metabolism in PFC  

Altered response to ketamine  

↓ expression of GluN2A/B  

Tet-off 

transgenic model 

(ΔhDISC1) 

Abazyan et al, 

2014 

Tet-inducible C-terminally truncated DISC1 

under αCAMKII promotor  

(forebrain restriced) 

↑ alanine-serine-cysteine transporter 2 

↑ vesicular glutamate transporters 1 and 3 

↑ NR1 expression 

↓ NR2 expression 

Katsel et al, 

2011 

Aberrant oligodendrocytes differenciation 

Pletnikov et al., 

2008 

Altered gross brain structure       

↑ lateral ventricles volumes     

 abnormal neurite outgrowth  

Q31L 

(glutamine 

change onto a 

leucine) 

Clapcote et al, 

2007 

Mice carrying ethyl-nitroso urea-induced Disc1 

missense mutations 

  

↓ immobility in forced swim test 

↓ brain volume  

↓ reduction PDE4B activity     

Lee et al, 2011 altered dendrite morphology      

↓ neuron number  

↓neurogenesis and proliferation   

L100P 

(leucine changed 

into a proline) 

Clapcote et al, 

2007 

 ↓ PPI and latent inhibition  

↓ locomotion    

↓ working memory  

 ↓ brain volume 

Lipina et al, 

2010 

 ↓ locomotion   

↓ PPI  

Enhanced dopamine function 

↓ sensitivity to amphetamine 
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 Lee et al, 2011  ↓ interneuron development  

 Lee et al, 2013  altered GSK3α activity in synapses  

↓ dendritic spine length and surface areas 

 Lipina et al, 

2013  

 ↑ interleukins when subject to maternal immune 

activation 

↓ PPI and latent inhibition 

D453G 

(aspartic acid 

was changed into 

a glycine) 

Dachtler et al., 

2016 

extended ENU (N-ethyl-N-nitrosourea) 

mutagenesis screen  

altered GSK3β  

hyperlocomotion 

anxiety                                      in female 

reduced social interaction 

deficit in passive avoidance behaviour in male 

DISC1-Boymaw  

Boymaw-DISC1  

Ji et al., 2014  Insertion of a bi-cistronic human transgene with 

both fusion transcripts  
↑ responses to ketamine 

 abnormal information processing of acoustic 

startle  

depressive-like behaviour 

↓ expression of Gad67, Nmdar1 and Psd95  

Disc1 RNAi Tomita et al, 

2011 

suppressed expression of Disc1 in the CA1 using 

the RNA interference (RNAi) 
Impaired neuronal migration 

DISC1△C Maher et al, 

2012 

RNA1 KD altered mEPSCs 

altered glutamatergic synapses 

Table 1.1: Characteristics of published Disc1 mouse models  



At present, none of the published Disc1 mouse models accurately model any known sequence 

of events leading to psychiatric disorder as well as known phenotypes comparable to those 

characteristic of mental disorders, and very few causal events have been identified in analysis 

of the patients suffering from psychiatric illness. To facilitate a more complete understanding 

of the mechanisms involved in these disorders, more accurate animal models need to be 

designed to mimic known causal mutations, with which the sequential changes from early 

brain development to adult brain maturation leading to brain dysfunction could be 

investigated.  

 

1.5 A new DISC1 mouse model: Der1 

To accomplish the work detailed in this thesis, a novel mouse model of mental illness named 

Der1 was used, this mouse was gifted to Dr Kirsty Millar by Michel Didier from Sanofi.  

As mentioned previously, the t(1;11) translocation shows a genetic link with mental disorders 

(Blackwood et al., 2001; Thomson et al., 2016). Indeed, the t(1;11) translocation seems to be 

involved in the increased risk of mental illness in carriers compared to non-carrier family 

members. A mouse model carrying this translocation might therefore help gain insights on the 

mechanisms involved in the development of mental illnesses. However, the mouse genome 

does not contain the orthologue sequences of DISC2 and DISC1FP1, both of which are 

disrupted by the translocation ( Millar et al. 2000; Taylor et al. 2003; Zhou et al. 2008). This 

makes it difficult to model the human translocation in mice. The Der1 mouse used in this thesis 

is a transgenic mouse model of the derived chromosome 1 that results from the t(1;11) 

translocation. This mouse carries a modified endogenous Disc1 gene. The 3’ half of the Disc1 

gene has been removed from intron 8 until the 5’ end of the gene, which is a position 

corresponding approximately to that of the translocation breakpoint in humans. This has been 

replaced with a segment of human chromosome 11 from the translocation breakpoint to the 

end of the Disc1fp1 gene, composed of exons 4-8 of DISC1FP1 (figure 1.10). Insertion of the 

human partial gene was performed using the Cre-lox technic. 
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This modification has been done to mimic the derived chromosome 1 found in the affected 

Scottish family. In such a model, the endogenous Disc1 gene should be expressed 

physiologically. Moreover, chimeric transcripts might be generated in this mouse as they were 

found in human cells carrying the translocation. The heterozygous Der1 mice carrying the 

modified Disc1 allele therefore correspond to the human carriers of the t(1;11) translocation. 

They should express the full length Disc1 protein while homozygous Der1 mice should not 

express full length Disc1 at all. The genomic editing was carried out in mouse embryonic stem 

cells with a mixed 129/C57BL6 background. Mutant mice were crossed by Sanofi with 

C57BL/6 mice to obtain mice carrying only C57BL/6 Disc1 alleles. Congenic breeding was 

then done at University of Edinburgh, and the Jackson Labs performed the genotyping in order 

to obtain mice with a >99.5% pure C57BL/6 background. 

 

 

Figure 1.102: Representation of the construction of the new Der1 mouse model 

Exon 3a of human DISC1FP1 is indicated and the cross (X) indicated that it is missing in 

the mice final construct as it was lost during the fusion of the genes. Exons after the 

breakpoint of DISC1FP1 are fused to the pre-breakpoint exons of mice Disc1. 
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To confirm the mutation on Disc1 transcription, reverse transcriptase PCR (RT-PCR) was used 

to assay the levels of mRNA from whole brains from the Der1 mice (n=8). The primers used 

were within exons 7 and 9 of Disc1, designed to pick up only wild type transcripts as they 

span the translocation breakpoint (section 2.2.2). No wild type transcripts were detected 

from homozygous Der1 mice and Disc1 expression was reduced by around half in the 

heterozygous mice (figure 1.11 and figure 1.12). 

Disc1 protein expression was then assessed using an in-house C-terminal Disc1 antibody 

raised to amino acids 666–852 of mouse Disc1 (Ogawa et al., 2016). The result shows that full 

length Disc1 expression is significantly lower in the heterozygous mice samples compared to 

wild type, and no Disc1 signal can be seen in samples from the homozygous mice (figure 

1.12). 

Figure 1.12: Expression of wild type Disc1 transcripts in Der1 mouse  

Relative whole brain Disc1 expression in heterozygous t(1;11) mouse model 

compared to wild type, n=8 for each group. Statistical test used was an unpaired 

students t-test, ** indicates p<0.01. Work performed by Helen Torrance. 

 WT      HET    HOM 

 

100 Kb - 

 

 

120 Kb - 

 

Figure 1.11: Disc1 protein expression in wild-type, heterozygous and 

homozygous Der1 mice 

Loading control vimentin (120 Kb). Two additional non-specific bands can be 

seen above the band correspond to Disc1 expression. 

Disc1 
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To determine whether the predicted fusion transcripts CP60 and CP69 were produced by the 

modified Disc1 allele, RT-PCR was performed on whole brain cDNA isolated from 

homozygous Der1 mice. CP1 was excluded as the exon 3a is absent in the mice model (figure 

1.10). Transcripts CP60 and CP69 do not contain exon 3a. CP69 and CP60 were both detected 

in cDNA isolated from cortical and hippocampal tissue from homozygous Der1 mice. This 

work was performed by P. Makedonopoulou and Hazel Davidson-Smith. However, the 

presence of fusion proteins translated from CP69 and CP60 fusion transcripts has not been 

demonstrated in these mice. As anticipated, this novel mouse model reproduces the effects of 

the t(1;11) translocation on DISC1 expression.  

 

1.6 Aims of this PhD   

The t(1;11) found in a Scottish family is linked with mental disorder. Disrupted in 

Schizophrenia (DISC1) is disturbed by this translocation and is an important gene involved in 

the development and function of the brain. 

Multiple DISC1 animal models have showed important changes in behaviour, in brain function 

and structure, as well as in important molecular pathways and behaviour. These modifications 

due to DISC1 dysfunction are underlying the involvement of DISC1 in psychiatric disorders. 

However, none of the published Disc1 mouse models accurately model psychiatric disorders.  

The aim of this PhD is to characterise this new Der1 mouse model in the hope to find a better 

mouse model for mental disorder. 

With this model, I have explored the molecular mechanisms and the different pathways 

affected by the translocation t(1;11) and tried to learn more about DISC1 function and its 

involvement in psychiatric disorders. 

The major questions addressed in this project are:  

a) Does the Der1 mouse, which models the human t(1, 11) translocation in a slightly 

better way than done before, significantly differs from other animal or cell models.  

b) Does the Der1 mouse exhibit any novel phenotypes at the structural, molecular or 

cellular level? 

c) Based on these findings, could this novel mouse model be used to model psychiatric 

disorders? 

To answer these questions, I studied the brain structure of Der1 mice, looked at the cellular 

level of the brain for changes and investigated the global RNA expression in the hippocampus 

and cortex of the Der1 homozygous and heterozygous mice. 
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2.1 Materials 

2.1.1 Reagents  

Bovine Serum Albumin (Sigma) 

Ethanol (Fischer) 

Formaldehyde, 16%, methanol-free (ThermoFisher) 

Formalin, 37-40% stock solution (Sigma-Aldrich) 

IMS (Fisher) 

Magnesium chloride (Fisher) 

Methanol (Fischer) 

Na2HPO4 dibasic/anhydrous (Sigma-Aldrich) 

NaH2PO4 monobasic (Sigma-Aldrich) 

PBS (Sigma) 

Sodium chloride (Fischer),  

Sodium bicarbonate (Sigma) 

Sodium hydroxide (Fisher) 

Sucrose (Sigma)  

Tris (Fischer), pH adjusted using hydrochloric acid and/or sodium hydroxide 

Tris-HCl (Fischer), pH adjusted using hydrochloric acid and/or sodium hydroxide 

Tri-sodium citrate dihydrate (Fisher) 

Triton X-100 (Sigma) 

TWEEN-20 (Sigma) 

β-glycerophosphate (Sigma) 

 

2.1.2 Solutions and buffers 

All cell culture reagents were purchased from Gibco Invitrogen.  

Dissection buffer -used to dissect foetal mouse brains for primary neuron production: 

500 ml Hanks Balanced Salt Solution (HBSS) with CaCl2 and MgCl2  

5 ml 200mM Glutamax 

3.5 ml 1M HEPES 
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DMEM/FCS – used during primary mouse neuron culturing and for maintenance of cultured 

human cell lines:   500ml Dulbecco’s Modified Eagle Medium 

                              50ml foetal calf serum (prepared by in-house technical facility) 
 

Glial medium – for astrocyte growth and maintenance: 

500ml Dulbecco’s Modified Eagle Medium with Glutamax  

50ml foetal calf serum 
 

Neurobasal medium– used for maintenance of primary neuron cultures: 

500ml Neurobasal medium without phenol red 

10ml B27 supplement 

5 ml 200mM Glutamax 
 

Trypsinisation buffer: 

4 ml TrypLE Express  

6 ml ml HBSS (without CaCl2 and MgCl2)  
 

PBS (10X) from tablets (Invitrogen) containing: 

10 mM Tris base  

150 mM NaCL 

Dissolved in up in dH20, pH adjusted to 7.3-7.5 with 1M HCL 

Autoclaved before used. Stored at 4°C 
 

Sodium citrate buffer 10mM: 

2.94 g Tri-sodium citrate dihydrate 

Dissolved in 1000 ml of dH2O, pH adjusted to 6.0 with 1M NaOH 

Autoclave before used 
 

BrdU solution: 

1 mg/ml of BrdU 

1% sucrose, dissolved in drinking water 
 

NFB buffer: 

100 ml of Formalin  

Diluted in 900 ml of dH2O 

4 g/L NaH2PO4 

6.5 g/L NaHPO4 
 

Perfusion PFA: 

4%PFA   

0.1M PB) 

pH 7.4 
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2.2 Mouse husbandry and genotyping 

Once received from Sanofi the Der1 mice were held at the biological research facility on site 

which is a “dirty” animal facility. The mice were tested positive for Mouse norovirus and 

endoparasite Entamoeba sp, Syphacia obvelata and Tritrichomonas sp. The mice were bred by 

mating Heterozygous X Heterozygous in order to obtain WT, Heterozygotes and 

Homozygotes in the same litter. The mice were weaned at day 21 and kept in mixed genotype 

cages, 3 mice per cages. Breeders followed a RM3 diet of pellets containing a high level of 

nutrients while the stock followed a RM1 diet containing low nutrients and low proteins level. 

Regular genotyping of stock was performed by Helen S. Torrance and myself using a PCR 

assay on DNA extracted from ear notches. A forward primer targeted to mouse Disc1 was 

used in addition to reverse primers for either endogenous Disc1 or for the knocked in human 

sequence of DISC1FP1.  

2.2.1 DNA extraction 

Ear notches were collected in 1.5 ml Eppendorf tubes by technician at the animal facilities and 

passed on for genotyping. A DNeasy Blood and tissue kit was used to extract the DNA from 

those tissue samples. After adding180 µl of ATL buffer and 20 µl of proteinase K, the sample 

was vortexed and left to incubate at 56C overnight. The next day, the samples were vortexed 

for 15 seconds before adding 200 µl of buffer AL and vortexed again. Then, 200 µl of 100% 

ethanol was added, followed by a thorough mixing. The mixture was transferred to a DNeasy 

Mini spin column placed in a 2 ml collection tube. This was centrifuged at 8000 rpm for 1 

minute and the flow through was discarded. The spin column was placed in a new 2 ml tube 

and 500 ul of AW1 buffer was added to each sample. The samples were centrifuged as before 

and the flow through discarded. The spin column was placed in a new 2 ml collection tube and 

500ul of AW2 buffer was added to the mixture. The samples were then centrifuged for 3 

minutes at 14.000 rpm and the flow through discarded. The spin column was transferred to a 

1.5 ml micro-centrifuge tube. The DNA was eluted by adding 100 ul of AE buffer. After one-

minute incubation at room temperature, the samples were centrifuged. The DNA samples were 

stored at 40C. 

2.2.2 PCR 

The basic PCR reaction was used to determine the genotype of the mice. A ‘no template’ 

control was always included in the experiment by replacing the DNA with RNase-free water. 

The reaction was set up as follows, the quantities being for one sample: 
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14.5 µl  H2O 

2 µl  10x PCR reaction buffer (Sigma) 

0.5 µl  10 M reverse human primer  

5'ATAACGGTCCTAAGGTAGCGAGCTATTGCCAGGATrCCATCGCTCG 

0.5 µl  10 M reverse mouse primer  

 

5'CAGTAGTAAGAAAAGAGACAACCCCC 

0.5 µl  10M forward mouse primer  

5'CCTGCATCCACAGACGTGC 

0.5 µl  10 mM dNTPs 

0.5 µl  Taq DNA polymerase (Sigma) 

1 µl   genomic DNA  

The reaction conditions were set as follow: 

950C 5 minutes 

940C 45 seconds  

600C 45 seconds        

720C 45 seconds 

750C 10 minutes 

Keep at 4 0C. 

  

2.2.3 DNA electrophoresis: Preparation and running of agarose gels 

DNA electrophoresis was used to assess the size of DNA fragments generated by PCR and 

therefore obtain the genotype corresponding to the samples used. A 2% low melting point 

(LMP) agarose gel was used for DNA electrophoresis. 5 µl of the solution obtained after PCR 

was added to 2.5 µl of DNA loading buffer and the mixture was pipetted into the wells. DNA 

marker (1 Kb Plus DNA Ladder, Invitrogen) was also pipetted into a well. The gel was then 

placed in an electrophoresis tank (Bioscience Service) filled with TBE buffer and completely 

submerged. To run the DNA gel, a current of 90V was applied for, 30 minutes to properly see 

separated bands on the gel corresponding to the DNA fragments of interest. The DNA 

fragments in the gel were stain with SYBR safe dye and visualised by UV light illumination 

using an Uvidoc Lightbox (Uvitec) and photographed with the built-in camera (figure 2.1). 

35 cycles 
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2.3 Sholl analysis 

2.3.1 Co-culture of astrocytes with low density cortical neurons 

The cell cultures were prepared by Elise Malavasi while astrocytes were prepared by Laura 

Murphy. To easily identify single neurons, low density neuronal cultures (105 neurons per 

well) were set up in a six well plate with astrocyte co-culture. 

a. Astrocyte preparation 

Wild-type pregnant mice were killed under the schedule 1 procedure by staff at the animal 

facility and the embryos removed at E18. The cortex was chopped with a sterile scalpel and 

transferred to 10ml of trypsinisation buffer and incubated at 37°C for 45 minutes. The tissue 

was dissociated by pipetting with a P1000, 50 times in 5ml DMEM/FCS, to create a single cell 

suspension, and then passed through a 70um cell strainer. The cell suspension was centrifuged 

at 1000 rpm for 5 minutes and the supernatant was removed. The pellet was re-suspended in 

5-10ml of glial medium and cells were counted using a haemocytometer. 7x106 cells were 

transferred into a T75 flask with 15ml of glial medium. Then, medium was removed from the 

flask and replaced with 15ml fresh glial medium. When the flasks were confluent with 

astrocytes (at around 14 DIV) aliquots were stored in liquid nitrogen for long term storage. 

When frozen stocks were needed for co-culture with neurons, cells were thawed at 37°C for 

1-2 mins in glial medium. 

 

 

Figure 2.1: PCR results revealing the genotypes of the samples used  

 Homozygous (151 base pair (bp) band), heterozygous (256 bp band 

and 150 bp band) and wild type samples (151 bp band). 

 WT    Hom     WT   WT    Het 

 

256 bp - 

151 bp - 

 

- 300bp 

- 200 bp 

- 400 bp 
- 500 bp 
- 650 bp 

- 1000 bp 
- 1650 bp 

- 850 bp 
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b. Plating of astrocytes 

To grow healthy neurons at low density, wild-type astrocytes were plated on a well insert 

positioned above the neurons. The insert has a porous membrane upon which the astrocytes 

are maintained which allows trophic factors to diffuse into the shared media and help the 

growth of the neurons. Inserts were added to each well of a 6-well plastic plate and 600µl 

of solution of collagen mixed 1:4 with sterile 70% ethanol was added to each insert. The 

inserts were left to dry out overnight. The next day, 2ml of glial medium was added to the 

wells of the plate, underneath the insert. Astrocytes solution was thawed in 1 to 2 ml of 

glial medium and then diluted into 12ml of glial medium followed by the addition of 2ml 

of cell solution into each of the collagen-coated inserts, corresponding to 1x105 astrocytes 

per insert. After 5-7 days, the inserts were transferred to plates containing Neurobasal 

medium in order to enrich the media for cortical neuron culture 1-2 days later. 

c. Culture of low density cortical neurons 

The cortical tissue was obtained from E18 embryos and immediately transferred to ice-cold 

dissection buffer. The cortices were dissected under a Leica MZ6 microscope with a Fiber-

Lite MI-150 high intensity illuminator and stored in ice-cold dissection buffer. The tissue was 

finely triturated and placed in a 50 ml Falcon tube with 15 ml of trypsinisation buffer and 

incubated at 37 C for 30 to 40 minutes. Then the tissue was dissociated by pipetting 10-15 

times with a Pastette. The resulting suspension was centrifuged for 5 minutes at 1500 

revolutions per minute (RPM) in a MSE Mistral 1000 centrifuge and the supernatant carefully 

removed with a thin bore Pastette. The pellet was then resuspended in 20 ml DMEM/FCS and 

passed through a wide bore Pastette 10-15 times and centrifuged as previously. The pellet was 

resuspended in 10 ml DMEM/FCS by 20 passages through a wide bore Pastette followed by 

10 passages through a thin bore Pastette, then centrifuged again and resuspended in 20 ml 

DMEM/FCS. The cortical neurons were then passed through a 40 µm cell strainer, collected 

in a 50 ml Falcon tube and counted. After centrifugation, the cell pellet was resuspended in 

Neurobasal medium supplemented with 200 mM GlutaMAX-1, 100 g/ml of penicillin and 

streptomycin and 20% of B-27 supplement and plated in 6 wells plates at a final concentration 

of 1x105 cells/well. Neurons were maintained in an incubator at 37 C until they reached five 

days in vitro. The cells were then fixed and stained for imaging analysis. 

 

2.3.2 Immunocytochemistry 

Immunocytochemistry allows the detection of one or multiple proteins in structurally intact 

cells. This requires cells to be grown as a monolayer. Cells are then fixed, and the proteins of 



70 

 

interest are detected by sequentially incubating the cells with one or more protein-specific 

antibodies, followed by fluorescently labelled secondary antibodies. Stained cells can then be 

visualised using a light microscope equipped with the necessary excitation and emission 

filters. 

a. Cell fixation and permeabilization 

Fixing the cells blocks the activity of any biomolecule and kills the cells while preserving their 

structure and preventing deterioration. Membrane permeabilization allows immunodetection 

of antigens that are not exposed on the cell surface.  

After five days in vitro, the media was taken out of each well and replaced with 1 ml of 4% 

paraformaldehyde (PFA) (diluted from 16% formaldehyde methanol-free, ThermoFisher). 

The cells were incubated for 10 min at room temperature. After removal of 4% PFA, the cells 

were washed once with ice-cold PBS and then incubated 3 times for 5 minutes in 1ml ice-cold 

PBS. For membrane permeabilization, the cells were then incubated in 1ml of PBS containing 

0.1% Triton X-100 for 10 minutes at room temperature, then washed 1 times with room 

temperature PBS and incubated three times for 5 minutes in 1ml of room temperature PBS. 

The cells were then either immuno-stained immediately or wrapped in tin foil and stored in 

PBS at 4ºC for up to 2 days before immunostaining. 

b. Immunostaining 

Immunostaining was performed at room temperature. To block non-specific binding 

sites, the cells were incubated 1 hour in 1 ml of PBS containing 3% BSA. The primary antibody 

MAP2 (mouse IgG1, M9942 sigma) was diluted 1 in 2000 in this same blocking buffer. The 

blocking buffer was replaced by 1 ml of the primary antibody dilution, and the cells were 

incubated for 1hour. The cells were then washed once followed by 3 times 5 minutes’ 

incubation with PBS. Then, the appropriate fluorescently labelled secondary antibody, in this 

case a Polyclonal Donkey anti-mouse IgG (Alexa Fluor 568 (H+L) A31570) was diluted 1 in 

500 in blocking buffer. The cells were incubated with the secondary antibody for 1 hour. 

Nuclei were stained with Hoechst (Sigma-Aldrich), the dye was diluted 1 in 10000 and added 

to the cells along with the secondary antibody. From this moment forward, the cells were 

protected from light to prevent photobleaching of the fluorophores. After incubation with the 

secondary antibody, the cells were washed as before, then covered with a glass coverslip using 

mowiol (Sigma-Aldrich) mounting medium. The plates were wrapped in tin foil and kept at 4 

C for at least 16 hours after mounting to allow the mounting medium to set completely. 
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c. Fluorescent microscopy 

A fluorescence microscope uses a high intensity light source which excites a fluorescent 

molecule in a region of interest. This molecule emits a lower energy light of a longer 

wavelength. This produces a magnified image. Fluorescent microscopy is used to visually 

enhance cell structure, thanks to fluorescent tags to antibodies that attach to targeted 

molecules. This allows generation of images representing a horizontal plane of a stained cell 

or tissue. Fluorescent images of the MAP2 positive cells were acquired at 20X using a 

Photometrics Coolsnap HQ2 CCD camera and a Zeiss Zeiss Axioplan II fluorescence 

microscope with Plan-neofluar objectives (Carl Zeiss, Cambridge, UK), a Mercury Halide 

fluorescent light source (Exfo Excite 120, Excelitas Technologies) and Chroma #83000 triple 

band pass filter set (Chroma Technology Corp., Rockingham, VT) with the excitation filters 

installed in a motorised filter wheel (Ludl Electronic Products, Hawthorne, NY).  

2.3.3 Outgrowth analysis 

Cell cultures from wild-type and homozygous mice were analysed blind to genotype. The 

analysis was carried out on four independent cultures for each genotype. From the cultures, 

neurons which were distinct from each other were selected in order to assess the dendrites 

extending from cell bodies (figure 2.2, a). Each image analysis was done using ImageJ 

software and its “Neurite tracer” plug in. The centre of each cell body and the end of each 

dendrite was manually selected for the software to reconstruct the neuron carefully chosen. 

After applying the “sholl analysis” plug in, the number of crossings between the circle created 

by the plug in and the dendrites was obtained every 5 µm. The length of the dendrites, and the 

number of primary and secondary dendrites were also obtained (figure 2.2, b).  To assess the 

soma area, imageJ was used and the soma outlines were drawn manually in order to obtain the 

measurement of its area (figure 2.2, c).  
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2.3.4 Statistical analysis of the outgrowth analysis 

To assess outgrowth changes, statistical analysis was performed using Graphpad Prism 

software (GraphPad Software Inc., La Jolla,CA). Normality of each data set was tested using 

the D'Agostino-Pearson omnibus test. If the data for the experiment in question was normally 

100µm 

 

a. 

 

b. 

 

c. 

 

Figure 2.2: Cell growth analysis using imageJ 

a. Representation of a neuron (x20) ready to be analyzed by imageJ software 

b. Representation of the Sholl analysis. The different circles show where the crossings are 

estimated, and the graph gives the values and the trend of the crossings every 5 µm. The 

dendrites are represented in green.  Here, the axon can sometime express MAP2 when 

neurons are immature (less than 7DIV). In this case the axon was recognized due to its 

excessive length and was therefore excluded from this analysis.  

c. Analysis if the cell body area. The contour of the cell body is indicated by a yellow line. 
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distributed, an unpaired parametric student t-test (comparison of two groups) was used. If the 

data for the experiment in question was not normally distributed, a Mann-Whitney test 

(comparison of two groups) was used.  Result of the outgrowth analysis are presented as mean 

± standard error of the mean (SEM) and p<0.05 was considered statistically significant and is 

indicated with *, p<0.01 is indicated with **. 

 

2.4 Histology 

2.4.1 Tissue processing 

Male littermate trios were selected for histology analysis. For each wild type control one 

homozygote and heterozygote were selected from the same litter. A subset of the mice 

underwent BrdU treatment starting at 7 weeks of age, until they were culled at 9 weeks. Mice 

were anaesthetized with a solution of Fentanyl/Fluanisone (Hypnorm®) and Midazolam 

(Hyponovel®) prepared by a technician from the animal facility. This was administered at a 

dose of 0.1ml/10g via the intraperitoneal route. Anaesthetic depth was ensured by measuring 

withdrawal reflexes. In rodents, withdrawal reflexes are tested by pinching the tail and the 

hind limbs to demonstrate the reflex is absent. The mice were then transcardially perfused. 

The chest cavity was opened by removing the patch of skin covering the ribs and sternum and 

making an incision under the sternum. Then the ribs were cut through and the diaphragm 

removed. A catheter was inserted into the left ventricle using a 10-14 gauge needle. To open 

the vascular system, the right atrium was cut. A syringe containing 20ml of PBS was connected 

to the catheter and depressed at approximatively 0.2-0.5 ml/second until the liver and internal 

organs cleared of blood and the atrial flow was clear. The syringe was replaced by a new 

syringe containing 4% PFA and the fixative was perfused at the same rate. For a strong fixation 

50 ml of fixative was used. The head was then separated from the body with scissors, and the 

brain carefully dissected out. The olfactory bulbs and the cerebellum were removed from the 

rest of the brain. The brains were then left for 24h in 4% NFB after which they were transferred 

into 70% ethanol solution. The brains were then paraffin wax embedded. Sections were cut in 

three different zones of the brain (figure 2.3): 

 -Bregma ≈2.46; to see the prefrontal cortex (PFC) 

-Bregma ≈ 0.75; to see the ventricles and the corpus callosum 

-Bregma ≈ -1.94; to see the hippocampus. 
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The brains were processed by the University of Edinburgh Shared University Research 

Facilities (SURF), using a Leica RM2235 base sledge microtome. Twenty coronal sections of 

10μm were cut for each block. The sections were then floated out in a warm water bath and 

mounted on to Superfrost Plus slides (ThermoFisher Scientific) and dried in an oven. Two 

successive sections are used for each location for each staining.  

 

2.4.2 Staining 

a. Cresyl Fast Violet (Nissl) staining 

To visualize neuronal cytoarchitecture, two 10um sections on Superfrost Plus (ThermoFisher 

Scientific) slides per block were dewaxed in xylene (Fisher) in which they were incubated 2 

times 15 minutes. Then the sections were rehydrated through graded alcohols: 2 times in IMS 

for twice 10 minutes, once 95% IMS for 5 minutes, once in 90% IMS for 5 minutes and once 

in 70 % IMS for 10 minutes. Then, the slides were rinsed in tap water and incubated for 2 

minutes 0.2% cresyl fast violet solution (R.A.Lamb -Cresyl fast violet) containing 10 drops of 

acetic acid per 100 ml. Stained sections were then rinsed in tap water and dehydrated through 

graded alcohols: 70% IMS, 90% IMS, 95% IMS for 2 minutes each and 100% IMS twice for 

5 minutes. Then the slides were cleared in xylene and cover-slipped with DPX (Fisher), a 

xylene-based mounting solution. 

b. Immunohistochemistry 

Paraffin embedded sections were stained for Parvalbumin and Caspase 3 (table 2.1). The 

sections were dewaxed as previously mentioned and endogenous peroxidase activity quenched 

by incubating the sections in methanol containing 1% H2O2 for 30 minutes. Sections were 

rinsed in PBS and antigen retrieval performed. The sections were incubated in 10 mM of 

sodium citrate buffer at room temperature and slides were then microwaved for 20 minutes at 

Figure 2.3: Depiction of mouse brain sections done at three different Bregma points 

derived from Paxinos et al, 2004. 

a. 2.46 mm before Bregma; b. 0.75 mm before Bregma, c.-1.94 mm after Bregma 
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high power. To ensure constant coverage of the slides, distilled water was poured every 5 

minutes. The slides were cooled on ice for 20 minutes and rinsed with PBS-Tx for 10 minutes. 

The sections were blocked in a 20% normal goat serum (Vector) diluted in PBS-Tx for 1 hour. 

The species of normal serum was directed against the host species of the secondary antibody. 

After blocking, sections were incubated overnight at 4°C in primary antibody in 20% goat 

serum in PBS-T. Sections were then washed 4 times 5 minutes in PBS-Tx and incubated at 

room temperature in biotinylated secondary antibody at a 1:200 dilution for 1 hours (table 2.1), 

followed by 4 washes of 5 minutes in PBS-Tx and incubation in Vectastain Elite ABC kit (1 

drop A and 1 drop B in 2.5 ml of PBS-Tx, Vector Laboratories) for 30 minutes before 

visualization by incubation with 0.05% 3,3’-diaminobenzidine tetrahydrochloride (DAB) (Kit, 

Sigma) containing 0.001% H2O2. Sections were washed with distilled water and dehydrated 

through graded alcohol (see 1.3.2.1) and then cleared in xylene and cover slipped with DPX. 

For Caspase-3 staining, nickel was added to DAB to obtain black positive staining. The slides 

were then rinsed in dH2O and incubated in Nuclear Fast Red (Vector) in order to stain the 

nuclei pink. The sections were then rinsed in dH2O and cover-slipped as before. 

 

c. Immunofluorescence  

Mouse brain sections were stained to visualize expression of doublecortin and BrdU in the 

dentate gyrus. Sections were dewaxed and incubated in 10 mM of sodium citrate buffer at 

room temperature and slides were then microwaved for 10 minutes on simmer followed by 10 

minutes at high power. To ensure constant coverage of the slides, distilled water was poured 

every 5 minutes. The slides were cool down on ice for 20 minutes and rinsed with PBS-Tx for 

5 minutes. The sections were blocked in a 20% normal goat serum (Vector) solution in PBS-

Tx for 1 hours and incubated overnight at 4°C in a cocktail of primary antibody BrdU and 

DCX (table 2.1) diluted in blocking serum. Sections were then washed 4 time 5 minutes in 

PBS-Tx and incubated at room temperature in secondary antibody at a 1:200 dilution for 1 

hours (table 2.1). Sections were washed with PBS-Tx for 10 minutes. To stain the nuclei, 

sections were incubated in DAPI diluted at 1:1000 in dH2O for 2 minutes. The slides were 

then rinsed in dH2O and cover-slipped with Vectashield hard set. 
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Primary Antibody Supplier Dilution 

Anti-Caspase 3, active (cleaved) form (Mooney et al., 2018)  Millipore, AB3623 1:70 

Monoclonal Anti-Parvalbumin antibody produced in 

mouse clone PARV-19, ascites fluid (Menegola et al., 

2008) 

Sigma-Aldrich, P3088 1:400 

Anti-BrdU antibody, Mouse monoclonal. 

Clone BU-33, purified from hybridoma cell culture (Wang 

et al., 2011) 

Sigma-Aldrich, B8434 1:200 

Doublecortin antibody (Kim et al., 2017) Abcam ab18723 1:1000 

Secondary Antibody Supplier Dilution 

Goat anti mouse biotinylated Sigma 1:200 

Goat anti rabbit biotinylated Sigma 1:200 

Goat anti mouse Alexa Fluor conjugates 568  Invitrogen 

 

1:200 

Goat anti rabbit Alexa Fluor conjugates 488  Invitrogen 1:200 

DAPI Invitrogen  1:50000 

Table 2.1: Detail of antibodies used for immunohistochemistry (IHC) and 

immunofluorescence (IF) 

 

2.4.3 Regional area Measurements 

Regional areas were measured using Fiji and its region of interest (ROI) manager. The area of 

the region of interest was measured using two sections per animals.  In this study, the area of 

the cortex, corpus callosum and lateral ventricles were measured (figure 2.4). The appropriate 

contours of each region of interest were drawn manually on each section using Fiji to assess 

areas of interest. The values of the area in µm2 for each hemisphere would be obtained 

separately by using the ROI manager and extracting the measurements. Then the hippocampus 

was investigated, more specifically, at the area of the dentate gyrus (figure 2.5, a, b). The 

contour of the dentate gyrus was drawn manually using Fiji and a line was drawn to measure 

its length (figure 2.5, b).  Additionally, the thickness of the CA1 and CA2 was evaluated, 

respectively four lines and three lines were drawn, and their length measured with Fiji (figure 

2.5, c, d).  
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a. b 

 

Figure 2.4: Delimitation of the area of the regions of interest 

a. Representation of a mouse brain section, modified from the mouse brain atlas in 

stereotaxic coordinates (Paxinos et al., 2004). The corpus callosum was delimited by the 

extremities of the cingulum (cg) marked by blue lines and the cortical area was delimited 

by the beginning of the Piriform cortex (Pir) marked by black lines. 

b. Nissl stained mouse brain section analysed with Fiji showing the three regions of 

interest: cortex area delimited in black, corpus callosum area delimited in red, ventricle 

area delimited in blue.  

Figure 2.5: Structural analysis of the hippocampus 

a. Representation of a mouse brain section of the hippocampus, modified from the 

mouse brain atlas in stereotaxic coordinates (Paxinos et al., 2004). Orange squares to 

identify area of interest. 

b. Zoom of the dentate gyrus, contour in yellow and yellow line to measure its length. 

c. Zoom of the CA1, 4 black line to measure its thickness 

d. Zoom of the CA3, 3 black lines to measure its thickness 

d c 

a

v 

b 
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2.4.4 Cell density 

To automatically count the number of cells in a specific area on each section, a matrix which 

can be used with Fiji was created. This allowed me to calculate a density for each section of 

the prefrontal cortex using a box of width=1122 and height=930 micron (figure 2.6). The 

density of cells in the hippocampus was analysed in two regions of interest: the CA1 and the 

srlm zone. In the CA1, a box of 100 µm2 was set at the same location for each section and the 

cells were counted manually using the cell counter plug in on Fiji (figure 2.7). In the srlm zone 

a box of 200 µm2 was set at the same place on each section and the cells were counted manually 

as mentioned before using Fiji (figure 2.7). An average density of cell for the cortex prefrontal, 

the CA1 and the srlm was obtained for each animal. 

Figure 2.7: Cell count in the hippocampus 

The yellow square indicates the box used to count cells in the CA1 and the red 

square indicates the box used to count cells in the srlm. 

CA1 

 

srlm 
zoom 

Hippocampus  

 

Figure 2.6: Cell count on a PFC section 

a. Nissl sections of PFC. b. Automated cell count using Fiji.  
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2.4.5 Count of Parvalbumin positive cells 

To analyse the distribution of interneurons, the PFC was separated into its different regions of 

interest. Brain areas were distinguished using anatomical features and the Mouse brain atlas 

in stereotaxic coordinates (Paxinos et al., 2004) (figure 2.8). The cells were counted manually 

using the cell counter plug in from Fiji. For each brain, data from the two hemispheres were 

collected and averaged for further analysis. 

 

The interneuron count was also completed in the hippocampus. The area of the CA1 and the 

DG were drawn using anatomical cues and the cells were counted using Fiji, as previously 

mentioned (figure 2.9). Then the cells were counted in the whole hippocampus. 

 

Figure 2.8: Areas of the prefrontal cortex used to count parvalbumin 

positive cells 

a. Image of prefrontal cortex section stained for parvalbumin. Yellow 

lines have been manually traced using the mouse brain atlas in 

stereotaxic coordinates in order to define the different areas present. 

b. Image from the mouse brain atlas in stereotaxic coordinates which 

correspond to the sections used in this analysis. 
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2.4.6 Count of caspase-3 positive cells 

To study apoptosis, positive activated caspase-3 cells were counted in the PFC and in the 

hippocampus. Because of the low expression of activated caspase-3, the positive cells were 

counted manually in half of the PFC (figure 2.10). The cells were counted directly on OLIVIA 

software. Caspase-3 positive cells were marked by a green cross and their positions were also 

indicated on the pictures. In the hippocampus, the cells were counted in the CA1, the dentate 

gyrus and the whole hippocampus as presented for the count of the parvalbumin positive cells 

(figure 2.11). The counts were done using the cell counter plug in on Fiji, as previously. 

 

 

 

 

 

Figure 2.9: Image of hippocampus stained for parvalbumin 

The different areas where the cells were counted are delimited in yellow. In each area, 

the cells have been counted using markers of different colours. Blue markers indicate 

parvalbumin positive cells in the dentate gyrus, turquoise markers are for the positive 

cells in the CA1 and green markers are for the rest of the hippocampus. 
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Figure 2.10: Image of a section of the prefrontal cortex stained with caspase-3 activated 

antibody 

 The green crosses indicate positive cells. The green line defines the area in which the 

cells were counted. 

Figure 2.11: Image of a section of the hippocampus stained with caspase-3 activated 

antibody 

The blue markers indicate positive cells. The yellow lines define the different areas in 

which the cells were counted. 
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2.4.7 DCX/BrdU count 

Doublecortin and BrdU positive cells were counted exclusively in the dentate gyrus. The cell 

counter plug-in from Fiji was used to mark each counted cell. BrdU and DCX positive cells 

were first counted on single channel images. To count any double stained cells, the multiple 

channel images were used (figure 2.12). Number of positive cells per dentate gyrus were 

assessed and a mean per dentate gyrus was measured. 

 

2.4.8  Statistical analysis 

All measurements were performed blind to genotype. All statistical analysis was performed 

using IBM SPSS statistics 22 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, 

Version 22.0. Armonk, NY: IBM Corp.). A univariate general linear model 2-way ANOVA 

statistic test was performed to determine group-level differences, where p≤0.05 was 

considered significant. Genotype and littermate trios were considered as fixed factors in order 

Figure 2.12: Images of the dentate gyrus stained for DCX/BrdU 

In green, the cells are stained for DCX. The yellow box represents a zoom in, three positive 

cells can be detected (yellow arrows). In red, the cells are stained for BrdU. The yellow box 

represents a zoom in, three positive cells can be detected (yellow arrows). 

The multiple channel image shows cell nuclei stained with Dapi in blue, and red and green 

staining for BrdU and DCX respectively. The yellow box represents a zoom in, 3 BrdU 

positive cells and the 3 DCX positive cells can be seen, no DCX and BrdU co-labelled cells 

were visible here. BrdU incorporate the cell during phase S of the cell cycle and DCX is 

expressed in immature neuron (neuron progenitors) in post mitotic phase. It is possible 

that BrdU+/DCX- cells are not yet neuron progenitors or not meant to be neurons and BrdU-

/DCX+ immature neurons did not proliferate during BrdU incorporation. 



83 

 

to take into account any littermate effect in our analysis. A Dunnett's Two-Tailed post hoc test 

was used to compare the wild-type group to the heterozygote and homozygote groups.  

In order to take into account, the littermate effect, this effect was included as an independent 

categorical variable in the 2-way ANOVA and therefore labelled as a fixed factor. With fixed-

effects factor, the effects of the independent variable are treated as fixed constants to be 

estimated (statistics.laerd.com, 2-way ANOVA with SPSS). The ‘main effect’ of this 

independent variable was analysed which allowed to assess the effect of the littermate on the 

dependant variable. The statistical result was obtained through the Wilk’s lambda tests 

performed by SPSS software. This indicates how well the independent variable, here being the 

littermate effect, contributes to the model. 

 

2.5 Magnetic resonance imaging (MRI) 

2.5.1 Tissue collection 

Brains were collected as previously described in the histology section 1.3.1. The brains were 

then left for 24h in 4% NFB after which they were transferred into 70% ethanol solution. They 

were then soaked for 3 weeks in contrast agent Gadolinium containing PBS in order to improve 

the quality of the MRI images. 

2.5.2 Scanning protocol 

Brains were scanned in pairs in a proton-free fluid Fomblin at the Queens Medical Research 

Institute of Edinburgh (QMRI). One male brain was placed at the bottom of the vial, hindbrain 

first, then a female brain of the same genotype (also hindbrain first) was placed on top. Foam 

soaked in Fomblin was added to secure the brains and to prevent them from moving. No air 

bubbles should be visible. The vials were placed in the centre of the 26 mm radiofrequency 

coil. The Acquisition parameters were: 

matrix: 512 x 192 x 192 (reconstructed to 512 x 256 x 256) 

FOV: 40 x 10 x 10 mm 

TR/TE: 30/10 ms  

The 3D scans were run overnight. 
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2.5.3 Image analysis 

MR images were processed using a combination of FSL (Jenkinson et al., 2012), ANTs 

(Avants et al., 2011) and in-house C++ software utilizing the ITK library, available from 

https://github.com/spinicist/QUIT (Richetto et al., 2016; Wood et al., 2016). In brief, multi-

head scans were bias-field corrected (Tustison et al., 2010) before being split into individual 

sample images. Registration was then performed between each subject and the Dorr atlas 

image (Dorr et al., 2008) to ensure all samples were aligned. An average study template image 

was then constructed using MR images from all animals (Avants et al., 2010). The resulting 

template was then non-linearly registered to the atlas image. All subject images were then non-

linearly registered to the study template. The inverse transforms from the atlas to the study 

template and from the study template to each subject were applied to calculate the total brain 

volume and individual brain region of interest (ROI) volumes of each subject. ROIs match 

those found in the Dorr atlas (Dorr et al., 2008). 

2.5.4 Statistical analysis 

A multivariate general linear model 2-way MANCOVA statistical test was performed using 

IBM SPSS statistics 22 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, 

Version 22.0. Armonk, NY: IBM Corp.) to determine group-level differences in brain ROI 

volumes, where p≤0.05 was considered significant. Whole brain volume was considered as a 

co-variate. Genotype and littermate trios were considered as fixed factors in order to take into 

account any littermate effect in our analysis. All the brain regions were considered as 

dependent variables. A Dunnett's Two-Tailed post hoc test was used to compare the wild-type 

group to the heterozygote and homozygote groups. In order to take into account, the littermate 

effect, this effect was included as an independent categorical variable in the 2-way 

MANCOVA and therefore labelled as a fixed factor. With fixed-effects factor, the effects of 

the independent variable are treated as fixed constants to be estimated (statistics.laerd.com, 2-

way MANCOVA with SPSS). The ‘main effect’ of this independent variable was analysed 

which allowed to assess the effect of the littermate on the dependant variables collectively. 

The statistical result was obtained through the Wilk’s lambda tests performed by SPSS 

software. This indicates how well the independent variable, here being the littermate effect, 

contributes to the model. 
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2.6 RNA samples preparation and analysis 

2.6.1 Preparation 

a. Collection of the tissue 

The tissue was collected from 9 weeks old mice. Each group (wild type, heterozygotes, 

homozygotes) were composed of 4 males and 4 females. Mice were culled under the schedule 

1 procedure by trained staff at the animal facility. The brains were then directly removed and 

washed in ice-cold PBS. The cortices and hippocampi from each hemisphere were dissected. 

The tissues from the right hemisphere were incubated overnight at 4ºC, in 5 volumes of RNA 

later (Ambion). After 24h, the RNA later was discarded to prevent the formation of salt crystals 

and the samples were stored at -80 ºC until they were processed. 

b. Processing of the samples 

The samples were purified using QIAGEN RNA extraction kit, according to the 

manufacturer’s instructions. To homogenise the tissues, the Tissueruptor was used. Then 

insoluble materials were removed, and nucleoprotein complex dissociated. The RNA was re-

dissolved in 100 µl of RNA free water. At that point, the RNA concentration was assessed 

using the nanodrop for a first time to assess its quality. To obtain the purest RNA possible, 

RNA clean-up was performed, according to the manufacturer’s instructions. A maximum of 

100 μg RNA can be cleaned up in this protocol. RLT lysis buffer and RPE washing buffer 

were used in order to obtain optimum cleaned RNA. The RNA was then collected in in RNase-

free water. Additional on-column DNase digestion was then done by treating the samples with 

DNase I, as indicated by the manufacturer’s instructions. At the end, the RNA was eluted once 

for the hippocampal samples and twice for the cortical samples using 30 µl of RNase free 

water, therefore 60 µl of pure cortical RNA and 30 µl of pure hippocampal RNA were 

obtained. 

 

2.6.2 Computational analysis 

The RNA sequencing and analysis (mapping, read counts, fusion search) has been performed 

by the German company CeGAT, using Star for mapping and cuffdiff for differential 

expression. They used TruSeq Stranded mRNA Library Prep Kit (Illumina) in order to prepare 

the library. The sequencing parameters were the following: HiSeq4000, high output mode, 1x 

100 base pair (bp). Demultiplexing of the sequencing reads was performed with Illumina 

CASAVA (1.8.2) and adapters were trimmed with Skewer (version 0.1.116) (Jiang et al. 
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2014). However, the expression analysis was re-done by Philippe Gautier, at the Institute of 

Genetic and Molecular Medicine (IGMM) in Edinburgh. Raw count of reads from the mapping 

data using htseq-count were produced and analyzed using the R package DESeq2 (Love et al, 

2014) and for an analysis at exon level, the DEXSeq package was used (Anders et al, 2008). 

Therefore, differential gene expression was analysed using DESeq2 and differential exon 

expression was analysed using DEXSeq. To verify some of the results, the mapping files (. 

bam files) were also examined using IGV (Thorvaldsdóttir et al, 2013). Differential expression 

and statistical significance can only be obtained if the samples can be clustered into groups, 

each containing at least three replicates. Four biological replicate samples were used per group, 

in total 6 group for the hippocampal study and 6 group for the cortical study (wild-type 

female/male, heterozygotes female/male, homozygous female/male). The differential analysis 

is obtained through the DESeq function and using the Wald statistical test (Love, Huber and 

Anders, 2014; Love et al., 2018). The adjusted p-value obtained as a result of significance 

correspond to the p-value corrected for multiple testing, in these packages the Benjamin-

Hochberg correction is used, which allows to control the false discovery rate correspond to 

false positive results. Following this analysis, gene ontology analysis was done using the Gene 

Ontology enRIchment anaLysis and visuaLizAtion tool GOrilla (http://cbl-

gorilla.cs.technion.ac.il/) (Eden et al., 2007, 2009). The full list of expressed genes was used 

as the background gene set while the significant gene list was used as the target. An expression 

base mean cut-off of half the base mean of disc1 expression was applied to all differentially 

expressed data (corrected p<0.05) to minimise quantitation errors from genes expressed at very 

low levels. The GOrilla database is updated regularly, here the database updated on 

February 2018 was used, the p-value threshold was set at 10-3. Additionally, a protein 

annotation through evolutionary relationship Panther v.8 (http://pantherdb.org/) (Mi et al., 

2013), was also used to study gene ontology. Significant genes were compared to a reference 

gene list, and the software determined if there was a particular class-enrichment of GO terms 

categorised under Process, Function and Component. Heat maps of gene expression were 

generated using R version 3.4.2 and RStudio version 1.0.143.  

In addition, pathway analysis of the heterozygous samples was done using Ingenuity pathway 

analysis (IPA) in order to complement the gene ontology analysis. Pathway analysis was not 

performed for the homozygous samples as the group revealed a sub division indicating the 

presence of 2 different groups within the homozygote group. It seemed that one subgroup had 

a gene expression pattern similar to the heterozygote group while the other subgroup had a 

gene expression pattern similar to the wild-type group. So far, we cannot explain the reason of 

this division and therefore we decided not to perform the pathway analysis yet. 
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EFFECT OF THE DER1 MUTATION ON 
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3.1 Introduction  

There are few consistent pathologies associated with mental illness, but some changes have 

been found recurrently. Patients suffering from mental illness show several changes in their 

brain structure such as important loss of grey matter (De Peri et al., 2012; Haijma et al., 2013; 

Goodkind et al., 2015; Schmaal et al., 2017). This seems to impair their cognitive functions 

and their memory. However, some disorders have specific structural modifications. For 

instance, in schizophrenia patients the volume of the hippocampus and the corpus callosum 

has been often found to be reduced (Woodruff, McManus and David, 1995)(Smiley, Konnova 

and Bleiwas, 2012a) while lateral ventricles are enlarged. Major depressive disorders have 

been characterized by a decrease of  the amygdala and the hippocampus  (Lorenzetti et al., 

2009; Cole et al., 2011).  

In patients carrying the translocation t(1;11) reduced cortical thickness and gyrification was 

found as well as reduced white matter integrity (Whalley et al., 2015; Thomson et al., 2016). 

Moreover, patients carrying the translocation and unrelated schizophrenia patients without the 

translocation share the same cortical phenotype (Doyle et al., 2015). Notably, translocation 

carriers do not exhibit lateral ventricular enlargement. 

Rodent models of mental illness show critical changes in brain function and structure. Previous 

research on different DISC1 mouse models showed major changes in the brain structure such 

as reduction of the total brain volume and of the cerebral cortex, as well as enlargement of the 

ventricles, which correlate with characteristics of schizophrenia patients (Clapcote et al., 2007; 

Hikida et al., 2007; Shen et al., 2008). However, none of those mutants exactly model mental 

disorders and animal models which reproduce these diseases with precision are needed.  

In this chapter, the aim is to discover the effect of the Der1 mutation on brain structure and 

whether any of the structural changes previously mentioned are reproduced in the new Der1 

mouse model so as to gain more understanding of how the translocation affects brain structure.  

Histological analysis combined with three-dimensional imaging is the most frequent and 

thorough way to investigate brain structure. These two techniques allow us to obtain 

substantial information about the brain structure of this mouse model. 

 

 

 



89 

 

3.2 Histological analysis: Structural changes between wild-

type, heterozygous and homozygous mutant mice 

To analyse brain structure, histological techniques were used first. This enabled close 

examination of the corpus callosum, the cortical layer, the lateral ventricles and the 

hippocampus. Those areas are known to be particularly affected in patients with mental 

illnesses and in animal models of those diseases.  

To study structural changes in young adult mice, the brains of five male nine-week-old 

littermate genotype trios were dissected. Each wild-type brain is therefore associated with one 

heterozygous and one homozygous brain from the same litter. To concentrate on modifications 

due to the mutation, it is necessary that only the genotypes in question are compared, without 

additional variables. Using littermate trios will ensure that the genetic background and the 

environment are comparable between controls and mutants (Holmdahl and Malissen, 2012). 

Mice were taken at nine weeks of age which is when mice transition from adolescence to 

adulthood (Brust, Schindler and Lewejohann, 2015). This time point corresponds to the first 

major onset time point in schizophrenia disorder. The sections were cut approximatively 0.74 

mm after the Bregma point (figure 3.1) to see the ventricles and the corpus callosum, and 2.00 

mm before the Bregma point (figure 3.2) to see the hippocampus.   

Corpus Callosum 

Lateral ventricle 

 

Figure 3.1: Representation of a mouse brain section localised 0.74 mm after the 

Bregma point 

Image modified from ‘The Mouse Brain in Stereotaxic Coordinates’ by George Paxinos 

and Keith B. J. Franklin. The insert in the top left corner represents a mouse brain in 

sagittal position and shows where the section was cut. 
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For both coordinates and each animal, two consecutive sections of 10 µm were stained for 

Nissl bodies using cresyl violet acetate solution. This solution stains nucleic acid such as RNA 

and DNA, and is used to highlight important structural features of neurons and glial cells. The 

Nissl bodies are part of the endoplasmic reticulum and appear dark blue/purple due to the 

staining of ribosomal RNA, consequently the cytoplasm has a spotted appearance. DNA 

present in the nucleus stains a similar colour. Thus, stained Nissl bodies reveal the cell bodies 

of neurons and glial cells and can be used to define each structure of the brain in order to look 

at its gross and precise structure. The images were acquired using a slide scanner and their 

analysis was carried out using Fiji software. This software allows measurement of the area of 

interest for each image of each section. For each region of interest, the area was drawn 

manually on both hemispheres. Using structural landmarks, an equivalent area for each section 

was delimited (figure 3.3). The values of each area were collected from Fiji. 

The total area of the cortical layer, the lateral ventricles, the dentate gyrus, the CA1 and the 

CA3 were measured as well as the right and left areas separately except for the corpus 

callosum. First, the sections enclosing the cortical layer, the corpus callosum and the lateral 

ventricles were analysed then the sections encompassing the hippocampus, including the 

dentate gyrus and the Cornu Ammonis 1 and 3 (CA1 and CA3), were investigated. 

Hippocampus 

Dentate gyrus 

Figure 3.2: Representation of a mouse brain section localised 2.00 mm after the 

Bregma point 

Image modified from ‘The Mouse Brain in Stereotaxic Coordinates’ by George 

Paxinos and Keith B. J. Franklin. The insert in the top left corner represents a mouse 

brain in sagittal position and shows where the section was cut. 
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3.2.1 Changes in the cortical layer, corpus callosum and lateral 

ventricles 

 

First, the lateral ventricles, the corpus callosum and the cortex were investigated to see possible 

changes in those areas in the homozygous and heterozygous mice when compared to their wild 

type littermates. Nissl stained sections were used to assess the area of the regions of interest 

(figure 3.4). 

 

 

 

 

 

 

Figure 3.3: Delimitation of the area of the regions of interest 

The corpus callosum was delimited by the extremities of the cingulum (cg) marked by 

blue lines and the cortical area was delimited by the beginning of the piriform cortex 

(Pir) marked by black lines. Image modified from ‘The Mouse Brain in Stereotaxic 

Coordinates’ by George Paxinos and Keith B. J. Franklin. 
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The statistical analysis was done using SPSS and considered the fact that the mice were 

separated in trios to evaluate the possibility of a litter effect. A generalized linear model (GLM) 

was used. The genotypes and the trios were both set as fixed variables. The analysis of the 

total cortical area showed that there is a trend (GLM p=0.086) toward a smaller cortical area 

in the heterozygous group compare to the wild-type (figure 3.5, a). The observed power 

indicated by SPSS is of 0.45 which is quite low as the desired power level is typically 0.80, 

which would mean that there is 80%. Here, the low observed power indicates that the effect 

size does not allow to reach statistical significance. To reach a statistical significance and a 

power level of 0.8, an estimated sample size can be assessed using G*3 Power software (Faul 

and Erdfelder, 2007; Erdfelder et al., 2009). Knowing the mean of variation of the area for 

each genotype and the global standard deviation, the analysis indicated that 48 samples (16 

per group) would be required to see a significant difference in the total cortical area 

measurement (figure 3.6). The analysis of the right cortical layer showed no difference in its 

area between the genotypes (GLM p=0.224, figure 3.5, b). However, the results indicate a 

significant difference in the area of the left cortical layer between the genotypes (state test 

GLM p=0.044, figure 3.5, c). Yet, post-hoc analysis did not indicate a significant difference 

in the area of the left cortical layer between the heterozygotes and the wild type or between 

the homozygotes and the wild types, only between heterozygotes and homozygotes, therefore 

this difference might not be relevant to mental illness. This could indicate a hemisphere-

specific effect.  

HOM WT HET 

 

500 µm 500 µm 
500 µm 

Figure 3.4: Analysis of Nissl brain sections  

a. image of a brain section from a wild type mouse.  

b. image of a brain section from a heterozygous mouse.  

c. images of brain section from a homozygous mouse. 

The black ROIs represent the cortical area measured, the red ROI represents the area of 

the corpus callosum measured and the blue ROIs represent the area of the ventricles 

measured.  
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A 

p=0.04

a b c 

p=0.22 p=0.086 

Figure 3.5: Cortical area measurements 

a. Measure of the whole brain area shows a trend between the genotypes. 

b. Measure of the right cortical layer shows no difference between the genotypes. 

c. Measure of the left cortical layer shows a significant difference between the genotypes.  

n = 5 animals per group; univariate generalized linear model with dunnetts’ post hoc test.  

Means ± SEM are indicated. 

Figure 3.6: Screenshot of the power calculation done using G*Power 3 

the red square indicates the sample size necessary to reach significance.  
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The analysis of the area of the corpus callosum shows a trend toward significance (p=0.072, 

figure 3.7). The observed power indicated by SPSS is of 0.42 which is quite low as the desired 

power level is typically 0.80, which would mean that there is 80%. Here, the low observed 

power indicates that the effect size does not allow to reach statistical significance. To reach a 

statistical significance and a power level of 0.8, an estimated sample size can be assessed using 

G*3 Power software (Faul and Erdfelder, 2007; Erdfelder et al., 2009). Knowing the mean of 

variation of the area for each genotype and the global standard deviation, the analysis indicated 

that 36 samples (12 per group) would be required to see a significant difference in the total 

area of the corpus callosum. 

 

The analysis of the area of the ventricles indicates that there is a significant difference between 

the genotypes (GLM p=0.005, figure 3.8, a). Post hoc analysis indicates that the lateral 

ventricle area is greater in the heterozygotes compared to the wild types (p=0.028), however 

no difference between the homozygotes and the wild types was found (p=0.343). The analysis 

of the right ventricles also shows a significant difference in area between the genotypes (GLM 

p=0.007, figure 3.8, b), confirmed by post-hoc analysis which indicates that the area of the 

right ventricles of the heterozygotes is larger compared to the wild type (p=0.028) but that 

again the homozygotes don’t significantly differ from the wild types (p=0.629). Likewise, the 

analysis of the left ventricles shows a significant difference of area between genotypes (GLM 

p=0.016, figure 3.8, c) but the post-hoc analysis only reveals a trend (p=0.093) between the 

heterozygotes and the wild type and no significant difference between the wild type and the 

homozygotes (p=0.352). 

p=0.072 

Figure 3.7: Corpus callosum measurements 

The measure of the corpus callosum area shows a trend between the genotypes, 

toward a smaller corpus callosum in the heterozygous mice. 

n = 5 animals per group; univariate generalized linear model with Dunnetts’ post hoc 

test. Means ± SEM are indicated. 
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* 

p=0.02 

* 

p=0.005 p=0.007 

* 

a b c 

Figure 3.8: Ventricle area measurements 

a. Measurement of the total ventricle area shows a significant difference between 

genotypes indicating larger ventricles in the heterozygous mice. 

b. Measurement of the right ventricle area shows a significant difference between 

genotypes indicating larger ventricles in the heterozygous mice. 

c. Measurement of the left ventricle area shows a significant difference between 

genotypes indicating larger ventricles in the heterozygous mice. 

n = 5 animals per group; univariate generalized linear model with dunnetts’ post hoc 

test: * p<0.05. Means ± SEM are indicated. 
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3.2.2 Changes in the hippocampus 

After studying those three areas of the prefrontal brain, the hippocampus was analysed. More 

specifically, the area of the dentate gyrus (DG) was measured and the thickness of the CA1 

and the CA3 as well. The sections were stained for Nissl bodies (figure 3.9). The dentate gyrus 

average area was measured by dividing its area by its length while the thickness of the CA1 

and CA3 were respectively measured by assessing three and four measurements of their width 

(figure 3.9).  

WT 

HOM 

HET 

CA1 

CA1 

CA1 

CA3 

CA3 

CA3 

Figure 3.9: Analysis of Nissl brain section of the hippocampus 

a. Brain section from a wild type mouse.  

c. Brain section from a heterozygous mouse.  

b. Brain section from a homozygous mouse. 

The yellow ROIs represent the area of the CA1, CA3 and DG measured. Zoom on the CA1 

and CA3 box showing how their thickness was measured using several black lines a 

homozygous mouse. 
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The statistical analysis was done as previously, using SPSS. Mouse trios were taken into 

account to evaluate the possibility of a litter effect. A generalized linear model with fixed 

effect was used. The genotypes and the trios were set as fixed values. The analysis of the 

dentate gyrus average area showed no significant difference between genotype (p=0.9, figure 

3.10, a). Looking at the right and left dentate gyrus average area separately, no significant 

difference was found either (respectively p=0.7 and p=0.8; figure 3.10, b and c). 

 

The analysis of the CA1 thickness indicates that there is a significant difference between the 

genotypes (GLM p=0.027, figure 3.11 a). Indeed, post-hoc testing indicates that the CA1 is 

thinner in homozygous compared to wild type (p=0.04). No difference was found between the 

heterozygotes and the wild type. The analysis of the right and left CA1 thickness separately 

showed no statistical difference between the genotypes (figure 3.11, b and c). To finish, the 

analysis of the CA3 thickness revealed no difference between the genotypes (p=0.8; figure 

3.12, a). Similarly, analysis of the right and left CA3 showed no difference (respectively p= 

0.9 and p=0.5; figure 3.12, b and c). 

Measure of the left DG area a. b. c

p=0.9 p=0.7 p=0.8 

Measure of the DG area Measure of the right DG area 

Figure 3.10: Measurement of the dentate gyrus average area  

a. Measurement of the global dentate gyrus thickness shows no significant difference 

between genotypes.  

b. Measurement of the right dentate gyrus thickness shows no significant difference 

between genotypes.  

c. Measurement of the left dentate gyrus thickness shows no significant difference 

between genotypes. 

n = 5 animals per group; generalized linear model with fixed effect followed by 

dunnetts’ post hoc test when significant. Mean ± SEM are indicated. 
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a. b. c. 
* 

p=0.03 p=0.6 p=0.2 

Figure 3.11: Measurement of the CA1 thickness 

a. Measurement of the global CA1 thickness reveals a thinner CA1 in the 

homozygotes compared to the wild types, p=0.027. 

b. Measurement of the right CA1 thickness shows no significant difference between 

genotypes. 

c.  Measurement of the left CA1 thickness shows no significant difference between 

genotypes. 

n = 5 animals per group; generalized linear model with fixed effect followed by 

dunnetts’ post hoc test when significant: * p<0.05. Values are shown with mean ± SEM. 

a. b. c. 

p=0.8 p=0.5 p=0.9 

Figure 3.12: Measurement of the CA3 thickness  

a. Measurement of the global CA3 thickness shows no significant difference 

between genotypes.  

b. Measurement of the right CA3 thickness shows no significant difference between 

genotypes.  

c. Measurement of the left CA3 thickness shows no significant difference between 

genotypes. 

n = 5 animals per group; generalized linear model with fixed effect followed by 

dunnetts’ post hoc test when significant. Values are shown with mean ± SEM. 
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3.3 MRI analysis reveals no major structural change 

To investigate if those changes also take place in the whole brain of the Der1 mouse model, 

analysis of magnetic resonance imaging (MRI) was performed. 

Six male trios and six female trios of nine weeks of age were used. The brains were enhanced 

with the contrast agent gadolinium to obtain a better-quality image and were then scanned in 

pairs in Fomblin, a proton-free medium which produces no magnetic signal and matches the 

magnetic susceptibility of tissue, reducing scan artefact. One male brain was placed at the 

bottom of the vial, cerebellum first, followed by one female brain of the same genotype, 

cerebellum first. The MR images were analysed using a combination of FSL 1, ANTs 2 and 

in-house C++ software utilizing the ITK library (Avants et al., 2011; Jenkinson et al., 2012; 

Richetto et al., 2016; Wood et al., 2016). This was done at King’s College, London with the 

help of Robert Chester from Dr Anthony Vernon’s laboratory. First, the image of the two 

brains together was split into two separate images, then these images were registered to the 

Dorr atlas (Dorr et al., 2008) and a study template image was created. Finally, the study 

template was registered to the Dorr atlas and to the ROI labels. The olfactory bulbs and the 

cerebellum were excluded from our analysis as they are difficult to preserve during the 

dissection and most often damage. The individual images were registered to the study 

template. This allowed the extraction of ROI volume measurements for all brains (figure 3.13).  

 

 

 

Overall 93 regions of interest were measured across the two hemispheres, and 51 when 

the hemispheres were studied separately (table 3.1).  

Coronal view 

 

Mask 

 

Region of interest 

 

Figure 3.13: Regions of interest 

The regions were indicated by the software (left) and a mask was created by 

the software to assess whole brain volume (right). 
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Region of interest  

corpus callosum 

White matter 

medial septum 

lateral septum 

stria terminalis 

mammilo-thalamic tract 

fimbria 

internal capsule 

bed nucleus of stria terminalis 

cerebral peduncle 

posterior commissure 

corticospinal tract or pyramids 

medial lemniscus or medial longitudinal fasciculus 

fornix 

pars posterior anterior commissure 

fasciculus retroflexus 

pars anterior anterior commissure 

optic tract 

ventral tegmental decussation 

periaqueductal grey 

Gray matter 

superior olivary complex 

striatum 

stratum granulosum of hippocampus 

dentate gyrus of hippocampus 

globus pallidus 

pontine nucleus 

fundus of striatum 

nucleus accumbens 

amygdala 

hippocampus 

pre-para subiculum 

interpedunclar nucleus  

cerebral cortex entorhinal cortex 

mammillary bodies 

thalamus 

pons Brainstem 

midbrain 

medulla 

basal forebrain  

cerebral cortex frontal lobe  

facial nerve (cranial nerve 7)  

stria medullaris  

habenular commissure  

cerebral cortex occipital lobe  

lateral ventricle  

third ventricle  

cerebral aqueduct  

cerebral cortex parieto-temporal lobe  

superior colliculus 

 subependymale zone or rhinocele   

inferior colliculus 

                       Table 3.1: Table of all the brain regions analysed 

The grey and white matter as well as the brainstem regions are indicated on the right. 

The turquoise highlited regions are the ones constituting the limbic system. 
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Each ROI value was normalized to its corresponding whole brain volume. Within the 36 mice 

used for this analysis, two wild-types, one heterozygote and three homozygotes had to be 

excluded due to brain damage preventing the analysis. The statistical analysis was done 

applying a general linear model with genotype effect, sex effect and the littermate effect as 

fixed factors. 

First, the overall brain volume was analysed to see if there was any change between the 

genotypes. Then all the brain regions detected by this method were analysed together, for 

whole brain or considering each hemisphere separately. Finally, the volumes of additional 

regions of interest were investigated.  

 

3.3.1 Whole brain volume analysis 

The volumes of the whole brains were compared between heterozygous, homozygous and 

wild-type mice. The sex effect was also studied. A univariate general linear model statistical 

test was performed in SPSS. The analysis was done considering the genotype and the sex as 

fixed effects. The results showed that there was no difference in the brain volumes between 

the three genotypes (GLM p=0.859, figure 3.14, a). Moreover, no sex effect on the brain 

volumes was discovered (p=0.523). To confirm that there was no difference between the 

genotypes regardless of the sex, males and females were investigated separately (figure 3.14, 

b).  

 

 

b. a. 

p=0.859 

Figure 3.14: Whole brain volume measurement 

a. Brain volume is not affected by genotype. The graph represents the distribution 

of the whole brain volume in each group. b. Brain volume is similar between male 

and females. Generalized mixed linear model, univariate analysis. Values shown are 

mean ± SEM 
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The genotype was defined as fixed effect and the trios as fixed effect. The results indicate that 

there is no genotype effect in the male’s analysis (p=0.583) as well as in the female’s 

(p=0.273). Therefore, the result of the analysis of the whole brain volume show no difference 

between the genotype and between the sex. 

 

3.3.2 Volume analysis of multiple brain regions 

a. No changes in the 93 brain regions of both hemispheres 

The volumes of the 93 regions normalized to their respective total brain volumes, were 

compared between wild-type, heterozygotes and homozygotes. A multivariate general linear 

model analysis was performed using SPSS. A Wilks' lambda statistical test was used to assess 

p values. The first statistical analysis was performed considering the genotype and trios as 

fixed factors. The results show that there is no significant difference in the volumes of the 

regions of interest between the genotypes (p=0.198).  To investigate the effect of the sex on 

the volume of the 93 regions of interest between genotypes, the same statistical analysis was 

repeated considering the sex also as a fixed factor. The results show no overall difference of 

volume between the genotypes (p=0.103). This demonstrates that the sex doesn’t have an 

influence over the volume of these regions, between the genotypes. 

Overall, there were no changes in the volume of the 93 brain regions of interest between 

genotypes, when both hemispheres were considered separately. 

 

b. No changes in the overall 51 brain regions 

When adding the two hemispheres together, 51 regions of interest were obtained as some areas 

cannot be separated in two, such as the corpus callosum. Similar to what was done for the 93 

regions of interest, the volume of the 51 regions was compared between wild-type, 

heterozygotes and homozygotes. A multivariate general linear model analysis was performed 

using SPSS, and a Wilks' lambda statistical test was used to assess p values. First, the genotype 

and the trios were set as a fixed factor. The result shows that there is no significant difference 

in the volumes of the regions of interest between the genotype (p=0.376). The same statistical 

analysis was repeated with the sex set as fixed factor. The results show no significant 

differences in the volume of the 51 regions between genotypes (p=0.368).  

Overall, there were no changes in the volume of the 51 brain regions of interest between 

genotypes, when both hemispheres were considered together. 
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3.3.3 Analysis of additional regions of interest 

To finish, several areas were grouped together in order to look at related brain features. Several 

publications have shown that multiple brain areas are affected by mental illness, for example, 

brainstem morphometric alterations are reported to be associated with first-episode 

schizophrenia (Källstrand et al., 2012; Hirjak et al., 2013). Numerous studies have also 

indicated a reduction of grey matter volume in schizophrenic patients in the frontal cortex, 

temporal lobe, and insula with evidence of progression over time (Vita et al., 2012; Yue et al., 

2016). A similar abnormality was found in the white matter which is believed to indicate a 

reduction of myelination (Kubicki, McCarley and Shenton, 2005; Lener et al., 2015). The 

limbic system is composed principally of the hippocampus, hypothalamus, amygdala, anterior 

thalamic nuclei, fornix, mammillary body, septum and entorhinal cortex. It is very important 

for the process of emotions and memories and also affected in mental disorders.  

Here, the brainstem, the limbic system, the grey and white matter were investigated. The same 

statistical test was used to analyse those regions and determine if their combined volume was 

different between the three genotypes. The genotype, sex and trio were considered as fixed 

variable. The statistical analysis indicated that there was no significant difference in the 

volume of the brainstem (table 3.1) between genotype (p=0.45, figure 3.15). The limbic system 

(table 3.1) analysis indicates no difference of volume between the genotype (p=0.26, figure 

3.15). The white matter (table 3.1) analysis revealed no difference of volume between the 

genotypes (p=0.55, figure 3.15). The grey matter (table 3.1) analysis shows no difference of 

volume between the genotypes (p=0.66, figure 3.15). 
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3.4 Littermate effect 

Littermate effects could indicate that in-utero environment and/or sample handling influence 

the volumetric variation between animal and therefore should be analysed as a possible 

variable causing important changes (Holmdahl and Malissen, 2012). Indeed, studies have 

revealed that mice behaviours are variable depending on the litter they come from (Lazic and 

Essioux, 2013). Here the littermate “main effect” was assessed in the histological and MRI 

analysis using SPSS software. The p-value was obtained using the Wilk’s lambda tests as 

mentioned in the material and methods. 

Histological analysis of the cortical area indicates that in utero environment or sample 

handling does not have a significant effect, although there is a trend (p=0.065) toward a 

Figure 3.15: Analysis of four additional brain areas 

a. No change in the volume of the limbic system between the genotype. 

b. No change in the volume of the brainstem area between the genotype. 

c. No change in the volume of the white matter between the genotype. 

d. No change in the volume of the grey matter between the genotype. 

Generalized linear model, univariate analysis. Values have been normalized to the 

corresponding brain volume. Values shown are mean ± SEM. WT n=10, HET n=11, HOM n=9 
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possible effect (table 3.2). There is also an effect on the ventricle area indicating that depending 

of the litter the ventricle seems to have a different volume (p=0.02, table 3.2). There was no 

evidence for littermate influences upon other brain regions analysed by histology (table 3.2). 

Overall then, the histological analysis revealed little evidence for a littermate effect. This 

suggests that in-utero environment and sample handling don’t substantially influence the 

results of the volumetric analysis. The ventricles, however, may be particularly sensitive to 

sample handling effects because they are essentially fluid-filled spaces rather than solid tissue. 

MRI analysis indicated strong litter effects on several measures (table 3.2), confirming the 

need to use littermates and to take individual litters into account to ensure that the results 

obtained reflect changes due to the different genotypes only. The discrepancy between the 

histological and MRI analyses, which used samples generated at different times, may indicate 

that the effects are mainly due to sample handling rather than differing in utero environments. 

 

Analysis ROI Litter effect 

Histology Cortical layer Trend (p=0.065) 

Corpus callosum No (p=0.2) 

Ventricle Yes (p=0.02) 

DG No (p=0.3) 

CA1 No (p=0.5) 

CA3 No (p=0.3) 

MRI Whole brain Yes (p=0.0001) 

93 ROI Yes (p=0.001) 

51 ROI Yes (p=0.01) 

Brainstem No (p=0.23) 

Limbic system Yes (p=0.03) 

White matter Yes (p=0.001) 

Grey matter No (p=0.59) 

Table 3.2: Litter effect on the different analysis performed in this chapter 

There is a strong litter effect observed in the MRI analysis. 
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3.5 Discussion 

The analysis of brain structure using histology and MRI techniques has demonstrated very 

subtle changes, at most, in both the homozygous and the heterozygous mutant mice.  

The histology analysis indicates that there are differences between the genotypes however the 

homozygotes and the heterozygotes do not exhibit the same differences when compared to the 

wild type. The results indicate that the heterozygotes have a larger ventricle area compared to 

the wild type (figure 3.7, a) while the homozygotes have a thinner CA1 compared to the wild 

type (figure 3.10, a.). Additionally, a trend toward a change in the cortical thickness has been 

found between the genotypes (figure 3.5, a) and a trend toward a change in the corpus callosum 

was found as well (figure 3.6). Ventricular enlargement  is consistent with cytoarchitectural 

abnormalities reported in multiple DISC1 transgenic mice (Pletnikov et al., 2008; Shen et al., 

2008) (table 1.1) and in schizophrenic patients (Johnstone et al., 1976; Nesvåg et al., 2008). 

This feature could be the result of altered neuronal outgrowth or number of neurons in the 

heterozygous Der1 mice. This may also indicate neurodegenerative changes and 

neurodevelopmental impairments in the heterozygous mice. The modified ventricular 

shape/volume in heterozygous Der1 mice could be representative of altered brain development 

which could lead to impaired circulation of the cerebrospinal fluid (CSF) (Ming and Song, 

2011). This could also affect the distribution of the cells around the ventricles, leading to 

defects of the white matter fibre tracts in the corpus callosum, which would affect the 

communication between the different regions of the brain. Moreover, ependymal cells of the 

sub-ventricular zone could be affected by the modification of the shape of the ventricles, which 

could lead to a dysregulation of the production of the CSF. These cells are also a source for 

neurogenesis (Ming and Song, 2011), therefore their modification could lead to the impairment 

of neurogenesis in the PFC. The modification of the lateral ventricles in the heterozygous mice 

could indicate an impairment of neurogenesis process in those mice. A thinner CA1 was also 

found in schizophrenic patients with stronger positive symptoms  (Musso et al., 2012). 

Moreover, a study showed a reduction of CA1 volume in persistently symptomatic ultra-high 

risk patients (Ho et al., 2017). The CA1 is believed to be involved in the pathogenesis of 

hallucinations and delusions, core symptoms in schizophrenia (Zierhut et al., 2013). Structural 

modification of the CA1 could reflect a pyramidal cell disarray which has been found in post 

mortem studies of schizophrenic patients and could indicate an impairment of the neuronal 

migration (Altshuler et al., 1987; Casanova and Rothberg, 2002). Moreover, synaptic 

pathology in CA1 has also been associated with schizophrenia. Additionally, the pyramidal 

cell size was found reduced in bipolar disorder (Liu et al., 2007). A DISC1 knock out model 
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study also showed that Disc1 suppression impairs migration of the CA1 pyramidal neurons 

(Tomita et al., 2011) (table 1.1). Thinning of the CA1 could reveal a decrease in neuronal 

density in this area in the homozygous mice. Moreover, this could also be an indication about 

impairment of neuronal morphology which could affect the shape and the volume of these 

areas. Added to our results, this supports the importance of the CA1 in mental disorder and 

confirm that Disc1 is required for the formation of the CA1 during hippocampal development. 

A study investigating the cortical thickness of t(1;11) translocation carriers indicated a 

reduction in cortical thickness of these individuals (Doyle et al., 2015). This result adds to our 

findings indicating that the disruption of DISC1 might lead to a modification of the cortical 

thickness. Therefore, impairment in neuronal neurogenesis, migration and positioning could 

lead to a modification of the shape of these different regions. And lastly, increase of apoptotic 

activity could lead to cell loss or synaptic/dendritic loss which could also affect the volume 

and shape of these areas. Involvement of the apoptotic mechanism as well as reduced neuronal 

density, migration and positioning and change in neuronal morphology have been observed in 

in the pathophysiology of schizophrenia (Jarskog et al., 2005a; Boksa, 2012; Muraki and 

Tanigaki, 2015; Iannitelli et al., 2017) and DISC1 has also been found to be implicated in 

these mechanisms (Ishizuka et al., 2006; Thomson et al., 2013).  This could therefore be 

plausible in the Der1 model and linked to the subtle structural changes observed. Overall, these 

results suggest that the mutation affects the homozygous and heterozygous Der1 mice in 

different ways. The differences observed between the heterozygotes and the homozygotes 

could be due to the possible presence of a chimeric protein which could be expressed on its 

own in the homozygous mice or could interact with the full length DISC1 in the heterozygous 

mice, causing heterozygote-specific dominant-negative effects. Otherwise, the imbalance of 

DISC1 concentration could lead to a different phenotype compared to not expressing the 

protein at all. So far, no Disc1 mouse model indicated that the heterozygous mice could be 

more severely affected than the homozygous, indeed they either similarly affected or the 

homozygous are slightly more affected (Koike et al., 2006; Kvajo et al., 2008, 2011; 

Lepagnol-Bestel et al., 2013) (table 1.1). To understand this mechanism, the discovery of the 

presence of the chimeric proteins in the Der1 mice is necessary. For now, the antibodies used 

to confirm their presence did not lead to conclusive results, better antibodies might be 

necessary to conclude on the existence of these chimeric proteins. However, the MRI analysis 

does not indicate any significant differences in the volume of the regions of interest between 

the three genotypes. It is possible that the histology analysis reflects what is happening in the 

brain at a local level. The differences seen in the ventricles and CA1 using histology but not 

with the MRI could indicate a change in the shape of these regions in the mutant mice, or a 
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very localised volumetric change. Nevertheless, it is important to highlight that the MRI 

demonstrates clear litter effects (table 3.2). Indeed, results indicate that in utero environment 

or handling processes might affect whole brain volume as well as white matter and limbic 

system. The litter effect is mostly observed in the MRI analysis which suggests that this would 

rather be a sample handling issue. As a consequence, the significant effect found on the 

ventricles could be due to sample handling as ventricles might be the most susceptible to this 

effect. Additionally, analysis of the multiple brain regions acquired using MRI (tables 3.2) 

were also affected by this variable. While, the histology analysis revealed that there was a litter 

effect only in the ventricular investigation (table 3.2). The litter effect could be one of the 

reasons why histology and MRI leads to different results. Additionally, the lack of correlation 

between the two analyses could be due to the fact that a larger number of mice were used for 

the MRI analysis (10-12 per group), which is carried out at the whole brain level. In contrast, 

half that number were used for the histology (5 per group) which was carried out at a very 

localized level using two sections per brain region. Volumetric analyses carried out at the 

whole brain level using MRI are most likely more accurate than area quantification done using 

a couple of sections. Previous analysis of DISC1 mouse models revealed numerous changes 

in their brain structure. Histology analysis of a transgenic mice model expressing two copies 

of truncated DISC1 (DISC1tr Hemi) encoding the first 8 exons indicated reduced thickness of 

the cortex and reduced corpus callosum development (Shen et al., 2008; Dawson et al., 2015) 

(table 1.1). MRI analysis of mouse models carrying Disc1 missense mutations (L100P and 

Q31L) also revealed changes in brain structure of these mice. Indeed, reduction of brain 

volumes especially of the cerebellum, cortex, and thalamus was observed (Clapcote et al., 

2007) (table 1.1). Enlarged ventricles have also been shown using MRI, in transgenic mice in 

which human DISC1 expression is induced in forebrain regions, although in at least one model 

this was reported to be developmental stage-specific (Hikida et al., 2007; Pletnikov et al., 

2008) (table 1.1). It is possible that, the changes found in previous DISC1 mouse models are 

due to alterations, such as transgenic overexpression of truncated DISC1, that are more 

deleterious than the Der1 mutation. Similarly to the findings from the DISC1 mouse models, 

brain structure analysis of schizophrenic patients more consistently shows deficits in whole 

brain volume, and ventricular enlargement (Harrison, 1999; Ross et al., 2006). Moreover, 

reduction of the volume areas such as the hippocampus, corpus callosum, the prefrontal cortex 

and the thalamus have also been found in patients suffering from schizophrenia (Shenton et 

al., 2001; Ellison-Wright et al., 2010). Additionally, shape abnormality of the hippocampus 

has been revealed in schizophrenic patients which indicate a deformation of this region (Styner 

et al., 2004; Kalmady et al., 2017). Similar analysis of ventricular shape indicated a difference 
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in the shape of the lateral ventricle of schizophrenic patients while no volume change was 

found (Styner et al., 2005). T(1;11) translocation carriers were found to have a decrease in 

cortical thickness, a reduction of white matter integrity underlying impairments of corpus 

callosum development, ,reduced gyrification in prefrontal cortex, but no ventricular 

enlargement (Doyle et al., 2015; Whalley et al., 2015; Thomson et al., 2016). These features 

correlated with general psychopathology of mental illness. However, volumetric changes of 

the cortical thickness and the corpus callosum were not observed in the Der1 mouse model 

which indicates that this new model does not exactly reproduce the structural effects of the 

human translocation found in the Scottish family. But it is important to take into account the 

fact that the Der1 mouse model was studied at 9 weeks of age which correspond to early 

adulthood in humans; which is not equivalent to the age at which the translocation carriers 

were analysed as they were between 45 and 65 years old. Moreover, drug treatments taken by 

the carriers, or their exposure to environmental risk factors could lead to confounding effects. 

Indeed, gene expression and brain development is influenced by the environment (Tung and 

Gilad, 2013; Romero, Ruvinsky and Gilad, 2014; Ziats, Grosvenor and Rennert, 2015). 

Additionally, human and mouse brain are structurally quite different and human and mouse 

genomes are not exactly the same.  DISC2 and DISC1FP1 which are disrupted by the 

translocation in humans, are not present in mice. Moreover, the transcript created by the human 

translocation on chromosome 11 is not present in our model, while this transcript is not 

translated its presence could have an impact on cellular process as it could act as a non-coding 

gene and perturb the regulation of other genes (Rinn and Chang, 2013; Romero-Barrios et al., 

2018). Mouse and human genomes share 85% of their protein coding regions (NIH, 

www.genome.gov, 2010). However, non-coding genes and regulatory regions are not as 

conserved. Those regions are potentially important in psychiatric disorders as they have been 

found to regulate the expression of genes involved in those disorders (Xiao, Chang and Li, 

2017). Moreover, the surface of the mouse brain is known to be smooth, while the human brain 

is more complex with numerous sulci and gyri. Furthermore, environmental context can 

change gene expression patterns and brain structure in human and mouse. Finally, 

evidence has recently been found for the presence of genetic modifiers in the translocation 

family (Ryan et al, Molecular Psychiatry, under revision). It is conceivable that the effects of 

these modifiers contribute to the differences between the human translocation carriers and the 

Der1 mouse. Altogether these observations underline some of the limitations of using mouse 

models for understanding psychiatric disorders and indicate that future studies of the Der1 

mouse should incorporate effects of stressors and drug treatments. 
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4.1 Introduction 

Patients suffering from mental disorders are characterised by brain impairments at a cellular 

level. In patients diagnosed with schizophrenia and major depressive disorder increased cell 

density in the cortex and hippocampus was found (Stockmeier et al., 2010; Smiley, Konnova 

and Bleiwas, 2012b; Cotter et al., 2014). While in bipolar disorder a reduced neuronal density 

was discovered (Rajkowska, Halaris and Selemon, 2001). Post mortem studies of bipolar 

patients show decreased cell number and density of GABA neurons in the cortex while a 

decrease of parvalbumin-positive neurons was found in the hippocampus of schizophrenic 

patients (Zhang and Reynolds, 2002; Pantazopoulos et al., 2007), which indicates that specific 

groups of neurons are affected in mental illness. Additionally, schizophrenic patients showed 

reduced proliferation of hippocampal neural stem cells and impaired neurogenesis (Reif et 

al., 2006; Allen, Fung and Shannon Weickert, 2016; Iannitelli et al., 2017). 

Similar impairments have been found in DISC1 mouse models such as reduced cortical 

neurons, abnormal neuronal migration, decreased neurogenesis and reduced number of 

parvalbumin-positive interneurons (Hikida et al., 2007; Shen et al., 2008; Kim et al., 2011; 

Lee, Fadel, et al., 2011).  

These findings suggest that similar impairments could be found in the Der1 mice. Here 

investigation of cellular deficits in these mice was performed so as to gain a more 

comprehensive understanding of how the translocation affects cellular organization in the 

brain. This will help us to characterise this mouse model and determine if it can be used as a 

model of mental illness. For this, immunohistochemistry and immunofluorescence techniques 

were used. For each analysis, the three groups (heterozygote, homozygote, wild-type) were 

composed of five males. For each animal, two 10μm paraffin embedded brain sections from 

the prefrontal cortex (PFC) and from the hippocampus were stained for Nissl, Parvalbumin, 

activated caspase-3 and DCX/BrdU. Statistical analysis was done using SPSS and considering 

the fact that the mice belong to littermate trios to evaluate the possibility of a litter effect. A 

generalized mixed linear model was used, both genotypes and trios were set as fixed variables. 
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4.2 Cellular density analysis in three different brain regions 

of the Der1 mice 

A prominent feature of mental disorder is alteration of neuronal density which has also been 

found in mouse models of mental disorder (Brennand et al., 2011; Lee, Fadel, et al., 2011). 

To determine if there was any loss of cells in Der1 mouse PFC and hippocampus, sections 

were Nissl stained with cresyl fast violet. Nissl bodies are part of endoplasmic reticulum with 

ribosomes, where proteins are produced. Cresyl fast violet stains the RNA of these ribosomes. 

Cells were counted in a square of 1122 µm X930 µm in the PFC (figure 4.1), and in a 100 µm2 

square in the CA1 of the hippocampus and 200 µm2 the srlm (stratum radiatum and lacunosum 

molecular layer) (figure 4.2). Cells were counted manually using the cell counter plug in on 

Fiji (figure 4.2). 

 

HOM 

WT 

HET 

Figure 4.1: Image of the PFC stained with Nissl.  

One section of each genotype is represented. The green square shows the area where 

cells were counted. The area is zoomed out. 
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Figure 4.2: Hippocampus sections stained with Nissl 

 Image of the hippocampus for each genotype.  

a. right hippocampus, b. left hippocampus  

The yellow and red squares represent the areas where cells were counted.  

srlm 

WT  

 

CA1 
zoom 

20 µm 

50 µm 

HET 

HOM 

b. 
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Analysis of cellular density in the PFC showed no difference between genotype (p=0.4) (figure 

4.3). Additionally, the left and right hemisphere were analysed separately, and no significant 

differences were found between the genotypes (figure 4.3).  

 

The analysis of the neuronal density in the stratum radiatum and lacunosum molecular (srlm) 

and CA1 showed no difference between genotypes (figure 4.4) (respectively p=0.8 and p=0.3). 

The analysis of the right and left hemisphere also indicated no difference of cellular density 

between genotypes (figure 4.4) in the hippocampus, except for the left srlm analysis (p=0.045). 

Indeed, the result indicates that the cellular density is increased in the homozygotes compared 

to the wild-type mice (p=0.007, figure 4.4). 

The findings reveal that there is no significant change in cellular density in the PFC or in the 

CA1, while a subtle increase was discovered in the left srlm of the homozygous mice. This 

last discovery could indicate an asymmetrical neurodevelopment in the homozygous mice, 

possibly revealing an impaired neuronal migration in the left hemisphere. Although subtle, 

these results could be seen as similar to findings in schizophrenia and bipolar disorder patients 

and in animal models of schizophrenia as higher neuronal density has been previously reported 

in the hippocampus in a few studies, however other studies did not discover changes in overall 

cellular density.  
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Figure 4.3: Cellular density analysis in the PFC 

The analysis was done in an area of 695 µm2, considering the left and right hemisphere 

as well as total brain. No difference was found between the genotypes.  

n = 5 mice for each genotype; Generalized linear model with fixed effect. Values 

shown are mean ± SEM.  

p=0.4 p=0.7 p=0.3 
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Cellular density in the left srlm Cellular density in the right srlm 

Figure 4.4: Cellular density analysis in the hippocampus 

Analysis of the cellular density shows no difference between the genotypes 

except in the left srlm where the density in the homozygous mice is increased 

compared to the wild type. 

n = 5; in some case the n number is reduced due to faulty sections.  

generalized mixed linear model with fixed effect followed by dunnetts’ post hoc 

test when significant: * p<0.05Values shown are mean ± SEM. 

p=0.3 p=0.9 

p=0.04

* 

p=0.9 

p=0.3 p=0.4 

Cellular density in the srlm Cellular density in the CA1 

Cellular density in the right CA1 Cellular density in the left CA1 
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4.3 Interneurons density analysis in the Der1 mice 

Numerous studies on schizophrenic patients have shown a decrease of interneurons especially 

in the prefrontal cortex and the hippocampus (Kalus, Senitz and Beckmann, 1997; Jiang, 

Cowell and Nakazawa, 2013). Moreover, other Disc1 model such as the L100-P model 

reported a decrease of parvalbumin staining, indicating a decrease of interneurons (Shen et al., 

2008; Lee et al., 2013; Lipina and Roder, 2014). To find out if there is a similar impairment 

in the GABAergic pathway of the Der1 mice, the expression of parvalbumin neurons in the 

prefrontal cortex and the hippocampus was investigated. Parvalbumin is a calcium binding 

albumin protein present in GABAergic neurons. The PFC was separated into different regions 

of interest following anatomical features and the Mouse brain atlas in stereotaxic coordinates 

(Paxinos et al., 2004): prelimbic cortex (prl), frontal association cortex (fra), ventral orbital 

cortex (vo), medial orbital cortex (mo), lateral orbital cortex (lo) dorsolateral orbital cortex 

(dlo) (figure 4.5). The PFC was also analysed as one entity. In the hippocampus, the area of 

the CA1 and the DG were drawn using anatomical cues to count PV positive cells separately, 

then the cells were counted in the whole hippocampus (figure 4.6). All the counts were made 

using the cell counter plug in of Fiji software.  

HET 

 

WT 

 
HOM 

 

Figure 4.5: Representation of the PFC stained for parvalbumin 

Images showing positive PV cells for each genotype: WT: wild type; HOM: homozygote; 

HET: heterozygote. Yellow lines outline the different area of the prefrontal cortex. 

The blue squares show zoomed areas containing PV stained cells. 
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The analysis of the density of the PV positive cells in the different area of the PFC showed no 

difference between genotype (p=0.9) (figure 4.7). When the left and right hemisphere were 

analysed separately no change was discover either (respectively p=0.9 and p=0.1). The 

analysis of the whole PFC didn’t reveal any significant differences in the density of cells 

expressing PV between the genotypes (p= 0.2, figure 4.7.c), as well as the analysis of the left 

and right hemisphere separately (p=0.5, p=0.2; figure 4.7 a., b.).  

WT 

HOM 

HET 

Figure 4.6: Representation of the hippocampus stained for parvalbumin 

Images showing PV positive cells for each genotype: WT: wild type; HOM: homozygote; 

HET: heterozygote.  a. left hemisphere b. right hemisphere 

Yellow lines outline the CA1, DG and the hippocampus (Hp). 

The blue squares show zoomed areas containing PV stained cells. 

b. 
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Density of PV positive cells in the 
different areas of the left PFC 

Density of PV positive cells in the 
different areas of the right PFC 

Density of PV positive cells in the 
different areas of the PFC 

Figure 4.7: Analysis of PV positive cells density in the PFC 

Analysis of the PV positive cell density shows no difference between the 3 genotypes. 

a.b.c. show results for the PFC as a whole; d.e.f. show results for the different area of 

the PFC. prl: prelimbic cortex, fra: frontal association cortex, vo: ventral orbital cortex, 

mo: medial orbital cortex, lo: lateral orbital cortex, dlo: dorsolateral orbital cortex. n = 

5; generalized mixed linear model with fixed effect. Values shown are mean ± SEM. 

a. b. 

d. 
c. 

e. f. 

p=0.2 p=0.5 

p=0.2 p=0.9 

p=0.1 p=0.9 
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The analysis of the density of PV positive cells in the CA1 (p=0.1) and the DG (p=0.1) showed 

no difference between genotype (figure 4.8). The overall analysis of the hippocampus did not 

reveal any difference either between the three genotypes (p=0.2, figure 4.8). The analysis of 

the right and left hemisphere also indicated no difference of PV positive cell density between 

genotypes in the CA1 and the DG as well as when the whole hippocampus was considered 

(figure 4.8).  

The results revealed that there was no significant change in the density of cells expressing 

parvalbumin in the PFC or in the hippocampus.  

 

Figure 4.8:  Analysis of PV positive cell density in the hippocampus 

There was no difference of PV positive cell density between the 3 genotypes.  

n = 5; in some case the n number is reduced due to faulty sections. generalized mixed 

linear model with fixed effect. Values shown are mean ± SEM. 

p=0.1 

p=0.1 p=0.8 

p=0.4 

p=0.1 

p=0.1 

p=0.4 p=0.2 p=0.2 
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4.4 Cellular apoptosis analysis in the Der1 mice’s brain  

In post mortem studies on schizophrenic patients dysregulation of apoptosis has been found in 

several cortical regions (Catts and Catts, 2000; Glantz et al., 2006). Moreover, results from 

our laboratory suggest that neurons might be susceptible to apoptosis in the Der1 mouse. 

Indeed, mitochondrial motility is impaired (Laura Murphy, unpublished) which could lead to 

neuronal damage or apoptosis. Moreover, NMDA receptor surface expression is increased 

(Elise Malavasi, unpublished) which could lead to excitotoxicity and therefore to apoptosis. 

To validate our hypothesis, the expression of activated caspase-3 in the PFC and the 

hippocampus was analysed. Caspase-3 is activated when cells undergo apoptosis therefore 

indicating that cells expressing activated caspase-3 are dying. As the number of stained cells 

was low, the PFC was analysed without taking into account its different region (figure 4.9 a.). 

Then stained cells were counted in the CA1, the DG and the whole hippocampus (figure 4.9 

b.). All the counts were made using the cell counter plug in Fiji.  
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The count of the cells expressing activated caspase-3 in the PFC showed a trend toward a 

change in the density of these cells between genotype (p=0.07) (figure 4.10). The observed 

power indicated by SPSS is of 0.52 which is quite low as the desired power level is typically 

0.80. Here, the low observed power indicates that the effect size does not allow to reach 

statistical significance. To reach a statistical significance and a power level of 0.8, an estimated 

sample size can be assessed using G*3 Power software (Faul and Erdfelder, 2007; Erdfelder 

et al., 2009). Knowing the mean of variation of the area for each genotype and the global 

standard deviation, the analysis indicated that 45 samples (15 per group) would be required to 

see a significant difference in this analysis. Similarly, the analysis of the left and right 

hemisphere shows a trend toward a change in the density of the activated caspase-3 positive 

cells (respectively p=0.06 and p=0.06; figure 4.10). The observed power indicated by SPSS is 

of 0.53 in the left hemisphere analysis and of 0.54 in the right hemisphere analysis. Power 

calculation indicates that for both analysis, 36 samples (12 per group) would be required to 

see a significant difference. 

WT 

Hom 

Het 

b. 

Figure 4.9: Staining of activated caspase-3 in the PFC and the hippocampus 

a. Yellow line outline the area of the PFC where stained cells were counted. 

 b. Yellow lines outline the CA1, DG and the hippocampus (Hp). 

The blue squares show zoomed areas containing activated caspase-3 stained cells. 
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In the CA1 the analysis revealed a trend toward a change in the density of the activated 

caspase-3 positive cells between genotypes (p=0.06). The observed power indicated by SPSS 

is of 0.55. Power calculation indicates that for this analysis, 27 samples (9 per group) would 

be necessary to obtain a significant difference between genotype. No change was discovered 

in the DG (p=0.1) and in the hippocampus (p=0.6) (figure 4.11).  

 

 

 

 

 

 

 

p=0.06 

p=0.07 

p=0.06 

Figure 4.10: Activated caspase-3 positive cells density in the PFC 

Quantification of activated caspase-3 positive cells indicates a trend toward an increased 

density of these cells in both the mutants Der1. n = 5; except in the left PFC n(HET)=4. 

generalized mixed linear model with fixed effect. Values shown are mean ± SEM. 
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The analysis of each hemisphere revealed a trend towards a difference of density of activated 

caspase-3 cells between the genotypes in the left CA1 (p=0.07) (figure 4.12). The observed 

power indicated by SPSS is of 0.51. Power calculation indicates that for this analysis, 51 

samples (17 per group) would be necessary to see a significant difference between genotype.  

Additionally, a significant difference in the right DG (p=0.02) between genotype indicating an 

increase of activated caspase-3 in the heterozygous mice compared to the wild type (p=0.02) 

(figure 4.12). However, the analysis of the right and left hippocampus as well as the right CA1 

and the left DG did not show any difference (figure 4.12).  

Overall the results indicate a trend towards increased density of caspase-3 positive cells in the 

PFC and the CA1 for both genotype and a significant increase of activated caspase-3 density 

in the right DG of the heterozygous mice. This might indicate an impairment in the apoptotic 

pathway of the heterozygous resulting in additional cell death in their prefrontal cortex and 

hippocampus, however in the homozygous mice a simple trend is not enough to suggest an 

impairment in this pathway.  

p=0.6 

p=0.06 

p=0.1 

Figure 4.11: Activated caspase-3 positive cell density in the hippocampus 

Count of the activated caspase-3 positive cells shows a trend towards an increased 

density of these cells in the CA1 in both heterozygous and homozygous groups. 

n(HET) = 5; n(HOM)=4; n(WT)=4. 

Generalized mixed linear model with fixed effect. Values shown are mean ± SEM. 
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p=0.7 p=0.9 

p=0.1 p=0.07 

p=0.7 p=0.02 

* 

Figure 4.12: Activated caspase-3 positive cells density in the hippocampus in both 

hemisphere 

Count of the activated caspase-3 positive cells shows a trend towards an increased 

density of these cells in the left CA1 in the homozygous groups and a significant 

difference of cell density in the right DG indicating an increase of density in the 

heterozygous group. The n number is variable due to faulty sections. Generalized mixed 

linear model with fixed effect followed by Dunnetts’ post hoc test when significant: * 

p<0.05; ** p<0.01; *** p<0.001. Values shown are mean ± SEM. 
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4.5 Cell proliferation and migration analysis in the Der1 

mice’s brain 

DISC1 is known to have an important role in adult neurogenesis (Duan et al., 2007). According 

to post mortem studies in patients with mental disorders, neuronal proliferation is impaired, 

and the same has been found in animal models such as the DISC1-shRNA  model and the 

Disc1Tm1Kara mouse model, where DCX positive cell expression was altered (Reif et al., 2006; 

Kvajo et al., 2008; Mao et al., 2009).  

In order to see if neurogenesis is impaired in our model proliferating cells were labelled with 

BrdU, a thymidine analogue that incorporates into the genomic DNA of dividing cells. Then 

BrdU labelled cells were counted in the dentate gyrus of the hippocampus only, as it is one of 

the major regions where neurogenesis occurs in adult mouse brain (figure 4.13 a) and as Disc1 

is known to be highly expressed in this area (Austin et al., 2004). Additionally, neuronal 

migration of new-born neurons was investigated using doublecortin (DCX), a microtubule-

associated protein present in immature neurons (figure 4.13 b). Double stained cells are visible 

in the overlay image (figure 4.14 c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: BrdU and DCX positive cells in the dentate gyrus 

a. staining of BrdU positive cells in red 

b. staining of DCX positive cells in green 

c. Overlay of the different staining. Cells are stained with Dapi (blue) to visualise 

the nuclei. Yellow squares outline zoomed areas. 

(blue) to visualise the nuclei. Yellow squares outline zoomed areas. 

b. a. c. 

DG DG DG 
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Figure 4.14: BrdU and DCX positive cells in the dentate gyrus 

a. Staining of DCX positive cells in green  

b. Staining of BrdU positive cells in red 

c. Overlay of the different staining. Cells stained with Dapi (blue) to visualise the 

nuclei. A double stained cell is yellow in appearance. 

Blue squares outline zoomed areas. All genotypes are represented 

a. 

b. 

c. 

HET 

HOM 

WT 

WT HET 

HOM 

HET WT 

HOM 
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BrdU is incorporated during phase S of the cell cycle and DCX is expressed in immature 

neurons (neuron progenitors) in the post mitotic phase. It is possible that BrdU+/DCX- cells 

are not yet neuron progenitors or not fated to become neurons. BrdU-/DCX+ immature neurons, 

however, may have been produced prior to BrdU treatment. since newly generated granule 

cells need at least 5 weeks to mature and become fully integrated into the existing network, in 

the adult brain (Zhao, 2006). 

The count of the cells expressing both BrdU and DCX did not show any differences between 

genotype (p=0.1, figure 4.15). Additionally, the density of DCX positive cells were not 

changed between genotypes (p=0.4, figure 4.15). However, the density of BrdU positive cells 

showed a trend (0.05≤p≤0.09) toward a reduction of BrdU positive cells between the three 

groups (p=0.09, figure 4.15). The observed power indicated by SPSS is of 0.45 while the 

desired power level is typically 0.80. The low observed power indicates that the effect size 

does not allow to reach statistical significance. To reach a statistical significance and a power 

level of 0.80, an estimated sample size can be assessed using G*3 Power software (Faul and 

Erdfelder, 2007; Erdfelder et al., 2009). Knowing the mean of variation of the area for each 

genotype and the global standard deviation, the analysis indicated that 90 samples (30 per 

group) would be required to see a significant difference in this analysis.  

p=0.09 p=0.4 

p=0.1 

Figure 4.15: Density of DCX, BrdU and DCX/BrdU cells in the dentate gyrus 

Count of DCX, BRDU and DCX/BrdU positive cells show a trend toward a reduction of 

BrdU positive cells in homozygous and heterozygous groups. No other differences 

were found. n(HET) = 4; n(HOM)=4; n(WT)=3. Generalized mixed linear model with 

fixed effect. Values shown are mean ± SEM. 
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When the left and right hemisphere were analysed separately, there was no difference of 

density of BrdU/DCX positive cells as well as DCX positive cells between genotype (figure 

4.16), however a trend toward a change in the density of BrdU positive cells between 

genotypes was found in the dentate gyrus of the right hemisphere (figure 4.16). For the BrdU 

analysis in the right hemisphere, the observed power was 0.49. Power calculation indicates 

that for this analysis, 150 samples (50 per group) would be necessary to see a significant 

difference between genotype. 

Figure 4.16: Density of DCX, BrdU and DCX/BrdU cells in the dentate gyrus of both 

hemisphere 

Count of DCX, BRDU and DCX/BrdU positive cells in both hemisphere separately 

show a trend toward a reduction of BrdU positive cells in homozygous and 

heterozygous groups in the right hemisphere. No other differences were found. 

n(HET) = 4; n(HOM)=4; n(WT)=3. Generalized mixed linear model with fixed effect. 

Values shown are mean ± SEM. 

p=0.1 p=0.07 

p=0.3 

p=0.1 

p=0.4 

p=0.3 
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4.6 Littermate effect 

As mentioned in chapter 3, littermate effects could indicate that in-utero environment and/or 

sample handling influence variation of cellular density between animal. Mild evidence for 

littermate effects was detected, affecting only srlm cell density and interneuron density in the 

dentate gyrus (table 4.1). Trends towards a littermate effect were observed in other analyses 

however. Overall though, the cellular expression and cellular density analyses revealed little 

evidence for a littermate effect. 

Analysis Brain regions Litter effect 

Cell density PFC No (p=0.2) 

CA1 No (p=0.3) 

Srlm Yes (p=0.01) 

PV positive cells Different areas of PFC No (p=0.5) 

Whole PFC Trend (p=0.08 

CA1 Trend (p=0.05) 

DG Yes (p=0.01) 

Whole hippocampus No (p=0.2) 

Caspase-3 positive cells PFC Trend (p=0.06) 

Hippocampus No (p=0.6) 

CA1 No (p=0.3) 

DG No (p=0.5) 

BrdU/DCX positive cells DG No (p=0.8) 

DCX positive cells DG No (p=0.8) 

BrdU positive cells DG No (p=0.5) 

        Table 4.1: Litter effect on the different analyses performed through this chapter 
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4.7 Discussion 

This analysis of the Der1 mouse demonstrated no profound changes in the prefrontal cortex or 

the hippocampus in the heterozygous and the homozygous mice.  However, the homozygous 

mice have an increased cell density on the left srlm of the hippocampus compared to the wild-

type mice. Additionally, the heterozygotes express more cells containing activated caspase-3 

compare to the wild type mice, in the dentate gyrus. Furthermore, a trend towards increased 

activation of caspase-3 in the heterozygous and homozygous mice was found in the PFC and 

the CA1 of the hippocampus as well as a trend toward a reduction of BrdU positive cells in 

the dentate gyrus in both mutants. 

Increased cellular density in the srlm of the hippocampus was not found in other DISC1 

models. This could indicate that this phenotype is much more subtle in other models than in 

the homozygous Der1 mouse, and concerns a more specific area as well as being asymmetric. 

Asymmetrical changes have often been noticed in neuropsychiatric disorders, as mentioned in 

the introduction. Nevertheless, brain asymmetry is overall an indication of an impaired 

neurodevelopment therefore this could be an indication of an impaired neurodevelopment in 

the De1 mice model. However, a mouse model in which Disc1 expression was supressed in 

the CA1 region of the developing mouse hippocampus showed that a large number of 

migrating cells were distributed in the srlm (Tomita et al., 2011). This indicates an impairment 

in cell migration in the srlm, (Tomita et al., 2011). Therefore, in the homozygous Der1 mice, 

the higher concentration of neurons in the srlm could be due to cell migration defect leading 

to the cells staying in the srlm layer. However, the analysis of the homozygous Der1 didn’t 

reveal a defect of cell proliferation in the dentate gyrus but cell proliferation defect has been 

found in other Disc1 mutants (Kim et al., 2011; Wu et al., 2017) and is known to happen in 

schizophrenic patients (Reif et al., 2006). In schizophrenic patients, several post mortem 

studies of hippocampal cells have reported no significant change in cell density of its sub-

structures (Heckers et al., 1991; Heckers and Konradi, 2002; Walker et al., 2002; Eastwood 

and Harrison, 2005).  

Additionally, analysis in DISC1 KO mice revealed that there was no change in the total 

number of neurons in the cortex (Umeda et al., 2016) which is similar to the result found in 

the Der1 mice model. However, analysis of other DISC1 models such as Q31L and L100P 

indicated a reduction in neuron density across the neocortex (Lee, Fadel, et al., 2011) and in 

mental disorders,  investigation of neuronal density revealed both decreased and increased 

density of cortical neurons (Chana et al., 2003; Stockmeier et al., 2010; Smiley, Konnova and 
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Bleiwas, 2012b; Bakhshi and Chance, 2015). This indicates that this feature is variable when 

studying mental disorders but change in the neuronal density is often discovered.    

Regional cell density changes could result from altered rates of proliferation, neuronal 

migration and/or cell death. However, consistent with the lack of evidence for strong cell 

density changes in the Der1 mutants, the present data indicate only subtle effects upon neural 

precursor proliferation and cell death, with neuronal migration yet to be examined. Dentate 

gyrus cell proliferation defects are another feature that have been found in other Disc1 mutants 

(Kim et al., 2011; Wu et al., 2017) and this is known to happen in schizophrenia and depression 

patients (Reif et al., 2006). However, in schizophrenic patients, several post mortem studies 

of hippocampal cells have reported no significant change in cell density of its sub-structures 

(Heckers et al., 1991; Heckers and Konradi, 2002; Walker et al., 2002; Eastwood and 

Harrison, 2005). Additionally, DISC1 is known to be involved in neurogenesis (Dranovsky 

and Hen, 2007; Duan et al., 2007; Soares et al., 2011). Reduced neurogenesis was observed 

in several mice carrying a DISC1 mutation such as Q31L, L100P and DISC1tr (Shen et al., 

2008; Lee, Fadel, et al., 2011) (table 1.1). Moreover, this has also been seen in psychiatric 

disorders (Eisch et al., 2009; Schoenfeld and Cameron, 2015; Apple, Fonseca and Kokovay, 

2017). This indicates that the Der1 mutation might also affect neurogenesis. Only a statistical 

trend toward a reduction of neurogenesis in the dentate gyrus was observed in both the 

heterozygote and homozygote der1 mice. However, sample numbers were quite low for this 

experiment and it would therefore be worth examining more brains to find out if there is a 

consistent change. A strong hypothesis is that DISC1 regulates neurogenesis through one of 

its partners, GSK3β. DISC1 stabilizes β-catenin, a neurogenesis regulator, by preventing its 

phosphorylation by GSK3β to maintain neurogenesis (Mao et al., 2009; Ming and Song, 

2009). It is possible that in the Der1 mice, DISC1 is not able to bind to GSK3β which would 

be predicted to cause over activity of GSK3β and a consequent decrease of neurogenesis (Mao 

et al., 2009). However, previous investigation of GSK3β in the Der1 mouse indicates that there 

is no change in the activity of hippocampal GSK3β (Laura Murphy, unpublished). 

Nevertheless, GSK3β is believed to bind to DISC1 at two sites: 1–220 and 356–595, both of 

which would be retained if the chimeric transcripts expressed in the Der1 mouse are translated 

(Mao et al., 2009). GSK3β could therefore bind to the hypothetical chimeric protein which 

could cause, for example, changes in its localisation, or ability to regulate β-catenin due to 

altered protein complex composition. Such changes could influence neurogenesis. It will 

therefore be important to examine these possibilities in the future. 

The increased density of activated caspase-3 indicates possible activation of the apoptotic 

pathway. This has also been seen in post mortem brain of patients (Glantz et al., 2006). 
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Activated caspase 3 is present in both extrinsic and intrinsic apoptotic pathways.  It is possible 

that a higher concentration of TNF (tumour necrosis factor) and Fas-Fas molecules in the Der1 

model could lead to activation of the apoptosis pathway. However, no change in the gene 

expression of those molecules was found (chapter 6). Activation of apoptosis could also be 

due to mitochondrial effects. Indeed, mitochondria pause less during their traffic, in both 

heterozygous and homozygous hippocampal Der1 neurons (Laura Murphy, unpublished). It is 

therefore possible that their ability to supply functions such as calcium buffering, and the 

energy required to maintain neuronal ion gradients following depolarisation is impaired. In 

turn this could render neurons sensitive to excitotoxicity, damage and death. Additionally, 

increase of NMDA receptor surface expression has been previously found in the Der1 mice 

(Elise Malavasi, unpublished). This could lead to excitotoxicity, where activation of the higher 

concentration of glutamatergic receptors leads to increased intracellular calcium, which may 

activate apoptotic pathways.  

Since the cell types expressing activated caspase-3 were not identified, it is possible that 

another type of cell is affected by the activation of apoptotic mechanisms. Indeed, loss of glial 

cells have been found in numerous psychiatric illness (Stark et al., 2004; Elsayed and 

Magistretti, 2015). Glial cells are important for the formation and the survival of neurons and 

the formation of dendrites and synapses, therefore a reduction in the number of glial cells could 

also affect the neurons. As glial cells express glutamate transporters, apoptosis of glia through 

activation of caspase-3 could lead to a high concentration of glutamate in the synaptic cleft 

which would lead to excitotoxicity and further glial damage as well as neuronal death 

(Rajkowska et al., 1999; De Biase et al., 2011). However, this would most likely affect the 

cell density, and cluster of apoptotic cells should be seen. Therefore, this mechanism is a 

slightly less probable than the others. Additionally, activation of apoptosis could only affect 

the dendrite or spine of neurons affecting their morphology but allowing them to survive  

(Jarskog et al., 2005b). Indeed, a study showed that applying glutamate to distal dendrites can 

lead to increase caspase-3 activity in synaptic terminals without affecting the whole cell 

(Mattson, Keller and Begley, 1998). However, the focal Caspase-3 staining that was quantified 

does not correlate with expression at synaptic terminals, and therefore does not provide 

evidence of this mechanism.  

No difference in parvalbumin expression was found in the Der1 mice. This indicates that the 

Der1 mutation does not affect the density of interneurons. This is quite unexpected as several 

DISC1 mutant mice feature a defect in GABAergic neurons (Lee et al., 2013; Borkowska, 

Millar and Price, 2016; Delevich et al., 2016). Moreover, mental disorders also display a 

reduction of GABAergic interneurons (Marín, 2012; Fung et al., 2014). However it is believed 
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that the fast-spiking of interneurons makes them especially sensitive to overload and 

excitotoxicity, which would lead to their death in schizophrenia (Nakazawa, 2011). It is 

therefore possible that neuronal stimulation would be required to see a decrease in interneuron 

density as well as an intensified activation of apoptosis. 

Overall, these data indicate that heterozygous and homozygous mice do not always express 

the same phenotypes.  It seems that cellular density of the srlm is specifically affected in the 

homozygous mice while in the heterozygous mouse there is a specific activation of apoptotic 

mechanisms in the dentate gyrus. These genotype-specific effects might be due to the fact that 

the homozygous mice carry two copies of the Der1 mutation, therefore expressing no full-

length DISC1 protein, but possibly maximum amounts of the deleterious chimeric proteins. 

On the other hand, he heterozygous mice carry only one copy of the Der1 mutation and 

therefore express full length DISC1 and possibly also chimeric proteins, with consequent 

potential for dominant-negative effects.  

Moreover, on the measures examined to date, it appears that the Der1 mutation has more subtle 

effects than what have been observed in other DISC1 mutant mice. 
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CHAPTER 5  

-  

EFFECT OF THE DER1 MUTATION 

UPON NEURONAL MORPHOLOGY 
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5.1 Introduction 

In order for the brain to function properly, intricate connections between neurons must be 

formed during brain development. During this time dendrites and axons grow out from the cell 

body of each neuron. Impairment of neuronal growth can lead to a wide range of disorders. 

Sholl analysis is often used to study the morphology of a neuron, more specifically to study 

the formation and organization of their dendrites (Sholl, 1953). It is achieved by counting the 

number of intersections between dendrites and concentric circles centered around the cell 

body. Sholl analysis is used to investigate the mechanism and the evolution of some brain 

disorders. It is known that in mental disorders neuronal function is affected, their 

communication is deficient, and their shape and outgrowth is also affected. These studies 

highlight the importance of dendrite outgrowth in neuronal function (Hyman, 2000; NIH, 

2007; Brennand et al., 2011; Uhlhaas, 2015). Indeed, it is through the dendrites and the axons 

that the information is transferred from one neuron to another and in turn from one brain area 

to another. In schizophrenic patients, it has been shown that neuronal outgrowth is impaired. 

Using Sholl analysis, 3-D image analysis of the dendritic arborization of Golgi-impregnated 

prefrontal pyramidal neurons in post mortem tissue from patients showed that the basilar 

dendritic structures were reduced. The distal dendrites were the ones affected (Kalus et al., 

2000). Another study showed that apical dendritic trees of internal pyramidal neurons were 

also reduced in schizophrenic patients (Rosoklija et al., 2000). Additionally, a decrease in the 

number of primary and secondary dendrites in the pyramidal neurons of layers III and V in 

medial prefrontal cortex was found in schizophrenic patients (Broadbelt, Byne and Jones, 

2002). Two other studies also indicated a reduction of the soma size of pyramidal neurons 

from schizophrenic patients (Rajkowska G, Selemon LD and Goldman-Rakic PS, 1998; Pierri 

et al., 2001).  

Mutation of the DISC1 gene in animals leads to similar phenotypes to those found in 

schizophrenic patients. The importance of DISC1 in neuronal outgrowth has been investigated 

in several studies mentioned in the introduction and showed that  DISC1 plays an important 

role in morphological development of adult-born neurons (Duan et al., 2007; Kim et al., 2009) 

(table 1.1). DISC1 is also known to influence neurite outgrowth with the help of its interactors 

(Miyoshi et al., 2003).  

In this study, neuronal outgrowth in homozygous Der1 mice was investigated to see if the 

mutation would lead to similar effects to those previously found in other models of mental 

illness. Sholl analysis was performed on primary neuronal cultures from E18 mice, as neurons 

are easier to visualise in culture than in tissue, and astrocytes are present in a small quantity. 
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The number and length of the dendrites was studied at five days in vitro (DIV) in order to have 

young neurons and easily see their dendrites. Moreover, studying neurons at this age allows 

us to look at individual neurons as their processes are not yet very long and neurons have not 

yet formed an interconnected network, but cells still display robust neurite extension. This 

choice had no relevance to mental illness or Disc1 and was purely practical. 

Primary cortical neuronal cultures, set up by E. Malavasi, were used for this analysis. These 

neurons were grown at low density (10^5 neurons per well) in six well plates with astrocyte 

feeders in order to allow trophic factors to diffuse into the shared media and support the 

growth of the neurons.  Low density co-culture enabled neuronal morphology to be easily 

examined. Map2 antibody was used to stain the dendrites in order to perform Sholl analysis 

on 5 DIV (days in vitro) neurons. However, MAP2 is sometimes present in axons as immature 

neurons can express MAP2 in all their processes. There is a loss of MAP2 immunoreactivity 

in axons with time following an initial period when its distribution is uniform throughout the 

cell (Caceres, Banker and Binder, 1986). Compared to dendrites, axons are longer processes 

which develop from a conical prolongation and then tend to have a constant radius. Therefore, 

when axons were spotted due to their characteristic length and width, they were excluded from 

the analysis. Wild-type and homozygous cultures were analysed blind to genotype. The study 

was carried out on four independent cultures for each genotype. From the cultures, neurons 

which were distinct from each other were selected in order to be able to assess the dendrites 

extending from the cell bodies. The images were taken with a fluorescent microscope (figure 

5.1). The analysis was done using Fiji software. 
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a. 
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a. 

b. 

 

b. 

 

b. 

 

b. 

Figure 5.1: Wild type and homozygous Der1 neurons 

Representative fluorescent images at 20x magnification of 

wild type (a) and homozygous Der1 neurons (b) in primary 

neuronal culture at DIV 5. 

a. WT 

e. HOM 
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5.2 Sholl analysis and dendrite length analysis  

In order to perform Sholl analysis, the Fiji plug in “Neurite tracer” was first used to reconstruct 

each dendrite from the chosen neurons. The “Sholl analysis” plug-in was applied, and circles 

of increasing radius centred on the cell body were created every 5 μm. The number of circle 

crossings by dendrites was then quantified.  

The results of the Sholl analysis indicate a significant difference interaction between genotype 

and distance with respect to the number of crossings between the wild-type and the Der1 

homozygotes (2way ANOVA with repeated measure p=0.0005, figure 5.2). 

 

p= 0.0005 

* 

Figure 5.2: Neuronal outgrowth alteration in homozygous neuronal cell cultures  

The mean number of dendrite crossings is shown for every 5μm for each group. There is 

an overall significant difference between the wild-type and the homozygote group. 

n=132 neurons for each group, for each group 4 plate of 3 wells were analysed, each plate 

was cultures from one litter from one pregnant damn composed of between 3 to 8 

embryos, depending on the size of the litter. Error bars represent standard error of the 

mean (SEM). 2-way ANOVA with repeated measures indicated a significant interaction 

between the number of crossings and the genotype p=0.0005; genotype p>0.05; distance 

from soma p<0.0001. Sidak's multiple comparison post-hoc test revealed a significant 

difference at radius 0, p=0.02, indicating that the number of crossings is increased in the 

homozygotes compared to the wild types at radius 0 and there was a trend at radius 5, 

p=0.09. 
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These neurons show a significant increase in the number of crossings in the homozygous mice 

compared to the wild-type mice in the first micron, at radius 0 (p=0.02, figure 5.2) as well as 

a trend (p=0.09) at radius 5 toward a similar change (p=0.09, figure 5.2). At larger radii, the 

number of crossings is similar between the two groups. The Der1 homozygous neurons form 

more crossings at radius 0 and 5, indicating that the outgrowth of the homozygous neurons is 

increased compared to that of the wild-type neurons. 

To investigate further, the number of dendrites and branches and their length were investigated 

using imageJ software. No significant differences were found between the homozygous group 

and the wild-type group in the number of branches or dendrites (figure 5.3.b and c). However, 

a trend (p=0.09) was found indicating less branches per neuron in the homozygotes compare 

to the wild-type (figure 5.3.a). Using the information obtained from “neurite tracer”, the length 

of the dendrites and branches for each neuron selected was analysed. Looking at the length of 

dendrites and branches separately, no significant overall difference was found between the 

homozygous and the wild-type groups (figure 5.3.d e.).  

However, when the number of neurite extensions at 0 µm and 5 µm were analysed a significant 

difference was discovered at 0 µm, indicating that the homozygous neurons have more 

extensions compared to the wild type neurons (p=0.03) and the same was discovered at 5 µm 

(p=0.03) (figure 5.4). This indicates an early outgrowth with a higher number of neurite 

extension in the homozygous mice, indicating a possible neurodevelopment impairment.  
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Figure 5.3: No change in the complexity of the dendritic arbour between wild-type 

and homozygous primary neuronal cultures 

a. Number of branches per neuron. b. Number of primary dendrites per neuron. c. 

Number of primary dendrites and branches per neuron. d. Analysis of the length of 

primary dendrites from each neuron. e. Analysis of the length of branches from each 

selected neuron.  n=132 neurons per group. For each group 4 plate of 3 wells were 

analysed, each plate was cultures from one litter from one pregnant damn composed 

of between 3 to 8 embryos, depending on the size of the litter.  Weather each neuron 

is looked at separately or their mean is assessed for each plate no significance is found. 

The error bars represent SEM. D'Agostino & Pearson omnibus normality test was 

performed to assess normality of the data set. The distributions were not normal 

therefore a Mann-Whitney statistical test was used.  

p=0.09 

 

p=0.89 

p=0.18 

 

p=0.34 

 

a. 

d. 

b. 

c. 

p=0.42 

e. 
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5.3 Cell soma size analysis 

To assess cell soma size, the outline of the cell body was drawn manually for each neuron 

using Fiji software and the value of the defined area was obtained as an area measurement. 

The investigation of cell soma size revealed a significant increase in soma size in the 

homozygotes compared to the wild types (p=0.008, figure 5.5). This indicates that the Der1 

mutation affects neuronal soma size and therefore neuronal outgrowth. Moreover, this could 

be an indication that neuronal communication is impaired as a change in the cell body could 

affect its postsynaptic role and neuronal integrative properties. 

  

 

 

 

 

 

 

* * 

Figure 5.4: Change in the number of neurites 

a. Number of neurites at radius 0. b. Number of neurite at radius 5.  

A significant change was discovered indicating more neurites at radius 0 in the Der1 

homozygote neurons compare to the WT (p=0.028). A trend towards the same indication was 

found at radius 5 (p=0.029). n=132 neurons per genotype, 33 neurons per plate/litter, 4 litters 

per genotype.  For each genotype 4 plates of 3 wells were analysed, each plate was cultures 

from one litter from one pregnant damn composed of between 3 to 8 embryos, depending 

on the size of the litter. Each dot represents one litter. The black error bars represent SEM. 

D'Agostino & Pearson omnibus normality test was performed to assess normality of the data 

set. The distributions were not normal therefore a Mann-Whitney statistical test was used. 

p=0.028 p= 0.029 

a b
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5.4 Discussion 

In this study neuronal outgrowth in homozygous Der1 cortical neurons was analysed. 

Homozygous mice carry the Der1 mutation on both Disc1 alleles, therefore, there is no full 

length Disc1 plus a possible truncated Disc1 protein in these mutants. The investigation 

indicates that the Der1 mutation subtly increases cortical neuronal outgrowth in this mouse 

model of mental disorders.  It seems that the mutation increases the number of neurites, 

however the additional neurites remain very short therefore a difference in neurite extension 

is only visible close to the soma.  Furthermore, cell soma hypertrophy was also discovered in 

the cultured neurons.  

Impaired neuronal outgrowth is a frequent finding in schizophrenic patients and in animal 

models of mental illness (Arnold et al., 1995; Harrison, 1999; Kalus et al., 2000; Ozeki et al., 

2003; Li et al., 2007). However, in schizophrenic patient, dendritic growth is reduced 

compared to control, with less extensive neurons (Kalus et al., 2000; Rosoklija et al., 2000). 

p=0.008 

 

Figure 5.5: Variation of the soma size of the homozygous Der1 neuron  

Homozygous neurons have a larger soma compared to the wild-type neurons. n=132 

neurons per group. For each group 4 plate of 3 wells were analysed, each plate was 

cultures from one litter from one pregnant damn composed of between 3 to 8 embryos, 

depending on the size of the litter Error bars represent SEM. D'Agostino & Pearson 

omnibus normality test was performed to assess normality of the data set. The 

distributions were not normal, so a Mann Whitney statistical test was used to compare 

the two groups. **, p<0.01. 
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Consistent with the data presented here, DISC1 knockdown is known to increase neurite 

outgrowth and neuronal soma size (Duan et al., 2007). Therefore, it could be hypothesised that 

increased neurite outgrowth and soma hypertrophy found in the homozygous mice could be 

induced by hyper-activation of the AKT-mTOR pathway which has been shown to participate 

in Disc1-knockdown induced increased neurite extension and soma size (Duan et al., 2007). 

Indeed, DISC1 regulates AKT signalling via KIAA1212. The AKT-mTOR pathway is known 

to be involved in the development of new-born neurons in the adult brain. The phosphorylation 

of various substrates by AKT regulates diverse processes of neuronal development, including 

morphogenesis, dendritic development, synapse formation and synaptic plasticity. 

Phosphoinositide-3′ kinase (PI3K)–Akt–mTOR signalling leads to the growth and branching 

of dendrites (Kwon et al., 2003; Jaworski et al., 2005).  When DISC1 is knocked out, the 

association between DISC1 and KIAA1212 is abolished and AKT-mTOR signalling is over 

activated in neurons. This leads to increased neurite extension. Moreover rapamycin, which is 

an inhibitor of the mTOR pathway, rescues the soma size defect of new neurons affected by 

DISC1 knockdown or KIAA1212 overexpression (Kim et al., 2009; Wu, Li and Xiao, 2013; 

Zhou et al., 2013). This suggests that the mTOR pathway, a regulator of cell growth and 

metabolism, could be affected in the homozygous Der1 mice.  

DISC1 might also be involved in other pathways affecting neuronal outgrowth. For example, 

NDEL1 is a major partner of DISC1 and, similarly to what has been found when DISC1 is 

downregulated, NDEL1 knockdown in new-born neurons also leads to outgrowth disruption. 

Moreover, when expression of both DISC1 and NDEL1 is knocked down, an increase of the 

number of dendrites was found as well as a drastic modification of neuronal outgrowth. 

Therefore, it seems that their association regulates the outgrowth of new-born neurons (Duan 

et al., 2007). In our model Disc1 protein is absent and a truncated protein might be present 

but, if so, it lacks the binding site for NDEL1. It is therefore possible that the abolition of 

NDEL1 binding to DISC1 leads to abnormal neuronal outgrowth. Another partner of DISC1, 

FEZ1, also regulates neuronal outgrowth. Together they have been found to regulate dendritic 

development of new born dentate granule cells in the adult brain. Blocking the interaction 

between DISC1 and FEZ1 leads to an increase of the total dendritic length and complexity as 

well as soma hypertrophy (Kang et al., 2011). FEZ1 and NDEL1 work together through the 

formation of a complex with DISC1 to ensure normal neuronal outgrowth (Kang et al., 2011). 

In the Der1 mice, the mutation abolishes full-length Disc1 expression, but may also produce 

aberrant Disc1 species lacking the full binding sites for FEZ1 and NDEL1. Transcripts of these 

species were found in the Der1 mice but not the chimeric proteins. Therefore, the role of the 

complex might be impaired which could be why there is an abnormal outgrowth of the neurons 
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represented by an increased neurite extension as well as soma hypertrophy. Overall then, 

DISC1 may interact with different partners to regulate distinct aspects of neuronal outgrowth. 

It could be postulate that soma hypertrophy could indicate an increase in the density of 

organelle such as mitochondria, lysosome, vesicles or endosome as this would lead to 

extension of the cell matrix. Moreover, it could possibly indicate a reorganization of the 

cytoskeleton and of the vesicular trafficking, as the area covered is greater, additional 

association between microtubule and actin could be occurring. Moreover, it is known that 

DISC1 plays a role in the organisation of the cytoskeleton through its association with 

microtubules (Morris et al., 2003; Ishizuka et al., 2006). Moreover, hypertrophy of cortical 

neuron could ultimately lead to a decrease of neuronal density in the cortex. Indeed, other mice 

models expressing disrupted DISC1 have indeed found a reduction in neuron number (Lee, 

Fadel, et al., 2011). Moreover, post mortem study using samples from patient suffering from 

psychiatric illness also reported a reduced total number of neuron (Rajkowska, Halaris and 

Selemon, 2001; Manji et al., 2003; Kreczmanski et al., 2007).  

Neuronal outgrowth impairment could lead to a deficit in neuronal connection and 

communication in the brain of this mouse model. Indeed, the growth of neurites determines 

neuronal connectivity, and disruption of this process could lead to defects in cortical 

development and cognition. Additional neurite extension could lead to impairment of synaptic 

signal and connections therefore impairing the brain circuitry.  Consequently, integration and 

positioning of neurons in the brain could be affected by the change in neuronal morphology. 

Moreover, this could alter neuronal excitability. This would mean that communication 

between neurons and brain areas could be altered, and brain function could be impaired as a 

consequence. These findings indicate that the Der1 mutation could lead to abnormal neuronal 

circuitry which is a typical phenotype of schizophrenia. 
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Chapter 6  
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CONSEQUENCES OF THE DER1 
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6.1 Introduction 

Data in the previous chapters indicates that there are very subtle brain changes in the Der1 

mouse model at the anatomical and cellular level. However, molecular changes have not been 

studied so far.  

DISC1 is known to have an important role in transcription. DISC1 involvement in gene 

transcription was first suggested by its interaction with activating transcription factors 4 and 

5 (ATF4 and ATF5) as well as the transcriptional repressor Nuclear receptor Co-Repressor 

(N-CoR) (Millar, Christie and Porteous, 2003; Morris et al., 2003; Sawamura et al., 2008). 

DISC1 is also believed to bind to mRNA such as ITPR1 mRNA and to regulate synaptic 

plasticity (Tsuboi et al., 2015) . DISC1 inhibits the transcriptional activity of ATF4, therefore 

it is possible that through its interaction with ATF4, DISC1 contributes to the regulation of the 

cellular transcriptome (Malavasi et al., 2012; Soda et al., 2013). Additionally, DISC1 was 

found to colocalize with promyelocytic leukaemia (PML) bodies which are nuclear 

compartments for gene transcription, also suggesting that DISC1 might be involved in 

transcriptional regulation (Sawamura et al., 2008). Transcriptional dysregulation has been 

frequently found in psychiatric disorders (Nestler et al., 2016). It seems that genes 

differentially expressed in those disorders are involved in neurodevelopment and neuronal 

function, and particularly in synaptic activity and cell communication (Lin et al., 2011; Wen 

et al., 2014; Sanders et al., 2017). Additionally, altered transcript levels may be due to other 

effects of the DISC1 mutation. DISC1 is known to affect neuronal properties such as 

neurogenesis, proliferation, neuronal morphology and brain development (Brandon, 2007). 

Such altered cellular properties would likely affect the RNA expression profile. 

The aim of this chapter is to investigate RNA expression in the Der1 mice in order to discover 

if genes and pathways known to be affected in mental disorders are affected in this mouse 

model, as well as to discover possible new genes and pathways which could be affected by the 

t(1;11) translocation. After a global analysis of the data, the genes involved in apoptosis, 

neurogenesis, neurite outgrowth and GABAergic pathways corresponding to the proteins 

previously studied in this thesis such as caspase-3, PV and DCX were investigated as well to 

compare and confirm our previous findings but at a molecular level this time.  

RNA sequencing (RNAseq) was carried out using RNA extracted from nine weeks old 

hippocampus and the cortex   of 4 males and 4 females for each genotype (wild type, 

heterozygous, homozygous), making a total of 48 samples. 
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6.2 Analysis of the effect of the heterozygous Der1 mutation 

on RNA expression 

6.2.1 Quality control of the samples 

Principal-component analysis (PCA) is used to inspect data for unwanted biological or 

technical effects. PCA analysis was performed using regularized log (rlog) of the counts 

from all samples.  This transforms the counts to the log2 scale minimizing the differences 

between samples for rows with small counts and normalizing with respect to library size. This 

allows checking for outliers and clustering of samples.  

For the hippocampus, the PCA plot revealed a wild-type male outlier which was removed for 

further analysis. To balance the sex ratio one female wild-type was removed as well. Following 

outlier removal, the PCA plot showed wild-type and heterozygous samples clustering by 

genotype and sex (figure 6.1, a).  In addition, a heatmap was created to look at the samples 

from the hippocampus, with outliers excluded (figure 6.1, b). This confirmed that the 

heterozygous samples group together, as do the wild-type samples. The cortex PCA plot also 

revealed a wild-type male outlier, and a wild-type female sample was removed as well for 

balance. As in hippocampus, following outlier removal the PCA plot indicates that the samples 

cluster by genotype and sex (figure 6.2, a). The heatmap issued from the RNAseq results of 

the cortical samples revealed that the heterozygous samples cluster together, as do the wild 

type samples (figure 6.2, b). These initial analyses indicate that the heterozygous samples are 

clearly different from the wild-type samples in both regions of interest. Moreover, 

heterozygous mutant mice correspond to the human t(1;11) carriers and are therefore of most 

relevance to mental illness. 
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b.

Figure 6.1: Principal component analysis of the hippocampus samples 

a. PCA plot two WT outliers circled.  

b. Heatmap: each row represents the expression of one gene and each column 

represents one sample. Z-score demonstrates the standard deviation of the log2 fold 

change for genes with a significant differential expression between genotype (log2 

fold change <0.05), in each sample. Differential gene expression is expressed in red 

and green respectively representing high and low expression. 

Z-score 

 

a.
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Figure 6.2: Principal components analysis of the cortex samples 

a. PCA plot with the two WT outliers circled. 

b. Heatmap: each row represents the expression of one gene and each column 

represents one sample. Z-score demonstrates the standard deviation of the log2 

fold change for genes with a significant differential expression between genotype 

(log2 fold change<0.05), in each sample. Differential gene expression is expressed 

in red and green respectively representing high and low expression. 

Z-score 

b.

a. 
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6.2.2 Differential gene and exon expression analysis 

For the full analysis, RNAseq was analysed at the whole gene level using DESeq2 (Love, 

Huber and Anders, 2014), and at the single exon level using DEXSeq (Anders, Reyes and 

Huber, 2012). The latter analysis was performed because a single gene can give rise to 

numerous different transcripts due to alternative splice sites, transcription start sites, and 

polyadenylation sites. Therefore, investigation at the exon level can lead to additional and 

more precise information. For each exon and each sample, reads mapped to this exon and reads 

mapped to any of the other exons of the same gene were counted. Then, the ratio of these two 

counts was assessed. Changes across genotypes were observed in order to deduce variations 

specific to the exon usage. Change in internal exon usage is believed to be due to a change in 

the rate with which this exon is spliced into transcripts, while change in first and last exons 

reveals altered usage of start sites and polyadenylation sites. The same comparisons performed 

using the gene level analysis were done at the exon level. 

 

a. Disc1 expression in Der1 brain 

Extraction of the Disc1 expression data indicates that it is downregulated in heterozygous 

samples from both brain regions, which confirms the heterozygosity of the samples used 

(Figure 6.3). Moreover, it was confirmed by its expression value which indicates a negative 

log2fc and a p value less than 0.05 in the hippocampus and the cortex of the heterozygous 

Der1 samples (table 6.1). In addition to this reduction, Disc1 expression was analysed exon by 

exon. As the Der1 mutation produces transcripts containing Disc1 exons 1-8 (Malavasi et al), 

reduced expression of Disc1 exons 9-13 was predicted, with little effect on exons 1-8 in 

heterozygotes. This was confirmed in both the cortex (figure 6.4, a) and the hippocampus 

(figure 6.4, b). A study has reported the expression of over 50 DISC1 splice variants in human 

brain (Nakata et al, 2009), with a higher expression in the hippocampus. Similarly, in adult 

mouse brain Disc1 expression in the hippocampus was higher compared to other regions. 

Here, Disc1 expression is higher in the hippocampus (table 6.1) and some exons seem to 

be more or less expressed depending on the region. For example, in the hippocampus exon 

2 (expression>15) compared to in the cortex (expression<10) (figure 6.4).  
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 Base Mean 
log2FoldChange 

(log2fc) padj 

hippocampus 114.614663 -0.3239909 0.00523277 

cortex 87.5821453 -0.4633902 0.0007188 
Table 6.1: Disc1 RNAseq data from the hippocampus and the cortex of the heterozygous 

Der1 mice 

The negative log2fc indicates that the expression of DISC1 is reduced in both areas. 

Moreover, the adjusted p value (padj) indicates that DISC1 expression in the heterozygous 

mice is significantly different compared to the WT. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Normalised counts for DISC1 in WT and Hets 

DISC1 counts from the heterozygotes are lower than the counts from the WT,  

in both the hippocampus (a) and the cortex (b). 

  WT                                     HET                                     WT                                            HET 

  a.                                                    b.                                                  
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b. Overview of the gene-level and exon-level expression analysis 

 of heterozygous mice compared to WT 

The whole gene-level analysis using DESeq2 revealed that in the samples from the 

hippocampus of the heterozygous Der1 mice there were 175 differentially expressed genes 

compared to wild type (padj<0.05). These genes are represented in the volcano plot below 

(figure 6.5. a). From those genes 76 had a reduced expression (log2 fold change<0) and 99 

had a higher expression (log2 fold change>0), compared to the wild-type. From the cortical 

samples of the heterozygous mice, 2124 genes were found differentially expressed compared 

to the wild-type (padj<0.05). These genes are represented in the volcano plot below (figure 

6.5. b). From those genes 1108 are down regulated and 1016 are up regulated compared to the 

genes expression from the wild-type cortical samples. A cut off at base mean (DISC1)/2 was 

applied, three and seven genes were respectively excluded from the down and up regulated 

gene list obtained with the hippocampus samples and five and four genes were excluded from 

the down and up regulated genes from the cortical sample analysis. The exon level analysis 

using DEXSeq also revealed a number of significant changes. In the cortex, the expression of 

3304 genes was found to be significantly different compared to the wild-type, while 50 genes 

with differentially expressed exons were discovered in the hippocampus compared to the WT. 

For further analysis, both gene lists obtained with exon and gene level analysis were studied 

    Exons          1          1b       2          3     3a   4     5    6     7   8     9   10  11     12               13                

  a.                                                  

      

  b.                                                  

      

    Exons          1       1b       2          3      3a    4    5    6    7     8    9   10  11      12             13                

Figure 6.4: Result of the DEXSeq analysis for DISC1 in the heterozygotes versus wild-type 

Both shows cortex (a.) and hippocampus (b.) show a drop mainly after exon 8. 
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combined together, for the cortex and the hippocampus global investigation. In order to assess 

the potential biological significance of the set of genes found to be differentially expressed in 

the cortex and the hippocampus, gene ontology (GO) was performed using Gorilla (http://cbl-

gorilla.cs.technion.ac.il/). 

 

 

Figure 6.5: Volcano plot 

of the gene expression 

in the heterozygous 

mice. 

a. Representation of 

the gene expression in 

the hippocampus 

b. Representation of 

the gene expression in 

the cortex 

All the genes above the 

red line are significantly 

differently expressed in 

the heterozygous mice 

compared to the wild-

type mice (p<0.05). The 

blue lines represent           

-0.1<log2FC<0.1. 

 

Figure 6.5: Volcano plot 

p=0.05 

p=0.05 

mr1 
a. 

b. 
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6.2.3 Analysis of the cortical samples  

a. Gene ontology of the cortical samples from the heterozygous 

 mice 
 

GO analysis of the differentially expressed genes from the cortical samples revealed that 

multiples processes are affected, with a total of 293 GO component, 279 GO function, and 

1220 GO process terms significantly affected by the Der1 mutation (table 6.2 to 6.4). GO 

Processes mainly affected by the Der1 mutation in the cortex of the heterozygous mice include 

localization and transport of entities, neurodevelopment, neurogenesis, dendrite development 

and organization of various cell parts such as synapses, vesicles and the cytoskeleton (table 

6.2). Furthermore, it seems that binding activity is the major GO Function affected as well as 

channel, transporter and receptor activity (table 6.3). The major GO Components affected are 

organelles such as mitochondria and vesicles, transporter and receptor complexes, the 

cytoskeleton and synapses (table 6.4).  

 

Overall, the heterozygous Der1 mutation is predicted to affect neuronal development, 

transport of molecules and organelles, synapse function and therefore excitatory and inhibitory 

neurotransmission through the dysregulation of the expression of neurotransmitter receptors 

and possibly the dysregulation of neurotransmitter circulation. 
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Description FDR q-value 
(padj) 

Enrichment Number 
of genes 

localization 2.56E-90 1.62 1277 
transport 3.90E-72 1.62 1072 

protein localization 1.28E-52 1.76 618 

intracellular transport 1.49E-43 1.87 437 
organelle organization 1.26E-34 1.55 651 
vesicle-mediated transport 5.99E-34 1.82 372 

regulation of neurogenesis 8.61E-33 1.88 328 

regulation of neuron differentiation 1.98E-31 1.96 676 

protein transport 9.81E-31 1.73 398 
regulation of cell communication 1.42E-24 1.36 880 

regulation of signalling 2.36E-24 1.35 883 

developmental process 2.89E-24 1.27 1292 

intracellular protein transport 1.20E-22 1.84 242 

regulation of cell death 2.80E-18 1.44 505 

neuron projection development 9.39E-18 2.19 120 

anatomical structure development 4.94E-17 1.28 903 
regulation of apoptotic process 5.30E-15 1.42 451 
nervous system development 9.25E-15 1.83 163 

regulation of programmed cell death 1.42E-14 1.41 453 

cytoskeleton organization 1.65E-14 1.59 260 

neuron projection morphogenesis 2.94E-14 2.02 118 
anatomical structure morphogenesis 2.21E-12 1.38 431 

cation transport 2.24E-10 1.52 222 

regulation of neurotransmitter levels 2.18E-09 1.85 100 

endocytosis 2.65E-09 1.69 132 

microtubule-based transport 1.11E-08 2.17 60 

cell communication 1.43E-08 1.47 217 

dendrite morphogenesis 4.21E-08 2.88 31 

synapse organization 1.17E-07 2 65 
brain development 2.28E-07 1.98 64 

vesicle organization 2.43E-07 1.77 89 

RNA transport 1.06E-06 1.97 59 
dendrite development 2.40E-06 2.82 25 
synaptic signalling 3.26E-06 1.61 105 

mitochondrial transport 6.91E-06 1.94 53 

dendritic spine organization 1.84E-04 2.75 18 

microtubule-based movement 2.32E-04 1.58 77 

glutamate receptor signalling pathway 2.46E-04 2.56 20 

signalling 2.72E-04 1.36 158 
synaptic transmission, GABAergic 3.54E-04 3.34 12 

Table 6.2: Processes affected by the Der1 mutation in the cortex of the heterozygous mice 

'FDR q-value', or padj, is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 

number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 
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Description FDR q-value 
(p-value) 

Enrichment Number 
of genes 

protein binding 6.24E-136 1.41 2581 

binding 3.35E-135 1.28 3420 

catalytic activity 1.29E-68 1.41 1678 

ion binding 5.40E-62 1.41 1565 

transferase activity 2.20E-35 1.52 724 

RNA binding 3.05E-27 1.7 377 

kinase activity 3.24E-22 1.75 279 

transporter activity 1.04E-15 1.49 368 

cation transmembrane transporter activity 2.43E-10 1.55 631 

mRNA binding 4.24E-08 1.86 219 

enzyme regulator activity 5.02E-07 1.36 278 

tubulin binding 4.46E-06 1.61 104 

beta-catenin binding 9.12E-06 2.2 39 

glutamate receptor binding 2.68E-05 2.41 29 

SNARE binding 3.02E-05 1.89 52 

ion channel activity 5.63E-05 1.47 124 

voltage-gated sodium channel activity 7.01E-05 3.15 16 

channel regulator activity 1.71E-04 1.83 49 

ribosome binding 1.88E-04 2.28 27 

actin binding 3.01E-04 1.43 122 

microtubule binding 4.22E-04 1.58 73 

syntaxin binding 4.83E-04 1.91 38 

channel activity 7.92E-04 1.39 127 

GABA receptor activity 2.68E-03 2.8 13 

p53 binding 3.78E-03 1.91 29 

transmembrane receptor protein tyrosine 
kinase activity 5.28E-03 1.97 

 
25 

GABA-A receptor activity 9.24E-03 2.74 11 

growth factor binding 9.47E-03 1.57 48 

L-glutamate transmembrane transporter 
activity 1.03E-02 3.04 

 
9 

GABA-gated chloride ion channel activity 1.44E-02 3.15 8 

Table 6.3: Functions affected by the Der1 mutation in the cortex of the heterozygous mice 

'FDR q-value', or padj, is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 

number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 
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Description FDR q-value 
(padj) 

Enrichment Number 
of genes 

intracellular part 1.74E-287 1.37 3857 

organelle 2.31E-235 1.43 3308 

neuron part 7.79E-97 2.03 731 

membrane 1.39E-92 1.38 2189 

neuron projection 1.39E-74 2.11 520 

synapse 5.35E-45 2.24 278 

dendrite 6.18E-41 2.29 242 

neuronal cell body 7.35E-39 2.16 263 

vesicle 7.28E-35 1.59 590 

axon 1.93E-34 2.35 192 

mitochondrion 3.24E-33 1.59 557 

postsynaptic density 4.11E-28 2.57 130 

endosome 2.02E-26 1.83 281 

cytoskeleton 2.20E-24 1.56 452 

post-synapse 1.49E-21 2.56 101 

neuron spine 2.84E-18 2.51 89 

dendritic spine 1.01E-17 2.5 87 

pre-synapse 3.11E-17 2.31 100 

transporter complex 4.59E-14 1.95 124 

lysosome 4.60E-14 1.84 146 

microtubule 2.85E-12 1.76 148 

transport vesicle 1.32E-11 2.03 91 

exocytic vesicle 3.03E-10 2.12 72 

synaptic vesicle 8.22E-10 2.17 65 

excitatory synapse 7.94E-09 3.24 26 

mitochondrial respiratory chain complex I 2.52E-06 2.77 24 

dendrite cytoplasm 2.79E-06 3.05 20 

receptor complex 5.63E-05 1.46 115 

AMPA glutamate receptor complex 1.21E-04 2.77 17 

ionotropic glutamate receptor complex 1.37E-04 2.28 25 

microtubule cytoskeleton 1.74E-04 1.69 56 

neurotransmitter receptor complex 2.86E-04 2.19 25 

inhibitory synapse 3.55E-04 2.88 14 

GABA receptor complex 5.09E-04 2.93 13 

actin cytoskeleton 7.88E-04 1.55 65 

GABA-A receptor complex 3.34E-03 2.74 11 

SNARE complex 5.99E-03 1.95 21 

Table 6.4: Components affected by the Der1 mutation in the cortex of the heterozygous 

mice 

'FDR q-value', or padj, is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 
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number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 

 

In addition, Panther online (http://pantherdb.org/) was used in order to get a representation of 

the molecular function, biological process, cellular component, and pathways in which the 

differentially expressed genes are involved. Panther does not use the entire GO catalogue and 

allow additional functional classification of the different genes by combining gene function, 

families, pathways and biological process. Similar molecular functions were affected by the 

change in gene expression in the cortex (figure 6.6, a). Additionally, when looking more 

particularly at transporter and receptor activity (figure 6.6, b and c), GABA, glutamate and 

acetylcholine receptor activity is predicted to be affected, together with transmembrane 

transporter activity, including neurotransmitter transporter activity. 

The processes found to be affected when using Panther online are quite broad but again similar 

to what was previously found using Gene Ontology analysis. Indeed, processes involved in 

cellular component organization, development, growth, localization and cellular biology are 

predicted to be affected by the Der1 mutation (figure 6.7, a). Moreover, it seems that protein 

and RNA localization may be particularly affected as well as overall major transport of entities 

which account for most of the localization processes affected (figure 6.7, b). The main cellular 

processes (figure 6.7, c) affected are involved in cell communication which would involve 

synaptic transmission, signal transduction and receptor signalling. 

Similar cellular components were also found using Panther. Indeed, genes found to be 

differentially expressed are involved in cellular part and junction, macromolecule complex, 

membrane and above all in organelles and synapses (figure 6.8, a).  The organelles predicted 

to be most affected are the nucleus, Golgi, endoplasmic reticulum and mitochondria (figure 

6.8, b and c). 

The analysis also revealed pathways in which those genes are involved. The cortical set of 

genes affected is involved in numerous pathways (figure 6.9). Most of these pathways are 

involved in signalling and cellular communication, cell growth and death, and molecular 

synthesis. The most important pathway in which the differentially expressed genes are 

involved seems to be the Wnt pathway (figure 6.10). This pathway is important for brain 

development. 
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b. c. 

Figure 6.6: Molecular function in which the genes differentially expressed in the 

heterozygous Der1 mice are involved. 

a. Overall representation of the molecular functions in which the genes are involved 

b. Molecular functions involved in receptor activity  

c. Molecular functions involved in transporter activity 

The number of significant genes included in each function is indicated at each line. 

a. 

 

a. 

 

a. 

 

a. 
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Figure 6.7: Processes in which the genes differentially expressed in the 

heterozygous Der1 mice are involved 

a. Overall representation of the processes in which the genes are involved 

b. Processes involved in localization  

c. Processes involved in cellular process 

The number of significant genes included in each function is indicated at each line. 

a. 

b c. 

          , 22 genes 

                , 175 genes 

, 544 genes 

               , 690 genes 
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a. 

b c. 

Figure 6.8: Cellular components in which the genes differentially expressed in the 

heterozygous Der1 mice are involved 

a. Overall representation of the cellular components in which the genes are 

involved. 

b. Cellular components organelles.  

c. Cellular components of cell part. 

The number of significant genes included in each function is indicated at each line. 
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Figure 6.9: Panther most enriched pathways in which the genes differentially 

expressed in the heterozygous Der1 mice are involved. 

The number of significant genes included in each pathway is indicated at each line. 
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Figure 6.10: Representation of the Wnt pathway in which the differentially expressed 

genes are involved. 

The number of significant genes included in each pathway is indicated at each line. 
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b. Specific genes and pathways 
 

b.i Ion channels 

RNAseq analysis revealed that multiple genes corresponding to ion channels were 

significantly differentially expressed at the whole gene and at the exon level (table 6.5 and 

table 6.6), in particular voltage gated channels which are transmembrane proteins activated by 

the membrane potential. They are localized along the axon and at the synapse and play a role 

in the regulation of neuronal excitation. Their activity is crucial for neuronal signalling. 

Moreover, numerous studies have implicated them in mental disorders (Judy and Zandi, 2013; 

Askland, 2015; Heyes et al., 2015). 

Genes coding for potassium channel proteins are the most affected in the heterozygous Der1 

mice. Potassium channels set the resting membrane potential and repolarize neurons, 

modulating neuronal excitability in neurons which is believed to be altered in psychiatric 

disorders. Previous genomic expression studies have also provided evidence that gene  

expression of  potassium channels is dysregulated in schizophrenia, autism disorders and 

bipolar disorders, which indicate that regulation of expression of the potassium channel might 

be impaired in mental disorders  (Judy and Zandi, 2013). This indicates that neuronal plasticity 

and signalling might be altered in the Der1 heterozygous mice. 

Calcium regulates multiple functions such as neurotransmitter release, cell growth and 

differentiation, neuronal excitability or gene transcription. Alteration of the concentration of 

calcium lead to various disorders, therefore altered expression of calcium channels could lead 

to major disruptions of neuronal signalling (Catterall, 2011). CACNA1C is a consistent finding 

from GWAS analysis of mental disorders (Bhat et al., 2012). This gene is implicated in cell 

membrane depolarization which leads to changes in signalling (Bhat et al., 2012), which is 

known to be altered in psychiatric disorders. 

Sodium channels transmit action potentials through cells and are essential for the regulation 

of neuronal excitability, thereby for neuronal signalling. As mentioned for the other channels, 

modification of their expression would alter neurotransmission and signalling (Marban, 

Yamagishi and Tomaselli, 1998; Catterall, 2014).  

In the axon initial segment, the voltage-gated sodium and potassium channels activation leads 

to action potential generation. Action potentials propagate along the axon and reach the nerve 

terminals, where activation of voltage-gated calcium channels causes calcium influx and 

neurotransmitter release. Potassium channels on dendrites further control action potential 

propagation to the synapse. This affects synaptic plasticity and leads to long-term potentiation 

or long-term depression. Additionally, voltage-gated sodium, calcium and potassium channels 



167 

 

in dendrites control the propagation of action potentials into dendrites, and help spread 

synaptic potentials, contributing to neuronal signalling processing in dendrites. 

Those three type of voltage gated channel are spread along the neurons to relay the information 

between neurons as well as intracellularly, therefore the regulation of their expression and 

their localization is essential for neuronal signalling. Dysregulation of their expression would 

lead to alteration of long-term potentiation/depression, neurotransmitter flux and signalling. 

 

 Gene log2FC padj 

Sodium 
channels 

Scn1b 0.158 0.042 

Scn3a -0.197 0.029 

Scn3b -0.153 0.013 

Scn9a -0.325 0.014 

Scn5a -0.554 5.29E-06 

Calcium 
channels 

Cacna2d2 -0.202 0.049 

Cacnb3 0.160 0.010 

Cacng3 0.123 0.006 

Potassium 
channels 

Kcna1 -0.112 0.016 

Kcnab2 0.117 0.046 

Kcnc2 -0.151 0.045 

Kcnd3 -0.262 0.006 

Kcnj10 0.182 0.032 

Kcnj6 -0.262 0.030 

Kcnt2 -0.187 0.005 

Table 6.5: Genes coding for voltage-gated channels found to be differentially expressed, 

at gene level, in the heterozygous mice 

 

 

 

 

 

 

 

 

 

 

 

 



168 

 

Calcium channel Potassium channel Sodium channel 

gene padj log2fc gene padj log2fc gene padj log2fc 

Cacna1a 9.81E-03 1.55E-01 Kcna6 8.33E-03 -6.65E-02 Scn1a 3.68E-02 1.35E-01 

Cacna1a 1.36E-02 1.26E-01 Kcna6 1.75E-02 2.29E-01 Scn1a 4.93E-02 1.29E-01 

Cacna1a 1.48E-02 1.53E-01 Kcnab1 4.01E-02 -7.14E-02 Scn2a1 2.18E-02 6.30E-03 

Cacna1a 1.50E-02 7.51E-02 Kcnab3 3.34E-03 -6.71E-02 Scn2a1 4.53E-02 2.17E-02 

Cacna1a 2.13E-02 1.06E-01 Kcnab3 3.41E-02 8.80E-02 Scn2b 9.08E-03 2.54E-02 

Cacna1a 2.30E-02 1.25E-01 Kcnc1 4.35E-03 1.02E-01 Scn2b 3.33E-02 -4.79E-02 

Cacna1a 2.79E-02 1.47E-01 Kcnc1 2.78E-02 -6.45E-02 Scn3b 4.43E-03 1.43E-01 

Cacna1a 3.14E-02 -9.30E-02 Kcnc1 2.91E-02 7.55E-02 Scn3b 9.67E-03 1.12E-01 

Cacna1a 4.19E-02 1.44E-01 Kcnc2 9.99E-03 -6.90E-02 Scn3b 1.83E-02 -7.24E-02 

Cacna1a 4.81E-02 1.19E-01 Kcnc2 1.71E-02 9.82E-02 Scn3b 2.00E-02 1.01E-01 

Cacna1b 3.29E-02 1.41E-01 Kcnc2 1.90E-02 4.55E-02 Scn3b 3.67E-02 5.30E-02 

Cacna1b 3.38E-02 1.85E-01 Kcnc2 4.55E-02 1.27E-02 Scn3b 3.81E-02 2.10E-03 

Cacna1b 3.52E-02 1.87E-01 Kcnc3 2.65E-02 -4.13E-02 Scn3b 4.00E-02 9.20E-02 

Cacna1c 3.11E-02 1.47E-01 Kcnc3 3.59E-02 3.09E-02 Scn4b 1.83E-02 4.36E-02 

Cacna1e 1.91E-02 -4.72E-03 Kcnc4 8.36E-03 1.78E-02 Scn8a 4.42E-02 8.04E-02 

Cacna1g 4.00E-02 1.58E-01 Kcnc4 2.58E-02 -4.21E-02 Scn8a 4.58E-02 1.74E-02 

Cacna1h 6.99E-03 1.02E-01 Kcnd1 1.00E-02 7.67E-02    

Cacna1h 3.76E-02 1.25E-01 Kcnd1 2.32E-02 -9.59E-02    

Cacna1i 6.85E-03 8.00E-02 Kcng1 7.15E-03 2.56E-01    

Cacna1i 3.09E-02 4.72E-02 Kcng1 1.43E-02 -5.79E-02    

Cacna1i 3.09E-02 -8.68E-02 Kcng1 2.11E-02 1.00E-01    

Cacna1i 4.91E-02 1.97E-01 Kcnh1 2.59E-02 4.85E-02    

Cacna2d1 1.46E-02 NA Kcnh2 2.25E-02 -8.84E-02    

Cacna2d1 3.73E-02 NA Kcnh3 4.78E-02 5.48E-02    

Cacna2d1 4.10E-02 NA Kcnj3 2.43E-02 2.00E-04    

Cacna2d3 1.24E-02 1.10E-01 Kcnj3 4.79E-02 -6.23E-02    

Cacna2d3 2.42E-02 -1.11E-01 Kcnn2 3.49E-02 1.21E-01    

Cacna2d3 4.87E-02 6.88E-02 Kcnv1 1.52E-02 2.60E-02    

Cacna2d3 4.97E-02 1.32E-01 Kcnv1 2.91E-02 -4.11E-02    

Cacnb1 2.29E-02 -5.82E-02       

Cacnb1 4.71E-02 4.25E-02       

Cacnb2 2.32E-02 -1.06E-01       

Cacnb2 2.62E-02 1.23E-01       

Cacnb2 3.61E-02 -7.95E-02       

Cacng3 1.60E-02 2.86E-02       

Cacng3 2.08E-02 1.29E-01       

Cacng3 4.40E-02 1.03E-01       

Table 6.6: Genes coding for voltage-gated channels found to be differentially expressed, 

at exon level, in the heterozygous mice 

 

b.ii Neurotransmitter receptors 

Additionally, the results of the RNAseq analysis showed significant changes in the expression 

of genes coding for neurotransmitter receptor subunits, as well as exon-specific expression 

changes (table 6.7 and 6.8). In the cortex, genes encoding cholinergic and GABAergic 
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receptors are affected in these mice. Both these systems have been showed to be impaired in 

mental illness and selected as potential drug targets for schizophrenia. The glutamatergic 

system was also found affected as several genes involved in the glutamate pathway were found 

differentially expressed. In the cortex, multiple genes encoding serotonin receptors have been 

found down regulated which could lead to deficits in memory and learning. Overall, the 

receptors for neurotransmitters seem to be down regulated which would indicate an important 

alteration of neuronal signalling and an imbalance between excitatory and inhibitory signals.  

 

 Gene log2FC padj Receptors name 

Cholinergic 

receptors 

Chrm2 -0.347 0.003 Cholinergic Receptor Muscarinic 

Chrna7 -0.236 0.033 
Cholinergic Receptor Nicotinic 

Chrnb2 -0.126 0.044 

GABAergic 

receptors  

Gabrb2 -0.239 0.030 

GABA A  Gabre -0.3296 0.010 

Gabrq -0.429 0.001 

Glutamatergic 

receptors 

Gria2 -0.177 0.010 Glutamate Ionotropic Receptor AMPA  

Grik3 -0.199 0.029 Glutamate Ionotropic Receptor Kainate 

Grm1 -0.198 0.009 Glutamate Metabotropic Receptor 1 

Serotoninergic 

receptors 

Htr1b -0.273 0.028 

5-Hydroxytryptamine  

Htr1f -0.257 0.047 

Htr2c -0.222 0.039 

Htr4 -0.255 0.047 

Htr5a -0.168 0.018 

Table 6.7: Genes coding for neurotransmitter receptors and found to be differentially 

expressed at gene level, in the heterozygous mice 
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GABAergic receptors Glutamatergic receptors Cholinergic receptors 

gene padj log2fc gene padj log2fc gene padj log2fc 

Gabarapl1 8.64E-03 6.10E-03 Gria1 1.58E-02 6.62E-03 Chrm1 3.85E-02 -2.08E-02 

Gabarapl1 1.58E-02 -1.91E-02 Gria1 2.50E-02 2.35E-02 Chrm2 4.13E-02 -1.06E-01 

Gabbr1 3.12E-02 4.36E-02 Gria1 3.17E-02 5.73E-02 Chrm3 1.34E-02 -7.43E-02 

Gabbr1 3.77E-02 -3.32E-02 Gria1 3.64E-02 6.27E-02 Chrm3 2.44E-02 2.66E-03 

Gabbr1 4.71E-02 1.62E-02 Gria1 4.38E-02 4.54E-02 Chrm3 3.55E-02 8.91E-02 

Gabbr1 4.90E-02 5.04E-02 Gria1 4.60E-02 -4.88E-02 Chrm3 4.39E-02 1.02E-01 

Gabbr2 4.89E-02 1.92E-02 Grik2 3.76E-02 -8.70E-02 Chrnb2 3.02E-02 1.80E-01 

Gabpa 1.78E-02 -7.52E-02 Grik3 7.70E-03 1.46E-01 Serotoninergic receptors 

Gabra1 1.02E-02 2.77E-02 Grik3 4.79E-02 1.28E-01 gene padj log2fc 

Gabra1 2.35E-02 1.77E-02 Grik5 2.51E-02 7.95E-02 Htr2c 1.75E-02 8.13E-02 

Gabra1 3.09E-02 7.99E-04 Grin1 1.21E-02 2.02E-01 Htr2c 3.77E-02 7.74E-02 

Gabra1 3.47E-02 -6.11E-02 Grin1 1.40E-02 8.72E-02   

Gabra2 1.53E-02 5.80E-02 Grin1 1.41E-02 7.75E-02   

Gabra2 2.03E-02 1.43E-01 Grin1 1.70E-02 9.15E-02   

Gabra2 4.55E-02 1.06E-01 Grin1 1.72E-02 9.30E-02   

Gabra3 1.60E-02 4.74E-02 Grin1 1.78E-02 -8.00E-02   

Gabra3 2.21E-02 4.55E-02 Grin1 2.01E-02 6.64E-02   

Gabra3 2.34E-02 1.26E-02 Grin1 2.15E-02 -5.72E-02   

Gabra3 2.89E-02 -5.55E-02 Grin1 2.82E-02 7.72E-02   

Gabra3 3.80E-02 3.33E-02 Grin1 2.89E-02 6.35E-02   

Gabra4 1.95E-02 -7.92E-02 Grin1 3.37E-02 7.91E-02   

Gabra4 2.36E-02 5.56E-02 Grin1 3.47E-02 5.08E-02   

Gabra4 4.93E-02 4.74E-02 Grin1 4.87E-02 -5.70E-02   

Gabra5 2.54E-02 1.14E-01 Grin3a 1.28E-02 4.28E-02   

Gabra5 3.00E-02 -6.52E-02 Grin3a 2.89E-02 -9.18E-02   

Gabrb3 2.55E-02 -8.87E-02 Grina 4.16E-02 1.33E-02   

Gabrb3 2.82E-02 6.12E-02 Grina 4.55E-02 3.31E-02   

Gabrb3 3.02E-02 -1.93E-02 Gripap1 5.98E-03 -6.65E-02   

Gabrb3 4.95E-02 5.81E-02 Grk6 1.46E-02 1.15E-01   

Gabrd 1.68E-02 -7.06E-02 Grk6 2.68E-02 8.07E-02   

Gabrd 4.28E-02 3.88E-02 Grm2 2.54E-02 1.25E-01   

Gabrd 4.80E-02 3.10E-02 Grm4 5.80E-03 1.22E-01   

Gabrg2 6.98E-04 8.85E-02 Grm5 1.66E-02 8.62E-03   

Gabrg2 3.04E-03 7.08E-02 Grm7 9.09E-03 1.66E-02   

Gabrg2 1.12E-02 1.11E-01 Grm7 4.14E-02 -1.04E-01   

Gabrg2 1.59E-02 -3.69E-02      

Gabrg2 3.72E-02 -5.97E-02      
Table 6.8: Genes coding for neurotransmitter receptors and found to be differentially 

expressed, at exon level, in the heterozygous mice 
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b.iii Vesicles 

Additionally, genes necessary for vesicle trafficking have been found abnormally expressed at 

the gene and exon level (table 6.9 and 6.10) which would indicate a possible impairment of 

neurotransmitter release and overall cell communication and signalling. Overall, the 

expression of implicated genes is mainly downregulated (table 6.9) which would suggest that 

there is a diminution of the vesicular traffic in the cortex of the heterozygous mice. 

 

Gene log2FC padj Protein family 

Nsf -0.10607 0.034844 Vesicle Fusing ATPase 

Stx16 -0.08754 0.03149 
Syntaxin 

Stx1a 0.159658 0.021553 

Synj1 -0.17764 0.004892 
Synaptojanin 

Synj2 -0.27338 0.011166 

Syt10 -0.39057 0.004215 
Synaptotagmin 

Syt4 -0.17802 0.021778 

Table 6.9: Genes coding for proteins involved in vesicular trafficking and found to be 

differentially expressed at gene level in the heterozygous mice 

 

Genes involved in vesicle trafficking  

gene padj log2fold gene padj log2fold 

Nsf 7.26E-03 2.42E-02 Syn1 4.84E-02 4.51E-02 

Nsf 1.62E-02 1.33E-02 Syn2 1.42E-03 -7.51E-02 

Nsf 2.17E-02 2.18E-02 Syn2 1.62E-02 3.12E-02 

Nsf 2.17E-02 4.19E-02 Syn2 1.75E-02 5.48E-02 

Nsf 2.28E-02 -5.66E-02 Syngr1 1.79E-02 2.82E-02 

Nsf 2.36E-02 6.46E-02 Syngr1 3.87E-02 -2.77E-02 

Nsf 2.72E-02 5.29E-02 Synj1 9.16E-05 2.22E-01 

Nsf 3.24E-02 6.92E-02 Synj1 4.35E-03 1.27E-01 

Nsf 4.78E-02 2.43E-02 Synj1 1.41E-02 1.19E-01 

Nsf 4.80E-02 2.41E-02 Synj1 2.72E-02 7.97E-02 

Nsf 4.84E-02 4.78E-02 Synj2 1.60E-02 1.41E-01 

Stx1b 4.24E-02 1.36E-02 Synpr 5.00E-02 7.59E-03 

Stx4a 4.08E-02 -1.19E-01 Synrg 1.78E-02 1.22E-01 

Stx6 2.71E-02 -2.77E-02 Synrg 1.80E-02 1.84E-01 

Stxbp1 4.56E-03 2.58E-02 Synrg 1.92E-02 1.62E-01 

Stxbp1 6.83E-03 4.59E-02 Synrg 4.66E-02 1.27E-01 

Stxbp1 7.03E-03 4.33E-02 Synrg 4.85E-02 1.26E-01 

Stxbp1 7.19E-03 -4.35E-02 Syp 2.15E-02 -1.38E-03 

Stxbp1 7.46E-03 -1.59E-01 Syp 2.91E-02 -3.95E-02 

Stxbp1 1.60E-02 4.23E-02 Syp 3.00E-02 1.87E-02 

Stxbp1 2.47E-02 6.03E-03 Syp 3.62E-02 1.96E-03 

Stxbp1 2.69E-02 2.59E-02 Syt1 2.07E-02 1.04E-02 

Stxbp1 3.10E-02 3.05E-02 Syt1 2.70E-02 1.18E-02 
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Stxbp1 3.76E-02 3.88E-02 Syt1 2.71E-02 -1.79E-03 

Stxbp1 4.67E-02 4.30E-03 Syt1 2.89E-02 -4.64E-02 

Stxbp1 4.79E-02 2.77E-03 Syt1 3.54E-02 -8.87E-03 

Stxbp1 4.79E-02 2.09E-02 Syt1 3.82E-02 3.31E-02 

Stxbp5 1.41E-02 1.50E-01 Syt1 4.40E-02 3.57E-02 

Stxbp5 3.98E-02 1.43E-01 Syt1 4.41E-02 2.41E-02 

Stxbp6 1.44E-02 2.96E-02 Syt1 4.94E-02 2.66E-02 

Stxbp6 3.50E-02 -4.16E-02 Syt1 4.96E-02 2.93E-02 

   Syt11 1.86E-02 6.25E-02 

   Syt11 2.01E-02 2.34E-02 

   Syt11 3.46E-02 -2.47E-02 

   Syt13 1.36E-03 2.85E-02 

   Syt13 2.76E-02 -3.07E-02 

   Syt2 1.44E-02 -9.79E-02 

   Syt4 1.53E-02 2.69E-02 

   Syt4 1.59E-02 -5.35E-02 

   Syt4 3.34E-02 2.37E-02 

   Syt9 1.34E-02 -6.83E-02 

Table 6.10: Genes coding for proteins involved in vesicular trafficking and found to be 

differentially expressed at exon level, in the heterozygous mice 

 

b.iv Synapses  

Genes necessary for the formation and function of synapses were also found to be differentially 

expressed at gene and exon level compared to the wild-type (table 6.11 and 6.12). Those genes 

code for membrane proteins which are essential for the propagation of synaptic signals 

between neurons. This indicate that synaptic transmission is altered and therefore the 

formation of memory could also be affected in the heterozygous mice. 

Post-synaptic membrane Pre-synaptic membrane 

Gene log2FC padj Gene log2FC padj 

Clstn3 -1.19E-01 3.73E-02 Stx16 -8.75E-02 3.15E-02 

Dnm3 -1.72E-01 6.67E-03 Stx1a 1.60E-01 2.16E-02 

Dnmt1 -1.50E-01 3.54E-02    

Shisa4 2.06E-01 4.62E-03    

Shisa6 -2.71E-01 2.93E-02    
Table 6.11: Expression of genes coding for protein involved in synaptic membrane  
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Post-synaptic membrane Pre-synaptic membrane 

Gene padj log2FC Gene padj log2FC 

Clstn1 2.34E-03 3.50E-02 Rims3 3.73E-02 -3.09E-02 

Clstn1 4.65E-03 5.63E-02 Rims3 4.05E-02 1.42E-01 

Clstn1 8.76E-03 4.16E-02 Stx1b 4.24E-02 1.36E-02 

Clstn1 9.99E-03 4.94E-02 Stx4a 4.08E-02 -1.19E-01 

Clstn1 1.34E-02 5.29E-02 Unc13a 2.93E-02 4.14E-02 

Clstn1 1.45E-02 -4.43E-02 Unc13a 3.01E-02 8.43E-02 

Clstn1 1.86E-02 2.33E-02 Unc13a 3.26E-02 2.13E-02 

Clstn1 2.01E-02 6.91E-02 Unc13a 4.00E-02 6.57E-02 

Clstn1 3.57E-02 8.74E-03 Nrxn1 4.68E-02 2.86E-02 

Clstn2 2.06E-03 1.27E-01 Nrxn2 8.38E-03 1.14E-01 

Clstn2 4.97E-02 3.66E-02 Nrxn2 1.27E-02 1.41E-01 

Clstn3 5.65E-05 6.01E-02 Nrxn2 3.50E-02 -4.87E-02 

Clstn3 6.98E-04 3.91E-02 Nrxn3 1.74E-02 4.95E-02 

Clstn3 1.89E-02 -7.88E-02 Nrxn3 2.31E-02 1.75E-01 

Clstn3 2.07E-02 7.98E-02 Nrxn3 2.88E-02 1.00E-01 

Clstn3 2.18E-02 -5.46E-02 Nrxn3 2.94E-02 1.79E-01 

Clstn3 2.46E-02 -6.68E-02 Nrxn3 3.79E-02 -7.52E-02 

Clstn3 2.62E-02 2.01E-02 Nrxn3 4.44E-02 1.82E-01 

Clstn3 3.00E-02 8.36E-02 Pclo 9.64E-03 1.14E-01 

Clstn3 3.23E-02 5.36E-02 Pclo 2.54E-02 1.51E-01 

Clstn3 3.27E-02 6.56E-02    

Clstn3 4.50E-02 1.34E-01    

Clstn3 4.63E-02 8.09E-02    

Dnm1 2.27E-03 -1.81E-01    

Dnm1 2.41E-03 -1.28E-01    

Dnm1 2.62E-03 -6.41E-02    

Dnm1 1.37E-02 8.31E-02    

Dnm1 1.85E-02 7.69E-02    

Dnm1 3.09E-02 -4.55E-02    

Dnm1 3.87E-02 6.59E-02    

Dnm1 3.93E-02 5.74E-02    

Dnm1 4.15E-02 -4.45E-02    

Dnm1 4.39E-02 8.36E-02    

Dnm3 3.26E-03 1.51E-01    

Dnm3 1.36E-02 1.35E-01    

Dnm3 2.71E-02 9.01E-02    

Dnm3 4.71E-02 8.68E-02    

Dnm3 4.83E-02 -8.39E-02    

Shank1 6.12E-03 2.31E-01    

Shisa5 3.47E-02 -6.41E-02    

Shisa6 2.02E-02 -1.01E-01    

Shisa9 9.59E-03 2.94E-02    

Nlgn2 3.69E-03 1.16E-04    

Nlgn2 1.42E-02 -5.33E-02    

Nlgn2 2.68E-02 2.69E-02    

Nlgn2 3.63E-02 4.28E-02    

Nlgn2 3.95E-02 6.36E-02    

Nlgn2 4.41E-02 1.45E-02    

Table 6.12: Exon expression of genes coding for proteins involved in synaptic membrane 
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Overall, several systems believed to be affected in mental disorders are predicted to be affected 

in the heterozygote Der1 mice. Multiple genes affected are involved in cell communication 

and signalling. Indeed, it seems that the vesicles trafficking is affected which in turn could 

affect the release of neurotransmitters, which would then affect the receptor stimulation. A 

decrease in neurotransmitter release could lead to a lack of stimulation therefore leading to an 

increase expression of the post-synaptic receptors such as AMPA, NMDA, GABA receptors, 

leading to hypersensitivity of the neuron (Barnes, 1996; Tallent, 2007; Condon and Ehlers, 

2010). Indeed, a very small release of neurotransmitter would activate the receptors and lead 

to neuronal activity. However, the RNAseq does not indicate any dysregulation regarding 

neurotransmitter release but a majority of the receptors are up-regulated in the Der1 mice 

which could support this hypothesis. 

The global effect would lead to a dysfunction of the synapses which would not be able to 

function properly therefore leading to a miscommunication between neurons and possibly 

between the different cortical regions and between the hippocampus and the cortex. 

 

c. Ingenuity pathway analysis of the differentially expressed genes 

 in the cortex of the heterozygous mice 

In order to gain more insight on which pathways are affected, and how they are affected, 

Ingenuity Pathway Analysis (IPA) was used. The network of canonical pathways shows the 

relations between the 25 most significant pathways and indicates that most of the genes are 

involved in several pathways (figure 6.11). The representation of the canonical pathways 

reveals that there are 71 significant pathways in which the genes are involved in (figure 6.12, 

table 6.13). In the cortex, 10 pathways seem to be activated and 15 inhibited.  The pathway 

that is most significantly affected is EIF2 (Eukaryotic initiation factor-2), and it has the highest 

number of genes differentially expressed. This pathway is involved in the regulation of mRNA 

translation and so of protein synthesis and seems to be highly affected in the heterozygous 

mouse cortex. The second most significantly affected canonical pathway is the oxidative 

phosphorylation. This process is localised in the mitochondria and is essential to produce the 

necessary energy for the cell function. Exchange of electron allows the production of ATP in 

the cell which form a PH gradient and membrane potential (Smeitink et al., 2006). Defect of 

this process can lead to bioenergy deficiency, imbalance of electrons and metabolites, 

disturbed production of ROS, production of nitric oxide and altered apoptosis pattern 

(Smeitink et al., 2006). Similarly, mitochondrial dysfunction is also a significant canonical 

pathway affected by the genes differentially expressed. Mitochondria are the powerhouse of 
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the cell and mainly regulate apoptotic pathways. Dysfunction of mitochondria could lead to 

the same consequences as the ones of oxidative phosphorylation defect (Pieczenik and 

Neustadt, 2007). Those three most affected pathways indicate that protein synthesis might be 

altered in the Der1 mice, therefore affecting multiple functions. Additionally, mitochondria 

activity is mainly affected indicating that basic cellular functions are likely to be affected due 

to the possible change in ATP production. 

 

Figure 6.11: Map of the overlapping canonical pathways in the cortex 

This represents shared biology among the identified candidate genes. Canonical 

pathways linked with black lines share one or more genes in common. The brighter 

the red of the node, the more significant the canonical pathway. 
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significant Ingenuity Canonical Pathways  -log(p-value) number of genes 

EIF2 Signaling 1.06E+01 54 

Oxidative Phosphorylation 1.04E+01 34 

Mitochondrial Dysfunction 9.66E+00 44 

Regulation of eIF4 and p70S6K Signaling 8.43E+00 40 

mTOR Signaling 7.03E+00 44 

NRF2-mediated Oxidative Stress Response 5.01E+00 38 

Noradrenaline and Adrenaline Degradation 4.19E+00 12 

Ethanol Degradation II 3.91E+00 11 

Ethanol Degradation IV 3.67E+00 9 

Aryl Hydrocarbon Receptor Signaling 3.58E+00 27 

Oxidative Ethanol Degradation III 3.57E+00 8 

Putrescine Degradation III 3.22E+00 8 

Histamine Degradation 3.11E+00 7 

Fatty Acid Î²-oxidation I 3.10E+00 10 

Huntington's Disease Signaling 3.01E+00 39 

Tryptophan Degradation X  2.92E+00 8 

Dopamine Degradation 2.82E+00 9 

Xenobiotic Metabolism Signaling 2.82E+00 42 

Protein Ubiquitination Pathway 2.82E+00 41 

Fatty Acid Î±-oxidation 2.63E+00 7 

Superoxide Radicals Degradation 2.30E+00 4 

GNRH Signaling 2.26E+00 22 

Estrogen Receptor Signaling 2.22E+00 22 

Assembly of RNA Polymerase II Complex 2.18E+00 11 

Glucocorticoid Receptor Signaling 2.17E+00 41 

3-phosphoinositide Degradation 2.14E+00 25 

CREB Signaling in Neurons 2.11E+00 29 

Insulin Receptor Signaling 2.01E+00 23 

4-hydroxyproline Degradation I 2.00E+00 2 

Choline Degradation I 2.00E+00 2 

Proline Degradation 2.00E+00 2 

Endoplasmic Reticulum Stress Pathway 1.95E+00 6 

Role of JAK2 in Hormone-like Cytokine Signaling 1.94E+00 8 

Glutaryl-CoA Degradation 1.90E+00 5 

Serotonin Receptor Signaling 1.89E+00 9 

RhoA Signaling 1.85E+00 20 

PDGF Signaling 1.80E+00 16 

IL-4 Signaling 1.78E+00 15 

JAK/Stat Signaling 1.78E+00 15 

PI3K/AKT Signaling 1.74E+00 20 

FLT3 Signaling in Hematopoietic Progenitor Cells 1.69E+00 15 

Glutamate Receptor Signaling 1.68E+00 11 

NGF Signaling 1.64E+00 19 

Germ Cell-Sertoli Cell Junction Signaling 1.64E+00 25 
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Renal Cell Carcinoma Signaling 1.62E+00 14 

Melanocyte Development and Pigmentation Signaling 1.59E+00 16 

RhoGDI Signaling 1.58E+00 25 

Serotonin Degradation 1.57E+00 11 

GM-CSF Signaling 1.56E+00 13 

Semaphorin Signaling in Neurons 1.56E+00 10 

Superpathway of D-myo-inositol (1,4,5)-trisphosphate 

Metabolism 1.56E+00 6 

D-myo-inositol (1,4,5)-trisphosphate Degradation 1.55E+00 5 

Diphthamide Biosynthesis 1.55E+00 2 

Thiosulfate Disproportionation III (Rhodanese) 1.55E+00 2 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 1.54E+00 21 

D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis 1.54E+00 21 

Dopamine Receptor Signaling 1.52E+00 13 

Actin Nucleation by ARP-WASP Complex 1.51E+00 10 

B Cell Receptor Signaling 1.48E+00 26 

PPARÎ±/RXRÎ± Activation 1.47E+00 25 

1D-myo-inositol Hexakisphosphate Biosynthesis II 1.46E+00 5 

D-myo-inositol (1,3,4)-trisphosphate Biosynthesis 1.46E+00 5 

Androgen Signaling 1.44E+00 17 

Unfolded protein response 1.41E+00 10 

Angiopoietin Signaling 1.39E+00 13 

CNTF Signaling 1.38E+00 11 

HIPPO signaling 1.38E+00 14 

Nucleotide Excision Repair Pathway 1.38E+00 7 

Oncostatin M Signaling 1.38E+00 7 

Isoleucine Degradation I 1.36E+00 4 

IGF-1 Signaling 1.31E+00 16 

Table 6.13: Canonical pathway significantly affected by the differentially expressed genes 

in the heterozygote’s cortex 

71 significant pathways were found. -log (p-value)>1,3 = p-value<0.05. Number of genes 

differentially expressed for each pathway are indicated. 

 

Additionally, several neurotransmitters signalling pathways are affected. The dopaminergic 

receptor signalling pathway (figure 6.13) reveals that the adenylyl cyclase (AC) and protein 

kinase A (PKA) is predicted to be upregulated while PP1 would be downregulated in the 

cortices of the heterozygote mice. This results also indicates that modification of the 

expression of these genes affect the synaptic compartment. Overall, the results indicate that 

dopamine synthesis, firing of dopaminergic neurons and CA2+ influx are down regulated 

however dopaminergic receptors would be up-regulated which would lead to the upregulation 

of the modulation of phosphoinositide metabolism in pre-synaptique neuron and up-regulation 

of phenotypes such as eye blinking and emesis process which are two mechanism regulated 
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by dopaminergic receptors function (O’Brien, 2003; Jongkees and Colzato, 2016). Disturbed 

dopaminergic neurotransmission has been known to be involved in mental disorder and to 

affect the mood. It seems that in the cortex of these heterozygote mice glutamate receptor 

signalling is also affected (figure 6.14). If this glutamatergic pathway is affected due to 

multiple genes differentially expressed involved in this pathway, then IPA software predict 

that the gene DLG4 and GRIA3 and GRIK3 (glutamate receptors) would be upregulated while 

glutamate-ammonia ligase (GLNS) would be downregulated. Overall, glutamate would be 

predicted to be upregulated as well as several receptors and PSD95 even though they were not 

found to be significantly different in the data obtained with RNAseq analysis. It seems that 

this would lead to upregulation of neuronal depolarization, synaptic plasticity, neurotoxicity 

and excitatory post-synaptic potential (EPSPs) and activation of the clustering of receptors. 

Impairment of glutamate pathway is known to be link to mental disorder as well. The serotonin 

pathway (figure 6.15) also seems to be affected by the differential expression found in the 

cortical samples of the heterozygous mice. Serotonin receptors 5HT1B, 5HT2, 5HT4 are 

downregulated as well as adenylate cyclase (ADCY) while mono-amine oxidase (MAO) and 

6-pyruvoyltetrahydropterin (6-PTPS) synthase are upregulated. This is predicted to lead to 

activation of CA2+ influx and inhibition of phosphoinositide hydrolysis as well as to inhibit 

the activation of adenylate cyclase. This would mean that serotonin would accumulate in the 

synapse. The mTOR pathway involved in cell growth, proliferation and survival is also 

affected in the cortices of the heterozygous mice (figure 6.16). Indeed, multiple genes from 

the pathway are dysregulated and the results predict that this could lead to a downregulation 

of the autophagy process as well as an inhibition of the translation via 4EBP and an activation 

of the translation via activation of the ribosome. mTOR pathway is also known to be disturbed 

in mental disorder, moreover it is a target of DISC1, indeed, DISC1 binds to KIAA1212 to 

regulate AKT-mTOR signaling pathway and therefore regulates neuronal development 

through this function (Kim et al., 2009). 

In addition to impairments of several pathways involved in cellular functions, the cortical 

analysis predicts impairment of neurotransmitter function and therefore could indicate that 

activation and inhibition of neurons following the receipt of an information is disturbed in the 

cortices of the heterozygous mice. This could indicate impairment of synaptic plasticity which 

is regulated in part via neurotransmitter release and receptor expression. 
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Figure 6.13: Representation of the expected activation state of the dopamine receptors 

signalling pathway obtain from the cortical RNAseq analysis using IPA 

Several genes involved in this pathway have been found to be differentially expressed 

and the IPA analysis predict which molecules and process would be activated/inhibited 

and upregulated/down regulated in the cortex.  

The genes in magenta/purple have been found in our analysis to be differentially 

expressed in the cortex of the heterozygous mice compared to the wild type mice. The 

genes in red or pink are expected to be up regulated and those in green are expected 

to be down regulated. Solid lines and broken lines respectively show direct or indirect 

interactions. Orange lines leads to activation, blue lines lead to inhibition, yellow 

lines represent inconsistent findings and grey line represent unpredicted results. 

Orange and blue fillings respectively indicate predicted activated or inhibited genes.  
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Figure 6.14: Representation of the expected activation state of the glutamate signalling 

pathway obtain from the cortical RNAseq analysis using IPA. 

Several genes involved in this pathway have been found to be differentially expressed 

and the IPA analysis predict which molecules and process would be activated/inhibited 

and upregulated/down regulated in the cortex.  

The genes circled in magenta have been found in our analysis to be differentially 

expressed in the cortex of the heterozygous mice compared to the wild type mice. The 

genes in red or pink are expected to be up regulated and those in green are expected 

to be down regulated. Solid lines and broken lines respectively show direct or indirect 

interactions. Orange lines leads to activation, blue lines lead to inhibition, yellow lines 

represent inconsistent findings and grey line represent unpredicted results. Orange 

and blue fillings respectively indicate predicted activated or inhibited genes.  
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Figure 6.15: Representation of the expected activation state of the serotonin receptors 

signalling pathway obtain from the cortical RNAseq analysis using IPA 

Several genes involved in this pathway have been found to be differentially expressed 

and the IPA analysis predict which molecules and process would be activated/inhibited 

and upregulated/down regulated in the cortex.  

The genes circled in magenta have been found in our analysis to be differentially 

expressed in the cortex of the heterozygous mice compared to the wild type mice. The 

genes in red or pink are expected to be up regulated and those in green are expected 

to be down regulated. Solid lines and lines respectively show direct or indirect 

interactions. Orange lines leads to activation, blue lines lead to inhibition, yellow lines 

represent inconsistent findings and grey line represent unpredicted results. Orange 

and blue fillings respectively indicate predicted activated or inhibited genes.  
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Figure 6.16: Representation of the expected activation state of the mTOR signalling 

pathway obtain from the cortical RNAseq analysis using IPA 

Several genes involved in this pathway have been found to be differentially expressed 

and the IPA analysis predict which molecules and process would be activated/inhibited 

and upregulated/down regulated in the cortex.  

The genes circled in magenta have been found in our analysis to be differentially 

expressed in the cortex of the heterozygous mice compared to the wild type mice. The 

genes in red or pink are expected to be up regulated and those in green are expected 

to be down regulated. Solid lines and broken lines respectively show direct or indirect 

interactions. Orange lines leads to activation, blue lines lead to inhibition, yellow lines 

represent inconsistent findings and grey line represent unpredicted results. Orange 

and blue fillings respectively indicate predicted activated or inhibited genes. 
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6.2.4 Hippocampus samples  

a. Gene ontology of the cortical samples from the heterozygous 

 mice 

GO analysis of the differentially expressed genes from the hippocampal samples revealed that 

several processes are likely to be affected by the mutation, with a total of 27 GO component, 

20 GO function, 63 GO process terms which are significantly affected by the genes 

differentially expressed. Overall, there were less changes in the hippocampus compared to the 

cortex. These results were obtained from the analysis of the differentially expressed genes and 

exons found to be significantly different in the hippocampus of the heterozygous Der1 mice 

compared to the wild-type. 

The main processes predicted to be affected by the Der1 mutation in the hippocampus of the 

heterozygous mice are involved in synaptic organization and function, electrical activity, 

development, transport, localization, neurogenesis and neurotransmitter secretion (table 6.14). 

Furthermore, some of the genes affected are involved in channel activity with voltage-gated 

cation channel activity as the major function enriched. Transporter activity and binding 

activity are also enriched function (table 6.15). The major components affected are the 

synapses as well as channel and transporter complex. Genes affecting neuron parts such as 

projections and axons are also enriched in the dysregulated gene set from the hippocampus of 

the heterozygous mice (table 6.16). 

Overall, the genes that are differentially expressed in the hippocampus are involved mainly in 

synaptic function. This indicates that cell communication and signalling could be impaired in 

the hippocampus of the heterozygous Der1 mice due to a dysfunction of the channels and 

transporters, therefore leading to an impaired action potential and membrane depolarization. 
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Description FDR q-value 
(padj) 

Enrichment Number of 
genes 

regulation of membrane potential 1.51E-03 4.31 19 

synapse organization 4.83E-03 6.86 11 

signalling 1.56E-02 3.41 18 

regulation of ion transport 1.89E-02 3 20 

developmental process 2.14E-02 1.56 74 

action potential 2.20E-02 8.57 7 

membrane depolarization 2.68E-02 10.41 6 

regulation of neuron differentiation 2.56E-02 2.87 24 

regulation of transmembrane transport 3.05E-02 3.16 17 

regulation of ion transmembrane transport 3.65E-02 3.38 15 

regulation of neurogenesis 3.74E-02 2.57 26 

synaptic signalling 3.67E-02 4.02 13 

trans-synaptic signalling 3.50E-02 4.02 13 

anterograde trans-synaptic signalling 8.26E-02 3.83 12 

chemical synaptic transmission 7.97E-02 3.83 12 

signal release from synapse 7.60E-02 7.44 6 

cell communication 7.68E-02 2.65 19 

positive regulation of cell differentiation 7.58E-02 2.3 25 

cell-cell signalling 7.86E-02 3.11 15 

localization 8.16E-02 1.55 60 

regulation of neuron projection development 1.01E-01 2.86 18 

regulation of localization 1.13E-01 1.67 45 

transport 1.25E-01 1.59 52 

ion transmembrane transport 1.45E-01 2.63 16 

nervous system development 1.57E-01 2.98 12 

neurotransmitter secretion 1.52E-01 10.91 4 

regulation of dendrite development 1.61E-01 4.36 8 

membrane depolarization during action potential 1.56E-01 10.61 4 

regulation of ion transmembrane transporter activity 1.67E-01 3.85 9 

cation transport 1.81E-01 2.44 18 

cell proliferation in forebrain 1.83E-01 16.84 3 

regulation of dendrite morphogenesis 1.89E-01 5.56 6 

protein localization to membrane 2.41E-01 3.07 11 

regulation of cation channel activity 2.38E-01 4.48 7 

Table 6.14: Processes affected by the Der1 mutation in the hippocampus of the 

heterozygous mice  

'FDR q-value' or padj is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 

number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 
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Description FDR q-value 
(padj) 

Enrichment Number 
of genes 

voltage-gated cation channel activity 8.76E-03 6.92 10 

cation channel activity 6.50E-03 4.53 14 

ion channel activity 1.95E-02 3.74 15 

ion gated channel activity 1.47E-02 4.25 13 

gated channel activity 1.31E-02 4.21 13 

substrate-specific channel activity 1.24E-02 3.66 15 

voltage-gated channel activity 1.39E-02 5.27 10 

voltage-gated ion channel activity 1.21E-02 5.27 10 

passive transmembrane transporter activity 1.56E-02 3.47 15 

channel activity 1.41E-02 3.47 15 

calcium ion binding 4.07E-02 2.87 17 

metal ion transmembrane transporter activity 5.50E-02 3.17 14 

inorganic cation transmembrane transporter activity 6.88E-02 2.81 16 

voltage-gated potassium channel activity 1.04E-01 6.51 6 

protein dimerization activity 1.20E-01 2.01 27 

syntaxin binding 1.30E-01 6.09 6 

protein binding 1.29E-01 1.27 109 

cation transmembrane transporter activity 1.41E-01 2.56 16 

outward rectifier potassium channel activity 1.36E-01 17.9 3 

binding 1.85E-01 1.17 142 

Table 6.15: Functions affected by the Der1 mutation in the hippocampus of the 

heterozygous mice 

'FDR q-value' or padj is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 

number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 
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Description FDR q-value 

(Padj) 

Enrichment Number 

of genes 

synapse part 1.58E-07 3.88 31 

synaptic membrane 9.50E-07 5.72 19 

synapse 5.39E-06 3.98 24 

cation channel complex 1.43E-05 6.58 14 

ion channel complex 1.15E-05 5.59 16 

transmembrane transporter complex 1.66E-05 5.38 16 

transporter complex 2.00E-05 5.25 16 

plasma membrane region 6.14E-05 2.88 29 

postsynaptic density 2.90E-04 5.21 13 

postsynaptic specialization 2.73E-04 5.19 13 

neuron part 5.63E-04 2.18 38 

postsynaptic membrane 1.11E-03 4.87 12 

axon part 1.42E-03 3.62 16 

plasma membrane bounded cell projection part 1.43E-03 2.23 33 

cell projection part 1.33E-03 2.23 33 

cell junction 1.48E-03 2.47 27 

plasma membrane part 1.43E-03 1.87 47 

cell projection 5.66E-03 1.93 38 

presynaptic membrane 5.89E-03 8.81 6 

plasma membrane protein complex 9.63E-03 2.98 16 

plasma membrane 9.96E-03 1.58 59 

neuron projection 1.25E-02 2.18 26 

terminal bouton 1.88E-02 5.71 7 

pre-synapse 2.37E-02 4.21 9 

plasma membrane bounded cell projection 2.69E-02 1.88 32 

membrane part 2.97E-02 1.38 80 

axon 4.85E-02 3.01 12 

Table 6.16: Components affected by the Der1 mutation in the hippocampus of the 

heterozygous mice 

'FDR q-value' or padj is the correction of the p-value for multiple testing using the 

Benjamini and Hochberg (1995) method: for the ith term the FDR q-value is (p-value * 

number of GO terms) / i. Number of genes correspond to the number of significant 

differentially expressed genes belonging to the descriptive term. 

Analysis with Panther software (http://pantherdb.org/) was also used. Similar molecular 

functions were affected by the change in gene expression in the hippocampus such as binding 

and transporter activity (figure 6.17, a). Additionally, the genes are also involved in catalytic 

activity, signal transducer activity and structural molecule activity. The receptor activity 

(figure 6.17, b) indicates that genes affected are involved in GABAergic and glutamatergic 

receptors activity as well as G-protein coupled receptor activity, ligand activated transcription 

factor and transmembrane receptor activity. The transporter activity (figure 6.17, c) indicates 

that the genes affected are mainly involved in ion channel activity and also in hydrogen ion 

trans-membrane transporter activity and cation trans-membrane transporter activity. 



188 

 

 

The processes found to be affected are quite broad when using Panther online, but the results 

are similar to what was previously found with Gene Ontology analysis. Indeed, processes 

involved in development, growth, localization and cellular biology could be affected by the 

modification of the expression of these genes (figure 6.18, a). Moreover, the cellular processes 

are particularly affected, indicating that the differentially expressed genes are involved in 

functions linked to cellular communication, proliferation, cycle as well as cellular component 

movement and cytokinesis (figure 6.18, c). Additionally, genes affected are involved in 

functions associated with localization, mainly with transport (figure 6.18, b). 

Figure 6.17: Molecular function in which the genes differentially expressed in the 

hippocampus of the heterozygous Der1 mice are involved. 

a. Overall representation of the molecular functions in which the genes are involved. 

b. Molecular functions involved in receptor activity. 

c. Molecular function involved in transporter activity. 

The number of significant genes included in each function is indicated at each line. 

a. 

b. c. 



189 

 

 

Figure 6.18: Process in which the genes differentially expressed in the hippocampus of 

the heterozygous Der1 mice are involved. 

a. Overall representation of the process in which the genes are involved 

b. Process involved in localization 

c. Cellular process 

The number of significant genes included in each function is indicated at each line. 

a. 

b. c. 

              , 3 genes 

,24 genes 

 

              , 44 genes 

,10 genes 

         , 2 genes 

                             , 2 genes 

  , 2 genes 
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The genes affected seem to also be important for the cellular components. Indeed, they seem 

to be involved in cellular part and junction, macromolecule complex, membrane, extracellular 

matrix and region, synapse and organelles (figure 6.19, a).  The genes are particularly 

important for the nucleus, the vesicle membrane, the cytoskeleton, the Golgi apparatus, the 

chromosomes, the endoplasmic reticulum, the peroxisome, the endosome and the 

mitochondrion (figure 19, b). Most of the genes involved in the cell parts are mostly involved 

in intracellular part then plasma membrane, cell projection and basal part (figure 6.19, c). 

Figure 6.19: Cellular component in which the genes differentially expressed in the 

hippocampus of the heterozygous Der1 mice are involved. 

a. Overall representation of the cellular component in which the genes are involved. 

b. Cellular component of the organelles. 

c. Component of cellular part. 

The number of significant genes included in each function is indicated at each line. 

a. 

b. c. 

      , 3 genes 

,49 genes 
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                 , 5 genes 

                         ,25 genes 

    , 27 genes 

 , 39 genes 

, 5 genes 

 

           , 2 genes 

       ,2 genes 

                                            , 5 genes 

      , 5 genes 

                    ,1 genes 
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         , 1 genes 

, 26 genes 

     , 1 gene 

 

         , 1 genes 

     ,8 genes 

  , 46 genes 

            , 24 genes 
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The analysis also revealed pathways in which those genes are involved. The cortical set of 

genes affected is involved in numerous pathways (figure 6.20). It seems that most of these 

pathways are involved in signalling, molecular synthesis, glutamatergic pathway. The most 

important pathway in which the differentially expressed genes are involved seems to be the 

Wnt pathway (figure 6.21), similarly to what we found with the cortical samples.   

 

Figure 6.20: Pathways in which the genes differentially expressed in the hippocampus of 

the heterozygous Der1 mice are involved 

The number of significant genes included in each function is indicated at each line. 
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The GO analysis shows some similarity between the genes expression in the hippocampus and 

the cortex of the heterozygous Der1 mice. However, the cortex is a much bigger, and less 

homogeneous area, and more genes are affected, leading to more affected characteristics. 

 

b. Genes and pathways analysis 

b.i Voltage-gated cation channel 

Voltage-gated cation channel activity is the most enriched function obtained from the RNAseq 

analysis of the hippocampal samples. Genes coding for potassium channels are the most 

affected in the hippocampus of the heterozygous Der1 mice (table 6.17). Moreover, expression 

of these genes is up regulated (log2fc>0) apart from one. A few calcium and sodium channels 

are also affected and are also mainly up regulated (table 6.17). This is similar to what was 

found in the cortex, however less genes are affected.  This indicates that neuronal plasticity 

and signalling might be altered in the Der1 heterozygous mice. Voltage-gated channels are 

necessary for the polarization and depolarization of the membrane, which might therefore be 

altered in the heterozygous mice. Changes in their expression triggers changes in neuronal 

excitability. 

 

 

 

Figure 6.21: Representation of Wnt pathway in which some differentially expressed 

genes are involved. 

The number of significant genes included in each function is indicated at each line. 
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 genes log2fc padj Analysis 

Potassium 
channels 

Kcna2 0.164 2.54E-03 DESeq 

Kcnab3 0.215 4.56E-02 DESeq 

Kcnh7 0.290 1.23E-02 DESeq 

Kcnip2 -0.177 9.39E-03 DESeq 

Calcium channel 

Cacna2d2 0.230 2.24E-02 DESeq 

Cacnb4 0.171 1.49E-02 DESeq 

Cacnb2 -0.478 2.02E-02 DEXSeq 

Sodium channel Scn2a1 0.165 -4.78E-01 DESeq 

Table 6.17: Genes coding for voltage-gated channels found to be differentially expressed 

at gene or exon level, in the hippocampus of the heterozygous mice 

Log2fc indicates if the gene is up (log2fc>0) or down (log2fc<0) regulated. Padj indicates 

the significant difference compare to the gene expression in the WT, after correcting for 

multiple testing. The analysis indicates weather the gene is a hit at the gene (DESeq) or 

exon level (DEXseq). Only one gene (Cacnb2) was found to have a differentially expressed 

exon. 

 

 

b.ii Synapse  

Multiple genes involved in synaptic composition and organization have been found 

differentially expressed in the hippocampus of the heterozygous mice and significantly 

different compared to the wild-type (table 6.18). This indicates that synaptic function might 

be altered in those mice. Several genes coding for neurotransmitter receptors such as Gabrg3 

and Grin2a are essential for synaptic signalling and have been found to be differentially 

expressed compared to wild-type. Receptors at the synapse might not be normally distributed 

due to their altered expression leading to disturbed synaptic function. Additionally, expression 

of multiple calcium channels involved in synaptic function are also altered which would lead 

to altered synaptic signalling as well. 
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Synapse organization process Synapse components 

genes log2fc padj Analysis genes log2fc padj Analysis 

Myo5a 0.148 2.51E-02 DESeq Cask 0.111 1.40E-02 DESeq 

Plxnd1 0.265 1.21E-02 DESeq Chrna4 0.261 1.29E-02 DESeq 

Unc13c 0.268 3.44E-02 DESeq Cnih2 -0.17 2.87E-02 DESeq 

Utrn 0.232 3.40E-02 DESeq Cryab -0.201 3.24E-02 DESeq 

Erbb4 0.225 1.41E-02 DESeq Disc1 -0.324 5.23E-03 DESeq 

Kalrn -0.712 4.32E-02 DEXSeq Gabrg3 0.193 1.21E-02 DESeq 

Nrxn1 -0.084 4.82E-02 DEXSeq Olfm1 -0.179 1.41E-02 DESeq 

Wnt7a 0.286 3.92E-02 DEXSeq Pcdh10 0.144 4.29E-02 DESeq 

    Pcdh8 -0.227 2.59E-03 DESeq 

    Prr7 -0.254 1.51E-02 DESeq 

    Prss12 0.259 2.24E-02 DESeq 

    Syt2 0.242 3.10E-02 DESeq 

    Vwc2l 0.229 3.40E-02 DESeq 

    Kcna2 0.165 2.54E-03 DESeq 

    Lzts1 0.189 2.38E-02 DESeq 

    Calb2 -0.286 8.05E-04 DESeq 

    Gabrg3 0.193 1.21E-02 DESeq 

    Homer3 -0.184 3.12E-02 DESeq 

    Ank2 NA 3.01E-02 DEXSeq 

    Atp2b1 -0.035 1.77E-02 DEXSeq 

    Nrxn1 -0.084 4.82E-02 DEXSeq 

    Anks1b 0.239 3.01E-02 DEXSeq 

    Grin2a -0.208 3.01E-02 DEXSeq 

Table 6.18: Genes involved in synaptic function found to be differentially expressed at 

gene or exon level, in the hippocampus of the heterozygous mice 

Log2fc indicates if the gene is up (log2fc>0) or down (log2fc<0) regulated. Padj indicates 

the significant difference compare to the gene expression in the WT, after correcting for 

multiple testing. The analysis indicates weather the gene is a hit at the gene (DESeq) or 

exon level (DEXseq). 

 

b.iii Signalling 

Signalling is an important affected process in the hippocampus of the heterozygous mice. 18 

genes have been found differentially expressed compared to the wild-type (table 6.19). This 

adds to the possible alteration of the organization of the synapse which was also found and 

confirms that signalling might be the main affected process in the hippocampus. This would 

lead to a disrupted neurodevelopment and would be linked to the alteration of membrane 

potential which were found to be enriched. 
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Signalling process 

gene log2fc padj Analysis 

Apln -0.2429 0.030991 DESeq 

Cacnb4 0.171492 0.020223 DESeq 

Cnih2 -0.17041 0.028676 DESeq 

Gabrg3 0.193485 0.012098 DESeq 

Hcn4 0.265428 0.040402 DESeq 

Myo5a 0.147957 0.02505 DESeq 

Chrna4 0.261261 0.012902 DESeq 

Pcdh8 -0.22739 0.002591 DESeq 

Myo5a 0.147957 0.02505 DESeq 

Pcdh10 0.143996 0.042912 DESeq 

Unc13c 0.268396 0.034412 DESeq 

Snap91 -0.11396 0.025119 DEXSeq 

Cnr1 -0.52954 0.048201 DEXSeq 

Nrxn1 -0.08367 0.048201 DEXSeq 

Jam3 0.229917 0.006761 DEXSeq 

Wnt7a 0.28617 0.039217 DEXSeq 

Cacnb2 -0.47813 0.000135 DEXSeq 

Grin2a -0.20791 0.030134 DEXSeq 

Table 6.19: Genes involved in signalling found to be differentially expressed in the 

hippocampus of the heterozygous mice 

Log2fc indicates if the gene is up (log2fc>0) or down (log2fc<0) regulated. Padj indicates 

the significant difference compare to the gene expression in the WT, after correcting for 

multiple testing. The analysis indicates weather the gene is a hit at the gene (DESeq) or 

exon level (DEXseq). 

 

b.iv Neurotransmitter secretion 

Neurotransmitters are stored in synaptic vesicles. Their release occurs via exocytosis and it is 

a principal mode of communication in the nervous system. Neurotransmission processes were 

found to be enriched in the hippocampus, and four genes involved in this process are 

differentially expressed compared to the wild-type (table 6.20). Fusion of the vesicles with the 

presynaptic membrane is necessary for the release of neurotransmitters and could be altered 

as expression of genes involved in this dysregulated (table 6.20). Fusion happens when 

intracellular calcium concentrations increase during an action potential and therefore could 

also be altered due to dysregulated expression of the voltage-gated channels mentioned 

previously. Indeed, Genes coding for proteins involved in calcium transport have also been 

found differentially expressed in the hippocampus.  
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Neurotransmitter secretion 

gene log2fc padj Analysis 

Syt2 0.241895 0.030991 DESeq 

Nrxn1 -0.08367 0.048201 DEXSeq 

Snap91 -0.11396 0.025119 DEXSeq 

Wnt7a 0.039217 0.28617 DEXSeq 

Table 6.20: Genes involved in neurotransmitter secretion found to be differentially 

expressed in the hippocampus of the heterozygous mice 

Log2fc indicates if the gene is up (log2fc>0) or down (log2fc<0) regulated. Padj indicates 

the significant difference compare to the gene expression in the WT, after correcting for 

multiple testing. The analysis indicates weather the gene is a hit at the gene (DESeq) or 

exon level (DEXseq). 

 

c. Ingenuity pathway analysis of the differentially expressed genes  

 in the hippocampus of the heterozygous mice 

Ingenuity Pathway Analysis (IPA) was used to determine which pathways were affected in the 

hippocampus of the heterozygous mice and if they were activated or inhibited. The network 

of canonical pathways shows the relations between the 25 most significant pathways and 

indicates that most of the genes are involved in several pathways (figure 6.22). The 

representation of the canonical pathways obtained from the differentially expressed genes 

from the hippocampus reveals that there are 48 significant pathways in which the differentially 

expressed genes are involved (figure 6.23, table 6.21). 

This reveals that in the hippocampus of the heterozygous mice there are three pathways that 

are likely to be activated. Those pathways are: 1) gonadotrophin releasing hormone (GNRH) 

signalling which regulates the production and release of the gonadotropins, luteinizing 

hormone and follicle stimulating hormones; 2) signalling by Rho family GTPases which 

regulates actin dynamics and is particularly involved in cell morphology and migration, and 

spine formations; 3) cardiac hypertrophy signalling.  

There are also three pathways that are likely to be inhibited, which are 14-3-3 mediated 

signalling which regulates the cell cycle, cell survival, intracellular trafficking, and signal 

transduction, GO12/13 signalling involved in signal transduction, and Wnt/β-catenin 

signalling which regulates cell pluripotency and fate during development. 

The most significantly affected pathway is Agrin Interactions at the Neuromuscular Junction 

which is involved in synaptogenesis, which did not come up when investigating the cortex. 

This pathway is also necessary for the post-synaptic localization of many proteins, aggregation 

of cholinergic receptors and reorganization of the position of other neurotransmitter receptors 
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and numerous protein involved in the formation of those junction are present in the brain 

Therefore, this pathway is necessary for synaptic transmission and the fact that it is affected 

in the Der1 mice suggest that synaptogenesis and neuronal transmission might be affected as 

well (Zong and Jin, 2013). 

Figure 6.22: Map of the overlapping canonical pathways in the hippocampus. 

This figure represents shared biology among the identified candidate genes. 

Canonical pathways linked with black lines share one or more genes. The brighter 

the red of the node, the more significant the canonical pathway. 
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Figure 6.23: Canonical 

pathways of the hippocampus  

48 significant pathways were 

found from the hippocampus 

RNAseq analysis. The columns 

represent the -log of the p-value 

calculated based on Fisher's 

exact test. The dot points 

represent the ratio of the 

number of genes in a given 

pathway.  



199 

 

Canonical Pathways  -log(p-value) number of genes 

Agrin Interactions at Neuromuscular Junction 2.71 4 

GNRH Signalling 2.49 5 

Signalling by Rho Family GTPases 2.48 7 

April Mediated Signalling 2.43 3 

14-3-3-mediated Signalling 2.42 5 

MIF Regulation of Innate Immunity 2.37 3 

B Cell Activating Factor Signalling 2.37 3 

Xenobiotic Metabolism Signalling 2.27 7 

ErbB Signalling 2.14 4 

Cholecystokinin/Gastrin-mediated Signalling 2.11 4 

Lanosterol Biosynthesis 2.1 1 

CD27 Signalling in Lymphocytes 2.08 3 

RANK Signalling in Osteoclasts 2.07 4 

SAPK/JNK Signalling 2.07 4 

IGF-1 Signalling 2.02 4 

HGF Signalling 1.9 4 

IL-17A Signalling in Gastric Cells 1.88 2 

IL-2 Signalling 1.83 3 

IL-10 Signalling 1.8 3 

Chemokine Signalling 1.8 3 

EGF Signalling 1.76 3 

Gα12/13 Signalling 1.71 4 

Toll-like Receptor Signalling 1.7 3 

STAT3 Pathway 1.67 3 

Aryl Hydrocarbon Receptor Signalling 1.65 4 

GDNF Family Ligand-Receptor Interactions 1.65 3 

Neurotrophin/TRK Signalling 1.65 3 

LPS/IL-1 Mediated Inhibition of RXR Function 1.64 5 

TNFR2 Signalling 1.62 2 

4-1BB Signalling in T Lymphocytes 1.59 2 

IL-17 Signalling 1.59 3 

Regulation of IL-2 Expression in Activated and Anergic T 

Lymphocytes 1.59 3 

IL-17A Signalling in Fibroblasts 1.57 2 

Inhibition of Angiogenesis by TSP1 1.54 2 

LPS-stimulated MAPK Signalling 1.51 3 

Glycerol-3-phosphate Shuttle 1.5 1 

Salvage Pathways of Pyrimidine Ribonucleotides 1.45 3 

PDGF Signalling 1.45 3 

Cardiac Hypertrophy Signalling 1.43 5 

Reelin Signalling in Neurons 1.42 3 

Dermatan Sulfate Biosynthesis (Late Stages) 1.41 2 

CXCR4 Signalling 1.38 4 

Chondroitin Sulfate Biosynthesis (Late Stages) 1.35 2 

Wnt/β-catenin Signalling 1.33 4 

UVC-Induced MAPK Signalling 1.33 2 

Glycerol Degradation I 1.33 1 

Antioxidant Action of Vitamin C 1.31 3 

PPARα/RXRα Activation 1.31 4 

Table 6.21: Canonical pathways significantly affected by the differentially expressed genes 

in the heterozygote’s hippocampus 

48 significant pathways were found. -log (p-value)>1,3 = p-value<0.05. Number of genes 

differentially expressed in each pathway is indicated. 
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Additionally, the analysis of heterozygous hippocampus revealed that GNRH signalling is 

predicted to be the second most significantly affected pathway. The GNRH pathway is 

involved in regulation of the reproductive system, synthesis and release of hormones such as 

luteinizing hormone (LH) and follicle stimulating hormone (FSH) and mood regulation (Bliss 

et al., 2011). In this pathway (figure 6.24), genes differentially expressed in the heterozygote 

mice compared to the wild-type mice are PLCβ, MEKK, JNK, c-Jun, c-fos and Elk-1 and they 

are all upregulated. Here, this pathway is predicted to be activated, moreover the outcome of 

this pathway in the heterozygous mice is predicted to activate and up regulate cytoskeletal 

rearrangement processes as well as cell motility and migration process (figure 6.24). Indeed, 

through the activation of G protein, protein involved in those process such as FAK, and Src 

would be up-regulated. Another interesting pathway which is the third most significant and is 

downregulated is the Rho GTPase pathway (figure 6.25). This pathway plays a role in the 

organization of actin and microtubule cytoskeletons and links with surface receptors. It is also 

involved in neuronal morphology, survival and death (Schwartz, 2004). Here we can see that 

differentially expressed genes from our data set are involved in this pathway: Cadherin, 

Citron, MLK, JNK, c-Fos, c-Jun and Elk-1; and are all upregulated. The expression of the 

genes involved in this pathway indicate upregulation of actin polymerization, cell trafficking, 

cytokinesis, actin membrane linkage, membrane ruffling, cell-cell adhesion, cell contraction 

and proliferation, as well as cytoskeleton regulation and reorganization, while microtubule 

growth is down regulated. Moreover, it predicts that microtubule-organizing centre (MTOC) 

orientation processes would be activated and actin nucleation process inhibited. However, as 

mentioned previously, the disruption of this pathway suggests primarily a modification of the 

cytoskeleton. Therefore, similar to the GNRH pathway, the modification of this pathway 

would also indicate a change in cytoskeleton organization and therfore molecular trafficking 

and more particularly receptor trafficking would also be altered which could, overall, lead to 

a modification of synaptic plasticity. This analysis also revealed that the genes differentially 

expressed are involved in pathways such as signal transducer and activator of transcription 3 

(Stat3) and Wnt/β-catenin. The Stat3 pathway plays an important role in cellular outgrowth 

and apoptosis. Here, expression of genes from the MAP kinase family such as MKS and JNK 

would be upregulated (figure 6.26). Moreover, the results indicate that in the heterozygote 

mice anti-apoptosis processes could be upregulated and transcription could be activated. 

Overall, in these pathways, several genes have their expression altered, weather up or down 

regulated, due to the Der1 mutation (figure 6.26). In the Wnt/β-catenin pathway, SFRP and 

SOX genes are down regulated while GBP and c-Jun are upregulated, in the hippocampi from 

the heterozygous mice. The changes in this pathway are predicted to lead to activation of cell 
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pluripotency (figure 6.27). Those affected pathways in the heterozygous mice are mainly 

involved in cellular growth and migration as well as regulation of the cytoskeleton. Which 

indicate that these processes could be impaired in the hippocampus of the heterozygous mice.  

 

Figure 6.24: Representation of the expected activation state of the GNRH pathways  

The hippocampus RNAseq analysis using IPA revealed that genes necessary for the 

GNRH signalling pathway were affected. Significant genes differentially expressed in 

the heterozygote mice compared to the WT mice are PLCβ, MEKK, JNK, c-Jun, c-fos and 

Elk-1 and they all seem to be upregulated. The genes circled in magenta have been 

found in our analysis to be differentially expressed in the hippocampus of the 

heterozygous mice compared to the wild type mice. The genes in red or pink are 

expected to be up regulated and those in green are expected to be down regulated. 

Solid lines and broken lines respectively show direct or indirect interactions. 

Orange lines leads to activation, blue lines lead to inhibition, yellow lines represent 

inconsistent findings and grey line represent unpredicted results. Orange and blue 

fillings respectively indicate predicted activated or inhibited genes.  
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Figure 6.25: Representation of the expected activation state of the STAT3 

pathways. 

In the hippocampus, the Stat3 signalling pathway seemed to be affected. Significant 

genes differentially expressed in the heterozygote mice compared to the WT mice 

are JNK and MLKs, which both seem to be upregulated. The genes circled in 

magenta have been found in our analysis to be differentially expressed in the 

hippocampus of the heterozygous mice compared to the wild type mice. The genes 

in red or pink are expected to be up regulated and those in green are expected to 

be down regulated. Solid lines and broken lines respectively show direct or 

indirect interactions. Orange lines leads to activation, blue lines lead to inhibition, 

yellow lines represent inconsistent findings and grey line represent unpredicted 

results. Orange and blue fillings respectively indicate predicted activated or 

inhibited genes. 
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Figure 6.26: Representation of the expected activation state of the Rho GTPase 

pathways. 

In the hippocampus of the heterozygous Der1 mice, Rho GTPase pathway might be 

affected by the Der1 translocation. The significant genes of this pathway differentially 

expressed in the heterozygote mice compared to the WT mice are cadherin, citron, MLK, 

JNK, c-Fos, c-Jun and ElK1, all are upregulated. The genes circled in magenta have been 

found in our analysis to be differentially expressed in the hippocampus of the 

heterozygous mice compared to the wild type mice. The genes in red or pink are 

expected to be up regulated and those in green are expected to be down regulated. Solid 

lines and broken lines respectively show direct or indirect interactions. Orange lines 

leads to activation, blue lines lead to inhibition, yellow lines represent inconsistent 

findings and grey line represent unpredicted results. Orange and blue fillings 

respectively indicate predicted activated or inhibited genes. 
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Figure 6.27: Representation of the expected activation state of the Wnt/β-catenin 

pathways. 

In the hippocampus of the heterozygous Der1 mice, the Wnt/β-catenin pathway seem to be 

affected. Significant genes differentially expressed in the heterozygote mice compared to 

the WT mice are c-Jun and GBP, both upregulated, and SFRP and SOX both downregulated. 

The genes circled in magenta have been found in our analysis to be differentially expressed 

in the hippocampus of the heterozygous mice compared to the wild type mice. The genes 

in red or pink are expected to be up regulated and those in green are expected to be down 

regulated. Solid lines and broken lines respectively show direct or indirect interactions. 

Orange lines leads to activation, blue lines lead to inhibition, yellow lines represent 

inconsistent findings and grey line represent unpredicted results. Orange and blue fillings 

respectively indicate predicted activated or inhibited genes. 
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Overall RNAseq analysis revealed enrichments in a multitude of processes, function, and 

component in the cortex and hippocampus of the heterozygous mice. The cortical analysis 

indicates that the genes are mainly involved in transport and binding activity, vesicular 

function, synaptic signalling, neurogenesis, neuronal migration, GABAergic and 

glutamatergic pathway as well as Wnt pathway. While the hippocampal analysis revealed 

similar enrichment such as transport, signalling, Wnt pathway, synaptic activity, cell 

communication and neuronal development as well as more specific affected process such as 

the secretion of neurotransmitters.  However, in the hippocampus, genes affected by the Der1 

mutation are not involved in specific neurotransmitter function as seen for the cortex analysis 

but in the global neurotransmitter secretion. 

This shows some similarity between the two compartments; however, the cortex is a much 

bigger area, and has more complex functions therefore additional affected characteristics have 

been found in this area.  

 

6.3 Analysis of the effect of the homozygous Der1 mutation 

on RNA expression 

6.3.1 Quality control of the homozygous samples 

As described above, in the hippocampus, the PCA plot revealed a wild-type male outlier which 

was removed for further analysis. To balance the sex ratio one female wild-type was removed 

as well. Following outlier removal, the PCA plot showed wild-type and homozygous samples 

clustering by sex but not by genotype (figure 6.28, a). In addition, the heatmap also reveals 

that the homozygous samples do not cluster together (figure 6.28, b).  

The cortex PCA plot also revealed a wild-type male outlier, and a wild-type female sample 

was removed as well for balance. Similarly, to what was found in the hippocampus, the cortical 

PCA plot indicates that the samples cluster by sex but not by genotype (figure 6.29, a). The 

heatmap issued from the RNAseq results of the cortical samples revealed that the homozygous 

samples do not cluster together (figure 6.29, b).  

These initial analyses indicate that the cortical and hippocampal homozygous samples are 

heterogenous, therefore, homozygous RNASeq data from the homozygous samples was not 

studied using pathway analysis because no explanation for the extreme variability could be 

identified.  
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PC1: 39% variance 

b.

Figure 6.28: Quality control of the homozygote’s hippocampus samples 

a. PCA plot after removal of the 2 WT samples. Male samples cluster on the left of the graph 

while female samples cluster on the right 

b. Heatmap: each row represents the expression of one gene and each column represents 

one sample. Z-score demonstrates the standard deviation of the log2 fold change for 

genes with a significant differential expression between genotype (log2 fold change 

<0.05), in each sample. Differential gene expression is expressed in red and green 

respectively representing high and low expression.  
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Figure 6.29: Principal components analysis of the cortex samples 

a. PCA plot after removal of the 2 WT samples. Male samples cluster on the left of 

the graph while female samples cluster on the right. 

b. Heatmap: each row represents the expression of one gene and each column 

represents one sample. Z-score demonstrates the standard deviation of the log2 

fold change for genes with a significant differential expression between genotype 

(log2 fold change<0.05), in each sample. Differential gene expression is expressed 

in red and green respectively representing high and low expression.  
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6.3.2 DISC1 expression in the homozygous samples 

Extraction of the Disc1 expression data indicates that it is downregulated and almost non-

existent in homozygous samples, which confirms the homozygosity of the samples used 

(figure 6.30). Moreover, it was confirmed by its expression value which indicates a negative 

log2fc and a p value less than 0.05 in the hippocampus and the cortex of the homozygous Der1 

mice (table 6.22). In addition to this reduction, Disc1 expression was analysed exon by exon 

as it was analysed in the heterozygous samples. In the homozygous samples, expression of 

exons 9-13 should be abolished, with expression of exons 1-8 still detectable. This was 

confirmed (figure 6.31). 

Here, Disc1 expression is higher in the hippocampus (table 6.22).  

DISC1 expression Base Mean log2FoldChange (log2fc) padj 

Cortex 65.17 -2.455 8.91E-39 
Hippocampus 80.88 -1.748 1.68E-30 

Table 6.22: DISC1 differential expression in the homozygous Der1  
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Figure 6.30: Normalised counts for DISC1 in WT and Homs 

DISC1 counts from the homozygotes are lower compared to the WT, as expected.  

WT                                           HOM 
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The results show differential expression in the cortex and in the hippocampus. In both regions 

Disc1 expression is significantly reduced compared to the WT. log2fc<0 indicates that Disc1 

expression is reduced and the p adjusted value (padj) indicates that it is significantly different 

compared to the WT. 

 

6.4 Comparison with previous findings 

6.4.1 Expression of DISC1 interactors is affected by the Der1 

 mutation. 

The RNAseq analysis revealed that several DISC1 interactors are differentially expressed in 

the cortex of the heterozygous mice, with some affected at gene level and others at exon level 

(table 6.23). Kif5a which is a microtubule motor involved in intracellular organelle transport; 

Atf5 which is involved in cell survival, proliferation, and differentiation; and Dtnbp1 which is 

necessary for neurite outgrowth, synaptic vesicle trafficking and neurotransmitter release, have 

been found up regulated (table 6.23) while Pcm1 which is necessary for the localization of 

proteins, and for anchoring microtubules to the centrosome have been found down regulated 

(table 6.23). 

Additionally, DISC1 interactors involved in the assembly and organization of the cytoskeleton 

were found to be differentially expressed in the heterozygote’s cortices such as TNIK which 

    Exons          1          1b       2           3        3a   4     5    6     7    8     9   10  11      12               13                

    Exons          1          1b       2            3       3a    4    5     6     7    8     9   10   11     12                13                

Figure 6.31: Result of the DEXSeq analysis for DISC1 in the homozygous 

Both cortex (a.) and hippocampus (b.) show a drop mainly after exon 8. 
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plays a role in cytoskeletal rearrangements, Pafah1b1 (LIS1) which is involved in dynein 

regulation and in the Rho GTPase pathway linking this gene to microtubule and cytoskeleton 

assembly and organization (table 6.23). Cep63, MAP1a and PCNT (table 6.23) are also 

involved in microtubule assembly and network formation. Syne1 makes the link between 

organelles and cytoskeleton therefore influencing the cytoskeleton organization. Moreover, 

interactors involved in organelle trafficking such as LIS1, FEZ1, KLC1, KLC2 and 

DYNC1H1 (table 6.23) were also found differentially expressed. The interactors IMMT 

involved in mitochondria function and PDE4B involved in signal transduction were also found 

differentially expressed in the cortices of the heterozygous mice (table 6.23). This indicates 

that dysregulation of DISC1 affects the expression of its interactors by direct or indirect means. 

No DISC1 interactors were found to be dysregulated in the hippocampus of the heterozygous 

Der1 mice. 
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Interactor found in DESeq Interactor found in DEXSeq 

Name log2FoldChange padj Name log2FoldChange padj 

Kif5a 0.222701 0.001656 Cep63 -0.08363 0.019924 

Atf5 0.232043 0.018415 Map1a 0.029333 0.043555 

Dtnbp1 0.138686 0.045666 Map1a -0.03224 0.046381 

Ankhd1 -0.20359 0.031577 Map1a 0.249955 0.047062 

Pcm1 -0.19108 0.017355 Pafah1b1 0.042378 0.017401 

Trak2 0.14953 0.03537 Pafah1b1 0.048128 0.030475 

   Pafah1b1 0.000955 0.035181 

   Pafah1b1 -0.04427 0.039341 

   Pafah1b1 0.033259 0.040981 

   Syne1 0.146481 0.006835 

   Syne1 0.178507 0.024372 

   Syne1 0.144414 0.030863 

   Syne1 0.172714 0.045021 

   Pcnt -0.12921 0.014708 

   Pcnt 0.094812 0.045785 

   Fez1 -0.02985 0.040702 

   Immt -0.08294 0.002124 

   Immt 0.067315 0.031207 

   Immt 0.062765 0.036451 

   Pde4b 0.066066 0.029707 

   Klc1 0.060091 0.010036 

   Klc1 0.049129 0.031679 

   Klc2 -0.05032 0.030418 

   Dync1h1 0.051235 0.001421 

   Dync1h1 0.045299 0.003061 

   Dync1h1 0.051156 0.00537 

   Dync1h1 0.060294 0.009221 

   Dync1h1 0.05183 0.012286 

   Dync1h1 0.048217 0.013774 

   Dync1h1 0.06086 0.01854 

   Tnik 0.076955 0.040087 

   Tnik 0.078099 0.044203 

   Tnik 0.086166 0.049313 

Table 6.23: Genes encoding DISC1 interactors found to be differentially expressed in the 

cortex of the heterozygous mice at gene and exon level 
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6.4.2 Dysregulated expression of putative schizophrenia risk genes 

a. Cortical samples analysis 

The latest largest single cohort GWAS of schizophrenia using 40,675 cases and 64,643 

controls identified 535 genome-wide significant genes from which 145 genetic loci have an 

altered expression (Pardiñas et al., 2016). Overall, 535 genes were found to be enriched and 

associated with schizophrenia. New enriched genes were involved in metabotropic GABA-B 

signalling and acetyl cholinesterase, other genes confirmed that calcium channel function is 

altered in schizophrenia. Additionally, rare variants such as NRXN1 and GABAergic signalling 

were also discovered to be enriched in this study as well as genes involved with autism such 

as RBFOX1, FOXP1, FOXG1.  

Previously, another older schizophrenia GWAS using 36,989 cases and 113,075 controls 

discovered 108 loci associated to schizophrenia (Ripke et al., 2014). Involvement of 

dopaminergic and glutamatergic signalling in schizophrenia were highlighted in this study, as 

well as genes involved in the immune system. 

Additionally, a Copy number variations (CNVs) study on a cohort of 21,094 schizophrenic 

patients and 20,227 controls also identified numerous genes as putative schizophrenia risk 

factors (Marshall et al., 2016). This study highlighted genes associated with schizophrenia 

which are involved in synaptic networks, glutamatergic ionotropic receptor function and 

diverse protein complexes.  

Results of the RNAseq analysis using the samples of heterozygous cortices were compared 

with these different gene lists and multiple putative schizophrenia risk genes were found 

dysregulated in the Der1 cortical samples (table 6.24). For further functional analysis the lists 

were combined and analysed using GO term analysis (table 6.25).  

These genes were found to be involved in neuron differentiation, neuronal death, organelle 

and synapse organization and regulation of action potential as well as in binding function, 

transporter and voltage-gated channel; cytoskeleton, organelle and synapse organization 

activity; glutamate pathway and vesicular trafficking. Interestingly, it was also indicating 

enrichment in the activation of astrocyte in response of immune activation which has also been 

linked with psychiatric disorder, in particular in schizophrenia. Glutamatergic signalling was 

also highlighted in the two GWA studies, which indicate that the Der1 heterozygous mice 

could have a similar RNA dysregulation compared to schizophrenic patients. 

Additionally, acetyl cholinesterase gene (ACHE) were found in the analysis of the cortical 

samples from the heterozygote mice as well as in the GWAS (table 6.24) (Pardiñas et al., 
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2016) indicating that the cholinergic signalling is affected in the Der1 heterozygote model as 

well as in schizophrenia. This gene is a potential therapeutic target in schizophrenia and has 

been found to be implicated in the pathology of autism. The activity-regulated cytoskeleton-

associated protein complexes gene (ARC) is also known to be implicated in schizophrenia 

through GWAS analysis (Pardiñas et al., 2016), and was found to be differentially expressed 

in the heterozygote Der1 cortices (table 6.24). This gene is involved in the regulation of long-

term potentiation and depression therefore this indicates that synaptic plasticity is dysregulated 

in the heterozygous Der1 mice. Interestingly, Neurexine (NRXN1) was previously also found 

to be differentially expressed in the Der1 and to be a susceptibility gene for schizophrenia 

(table 6.24) (Marshall et al., 2016; Pardiñas et al., 2016). NRXN1 is involved in synaptic 

activity and formation and is crucial for neurotransmission (Viñas-Jornet et al., 2014). 

Overall, this indicate multiple similarities between the Der1 RNAseq analysis and these 

association studies, which confirm that DISC1 is involved in multiple process and might be a 

susceptibly gene for mental disorder. Genes found to be affected in the RNAseq analysis as 

well as these studies indicate that similar functions such as signalling, cytoskeleton 

organisation, cell communication, and synaptic signalling seem to be affected in schizophrenia 

patients and in the Der1 mice.   
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Exon level Gene level 

GWAS 1 GWAS 2 CNV GWAS 1 GWAS 2 CNV 

ABCD2 KCNG1 ABCB9 NAGA MPDZ Ache Apopt1 CHRNA7 

ACHE KCTD10 ALDOA NGEF RAPGEF2 Ankrd45 As3mt L1CAM 

ADAM15 KDM4C AMBRA1 NISCH DVL1 Arc Atxn7 MPDZ 

ADGRB3 KIF21A ATG13 OSBPL3 NRXN1 B4galt2 Cenpm MYO6 

ANAPC7 LRRC4 ATP2A2 PCGF6 SEMA4C Bach2 Clu RAPGEF2 

ANK3 MAP1A CACNA1C PITPNM2 DLG1 Bcl11a Egr1 SEMA3E 

ANKS1B MARK3 CACNA1I PJA1 DLGAP1 Brd1 Ep300 SNTB2 

AP3B2 ME1 CACNB2 PLCH2 SNAP29 Cep170 Ephx2 STX1A 

ARC MOB4 CKB PODXL NRXN3 Chd2 Furin  
ATG2A MSRA CLU PPP1R13B SHANK1 Clip1 Fxr1  
ATP13A1 NCAPD3 CNKSR2 PRR12 GRIN1 Dgcr8 Gid4  
BAG4 NCSTN CNOT1 PTPRF SYT1 Emb Gigyf2  
BRD1 NDFIP2 CNTN4 R3HDM2 NEDD4 Emx1 Gramd1b  
BRINP1 NIP7 DFNA5 RANGAP1 APP Gmip Hcn1  
CDIP1 NPTX1 DGKZ RERE WASF1 Hcn4 Ireb2  
CDK5R1 NTRK3 DOC2A RGS6 DTNB Inpp4b Itih3  
CEP170 OLA1 DRG2 SATB2  Kcnd3 Mdk  
CLIP1 PCDH7 EGR1 SERPING1  Kif21a Naga  
CNPPD1 PCLO EPC2 SF3B1  Lamtor2 Ndufa13  
CNTN2 PDE4B ERCC4 SLC32A1  Msra Ndufa2  
COPA PEPD ETF1 SLC38A7  Nip7 Ndufa6  
CPEB1 PHF2 GIGYF2 SLC45A1  Nos1 Ngef  
CPT1C PHF3 GLT8D1 SLC4A10  Nptx1 Nrgn  
CUL9 PRUNE GRAMD1B SLC7A6  Pcdha11 Pak6  
DDHD2 PSMD11 GRIA1 SMG6  Pcdha12 Pcdha3  
DMTF1 PSME4 HARS SNAP91  Pcdhac2 Pcdha5  
DNAJC11 PTBP2 HARS2 SNX19  Pcnx Pcdha7  
DPYSL5 PTK2B HSPA9 SREBF2  Phf2 Pja1  
EIF3B RBFOX1 HSPD1 SRPK2  Phf3 Ppp1r13b  
EIF5 RNF38 IK STAB1  Rprd2 Ptn  
ELAVL4 RPTOR IREB2 TAOK2  Rps19bp1 Rcn3  
EMB SGCE ITIH3 TCF4  Scn5a Reep2  
FAM114A2 SIPA1 KCNV1 THOC7  Sfxn5 Rere  
FAM120A SIPA1L3 KDM3B TLE1  Trpc4 Rgs6  
FAM216A SIRPA KDM4A TLE3  Whsc1l1 Rras  
FAM49B SORCS3 KLC1 TOM1L2  Zc3h7b Slc35g2  
FGFR1 ST3GAL3 L3MBTL2 TRANK1   Slc4a10  
GABBR2 TCTN1 LRP1 TSR1   Smdt1  
GLG1 THRB MAN2A2 VPS45   Smim4  
HMOX2 VPS26B MAU2 YPEL3   Stat6  
IFT81 YWHAE MED19 YPEL4   Zdhhc5  
IPO13 ZDHHC8 MEF2C ZDHHC5   Zfyve21  

    ZSWIM6     

Table 6.24: Genes found to be enriched in the heterozygous Der1 mouse cortex and found 

to be putative schizophrenia risk genes 

Genes highlighted in orange have been found in both GWAS while genes highlighted in 

blue have been found in GWAS 1 and CNV analysis.  
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GO Component FDR q-value 
(padj) 

Enrichment Number 
of genes 

neuron projection 4.61E-22 4.74 61 
synapse 2.67E-19 6.39 42 
dendrite 2.26E-14 5.98 33 
postsynaptic density 3.09E-14 9.13 24 
organelle 5.92E-14 1.51 181 
transporter complex 1.06E-09 6.45 21 
vesicle 1.28E-08 2.61 50 
presynaptic membrane 1.16E-07 13.83 10 
excitatory synapse 1.11E-05 15.58 7 
ionotropic glutamate receptor complex 7.37E-04 10.53 6 
neurotransmitter receptor complex 8.56E-04 10.14 6 
voltage-gated potassium channel complex 9.43E-04 7.89 7 
potassium channel complex 1.75E-03 7.1 7 
NMDA selective glutamate receptor complex 6.70E-03 22.82 3 
trans-Golgi network transport vesicle membrane 8.63E-03 60.85 2 

GO function FDR q-value 
(padj) 

Enrichment Number 
of genes 

protein binding 1.20E-12 1.66 157 
voltage-gated channel activity 2.98E-03 5.37 11 
ionotropic glutamate receptor binding 8.13E-03 12.68 5 
transporter activity 8.73E-03 2.26 28 
signalling receptor binding 9.06E-03 1.98 37 
glutamate receptor binding 9.11E-03 8.98 6 
channel activity 2.81E-02 3.01 14 

GO Process FDR q-value 
(padj) 

Enrichment Number 
of genes 

regulation of neuron differentiation 3.15E-09 4.38 35 
regulation of nervous system development 3.04E-09 3.77 40 
regulation of neurogenesis 2.30E-09 3.94 38 
cellular component organization 3.02E-08 1.92 96 
synapse organization 4.25E-08 10.29 15 
transport 5.19E-07 2.08 71 
signalling 1.19E-06 4.41 24 
cell communication 5.53E-06 3.73 26 
modulation of excitatory postsynaptic potential 1.74E-05 15.54 8 
protein localization to synapse 1.85E-05 19.97 7 
synaptic signalling 9.64E-04 4.63 13 
ionotropic glutamate receptor signalling pathway 2.91E-03 22.82 4 
neuronal action potential 3.00E-03 14.26 5 
neurotransmitter secretion 4.55E-03 13.04 5 
regulation of glutamate receptor signalling pathway 1.12E-02 10.37 5 
regulation of neurotransmitter receptor activity 1.19E-02 10.14 5 
regulation of AMPA receptor activity 1.31E-02 14.6 4 
dendrite morphogenesis 1.72E-02 9.13 5 
positive regulation of neuron death 1.75E-02 5.76 7 
regulation of actin cytoskeleton organization 2.23E-02 3.32 12 
astrocyte activation involved in immune response 2.47E-02 60.85 2 
glutamate receptor signalling pathway 4.13E-02 9.87 4 

Table 6.25: Gene ontology analysis of schizophrenia risk genes found in the homozygous 

cortical samples.  

Example of some interesting GO terms found to be enriched. FDR q-value correspond to 
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the p-value corrected for multiple testing. Number of genes differentially expressed in 

each pathway is indicated. 

 

b. Hippocampus analysis 

The genes found to be differentially expressed in the RNAseq analysis of the samples of the 

heterozygotes hippocampi were also compared with the results of these three analysis (Ripke 

et al., 2014; Marshall et al., 2016; Pardiñas et al., 2016)(table 6.26). The GO term analysis 

(table 6.26) revealed that some of these genes were involved in synapse and vesicle 

composition, channel and transporter activity and composition, binding activity, synaptic 

signalling, neurogenesis, neurotransmitter secretion and transport, and localization of the 

receptors at the synapse. As mentioned previously, localization of the receptor at the synapse 

is dependant of the secretion of the neurotransmitter and modification of these process 

highlight an impairment in synaptic plasticity. A high enrichment in mitochondrial 

fragmentation involved in apoptotic process was found suggesting an impairment of the 

intrinsic apoptotic pathway. 

NRXN1 is again highlighted and dysregulated in the hippocampus of the heterozygous mice. 

Moreover, the ERBB4 gene was also found differentially expressed in the hippocampi of the 

heterozygous Der1 mice and was a hit in the GWAS (table 6.27) (Pardiñas et al., 2016) 

implicating neuregulin signalling as a risk factor for schizophrenia and indicating that 

disruption of DISC1lead to dysregulation of this signalling pathway in the heterozygous Der1 

mouse model. Moreover, ERBB4 is also involved in the glutamatergic synapse function so is 

NPTX which is also a putative schizophrenia risk gene and differentially expressed in the 

hippocampus of the heterozygous mice (table 6.26). NPTX is particularly involved in 

clustering AMPARs at the cell surface. This indicates that the glutamatergic pathway is also 

altered in the hippocampus of the Der1 mice and that synaptic plasticity is dysregulated. 

Additionally, osbpl3, which codes for an intracellular lipid receptor and is necessary for cell 

adhesion and actin cytoskeleton organisation and is has been found to be involved in 

schizophrenia was also differentially expressed in the Der1 mice hippocampus. This indicates 

that cytoskeleton organization is also altered. cntn4, which is an axon-associated cell adhesion 

molecule and is necessary for neuronal network formation and plasticity and is believed to be 

a susceptibility gene for schizophrenia was found differentially expressed as well. This 

reinforces the fact that neuronal network, plasticity and signalization is affected in the Der1 

mice hippocampus. 
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GO Component FDR q-value 
(pasdj) 

Enrichment Number 
of genes 

synapse part 9.58E-03 7.94 7 
presynaptic membrane 2.56E-02 40 3 
cell projection 3.00E-02 4.11 9 
ion channel complex 4.72E-02 12.89 4 
transporter complex 4.53E-02 12.08 4 
synaptic vesicle 5.82E-02 18.98 3 
exocytic vesicle 7.56E-02 17 3 

GO Function FDR q-value 
(pasdj) 

Enrichment Number 
of genes 

cell adhesion molecule binding 4.49E-02 11.28 6 
calcium channel activity 2.30E-01 23.86 3 
cation channel activity 2.33E-01 11.87 4 
calcium ion transmembrane transporter activity 2.69E-01 20.16 3 
calcium channel regulator activity 2.45E-01 64.2 2 
voltage-gated cation channel activity 2.30E-01 18.84 3 
actin filament binding 3.41E-01 15.03 3 

GO Process FDR q-value 
(pasdj) 

Enrichment Number 
of genes 

synapse organization 5.19E-03 32.83 5 
synaptic signalling 1.67E-02 18.68 5 
mitochondrial fragmentation involved in apoptotic process 7.76E-02 173.35 2 
secretion 1.50E-01 9.14 5 
localization 1.44E-01 2.89 12 
transport 1.45E-01 3.15 11 
developmental process 1.51E-01 2.58 13 
regulation of neurogenesis 1.70E-01 5.99 6 
neurotransmitter transport 1.69E-01 20.64 3 
receptor localization to synapse 1.95E-01 59.78 2 
neurotransmitter secretion 2.18E-01 49.53 2 

Table 6.26: Gene ontology analysis of schizophrenia risk genes found in the heterozygous 

hippocampal samples 

Example of some interesting GO terms found to be enriched. FDR q-value correspond to 

the p-value corrected for multiple testing 

Exon level Gene level 

GWAS1 GWAS2 CNV GWAS 1 GWAS 2 CNV 

ANKS1B CACNB2 NRXN1 EHD1 OSBPL3 MYO5A 

JAM3 GRIN2A  ERBB4 CNTN4 UTRN 

TTBK1 R3HDM2  FAM120AOS  
 

 SNAP91  HCN4  
 

   NPTX1  
 

   NTN5  
 

   SOX5  
 

   THRB  
 

   TRPC4  
 

Table 6.27: Genes found to be enriched in the heterozygote Der1 mice’ hippocampal 

samples and found to be putative schizophrenia risk genes 
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Genes highlighted in orange have been found in both GWAS while genes highlighted in 

blue have been found in GWAS 1 and CNV analysis 

To conclude, multiple putative schizophrenia risk genes were found differentially expressed 

in the heterozygous Der1 mice which indicates that disruption of Disc1 affect the expression 

of multiple genes believed to be involved in schizophrenia. In the Der1 mouse model, the risk 

genes affected are mainly involved in cytoskeleton organisation, cell communication, synaptic 

signalling and neuronal plasticity. Moreover, the glutamatergic pathway is also dysregulated 

in this model. The glutamatergic theory is still the most prominent theory in schizophrenia, 

which could indicate that the Der1 mouse model could be a good model to study schizophrenia 

molecular mechanisms. 

 

6.5 Discussion 

Overall, the RNAseq analysis reveals that heterozygous Der1 mice have extensively altered 

transcript levels. Indeed, numerous genes were found differentially expressed. These genes are 

involved in multiple biological pathways and mechanisms. The differential expressed genes 

in the Der1 mice mainly affect synaptic activity and function, and therefore neuronal plasticity 

and signalling. 

The heterozygous Der1 mouse analysis revealed numerous changes compared to the WT. 

Differentially expressed genes indicate an alteration of the dopaminergic, GABAergic, 

serotoninergic and glutamatergic system as well as impairment of vesicle trafficking. 

Additionally, GO term analysis indicated that neuronal development, transport of molecules 

and organelles, cell communication, signalling and death as well as synapse activity could be 

impaired in the heterozygous Der1 mice. Specific pathways such mTOR, Wnt, GNRH and 

stat3 might also be impaired in this mouse. Overall, the results are subtle but indicate that 

action potential and neuronal signalling may be altered. 

Dopaminergic, serotoninergic, GABAergic and glutamatergic pathways are known to be 

affected in psychiatric illness (Belsham, 2001; Brambilla et al., 2003; Tost, Alam and Meyer-

Lindenberg, 2010; Dayer, 2014). The heterozygous Der1 mouse may exhibit impairments in 

similar pathways, therefore this mouse may indeed model mental illness. Moreover, multiple 

genes found enriched in our analysis were also found enriched in recent GWAS analysis 

(Ripke et al., 2014; Pardiñas et al., 2016) and CNVs analysis (Marshall et al., 2016). This 

indicates that the change in gene expression in the Der1 mouse model might be similar to 

changes seen in the RNA expression of patients suffering from psychiatric disorders, 

especially schizophrenic patients. Moreover, similar processes and pathways seem to be 
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affected. The Der1 heterozygous mice can be compared to the patients carrying the t(1;11) as 

they also have only one DISC1 allele affected. Studies on patients carrying the t(1;11) 

translocation showed a reduction of glutamate levels in the dorsolateral prefrontal cortex 

(Thomson et al., 2016) which could synergise with our findings of a reduction of expression 

of glutamatergic receptors in the cortex of the Der1 heterozygote mice. 

Several Disc1 mouse models revealed a reduction of glutamate activity (Maher and LoTurco, 

2012; Dawson et al., 2015) (table 1.1). Moreover, the Disc1tr Hemi mice previously 

mentioned in the introduction, also revealed decreased expression of NMDA receptor subunits 

(Shen et al., 2008; Dawson et al., 2015) (table 1.1). Similarly, in the present study, the quantity 

of several isoform-specific transcripts of glutamatergic receptors was found reduced in the 

Der1 heterozygote mice. These data indicate that the Der1 translocation may induce subtle 

dysregulation of the glutamate system and altered brain connectivity. Multiple Disc1 mouse 

models indicate dysregulation of the dopaminergic system (Dahoun et al., 2017) which was 

also found in the Der1 mice model. However, studies indicate a decrease in cortical tyrosine 

hydroxylase levels (Niwa et al., 2011, 2013) while the Der1 heterozygote mouse seem to 

reveal an increased expression of its transcript (table 1.1). A knock down model of disc1 

revealed that the regulation of dendritic development by DISC1 requires GABAergic pathway 

activity through AKT-mTOR pathway (Kim et al., 2013). Similarly, in the Der1 model the 

quantity of transcripts of GABA receptors is reduced and the mTOR pathway is impaired, this 

could explain the neurite outgrowth impairment found in the Der1 mice (chapter 5). Our study 

reveals a link between DISC1 and GABA signalling, in controlling neuronal development in 

the Der1 mouse model. 

In the Der1 heterozygote models Wnt/βcatenin signalling seems to be down regulated in the 

hippocampus. Disc1 mouse models also revealed a linked between DISC1 and Wnt/βcatenin 

signalling (De Rienzo et al., 2011; Singh et al., 2011). Moreover, DISC1 has been found to 

affect neural progenitor proliferation through this pathway. Which indicates that proliferation 

could be altered in the Der1 mice model (Mao et al., 2009). However, we did not find any 

change in DCX density (chapter 4) in our model. Further analysis is necessary. 

Interestingly the GRNH pathway was also strongly affected and has been found affected in 

schizophrenia patients (Guilloux, Gaiteri and Sibille, 2010; Chen et al., 2016; Kumar et al., 

2017). This adds weight to the idea that hormonal dysregulation is also a characteristic of 

psychiatric illness. Moreover, this finding links DISC1 to hormonal pathways. DISC1 has been 

previously found to be necessary for the normal function of the hypothalamic-pituitary-

internal axis (Eachus et al., 2017). It is possible that the Der1 heterozygote mice have an 
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impaired hypothalamus they should therefore express an impaired behaviour and a 

dysregulated neuroendocrine stress response.  

Numerous voltage-gated channels were also found to be differentially expressed in the 

heterozygous Der1 mice. Those channels are crucial for the initiation and propagation of 

depolarisation and for membrane potential restoration and maintenance. These channels are 

therefore critical for synaptic and neuronal signalling. Numerous studies have highlighted 

those channels in the pathogenesis of psychiatric diseases (Imbrici, Camerino and Tricarico, 

2013). This indicates that trafficking of ions such as calcium, potassium and sodium may be 

altered in the Der1 mutant, similarly to what has been found in psychiatric patients. Moreover, 

this also emphasizes the strong possibility that synaptic signaling is the main process affected 

in the Der1 mouse model. 

Those various changes in gene expression could also indicate a modification in ratio of the 

different cell types of the brain. It has been shown that a mutation on exon 8 of DISC1 leads 

to loss of function of the protein and therefore lead to an increase of WNT signalling in 

progenitor cells which then results in the reduction of the expression of Foxg1 and Tbr2, two 

fate markers (Srikanth et al., 2015). Moreover, a study on human brain organoids also revealed 

that loss of DISC1 leads to alteration of the Wnt pathway, indicating that DISC1 was involved 

in neuronal progenitor migration and cell fate (Srikanth et al., 2018).  DISC1 might therefore 

be involved in cellular fate and the difference in gene expression discovered in the present 

work could be due to a change in cell fate and therefore in cell type. However, in the Der1 

mice, no strong evidence that cell fate is affected has been discovered so far. Although, the 

modification of gene expression in both the cortex and the hippocampus revealed that the Wnt 

pathway was highly affected which could be an indication of a change in cell fate in the Der1 

mice. To obtain evidence that cell fate could be affected by the Der1 mutation cell-type 

specific and single cell RNAseq analysis could be performed. 

The results of this RNAseq analysis corroborate our previous finding indicating an 

outgrowth impairment. Indeed, pathways involved in cellular growth and morphology such 

as AKT, mTOR and Wnt pathway were found to be enriched. Moreover, the cell death 

pathway seems to be dysregulated and this was also discovered when looking at the 

activation of caspase-3 (chapter 4). However, the RNAseq analysis indicates that DCX 

expression should be impaired while the histology analysis did not indicate any change. It 

is possible that the histology results don’t indicate the same effect due to the small number 

of mice used. Further analysis is required. 



221 

 

Heterozygous mutant Der1 have a reduced quantity of wild-type Disc1 protein and, 

furthermore, the expression of many genes related to synapses and psychiatric disorders are 

dysregulated in these mutants. Our results reveal that a psychiatric disorder relevant mutation 

causes extensive changes and potentially provide new insight into the molecular mechanisms 

underlying psychiatric disorders. Overall, our observations support previous findings from 

Disc1 mouse models, and from patients affected by mental disorders. 

Additionally, RNASeq has already been carried out using IPSC-derived neurons generated 

from the translocation family. Comparing these sets of results could then confirm whether the 

Der1 mouse is an accurate representation of the t(1,11) translocation and therefore a model of 

psychiatric disorders. This is currently being done by another PhD student. 

Taken together, these results indicate that DISC1 is necessary for the regulation of the 

transcription. Disruption of DISC1 lead directly or indirectly to the dysregulation of 

numerous genes. These preliminary results open future directions for the studies of multiple 

pathways involved in mental disorder and in which DISC1 plays a role. 
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DISC1 has been widely studied as a result of its potential involvement in mental disorders,  

(Tomoda et al., 2016). It has been shown to play an important role in various processes such 

as development, neurogenesis, cell signalling, and neuronal plasticity which are believed to be 

involved in those disorders (Brandon, 2016). However, the functions of DISC1 have not yet 

been completely elucidated and its link with mental disorders is still being discussed. 

Therefore, further investigation into its biological roles and mechanism of action in those 

disorders is required.Animal models of disc1 have been frequently created in order to gain 

some insight on its function and to discover pathways which might be involved in mental 

illness (Tomoda et al., 2016). In particular, mouse models relating to the t(1;11) translocation 

discovered in a Scottish family (K. Millar et al., 2000) have been created in the hope of 

discovering the underlying mechanisms leading to the spread of mental disorders found in this 

family (table 1.1). However, most of these models do not reproduce the translocation found in 

the human carrier accurately. Nevertheless, these models have led to the discovery of novel 

functions of DISC1 and the possible mechanisms affected in mental disorders. Therefore, 

mouse models that more accurately recapitulate the t(1;11) translocation would allow for an 

easier path to translating such biological findings to patients suffering of mental illness. This 

would allow us to discover possible biological pathways affected in the patients carrying the 

translocation and therefore involved in psychiatric disorders.  

The research presented in this thesis represents the first characterization of the Der1 mouse 

model. This model carries part of the human chromosome 11 genomic DNA from exons 4 to 

8 of DISC1FP1, replacing part of the mouse Disc1 gene from intron 8 to its 3’ end, in order to 

mimic the translocation found in the Scottish family. The aim of the present work was to 

characterise this new Der1 mouse model in the hope to find a better mouse model for mental 

disorder and through the investigation of the effect of this Der1 mutation at a structural, 

cellular and molecular level in order to have a comprehensive understanding of this new 

model. Moreover, this would give us new information on DISC1 function and its involvement 

in psychiatric disorders and on the mechanisms and consequences of the t(1;11) translocation 

in carriers as well. Investigation of local brain structure indicated a thinning of the CA1 area 

of the hippocampus in the Der1 homozygous mice and a ventricular enlargement in the Der1 

heterozygous mice. However, MRI analysis did not corroborate these changes in either of the 

Der1 mutants (chapter 3). It is therefore possible that brain structure is only locally altered due 

to the Der1 mutation and this could reflect a change in the shape of these brain regions. 

Analysis of specific cell populations in fixed brain tissue revealed no difference in GABAergic 

neuron numbers in the PFC and the hippocampus (chapter 4). However, there was increased 

neuronal density in the left srlm of the hippocampus in the Der1 homozygous mice as well as 
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increase activation of caspase-3 in the dentate gyrus of the heterozygous mice (chapter 4). A 

trend toward a similar increase of caspase-3 was found in the PFC and the CA1 of both 

homozygous and heterozygous Der1 mice as well as a trend toward a reduction of BrdU 

density in the dentate gyrus in both Der1 mice (chapter 4). These results indicate that the Der1 

mutation activates the apoptotic pathway and leads to minor decrease of neurogenesis. 

Analysis of primary neuronal cultures of homozygous Der1 mice showed that neurite 

outgrowth was increased and that neurons exhibited somal hypertrophy as compared to their 

wildtype counterparts (chapter 5). This demonstrated that despite no drastic changes to cell 

populations in the brain, the Der1 mutation appears to affect intracellular mechanisms in 

neurons. To better understand what the intracellular effects of the Der1 mutation are, RNA 

sequencing was performed. This analysis indicated important changes in the gene expression 

in the heterozygous mice (chapter 6). The changes in gene expression appear to affect 

processes such as cell communication, cell proliferation, cell death, molecular transport, 

trafficking of mitochondria and vesicles as well as synaptic plasticity and organization and 

neurotransmission (chapter 6). A summary of those results can be found in table 7.1, previous  

similar findings from other disc1 mice models were also indicated in the table. 

Table 7.1: summary of the results of Der1 analysis 

Disturbances in these structural, cellular and molecular processes are believed to happen in 

psychiatric disorders. In the present study, those alterations are due to the disruption of DISC1 

and therefore could confirm the link between DISC1 and psychiatric illness. Moreover, this 

indicates that the Der1 mouse model is a model of psychiatric illness which better reflect the 

human t(1;11) translocation. The consequences of these results will be further discussed in this 

chapter, as well as how they complement known functions of DISC1; then possible future 

directions will be presented.  

Name Description Results Comparison to previous mice 

models 

Der1 carries part of the 

human chromosome 

11 genomic DNA 

from exons 4 to 8 of 

DISC1FP1, 

replacing part of the 

mouse Disc1 gene 

from intron 8 to its 

3’ end 

thinning of the CA1 in the 

Hom 

Not previously seen 

ventricular enlargement Het Seen in Hikida et al, 2007 and 

Shen et al, 2008 

↑ neuronal density in the left 

srlm Hom 

Not previously seen in Disc1 

mice model 

↑ apoptosis trend  

Het and Hom 

Not previously seen in Disc1 

mice 

↓ neurogenesis trend 

Het and Hom 

Shen et al, 2008 

Lee et al, 2011 

↑ neurite outgrowth 

somal hypertrophy in Hom 

Pletnikov et al., 2008 

altered global gene expression 

through RNAseq 

Not previously seen at this 

scale in Disc1 mice model 
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7.1  The Der1 mutation has a subtle effect on brain structure 

Enlargement of the lateral ventricles and thinning of the CA1 were observed respectively in 

the brains of heterozygous and homozygous Der1 mice (Chapter 3). However, MRI analysis 

of these mice did not support these results. This indicates that the observed histological 

changes are either very subtle and localised and would therefore not be enough to be detected 

by MRI or perhaps be due to a change of shape of these areas. A modification in the shape 

rather than volume of these two areas would affect volumes locally rather than in the whole 

brain and this would explain the fact that changes are seen using histological analysis and not 

using MRI. It is also possible that the difference of results between the two techniques are due 

to litter effects, sample number differences and to the fact that histology analysis reflects what 

happens locally on the two sections used while MRI analysis is a volumetric analysis done at 

the whole brain level.  

As discussed in chapter 3, changes in the shape of several brain regions have been found in 

schizophrenic patients. However, the changes seen in the Der1 mice are not as extensive as 

structural modifications found in other mouse models of DISC1 (Tomoda et al., 2016). 

Further, heterozygous and homozygous Der1 mice do not display the same structural 

alterations. This implies that there is a differential effect of DISC1 expression, with the Der1 

mutation expressed on one or two alleles leading to different phenotypes. This could indicate 

that the Der1 mutation exerts different effects to those observed in other DISC1 mutant mice. 

A change in the shape of brain regions could indicate a possible modification in cellular 

migration, distribution or possible modification of cellular morphology. In particular a change 

in the ventricular shape/ volume could indicate an impaired CFS circulation and impaired 

neurogenesis. However, when investigating neurogenesis and proliferation (chapter 4), only a 

trend toward reduced neurogenesis in the heterozygotes was discovered in the Der1 mice but 

the sample number was quite low. On the other hand, the RNAseq analysis indicates that 

proliferation could be affected as DCX expression was altered in the heterozygous mice. This 

indicates that neurogenesis might be affected in the heterozygous Der1 mice. 

In the homozygous mice, the alteration of the CA1 region of the hippocampus could indicate 

a modification in neuronal communication in the hippocampus and the entorhinal cortex and 

therefore memory would be impaired (Ji and Maren, 2008; Wozny et al., 2008). This could 

also indicate impairment of neurogenesis in the DG, migration and distribution of neurons in 

the hippocampus and may indicate a defect in the morphology of the cells. A trend toward a 

reduction in neurogenesis has been found (chapter 4) in the homozygotes which could confirm 

this and changes in neuronal outgrowth were discovered in the homozygous Der1 cortical 
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neurons (chapter 5) which could suggest that similarly, changes in neuronal outgrowth and 

therefore in neuronal morphology could be happening in the hippocampus. Moreover, this 

could also indicate a local increase of apoptotic activity. Indeed, as mentioned in chapter 4, a 

trend toward an increase of apoptosis was found in the CA1 of the heterozygous mice. 

Overall, the Der1 mutation seems to affect the brain structure in very subtle ways. This may 

indicate that DISC1 involvement in the establishment of normal brain structure is rather subtle 

but very necessary. However, whether the Der1 mutation is expressed on one or two allele 

gives different results and seems to indicate that different mechanisms are affected depending 

on gene expression.  

7.2  The Der1 mutation leads to cellular changes 

Analysis of different cell population in Der1 heterozygous and homozygous mice was 

performed (Chapter 4). The heterozygous mice showed an increased activity of caspase-3 in 

the dentate gyrus and a trend in the same direction in the PFC and CA1. A trend towards a 

reduction of neurogenesis in the dentate gyrus was also observed. In the homozygous mice, an 

increase in the neuronal density of the left srlm of the hippocampus, as well as a trend towards 

an increase in caspase-3 activity and a trend toward a reduction of neurogenesis in the dentate 

gyrus were observed. Additionally, analysis of the morphology of cultured primary cortical 

neurons from homozygous Der1 mice revealed an increase in the dendritic growth near the 

soma as well as a somal hypertrophy (Chapter 5).  

Overall, this indicates that homozygous Der1 mice might exhibit an impairment of neuronal 

migration from the dentate gyrus to the CA1. Additionally, both heterozygous and 

homozygous mice seem to express an increase of apoptotic activity. However, no decrease of 

cell density was found in those areas as well as no change in their shape and volume (Chapter 

3). This suggest that rather than representing an increase of neuronal death, increase caspase-

9 activation indicates an increase in apoptosis of neural extension or more likely that the subtle 

change in apoptosis activity is not enough to lead to a significant change in cell density. 

Additionally, RNAseq revealed that apoptosis mechanisms may be impaired in the 

heterozygous mice. This strongly suggests that apoptosis mechanisms are affected by the Der1 

mutation. 

Moreover, in the homozygous Der1 mice, a thinned CA1 was also found (Chapter 3) which 

could be due to increase of cell death. Activation of apoptotic mechanisms could be due to 

impairment of mitochondrial function (Wang and Youle, 2016). It is possible that nitric oxide 

(NO) could make the mitochondria membrane more permeable which would lead to 

mitochondrial defect (Brown and Borutaite, 2001). NO is known to be release when the 
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immune system is activated which is known to happen in mental disorder (Nasyrova et al., 

2015). Activation of the apoptotic pathways could affect synaptic communication and 

neuronal communication. From the data presented in chapter 4, neurogenesis could be 

decreased in these mice, which could lead to an enhanced vulnerability to stress, decreased 

activity, and cognitive deficits.  

Homozygous Der1 cortical neurons exhibit a defect in neuronal outgrowth in this mouse. This 

outgrowth defect could reflect an impairment of intracellular trafficking which in turn could 

affect mitochondrial function therefore activating apoptotic pathways. The different processes 

affected in the homozygous Der1 mouse would all lead to a defect in the organisation of the 

brain circuitry and the impairment of neuronal communication. 

Therefore, it indicates that the Der1 mutation leads to increased apoptosis, and possibly 

impaired neurogenesis. This confirms the role of DISC1 in these biological processes 

indicating that DISC1 could be a risk factor for mental illness and that this mouse model could 

be a model of mental illness. However, these analyses indicate that the homozygous and the 

heterozygous Der1 mice are again not presenting the same phenotype. 

7.3  Gene expression is extensively altered by the Der1 

 mutation  
 

RNAseq analysis revealed that numerous genes were affected by the Der1 mutation (chapter 

6). Similar to previous analyses, the results between the homozygous and heterozygous mice 

were not exactly the same. In the homozygous mice there was no consistent change of gene 

expression, apart from for Disc1 itself. In the heterozygous Der1 mice, numerous genes were 

found differentially expressed compare to the WT. These changes indicate impaired 

neurodevelopment, neurogenesis, cellular growth, intracellular transport   and cellular 

outgrowth in the heterozygous mice. Moreover, the results indicate impairment of the intrinsic 

apoptotic pathway. This is another indication that apoptotic mechanisms may be flawed in the 

Der1 mice. These changes support the hypothesis of defective mitochondrial activity that 

could lead to the activation of apoptotic mechanisms seen in this Der1 mouse. Other affected 

genes indicate modified neurotransmitter signalling therefore suggesting that the balance 

between inhibitory and excitatory signal is dysregulated. Abnormalities in the regulation of 

neurotransmitter release and an imbalance in excitatory and inhibitory activity have been 

associated with neuropsychiatric disorders (Gao and Penzes, 2015; Selten, van Bokhoven and 

Nadif Kasri, 2018).  
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7.4  Overall effect of the Der1 mutation 

To conclude, both homozygous and heterozygous mice express different structural and cellular 

phenotypes which are rather subtle. The results indicate that neurogenesis is probably impaired 

in the Der1 mice model as well as neuronal outgrowth and possibly neuronal migration. 

Moreover, strong indications at the structural, cellular and molecular level indicate that 

apoptosis mechanisms are activated possibly via a mitochondrial defect. These changes also 

support impaired neurodevelopment and neuronal transmission in the Der1 model. 

Additionally, in the heterozygous mice RNASeq analysis strongly predicts that synaptic 

plasticity and neurotransmission is likely to be impaired. Overall, it is possible that the Der1 

mutation leads to impairment of molecular transport which affects intracellular trafficking, 

leading to a mitochondrial defect and then to apoptosis. Impaired molecular transport could 

also affect neurotransmitter trafficking and release, leading to synapse dysregulation. 

However, there are important changes in the RNA expression of the heterozygous Der1 mice 

compared to WT while the changes in the homozygous mice were too heterogeneous to draw 

any conclusions. The heterozygous mutation mimics the t(1;11) translocation, the 

homozygous mutation does not. which could explain why more changes relevant to psychiatric 

disorder were found in the heterozygous Der1 mouse model. The difference between the 

heterozygous and homozygous mice could be explained by a haplo-insufficiency effect of the 

Der1 mutation. Indeed, expressing only 50% of the full length DISC1 could lead to a more 

drastic phenotype than not expressing the protein at all. The presence of the full length DISC1 

in a reduced quantity might lead to reduced interaction with other proteins and itself and 

therefore disrupt cellular function as there would not be enough protein to fulfil all of its 

function. Moreover, no DISC1 at all might allow the organisms to find a compensatory 

mechanism during the development reducing the impairment caused by the absence of DISC1. 

Another explanation could be that the Der1 mutation has a dominant negative effect. It is 

possible that chimeric proteins could be synthesized in both homozygous and heterozygous 

mice, however in the heterozygous mice the chimeric protein could form dimers with the full 

length DISC1 which would lead to an adverse effect compared to the homozygous mice. The 

dominant negative effect could be tested by inducing the expression of the possible chimeric 

protein in cell culture first before moving to creating a whole new line, using a plasmid with a 

bacterial promoter. This would lead to overexpression of the chimeric transcript and indicate 

its effect. Nonetheless, chimeric proteins have not yet been found in the patient carrying the 

t(1;11) translocation or in the Der1 mice due to the lack of suitable antibodies but investigation 

is ongoing. 
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The consequences of the Der1 mutation seem to correlate with several phenotypes found in 

psychiatric illness. This suggests that the Der1 mutation could increase the susceptibly to 

psychiatric illness and therefore adds to the evidence that DISC1 is a risk factor for mental 

illness. These results underline the importance of the investigation of rare variants in mental 

illness. Additionally, it shows the importance of mimicking known human mutations rather 

than knocking down or knocking out the gene involved, as results will not always be similar 

between the two. The fact that subtle and heterogenous phenotypes were discovered in the 

Der1 mouse model emphasizes the facts that psychiatric disorders are apparently specific to 

each patient affected. Indeed, schizophrenia patient subgroups could be explained by the 

heterogeneity of schizophrenia which could be due to the different gene-environment 

interactions involved in this disorder (Arango, Kirkpatrick and Buchanan, 2000; Takahashi, 

2013).  

 

7.5  Future directions 

The experiments described in this thesis present preliminary characterization of the new Der1 

mice. The results indicate that the Der1 mutation leads to subtle structural and cellular changes 

in the brains of these mice as well as very extensive transcriptional modifications. This 

confirms the role of DISC1 in neurodevelopment through multiple mechanisms and supports 

the idea that DISC1 could be a susceptibility gene for psychiatric illness. 

However, further characterization of this mice is required to uncover the exact impact of this 

Der1 mutation. Additionally, in order to study the role of DISC1 in psychiatric illness, a 

particularly relevant point would be to consider the environmental effects as well as other 

mutations believed to be risk factors. Thus, more work will be required to fully characterize 

the Der1 mice model and establish that this is a good model of mental illness. Potential future 

work which would help validate this new mouse model further is discussed below. 

 

7.5.1 Further characterisation of the Der1 model 

• The structural analysis of the Der1 mouse brains revealed subtle changes in the shape of 

some brain regions. In order to confirm this, additional histological analysis would be 

informative. The brains used for the MRI analysis could be processed in order to obtain 

brain sections all along the brain. Each section could be compared to an atlas of an average 

mouse brain built from control mice. By matching the shape of tissue sections, shape 

variation could then be assessed (Carson et al., 2005).  
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Additionally, serial brain sections could be used to investigate inflammation and quantify 

glial cells as well as assess their activity. Microglial activation is a marker for 

inflammation and can be observed using immunohistochemistry technics. Microglial 

overactivation is believed to lead to exaggerated synaptic pruning and loss of grey 

matter as well as cognitive and negative symptoms, and structural brain modification 

associated with the psychiatric disorders (Müller et al., 2015; Howes and McCutcheon, 

2017). Autoimmune diseases and neuronal inflammation have been previously linked to 

neuropsychiatric disorders, however it is still being discussed weather it could be a cause 

or a result of mental disorders (Najjar et al., 2013; Müller et al., 2015). As well as being 

involved in the immune response, glial cells are also necessary for neuronal function and 

activity as well as involved in the underlying pathobiology of psychiatric disorders 

(Elsayed and Magistretti, 2015; Yamamuro et al., 2015). This study would therefore 

reveal more information about inflammatory processes associated cell death. To go 

further, localization of cytochrome C could be studied using brain sections. Indeed, it 

has been shown that the release of the cytochrome C from the mitochondria to the 

cytosol lead to activation of apoptotic pathways (Cai, Yang and Jones, 1998). This 

would therefore help confirm whether intrinsic apoptotic pathways are activated in the 

Der1 mice and link DISC1 function to apoptosis.  

• Outgrowth analysis of the homozygous der (1) cortical neurons revealed that this 

mutation leads to somal hypertrophy and excess dendritic formation. However, it would 

be necessary to investigate the neuronal outgrowth of heterozygous cortical neurons as 

well. This experience is currently being done in a collaborating lab that is part of the 

Marie Curie consortium. As previously mentioned, the structural and transcriptional 

changes observed in heterozygous Der1 mice more closely resemble the t(1,11) 

translocation found in the Scottish family, therefore this investigation could lead to 

additional information about the mechanisms affected by the translocation. Moreover, 

outgrowth analysis of iPSC-derived neurons from patients carrying the translocation 

could be performed as well and compared to the Der1 analysis. As previously discussed, 

neuronal outgrowth impairment has been found in psychiatric disorders and it is yet to 

be investigated in the patients carrying the t(1;11) translocation. This analysis could 

confirm the Der1 mouse model as a cellular model for the t(1;11) translocation found 

in humans.  

• To confirm the results obtained from the RNAseq analysis, quantitative PCR could be 

carried out to quantify transcripts in each sample, as well as investigating the expression 

and activity of affected proteins in the Der1 mice. Experimental verification of the 
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RNAseq results by qRT-PCR was not performed by the time the present work was finished 

as qRT-PCR would also have to be done regarding the RNAseq analysis from the IPSCs 

from the patients carrying the t(1;11) translocation. This is currently being investigated. 

Performing qRT-PCR on the same set of RNA samples used for RNA-Seq would allow to 

control for technical errors while performing qRT-PCR on a new set of samples would 

add power to the study. Without this validation, the results obtained are only at a broad 

level and do not take into account possible errors happening during the RNAseq analysis. 

qRT-PCR would validate the results of the RNAseq and confirm the significance of the 

results.  

• The results presented in chapter 6 underline several mechanisms which seem to be 

affected by the Der1 mutation. Investigation of the formation and the quantity of 

synapses and spine using live super resolution microscopy could lead to the discovery 

of additional impairments in the Der1 neurons. A first analysis investigating NMDA 

receptors and post synaptic density was already done (submitted, E. Malavasi et al).  A 

follow up such as an in-depth study of the various receptors involved in synapses 

formation such as GABAergic, serotoninergic and dopaminergic receptors would be 

interesting to do. Indeed, their quantification and movement in the synapse could reveal 

clues about synaptic impairment in the Der1 mice. These experiments could also be 

done using iPSC-derived neurons. Indeed, it seem that synapses malfunction is a major 

cause of psychiatric disorders as well as many neurological disorders (Van Spronsen 

and Hoogenraad, 2010; Lepeta et al., 2016). Therefore, investigation of this 

phenomenon could lead to discoveries which would have an impact on the 

understanding of multiple neuropathology. This could also offer the possibility to 

identify new targets for therapeutic intervention in these diseases. If the Der1 and the 

iPSC-derived neurons share similar phenotypes further work on the Der1 mice could 

then be performed to understand the development of psychiatric disorders. 

Investigation over time should be done to understand how and when neurodevelopment 

is affected. This would mean that multiple embryonic and post-embryonic time point 

should be studied to fully understand the extend of the disorder due to the Der1 

mutation and the results could be translated to human pathology to a certain extent. The 

investigation of the synaptic formation would also provide information on the balance 

between excitatory and inhibitory signalling which is believed to be impaired in mental 

disorders and it would allow us to understand when this dysregulation occurs.  
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Overall, this could confirm that the Der1 mice can be used as a model of psychiatric 

disorders and help understanding the mechanisms of formation and the consequences 

of synapthopathies.  

 

7.5.2 Improving the Der1 mouse model 

• It is important to take into account that the Der1 mouse model only mimics the presence 

of the chimeric transcript existing on the chromosome 1. Therefore, the transcript 

created on the chromosome 11 when the t(1;11) translocation occurs is not present in 

the Der1 mice. Additionally, as DISC2 and DISC1FP are not present in the mice 

genome so their disturbance is not reflected by the Der1 mutation. Because DISC2 and 

DISC1FP1 are non-coding RNAs, little investigation on their role has been done. 

However, their disruption could exert effects and therefore could be linked to the 

development of mental disorders occurring in the Scottish family carrying this 

translocation. Indeed, DISC2 has been hypothesized to regulate DISC1 function 

through its RNA (K. Millar et al., 2000; Porteous et al., 2006) and therefore it is 

possible that DISC2 could also be a risk factor for psychiatric disorders as well. 

Moreover, as discussed in the introduction, it is possible that DISC1FP1 encodes a 

small protein which inhibits oxidoreductase activity, RNA expression, and protein 

synthesis. Further study indicated that its RNA expression was increased in post-mortem 

brain of patient suffering from psychiatric disorders (Thomson et al., 2013; Ji et al., 2015). 

This indicates that DISC1FP1 could also be a susceptibility gene for psychiatric disorders. 

Disruption of these three genes could therefore contribute to the development of 

psychiatric illnesses. Therefore, creating a model which carries the exact same transcripts 

than those found in the patient carrying the t(1;11) translocation could be more accurate. 

Using gene editing strategies such as Cre/lox system (McLellan, 2017), those transcripts 

could be inserted into the mouse genome. This could be used to control the expression of 

these transcripts which would give new information on the importance of DISC2 and 

DISCFP1 in the development of psychiatric disorders. Additionally, the CRISPR-Cas9 

technology (Patrick, Eric and Zhang, 2014) could be used on primary neuronal cells from 

control mice as well as proliferating cells derived from control human NPCs in order to 

reproduce the translocation by expression chimeric transcripts from both chromosome 1 

and 11, and to reveal whether the dysregulation of these three genes would lead to the 

same phenotype than those found in NPCs from patient carrying the translocation or than 

those from a mice model carrying the same transcripts. 
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• It is well known that psychiatric illness is the result of gene-environment interactions. 

Therefore, it would be interesting to investigate environmental effects on the der (1) 

mice. Numerous epidemiological studies suggest that maternal immune activation can 

lead to development of mental disorders (Mednick et al., 1988; Brown et al., 2000; Brown, 

2006; Canetta and Brown, 2012). Moreover, rodent models of maternal immune activation 

have been created and seem to successfully reproduce the pathology observed in humans 

(Boksa, 2010; Connor et al., 2012). Polyinosinic–polycytidilic acid (Poly(I:C)) acts as a 

virus-like molecule and has been used on gestating mice to mimic viral action seen in 

humans (Reisinger et al., 2015; Patrich et al., 2016). Using this compound on the Der1 

mice would therefore allow us to investigate the interaction between gene and 

environment in the very specific context of the t(1;11) translocation. Then, similar 

experiments to those mentioned in this thesis could be performed. This would provide 

new information about the extent of the effect of the environment on mental disorders. 

Possibly, a more critical phenotype could be uncovered indicating that the Der1 

mutation could be activated by environmental change.   

In conclusion, this thesis provided an initial characterisation of a novel Der1 mouse model, 

confirming of the role of DISC1 in various biological processes associated with the 

development of mental illness. The results indicate that this mouse model differs from previous 

animal models used to study mental disorders and expressed more subtle phenotypes. 

However, a few similar cellular phenotypes were found when compared to these previous 

animal model. Additionally, RNA expression was discovered to be significantly altered to an 

extend that was not observed previously on other animal models. Overall, this presents a new 

mouse model of mental illness and indicates that altered expression of DISC1 might increase 

the risk of developing psychiatric disorders. The Der1 mice is a better model to study the 

human translocation t(1;11) but  additional investigation of the molecular mechanisms affected 

by the Der1 mutation would be necessary to use this model for further understanding of mental 

disorders in its globality and possibly to help finding a better treatment for those suffering of 

such debilitating illness. 
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