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Abstract 

This work describes the identification of a Schizosaccharomycespombe homologue 

of the Saccharomyces cerevisiae CDC37 gene. Homologues have been previously 

identified in a variety of organisms, including Drosophila, chicken, mouse, rat and 

human. The S.pombe gene has been named cdc3 7 and encodes a protein with a 

predicted molecular weight of 52 kDa. The protein shows extremely high sequence 

similarity with Cdc37p from S.cerevisiae for the first 40 amino acids at the N-

terminus but, as with the homologues from other species, this similarity is 

considerably less over the remainder of the protein. 

Deletion of cdc3 7 results in a lethal phenotype, establishing that the gene is 

essential for viability. The null mutant could survive when cdc3 7+ was expressed 

from the thiamine-regulatable low strength expression vector pREP8 1; when 

expression was repressed, the cells showed a variety of phenotypes, becoming 

swollen, misshapen and/or elongated. The diversity of phenotypes observed 

suggests that Cdc37 has several biological roles. Elongation of S.pombe cells 

indicates a cell cycle defect and measurements of cell length during Cdc37 depletion 

confirmed significant elongation in zicdc37 cells when cdc37+ expression from the 

plasmid pREP8 1 was repressed. FACS and cytological analysis indicated that cell 

cycle defects occurred in both the G2 and mitotic phase of the cell cycle. 

Genetic analysis carried out to investigate the mechanism of cell cycle arrest suggests 

that Cdc37 may be involved with the Cdc2/Cdc13 complex, which controls entry 

into mitosis from the G2 phase. cdc3 7+ was strongly overexpressed in wild-type 

cells from the high strength expression vector pREP 1 with no effect. However, in 

strains carrying either of two cdcl 3 alleles, strong cdc3 7+ overexpression severely 

reduced the restrictive temperature. A similar but more modest effect was seen in 

strains carrying various cdc21s  alleles. Preliminary biochemical studies were also 

carried out, which showed that the Cdc2 protein level was lower than normal in cells 

depleted for Cdc37. 
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Chapter 1 

Introduction 



1.1 The eukaryotic cell cycle 

1.1.1 Introduction 

The cell cycle is the process by which a cell reproduces and divides into two 

daughter cells. It comprises two critical phases; S phase, during which chromosomal 

DNA is replicated and mitosis (M phase) where the replicated genome is distributed 

equally between the two daughter cells. Separating these two phases are GI (after M 

phase and before S phase) and G2 (after S phase and before M phase). The order 

and integrity of cell cycle events must be maintained to ensure the production of 

viable progeny. 

Cells can exit from the cell cycle from either GI or G2. In multicellular eukaryotic 

organisms, most of the cells that are no longer growing and proliferating are arrested 

at a stationary phase known as GO. Such cells have left the cycle after division at a 

certain point in GI, known as the restriction point (Pardee, 1974). Cells that do not 

leave the mitotic cell cycle at this point are committed to progress through the 

remainder of the cell cycle. 

In yeast, the restriction point is broadly equivalent to a transition point in G 1, 

known as Start (Hartwell, 1974). At Start, cells commit to one of three fates: 

progression through the mitotic cell cycle, entry into a sexual cycle or arrest in 

stationary phase in which viability can be maintained for a long period. 

1.1.2 Regulation of the cell cycle 

The cell cycle is a highly ordered and regulated biological process, coordinating cell 

growth and cell division. Most types of cell grow between each cell division (an 

2 



exception being early embryonic cells) and lack of coordination of growth and 

division would lead to cells becoming progressively smaller or larger (Murray and 

Kirschner, 1991). In yeasts, this control is achieved by having a critical size 

requirement for passing through certain cell cycle stages. In the budding yeast, 

Saccharomyces cerevisiae, small daughter cells must grow for a longer time before 

they pass Start (Hartwell and Unger, 1977). The fission yeast, Schizosaccharomyces 

pombe, also has a similar size requirement but this control is active in G2 so that cells 

must achieve a certain size before progressing through mitosis and cell division 

(Nurse, 1975; Nurse and Fantes, 1981; Fantes, 1989). 

Regulation of the cell cycle also includes coordination of various cell cycle events. 

For example, cells must ensure that mitosis does not begin until DNA replication is 

completed. If these two events are not coordinated, the result could be aneuploid or 

polyploid daughter cells. A number of cell cycle checkpoints have now been 

identified and are the subject of much research. These include the S-M replication, 

G2-M DNA damage and spindle assembly checkpoints (Sheldrick and Carr, 1993). 

These checkpoints are often signal transduction cascades which feed into the normal 

cell cycle progression machinery leading to arrest so that the problem can be 

addressed. An example of this is the response to DNA damage: if DNA damage is 

detected, cells arrest in G2 until the damage is repaired at which point they re-enter 

the cell cycle. 

1.1.3 Cell cycle control by cyclin dependent kinases (CDKs) 

The machinery that underlies the cell cycle regulatory processes includes a highly 

conserved family of proteins known as the cyclin-dependent kinases (CDKs). By 

definition, the activity of CDKs at specific stages of the cell cycle is absolutely 

dependent on their association with cyclin regulatory subunits. However, CDKs are 
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also regulated both positively and negatively by phosphorylation of key residues and 

negatively controlled by the binding of CDK inhibitors. Although this section 

contains a general description of CDKs and their regulation, it mainly focuses on 

their role in the G2IM transition which is most relevant to this project (Nigg, 1995). 

The founding members of the CDK family are the homologous 34 kDa protein 

kinases Cdc28 in S.cerevisiae (Hartwell, 1974) and Cdc2 in S.pombe (Nurse et al., 

1976). Each has been shown, through genetic analysis, to have key roles in regulating 

cell cycle progress at both the GuS and G2/M transitions. Homologues of this 

kinase, called the p34 2  family, were then identified in other species and it has since 

become clear that all eukaryotic cells contain a form of this kinase, which regulates 

various checkpoints in the cell cycle. 

Unlike in the yeasts, where there is only one p34 cdc2  kinase predominantly regulating 

cdc all transitions, there are multiple mammalian homologues of p34 2, all thought to 

play distinct roles in regulation of the cell cycle. The gene encoding the first human 

homologue of p34' 2  discovered, Cdc2 (also known as Cdkl), regulates the G2IM 

transition (Th'ng etal., 1990; Hamaguchi etal., 1992) and was cloned by 

complementation using 'a fission yeast cdc2ts  strain (Lee and Nurse, 1987). The need 

for function of Cdkl at the GuS transition as with S.cerevisiae Cdc28 and S.pombe 

Cdc2 is not conserved in the mammalian cell cycle. Another 6 CDKs have been 

identified in mammalian cells, named Cdk2-7, and with the exception of CdkS, all are 

involved in regulating various transitions within the cell cycle (Nigg, 1995). For the 

rest of this section, the name Cdc2 will be used to describe the homologues 

S.cerevisiae Cdc28, S.pombe Cdc2 and mammalian Cdkl in the role they play in the 

G2/M transition. 

As previously mentioned, the activity of CDKs is absolutely dependent on 

association with their cyclin partners (Morgan, 1995). Cyclins were first 



characterised as proteins that accumulate periodically during the rapid synchronous 

early divisions of sea urchin embryos (Evans et al., 1983). Most cyclins can be 

categorised depending on their structure and on the stage of the cell cycle at which 

they are required. The five major classes in higher cells are known as cyclins A, B, C, 

D, H. Some of these cyclins and CDKs undergo combinational interactions, in that a 

given cyclin may associate with multiple CDK partners and vice versa. Due to the 

universal function of Cdc2 in S. cerevisiae and S.pombe, it is the specific cyclin bound 

that determines at which stage of the cell cycle the CDK is required. In all 

eukaryotes, cyclin B binds to Cdc2 to form a complex that is required for initiation of 

M phase. 

Reversible phosphorylation of specific residues on Cdc2 also contribute to the 

regulation of Cdc2/Cyclin B kinase activity. These modifications are executed in a 

cell cycle dependent manner. Cdc2 is activated via phosphorylation of a specific Thr 

residue in the activation loop of the CDK catalytic domain by CDK-activating 

kinases (CAK5). This residue is Thr167 in S.pombe, which is equivalent to Thrl6l 

in human (Gould and Nurse, 1989; Krek and Nigg, 1991). This phosphorylation 

event is required for Cdc2 kinase activity (Gould et al., 1991). In contrast, 

phosphorylation of Tyr l 5 negatively regulates Cdc2 kinase activity in S.pombe. 

Tyrl 5 phosphorylation maintains Cdc2/Cyclin B in an inactive form throughout the 

S and G2 phases and removal of this inhibitory phosphate is absolutely required for 

activation of Cdc2 kinase activity and entry into mitosis (Gould and Nurse, 1989). 

Inhibitory phosphorylation of Tyr l 5 is conserved in vertebrates, however, there is 

an additional inhibitory phosphorylation on the adjacent residue Thr14 (Krek and 

Nigg, 1991; Norbury et al., 1991). 



1.2 S.pombe as a model organism 

The fission yeast, S.pombe, is a unicellular ascomycete fungus. S.pombe cells are rod 

shaped, 3.5 pm in diameter and between 7 p.m and 14 p.m in length depending on cell 

cycle position. The cells grow by apical extension and divide by medial fission. 

Following the birth of a new cell, growth occurs only at the old end of the cell, which 

existed in the previous cycle; the new end starts to grow at a defined stage termed 

"New End Take Off (NETO, Mitchison and Nurse, 1985). S.pombe cell division by 

medial fission is more typical of higher eukaryotes than the budding of S.cerevisiae. 

Two features make S.pombe an excellent model for studying the eukaryotic cell cycle. 

Firstly, the cells grow only by length extension, making it possible to determine at 

which stage a cell was in the cell cycle simply by measuring its length (Mitchison, 

1957; Mitchison, 1990). Secondly, S.pombe is amenable to both classical and 

molecular genetic analysis (Gutz et al., 1974; Moreno et al., 1991; Alfa et al., 1993). 

S.pombe cells grow under relatively simple conditions. For laboratory purposes, 

S.pombe are grown in either complex or minimal medium at 20°C to 36 °C (Moreno et 

al., 1991). The generation time varies with strain, medium and temperature. Under 

favourable conditions, S.pombe cells reproduce asexually by means of the mitotic cell 

cycle, whereas starvation induces one of several alternative developmental fates (Fig 

1.1). Essentially, haploid cells are of two mating types, known as h and h, and if 

cells of a single mating type are present, then upon starvation they will exit the 

mitotic cell cycle at GI or G2 and accumulate in stationary phase. If cells of both 

mating types are present, they will transiently arrest in GI and then conjugate to 

form a diploid zygote. Under continued nutrient limitation, such zygotes usually 

undergo meiosis directly, forming an ascus containing four haploid spores that lie 

dormant until nutrient conditions improve. However, if newly formed diploid 
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Fig 1.1 The life cycle of Schizosaccharomyces pombe 

Shown is a schematic diagram representing the life cycle of S.pombe. Normally, cells 
reproduce by means of the haploid mitotic cell cycle (top left). However, if cells are 
deprived of nutrients they will exit the cell cycle and enter stationary phase (top) or 
undergo conjugation to form diploid zygotes (upper centre). If starvation continues, 
the zygotes will undergo meiosis and sporulation, forming an ascus containing four 
haploid spores which lie dormant until nutrient conditions improve (lower centre and 
left). However, if newly formed diploid zygotes are resupplied with nutrients, they 
will resume the mitotic cell cycle as a diploid (lower right). This figure is reproduced 
from Macneill and Fantes, 1993. 
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zygotes are supplied with adequate nutrients, some will resume the mitotic cell cycle 

and divide vegatively as a diploid (Egel and Egel-Mitani, 1974). 

The S.pombe genome is —14 Mb, approximately the same as the budding yeast 

S. cerevisiae. However, unlike S. cerevisiae, the genome is contained in just three 

chromosomes. An international project, coordinated by the Sanger Centre in 

Cambridge, commenced in 1995 to sequence the entire S.pombe genome and is almost 

complete. The data generated from this work can be easily searched from the Sanger 

Centre website: 

http://www.sanger.ac.uk/Projects/S_pombe/  

This resource has proved to be extremely important for this project and allowed the 

identification and subsequent isolation of the gene described in this work. 

1.3 Regulation of the cell cycle in S.pombe 

1.3.1 The mitotic cell cycle in S.pombe 

The mitotic cell cycle of S.pombe (Fig 1.2) is typically eukaryotic, with discrete GI, 

S, G2 and M phases (Fantes, 1989). G1 is very short in S.pombe; DNA replication 

has already taken place by the time of cell division and the daughter cells are already 

in G2 at separation (Nasmyth and Nurse, 1979). Conversely, G2 occupies —70% of 

the cell cycle, with most growth taking place during this phase. Entry into mitosis is 

marked by chromosome condensation and rapid microtubule rearrangement, where 

the cytoplasmic microtubule array disappears and a short spindle is formed. In 

contrast to higher eukaryotes, the nuclear envelope remains intact during mitosis, 

which is also true for S. cerevisiae (Nurse, 1985). After mitosis, the cell forms a 

septum across its centre and separation occurs when the septum is cleaved. 



exft from cycle 
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Fig 1.2 The mitotic cell cycle of S.pombe 

Shown is a schematic representation of the cell cycle in S.pombe. It is typically 
eukaryotic with discrete Gi, S, G2 and M phases. G2 is by far the longest phase, 
occupying about 70% of the cell cycle, whilst the duration of each of the Gi, S and 
M phases is about 10% of the cycle. In S.pombe, septation and cytokinesis occur 
simultaneously with S phase so the newly created daughter cells have already 
undergone DNA replication. 



The GI and G2 phases of the cell cycle contain major control points concerned with 

regulating the onset of S phase and mitosis. The G2 phase includes the main growth 

control, ensuring that mitosis and cell division occur only when the cell has reached a 

critical size (Nurse, 1990). The transition from G2 to mitosis also requires the prior 

completion of DNA replication. Cells that are blocked at the DNA replication stage 

will not enter mitosis (Enoch, 1990; Sheidrick and Carr, 1993). 

Cell cycle controls also exist in GI. An important GI control mediates the 

requirement for the completion of mitosis before S phase can commence; cells 

blocked in G2 cannot undergo S phase (Moreno and Nurse, 1994). As mentioned 

earlier, there is an elaborate system of checkpoints and controls that are the subject 

of much ongoing work, however, these will not be discussed in great detail in this 

thesis (Murray, 1992; Woollard and Nurse, 1995; Russell, 1998). 

1.3.2 Cell cycle mutants and cell cycle regulatory genes 

The study of the cell cycle in S.pombe has been largely based on the analysis of 

mutants, which can be classed into three broad categories which are discussed below: 

mutants which are blocked at a specific stage of the cell cycle (mainly cdc mutants); 

mutants that are defective in coordination of cell growth and cell division; mutants 

that are unable to maintain the dependency between cell cycle events. A fourth 

category of mutants exist which overlaps somewhat with the three previously 

mentioned, where the mutants are identified due to their genetical interaction with 

already established cell cycle mutants. 

Most S.pombe mutants that arrest at specific stages of the cell cycle are known as 

cdc (cell division cycle) mutants and typically display a cell elongation phenotype 

(Fantes, 1989; Macneill and Fantes, 1994). Since cdc phenotypes are lethal, 
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conditional mutants have been isolated and are usually temperature sensitive (ts), 

where the cdc phenotype is only visible at certain 'restrictive' temperatures (usually 

~:35°C). The stage of the cell cycle at which the arrest takes place allows cdc 

mutants to be further classified and include genes required for passage through Start, 

DNA replication, entry into mitosis and septation (Fantes, 1989; Carr et al., 1989). 

As mentioned previously (section 1.3.1), the predominant cell cycle control in 

S.pombe exists at the 02 to M transition and controls entry into mitosis. Mutants 

that alter the timing of entry into mitosis therefore affect the coordination of cell size 

and cell cycle stage. Advancing the timing of entry into mitosis shortens 02, the 

phase where most cell growth takes place and results in cells which are shorter than 

wild-type cells, called the 'wee' phenotype (Nurse, 1975). This can be achieved by 

mutants of Cdc2 that lose the normal regulation mechanisms (Nurse and Thuriaux, 

1980; Fantes, 198 1) or by mutations of genes which regulate Cdc2 kinase activity 

(see section 1.3.3). 

Mutations which cause disruption of the normal dependencies of cell cycle events on 

the completion of earlier events can lead to a variety of lethal phenotypes. These 

include defects allowing cytokinesis to proceed in the absence of nuclear division, 

leading to cells with aberrant septation or 'cut' phenotypes (Yanagida, 1998) and 

cells containing polyploid nuclei which indicate that extra rounds of DNA replication 

have taken place without an intervening mitosis (Broek etal., 1991, Moreno and 

Nurse, 1994). 

1.3.3 Regulation of entry into mitosis 

S.pombe has proved an excellent model organism for investigating the mechanisms 

controlling entry into mitosis. A mechanistic model has now been firmly established 
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and homologues have been identified in higher eukaryotes for many of the 

components of this model (Fig 1.3). 

At the G2 to M transition point, Cdc2 is complexed with Cdcl3, a B-type cyclin 

(Booher and Beach, 1987; Booher and Beach, 1988). This complex begins to 

accumulate during G  and S phase and is most abundant when required to initiate 

mitosis. Cdcl3 is absolutely required for Cdc2 kinase activity in G2 and for entry 

into mitosis. Once the Cdc2-Cdcl3 complex has formed, it is regulated by 

phosphorylation of specific residues of Cdc2 (Draetta and Beach, 1988; Gould and 

Nurse, 1989). 

As previously mentioned (section 1.1.3), phosphorylation of Thr167 by a CDK 

activating kinase (CAK) is required for tight cyclin binding and activation of Cdc2 

kinase activity. To date, it appears that S.pombe contains two partially redundant 

CAKs: the Mcs6-Mcs2 complex and Cskl (Lee et al., 1999). Inactivation of both 

these CAKs prevents Cdc2 activation and causes cell cycle arrest. In S.pombe it is 

still not certain which protein dephosphorylates Thri 67, though the phosphatase 

Ppa2 has become the most likely candidate. Deletion of ppa2 causes cells to divide 

at a reduced cell size (semi-wee phenotype), whilst overexpression causes a delay in 

G2, resulting in elongated cells (Kinoshita et al., 1993). These observations are 

consistent with Ppa2 being a negative regulator of entry into mitosis. However, at 

present the genetic interactions of ppa2 with other cell cycle genes are not 

conclusive and cannot determine which of the mitotic control gene products serves as 

a substrate for Ppa2 activity. 

Two genes, wee]' and mikt, have been identified as negative regulators of Cdc2-

Cdc 13 kinase activity which act by phosphorylating residue Tyrl 5 of Cdc2 (Russell 

and Nurse, 1987a; Lundgren et al., 1991). The wee[ gene product belongs to an 

unusual class of protein kinase capable of phosphorylating both serine and tyrosine 
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Fig 1.3 The control of entry into mitosis by the Cdc2/Cdc13 complex 

The timing of entry into mitosis is controlled by the Cdc2/Cdc 13 complex and the 
pathways which regulate it. A. The association of Cdc2 with Cdc 13 is absolutely 
dependent on the activating phosphorylation of Thrl67 (red P) of Cdc2 by CDK 
activating kinases (CAKs). The inhibitory phosphorylation of Tyr] 5 (orange P) by 
Wed I (and MikI) ensure that Cdc2 remains inactive. B. Upon phosphorylation of 
Thr167, Cdc2 forms a complex with the cyclin, Cdcl3. C. Removal of the TyrlS 
phosphorylation by Cdc25 (and Pyp3) convert the inactive complex into its active 
state, allowing entry into mitosis. 
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residues (Featherstone and Russell, 1991, Parker and Piwnica-Worms, 1992). The 

mikT gene shares extensive sequence homology with weet (Lundgren et al., 1991). 

The wee] gene is a dosage dependent inhibitor of mitosis and loss of wee] function 

advances mitosis resulting in the short 'wee' phenotype (Russell and Nurse, 1987b). 

Loss of mikt function has no effect on cell length in otherwise wild-type cells. 

Although neither weet nor mikt is essential, loss of both activities leads to rapid 

dephosphorylation of Tyrl 5 and to mitotic catastrophe that is lethal (Lundgren et 

al., 1991). This suggests that Weel and Miki share an overlapping function, which 

is required for phosphorylation of the Tyr l 5 residue of Cdc2 but that Wee 1 plays 

the major role. 

The phosphorylation of the Tyr15 residue of Cdc2 by Weel and Miki must be 

reversed to activate the Cdc2/Cdc13 complex and this is carried out by Cdc25 and to 

a lesser extent, Pyp3. The cdc25 gene product has been identified as a dosage 

dependent activator of mitosis, acting in opposition to Wee 1 (Russell and Nurse, 

1986). Both cdc25 mRNA and Cdc25 protein levels fluctuate during the mitotic cell 

cycle, reaching a maximum at the G2 to mitosis transition point (Moreno etal., 1990; 

Ducommun et al., 1990). cdc25 is essential for cell cycle progression and cells 

lacking cdc25 function arrest in G2 but only in the presence of functional weet 

(Fantes, 1979; Russell and Nurse, 1986; Russell and Nurse, 1987b). Both genetic 

(Gould and Nurse, 1989; Gould et al., 1990) and in vitro biochemical evidence (Millar 

etal., 1991) suggest that the cdc25 gene product induces mitosis by 

dephosphorylating the Tyr l 5 residue of Cdc2 , thereby activating Cdc2 kinase 

activity. Pyp3 is another protein tyrosine phosphatase which also contributes to 

this Tyr 15 dephosphorylation (Millar et al., 1992). Pyp3 function is not essential in 

otherwise wild-type cells but does cause a mitotic delay that is enhanced in cells 

which are partially defective in Cdc25 function (Millar et al., 1992). However,pyp3 

is essential in a cdc25 weel double mutant, suggesting that Cdc25 and Pyp3 also 

share an overlapping function but that Cdc25 plays the major role. 
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In order for a cell to enter mitosis and progress through the cell cycle, Cdc25 must be 

activated, and Wee  and Miki must be inhibited. This is achieved by 

phosphorylation of these three proteins by multiple kinases, probably including 

Cdc2 itself as in S.cerevisiae (Patra et al., 1999). The nim1/cdr1 gene (Russell and 

Nurse, 1987a; Young and Fantes, 1987) encodes a protein kinase that can 

phosphorylate and inhibit the Wee  protein in vitro (Wu and Russell, 1993; Coleman 

etal., 1993; Parker etal., 1993). In vivo, the levels ofNiml/Cdrl kinase activity 

correlate directly with levels of Wee  phosphorylation (Wu and Russell, 1993). 

Cdc25, Weel and Miki are also targets of checkpoint kinases that prevent mitosis in 

response to upstream signals. Cdsl, a protein kinase involved in the S-M DNA 

replication checkpoint, is believed to phosphorylate and activate Wee 1, thus delaying 

the onset of mitosis in response to incomplete DNA replication (Boddy et al., 1998). 

There is also evidence that Cdsl phosphorylates and inhibits Cdc25, another 

measure towards delaying the onset of mitosis (Furnari etal., 1999). Chkl is kinase 

involved in the G2-M DNA damage checkpoint and has been shown to 

phosphorylate and inhibit Cdc25 in vitro and in vivo, delaying entry into mitosis in 

response to DNA damage (Furnari et al., 1999). 

1.4 The heat shock response and the role of heat shock proteins as 

molecular chaperones 

When cultured cells or whole organisms are exposed to elevated temperature, they 

increase the synthesis of several highly conserved proteins known as heat shock 

proteins (Hsps). As well as heat-shock, these Hsps are also produced in response to 

a wide variety of other stresses such as exposure to radiation or toxic chemicals 

(Ritossa, 1996; Lindquist, 1986). This heat shock response is universal; it has been 
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observed in every organism where it has been investigated and is found in nearly 

every cell and tissue type of multicellular organisms (Lindquist, 1986). 

Heat stress and the other stresses which increase Hsp synthesis result in a much 

higher than usual intracellular concentration of proteins in denatured conformations, 

which require 'molecular chaperones' to assist them in refolding properly back into 

their normal native conformations. Most Hsps are now known to act as molecular 

chaperones even under normal conditions and their mechanism of action has been 

subject to intense investigation (Gething and Sambrook, 1992; Morimoto, 1994; 

Hart!, 1996). They have been shown to play diverse roles in successful folding, 

assembly, intracellular localisation and regulation of many proteins, even in 

unstressed cells (Gething, 1997). 

The genes encoding Hsps are highly conserved and have been identified in every 

species in which they have been examined. Most of these genes and their products 

can be assigned to families based on the basis of sequence similarity and typical 

molecular weight (Gething, 1997). These families include the HsplOO, Hsp90, 

Hsp70, Hsp60, Hsp40, Hsp25 and small Hsp families. The Hsps recognise and bind 

to target proteins that are in non-native conformations, whether due to denaturation 

induced by stress or because they have not yet been fully synthesised. Binding 

and/or release of the target proteins is often regulated by association and/or 

hydrolysis of nucleotides. Typically, Hsps function as complexes with several other 

chaperones or in association with partners known as cochaperones. The Hsps that 

have been best studied are Hsp40, Hsp60, Hsp70 and Hsp90. The most interesting 

Hsp with regard to this project is Hsp90 and is described in the next section. 

However, brief descriptions of the roles of the other Hsps are included here. 

Hsp70 is the most highly conserved of the Hsps and therefore has been investigated 

most thoroughly. All known Hsp70s have Hsp40 cochaperones and together assist a 

16 



large variety of protein folding processes in almost all cellular compartments (Bukau 

and Horwich, 1998). They play an essential role in the folding of newly translated 

proteins, targetting proteins and assisting their translocation across organellar 

membranes, disassembling oligomeric protein structures, facilitating proteolytic 

degradation of unstable proteins and controlling the biological acivity of folded 

regulatory proteins (Morimoto et al., 1994; Hart!, 1996). In Hsp70 assisted folding 

reactions, substrates undergo repeated cycles of binding and release, causing local 

conformational changes in the substrate, thus preventing aggregation and facilitating 

folding to its native state (Szabo et al., 1994; Buchberger et al., 1996). Hsp40 is 

believed to target Hsp70 to its destination and also stimulate ATP hydrolysis. 

Hsp60s, or the chaperonins as they are also known, function as a collective of 

double-ring assemblies that promote folding of proteins into their native state (Bukau 

and Horwich, 1998). The huge complexes (-1 MDa) are made up of back to back 

rings of identical or closely related rotationally symmetric subunits of -60 kDa. 

Chaperonins play an essential role in all cells, assisting a large variety of newly 

synthesised and newly translocated proteins to reach their native forms by binding 

them and facilitating their folding inside a large central channel within each ring (Ellis, 

1996; Fenton etal., 1997). 

All known stresses, if sufficiently intense, induce Hsp expression (Feder and 

Hofmann, 1999) and their increase in expression is termed the stress response. A 

common aspect of these inducing stresses is that they result in proteins having non-

native conformations (Somero, 1995), which is consistent with the function of Hsps 

as molecular chaperones, binding only proteins that are in non-native conformations. 
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1.5 The Hsp90-based chaperone system 

1.5.1 The ubiquitous protein chaperone, Hsp90 

Hsp90 is a highly conserved stress protein and is expressed in the cytoplasm of all 

eukaryotic cells, though very small amounts are present in the nucleus as well 

(Parsell and Lindquist, 1993). It is highly abundant in unstressed eukaryotic cells, 

accounting for —I% of cytosolic protein but in response to stress, Hsp90 protein 

levels increase up to ten-fold (Welch and Feramisco, 1982). It is essential in both 

yeast (Borkovich, 1989) and Drosophila (Cutforth and Rubin, 1994). Hsp90 purifies 

as a dimer and dimerisation is required for its function in vivo (Minami etal., 1994). 

In vitro, Hsp90 alone functions as a molecular chaperone that facilitates the folding 

of a number of proteins (Jakob and Buchner, 1994), however, this ability to assist in 

protein folding is probably only part of its function in vivo as a component of the 

Hsp90-based chaperone system. Several transcription factors and protein kinases 

involved in signal transduction have been recovered from cells in association with 

Hsp90. In many cases, the association with this protein chaperone is essential for 

the proper functioning of the signalling pathway. 

1.5.2 The subcomplexes of Hsp90 

There are several Hsp90 cochaperones that have been identified and they appear to 

be organised into discrete subcomplexes (Fig 1.4). To date, four different Hsp90 

subcomplexes have been described and are believed to have distinct roles (Caplan, 

1999). It is thought that the subcomplex which Hsp90 forms, directly affects the 

downstream function of Hsp90. Both the 'Hop' complex and the 'p23' complex 

(Fig 1.4) are associated with maturation of steroid hormone receptors (SHRs), though 

the exact mechanisms have yet to be determined. The Hsp90/Cdc37 complex is 
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Fig 1.4 The cochaperones and subcomplexes of Hsp90 

Shown are the known cochaperones of Hsp90 to date and the subcomplexes they 
form. Complex A, called the 'Hop' complex (Caplan, 1999) and complex B, called 
the 'p23' complex (Caplan, 1999), are both involved in the maturation of steroid 
hormone receptors. Complex C, containing p5 O 37 , is involved in the folding and 
activity of various protein kinases, whilst the function of complex D is at present 
unknown. This figure is reproduced and modified from Caplan, 1999. 
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thought not be involved with SHRs but with the correct folding of protein kinases. 

The function of the fourth complex found in S.cerevisiae containing Cpr7 and Cnsl 

is not well understood but Cpr7 has been shown to play a role in the maturation of 

glucocorticoid receptors (Pauli and Mahowald, 1990). 

Hsp90 binds to several of its cochaperones at its C-terminal dimerisation domain 

(Young et al., 1998; Carrello, 1999). All of the cochaperones that bind in this region, 

except Cdc3 7, contain tetratricopeptide repeat sequences (TPR) that mediate their 

association in a competitive manner with Hsp90 (OwensGrillo etal., 1996). 

Although Cdc37 does not contain TPR sequences, it also appears to competitively 

bind Hsp90 at a site adjacent to, although distinct from, the binding site for TPR-

containing proteins (Silverstein et al., 1998). This competitivity between 

cochaperones is unlikely to be the only factor in complex assembly, as this might 

also depend on the nucleotide state of Hsp90 and the presence of other 

cochaperones. 

1.5.3 Steroid hormone receptors and Hsp90 

Steroid hormone receptors (SHRs) are soluble intracellular proteins that shuttle 

between the cytosol and the nucleus. SHRs are the best studied in vivo substrates of 

Hsp90 (Pratt and Toft, 1997). This interaction occurs only in the absence of steroid 

hormones; the addition of hormones causes dissociation of the Hsp90/SHR complex 

and dimerisation of the receptors, allowing them to enter the nucleus and bind 

specific DNA sequences, thus regulating transcription (Louvion etal., 1996). 

Genetic experiments in a heterologous system have demonstrated that Hsp90 is 

required to maintain receptors in an inactive but activatable state in the absence of 

hormone (Xu and Lindquist, 1993; Bohen and Yamamoto, 1994). 
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Both the 'Hop' complex and the 'p23' complex have been found to be associated 

with SHRs but the exact mechanisms are not clearly understood. Sequential passage 

through at least both of these two Hsp90 multicomponent complexes are necessary 

to keep SHRs competent for hormone binding and subsequent activation (Caplan, 

1999). The unstable 'Hop' complex is believed to bind the SHR initially and then 

subsequently, the stable mature complex Hsp90/SHR/p23 complex is formed. The 

intermediate stages of this transition are unclear. 

1.5.4 Protein kinases and Hsp90 

Hsp90 has been found in complexes with a number of protein kinases including 

several CDKs (Hunter and Poon, 1997). In most of the complexes formed between 

protein kinases and Hsp90, a cochaperone, p50, has also been found to be present. 

It has recently been shown that p50 is actually a mammalian homologue of Cdc37 

(Perdew et al., 1997), however, this was unknown at the time most of the work 

described in this section was carried out. 

Several independent lines of evidence link an Hsp90/p50 complex with kinases of 

unrelated signalling pathways, including two examples which are discussed here. 

These studies have shown that this complex is found associated with newly 

synthesised and inactive forms of Src homologues (Brugge etal., 1981; Brugge, 1986) 

and Raf-1 (Stancato et al., 1993) in fibroblasts. However, active forms of Raf-1 and 

src homologues found at the cell membrane lack this chaperone complex. 

v-Src is a membrane-associated protein-tyrosine kinase encoded by Rous sarcoma 

virus (RSV) and had been shown previously to associate with a Hsp90/p50 complex 

in chicken fibroblasts (Brugge et al., 1981; Brugge, 1986; Oppermann etal., 1981). 

Ectopic expression of v-Src in wild-type S. cerevisiae causes rapid cell death with 
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associated disruption of the cell cycle, due to abnormal protein phosphorylation on 

tyrosine residues (Boschelli et al., 1993). However, mutations in CDC37 suppress 

the lethality resulting from v-Src expression, apparently through kinase 

destabilisation (Dey et al., 1996). In chicken fibroblasts, newly synthesised v-Src 

remains complexed with Cdc37 and Hsp90 in the cytoplasm until it is translocated to 

the cytoplasmic membranes (Courtneidge and Bishop, 1982; Brugge et al., 1983). 

When bound to Hsp90/Cdc37 complexes, v-Src was shown to be 

hypophosphorylated and lack protein kinase activity. However, after dissociation 

from the complex, v-Src was shown to be phosphorylated on tyrosine and serine 

residues, to have protein kinase activity and to be associated with membrane 

fractions. 

It is interesting, however, that Hsp90/Cdc37 complexes have not been found with the 

v-Src cellular homologue, c-Src. There are two very different reasons as to why this 

could be: either because the interaction of Hsp90/Cdc37 complexes with v-Src could 

represent a nonphysiological relationship or possibly because mutant protein kinases 

contain a larger fraction of misfolded protein and therefore are better targets for 

Hsp90/Cdc37 association. The Hsp90/Cdc37 complex has also been detected in 

association with three other oncogenic protein-tyrosine kinases, v-Yes (Adkins et al., 

1982), v-Fps (Lipsich et al., 1982) and v-Fgr (Ziemiecki, 1986). 

Raf-1 is another protein kinase that interacts with the Hsp90/Cdc37 complex 

(Stancato et al., 1993; Wartmann and Davis, 1994). It is a serine/threonine protein 

kinase which is normally involved in activating the MAP kinase kinase, Mek, thus 

playing an important role in mitogenic signal transduction. It has also been shown to 

be directly activated by the potent oncoprotein Ras (Ahn, 1993). Unlike the case of 

c-Src, both v-Raf and its cellular analogue c-Raf have been demonstrated to interact 

stably with Hsp90/Cdc37 complexes (Stancato et al., 1993; Wartmann and Davis, 

1994). Raf activation by Ras involves the translocation of the Raf/Hsp90/Cdc37 
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complex to the cell membrane and only membrane-bound Raf exhibits protein kinase 

activity (Wartmann and Davis, 1994). This work also showed that although it is 

predominantly cytosolic, c-Raf also undergoes trafficking to the plasma membrane, 

and only after translocation to membrane sites is its kinase activity stimulated. 

1.6 Cdc37 and its role in the cell cycle with CDKs 

1.6.1 The identification of Cdc37p in S.cerevisiae 

CDC3 7 is an essential gene in S. cerevisiae and is required for passage through the 

GI phase of the cell cycle (Gerber etal., 1995). It was first identified through a 

screen which selected for temperature-sensitive mutations that cause cell cycle arrest 

in G  at Start (Reed, 1980b), the point at which the cell becomes committed to the 

cell division cycle (Hereford and Hartwell, 1974; Johnston etal., 1977; Hartwell and 

Unger, 1977). Cells also arrest in Gl if treated with mating pheromone, or are 

starved of nitrogen, allowing exit from the mitotic cell cycle. Four genes were 

identified in which mutations caused this characteristic arrest at Start: CDC28, 

CDC36, CDC37 and CDC39 (Breter etal., 1983; Ferguson etal., 1986). Mutations 

in CDC36 and CDC39 result in constitutive activation of the mating pheromone 

pathway which in turn leads to GI arrest (Neiman et al., 1990). In contrast, CDC28 

is known to be directly involved in the cell cycle (Forsburg and Nurse, 1991; Reed, 

1992; Nasmyth, 1993). 

The first clue that S. cerevisiae Cdc3 7p was involved in the function of CDKs was 

the discovery that the G  arrest in the cdc371ts  mutant is accompanied by a decrease 

in the kinase activity of Cdc28. This was shown to be due to the lack of association 

of Cdc28 with the GI cyclin C1n2 (Gerber et al., 1995), which could account for the 

defect in progression from GI to S phase in cdc371ts  cells. Also in these cells, the 
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kinase activity of Cdc28 associated with the mitotic cyclin C1b2 was also shown to 

be much lower. These results indicated that Cdc37 might play a role in regulating 

CDK activity in GI and G2 by somehow regulating the association between Cdc28 

and the cyclins. This evidence was supported by work carried out with the 

D. melanogaster homologue of CDC3 7, in which mutations were shown to 

dominantly enhance mutations in the cdc2 gene, the closest homologue of mammalian 

Cdkl (Cutforth and Rubin, 1994). 

1.6.2 The role of mammalian Cdc37p homologues with CDKs 

In mammalian cells, the Cdks 4 and 6 associate with D-type cyclins and are involved 

in the cell cycle at the GO/G1 transition and probably at the GUS phase transition 

(Nigg, 1995). At the same time as the S. cerevisiae work described in the previous 

section (1.6. 1) was going on, work on mammalian systems indicated that the 

assembly of these cyclin D-Cdk4/6 complexes was thought to require additional 

factors, partly due to the fact that the complexes were much more difficult to 

produce in vitro than other active complexes such as cyclin-Cdkl or cyclin-Cdk2 

complexes. When cells are stimulated with growth factors to enter the cell cycle from 

quiescence (GO), cyclin D and Cdk4 are synthesised and assemble into cyclin D-

Cdk4 complexes in mid-GI (Matsushime et al., 1994). However, when both cyclin 

D and Cdk4 are ectopically expressed in quiescent cells, cyclin D-Cdk4 complexes 

are not formed. It has since been shown that assembly of these complexes does 

indeed require a mitogen-dependent step that is independent of CAK function (Kato 

etal., 1994; Matsuoka etal., 1994). 

When a mammalian homologue of Cdc37p was found to associate directly in vitro 

with the mammalian kinases Cdk4 and Cdk6 (Stepanova et al., 1996), it began to be 

implicated as an additional factor for cyclin D-Cdk4/6 assembly. Furthermore, by 
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immunoprecipitation, Cdc37 was found to interact with Cdk4 in vivo and the 

immunoprecipitation results have been confirmed with the yeast-two hybrid system 

(Lamphere etal., 1997). Since Cdk4 had also been found to associate with Hsp90 

(Stepanova etal., 1996; Dai etal., 1996) and Cdc37 (p50 at the time), and Hsp90 had 

been shown to colocalise in the cytoplasm (Perdew and Whitelaw, 1991; Whitelaw et 

al., 1991), it was considered that this was all part of the same complex. This 

hypothesis was strengthened by the fact that Hsp90 could only associate with Cdk4 

when Cdc37 was present (Stepanova et al., 1996), suggesting that Cdc37 is a 

targeting subunit of Hsp90 which somehow directs it to and mediates its interactions 

with the protein kinases that require it. Therefore, the association of both Hsp90 

and Cdc37 with Cdk4 can be explained by the interaction of Cdk4 with the Hsp90-

Cdc37 complex. It is interesting to note, however, that no cyclin D was present in 

Cdc37 immune complexes. Based on gel-filtration analysis, there were two 

populations of Cdk4, one containing cyclin D, and the other as part of a high 

molecular weight complex (-450 kDa) containing Cdc37 and Hsp90 but no cyclin D 

(Stepanova etal., 1996). Cdk4 has been found in both the nucleus and the 

cytoplasm, though never in monomeric form, whereas Cdk4/cyclin D complexes are 

mainly located in the nucleus (Whitelaw et al., 199 1). Furthermore, Cdc3 7 has been 

shown to enhance the binding of cyclin D to Cdk4 (Dai et al., 1996). Together, these 

observations suggest that a Cdc37/Hsp9O complex may play a role in the assembly 

or activation of cyclin D-Cdk4 complexes, possibly by being required for 

stabilisation of newly-synthesised monomeric Cdk4, 'holding' it in a state in which it 

is able to bind its cyclin partner. 

Although there is a considerable amount of interest in Cdk4/cyclin Dl complexes 

now that it has been shown that they seem to play a role in tumorigenesis (Hall and 

Peters, 1996), much less is known about the regulation of Cdk6/cyclin D complexes. 

Some headway has been made since elevated Cdk6 activity was detected in squamous 

cell carcinoma cell lines, suggesting that deregulation of Cdk6 activity may play a role 
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in the onset of some tumours (Timmerman et al., 1997). Gel filtration 

chromatography has shown that Cdk6 exists in at least three forms in T-cells 

(Mahony et al., 1998). The most abundant form was as part of a complex (-450 

kDa) which was shown to contain both Hsp90 and Cdc37 and was present in 

cytoplasmic extracts but not in nuclear extracts. The second most abundant form 

was found to be monomeric Cdk6 and was found in both the nucleus and cytoplasm. 

The third and perhaps surprisingly least abundant Cdk6 complex was found to 

contain cyclin D and again, these complexes were found in both the nucleus and the 

cytoplasm. However, only Cdk6 that was complexed to cyclin D was active, and 

furthermore, Cdk6 kinase activity was largely confined to the nuclear extracts. 

The interactions between Cdk4 and Cdk6 with Hsp90/Cdc37 complexes are 

strikingly similar. The Cdk/Hsp90/Cdc37 complexes exist predominantly in the 

cytoplasm where the kinase activity is not detected and are not found in the nucleus 

where the kinase activity has been shown to exist. From these observations, it seems 

likely that Hsp90/Cdc37 complexes are required to bind and stabilise newly 

synthesised Cdk4/6 in monomeric form. 

The investigations of Cdc37 with the mammalian cell cycle CDKs, Cdk4 and Cdk6, 

and also with S. cerevisiae Cdc28 indicate that it is crucial in cell cycle regulation. It 

is interesting to note, however, that whilst physical interactions between Cdc37 and 

both Cdk4 and Cdk6 have been demonstrated, no evidence of binding between Cdc37 

and Cdc28 has yet been shown. 
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1.7 The genetic interactions of S.cerevisiae CDC37 with other 

protein kinases 

Cdc37 has been found to interact genetically with a number of genes encoding other 

kinases with seemingly diverse biological functions, examples of which are described 

here. The S. cerevisiae cdc3 7-1 mutant was used to investigate a S. cerevisiae 

homologue of mammalian mitogen-activated protein (MAP) kinase, FUS31DAC2 

protein kinase (Fujimura, 1994). Since the FUS31DAC2 kinase controls the activity 

of G 1 cyclins (Peter et al., 1993; Tyers and Futcher, 1993), it was investigated for 

interactions with the CDC28, CDC36, CDC37, or CDC39 gene products in GI 

progression or in the pheromone response pathway. FUS31DAC2 was shown to be 

required for the G 1 arrest of the cell cycle caused by the cdc3 7 mutation but not for 

the similar Gi arrest caused by the cdc28 mutation (Fujimura, 1994). These data 

suggest that either CDC37 and FUS31DAC2 regulate CDC28 positively and 

negatively, respectively, or that CDC37 negatively regulates FUS3/DAC2, which 

controls CDC28 for GI progression. 

Another genetic interaction of CDC3 7 in S. cerevisiae is that with the essential 

protein kinase gene MPS1, which is required for spindle pole body (SPB) duplication 

and for the mitotic spindle assembly checkpoint (Schutz et al., 1997). CDC3 7 was 

identified as a multicopy suppressor of the restrictive phenotype of the mpsl-]'5  

mutant and synthetic lethal interactions were shown to occur between mpsl and 

cdc37 alleles. The kinase activity of Mpslp was also shown to be diminished in the 

cdc37-1'3  mutant. 

Finally, a genetic interaction in S.cerevisiae has also been described between CDC37 

and JUN28, which encodes a putative CDK sharing 38% homology with Cdc28p but 

does not appear to be involved in the cell cycle (Valay etal., 1995). Instead, Kin28 
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has since been shown to be involved in the recruitment of mRNA processing 

machinery to RNA polymerase II (Rodriguez et al., 2000). 

1.8 Structure of Cdc37 in relation to its function 

Little is known about the structure of Cdc37 and how it relates to its function. It has 

been shown that the interaction of Cdc3 7 with Raf- 1 occurs via the N-terminal half 

of Cdc37 (Grammatikakis et al., 1999).. This work also suggested that the interaction 

of Cdc37 with Hsp90 occurs via the C-terminal half of Cdc37. The interpretation of 

these results propose that the highly conserved N-terminus of Cdc3 7 is required for 

interaction with the target protein kinase, whilst the less conserved C-terminus is 

involved in the association with the Hsp90 dimer. 

1.9 The physiological roles of Cdc37 

Even though there has been considerable analysis of Cdc37, its precise biochemical 

function is still largely unknown. There are many questions that remain unanswered 

and need to be addressed before the function of Cdc37 is elucidated in full. It is 

widely believed that Cdc37 acts as a targeting subunit for Hsp90 and that together 

the Hsp90/Cdc37 complex somehow aids in the folding of newly translated protein 

kinases and/or regulates their activity. These kinases include specific CDKs, which 

explains the cell cycle role of Cdc37 and the means by which it was first isolated in 

S. cerevisiae. It will be interesting to find out exactly what role it plays in the overall 

system and how it recognises monomeric kinases, or if indeed its function is limited 

to protein kinases. Fig. 1.5 shows the genetical and physical interactions that have 

been identified with various protein kinases, Cdc37 and Hsp90. 
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There is limited evidence that Cdc37 acts as a chaperone in its own right, so that as 

well as acting as an accessory factor for Hsp90, Cdc37 itself may perform a protein 

folding function similar to Hsp90 (Kimura etal., 1997). Other investigations have 

implicated Cdc37 in signal transduction processes other than regulation of protein 

kinases, such as steroid hormone receptor activation (Fliss et al., 1997). However, it 

does seem possible that Cdc37 has a targeting function, perhaps signalling transport 

to the plasma membrane such as in the cases with Raf and v-Src. 

1.10 Finding an S.pombe homologue of CDC37 

The principal aims of this project were to identify, clone and characterise any 

homologues of CDC37 in S. pombe. As described above, CDC37 homologues have 

been isolated from a variety of species and, given its essential function in CDK 

activity in S. cerevisiae, it seemed probable that at least one similar homologue would 

exist in S. pombe. Investigating for the presence of this gene or genes is interesting 

because it seems that Cdc37 in all species plays an important role in regulating CDK 

activity, so it may be that it is also important for the cell cycle in S. pombe via 

regulation of central kinases, an area which our lab has been interested in for some 

time. Also, examining Cdc37 in another system, such as S.pombe, is important for 

several reasons: firstly, by virtue of the way S.pombe grows and divides, the system 

is amenable to genetic and cytological techniques that are not possible in other 

systems. Also, due to fundamental differences in the cell cycle of S.pombe compared 

to that in, for example, S. cerevisiae, Drosophila and mammalian cells, studies of the 

effect on the cell cycle in S.pombe are extremely interesting. In particular, in 

S. cerevisiae, the major cell cycle control exists in G1, whereas in S.pombe, the main 

control is during G2. Therefore, of immediate interest would be whether Cdc37 

function is mainly involved in Gi, as in S.cerevisiae and mammalian systems, or 

whether in S.pombe the main role of Cdc37 is during G2. 
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Fig 1.5 Interactions between Cdc37, Hsp90 and various protein kinases 

Shown are the physical and genetical interactions found between Cdc37, Hsp90 and 
various protein kinases. Kinases shown in bold type indicate physical interactions 
with the chaperones and plain type show genetic interactions. This figure is 
reproduced and modified from a combination of diagrams from Hunter and Poon, 
1997 and Stepanova etal., 1997. 
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Chapter 2 

Materials and Methods 
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2.1 Materials and Reagents 

2.1.1 Chemicals 

All chemicals were of molecular biology grade, supplied by the Sigma-Aldrich 

Company Ltd., Dorset, UK, except where otherwise stated. 

2.1.2 Molecular biology reagents 

Amersham, Little Chalfont, Bucks, UK 

32P-labelled dCTP; Hybond-N nylon hybridisation transfer membrane; ECLTM 

detection kit; Hyperfi1mTMECLTM chemiluminescent film 

BioRad Laboratories Ltd., Hertfordshire, UK 

Muta-Geneo  Phagemid In Vitro Mutagenesis Kit (Version 2); PVDF transfer 

membrane 

Boehringer Mannheim, Lewes, Sussex, UK 

Expand1M High Fidelity PCR polymerase mix; Klenow DNA polymerase; dNTPs 

Clontech Laboratories Inc., La Jolla, CA 

Herring testes carrier DNA 

Diagnostics Scotland, Edinburgh, UK 

HRP sheep anti-mouse IgG; HRP donkey anti-rabbit IgG 

GIBCO BRL, Paisley, UK 

1 kb DNA ladder; 0.24-9.5 kb RNA ladder 

New England Biolabs (UK) Ltd., Hertfordshire, UK 

Various restriction endonucleases; Calf Intestinal Alkaline Phosphatase 

PE Applied Biosystems, Perkin Elmer, Warrington, UK 

dRhodamine Terminator Cycle DNA Sequencing kit 

Pharmacia Biotech, St. Albans, UK 
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NICKTM Sephadex G-50 Columns; Hexadeoxyribonucleotides 

Promega Corporation UK, Southampton, UK 

Various restriction endonucleases; T4 DNA ligase; Taq DNA polymerase; PCR 

cloning vectors pGEM-T and pGEM-T Easy 

Oiagen Ltd., Dorking, Surrey, UK 

QlAquick Gel Extraction kit 

Sigma-Aldrich Company Ltd., Dorset, UK 

Acid-washed glass beads; Salmon sperm DNA 

Stratagene, La Jolla, CA 

QuikChangeTM Site-Directed Mutagenesis kit 

2.1.3 Deoxyoligonucleotide synthesis 

Synthesis of all oligonucleotides was carried out by Genosys Biotechnologies 

(Europe) Ltd., Cambridgeshire, UK. 

2.2 Nucleic acid manipulation protocols 

2.2.1 General techniques 

2.2.1a Phenol/chloroform extraction 

Proteins were removed from nucleic acid preparations by extraction with phenol. An 

equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) was added to the 

preparation, vortexed for 1 min and then the phases were separated by centrifugation 

at 14,000 rpm. The upper, aqueous layer containing the nucleic acid was removed 

and recovered by precipitation. 
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2.2.1b Ethanol precipitation 

Nucleic acids were precipitated from solution by adding 0.1 vol of 3 M NaOAc, pH 

5.2 and 2.5 vol of absolute ethanol. The solution was mixed by vortexing, incubated 

for 15 min on ice and the DNA recovered by centrifugation at 14,000 rpm for 10 mm. 

The pellet was washed in 70% ethanol, air-dried and then dissolved in an appropriate 

volume of distilled water or TE buffer (10 mM Tris-HC1, pH 7.0; 1 mM EDTA). 

2.2.1c Quantification 

The amount and quality of DNA or RNA was assayed by measuring the absorbance 

of the preparations at 260 nm and 280 nm. The reading at 260 rim allowed 

calculation of the concentration of nucleic acid in the sample. An A 260  of 1 

corresponded to a preparation containing approximately 50 jig/ml of double stranded 

DNA or 40 p.g/ml of single stranded DNA or RNA. The ratio between the readings 

at 260 nm and 280 nm provided an estimate of the purity of the nucleic acid. Pure 

preparations of DNA and RNA have ratios of 1.8 and 2.0, respectively. Any ratios 

less than these values indicate protein and/or phenol contamination of the sample. 

2.2.2. Cloning in plasmid DNA vectors 

2.2.2a Restriction enzyme digestion 

Digestion of DNA with restriction enzymes was carried out according to the 

manufacturers' instructions. The DNA to be treated was incubated at 37°C (unless 

otherwise instructed) with the restriction enzyme, in the appropriate buffer and 100 

p.g/ml BSA (if instructed) for 1-16 hr. Often the DNA was treated with more than 
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one enzyme. If the conditions were compatible then the two enzymes were added 

together; where the conditions were incompatible the digests were performed 

sequentially, with a phenol extraction/ethanol precipitation step in between. 

2.2.2b Dephosphorylation of vector 5'-ends 

Where the cloning step only required digestion with one restriction enzyme, the 

vector DNA was phenol extracted/ethanol precipitated and treated with Calf 

Intestinal Alkaline Phosphatase (New England Biolabs) according to the instructions. 

The DNA to be treated was incubated with the ClAP in a final volume of 100 41 at 

37°C for 30 mm. After treatment, the DNA was phenol extracted/ethanol 

precipitated before ligation. 

2.2.2c Ligation 

Concentrations of vector and insert DNA were estimated by electrophoresis and 

comparison with DNA molecular weight markers of known concentration. A 

vector:insert molar mass ratio of between 1:1 and 1:3 was used in most cases and was 

found to work well. The molar mass ratio for DNA molecules was estimated using 

the following formula: [ng vector x insert size (kb)/ vector size (kb)] x molar ratio of 

insert = ng of vector required. Individual ligation reactions were set up in a final 

volume of 10 pi and carried out according to the T4 DNA ligase (Promega) 

manufacturers' protocol. The ligation reactions were incubated for 16 hr at 16°C for 

cohesive termini and for 16 hr at 25°C for blunt-ended termini. 
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2.2.3 Agarose gel electrophoresis of DNA 

Agarose gels of 0.5%-1 .5% were used depending on the size of the DNA that was 

being analysed. An appropriate amount of agarose (electrophoresis grade, Boehringer 

Mannheim) was dissolved in lx TBE buffer (10 mlvi Tris-HC1, pH 7.0; 90 mlvi 

Boric acid; 1mM EDTA) by boiling. The solution was allowed to cool to —50°C 

before adding ethidium bromide to a fmal concentration of 0.5 j.tg/ml (except where 

the gel was to be blotted) and pouring. 0.2 vol of 5x DNA loading buffer (33% 

glycerol; 0.25% bromophenol blue; 0.25% xylene cyanol) was added to each sample 

and once loaded, gels were run with an applied voltage of 4-8 V/cm in lx TBE. 

Following electrophoresis, the DNA was visualised with an ultra-violet 

transilluminator (Ultra-Violet Products, Inc.) and photographs taken with a UVP 

DOCITrM camera (Ultra-Violet Products, Inc.). 

2.2.4 Gel purification of DNA fragments 

DNA fragments were isolated using QIAGEN's QlAquick gel extraction kit, 

following the manufacturers' instructions precisely. The purified DNA was 

resuspended in an appropriate volume of distilled water or TE buffer (10 mM Tris-

HC1, pH 7.0; 1 mM EDTA). 

2.2.5 Denaturing agarose gel electrophoresis of RNA 

Agarose gels of 1% were used for all RNA gels. An appropriate amount of agarose 

(electrophoresis grade, Boebringer Mannheim) was dissolved in lx FRB 

(formaldehyde running buffer: 20 mM MOPS; 5 mlvi NaOAc; 1 mlvi EDTA). The 

solution was allowed to cool to —50 °C before adding 37% (v/v) formaldehyde to a 
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final concentration of 2.2 M and pouring. Each sample was incubated at 65°C for 15 

min in an equal volume of RNA loading buffer (50% (v/v) formamide; lx FRB; 2.2 M 

formaldehyde; 0.01% (w/v) bromophenol blue) and once loaded, gels were run with 

an applied voltage of 5 V/cm in lx FRB. Following electrophoresis, the gels were 

rinsed briefly in DEPC-treated distilled water. They were then stained for 30-45 mm 

in 0.5 p.g/ml ethidium bromide, destained in distilled water for 10 min and visualised 

as previously described. 

2.2.6 Filter hybridisation of DNA 

2.2.6a Southern blotting 

After restriction digestion and separation of the DNA by agarose gel electrophoresis 

(no ethidium bromide), the gel was stained for 30-45 min in 0.5 pg/ml ethidium 

bromide, destained in distilled water for 10 mm, and visualised as previously 

described. The DNA was denatured by soaking the gel in 1.5 M NaCl; 0.5 M NaOH 

for 30 min with gentle agitation. The gel was then rinsed briefly in distilled water and 

neutralised by soaking it in 0.5 M Tris, pH 7.2; 1.5 M NaCl; 0.001 M EDTA for 30 

min with gentle agitation. The transfer of DNA to the nylon filters (Hybond-N, 

Amersham) was carried out as described in Sambrook et al., 1989. After transfer, the 

DNA was crosslinked to the filters using UV-light in a Stratalinker (Stratagene), 

according to the manufacturers' instructions. Finally, the filters were baked at 80 °C 

for 2 hr in a vacuum oven (Townson & Mercer). 
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2.2.6b Random-primed labelling of DNA probes 

10-50 ng of fragment DNA to be used as probe was diluted in distilled water to 11 gil. 

The DNA was incubated at 100°C for 5 mm, then cooled rapidly on ice. 5 jtl of Rxn-

C (250 mM Tris HC1, pH 8.0; 25 MM  MgCl2 ; 50 mM 3-mercaptoethanol; 100 .tM 

each dATP, dGTP, dTTP; 1 M HEPES, pH 6.6; 2.7 OD units 

hexadeoxyribonucleotides (Pharmacia Biotech) in TE buffer (10 mM Tris-HC1, pH 

7.0; 1 mM EDTA)) was added, along with 1 jtl of Kienow enzyme (NEB) and 3 p.! 

(30 mCi) of [a- 32P] dCTP (Amersham). The contents were mixed thoroughly and 

incubated at 37°C for 30 mm. NICKTM Sephadex G-50 columns (Pharmacia Biotech) 

were used to remove unincorporated 32P, following the manufacturers' instructions 

precisely. The labelled probe was eluted in 400 pi of TE buffer (10 mM Tris-HC1, 

pH 7.0; 1 mM EDTA). 

2.2.6c Hybridisation of filters 

The filter was pre-hybridised for 1 hr at 65°C in hybridisation buffer (7.5 ml 20x SSC 

(3 M NaCl; 300 mM NaOAc); 2.5 ml 50x Denhardt's solution (5% (w/v) FicolI, 5% 

(w/v) polyvinylpyrollidine, 5% (w/v) BSA); 625 p.1 20% (w/v) SDS; 1 ml single-

stranded salmon sperm DNA (10 mg/ml, Sigma); 10.25 ml distilled water) in a rolling 

bottle hybridisation oven (Techne). The labelled probe was then added and allowed 

to hybridise for 16 hr at 65°C. Washing conditions were as follows: 

2x SSC; 0.1% SDS; 65°C; 2x 15 mm 
	

low stringency 

2x SSC; 0.1% SDS; 65°C; lx 30 mm 
	

moderate stringency 

0.2x SSC; 0.1% SDS; 65°C; lx 30mm 
	

high stringency 



After the final wash, the filters were wrapped in SaranWrap and autoradiographed. 

2.2.6d Autoradiography 

The wrapped filters were placed in an X-ray film cassette in contact with Kodak MS 

film and with an intensifying screen. The cassettes were incubated at -70 °C for a 

sufficient exposure time (between 1 hr and 16 hr) and then the films were developed 

in a Konica SRX-1O1A automatic developer for analysis. 

2.2.7 Filter hybridisation of RNA 

2.2.7a Northern blotting 

After denaturation and separation of the RNA by agarose gel, the gel was rinsed 

briefly in DEPC-treated distilled water for 5 min with shaking to remove excess 

formaldehyde and agarose. The transfer of denatured RNA to the nylon filters 

(Hybond-N, Amersham) was carried out as described in Sambrook et al., 1989. After 

transfer, the RNA was crosslinked to the filters using UV-light in a Stratalinker 

(Stratagene), according to the manufacturers' instructions. Finally, the filters were 

baked at 80°C for 2 hr in a vacuum oven (Townson & Mercer). 

2.2.7b Random-primed labelling of DNA probes 

DNA probes were used and were labelled as described for Southern blotting. 



2.2.7c Hybridisation of filters 

Labelled DNA probes were hybridised to filters as described for Southern blotting. 

2.2.7d Autoradiography 

Autoradiography was carried out as described for Southern blotting. 

2.2.8 Polymerase Chain Reaction (PCR) 

PCR (Saiki etal., 1985; Mullis et al., 1986) was used routinely in this project for 

amplification of specific regions of DNA for cloning. It was also used as a 

convenient tool for analysing transformants after cloning experiments (Gussow and 

Clackson, 1989), and for creating suitable restriction endonuclease sites to aid the 

cloning of specific DNA regions (Clackson etal., 1994). 

Every PCR experiment is unique and is differentiated by differences in thermal cycle 

conditions. The thermal cycle can be divided into three distinct steps: 

Denaturing step 

The reaction mixture was incubated at 95°C to denature the double stranded 

template. 

Annealing step 

The annealing temperature varies with each reaction depending on the melting point 

values of the primers in a specific reaction. Generally, the annealing temperature 

used was 5°C below the lowest melting point of the two primers. The melting point 
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of each primer was calculated using the following formula (Bolton and McCarthy, 

1962): 

Tm  = 81.5 + 16.6(log 10[Na] + 41.0 (fraction C + G) - (600/N) 

where N = oligonucleotide length in bp 

(iii) Extension step 

The reaction mixture was incubated at the optimum temperature for the thermostable 

polymerase being used in the reaction. For this project two different PCR enzymes 

were used: Taq polymerase (Promega) where the fidelity of the product was not 

important, or Expand 1M High Fidelity (Boehringer Mannheim), which is a mixture of 

Taq and Pwo DNA polymerases, where the accuracy of the product sequence was 

important. 

PCR amplification was carried out using 25-30 thermal cycles on a Hybaid 

'Touchdown' PCR thermal cycler. The reactions were set up as follows: 

Tag DNA polymerase Expand1M High 

Fidelity 

Template DNA 0.1 - 0.75 ig 0.1 - 0.75 p.g 

MgCl2  1.5 mM 1.5 mM (in buffer) 

1 Ox buffer 1 0i1 (Promega) 1 0il (Boebringer) 

dNTPs 200 	g 200 	g 

Forward primer 200 nmol 200 nmol 

Reverse primer 200 nmol 200 nmol 

Enzyme 3 units 1.5 units 

Distilled water up to 50 j.il up to 50 .il 
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In every PCR amplification the addition of the thermo stable polymerase was 

withheld until the reaction had been incubated at 94°C for 1 mm. After that, the 

incubation times at each step were then generally as follows: 

Denaturing (94°C) 	1 mm 

Annealing (40°C - 60°C) 	1 mm 

Extension (68°C - 72°C) 	1 min per kb to be amplified. 

The oligonucleotides that were used as primers for PCR in this project are shown in 

Table 2.1. Their use is described in detail within the relevant sections. 

2.2.9 In vitro site-directed mutagenesis 

2.2.9a Single stranded mutagenesis 

Mutagenesis was carried out on single stranded phagemid DNA using the Muta-

Gene®  Phagemid In Vitro Mutagenesis Version 2 kit (BioRad), following the 

manufacturers' instructions precisely. Single stranded phagemid DNA was prepared 

as described elsewhere in this section (Section 2.4.5). The oligonucleotides that were 

used as primers for mutagenesis in this project are shown in Table 2.1. 

2.2.9b Double stranded mutagenesis 

Mutagenesis was carried out on double stranded plasmid DNA using the 

QuikChangerM Site-Directed Mutagenesis kit (Stratagene), following the 

manufacturers' instructions precisely. The oligonucleotides that were used as 

primers for mutagenesis in this project are shown in Table 2.1. 



Table 2.1 Details of the oligonucleotides used as primers used for PCR and site-
directed mutagenesis 

PCR 

Oligo Sequence Length Direction T. Position 
(5 1 —*3 1 )  (Fig 3.1) 

PW3 AACATAAGGATCCGZAGG 21 bp Reverse 61.4 °C 680-9660 
AGA  

PW4 CGATGAATCGTAGGCTCT 21 bp Forward 63.0°C 601-621 
TGT  

PW5 CCGAATTCATATGGCAAT 28 bp Forward 70.6°C 1-18 
TGATTACAGC  

PW6 GCAGCCCGGGTTAAGACA 28 bp Reverse 75.1°C 1832—*1815 
ATTGAGGAAT  

PW7 CGTACCAGAAGGAATTCC 22 bp Forward 66.3 °C -956-9-935 
CATG  

PW8 GATCAAGCTTGCACCTAC 28 bp Reverse 72.4 °C -149—*-132 
CTTATGCGAA  

PW9 GATCAAGCTTCCATACCT 28 bp Forward 68.9°C 1943—*1959 
TGTGTGTACC  

PW10 GATGACTCGAGCAGAGGG 24 bp Reverse 69.1°C 2723-92746 
TTGTTC  

PW13 GTGCTCGAAGACGACTGA 18 bp 	1 Forward 60.3 °C -1065---1048 
RB1 GCATACATATAGCCAGTG 18 bp Reverse 50.9 °C - 

TG1 GCTATACCAAGCATACAA 26 bp Forward 64.4°C - 

TCAACTCC  
TG2 CGTATCTACCAACGATTT 23 bp Reverse 65.1°C - 

GACCC 

Mutagenesis 

Oligo Sequence Length Direction T. Position 
(5 1 -31 )  (Fig 3.1) 

PW19 CATAAGCATGTGATGATA 18 bp Reverse 49.2 °C 750—*767 
PW20 TCGGACATAAGTATTATG 18 bp Reverse 47.6°C 1461-1478 
PW27 CTATTCCTCAATTGTCTT 44 bp Forward 86.5°C 1813—*1829 

GCGGCCGCTACCGAGCTC 
GAATTCCC  

PW28 GGGAATTCGAGCTCGGTA 44 bp Reverse 86.5 °C 1829-91813 
GCGGCCGCAAGACAATTG 
AGGAATAG  

The position of the oligonucleotides designed using the S.pombe cdc3 7+ sequence 
can be located using the sequence information given in Fig 3.1. For the PCR oligos, 
the non-annealing, engineered regions are shown in bold. For the mutagenic oligos, 
the mutagenic bases are shown in bold and sequences complimentary to vector 
sequence are in italic. 
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2.2.10 DNA sequencing 

Sequencing was performed on an ABI 377 automated sequencer after carrying out the 

reactions using the Taq FS Dye-terminator kit (PE Applied Biosystems), following 

the manufacturers' instructions precisely. For all sequencing reactions carried out in 

this project a Hybaid 'Touchdown' PCR thermal cycler was programmed with 25 of 

the following cycles: 96°C for 30 sec; 50°C for 15 sec; 60°C for 4 mm. 

2.3 Protein manipulation protocols 

2.3.1 Iminunoprecipitation 

Immunoprecipitation was carried out using a modified version of that described by 

Sambrook et al., 1989. For each incubation, 0.1 ml of extract (section 2.5. 10) was 

used. An appropriate amount of antibody in 0.4 ml of ice-cold NET-gel buffer (50 

mM Tris-HC1, pH 7.5; 150 mM NaCl; 0.1% Nonidet P-40; 1 mM EDTA, pH 8; 

0.25% gelatin; 0.02% NaN 3) was added to each extract, mixed and incubated on a 

rotating wheel at 4°C for 1 hr. For each extract, 2.5 mg of Protein A-Sepharose was 

weighed out and incubated in 1 ml of dH20 for 10 min on a rotating wheel at 4°C. 

The swollen Sepharose beads were collected at 14,000 rpm for 30 sec at 4 °C, 

resuspended in another 1 ml of dH20 and centrifuged again. Finally, the beads were 

resuspended in 1 ml of NET-gel buffer and collected at 14,000 rpm for 30 sec at 4°C. 

10 il of NET-gel buffer was added to the swollen Sepharose beads to create a 50/50 

Protein A-Sepharose/buffer mix and 20 jil of this was added to each extract. The 

mixture was incubated on a rotating wheel at 4 °C for 1 hr. The Sepharose beads were 

then centrifuged at 14,000 rpm for 30 sec at 4°C, resuspended in 1 ml of NET-gel 

buffer and incubated on a rotating wheel for 20 min at 4°C. The Sepharose beads 

were again collected by centrifugation at 14,000 rpm for 30 sec at 4°C, resuspended 
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in 1 ml of NET-gel buffer and incubated on a rotating wheel for 20 min at 4 °C. After 

another centrifugation at 14,000 rpm for 30 sec at 4 °C, the Sepharose beads were 

resuspended in 1 ml 10 mM Tris-HC1, pH 7.5; 0.1% NP-40 and incubated on a 

rotating wheel for a further 20 min at 4°C. The washed Sepharose beads were 

collected at 14,000 rpm for 30 sec at 4 °C and the final wash completely removed. 

Finally, the Sepharose pellet was resuspended in 20 j.il in lx SDS sample buffer (50 

mM Tris-HC1, pH 6.8; 100 mM DTT; 2% (w/v) SDS; 0.1% (w/v) bromophenol 

blue; 10% glycerol) before loading on an SDS-polyacrylamide gel for electrophoresis. 

2.3.2 SDS-polyacrylamide gel electrophoresis of proteins 

The electrophoresis of proteins followed the method of Laemmli, 1970, with minor 

modifications. SDS-polyacrylamide gels were poured using the BioRad Mini-

PROTEAN II system, following the manufacturers' instructions precisely. The 

12.5% resolving gel was poured between the glass plates of the gel apparatus and 

overlaid with deionised water, made up as shown below, in the order shown: 

Component 	 M1 

Distilled water 1.57 

1.5 M Tris-HC1, pH8.8 1.25 

10%(w/v)SDS 0.05 

30% acrylamide mix (Severn Biotech) 2.1 

10% (w/v) ammonium persulphate 0.025 

TEMED 
	

[IIIII 

After the resolving gel had polymerised, the overlay was removed and the stacking 

gel was poured over. Before the stacking gel polymerised, the comb was inserted to 
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allow the wells to form. The 4% stacking gel was prepared by assembling the 

following in the order shown: 

Component 	 M1 

Distilled water 	 1.525 

0.5 M Tris-HC1, pH6.8 	 0.625 

10%(w/v)SDS 	 0.025 

30% acrylamide mix (Severn Biotech) 	0.325 

10% (w/v) ammonium persulphate 	0.025 

TEMED 
	

WGIR 

The samples were denatured by heating at 100°C for 5 min in lx SDS sample buffer 

(50 mM Tris-HC1, pH 6.8; 100 mM DTT; 2% (w/v) SDS; 0.1% (w/v) bromophenol 

blue; 10% glycerol). Once the stacking gel had polymerised, the comb was carefully 

removed and the wells flushed first with deionised water and then with running 

buffer (25 mM Tris; 250 mM glycine, pH 8.3; 0.1% (w/v) SDS) to remove 

unpolymerised acrylamide. After heat denaturation, the samples were loaded and 

voltage applied to the gel at 8 V/cm until the dye front had moved into the stacking 

gel and then 15 V/cm until the dye front reached the bottom of the resolving gel. 

2.3.3 Staining SDS-polyacrylamide gels with Coomassie Brilliant Blue 

SDS-polyacrylamide gels were immersed in Coomassie dye (0.005% (w/v) 

Coomassie Brilliant Blue R250 in 45% (v/v) methanol; 10% (v/v) glacial acetic acid) 

for 4 hours at room temperature. The gels were then destained by immersing in 5% 

(v/v) methanol/7% (v/v) glacial acetic acid for 24 hr, changing the destaining solution 

every few hours. 
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2.3.4 Filter hybridisation of proteins 

2.3.4a Western blotting 

The transfer of proteins from a gel to a membrane was achieved by electrophoretic 

elution (Towbin etal., 1979). Semi-dry transfer was used for all blots in this study, 

using a BioRad Trans-Blot SD semi-dry blotter, following the manufacturers' 

instructions precisely. The gels were sandwiched between absorbent paper soaked in 

transfer buffer (48 mM Tris-HC1; 39 mM glycine; 20% (v/v) methanol; 0.0375% 

(w/v) SDS, pH 9.2) before being placed between electrodes, in contact with the 

PVDF membrane (BioRad). A current of 2.5 mA/sq. cm  of gel was applied for 40 

mm, after which the blots were removed and stained to analyse transfer. 

2.3.4b Staining of membranes for total protein 

After electrophoretic transfer, PVDF membranes were stained in an aqueous solution 

of Ponceau S to reveal the transferred protein and to monitor blotting efficiency and 

completeness. A concentrated stock of Ponceau S was prepared (2% (w/v) Ponceau 

5 in 30% (w/v) trichloroacetic acid) which was diluted ten times in deionised water 

before immersion of the blots. The blots were allowed to stain for 5 min before being 

washed gently in deionised water to remove unbound dye. 

2.3.4c Blocking, washing and antibody incubations 

The blots were blocked by immersing in lx PBS (50 mM sodium phosphate, pH 7.4; 

150 mM NaCl) containing 0.25% Tween 20 and 5% (w/v) non-fat milk ("Marvel" 

powder) overnight with gentle overnight. After blocking, the blocking solution was 
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removed and the first antibody added, diluted to an appropriate concentration in lx 

PBS containing 0.05% Tween 20 and 1% Marvel. Incubation with the first antibody 

was for at least 1 hr at room temperature with gentle agitation. After this incubation, 

the first antibody was removed and the blots washed four times in large volumes of 

Ix PBS containing 0.5% Tween 20 for 5 min each wash. After washing, the second 

antibody was added; either horseradish peroxidase conjugated donkey anti-rabbit 

IgG, or donkey anti-mouse IgG (both from Diagnostics Scotland), diluted 1:1000 in 

the same buffer as for the first antibody. Incubations with the second antibodies 

were for 1 hr at room temperature, followed by extensive washing as before. 

2.3.4d Detection of immune complexes on membranes 

The horseradish peroxidase conjugated second antibodies were detected using an 

enhanced chemiluminescent reagent (ECLTM,  Amersham), following the 

manufacturers' instructions precisely. HyperfilmTMECLTM chemiluminescent film 

(Amersham) was used to reveal the bands and the films were developed in a Konica 

SRX- 101 A automatic developer. 

2.4 Manipulation and handling of Escherichia coli 

2.4.1 Escherichia coil strains used 

DH10B: F mcrA, (mrr-hsdRMS-mcrBC), p80dlacThM15, AlacX74, deoR, 

recAl, endAl, araD 139, E(ara, leu)7697, galU, galK, ?, rpsL, nupG. 

MV! 190: A(lac-proAB), thi, supE, E(sr1-recA)3 06: :Tn 1 0(tetr)  [F' :traD3 6, proAB, 

lac iZMl5]. 

CJ236: dut- 1, ung- 1, thi- 1, relA 1; pCJ 105 (Cm'). 



XL1-Blue: recAl, endAl, gyrA96, thi-1, hsdRl 7, supE44, re/Al, lac [F' proAB 

lac]qZiiMl 5Tnl 0(TetI)]c 

2.4.2 Media and growth conditions for Escherichia co/i 

2.4.2a Temperature for growth of Escherichia co/i 

Cells were grown at 37°C unless otherwise stated. Cell growth in liquid cultures was 

estimated by measurement of optical density at 600 nm on a Hitachi U-2000 

spectrophotometer. 

2.4.2b Media for growth of Escherichia co/i 

L-Broth (LB) 

E. coli strains were routinely grown in rich medium LB: 

Bacto-tryptone (Difco) 	10 g/l 

NaCl 	 lOg/I 

Yeast extract 	 5 g/l 

Glucose 	 1 g/l 

2x YT 

Bacto-peptone (Difco) 	16 g/l 

Yeast extract 	 10 g/l 

NaCl 	 5g/l 

For solid medium, 15 gil Bacto-agar (Difco) was added. 



2.4.2c Antibiotics 

Ampicillin 

The sodium salt was dissolved in distilled water at 30 mg/ml to make the stock 

solution. This was added to the media at a final concentration of between 25-100 

Chloramphenicol 

Solid chioramphenicol was dissolved in absolute ethanol at 34 mg/ml to make the 

stock solution. This was added to the media at a final concentration of between 15-

34 pg/mI. 

Kanamycin 

Kanamycin sulphate was dissolved in distilled water at 50 mg/ml to make the stock 

solution. This was added to the media at a final concentration of between 50-70 

pg/mi. 

All antibiotic stocks were stored in aliquots at -20°C and were added to autoclaved 

media cooled to —50°C. 

2.4.2d X-gal and IPTG for blue/white screening 

(i) X-gal (5-bromo-4-chloro-3-indo1yl-3-D-ga1actoside) 

A stock solution of X-gal was made up by adding it to dimethylformamide at 50 

mg/ml and stored at -20°C. It was added to autoclaved media, cooled to --50°C, at a 

final concentration of 40 jig/ml. 
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(ii) IPTG (isopropyl-3-D-thioga1actopyranoside) 

A stock solution of IPTG was made up by adding it to distilled water at a 

concentration of 0.1 M and stored at 4 °C. It was added to autoclaved media, cooled 

to -P50°C, at a final concentration of 0.1 mM. 

2.4.2e Storage of Escherichia coli 

Bacteria were stored on LB agar plates for periods up to 4 weeks at 4°C. Long term 

storage was in LB medium containing 20% (v/v) glycerol frozen at -70°C. Frozen 

bacteria were revived from long term storage by removing a small stab from the 

frozen culture and streaking out onto LB agar containing appropriate antibiotics. 

2.4.3 Transformation of Escherichia coil 

Competent Escherichia coli cells were prepared by a rubidium chloride procedure 

modified from a protocol described previously Hanahan, 1983. A single colony from 

an LB plate was used to inoculate 2.5 ml of LB medium and left to grow overnight at 

37°C with shaking. The entire overnight culture was then used to inoculate 250 ml of 

LB medium containing 20 MM  MgSO4  and left to grow at 37°C with shaking until 

the 0D600  reached 0.4-0.6. The cells were harvested by centrifugation at 6,000 rpm 

for 5 min at 4°C, resuspended in 0.4 vol of ice-cold TFB1 (30 mM K-acetate, 10 mm 

CaC12, 50 mlvi MnC12, 100 mM RbC1, 15% glycerol, pH 5.8) and incubated on ice 

for 5 mm. The cells were again harvested by centrifugation at 6,000 rpm for 5 mm 

and resuspended in TFB2 (10 mM PIPES; 75 mM CaC1 2; 10 mM RbCI; 15% 

glycerol; pH 6.5). The resuspended cells were incubated on ice for 15-60 min and 

then frozen at -70°C in 200 Rl  aliquots. 
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The DNA to be transformed was incubated on ice with 200 .tl competent cells for 20 

mm. The mixture was then incubated at 42°C for 45 sec before being replaced on ice 

for 2 mm. 4501.d of LB was added, mixed gently, and the mixture incubated at 37°C 

with shaking for 1 hr. An appropriate amount of the transformation mixture was 

plated on selective medium and left to grow overnight at 37 0C. 

2.4.4 Isolation of plasmid DNA from Escherichia coli 

Plasmid DNA was isolated from transformants by the Alkaline Lysis method 

Sambrook et al., 1989. 1.5 ml of an overnight culture of the transformant was 

centrifuged at 14,000 rpm for 1 mm, the supernatant discarded, and the cell pellet 

was resuspended in 100 p1 of BDI buffer (10 mM Tris-HC1 pH 7.0; 1 mM EDTA). 

200 il of BDII solution (200 mM NaOH; 1% SDS) was added, the solution was 

mixed well and incubated on ice for 5 mm. 150 RI  of BDIII (3 M KOAc) was added, 

mixed well and centrifuged for 5 min at 14,000 rpm. The supernatant was transferred 

to a fresh tube and an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) 

added. The phases were mixed by vortexing and then centrifuged at 14,000 rpm for 2 

mm. The upper, aqueous layer was transferred to a fresh tube and 1 ml of absolute 

ethanol was added. After vortexing, the solution was incubated on ice for 10 min to 

precipitate the DNA. The precipitated DNA was recovered by centrifugation at 

14,000 rpm for 10 mm, drained, air-dried, and resuspended in 50 Ri  of TE buffer (10 

mM Tris-HC1, pH 7.0; 1 mM EDTA) containing 10 gg/ml RNase A. 

The most commonly used procedure to analyse recombinants was to isolate the 

plasmid DNA from individual clones as described, and then identify the insert in the 

recombinant plasmid by restriction digestion and agarose gel electrophoresis. 
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2.4.5 Production of single-stranded DNA from Escherichia coli 

The plasmids pTZ 18 (Appendix IF) contain the fl origin of replication, so on 

infection with the helper phage M13K07, cells containing these plasmids will 

synthesise single-stranded DNA from this origin, which will then be released in the 

form of phage particles. 

A colony of E.coli strain CJ236 containing pTZ18.cdc37 was used to inoculate 5 ml 

LBCUA (LB plus 100 j.tg/ml ampicillin, 34 jig/ml chloramphenicol, and 0.25 jig/ml 

uridine) and grown overnight at 37°C. 0.5 ml of the overnight culture was used to 

inoculate 50 ml LBCU (no ampicillin) and was grown at 37 °C until slightly turbid. 

M13 K07 helper phage was added to a final concentration of lx 108  pfu/ml and 

incubated at 37°C with vigorous aeration for 90 mm. Kanamycin was then added to a 

fmal concentration of 70 jig/ml and culture was left overnight at 37 °C with vigorous 

aeration. The cells were then harvested twice at 8,000 rpm for 10 mm. 250 jig of 

RNase A was added to the resulting supernatant and incubated at room temperature 

for 30 mm. 0.25 vol of 3.5 M ammonium acetate/20% PEG-6,000 was added, mixed 

well and incubated on ice for 30 mm. The phagemids were then recovered by 

centrifugation at 12,000 rpm for 15 mm. The supernatant was discarded, the pellet 

drained well and then resuspended in 200 ji.l of high salt buffer (3 00 mM NaCl; 100 

mM Tris, pH 8.0; 1mM EDTA). The resuspended phagemids were chilled on ice for 

30 min and then centrifuged at 14,000 rpm for 2 min to remove insolubles. The 

supernatant was extracted twice with neutralised phenol, once with 

phenol:chloroform:isoamyl alcohol (25:24:1), and three times with 

chloroform:isoamyl alcohol (24:1). 0.1 vol of 7.8 M ammonium acetate and 2.5 vol 

of absolute ethanol was added, mixed and incubated at -70°C for 1 hr. The single-

stranded phagemid DNA was recovered by centrifugation at 12,000 rpm for 15 mm, 

the pellet washed with 70% ethanol and resuspended in 20 jil of TE buffer (10 mM 

Tris-HC1, pH 7.0; 1 mM EDTA). 
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2.5 Manipulation and handling of Schizosaccharomyces pombe 

2.5.1 Schizosaccharomyces pombe strains used 

ED665 ade6-M210 leul-32 ura4-D18 h 

ED668 ade6-M216 leul-32 ura4-D18 h 

ED836 cdc2-M26 leul-32 ura4-D18 h 

ED837 cdc2-130 ura4-D18 h 

ED838 cdc2-18 leul-32 ura4-D18 h 

ED839 cdc2-48 leul-32 ura4-D18 h 

ED840 cdc2-17 leul-32 ura4-D18 h 

ED841 cdc2-45 ura4-D18 h 

ED881 cdc2-33 leul-32 h 

ED908 wee]-50 leul-32 ura4-D18 h 

ED918 cdcl3-117 leul-32 ura4-294 h 

ED1049 leul-32 h 

ED1169 cdc2-L7 ura4-D18 h 

ED1340 swol-26 leul-32 ura4-D18 h 

ED1502 cdcl3-9 leul-32 h- 

2.5.2 Media and growth conditions for Schizosaccharomycespombe 

2.5.2a Temperature for growth of Schizosaccharomyces pombe 

Appropriate temperatures varying from 25°C to 37°C were used to grow the strains 

depending on their phenotype. 
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2.5.2b Media for growth of Schizosaccharomyces pombe 

Yeast Extract (YE) 

S.pombe strains were routinely grown in YE medium supplemented with adenine and 

uradil: 

Yeast extract (Difco) 	5 g/l 

Glucose 	 30g/l 

Adenine 	 75 mg/l 

Uracil 	 75 mg/l 

Edinburgh Minimal medium (EMM) 

S.pombe strains were selectively grown in EMM medium, a modification of EMM2 

(Mitchison, 1970, Nurse, 1975): 

Glucose 20 g/l 

KR phthalate 3 g/l 

Na2HPO4  1.8g/l 

NH4C1 5g/l 

NaSO4  100 mg/l 

CaC12  15 mg/i 

MgC12  lg/l 

Vitamins 1 ml 

Minerals 	 100 il 

Vitamins: 5 g inositol; 5 g nicotinic acid; 0.5 g calcium pantathenate; 5 g biotin; all 

dissolved in 500 ml distilled water. 

Minerals: 1 g H 3B03 ; 1.04 g MnSO4 .4 H20; 800 mg ZnSO4.7 H20; 400 mg FeC13 .6 

H20; 288 mg H2Mo04; 80 mg CuSO 4.5 H20; 2 g citric acid; 20 mg KI; all dissolved 

in 200 ml distilled water. 
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Amino acids were added to the EMM medium as required for each strain or omitted 

for selection. Leucine, adenine, uracil or histidine were added when appropriate at 75 

mg/mi. 

(iii) Malt Extract (ME) 

A nitrogen limiting medium ME consisting of 30 g/l malt extract was used to induce 

conjugation and sporulation. 

For solid medium, 20 g/l Bacto-agar (Difco) was added to either YE, EMvI or ME 

media. 

2.5.2c Phioxin B 

To check ploidy of cells, phioxin B was added to solid media to a final concentration 

of 20 tg/ml. Diploid cells die faster than haploid cells and accumulate the dye more 

quickly, and therefore can be differentiated by relative colour staining. 

2.5.2d Storage of Schizosaccharomyces pombe 

Strains were stored on solid media for periods up to 4 weeks at 4°C. Long term 

storage was in medium containing 30% (v/v) glycerol, frozen at -70 °C. Frozen 

strains were revived from long term storage by removing a small stab from the frozen 

culture and streaking out onto appropriate media. 
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2.5.3 Genetical analysis of Schizosaccharomyces pombe 

2.5.3a Crossing strains 

For crossing strains, standard genetical procedures were followed (Gutz etal., 1974; 

Kohli et al., 1977). Strains were crossed by mixing together fresh isolates of two cell 

types (mating types h and k) on the surface of an ME plate with a loopfui of sterile 

water. The mating mix was incubated at 25°C for 2-3 days to allow zygotes to form 

and sporulation to proceed. The progeny of the crosses were examined either by 

random spore analysis or by tetrad analysis. 

2.5.3b Random spore analysis 

A loopful of mating mix was suspended in 1 ml of 0.2% helicase (Suc d'Helix 

pomatia, Industrie Biologique, France) and incubated overnight at 35°C. The spore 

concentration was estimated using a haemocytometer and an appropriate dilution, to 

give about 200 viable spores per plate, was spread onto appropriate solid media. 

2.5.3c Tetrad analysis 

A loopful of mating mix was streaked onto a thin YE plate. Single asci were isolated 

using a fine glass needle attached to a Leitz micromanipulator and the plate was 

incubated at 20°C overnight to allow the asci walls to break down. The spores were 

then separated on the surface of the plate with the micromanipulator and incubated at 

an appropriate temperature until visible colonies were formed. 
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2.5.3d Analysis of growth phenotypes 

Growth phenotypes of cells were tested by replica plating or by streaking from a 

master plate onto EMM plus or minus growth supplements for auxotrophs, and 

onto YE at the restrictive and permissive temperatures for temperature-sensitive 

strains. 

2.5.3e Diploid construction 

For this project, sporulation competent diploids were always constructed using hf /If 

strains with complementing alleles of ade6. The ade6-M210 and ade6-M216 both 

confer adenine requirement for growth, but heterozygous diploids ade6-M210 ade6-

M216 are prototrophic. Strains carrying the ade6 mutant alleles were crossed as 

previously described, left to conjugate overnight and then streaked onto selective 

media for adenine prototrophs. Diploid colonies were organised by their colour on 

plates containing phloxin, and their ability to sporulate checked microscopically. 

2.5.4 Cell physiology of Schizosaccharomyces pombe 

2.5.4a Growth of liquid cultures 

Exponentially growing cells were obtained by firstly inoculating a single colony into a 

10 ml pre-culture of YE or selective media. The pre-culture was incubated for 1-2 

days at the appropriate temperature until the cells had entered the stationary phase 

growth. An aliquot of the pre-culture was inoculated into an appropriate volume of 

YE or selective media in a conical flask, and incubated with shaking at an appropriate 
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temperature until the correct density of cells was reached. The volume of pre-culture 

used to inoculate the culture was calculated as follows: 

Volume to add = required density/density of preculture x volume of culture/2 

where n is the number of doublings 

The cell density of liquid cultures was estimated by measuring the optical density at 

595 nm on a Hitachi U-2000 spectrophotometer. 

2.5.4b Cell number count 

A 100 p1 sample of cell culture was mixed in 10 ml of ISOTON II solution and 

sonicated for 5 sec at setting 6 on a Lucas Soniprobe Sonicator. Two counts of 0.5 

ml volume were taken and combined to give a cell count per ml. Cell numbers were 

counted using a Coulter counter (Coulter Electronics). 

2.5.4c Cell length measurement 

The cell length of samples was measured using the measure length tool in the IPLab 

scientific imaging software following the manufacturers' instructions precisely. The 

cells were stained with Calcofluor (section 2.5.4e) to aid visualisation of the outline 

of the cells. Approximately 200 cells were measured for each sample. 

2.5.4d DAN staining 

DAPI staining was carried out using a variation of the procedure previously 

described (Toda et al., 1981). 1 ml of culture was added to 100 .tl of ice-cold 25% 



gluteraldehyde and incubated on ice for 15 mm. The cells were then washed three 

times in 250 p.l of ice-cold distilled water. After each wash the cells were harvested 

by centrifugation at 14,000 rpm for 1 mm. After the final wash, the cells were 

resuspended in the residual water and 1 j.il was mixed with 1 pJ of DAPI (20 j.tg/ml) 

on the microscope slide. A coverslip was used and the cells examined immediately 

under oil using an Axioskop 2 fluorescent microscope (Zeiss) with the 63x objective 

lens. Photos were taken on a digital camera (Princeton Instruments) and IPLab 

scientific imaging software (Scanalytics) was used to analyse the data. 

2.5.4e Calcofluor staining 

Calcofluor staining was carried according to a method previously described 

(Mitchison and Nurse, 1985). 1 ml of culture was added to 100 p.1 of ice-cold 25% 

gluteraldehyde and incubated on ice for 15 mm. The cells were then washed three 

times in 250 p.1 of ice-cold distilled water. After each wash the cells were harvested 

by centrifugation at 14,000 rpm for 1 mm. After the final wash, the cells were 

resuspended in the residual water and 1 p.1 was mixed with 1 p.1 of Calcofluor (1 

mg/ml) on a microscope slide. A coverslip was used and the cells examined 

immediately as previously described. 

2.5.4f Cell DNA content measurement (FACS analysis) 

The DNA content of cell samples was determined by flow cytometry after DNA 

was stained with propidium iodide (Alfa et al., 1993). Approximately 10 7  cells for 

each sample were harvested by centrifugation at 2,000 rpm for 5 mm. The cell were 

resuspended in 1 ml distilled water, centrifuged for 15 sec in a microfuge and 

resuspended in 1 ml cold 70% ethanol. The cells were stored at this stage at 4°C. To 
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process the cells, 300 j.tl (approx. 2x106  cells) of the preparation was added to 3 ml 

50 mM Na citrate, mixed and centrifuged at 2,000 rpm for 5 mm. The cell pellet was 

resuspended in 500 jil 50 mM Na citrate containing 0.1 mg/ml RNase A and 

incubated at 37°C for 4 hr. 500 p.1 50 mM Na citrate containing 4 p.g/ml propidium 

iodide was added and the cells processed immediately. Just before processing, the 

cells were sonicated for 45 sec at setting 6 on a Lucas Soniprobe Sonicator. The 

DNA content of the cell samples were measured using a Becton Dickinson FACScan. 

2.5.5 Transformation of Schizosaccharomyces pombe 

S.pombe strains were transformed by electroporation as described previously 

(Prentice, 1991), which achieves a high transformation efficiency. Cells to be 

transformed were grown in 200 ml of YE or selective media to a density of 

approximately 0.5-ix i0 7  cells/ml. They were then harvested by centrifugation at 

5,000 rpm for 10 mm. The cells were washed three times in 10 ml of ice-cold 1.2 M 

sorbitol and then resuspended in 1.2 M sorbitol to a concentration of I x10 9  cells/mi. 

The DNA to be transformed was mixed with 200 p.1 of the cell suspension and 

immediately transferred to an ice-cold 0.2 cm cuvette. This suspension was pulsed 

at 2.25 kV (11.25 kV/cm), 200 Q and 25 p.F. Immediately after the pulse, 500 p.1 of 

1.2 M sorbitol was added to the cuvette. Electroporated cells were spread onto 

selective media and incubated at the appropriate temperature until visible colonies 

were formed (4-6 days). 

2.5.6 Stability test of transformants 

For various reasons, the transformants had to be tested for stability of a selectable 

marker, therefore distinguishing between an autonomously replicating plasmid and an 
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integration event. If a plasmid carrying a selectable marker replicates autonomously 

it will be lost in the absence of selection, however, if the plasmid has integrated, or 

there has been a reversion or gene conversion event, the selectable phenotype will be 

maintained even after relaxing the selection. To carry out a stability test, a 

transformant colony was streaked out to single colonies on YE and incubated at an 

appropriate temperature with no selection until visible colonies were formed. 20-50 

colonies from this plate were then patched out on to a second YE plate and allowed 

to grow overnight. This second plate was then replica plated onto selective media 

(YE plates at restrictive temperature or EMM plates minus the required 

supplements) and incubated until growth or no growth of the patches could be 

scored. 

2.5.7 Preparation of chromosomal DNA from Schizosaccharomycespombe 

S. pombe chromosomal DNA was prepared by a large-scale version of a method 

described previously (Durkacz et al., 1985). This method yields DNA of sufficient 

quantity and quality for a variety of purposes such as Southern blotting and PCR 

amplification. 100 ml cultures of YE or selective media were inoculated and 

incubated until the cells reached stationary phase (013 595  of 2-3). The cells were 

harvested by centrifugation at 3,000 rpm for 10 min and the cells resuspended in 1.5 

ml of CPS buffer (50 mM citrate-phosphate buffer, pH 5.6; 40 mM EDTA, pH 8.0; 

1.2 M sorbitol). 15 mg of zymolyase-20T (ICN) was added and incubated at 37 °C 

for 5-30 min until the cell walls had been digested. The cells were then centrifuged at 

3,000 rpm for 5 min and resuspended in 15 ml of 5x TE buffer (50 mM Tris-HC1, 

pH 7.0; 5 mM EDTA). 1.5 ml of 10% SDS was added, mixed well and incubated at 

65°C for 5 mm. 5 ml of 5 M KOAc, pH 5.6 was added and incubated on ice for 30 

mm. The mixture was then centrifuged at 5,000 rpm for 15 mm, the supernatant 

passed through a gauze and then 20 ml of ice-cold isopropanol was added and left for 
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5 min at -70°C. The precipitate was recovered by centrifugation at 10,000 rpm for 

10 mm, drained well and air-dried. The pellet was then resuspended in 3 ml of 5x TE 

buffer (50 mM Tris-HC1, pH 7.0; 5 mM EDTA), RNase A added to a final 

concentration of 20 mg/ml, and incubated at 37°C for 2 hr. The preparation was 

extracted with an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1), 

mixed well, and centrifuged at 10,000 rpm for 10 mm. The upper, aqueous phase 

was transferred and 0.1 vol of 3 M NaOAc and 2.5 vol of absolute ethanol were 

added, mixed and incubated on dry ice for 1 hr. The DNA was recovered by 

centrifugation at 10,000 rpm for 10 mm, washed with 70% ethanol and air-dried. 

Finally, the DNA was resuspended in 200 Rl  of TE buffer (10 mM Tris-HC1, pH 

7.0; 1 mM EDTA). 

2.5.8 Preparation of total RNA from Schizosaccharomyces pombe 

S. pombe total RNA was prepared as described previously (Kaufer et al., 1985). 

This method yields RNA of good quantity and quality, suitable for Northern 

blotting. 100 ml cultures of YE or selective media were inoculated and incubated 

until the cells reached mid log phase (0D 595  of —0.5). The cells were harvested by 

centrifugation at 3,000 rpm for 10 min and the cells resuspended in 2 ml of 0.9% 

NaCl. The cells were divided into two screw-cap tubes, harvested again at 14,000 

rpm for 1 mm, and each pellet resuspended in 75 il of STE buffer (0.32 M Sucrose; 

20 mM Tris, pH 7.5; 10 mM EDTA, pH 8). Acid-washed beads (Sigma) were added 

to just below the meniscus and vortexed for 30 sec. 600 p1 of NTES buffer (100 mM 

NaCl; 50 mM Tris, pH 7.5; 5 mM EDTA, pH 8; 1% SDS) was added and again 

vortexed for 30 sec. The preparation was then extracted with 500 .tl of hot phenol 

three times, each time incubating at 65 °C for 2 min with frequent vortexing. After 

each extraction, the phases were separated by centrifugation at 14,000 rpm and the 

upper, aqueous layer was transferred to a fresh tube. The preparation was then 
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extracted with phenol: chloroform: isoamyl alcohol (25:24:1) at room temperature by 

vortexing and then recovering the nucleic acids by centrifugation at 14,000 rpm for 1 

mm. 0.1 vol of 3 M NaOAc and 2.5 vol of absolute ethanol was then added to the 

final aqueous phase, vortexed and then precipitated at -70 °C for about 30 mm. The 

precipitated RNA was recovered by centrifugation at 14,000 rpm for 10 mm, washed 

with 70% ethanol, air-dried, and each pellet resuspended in 22 p.l of distilled water 

(treated with DEPC) before combining the two. 

2.5.9 Preparation of denatured protein extract from Schizosaccharomyces pombe 

S. pombe total protein extract was prepared using a modified (Shiozaki and Russell, 

1996) version of that described previously (Moreno et al., 1991). This method 

yields protein of good quantity and quality, suitable for Western blotting. 50 ml 

cultures of YE or selective media were inoculated and incubated until the cells reached 

mid log phase (0D 595  of —0.25). The cells were harvested by centrifugation at 3,000 

rpm for 10 min and resuspended in 1.5 ml of STOP buffer (150 mM NaCl; 50 mM 

NaF; 10 mM EDTA; 1 mM NaN3 , pH 8.0). The cells were harvested again at 3,000 

rpm for 10 min and resuspended in 2 vol extraction buffer (50 mM Tris-HC1, pH 7.5; 

1 m EDTA; 10% glycerol; 50 mM NaF; 1 mM Na vanadate; 1 mM PMSF; 1 mM 

DTT; lx protease inhibitors (completeTM-Boehringer Mannheim)) on ice. The 

preparation was then transferred to a 1.5 ml tube and acid washed beads (Sigma) 

added to just below the meniscus. Each preparation was vortexed for five 20 sec 

intervals, chilling on ice for 1 min in between. Cell breakage was monitored 

microscopically. Each tube was punctured at the bottom with a red hot needle and 

placed inside another 1.5 ml tube inside a 15 ml tube. The tubes were centrifuged for 

2 min at 2,500 rpm and the flow-through collected. The extracts were then 

centrifuged at 14,000 rpm for 15 mm. The supernatants were transferred to fresh 

tubes and stored at -20°C. 



2.5.10 Preparation of protein extract from Schizosaccharomyces pombe for 

immunoprecipitation 

S. pombe total protein extract for immunoprecipitation was prepared using a 

modified version of an enzymatic lysis protocol described by Sambrook et al., 1989. 

50 ml cultures of YE or selective media were inoculated and incubated until the cells 

reached mid log phase (0D 595  of-O.25). The cells in 10 ml of the culture were 

harvested by centrifugation at 5,000 rpm for 10 min at 0 °C and resuspended in 10 ml 

of ice-cold PBS (50 mM sodium phosphate, pH 7.4; 150 mM NaCl). The cells were 

harvested again at 5,000 rpm for 10 min at 0°C, resuspended in 10 ml stabilising 

buffer A (1 M sorbitol; 10 MM  MgCl2; 2 mM DTT; 50 mM K2HPO4 , pH 7.8; 100 

ig/ml PMSF) and incubated at 30 °C for 10 mm. The cells were collected again by 

centrifugation at 5,000 rpm for 10 min at 0°C before being resuspended in 10 ml 

stabilising buffer B (1 M sorbitol; 10 MM  MgC12; 2 mM DTT; 25 mM K2HPO4 , pH 

7.8; 25 mM sodium succinate; 100 .tg/ml PMSF) and incubated at 30°C for 2 mm. 

2.5 ml of a 50 mg/ml solution of Zymolyase 20T was added and the preparation 

incubated at 30°C for 20-30 min until the cell walls were digested. The protoplasts 

were then collected at 2,500 rpm for 15 min at 0°C. The pellet was resuspended in 

0.1 ml lysis buffer (50 mM HEPES, pH 7; 1% Nonidet P-40; 100 jig/ml PMSF; lx 

protease inhibitors) and incubated on ice for 30 mm. Finally, the cell debris was 

collected by centrifugation at 14,000 rpm for 10 min at 4°C and the soluble extract 

transferred to a fresh tube and stored at -20°C. 
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2.6 Manipulation and handling of Saccharomyces cerevisiae 

2.6.1 Saccharomyces cerevisiae strains used 

ED1373 	cdc37-1 leu2-3, 112 his3i ura3-52 lys- a 

ED1375 	cdc37-2 arol ura3-52 trpl a 

2.6.2 Media and growth conditions for Saccharomyces cerevisiae 

YPD 

S. cerevisiae strains were routinely grown in YPD medium: 

Yeast extract 	 10 g/l 

Glucose 	 20 g/l 

Peptone 	 20 g/l 

Synthetic Dropout medium (SD) 

S. cerevisiae strains were selectively grown in SD medium: 

Yeast nitrogen source (w/o amino acids) 	6.7 g/l 

Glucose 	 3 g(1 

Amino acids were added to the SD medium or omitted for selection using 0.1 vol of a 

1 Ox Dropout solution: 

L-Isoleucine 300 mg/ml 

L-Valine 1500 mg/mI 

L-Adenine hemisuiphate salt 200 mg/ml 

L-Arginine HC1 200 mg/ml 

L-Histidine HC1 monohydrate 200 mg/ml 

L-Leucine 1000 mg/ml 
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L-Lysine HC1 300 mg/ml 

L-Methionine 200 mg/ml 

L-Phenylalanine 500 mg/ml 

L-Threonine 2000 mg/ml 

L-Tryptophan 200 mg/nil 

L-Tyrosine 300mg/mi 

L-Uracil 200 mg/ml 

For solid medium, 20 gIl Bacto-agar (Difco) was added to either YPD or SD media. 

2.6.3 Analysis of growth phenotypes 

Growth phenotypes of cells were tested by replica plating or by streaking from a 

master plate onto EMM plus or minus growth supplements for auxotrophs, and 

onto YPD at the restrictive and permissive temperatures for temperature-sensitive 

strains. 

2.6.4 Transformation of Saccharomyces cerevisiae 

S. cerevisiae strains were transformed by the lithium acetate procedure as developed 

by Ito etal., 1983 and modified by Schiestl and Gietz, 1989, Hill et al., 1991 and 

Gietz etal., 1992. Cells to be transformed were grown in 300 ml of YPD or selective 

media until the 0D600  reached 0.4-0.6. They were harvested by centrifugation at 

2,500 rpm for 5 min and resuspended in 30 ml of TE buffer (10 mM Tris-HC1, pH 

7.0; 1 mM EDTA). The cells were harvested again at 2,500 rpm for 5 min and 

resuspended in 1.5 ml of 100mM LiOAc in TE buffer. The DNA to be transformed 

was added to 100 p.1 of the cell suspension along with 0.1 mg of herring testes carrier 



DNA (Clontech) and mixed well. 600 pJ of 100 mM LiOAc, 40% PEG-4000 in TE 

buffer was added and vortexed at high speed for 10 sec to mix. The mixture were 

then incubated at 29 °C for 1 hr with constant agitation. 70 pJ of DMSO was added 

and mixed well by gentle inversion and then the mixture was heat shocked for 15 mm 

at 42°C. The cells were chilled on ice for 2 mm, centrifuged at 14,000 rpm for 5 sec 

and then resuspended in 500 j.tl of sterile TE buffer. Transformed cells were spread 

onto selective media and incubated at the appropriate temperature until visible 

colonies were formed. 



Chapter 3 

Cloning and sequence analysis of cdc37 



3.1 Introduction 

The initial aim of this project was to identify homologues of the S.cerevisiae gene 

CDC37 in S.pombe. At the beginning of this project, the S.pombe genome 

sequencing project was underway, co-ordinated by the Sanger Centre in Cambridge. 

Most of the genomic DNA had been cloned into cosmids, and about 50% of these 

cosmids had been sequenced and the results entered into the database. Several 

strategies were employed to attempt to isolate putative CDC3 7 homologues before 

one, named cdc3 7,  was identified by use of the database at the Sanger Centre. 

Fig 3.1 contains the nucleotide sequence of the region of S.pombe genomic DNA 

containing the putative cdc37 gene. Important regions of the sequence are annotated 

in this figure and are discussed throughout this chapter. This figure can be used as a 

map for the sequence analysis and cloning described in this chapter. The sequence 

used to design oligonucleotides can be also identified by using this figure together 

with the information contained in Table 2.1. 

This chapter describes the identification of this gene, the analysis of the genomic 

sequence and the construction of a clone containing the entire ORF. It also 

investigates how the predicted S.pombe Cdc37 sequence compares to that of 

S.cerevisiae Cdc37p and other Cdc37 proteins identified in various organisms. 

3.2 Approaches to identifying CDC37 homologues in S.pombe 

3.2.1 Degenerate PCR 

The initial strategy that was used to identify potential CDC37 homologues in 

S.pombe was to design degenerate primers using the S.cerevisiae Cdc37p sequence 
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PstI 
ctgcagcaaccattcttccgcctaacgc -1560 

aagaatagcgattacagt tgcgttcccaaggaaccctgttgacccgaagaaaataccgct -1500 

agcaaaagcctc tcgctttgccaggacaaagagatttcgaatgtaatcgt tgtaacgatt -1440 

tacttcttgtctttctcctagaaaagcctgtgtagtccgaacatttgcgagtttCtCttC -1380 

tgaaacccttgttaaatcaccgagagcatcttgtgtagtcctggaaagtttCCgaaCata -1320 

ctctccataaaagaaagctcccaatgcaaftgggggtacaattagggacatatatCCagt -1260 

gagtctcatggatacgtagagcatcatccctattccagcaattgcactaactgagCtaCg -1200 

aagaccatcact taagtacattgaaaagacttaccgacaatactcgaatccgtcgtaag -1140 

acgggatatgagatccccatgt ttatgaaagtcaaaaaatgctccatctaatgacatgca -1080 

tttagcaaacaagcgtgctcgaagacgactgacaattct ttcactcagtagacgcaaggt -1020 

gatgattctaccaaagttacaagctgaaccaaggaaaaataaacccaacaaaccaatata -960 
EcoRI. 	 . 	 . 

aaacgtaccagaaggpttcccatgatatgcgtgacagaagaatcgcctgacgagccagc -900 

gtctaagattttgccaacaatgtagggaatggaCat tgtaacgccggaggaaactaagag -840 

aagagatccagcaataaaaaaattccatccctgaccccttgctagtgtgaagagacgaaa -780 

aacattgactttcttgtttggtgtttgtaatgtaccatttgtatttatttttgagataC -720 

ctgtgcttgctcatcttttgatggaactgtagaattatgtCgCacacaCaaCtttaaaaa -660 

agcaagtgatcgtataggaagaatagatctagaaaaaggtaacggaaaactat Lt ttaaa -600 

aggatatatcttagaaccacttgaggccttttgagataacgaglttaggCtCaCattaaC -540 

ttcaatagaagtgtcactggtac tataatattctgcatttggcgtgggaagtaatagagt -480 

attcgtacttttgtaagccacgttgtttttcaaccaagtcaacggtactaaatagtttgC -420 

tcgaaatattacgcgtttattgtagcagtgagcgaatggtaCtCtCgaaagtCcaaaacg -360 

tattggatccatccatgaatgtgcctttcaaaggaaatgaaCggaatCttttCgaaaCgg -300 

ggtt tacacaggcttttggcaacaaaaggtgcgcaaagtatgtacaaataaattat taa -240 

tatatactttttattagtattcgttctatcaaattttctcttctctaCggtattagtagt -180 

ttcgtagaatttccacgaagtactctacattcgcataaggaggtgCtttggtaCataC -120 

taagattcatttaccttaacacaaccacttctctacaacaagtcaaatcgacgagaata -60 

gcaaagacatttgtgtcttttactttttttaaatttcttgaaattataatttgcttcgag 0 
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ATGGCAATTGATTACAGCAAGTGgtaagtttattgataagtttgtttttaagtaggcgaa 	60 

tatgaagttaacagaattgacagcGATAAGCTAGAACTTAGTGATcACAGgtatgaaata 	120 

tacggtttggagaggaaatcggctctgtaaggacaatggttaaatactCtaCatgatgcc 	180 

tttgattggagtacaataaaagaagtcgaaatgaaatttcattagtaggatggaataaat 	240 

tcaaaaataaaattcagactcatctttttatcattttgaaggacatgttgggttCaaaaa 	300 

ggcaatcattaatttgcagtttgtatatttgatgCCaattgggttCttttagCtaataaa 	360 

caacca ttgtcaaaacattcctttcttttccttcttCatttatttttcgttttgataaat 	420 

tcatgctaacaacatttagTcACATTGAAGgtttgttaCgggttgtattCatattaaatt 	480 

aaccacatgcagTTCATCCAAATGTCGATAAAAAGTCTTTTATTAGATGGCGCCAACGTG 	540 

ATATCCACGAAAAACGGGCTGTTAGAAAGCAAAAAATGGAAGATATCAAAGGTGCAATGG 	600 

CGATGAATCGTAGACTCTTGTCTCGCATCTCCGAAATGGAGACTGTTCTTGAGAAGGAAT 660 

BamHI 	. 	 . 	 . 

CTCCTTCGGATCCTTATGTTTTATT000TTCATTTTTAGAGGCAAAAAAGTCTGAAGATA 720 

Ndela 
TGGATAGTGCCATTCCTGGAGGCATGTCGTATCATCATATGCTTATGTCTTTATTAAAAG 780 

TAATTAAAGATGCCGAAGACACTACCGAAGAAAAATCTATGGATGATTCGGATAAATGCT 840 

TGAGACGATTAAAGTCACACAAAGAGCGTCTTCTGAAGTTQCTAGAAGATGCACAAAAGG 900 

AGTATGATACTTTAGAGGCTGAGAGTAAAAATTACATCACTTCTGAAGACTTGCATTTGG 960 

GCTTTGATTCCACCTATGTTCAGAAAAAGGAGCCTGAAAAACCTAAAAAGACTAAAACCA 1020 

AAAAGGAGACCATCCAGGTCATTGAATCTCTTAATAACCCTACACCTCCTACTGATTTTC 1080 

CCGGCGCTAAAGAGCAAGCTTCTACTGGTAATGCCCCTAAAAATCCTGTCAATGAGAATG 1140 

AGTCGGAAGATGAAGAAGGGTTGTCTCTTTCTGAAGATGGTAAGAAGTTTGCCAATATTG 1200 

ATTTTGGTGATTATTCTTCATCGGAAGAGTTTTTGAAAGAACATTTAAATATCTTGGCAG 1260 

ATGAGGAAGAATCTGATGCTATTCTTTTGGAAGCCTTTAATGCTCAACTAGAAGGGAAGC 1320 

CGTCCTTAGCAAAACAATATGTTCATCAAGCCCTTTTGATCAGCTATTGCAGACAGCTTG 1380 

GACCAAATGGTTTATCAATATTTTTTCAAAAAATTAAACACCCAAATCACCAATCTCAGC 1440 

Ndelb 	. 	 . 

GGCTATTTTTAGAGGATGTTCATAATACATATGTCCGAATCCATGAACGTTCTGCTGCCA 1500 

TCAGCAAAGAACAAGCTGAAAGCGGTGAAGGAGTAGAACAAATCCAGCTCTGTGCAGTTG 1560 

ATCCTAATACGAAACTTTCCATCACCATCCCGGAGGCAGGTTCTACTGATCCAGAGACAC 1620 
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AAAAAGCTCGTGCAGCTTTTGAGTCTTTTCCTCCTAACCTCCAAAAAGCTCTTATGACCA 1680 

ATGATTTAGACAAGATTAATGTAGTTCTTGGAAAAATGGCAGTTGAAAATGCAGAAGAAG 1740 

TTGPCGAAAAGCTCAGCAGTACTGGTATGTTGAGTATCGAAGAAGGAATCATCGACACAA 1800 

CAGGTGAGACTAPTCCTCAATTGTCTTAAatttttctgcttacgggtgtgCttttag 1860 

taagcgaaaacaccaaagttacatgtttgccgttggcatttttaaatggataaaCaaCaa 1920 
* 

tgaaattttatttattgatttaccataccttgtgtgtaccgtataataaaataagtattt 1980 

aaacaat ttgtacatttgccatcaaagcaacgtggtcgctgggatatcttcCttC Laaag 2040 

gctccgcttccttcatctcactgggtaaaggcacacgtaacagtgcctttaattttataC 2100 

c ttcaacgacttgattttcgggagtttgaagtgaggtatcacgattcataacaaatatgt 2160 

agtccaaatggccctggtaagcatgagcccaattggtaaatgCtggatgatCadaCcSat 2220 

bttttgcatttctgggtgaaccagtttatagcccactgaataaagaCtgaaaagtaCgg 2280 

gattttgc tcgtgctgctgataaaaagaacggtagtgaggtacatagtcattttgtaCat 2340 

gcaaaattctctttt btggggtagaagctgtggattcgggaacacttgaggtagaagagg 2400 

attgacattcttctttgtcatcttcattggaatcattttctgtcttagtactagCatttt 2460 

ttt c ttccaactcagattccccaaatacgtaattcatactacgttctataatgtcagtag 2520 

ccc tttggcagatggatagagggcgggtagttagcgcaggaaagttggtatCgaaCggtt 2580 

cagtgttgaagtcaccagctataaaaacaggccaagaaggatgactttgtgCCatCttgt 2640 

ttacttcctttaccaatattgcaccttggcgtaacctttcgtaagagccgtaaggatgCc 2700 
XhoI* 

aaaataaatgtgtagtagccaagaacaaccc tctgctcciatcatctaccctttcaaggc 2760 

gtacacaacaaccgatgttc t.ggtgttcattctacctggtaattcatcatgatcatcgt- 2820 

aataaatagtcaaatcttgcacctttttgaacaaagaggatttccaaaaaatcataattc 2880 

catgagttttaccttcaccttttatgaaatgcaattcataacccaatccacctaataaCt 2940 

tcttgtagaaabtaggaacaaattcagcatcaactcttgcatacatCcCaaagLtggtg 3000 

aataataggttaattcattagcgagcattcgtgagcgattttccattttaatgcctcac 3060 

cactgtgtggaaacattgaacgacgaatatttgtctgagcaagtacgtgtaagtcataa 3120 

tagtaatatccaatgcagacttttcagtttcaaacggtgcataattagggatggagagCa 3180 
EcoRI 	 . 

t ttcacgctttataaagtccgtattciaattcgggtggagcattgcttggtggagcaatag 3240 
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gttbtcgagcagccttcttagctaataatcagttaataaaattgagCaaCaaaaaataa 	3300 

aca .aaggagtagagattcggtcttaaaaaaagtttcaCaaCaaCcttCttattgttgctc 	3360 

gactagatgaacgaaaattttttttcatacccattttctcaagttttttttggCgttgtt 	3420 

tctctatgtattcaggcgttacgaacgaaggagggcctttagctgagCCt.tttbtCttaa 	3480 

cgggtatcgaatctgccatct±gttctttLtctgatcaaagaatgatatagcaagtttgg 	3540 

ataatctataatcagtgtggaatcga.tcgataaaaaactt.caagtcaatgtaC&Cgttt 	3600 

taggacaagtgtacatacaatgacttttgagtagaCtttatttaagttttCaCagCCg3a 	3660 

atggattaacgactgttggttcgtacaacctcaggtatatcatctaaaataCcgCatact 	3720 

agcgtgctctccttgatgccttctgttcgcttCaagaaaaggagCCattggagCttCttt 	3780 

gactgatttgaaaggatctgtttcaetaattacttcaattgtatttttaCCCtCggC&tt 	3840 

tgaagagccttgaaLgaatgcaaaggcattaaCtaaatCtCgS-gttCCaaatCtttCCa 	3900 

agccggttcatgcctaagctgtttgttttLcattaagettagatttgCaCtagaatgttg 	3960 

aatagtcatctcatcttctgtaacaggtggtaagtgttCtaCtcgCacLtcgacatCgtC 	4020 

aactggaagtctatcttttagccaatccgaggcaaacaaaactactcccggttLattCat 	4080 

atgaacataattgtaattcga.tccattaattgttttactgattCcaagtagcJagaCtta 	4140 

tggtgctttatacggttgg tat tatggagaagtcggtggtaEtgtgtgtaaaCaaac4Ca 	4200 

LtLagcagcaaagtctactagttgggggggggagaLctttcCatgaaaatCaattataa 	4260 

gaattctagattaatttcttattcacataattct.atgaacttttaagtagaaataaaaat 	4320 

cagttaggtggtttgctactattcttctcaaaaccttCgtctCttaatCtatttattcct 	4380 

attggcatgttattttteLtgataaataaggLaaaLatatgtgCttgCttagCLaCaaa 	4440 

tttcaaacxaatgacactaatagtgcaatgttttacttaagctatgattgtghCCaaaaCC 	4500 

cagcaatactgacagagttataacçjaaaaattaagcgtatatttC&CaatCatataatC 	4560 

atattcccccttttctgaaaaaatgtcaaggcaaatcatatactgttttgagttaaaga 	4620 

ggctttggcagatcataaatcagccatcctaattagtaaaaagaataCaaaattgtgatg 4680 

gtatgttaaaagtattcctagtcattagtgcatcaccttagagtCatgtgCtgtatata 4740 

tatatg:gtctacctttgcataacaaacttgtattccacagtcaaactagtaCaataCa 	4800 

catcgttctgcgaaaacgttctgtttatttttcagcaaaaaattaaagbttaagctatCa 	4860 
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ttcattgccaatcgcatatcaattccaagaLttattcattgtttattaCatLtggaagC 	4920 

Laaacaataactttcacggaagcaacaacacaaccaacaaccaacccttcagaagtaact 4980 

tLcggaataattLtgtattcaaacctatatcgtttatCatCCtttggal:ttCttttaat 	5040 

cbttctttcgaacacgaaaacttactcttcactaagcttcgaaatttCCaatCaaaCga 	5100 

tttaacaataagaaattttgtgcttaaaatcaccaaaatggatt:ctcatgtttbagCat 	5160 

ttccaattcctgatccatctacacctcctcccgaagaggcatcCCtttatgctagtaaat 	5220 

gtgactattatgaaagcgatat.ttact:ctcaaattaggagattaaCCgaagaaaagtgCa 	5280 

ttgagacagaaaaagagttgccagti:aatataaaactacatgtcaaacataaaggaatga 	5340 

gcatatcatcttcccgcaatgaactagtggttactgtttcaggaaattataaaaatgtgt 	5400 

acactgcaaaaataaagattttgcaagccattcccaaaattctaatcagcaaacttgtgc 	5460 

tcgaagaacccctcgaaaaccbcctttt.tgatgaagatgggtacgtttatgaagacaCta 	5520 

tgaaacatttggacaaaataacggaataacgggagcaaaaatttatatCatgCatCgtt 	5580 

ClaI 

ccatgtgt:catgatatcgat 	 5640 

Fig 3.1 The genomic nucleotide sequence of the putative cdc3 7 gene in 
S.pombe 

Shown here is the sequence of the 7188 bp PstI -C/al region of genomic sequence 
believed to contain the S.pombe cdc3 7 sequence. The predicted ORF is shown in 
black uppertcase, the predicted UTR in black lowercase and unrelated sequence in 
grey lowercase. Also included are the predicted translational 'start' and 'stop' 
codons in red, putative splice consensus sequences in blue (Table 3.1) and the 
relevant restriction sites in the sequence are underlined. The position at which the 
poly-A Tail begins in the mRNA is shown in bold with an asterix. Table 2.1 
contains a list of all the oligonucleotides designed using the above sequence and the 
locations are referenced with respect to this figure. Numbering of the sequence is 
with respect to the first base of the ORF ie. the adenine residue within the predicted 
translational 'start' codon (A= 1, T=2, G3 . . .etc). * XhoJ site engineered by a single 
base pair change to create site for cloning the 3' flanking region in the deletion 
construct. 
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and to amplify from an S.pombe cDNA library (T. Gaskell, pers. comm.). Using the 

S. cerevisiae Cdc3 7p sequence and sequences of homologues from other species, the 

degenerate primers were designed complimentary to regions where the sequence is 

conserved among species. Primers were also used designed complimentary to the 

S. cerevisiae ADHJ promoter and terminator sequences in the library vector pDB20 

(Fikes etal., 1990). 

Various reaction conditions and primer combinations were used to attempt 

amplification from the cDNA library by PCR using Taq polymerase (section 2.2.8). 

However, this approach was unsuccessful in identifying potential CDC3 7 

homologues in S.pombe. 

3.2.2 Complementation of the S.cerevisiae Is mutant cdc37-2 

A second approach involved attempting to rescue the defect of a S. cerevisiae cdc3 7 

ts mutant using two S.pombe cDNA libraries. There were two cdc37 ts mutants 

available, kindly donated by M. Winey; cdc3 7-1 (Reed, 1980b) and cdc3 7-2 (Reed, 

1980a). In both of these mutants at 25°C the cells behave as wild-type S.cerevisiae, 

but at 36°C the cells cease to divide and become arrested at 'start'. For this study, 

the cdc3 7-2 mutant was used, as the arrest phenotype was much tighter than that of 

the cdc3 7-1 mutant. To transform these ts mutants, two different S.pombe cDNA 

libraries were used, both cloned into S. cerevisiae expression vectors. One library, 

expressed by the strong, constitutive ADH1 promoter in pDB20 (Fikes etal., 1990), 

was a gift from M. Yanagida, whilst the other, expressed by the PGK promoter in 

pFL61 (Lollier etal., 1995), was donated by M. Minet. 

The cdc3 7-2 strain was transformed with the S.pombe cDNA libraries and a cDNA 

containing the CDC37 ORF as a positive control (section 2.6.4), allowing colonies to 
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form at 25°C. The colonies were then tested for growth at the permissive and 

restrictive temperatures; 25°C and 36°C, respectively. Preliminary studies using this 

approach, where -6.4x 107  transformants were screened, were also unsuccessful in 

identifying potential CDC37 homologues in S.pombe. 

3.2.3 Searching the S.pombe sequence database with the S.cerevisiae Cdc37 

sequence 

The translated DNA database at the Sanger Centre was searched with the Cdc37 

protein sequence from S. cerevisiae using BLAST and sequences showing similarity 

were analysed further for potential genes. Only one cosmid in the translated DNA 

database contained a region which showed significant similarity to the sequence of 

Cdc37p. Cosmid c28E12 containing DNA from chromosome 2 contained three 

regions with significant similarity to Cdc37p. The largest region of 442 amino acids 

had an identity of 31% with the S. cerevisiae Cdc37, whilst in close proximity 

upstream, two smaller regions of 8 and 40 amino acids had identities of 100% and 

37%, respectively. The regions of similarity in the database sequence were not in the 

same reading frame, suggesting that the sequence contained introns, so the genomic 

sequence was analysed to determine its structure. It is worth noting at this point, 

that subsequent searches at the end of this project, with the S.pombe genome 

database project almost complete, still only result in this single region of genomic 

DNA with significant similarity, suggesting that only one homologue of CDC3 7 

exists in S.pombe. 
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3.3 Analysis of S.pombe cdc37 sequence 

Upon arrival of the cosmid c28E12, a 7182 bp region containing the putative cdc37 

gene was cloned into pBluescript SK- using ClaI and PstI sites predicted from the 

genomic sequence (Fig 3.1). The region of the clone containing the putative cdc37 

gene was subsequently sequenced and compared to the sequence published by the 

Sanger Centre. The sequences matched exactly except for one base pair. Since the 

discrepancy occurred at a region which was believed to be within the ORF, it was 

decided that sequencing a cDNA clone would reveal the correct sequence (section 

3.4). Meanwhile, the genomic structure of the cdc37 gene was predicted using 

splicing consensus sequences from previously analysed S.pombe genes (Zhang and 

Marr, 1994; Chen and Zhang, 1998) and by comparison with S.cerevisiae Cdc37p. 

3.3.1 Prediction of the transcriptional and translational initiation/termination 

sites 

As the N-terminal end of the Cdc37 proteins seem to be highly conserved in all 

species where they have been identified to date, the predicted 'start' translation site 

(ATG) was identified along with the subsequent few amino acids which were 

identical to the S. cerevisiae Cdc3 7p sequence. The translational start consensus 

sequence outside of the ATG codon does not appear to be particularly well 

conserved in S.pombe (Zhang and Marr, 1994), therefore, a definitive prediction of 

the site is impossible by sequence analysis alone and needed to be confirmed by 

analysis of a cDNA sequence. However, no other potential start codons exist in any 

reading frame within 250 bp upstream of the predicted start site. 

Due to the limited sequence similarity throughout most of the length of the 

S.cerevisiae and S.pombe Cdc37 proteins and the possibility of further introns, it 
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was difficult to predict the translational stop codon. As there appeared to be no 

consensus splice sites within the 442 amino acid largest region of similarity, which is 

furthest downstream, it was assumed that this was the final exon and that there were 

no more introns present. This region contained no stop codon, therefore the next 

stop codon within the same reading frame was predicted to be the translational stop. 

Promoters in S.pombe are not well understood and in particular, very little 

information exists on the range of sequences that can serve as functional TATA 

elements. However, TATA sequence motifs have been suggested for genes in 

S.pombe that are transcribed at moderate or high levels (Russell, 1989). The cdc37 

gene has no obvious TATA motif upstream, suggesting that cdc3 7 may only be 

expressed at moderate to low levels. The transcriptional initiation and termination 

consensus sequences in S.pombe are also not highly conserved and no obvious 

putative sequences exist. 

With the start and stop codons predicted, it was clear that there were introns present 

at the 5' end, therefore the sequence would need to be analysed further for the 

presence of splice donor, acceptor and branch sites. 

3.3.2 Prediction of exon-intron structure 

The presence of introns is relatively common in S.pombe genes and tend to be 

characteristically short (Zhang and Marr, 1994). S.pombe introns, as with 

S.cerevisiae, tend to be located towards the 5' end of the gene (Fink, 1987) and 

consensus sequences for branch and splice sites have been determined (Zhang and 

Man, 1994, Chen and Zhang, 1998). Using these consensus sequences and by lining 

up the genomic sequence with the S.cerevisiae Cdc37p sequence, 2 introns were 

predicted to be present at the 5' end of the gene. From analysing the genomic 
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sequence alone, the predicted structure of the gene suggested that the ORF was 1404 

bp long, consisting of 3 exons of 23 bp, 41 bp and 1340 bp and 2 introns of 60 bp 

and 368 bp in length (Fig. 3.2). After this extensive sequence analysis was carried 

out, the predictions had to be tested by sequence analysis of cDNAs containing the 

cdc37 ORF. 

3.4 PCR amplification of cDNAs containing the cdc3 7 ORF 

Since the accuracy of the sequence was obviously important in the following PCR 

amplification, Taq polymerase was considered not to yield high enough fidelity. 

However, high fidelity polymerases, such as Pwo, usually possess an integral 3'—* 5' 

proof-reading exonuclease activity which result in PCR products that are blunt-ended 

and thus difficult to clone. For this project a system was used, called ExpandTM High 

Fidelity PCR system, which reaches a compromise between fidelity and ease of 

cloning. It is composed of a mix containing Taq and Pwo DNA polymerases, 

designed to give higher fidelity PCR products that resemble a mixture of 3' single A 

overhang products similar to those generated by Taq DNA polymerase alone and 

blunt-ended products. This meant that the higher-fidelity PCR products could still 

be sub-cloned easily into the pGEM-T vector. 

The two cDNA libraries previously described (section 3.2.2) were used as templates 

for PCR amplification. However, amplification was only consistently achieved with 

one of them, in the library vector pDB20 containing the ADH1 promoter for 

expression. This was an oligo d(T)-primed library which was non-directionally 

cloned into the vector. Oligos were designed that were complementary to a region of 

either the promoter (5' forward - TG 1) or terminator (3' reverse - TG2) sequences 

of the library vector. 



Genomic DNA 

- 	 1.8kb 

mRNA 

-'4 	 1.4kb 

U ORF U Introns 

Fig 3.2 Original prediction of the genomic structure of the cdc37 gene in 
S.pombe by analysis of the genomic sequence 

The genomic structure of the cdc3 7 gene was predicted by sequence analysis of a 
genomic clone and alignment with the S.cerevisiae Cdc37p sequence. Shown here is 
the predicted structure of the cdc37 gene (not to scale). The gene contains 2 introns 
of 60 bp and 368 bp in length. The 1404 bp ORF is made up of 3 exons of 23 bp, 41 
bp and 1340 bp. 
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3.4.1 Analysis of the structure of the 5' end of the gene 

Initially, in order to test the prediction of the structure of the 5'end of the cdc371  

gene and to identify any 5' UTR, a reverse primer (PW3) was designed using the 

sequence at the 5' end of the final exon, together with both forward (TG1) and 

reverse (TG2) primers complimentary to the ADHJ promoter vector sequence. The 

DNA was amplified from the library by PCR (section 2.2.8) and the reactions were 

run on a 1% agarose gel (section 2.2.3). The reactions with primer PW3 and primer 

TG1 resulted in a band of-350 bp being amplified from the library. However, no 

amplification was seen with PW3 and the primer TG2. The band was excised from 

the gel and purified (section 2.2.4), before being cloned directly into pGEM-T. Once 

cloned into the vector the insert was sequenced using the T7 primer against the 

sequence of the vector adjacent to the polylinker site. 

The sequencing results revealed that although our prediction was almost accurate, we 

had failed to notice another extremely small exon of only 11 bp (Fig 3.1). This 

changed the structure of the gene slightly, resulting in a sequence with stronger 

consensus sequences for splicing and which lined up more readily with the 

S.cerevisiae Cdc37p sequence. The confirmed ORF from the cDNA is 1401 bp, 

consisting of 4 exons of 23 bp, 27 bp, 11 bp and 1340 bp and 3 introns of 60 bp, 329 

bp and 42 bp in length (Fig 3.3). As has been observed in the large majority of 

S.pombe genes examined, the longest region of the cdc37 ORF is present in the final 

exon (Chen and Zhang, 1998). The splice donor, acceptor and branch sequences for 

the introns are shown in Table 3.1. 



Genomic DNA 

2.1kb 

mRNA 

1.7kb 
- poly-A 

UTR • ORF U Introns 

Fig 3.3 Genomic structure of the cdc3 7 gene in S.pombe 

The genomic structure of the cdc37 gene was predicted by sequence analysis of a 
genomic clone and confirmed by sequence analysis of cDNAs amplified from a 
cDNA library. Shown here is the confirmed structure of the cdc37 gene (not to 
scale). The gene contains 3 introns of 60 bp, 329 bp and 42 bp in length. The 1401 
bp ORF is made up of 4 exons of 23 bp, 27 bp, 11 bp and 1340 bp. Also shown in 
the diagram is the 78 bp of 5' UTR and all of the 114 bp of 3' UTR established by 
sequence analysis of clones amplified from a cDNA library. 
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Table 3.1 Sequence of the predicted splice donor, branch and acceptor sites 
within the putative S.pombe cdc37 sequence 

Donor site Branch/acceptor site 

Intron 1 	GTAAGT TTAAC.. (8 bp) . . CAG 

Intron 2 	GTATGA CT?AC.. (6 bp) . . TAG 

Intron 3 	GTTTGT TTAAC.. (6 bp) . . CAG 

Bases shown in bold and underlined are those that are present in all S.pombe genes to 
date. Those shown underlined are those which are present in over 70% of genes to 
date (Zhang and Man, 1994). 



3.4.2 Elucidating the 5' and 3' UTR sequences 

As well as confirming the intron-exon structure of the 5' end of the gene, the 340 bp 

PCR product generated in section 3.4.1 also contained a region of 5' UTR upstream 

of the predicted translation start codon. Sequencing showed that this clone appeared 

to contain 78 bp of 5' UTR (Fig. 3.4). Without being able to confirm that this is 

completely all of the 5' UTR, this is probably the majority of it, supported by the 

results of Northern analysis (section 4.3.3). 

To discover if any 3' UTR was present and to confirm the structure of the remainder 

of the gene, a forward internal primer (PW4) was designed complimentary to the 5' 

end and PCR carried out (section 2.2.8) with the 3' reverse vector primer (TG2). 

This resulted in amplification of a -4400 bp band which was subsequently cloned 

into pGEM-T and sequenced. The sequencing confirmed that no more introns were 

present and identified the predicted stop codon. It also shows that a cDNA 

containing all 114 bp of 3' UTR is present in the library, as the sequence extends to 

the poly(A)-tail (Fig 3.4). 

3.4.3 Constructing a clone containing the entire ORF 

In order to compare the cDNA sequence with the genomic sequence and to create a 

reagent for further investigations, clones containing the whole ORF were amplified 

by PCR from an S.pombe cDNA library constructed in the S. cerevisiae multicopy 

vector pDB20 (Fikes et al., 1990). To carry this out, two further primers were 

designed complimentary to the cdc37' sequence; one at each terminus of the ORF, 

containing engineered recognition sites for the restriction enzymes NdeI (5' end - 

PW5) and Smal (3' end - PW6) for cloning the ORF into the pREP series of S.pombe 

expression vectors (section 4.3.1). Six independent PCR products were cloned into 
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gtcaaatcgacgagaatagcaaagacatttgt.gtcttttactttttttaaatttCttgaa 	-18 

attataat ttgc ttcgagATGGCAATTGATTACAGCAAGTGGGAThAGCTAGAACTTAGT 	42 

MAID Y S K W D K L EL S 	14 

GATGACAGTGACATTGAAGTTCATCCAAATGTCGATAAAAAGTCTTTTATTAGATGGCGC 102 

D D S D I E V H P N V D K K S F I R W R 	34 

CAACGTGATATCCACGAAAAACGGGCTGTTAGAAAGCAAAAAATGGAAGATATCAAAGGT 162 

Q R D I H E K P. A V P. K Q K M E D I K G 	54 

GC?ATGGCGATGAATCGTAGACTCTTGTCTCGCATCTCCGAPATGGAGACTGTTCTTGAG 222 

AM AM N R R L L SRI SE MET V L E 	74 
BarnH I 

AAGGAATCTCCTTCGGATCCTTATGTTTTATTGGGTTCATTTTTAGAGGCAAAAAAGTCT 282 

K E S P S D P Y V L L C S F L E A K K S 	94 
NdeI a 

GAAGATATGGATAGTGCCATTCCTGGAGGCATGTCGTATCATCATATGCTTATGTCTTTA 342 

ED MD S Al PG GM S Y H H ML MS L 	114 

TTAAGTAJTTAAAGATGCCGAGACACTACCGAAG?JLkAATCTATGGATGATTCGGAT 402 

L K V I K D A E D T T E E K S M D D S D 	134 

?J'.ATGCTTGAGACGATTAAAGTCACACAAAGAGCGTCTTCTGAAGTTGCTAGAAGATGCA 462 

K C L R R L K S H K E R L L K L L E D A 	154 

CAAAAGGAGTATGATACTTTAGAGGCTGAGAGTPAAAATTACATCACTTCTGAAGACTTG 522 

Q K E Y D T L E A E S K N Y I T S E D L 	174 

CATTTGGGCTTTGATTCCACCTATGTTCAGAAAAAGGAGCCTGAAAACCTAAAAAGACT 582 

H L C F D S T Y V Q K K E P E K P K K T 	194 

AAAACCAAAAAGGAGACCATCCAGGTCATTGAATCTCTTAATACCCTACACCTCCTACT 642 

K T K K E T I Q V I E S L N N P T P P P 	214 

GATTTTCCCQGCGCTAAAGAGCAkGCTTCTACTGGTAATGCCCCTAA1AATCCTGTCAAT 702 

D F P C A K E Q A S T G N A P K N P V N 	234 

GAGAATGAGTCGGAAGATGAAGAAGGGTTGTCTCTTTCTGAAGATGGTAACAGTTTGCC 762 

E N E S E D E E G L S L S E D G K K F A 	254 

AATATTGATTTTGGTGATTATTCTTCATCGGAGAGTTTTTGAAAGACATTTAAATATC 822 

N I D F G D Y S S S E E F L K E H L N I 	274 

TTGGCAGATGAGGAAGAATCTGATGCTATTCTTTTGCAAGCCTTTAATGCTCAACTAGAA 882 

L A D E E E S D A I L L E A F N A E L E 	294 

GGGAAGCCGTCCTTAGCAAAACATATGTTCATCAAGCCCTTTTGATCAGCTATTCCAGA 942 

G K P 5 L A K Q Y V H Q A L L I S Y C P. 	314 

CAGCTTGGACCAATGGTTTATCAATATTTTTTCAJAAATTAAAGACCCAAATCACCAA 1002 

Q L G P N G L S I F F Q K I K D P N H Q 	334 
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NdeI b 
TCTCAGCGGCTATTTTTAGAGGATGTTCATAATACATATGTCCGAATCCATGAACGTTCT 1062 

S Q R L F L E D V H N T Y V R I H E R S 	354 

GCTGCCATCAGCAAAGAACAAGCTGAAAGCGGTGAAGGAGTAGAACAAATCCAGCTCTGT 1122 

A A I S K E Q A E S G E G V E Q I  Q L C 	374 

GCAGTTGATCCTAATACGAAACTTTCCATCACCATCCCCGAGCCAGGTTCTACTGATCCA 1182 

A V D P N T K L S I T I P E A G S T D P 	394 

GAGACACAAAAAGCTCGTGCAGCTTTTGAGTCTTTTCCTCCTAACCTCCAAAAAGCTCTT 1242 

E T Q K A R A A F E S F P P N L Q K A L 	414 

ATGACCMTGATTTAGACAAGATT?JTGTAGTTCTTGGAAAAATGGCAGTTGAAAATGCA 1302 

MT ND L D KIN V V L G K MAVEN A 	434 

GAAGAAGTTCTGGAAAAGCTCAGCAGTACTGGTATGTTGAGTATCGAAGAAGGAATCATC 1362 

E E VV E K L S ST CML S 	E E GIl 	454 

GACACAACGAAAGGTGAGACTATTCCTCAATTGTCTTAAatttttctgcttacgggtgtg 1422 

D T T K GET I P Q L S • 	 466 

CttttagtaagcgaaaacaccaaagttacatgtttgccgttggcattLttaaatggataa 1482 

acaacaatgaattttatttat tgatttaaaaaaaaaaaaaaaaaa 	 1527 

Fig 3.4 The predicted nucleotide and deduced amino acid sequence of the 
cdc3 7 gene in S.pombe 

Shown here is the predicted sequence of cdc3 7+ mRNA sequenced by amplification 
from a cDNA library. All of the 3' UTR is included but the existence of additional 5' 
UTR within cdc3 7 mRNA cannot be ruled out. The DNA sequence is shown in 
grey, the predicted 'start' and 'stop' translation sites in red and the deduced amino 
acid sequence in black. The 1401 bp predicted ORF is shown in upper case and the 
UTR in lower case. 



pGEM-T and sequenced. All 6 clones had PCR-induced mutations somewhere in 

their sequences but by comparison to each other, a consensus sequence was 

constructed which agreed exactly with my genomic sequence. The single base pair 

difference with the database sequence was communicated to the Sanger Centre and 

subsequently corrected. 

The pREP vectors that were to be used for expression in S.pombe all required a 5' 

terminal NdeI site, which was introduced into the ORF by PCR. However, the 

cdc37 ORF contains two internal NdeI sites at positions 326 (labelled a) and 1038 

(labelled b) of the ORF. This meant that a two-step cloning strategy was necessary 

to insert the full-length ORF into the expression vectors (Fig 3.5). The presence of 

an internal BamHI site at position 237 of the ORF gave a convenient method for 

piecing together clones which between them contained an error-free full-length ORF. 

One of the clones containing the full-length ORF generated by the PCR just 

described, contained correct sequence from the internal NdeI sites out to either 

termini, but contained a PCR-induced mutation in the middle region between the two 

NdeI sites. The BamHI-SmaI region of this clone was inserted into pBluescript SK-. 

The middle NdeI fragment was then replaced by the corresponding fragment (which 

contains no introns) from the genomic cosmid, resulting in an error-free region of the 

3' end of the cdc3 7 ORF from the BamHI site to the engineered Smal site at the 

extreme C-terminus. This construct was used for further cloning described in other 

sections (Appendix 1B). A second PCR product containing the 5' end of the ORF 

from the engineered NdeI site at the extreme N-terminus to the internal BamHI site 

was also cloned into pGEM-T. This construct with the NdeI-BamHI 5' end was 

also used for further cloning (Appendix 1C). Sequential cloning of these two 

fragments allowed the full-length cdc37 ORF to be cloned into the NdeI-SmaI sites 

of the expression vectors. 
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Fig. 3.5 Strategy for cloning the full-length cdc3 7 ORF in S.pombe 

Two clones were assembled that between them contained the full-length ORF of 
cdc3 7 A 1417 bp PCR product (using primers PW5 and PW6) was cloned into 
pGEM-T containing the full-length ORF. This clone had no errors between the 
engineered Ndelc site and the BamHI site or between the Ndelb site and the Smal 
site, but a PCR-induced error between the Ndela and Ndelb sites (represented by a 
red cross). A. The 1167 bp BamHI-SmaI fragment was then cloned into pBluescript 
SK-. B. The fragment in pBluescript SK- was digested with NdeI, removing the 712 
bp region which was replaced with the corresponding fragment from a genomic clone 
(Fig 3. 1, Appendix IA), thus removing the PCR-induced mutation. This resulted in a 
construct with the 1167 bp error-free BamHI-SmaI 3' end ready for further cloning 
(Appendix IB). Also, a 253 bp PCR product (using primers PW3 and PW5) 
containing the 5' end of the ORF from the engineered Ndelc site to the internal 
BamHl site was cloned into pGEM-T. This resulted in a construct with the 238 bp 
NdeI-BamHI 5' end ready for further cloning (Appendix 1C). These two constructs 
(B and C) were used for sequentially cloning the ORF into various vectors described 
in later chapters. Amplified DNA is shown in green, genomic DNA is shown in blue 
and vector sequence in black. 



3.5 Predicted amino acid sequence of cdc37' 

Translation of the ORF of cdc3 7+ is predicted to encode a polypeptide of 52 kDa 

containing 466 amino acids (Fig. 3.4). Although the similarity between S.pombe 

Cdc37 and S.cerevisiae Cdc37p is only moderate overall (34% identical), the two 

proteins are —P85% identical over the first 40 amino acids and conserved motifs exist 

in several regions throughout the length of the proteins (Fig. 3.6). In fact, 

homologues previously identified from other species also have only moderate 

similarity with the Cdc37p sequence overall but high identity at the N-terminus (Fig. 

3.7). However, despite this, the Drosophila cdc3 7+ gene rescues the temperature-

sensitive defect of the S.cerevisiae mutant allele cdc37-1 (Cutforth and Rubin, 1994). 

3.6 Summary 

A homologue of the S.cerevisiae gene CDC37 has been identified in S.pombe. The 

gene contains 3 introns, a predicted ORF of 140 1 b and has been named cdc37+. 

The S.pombe Cdc37 protein has a predicted molecular weight of'-52 kDa, similar to 

that of the Cdc37 proteins found in other species. All of the Cdc37 protein 

sequences identified from a variety of species, including the S.pombe protein 

identified here, show high conservation at the N-terminus but only moderate 

sequence similarity overall. The S.pombe Cdc37 sequence is most similar to the 

S.cerevisiae Cdc37p sequence. The sequences of the Cdc37 proteins identified so far 

contain no consensus motifs that give any clue as to their function. 
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pombe MAIDYSKWDKLELSDDSD IEVHPNVDKKSFIRWRQRD IHEKRAVcQKME 50 
Cerlev 	MAIDYSKWDKIELSDDSDVEVHPNVDKKSFIKWKQQS IHEQRFKQDIK 50 

pombe DIKGAMAJRRLLSRISEMETVIEKE$PSD.PYV. . . $LGSJp. . LEAK S 94 
cerev 	NLETQVDMYSHLNKRVDRI LSNLPESSLTDLPAVTKFLNANFDK4KS 	100 

pombe IDKMSAMPGGMSEHHIL4SIKVIK DI TE S!mDIKCL
I
RIKS 143 

cerev 	 E .. ATNERVEDEQ L. . 	LDKKDSKSLIAILK  145 

pombe KERLLKLLEDAQKEYDTLEAESKNYITSEDLHLGFDSTYVQKKEPEKPKK 193 
cerev 	RAKIDSVTVEAKKKLDELYKEKNAHISSEDIHTGFDSSFMNK ........ 187 

pombe TKTKKETIQVIVSLNNPPTDFPGAX*QASTGNAPKNPVNENESE. DER 242 
cerev 	. . . QKGGAXP LEA .... TPSEALSSAAISNILNKLAKSSVPQTFIDFKDD 230 

pombe GLSLSEDGKK N*DFGDYSSSEEVLKERLNLADrESD-AILLFAFNAE 292 
cerev 	PMKLAKETEE K1SINEYSKSQKLLEELPIS.QKDLMMKAF'EYQ 279 

pombe LEGKPSLAKQYVHQALLISYCRQ ......... LGP.. . .NGLSIFFQKI. 328 
cerev 	L}IGDDKMTLQVIHQSELMAYIKEIYDMKKIPYLNPNELSNVINMFFEKVI 329 

pombe .. 	NHQSQRLFLEDWNTYVRIHEAISKQAE. . 	 374 
cerev 	FN . KPMGKEsPLRSVQEKFLHIQKKILQQEMDESNAEGVETIQLK 378 

pombe A VPNTKLS IT I PEAGSTDPETQKRAAFESFPPNIQKALMTNDLDK I  NV 424 
cerev 	SLD 	 4VKVFKTLPEKMQEAINTKNLDNINK 428

pombe VLGKMAVENAEEVVEKLSSTGMLSIEEGIIDTTGETIPQLS 	 466 
cerev 	VFEDIPIEEAEKLLEVFNDIDIIGI . KAILENEK. .DFQSLKDQYEQDHE 475 

pombe 
cerev 	DATMENLSLNDRDGGGDNHEEVKHTADTVD 505 

Fig. 3.6 Sequence comparison of S.cerevisiae Cdc37p and S.pomlie homologue 

Shown is an optimal alignment of S. cerevisiae Cdc37 (from Gerber el al., 1995) with 
predicted amino acid sequence of S. pombe homologue. Residues identical are shaded 
in red and those similar are shaded in yellow. Alignment was performed using the 
default settings in the gcg pileup program. 
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pombe MAID YSKWDKLELSDDSDI 1VHPNVDKKSFIRWRQRDIHEKRAVRXQKME 50 

cerevisiae MAIDYSKWDKIELSDDSDV EVHPNVDKKS FIKWKQQ S I}IE cR5 SRNQ DIK 50 

drosophila M .VDYSKWKNIEISDDEDDT.HPNIDTPSLFRWR.- . .HQARVERMAEMD 44 

chicken M.VDYSVWDHIEVSDDEDET}IPNIDTASLFRWR.. . .HQARVERNEQF 44 

human M .VDYSVWDHIEVSDDEDET. RPNIDTASIaFRWR.. . .HQABVERMEgP 44 

pombe DIKGAMANNRR.LLSRISEMETVLEKE 	.SPSDPYVLLGSFLEAKKSED 96 
cerevisiac NLETQVDNYSH LNKRVDRILSNLPESSLTDLPAVTKFLNANFDKMEKSK 99 

drosophila MEKDELKKKRQSYQARLMDVKERISK ................KDGDEEA. 77 

chicken KEKEELDKGCRECKRKLAECQKKLKE ................LEVAEPG. 77 

human KEKEELDRGCRECKRKVAECQRKLKE ................LEVAE... 75 

pombe 
GENVDEIATYNEMVEDLFEQLAXDLD.KEGDSKSPSLIRDAILKØRAK 

146  
148 cerevisiae P 

drosophila ....... LKKELEKIEAECKELDRIE.S ...................... 98 

chicken . . GGSGGGRGERERLQAEAQQLRHEERNWESK ............... MU 110 

human GGKAELERLQAEAQQL.RKEERSWEQK ...............LE 104 

pombe LLKLLEDAQKEYDTLEAESKNYITSELHLGFDSTYVQKKEP. EKPKKTK 195 
cerevisiae IDSVTVEAKKKLDELYKEKNAHISSEDIHTGFDSSFMNKQKGGAKPLAT 198 

drosophila MIKKEKKTPWNVDTISKP ............ GFEKTVINKKAG. RKPDEN. 134 

chicken LRKKEKNM PWNVHTLSKD ........... .GFS KSVFNVKA. . EEKEE.. 144 

human MRKKEKNMPWNVDTLSKD ............ GFSKSMVNTKP. . EKTEE.. 138 

pombe TKKETIQVIESLNNPTPPTDFPGAKEQASTGNAPKNPVNENESEDEEG.L 244 
cerevisiae ................ PSEALS SAAESNI LNKLAKS SVPQTFI DFKDDPM 232 
drosophila ................... LSEEEREQR .....MKQFVKENE ........ 152 

chicken .................... TEEQKEQK .....RKTFVERHE ........ 161 

human ................... DSEEVREQK .....HKTFVEKYE ........ 156 

pombe SISEDGKKPANIDFGDYSSSEEFLKEHLNILADEEESDAILLEAFNAELE 294 
cerevisiae KLAXETEEFGKISINEYSKSQKFLLEHLPIIS. EQQKDALMMKAFEYQLH 281 

drosophila . . .IcLCQQYGMLRKYDDS. .KRFLQEHLHLVG. EETANYLVIWSINLEME 196 

chicken . . .KQIKHFGMLRRWDDS. . QKYLSDNPHLVC. EETANYLVIWCIDLEVE 205 

human • ..KQIKHFGMLRRWDDS. .QKYLSDNVHLVC.EETANYLVIWCIDLEVE 200 

pombe GKPSLAKQYVHQALLISYCRQLG ......... P... .NGLSIFFQKIKD. 330 

cerevisiae GDDKMTLQVI}IQSELMAYIKEIYDMKKIPYLNPMELSNVINMFFEKVIFN 331 

drosophila EKHELMAHVAHQCICMQYILELAKQLDV. . .DPR.. .ACVSSFFSKIQH. 239 

chicken EKQALMEQVAHQIVMQFILELAKSLKV. . .DPR.. .ACFRQFFTKIKT. 248 

human EKCALMEQVAHQTIVMQFILELAKSLKV. . .DPR.. .ACFRQFFTKIKT. 243 

pombe . PNHQSQRLFLEDVHNTYVRIHERSAAI. . .SKEQAESGEGVEQIQL.CAV 376 
cerevisiae KDKPMGKBSPLRSVQEKFLHIQKRSKILQQEEMDESN.AGVETIQLKSL 380 

drosophila . CHPEYRAQFDSEIEGFKGRIQKRAQEKIQEAIAQAEEEERKERLGPGGL 288 

chicken - ADQ QYMEGFNDELEAFKERVR GRAKARI ERAMREY EEEERQKRLGPGGL 297 

human . ADRQYMEGFNDELEAFKERVRGRAKLR. EKAMKEYEEEERKKRLGPGGL 291 

pombe TKLSITIPEAGSTDPET.. .QKARAAFESFPPNLQKALMTNDLDKIN 423 
cerevisiae DSTELEVNLPDFNS KDPEE.. . MKKVKVFKTL PEKMQEA IMTKNLDNIN 427 

drosophila DP.ADVFESLPDELKACFESRDVELLQKTIAAMPVDVAKLRMKRCVDSGL 337 

chicken flP.VDVYESLPPELQKCFDAKDVQMLQDTISRMDPTEAKYHMQRCIDSGL 346 

human IDP.VEVYESLPEELQKCFDVKDVQMLQDAISKMDPTDAKYHMQRCIDSGL 340 
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pombe V LGKMAVENAEEVVLSSTGMLSIEEGIIDFT *GE 	460 
cerevisiae FEDIPIEEAEKLL 	FNDIDIIGI .KAILENEK .DFQSLKDQYEQDH -  474 

drosophila WVPNAADLE.GDKKZDD. SDVAGGERKTDDAI ............. SU 	372 
chicken WVPNAXAAA.EGGGQGGAHGQPGGADSEALYEtIP ............ KS 	383 
human WVPNSKAS E . LXEGEEAGP GOP LLEA VPKTGDZK ............. DVS 	376 

pombe TIPQLS ......................... 466 
cerevisiae EDATMENL STJNDRDGGGDNHEEVKHTAD'PVD 	505 
drosophila AAKEEPIY P.. . . GVSTEDVD .......... 389 
chicken GEEEGGEGK ...................... 392 

human V .............................. 377 

% identity pombe cerevisiae drosophila chicken human 
pombe - 34.7 23.9 25.3 24.6 

cerevisiae - - 24.8 24.4 24.6 

drosophila - - - 51.9 50.8 

chicken - - - * 84.1 

human - - - - - 

Fig. 3.7 Sequence comparison of S.cerevisiae Cdc37p, a S.pombe homologue 
and homologues from other species 

Shown is an optimal alignment of S.cerevisiae Cdc37p (Ferguson et al., 1986; Gerber 
et al., 1995) with predicted amino acid sequence of the S.pombe homologue identified 
in this project, together with homologues from D.melanogaster (Cutforth and Rubin, 
1994), chicken (Huang et al., 1998) and human (Stepanova et al., 1996). Residues 
identical are shaded in red and those similar are shaded in yellow. Alignment was 
performed using the default settings in the gcg pileup program. Also included is a 
table showing the percentage amino acid identity between each homologue using the 
Jotun Hein default settings of the MegAlign program in DNA Star. 
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Chapter 4 

Construction and analysis of 

a cdc3 7 deletion mutant 
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4.1 Introduction 

The classical route to investigating the function of a novel gene in yeast is to disrupt 

or delete the gene of interest at the chromosomal locus. These two techniques are 

very similar and their aim is to eliminate the function of the gene that is targeted. In a 

disruption experiment, a selectable genetic marker is inserted into the target gene 

using a convenient restriction site; in a deletion experiment, part or all of the target 

gene is replaced with the genetic marker. It is preferential to use a deletion strategy 

where possible, because removal of the gene assures that a null mutant is generated, 

whereas disruption does not always do so. Deletion or disruption strategies have 

been widely used to create null mutants of many yeast genes. 

For this project, a cdc37' null mutant was created by deletion of the entire ORF 

using the one-step gene replacement method (Rothstein, 1983). The method relies 

upon a double recombination event taking place at the chromosomal locus of the gene 

of interest. The first step is to create a construct that contains a linear fragment 

containing the DNA normally flanking either side of the target gene and a selectable 

marker inserted in between. Next, the linear fragment is released from the plasmid 

vector, containing the selectable marker flanked by sufficient length of DNA 

sequence to allow homologous pairing with both sides of the chromosomal target 

sequence. Standard transformation techniques are then used to introduce the linear 

fragment into a suitable strain and transformants that show stable mitotic inheritance 

for the genetic marker are isolated and tested further for correct integration. 

If the gene of interest is essential for cell growth or division, then loss of function will 

be lethal and no transformants will be isolated. To avoid this, the gene replacement is 

carried out in a diploid strain. The replacement results in a heterozygous diploid 

which may then be allowed to sporulate and the haploid progeny analysed. Where 

the gene of interest is essential for viability, the null mutant haploids created by 

95 



sporulation can be maintained by expression of the gene from an introduced plasmid 

and thus analysed further. For this study, we used a set of S.pombe expression 

vectors known as the pREP plasmids (Maundrell, 1990, Basi etal., 1993), in which 

expression is regulatable by the addition (represses promoter) or omission 

(derepresses promoter) of thiamine from the medium. 

4.2 Creation of a cdc37 deletion mutant strain 

4.2.1 Deletion of cdc3 7  at the chromosomal locus 

Since the cdc37+ ORF sequence had already been determined (Chapter 3), it was 

possible to construct a replacement experiment that would unambiguously create a 

null mutation of cdc37' by complete removal of the predicted ORF. 

The deletion construct was created in the cloning vector pBluescript SK- (Fig 4.1). 

Eight hundred and twenty six bp of 5' and 804 bp of 3' flanking regions were 

amplified separately from the pBluescript.cdc3 7+ plasmid by PCR and each was 

cloned into pGEM-T seperately. These regions were then cloned sequentially into 

pBluescript SK- using the appropriate restriction enzymes. Using a restriction site 

engineered by the PCR, the selectable marker, ura4, was inserted between these 

regions. The final construct contained a linearisable deletion fragment including two 

827 bp regions of DNA normally either side of the cdc37+ gene with the ura4 

marker inserted between (Appendix 1D). The linear cdc37+ deletion fragment could 

be released from the plasmid by digestion with the appropriate restriction enzymes. 

Two haploid strains were used to construct a diploid of the genotype ade6- 

M21 O/ade6-M21 6 ura4-D181ura4-D1 8 leul -32/leul-32 h/h (section 2.5.3 a,e). 

Approximately 2 p.g of the gel-purified cdc3 7 deletion fragment was then used to 
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Fig 4.1 Constructing a fragment for cdc37 deletion in S.pombe 

A 3388 bp EcoRI-XhoI linear cdc374  deletion fragment was constructed in 
pBluescript SK-. A. An 826 bp region of genomic DNA immediately upstream of 
the cdc3 7 gene was amplified by PCR using primers PW7 (containing an EcoRI site) 

and PW8 (containing an engineered HindIH site). The PCR product was cloned into 
pGEM-T, sequenced and then cloned into pBluescript SK- using EcoRI and Hind!!!. 

B. An 804 bp region of genomic DNA immediately downstream of the cdc37 gene 
was also amplified by PCR using primers PW9 (containing an an engineered Hind!!! 

site) and PW1O (containing aXhol*  site). This PCR product was also cloned 
separately into pGEM-T, sequenced and then cloned into pBluescript SK- (already 
containing 5' flanker) using HindlII and Athol. C. Finally, a 1758 bp Hindul 

fragment, containing the ura4 gene, was digested from pBR322 and inserted into the 

engineered Hind!II between the two flanking regions. 
* 5 out of 6 bp of the XhoI recognition site were present in the genomic sequence of 
the 3' flanking region, therefore primer PW1 0 contained I engineered base to create a 
XhoI restriction site. 



transform the diploid (section 2.5.5). Heterozygous diploid transformants were 

selected on minimal, plates supplemented with leucine. These stable transformants 

needed to be tested further to ensure that homologous recombination had taken place 

as expected and indeed, a 2074 bp region of the cdc37 gene containing the entire 

ORF had been replaced by a 1758 bp fragment containing the selectable marker, 

ura4 (Fig 4.2). 

4.2.2 Phenotype of cdc37 deletion mutation 

From the 32 diploid transformants tested, 9 showed stable mitotic inheritance of the 

ura4 marker (section 2.5.6) and were sporulation competent. Two of these 

transformants (1 and 25) were selected, allowed to sporulate and tetrad analysis 

carried out. Analysis of 20 tetrads from each transformant showed that only two 

viable spores were ever generated and in all cases the viable spores were unable to 

grow without uracil, suggesting that cdc37 is essential for viability in S.pombe and 

deletion of this gene results in a lethal phenotype. The inviable spores generated from 

meiosis in the diploids had varying phenotypes; mostly, the spores were able to 

divide 0-5 times (Fig 4.3). Some of these cells were elongated, indicating a cell cycle 

defect; some cells appeared as normal, whilst others were round and swollen, 

suggesting other biological roles for cdc37. However, a significant number of iicdc37 

spores failed to germinate at all. 

4.2.3 Confirmation of ura4 integration at the cdc37F  chromosomal locus 

Before further characterisation of the cdc37V,icdc37 strain took place, transfonnant 

1 was tested by Southern analysis and PCR to show that the ura4 marker had 

integrated at the cdc37 locus as expected. Both the PCR and Southern blot analysis 



A 	 -' 	cdc3 gene 	10 

I 

EcoR I 	 Ip 	V/Ic)! 

B 
p 	 ( 

C 	 ura4ne 

Fig 4.2 Strategy of one-step gene replacement for cdc37 deletion in S.pombe 

The cdc3 7 gene was replaced in one chromosome in a ura4-D181'ura4-D18 diploid 
by replacement with the ura4 gene using the one-step gene replacement method. A. 
Normal arrangement of cdc37 gene on chromosome 2 in S.pombe. B. The linear 
deletion fragment was released from plasmid pBluescript SK- .cdc3 7 (Appendix I D) 
by digestion with EcoRI and XhoI. It was then transformed into a ura- diploid strain 
and integrated into one chromosome by homologous recombination. C. Final 
arrangement at cdc3 7 locus in one copy of chromosome 2 in transformed diploid 
strain. Transformants were selected for their ability to grow on minimal medium 
lacking uracil. Strains showing stable mitotic inheritance were analysed further by 
Southern blot. 
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Fig 4.3 Phenotypes of progeny derived from cdc371zcdc37 heterozygous 
diploid 

A cdc3747cdc37 heterozygous diploid was allowed to sporulate on ME medium at 
20°C for 2 days. Tetrad analysis was then carried out and the progeny analysed. 
Shown is a typical set of cells grown at 30 °C for 2 days from spores. Spores A and 
B are viable, containing the cdc3 7 gene and therefore do not carry the ura4 marker. 
Spores C and D are zLcdc3 7 cells and are inviable, managing only between 0 and 5 
divisions. The white bar in the top right hand corner represents 10 gm. 
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were carried out on the heterozygous diploid, the parent haploid strains and the 

viable progeny haploid cells. The chromosomal DNA was prepared from the strains 

after growing overnight in suitably supplemented minimal medium at 30 °C (section 

2.5.7). The Southern blot shows that bands corresponding to both the cdc37 locus 

and the Acdc37 locus are present in the cdc37/4cdc37 diploid, whilst a band 

corresponding only to the wild-type locus is visible in the parent haploids and viable 

progeny (Fig 4.4). The PCR confirms this observation; amplification is possible 

with both the cdc3 7 -specific and ura4 -specific primers in the cdc3 7Vztcdc3 7 

diploid, whilst only with the cdc37-specific primer in the parent haploids and viable 

progeny (Fig 4.5). These analyses confirmed that the cdc37 gene was deleted at one 

chromosomal locus in the diploid by a single integration event of the urar gene. 

Transformant 1 was used in all subsequent experiments. 

4.3 Rescue of cdc3 7 deletion lethality by regulatable expression of 

the cdc37'ORF 

4.3.1 Cloning cdc37F  into the pREP S.pombe expression vectors 

Ectopic expression of cdc3 7 was carried out in the pREP 1 vectors, which carry the 

S. cerevisiae marker LEU2 and various strength versions of the thiamine-repressible 

S.pombe nmtl promoter. pREP 1 carries the wild-type, full-strength nmtl promoter. 

By site-directed mutations in the TATA box, two lower strength versions of the 

nmtl promoter were generated. They are contained in pREP41 (mid-strength) and 

pREP8 1 (low-strength). For this project, these set of selectable plasmids allow 

regulatable expression of cdc3 7+ at various levels. When thiamine is absent from the 

medium, the promoters are fully functional and cdc37+ is expressed. When thiamine 

is added to the medium, expression of cdc3 7+ is repressed. 
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Fig 4.4 Southern analysis of cdc3714cdc37 heterozygous diploid 

Genomic DNA was extracted from a cdc37/4cdc37 heterozygous diploid, the parent 
haploids and the viable progeny derived from sporulation of the diploid. The 
genomic DNA was digested with EcoRI at 37°C for 8 hr before electrophoresis on a 
1% agarose gel and Southern blotting on to a nylon filter. Panel A shows the filter 
hybridised with an 827 bp radiolabelled EcoRI-HindlIl fragment of DNA normally 
flanking the 5' end of the cdc37 gene, panel B hybridised with a 712 bp radiolabelled 
NdeI-NdeI fragment of the cdc3 7 ORF and panel C hybridised with an 820 bp 
radiolabelled NsiI fragment of the ura4 ORF. The 4187 bp band corresponds to the 
wild-type locus and the 3841 bp band to the deleted locus. Lanes I and 2 contain the 
digested DNA from two independent colonies of the diploid, lanes 3 and 4 the DNA 
of the two parent haploids and lanes 5 and 6 the DNA of the two viable spores 
derived from meiosis. Panel D shows the regions at which each of the three probes 
anneal. 
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Fig 4.5 PCR analysis of cdc3 7/ijcdc3 7 heterozygous diploid 

Genomic DNA was extracted from cdc371,dcdc37 heterozygous diploid 
transformant 1, the parent haploids and the viable progeny derived from sporulation 
of the diploid. PCR was carried out using a forward primer against the sequence that 
flanks the cdc3 7+ gene (primer PW 13) and either a reverse primer against the cdc3 7 
ORF (primer PW3), or a reverse primer against the ura4 ORF (primer RB 1). The 
results were run on a 1% agarose gel containing 0.5 gg/ml ethidium bromide. Gel A 
shows the results with the cdc3 7+-specific primer and gel B shows the results with 
the ura4 primer. The 1746 bp bands are the amplification products from the wild-
type locus and 971 bp bands from the deleted locus. Lanes 1 and 2 contain the PCR 
products from two independent colonies of the diploid, lanes 3 and 4 the products of 
the two parent haploids and lanes 5 and 6 the products of the two viable spores 
derived from meiosis of the diploid. 
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The gene was cloned in two stages into the pREP vectors because of the two internal 

NdeI sites in the cdc37+ ORF as previously described (Fig 3.1). Firstly, a 238 bp 

fragment containing the translation initiation site was cloned into the corresponding 

restriction sites contained in the pREP vectors, pREP!, pREP41 and pREP81 (Fig 

4.6). Subsequently, the remaining 1167 bp fragment of the ORF was then inserted 

into each vector. This resulted in the cdc37 gene cloned downstream of the nmtl 

promoter in the pREP vectors (Appendix 1E). 

4.3.2 Phenotypes resulting from various expression levels of the cdc3 7+ Offl in 

the cdc3 7 deletion mutant 

The pREP.cdc37+ORF constructs were transformed into the cdc37+/4cdc37 

heterozygous diploid (section 2.5.5). Diploid transformants were selected on 

minimal plates with no supplements. The resultant diploids were then allowed to 

sporulate by incubating on ME plates at 25°C for 48 hr. Random spore analysis was 

then carried out (section 2.5.3b) and 4cdc37 haploids (containing ura4) were 

selected for on minimal plates containing adenine and leucine. These haploids were 

then tested on minimal plates supplemented only with adenine for presence of the 

leucine marker carried on the plasmid. Every haploid isolated that carried the ura4 

marker for cdc3 7+ deletion, also contained the leucine marker from the pREP plasmid 

expressing cdc37+. Thus, the 4cdc37 haploids can only survive when maintained by 

the pREP1/41/81.cdc37+ORF constructs; further evidence that the cdc37+ gene is 

essential for viability in S.pombe. 

The 3 new strains - cdc3 7: :ura'[' [pREP 1 .cdc3 7+ ORF]; 

cdc3 7+: :ura4 [pREP4 1 .cdc3 7+ ORF]; cdc3 7+: :ura4 [pREP8 1 .cdc3 7+ORF] - were 

maintained on minimal plates supplemented with adenine. In order to investigate the 

effects of repressing expression of cdc3 7+ from the plasmids, the cells were incubated 
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Fig 4.6 Cloning cdc3 7 into the pREP S.pombe expression vectors 

The cdc3 7 ORF was cloned into the S.pombe expression vectors, pREP, in two 
stages. A. The 238 bp NdeI-BamHI fragment (Fig 3.5) containing the 5' end of the 
cdc37 ORF was cloned into the corresponding sites in the pREP vectors. B. The 
1167 bp BamHI-SmaI fragment (Fig 3.5) containing the remaining 3' end of the 
cdc3 7 ORF was then cloned into the pREP vectors that already contained the NdeI-

BamHI fragment. 
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on minimal plates supplemented with adenine in the presence or absence of thiamine 

for 4 days at 30°C and scored for colony formation (Fig 4.7). All three icdc37 

strains formed normal-size colonies in the absence of thiamine after 4 days. The 

strain expressing cdc37' from pREP 1 also formed normal-size colonies in the 

presence of thiamine. However, the strain expressing cdc37 from pREP41 only 

formed small colonies and the strain expressing from pREP8 1 barely formed colonies 

at all, with growth restricted to the formation of microcolonies. Both of these strains 

failed to form normal colony size even after extended incubation. 

In order to gain some insight into what was causing this defect in colony formation in 

the strain expressing cdc3 7 from pREP8 1, the cells were examined more closely 

under the microscope after 24 and 48 hr at 30 °C (Fig 4.8). After 24 hr, the cells 

grown in the presence of thiamine (promoter repressed) appeared normal and very 

similar to those incubated in the absence of thiamine (promoter derepressed). 

However, after 48 hr, whilst the cells incubated in the absence of thiamine remained 

as normal, many of those grown in the presence of thiamine became elongated, 

indicating that repressing expression of the cdc37 gene from pREP81 leads to a cell 

cycle defect. Phenotypes that were also visible included cells which were swollen 

and/or misshapen, suggesting biological roles for cdc3 7 other than its involvement in 

the cell cycle. 

4.3.3 Relative RNA levels of cdc3 7 overexpression 

To ensure that the cdc37 gene was being expressed from the various strength pREP 

vectors as expected and to compare the expression levels with that of a wild-type 

strain, the relative RNA levels were analysed by Northern blot (Fig 4.9). Each of the 

strains was grown in minimal medium supplemented with adenine (in the absence or 
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Fig 4.7 Effects of cdc37 overexpression in zcdc37 strain 

4cdc3 7 haploids surviving by expression of plasmid-borne cdc3 7 from various 
strength versions of the thiamine-repressible nmt1 promoter were allowed to grow 
in the presence (promoter repressed) or absence (promoter derepressed) of 4 tg/ml 
thiamine. The cells were streaked to single colonies on plates containing 
appropriately supplemented minimal media and incubated at 30 °C for 4 days until 
visible single colonies were formed. Plate A shows the colony formation of the 
various strains in the absence of thiamine (-T) and plate B in the presence of thiamine 
(+T). ,icdc3 7 strains are expressing cdc3 7f  from, anti-clockwise from top, pREP 1 
(high expression), pREP41 (mid expression) and pREP81 (low expression). 



Fig 4.8 Effects of switching off cdc37' expression from pREP81 in Ac,,lc37 
strain 

A zcdc3 7 haploid strain surviving by expression of plasmid-bome cdc3 7 from the 
low- strength version of the thiamine-repressible nmtF promoter in pREP8 1 was 
allowed to grow in the presence (promoter repressed) or absence (promoter 
derepressed) of 4 pg/mi thiamine. The cells were streaked to single colonies on plates 
containing appropriately supplemented minimal media and incubated at 30 °C for 2 
days. Panel A shows the morphology of the cells in the absence of thiamine (-T) and 
panel B in the presence of thiamine (+T). The white bar in the bottom right hand 
corner represents 10 tim. 
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Fig 4.9 Northern analysis of zcdc37 haploids overexpressing plasmid-borne 
cdc37 

Total RNA was extracted from iicdc3 7 haploids, expressing plasmid-borne cdc3 7± 
from various strength versions of the thiamine-repressible nmt1 promoter. The 
strains were allowed to grow in the presence (promoter repressed) or absence 
(promoter de-repressed) of 4 gg/ml thiamine for 24 hr at 30'C. The RNA was 
denatured, before electrophoresis on a 1% agarose gel and Northern blotting on to a 
nylon filter. Panel A shows the gel, stained with ethidium bromide to check loading, 
whilst panel B shows the filter hybridised with a 712 bp radiolabelled NdeI fragment 
of the cdc37± ORF. The -'1.5 kb bands correspond to the cdc37 mRNA. Lanes I 
and 4 contain the RNA extracted from a iicdc3 7 strain expressing cdc3 7± from 
pREP 1; lanes 2 and 5 contain the RNA from the 4cdc3 7 expressing cdc3 7± from 
pREP4 1; lanes 3 and 6 contain the RNA from a Acdc3 7 strain expressing cdc3 7± 
from pREP8 1 and lane 7 contains RNA from a wild-type strain. Lanes 1-3 contain 
RNA extracted from cells grown in the absence of thiamine and lanes 4-6 contain 
RNA extracted from cells grown in the presence of thiamine. The RNA in lanes 1 
and 2 were diluted 1:80 and 1:12 respectively, to reduce signal to levels comparable 
with that in the other lanes. 
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presence of thiamine) at 30 °C with constant shaking for 24 hr. RNA was then 

extracted from each of the strains as previously described (section 2.5.8). 

The derepressed level of cdc3 7'  expressed from pREP 8 1 is slightly higher than the 

level of expression in wild-type cells, whilst the derepressed expression from 

pREP41 and pREP! is much higher. However, the repressed expression levels in all 

3 strains are not high enough for the RNA to be visible on the blot, indicating that 

they are much lower than wild-type expression. Interestingly, the level of expression 

with the promoter repressed in the strain expressing cdc3 7 from pREP 1 is much 

lower than that of wild-type, yet the cells continue to grow and appear as normal. 

4.4 Summary 

This chapter describes the investigation on the effects of the removal of cdc37 from 

the S.pombe genome. When a cdc3774cdc37 diploid is allowed to sporulate only 

two of the four progeny are ever viable and they never carry the marker for cdc3 7 

deletion. This shows that the cdc37' gene is essential for viability in S.pombe. A 

null mutant can be maintained by expression of cdc37 from the low-strength nmtl 

promoter in pREP 8 1. With expression derepressed, the cells appear to grow as 

normal; when repressed, many of the cells become elongated. This elongation 

phenotype is indicative of a cell cycle role for cdc3 7'  in S.pombe. This evidence 

agrees well with that from S. cerevisiae where the CDC3 7 gene has also been shown 

to be essential and ts mutants predominantly display a cell cycle defect at the 

restrictive temperature. However, it appears that cdc37 also has other biological 

functions in S.pombe, as some of the cells appeared swollen and/or misshapen. 

Since the AcdO7 strain expressing cdc37 from pREP81 had identified the cell cycle 

role of cdc3 7 in S.pombe, the next obvious step seemed to be to examine the 
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physiology of this strain more closely. Detailed experiments were planned to 

attempt to identify at which stage(s) of the cell cycle cdc3 7'  is required. These 

experiments are described in Chapter 5. 
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Chapter 5 

Effects of Cdc37 depletion 
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5.1 Introduction 

The cdc37.:ura4[pREP81.cdc37ORF] strain described in the previous chapter 

provides a convenient tool for analysing the physiological role of Cdc37. As 

described previously, this conditional mutant grows normally when the promoter is 

derepressed but when repressed (by the addition of thiamine to the growth medium), 

some of the cells become elongated, indicating a cell cycle defect. 

S.pombe cells grow by tip elongation; they co-ordinate cell growth and cell division, 

therefore cell length is a good measure of the cell cycle stage of a cell. The detailed 

analyses described in this chapter, including cell length studies and FACS analysis, 

can provide useful information about the specific stage of a defect in the cell cycle. 

In order to gain further understanding of the physiological role of Cdc37, a depletion 

experiment was carried out. The cells were allowed to grow in liquid culture 

overnight in the absence of thiamine, with the promoter derepressed, before they 

were moved into minimal medium containing thiamine, with the promoter repressed. 

Several physiological effects of Cdc37 depletion were then analysed at certain time-

points throughout the experiment. 

5.2 Effect of Cdc37 depletion on growth and division 

In the expression experiments on plates described in the last chapter (section 4.3), 

little or no effect of repressing cdc37 expression in the 

cdc37::ura4[pREP81 .cdc37ORF] strain was observed after 24 hr incubation. 

However, after 48 hr, the phenotypes were visible and severe. Because of this, both 

growth and cell number of a liquid culture were monitored between 24 and 48 hr after 

the addition of thiamine (Fig 5.1). Culture growth was estimated by measurement of 
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Fig 5.1 Measurement of culture growth and cell number of the 
cdc37::ura4LpREP81.cdc37'ORFI strain grown in the presence or absence of 
thiamine 

Samples to measure the culture growth and cell number of the 
cdc3 7:: ura4[pREP8 1 .cdc3 7ORF] strain grown in the presence or absence of 
thiamine were taken every 2 hrs between 24 and 48 hrs after the addition of thiamine. 
Culture growth was estimated by measurement of the OD at 595 nm and cell division 
was monitored by a cell number count using a Coulter Counter. A y-axis value of 1 
on the graph represents an 0D 595  of 1 for the relative 0D 595  plot and a value of 10 
represents 107  cells/ml for the relative cell no. plot. 
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the OD at 595 nm (section 2.5.4a) and cell division was monitored by a cell number 

count using a Coulter Counter (section 2.5.4b). Samples for both culture growth and 

cell number were taken every 2 hr. 

Agreeing well with the observations described in the last chapter (section 4.3.2), 

between 0 and 24 hr after the addition of thiamine, the culture growth is exponential 

and has grown slightly faster than a culture grown in the absence of thiamine (Fig 

5.1). However, approximately 28 hr after the addition of thiamine, cell division 

begins to slow down, followed shortly after by a decrease in the culture growth rate. 

Forty hours after the addition of thiamine, both culture growth and cell division has 

almost stopped, whilst the cells grown in the absence of thiamine continued to grow 

and divide exponentially throughout the duration of the experiment. It is not 

understood why the cells in the presence of thiamine should grow faster than those 

grown without for the first 24 hr and no obvious explanation exists for this 

phenomenon. 

5.3 Cell length studies on Cdc37 depleted cells 

In order to confirm the observation (section 4.3.2) that one of the primary 

phenotypes of repressing cdc3 7 expression was elongation of the cells, thus 

suggesting a defect in cell cycle progress, cell length analysis was carried out (Fig 5.2, 

Fig 5.3). Initially, as with all of the rest of the analyses carried out in this chapter, 

samples were taken every 4 hr between 24 hr and 40 hr after the addition of thiamine 

and cell length measurements were taken of several hundred cells in each sample using 

the IPLab software (section 2.5.4c). However, it was noticed that after 24 hr, the 

cells grown in the presence of thiamine were significantly shorter than those grown in 

the absence of thiamine and therefore cells from earlier time-points at 16 hr and 20 hr 

were examined. 
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Fig 5.2 Mean cell length of cdc37::ura4[pREP81.cdc37ORF1 cells grown in the 
presence of thiamine 

The lengths of cdc37..ura4[pREP81 .cdc37ORF] cells were measured from cultures 
grown in the presence of thiamine. Shown is a graph of mean cell length for each 
sample, taken every 4 hr between 16 hr and 40 hr after the addition of thiamine. The 
dashed line represents the mean cell length of cells grown in the absence of thiamine. 
Above the main graph is a plot of cell number for this experiment. A y-axis value of 
10 on the graph represents 10 7  cells/ml for the relative cell no. plot. 
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Fig 5.3 Cell length distribution of cdc37::ura4tpREP81.cdc37i cells grown in 
the presence of thiamine 

The lengths of -200 cdc3 7:: ura4[pREP8 I .cdc3 T] cells were measured from cultures 
grown in the presence of thiamine. Shown is a histogram of the cell length data for 
each sample, taken every 4 hr between 16 hr and 40 hr after the addition of thiamine. 
The mean cell length for each sample is represented by a black triangle on the X-axis. 
A typical sample from a culture grown in the absence of thiamine is also shown as a 
control. 

118 



Sixteen hours after the addition of thiamine, the mean cell length is significantly 

shorter than the control cells grown in the absence of thiamine and continues to drop 

for another 12 hr (Fig 5.2). This is due to the presence of a population of cells that 

are much smaller than wild-type and their presence is difficult to explain (Fig 5.3). It 

is unknown if this is a direct effect of Cdc37 depletion or whether it is the cells 

adapting in some way to the loss of Cdc37 protein. After -28 hr after the addition of 

thiamine the mean cell length begins to increase dramatically and this continues 

throughout the remainder of the experiment (Fig 5.2). This increase in mean cell 

length is due to the appearance of a significant population of elongated cells (Fig 5.3). 

However, despite the fact that a significant proportion of the cells become elongated 

after 28 hr after the addition of thiamine, a population of small cells remain 

throughout the experiment (Fig 5.3). 

It seems highly significant that cell division appears to slow down at a similar time to 

when this increase in mean cell length begins to occur (Fig 5.2). However, although 

there is definite and significant elongation after 28 hr after repressing cdc37 

expression, this elongation phenotype alone does not appear to be severe enough for 

proliferation to cease. This suggests further biological roles for cdc3 7f• 

5.4 Measuring DNA content of Cdc37 depleted cells 

The cell length analysis (section 5.3) confirmed that elongation is a primary 

phenotype of cells where cdc3 7 expression is repressed, indicative of a cell cycle 

defect. Significant elongation in S.pombe usually reveals that a cell cycle defect is 

occurring during interphase (G I, G2 or S phase) as these are the stages during which 

most growth occurs. Defects in mitosis do not cause significant elongation as very 

little growth occurs during these stages. To gain more insight into the stages of the 

cell cycle at which this visible defect occurs, the DNA content of the 
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cdc37::ura4[pREP81 .cdc37+ORF] cells grown in the presence or absence of thiamine 

were subjected to flow cytometric analysis (Fig 5.4). Samples were processed every 

4 hr between 24 hr and 40 hr after the addition of thiamine (section 2.5.40. 

In the culture growing in the absence of thiamine, a sharp 2C peak is seen in all 

samples, which is typical of an exponentially growing S.pombe culture (Nurse etal., 

1976). This 2C peak is seen because S.pombe replicate their DNA almost 

simultaneously with septation. In the culture growing in the presence of thiamine, 

only 2C peaks are seen in all samples as well; however, the peaks become less sharp 

after —'24 hr. This is probably due to effects caused by other roles of cdc3 7+. 

Unfortunately, due to the way S.pombe cells grow and divide it is impossible to 

distinguish on this basis alone between a G2 arrest and exponentially growing cells. 

However, since there is no significant 1C peak, indicative of a G  arrest, or a 4 or 8C 

peak, indicative of a septation defect, it can be concluded with some confidence that 

the population of elongated cells caused by Cdc37 depletion is due to a defect in the 

G2 and/or the mitotic phase of the cell cycle, where the cells have a 2C DNA 

content. 

5.5 Nuclear and cell wall staining of Cdc37 depleted cells 

In order to gain further insight into the mechanism of cell cycle arrest caused by 

Cdc37 depletion, cdc37::ura4[pREP81.cdc37+ORF] cells were stained with either 

DAPI, which stains the nucleus (Toda etal., 1981), or calcofluor, which stains the 

cell wall and particularly the septum (Mitchison and Nurse, 1985), after growth in 

the presence or absence of thiamine (Fig 5.5-Fig 5.6). Samples were taken every 4 hr 

between 24 hr and 40 hr after the addition of thiamine, stained and visualised 

immediately (sections 2.5.4d and 2.5.4e). 
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Fig 5.4 FACS analysis of cdc37::ura4[pREP81.cdc37] cells in the presence of 
thiamine 

The DNA content of cdc3 7::ura4[pREP8 1 .cdc3 7] cells stained with propidium 
iodide was measured by flow cytometry from cultures grown in the presence of 
thiamine. The linear fluoresence diagrams show relative DNA content (arbitrary 
units) on the x-axis and cell number on the y-axis for each sample, taken every 4 hr 
between 24 hr and 40 hr after the addition of thiamine. A typical sample from a 
culture grown in the absence of thiamine (-T) is also shown as a control. 
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At —24 hr after the addition of thiamine, the calcofluor staining shows that most of 

the cdc37::ura4[pREP81 .cdc37ORF] cells are shorter than the control cells grown 

in the absence of thiamine (Fig 5.5). At —32 hr, some of these cells have begun to 

elongate and some are beginning to look swollen and/or misshapen whereas at —40 hr 

most of the cells have ceased proliferation, showing a variety of phenotypes 

previously described (section 4.3.2). These include cells that are small and round, 

some that are swollen and/or misshapen and some that are elongated, whilst some are 

a combination of these phenotypes. Also, there is a significant number of cells that 

are clearly defective in septation and cytokinesis, containing multiple septa and have 

also become elongated. 

The DAPI staining also reveals a variety of phenotypes (Fig 5.6). At —24hr after the 

addition of thiamine, the majority of cells still appear to be dividing normally. 

However, at —32 hr and even more so at —40 hr, cell division ceases to continue 

normally. The most noticable cells are those that are elongated: some contain what 

appear to be normal interphase nuclei, perhaps arrested in G2; others contain nuclei 

that have failed to migrate properly; a smaller number of elongated cells appear to 

contain multiple nuclei (3 or 4) with or without a septum that have failed to undergo 

proper division at the septum. There are also a significant proportion of fairly 

normal length cells that appear to have undergone a defective mitosis and have 

arrested with hypercondensed chromosomes. As already described with the 

calcofluor staining, however, there is considerable heterogeneity within the 

population in this experiment which makes the observations more difficult to 

interpret. 
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Fig 5.5 Calcofluor staining of cdc37::ura4IpREP81.cdc371 cells grown in the 
presence of thiamine 

cdc37:.'ura4[pREP8I .cdc37] cells were grown in the presence of 4 pg/mlthiamine 
and stained with Calcofluor. Samples were taken at 24 hr, 32 hr and 40 hr after the 
addition of thiamine. The cells were processed by fixation with 2.5% glutaraldehyde, 
stained with 0.5 mg/ml Calcofluor and visualised immediately. Typical samples from 
a culture grown in the absence of thiamine (-T) are also shown as a control. The 
white bar in the top right hand corner represents 10 .Lm. 
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Fig 5.6 DAN staining of cdc37::ura4Icdc37VpREP81J cells grown in the 
presence of thiamine 

cdc37::ura4[cdc37/pREP81] cells were grown in the presence of thiamine and 
stained with DAPI. Samples were taken at 24 hr, 32 hr and 40 hr after the addition 
of thiamine. The cells were processed by fixation with 2.5% glutaraldehyde, stained 
with 10 mg/ml DAPI and visualised immediately. Typical samples from a culture 
grown in the absence of thiamine (-T) are also shown as a control. The white bar in 
the top right hand corner represents 10 gm. 
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5.6 Summary 

The examination of the cdc37::ura4[pREP81.cdc37ORF] strain described in this 

chapter provides further information on the role of Cdc37 in the S.pombe cell cycle. 

Cell length analysis confirms that elongation is a primary phenotype of cells where 

cdc3 7 expression has been repressed. This is strong evidence that cdc3 7 plays an 

important role in the cell cycle. 

Interestingly, the FACS analysis and cell staining data suggest that, unlike in 

S.cerevisiae where CDC37 is required at START in Gi, the primary cell cycle 

defects in S.pombe occur during both G2 and mitosis. However, it appears that 

Cdc37 is not only involved in the cell cycle in S.pombe. Depletion of Cdc37 results 

in a very heterogenous population, suggesting other biological roles. Obvious 

phenotypes which appear to be unconnected with the cell cycle include swollen 

and/or misshapen cells. Also, a significant number of cells showed defects in 

septation; many cells have formed septa but have not undergone cytokinesis, 

resulting in multiseptated cells. It would be very interesting to examine these other 

phenotypes in more detail and to investigate the mechanisms involved. 

The variety of observations described in this chapter indicates that the biological role 

of Cdc37 in S.pombe is complex and it will take some time to separate the functions 

and understand them completely. However, there does appear to be a considerable 

number of cells present with specific cell cycle defects caused by Cdc37 depletion 

which appear to affect cells in the G2 and mitotic stages of the cell cycle. As 

explained in Chapter 1, the complex which regulates the G2/M transition in S.pombe 

is the Cdc2/Cdc13 complex. This complex seemed to be a good target for preliminary 

investigation of interactions with Cdc37 and these experiments are described in 

Chapter 6. 
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Chapter 6 

Towards determining the 

cell cycle role of Cdc37 

126 



6.1 Introduction 

Observations from the previous chapter indicate that cdc3 7 is required both during 

the G2 phase of the cell cycle and during mitosis. As described in Chapter 1, the 

G2IM transition is regulated by the Cdc2/Cdc 13 complex. Therefore, both of these 

proteins provided obvious targets for interaction with Cdc37. Also, as described in 

Chapter 1, Cdc37 has previously been shown to physically interact with the 

mammalian cell cycle regulator Cdk4 (Dai et al., 1996), though no interaction with 

Cdc28 has yet been shown in 5'. cerevisiae. This chapter describes preliminary 

experiments designed to examine the potential interactions of Cdc37 with Cdc2 and 

Cdcl3 using both genetic and biochemical approaches. 

The expression constructs described in Chapter 4 (section 4.3. 1) allowed examination 

of the effects of overexpression of cdc3 7 in a wild type strain and various ts 

mutants. This type of analysis is often used in S.pombe to detect potential 

interactions and thus suggest possible biological roles of the gene of interest. Several 

alleles of cdc21s  and cdcl3ts  mutants were available for this investigation and 

overexpression of cdc3 7 was examined thoroughly in all of these strains. 

In order to determine whether any physical interactions of Cdc37 could be detected, 

a strain expressing a functional His6-tagged version of the protein was constructed. 

Since we had available a previously successful commercial anti-His antibody (Santa 

Cruz), anti-Cdc2 and anti-Cdcl3 antibodies, it was decided that this was the best 

approach to use due to the time constraints which were existent. 
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6.2 Levels of Cdc2 protein in Cdc37 depleted cells 

Since the observations from the FACS and cytological analysis suggest that the 

primary cell cycle defect in Cdc37 depleted cells is during G2 and mitosis, the Cdc2 

levels were analysed by Western blotting (section 2.3.4) in another depletion 

experiment identical to that described in the last chapter (Fig 6.1). Every 4 hr 

between 24 hr and 40 hr after the addition of thiamine, samples were removed from 

the culture and denatured protein was extracted as previously described (section 

2.5.9). 

To monitor the Cdc2 levels, the blot was probed with an antibody raised against a 

peptide with the amino acid sequence PSTAIR (Hamaguchi et al., 1992), a motif 

conserved in all p34 2  kinases which include Cdc2 in S.pombe. This showed that 

the level of Cdc2 is significantly reduced in the cdc37::ura4[pREP8l.cdc37ORF] 

cells 24 hr after the addition of thiamine, when the cells still appear to be dividing 

normally. The expression level appears to diminish from 24 hr onwards in this 

experiment, until eventually, the Cdc2 level 40 hr after the addition of thiamine is 

significantly reduced. This appears to be a significant finding, as the levels of cdc2 

are normally very stable in S.pombe. 

An attempt was also made at monitoring the cdc13 expression levels in this 

depletion experiment. However, neither of the available antibodies was found to 

detect Cdcl 3 in this lab, even in wild type extracts. 

6.3 Genetic interactions of cdc37 

Another strategy designed to find out more about the interactions of Cdc37 in 

S.pombe was to overexpress the cdc37 ORF in various ts mutant strains. Since the 
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anti-PSTAIR 

234567 

IMM 
- 	 -. - - - 	

- 34 kDa 

anti-tubulin 

234567 

- 	 53 kDa 

Fig 6.1 Western blot showing Cdc2 levels in cdc37::ura4IpREP81.cdc37ORF1 
cells grown in the presence of thiamine 

Protein was extracted from cdc37::ura4[pREP8l.cdc37ORF] cells grown in the 
presence of thiamine. The protein extracts were boiled immediately before 
electrophoresis on a 12.5% polyacrylamide gel and Western blotting on to a nylon 
filter. Panel A shows the blot probed with anti-PSTAIR for analysing Cdc2 protein 
levels whilst panel B shows the blot probed with anti-u-tubulin as a loading control. 
Lane I contains the protein extract from a wild-type strain and lane 2 contains the 
extract from cdc3 7:: ura4[pREP8 1 .cdc3 7f  ORF] cells grown in the absence of 
thiamine, and lanes 3, 4, 5, 6 and 7 contain the extract from cells grown in the 
presence of thiamine 24, 28, 32, 36 and 40 hr after the addition of thiamine, 
respectively. 
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observations described in Chapter 5 had suggested the interaction of Cdc37 with the 

Cdc2/Cdc 13 complex, it seemed a sensible step to carry out further analysis with 

various cdc2 and cdc13 mutants that were available. As discussed in Chapters 1 

and 7, other potential targets for interaction included Swol (Hsp90) and Wee 1, for 

which ts mutants were available. Also, the effect of overexpression in a wild-type 

strain was tested. 

Overexpression of cdc37' from pREP41 and pREP81 appeared to have no effect in 

any of the strains tested and overexpression from any of the pREP plasmids had no 

effect on the swol-26 and wee]-50 mutant strains. However, overexpression of 

cdc37 from pREP1 had various effects on the cdc2s  and  cdcl3(s  mutants (Table 6. 1, 

Table 6.2). 

In wild-type cells overexpression of cdc3 7 from pREP 1 has little or no effect (Fig 

6.2, Fig 6.3). At all temperatures between 28°C and 35°C, wild-type cells form 

normal colonies with or without overexpression of cdc37' (Fig 6.2). The cells also 

appear as normal, though those overexpressing cdc37 may be slightly longer (Fig 

6.3). 

The effect of overexpression of cdc3 7 from pREP 1 was then tested in strains 

containing cdc2'3  and cdc13ls  alleles (Fig 6.4 - Fig. 6.7). In two strains containing 

different cdcl3Is  alleles, cdcl3-11 7 and cdc13-9, overexpression of cdc3 7' had a 

drastic effect (Fig 6.4, Fig 6.5). The restrictive temperature of the two mutants was 

severely reduced to such an extent that both of the strains failed to form normal 

colonies even at 25°C, normally a permissive temperature (Fig 6.4). When examined 

under the microscope, the cdc13 cells overexpressing cdc3 7 were greatly elongated 

(Fig 6.5). 
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Table 6.1 Colony formation of strains carrying various cdc2ts and cdcl3 ts 
alleles 

wild-type 28°C 32°C 33.5°C 35°C 
REP! +T *** 

REP1 -T 
cdc37t'REPl +T 
cdc37/REP1 -T *** 

cdcl3-11 7 28°C 32°C 33.5 °C 35°C 
REP! +T ** - 

REP  -T ** - 

cdc37/REP1 +T  

cdc37'-iREPl -T  

cdcl3-9 28°C 32°C 33.5°C 35°C 
REP  +1'  

REP1 -T  

cdc37/REP! +T  

cdc37t'REPl -T  

cdc2-33 28°C 32°C 33.5°C 35°C 
REP1 +T  

REP1 -T  

cdc37/REP1 +T  

cdc37/REP1 -T  

cdc2-L7 28°C 32°C 33.5°C 35°C 
REP  +1'  

REP1 -T  

cdc37t'REPl +T  

cdc37/REP1 -T  

cdc2-45 28°C 32°C 33.5°C 35°C 
REP  +T  

REP1 -T  

cdc37/REP1 +T  

cdc37/REP1 -T  

cdc2-17 28°C 32°C 33.5°C 35°C 
REP  +T *** *** *** ** 

REP1 -T *** *** *** ** 

cdc37/REP1 +T *** *** ** 

cdc37/REP1 -T *** ** * 
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cdc2-48 28°C 32 °C 33.5°C 35°C 
REP 1+T  

REP 1.-T  

cdc37/REP1 +T  

cdc37iREP1 -T  

cdc2-18 28°C 32°C 33.5°C 35°C 
REP! +T *** *** *** 

REP  -T *** *** *** *** 

cdc37/REP1 +T *** *** *** 

cdc37/REP1 -T *** *** ** 

cdc2-130 28°C 32 °C 33.5°C 35°C 
REP  +T *** ** ** ** 

REP1 -T *** ** ** ** 

cdc371REP1 +T ** ** ** 

cdc37/REP1 -T ** ** ** * 

cdc2-M26 28°C 32 °C 33.5°C 35°C 
REP 1+T  

REP1-T  

cdc371REP1 +T  

cdc37/REP1 -T  

Strains containing various cdc2 and cdcl3 ts alleles were transformed with the 
pREP1.cdc37ORF plasmid and empty pREP 1 as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) or absence 
(promoter derepressed) of 4 p.g/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28 °C, 32°C, 33.5°C or 35°C for 24 hr, 
streaked to single colonies and incubated for a further 3 days when visible single 
colonies were formed. The formation of colonies was scored as follows: - no colony 
formation, * microcolonies formed, ** small colonies formed, 	normal color.ies 
formed. 
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Table 6.2 Morphology of cells carrying various cdc2 and cdcl3 ts alleles 

wild-type 28°C 32°C 33.5°C 35°C 
REP 1+T 3 3 3 3 
REP1-T 3 3 3 3 
cdc37/REP1 +T 3 3 3 3 
cdc3717REPl -T 3 3 3 3 

cdcl3-117 28°C 32°C 33.5°C 35°C 
REP! +T 3 3/4 4 5/6 
REP  -T 3 3/4 4 5/6 
cdc37/REP1 +T 3 3/4 4 5/6 
cdc3 7k/REP 1 -T 4 5/6 6 6 

cdcl3-9 28°C 32°C 33.5°C 35°C 
REP1 +T 3 3/4 4 5/6 
REP  -T 3 3/4 4 5/6 
cdc3 7k/REP 1 +T 3 3/4 4 5/6 
cdc3 7,REP 1 -T 4 5/6 6 6 

cdc2-33 28°C 32°C 33.5°C 35°C 
REP  +T 3 3/4 4/5 6 
REP  -T 3 3/4 4/5 6 
cdc3 7k/REP 1 +T 3 3/4 4/5 6 
cdc3 7/REP 1 -T 4 4/5 6 6 

cdc2-L7 28°C 32°C 33.5°C 35°C 
REP  +T 3 3/4 4/5 6 
REP1 -T 3 3/4 4/5 6 
cdc3 7k/REP 1 +T 3 3/4 4/5 6 
cdc3 7iREP 1 -T 4 4/5 6 6 

cdc2-45 28°C 32°C 33.5°C 35°C 
REP  +T 3/4 4 5/6 6 
REP1 -T 3/4 4 5/6 6 
cdc3 7k/REP 1 +T 3/4 4 5/6 6 
cdc3 7k/REP 1 -T 4 4/5 6 6 

cdc2-17 28°C 32°C 33.5°C 35°C 
REP 1+T 3 3 3 4/5 
REP1-T 3 3 3 4/5 
cdc3 7VREP 1 +T 3 3 3 4/5 
cdc3 7k/REP 1 -T 3/4 4/5 2/6 3/6 
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cdc2-48 28°C 32°C 33.5°C 35°C 
REP! +T 3/4 5/6 6 6 
REP  -T 3/4 5/6 6 6 
cdc377REP1 +T 3/4 5/6 6 6 
cdc3 7k/REP 1 -T 4 5/6 5/6 6 

cdc2-18 28°C 32°C 33.5°C 35°C 
REP  +T 3 3/4 3/4 4 
REP1 -T 3 3/4 3/4 4 
cdc37iREP1 +T 3 3/4 3/4 4 
cdc3 7iREP 1 -T 4 4/5 4/5 4/5 

cdc2-130 28°C 32°C 33.5°C 35°C 
REP1 +T 2/3 2/4 2/4 4/5 
REP1 -T 2/3 2/4 2/4 4/5 
cdc37/REP1 +T 2/3 2/4 2/4 4/5 
cdc3 7IREP 1 -T 2/3 2/4 2/4 3/5 

cdc2-M26 28°C 32°C 33.5°C 35°C 
REP1+T 3 4/5 6 6 
REP1-T 3 4/5 6 6 
cdc37/REP1 +T 3 4/5 6 6 
cdc3 7k/REP 1 -T 4 5/6 6 6 

Table 6.2 Morphology of cells carrying various cdc2 and cdc13 ts alleles 

Strains containing various cdc2 and cdcl3 ts alleles were transformed with the 
pREP1.cdc37ORF plasmid and empty pREP1 as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) or absence 
(promoter derepressed) of 4 ig/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28°C, 32°C, 33.5°C or 35°C for 24 hr, 
streaked to single colonies, used to inoculate a liquid culture and incubated for a 
further 24 hr. The cell morphology was scored as follows: 1, very short, 2, short, 3, 
wild-type length, 4, long, 5, very long (still proliferating), 6, very long (causing 
proliferation to cease). 
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Fig 6.2 Effects of cdc37 overexpression in a wild-type S.pombe strain 

A wild-type strain was transformed with the pREPl.cdc37'ORF plasmid and empty 
pREP 1 as a control. The strain was then grown at various temperatures in the 
presence (promoter repressed) or absence (promoter derepressed) of 4 ig/ml 
thiamine. The transformants were patched on to appropriately supplemented 
minimal media at 28°C, 32°C, 33.5'C or 35°C for 24 hr, streaked to single colonies 
and incubated for a further 3 days when visible single colonies were formed. Plate A 
shows the colony formation of the strain grown at 32°C in the presence of thiamine 
(+T) and plate B in the absence of thiamine (-T). On both plates, the strain on the 
left contains pREP I and the strain on the right contains pREP I .cdc37ORF. 
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Fig 6.3 Effects of cdc37+ overexpression in a wild-type S.pombe strain 

A wild-type strain was transformed with the pREP I .cdc3 7+ ORF plasmid and empty 
pREP 1 as a control. The strain was then grown at various temperatures in the 
presence (promoter repressed) or absence (promoter derepressed) of 4 tg/ml 
thiamine. The transformants were patched on to appropriately supplemented 
minimal media at 28°C, 32°C, 33.5°C or 35°C for 24 hr, used to inoculate a liquid 
culture and incubated for a further 24 hr. Panel A shows the morphology of cells 
grown at 32°C containing pREP 1 and panel B shows cells containing 
pREP1.cdc37+ORF. The white bar in the bottom right hand corner represents 10 
pm. 
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Fig 6.4 Effects of cdc3 7 overexpression in two cdcl3 Is S.pombe strains 

Two cdcl3 ts strains (cdcl3-1 17 and cdcl3-9) were transformed with the 
pREP1.cdc37ORF plasmid and empty pREP1 as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) or absence 
(promoter derepressed) of 4 .tg/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28 °C, 32°C, 33.5 °C or 35 °C for 24 hr, 
streaked to single colonies and incubated for a further 3 days when visible single 
colonies were formed. Plate A shows the colony formation of the strain grown at 
32°C in the presence of thiamine and plate B in the absence of thiamine. On both 
plates, the strains are, clockwise from top: cdcl3-117 (pREP1), cdc]3-117 
(pREP 1 .cdc3 7ORF), cdcl 3-9 (pREP 1), cdcl3-9 (pREP I .cdc3 7 OpJ) 
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Fig 6.5 Effects of cdc3 7+ overexpression in two cdcl3 Is S.pombe strains 

Two cdcl3 ts strains (cdcl3-11 7 and cdcl3-9) were transformed with the 
pREP1 .cdc37+ORF plasmid and empty pREPI as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) and absence 
(promoter derepressed) of 4 pg/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28°C, 32°C, 33.5°C or 35°C for 24 hr, 
used to inoculate a liquid culture and incubated for a further 24 hr. The panels above 
show the morphology of cells grown at 32°C in the absence of thiamine. Panel A 
shows cdcl3-117 (pREPI) cells, panel B cdcl3-117 (pREP1.cdc37ORF), panel C 
cdc13-9 (pREP1) and panel D cdc13-9 (pREP1.cdc37ORF) cells. The white bar in 
the bottom right hand corner represents 10 m. 
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Most of the 8 strains containing cdc2ts  alleles were also affected by overexpression of 

cdc3 7+ but to a lesser degree than with the cdc13 mutants (Table 6. 1, Table 6.2). 

The two cdc2' alleles where the overexpression of cdc3 7+ had most effect were cdc2-

33 and cdc2-L7 (Fig 6.6, Fig 6.7). In these mutants, at all temperatures the colony 

formation of the strains was affected by overexpression ofcdc37+, though to a lesser 

degree than the cdcl3t5  mutants (Fig 6.6). When examined under the microscope, the 

cdc2ts cells overexpressing cdc37+ were much more elongated and branched than those 

without overexpression, similar to the cdc13'3  mutants (Fig 6.7). This is an 

interesting observation; although the elongation of both the cdc13Is  and the two cdc2ts 

mutants were both made considerably and comparably worse by cdc3 7 

overexpression, the ability to form colonies was only slightly affected in the cdc2ls 

mutants, whilst being drastically affected in the cdcl3ls  mutants. For clarity, a 

diagram showing the location of mutations of the various cdc2ts  alleles tested is also 

included (Fig 6.8). 

6.4. Creation of a 4cdc37 strain expressing a C-terminally His-

tagged Cdc37 protein 

In order to find out whether there is any physical interaction of Cdc37 with the 

Cdc2/Cdc13 complex, reagents were prepared for attempting immunoprecipitation of 

these proteins. Due to the time constraints, a His-tagged version of the Cdc37 

protein was constructed. As described in Chapter 3, the N-terminus of the Cdc37 

proteins is highly conserved in all species to date, so the His6-tag was engineered on 

to the C-terminus. 
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Fig 6.6 Effects of cdc37"' overexpression in two cdc2 ts S.pombe strains 

Two cdc2 ts strains (cdc2-33 and cdc2-L 7) were transformed with the 
pREP I .cdc3 7+ ORF plasmid and empty pREP 1 as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) and absence 
(promoter derepressed) of 4 .tg/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28 °C, 32°C, 33.5°C or 35 °C for 24 hr, 
streaked to single colonies and incubated for a further 3 days when visible single 
colonies were formed. Plate A shows the colony formation of the strain grown at 
32°C in the presence of thiamine and plate B in the absence of thiamine. On both 
plates, the strains are, clockwise from top: cdc2-33 (pREPI), cdc2-33 
(pREP 1 .cdc3 7 ORF), cdc2-L 7 (pREP!), cdc2-L 7 (pREP I .cdc3 7+  ORF). 
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Fig 6.7 Effects of cdc3 7 overexpression in two cdc2 ts S.pombe strains 

Two cdc2 ts strains (cdc2-33 and cdc2-L7) were transformed with the 
pREP 1 .cdc3 7+ ORF plasmid and empty pREP I as a control. The strains were then 
grown at various temperatures in the presence (promoter repressed) and absence 
(promoter derepressed) of 4 [tg/ml thiamine. The transformants were patched on to 
appropriately supplemented minimal media at 28°C, 32°C, 33.5°C or 35°C for 24 hr, 
used to inoculate a liquid culture and incubated for a further 24 hr. The panels above 
show the morphology of cells grown at 32°C in the absence of thiamine. Panel A 
shows cdc2-33 (pREP1) cells, panel B cdc2-33 (pREP1 .cdc37+ORF), panel C cdc2-
L7 (pREPI) and panel D cdc2-L7 (pREP1.cdc37ORF) cells. The white bar in the 
bottom right hand corner represents 10 gm. 
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TyrLS 	 Thilô7 

N C 

M26 33130 45L717 	18 48 

FIATP-binding site (aa 10-33) 

Central catalytic core region (aa 120-200) 

Allele Position (aa) Mutation Defect 
cdc2-33 177 Ala-Thr Gl/G2 arrest 
cdc2-1-7 210 Phe-Leu Gl/G2 arrest 
cdc2-45 208 Pro-Ser (ii /G2 arrest 
cdc2-17 212 Gly-Ser G2 arrest 
cdc2-48 309 Tyr-His G1/G2 arrest 
cdc2- 18 269 Leu-Ser G2 arrest 
cdc2-130 183 Gly-Glu GIIG2 arrest 
cdc2-M26 137 Pro-Ser G l/G2 arrest 

Fig 6.8 Location of mutations and phosphorylation sites of S.pombe Cdc2 

8 strains containing independent mutant alleles of cdc2 were investigated in this 
study. The schematic representation of Cdc2 shows the location of the mutations and 
the two phosphorylation sites, tyrosine 15 and threonine 167. The ATP-binding site 
is shown in orange and the catalytic region in red. Also shown in black is the region 
containing the PSTAIR motif. This sequence is present in all CDKs and is the 
antigenic region recognisable by the antibody used to detect Cdc2 in this study. 
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6.4.1 Construction of a cd67(His6) expression construct 

To create a Cdc37 protein with a C-terminal His6-tag, the cdc37 ORF was cloned 

into pREP1(His6), a plasmid derived from pREP1. The pREP1(His6) plasmid was 

created by replacing the Smal site ofpREPl (Appendix 1E) with a Notl site followed 

by the sequence that encodes 6 histidine residues and a stop codon (I.Samejima, pers. 

comm.). To create a His-tagged protein, an ORF with the stop codon removed can 

be inserted into the NdeI -Not! sites in-frame with the His6-stop sequence, resulting 

in the expression of a C-terminal His-tagged protein. 

In order to modify the 3' end of the cdc3 7+ ORF for cloning into the pREP 1 (His6) 

plasmid, site-directed mutagenesis was carried out. At the same time time as carrying 

out this 3' end modification, the two internal NdeI (a and b, Fig 3.4) sites were also 

removed to ease further cloning in the future. To carry out the mutagenesis, the 1167 

bp BamHI-SmaI fragment of the cdc37+ ORF (Appendix 1B) was cloned into the 

corresponding sites in the plasmid pTZ 1 8u (Appendix IF), which allows production 

of single-stranded DNA (section 2.4.5). The two NdeI sites were removed by single-

stranded site-directed mutagenesis (section 2.2.9a) by a single base pair change in 

each case, mutating the recognition site whilst at the same time conserving the amino 

acid sequence (Table 6.3). This mutagenesis proved extremely troublesome and for 

modification of the 3' end a different mutagenesis technique was used. 

The 3' end of the cdc37+ ORF was modified to allow cloning into the pREP 1(His6) 

plasmid. The plasmid pTZ18u.3'cdc37+ORF (Appendix IF) containing the 

modified ORF (lacking the two internal NdeI sites) was modified at the 3' end by 

double-stranded site-directed mutagenesis (section 2.2.9b). The stop codon and 3' 

Smal site were replaced with a Not! site (Table 6.3). When the resulting 1164 bp 

BamHI-NotI modified fragment was cloned into the corresponding sites in the 

pREP 1 (His6) plasmid, this resulted in a sequence encoding 6 histidines and a stop 
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Table 6.3 Sequence changes created by site-directed mutagenesis 

Ndela site (PW19) 

Ndela 
.CAT CAT ATG CTT.. 	 . .CAT CAC ATG CTT.. 

H H M L 	 H H M L 

Ndelb site (PW20) 

Ndelb 
.AAT ACA TAT GTC.. 	......4i 	. . AAT ACT TAT GTC.. 
N T Y V 	 N T Y V 

3' end (PW27+28) 

Sma I 
CAA TTG TCT TAA CCC GGG.. 
Q L S 

1 
Not I 

CAA TTG TCT TGC GGC CGC CAC CAT CAC CAT CAC CAT TAA.. 
Q L S C G R H H H H H H 

The two internal NdeI sites (a and b) were removed from the sequence for future ease 
of cloning (see Fig 3.4 for sequence). This was carried out by single-stranded site-
directed mutagenesis. The single base pair change in each case removed the NdeI 
recognition site but the amino acid sequence was preserved. The 3' end of the ORF 
was modified to allow cloning into the His-tag pREP 1 plasmid. This was carried out 
by double-stranded mutagenesis. This resulted in the stop codon and Smal site being 
replaced with a NotI site followed by a run of sequence encoding 6 histidine residues 
and a stop codon. 



codon being added to the end of the modified cdc37 ORF. Finally, the remaining 

238 bp 5' NdeI-BamHI fragment of the cdc37+ ORE (Appendix 1C) was then cloned 

into the pREP 1 (His6) vector to create the pREP 1 .cdc3 7(His6) construct (Appendix 

1G). 

6.4.2 Creation of a 4cdc37 strain expressing a C-terminally His-tagged Cdc37 

protein 

A Acdc3 7 strain expressing pREP 1 .cdc3 7(His6) was created exactly the same way as 

the zlcdc3 7 strains expressing the cdc3 7 ORE from the pREP vectors described in 

Chapter 4 (section 4.3). The ,cdc371cdc37+ heterozygous diploid 1 was transformed 

with the pREP1.cdc37(His6) construct (section 2.5.5). Diploid transformants were 

selected on minimal plates with no supplements. The resultant diploids were then 

allowed to sporulate by incubating on ME plates at 25 °C for 48 hr. Random spore 

analysis was then carried out (section 2.5.3b) and 4cdc37 haploids (containing ura4) 

were selected for on minimal plates containing adenine and leucine. These haploids 

were then tested on minimal plates supplemented only with adenine for the presence 

of the leucine marker carried on the plasmid. Again, every haploid isolated that 

carried the ura4 marker for cdc3 7 deletion also contained the leucine marker from 

the pREP1 plasmid expressing cdc37(His6). Thus, the 4cdc37 haploids can only 

survive when maintained by the pREP 1 .cdc3 7(His6) construct; this indicates that the 

Cdc37(His6) protein is functional. Furthermore, growing several icdc37 haploids 

expressing cdc3 7(His6) in the presence or absence of thiamine revealed that this 

strain behaves in exactly the same manner as the zicdc3 7 strain expressing cdc3 7+ 

from pREP 1 (Fig 4.7). 
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6.4.3 Testing for expression of the C-terminally His-tagged Cdc37 protein 

To confirm that the 4cdc3 7 strain containing the pREP 1 .cdc3 7(His6) plasmid was 

expressing a His-tagged Cdc37 protein, a Western blot (section 2.3.4) was carried 

out. The strain was grown in appropriately supplemented minimal medium (in the 

presence or absence of thiamine) and denatured protein extracted as previously 

described (section 2.5.9). The blot was probed with an anti-His6 antibody (Santa 

Cruz) to detect expression (Fig 6.8). A -'60 kDa His-tag protein is expressed in the 

4cdc37 strain containing the pREP1 .cdc37(His6) plasmid and its expression is 

thiamine-regulatable. The protein is not expressed in either the 4cdc3 7 strain 

expressing pREP! .cdc37'ORF or in wild-type extracts. Therefore, this confirmed 

that the icdc37 strain is expressing a thiamine-regulatable His-tagged Cdc37 protein. 

6.5 Immunoprecipitation using Cdc37(His6) 

The cdc37[pREPl.cdc37(His6)] strain was used for immunoprecipitation to 

investigate any physical interaction of Cdc37 with either Cdc2 and Cdcl3. Although 

the mammalian Cdc37 protein has been shown to associate with Cdk4 (Dai et al., 

1996), in S.cerevisiae, no physical interaction has been observed between Cdc37 and 

Cdc28. Therefore, it seemed a very interesting question to find out whether Cdc37 

and Cdc2 physically interact in S.pombe. 

Physical interaction between a His-tagged Cdc37 protein and Cdc2 was investigated 

by immunoprecipitation using protein extracts from the zcdc3 7 strain expressing 

cdc3 7(His6) from pREP 1. The strain was grown in appropriately supplemented 

minimal medium (in the presence or absence of thiamine) and protein extracted as 

previously described (section 2.5.10). Immunoprecipitation was carried out (section 

2.3. 1) using the anti-His6 antibody. The immunopreciptated extracts were then 
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2 	3 	4 	5 

4 	-6OkDa 

Fig 6.9 Western blot of icdc37 strain expressing cd67(His6) from pREP! 

Protein was extracted from cdc37::ura4[pREPI.cdc37(His6)] and 
cdc3 7::ura4[pREP1.cdc37] cells grown for 24 hr in the presence or absence of 
thiamine. The extracts were boiled immediately before electrophoresis on a 12.5% 
polyacrylamide gel and Western blotting on to a nylon filter. The blot shown was 
probed with anti-His6 (1:1000). Lane I contains the extract from the 
cdc3 7:: ura4[pREP I .cdc3 7(His6)] cells grown in the absence of thiamine and lane 2 
the extract from the cells grown in the presence of thiamine. Lane 3 contains the 
extract from the cdc37::ura4[pREP1.cdc37] cells grown in the absence of thiamine 
and lane 4 the extract from the cells grown in the presence of thiamine. Lane 5 
contains the protein extract from a wild-type strain as a further control. 
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anti-HM 

1 	2 	3 

4 	60kDa 

34 kDa 

Fig 6.10 Western blot of extracts from immunoprecipitation with anti-HIS6 
antibody 

Protein complexes were extracted from cdc37::ura4[pREP1 .cdc37(His6)] cells grown 
in the absence of thiamine. Immunoprecipitation was then carried out using a 1:100 
dilution of the anti-His6 antibody. The blot shown was probed with anti-His6 
(1:1000) and anti-PSTATR (1:50) simultaneously. Lane 1 contains the total protein 
extract from a wild-type strain as a control for the anti-PSTAIR antibody. Lane 2 
contains the immunoprecipitated extract from the cdc37::ura4[pREPI.cdc37(His6)] 
cells grown in the absence of thiamine, and lane 3 contains the no antibody 
immunoprecipitation control. 
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analysed by Western blot (section 2.3.4) and probed with the anti-PSTAIR antibody 

(Fig 6.9). However, despite numerous attempts with varying conditions, no binding 

of Cdc2 to Cdc37 was seen. 

Though the physical interaction may be less likely since no interaction between 

Cdc37 and a cyclin has been observed in any other system, investigation of the 

binding of Cdcl3 with Cdc37 would also have been a worthwhile experiment. 

However, as previously mentioned, neither of the available anti-Cdc 13 antibodies 

was found to detect Cdcl3 in this lab. 

6.6 Summary 

As a preliminary investigation into the role of cdc3 7+ in the S.pombe cell cycle, Cdc2 

protein levels were monitored in a Cdc37 depletion experiment. Cdc2 levels were 

found to be significantly reduced in a iicdc3 7 strain expressing the cdc3 7+ ORF from 

the pREP81 promoter grown in conditions where cdc37+ expression is repressed. 

When cdc37+ is strongly overexpressed (from pREP 1 promoter) in S.pombe strains 

containing ts alleles of cdc2 or, more strikingly, cdc13, the phenotypes of the cells 

become more exaggerated. In some cdc21s  alleles, there is a moderate effect, in others 

there is none, suggesting that cdc37+ does interact with cdc2 in an allele-specific 

manner to some degree. However, the locations of the mutations in the cdc2 alleles 

give no clue to the reason why cdc37+ overexpression is detrimental to the cdc2ts 

mutants. Also, in two independent cdc13s  alleles, overexpression of cdc37+ 

drastically reduces the restrictive temperature of the strains so even at the normally 

permissive temperature, the cells are unable to divide and proliferate normally. 
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These observations appear to show real interactions since overexpression of cdc3 7+ 
in a wild-type strain has little or no detectable effect. 

These preliminary analyses, together with the data from Chapter 5, seem to indicate 

that Cdc37 is involved in some way in the Cdc2/Cdc13 complex which regulates the 

cell cycle through G2 and mitosis in S.pombe. However, preliminary experiments 

failed to show any physical interactions of a His-tagged Cdc37 protein with Cdc2. 
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Chapter 7 

Discussion 
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7.1 Introduction 

The work in this thesis has identified a gene encoding a S.pombe Cdc37 protein 

which has been cloned and has undergone preliminary characterisation. The cdc3 7+ 

gene has been shown to be essential for viability, and appears to have several roles in 

vivo. This work has begun to investigate these various functions in S.pombe, with 

particular emphasis on those functions involving the key mitotic regulator, Cdc2 and 

its G2 cyclin partner, Cdc 13 (see Chapter 1). 

7.2 Cdc37 sequence and relation to its function 

The homologues of S.cerevisiae Cdc37p from various species, including Drosophila, 

human, rat, mouse and chicken, all share only moderate sequence similarity across the 

whole length of the proteins. However, all of the protein sequences are highly 

conserved at the extreme N-terminus. This project has revealed another structural 

homologue of Cdc37p, from S.pombe, which shares the same sequence conservation 

and is presently the most closely related to S.cerevisiae Cdc37p (Fig 3.6). Analysis 

of the Cdc37 protein sequences from the variety of species already mentioned shows 

that not only are the S.pombe and S. cerevisiae proteins most similar to each other 

but also that the Drosophila and vertebrate are more similar to each other than they 

are to the two yeast proteins (Fig 3.7). This becomes more interesting when taken 

together with the observation that the D. melanogaster cdc3 7 gene has been shown to 

rescue the S. cerevisiae ts mutant cdc3 7-1 (Cutforth and Rubin, 1994), whilst there is 

no evidence of rescue from the vertebrate homologues. It is not particularly clear 

whether this is because experiments to test complementation of the cdc3 7-1 mutant 

by mammalian homologues have been unsuccessful or whether the question has not 

been investigated thoroughly. However, the only publication that appears to directly 

address this question (Ozaki et al., 1995), reports that a clone containing the rat 
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cdc3 7 gene has been tested and does not rescue the temperature sensitive phenotype 

of the cdc37-1 mutant. The ability of the S.pombe cdc37 gene to rescue the 

S.cerevisiae cdc37-1 mutant has not been tested (see section 7.6.2). Due to the 

higher degree of similarity between the yeast proteins compared to that between the 

S. cerevisiae and D. melanogaster proteins, it might be expected that the cdc3 7 gene 

will rescue the restrictive phenotype of the cdc3 7-1 mutant. 

As mentioned above, the N-terminus of the Cdc37 proteins is the most highly 

conserved region. Over the first 40 amino acids the S.cerevisiae and S.pombe Cdc37 

proteins are -85% identical (Fig 3.6). The Cdc37 proteins in multicellular organisms 

are also highly similar to each other in this region and slightly less similar to the yeast 

proteins. Since the N-terminus is highly conserved among all of the species, it seems 

probable that it plays an essential role. Although little is known about the structure 

of the Cdc37 proteins in relation to its function, it has been shown that the N-

terminus of mammalian Cdc37 binds the kinase Raf-1 in vitro, whilst the C-terminus 

binds Hsp90 (Grammatikakis et al., 1999). Given that the N-terminus is so highly 

conserved, this suggests that in all species the N-terminus may bind the target 

kinases, although there is no other evidence to support this theory to date. 

7.3 The effects of loss of cdc37F function 

The work in this thesis has shown that loss of cdc3 7 gene function in S.pombe is 

lethal, consistent with the observation that CDC3 7 is an essential gene in S. cerevisiae 

(Gerber et al., 1995). Furthermore, the depletion experiments described in Chapter 5 

show that some of the primary effects of reduced Cdc37 protein levels affect cell 

cycle progress. However, there is evidence that indicates that S.pombe can survive 

even with only very low levels of Cdc37. For example, the analysis of 4cdc37 

haploid strains carrying pREP plasmids in Chapter 4 shows that cdc3 7+ mRNA 

153 



levels well below that of wild-type are sufficient to maintain normal proliferation 

(Fig 4.9), suggesting that wild-type S.pombe express far more cdc3 7 than is 

necessary for survival. It may be that some of the functions of Cdc37 are not crucial 

and when levels are low, the cells are able to do without or find replacement proteins 

to carry out the necessary roles. Also, further evidence indicating that only low 

levels of Cdc37 protein are required is provided by the depletion experiments 

described in Chapter 5, where the 4cdc37 haploid strain is able to survive and 

grow/divide for several generations once cdc3 7 expression from pREP 8 1 has been 

repressed (Fig 5.1). Assuming that repression of the promoter inhibits almost all 

cdc3 7 expression and even allowing for plasmid copy number heterogeneity, it is 

likely that the Cdc37 protein is stable and probably only required at low levels. 

When the expression of cdc3 7 from the pREP 8 1 promoter is repressed in a cdc3 7 

S.pombe strain, a sub-population of short cells appear and after 16 hours, some are 

extremely short (Fig 5.2, Fig 5.3). Cells with this phenotype are present throughout 

the duration of the experiment. Despite the reduction in the mean cell length caused 

by the presence of these cells, the rate of proliferation appears to be similar, if not 

slightly higher, than control cells expressing cdc37 from pREP81 (Fig 5.1). It is 

difficult to conclude whether the appearance of short cells is a direct effect of Cdc37 

depletion or whether there are secondary effects that cause this phenotype. Two 

explanations are that depletion of Cdc37 affects target kinase(s) that cause the cell 

length to shorten, either by slowing down growth relative to cell cycle progression, or 

by affecting kinase(s) involved in the cell cycle. A potential target could be the 

inhibitory kinase Wee 1, which has already been shown to require Swo 1 (Hsp90) for 

function (Aligue et al., 1994). If Weel protein function is only moderately affected 

by a depletion in Cdc37 levels, or even a complete lack of Cdc37, then the cells 

would become shorter due to premature entry into mitosis (see Chapter 1) but would 

continue to proliferate normally. 
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After expression of cdc37 from pREP81 has been repressed for around 30 hours in 

the ,.tcdc37 strain, a significant population of the cells begin to elongate noticeably 

(Fig 5.2, Fig 5.3). It is shortly after this that overall cell proliferation begins to 

decline (Fig 5.2). It therefore seems a reasonable conclusion that these two events are 

directly related. The data from the depletion experiments described in Chapter 5 

suggest that the cell elongation is due to a defect in the G2 or M phase of the cell 

cycle. From work carried out on other systems (see Chapter 1), one explanation for 

the observations described is that the depletion of Cdc37 begins to affect the function 

of Cdc2. If Cdc2 stability and/or kinase activity was to drop due to a lack of 

association with Cdc37 then it would seem likely that cell elongation would occur 

due to a delay in the onset of mitosis (see Chapter 1). 

The exact mechanisms behind the all of the observations in the Cdc37 depletion 

experiment are unclear and are very difficult to explain with the data to date. The 

heterogeneity within the population suggests that Cdc37 plays several important 

roles and therefore models that attempt to explain the experimental observations are 

probably over-simplified. A possible scenario is a combination of that described 

above. When the expression of cdc3 7 is repressed, the first target may be a kinase 

that performs less well when Cdc37 protein levels drop, but retains some sort of 

functionality. As mentioned above, a possible target could be Wee!. Thus, Wee  

may require high levels of Cdc37 to perform properly and when the levels drop, 

Wee  may still be able to play its important role but is less efficient in doing so, 

leading to shorter cells. If Cdc37 preferentially binds to Cdc2, then when the levels 

start to drop, the remaining Cdc37 could remain involved with Cdc2, hence the 

reason why Wee  may be affected first. Then, when the Cdc37 levels drop even 

further, Cdc2 becomes affected as well, which would result in delayed cell cycle 

progression, elongation of the cells and cessation of proliferation. This would also 

explain some of the heterogeneity in cell length that is observed. The cells will have 

different levels of Cdc37, thus varying the time at which Cdc2 begins to be affected 
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and elongation becomes visible. This is a tentative and over-simplified attempt at 

finding an explanation for the observations seen in this experiment. Of course, the 

heterogeneity observed is also probably due in part to other factors such as plasmid 

copy number. 

Previously, it was shown in S.cerevisiae that Cdc28p ( Cdc2 in S.pombe) levels are 

three to five times lower in the cdc37-1 mutant (Gerber et al., 1995). Recent work 

has suggested that the low Cdc28p levels are due to instability of the protein caused 

directly by of a lack of Cdc37p (Farrell and Morgan, 2000). This, together with the 

idea that cell elongation described in Chapter 5 may be due to a lack of interaction 

between Cdc37 and Cdc2 in S.pombe, led to the Cdc2 protein levels being analysed in 

the depletion experiment. The Cdc2 levels were found to decrease as Cdc37 is 

depleted (Fig 6. 1), consistent with the idea that an interaction between Cdc37 and 

Cdc2 is necessary for the stability of Cdc2. This observation agrees well with that 

seen in S.cerevisiae as mentioned above. A lack of stability of Cdc2 when Cdc37 is 

depleted would result in a gradual decrease in Cdc2 protein levels as Cdc37 is 

depleted from the cell. Therefore, it may be that once the Cdc2 protein levels drop 

to a point at which the cell can no longer maintain viability, cell cycle arrest occurs 

either in G2 or mitosis and thus proliferation ceases. However, it is very difficult to 

confirm or disprove that the drop of Cdc2 protein levels seen in the depletion 

experiment is enough to account for the arrest. Also, if cell cycle arrest was solely 

due to a lack of Cdc2p, a more uniform G2 arrest would be expected rather than a 

mixture of cells arrested at G2 or mitosis as seen in these experiments (Fig 5.5 - 5.6). 

7.4 Proteins that associate with Cdc37 

From work already described in other systems (Chapter 1), together with the cell 

cycle observations gathered in Chapter 5 of this thesis, it seems likely that S.pombe 
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Cdc37 is involved in the association between Cdc2 and Cdcl3 (see Chapter 1). As 

discussed above, it appears that Cdc37 has several biological roles and is likely to be 

involved in mediating the association of several kinase complexes other than that of 

Cdc2 with Cdcl3, including other Cdc2 complexes. The major role of the 

Cdc2/Cdc13 complex is entry into and during mitosis (see Chapter 1) and therefore 

this is potentially the most interesting interaction of Cdc37. For this reason, the 

work described in Chapter 6 investigates the relationship specifically between Cdc37 

and the Cdc2/Cdc13 complex. 

It has been shown in S.cerevisiae that Cdc37p appears to assist the folding of 

Cdc28p and may not directly interact with the associated cyclins at all (Farrell and 

Morgan, 2000). The conclusions by the authors of this work were that Cdc37p 

binds only to Cdc28p - not the cyclins Cln2p or Clb2p - thus holding it in a 

conformation that is accessible to the cyclins and aiding the formation of the 

CDK/cyclin complexes. These conclusions are supported by work carried out in 

mammalian systems which appears to suggest that mammalian Cdc37 specifically 

interacts with Cdk4 and Cdk6 but not with their associated cyclins (Stepanova et al., 

1996). Also, in S.pombe, genetic interactions between Swol and Cdc2 have 

previously been documented (Munoz and Jimenez, 1999). With these observations 

in mind, it seems more likely that in S.pombe, Cdc37 will interact with Cdc2 but not 

with Cdc 13. Therefore, it is an interesting observation that overexpression of cdc3 7+ 

appears to have a more marked effect on cdcl3ts  mutants than it does on cdc2 

mutants (Fig 6.5 - 6.8). It is also interesting that this overexpression enhances the 

mutant phenotypes, rather than partial or complete rescue as might be expected. 

One model which appears to explain the overexpression observations described in 

section 6.3, would be if the function of Cdc37 is to bind and hold Cdc2 in an 

activatable conformation as is believed for S.cerevisiae (Farrell and Morgan, 2000). 

If this were true, then in the case of both the cdcl3ts  and cdc21s  mutants, the excess 
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Cdc37 around may be binding excessively to Cdc2 and preventing the Cdc2/Cdc13 

interaction. The cdcl3ts  mutants might be affected because the mutant Cdcl3 

proteins may not be able to bind the wild-type Cdc2 as strongly as wild-type Cdc 13. 

The Cdc21s  mutants may be less affected because Cdc37 cannot bind as well to the 

affected mutant forms of Cdc2, therefore interfering less with the Cdc2/Cdc 13 

interaction. If this was the case, then the phenotypes of cdc3 7+ overexpression in 

cdc2 mutants would be expected to be allele-specific and this is true to a certain 

extent, where the mutant strains cdc2-33 and cdc2-L7 are most affected (Tables 6.1 

and 6.2). The model described here is extremely tentative and there are other ways to 

explain the cdc37+ overexpression observations described in section 6.3. The model 

described above may well oversimplify the underlying mechanisms. It is interesting 

to note, however, that one of the cdc2 alleles (cdc2-33) most affected by cdc37' 

overexpression (section 6.3) has also been shown to be synthetically lethal with a 

mutant allele of swot (encoding Hsp90, Munoz and Jimenez, 1999) and is severely 

affected by overexpression of wos2, a homologue encoding a cochaperone of Hsp90 

(Munoz etal., 1999). 

Also described in Chapter 6 is the observation that a his-tagged version of the Cdc37 

protein does not appear to immunoprecipitate with Cdc2 (Fig 6.9). As has been 

previously mentioned, it is thought that the conserved N-terminus of Cdc37 is 

responsible for the interaction with the target protein kinase (Grammatikakis et al., 

1999), although, Cdc37 proteins with an N-terminal tag have previously been used 

successfully (Grammatikakis et al., 1999). For this reason, the his-tag for the 

S.pombe Cdc37 protein used in this work was placed at the C-terminus to avoid any 

disruption of this interaction. The lack of physical evidence in S.pombe is 

disappointing, since a direct interaction between Cdc2 and Cdc37 would have been an 

important discovery and naturally there remains a question of the clarity of this 

negative result. Although to date, there is significant physical evidence of mammalian 

Cdc37 directly interacting with CDKs (Dai etal., 1996; Stepanova et al., 1996; 
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Mahony etal., 1998) there has been no evidence of a physical interaction between 

Cdc28 and Cdc37 in S.cerevisiae. Maybe this is because in yeast the interaction is 

more transient. This could also be the reason why it was not possible to show a 

physical interaction between the his-tagged Cdc37 protein and wild-type Cdc2 in 

S.pombe. 

As mentioned in Chapter 1, Hsp90 has usually been found in mammalian Cdc37-

Cdk4/Cdk6 complexes (Hunter and Poon, 1997). For this reason, it seems reasonable 

to predict that Cdc37 will interact with Swol (Hsp90) in S.pombe. The only Swol 

reagent that was available during this project was the swo]2  6 mutant and 

overexpression of cdc3 7+ appeared to have no effect on the phenotype of this 

mutant (section 6.3). Also, the cell cycle protein Wee  has been shown to require 

Swo 1 interaction for function (Aligue et al., 1994). Therefore, we also tested the 

wee] -50' mutant by overexpression of cdc37+ and again there was no obvious effect 

(section 6.3). If normal function of wee1 requires the formation of a 

Wee 1/Hsp9O/Cdc37 complex, then it might have been expected that overexpression 

of cdc3 7+ might partially rescue a weel ts mutant unless the mutant is completely 

without function at the restrictive temperature. Obviously, the observations 

described when cdc37+ is overexpressed in the swo]' and wee] ts  mutants do not rule 

out possible interactions of Cdc37 with either of these two proteins, but additional 

reagents such as tagged proteins and antibodies are required for further investigation. 

7.5 The biological roles of Cdc37 

The work in this thesis suggests that in S.pombe, Cdc37 has several biological roles. 

To separate and identify these roles will take a great deal of careful investigation and 

is the next logical step in this project. This work does strongly suggest however, that 

one of the most important functions of Cdc37 is its involvement with the interaction 
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between Cdc2 and Cdcl3, and thus entry into and during mitosis. The most likely 

model is that Cdc37 acts as a molecular chaperone, binding and stabilising Cdc2, 

preventing aggregation or misfolding of the kinase and thus allowing association with 

Cdc 13 to form the active complex when it is required (see Chapter 1). Other 

potential targets of Cdc37 are fairly broad but evidence from other systems suggests 

strongly that the majority of these will be specific protein kinases, some of which 

may also be involved in the cell cycle (see Chapter 1). It will be interesting to find 

out whether Cdc37 performs some or all of these functions as part of a complex with 

Hsp90 or whether it has some functions that it carries out alone (Kimura et al., 

1997). 

7.6 Further research for this project 

7.6.1 Immediate experiments 

This project has reached an exciting stage where many paths can be followed to 

investigate further the biochemical and cellular role of Cdc37 in S.pombe. One 

experiment that could be carried out without too much preparation would be to carry 

out a spore germination experiment similar to the depletion experiment described in 

Chapter 5. This may result in a less heterogenous population and the phenotypes 

may be easier to identify. In the depletion experiment factors such as plasmid 

number and stability may affect the resultant phenotypes and these would be 

eliminated in a spore germination experiment. Also, further staining including that of 

the microtubules and spindle pole bodies could also help to identify the phenotypes 

more specifically. From the DAPI staining described in section 5.5, it appears that a 

population of the Cdc37 depleted cells arrest with condensed chromosomes, 

suggesting a mitotic defect. Staining the microtubules and spindle pole bodies may 

help to confirm this observation and narrow down the exact role of Cdc37. However, 
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to carry out most of these next stages, more reagents are required. This section 

describes the questions that are of most interest in the future. 

7.6.2 Testing the complementation between the S.pombe and S.cerevisiae 

homologues 

It is an interesting question to find out whether the S.pombe cdc3 7 gene rescues the 

defects of the previously described S.cerevisiae mutant cdc37-1. Obviously, the 

reciprocal of this experiment could be carried out, whether a S.pombe cdc37ts  mutant 

could be rescued by the S.cerevisiae CDC37 gene. The results of this experiment 

would probably not be hugely informative since the D. melanogaster cdc3 7 gene 

rescues the cdc37-1 mutant but the vertebrate homologues do not appear to, even 

though the Drosophila gene is more similar in sequence to the mammalian genes than 

the S. cerevisiae gene. 

7.6.3 Construction and examination of a S.pombe cd67 mutant 

So far, the approaches described in this thesis have been informative about the effects 

of gradual removal of Cdc37 from the cell. A better insight into the roles of a gene 

such as cdc37 could be obtained by examining the behaviour of a ts mutants. The 

advantage of this is that the gene product is rapidly inactivated and the observed 

phenotype reflects the immediate consequences of this, without allowing the cells 

time to adapt to the lack of Cdc37 as might happen in depletion experiments. The 

generation of a cdc37ls  mutant is a high priority for the next stages of this project. 
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7.6.4 The cell cycle targets of Cdc37 and investigation of its activity 

throughout the cell cycle 

The work carried out in this thesis has shown that in S.pombe, Cdc2 is a likely target 

of Cdc37. This could be tested by examining the levels of Cdc2, Cdcl3 and the GI 

cyclin Cig2, in cells with compromised cdc3 7 function. Also, the extent of 

association between Cdc2 and these two cyclins could be determined by co-

immunoprecipitation, and the kinase activities of these complexes could also be 

analysed. Cdc37 immunoprecipitation experiments in cdc2 and cdc2t3  strains could 

also be carried out to determine whether Cdc37 can be shown to associate directly 

with Cdc2. It is possible that any interaction of Cdc37 with wild-type Cdc2 may be 

transient and difficult to detect, whilst mutant proteins may bind more stably as 

discussed in Hunter and Poon, 1997. Other potential cell cycle targets of Cdc37 

include Wee 1, which has been previously shown to bind Swo 1 (Hsp90), requiring it 

for normal function (Aligue et al., 1994). This and other interactions could be 

investigated in a similar manner. 

Since cdc37 has been shown to genetically interact with genes involved in the cell 

cycle and loss of Cdc37 in S.pombe affects cell cycle progress, it is possible that 

Cdc37 abundance or activity may vary periodically during the cell cycle. Therefore, 

it would be interesting to determine the abundance of Cdc37 mRNA and protein in 

synchronous cultures generated by elutriation. Also, it would be interesting to 

investigate whether Cdc37 is subject to control by phosphorylation as this does not 

appear to have been investigated in other systems. If Cdc37 is phosphorylated and 

this results in a gel mobility shift, it will be straightforward to ask whether the 

phosphorylation pattern varies during the cell cycle which may give clues to its 

possible roles within the cell cycle. 
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7.6.5 Other cellular targets of Cdc37 and proteins it interacts with 

Due to the heterogeneity of the population in the depletion experiments described in 

this thesis, it seems likely that there are several targets of Cdc37. A genetic screen 

could be carried out for mutants showing synthetic lethality with a cdc3 7 defect, as 

some of these mutations will probably lie in genes whose products require Cdc37 for 

function. Following the isolation of synthetically lethal mutations, the corresponding 

genes could be identified by genetic analysis (such as crossing to candidate genes) and 

library screening by complementation. For this approach, a cdc3 7'  mutant would 

probably be most useful. Other genetic screens include using a cdc3 7' strain to 

screen for genes whose overexpression rescues the lethality at the restrictive 

temperature of the mutant, thus leading to isolation of Cdc37 target genes directly, or 

screening for mutants whose growth depends on high level expression of cdc37, 

which has also been shown to be an effective approach to identifying functionally 

interacting genes (Cullen et al., 2000). 

Direct interactions of Cdc37 could be investigated by two approaches: firstly, the 

yeast two-hybrid approach using Cdc37 as bait. The second is a more direct 

biochemical method, where recombinant Cdc37 is attached to a column and extracts 

from S.pombe are passed over it. Proteins that bind could then be subjected to mass 

spectrometric procedures in order to identify them. Since Cdc37 has been shown to 

interact directly with Hsp90 and with specific protein kinases, Hsp90 and specific 

target protein kinases may be isolated by this approach, along with other proteins 

that may be involved in these complexes. 
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7.6.6 The structure of Cdc37 and relation to its function 

Since few structure-function studies have been carried out on any Cdc37 protein, this 

would also be an interesting point of investigation in S.pombe. In at least one 

system, the N-terminal region of the Cdc37 protein binds to a protein kinase domain 

and the C-terminal region binds to Hsp90 (Grammatikakis et al., 1999). This could 

be investigated in S.pombe in detail. The regions and residues that are required for 

interaction with Swo 1 (Hsp90) and various protein kinases could be identified if they 

occur in S.pombe. This would then allow further genetic analysis of cdc37 in 

S.pombe, giving further clues to how its structure affects the various biological 

functions. 
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Appendix 1 

Plasmids and Constructs 
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AV 

Amp 	lacZ 

ColE 1 on 

pBluescript SK. cdc37* 

10.15 kb 

cdc37 

Bam}{I 	( 2.1 kb 

Ndela 	Ndelb 

Plasmid pBluescript SK-.cdc37. Described in section 3.3. 
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Amp 	 IacZ 

pBluescript SK-.3'cdc37ORF 
4.14kb

)lNdeIb 

cdc37/J 

U 
ColElori 	

/J1.2 

Ndela 

BamHI 

Plasmid pBluescript SK-.3'cdc37'ORF. Described in section 3.4.3. 

IWO 
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Plasmid pGEM-T.5'cdc37ORF. Described in section 3.4.3. 

l.r.] 



IC 

Eco 

Plasmid pBluescript SK-.zlcdc37. Described in section 4.2.1. 
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dela 

PstI\ 	 1.4 kb 	Ndelb 

nmt prom. 	cdc37 

nmt term. 
SstI 

LEU2 	pREP1/41/81.cdc3tORF 	 co 
10.30 kb 

arsi / 

HindIII 	

pUC 119

coRI  

IN 

Plasmid pREP1I41/81.cdc37ORF. Described in section 4.3.1. 
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ela 

Smal 

Plasmid pTZ18u.3'cdc37. Described in section 6.4.1. 
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G 

Hi 

Plasmid pREP1.cdc37(His6). Described in section 6.4.1. 
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