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Abstract 

Maize cytoplasms can be divided intO foUr classes on the basis of their 
mitochondrial DNA restriction endonuclease patterns; N, C, T and S. 
Mitochondria from the S cytoplasm of maize contain two linear DNA 
plasmids, which by integrating into, homologous regIons of the main 
mitochondrial genome, can convert 'the:genome into a partially linear form. 
Specific DNA probes for S plasmids, and for,sequences flanking their 
Integration sites, were "Used to.. investigate' the organization of the 
mitochondrial genome in S cytoplasm; An effect of,.nuclear genotype was 
discovered on the ratios of substrates to products of this integration 
reaction. 

Male sterile S cytoplasms can revert to fertility, and these revertants 
show alterations in their mitochondrial DNA when compared to their 
sterile parents. A number of cytoplasmic revertants from different 
sources were compared. Using DNA probes for S plasmids, and sequences 
flanking their integration sites, a number of mitochondrial DNA 
configurations were shown to be connected with reversion to fertility, 
which were almost entirely defined by the, nuclear genotype of the 

• 'revertant plant. No one mltochondrial DNA alteration in the revertant 
cytoplasms could be identifiedthat correlated with the newly acquired 
fertile phenotype. 

The mitochondrial DNA, organization around the atM gene was 
Investigated with specific hybridization probes in a number of different 
maize cytoplasms. This area of the maize mitochondrial genome was 
shown to be extremely variable between cytoplasms. Differences in atoA 
copy number and sequence organization were—described even within the 
cytoplasmic groups of N. and S. Inmost cytoplasms, sub-stoichiometric 
restriction endonuclease fragments (termed sublimons) could be detected 
that corresponded to arrangements that were characteristic of other 
cytoplasms. 

.2 	
The mitochondrial genome organization of two closely related fertile. 

cytoplasms, OY and LF, were investigated. These cytoplasms contained one 
and two copies of the atpA gene respectively. The second arrangement of 
the atM gene, specific to LF cytoplasm, was detected at low levels in the 
mitochondrial genome of OY cytoplasm. These low copy number 
arrangements were shown to be probably produced by homologous 
recombination between a pair of 181bp repeats. In another case, it was 
shown that the low level arrangements could not be easily explained by 
recombinatlon. The possible Implications of these observations on various 
modes of mitochondrial genome evolution are discussed, and speculations 
are made on the possibilities'for sudden genome rearrangements in plant 
mitochondria based on the amplification of rare recombinant molecules 
now shown to be present in the genome. 



Table of contents 

Chapter 1- Plant mitochondrial genome organization and 
evolution 

1.1 Introduction 1 
1.2 Higher plant mitochondrial qenome size and organization 2 

1.2.1 The maize mitochondrial genome 7 
1.2.2 Extrachromosomal DNAs 11 
1.2.3 Promiscuous DNA in the mitochondrial qenomes of plants 12 

1.3 Cytoplasmic male sterility 13 
1.3. 1 Chimaeric genes and variant polypept ides in mitochondria 

from male-sterile plants 15 
1.3.2 Reversion to fertility 21 

1.4 Evolution of higher plant mitochondrial genomes 22 
1.4.1 Structural evolution of the maize mitochondrial genome 23 

Chapter 2- Materials and methods 
2.1 Materials 28 

2. 1.1 Maize seed 28 
2.1.2 Maize mitochondrial DNA clones 29 
2.1.3 Chemicals 29 
2.1.4 Enzymes 30 
2.1.5 Radiolsotopes 30 
2.1.6 Buffers and solutions 31 
2. 1.7 Bacterial growth media 31 
2.1.8 Centrifugation equipment 32 

2.2 Methods 32 
2.2. 1 Purification of maize mitochondria 32 
2.2.2 Mitochondrlal DNA isolation 33 
2.2.3 Gel electrophoresis, blotting and probing of DNA 34 
2.2.4 ClonIng and screening in Ml 3 vectors 35 
2.2.5 Preparation of single-stranded DNA from M13 clones 36 
2.2.6 Cloning and screening in pUC vectors 37 
2.2.7 Preparation of plasmid and cosmid DNA 38 
2.2.8 Gel-purification of restriction endonuclease fragments 38 
2.2.9 DNA hybridization probes 39 
2.2. 10 1  DNA sequencing 40 

Chapter 3- Mitochondrlal genome organization in CMS-S lines of 
maize 

3.1 CMS-S maize 	 41 
3.2S1 and S2linearplasmids 	 42 



3.3 Integration of linear plasmids tnto mitochondrial 
chromosomes 	 45 

3.4 Rearrangements of coxi containing sequences in 5 mtDNA 	46 
3.5 Formation of the a-R arrangement found in S mtDNA 	55 
3.6 Nuclear effects on mtDNA in S cytoplasms 	 55 
3.7 Discussion 	 58 

Chapter 4- Mitochondrial DNA alterations in cytoplasmic 
revertants to fertility from S-type male sterile lines of maize 

4.1 Reversion from CMS-S 	 62 
4.2 Mltocflonclrlal DNA alterations in cytoplasmic revertants from 

CMS-S 	 63 
4.3 W1828N cytoplasmic revertants 	 64 
4.4 Cytoplasmic revertants from other sources 	 78 
45 Discussion 	 88 

Chapter 5-  Stoichlometry differences in atM gene types in 
maize cytoplasms 

5.1 Introduction 	 93 
5.2 The maize mitochondrial atDA gene 	 93 
5.3 Distribution of atDA types in maize cytoplasms 	 94 
5.4 Sub-stoichiometric levels of atDA gene types 	 98 
5.5 Discussion 	 . 	105 

Chapter 6- Formation of the sub-stoichiometric recombinant 
atM arrangements In maize mitochondria'  

6.1 The hypotheses to be tested 	 113 
6.2 Comparison of mitochondrial genome organizations in OY, N 

and Ccytoplasms 	 114 
6.3 Formation of the sub-stoichiometric type 1 atDA fragment in 

OYmtDNA 	 118 
6.4 Conversion of OY mTDNA organization into N mtDNA 

organization 	 123 
6.5 Investigation of the type 3 atDA sublimon in N mtDNA 	129 
6.6 Discussion 	 134 

Chapter 7- Discussion and speculation on a possible role for 
sublimons In the evolution of plant mitochondrial genomes 

7.1 Recombination in the maize mitochondrial genome 	 135 
7.2 Maintenance of mitochondrial genome structure 	 137 
7.3 Possible implication of sublimons in the evolution of the 

plant mitochondrialgenome 	 138 



7.4 Segregation of heterogenous or multipartite genomes 	143 
7.5 Conclusions 	 150 
7.6 Future work 	 150 

Bibliography 
	 152 

Publication 



Abbreviations 

minUte 
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hrs hours 
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ri bul ose- 1 ,5-bi sphosphate carboxyl ase 
MOPS Morphol i nopropane sul phonic acid 
mtDNA Mitochondrial deoxyribonucleic acid 
mtRNA Mitochondrial ribonucleic acid 
NAD Nicotinamide adenine dinucleotide 
NADH Reduced nicotinamide adenine dinucleotide 
NCS Non-chromosomal stripe 
ND  Mitochondrial gene for subunit 1 of the 
NADH:ubi qul none 	oxi doreductase complex 
N-terminal Amino- terminal 
ORF Open reading frame 
PEG Polyethylene glycol 



Rf Nuclear fertility restorer  gene 
RNA Ribonucleic acid 
rRNA Ribosomal ribonucleic acid 
513 Mltochondrial gene encoding a p.olypeptide homologous 

to subunit 13 of the small ribosomal subunit of E. coil 
SDS Sodium dodecyl sulphate 
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STIR S plasmid terminal inverted repeat 
TAE Tris-actetate electrophoresis buffer, defined on p.31 
TBE Tris-borate electrophoresis buffer, defined on p.31 
TE Tris-EDTA buffer, defined on p. 31 
TEMED N,N,N ,N-tetramethyl ethyl ene-diam me 
Tricine N-tris (hydroxy methyl) methyl glycine 
Tris Tris (hydroxymethyl) amino methane 
tRNA Transfer ribonucleic acid 
w/v Weight per volume (given as a percentage) 
X-gal 5-bromo 4-chioro 3-indoyl 3-galactoside 



Chapter 1- Plant mitochondrial genome organization 

and evolution 

1.1 Introduction 

Each of the nuclear, chloroplast and mitochondrial compartments in 

higher plant cells contains its own genetic information. The chloroplast 

and mitochondrial genomes are small relative to the nuclear genome and 

contain only a part of the genetic information necessary for their 

biogenesis and function. Higher plant mitochondria synthesize only about 

20 polypeptides (5- 10% of their total polypeptide complement) as shown 

by analysis of their in  labelled translation products (Leaver 

and Gray 1982). The remaining gene products are encoded by the nuclear 

genome. These observations imply a coding capacity for higher plant 

mitochondrial DNA (mtDNA) similar to that of other eukaryotic mtDNAs. 

All the animal mitochondrial genomes so far examined (including Homo 

sapiens, Xenous and Drosophila) encode the same thirteen proteins 

(Anderson et a]. 1981, 1982, Bibb et al. 1981, Clary and Woistenholme 

1985, Roe et a]. 1985). However, higher plant mitochondrial genomes are 

invariably at least 10 fold larger than animal mtDNAs, and several times 

bigger than the known fungal mitochondrial genomes (for reviews see 

Leaver and Gray 1982, Pring and Lonsdale 1985, Lonsdale 1987). In 

addition, higher plant mitochondrial genomes vary greatly in size (from 

200-2400kb), even between species within a single family (Ward et al. 

1981). On the evidence of DNA reassociation kinetics, this size variation 

is not thought to be due to the presence of repetitive sequence 

duplications. 

The large and variable size of the mitochondrial genome of higher 



plants makes it an interesting subject for investigation, as does the 

apparent rapidity and scale of its structural variation on an evolutionary 

timescale. This thesis attempts to explore some of these areas by 

concentrating on variation in the mitochondrial genomeof maize, as 

typified by a few specific mitochondrial genome rearrangements, and 

then discussing these results in relation to the general field of plant 

mitochondrial genome evolution. A novel hypothesis is discussed that 

could help explain some forms of plant mitochondrial genome 

reorganization. 

1.2 Higher plant mitochondrial genome size and organization 

The mitochondrial genomes of several plant species have been mapped 

by ordering cloned overlapping mtDNA fragments (table 1.1). These maps 

share the common feature that they can be arranged to form a master 

circle' accounting for all the sequence complexity, which generally 

Includes one or more pairs of large direct repeats. Homologous 

recombination between these repeats would be expected to give rise to 

families of smaller subgenomic circles (fig. 1.1). Clones have been 

obtained for the recombinant rearrangements as well as for the master 

circle configuration, so it seems likely that higher plant mtDNA does 

exist as a multipartite genome (Palmer and Shields 1984, Lonsdale et al. 

1984). Differences in replication and/or recombination rates of these 

subgenomic molecules allow the possibility of complex stoichiometries 

of genome fragments, detectable by restriction endonuclease analysis 

(Quetier and Vedel 1977 )  Pring and Levings 1978 )  Borck and Walbot 

1982). From an evolutionary standpoint, it is interesting to note that 

this complex mix of molecules is stable, at least for a few sexual 



Table 1.1 Plant mitochondrial genomes with complete 

restriction maps 

Species: 	 Genome 	No. of 	References 

Common name Latin name 	 size (kb) 	repeats 

Brassica hirta 208 0 	1 

Turnip Brassica camDestris 218 1 	2 

Cabbage Brassica oleracea 219 1 	3,4 

Oilseed rape Brassicanapus 221 1 	4 

Black mustard Brassica nigra 231 1 	4 

Radish RaDhanus sativa 242 1 	4 

Spinach SDinacea oleracea 327 1 	5 

Wheat Triticum aestivum 440 10 	6 

Maize Zea 570 6 	. 7 

References: 

I Palmer and Herbon 1987a 

2 Palmer and Shields 1984 

3 Chetrit et al. 1984 

4 Palmer and Herbon 1987b 

5 Stern and Palmer 1986 

6 Quetier et al. 1985 

7 Lonsdale et al. 1984 

3 



Fig. 1. 1. The multipartite mitochondrial genome of maize mitochondria 

(from Lonsdale 1987). 

Six repeats of between c. 1kb and 14kb have been identified on the 570kb 

master circle (Lonsdale et al. 	1984). Recombination between the single 

pair of indirect repeats (repeat-4) interconverts two isomers of the 

master circle (A and B). Recombination between the five pairs of direct 

repeats gives rise to a multitude of subgenomic circles, some of which are 

shown. Many other circular forms arising from both inter- and 

intramolecular recombination events between these repeats can be 

predicted but are not illustrated. 
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generations (Oro et al. 1985)y implying an equilibrium has been reached 

which is not prturbed by segregation during seed formation, germination 

or subsequent differentiation of tissues (Quetier and Vedel 1977). 

However, quantitative variations in amounts of specific restriction 

endonuclease fragments has been observed in tissue culture cells (McNay 

et al. 1984, Kemble and Shepard 1984, Morgens et a). 1984, Negruk et al, 

1986, Rode et al. 1987). 

It should be noted that purified higher plant mtDNA, when examined by 

electron microscopy, usually appears as an assortment of linear 

molecules of varying sizes (Woistenholme and Gross 1968, Mikuiska et 

a1. 1970, Wong and Wildman 1972, Kim et al. 1982a, Manna et a). 1985). 

Circular molecules are rare, (less than 5% of the population) and when 

isolated are generally heterogenous in size and much smaller than the 

master circle, as predicted from summing the sizes of restriction 

endonuclease fragments (Synenki et al. 1978, Levings et a). 1979, Sparks 

and Dale 1980, Fontarnau and Hernandez-Yago 1982, Negruk et a), 1982, 

Bailey-Serres et a). 1987). It is unclear whether this accurately reflects 

the in vivo situation, or whether the high preponderance of linear 

molecules is due to shearing of the mtDNA during isolation 

(Wolstenholme and Gross 1968). Some mitochondrial genomes have been 

convincingly demonstrated to be wholly or partially linear in vivo (e.g. 

Tetrahymena (Morin and Cech 1986); Chiamydomonas (Gray and Boer 

1988); Candida (Kovac et al. 1984)) including the maize mitochondrial 

genomes from S (Schard) et a). 1984) and RU cytoplasms (Lonsdale et a). 

1988). It is possible that all higher plant mtDNAs consist largely of 

circularly permuted linear molecules rather than as a collection of 

closed circles. 



1.2.1 The maize mitochondrial genome 

The mitochondrial genome of fertile (N) maize can be represented as a 

'master circle' of 570 kb, containing six pairs of large repeats (Lonsdale 

et al. 1984). Five of these pairs of repeats are in direct orientation, and 

recámbination between them is predicted to give rise to a mixed 

population of subgenomic circular molecules of varying sizes (fig 1.1). 

A number of protein coding genes have been isolated and sequenced 

from maize mtDNA (table 1.2). In all but one case, these genes code for 

polypeptide constituents of the protein complexes of the inner 

mitochondrial membrane, which are involved in electron transport and 

the coupled synthesis of ATP. These include the genes for subunits I, II, 

and III of the cytochrome c. oxidase complex, apocytochrome b of the 

cytochrome bc, complex, and the genes coding for three constituents of 

the ATP synthase complex; subunits 6 and 9 of the F 0  membrane fraction, 

and the a-subunit of the F 1  catalytic fraction (table 1.2). 	In addition, 

part of the 	gene coding for 	sUbunit 	1 	of 	the NADH:ubiquinone 

oxidoreductase complex has been identified (Bland et al. 1986). 

Plant mitochondria encode their own protein synthesizing machinery, 

some of which is encoded in the mitochondrial genome. Maize mtDNA 

encodes the 265, 185 and 55 ribosomal RNAs and at least one ribosomal 

protein (table 1.2), and also a number of tRNA genes. It is not currently 

clear whether maize mtDNA lacks some of the tRNAs required for protein 

synthesis, as is the case in some algal mitochondria (Suyama 1986, Gray 

and Boer 1988). All these genes have been located on the 570kb master 

circle map (fig. 1.2) (Dawson et al. 1986, Lonsdale 1987). 

As well as the N mitochondrlal genome, three other major classes of 

mitochondrial genome organization are known in maize (designated C, Ta 	). 

7 



Fig. 1 .2. Genetic map of the maize mi'tochondrial genome (after Dawson 

et al. 1986, Lonsdale 1987). 

The approximate size, orientation (inner arrows) and location of the six 

large repeats in the genome (numbered as in fig. 1.0 are shown (open 

boxes). The solid boxes represent known genes, including those presumed 

to be derived from plastid DNA (LS, 165, ct5S). The direction of 

transcription of these genes is indicated by the outer arrows. Only part 

of the ND  gene has been sequenced. The locations of transfer RNAs are 

marked by thin bars. For a fuller description of the known maize 

mitochondrial genes, see table 1.2. The hatched box represents sequence 

of chloroplast DNA origin. The repeat-I sequences have been labelled 

r-R I and R2-0 according to notation used. by Houchins et a). (1986). -R  I 

and R2- are integrated forms of the linear RI and R2 plasmids (see 3.2). 

The atDA gene lies on a 12kb direct repeat (repeat-6). The two copies of 

the gene are labelled I and 2 according to the designation used in chapter 

5 (Small eta]. 1987),, -  --  "  
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Table 1.2 Genes isolated and sequenced from maize mtDNA 

Gene 
	 Length (bp) Reference 

Cytochrome , oxidase complex 
Subunit I 	Cox  1 	1584 
Subunit II 	coxI I 	780 
Subunit III 	coxiII 	795 

Cytochrome bc 1  complex 

Apocytochrome b 	cob 	1164 

Isaac et al. 1985b 
Fox and Leaver 1981 
Hauswirth et al. pers. comm. 

Dawson et al. 1984 

ATP synthase complex 
cr- subunit (F 1 ) 

	

1524 
	

Braun and Levings 1985, 

Isaac et a). 1985a 

subunit 6 (F 0 ) 	 jt26 
	

873 
	

Dewey et al. 1985a 

subunit 9 (F 0 ) 	129 
	

222 
	

Dewey et a). 1985b 

Ribosomal proteins 
small subunit 	513 
	

387 
	

Bland et a). 1986 

Ribosomal RNAs 
265 rRNA 
185 rRNA 
55 rRNA 

Transfer RNAs (tRNAs) 
f-Met 
Met 
Asp 
His 
Cys 
Ser 

cited in Lonsdale 1987 

3546 Dale eta]. 1984 
1968 Chao etal. 1984 

126 Chao etal. 1983 

74 Parks eta]. 1984 
74 Parks et al. 1984 
74 Parks eta]. 1985 
76 lams etal. 1985 
71 Grienenberger- 
88 Grienenberger 

L[i 



These four cytoplasmic groups can be differentiated by the restriction 

endonuclease digestion patterns of their mtDNA (Levings and Pring 1976., 

Pring and Levings 1978. Thompson et al. 1980, Kemble et al. 1980). These 

variant mtDNA organizations are linked with the trait of cytopla smic 

male sterility (CMS) (see 1.3). 

1.2.2 Extrachromosomal DNAs 

Many plant. mitochondria contain in addition to the main genome (or 

m i tochondrial chromosome) small extrachromosomal species, often 

referred to as plasmids.. These plasmids can be differentiated into 

circular and linear classes. 

Circular plasmids are present in high copy number relative to the 

main genome, and are apparently unrelated to any sequences in the main 

genome (for reviews see Sederoff and Levings 1985,   Pring and Lonsdale 

1985, Lonsdale 1987). For these reasons they are presumed to contain 

their own replication origins, and thus are of interest. Sequence analysis 

has identified potential hairpin' structures (Wahleithner and 

Wolstenholme 1987) similar to those at replication origins in 

mammalian (Chang et a). 1985) and yeast rntDNA We Zamaroczy and 

Bernardi 1985) or sequences resembling yeast . ARS (autonomously 

replicating sequence) elements (Ludwig et a). 1985). Different 

cytoplasms even within one species often show their own characteristic 

pattern of extrachromosomal plasmids (Kemble and Bedbrook 1980, 

Powling 1981, Kemble et a). 1983, Smith et al. 1984, Carlson and Kemble 

1985). This implies the plasmids are not essential for mitochondrial 

function, an idea which is supported by the fact that although some of 

these plasmids are transcribed, they seem to contain no uninterrupted 

open reading frames (ORFs) and therefore presumably lack coding 



functions (Hansen and Marcker 1984, Wahleithner and Wolstenholme 

1987)., although there are possible exceptions (Ludwig et al. 1985, 

Bedinger et al. 1987). 

Some plant mitochondria contain linear extrachromosomal plasmids 

or episomes. Linear plasmids have been identified from Z. Wring et al. 

1977, Thompson et al. 1980, Weissinger et al. 1982, Levings and Sederoff 

1983, Timothy et al. 1983, Paillard et al. 1985, Bedinger et al. 1987), 

Sorghum (Dixon and Leaver 1982, Pring et al. 1982b, Chase and Pring 

1986) and Brassica (Palmer et al. 1983, Erickson et al. 1986b, Turpen et 

al. 1987). The best studied of these linear plasmids are the SI and 52 

DNAs of mitochondria from the S cytoplasm of maize, which will be 

discussed in detail in Chapter 3. Autonomously replicating dsRNA 

plasmids have also been described in mitochondria from the S cytoplasm 

of maize (Finnegan and Brown 1986), from male sterile Vicia faba (Grill 

and Garger 1981), and from fertile and male-sterile sunflower (Brown et 

al. 1986). 

1.2.3 Promiscuous DNA in the mitochondrial genomes of plants 

Part of the explanation for the large size of plant mitochondrial 

genomes is the large amounts of DNA sequence included within them 

which appears to be of non-mitochondrial origin (reviewed in Lonsdale 

1987, Schuster and Brennicke 1987a). The, bulk of the , 'foreign' or 

'promiscuous' DNA identified to date is of plastid origin. The original 

finding was of .12kb of contiguous sequence in maize mitochondria 

showing homology to chloroplast DNA (cpDNA) (Stern and Lonsdale 

1982). Other plastid homologies in maize include a large part of the gene 

for the large subunit of ribulose- 1 ,5-bisphosphate carboxylase (Lonsdale 

et al. 1983). These are shown on fig. 1.2. Observations of cpDNA homology 

12 



in mtDNA were soon extended to many other plant species (Stern and 

Palmer 1984a, Lonsdale 1987,   Schuster and Brennicke 1987a). 

Protein-coding sequences derived from plastids found in plant 

mitochondria are probably non-functional, due to the differences in 

transcription/translation signals and machinery in the two organelles, 

but there is a possibility that some tRNA genes in plant mitochondria 

which show considerable homology to their plastid counterparts are 

functional in the mitochondrion (Bedinger et al. 1987). 

Recently mtDNA sequences have been identified in Oenothera which 

appear to have nuclear origin, including part of the nuclear 185 rRNA 

gene (Schuster and Brennicke 1987b). Thus it appears that throughout the 

evolution of plant mtDNA it has acquired sequences from both the other 

cellular compartments containing genetic information. 

13 Cytoplasmic male sterility 

Cytoplasmic male-sterility (CMS) is a maternally inherited trait 

characterized by a failure of the affected plants to produce functional 

pollen. It is a common trait, and has been described in over 140 different 

species of flowering plant (Laser and Lersten 1972). The CMS phenotype 

is used extensively in the commercial production of F 1  hybrids of several 

crop plants, including maize and sorghum, as it prevents 

self-fertilization of the female parent. To produce male-fertile F 1  

hybrids (required for crop production), the male parent of the cross must 

contain a dominant nuclear gene which siipresses the CMS phenotype. 

Such nuclear genes are termed fertility-restorer (EL) genes. 

A range of evidence associates CMS with changes in the mitochondrial 

genome rather than the chloroplast genome (Leaver and Gray 1982), most 

13 



convincingly demonstrated by the segregation of the CMS phenotype with 

mitochondrial and not plastid genotype following protoplast fusion 

experiments (reviewed in Hanson and Conde 1985). Although first shown 

in maize (Levings and Pring. 1976, Pring and Levings 1978), mtDNA 

alterations linked with CMS have been demonstrated in several other 

species, including Sorghum (Conde et al. 1982, Pring et al. 1982a), Vicia 

faba (Boutry and Briquet 1982), sugarbeet (Powling 1982), tobacco 

(Belliard et al. 1979, Boutry et al. 1984), Petunia (Boeshore et al. 1985), 

sunflower (Leroy et al. 1985), Brassica sp. (Erickson et al. 1986a), and 

rice (Mignouna et al. 1987). Maize cytoplasms that can confer the CMS 

phenotype are classified as either I (Texas), C (Charrua) or S (USDA), on 

the basis of the effects of different nuclear fertility-restorer genes 

(Duvick 1965). N (normal) cytoplasms allow fertile pollen development in 

all nuclear backgrounds. 

CMS is important because it Is one of the very few phenotypic 

mutations known to have its origins in plant mitochondria. The study of 

yeast mitochondrial biogenesis is so much further advanced than that of 

plants because of the ability of yeast to survive in anaerobic conditions 

without requiring mitochondrial function. This ability allows 

experimenters to create and investigate mutations in yeast mtDNA and in 

nuclear genes coding for mitochondrial proteins that would invariably be 

lethal in other organisms. Plants cannot survive without functional 

mitochondria, and thus most mutations in mtDNA or in nuclear genes 

encoding mitochondrial proteins are either lethal or undetectable 

because they have no phenotypic effect. CMS is not a lethal mutation, and 

it only affects a few specific cells during pollen formation. The interest 

in the molecular basis for CMS also stems partly from the fact that the 

definition covers a multitude of subtly different phenotypes (depending 

14 



on the stage at which anther differentiation s affected), due probably to 

an even greater number of initial mutations. In maize, mitochondria from 

the three types of CMS cytoplasms can be distinguished by restriction 

endonuclease digestion patterns of their mtDNA, variations -in their 

mtRNA transcription patterns, and by differences in their translation 

products (Leaver and Gray 1982, Lonsdale 1987), and thus different 

alterations in mtDNA organization and related gene expression appear to 

give rise to CMS even within the same species. 

Another phenotype, nonchromosomal stripe (NCS), has recently been 

linked with mtDNA rearrangements in maize (Newton and Coe 1986). 

Plants carrying the mutation have poor growth, abnormal morphology and 

exhibit leaf striping. All the mutants reported have arisen from the 

closely related lines WF9-T and H49-T, but the phenotype is not affected 

by the nuclear genes that restore pollen fertility to CMS-T plants. The 

two mutants that have been characterized so far are distinguishable on 

the basis of mtDNA restriction endonuclease patterns, and as the WF9 

nuclear background appears to induce these mutations at a frequency of 

around 1%, novel plant mitochondrial mutants may soon be available for 

study (Newton and Coe 1986). 

1.3.1 Chimaeric genes and variant polypeptides in mitochondria 

from male-sterile plants. 

A common feature of mitochondria from CMS lines is the synthesis of 

variant polypeptides absent from fertile control lines (Forde et al. 1978, 

1980, Forde and Leaver 1980, Dixon and Leaver 1982, Boutry et al. 1984, 

Bailey-Serres et al. 1986a, 1986b). In several of these cases the variant 

polypeptides have been shown to be coded for by a novel open reading 

15 



frame (ORE) generated by fusion of several unrelated sequences creating 

a chimaeric gene (Dewey et al. 1986, 1987, Bailey-Serres et al. 1986b, 

Young and Hanson 1987, Levings and Dewey 1988). 

In the Sorghum 9E cytoplasm a variant 42kDa polypeptide was shown 

to be coded for by an extended coxi gene. In this cytoplasm DNA 

recombination has added 101 codons to the 3 end of the normal Q..QxJ  ORE, 

increasing the apparent molecular weight of the COI protein from 38kDa 

to 42kDa (Bailey-Serres et al. 1986b). The origin of the extra coding 

sequence is not known. It has not yet been possible to demonstrate any 

significant phenotypic effect of the extended COI protein - on the function 

of 9E mitochondria. 

Similar chimaeric genes have been described from the male-sterile 

maize C cytoplasm. In CMS-C mtDNA a novel gene has been created by 13 

codons from the 5 end of the atD9 gene becoming coupled to 147 codons 

from an unidentified gene (showing homology to the chloroplast genome) 

which is in turn linked to 268 codons from the 3 end of the ato6 gene. 

Elsewhere in the genorne the 5' end of the atD6 gene is fused to the 

majority of the coxil gene (Levings and Dewey 1988). In this case it has 

not been demonstrated that the proteins predicted by these rearranged 

reading frames are expressed (although the novel genes are transcribed) 

or that they are responsible for the male-sterile phenotype. 

Conclusive links between chimaeric genes and male-sterility have 

been shown in two cases. Boeshore et al. (1985), by screening Petunia 

plants with recombinant mitochondrial genomes produced by fusing 

protoplasts derived from sterile and fertile lines, identified a mtDNA 

restriction endonuclease fragment that consistently segregated with the 

CMS phenotype. Sequence analysis of this fragment has revealed that it 

contains a novel chimaeric gene, designated 2QL  The 2çj  gene contains 



the first 35 codons of the ath9 gene, 158 codons from Q.QJI and 157 

codons from an unidentified gene, urf S (Young and Hanson 1987). 

Transcripts of this gene are elevated in anther tissue relative to leaves, 

and although a protein product from this gene has yet to be 

demonstrated, there is strong evidence that this gene is in some way 

responsible for the CMS phenotype in Petunia. 

Probably the most intensively studied CMS system is CMS-T in maize. 

This is due in part to the fact that it was the predominant cytoplasm 

used in commercial breeding of F 1  maize hybrids. In 1970, this 

cytoplasmic uniformity in the maize crop (over 90% of commercially 

grown maize hybrids carried this cytoplasm) led to a disastrous 

epidemic of Southern Corn Leaf Blight, .a disease caused by the 

pathogenic fungus HelminthosDorium maydis Race T, which preferentially 

attacked CMS-T plants (Hooker et al. 1970). Mitochondria isolated from T 

cytoplasm, but not from N, C or S cytoplasm are sensitive to low 

concentrations of the 1-toxin produced by the fungus (Miller and Koeppe 

1971). The T-toxin (a linear polyketole) promotes leakage of NAD+ and 

Ca (Holden and Sze 1984), uncouples oxidative phosphorylation 

(Bednarski et al. 1977) and dissipates the potential across the inner 

mitochondrial membrane (Holden and Sze 1987). These results suggest 

that the T-toxin, in association with a factor specific to CMS-T 

mitochondria, probably increases the permeability of the inner 

mitochondrial membrane to protons, and possibly other ions (Holden and 

Sze 1987). 

Mitochondria isolated from CMS-T plants synthesize a l3kDa 

polypeptide not present in other maize cytoplasms (Forde et al. 1978). 

Synthesis of this polypeptide is reduced in lines containing the nuclear 

genes BLL  and R.t2J both of which are necessary for male-fertility 
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restoration of CMS-T plants (Forde and Leaver 1980). The 1 kDa 

polypeptide is also lacking in plants which have permanently reverted to 

fertility (Dixon et al. 1982). The presence of this 13kDa polypeptide 

correlates with both the CMS-T phenotype and T-toxin sensitivity. 

Using differential hybridization of mtRNA from N and T mitochondria 

to cloned T mtDNA, Dewey et al. (1986) identified an abundantly 

transcribed restriction, endonuclease fragment unique to CMS-T mtDNA. 

This fragment included a novel chimaeric open reading frame (designated 

urfi3-T) predicted to code for a polypeptide of 12,961 Da. The chimaeric 

fragment containing this ORF appears to have been produced by at least 

seven separate recombination events, involving the 5' flank of atD6. 

flanking and coding sequences of the 265 rRNA gene, an unidentified ORE 

coding for a predicted 25kDa protein, and a sequence showing homology 

to a chioroplast tRNA -Arg gene (fig. 1.3) (Dewey et al. 1986). An 

antibody raised against a synthetic oligopeptide based on a portion of the 

coding sequence of urf 13-1 selectively immunoprecipitates the CMS-T 

specific 13kDa polypeptide (Dewey et al.. 1987, Wise et al. 1987a, Leaver 

et al. 1988). It is interesting to note that urf 13-1 is entirely composed 

of sequence from the 3' flanking region of the 265 rRNA gene and a short 

sequence from within the coding region of the 26S RNA gene, sequences 

which are not normally protein-coding. This contrasts with the 

rearrangements described in Sorghum. Petunia and the maize C cytoplasm 

which involve modifications of pre-existing protein-coding genes. 

Four transcripts of the urf 13-1 region have been identified (Dewey et 

al. 1986, 1987). The smallest of these is present only in lines containing 

the Rfj fertility-restorer gene, and the identification of its 5' terminus 

indicates it cannotencode the entire 13kDa polypeptide. CMS-T lines 

with Rfj also synthesize reduced levels of the 1 3kDa polypeptide, 
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265 rRNA 
coding region 

atp6 	265 rRNA 

5 flank 	3 flank 	 ORF 25 

urf 13-1 

chiorop last 
tRNA-Arg 

Fig. 1.3. The uril 3-1 region of CMS-T mtDNA (based on the data of Dewey 

et a]. 1986) 

Vertical lines indicate the sites of the recombination points involved in 

the formation of this region. Other sequences homologous to this region 

are indicated where known. The urf 13-1 gene is shown by a solid box, the 

open reading frame encoding a putative 25kDa polypeptide (ORF 25) is 

shown by an open box. Nine codons of the urf 137T gene, between the two 

regions of 265 rRNA homology, are of unknown origin. 



suggesting that the RLL gene product may suppress the CMS-T phenotype 

by processing the mRNA encoded by the urf 13-T gene (Dewey et al. 1987). 

However, the nuclear gene RL2. is also obligatory for suppression of the 

CMS-T phenotype, and this gene does not appear to influence the 

expression of urf 13-1 (Dewey et al. 1987). 

As mentioned earlier, the presence of the l3kDa polypeptide also 

correlates with T-toxin sensitivity. The best direct evidence of this is 

that if the urf 13-1 gene is expressed in E. coli, then 1-toxin sensitivity 

is conferred on the bacterial respiration. This 1-toxin effect is not 

apparent in E coiI expressing an N-terminal truncated version of the 

1 3kDa polypeptide (Levings and Dewey 1988); 

Some other variant polypeptides synthesized by plant mitochondria 

are probably coded for by the linear plasmids described in 1.2.2. In some 

Sorghum lines the presence of certain high molecular weight 

polypeptides correlates with the presence of linear plasmids (Dixon and 

Leaver 1982, Bailey-Serres et al. 1986a), whilst in maize the linear 

plasmids characteristic of the S cytoplasm have been shown to encode 

high molecular weight polypeptides by using portions of these plasmids 

to direct protein synthesis in vitro, and then using antibodies to these 

proteins to detect similar polypeptides in CMS-S mitochondria (Manson 

et al. 1986, Zabala and Walbot 1987). 
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1.3.2 Reversion to fertility 

An interesting feature of S-type CMS is the spontaneous heritable 

reversion to male fertility that sometimes occurs in such plants 

(Laughnan et al. 1981, Laughnan and Gabay-Laughnan 1983). Such 

reversion events can be due either to mutations located in the nucleus 

(i.e. show Mendelian inheritance) or in the cytoplasm (in which case they 

show maternal inheritance and are linked with specific alterations in the 

mitochondrial genome). A full discussion of cytoplasmic reversion to 

fertility in CMS-S cytoplasms is given in Chapter 4. 

Reversion from CMS-C or CMS-T has never been found in field-grown 

plants, but reversion from CMS-T has been shown in plants regenerated 

from callus cultures, either with (Gengenbach et al. 1977) or.without 

T-toxin selection (Brettell et al. 1980, Umbeck and Gengenbach 1983). 

These reversion events Tare  associated with either loss or reduction in. 

synthesis of the 1 3kDa polypeptide characteristic of CMS-T mitochondria 

(Dixon et al. 1952). These reversion events are also associated with 

alterations in the mtDNA. In the vast majority of these revertants a 

6.7kb XtQI  fragment has been replaced by a 6.3kb XtiI  fragment (Umbeçk 

and Gengenbach 1983) due to a small deletion following recombination 

between two 55bp direct repeats (Rottman et al. 1987). The deleted 

sequence includes the urfl3-T gene thought to be closely linked to the 

CMS-T phenotype and T-toxin sensitivity (see above). In one revertant, a 

tandem 5bp duplication has resulted in a frameshift within the urfl3-T 

gene leading to the synthesis of a truncated gene product (Wise et al. 

1987b). 

Reversion from CMS-S has also been demonstrated in plants 

regenerated from tissue culture (Earle et al. 1987). A study of the mtDNA 



from CMS-S revertants obtained in this ;way is given in chapter 4. 

1.4 Evolution of higher plant mitochondrial genomes 

The sequence hoiiiology between mtDNA from related cytoplasms or 

species is extremely high. Table 1.3 shows the homology between 

mitochondrial genes of maize and those of other higher plants. There is 

in the order of 90% nuclebtide sequence homology between the genes of 

maize and dicotyledonous plants such as Qenothera, soybean, pea and 

Petunia, which are evolutionarily quite unrelated to maize. This 

remarkable conservation of sequence extends to non-functional 

sequences, such as the cpDNA insertions described in 1.2.3 (Marechal et 

al. 1987, Schuster and Brennicke 1987c), and thus is not solely due to 

selection pressure. The base substitution rate is very low for higher 

plant mtDNA when compared to mtDNAs from animas (Chao et al. 1984, 

Grabau 1985). A study of mitochondrial genome evolution in the genus 

Brassica has suggested point mutation rates 100-fold slower for 

Brassica mtDNA than that for animal mtDNA and 4-fold slower than that 

for Brassica cpDNA (Palmer and Herbon 1987b). Both copies of large 

repeats in plant mtDNA are generally identical (Houchins et al. 1986, 

Isaac et al. 1985a, Dewey et al. 1986, Hiesel et al. 1987). These 

observations suggest that efficient copy correction/mismatch repair 

systems are present, which is probably not the case for animal 

mitochondria (Brown 1983). These processes may be integral to the 

homologous recombination system presumed to be active in higher plant 

mitochondria. 

However, mtDNAs from closely related species and even from 

different cytoplasms within the same species can be readily 
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distinguished by their mtDNA restriction endonuclease profiles. Many of 

the characterized differences between related mtDNAs appear to involve 

aberrant recombination events between short regions of homology 

(Leaver et al. 1985, Schardl et al. 1985, Dewey et al. 1986). Others 

involve insertions and deletions of sequences, particularly the creation 

of novel repeats or loss of previously existing ones (Palmer and Herbon 

1987b, Small et al. 1987, Pring et al. 1987, 1988). Thus the predominant 

feature in the mtDNA evolution of higher plants appears to be rapid 

structural reorganization of the genome (Palmer and Herbon 1987b). 

One aspect of the plant mitochondrial genome which may help explain 

this mode of evolution is the prevalence of non-coding sequences (up to 

90% and more of the larger genomes (Ward et al. 1981)). Of equal 

importance is the fact that all but a few genes in plant mtDNA are 

independently transcribed (Makaroff and Palmer 1987). Therefore the 

plant mitochondrial genome might be expected to be very tolerant of 

structural reorganization and changes in. gene order, as it indeed seems 

to be. In contrast, higher plant cpDNAs are densely packed with genes, 

many of which are cotranscribed (reviewed in Cray 1986), whilst animal 

mtDNAs lack non-coding sequence almost entirely, and are transcribed 

from a single promoter (Clayton 1984, Brown 1985). This compact 

arrangement must severely constrain opportunities for structural 

alterations in the genome. 

14.1 Structural evolution of the maize mitochondrial genome 

The origins of maize are a matter of some debate. Some workers 

believe that modern maize (Zea is derived, from a wild corn that 

has since become extinct (Mangelsdorf 1986), but the majority view is 

that modern maize is a direct descendant of its closest living relative, 
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Table 1.3 Homologies between maize mitochondrial genes and 
those of other plant species 

Species DNA sequence Amino acid References 
homology (%) homology (%) 

185 ribosomal RNA Chao et al. 1984 

wheat 	 97 	 -" 	Spencer eta]. 1984 

Oenothera 	87.9 	 - 	Brennicke et al. 1985 

soybean 	 85 	 - 	Grabau 1985 

55 ribosomal RNA Chao et al. 1983 

wheat 93.2 - Spencer et al. 1981, 1984 

soybean 87.2 - Morgensetal. 1984 
Oenothera 86.3 - Brennicke et al. 1985 

Cytochrome c oxidase subunit I Isaac et al. 1985a 
sorghum 98 99.2 Bailey-Serres et al. 1986b 
wheat 98.1 97.5 Bonen et al. 1987 
soybean 93.9 94.2 Grabau 19.86 
Oenothera 92.7 92.2 Hiesel et al. 1987 

Cytochrome c.  oxidase subunit II Fox and Leaver 1981 
rice 99.5 100 Kao et al. 1984 
wheat 98.9 98.8 Bonen et al. 1984 
Oenothera 88.8 88.1 Hiesel and Brennicke 1983 
pea 90.4 86.4 Kao et a). 1984, 

Moon et a). 1985 

Apocytochrome b Dawson et a). 1984 
wheat 98.8 98.5 Boer et a]. 1985 
Oenothera 95.3 94.2 Schuster and Brennicke 1985 

ATP synthase (F 1 ) z— subunit 	 Braun and Levings 1985, 

Isaac et al. 1985b 
Oenothera 	92.2 	 92.7 	Schuster and Brennicke 1986 

ATP synthase (F0) subunit 9 

petunia 	 93 	 96.1 	Young et a]. 1986 
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the teosinte L mexicana, with which it crosses freely, and is the 

product of 10,000 years of selective breeding (Galinat 1971). The mtDNA 

of L mexicana closely resembles that from modern N maize, and probably 

can be considered as ancestral to it (Timothy et al. 1979, Sederoff et al. 

1981). 

The origins of the three male sterile maize cytoplasms cik even less 

clear. Restriction endonuclease fragment analysis of the four classes of 

maize mtDNA (N, C, 1, 5) reveals widespread differences between them 

Wring and Levings 1978). Pairwise comparisons show that about 30% of 

the fragments are different between any two lines (Borck and Walbot 

1982). Comprehensive studies of the mtDNA from ancestral, maize 

cytoplasms from South America (Weissinger et al. 1983) and Mexico 

(Kemble et al. 1983) as well as contemporary US inbred cytoplasms 

(Levings and Pring 1977, Pring et al. 1980, 1987, McNay et al. 1983, 

Sisco et al. 1985) reveal abundant minor variations within the fou( 

maize cytoplasmic classes, but they have not identified any obvious 

intermediate forms. Two theories have ben suggested to explain this 

situation: 

(1) The maize CMS cytoplasms were derived from teosinte species. 

related to maize. In many species CMS cytoplasms have been obtained by 

crossing two related species or cultivars with different mitochondrial 

genomes, and then repeatedly backcrossing the hybrid to the male parent. 

As mitochondria are not transmitted through the pollen in most higher 

plants (including maize), the breeder eventually obtains a line with the 

mitochondrial genome from the original female parent and the nuclear 

genome from the male parent: Incompatability between the two genornes 

is thought to be responsible for the CMS phenotype. However, a study of 

the mtDNAs from all the extant Zea sp. has shown that with the 
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exception of L mexicana, they do not resemble N mtDNA, neither are they 

at all related to the mtDNAs of the male-sterile maize cytoplasms 

(Timothy et al. 1979, Sederoff et al. 1981). Only L mexicana can be 

crossed to maize. Thus if the male-sterile cytoplasms are derived from 

ancestral teosintes, these ancestors are now extinct. 

(ii) An alternative hypothesis is that the CMS-linked mitochondrial 

genomes are derived from the original Lmexicana genome. In some ways 

this latter hypothesis seems more likely, as there is evidence that 

male-sterile cytoplasms post-date some of the fertile cytoplasms, e.g. 

the fertile RU cytoplasm of some primitive South American races 

appears to be ancestral to CMS-5 cytoplasm because of the relationship 

between their linear plasmids (see 3.2). As stated above, no 

intermediates between the N, C, 5, and T genomes are known, implying 

they have either been lost, or that the mitochondrial genome 

reorganizations occurred suddenly.The induction of catastrophic genome 

alteration from N-type to S-type has recently- been claimed (Lemke et al. 

1985). For a discussion of these experiments see 7.4 

Two well documented examples exist of rapid changes in 

mitochondrial genome organization in higher plants. The most drastic 

occurs following protoplast fusion to produce hybrid or cybrid cells 

(Belliard et al. 1979, Galun et al. 1982, Boeshore et al. 1983,1985, Fluhr 

et al. 1983, Nagy et al. 1981,1983, Chetrit et al. 1985, Kemble et al. 

1986). Widespread recombination between parental genomes gives rise to 

new mitochondrial genotypes containing novel recombinant fragments 

(Rothenberg and Hanson 1987, Morgan and Maliga 1987). Amplification of 

pre-existing low abundance fragments has also been described following 

this procedure (Morgens et al. 1984, Morgan and Maliga 1987). 

Cytoplasmic reversion to fertility is also associated with sudden 
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changes in the mtDNA. CMS-5 cytoplasmic revertants usually lose the 

characteristic linear 51 and 52 plasmids and also have specific deletions 

in the main genome following aberrant recombination events (Levings et 

al. 1980, Kemble and Mans 1983, Schardl et al. 1985). These alterations 

occur within a single plant life cycle. For a full discussion see Chapter 4. 

Culture-derived CMS-T revertants show very specific mtDNA alterations, 

as described earlier (1.3.2). 
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Chapter 2- Materials and methods 

2.1 Materials 

2.1.1 Maize seed 

The genotypes of the maize lines listed below are given as nuclear 

genotype-cytoplasmic genotype (where both are known). 

Maize seed with the genotypes B37-N, C, T, 5, SRf; B73-N, 5; WF9-N, 

C, 5, T, TRf; WM13-S; ECU321; ECU398; PUN6; CUN443 were supplied by 

Pioneer Hi-bred International, Des Moines, Iowa, USA. 

Maize seed with the genotypes A632-CA; Ay191-71-CA; B14A-CA; 

B37Ht-CA; C0109-CA; M017-CA; M574-CA; NyD4 10-CA; W 1 82BN-CA; 

W64A-CA, N; WF9-N, S and the WF9-S revertant 85:6838 were supplied 

by V.E. Gracen, Cornell University, New York, USA. 

The seed from the progeny of W182BN plants regenerated from tissue 

culture (samples lB to 208, used for the experiments in Chapter 4) and 

the control lines WI82BN-N, 181, CA, LBN, 5, T were supplied by E.D. 

Earle, Cornell University, New York, USA. 

Maize seed with the genotypes M825-N, 5; M825/0h07-VG and 

revertants thereof; WF9-ML, RD and revertants thereof were supplied by 

5. Gabay-Laughnan andJ.R. Laughnan, University of Illinois, Illinois, USA. 

The maize seed for the experiment shown in fig. 7.1 and the control 

lines WI82BN-181 and R181-N were supplied by C.A. Lemke, Cornell 

University, New York, USA. 

Maize seed with the genotypes C0192xWJ-LF, OY, F, 0, N, 234, SG, J, 

MY, H, PS, G, I, B, SD, L, D, CA, 181 were produced by R. E. Gunn, Plant 

Breeding Institute, Cambridge using cytoplasmic stocks from V.E. Gracen, 

Cornell University, New York, USA (Forde et al. 1980). 
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2.1.2 Maize mitochond1ia1 DNA clones 

The following single-stranded M13 clones were kindly supplied by Dr. 

P.G. Isaac (Department of Botany, University of Edinburgh): 

M3A3, M2C1; clones containing respectively the 5' and 3' ends of the 

maize mitochondrial coxi gene (Isaac et a). 1985b) 

ALXR 18, BLSC 1, AN6, BM4; clones containing portions of the atDA genes 

and surrounding sequences from N-type maize mtDNA (Isaac et a). 

1985a). 

The clones ISlES, 5185 and RHAB59 were constructed during the 

course of my research (see 2.2.4). 

The double-stranded plasmid clones 51339 (containing the Si linear 

plasmid of CMS-S mtDNA), 52341 and 52342 (containing internal P.tI 

fragments of 52) were gifts from Prof. C.S. Levings III (Department of 

Genetics, North Carolina State University, USA). 

The plasmids pHS63, pill and H53C5 were supplied by' Dr. P.O. Isaac. 

The plasmid pZmE67 was from a clone library of 837-N mtDNA 

constructed by Dr. A. Dawson (Department of Botany, Edinburgh). The 

plasmids pAB5 and T3H4 were made during the course of my research 

(chapter 6). 

The cosmid clones 04 and 05, covering the 12kb repeats from WF9-N 

maize mtDNA were donated by Dr. D.M. Lonsdale, Plant Breeding Institute, 

Cambridge. 

2.1.3 Chemicals 

Chemicals were supplied by British Drug Houses, Poole, Dorset or 

Sigma Chemicals, Poole, Dorset unless indicated otherwise. 

Agarose: 	Miles agarose for minigels 

Sigma type II agarose f or fractionation of mtDNA and 
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restriction endonuclease mapping of plasmids 

Agar: 	Difco Bacto Agar for minimal media plates 

Oxoid technical Agar for L broth agar plates 

Caesium chloride: 	 Fisons Scientific Apparatus 

Deoxy and Dideoxy-N-5' triphosphates: Boehringer Mannheim 

Herring sperm DNA: 	 Serva Feinbiochemica 

Sephadex: 	 Pharmacia 

X-gal: 	 NBL enzymes 

I PTG: 	 NBL enzymes 

oligodeoxynucleotide primers: 	Pharmacia 

2.14 Enzymes 

Restriction endonuc leases: Bethesda Research Laboratories, 

NBL Enzymes, Amersham International, 

Boehringer Mannheim 

Alkaline phosphatase: 	Amersham International 

DNA polymerase I: 

Large fragment of DNA 

polymerase (Kienow): 

Lysozyme: 

Proteinase K. 

14 DNA I igase: 

14 polynucleotide k inase: 	Amersham International 

Reactions were carried out according to the suppliers instructions. 

Amersham International 

Bethesda Research Laboratories, Pharmacia 

Sigma 

Boehringer Mannheim 

Bethesda Research Laboratories, Boehri nger 

Mannheim 

2.1.5 Radiolsotopes 
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Supplied by Amersham International; 

Deoxycytosine 5[c- 32 13}triphosphate (dCTP) as triethy lammonium salt, 

specific activity 15.1 718q mmor' 

Adenosine 5'[y- 32 13]triphosphate (ATP) as triethylammonium salt, 

specific activity I 1 1TBq mmol 1  

2.1.6 Buffers and solutions 

TE: 	 0.1 mM EDTA, 10mM Tris-HC1 pH8.0 

i OX TBE: 	 0.89M Boric acid, 0.02M EDTA, 

0.89M Trisi pH8.0 

i OX TAE: 	 0.2M sodium acetate, 0.02M EDTA, 

0.41 Tris:(2pH8.O 

20X SSC: 	 TOM sodium chloride, 0,3MT1sodium citrate pH7.0 

Hybridization buffer: 4X SSC, 0.1% (w/v) SDS, 50mM sodium phosphate 

(pH 55), 0.2% (w/v) BSA, 0.2% (w/v) Ficoll, 

0.2% (w/v) polyvinyl pyrrolidone (mol. wt. 40000) 

and 200p.g/ml denatured herring sperm DNA 

2.1.7 Bacterial growth media 

All percentages are w/v. 

Minimal agar: 	1.5% agar, 0.2% (NH 4 )25041  1.4% KH2PO4 , 

0.6% K2HP041  0.1% sodium citrate, 0.02% Mg50 4 , 

0.2% glucose, 2.5 X 10-4%  thiamine hydrochloride 

BBL top agar: 	1 % agar, 0.65% trypticase, 0.5% NaCl 

L broth: 	 I% Difco Bacto Tryptone, 

0.5% Difco Bacto yeast extract, 0.5% NaCI; pH7.2 
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L agar: 	 L broth including 1.5% agar 

2.1.8 Centrifugation equipment 

Sorvall RC-58 centrifuges were used in conjunction with Sorvall GSA 

rotors (250m1 bottles, 	lOOmi 	tubes) or Sorvall 55-34 rotors (50m1 

tubes, 30ml or 15m] Corex tubes) for isolation of mitochondria and 

initial pelleting of mtDNA. 

Sorvall OTD65B ultracentrifuges were used in conjuction with a Sorvall 

AH-627 rotor (1 7m1 or 36m1 tubes for sucrose gradients) or a Beckman 

70.1 Ti rotor ( Beckman heat-sealed tubes for CsC1 gradients). 

Eppendorf or MSE Micro Centaur microcentrifuges were used in 

conjunction with Treff 	1.5ml microcentrifuge tubes for all 

manipulations involving purified DNA, including enzyme reactions, and 

for the isolation of plasmid, cosmid and 'phage DNA. 

2.2 Methods 

2.2.1 Purification of maize mitochondria 

Maize seeds were imbibed for 4-16 hours in running water before 

sowing on cellulose wadding wetted with 1mM calcium chloride. After 4 

days growth in enclosed seed trays in the dark at 290C, the coleoptiles 

were removed and cooled to 40C prior 	to 	mitochondrial 	extraction. 

Immature cobs (5-10cm in length) were obtained from plants grown in 

soil in greenhouses. 

The following procedures were carried out at 4 0C, with pre-cooled 

centrifuges and equipment, and are a modification of those described by 

Leaver et al. (1983). When more than one sample was treated at one time, 

common equipment was washed thoroughly in cold distilled water. The 

volumes of buffers, the type of rotor and the size of centrifuge tubes 
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used varied with the amount of starting tissue. 

The tissue (either coleoptiles or immature cobs) was added to 

approximately twice the tissue weight of grinding buffer (0.41 mannitol, 

25mM MOPS buffer, 1mM EGIA, 0.1% (w/v) BSA, 8mM cysteine; pH7.5 ) 

and homogenised in a pestle and mortar before being filtered through 4 

layers of muslin. The filtrate was centrifuged for 5' at l000g to remove 

starch, cell wall debris, nuclei and most plastids. The supernatant was 

then centrifuged for 15' at 10000g to pellet the mitochondria. This pellet 

was resuspended in 1-2m1 of wash medium (0.411 mannitol, 5mM MOPS, 

1mM EGTA, 0. 1% BSA; pH7.5) and layered on a 13m I  or 31 ml sucrose step 

gradient (0.6M-O.9M- 1 .2M- 1 .45M-2.OM; 1 mM EGTA, 10mM Tricine; pH7.2) 

which had been left for 1-2 hours to form a smoother gradient. When 

dealing with small amounts of tissue, as for the fertility revertant 

samples in chapter 4, a simpler 14m] step gradient of 1.2-1.6M sucrose 

(containing 10mM potassium phosphate buffer, pH7.5) was used (Boutry 

and Briquet 1982). This type of gradient gave a higher yield of 

mitochondria, but the resultant mtDNA showed signs of degradation and 

contamination with degraded nuclear or plastid DNA. In retrospect this 

procedure is not recommended for mtDNA isolation. Both types of sucrose 

gradient were centrifuged at 50000g for 60'. The purified mitochondria 

were removed from the gradient (at the 1.45M and 1,6M interfaces 

respectively) and diluted with 4 volumes of wash buffer before pelleting 

at 10000g for 15'. This pellet can be kept frozen at -80 0C for over one 

year without signs of rntDNA degradation. 

2.2.2 Mitochondrial DNA isolation 

MtDNA was isolated by solubilization of the mitochondria in 0.5% 

N-lauroy) sarcosine, 100mM EDTA, 100mM Tris-HC1 (pH 8.0), 0.1mg/rn .) 

Proteinase K for 1 hour at 60 0C, followed by CsCI density gradient 
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centrifugation in the presence of 75p.g/ml ethidium bromide as described 

by Fox (1979). After centrifugation, the ethidium bromide was removed 

by extraction with butan-I-ol (pre-saturated with NaCl and TE). CsCJ 

was removed by diluting the sample with two volumes of TE, adding 

ethanol to 70% and precipitating the mtDNA overnight at -20 0C. The 

pellet (usually containing some CsCI) was collected by centrifugation at 

10000g.f or 30' at 0°C, dissolved in 400ti.1 TE, transferred to 1.5m] tubes 

and reprecipitated with 501i.l of 3M sodium acetate (pH6.0) and imi of 

ethanol at -20 0C. The mtDNA was pelleted by centrifugation at 12000g 

for 10-15' in a microcentrifuge, and repeatedly washed with 70% ethanol 

until free of salt. This purified mtDNA was stored at 4 0C dissolved in TE 

buffer. 

2.2.3 Gel electrophoresis blotting and probing of DNA 

Approximately 2p.g of mtDNA from each maize line was digested to 

completion with the chosen. restriction endonuc lease, and fractionated on 

a lx TAE 0.8% agarose gel (20 X 20 X 0.5 cm) at 1.5-2,0 V/cm overnight. 

The gels were stained with 0.0001% ethidlum bromide for 30' and 

photographed (Ilford H85 film). i:!indlll digested ?.. DNA was used as size 

markers on all gels. The mtDNA in the gels was then depurinated, 

denatured and capillary blotted (modified from Southern 1975) onto 

nylon filters (Hybond-N, Amersham) according to the manufacturers 

instructions. These filters were pre-hybridized for 30-60 minutes in 

hybridization buffer at 65 0C. 32P labelled DNA probes (see 2.2.9) were 

hybridized to the nylon filters under stringent conditions (65 0C in 

hybridization buffer) overnight. The filters were then washed in one or 

two changes of fresh hybridization buffer (lacking herring sperm DNA) at 

650C, followed by washing in 2X SSC or distilled water for 30 minutes at 

34 



x-rk/c;'v\ (cui;x'zP') 
room temperature. The filters were then exposed to pre-flashedfor 1-7 

days at -800C with the aid of intensifying screens. In some cases, the 

hybridized probe was removed by treating the filter in 0.41 NaOH for 1-2 

hours at 45 0C followed by neutralization at 45 0C for 30' in 0.1X SSC, 

0.1 %(w/v) SDS, 0.2M Tris-HC1 pH7.5. 

The above procedures were modified slightly for the detection of 

sublimons (Chapters 5 and 6). Approximately 5tg of mtDNA was used per 

gel lane (or the entire mtDNA content of an immature cob) and blotting 

was extended to 48 hours or longer. After probing, the filters were 

fl uorographed with Amersham Hyperf 11 m. 

When probing with oligonucleotide probes, the hybridization buffer 

was modified to 6X SSC and 250mg/mi herring sperm DNA, and the 

hybridization/washing temperature was lowered to 45 0C. 

2.24 Cloning and screening in M13 vectors 

M13 is a single-stranded coliphage that has been modified to make 

screenable' cloning vectors (Ml3mp vectors) by the introduction of part 

of the f3-galactosidase gene from E. coil (Messing et al. 1977). This lac 

region can complement the lesion in certain JT hosts (e.g. JM101, 

Messing 1983). The M13 derived vectors mpl8 and mpl9 contain an array 

of unique restriction sites (polylinker) within this .l1ac  region (Norrander 

et al. 1983). Insertion of DNA Into these sites abolishes j...  function. In 

the presence of X-gal and the inducer IPTG, host cells transformed with 

vector DNA form blue plaques when plated on a lawn of untransformed 

log-phase cells, whilst cells transformed with recombinant DNA form 

white plaques (Messing 1983). 

The construction and identification of the clone 5165 will be given as 

an example of the use of this system. Relevant details of the clones 

ISIE5 and RHAB59 are given in chapters 3 and 6 respectively. 
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The requirement was for a clone containing sequence specific to 51 

and lacking sequence common to 52. 2p.g of 51339 and ip.g of M13mp19 

DNA were digested with HIldlIl, and the enzyme removed by phenol 

extraction and ethanol precipitation. The linear DNAs were mixed and 

Incubated with 14 DNA ligase for 3.5 hours at room temperature. 

One-tenth of this mixture was used to transform competent JM1O1 cells 

(prepared according to Dagert and Ehrlich 1979). The ligation mixture 

was incubated with the competent cells for 40' on ice, heat-shocked at 

370C for 5-10' and mixed with 200p.1 of log-phase JM1OI cells, lOp.l of 

50mg/mi IPTO, 	1O.i.l of 50mg/ml X-gal (both dissolved in 

dimethylformamide) and 3.3ml of BBL top agar were added, shaken and 

the resultant mixture poured evenly on a minimal plate. After overnight 

incubation at 37 0C, recombinant clones (white plaques) were pickedonto 

three replica sets of gridded minimal plates covered by a fresh lawn of 

JMIOJ cells (200p.l log-phase cells plus 3.3m1 BBL top). After further 

overnight incubation the 'phage were transferred directly to 

nitrocellulose filters (Schleicher and Schuell) and the DNA denatured (5' 

on an absorbent pad soaked in 15M NaCl, O.5M NaOH), neutralized (5' on 

15M NaCl, 10mM EDTA, 05M Tris-HC1 pH7.2), rinsed in 2X SSC and fixed 

by baking at 800C in a vacuum oven. One filter was probed with 52342 (to 

show clones containing pUC fragments or S2 homology), and the other 

with gel-purified fragments (see 2.2.8) of 51339 known to be from 

entirely within the SI -specific sequence. Clones hybridizing to the 

second but not the first probe were presumed to be Si-specific, and 

included 5185. Using labelled 5185 as a probe on BamHI and fluidi  I I 

digested S mtDNA gave the expected hybridization pattern. 

2.2.5 Preparation of single-stranded DNA from M13 clones 
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Single-stranded M13 DNA was prepared from a single 'phage plaque as 

follows: 

A 102  dilution of an overnight culture of JM1OJ was grown for 90' at 

370C in L-broth with Vigorous shaking and then inoculated with 'phage 

using a toothpick. After four hours growth 	lml of this culture was 

removed 	into 	an Eppendorf tube, 	and 	the cells 	pelleted 	by 	3' 

centrifugation at 12000g in a microcentrifuge. 'Phage particles were 

precipitated from the supernatant by the addition of 2001i.l of 20% 

PEG-6000, 2.5M NaCl for 30', followed by 5' microcentrifugation. After 

thorough removal of the PEG, the DNA was purified from the 'phage 

particles by repeated phenol extraction and ethanol precipitation. 

2.2.6 Cloning and screening in pUC vectors 

pUC plasmid vectors contain the ampicillin resistance gene and the 

origin of replication from pBR322 and the lac region from. rll3mp vectors 

(Ruther 1980, Vie ira and Messing 1982). pUCJ8 and 19 contain the same 

polylinker as mpl8 and 19 (Norrander et al. 1983). Recombinant clones 

can be identified by the same blue-white screening procedure as is used 

for Ml3mp vectors. Transformed cells can be selected against 

untransformed cells by growing cells in the presence of ampicillin. 

The OY mtDNA library used in chapter 6 was made as follows: 

OY mtDNA was digested with XtIQJ  and ligated to Sall cut pUC18 which 

had been treated with alkaline phosphatase to inhibit religation 

(enzymes were removed by phenol extraction prior to ligation). The 

ligation mixture was used to transform competent JM1O1 cells as 

described by Maniatis et .al. (1982). The transformation mixture (with 

added IPIG and X-gal, see 2.2.4) was plated onto L-broth plates 

containing 1 OOp.g/ml ampici 11 in. After overnight growth, recombinant 

colonies (white) were picked onto gridded replica plates (L-broth, 
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100.g/ml ampicillin). After further overnight growth the colonies from 

one set of plates were transferred to Whatman 541 filter paper, and laid 

on L-broth plates for 16 hours containing 250j.tg/ml chloramphenicol to 

amplify the plasmids. DNA from the colonies was isolated and fixed to 

the filters by the denaturing and neutralization steps described in 2.2.5. 

2.2.7 Preparation of plasmid and cosmid DNA 

Piasmid and cosmid DNA was purified by a modification of the 

alkaline lysis procedure of Birnboim and Doly (1979). 

Cells picked from a single colony were grown overnight at 37 0C in 

5m1 of L-broth containing lOOp.g/ml ampicillin (200i.g/ml for cosmid 

isolation). Cells from imi of overnight culture were pelleted by 1' 

microcentrifugation and resuspended in 10010 of lysis buffer (10mM 

EDIA, If (w/v) glucose, 2mg/mi lysozyme, 25mM Tris-HC1 pH8.0) at 

room temperature. After 5°, 200i1.1 Of ice-cold 0.2M NaOH/ I % (w/v) SDS 

was added and gently mixed. After a further 5° on ice, 150ml of ice-cold 

3M sodium acetate (pH4.9) was added and gently mixed. The precipitated 

bacterial chromosomal DNA was pelleted by 10° microcentrifugation, and 

the supernatant deproteinated by phenol extraction. The plasmid DNA was 

subsequently precipitated by the addition of 0.9m1 of ethanol. 

2.2.8 Gel-purification of restriction enclonuclease fragments 

Restriction endonuclease digests of the donor plasmid were carried 

out such that the chosen fragment was easily distinguishable in size 

from other fragments, and was preferably the largest fragment present. 

The products of the digest were separated by electrophoresis in lx TBE 

agarose mini-gels (10 X 7 X 0.3 cm) containing 1.25p.g/mi ethidium 

bromide. The percentage agarose used (typically 1% w/v) and the 
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electrophoresis conditions varied according to the size of the fragment 

to be isolated. These mini-gels were also used routinely to check the 

progress of restriction endonuclease digestion of plasmids and mtDNA. 

Small strips or DEAE membrane (Schleicher and Schuell) were inserted 

into the gel on either side of the chosen fragment. On the resumption of 

electrophoresis the stained fragment collected on the DEAE membrane in 

front' of the fragment and could be eluted by 15 incubation at 65 0C in 

200p.l of 1.511 NaCl, 1mM EDIA, 10mM Tris-HCI pH8.0 before purification 

by ethanol precipitation. 

2.2.9 DNA hybridization probes 

Single-stranded M13 clones were labelled with [a -32P}dCTP by a 

modification of the method of Hu and Messing (1982). A 15- or 17-base 

oligodeoxynucleotide universal sequencing primer was annealed to the 

single stranded M13 template DNA and used to prime second strand 

synthesis by Klenow. Unincorporated nucleotides were removed by 

passing the reaction mixture through a G-50 Sephadex column (Maniatis 

et al. 1982). The labelled and template strands were separated by boiling 

and rapid quenching on ice before being added to the hybridization buffer. 

Double-stranded plasmids and cosmids were labelled with 32P by 

nick-translation (Rigby et al. 1977). Double-stranded gel-purified DNA 

fragments.were boiled to separate the strands and then labelled with 32P 

by using annealed random hexanucleotide primers to prime second strand 

synthesis by Kienow. 

Oligonucleotides 	were 	labelled 	by 	incubating lOpmol 	of 

oligonucleotide, lOpmol [y-32P]ATP and 10 units of polynucleotide kinase 

at 370C for 1-2 hours in kinase buffer (0.511 Tris-HC1 (pH7.6), 0. 1M 

MgCl 2, 50mM DTT, 1mM spermidine, 1mM EDIA). The entire reaction 
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mixture was added to the hybridization buffer. 

2.2.10 DNA sequencing 

The sequencing of the M13mp19 clone RHA659 was performed by the 

chain-termination method (Sanger et al. 1977, 1980), using both 15 and 

17-base synthetic ol igonucleotide sequencing primers (Messing 1983), 

and [a -32P]dcTP as a radioactive label. Analysis of the reaction products 

was by electrophoresis in 8% acrylamide gels (8M urea, 8% (w/v) 

acrylamide, 0.25% (w/v) bisacrylamide, IX IBE, 0.1% (w/v) ammonium 

persuiphate, 0.005% TEMED), followed by autoradiography of the dried gel 

(Curix RP  X-ray film, Agfa-Gevaert). 
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Chapter 3- Mitochondrial genome organization in CMS-S 

lines of maize 

3.1 CMS-S maize 

The United States Department of Agriculture (USDA) source of 

cytoplasmic male-sterility in maize, now known as CMS-S, was 

identified as being separate from the CMS-T source many years ago on 

the basis of differential nuclear effects on fertility (Jones et a). 1957, 

Duvick et a). 1965). A single dominant restorer gene, designated RL. is 

required for fertility restoration (or perhaps more accurately sterility 

suppression) in CMS-S (for reviews see Duvick 1965, Laughnan and 

Gaby-Laughnan 1983). This gene is gametophytic in action, i.e. an Rf3rf3 

plant produces half normal and half aborted sterile pollen grains, 

whereas restorer genes for the other maize male-sterile cytoplasms 

completely suppress sterility for all pollen grains in a heterozygote and 

are therefore sporophytic. The gametophytic action of RL. implies that 

pollen abortion in CMS-5 maize is due to developmental abnormalities 

late in microsporogenesis. Ultrastructural investigations of pollen 

abortion in CMS-S maize add weight to this view, revealing that 

mcrosporogenesis in N and S cytoplasms is identical until the 

developing pollen is almost mature (Lee et al. 1980). The tapetum is 

unaffected, whereas in CMS-T or C plants, tapetal cells show signs of 

mitochondrial degeneration before separate pollen grains have formed 

(Warmke and Lee 1977, Lee and Warmke 1979, Lee et a). 1979). 

Several different sources of CMS-S have been discovered, and these 

can often be distinguished by minor differences in the restoration 

efficiency of different nuclear genotypes and by minor variations in 

restriction endonuclease profiles of their mtDNA (Sisco et a). 1985). The 
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major groups of S cytoplasms are given in Table 3. 1. 

Table 3.1 CMS-5 sub-groups as classified by Sisco et al. (1985) 

1 B,D 

2 CA, E, F, 6, H, IA, J, K, L, M, ML, MY, PS, R, SD., TA, VG, W 

3 LBN 

4 ME 

5 S,TC,I 

Most of my investigations have been with the two commonest 

cytoplasms, S (the original USDA cytoplasm after which the whole group 

is named) and CA, which is the type cytoplasm for the largest sub-group 

of S cytoplasms. 

3.2 51 and 52 linear plasmids 

The mitochondrial genomes of 3-type cytoplasms of maize are easily 

distinguished by the presence of two linear DNA episomes Si (6397bp) 

and 52 (5453bp) in high copy number relative to the main mitochondrial 

genome Wring et a]. 1977). These linear DNAs have identical 208bp 

terminal inverted repeats (STIRs) (Kim et a]; 1982b, Levings and 

Sederoff 1983, Paillard et al. 1985). Other linear plasmids from maize 

cytoplasms share significant homology with 51 and 52. The RI (7.5kb) 

and R2 (5.4kb) plasmids from Latin American RU cytoplasms (Weissinger 

et al. 1982, 1983) and also the Dl (7.5kb) and D2 (5.4kb) plasmids from 

Zea  (Timothy et al, 1983) have been compared to 51 and 52 

by heteroduplex analysis (Levings et al. 1983, Timothy et al. 1983). The 

results suggest that 52, R2 and D2 are virtually identical to each other, 
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and that RI and Dl are also nearly indistinguishable. However, 51 

differs from Ri/Di by containing significant homology 0.5kb including 

the STIR) to 52 at one end (Kim et al. 1982b, Levings et a). 1983). This 52 

homologous sequence replaces about 2.6kb of sequence found only in 

R1/D1, explaining the length difference between 51 and RI/DI (fig. 3.1). 

It has been suggested that Si was formed by recombination between Ri 

and R2 (Levings et al. 1983, Elmore-Stamper and Levings 1986). It should 

be noted that cytoplasms containing R or D plasmids are male fertile. 

Sequence analysis of Si (Paillard et a). 1985) and 52 (Levings and 

Sederoff 1983) has revealed four open reading frames (fig 3.0. 51 

contains an open reading frame (ORE 4) which is lacking from the RI/R2 

system. These open reading frames are transcribed (Traynor and Levings 

1986), and the two largest probably encode the large (more than iOOkd) 

polypeptides characteristic of mitochondria from S (Forde and Leaver 

1980) and RU cytoplasms (Liddell and Leaver unpublished), on the 

evidence of antibodies raised to protein synthesized in O( from 

constructs containing parts of ORF 1 (Manson et a). 1986) and ORF 3 

(Zabala and Walbot 1987). 

Small linear DNA replicons have since been identified in numerous 

other unrelated organisms, including the filamentous bacterium 

StreDtomyces rochei (Hirochika et a). 1984) and the fungi Kluyveromyces 

lactis (Fujimura et a). 1987), Gaeumannomyces graminis (Honeyman and 

Currier 1986), Fusarium oxysoorum (Kistler and Leong 1986), Ascobolus 

immersus (Meinhardt et al. 1986) and Ceratocystis fimbriata (Gianon and 

Lalonde 1987) as well as in the higher plants Brassica (Palmer et al. 

1983) and Sorghum bicolor (Pring et al. 1982b). The replication 

mechanism of these linear DNAs is of interest because it is likely to 

differ from that of supercoiled circular plasmids and that of the 
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RI 7.5 kb 

No 
ORE 3 2787bp 

ORF2 1017bp 

	

- R2/S2 5453 bp 	4- 

ORF1 3513 bp 

ORE 4 768bp 
ORF2 1017 bp 

Si 6.397 bp 	 4- 

	

- 0 - 	 - 	 - 	 - 	 - 	 - 	 - 	 - 	 - 	 - 

ORF 3 2787bp 

Figure J. 1 The R and S linear plasm ids of maize mitochondria. 

Terminal inverted repeat (STIR or TIR) 

i::•:•:••i 	RI sequence 

R2/52 sequence 

The four open reading frames contained within these plasm ids are shown. 

ORF 3 of Si probably encodes a DNA polymerase (Kuzmin and Levchenko 

1987). The suggested derivation of S I by a recombination event between 

R  and R2 (Levings et al. 1983) is indicated by the shading. 



mitochondrial chromosome. 

Many viruses have linear replicons, of which the best studied are the 

adenoviruses and Bacillus phages such as 029. In these cases priming of 

DNA replication is aided by a protein which is covalently linked to the 5' 

terminal phosphate of the DNA chain, replication proceeding 

bidirectionally by strand displacement (for a review see Salas 1983). A 

protein has been shown to be covalently linked to the 5' ends of 51 and 

52 (Kemble and Thompson 1982), which is involved in holding the 

plasmids in a circular configuration, and probably primes bidirectional 

replication (Sederoff and Levings 1985). It thus seems likely that these 

linear plasmids are replicated in an analogous manner to adenoviruses 

and Bacillus phage DNAs. Corroboration comes from the finding of 

homology between ORF 3 of 51 and several viral DNA polymerases, 

particularly that of •29 (Kuzmin and Levchenko, 1987). The evidence 

points to a viral origin for these plasmids; certainly they are not a 

functional requirement, as, for example, the T -and C genomes lack 

homology to them nearly entirely (Thompson et al. 1980, Spruill et al. 

1980, Koncz et al. 1981, Pring and Lonsdale 1985). The interest in these 

plasmids stems from their effect on the mitochondrial chromosome with 

which they are associated. 

3.3 Integration of linear plasmids into mitochondrial 

chromosomes 

Sequences homologous to SI and 52 have been found in N mtDNA 

(Thompson et al. 1980) and subsequently cloned and mapped (Lonsdale et 

al. 1981, Koncz et al. 1981). This mapping data, together with 

heteroduplex (Levings et al. 1983) and sequence analysis (Houchins et al. 

1986) has shown that N mtDNA contains nearly complete copies of RI 
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(9 1%) and R2 (94%) (rather than Si and 52) integrated next to a 5.27kb 

repeat (Repeat-1, see fig. 1.2). Each of these integrated plasmid 

sequences lacks one of the STIRs found on the free plasmid. The 

integrated R2 sequence has point mutations within it that introduce stop 

codons into ORE 1, and thus it presumably has no coding function 

(Houchins et al. 1986). 

Plasmid sequences are also found integrated into the main genome in 

S mitochondrial DNA. A high proportion of the mitochondrial genome in S 

cytoplasms is present as linear molecules with STIR sequences at their 

termini (Schardi et al. 1984). These linear molecules probably arose by 

recombination between 51 or 52 and sequences homologous to their 

STIRs found in the main mitochondrial genome (Schardi et al. 1984, Isaac 

et al. 1985, Braun et al. 1986) (fig. 3.2). These regions of. STIR homology 

have been termed a-a, a-ç, p-a and -q (Schardi et al. 1984). I shall 

refer to them as targes for STIR recombination. 

3.4 Rearrangement or mi containing sequences in S mtDNA 

The maize gene for subunit 1 of the cytochrome ç.  oxidase complex 

(I) has been sequenced along with its 5 and 3 flanking regions (Isaac 

et al. 1985b). When probes including the gene are hybridized to Southern 

blots of Hindlil or BamHI digested mtDNA, striking differences are seen 

between the N and S genomes (fig 3.3; Isaac et al. 1985b). In S mtDNA 

many fragments contain co x i homology. Using probes overlapping both 

ends of the gene, I was able to show that each of the hybridizing 

fragments contains a whole copy of the gene (fig 3.36). 

Isaac et al. cloned the largest dindIlI fragment, and subsequent 

analysis showed that the gene was contained within a 4.75kb BamHI 

sub-fragment. The sequence of this fragment revealed that the N and 5 
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51or52 	aorp 

X, 	 x 
R 	or 
	

R 

free plasmid + target 
	

linearised mtDNA 

I 
51 or 52 	a orp 	 51 or 52 

x 
aorp 51or52 

linearised mtDNA 	 fully integrated 51 or 52 sequence 

Figure 3.2 Linearisation of S-type maize mitochondrial DNA. 

Recombination between the STIRs of the free plasmids and homologous 

sequences within the main genome can give rise to linear mitochondrial 

chromosomes with STIR sequences at their termini. Further 

recombination between two linear chromosomes can reform a free 

plasmid and create a circular molecule including a fully integrated 

plasmid sequence. a and p are the designations given to the sequences 

flanking STIRs in the genome by Schardi et al. (1984). R defines a repeat 

in the S genome (including a STIR) part of which is identical to the 

unique end of the RI plasmid. 
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Figure 3.3 Comparison of coxi arrangements in N and S mtDNA 

Southern blot of _Q_amHl digested 873-5 and 873-N mtDNA probed with a 

cox I probe (112C1). Four fragments are clearly identified in S mtDNA (the 
rnc ) o 

most prominent is 4.75kb) compared with a single1Okb fragment in N 

mtDNA. 

Southern blots of Hin.d'III  digested mtDNA from 837-N, 673-S and 

837-SRf (5 restored to fertility) probed with: 

(I) a probe specific to the 3' end of coxi, and including 3' flanking 

sequences (M2C 0 

(ii) a probe specific to the 5' end of coxI, and including 5' flanking 

sequences (M3A3) 

All the fragments detected in (1) are detected in (ii) and thus probably 

represent complete copies of the coxi gene. The extra fragments 

hybridizing in (ii) (in both N and S mtDNA) probably indicate some sequence 

at the 5' of coxI is repeated elsewhere in the genome. There is no 

difference between the restored and non-restored S lines. 
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mtDNA sequences were identical from the 3 BamHI site to a point 174bp 

5 of the start codon. At this point in the S genome there is a 185bp 

sequence showing exact homology with the free end of the STIR sequence 

of the R and 5 plasmids (preceded by an A instead of the terminal I 

residue of a STIR) (Isaac et al. 1985b). This sequence resembled the STIR 

targets described by Schardi et al. (1984). Comparison of our 

hybridization and sequence data with that of Schardl et al. allowed the 

identification of the cI -containing sequence as a. On the other side or 

the STIR was a stretch of sequence of unknown origin. To discover the 

identity of this sequence, I constructed Ml3 clones of SaulIIA digested 

p1-1583 (a clone of the 4.75kb coxi containing BamHI S mtDNA fragment) 

and selected those clones which hybridized to pHSB3 but not to a clone of 

coxi from N mtDNA. One such clone, 151E5, hybridizes strongly to RI but 

not to R2, 52 or 51 and to three fragments in S mtDNA (fig. 3.4). This 

sequence forms a repeat in S mtDNA. Both a and p contain about 2kb. of 

repeated sequence which includes .sites for the restriction enzymes 

BamHI and Sall (Lonsdale personal communication and data not shown), 

and thus a-a and a-p' give the same 4.75kb fragment in a BamHI digest. 

In this thesis I shall refer to this repeat as R (figs 3.2, 3.4). 

Using the STIR recombination scheme of Schardi et al. (11g. 3.2), 

together with restriction enzyme maps and sequence data from Si 

(Paillard et al. 1985), 52 (Levings and Sederoff 1983) and a-R (Isaac et 

al. 1985b), it is possible to calculate all the possible coxI hybridizing 

fragments in BamHl and JjtndIII digests (fig. 3.5). The predicted patterns 

closely resemble those actually observed (fig. 3.3). 
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Fig. 3.4. Identification of the sequence 5 of the STIR linked to coxI in S 

mitochondrial DNA as being homologous to the unique end of R 1. 

A ISlE5 was used to probe BamHI digested mtDNA from B73-N, B73-5 and 

several South American accessions. ECU398 and CUN443 contain P 1 and P2 

but ECU321 and PUN6 lack R plasmids. The probe hybridizes strongly to the 

2.5kb fragment derived from the unique end of Ri, but shows no 

hybridization to 51, 52 or P2. The probe also detects the 4.75kb coxI(a) 

containing target from which it was derived, and two other fragments in S 

mtDNA. The largest fragment is the c-containing target, proving that the 

two target fragments share RI homology in addition to their common STIR 

sequences. I have designated this repeated sequence R. The smallest 

fragment is the R-containing linear chromosome end generated by 

recombination between a target sequence and a free S plasmid (fig. 3.2). 

The probe also hybridizes to B73-N mtDNA as RI homologous sequence is 

found next to a large repeat in N mtDNA (Houchins et al. 1986). 

B Diagrammatic representation of the 4.75kb 	I-containing BamHf 

fragment (a-R) from S mtDNA showing the positons of the STIR and RI 

homologies relative to the coxi gene. The area covered by the probe 151E5 

and the extent of the  repeat are also shown. 

1 
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Figure 3.5 Calculated sizes of coxl containing fragments in BamHI and 

Hindi il digests of CMS-S maize mtDNA 

H 	Hindi II site 

B 	BamHI site 

region common to S 1 and 52 

- 	STIR sequence 

d coding region 

BamHI and Hindi I I sites are given for the cQxi  target sequences and the six 

possible 51 or 52-linked products of STIR recombination. The predicted 

BamHI hybridization pattern is shown, This compares well with the 

observed pattern (fig. 13A). The fragments have been designated according 

to the nomenclature of Schardl et al. (1984). 
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3.5 Formation of the a—fl arrangement found in S mtDNA 

The immediate progenitor of S cytoplasm is not known with any 

certainty, but due to the relationship of the 5 plasmids With the R 

plasmids of the primitive South American RU cytoplasms, RU is usually 

considered as the progenitor of S (Lonsdale 1987). The coxI arrangement 

in mtDNA from several primitive South American cytoplasms, including 

tflC RU cytoplasms ECU396 ana CUN443, are tne same as Mat or NmtDNA 

(fig 36). Given the presence of the abundant R 1 homology adjacent to the 

STIR in the R repeat (fig 3.4), it seems tempting to suggest that the 

rearrangement of the coxl gene in S occurred initially via a rare aberrant 

recombination event between the terminus of RI and the slight STIR 

homology present upstream of =1 in N mtDNA described by Isaac et al, 

(1985b) (fig 3.7). As only part of R  is present adjacent to .QxI in 5, at 

least one further recombination event must have occurred before fixation 

of the 5-type arrangement. It S cytoplasm derived not from RU ;  but from 

N cytoplasm, as claimed by Lemke et al. (1985), then a similar sequence 

of events can be envisaged, as N mtbNA contains the same R 1 sequence at 

the flank of a large repeat (Houchins et al. 1986). This alternative 

hypothesis has been described in Leaver et al. (1 985). 

3.6 Nuclear effects on mtDNA in S cytoplasms 

The dominant restorer gene E.[.. has no effect on the mtDNA 

organisation of S cytoplasm. The restriction endonuclease profiles of 

restored and non-restored lines are identical (not shown), and the ci 
hybridization pattern, a more sensitive test, is also identical (fig 3.313). 

However, nuclear genotype effects on S mtDNA are known. In the 

presence of most nuclear genotypes, the ratio of free Si to 52 is 1: 1, but 

in cytoplasms with the M825 nuclear background the ratio Is 5:1, whilst 
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cox, 

ATG--CTT6--TACTTTT 
	

R 	COXI 
ATG--CTTG--TACTTTT .-.* 

	
10 

ANCESTRAL RU CYTOPLASM 
	

MODERN S CYTOPLASM 

Figure 3.7 Possible pathway for the generation of the STIR target' 

sequence 5 to the coxI gene in CMS-5 maize. 

The sequence in N mtDNA at the point of insertion of the STIR in S mtDNA 

shows 14/18 homology to the terminal I8bp of the maize linear plasmids 

(Isaac et al. 1985). A rare recombination event between the sequences 

shown may have been the primary event in forming the arrangement 

characteristic of modern S cytoplasms, in which part of the Ri plasmid 

is found integrated I 76bp 5 of the coxl gene. 
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with the nuclear background 38 - 11 the ratio is approximately 1:3 

(Laughnan et al. 1981). The involvement of nuclear genes in these cases 

has been proved conclusively by backcrossing M825 or 38-11 lines (as 

recurrent male parents) to other lines with varied types of S cytoplasm. 

I have found that the nucleus appears to influence the ratio of 

targets to recombination products within the STIR recombination 

system in 5 mitochondria. Lines with the nuclear genotypes WF9 and 

NyD410 show relatively lower levels of the a—R target and increased 

levels of the 5 1/52 linked recombination products when their mtDNA is 

hybridized to a a-specific probe than do lines with other nuclear 

genotypes (fig. 3.8). It seems likely therefore that at least some of the 

proteins required for STIR recombination and/or replication of the 

sequences involved must be nuclear encoded (:sgof thes2data havebeen 

published (Leaver eta]. 1985)). 

3.7 Discussion 

The mitochondrial genome of CMS-S plants differs markedly from that 

of fertile N plants. The most obvious difference is the presence of the 

linear S plasmids and the associated chromosome linearization. The 

evidence for STIR recombination in CMS-S mitochondria is strong, and 

supports the notion of a homologous recombination system in plant 

mitochondria. However, in the majority of lines (exemplified by B73-S) 

the recombination substrates (targets and free plasmids) are 

considerably more abundant than the recombination products, suggesting 

that the recombination system is apparently not at equilibrium. This in 

turn would suggest that recombination is infrequent and the 

stoichiometries of the products are predominantly governed by other 

influences (e.g. relative rates of replication). 
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Fig. 3.8. Effect of nuclear genotype on ratio of STIR recombination 

substrates and products. 

A Hybridization of M2C 1 to BamHI or 1JJ.ndl  I I digested mtDNA from B73-N 

and 5, WF9-N and 5. In 673-5 mtDNA the target fragments (marked *) are 

considerably more abundant than the products of STIR recombination. In 

WF9-S mtDNA the four hybridizing fragments are in approximately equal 

stoichiometry. 

N and S lanes of one genotype are loaded at equal levels. Compare the N 

lanes to estimate the difference in loading between 873 and WF9 mtDNA. 

B Hybridization of M2CI to amHI digested mtDNA from: 

A632-CA 7 MS74-CA 

2 Ay191-71-CA 8 NyD4IO-CA 

3 814A-CA 9 0h43-CA 

4 B37Ht-CA 10 W1828N-CA 

5 CO 109-CA 11 W64A-CA 
6  

Mo17-CA 12 W64A-N 

All the genotypes shown resemble the 573-S pattern of hybridization (A) 

with the exception of NyD4I0-CA, which closely approaches the WF9-S 

pattern. All the CMS-S lines shown have the cytoplasmic genotype CA, thus 

the difference revealed must be due to the difference in nuclear genotype. 

VMS 



5amHI 

A 	B73 WF9 
5  5  

Hind III 

B73 WF9 
5  S  

a-si 
	 a-a 	 - 

52-C 
52-a - 	 C—S2/51-C 	* 

	

a-si 	* 40 

a-52 
so 	MPO 

goollffi= 

lB 	123456789101112 

52-C 

a—R 

a-52 	 40 vo MONO 

Xel 



In spite of the considerable information now available on the CMS-S 

mitochondrial genome, no link with the CMS phenotype has been 

identified. The expression of the coxi gene is apparently unaffected by 

the close proximity of the STIR sequence (23bp from the start of 

transcription) and ensuing recombination (Isaac et al. 1985b). In fact the 

DNA (fig. 3.3) and the CMS-S specific proteins (Forde and Leaver 1980) 

from fertile restored CMS-S lines show no alterations from those of 

sterile CMS-S lines. However, it should be borne in mind that all these 

molecular studies are conducted with material from young etiolated 

seedlings. CMS-S is only expressed at a very late stage of 

microsporogenesis, and so it may be unreasonable to expect the 

molecular basis for the phenotype to be evident in the mitochondria from 

young shOots. A further complicating factor is the numerous and 

widespread nature of the differences between N and S mitochondria, 

which make correlations difficult. An alternative strategy is to examine 

revertants to fertility, which have been obtained from a number of 

CMS-S lines. This approach will be explored in the next chapter. 
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Chapter 4- Mitochondrial DNA Alterations in 

Cytoplasmic revertants to fertility from S-type 

male-sterile lines of maize 

4.1 Reversion from CMS-S 

Some CMS-S sources of maize spontaneously revert to fertility in the 

field (reviewed in Laughnan et al. 1981). These fertility changes are 

heritable and can be divided into two classes: those in which the genetic 

change is cytoplasmic (i.e. shows maternal inheritance); and those in 

which the genetic change is nuclear (i.e. shows Mendelian inheritance). 

Nuclear revertants appear, in effect, to have acquired a dominant restorer 

gene. Genetic analyses of several independent revertants has revealed that 

these acquired restoring elements are at different sites on different 

chromosomes, leading to the suggestion that episomal transposition 

events may be invoved (Laughnan and Gabay 1973, 1975). 

The nuclear genotype also affects the frequency with which 

cytoplasmic revertants arise, ranging from 0% in lines such as N6-S to 

10.9% per generation for the line M825-VG (Laughnan et al. 1981). 

Concomitantly, there is a shift from predominantly nuclear reversion in 

lines not prone to frequent reversion events, to predominantly 

cytoplasmic reversion in lines which display very high reversion 

frequencies (e.g. reversion is 95% cytoplasmic in M825-VG) (Laughnan et 

al. 1981). Cytoplasmic reversion events are stable (there are no reports of 

fertile revertants regaining sterility), and in all cases examined so far, 

linked to alterations in the mtDNA. 
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4.2 Mitochondrial DNA alterations In cytoplasmic revertants 

from CMS-S 

The first cytoplasmic revertants to be studied were in lines with the 

M825-VG or M825/0h07-VG genotype. These revertants had lost free S I 

and 52 plasmids (Levings et al. 1980, Laughnan et a]. 1981) but showed a 

novel organization of 52-homologous sequences in their main genome 

(Levings et al. 1980, Kemble and Mans 1983). Detailed analysis of the main 

genome in these revertants revealed that they lacked fragments 

diagnostic of linear chromosome termini, but had increased levels of 

completely integrated 52 sequences (Schardl et a]. 1985). These 

integrated 52 sequences, however, had undergone a deletion of their left 

(unique) ends including the TIR, explaining their differing mobility to the 

homologous fragments from sterile parent plants. It was tentatively 

suggested that the loss of free plasmids and the apparent recovery of a 

circular genome accounted for the fertility reversion (Schardl et al. 

1985). The difficulties of generalising from a few examples (all of 

similar genotypes) became apparent when it was reported that 

cytoplasmic revertants with the nuclear genotype WF9 retain S plasm ids 

at the same levels as their sterile parents (Escote et al. 1986, Ishige et 

al. 1985). Thus it is important to investigate further the mtDNA 

alterations in cytoplasmic revertants with a range of nuclear 

backgrounds, particularly with reference to both free and integrated S 

plasmid sequences. This chapter contains a comparison of the mtDNA from 

cytoplasmic revertants with the nuclear backgrounds Wi 825N, 

M825/0h07, WF9 and 38-11. In the light of these observations, the 

molecular mechanisms underlying reversion, and the possibility of 

identifying the molecular basis of the CMS-S phenotype are discussed. 
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4.3 W182BN cytoplasmic revertants 

All CMS-S revertants studied to this date have been spontaneous 

reversions in field-grown plants. This limits the number and variety of 

revertants that can be investigated, as many CMS-5 lines revert at low 

frequency or not at all (Laughnan et al. 1981). Recently CMS-S revertants 

have been obtained after regeneration from callus cultures of immature 

embryos from',sterile plants with the nuclear genotype W1826N (Earle et 

al. 1987). The cytoplasms of the parent plants used in these experiments 

included CA, S and LBN and were from three different CMS-S subgroups 

(table 3.1). These genotypes have never been known to revert during 

normal sexual propagation,, and yet many regenerated plants from 16 out 

of 18 separate cultures were fertile or produced fertile progeny after 

pollination with the non-restoring line W182BN-N (Earle et al. 1987). 

Breeding evidence indicated that the apparent reversion events were 

stable and cytoplasmically inherited. By selfing the fertile plants and 

pollinating sterile plants with WI 82BN-N, cytoplasmical ly continuous 

lines were established for each regenerant. DNA analysis revealed that all 

the fertile regenerant lines had lost free Si and 52 plasmids (Earle et al. 

1987), 

have studied the mtDNA from some of these regenerant lines in detail 

(see table 4.1 for sources of seed used in these experiments), Specific 

probes for STIR-linked sequences (fig. 4.1) were hybridized to BamHl or 

5.iI digests of the mtDNA from each of these regenerant lines. BamHI does 

not cut 51, so allowing one to distinguish between free 51, 51 at a linear 

chromosome terminus and S  as part a circular mitochondrial chromosome 

(fig. 3.5, table 4.2). Sall does not cut 52, so allows an analogous 

separation of 52 recombination products (table 42). In addition, neither 

Salt or BamHI differentiate between a and p'  as the R repeat includes 

sites for both these enzymes. These hybridization experiments showed 



Table 4.1 Origins of the WI82BN seed used in these experiments 

Time in 
Sample Fertility Cytoplasm Culture culture 	.51 

(months) integrates 

lB S CA 398 3 ( -) 

2A F CA 398 3 + 

2B F CA 398 3 + 

3A F CA 406 15 
5A F LBN 436 13 () 
66 F 5 1981 17 - 

76 F S 1981 16 - 

8A S S 460 12 (+) 
9A F 5 460 12 + 

IOA F 5 468 3 + 

hA F 5 468 12 - 

12A S S 484 3 (~ ) 
13A F S 484 3 + 

17A F S •484 .4 
18A S 5 484 4 (+) 

19A F CA 398 14 
206 F CA 398 3 + 

F male fertile 

S male sterile 

+ present 

()present but at low level 

- absent 

)E present but rearranged 
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M2C1 	IS1E5 	51135 

a-R---1.iI-1---- SIN 

	

 
a 	R 

ISlES 	 52341 S2342 

4p -R —I-- S2 I—&s 

integrated STIRs or 'targets' free Si and 52 with STIRs 

I 	i 	I cox I coding region 	 STIR secience 

xM 	5  /82 common region 	region covered by probe 

Fig. 4. 1. The derivation of the hybridization probes used to investigate 

mtDNA from cytoplasmic revertants. 

M13 clones:- 

M2CJ- 	t1QJ  clone specific for the a sequence, and derived from 

the 3' end of the çJ gene (Isaac et al. 1 985) 

IS] E5 - 	jjIIA clone specific for the R sequence 

5185 - 	Hj.ndIII clone specific toSl 

pIJC 8 clones:- 

52341 - PstI clone of 52 containing 1330bp common to S  and 52 

32342 -  21I  clone specific to 52 



many differences between the fertile and sterile regenerants (the sterile 

regenerants 18, 8A, 12A and 18A were in all cases identical to their 

sterile parents) (figs. 4.2, 43 and 4.4). 

ISlES, a probe for the R sequence, reveals that all the fertile 

regenerants lack a 1.75kb BamHI fragment characteristic of S mtDNA (fig. 

42). This fragment is the R linear chromosome end generated by STIR 

recombination (fig. 3.2, table 4.2). In addition, the fertile regenerant 68 

lacks the largest hybridizing 5.75kb BamHI fragment (fig. 4.2, lane 16), 

(the p-R 'target' sequence), indicating that the not all the fertile 

regenerant plants have the same mitochondrial DNA alterations. Probing 

the fertile regenerant mitochondrial DNA with M2C1 (specific to a) (fig. 

4.3) confirms the presence of the a-R target sequence and also confirms 

the lack of linear chromosome end fragments (there is no 9.4kb fragment 

indicating the a-51, 51-a linear ends). The fertile regenerant 

mitochondrial DNA also lacks the 3.6kb and 6.9kb a-52 and 52-a 

fragments. Furthermore, probing these DNAs with 52341 (specific to 52) 

shows that all these fertile reqenerants apparently lack 52 sequences 

(either free or integrated) entirely (not shown). However, the most. 

interesting finding from the M2C1 probing is the presence in some of the 

fertile regenerants of two a—containing BamHI fragments of over 12kb. 

The size of these fragments suggested that they could include integrated 

complete copies of Si (two a-containing 51 integrates of this size are 

predicted by the STIR recombination model (fig. 3.5, table 4.2), but are 

rarely detectable in W1828N-S mitochondrial DNA by hybridization). 

Probing the same blot with 52342 (which includes sequence common to 

both S I and 52) after removing the previous probe produces three bands in 

the same region (fig. 4.4). The two smaller bands are coincident with the 

doublet which hybridizes to M2C 1. The same pattern is obtained using a 
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Table 4.2 Predicted hybridization of probes to STIR recombination 
products in mitochondrial DNA from CMS-S maize 

kb IS1E5 	M2C1 52342 51135 
16.3 + + 

14.4 + + + 

12.5 + + + 

10.4 ++ ++ 

9.4 ++ ++ ++ 

7.9 ++ 

6.9 ++ ++ 

6.4 ++++++ ++++++ 

5.75 +++ + 

4.75 +++ + 

4.7 + 

3.9 
3.6 ++ + 

1.75 +++ + 

0.6 - + 

BamHl 

(p-Si -(p 
a-Si - p, 
a-Si -a 

* 	a-S1,S1-a 

52-p 

52-a 
51 
(p-R 

a-R 

-52 
52- 
.,, .._/_ 

* 	R 

Sall 

(p-S2- cp 

* 	-S2, S2-qi 

a-S2-a 
* 	a-S2, 52-a 

52  

kb 	52341 

19.3 
	

+ 

14.2 
	

+ 

12.4 
	

++ 

10.3 
	

+ 

7,9 
	

++ 

5.5 
	

++++++ 

No. of crosses indicates approximately the predicted hybridization signal 
expected. 

indicates this fragment is derived from the terminus of a linear 
chromosome, and is therefore diagnostic of linearisation by STIR 
recombination 



Fig. 4.2 Hybridization of 151E5 (specific for the R repeat) to a Southern 

blot of BamHl digested mitochondrial DNA from the W1826N regenerant 

lines compared with fertile (N) and sterile parental (CA, LBN, 5) 

mitochondrial DNA. 

18, 8A and 12A are male-sterile regener ant lines and retain the 1.75kb R 

linear chromosome terminus. All other regenerant lines are fertile 

(revertant) and lack this fragment. All lines except 68 retain the p-R and 

a-R targets characteristic of CMS-S. 68 lacks p-R, and other lines, e.g. 

3A and 5A, appear to have reduced amounts of this fragment. 

No consistent differences are observed between fertile regenerants from 

CA (2A, 25, 3A), LBN (5A) or S (613, 9A, I OA, 11 A, 13A). 

Differences in hybridization signal intensity are due to inconsistencies in 

the amount of mitochondrial DNA loaded per lane. 

* denotes fragments derived from the termini of linear chromosomes 
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Fig. 4.3 Hybridization of M2C1 (specific lor the a sequence) to a 

Southern blot of BamHl digested mitochondrial DNA from the W182BN 

regenerant lines compared with fertile (N) and sterile parental (CA, LBN, 

5) mitochondrial DNA. 

The sterile regenerant lines lB, 8A and 12A show a pattern 

indistinguishable from that of the parental CMS-5 lines (CA, LBN, SD. All 

the fertile regenerants retain the a-R target but lose the products of S 

plasmid recombination seen in the sterile lines. However, many of the 

fertile regenerants show two hybridizing fragments in the 12-15kb 

region. These can be interpreted as the a-S]-p and a-SI-a double 

integration products (fig. 3.5), which are not visible in the sterile lines. 

No consistent differences are observed between fertile regenerants from 

CA (2A, 28, 3A), LBN (5A) or S (6B, 9A, 1 OA, 11 A )  13A), 

Differences in hybridization signal intensity are due to inconsistencies in 

the amount of mitochondrial DNA loaded per lane. 

denotes fragments derived from the termini of linear chromosomes 
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Fig. 4.4 Hybridization of 52342 (homoogous to both 51 and 52) to a 

Southern blot of BamHI digested mitochondrial DNA from the W182BN 

regenerant lines compared with fertile (N) and sterile parental (CA, LBN, 

S)mitochondrial DNA. The filter is the same as that used for fig. 4.3. 

The sterile regenerants 1B, 8A and 12A show a pattern indistinguishable 

from that of the parental CMS-S lines (the faint signals appearing in the 

sterile regenerants are only apparently absent from the parental lines 

because of the lower DNA loadings in these lanes). The large (C. 1 4kb) 

fragments visible in the DNA from 2A, 213, 9A, 13A, and 1OA are 

coincident with those in the previous probing (fig. 4.3), confirming that 

they represent the -51-, a-SI-9 and a-Si-a double integration 

products. 3A exhibits an anomalous smaller hybridizing fragment. 

The numerous faint bands hybridizing in most lanes are due to the small 

amount of STIR homology present in this probe. 
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probe specific for 51 (S1135) on mtDNA from other regenerant lines (fig. 

4.5). This is as predicted if these fragments are complete 51 integrates 

(the three fragments being p-S1-9, p-S1-a/a-51-9 and a-SI-a). The 

fertile regenerants 3A and 1A show a smaller SI hybridizing fragment 

(figs. 4.4, 4.5), which does not hybridize to M2C1 (fig. 4:3). It seems likely 

therefore that in these regenerants there has been a rearrangement in an 

integrated Si sequence which may have involved the loss of attached a 

sequence. This rearrangement probably included the loss of one STIR, or 

the original arrangement would be able to reform by recombination with 

the a-R/-R targets which are still present in these revertants. 

Not all the mtDNAs from the fertile regenerants exhibit the 51 

integrate fragments to the same extent. The presence of these fragments 

in a regenerant line appears to depend on the age of the callus at the time 

when the original plant was regenerated from it (see table 4. 1). Plants 

regenerated from cultures less than five months old contain high levels of 

Si integrates, whilst those regenerated from cultures over a year old have 

apparently lost these integrates, implying that these structures are 

unstable or selected against in culture. The exception is the novel 

recombinant arrangement found in 3A and 19A which is present in plants 

regenerated after 14-15 months in culture, and the line 9A which shows 

these 51 integrates despite being regenerated from a 12 month old 

culture, However, this culture (460, table 4. 1) seems anomalous as it was 

the only culture capable of producing sterile regenerants after 12 months 

(e.g. 8A), and thus may be considered slow'. 

The striking observation about these independent reversion 

events seen in these regenerant plants is that they are so similar. No 

differences were seen between revertants with the cytoplasmic genotypes 

5, CA or LBN in this study even though the mitochondrial genome in these 
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Fig. 4.5 Hybridization of S1135(specific to Si) to a Southern blot of 

BamHl digested mitochondrial DNA from the W182BN regenerant lines 

compared with fertile (N) and sterile parental (CA, LBN, 5) mitochondrial 

DNA. 

The three high molecular weight fragments detectable with the Si/S2 

probe 52342 (fig. 4.4) hybridize equally well to this Si-specific probe, as 

does the anomalous smaller fragment of the lines 19A and 3A. Interesting 

comparisons to note are that 18A is a sterile regenerant line obtained 

from the same culture at the same time as the fertile regenerant line 

17A. 19A was derived from the same culture as 20B, though it was 

regenerated nearly a. year later, 
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cytoplasms can be differentiated en the basis of restriction endonuclease 

patterns, and the cytoplasms are phenotypically distinguishable in the 

presence of some restorer genes (table 3. 1, Sisco et al. 1985). To achieve 

my objective of a thorough study of mtDNA rearrangements during CMS-5 

reversion, I compared the mtDNA from these fertile regenerant lines with 

that from examples of revertants with the nuclear backgrounds 

M825/0h07, WF9 and 38-1 1. These revertants were all examples of 

spontaneous reversion in field grown plants. 

4.4 Cytoplasmic revertants from other sources 

Figure 4.6 shows mtDNA from revertants with the nuclear 

genotypes WF9, M825/0h07, 38-1 1 and W182BN probed with the 5 plasmid 

probe 52342. The hybridization pattern of each of the revertant mtDNAs is 

easily distinguishable, which when contrasted with the basic similarity 

between all the independent W182BN revertants discussed earlier, implies 

a nuclear background effect on the mtDNA alterations occurring during 

reversion. The most strikingly different revertant pattern is that of the 

WF9 revertant, which has retained 51 and 52 in high copy number, as 

previously reported (Escote et a). 1986, Ishige et a]. 1985), and in fact, 

with this general S plasmid probe, is difficult to distinguish from its 

sterile parent. 

To gain useful information on which mtDNA alterations are 

affected by nuclear background, more specific hybridization probes were 

employed. Figure 4.7 shows mtDNA from the same revertants again cut 

with BamHI, but on this occasion probed with the R-specific probe 151E5. 

As expected, the M825 and W182BN revertants lack the 1.75kb BamHI R 

linear end fragment, as does the 38-1 1 revertant. This would be expected 

if the mtDNA organisation has reverted to a circular form during fertility 
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Fig. 4.6 Hybridization of 52342 to a Southern blot of BamHI digested 

revertant mtDNA compared to fertile (N) and sterile (5) WF9 

mitochondrial DNA. 

The revertants shown are 

(1) 	WF9-S 85:6838 

M825/0h07-VG 801-8 

38-11-5 81-115-2 

W182BN-5 fertile regenerant 1OA 

This general 5 plasmid probe highlights the free 51 and 52 present in the 

WF9 revertant mtDNA but lacking from the other revertant mtDNAs. The 

other three revertants are easily distinguishable by their hybridization 

patterns, implying different rearrangements in their integrated plasmid 

sequences. As three out of four of the revertants had the same original 

cytoplasm, it is likely that the differences are due to nuclear gene 

effects. 
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Fig. 4.7 Hybridization of 151E5 to a Southern blot of 6mHt digested 

revertant mtDNA compared to fertile (N) and sterile (5) WF9 

mitochondrial DNA. 

The revertants shown are 

(1) 	WF9-5 85:6838 

M825/0h07-V6 801-8 

38- 11 -5 81 - 115-2 

W182BN-5 fertile regenerant 1OA 

All the revertants lack at least one of the fragments typical Of the 

sterile mitochondria] DNA. The WF9 revertant lacks both target 

fragments; the other three revertants lack the R chromosome terminus. 

* denotes fragments derived from the termini of linear chromosomes 
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reversion. In complete contrast, the WF9 revertant mtDNA does contain 

this fragment. Therefore, WF9 revertant mtDNA, in addition to retaining 

free plasmids (Fig. 4.6), also retains the linear chromosomes 

characteristic or the CMS-S parent. However, the 151E5 probe does 

unambiguously separate the WF9 revertant from its sterile parent (and 

also from the other cytoplasmic revertants) by highlighting the 

conspicuous lack of STIR target fragments (a-R and p -R) in this revertant. 

Similarly, differences between the WF9 revertant and the others emerges 

after probing 5aLl digested mtDNA from the same revertants with the 

52-specific probe 52341 (fig. 4.8). The WF9 revertant closely resembles 

the typical 5 pattern, including the 7.9kb a-52 linear end and the 12.4kb 

9-52 linear end. Of the other mitochondrial DNAs, the W182BN revertant 

lacks any detectable homology to this probe, the 38-1 1 revertant shows 

only very faint hybridization (at positions not corresponding to any 

predictable recombination products), and the. M825 revertant shows a 

single prominent band, also with a mobility different from that of any of 

the bands in the standard 5 track- this is the rearranged integrated form 

of 32 previously reported (Schardi et al. 1985). 

To show further that independent reversion events within any 

one nuclear background are similar, I compared several revertants from 

within each of the backgrounds WF9 and M825/0h07 (fig. 4.9). These 

rntDNAs (probed with the a-specific probe M2C1) confirm earlier 

observations, All the WF9 revertants retain linear chromosomes (e.g. the 

9.4kb a-Si/Si-a fragment) but lose STIR targets (the 4.75kb a-R 

fragment), whilst the M825/0h07 revertants lose fragments charcteristic 

of linear chromosomes. 
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Fig. 4.8 Hybridization of 52341 to 5.iI digested revertant mtDNA 

compared to fertile (N) and sterile (5) WF9 mitochondria] DNA. 

The revertants shown are 

WF9-5 85:6838 

M825/0h07-VG 801-8 

38-11-5 81-115-2 

W182BN-5 fertile regenerant 1OA 

The WF9 revertant closely resembles the standard WF9-5 parent, with 

both fragments characteristic of linearised chromosomes detectable, as 

well as free 52. The 38-11 and W182BN revertants in contrast lack any 

significant homology to the probe at all. The M825/0h07 revertant shows 

one prominent band with an altered mobility to that of the typical S 

pattern; this is the partially deleted rearrangement described by Schardi 

et al. (1985). 

X denotes fragments derived from the termini of linear chromosomes 
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Fig. 4.9 Hybridization of M2C1 to a Southern blot of BamHI cut 

mitochondrial DNA from WF9 and M825/0h07 revertants and 

corresponding sterile parental lines. 

I M825/0h07-VG 	 7 CR from 2 9 

2 CR from 1 

3 NR from 4 

4 M825/0h07-VG 

5 CR from 6 

6 M825/0h07-VG 

CR= cytoplasmic revertant; NR= nuclear revertant 

All four of the cytoplasmic revertants from WF9 parents, with either RD 

or ML cytoplasm show similar patterns. The only change from the parental 

pattern is the loss of the 4.75kb o-R target fragment. The 9.4kb 

c-Si/Si-a linear chromosome end is retained. 

The M825/0h07 cytoplasmic revertants have lost this 9.4kb fragment, and 

also the 3.6kb 52 containing fragment, this fragment corresponds to the 

end of 52 deleted in these revertants (Schardi et al. 1985). The a-R 

fragment is apparently reduced in quantity. This is probably an artefact 

of loading inequalities, and if compensated for, the 6.9kb 52-c fragment 

would be considerably more abundant in the revertant as opposed to the 

parental mtDNAs. 

8 CR from 09 

9 WF9-RD 

10 CR  from  *11 

11 WF9-RD 

12 CR from 	13 

13 WF9-ML 

* denotes fragments derived from the termini of linear chromosomes 
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4.5 Discussion 

In summary, it can be seen that all the revertants studied, 

whether derived from field-grown plants or plants regenerated from 

culture, lack some STIR-linked fragments found in their sterile 

progenitors (table 4.3). In some cases the loss of certain fragments is 

linked with the appearance of new fragments, presumably generated by 

recombinational rearrangements. Beyond these general similarities, the 

revertants from each source differ (table 4.3). The mtDNA alterations that 

I have described for the fertile W182BN regenerant lines are superficially 

similar to those previously reported for M825 and M825/0h07 revertants, 

involving a loss of free plasmids coupled with an increase of integrated 

plasmid sequence relative to the rest of the genome (Levings et al. 1980, 

Kemble and Mans 1983, Schardl et al. 1985). However, in 'the case of 

W182BN revertants the integrated plasmid is 51, whereas the previously 

examined M825 revertant mtDNAs had accumulated integrated 52. 

Furthermore, this integrated 52 sequence contained a deletion of its left 

hR. This may be analogous to the deleted version of 51 present in the 

W182BN revertants 3A and 19A, which appears to be stable unlike the 

apparently intact 51 integrates of 'young cultures, which are lost with 

increasing age in culture. The 38-11 revertant I have included in my 

comparison most closely resembles the W182BN pattern, having lost 52 

homologous sequence, but retaining integrated 51 sequences. These 

integrated 51 sequences are more abundant in the revertant than in the 

sterile parent (a common feature for integrated plasmid sequences in all 

the cytoplasmic revertants) and have undergone a deletion of one end 

(Escote-Carlson, Laughnan and Gabay-Laughnan, personal communication). 

This again is analogous to the case of integrated plasmid sequences in 

M825 revertants and to the W 1 828N regenerant lines 3A and 1 19A. WF9 

revertants, which retain the free episomes of their parents but lack the 



Table 4.3. Comparison of cytoplasmic revertants from different CMS-S 
sources 

Nuclear genotype of revertants to fertility 

Features 	 CMS-S 	WF9 M825/0h07 38/11 Wi 82BN 

free Sl,62 	 +  

0-0 

target 	 + 	- 	+ 	+ 	+ 

target 	 + 	- 	+ 	+ 	+ 

51 linear ends 	+ 	+ 	- 	- 	- 

52 linear ends 	+ 	+ 	- 	- 	- 

Rit near ends 	 + 	+ 	- 	- 	- 

Integrated 
intact S1 	 (+) 	(+) 	(+) 	(+) 	+ 

integrated 
rearranged 51  

integrated 
rearranged 52  

+ 	present 
- 	absent 
() present at low levels 



a-R and -R target sequences, can be considered to be in a class or their 

own. 

These results strongly suggest a link between the type of 

molecular events during reversion and the nuclear genotype. This link may 

be connected with other observed effects of the nuclear genotype on 

reversion (see 4. 1), but the pattern of differences between the revertants 

suggests instead a connection with nuclear effects on mitochondrial 

genome organisation. The genotypes M825 and 38-11 influence the ratio of 

free 51 to 52 (Laughnan and Gabay-Laughnan 1983; see 3.5) and their 

integration products, and this may be reflected in which integrated 

sequences are predominant in the revertants; sterile 38-11 plants contain 

more free and integrated 52 than 51, whereas the revertant retains 

Integrated (but rearranged) 51 sequences but loses integrated 52 

sequences. In general, f or M825 plants the situation is reversed. The most 

suggestive link, however, is the the fact that the mitochondrial genome in 

WF9 plants, though normal with respect to the free episomes, exhibits 

unusual stoichiometries of the STIR recombination products; specifically 

a larger than normal proportion of linear products (fig. 3.8; Leaver et al. 

1985). Circumstantially this seems likely to have a bearing on the 

anomalous molecular events involved with reversion in plants with this 

genotype. Thus whatever the mechanism of reversion, it must involve one 

or more nuclear gene products, which are likely to be involved in 

replication and/or recombination of S episomal sequences. 

Reversion appears to occur after loss or rearrangement of 

STIR-linked sequences in the mitochondrial genome. In the one study that 

has examined the recombination points of these rearrangements, the 

extent of the homology between recombining sequences is small(Schardl 

et al. 1985), implying that such recombinations would be rare, and would 

require selection and/or amplification to become fixed in the genome, 



Such fixation of rare recombinant products has been shown in the maize 

genome (see chapters 5 and 6; Small et al. 1987), but what is remarkable 

during reversion is the number of such apparently 'rare' alterations which 

occur within a single plant generation (or within 3 monthS of cell culture) 

and the fact that many Occur in a similar or identical fashion in a number 

of independent plants, 

The lesion responsible for pollen infertility in CMS-S maize is 

as yet unidentified. Cytoplamic revertants seem an ideal system for 

studying the molecular events underlying the CM5 phenotype, as they 

provide a number of independent comparisons to be made to their sterile 

progenitors. In addition, the mtDNA from all known revertants resembles 

that of their sterile progenitors much more closely than that from fertile 

plants with N cytoplasm. Revertants from cultures with the CMS-T 

cytoplasm proved invaluable in identifying the apparent underlying cause 

of T-type male sterility. In .these revertants a 6.6kb Xhol fragment present 

in the sterile progenitor plants has been replaced by a 6.3kb Xhol fragment 

(Umbeck and Oengenbach 1983). This rearrangement is due to a 

recombination event between two 55bp direct repeats (Rottman et al. 

1987) which has led to the deletion of the urf 13-T gene encoding the 1 3kd 

polypeptide deeply implicated as a cause of sterility in T-type 

mitochondria (see 1.3.1). Unfortunately, the situation in CMS-S 

mitochondria appears to be more complicated. Numerous mtDNA 

alterations occur on reversion to fertility and no fragment has been 

identified which is lacking from all the revertants. Furthermore, although 

CMS-5 mitochondria do synthesize variant polypeptides encoded by the 51 

and 52 (Manson etal. 1986, Zabala and Walbot, 1987) these are present in 

mitochondria both from fertile WF9 cytoplasmic revertants and from 

fertile RU cytoplasms (Liddell and Leaver unpublished). Revertants that 

have not retained S plasmids lose the CMS-5 specific variant polypeptides 
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(Lidell and Leaver, unpublished). In conclusion, it can be said that 

reversion to fertility in CMS-S revertants occurs by the same general 

mechanism as in CMS-T revertants (i.e. fixation of recombinant molecules 

which have portions of the progenitor genome rearranged or missing) but 

the particular alteration responsible for the restoration to fertility in 

these plants remains unresolved. 
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Chapter 5- Stoichiometry differences in atpA gene 

types in maize cytoplasms 

5.1 Introduction 

As has been shown in the previous two chapters, the number and 

complexity of rearrangements in the CMS-5 cytoplasm makes anything but 

descriptive study difficult at this stage. Therefore, in order to broaden 

the study to incude cytoplasms other than CMS-5, whilst at the same time 

narrowing the field of the investigation to allow more focused 

experiments, I decided to concentrate on a particular region of the maize 

genome. I chose the region around the atDA gene, which had been partially 

characterized and showed a surprising amount of variation between 

cytoplasms. 

5.2 The maize mitochondrial atDA gene 

The maize atoA gene, encoding the cr-subunit of the F 1  ATP synthase 

complex, has been cloned and sequenced (Braun and Levings 1985,   Isaac et 

al. 1985a). In the mitochondrial genome of fertile N maize the gene lies 

entirely within a I2kbrepeat (repeat-6, fig. Li), with the 3' terminus of 

the gene positioned 650 bases from one end of the repeat (Isaac et al. 

1985a). Consequently, two copies of the atDA gene can be represented on 

the 570kb maize master circle with different 3' flanking sequences. 

(Dawson et al. 1986; fig. 1.2). In contrast, the C and T cytoplasms of maize 

have been reported to contain only a single copy of the atDA gene (Braun 

and Levings 1985, Isaac et al. 1985a). The atDA arrangement in C mtDNA 

appears identical to one of those in N mtDNA, whereas in T mtDNA the 3' 

flanking sequences of the gene are different from those of either of the 

two copies of the gene in N mtDNA (Isaac et al. 1985a). CMS-5 mtDNA has 
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been reported to contain either one copy of the gene (Isaac et al'. 1 985a) or 

two (Braun and Levings 1985). Thus the region of the maize mitochondrial 

genome around the atpA gene(s) appears to vary considerably between 

cytoplasms, both in copy number and in sequence organization. This 

variation seemed worthy of further study, as the 12kb repeats have been 

reported to be involved in inter- and intra-molecular recombination 

(Lonsdale et al. 1984) and thus would be expected to be important in 

determining the structure of the mitochondrial genome. 

5.3 Distribution of atM types in maize cytoplasms 

MtDNA from a number of maize lines was screened with atDA-specific 

probes to examine the variability of the organization of the 12kb repeat 

region. ALXR18, which covers the 5 end of the atDA gene, hybridized to a 

3.5kb BamHI fragment in every mtDNA studied (fig. 51A), whereas the 

probe BLSC1, covering the 3' end of the gene and the immediately adjacent 

flanking sequence, distinguished a total of four different atDA 

arrangements specific to different cytoplasms. These atøA arrangements 

were designated as atDA types 1-4 (fig. 5.18). atDA types 1 and 2 are 

characteristic of N mtDNA, type 3 is specific to CMS-5 mtDNA and type 4 

specific to CMS-T mtDNA. CMS-C mtDNA contains only the type 1 

arrangement of N mtDNA. 

Using the probe BLSCI, I examined the distribution of these four atDA 

types in 44 different nuclear-cytoplasmic combinations (data summarised 

in table 5.1 ). The nuclear genotype appeared to have no influence over the 

atpA types present in the associated cytoplasm. However, the pattern of 

atDA types present did correlate strongly with the cytoplasmic 

designation. In fact, the probe BLSC1 proved a sensitive indicator of 

cytoplasmic origin, distinguishing three separate subgroups of fertile 

N-like cytoplasms, and also distinguishing between the 5 and CA 



Fig. 5. 1. Location of the gene for the cr-subunit of F 1  ATPase (atpA) in 

the mitochondrial DNA of N, C, S and T cytoplasms of maize. 

hybridization of A) ALXR 18 and B) BLSC 1 atDA probes to BamH 1 digested 

maize mitochondrial DNA from N, C, S and T cytoplasms. 

region covered by probes 

approximate extent of homology to Type I clone 

B 	BamHl restriction site 

atpA coding region 

The probe BLSC 1 distinguishes the 4 major atDA gene arrangements found 

in maize mitochondria. The same DNA probed with ALXR18 shows that all 

four arrangements are identical at the 5 end. I have designated the four 

atoA arrangements as types 1-4 as shown. 
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Table 5. 1. Predominant atDA types in different maize cytoplasms 

MAIZE LINES 

TYPES 	(written as nuclear genotype-cytoplasmic genotype) 

1 and 2: 	837-N, 873-N, WF9-N, M825-N, 38/11 -N, COl 92 x WJ-N, 

CO192xWJ-234,CO192XWJ-LF,R181-N (Ncytoplasms) 

2 only : 	ECU32 18,  ECU3988 , CUN4436 , cOl 92 x WJ-SG, 

c0192xWi-OY (N- likecytoplasms) 

1 only : 	837-C, WF9-C, coi 92 x WJ-F (C cytoplasms) 

3 only : 	837-5, 38/11-S, M825-5, WF9-5, WM 13-5, COl 92 x W%J-J 

(S cytoplasms) 

2 and 3: 	WF9-ML, WF9-RD, M825-Vg, COi 92 x.WJ-MY, CO 192 x WJ-H, 

00 192 x WJ-PS, c0192 x WJ-G, c0192 x WJ-I, 

c0192 xWJ-B,CO192 x WU-SD, CO192x WJ-L, 

O192 x WJ-D, CO192 x WJ-A, WI82BN-A 

(S-like cytoplasms) 

4only : 	PUN68 1 WI82BN-181,CO192xWJ-181 (N- like cytoplasms); 

WI82BN-T, B37-T, WF9-T, coi 92 x WJ-Q (1 cytoplasms) 

8 ECU321, ECU398, CUN443 and PUN6 are male-fertile South American accessions with 

restriction enzyme cleavage profiles similar to commercially used N cytoplasms. CUN443 and 

ECU398 contain R plasmids (Weissinger giLl., 1982). 
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subgroups of CMS-5 (tables 3.1, 5.1). A number of fertile N-like 

cytoplasms, including those from the primitive South American 

accessions ECU32 1, ECU398 and CUN443 lack the type 1 arrangement 

present in typical N cytoplasm. This difference in copy number amongst 

fertile cytoplasms suggests that there is no functional requirement for 

two atDA genes. 

A particularly intriguing finding is that the fertile N-like cytoplasms 

1 8 1 and that from the Peruvian accession PUN6 contain the same 

predominant atDA type as that found in I cytoplasm. This implies that 

these N-like cytoplams may be (or be related to) the progenitors of I 

cytoplasm, although it should be stressed that the restriction 

endonuclease patterns of these two fertile lines closely resemble that of 

N mtDNA, and differ noticeably from that of CMS-T mtDNA (not shown). 

As shown for the N group of maize cytoplasms, the CMS-5 group can 

also be divided into cytoplasms with one or two copies of the atpA gene. 

The CA subgroup (table 3. 1), in addition to the CMS-S specific type 3 

arrangement, also contain the type 2 arrangment of N mtDNA. The S 

subgroup contain only the type 3 arrangement. Interestingly, J cytoplasm, 

placed in the CA subgroup by Sisco et al. 0 985) (with reservations), lacks 

the type 2 arrangement, and thus by this criterion resembles the S 

subgroup. Given the differences in fertility restoration phenotype and 

restriction endonuclease patterns between J and other members of the 5 

subgroup, it should probably now be considered as a subgroup by itself. 

5.4 Sub-stoichiometric levels of atDA gene types 

Most, but not all, N and S cytoplasms were found to contain two 

predominant atDA types (table 5.1). In those N and S cytoplasms containing 

only one predominant atDA type, the other expected type could always be 
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detected at sub-stoichiometrlc levels provided that blotting and 

hybridization conditions were optimal (see 2.2.3). For example, in fig. 5.2 

the N-like cytoplasms OY and SO show low levels of the type I atDA 

arrangement typical of true N cytoplasm, and the S-like cytoplasm J 

contains low levels of the type 2 arrangement present in most CMS-S 

cytoplasms. In addition,I could detect anomalous atDA arrangements in N 

mtDNA, not accounted for by the published map of the N genome, and not 

explainable as recombination products of any of the known repeats in the 

genome. Some of these atDA arrangements appeared to be identical to 

those characteristic of CMS lines. For example, in fig. 5.2 mtDNAs from 

the fertile N-like cytoplasms SO, OY, 234 and N all show low levels of the 

type 3 arrangement characteristic of CMS-S mtDNA, and 234 mtDNA also 

shows sub-stoichiometric levels of the type 4 atDA arrangement 

characteristic of CMS-T mtDNA. A summary of all the results I obtained is 

shown in table 5.2. 

It seemed unlikely that differences in hybridization intensity of the 

same fragment 	in 	different 	cytoplasms was due to differences in 

homology to the probe, because in many cases the cytoplasms were closely 

related, and higher plant mtDNAs show low rates of sequence drift (see 

1.4). If the low hybridization signals were due to low probe homology, one 

would not expect restriction sites to be preserved, and yet mtDNA cut 

with a number of different restriction enzymes gave identical results (fig. 

5.3). 

Trivial explanations of the data, in particular cross-contamination 

between samples, were carefully considered, and largely ruled out by 

performing mitochondrial purification of samples from different 

cytoplasmic groups on different days in rigorously cleaned equipment. DNA 

contamination from bacteria, fungi and plastids within the seedling 

samples is unlikely to explain the results as it would require the 



Fig. 5.2. Sub-stoichiometric restriction fragments containing the atDA 

gene in maize mitochondrial DNA. 

A. One day ,  exposures of autoradiographs of BamHl digested maize mtDNA 

(nuclear genotype C0192 x WJ, 5.ig/track) probed with BLSC1. Lane 1, 

181 cytoplasm; Lane 2, 56 cytoplasm; Lane 3, OY cytoplasm; Lane 4, 

234 cytoplasm; Lane 5, N cytoplasm; Lane 6, H cytoplasm; Lane 7, PS 

cytoplasm; Lane 8, U cytoplasm. Lanes 1-5 are fertile'N-like' 

cytoplasms, 6-8 are CMS-5 cytoplasms. Faint bands of hybridization can 

be seen in all tracks, some of which correspond in size to predominant 

bands found in other cytoplasmic types. All the cytoplasms shown, 

except 181, contain atDA types 1, 2 and 3 in detectable amounts. The 

cytoplasm 234 also contains type 4 in low levels. Special care was taken 

to avoid cross-contamination of separate samples; mitochondria and 

mtDNA from fertile and CMS-S lines were prepared on different days, and 

the N and S samples were run as separate blocks on gels, divided by 

empty tracks to eliminate carry-over of samples during loading. Similar 

results were obtained with a wide range of other nuclear/cytoplasmic 

combinations (table 5.2). 
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Table 5.2. Stoichiometries of atDA types in the mitochondri& genomes of N- like and S- like 
maize cytoplasms 

atDA types detected 

N-like 
cytoplasms 1 2 3 4 

B73-N +4+4+ +++++ + 

WF9-N +4+4+ +++++ 
38/11-N +++++ +4+4+ + 

O192xWJ-N +++++ ++.++ + 

tXll92xWJ-234 +++++ +++++ + + 
00192xWJ-OY + +++++ + 
COI92xWJ-SG + +++++ + 
ECU321 8  + +++++ + 
ECU3988  .. +++++ + 
CUN4438  + +++++ 

+ +++++ 
WI82BN-181 + + 

S-like 
cytoplasms 1 2 3 4 

37-5 + 4+44+ + 

B73-5 + +4+4+ 4 

38/11-5 + +++++ + 
WF9-S + 4+4+4 + 

M825/0h07-Vg + +++++ +++++ + 

W182N-CA +++++ 
cOl92xWJ-MY + +4+4+ 4+44+ 

c0192xWJ-H + 
t0192xWJ-PS + 
CO192xWU-G + +++++ 
CO192xWJ-I + +++++ 

Number of crosses( +) represents approximate relative abundance. Designations are written as 

nuclear genotype-cytoplasmic genotype (where both are known). 

ECU321, ECU398, CUN443 and PUN6 are male-fertile South American accessions with 

restriction enzyme cleavage profiles similar to commercially used N cytoplasms. CUN443 and 

ECU398 contain R plasmids (Weissinger et al., 1982). 
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Fig. 5.3. Two day exposure of an autoradiograph of maize mtDNA 

digested with EcoRl and probed with BLSC1. Lane 1, M825/0h07-N; Lane 

2, M825/0h07-VG; Lane 3, WF9N; Lane 4, WF9-5. atDA types 1 and 2 

are inseparable in an EQRI digest. The two N mtDNAS show small 

amounts of type 3, the two 5 mtDNAs show either a high level of type 1 + 

type 2 (VG cytoplasm, lane 2) or a low level (5 cytoplasm, lane 4). 
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contaminating organism or organelle to contain sequences identical to 

those of maize mitochondria. The atDA genes of bacteria, fungal 

mitochondria and chloroplasts differ considerably from those of maize 

mitochondria, and would be extremely unlikely to contain the same pattern 

of restriction endonuclease sites. Although transfer of DNA sequences has 

occurred from chioroplasts to mitochondria during the evolution of higher 

plants (see 1.2.3), there is no evidence for transfer in the other direction 

(Schuster and Brennicke 1987a). Finally, under the purification conditions 

I use for maize mitochondria, maize chloroplast DNA is largely lost or 

degraded. 

A conceivable explanation for these observations was that the seed 

stocks I had used for these experiments contained heterogenous mixtures 

of cytoplasms, and the apparently sub-stoichiometric fragments were due 

to a small subgroup of seeds containing the anomalous atA types at 

normal abundant levels. I investigated this possibility by extracting 

mtDNA from immature cobs of individual plants and probing this mtDNA 

with BLSC1 (fig. 5.4 and data not shown). These experiments revealed no 

significant differences between the atpA hybridization patterns of mtDNA 

from single plants and those from seedling coleoptiles. Therefore I 

conclude that mitochondria from many maize cytoplasms contain (in 

addition to their predominant atA type(s)) one or more atA-containing 

fragments at markedly sub-stoichiometric levels which are identical to 

predominant atDA types present in other cytoplasms. These results have 

been published (Small et al. 1987). 

5.5 Discussion 

My observations show that the atA gene (and therefore at least part of 

the 12kb repeat) is located in at least four genomic environments 

(referred to as atpA types) in different maize cytoplasms. The copy 
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Fig. 5.4. Sub-stoichiometric atoA hybridizing fragments exist in 

mitochondrial DNA from single plants. 

A Three-day exposure of Ec.QRt  digested maize mtDNA probed with BLSC 1. 

Lane 1, W182BN-181; lane 2, W182BN-5; lane 3, WF9-N; lane 4, 

WF9-5. The mtDNAs used in this experiment were purified from single 

immature cobs. A faint band representing type 1 and/or 2 can be seen in 

lane 1 (181 cytoplasm), and also but less clearly in lanes 2 and 4 (5 

cytoplasm). Lane 3 (N cytoplasm) contains faint bands representing the 

type 3 and type 4 arrangements. Similar results were obtained after 

cleaving the mtDNA from other individuals of the same lines with BamHI 

(data not shown). Large fragments hybridizing in lanes 2, 3 and 4 

probably represent partial digestion products. 

B Three-day exposure of BamHI digested maize mtDNA probed with 

BL5C1. Lanes 1 and 3, C0192 X WJ-56; lanes 2 and 4, C0192 X WJ-J. 

Each lane contains the mtDNA of a single immature cob. The 56 mtDNA 

shows low levels of types 1 and 3 clearly, as predicted by the same 

experiment on pooled coleoptile mtDNA (fig. 5.2, lane 2). The J mtDNA 

shows no clear faint bands, but the expected low levels of type 2 (fig. 

5.2, lane 7) may be obscured by the smear of degradation products from 

the abundant type 3 fragment. 
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number of the gene appears to vary between one and two copies per master 

circle even in closely related cytoplasms. This loss and creation of 

repeated sequence may be an important part of mitochondrial genome 

evolution. Clark-Walker et al. (1985) have shown that novel mitochondrial 

genomes can be generated in yeast by crossing two different petite 

strains, each containing a non-functional mitochondrial genome encoding 

only a portion of the genetic information of the wild-type genome. 

Provided that the sum total of the two sub-genomes includes all the 

wild-type genome, and that there is some overlap between them, 

recombination between the two progenitor genomes can. give rise to a 

single circular genome containing a direct repeat of the sequence common 

to both of the original sub-genomes. This recombinant genome is unstable 

(and requires continual selection pressure to maintain it) because of high 

frequency reversion to the original two-circle configuration. This 

situation, although contrived An yeast, is directly analogous to the 

multipartite genomes found in plant mitochondria. The unstable yeast 

configuration can resolve into a stable form by deletion of one of the 

repeats, preventing reversion to a two-circle form. Such events occur at 

low frequency by recombination between short regions of homology 

scattered throughout the yeast genome, and result in a stably maintained 

novel genome organization. It is intriguing that such creation and deletion 

of repeated sequences during genome evoloution is now being shown to be 

a feature of plant mitochondrial DNAs (Small et al. 1987, Pring et al. 

1987, 1988). 

A particularly interesting feature of the observations described in this 

chapter is the detection of sub-stoichiometric fragments, (I shall refer to 

these sub-stoichiometric fragments as 'sublimons') present in most maize 

mtDNAs, which correspond in size to abundant fragmeDts in other 

cytoplasms. It seems tempting to suggest that the abundant fragments 
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arose by fixation and amplification of their corresponding sublimons. 

Based on this assumption, the observed pattern of atDA stoichiometry 

differences can be used to develop an evolutionary tree of maize 

cytoplams (fig. 5.5), which agrees well with those postulated on the basis 

of other evidence (Lonsdale et al. 1987), but due to the hypervariability of 

the atDA region, distinguishes several more possible intermediate 

cytoplasms than have hitherto been suggested. 

It seemed to be worth considering at this point whether these results 

could be used to postulate general mechanisms of genome evolution in 

higher plant mitochondria. It is possible that the sub-stoichiometric atDA 

types I have described here are examples of a whole class of rare 

recombinant molecules present in plant mitochondria. Rice chloroplasts 

have recently been shown to contain a minor rearranged genome at low 

levels in addition to their major genome (Moon et al. 1987). Poorly 

hybridizing mtDNA fragments have been observed on many occasions by 

other workers with other probes in many species, but are often attributed 

(on little or no evidence) to small repeats containing partial probe 

homology. Sublimons, given certain circumstances, could provide •a 

reservoir of sequence rearrangements which on amplification could give 

rise to novel genome organizations. This process has been observed in the 

mitochondrial genome of cultured soybean and Brassica cell lines (Morgens 

et al. 1984, Morgan and Maliga 1987). 

An important problem to be considered is the formation of these 

sublimons. By analogy with the STIR recombination system discussed in 

the previous chapters, the most likely suggestion appears to be that 

sublimons are created by infrequent recombination across small repeated 

sequences of 200bp or less, similar to the process responsible for petite 

formation in yeasts. An equally important and related problem is the 

retention of sublimons in the genome in the face of repeated segregation 



Fig. 5.5 Possible interrelationships of maize cytoplasms based on 

atDA-type stoichiometries. 

The relative stoichiometries of different atpA types can be used to 

predict possible evolutionary interrelationships between the 

mitochondrial genomes of different cytoplasms. This evolutionary tree 

uses RU cytoplasm as the progenitor cytoplasm, a choice which is 

generally accepted (Lonsdale 1987). 

The size of the boxes represents approximate relative abundance of the 

atDA types in the various genomes (data from table 5.2). The large 

arrows indicate the gross differences in mitochondrial genome 

organization, as revealed by restriction endonuclease patterns, 

separating fertile from sterile cytoplasms. 
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during mitosis. In relation to this problem, it is worth noting that mtDNA 

from both seedling coleoptiles and immature cobs showed sublimon 

sequences, indicating a certain degree of stability during plant 

development. To investigate these matters, rather than describing and 

proving the existence of a range of other sublimon sequences, I 

concentrated on investigating in more detail the formation of the atoA 

sublimons of maize mtDNA. 
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Chapter 6- Formation of sub-stoichiometric 

recombinant LtpA arrangements in maize mitochondria 

6.1 The hypotheses to be tested 

On considering the observations and discussion in the previous 

chapter, it seemed possible that sub-stoichiometric components in the 

genome (sublimons) may play a part in genome evolution. The extent to 

which this may be true depends on the mechanism of formation and 

maintenance of these molecules. I have considered two (not necessarily 

exclusive) possibilities:- 

Infrequent recombination between short repeats (not large enough to 

be detected during the construction of the genome map) generates 

novel rare recombinant arrangements. These sublimons are segregated 

out during seed formation by stochastic processes thus preventing 

their fixation in the. genome. Rarely, freak segregation results in the 

passage of a recombinant arrangement into the next plant generation 

in sufficient quantity to become fixed, creating a novel repeat. 

Duplication of obligate sequences (e.g. the atDA gene) creates 

redundancy, allowing the later loss of one repeat without adverse 

selection pressure. The main tenet of this hypothesis is that 

sublimons are reformed de novo by recombination between abundant 

sequences during every generation. 

A second possibility is that the sublimons are formed by very rare or 

unique 	aberrant recombination 	events, and 	are 	maintained by 

replication rather than recombination. This hypothesis requires that 

sublimons are not lost by segregation during zygote formation. 

113 



6.2 Comparison of mitochondrial genome organizations in OY, N 

and C cytoplasms 

To test these two possibilities, I first chose to attempt to discover 

the events leading to the formation of the type 1 atDA sublimon I had 

detected in those N-like cytoplasms which possess only the type 2 atDA 

arrangement at abundant levels (see table 5.2). Such cytoplasms include 

OY, 56 and those of the South American accessions ECU321, ECU398 and 

CUN443. The reasons for this choice were twofold; firstly, as Zea mays 

originated inSouth America, the atDA organization typified by the South 

American accessions is probably ancestral to that of N. Therefore it 

seemed likely that the standard N arrangement rose by fixation of the 

type 1 atDA sublimon detectable in these South American lines, and 

comparison of the two might reveal how this occurred. The evolutionary 

link between other cytoplasms and the sublimons within them are not as 

clearly evident. Secondly, as it would be necessary to compare the 

sequence organization around the atA gene in the chosen cytoplasms 

with that of standard N mtDNA, the experiments would be facilitated by 

choosing a cytoplasm that was closely related to standard N, thus 

limiting the number oisuperfluous arrangements not connected with the 

rearrangement under study. This would only be possible by selecting a 

cytoplasm from within the same cytoplasmic group as N, and not for 

example a male-sterile cytoplasm. 

For these reasons I chose to compare the regions surrounding the atDA 

genes in mtDNA from the cytoplasms LF and OY. LF has typical N mtDNA 

containing both type 1 and type 2 atDA arrangements in equal amounts, 

but OY mtDNA lacks the type I atoA arrangement (table 4.1 ). Apart from 

this difference the two have virtually identical restriction endonucease 

profiles, and are easily distinguished from F (a member of the CMS-C 

group) mtDNA (fig. 6. 1 A), which lacks the type 2 atDA arrangement. Dr. D. 



M. Lonsdale (PBI, Cambridge) kindly supplied two cosmid clones (64 and 

65) spanning the two 12kb repeats from WF9-N (figs. 1.2, 6.1D). The 

cosmid clone 65 covers the type 1 atoA region lacking from OY; 64 covers 

the type 2 atDA repeat lacking from F mtDNA. Using 65 and 64 as probes 

on Xhol cut mtDNA from LF, OY and F shows that F mtDNA contains 

numerous rearrangements in these regions of the genome (fig. 6,1 B, C), 

Fragments C (the type '2 atM containing fragment), E and F of 64 are 

missing from F mtDNA, and as the Intervening fragments D and A are 

intact, a simple deletion cannot explain the data. The large A fragments 

of both 64 and 65 are present, so although C mtDNA has been shown to 

contain only a single atM gene, the rest of the 12kb repeat is still 

present as a large duplication. In addition, two prominent new fragments 

hybridize, presumably containing the points of rearrangement. 

OY mtDNA lacks three of the fragments present in these cosmid 

clones (fig. 6.IB, C). The missing 3.65 kb XLIQI  fragment (65 fragment F) 

contains the type 1 atD.A arrangement and thus was expected to be absent 

(fig. 6.1B). OY mtDNA also lacks the A and E XJI fragments of 64 (figs. 

6.1C, 6.2), which are the 5' end and 5 flanking sequences of the type 2 

repeat as represented on the N rntDNA master circle. Therefore the region 

including the 12kb repeat homology in OY mtDNA is unlike either of those 

represented on the .WF9-N master circle. Instead it is one of the 

recombinant forms, flanked by 5' type 1 sequence and 3' type 2 sequence. 

The same fragments are missing from mtDNA of Latin American 

accessions (with RU-type cytoplasms) lacking the type 1 repeat (fig. 6.2 

and data not shown). Thus it seemed likely that the N mtDNA arrangement 

is derived from that found in the OY and RU cytoplasms. If this is the 

case, the OY and RU cytoplasms must contain fragments with homology to 

the missing fragments, such that the N-like organization can be created 

by recombination between these progenitor fragments. Unfortunately, no 
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Fig. 6. 1. Hybridization of the cosmids 04 and 05 to mtDNA from LF, OY 

and F mtDNA. 

A 0.85 agarose gel (stained with ethidium bromide, and photographed 

under ultra-violet light) of Xhol cut mtDNA from LF, OY and F compared 

with the cosmid clones 134 and 65, also cut with Xhol, i!JjjdlH digested A 

DNA is included to give size comparisons. The XLiI fragments of 04 and 65 

are lettered according to size (see D, below). Where two bands are 

inseparable it is indicated as A/B. The restriction profiles of LF and OY 

mtDNA are virtually indistinguishable but F mtDNA differs from the other 

two in a number of locations: 

B Overnight exposure of a Southern blot of the gel ih A probed with 05, 

labelled by nick translation. Arrows mark fragments that are not present 

In all the mtDNAs. Open arrows mark novel fragments specific to one of 

the rntDNAs. Asterisks mark fragments hybridizing in the mtDNAs that are 

not present in the cosmids; these bands are due to hybridization of the 

cloned mtDNA included within the vector-containing fragment S  of the 

cosmids (i.e. fragment B of 64, fragment C of 65). Three fragments of 64 

hybridize to the 65 probe; B (because of vector homology) plus A and .0 as 

these include the 12kb repeat present in both cosmid inserts. 

C Overnight exposure of a Southern blot of a gel similar to that in A 

probed with 64. Arrows and asterisks mark fragments as above. 

D XfQl restriction map of the region in N mtDNA including the 12kb 

repeats (see fig. 1.2 for the full N genome map). The 12kb repeats are 

shown by open boxes; the position of the atDA genes are marked by 

vertical black bars. The areas covered by the cosmid inserts of 64 and 05 

are indicated by heavy lines. The XtiI fragments of 04 and 65 are 

indicated by letters. Missing letters represent vector containing 

fragments. 
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nexpiainea iragrnents riyorialze to 64 in ( 	mLDNA 	. . LL This may 

e because either OY mtDNA lacks entirely the sequences on the missing 

ragments, or because novel homologous fragments are inseparable from 

other h  n.::g fragments. However, OY mtDNA does contain a 1.65kb 

:h fnaqmtrcmologous to 65 not present in N or C rntDNA. I presumed 

hat this fragment was the progenitor of the missing type 1 atA 

arrangement and thus would contain homology to type I specific DNA. To 

rove this I used the clone AN6, containing a 3.4 kb EQRI insert, as a 

type 1-specific probe on the same filter as used in fig. 6.1B, after 

stripping the previous probe with 0.41 NaOH (fig 6.3A). To characterize 

n detail the events leading to the creation of the type 1 arrangement, 

both as a sublimon in DY mtDNA and as an amplified sequence in N mtDNA, 

it was necessary to clone this 1.65kb sequence. 

6.3 Formation of the sub-stoichiometric type 1 atM fragment 

in OY mtDNA 

I constructed an tI cut OY mtDNA library in pUC 5 	and probed this 

with a 3.4 kb EQRl fragment specific to the type 1 atA flank. As the 

clone AN6 (containing the same E.c.QR1  fragment) could not be used as a 

probe because of the polylinker and lacZ homology between mpl8 and 

pLJCI8, the 3.4kb EQQRI fragment was gel-purified or DEAE paper (see 

2.2.8) from a £yjj/Ec.QRI digest of pIll, a pBR328 clone containing the 

type 1 atDA gene. A single hybridizing clone (pAB5), containing a 1.65kb 

insert, was identified and its restriction endonuclease sites mapped in 

comparison to pill (fig. 6.313). The point of divergence between the two 

appeared to occur close to the ECORI site of the pAB5 insert, so I made 

EcoRl/Hindlil M13mp19 subclones of pAB5 to allow DNA sequencing 

progressing from the EcoRl site towards the point of divergence. The 

sequence of clone RHAB59 showed 55bp perfect homology to part of the 



Fig. 6.2. Hybridization of cosmid clone 05 to mitochondrial DNA from 

three South American cytopiasms compared with that of LF, OY and F 

cvtopl asins 

These Xhol cut mtDNAs were separated on a 06% agarose gel for 40 hours 

before blotting. The extra separation compared to fig. 6.113 allows the 

mtDNA fragments homologous to the large A fragments of 64 and 05 to be 

distinguished. The mtDNAs from OY and the South American accessions 

ECLJ32 1, ECU398 and CUN443 lack the 64 A fragment (arrowed) found in LF 

and F mtDNA. ECU398 and CUN443 contain R plasmids (Weissinger et al 

1982). F mtDNA lacks the type 2 atDA-containing fragment (C, arrowed) of 

64. The asterisk marks a mtDNA fragment homologous to sequence within 

the 65 vector-containing fragment (65 C). 
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Fig. 6.3. Identification aria restriction mapping,  ot a novel l 55kb Xnoi 

fraoment from OY mtDNt. 

A Hybridization of AN6 to the cosmid clones 04 and 05, and to LF, OY and 

F mtDNA. The filter used in this experiment is that shown in fig. 6, 1  

after removal of the previous probe with OAM NaOH. The probe AN6 

contains a 3.4kb EQQRI fragment specific to the 3 flank of the type 1 atDA 

arrangement (see B). This probe contains substantial homology to 

fragments B and F of 65. The EQRi site closest to the atDA gene lies just 

within the 12kb repeat, so the probe also contains slight homology to 

fragment C of 64. Other hybridization signals are probably due to 

incomplete removal of the previous probe, with the exception of the novel 

1.65kb fragment of OY mtDNA which hybridizes strongly (arrowed), 

indicating it contains a considerable amount of type 1 flank sequence. 

B Restriction maps of the type 1 atDA region and the insert of pAB5, a 

clone of OY mtDNA selected by hybridization to the 3.4kb EcoRl fragment 

marked, The insert of pAB5 is the novel 1 .65kb Xhol fragment from OY 

mtDNA shown in A. Restriction digests of pill (a clone of the type 1 atA 

region from Dr. P. Isaac) and pAB5 with Xhol (X), EcoRl (E), BamHI (B) and 

It (5) revealed that the pAB5 (nsert was identical to the corresponding 

region from pill except for about 300bp at one end. The arrow shows this 

region, which was subcloned into Ml3mp19. The direction of the arrow 

indicates the direction of sequencing of one selected subclone, RHAB59. 
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12kb repeat, implying that the 1.65kb XbI fragment cloned into pAB5 

contains 181bp homology with the type 2 atDA sequence (fig. 6.4). This 

extent of homology is similar to the 185bp homology between STIR 

sequences in CM5-5 mtDNA, and so might be expected to be sufficient for 

homologous recombination. Recombination between the pAB5 sequence 

and the type 2 atDA arrangement would be predicted to give two 

products- the type 1 atDA arrangement and a larger Xhol fragment 

composed of type 2 atDA flank and the novel sequence of RHAB59 (fig. 

65A). Using RHAB59 as a probe on N and RU mtDNA detects both these 

products as sublimons (fig. 6.513). Confirmation for the reciprocal product 

as well as for the atDA type 1 already known to be present was obtained 

by hybridizing 8M4 (a hjJfldIII/EQRt clone specific to the 3 flank of the 

type 2 atoA arrangement) to the same blot (fig. 6.50. Interestingly, 

RHAB59 detects no novel fragments in N mtDNA, implying that the 

non-repeated. sequence of RHAB59 is unique to OY/RU mtDNA, and not 

present in N mtDNA. 

6.4 Conversion of OV mtDNA organization into N mtDNA 

organization 

These results suggest that the type 1 atDA sublimon fragment in OV 

and RU mtDNA is generated by infrequent homologous recombination 

between a 181bp sequence situated on both the novel 1.65kb Xhol 

fragment and the type 2 flank of the atoA gene in these cytoplasms. The 

size of the repeat and the presence of the reciprocal product in 

comparable amounts suggest that de. novo recombination is sufficient for 

these observations, thus favouring the first hypothesis in 6.1. Based on 

these observations, a possible sequence of events can be postulated for 

the conversion of an OY/RU-type genome organization into an N-type 

f 60 (fig. 6.6). 
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Ecofli 
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pR type 1 CCTAGTTCATCTCTTCGGCGflTCCTTOBHRHCRGCflflTTflGTCTTTCTTCCTTRCTTGTGRRTTCGTfl 
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RHaB 59 GAOAGTCAAGCTCTTCGGCGRTCCTTGHRRf1CRGCRRTTROTCTTTCTTCCTTHCTTOTGRRTTCGTA 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIuII1rF 
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CCTGTAATCTTCRCTTCCTRGGGTIIORTRGACATHCTTCCTGCTARGRTGGHTGGCTTTCTTTGTTG 
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IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIII 
CRCCTCCRCTTGIIRRGRCSBCTGTCARCTTCRRCTCTTTGRGGGRTTTGCTTTCTCRCTTTCCCAGA 

end of 12kb repeat 

Fig. 6.4 DNA sequence of the clone RHAB59 compared to the sequences 
of the 3' borders of the two 12kb repeats frpm N mitochondrial DNA. 

Homologous sequences are marked by vertical bars. Regions 
homologous between all three sequences are printed in bold type. The 
underlined sequence represents the predicted sequence of the pAB5 
insert considering the similarity of the restriction maps between the 
pAB5 insert and the type 1 atoA region. The insert of pAB5 thus 
probably contains 181 bp of perfect homology to the type 2 atDA sequence 
present in OY mtDNA. 



Fig. 6.5. Two sublimons are formed as the result of reciprocal 

homologous recombination between the type 2 atpA arrangement and the 

novel AB5 fragment in RU mtDNA. 

A Predicted recombination products between the type 2 atDA 

arrangement and the novel AB5 fragment. Reciprocal homologous 

recombination across the 181 bp repeat common to these sequences should 

give rise to fragments of 3.5kb (the type I atDA arrangement) and 4.0kb. 

To test this prediction I used the probes RHAB59 and BM4 (as shown) on 

RU mtDNA. Both probes include some sequence homologous to the 18.1bp 

repeat, so could theoretically hybridize to all four fragments. 

B Hybridization of RHAB59 to XbQI  cut mtDNA from CUN443 and ECU398 

compared to N mtDNA. Sublimon fragments can be detected of 4.0kb and 

3.5kb in the CUN443 and ECU398 mtDNA, fitting well with the predicted 

results. The 3.5kb sublimon fragment corresponds to the type 1 atDA 

arrangement clearly hybridizing in the N mtDNA. The difference in 

intensity of the two sublimon bands is probably due to the difference in 

the length of their sequence homology to the probe. 

C Hybridization of BM4 to a similar gel to that of B. The 4.0kb sublimon 

fragment is clearly detectable with this probe as predicted. 
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Fig. 6.6. Scheme for the conversion of the .OY/RU-type genome 

organization to an N-type organization. 

I have calculated the organization of the atDA and 12kb repeat associated 

sequences in OY/RU. Conversion to an N-type genome can be achieved via a 

two-stage process requiring initially two rare recombination events, 

labelled A and B. 

A represents the generation of the type I atDA sublimon by recombination 

with the homologous 181bp sequence at the 3' flank of the 12kb repeat 

sequence. 1 and 2 refer to the type 1 and type 2-specific sequences 

respectively. 

B represents a second rare recombination event required to generate 

another pair of circles, one of which, when recombined with the type 1 

atDA sublimon circle (via a pair of 1kb repeats situated on both circles, 

see fig. 1.2) gives rise to the N genome organization. There is no evidence 

for this recombination event (B); it is indicated merely to suggest a 

possible way in which the OY/RU genome organization could be rearranged 

to give an N-type genome organization. This hypothesis requires one to 

postulate that there is homology between the sequences indicated on the 

OY/RU genome map. 
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6.5 Investigation of the type 3 atDA sublimon In N mtDNA 

In order to confirm the generality of the observations above, I decided 

to repeat a similar procedure of investigations on the type 3 atDA 

sublimon of N mtDNA (see 5.3). An I -EQRI fragment specific to the 

type 3 atoA flank was gel-purified from the CMS-S'atDA clone H53C5 

(fig. 6.70. This fragment was used as a probe on libraries of E.cQ.RI  cut 

B37-N mtDNA cloned into pBR328. The clone pZmE67 was identified by 

the probe, but further investigation revealed four inserts after ERI 

digestion, including two of 1.7kb, only one of which hybridized strongly 

to the probe (not shown). These two 1.7kb EQ.RI fragments were 

gel-purified, recloned into pUC18, and again screened with the type 3 

specific probe. The pUC 18 clone T3H4 showed best homology to the probe, 

and subsequently its restriction endonuclease sites were mapped in 

comparison to the type 3 atDA clone H53C5 (fig. 6.7). Surprisingly, the 

insert of clone T3H4 does not contain all the sequence specific to the 

type 3 flank, and thus cannot give rise to the type 3 at D A arrangement by 

recombination with either the type I or type 2 arrangements. To discover 

whether this missing type 3 sequence was present elsewhere in the N 

genome, the two small (c. 200bp) KnI fragments of H53C5 were used to 

probe N and S mtDNA cut with KDnI (fig. 6.8A). These fragments, which 

must be an integral part of the type 3 atDA sublimon of N mtDNA, are 

lacking in easily detectable amounts from the N genome. There is some 

hybridization to high molecular weight fragments in the N mtDNA. The 

T3H4 insert does contain one of the three KDnI sites delimiting the two 

fragments comprising the probe, so this insert probably contains some 

homology to the probe. Therefore the poorly hybridizing N mtDNA 

fragments in fig. 6.9A may be iüI fragments containing the T3H4 insert 

sequence. The amount of radioactive probe used in this experiment may 

have been too low to detect sublimon levels of the 200bp ON fragments, 
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Fig 6.7. Restriction mapping of the plasmid T3H4 in comparison with the 

type 3 atDA clone H53C5. 

A Ethidium bromide stained agarose gel of T3H4 and H53C5 digested 

with the restriction enzymes shown (RI=EQQRI, RV=ERV). 

B Southern blot of the gel in A probed with the Xj -E.cQ.Rl fragment used 

to isolate T3H4 from the clone library. The positon of the probe is shown 

on the map below (Rl=EcoRl, R5=Ec0RV, X=l, K=pI). Thick lines 

indicate insert DNA, thin lines indicate vector DNA. The extent of the 

homology between the two plasmids is shown. The point of divergence 

between H53C5 and the two atpA arrangements of N mtDNA occurs 

between the end of the atA gene and the ER5 site marked. Therefore, 

T3H4 lacks about 1kb of the type 3 specific sequence. 
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Fig. 6.8. Te aenome of N mitochondria doec flO 	Tfl 

necessary for the formation of the tvoe 3 sublimor 

Hybridization of A, the two 200bp KDrd fragments of H53C5 and B, BLSC 

to A, KpnI cut and B, BamHl cut N and S mtDNA. The locations of the 

sequences used as probes are shown below. A is a one week exposure, B 

was exposed overnight. The arrow indicates the position of the type 13 

sublimon detected with the BLSC1 probe in N mtDNA. No sublimons are 

visible corresponding to the small fragments in A, but this may be 

due to differences in probe strenat or amount of DNA ioaeo n the two 

ex,  priment 
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but the type 3 atDA subllmon is present in this N mtDNA, as shown by 

probing the same N and S mtDNAs with BLSC1 (fig. 6.813). 

6.6 Discussion 

At the start of this chapter, two conflicting, but not necessarily 

- exclusive hypotheses were postulated to explain the presence of 

sublimons in plant mitochondrial genomes. The experiments described in 

this chapter were intended to allow informed judgement on which of the 

two most convincingly explained the situation In vivo. The study of the 

type 1 atDA sublimon of OY and RU mtDNAs suggested that 

recombination de .  novo was sufficient to explain the results. However, 

the observations on the type 3 atDA sublimon of N mtDNA cannot be 

explained in this fashion. Part of. the sequence comprising this sublimon 

is lacking from the N mitochondrial genome, and thus this sublimon 

cannot be generated de .  novo by recombination. It. seems the only 

explanation is that the type 3 sublimon in N mtDNA is an evolutionary 

relic, implying that rare recombinant molecules can be maintained in the 

genome for long periods without being continuously reformed by 

recombination. This has important repercussions when considering the 

potential for genome change in plant mitochondria, as will be discussed 

in the following chapter. 
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Chapter 7- Discussion and speculation on a possible role 

for sublimons in the evolution of plant mitochondrial 

genomes 

7.1 Recombination in the maize mitochondrial genome 

The base substitution rate in higher plant mtDNA is low (see 1.5), and 

thus any consideration or genome evolution in plant mitochondria must 

predominantly concentrate on the organizational differences between 

related mitochondrial genomes. The observed organizational diversity 

appears to have arisen by the fixation or molecules created by rare 

recombination events between short repeats scattered throughout the 

genome, a feature of many plant mtDNAs (Lonsdale 1987). These events 

may be catalysed by the same recombination system as that operating on 

the large repeats described in 1.2. Recombination in plant mitochondria is 

thought to be due to a general sequence independent homologous 

recombination system; there is no evidence of any site-specific system 

active in plant mitochondria (Lonsdale et al. 1988). No direct observations 

have been made on the activity or substrate requirements or these 

putative recombinases, but tentative conclusions can be drawn after 

comparisons with other systems, and by using the indirect evidence at our 

disposal. 

The RecBC and RecF recombinase systems from E. coli show a linear 

increase in recombination frequency with increasing length of homology 

between the two substrate sequences above a threshold of 23-27bp or 

44-90bp respectively (Shen and Huang 1986). The frequency or 

recombination in these systems decreases 40 fold with a decrease in 

substrate homology from 100% to 90%, in vitro studies with RecA show 

heteroduplex formation between substrates with 151 bp homology, but not 
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between substrates of only 30bp homology (Gonda and Radding 1983). 

The two putative recombination substrates studied in detail in this 

thesis are of similar lengths, 186bp for the STIR sequence in CMS-5 

mtDNA and 181bp for the atoA linked repeat in OY mtDNA. Based on the 

data above, these sequences would theoretically act as efficient 

substrates for the E. cji.  enzymes, although they would probably not be 

large enough to form substrates for high rates of recombination. These 

substrates and their predicted recombination products are detected in 

markedly non-equimolar ratios in maize mitochondria, implying 

equilibrium has not been achieved, and suggesting that recombination is 

-slow in comparison with other contributory processes, such as the 

relative rates of replication of the molecules containing these repeats. In 

contrast, most, or all large repeats (those greater than 1kb) in plant 

mitochondrial genomes are apparently at or near recombinational 

equilibrium, as all f -our recombinant possibilities are equally represented 

in the genome (Palmer and Shields 1984, Stern and Palmer 1984b, 

Lonsdale et al. 1984, Falconet et al. 1984, 1-liesel et al. 1987, Lonsdale et 

al. 1988). At the other extreme, no recombinant products have been 

detected (in mtDNA extracted from seedlings) resulting from 

recombination across a small 55bp direct repeat present in CMS-T 

mitochondria (Rottman et al. 1987). Recombination must occur across this 

repeat at low levels, however, as fixation of one of the recombinant 

products is responsible for fertility reversion in cultured CMS-T cells. 

Thus one can postulate that the recombinase system in maize 

mitochondria has similar characteristics to those of E. coli recombinases, 

and one can assume frequent recombination between larger repeats (over 

500bp), less frequent recombination between repeats of 1 OO-200bp, and 

very infrequent recombination between repeats of 5Obp and less. 

The activity of this recombinational system would directly affect the 
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ratios of subgenomic circles to each other within the multipartite 

mitochondrial genome. In addition it also has implications for copy number 

control of sequences present on different sub-genomic circles, as 

inter-molecular recombination could compensate for differences in the 

efficiency of different replication origins. Circles lacking replication 

origins may be able to gain access.to  a replication origin by recombining 

with a circle that does possess one. This may allow the survival of 

sub-genomic circles that would otherwise be lost. 

7.2 Maintenance of mitochondrial genome structure 

The complex multicirc.ular mitochondrial genomes of higher plants 

remain structurally stable for many generations (Brennicke and 

• Schwemmle 1984, Oro et al. 1985), although on an evolutionary timescale 

they appear to evolve very rapidly in structure (Palmer and Herbon 1987b). 

It is still not entirely clear whether these genomes should be regarded as 

a master circle, with sub-circles created by recombination, or as a 

• collection of independently replicating circular molecules with some 

recombinational interchange. The minicircular plasmids of maize (see 

1.2.1) are examples of independently replicated circular DNAs maintained 

in the genome. Others have been described in the Oenothera mitochondrial 

genome, where numerous large circular molecules (5-20kb+), at widely 

varying stoichiometries, have been identified in addition to the main 

mitochondrial genome by gel electrophoresis of undigested mtDNA 

(Brennicke and Blanz 1982). The study of some of these circular molecules 

has revealed that they were. formed by looping out of main genome 

sequences lying between short direct repeats. The repeats involved in at 

least one of these events were extremely short (ten nucleotides) 

suggesting- a unique or extremely rare event (Manna and Brennicke 1986). 

• - 	Furthermore, the reciprocal junction fragments of these recombination 
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events are not found, strongly implying'- that these circles hvé been 

maintained and amplified by independent replication, and are not 

generated by de. novO recombination. The least abundant of these circular 

molecules would appear to be analogous to the 'sublimons have described 

in Chapters 5 and 6. My results with the type' - 3 atDA sublimon of N mtDNA 

show that rare recombinaAt molecules can apparently be stably 

maintained in maize mitochondria in the absence of continuing 

recombination. 

7.3 Possible implications of sublimons in the evolution of the 

plant mitochondrial genome 

I have defined sublimons as molecules containing novel recombinant 

arrangements present, at sub-stoichiometric levels in the genome. 

Amplification and fixation of a sublimon at stoichiometric levels would 

create a novel genome structure, and, my observations with atDA probes 

• suggests this has happened during the evolution of the maize 

mitochondrial genome. This amplification event could be passive (by 

segregation) or active (by selective replication). 

If these sublimons are retained through several generations without a 

Significant contribution from recombination events (as suggested by the 

study of the type 3 atDA sublimon in N mtDNA), then there is the 

possibility of subsequent rearrangements and sequence drift in 

•  comparison to the original progenitor sequences. Sublimons might be 

expected to show rapid molecular evolution because: 

(a) given that these molecules are present at relatively low levels, 

'further mutational events in one of these molecules will affect a 

relatively high proportion of them. Mutations occurring under such 

circumstances would become more rapidly fixed than mutations in highly 

abundant sequences. 
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V there would be no selection pressure against mutation as sublimons 

cannot be expected to have any direct phenotypic significance. 

Consequently one might expect sublimons to progressively accumulate 

mutational events, both base substitutions and further recombinational 

rearrangements. Occasionally, one of these rearrangements may lead to 

the amplification of such a molecule to a normal stoichiometry and this 

amplification event would create a novel mtDNA restriction endonuclease 

pattern. 

Sublimons may be involved in the phenomenon of cytoplasmic reversion 

to fertility, described in chapter 4. In cytoplasmic revertants, rearranged 

mtDNA molecules have become fixed in the genome that appear to have 

been generated by recombination between short regions of homology 

(Schardl et al. 1985, Rottman et al. 1987). It seems possible that these 

rearranged molecules existed as sublimons in the genome of the sterile 

parent. However, an attempt to find the fertile revertant mtDNA 

configuration as a sub-stoichiometric component of the CMS-T genome has 

failed (Pring et al. 1988). Lonsdale et al. (1988) have shown the presence 

(in field-grown CMS-5 revertants) of sub-stoichiometric mtDNA 

arrangements corresponding to the abundant novel arrangements of other 

CMS-5 revertants. This observation could be explained by differential 

amplification of several pre-existing sublimons. 

One can speculate that if widespread, the existence of sublimons in a 

genome allows the possibility of a sudden drastic reorganization by the 

amplification of these pre-existing rare recombinant molecules. Although 

this may seem unlikely, such catastrophic changes are implied by a recent 

report of a transition from N-type cytoplasm to 5-type cytoplasm induced 

by the recessive nuclear mutation iojaD (U) (Lemke et al. 1985). This 

phenotypic switch was accompanied by the appearance of the Si and 52 

DNA5 in the mtDNA of the new CMS line (designated cms ij-1). A similar 
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event, from N to CMS-T has also been observed (Lemke, personal 

communication). This second novel CMS line has been designated cms ij-2. 

I have examined the mtDNA from these plants, their parents and related 

progeny from the same crosses. hybridization patterns of gene specific 

probes e.g. atDA (fig. 7.1 ) to these mtDNAs confirm that the plant cms ij- 1 

(from the cross R181-N x j.,jEv-N, the male parent being homozygous for 

iojaD) has CMS-5 like mtDNA, and the plant cms ij-2 (from the cross 

W)826N-181 x jjJEv-N) has CMS-T-like mtDNA. The female parent of the 

second cross has a fertile cytoplasm (181) with mtDNA similar to that of 

N in most respects, but in the region of the atDA gene it resembles CMS-T 

mtDNA (fig. 7.1). This suggests that the 181 cytoplasm might be expected 

to be predisposed to a transformation to T cytoplasm, and 

circumstantially suggests the validity of the observation. Protein 

synthesis by isolated mitochondria (in  organello) from both cms ii-1 and 

cms 1j-2 confirm that they are of the CMS-5 and CMS-T groups 

respectively (Liddell and Leaver, unpublished). 

The results of Lemke et a], have not been widely accepted by molecular 

biologists in this field because of the difficulty in explaining the 

molecular events needed to effect such a transformation. The 

mitochondrial genomes of N, S and T cytoplasms differ at a large number 

of loci, with multiple insertions, deletions, point mutations and 

rearrangements of sequences (Leaver et al. 1985, Dewey et al. 1986). It is 

inconceivable that such widespread and apparently random rearrangements 

could occur identically on a number of independent occasions. However, my 

results with atDA probes implies that at least some sequence 

arrangements previously shown to be characteristic of male-sterile lines 

can be detected in fertile lines at low levels. If a high proportion of the 

rearranged sequences characteristic of male-sterile lines were already 

present at low levels in fertile lines then the transformations reported by 
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Fig. 7. 1. Hybridization of an atpA probe to mtDNA from cms ij-1 and 2 

compared with related lines. 

1. 1984: 1589 	W182BN-181 

Z1985:6096 W1828N- 181 

 1982: 691 restored CMS-T 

 1980: 1540 fertile 

5.1982: 707x 688 partial sterile 

 1983: 13903LB partial sterile 

 1984: 1908 cms ij - 2 

 1985:6101 W182BN-T 

 1984: 1260 W182BN-T 

 1985: 6392 jjU Ev-N 

11, 1985:6103 R181-N 

12 1985:5973 cmsij-1 

 1980: 1529 fertile 

 1985:6908 W1B2BN-CA 

15, 1984: 1883 partial sterile 

16. 1985:6438A partial sterile 

The atDA probe BL5C1 was hybridized to a Southern blot, of BamI-H 

digested mtDNAs from the lines listed above. atpA types are labelled as 

defined in chapter 5. 

1-10 represents lihes related to the novel CMS source cms ij-2, which 

resulted from a cross of WI82BN-181 0 and 2) with a male parent 

homozygous for iojar (10). The 181 cytoplasm resembles T in its a -  IDA 

organization, but the two can be distinguished by large faintly hybridizing 

fragments (arrowed, compare lines 2 and 3). Lines 4, 5 and 6 are siblings 

retaining the parental hybridization pattern from the same cross that 

produced cms ij-2. 

Lines 10-16 represent lines related to the novel CMS source áms ij- 1. 

10 and 11 are the male and female parents of the cross repectively. 14 is 

a CMS-S cytoplasm as a comparison to cms ij-1; 	13, 	15 and 16 are 

siblings to 	cms 	ij-1 but show 	the parental 	hybridization pattern. 
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Lemke et al. become much more plausible. 

To investigate the possibility that sublimons could be involved in these 

alleged transitions, I chose as a marker the urfl3-T gene of CMS-T. This 

gene encodes the 13kDa polypeptide thought to be responsible for CHS in 

this cytoplasm (see 1.3. 1). The degree of conservation of the component 

sequences in this region with their homologous sequences in N mtDNA 

varies (fig. 7.2), implying temporal separation of the formative 

recombination events. 'NO Intermediates between the N and CM5-1 

organizations in this region, are known, and thus this sequence 

arrangement fits well with the hypothesis of rapidly evolving low 

abundance constituents of mtDNk The complexity and apparent 

randomness of this sequence arrangement strongly suggest that for an N 

to CMS-T transition to occur, this sequence must pre-exist in the 

progenitor genome. I used an synthetic oligonucleotide as a probe on 

mtDNA from N, 181, PUN6 and CMS-T cytoplasms (fig 7.3). No evidence of 

any sublimons containing this sequence were observed in any of the fertile 

cytoplasms, but this may be due to the low sensitivity of oligonucleotide 

probes. 

If independently maintained and evolving sublimons are to be suggested 

as vehicles of genome change, then serious consideration has to be given 

to the inheritance and segregation of mtDNA molecules during both 

mitosis and meiosis, as the initial expectation would be that rare 

recombinant molecules would tend to be lost from cell lineages durina 

repeated rounds of cell replication. 

7.4 Segregation of heterogeneous or multipartite genornes 

Most organelle genomes segregate rapidly during successive mitotic -

divisions from a mixed (heteroplasmic) to a pure (homoplasmic.) 

population (reviewed in Birky 1978, 1983). This has been shown for 
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265 rRNA chioroplast 

coding region tRNA-Arg 

(95%) (90%) 

265 rRNA 
atp6 	3 flank 

5 flank 	(85%) 	 ORE 25 

- i 
urfl3-T 

Fig. 7.2 The homology between various portions of the chimaeric urfl3-T 

region of CMS-T mtDNA and their presumed progenitor sequences. 

Vertical lines indicate the sites of the recombination points involved in 

the formation of this region. The urfl3-T. gene is shown by a solid box, 

the open reading frame encoding a putative 25kDa polypeptide (ORE 25)is 

shown by an open box. The major homologous sequences from N mtDNA are 

• indicated, and their percentage base sequence homology with sequences of 

the urfl3-T region are given. The figure given for the tRNA-Arg gene is 

percentage base sequence homology to the homologous gene from tobacco 

chioroplast DNA. 
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Fig. 7.3. Hybridization of a synthetic oligonucleotide probe for the 

urfl3-T gene to maize mitochondrial DNA from fertile cytoplasms. 

A 20-base oligodeoxynucleotide sequence identical to a portion of the 

urIl3-T gene was synthesized (see below, marked in bold type). The 

sequence shown was selected because of its low homology to its 

corresponding sequence in the 3 flank of the 265 rRNA gene from N 

mtDNA (see below). The 20-base sequence in the corresponding region of 

the 3 flank of the 265 rRNA was also synthesized (see below, marked in 

bold type). Both oligodeoxynucleotides were end-labelled with 32 P for use 

as hybridization probes. 

PHE LEU CYS ILE LEU LEU ILE LYS GLY TYR 
ITT TTG T6C RTR TTA TT6 11TH 1186 GGA TAT urf 13-T 

ii 	Ii 	I 	I•II 	III 	II 	Ill 	lit 
All ITT TTC HIT 1166 CR6 HIT BRA 66A TAT 3'f lank of 26S rRtIH 

A 	Hybridization of (i) the urfl3-T probe and (ii) the 265 rRNA probe to 

T, TRf and N mtDNA digested with Aval (TRf mitochondrial DNA is 

identical to T mtDNA, but the nucleus of this. line carries the CMS-T 

restorer genes). The two probes are shown to be specific for their own 

complementary sequences under the hybridization conditions used. N 

mtDNA does not contain any detectable homology to the urf 13-T probe. 

B 	Hybridization of the urfl3-T probe to mtDNA from cytoplasms Q (a 

member of the CMS-T group), 181, PUN6 and N. Only 0 mtDNA shows any 

detectable homology to the probe. The mtDNAs 181 and PUNS resemble T 

mtDNA in the arrangement of their atDA gene, but otherwise resemble N 

mtDNA (see 5.3). 



A 	()TTRfN 
	

(ii) T TRf N 

26S rRNA 
404M am 2.1 kb 

1.5 kb 	4040 
urt 1 3-T 

Ii 
	

BamHI 	 !jjjdIII 

PUN 
	

PUN 
0 181 6 
	

0 181 6 N 	 0 181 

010 WT 

6.7kb 40 

2.0kb 

0 
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chioroplast genomes either after crossing plants containing genetically 

marked plastids (in those species exhibiting biparental inheritance) 

(Adams et a). 1976, Birky 1983) or after fusion of protoplasts containing 

similarly marked plastids (Nagy et a). 1981, Fluhr et a]. 1983, Pelletier et 

al. 1983). The same is true for mitochondria in yeast. Crosses between 

yeast strains containing different alleles of a marker gene to form a 

heteroplasmic zygote segregate to homoplasmy in around 20 mitotic 

divisions. This segregation is partially statistically predictable by 

modelling replication and partitioning of mtDNA molecules as stochastic 

processes (Birky 1978, 1983). However, to achieve the rapidity of 

segregation observed with chioroplasts and yeast mitochondria it is 

necessary to assume non-random mixing of mitochondrial genomes in 

cells; specifically, like genomes must tend to associate with like, and 

thus are more likely to cosegregate into the same daughter cell 

(VanWinkle-Swift 1980, Birky 1983). 

The study of the segregation of plant mitochondria) genomes is 

complicated by recombination between parental mtDNAs. Regeneration of 

cybrids created by the fusion of protoplasts containing mtDNAs 

distinguishable by their restriction endonuclease patterns results in 

plants which have mtDNA unlike that of either parent (Bel liard et a). 1979, 

Galun et al. 1982, Boeshore et a). 1983,1985, F]uhr 1983, Nagy et al. 

1981,1983, Chetrit et al. 1985, Kemble et a]. 1986). These novel mtDNA 

genomes contain fragments from both parents (Rothenberg et a). 1 985) as 

well as novel fragments generated by recombination between the parental 

mtDNAs (Rothenberg and Hanson 1987, Morgan and Maliga 1987). This 

inter-genomic recombination must be preceded by mitochondrial fusion. 

Fusion of mitochondria is probably normal in plant cells, and is not an 

artefact of the protoplast fusiOn procedure. Otherwise it is difficult to 
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see how complex plant rnitochondrlal genomes could arise or be 

maintained intact when calculations show that in many cell types the 

number of master circles per mitochondridn 	is of the order of one 

(discussed in Lonsdale et a). 1988). If this is the case then the mtDNA 

complement of a plant cell (chondriome) can probably be considered as a 

single entity, providing that the cell generation times are sufficient for 

complete mixing of the mitochondria. Dividing plant meristematic cells 

contain 5-10 large reticulate mitochondria, each presumably containing 

many mitochondrial genomes (Bendich and Gauriloff 1984). Mitochondrial 

mixing and fusion would reduce the rate of segregation, and add to the 

stability of the genome. 

However, although the novel mtDNA organizations of cybrids are stable, 

each cybrid shows a unique pattern. This suggests rapid segregation to 

homoplasmy after an initial heterogenous state when a large number of 

possible mtDNA conformations coexist in the initial fused cell. It is 

difficult to reconcile rapid genome segregation with the maintenance of 

sublimons which 	are not 	continuously 	recreated recombinogenically. 

However, there is considerable evidence that the segregation of plant 

mitochondrial genornes observed in cultured cells is not entirely 

applicable to the normal plant life cycle. Plant mitochondrial genomes 

often undergo alterations, especially deletions during periods in culture 

(Morgens et a). 1984, Morgan and Maliga 1987, Rode et a). 1987). The best 

examples are probably cytoplasmic revertants to fertility in maize. During 

cytoplasmic reversion, rare recombination products are fixed in the 

genome within (in some cases) a single sexual generation (Schardi et a). 

1985), requiring a considerable degree of segregation, probably coupled 

with positive selection pressure. Reversion to fertility is greatly 

enhanced in cultured CMS material, in fact revertants from CMS-T and 

from the CMS-S source W182BN (see Chapter 4) have only been obtained 
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from cultured cells (arid never found In field-grown plants), perhaps 

because of a greater opportunity for segregation (Brettell et al. 1980, 

Earle et al. 1987). Interestingly, I have found that intermediate mtDNA 

organizations evolving in culture along a predictable path are fixed in 

plants regenerated from culture (the 51 integrate fragments of the young' 

WI82BN revertants are stable for several generations in plants, but are 

lost if the cells are kept in culture; see 4.3). This further evidence also 

implies that the same rate of segregation is not present in the normal 

plant life-cycle. 

Mammalian mitochondrial genomes segregate to homoplasmy very 

rapidly after heteroplasmy has arisen during the usual sexual lifecycle 

(Hauswirth and Laipis 1985). This is due to several special features of 

mammalian development. For example, multiple rounds of mitochondrial 

fission occur without genome replication during oogenesis, and there is no 

evidence for mitochondrial fusion to prevent segrgation during this 

process. In addition, mammalian embryos are partitioned at a very early 

stage into different tissue types, including a segregation between 

primordial germ cells and somatic cells, further dividing up the original 

complement of mitochondrial genomes. Hauswirth and Laipis (1985) have 

estimated that only five mitochondrial genomes serve to define the 

cytoplasmic genotype of the next generation. These five genomes can be 

considered as the unit of inheritance for mammalian mtDNA. 

Unfortunately, in plants there is a lack of relevant information with 

which to make analogous calculations. Little is known of the mechanism 

or developmental timing of plant mtDNA replication. Studies of mtDNA 

synthesis in maize using immature cob and coleoptile tissue (Carlson et 

al. 1986, Bedinger and Walbot 1986) and in wheat using young germinated 

embryos (Ricard et al. 1983) have failed to demonstrate any significant 

mtDNA replication, only mtDNA repair. Estimates of mitochondrial genome 
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number per cell are limited to differentiated, non-dividing cells (a typical 

value, from curcurbit hypocotyl cells, is 100-140 (Ward et al. 1981)). 

Meristematic cells, from which the tissues of the cob will eventually 

develop, may contain a larger number of mitochondrial genomes per cell. In 

summary, it can be said that no reliable estimate can be placed on the unit 

of inheritance for plant mitochondrial genomes, but the value could be 

higher than for mammalian genomes. 

7.5 Conclusions 

The mltochondrlal genome organization of higher plants is etremelr 

complex and yet relatively invariant from generation to generation. 

However, comparisons between related species, and often between 

cytoplasms within species, occasionally reveals large differences in 

sequence organization. Thus a kind of punctuated equilibrium can be 

envisaged for plant mitochondrial DNA evolution, with periods of 

stability interspersed by sudden widespread rearrangements of the 

genome. Sublimons, rare recombinant molecules retained in the 

mitochondrial genome for long periods, would play a part in this 

hypothetical mode of mtDNA alteration. However, the evidence is as yet 

still inconclusive, and much work remains to be done, particularly with 

respect to the characteristics of replication and inheritance of 

mitochondrial DNA in higher plants, if this hypothesis is to become 

accepted. 

7.6 Future work 

The work in this thesis leaves several questions unanswered. Chapters 

3 and 4 discussed and compared the mtDNA of CMS-S cytoplasms and 

cytoplasmic revertants Thereof, but failed to discover any correlation 

between the mtDNA and the phenotype that could account for the 
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molecular basis for CMS-S, such as has been demonstrated for CMS-T. it 

seems likely, therefore, that to make progress in this field, the problem 

should be approached from the other side; the physiology of pollen 

abortion in the anthers of CMS-S plants should be examined in order to 

discover the biochemical malfunction responsible, and only then may the 

mtDNA mutation be identified. 

The investigations and speculations on plant mitochondrial genome 

evolution have also been hampered by a lack of basic biochemical and 

physiological knowledge. It is essential for significant further progress 

that the mechanisms responsible for mtDNA replication and recombination 

(and their developmentii control) are characterized. Some specific 

problems, however, could and should be answered rapidly by standard 

molecular biological techniques. The putative scheme for the conversion 

of the OY/RU-type genome to the N-type genome organization (fig. 6.6) is 

currently being tested, with the intention of completing the description of 

this evolutionary transition. Further observations on the type 3 atM 

sublimon of N mtDNA ( see 6.5) are also planned, as the validation of 

these results is crucial to the most far-reaching speculations of this 

discussion. In a similar vein, it is intended to rigorously examine the 

alleged novel CMS sources produced by Lemke et al. (see 7.4) in order to 

prove or discount the claimed cytoplasmic transitions these plants 

represent. Confirmation of the results of Lemke et al. would require a 

rethinking of the conventional views of plant mitochondrial genóme, but 

could be explained by some of the processes discussed in this chapter. 
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Four genomic arrangements of the maize mitochondrial atpA 
gene (encoding the a subunit of the F 1  ATPase), have been 
characterized. Most N (fertile) and S (male-sterile) cytoplasms 
contain two atpA arrangements of equal abundance. Prolong-
ed exposure of blots of maize mitochondrial DNA probed with 
atpA-specific sequences show that cytoplasms previously 
reported to lack one of the alpA arrangements do contain the 
second arrangement but at low levels. Similarly, restriction 
fragments containing the atpA gene previously thought uni-
que to male-sterile S and T cytoplasms are present in low 
abundance in fertile cytoplasms. These observations suggest 
that fertile and male-sterile cytoplasms of maize may be more 
closely related than previously thought, and suggest possible 
mechanisms to explain the observed mitochondrial genome 
diversity. 
Key words: cytoplasmic male-sterility/DNA recombination/maize 
mitochondria/selective amplification/sublimons 

Introduction 
Physical and genetic maps of the mitochondrial genome of N 
(fertile) maize have recently been published (Lonsdale et at., 
1984; Dawson et at., 1986). The mitochondrial DNA (mtDNA) 
can be represented as a 'master circle' of 570 kb, which can give 
rise to smaller sub-genomic circles by recombination across direct 
repeats. Differences in replication and recombination rates bet-
ween different DNA circles gives rise to a complex multipartite 
genome (Lonsdale et at., 1984). Restriction endonuclease 
cleavage patterns of maize mtDNA from different cytoplasms 
reveal many characteristic differences between fertile (N) 
cytoplasms and each of the three different male-sterile cytoplasms 
(CMS-C, T and S; Pring and Levings, 1978), whilst cytoplasms 
within any one group show only slight differences (Levings and 
Pring, 1977; Sisco et at., 1985). Variation in the relative 
stoichiometry of different DNA fragments has also been reported 
(Borck and Walbot, 1982). The male sterile cytoplasms, C,T and 
S, were initially distinguished on the basis of the specific nuclear 
fertility restorer genes (Rf) which restore the ability of the mature 
plant to produce functional pollen. The designations N,C,T and 
S are also used to refer to the different mitochondrial genome 
organizations found in each of these cytoplasmic groups. These 
different genomic organizations have apparently arisen by multi-
ple widespread mtDNA rearrangements, some of which have 
generated novel open reading frames (Dewey et at., 1986), which 
may encode the characteristic variant polypeptides synthesized 
by mitochondria from the three CMS cytoplasms (Forde et at., 
1978). 

Location of the atpA gene in the mitochondriat genome of dif-
ferent maize cytoplasms 
The maize mitochondrial atpA gene has been sequenced (Braun 
and Levings, 1985; Isaac et at, 1985) and its locations on the 
physical map of mtDNA from N cytoplasm in a WF9 nuclear 
background identified (Dawson et at., 1986). In this fertile 
cytoplasm of maize the gene lies entirely within a 12-kb repeat, 
with the 3' terminus of the gene positioned 650 bases from one 
end of the repeat (Isaac et at., 1985). Consequently, two copies 
of the atpA gene can be represented on the 570-kb 'master cir-
cle' with different 3' -flanking sequences. In contrast, C ,T and 
some S cytoplasms of maize have been reported to contain only 
a single copy of the atpA gene (Braun and Levings, 1985; Isaac 
et at., 1985). Mitochondrial DNA from C cytoplasms contains 
an atpA arrangement indistinquishable from one of those found 
in mtDNA from N cytoplasms. However, novel DNA sequences 
are found 3' to the gene in mtDNA from S and T cytoplasms, 
so that the atpA arrangements in these cytoplasms can be 
distinguished from one another and from the forms found in the 
N genome (Braun and Levings, 1985; Isaac et al., 1985). Thus 
the region of the maize mitochondrial genome around the atpA 
gene(s) appears to vary considerably between cytoplasms, both 
in copy number and in sequence organization. This variation 
seemed worthy of further study, as the 12-kb repeats (including 
the atpA gene) have been reported to be involved in inter- and 
intra-molecular recombination (Lonsdale et at., 1984), and thus 
would be expected to be important in determing the genome 
structure. 

We report in this paper that this region of the mitochondrial 
genome exhibits considerable variation within the cytoplasmic 
groups N and S. These variations are apparently due to large 
differences in stoichiometry of existing genomic arrangements 
rather than to the de novo creation of novel sequences by recom-
bination. We also report that similar variations in stoichiometry 
account for some of the previously reported diversity in this 
region of the genome between the cytoplasmic groups N,T and 
S, and discuss the implications of these results in our understand-
ing of the mechanisms involved in the evolution of the mitochon-
drial genome organizations of the various classes of maize 
cytoplasm. 

Results 
In this study we have screened mtDNA from a number of dif-
ferent maize cytoplasms in a variety of nuclear backgrounds with 
atpA-specific gene probes to examine the variability in the 
organisation of the 12-kb repeat region (containing the gene). 
A DNA probe (ALXR1 8) covering the 5 '-end of the atpA gene 
hybridized to a 3.5-kb BamHI fragment in each case (see Figure 
1A), whereas the probe BLSCI, covering the 3' end of the gene 
and the immediately adjacent flanking sequence, distinguished 
four atpA arrangements, designated types 1-4 (see Figure 1B). 
The predominant types of the gene found depended on the 
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Fig. 1. Location of the gene for the a-subunit of F 1  ATPase (atpA) in the mitochondrial DNA of N, C, S and T cytoplasms of maize. Hybridization of (A) 
ALXR18 and (B) BLSC1 atpA probes to BamHI-digested maize mitochondrial DNA from N, C, S and T cytoplasms. 

region covered by probes. 
- approximate extent of homology to Type I clone. 
B 	Bami-lI restriction site. 

atpA coding region. 
The probe BLSC1 distinguishes the four major atpA gene arrangements found in maize mitochondria. The same DNA probed with ALXR18 shows that all 
four arrangements are identical at the 5' end. We have designated the four atpA arrangements as types 1-4 as shown. 

cytoplasm of the line studied, and varied even within the 
classification of N,T,C or S (see Table I). A survey of many 
different nuclear/cytoplasmic combinations indicated that the 
nuclear genotype did not appear to affect which of the atpA types 
were predominant in any cytoplasm (see Table I). 

Sub-stoichiometric levels of atpA gene types - in different 
cytoplasms 
Most, but not all, N and S cytoplasms were found to contain 
two predominant atpA types (see Table I). In those N and S 
cytoplasms containing only one predominant atpA type, the other 
expected type could always be detected, albeit at very low levels 
(see Figure 2, lanes 2, 3 and 7, and Table II). In addition, we 
could detect anomalous atpA gene arrangements in N mtDNA, 
not accounted for in the published map of tle N mitochondrial 
genome, and not explainable as recombination products between 
any of the known repeats in the genome. Some of these rear-
rangements were characteristic of CMS lines, and were again 
present only allow stoichiometry (see Figure 2 and Table II). 
Mitochondrial DNA cut with restriction enzymes other than 
BamHI gave similar results (see Figure 3), indicating these faint 
hydridization signals are truly due to sub-stoichiometric levels 
of the atpA types, rather than to hybridization to sequences show-
ing only partial homology to the probe. Other faint hybridiza-
tion signals have been seen reproducibly in these experiments 
which do not correspond to any of the designated atpA types. 
These signals may be other sub-stoichiometric atpA arrangements 
which have not been found in an amplified form in any cytoplasm, 
or may represent regions of the genome at 'normal' stoichiometry 
which contain only partial homology to the probe. 

One possible explanation of these observations was that the 
seed stocks we had used for these experiments contained 
heterogeneous mixtures of cytoplasms, and the apparently sub-
stoichiometric fragments were due to a small subgroup of the 
seeds containing the anomalous atpa types at normal, abundant 
levels. We investigated this possibility by extracting mtDNA from 
immature cobs of individual plants and probing this mtDNA with 
BLSC 1 (Figure 4). Such experiments revealed no differences bet- 

Table I. Predominant atpA types in different maize cytoplasms 

atpA 	Maize lines 
types 	(written as nuclear genotype-cytoplasmic genotype) 

1 and 2 	B37-N, B73-N, WF9-N, M825-N, 38/11-N, Co192xWJ-N, 
- 	C0192 xWJ234, C0192 xWJ-LF, R181-N (N cytoplasms) 

2 only 	ECU32I 3 , ECU398a, CLTN443a, C0192xWJ-SG, 

CO 192 XWJ-OY (N-like cytoplasms) 

1 only 	B37-C, WF9-C, CO 192 xWJ-F (C cytoplasms) 

,3 only 	B37-S, 38/11-S, M825-S, WF9-S, WM13-S, C0I92xWJ-J 
(S cytoplasms) 

2 and 3 WF9-ML, WF9-RD, M825-Vg, C0192XWJ-MY, 
C0192 xWJ-H, C0192 xWJ-PS, C0192 xWJ-G, 
C0192 xWJ-I, C0192 xWJ-B, C0192 xWJ-SD, 
CO 192 xWJ-L, C0192 XWJ-D, C0192 x WJ-CA, WI82BN-CA 
(S-like -cytoplasms) 

4 only 	PUN6", WI82BN-181, C0I92XWJ-181 (N-like cytoplasms); 
W1828N-T, B37-T, W179-T, CO 192 xWJ-Q (T cytoplasms) 

ECU32 1, ECU398, CUN443 and PUN6 are male-fertile South American 
accessions with restriction enzyme cleavage profiles similar to commercially 
used N cytoplasms. ECU32I and ECU398 contain R episomes (Weissinger 
et al., 1982). - 

ween the atpA hybridization patterns of mtDNA from single 
plants and those from pooled seedling coleoptiles. 

Discussion 
Our observations show that the atpA gene is located in at least 
four genomic environments (referred to as atpA types) in dif-
ferent maize cytoplasms. This region of the genome is a sen-
sitive indicator of evolutionary relationships, separating several 
sub-groups of cytoplasms within the usual groupings of N and 
S. The atpA probe used in this study has also separated cytoplasms 
(e.g. CA versus J) previously placed in the same CMS-S 
subgroup on the basis of fertility restoration and restriction en-
donuclease digestion patterns of mtDNA (Sisco et al., 1985). 
The most interesting finding, however, is that the N-like 
cytoplasms 181 and PUN6 have atpA hybridization patterns unlike 
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S 
kb 

TYPE-i 5.5 
TYPE-3 4.6' 
TYPE-4 3.8'4  

TYPE-2 2.7' 

23451678 
Fig. 2. Sub-stoichiometric restriction endonuclease fragments containing the 
atpA gene in maize mitochondrial DNA. One-day exposures of 
autoradiographs of BamHI-digested maize mtDNA (nuclear genotype C0192 
X Wi, 5 jig/track) probed with BLSC 1 (see Figure 1). lane 1, 181 
cytoplasm; lane 2, SG cytoplasm; lane 3, OY cytoplasm; lane 4, 234 
cytoplasm; lane 5, N cytoplasm; lane 6, D cytoplasm; lane 7, i cytoplasm; 
lane 8, CA cytoplasm. Lanes 1-5 are fertile 'N-like' cytoplasms, lanes 
6-8 are CMS-S cytoplasms. Faintly hybridizing bands can be seen in all 
tracks, some of which correspond in size to predominant bands found in 
other cytoplasmic types. All the N cytoplasms ' shown, except 181, appear to 
contain arpA types 1, 2 and 3 in detectable amounts. The cytoplasm 234 
also contains type 4 in low levels. The S-like cytoplasm J contains only a 
low level of type 2, the other two S cytoplasms shown have equal amounts 
of types 2 and 3. Similar results were obtained with a wide range of other 
nuclear/cytoplasmic combinations (Table H). Special care was taken to avoid 
cross-contamination of samples by preparing mitochondria and mtDNA from 
fertile and male-sterile lines on different days. 

Table H. Stoichiometries of atpA types in the mitochondrial genomes of N-
like and S-like maize cytoplasms 

N-like 
cytoplasms 

B73-N +++++ +++++ . 
M825/0h07-N +++++ +++++ + + 
WF9-N +++ -j- + +++++ + + 
C0192xWi-N +++++ +++++ + 
C0192xWi-234 +++++ +++++ + ++ 
CO192xWJ-OY + +++++ + 
C0192xWi-SG + +++++ + 
ECU32I' + +++++ + 
CUN4433 + +++++ + 
ptJN62 + +++++ 
WI82BN-181 + +++++ 
C0192xWi-181 +++++ 

S-like 
cytoplasms 

B73 -S + +++++ 
WF9-S + ++++. 
COl92xWi-i + +++++ 
W182BN-S + 
W182BN-CA +++++ +++++ 
M825/Oh07-Vg + + + + + + + + + + 
C0I92XWi-CA +++++ +++++ 
C0192xWi-D +++++ +++++ 

Number of crosses represents approximate relative abundance. Designations 
are written as nuclear genotype-cytoplasmic genotype (where both are 
known). 
aECU32 1, CUN443 and PUN6 are male-fertile South American accessions 
with restriction enzyme cleavage profiles similar to commercially used N 
cytoplasms. ECU32I Contains R episomes (Weissinger et a/., 1982). 

NS NS 
kb 

TYPE'S-i ~2 :41. 
Fig. 3. Two-day exposure of an autoradiograph of maize mitochondria DNA 
digested with EcoRI and probed with BLSCI (see Figure 1). lane 1, 
M825/0h07-N; lane 2, M825/0h07-Vg; lane 3, WF9-N; lane 4, WF9-S. 
atpA types 1 and 2 are inseparable in an EcoRI digest. The two N mtDNAs 
show small amounts of type 3, the two S mtDNAs show either a high level 
of type 1 + type 2 (Vg cytoplasm, lane 2) or a low level (S cytoplasm, 
lane 4). All DNAs are loaded at 4 jig/track. Similar results were seen with 
the enzymes PstI and HindIH. 

all other N cytoplasms examined (see Figures 2 and 4 and Table 
II), but similar to that of mtDNA from T mitochondria, imply-
ing that they may be related to the progenitor of T cytoplasm. 

The alpA types described in this paper are present at different 
stoichiometries in a wide range of maize cytoplasms. As it is 
unlikely that all the maize plants we have studied are chimaeras 
of cell types containing different mitochondriaj genomes, the sub-
stoichiometric atpA types presumably form parts of larger cir-
cular or linear molecules present in low copy number relative 
to the rest of the mitochondrial genome in the same cell. These 
sub-stoichiometric molecules ('sublimons') probably originated 
as a result of infrequent recombination events between very short 
regions of homology not marked on the published map of the 
WF9N mitochondrial genome. Our data suggest that these recom-
binant molecules are retained through many plant generations, 
as we can find sub-stoichiometric atpA types in most of the maize 
lines we have examined. Hence these molecules must be main-
tained by normal replication or are continually being formed by 
de novo recombination. If these rare recombinant molecules are 
being continuously formed by de novo recombination then one 
would expect the proportion of these molecules in the genome 
to rise if they were replicated at normal rates as well, until an 
equilibrium is reached with the reverse reaction. Given that the 
very low levels we found for some atpA types are far from the 
expected equilibrium levels one must assume lower net replica-
tion rates for these sub-stoichiometric molecules if de novo recom-
bination is the primary mode of formation. However, these 
sub-stoichiometric atpA types include at least part of the 12-kb 
repeat, which has been shown by circumstantial evidence to be 
recombinationally active (Lonsdale et al., 1984), and rapid inter-
molecular recombination would be expected to compensate for 
inequalities in the efficiency of replication origins on different 
molecules. The simplest assumption, therefore, is that the sub-
stoichiometric atpA types are maintained by replication and the 
contribution by de novo recombination is small. There is also 
the possibility that the mechanics of cell division could preferen-
tially keep sub-stoichiometric molecules in germ-line cells. 

Evolution of mitochondrial genome diversity in maize 
The evolutionary relationships between the different maize 
cytoplasms are obscure. The fertile N and three CMS cytoplasms 

arpA types detected 
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Fig. 4. Sub-stoichiometric atpA hybridizing fragments exist in the mitochondrial DNA from single plants. (A) Three-day exposure of EcoRI-digested maize 

mtDNA probed with BLSC1 (see Figure 1). lane 1, W182BN-181; lane 2, W182BN-S; lane 3, WF9-N; lane 4, WF9-S. The mtDNAs used in this 

experiment were purified from single immature cobs. A faint band representing type 1 and/or 2 can be seen in lane 1 (181 cytoplasm), and also but less 

clearly in lanes 2 and 4 (S cytoplasm). Lane 3 (N cytoplasm) contains faint bands representing the type 3 and type 4 arrangements. Similar results were 
obtained after cleaving the mtDNA from other individuals of the same lines with BamHI (data not shown). These observations rule out heterogenous seed 
populations as a major factor in explaining our results. Higher mol. wt fragments hybridizing in lanes 2, 3 and 4 probably present partial digestion products. 

(B) Three-day exposure of BamHI-digested maize mtDNA probed with BLSC1 (see Figure 1). lanes 1 and 3, C0192 x WJ-SG; lanes 2 and 4, C0192 x 

WJ-J. Each lane contains the mtDNA of a single immature cob. The SG mtDNA shows low levels of types 1 and 3 clearly, as predicted by the same 
experiment on pooled coleoptile mtDNA (Figure 2, lane 2). The J mtDNA shows no clear faint bands, but the expected low levels of-the type 2 fragment 
(Figure 2, lane 7) may be obscured by the smear of degradation products from the abundant type 3 fragment. 

differ widely in mtDNA organizsation, and it is commonly 
thought that the different cytoplasms diverged in pre-history. 
CMS cytoplasms can be maintained in natural populations by the 
presence of 'fertility restorer' genes present in the nucleus of 
many natural maize populations (Duvick, 1965), and thus may 
well be ancient. However, no obvious intermediates between the 
various cytoplasmic groups N,C,S and T have been identified, 
and in fact analysis of mtDNA from ancient maize lines 
indigenous to Latin America have revealed remarkable similarity 
between different fertile accessions and the cytoplasms of modern 
inbred lines (Weissinger et al., 1982; Kemble etal., 1983). Either 
the evolutionary intermediates of the different maize cytoplasms 
have become extinct, and/or the evolution of the different 
cytoplasms occurred by sudden catastrophic events. Such sudden 
genome alterations in maize have been reported after the intro-
duction of the nuclear recessive mutation iojap, which apparently 
induced a change from N to S cytoplasm (Lemke et al., 1985). 
However, the results of Lemke et al. have not been widely 
accepted because of the difficulty in explaining the molecular 
events needed to effect such a transformation. The genomes of 
N,S and T differ at a large number of loci, with multiple inser -
tions, deletions, point mutations and rearrangements of sequences 
(Schardi etal., 1984; Leaveret at., 1985; Dewey etal., 1986). 
It appears inconceivable that such widespread, apparently random 
rearrangements could occur identically to generate the S mtDNA 
organization on a number of independent occasions. 

Further evidence of rapid mitochondrial genome reorganiza-
tion is available in other species following somatic hybridization 
of protoplast fusion. These hybrids frequently contain mtDNA 
restriction fragments not representative of either parent, apparent- 

ly indicating widespread recombination and reorganization within 
a single plant life-cycle (Belliard et al., 1979; Boeshore et at., 
1983). An alternative explanation for sudden genome reorganiza-
tions is selective amplification of pre-existing sub-stoichiometric 
(possibly undetectable) molecules (perhaps together with a reduc-
tion of previously abundant molecules). Amplification of sub-
stoichiometric sequences has been previously suggested to ex-
plain some changes in mtDNA organization (Morgens et al., 
1984). Our data suggest that such sub-stoichiometric DNA 
molecules exist in maize mitochondria. The extent of such ap-
parent reorganization obviously depends on the number of novel 
sequence arrangements present at very low levels in plant 
mitochondria. As yet we only have evidence for sub-
stoichiometric molecules including the maize atpA gene region, 
though others may exist. 

Our data imply that the products of rare or unique recombina-
tion events may in some cases be retained in the genome for many 
generations at low levels. These rare recombinant molecules 
might be expected to show rapid molecular evolution; firstly, 
because mutational events would be more easily 'fixed' in such 
a small population, and secondly, because there would be no 
selection pressure against mutation on these low abundance 
molecules as they cannot be expected to have any direct func-
tional significance. [It has recently been shown that the rice 
chioroplast genome may be heterogeneous, consisting of a ma-
jor functional genome and a minor rearranged genome, in a 
similar manner to the situation we describe (Moon etal., 1987)]. 
Thus one would expect these molecules to progressively ac-
cumulate mutations and rearrangements more rapidly than the 
rest of the genome. Occasionally one of these rearrangements 
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may lead to the amplification of a previously sub-stoichiometric 
molecule to 'normal' stoichiometry (possibly with concomitant 
reduction of other abundant molecules). The pattern of atpA types 
found in various N and S cytoplasms suggests that this can hap-
pen. If this previously sub-stoichiometric molecule had ac-
cumulated mutational events and rearrangements the resulting 
genome would exhibit a novel restriction pattern. One predic-
tion of this hypothesis would be that the amplication of the sub-
stoichiometric molecule would be expected to generate large new 
repeats in the genome. A possible example of this phenomenon 
is the TURF21­13 region of the T genome (Dewey et al., 1986). 
This region of DNA appears to have been generated by at least 
seven recombination events, involving flanking and ceding se-
quences of the maize mitochondrial 26S ribosomal RNA gene, 
the ATPase subunit 6 gene, and the chloroplast tRNA-Arg gene. 
The degree of conservation of the component sequences in this 
region with their homologous sequences in N mtDNA varies, 
implying temporal separation of the formative recombination 
events, and yet no evolutionary intermediates have been 
discovered. The 5' region of the atp6 gene, which forms part 
of this region, is present as a large repeat in the T genome. Thus 
this chimaeric region of the T genome fits all the criteria ex-
pected of a sequence which has evolved as a low abundance con-
stituent of mitochondrial DNA. 

Materials and methods 
Mitochondria were isolated from 4-day-old coleoptiles or immature cobs as describ-
ed previously (Leaver et al., 1983), except that purification of mitochondria from 
coleoptiles was carried out on a discontinuous sucrose gradient (Boutry and Bri-
quet, 1982). Mitochondrial DNA was isolated by solubilization of the mitochon-
dna in 0.5% N-lauroyl sarcosine (Sigma), 100 mM EDTA, 100 mM Tris—CI 
(pH 8.0) 0.1 mg/ml Proteinase K (Boehringer) for 1 hat 60°C, followed by CsCI 
density gradient centrifugation in the presence of 75 sg/ml ethidium bromide as 
described by Fox (1979). After centrifugation, the ethidium bromide was removed 
by extraction with butan-l-ol, and the CsCI was removed by two ethanol precipita-
tions followed by washing with cold 70% ethanol. 2-5 jg of mtDNA from each 
maize line was digested to completion with the chosen restriction endonuclease, 
fractionated on a 0.8% agarose (Sigma type II) gel and transferred to nylon filters 
(Hybond-N, Amersham). These filters were pre-hybridized for 30-60 min in 
hybridisation buffer (0.6 M NaCl, 60mM Na 3citrate (4 x SSC), 0.1% (w/v) 
SDS, 50 m sodium phosphate (pH 5.5), 0.2% (wlv) Ficoll, 0.2% (w/v) polyvinyl 
pyrrolidone (mol. wt 40 000) and 200 tg/ml denatured herring sperm DNA) at 
65°C. Single-stranded M 13 sequencing clones of the alpA gene (Isaac etal., 1985) 
were used to generate 32P-labelled probes (Hu and Messing, 1982), which were 
hybridized to the nylon filters under stringent conditions (65°C in hybridization 
buffer) overnight. The filters were then washed in one or two changes of fresh 
hybridization buffer (lacking herring sperm DNA) at 65°C, followed by washing 
in 2 x SSC for 30 min at room temperature. The filters were then exposed to 
pm-flashed Curix RP  X-ray film (Agfa-Gevaert)(Figure 1) or Amersham Hyper-
film (Figures 2, 3 and 4) for 1-7 days at —80°C. 
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