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Abbreviations 

Standard abbreviations and symbols recommended by the IIJPAC-JUB 

Commission on Biochemical Nomenclature have generally been used. 

Standard abbreviations for nucleotides and three-letter abbreviations for 

amino acids were used throughout the text. - 

Most non-standard abbreviations used are described in full in brackets 

after their first use in the text. Exceptions to this are listed below. 

ATP 	 adenosine-5'-triphosphate 
bp 	 base pair(s) 
BSA 	 bovine serum albumin 
cDNA 	 complementary deoxyribonucleic acid 
cpm 	 counts per minute 
ddNTP 	 2',3'-dideoxynucleoside-5'-triphosphate 

N=A: adenosine 

N=C: cytidine 

NG: guanosine 

N=T: thymidine 
dH20 distilled water 
DIA differentiation inhibiting activity 
DMSO dimethylsuifoxide 
DNA deoxyribonucleic acid 
DNase deoxyribonuclease 
dNTP 2'-dideoxynucleoside-5'-triphosphate 

N=A: adenosine 

N=C: cytidine 

N=G: guanosine 

N=T: thymidine 
DTT 1,4-dithiothreitol 
E embryonic day 
EDTA ethylenediaminotetraacetic acid 

g gram 

G418 gentamycin 
GMEM Glasgow modified eagle medium 
kb kilobase 
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kD kilodalton 
LIP Leukaemia inhibitory factor 
m metre 
M molar (moles/litre) 
mol mole 
mRNA messenger ribonucleic acid 
neo Escherichia coli neomycin phosphotransferase II gene 
PCR polymerase chain reaction 
PEG polyethylene glycol 
RNA ribonucleic acid 
RNase ribonuclease 
ROP H20 reverse osmosis purity water 
rpm revolutions per minute 
RT reverse transcriptase 
SIDS sodium dodecyl sulphate 
Tris tris (hydroxymethyl) aminomethane 
UHP H20 ultra high purity water 
UV ultraviolet 
v volume 
w weight 
xg times gravitational force 

Standard prefixes used were 

c centi (10-2) 

M milli (10 3) 

micro (10 -6) 

n nano (10 -9) 

p pico (10-12) 

f fento (10-15) 
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Abstract 

The secretion of renm from granules stored in renal juxtaglomerular 
(JG) cells plays a key role in blood pressure homeostasis. The synthesis of 
renin and the extent of granulation is regulated by several mechanisms 

including signaling from the macula densa, neuronal input and blood 

pressure. Physiologically, JG cells are the most important sites of renin 
expression since they are the only cells known to convert prorenin to the 
active enzyme, renin, and to secrete it into the plasma in large amounts. 
Present data indicate that most mammals possess a single renin gene, 
however in most strains of mice there exists an additional gene, Ren-2, 
encoding a highly homologous but physically distinct enzyme Renin-2. The 

two genes have different but often overlapping expression patterns, with 
both being expressed at equal levels in the JG cells of the kidney (mRNA 

level). A major difference between the two enzymesis their capacity for 
N-linked glycosylation, Renin1d being glycosylated at one or more of its 

three potential glycosylation sites, whereas Reniri-2 is not glycosylated, 
lacking any N-linked glycosylation consensus sequences. 

To facilitate studies of the physiological significance of the two renin 
genes in mice, we have disrupted the Ren1d gene by gene targeting, leaving 
Renin-2 as the only functional renin isozyme capable of participating in the 
renin-angiotensin system. The targeting construct used to disrupt the Ren1d 
gene was assembled using homology arms of 3.7 and 3.6kb generated by 
PCR. Ren1d -/ animals are viable, display no gross, visible abnormalities 
and express Ren-2 as the only renin mRNA. The kidneys of all adult 
homozygous mutant animals display altered morphology of the macula 

densa and complete absence of JG cell granulation. Blood pressure 

homeostasis in these animals displays a sexual dimorphism, with female, but 
not male, Ren1d -/ animals showing a reduced blood pressure. These 
results prove that Renin1d and Renin-2 are not functionally equivalent 
enzymes. Ren1d being required for normal macula densa cell morphology, 
granulation of JG cells and the maintenance of normal blood pressure in 
female Ren1d -I- animals. 
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CHAPTER 1 
Introduction 

1.1 The Renin-Angiotensin System 

The renin-angiotensin system (RAS) is one of the most studied 

biochemical pathways involved in blood pressure regulation (Figure 1.1). 

Perturbations in the RAS have been seen in many human conditions 

including hypertension, cardiac hypertrophy and vascular pathologies 

associated with diabetes and renal disease (1-4). The first step in this 

pathway is the conversion of angiotensinogen to angiotensin I (Ang I) by 

renin, the activity of which is rate limiting in humans (5). In contrast, it is the 

substrate angiotensinogen which is the limiting factor in the mouse (6). 

Angiotensin I is re-cleaved by angiotensin I converting enzyme, (ACE) to 

produce the active octapeptide, angiotensin II (Ang II), a peptide hormone 

which exerts its effects in a receptor-mediated manner. Two 

pharmacologically distinct types of Ang II receptors have been identified so 

far - AT, and AT-Z. There are two subtypes of AT1 receptor -AT1A and AT1B - 

which have wide tissue distribution of expression and are derived from 

different, although highly homologous genes (7-10). It is believed that Ang II 

mediates blood pressure via the AT, receptors (11-13). The function and 

significance of the AT2 receptor type in blood pressure regulation is as yet 

unknown (13-15). Included in Ang II function are direct stimulation of 

vasoconstriction and increasing secretion of aldosterone from the adrenal 

gland causing an increase renal sodium reabsorption (16-18). 

1.1.1 Evidence for the Renin Angiotensin System In Blood 
Pressure Regulation 

Evidence for the RASs implication in blood pressure dysregulation 

comes from linkage studies in rats and humans (Table 1.2). Polymorphisms 

in or linked to renin, angiotensin I converting enzyme and angiotensin 

receptors have all been associated with hypertension in rat models of 

hypertension. In contrast, the only constituent of the RAS which consistently 
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•Vasoconstriction. 	• Embryonal Development? 
• Aldosterone Release. • Thirst Control? 

Figure 1.1: Key elements of the renin-angiotensin system: Angiotensmogen is 
converted to angiotensin I by renin followed by cleavage to produce the active octapeptide 
angiotensin II (Ang H) by the enzyme angiotesin I converting enzyme (ACE). Ang II then 
exerts its range of physiological effects via the Ang II receptors. 

shows linkage with hypertension in humans is angiotensinogen. No linkage 

has been found in humans between hypertension and renin or angiotensin 

receptors. In some cases, but not others, a polymorphism associated with the 

angiotensin I converting enzyme is associated with hypertensive phenotypes 

(Table 1.2). 

The results of several transgenic animal studies have implicated renin 

and the other constituents of the RAS in the regulation of blood pressure 

(discussed in section 1.3). Other evidence comes from work involving 

angiotensin II, the active octapeptide. It has been shown that infusion of 

Ang II can increase blood pressure in rats (55), whereas infusion of Ang II 

antibodies causes a decrease in blood pressure (56). Renin has also been 

directly implicated in blood pressure in a series of experiments using renin 
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Gene Linkage in Rats Linkage In Humans No Linkage In 
Humans 

Angiotensinogen  (19-28) (29-32) 
Renin (33,34)  (35-41) 	- 
ACE 	

- (42-45) (46,47) (41,48-51) 	- 
Ang II Receptors (52,53)  (54) 

Table 1.2: Linkage studies of RAS in humans and inbred rats: The publications listed 
have shown linkage between hypertensive phenotypes and constituents of the RAS in rats 
or humans. Negative results are also listed. 

antibodies. Upon introduction of renin antibodies into salt depleted dogs 

(57, 58), marmosets (59), Goldblatt hypertensive dogs (58, 60) and 

spontaneously hypertensive rats (61), a reduction in arterial blood pressure 
was observed. 

1.1.2 Localised RAS Activity 

The traditional view of the RAS is of a biochemical reaction occurring in 

the circulation. Angiotensinogen is produced in the liver and secreted into 

the plasma where it is cleaved by active renin derived from the kidney. The 

product, Ang I, is then cleaved to produce Ang II by the membrane-bound 

angiotensin I converting enzyme present in the lung and other vascular beds. 

This view is now being challenged because of the mounting evidence which 

suggests the presence of local RAS's operating in a paracrine fashion 

independent of circulating enzyme or substrate levels (62-66). Renin, 

angiotensinogen and ACE expression have all been detected in the heart, 

adrenal, testis and brain (65, 67-69). There is even evidence of a local RAS in 

the kidney, possibly acting to stabilise the glomerular filtration rate by 
regulating the renal vascular tone (69, 70). 

1.2 The Molecular Biology of Mouse Renin 

1.2.1 Organisation of the Renin Genes in Mice 

Inbred strains of mice can be split into two groups-those that have only 
one renin gene ("one-renin gene" mice), termed Ren1c (e.g. C57BL/6J) or 
those strains of mice where there are two renin genes present ("two-renin 
gene" mice), termed Ren.ld and Ren-2 (e.g. DBA/2J and 129/01a; see 
Figure 1.3) (71-79). All wild Mus Musculus subspecies and many, but not all 
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Figure 1.3: Structure of the three renin genes showing introns and exons (black boxes) 
with the insertions found in each gene also shown: The Ren1c  gene contains two insertions, a 
BI repetitive element (blue boxes) approximately 2kb upstream of the first exon and an M3 
element (red boxes) 80bp upstream of the transcription start site (both of these insertions are 
common to all three genes). Four insertion elements are present in the Ren-1 d  locus, these 
being a 7kb insertion so called Ml element approximately 3.8kb upstream of the Ren1d  gene, 
an M4 element 1.5kb downstream of the Ren-1' locus and M3 and Bi elements (see Ren1c  for 
details). The Ren-2 locus contains several insertions - one in the 3' flanking region, a 3.0kb 
proviral intracisternal A particle (green box), 0.9kb downstream of exon 9 and four insertions 
in the 5' promoter sequence. The 5' insertions are an M2 insertion approximately 0.7kb 
upstream of exon 1, M3 and Bi elements (see Ren-1' for details) and a B2 element (mouse 
homologue of a human Alu-2 sequence) 300bp upstream of exon 1 (inserted within the M3 
element). 

of the other species in the Mus genus also contain two renin genes (79). 
Ren1d and Ren-2 are tightly linked and are thought to be the result of a 
duplication of a 21kb fragment from a Ren-1 c4ike  ancestral locus (80, 81). 
This duplication event is believed to have occurred between 2.5 and 7 million 
years ct U 

I'
/Y
lct o'\ 

, 

Two repetitive insertion sequences are found in the 5' promoter regions 

of the renin genes, these being a Bi element, present in all mouse, rat and 

human genes and a B2 element, only found in the mouse Ren-2 gene. Since 
the duplication event, several insertions have occurred in the Ren-1 C,  Ren1d 

and Ren-2 loci. These include a partial intracisternal A particle 1kb 
downstream of the Ren-2 gene (83) and four insertions specific to the mouse 

genome (M1-M4) (75, 81, 84-87). All three renin genes share the same overall 

genomic organisation (nine exons and eight introns) with all intron/exon 

boundaries also conserved (80, 81, 88-90). The nucleotide (or amino acid) 

sequences of all three cDNAs (or proteins) have been determined (77, 88, 89, 
91-97) and a comparison shows that all three coding regions are highly 

conserved (98.5% identity between Ren1C and Ren1d  and 95.8% between 
Ren1d and Ren-2). At the amino acid level Ren1C and Ren1d  show a 98.5% 
similarity and Ren1d and Ren-2 show a 93.3% similarity. 



1.2.2 Mouse Renin Proteins 

Renin is a glycosylated peptide that belongs to the aspartyl protease 

family. Unlike other members of this family (e.g. pepsin, chymosin and 

lysosomal cathepsins) renin shows a high substrate specificity (the only 

known substrate is angiotensinogen) and is active at neutral pH (98-101). 

One important difference between Ren1c/Ren1d  and Ren-2 is that Ren-2 has 

no potential sites for N-linked glycosylation, whereas Ren1c  and Ren1d  can 

be glycosylated in any of three asparagine positions (88, 93, 102). The 

proteins also display different thermostabilities, Renin1c  (and presumably 

Renin1d) being relatively stable at 60°C compared to the thermolabile 

Renin-2 protein (73). 

Many groups have concentrated their research on the translational 

processing of renin (92, 93, 95, 103-112). Mouse renin is synthesised as 

preprorenin (45kD, sizes refer to mouse Ren-2) with the leader sequence (pre 

segment) being rapidly hydrolysed by signal peptidase during processing in 

the rough endoplasmic reticulum where any glycosylation also occurs (112, 

113). Sizes given are for the Renin-2 protein, and although the Renin1d 

protein differs in length by only one amino acid, it typically migrates on 

protein gels at a much larger size because of it's glycosylation (93, 95, 96, 

IUL). 

In the juxtaglomerular (JG)  cells and submandibular gland of the 

mouse, prorenin (43kD) is then packaged into granules where it undergoes a 

second cleavage step to produce active renin. This involves removal of the 

first 45 amino acid pro segment (92, 95). In the kidney the endogenous 

maturase enzyme(s) which convert prorenin to active renin (38kD) is 

unknown, but is most likely to be cathepsin B (114-118). In the 

submandibular gland the prorenin processing enzyme has been identified as 

epidermal growth factor-binding protein type B (mouse kallikrein gene 13). 

Interestingly though, this enzyme cannot process the Renin1d protein, and is 

not the processing enzyme in other tissues (119, 120). 

Activation, when it occurs, is rapid and is followed by a slower 

additional hydrolysis step between amino acids 290 and 291 (positions given 

are for active renin) to give a heavy and light chain (33 and 5kD respectively) 

(93, 93, 95, 107-109). The heavy and light chains generated are held together 



by a disulphide bridge between cysteines at positions 320 and 357 (92, 93, 95, 

106). Figure 1.4 shows the maturation pathway of mouse Ren-2 derived 
renin. 

The structure of mouse and human renin has been inferred by 

homology to other aspartyl protease family members (88, 121-125) and has 

also been determined by X-ray crystalbgraphy (126-128). These studies show 

that renin is a bilobular molecule with an active site containing two aspartate 

residues (Asp 104 and Asp 292 in human prorenin) required for catalytic 

activity (125-129). X-ray crystalbgraphy also shows that prorenin is 

maintained in an inactive state because the pro segment occupies the active 

site in the substrate binding cleft preventing the cleavage of angiotensinogen 

(125). A similar mechanism is responsible for the inhibition of renin by 

mRNA 

Preprorenin 

45 

Pre 	 I 	Prorenin 

2J 	 43 

Pro 	 I 	Renin (one chain) 

5 	 38 	 I 

Renin (two-chain) 

33 
 

Figure 1.4: Structure and processing of preprorenin: The processing of preprorenin 
to active renin shown is based on the sizes (kD) observed for the nonglycosylated 
Renin-2 protein. 
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various renin-inhibitors (127, 128). X-ray crystalography also shows that the 

prorenin structure has larger loops adjacent to the active site and substrate 

binding cleft and this is proposed, at least in part, to be responsible for the 
substrate specificity of renin (126-128). 

1.2.3 Expression Patterns 

1.2.3.1 General Expression Patterns 

The primary sites of renin synthesis are the JG cells of the kidney 

(Figure 1.5), although other sites of renin expression have been identified. 

Historically, the kidneys of "two-renin gene" mice were believed to express 
only Ren1d,  based on the failure to isolate Ren-2 cDNAs from kidney RNA 
(77, 96) or to detect the protein using Renin-2-derived antibodies (73). 

However, primer extension assays have been used to show that both genes 

are expressed at roughly equivalent levels in the kidneys of "two-renin gene" 
mice (130, 131). 

Extrarenal tissues known to express renin (detected by RNA blot and 

ribonuclease protection) are the testis, anterior prostate, ovaries, heart, 

adrenal gland, and in mice, the submandibular gland (SMG) (16, 132). In 

addition, by using Reverse Transcriptase-PCR (RT-PCR) it has also been 

possible to detect renin mRNA expression in the liver, spleen, thymus, lung, 

prostate, hypothalamus and whole brain (133). 

1.2.3.2 Expression of Renin in the Kidney 

In the kidney, renin expression is restricted to the JG cells (Figure 1.5), 

which are modified smooth muscle cells of the afferent arteriole containing 

dense secretory vesicles (modified lysosomal granules) in which renin is 

matured by removal of the pro segment to produce active renin (110, 113, 

135). Active renin is then released from these granules by exocytosis in 

response to physiological stimuli, a mechanism termed regulated secretion 

(112). The kidney, however, secretes both active renin and prorenin, the 

latter believed to be released through another route, namely the constitutive 

secretion pathway, by which prorenin is secreted continuously, without 

storage (112). One important difference between the two pathways is the 

stage at which they can be regulated. Constitutive secretion can only be 

controlled at the transcriptional level, whereas regulated secretion can also 



be controlled postranslationally (reviewed in King (136)). Prorenin is 

generally thought of as inactive and is activated by removal of the pro 
peptide (reviewed in Baxter et al. (5)). In rats and humans prorenin cleavage 
is thought to occur only in the JG cells of the kidney (137), whereas in mice it 

also occurs in the submandibular gland where active renin is secreted into 

the saliva (little, if any, of this renin is believed to enter the circulation under 

normal physiological circumstances) (6, 138). 

a Wa! 	 EA 
Figure 1.5: The juxtaglomerular apparatus of the kidney: Blood flows into the 
glomerulus (GL) in the afferent arteriole (AA) and leaves through the efferent arteriole (EA). 
The juxtaglomerular cells (JG) are the modified smooth muscle cells of the afferent arteriole 
closest to the glomerulus. These cells contain larger nuclei and mature storage granules 
which contain active renin. Release of this renin is in a regulated manner controlled by 
several factors. The cells are believed to possess "stretch receptors" allowing them to sense 
pressure changes in the afferent arteriole and adjust renin secretion accordingly. The 
neighbouring macula densa cells (MD) of the proximal tubule are also thought to signal to 
the JG cells to release more renin when a low sodium concentration is detected in the distal 
proximal tubule. JG cells are also in contact with renal nerves (RN) suggesting a neural 
input in the control of renin secretion. Finally it is thought that Ang II also acts directly on 
JG cells to suppress renin secretion. This figure is adapted from Davis (134). 
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1.2.3.3 Extrarenal Differential Expression Patterns 

In mice, the expression patterns of all three renin genes have been 

studied. These results show that the expression patterns are not the same for 

the three genes (See Table 1.6 for a summary of the expression patterns of the 
three genes). 

Adrenal Gland 

In adult "two-renin gene" mouse strains, Ren1d and Ren-2 are expressed 
at roughly equivalent levels in the adrenal gland, whereas in an adult "one-
renin gene" mice, Ren1c is not detectable (139). Ren1c expression is 
developmentally restricted and expression can be seen in foetal adrenal 

glands. In "two-renin gene" mice expression is restricted to two zones, the X-

zone (a fourth zone of the adrenal gland, the size and presence of which 

varies according to age and reproductive status) and the zona fasciculata 

(140). In rats and humans expression is less restricted and can be seen in the 

outer cortical zone and the zona glomerulosa (67). Genetic crossing of mice 

strains containing one or two renin genes has shown that the differences in 

expression in adrenal glands are probably due to cis-acting elements (139). 
In F1 hybrids the parental expression patterns are maintained, suggesting 
that trans activating effectors are not downregulating RenTId expression. 

Submandibular Gland (SMG) 

The renin expression detected in the SMG of mice is peculiar to this 

species (141) (no renin transcripts have been detected in the SMG of rats by 

RT-PCR (87, 133)). In "two-renin gene" mice, Ren-2 is found in large 

Organ Ren1C Ren1d Ren2d 
Kidney ic 	= id = 	2d 
Submandibular Gland ic 	> trace 2d 
Foetal Adrenal Gland ic 	= id = 	2d 
Adult Adrenal Gland ND < id = 	2d 
Testis ic 	< id > 	2d 
Ovary ic 	? id = 	2d 
Anterior Prostate ic 	>' ND Ni) 
Foetal Subcutaneous ic 	= id > 	2d 

Table 1.6: Tissues showing a differential expression pattern of the three renin genes are 
listed: In this table "expression" means detection of the appropriate mRNA (ND= Not 
Detected, ?= No comparison made). 
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quantities in the SMG (71, 73, 79, 96, 103, 130, 131, 139, 142-146) whereas 
RenT1d has only been detected at trace levels (131). Ren1c is also expressed in 
the SMG but at a level two orders of magnitude lower than Ren-2 (much 
higher than Ren1d) (139). At birth, expression in the SMG is low but 

increases with age (142, 143, 147) and is restricted to the glandular 

epithelium, which represents 20% of the tissue, with renin representing 2.0% 
of the total SMG protein (90, 142, 148-151). 

Reproductive Tissues 

Differences in renin expression in the testis between mouse strains are 
not striking, with Ren1d being expressed at slightly higher levels than Ren1c 
or Ren-2 (139). In the testis, expression is restricted to the interstitial Leydig 

cells (152). In "two-renin gene" mice, expression in the ovary from each gene 

is equal although the specific renin expressing cells in mice have not yet been 
determined (133). No studies of Ren1c expression in the ovary tissue have 
yet been carried out. Expression of Ren1c has been detected in the anterior 
prostate (a coagulating gland) with no Ren1d or Ren-2 expression detectable 
(139). Like the SMG, expression is restricted to the glandular epithelium. 
Analysis of congenic lines (Ren1d and Ren-2 genes on a "one-renin gene" 
genetic background, Balb/c) showed that expression is controlled in cis as 
the "two-renin gene" mouse expression pattern was observed (139). 

Subcutaneous Tissue 

Transcripts from Ren1C and Ren1d can be detected in subcutaneous 
tissue in equal quantities and in excess of Ren-2 during foetal development 
(132, 153). Expression is restricted to fibroblasts near the developing skeletal 

muscle. Rats also show subcutaneous expression suggesting that this is not 

specific to mice and may be common to other species (153). 

1.2.3.4 Expression During Development 

Expression of renin in both 'one' and 'two-renin gene' mice has been 
found to start at 14.5 days post coitum (pc) throughout the adrenal gland 
(except in the outer cortical region and the zona glomerulosa) with 

expression reaching a maximum at 15.5 days pc (154). Expression in "one-

renin gene" mice becomes progressively more restricted with no renin 

expression detectable in the adrenal glands of new born mice (139, 154). In 
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"two-renin gene" mice, expression becomes progressively more restricted 

with renin only being detectable in a zone of cells surrounding the 

developing medulla in the adrenal glands of new born mice (154). 

All three renin genes have been shown to be expressed at equal levels 

in the developing kidneys of mice (154). In the mouse and rat, renin 

expression becomes more restricted as the embryo develops. Expression is 

first detected at 14.5 days pc in the intrarenal branches of the renal artery, 

with expression being restricted to the interlobular arteries and afferent 

arterioles by day 16.5 pc (154-159). By adulthood renin expression is found 

only in the JG cells (154-159). These results show that during the 

development of the kidney, the walls of the atrial tree go through a stage of 

expressing renin. This has led to speculation that renin expression may be 

important for the control of vascular growth, cell migration and 

differentiation (160-163). It has also been suggested that renin may serve as a 

marker for the development of the renal vasculature (154). 

In adult kidneys, if renin secretion is chronically stimulated, e.g. by 
sodium depletion (164) or inhibition of ACE (165), smooth muscle cells of the 

afferent arteriole are found to undergo metaplastic transformation and 

become immunohistochemically positive for renin. This increased pattern of 

renin expression mirrors the pattern observed in the developing kidney, 

indicating some kind of de-differentiation towards a more foetal like 
expression pattern (154). 

1.2.4 Regulation of Renin Secretion 

1.2.4.1 Regulation of Renin in the Kidney 

There are believed to be four major systems operating to regulate renin 

secretion and therefore maintain normal blood pressure. These are the renal 

baroreceptor and the macula densa mechanism which act at the single 

nephron level, and the renal nerve and Ang II receptor responses which act 

across the whole kidney. This topic has been reviewed in great detail 
elsewhere (134,166-171). 
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Renal Baroreceptor 

Tobian et al. first postulated the existence of a renal baroreceptor 

mechanism: because of the JG cells position (Figure 1.5) the authors proposed 

that they were ideally situated to act as a receptor, sensing changes in renal 

arterial perfusion pressure (172-176). This was supported by other data in 

which renin secretion was found to be altered in response to changes in the 

mean arterial pressure and not the mean pulse pressure (177, 178). This is 

thought to be because the pressure in the afferent arteriole is significantly 

dampened. More conclusive evidence of a baroreceptor present in JG cells 

came from cell culture experiments. A layer of JG cells were grown on a 

latex grid which, when stretched to 112%, resulted in a drop in renin 

secretion (179-181). This then rose again when the stretch force was 

removed. However, direct tests of this in vivo have produced conflicting 
results (182, 183). 

Macula Densa Mechanism 

Vander and Miller recognised that sodium delivery to the macula densa 

may also be involved in the regulation of renin secretion (Figure 1.5). He 

postulated that an increased delivery of sodium to the macula densa of the 

juxtaglomerular apparatus (JGA) would result in a reduction in renin 

secretion and vice versa (166, 184). By isolation and studying single 

nephrons (JGA, tubule and macula densa) Skott and Briggs were able to 

increase renin secretion by reducing the sodium concentration (by perfusion) 

at the attached macula densa (185). Precisely what is being sensed by the 
macula densa cells is controversial. Lorenz et al. found that sodium chloride 
concentration was more important than sodium chloride delivery (186). 
Lorenz et al. and Kotchen et al. found that chloride was more likely to be the 

signal than sodium (187, 188). However, the consensus opinion is that 

sodium chloride is involved and, for most practical purposes, it makes little 

difference if sodium or chloride is the actual signal (189). 

The nature of the signalling molecule between the macula densa cells 

and JG cells has been the subject of much research. Early contenders for the 

molecule were Ang II, prostaglandins, calcium or adenosine (reviewed in 

Churchill (190), Katz (170) and Malvin (191) and Skott and Jensen (192)), but 

at present it seems most likely to be nitric oxide (NO) (193-195). 
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Nerve Stimulation/Cardiopulmonary Receptors 

The kidney is annnervated organ (Figure 1.5) and stimulation of renal 
nerves causes an increase in renin secretion (166, 175, 196-198). This has been 

found to be mediated mainly through the -adrenoceptors (199, 200), 

although some positive (201-204) and negative (205) cz-adrenoceptor input 

has been detected. The distribution of these receptors may not be exclusive 

to the kidney and there is evidence for an extrarenal location (206-208). 

As one might expect the heart has been found to play a role in renin 

secretion and therefore in blood pressure regulation. Brennan et at. found 
that stretching the left atrium resulted.. in a reduction in renin release (209). 

Decreases in right atrial pressure was also found to increase renin secretion 

(210). Similar findings are also true of the left atrium (211, 212). This agrees 

with data suggesting that vagal afferent nerves also affect renin secretion 

(213, 214). Signalling could occur by stimulation of the ascending nerve 

traffic (possibly the vagal afferents) following detection of atrial 

expansion/ stretch by a receptor resulting in decreased synaptic activity to 

the kidney and therefore a fall in renin secretion (215). 

This cardiac influence on renin secretion could however be a hormonal 

mechanism (216), e.g. by atrial natriuretic factor (ANF). ANF has been found 

by some groups to inhibit renin release (169, 217, 218), but there is evidence 

to suggest that this is not consistent (169). 

Direct Action of Ang II 

As Ang II acts to increase blood pressure, this will indirectly cause a 

decrease in renin secretion. Circulating Ang II has also been found to 

suppress renin secretion directly in a negative feedback manner (166, 219, 

220). In this system, high levels of Ang ii in the plasma would be expected to 

cause a down-regulation of renin secretion and vice versa. This has been 

demonstrated using ACE inhibitors to stop the formation of Ang II resulting 

in an increase in renin synthesis and secretion (221). Ménard et at. have used 
renin inhibitors for similar investigations and reported comparative results 

(222). 

14 



1.2.4.2 Regulation of Renin in the Submandibular Gland 

Regulation of renin secretion in the SMG is under hormonal control, 

being vastly upregulated upon treatment with testosterone (145, 143-146, 

203, 223-227) or thyroid hormone (226-229). Expression levels are lower in 

females but can be increased by administering testosterone (79, 143-146, 223, 

225, 230, 231). SMG renin levels in males can be reduced by castration and, 

in turn, rescued by testosterone (143, 225, 230). 

SMG renin is active and under normal circumstances is secreted in the 

saliva (230-234) and not into the plasma (138, 235). However, upon 

stimulation by testosterone or thyroid hormone (see above), aggressive 

behaviour (138, 236), or gentle manipulation of the SMG (237, 238) increased 

levels of active renin are found in the plasma, most of which is derived from 

the SMG (increased saliva levels are also observed). This extrarenal 

circulating active renin has no effect on blood pressure regulation as the rate 

limiting factor in angiotensin I generation is angiotensinogen which is 

present in mice at very low levels in the plasma (renin is present in excess) 

(6). As there is no obvious role for SMG-derived renin in blood pressure 

regulation (138, 151, 235, 237, 239) it has been postulated that mice with high 

renin concentrations in their saliva have a selective advantage (6, 138). This 

is because the delivery of doses of renin to other animals (where renin is rate-

limiting) will cause a rapid increase in blood pressure, local tissue damage 

and possibly death (6, 236). This is supported by the finding that injection of 

saliva from "two renin-gene" mice into rats causes an increase in blood 

pressure (240). All aspects of SMG renin production, regulation and function 
are reviewed in Bing et al. (151) and Nielsen and Poulsen (241). 

1.3 Probing the Role of the RAS in Blood 
Pressure Regulation Using Transgenics 

1.3.1 Renin Genes 

Several transgenic experiments have helped to explain the different 

expression patterns of the three mouse renin genes, as well as giving an 

insight into blood pressure regulation in mice and rats. By introducing the 
Ren1d gene onto a Ren1C background it was possible to show that the 

different expression patterns of these two genes were due to DNA elements 
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working in cis and not trans acting factors (131). Similarly, by introducing 
the Ren-2 gene onto a Ren1c background it was possible to show that 
differences in Ren-2 expression were also due to cis-acting elements (140, 242, 
243). The transgenic mice developed by Mullins et al. did not display high 
blood pressures (J. J. Mullins et al., unpublished data), no blood pressure data 
are reported for the other transgenic mice. These results suggests that 

differential expression patterns are due to differences in the promoters of the 

three genes, for example the presence of several insertion elements 

(section 1.2.1). That is, in the kidney, all three promoters are functionally 
equivalent (i.e. all three promoters contain the elements required for renal 

transcription), whereas in extrarenal tissues other control elements which 

vary between the three different genes lead to varying expression patterns. 

Transgenic mice developed by Ohkubo et al. containing the rat renin 
gene under control of the metallothionein promoter did not develop a 

hypertensive phenotype (244). This was to be expected because in the mouse 

renin is not thought to be rate-limiting (6) and it has been shown that rat 

renin is unable to cleave mouse angiotensinogen (245). Transgenic mice have 

also been produced using the human renin gene (246). Here only 900bp of 

promoter was used and resulted in regulated expression in the kidney and 

secretion of active renin into the plasma. The extrarenal expression pattern 
reflected that of the mouse e.g. expression of the human gene in the 
submandibular gland (renin expression is not detected here in the human). 

In a similar experiment using 3kb of 5' promoter sequence the human renin 

gene was found to be expressed predominantly in the JG cells of the kidney 

(247). Although renin was detected in extrarenal tissues it was not found in 

the submandibular gland suggesting that this transgene's expression pattern 
was more human-like (248). 

Transgenic rats containing the Ren-2 gene have been generated which 
developed a hypertensive phenotype (249). It is postulated that this is 

because in rats renin is rate limiting and because mouse renin can convert rat 

angiotensinogen to Ang I (245). In these animals the RAS is generally 

depressed although levels of expression in the adrenal glands are high 

resulting in increased plasma prorenin levels. Interestingly, these animals 

showed the same qualitative expression pattern of renin as is observed for 
the Ren-2 gene in mice, except for the submandibular gland where no renin 

was detected. Transgenic rats have also been created using the human renin 
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gene (250). These animals are normotensive, probably due to the inability of 

human renin to convert rat angiotensinogen to Ang 1(250). 

1.3.2 Other RAS Constituents 

Transgenic mice carrying the rat angiotensinogen gene have been 

shown to exhibit an increase in blood pressure (251). Ohkubo et al. who also 
made transgenic mice carrying the human angiotensinogen gene under the 

control of the heterologous metallothionein promoter showed no increase in 

blood pressure in their transgenic mice (244). No increase in blood pressure 

was observed, probably because of the inability of mouse renin to produce 

Ang I from human angiotensinogen (245). Takahashi et al. produced 
transgenic mice containing the entire human (promoter and gene) 

angiotensinogen gene (252). These animals expressed angiotensinogen in the 

liver, heart and, at much higher levels than expected, in the kidney. No 

investigation of the blood pressure in these animals is reported, however, 

conversion of human angiotensinogen to Ang I was not expected due to the 

inability of mouse renin to process human angiotensinogen (253, 254). This 
has been confirmed by Yang et al. who observed no increase in blood 
pressure upon the introduction of a similar human angiotensinogen 

transgene (255). It is postulated by the authors that the upregulation of 

expression in the kidney is caused by a negative regulatory element from the 

human gene which is not present in the transgene (252). 

Ganten et al. have made transgenic rats carrying the human 

angiotensinogen gene which did not develop hypertension (250). This was 

due to species specific enzyme kinetics, human angiotensin not being a good 
substrate for rat renin. 

When Ohkubo et al. cross-bred their transgenic mice, the resulting 

animals, which contained both the human renin and angiotensinogen 

transgenes, displayed a hypertensive phenotype confirming the species 

specificity of the human and mouse substrate and enzyme (244). Similar 
observations were made by Fukamizu et al. (256) when transgenic mice 
expressing human renin (248) were crossed with other transgenic mice 
expressing human angiotensinogen (252). 
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1.4 Generating Null Mutations and Gene 
Targeting 

Gene targeting is a method used to introduce specific mutations into 

the mouse genome. This is achieved by introducing a mutation into 

embryonic stem (ES) cells in cell culture by homologous recombination. ES 

cells are totipotent pre-implantation embryo-derived cells which can be 

maintained in an undifferentiated state in cell culture (257, 258). Once 

genetically modified, these cells can be injected into recipient blastocysts and 

may then contribute to the germ-line of the mouse (Figure 1.7). These 

chimaeras can then be bred and if the mutation is passed through the germ-

line, new mouse lines can be generated in which all tissues are derived from 

the genetically-manipulated cell line, allowing the effects of the alteration to 
be studied (259). 

Targeting constructs typically consist of two arms of homology and a 

selectable gene and are designed to disrupt the gene, although alternative, 

more subtle, mutations can be achieved. The two homology arms are 

identical to DNA sequences within the gene to be disrupted and it is these 

regions which mediate the homologous recombination event. 

When a targeting construct is introduced into ES cells (normally by 

electroporation) it can integrate into the genome either randomly or into it's 

homologous site. As the frequency of targeted events is generally much 

lower than random integration, it is best to develop stringent screening 

strategies for detecting targeted events (homologous recombination at the 

targeted locus). The standard screening procedure for detecting targeted 

events is Southern blotting (although PCR based strategies can also be used). 

Several factors are known to affect targeting efficiency and will be discussed 
below. 

1.4.1 Types Of Gene Targeting Vector 

There are two distinct vector types used for gene targeting experiments, 

these being replacement and insertion vectors (Figure 1.8). Replacement 

vectors contain two stretches of homologous sequence interrupted by a 
selectable gene e.g. neo. These vectors can be used to create null alleles by 



deleting exons of the endogenous gene, deletion of exons depends upon the 

location of the arms of homology. The vector is linearised at one end of the 
homology arms and transfected into ES cells. These vectors are thought to 

insert into the targeted gene by a double reciprocal recombination event or 

by a single recombination event followed by gene conversion (259). 
Complete removal of the plasmid vector by cleaving at the end of both arms 

of homology may give increased efficiency and removes the possibility of 

plasmid sequences inserting in the genome, the effects of which are 
unpredictable. 
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Figure 1.7: Generation of novel mouse lines from gene targeted ES cells: ES cell clones 
are derived from pre-implantation mouse embryos and maintained in cell culture. 
Targeting construct DNA is introduced into the cells and clones containing the construct 
selected. These cells can then be re-introduced into mouse blastocysts resulting in chimaeric 
mice which can be bred to generate new mouse lines. 
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Figure 1.8: Gene targeting using replacement or insertion vectors: Ai) Shows a sequence 
replacement targeting vector including a PGK-neo selectable marker (diagonally stripe arrow 
indicates the direction of transcription) flanked by two homology arms (Black bars= exons, 
white box= introns, '= exon derived from targeting construct). Au) Shows the genomic locus 
against which the targeting construct has been designed. Aiii) Shows the targeted locus after 
homologous recombination has occurred. Crosses indicate the sites at which recombination has 
occurred. This is only an example and recombination could have occurred anywhere in the two 
homology arms. Bi) Shows a sequence insertion targeting vector including a PGK-neo 
selectable marker linearised within the homology region (horizontal stripes= plasmid vector 
sequences). Bii) Shows the genomic locus against which the targeting construct has been 
designed. Biii) Shows the targeted locus after homologous recombination has occurred. 
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In contrast, when insertion vectors are used the entire construct is 

inserted into the region of homology. Insertion vectors contain one region of 
homology and a plasmid vector containing a selectable gene. To transfect ES 

cells, the construct is cut once within the region of homology, generating two 

arms of homology with the plasmid backbone and selectable marker 

between them. By a slight modification of the insertion vector it is possible 

to duplicate a region of the targeted locus, as has been reported fOr the 
angiotensinogen-encoding gene, Agt (260). One possible problem with 
insertion vectors is the fact that no part of the endogenous gene is deleted, 

and that it would be possible to generate a wild-type messenger RNA by 
exon skipping. This has been shown to happen when an insertional vector 
was used to disrupt the CFTR (cystic fibrosis transmembrane conductance 
regulator) gene (261). In this instance, the generation of some wild-type 

activity is thought to be critical for the viability of the mice. In other CFTR 
mouse models created using replacement vectors, the homozygous mice die 

at a very young age and do not reflect the human cystic fibrosis phenotype 

as well as the insertional mutant mouse model (262-264). When CFTR 
expression was studied in the insertion mice, trace levels of wild-type 

product were detected and it is postulated that this is enough to increase the 
viability of these mice (261). 

In a study of targeting at the hprt locus by Hasty et al. (1991) insertion 
vectors were found to be seven times more effective at targeting than 

replacement vectors (265). In a later study by the same group a similar 

increase in efficiency (6-fold greater) was observed when using a insertion 

vector (266). In both of these studies one of the arms in their replacement 

vectors was always limited to 1.2kb or less (265). Another study by Deng 
and Capecchi, also looking at gene targeting in the hprt locus, suggested that 
replacement vectors could be used with a targeting efficiency equal to that 

obtained using an insertional vector if sufficient lengths of homology were 

used on both arms of a replacement vector (267). A third study in 1994 by 
Escherichia coli neomycin phosphotransferase II gene (neo), which renders 
transfected cells eHasty et al. showed a 4-to 8-fold increase in targeting 
efficiency using an insertional vector at the fgr locus while no differences in 
efficiencies were detected between vector types when the fah locus was 
targeted (268). 
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1.4.2 Methods of Selection 

Central to any gene targeting strategy is the selection of ES cells into 

which the targeting construct has been inserted. This is achieved using a 

selectable marker, such as thexpressing the gene resistant to the mammalian 

antibiotic G418. This strategy is termed positive selection and typically 

results in a low targeting efficiency (relative frequency of homologous 

recombination to total drug resistant colonies) since the expression of drug 

resistance is independent of the integration site. This is still, however, a 

perfectly adequate and commonly used strategy. 

In order to reduce the number of colonies which need to be screened, 
other selection procedures have been developed. A powerful method for 

selection of targeted events is the use of vectors lacking promoter (269-272) 

or polyadenylation sequences (273). Here, in order for the selectable marker 

to be expressed, the construct must be inserted into the coding sequence 

(exons or 3' untranslated region) of a gene. In the case of random insertions 

this will be relatively rare and will therefore increase the relative number of 

targeted events isolated. A limitation of this system is that it relies on 
expression of the targeted gene in ES cells. 

Positive /negative selection can also be used to enrich for targeted 

events (274). This method relies on the fact that random integrations tend to 

insert via their ends, whereas homologous recombination events are internal 

to the homology. Thus, any non-homologous sequences flanking these 

regions are lost. Cells can be positively selected for expression of neo and 
selected against using the thymidine kinase gene from the herpes simplex 

virus (HSV-tk), which when expressed, renders cells sensitive to the base 

analogue gancyclovir. If an HSV-tk gene is placed outside the region of 

homology, only random integrants should contain HSV-tk and will therefore 
be selected against in gancyclovir. 

1.4.3 Regions of Homology 

Historically, non-isogenic DNA was used in targeting experiments but 

it has been shown that when isogenic DNA is used to make targeting vectors 

the frequency of targeted events is greatly increased relative to equivalent 

non-isogenic constructs. Isogenic DNA is the term given to DNA derived 
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from the same strain i.e. if the ES cells are 129/Ola-derived, isogenic 
homology arms are derived from 129/Ola DNA. One such example is by te 
Riele et al. in which the same flanking arms of homology were used, derived 
from either 129/Ola or Balb/c DNA to target the Rb gene in 129/Ola ES cells 
(275). By using the same pMClneopolyA vector (Stratagene) for both 
constructs, any differences in efficiency could not be due to the method of 

selection. Using 129/Ola DNA, a targeting frequency of 35% (33/94 G418 
resistant colonies) was obtained, whilst the frequency when Balb/c DNA 

was used was only 1 in 144 (0.7%) G418 resistant colonies. This represented 

a 50-fold increase in targeted events when isogenic DNA was used. When 

the degree of homology between the two inbred strains of mice was studied, 

it was found that in a stretch of 1687bp, the longest stretch of perfect 

homology was only 278bp. The authors suggest that the decrease in 

targeting efficiency reflects an insufficiency of long, perfectly matched 
regions of homology. These data only apply to the Rb locus and care must be 
taken in extrapolating these results to other loci. However, in general, it is 

believed that using isogenic DNA significantly increases targeting efficiency. 

It is well known that the extent of homology in a targeting construct 

influenced the targeting efficiency. It has been shown that increasing the 

homology used in insertion or replacement vectors increases the targeting 

efficiency (259, 266). Deng and Capecchi addressed this question more 

thoroughly and found that both types of vector had a strong dependence on 

the length of homology between the targeting vector and the targeted locus 

(267). Here, an exponential relationship was found between targeting 

efficiency and the extent of homology between the vector and targeted 

sequence, up to a plateau observed when 14kb of homology was used. A 

comparison between isogenic and non-isogenic DNA was also carried out 

and frequencies using isogenic DNA were found to be 4-5 times higher. 

Gene targeting constructs are usually built using regions of homology 

subcloned from an isogenic genomic library. This step can be time 

consuming as clones must first be identified and then extensively 

characterised, often not resulting in the identification of suitably sized 

fragments. A possible solution to this problem would be to PCR amplify 

large DNA fragments from isogenic genomic DNA for use in targeting 

constructs, thus removing the need to screen genomic libraries. Other 

advantages of this system include the ability to position PCR primers 
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anywhere within a gene and the introduction of restriction sites (in a PCR 

primer) for use in cloning and/or screening. This strategy also makes the 

targeting of poorly characterised genes easier. All that is required is some 
sequence data for the design of PCR primers (e.g. a cDNA sequence) and a 
preliminary genomic map for the prediction of amplicon size and the 

development of a screening strategy. As exonic sequences are known to 

undergo mutation at a low rate (compared to intergenic or intronic regions), 

PCR primers designed against a cDNA sequence from a mouse strain other 

than that of the ES cells used (129/01a) should suffice for the amplification of 
homology arms. 

1.4.4 The Application of Gene Targeting to the RAS 

Gene targeting has had a large impact on our understanding of many 

single gene disorders such as cystic fibrosis, but the technology can just as 

easily be turned to the dissection of multigene disorders such as 

hypertension by disrupting candidate genes. Several constituents of the RAS 

have been disrupted by gene targeting, resulting in valuable insights into the 

significance of each protein, as well as confirming the essential role of the 
RAS in maintaining normal blood pressure. 

1.4.4.1 Angiotensinogen (Agt) 

An elegant series of studies involved the duplication of the entire 

angiotensinogen locus (260), and the complementary disruption of the gene 

by conventional targeting (276). The duplication of the angiotensinogen gene 

was achieved by using an insertion-type targeting vector. Sequences from 

upstream and downstream that are believed to encompass all control 

sequences of the gene were used as the homology in the targeting construct. 

The 8kb 5' homology arm included 3kb of promoter and exon 1, and the 

1.8kb 3' homology arm included exons 4 and 5 and extended 200bp beyond 

the polyadenylation site. The 8kb gap between 5' and 3' homology arms, 

spanning exons 2 and 3, was repaired (filled in) by cellular mechanisms 

during the recombination event resulting in duplication of the targeted locus 
(260). 

By breeding animals possessing either the duplicated or disrupted locus 

it was possible to generate mice containing 0 to 4 copies of the 
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angiotensinogen gene (260, 276). This resulted in mice expressing 0 to 145% 

of normal plasma angiotensinogen levels, increasing in a non-linear but gene 

copy number-dependent manner. This relationship between gene copy 

number and angiotensinogen levels was also extended to include blood 
pressure, where mean arterial pressure was found to be proportional to gene 

copy number. Linear increases in blood pressure of 8.3 ±2.3mm Hg (mean 
arterial pressure) were reported for each additional copy of the Agt gene 
(276). 

Of particular interest in the experiments of Kim et al. (276) is the null 
phenotype i.e. the complete absence of angiotensinogen. No data has been 

reported for the blood pressure of homozygous mutant mice-probably 

because the viability of these mice is severely reduced. Surviving 
homozygous mutant (Agt -I-) animals were found to have no obvious 
defects at birth although adult mice displayed pathological changes in the 
kidney. Agt -I- animals were found to have thickening of the medial layers 
of vessel walls, caused by an increase in cell number and loss of structural 

organisation, being most noticeable in the interlobular arteries. The 

mechanism underlying the wall thickening is unknown but may reveal a 

novel response to the low blood pressure or to the complete absence of 

angiotensinogen. General cortical thinning with foci of severe atrophy was 
also observed in the kidneys of Agt -I- animals. The areas of atrophy 
consisted of shrinkage and loss of tubules, interstitial fibrosis and interstitial 

infiltration of chronic inflammatory cells, and were postulated to be caused 

by ischaemic damage as a result of reduced blood flow through the arteries. 
The kidneys of all other animals (1 to 4 copies of Agt) appeared to be normal. 

The relationship between copy number and plasma angiotensinogen 

levels was not linear. The values which one would have expected are 50% of 
wild-type activity for every copy of Agt present, as opposed to the 0, 35, 100, 
124 and 145% observed for mice containing 0, 1, 2, 3 or 4 copies of the Agt 
gene respectively. There are two explanations for these results. Firstly the 
lower level of angiotensinogen present in the Agt 1/- animals is postulated 
by Kim et al. (276) to be related to the increased expression of renin in these 

animals. Secondly as the level of renin is much higher, a greater percentage 

of angiotensinogen would be expected to be converted to Ang I and 

ultimately to Ang II, therefore resulting in an increase in blood pressure. 

However, the expected increase in blood pressure is not observed. The lower 
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than expected levels of angiotensinogen observed in the 3 (Agt 2/1) and 4 
(Agt 2/2) copy animals could be explained by negative feedback on Agt 
expression when elevated levels of angiotensinogen protein are present, or 
could be related to the structure of the Agt locus. Although all known cis-
acting elements required for normal Agt levels were duplicated, additional, 
more distant, sequences may be essential for recapitulating expression in 
vivo. This can be investigated by studying the Agt 1/1 and Agt 2/- animals, 
both of which have two angiotensinogen genes. When levels in these groups 

of mice were compared, the Agt 2/- were found to have only 55% of the 
Agt 1/1 (wild-type) levels suggesting that not all the regulatory elements 

were duplicated in this experiment or that the close proximity of the two 

gene copies is inhibitory. Interestingly, this difference in angiotensinogen 

level had no statistical effect on blood pressure in the two groups of animals. 

In an independent experiment in which the angiotensinogen gene was 

disrupted (277), no difference in blood pressure was observed in 
heterozygous (Agt +/-)animals, but a significant reduction in systolic blood 
pressure in the homozygous mutant (Agt -I-) animals was reported, (66.9 
±4.1mm Hg compared to 100.4 ±4.4mm Hg in wild-type animals). Similarly, 

diastolic and mean blood pressures were also reduced. When renin levels in 

both homozygous mutant and heterozygous animals were studied, renin 

levels in heterozygotes did not differ from wild-type values whereas null 

animals showed a 600 to 800% increase in renin expression levels. A third 
group have also reported the disruption of the Agt gene (278). These authors 
also report altered kidney morphology and hypotension in Agt -/- animals. 

1.4.4.2 Angiotensin I Converting Enzyme (Ace) 

In addition to the full-length transcript widely expressed from the Ace 
gene, a truncated transcript encoding a testis specific form of ACE is also 

expressed in postmeiotic spermatogenic cells (the latter being expressed from 

an alternative, testis-specific promoter). The precise function of this testis-

specific isoform is unknown. However, the gene targeting strategy used by 
Krege et al. (279) to inactivate the Ace gene resulted in the disruption of both 
transcripts permitting the role of ACE in blood pressure regulation and 
fertility to be studied. 

Male heterozygotes showed a significant reduction in blood pressure of 
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15-20mm Hg with female heterozygotes being indistinguishable from their 

wild-type litter mates. The reason for this sexual dimorphism is unclear, 

since in both sexes serum ACE activity was reduced. When homozygous 

mutant animals were studied, it was found that both males and females were 

hypotensive with a reduction of 35mm Hg in mean arterial pressures. 

Homozygous mutant mice also displayed histological changes in the kidney 

similar to those of the angiotensinogen mutant mice described earlier, with 

thickening of artery walls caused by an increase in the number of 

disorganised cells, as well as cortical thinning with focal areas of atrophy. 

When the fertility of homozygous mutant animals was assessed, female 

fertility remained normal whereas male fertility was severely reduced with - 

only one out of five males tested being fertile. A more detailed study of the 

males showed that they were still capable of mating and that testis 

pathology, sperm count and sperm morphology were all normal, suggesting 

that homozygous mutant males may have a reduced ability to fertilise ova. 

Another independent group have disrupted the Ace gene, this time 
leaving the testicular isoform intact, in a bid to improve the fertility of the 

animals for breeding purposes (280). Blood pressures were not measured in 

these animals, but similar histological kidney abnormalities reported by 
Krege et al. (279) were observed. In addition, the Ace -I- mice generated by 
Carpenter et al. (280) were uraemic with mean blood urea nitrogen levels 

increased by over 3-fold (0.52 mg/ml compared to 0.15mg/ml in wild-type 

animals). This agrees well with the much reduced ability of the Ace -I-
animals to concentrate their urine - the wild-type animals concentrating their 

urine to 4,000mOsm/l compared to 820mOsm/l in the Ace -I- animals. 
Urine is concentrated in the collecting ducts of the kidney which in the 

Ace -I- animals appear disorganised, the anatomy of the medulla and pelvis 

being distorted. The medulla, which contains the collection system, lacks the 

fan-like medullary rays seen in wild-type animals and the pelvis, where the 

collecting ducts empty into the ureter is mis-shapen and reduced in size. 

These mice display a more severe phenotype than the Ace -I- of Krege et al. 
(279) and most homozygous mutant mice die by three weeks of age. The 

authors suggest that this difference is down to "modification by other genes", 

which presumably means these two mouse lines are on different genetic 

backgrounds (not stated). Ace -I- mice that survived passed weaning age 

were found to be fertile confirming the need for expression of the testis- 
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specific Ace transcript for fertility. 

1.4.4.3 Angiotensin II type 1A Receptor (Agtrla) 

Angiotensin II exerts its vasopressive effects via the AT, receptors. Ito 
et al. (281) disrupted the AT1A receptor gene (Agtrla) by gene targeting using 
a replacement vector. The resulting homozygous mutant mice were viable 

and displayed no outwardly visible abnormalities. Binding of Ang II was 
studied in homozygous mutant mice (A gtrl a -I-) using radiolabelled Ang II 
which, in general, was found to be reduced. Using the receptor antagonists 

Losartan (DuP 753) and PD123319, which block binding to type 1 and type 2 

receptors respectively, it was possible to show that the Ang II binding 

observed in the kidneys of homozygous mutant mice was mediated through 

the AT2 receptor. The response to Ang II injection was also studied with the 
direct infusion of Ang II into wild-type mice resulting in an increase in blood 

pressure which lasted 20 seconds followed by a delayed depressor effect 

lasting longer than 500 seconds. Infusion into heterozygous mice resulted in 

a similar short-lived rise in blood pressure, but the depressor effect was 

shortened to about 400 seconds whilst Ang II infusion into homozygous 

mutant mice had no effect on blood pressure. 

Systolic blood pressure was measured in the heterozygotes which 

displayed a 12mm Hg decrease, with the homozygotes showing a blood 

pressure reduction of 24mm Hg when measured by the tail-cuff method or 

17 and 43mm Hg respectively when measured by cannulation of the carotid 
artery. Contrary to the observations in the Agt and Ace targeting 
experiments already discussed, the homozygous mutant animals displayed 
no abnormal histopathology in the kidney. 

Taken together, these results tell us that the AT1A receptor is not 

essential for normal development and survival, or for normal kidney 

development. However the AT1A receptor is essential for the pressor and 

depressor effects observed on infusion of Ang II. The AT1A receptor is also 
responsible for almost all of the Ang II binding occurring in the kidney, and 
is involved in the regulation of blood pressure under normal conditions. An 

independent report on the disruption of the AT1A receptor (282) also found 

systolic blood pressure decreases, with 10 and 22mm Hg reductions being 

observed in heterozygotes and homozygotes respectively (similar changes 



were observed in diastolic blood pressures). Expression of renin was found 

to be upregulated in the kidneys of homozygous mutant mice resulting in a 
7- to 8-fold increase in plasma renin. The study used a modification of the 
gene targeting strategy to express lacZ under the control of the Agtrla 
promoter. After incubation with a -galactosidase substrate (Bluo-Gal), blue 

staining was observed in the glomerulus and JG cells. To confirm that this 

expression was equivalent to that of the endogenous gene, antisense probes 

for the AT1A receptor mRNA were also used and shown to mirror the 
expression pattern of lacZ. Using an AT1B-specific probe it was shown that 
no AT1B receptor expression was present in the kidney. 

A third report on the disruption of the Agtrla gene has been reported 
by Matsusaka et al. (283). Agtrla +1- and Agtrla -/- animals had reduced 
blood pressures comparable with those observed by Ito et al. (281) and 
Sugaya et al. (282). However Matsusaka et al. (283) report kidney 
abnormalities in Agtrla -I- animals similar to those observed in the Agt and 
Ace knock-out experiments. In particular, hypertrophy of the interlobular 

arteries and JG cell hypertrophy, together with an increase in the number of 

renin-positive staining cells in the afferent arteriole (similar observations to 
those in the Agt -I- animals (278)). Again reporter gene expression was 

observed primarily in the JG cells, although the proximal tubule, glomerulus 

and afferent and efferent arteriolar smooth muscle cells adjacent to the 
glomerular pole also stained positively. 

To investigate the possible role of Ang II in signalling renin production 

in the JG cells of the kidney (section 1.2.4.1), chimaeric mice were produced 
from wild-type and Agtrla -I- ES cells. In these animals the degree of JG cell 

hypertrophy/hyperplasia was proportional to the degree of chimaerism, 

with wild-type and mutant JG apparatuses showing equal degrees of 

hyperplasia. Similarly, the renin positive portion of the afferent arteriole 

from wild-type and mutant JGA were also the same. These results prove 

that local Ang II actions via the AT1 receptors (AT1B is not expressed in the 

kidney) were not responsible for controlling JG production of renin. The 

authors suggest, therefore, that in this regard a renal baroreceptor or macula 

densa mechanism is likely to control this production of renin. 

The results of the first two AT1A receptor knock-out experiments 

(decrease in blood pressure was observed in the absence of histopathological 
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alterations in the kidney), compared to the changes reported for the Ace and 
Agt knockouts, suggest that the kidney abnormalities may not be mediated 

through the AT1A receptor. The results of the third Agtrla knock-out 
experiment contradict this theory as similar phenotypes are seen in animals 
lacking the Agt, Ace or Agtrla genes. 

1.4.4.4 Angiotensin II type 2 Receptor (Agtr2) 

Hein et al. (284) reported the disruption of Agtr2 using a replacement-
type targeting construct. Since the Agtr2 gene is located on the X 
chromosome, only females were capable of inheriting the disrupted Agtr2 
gene from the chimaeric father in the first generation. After 3 generations 

(F3) it was possible to study homozygous females and hemizygous males, 

both of which developed normally. These animals showed no abnormal 

organ or skeleton development and produced litters of comparable sizes to 

wild-type animals. To confirm the absence of AT2 receptors, 18.5 day pc 

embryos were examined for RNA expression and ligand binding. RNA blot 

analysis revealed no expression in hemizygous mutant males or 

homozygous mutant females and using the radioligand CGP42112 it was 

possible to show the absence of AT2 receptors in the membranes of E18.5 

embryos. This removal of AT2 receptors did not affect the expression of the 

AT1A receptor. When blood pressure was studied in these animals no 

difference was observed between wild-type mice and hemizygous mutant 

males. Similarly, injection of Ang II into both groups of mutant mice 

resulted in the expected pressor effects previously shown to be mediated, at 
least in part, by the AT1A receptor. 

As Ang II is also important in the central control of many physiological 

responses, including thirst, the drinking habits of the mutant mice were also 

studied. When wild-type and mutant mice were given drinking water ad 
libitum no differences were observed. However, if water was withdrawn for 

40 hours and then returned, the two groups of animals responded 

differently. In the subsequent 3 hour period the water intake of the mutant 

mice was significantly lower than the wild-type control animals. The AT2 

receptor is highly expressed in the locus corneleus, a part of the brain 

involved in integration of sensory information and arousal. Since the 

intracerebroventricular injection of Ang II stimulates exploratory behaviour, 

the locomotive activity of AT2 receptor-deficient mice was evaluated. 
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Activity was measured on two consecutive days, in a light or dark 

environment. In the light periods activity was not significantly different, 

however in the dark the mutant mice displayed a lower activity compared to 

their wild-type controls. The physiological significance of the reduced 

activity is not known and it should be noted that this may be directly 

responsible for the alteration in water intake in the mutant mice, rather than 
a direct effect of ablation of Agtr2 expression. 

A second report describing the disruption of the AT2 receptor used a 

replacement-type vector (285). In this study third generation (F3) 

hemizygous mutant males or homozygous mutant females also developed 

normally, showed no abnormal organ or skeleton development and 

produced litters of comparable sizes to wild-type animals. Mutant mice 

were found to display lower levels of exploratory behaviour (reduced 

ambulation) however, contrary to the findings of Hein et al. (284), basal blood 
pressure was found to be elevated in the mutant animals with systolic blood 
pressure being 118.2 ±5.0mm Hg in hemizygous mutant males compared to 
94.2 ±1.7mm Hg in control males. Administration of Captopril, an ACE 

inhibitor, reduced the blood pressure of both groups of animals to similar 

values. These animals were then subjected to increasing doses of Ang II and, 
at all doses tested, the mutant mice exhibited elevated blood pressures 

compared to the wild-type controls. Finally, the administration of Losartan, 

an AT, receptor antagonist, reduced blood pressure to the same levels as the 

original Captopril treatment in both groups of mice. Ichiki et al. (285) suggest 
that since basal blood pressure remains higher even when the AT, receptors 

are blocked, the AT2 receptor may act to limit the response of the AT, 

receptors to Ang II. The theory is further supported by the fact that infusion 

of Ang II into Captopril-treated mutant mice resulted in a larger increase in 

blood pressure compared to controls. In light of these results and the 

reduction in blood pressure observed in other RAS gene targeting 
experiments Ichiki et at. (285) postulate that the in vivo regulation of blood 
pressure is dependent on a balance between AT, and AT2 receptor 
activation. 

Hein et at. (284) also report a similar altered response to infusion of low 

doses of Ang II into mice pretreated with Captopril. Unlike the findings of 
Ichiki et al. (285) no significant differences were observed in baseline blood 

pressure between wild-type and mutant mice. These apparent discrepancies 
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may be due to differences between the background strains onto which the 
mutations have been crossed (FVB/N as opposed to C57BL/6J). 

1.4.4.5 Renin (Ren1c, Ren_id, Ren-2) 

Since most ES cells used in gene targeting are derived from the inbred 

mouse strain 129/01a which contains two renin genes, any attempt to ablate 

renin expression must take this into account. Three possible strategies exist 

for the ablation of renin production: disruption of the Ren1c gene in ES cells 
derived from "one-renin-gene" mice; disruption of each gene consecutively in 

ES cells derived from "two-renin-gene" mice; or the use of a targeting 

construct to simultaneously disrupt both genes by deleting part of each gene 

and all the sequence between them. The availability of mice totally lacking a 

renin structural gene will complement the existing gene knockout studies 

and determine whether angiotensins can be produced in vivo by alternative 
enzymatic pathway. 

However, the use of ES cells from two-renin gene mice (129/01a) 

presents a unique opportunity to dissect renin function. The individual roles 

of renin-1 and renin-2, during development and in the adult, can be defined. 

Studies on the renin genes in our laboratory have shown that Ren-2 -I-
animals are viable, fertile and have no histological abnormalities in the 

kidney, adrenal gland or submandibular gland (286). Ren-2 -I- animals are 
normotensive despite an increase in circulating active renin and reduced 

plasma prorenin concentrations. To date, no function of renin has been 

identified which cannot be wholly fulfilled by the Ren1d gene and resultant 
protein, Renin1d. In combination with the Ren-2 knockout, additional 
targeting studies at the Ren locus will further elucidate some of the 
remaining questions. To date no one has published a phenotype for mice 

containing a disruption of the Ren1d gene. However Miller et al. have 
reported the disruption of the gene in ES cells, but they did not report germ-
line transmission of the disrupted allele (287). 
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1.5 General Aim 

Since the expression patterns of the two renin alleles in 'two-renin gene' 

mice are different, it is difficult to dissect their relative importance or to see 
whether they are indeed functionally redundant. A factor suggesting that 

the two genes may not be functionally redundant is the maintenance of all 

consensus sequences, the maintenance of the open reading frames and the 

functionality of both proteins. If these genes were functionally redundant, 

one would expect that one gene would undergo random mutation at a high 

rate because there would be no selective constraints upon it. This does not 

appear to have happened, suggesting that each gene product may be 

important. Wild species of mice possessing two renin genes always have 

two active genes suggesting a selective advantage of having two renin genes, 
i.e. an inactive form of either enzyme has never been identified in wild mice 

containing the duplication event. The gene targeting experiment described 
here will help to address this question. 

Although the basic strategy of gene targeting is well defined and can be 

routinely performed, the amount of time and resources required for such an 

experiment is high. Alternative strategies which reduce the time taken to 

generate knock-out animals, or increase the frequency of gene targeting 

therefore reducing the number of colonies which need to be screened are 

always being developed. We have therefore chosen to build the construct 

using homology arms generated by PCR rather than subcloned fragments 

from genomic libraries. This was because we wished to reduce the time 

taken to construct targeting vectors and to develop a general strategy for the 

construction of targeting vectors directed against genes about which little 
information is known. 

The aim of this project is to generate transgenic mice in which the 
Ren1d gene has been mutated to produce a Ren1d null allele. Ablation of 
Ren1d will permit the study of Ren-2 in isolation from Ren1d. This will 
allow the investigation of the ability of Renin-2 protein to mediate blood 

pressure regulation and kidney development. The following chapters 
describe the disruption of the Ren1d gene in ES cells, their to use to generate 
Ren1d -/-mice and the subsequent analysis of this new mouse line. 
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CHAPTER 2 
Materials and Methods 

2.1 Materials 

2.1.1 Chemicals/Solutions 

All stock solutions were prepared using reverse osmosis water (Elgastat 

Prima Reverse Osmosis Water Machine; Elga Ltd, High Wicham, UK), 

filtered (0.22j.i.m cellulose acetate membrane), and autoclaved before use. 

Solutions were treated with 0.01% diethyl pyrocarbonate, DEPC 

(Sigma-Aldrich Company Ltd, Poole, UK) or made up using DEPC-treated 

H20. Chemicals used were from BDH Laboratory Supplies (Merc Ltd, 

Lutterworth, UK) and were of analytical quality. 

Acids, alcohols and solvents were supplied by BDH Laboratory 

Supplies or Fisons Scientific Equipment (Loughborough, UK), except 

absolute ethanol (Hayman Ltd, Litham, UK). Phenol was purchased 

redistilled and buffered with Tris-HC1 from Fisons Scientific Equipment 

(Product code T/P633/05). Standard grade and Genetic Technology grade 

agarose was supplied by FMC (Flowgen, Sittingbourne, UK) or Boehringer 

Mannheim (Lewes, UK). Radioisotopes were supplied by Amersham 

International Plc (Little Chalfont, UK). Kodak XOMAT XAR-5 film was 

supplied by (IBI Ltd, Cambridge, UK). Oligodeoxynucleotide primers were 

synthesised by Oswell DNA Service (University of Southampton, 

Southampton, UK) or Pharmacia Biotech (St. Albans, UK). Random 

hexamers and dNTPs were supplied by Pharmacia Biotech. 

2.1.2 Enzymes 

All enzymes were supplied by Boehringer Mannheim except 

Perfectmatch® DNA polymerase enhancer (Stratagene, Cambridge, UK), 

UlTma DNA polymerase and the Amplitaq FS dye terminator sequencing kit 

(Applied Biosystems, Warrington, UK), T4 DNA ligase and T4 
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polynucleotide kinase (Gibco-BRL, Paisley, UK) and AMV Reverse 

transcriptase (Promega, Southampton, UK). 

2.1.3 Bacterial Strains 

All plasmids were maintained in Escherichia coli, strain DH5 cells 
(Genotype=: supE44 hsdR17 recAl endAl gyrA96 thi-1 relAl deoR F-
lambda-) (288). 

2.1.4 Cloning Vectors, Plasmids and Probes 

pSP72polyl and pSP72poly4 were constructed by removing the 

polylinker from pSP72 (Promega) and inserting annealed, complementary 

oligodeoxynucleotides (Figure 2.1 and Figure 2.2 respectively; S. Morley et 
al., unpublished data). pB1uePGK-neopA (Figure 2.3), a PGK-neo selection 
cassette for use in gene targeting vectors was a gift from Austin Smith 

(University of Edinburgh, Edinburgh, UK). 

The P1 clones used as templates for PCR reactions have all been 

identified as containing renin sequences defined by the presence of a PCR 

product using exon 6 and 7 directed PCR oligodeoxynucleotides (L. Mullins 
et al., unpublished data). 

The "external" DNA probes used to screen ES cells and tail DNAs for 

homologous recombination or inheritance of the Ren1d  disrupted allele were 
derived from plasmid clones containing either Ren1d  or Ren-2 sequences. 
The 5' probe, a 297bp Pvu ll/BamH I Ren-2 genomic fragment containing 
exon 1 was prepared from a larger plasmid, pR2D8 (K. Gross and W. 

Brammar, unpublished data). The 746bp Hind ffi/Nco I Ren-1' genomic 
fragment used as a 3' probe containing exon 8 and part of exon 9 was 

prepared from a larger plasmid, pRn12 (D. Burt and W. Brammar, 

unpublished data). 

Two plasmids were used to confirm that the 5' "external" probe (Ren-2 
derived) hybridised to Ren1d  sequences. Plasmid pRn34 contains a 6.7kb 
BamH I Ren1d  genomic fragment (total plasmid size of 9.4kb). The plasmid 

pRen2-5'XK contains a 9.7kb Xho I/Kpn I Ren-2 genomic fragment (total 
plasmid size of 12.3kb). 
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Muni Hindili Bglll 	Kpni Smal 	EcoRi Noti 
CAATrGAAGCTrAGATCTGGTACCcGGGGAATTcGcGGccGc 

Xhol 	Miul 	Pmll XbaI 	BamHl Psti 	Sail 
CTCGAGACGCGTCACGTGTCTAGAGGATCCCTGCAGGTCGAC 

LAB! I.D. No. JJM-60 

VECTOR: pSP72poIyl is a pSP72 (Promega) based vector. 
INSERT: Altered polylinker. 
REFERENCE/SOURCE: Constructed by S. Morley, see also the Promega catalogue. 

SELECTION: Ampicillin 
STORAGE: Glycerol Stocks @ -70°C 	 HOST: DH5 
DNA: Stocks in database © -20°C 

Figure 2.1: pSP72polyl: This plasmid is a vector into which PCR products were 
subcloned. The polylinker of pSP72 was excised via the Xho I and Bgl II sites and replaced 
with a pair of self complementary 83mer oligodeoxynucleotides with 4 base overhangs at the 
5' ends designed to recreate the Xho I site but to destroy the Bgl II site of the original vector. 
Correct insertion and the presence of restriction sites was verified by sequencing. The 
polylinker is flanked by SF6 and 17 promoter sites which can be used for sequencing through 
insert fusion points. 
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Xhol Noti 	Muni 	Kasi 	Asci 	BcII 	EcoRl Hindlil 	Smal 

	

Kpni 	 Smal 	KpnI 	BamHI 	Sail 	BgilI 	Nael NotI 
GGTACCCTCGTGCCCGGGAAGGTACCGGATCCAAGTCGACTCGTGAGATCTGCCGGCGGCCGC 

102 

LAB I.D. No. JJM-105 

VECTOR : pSP72poly4 is a pSP72 (Promega) based vector. 
INSERT: Altered polylinker. 
REFERENCE/SOURCE: S. Morley Results V, p65-80 and the Promega catalogue. 

SELECTION: Ampicillin. 
STORAGE: Glycerol Stocks @ -70°C 	 HOST: DH5 
DNA: Stocks in database © -20°C 

Figure 2.2: pSP72poly4: This plasmid is a vector into which PCR products were 
subcloned. The polylinker of pSP72 was excised via the Xho I and Bgl II sites and replaced 
with a pair of self complementary lilmer oligodeoxynucleotides with 4 base overhangs at 
the 5' ends designed to recreate the Xho I site but to destroy the Bgl II site of the original 
vector. Correct insertion and the presence of restriction sites was verified by sequencing. 
The polylinker is flanked by SF6 and 17 promoter sites which can be used for sequencing 
through insert fusion points. 
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5' SacI-Sacll-Notl-XbaI-Spel-BamHI-XhoI-pstl 3' 
T3 Promoter  

~Prc moter 

Pstl 

Pstl 
Ball 

Nw 	
PvuIl 

pB1uePG K-neopA  
4.8kb 
	neo Sequence 

Amp 	 Xbal 

Bcl I 

SV4O PoIyA Sequence 

pBluescript SK- 
	 196 

PvuII 
T7 Promoter 

3' KpnI-Apal-Xhol-Sall-CIal- 
-HindIII-Ec0RV-EcoRl-Psfl-SmaI-BamHl 5' 

LAB. I.D. No. JJM-133 

VECTOR: pBluescript SK- (Stratagene). 
INSERT: A PGKneo cassette with SV40 polyA sequence. 
REFERENCE/SOURCE: Gift from Ian Chambers (Austin Smith Lab). 

SELECTION: Ampicillin 
STORAGE: Glycerol Stocks @ -70°C 	 HOST: DH5 
DNA: Stocks in database @ -20°C 

Figure 2.3: pB1uePGK-neopA: This plasmid was created by inserting a Sac IlBal I 
fragment from pBS-PGKneo2 (Austin Smith) which includes the PGK-1 promoter and 5' end 
of the neo gene into Sac I/Bal I digested pBS flAneol5 (Austin Smith), a step which generates 
the wild-type neo gene (the base-pair variant which confers high phosphotransferase activity 
and therefore higher G418 resistance (289)) and places it under the control of the PGK-1 
promoter. The PGK-1 promoter corresponds to a 0.5kb EcoR I! Taq I fragment of the PGK-1 
gene (290) (GenBank Accession No. M18735). The 5' neo fragment (upstream of the Bal I site) 
is derived from a Pst I/Hinc II fragment of pMClneopolyA (Stratagene). As the Pst I site is 
still present at the 5' end of the fragment it was assumed that no other alterations have been 
made, (confirmed by sequencing). The 3' end of the neo fragment was sequenced in the same 
run as the SV40 polyA signal fragment and overlapped with neo sequences. This was used 
to construct the above figure. 



2.1.5 Embryonic Stem Cell Culture 

All ES cell work was performed using E14Tg2a ES cells (291). Medium 

was made using filter-sterilised UFIP water (Elgastat Prima Reverse Osmosis 

Filter followed by an Elgastat UHP water purifier). Prior to use, batches of 

foetal calf serum that supported optimum growth of established ES cell lines 

were selected (tested by D. Rout and D. Colby). DIA/LIF was also included 

in medium at a 1:1000 (100 units/ml) dilution to maintain the ES cells in an 

undifferentiated state (292, 293). DIA/LIF preparations were titred by D. 
Rout and D. Colby as described in Smith (294). 

2.1.6 Mouse Strains and Housing 

The inbred mouse line, 129/01a, was used in all experiments except for 

derivation of chimaeric mice where blastocysts from the inbred mouse line 

C57BL/6J, and foster mothers from the MF1 Swiss albino outbred strain 

(MF1) were used. Mice were maintained in a stabilised environment on a 

regime of 14 hours light/ 10 hours dark (midpoint of the dark cycle being at 

12.00, midnight), at a constant temperature (21°C± 2.0°C) and constant 

humidity (50%± 10%). The mice were supplied with food and water ad 
libitum. All animals were housed and bred within the Centre for Genome 

Research, Edinburgh, UK according to the provisions of the Animals 

(Scientific Procedures) Act (UK) 1986. 

2.1.7 Computer Analysis 

DNA analysis was performed using the DNAstar Lazergene 1.60 

package (Lazergene, London, UK), ABI PrismTM  377 DNA Sequencer Data 
Collection 1.1 or ABI PrismTM DNA Sequencing Software 2.1.1 (both from 

Applied Biosystems). Plasmid representations were created using 

GeneConKit v1.18 (Textco Inc, West Lebanon, New Hampshire, USA). 

Statistical analysis was performed by hand (Student t-test) or using the 

Crunch version 3 program (Wilcoxon Rank Test) supplied by Crunch 

Software Cooperation (Oakland, California, USA), with graphical 

representations created using CA-Cricketgraph III v1.5 (Computer 

Associates International Inc., New York, USA). Southern gel autorads were 

scanned into a computer using a Canon CLC1O colour copier/scanner 

(Canon (UK) Ltd., Chessington, UK) and the Canon CLC10 scan 2.0.9 
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package (Canon (UK) Ltd.) and the contrast /brightness altered using the 

Adobe Photoshop 2.5.1 package (Adobe Systems Europe By, Amsterdam, 

The Netherlands). RNA primer extension assay gels were exposed to 

phosphoimager screens (Molecular Dynamics Ltd., Sevenoaks, UK) and the 

data collected on a Molecular Dynamics Phosphoimager using the Image 

Quant v3.3 program (Molecular Dynamics Ltd.). Gels were then quantitated 

using the MD-Image 1.44MD.1 program (National Institute of Health, USA; 
public domain software). 

2.2 Molecular Biology Methods 

All molecular manipulations were carried out by standard techniques 
(288). 

2.2.1 Bacterial Cell Culture 

Bacterial liquid cultures were performed in Luria-Bertani medium, 

(L. Broth; lOg/i bacto-tryptone, 5.0g/l bacto-yeast extract, lOg/i NaCl; 

pH 7.2) supplemented with 0.2% (w/v) glucose and, where appropriate, 

lOOp.g/ml ampicillin (Sigma-Aldrich Company Ltd; Product code A-9158). 

Cultures were incubated at 37°C for 16-24 hours in an orbital shaker at 

225-250rpm. Where large cultures, (>100m1), were required, these were 

inoculated at a 1:100 dilution using a starter culture, typically a 5.Oml culture 

started from a single colony. Where necessary, cultures were streak plated 

on L. Agar (L. Broth plus 15g/l bacto-agar) including 1009g/ml ampicillin, 

where appropriate, and these were then grown in an incubator overnight at 

37°C. For storage bacterial strains were grown overnight in L. Broth 

containing 8.25g/l K2HPO4.3H20, 1.8g/l KH2PO4, 0.45g/l sodium citrate, 

0.099 MgSO4 and 44g/1 glycerol (295). Cultures were stored in 1.8ml aliquots 

at -70°C. These conditions were also used for storing bacterial cell 

preparations containing plasmid DNAs where a clone was grown under the 

previously described conditions in the presence of lOOp.g/ml ampicillin. 

2.2.2 Quantitation of Nucleic Acids 

DNA and RNA concentrations were determined by measuring the 

optical density at 260nm (0D260) on a spectrophotometer (Pharmacia 

Biotech; Model no. 80-2092-26). Briefly, plasmid preparations were diluted 
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in TE (10mM Tris-HC1; pH 8.0, 1mM EDTA) at 1:50, 1:100 and 1:200 

dilutions, each in a final volume of lOOjil. Optical densities of plasmid 

dilutions were measured after zeroing at 260 and 280nm with 100p 1 TE. The 

cuvette was always rinsed with TE between samples. DNA concentrations 

were calculated by multiplying the 0D260 by the dilution factor and then by 

50 before multiplying by 1000 to give the concentration in j.Lg/p.l. To 

quantify DNA fragment preparations, the sample volume was made up to 

50pJ and then quantified, without dilution, after treating the cuvette with 

3.0% (v/v) H202 to inactivate contaminating nucleases and rinsing with 

nuclease free H20. RNA was quantified in a similar manner to DNA 

fragment preps, calculating the concentration by multiplying the 0D260 by 

the dilution factor and then by 40 before multiplying by 1000 to give the 
concentration in j.tg/jtl. 

2.2.3 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to separate DNA molecules 

according to their size. Unless otherwise stated, all agarose gels were 0.8% 

(w/v) containing 0.5x TAE (20mM Tris-acetate, 0.5mM EDTA) and 0.5p.g/ml 

of ethidium bromide (Sigma-Aldrich Company Ltd; Product code E-8752). 

Before loading, 6x !lManiatis!! type IV loading buffer (0.25% bromophenol 

blue, 40% (w/v' sucrose, 60mM EDTA; pH 8.0) was added to each sample to 

give a final concentration of 1.0x buffer (288). Samples were always run in 

conjunction with size markers. These were 0.25-1.0.tg lambda 
Hind Ill/EcoR I digested DNA (sizes in base pairs are 21226, 5148, 4973, 4268, 

3530, 2027, 1904, 1584, 1375, 947, 831, 564 and 125) or lambda Hind III 
digested DNA (sizes in base pairs are 23130, 9416, 6557, 4361, 2322, 2027, 564 

and 125). DNA in gels was visualised under UV light (302nm; UVP 

Transiluminator TM36; UVP Inc., San Gabriel, California, USA) and 

photographed using a Polaroid MP4 Land Camera (Polaroid (UK) Ltd, St. 

Albans, UK) with Polaroid 667 (IS03000/36°) film (Polaroid (UK) Ltd; 
Product code 617798). 

2.2.4 Restriction Digests 

The basic guidelines for restriction digests in Sambrook et al. (288) were 
followed. DNA was digested at a concentration of 0.1-0.5p.g/p.1 with less 

than 10% (v/v) enzyme (5.0% (v/v) glycerol) in the solution. After the 
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required incubation time (1-5 hours) at 37°C, O.l-l.Oji.g of DNA was checked 

on an agarose gel for complete digestion. Digests were stopped by the 

addition of 10mM excess (compared to Mg2  concentration) EDTA; pH 8.0 
followed by denaturation at 65°C for 15 minutes. One exception to this was 

digests of miniprep DNA (0.1-1.0pg), when the whole digest (lOj.tl) was run 
on a gel. 

2.2.5 Nucleic Acid Precipitation 

Typically DNA was precipitated with 0.5 volumes 4M ammonium 

acetate and 2.0 (final) volumes 100% isopropanol at -20°C for 15-60 minutes. 

DNA was pelleted by centrifugation at maximum speed for 15-30 minutes. 

The DNA pellets were then washed with 150il 70% (v/v) ethanol and 

respun for 5-10 minutes (288), repeating the wash step for high purity DNA. 

Pellets were then air dried and resuspended in a suitable volume of TE. 

Where small quantities of DNA were being precipitated, samples were left at 

-20°C for longer and all spin times were increased in length. 

2.2.6 PCR Methods and Conditions 

2.2.6.1 Steps To Prevent Contamination 

Pipette barrels and 0-rings were routinely soaked in 1.OM HC1 for 

15 minutes before rinsing in reverse osmosis water and drying at 50°C. 

Reagents were pipetted using plugged tips and reactions were set up in a 

separate laboratory. Oil and ROP H20 used in PCR reactions were UV 

treated by placing tubes on a transilluminator (wavelength= 302nm) for 
20 minutes (296). 

2.2.6.2 PCR Conditions 

PCR reactions were either 25!.1i or 100 j.tl in volume and were performed 

on a Hybaid Omnigene Thermal Cycler (Hybaid, Teddington, UK; Product 

code TR3 CM220). DNA was subjected to PCR amplification using specific 

oligodeoxynucleotide primers directed against the appropriate regions of the 
DBA/2J Ren1d gene (89) (refer to Figure 2.4 for primer binding site and 

primer sequences). In all experiments the proof-reading enzyme UlTma was 
used. 
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P1 DNA (1.0 to bong) or H20 (negative control) was aliquoted into 

0.5m1 tubes, reaction "master mixes" (all components, excluding DNA/H20 

and enzyme) were made up for each experiment and aliquoted and finally 

each reaction was overlaid with 3 drops of light mineral oil (Sigma-Aldrich 

Company Ltd; Product code M-3516). The "master mix" was as follows:-
1.Ox UlTma buffer (10mM Tris-HC1; pH 8.8, 10mM KC1 and 0.002% .(v/v) 
Tween 200), 1mM M902, 40pM (each) dNTPs and 0.1p.M (each) 

X 	 K 	 H 

JJM 203 	 JJM 1351 	JJM 189 	 JrM204J 

JJM 2131 PO JJM 210 

JJM 212 <] >JJM 224 

i 
Lab ID Primer Description Sequence 
JJM 203 -162bp Ren-la CCGCTCGAGT CTGGACAGCC TACATGAC 

Promoter (F) JXhoI J  
JJM 135 Ren-1' and Ren-2 AAGGTCTGGG GTGGGGTACC 

Exon3(R) IKpnhI 
JJM 213 Biotinylated Ren-1 B-AAGGTCTGGG GTGGGGTACC 
______ and Ren-2 Exon 3(R) I KpnI 
JJM 212 Ren-1' Intron C (R) GTGCTAAAGA GGATTCTGGG CAC 

JJM 189 Ren-1' Exon 4(F) GCGGTACCAG CTACATGGAG AACGGGTC 
KpnI 

JJM 210 Biotinylated Ren-1' B-GCGGTACCAG CTACATGGAG AACGGGTC 
Exon4(F) IKpnhI 

JJM 224 Extended, Ren-1' GCCGCTCGAG GTACCAGCTA CATGGAGAAC GGGTC 
Exon4(F) IXhoII KpnhI 

JJM 204 
 

Ren-ld and Ren-2 GCAAGCTTGA CAAAATGGCC CCCAGGAC 
Exon 9 (R) __ 

Figure 2.4: Location and sequence of PCR primers for the amplification of R en 1d 
homology arms: A) Position of PCR primers used to amplify Ren-1' homology arms. 
Schematic representation of the Ren1ci  gene (filled boxes are exons) with location and 
orientation of PCR primers shown as arrow heads (primers shown as filled arrowheads 
represent Biotinylated primers). To amplify the 5' arm JJM203 was used in conjunction with 
one of three primers (JJM135, JJM213 and JJM212). The 3' homology arm was amplified using 
reverse primer JJM204 along with one of three forward primers (JJM189, JJM210 and JJM224). 
B) PCR primer sequences. Table lists all PCR primers used by lab ID number, gives a 
description of where each primer binds (orientation is either F (forward) or R (reverse)) and 
lists the nucleotide sequence. B refers to a Biotin molecule attached at the 5' end of the primer. 
Where present, restriction sites are shown underneath the oligodeoxynucleotide sequence. 
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oligodeoxynucleotides. Reactions were "hot started" (enzyme added to 

reactions equilibrated at 95°C) with 1.2 units (25j.tl reactions) or 4.5 units 
(100d reactions) of UlTma. The temperature of the block was controlled 
using a tube containing an equal volume of oil. 

Template DNA was generally amplified as follows:- initial denaturation 

at 95°C for between 1 second and 5 minutes, followed by 95°C on HOLD 

(enzyme was added at this point for "hot start"). Amplification was for 40 

cycles of denaturation for 1 minute at 95°C; annealing for 1 minute at 68°C 

(5' arm) or 66°C (3' arm); extension for 6.5 minutes at 72°C. This was 

followed by a final extension period of 10 minutes at 72°C before holding 

reactions at 20-25°C until removed from the machine. One exception to this 

was the use of a 2-step PCR amplification which was performed as follows; 

95°C for 5 minutes followed by 40 cycles of 95°C for 1 minute, and 68°C for 

10 minutes with a final stage of 72°C for 10 minutes before cooling to 20°C. 

2.2.6.3 ExpandTM Reverse Transcriptase and PCR Reactions 

RT-PCR was used to show the absence of transcript from the Ren1d 
gene in knock-out animals using a primer from exon 3 (JJM56; 

CCAGCCCAGACCTTCAAAGTC) contained within the deleted region of 

the targeted allele and a reverse primer situated in exon 9 (JJM141; 

CCAGACAAATGGCCCCCAAG). Neither primer was specific to either 

renin transcript so the identity of amplified fragments was determined by 
Ear I digesting the product resulting in three bands from Ren1d or two bands 
from Ren-2. 

RT-PCR reactions were set up using the ExpandTM Reverse 

Transcriptase and ExpandTM Long Template PCR System (Boehringer 

Mannheim). The ExpandTM Reverse Transcriptase enzyme is a genetically 

manipulated version of the Moloney murine leukaemia virus reverse 

transcriptase enzyme engineered to have a reduced RNase H activity. This 

enzyme uses single stranded RNA as a template and generates a DNA strand 

synthesised from an oligodeoxynucleotide primer complementary to part of 

the mRNA (polyT or random hexamer priming is recommended, although 

priming with a specific primer is possible). The ExpandTM Long Template 

PCR System utilises a mixture of two thermostable DNA polymerase, Taq 
and Pwo, to amplify larger fragments than can be obtained using Taq alone. 
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First strand cDNA synthesis was performed from kidney and testis 

RNAs and included the following controls:- H20 plus reverse transcriptase 

(to show that reagents are not contaminated with DNA) and each RNA 

minus reverse transcriptase (to show that RNAs are not contaminated with 

DNA). Total RNA (1.0-2.Op.g) and 5.Opmol random hexamer were denatured 

in a final volume of llj.il at 65°C for 10 minutes before quenching on ice. 

ExpandTM Reverse Transcriptase buffer (4.0.tl of 5.Ox buffer), 2.Op.i 100mM 

DTT, 2.Op.l of 10mM dNTP stock (10mM each dNTP) and 50 units (1.OpJ) of 
Expand1M Reverse Transcriptase were then added to denatured RNA/primer 

mix on ice. These reactions were incubated at 30°C for 10 minutes followed 

by 42°C for 45 minutes (performed on a Hybaid Omnigene Thermal Cycler). 

Reactions were stopped on ice before proceeding to the PCR step or stored 
at -20°C. 

PCR reactions were set up firstly by making a master mix containing 

primer and dNTPs. The master mix was made according to the following 

"per reaction" contents- 2.Oj.il 10mM dNTP stock and 1.5tl of each primer 

(10pM stocks) made up to 25g1 with dH20. Aliquots of this (25p.l) were 

added to tubes on ice which already contained 5.0il lOx PCR buffer 1 

(17.5mM M902, 500mM Tris-HC1; pH 9.2 and 140mM (NH4)2SO4), 2.0-3.Opi 

of each RT reaction (or a negative control using 2.0-3.0il H20) and 0.8j.tl 

enzyme mix (3.5 units/pi) in a final volume of 25j.fl (made up to volume with 

dH20). This resulted in the following 50tl reaction conditions:- 1-Ox PCR 

buffer 1 (1.75mM M902, 50mM Tris-HC1; pH 9.2 and 14mM (NH4)2SO4), 

400p.M each dNTP, 0.3xM forward and reverse oligodeoxynucleotide 

primers and 2.6 units of enzyme mix. Reactions were overlaid with oil and 

underwent 1 cycle at 94°C for 2 minutes followed by 10 cycles of 94°C for 

10 seconds, 64°C for 30 seconds and 68°C for 45 seconds. A further 30 cycles 

of 94°C for 10 seconds, 64°C for 30 seconds and 68°C for 45 seconds 

(increasing this elongation period by 5 seconds in every subsequent cycle) 

before a final period at 68°C for 5 minutes and holding at 25°C. After PCR 

reactions were completed, 5.Opi of each reaction was run on an agarose gel. 

2.2.7 Preparation of PCR Products for Restriction Digestion 

PCR products were subjected to restriction digestion to facilitate 
cloning according to one of three protocols. 
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2.2.7.1 Restriction Digestion 

PCR product from three lOOpl reactions were combined and 

ammonium acetate/isopropanol precipitated (section 2.2.5). DNA was then 

further purified by passing it through a Wizard PCR Prep DNA Purification 

System clean up column (Promega; Product code A7190) according to the 

manufacturers instructions. In brief, DNA was bound to 1.0m1 of Magic PCR 

Purification resin in the presence of lOOj.tl Direct Purification buffer. This 

was loaded onto a Magic Minicolumn before washing the resin with 80% 

(v/v) isopropanol and eluting the DNA in 50j.tl TE. This was digested with 

the appropriate restriction enzymes and a 3.0j.tl aliquot was checked on an 

agarose gel to confirm that complete digestion had occurred before gel 
purification (section 2.2.8) of the desired fragment. 

2.2.7.2 Kienow, Kinase, Ligase Reaction Followed by Restriction Digestion 

The Kienow, Kinase, Ligase (KKL) reaction is designed to allow 

efficient restriction digestion at sites at the ends of PCR products by ligating 

the products into large concatemers so that sites are now internalised and 

can be digested with appropriate restriction enzymes (297). Firstly, DNA 

from three 100il PCR reactions were precipitated (section 2.2.5) and 

resuspended in 43.8j.tl ROP H20 and then 6.Opi lOx KKL buffer (300mM 

Tris-HC1; pH 7.9, 100mM MgCl2, 100mM DTT, 5.0mM ATP), 1.2p.l 10mM 

dNTPs, 4.Oj.tl 2.0 units/jil Kienow polymerase, 1.091 10 units/.tl T4 

polynucleotide kinase and 4.Op.l 1.0 units/pd T4 DNA ligase were added. The 

reaction was incubated at room temperature overnight before diluting to 

double the volume in 1.Ox restriction buffer and digesting with the 

appropriate restriction enzymes. After digestion, a 5.Op.1 aliquot was run on 

a gel to check for complete digestion. The desired restriction fragment was 
then gel purified (section 2.2.8). 

2.2.7.3 Biotin/Streptavidin Purification Followed by Restriction Digestion 

Here one of the oligodeoxynucleotides used in a given PCR reaction 
was biotinylated (JJM 213 and J1M210) to produce a biotinylated PCR product 

which can be bound to magnetic streptavidin beads (Dynal (UK) Ltd, 

Bromborough, UK) allowing isolation of PCR product and restriction 
digested material. 
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Remaining oligodeoxynucleotides present after a PCR reaction will 

interfere with binding of the PCR product to beads therefore they were 

removed by three rapid precipitations at room temperature. Two large PCR 

reactions were combined and 20jig of calf thymus tRNA added as a carrier. 

DNA was ammonium acetate/isopropanol precipitated and incubated at 

room temperature for 5 minutes. DNA was spun down (10 minutes) and 

resuspended in lOOpi of TE (288). After the third precipitation the pellet was 
washed twice, air dried and resuspended in 200pJ TE. 

Dynabeads (100p1) were prepared for washing by magnetising in a 

Dynal MPC (Magnetic Particle Concentrator) and leaving for 5 minutes 
before removing the supernatant. Beads were then washed in 100tl 

1.Ox Bind and Wash buffer (BW buffer is 10mM Tris-HC1; pH 7.5, 1mM 

EDTA and 2.OM NaCl), remagnetised, aspirated and resuspended in 200j.tl 

2.Ox BW buffer. Resuspended PCR product was added to the washed beads 

and incubated for 15 minutes at room temperature (or 37°C) to allow binding 

of the biotinylated PCR product to the beads. Beads were kept in suspension 
by flicking the tube at 2 minute intervals. 

After binding of the PCR product, the beads were remagnetised before 

removal of the supernatant and resuspending in lOOp.l TE. PCR product was 

digested at an internal site (the desired fragment retaining its biotin moiety' 

 5.0.tl was checked on an agarose gel for complete digestion. The beads 

were then rebound by adding an equal volume of 2.Ox BW buffer and 

remagnetising. After removal of the supernatant the beads were 

resuspended in lOOp.l TE and the second digest performed. This released the 

fragment from the beads allowing the fragment to be eluted in the 

supernatant after the addition of 2.Ox BW buffer and remagnetisation. 

As the supernatant, now containing the fragment of interest, was a 

1.OM NaCl solution, a precipitation step was used to remove the salt. To aid 

the precipitation of the DNA 1.Oj.tl of 20mg/ml glycogen (298) was added 

and the solution was diluted to 0.6M NaCl before adding 2.0 volumes of 

100% ethanol and incubating at -70°C for 1 hour (288). DNA was centrifuged 

(4°C, 20 minutes) and the pellet was washed twice before air drying and 
resuspending in 20p1 TE. 
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2.2.8 Gel Purification of Fragments 

Digested DNA was loaded on a 0.8% agarose gel (genetic technology 
grade agarose gel run in a 3.0% (v/v) H202 treated tank). Under long-wave 

(366nm) UV light (UVP Inc.; Model UVGL-58) the band of interest was 

excised and stored at 4°C. DNA was then recovered from the gel by one of 
three methods. 

2.2.8.1 Electroelution 

Fragments of DNA were electroeluted from agarose gels using the 

ISCO "Little Blue Tank" apparatus (ISCO Inc, Lincoln, Nebraska, USA), 

according to the manufacturers instructions. Prior to use, the electroelution 

tank, chamber, collars and screens were soaked in 3.0% (v/v) H202. The 

electroelution tank and chamber were then set up as shown in Figure 2.5. 

DNA was electroeluted at 10-15mA per chamber for 2 hours, at the end 

of which the current was reversed for 15 seconds. The 0.1x ISCO, 0.05% SDS 

buffer was removed down to the grid, the precipitate underneath being 

resuspended in the remaining buffer before transferring to a tube. The lower 

chamber was then rinsed with a further 200p.l of 0.1x ISCO, 0.05% SDS. This 

was then extracted with 400p.tl buffered phenol, 40041 chloroform; isoam yl 
alcohol (24:1) and 401il water saturated isobutanol to remove the 

contaminating SDS and ethidium bromide. The phases were separated by 

centrifugation for 1 minute, the aqueous phase being transferred to a clean 

1.5ml tube before re-extracting with chloroform/isoamyl alcohol (24:1) (288). 

DNA was ammonium acetate/isopropanol precipitated overnight 

(section 2.2.5), pelleted, washed and resuspended in 50p.l TE, pH 8.0. 

Fragments were quantitated (section 2.2.2) and checked on an agarose gel. 

2.2.8.2 Qiaex Preparation of DNA Fragments 

This method (see manufacturers instructions) is based on the 

solubilisation of agarose with sodium perchlorate and selective adsorption of 

DNA onto the QIAEX silicagel particles (Qiagen Ltd, Crawley, UK; Product 

code 20020). Briefly, gel was solubilised in QX1 buffer (10M NaCl, 4.OM 

sodium perchiorate, 10mM Tris-HC1; pH 7.0, 10mM sodium thiosulphate) 

and the DNA bound to QIAEX beads. These were repeatedly pelleted and 

washed firstly in QX2 wash buffer (8M sodium perchiorate, 10mM Tris-HC1; 
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Figure 2.5: Electroelution using the ISCO "Little Blue Tank" apparatus: A) 
Electroelution tank. This is split into two sides by a bridge in the middle, each side is also 
split by a membrane screen creating four compartments which are filled with the following 
solutions; IOM sodium acetate, 1-Ox ISCO buffer (25x ISCO is 1.25M Tris-HCI; pH 7.7, 
5.0mM EDTA) was placed on the positive side of the tank on both sides of the screen, 
2.Ox ISCO buffer was placed between the bridge and the screen on the negative side and 
lOx ISCO buffer was placed between the screen and the negative electrode. The two buffers 
on the negative side of the tank were poured simultaneously to minimise leakage through 
the screen. For electroelution, a chamber was placed in the tank with the smaller well on the 
positive side of the tank (DNA was collected in this well). B) Electroelution chamber. This 
contains two wells and straddles the bridge of the electroelution chamber. When set up, this 
completes an electrical circuit allowing DNA to be electroeluted. Presoaked dialysis 
membrane (Gibco-BRL; Product code 15961-022) was used to cover the bottom of the wells of 
the electroelution chamber and held in place with collars. Chambers were rinsed in nuclease 
free water and 0.lx ISCO, 0.05% SDS buffer was then dripped into the narrower well to a 
level above the position of the screen. Pieces of agarose were placed on the grid and the 
chamber was filled with 0.lx ISCO, 0.05% SDS buffer until the depth was 5.0mm from the 
top. 

pH 7.0) to remove the sodium thiosuiphate and then in QX3 wash buffer 

(70% (v/v) ethanol, 100mM sodium chloride, 10mM Tris-HCJ; pH 7.5) to 

remove the sodium perchiorate. DNA was eluted in 2x 20i1 TE and the 2 

supernatants pooled. Fragments were then quantitated (section 2.2.2) and 
checked on an agarose gel. 
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2.2.8.3 Amicom Spin Columns 

In this method (see manufacturers instructions) a MICROPURE 0.22im 

insert (Amicom Ltd, Stonehouse, UK) was used to filter out particular matter 

allowing the DNA solution to pass through the 0.22p.m polysuiphone 

membrane and be collected in the MICROCON 100 apparatus. The DNA 

then bound to the YM low-binding ultrafiltration membrane of the 

MICROCON unit allowing the DNA to be cleaned as required, before 

inverting the apparatus and recovering the DNA in lOj.tl TE. DNA 

concentration was estimated by comparing the fragment intensity to known 

quantities of a similarly sized, linear DNA fragment on an agarose gel. 

2.2.9 Ligations 

2.2.9.1 General Ligations 

Ligation reactions were used to clone different ended DNA restriction 

fragments into plasmids. Ligations were set up with insert:vector molar 

ratios of 2:1 and 5:1. For each ligation 10-40ng of vector was used in a total 

reaction volume of 10-20tl. Parallel reactions were set up using vector alone, 

with and without ligase (to determine whether the vector used was capable 

of self ligation or not digested at all). Ligation reactions were performed 

using one of two buffer systems:- 1.0x Maniatis Ligation buffer (20mM 

Tris-HC1; pH 7.6, 5.0mM MgCl2, 5.0mM DTT, 50pg/ml BSA and 5.0mM 

ATP) (288) or 1-Ox Gibco-BRL Ligation buffer (50mM Tris-HC1; pH 7.6, 

10mM MgC12, 1.0mM ATP, 1.0mM DTT and 5.0% (w/v) polyethylene 

glycol-8000). In a typical ligation reaction 1.0 units (1.Oj.il) of T4 DNA Ligase 

was used. Reactions were incubated at room temperature overnight and 

heat denatured at 65°C for 15 minutes before using 5.0-10xl of the reaction 
for transformation. 

2.2.9.2 Polylinker Ligations 

Complementary 71 (JJM146) and 79mer (JJM147) oligodeoxynucleotides 

(see Figure 2.6 for sequence of annealed oligodeoxynucleotides and 

restriction sites introduced) were annealed to each other using a 

"Touch-Down Lift-Off" program on a Hybaid Omnigene Thermal Cycler 

(initial denaturation at 98°C for 5 minutes, followed by annealing at 50°C for 

1 minute, this cycle was repeated dropping 2°C in each denaturation cycle, 
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L\XpnI Sac I 	Not I 	 CiaI 	Sail 
5' 	A GAGCTC AA GCGGCCGC AACA ATCGAT ACAA GTCGAC... 
3' CATGT CTCGAG TT CGCCGGCG TTGT TAGCTA TGTT CAGCTG... 

PvuII 	KpnI 	Spel 	Ec0RIAI'lotI 
• . . AA CAGCTG TT GGTACC AA ACTAGT CC GAATTC TA 	3' 
• . .TT GTCGAC AA CCATGG TT TGATCA GG CTTAAG AMCGO 5' 

Figure 2.6: Sequence of the new polylinker for insertion into one of the plasmid 
intermediates: A 71mer oligodeoxynucleotide (JJM146) was annealed with a second 
oligodeoxynucleotide, a 79mer (JTM147)  to generate the above double stranded polylinker 
fragment. Overhangs at each end were included to allow the directional cloning of the 
polylinker into Kpn I and Not I digested plasmid DNA such that neither site was recreated. 
Extra bases were included between each restriction site to act as a buffer allowing more 
efficient digestion at two sites within the polylinker. 

finally reactions were held at 25 0C). Reactions consisted of 400pmol of each 

oligodeoxynucleotide in 0.5x STE (50mM NaCl, 5.0mM Tris-HC1; pH 8.0 and 

0.5mM EDTA; pH 8.0) in a total volume of 100p1 overlaid with oil. Annealed 

oligodeoxynucleotides were ligated into digested plasmid DNA at molar 

insert:vector ratios of 5:1, 50:1 and 500:1 (previously determined to be 

suitable ratios for insertion of annealed oligodeoxynucleotides; Steve Morley, 

unpublished data). Reactions were performed in Maniatis buffer as 

described for General Ligations using 1.0 units (1.0jxl) of T4 DNA Ligase. 

2.2.10 Competent Cells and Transformations 

Competent cells (1.0x10 7  transformants/p.g DNA) were produced by a 
modification of the method of Chung et al. (299). Briefly, a lml aliquot of 

fresh overnight bacterial culture was inoculated into lOOml L. Broth 

supplemented with 10mM MgSO4 and 0.2% (w/v) glucose. This was 

cultured until an 0D600 of 0.2-0.3 was obtained at which point cells were 

cooled by swirling flasks in ice/water (all subsequent steps were performed 

at 4°C to achieve maximum competence). Cells were transferred to 250m1 

sterile Sorvall centrifuge bottles and centrifuged in a precooled swing-out 

rotor at 4°C for 10 minutes at 1,000xg (about 2,200rpm in a Heraeus 

Omnifuge 2.ORS; Heraeus Instruments Ltd, Brentwood, UK). The resulting 

cell pellet was resuspended in lOml ice cold "Miller transformation solution" 

(L. Broth containing 10% (w/v) PEG, 5.0% (v/v) DMSO, 50mM MgCl2) by 

swirling gently and aliquots (450p.l) were snap-frozen in 1.5m1 tubes in a dry 

ice/ethanol bath before storing at -70°C until required. 

ED 
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For transformations, frozen aliquots of competent cells were thawed in 

an ice/water bath and used immediately. Once thawed, lOOp.l of cells were 

pipetted into a cold Falcon 2059 tube containing S.O-lOjj.l (b-bOng) of 

plasmid DNA, mixed by swirling gently and incubated for 30 minutes at 4°C 

before adding 0.9ml of fresh, prewarmed SOC medium (20g/l 

bacto-tryptone, 5g/l bacto-yeast extract, 10mM NaCl, 2.5mM KC1, 10mM 

M902, 10mM MgSO4 and 20mM glucose) and incubating at 37°C, 225rpm 

for 1 hour. Control transformations of 0.2ng and 2.Ong pBluescript SKIT (+) 

were also performed to estimate transformation efficiency. Transformants 

were selected by plating 200j.il of the transformation solution onto L. Agar 

plates containing lOOj.tg/ml ampicillin. If necessary, the remaining 800tl 

was also plated out on additional plates. 

2.2.11 Plasmid DNA Preparation Methods 

All plasmid DNA preparations were carried out by a modification of 

the alkaline lysis method of Birnboin & Doly (300). DNA was recovered by 

alkaline lysis of lysozyme treated cells followed by neutralisation with 

potassium acetate. This lysis mixture was then pelleted to remove cell debris 

and chromosomal DNA, with the plasmid DNA remaining in the 

supernatant or purified by passing through a Qiagen column. 

2.2.11.1 Minipreps 

Single bacterial colonies were grown to saturation overnight 

(section 2.2.1) and 1.5ml aliquots were pelleted by centrifugation for 

1 minute. Cells were resuspended in lOOj.tl lysis buffer (25mM Tris-HC1; 

pH 8.0, 10mM EDTA, 10% (w/v) glucose, 2.0mg/mi lysozyme 

(Sigma-Aldrich Company Ltd; Product code L-7651)), left for 10 minutes at 

room temperature after which 200p.1 freshly made 0.2M sodium hydroxide, 

1.0% (w/v) SDS solution was added, mixed gently by tapping the tube and 

left on ice for 5 minutes. The lysis mixture was neutralised by adding 150 p.1 

potassium acetate; pH 4.8 solution (3-OM potassium acetate, 2.OM acetic acid) 

and each tube vortexed thoroughly before placing on ice for 5 minutes. 

Lysates were centrifuged for 1 minute and supernatants were transferred to 

clean 1.5ml tubes. Samples were precipitated at -20°C for 15 minutes after 

the addition of 0.9m1 isopropanol. Plasmid DNA and RNA were pelleted by 

centrifuging for 2 minutes and resuspended in 40p.l TE. To purify the DNA 
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further, an ammonium acetate/isopropanol precipitation (section 2.2.5) was 

performed followed by washing and air-drying the pellets before 

resuspending each in 20xl TE containing 50p.g/ml DNase-free RNase. This 

method routinely gave 5.0p.g plasmid DNA which could then be used in 

restriction enzyme digestion analysis (4.Ojil per digest). 

2.2.11.2 Qiagen DNA Preps 

This method involved the alkaline lysis of a bacterial culture (300), as 

described in the Miniprep method, followed by binding of plasmid DNA to 

the resin in QIAGEN columns. RNA and proteins were then removed 

during a medium salt wash and the plasmid DNA was eluted in a higher salt 

wash and precipitated, resulting in high quality DNA. The protocol 

provided with each kit was used to prepare up to 500j.tg DNA using a 

QIAGEN-tip 500 (Qiagen Maxiprep Kit; Product code 12162) or 1004g DNA 

using a Qiagen-tip 100 columns (Qiagen Midiprep Kit; Product code 12143). 

The DNA concentration was determined (section 2.2.2) and the identity of 
the plasmid was confirmed by restriction mapping. 

2.2.11.3 Alkaline Lysis Maxipreps 

A single bacterial colony was used to grow a 500m1 culture as described 

in section 2.2.1. Cells were pelleted by centrifugation for 10 minutes at 4°C, 

2,700xg (4,000rpm, Sorvall GS-3 rotor and Sorvall RC5C centrifuge), 

resuspended in 4.Oml of Lysis buffer (2.Omg/ml lysozyme, 10mM EDTA, 

50mM glucose and 25mM Tris-HC1; pH 8.0) and left on ice for 10 minutes 
before lysing cells with lOmi of 0.2M NaOH, 1.0% (w/v) SDS solution. After 

10 minutes the lysate was neutralised by the addition of 7.5m1 potassium 

acetate; pH 5.5 solution (IOM potassium acetate, 1.18M formic acid) and was 

left on ice for 10 minutes before centrifugation for 45 minutes at 4°C, 

30,000xg (16,000rpm, Sorvall SS34 rotor and Sorvall RC5C centrifuge). DNA 

in the supernatant was precipitated with 1.0 volumes of isopropanol at -20°C 

for 1 hour. Precipitated DNA was centrifuged for 10 minutes at 3,200rpm 

(about 2,200xg in the Heraeus Varifuge 3.2RS), resuspended in 9.Oml of TE 

and any remaining insoluble material pelleted by centrifugation (as above). 

This supernatant was then used in the Caesium Chloride /Ethidium 

Bromide Equilibrium Centrifugation Method described below. 
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2.2.12 Caesium Chioride/Ethidium Bromide Equilibrium 
Centrifugation 

This method, used for isolation of covalently closed circular plasmid 
DNA, is similar to that described by Radloff et al. (301) and Sambrook et al. 
(288). To achieve an appropriate CsC1 density, 9.9g of CsC1 (Sigma-Aldrich 

Company Ltd; Product code E-8751) and 0.45m1 lOp.g/ml ethidium bromide 

were added to 9.0m1 of the supernatant from an alkaline lysate maxiprep 

before transferring the solution to a ilmi Beckman polyallomer Quickseal 

tube (Beckman RIIC Ltd, High Wycombe, UK; Product code 342413). The 

tubes were then filled to the top with a TE/CsC1/ethidium bromide solution 

(9.Oml TE, 9.9g CsC1 and 0.45ml lOmg/ml ethidium bromide), balanced, 

sealed and centrifuged (Beckman L-60 or L-7 ultracentrifuges, NVT-65.1 

rotor) for 16 hours at 20°C and 55,000rpm (approximately 260,000g), with the 

brake set to slow. After centrifugation the plasmid DNA was removed as 

shown in Figure 2.7. 

allow air in 

and nicked circular plasmid DNA 

i closed circular plasmid DNA 

ith needle bevelled edge 
oval of DNA band 

r tube containing 
hum bromide gradient 

UV light source 

Figure 2.7: Removal of covalently closed circular DNA from a caesium 
chioride/ethidium bromide gradient: Upon examination under longwave UV light (366nm) 
two bands were seen; the smaller, upper band contained nicked plasmid and bacterial 
chromosomal DNA while the larger, lower band contained covalently closed circular 
plasmid DNA. A 19G needle was used to pierce the top of the tube to allow air in before a 
second needle (and 5.Oml syringe) was inserted 1.0cm below the lower band. With the 
bevelled edge facing upwards, the covalently closed circular plasmid DNA was removed in 
a total volume of about 2.Oml. 
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The plasmid DNA was recentrifuged (as above) and then removed. 

Ethidium bromide was then removed by repeatedly extracting with 2.0 

volumes water-saturated isobutanol until the DNA solution was clear. After 

making up to 2.5ml with TE and loading on to an exclusion chromatography 

column (NAP-25 column; Pharmacia Biotech), previously equilibrated with 

TE, plasmid DNA was eluted by the application of 3.5m1 TE to the column 

followed by an ammonium acetate/isopropanol precipitation step 

(section 2.2.5). DNA was pelleted by centrifugation for 45 minutes at 

12,000g. 4°C (8,550rpm in Sorvall HB-4 rotor and Sorvall RC5C centrifuge), 

washed, air dried and resuspended in 200-1000.Ll TE. The DNA 

concentration was determined by spectrophotometry (section 2.2.2) and the 

identity of the plasmid was confirmed by restriction mapping. 

2.2.13 Fragment Preparation for Electroporation 

Targeting construct DNA (150p.g) was Asc I digested and ammonium 
acetate/isopropanol precipitated (section 2.2.5) before digesting with Mlu I. 
Complete digestion was confirmed by checking 0.5.tg of digested DNA on an 

agarose gel. After reprecipitation the DNA pellet was washed twice before 

transferring to the tissue culture labs under 150p.l 70% (v/v) ethanol (for 
sterility). 

2.2.14 Southern Blot Analysis 

Southern blotting was performed as described in Sambrook et al. (288), 
a modification of the original method by Southern (302). The 

prehybridisation and hybridisation solution used in this method were taken 
from Church and Gilbert (303). 

Restriction digests were set up using 20j.tl of ES cell DNA or 5.0-10j.tg  
tail DNA in a 40i1 reaction volume with 15 units of the appropriate 

restriction enzyme and incubated overnight at 37°C. Samples were prepared 

for gel electrophoresis by adding 5.Opi of 6.Ox Maniatis IV loading buffer and 

run on a 0.8% (w/v) agarose gel. Gels were depurinated in 0.25M HC1 for 

30 minutes with gentle agitation (followed by a brief rinse in ROP H20), 

before denaturation in 1.5M NaCl, 0.5M NaOH for 30 minutes and 

neutralising in 1.5M NaCl, 1mM EDTA, 0.5M Tris-HC1; pH 7.2, also for 
30 minutes. 
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A Pyrex dish containing 20x SSC (3.0M NaCl, 0.3M trisodium citrate) 

with a glass plate over the top was set up with 2 sheets of Whatman 3mm 

paper acting as a wick into the 20x SSC solution. Two smaller sheets, cut to 

the gel size, were also placed on top. Gels were then placed upsidedown on 

the Whatman papers over the dish and surrounded with Parafilm. Nylon 

membrane (Boehringer Mannheim; Product code 1417240) was placed on top 

of the gel and two Whatman papers were individually wetted in 20x SSC and 

placed on the membrane. Finally, this was topped with paper towels and a 

glass plate, before the whole apparatus was sealed using Saran Wrap. An 

800g weight was placed on top of this and the gel left blotting overnight. 

After blotting, DNA was cross-linked to the membrane by baking at 120°C 
for 30 minutes. 

Filters were placed in a prewarmed Techne hybridisation bottle (Techne 

(Cambridge) Ltd, Cambridge, UK; Product code FHB-12) and 25m1 of 

prewarmed Church and Gilbert prehybridisation solution (0.25M Na2HPO4, 

7.0% (w/v) SDS, 1.0mM EDTA and 200mg/ml heat denatured sheared 

salmon sperm DNA) was added and incubated at 68°C for 2 hours to 

overnight (303) in a Techne hybridisation oven (Techne (Cambridge) Ltd; 

Product code HB-1). After prehybridisation, a heat denatured random 

primed probe was added and the blots hybridised overnight at 68°C. On 

completion of hybridisation, the probe solution was discarded and the blots 

were washed at 68°C, twice in 75ml of 2.Ox SSC, 0.1% (w/v) SDS and twice in 

75m1 of 0.2 or 0.5x SSC, 0.1% (w/v) SDS (288). Blots were briefly air dried, 

wrapped in Saran Wrap and placed in a cassette for autoradiography with 

two enhancement screens. After 24 hours at -70°C, films were developed 

before re-exposing, if required, for a suitable amount of time to detect the 
desired signal. 

Probes were labelled by a modification (304) of the original Feinberg 

and Vogeistein method (305, 306). Gel purified template DNA (50ng), 250ng 

random primer (100ng/il) and TE to a final volume of lOpJ were denatured 

at 100°C for 5 minutes before placing on ice. The remaining reagents were 

then added; 5.Op.l lOx oligodeoxynucleotide labelling buffer (0.5M Tris-HC1; 

pH 6.9, 0.1M MgSO4, 1.0mM DTT, 1.0mM dATP, 1.0mM dGTP, 1.0mM 
dTTP), 5.0p.l a 32P-dCTP (3000Ci/mmol), 24p.l sterile ROP water, 1.0tl 

10mg/mi nuclease free BSA (Gibco-BRL; Product code 15561-012) and 2.0pi 

2.0 units/j.tl Klenow enzyme. DNA was labelled at 37°C for 1 hour before 



purifying the labelled probe from unincorporated nucleotides by passing 

through a NAP-5 column (Pharmacia Biotech) according to the 

manufacturers instructions. A l.Op.l sample was spotted onto a Whatman 

DE81 filter disc and used to determine the specific activity of the probe. 
Aliquots containing 2.5-5.OxlO 7cpm were denatured at 100°C for 10 minutes 
before quenching on ice and adding to prehybridised blots. 

2.2.15 DNA Sequencing 

To determine how many, if any, errors were introduced by UlTma 
during the PCR amplification of the Ren1d homology arms, the entire 3' arm 

of the targeting construct and the corresponding region in the amplified 

product were sequenced. Binding sites of the sequencing primer used are 

shown in Figure 2.8 and the primer sequences are given in Table 2.9. 

Sequencing was performed using the Amplitaq FS Kit from Applied 

Biosystems. Using this kit, dideoxynucleoside chain termination reactions 

were performed(307), a new DNA strand being synthesised from an 

oligodeoxynucleotide primer with extension terminating when a 

2',3'-dideoxynucleoside-5'- trip hosphate (ddNTP) was incorporated. 

Products were resolved on a denaturing polyacrylamide gel and detected by 
a laser (ABI 377 Automatic Sequencer). This apparatus can distinguish 

between the 4 ddNTPs because of different dye molecules which are 

covalently attached to each ddNTP. A modified version of the Amplitaq 
DNA polymerase (Taq based), Amplitaq FS, which incorporates dye 
terminators with a similar efficiency to that of normal dNTPs was used 

removing the need for an additional, phenol clean up step. 

As Amplitaq FS is a Taq based enzyme, template extension is performed 
at 60°C and reactions can be cycled in a similar manner to that used for a 

PCR reaction. Cycle sequencing can provide better sequence data than 

normal dideoxysequencing using T7 DNA polymerase based enzymes 

because at the higher extension temperatures used template DNA has less 

secondary structures allowing the enzyme to proceed along the template 
unhindered. 

Automated DNA sequencing required template DNA which was of a 

high quality (CsC1 gradient-purified or Qiagen prepared DNA for plasmids 
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PCR Product Direct Sequencing 

5 	 6 	7 	8 	9 

189 >228 142 >265 >266 >267 >268 >58 159 	- 

2271 534 2721 2711 2751 2744 2734 1824 	844 

Cloned PCR Product Sequencing 

I 
189 >228 	142 >265 >266 >267 >268 >58 	159 

2274 534 2724 2714 2754 2744 2734 1824 474 84 

Figure 2.8: Location of primers used to sequence the 3' Ren-1' homology arm: Schematic 
representation of the 3' end of the Ren1d gene (filled boxes are exons) either as PCR amplified 
from P1 template DNA or after cloning into the Ren-1' targeting construct, pRlneoKO with 
location and orientation of PCR primers shown as arrow heads (forward primers are shown as 
arrowheads and reverse primers shown as filled arrowheads). Horizontally striped boxes 
represent the polyadenylation sequence of the PGK-neopA selection cassette and vertically 
striped boxes represent pSP72 plasn'Jd sequence. 

or gel purification followed by Qiaex preparation or by using a Promega 

PCR Clean Up Column for PCR products). Sequencing reactions were 

performed and prepared for denaturing polyacrylamide gel electrophoresis 

according to the manufacturers instructions, except that 10.Oj.tl, rather than 

20pJ, reactions were used in order to economise on materials. 

To obtain the maximum sequence information, samples were loaded 

and run on a 1.Ox TBE (90mM Tris-borate, 2.0mM EDTA; pH 8.0), 6.OM urea 

and 5.0% (29:1 acrylamide:bis-acrylamide) polyacrylamide gel. Gels were 

cast in gel frames supplied with the ABI 377 automatic sequencer (36cm run 

length from wells to laser) using ABI 0.2mm spacers and a 36 slot sharks 

tooth comb according to the manufacturers instructions. Polymerised gels 

were mounted in the apparatus and the top and bottom buffer reservoirs 

filled with 1.Ox TBE. Samples (resuspended in 3.Oj.il Gel Loading buffer) 

were denatured at 100°C for 5 minutes and cooled rapidly on ice prior to 



Lab ID Primer Description Sequence 

JJM 189 Exon 4 Forward GCGGTACCAG CTACATGGAG AACGGGTC 

JIM 228 Intron D Forward CAGTGTCTAA GCCTGTTCTG G 

JJM 227 Jntron D Reverse GATGCCCTCG TCATAACCAG 

JJM 142 Exon 5 Forward CGGGATCCAG TTTGACGGGG TTCTAGG 

JIM 53 Exon 5 Reverse CCTGGGAGAG AATGTGG 

JJM 265 Intron E Forward (El) CCCTCCATCC TCACAGAGCT 

JJM 272 Intron E Reverse (E8) CCCCTGCTGG GCAGTGAGCT 

JIM 271 Intron E Reverse (E7) TGACATCTAC TTCCACTCTT 

JJM 266 Intron E Forward (E2) GGGGACTCCG CAAAATGTGG 

JIM 267 Jntron £ Forward (E3) ACAAATGTGT GTTGTGAATT 

JJM 275 Intron E Reverse (E61) CTCCACGGGC ATGATGCTAC 

JJM 268 Intron E Forward (E4) AATGTCCTTG AGCTAGACAG 

JIM 274 Intron E Reverse (E51) ATCTTCCCTT GCTGGAGCCT 

JJM 58 Exon 6 Forward CCTGGCAGAT CACAATGAAG G 

JJM 273 Intron F Reverse (Fl) AGGACAGAGC AAGCAGAGAG 

JJM 159 Exon 7 Forward TCATGCAAGC CCTGGGAGTC 

JJM 182 Exon 7 Reverse CTCCCAGGGC TTGCATG 

JJM 47 17 AATACGACTC ACTATAG 

JJM 	8 pSP72 Bgl II to Xho I - CAATACGCAA ACCGCCTC 

JJM 84 1  Exon 8 Reverse 	[CGTAGTCCGT ACTGCTGAGT GTGTAGGCCC TGCCTCCC 

Table 2.9: Sequence of primers used to sequence the 3 Ren-1't homology arm: Table 
lists all sequencing primers used by lab ID number, gives a description of where each 
primer binds (and its orientation) and lists the nucleotide sequence. 

loading. Gels were run overnight for 10 hours at 150W with a constant 

running temperature of 51'C. Other parameters were limited to 1680V and 

50mA. The following day, gel computer images were scanned by eye to 

check for correct tracking of samples before extracting sequence information. 

2.2.16 Mouse Tail DNA Preparations 

This method is based on a Doug Hanrahan (Cold Spring Harbor 

cloning course) protocol originally adapted from various standard methods 

for preparing high molecular weight DNA (288). Following application of 

local anaesthetic (ethyl chloride BP; Syntex Pharmaceuticals Ltd, 
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Maidenhead, UK) the end 1.0cm of tail was removed from a 4-5 week old 

mouse and stored at -20°C until needed. Cut tails were sealed with Vet Seal 

tissue glue (B. Braun, Maisungen, Germany) and the mouse was eartagged 

for later identification. To digest the tissue, 600p.1 of tail buffer (50mM 

Tris-HC1; pH 8.0, 100mM EDTA, 100mM NaCl, 1.0% (v/v) SDS) and 35R1 

10mg/mi Proteinase K (Boehringer Mannheim; Product code 1092 766). were 

added before incubating at 55°C overnight, inverting tubes to mix. 

Subsequently, RNA was degraded by incubation at 37°C for 1 hour after the 

addition of 20j.il of 20tg/m1 DNase-free RNase (RNase A (Sigma-Aldrich 

Company Ltd; Product code R-4875) made DNase-free by heating a 

10mg/mi solution made in 10mM Tris-HC1; pH 7.5, 15mM NaCl at 100°C for 
15 minutes). 

To minimise shearing of high molecular weight DNA, "cut off' blue 

pipette tips were used for subsequent stages. Tail digests were extracted 

with 600tl phenol, 300p.l buffered phenol/300t1 chloroform; isoamyl alcohol 

(24:1) and finally 600jii chloroform; isoamyl alcohol (24:1). In each case 

samples were rotated on a vertical rotator for 15 minutes, phases separated 

by centrifugation for 2 minutes and the aqueous phase, along with any 

interphase, transferred to a fresh tube (in the final extraction stage the 

interphase was avoided). DNA was precipitated by adding 600p.l 

isopropanol and pelleted by centrifugation for 2 minutes before 

resuspending in 200p1 of TE (4°C, overnight). DNAs were reprecipitated 

with ammonium acetate and isopropanol (section 2.2.5) and pelleted by 

centrifugation for 2 minutes. Pellets were washed, air dried briefly, 

resuspended in lOOp.l of TE (4°C, overnight) and quantitated (section 2.2.2). 

2.2.17 RNA Preparation 

RNA was prepared by the guanidine isothiocyanate/phenol method 

(308) using the following freshly made stock solutions:- Stock Solution A (4M 

guanidinium thiocyanate, 25j.tM sodium citrate; pH 7.0, 1.0% (w/v) sarcosyl, 

0.1M 1-mercaptoethanol, made up to 50m1 using DEPC treated H20 and 

adjusted to pH 7.0 with 1.OM NaOH) and RNAzoI Stock Solution (1.0 

volumes of Stock Solution A, 1.0 volumes of phenol and 0.1 volumes of 2.OM 
sodium acetate; pH 4.0). 

Tissues were homogenised in 2.Oml RNAzo1 stock solution using a 
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Janke and Kunkel Ultra-turrex T25 homogeniser (supplied by Sartorius Ltd, 

Epsom, UK). Samples were placed on ice for 5-15 minutes before adding 

200p.l chloroform to each homogenate and mixing by shaking vigorously for 

15 seconds. These were left on ice for 15 minutes before centrifugation in a 

Heraeus Varifuge 3.2RS at 3200rpm (2,200g) for 5 minutes to separate the 

phases. The top, aqueous layer was removed, avoiding the interface 

(contains DNA and protein) and transferred to a 2.Oml, screw top tube. RNA 

was precipitated overnight at -20°C by adding an equal volume of 

isopropanol. RNA was pelleted by centrifugation for 10 minutes, washed 

twice with 1.0ml of 70% (v/v) ethanol before air drying and resuspending in 

100il of 100% deionised formamide (protects against degradation of RNA 

samples by RNase) (309). Finally RNA recovery was quantified by 

spectrophotometry (section 2.2.2) and RNA quality was assessed by running 
1.0.tg of each sample on an agarose gel. 

2.2.18 Primer Extension 

Primer extensions were performed using a 38mer oligodeoxynucleotide 

complimentary to exon 8 which distinguishes between Ren1d and Ren-2 as 
originally reported by Field and Gross (130). Briefly, primer was annealed to 

RNA and products extended using reverse transcriptase and a dATP, dGTP, 

dTTP and ddCTP mix resulting in a Sbp extended product from Ren1d and a 
lThp extended product from Ren-2 (Figure 2.10). These were then resolved 
on a denaturing polyacrylamide gel. 

Primer was end labelled in a reaction containing 20ng (or 1.8pmol) 

oligodeoxynucleotide, 1.Ox Kinase buffer (50mM Tris-HC1; pH 7.6, 10mM 

MgC12, 5mM DTT, 0.1mM spermidine and 0.1mM EDTA), 8.Op.l 
?32P-ddATP 

(>5000 Ci/mmol) and 1.0.tl (10 units) Polynucleotide Kinase made up to 15.tl 

with DEPC H20. This was incubated at 37°C for 30 minutes before removing 
excess 2P-ddATP (and other dNTPs) by passing through a TE equilibrated 

NAP-5 column (Pharmacia Biotech). A lOj.xl aliquot of the labelled primer 

was counted and used to calculate cpm/pJ. For each reaction, 2.0-4.0x10 5  
cpm were co-precipitated with RNA, the quantity of which depended upon 

the abundance of the transcript from that tissue (i.e. for detection of renin 
80.tg kidney or 0.8jtg DBA/2J submandibular gland total RNA was used). 

RNA and labelled primer were aliquoted before adding carrier RNA or 

glycogen and 0.1 volumes of 3M sodium acetate; pH 5.5. Samples were 
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Ren1' 	
+5 

EXON 8 	 = CTGAT 
(PARTIAL) CGACAUtJUCCUUUGACCUGGGAGGCAGGGCCUACACACUCAGCAGUACGGACtjACGU 

Ren-2 

EXON 8 	 7. CCCTCCGTCCCGGATGTGTGAGTCGTTACGCCTGATGC 

(PARTIAL) CGACAUCUCCUUCAACCUGGGAGGCAGGGCCUACACACUCAGCAGUACGGACUACGU 

Figure 2.10: Ren-1'IRen-2 diagnostic primer extension: The chosen extension primer 
binds to the same sequence in Ren-TI d or Ren-2 and when extended, using reverse transcriptase 
and a ddCTP mix, results in differently sized products. Part of the mouse renin mRNAs 
coded for by exon 8 are shown (black), above which the extension primer (blue) and extended 
region (red) are depicted. The most 3 base of the primer is numbered 0 with extension 
products for Ren-1 d  and Ren-2 terminating at +5 or +17 bases respectively. 

mixed thoroughly before the addition of 2.5 volumes of 100% ethanol and 

then mixed again. 

After precipitation overnight at -20°C, samples were centrifuged for 

30 minutes and the supernatant removed. Each pellet was dissolved in 4.Op1 

of DEPC H20 and 32pI of Phosphate Formamide buffer (10mM NaH2PO4, 

10mM Na2HPO4 in deionised formamide adjusted to pH 6.5). Pellets were 

completely resuspended before adding 4.0.il of Hybridisation buffer (45M 

NaCl, 0.1mM EDTA and 75mM Tris-HC1; pH 7.5). After mixing, samples 

were denatured at 80°C for 10-15 minutes before hybridising overnight at 

42°C (determined empirically by Field and Gross (130)). Reactions were 

precipitated with 1.0 volumes 4.OM ammonium acetate and 2.0 volumes 

100% ethanol, mixed thoroughly and left on dry ice for 1 hour. 

Primer and RNA was spun down for 30 minutes and the pellets were 

washed, finally removing all ethanol traces with a P2 tip. Each pellet was 

completely resuspended in 50pl of Primer Extension buffer (lOitl 

5.Ox Promega RT buffer, 2.OpI 5.0mM ddATP, l.Opl 10mM dCTP, 1.0iI 10mM 

dGTP, l.Opl 10mM dTTP, 34.5.i1 ROP dH20 and 0.5itl Reverse Transcriptase) 

and incubated at 42°C for 90 minutes (tubes were flicked after 30 minutes to 

ensure complete resuspension). 

RNA was specifically hydrolysed at 42°C for a further 2 hours by 

adding 50t1 of 0.4M NaOH. This was neutralised by the addition of 50121 

1.OM Tris-HC1; pH 6.8. Carrier DNA (2.01tl of 1.0tg/itl pBluescript) was 
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added before precipitating reactions with 1.Oml 100% ethanol at -20°C 

overnight. DNAs were spun down for 1 hour and the pellets were washed 

twice, finally removing all traces of ethanol with a P2 tip and resuspending 

each pellet in 2.0il DEPC H20 and 4.Oj.fl Gel Loading buffer (95% 

formamide, 20mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol 
FF). 

Samples were run on a 1.0x TBE, 8.3M urea and 12% polyacrylamide 
gel (19:1, acrylamide:bis-acrylamide) after prerunning the gel for 

10-15 minutes. Gels were run at 35W (constant) for about 3-4 hours and 

fixed in 10% methanol, 10% acetic acid for 15 minutes before blotting onto 

prewetted Whatman 3MM paper, drying for 2 hours at 80°C under vacuum 

and exposing to film for 2-7 days. Expression was quantified by 7 day 

exposure in a phosphoimager cassette after adjusting for sample recovery by 
comparison of the signals to the primer band. 

2.3 Tissue Culture Techniques and the 
Generation of Chimaeric Mice 

2.3.1 ES Cell Culture 

All cells were maintained in 6.0-7.5% CO2, at 37°C in a humidified 

incubator (Heraeus; model B5060 EC/CO2) as described by Smith (294) with 

manipulations being performed inside a laminar flow sterile hood (Gelair 

ICN Flow Hood (Class 3), ICN Pharmaceuticals Ltd, Thame, UK) using 

culture grade plastic supplied by Corning (Bibby Sterilin, Stone, UK) or 

Nunc (Supplied by Gibco-BRL). All surfaces (including arms and hands) 

were sprayed with 70% industrial methylated spirits (BDH) before use to 
prevent bacterial or fungal contamination. 

ES cells were cultured on 0.1% gelatine-coated (Sigma-Aldrich 

Company Ltd; Product code G-2500) tissue culture flasks in 1.Ox GMEM 

(Gibco-BRL; Product code 12541-025) supplemented with 10% (v/v) foetal 

bovine calf serum (FCS; Globepharm, Surrey, UK), 0.1p.M 

1-mercaptoethano1, 2.0mM L-glutamine (Gibco-BRL; Product code 

25030-024), 1.0mM sodium pyruvate (Gibco-BRL; Product code 11360-039), 

1.Ox MEM non-essential amino acids (Gibco-BRL; Product code 118110-017), 

and 0.23% (w/v) sodium bicarbonate (Gibco-BRL; Product code 11140-035). 
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Medium was made in 500m1 aliquots and stored at 4°C for 2 to 4 weeks. 

DIA/LIF was also included at a 1:1000 dilution to maintain the ES cells in an 

undifferentiated state (292,293). The term "ES cell medium" will now be used 

to refer to the medium described above including DIA/LIF. Cells were 

routinely washed in phosphate buffered saline (PBS) during many of the 

described protocols. PBS is 137mM NaCl, 2.7mM KC1, 4.3mM Na2HPO4 and 

1.4mM KH2PO4; pH 7.3 and was made using one PBS tablet (Unipath, 

Basingstoke, UK; Product code BR14A) dissolved in lOOmi of filter-sterilised 
UHP water before filter sterilising. 

Cells were passaged by rinsing twice with PBS before adding enough 

TVP (0.025% trypsin (Gibco-BRL; Product code 25090-010), 1.0% chicken 

serum (Gibco-BRL; Product code 16110-033), 0.5mM EDTA dissolved in PBS) 

to just cover the cells. The flask was then incubated at 37°C for 2-3 minutes 

before neutralising the trypsin by adding ES cell medium. The medium in 

the cell suspension was pipetted several times to generate a single cell 

suspension. Cells were centrifuged for 5 minutes at 1,200rpm 

(approximately 200xg in a Denley BS400 Benchtop Centrifuge; Supplied by 

Life Sciences Intl. (UK) Ltd, Basingstoke, UK), counted using a 
hemacytometer and 1.0x10 6  cells used to seed a 25cm 2  flask containing 
pre-warmed medium (or scaled up for larger flasks). 

2.3.2 Freezing and Thawing Cells 

Cells were trypsinised and pipetted to obtain a single cell suspension 

and centrifuged at 1,200rpm for 5 minutes. The pellet was resuspended in 

freezing mix (ES cell medium + 10% (v/v) DMSO) and the number of cells 

were counted. After recentrifugation, cells were resuspended in 0.5m1 
freezing mix per 5.0x10 6  cells and 0.5m1 aliquots were transferred to 

cryotubes. These were frozen at -80°C overnight before transferring to a 

liquid nitrogen cell bank (Minnesota Valley Engineering Cryogenics; Product 

code XLC110; Supplied by Cryotecnics, Edinburgh, UK). 

Frozen cells were thawed in a 37°C water bath, transferred to a 15m1 

Corning tube containing 15ml of ES cell medium and centrifuged. The cell 

pellet was resuspended in lOml fresh ES cell medium and this was seeded 
into a 25cm2  flask. After 8 hours the medium was removed and fresh ES cell 
medium was added to remove final traces of DMSO. 
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2.3.3 Electroporation of ES Cells 

Two confluent 150cm2  flasks per electroporation (5.0x10 7  to 1.0x108  cells 
required per electroporation) were trypsinised in the normal manner and 

resuspended in PBS. The number of cells were calculated before 

recentrifuging in a 15ml Corning tube and resuspending to a final volume of 

700p.l with PBS. DNA for electroporation (resuspended in lOOp.l of sterile 

H20) was added to the cells and mixed. Electroporation was in a 0.4cm 

cuvette using the following settings on the Biorad Gene Pulser (Biorad 

Laboratories Ltd; Model no. 1652087) and Capacitance Extender (Biorad 

Laboratories Ltd; Model no. 1652078); Capacitance= 3.0iF and Voltage= 

0.8kV, resulting in a typical time constant of 0.1 msec. The cells were 

transferred as quickly as possible to warm ES cell medium and plated out 

into twenty 90mm cell culture dishes, at two dilutions (10-fold difference). A 

plate of untrarisfected cells was seeded at the same time so that when G418 

selection was applied it would be apparent when all sensitive cells had been 

killed. Twenty-four hours after electroporation, selection was started by 

including 175 p.g/ml G418 (Boehringer Mannheim; Product code 1464981) in 

the medium which was changed every 1-2 days depending on the number of 

cells and dead matter present in a dish. If a lot of dead cells were present the 

dish was washed twice with 5.Oml PBS before adding the fresh ES cell 
medium. 

2.3.4 Expansion of G418 ES Cell Colonies 

After selection in G418 for 7-8 days, clones were picked and expanded 

for freezing (storage) and DNA preparation (screening). ES cell medium 

(2m1) was aliquoted into each well of gelatinised 24-well plates and warm 

TVP (30j.tl) was aliquoted into 96-well plates before maintaining all plates at 

37°C. A dish was washed twice in lOml PBS and 7.0ml of PBS added to keep 

the cells hydrated. Individual clones were picked by scraping a colony with 

a P2 tip fitted to a P20 pipette lifting about 10p1 of PBS with the cells and 

pipetting into the prewarmed TVP. Batches of 24 clones at a time were 

trypsinised before incubating at 37°C for 5 minutes and transferring to the 

gelatinised 24-well plates containing pre-warmed ES cell medium. Clones 

were grown to confluence, with feeding at least every 2 days. Clones at 

similar degrees of confluence were passaged together in an attempt to 

synchronise all clones on a plate. Cells were split 1:2 onto replica 24-well 
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plates (washed with lOOp.! PBS, trypsinised with 100p.l of TVP then aliquoted, 

30-40p.l to a "freezing plate" and the rest to a "DNA plate"). After 24 hours, 

medium in the "freezing plates" was replaced with 250p.1 of Freezing Mix (ES 

cell medium + 10% (v/v) DMSO) and plates were frozen at -20°C before 

transferring them to -80°C for long term storage (310). "DNA plates" were 

left for a further 24-48 hours (until every well was confluent) to increase 
DNA yield. 

2.3.5 ES Cell DNA Preps 

DNA was prepared from ES cell colonies by a modification of the 
method by Laird et al. (311). Plates were aspirated and transferred to the 
molecular biology lab where 600 p.1 of Lysis buffer (100mM Tris-HC1; pH 8.5, 

5.0mM EDTA, 0.2% (w/v) SDS, 200mM NaCl and 100p.g/ml Proteinase K 

(Boehringer Mannheim; Product code 745723)) was added to each well 

before incubating at 37°C overnight. Each Proteinase K digest was then 

transferred to a labelled tube and precipitated with 600p.1 isopropanol. 

Samples were mixed by rotating for 5-10 minutes and DNA was then 

pelleted by centrifugation for 15 minutes. Pellets were washed twice, air 

dried and resuspended in 100p.l TE (aided by incubating at 65°C for 

30 minutes and pipetting up and down if required). 

2.3.6 Production of Chimaeric Mice and Breeding of Mutant 
Animals 

Chimaeric mice were produced according to Bradley (312) as modified 

by Nichols (313). Blastocysts used for the production of chimaeras were 

flushed from C57BL/6J female mice on the fourth day of pregnancy with FBi 

medium supplemented with 10% (v/v) FCS (lOOm! FBi medium was made 

by dissolving the following in lOOm! UHP H20 resulting in a solution of 

pH 7.0-7.2; 822mg NaCl, 21mg KC1, 300mg Na2HPO4, 20mg KI-12PO4, 104mg 

glucose, 4.5mg sodium pyruvate, 6.2mg penicillin 1.4mg CaCl2, 1.0m9 M902 

and 1.Oml 1.0% phenol red). Unexpanded embryos were transferred to ES 

cell medium and placed in a humidified incubator at 37°C with 6.0% CO2 to 

allow the blastocoel cavities to expand fully. For injection, blastocysts were 

transferred to small hanging drops of FBi medium supplemented with 10% 

(v/v) FCS on a siliconised (Repelcote; BDH; Product code 63216 4J) coverslip 

suspended over a manipulation chamber (custom-made by Gary Robertson, 
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CGR, University of Edinburgh, Edinburgh, UK) flooded with liquid paraffin 

(Boots The Chemists). Trypsinised ES cells, generally singletons or pairs, 

were also placed in a hanging drop and the chamber refrigerated for at least 
10 minutes. 

Blastocyst injections were performed with a rounded holding pipette 

(internal diameter= 20p.m) and a heat polished, flat ended injection pipette 

(internal diameter= 15xm), both pulled from glass capillary tubing (internal 

diameter lOOp.m) using an electrode puller (Camden Instruments, 

Loughborough, UK), cut to size and heat polished with a microforge 

(DeFonbrune; Supplied by Micro Instruments Ltd, Witney, UK). Holding 

and injection pipettes were each attached to instrument holders (Ernst Leitz, 

Wetzlar, Germany) and operated by Leitz manipulators. The suction of both 

pipettes was controlled by specialised injectors (Narashige International Ltd, 

London, UK; holding pipette and DeFonbrune; injection pipette) by means of 

paraffin filled plastic tubing. An IMT2 image-corrected microscope 

(Olympus Optical Company (UK) Ltd, London, UK) was integrated into the 
micromanipulation assembly. 

Between 10 and 20 cells were injected into each blastocyst. Operated 

embryos were allowed to recover for a few hours in ES cell medium in the 

incubator before being transferred to pseudopregnant recipients. Recipient 

MF1 females had been mated with vasectomised DBA/2J males 2.5 days 

previously. Embryos, typically 6-12, were transferred to one uterine horn of 

a recipient female. Contribution of ES cells to resulting pups was assessed 

by coat colour (sandy coloured hairs amongst the host black hairs indicated 

successful incorporation of the ES cells into the resulting individual). Germ-

line transmission was assessed by crossing male chimaeras with female 

129/Ola females. Generation of agouti pups indicated inheritance of a 

compliment of chromosomes from the host embryo. Generation of sandy 

coloured pups, however, indicated germ-line transmission and these animals 

were subsequently screened by Southern blot for inheritance of the disrupted 

allele. Heterozygote animals were intercrosseed to generate homozygote 
mutant animals. 
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2.4 Physiological Techniques 

2.4.1 Blood Pressure Measurement 

Mean blood pressure (40% of systolic + 60% of diastolic pressures) was 

measured via direct cannulation of the abdominal aorta in adult mice - (8-15 
weeks old) as previously described (286). Briefly, a cannula made from 

drawn polyethylene tubing (internal diameter= llp.m; Portex, Hythe, UK; 

Product code 800/100/100) or micro renathane tubing (internal diameter= 

12p.m; Braintree Laboratories Inc. Braintree, Massachusetts, USA; Product 

code MRE025) was inserted into the aorta (blood flow in the aorta and veña 

cava was occluded using a suture) and fixed in place using Vet Seal tissue 

glue. To prevent an animal biting through it's cannula, it was passed under 

the skin and brought out at the top of the neck, on the back of the head, 

roughly between the ears. Cannulas were filled with heparin-saline, flushed 

daily and prevented from leaking by the insertion of the end of a blunted, 

blocked (with paraffin wax) 26G needle. Blood pressure was measured 

24 hours post operation by connecting the cannula to a pressure transducer 

(Viggo-Spectralab, Oxnard, California, USA) and printing the output on a 

chart recorder. Measurements were made over a 15 minute period in 

conscious, resting animals housed in restraining tubes. All animals had 

undergone training in restraining tubes for five consecutive days (beginning 

7 days before the operation) for at least 30 minutes each day. Statistical 

significance was assessed using a Wilcoxon rank test and a Student t-test 
(unpaired). Results are given as mean blood pressure±SEM. 

2.4.2 Prorenin and Renin Protein Assays 

Animals were sacrificed by inhalation of 100% CO2, and blood sampled 

immediately by cardiac puncture into 0.1 volumes of 125mM EDTA, 25mM 

92 -phenanthroline. After centrifugation for 3-5 minutes plasma was 

snap-frozen in liquid nitrogen in lOOp.l aliquots. Plasma renin concentrations 

(PRC) and plasma prorenin concentrations (PPC) were calculated according 
to the method of Peters et al. (314). 

Total renin concentration was measured by activating a lOjil aliquot of 

plasma with lOj.tl of trypsin solution (400 units/ml trypsin, dissolved in TES 
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buffer (0-1M 	 acid; 
pH 7.2, 0.01% neomycin, 10mM EDTA)). Samples were incubated on ice for 

10 minutes and trypsin-activation stopped by the addition of 5.Op.l of egg 

white trypsin inhibitor (1600 units/ml, in TES buffer). Plasma active renin 

was measured by the addition of lOp.i of TES buffer (without trypsin) to lOj.d 

of plasma. Each sample was split into three aliquots before incubating each 
with radioactively labelled lyophilised renin substrate (1251-angiotensinogen), 
isolated from nephrectomised rat plasma (final concentration; 80mg/mi, 

0.11% 2,3-dimercapto-1-propanoi, 1.15mg/mi 8-hydroxychinolin in TES 

buffer). Reactions proceeded for 1-3 hours at 37°C and were stopped with 

RIA buffer (0.1M Tris-acetate; pH 7.4). The Ang I generated was measured 

by radioimmunoassay (315, 316). The three measurements for each plasma 

were then averaged (for each assay) and if reactions and readings worked 

properly an error of ±5% was expected. Plasma prorenin concentration was 

determined as the difference between total renin concentration and plasma 

active renin concentration. Statistical significance was assessed using a 

Wilcoxon rank test and results are given as the mean±SEM. 

2.4.3 Histological Analysis 

To characterise any histological changes occurring in the Ren1d .../..., 
animals tissues from all three genotypes and both sexes were studied for 

abnormalities. The tissues studied were the submandibular glands, adrenal 
glands, kidneys and testes or ovaries. 

2.4.3.1 General Histology 

Animals were sacrificed by inhalation of 100% CO2 and tissues were 
immersion-fixed in formal saline histological fixative (4.0% (w/v) 

formaldehyde in a 153mM NaCl solution; BDH Laboratory Supplies; Product 

code 36136 7L) for 24 hours before long-term storage in 70% (v/v) ethanol. 

Tissues were processed using a Citadel tissue processor (Shandon Southern 

Products Ltd, Cheshire, UK) on an 18 hour program passing through serial 

dehydration steps in graded ethanol concentrations (70%, 80%, 90% and 

3x 100%), followed by dealcoholisation with a clearing agent, Histoclear 

(National Diagnostics, Atlanta, Florida, USA) x3 and paraffin wax immersion 

x2 at 60°C. Paraffin blocks containing tissues were then sectioned (2.Op.m), 

dewaxed in xylol, stained with haematoxylin and eosin and mounted with 



DPX Mountant. In addition kidney sections were also stained using a 

periodic acid-Schiff technique (PAS) to specifically stain the tissue 

carbohydrates of extra-cellular matrix. All sections were examined, in a 

blinded manner, by standard light microscopy (Leitz Diaplan or Leitz 

Laborolux S) and photographed with a Leica Wild MPS45 or MPS46 camera. 

2.4.3.2 Immunohistochemistry 

Kidneys were processed and sections were cut as described in the 

General Histology Method. These were immersed in TBS (tris-buffered 

saline) followed by blocking in 1.0% (v/v) H202 for 20 minutes before 

rinsing in TBS. Sections were trypsiriised for 10-20 minutes and rinsed and 

washed in TBS. After covering the sections in normal rabbit serum (D4KO) 

which had been diluted 1:5 in lBS for 10 minutes they were drained and the 

primary polyclonal antiserum applied (provided by T. Inagami, Howard 

Hughes Medical Institute, Nashville Tennessee, USA). This was diluted 

1:64,000 in 1:5 normal serum before rinsing twice in TBS (317). Secondary 

antibody was then applied (biotinylated sheep anti rabbit) and left for 

30 minutes (kit supplied by Vector Laboratories Ltd., Peterborough, UK). 

Sections were rinsed twice in TBS before applying the avidin/biotin complex 

for 30 minutes. Finally sections were rinsed twice in TBS, washed well in 

TBS and mounted. All TBS washes were for 5 minutes each. 

2.4.3.3 Electron Microscopy 

Kidney sections from male wild-type, heterozygote and homozygous 

mutant animals were studied for any structural abnormalities by electron 
microscopy. Cubes of kidney cortex (1.0mm 3 ) were fixed in 3% 
gluteraldehyde solution (3.0% gluteraldehyde in 0.2M sodium cacodylate; 

pH 7.2) overnight and stored in 0.2M sodium cacodylate solution until 

processing (about 2-3 days). Sodium cacodylate solution (0.2M) is made by 

mixing 25m1 Solution A (4.28g sodium cacodylate in lOOml dH20) with 2.1ml 

Solution B (1.7m1 HCl made up to lOOml with dH20) and making up to 

lOOml with dH20. Tissues are then osmic acid treated (0.5g osmium 

tetroxide dissolved in 25ml 0.2M cacodylate buffer and 25ml dH20) for 

2 hours before dehydrating in alcohol (3x 10 minutes in 10% (v/v) ethanol 

and 3x 30 minutes in 100% ethanol). Tissues were then prepared for 

embedding by immersing in epoxy propane twice (20 minutes each). 
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Embedding was in an araldite based resin (stored at 4°C) made from 

38m1 stock solution X (200m1 of araldite resin CY212 and 200ml DDSA) and 

2.Oml stock solution Y (20m1 dibutylphtalate and 5.Oml BDMA accelerator). 

Araldite solution was removed from the fridge, equilibrated at room 

temperature and placed at 60°C for 15 minutes prior to use to make the resin 

less viscous and therefore easier to work with. An impregnation mould was 

then filled with 5.Oml resin using a 5.Oml syringe. Most of the epoxy propane 

was removed from the sample before transferring tissues to the 

impregnation mould with forceps (ensuring that the sample did not dry out). 

Blocks were left to impregnate overnight at room temperature. Finally 

tissues were embedded in resin by placing the desired number of embedding 

capsules in drilled wooden holders and filling each to the top with araldite. 

Tissues were transferred from the impregnation moulds using forceps. The 

holder, containing the capsules, was then incubated at 60°C for 3 days to 

allow polymerisation of the araldite to occur. Blocks were then cooled to 

room temperature, turned upsidedown and the individual araldite capsules 

were forced out using a press. Sections of 0.1jtm were cut onto copper grids 

using a diamond knife before counterstaining with osmium tetroxide and 

lead citrate. Grids were viewed on a Philips CM12 transmission electron 

microscope with the "beam voltage" set at 80kV. 
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CHAPTER 3 
PCR Amplification of Homology Arms 

3.1 Introduction 

The development of gene targeting, a methodology allowing the 

ablation or mutation of a specific gene, is proving to be a powerful tool in 

dissecting the function of a particular gene (318). The generation of a null 

mutation in the Ren1d gene of 129/01a mice was chosen to assess directly 

the function of the Renin1d protein in the "two-renin gene" mouse. 

As discussed in Chapter 1 the use of PCR to generate homology arms 

should reduce the time taken to build targeting vectors, allow more 

flexibility in positioning of homology arms and requires less information 

about the gene to be disrupted. In an attempt to develop this strategy it was 

decided to investigate the feasibility of PCR amplifying large DNA 

fragments from isogenic genomic DNA for use in targeting constructs, thus 

removing the need to screen genomic libraries. 

Early attempts at amplifying homology arms from genomic DNA were 

not successful (Sharp et al., unpublished data) therefore we chose an 

alternative, less complex template. P1 clones containing the renin genes 

(cloned from a 129/01a ES cell line) were available in the laboratory and 

were utilised as templates instead. A potential problem with this strategy is 

the introduction of mutations during the PCR reaction. In order to minimise 

this risk a high fidelity PCR reaction was required. We aimed to achieve this 

using the thermostable DNA polymerase enzyme, LllTma, which included a 
3' to 5' proof-reading exonuclease activity. 

In this chapter the optimisation of PCR amplification of fragments of 

about 4.5kb is described. Sections on the optimisation of ligation conditions 

and the cloning of two Ren1d  derived homology arms after restriction 

digestion of the PCR products are also included. 
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3.2 PCR Amplification of Ren - id Homology 
Arms For Gene Targeting 

The gene targeting strategy chosen involved part of exons 3 and 4 of the 
Ren1d gene being replaced by the selectable marker PGK-neopA (Figure 3.1). 

In order to do this, homology arms flanking the region to be deleted were 

produced from a strain 129/Ola-derived P1 clone by PCR amplification. The 

building of the targeting construct is outlined in Figure 3.1 (each step is 
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Figure 3.1: Gene targeting strategy for the disruption of the Ren -1'1  gene using PCR to 
amplify the 5' and 3' arms of homology: A) The mouse 129/01a Ren locus (arrows represent 
the direction of transcription). B) Enlarged view of the Ren1d  locus with PCR primer pairs 
used (JJM203/135 and JJM189/204) indicated by open triangles (numbered black boxes 
represent exons). C) To facilitate cloning of the 5' and 3' PCR products, amplicons were 
digested internally, with Xba 1(5' arm) or Hind III (3' arm) and within the primers (Kpn I). D) 
The targeting construct deletes 92bp of exon 3, the third intron and 35bp of exon 4 and 
replaces them with a PGK-neo cassette in the same transcriptional orientation as the Ren - 1 1  
gene. Only relevant restriction sites are shown:- H= Hind ifi, K= Kpn I and X= Xba I. 
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discussed in more detail in this chapter and section 4.2). The resulting 

targeting construct contained a 3.7kb segment of Ren.1d genomic sequence 
from intron A to exon 3, a PGK-neopA selection cassette in the same 
transcriptional orientation as Ren1d and 3.6kb of Ren1d genomic sequence 
from exon 4 to intron G. 

3.2.1 Size Range Amplification 

In order to test the ability of UlTma DNA polymerase to amplify large 
fragments, it was used to amplify a range of fragments inserted in 

pBluescript vectors (Figures 3.2). Template DNA (20pg) was amplified as 

described in section 2.2.6.2 for 40 cycles, annealing at 64°C for 6.5 minutes 

using the PCR primers JJM205 (CAGGGTTTTCCCAGTCACGA C) and 

JJM206 (CCAGTATCGACAAAGGACACAC). 

Figure 3.2C shows the results of these amplifications in which the 

largest fragment detectable was 3.5kb (lane 5) and the largest attempted PCR 

fragment (predicted to be 4.9kb) was not detectable (lane 6). It was decided, 

therefore, to attempt to amplify the homology arms using LIlTma DNA 
polymerase under these conditions. It may have been possible to amplify the 

larger fragment using this enzyme by altering the PCR conditions. Instead, 

however, it was decided to attempt to amplify the two Ren1d homology 
arms which were predicted to be 4.3 and 4.7kb. These are larger than the 

biggest fragment generated in this test experiment. However, the failure to 

detect the largest fragment in this test experiment could be due to many 

variables other than PCR conditions (e.g. template preparation, experimental 
error). 

3.2.2 Amplification of 5' and 3' Arms 

Amplification of the 5' and 3' homology arms was attempted from all 

four renin containing P1 clones available in the laboratory. Template DNA 

(long) was amplified using the 5' PCR primers JJM203  and  JJM135  and 
primers JJM189  and JJM204 for the 3' arm (see Figure 2.4 for primer binding 
sites and sequences). 
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Plasmid Name JJM Number Insert Size Amplified Product 
Size 

pSL1-16 JJM- 66 0.60kb 0.85kb 
pLacZ5 - 1.25kb 1.5 kb 
p2335A1 - 2.3kb 2.55kb 
pSLP BamA JJM-116 3.2kb 3.45kb 
prRP JJM- 74 4.6kb 4.85kb 
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Figure 3.2: PCR Products Amplified from pBluescript Inserts: To determine the 
maximum size amplifyable with the LtlTma enzyme, a range of product sizes were 
amplified. A) A schematic representation of the pBluescript Multiple Cloning Site (MCS) 
and the binding positions of the PCR primers used. B) Table showing the plasmids used as 
templates for PCR reactions, including the insert size and expected size of the PCR product. 
C) Amplification of a range of differently sized fragments inserted in the pBluescript 
polylinker. Lane 1= lambda Hind Hh/EcoR I digested DNA, Lane 2= pSL1-16, 
Lane 3= pLacZ5', Lane 4= p2335A1, Lane 5= pSLP BamA, Lane 6= prRP, Lane 7= H20 and 
Lane 8= lambda f-find III digested DNA. 
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A fragment of the anticipated size (4.3kb) was obtained in amplification 

of the 5' arm from P1 clones P1-1249 (Figure 3.3A; lane 3) and P1-1251 

(lane 5). No products were detectable from the other two P1 clones (Pi-Ren 

and P1-1250; lanes 2 and 4 respectively). Amplification of the 4.7kb 3' arm 

fragment (Figure 3.3B) was observed from three P1 clones (P1-Ren, P1-1249 

and P1-1251; lanes 2, 3 and 5 respectively) with no product being amplified 

from P1-1250 (lane 4). 

3.2.3 Further Optimistion Of PCR Conditions 

It has been shown that the quantity and specificity of PCR amplified 

product can be greatly increased by the use of a 2-step, instead of 3-step, PCR 

reaction, with the annealing/ extension stages being combined at 65°C (319). 

Figure 3.4A shows a comparison made between amplification of the 5' 

homology arm using a 2-step (lanes 2-4) or the standard 3-step (lanes 5-7) 

amplification program from P1-1249 (lanes 2 and 5) and P1-1251 

(lanes 3 and 6). In this experiment no clear differences can be seen between 

the two sets of conditions. 

Several 'PCR enhancers' which increase the yield and specificity of 
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Figure 3.3: Amplification of the 5 and 3 homology regions: Amplification of the 5' (A) 
and 3' (B) homology arms from the four Fl clones. In panels A) and B) Lane 1= lambda 
Hind III/EcoR I digested DNA, Lane 2= Pl-Ren, Lane 3= P1-1249, Lane 4= P1-1250, 
Lane 5= P1-1251, Lane 6= H20 and Lane 7= lambda Hind III digested DNA. 
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Figure 3.4: Attempted optimisation of the 5 PCR Reaction: A) Amplification of the 5' 
homology arm from two P1 clones (P1-1249 and P1-1251, lOOpg template DNA) either in a 
standard 2-step reaction (Lanes 2-4) or in a 3-step reaction (Lanes 5-7). Lane 1= lambda 
Hind III/EcoR I digested DNA, Lane 2 and 5= P1-1249, Lane 3 and 6= P1-1251, Lane 4 and 
7= H20 and Lane 8= lambda Hind III digested DNA. B) Amplification of the 5' homology 
arm from two P1 clones (P1-1249 and P1-1251, lOOpg template DNA) in the presence of 
0.1 units Perfectmatch® DNA polymerase enhancer (Lanes 2 and 5), 1.0mM spermidine 
(Lanes 3 and 6) or in the absence of any 'PCR enhancer' (Lanes 4 and 7). Lane 1= lambda 
Hind III/EcoR I digested DNA, Lane 2-4= P1-1249, Lane 5-7= P1-1251, Lane 8= H20 and 
Lane 9= lambda Hind III digested DNA. 

amplification have been reported. Perfectmatch® DNA polymerase enhancer 

is a commercially available PCR enhancer (Stratagene). Spermidine has also 

been shown to increase the yield and specificity of PCR amplification (320). 

It was shown that spermidine concentrations in the range of 0.2 to 2.0mM 

enhanced the amplification of target sequences. Perfectmatch® DNA 

polymerase enhancer (1.0 units/lOOng template DNA; lanes 2 and 5) and 

1.0mM spermidine (lanes 3 and 6) were compared to standard amplifications 

of the 5 arm (lanes 4 and 7) from P1-1249 (lanes 2-4) and P1-1251 (lanes 5-7) 

under the conditions given in section 2.2.6.2 and were found to have no effect 
on yield or specificity (Figure 3.413). 

3.3 Optimisation of Ligation Conditions 

Initially, problems were experienced with the cloning of large PCR 

products, possibly due to suboptimal ligation conditions. To optimise this 

step a series of scaled-up test reactions were performed in order to make the 
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visualisation of ligation products on an agarose gel possible. Ligations were 
performed using a 3.7kb Kpn I/Hind III DNA fragment (similar size to the 
arms of homology to be cloned) and Kpn I/Hind 111-digested pSP72poly4 (the 
vector preparation required for the cloning of the 3' homology arm). Both 

fragments were purified by running plasmid digests on a preparative 

agarose gel, excising the fragments and purifying the fragments by 

electroelution (section 2.2.8.1). The aim of this experiment was to determine 

optimal ligation conditions for the cloning of large PCR products, although 

this experiment would also determine the quality of the Kpn I/Hind ifi 
digested pSP72poly4 vector preparation. 

A total of sixteen ligations were performed aimed at testing the effects 

of molar ratios, ligation buffer used and DNA concentration. The normal 

reaction conditions suggested by Gibco-BRL were scaled up to lOOng of 

vector in a 200j.tl reaction, with the same amount of DNA in 20tl 

representing a "concentrated" reaction. Table 3.5 shows the composition of 
each ligation. 

All 20tl reactions were made up to 200j.d with 180xl sterile dH20. A 

180il sample of each was ammonium acetate/isopropanol precipitated in the 

presence of 25Lg/ml glycogen (298) and resuspended in 7.5jtl lng/j.tl 

proteinase K solution (to remove any remaining BSA from the Maniatis 

buffer). Samples were then run on an agarose gel to visualise the range of 
ligation products obtained from each reaction (Figure 3.6A). 

The results show that, in the absence of DNA ligase and insert DNA, a 

single fragment representing linear vector was obtained 

(Lanes 2, 3, 11 and 12) whereas vector plus ligase (still with no insert) 

generated concatemers (Lanes 4,5, 13 and 14), to an extent dependent on the 
DNA concentration and the buffer used. 

When insert DNA was included in the reactions a more complex range 

of ligation products were produced (Lanes 6-9 and 15-18). Comparison of 

the two buffer types showed very little difference when insert DNA was 

included except for a slightly higher presence of lower molecular weight 

products with the Maniatis buffer (Lanes 6-9 compared to lanes 15-18; both 

buffers produced large concatemers which remained in the wells). The 

higher molar ratio tested (5:1 insert:vector) produced a slightly higher 



Ligation -+ 1 2 3 4 5 6 7 8 
Condition 
Ligation Buffer M M M M M M M M 
(MorG) 
Reaction Volume 20 200 20 200 20 200 20 200 

Molar Ratio no no no no 2:1 2:1 5:1 5:1 
(insert:vector) insert insert insert insert 
Ligase no no yes yes yes yes yes yes 
(yes/no) 

Ligation -3 9 10 11 12 13 14 15 16 
Condition 4 
Ligation Buffer G G G G G G G G 
(MorG)  
Reaction Volume 20 200 20 200 20 200 20 200 
(j.tl) 

Molar Ratio no no no no 2:1 2:1 5:1 5:1 
(insert:vector) insert insert insert insert 
Ligase no no yes yes yes yes yes yes 
(yes/no) 

Table 3.5: Composition of Test Ligation Reactions: To optimise ligation conditions 
three factors were tested. These were the use of different buffers (Maniatis or Gibco-BRL), 
the reaction volume (normal conditions in a 200l reaction or a concentrated reaction 
containing the same quantity of DNA in 20il) and the molar ratio of insert relative to 
vector (2:1 and 5:1). 

proportion of concatemers regardless of the buffer used 

(Lanes 8, 9, 17 and 18). Increasing the relative DNA concentration generated 

ligation products of a generally higher molecular weight 

(Lanes 6, 8,15 and 17). 

Of the remaining 201fl samples, 10.d of each was used to transform 

competent cells, the results of which are shown in Figure 3.6B. These results 

are in accordance with the observations made from the agarose gel analysis 

of the ligations but allow more quantitative analysis. Taken together, the 

"vector only" ligations show that the vector preparation is virtually all cut to 

completion with both enzymes, with almost no background from vector 

minus ligase (i.e. all DNA is cut at least once) and only very low background 
from vector plus ligase (i.e. almost all the vector DNA is cut to completion 
with both enzymes). 
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1 1 
2 2 
3 33 
4 32 
5 1095 
6 2584 
7 1646 
8 2384 

Reaction No. Colonies 
9 2 
10 1 
11 10 
12 21 
13 1070 
14 1836 
15 871 
16 1183 

Figure 3.6: Test Ligation Products and Transformation Numbers: To determine the 
most efficient ligation conditions aliquots of each ligation were run on a gel and transformed 
into DH5 competent cells. A) Ligation products obtained from the test ligations detailed in 
Table 3.5. Lane 1= lambda Hind IH/EcoR I digested DNA, Lanes 2-9= Test Ligation 
Reactions 1-8 respectively, Lanes 11-18= Test Ligation Reactions 9-16 respectively, 
Lane 19= lambda Hind ilh/EcoR I digested DNA, Lane 20= bOng vector DNA (Kpn I/Xba I 
digested pSP72,poly4), Lane 21= 130ng insert DNA (Kpn I/Xba I digested) and 
Lane 22= lambda Hind IhJ/EcoR I digested DNA. B) Table showing the number of colonies 
obtained when lOttl (5.Ong vector DNA) of each test ligation was transformed into 
competent cells. 

From the ligations which included insert DNA, it can be seen that 

Maniatis buffer generally gives higher colony numbers. When the two molar 

ratios are compared to each other little difference can be seen between them 

(excluding buffer differences). The DNA concentration has different effects 

according to the buffer used. In ligations performed using the Gibco-BRL 

buffer, the DNA concentration appears to have little effect. This is probably 

because this buffer includes PEG, a molecular crowding molecule which acts 

increase the effective DNA concentration. In ligations performed using 

the Maniatis buffer, the best results were obtained using the more dilute 



conditions (200p1 reaction) which, when scaled down to lOng vector in a 20j.fl 

reaction (as opposed to bOng in a 200p.l reaction), fall within Gibco-BRLs 
recommended conditions. 

As a result of this experiment, subsequent ligations were set up using 

Maniatis buffer with insert ratios of 2:1 and 5:1 in a final volume of 20pJ. 

DNA molar concentrations in the "dilute" reactions were also mimicked as 
closely as possible (i.e. 60fmol of vector and 120 or 300fmol insert in a 2041 

reaction). Where recovery of vector or insert fragments was poor, scaled 

down 1091 ligation reactions were performed. 

3.4 Cloning of the PCR Amplified Homology 
Arms 

3.4.1 Fragment Preparation and Cloning of the 5' Arm 

The first step in the construction of the Ren1d  targeting vector was the 
cloning of the 5' PCR product (Figure 3.7). Restriction digestion of the PCR 
products with Kpn I to facilitate cloning was found to be a problem. 

However, this was not due to the enzymes ability to cut DNA or the ability 

to restriction digest the PCR product. It was concluded that the problems 

were caused by cutting at the Kpn I site present in the PCR primer. 

To circumvent this problem two strategies were tested. The first was to 
biotinylate the exon 3 reverse primer (JJM213, Biotinylated Ren1d and Ren-2 
exon 3 primer; see Figure 2.4 for primer binding site and sequence). Using 
the same upstream primer (JJM203, -162bp Ren1d promoter primer; 

Figure 2.4), new PCR product was generated and digested as described in 

section 2.2.7.3. The second strategy was to design a new PCR primer in 

intron C, 390bp down stream of the Kpn I site in exon 3 (JJM212, Ren1d 
intron C primer; Figure 2.4). The result of a sequential Kpn I and Xba I digest 
would therefore produce four fragments, all of different sizes (140bp, 390bp, 

480bp and 3700bp). Once again, new PCRs were performed and the PCR 

product was digested as described in section 2.2.7.1. Digested DNA was 

then electrophoresed on a preparative agarose gel, the desired 3.7kb 

fragment excised and the fragment gel purified (section 2.2.8.2). 
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Figure 3.7: Cloning of the 5' homology Arm: The 5 PCR product was ligated into Xba I 
and Kpn I digested pSP72polyl after restriction enzyme digestion at an internal Xba I site 
(present in intron A) and at a Kpn I recognition site present in the exon 3 reverse PCR 
primers (JJM135 or JJM213) to generate the plasmid p5'Arm. The Kpn I site in the reverse 
PCR primers corresponds to the endogenous Kpn I site present in exon 3. 
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Vector DNA (pSP72polyl) was prepared by digestion with Xba I 
followed by precipitation and digestion with Kpn I. Digested DNA was then 
run on a preparative agarose gel, and the desired 2.4kb vector fragment 

excised and Qiaex purified (section 2.2.8.2). 

Ligations (long vector DNA in a 20pi reaction) were performed using 

fragments prepared by both methods and transformed into competent cells 

(Table 3.8A). Individual colonies (fifteen from each ligation containing insert 

DNA) were then used to prepare miniprep DNA, undigested DNA being 

analysed on an agarose gel to determine if plasmids contained any insert 

DNA, the results of which are shown in Table 3.8B. 

Positive clones were then restriction mapped to characterise the insert 

(Figure 3.9A). Putative positive miniprep DNAs were double-digested with 

EcoR I and BamH I, a digest which should result in fragments of 2.8 and 3.3kb 

after cleavage at an EcoR I site present in the 3' plasmid polylinker and a 

unique BamH I site within intron A of the insert. BamH I was chosen because 
it is possible to distinguish between Ren1d  and Ren-2 in this region using this 

Biotinylated PCR Product Intron C PCR Product 
Ligation Conditions Colonies Ligation Conditions Colonies 
Vector only -ligase 2 Vector only -ligase 1 
Vector only +ligase 55 Vector only +ligase 70 
Vector + Insert (2:1) 2160 Vector + Insert (2:1) 643 
Vector + Insert (5:1) 2100 Vector + Insert (5:1) 346 

L!i
I-,]  

Miniprep Origins Colonies Containing Insert DNA 
Biotinylated PCR Product (2:1) 
Biotinylated PCR Product (5:1) 

3(20.0%) 
6(40.0%) 

Total 9/30 (30.0%) 

Intron C PCR Product (2:1) 
Intron C PCR Product (5:1) 

2(13.3%) 
0 ( 0.0%) 

Total 2/30( 6.7%) 

Table 3.8: Transformation results and positive clones recovered from ligations 
containing the 5 homology arm: A) Table showing the number of colonies observed when 
50% of each ligation was transformed into DH5 competent cells. B) Fifteen minipreps were 
prepared from each plate containing vector plus insert. An aliquot of DNA from each was 
run on a gel, clones containing inserted DNA running at a higher molecular weight. The 
number of clones containing insert DNA is given (out of fifteen) and as a percentage in 
brackets. 
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Figure 3.9: Mapping of putative p5Arm clones: A) All eleven insert containing clones 
(and vector pSP72polyl) were restriction digested with BamH I and EcoR Ito confirm that 
the inserted DNA was R en 1d derived. Lane 1= lambda Hind Ill/EcoR I digested DNA, 
I ane 2-12= insert-containing miniprep DNAs, Lane 13= pSP72polyl and Lane 14= lambda 
I find III/EcoR I digested DNA. B) Three clones (and the vector pSP72polyl) were then 
further restriction mapped by digesting with Xba I plus Kpn I (Lanes 1-4), Hind III 
1 anes 5-8) and Pvu II (Lane 10-13). Lane 1, 5 and 10= miniprep DNA 3.1, Lane 2, 6 and 
11= miniprep DNA 7.1, Lane 3, 7 and 12= miniprep DNA 12. 1, Lane 4, 8 and 13= pSP72polyl 
and Lane 14= undigested pSP72polyl. 

enzyme, cutting once in Ren1d  and four times (one common and three novel 
sites) in the equivalent Ren-2 region. Digestion of the vector DNA 

(pSP72polyl) with the same enzymes should result in a single fragment of 

2.4kb (lane 13). The results show that each DNA is only cut twice and is 

therefore Ju ] I  derived 



Three clones were further restriction mapped (Figure 3.9B). A 

Xba I/Kpn I digest was used to excise the insert (expected fragments of 2.4 

and 3.7kb corresponding to the vector and insert respectively) to confirm that 

neither site had been destroyed as a result of cloning the DNA fragment (this 

would suggest that an unusual insertion event had occurred and these clones 

would not be used in subsequent stages). Hind III was used to confirm that 

the clones contained renin sequences, as both renin genes contain two 

restriction sites (in intron A and intron B) and therefore, digestion of plasmid 

DNA should result in two fragments of 2.8 and 3.3kb. To confirm that the 

insert DNA was Ren1dderived a Pvu II digest was performed. A Ren-1' 

clone should contain two Pvu II sites (both in intron A) whereas Ren-2 

contains only one (intron A). A Ren1d  clone would therefore contain two 

fragments of 2.1 and 4.0kb. All clones showed the restriction pattern 

expected from a Ren-1' insert and it was decided that clone 3, named 

p5'Arm 3.1, would be used for subsequent cloning stages. The cloning vector 

pSP72polyl contains no Pvu II sites therefore the vector runs as undigested 

plasmid (compare lane 13 with lane 14). From preliminary mapping by 

restriction digestion all three clones gave the correct patterns and it was 

decided to continue with clone 3 which was named p5'Arm 3.1. 

3.4.2 Fragment Preparation and Cloning of the 3' Arm 

The 3' homology arm was cloned (Figure 3.10) into Kpn I and 

Hind III-digested pSP72poly4. As reported above, the cloning of the 5' PCR 

product was problematical and the same was also true for the 3' homology 

arm. PCR-amplified material using primers JJM189 and JJM204 proved 

impossible to clone, therefore since biotinylation of one of the PCR primers 

proved most efficient in the cloning of the 5' homology arm, it was decided 

to try a similar approach for the cloning of the 3' arm. 

A new biotinylated exon 4 forward primer (JJM210, biotinylated Ren-1' 

exon 4 primer; Figure 2.4) was synthesised, new PCR material was amplified 

with this primer and the Ren1d  and Ren-2 exon 9 primer (JJM204; Figure 2.4), 

and attempts were made at digesting the DNA as described in section 2.2.7.3. 

This strategy proved unsuccessful because the desired fragment was never 

released from the magnetic beads, presumably because Kpn I was not cutting 

at the Kpn I recognition site introduced in the PCR primer. Here the Kpn I 

site was only two bases from the 5' end of the primer (as opposed to fourteen 



in the 5' arm biotinylated exon 3 primer, JJM213) and it may have been this 

alone or in combination with steric hindrance caused by the 

biotin/streptavidin molecules that blocked Kpn I digestion. 
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Figure 3.10: Cloning of the 3' homology Arm: The 3 PCR product was cloned into 
Kpn I and Hind 111-digested pSP72poly4 after restriction digestion of the PCR product with 
Kpn I, a site being present within the forward PCR primers (JJM189, JJM210 or JJM224;) and 
at a Hind HI site present within intron G to produce the plasmid p3'Arm. 
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A second primer was then synthesised spanning the same Ren1d 

homology but including nine bases upstream of the Kpn I site (JJM224, 
extended Ren.1d  exon 4 primer; Figure 2.4). PCR material generated with 
this primer and the Ren1d and Ren-2 exon 9 primer (JJM204) was digested as 
described in section 2.2.7.2. Digested DNA was then run on a preparative 

agarose gel, the desired 3.6kb fragment excised and purified as described in 

the Amicom Spin Columns protocol (section 2.2.8.3). 

Ligations were performed using lOng (20j.il reactions) of the previously 

tested, vector DNA (section 3.3). Figure 3.11A shows the resultant colony 

numbers, of which twenty-five were miniprepped, and the plasmid DNA 

restriction digested with Sal I and Xho I (each enzyme cuts once in the 

plasmid polylinker at either end of the homology arm, in effect excising the 

insert). pSP72poly4 DNA (vector DNA) was cut with each enzyme 

separately to confirm that they were active (lanes 15 and 16). Figure 3.11B 

shows twelve such digests with nine (75%) containing an insert (3.6kb) of the 

correct size (vector fragment is 2.5kb). In total eighteen (72%) out of the 25 

clones screened contained insert DNA. 

Three clones were further restriction mapped (Figure 3.11C). Putative 

positive miniprep DNAs were mapped by restriction digestion with the 
enzymes EcoR I, Sac I and Pst I. EcoR I cleaves once in the plasmid polylLnker 

at the 3' end of the insert and once in intron E in the centre of the insert 

resulting in two fragments of 1.5kb and 4.6kb. Restriction digestion with 
Sac I should result in two fragments of 2.1kb and 4.0kb as a result of cutting 
at the Sac I sites present in the insert (intron E and exon 7). The 3' homology 

arm contains four Pst I sites (intron D, two in intron E and intron F) with 

none being present in the plasmid vector. Such a digest would therefore 

result in four fragments of 0.3, 1.3, 1.7 and 2.8kb. The cloning vector 

pSP72polyl contains no Sac I or Pst I sites therefore the vector runs as 

undigested plasmid (compare lanes 8 and 13 with lane 14). 

From preliminary mapping by restriction digestion all three clones gave 

the correct patterns and it was decided to continue with clone 4 which was 

named p3'Arm 4.1. Since this region of the gene contains few polymorphic 

restriction sites, it was not possible to prove that the cloned fragment was 
derived from Ren1d, however this was later confirmed by sequencing of the 
3' arm (section 4.3). 
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Figure 3.11: Transformation results and mapping of putative p3'Arm clones: A) Table 
showing the number of colonies observed when 50% of each ligation was transformed into 
DH5 competent cells. B) Twelve of the twenty-five miniprepped DNAs restriction digested 
with Sal I and Xho I to excise the inserted DNA, if present. Lane 1= lambda Hind III/EcoR I 
digested DNA, Lane 2-13= miniprep DNAs 1-12, Lane 14= Sal I and X ho I digested 
pSP72poly4, Lane 15= Sal I digested pSP72poly4, Lane 16= Xho I digested pSP72poly4, 
Lane 17= undigested pSP72poly4 and Lane 18= lambda Hind III/EcoR I digested DNA. C) 
Three clones (and the vector pSP72poly4) were then further restriction mapped by digesting 
with EcoR I (Lanes 1-4), Sac I (Lanes 5-8) and Pst I (Lane 10-13) Lane 1, 5 and 10= miniprep 
DNA 3.1, Lane 2,6 and 11= miniprep DNA 4.1, Lane 3,7 and 12= mirüprep DNA 5.1, Lane 4, 

nd I 3= pSP72poIy4 and Lane 14= undigested pSP72polv4. 
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3.5 Discussion 

Throughout this chapter the amplification and subsequent cloning of 

homology arms generated by PCR has been described. The two regions of 

4.3 and 4.7kb, were amplified from P1 template DNA using the proof -
reading enzyme UlTma. Amplicons were then subjected to restriction 
digestion to facilitate the cloning of two fragments, each of about 3.7kb, for 
use as the 5' and 3' homology arms. 

The successful amplification (from P1 clones) and cloning of PCR 

products several kilobases in length, is a step towards an alternative strategy 

to that of cloning homology arms from genomic clones. Since these PCR 

reactions were performed, several papers have been published in which the 

further optimisation of PCR has been reported (321-323). One paper reports 

the amplification of up to 15kb from genomic DNA or 40kb from a lambda 
clone using a mixture of Taq and a proof-reading enzyme, Pfu (321). It is 
believed that this is more efficient because Taq is responsible for the majority 

of the DNA synthesis whereas the proof-reading enzyme excises any 

misincorporated residues. In other words, the high processivity of Taq is 
combined with the mismatch editing of a proof-reading enzyme. 

Experiments in our laboratory using the ExpandTM PCR kit (Boehringer 

Mannheim) which utilises a mixture of Taq and the proof-reading enzyme 
Pwo, have lead to the successful amplification of large fragments (up to 9kb) 
from genomic DNA (M. Sharp et al., personalcommunication). This would 
allow the building of targeting constructs without the need to identify any 
genomic clones. 

This system offers several advantages over the more commonly used 

strategy including; 1) the ability to introduce restriction sites for cloning of 

material and screening of ES cell DNAS, 2) the ability to use highly isogenic 

DNA, as homology can be amplified directly from ES cell DNA and 3) the 
requirement for minimal mapping data, e.g. a cDNA sequence and 
preliminary genomic map for the design of primers, prediction of amplicon 

sizes and the development of a screening strategy. 

Although not straightforward, it has been possible to clone PCR 

generated homology arms. The next chapter describes the construction of a 
Ren1d directed targeting construct using the two homology arms described 
in this chapter. 



CHAPTER 4 
Construction of a Ren-id Targeting Construct 

4.1 Introduction 

In this chapter the construction of a Ren1d directed gene targeting 
vector is described. This was built using the two homology arms described 
in Chapter 3 and a PGK-neopA selection cassette. As the homology arms 
were generated by PCR, the introduction of mutations during the reaction 
was possible. This would reduce the homology thereby affecting the 

targeting efficiency and therefore an estimation of the error rate in the 3' Arm 
PCR reaction was determined. 

4.2 Construction of a Ren-id Knock-Out Vector 

Each cloning step in the assembly of pRineoKO, a Ren1d directed 
targeting construct, is detailed in a figure in each of the corresponding 

results sections (4.2.1-4.2.3). Briefly, 'a new polylinker was cloned into 

p5'Arm 3.1 before sequential addition of the 3' arm and PGK-neopA selection 
cassette. 

4.2.1 Insertion of a Modified Polylinker into p5'Arm 

In order to introduce the 3' arm into the targeting construct it was 

necessary to introduce a new polylinker fragment into p5'Arm (Figure 4.1). 

Vector DNA (p5'Arm 3.1) was either digested with Kpn I followed by 
precipitation and Not I digestion or Not I digested followed by precipitation 
and Kpn I digestion. This was because the two sites are close to each other in 

the polylinker and it was not known how efficiently either enzyme would 

cut in a second digestion step as the site would be close to the end of the 

linear molecule. Vector DNA was then run on a preparative agarose gel, the 

desired 6.1kb fragment excised and purified as described in the Amicom 
Spin Columns protocol (section 2.2.8.3). 
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Figure 4.1: Insertion of a new polylinker into p5'Arm: A pair of self complementary 
oligodeoxynucleotides (see Figure 2.6 for oligodeoxynucleotide sequences and the restriction 
sites that they contain) were annealed and cloned into Kpn I and Not I digested p5Arm 3.1 as 
described in section 2.2.9.2. The sequences of the oligonucleotides were designed in such a 
way that both cloning sites were destroyed (indicated by A symbol) when inserted into the 
piasmid. 
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Ligations were set up using lOng (20j.tl reactions) of each prepared 

vector DNA using molar ratios of 5:1, 50:1 or 500:1 (insert:vector). Part of 

each ligation (lOjil) was then transformed into competent cells and plated 

out. Both methods of vector preparation showed a low background, with the 
Not I followed by Kpn I digestion being optimal. Significantly more colonies 

were seen on plates with vector plus oligodeoxynucleotide insert at 50:1 and 
500:1 ratios (both preparations). 

Miniprep DNA was prepared from eighteen colonies and then 
restriction digested with Pvu II. p5'Arm, the vector DNA, contains two 
Pvu II sites (in intron A) whilst the inserted oligodeoxynucleotides introduce 

a third site which should therefore produce three fragments (1.4, 2.1 and 

2.7kb) when run on an agarose gel. Figure 4.2A shows the results of these 
digests alongside a Pvu II digest of the parental plasmid p5'Arm 3.1 (lane 20; 

fragments are 2.1 and 4.0kb). Of the eighteen clones screened, seven (39%) 

showed the same restriction pattern as the parental plasmid while the other 

eleven (61%) clones had the three fragment pattern expected from clones 

containing the oligodeoxynucleotide insert. 

Three clones were then subjected to further restriction mapping 

(Figure 4.2B) to confirm the presence of other restriction sites required for 

subsequent cloning steps, and run in parallel with similarly digested 

parental plasmid (p5Arm 3.1). This was done using a series of double 
digests using Xba I and a second enzyme which cut in the new polylinker 
(Sal I, Not I, Kpn I and EcoR I). Xba I cleaves this plasmid once in the plasmid 
polylinker at the 5' end of the homology arm. Sal I, Not I, Kpn I and EcoR I 
should all be unique, cutting at the 3' end of the homology arm in the newly 

inserted polylinker fragment. Therefore, digestion with Xba I and either 
Sal I, Not I, Kpn I or EcoR I should result in two fragments corresponding to 
the plasmid (2.5kb) and the homology arm (3.7kb). 

All plasmids showed the correct patterns and it was decided to use 

clone p5'Arm.MP 1.1 in subsequent cloning steps. Note that Xba I/Not I, 
Xba I/Kpn I and Xba 1/EcoR I digested plasmids do not differ from the 
parental plasmid because these new sites (Not I, Kpn I and EcoR I) were also 
present in the old polylinker removed from the parental plasmid 

(p5'Arm 3.1). Therefore the confirmation that the new polylinker was 

present was only determined by the presence of newly introduced Pvu II and 
Sal I sites. 
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Figure 42: Mapping of putative p5Arm.MP clones: A) All eighteen clones (and the 
vector p5'Arm 3.1) were restriction digested with Pvu II to confirm that the inserted DNA 
was renin derived and contained an extra Pvu II site, present in the new polylinker. 
Lane 1= lambda Hind III/EcoR I digested DNA, Lane 2-19= miniprep DNAs 1-18, 
Lane 20= p5'Arm 3.1 and Lane 21= lambda Hind Ill/EcoR I digested DNA. B) Three clones 
(and the vector p5'Arm 3.1) were then further restriction mapped by digesting with Xba I 
plus Sal I (Lanes 1-4), Xba I plus Not I (Lanes 5-8),Xba I plus Kpn I (Lanes 10-13) and Xba I 
plus EcoR I (Lanes 14-17). Lane 1, 5, 10 and 14= miniprep DNA 1.1, Lane 2, 6, 11 and 
15= miniprep DNA 2.1, Lane 3, 7, 12 and 16= miniprep DNA 4.1, Lane 4, 8, 13 and 
17= p5Arm 3.1 and Lane 9= lambda Hind III digested DNA. 

4.2.2 Insertion of 3' Arm into p5'Arm.MP 

To create a plasmid containing both the Ren1d  homology arms, the 

3 arm was cloned into the plasmid p5'Arm.MP (Figure 4.3). As problems 
had been encountered with Kpn I digestion at sites near the ends of linear 
DNA molecules, it was decided that vector DNA (p5Arm.MP1.1) would be 

digested firstly with Kpn I followed by EcoR I digestion. Digested DNA was 

run on a preparative agarose gel, the desired 6.2kb fragment excised and the 

fragment Qiaex purified (section 2.2.8.2). 
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Figure 4.3: Subclonmg of the 3' homology arm into p5'Arm.MP: Vector DNA was 
prepared by digesting p5'Arm.MP 1.1 with EcoR I and Kpn I. The 3' arm was prepared for 
cloning by restriction digesting the plasmid p3'Arm 4.1 with Kpn I before partially digesting 
with Mun I. 
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1.9kb 

1.4kb 

0.8kb 

0.6kb 

The insert DNA (3' arm) needed to be prepared by M u n I partial 
digestion of Kpn I digested p3'Arm 4.1. This was done by Kpn I-digesting 
40p.g of p3Arm 4.1 which was then precipitated and digested in a total 

volume of 240tl with 40 units of Mun I. Aliquots (30j.il containing 5j.tg DNA) 

were taken at various time points (0, 4, 8, 12, 16, 20, 30, 40 and 60 minutes) 

and the digestion stopped by pipetting into a tube containing EDTA. An 

aliquot (0.5 jig) of each time point was run on an agarose gel (Figure 4.4). As 

can be seen, the digest was complete after 12 minutes (lane 4) with the 

majority of partially digested fragments being visible at 4 minutes (lane 2). 

The remaining DNA from the "4 minute" time point was run on a 

preparative agarose gel, the desired 3.6kb fragment was excised, and the 

DNA prepared using Amicom Spin Columns (section 2.2.8.3). 

Ligations were set up using vector DNA (lOng in lOjil reactions) and 
the purified Kpn I/Mini I (partial) 3'Arm fragment. These ligations yielded a 

1 2 3 4 5 6 7 8 9 10 11 

Figure 4.4: Partial A on I digestion of Kpu I-digested p3Arrn 4.1. Aliquots of a .\Iiiii I 
digest of Kpn I-digested p3Arm 4.1 were removed at 0, 4, 8, 12, 16, 20, 30, 40 and 60 minutes 
and an aliquot of each time-point was run on an agarose gel. Lanes 1-9= a 0.5.tg aliquot 
from time points 0, 4, 8, 12, 16, 20, 30, 40 and 60 minutes respectively, Lane 10= p3Arm 4.1 
cut to completion with Kpn I plus Mon I and Lane 11= lambda Hind III/EcoR I digested 



3-fold increase in colonies compared to the background observed in "vector 

only plus ligase" reactions. Miniprep DNA was prepared from eighteen 

colonies and then restriction digested with Pst I. The parental plasmid 
(p5'Arm.MP 1.1) contained only one Pst I site (intron A) and the insert 
contained four Pst I sites (intron D, two in intron E and intron F) which 

would result in a single fragment of 6.2kb from parental plasmid (lane 20) 

and five fragments of 0.3, 1.2, 1.7, 2.9 and 3.7kb from the new construct. 

Figure 4.5A shows the restriction pattern observed for each clone. Of the 

eighteen clones screened, sixteen (89%) contained insert DNA. 

Three clones were further mapped (Figure 4.5B) by restriction digestion 
(Sal I/Xho I, Not IIXho I and Pvu II,). The two double digests were 
performed to confirm that the Not I and Sal I sites required for the final 
cloning step were still present. Xho us a unique site in the 5' polylinker 
upstream of the 5' homology arm and when used in combination with Not I 
or Sal I, it should produce two fragments, the 5' homology arm (3.7kb) and a 

larger one containing the plasmid vector and 3' homology arm (6.1kb). These 

sites should also be unique in the parental plasmid (p5'Arm.MP 1.1; lanes 4 

and 8) resulting in fragments of 3.7kb (5' homology arm) and 2.5kb (plasmid 
vector). Pvu II cuts at three sites in p5'Arm.MP (once in the polylinker 

fragment which will separate the 5' and 3' homology arms and twice in 

intron A) and does not cut in the 3' arm. Therefore, upon correct insertion of 

the 3' arm, the 2.7kb fragment observed in a digest of the parental plasmid 

should increase to 6.3kb with the other two remaining the same (1.4 and 

2.1kb). All three clones show the correct patterns for all three sets of digests 

and clone 2, named pR1KO 2.1, was chosen for use in the final cloning step. 

4.2.3 Insertion of PGK-neo into pR1K0 

The final step in the construction of the Ren1d targeting construct was 
the insertion of a selectable marker, PGK-neopA into pR1KO (Figure 4.6). 

Parental plasmid DNA (pR1K0 2.1) was either digested with Not I 
followed by Sal I or digested with Sal I followed by Not I because of the 
problems associated with digestion close to the end of the linear molecule. 

Both vector DNAs were then run on a preparative agarose gel, the desired 

9.8kb fragments excised and Qiaex purified (section 2.2.8.2). 
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Figure 4.5: Mapping of putative pR1KO clones: A) All eighteen clones (and the vector 
p5Arm.MP 1.1) were restriction digested with Pst I to confirm that the new plasmids 
contained both the 5 and 3 renin derived homology arms. Lane 1= lambda Hind Ill/EcoR I 
digested DNA, Lane 2-19= miniprep DNAs 1-18, Lane 20= p5Arm.MP 1.1 and 
Lane 21= lambda Hind III/EcoR I digested DNA. B) Three clones (and the vector 
p5Arm.MP 1.1) were then further restriction mapped by digesting with Sal I plus Xho I 
(Lanes 1-4), Not I plus Xho I (Lanes 5-8) and Pvu II (Lanes 10-13). Lane 1, 5 and 10= miniprep 
DNA 1. 1, Lane 2, 6 and 11= miniprep DNA 2. 1, Lane 3, 7 and 12= mmiprep DNA 3. 1, Lane 4, 
8,13 and 17= p5'Arm.MP 1.1 and Lane 9= lambda Hind III digested DNA. 

Ligations were set up using both vector preparations (40ng in 20j.tl 

reactions) with insert DNA and a fraction of each was transformed into DH5 

competent cells and plated out. Both vector preparations gave low 

backgrounds and both also gave a 7-fold enrichment when insert DNA was 

included. Sixteen colonies were miniprepped and the DNA double-digested 
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Figure 4.6: Insertion of the PGK-neopA selection cassette into pR1KO: The 1.9kb 
PGK-neopA Not I/Sal I fragment preparation used in the Ren-2 targeting construct 
pR2neoKO (JJM-156) (286) was also used to construct the Ren1d targeting construct. This 
was ligated into Not I and Sal I-digested pR1KO 2.1. 

with Not I and Sal I, a combination which should excise the 1.9kb PGK-neopA 

fragment (vector plus 5' and 3' homology arms is 9.8kb). Figure 4.7A shows 

the result where 13 (81%) of the 16 colonies tested were positive for the insert 

DNA (note that the positive clones have two fragments corresponding to the 

parental plasmid (lane 18) and the insert DNA (lane 19), which were also run 

on the gel). 
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Figure 4.7: Mapping of putative pRlneoKO clones: A) All sixteen clones (and the 
vector pR1KO 2.1) were restriction digested with Not I plus Sal Ito excise the inserted DNA, 
if present. Lane 1= lambda Hind Ill/EcoR I digested DNA, Lane 2-17= miniprep DNAs 1-16, 
Lane 18= pR1KO 2.1, Lane 19= 200ng Not I/Sail PGK-neopA fragment (insert DNA) and 
Lane 20= lambda Hind III/EcoR I digested DNA. B) Three clones (and the vector 
pR1KO 2.1) were then further restriction mapped by digesting with Xho I (Lanes 1-4), EcoR I 
(Lanes 5-8), Sac I (Lanes 10-13) and Asc I plus Mlu I (Lanes 14-17). Lane 1, 5, 10 and 
14= miniprep DNA 5.1, Lane 2, 6, 11 and 15= miniprep DNA 6.1, Lane 3, 7, 12 and 
16= miniprep DNA 7.1, Lane 4, 8, 13 and 17= pR1KO 2.1 and Lane 9= lambda Hind III 
digested DNA. 

Three clones were further mapped (Figure 4.713) by restriction digestion 
(Xho I, EcoR I, Sac I and Asc I/Mlu I). Insertion of the selectable marker 
introduces a second Xho I site present at the 5' end of the PGK-neopA 
fragment. Therefore, upon Xho I digestion, parental plasmids will only have 

one fragment of 9.8kb while the new plasmid will have two fragments of 3.7 

and 8.0kb. The parental plasmid contains two EcoR I sites (in the 3' 
polylinker and in intron E of the 3' arm) and the final construct should 

contain an additional site at the 3' end of the PGK-neopA selection cassette. 



Therefore, parental plasmids should contain two fragments of 1.5 and 8.3kb 

while the new construct should contain three fragments of 1.5, 2.2 and 8.0kb. 

Both parental and new plasmids contain three Sac I sites (central polylinker 
fragment which ends up between the 5' homology arm and the 5' end of the 
PGK-neopA selection cassette, intron E and exon 7). However, after digestion 
the parental fragment of 1.4kb in size should increase by 1.9kb to 3.3kb.with 

the other two fragments remaining the same (2.1 and 6.3kb). An Asc I/Mlu I 
digest was also performed to check that these sites were unique in the 

plasmid. Each enzyme should cut once resulting in two fragments 

corresponding to the plasmid vector DNA (2.4kb) and the targeting construct 

fragment to be electroporated into ES cells (9.3kb; lanes 14 to 16) or 7.4kb 
from the parental plasmid (lane 17). 

All clones gave the correct patterns for all four digests and clone 5, 

named pRlneoKO 5.1, was alkaline lysis maxiprepped and caesium chloride 

double banded (sections 2.2.11 and 12) ready for electroporation into ES cells. 

4.3 Sequence Analysis of the 3' Arm 

As the proof-reading DNA polymerase LII Tma was used in preference 
to Taq in order to keep the number of errors introduced in the PCR step to a 

minimum (or none), the entire 3' homology arm was sequenced so that it 

could be compared with the corresponding sequence from strain 129/01a 

mice. Unfortunately, the 129/01a sequence has not been published and was 

therefore also required for this comparison. This sequence was obtained by 

direct sequencing of PCR product generated by amplification from P1 -1249, 

the P1 clone used as a template for the generation of all cloned material. All 

sequencing was performed as described in section 2.2.15 using the AB1377 

automatic sequencing apparatus (Applied Biosystems), ABI sequencing kits 

(Applied Biosystems) and the sequencing primers shown and listed in 
Figure 2.8 and Table 2.9. 

The aim in this sequencing project was, wherever possible, to produce a 

"contig" for each region with at least 2-fold coverage on each strand. A 

summary of the two sequencing strategies is shown in Table 4.8. This was 

achieved in the case of the cloned 3' arm in the targeting construct but was 

not possible when PCR product was sequenced directly due to problems 

obtaining sequence at the ends of the PCR product and difficulties 
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Sequencing of Cloned 3' 
Arm 

Direct Sequencing of 3' Arm 
PCR Product 

Total No. of Runs 66 64 
Average Run Length 412 460 

Cover Above Threshold 99% 87% 
Cover Below Threshold 0% 1% 
Only on One Strand 1% 12% 
Only Sequenced Once 0% 0% 

Table 4.8: Summary of 3' homology arm sequencing strategies: Targeting construct, 
pRlneoKO 5.1 and PCR product were sequenced as described in section 2.2.15. The 
number of reactions performed and the average sequence length is given for each project. 
During sequencing of the cloned 3' arm in pRlneoKO 5.1 almost all of the sequence was 
covered above the threshold set (twice on each strand). Only 55 bases at the extreme 5' end 
of the homology arm were not sequenced on both strands (due to the lack of an appropriate 
sequencing primer). The direct sequencing of the PCR product was more problematical as 
only 87% of the sequence was covered above the threshold set. Of the remaining sequence, 
12% was sequenced on one strand only and 1%, although sequenced on both strands fell, 
below the thresholds set. 

sequencing a polyG tract in intron E (DBA/2J sequence contains 12 G 

residues). 

As mentioned above, problems were encountered with the sequencing 

of a polyG tract and this is thought to be due to errors in the PCR reaction 

rather than an artifact of the sequencing reaction. Figure 4.9A shows a 

sequencing trace going through the polyG tract using the targeting construct 

as a template. Here, fifteen G residues can be seen clearly, with the sequence 

after these residues being easy to read as well. Figure 4.9B shows a 

sequencing trace using the same primer with the PCR product. In this case, 

no sequence can be read after the G residues and many shadow peaks can be 

seen at -1 and +1 positions, and often -2 and +2 as well. This suggests that a 

heterogeneous population of PCR products is generated in the PCR reaction 

since sequencing of the cloned material posed no problems. By looking at 

the sequence of the PCR product, at least twelve real peaks can be seen and 

the possibility of a thirteenth cannot be ruled out. However, from this plot 

(and others) it does not appear that there are more than thirteen, the extra 

peaks, in actual fact, being false, shadow peaks. 
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Figure 4.9: Sequencing of the polyG tract in intron E using sequencing primer JJM 267: 
A) Extract of the sequence trace obtained when sequencing the targeting construct, 
pRlneoKO 5.1. Fifteen C residues can be seen with following sequence also easily read. B) 
Extract of the sequence trace obtained when sequencing the PCR product directly. An 
uncertain number of C residues (probably 12 or possibly 13) can be seen with following 
sequence being impossible to read. 

To prove that the PCR product was in fact a heterogeneous population, 

the two extra 3'Arm clones which were mapped in section 3.4.2 were 

sequenced using the same primer p3'Arm 3.1 was found to contain twelve 

12 
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residues and p3'Arm 5.1 contained eight G residues thus supporting this 

hypothesis. In an attempt to solve these problems, new PCR product was 
generated using Taq DNA polymerase. When this was sequenced, the same 
staggering of bands was observed suggesting that this is a problem common 
to different thermostable DNA polymerases. 

The two consensus sequences were aligned to identify any mismatches, 
i.e. errors, which had arisen during the PCR reactions, and a summary is 

given in Table 4.10 (The actual alignment is shown in Figure 4.11). In total 

there are 11 differences between the two sequences, a sequence similarity of 

99.7%, with the longest uninterrupted region of homology being 1.2kb, 

situated in the centre of the homology arm. 

A comparison was also made between the published DBA/2J sequence 

(89) and the newly determined 129/01a sequence (Figure 4.11). Here, 28 

differences (99.2% identity) were identified (Table 4.10). This figure may be 

even lower, as many of the differences occur in CC-rich regions which can be 

difficult to sequence since they result in compressions. As many as fifteen of 

these differences reside in CC-rich regions (at least two C or C residues 

together), and if all of these are the results of sequencing compressions a new 

estimation of the identity is 99.6%. This means that rather than being 

isogenic, the 3' homology arm used, actually displays a similar degree of 

sequence identity to that of a closely related strain. Targeting results 

obtained using constructs built with non-isogenic DNA have been published 

(275) and generally show a lower targeting efficiency although clones 

undergoing homologous recombination can still be identified. 

Type of Mutation 129/01a Cloned DBA/2 Published 
Base-Pair Substitution 
Base-Pair Deletion 
Base-Pair Insertion 

7 
1 
3 

10 
13 
5 

Total 11 28 
% Similarity 99.7 99.2 

Table 4.10: Summary of differences between the cloned 3' homology arm and the 
corresponding DBA/2 region compared to the 129/01a PCR sequence: Differences within 
the 129/01a Cloned and DBA/2 Published sequences are divided into base-pair 
substitutions, deletions and insertions and their corresponding numbers are given. 
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AGCTACATCAGAACGCTCCGACTTCACC A T C CACTACGGATCAGGAAAGTCAAAGGCTTCCTCAGCCAGCACGTCCT 80 
l29/OCIo.,.d AGCTACATGGAGACGGGTCCGACTTCACCACCTACGGATCAGGAAGAGTCAAAGGCTTCCTCAGCCGGACGTGGT 
29/OI 	PC A C C C A C A T C C A C AA A C C C C T C C C A C T I C A C C A TT 

C C
C AA C T A C C C A I C A C C A A C A C I C A A A C C C I I C C T C A C C C 

AA 
 C C A C C T C C I 

DBA/2 PbI .h.d A C C T A C A I C C A C A A C C C C T C C C A C I I C A C C A I C C A C T A C C C A I C A C C A A C A C I C A A A C C C T I C C I C A C C C A C C A C C I C C I 

CACICICACIACCAICCCCTCIATITACC 	ACACCCCCCATCTCCT TCCACACACCIATACTCCACCCCTCCTCCCIACC 160 
l29/OI 	CIon.d C A C T C I C A C I A C C A I C C C C I C I A I I I A C C C A C A C C C C C C A I C T C C T T C C A C A C A C C T A T A C T C C A C C C C T C C T C C C I A C C 
l29/OIoPA 
08Al2 Pbfl.b.d 

C A C I C I C A C I A C C A I C C C C I C I A I I I A C C C A C A C C C C C C A I C T C C I T C C A C A C A C C T A C A C T C C A C C C C T C C T C C C I A C C 
C A C I C I C A C I A C C A I C C C C I C I A T I I A C CDA C A C C C C C C A I C I C C I T C C A C A C A C C T A T A C T C C A C C C C T C C T C C C I A C C 

C C T C C C A C TCCTCICCACCACCCTCCCAACTTCAACTCCACCCTCC 1TCCCACCTTCTTCIACCICAACCTCCCAAC 	CC 20 
I29OIo Ctn.d C C T C C C A C T C C T C T C C A C C A C C C T C C S A A C I I C A A C T C C A C C C T C C I T C C C A C C I I C I I C I A C C I C A A C C I C C C A A C C C C 
l29/OIPCR 
08C12 PI.h.d 

C C T C C C A C T C C T C T C C A C C A C C C T C C C AA C I I C A A C T C C A C C C T C C I T C C C A C C I C C I T C T A C C IC A A C CT C C C A A C C C C 
C C I C C C A C I C C I C T C C A C C A C C C T C C C A A C IT C A A C T C C A C C C T C C I I C C C A C C I I C I T C IA C C IC A A C C T C C C A C COC C 

A A I T C 	A C C A C A C C 	A C A C C I C C I C A C A C I C A I C C A C A A C C C I T T C C A T C I A A C I T C C C T C I C C A T C I C T C C C I A A A C C C 320 
I29/DI 	CI,.d A A I T CA C C A C A C C - A A A C C I C C I C A C A C I C A I C C C C A A C C C T I IC C A I C IA A C I I C C A T C T C C A T C I C I C C C T A A A C C C 
l29/QI 	PCR 
O&A/2 Pbfl.h.d 

A A I I C C A C C A C A C C - A A A C C T C C T C A C A C I C A T C C A C A A C C C I T I C C A T C T A A C I I C C A I C I C C A I C T C I C C C I A A A C C C 
A A I T C C A C C A C C C CA CA C C I C C I C A C A C I C A I C C A C A CC C C I T I C C C I C IA A C I ICC A I C I C C C I C T C I C C C T A A A C C C 

C ACACIII CCITCC TACTAAC CAC T 	TCAC III CCIAAIICACAC C CCCI1TCCACTAC ICACCI TACCAA IC ACCCCTI 400 
I29/OI 	CI.,.d C A C A C I I I C C I I C C T A C T A A C C A C I C T C A C T I I C C I A A I I C A C A C C A C C I I T C C A C T A C I C C C A I T A C C A A I C A C C C C T I 
I29/OI 	PCR C A CACTI ICC TTCC TA CIA A C C ACT C ICC C 111CC IA A IT CCC A C C A CCII ICC A C TACT C A CCI TA C C CA IC A C CCCII 
DBA/2 PbH.h.d C A C A C T I T C C I I C C T A C T A A C C A C T C T CCC I T I C C I A A T T C CCC C C CCC I I T C C A C T A C T C A C A I T A C C CA IC A C C C C 

T C I C I C C C C C C C C T T I T C A I T I C T I I C C I I C A C T C T C I A A C C C T C T I C T C C C A I A T C I C A C C C C C C C I C T C I C A C A C C A A 480 
29/ho CIood T C I C I C C C C C C A CI T T I C A I T IC T I T C C I I C A C IC I C IA A C C C I C I T C I C C C A I A I C I C A C C C C C C C T C T C I C A C A C C A A 
29/ho PCI T C I C I C C C C C C C C T I I I C A I T I C T I I C C I I C A C I C I C I A A C C C T C 1 T C T C C C A I A I C I C A C C C C C C C T C T C I C A C A C C A A 

DBA12 PbI.h.A T C IC IC C C C C C ACT T TIC A IT IC T T T CCI IC A C IC IC TA A C C C T CT T C T C C C A IA T C T C CCC C C C C C IC IC IC A C CCC A A 

CACAAACACCCATACACACCTC 	ACACCCAAICACTCCCACCCCIICCCICCCACICCCCCCC 	CCAAICICCCC 	A 	CC 560 
129/hto CIo.,.d C A C A A A C A C A C C T C C A C A C C T C C A C A C CC A A I C A C I C C C A C C C C I I C C C I C C C A C I C C C C C C C T C C A A T C T C C C C C A C C C 
129/ITo PC 
OBA/2 PobIlCh.d 

C A C A A A C A C C C A T C C A C A C C T CA C A C CA A A I C A C I C C C A C C C C I I C C C I C C C A C I C C C C C C C T C C A A T C I C C C C 	A C C C 
C A C A A A CC CCC AT A C A C A C CT CDA C A C C CA A IC ACT C C C A C C C C 11CC C ICC C A C ICC C C C C CJC C A A IC T C C C C - ADC C 

Coo.,... CCACAA 	CC 	ACCCCTCCT 	ATCACCACC 	CATCCTCACCCICCCCTCCICCC 	CIACCACCAAACCCCC 	CICIACCA 640 
29/ho CIo..d C C A C A C A C C CA A C C C C ICC T 1 A T CCC CCC C C C A T C C IC A C C C I C C C C I C C I C C C C C T A C C AC CA CA C C C C CC I C I CCC A 

129/ho PC C C A C A C A C C 	A C C C C I C C I I A I C C C C A C C 	C A T C C I C A C C C T C C C C I C C I C C C C C T C C C A C C A C A C C C C C C C I C I A C C A 
BA/2 PthIlh.d C C A CA AQC C - - A C C C C ICC TC ICC C C A C C - CA ICC IC A C C C ICC C C ICC ICC GO 	TA C C A C C RCA C C C C C C C IC TA C C A 

C.000 CITCCCCICACCTCTCTCCCACCCCCICTITCTCCCCCTIIATACCATCCCTCCCCCCCAICICICTCCCCCCCCCCC 720 
129/Olo CIoo.d A C C I I C C C C I C A C C I C I C I C C C C C C C C C I C I I I C I C C C C C I I I C I A C C C I C C C I C C C C C C C A I C I C I C I C C C C C C C A C C C 
129/Olo PC' A_C C I I C C C C I C A C C I C I C I C C C C C C A C C I C I I I C I C A C C C I I I C I A C C C I C C C I C A C C C C C A I C I C I C I C C C C C C C C C C C 
DBC/2 PobIlh.d JC TIC C C C T 

	
C CCI C IC I C C C CCC CCCI C 111 C IC CCC C 111 CIA CCCI CCCI C CCC C C C A IC IC IC ICC C C C C C CCC C 

Co.,..n.I. A I C C C C C I C I I C I C A C I C I C I C I C C C C CC 1 1 C A C C C A C I C C I C I I A A C I C C I C I A C C C C C C C I C I C I C I C I C I C C I C C C C 800 
129/Olo Ciooed A I C C C C C I C I I C I C A C I C I C I C 1 C C A C AC I I C A C C C A C I C C I C I I A A C I C C I C I A C A C C C C C I C I C I C I C I C I C C I C C C C 
129/Tb 	PCR A I C C A C C I C I I C I C A C I C I C I C T C C A C AC I I C A C C C A C I C C I C I I A C C I C C I C I A C A C C C C C I C I C I C I C I C I C C I C C C C 
COC/2PobIi.h.d A TACCCCTCIICICACICICI CTCCCCACI ICC CCCCCICCIC I IA CC ICC ICIACCC CCCCICICIAIC IC ICC ICCCC 

Co.,R.o.I. TCCICICC CACCCCCCCC CCC ICC CCCCC AACC TTCCCC CCICCCC ICICIC CC TICI CCIIC TICIC ICA CACCICCCI 880 
129/01oCinood ICCICICCACCCCCCCCCACAICCCACCCAACCIICCCCCCICCCCICICICCCIIC1CCIICI1CICICACACCICCCI 
29/01. PC ICCICTCCCACCCACACCACATCCCACCCAACCIIACCCCCICACCICICICCCIICICCT1CIICTCTCACACCICCCT 

OOC/2PAb1I.hed ICCTATCCCACCCACACCACAICCCACCCAACCIIACCCACIACCCICICTCCCTICICCTICTICICTCACACCTCCCT 

Con.,.o CCACICAC ICTCCCCCACACCIIICCACACCICACCCACCICCCCCICCICCCTIICCICCICCCCACCIIICCCCCICI 960 
129/010 CIoo.d C C A A I C A C I C I C C C C C C C C C C I I I C C A CA C C I C A C C C A C C I C C C C C I C C I C C C I I I C C 1 C C I C C C C C C C I I I C A C C C I C I 
129/010 PC I C C CA IC A C IC I C CC CC CC A C C I II C C CCC CCI C CC C C CC C I C C C C C I CC I C C C I I IC C I C C I C C C C C CC I I IC A C C C I C I 
OBA/2 P.bI boh.d C C A C I C A C I C I C C C C C C C A C C I I I C C A C A C C I C C C C C C C C I C C C C C I C C I C C C I I I C C I C C I C C C C A C C I I I C A C C C I C I 

CoTT..,000 C C TCCCCA ICCCC 111CC ICC ICACCCCC I ICCCCCCCI1CCC CCI CIC I IICACCCC CI ICICICC CACC CCCICC ICC 1040 
129/OioCbon.d CCTCCCCATCCCCIITCCTCCTCACCCCCIICCCCCCTIACCCTCICITICACCACATTC1CICCCACCCCCTCCTCC 

C C ICC CCCI C C C C 111CC 
TT 

	IC A C C CCCII C C 
CC 
 C C C C 11CC C 

CC 
 C IC IC 111CC C C CCCII C IC ICC C CCC C C C ICC ICC 129/OIoPCR 

06912 PbIboh.d C C ICC C C C ICC C C 111CC ICC IC A C C CCCI ICC C C C C C 11CC C C C I C IC 1 11CC C CCC CII C IC ICC C CCC CCCI C C IC A 

Coo..o.00 ACCCCCACCICIICICICICIACIACAAC 	CCICCCCCIIICACCCCACCCCCCCCCC ACCCACCCCICCACACCACCCA 1120 
129 /ho Cbo.,.d A C C C C C C C C I C I I C I C I C I C I A C I C C A A CDC C I C C C C C I I I C A C C C C A C C C C C C C C C C A C C C C C C C C I C C A C A C C A C C C A 
129/blo PCR A C C CC C CA C I CI I C IC IC I C I AC I CC CCC C CC I C C C C C I I I C A C A C C A CCC C C CC C C C C C C C CCC C C I CCC C A C C C C C C C 
CRC/2 PbI b.h.d C C C A C C C C C I C I I C I C I C I C I A C I C C A CC C C C I C C C C C I I I C A C C C C C C C C C C A C C C C C C C C A C C C C I C C C C A C C A C C C C 

C000.n.o. C C C C A C C C A C C C I C C C C I I C C C C A I I I A I C I C C I T C I C A I I A C C I C C I I C I C 	C I C C C C C I C I A C A A C C C C C C I C C C C A A 1200 
I29/OIoCI,.d CCCCACCC ACCCTC CCCII CACAO IT TA1A1CC I1CTAA1 IACGICGIICT C3CICCCCA1C1ACA ACCACAC IAOCCAC 
129/lb 	PCR C C C C A C C C C C C C I C C C C I I C C C C C I I I C I A I C C I I C I A C I I A C C I C C I I C I C C C I C C C C C I C I A C A C C C C C C C I A C C C A A 
ORA/2 Plbbboh.d C A 

	
C CCC C A C C C IC CCCI ICC C C A I II Al A ICC II C ICC I ICC C IC CII C T 

	
C C ICC C CCI C T 

	
C CCC CCC AC ICC C CCC 

Cco....00 I I A C A C C C A C I C C C C C I C A A C C C I I C C C I C C C C A C C C C C I C C C C C C C C C C A C C C A C C C C C C I I C C I C C C I I I C I I I C I C 1 12 8 0  

29/ho CIo.d I I A C C C C C C C I C C C C C T C A A C C C I I C C C I C C C C A C C C C C I C C C C C C C C C C A C A C A C C C C C C I I C C I C C C I I 
TG 

 I I I A TCT 
29/I10 FCC I I A C A C C C A C I C C C C C I C A A C C C I I C C C I C C C C A C C C C C I C C C C C C C C C C A C C C A C C C C C C 1 1 C C I C C C I I I C I I I A I C I 

DeC/2 Pubbbsh.d 11CC CCC CCCI C C CCCI C A CCC Al ICC CI C C C C CCC CCC ICC C CCC CCC C A C CCC C C C CCC 11CC ICC C I I IC II TA IC I 

Coo..o.o. C I I C I C C I I C C I C C C C I I A C I C C I C I C I I C C C A I C I C C I C I C C I C C C C I C C C C C C C I C C C C C C I C A C C C C A C C A C C C C I C 1 360 
129/OIo0o.,.d CTTCTCATICCICCCC1IACICCTCICITCCCAICTCCTCTCC1CCCCICCCCCCCTCCACCCICCACCCACCACCCCIC 
129/OIoPCR CIICICCTICCICCCCTTACICCICTCTTACCCICICCTAICCICCCCICCCCCCCICCCCACTCACCACACCACCCCTC 
OTC/2 PbIi.h.A CII C ICC I ICC ICC C C 11CC I C C I C IC II CCC C IC ICC IC ICC ICC C C ICC CCC C C IC C CCC C ICC CCC C CCC CCC C C IC 

Coo..C. C C C T C C CI CC TCCC ACACC IC CCI CCCCC CCCC CCCACAICACCCC TACCAC CCCATC ACICCCCIICICACCCICCACA 1440 
129/OboCloo.d CCCICCCTCCTCACACACCTCACICCCCACCACCCCACAICACACCIACCACACACTCACTCCCCTICIAACCCICCACA 
129/010 PC C C C IC C C I C C IC C C A CA C C I C AC I C C C C C C C AC C C C A CA ICC C C C C I AC C C C CC A C I C C C IC C C C I IC IC A C C C I C C A C A 
BA/2 Pobi I.C.0 C C C ICC CT C C ICC C CCC C C IC AC I C C C C CCC CCC C C CCCI C CCC C C ICC CCC CCC CI C A 	C CCCII C ICC CCCI C C A C A 

Cono.o. ICCIIIICACIICTACCCCCCCC1ICTCCCCACTICACCCCCCCCICCCCAAACICICCICACTCCCCCACCAC 	C 	ICC 1520 
129/OioCioo.d ICCIIIICACITCTCCCCCRCCAIICTCCCCCCIICACCCCCCCCICCCCAAACICICCICACTCCCCCCCCACCCCTCC 
129/OIoPCR 
DBA/2 Pbbb.h.d 

TCCIIIICACIICICCCCCACCAIICTCCCCCCTICACCCCCCCCICCCCAAACTCICCTCCCICCCCCCCCCCCCCTCC 
ICC 1111 C CCII C ICC C C C CCC CII C ICC C C A C I IC A C C C CCC C C I C C C C CCC C IC IC C ICC C ICC C C C CC CA CJCtJI C C 

C0001.o. CCICICC I CCCCCICCCICCC TITACCAC IAICCIC IACCC ICCCCCIACCAIC lIlA C CCCICCCAAIAC CCCCCCCCC 1600 
129/OioCbon.d CATCICCICCCCCICCCICCCTIIACAAAIATCCICTACCCICCACCIAACAICTTIACCCCICCCAAICCCCCCCCCCC 
b29/O1oPCR CCI C ICC ICC CCCI C C C ICC CIII CCC ACT Al C C IC ICC C C ICC CCCI CCC A IC III CCC C C ICC CCCI CCC C C C C CCC C 
09C/2 Pobbboh.d CAT C ICC I C C CCCI C C C ICC C IlIAC ARC TAT C C IC ICC C C ICC CCCI CCC Al C lIlA C C C C ICC CCCI CC CCC C C CCC C 

CO.,.100. C I C C I C C C A C I C C C C C C C A C I C C I C I C C I C C C C C C C I C I I C C C C C A C C C A C C C C I C I C I C C A I C C I C C C I C I C C C A C C C r 1 680 
29/Ito Cboo.d C I C C I C C C A C I C C C C C C C A C I C C I C I C C I C CC C C A C I C I I C C C C C A C C C C C C A C I C I C I C C A I C C I C C C I C I C C C A C A C I 

129/Ito PC9 
DRA/2 Poblb.h.d 

C ICC ICC CCCI C C CCC C C A C ICC IC ICC IC CCC CCCI CIT CCC C C CCC C CCC ACT C IC T 
	

C RICA ICC C IC ICC C A CCCI 
C ICC ICC CCCI C C CCC C C ACT C C IC ICC I C C CCC ACT C 11CC CCC CCC C CCC CCI C IC ICC RICA ICC C IC ICC C A CCC I 

Con..n.o. Coo..0000 h1T.o oil tcb TA. r..b. of Rh. Cono.o... oh.. TA. —.do. of TA. Con..o.oA. oth.rob.. oh.. 

0.corot CI, 'D.corot bo d.fb I: Boo r..i.. that dl lf.r Tm. IA. C001wau.. 

Figure 4.11: Three way sequence comparison between the 129/01a cloned sequence, 

the 129/01a PCR sequence and the DBA/2 Published sequence: The three sequences are 
shown above together with the consensus sequence. Any bases which do not match the 
129/01a PCR sequence are boxed and no consensus base is given at this position. Continued 
on the next page. 
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T C T A T C C A A A C A C C C C C A T A C A C C C A A T C A C A C C A C T C C S A S C C T C C T S C A S A C A A A C C T C I I S C C A c I C I C T I T C A A A C 17 60 

I29/OICI.,.d 
I29/OI 	PCR 

TCI5TCCAAASA5CGGCAIISACCCAATCACACCACICC5ASCCTCCT5CASICAAISCTCTISGSACTCISTTTCAAAC 
A C I S T C C A A A S A S C S C C A I I S A C C C A A I C A C A C C A C T C S S A S C C A C C A S C A S I C A A T C C I C T I S C C A C T C I C A I T C A A A S 

08*/2 P4fl.h.d A C I C T C C A A A C A S C S S C A I I S A S C C A A A S A C A C C A C T C S S A S C C A C C T S C A S I C A A T C C T C T I S S S A C T C I A T T T C A A AC 

ACACCACAAAAACAAACIGTCTAACASTSSAASTACAISICACAAACCCCSACCCCGSACTCCCCAAAATCTCGGCASTT 180 

l29/Oh CIA..d A S A C C A S A A A A A C A A A S I S I C I A A C A S T C C A A S I A C A I S I C A S A A A S S S S S A A C S S S C A C I C C S C A A A A A S T S S C C A C I T 
129/OIoPCR A S A C C A C A A A A A C A A A C I S I C I A A C A C I C C A A S I A C A I S I C A C A A A S C S S S A S C S C C C A C I C C S C A A A A T S T C C C C A CIT 
SAUl Pbh.h.d A C A C C A C A A A A A C A A A C I S I C I A A C A C I S S A A S I A C A I C I C A C A A A C S S C S A S C S C C S A C I C C S C A A A A T S T C C C C A C I A 

CISSAAAIICAACASCCAASSACATCISSCCCACASAACCCCACACCSSASSTSGSICCICIAAACSCTACACCAICCT 1920 

129/OIA Cl.d C I C S A A A I I C A A C A S C C A A S C A C A T C I 5 C S A C A S A S A A S C C S C A C A S C S C A S C T S C C I C C A C I A A A C C C I A C A C C A I C C T 
129/OIoPCR C I S S A A A I I C A A C A S C C A A S S A C A A S I SC S C C A S A C A A S C C C C A S A C C S C A S S T S C S T C C I C I A A A C S C T A S A C C A I S CT 
DBA/2PAAh.h.d C ICSAAAI T C A A C ACCGAACSACATCISSGCCA SASAASCGSCAGASCSCASSTSCCI CC AC IAAACCC TACACCAICC T 

ISASCAAISCTCTSSCTSSAASAASCASACCTSISSAAAACACATCCATGASSCICACAASCASCASCCCISCAACSCAT 2000 

l29/OIACIo,.d TSASCAAISCTGICSSTCCAASAACCA5AGCTGI55AAAACACAICCATCA5CCICACAA5CASCACCCCICCAA;CGAT 
129/OIoPCR I C A S C A A T C C T S I S S C A S S A A S A A C C A S A C C T S I S C A A A A C A C A T C C A A C A S C C I C A C A A S C A C C A S C C C A S C A A C SCAT 
ABA/2 PbI.h.d T C A C C A A T C C A S I C C C I C C A A C A A C C A S A S C I C I S C A A A A C A C A I S C A A C A S C C I C A C A A S C A S S A S C C C A S C A A C C CAT 

CACSACCCAGCAACAGGIAGCAASCASICC TSSSAACCASACACCTCCTTCCITICCC TISCSCIGSSAASAAACGAASA 2080 

01. CI.d 1 29 C A C S A C C C A S C A A C A C S T A S C A A S C A S I C C A S S S A A C C A S A S A C C I S C A T C C I T I C C C T I S A S C T S S S A A S A A A C C A A S A 
129/OIA PC A C A C S A C C C A SC A A C A GA T A C C A A S C A C I C C A S S C A A C C A S A S A C C I S C I T C C I T I C C C T I S S S C T S S C A A S A A A C C A A S A 
ABA/2 P.bI .h.d C A C S A C C C A C C A A C A C C I A C C A A S C A S I C C A S S S A A S C A S A S A C C A S C A T C C I T A C C C T T C S S C I S C S A A C A A A C C A A C A 

CAA..nSA. IC TASATA ASTCAC ICAC ICT IACACASAACC T STSIAC ACC T A A C CCATSIACATAI CISC AC AIACA 	AISISTSITC 2160 

l29/OIACIo.Ad TCTASATAACTCACTSACICTICCACACAACCTSTSIACACCTAACCCAISTACATAISISCACAIACACAICICTSITC 
129/Sb 	PAR T C I A C A T A A C T C A C A S A C I C I I C C A C A C A A C C A C T S I A C A C C T A A C C C A I S T A C A T A I S I C C A C A A A C A C A I C I S T A I T S 
ABA/2 P.bI.K.d T C I A S A I A A C T C A C I S A C I C T I C C A C A S A A C C T 6 T S I A C A C C I A A C C C A I S I A C A T A I S A C C A C A I A C AWA A S I S A A ITS 

CA...n.A. I S A A T T C I A A C A A A C I C C 	 I C A T A T A C A C A A C A C T A I C T T A A A A C C A 	C C C A A S C C A 	 I C C I C A C C I 	A C S A A S C A I C A I 220 

129/Ok,CIAA.d ISAATTCIAACAAACICCIICATATACACATSACTAICTTAAAACCASCCCAASCCA5ICCCACCI5AGSIA5CAICAI 
129/Ok, PC 
06AJ2 PAAH.h.d 

I S A A T T C I A A C A A A C I C C I I C A A A T A C A C A T S A C T A I C I T A A A A C C A S C C C A A S C C A S I C C 
TT 
 C A S C I S A S S A A S C A A C A I 

I S A A T T C I A A S A A A C I C CI C A I A T A C A C A I C A C T A I C I T A A A A C C AOC C C A A S C C A 
	

l C C I C A S C TmA S S T A S C A I C Al 

S C C C C T C C A C A C A C A A S I S A C C S T A S T C A S C A C T S S C T C C S A A C C A C A C C C T C S C I C C A S C C A T T T S C A C A C I C A C A T C C 2320 

129/Olo CIo...d GCCC G T GGAIAIA C A A S T C A C C C T A C T C A S C A C T S C C T C C S A A C S A C A C C C T S S C I C C A S C C A T T T S C A C A C I C A S T T S C 
129/Olo PC R C C C C C T S S A S A S A C A A S T S A S C S T A S T C A S C I C I S S C T C S S A A C S A C A S C C I C S C I C C A A C C A T T T S C T C A C I C A S T T C C 
ABA/2 PAbI.h.d S C C C C T S S A C A C A C A A S I S A C C S T A C T C A S C I C T S S C T C C S A A C S A C A C C C I C S C I C C A C C C A T T T S C T C A C I C A S I T S C 

Can..n.A. C I S C C S S S A C C C S C 	 I S I C A A A A I T A A C C I C I A C C A A A C A A C C C T I S C T S A I I C T I I C C T A C C A A 6 	T C T C C C C T C I C 2400 

129/OIA C I S C C C S S C C S C C CJT C A C A A A A I T A A C C I C T A C C A A A C A A C S S T A S C T C A I I C A I A C C T A C S A A C C T C I C C C C T C IC 
129/Sb 	PC R C I S C C C S S C C C C C C - - - I C T C A A A A I T A A C C I C T A C C A A A C A A C C C T T S C T C A T T C T T T C C T A C C A A C C T C I C C C C T C I C 
06Al2 PobIh.d C I S S C C S A C S C S C C . . - T A I S A A A A I T A A C C I C T A C C A A A C A A C S S T T S C T C A T I C T T T C C T A C C A A CDT C T C C C C T C A C 

CAn..n.. I 5 1 C C C I C I I I S C C T C A S C A S A A A I C A C A A S S A C S C A C C A S C C C C A T A I C S C C C C A A 	C C I C C A A T A C T T C C C 	C A C C C T 2480 

lAS/CIA CIAn.d I S I C C C I C I I I C C C I C A S C A A A A A I C A C A A S S A C S C A C C A C C C C C A T A I S A C C C C A A 	C C I C C A A T A C T T C C CLflC A C C C A 
lAB/CIA PCB IS ICC CT CAT 

T 	
CC AC A SC A CA A AT CT C A ASS ASS SAC C A CCC C C A TAT SACC C C A A - GC 	CC A A TACT T C C C A C A C C CT 

SCAlA PAAIIBh.d I 5 ICC C I C 1 11CC C T C A S C AS A A A I C T C A A GSA CCC ASS A CC C C C A T A ICC C C C C A A 	C IC C A A T A C T A C C C A SAC C C 

CAAB.nBAB I A C C C T S A A A I A A I A C C C A C C A C C C A C A C A C I C C A I T C A I 	 A S A C C C A A C I C C A C T A A A I C I C T S C C T T C I C C C T A S I C 2560 

lAB/AlA CIAn.d IA C C C TAG A A TA A IA C C C A C C A C C C A C A C A C IC C A IT C A Tm- A CCC C CA A C ICC A C TA A A ASIC ICCC T T C ICC C TACT C 
129/IIoPCR 
ABA/2 PbII.h.d 

IACCCTSSAAICAIACCCACCACCCACACACICCATTCAIC -ACSCCCAACICCACTAAAICTCISCCTTCICCCTASTC 
TA C C C ISA A A TA A IA C C C A C C A C C C A C A C A C IC C A IT C Al CmA CCC C C A A C ICC A C TA A A IS IC 15CC 1 T C T C C C TACT C 

C..AAA. T C C A C A T G CCCACSAAASACS TSA TIACC C ACT TCTC TAC A T C T A C C C A A TSICC TTCACC T A G A C ACIIT IC TCCSTSC 2640 

I29/OIoCI,.d ICCACAICCCCACSAAASACSTCAITTSCCACTTSICTSCATCIACCCAATCICCTISASCIASACASIIATCTCGGIGC 
29/DIAPCR ICC 

ACA 
 TCCCCASSAAASACSTCAIITSCCACTTSICTCCAICIACCCAATSICCTTSASCIASACASIITICISGSTAC 

DBA/2 P,blishd TCCACAICCCCASSAAASACCISATTTSCCACTTSICIGCATCIACCCAAISICCTI5AGCTASACA5IITTCISSGICC 

CooBBA. A C C 1 6 A A C A S T C C I A S A A A I A C I T C I C I T A C A I T A A S A A A S S A I C C A C C A A S S C A A C A I S C A A I A S S S I C T S T S I S C C T C 2720 

;
29/ 1. CIon.d A C C T C A A C A S T C C I A C A A A I A C I T C I C I T A C A I T I A A A S A S S A I C C A C C A A C C C A A C A T C C A A I S S C S I C T S I S I A C C T C 

1A9/010 FCC A ASIC A A CAST C CIA SA A A IA CIT C TAT TA CAT TI AC C SACS A ICC A CC A A ASS A A CA T SC A A TSSCC T 
	

TS T SICCC IC 
OBAJAPAbIIBA.d AACICAACAGTCCIASAAAIACITCTCTIACATTIACAAA55AICCACCAASC5AACATCCAAISCS5TCTCISICCCTC 

Coo.000A. C I C A T C A C A C C I I A C A S C C I T C C C A I C I A C C C A C I A A A C C C I T C C I C T A I C C C A A A C I C C T C I S C C C I A C C C C A C A C C A 5 2800 

129/OIoCIoo.d CTCATCACASCTIACASCCITSCCAICIACCCACIAAACCCTTCCTCTAICCCAAASICCICTGCCCIACCCCACACCAC 
129/0Io FCC CT CATS A C A CC TI AC A CCCI TA C C A ACT A C C C A C TA A A C C CIT C C IC TAT C C C A A A SICC T C ICCC CIA C C C C A C A C C AS 
ABA/2 PAbllBh.d C TS A TA A C A SC I IA C A SC C IT G 

	
C A IC IA C C C A C TA A A C CCI T C C T CIA IC C C A A A G 	C C T C ICCC C IA C C C C A C A C C AS 
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;
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129/Obo FCC 
OBA/APAbIIBh. d  

A SACS C A AASIC C IA C I AC S A SAC ACT CA C C C S C AS C A A T A C C A A S SC A A T T T T C A C T Al S T GA A C A T C AC C A A C A C I CA 
ACSSSCGA ASIA SIACIACSASCC ACICACCC S CAGC AT TACCAAGCCAAT T TTCAC AATSTAACCA TCASCAASAC ISA 
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129/OboCboo.d TCCCCCCAISAAAATIISACSAISGCAASAAASSSACICASCSAAASSASCCACASACCCCASSCIACATSCTSAISCAA 
129/Obo FCC A SC CC SC A ISA A A A I I I S A CS A IS GSA AS CA A S SC A C IC A SC CA A A 55 A SCASS A S A C C S SACS C IA C A T S C T CA T S C A A 
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4.4 Discussion 

In this chapter the construction of a RenTId  directed gene targeting 
vector is reported. This construct, pRineoKO, contains a total of 7.3kb of 
homology and a PGK-neopA cassette for selection of G418-resistant ES cell 
colonies. 

The discovery that the cloned 3' homology arm contains eleven 

mismatches was unexpected. In a similar experiment within the laboratory, 
the 3' homology arm of a Ren-2 directed targeting construct which was 
amplified using the proof-reading enzyme Pfu (Stratagene) contained no 
errors compared with the 129/01asequence for that region (M. Sharp et al., 
unpublished data). Even if Taq had been used, calculations using published 

error rates and template doubling estimations (324) suggest that only 3-5 

errors could be expected. An explanation for this has been published 

recently. Here the author determined the error rates for many thermostable 
DNA polymerases, both proof-reading and Taq (324). In general, these 
results show that proof-reading enzymes have a lower mutation rate than 
Taq. However the highest mutation rate of all (5.0x10 5) was found for UlTma 
(compared to 8.OxlO 6  for Taq). Chine suggests that this may be related to the 
structure of UlTma. Most other proof-reading enzymes are unique proteins 
isolated from different thermophillic bacteria whereas LIiTma is a genetically 
modified version of a Taq like enzyme (Tma) created by removal of the N-
terminal portion of the protein. He suggested that although this enzyme 

now possesses a 5' to 3' proof-reading activity (at significantly lower levels 

than other proof-reading enzymes) it may have a much reduced specificity 

for the incorporation of the correct nucleotides in the 3' to 5' direction. 

Although not straightforward, it has been possible to build a targeting 
construct from PCR generated homology arms. Sequencing of one of these 
arms reveals that the PCR reaction using UlTma has resulted in the 
introduction of errors reducing the isogenicity of the homologous DNA. 

These mutations may lead to a reduced targeting efficiency but previous 

studies performed using non-isogenic targeting constructs still resulted in 

targeted clones (275). Confirmation of this would come from the next step of 

the project which was to generate targeted ES cells. 
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CHAPTER 5 
Generation and Transmission of a Ren-id Null 

Mutation 

5.1 Introduction 

Having built a targeting vector, the next step in this project was to use 
the construct to disrupt the Ren1d  gene in ES cells and subsequently to 
derive new mouse lines from these cells. After targeting construct DNA had 

been electroporated into ES cells and the drug-resistant colonies selected, it 

became necessary to distinguish between clones in which the targeting 

construct had inserted randomly and the desired clones in which 

homologous recombination had occurred. The standard procedure for 

screening for targeted events is Southern blot hybridisation (although PCR 

based strategies can also be used). Screening by Southern blot hybridisation 

involves identifying the predicted homologous event in both the 3' and 5' 

arms of homology using probes external to the homology present in the 

targeting construct. 

In this chapter the screening of G418-resistant ES cell clones and 

transgenic mice by Southern blot hybridisation is described. Firstly, ES cell 

DNAs were screened allowing the identification of clones in which the 
Ren1d gene was disrupted. These cells were then used to generate chimaeric 

mice which were bred to produce pups showing coat colour transmission. 

Pups were then screened by Southern blot hybridisation for inheritance of 
the Ren1d null allele and animals containing this engineered gene were used 

to produce homozygous and more heterozygous offspring. After extensive 

breeding and screening enough animals were generated and genotyped for 
subsequent analysis. 

Since the Ren1d  and R e n-2 genes display such strong sequence 

similarity it may be possible to get aberrant gene targeting, (i.e. the 
disruption of the Ren-2 gene with the Ren1d  targeting construct) and also 
means that most genomic probes will detect both the Ren1d  and Ren-2 genes. 
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A previous paper by Miller et al. (287) reported successful targeting of the 
Ren1d locus without observing any aberrant targeting within the Ren-2 gene. 
Sharp et al. (286) reported similar observations concerning the targeting of 

the Ren-2 gene. This suggests that the mechanism which differentiates 

between truly homologous sequences and similar sequences is highly 

specific and can differentiate between the two genes. The screening strategy 

is common to both renin gene targeting experiments and must distinguish 

between all four possible results, i.e. the endogenous Ren1d  and Ren-2 genes 

as well as the corresponding targeted alleles. Figure 5.1 shows a simplified 

graphic representation of the screening strategy showing only the predicted 

fragment sizes for the endogenous and targeted Ren1d  gene. These do, 

however, differ from the expected Ren-2 endogenous and targeted fragment 

sizes, all of which are summarised in Table 5.1D. Figure 5.1 shows the 5' 

screening using Sac I, however EcoR I should give similar results. 

5.2 Identification of Ren_id +1- ES Cells 

Passage 24 E14Tg2a ES cells (291) were electroporated with 150j.tg of 

Asc I/Mlu I digested pRineoKO DNA. After eight days selection in ES cell 

medium containing G418, well separated colonies were picked and 

expanded in 24 well plates, where possible splitting for freezing and DNA 

preparations. Not all colonies were suitable, due to contamination, failure to 

grow or growth at a slow rate (probably due to seeding at too low a density). 

This left 313 clones (passage 26) suitable for subsequent analysis (Table 5.2 

summarises the ES cell culture results). 

5.2.1 Test Southern 

During the initial screening experiment it was intended to load as many 

samples onto a gel as possible to speed up the procedure. A test Southern 

blot hybridisation was performed to determine if both, or either, of the 

digests (Sac I and EcoR I) to be used in conjunction with the 5' "external" 

probe allowed identification of targeted ES cell clones when digests were 

only run a short distance into the gel. This was done by blotting wild-type 

129/01a DNAs and DNAs from ES cells and mice in which the Ren-2 gene is 

known to have been disrupted (286). In each digest the two endogenous 

fragments are of similar sizes and migrated as a doublet. Therefore, to show 
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Digest Endogenous Targeted Endogenous Targeted 
(Probe) Ren-Id Ren-id Ren-2 Ren-2 
Sac 1(5' Probe) 6.7kb 4.6kb 7.0kb 4.911-b 
EcoR 1(5' Probe) 8.7kb 7.6kb 9.3kb 8.2kb 

Pvu II (3' Probe) 10.5kb 8.5kb 7.8kb 5.6kb 

Figure 5.1: Screening strategy for the identification of Ren1d  targeting events: A) The 
Ren-1' locus is shown along with the position and sizes of the endogenous Sac I and Pvu II 
fragments detected using the 5' and 3' "external" probes respectively. B) The Ren-1'1  
targeting vector fragment (Asc I and Mlu I digested pRlneoKO) which was electroporated 
into ES cells. C) The Ren..ld -I- allele expected after homologous recombination in both 
homology arms is shown. The position and sizes of the novel Sac I and Pvu II fragments 
detected using the 5' and 3' "external" probes respectively are also shown. Restriction sites 
are P= Pvu II and S= Sac I (not all restriction sites are shown). D) Predicted fragment sizes 
from targeted and endogenous Ren-1' and Ren-2 genes when the listed enzymes are used to 
digest DNA before hybridising with the 5' or 3' "external" probes. 

that the chosen 5' probe (a Ren-2 genomic fragment) hybridised satisfactorily 

to Ren-1' sequences, negative 129/01a liver DNA was spiked with 1 or 10 

copy number equivalent of Ren1d  (pRn34) or Ren-2 (pRen2-5'XK) containing 

plasmids (each of which migrated at a different size to the endogenous 

fragments). 
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Stage Number of Colonies 
Total Colonies Picked 
- Lost due to Contamination 
- Lost due to Failure to Grow 
- Lost due to Very Slow Growth Rate 

432 
- 	 8 
-84 
-27 

Total Colonies for Screening 
- DNA Preparations Lost 

313 
- 9 

Total Number of Clones Screened 304 (100.0%) 
Clones Positive by 5' Screen 4 

( 	 1.3%) 
Clones Positive by 3' Screen 3 

( 	
1.0%) 

Clones Injected Into Blastocysts 2 

Table 5.2: Summary of ES cell culture and screening: A total of 432 colonies were 
picked for subsequent screening. After losses due to contamination, failure to grow or loss 
of DNA pellets, 304 colonies were screened with the 5' 'external" probe. Four of these were 
positive, three of which were also targeted in the 3' arm. After blastocyst injection of two of 
these clones, one transmitted the disrupted gene through the germ-line. 

This test blot (Figure 5.3) shows that, as expected, the Ren-2-derived 5' 
probe hybridises satisfactorily to both Ren1d and Ren-2 sequences as 
expected (lanes 1-4 and 12-15). The plasmid pRen2-5'XK contains unique 
EcoR I and Sac I sites resulting in a hybridising fragment of 12.3kb in each 
digest. The Ren1d  derived plasmid (pRn34), however, contains one Sac I site 
and two EcoR I sites, therefore the probe detects a full sized, 9.4kb fragment 
in the Sac I digests and a smaller, 5.2kb fragment in the EcoR I digested 
DNAs. 

The EcoR I digests do not seem to be informative as no additional 
fragment can be seen in the lanes containing Ren-2 targeted ES cell DNAs 
(lanes 9-10). The Sac I digests, however, do show the presence of an extra 

fragment (lanes 19-21). For this reason it was decided to do the routine 

screening of the ES cell clones by probing blotted Sac I-digested DNA with 
the external 5' probe. As the targeted fragment is well separated from the 

endogenous fragments (which appear as a doublet) it was decided to run 
samples double loaded, i.e. run with two sets of samples loaded 10cm apart. 

It should be noted that the high molecular weight fragments hybridising in 

lanes 6 and 8 are due to the fact that the tail DNAS were not digested. 
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Figure 5.3: Test Southern blot hybridisation: EcoR I- (Lanes 1-10) and Sac I-digested 
(Lanes 12-21) and Southern blotted DNAs from a wild-type 129/01a mouse liver either, on 
its own, or spiked with a Re n 1d (pRn34) or Ren-2 (pRen2-5'XK) containing plasmid. Also 
included were a nontargeted ES cell DNA (P5A6), ES cell DNAs in which Ren-2 had been 
targeted (P2A1 and P5A5 (286)) and tail DNAs from a wild-type 129/01a and Ren-2 targeted 
mouse (ear tags 524 and 526 respectively (286)). Lane 1 and 12= wild-type 129/01a liver 
DNA spiked with 1 copy of pRen2-5'XK, Lane 2 and 13= wild-type 129/01a liver DNA 
spiked with 10 copies of pRen2-5XK, Lane 3 and 14= wild-type 129/01a liver DNA spiked 
with 1 copy of pRn34, Lane 4 and 15= wild-type 129/Ola liver DNA spiked with 10 copies of 
pRn34, Lane 5 and 16= wild-type 129/01a liver DNA, Lane 6 and 17= tail DNA 524, Lane 7 
and 18= ES cell DNA P5A6, Lane 8 and 19= tail DNA 526, Lane 9 and 20= ES cell DNA 
P2A1, Lane 10 and 21= ES cell DNA P5A5 and Lane 11= lambda Hind III digested DNA. 
These samples were run in conjunction with lambda Hind III, the positions of the fragments 
being shown on the left hand side of this figure. 

5.2.2 Southern Blot Analysis of ES Cell DNAs 

ES cell DNAs were digested with the restriction enzyme Sac I, blotted 
after agarose gel electrophoresis and hybridised with the 5' probe. An 

example of such an autoradiograph is shown in Figure 5.4. Clone 1D6 

(lane 9) has an extra fragment of approximately the right size to be indicative 
of a Ren1d targeting event. Three other such clones (5' targeting efficiency of 

1.3%) were identified, and were then screened for a homologous 

recombination event in the 3' arm by Southern blot hybridisation of Pvu II-
digested and blotted DNA (Figure 5.5). The results show that three of the 

four clones identified had also undergone homologous recombination in the 

3' arm (an overall targeting efficiency of 1.0%) and were therefore suitable for 

injection into blastocysts to generate chimaeric mice (Table 5.2). 
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Figure 5.4: 5 Screening by Southern blot hybridisation: Sac 1-digested and Southern 
blotted DNAs from G418 resistant ES cells clones elecroporated with the pRineoKO 
targeting construct. Wild-type 129/01a liver DNA was included as a negative control with 
DNA from ES cell clone P2A1 being a positive control (286), possessing a targeted disruption 
of the Ren-2 gene. Clone 1D6 appears to have undergone homologous recombination in the 
5 homology arm. DNA from ES cell clone 2A1 was lost during the preparation of the DNA 
therefore no fragments hybridise in this lane. Lane 1= wild-type 129/01a liver DNA, 
Lane 2= P2A1, Lane 3= lambda Hind III marker DNA, Lane 4-9= 1D1-1D6, 
Lane 10-16= 2A1-2A6 and Lane 17= 2131. These samples were run in conjunction with 
lambda Hind III marker DNA, the positions of the fragments being shown on the left hand 
side of this figure. 

At this stage it was possible to say that the three most promising clones 

had under gone homologous recombination in the 3' arm of Ren1d,  but at the 

5' end the situation was not definitive. It was possible to say that the 

construct had inserted into a renin gene. However, because the expected 

sizes of the targeted fragments are so similar in size and further, because the 

DNA preparations contain salt causing fragments of the same size to migrate 

varying distances it was impossible to size the fragments accurately at this 

stage. A more accurate and diagnostic Sac I Southern was performed later 
using mouse tail DNA preparations and will be discussed in section 5.3. 

5.3 Generation of Chimaeric Mice and Analysis 
of Progeny 

Two of the three correctly targeted ES cell clones were successfully 

defrosted and expanded, and cells from both clones were injected 

independently into mouse blastocysts (Table 5.2). Eighteen chimaeric 

animals were born showing the expected distortion of the sex ratio in favour 

of males (ES cells used were XY karyotype) as shown in Table 5.6. Male mice 
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Figure 5.5: 3' Screening by Southern blot hybridisation: Pvti II-digested and Southern 
blotted DNAs from wild-type ES cells (ES cell clones 2135 and 4C6), an ES cell clone (P2A1) 
known to contain a disruption of the Ren-2 gene (286) and the four ES cell clones which are 
believed to have undergone homologous recombination in the 5' homology arm (1D6, 2134, 
4C5 and 9135). Clones 1D6, 4C5 and 9135 have undergone homologous recombination 
between the 3 homology arm and the Ren1i  gene. ES cell clone 2D4 shows no band 
indicative of homologous recombination and has a larger fragment of 13.0kb hybridising to 
the probe, this fragment is of unknown origin and no further experiments were performed 
with these cells. Lane 1= P2A1, Lane 2= 2135, Lane 3= 4C6, Lane 4= 1D6, Lane 5= 2D4, 
Lane 6= 4C5 and Lane 7= 9D5. These samples were run in conjunction with lambda Hind III 
marker DNA, the positions of the fragments being shown on the left hand side of this figure. 

were bred with 129/Ola females in an attempt to get germ-line transmission 

of the targeted gene. Female chimaeras were not bred as they are often 

infertile (325). Of the fourteen male chimaeras, only two (2168 and 2175) 

produced pups showing coat colour transmission (both from clone 9D5). A 

photograph of male chimaera 2168 is shown in Figure 5.7. 
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Clone Male Female Total 

1D6 

9D5 

2 

5(2) 

2 

2 

7 

11 

Total 1 	14 1 	4 18 

Table 5.6: Summary of chimaeric mice: Eighteen chimaeric mice derived from two 
independent ES cell lines were born. These showed the expected distortion of the sex ratio 
(14 males:4 females). Two animals showed germ-line transmission of coat colour, with one 
of these passing the disrupted allele to its pups. 

Pups fathered by a C57BL/6J-derived  chimaeric mouse (and 129/01a 

mother) are either agouti or beige, the latter being the result of germ-line 

transmission of a complement of 129/01a chromosomes. The first three coat 

colour transmission pups born were shown, by way of Southern blot 

hybridisation, not to have inherited the disrupted Ren1d gene from their 

respective fathers (Figure 5.8). The next coat colour transmission pups were 

a litter of four and a single female pup. These were also screened by Sac I 

digesting tail DNA, blotting and hybridising with the 5 probe (Figure 5.8) 

and were found to have inherited the disrupted allele. 

4* 	. 	 I 

Figure 5.7: Chiiaeric dn1na1 2168. This animal was the transmittrng animal used to 
start the breeding colony when it passed the disrupted allele to five pups (2896-99 and 3193). 
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Figure 5.8: 5 Screening of coat colour transmission animals: Sac 1-digested and 
Southern blotted DNAs from pups showing coat colour transmission. The animals screened 
were 2552-3, 2896-9 and 3193 (fathered by chimaera 2168) and animal 2563 (fathered by 
chimaera 2175). Animals 2896-99 and 3193 had inherited a disrupted allele whereas animals 
2552-3 and 2563 had not. Heterozygous animals were then used to set up a breeding colony. 
Lane 1= 2896, Lane 2= 2897, Lane 3= 2898, Lane 4= 2899, Lane 5= 3193, Lane 6= lambda 
Hind lIl/EcoR I digested DNA, Lane 7= lambda Hind III digested DNA, Lane 8= 2552, 
Lane 9= 2553 and Lane 10= 2563. These samples were run in conjunction with lambda 
Hind III and lambda Hind Ill/EcoR I marker DNA, the positions of the lambda Hind Ill 
fragments being shown on the left hand side of this figure. 

5.4 Confirmation of Ren-id 5' Arm Homologous 
Recombination 

The recombination event in the 5' homology arm in section 5.2.2 could, 

theoretically, be the result of an aberrant targeting event in the Ren-2 gene. 
To prove that homologous recombination had occurred between RenT1d  and 
the 5' arm of the Ren1d targeting construct, a Southern blot (Figure 5.9) was 

performed using Sac I and EcoR I digested tail DNAs (5.Oj.t.g). Tail DNAs 
from both a Ren-2 and Ren1d  targeted heterozygote mouse were run in 

parallel lanes after restriction enzyme digestion. As an additional control, 

these two DNAs were also mixed with each other prior to digestion and 

electrophoresis. This was in case the two targeted fragments had migrated 

similar distances in which case it would be possible to see a doublet in the 

lanes containing both DNAs. 

The results of the Sac I digests proved conclusively that Ren-1" had been 

disrupted by homologous recombination. In all four digests (lanes 1-4) the 

two endogenous fragments (6.8 and 7.1kb) have been resolved and migrate 
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to a point above both the targeted Ren-2 fragment (lane 1) and the targeted 
Ren1d fragment (lane 2). The two targeted fragments also migrate at 

different sizes proving that in the animals derived from the 9D5 cell line the 
Ren1d gene had been targeted. This is confirmed in lanes three (10tg total) 

and four (5.0pg total) where two distinct fragments can be seen at 4.7kb and 

5.0kb, corresponding to a Renld  and Ren-2 targeted fragment respectively. 

Figure 5.9: Confirmation of homologous recombination between the Ren-1' gene and 
Ren 1d targeting construct: Sac I- (Lanes 1-4) and EcoR I-digested (Lanes 6-9) and Southern 
blotted DNAs from Ren1d  (animal 3553) or Ren-2 (animal 2416) heterozygous animals (286) 
run either alone, or together, in the same lane. Both Sac I and EcoR I digestion results in 
differently sized "targeted" fragments from Ren1d  or Ren-2 heterozygous animals proving 
that the 9135 Ren1d  targeted ES cell line underwent homologous recombination between the 
3' homology arm and the corresponding region of Renld.  Lane 1 and 6= 504g 2416 DNA, 
Lane 2 and 7= 5.Og 3553 DNA, Lane 3 and 8= 5.tg 2416 DNA plus 5j.tg 3553 DNA, Lane 4 
and 9= 2.5ig 2416 DNA plus 2.5g 3553 DNA and Lane 5= lambda Hind III digested DNA. 
These samples were run in conjunction with lambda Hind III and lambda Hind Ill/EcoR I 
marker DNA, the positions of the lambda Hind Ill fragments being shown on the left hand 
side of this figure. 
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The results of the EcoR I digests, although not as clear cut, also support 

this finding. The endogenous fragments which migrated as a doublet on the 

Test Southern blot (section 5.2.1) have been resolved with two fragments of 

9.1 and 9.8kb representing the wild-type Ren1d and Ren-2 fragments, 
respectively. The smaller, Ren1d targeted fragment (8.1kb) can be seen 

clearly in all lanes containing this DNA (lanes 7-9), whereas the larger, Ren-2 
targeted fragment (8.6kb) can be seen clearly only in the digest containing 

the Ren-2 targeted DNA alone (lane 6). The Ren-2 targeted fragment can be 

seen in the digests containing both DNAs but it is very faint. 

5.5 Maintenance of Transgenic Lines 

Having achieved germ-line transmission of the mutated Ren1d allele, a 

series of matings were performed in order to generate enough wild-type, 

heterozygous and homozygous animals for subsequent analysis. All animals 

in the growing colony were analysed by Southern blot hybridisation as 

described previously (Sac I or Pvu II digested tail DNAs). A preference for 

Pvu TI-digested DNAs in conjunction with the 3' probe was adopted because, 

using this strategy, it was easy to distinguish all three genotypes. In wild-

type animals the 3' probe hybridises to the two endogenous fragments 

(7.8 and 10.5kb); in heterozygous animals three fragments hybridise, the two 

endogenous fragments and a 8.5kb Ren1d targeted fragment (the 
endogenous Ren1d fragment should be reduced in intensity by 50% because 

there is now only one wild-type allele present); animals homozygous for the 

Ren-F mutation displayed two fragments hybridising to the 3' probe, these 

being the endogenous Ren-2 fragment (7.8kb) and the Ren1d  targeted 
fragment (8.5kb); no wild-type Ren1d  fragments hybridised since they were 

replaced in these animals by two mutated copies of the gene. 

The Southern blot hybridisation analysis of DNA isolated from a litter 

of pups produced from a heterozygous intercross is shown in Figure 5.10. 

Lanes 1-4 show the fragments detected upon hybridisation of Pvu II-digested 

tail DNAs from the litter of four pups and lane 5 shows the genotype of the 

father as heterozygous. Here, all three genotypes have been generated in a 

ratio which does not differ significantly from the expected 1:2:1 ratio 

predicted for a heterozygous intercross (lane 1 is a wild-type, lanes 2 and 4 
are heterozygotes and lane 3 shows a homozygous pattern). 
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Figure 5.10: Genotyping by Southern blot hybridisation of four pups from a 
heterozygous intercross: Pvu 11-digested and Southern blotted DNAs from pups resulting 
from a heterozygous intercross. The animals screened were 3827-30 and their father 2896. 
Animal 3829 had inherited two disrupted alleles, whereas animals 3828 and 3830 inherited 
only one copy of the disrupted gene and animal 3827 inherited two wild-type copies of the 
Re n 1d gene. Lane 1= 3827, Lane 2= 3828, Lane 3= 3829, Lane 4= 3830 and Lane 5= 2896. 
These samples were run in conjunction with lambda Hind III and lambda Hind ffl/EcoR I 
marker DNA, the positions of the lambda Hind III fragments being shown on the left hand 
side of this figure. 

At first, the colony was expanded and homozygous animals generated 

by crossing heterozygous brothers and sisters. An extract from the family 

tree of Line 2168 is illustrated in Figure 5.11 and shows how a chimaeric 

mouse (male 2168) was first used to generate heterozygous mice (male 2896 

and females 2897-2899) which were, in turn, cross-bred to generate a second 

generation (3399-3404) containing homozygous animals (3402 and 3407). 

Subsequently, homozygous males were often crossed with heterozygous or 

homozygous females in order to generate the numbers of homozygote 
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Z TGM 9D5 CHRIMERIC FOUNDER MALE 2168 
 BORN 11/9/95 

2168 

BORN 29/11/95 
	

BORN 1/1/96 
	 BORN 16/2/96 

GEN 1/1 2168 X 129 
	

GEN1/2 2168 x 129 
	 GEN1/3 2168 x 129 

2552 2553 
	

2896 2897 2898 2899 
	

3193 

BORN 18/3/96 
	

BORN 17/3/96 
GEN 2/1 2896 X 2899 
	

GEN 2/2 2896 X 2898 

3399 3400 3401 3402 3403 3404 
	

3405 3406 3407 3408 3409 

Figure 5.11: Extract from the family tree of line 2168: Initially chimaeric male 2168 
initially had three litters containing pups showing coat colour transmission which were 
analysed by Southern blot hybridisation. The first two animals were negative and the 
remaining five were found to be heterozygous. The second generation of pups were 
generated by crossing heterozygous male 2896 with females 2898 and 2899. Of the resultant 
litters, two homozygous animals were identified (3402 and 3407) with the remaining animals 
being heterozygotes. 

animals required for the phenotypical characterisation. Wild-type animals 

used for phenotypical analysis were not always littermates since they were 

often taken from the laboratory stocks of strain 129/01a mice. This, 

however, should not affect the results as all three genotypes are on an inbred 

background and vary only at the Ren1d locus. 

5.6 Discussion 

This chapter described the screening, by Southern blot hybridisation of 

ES cells for homologous recombination in the Ren1d gene. The screening of 
all animals derived from chimaeric animals was also described. 

ES cells were screened first by hybridising Sac I digested DNA blotted 
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onto nylon membranes. This was in order to screen all 307 clones as quickly 

as possible to identify any colonies with a targeting event. At this stage, it 

was not known whether the recombination event had occurred in the 5' 
region of RenT1d or Ren-2. Having identified four clones in this manner, they 
were then rescreened using the 3' probe and Pvu 11-digested DNA. This 
confirmed that three of the four clones had undergone homologous 

recombination between the 3' arm of the Ren1ddirected gene targeting 

construct and the corresponding region of the Ren1d gene. As the limited 
supply of ES cell DNAs was now exhausted, the confirmation of Ren1d 

targeting in the 5' homology arm could not be performed until mouse tail 
DNAs were available. 

Two of the correctly targeted clones were used to generate chimaeric 

mice, of which, two transmitted coat colour through the germ-line. Pups 

were screened by Southern blot hybridisation and the first five heterozygous 

animals were identified. All animals were screened by Southern blot 

hybridisation using either the 5' probe and Sac I digested DNA (for the 
differentiation between heterozygotes and wild-type animals) or the 3' probe 
with Pvu TI-digested DNA for litters likely to contain animals homozygous 

for the mutation. The latter method was preferred as homozygous mutant 

animals clearly lose the Ren1dhybridising fragment, whereas when using a 
Sac ! digest it is difficult to distinguish Ren_Id and Ren-2 endogenous 
fragments which migrate as a doublet. 

Confirmation of recombination between the 5' homology arm and the 
Ren1d gene was obtained by Southern blot hybridisation in conjunction with 
the 5' probe using Sac I-and EcoR I-digested DNA. By sizing the fragments 
accurately, using careful electrophoretic conditions, it was possible to show 

that the line derived from male 2168 (9D5 ES cells) are correctly targeted in 

the 5' arm. This mouse line, therefore, contains a disrupted Ren1d, having 
undergone homologous recombination in both the 5' and 3' homology arms. 

In Chapter 3 a higher than expected number of mutations were found 

when the 3' homology arm was compared to the 129/01a sequence. 

Although this reduces the isogeny, and may therefore affect the targeting 

efficiency, it was still possible to identify clones which had undergone 

homologous recombination. These screening strategies were used to screen 

all new born pups in order to generate enough animals for phenotypical 
analysis, the topic covered in the next chapter. 
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CHAPTER 6 
Characterisation of the Ren-id -I- Phenotype 

6.1 Introduction 

The generation of mice carrying a mutation in the Ren1d  gene allowed 

the characterisation of the "null phenotype", the absence of Renin1d  protein. 
Disruption of the Ren1d  gene permitted the study of the Renin-2 protein in 

isolation from the Renin1d protein and permitted the investigation of the 

ability of Renin-2 protein to perform all the known functions of renin in viva. 

Other constituents of the RAS have been disrupted by gene targeting. 

Many of these publications report common findings, these being 

hypotension (276-279, 281, 282) and altered kidney morphology (276, 278-

280, 283). In these publications, hypertrophy of vessel walls, and in 

particular the interlobular arteries, was observed, as well as areas of cortical 

thinning and severe atrophy. 

The targeted disruption of the Ren-2 gene in mice has also been 
reported (286). This resulted in Ren1d  being the only active renin gene 

present. The Ren-2 -I- mice develop normally, display no histological 

abnormalities in adult kidneys, adrenals or submandibular glands and have 

blood pressures indistinguishable from wild-type littermates. However, 

they do display elevated circulating renin concentrations and reduced 

circulating prorenin concentrations compared to wild-type and heterozygous 

littermates. So far, no function for Ren-2 has been found which cannot be 

compensated for in adult mice, presumably by a factor such as Renin1d. 

In this chapter homozygous mice were first characterised and 

compared to heterozygous and wild-type animals, by looking at mRNA 

expression and renin concentrations in plasma. Once this basic 

characterisation had been completed animals were then studied for blood 

pressure homeostasis and histological abnormalities. 
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6.2 Renin Gene Expression Analysis 

The dideoxynucleotide primer extension assay using the exon 8 primer 

(section 2.2.18) which distinguishes between Ren-1' and Ren-2 was used to 

investigate the expression levels of both genes in all three genotypes (130). 

Expression of the Ren1d  gene in heterozygous animals did not differ from 

wild-type mice, suggesting a compensatory upregulation of the wild-type 

copy of the Ren1d gene (Figure 6.1A). No Ren-1'1  transcript was expected 
from Ren1d animals, however, a faint Ren-1'1  mRNA-derived signal was 

1 2 3 4 	6 7 8 9 1011 12 1314 1516 17 18 19 20 21 22 23 24 25 26 27 28 

+17bp —I 	 - 	.- 	- 	- • . a 

obp—I•e1I•mIi •IIO. •*+IS1*• 

F.] 
I 

+1+ 

Sex 
Ren-2 

Expression Expression 

Male 317±145 100±46% 

Female 483±63 100±13% 

+1- 

Ren-2 
Expression Expression 

449±182 142±41% 

569±161 118±29% 

-I- 

Ren-2 
Expression Expression 

900±44 284±5% 

1867±428 386±23% 

Figure 6.1: Kidney RNA primer extension assays in Ren1d  knock-out mice: A) A 
ddCTP primer extension assay designed to distinguish between Ren-1' and Ren-2 mRNAs 
was performed as described in section 2.2.18. Animals from each genotype and sex were 
analysed, the above phosphoimage being obtained after 7 days exposure to a phosphoimage 
screen. An upregulation of Ren-2 can be seen in the male and female Ren-1'1  -I- animals and 
a faint Ren-1' signal is detectable in male and female homozygous animals. Lane 1= HepG2 
RNA (negative control), Lane 2-5= Male +/+ RNAs, Lane 6-9= Female +/+ RNAs, 
Lane 10-13= Male +/- RNAs, Lane 14-17= Female +/- RNAs, Lane 18-22= Male -/- RNAs, 
Lane 23-25= Female -I- RNAs and Lane 26= SMG RNA minus RT (negative control). B) 
Quantitation of Ren-2 expression (extract from appendix 1). Ren-2 expression is given in 
arbitary units, these were then converted to percentages of wild-type activity. Both male 
and female Ren1d  animals display an upregulation of Ren-2 tra nscription in the kidney. 
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present. This may be caused by aberrant splicing of the mRNA around the 

disrupted exons 3 and 4, resulting in a truncated mRNA. Negative controls 

showed no signal, other than the primer, as expected. 

Ren-2 gene expression in the kidneys of wild-type and heterozygous 

mice did not differ, whereas a slight upregulation was seen in male and 

female homozygous mutant animals, compared to wild-type mice 

(Figure 6.1A). Signal strengths were quantified after normalising for sample 

recovery (Table 6.113). This showed that Ren-2 expression was upregulated 

by 2.84±0.05-fold in males, and 3.86±0.23-fold in females compared to sex-

matched wild-type mice. All raw data and subsequent analysis is shown in 

Appendix 1. 

To prove that no wild-type Ren1d  message was being produced, an 
RT-PCR experiment was performed including a primer which hybridised to 

a part of exon 4 which was deleted by the Ren1d targeting construct 
(section 2.2.6.3). When used in conjunction with an exon 9 primer, a product 

of 1.0kb would be generated, which was then restriction digested with the 

enzyme Ear I to generate three fragments from a Ren1d  transcript or two 
fragments from Ren-2 (Figure 6.2). In this manner, it was possible to prove 

that no wild-type Ren-1' 1  message was synthesised in Ren1d animals 

(lane 1). In lane 1 a larger fragment is also present, this is thought to be full- 

Figure 6.2: Renin mRNA analysis in targeted mice: Amplification of renin cDNA from 
mouse kidney-derived RNA results in a 999bp product (Lanes 2, 4 and 6). The Ren1d  and 
Ren-2 cDNAs can be distinguished by digestion with Ear I (Lanes 1, 3 and 5), to produce 
fragments of 652bp and 347bp from a Ren-2 cDNA (Ren 1d kidney; Lane 1) or 484bp, 
347bp and 168bp from a Ren1d  cDNA (Ren-2 -I- kidney (286); Lane 3). Lane 5 corresponds 
to Ear I digested cDNA prepared from a Ren-1'1  +1- kidney, which demonstrates fragments 
diagnostic of both Ren-1' and Ren-2 gene expression (not all fragments are visible). These 
samples were run in conjunction with lambda Hind Ill/EcoR I marker DNA, the positions of 
the fragments being shown on the left hand side of this figure. 
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length PCR product due to incomplete digestion and appears to run at a 

diiferent size because of the salt present in the restriction buffer. 

6.3 Plasma Enzyme Concentrations 

Plasma active renin concentration (PRC) and plasma prorenin 

concentration (PPC) were determined for plasmas from all three genotypes 

(section 2.4.2). Table 6.3 summarises all the "raw data" measurements which 

were used for statistical analysis and graphical representation (Figure 6.4). 

The nature of this assay means that, occasionally, some clearly erroneous 

measurements are recorded and are routinely excluded from subsequent 

calculations. With this in mind, some data points were excluded from 

subsequent calculations where it was believed figures were not correct. This 

was done by calculating the means and standard deviations for each sex and 

genotype and removing any points which lay outside the mean±2 standard 

deviations according to the directions of Dr. Jarg Peters. Even where only 

one of the parameters measured lay outside these limits, both measurements 

were removed from subsequent calculations. An example of this is female 

animal 3837, where the PRC value is 3.6x the standard deviation higher than 

the group mean. The PPC value lies within the limits set, but both points 

were removed from subsequent analyses. 

These results show that in males (Figure 6.4A) there is no difference in 

PRC between the three genotypes (+/+= 240±58, +/-= 170±34 and 

-/-= 244±63ng Ang I/mi/hour; P>0.05), whereas an increase in PPC is 

observed in homozygous mutant animals (1341±116ng Ang I/ml/hour) 

compared to both wild-type (717±64ng Ang I/mi/hour; P=0.0003) and 

heterozygous males (566±33ng Ang I/mi/hour; P=0.0003). In females 

(Figure 6.4B), PRC was significantly reduced in homozygous mutant animals 

(123±28ng Ang I/mi/hour) compared to wild-type controls (229±32ng 

Ang I/ml/hour; P=0.027), while heterozygous females had an intermediate 

level (164±34ng Ang I/mi/hour; P>0.05). PPC in females showed the same 

trend observed in males with female homozygotes showing significantly 

higher levels (1632±238ng Ang I/mi/hour) compared to wild-type (557±56ng 

Ang I/ml/hour; P=0.0003) and heterozygous females (528±42ng 
Ang I/ml/hour; P=0.0003). 
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Animal 
+Sex 

PRC PPC 

0129M 95 1268 
1293M 620 330 
3549 M 514 485 
3550M 49 575 
3720 M 1947* 2399* 

3723M 121 801 
3728 M 242 542 
3831 M 449 989 
3838 M 239 712 
4613M 129 618 
4614M 84 754 
4617M 61 527 
4628M 251 1199 
4629 M 78 648 
4631 M 89 732 
4632M 57 731 
4633M 113 934 
5184M 1  894 332 

Animal 
+Sex 

PRC PPC 

1291 F 329 509 
1292 F 322 383 
3551F 89 470 
3730 F 209 742 
3772 F 420 428 
3842 F 3881* 922 
4618 F 212 950 
4619 F 256 522 
4620 F 158 654 
4635 F 136 430 
4638 F 157 483 

Animal 
+Sex 

PRC PPC 

3399 M 389 764 
3401 M 75 520 
3548 M 93 624 
3721M 497 680 
3839 M 140 397 
3840M 88 496 
3841 M 97 423 
4177M 162 708 
4187M 251 1166* 

4188M 887* 525 
4615M 82 501 
4616M 91 608 
4623 M 260 657 
4630M 81 339 
5183M 138 647 
5188M 189 560 

Animal 
+Sex 

PRC PPC 

3553 F 48 448 
3555   104 622 
3727 F 378 654 
3826 F 126 741 
3835 F 103 295 
3837 F 7196* 480 
4180 F 454 756 
4181 F 277 685 
4191 F 238 591 
4611F 174 540 
4621F 89 251 
4622 F 53 404 
4634 F 155 434 
4636 F 55 540 
4637 F 41 431 

Animal 
+Sex 

PRC PPC 

3402M 53 1151 
4148 M 55 903 
4179M 300 1316 
4186M 520 1.324 
4624M 341 1576 
4626M 165 1250 
5189M 273 1866 

Animal 
+Sex 

PRC PPC 

3829 F 197 2591 
4189 F 42 964 
4190 F 157 1247 
4192 F 54 1046 
5186 F 77 1455 
5187 F 258 1545 
5190 F 141 2744 
5191 F 56 1463 

Table 6.3: Circulating renin levels obtained from individual Ren1d  targeted mice: 
Experimental mice numbers are listed by genotype and sex (M=male, F=female) and the 
corresponding plasma active renin concentration (PRC) and plasma prorenin concentrations 
(PPC) are given in ng Ang I/nil/hour. Measurements marked with a * lie more than 2x the 
standard deviation above or bellow the mean for that group and were therefore removed 
before calculating new means and assessing statistical significances. The second parameter 
measured in plasma from these animals was also excluded from subsequent calculations. 
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Figure 6.4: Histograms showing circulating renin levels: A) Plasma active renin 
concentrations (PRC; solid bars) and plasma prorenin concentrations (PPC; open bars) in 
male Ren1dtargeted  mice. PPC in Ren1d - I- male mice (n=7) is significantly higher than 
Ren-1'1  +1- (n=14) and wild-type mice (n=17). B) Plasma active renin concentrations (PRC; 
solid bars) and plasma prorenin concentrations (PPC; open bars) in female Ren1&targeted 
mice. PRC in the female Ren-1' - I- mice (n=8) are significantly decreased compared to wild-
type (n=10) animals but not the intermediate Ren-1' +1- females (n=14). PPC in the female 
Ren- -I-  mice are significantly increased compared to wild-type and Ren 71' +1- animals. 
* denotes a P-value of 0.003 by Wilcoxon rank test and ** denotes a P-value of 0.027 by 
Wilcoxon rank test. 

6.4 Blood Pressure Homeostasis 

Mean arterial blood pressures were calculated from systolic and 

diastolic readings 1 day after the cannulation operation as described in 

section 2.4.1 (Table 6.5) and are shown in Figure 6.6. In males, no statistically 

significant (P>0.05) blood pressure differences are observed between wild-

type (93.6±5.2mm Hg), Ren1d +1- heterozygous (93.0±4.9mm Hg) and Ren-1'1  

-I- homozygous (92.3±3.8mm Hg) male mice. However, a significantly 

lower blood pressure is seen in Ren1d -/ females (80.9±3.4mm Hg) 
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Animal 
(Sex) 

Blood 
Pressure 

1291M 118 
3549M 104 
3550M 89 
3720M 67 
3723 M 93 
3728M 100 
3831M 89 
5184M 89 

+1± 
Animal 
(Sex) 

Blood 
Pressure 

1292 F 87 
1293 F 103 
1294 F 86 
1295 F 88 
1297 F 94 
3552 F 102 
3730 F 100 
3772F 89 

Animal 
(Sex) 

Blood Blood 
Pressure 

3399M 110 
3401M 100 
3547M 119 
3548M 104 
3721M 76 
4177M 60 
4187M 85 
4188 M 88 
4623 M 92 
5183M 96 
5188M 93 

Animal 
(Sex) 

Blood Blood 
Pressure 

3553 F 95 
3555 F 83 
3727 F 96 
3835 F 86 
4180 F 79 
4181 F 77 
4191 F 83 

-'- 
Animal 
(Sex) 

Blood 
Pressure 

3402M 110 
4147M 94 
4148 M 92 
4179M 84 
4186M 82 
4624M 105 
4626M 91 
5189M 80 

-'- 
Animal 
(Sex) 

Blood 
Pressure 

3829 F 65 
4149 F 74 
4189 F 71 
4190 F 89 
4192 F 88 
5186 F 84 
5187F 92 
5191 F 84 

Table 6.5: Blood pressures (mean arterial blood pressures) from individual Ren 1d 
targeted -mice: Experimental mice numbers are listed by genotype and sex (M=male, 
F=female) and the corresponding mean arterial blood pressures are given in mm Hg. 

compared with wild-type females (93.6±2.5mm Hg; P=0.012 by Wilcoxon 

rank test and P<0.01 using an unpaired Student t-test). In female 

heterozygotes, an intermediate blood pressure can be seen (85.6±2.8mm Hg), 

but this is not statistically different from either wild-type or Ren1d -I- mice 
(P>O.05). 

6.5 Histomorphological Analysis 

To ascertain the effects of disruption of the RenT1d  gene on organ 

morphology, tissues known to express renin were sectioned, stained and 

examined for differences between genotypes. Kidneys, adrenal glands, 

submandibular glands (males only) and testes or ovaries from Ren1d .../... 
(n=4), Ren1d +1- (n=4) and wild-type animals (n=2) were analysed. No 

127 



125 

100 

75 

E 
E 

50 

25 

0 

+ 	+ 	I 	+ 	+ 	I 

FigUre 6.6: Mean blood pressures in Ren-1' targeted mice: Mean blood pressures in 
Ren-1' knock-out mice are shown in males (solid bars) and females (open bars). Female 
homozygotes have siificantly lower mean blood pressure than wild-type females. Sample 
sizes are male Ren-1 +1+ (n=8), male Renid +/- (n=11), male Ren1d -/- (n=8), female 
Ren1d +/-,- (n=8), female Ren-1' +1- (n=7) and female Ren-V -I- (n=8). * denotes a P-value 
of 0.012 by Wilcoxon rank test or P<0.01 using an unpaired Student t-test. 

differences were observed in adrenal glands, submandibular glands, testes or 

ovaries from all 3 genotypes in both sexes (Figure 6.7). 

Kidney sections showed subtle abnormalities in Ren1d -I- animals of 
both sexes (Figure 6.8), although no vasculature differences were observed as 

reported for other RAS knock-outs (276, 278-280, 283). When stained with 

haematoxylin and eosin, sections from the kidneys of Ren1d -I- animals 

invariably showed hypercellularity of the macula densa, with these cells also 

displaying an altered morphology. This manifested itself as a columnar 

appearance of the tubular epithelial cells which contrasted with the cuboidal 

morphology of the wild-type controls. 
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Figure 6.7: Adrenal, submandibular gland, testis and ovary histology: Tissues were 
sectioned and stained before visualisation using light microscopy. Adrenal glands sections 
from wild-type (A and D), Ren-l'1  +1- (B and E) and Ren-l' -I- (C and F) male (A to C) or 
female (D to F) mice were studied for histological abnormalities. No differences in adrenal 
gland morphology were observed. c= adrenal cortex and m= adrenal medula. 
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Figure 6.7 (continued): Adrenal, submandibular gland, testis and ovary histology: 
Tissues were sectioned and stained before visualisation using light microscopy. Adrenal 
glands sections from wild-type (A and D), Ren1d +/- (B and E) and Ren-1' -/- (C and F) 
male (A to C) or female (D to F) mice were studied for histological abnormalities. No 
differences in adrenal gland morphology were observed. c= adrenal cortex and m= adrenal 
medula. 
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Figure 6.7 (continued): Adrenal, submandibular gland, testis and ovary histology: 
Tissues were sectioned and stained before visualisation using light microscopy. 
Submandibular glands sections from wild-type (G), Ren-l'1  +/_(H) and Ren1d -/- (I) male 
mice were studied for histological abnormalities. No differences in submandibular gland 
morphology were observed. g=glandular epithelium and s= secreted proteinaceous 
material. 
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Figure 6.7 (continued): Adrenal, submandibular gland, testis and ovary histology: 
Tissues were sectioned and stained before visualisation using light microscopy. Sections of 
ovary tissue from wild-type (J), Renid +/- (K) and Ren-V -I- (L) female mice were studied 
for histological abnormalities. No differences in ovary morphology were observed. 
f= developing folicle. 
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Figure 6.7 (continued) Adrenal, submandibular gland, testis and ovary histology: 
Tissues were sectioned and stained before visualisation using light microscopy. Sections of 
testis tissue from wild-type (M), Ren-1'1  +/- (N) and Ren-1' -/- (0) male mice were studied 
for histological abnormalities. No differences in testis morphology were observed. 
s= seminiferous tubule and 1= seminiferous tubule lumen. 
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Figure 6.8: Kidney histology: Kidney sections from wild-type (A and D), Ren-1' +/— (B 

and F) and Ren1d -/- (C and F) from male (A to C) or female (D to F) mice were studied for 
histological abnormalities. Differences were noted in macula densa cell morphology in male 
and female Ren-l' —I— animals compared to wild-type and heterozygous controls. This 
manifested itself as an increase in macula densa cell height (arrow; panels C and F), giving 
the cells a more columnar appearance compared to the more cuboidal shape in control 
animals (arrow; panels A, B, D and E). g= glomerulus. 
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Figure 6.8 (continued): Kidney histology: Kidney sections from wild-type (A and 
D), Ren1d +1- (B and E) and Renld -I- (C and F) male (A to C) or female (D to F) mice were 
studied for histological abnormalities. Differences were noted in macula densa cell 
morphology in male and female Ren-1' 1  -I- animals compared to wild-type and heterozygous 
controls. This manifested itself as an increase in macula densa cell height (arrow; panels C 
and F), giving the cells a more columnar appearance compared to the more cuboidal shape 
in control animals (arrow; panels A, B, D and E). g= glomerulus. 
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In an attempt to quantify this observation the central three macula 

densa cells were measured in five kidney regions from each of four 

individual mice (n=20) of each genotype. Wild-type and Ren1d +1- had 
macula densa cells 6.lji.m (range 5.6-6.3jim) and 6.Op.m (range 5.8-6.2.tm) in 
height respectively (Table 6.9). Ren1d -I- mice had macula densa cells 7.911m 
(range 7.6-8.1p.m) in height, a 30% increase in cell height. This change in cell 

shape causes a "doming" of the macula densa cells toward the lumen of the 

distal tubule, in turn, causing the lumen to adopt a more triangular shape in 

cross-section, compared to the normal, oval/circular pattern, observed in 
wild-type mice. 

To investigate the expression levels and cellular localisation of the 

Renin-2 protein in these animals, immunohistochemistry was performed 

(Figure 6.10). A polyclonal antibody which can detect both Renin1d and 

Renin-2 proteins was used to show a strong, granular renin positive staining 

in the juxtaglomerular cells of kidneys from heterozygote and wild-type 

animals of both sexes, as expected. However, in Ren1d/ kidneys an 

Genotype Measurement 
1 

Measurement 
2 

Measurement 
3 

Measurement 
4 

Measurement 
5 

+/+ 1 6.3 5.9 5.7 5.9 6.0 
+1+ 2 6.0 6.2 5.9 6.1 6,1 
+1+ 3 5.6 5.9 5.8 6.0 6.0 
+1+ 4 	15.9 16.2 16.3 16.2 16.3 

Genotype Measurement Measurement Measurement Measurement Measurement 

+1- 1 6.1 6.1 6.0 5.8 6.0 
+/- 2 5.9 5.9 6.1 6.2 6.2 
+/- 3 	1 5.9 5.8 5.8 6.0 	15.9 
+1- 4 	16.1 16.1 16.2 16.0 16.0 

Genotype Measurement 
1 

Measurement 
2 

Measurement 
3 

Measurement 
4 

Measurement 
5 

-/- 1 7.7 7.7 7.9 8.0 7.9 
-/- 2 8.0 8.0 8.1 7.9 8.0 
-/- 3 1 7.6 7.7 	17.6 17.8 17.7 
-/- 4 18.1 	18.0 17.9 17.9 17.9 

Table 6.9: Macula densa measurements: The central three macula densa cells in five 
JGA (per animal) were measured in four animals from each genotype. Results are given in 
Pm. 
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absence of granular renin-staining in the smooth muscle layer of the afferent 

arteriole was observed. The only detectable signal seen in these sections was 

a low-level, uniform and diffuse staining (approximately 10% of the controls) 

around the afferent arteriole. This was consistent with cytoplasmic staining, 

as would be expected for a constitutively secreted protein. These results also 

show that Renin-2 protein is not stored in detectable quantities in 

juxtaglomerular cells of these mice. 

Having observed a lack of granular immunoreactivity in the Ren1d .../.. 
animals, transmission electron microscopy was used to determine the 

subcellular structure of the juxtaglomerular cells (Figure 6.11). This revealed 

an absence of secretory granules, the subcellular structures in which renin is 

normally stored. These cells, however, have an abundance of rough 

endoplasmic reticulum (a distinguishing feature of JG cells). The lack of 

granulation observed correlates well with the absence of granular renin 

immunostaining in Ren-1' -/- animals. 

6.6 Discussion 

In this, the final results chapter, an initial characterisation of the 
Ren1d -I- phenotype was described. Initially, animals were analysed at the 

mRNA and protein level. This was to confirm firstly that the Ren1d gene 
had been successfully disrupted and secondly, to determine the effects of 

disruption of the Ren1d  gene on the expression of the closely related and 
highly conserved Ren-2 gene and the resultant protein, Renin-2. Mean 

arterial blood pressures were measured in animals of all three genotypes and 

both sexes. Tissues known to express renin were then taken and examined 

for histological and subcellular structural differences/ abnormalities. 

RT-PCR, followed by diagnostic Ear I digestion was used to confirm the 
absence of any wild-type Ren-1" mRNA. Using primer extension, an 
upregulation of Ren-2 expression was seen in Ren1d -/- mice. Analysis of 

circulating renin protein showed no significant differences in plasma active 

renin concentration (PRC) in male Ren1d -/- mice but significantly lower 
PRC in female Ren-1' -I- mice. Circulating plasma prorenin concentrations 

(PPC) in Ren1d -I- mice were significantly higher in both sexes. This may 

correspond to the upregulation of Ren-2 mRNA expression observed by 

primer extension. These results are the reverse of observations made in the 
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Figure 6.10: Kidney immunohis tochemis try and electron microscopy: Wild-type (A 
and C) and Ren-1' -I- (B and D) kidney sections after immunostaining for renin (A and B) or 
electron microscopy (C and D). A) Strong immunostairing for renin is visible in the medial 
layer of a wild-type afferent arteriole (arrow;). B) In contrast, sections from a Renld / 
mouse kidney show only faint cytoplasmic immunoperoxidase staining for renin in a few 
cells near the vascular pole (arrow). C) and D) Electron microscopy of Wild-type (C) and 
Ren1d -I- (D) kidney sections. C) PromincLnt dense cytoplasmic granules (arrows) can be 
seen in the afferent arteriolar smooth muscle cells (Sm) of wild-type animals. aa= afferent 
arteriole lumen, e= endothelial cell. D) In contrast no cytoplasmic granules can be seen in 
the smooth muscle cells of the afferent arterioles of Ren1d  animals. Afferent arterioles 
were defined by tracing there origins from the interlobular artery in semi-thin sections. 

Ren-2 gene targeted mice (286) which showed increased levels of active renin 

and reduced prorenin levels in the plasma of Ren-2 -I- animals. Taken 

together, these results suggest that Renin-2 protein is a major component of 

circulating prorenin. 

Blood pressures in males showed no differences between the three 
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genotypes, whereas female homozygous mutant animals had a significantly 

lower blood pressure, possibly related to the lower levels of PRC. This 

sexual dimorphism could be due to increased synthesis and/or activation of 

renin in an extrarenal tissue of male mice. 

Histological analysis of kidneys from all Ren1d -/ animals show subtle 

abnormalities in the macula densa cells of the distal tubule. These 

morphological changes are remarkable in that they are cause by the lack of 
expression of the Ren1d gene, in the presence of a functional Ren-2 gene. 
Immunohistochemistry revealed a significant reduction in renin-positive 

staining in the juxtaglomerular cells of the kidney, from punctate staining 

consistent with renin storage granules to a more diffuse form, consistent with 

cytoplasmic staining. The absence of these storage granules in the 

juxtaglomerular cells was subsequently confirmed by transmission electron 

microscopy. A functional Ren1d  gene is, therefore, required for granule 

formation and lack of this enzyme alone is enough to block the formation of 

these structures. This function cannot be supplied by the product of the 

Ren-2 gene. This supports the hypothesis that in the kidney, Ren-2 is 
expressed and the gene product is constitutively released into the plasma in 

the prorenin form, whereas the Ren1d  gene product is sequestered by the 

regulated pathway, processed and released as active renin in a regulated 

manner. 

All Ren1d -/ animals displayed kidney abnormalities, including 

hypercellularity of the macula densa and a lack of renin storage granules in 

JG cells. In addition, female Ren-1'1  -/- mice displayed significantly reduced 

blood pressures compared to wild-type controls. The reduction in blood 

pressure in females and the kidney abnormalities observed in both sexes 
prove that the Ren1d and Ren-2 gene products are not wholly functionally 
identical, that is Ren-2 cannot fully substitute the functions of Ren1d.  Many 

of the points raised here are discussed in greater detail in Chapter 7. 
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CHAPTER 7 
Discussion 

7.1 Introduction 

The aim of this project was to ablate Renin1d function by gene 

disruption using a replacement-type targeting vector. This was to allow the 
role of Ren-2 function in blood pressure regulation and development in 'two-

renin gene' mice to be studied (in isolation from other renin genes) and to 

address the question of functional redundancy between the two genes. 

Disruption of the Ren1d  gene in mice, confirmed by RT-PCR, resulted 
in hypotension in female Ren1d animals, the first evidence that 

disruption of a renin gene affects blood pressure. In addition to this, the 

phenotype of the Ren-1' -/- animals o4ludes to other important functions of 
the Ren1d  gene. Ren-1' was found to be essential for normal macula densa 

morphology where absence of the Renin1d protein resulted a 30% increase 

in cell height. More striking however are the changes observed in 

juxtaglomerular cell morphology where a complete absence of renin 

secretory /storage granules was observed. These results prove for the first 
time that Ren1d and Ren-2 are not functionally equivalent, with Ren1d  being 
required for blood pressure homeostasis and normal macula densa and 

juxtaglomerular cell morphology. 

Sharp et al. (286) have reported the disruption of the Ren-2 gene in 

which no kidney morphology or blood pressure differences were observed. 
This suggests that although Ren1d is essential and cannot be substituted for 
by Ren-2, the role of Ren-2 may however be replaced by Ren1d.  This would 
be consistent with the Ren1d  gene fulfilling all renin functions after the gene 

duplication event allowing Ren-2 to undergo mutation with no constraints on 
its functionality. 
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7.2 Gene Targeting 

7.2.1 PCR Mediated Gene Targeting at the Ren1d Locus 

Here, the disruption of the Ren1d gene has been described. This was 
achieved using a targeting construct in which both homology arms were 

amplified by PCR from a 129/01a template. Cloning of PCR fragments was 

found to be problematical, but this problem was solved by cutting once at an 

internal site within the amplicon and by ensuring enough buffer sequence 

was included between a restriction site and the end of an 
oligodeoxynucleotide. 

This system offers several advantages over the more commonly used 

strategy including; 1) the ability to introduce restriction sites for cloning of 

material and screening of ES cell DNAs, 2) the ability to use highly isogenic 

DNA, as homology can be amplified directly from ES cell DNA and 3) the 

requirement for minimal mapping data, e.g. a cDNA sequence and 
preliminary genomic map for the design of primers, prediction of amplicon 

sizes and the development of a screening strategy. The ability to amplify 

fragments of 10kb and above from genomic DNA using a combination of 

enzymes (321-323) allows the PCR amplification of homology arms directly 

from E cell DNA. This then is a fourth advantage, the need to identify 

genomic clones being removed. 

A major consideration in this strategy is the enzyme (or enzymes) used 

to amplify the homology arms. In order to maximise the targeting efficiency 

amplicons should contain no errors and therefore be truly isogenic. One way 

to achieve this is to use proof-reading DNA polymerases.. For the 

amplification of the Ren1d homology arms the proof-reading DNA 
polymerase, UlTma was used. To determine the fidelity of the PCR reaction 

the 3' homology arm in the targeting construct was compared to the 129/01a 

sequence (generated by direct sequencing of PCR product). This resulted in 

the identification of eleven differences between the two sequences, 2- to 

3-fold higher than would be expected in amplifications using the Taq DNA 
polymerase (324). Cline (324) proposed that UlTma has a low fidelity 
because it is a genetically modified version of a Taq like enzyme (Tma) 
created by removal of the N-terminal portion of the protein. It is postulated 
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that although this enzyme now possesses a 5' to 3' proof-reading activity it 

may have a much reduced specificity for the incorporation of the correct 

nucleotides in the 3' to 5' direction. This is not a problem with all proof-

reading enzymes. In a similar experiment within the laboratory, the 3' 

homology arm of a Ren-2 directed targeting construct which was amplified 

using the proof-reading enzyme Pfu (Stratagene) contained no errors 

compared with the 129/01a sequence for that region (M. Sharp et al., 
unpublished data). 

In Chapter 5 the successful disruption of the Ren1d gene was described. 

This proves that PCR amplified homology arms can successfully mediate 

homologous recombination, even when one of the arms is known to contain 

errors which disrupt the overall isogeny. Two of the correctly targeted ES 

cell clones were used to generate chimaeric mice, of which, two transmitted 

coat colour through the germ-line. These animals were then characterised 

for abnormalities arising from the introduced mutation. 

7.2.2 Genetical Background Considerations 

Care must be taken in interpreting the results of gene knockout 

experiments. Ideally chimaeric mice should be crossed with inbred mice 

from which the ES cells were derived to maintain genetic homogeneity. This 

is not always feasible as 129/01a mice are well known for their low fertility 

and reduced fecundity. This problem can be partly circumvented by 

crossing chimaeric mice with another inbred line. 

The Agt modified chimaeric mice (260, 276) were crossed with the 

inbred strain C57BL/6J. The resulting F 1  mice are genetically identical, 

possessing a complement of chromosomes from each parent. Thus 

heterozygous mutant animals and control littermates can be directly 

compared, the only genetic difference being at the mutated locus. However 

when these heterozygotes are intercrossed to generate Agt -I- and Agt 2/2 
animals, the original 129/01a and C57BL/6J chromosomes will segregate 

randomly at meiosis. In a large F2 population, any unlinked gene affecting 

the phenotype will occur on a purely random basis. 

In -,  most analyses it is assumed that any phenotype observed is due to 

the disruption of the gene, however, the influence of linked genes cannot be 
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ruled out. Kim et al. (276) addressed this question by comparing their F2 

Agt -/1 and Agt 2/1 animals. These animals can be compared because the 

wild-type, "1" gene and the neighbouring linked genes are all derived from 

the C57BL/6J strain, whereas the disrupted or duplicated genes ("-" or It2ft) 

and all linked genes are derived from the 129/01a strain, i.e. with regard to 
linked genes these animals only vary at the Agt locus. Kim et al. (276) then 
compared the blood pressure results obtained with these animals to the 

results obtained with the complete set of animals, and found no significant 

difference implying that no linked genes were affecting blood pressure. 

The best way to circumvent such problems would be to breed onto a 

single genetic background, i.e. the strain from which the ES cells were 

derived. This is difficult with the 129/01a strain because of the small litter 

sizes but would theoretically rule out the effects of linked genes since, by 

definition, the chromosomes of an inbred mouse will be identical except for 

the modified gene. Alternatively ES cells could be derived from other inbred 

mouse strains which have a higher fertility and fecundity. 

In the case of the Ren1d  gene targeting experiment all animals were 

kept on a 129/01a genetic background. As discussed above the effects of 

linked genes can offect the phenotype observed and, as it is well known that 

the Ren1d  and Ren-2 genes are tightly linked, it was deemed pertinent not to 

cross onto another background. Maintaining the Ren1d  mutation on a pure 

129/01a background prevents the possible introduction of variation at the 

Ren-2 locus. By keeping the Ren-1' -I- phenotype on a pure 129/01a 

background it also allows direct comparisons with the Ren-2 -I- animals to 

be made, as they were also generated and bred in a similar manner. 

Another potential problem with gene targeting experiments is the 

amount of time ES cells spend in cell culture. During this time random, 

recessive mutations accumulate in the chromosomes and have no effect on 

the viability of the cells. This means that 129/01a chromosomes and 

129/01a ES cell chromosomes are not the same. F 1  animals (fathered by a 

chimaera) are assumed only to vary at the targeted locus but will in actual 

fact vary at several loci due to the accumulation of mutations in the ES cell 

derived complement of chromosomes. At this stage Fl animals are typically 

brother/sister mated, a procedure which will produce animals homozygous 

at the targeted locus. Unfortunately, all random mutations accumulated in 
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the ES cells during cell culture which are linked to the targeted locus will 

also become homozygous. Therefore any observed phenotype may be due to 

these random mutations and not the gene disrupted by gene targeting. To 

prevent this occurring the Fl animals described above should be back-

crossed to 129/01a mice for several generations, a procedure which reduces 

the presence of ES cell derived chromosome regions. This however, takes 

several generation and therefore a long time. In the case of the Ren1d 

targeting experiment backcrossing to 129/01a mice has only been performed 

a few timesmeaning that there is still a significant contribution of ES cell 

derived chromosomal segments. Although we cannot say that the Ren1d ./... 
phenotype is due purely to this introduced mutation it is possible to say that 

this is very likely as the Ren-2 gene targeting experiment was performed 

using the same ES cells and none of the Ren-2 -I- animals display this 
phenotype. 

7.3 Ren-id -/- Phenotype 

7.3.1 Renin Secretion 

Much of our current understanding of the regulation of renin 

processing and secretion is based on tissue culture experiments in which cell 

lines were transfected with preprorenin cDNA expression vectors. Several 

cell lines have been used for these studies, including Chinese hamster ovary 

cells, which lack any granular secretion machinery and secrete prorenin 

exclusively (326-330) and AtT20 cells, a mouse pituitary cell line which 

display both a constitutive and regulated secretion capable of producing 

both active and inactive renin, secretion of the former being further 

stimulated by cAMP (328, 331-335). Similar observations have also been 

made in cultured tumoural cells (110, 336, 337) and human kidney slices 

(112). 

Transfection of AtT20 cells with mouse Ren1d  and Ren-2 cDNA 

constructs has been reported (329, 338-340). In these publications both 

Renin1d and Renin-2 can be processed by both the constitutive and 

regulated secretory pathways. Whether this occurs in mouse 

juxtaglomerular cells in vivo is not known. Evidence exists to suggest that 

AtT20 cells are not a true model for secretion of renin from JG cells, for 
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example the prorenirt processing enzymes in the two cell types are known to 

be different (339) and although active renin is produced by AtT20 cells it is of 

the one-chain and not the two-chain form produced by the mouse kidney or 

submandibular gland (107-109). 

Upon studying kidney sections by electron microscopy it was found 
that JG cells from Ren1d -I- animals lack dense renin storage granules. This 

finding was also confirmed by immunohistochemical staining of kidney 

sections where the punctate, granular staining in wild-type animals was 

reduced by 95% and gave a more diffuse pattern consistent with cytoplasmic 
staining in Ren1d -/- animals with no large granular staining being present. 

These results suggest that Ren1d is required for the formation of 
storage granules as in the absence of Renin1d these vesicles fail to form. As 

no granules form, even when Ren-2 is present, granule formation cannot be 
catalysed by Ren-2. The signal that directs renin to the secretory granules 

cannot be clearly defined in this experiment, for example it may be that only 
Ren1d can direct assembly of the storage granules whereas both proteins 

could have the necessary signal to direct the gene products to these granules. 

Therefore in this experiment the direction of Ren-2 to secretory granules 

would be masked because of the absence of storage/ secretory vesicles in 
iid - i_ 

Ren1d -/- animals were found to have significantly higher levels of 

circulating prorenin in both males and females. This could be an attempt to 

compensate for the lack of Renin1d release through the regulated secretory 

pathway by increasing the release of inactive Renin-2 through the 

constitutive secretory pathway. This is supported by the finding that Ren-2 
transcription is upregulated by 3- to 4-fold in Ren1d -/ animals. The 
mechanism leading to the upregulation of Ren-2 derived prorenin is 

unknown, but may be signaled by the lack of JG storage/ secretory granules 

or a direct absence of Renin1d protein. 

Female Ren1d 	animals, but not males, had a statistically 

significantly lower level of circulating active renin. Assuming the 

maturation of renin only occurs in storage granules in JG cells and not in the 

cytoplasm, then only prorenin should be released from the kidney into the 

plasma by the constitutive pathway. If the JG cells are the only 
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physiologically significant source of active renin, then these animals would 

be expected to have no active renin present in the plasma This is not the case 

and prorenin must therefore be activated upon uptake by another organ, 

released in the active form from an extrarenal tissue which expresses Ren-2, 
or activated in the cytoplasm of the JG cells or in the plasma. 

These results prove that a functional Ren1d gene is, therefore, required 

for granule formation in the JG cells of the kidney and that lack of this 

enzyme alone is enough to block the formation of these structures. These 

results also support the hypothesis that in the kidney Ren-2 is expressed and 

the gene product constitutively released into the plasma in the prorenin 

form. Assuming that renin is activated elsewhere in these animals, these 

results suggest that the Ren1d  gene product alone, is sequestered by the 

regulated pathway, processed and released as active renin in a regulated 

manner. 

7.3.2 Reduced Blood Pressure in Female Ren_id -I- Mice 

Disruption of other constituents of the RAS have been reported, several 

of which document reductions in blood pressure (276-279, 281, 282). In the 

case of the Ren1d  gene a sexual dimorphism was observed with respect to 

blood pressure. The ablation of Ren1d in males had no effect on blood 

pressurè, whereas in females a statistically significant reduction of 

12.7mmHg was seen in Ren-T1' -I- animals, with Ren1d +1- females showing 

an intermediate blood pressure, which at present does not reach statistical 

significance. 

The finding that blood pressure is only reduced in the RenTId .../.. 
females may be related to the statistically significant reductions in plasma 

active renin concentrations in these animals. The first step in the RAS is the 

rate limiting step in humans, rats and mice (5, 6). However renin is rate 

limiting in humans and rats (5) and angiotensinogen is rate limiting in mice 

(6). Therefore it may be necessary to reduce renin concentrations 

considerably before this enzyme is no longer in excess. In Ren1d -I- females 

active renin concentrations are reduced by 50% compared to wild-type 

animals, yet a reduction in blood pressure is seen. It may be that this has 

reduced renin levels below the threshold at which it is in excess over 

angiotensinogen, or alternatively another mechanism may be involved. 
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These animals contain active renin as determined by cleavage of the rat 

angioterisinogen molecule in a plasma assay. As these animals are Ren1d .../.. 

any active renin detected must be derived from the Ren-2 gene. The mouse 

Renin-2 protein is known to be able to cleave the rat angiotensinogen 

molecule since transgenic rats containing a Ren-2 transgene develop 

hypertension (249). However, it is not known whether the mouse Renin-2 

protein can cleave the mouse angiotensinogen molecule efficiently in vivo. 

Therefore the actual renin activity in these mouse plasmas may be much 

lower than determined in the protein assays described here. This could 

explain the reduced blood pressure in females associated with what appears 

to be only a modest reduction (relative to angiotensinogen concentration) in 

active renin concentrations. 

Blood pressure is only reduced in the female Ren1d -/ animals. 

Possible explanations for the sexual dimorphism could be; 1) the high level 

expression of the Ren-2 gene in the submandibular gland of males compared 

to females; 2) the oestrus cycle, and the effect that this has on blood pressure, 

for example in the adrenal gland, a known extrarenal site of renin synthesis. 

This experiment has provided the first proof that renin is required for 

maintenance of normal blood pressure, at least in females and that in mice 

with regards to blood pressure homeostasis Ren=id  and 12%en-2 are not 

functionally equivalent. The lack of Ren-2 having no effect on blood pressure 

in male or female Ren-2 -/ - animals. 

7.3.3 Altered Macula Densa Cell Morphology 

The macula densa cells of the proximal tubule in the kidney lie in close 

proximity to the JG cells. It is thought that the macula densa cells detect the 

sodium chloride load in the distal tubule and then signal the regulation of 

active renin release from the JG cells accordingly (166, 184, 185). Signaling by 

the macula densa cells is thought to be by nitric oxide (NO) (193-195). Low 

sodium chloride levels in the distal tubule would cause an increased 

production of nitric oxide which in turn would trigger the release of renin 

from the JG cells. 

Ren1d /- animals of both sexes display abnormalities of the macula 

densa cells. An increase in cell number and height is observed with macula 
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densa cells from Ren1d -/ animals being 30% longer than wild-type 

controls. This may reflect perturbations in the RAS in these animals and 

suggests an involvement of thetubuloglomerular feedback loop due to 

altered chloride and fluid balances. 

It is striking to find that disruption of expression of the Ren1d gene in 

neighbouring cells has such a strong effect on the macula densa cells where 

renin is not expressed. At present however, the sequence of events leading 

to this macula densa phenotype is not understood although this line of 

investigation will be continued. 

7.3.4 An Alternative Theory 

These results could be explained by an alternative hypothesis in which 

a lack of Ren1d  primarily causes a reduction in blood pressure. To 

compensate for this all granular renin in the JG cells of the kidney is released, 

in males this is enough to normalise blood pressure and in females it is not. 

This model differs from that previously described in that here Ren-2 can also 

be sequestered into storage granules and processed to active renin, making 

the presence of active renin in the Ren-1'1  -I- animals much easier to explain. 

If the primary effect of removing Ren1d  is a reduction in blood pressure 
,...1..t. 	 1....... 	 Lt... ...._...1. 	 ...-.11.-. 
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continually stimulate the JG cells to release renin. The macula densa 

phenotype may there fore be due to chronic production of the messenger 

molecule (NO). If this were what is happening in the JGA of these animals 

one might expect to see metaplastic transformation of the afferent arteriole 

resulting in an increase in the length of renin immunoreactivity in the 

afferent arteriole. This was not observed suggesting that this model does not 

reflect what is happening in vivo. However, this hypothesis should not be 

written off as differences between Ren-1'1  and Ren-2 may account for the lack 

of increased immunoreactivity in the afferent arteriole. 

7.4 Future Experiments 

The finding that Ren-1' -/- animals lack storage granules suggests that 

these animals and the Ren-2 -I- animals may make good in vivo models for 

the studying of renin secretion. Before this can be confirmed the JG cells of 

the Ren-2 -I- animals need to be characterised by immunohistochemistry and 
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electron microscopy to study the granulation of these cells. Even without 

this extra information Ren1d animals can be used to assess factors 

required for granule formation. To do this transgenic animals could be 

generated using various mutated versions of the Ren1d  gene and tested for 

their ability to rescue granulation in the JG cells. Mutated Ren-2 transgenes 

could also be used to try and rescue the lack of granulation phenotype. 

Glycosylation is known not to be required for the direction of prorenin 

to storage granules in AtT20 cells (333, 340, 341), but this has never been 

tested in JG cells in vivo. Glycosylation could therefore be tested as a signal 

for granule formation by making transgenic animals (on a Ren1d .../.. 
background) which express a glycosylated form of Ren-2 or a deglycosylated 
Ren1d and looking for storage granules in the JG cells of these animals. 

Another area of interest may be the pro segment where some groups (330, 

335), but not others (333, 337) have found signals required for the direction of 

human prorenin to storage/ secretory granules in vitro. 

In order to further understand the mechanisms leading to hypotension 

in Ren-1' -I- females attempts could be made at restoring normal blood 

pressure in these animals by inducing submandibular gland expression of 

Ren-2 in females by administering testosterone. The reciprocal experiment, 

the removal of the submandibular glands form male Ren1d -I- mice could be 

performed in a bid to try and lower there blood pressures to similar levels to 

those seen in Ren1d  females. 

In a bid to further understand the phenotype observed in the macula 

densa cells experiments will be performed which are designed to challenge 

the tubuloglomerular feedback loop. For example blood pressure and 

kidney morphology will be analysed in animals after subjection to different 

diets containing varying levels of sodium. By further challenging theses 

animals, e.g. with a low sodium diet, it may be possible to induce larger 

decreases in blood pressure in female animals or to induce a decrease in 

blood pressure in male animals. If the alternative theory, in which storage 

granules are absent due to chronic stimulation to release renin is postulated, 

maintaining these animals on a high salt diet, a regime which normally 

inhibits renin secretion, may result in the presence of storage granules, good 

evidence for this theory, as well as proving that Ren1d  is not required for 

granule formation. 
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7.5 Concluding Remarks 

These results prove that the mouse Ren1d and Ren-2 genes are not 
functionally identical. The Ren1d  gene product being essential for granule 

formation in JG cells of the kidney, as well as macula densa morphology and 

blood pressure homeostasis. At present no function of Ren-2 has-been 

identified that cannot be completely substituted for by Ren1d  suggesting that 
Ren1d fulfills all renin functions in the mouse, leaving Ren-2 to undergo 
random mutations with no constraints on the proteins function. Using the 
Ren1d -I- mice and the Ren-2 -/- mice it should be possible to dissect further 

renin gene function and the underlying mechanisms in storage, maturation 

and release of renin. Ren1d animals will also provide an opportunity for 

investigation of the role of macula densa cells in the tubuloglomerular 

feedback loop, especially in response to perturbations in the RAS. 
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Appendix A:- RNA Quantitation Calculations 
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Editorial Review 

Gene targeting and its application to basic hypertension 
research 

Allan F. CLARK*,  Matthew G. F. SHARP and John J. Ml LJLLINS 
Centre for Genome Research, University of Edinburgh, West Mains Rd, Edinburgh, U.K. 

GENE TARGETING 

The development of gene targeting, a methodo-
logy allowing the ablation or mutation of a specific 
gene, is proving to be a powerful tool in the 
dissection of many single gene and, more recently, 
multigenic disorders. This technology involves the 
modification in vitro of totipotent embryonic stem 
(ES) cells derived from pre-implantation mouse 
embryos [I]. ES cells can be grown in culture, 
modified by gene targeting and returned to a mouse 
embryo where they can contribute to the germ cell 
population in the resulting chimaeric mouse [2]. 
Subsequent breeding of the chimaeric mice can 
result in the establishment of new mouse lines 
derived entirely from the modified ES cells (Fig. 1). 

Modification of these cells involves disrupting the 
gene of interest with a targeting construct, consist-
ing of two arms of homology and a 'selectable 
marker' placed between them. The two arms of 
homology are identical to DNA sequences flanking 
the region to be ablated and it is these regions of 
homology which mediate the specificity in the 
recombination event. 

Types of targeting vector 

There are two distinct types of vector used for 
gene targeting experiments [3], termed replacement 
vectors and insertion vectors (Fig. 2). Replacement 
vectors contain two stretches of homologous 
sequence interrupted by a selectable marker. After 
linearization at one end of the homology arms and 
transfection into ES cells, recombination in both 
homologous regions results in the replacement of 
part of the endogenous gene with the selectable 
marker. The complete removal of the plasmid vector 
may give increased efficiency and removes the possi-
bility of plasmid sequences inserting in the genome,  

the effects of which are unpredictable. In contrast, 
insertion vectors result in the entire construct being 
integrated into the region of homology. Such vec-
tors include a single region of homology and a gene 
encoding a selectable marker. Before the transfec-
tion of ES cells, the construct is linearized within 
the homologous region, generating two arms of 
homology, with the plasmid backbone and selec-
table marker between them. By a slight modification 
of the insertion vector strategy it is also possible to 
duplicate a region of the targeted locus. One poten-
tial problem with the use of insertion vectors for 
gene knockout is the fact that no part of the 
endogenous gene is deleted, and it may be possible 
to generate a wild-type mRNA via intron splicing 
around the inserted DNA (exon skipping). This was 
shown to occur when an insertion-type vector was 
used to target the CFTR gene (cystic fibrosis trans-
membrane conductance regulator) [4]. In this 
instance, residual activity is thought to be critical 
for the viability of the mice since in two other 
CFTR mouse models created using replacement 
vectors, the homozygous mice die at an early age 
[5-7]. 

When a targeting construct is introduced into ES 
cells it can integrate into the genome either ran-
domly or into its homologous site. As the frequency 
of homologous recombination is generally much 
lower than random integration, it is best to develop 
stringent screening strategies for detecting targeted 
events (homologous recombination at the targeted 
locus). Targeted events are commonly detected by 
Southern blot hybridization [8], in which genomic 
DNA is digested with one or more restriction 
enzymes and diagnostic differences between the tar-
geted and non-targeted gene are visualized using 
radioactive hybridization probes. Such differences 
are created by the introduction of restriction sites 
within the selectable marker (Fig. 3), or by virtue of 

Key words: blood pressure, embryonic stem cell, gene targeting, homologous recombination, mouse. 

Abbreviations: ACE, angiotensin I-converting enzyme: ANG I, angiotensin I: ANG II, angiotensin II, ANP, atrial natriuretic peptide; EDRF, endothelium-derived relaxing factor: 

ES cells, embryonic stem cells; GC-A, guanylyl cycluse-A receptor; HSV-tk, herpes simplex virus thymidine kinase gene: eNOS, endothelial nitric oxide synchase; iNOS, inducible 

nitric oxide synthase: nNOS, neuronal nitric oxide synthase: NO, nitric oxide; PGK, phosphoglycerate kinase. 

Correspondence: Mr A. F. Clark, Centre for Genome Research, University of Edinburgh, West Mains Rd, Edinburgh EH9 3JQ, U.K. 
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Fig. I. Generation of novel mouse lines from gene targeted ES cells. ES cell clones are derived from pre-implantation mouse 

embryos and maintained in cell culture. Targeting construct DNA is introduced into the cells and clones containing the construct 

selected. These cells can then be reintroduced into mouse blastocysts, resulting in chimaeric mice which can be bred to generate new 

mouse lines. 

the removal of endogenous sites during the recombi-
nation events. 

Methods of selection 

Central to any targeting strategy is the selection 
of ES cells into which the targeting construct has 
inserted. This is achieved using a selectable marker, 
such as the Escherichia coli neomycin phosphotrans-
ferase II gene (neo), which renders transfected cells 
expressing the gene resistant to the mammalian 
antibiotic G418. Such cells can then be selectively 
maintained in the presence of the appropriate anti-
biotic. Using this approach the targeting efficiency 
(relative frequency of homologous recombination 
events to total drug resistant colonies) will be low 
since the expression of drug resistance is indepen-
dent of the integration site; however, it is a perfectly 
adequate and commonly used method. 

In order to reduce the number of colonies which 
need to be screened, other selection procedures have 
been developed. A powerful method for selection of 
targeted events is the use of vectors lacking a 
promoter [9] or a polyadenylation signal [10]. 
Here, in order for the selectable marker to be 
expressed, the targeting construct must insert appro-
priately into the transcribed region of a gene. In the 
case of random insertions this will be relatively rare 
and will therefore increase the relative number of 
targeted events isolated. A limitation of this system 
is that it relies on transcription of the targeted gene 
in ES cells. 

Positive/negative selection can also be used to 

enrich for targeted events [11]. This method relies 
on the fact that random integrations tend to insert 
via their ends, whereas homologous recombination 
events occur within the region of homology, such 
that any non-homologous sequences flanking these 
regions are lost. Cells can be selected positively for 
the expression of an antibiotic resistance gene, and 
selected negatively using the herpes simplex virus 
thymidine kinase gene (HSV-tk), the expression of 
which renders cells sensitive to the base analogue 
gancyclovir. If an HSV-tk gene is placed outside the 
region of homology, only random integrants should 
contain HSV-tk and will therefore be selected 
against in the presence of gancyclovir. 

Regions of homology 

The length of the homologous sequence present in 
the targeting vector has a direct effect on the 
targeting efficiency, and typically a total length of 5-
10kb is used. The term 'isogenic' refers to DNA 
derived from the same strain, and although histori-
cally non-isogenic DNA has been used in targeting 
experiments, it has recently been shown that when 
isogenic DNA is used the frequency of targeted 
events is greatly increased. te Riele et al. [12] 
compared isogenic and non-isogenic DNA by tar-
geting the Rb-i gene in 129 ES cells using parallel 
vectors in which the homology arms were derived 
from either the 129 mouse (isogenic) or the BALB/c 
mouse (non-isogenic). By using the same selectable 
marker for both constructs, differences in efficiency 
could be directly attributed to the source of the 



	

Gene targeting 
	

437 

	

I 	2' 	PGK-neo 5' 	 6' 

	

II 	I 	 UI 

iIiIiII , 	. 

	

I 	2 	PGK-neo 5' 	 6 

G4 18 

Resistant 

(b) 	
Q 

PGK-neo 

	

I 	2 	3 	4 	5 	 6 

	

—I I I 	I • I 	 I 	I- 

i 
(iii) 	I 	2 	3 	4 	5' 	PGK-neo 	 3' 	4' 	5 	 6 

G4 18 

Resistant 

Fig. 2, Two methods for the disruption of a gene by gene targeting. (a): (i) shows a sequence replacement targeting vector 

including a phosphoglycerate kinase (PGK)-neo selectable marker (diagonal stripes, arrow indicates the direction of transcription) 

flanked by two homology arms (black bars = exoss, white box = introns, '= exon derived from targeting construct); (ii) shows the 

genomic locus against which the targeting construct has been designed; (iii) shows the targeted locus after homologous recombination 

has occurred. Crosses indicate the sites at which recombination has occurred; this is only an example and recombination could have 

occurred anywhere in the two homology arms. (b): (I) shows a sequence insertion targeting vector including a PGK-neo selectable 

marker linearized within the homology region (horizontal stripes = plasmid vector sequences); (ii) shows the genomic locus against 

which the targeting construct has been designed; (iii) shows the targeted locus after homologous recombination has occurred. 

homologous DNA. Using 129 DNA, a targeting 
frequency of 35% (33/94 G418 resistant colonies) 
was obtained, while the frequency when BALB/c 
DNA was used was only I in 144 (0.7%) G418 
resistant colonies, representing a 50-fold increase in 
targeted events when isogenic DNA was used. When 
the degree of homology between the two inbred 
strains of mice was studied it was found that the 
longest stretch of perfect homology was only 278 bp 
within the region tested (1.68kb) and the authors 
suggest that the decrease in targeting efficiency may 
reflect a lack of sufficiently long regions of perfectly 
matched homology. These data only apply to the 

Rb-I locus and care must be taken in extrapolating 
these results to other loci. However, in general it is 
believed that using isogenic DNA significantly 
increases targeting efficiency. 

Deng and Capecchi [13] addressed the question 
of how much homology is required for efficient 
targeting and found that replacement and insertion 
vectors had a strong dependence on the length of 
homology between the targeting vector and the 
targeted locus. An exponential relationship was 
observed between targeting efficiency and length of 
homology, reaching a plateau when the total length 
of homology reached 14kb. These authors also 
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Fig. 3. Example of a screening strategy using an EcoRl digest and external probe to identify targeted events after 

electroporation of a replacement type vector. (i) shows a sequence replacement targeting vector including a PGK-neo selectable 

marker (diagonal stripes, arrow indicates the direction of transcription) flanked by two homology arms (black bars= exons, white 

box = introns, '= exon derived from targeting construct); (ii) shows the genomic locus against which the targeting construct has been 

designed, the predicted size of the endogenous EcoRl fragment after Southern blotting and screening with the external probe 

(horizontal black bar); (iii) shows the targeted locus after homologous recombination has occurred and the predicted size of the 

targeted EcoRl fragment after Southern blotting and screening with the external probe. 

reported an improvement in the targeting efficiency 
through the use of isogenic DNA. 

Gene targeting has had a large impact on our 
understanding of single gene disorders such as cystic 
fibrosis, but the technology can also be applied to 
more complex traits such as blood pressure. 

RENIN—ANGIOTENSIN SYSTEM 

The renin—angiotensin system is one of the most 
studied pathways involved in blood pressure regula-
tion (Fig. 4). The first step in this pathway is the 
conversion of angiotensinogen to angiotensin I 
(ANG I) by renin, the activity of which is rate 
limiting in humans. In contrast, it is the substrate, 
angiotensinogen, which is the limiting factor in the 
mouse [14, 15]. ANG I is re-cleaved by angiotensin 
I-converting enzyme (ACE) to produce the active 
octapeptide, angiotensin II (ANG II), a peptide 
hormone which exerts its effects in a receptor-
mediated manner. 

Two pharmacologically distinct types of ANG II 
receptors have been identified, AT, and AT 2. The 
AT, receptor has two known subtypes, AT 1A  and 
AT,,, which have a wide tissue distribution and are 
expressed from distinct, but highly homologous 
genes [16-21]. It is believed that ANG II performs 
its range of physiological functions via the AT, 
receptors, both of which have been implicated in 
blood pressure regulation. The function and signifi-
cance of the AT 2  receptor is as yet unknown 
[22-24]. ANG 11 functions include vasoconstriction, 

Angiotensinogen 

Renin 

Angiotensin I 

j
Angiotensin I 

converting 

enzyme (ACE) 

Angiotensin II 

/iotensin j II Receptors  

Sodium 	 Blood pressure 	 Thirst 

Absorption 	 regulation 	 stimulation 

Fig. 4. Key elements of the renin—angiotensin system. Angiotensino-

gen is converted to ANG I by renin followed by cleavage to produce the 

active octapeptide ANG II by the enzyme ACE. ANG II then exerts its 

range of physiological effects via the ANG II receptors. 

increasing renal sodium reabsorption and stimulat-
ing the thirst centre of the central nervous system, 
and it has been hypothesized that the renin-
angiotensin system may be involved in the pathoge-
nesis of hypertension (reviewed in Skott and Jensen 
[25]). Furthermore, polymorphisms in the genes 
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encoding renin [26-28], angiotensinogen [29, 30], 
ACE [31, 32] and angiotensin receptors [33-35] 
have all been reported to be associated with hyper-
tension in humans or in animal models of hyperten-
sion. Although there are numerous transgenic stu-
dies of the renin—angiotensin system and other 
blood pressure regulatory systems, for the purpose 
of this review we will focus on the use of homolo-
gous recombination. 

Angiotensinogen gene (Agt) 

An elegant series of studies involved the dupli-
cation of the entire angiotensinogen locus [36], and 
the complementary disruption of the gene by con-
ventional targeting [37]. The duplication of the 
angiotensinogen gene was achieved by using an 
insertion-type targeting vector. Sequences from 
upstream and downstream that are believed to 
encompass all control sequences of the gene were 
used as the homology in the targeting construct. 
The 8 k 5' homology arm included 3 k of pro-
moter and exon 1, and the 1.8 kb 3' homology arm 
included exons 4 and 5 and extended 200 bp beyond 
the polyadenylation site. The 8kb gap between 5' 
and 3' homology arms, spanning exons 2 and 3, was 
repaired (filled in) by cellular mechanisms during 
the recombination event, resulting in duplication of 
the targeted locus [36]. 

By breeding animals possessing either the dupli-
cated or disrupted locus it was possible to generate 
mice containing 0 to 4 copies of the angiotensinogen 
gene [36, 37 1 . This rcsultcd in mice expressing 0 to 
145% of normal plasma angiotensinogen levels, 
increasing in a non-linear but gene copy number-
dependent manner. This relationship between gene 
copy number and angiotensinogen levels was also 
extended to include blood pressure, where mean 
arterial pressure was found to be proportional to 
gene copy number. Linear increases in blood pres-
sure of 8.3 ± 2.3 mmHg (mean arterial pressure) were 
reported for each additional copy of the Agt gene 
[37]. 

Of particular interest in the experiments of Kim 
et al. [37] is the null phenotype; the complete 
absence of angiotensinogen. No data have been 
reported for the blood pressure of homozygous 
mutant mice, probably because the viability of these 
mice is severely reduced. Surviving homozygous 
mutant (Agt -I-) animals were found to have no 
obvious defects at birth although adult mice dis-
played pathological changes in the kidney. Agt -/-
animals were found to have thickening of medial 
layers of vessel walls, caused by an increase in cell 
number and loss of structural organization, being 
most noticeable in the interlobular arteries. The 
mechanism underlying the wall thickening is 
unknown but may reveal a novel response to the 
low blood pressure or to the complete absence of 
angiotensinogen. General cortical thinning with foci 
of severe atrophy was also observed in the kidneys  

of Agt -I- animals. The areas of atrophy consisted 
of shrinkage and loss of tubules, interstitial fibrosis 
and interstitial infiltration of chronic inflammatory 
cells, and were postulated to be caused by ischaemic 
damage as a result of reduced blood flow through 
the arteries. The kidneys of all other animals (1 to 4 
copies of Agt) appeared to be normal. 

The relationship between copy number and 
plasma angiotensinogen levels was not linear.- The 
values one would have expected are 50% of wild-
type activity for every copy of Agt present, as 
opposed to the 0, 35, 100, 124 and 145% observed 
for mice containing 0, 1, 2, 3 or 4 copies of the Agt 
gene respectively. There are two explanations for 
these results. The lower level of angiotensinogen 
present in the Agt —/1 animals is postulated by 
Kim et al. [37] to be related to the increased 
expression of renin in these animals. As the level of 
renin is much higher, a greater percentage of angio-
tensinogen would be expected to be converted to 
ANG I and ultimately to ANG II, therefore result-
ing in an increase in blood pressure. However, the 
expected increase in blood pressure is not observed. 
The lower than expected levels of angiotensinogen 
observed in the 3 (Agt2/l) and 4 (Agt212) copy 
animals can be explained by negative feedback on 
Agt expression when elevated levels of angiotensino-
gen protein are present, or it could be related to the 
structure of the Agt locus. Although all known cis-
acting elements required for normal Agt levels were 
duplicated, additional, more distant sequences may 
be essential for recapitulating expression in vivo. 
This can be investigated by studying the Agt 1/i and 
Agt 2/ - animals, both of which have two angioten-
sinogen genes. When levels in these groups of mice 
were compared, the Agt 2/ - were found to have 
only 55% of the Agt 1/1 (wild-type) levels, suggesting 
that not all the regulatory elements were duplicated 
in this experiment, or that the close proximity of the 
two gene copies is inhibitory. Interestingly, this 
difference in angiotensinogen level had no statistical 
effect on blood pressure in the two groups of 
animals. 

In an independent experiment in which the angio-
tensinogen gene was disrupted [38], no difference in 
blood pressure was observed in heterozygous 
(Agt -1+) animals, but a significant reduction in 
systolic blood pressure in the homozygous mutant 

(Agt -/-) animals was reported (66.9+4.l mmHg 
compared with 100.4±4.4mmHg  in wild-type ani-
mals). Similarly, diastolic and mean blood pressures 
were also reduced. When renin levels in both homo-
zygous mutant and heterozygous animals were stu-
died, renin levels in heterozygotes did not differ 
from wild-type values whereas null animals showed 
a 600 to 800% increase in renin expression levels. 

Angiotensin-converting enzyme gene (Ace) 

In addition to the full-length transcript widely 
expressed from the Ace gene, in post-meiotic sper- 
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matogenic cells a truncated transcript encoding a 
testis-specific form of ACE is also expressed. The 
precise function of this testis-specific isoform is 
unknown; however, the gene targeting strategy used 
by Krege et al. [39] to inactivate the Ace gene 
resulted in the disruption of both transcripts, 
permitting the role of ACE in blood pressure regu-
lation and fertility to be studied. 

Male heterozygotes showed a significant reduc-
tion in blood pressure of 15-20mmHg, with female 
heterozygotes being indistinguishable from their 
wild-type litter mates. The reason for this sexual 
dimorphism is unclear, since in both sexes serum 
ACE activity was reduced. When homozygous 
mutant animals were studied, it was found that both 
males and females were hypotensive with a reduc-
tion of 35 mmHg in mean arterial pressures. Homo-
zygous mutant mice also displayed histological 
changes in the kidney similar to those of the 
angiotensinogen mutant mice described earlier, with 
thickening of artery walls caused by an increase in 
the number of disorganized cells, as well as cortical 
thinning with focal areas of atrophy. 

When the fertility of homozygous mutant animals 
was assessed, females were found to be fertile wher-
eas males had severely reduced fertility with one out 
of five males tested being fertile. A more detailed 
study of the males showed that they were still 
capable of mating and that testis pathology, sperm 
count and sperm morphology were all normal, 
suggesting that homozygous mutant males may 
have a reduced ability to fertilize ova. 

ANG II type IA receptor gene (Agtrla) 

ANG II exerts its vasopressive effects via the AT, 
receptors. Ito et al. [40] disrupted the AT IA  recep-
tor gene (Agtrla) by gene targeting using a replace-
ment vector. The resulting homozygous mutant 
mice were viable and displayed no outwardly visible 
abnormalities. Binding of ANG II was studied in 
homozygous mutant mice (Agtrla -/-) using 
radiolabelled ANG II and in general was found to 
be reduced. Using the receptor antagonists losartan 
(DuP 753) and PD123319, which block binding to 
type 1 and type 2 receptors respectively, it was 
possible to show that the ANG II binding observed 
in the kidneys of homozygous mutant mice was 
mediated through the AT 2  receptor. The response to 
ANG II injection was also studied with the direct 
infusion of ANG II into wild-type mice, resulting in 
an increase in blood pressure which lasted 20s 
followed by a delayed depressor effect lasting longer 
than 500s. Infusion into heterozygous mice resulted 
in a similar short-lived rise in blood pressure, but 
the depressor effect was shortened to about 400s 
while ANG II infusion into homozygous mutant 
mice had no effect on blood pressure. 

Systolic blood pressure decreased by 12 mmHg in 
the heterozygotes and 24mmHg in the homozygotes 
when measured by the tail-cuff method, and by 17  

and 43 mmHg respectively when measured by can-
nulation of the carotid artery. Contrary to the 
observations in the Agt and Ace targeting experi-
ments already discussed, the homozygous mutant 
animals displayed no abnormal histopathology in 
the kidney. 

Taken together, these results tell us that the AT 1A  
receptor is not essential for normal development 
and survival, or for normal kidney development. 
However, the AT 1A  receptor is essential for the 
pressor and depressor effects observed on infusion 
of ANG II. The AT LA  receptor is also responsible 
for almost all of the ANG II binding occurring in 
the kidney, and is involved in the regulation of 
blood pressure under normal conditions. 

An independent report of the disruption of the 
AT,, receptor [41] also found systolic blood pres-
sure decreases, with 10 and 22mmHg reductions 
being observed in hetero- and homozygotes respecti-
vely. Similar changes were observed in diastolic 
blood pressures and expression of renin was found 
to be upregulated in the kidneys of homozygous 
mutant mice, resulting in a 7-8-fold increase in 
plasma renin. The study used a modification of the 
gene targeting strategy to express lacZ under the 
control of the Agtrla promoter. lacZ is a gene 
which can be used to mark cells because of the 
ability of its encoded protein, f3-galactosidase, to 
convert colourless chromogenic substrates into blue 
precipitates that can be easily visualized. After incu-
bation with a /3-galactosidase substrate (Bluo-Gal), 
blue staining was observed in the glomerulus and 
juxtaglomerular apparatus. To confirm that this 
expression was equivalent to that of the endogenous 
gene, antisense probes for the AT,, receptor mRNA 
were also used and shown to mirror the expression 
pattern of IacZ. Using an AT,,-specific probe it was 
shown that no AT,, receptor expression was 
present in the kidney. 

The results of the AT,, receptor knockout experi-
ments help to dissect the phenotypes observed in 
the earlier renin—angiotensin system knockouts. 
Since a decrease in blood pressure was observed in 
the absence of histopathological alterations in the 
kidney, the changes reported for the Ace and Agt 
knockouts may not be mediated through the AT,, 
receptor, although intercross experiments would 
confirm whether this was the case. 

ANG II type 2 receptor gene (Agtr2) 

Hein et al. [42] reported the disruption of Agtr2 
using a replacement-type targeting construct. Since 
the Agtr2 gene is located on the X chromosome, in 
the first generation only females were capable of 
inheriting the disrupted Agtr2 gene from the chim-
aeric father. After three generations (F3) it was 
possible to study homozygous females and hemizy-
gous males, both of which developed normally. 
These animals showed no abnormal organ or skele-
ton development and produced litters of comparable 
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sizes to wild-type animals. To confirm the absence 
of AT2  receptors, 18.5-day post coitum embryos 
were examined for RNA expression and ligand 
binding. RNA blot analysis revealed no expression 
in hemizygous mutant males or homozygous mutant 
females, and using the radioligand CGP42112 it was 
possible to show the absence of AT 2  receptors in 
the membranes of E18.5 embryos. This removal of 
AT2  receptors did not affect the expression of the 
AT IA  receptor. When blood pressure was studied in 
these animals no difference was observed between 
wild-type mice and hemizygous mutant males. Simi-
larly, injection of ANG II in both groups of mutant 
mice resulted in the expected pressor effects pre-
viously shown to be mediated, at least in part, by 
the AT 1A  receptor. 

As ANG II is also important in the central 
control of many physiological responses, including 
thirst, the drinking habits of the mutant mice were 
also studied. When wild-type and mutant mice were 
given drinking water ad libitum no differences were 
observed; however, if water was withdrawn for 40h 
and then returned, the two groups of animals 
responded differently. In the subsequent 3 h period 
the water intake of the mutant mice was signifi-
cantly lower than the wild-type control animals. The 
AT, receptor is highly expressed in the locus come-
leus, a part of the brain involved in integration of 
sensory information and arousal. Since the intracer-
ebroventricular injection of ANG II stimulates 
exploratory behaviour, the locomotive activity of 
AT, receptor-deficient mice was evaluated. Activity 
was measured on two consecutive days, in a light or 
dark environment. In the light periods, activity was 
not significantly different; however, in the dark the 
mutant mice displayed a lower activity compared 
with their wild-type controls. The physiological sig-
nificance of the reduced activity is not known and it 
should be noted that this may be directly respon-
sible for the alteration in water intake in the mutant 
mice, rather than a direct effect of ablation of Agtr2 
expression. 

A second report describing the disruption of the 
AT2  receptor used a replacement-type vector [43]. 
In this study, third generation (F 3) hemizygous 
mutant males or homozygous mutant females also 
developed normally, showed no abnormal organ or 
skeleton development and produced litters of com-
parable sizes to wild-type animals. Mutant mice 
were found to display lower levels of exploratory 
behaviour (reduced ambulation); however, contrary 
to the findings of Hein et al. [42], basal blood 
pressure was found to be elevated in the mutant 
animals with systolic blood pressure being 
118.2±5.OmmHg in hemizygous mutant males com-
pared with 94.2± 1.7 mmHg in control males. Admi-
nistration of captopril, an ACE inhibitor, reduced 
the blood pressure of both groups of animals to 
similar values. These animals were then subjected to 
increasing doses of ANG II and at all doses tested 
the mutant mice exhibited elevated blood pressures  

compared with the wild-type controls. Finally, the 
administration of losartan, an AT, receptor antago-
nist, reduced blood pressure to the same levels as 
the original captopril treatment in both groups of 
mice. Ichiki et al. [43] suggest that since basal 
blood pressure remains higher even when the AT, 
receptors are blocked, the AT, receptor may act to 
limit the response of the AT, receptors to ANG II. 
The theory is further supported by the fact that 
infusion of ANG II into captopril-treated mutant 
mice resulted in a larger increase in blood pressure 
compared with controls. In light of these results and 
the reduction in blood pressure observed in other 
renin—angiotensin system gene targeting experi-
ments, Ichiki et al. [43] postulate that the regula-
tion of blood pressure in vivo is dependent on a 
balance between AT, and AT, receptor activation. 

Hein et al. [42] also report •a similar altered 
response to infusion of low doses of ANG II into 
mice pretreated with captopril. Unlike the findings 
of Ichiki et al. [43] no significant differences were 
observed in baseline blood pressure between wild-
type and mutant mice. These apparent discrepancies 
may be due to differences between the background 
strains onto which the mutations have been crossed 
(FVB/N as opposed to C57BL/6J). 

Renin genes (Ref/c, Renid, Ren2d) 

Mice differ from other animals inasmuch as many 
of the inbred strains and all of the wild strains 
studied contain two closely linked genes, termed 
R en id and Ren, encoding distinct renin isozymes. 
The genes in strains containing two copies (e.g. 129) 
are termed Reni" and Ren2, and in single-renin-
gene mice (e.g. C57BL/6J) the gene is termed R en ic .  

The ablation of renin expression must therefore take 
this into consideration. Three possible strategies 
exist for the ablation of renin production: disruption 
of the Renf gene in ES cells derived from 'one-
renin-gene' mice, disruption of each gene consecuti-
vely in ES cells derived from 'two-renin-gene' mice, 
or the use of a targeting construct to simultaneously 
disrupt both genes by deleting part of each gene and 
all the sequence between them. 

The availability of mice totally lacking a renin 
structural gene will complement the existing gene 
knockout studies and determine whether angioten-
sins can be produced in vivo by an alternative 
enzymic pathway. The use of ES cells from two-
renin-gene mice (129) will enable the individual roles 
of Renl and Ren2 during development, and in the 
adult, to be defined, and by intercrossing with other 
transgenic strains the individual contributions of 
various sites of renin expression can be further 
investigated. Studies on the renin genes in our 
laboratory have shown that Ren2'(—/—) animals 
are viable, fertile and have no histological abnorma-
lities in the kidney, adrenal gland or submandibular 
gland (M. G. F. Sharp et al. unpublished work). In 
combination with the Ren21  knockout, additional 
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targeting studies at the Ren locus will further eluci-
date some of the remaining questions. 

NITRIC OXIDE SYNTHASE (NOS) 

Nitric oxide (NO), a highly diffusible free radical 
gas, was first reported in the late 1980s as a signal 
transduction molecule. It is now well-documented 
that NO plays a role in several biological systems, 
including the regulation of blood pressure [44]. 
Reviews by Knowles and Moncada [45] and Bredt 
and Snyder [46] cover aspects of gene structure and 
expression, the reaction catalysed and physiological 
roles for NO. 

NO is produced from L-arginine by a group of 
enzymes termed nitric oxide synthases (NOSs) as 
shown in Fig. 5. To date, three isoforms have been 
identified with homology of between 50 and 60%. 
However, when equivalent genes are compared 
between species, a high degree of similarity is 
observed (e.g. 93% between rat and human neuronal 
NOS). Although within a species the three genes 
(and proteins) are not highly conserved, isoform-
specific inhibitors are not available, making it diffi-
cult to assign the effects of inhibitors to a particular 
NOS isoform. In light of this the use of gene 
targeting provides an extremely useful tool in the 
dissection of the roles of the NOS genes. 

Inducible NOS or iNOS (also called NOS II) is 
expressed by many cell types in response to cytok-
ines or bacterial products. Mice lacking the iNOS  

protein, as a result of gene targeting [47, 48], 
display a reduced resistance to micro-organism 
infection [47] and are less effective at protecting 
against the proliferation of lymphoma tumour cells 
[48], confirming a role for NO in inflammation 
responses. These mice are also resistant to carragee-
nan inflammation [47] and hypotension elicited by 
endotoxin [47, 48]. 

Neuronal NOS or nNOS (also called NOS I) is 
expressed at high levels in the brain, especially in 
the cerebellum, as well as other sites in the central 
and peripheral nervous systems. The nNOS gene 
has also been successfully disrupted by gene target-
ing [49] and the resulting homozygous mutant mice 
showed no immediately obvious phenotype. How-
ever, further studies revealed that the mutant mice 
had dilated stomachs associated with constricted 
pyloric sphincters, mimicking a condition observed 
in humans called infantile hypertrophic pyloric ste-
nosis, which is believed to involve a lack of NO 
production [49]. These mice also displayed resis-
tance to brain damage caused by vascular stroke 
[50], highly aggressive behaviour and exhibited an 
altered and excessive sexual behaviour [51]. 

Endothelial NOS or eNOS (NOS III) is expressed 
in endothelial cells where the production of NO has 
been shown to have a potent vasodilatory action 
[44]. Endothelium-derived relaxing factor (EDRF) 
is a molecule released by endothelial cells in res-
ponse to acetylcholine, bradykinin and substance P, 
resulting in vascular relaxation [52-55]. It has long 
been postulated that endothelial NO, produced 
from arginine in a reaction catalysed by eNOS, and 
EDRF were one and the same [54, 56, 57]. 
Although the use of NOS blockers results in an 
increase in blood pressure [55, 58, 59] this had not 
formally been shown to be caused by blockade of 
eNOS activity. 

Mice containing a mutant eNOS gene were gener-
ated using a replacement-type targeting construct 
[60]. Homozygous mutant mice were generated and 
found to be viable, fertile and appeared normal with 
respect to outward appearance and behaviour. 
Western blotting showed the absence of the eNOS 
protein in the mutant mice in a panel of tissues 
normally found to express the eNOS isoform (brain, 
heart, lung and aorta). NOS enzyme activity was 
also measured in the aorta of mutant mice and was 
found to be reduced to trace levels, which may be 
due to nNOS activity within neurons present in the 
tissue preparation. EDRF activity was measured in 
eNOS mutant mice and was found to be absent, as 
would be expected if EDRF was endothelial NO. 
Aortic rings were precontracted in the presence of 
noradrenaline and then subjected to increasing con-
centrations of acetylcholine, which was found to 
relax the aortic rings from wild-type mice (EDRF 
activity) but had no effect in the eNOS homozygous 
mutant mice. 

Although endothelium-derived NO is known to 
affect blood pressure it is difficult to predict the 
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effect of disrupting the gene in vivo, since several 
other systems may be modulated to compensate. 
However, when mean blood pressure was meas-
ured, either under anaesthetic or in the conscious 
state, the homozygous mutant animals were found 
to be significantly hypertensive (conscious mean 
blood pressure readings in homozygotes were 
117±10mmHg compared with 97±8mmHg in 
wild-type animals), proving that endothelial NO 
plays a major role in the regulation of blood 
pressure. 

The role of NO in blood pressure regulation is 
not straightforward, as demonstrated by the admi-
nistration of non-specific NOS inhibitors to the 
mutant animals. Treatment of wild-type animals 
with L-nitroarginine results in an increase in mean 
arterial blood pressure (measured by femoral artery 
catheterization), consistent with the blocking of a 
potent vasodilator. However, treatment of the eNOS 
homozygous mutant mice with L-nitroarginine 
resulted in a decrease in mean arterial blood pres-
sure. This treatment would have been expected to 
have no effect if the eNOS protein is the only NOS 
enzyme contributing to blood pressure control. This 
indicates that one of the other NOS proteins is also 
involved in the maintenance of blood pressure, and 
Huang et al. [60] suggest that nNOS may also play 
a role based on the occurrence of anaesthesia-
induced hypotension in nNOS mutant mice. 

More evidence for the role of NOS in blood 
pressure control comes from studying its expression 
in the kidney. The macula densa cells of the kidney 
form part of the juxtaglomerular apparatus, an 
important structure in the regulation of blood pres-
sure not least because of its critical role in the 
renin—angiotensin system. The macula densa cells 
are believed to sense the pressure in the proximal 
tubule and secrete a signal molecule (possibly NO) 
which is detected by the juxtaglomerular cells, 
which then respond by increasing or decreasing 
renin release. Ramipril, an ACE inhibitor, and losar-
tan, an AT, receptor antagonist, cause an increase 
in renin concentration [61]. NOS inhibitors cause a 
decrease in renal renin mRNA levels and in plasma 
renin activity and in combination with ramipril or 
losartan completely blunt the expected rise in renin 
concentration [61], suggesting that NO is directly 
involved as a signalling molecule. The decrease in 
blood pressure of the eNOS mutant mice caused by 
L-nitroarginine could therefore be due to a decrease 
in renin release caused by the lack of stimulation of 
juxtaglomerular cells by NO from the macula densa 
cells. It will be very interesting to measure the 
expression of renin in these animals, both untreated 
and treated with NOS inhibitors. As the three NOS 
genes are all present on different chromosomes it 
should be possible, by cross-breeding mutant lines, 
to generate double and triple mutants, the pheno-
types of which should be highly informative. 

One may have expected other blood pressure 
regulating systems to compensate for disruption of  

the eNOS gene but this was not found to be the 
case. Huang et al. [60] postulate that other mecha-
nisms, e.g. the renin—angiotensin system, may have 
evolved to protect against hypotension and are 
therefore ill-equipped to cause a reduction in blood 
pressure. Alternatively, NO may be involved in 
creating the baroreceptor set point, a mechanism 
known to be affected by NOS inhibitors. 

ENDOTHELIN AND ATRIAL NATRIURETIC PEPTIDE 
(ANP) PATHWAYS 

Endothelin-1 is a potent vasoconstrictor and has 
been found to induce the release of EDRF/NO and 
inhibit the release of renin. The gene coding for 
endothelin-1 has been disrupted by gene targeting 
[62], resulting in an increase in blood pressure in 
the heterozygous animals and lethality in homozy-
gous mutant animals. The removal of a vasocon-
strictive molecule was expected to cause a decrease 
in blood pressure, but this was not observed. Poss-
ible explanations are that the lack of endothelin-1 
throughout development has led to problems in the 
integration of blood pressure regulating systems or 
that endothelin-1 may have vasodilatory activities in 
vivo, as suggested by the stimulation of NO and 
inhibition of renin production by endothelin-1. 

ANP is synthesized primarily by the atria of the 
heart and released in response to atrial distension. 
ANP is believed to mediate a vasodilatory action 
via receptors present in the vasculature, kidney and 
adrenal gland. ANP [63] and the guanylyl cyclase-
A receptor, GC-A [64], through which ANP is 
believed to act, have both been disrupted by gene 
targeting. proANP -1+ animals did not differ from 
wild-type litter mates, although homozygous mutant 
animals (proANP -/-) were found to be hyperten-
sive when fed on standard chow (0.5% NaCI). When 
the same animals were fed on chow containing 2.0% 
NaCl the proANP -/- displayed even higher 
blood pressures, confirming the salt-sensitive nature 
of the phenotype. The disruption of the GC-A gene 
also resulted in a hypertensive phenotype; however, 
in this instance the hypertension was independent of 
salt concentration (salt-resistant hypertension). This 
contradiction in results can best be explained by the 
presence of another natriuretic activity acting 
through a receptor other than GC-A [64]. 

GENETIC BACKGROUND CONSIDERATIONS 

Care must be taken in interpreting the results of 
gene knockout experiments. Ideally, chimaeric mice 
should be crossed with inbred mice from which the 
ES cells were derived to maintain genetic homoge-
neity. This is not always feasible as 129 mice are 
well known for their low fertility and reduced 
fecundity. This problem can be partly circumvented 
by crossing chimaeric mice with another inbred line. 

The Agt modified chimaeric mice [36, 37] were 
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Table I. Summary of published gene targeting papers in which an effect on blood pressure is observed 

Gene 	Gene product 	 Phenotype 

Agt 	Angiotensinogen 	 Hypotension (38]. 

Hypotension, reduced viability. Thickening of intrarenal arteries, cortical atrophy (37]. 

Ace 	ACE 	 Hypotension, male fertility reduced. Thickening of intrarenal arteries, cortical atrophy (39]. 

AgtrIa 	ANG II type la receptor 	Hypotension, no response to ANG II infusion. Normal kidney histology [40]. 

Hypotension [41]. 

AgEr2 	ANG II type 2 receptor 	Normotensive, normal response to ANG 11[42]. 

Hypertensive, altered responses to ANG II and captopril [43]. 

eNOS 	Endothelium-derived NO 	Hypertension, decrease in blood pressure with NOS inhibitors [60]. 

ET-1 	Endothelin-1 	 Hypertension and craniofacial abnormalities [62]. 

proANP 	ANP 	 Salt-sensitive hypertension [63]. 

GC-A 	GC-A 	 Salt-resistant hypertension [64]. 

crossed with the inbred strain C57BL/6J. The result-
ing F 1  mice are genetically identical, possessing a 
complement of chromosomes from each parent. 
Thus, heterozygous mutant animals and control 
litter mates can be directly compared, the only 
genetic difference being at the mutated locus. How -
ever, when these heterozygotes are intercrossed to 
generate Agt -/-- and Agt2/2 animals, the original 
129 and C57BL/6J chromosomes will segregate ran-
domly at meiosis. In a large F 2  population, any 
unlinked gene affecting the phenotype will occur on 
a purely random basis. 

While in most analyses it is assumed that any 
phenotype observed is due to the disruption of the 
gene, the influence of linked genes cannot be ruled 
out. Kim et al. [37] addressed this question by 
comparing their F 2  Agt —/1 and Agt2/] animals. 
These animals can be compared because the wild-
type '1' gene and the neighbouring linked genes are 
all derived from the C57BL/6J strain, whereas the 
disrupted or duplicated genes ('—' or '2') and all 
linked genes are derived from the 129 strain, i.e. 
with regard to linked genes these animals only vary 
at the Agt locus. Kim et al. [37] then compared the 
blood pressure results obtained with these animals 
to the results obtained with the complete set of 
animals and found no significant difference, imply-
ing that no linked genes were affecting blood 
pressure. 

The best way to circumvent such problems would 
be to breed onto a single genetic background, i.e. 
the strain from which the ES cells were derived. 
This is difficult with the 129 strain because of the 
small litter sizes but would rule out the effects of 
linked genes since, by definition, the chromosomes 
of an inbred mouse will be identical except for the 
modified gene. Alternatively, ES cells could be der-
ived from other inbred mouse strains which have a 
higher fertility and fecundity. 

DISCUSSION AND CONCLUSIONS 

Gene targeting experiments have begun to eluci-
date further the mechanisms of blood pressure 
regulation and to complement both pharmacologi- 

cal and physiological studies. In addition to the use 
of genes known to be directly involved in blood 
pressure regulation, many other gene targeting 
experiments have had effects on blood pressure (see 
Table I) and will yield valuable information. 

A problem commonly associated with gene target-
ing experiments, but not examined in detail here, is 
that of redundancy between genes. In this case, one 
observes no differences between the targeted and 
wild-type mice because a gene other than the one 
disrupted is compensating for the loss of the tar-
geted gene. This is common when targeting a 
member of a highly related gene family, but may 
still provide valuable information regarding the 
regulation and functioning of the gene family being 
investigated. Animals lacking functionally overlap-
ping genes can be readily intercrossed to explore the 
relationship between such genes. 

At present, most gene targeting experiments result 
in the ablation of a gene product by disruption of 
the gene locus. Techniques are available for the 
introduction of more subtle mutations, for example 
introducing mutations observed in human disorders. 
Gene targeting has been used to recreate the 
common human cystic fibrosis mutation, AF508, in 
mice [65-67], and such techniques allow further 
refinement of animal models for human diseases to 
be performed. An additional development of gene 
targeting is the use of the Cre/loxP recombination 
system [68, 69]. Cre is a protein which mediates 
homologous recombination between two specific 
loxP sites. Introduction of loxP sites in a gene 
targeting experiment and the subsequent removal of 
intervening sequences by Cre recombinase can rec-
reate a functional gene. As this only occurs in the 
presence of Cre protein this can be regulated both 
tissue-specifically and/or temporally. Traditional 
transgenic animals expressing Cre either tissue-
specifically or under the control of an inducible 
promoter can be crossed with gene knockout mice, 
resulting in selective re-activation of the gene. 

Gu et al. [70] used Cre/loxP recombination to 
knock out the DNA polymerase /3 gene specifically 
in T-cells. The disruption of this gene in all cells 
resulted in a lethal phenotype. As this gene was 
believed to be important in the development of 
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lymphocytes, Cre recombinase (expressed in trans-
genic animals under the control of the T-cell-specific 
ick gene promoter) was used to knock out the gene 
specifically in T-cells. In this way the role of a gene 
in individual tissues or at specific times in develop-
ment can be dissected from the global effect of 
disrupting a gene. 

At present, ES cell lines are only available from a 
few inbred mouse lines. As some physiological 
questions are either difficult or impossible to 
address in the mouse, the generation of ES cells 
from other species would be highly advantageous. 
At present, pluripotential rat ES cells have been 
used to generate chimaeric rats but germ-line trans-
mission was not achieved [71]. For gene targeting 
experiments to be viable in species other than the 
mouse, germ-line transmission must be achieved, 
and much work is currently underway with this 
objective in mind following both traditional mouse 
protocols and other novel strategies. 

Gene targeting experiments in the mouse are 
permitting the systematic disruption and mutagen-
esis of genes involved in blood pressure regulation. 
Although such experiments have already been valu-
able, the continuing development of the technology 
is likely to provide further possibilities for refining 
the questions which can be addressed and will 
undoubtedly deepen our understanding of the com-
plex genetics of blood pressure homoeostasis. 
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Abstract Several recent studies have demonstrated that ab-
lation of genes of the renin-angiotensin system can have wide-
ranging and sometimes unexpected effects. Renin is directly in-
volved in blood pressure regulation and is encoded by a single 
gene in most mammals. Wild.mouse strains and some inbred 
laboratory strains have a duplicated renin gene (Ren-2), the phys-
iological significance of which is unclear. Significant differences 
exist in the structure and expression of these renin genes, but as 
yet, no distinct biological function that distinguishes these genes 
has been defined. We have used gene targeting to discover the 
effects of inactivating the duplicated (Ren-2) gene in strain 129 
mice, and we show that mice lacking the Ren-2 gene are viable 
and healthy. There appear to be no histopathological differences 

The renin-angiotensin system (RAS) is involved in 
the regulation of blood pressure (BP) and elec-
trolyte balance as well as in the pathogenesis of 

several diseases, including hypertension. The aspartyl 
protease renin catalyses the cleavage of the plasma gly-
coprotein angiotensinogen, its only known substrate, 
thereby initiating the first and rate-limiting step in the 
generation of the potent vasoactive octapeptide hormone 
angiotensin II (Ang II). Renin is secreted primarily from 
modified smooth muscle cells of the afferent arteriole of 
the kidney, which constitute a major element of the jux-
lagiomerular apparatus. 

Molecular cloning has demonstrated that renin is en-
coded by a single gene in humans, rats, and some strains 
of laboratory mice. However, wild strains and some in-
bred laboratory mouse strains have a duplication of ap-
proximately 30 kb of DNA on chromosome 1, encom-
passing the whole of the original renin locus (designated 
Ren-1") and including a second functional renin gene des-
ignated Ren-2. The single gene present in some inbred 
strains is designated Ren-l'. The rat and mouse renin 
genes all span approximately 13 kb and are split into nine 
exons. The Ren-1" and Ren-l' genes are 99% identical, 
and the Ren-]" and Ren-2 genes have 97% sequence iden-
tity in their respective coding regions; thus, all three mu-
rine genes give rise to highly conserved proteins, which 
are approximately 97% similar at the amino acid level. 
The gene duplication event is thought to have occurred 3 
to 10 million years ago, after the speciation of the mouse. 2  
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in renin-expressing tissues between Ren-2—null mice and their 
controls. Studies of our Ren-2—null mice allow, for the first time, 
a direct evaluation of the ability of theRen-I" gene to regulate 
blood pressure in the absence of expression of the Ren-2 enzyme. 
We observed no alteration to blood pressure in adult mice ho-
mozygous for the mutated Ren-2 gene, even though the concen-
tration of active renin is increased and of prorenin is decreased 
in plasma of these mice. Ren-]" is therefore capable of regulating 
normal blood pressure and despite a different tissue expression 
profile, is functionally equivalent to Ren-J. (Hypertension. 
1996;28:1126-1131.) 

Key Words • mice, transgenic • genes • molecular 
biology • mutation • recombination, genetic • renin 

The most notable differences in the renin-2 protein are 
the changes at three potential asparagine-linked glyco-
sylation sites present in the renin-1 protein and reduced 
thermostability compared with renin-1. 3  

The Ren-1" and Ren-2 genes are expressed at approx-
imately equal levels in the juxtaglomerular cells of the 
kidney, but these genes are differentially expressed in a 
number of tissues. The Ren-1 gene is expressed in the 
developing adrenal gland, but it is developmentally re-
stricted and the mRNA becomes undetectable near birth. 
The Ren-1" and Ren-2 genes are both expressed at similar 
levels in the adult adrenal gland of DBAI2 mice, and the 
expression level varies through the estrus cycle. 4  The 
granular convoluted tubule cells of the submandibular 
gland show a profound differential expression of renin 
genes, such that Ren-2 is expressed in 100-fold excess 
over Ren-1 and is regulated by androgens 5  and Ren-1' 
expression is detectable by ribonuclease protection only. 6  
On a per-cell basis, the relative amount of mRNA from 
the Ren-2 gene in the submandibular gland is approxi-
mately equal to the level in the kidney. The Ren-l' and 
Ren-2 genes are also differentially expressed in the inter-
stitial Leydig cells of the testis and a population of 
subcutaneous fibroblasts in the developing fetus. The 
renin-2 protein has biochemical properties similar to 
those of the renin-1 protein, 7  but it has not yet been pos-
sible to attribute a specific role to the product of the 
Ren-2 gene. It is not known whether this gene is involved 
in any aspect of cardiovascular homeostasis or indeed 
whether it is functionally equivalent to the Ren-1" gene. 
The duplicated mouse renin genes have long been used 
as a model system for the analysis of differential gene 
expression and of the evolutionary development of gene 
families. 

The introduction of the mouse Ren-2 gene into trans-
genie rats illustrates that in these circumstances, the renin 
gene can profoundly. affect BP regulation, as this genetic 
modification results in severe hypertension.' It is thought 
that the rate of Ang II generation is limited by renin ac- 
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tivity in all species except the mouse, in which the reac-
tion is substrate limited. In support of this, expression of 
the rat angiotensinogen gene in transgenic mice causes 
hypertension, 9  whereas introduction of extra mouse renin 
genes does not alter BP. 4  The powerful studies of Kim 
and 0 have shown that titration of gene copy 
number for the mouse angiotensinogen gene not only in-
creases plasma angiotensinogen levels in line with gene 
copy number but also results in a near-linear increase 
in BP. 

The physiological role of individual genes can be in-
vestigated by specifically removing or altering the func-
tion of the gene in the absence of any other genetic 
changes. This is possible by use of cellular mechanisms 
of homologous recombination in embryonic stem (ES) 
cells, which can then be used to derive a genetically mod-
ified mouse strain. 11,12  This approach has been applied 
recently to some of the genes of the RAS and has dem-
onstrated unequivocally that the genes encoding angio-
tens inogen, 0I3.I4 angiotensin-converting enzyme, 15  and 
angiotensin type IA receptor 16 . 17  are all important in the 
maintenance of normal BP. Common findings of the stud-
ies on angiotensinogen and angiotensin-converting en-
zyme gene knockouts are histopathological changes in the 
adult kidney, including medial hyperplasia of the inter-
lobular arteries and afferent arterioles, interstitial fibrosis, 
and cortical thinning. 10,13-15  Because of the precise nature 
of the genetic change introduced in targeting experi-
ments, particularly when performed in an inbred mouse 
strain such that normal littermates are genetically identi-
cal except for the introduced mutation, the data generated 
provide the proof of causation of a particular phenotype 
by a defined mutation in a candidate gene. 18  As part of a 
strategy to define pathological effects of ablating all renin 
gene expression, we attempt here to define separately the 
physiological functions of the Ren-l' and Ren-2 genes. 

Methods 
I Materials 

Plasmid pPGKneo, ES cell line E14Tg2a, and differentiation 
inhibiting activity were gifts from Austin Smith. 

Amplification of Genomic Regions and Building of 
Targeting Construct 

Two regions of the Ren-2 gene, extending from exon 1 to 
exon 3 (4.32 kb) and from exon 5 to exon 9 (3.76 kb), were 
amplified from a partially characterized 129/01a genomic clone 
with the use of the following primers: region 1 (4.32 kb): for-
ward: 5'-GGACAGGAGGAGGATGCCTC-3'; reverse: 5'-AAG 
GTCTGGGGTGGGGTACC-3'; and region 2 (3.76 kb): for-
ward: 5'-CGGGATCCAGTITGACGGGGTFCTAGG-3'; reverse: 
5'-CGGGATCCGGCGCGCC'TTGCGGATGAAGGTGGCAC-3'. 
DNA was amplified for 40 cycles with Pfu DNA polymerase (Strata-
gene). The amplification conditions were denaturation for 1 minute 
at 95°C; annealing for I minute at 70°C (region I) or 64°C (region 
2) for 6.5 minutes at 74 °C; and a single final extension period of 10 
minutes at 74°C. Amplifications were performed in 20 mmol/L Tris-
HCI (pH 8.75), 10 mmol/L KCI, 10 mnioVL (NH 4)2SO4, 100 g/mL 
bovine serum albumin, 0.1% Triton X- 100, 2 mmol/L MgCl 2, 0.2 
mmol/L (each) dNTP, 0.5 imol/L (each) primer, and 50 to 100 ng 
template DNA. Two factors contribute to the high number of cycles 
required to produce sufficient material for cloning: (1) the relative 
inefficiency of Pfu polymerase compared with Taq DNA polymer-
ase, and (2) the fact that the large polymerase chain reaction products 
shown here are at the limit of amplification for pure proofreading 
nzymes using genomic clone template DNA. 

These amplified products were digested with the restriction 
endonucleases Xba I and Kpn 1(5' arm of homology) or Kpn I 
and Hindlll (3' arm of homology) to yield larger fragments that 
were cloned into a pSP72-based plasmid and smaller fragments 
that were used as genomic probes flanking the targeting vector 
sequences during the screening of recombinant ES cell clones. 
The selectable marker cassette PGKneo, which has the neomycin 
phosphotransferase gene driven by the phosphoglycerokinase 
promoter, was inserted between the regions of genomic DNA to 
yield the plasmid pR2 neoKO (Fig I). This plasmid was linear-
ized before transfection into ES cells. The entire 3' homology 
arm was sequenced, and these data were compared with the 3' 
arm polymerase chain reaction product sequenced directly with 
the use of an automated sequencer (ABI Prism 377, Perkin-El-
mer). No differences were found between the targeting construct 
and the genomic sequence, and so no mutations were introduced 
during polymerase chain reaction amplification. 

Gene Targeting 
The ES cell line E14Tg2a' 9  was grown on gelatin-coated plas-

tic in Glasgow Minimal Essential Medium supplemented with 
I x nonessential amino acids, 0.25% (wtivol) sodium bicarbon-
ate, 0.4 mmollL fi-mercaptoethanol, 2 mmoltL glutamine, 1 
mmollL pyruvate, 10% fetal calf serum, and mouse DIA/LIF. 
Electroporation of lx 10' cells with 150 jig linearized DNA was 
followed 24 hours later by 9 days of selection in G418 (175 
jiglmL). Individual clones were picked and expanded and then 
screened by Southern blot hybridization of Pvull-digested DNA 
to the 3' hybridization probe (Fig I). DNAs from clones that 
appeared to be targeted at the Ren-2 locus were then digested 
with Sac I, and the filters were hybridized with the 5' flanking 
probe to confirm that homologous recombination had occurred 
in both arms of the targeting construct (unpublished observations, 
1995). These combinations of restriction enzymes and probes 
were chosen because they distinguish between the two closely 
linked renin genes and also between the predicted results of ho-
mologous recombination at either gene. 

Animal Handling and Breeding 
Correctly targeted ES cells were thawed, expanded, and in-

jected into blastocysts derived from C57/1316 mice and offspring 
containing a good proportion of ES cell—derived tissue identified 
by coat color chimerism. These chimeric mice were bred with 
129/01a female mice; thus, transmission of the disrupted Ren-2 
gene from ES cells to 129/01a mice maintains a pure, inbred 
genetic background. All mice were bred in-house, fed standard 
chow and tap water ad libitum, and maintained in accordance 
with the Animals (Scientific Procedures) Act, 1986. 

Gene Expression Analysis 
RNA was prepared with the guanidinium isothiocyanate/phe-

nol method, 20  quantified by UV spectroscopy, and visually as-
sessed by agarose gel electrophoresis. Primer extension with a 
38-mer oligonucleotide specific for exon 8 of all mouse renin 
genes was by the method of Field and Gross. 5  RNA expression 
was quantified by a Phosphorlmager (Molecular Dynamics) and 
was adjusted for sample recovery by comparison of the signal 
from the primer. Polyacrylamide gels (12%) were exposed for 7 
days to Kodak X-Omat film and then for a further 7 days for 
Phosphorlmager analysis. 

BP Measurements 
Mean BP was measured by direct cannulation of the abdominal 

aorta in adult (12- to 20-week-old) mice. A fine cannula made 
from drawn polyethylene tubing (Portex) was inserted into the 
vessel, while the aorta and vena cava were supported under ten-
sion with a suture to prevent blood flow and hence blood loss. 
The aortic flow was stopped for a maximum of 30 seconds, which 
is sufficient time to insert the catheter into the aorta and fix it in 
place with tissue glue. After at least 24 hours of recovery, the 
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catheter was connected to a pressure transducer (Viggo-Spec-
tralab), and BP was measured on a chart recorder. The catheter 
was prefihled with heparin-saline and flushed daily. Measure-
ments were made in conscious mice in restraining tubes for at 
least 15 minutes for each mouse. Mean BP was calculated as 60% 
of mean diastolic pressure plus 40% of mean systolic pressure. 
Each mouse had undergone 10 days of training over the preced-
ing 2 weeks involving at least 10 minutes of restraint per day. 
All data were collected between 10 AM and 3 PM, and the data 
gathered from mice measured on more than I day were averaged. 

Plasma Renin and Prorenin Measurements 
Blood was collected by cardiac puncture immediately after 

death into fresh fphenanthroline (0.05 mol/L) and EDTA (0.1 
mol!L) on ice in a ratio of 10 ,iL per 100 AL whole blood. Blood 
was spun immediately for 6 minutes at 4000g; plasma was snap-
frozen in liquid nitrogen and stored at -70°C until assayed. 
Plasma renin and prorenin concentrations were determined as 
previously described. 2 ' Briefly, inactive renin in 20 pL plasma 
was activated with 40 ILL trypsin (400 UImL, dissolved in TES 
buffer: 0.1 molfL N-tris(hydroxymethyl)methyl-2-arninoethane-
sulfonic acid [pH 7.2], 0.01% neomycin, 10 mmolJL EDTA). 
Samples were incubated on ice for 10 minutes, and the reactions 
were stopped by the addition of 40 L soybean trypsin inhibitor 
(600 U/mL, in TES buffer). Active renin was measured after 
addition of 80 ,uL TES buffer without trypsin, as described below. 

Pretreated samples were incubated with lyophilized renin 
substrate isolated from nephrectomized rat plasma (final con-
centration: 80 mg/mL; 0.11% 2,3-dimercapto-l-propanol, 1.15 
mg/mL 8-hydroxychinolin in TES buffer). The reaction was 
stopped with radioimmunoassay buffer (0.1 molfL Tris-acetate, 
pH 7.4) (1) immediately before the incubation and (2) 1 to 3 
hours after incubation at 37 °C. Generated Ang I was measured 
by radioimmunoassay. 22 ' 23  

Histology 
Mice were killed by exposure to 100% CO 2 , and tissues were 

fixed in 10% phosphate-buffered formal saline for 24 hours be-
fore dehydration and embedding in paraffin wax. Sections of 6 
im were mounted on slides and stained with hematoxylin and 
eosin. Multiple sections from kidneys, adrenal, and submandib-
ular glands were examined in a blinded fashion by two experi-
menters using standard light microscopy. 

Results 
Targeting Efficiency 

Screening of G418-resistant ES cells transfected with 
pR2 neoKO with the 3' flanking probe (Fig 1) identified 
15 of 228 clones that possessed a restriction fragment size 
diagnostic of homologous recombination in the Ren-2 
gene. The 5' flanking probe was used to show that 13 of 
these clones were correctly targeted also in the 5' arm of 
homology, which is an overall targeting frequency of 
5.7%. We used two of these ES cell clones to make chi-
meric mice that transmitted the disrupted Ren-2 gene to 
their offspring. None of the targeted cells screened in this 
way had evidence of the recombination at the highly ho-
mologous Ren 1d locus. 

Analysis of Renin Gene Expression 
The transcripts of the Ren-V' and Ren-2 genes can be 

distinguished by a dideoxynucleotide primer extension as-
say 5  as well as by ribonuclease protection. 6  As shown by 
primer extension (Fig 2), Ren-2—derived transcripts were 
not detectable in adult Ren-2—null mice in either kidney or 
submandibular gland RNA at this level of sensitivity. The 
relative level of Ren-2—derived RNA, which has been stud-
ied in a limited number of mice and in heterozygous mouse 
kidney, is 55% (range, 54.7% to 55.4%; n=2) compared 
with wild-type littermates and is 63.3% (range, 44.5% to 
79.3%; n=3) in the male heterozygote submandibular 
gland. The level of Ren-1' mRNA detected in the kidney 
is slightly increased to 107.6% (range, 101.1% to 114.1%; 
n=2) and 117.3% (range, 107.2% to 127.3%; n=2) in het-
erozygous and Ren-2—null mice, respectively. 

Analysis of Ren-2 Knockout Mice 
Homozygous Ren-2—null mice are healthy and viable. 

Intercrossing of F 1  heterozygotes produced the expected 
numbers of wild-type, heterozygous, and homozygous 
mice. The adult Ren-2—null mice had no gross abnormal-
ities postmortem and had normal histomorphology of the 
kidney, adrenal gland, and submandibular gland compared 
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A 	 B 
cc + + + 	- 	- 

FIG 2. Gene-specific primer exten-
sion analysis of 80 pg of kidney (A) 
and 2 ig of submandibular gland (B) 
total RNA. The 38-mer oligodeoxynu-
cleotide primer used produces exten- 

Ren2STOP --' 	 sion products of +5 nucleotides from 

?en2STOP —. 
	 Ren 1d mRNA (Renid STOP) and 

+12 nucleotides from Ren-2 (Ren2 
STOP) mRNA in the presence of 
ddCTP and dGTP, dTTP, and dATP. 

9nIdSTOP 
Adult male wild-type (+1+), hetero- 
zygous (+1–), and homozygous 
(–I–) littermates were used. tRNA in- 

Primer — 
	

Primer 	 j 	cates 80 fig of yeast tRNA negative 
control RNA. 

'ith wild-type littermates (n=2 for males and females, 
ripublished observations, 1996). 

lasma Renin and Prorenin Concentrations 
The prorenin level in the plasma of heterozygous mice 

'as lower than that of wild-type mice (P<.05, t test), as 
iown in Fig 3. Homozygous Ren-2-null mice also had 
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G 3. Plasma renin concentration (A) and prorenin concentra-
n (B) in male and female wild-type (solid bars), heterozygous 

iatched bars), and homozygous (open bars) mice expressed as 
iean+SE. Numbers inside bars indicate sample size. P<05 
tudent's t test. Wild-type (7 males, 4 females), heterozygote (4 
ales, 7 females), and homozygote (4 males, 12 [A] or 10 [B] 
males) mice show no difference between sexes within each 
2notype, so pooled data are presented. AngI indicates angio-
nsin I. 

decreased plasma prorenin, but this difference did not 
reach the 5% level of significance (.05<P<.10). Interest-
ingly, plasma renin concentration was higher in Ren-2.-
null mice than in wild-type mice (P<.05, t test) and was 
at an intermediate level in heterozygous mice (P=NS). 
This increase in plasma renin concentration in the absence 

of two copies of the Ren-2 gene may be due to increased 
synthesis and release of renin-1 by a feedback mechanism 

linked either to the lower levels of circulating prorenin or 
to expression of renin-2 itself. 

Does Loss of Renin-2 Affect Resting BP? 
To determine whether the lack of a functional Ren-2 

gene has any effect on the resting BP of 129!01a mice, we 
measured mean BP by direct cannulation of the abdominal 

aorta (Fig 4). Measured in this way, BP values in wild-
type, heterozygous, and Ren-2-null mice did not differ 
(P>..1, ttest). Mixed genetic backgrounds could affect BP, 

irrespective of the presence or absence of an intact Ren-2 
gene. For this reason, we chose to breed purely within the 
129/01a inbred mouse strain. Because we did not back-

cross to a different strain, there was no segregation of un- 

Di 
I 
E 
E 

FIG 4. Mean blood pressure as measured by aortic cannulation. 
Values for male and female mice were pooled and are expressed 
as mean+SE. Mean blood pressure values did not differ signif-
icantly between pooled and sex-matched groups (unpublished 
observations, 1996). Numbers inside bars indicate sample size. 
Wild-type (solid bar; 6 males and 5 females), heterozygous 
(hatched bar; 7 males and 9 females), and homozygous (open 
bar; 2 males and 7 females) mice are shown. 
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linked polymorphic genes in subsequent generations and 
no false association of a phenotype with the introduced 
mutation due to selection for 129 alleles linked to the tar-
geted locus.  18 All offspring were genetically identical ex-
cept for the mutated gene. 

Discussion 
It is presently unclear what the exact role of the dupli-

cated Ren-2 gene is in the regulation of BP and electrolyte 
and fluid balance in the mouse strains that carry this gene. 
The aim of this study was to inactivate the Ren-2 gene by 
homologous recombination and thus (1) determine 
whether the remaining renin gene, Ren-1", is sufficient to 
maintain normal BP, and (2) reveal unrecognized func-
tions of this gene. The Ren-2 renin gene was inactivated, 
and mice carrying the null allele were analyzed for 
changes in resting BP, expression of the Ren-l' gene, lev-
els of active and inactive renin in the circulation, and his-
topathological changes in renin-expres sing organs. 

The Ren-1" gene is the orthologue of the Ren-1" gene 
of "single-gene" mouse strains, and it may be reasonable 
to expect, on the basis of the high degree of similarity, that 
the Ren-1 d  gene product is capable of performing all of 
the functions of the renin proteins from strains and species 
that contain only a single renin gene. Previously, studies 
comparing the Ren-1' and Ren1i  genes have had to take 
into account the presence of the Ren-2 gene in "two-gene" 
mice. Inactivation of the Ren-2 gene has generated a new 
mouse strain that is better suited to the direct comparison 
of the orthologous Ren-1' and Ren-1 1  genes. The physio-
logical functions. of Ren-]" gene expression can now be 
assessed in the absence of the Ren-2 gene and so without 
the confounding effects of the overlapping expression of 
this similar activity. The effect of genetic background in 
these comparisons could be taken into account by parallel 
studies on the wild-type mice of each strain (ie, C57/B16 
and 129) and by sampling a large number of F 2  mice de-
rived from an intercross between Ren-2—null ( 129) and 
C57/1316 mice after the offspring are typed and sorted ac-
cording to which Ren-] alleles (Ren-1' or Ren-1') are 
present.- .. - 

In this study, we aimed to show whether the Ren-1 d  gene 
product alone is sufficient for normal BP regulation and 
also hoped to uncover any critical function of the renin-2 
protein not previously recognized. The major sites of ex-
pression of the Ren-2 gene are the juxtaglomerular cells 
of the kidney, the X-zone of the adrenal gland, and the 
granular convoluted tubule cells of the submandibular 
gland; however, the specific physiological properties of 
this protein are not defined. The high level of expression 
in the secretory epithelial cells of the submandibular gland 
may be the incidental result of the disruption of a negative 
regulatory DNA element, located in the 5' region of the 
Ren-2 gene, by the insertion of a repetitive sequence 
termed M2. 24  Renin-2 is also expressed and secreted from 
the juxtaglomerular cells of the kidney and so may play a 
role in Ang II generation in the classic circulating RAS. 
We have used a generally applicable, rapid strategy for the 
construction of vectors for use in gene targeting experi-
ments based on amplification and cloning of long regions 
of chromosomal homology by the polymerase chain re-
action. The result of the homologous recombination re-
ported here is predicted to completely remove enzyme ac-
tivity. The absence of renin-2 has no effect on the resting 
BP of young adult mice. However, the normal function of  

the renin-2 protein may become manifest only after an 
environmental or physiological stimulus or insult. Studies 
are ongoing in this respect. The mutation at Ren-2 does 
affect the level of prorenin in the circulation, and it could 
be that circulating prorenin is predominantly derived from 
the Ren-2 gene in normal "two-gene" mice. There is a 
concomitant increase in the plasma renin concentration in 
animals with depressed levels of prorenin, suggestive of a 
compensatory response. The signals that might mediate a 
feedback response may involve the activation of prorenin 
in tissues (or in the circulation) or some direct signal 
passed through the prorenin molecule itself. 

Overall, we have shown that the mouse Ren-2 gene is 
not essential and that mutation of this gene does not affect 
kidney, submandibular gland, or adrenal gland histomor-
phology. The levels of the inactive zymogen prorenin are 
reduced in homozygous Ren-2—null mice, and yet resting 
BP does not change in these mice. An activity other than 
that encoded by the Ren-2 gene is sufficient for all the 
functions of renin that have been described to date, and 
that activity is probably the product of the Ren-l' gene. 
More detailed analysis of these mice, under different phys-
iological conditions, is being used to distinguish any func-
tions that may be ascribed to the Ren-2 gene only. 

Genetic ablation of the renin substrate angiotensinogen 
illustrates profound alterations in BP and kidney vascular 
morphology. 10,13  The question of whether the Ren-2 gene 
is active in the regulation of the classic circulating RAS 
and is able to participate in the normal regulation of BP 
will come from the targeted inactivation of the Ren-l' 
gene in mice that retain the normal Ren-2 gene. The 
Ren-l' gene has been targeted in mouse ES cells, 25  but 
mice derived from these targeted cells have not been re-
ported to date. We have generated mice that carry a mu-
tation of the Ren-1" gene, and homozygous null mice are 
healthy and viable (unpublished observations, 1996). 
Comparison of these strains, which are isogenic except for 
the renin gene defects, will allow various functions of 
hemodynamic regulation and physiology of the RAS to be 
associated with one or both of the forms (nonglycosylated 
and potentially glycosylated) of renin present in "two-
gene" mice. The mice reported here will be used for fur-
ther study of the role of the renin-2 protein in mouse phys-
iology and to characterize which functions of renin are 
performed by the products of each gene. This may aid in 
the elucidation of pathologically important sites or forms 
of renin expression in human populations. 
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Morphological Changes in Mice Lacking Ren-1 d 

The secretion of renin from granules stored in renal juxtaglomerular cells plays a 
key role in blood pressure homeostasis. The synthesis and release of renin and the 
extent of granulation is regulated by several mechanisms including signalling from 
the macula densa, neuronal input and blood pressure. Through the use of a gene 
targeting vector containing homology arms generated using the polymerase chain 
reaction, we have inactivated the Ren-1'1  gene, one of two mouse genes encoding 
renin, and report that lack of renin-1' 1  results in altered morphology of the macula 
densa of the kidney distal tubule, and complete absence of juxtaglomerular cell 
granulation. Further, Ren-1' mice exhibit sexually dimorphic hypotension. The 
altered growth morphology of the macula densa in Ren-1'1-null mice should provide a 
tool for the investigation of the JG cell—macula densa signalling. Further, the current 
data indicate that expression of the Ren-1'1  gene is a prerequisite for the formation of 
storage granules, even though the related protein renin-2 is present in these mice, 
suggesting that renin1d and renin-2 are secreted by distinct pathways in vivo. 

INTRODUCTION 

Renin (EC 3.4.23.15) is an asparyl protease which catalyses the first step in the 
renin angiotensin system, the end-product of which is the potent vasopressor peptide 
hormone, angiotensin II (AngII 1 ). This octapeptide acts to increase peripheral vascular 
resistance, and promote salt and fluid retention in concert with the hormone 
aldosterone. Renin is synthesised principally in the kidney juxtaglomerular (JG) cells, 
a group of modified smooth muscle cells located at the distal end of the renal afferent 
arteriole of the glomerulus (1). JG cells are in close contact with the macula densa, a 
specialised plaque of epithelial cells of the kidney distal tubule, which signal to the 
renal arterioles to regulate glomerular filtration rate and the secretion of renin, in 
response to ionic concentration and flow rate in the distal tubule (2, 3), the so-called 
tubuloglomerular feedback loop. Except for the submandibular gland (SMG) of the 
mouse the JG cells are the only site where prorenin, the inactive zymogen, is known 
to be converted to the active form of renin. SMG renin does not, however, make its 
way into the plasma in large quantities, and is thought not to play a significant role in 
blood pressure regulation under normal circumstances [reviewed in Bing et al. (4)]. 
The release of renin from JG cells is mediated by two pathways; regulated release of the 
mature, active renin from modified lysosomal storage granules, and constitutive 
release of the inactive zymogen. While the regulated pathway of renin secretion is 
responsive to baroreceptor, neurogenic and macula densa signals (5), the physiological 
significance of the constitutive secretion of prorenin is not understood, nor are the 
molecular pathways which link secretory signals to renin maturation and release. 
Clarification of the mechanisms underlying these processes will be crucial to our 
understanding of the control of renin activity locally in the renal glomerulus, and in 
the plasma, and the regulation of fluid and ion homeostasis. 

Human and rat genomes contain a single gene for renin but mice display two 
alternative genotypes at the Ren locus. Thus some inbred mouse strains (e.g. strain 
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C57BL/6) have only a single renin structural gene, termed Ren1c, while others (e.g. 
DBA/2 and 129/01a) possess two renin genes, termed Ren-1 11  and Ren-2. This probably 
results from the recent duplication of 21kb of DNA containing a Ren1c_like ancestral 
gene (6, 7). All three mouse renin genes share the same overall genomic organisation, 
and encode highly homologous but distinct proteins, with approximately 97% 
similarity at the amino acid level, but having different glycosylation potentials 
[reviewed in (8)1. This arises because the renin-2 enzyme lacks putative consensus sites 
for asparagine-linked glycosylation, whereas renin1C and renin1d proteins can be 
glycosylated at three asparagine residues. The mouse renin genes are expressed in 
distinct, though overlapping, tissue-specific and developmental patterns (8). It has 
therefore been difficult to dissect the individual roles of each gene to date, or to 
determine if renin1d and renin-2 play functionally equivalent roles in viva. For 
example, Ren-1 11  and Re -n-2 are expressed at equivalent levels in JG cells, but Ren-2 is 
expressed at high levels (2% of total SMG protein) in the submandibular gland and is 
under the control of various hormones, including testosterone, whereas Ren_ld is 
only detectable at trace levels in this organ (9). The evolution of non-identical, tightly 
regulated developmental expression profiles, and the biochemical differences between 
renin-1 and renin-2 proteins suggest that the two genes may indeed possess 
functionally distinct properties. 

The presence of two genetically distinct forms of renin, susceptible to 
manipulation by gene targeting, offers a unique opportunity to determine the 
importance of renin glycosylation for its role in viva and to dissect the functions of 
renin which in other animals are subserved by a single gene product. We have 
recently reported the targeted disruption of the Ren-2 gene in mice (10), which results 
in Ren-11 1  being the only active renin gene present. Ren-2-null mice display elevated 
circulating active renin concentrations, and reduced circulating (inactive) prorenin, 
however no abnormalities in the histomorphology of adult kidneys, adrenals or 
submandibular glands, nor in resting blood pressures, have been found in adult 
animals to date (10). Here, we describe the generation of mice in which the Rcn-1 11  
gene has been inactivated by homologous recombination. As part of a generalised 
construction strategy, the regions of DNA providing ken-1 11  gene homology in the 
targeting vector have been generated by long-range PCR amplification of isogenic 
substrate DNA, using a proof-reading DNA polymerase. The phenotype of ken-i'1- ! -
mice shows that the Re,z-1 11  and Ren-2 genes are not functionally equivalent. First, 
female mice show a significant reduction in resting blood pressure. Further, the level 
of plasma active renin is decreased while inactive prorenin is increased. Finally, the 
deletion of the glycosylated renin-1 results in the complete absence of dense 
secretory/storage granule formation in JG cells and altered morphology of the macula 
densa cells of the kidney distal tubule. 

EXPERIMENTAL PROCEDURES 

Construction of a Ren_id Gene Targeting Vector—Regions of ken-I" gene 
homology for incorporation into the targeting vector were generated by long-range 
PCR amplification using, as template, DNA from a bacteriophage P1 clone containing 
the entire mouse 129/Ola ken-11 1  gene (P1_1249 2) and the primer pairs, for the 5' arm, 
JJM 203 (5'-CCGCTCGAGTCTGGACAGCCTACATGAC-3') and JJM 135 (5'-AAGG-
TCTGGGGTGGGGTACC-3') and for the 3' arm, JJM 224 (5'-GCCGCTCGAGGTACCA- 
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GCTACATGGAGAACGGGTC-3') and JJM 204 (5'-GCAAGCTTGACAAAATGGCC-
CCCAGGAC-3'). Natural (5' arm) and artificially introduced (3' arm) Kpn I sites used 
in cloning are underlined. Reactions (lOOp.ls) in 10mM Tris-HC1; pH 8.8, 10mM KCI, 
0.002% (v/v) Tween 20 0 , 1.0mM MgCl2, 40tM each dATP, dCTP, dGTP, dTTP, 54M 
each primer, b-bOng template DNA and 5 units of ULTrna DNA polymerase (Perkin 
Elmer ABI, Warrington, UK) were 40 cycles of 95°C for 1 minute, 66°C (5' arm) or 68°C 
(3' arm) for 1 minute and 72°C for 6.5 minutes, followed by one period of 10 minutes at 
72°C. Each PCR product was cloned into a plasmid vector, and then manipulated to 
flank the PGKneo selectable marker gene. The final targeting vector, pRineoKO, 
contained 3.5kb and 3.7kb segments of the Renld gene flanking the selectable marker 
gene. 

Gene Targeting and Generation of Mutant Mice—ES cells were grown in GMEM + 
10% foetal calf serum supplemented with mouse or human DIA/LIF on gelatin-coated 
plastic, as described (11). Targeting vector DNA (150g; pRineoKO), was linearised by 

digestion with Asc I and Mlu I and electroporated into 5 x 109 E14Tg2a cells Hooper, 
1987 #512 , a strain 129-derived embryonal stem cell line, with a discharge of 0.8kV at 
3p.F on a BioRad Gene Pulser. Following G418 selection (175.ig/ml), drug-resistant 
colonies were expanded and genomic DNA prepared (12). Homologous recombination 
events were detected by Southern blotting of DNA digested with Sac I and hybridised 
with an external 5' probe (a 297bp PVU IT/Barn HI fragment, containing exon bof the 
Ren-1'1  gene). Clones selected in this way were also hybridised with an external 3' 
probe after digestion with Pvu II (a 746bp 1-find III/Nco I fragment, containing Re,z-l' 1  
exon 8 and part of exon 9; see Figure 1D). One targeted clone was used to generate male 
chimaeras, which were crossed with 129/Ola females to generate inbred 129/Ola 
heterozygote offspring. These mice were intercrossed to produce an F2 generation with 
wild-type, heterozygous and homozygous inbred, Ren-1 11 ' mice. 

Gene expression—Kidney RNA was amplified by reverse transcription-coupled 
PCR, using the Expand RT kit (Boehringer Mannheim), according to the 
manufacturer's instructions. cDNA was randomly primed with hexanucleo tides, and 
renin sequences amplified using primers JJM 56 (5'-CCAGCCCAGACCTTCAAAGTC-
3') and JJM 141 (5'-CCAGACAAATGGCCCCCAAG-3'), specific fpr exons three and 
nine of the mouse renin genes, respectively. Amplification was for 10 cycles of 94°C for 
10 seconds, 62°C for 20 seconds and 68°C for 45 seconds, plus 25, cycles with a 5 second 
increment in each 68°C extension phase. The resulting renin cDNA (999bp) was 
digested with Ear I, an enzyme which digests Ren-1 11  cDNA twice, and Ren-2 cDNA 
once. 

Histological Analysis—Following sacrifice of animals by CO2 anesthesia, tissues 
were immersion-fixed in 4% (w/v) formaldehyde, 0.9% (w/v) NaCl for 24 hours and 
embedded in paraffin wax. Subsequently, 2.im sections from kidneys, submandibular 
glands, adrenal glands and testes were stained with haematoxylin and eosin and 
examined, in a blinded manner, by standard light microscopy. 

Measurement of Blood Pressure—Mean blood pressure (40% of systolic + 60% of 
diastolic pressures) was measured via direct cannulation of the abdominal aorta in 
adult mice (8-15 weeks old). Measurements were made over a 15 minute period in 
conscious, resting animals housed in restraining tubes. All animals had undergone 
training (30 minutes/day) in restraining tubes for 5 consecutive days, beginning 7 days 
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prior to the operation. Operations were performed as described (10). Briefly, a cannula 
made from drawn polyethylene tubing (Portex, Hythe, UK; Product Code 800/100/100) 
was inserted into the aorta (while the blood flow in the aorta and vena cava was 
occluded using a suture) and fixed in place using tissue glue. Cannulae were filled 
with heparin-saline, and were flushed daily. Blood pressure was measured 24 hours 
post operation by connecting the cannula to a pressure transducer (Viggo-Spectralab, 
Oxnard, Ca, USA) and printing on a chart recorder. Statistical significance was assessed 
using a two-tailed Student's t-test. 

Measurement of Renin Concentration—Animals were sacrificed as above, and 
blood sampled immediately by cardiac puncture into 0.1 volumes of 125mM EDTA; 
25mM Q-phenanthroline. Plasma was snap-frozen in liquid nitrogen in lOOpJ aliquots. 
Plasma renin concentrations (PRC) and plasma prorenin concentrations (PPC) were 
calculated according to the method of Peters et al. (14). Total renin concentration was 
measured by activating 2%d of plasma with 40j.d of trypsin (400 units/ml, dissolved in 
TES buffer; 0.11M N-tris(hydroxymethyl)methyl-2-aminoethane-sulfonic acid, pH7.2, 
0.01% neomycin, 10mM EDTA). Samples were incubated on ice for 10 minutes and 
trypsin-activation stopped by the addition of 40.il of soybean trypsin inhibitor 
(600units/ml, in TES buffer). Plasma active renin was measured by the addition of 80pi 
of TES buffer (without trypsin) to 20p1 of plasma. Pre-treated samples were incubated 
with lyophilised renin substrate, isolated from nephrectomized rat plasma (final 
concentration; 80mg/mi, 0.11% 2,3-dimercap to- 1 -prop anol, 1.15mg/mi 
8-hydroxyquinoline in TES buffer). Reactions proceeded for 1-3 hours at 37°C, and were 
stopped with RIA buffer (0.IM tris-acetate, pH7.4). The AngI generated by the plasma 
renin was measured by radioimmunoassay (15, 16). Plasma prorenin concentration is 
determined as the difference between total renin concentration and plasma active 
renin concentration. Statistical significance was assessed using the Wilcoxon rank test. 

RESULTS 

Generation of Ren_id Deficient Mice—Initaily, conditions were established for the 
efficient PCR amplification of DNA fragments in the size range 3-4kb, using the 
thermos table proof-reading UL Trna DNA polymerase (described in Experimental 
Procedures). Subsequently, two regions of the Ren-1 11  gene, extending from exon I to 
exon 3 and exon 4 to exon 9 (Fig. 1A and 1B) were successfully amplified using Ren-1' 1-
specific primers, from bacteriophage P1 clone P1-1249, which contains the entire 
mouse 129/Ola Ren-1'1  gene. PCR products were then digested and used to assemble 
the final targeting vector, pRineoKO, in which 3.5kb and 3.7kb segments of Rcn-1' 1  
gene homology flank the selectable marker (Fig. 1C). Following electroporation of the 
targeting construct into ES cells, Southern analysis using 5' and 3' external probes (Fig. 
1D and not shown) identified 3 from 313 (1%) drug-resistant colonies that were 
correctly recombined in both the 5'and 3 arms. One clone was used to generate male 
chimeras, which were crossed with 129/Ola females to generate inbred 129/Ola 
heterozygote offspring. These mice were intercrossed to produce an F2 generation with 
wild type, heterzygote and homozygote inbred Ren-1' mice (Fig. IE). The absence of 
recombination within the Ren-2 gene demonstrates the previously reported (17) 
highly specific recombination achievable, even when targeting closely related genes. 
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Gene Expression Analysis— Amplification of total kidney RNA from Ren-11 1 1 
mice by RT-PCR, followed by restriction digestion of the product with Ear I, confirmed 
that the disrupted Ren-1 1  gene is unable to produce functional Ren-1 11  mRNA and 
that Ren-2 mRNA is the only gene product present in these mice (Fig. 2). Primer 
extension analysis 3, showed thatRen-2-derived mRNA is 2.8±0.05- and 3.9±0.23-fold 
more abundant in the kidneys of Ren1d/ -  males and females, respectively, compared 
to wild-type mice. 

Renin Measurements—Plasma renin concentration (PRO and plasma prorenin 
concentration (PPC) were determined from mouse plasma samples (Fig. 3). PRC levels 
did not differ significantly between males of all three genotypes (+/+=240±58, +1-
=170±34, —/—=243±63 ng AngI/ml/hr; P>0.05) (Fig. 3A, solid bars). However, PPC was 
significantly higher in Ren-1 11-1-  male mice (1341±116 ng AngI/ml/hr), as compared to 
both wild-type (717±64 ngAngI/ml/hr; P<0.0003) and heterozygous males (566±33 ng 
AngI/ml/hr; P<0.0003) (Fig. 3A, open bars). In females, PRC was reduced in Ren-0 - 1 
mice (123±28 ng AngI/ml/hr) compared to controls (229±32 ng AngI/ml/hr; P<0.027), 
while heterozygous females had an intermediate level (164±34 ng AngI/ml/hr) (Fig. 
3B, solid bars). Similar to male mice, PPC measurements revealed a significant 
increase in circulating prorenin in female Ren-1'1 ' homozygotes (1632±238 ng 
AngI/ml/hr) compared to Ren11 1 +1-  mice (528±42 ng AngI/ml/hr; P<0.0003) and wild-
type females (557±56 ng AngI/ml/hr; P<0.0003) (Fig. 3B, open bars). 

Blood Pressure J-lomeostasis—Measurement of mean arterial blood pressures in 
males showed no significant (P>0.05) difference between Ren-1 11  genotypes ( Table 1). 
However, a significant decrease in blood pressure of 12.7 mmHg was seen in Ren-1' 1  
females compared with wild-type controls (P<0.01). 

Histomorpholbgical Appearance—Kidneys, adrenal glands, submandibular gland 
and testes or ovaries from Ren-1' 1 ' (n=4), Ren-l''' (n=4) and wild-type animals 
(n=2) from both sexes were studied. No differences were observed in adrenal glands, 
submandibular glands, testes or ovaries from all three genotypes in both sexes. 
However, kidney sections showed two significant abnormalities in both Ren-11 1 1 
males and females (Fig. 4A and 4B). The macula densa of Ren-1 11 ' mice exhibited 
hypercellularity, and an altered epithelial morphology in which the cells showed a 
columnar appearance, which contrasts with the cuboidal morphology of the wild-type 
controls. The central three macula densa cells were measured in five JG regions from 
each of four individual mice (n=20) of each genotype. Wild-type and Re,z-11 1 ' mice 
had macula densa cells of 6.1tm (range 5.6-6.3tm) and 6.0p.m (range 5.8-6.21m) in 
height (basolateral to apical dimension), repectively, whereas the height of macula 
densa cells in Re,z-1'" mice was 7.9.im (range 7.6-8.1.tm). This represents a 30% 
increase in cell height in the Ren1tideficient mice. Immunostaining of kidney 
sections with an antibody specific for renin showed that, in contrast to the granular 
appearance of the controls, Ren-1 1 ' mice exhibited diffuse, uniform, low-level 
cytoplasmic renin staining (approximately 5% of controls) consistent with constitutive 
secretion, and indicating that renin-2 is not stored in large quantities in the JG cells of 
these mice (Fig. 4C and 4D). Kidney sections from homozygous mutant and control 
mice were examined by transmission electron microscopy, which demonstrated that 
the JG cells of the Ren-1'1 ' mice were completely devoid of the storage/secretory 
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granules typically present in wild-type controls (Fig. 4E and 4F). Nevertheless, 
Ren1d1 JG cells contain an abundant rough endoplasmic reticulum (Fig. 4F). 

DISCUSSION 

Disruption of the Ren-11 1  gene, described here, provides the first demonstration 
that inactivation of a gene encoding renin affects blood pressure homeostasis, 
exemplified by the sexually dimorphic hypotension seen in Ren-l/ females. In 
addition, the Ren-1 11  phenotype displays a decrease in the plasma concentration of 
active renin and an increase in plasma prorenin. Further, a discrete and reproducible 
change was observed in the morphology of the macula densa cells of the kidney distal 
tubular epithelium. This small group of cells which act as sensors in the tubular 
glomerular feedback loop, but do not express renin, show a 30% increase in basolateral 
to apical height. The physiological sequelae of this cellular change are presently 
unknown. Most striking is the complete absence of secretory/storage granules in the 
JG (modified smooth muscle) cells of the renal afferent arteriole. Thus, expression of 
the renin1d protein is a prerequisite for secretory granule formation and maturation, 
and the Ren-2 gene product is unable to act as substitute in this role. 

A novel feature of the current study is the successful inactivation of the RenlLl 
gene by homologous recombination using a targeting construct in which the regions of 
DNA providing Reiz-1 11  gene homology were generated by long-range PCR. Together 
with the use of a similar  strategy to target the Ren-2 gene (10), these data demonstrate 
the feasability of using homology regions generated entirely by PCR to target genes of 
interest. Optimised conditions for the efficient amplification of DNA fragments in the 
size range of 3-4kb, using a cloned genomic DNA template and the thermostable proof-
reading ULTma DNA polymerase, included long (6.5 minute) extension times, an 
increased number of cycles (40) and primers of 28-32 nucleotides in length. To facilitate 
molecular manipulations and/or screening for homologous recombinants, restriction 
enzyme recognition sequences can be usefully built into primers, but they should be 
situated at least five nucleotides from the end of the PCR product to permit efficient 
digestion. Although this experiment utilised a 130kb bacteriophage P1 Ren-1 11  genomic 
clone as the template for PCR, we have also demonstrated the efficient amplification 
of up to 10kb fragments from genomic DNA, using a mixture of proofreading and Taq 
DNA polymerases4. Consequently, the regions of homology required to target any 
gene for which a minimum amount of information is available can be generated, with 
the advantages of using isogenic genomic DNA from the ES cell strain to be targeted as 
template and the facile introduction of additional restriction sites to simplify 
molecular manipulations and screening strategies. 

Juxtaglomerular cells, the principal site of renin synthesis, represent a specalised 
population of the smooth muscle cells of the renal afferent arteriole. In particular they 
contain abundant modified lysosomal granules, where prorenin is activated and 
stored (1). It is thought that the release of active renin from these secretory/storage 
granules is by regulated exocytosis in response to specific physiological stimuli, 
whereas an additional distinct secretory pathway mediates the constitutive secretion of 
inactive prorenin, via clear secretory vesicles. This concept is based on previous work 
on cultured tumoural JG cells and human kidney slices (17) and AtT-20 cells, a mouse 
pituitary cell line which expresses both regulated and constitutive secretory pathways, 
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and can process prorenin into active renin (18,19) (24,25). It has also been suggested 
that the mouse enzymes renin1d and renin-2 can each be sorted through distinct 
secretory pathways in AtT-20 cells (20, 21), but whether renin1d and renin-2 are 
secreted separately via distinct pathways or coordinately through both pathways in 
vivo has yet to be determined. In the current study, the most striking consequences of 
ablating expression of the renin1d protein are a change in renin immunostaining 
from a punctate, abundant granular pattern in JG cells of wild-type mice, to diffuse, 
weak cytoplasmic staining (Fig. 4C, D) and a complete lack of dense granule formation 
in Renldnull mice (Fig. 4E, F). Thus signals required for sorting renin to the 
regulated secretory pathway of mouse JG cells in vivo, reside exclusively in the 
renin_id protein and not in renin-2. This finding suggests that the trafficking and 
maturation of renin-2 protein within secretory granules in transfected AtT-20 cells 
(21,22) may not mirror the situation in the intact mouse, especially given that this cell 
line displays a different range of prorenin processing activities compared to the JG cells 
of the kidney [see (23)]. 

The reduced plasma concentrations of active renin and elevated prorenin seen in 
Ren_1d/ -  mice (Fig. 3) are the converse of the situation in Ren-21 mice (10), The 
Renld/ phenotype might be explained by a compensatory stimulation of the 
constitutive secretory pathway, in the absence of regulated secretion of renin1d, 
leading to enhanced secretion of renin-2 in the inactive form. This supports the idea 
that renin1d secretion is predominantly via the regulated (granular) pathway, and that 
renin-2 secretion is predominantly through the constitutive pathway. Higher rates of 
prorenin-2 secretion may be signalled by the deficit of active renin in the plasma, by 
the lack of JG secretory /storage granules, or directly by the absence of renin_id protein. 
The exact means by which one or other of these mechanisms stimulates RL'n-2 gene 
expression (2.8-3.9-fold) is not yet clear. However, this resembles a case of human 
familial elevated plasma prorenin (23), where a mutation in exon 10 of one allele of 
the human renin gene introduces a premature termination codon. The elevated levels 
of plasma prorenin in this phenotype are postulated to result from a compensatory 
mechanism which enhances expression from the normal renin allele (23). The data in 
Fig. 3 clearly show that homozygous Ren-1 11 -null mice display reduced, but 
nonetheless detectable, levels of active renin in the plasma. This active renin must 
derive exclusively from the product of the Ren-2 gene, although the means by which 
prorenin-2 is converted to activate renin-2 is presently not clear. The complete absence 
of storage/secretory granules in Ren-1'' JG cells, the normal site of renin maturation 
activity, raises the possibility that prorenin-2 is activated in an extrarenal site in these 
mice. 

The hypotension observed in female Re,z-11 1 ' mice demonstrates that the 
renin-2 protein cannot accomplish all the functions of renin1d in maintaining basal 
blood pressure. The fact that reduced blood pressure is seen only in female mice might. 
well be a consequence of the sexually dimorphic expression of the Ren-2 gene (8). For 
example, male mice express much higher levels of renin-2 in the SMG than females, 
and this may compensate for a reduction in active renin concentration (Fig. 3) and the 
hypotension otherwise conferred by the Ren-1 11  mutation. The altered macula densa 
cell morphology (Fig. 4) might reflect perturbations in the renin-angiotensin system in 
Ren-l'1 1 mice, leading in turn to changes in chloride and fluid balance and altered 
signalling via the tubuloglomerular feedback loop. Studies of ion and fluid balance in 
Ren-1 11-1-  mice are presently underway to address these questions. 
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Recent gene targeting experiments have shown that an intact renin-angiotensin 
system is fundamental to maintaining basal blood pressure, since mice lacking genes 
for angiotensinogen [Agt (26,27)], angiotensin converting enzyme [ACE (28)], and 
angiotensin type 1A receptor [AGTR1A (29,30)] all share a reduction in blood pressure 
as common phenotypic feature. Ablation of angiotensinogen, or of angiotensin 
converting enzyme, also results in renal vascular damage and defects in kidney 
morphology (26-28,31). It is notable that while Re,z1d/ mice also have altered renal 
morphology, these changes are much less severe, and more specific, than those seen in 
Agt and ACE knockout mice. 

A critical feature of the present study is that all mouse stocks were maintained on 
the 129/01a inbred genetic background onto which the origina1Renld gene mutation 
was introduced. This eliminates the risk of introducing modifier loci, inherent in 
cross-breeding to other genetic strains, which may mask any phenotypic change caused 
solely by the introduced mutation (32). Strategies to account for modifier gene effects 
in gene targeting experiments exist (33), but these involve large breeding populations 
to ensure random segregation of loci, coupled with genotype assessment. Importantly, 
the maintenance of a pure genetic background also permits direct comparison with 
different knock-out animals on the same 129/01a background, for example, Ren-2 - 1 -
(10) and Ren-V 1 /Re,z-2 1  animals5 . 

In conclusion, these studies demonstrate that the mouse Ren-11 1  and Ren-2 gene 
products fulfill distinct roles in renin secretory granule formation and blood pressure 
homeostasis and that the renin gene duplication in some strains of mice is not 
functionally redundant. The availability of both Ren-1' 1 1 (this study) and Ren-2' 1- 1 -
(10) mice presents additional opportunities to dissect renin gene function and the 
mechanisms underlying the trafficking, storage, maturation and release of renin in 
vivo. Furthermore, Ren_1d/ mice are likely to be especially useful in addressing the 
contribution of macula densa signalling in the tubuloglomerular feedback loop, 
especially in response to perturbations in the renin-angiotensin system. 
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Fig. 1. Gene targeting. A, The mouse 129/Ola renin locus: The arrows represent 
the direction of transcription. Only relevant restriction sites are shown: Hind III (H), 
Pvu 11(P), Kpn I (K), Xba I (X). B, PCR Amplification of homology arms: Enlarged view 
of the Ren1d gene, showing 5' and 3' gene homology arms generated by long-range 
PCR amplification. Primer pairs used (JJM 203/135 and JJM 224/204) are indicated by 
open triangles. The numbered black boxes represent exons. C, Targeting construct 
pRineoKO: The construct deletes 92 bp of exon 3, the third intron and 35 bp of exon 4 
and replaces them with a phosphoglycerokinase-1 neomycin phosphotransf erase 
cassette (neo, not drawn to scale), flanked at the 3' end by an artificial Pvu II restriction 
site, specifically introduced during cloning to facilitate identification of a correctly 
targeted Renld allele. D, Targeted gene: The disrupted Renld gene after homologous 
recombination between the targeting construct and the endogenous gene. E, 
Confirmation of targeting: DNA (Southern) blots of tail DNA samples from offspring 
of a Ren-1 1 ' heterozygoteintercross digested with Pvu II and hybridised with the 3' 
probe (shown in A and D) giving either a 10.6 kb fragment expected from the 
endogenous Ren-1 11  gene or an 8.6 kb fragment diagnostic of the Ren-1'1  targeted allele, 
confirmed correct targeting of the 3'arm. The 7.9 kb fragment, common to all, 
originates from the endogenous cross-hybridising Ren-2 gene. Southern analysis, 
following Sac I digestion, also confirmed correct targeting of the 5' arm (not shown). 

Fig. 2. Renin mRNA analysis in targeted mice. RT-PCR of total mouse kidney 
RNA, using primers that recognise both Ren-l' 1  and Ren-2 cDNAs results in a 999bp 
product ('—'lanes). Following digestion with the restriction enzyme Ear I, Re,z-1 11  and 
Ren-2 cDNAs can be distinguished by the presence of restriction fragments of 484bp, 
347bp and 168bp specific to Ren1d, or 652bp and 347bp specific to Re -n-2. Analysis of 
total kidney RNA from Ren-01 homozygotes demonstrates the presence of Ren-2 
mRNA, while products derived from Ren-11 1  mRNA expression are completely 
absent. Parallel analysis of Ren-1' 1 ' heterozygotes reveals the presence of both Re,z-1 1  
and Ren-2 gene products, while only Reiz-1' 1  mRNA is detectable in Ren-2' 
homozygous knockout mice (10). 

Fig. 3. Circulating renin levels. A, Plasma active renin concentration (PRC; solid 
bars) and plasma prorenin concentration (PPC; open bars) in male Ren-l' 1-targeted 
mice. PPC in Ren-1 11 ' male mice (n=7) is significantly higher than Ren-1' 1 ' (n=14; , 
P<0.027) and wild-type (n=17; P<0.0003) mice. B, Female Ren-1 11 ' mice have 
significantly lower PRC than wild-type mice (*, P<0.027). Prorenin concentrations in 
the female Reiz-1 1 ' mice (n=8) are significantly increased compared to wild-type 
(n=10; P<0.0003) and Ren-1' 1 ' animals (n=14; , P<0.027). Data represent 
mean±SEM. 
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Morphological Changes in Mice Lacking Ren-1 d 

Fig. 4. Altered renal morphology. A-B, in light microscopy of wild-type mice (A), 
differences were noted in the morphology of the cells of the macula densa compared 
with (B), Ren_1d1  mice, in which the epithelial cells of the macula densa (arrow) 
have a columnar morphology, the nucleus: cytoplasm ratio is increased and there is 
cell crowding. By contrast in the wild-type mice the same cells (arrow) have a cuboidal 
morphology with a lower nucleus: cytoplasm ratio and lower cell density. Sections 
were stained with haematoxylin and eosin; G=glomerulus. C-D, control mouse 
kidneys (C) show strong immunostaining for renin in the medial layer of the afferent 
arteriole (arrow). In contrast, sections from a Ren-1 11 ' mouse kidney (D) show only 
faint cytoplasmic immunoperoxidase staining for renin in a few cells near the vascular 
pole (arrow). E-F, electron microscopy of afferent arteriolar smooth muscle cells (SM) 
from a control mouse (E) show prominant dense cytoplasmic granules (arrows); 
A=afferent arteriole lumen, E=endothelial cell. The cells in the wall of this afferent 
arteriole from a Ren_1d1  mouse kidney (F), defined by tracing its origin from the 
interlobular artery in semi-thin sections, show no evidence of cytoplasmic granules. 
Aafferent arteriole lumen; E=endothelial cells; SM=modified smooth muscle cells (x 
3,800). 

TABLE 1: Resting blood pressure in Ren-ld gene knockout mice. 

Blood pressure was determined in conscious, restrained wild-type (+/+), 
ken-11 1  heterozygous (+/-) and Ren-1 11  homozygous (-I-) mice by direct 
cannulation of the aorta as described (10). Values are mean±SEM W. 
* P<0.01 by Student's t test. 

Mean arterial blood pressure (mmHg) 

Males 	93.6±5.2 93.6±5.2 (8) 	93.0±4.9 (11) 	92.3±3.8 (8) 

Females 	93.6±2.5 (8) 	85.6±2.8 (7) 	*80.9±3.4 (8) 

Pace 73 
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