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ABSTRACT

Background Infection is a serious complication in patients with acute and chronic liver
failure. Neutrophil chemotaxis is an important body defense mechanism against

infection, which has been reported to be defective in such patients. However, the newly
described family of potent chemoattractant cytokines (chemokines) and their

relationship to neutrophil chemotaxis has not been previously studied in patients with
acute and chronic liver failure.

Aim of the thesis To identify the presence of and characterise the neutrophil
chemotactic defect to chemokines in patients with acute and chronic liver failure.
Patients and methods Neutrophils were isolated from patients with acute and chronic
liver failure, and controls. Chemotaxis was determined using the CXC chemokines

Interleukin-8 (TL-8) and Growth related oncogen-a (Gro-a) in a 48 well-modified

Boyden chamber assay. Serum chemokine concentrations were measured using ELISA
and neutrophil CXC chemokine receptors expression by flow cytometry.

Results Neutrophil chemotaxis to EL-8 and Gro-a was reduced in patients with acute

and chronic liver failure either due to alcoholic liver disease or hepatitis C compared
with controls. This impairment was correlated with the severity of the disease. A partial
correction in chemotaxis of patients' neutrophils was observed after cross incubation
with the control sera and vice versa using control neutrophils and patients' sera.

Neutrophil chemotaxis in patients with chronic liver failure is further reduced 2 hours
after oral administration of an amino acid solution, which simulates human blood.

Neutrophils isolated from the portal venous blood had similar chemotactic defects to

neutrophils isolated from peripheral venous blood. However, chemotaxis was

significantly reduced in neutrophils isolated from hepatic venous blood compared to

neutrophils isolated from portal or peripheral blood. In cross over studies, portal

neutrophil chemotaxis was significantly reduced after incubation with hepatic venous

serum and vice versa. The CXC chemokines IL-8, IFN-Y-inducible protein (IP-10), and

Monokine Induced by Interferon- y (Mig) were significantly elevated in patients with
both acute and chronic liver failure compared with controls. There was no significant

15



difference in neutrophil expression of both CXCR1 and CXCR2 chemokine receptors in

patients with either acute or chronic liver failure compared with the controls.
Conclusion Neutrophil chemotaxis to CXC chemokines is impaired in patients with
either acute or chronic liver failure. There is a functional defect in both CXCR1 and

CXCR2 chemokine receptors. Impaired neutrophil chemotaxis may contribute to the
increased risk of infection in these patients. This impairment in chemotaxis may be due
to CXC receptor desensitisation caused by circulating humeral factor/s plus an intrinsic
defect of the neutrophils.
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AIMS OF THE THESIS

The aims of the thesis were:

® To identify the presence of and characterise the neutrophil chemotactic defect
induced by the potent CXC chemokines IL-8 and Gro-a in patients with acute and
chronic liver failure compared with control subjects. The effects of different aetiologies
and severity of liver diseases on neutrophil chemotaxis were also investigated. © To
determine the effect of one of the important chronic complications of liver disease,

namely upper gastrointestinal bleeding on neutrophil chemotaxis. © The circulatory
concentrations of the CXC chemokines were also studied. The studies also investigated
the possibility of differential change in neutrophil chemotaxis and chemokine
concentrations across the liver.
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Chapter 1: General Introduction.

1.1 LIVER

The liver is one of the largest organs in the body weighting 1200-15OOg. It has a dual

blood supply via portal vein and hepatic artery. Both vessels enter the liver at the porta

hepatis accompanied by the bile duct. The right, middle and left hepatic veins drain
blood into the inferior vena cava just before its entry to the right atrium of the heart. The

hepatic lobule is the basic unit of the liver, which is described as a pyramidal lobule with
central branch of hepatic vein and a peripheral portal tract. Each portal tract contains
branches of bile duct, portal vein and hepatic artery. Connecting the portal tract and
central vein are single columns of hepatocytes with intervening biliary canaliculi and

capillary sinusoids {Kiernan 1833 and Sherlock 1993}. Rappaport described the
functional liver acini and divided each of these acini into 3 zones. Each liver acinus

contains central portal triad (zone 1) interdigitated mostly perpendicularly with terminal

hepatic veins of the adjacent acini (zone 3). The area in between is considered as zone 2

(Figure 1.1) {Rappaport 1976}. The differential metabolic functions of each zone are

demonstrated in table 1.1 {Gumucio and Miller 1981}. The cellular components of the
liver include hepatocytes and sinusoidal cells, which consist of endothelial cells, Kupffer
cells (the largest tissue macrophage population in the body), fat storing or Stellate cells,
and natural killer cells, which may be positive or negative (NK+ and NK-) for T cell
markers {Wisse et al 1985}. The functions of each type of cells are included in Table 1.2

{Finlayson and Bouchier 1995}. This anatomical situation and cellular make-up allows
the liver to play a central role in the bodies response to infections.
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Chapter I: General Introduction.

Figure 1.1: Functional acinus of the liver demonstrating the zones (adapted from
Sherlock 1993).

Table 1.1: Zonal metabolic functions of the liver.

Carbohydrates
Proteins

Glutathione

Oxygen supply
Bile formation

Bile salt dependent
Non-bile salt

dependent
Sinusoids

Zone 1 (peri-portal zone)
Gluconeogenesis

Synthesis of albumin and
fibrinogen

++

+++

++

Small and highly anastomotic

Zone 3 (central zone)
Glycolysis

Synthesis of albumin and
fibrinogen

+

++

Straight and radial.
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Chapter 1: General Introduction.

Table 1.2: Liver cells and their functions.

Cell type Functions

Hepatocytes These are the main type of cells of the liver that are concerned with
metabolism (carbohydrates, protein and fat), protein synthesis

(albumin, fibrinogen and prothrombin), bile formation and cytokine

production {Sherlock 1993 and Knolle and Gerken 2000}.

Kupflfer cells Phagocytosis of large particles such as aged cells, tumour cells,

bacteria, endotoxin and viruses, potent sources of prostaglandins

{Brouweretal 1988} and cytokines {Andus etal 1991}.
Endothelial Control the exchange of fluid and particles to and from space of
cells Disse and the hepatocytes, and play an important role in defense

against viral infection {Wisse etal 1985}.
Stellate cells Store vitamin A and the other fat soluble vitamins {Hendriks et al

1987}, secrete collagen types 1, 3, 4 and laminin, regulate the
sinusoidal blood flow {Bhathal et al 1985}, and cytokine production.

NK cells Mobile killer lymphocytes, forming an important component of the
innate immune response {Shi 2001}.
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Chapter 1: General Introduction.

1.2 LIVER FAILURE

Hepatocellular failure can complicate most of the diseases of the liver. It may

complicate viral hepatitis, drugs, alcohol and chronic cholestasis. Although the clinical
manifestations may differ according to the aetiology of the disease, the overall picture
and treatment are similar. Changes in hepatic pathology, especially necrosis, are not

consistent in patients with liver failure and so, it is generally considered to be a

functional syndrome. The syndrome of liver failure may comprise some or all of the
clinical features shown in table 1.3 reflecting defective liver functions {O'Grady and
Williams 1990} and {Shakil et al 2000}. Liver failure is generally sub-classified into
acute liver failure in which hepatic encephalopathy develops as a consequence of
extensive liver damage in a previously normal liver within 8 weeks of the onset of

symptoms, and chronic liver failure in which decompensation in the liver function
occurs in a previously diseased cirrhotic liver.

1.2.1 Acute Liver Failure (ALF)

Acute liver failure is a relatively uncommon but dramatic clinical syndrome. The
duration between the onset of symptoms and hepatic encephalopathy sub-classifies the

syndrome into acute liver failure if it is < 8 weeks and subacute liver failure if this
duration is 8 - 26 weeks {Trey and Davidson 1970 and Gimson et al 1982}. The

mortality is high and may approach 50-90% of cases depending on the aetiology of the
disease and the timing of medical intervention {Trey 1972, and Plevris 1998}.

1.2.1.1 Aetiology

The causes of acute liver failure are shown in table 1.4. Worldwide, the main cause of

ALF is viral hepatitis especially hepatitis B. The incidence of the other causes varies

from country to country such as in case of paracetamol (acetaminophen) overdose-
induced ALF that predominates in UK and USA. Population studies of the aetiological
distribution of ALF in different countries are summarised in Table 1.5 {Lee and Schiodt

1999}.
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Table 1.3: The main clinical features of liver failure.
Jaundice

Fetor hepaticus

Hepatic encephalopathy
Ascites

Skin changes (Spider telangiectasis, palmer erythema and white nails)
Endocrine changes (Hypogonadism, gynaecomastia and feminisation)

Hypoglycaemia

Coagulopathy

Table 1.4: Causes of acute liver failure.
Common causes

Viral causes Hepatitis A, B, NANBNC, Delta or E viruses, Cytomegalo-virus,

Epstein-Barr, and other rare viruses such as Herpes simplex and
Yellow fever viruses.

Drug overdose Paracetamol in ETK and USA.

Idiosyncratic drug Halothane, isoniazid, valproic acid, rifampicin, ecstasy

reaction (amphetamine like action) in UK and others.

Other toxicity Mushroom (Amanita phalloids)
Metabolic Wilson's disease.

Pregnancy related HELLP syndrome and acute fatty liver of pregnancy.

Rare causes

Reye's syndrome in children 5-15 years old.

Budd-Chiari syndrome.

Sepsis, ischaemic hepatitis, spontaneous rupture of the liver and

malignant infiltration.

NANBNC=non A non B non C,
HELLP = haemolysis, elevated liver enzymes and low platelets.
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Table 1.5: Aetiological distribution of FHF in different countries represented as

frequency of cases (per cent).
USA1 UK2 France'1 India4

Acetaminophen 20 73 3 -

Drug reaction 13 3 17 6

Non A non B 15 8 20 66

Hepatitis B 10 3 32 29

Hepatitis A 6 3 4 3

Delta virus - - - 13

Wilson's disease 5 3 3 3

Pregnancy 1 2 - -

1) Schiodt et al 1997.
2) Williams 1997.
3) Chow et al 1989.
4) Fagan and Williams 1990.
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1.2.1.1.1 Hepatitis A (HAV)
HAV is a highly infectious ribonucleic acid (RNA) enterovirus (picorna virus), which is

directly cytopathic for liver cells. The mode of transmission ofHAV is by the faeco-oral
route. ALF due to hepatitis A is more common in elderly patients than children and

young adults. The survival rate for HAV induced ALF is more than 50%, but the

mortality is increased in elderly patients {Fagan and Williams 1990}. There is no carrier
state. Infection and hence ALF can be prevented by active immunization with
inactivated virus {Binn et al 1986}.

1.2.1.1.2 Hepatitis B (HBV)
HBV is a hepadna virus that comprises a capsule, a core of deoxy ribonucleic acid

(DNA), and DNA polymerase enzyme {Okamoto 1990}. It is transmitted parenterally,
either by blood transfusions, shared contaminated needles or sexual contact. Unlike

HAV, HBV is not directly cytopathic for hepatocytes, but the liver injury is induced by
the host's immune system attacking viral-infected hepatocytes {Brechot et al 1984}.
Acute hepatitis B is also seen with activation of latent chronic hepatitis B after
withdrawal of chemotherapy. HBV mutations in the precore region of the genome,

termed HbeAg negative mutant can also cause acute hepatitis B as this mutation can

preclude secretion of HbeAg {Sato et al 1995}. The prevalence and the patterns ofHBV

infection in the world are shown in Table 1.6 {Margolis et al 1991 and Raakow et al

1994}. Both active and passive vaccinations against HBV are available and can prevent

development of ALF with the recombinant DNA vaccine that provides active
immunization with 95% success rate {Hilleman 1985}.
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Table 1.6: The prevalence and pattern ofHBV infection.
Prevalence High Intermediate Low

Carrier state 10-20% "*3-5% 0.1-2%

Geographical Southeast Asia, Mediterranean basin, USA, Canada,
distribution China, Pacific Eastern Europe, West Europe,

islands, Sub-Saharan Central Asia, Japan, Australia, New
Africa, and Alaska. Latin and South Zealand.

America, Middle
East.

Predominant age Perinatal and early Early childhood Adults
affected childhood
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1.2.1.1.3 Hepatitis D (HDV)
HDV is a defective RNA virus dependent for replication and infection on helper

functions provided by the HBV {Papaevangelou and Tassopoulos 1986}. HDV infection
is located in countries with high local prevalence of HBV infection. The mode of
transmission is similar to that of the HBV. Superinfection is more likely to induce ALF

compared with co-infection. HDV can cause severe acute hepatitis and acute liver

failure, which is limited by recovery from HBV infection {Rizzetto and Smedile 1999}.
Vaccination against HBV prevents HDV infection {Da Villa et al 1995}.

1.2.1.1.4 Hepatitis E (HEV)
HEV is a RNA-containing virus that is transmitted by the faeco-oral route. In endemic

areas, prevalence of HEV infection may reach 5% of children less than 10 years of age

and 10-40% in adults older than 25 years of age. Acute HEV infection predominantly
exists in developing countries. ALF is more common in pregnant women and is
associated with a 25% mortality rate {Lok et al 1992 and Arankalle et al 1992}. No
vaccination is available yet for HEV infection.

1.2.1.1.5 Drug induced acute liver failure

The liver is the main organ responsible for metabolism of most drugs. Many drugs are

implicated in development of ALF and the overall incidence may reach up to 15% of
cases in certain countries. A few drugs can induce acute liver cell damage in a dose

dependent manner such as paracetamol over-dose, but the majority induces such damage
in a non-dose dependent manner i.e. an idiosyncratic drug reactions {Lee 1995}.

Dose dependent drugs

Paracetamol is a common widely used analgesic and is safe if used in the recommended

doses of < 4 g/d. Ingestion of as little as 10 grams of paracetamol may induce severe

hepatocellular necrosis. Hepatotoxicity is related to the unstable metabolite of

paracetamol, N-acetyl-p-benzoquioneimine (NAPQI), which is inactivated by
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glutathione. After depletion of glutathione stores, NAPQI accumulates and leads to lipid

peroxidation and cell damage {Muriel et al 1993}. Paracetamol-induced ALF occurs

with reduced doses in individuals who have chronic induction of the P450 system such
as in patients treated with anticonvulsants and those with low hepatic glutathione stores

such as in fasting conditions and malnutrition {Zimmerman and Maddrey 1995}. N-

acetylcysteine (NAC) is the available antidote that acts as a substrate for repletion of

glutathione and helps to improve the patients' survival {Makin et al 1995 and O'Grady

1997}. Carbon tetrachloride (CCL4) via induction of perivenous zonal necrosis {Lee et

al 1993} and yellow phosphorus via inactivation of cytochrome P450 {Dahl and

Hodgson 1978} also cause dose dependent hepatotoxicity.

Non-dose dependent (idiosyncratic) hepatotoxic drugs

These drugs induce idiosyncratic reactions only in susceptible individuals. Drugs in this

group combine with cellular proteins to fonn drug-protein complexes that act as

neoantigens. Individuals at risk of these severe drug reactions are the rapid acetylators,
alcoholics and those individuals with genetic variants of the cytochrome P450

isoenzymes {Lee and Dinsdale 1995}. Examples of these drugs are valproic acid

{Devictot et al 1992}, cocaine {Mallat and Dhumeaux 1991}, halothane, diclofenac

{Jones et al 1998} and isoniazid especially if given with rifampicin as in anti-
tuberculous treatment {Pessayre and Larrey, 1991}. Some studies of halothane-induced

hepatitis identified specific IgG antibodies against hepatic endoplasmic reticulum

proteins such as carboxylesterase. This protein has been found modified by the

trifluoroacetyl (TFA) group, which is derived from halothane {Kenna et al 1992 and

1993}.

1.2.1.1.6 Other causes of acute liver failure

Severe liver diseases may occur during pregnancy e.g. acute fatty liver of pregnancy

(AFLP), HELLP syndrome, hepatic rupture, or viral hepatitis especially HEV as

mentioned before in section 1.2.1.1.4. Most of these diseases are associated with
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preeclampsia and predominate in the second or third trimester except viral hepatitis in
which there is no association with preeclampsia with no trimester preference. The

maternal mortality rate ranges from 1-3% in HELLP, 15% in AFLP, and up to 60% in

hepatic rupture. The foetal mortality is similar to the maternal mortality except it is

higher and may reach up to 35% in HELLP syndrome {Lee and Schiodt 1999}.

Inborn errors of metabolism may induce acute liver failure in the first year of life such as

galactosaemia, fructose intolerance, tyrosinaemia, and neonatal haemochromatosis.
Wilson's disease and alpha-1-antitrypsin deficiency may cause ALF in older children
and adults {Balistreri 1997}. Without transplantation, acute Wilson's disease is severe

and almost always fatal. Patients with acute Wilson's disease mostly show previously

recognised underlying cirrhosis. This may create some argument about the fulfilment of
the criteria for definition of acute liver failure. The clinical features of acute Wilson's

disease may include severe hyperbilirubinaemia due to copper-induced haemolysis, and
low alkaline phosphatase concentration {Schilsky et al 1994}.

Other rare causes of acute liver failure are listed in Table 1.4 and include Budd-Chiari

syndrome, veno-occlusive disease, and autoimmune hepatitis. Budd-Chiari syndrome is
characterized by occlusion of the hepatic veins, with severe upper abdominal pain,

ascites, and clotting abnormalities {Langnas and Sorrell 1993}. Veno-occlusive disease
is a frequent complication in bone marrow-transplanted patients occurring in 54% of
cases and is associated with a high mortality (39%). Patients with VOD have

hepatomegaly, ascites, and abnormal liver function in the early post-transplant period

{McDonald et al 1993}. Malignancy via massive hepatic infiltration from metastasis or

lymphoma may induce acute liver failure. Rarely, liver transplantation is indicated for
treatment in some of these cases, which are almost always fatal {Krauss et al 1979 and

Woolfetal 1994}.
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1.2.1.2. Pathogenesis

The mechanisms leading to acute liver failure may involve Kupffer cells {Peltekian etal

1997} and the cytokine network {Andus et al 1991}. The initial stimulus may induce

multiple inflammatory cascades that may start with secretion of proinflammatory
mediators such as LL-1, IL-6, TNF-a and endotoxin followed by upregulation of other

mediators such as adhesion molecules {Essani et al 1995} and nitric oxide {Nathan

1992}. Neutrophils can be recruited into the liver by these inflammatory mediators such
as TNF-a, activated complement factors {Jaeschke et al 1993}, and Kupffer cell-
induced oxidant stress and injury {Jaeschke and Farhood 1 991}. Neutrophils accumulate
in sinusoids and hepatic venules then migrate out of the vessels and injure parenchymal
cells inducing hepatocellular injury {Jaeschke et al 1991}. The process of neutrophil

transendothelial extravasation is dependent on neutrophil p2 integrins and intracellular
adhesion molecule-1 (ICAM-1) receptor on endothelial cells {Smith 1992}. In acute

liver failure, serum IL-1, IL-6 and TNF-a concentrations are increased {Sheron et al

1990}. These mediators stimulate the liver to produce acute phase proteins such as C

reactive protein and the protease inhibitor a-antitrypsin, and may play a role in the

pathogenesis of multiorgan failure {Izumi et al 1994}.

1.2.1.3. Clinical presentation and complications of ALF

The clinical presentation of ALF is dependent on the aetiology. Symptoms may be

nonspecific such as nausea, vomiting, abdominal pain and dehydration. With loss of
liver functions, hypoglycaemia, coagulopathy, and hepatic coma occur {Lee and Schiodt

1999}. The important clinical features of acute liver failure are shown in Table 1.7

{Schiff et al 1999}.

The mechanism of hepatic encephalopathy in liver failure is still unclear. H.E. is
classified into mild impairment (grades 1 and 2) and severe impairment in the level of
consciousness (grades 3 and 4), which is associated with higher mortality. Cerebral
oedema occurs in 80% of patients with H.E. grade 4 {Lee 1993} and often leads to
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increased intracranial pressure with possible risk of herniation of the uncus and

subsequent cerebral ischaemic injury {Bernuau etal 1986}. Cerebral complications may

be partly due to raised endogenous benzodiazepines concentration {Grimm et al 1988}.

Hypoglycaemia is a common metabolic complication caused by impaired

gluconeogenesis, and decreased glycogen production by the failing liver. Acid-base

imbalance, either a respiratory alkalosis due to centrally induced hyperventilation, or

metabolic acidosis in case of paracetamol toxicity or hyperlactataemia are common

{O'Grady et al 1989 and Bihari et al 1985}. Decreased synthesis of clotting factors I,

IV, VII, and IX, leads to marked prolongation of prothrombin time and activated partial

thromboplastin time. Disseminated intravascular coagulopathy (DIC) can also

complicate patients with ALF {Pernambuco, et al 1993}. Renal failure including

oliguria, electrolyte imbalance, and raised serum creatinine is more common in patients
with grade IV encephalopathy and following paracetamol overdose.
Renal failure may be due to pre-renal causes, acute tubular necrosis, hepatorenal

syndrome, or a combination of these causes {Bihari etal 1986}. Continuous dialysis is
the ideal support as it gives less vascular instability than haemodialysis and so is

preferable. The cardiovascular manifestations of ALF include hypotension (20%),

dysrhythmia, increased cardiac output, low systemic vascular resistance with abnormal

oxygen transport and utilization. Pulmonary oedema is a frequent complication seen in

up to 40% of patients with ALF, especially those with by cerebral oedema. Adult

respiratory distress syndrome (ARDS) is less frequently seen, but associated with an

increase in the mortality rate as it may contraindicate transplantation {Trewby et al 1978
and Bihari etal 1986}. The infective complications will be discussed later.
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Table 1.7: Clinical manifestations ofacute liver failure:
Cerebral manifestations Hepatic encephalopathy,

Cerebral oedema.
Metabolic manifestations Hypoglycaemia, respiratory alkalosis or metabolic

acidosis,
Coagulopathy, and hypophosphataemia especially in
paracetamol overdose.

Hyperdynamic syndrome High cardiac output,
Low systemic vascular resistance.

Tissue hypoxia Hyperlactataemia.
Infections Bacterial and fungal infections.
Renal Acute tubular necrosis, especially in paracetamol

overdose.

Pulmonary Adult respiratory distress syndrome and pulmonary
oedema.
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1.2.2. Chronic Liver Failure

Chronic liver failure can complicate chronic liver disease of any cause. Chronic hepatitis
and cirrhosis are the two main forms of chronic liver disease. These two forms are

closely related to each other, as cirrhosis may be the end stage of many forms of chronic

hepatitis. Progression of liver cirrhosis may lead eventually to decompensation of liver
function and chronic liver failure.

1.2.2.1. Aetiology

There are many causes of chronic liver diseases that may lead to liver failure (Table 1.8).
The most common aetiologies are HBV and HCV infections, alcohol, autoimmune

hepatitis and primary biliary cirrhosis, which vary in frequency in different countries.
HBV is one of the most common causes of chronic liver diseases in endemic areas as

shown previously in Table 1.5 and 1.6, while alcoholic liver diseases are more common

in Western and American countries {Finlayson and Bouchier 1995}.

1.2.2.1.1. Hepatitis C (HCV)
HCV is a rapidly replicating RNA flavivirus that has a high degree of genetic diversity.
This diversity allows it to escape effective detection by the host's humoral and cellular

responses. The mode of transmission is similar to HBV. Previously, blood transfusion
was the most common route of transmission that accounted to about 90% of HCV

infection {Alter 1995}. Nowadays, blood transfusion accounts for only 15% of HCV

transmission but intravenous drug abuse and sharing needles are now considered the

major route of transmission ofHCV in several countries, especially in the West {Stauber

2000}. The rate of HCV infection is widely variable from being very rare (0.1%) as in

Europe and North America {Lee 1993 and Kuwada et al 1994} to a very high rate of up

to 16% in isolated areas of Japan {Suou et al 1992}. Most cases of acute HCV infection

progress to chronicity {Mosmann and Cofffnan 1989, and Clerici and Shearer 1994}.
Neither active nor passive vaccination is available.
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1.2.2.1.2. Alcoholic liver diseases (ALD)
Alcohol is the most common cause of chronic liver diseases in the Western countries.

The actual mechanism of alcohol induced liver injury is still unclear, but the toxic
metabolites of alcohol, altered immune reaction to liver cells, and the genetic

predisposition of some individuals have a role {Finlayson and Bouchier 1995}. 90-100%
of heavy drinkers show evidence of fatty liver but only 10-35% develop alcoholic

hepatitis and 8-20% develop cirrhosis {Mezey 1982}. Consistent heavy drinking for a

period of 5-10 years can lead to liver cirrhosis. Women tend to develop severe ALD

quicker and at lower levels of alcohol consumption than men {Tuyns and Pequignot

1984}. This increase in susceptibility of females may be related to sex-dependent
differences in hepatic alcohol metabolism {Teschke and Wiese 1982}, cytokine

production (Lynch et al 1994} and gastric metabolism of alcohol (Frezza et al 1990}.
Some studies proposed that countries with high intakes of saturated fatty acids have a

lower incidence of alcoholic cirrhosis (Nanji and French 1986}. Genetic predisposition
has a role in development of ALD. Some studies reported an increased frequency of

homozygousity of ADH2*1 gene, encoding the beta 1 subunit of ADH isoenzyme in

patients with alcoholic cirrhosis compared with controls (Lumeng and Crabb 1994} and

(Day et al 1991}. Serologic surveys have found an increased prevalence ofHCV and
HBV in patients with ALD (Koff and Dienstag 1995}. This association may induce
more severe form of liver injury than alcohol alone (Mendenhal! etal 1993}.

1.2.2.2. Pathogenesis

The variability in the clinical manifestations and liver function in cirrhotic patients is

dependent on the aetiology. Diseases such as chronic alcoholism and viral hepatitis
allow persistent and continuous damage to the liver. The immunological response of the
host may be triggered and continue to induce liver cell injury and alteration of liver
blood flow. This alteration in blood flow deprives the liver parenchymal cells from

nutrition as in case of intrahepatic shunts that created by the process ofbridging necrosis

(Schaffner 1969}.
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Table 1.8: Causes of chronic liver failure.
Infections Hepatitis B, C, and D viruses.

Toxins Alcohol and drugs.

Biliary obstruction Primary and secondary biliary cirrhosis, and primary sclerosing

cholangitis.
Metabolic diseases Haemochromatosis, Wilson's disease, and a1-antitrypsin

deficiency.

Fibrocystic
disease

Hepatic Budd-Chiari syndrome, veno-occlusive disease, and cardiac failure.

congestion

Unknown causes Autoimmune hepatitis, and cryptogenic cirrhosis.
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The participation of matrix metalloproteinases (MMP) and their specific inhibitors, the
tissue inhibitors of matrix metalloproteinases (TIMP), in both the formation and

recovery processes of liver fibrosis have been recently reviewed. It has also been

reported that activated stellate cells can produce extracellular matrix components,

including Type I collagen. In response to liver injury, the hepatic stellate cells change
from a quiescent to an activated phenotype {Brenner et al 2000}. This activation process

includes a phenotypic change to a myofibroblast-like cell, increased proliferation rate,

loss of retinoid stores, increased production of extracellular matrix proteins, chemokines,
and cytokines, and contractility. Hepatic stellate cells are activated via the expression of
the oncogene subunit c-myb, and nuclear factor-kappaB (NFkappaB), which is induced

by oxidative stress, and inhibited by antioxidants such as 1-alpha-tocopherol and

butylated hydroxytoluene. The relationship between the activation mechanism ofstellate
cells and the production and secretion of MMP and TIMP in the formation and recovery

process of hepatic fibrosis is still unclear {Okazaki et al 2000}.

1.2.2.3. Clinical manifestation of chronic liver failure

The clinical manifestations are variable and may include any combination of signs
shown in table 1.9 {Finlayson and Bouchier 1995}.
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Table 1.9: Manifestations of chronic liver failure.
General manifestations Pigmentation, finger clubbing, and low grade fever
Jaundice

Ascites

Hepatosplenomegaly

Circulatory changes Palmer erythema, cyanosis and spider telangiactasia.
Portal hypertension Collateral circulation, fetor hepaticus and variceal bleeding.
Endocrine manifestations Loss of libido and hair loss. Gynaecomastia, testicular

atrophy and impotence in men and breast atrophy, irregular
menses and amenorrhoea in women.

Hepatic encephalopathy
Infections Bacterial and fungal infection,

Spontaneous bacterial peritonitis.
Renal manifestations Hepatorenal syndrome.

Haemorrhagic tendency Bruises, purpura, epistaxis and menorrhagia.
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1.3. INFECTIONS IN LIVER FAILURE

Infection is a common complication in patients with both acute and chronic liver failure.
In such patients, the normal body defence mechanisms can be affected in many ways.

1.3.1. Normal Body Defence Against Infection

The body has evolved numerous defence mechanisms against infection, including the
immune system. The immune system is a complex network, which detects and
eliminates foreign material such as bacteria or altered host cells. The immune system is
sub-classified into the innate and adaptive immune systems (Table 1.10). Innate

immunity exists from birth and may be influenced by species, race, age and sex. It may

also be suppressed by malnutrition and alcohol. Once activated, the innate system acts

directly and non-specifically in the same manner regardless of the type of the stimulus.

Examples of this system are the skin and mucous membranes, which act as a physical
barrier against intruding microorganisms; tears and urine flow, which act by sweeping of

foreign bodies or microorganisms, and acidity of the stomach, which provides an

unsuitable environment for the microorganisms. Activation cascade of complement

system, neutrophil and macrophage phagocytosis are components of the innate immune

system. The cascade of processes involved in the innate immune system is shown in

figure 1.2.

Adaptive immunity comprises a group of acquired specific reactions that are activated
after host exposure to certain stimuli; the main cellular component of this type of

immunity is the T lymphocyte. This type of immunity takes some time to be activated
and induces specific immune products such as antibodies, B lymphocytes and antigen-

specific T lymphocytes. The adaptive immune response is sub-classified into active,

passive, and adoptive. The active process is normally developed in immune competent

individuals against foreign intruders, which may be either true infection or vaccination
with an attenuated organism.
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Table 1.10: Comparison between the two types of the immune system.

Innate Immunity
• Non-specific
• From birth
• Immediate response whatever the

stimulus

• The first defense mechanism

against exogenous stimuli

• No discrimination in reactions to

different stimuli
• The cellular components are

mainly macrophages and
neutrophils

• The humoral components are
complement, lysozymes and
chemokines

Adaptive Immunity
• Specific
• Acquired
• Latent response depends on, is it

the first exposure or re-exposure to
the stimulus

• It may follow the innate system if
insufficient or as a complementary
to it.

• Different reactions to different
stimuli

• The cellular component is mainly T
lymphocytes

• The humoral components are
antibodies and cytokines
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The passive adaptive immunity comprises an administration of immune products such as

specific immunoglobulins to make it immediately available in the emergency situations
such as accidental exposure to hepatitis B virus. The adoptive process consists of

transplantation of immune competent cells or tissue into immune deficient or

immunocompromised patients {Parslowand Bainton 1997}.

B-lymphocytes participate in both the innate and the adaptive immunity via production
of immunoglobulins that act as opsonins of the innate immune system and contribute to

antibody-mediated cell lysis in the adaptive immune system. Natural Killer (NK) cells
are large granular lymphocytes, which can activate phagocytes and secrete cytokines.
NK cells are readily available cells that have the ability to kill target cells especially

virally infected cells via their cytoplasmic granules containing proteolytic enzymes such
as perforins and granzyme. NK cells constitute 15% of the peripheral blood lymphocytes
and 4% of splenic lymphocytes {Trinchieri 1989 and Yokoyama 1995}, and are

commonly found in the liver.

1.3.2. Incidence of infection in liver disease

The incidence of bacterial infection in patients with acute and chronic liver failure is

very high, reaching 80% and 50% of cases respectively {Rolando et al 1990} and

{Navasa et al 1999}. Infection may be directly responsible for death of 10-60% of

patients with acute liver failure {Lee and Schiodt 1999} and {Rolando et al 2000}.
Infection was directly responsible for death in 29-44% of patients with chronic liver
failure {Toledo et al 1994} and {Rosa et al 2000}. The most common infections are

bacteraemia, bacterial peritonitis, pneumonia, urinary tract infections, and infective
endocarditis {Jones et al 1967 and Wyke et al 1982}. Infection of skin and plastic
devices such as venous catheters are more common in patients with acute liver failure

{Iber 1999}. The common causal organisms include Escherichia coll, Pseudomonas

aeurginosa, and Klebsialla species, Staphylococci aureus and epidermidis, and

Streptococci such as Pneumococci {Rolando et al 1990}. Fungal infection is common
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and usually due to Candida albicans, which occurs in up to one third of patients with
acute and chronic liver failure {Lee and Schiodt 1999}.

1.3.3. Immune Defects in Acute Liver Failure

The defects of the immune system reported in patients with acute liver failure are

numerous. These defects include defective synthesis or increased consumption of serum

complement factors such as C3, C4, C5, the alternative pathway activity, factor B and D

activity {Fox et al 1971and Larcher et al 1982}. Neutrophil bactericidal activity is
defective in patients with acute liver failure due to viral hepatitis, but not drug causes.

The causes of such defect have been suggested to be due to an intrinsic neutrophil

defects, the virus itself {Saunders et al 1978}, or the existence of serum inhibitory
factor/s {Bailey et al 1976}. Impaired neutrophil chemotactic activity has also been

reported in patients with acute liver failure. This defect was explained by either the
existence of inhibitory chemotactic factors {Larcher et al 1981} or serum factors that
inhibit the metabolic activity of the leukocyte hexose monophosphate shunt. These
factors were further characterised as heat-stable, low molecular weight, and water-

soluble substances, which are dialyzable and adsorbable by charcoal {Bailey etal 1976}.

Neutrophil adhesion is one of the important primary steps of chemotaxis and is also
defective in acute liver failure {Altin et al 1983}. Deficiency of chemotactic factors such
as complement factors especially C3 was also considered as one of the causes of the

defective neutrophil chemotaxis in patients with acute liver failure. Other defects

reported include defective opsonisation ofbacteria and yeast, reduced fibronectin {Clark
et al 1979 and Naveau et al 1985}, and severely impaired Kupffer cell function

{Canalese et al 1981}. Normalisation or reversibility of these defects may occur with the

recovery of patients, which was found correlated with improvement in serum

concentration of complement factors {Larcher et al 1981}.

45



Chapter 1: General Introduction.

1.3.4. Immune Defects in chronic liver diseases

Many immune defects have also been reported in patients with chronic liver diseases and

specific defects may vary according to the aetiology of the disease. Portosystemic shunts
that develop in patients with cirrhosis may cause spill over of enteric organisms from the

portal into systemic circulation allowing bypass of the macrophages in the liver {Mills
and Scheuer 1985}. Defects may also include complement factor deficiency such as C3,

C4, C5 and C3 PA {DeMeo et al 1971}, occur in nearly 33% of patients with chronic
liver diseases {Akalin et al 1985}. A defect in the C3b receptor may lead to defective

phagocytic activity of Kupffer cells and has been considered one of the major

predisposing factors for infections in patients with liver diseases {Jaffe et al 1978}.

Impaired bactericidal function of serum IgM against some types of E. coli was reported
in 80% of cirrhotic patients {Fierer et al 1979}. Defective monocyte spreading,

chemotaxis, bacterial phagocytosis and bacterial killing are detected in patients with
chronic liver failure possibly because of serum inhibitors against chemoattractant factors
or reduced synthesis of monocyte lysosomal enzymes {Holdstock et al 1982}. The
antimicrobial activities of ascitic fluid, such as opsonisation are also impaired {Fromkes
et al 1977 and 1982}.

The specific immune defects may affect different causes of liver disease. For example,
in patients with chronic alcoholic liver disease, an intrinsic neutrophil locomotive defect

may result from a specific recognition abnormality or defective binding of the serum

chemotactic factor C5a {Rajkovic 1984}. Immunoglobulins (Igs), particularly IgA and

IgM concentrations are either normal or elevated in patients with alcoholic cirrhosis and

portal hypertension {DeMeo etal 1971 and Trigeretal 1973}. Depletion of intracellular
reduced glutathione and granule enzymes may also lead to defects in phagocytosis and
bactericidal activity of neutrophils {Rajkovic et al 1984} in patients with ALD. A direct

inhibitory effect of ethanol on leukocyte migration, phagocytosis and intracellular killing
has also been reported. Ethanol may also inhibit synthesis of complement factors and
cause bone marrow depression leading to granulocytopenia {Brayton et al 1970 and

Wyke 1989}. A general reduction in the bactericidal capacity of the tissues was found in
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patients with ALD {Rajkovic and Williams 1986}. The elevated serum and tissue
ammonia concentration observed in patients with advanced alcoholic liver diseases was

found to have an anticomplement effect {Klerx et al 1985}. Malnutrition may have a

secondary role in depression of the immune system and predisposition of infection

{Wyke 1989}. Histologically, Mills and Scheuer (1985) have also found a decrease in
number of hepatic sinusoidal macrophages in proportion to the severity ofalcoholic liver
disease.

Patients with autoimmune chronic active hepatitis (CAH) have several immunological

defects, including defective opsonisation of Candida albicans by patients' sera {Wyke et

al 1983}, a complement deficiency (minor effect), the immunosuppressive effect of anti¬

inflammatory steroids and immunosuppressive treatment of on neutrophil adherence,

aggregation, degranulation and oxygen radical production {Clark et al 1979}.

Infection is a less frequent complication in patients with primary biliary cirrhosis (PBC),
most likely due to the relatively few or minor defects in comparison with other forms of
chronic liver diseases. These defects include defective opsonisation in 23% of patients

{Wyke et al 1983} and an increase in catabolism of some complement factors

{Finlayson et al 1972 and Potter et al 1976} with generation of active fragments. These

complement fragments were found to have inhibitory effect on phagocytosis of

neutrophils {Tagami et al 1987}. Defective monocyte and neutrophil Fc receptor-

mediated phagocytosis have been also detected in some patients with PBC {Loof et al

1987}.

Patients with primary hepatocellular carcinoma (HCC) have impaired chemoattractant

activity due to the presence of inhibitory factors against chemotaxis secreted by the
tumour cells {Brozna and Ward 1979}, and defective leukocyte production of oxygen-

derived free radicals {Uehara et al 1994}.
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1.4. CHEMOKINES

Neutrophils chemotaxis in the previous studies was stimulated by different substances
such as zymosan, activated autologous plasma, complement factors and immune

complexes {Campbell et al 1981} prior to the discovery of the more potent and specific

leukocyte chemoattractants, the chemokine group of cytokines. Chemokines are a

recently described group of small molecular weight proteins (8-10 KDa), which share
20-90% homology in their amino acid sequences and have the ability to stimulate
chemotaxis and activate leukocytes. Chemokines play an important role in the innate and

adaptive immune response {Oppenheim et al 1991}.

1.4.1. Classification of chemokines

Chemokines are classified according to the primary amino acid sequence around the first
two conserved cysteine residues. The first two cysteines are separated by one amino acid
in CXC or a chemokines and are adjacent to each other in CC or p chemokines.

Lymphotactin is the only example of C or y chemokine in which the first and third of the

four cysteines are missing. The CX3C or 5 chemokines have the first two cysteines

separated by three amino acid residues as in Fractalkine/neurotactin {Rollins 1997}.
The CXC chemokines are subclassified into two groups. The first group has a

characteristic three amino acids sequence of glutamine, leucine, and arginine, or ELR

motif (ELR+ve) at the N-terminal side of the CXC sequence. In the second group, such a

motif is lacking, and are described as ELR-ve CXC chemokines. Only the ELR+ve
chemokines have specific chemotactic activity for neutrophils {Horuk 1994}.

The CXC chemokine genes are clustered on the human chromosome 4q except the
human Pre-B-Cell Stimulatory Factor/Stromal cell-derived Factor-I (PBSF/SDF-1)

gene, which is located on chromosome lOq. The IL-8 gene consists of four exons and

three introns and contains NFKB, NF-IL-6, AP-1, AP-2, and AP-3 transcription
activation sites within the 5'untranslated region {Mukaida and Matsushima 1 992} The
5' untranslated region for Growth related oncogene (Gro-a, p, y) genes are homologous
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to the 1L-8 gene up to the position -136 that contain the binding sites for NFKB and AP-
3 {Geiseretal 1993}. The CC chemokine genes are located on human chromosome 17q

{Shirozu et al and Kennedy et al 1995} and differ from the CXC chemokine genes in
that they have three exons and two introns. The Lymphotactin gene is localised to

chromosome 1 and the Fractalkine gene is localized to human chromosome 16q {Rollins

1997}.

1.4.2. Chemokine receptors

The cellular effects of chemokines are mediated by binding to their specific receptors on

the target cell surface. These receptors are structurally related to the G-protein coupled
seven transmembrane domain, which are called the serpentine receptors.

1.4.2.1. CXC chemokine receptors

At present, five CXC chemokine receptors have been characterised. The CXCR-1 and
CXCR-2 share approximately 77% amino acid sequence identity, and only neutrophils

express both receptors {Murphy and Tiffany 1991, Lee et al 1992, and Holmes et al

1991}. CXCR-1 binds most avidly with 1L-8, whereas CXCR-2 binds to IL-8 and the
other ELR+ve CXC chemokines such as Gro, Neutrophil-activating peptide-2 (NAP-2),
and Epithelial cell-derived neutrophil attractant-78 (ENA-78). CXCR-3 binds the ELR-
ve CXC chemokines Platelet Factor-4 (PF-4), Interferon y inducible protein-10 (IP-10)

and Monokine induced by interferon y (Mig). CXCR-3 has 40% protein sequence

identity with CXCR-1 and CXCR-2 and 35.5% of amino acid sequence identity with the
CC chemokine receptors {Loetscher et al 1996}. CXCR-4 has been identified as a

necessary cofactor for entry of T cell-tropic HIV into CD4+ cells {Deng etal 1996 and
Moore et al 1997}. PBSF/SDF-1 is the ligand for CXCR4, and was found to be a

powerful inhibitor of infection by the T cell-tropic HTV-1 strain {Bleul et al 1996 and
Oberlin et al 1996}. CXCR5 was cloned on "B" lymphocytes and Burkitt's lymphoma

cells, and binds the ELR-ve CXC chemokines B-lymphocyte chemoattractant/B cell

attracting chemokine-1 (BLC/BCA-1) {Legler et al 1998}.
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1.4.2.2. CC chemokine receptors

There are at least nine different CC chemokine receptors characterised that bind the CC
chemokines. CCR-1 is expressed on monocytes, neutrophils and eosinophils, binding

macrophage-inflammatory protein-la (MUMa), Regulated Upon Activation, Normal T

Cell Expressed and Secreted (RANTES), and monocyte chemotactic protein-3 (MCP-3)
with high affinity and to M3P-1 (3 and MCP-1 with a lower affinity {Neote et al 1993 and
Gao et al 1993}. There are two subtypes of CCR-2, CCR-2a and CCR-2b, which have a

different protein sequence at the carboxy-terminus. Both receptor subtypes are expressed

by monocytes and specifically bind MIP-1 and MCP-3 respectively {Charo et al 1994}.
CCR-3 is expressed exclusively on eosinophils with high affinity for eotaxin-1 and 2,

and MCP-3 {Kitaura et al 1996}. CCR-4 is expressed on T cells and IL-5-primed

basophils. It mediates the biological activities of RANTES, MIP-1 a, Thymus and
activation regulated chemokine (TARC), and MCP-1 {Power et al 1995}. CCR-5 is

expressed on primary adherent monocytes, and binds MIP-1 a, MIP-1 p, and RANTES

{Combadiere et al 1995}. CCR-5 is also acts as a fusion cofactor for macrophage-tropic

UIY-1 strains {Alkhatib etal 1996}. CCR-6 and its ligand MIP-3a/Liver and activation

regulated chemokine (LARC) were detected in normal pancreatic tissues and over-

expressed in the cancerous human pancreatic tissues and the infiltrating macrophages
and lymphocytes {Kleeff et al 1999, Tanaka et al 1999}. CCR-7 is expressed on

dendritic cells (DCs) and may have a role in tumour cell apoptosis and migration of DCs

to the regional lymph nodes {Hirao et al 2000}. Binding of CCR-8 to its ligand 1-309
was found to induce a migratory function on leukocytes and similarly, binding of the
CCR-9 to its ligand Thymus-expressed chemokine (TECK) was found to induce

migration of lymphocytes into intestinal lamina {Papadakis etal 2000}.

1.4.2.3. Erythrocyte chemokine receptors

Erythrocytes express a chemokine receptor characterised as the Duffy antigen or DARC.
It has the ability to bind CXC chemokines such as IL-8, Gro, and NAP-2, and CC

chemokines such as MCP-1 and RANTES, but not to MlP-la or MIP-1 P {Neote et al
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1994}. This receptor is localised on the surface of erythrocytes, and recently an isoform
of this receptor have been localised on the endothelial cells of the postcapillary venule in
the kidney {Hadley et al 1994}. The exact function of this receptor is not known, but it
is likely to maintain low plasma concentrations of chemokines to avoid desensitisation
of the circulating leukocytes. Table 1.11 shows the recently suggested nomenclature of

chemokines, their receptors and ligands.

1.4.2.4. Viral encoding chemokine receptors

There are viral open reading frames (ORFs) that have been found to encode several
chemokine and receptor homologues {Gao et al 1994 and Ahuja et al 1993}. The ORF
US28 of human cytomegalovirus (CMV) and the ORF ECRF3 of herpes saimiri virus
encoded proteins have a 30% amino acid sequence identity with CCR-1 and 30% amino
acid sequence identity with the IL-8 receptors respectively. The CMV chemokine

receptor can bind to the CC chemokines MlP-la, MlP-lp, MCP-1, and RANTES. The

herpes saimiri chemokine receptor binds to the CXC chemokines IL-8, Gro-a, and NAP-

2. The role of the viral chemokine receptors in the pathogenesis ofviral infection is still
to be elucidated. Some viruses are also found to have the ability to synthesise
chemokines. Kaposi's sarcoma-associated herpes vims encodes the viral chemokines
vMlP-1 and vMIP-11, which have a higher binding affinity to both CXC and CC

chemokine receptors than the human chemokines. In contrast to other chemokines, the
vMIP-11 was found to inhibit Ca mobilisation induced by the endogenous chemokines
and therefore can act as a potent antagonist of chemotaxis. Interestingly, vMIP-11 was

also found to block the HIV-1 infection of CD4+ cell line and peripheral blood
mononuclear cells {Kledal etal and Boshoffetal 1997}.

1.4.3. Intracellular signalling

Binding of chemokines to their receptors stimulates phospholipase C hydrolysis of

phosphatidyl inositol 4,5-biphosphate into 4,5-triphosphate (IP3) and diacylglycerol

(DAG) synthesis. IP3 can activate both calcium influx and calmodulin dependent protein
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kinases, but DAG can stimulate serine/threonine protein kinase C. The chemokine

receptors can also stimulate adenylate cyclase, cGMP phosphodiestrases, Ras-GTPase,

mitogen associated protein kinases (MAPK), and signal transduction and activator of

transcription (STAT) proteins. Stimulation of the different intracellular pathways is

likely to determine the specificity of the different members of chemokines {Ahmad and
Goldstein 1997}.

1.4.4. Hepatic chemokine synthesis

The liver consists of several different cell types, each ofwhich may produce chemokines

following the appropriate stimuli. In response to TNF-a, IL-ip or carbon tetrachloride

(CCL4) primary hepatocyte cultures and hepatoma cell lines can produce both CXC

such as IL-8, Gro-a, p, y, ENA-78 and CC chemokines such as RANTES {Rowell et al

1997}. Incubation of rat hepatocytes with ethanol can induce the expression of IL-8 and
Gro {Shiratori et al 1994}. Endotoxin and lipopolysaccharide can stimulate Kupffer

cells to express TNE-a and/or IL-1, which subsequently induces IL-8 expression in

hepatocytes. This is an example ofcell-cell (cytokine) communication networks between

parenchymal and non-parenchymal cells that may occur within the whole tissue

{Thornton et al 1991}. Expression of ENA-78 is induced by the ischaemia-reperfusion
reaction and TNE-a secreted by Kupffer cells. The normal fat storing cells (FSCs) or

Stellate cells can express MCP-1 in response to TNF-a, IL-1, tumour growth factor-lp

(TGF-1P), or oxygen free radicals. These cells become hypersensitive to these stimuli in
the disease states, such as CCL4-induced cirrhosis and fulminant hepatic failure {Czaja
et al 1994}. MTP-la and MIP-lp are expressed by biliary epithelium during allograft
liver rejection in which the biliary epithelium is considered as a target for T cell
mediated graft injury. Biliary epithelial cells in culture are also found to secrete IL-8 and

MCP-1 in response to pro-inflammatory cytokines {Scholmerich and Holstege 1990}.
MIP-1 p can also be expressed on the vascular and sinusoidal endothelium of liver grafts

undergoing rejection along with MlP-la {Adams et al 1996}.
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Table 1.11: New nomenclature of human chemokines, receptors and their ligands.
{Homey and Zlotnik 1999}.

CXC chcmokinc Human ligand Chcmokinc receptor
CXCL1 GRO-1, GRO, MGSA- CXCR2 > CXCR1
CXCL2 GR02, GRO, MIP-2, MGSA- CXCR2
CXCL3 GR03, GRO, MIP-2 CXCR2
CXCL4 PF4 Unknown
CXCL5 ENA-78 CXCR2
CXCL6 GCP-2
CXCL7 NAP-2 CXCR2
CXCL8 IL-8, MDNCF, NAP-1, NCF CXCR1, CXCR2
CXCL9 Mig, Hunng CXCR3
CXCL10 IP-10 CXCR3
CXCL11 I-TAC, HI 74, b-Rl CXCR3
CXCL12 SDF-la, SDF-1 (3, PBSF CXCR4

CXCL13 BLC, BCA-1 CXCR5
CXCL14 BRAK/bolekine Unknown
CXCL15 Unknown Unknown

CC chcmokine
CCL1 1-309 CCR8
CCL2 MCP-1, MCAF CCR2
CCL3 MIP-1, LD78, LD78, AT464.1 CCR1, CCR5
CCL4 MIP-1, AT744.1, AT744.2, Act-2, G-26 CCR5
CCL5 RANTES CCR1, CCR3, CCR5
CCL6 Unknown Unknown
CCL7 MCP-3 CCR1, CCR2, CCR3
CCL8 MCP-2, HC14 CCR2, CCR3
CCL9, CCL10 Unknown Unknown
CCL11 Eotaxin CCR3
CCL12 Unknown CCR2
CCL13 MCP-4, NCC-1, CK-10 CCR2, CCR3
CCL14 HCC-1, HCC-3, NCC-2 CCR1
CCL15 HCC-2, MIP-1, NCC-3, MIP-5, LKn-1 CCR1, CCR3
CCL16 HCC-4, NCC-4, LEC, LMC CCR1
CCL17 TARC, dendrokine CCR4

C chcmokinc
XCL1 Lymphotactin, SCM-1 a, ATAC XCR1
XCL2 SCM-ip XCR1

CX3C chcmokinc
CX3CL1 Fractalkine, neurotactin CX3CR1
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1.4.5. Leukocyte migration and activation by chemokines

Leukocyte chemotaxis occurs in five steps. The first step is the primary adhesion

through leukocyte adhesion molecules, called selectins, which cause the initial transient

contact between leukocytes and endothelial cells. This initial adhesion allows interaction
with endothelial expressed chemokines, and further strong secondary adhesion or

triggering, mediated by integrins. This step is followed by arrest of leukocytes on the
endothelial cell surface with spreading and migration through the endothelial wall into
the tissues (Figure 1.3). Leukocyte migration then occurs along a chemokine
concentration gradient to the site of inflammation, and is followed by phagocytosis and

killing of microorganisms and damaged cells {Butcher and Picker 1996}. Leukocyte
adhesion and killing of bacteria is also activated by chemokines {Taub etal 1996}.

1.4.6. Some other biological effects of chemokines

Chemokines not only control inflammatory cell migration, but are also involved in a

number of other biological processes. Generation of new blood vessels (angiogenesis) is
vital in the process of wound healing as well as in the pathogenesis of chronic

inflammatory conditions. Angiogenesis is also important in tumour growth and
metastasis. This process is antagonised by another process, known as angiostasis. CXC

chemokines can act as angiogenic and angiostatic factors according to presence of the
ELR motif. The ELR+ve CXC chemokines such as IL-8 are potent angiogenic factors, in
contrast the ELR-ve CXC chemokines such as EP-10 are angiostatic. Imbalance between

angiostatic and angiogenic chemokines may be responsible for tumour growth and the

progression of some inflammatory diseases {Strieter et al 1995}. An example of this
imbalance is the study which showed that lung tissue from patients with interstitial

pulmonary fibrosis express more IL-8 and less EP-10 compared with control subjects

{Keane et al 1997}. This suggests that the angiogenic drive overrides the angiostatic
drive that resulted in fibroplasia and extracellular matrix deposition leading to

progressive fibrosis and loss of pulmonary function. Another study demonstrated that
the squamous cell carcinoma (a subtype of non small cell lung cancer), which is known
for its better patient survival, less neovascularisation, and lower incidence of metastasis
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showed higher IP-10 expression (angiostatic) than the other subtype; the

adenocarcinoma, which is known by its worse prognosis, high vascularisation and

metastasis potential {Luan et al 1997}. It is clear that the balance between the two

opposing actions that controlling tumour growth and metastasis could be controlled by

shifting the chemokine expression from ELR+ve to ELR-ve chemokines and vice versa.

Chemokines are also involved in specific migration of tumour cells to certain organs

according to the chemokines and chemokine receptors expressed by these target organs

{Youngs et al 1997}. Cellular infiltrate is a characteristic finding responsible for the

inflammatory reactions in chronic inflammatory and infectious diseases. This cellular
recruitment and infiltration to the affected organs or tissues are also believed to be the
result of chemokine activity. It is well established that there are antagonistic actions
between Thl cells as a proinflammatory and inflammatory mediators, and Th2 cells as a

protective or anti-inflammatory mediators. These antagonistic cellular activities are

found to have a close relation with the antagonistic activities of chemokines. It was

reported that the chemokines induced by proinflammatory cytokines (Thl cytokines)
such as IFN-a, IL-2, and IL-12, are linked to Thl cellular infiltration of the inflamed

tissues. On the other hand, chemokines induced by anti-inflammatory cytokines (Th2

cytokines) such as 1L-4, IL-10, and 1L-13 are linked to Th2 responses in monocytes and
the other cells {Zlotnik and Rossi 2000}. These findings are also specific to the
chemokine receptors. CXCR-3 and CCR-5 are associated with Thl response and the

CCR-3, 4, and 8 are associated with Th2 response {Annunziato et al 1998}. It is still
unclear whether this pattern of chemokine receptor expression is only useful for

migration of Thl or Th2 cells into tissues or potentially assists in the differentiation of
these cells.
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Figure 1.3. Steps of neutrophil chemotaxis (adapted from Springer TA, Annu Rev
Physiol 1995;57:827).
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Some other chemokines are strongly expressed in normal tissues and in serum without

any apparent stimuli or inflammation such as the Human CC Chemokine-1 (HCC-1).
These chemokines may act as homeostatic factors and help in maturation ofcertain types

of cells or tissues. TECK is an example of the organ-specific chemokine as it is only
found in large quantities in the thymus and was found to play a role in T cell maturation

{Schulz-Knappe et al 1996}. Fractalkine is an example of a mixed function chemokine
that found to have both inflammatory and homeostatic actions {Bazan et al 1997}.

Theoretically, any chemokine capable of inducing the migration of T, NK cells,
dendritic cells, and/or macrophages could promote the regression or eradication of a

tumour mass by boosting the immune response against the tumour. Recently, several
studies demonstrated the potential benefit of some chemokines as adjuvants in
antitumour therapy such as IP-10, Mig, MCP-1, MCP-3 and others. Either expression or

inoculation of IP-10 or Mig intratumourally results in tumour regression, accompanied

by extensive vascular damage and necrosis {Sgadari et al 1996 and 1997}.
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Chapter 2: Measurement ofneutrophil chemotaxis.

2.1 INTRODUCTION AND AIMS

Neutrophil chemotaxis is impaired in patients with acute {Larcher et al 1981} and
chronic liver failure {Rajkovic 1984}. However, in most of the studies, which measured

chemotaxis, neutrophils were stimulated by non-specific chemoattractants such as

immune complex-activated serum {DeMeo and Andersen 1972} and zymosan activated

plasma {Campbell et al 1981}. More recently a large family of small molecular weight
chemoattractant proteins have been characterised that act via specific G-protein coupled
7-transnrembrane receptors. This family of proteins, called chemokines, has been

extensively studied for their ability to activate and induce chemotaxis in many different
cell types. The chemokine family can be sub-classified according to their primary amino
acid structure, which also has functional significance. Interleukin-8 (IL-8), the

prototypical CXC chemokine, acts via the chemokine receptors CXCR1 and CXCR2

expressed on a number of cells and is probably most widely known as a neutrophil

chemoattractant. Other CXC chemokines include growth related oncogene (Gro-a, P,

and y), and neutrophil activating peptide-2 (NAP-2). These chemokines have a sequence

of amino acids; Glutamine-Leucine-Arginine- or ELR-motif, at the N-terminal side of
the CXC sequence, which is an absolute requirement for specific receptor binding and

neutrophil activation {Clark-Lewis et al 1994}. This ELR motif is a characteristic
feature of CXC chemokines that act via CXCR1 orCXCR2 {Baggiolini et al 1994}.

Neutrophils express two types of CXC chemokine receptors, CXCR1 and CXCR2.
These receptors share 77% amino acid homology and their genes are co-localised on

chromosome 2q35 {Ahuja et al 1992}. Both IL-8 and Gro-a contain the ELR-motif, but
there are characteristic differences in receptor binding capacity between these two

chemokines {Ludwig et al 1997}. CXCR1 and CXCR2 receptors bind IL-8 with high

affinity {Jones et al 1995}, but only CXCR2 binds Gro-a with high affinity {Lee et al

1992}.
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This chapter describes the methodology adapted to isolate neutrophils and measure

chemotaxis using the CXC chemokines IL-8 and Gro-a, the former acting via CXCR1

and CXCR2 and the latter acting via CXCR2.

2.2 SUBJECTS

12 healthy members of the laboratory staff, 7 males and 5 females, mean age 35.8 years

(SEM ± 1.4, range 29-45 years) were studied. Repeated measurements of CXC
chemokine-stimulated neutrophil chemotaxis in 5 individuals, 3 males and 2 females,

mean age 36.2 years (SEM ± 2.3, range 32-45 years) over time (between 3-10 times)
were used to determine the individual variation in neutrophil chemotaxis. Chemotaxis of

neutrophils isolated from 36, 30, and 32 years old, healthy control males were measured

repeatedly at a single time point and under the same conditions to test the reproducibility
of the results of the same control subjects.

2.3 MATERIALS AND METHODS

2.3.1 Neutrophil isolation

3 .5-5 ml of venous blood was taken into a heparinised syringe and layered over 5 ml of

PolymorphpreprM solution (Nycomed Pharma AS, Oslo-Norway). After centrifugation
at 500g for 35 minutes at 20°C, two leucocyte bands were visible. The upper band
contained the mononuclear cells and the lower one contained the neutrophils. The

erythrocytes were pelleted at the bottom of the tube (Figure 2.1). Pasteur pipettes were

used to collect the neutrophil band and one volume of 0.45% NaCl solution was added

to restore normal osmolality. The cell suspension was washed twice before being

resuspended in 10 ml of phosphate buffered saline (PBS, Sigma Chemical Company,

UK). The cell suspension was then adjusted to a constant concentration of 2 x 106
neutrophil / ml PBS.
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Figure 2.1: Neutrophil isolation.
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2.3.2 Trypan blue viability test

Neutrophil viability was determined by mixing 0.5 ml of trypan blue (Sigma Chemical

Company, UK), with 0.3 ml PBS and 0.2ml of the neutrophil suspension. After
incubation of the mixture for 10 minutes at room temperature, the viable cells (non-

stained) and nonviable cells (stained) were counted. The viability of the neutrophils was

constantly > 97%.

2.3.3 Neutrophil Chemotaxis

Neutrophil chemotaxis was measured using a modified 48 well Boyden chamber method

(Figure 2.2). This method is widely used to measure leucocyte chemotaxis due to its
relative simplicity compared with the old chambers such as the open-well and blind well

chambers {Bignold 1989}. 5 pm thick polycarbonated, polyvinylpyrrolidone (PVP)-free
filters (Poretics* Products, Livemore-USA) were used which prevent drop-off of cells
from the lower surface of the filter into lower compartment of the chamber {Harvath et

al 1980, Koedel et al 1999}. The CXC chemokines, interleukin-8 (IL-8) and growth-

regulated oncogene-a (Gro-a), (R&D Laboratories, Abingdon, Oxon-UK) were

reconstituted in 1ml of PBS and stored at -70°C in small aliquots using 10 ng/ml
concentrations as a stock solution. Each chemokine was serially diluted on the day of the

study to test neutrophil chemotaxis towards lOng/ml, 1 ng/ml, lOOpg/ml and lOpg/ml
chemokine concentration. The lower compartment of the Boyden chambers was loaded

with 28 pi of the chemokine or PBS as a negative control in duplicate wells. Care was

taken to create a good meniscus. The filter was carefully placed over the wells to avoid

any air bubbles. A silicon gasket was placed over the filter followed by the upper

compartment and then fixed into place. 50 pi of neutrophil suspension was added to the

upper wells in duplicates and the chamber was incubated for one hour at 37°C in an

incubator supplied with 5% CO2 and 95% O2. After incubation, the cell (upper most)
side of the filter was washed 3 times in PBS and then wiped with a firm rubber wiper to

remove any attached cells to this side of the filter.
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Figure 2.2: Boyden chamber.
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The filter was fixed in methanol for 10 minutes, left to air dry and then stained with 1/10
diluted Gentian violet for 10 minutes. After further washing, the filter was placed on a

broad slide with the migrated cell (lower most) side facing up and the migrated cells
counted in 2 high power fields in each duplicate well (1 OOx). The net result ofneutrophil
chemotaxis was counted by subtraction of the results of the neutrophils migrating in

response to PBS from the results of the neutrophils migrating in response to the CXC
chemokines to exclude the random neutrophil movement {Zaslaver et al 2001}.

2.3.4 Statistical analysis

In the following Chapters of this thesis, the variables were tested for distribution (normal
or skewed) by using Kolmogorov-Smirnov (exploration) test. Statistical testing was

done accordingly. Parametric tests were used in case of normally distributed variables
and non-parametric tests were used if the variables were skewed. Unpaired t-test was

used to compare 2 groups if the variables were normally distributed and Mann-Whitney
rank sum test if they were skewed. Paired t-test was used to compare the same group

before and after the procedure if the variables were normally distributed and Wilcoxon

Signed Ranked test was used if they were skewed. One-way analysis of variance

(ANOVA) was used to compare between more than 2 groups. Pearson's and Spearman's
correlation tests were used to correlate between normally and skewedly distributed
variables respectively.

In this Chapter, the Student t-Test or ANOVA test was used to compare means between
individuals as appropriate. Pearson's correlation test was used to test the relationship
between neutrophil chemotaxis with age and sex of the control subjects.

2.4 RESULTS

Neutrophil chemotaxis in 12 different control individuals towards serially diluted IL-8

and Gro-a concentrations is shown in Figure 2.3 and 2.4. Neutrophil chemotaxis

stimulated with lOng/ml IL-8 (46.1 ±1.5 neutrophils/high power field, mean ± SEM,

64



Chapter 2: Measurement ofneutrophil chemotaxis.

n=12), was significantly higher compared with lng/ml (34.3 ± 0.9, P < 0.0001), with
100 pg/ml (27.2 ± 0.9, P < 0.0001), and with 10 pg/ml IL-8 (19.5 ± 0.6, P < 0.0001,

Figure 2.3). Neutrophil chemotaxis stimulated by lOng/ml Gro-a (48.9 ± 1.2

neutrophils/high power field, mean + SEM, n=12) was significantly higher compared
with lng/ml (38.5 ± 0.9, P < 0.0001), with 100 pg/ml (30.9 ± 1.2, P < 0.0001), and with
10 pg/ml Gro-a (23.3 ± 0.7, P < 0.0001, Figure 2.3).

65



Chapter 2: Measurement ofneutrophil chemotaxis.

60

I5"
A
X

a
2a
a>

J 40
1
u

1 30
|
3

2
73

1 20
i
-a

a>

p < 0.0001 p < 0.0001 P < o oooi

*-
I

II^8(10ng/ml) (lng/ml) (lOOpg/ml) (lOpg/ml)

Figure 2.3: Mean and individual neutrophil chemotaxis stimulated with serial dilutions
ofIL-8 in 12 controls.

60

©

(U
M

50
X P <0.0001 p < 0.0001 p < 0.0001

2a
a
TT

o
o •

♦
yt X

cs + o

40 ■

i _o_

%
5

Is *
e.

£ 30
A

+■ u-

S
01 i
C a

i ©

75 20 + ♦

£
■3
£
•o
c
«
c
CI

10
Gro (lOng/ml) (lng/nil) (lOOpg/ml) (lOpg/ml)

01

*5

0

Figure 2.4: Mean and individual neutrophil chemotaxis stimulated with serial dilutions
of Gro-a in 12 controls.

66



Chapter 2: Measurement ofneutrophil chemotaxis.

Neutrophil chemotaxis in same controls (n=5) repeated between 2-10 times at different
time points towards serially diluted tL-8 and Gro-a concentrations are shown in Figure
2.5 and 2.6 respectively. No significant changes were detected between neutrophil
chemotaxis repeated at different time points for each of these control subjects and for
each chemokine concentration (p = 0.2) or between members of this group for each
chemokine concentration (p = 0.3). Neutrophil chemotaxis results were similar when
stimulated with lOng/ml EL-8 (48.8 ± 0.9, 46.2 ± 1.3, 45.75 + 0.6, 46.75 ± 0.7, and 46.5
± 1.5 cell/high power field), with lng/ml (35.6 ± 0.87, 35.3 ± 0.76, 36.2 ± 0.95, 35.2 ±

0.48, and 36 ± 1), with lOOpg/ml (26.8 ± 0.8, 25.2 ± 0.7, 26.7 ± 0.5, 25.2 ± 1.3, and 19.5

± 0.5), or with lOpg/ml (1 8.4 ± 0.6, 16 ± 0.6, 14.7 ± 1.5, 18.7 + 0.6, and 15.5 ± 0.5) for
control subjects 1-5 respectively (Figure 2.5).

Neutrophil chemotaxis results was similar when stimulated with lOng/ml Gro-a (49.7 ±

1.2, 48.2 ± 0.7, 46.7 ± 1, 44.5 ± 0.9, and 46.5 ± 0.5 cell/high power field), with lng/ml

(39 + 1, 33.2 ± 1, 34 ± 0.9, 32.7 ± 0.7, and 38.5 ± 0.5), with lOOpg/ml (32.2 + 1.3, 29 +

1.1, 32.2 + 1, 29.5 + 1, and 29 ± 0.0), or with lOpg/ml (24 ± 1.5, 21.2 ± 0.6, 25 ± 1.1,

26.2 ± 0.6, and 22 ± 0.0) for control subjects 1-5 respectively (Figure 2.6).
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Measurement of neutrophil chemotaxis in the same individuals was also performed

repeatedly. No significant differences between repeated measurements of neutrophil

chemotaxis stimulated with 1 Ong/ml of either IL-8 or Gro-a for each individual of the

three tested control subjects. There were also no significant differences between

neutrophil chemotaxis for the first control (IL-8 49 ± 1, Gro-a 51 ± 1.3 cell/high power

field, mean ± SEM), second control (IL-8 46 ± 0.7, Gro-a 49.5 ± 0.5), or third control

(IL-8 48 ± 0.5, Gro-a 47 ± 0.4, respectively, P = 0.3, Figure 2.7).

There were no statistical differences between the results of different controls, repeated

testing of the same controls at different time intervals, and repeated testing of the same

control at the same time and under the same test settings (p value > 0. 05).

There was no significant correlation between lL-8-induced- and Gro-a-induced-

neutrophil chemotaxis in all of the studied groups (r values were ranged between -0.04

and 0.8 and p values ranged between 0.9 and 0.06).

There was no statistical correlation between lL-8-induced chemotaxis and age (r = 0.3, p

= 0.3, Figure 2.8). However, there appeared to be an inverse correlation between Gro-a-

induced chemotaxis and age (r = -0.6, p = 0.04, Figure 2.9). There was no difference in

either IL-8 or Gro-induced chemotaxis between males and females (Figure 2.10).
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Gro-induced chemotaxis (neutrophils / HPF)

Figure 2.9: Correlation between Giro-induced neutrophil chemotaxis and age.
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2.5 DISCUSSION

In this chapter the methodology of neutrophil isolation and chemotaxis was adapted and

optimised. The method of neutrophil isolation used allowed rapid preparation of

neutrophils of high viability. Neutrophil chemotaxis stimulated with serially diluted
CXC chemokines showed a dose-dependent response i.e. lower chemokine
concentration was associated with a lower chemotactic response as expected. The
characteristic bell-shaped curve of chemotactic response was not observed, most likely
because higher chemokine concentrations than lOng/ml were not studied. Interestingly
there were similar chemotactic responses to IL-8 and Gro in the controls. The
chemotactic response to both chemokines showed little variability over a time period or

within the assay. Although Gro-induced chemotaxis appeared inversely correlated with

age, the chemotactic response to IL8 was not related to age and the response to either
chemokine was not affected by gender.

The modified Boyden chamber has been widely used to measure chemotaxis of the
different subsets of leucocytes. Comparative studies of neutrophil chemotaxis using the
modified Boyden chamber method and other open-well or blind-well chambers have
shown the most satisfactory and reproducible results were obtained with the modified

Boyden chamber method. This method provides easy and accurate filling of the lower

compartment, lack of distortion of the filter and reliability of the seals around edges of
the filter. Neutrophil drop off from the lower surface of the filter during incubation

period is also minimal {Bignold 1989}.

Using the modified Boyden chamber method neutrophil chemotaxis induced by a variety

of chemoattractants has been studied in different species including human, monkey, dog,

rabbit, hamster, rat, and mouse, {Sugawara et al 1995}. Interestingly, although

neutrophils of all animal species so far studied respond to human recombinant IL-8, the

sensitivity of human and monkey neutrophils to IL-8 is highest. Similar methods have
been used to study neutrophil and other leucocyte subset chemotaxis in a large variety of
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the human disease states {Langner et al 1983}. A variety of chemoattractants have been
used for example culture supernatants from immortalised corneal epithelial cells and
HIV-1 infected keratocytes induce neutrophil chemotaxis in a modified Boyden chamber

assay. Even the aqueous humor of the eye has been used to study neutrophil chemotaxis
in patients with anterior uveitis {Rosenbaum et al 1987}. Animal studies have also
utilised the modified Boyden chamber technique to measure neutrophil chemotaxis.

{Galligan and Coomber 2000}.

In these studies the ELR+ CXC chemokines, DL-8 and Gro-a were used as neutrophil

chemoattractants for two reasons. Firstly, IL-8 and Gro-a are considered the potent

neutrophil chemoattractants chemotaxis studies {Geiser et al 1993}. Secondly,

neutrophils express both CXCR1 and CXCR2 surface chemokine receptors. Blocking

antibody studies indicated that the IL8 chemotactic response is mediated mainly via

CXCR1, while chemotaxis stimulated by Gro-a is solely via CXCR2 {Hammond et al

1995}. Therefore measuring both IL8 and Gro-induced chemotaxis allows identification
of defects in either both receptors or localises the defect to CXCR2. For example if IL-8-
induced neutrophil chemotaxis is reduced, this may involve impairment or down-

regulation of CXCR1 and/or CXCR2, but reduction of Gro-a-induced chemotaxis

indicates involvement of only CXCR2.

Several reports have suggested differences in the chemotactic response to IL8 mediated

by CXCR1 and CXCR2. CXCR2 is reported to be more responsive than CXCR1 to low
concentrations of IL-8. Based on the ability to undergo internalisation and recycling, it
was suggested that CXCR1 mediates EL-8-induced chemotaxis at the site of

inflammation, where the IL-8 concentration is high. In contrast, CXCR2 can initiate

neutrophil migration at sites distant from inflammation, where the IL-8 concentration is
low {Chuntharapai and Kim 1995}. Furthermore, stimulation of CXCR1 can down-

regulate CXCR2 and in contrast, stimulation ofCXCR2 up-regulates CXCR1 {Hauseret
al 1999}.
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In summary this chapter describes the technique adapted to measure IL-8 and Gro-a
stimulated neutrophil chemotaxis in healthy controls. The method is rapid and

reproducible and shows little variation overtime. No significant variations were detected

in neutrophil chemotaxis in relation to gender or age, except with Gro-a-stimulated

chemotaxis, which showed an inverse correlation with age. The modified Boyden
chamber method has been widely used to study neutrophil chemotaxis in a variety of
disease states. However, there are no studies relating to chemokine induced neutrophil
chemotaxis in human liver diseases. Such studies are described in the following chapters
of this thesis.
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CHAPTER 3

NEUTROPHIL CHEMOTAXIS IN ACUTE AND

CHRONIC LIVER FAILURE
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3.1 INTRODUCTION

Infection is a common complication in patients with acute and chronic liver failure

{Rolando et al 1990 and Navasa et al 1999}, and is associated with significant mortality.
The normal body defence mechanisms in such patients can be affected in many ways.

Intact neutrophil function is important in the innate immune response and defective

neutrophil chemotaxis contributes to increased risk of infection in patients with liver
failure {Wyke et al 1983, and Yousif-Kadaru et al 1984}. Previous reports used a wide

variety of non-specific stimulants and test neutrophil chemotaxis. These substances
include zymosan-activated autologous plasma {Campbell et al 1981}, the complement
factors such as C3, C5 and C567 {Ward 1996}, and serum activated by immune

complexes composed of 10% fresh serum, 40% ovalbumin-rabbit-antiovalbumin and
50% Hank's solution {DeMeo and Andersen 1972}. No data is available regarding

neutrophil chemotaxis stimulated by the more recently described family of potent

neutrophil chemoattractants; the chemokines.

In the previously published data, the relation between neutrophil chemotaxis and

severity of the liver disease was not clear. Some studies have found a good correlation
between certain neutrophil functions and the severity of liver disease. For example,
reduced neutrophil peroxidase production in patients with hepatitis B infection has been

reported, which correlates with the severity of disease and returned to normal with

recovery {VasiTev 1984}. Another study showed a reduction in neutrophil production of
reactive O2 species in patients with liver cirrhosis. This reduction was found to correlate

with the severity of liver cirrhosis {Itoh etal 1993}.

The relationship between the aetiology of liver disease and neutrophil chemotaxis is also
unclear. Alcohol has an in-vivo direct inhibitory effect on leukocyte migration. This was

observed in a control group after ethyl alcohol either intravenously or orally. As little as

0. lmg/% alcohol in-vitro can also inhibit leukocyte chemotaxis {Brayton et al 1970}.
Alcohol also has indirect inhibitory effects on the bone marrow leading to
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granulocytopenia and an inhibitory effect on synthesis of serum factors needed for

leukocyte chemotaxis such as complement factors {Wyke 1989}. Previous studies have
shown significantly impaired neutrophil chemotaxis in patients with alcoholic liver
disease and to lesser extent in patients with cryptogenic cirrhosis, compared with
controls {Campbell etal 1981}. Infection is believed to be an infrequent complication in
patients with Primary Biliary Cirrhosis (PBC) due to relatively few or minor immune

defects in comparison with the other chronic liver diseases, but neutrophil chemotaxis in

such patients has not been studied {Wyke et al 1983}.

These studies were designed to test the hypothesis that neutrophil chemotaxis stimulated

by chemokines is impaired in patients with acute and chronic liver failure and to

determine if there was a relationship with disease aetiology or severity.

3.2 SUBJECTS

Patients were divided into 4 groups; 24 patients with paracetamol-induced acute liver

failure; 13 patients with alcoholic liver cirrhosis; 12 patients with hepatitis C cirrhosis,
and 10 patients with primary biliary cirrhosis. 38 healthy medical and laboratory staff
served as controls. The patients and controls' characteristics are shown in Table 3.1 For

the purposes of analysis the patients with paracetamol overdose (POD) were the only

patients to represent the acute liver failure group (n=24), with alcoholics, hepatitis C and

primary biliary cirrhosis were grouped together and defined as having chronic liver
failure (n=21).

As an indicator of severity in patients with POD, these patients were divided according
to the grade of encephalopathy they had into, patients without encephalopathy (group 0,

n=4), with grades 1 or 2 (group!, n=9), and patients with grades 3 and 4 (group2, n=T 1).
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Table 3.1: Patient characteristics presented as mean ±SEM.
ALF CLF
POD ALD Hepatitis C PBC Controls

Age: (yr) 37 ±2 50 ±3 45 ±3 63 ±5 36 ± 1

Number: 24 13 12 10 38

Sex: F:M 9:15 5:8 4:8 10:0 11:27

Child-Pugh grade:
A:B:C 3:3:7 4:4:4 7:3:0

Child-Pugh score 8.2 ±2.1 7.2 ±1.2 6.1 ±0.2

Serum bilirubin:

(pmol.L"1)
98 ± 12 145 ±40 39 ±4.5 128 ±14

Serum albumin:

(AL-1)
39 + 0.9 28 ±2.1 33 ±1.7 41 ±1.4

Prothrombin time:

(s)
50.5 ±4 12.4 ±0.6 14.7 ±0.8 10.7 ±0.6

Blood urea:

(mmol.L"1)
11.6 ±2 5 ±1.6 4.5 ±0.6 6 ±0.5

Serum creatinine:

(pmol.L"1)
186 ±21 90.9 ±9 68 ±7.5 80 ±3.8

ALF= Acute liver failure.

CLF= chronic liver failure.

POD=Paracetamol overdose.

ALD= alcoholic liver disease.

PBC= primary biliary cirrhosis.
M= male. F= female.
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The severity of liver disease in the chronic liver failure group was defined using the
widely used Child-Pugh score {Conn 1981 and Pugh et al 1983}. These patients were

divided into 14 patients with grade A, 10 patients with grade B, and 11 patients with

grade C.

3.3 METHODS

To reduce potential variability in a day-to-day testing, the neutrophil chemotaxis of each

patient was compared directly with a control performed at the same time.

3.3.1 Neutrophil chemotaxis

Neutrophil isolation and chemotaxis were performed in all subjects as described in

Chapter2 (sections 2.3.1 and 2.3.3).

3.3.2 Statistical analysis

Results were examined as number of neutrophils counted/high power field (HPF) in 2
fields of each of the duplicate wells for each sample. The Mann-Whitney rank sum test

was used to compare the different groups as discussed in Chapter 2 (section 2.3 .4).

3.4 RESULTS

3.4.1 Neutrophil chemotaxis in acute and chronic liver failure

Neutrophil chemotaxis induced by IL-8 (lOng/ml) was significantly impaired in patients
with acute liver failure (19.5 ± 0.9 neutrophils / high power field, mean ± SEM, n = 24)

and chronic liver failure (11.2 ± 2.3, n = 21) compared with controls (46 ± 1, n = 38,p <

0.0001, Figure 3.1). Furthermore, neutrophil chemotaxis induced by EL-8 was

significantly more impaired in patients with chronic liver failure compared with patients
with acute liver failure {p < 0.001, Figure 3.1).
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Neutrophil chemotaxis induced by Gro-a (lOng/ml) was significantly impaired in

patients with acute liver failure (18.6 ± 0.8, n = 24) and chronic liver failure (13.6 ± 1.8,
n = 21) compared with controls (49 ± 1, n = 38,p < 0.0001, Figure3.2). Gro-a-induced
chemotaxis was also significantly more impaired in patients with chronic liver failure

compared with patients with acute liver failure (p < 0.02, Figure 3.2).
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3.4.2 Neutrophil chemotaxis: effect of aetiology

Neutrophil chemotaxis induced by 1L-8 (lOng/ml) was similar in patients with ALD (9.8
±2.8 neutrophils / high power field, mean ± SEM, n = 13) compared with patients with

hepatitis C cirrhosis (15.7 ± 2.9, n = 12,/? < 0.2, Figure 3.3). However, neutrophil
chemotaxis induced by IL-8 was significantly impaired in patients with ALD compared

with patients with POD (19.5 ± 0.9, n = 24, p = 0.002) and patients with PBC (36.8 ±

4.7, n = 10, p < 0.0001). Neutrophil chemotaxis induced by IL-8 was similar in patients
with hepatitis C compared with patients with POD (/? = 0.2), but was significantly

impaired compared with patients with PBC (36.8 ± 4.7, n = 10,/? = 0.003). Neutrophil
chemotaxis induced by IL-8 was significantly impaired in patients with POD compared
with patients with PBC {p = 0.002). Neutrophil chemotaxis induced by IL-8 in all sub¬

groups of patients was significantly impaired compared with the controls (46 ± 1, n = 38,

p < 0.0001). As shown in Figure 3.3, neutrophil chemotaxis to IL-8 was lowest in

patients with alcoholic liver disease, followed by hepatitis C cirrhosis, POD, and PBC.

Neutrophil chemotaxis induced by Gro-a (lOng/ml) was similar in patients with ALD

(13.6 ± 2.8 neutrophils / high power field, mean ± SEM, n = 13) compared with patients
with hepatitis C cirrhosis (18 ± 2, n = 12,/? = 0.09, Figure 3.4) and patients with POD

(18.6 + 0.8, n = 16, p = 0.05). However, neutrophil chemotaxis induced by Gro-a was

significantly impaired in patients with ALD compared with patients with PBC (35 ± 3, n

= 10, p = 0.002). Neutrophil chemotaxis induced by Gro-a was similar in patients with

hepatitis C compared with patients with POD (p < 0.4), but was significantly impaired

compared with patients with PBC (p = 0.003). Neutrophil chemotaxis induced by Gro-a
was significantly impaired in patients with POD compared with patients with PBC (p <

0.0004). Neutrophil chemotaxis induced by Gro-a in all sub-groups of patients was

significantly impaired compared with the controls (49 + 1, n = 38, p < 0.0001). As

shown in Figure 3.4, neutrophil chemotaxis to Gro-a was similar to IL-8, lowest in

patients with alcoholic liver disease and hepatitis C cirrhosis, followed by POD, and
PBC,
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3.4.3 Neutrophil chemotaxis; relationship with disease severity in ALF

Only 3 patients with POD died making statistical comparison between those that lived
and those that died invalid. The degree of hepatic encephalopathy in patients with acute

liver failure induced by paracetamol poisoning is correlated with disease severity. Figure
3.5 shows that neutrophil chemotaxis induced by IL-8 (lOng/ml) was similar in patients
with POD irrespective of the encephalopathy grade. Neutrophil chemotaxis was similar
in patients with grade 0 encephalopathy (21 ±2, mean ± SEM, n = 4) compared with

patients with grades 1 or 2 (21.4 ± 1, n = 9, p = 0.9) and grades 3 or 4 (17.5 + 1.5, n =

11, p < 0.2). Neutrophil chemotaxis induced by IL-8 was also similar in patients with

grades 1 or 2 encephalopathy compared with patients with grades 3 or 4 (/? = 0.6).

Figure 3.6 shows that neutrophil chemotaxis induced by Gro-a (1 Ong/ml) was similar in

patients with POD despite the encephalopathy grades of the patients. Neutrophil
chemotaxis was similar in patients with grade 0 encephalopathy (18 ±2, mean ± SEM, n

= 2) compared with patients with grades 1 or 2 (18.7 + 1.3, n = 6, p = 0.9) and grades 3

or 4 (18.8 ± 1.2, n = 8, p < 0.8). Neutrophil chemotaxis induced by Gro-a was also
similar in patients with grades 1 or 2 encephalopathy compared with patients with grades
3 or 4 (p = 0.9).
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3.4.4 Neutrophil chemotaxis: relationship with disease severity in CLF

The Child-Pugh score is a widely used scoring system to determine the severity of
chronic liver disease and is related to prognosis. Figure 3.7 shows that the patients with
the most severe chronic liver failure had the most impaired neutrophil chemotaxis
induced by IL-8. Neutrophil chemotaxis induced by IL-8 (lOng/ml) was significantly

reduced in patients with Child grade C cirrhosis (4.6 ± 2.4, mean ± SEM, n = 11)

compared with patients with Child grade B cirrhosis (18.2 ± 3.1, n = 10,p = 0.003) and

Child grade A cirrhosis (32 ± 4, n = 14,p < 0.0001). Neutrophil chemotaxis induced by

IL-8 was also significantly impaired in patients with Child grade B cirrhosis compared
with patients with Child grade A cirrhosis (p = 0.03).

Figure 3.8 shows that neutrophil chemotaxis induced by Gro-a was also most impaired
in patients with the most severe chronic liver failure. Neutrophil chemotaxis induced by

Gro-a (1 Ong/ml) was significantly impaired in patients with Child grade C cirrhosis (9.2

± 1.4, mean ± SEM, n = 11) compared with patients with Child grade B cirrhosis (18.5 ±

2.9, n = 10, p = 0.005) and Child grade A cirrhosis (32.1 ± 2.5, n = 14, p < 0.0001).

Neutrophil chemotaxis induced by Gro-a (1 Ong/ml) was also significantly impaired in

patients with Child grade B cirrhosis compared with patients with Child grade A

cirrhosis (j= 0.001). Neutrophil chemotaxis stimulated with IL-8 or Gro-a in each

group of patients with Child A were significantly reduced compared with control

subjects (p < 0.0001).
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chronic liver diseases according to Child-Pugh grades.
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3.5. DISCUSSION

In this chapter neutrophil chemotaxis was measured in patients with acute or chronic
liver failure, and controls using the potent neutrophil chemokines IL-8 and Gro-a.

Subgroup analysis was performed to determine the effect of aetiology and severity of
liver disease on chemokine-stimulated chemotaxis. The results of these studies clearly
show that CXC chemokine stimulated (IL-8 and Gro) neutrophil chemotaxis is

significantly impaired in patients with both acute and chronic liver failure compared
with healthy controls and that comparing chronic liver failure with acute liver failure
showed that the former have significantly reduced neutrophil chemotaxis. Patients with
alcoholic liver disease and those with the most severe liver failure have the most

impaired neutrophil chemotaxis.

As regard the effect of different aetiologies of liver disease, our studies show that

neutrophil chemotaxis is similarly reduced in patients with alcoholic liver cirrhosis and

patients with hepatitis C cirrhosis, but significantly reduced compared with patients with
the other aetiologies. Neutrophil chemotaxis was least reduced in patients with primary

biliary cirrhosis despite of their age difference compared with the other patient' groups.

Neutrophil chemotaxis was significantly impaired in all groups of patients compared
with the control group. In DeMeo and Andersen's study neutrophil chemotaxis
stimulated with immune complex-activated serum was measured in a group of patients
with alcoholic liver cirrhosis and healthy controls, and found reduced in the alcoholic

group. They explained this reduction in neutrophil chemotaxis by a serum defect

possibly hypocomplementaemia {DeMeo and Andersen 1972}. Others reported a similar

significant reduction in neutrophil chemotaxis stimulated by zymosan-activated plasma
in relatively well-compensated patients with alcoholic liver cirrhosis compared with
controls and suggested that the low serum levels of complement factors especially C4

may be the cause of this defect {Campbell et al 1981}. Other neutrophil functions not

including chemotaxis have been tested in patients with acute as well as chronic liver
failure. For example, defective opsonisation was detected in patients with paracetamol-
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and viral hepatitis- induced acute liver failure {Wyke et al 1980}. This defect in

opsonisation was also detected in patients with either alcoholic liver cirrhosis or chronic
active hepatitis compared with controls. This defect in opsonisation has also been
associated with low serum complement level {Wyke et al 1983}. Abnormal neutrophil
adherence occurs in patients with paracetamol-induced acute liver failure, alcoholic liver

cirrhosis, chronic active hepatitis and primary biliary cirrhosis. Adherence is an

important step in chemotaxis that enables the neutrophils to stick to the endothelium
before extravasation outside the vasculature {Altin et al 1983}. Neutrophil phagocytic
function and bacterial killing of staphylococcus aureus was impaired in patients with
alcoholic liver cirrhosis, chronic active hepatitis, and primary biliary cirrhosis {De
Fernandez et al 1987}. All these studies did not test neutrophil chemotaxis to the CXC

chemokines, or compare the difference in neutrophil function in patients with acute and
chronic liver failure.

In the literature, the relation between the aetiology of liver disease and neutrophil
chemotaxis stimulated with non-specific or specific chemoattractants is still unclear or

does not exist. However, our results showed clearly that there is a relationship between
the different aetiologies of the liver disease and the reduction in neutrophil chemotaxis.
The least impairment in neutrophil chemotaxis was in patients with primary biliary
cirrhosis. Previous studies showed similar findings when studying other neutrophil
functions such as neutrophil adherence, which showed minimal defects in patients with

primary biliary cirrhosis compared with other aetiologies especially patients with
alcoholic liver cirrhosis {Altin et al 1983}. In the same study, there was no statistical

relationship between age or sex of the patients studied suggesting that the difference
between PBC and the other groups in or study are not related to the differences in either

age or sex (chapter 2, Figure 2.8-2.10). Brayton et al measured in-vivo neutrophil
chemotaxis in a healthy control group divided according to their age into below and
above 65 years old and found no difference in chemotaxis between both groups

{Brayton et al 1970}. Some studies have shown the incidence of infection in patients
with PBC was lower than the other disease aetiologies {Wyke et al 1983}. Others
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suggested that there is different mechanism controlling serum complement in patients
with primary biliary cirrhosis, and so both infection and the potential serum defect are

less affects in such patients {Meyer and Buschenfede 1977}. Most previous studies

testing neutrophil functions in patients with liver diseases found that the most affected

group was the alcoholic liver cirrhosis. These patients have significantly more impaired

opsonisation, serum complement defect or defective neutrophil chemotaxis,

phagocytosis or killing {Wyke et al 1983, Yousif-Kadaru et al 1984, and De Fernandez
et al 1987}. These findings are similar to those reported in this chapter, which shows
that CXC chemokine induced chemotaxis is most impaired in the group of alcoholic
cirrhosis.

Our studies also clearly show that neutrophil chemotaxis was similar in patients with

paracetamol-overdose despite of the difference in encephalopathy grade they had, but in
contrast was significantly reduced in patients with Child grade C and B cirrhosis

compared with patients with grade A cirrhosis. The relationship between impairment in

neutrophil chemotaxis and severity of the liver disease has not previously been fully

explored. No studies have correlated neutrophil functions including neutrophil
chemotaxis in patients with POD with the disease severity such as encephalopathy

grade. Previous studies in patients with chronic liver disease have found that the
reduction of neutrophil chemotaxis, phagocytosis and killing were not correlated with
the severity of the disease as determined by the Child score {Campbell et al 1981}.
Other studies have tested the correlation between other parameters ofneutrophil function
such as opsonisation, and neutrophil adherence, with the disease severity with

contrasting results. In one study no relationship between the defects in opsonisation or

complement serum level with the parameters of the disease severity such as prothrombin
time was observed {Wyke et al 1983}. In contrast, the defective neutrophil adherence
and complement serum levels measured by others were found to be dependent on the

stage and severity of liver disease {Altin et al 1983}. A good correlation between

neutrophil peroxidase activity {Vasil'ev 1984}, and defective neutrophil production of
active 02 species with the disease severity has also been reported {Itoh et al 1993}.
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According to the results in this chapter, it is clear that the severity of the disease is more

important than the aetiology, especially in patients with chronic liver failure. A more

significant reduction in neutrophil chemotaxis was observed in patients with Child C

grade than Child A and B. Most of the patients with PBC were Child A grade, which

may explain why they had the least reduction in neutrophil chemotaxis. Proper
multivariate analysis may be of help to detect the importance of either the severity or

the aetiology of the disease as regard neutrophil chemotaxis.

Neutrophils express two CXC chemokine receptor types, CXCR1 and CXCR2 {Ahuja et

al 1992}. Both types of receptors bind EL-8 {Jones et al 1995} while only CXCR2 binds
Gro-a with high affinity {Lee et al 1992}. Defective Gro-a-induced neutrophil
chemotaxis may result from only CXCR2 down-regulation. In contrast, down-regulation
of both types of receptors is required to reduce IL-8-induced chemotaxis.

In conclusion, neutrophil chemotaxis is reduced in patients with acute and chronic liver
failure. This reduction in neutrophil chemotaxis is well correlated with the severity of
the liver disease, but may also be dependent to a lesser extent on the aetiology of the
liver disease.
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4.1 INTRODUCTION

Portal hypertension is a common complication of cirrhosis observed in 30-60% of

patients at the time of their diagnosis {GarciaTsao et al 1985}. Upper gastrointestinal

bleeding from oesophageal or gastric varices is a recognised major and sometimes fatal

complication of portal hypertension. Potential risk factors for variceal haemorrhage
include continued alcohol abuse {Dagradi 1972}, advanced liver disease (Pugh et al

1973}, portal pressure gradient greater than 12 mmHg {Lebrec et al 1980}, large

varices, and red spots on the varices during endoscopy {Beppu et al 1981}. The

mortality rate from the first variceal bleeding may be as high as 50% of cases, especially
in patients with decompensated cirrhosis {Pagliaro etal 1992} and untreated re-bleeding
from varices occurs in about 60% of surviving patients within 10 days {Graham and
Smith 1981}.

Infection is a recognised complication occurring in patients following variceal

haemorrhage {Lee and Schiodt 1999}. Bacterial infections occur in 35-66% of cirrhotic

patients with bleeding oesophageal varices. Most of these infections are diagnosed on

admission or during the first few days {Bernard et al 1996}. Gram-negative bacilli of
enteric origin are the most common organisms. Bacterial peritonitis commonly

complicates patients with ascites who present with bleeding varices {Rimola et al 1985

and Barns et al 1988}. Bacterial infection is an independent risk factor for early re-

bleeding (within 5 days of admission) following variceal bleeding {Goulis et al 1998},
and an independent predictor factor of mortality in such patients {Piqueras etal 2001}.

Several factors are likely to be involved in the increased risk of infection observed in

cirrhotic patients with variceal bleeding, including blood transfusion, invasive
cardiovascular monitoring and instrumentation such as endoscopy. The acute

gastrointestinal mucosal lesions detected in 70% of infected patients compared with 19%
of non-infected patients following variceal haemorrhage were considered secondary
rather than the portal of entry of infection in these patients {Bleichner et al 1986}. The
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study of changes in neutrophil chemotaxis in this clinical situation is difficult because of
the multiple factors occurring in patients during and subsequent to a variceal

haemorrhage. Therefore an amino acid solution identical in composition to haemoglobin
was used to simulate blood in the gastrointestinal tract and the changes in neutrophil
chemotaxis following administration of this solution studied in this chapter. In addition
cross over incubation with normal or cirrhotic serum was used to assess the presence of
a circulatory inhibitor of neutrophil chemotaxis.

4.2 SUBJECTS

4.2.1 Simulated bleeding studies

20 patients with biopsy-proven alcoholic liver cirrhosis (15 males and 5 females, mean

age 49.2 years, SEM 1.5) were studied. The patients' characteristics are shown in Table
4.1.

4.2.2 Cross over incubation study

14 patients with chronic alcoholic liver disease were compared with 8 healthy controls,
and 8 patients with paracetamol-induced acute liver failure compared with another 8

healthy controls. The patients and controls characteristics are shown in Table 4.2.

4.3 METHODS

4.3,1 Simulated bleeding solution

The simulated bleeding solution was prepared by dissolving 75 grams of amino acid
mixture (Nutricia, Cuijk, Netherlands) in 200ml of sterile water. The simulated bleeding

powder is a tailor-made mixture of amino acids that mimics the amino acid composition
of haemoglobin, which lacks the essential amino acid isoleucine.
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Table 4.1: Patients characteristics presented as mean ± SEM.
Child score Urea Creatinine Bilirubin ALT Albumin PT

8.3±0.3 5±0.6 66.515.1 65.514.5 67.814.2 31.211 14.810.5

ALT= Alanine transferase.
PT= Prothrombin time.

Table 4.2: Patient characteristics presented as mean ± SEM.
CLF study ALF study

Subjects ALD Controls POD Controls

Age: (yr) 48.613 37.61 1.5 33 12 34.5 1 1.7

Number: 14 8 8 8

Sex: F:M 5:9 2:6 3:5 3:5

Child-Pugh score 910.5
- - -

Serum bilirubin:

(pmol.L"1)
148 140 81 1 10

Serum albumin:

(S.L"1)
291 1.3 39 1 1.6

Prothrombin time:

(s)
16.61 1.5 43.3 1 8.4

Blood urea:

(mmol.L1)
6.3 11.4 12.612.8

Serum creatinine:

(pmol.L-1)
961 15 195128

CLF= chronic liver failure.
ALF= Acute liverfailure.
ALD= alcoholic liver disease.
POD=Paracetamol overdose.
M= male. F=female.
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Administration of this solution orally raises the plasma ammonia concentration and
induces hypoisoleucinaemia and has been used previously to mimic the systemic
biochemical effects of gastrointestinal haemorrhage {Olde Damink et al 1998}. Gum

(Sigma, St Louis-USA) was used as placebo after dissolving in a similar amount of
sterile water as before.

4.3.2 Effect of the simulated bleeding on neutrophil chemotaxis

In the initial ten patients neutrophil chemotaxis and plasma ammonia concentration were

measured at time 0 and 2 hours after ingestion of the simulated bleeding solution.

Subsequently, a further 10 patients were randomly allocated to receive either the
simulated bleeding solution or the placebo solution (using the closed envelope method).
The researcher was blinded as to the group to which the patient was allocated. Peripheral
venous blood was collected for detennination of neutrophil chemotaxis as described in

Chapter2 (sections 2.3.1 and 2.3.3). Neutrophil chemotaxis was studied at time 0 and 2
hours after oral administration of either the placebo or the simulated bleeding solution.

4.3.3 Plasma ammonia concentration

Blood collected into lithium heparin tubes were kept on ice and within half an hour, the

plasma recovered by centrifugation at 3000 rpm for 20 minutes at 4°C. The plasma
ammonia concentration was measured directly with automatic clinical analyzer (Hitachi
model 717; Boehringer, Mannheim, Germany) using a specific enzymatic assay (Da
Fonseca-Wollheim 1992 and Lukkarinen et al 2000).

4.3.4 Cross over incubation study

The neutrophils were prepared from patients and controls as described in Chapter 2

(section 2.3.1). Serum was retrieved by centrifugation from 10 ml of clotted peripheral
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venous blood at 3000 rpm for 20 minutes at 4°C. Neutrophil chemotaxis was measured
as described in Chapter 2 (section 2.3.2), before and after incubation of 0.5 ml of

patients neutrophils (lxlO6 cells) with 20 pi of control subjects serum (or vice versa) for
30 minutes at 37°C. Neutrophils were washed and resuspended in PBS before measuring

chemotaxis.

4.3.5 Statistical analysis

Because the data was not normally distributed, the Wilcoxon Signed Ranked Test was

used to compare the results at time 0 and 2 hours, and before and after cross over

incubation. Spearman's correlation test was used to detect correlations of the results of

neutrophil chemotaxis and plasma ammonia concentrations.

4.4 RESULTS

4.4.1 The simulated bleeding (S.B.) study in the first ten patients

IL-8 (lOng/ml) stimulated neutrophil chemotaxis was significantly reduced at 2 hours

(6.3 ± 4.9, mean ± SEM, n=10) following administration of the simulated bleeding

solution compared with pre-administration (24.8 ± 4.6, p < 0.0001). Gro-a (lOng/ml)

stimulated chemotaxis was also significantly reduced at 2 hours (7.6 ± 1.8, n=10)

following the stimulated bleeding compared with pre-administration (30 ± 1.8, p <

0.0001). Figure 4.1 shows both IL-8- and Gro-a-stimulated chemotaxis at time 0 and 2

hours following administration of the simulated bleeding solution. Plasma ammonia

concentration was increased at time 0 (75 .1 ± 4.2, mean ± SEM, n=10) compared with a

normal range of plasma ammonia concentration in healthy controls as measured in

previous studies (10-35 pmol/L) {Van Buuren etal 1982}. The level rose significantly 2

hours following administration of the simulated bleeding solution (124.6 ± 8.5, n=10, p

< 0.01, Figure 4.2).
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Figure 4.1: Individual and mean neutrophil chemotaxis stimulated with lOng/ml IL-8
and Gro in patients with alcoholic liver cirrhosis at timeO and 2 hours after the simulated
bleeding.

Figure 4.2: Individual and mean plasma ammonia concentrations in patients with
alcoholic liver cirrhosis at time 0 and 2 hours after the simulated bleeding.
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There was no correlation between the percentage changes in both 1L-8- and Gro-a-
induced neutrophil chemotaxis and plasma ammonia concentration between time 0 and
time 2 hours following administration of the simulated bleeding solution (Figures 4.3
and 4.4).

4.4.2 Randomised simulated bleeding study

IL-8 (1 Ong/ml) stimulated neutrophil chemotaxis was significantly reduced at 2 hours

(7.2 ± 6.4, mean ± SEM, n=5) following administration of the simulated bleeding

solution compared with pre-administration (28.2 ±5, p < 0.0001). Gro-a (10ng/ml)-

stimulated chemotaxis was also significantly reduced at 2 hours (4.4 ± 1.9, n=5)

following the stimulated bleeding compared with pre-administration (26.8 ± 1.8,/? <

0.0001). Figure 4.5 shows both IL-8- and Gro-a-stimulated chemotaxis at time 0 and
2hours following administration of the simulated bleeding solution. There was no

change in IL-8-stimulated neutrophil chemotaxis between pre-administration (19.8 ±

3.9, n=5) compared with 2 hours following administration of placebo (21.6 ± 5.4,/? <

0.5). Gro-stimulated neutrophil chemotaxis also showed no change between pre-

administration (20.4 ± 3, n=5) compared with 2 hours following administration of

placebo (21.3 ± 4.9, /? < 0.5). Figure 4.6 shows both IL-8- and Gro-a-stimulated
chemotaxis at time 0 and 2 hours following administration of the placebo solution.
Plasma ammonia concentration was elevated at time 0 (84 ± 2.5, n=5) compared with
the normal range of plasma ammonia concentration in healthy controls, and rose

significantly 2 hours following administration of the simulated bleeding solution (135 ±

2.6, n=5, /? < 0.001, Figure 4.7). However, there was no change in plasma ammonia
concentration between time 0 and 2 hours in the placebo group (Time 0: 86 ± 2, n=5,

and Time 2 hours: 89 ± 1, n=5,/? < 0.5, Figure 4.7).
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Figure 4.3: The correlation between the percentage changes in IL-8 induced neutrophil
chemotaxis and plasma ammonia concentrations.

Figure 4.4: The correlation between the percentage changes in Gro-a-induced neutrophil
chemotaxis and plasma ammonia concentrations.
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Figure 4.7: Individual and mean plasma ammonia concentration in patients with
alcoholic liver cirrhosis at time 0 and time 2 hours after the simulated bleeding and
placebo.
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4.4.3 Effect of cross incubation in chronic liver failure

Neutrophil chemotaxis stimulated with IL-8 (lOng/ml) was significantly improved

following incubation with controls subjects' serum (before 14.1 ± 0.8, after 26.1 ± 0.8

neutrophils / high power field, mean ± SEM, n=14, p < 0.0001, Figure 4.8). In contrast,

chemotaxis ofneutrophils prepared from control subjects was significantly reduced after
incubation with patients' serum (before 48 ± 1.1, after 28 ± 0.8, n=8,p < 0.0001, Figure

4.9).

4.4.4 Effect of cross incubation in acute liver failure

Neutrophil chemotaxis was significantly improved following incubation with control

subjects' serum (before 17.6 ± 1.2, after 32.3 ± 1.2, n=8, p < 0.0001, Figure 4.10). In

contrast, chemotaxis of neutrophils prepared from control subjects was significantly
reduced after incubation with patients' serum (before 51.6 + 1, after 30.1 ± 1.6, n=8 ,p<

0.0001, Figure 4.11).
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Figure 4.8: Individual and mean (bar) neutrophil chemotaxis stimulated with lOng/ml of
EL-8 in patients with alcoholic liver cirrhosis before and after incubation with control
subjects serum.

Figure 4.9: Individual and mean (bar) neutrophil chemotaxis stimulated with lOng/ml of
IL-8 in controls before and after incubation with alcoholic liver cirrhosis patients'
serum.
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Figure 4.10: Individual and mean (bar) neutrophil chemotaxis stimulated with lOng/ml
of IL-8 in patients with POD-induced acute liver failure before and after incubation with
control subjects serum.

Figure 4.11: Individual and mean neutrophil chemotaxis stimulated with lOng/ml ofEL-
8 in controls before and after incubation with POD-induced acute liver failure patients'
serum.
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4.5. DISCUSSION

In this chapter neutrophil chemotaxis and plasma ammonia concentrations were

measured in patients with alcoholic liver cirrhosis before and 2 hours after
administration of either a simulated bleeding or placebo solution. The simulated

bleeding solution was used in these studies instead of actual upper gastrointestinal

bleeding to avoid confounding factors, such as transfusion, that may make the results of

neutrophil chemotaxis difficult to interpret. The simulated bleeding solution mimics the
amino acid composition of haemoglobin and lacks the essential amino acid isoleucine.
This solution induces the same biochemical changes induced by the actual

gastrointestinal bleeding such as hypoisoleucinaemia and hyperammonaemia {Olde
Damink et al 1998}. Previous studies have used this solution in animal and human
studies and have shown the resulting hyperammonaemia following simulated bleeding
or actual upper gastrointestinal bleeding is similar {Klerx et al 1985 and Dejong et al

1996}.

These data presented in this chapter clearly show that IL-8 and Gro-a stimulated

neutrophil chemotaxis is significantly reduced in patients with alcoholic liver cirrhosis 2

hours after oral administration of the simulated bleeding solution in both the non-

randomised and randomised studies. The reduction in neutrophil chemotaxis was

associated with significant elevation in plasma ammonia concentration. However, there
was no significant correlation between neutrophil chemotaxis and plasma ammonia
concentration. Other studies have suggested increased ammonia concentration may

affect neutrophil chemotaxis. Hyperammonaemia can reduce cellular cytosolic

glutaminase activity, and therefore reduce glutamine utilisation by neutrophils.
Glutamine and glucose are major substrate for energy production in neutrophils {Curi et

al 1997}. Disruption of neutrophil glutamine metabolism by hyperammonaemia may

affect the cellular bioenergies and limit neutrophil chemotaxis. Hyperammonaemia can

also reduce the affinity of neutrophil CXC chemokine receptors for their ligands {Coppi
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and Niederman 1989}. However no correlation was noted between ammonia and
neutrophil chemotaxis in the studies reported in this chapter. In contrast the

hypoisoleucine state that also occurs with gastrointestinal bleeding and administration of
the simulated bleeding solution can adversely affect cellular functions, which could also
include neutrophil functions such as chemotaxis.

In this chapter the presence of a circulating chemotactic inhibitory factor/s was tested
with a cross over incubation study. Such studies have been utilised previously to

demonstrate the presence of a circulating inhibitor of platelet function in patients with
cirrhosis (Forrest et al 1996}. The results in this chapter demonstrate the inhibitory
effect of serum from both patients with acute or chronic liver failure on chemotaxis of
control subjects neutrophils. In contrast there was partial recovery of patients neutrophil
chemotaxis following incubation with controls. The results suggest the presence of a

circulating chemotactic inhibitory factor/s in patients with acute and chronic liver
failure. Because the patients defect is only partially reversible, this suggests that there is
also an intrinsic neutrophil defect.

Previous studies suggested presence of chemotaxis inhibitory factor/s in serum prepared
from either patients with acute liver failure (Bailey et al 1976 and Yousif-Kadaru et al

1984} or chronic liver failure (DeMeo and Andersen 1972}. In patients with acute liver

failure, an intrinsic leucocyte abnormality or hypocomplementaemia was not observed
as a cause for the limited neutrophil chemotaxis. However a low molecular weight,
water soluble, dialyzable, and adsorbable factor, that inhibits the metabolic activity of

leucocyte hexose monophosphate shunt was observed (Bailey et al 1976}. Defective

neutrophil chemotactic activity occurs in patients with chronic liver failure possibly due
to hypocomplementaemia and/or a serum chemotactic inhibitory factor/s (DeMeo and
Andersen 1972, Yousif-Kadaru et al 1984}. Other studies have also detected the
existence of a chemotaxis inhibitory factor (CIF) in patients with chronic alcoholic liver
disease (Robbins 1987 and MacGregor 1990}.
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The exact nature of the circulating chemotactic inhibitor remains to be characterised.
Previous studies used a variety of non-specific chemoattractants. The studies reported in
this thesis used the CXC chemokines IL-8 and Gro. Circulating IL-8 is not detectable in
normal subjects but has been reported at high concentration in patients with alcoholic

hepatitis especially those who died. Increased circulating IL8 was also reported in other
liver disorders and were correlated with markers of disease severity such as bilirubin and
serum albumin {Sheron et al 1993}. Similar results have been shown in another study
which reported higher mortality rates in patients with alcoholic diseases (hepatitis,
cirrhosis and fatty changes) with IL-8 concentration more than 479pg/ml {Huang et al

1996}. High CXC chemokine concentrations persisted until death of the non-survivor

group, but declined towards the recovery in the survivors {Fujimoto et al 2000}.
Increased hepatic expression of chemokines has also been reported in a variety of liver
diseases. The increased circulating chemokine concentrations reported in patients with
liver disease may therefore induce neutrophil CXC receptor down-regulation and hence

impair neutrophil chemotaxis.

Before testing this hypothesis, and in common with previous studies (Forrest etal 1996),
we also sought to measure chemokine-induced Cytosolic Ca++ influx; an important step

in intracellular signalling mechanism in neutrophil activation and chemotaxis was

investigated. FURA-2AM (Sigma-Aldrich Company LTD.) was used to load neutrophils
in order to test fluorescence using the Knotron SFM 25 spectroflurimeter. Fluorescence
was measured before and after stimulation with chemokines IL-8. Unfortunately, the
maximum fluorescence {using 0.8% Triton X-100 (Sigma-Aldrich Company LTD.)}
showed similar or lower Ca concentration to minimal fluorescence {using 10 mmol/1
EDTA and 30 mmol/1 TRIS buffer}. We changed the culture media used, check cell

viability, increased the FURA concentration, took serial readings and tried different type

of cells such as monocytes (using chemokine MUM a as a stimulant). Later, we pre-

chilled the cells at 4°C to prevent dye sequestration, added probenecid to avoid dye

leakage from the cells, added cacium chloride solution before the maximum
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fluorescence reading and Pluronic-F127 to improve dye loading. Unfortunately, none of
these manipulations gave consistent meaningful results for calcium flux and so this

technique was abandoned and future studies focused on changes in chemotaxis and other

hypothesis of chelokine receptor down-regulation in Chapter 7.
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5.1 INTRODUCTION

In the previous chapter the presence of a circulatory inhibitor of neutrophil chemotaxis
was implicated in the chemotactic defect identified in patients with acute and chronic
liver failure. Previous studies have shown increased circulatory EL-8 in patients with
severe alcoholic hepatitis {Sheron, 1993} as well as in patients with chronic alcoholic
liver cirrhosis and alcoholic hepatitis {Huang et al 1996}. In this chapter serum

concentrations of IL-8 were measured. In addition the relation with disease severity was

investigated. The circulating concentrations of the CXCR3 ligands, MIGand IP 10, were

also measured.

5.2 SUBJECTS

These studies included 55 patients with paracetamol-induced acute liver failure, 28

patients with chronic alcoholic liver disease, and 10 healthy laboratory staff as controls.
The patients and controls characteristics are shown in Table 5.1.

5.3 METHODS

5.3.1 Serum isolation

Peripheral venous blood was collected from patients and controls and serum prepared as

described previously. Serum was stored at-70°C prior to assay.

5.3.2 Serum CXC chemokine concentrations

A modified double-ligand enzyme linked immunosorbent assay was used to measure

serum CXC chemokine concentrations {Koch et al 1995Elner et al 1998}. Briefly,

Paisley flat-bottom 96 well microplates (Nunc immuno-plate I 96-F, Kamstrup,

Denmark) were coated with 50 pi of polyclonal rabbit anti IL-8, IP-10, or Mig

antibodies (lng/pl in 0.6 mmol/L ofNaCL, 0.26 mmol/L ofHsBCL, and 0.08 NaOH; pH

9.6) for 24 hours at 4°C, followed by washing with PBS. Polyclonal anti-human IL-8,

IP-10, and Mig were produced by immunization of rabbits with rIL-8, IP-10, or Mig
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with fetal calfalbumin (FCA). These antibodies did not cross-react with cytokines TNF-

a, IL-1, IL-2, IL-4, IL-6, or IFN-y. In addition, the antibodies did not cross-react with

either CXC chemokines such as Gro-a, -B, -y, neutrophil activating peptide-2 (NAP-2),
or granulocyte chemotactic protein-2 (GCP-2), or CC chemokines such as monocyte

chemoattractant protein-1 (MIP)-l, -2, -3, or macrophage inflammatory protein-1 (MIP-

l)-a and -p.
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Table 5.1; Patient characteristics presented as mean ±SE]V .

POD ALD Controls

Age: (yr) 36 ± 1.9 58.7 ±2 36 ±2.2

Number: 55 28 10

Sex: F:M 24:31 10:18 2:8

Child-Pugh score 8.3 ± 0.4 -

Child grade A:B:C 9:6:13 -

Serum bilirubin:

(lomol.L" )
134 ± 18 132 ±32 -

Serum albumin:

(S-L-1)
37 ±0.8 32 ±1.8 "

Prothrombin time:

(s)
54.3 ±4 15.1 ±1.3 -

Blood urea:

(mmol.L" )
23.6 ±15 6.5 ±1 -

Serum creatinine:

(jumol.L"1)
214 ±28 104.3 ±9.8 -

POD=Paracetamol overdose.
ALD= alcoholic liver disease.
M- Male. F= Female.
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Non-specific binding was blocked with 2 % bovine serum albumin in PBS and incubated
for 1 hour at 37°C. After washing 3 times with PBS, samples were added in duplicates

(50 pi /well), and incubated for further 1 hour at 37°C. After 3 washings, 50 pl/well of

biotinylated polyclonal rabbit anti-chemokine antibodies (3.5 ng/pl in PBS at pH 7.5;
0.05% Tween 20; 2% fetal calf serum) were added, and the plates incubated for 45

minutes at 37°C. After washing, streptavidin-peroxidase conjugate (Bio-Rad labs,

Richmond, California) was added and incubated for further 30 minutes at 37°C. The
colour was developed with chromogen substrate (Bio-Rad labs.) and the reaction
terminated with 50 pl/well of 3 mmol/1 of H2SO4 solution / well. Plates were read at 490

nm in an ELISA reader. Standards were 0.5-log dilutions of recombinant LL-8,1P-10, or

Mig (R&D systems, Minneapolis, Minnesota) from lOOng to 1 pg/ml (50 pi /well). The

ELISA consistently detected chemokine concentrations > 30pg/ml.

5.3.3 Statistical tests

Initial statistical testing showed the data to be normally distributed. Statistical analysis
was therefore performed using a one-way analysis of variance (ANOVA) and Student's
t- test. Correlation coefficients were determined using a Pearson's correlation test.

5.4 RESULTS

5.4.1 Patients with acute liver failure

Serum chemokine concentrations were significantly higher in patients (1L-8 51.2 ± 7.6

pg/ml, IP-10 0.55 ±0.19 ng/ml, and Mig 2.29 ± 0.3, mean ± SEM, n=55) compared with

controls (3 ± 3 pg/ml, 0.04 ± 0.04 ng/ml, 0.2 ±0.1, n=10,/? = 0.0001, 0.01. and 0.0001

respectively, Figure 5.1).
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5.4.1.1 Relationship with disease severity

The patients were subdivided into survivors or patients who either died or were

transplanted (Tx). Serum IL-8 was higher in patients who died or were transplanted

(95.9 ± 16.2 pg/ml, n=15) compared with those who survived (34.5 ± 7 pg/ml, n=40,p<

0.0001). However, there was no significant difference in serum 1P-10 or Mig between

patients who died or were transplanted (IP-10; 0.61 ± 0.19, MIG; 3.2 ± 0.9 ng/ml) and

those who survived (IP-10; 0.52 ± 0.3 MIG; 1.9 ± 0.3 ng/ml, p < 0.8 and 0.1

respectively, Figure 5.2).

As an alternative marker of severity of the acute liver failure patients were subdivided
into those without hepatic encephalopathy (but with severe liver injury), those with

grade 1 or 2 encephalopathy, and those with grade 3 or 4 encephalopathy. Serum

chemokine concentrations were significantly higher in patients with encephalopathy

grades 3 or 4 (IL-8; 92.2 ± 25.3, IP-10; 1.8 ± 1.02, MIG; 3.4 ± 1.01, n=9) compared with

patients without encephalopathy (IL-8; 33.4 ± 7.3, IP-10; 0.2 ± 0.06, MIG; 1.8 ± 0.3,
n=30,p < 0.004, 0.006, and 0.04 respectively). There was no significant difference in

serum chemokines between patients with grades 1 or 2 (IL-8; 63.5 ± 15.6, IP-10; 0.4 ±

0.2, MIG; 2.7 ± 0.8, n=15) and patients without encephalopathy {p = 0.05, 0.3, and 0.2

respectively) or patients with encephalopathy grades 3 or 4 (p = 0.3, 0.1, and 0.6

respectively, Figure 5.3). Both serum EL-8 and IP-10 concentrations were correlated

significantly with progression of encephalopathy grade from grade 0 to grades 3 and 4 (p
<0.01 for both), with no significant correlation as regard serum MIG (p < 0.2).
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Figure 5.1: Individual and mean (bar) serum (A) IL-8, (B) IP-10, and (C) Mig
concentrations in patients with POD-induced acute hepatic failure versus controls.

116



Chapter 5: Serum chemokine concentrations.
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Figure 5.2: Individual and mean (bar) serum (A) IL-8, (B) EP-10, and (C) Mig
concentrations in both dead/transplanted versus lived patients with POD-induced
fulminant hepatic failure.
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Figure 5.3: Individual and mean (bar) serum (A) IL-8, (B) IP-10, and (C) Mig
concentrations in patients with POD-induced fulminant hepatic failure with no

encephalopathy as (grade 0), grade 1/2 and grade 3/4 encephalopathy.
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5.4.1.2 Correlation with biochemical markers

Serum IL-8 was significantly correlated with bilirubin (r = 0.2, p = 0.01), and was

inversely correlated with serum y-glutamyl transferase concentrations (r = -0.2, p = 0.04,

Figure 5.4). Serum IL-8 was also significantly correlated with prothrombin time (r = 0.3,

p = 0.001, Figure 5.4), other chemokines (IP-10 r = 0.2, p = 0.04 and Mig r = 0.3, p =

0.002, Figure 5.5), and with total white blood count (r = 0.3, p — 0.0003, Figure 5.6).
Serum IP- 10 and Mig were correlated significantly with serum bilirubin concentration

(r = 0.3, p = 0.03 and r= 0.2, p = 0.01 respectively, Figure 5.7).

Paracetamol poisoning can induce a severe metabolic acidosis, which has prognostic

significance. We subdivided the patients into those with low or normal serum

bicarbonate (i.e. normal range, 21-28 mmol/L). However, there was no significant
difference in serum chemokine concentrations between patients with normal range of

serum bicarbonate (IL-8; 61.1 ± 11.8 pg/ml, IP-10; 0.78 ± 0.39 ng/ml, MIG; 1.8 ± 0.3

ng/ml, n=27) and those with low serum bicarbonate (41.8 ± 9.6 pg/ml, 0.34 ± 0.01

ng/ml, and 2.7 ± 0.5, n=28, respectively, p = 0.2 for all chemokines). No significant
correlations were detected between serum chemokines and bicarbonate concentrations,

or other biochemical parameters such as serum albumin, amino transferases and alkaline

phosphate.

In POD, renal failure also has prognostic significance. A serum creatinine greater than
300 pmol/L in the presence of other clinical and biochemical features is associated with

mortality of more than 90%. Serum IL-8 level was significantly higher in patients who

needed renal support (97.8 ±16.1 pg/ml, n=15) compared with those who did not (33.8
± 6.9 pg/ml, n=40, p = 0.002, Figure 5.8). However, there was no difference in serum

IP-10 or Mig concentration between patients who needed renal support (0.96 ± 0.7 and

2.8 ± 0.4 ng/ml) and those who did not (0.4 ± 0.1 and 2.3 ± 0.4 ng/ml,/? = 0.2, and 0.3

respectively). There was also no correlation between serum chemokines and urea or

creatinine concentrations.
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As sepsis is a frequent complication in patients with acute liver failure, we subdivided

patients depending on whether sepsis complicated their clinical condition. Serum IL-8

and HMO concentrations were significantly higher in patients with subsequent sepsis

(64.3 ± 12 pg/ml and 0.84 ± 0.36 ng/ml, n = 30) compared with those patients without

sepsis (35.6 ± 7.6 pg/ml and 0.22 ± 0.07 ng/ml, n = 25, respectively,/? = 0.02 for both

chemokines). No significant difference was detected as regard Mig (sepsis 2.5 ± 0.5, no

sepsis 2 ± 0.3 ng/ml,/? = 0.2, Figure 5.9).
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Serum bilirubin (micromol/L)

Serum gamma glutamyl transferase (IU/L)

Prothrombin time (second)

Figure 5.4: Correlations between serum IL-8 and biochemical parameters (bilirubin and
y-glutamyl transferase), and prothrombin time.
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Serum IL-8 (pg/ml)

Serum IL-8 (pg/ml)

Serum Mig (ng/ml)

Figure 5.5: Correlations between serum chemokine concentrations.
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Serum IL-8 (pg/ml)

Figure 5.6: Correlation between serum IL-8 concentration
and total white blood count.

Serum IP-10 (ng/ml)

Serum Mig (ng/ml)

Figure 5.7: Correlations between serum IP-10, Mig, and bilirubin concentrations.
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Figure 5.8: Individual and mean (bar) serum (A) IL-8, (B) IP-10, and (C) Mig
concentrations in patients with POD-induced fulminant hepatic failure with and without
renal support.

124



Chapter 5: Serum chemokine concentrations.

Figure 5.9: Individual and mean (bar) serum (A) IL-8, (B) IP-10, and (C) Mig
concentrations in patients with POD-induced fulminant hepatic failure with and without
sepsis.
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5.4.2 Patients with chronic alcoholic liver disease

Serum IL-8 and Mig concentrations were significantly higher in patients (1L-8; 157.5 ±

20.7 pg/ml, MIG; 1.27 ± 0.4, mean ± SEM, n=28) compared with controls (IL-8; 3 ± 3

pg/ml, MIG; 0.17 ± 0.1, n=10, p < 0.0001 for both chemokines, Figure 5.10). There was

no significant difference in serum IP-10 between patients (0.04 ± 0.03 ng/ml) and

controls (0.04 ± 0.04 ng/ml,/? = 0.2, Figure 5.10).

5.4.2.1 Relationship with disease severity

The severity of chronic liver disease is estimated by calculating the Child-Pugh score.

Because prognostically the most important difference is between Child-Pugh A and

Child-Pugh B, we subdivided patients into Childs A and Childs B/C groups. Serum
chemokine concentrations were higher in patients with Childs B/C cirrhosis (IL-8; 214.2
± 26 pg/ml, IP-10; 0.06 ± 0.05 ng/ml, MIG; 1.58 ± 0.58 ng/ml, n = 19) compared with

patients with Childs A cirrhosis (37.8 ± 20.7 pg/ml, 0.0 ± 0.0, 0.6 ± 0.2 ng/ml, n = 9,p <

0.04, 0.0001, 0.0001 respectively, Figure 5.11).

There were no significant differences in serum chemokine concentrations between

patients who had ascites (IL-8; 183 ± 25 pg/ml, IP-10; 0.09 ± 0.07 ng/ml, MIG; 1.55 ±

0.79 ng/ml, n = 1 5), encephalopathy (IL-8; 186 ±41 pg/ml, IP-10; 0.1 ±0.1 ng/ml, MIG;

2.0 ±1.0 ng/ml, n= 11), or sepsis (IL-8; 170 ±31 pg/ml, IP-10; 0.08 ± 0.08 ng/ml, MIG;

1.67 ±1.0 ng/ml, n = 1 1) and patients who did not have ascites (IL-8; 135 ± 40 pg/ml,

IP-10; 0.0 ± 0.0 ng/ml, MIG; 1.0 ± 0.24 ng/ml, n = 13), encephalopathy (IL-8; 246 ± 41

pg/ml, IP-10; 0.0 ± 0.0 ng/ml, MIG; 1.1 ± 0.2 ng/ml, n = 17), or sepsis (IL-8; 151 ±35

pg/ml, LP-IO; 0.02 ± 0.02 ng/ml, MIG; 1.05 ± 0.2 ng/ml, n = 17).

According to the outcome ofpatients, we divided patients into those who died and those
who survived. There were no significant differences in serum chemokines between

patients who died (IL-8; 124.3 ± 36 pg/ml, IP-10; 0.12 ± 0.12 ng/ml, MIG; 1.89 ± 1.49

126



Chapter 5: Serum chemokine concentrations.

ng/ml, n = 7) and patients who survived (IL-8; 169 ± 30 pg/ml, IP-10; 0.01 ± 0.01 ng/ml,

MIG; 1.07 + 0.19 ng/ml, n = 21 ,p = 0.4, 0.4, and 0.6 respectively, Figure 5.12).

5.4.2.2 Correlation with biochemical markers

There were no significant correlations between serum chemokines and any biochemical
markers such as serum bilirubin, amino transferases, albumin, urea, creatinine, or

prothrombin time.

127



Chapter 5: Serum chemokine concentrations.

(A)

&
E 0.3

I

(Q

Figure 5.10: Individual and mean (bar) serum (A) IL-8, (B) HMO, and (C) Mig
concentrations in patients with alcoholic liver cirrhosis versus controls.
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Figure 5.11: Individual and mean (bar) serum (A) IL-8, (B) IP-10, and (C) Mig
concentrations in patients with alcoholic liver cirrhosis according to Child grade.
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r

Figure 5.12: Individual and mean (bar) serum (A) DL-8, (B) HMO, and (C) Mig
concentrations in patients with alcoholic liver cirrhosis according to the outcome.
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5.5 DISCUSSION

In this chapter serum CXC chemokine IL-8, IP-10, and MIG concentrations were

measured in patients with acute and chronic liver failure, and controls using an "in-
house" ELISA technique. Subgroup analysis was performed to determine the effect of

severity of liver disease on these chemokine concentrations. Serum concentrations oflL-
8, IP-10, and MIG were significantly higher in patients with POD-induced acute liver
failure compared with healthy controls. The three chemokines were significantly
elevated in patients with advanced encephalopathy (grade III or IV) compared with

patients with no (grade 0) or early encephalopathy (grade I or II). Only serum IL-8 was

significantly higher in patients who died or were transplanted compared with those who
survived. All of the three chemokines showed a significant correlation with serum

bilirubin concentration. Only serum IL-8 concentration was significantly correlated with
other markers of disease severity such as prothrombin time and those patients that

required renal support.

In patients with chronic liver failure studies only serum IL-8 and MIG were significantly

higher in patients compared with healthy controls. However, all chemokines measured
were significantly higher in patients with advanced chronic liver disease (Child grade B
and C) compared with patients with less severe or relatively early chronic liver disease

(Child grade A). In chronic liver failure there were no correlations between serum

chemokines and the other biochemical markers such as bilirubin, amino transferases, and

albumin concentrations or urea and creatinine.

These data confirm and expand previous reports of elevated circulating chemokine
concentrations in patients with liver disease. Most studies have measured circulating
concentrations of chemokines in patients with chronic liver failure. A single study has

reported high plasma IL-8 concentration in patients with fulminant hepatic failure, but
the association with disease severity was not explored (Sheron et al 1993}. In contrast,

several studies have measured circulating IL-8 and other chemokine concentrations in
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peripheral blood in patients with alcoholic hepatitis and chronic liver diseases. In
alcoholic hepatitis both circulating and hepatic IL-8 concentrations were correlated with
the degree of neutrophil infiltration and it was suggested that the local production of IL-
8 directed the neutrophil infiltration of the liver in such cases {Sheron et al 1993}.
Increased circulating CC chemokine concentrations have also been reported in patients
with alcoholic liver disease and increased hepatic production may direct the monocytic
infiltration also observed in this disorder {Fisher etal 1999}.

The results relating circulating IL-8 concentrations in patients with acute liver failure
with markers of disease severity are reminiscent of the relationships reported in patients

with severe alcoholic hepatitis. Concentrations of circulating chemokines, such as IL-8

and Gro-a, were correlated with biochemical markers of disease severity, such as

bilirubin, prothrombin ratio and white blood cell count (WBC) in patients with alcoholic

hepatitis and levels were higher in those who died compared with survivors {Sheron et

al 1993 and Maltby et al 1996}. In acute liver failure the three chemokines measured
were significantly higher in patients with hepatic encephalopathy grades 3 or 4

compared with patients without encephalopathy. However, only the IL-8 concentration
was related to other markers of disease severity such as prothrombin time and need for
renal support. IL-8 was also significantly higher in patients who died or were

transplanted compared with survivors. This relationship between circulating IL-8 and

prognosis is not easy to explain. Many patients with severe alcoholic hepatitis or acute

liver failure die from infection. It is interesting to speculate that the increased IL-8

concentrations are associated with more severe immunocompromise and hence greater

risk of infection. Serum IL-8, IP-10 and Mig concentrations were significantly higher in

patients with Child grades C compared with less severe chronic liver failure groups.

Others have also reported a positive correlation between serum IL-8 concentrations and
markers of severe disease in patients with chronic liver disease {Huang etal 1996}.

The source of the elevated circulating chemokine concentrations reported in this chapter
remains to be defined. Increased blood levels may reflect increased hepatic production
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or defective clearance of these chemokines by the injured liver. Previous studies have
also reported high concentrations of proinflammatory cytokines such as TNF-a and IL-1

{Bird et al 1990 and Khoruts et al 1991} in such patients. These proinflammatory

cytokines are major stimulants of chemokine synthesis in a wide variety of cell types

and therefore extra-hepatic chemokine production may also have a role in the elevated

circulating chemokine concentration observed. Because neutrophils are able to produce

1L-8, IP-10 and MIG, activated neutrophils may also contribute to the elevated

circulating chemokine concentration.

Although CXCR3 ligands, such as EP-10 and MIG can inhibit the biological effects of
the ELR-positive CXC chemokines, neutrophils have not been reported to express

CXCR3. However, increased circulating IL-8 concentrations may lead to down-

regulation of the neutrophil chemokine receptor expression of CXCR1 and CXCR2.

Having confirmed the elevated circulating IL-8 in the patient populations studied

throughout this thesis, this hypothesis was studied further in the subsequent chapters.
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CHAPTER 6

TRANSHEPATIC NEUTROPHIL CHEMOTAXIS

AND CHEMOKINE CONCENTRATIONS
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6.1 INTRODUCTION

The liver is an important organ of synthesis as well as clearance of several cytokines and
chemokines {Tilg et al 1992}. These inflammatory mediators may induce liver injury
either directly or by stimulating liver infiltration with inflammatory cells, such as in
alcoholic hepatitis {Shiratori et al 1989}. The CXC chemokine 1L-8 is a potent stimulant
of neutrophil recruitment and activation. Some studies found very high levels of IL-8

(Sheron et al 1993} and Gro-a {Maltby et al 1996} in both serum and liver tissue in

patients with alcoholic hepatitis. Moderate elevation of these chemokines were also
detected in other alcohol related liver diseases such as cirrhosis and fatty liver, with less
marked elevation in non alcoholic liver disease such as chronic active hepatitis {Sheron
et al 1993}. These chemokine levels were correlated with markers of disease severity and
were higher in non-survivors and in patients with hepatic encephalopathy. In addition to

neutrophil infiltration of the liver, peripheral neutrophilia was also detected in such

patients in the absence of any detectable infection {Bird et al 1990}.

Reported in the previous chapters of this thesis were the findings that neutrophil
chemotaxis is reduced in patients with either acute or chronic liver failure and that serum

IL-8, IP-10, and Mig concentrations are increased in such patients. The cross over studies

suggested an inhibitory factor for chemotaxis in serum of these patients, possibly related
to the increased chemokine concentration itself. These studies in this chapter investigate
the transhepatic differences in neutrophil chemotaxis and in the concentrations of serum

IL-8, IP-10, and Mig. A cross over study was also performed to test whether the liver

may produce a chemotactic inhibitory factor.

6.2 SUBJECTS

Neutrophil chemotaxis and plasma ammonia concentration were measured in 15 patients
with chronic alcoholic liver disease (12 males and 3 females, mean age 48.2 years (SEM

3.4)). The patients' characteristics are shown in table 6.1. The study also included 12

healthy individuals (8 males and 4 females, mean age 37 (SEM 2.2)) as controls.
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Table 6.1: Patients characteristics presented as mean ± SEM.
Child score Urea Creatinine Bilirubin ALT Albumin PT

8.810.5 510.8 70.518.1 101122 63.515 3111.3 16.311.1

ALT= Alanine transferase.
PT= Prothrombin time.
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6.3 METHODS

6.3.1 Neutrophil chemotaxis

Transjugular Intrahepatic Porto Systemic Shunt (TIPSS) is currently a treatment modality ^
used following failure of endoscopic treatment of bleeding oesophageal varices in

patients with chronic liver failure. TIPSS check is a follow up scheme to test the patency

of the shunt and pressure gradients across the shunt {Gatta et al 1999}. This procedure
was our access for blood sampling from the portal vein. Hepatic venous blood was

sampled from a hepatic vein radical separate from that to which the TIPSS was draining.
This was done to avoid sampling of a mixture of portal and hepatic venous blood.

Neutrophils were isolated from portal, hepatic and peripheral veins dunng TIPSS check
and chemotaxis stimulated by IL-8 measured as described in Chapter 2.

6.3.2 CXC chemokine assay

Serum was recovered from portal and hepatic venous samples as described in Chapter 4
for chemokine assays of IL-8, IP-10, and Mig by ELISA as described in chapter 5.

6.3.3 Cross over neutrophil chemotaxis

A 0.5 ml of portal and hepatic neutrophil suspension (2xl06 cell/ml) was incubated with
20 pi of hepatic and portal serum respectively, for 30 minutes at 37°C. Then the

neutrophils were washed and resuspended in PBS before measuring chemotaxis.

5.3.3 Statistical tests

Initial statistical testing showed the data to be normally distributed. Statistical analysis
was therefore performed using Student's t- test. Correlation coefficients were determined

using a Pearson's correlation test.
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6.4 RESULTS

6.4.1 Neutrophil chemotaxis

Chemotaxis of neutrophils isolated from portal venous blood (21.8 ± 2.5 neutrophils /

high power field, mean ± SEM, n=15) was similar to chemotaxis of neutrophils isolated
from peripheral venous blood (19.1 ± 2, n=15). However, chemotaxis of hepatic venous

neutrophils was significantly reduced (2.7 ± 0.8, n=15, p < 0.0001) compared with

peripheral or portal venous neutrophils. Chemotaxis ofneutrophils prepared from patients

hepatic, portal, or peripheral veins were significantly reduced compared with neutrophils

prepared from controls peripheral venous blood (48.7 ± 1.4, Figure 6.1).

6.4.2 Chemokine assay

1L-8 and Mig concentrations from serum prepared from hepatic venous blood (IL-8; 310

±35 pg/ml, Mig; 3.1 ±0.8 ng/ml, mean ± SEM, n=4) were significantly higher compared
with serum prepared from portal venous blood (IL-8; 130 ± 53 pg/ml, MIG; 0.7 ± 0.2,

n=4, p < 0.02 and 0.03 respectively). No significant change in IP-10 concentrations in
serum prepared from hepatic venous blood (0.07 ± 0.07 ng/1, n=4) compared with
undetectable levels in portal venous blood (p = 0.2). Figure 6.2 shows the local changes
in serum chemokine concentrations.

6.4.3 Cross over neutrophil chemotaxis

Incubation of portal venous neutrophils with serum isolated from hepatic venous blood

significantly reduced IL-8-stimulated chemotaxis (before incubation 29.2 ± 2.7, after

incubation 6.3 ± 1.6 neutrophils/high power field, mean ± SEM, n = 6,p< 0.0001, Figure

6.3). In contrast, a significant but partial improvement in hepatic venous neutrophil
chemotaxis occurred following incubation with portal venous serum (before incubation
2.8 ± 1.0, after incubation 23 ± 3.9 neutrophils/high power field, p < 0.0001).
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Figure 6.1: Mean neutrophil chemotaxis to 10 ng/ml of IL-8 in portal, hepatic and
peripheral veins in patients with alcoholic liver cirrhosis during TIPSS check and
controls.
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Figure 6.2: Individual and mean serum DL-8 (A), EP-10 (B), and Mig concentrations in
hepatic and portal venous blood in patients with alcoholic liver cirrhosis.
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t

Figure 6.3: Individual and mean neutrophil chemotaxis stimulated with EL-8 (lOng/ml) in
portal and hepatic veins of patients with alcoholic liver cirrhosis before and after cross
over incubation (PVN= portal venous neutrophils, HVS= hepatic venous sera, HVN=
hepatic venous neutrophils, PVS= portal venous sera).
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6.5 DISCUSSION

In this chapter we measured transhepatic differences in neutrophil chemotaxis and
chemokine concentrations in patients with chronic liver failure. The results clearly
showed a significant reduction in the chemotaxis ofhepatic venous neutrophils compared
with portal venous neutrophils of patients with alcoholic liver cirrhosis. Although the
numbers were small, a significantly higher concentration of EL-8 and Mig were found in

hepatic compared with portal venous blood. A cross over study was also performed;
chemotaxis of portal neutrophils was reduced following incubation of neutrophils with

hepatic venous serum, and vice versa.

The liver is not only an important organ of synthesis of cytokines but also an important
site for clearance of several cytokines {Tilg et al 1992}. However, local or transhepatic

changes in neutrophil chemotaxis and chemokine concentrations in patients with liver
failure are unknown. In liver diseases the hepatocytes and other cellular components of
the liver such as kupffer cells are the main source of liver cytokines and chemokines,

perhaps in response to endotoxaemia and high level of Tumour necrosis factor- (TNF)-a
that occurs in such patients {Thornton et al 1990}. In animal studies, the activity of

hepatic macrophages in producing cytokines is markedly increased when exposed to

endotoxin {Crofton et al 1978 and Greig et al 1989}. A previous study measured

transhepatic levels of TNF-a, EL-6 and endotoxin (ET) in the portal and hepatic veins
after hepatic reperfusion in 13 consecutive patients who underwent orthotopic liver

transplantation {Steininger et al 1994}. This study showed that the viability of the graft
was closely related to transhepatic TNF-a concentrations. Patients with primary non¬

function or dysfunction had a significantly higher hepatic venous concentration ofTNF-a

compared with portal venous concentration, with completely undetectable difference in

patients with good graft function. The local changes of IL-6, EL-8 and IL-1 receptor

antagonist concentrations were studied in hepatic, portal veins, and radial artery after
liver resection in 13 patients {Ueda et al 2000}. All of the studied cytokines were

significantly higher during the surgery. The levels of IL-8 and IL-1 receptor antagonist
were significantly higher in hepatic vein than the artery, but IL-6 level was lower in
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hepatic than radial artery or portal vein. These results regarding a higher IL-8
concentration in hepatic versus portal blood are similar to those reported in this chapter.

Previously, transhepatic MCP-1 concentrations were studied using TIPSS shunts as t

described in this chapter {Fisher et al 1999}. In this study, a significantly higher MCP-1
concentration was observed in hepatic veins compared with peripheral or portal vein,

suggesting local hepatic synthesis of this chemokine. Our results are similar in regard to

IL-8 and Mig. It is interesting to speculate that the reduced chemotaxis in hepatic venous

neutrophils compared with portal venous neutrophils is secondary to the differential
chemokine concentrations across the liver. Alternatively, exposure to increased hepatic
chemokine concentrations as the neutrophils traverse the liver may limit their chemotaxis.

This Chapter describes the differences in neutrophil chemotaxis and chemokine
concentrations across the liver. Neutrophil chemotaxis was reduced in hepatic versus

portal veins with higher concentrations of chemokines in the former. The mechanism of
this reduction in neutrophil chemotaxis may be secondary to down-regulation of

neutrophil CXC chemokine receptors and this hypothesis is examined further in the

following Chapter.
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7.1 INTRODUCTION

Chemokines bind to and activate cell surface expressed receptors in order to induce their

biological actions. Neutrophils express two CXC chemokine receptor types, CXCR1 and
CXCR2. Both receptors share 77% amino acid homology and their genes are co-

localised on chromosome 2q35 {Ahuja et al 1992}. CXCR1 and CXCR2 are members
of the G protein-coupled receptor (GPCR) superfamily, with seven transmembrane
domains. Although IL-8 and Gro-a are ELR+ve chemokines, their receptor binding

capacities are different {Ludwig et al 1997}. Both CXCR1 and CXCR2 have been

reported to bind IL-8 with high affinity {Jones et al 1995}. While CXCR1 binds Gro-a
with low affinity, CXCR2 is reported to bind it with high affinity {Lee et al 1992}.

The regulatory mechanisms determining cellular expression of the CXC chemokine

receptors are numerous. More than 90% of IL-8-receptor complex are endocytosed
within 10 minutes of binding {Samanta et al 1990}. In vitro studies have reported

preferential loss of CXCR2 expression and function in response to IL-8, fMLP, and

TNL-a {Quaid et al 1999}. Pretreatment of neutrophils with TNL-a was also reported to

decrease CXCR2 receptor levels, which showed partial recovery at 120 minutes.

Alternatively, CXCR1 showed a sharp decline at 15 minutes and persisted up to 120

minutes {Jawa et al 1999}. All leukocyte subsets express the cell surface glycoprotein
CD45 that has intrinsic intracellular protein tyrosine phosphatase activity. In addition to

its regulatory role in activation-induced signalling in lymphocytes, it has been reported
to also act to modulate neutrophil responses to chemokines via up-regulation ofCXCRl
and CXCR2 receptors. CD45 inhibition with anti-CD45RB antibody (Brail) down-

regulate both receptor expressions up to 47% of their respective controls {Suria et al

1999}.

Like other members of the G protein-coupled receptor superfamily, the functions of
CXC receptors are determined by the phosphorylation state {Mueller et al 1997}.

Agonist administration enhances receptor phosphorylation by protein kinases, GPCR
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kinases and protein kinase C, which leads to desensitisation of the receptors {Aragay et

al 1998}. The phosphorylated receptor is then internalised through clathrin-coated pits
into endosomes and subsequently dephosphorylated by intracellular protein

phosphatases {Cheng et al 2000}. Such dephosphorylated receptors might be either

recycled via sorting endosomes back to the cell surface or transported to the lysosomes
for degradation {Chuntharapai and Kim 1995}. Therefore, chemokine binding to their

specific receptors leads to rapid internalisation of the ligand-receptor complex and

recycling or degradation of the receptors. Hence, increased chemokine concentrations

may induce desensitisation of these receptors via the process of down-regulation.

The previous chapters reported a reduction in neutrophil chemotaxis in patients with
either acute or chronic liver failure. The mechanism of this reduction may be related to

circulatory chemotaxis inhibitory factor/s, as indicated by the cross over studies.
Increased concentrations of serum CXC chemokines in these patients was also observed.
These high chemokine concentrations may explain the previously detected reduction in

neutrophil chemotaxis via desensitisation and down-regulation of the neutrophil CXC

receptor expressions. The experiments in this chapter were designed to investigate

neutrophil expression of the CXCR1 and CXCR2 chemokine receptors in patients with
either acute or chronic liver failure.

7.2 SUBJECTS

These studies included 7 patients with paracetamol-induced acute liver failure, 15

patients with chronic alcoholic liver disease, and 16 healthy laboratory staff served as

controls. The patients and controls characteristics are shown in Table 7.1.
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Table 7.1: Patient and controls characteristics presented as mean ±SEM.
POD ALD Controls

Age: (yr) 44 ± 4.9 51.3 ± 1.9 35 ±4.3

Sex: F:M 2:5 5:10 4:12

Child-Pugh score 8 ±0.5 -

Serum bilirubin:

(lamolL"1)
181 +70 129 ±33 -

Serum albumin:

(g.L4)
37 ±2.3 28.9 ± 1.9 -

Prothrombin time:

(s)
43.1 ± 15 17.7 ± 1.2 -

Blood urea:

(mmol.L"1)
8.1 ±1.9 6.9 ± 1 -

Serum creatinine:

(ia.mol.L~1)
174 ±33 86.7 ± 11 "

POD=Paracetctmol overdose.
ALD= alcoholic liver disease.
M= Male. F= Female.
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7.3 METHODS

7.3.1 Neutrophil isolation and chemotaxis

Neutrophils were isolated from patients and controls, and chemotaxis stimulated by IL-8

and Gro-a was measured as described in Chapter 2 (sections 2.3.1 and 2.3.3

respectively).

7.2.2 Neutrophil CXC chemokine receptor expression

50 pi of neutrophil suspension was added to 50pl of anti-CXCRl and CXCR2

monoclonal antibodies (BD Pharmingen, Oxford-UK), agitated for few seconds and
incubated at room temperature for 30 minutes. 1ml of PBS buffer was then added and

the cells then washed twice. 50pl of sheep anti-mouse FiTC labeled secondary antibody

was added (Sigma-Aldrich CO LTD, Dorset-UK) and the cells were incubated at room

temperature for 30 minutes and washed twice again. The cell pellet then resuspended in
lml of FACS fixative (1% formaldehyde in PBS). All samples were analysed by a

Coulter EPICS flow cytometry, and the mean fluorescence was detennined from

5,000 neutrophils after proper gating of the cells by forward and sideward scatter

parameters.

7.3.3 Statistical tests

As the initial statistical analysis showed that the data is normally distributed, neutrophil
chemotaxis and expression of CXCR1 and CXCR2 in patients and controls were

compared using Student's unpaired t-test with unequal variance. Correlation coefficients
were determined using Pearson's correlation test.
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7.4 RESULTS

7.4.1 Neutrophil chemotaxis

Neutrophil chemotaxis induced by EL-8 and Gro-a (lOng/ml) was significantly impaired
in patients with acute liver failure (IL-8; 17.9 ±1.7 neutrophils / high power field and

Gro; 1 6.6 ± 1.4, mean ± SEM, n = 7) and chronic liver failure (IL-8; 23 ± 2 and Gro; 24

± 1, n = 12) compared with controls (IL-8; 46 ± 1.6 and Gro; 46 ± 1.7, n = 8,p < 0.0001
for both chemokines).

7.4.2 Neutrophil CXCR1 and CXCR2 receptor expression

No significant change in neutrophil CXCR1 or CXCR2 expression (expressed as mean

fluorescence intensity) was observed in patients with acute liver failure (CXCR1 3.3 ±

0.26 arbitrary units, CXCR2 0.64 ± 0.07, mean ± SEM, n = 7) compared with controls

(3.6 ±0.15, 0.68 ± 0.03, n = 16,/?= 0.3 and 0.06, figure 7.1). No significant change in

CXCR1 or CXCR2 expression was also detected in patients with chronic liver failure

(3.2 ± 0.20, 0.65 ± 0.04, n = 15) compared with controls (p = 0.15 and 0.09 respectively,

figure 7.2). figures 7.3 and 7.4 show the flow charts of EACs analysis of neutrophil
CXCR1 and CXCR2 respectively, in patients with POD-induced acute liver failure,
chronic liver failure, and in the control subjects. No significant correlations were

detected between both neutrophil CXC chemokine receptor expression and chemotaxis

towards IL-8 or Gro-a (Pigures7.5 and 7.6).
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A

Figure 7.4: Flow cytometer chart of FACs analysis of neutrophil CXCR2 expression in
patients with POD-acute liver failure (A), chronic liver failure (B) and controls (C).
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Figure 7.5: Correlation between lL-8-induced neutrophil chemotaxis (number of
cell/high power field) and mean fluorescence ofneutrophil CXCR1 (A) and CXCR2 (B),
and Gro-a-induced neutrophil chemotaxis with mean fluorescence of CXCR2 (C) in
patients POD-induced acute liver failure.
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patients with alcoholic liver cirrhosis.
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7.5 DISCUSSION

In this chapter neutrophil chemotaxis and chemokine receptors CXCR1 and CXCR2

neutrophil expression in patients with POD-induced-acute liver failure and patients with
alcohol-induced chronic liver failure were compared with a group of healthy controls.
Both 1L-8- and Gro-stimulated neutrophil chemotaxis was reduced in patients with acute

or chronic liver failure compared with healthy controls. However, no significant
difference in expression of CXCR1 and CXCR2 was observed in patients with either
acute or chronic liver failure compared with healthy controls.

Previous studies showed a rapid intemalisation and degradation of the ligand-receptor

complex by lysosomal endocytosis following binding of IL-8 to its receptors.

Endocytosis of more than 90% of IL-8-receptor complex was detected within 10 minuets
of binding. But, a rapid receptor recycling, as indicated by re-expression on the cell
surface was also detected {Samanta et al 1990}. A previous study showed a dose

dependent down-regulation of CXC receptors following incubation of neutrophils with

increasing concentration oflL-8 or NAP-2 {Ludwig et al 1997}. In the studies reported
in this chapter the effect of high circulatory IL-8 concentrations may have been

diminishing with time during neutrophil isolation and preparation for FACs analysis.
This allows the neutrophils to recycle and re-express their surface receptors again back
to normal. However, the same neutrophils have reduced chemotaxis in response to IL-8
and Gro suggesting an alternative explanation.

Previous studies have shown that regulation of CXCR1 and CXCR2 expression is an

important mechanism for controlling neutrophil activation by chemokines. This

regulatory mechanism involves agonist-dependent down-regulation of these receptors in

response to chemokines {Khandaker et al 1998}. The carboxyl terminal domain of
CXCR1 and CXCR2 is important in IL-8-mediated receptor desensitisation, signalling,
and internalisation {Prado et al 1996}. Truncation of C-terminus of CXCR2 in
transfected 293 cells resulted in loss of IL-8-dependent migration {Ben-Baruch et al
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1995} and mutation of multiple serine residues limits ligand-induced receptor

desensitisation {Mulleretal 1997}.

Bacterial endotoxin or LPS is a major component of the outer most membrane of Gram-

negative bacteria {Lynn et al 1992}. Previous studies have shown high concentrations of
endotoxin in both systemic and portal circulations in patients with chronic liver failure

{Guarner et al 1993}. Such endotoxaemia results from increased translocation of gut-

derived endotoxin into the portal circulation. The reduction in the phagocytic function of
the reticuloendothelial system and portosystemic shunting of blood predisposes to

systemic endotoxaemia {Ziegler et al 1982 and Goulis et al 1999}. In case of sepsis,
LPS is able to induce down-regulation of CXCRs, rapid degradation of CXCR mRNA,
and inhibition of CXCR1 and CXCR2 transcription in PMNLs {Llyod et al 1995}. In
contrast with EL-8, the LPS-induced chemokine receptor down-regulation is independent
and distinct from agonist-mediated internalisation. IL-8 induces a uniform attenuation of
CXCR expression among the total neutrophil population compared with a non-uniform-
mediated down-regulation of the receptors induced by LPS. Recently, metalloproteases
have been found to be involved in the down-regulation of several receptors such as

CD 16 {Middelhoven et al 1994}, CD43 and CD44 {Bazil and Strominger 1994}. In

addition, it has been suggested that a Ca+" amino peptidase is also involved in the LPS-

mediated inhibition of IL-8 binding to its receptor {Bhattacharya et al 1997}, which may

be dependent on tyrosine kinase activity {Khandaker et al 1998}.

However, LPS can desensitise the receptors at receptor phosphorylation level distal to

the receptor/G protein interaction {Blackwood et al 1996 and Sabroe et al 1997}. LPS
can also deactivate neutrophil intracellular signalling pathways stimulated by
chemokines {Laffi et al 1993}. The protein kinase inhibitor staurospaurine inhibits
desensitisation of IL-8 receptors without affecting the number of binding sites or

receptor internalisation and therefore, desensitisation can occur independently of
reduction in receptor number and internalisation {Johnston et al 1994}. These
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mechanisms may explain the defective CXC chemokine stimulated chemotaxis in

patients with liver failure without affecting the CXC receptor expression.

A previous study reported that the neutrophil chemotactic defect was much greater than
the decline in cell surface receptors {Jawa et al 1999}. Another study suggested that in
addition to receptor down-regulation, other mechanisms might play a role in the

neutrophil chemotactic defect in similar diseases {Quaid et al 1999}. These possible
mechanisms include impaired chemokine receptor signal transduction due to defective

secondary messengers or defective ligand-receptor binding due to circulating inhibitory
factor/s or antibodies against CXC chemokines.
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Patients with acute or chronic liver failure are at increased risk of infection during the

course of their disease. Infection in such patients is frequently leads to complications

such as severe encephalopathy, upper gastrointestinal haemorrhage, and even death.

Neutrophil functions including chemotaxis are important components of the immune

system and body defense mechanisms against infection.

Previously, neutrophil chemotaxis was studied in liver diseases using several non¬

specific chemoattractant substances such as zymosan-activated plasma, immune

complexes-activated serum, and components of complement factors {DeMeo and
Andersen 1972, and Campbell et al 1981}. Subsequently the chemokine family ofpotent

neutrophil chemoattractants were described. This thesis details studies designed to

investigate if in patients with liver failure, neutrophil chemotaxis was also deficient to

chemokines.

Chapter 2 describes and optimises the methodology adapted to isolate neutrophils and

measure chemotaxis using the CXC chemokines IL-8 and Gro-a. Using the modified

Boyden chamber gave us satisfactory and reproducible results. Neutrophil chemotaxis
stimulated with serially diluted CXC chemokines showed a dose-dependent response as

expected, with similar chemotactic responses to IL-8 and Gro in the controls. The
chemotactic response to both chemokines showed little variability over a time period or

within the assay.

Chapter 3 studied both IL-8- and Gro-a-induced neutrophil chemotaxis in patients with

paracetamol-induced acute liver failure and patients with chronic liver failure, which
was found reduced in both groups of patients, compared with the control healthy

subjects. The reduction in neutrophil chemotaxis was more significant in patients with
chronic compared with acute liver failure. According to the aetiology, the greatest

reduction in chemotaxis was in the patients with alcoholic liver disease, followed by
chronic HCV cirrhosis, and paracetamol-induced acute liver failure. The least affected

group were patients with PBC. In POD-induced acute liver failure hepatic
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encephalopathy is considered as a marker of severity of the disease. However, no

significant change was detected in both IL-8- and Gro-a-induced neutrophil chemotaxis

in patients with or without encephalopathy. In chronic liver failure, the reduction in

neutrophil chemotaxis was significantly correlated with the disease severity as indicated

by the Child-Pugh score. These findings may explain the increased liability of patients
with acute and chronic liver failure to infection.

In chapter 4, we simulated the effect of upper gastrointestinal bleeding on IL-8-and Gro-

a-induced-neutrophil chemotaxis in patients with chronic alcoholic liver disease using a

tailor-made protein mixture that gives the same biochemical effect of blood when

ingested or present in the upper gastrointestinal tract. Both IL-8- and Gro-a-induced

neutrophil chemotaxis was significantly reduced 2 hours after oral administration of the
simulated bleeding solution and was associated with a significant rise in the plasma
ammonia concentration. However, no significant correlation between changes in

neutrophil chemotaxis and plasma ammonia concentration was detected. In the second

part of this chapter, cross over studies showed that incubation of neutrophils isolated
from patients with acute or chronic liver failure with controls' serum resulted in partial,
but significant improvement of neutrophil chemotaxis. In contrast, a significant

reduction in chemotaxis of controls neutrophils was observed following incubation with

patients' serum. These results indicated presence of chemotactic inhibitory factor/s

circulating in blood of patients with either acute or chronic liver failure and that the
defect in neutrophil chemotaxis is at least partially reversible. Also in vivo neutrophil
chemotaxis may change in a dynamic fashion following a common complication of

cirrhosis, namely variceal bleeding.

Chapter 5 studied serum IL-8, 1P-10, and Mig concentrations in patients with POD-

induced acute liver failure as well as patients with chronic liver failure. All the
chemokines studied were significantly high in concentration in patients with POD-
induced acute liver failure especially in patients with advanced encephalopathy (grades 3
or 4) compared with patients with mild or no encephalopathy and control subjects.
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Serum IL-8 and IP-10 concentrations were significantly higher in patients with sepsis
and only serum IL-8 was significantly high in patients who died or were transplanted
and in patients who needed renal support compared with survivors and patients did not

need renal support respectively. IL-8 was also significantly correlated with prothrombin
time and total white blood count. As regard patients with chronic liver failure, both
serum EL-8 and Mig concentrations were significantly high in patients compared with

controls, while serum IP-10 was undetectable. Serum chemokine concentrations were

significantly high in patients with advanced disease (Child grades B and C) compared
with milder form of the disease (grade A), with no other significant differences

according to presence or absence of ascites, encephalopathy, sepsis, or the patients'

outcome. There were also no significant correlations between serum chemokine
concentrations and biochemical markers of liver disease such as bilirubin, and albumin.

These studies may indicate either increased chemokine production by either the injured
liver or other extrahepatic cells or organs. Alternatively, defective clearance of these

proteins by the injured liver may occur.

Chapter 6 studied the possible variation in neutrophil chemotaxis and chemokine
concentrations across the liver during TIPSS check in patients with chronic liver disease.

Neutrophil chemotaxis was significantly reduced in hepatic compared with portal or

peripheral veins. IL-8 and Mig concentrations in hepatic venous blood were significantly

higher compared with portal venous blood. Moreover, incubation ofneutrophils isolated
from hepatic venous blood with serum isolated from portal venous blood resulted in

partial, but significant improvement in chemotaxis and vice versa. These results suggest

that the liver has an important inhibitory effect on neutrophil chemotaxis possibly as a

result of chemokine release by the injured liver.

In chapter 7 no significant changes in neutrophil expression of both CXC chemokine

receptors CXCR1 or CXCR2 in patients with either acute or chronic liver failure was

observed compared with controls. These findings suggest that other mechanisms
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independent of receptor expression lead to reduction in neutrophil chemotaxis in patients
with either acute or chronic liver failure.

In summary, this thesis has reported data that expands the current knowledge regarding

neutrophil chemotaxis in patients with acute and chronic liver failure. Defective CXC
chemokine stimulated neutrophil chemotaxis may explain the increased risk of infection
in such patients. In addition, the data confirm the presence of circulating chemotactic

inhibitory factor/s in patients with acute and chronic liver failure. The high circulating
chemokine concentrations may act themselves as inhibitors of chemotaxis. However,

CXC chemokine-induced down-regulation of the neutrophil CXCR1 or CXCR2 receptor

expression is not the explanation for the chemotactic defect. This will need further
studies to investigate the possible role of post-receptor signal transduction and kinase

systems, which may lead to such reduction in neutrophil chemotaxis. The in vivo studies
show that neutrophil chemotaxis may be regularly modulated, suggesting that alternative

strategies may improve the chemotactic defect in patients with liver failure.
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