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Abstract 

Two existing finite difference algorithms for solving the forward modelling prob-

lem of geo electromagnetic induction have been recoded to take advantage of high 

performance massively parallel SIMD (single instruction multiple data) computer 

architectures. Poll's[48] solves the two scalar polarised fields in the two dimen-

sional (2D) problem, and the other from Pu[51] solves for all three components 

of the magnetic field in three dimensional (3D) structures. Both models apply 

integral boundary conditions at the top and bottom of the grid to limit total 

mesh size. The 3D model introduces a thin sheet at the top of the model to 

describe near surface features. An efficient data parallel algorithm ensures the 

evaluation of the integrals maintains a high ratio of processor utilisation on the 

parallel hardware. Data parallel versions of the point Jacobian, Gauss-Seidel and 

successive overrelaxation iterative solvers have been developed. The latter two 

require two level black-white ordering, which to equalise the processor load bal-

ance, has been implemented it both a horizontally banded and chequer boarded 

remapping of grid nodes. 

The 2D model was also developed to form a task farm, whereby the solution 

for each period is performed on one of a cluster of workstations. These solutions 

are independent of each other, so are executed simultaneously on however many 

workstations are available at the time. 

Modern workstations, coupled with the original 2D Gauss-Jordan solver, are 

faster than the SIMD computers for all but the largest grid sizes. However, the 

3D code certainly benefited from the parallel processing for any but the smallest 

models. 

A new automatic meshing algorithm, which stretches a predefined number of 

grid points over the conductivity structure, has also been developed. In part, this 



was to control the mesh sizes and hence load balancing on the SIMD computers, 

but investigations into grid spacing for 2D models show that severely restricting 

the number of grid points results in a much faster estimated solution. 
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Chapter 1 

Introduction 

"Now here's the point, my friend. Electricity, radioactivity, atomic 

energy - the true initiate knows that these are metaphors, masks, con-

ventional lies, or, at most, pathetic surrogates, for an ancestral, for-

gotten force, a force the initiate seeks and one day will know. We 

should speak perhaps" - he hesitated a moment - "of telluric cur-

rents." 

"What?" one of us asked, I forget who. 

- Signor Agliè in Foucault's Pendulum by Umberto Eco, 1988. 

1. .1 Historical Review 

Although the Ancient Greeks recognised electricity, it is a Dane, Hans Christian 

Oersted (1777 - 1851). who is credited with the initial discovery of a link between 

electricity and magnetism in 1819. During a lecture, he placed a segment of 

conducting wire horizontally, and at right angles above a magnetic needle. Of 

course, nothing happened, and he continued the lecture without further thought 

on the result. However, while moving the apparatus at the end of the lecture, 

he noted, to his amazement, that if the wire was placed parallel to the needle, it 

would cause a 900  deflection in the needle. 

It was only two years later that Michael Faraday (1791 - 1867), in his famous 

Christmas Day experiment of 1821, built the first prototype of the electric motor. 

1 
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He continued his work, with the aim of finding a reciprocal link to Oersted's that 

show electric currents induced by magnetic fields. He built what is now known as 

an induction coil, and expected to find current induced in the secondary coil while 

current flowed in the primary. There was no such effect visible, but he noticed 

that whenever the current connection was made or broken, the galvanometer gave 

a slight kick. He quickly satisfied himself that this was the effect he was looking 

for, and became the father of electromagnetic induction. 

Faraday's Law states that an electric current will be induced in a conducting 

material in the presence of a time varying magnetic field, and that the magnitude 

of the current will be proportional to the rate of change of the magnetic field. 

The converse is also true, in that a time varying electric current will result in 

an associated magnetic field. This phenomenon is most commonly observed in 

the multitude of electrical transformers and motors which surround us in modern 

life. 

The same is also true on a global scale. The Earth has a finite, albeit inhomo-

geneous, electrical conductivity, and experiences a range of time varying magnetic 

fields. The electrical currents induced in the Earth are known as telluric cur-

rents. Schuster (1851 - 1934) was the first to separate the internal and external 

magnetic fields in 1889[57], and therefore the first to prove the existence of geo-

electromagnetic induction. Table 1.1 details some of the main natural sources of 

geomagnetic field variations, along with their characteristic time scales. 

Variation Time scale 
Main field reversals 106  Years 
Reversal events 105  Years 
Non-dipole field and secular variations 10 - 1000 Years 
Regular magnetic storm activity 0.5 - 4 Days 
Diurnal variations 24, 12, and 8 Hours 
Pulsations 0.2 - 600 Seconds 
Sferics 3 - 1 000 Hertz 

Table 1.1. Time scales of natural geomagnetic variations. 

The power spectrum of the main field reversals is not known, and since none 
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have occured in historical times, they are not used for induction studies, but for 

tracing the tectonic history of ocean floor, where they leave the basalt magnetised 

parallel to the field at the time of cooling. 

The non-dipole field and secular variations tell us more about the kinematics 

of the source of the main field, than the conductivity structure of the Earth. 

The long period of changes results in a very weak induced electric field, which 

combined with the difficulty of making accurate measurements of telluric currents 

over such long periods, means that they are not relevant for induction studies. 

The more frequent disturbances are all used as natural power sources for geo-

electromagnetic studies. As a rule of thumb, which will be shown mathematically 

later, the higher the frequency of the source, the finer the resolution and the 

shallower the penetration. Thus the diurnal variations allow global conductivity 

studies, and the high frequency spectra excited by thunder storms make excellent 

sources for regional magnetotelluric measurements. 

1.2 Basic Electromagnetic Theory 

James Clerk Maxwell (1831 - 1879) was a mathematician, unlike Faraday who 

confessed to an elementary understanding of mathematics. He preferred geomet-

rical rather than analytic methods of solution, and when he heard of Faraday's 

lines of force, the geometry attracted him and he began to put Faraday's ideas 

into a mathematical. form. His equations completely describing the interaction 

between electric and magnetic fields can be found in any elementary textbook on 

electromagnetism. In a linear, isotropic medium of uniform dielectric permittivity 

and magnetic permeability 1,t, they are, in S.I. units 

VE  

= o 	 (1.2) 

VxE = - aB 	 (1.3) 
at 

VxB = 	
OE 
	 (1.4) 
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where p is the electric charge volume density, not to be confused with the electrical 

resistivity which is denoted by p in the rest of this work. j is the electric current 

volume density, which in a source free medium of electrical conductivity a is 

j = aE. 	 (1.5) 

The most striking consequence of his equations is that changes in electric and 

magnetic fields can be propagated as waves, with a velocity the same as that 

which had been measured of light. He wrote 

"We can scarcely avoid the inference that light consists in the 

transverse undulations of the same medium which is the cause of elec-

tric and magnetic phenomena." 

thus being the first to recognise light as an electromagnetic wave. 

Taking the curl of (1.3) and substituting from (1.4) and (1.5) leads to 

32E 
(1.6) 

at 	at2 

Following the approach of Weaver[73], and introducing dimensionless coeffi-

cients vi = 1,taL2/T and '2 = MEL21T2  (L and T being characteristic length and 

time scales respectively), with 1' = 1/L, t' = t/T and V', the grad operator with 

respect to the dimensionless space variables, (1.6) can be written 

a2E 
(1.7) 

,9t, 	at12 

with the relative values of v1  and z2 determining the importance of each term. 

The dielectric permittivity, E, does not vary appreciably from that of free space 

for the vast majority of materials in the Earth, except that of water, which is 80 

times greater. The magnetic permeability, jt, only varies from that of free space 

in concentrated highly magnetic minerals, such as magnetite (5 times greater). 

Even in hematite it is only 5% greater[61]. The constants can therefore be taken 

to be their free space values, namely 

=eo= 8.85 x 1012  F/rn and p = 	= 4r x 10 H/rn 	(1.8) 
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where ,UE = 1/c2  (c is the velocity of light). It therefore follows that v2  = (L/cT)2  
and zi1/ii2 = ,uac2T. 

In the case of global studies, where L is of the order of 107  m, then v2  << 1 
for time variations of less than 3 Hz (v2  < 0.01). Taking L io in (10 km) for 

regional studies, the same is true for frequencies of less than 3 kHz. The electrical 

conductivity of rocks varies between 10-6  to iO S/rn, and 4 S/rn for sea water. 
Therefore, the ratio v1/v2  , will be much greater than one inside the Earth for 

frequencies less than 100 kHz. In the case of the air, where a = 0, and hence 

= 0, the first term will still dominate due to the fact that v2  is very much less 
than unity: 

The third term in (1.7) can therefore be dropped, which is equivalent to 

dropping the second term on the right hand side of (1.4), now written as 

VxB=jaE 
	

(1.9) 

where the definition of j, (1.5), has been incorporated. Taking the divergence of 

(1.9) and noting that V (V x A) = 0, it is shown that 

Vj=0. 	 (1.10) 

In regions of homogeneous conductivity, therefore, (1.1) can be written 

VE=0 

which shows that finite electrical charge densities can only exist in those geo-

electromagnetic conditions where there are spatial changes in conductivity. 

It is assumed that the sources share a common harmonic time dependence 

with angular frequency w so that the fields can be written 

E = E(x,y,z)ewJt 	 (1.12) 

B = B(x,y,z)e t . 	 (1.13) 

Using these harmonic properties dropping the third term, (1.6) can now be 

rewritten 
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V x (V x E) + iwpE = 0. 	 (1.14) 

The vector calculus identity V x (V x A) = V(V A) - V2 A, allows us to 

write (1.14) as 

V2 E + V[(Va) E/a] = iw1wE. 	 (1.15) 

In areas of constant conductivity, such as these inside our model cells, applying 

(1.11) leads to 

V2 E = iwuuE, 	 (1.16) 

the electrical diffusion equation. 

A similar approach for B leads to 

V 2B=iw1.tcrB, 	 (1.17) 

the magnetic diffusion equation. 

In his now classic paper of 1950, Price[50] analysed the general problem of a 

uniform half space excited by a known source field above it. 

1.2.1 Dimensionality 

This thesis is concerned with the numerical modelling of two and three-dimensional 

resistivity structures. The one dimensional case is indirectly addressed, since it 

must be solved in order to set boundary conditions for two dimensional models. 

The simplest geological structure to model is known as a half-space. This 

is defined by a horizontal plane at z = 0, which separates a non conducting 

vacuum for z <0 and uniformly conducting material for z > 0. One dimensional 

structures only vary their properties with depth, such as a series of horizontal 

layers, as shown in Figure 1.1(a). 

Many geological structures are inherently two-dimensional, in that they do 

not vary in character along one particular direction, known as the strike (along 

the x-axis in Figure 1.1(b)). This premise holds true for a large range of scales. 
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Y x 

Y 

(a) 	 (b) 
	 (c) 

Figure 1.1. One, Two and Three Dimensional Structures 

For example, faults and dykes tend to run in straight lines, and even coastlines. 

can often be considered to be straight over hundreds of kilometers. Therefore we 

can restrict the variation in model structure and reap the benefits in the resulting 

reduction in the degrees of freedom of the problem. 

The general case is of a fully three-dimensional conductivity structure. The 

three degrees of freedom allow a complete description of any geological formation 

and setting. Figure 1.1(c) illustrates a block embedded in a homogeneous host 

rock. 

1.2.2 The Magnet otelluric Method 

The origins of the magnetotelluric method can be found in the classic papers of 

Tikhonov[63] & Caignard[7]. Natural source fields over a broad frequency band, 

for example the last four entries in Table 1.1, are used to explore the subsurface 

conductivity. Time series of the horizontal components of both the electric and 

magnetic fields are measured at appropriate sites, and Fourier transformed into 

power spectra in the frequency domain. Caignard showed that if the region has 

a one-dimensional conductivity structure, then an apparent resistivity is defined 

as 

(1.18) 

where /10 is the permeability and w is the frequency. In the two-dimensional case 

the apparent resistivity depends on the direction of B and E so that the two 
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possible values are 

2 
___ 

(Pa)x 
= 	

2 
 and (Pa)y 

- go 

- wB 

In practical electromagnetic units, Caignard obtained 

2  rIEI 
Pa= 	 (1.20) 

for the true resistivity of a half space, where E is measured in millivolts per 

kilometre, the electrodes being separated by typically one hundred metres, H, 

the magnetic field, in nanotesla and -, the period, in seconds. Conveniently, the 

apparent resistivity then has units of ohm metres 

This method of geophysical prospecting has been applied to a variety of geo-

logical structures. For example, the EMSLAB[16][68][3] project studied the deep 

continental crust of North America on the regional scale. Magnetotellurics are 

frequently employed to evaluate potential geothermal regions, such as Jones et 

al.[28] in Southern Portugal, which discounted possible development, or the more 

successful studies of Lagios et al.[35] and Galanopoulos et al.[21]in the Greek 

Aegean islands. 

1.3 	Review of Geo- electromagnetic Modelling 

Forward modelling is defined to be the process of deriving a set of electromagnetic 

field values, or response functions, from a given resistivity structure. The process 

of deducing a resistivity from a given response function, usually derived from real 

measurements, is known as inversion. 

Inverse methods exist for one dimensional problems, such as those of Bailey[2] 

for a spherical Earth and Weidelt[77] for a flat Earth. These derive a conductance 

structure directly from the surface response functions. However, two and three 

dimensional inversion methods rely on calculating multiple forward models and 

somehow minimising the misfit between the modelled and measured responses. 

deGroot-Hedlin and Constable's[12] two dimensional Occam inversion searches 

for the smoothest varying conductivity structure. They discretise the model on 
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a dense mesh and allow each cell to vary in conductivity, but not size. This mesh 

is then used as a rough grid for Wannamaker's[70] two dimensional finite element 

code. Agarwal and Weaver[l] prefer to progressively add structural blocks until 

the data are matched, thus arriving at a different, but equally valid, definition 

of minimum complexity model. Smith and Booker[59] have developed what they 

term a "rapid inversion" algorithm for two and three-dimensional structures. 

They perform a series of one dimensional inversions under each measurement site, 

which they interpolate to form a new input grid for the two or three dimensional 

forward model. 

Such algorithms may require many forward models to be calculated, thus fast 

and, accurate forward modelling is an essential tool for the exploration of the 

electrical conductivity of the Earth. 

There are three distinct approaches to forward modelling geo-electromagnetic 

induction: 

Analogue Construct physical scale models in the laboratory, apply a source 

field, and measure the field components at the site locations. 

Analytic A series of mathematical formula can give the exact solution to a 

particular problem. 

Numerical Approximate reality with a discrete, digital representation of the 

relevant physical properties, construct some system of equations which de-

scribe the electromagnetic field behaviour, and solve. 

All of these techniques have undergone development since the earliest at-

tempts to model the real world. Analogue modelling has the advantage of being 

able to represent arbitrarily complex physical structures, limited only by the skill 

and resources (financial and time) of the modeller. Dosso[14] presented a gen-

eral review in 1973; Hu et al.[26] examine sea mount effects, and Chen et al.[8] 

investigate tectonic subduction zones. Chen[9] also constructed analogue models 

for the EMSLAB region. However, even minor alterations to the model require 

significant amounts of time, ruling this technique out for iterative inversions of in 

field recorded measurements. The scarcity of suitable materials with laboratory 

scale conductivities can also limit the construction of models. 
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The beauty and appeal of analytic models lie in their ability to give precise 

predictions of the electromagnetic field at the site locations. They are however, 

severely limited to a few special case conductivity structures and source configur-

ations. d'Erceville and Kunetz[13] obtained the first analytic solution for lateral 

conductivity variations in 1962 by considering a vertical contact between two 

blocks, overlying a perfect conducting or insulating half space. Rankin[54] intro-

duced another vertical boundary to construct a dyke in a homogeneous host rock, 

and Weaver[71] allowed the contacts to extend infinitely downwards. Perhaps the 

most useful application of such analytic models, is that they can be compared to 

numerical models of the same conductivity structure and source field. The first 

COMMEMI[85] model, as shown later in Figure 5.6(0) has an analytic solution, 

discovered by Weaver, LeQuang and Fischer[75] [76]. 

Numerical models exhibit the greatest variety and effort of the three modelling 

families. As computers become able to handle larger sets of numbers more quickly, 

so the numerical models become more complex and finer scaled. Kaikkonen[31] 

reviews a variety methods. These generally involve superimposing a mesh of grid 

points over the conductivity structure to be modelled, and describing the local 

field behaviour in each block with a system of equations. This system, along with 

suitable boundary conditions is solved to obtain the modelled response. 

Neves[43] developed the first numerical model using finite differences, which 

were later used by Jones and Price[29] in two dimensions and by Jones and 

Vozoff[30] in three dimensions. Wannamaker[70] developed a two dimensional 

finite element algorithm which has been integrated into the commercial Geotools 

magnetotelluric interpretation package[22]. Coggon[10] was perhaps first to ap-

ply this method to the geo-electromagnetic induction problem. Many others have 

followed, such as Reddy and Rankin[55], who took advantage of the method's abil-

ity to operate on non-rectangular meshes to model dipping contacts. Madden[38] 

and Ku et al.[33] modelled the conductivity structure as . a network of resistors 

and inductors to which they applied Kirchoff's Laws of voltage and current. 

Integral equation methods have proved popular in three dimensional mod-

elling, where the large meshes required by finite elements and differences prove 

impossible to accommodate on typical computers. These methods calculate the 
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anomalous fields inside inhomogeneous regions in the country rock, therefore re-

quiring a much reduced mesh so long as the number of such regions is not too 

great. Raiche[52], Weidelt[78] and Hohmann[25] laid the groundwork for this 

particular technique. 

When the main model complexity lies in the upper surface of the model then 

a thin sheet approach may be followed. Price[49] originally introduced this idea, 

whereby a physically thin region of arbitrarily varying conductivity is approxim-

ated by a sheet of zero thickness and conductance equivalent to the integrated 

original conductivity. Vasseur and Weidelt[65] allowed a general conductivity 

variation, but constrained by a surrounding uniform area, which was relaxed by 

McKirdy and Weaver[39], and McKirdy, Weaver and Dawson[40] who introduced 

two dimensional structures at the boundaries. 

There is a great deal of effort concentrating on the three dimensional problem 

now, with the rapid development of high speed, large capacity computers. Pu[51] 

has developed a hybrid thin sheet and finite difference code which offers the 

potential to model virtually any geological structure, given a suitably powerful 

computing facility. 

1.4 	Review of work in this thesis 

This thesis investigates possible approaches to take advantage of parallel pro-

cessing methods in geo-electromagnetic modelling. There has been rapid devel-

opment in the field of concurrent computing which is reviewed in Chapter 2. 

Chapter 3 introduces two existing model algorithms which were adopted for 

this study. Poll's[48] two dimensional code, complete with automatic mesh gen-

eration, and Pu's[51] elaborate three dimensional code. 

A massively parallel implementation of these models algorithm is developed 

and evaluated in Chapter 4. The same source code compiles either for a Thinking 

Machines CM 200 at Edinburgh, or a DEC mpp/12000SX in Victoria, British 

Columbia. This chapter also describes an alternative approach to parallelisation, 

utilising a cluster of workstations configured as a task farm, which is portable to 

a wide variety of platforms. 

Some of the issues raised in Chapter 4 called for the development of a new 
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automatic meshing algorithm. A description of past and present meshing tech-

niques is presented in Chapter 5, along with a stretched grid algorithm which 

controls the number of nodes allocated to a model mesh. Comparisons of several 

different grids indicate where gridding can be relaxed. 

Finally, Chapter 6 closes this thesis with a discussion of the results and sug-

gestions for where future effort would be best applied. 



Chapter 2 

Parallel Processing 

2.1 History of Parallel Processing 

Far from being a recent technological development, the story of parallel pro-

cessing is as old as data processing itself. As soon as people started to perform 

calculations on data, the concept of sharing the work, or "divide and conquer" 

surely occured to them. 

With the faltering birth of mechanical computing in the nineteenth century, 

Menabrea (1842) wrote about Charles Babbage's Analytical Engine 

when a long series of identical computations is to be performed, 

such as those required for the formation of numerical tables, the ma-

chine can be brought into play so as to give several results at the same 

time, which will greatly abridge the whole amount of the processes. 

Although the ideas of parallel processing surfaced from time to time, large 

scale parallelism remained unrealistic with the available technology. Wallace[67] 

describes how Lewis F. Richardson (1922) proposed that 64,000 human computers 

could calculate the weather for the whole globe, if they were 'coordinated by an 

official of higher rank'. His fantasy is illustrated in Figure 2.1. 

Parallel processing, in its simplest form, also appeared during the race to con-

struct an atomic bomb during the Second World War. When Richard Feynman 

was given the task of managing a large group of human particular algorithms. 

13 
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Figure 2.1. Richardson's scheme for numerical weather prediction by human 
parallel computers, as shown by Wallace (1988) 

His superiors at Los Alamos, including Professor Pauli, were amazed at the time 

saved by Feynman's practices. Before his death, Richard Feynman completed 

the mathematical theory which enabled his friend Danny Hillis to build the Con-

nection Machine, and found Thinking Machines Corporation, one of the major 

pioneers in parallel hardware. 

The development of the earliest electronic computers in the post war years 

effectively represented a step away from these early ideas of parallel processing. 

EDSAC 1 (1949) and UNIVAC (1951) implemented a form of instruction pipelin-

ing in a classical von Neumann computer model, as shown in Figure 2.2. 

In the forty-five years since EDSAC 1, there has been a steady twenty-five 

fold increase in floating point performance each decade. This has been achieved 

through advances in engineering and hardware technology, and until very recently, 

each generation of supercomputers has followed the Von Neumann model. 



CHAPTER 2. PARALLEL PROCESSING 
	

15 

Data Store 

Single 

_______________ 	
Instruction Store \J 	7 

Multipurpose 	< > 

Processor Input Device 

Output Device 
Bidirectional 

Bus 

Figure 2.2. Classical Von Neumann Computer Architecture 

In 1947 John Von Neumann proposed that an electronic general purpose pro-

grammable computer could be built using a single processing unit which commu-

nicates through an array of electrical connections known as a bus. Everything 

else required to operate the computer is attached to this bus. 

The 1980s brought very large-scale integrated circuit multiprocessors, with 

directly connected memory, distributed between the processors, and/or acting 

as a global memory, accessible equally from all processors. Various network 

topologies have been designed for inter-processor communication pathways, from 

the simplistic lattice, through rings and toruses, to hypercubes. 

2.2 Differing Computer Architectures 

The taxonomy covering the variety of parallel architectures is as fluid as the 

hardware itself, due to the rapid development witnessed over the last couple of 

decades. Flynn's (1966) classification, described by Modi[41], and reproduced 

in Table 2.1 is commonly accepted. He identifies four types of computational 

architecture: SISD, SIMD, MISD and MIMD'. 

The MISD design highlights the age of this classification, and it is doubtful if 

any machines of this architecture were ever built. Today, only the multiple data 

'Each is pronounced by making the word fragment of the first three letters and then adding 
a "dee" sound. For example SIMD —* "sim-dee". 
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1 11 Single Data Stream Multiple Data Stream 

Single Instruction Stream SISD SIMD 

Multiple Instruction Stream MISD MIMD 

Table 2.1. Flynn's classification 

(SO (S 

Control Unit Processor Datum 

Figure 2.3. The SISD computer architecture 

stream types are considered appropriate to describe parallel computers. 

2.2.1 The SISD Computing Model 

We will briefly concern ourselves with the SISD model, as it obviously represents 

the traditional serial computer. This will lay the basis for further understanding 

the novel features of parallel computers. 

The SISD architecture, see Figure 2.3, is analogous to the von Neumann. In 

this design there exists one processing unit, one memory storage unit, and one 

bus linking the two. In operation, the processor fetches one instruction from the• 

memory, followed by a datum (determined by the instruction) from the same 

memory. The necessary calculation is performed, and the result is placed back 

in memory. 

At the time, primitive valves were fragile and unreliable, so this was a practical 

approach to building any computer, in that the von Neumann computer only had 

one of each item. 

The following sections describe the two remaining, SIMD and MIMD, models, 

and introduce the particular machines on which the work presented in this thesis 

was carried out. The common features will be described in the SIMD section, and 

then the differences between the two will be highlighted in the MIMD section. 

2.2.2 The SIMD Computing Model 
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Figure 2.4. The SIMD computing model 

SIMD is an acronym for Single Instruction, Multiple Data, as noted above in 

Flynn's classification (Table 2.1). This is often referred to Data Parallel computing, 

in that it is the data which is distributed, not the program. One distinguishing 

feature of many SIMD computers is that they are built of large numbers of pro-

cessors, thousands, or even tens of thousands, working synchronously, i.e. locked 

to one clock. 

The SIMD Control Unit 

Because there can be only one instruction active at any time (Single Instruction), 

a powerful processor, generally a workstation, is promoted to be the controller. 

It is this, and only this, processor which can issue instructions to all the others. 

Instructions may be conditional on data local to the processors. For example, 

a ratio may be calculated so long as the denominator is non-zero. However, any 

processor which fails the test will be idle for that computational cycle, reducing 

overall efficiency. This is one of the main drawbacks of the SIMD architecture. 

All external data I/O, such as disc storage and networking, is routed through 

this control unit. 
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The SIMD Memory Model 

Each processor has a relatively small bank of local memory, but when scaled by 

the number of processors, the total amount of memory available becomes signi-

ficant. Only the local processor may access this memory, and in many respects it 

is the extent of this memory which dictates the maximum dimensions and shape 

of the problem which can be posed on the entire machine. 

Communications 

There are several forms of communications which may take place in a SIMD ma-

chine: 

. Control unit communicates data or instructions with one processor. All 

other processors remain idle. 

. Control unit broadcasts data or instructions to all processors, each of which 

stores a copy of the data in its own local memory. 

Arrays, or sections of arrays, pass between the control unit and the pro-

cessors. 

Data reduction to control unit. Data from all, or a subset, of the processors 

is reduced to a scalar value which is received, by the control unit. 

Regular inter-processor communication, in which data is moved homogen-

eously across the processors. 

General inter-processor communication, where each processor is commu-

nicating with any other processor, addressed by a pointer stored in local 

-. 	memory. 

Topology 

The topology of the architecture describes the configuration of the communication 

network connecting the processors together. Inter processor communications will, 

obviously be more efficient if the data passes through the minimum number of 
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Figure 2.5. Lattice Topologies in (a) one dimension, and (b) two dimensions 

processors on its route to its destination. The dimensionality of the network also 

affects the mapping of model parameters to processors. 

An n-dimensional lattice is the simplest network topology. Figure 2.5 shows 

two lattice networks, in one and two dimensions. The last node has a direct 

connection back around to the first to allow for fast data wraparound. However, 

any two processors in this configuration may be separated by many intermediate 

processors 

A novel networking scheme has been developed to overcome this problem. 

An n-dimensional hypercube is constructed such that each of the 2' nodes is 

connected to n neighbouring nodes. This has the advantage that the processor 

array is at most n processors long in any direction. Figure 2.6 illustrates how 

(n + 1) dimensional hypercubes can be constructed from two n dimensional hy-

percubes connected together by an extra 2(m1)  lines. 

2.2.3 The MIMD Computing Model 

In contrast to SIMD computers, MIMD machines have traditionally consisted 

of many fewer processors, tens or hundreds. This is undoubtedly mainly due to 

the expense of the more powerful processors utilised, but also the difficulty of 

building a network with a high enough 'bandwidth' to support large numbers of 

such processors. The bandwidth of any communication route is simply a measure 
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(d) 

Figure 2.6. Hypercube Topologies in (a) one dimension, (b) two dimensions, 
(c) three dimensions, and (d) four dimensions 
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Figure 2.7. The MIMD computing model 
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of how much information it can carry in a fixed time. 

However, to overcome the lack of processor numbers, each processor is typ-

ically as powerful as a single processor workstation, and can be running code 

independently of all the others. 

The MIMD Control Unit 

There is still a need to delegate one, or more, processors to control the machine as 

a whole. Subsets of processors may be grouped together, along with their control 

processor, to form an independent MIMD machine within the global machine. At 

least one processor also acts as an interface to the external I/O channels. Whereas 

the SIMD control unit sends microcode instructions, the MIMD control unit sends 

program fragments to the set of processors under its control. Each processor is 

then free to complete its task in however long it may require. 

The MIMD Memory Model 

As in a SIMD machine, each of the processors will have its own local memory, 

scaled to match the greater processing power. Once again this is typically of the 

same order as a workstation : up to tens of megabytes. Some of this is reserved 

by the operating system, since a copy is running on each processor. 

Figure 2.7 also shows an optional area of shared global memory, which is not 

associated with any particular processor. In fact, each processor is equally able 

to read from, or write to, this memory. Obviously, these operations are more 

expensive than local memory accesses. 

Communications 

Because each processor is, in effect, running a different program, communications 

are much more complicated in the MIMD model. The type and quantity of data 

is not fixed over the set of processors. Indeed, the data may in fact be a control 

message sent from one processor to another, unlike the SIMD machine. 

The guaranteed synchronisation present in a SIMD machine cannot be relied 

on. Of course, the program can arrange the computations to be synchronous, but 
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non-synchronous communications have to be catered for. Therefore, the range of 

communication modes can be summarised by the following selection. 

Synchronous, where all the processors are communicating simultaneously, 

which is the simplest form of communications. However, this places restric-

tions on the algorithm, similar to these found in the SIMD machine. 

Blocking non-synchronous, where processors are free to communicate whenever 

they require, but wait for the communication to complete before continuing 

their task. Unfortunately, this can result in inefficiencies in the program, 

as many processors may be idle at any one time. Even worse, there may 

develop a situation known as deadlock when the majority of processors are 

blocking, almost inevitably leading eventually to all processors being in the 

blocked state. 

Non-blocking non-synchronous, where processors continue their task once a 

communication is initiated. The processor will complete the communication 

at a later, undetermined time. This has the disadvantage that corrupt data 

are difficult to deal with, since once they have been sent, the transmitting 

process may have destroyed the originals. 

2.3 Load Balancing and Granularity 

The problem of keeping all the processors in a parallel machine busy is known as 

load balancing, and has already been alluded to in the earlier discussion of the 

SIMD and MIMD architectures. 

Load balancing is intimately linked to the relationship between the granu-

larity of the algorithm and the number of available processors. Simply put, the 

granularity is a measure of how fine, or small, the tasks given to each processor 

are. In a massively parallel SIMD machine, the granularity will almost always 

be very fine. A large MIMD machine is able to handle a range of granularities, 

and a cluster of workstations is best suited to a parallel algorithm with a coarse 

granularity. 
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Figure 2.8. Graph showing how total execution time becomes quantised in the 
parallel regime. T is one quanta of execution time, and N is the number of 
processors. 

In order for us to examine some aspects of load balancing, let us first consider 

a very coarse grained problem on two processors. If the amount of work required 

by each subtask is equivalent, and if there is an even number of subtasks, then 

both processors will be working until the whole problem is completed. However, 

as soon as an odd number of subtasks is required, one processor is going to 

be left idle while the Other performs the last.subtask. The worst case can be 

encapsulated in the following rule 

Nt  = N+ 1 	 . 	(2.1) 

where Nt  is the number of subtasks, and N > 1 is the number of available 

processors. This rule can be also be applied to find the worst case in a massively 

parallel SIMD machine, where the number of processors could be several thousand. 

In this case, the problem will almost certainly be very fine grained, and N - 1 

processors will be idle for half of the total execution time. 

The total execution time, therefore, increases in a step function, as the number 

of subtasks increase. We can see in Figure 2.8, that so long as the number 
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of subtasks lies in an interval between two integer multiples of the number of 

processors, the execution time will be the same. This is important, because it 

means the machine could be capable of carrying out significantly more work with 

no time penalty, resulting in a more efficient program. 

When each subtask represents a different, possibly unknown, amount of work, 

the problem of load balancing becomes virtually intractable. These problems 

should only occur in a program written for a MIMD machine, as the programmer 

is always aware of how much work is being given to processors in a SIMD machine. 

The MIMD machine, with its ability to run different programs on different pro-

cessors, can instruct the controlling processor to monitor the load balance of the 

allocated set Of processors, and modify its approach to the problem appropriately. 

2.4 Parallel Processing Algorithms 

The process of solving an application problem on any computer can be broken 

down into roughly three stages: define the application, e.g. by mathematical 

formulae; specify the algorithm (and write computer code); and finally, execution 

of the code on the computer. 

Kung[34] identifies nine different models of computation on a research parallel 

computer. 
local computation 4. multi-function pipeline 7 divide-and-conquer 

domain partition 	5. ring 	 8. query processing 

pipeline 	 6. recursive computation 9. task queue 
Each of his models corresponds to a different way in which data is passed 

between processors. I. will describe only the first four; 1 and 2 being similar, but 

contrasting with the commonly implemented 3 and 4. 

'Local computation' and 'domain partition' both involve decomposing the 

input data into a series of sub-domains, each of which is mapped to a single 

processor. Kung differentiates between the two, by noting that many algorithms 

depend only on a local datum, while others involve the communication of data 

between sub-domains. His choice of name for 2 is therefore not ideal, as it can 

describe 1 equally well. Figure 2.9 shows these two models. 
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Figure 2.10. Pipeline processing: In multi-function pipelines, each process may 
be different operations 

Later chapters will show how domain partition can be applied to both simul-

taneous and successive relaxations. 

The 'pipeline' and, the more general, 'multi-function pipeline' models repres-

ent the process of passing all the data through a sequence of processes. As the 

first datum leaves the first processor, the second datum enters the beginning of 

the pipeline. This model is completely analogous to the UNIX shell pipe (''). 

2.5 Development Software 

This section presents the two approaches referred to in the rest of the text, out 

of a myriad of possible parallel programming styles. 

2.5.1 Data Parallel Languages 

These languages, as the title suggests, treat the data as a parallel object. The 

most common data parallel language, and the one used in this work,.is derived 

from FORTRAN 90. The important development in this standard of FORTRAN 

over the FORTRAN 77 standard is the promotion of the multidimensional matrix 

to an intrinsic data type, along with REAL, COMPLEX, etc. Perhaps this difference 

can best be shown in the two code fragments in Table 2.2. 

Each declares a one dimensional array of ten integers. The FORTRAN 77 code 

on the left must contain an explicit DO loop in order to set each element in the 

array. The FORTRAN 90 code, in contrast, can set every element in the array by 

simply referring to the array name without the subscript and parentheses. On a 

serial machine, the compiler will in effect generate an implicit DO loop to perform 
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FORTRAN 77 FORTRAN 90 

INTEGER N(10) INTEGER N(10) 
INTEGER I 

DO I = 1, 	10 N = 1 
N(I) 	= 1 

END DO  

Table 2.2. Initialising the elements of an array in FORTRAN 77 and FORTRAN 
90 

the same actions as the FORTRAN 77 code, but on a parallel machine, there is the 

possibility of each element being assigned to a different processor, and therefore, 

the complete array being set at once. 

Until recently, each vendor of a parallel machine wrote their own parallel 

extensions to the FORTRAN 77 standard. It was in this environment of proprietary 

languages that the FORTRAN 90 standard slowly emerged. However, some parallel 

aspects are lacking in the standard, and yet another committee was given the 

task of defining a High Performance FORTRANstandard. I will simply call these 

modern languages FORTRAN 90 in the rest of this thesis. 

There are also improvements to logical flow control statements, but I will 

ignore these, as they are largely irrelevant to this work. Instead, I will briefly 

describe some of the useful array constructs which map directly to a parallel, 

especially SIMD, architecture. 

Element Processor Mapping 

Since FORTRAN 90 is an inherently data parallel language, array elements must be 

mapped to processors in the machine. There are numerous ways of achieving this, 

but one thing they all have in common is that virtual processors are introduced 

to present a one to one mapping to the FORTRAN 90 programmer. The compiler 

arranges for each processor to timeshare between multiple array elements. This 

can have serious repercussions in performance on a SIMD machine. See Section 2.3 

for a discussion of this load balancing problem. 
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Elemental Operations 

If two arrays are conformant, that is with the same number and length of di-

mensions, then they may be combined by elemental operators. The following are 

examples of elemental operators. 

Assignment A = 1 

Simple Arithmetic B = A+B, C = A*B 

Intrinsic Functions B = SIN(A), C = LOG(A) 

Type Modifiers B. = REAL(C) 

As their name suggests, each of these operations act equally on all the elements 

in the arrays. It is important to remember that A*B is not matrix multiplication, 

but simply each element in A multiplied by the corresponding element in B. 

Reduction Operators 

These operators reduce the rank of an array, either by one, or all the way down 

to a scalar, and are new intrinsic functions, specific to arrays. If the function is 

called with only one argument (an array), then the result is a scalar calculated 

by the function. In addition, an integer constant representing a dimension may 

also be passed, which determines a direction over which the calculation is to 

take place, and the shape of the resulting array (with rank one less than the 

argument). 

Examples of these reduction operators include 

Total = SUN(A) sets the scalar variable Total to be the sum of all the 

elements in A. 

B = MAX (A, DIMENSION= 1) will result in B containing the maximum values 

along the first dimension of A. B has rank one less than A. 



CHAPTER 2. PARALLEL PROCESSING 
	

29 

Regular Communications 

Entire data arrays can be translated across the processor array very easily. Nearest 

neighbour communication, in particular, is highly efficient. High Performance 

FORTRANspecifies two new intrinsic functions to implement this kind if trans-

lation; SHIFT and CSHIFT. These functions require three arguments; the source 

array, a dimension index along which to translate, and a displacement. The 

CHSIFT form ensures that elements which "fall off" the array are wrapped back 

to the opposite edge. Figure 2.11 shows an array before and after a CSHIFT 

operation. 

1 2 3 4 5 CSHIFT(A, SHIFT=1, DIM=1) 	
2 3 4 5 1 

6 7 8 9 10 7 8 9 10 6 - 
11 12 13 14 15 	 12 13 14 15 11 

Figure 2.11. The High Performance FORTRANCSHIFT intrinsic function. 

Scope and Masks 

The behaviour of these array intrinsics and arithmetic operators can be con-

strained by one of two methods. The array intrinsics allow an optional mask to 

be passed as an extra argument. A mask is simply a logical array, conformant 

with the source array, where a . TRUE. signifies that the operator is to be ap-

plied at that location, otherwise no action is performed. The second method is 

to modify the scope of a section of code inside a WHERE . . . END WHERE construct. 

This is the direct analogue of the FORTRAN 77 IF . . . END IF construct, except 

that it tests each element of an array to determine the logical flow. The classic 

example of this in use is to avoid division by zero. For example: 

WHERE (A.NE.0) 
• B = 1 / A 

END WHERE 

In a parallel machine, these masks and scope constraints can be thought of 

as specifying which processors should be turned on or off for the subsequent 

operations. 
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Array Sections 

A sub-array can easily be extracted from a larger array by using the following 

syntax B = A (n: m, ...). One n: m pair is required for each dimension in A. m 

indicates the start, and n the end of the section in that particular dimension. 

There are two special cases to be considered. First of all, if there is simply one 

constant, with no :, then that specifies the start and end of the section. If there 

is only a :, then the whole extent of the dimension is included in the section. 

2.5.2 Message Passing Libraries 

There are as many message passing libraries available as there are centres devel-

oping parallel code. However, a standard known as MPI[42] is emerging. These 

libraries are only applicable to MIMD machines, as SIMD machines cannot support 

processors running different code simultaneously. 

In general, message passing is a much coarser grained form of parallelism 

than the FORTRAN 90 paradigm. However, there is a greater flexibility, allowing 

a broader range of algorithms to be implemented. The programmer has the 

choice of how to parallelise the code, whether to follow the data parallel path, or 

to implement a pipeline or any of the other computational models discussed in 

Section 2.4. 

2.5.3 Task Farms 

A task farm is built on top of a message passing library, and contains the following 

components, as shown in Figure 2.12: 

Worker Processes which wait for sub-tasks to perform. This is where the bulk 

of the work is done in parallel, shared between them all. 

Source Process which divides up the complete problem into manageable por-

tions and passes them on to the workers. 

Sink Process which listens to messages from the workers, and collects their 

results when they have completed their sub-tasks. It is the sink's job to 

recombine the results to form the complete solution of the problem. 
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Figure 2.12. Classic Task Farm 

The source process has overall control, and can influence the performance of 

the task farm by adapting its task partition policy depending on how the workers 

are coping. 

2.6 Available Hardware 

2.6.1 The DEC mpp/12000SX 

Although now built by Digital Equipment Corporation, this type of computer 

was conceived and marketed by MasPar, a name which has been retained by 

DEC. I shall also refer to it as a MasPar in the rest of this work. 

This machine was donated by DEC to the British Columbia Provincial Gov-

ernment Computer Centre in Victoria. In turn, they offered some very attractive 

computer-time packages to Canadian academic institutions, one of which was 

purchased by Dr Weaver to support this work. 

The MasPar was one of the pioneering massively parallel SIMD machines, 

and is considered old technology by many in the numerical scientific community. 
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There was a very low demand for time on this machine, which resulted in a rapid 

development cycle, as I was usually the only user. 

There are 8192 (214)  simple processors arranged in a two dimensional lattice, 

similar to that shown in Figure 2.5(b), and each processor has 16kB of local 

memory. Therefore, the total memory available is 128MB, which is not signific-

antly larger than a modern fast workstation class machine. 

The fact that the processors are linked in a two dimensional, 64x 128, network, 

facilitates mapping of two dimensional arrays, but can cause problems with higher 

dimensions. To overcome this, each processor partitions its own local memory, 

indexed by a third subscript on an array. Unfortunately, this has the effect of 

reducing the available storage space allocated to the original two dimensions. 

The process of partitioning the local memory is also applied when virtual 

processors are required. If either of the first two dimensions exceed the number 

of physical processors in the lattice, the system partitions the local memories, 

and allocates each slice to a set of 8192 virtual processors. Computational time 

on the physical processors is now shared between the virtual processors. 

This method of creating virtual processors has the unfortunate side effect of 

the likelihood of leaving a large percentage of processors idle for much of the 

time. For example, processing a 65 x 128 matrix would be using the machine at 

half efficiency. Section 2.3 introduced the idea of load balancing and efficiency. 

The machine is hosted by a DEC microVAX workstation running the OSF/1 

operating system. A MasPar FORTRAN compiler is used to build binaries from a 

very close variant of High Performance FORTRAN. When writing code, the author 

must be very careful to prevent what MasPar call "data sloshing". This occurs 

when an individual element of a parallel matrix is accessed. Instead of querying 

the responsible processor, the whole matrix is copied to the workstation memory, 

where the FORTRAN 77 type access is carried out. The next time the matrix is 

operated on as a whole, it is copied back to the processor lattice. This obviously 

poses a severe threat to overall performance;  and must be avoided through careful 

algorithm design and implementation. 
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2.6.2 The Connection Machine 200 

The Connection Machine is also a massively parallel SIMD machine, designed and 

constructed by Thinking Machines Corporation. The Edinburgh Parallel Com-

puting Centre (EPCC) maintains a CM-200 to the United Kingdom academic 

community on behalf of the Engineering and Physical Sciences Research Council 

(EPSERC). 

The basic unit of the CM-200 is a processing node constructed from two CM 

processor chips, two network chips, one optional 32 bit floating point processor 

and one megabyte of memory. Each processor chip contains sixteen one bit 

processors clocked at 8MHz. A sequencer interfaces the front end workstation to 

the rest of the machine, translating incoming code to nano-instructions for the 

simple processors. 

There are several specialised buses linking the nodes. First of all, the instruc-

tion broadcast bus, which simply sends instructions from the sequencer to all the 

nodes. There is also a scalar memory bus which allows the sequencer to access 

any memory location for reading or writing, thus avoiding the problem of data 

sloshing from which the MasPar suffers. The global result bus returns a datum, 

combined from the single bit outputs of all the processors, to the sequencer. Fi-

nally there is the general interprocessor communication network. Each of the 

processor chips • (16 processors) forms a vertex of a hypercube. The associated 

network chip supports three forms of communication across this topology. 

Router Completely general processor to processor communications. Any pro-

cessor can access any memory location throughout the network, with all 

processors making memory accesses simultaneously. 

NEWS (North East West South) Nearest neighbour communication on an n-

dimensional Cartesian grid. 

Scans and Spreads Combines computation with communication on a NEWS 

grid. Especially, efficient for finding sums, maximum values, et cetera in an 

array. 

A fully configured CM-200 has 2048 processor nodes, or 64k processors, linked 

in a twelve dimensional hypercube, complete with two gigabytes of memory. The 
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machine at Edinburgh is a quarter of that size, with 16k processors in a ten 

dimensional hypercube and 512 megabytes of memory. 

The main programming language is Connection Machine FORTRAN, which is 

very close to High Performance FORTRAN. The front end host computer is a Sun 

4 workstation, on which all software is developed before running on the back end 

parallel machine. 

2.6.3 The Workstation Cluster 

The Department of Geology & Geophysics at The University of Edinburgh pos-

sesses an impressive array of Unix workstations, from a variety of manufacturers. 

Subsets of these computers were available at different times to be configured as 

a task farm, as described in Section 2.5.3. They all share a common network 

filesystem (NFS) based file space running on top of TCP/IP, with generally Un-

writable local discs. The network is lOMbit/s thin Ethernet which competes with 

a large Novell IPX LAN. 

The particular task farm implementation was based upon the Parallel Utilities 

Library Task Farm (PUL-TF)[15][6} written at the EPCC. This piece of software 

is available for no charge to UK academics. 

2.6.4 Other Serial Machines 

I had access to a large Sun SparcCentre 2000 at the University of Edinburgh. 

This machine, with 256Mb of memory serves as a computer server for academics, 

which means that jobs are virtually always timesharing. 

Digital Corporation, in an attempt to popularise their new line of Alpha 

processors, donated user accounts on a fully configured AXP class machine. In 

return for alerting them to bugs in the compilers and operating system, I was 

allowed network access and unlimited CPU time on this 190MHz A1pha21064 

based machine, with 256Mb of core memory. 



Chapter 3 

Model Algorithms 

3.1 Two Dimensional Model Formulation 

The solution of a two dimensional problem splits into two distinct and inde-

pendent modes, with either the electric or magnetic field polarised along the 

conductivity strike direction. Hobbs[24] suggests the use of the terms B Polar-

isation and E Polarisation. If we consider the strike to be along the x axis, then 

the conductivity structure does does not vary with x. The electromagnetic field 

can be expressed as B = (Br , 0, 0) and E = (0, E, E) for B polarisation and 

similarly B = (0, B, B) and E = (Er, 0, 0) for E polarisation. It is conventional 

to write the Cartesian field components as 

E = U(y,z),E = V(y, z), Ez  W(y,z) (3.1) 

B —_X(y,z),B = Y(y,z),B = Z(y,z) (3.2) 

Rewriting (1.3) and (1.9) in terms of these components gives six well known 

scalar equations 

ay DZ 	
(3.3) 

 
ax 

 = bLoaV 	 (3.4) 

35 
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ax 
- —toaW 	 (3.5) 

and 

az 	ay - 	/JaU (3.6) az 
aU = —iwY (3.7) 

. aU 
(3.8) 

These equations have decoupled into two independent sets, with (3.3), (3.4) 

and (3.5) corresponding to the B polarisation and (3.6), (3.7) and (3.8) defining 

the E polarisation solution. Since Maxwell's equations allow the derivation of 'E 

from B and vice versa, the two dimensional solutions need only be for the scalar 

fields X and U respectively. 

I will present only these equations necessary to the background for later sec-

tions here. A more detailed derivation can be found in Poll[48]. 

Figure 3.1 represents a general two dimensional conductivity model. The x 

axis is pointing into the page, and the structure is infinite along that axis. The 

structure is one dimensional at the extremities of y, in that it only varies with z, 

all the way to +oo. z increases downwards into the Earth model, with z = 0 at 

the air boundary. 

The model structure is defined as •a series of regions of homogeneous and 

isotropic conductivity, a, with discontinuities in conductivity at the boundaries. 

The atmosphere is treated as a perfect insulator, i.e. a = 0 for z < 0. A half-space 

of constant conductivity, a0, underlies the whole model. 

The vertical plane of the model is divided up into M by N smaller rectangles, 

forming a grid on which the model and solution are discretised. Each of these 

rectangular cells covers an area of constant conductivity, and will have a discon-

tinuity af an edge, if and only if that edge coincides with the model structure. 

The vertices of the cells are labelled Xm,n , which are the same subscripts used to 

label the width, hm, height, k, and conductivity, am,m, of the cell. 
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ce 

Figure 3.1. Two Dimensional Model Configuration. Insert shows the dimensions 
and values around a grid cell. 

Any discrete, finite model must address the behaviour of the fields in the 

interior of the model and at the edges. The equations for the interior points are 

relatively straightforward to develop, but there are a great variety of approaches 

to the boundaries. 

As was previously stated this finite difference formulation of the geoelectro-

magnetic induction problem was developed by Poll[48]. It draws upon many 

years experience in the different parts, bringing them together to form perhaps 

the most sophisticated finite difference model to date. The expressions are presen-

ted in terms of anomalous field differences, that is the difference from the one 

dimensional solution at y = —oc. 

I shall briefly summarise the historical development of this model's constituent 

parts: 

interior points This is essentially that which was presented by Brewitt-Taylor 

and Weaver[4] for their finite difference model[5], but written in terms of 

the anomalous and host fields. 

side boundaries The one dimensional solutions were originally derived by Wait [66] 



(3.9) 

(3.12) 

(3.13) 
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in 1953 for the propagation of radio waves, then developed by Schmucker[56] 

and later by Summers and Weaver[60]. The asymptotic relationship linking 

U(±oo) .to the model boundary in E polarisation were developed by Weaver 

and Brewitt-Taylor[74]. 

surface boundaries The integral equations for the top surface E polarisation 

model are derived from the thin sheet approximation developed by Price[49], 

and generalised by, amongst others, Ranganayaki and Madden[53] and 

Weaver[73]. 

3.1.1 Interior Grid Points 

The finite difference equations for the anomolous field' at the centre of the interior 

grid cells, each of height k, width hm  and resistivity Pm,n,  can be written in the 

following general form 

CiFm,n_i + C2Fm+i,n ± C3Fm,n+i + C4 Fm_ 1,n  = (C5  + )Fm,n  + K 

where C5  = C1  + C2  + C3  + C4  and, for B polarisation 

Co = w 0hk 

- hm_ipm_i,n  + hm pm,m_i 
Cl - 	I 

- kn_ipm,n_i + km pm,n  
C2 - 	LI 

hm_ipm_i,n  + hm pm,n  
C3 - 	 I /'f 

finuo 
kn_i Pm-i ri—i + kn pm_i n 

C4—_ 	
1. 
Itrn_1L'O 

K = —C1X 1 —(C2 ±C4 —05 i)X—C3X 1  

'The anomolous field, F, is defined as the difference between the local field and the one-
dimensional field at the left side of the grid, F. 



(3.20) 

(3.21) 

(3.22) 

(3.23) 
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and for E polarisation 

F=U 

Co  = 	Wo m,nhk 

1 - C m 

n_1L'O 

k 
C2 Lf1 

C3  
h

= k  

k 
C4 - L 

[tm_ltJO 

K = 
\ 

with h = hm_i + hm  and k = k_1  + k for simplicity. 

The E polarisation is not expressed in terms of a but the weighted average 

conductivities, as introduced by Brewitt-Taylor and Weaver[4]. 

- 	- hmkn_iUm,n_i  + hmknam,n  

h+ k+ inn 

hmiknam_i,n  + h_ik_ia-i._i 	
(3.24) 

h+ k+  
k_1 	k 

=+ a 	 (3.25) 

3.1.2 Boundary Conditions 

The sets of equations developed for the interior points can not be assumed to be 

valid around the edges of the model grid. In particular, there are no nodes outside 

the declared grid, so that some of the terms in the equations will be undefined. 

A boundary condition is a rule which governs, in some manner, the behaviour 

of the solution at that boundary of the model. The most common boundary 

conditions are classified as one of two families 
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Dirichiet The values of the solution at the boundary are prescribed, and remain 

fixed throughout the solution process. For example, 'u,1  = 0. 

Neumann The values of the solution at the boundary are constrained by pre-

scribed normal derivatives. For example, aF zQ = 0. az 

Left and Right Boundary Conditions 

As has been mentioned before, the conductivity structure degenerates to be one 

dimensional at the left and right edges of the model. The field at an infinite dis-

tance along the y axis will also be one dimensional, as the disturbance caused by 

variations in conductivity with y will have completely diffused to zero. This will 

be some considerable distance in some situations, especially ocean coasts[11][53]. 

The one dimensional solutions at y = +oc are denoted as F+  and F, where 

F = X for B polarisation, and F = U for E polarisation. These solutions 

themselves can be used as Dirichiet boundary conditions for the B polarisation 

case, so long as the edges of the grid are suitably far away from the anomalous 

structures. 

The E polarisation fields, however, do not recover to their one dimensional 

form so quickly, and the asymptotic boundary conditions derived by Weaver 

and Brewitt-Taylor[74] are employed. Poll writes the anomolous field boundary 

conditions at the top surface corners as 

F1U1  - U2  = 0 	 (3.26) 

FNVUNJ - UN_l = (FN  - 	- U-) 	 (3.27) 

where 171  = ii;; - 2, FN  = 2EN + l+N  and € = Yi 
The side boundary conditions for z > 0, written in terms of the anomalous 

field, are 

X, (Z) = 0 	 (3.28) 

XN(z) = X(z)—X(z) 	(3.29) 
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U(z.1)U1, - U(z)U1,_1  = 0 	 (3.30) 

U+(zn_1)UN,n - U+(zn)UN, fl_l = 

U(z)U(z-1) - U(z_i)U(z) 	 (3.31) 

Top Boundary Conditions 

For B polarisation it is obvious from (3.4) and (3.5) that above the surface of the 

Earth, which is non-conducting atmosphere, DX/(9y = 0 and DX/(9z = 0 so that 

X(y,0-) = X0 	 (3.32) 

where X0  is some constant. For a uniform horizontal source magnetic field of 

B0  the total field above a one dimensional Earth is 2B0 . Therefore we can write 

X(y, 0-) = 2B0  since the model becomes one dimensional as jyj -4 cc. 

In the E polarisation case, setting a =. 0 leads to 

aaz 	a' az 
and -+ - = 0. 	 (3.33) 

ay Dz 

The solution of this differential equation, results in the same integral boundary 

condition as that obtained by Schmucker[56], which can be written in terms of 

the discrete anomalous electric field as 

(i-2 N-1\ 

LUl,N  + MU,, + NU-1,1  + PiUi,1  + QU +1, 1  + ( 	+ 	) RUm,i 
\m=2 m=i+2) 

+ 	= SUj + 	 (3.34)
ki  

where L, M, N, P, Q, R, S and T are derived coefficients, as in Poll[48]. 

Bottom Boundary Conditions 

It is possible to allow the model mesh to extend to great depths in the model as 

both X and U approach zero as z - cc. However, it is computationally expensive 

to dedicate these grid points for this purpose, so Poll has implemented an integral 

boundary condition at a depth z = d, below which lies a half space of constant 
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conductivity, a. These were originally developed by Green and Weaver[23] and 

can be written in terms of the discrete anomalous fields as 

/i-2 N-1\ 
NX_l,N + PiXi,N + QiXi+l,N + ( > + 	) RXm,i. 

\rm=2 m=i+2/ 
+7ru  0TiN1i,NZ_l = SX +TX 	 - a)V (3.35) 

kN_i 

for B polarisation, and 

LiUi,NZ  +MiUNY ,NZ  +NiUi_l,N  +PjUj,N  +QiUi+l,N 
/i-2 N,-1\ 

)RrUm,Nz + Ui,NZ _l=SiUN+TiUN (3.36) 
\m=2 m=i+2J 

for E polarisation. 

3.2 Three Dimensional Model Formulation 

The following description of the mathematical formulation of the three dimen-

sional model is all based upon work developed by Xinghua Pu[51] at the Uni-

versity of Victoria, British Columbia, Canada. I will only present what is ne-

cessary to show the links between the mathematical and the parallel processing 

algorithms. 

The model solves the magnetic field components for a general three dimen-

sional structure, overlaid by an optional thin sheet of variable conductance, with 

general two dimensional structures at the vertical boundaries. Figure 3.2 shows 

such a model. 

3.2.1 Vertical Edge Boundary Conditions 

There are numerous ways to enforce boundary conditions around the vertical 

edges of the three dimensional model volume. 
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Rn, 

z=d 

Figure 3.2. General 3D model configuration (After Pu, 1994) 

If one assumes that the structure is periodic in the horizontal directions, 

then periodic boundary conditions can be applied, as in the case of the Fourier 

methods of Park[46] and Jiracek[27]. However, in order to eliminate the effects 

of repeating the structure, the boundaries are extended to great distances from 

the three dimensional structure, resulting in expensive grid point usage. 

The other methods rely on previously calculated field values for the boundar-

ies, which are then fixed. This class of boundary conditions is known as Dirichlet 

boundary conditions and there are, of course, a variety of methods of finding these 

values. Mackie et al.[37] divide their three dimensional model into a series of ver-

tical slices, which are each embedded in a two dimensional B Polarisation grid, 

reflecting the regional two dimensional structure. Unfortunately, this approach 

has two obvious drawbacks. First of all, a large number of 2D problems need to 

be solved (one for each slice), and secondly, not all regional model configurations 

can be described by a single electrical strike. 

To allow as general as possible regional structure, Pu imposes the condition 
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that the model structure degenerates to two dimensions at the vertical model 

boundaries, each with a strike normal to the boundary. Thus, the regional struc-

ture can be constructed from two perpendicular strikes, as at some tectonic mar-

gins, for example. 

As has been discussed in Section 3.1, two dimensional solutions split into two 

distinct and independent modes, "E Polarisation" and "B Polarisation". In or-

der to describe the four vertical boundaries, two solutions of each polarisation 

are required. The solutions on opposing boundaries will be polarised in the same 

direction. Pu developed an E Polarisation solution for B and B in order to over-

come the fact that the solution for E is dependent on a volume weighted average 

of electrical conductivity, whereas any solution for B depends on a weighted aver-

age of resistivity. Simply taking the reciprocal of either of these is not equivalent 

to the other, as noted by Brewitt-Taylor[4]. The reader is referred to Pu[51] for 

a full description of the two dimensional solutions. 

In summary, the components of the magnetic field are fixed at their two 

dimensional approximations over the vertical boundary surfaces of the model. 

3.2.2 Internal Grid Points 

The three Cartesian components of the magnetic field vector need .to be solved 

for all the internal grid points. These values are potentially dependent on all the 

surrounding points, as is shown in Figure 3.3. This figure also illustrates the 

point numbering scheme used in this section, as well for describing interprocessor 

communications in Chapter 4. 

The internal governing differential equation is obtained by applying volume 

integration over the cuboid, surface S and volume V, surrounding a grid point, 

and utilising a vector relation 

I (VXA)dv=JdS x A 	 (3.37) 

where V is a volume bounded by a closed surface 5, with dS positive outward 

from the enclosed volume. This relation is derived from the well-known Gauss 

divergence theorem 
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Figure 3.3. 3D internal points, showing numbering scheme 

f (V A)dv = A• dS. 	 (3.38) 

A volume integration of the Maxwell equation (1.3) gives 

fV 
V X Edv = — Z'w 

fV  B 
 . dv 	 (3.39 

which can be further transformed by (3.37) and Maxwell equation (1.4) into 

f V x E dv fdS x E=_±fp(VxB)  x dS. 	(3.40) 

Equation (3.39) then becomes 

p(VxB)xdS=iwiifBdv. 	 (3.41) 

Pu presents the finite difference equivalent of (3.41) to be 
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(i + C101 + C121 + C10 + c11'2)X111 = c101 X101  + c121 X121  + cuoXiio + c112 X112  

(c221  - C201 + Cool - c021)Y1 + c201Y201  - c221Y221  - c001Y001  + c02121  
- c001)Y0  - (c221 - c201)Y2 - (c201  - cooi )Yioi  + (c221  - 

(C212 - c210  + c010 - c012)Z111 + c012 Z012  - c212Z212 - c010 Z010  + c210 Z210  

+(co12 - coio)Zoui  - (c212  - c210)Z211  - (c210 - coio)Zo + (c212 - c012)Z112. 

(3.42) 

(i + C011 ± C211 + c10  + c112)Y111 = c011Y011  + c2111' 11  + c110Y110  + c11217112 

(c221  - c201  + c001 - c021)X111 + c201X201  - c221X221  - c001 X001  + c021 X021  

- cooi )Xioi  - (c221 - c021)X121  - (c021 - c001)X0 + (c221 - C201)X211  

(c122  - C102 + C100 -  c120)Z11 + c120 Z120  - c122 Z122  c100 Z100  + c102 Z102  

- cioo)Zuoi  - (c122  - c120 )Z121  - (c120 - c100)Z0 + (c122 - 

(3.43) 

(i + C011 + C211 + C101 + c121)Z1 = c011 Z011  + c211Z211  + c101 Z101  + c121 Z121  

(c212  - c210  + C010 - c012)X111  + c012 X012  - c212X212 - c010 X010  + c210 X210  

- couo)Xuo - (c212 - c012)X 2  - (c012  - c010)X0  + (C212 - c210)X211 

- C120 + C100 - c102 )Y1  + c102Y102  - c122Y122  - c100Y100  + c120Y120  

+(c120 - cioo)Yjio  - (c122 - c102 )Y112  - (c102 - c100)Y101 + (c122 - c120 )Y121  

(3.44) 

3.2.3 Top and Bottom Boundary Conditions 

The thin sheet (as introduced in Section 1.3) at the upper surface of the model 
allows shallow features to be incorporated without dedicating valuable grid nodes 
to their representation. The approximation holds so long as it is much thinner 
than the skin depth inside it, and that high conductivity layers are set deep in the 

model. The Z component remains unchanged across the thin sheet (Z— = 
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and is used to calculate the horizontal components thus 

X(r, 0—) = B0  - M1Z(r, 0—), Y(r, 0—) = —M2 Z(r, 0—). 	(3.45) 

where B0  is the source field and 

(3.46) 
100 00 	 YV 

M2Z = 	L00L Z(u,v) 
00 	 [(x—u)2+(y—v)2] 

dudy. 

The boundary condition above the thin sheet (z = 0—) can be written in 

terms of discrete finite differences as 

L M 
X 0  = B0 +AZ 0 , 	 (3.47) 

1=1 m=1 
L M 

YApo  = 	BAg Z 0 , 	 (3.48) 
1=1 m=1 

ZApo = Z 1 , 

	

	 (3.49) 

=2 ... L-1,=2 ... M-1 v=0 

where A and B are given in Appendix A of Pu's thesis[51]. 

The boundary conditions under the thin sheet (z = 0+) do not involve a 

complete surface integral, yet are more complex to write in full than for the 

interior points. 

The model grid is underlain by a half-space of constant conductivity (a = 0-0 

for z > d). The integral boundary condition as developed in Weaver's book[73] 

is applied over this contact surface. Once again, Pu[51] has a full derivation of 

the lengthy finite difference expressions for these boundary conditions. 

4 



Chapter 4 

Parallel Implementations 

This chapter describes the two and three dimensional modelling parallel al-

gorithms. The iterative solvers are developed for the two dimensional case, but 

apply equally to the three dimensional problem. 

4.1 Matrix Inversion 

The forward modelling problem has been reduced to solving systems of equations 

Au = b 	 (4.1) 

where A is the coefficient matrix1, u is a column vector of field values, which are 

to be found, and b is a representation of the sources contained within the model. 

4.1.1 Form of the coefficient matrix 

The coefficient matrix is composed of N x N sub-matrices, each with N x N 

elements. The overall matrix is sparse, as three non-zero elements are located 

along the leading diagonal, and two further elements each N positions to either 

side of the diagonal, reflecting the essentially local nature of the equations. Fig-

ure 4.1.1 illustrates the form of a typical coefficient matrix. 

'Often referred to as the stiffness matrix, from the numerical modelling of mechanical 
structures. 
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IVZ 

N N 

• • . • •0000 
• . • • o.000 

N • • • • . 0 0 • 0 0 

• • • • 000.o 
• • . S 5 	0 0 0 0 5 

0000.. 000•• 

0,000••• 00•• 

N o o • o a 	o • . . a 
000.000...... 

0000•000•• 

Figure 4.1. Form of the 2D coefficient matrix. [o] marks zero elements, and [.] 
non-zero elements. This matrix is from an E Polarisation model, with N x N 
grid points (N = 5 in this case). 

The integral boundary conditions at the Earth's surface, (z = 0), and at the 

top of the half space, (z = d), fully populate the upper and lower diagonal sub-

matrices. Unfortunately, this destroys any possibility of utilising a straightfor-

ward sparse matrix compaction scheme, as large numbers of unrequired elements 

from the inner diagonal sub-matrices would also be stored. 

4.1.2 Gauss-Jordan Direct Method 

Poll's original algorithm solved the system of equations (4.1) by the Gauss-Jordan 

direct method, commonly found in any linear algebra textbook. The system 

is reduced to a triangular system and then back substitution leads to the final 

solution. This method has the advantage of providing a solution in a fixed number 

of steps (n3  + 0(n2) multiplications). 

However, like all direct methods, it can suffer from a lack of accuracy for 
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ill conditioned systems, and just as importantly in this study, it requires the 

complete matrix to be constructed and stored. Poll's code writes the matrix 

to the filesystem, and reads from it as necessary when carrying out the back 

substitution stage. 

4.1.3 Iterative Solvers 

Iterative solvers start with an initial guess as to the solution, 	and repeatedly 

relax it, until some criterion is satisfied. The superscript figure in parentheses 

denotes the iteration level, zero being the set of values before the relaxation 

commences. Each step can be represented by 

= Gu + k 	 (4.2) 

where 	represents the relaxation process and k is the residual. 

An iterative method is defined to be stationary if G = G 	for all n, i.e. 

the relaxation step is the same at all iterative levels. Only stationary iterative 

methods are considered in this thesis. 

The major advantage of iterative methods is that the coefficient matrix A 

does not need to be expressed explicitly. Instead, all the information contained 

in the finite difference equations and boundary, conditions is expressed as a set 

of rules governing the relaxation towards the final solution. 

Convergence 

Ideally any iterative technique should converge toü, the solution of (4.1), for any 

starting vector, 	The method is defined to be weakly convergent if the series 

converges for any 	and is strongly convergent if it converges to 

the same limit, independent of 	It is therefore necessary to show that the 

chosen method is strongly convergent as we wish the method to be stable, for all 

models. 
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Consistency 

An iterative method, once converged to a solution, should not then deviate from 

that solution with further iterations. If it does remain at the solution, then the 

method it consistent. 

Put formally, as by Young[81], the method (4.2) is consistent with the system 

(4.1) if and only if, for some n, (') is a solution, say ii of (4.1), then 	= 
= ... = 

Therefore, the related system 

(I—G)ü=k 
	

(4.3) 

can be derived from the iterative method (4.2) once convergence has been reached. 

Conditions for Convergence 

Smith[58] presents the general condition for convergence, the development of 

which follows. 

Defining the error 	in the nth  approximation to the exact solution as 

= ii - 	and substituting into (4.2) yields 

e' = (I - G)ü + 	- k 	 (4.4) 

and using the related system (4.3) 

e'' = Ge 	 (4.5) 

and therefore 

e 	= Ge° 	 (4.6) 

The series of iterates (1), 	 , u(),. . . will converge to to ü as n tends 

to infinity if 

	

urn e = 0 	 (4.7) 
n-+oo 
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However, since the desired behaviour is for convergence for arbitrary 	and 

e° the condition for convergence is 

	

urn G' = 0 	 (4.8) 
n—*oo 

Assuming that the matrix G of order m has m linearly independent ei-

genvectors g, i = 1, m, then these eigenvectors can be used as a basis of the 

rn-dimensional vector space. The error vector can therefore be expressed as a 

unique linear combination of these eigenvalues, thus 

e° 

= 	
ag 
	

(4.9) 

and therefore 

e(1) = Ge °  = 	aGg 	 (4.10) 

The definition of eigenvectors state that Ggi  = Aigi  if )j is the corresponding 

eigenvalue, so 

rn 
e(1) =ajAigi 	 (4.11) 

and 

e = a)g 	 (4.12) 

Therefore 	will tend to 0 as ri tends to infinity, for any 	if and only if 

jA j j < 1 for all i. This is equivalent to requiring the spectral radius p(G) of G 

be less than one. 

It is sufficient to require that G I I < 1 since p(G) < uGH (Young[81], The-

orem 3.4, p.32). 

Stopping Criteria 

The number of iterations required to allow convergence to a solution is potentially 

infinite, so some kind of criterion as to when to stop must be checked against 
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regularly. 

The chosen criterion must be 

an accurate assessment of the state of convergence of the problem, and 

inexpensive to compute, or it will dominate the whole process. 

These two requirements work against each other, in that the more accurate 

criteria are more expensive to compute. However, by only applying the criterion 

once, every ten iterations or so, the second can be satisfied. 

The essence of the criterion is that it should measure how much the solution 

is changing between iteration levels. As in all measurements of change, either 

the absolute or relative changes can be considered, and because the solution is 

discrete across the grid, these differences can be calculated on a local or global 

basis. 

The local absolute maximum change can be calculated by 

= rnaxi$) - 
i,J 

which is also known as the i-infinity (i) norm of the change vector. 

Similarly, a local relative maximum change can be calculated by 

(4.13) 

= max 
(p) - ( p-i) ui,j  

(p) ui, j  
(4.14) 

The corresponding global maxima are found by summing the terms in (4.13) 

and (4.14). For example, the global relative change can be expressed as 

E . 	(P) - (P-i) 
= /_.li,j ' z,j 	i,j 	, 	

. 	(4.15) 
v' 	(P) 
/__4,j i,j 

4.1.4 Simultaneous Relaxation 

Traditional Point Jacobian Relaxation 

Simultaneous relaxation indicates that all the elements ui of the solution column 

matrix u are updated simultaneously ; i.e. the (p + l)th iteration level depends 

only upon the pth  level ((P) 
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For non-boundary nodes this can be written 

T13- U ]3 , 	U 11  Uj4, Ui,j 	 (4.16) 

This simple dependency relation has two striking properties: 

It is straightforward to parallelise on a SIMD computer, as every node can 

be updated independent of all the others. 

It has been long acknowledged to be mathematically slow to converge. 

Before continuing with the parallel implementation of this method, I will 

briefly discuss its behaviour for this particular modelling problem. 

For convergence to be guaranteed, it is necessary that HG! < 1. In the point 

Jacobian, G takes the form 

	

G=D'(L+U) 	 (4.17) 

where D, L and U are, respectively, the diagonal, strictly lower and strictly upper 

elements of A. 

Taking the ith  equation of Au = b to be 

a 1x1  + a 2x2 	+ aiixi  + 	+ airn xm  = b 

then the ith row of G is 

ail  ai2 	a_1 	
... 

Choosing i, such that this row's 11-norm2  is the greatest for all i, and taking 

the infinity norm of the matrix, the Jacobian will converge if 

a1  + jai2j +... + 	+ 0 + 	+ 	+ aj  < jaii j 	(4.18) 

211x111 = xij + 1x21 + - - - Ixj, from Kreyszig[32], c•1024 
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This condition is better known as ensuring that the matrix A is strictly diag-

onally dominant, i.e. the modulus of the diagonal element must be greater than 

the sum of the moduli of the other elements in that row. 

The question is now whether the matrix A generated from the equations in 

Section3.1 is diagonally dominant or not. 

Examination of (3.9 shows that for diagonal dominance, I (C5  + i) I must be 

shown to be greater than (I C,+ I C + I C3  + I C4 ). Analysis of the derivation of 

these coefficients, (3.11) to (3.23) reveals that they are: (a) all positive; and (b) 

all purely real scalars. The former states that 

(4.19) 

Now, rewriting (4.18) as 

C5  < (C5  + i) 	 (4.20) 

and remembering that C5  is real, then (4.20) must be valid by the triangle in-

equality. Hence the interior points all lead to diagonally dominant rows in the 

matrix A, for all models geometries. 

In the B polarisation case, the side boundaries are governed by a Dirichiet 

boundary condition, in that X± = X±OO, so are automatic, in that the diagonal 

element is unity, and all the others in that row are zero. The asymptotic relation 

between U and 	in the E polarisation case complicates matters. (3.31) and 

(3.31) show that for diagonal dominance 

U(z_1) > U(z 	 (4.21) 

or, that the magnitude of U in a one dimensional solution is always decreasing 

as z increases. 

In a one dimensional Earth, the field is governed by the well known differential 

equation 

çci = iw 0aU. 	 (4.22) 

This equation holds true in layers of constant conductivity, and has solution 
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10, 
----------------------------------- 

10°  

Half Space 
- - Conductive Layer 

10 	 - - - - Resistive Layer 

10 6  

10 °  
0.0 	1.0 	2.0 	3.0 	4.0 

Depth (kin) 

Figure 4.2. U versus z in a one dimensional stratified Earth 

in the th  layer, as expressed by Levy et al.[36] 

U(z,w) = Aje1 	+ Be' 	 (4.23) 

where A and B (replacing their U and D to avoid confusion) are the amplitudes 

of up-going and down-going waves at the top of the th  layer, and 'y 	/iwtoaj. 

However, the recursive relations for the amplitudes, working from the bottom 

half space, where A = 0, up to z = 0, do not immediately lead to the desired 

result. 

Figure 4.2 illustrates JU(z)l calculated for three different models: 

half space 1 Qm, 

1km thick conductive layer (10002m) embedded 1km in the half space, and 

1km thick resistive layer (0.001lm) embedded 1km in the half space. 
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The half space shows the expected behaviour, in that there is no upward 

travelling wave (A is zero), so that there is a simple exponential decay in U. The 

resistive layer slows the decay with depth, but does not reverse it. The conductive 

layer exhibits the greater dissipation of energy, which starts in the host material, 

well above the boundary. This is due to the phase change of the reflected wave 

decaying as it travels upwards. 

Combining the evidence from this brief experiment, and a hand waving ar-

gument regarding, energy dissipation, I conclude that U almost certainly does 

decrease monotonically with depth, no matter the model configuration. 

The equations describing the coefficients for the top and bottom surface 

boundaries do not lend themselves to this analysis, but a check has been added 

to the subroutine which evaluates them. If a row is found to be non-diagonally 

dominant, then the operator is alerted and advised that the model may not con-

verge. In my experience, this warning has never been issued, and the Jacobian 

method has converged for every model with which it has been tested. 

Parallel Simultaneous Relaxation 

I will now describe in some detail the implementation of the Point Jacobian it-

erative solution on a SIMD computer'. Each model grid point is mapped to a 

(virtual) processor element in the computer, and the local field value and coeffi-

cients are stored on that element's memory.' Table 4.1 lists the High Performance 

FORTRANvariable names which are referred to by the code fragments. 

The first iteration requires an initial estimate, 	to be made. This is often 

set at zero, except where Dirichiet boundary conditions pertain, but the method 

is not dependent on 	and will converge for any initial values, so long as A is 

diagonally dominant. However, if 	is already close to the final solution, then 

fewer iterations will be required to reach satisfactory convergence. Therefore, N 

one dimensional solutions are calculated, one for each column of grid points in 

the model, and the iterative process is started from these values. In areas of the 

model distant from lateral changes in conductivity, the one dimensional values 

will approximate the final two dimensional solution, as discussed in Section 3.1.2. 

3See Section 2.2.2 for a full description of the 5IMD computing environment. 
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Variable Algebraic name Description 
F u(') Current field values 
Mew_F (p+1) Next iteration field values 
Source b Right hand term 
Self 

Left 

Right 

Up 

Down 
Surface 

a0 

a1 

a2 
a3 

a4 
R 

Coefficient for 

Coefficient for u 1 

Coefficient for 

Coefficient for u]_i 

Coefficient for u] 1 
Surface integral coefficients 

Table 4.1. 2D Arrays stored on processor elements 

The High Performance FORTRANCSHTFT4 intrinsic function operates on the 

field value array four times, as shown in the code fragment, Figure 4.3. 

4.1.5 Successive Relaxation 

The conceptual thrust behind the development of successive relaxation methods 

is to introduce newly calculated values .into the ongoing calculations as early as 

possible. Hence these are no longer simultaneous, in that all the values cannot 

be updated in one discrete step. 

The simplest example of successive relaxation, Gauss-Seidel, is defined by 

(p) 	(p+l) (p+i) (p) (p) 
~- u_ 	?Li+i,j, Ui,j+i. 

Traditionally, in a serial computer, this has been implemented as a 'iteration 

front' propagating from u1,1 down to UNN,NXN, with each line being updated 

at a different iteration level. Figure 4.4 shows this in action. 

The dependencies in (4.24) do not, in themselves, demand numerous coexist-

ing iteration levels in the array, but only two. 

By labelling the elements as either black or white, a modified scheme can 

be followed. The values of all the black elements are updated simultaneously, 

'See Regular Communications on page 29 for a description of CSHIFT. 
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C 	Simultaneous relaxation of F(Ny, Nz) 

DO Iteration = 1, Max_Iteration 

C 	Now update the central points 

New_F = Factor * (Left * CSHIFT (F, SHIFT=-1, DIM=1) + 
Right * CSHIFT (F, SHIFT1, DIM1) + 
Up * CSHIFT (F, SHIFT=-1, DIM=2) + 
Down * CSHIFT (F, SHIFT=1, DIM=2) - Self * F) 

C 	Check for convergence 

IF (Residual .LT. Tolerance ) THEN 
RETURN 

END IF 

END DO 

Figure 4.3. Five point High Performance FORTRANJac0biaII Iteration Step 

using the initial values of the surrounding elements. The newly calculated black 

values are now available for the update of the white elements. These two updates 

constitute one iteration, as both are required to update the whole array. 

This act of labelling the elements is known as ordering the iteration, and many 

different patterns exist, depending on the nature of the problem. The traditional, 

serial ordering presented in Figure 4.4 is known as the natural ordering. Ortega & 

Voigt [45] present an excellent review of many ordering schemes for a wide range 

of problems, including a three coloured ordering for nine point finite differences. 

For this particular problem, two orderings are applied; horizontally banded 

and chequer board, each of which are described below. 
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12345 
2345 
345 
45 
5 

Figure 4.4. The Gauss-Seidel iteration front. The figures denote the iteration 
level at which each element in the array is first updated. 

(b) 

(c) 

Figure 4.5. 2D Ordering Scheme: (a) Horizontal banding (b) Partitioned into 
black and white ; (c) Black stacked on top of white 
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Horizontally Banded Ordering 

This ordering, as shown in Figure 4.5(a), was chosen as an intermediate step be-

fore attempting chequer board ordering, because it results in a simpler remapping 

of model nodes to processing elements. It also extends the partitioning already 

enforced by the horizontal surface boundary conditions. 

The modified iteration dependencies can now be written as 

Black +— 	u,i_1,  ul,j,  t41 , u] (4.25) 

White 	c+i) — 	(p+1) (p+l) 
i-1,j' , (4.26) 

where the black elements are updated before the white. 

A High Performance FORTRANma5k5, Black, can be created with the same 

pattern as Figure 4.5(a), and two successive point Jacobian iterations, one us-

ing the WHERE (Black) . . . END WHERE and the other using the negated WHERE 

NOT. Black) ... scoping constructs. 

However, splitting the iterative process into two sequential updates removes 

one degree of parallelism from the operation. The WHERE statements turn off 

half of the processing elements for each sub-iteration, resulting in a great drop of 

machine efficiency, as it is highly unlikely that the allocation of virtual processors 

to physical processors in the computer is such that all physical processors are busy 

for both sub-iterations. 

This problem can be overcome by a non-trivial remapping of model grid nodes 

to virtual processors. Figure 4.5(b) and (c) illustrate this mapping. The two col-

ours are segregated, and stacked white on top of black, giving each virtual pro-

cessor one grid point of each colour. Under this allocation, all physical processors 

will be active, no matter which colour of grid nodes are being updated. . 

Instead of resorting to masks, it is simpler to operate on array sections'. For 

example, to select all the black nodes from the array use G (: ,  :, Black), and 

for white use G(: , : , White), where G is the remapped array of values, and 

'See Scope and Masks on page 29. 
'See Array Sections on page 30 
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Black and White are scalars, valued zero and one respectively. 

From this point onwards, I will use the following notation to specify local data 

communication within a parallel data array. Individual elements are denoted 

the two dimensions, (YZ), of the model grid having been remapped to 

three dimensions in the parallel computer. The third dimension contains the col-

our information of each node. The central element in this local coordinate system 

is labelled urn, and since I am only considering nearest neighbour interactions, 

the range for these subscripts is 0 < 6 < 2. 

After transforming, the horizontally banded dependencies are 

(p+1) 	 () Black 	 (4.27) '-'rn 	_ 11102, 

(p+1) 	(p+l) (p)(p+1) 	 (4.28) White z-' 	- 11110 , I'0ii, 11120 

These are much more complex than before the remapping, with some of the 

operations, (Black102 and \'Vhit.e120 ), requiring a shift along two dimensions, and 

therefore a longer time to complete the data communication. This apparent in-

crease in communication overhead is overestimated, as all the lix translations 

are simply moving data between two virtual processors, both of which are alloc-

ated to the same physical processor. In fact, all communication along the third 

(colour) dimension takes place in local memory, not between physical processors. 

Chequer Board Ordering 

Another regular remapping of the nodes to processors as shown in Figure 4.6 

results in a higher proportion of new iterate to be used in the calculation of the 

current iteration level. 

Special cases have to be made at the top and bottom of the model, where 

the integral boundary conditions (only the bottom for B Polarisation problems) 

demand a different ordering. 

Black: 

(p+1) 	 ii 122' 11111 	 (4.29) 11111 	012 	112i 1*~212, 
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(a) 	 (b) 

(c) 

Figure 4.6. 2D Ordering Scheme: (a) Chequer banding (b) Partitioned into 
black and white ; (c) Black stacked on top of white 

White: 

(p+1) 	(p) 	(p) 	(p) 	(p) 	(p) 
v111 	4 	p010, 116, 1/210, 110,  1/111 	 (4.30) 

4.1.6 Successive Over-relaxation 

Successive over-relaxation is a variant of the Gauss-Seidel which can improve the 

rate of convergence of the function u by adding an amount wZ.u, where Lu is 

the change due to the standard Gauss-Seidel iteration. The quantity w is termed 

the acceleration parameter or relaxation factor. 

It can be shown that this converges for w < 2, for example in Varga[64], yet 

the exact choice of w is crucial to the effectiveness of the method. Values less than 

unity lead to underrelaxation, more than unity to the desired overrelaxation. and 

when w = 1 the method degenerates to Gauss-Seidel. There is an optimum value, 

Wopt for most rapid convergence, but its computation is inordinately expensive 

for these forms of problem. Unfortunately, the convergence rate does not vary 
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symmetrically around Wopt.  It improves gradually as w approaches W0pt  from 

below, and rapidly deteriorates for Wopt  <w < 2. 

4.1.7 Iterative Starting Values 

Unlike the serial Gauss-Jordan matrix inversion algorithm employed by Poll, 

these iterative solutions can be helped by setting the anomalous field values 

before iterating to the final solution. In fact, it is common practice to solve a 

system directly, and then apply an iterative technique to reduce rounding errors 

in the original solution[18]. 

Poll's one dimensional solutions for the y = ±oc boundary conditions essen-

tially follow those of Schmucker[56]. She only solves for F, and sets the anomal-

ous fields to be F = 0 and F+ = F+ - F. As each one dimensional solution is 

strictly independent, I have implemented a parallel version which solves for each 

column in the grid simultaneously. The anomalous field is then set by subtracting 

F from each solution. 

4.1.8 Parallel Integral Evaluation 

The five point scheme breaks down at the edges of the model grid, for two reasons. 

One of the points will always be missing, but this can easily be overcome by 

setting the appropriate coefficient to be zero, so that when the whole field array 

is shifted the product for that imaginary element will be zero. 

The integral boundary conditions employed at the bottom, and the top in E 

polarisation, require wider data communication between grid cells. The mechan-

ics of calculating the surface integrals is the same for the top and bottom, so I 

will only describe how the top layer is evaluated in the E polarisation. 

The data dependencies inherent in (3.34), (3.35) and (3.36) can be written as 

-. . , 	u ,1 	 (4.31) 

except that u is replaced by Uj 	for (3.35) and (3.36). The formu1 can 

also be written in a general form 
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Surface field values 
F(2:y-1, 1) 

2 3 4 ... 	 ... Nv-i 

"Spread" Ny-I Copies 

2 2 	1 	4 	... --S 	Ny-I 	I 
3 2 	3 	4 	... . 	Ny-I 

4 23 	4... Ny-I 

Ny-I 	1 2 	3 	4 	... ... 	Ny-I 

Multiply by the Coefficients 
and "Sum" Along Rows 

	

I 2 	 23 4... 	 Nv.I1 

	

s 	23 

	

4 	---- 	2 3 4 ... 	 ... Nv-I I 

2 3 4 ... 	 ... Ny-I 

Figure 4.7. Evaluating the two dimensional surface integral in parallel. 

= -- ( 	Ru 1 + b,1'u 	+ c..i ). 	 (4.32) 
a,1 \m~I-i 	 J 

The SIMD computing model does not allow the central points and these bound-

aries to be calculated simultaneously, so the majority of processors (allocated to 

central points) are available to help when the integrals are being evaluated. To 

achieve this, the workload is distributed by performing the elemental matrix mul-

tiplication over the whole virtual processor space. 

Every point along the surface is updated simultaneously by constructing a 

two dimensional matrix of the surface field values, which is conformant with the 

coefficient matrix R in (4.32). Each product Ru is then calculated locally on 

each virtual processor, and the summation is made along the rows of the resulting 

array, as illustrated in Figure 4.7. 

The High Performance FORTRAN SPREAD intrinsic function allows the one 

dimensional array section F(2 : Ny-i, 1) to be replicated to form the two dimen-

sional array. The SUM reduction operator7 with the appropriate dimension spe-

cified then performs the summation, and reduces back to a one dimensional array, 

7See Reduction Operators on page 28. 
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Figure 4.8. Three dimensional field component storage scheme 

which is substituted into (4.32) and finally assigned to New_F(2:Ny-1,1). 

4.1.9 Three Dimensional Array Storage 

The two dimensional algorithm only involves the solution of a scalar quantity, 

from which is deduced the other two field components. The three dimensional 

model, on the other hand, solves for all three components of the magnetic field. 

X. Y and Z. The finite difference equations for the interior points given in 

(3.42), (3.43) and (3.44) allow the independent updating of each component in a 

Jacobian solver. 
In practice most models seem to have approximately the same number of 

grid points in the two horizontal axes, but the MasPar has a rectangular array 

of processors. Placing the three components on three sets of processors keeps 

more processors busy than arranging them as three elements in a local array on 

each processor. Figure 4.8 shows this partitioning for one horizontal plane in a 

L x M x N model grid. The third dimension in the diagram does not represent 

z in the model, but the coefficients Cjjk in the equations. 

When cross component terms are to be evaluated, a simple CSHIFT with —L 

as an argument for the x axis will bring all the Y values to their corresponding 

X components, and so on. 
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4.2 Two Dimensional Task Farm 

The major thrust of this chapter has been in describing the fine grained paral-

lelisation of the two and three dimensional codes. However, since responses at 

multiple inducing frequencies are almost always calculated, and each solution is 

in practice independent of the others, it is possible to implement a classic task 

farm, as described in Section 2.5.3. 

This approach required minimal changes to the original serial code, since the 

models are being executed on the same architecture. These changes were as 

detailed below. 

A source and a sink subroutine had to be written. The source reads in the 

model input file. counts how many tasks (models and periods) there are. 

and issues a task number to each worker as they became available. The 

sink was only necessary as a stub for the PUL-TF library. 

The main part of the program had to be able to pick an individual model and 

period out of the input file at random, and not solve each one sequentially 

in a loop. 

All file I/O had to be modified to read and write to uniquely named files, as 

several instances of the same code would be running simultaneously. The 

task number was used as an extra extension to the file name. 

Appendix C contains code excerpts for most of these changes. The file I/O 

changes were critical since the workstation cluster operates on a shared filespace. 

That is, the same code running on two different machines reads and writes to the 

same directory. 

4.3 Model Performance 

4.3.1 Two Dimensional Model 

Figure 4.9 shows how the parallel Point Jacobian solver converges. Both 

the axes are on a logarithmic scale to make the differences visible. The steady 
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Figure 4.9. Convergence rates for the Point Jacobian parallel solver starting 
with zero anomalous field and with the one dimensional solutions. 
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Figure 4.10. Convergence rates for the parallel Point Jacobian and Gauss-Seidel, 
both Horizontal Banding and Chequer Board, iterative schemes. 

decrease is as expected, with the same fractional reduction in iteration error for 

each decade of iterations, as discussed for these methods by Forsythe[17]. 

Setting the initial guess for 	to be the one dimensional soundings at each 

mesh column has the effect of shifting the curve down a fraction. However, 

this is not an acceleration, since the gradient has not been changed. Of course, 

convergence is reached more quickly, since the solver is given a head start. All 

the iterative solutions in the rest of this section apply this initial estimate for the 

anomalous field. 

Acceleration is evident in Figure 4.10. The solid curve represents the basic 

point Jacobian method, as seen in Figure 4.9. Both of the Gauss-Seidel meth-

ods, horizontal banded (dotted curve) and chequered (dashed curve) mappings, 

start off making bigger changes to the iterates. Half way to convergence, the 

Jacobian begins to change the iterates more, but the Gauss-Seidel methods reach 

the stopping criterion earlier. 
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Figure 4.11. Convergence rates for the parallel Chequer Board Gauss-Seidel 
and Successive Overrelaxation (w 1.1) iterative schemes. 

The difference between the Jacobian and the horizontally banded Gauss-Seidel 

is greater than the extra advantage of the chequer board mapping. Analysis of 

the ratio of iterate levels in the update stages suggests the horizontally banded 

could require approximately two thirds the iterations of the Jacobian. Similarly 

the chequer board mapping should reduce this fraction to one half. This par-

ticular model attained convergence in 80% and 75% of the Jacobian iterations 

respectively. These ratios are dependent on the model structure, especially the 

proportion of horizontal boundary points to body points. For example, the model 

in Table 4.3 attained convergence within 64% and 55% of the Jacobian iteration 

count. 

At first, the notion of applying successive over relaxation to the chequer board 

mapping offered the prospect of significantly more rapid convergence. However, 

it was soon found that any choice of w much greater than 1.1 was susceptible 

to divergence for some models. Figure 4.11 shows that this method (dotted 
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Computer Solver Iterations Time (s) 
Iteration 
Time (ms) 

Sparc2 Gauss-Jordan - 2 - 
Sparc2 Chequered G-S 494 3.5 7 
Sparc2 Banded G-S 528 4 7 
Sparc2 Chequered S.O.R. 509 4 8 
Sparc2 Jacobian 627 9 6 
CM200 Chequered G-S 494 8 16 
MasPar Chequered G-S 494 8 15 
CM200 Banded G-S 528 8 15 
MasPar Banded G-S 528 8 15 
CM200 Chequered S.O.R. 509 9 17 
MasPar Chequered S.O.R. 509 9 17 
CM200 Jacobian 627 9 14 
MasPar Jacobian 627 9 14 

Table 4.2. Performance for two dimensional (23 x 9) model 

curve) does indeed accelerate the Gauss-Seidel (solid curve), but with such a low 

relaxation parameter, the number of iterations is not significantly reduced. 

Although Figures 4.10 and 4.11 show that the S.O.R. algorithm requires the 

fewest iterations to converge, it is not the quickest in real calculations. This can be 

attributed to the greater amount of work required in each iteration. Had larger 

acceleration parameters resulted in convergence, then this extra multiplication 

and addition may have been worth while. Tables 4.2 and 4.3 show that in terms 

of wall clock time, the chequer board, and sometimes the horizontally banded, 

Gauss-Seidel is faster. The last column in these tables indicates that there was 

indeed a time penalty per iteration for all the machines. 

Tables 4.2 and 4.3 summarise the performance of the two dimensional code on 

a variety of different hardware for two models. Comparing the execution times 

on the Sun Sparc2 serial workstation, it is obvious that the direct Gauss-Jordan 

solution performs well on this type of machine, being an order of magnitude 

faster for the large model. For smaller models, the typical workstation running 

this code at least as fast as or faster than the parallel supercomputers. However, 

as Table 4.3 shows, it starts to fall behind the iterative solutions for larger and 
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Computer Solver Iterations Time (s) 
Iteration 
Time (ms) 

CM200 Chequered G-S 4306 69 16 
CM200 Chequered S.O.R. 4251 74 17 
CM200 Banded G-S 5012 80 16 
CM200 Jacobian 7781 105 14 
Sparc2 Gauss-Jordan - 129 - 
MasPar Chequered G-S 4306 129 30 
MasPar Chequered S.O.R. 4251 140 33 
MasPar Banded G-S 5012 145 29 
MasPar Jacobian 7781 200 26 
Sparc2 Chequered G-S 4306 1257 292 
Sparc2 Chequered S.O.R. 4251 1339 315 
Sparc2 Banded G-S 5012 1464 292 
Sparc2 Jacobian 7781 1891 243 

Table 4.3. Performance for two dimensional (123 x 66) model 

larger models. 

It is also interesting to note how the time per iteration changes for each of the 

SIMD machines between the two models. The CM200's times remain constant. 

whereas the MasPar takes approximately twice the time for each iteration of 

the larger model. Referring back to Section 2.6, it becomes apparent that this 

discrepancy is due to the capacities of the two machines. The MasPar has had 

to simulate two virtual processors on each physical processor to accommodate 

the larger grid, but the CM200, with double the processor count does not need 

to. If the number of vertical grid points had been reduced to less than 64 (the 

processor array is 128 x 64) then the MasPar's times would have been equivalent 

to the C1200. This is a perfect illustration of the need to design suitable grids 

for these types of computer. 

4.3.2 Three Dimensional Model 

The three dimensional model's performance exhibited much the same beha-

viour as the two dimensional one discussed above. Table 4.4 summarises some 
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Computer Model Solver Iterations Time (s) 
Iteration 
Time (ms) 

AXP 7 x 7 x 7 Serial G-S 81 2 25 
Sparc2 7 x 7 x 7 Serial G-S 81 11 136 
CM200 7 x 7 x 7 Jacobian 134 23 172 
MasPar 7 x 7 x 7 Jacobian 134 53 400 

AXP 15 x 15x10 Serial G-S 349 116 330 

CM200 15 x 15 x 10 Jacobian 596 228 380 

MasPar 15 x 15 x 10 Jacobian 596 367 620 

Sun 2000 15 x 15 x 10 Serial G-S 349 401 1150 

Sparc2 15 x 15 x 10 Serial G-S 349 685 1960 

CM200 29 x 29 x 9 Jacobian 671 487 730 
AXP 29 x 29 x 9 Serial G-S 404 1587 3930 
Sun 2000 29 x 29 x 9 Serial G-S 404 3132 7750 

Table 4.4. Performance for three dimensional models 

timings on a variety of hardware. Once again, it's only for the larger models that 

the SIMD machines are faster than the serial machines. 

The MasPar could only solve the smaller models, performing less than twice 

as fast as a typical desktop workstation for the medium sized grid. The Mas-

Par's relatively poor performance, as measured against the CM200, is due to its 

two dimensional processor array. The CM200, with its dynamic interprocessor 

communication network is more efficient. 

The largest model has the maximum number of grid points which can be 

accommodated on the CM200. When this machine is running at full capacity, 

i.e. optimum load balance, it is significantly quicker than even a highly specified 

serial machine. However, it is limited by these constraints of memory limits. 

A closer examination of the computational profile of the three dimensional it-

eration steps reveals that the same proportion of time is being spent in each task 

for both the serial and parallel codes. Assuming the parallel machines are pro-

cessing the interior points efficiently, then this equivalence indicates the boundary 

condition surface integrals evaluations are also efficient. 
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Subroutine Serial Parallel 
Thin Sheet & Top 32% 35% 
Interior 42% 41% 
Bottom 26% 22% 
Residuals - 2% 

Table 4.5. Profile of serial and parallel three dimensional iteration step for 
15 x 15 x 15 model. 

Workstations Execution Time Speed Up 
1 	 143 	 1.0 
3 	 58 	 2.5 
5 	 40 	 3.6 

Table 4.6. Performance of the two dimensional task farm. 

4.3.3 Task Farm 

It proved difficult to gain consistent performance figures for the task farm runs, 

as each workstation was a resource shared between many students. One or more 

workstations could be busy with another CPU intensive task without the source 

process being aware, thus making load balancing problematic and haphazard. 

Table 4.6 shows the execution times and speed up factors for a model run 

of ten periods. The five workstation task farm achieved a lower than expected 

speedup (3.6 as opposed to closer to 5) because one workstation solved two larger 

grids. The others were then left idle, waiting for the last task to complete. 

The ease of running the task farm version of the two dimensional code, instead 

of submitting jobs to a batch queue on a SIMD machine, prompted me to make 

the task farm my first choice for running routine models. 



Chapter 5 

Two Dimensional Gridding 

Strategies 

5.1 What Makes a Good Grid? 

The validity of any particular grid is a complex concept. Several criteria, over 

and above the conductivity structure, have to be weighed against each other 

Different programmes, using different models, will have different error re-

sponses to the same grid. 

The accuracy of the generated responses. Generally, the higher the grid 

point density, the more accurate the calculated response will be. 

The computation time allocated to the particular problem. Grids with 

numerous points will take longer to solve than sparse grids. 

The dominant consideration is the conductivity structure itself. Combined 

with the temporal frequency of the field, the structure creates a distribution 

of skin depths over the model space. Parkinson{47}, along with many others. 

eloquently introduces the concept of the electromagnetic skin depth. It is defined 

as 

11 

s=v 	 (5.1) 
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where w is the angilar frequency of the field and a is the conductivity. Consider-

ing B as a damped wave, propagating in a conductor, with magnitude (derived 

from the diffusion equation) 

B - Boe_z e_1t_9) 	 (5.2) 

it becomes apparent that for every increase in depth by s, the amplitude decreases 

by a factor e and the phase changes by one radian. The skin depth, combining 

the conductivity of the host medium and the frequency of the field, is therefore 

the scale length against which model grids are measured. 

Weaver[73] gives some guidance on grid generation, which is particularly relev-

ant to finite difference solutions. In paraphrase, he presents these three guidelines 

Grid spacing should be no more than one quarter a skin depth, except more 

than two skin depths away from a conductivity boundary. Finer spacing is 

desirable very close to the boundary. 

The grid should extend, horizontally, at least three skin depths away from 

a vertical conductivity boundary. 

The grid should be locally symmetric around conductivity boundaries, and 

should vary as smoothly as possible. with no more than a doubling or 

halving anywhere. 

Wannamaker et al.[69] present the following, more detailed, guidelines in the 

user documentation for their two dimensional finite element model. 

Adjacent element dimensions should not change by more then a factor of 3 

to .5. 

Element dimensions should be approximately 614 in the vicinity of changes 

in resistivity. 

No single resistivity block should be less than 4 elements wide or 3 elements 

thick to fit galvanic components of the field. 
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2 or 3 6 away from variations in conductivity element dimensions may be 

increased to the order of 6 of the medium. 

Vertical element dimensions may be increased approximately exponentially 

downwards, but the maximum should still be held to 1 or 2 6. 

The mesh should extend horizontally to 8 or 10 6 away from the nearest 

2-D structure, or 10 to 12 times the height of the inhomogeneous structure. 

The bottom mesh boundary should be extended to 8 to 10 6 of the back-

ground conductivity from the air interface, or 10 to 12 times the width of 

the inhomogeneous structure. 

Even following these guidelines, some additional tuning may be required after 

inspecting the results and any estimates of errors which the model provides. 

Wannamaker et al.[70] experimented with different grid geometries to overcome 

problems with differing machine precision. 

5.2 Automatic Grid Generation 

5.2.1 Review 

The construction of grids has long been attempted by the modelling programs 

themselves. This is seen as increasingly important, as the size and complexity 

of models has grown over time. The advent of three dimensional modelling on 

generally available computing hardware will soon be adding to the demand for 

automatic grid generation. At the moment. the number of grid points is still small 

for these three dimensional models, and a degree of intelligence is required to 

ensure that the nodes are placed where they are most required, as the traditional 

criteria break down in a node famine. 

As discussed in Chapter 1, geoelectromagnetic numerical models fall into sev-

eral distinct categories. As far as gridding is concerned, another division is ap-

parent: whether the grid is Cartesian or not. The bulk of research in automatic 

gridding in other disciplines, such as computational fluid dynamics, is directed 
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Figure 5.1. Cartesian grids in two dimensions: (a) Regular; (b) Irregular; 
(c) Disconnected. 

towards non-Cartesian grids in two dimensions, and disconnected Cartesian grids 

in three dimensions. 

Madden's EMCAL [38] program of 1971 allowed the user to define a sparse 

grid, consisting mainly of the block boundaries and site locations. EM CAL would 

then examine the grid spacing, and insert more lines of nodes if required. The 

original grid was not altered, merely lines of grid points added half way between 

existing lines. This simplistic approach had the unfortunate result of rapidly 

varying grid spacings, often closest to the conductivity boundaries, thus clearly 

violating Weaver's condition (3). 

Poll[48] devised a method which took the opposite approach, in that it gen-

erated a grid automatically, and then allowed the operator to make adjustments 

if he so wished. The algorithm tries to follow the guidelines set out above. It 

treats the problem as that of generating two independent one dimensional grids, 

one for the horizontal spacings and one for the vertical spacings. 

The conductivity structure is compressed along one axis, as shown in Fig-

ure 5.2, to form a series of segments from one conductivity junction to the next. 

Independent local grids are grown outwards from the segment boundaries, with 

the spacing starting at one quarter of a skin depth and increasing exponentially. 

These local grids are then reconciled to form one grid covering the whole axis of 

the model. She describes the process in more detail in her Ph.D. Thesis[481. 

The Geotools Corporation gives the following prominent warning in their user 

manual[22]: 

Although Geotools attempts to provide the user with some guidance 
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Figure 5.2. Reduction of model structure to one dimension. 

regarding the construction of a computationally valid mesh, the user 

must exercise care to ensure that the earth model is properly discret-

ized. 

They then go on to repeat Wannamaker's guidelines[69], and introduce their 

own algorithm based upon them. It starts with the coarsest grid which accom-

modates the conductivity structure and then repeatedly examines the rows and 

columns to determine which require to be split. The splitting criteria are weighted 

averages calculated along only one edge of the row or column, and they admit 

that this can cause noticeable problems in the top row. Their algorithm is delib-

erately generous with grid point allocation, with the aim of depending upon the 

operator to then manually remove lines where they are not required, if the mesh 

size is required to be constrained to a minimum. 

5.3 Elastic Membrane Grid 

5.3.1 Why another algorithm? 

The massively parallel versions of the modelling programmes developed in Chap-

ters 4 can exhibit wild fluctuations in efficiency over a narrow range of numbers of 
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Figure 5.3. Points on an Elastic Grid. r j  are the elastic coefficients. xi  are the 
grid point locations. . are fixed, unmovable points. o are floating points. 

allocated grid nodes. It can often be vital to control the numbers of nodes, so as 

to avoid a dramatic drop in efficiency as the problem's load balance' deteriorates, 

as is illustrated in Section 4.3.1 on page 72. The automatic and semi-automatic 

gridding algorithms discussed do not allow fine control of the number of grid 

points, merely having maxima dictated by size of arrays allocated at compilation. 

An algorithm which can most usefully distribute a fixed number of grid nodes 

over the model space was therefore developed to overcome this problem. 

5.3.2 Grid Generation 

Since the modelling programmes require a connected Cartesian grid, e.g. Fig-

ure 5.1(b), each dimension can be treated independently. The vertical dimension 

is a special case, but can be handled elegantly by the same algorithm. 

As the title suggests, a series of linearly connected grid points is stretched over 

the conductivity structure. Variations in spacing are achieved through varying 

the elastic coefficients over the model. I will first develop the relaxing algorithm, 

by which the points are distributed over the model, and then detail how the 

variations in the elastic coefficients are calculated. 

Elastic Relaxation 

A prescribed number, N, of grid points, hereafter referred to simply as points', 

are distributed evenly along the length of the axis in question. The two end 

points are fixed at their initial positions, and all the others are 'floating'; i.e. 

given the freedom to vary their position. 

'See Section 2.3 for a discussion of this problem. 
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Only if the model space is a half-space, and the elastic coefficient invariant 

along the line, will the equal spacing of the points represent a system with no 

elastic strain. The net stress at a floating point can be calculated by taking the 

difference of the opposing elastic stresses on each side of the point, thus 

= 	- x_1) - Tli(Xi+l - x) 	 (5.3) 

The point xi  is then displaced to a new location x, reducing the elastic strain 

according to Hooke's Law 

x=x—aç,2<i<N 	 (5.4) 

where a is a scaling factor, generally set to 0.5. It can also be thought of as 

having a damping influence if it is less than unity. If this value is set too high, 

then instabilities and oscillations will result; too low and the convergence to 

equilibrium will be too slow. 

Each floating point is therefore displaced in turn, thus reducing the total stress 

in the system. A check on the displacement must be made. however, to ensure 

that sequential points do not 'hop' over each other. If this is the case, the current 

point is moved to within 90% of the distance to the point it wishes to cross. 

The serial FORTRAN 77 implementation updates the position of each point 

in turn, so that the following point, for example, will be updated using the new 

position of the previous. After all the floating points have been displaced, a 

convergence test is applied to decide whether the membrane has reached equilib-

rium. The most straightforward test is to compare the largest displacement to a 

required tolerance, and succeed if it is smaller. 

Although not explicitly included in Weaver's grid criteria, all conductivity 

boundaries must be sampled by a grid point, which complicates this algorithm. 

In theory, fixed points could be initially allocated, and being fixed would be 

guaranteed to remain at the conductivity boundary right through to conver-

gence. However, this would prohibit floating points migrating across boundaries, 

resulting in local minima of stress being found, instead of near global minima. 

Two strategies for allowing floating points to cross boundaries were con-

sidered. Firstly, potential wells, which can be thought of as sticky patches could 
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be located at the conductivity boundaries. These would act as traps for points, 

and could be implemented by requiring a large net stress to build up at that 

point before allowing it to be displaced, as shown in (5.5). 

x— a, 	i>cO 	 (5.5) Xi 	
Is 

Xi 	I iI <(o 

This would undoubtably help keep points at the required locations, but could 

not guarantee their presence, as there is no way to unconditionally replace a point 

once it has left the trap. 

The second approach, which is the one implemented, is to simply allow all 

points to float, and to rely on the fact that the relaxed state will exhibit a high 

density of points around the boundary 2 . The closest point is then moved and fixed 

to the exact boundary location, and the strain relaxed again. However, when two 

adjacent points are chosen to be fixed to boundaries, the second point is instead 

moved to between them, set free to move, and its neighbouring point is fixed to 

the second boundary. This special case guarantees at least one internal grid point 

in any small conductivity blocks, which otherwise may have been overlooked. 

This approach has the advantage of simplicity and does not interfere with the 

search for the global stress minimum. It is also computationally inexpensive, as 

only a handful of iterations are generally required for the secondary relaxation 

stage. 

It is equally apparent that field measurement locations must also be sampled 

by grid points, and these can be inserted into the grid in the same manner as 

those at conductivity boundaries. 

Estimation of the Elastic Function 

Each dimension is treated as a projection of conductivity boundaries, resulting 

in a line segmented into different skin depths. The chosen skin depths are the 

minima encountered on either side of the boundary. This is analogous to the 

scheme developed by Poll[48] and described earlier. Figure 5.2 illustrates the 

21YVeaver's first criterion 
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Figure 5.4. Linear and cubic approximations to the elastic function 

procedure. I will first of all develop the method for the horizontal dimension, and 

then make the necessary adjustments to deal with the special case of the vertical. 

Each segment therefore has a skin depth specified at each end, and another, 

local skin depth in the interior. This algorithm departs from that of Poll, in 

that it uses these skin depths to generate a grid density function along the line, 

instead of individually placing points inside each segment. 

The fact that the selected skin depths do not vary across a segment boundary, 

ensures that the elastic function is continuous. This will help result in a smoothly 

varying grid density across the boundary. 

The function should have local maxima at the conductivity boundaries, and 

local minima between them. The obvious way forward would be to construct a 

series of linear functions, connecting the proscribed maxima and minima with 

straight line approximations. However, this would have the unfortunate property 

of making the elastic function piecewise smooth, destroying some of the symmetry 

around the boundaries. 

In order to preserve global smoothness, third degree polynomials. with sta-

tionary points at the maxima and minima were calculated. Figure 5.4 shows 

the linear and cubic approximations for one half segment, from the internal local 

minimum at xo  to the right boundary at x. 
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The cubic approximation can be found, since x0, xi , y0  and Yi  are all known. 

The constraints are 

f(xo) = ax + bx + cx0  + d = Yo 	 (5.6) 

f(xi )= ax, +bx+cxi +d = Yi 	 (5.7) 

f'(x) = 3ax2  + 2bx + c = 0 at x = x0  and x = 	(5.8) 

Substituting x0  = 0 and some simple algebra gives d = y, c = 0, b = —ax1  

and 

- YiYo a— 3_,2 xl 2 x1  
(5.9) 

The nonzero coefficients a and b, along with yo,  y j  and x1. are stored for each 

half segment, so that the elastic coefficient can be calculated anywhere along the 

grid. 

The actual values of Yo  and  yi  need to be determined from the skin depths, 

in a manner that preserves the relationship between skin depth and grid spa-

cing. Since the grid spacing is directly proportional to the skin depth, the elastic 

coefficient must be inversely proportional to the skin depth. 

Figure 5.5 shows a typical horizontal grid generated by this algorithm. 

Vertical Grid Generation 

As the electromagnetic fields diffuse into the Earth. their amplitudes diminish 

in a fashion linked to the skin depth. Therefore, the grid for the vertical axis 

should become more sparse as depth increases. The finite difference approxima-

tion still requires, however, that the spacing be regular and more dense around 

conductivity boundaries. 

The elastic membrane algorithm can generate such grids, simply by altering 

the elastic coefficient function. The cubic approximation developed for the hori-

zontal grid ensures that the spacing around the conductivity boundaries is valid, 

and the elastic function can be made to decrease with depth by applying an en-

velope. This envelope is simply a linearly decreasing function, ranging from 1 at 
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Figure 5.5. Example elastic function calculated at the grid points, denoted by 
the impulses. The S's are the skin depths in each partitioned region. 

the surface to 0.1 at the base of the model. 

5.3.3 Grid Verification 

As it stands the elastic membrane algorithm does not render operator intervention 

unnecessary. Some method of verifying the grid is required, and a measure of its 

validity presented to the operator, who can then take further action to insert or 

adjust the position of individual points. 

The verification takes several steps, with each contributing a weighted score. 

o The grid spacing is checked to vary by no more than a factor of two. 

The grid points on either side of a conductivity boundary are checked to 

be at least 90% symmetric. 

The grid spacing, around a conductivity boundary, is no more than one 

quarter of a skin depth. 
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No grid spacing is more than two skin depths. 

5.4 The COMMEMI 2-D Project 

The COMMEMI, or COmparison of Modelling Methods in Electro- Magnetic In-

duction problems, was first proposed by Zhdanov at the 6th  IAGA Workshop on 

Electromagnetic Induction in the Earth and Moon in 1982. It aimed to: 

estimate the accuracy, effectiveness and universality of existing modelling 

programs; 

select the most suitable programs for the International Laboratory of Nu-

merical Electromagnetic Modelling at the University of Oulu in Finland; 

generalise methods of model design and data presentation: 

determine directions for further development of modelling methods. 

The relevance of COMMEMI to this thesis is that it supplied a series of seven 

standard models, which were made widely available in [83], [85] and [84]. The 

models vary from a simple conductor buried in a resistive host in Figure 5.6(1) to 

a very complex regional structure in Figure 5.6(5). The model in Figure .5.6(0) 

was added to the original six, after Weaver, LeQuang and Fischer[75][76] found 

its analytic solutions. 

5.5 Comparing Grids 

Poll's[48] code was altered to treat every surface grid point as a field measurement 

site, in order to force the calculation of apparent resistivity and phase all along the 

model. Choosing a limited number of static sites common to all the models would 

have left the possibility of missing variations away from these sites, especially at 

higher frequencies, where the shallow skin depth allows localised perturbations 

to the background field. Subroutines to read in grids from a file were also added. 

to enable testing of manually generated meshes. 
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Figure 5.7. COMMEMI 2D-0 Poll and Weaver grids: Apparent Resistivity 

Poll versus Weaver's COMMIEMI Grid 

Figures 5.7 and 5.8 show the B polarisation solutions for the first COMMEMI 

model (Figure 5.6(0)). Weaver's grid is taken from his published results[72}. 

The two series of points obviously fall on the same locus, for both the apparent 

resistivity and phase. 

Poll versus Equivalent Elastic Grid 

The stretched grid algorithm was given the same number of points as Poll's 

automatic gridder requested, and was instructed to distribute them over the 

same model dimensions as Weaver's COMMEMI grid. 

Figures 5.9 and 5.10 show the B polarisation solutions for the third COM-

MEMI model (Figure 5.6(2)). 
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Figure 5.8. COMMEMI 2D-0 Poll and Weaver grids: Phase 
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Figure 5.9. COMMEMI 2D-2 Poll and stretched grids: Apparent Resistivity 
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Figure 5.10. COMMEMI 2D-2 Poll and stretched grids: Phase 

Half the Grid Points 

Reducing the number of grid points by one half from 98 to 49 for the COIvIMEMI 

2D-2 model, does not seem to have had an adverse effect on the response accuracy. 

as is shown in Figures 5.11 and 5.12. There were only two grid nodes where 

there was too rapid a change of spacing, as the output from the grid validation 

subroutine indicates... 

Checking for variations in spacing... 

(Good between 50% and 200%) 
*Too rapid change of spacing at -82.4431122 ( 44.6539268%) 

*Too rapid change of spacing at 	79.6015286 ( 231.893173%) 

Checking for symmetry around boundary points... 

(Good between 85% and 115%) 

Grid Validation Suinniary:- 
Spacing: 95.9183655% 
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Figure 5.11. COMMEMI 2D-2 Poll and sparse stretched grids: Apparent Res-
istivity 

Symmetry: 100.% 

One Third of Grid Points 

When the number of grid points was reduced to only one third suggested by Poll's 

automatic gridder, there were four grid locations found with unacceptably rapid 

changes in grid spacing... 

Checking for variations in spacing... 

(Good between 50% and 200%) 

*Too rapid change of spacing at -78.4005369 ( 42.6403961%) 

*Too rapid change of spacing at -1.06711347 ( 277.345428%) 

*Too rapid change of spacing at 	7.06711341 ( 36.0561218%) 

*Too rapid change of spacing at 	74.4641702 ( 232.689255%) 

Checking for symmetry around boundary points... 
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Figure 5.12. COMMEMI 2D-2 Poll and sparse stretched grids: Phase 

(Good between 85°h and 115%) 

Grid Validation Summary:-

Spacing: 87.8787842% 

Symmetry: 100. 

Figures 5.13 and 5.14 show the apparent resistivity and phase for the stretched 

grid diverging from Poll's finer grid. However, the divergence is not very great, 

and the much smaller, and therefore quicker, model grid still gives an excellent 

estimate of the model response. 
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1. 

Chapter 6 

Conclusions and Further Work 

Both the two and three dimensional model algorithms were successfully adapted 

for the massively parallel SIMD computers, having rewritten their solver cores with 

fine grained parallel iterative methods. However, their relatively poor perform-

ance, combined with the fact that these machines operate batch queue systems. 

make them impractical for routine use. 

Investigations into two dimensional model solution behaviour, utilising a new 

automatic mesh generation algorithm, have shown that model accuracy can be 

maintained with coarser grids in many cases. It has also been confirmed that 

there is no gain in precision in constructing finer grids than are commonly in use 

today. The elastic mesh grid generator could prove useful for prototyping models 

rapidly, such as may be required in the initial stages of some two dimensional 

inversion packages. The inversion routine could choose the number of grid points. 

allowing more, and hence slower iterations, as the model converges to its final 

state. 
It seems that the task farm approach is ideal for computing large numbers of 

two dimensional models, as modern workstations can solve a single frequency in 

a short time, at most a few minutes. It is also much more likely that an academic 

institution will have access to a suitable workstation cluster, rather than a state 

of the art parallel supercomputer. Indeed, a laboratory of tens of modern PC 

class Intel Pentium based running appropriate software would make a valuable 

computing resource when dedicated to out of hours task farms. 

94 
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If anything, the rapid pace in the increase of computing power has accel-

erated recently with the development of machines such as the Cray T3D. This 

architecture is based on large numbers of DEC Alpha processors sharing enorm-

ous amounts of very fast core memory. Such a machine with 512 processors and 32 
1. 
gigabytes of core memory is now installed at the Edinburgh Parallel Computing 

Centre. 

This scale of machine is at last able to model three dimensional structures 

at the same kind of detail as is routine today in two dimensional analysis and 

interpretation. It is sobering to note that each processing element in a T3D is 

approximately equivalent to the AXP described in Chapter 2 which performed so 

well for the three dimensional code (see Table 4.4 on page 73). However, a High 

Performance FORTRANcOmpiler only became available on the T31) in the last few 

months, unfortunately too late to port the code in this thesis. 

However, Wilson has implemented a task farm version of Newman and Hoh-

rnann's{44] three dimensional integral equation model, and Yu and Edwards'[82] 

finite difference simulation for axisymmetric models. He has recently reported 

some impressive performance results on the T3D[80]. Wilsonet al.{80] has raised 

the possibility of changing Yu and Edwards' code to implement a parallel solver, 

as well as operate in a task farm. I am certainly of the opinion that both fine and 

coarse grained parallelisation are valid and should be pursued for three dimen-

sional models. Schultz and Smith at the University of Cambridge have developed 

a staggered grid three dimensional model with an accelerated iterative solver. 

This model would, along with Pu's, make an excellent candidate for further de-

velopment on the T31). 

Three dimensional model performance can be greatly improved with the ap-

plication of faster solver techniques. Mackie et al.[37] propagate an impedance 

matrix through their three dimensional model to solve the problem. This results 

in multiple small matrix inversions rather than one huge inversion. Freund[19][20] 

has developed some promising looking Krylov Subspace methods for complex 

non-Hermitian linear system which may be applicable to this problem. 
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Appendix A 

Two Dimensional Code Excerpts 

A.1 Matrix-Iter.FCM 
Hinclude "Arch.h 

C Original subroutine written by Helena Poll 1988. 

(This subroutine, celled by FR2D, directs the matrix 

elimination procedure and prints out the Fieldo.POtL'88) 

C Converted to Iterative version by Kenneth MacDonald October 1993 

C Tidied up by Kenneth MacDonald February 1994 

C Added support for CM Fortran, and cpp. Kenneth MacDonald March 1994 

SUBROUTINE MATRIX(YGrid, ZOrid, ResGrid, Field NPo1, MD) 

C This subroutine calculates the coefficients for each grid point and 

C stores them in arrays, ready for the iterative solver. The solution is 

C then written to the output file. 

C Set up the names of the subroutines to call, depending on Architecture 

sit dci CM200.Arch 

Mdci inc FIELD-to-PARALLEL FEFie1d2CN 

Mdefine CELL-to-PARALLEL FECe112CM 

Mdci ins SURF-to-PARALLEL FESuri 2CM 

Mdci inc PARALLEL-to-FIELD CMField2F! 

Mendif 

Mit dci 9asPerArch 

Mdci inc FIELD-to-PARALLEL FEFie1d2DPU 

Mdci ins CELL-to-PARALLEL FECe112DPU 

Mdci ins SURF-to-PARALLEL FESur±2DPU 

Mendif 

C No inolicit variable names cussed 

IMPLICIT NONE 

C Include files 

INCLUDE 'limits, inn' 

C Common Blocks 

INTEGER 	NY. NE 
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COMMON /LIMITS/ NY, NZ 

REAL-8 Pi, Omega, 0Mm, PECood, PRImaul 

COMPLEX-16 OSlope 

COMMON /CONST/ PA, Omega, 	rmu. PRComd, 	PRInsul, 	OSlope 

INTEGER NOM. 	(start, 	(Flag, 	tEnd, 	EFirot 

COMMON /0400/ NON, 	(Start, 	(Flag, tEnd. 	(First 

INTEGER NO 

COMMON /SVI/NQ 

INTEGER Msxlter 

COMMON /Iterative/ Maxitar 

C Arguments 

INTEGER MD 

REAI.aB YOrid(MO) 

REAL-8 ZOrid(MO) 

REAL08 ResOrid(MD, 	MO) 

COMPLEX-16 Field(MD, 	MO) 

INTEGER OPal 

C Local FE Variables 

INTEGER I, 	J 

COMPLEX* 16 LeftElanent 

COMPLEX- 16 CentreBlock(Olaxlrid) 

COMPLEX-16 ItightBlock(MacGrid) 

COMPLEX-16 0015 

COMPLEX-16 CellMotrjx(MaxGrid, 	MacGrid, 	6) 

CIMPLEXaI6 Ssr±Matrix(MaxGrid. 	MacGrid, 2) 

REAL-8 Error 

C Local parallel variables 

OjOdef Parallel-Arch 

COMPLEX*16 	PCollMatrix(NY, OX, 6) 

COMPLEXO16 	POurfllatrix(NY+2, NY, 2) 

COMPLEXC16 	PField(NY, NZ) 	Parallel copy of the field 

tendif 

C Compiler Directives 

tifdef CM200_Arch 

CMF$ 	COMMON F0000LY /SVO/ 

CMF$ 	COMMON FEONLY /Limits/ 

CMF$ 	COMMON FEONLY /Const/ 

COPS 	COMMON FEONLY /Band/ 

CMF$ 	LAYOUT YOrid(SEROAL) 

CMF$ 	LAYOUT ZGrid(:5001AL) 

CMF$ 	LAYOUT ReeGrid(SERIAL, SERIAL) 

COPS 	LAYOUT Field(:5004IAL, SERIAL) 

CMF$ 	LAYOUT Csntraalock(:SEROAL) 

CMF$ 	LAYOUT Rightolock(:SERIAL) 

CMF$ 	LAYOUT CellMatrix(:SERIAL, SERIAL, SERIAL) 

COPS 	LAYOUT SurfMatrix(SEROAL, SERIAL, SERIAL) 

COPS 	LAYOUT PCallMatrir(NEWS, NEWS, SERIAL) 

CVFS 	LAYOUT POurfMatrir(OIEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT PField(:NEWS, NEWS) 

Dendif 

C loitialins Variables 

Maxlter = 1000 

Error 1.00-5 

ROmps = (Field(NY. NZ) - Fjo1d. NZ))/(YOrid(NY) - YGrid(1)) 

(FAcet 1 

(End 0 

(Flag 0 
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(Start 

LISM = NY - 2 

EQ 0 

C Top BC First, but only for E Polarisation 

IF (NPo1.EQ.1) THEN 

3=1 

DO I 	2. NY - 1 

CALL CPUTA(YGrid, ZOrid, SecOnd, CentreBloch. ENS, 

& 	RightBlock, LeftElenent, Field, NPoI, 3, I, MD, MeaCrid) 

CALL SURF-STORE (SurfMatnix, MaxGrid. LeftEloment, 

ContreBlock, RightBlock(I-1), ENS, I, 3) 

END DO 

END IF 

C Genera]. Block 

DI 3 	2, NZ - 1 

D01v2,NY-1 

CALL, CPNTA(TGrid, ZGnid, Roefrid, CentreBlocic, ENS, 

B 	RightBlock, LeftElement. Field, fF01, 3, I, MD. laaGrid) 

CALL CENTRE-STORE (ColiMatrix, HomInid, LeftElenent, 

A 	CentraBlock, P.ightBlock(I1). ENS, I. 3) 

END DO 

END DO 

C Bottom Block 

KEEl 1 

3 NZ 

DO I = 2, NY 	1 

CALL, CPNTA(YGnid, ZGnid, Reefnid, CentreBlock, ENS, 

B 	RightBlock, LeftElement, Field, SF01, 3, I, MD, MemGr.d) 

CALL SURF-STORE (SorfMatnim. MacGrid, LoftElenont, 

A 	CentreBlock, RightBlock(I-1), ENS, I, 3) 

END DO 

C Start the timer 

Bifdef MacPar_Arch 

CALL mpTinerStart () 	Start clock 

Bendif /c  MaoPor.,Arch e/ 

C Now Solve Iteratively 

C First the code to solve on a serial machine. Simply call ITER_SSLVE 

Bifdef Serial-Arch 

CALL ITER..SOLVE (Field, Cellflatrix. Swr±Matrix. MD, MacGrid. 

A 	MamCrid, Memlter, Error. NPoI) 

nendif 

C Now the code to solve on a parallel machine. First of all, we have to 

C copy all the arrays across to the SF0, then call ITER_SDLV!, and finally 

C copy the field hack again. 

Eifdej Parallel-Arch 

C Copy the arrays to a parallel array 

CALL FIELD-to-PARALLEL (Field, Meld, MD, NY. NZ) 	yield 

CALL CELL-to-PARALLEL (CeliMatnix. PCellMatrix. MacGrid, 

B 	NY, liz) 	 Cello 

CALL SURF-to-PARALLEL (SurfMatnix. PSsrfMatria, MacGrid. NY)! Surfaces 

C Nov call the solver with the parallel arrays 
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CALL ITER_SOLVE Wield, PCellMatrix, PSurdMotrix, NY, NZ, 

Maxlter, Error, NPoL> 

C Copy the parallel field back to the aerial version 

CALL PARALLEL-to-FIELD (Field PField, MD, NY, NZ) 

Nendif - 

C Stop timer and print time taken 

Oifdef MacPer_Arch 

Time 	mpTioerflopsed C) 

PRINT 0, 'Time Elapsed (ms): ", Time 

Nandif /s MaoPar_Arch / 

C Print Field in Formatted output 

CALL WRITE(Ytrid, Ztrid, Field, MD, NP01) 

CALL DUMP-FIELD (Ytrid, Zlrid, Field. MD, SPol, 'ras') 

C Finished 

RETURN 

END 
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A.2 Store-Iter.FCM 
C 

C This subroutine stores the five coefficients plus the right hand side 

C constant from the finite difference equations in an array. This is only 

C possible for the central points, as the top and bottom need many more 

C coefficients (due to the integral boundary conditions). 

SUBROUTINE CENTRE-STORE (Matrix, Size, Lefttlement, CentreBlock, 

6 	 RightElement, ENS, NY, IZ) 

IMPLICIT NINE 

C Common blocks 

COMMON /LIMITS/NY,NZ 

INTEGER NT, HE 

C Arguments 

INTEGER Size ! The size of the matrix 

COMPLEX-16 latrix(Size, 	Size, 	6) The matrix to be filled 

COMPLEX-16 Lefttlement Single diagonal element in the left block 

CSMPLEXc16 CsmtreBlock(NY) Vector of elements in the centre block 

COMPLEX-16 RightElement Element in the right block 

COMPLEX016 ENS The Eight hand side value 

INTEGER IT, 	IS The current grid coordinates of the point 

C local Variables 

INTEGER Counter Simple general purpose counter 

C The SELF coefficient 

Matrim(IY, IS, 1) 	CentreBlock(IY - 1) 

C The LEFT coefficient 

IF (IY.NE.l) THEN 

Matrix(IY, IZ, 2) = CentreBlock(IY - 2) 

END IF 

C The RIGHT coefficient 

IF (IV.NE.GY) THEN 

Matrix(SY, IZ. 3) 	CencreBlock(IY) 

END IF 

C The UP coefficient 

IF (IZ.NE.l) THEN 

Mmtrix(SY, IZ, 4) 	LeftElement 

END IF 

C The DOWN coefficient 

IF (IZ.HE.IZ) THEN 

Matrim(IY, IS, 5) 	RigktElement 

EEl) IF 

C The ENS Constant 

Matriz(SY, IZ, 6) = ENS 

RETURN 

END 	 - 
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B 

C This subroutine stores the integral equation finite difference coefficients 

C in a marIne for use in the iterative solver. Called for each point on the 

C bottom of the central grid, and for the top in E-Polarisation. 

C Must be called for only top or bottom points. Gives Error message if it 

C is called from a central point. 

SUBROUTINE SURF-STORE (Surf,  Coof, Size, LoftElemect, CentroBlock, 

RightElemont. aBS. I?, IZ) 

IMPLICIT NOSE 

C Common Blocks 

INTEGER NY, NZ 

COMMON /LIMITS/NY. HZ 

C Arguments 

INTEGER 	Size 	 The max size of the arrays 

COMPLEX-16 	SurfCcof(Sizo, Size, 2) 	The coeff matrix to fill 

COMPLEX-16 	LeftElement 	 The left off diog element 

COMPLEX-16 	ControBlock(Sime) 	The centre elements 

COMPLEX-16 	RightElement 	 The right off diag element 

COMPLEX016 	aBS 	 The FINS constant 

IITESEN 	IV, OZ 	 The grid coordinates 

C Local Variables 

IITEGER 	WhichSurface 	 Top or bottom? 

INTEGER 	Counter 	 General counter 

C Compiler Directives 

CMF$ 	LAYOUT SurfCoef(,NEWS, NEWS, SERIAL) 

C Check xatnim is big enough. Must be 2ONY°(NY+2) 

IF (Sizs.LT.(NY * 2)) THEN 

PRINT c, Error, SURF-STORE called with toe email a matrix. 

RETURN 	 Don't continue, just returts. 

END IF 

C Are we at the Top or Bottom Surface V Set the Up  or Down coefte and 

C set the index 'WhichSurface' to 1 or 2. 

IF (IZ.EQ.i) TEEN 

SurfCoef(NY * 1, IV, 1) 	RightElement 	Doom coeff 

'ohichSurf ace 	1 	 Top 

ELSE IF (IZ.EO.1IZ) THEN 

SurfCcef(NY + 1, IV, 2) 	LeftEleeent 	Up coeff 

WhichSur±acs = 2 	 Bottom 

ELSE 

PRINT 0, 'Error, SURF-STORE called from central gridpoint.' 

RETURN 	 Error, shouldn't be in hers. 

END IF 

.0 Now fill in the line in the array 

II Counter = 2, IV - 1 

SurfCoet(Counter. DY, WhickSurfaca) 	Centroglocic(Coucter - 1) 

END DO 

C No,, store  the 0155 constant value in the and of the line 
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SurfCof(NY * 2. I?, WhichSurce) 	IWS 

C Done 

RETURN 

END 
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A.3 Jacobian.FCM 
C Jacobian (v.07) leaPer High Performance Fortran 

C Kenny MacDonald 18th November 1993 

C This version of the Jacobian solver calculates the maximum 

C absolute residuals and stops iterating according to that. 

SUBROUTINE ITEFt_SOLVE (Field, Matrices, Surface. 

& 	 NY, NZ. Mamlter. Error, NPo1) 

IMPLICIT NONE 	 Important this 

C Arguments 

INTEGER 	NY, NO 	The model grid size 

COMPLEX-16 	Field(NY, 82) 

COMPLEX.16 	Matrices(NY, 02, 6) 

COMPLEX-i6 	Surface(NY+2. NY, 2) 

INTEGER 	M—iter 	 Max somber of iterations 

REAL-8 	Error 	 Required Error 

INTEGER 	OPol. 	 Polarisation of the problem 

C Local Variables 

INTEGER 	I, 3 	 Coordinates of a grid point 

INTEGER 	Direction 	 Current direction 

INTEGER 	Iteration 	 Iteration counter 

COMPLEX-16 	tewField(NY. 02) 	Updated field vaules 

COMPLEX-16 	Value(NY) 	 Tamp values for surface colts 

COMPLEI16 	Products(NY, NY) 	Surface tamp values 

COMPLEX-16 	Change(NY, NO) 	 Errors at each iteration 

REAL-8 	Reeiduel(NY, 82) 	Absolute residual each point 

REAL-8 	MerResidual 	 The macAnon absolute residual 

INTEGER 	Top 	 The top layer of the problem 

LOGICAL 	ActiveNodes(NY, NZ) 	! Active modes are TRUE. 

LOGICAL 	Offoiag(NY, NY) 	 Off diagonal surface elements 

LOGICAL 	Cemtral(NY, NO) 	 The central grid points 

C Compiler Directives 

Nifdef Rasp—Arch 

cmpf ONDPU 	Field, NesField, Surface, Matrices, Value, Products 

cmpf ONDPU 	Residual, ActiveNodes, OffDiag, Central, Change 

lendif 

Hifdef CR200_Arch 

CMF$ 	LAYOUT Field(NEWS, NEWS) 

CMF$ 	LAYOUT Matrices(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT Surface(NEWS, NEWS, SERIAL) 

CMFS 	LAYOUT NewField(IIEWS, NEWS) 

CMF$ 	LAYOUT Value(NEWS) 

CMFS 	LAYOUT Products(:NEWS, NEWS) 

CMF$ 	LAYOUT Change ( NEWS. NEWS) 

CMF$ 	LAYOUT ActivsNodea(NEWS, NEWS) 

CMFS 	LAYOUT 0ffDiag(NEWS, NEWS) 

CMF$ 	LAYOUT Cemtral(:SEIf 5, NEWS) 

Pendif 

C Display required tolerances 

PRINT •. 'Required maximum residual '. Error 

sifdef MasPar_Arch 

PRINT e,  'RasPer High Performance Fortran Version' 

Nendif 

#iidsf CR200_Arch 
PRINT -' 'Connection Machine Fortran Version' 
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Oendjf 

PRINT •, 'Using Jacobian (v8) solver, absolute residuals' 

C Set the upper most layer of interest 

IF (NPo1.EQ.0) THEM 

Top 	2 	 BPo1, ignore surface 

ELSE 

Top 	1 	 EPo1. coed surface 

END IF 

C Set up Active Nodes according to Polarisation 

ActiveNodes 	. FALSE. 

ActjveNodes(2:NT-1, Top:HZ) 	TRUE. 

C Loop over the calculations 

DO Iteration = 1, Maxlter 

C First Calculate the Top Surface iteration if EPo1 

IF (MPol.EQ.1) THEN 

Sffbiag 	. FALSE. 	 Initialise to FALSE 

Value(2:NT-1) 	Surface(NY + 2, 2:NY-1, 1) 	Set to P.115 values 

FERALL (I 	1:NY. .1 	1:51) 

& 	SffDiag(I, .1) 	1.ME.J 	 False on Diagonal 

WHERE (DffDiag) 

Products = -Surface(1:NY, 1:111. 1) 

A 

	

	SPREAD (Fiold(1:NY, 1). DIM-2, NCSPIESNY)l Calculate products 

END WHERE 

Valuo(1:11Y) 	Valuo(1:NY) 	 Sum up products at each point 

& 	SUM (Products(1:NY. 1:NY), MASKOffDiag, DIM-1) 

Vlue(1:11Y) = ,talue(1:NY) - 

A 	Surface(NY + 1. 1:NY, 1) 0  Field(1:NT. 2) 	The point bolos 

FORALL (I 	2:51-1) 

A 	NswFiold(I, 1) = Value(I) / Surface(I, I, 1)! Div by sold coed 

END IF 

C Dow do the central points in parallel using CSHIFT's for coamumication 

Central = FALSE. 	 Initialise to FALSE 

Central(2:NY-1, 2:52-1) 	TRUE. 	Set central points true 

WHERE (Central) 

MacField 	Matrices(:, 	. 6) - 	 P.115 

& 	Matrices(:, :, 2) e  EOSHIFT (Field. SHIFT-1, SIM1) - 	Loft 

A 	Matrices(:. • 3) 5 EOSHSFF (Field. SHIFT-1, DIM-1) - 	Right 

A 	Matrices(:, . 4) • EDSHIFT (Field. SHIFT--I, DIM-2) - 	Up 

A 	Matrices(:, . 5) 5  EDSHIFT (Field, SHIFT-1, 0111=2) 	Sown 

NeeField 	MacField / Matrices(:, . 1) 	 Self 

END WHERE 

C Finally Calculate the Bottom Surface iteration. 

Offliag = FALSE. 	 Initialise to FALSE 

Value(l:SY) = Surface(NY + 2. 1:S1, 2) 	Sot to 5.115 values 

FIRALL (S 	1:1ST. .1 = 1:51) 

A 	SffDiag(I. J) = I.NE.J 	 ! False on Diagonal 

WHERE (DffDiag) 

Products(1:NY. 1:51) = -Surfaae(1:NY, 1:51, 2) 

A 

	

	SPREAD (Fiold(1:NY. NZ). DIM-2, NCOPIESNY)! Calculate products 

END WHERE 

Vlue(1:51) = Valus(1:NY) 	+ 	Sum up products at each point 

& 	SUN (Produccs(1:NY. 1:51). MASE=Offoiag, DIM-1) 

Value(1:4Y) s  Value(1:NY) - 

& 	Surface(NY + 1. 1:111, 2) 	Field(l:NT, NZ-1)! The point above 

FSR.ALL (1 	2,111-i) 
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& 	EewField(I, HZ) 	Value(I) / Surface(I, I, 2) 	Div by self coef 

C Calculate the residual at each point. 

WHERE (ActiveNodee) 

Change 	NesField - Field 

Residual • SORT (REAL (Change)e.2 0 

& 	AIMAG (Chenge).e2) 

END WHERE 

MaxResidual 	MAXYAI. (Residual, maokbctiveNodes) 

C Copy NeeField to Field 

WHERE (ActiveNodee) 

Field NesFiald 

END WHERE 

C Print iteration number and maximum residual 

PRINT 5, Iteration ', Iteration, I MaxReeidual 

b 	 MaxReeidual 

C Is the maximum residual lees than the prescribed error? 

C If so, then just return floe. 

IF (MaxResidual.LT.Error) TEEN 

PRINT 0, Needed ' Iteration. I Iterations' 

RETURN 

END IF 

END DO 

PRINT •, 'Reached Maximum Iteration Count of 1 . Maxiter 

PRINT e, 'Solution not converged to required residual. 

RETURN 

END 
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It 

Appendix B 

Three Dimensional Code 

Excerpts 

B.1 Iter3D.FCM 
C------------------ITER 
C Original. by Xinghau Pu 
C APR. 15.1992 

C Rewritten in MasPer High Performance FORTRAN to use Data Parallel 

C features by Kenneth MacDonald and Ashok Agarwel, Autumn 1993. 

C added support for Connection Machine FORTRAN and C preprocessor by 

C Kenneth MacDonald, March 1994. 

C This is the main controlling subroutine for the iterative solver. All 

C the parallel arrays are declared and allocated in this subroutine. and 
C are then passed as arguments to the subsequent subroutines. 

C....................................................................... 

/s Define Parallel or Serial. version C / 

Hincluda "Arch.h" 

/s Do we have a timer available? •/ 

5mdef Timer-Available 

Oifdof CM200..Arch 
Dde±ine Timer-Available 

Dendif /e CR200_Arch -/ 

OAK def MasPar_Arch 
sde± ins Timer-Available 

Oendif /0  MacPar_Arch .1 

sifdef SunOS-Arch 
Odef ins Tinerj.vmilable 

Dendif /s  SunOS-Arch •/ 

115 
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SUBROUTINE ITER (NE. NY, NO) 

IMPLICIT NONE 

INCLUDE EJI3D.F' 

Uifdef Timor-Available 

#ifdet CM200_Arch 
INCLUDE /usr/include/cm/timer-fort h 

Bsndif 1° CM200_Arch e/ 

nendif /5  Timor-Available •/ 

C Arguments 

INTEGER NX, NT, NZ 
	

The size of the model End 

C Common Blocks 

INTEGER IDnta(NI) Misc. INTEGER variables 

COMMON 	/IData/Xflate 

REAL-8 	RData(NR) Mioc REAL variables 

COMMON 	/RData/P.D ate 

COMPL00016 CData(NC) Mist COMPLEX variables 

COMMON 	/CData/CDete 

COMPLEX*16 XX(LD,MD,50) Br 

COMPLEX-16 YY(LD,MD.ND) By 

COMPLEX-16 ZZ(LD,MD.SD) Br 

COMPLEX-16 XO(LD,MD) Boo (Thin Sheet) 

COMPLEX-16 YO(LD.MO) By. (Thin Sheet) 

COMMON 	/BXBYBZ/ IX,YY,ZZ,XO.YO 

LOGICAL ThinShest 	 Thin Sheet Flag 

COMMON 11510/ ThinSheet 

C Local Variables 

Bifdof Parallel-Arch 

C 	Field Values 

COMPLEX516 Field(30NX,NY,NZ) 	B Field 

COMPLEX-16 Thinpjeld(356X,NY) 	Thin Sheet B Field 

CSMPLEX0I6 Deltefiold(3eNI,NY,SrMZ) 	Change in the Field 

C 	Top surface coefficients 

P.EALO6 TopSr(NX5NY, MIsSY) 

REALe8 TopSy(NXSNY, 4X0NY) 

REAL-8 TopA(30NX,NY.7) 

REAL58 TopB(306X.NT.6 ) 
REAL8 TopC(3ONX.NY.6 ) 

CIMPLEXO16 Topio(35NX. NY ) 

C 	Internal cell coefficients 

Surface integral. XsSxsX 

Surface integral 'tSyeZ 

Self components XTopAsX,.. 

Cross componen;+1 XsTopBoV,.. 

Cross component*2 XTopCeZ... 

Singular point XX/Topio... 

REALM CslA(35NX, NY, NZ, 7) 	Self components XCelAoX,.. 

REAL58 CelB(3eNX, NY. NO, 19) 	1 Cross component+l XCeLB0T... 

RE.P.L8 Ce1C(3eNX, NY. NO, 19) 	I Croon componentv2 XCelCeZ,.. 

C 	Bottom surface coefficients 

PLILOB BotA(3eNX, NY. 6) 	Self components X=UotAeX,.. 

REAL-8 BotB(35NX, NY. 6) 	Cross component+l XBotBY... 

REAL8 BotC(3sNX, NY. 6) 	Cross compsnsnt+2 leBotCel... 

CDMPLEXOI6 Psr$14to9(NX.NY) 	Ertrs X Terme XeX+PsrSI4to9 

COMPLEX16 BotS(NXsNY.NX5MY ) 	! Surface integral XSnX,.. 
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COMPLEX-16 Botio(3.NX, NY) 	Singular point X'X/Botio,.. 
N 

C 	Loop counters 

INTEGER I, J. K 

Sendif Jo Parallel-Arch e/ 

C 	Misc scaler variables 

INTEGER OSTART, ITEMAX, ONITER, 100TPT, MCHECK. NCMEC3, 

& 	II, MSG, IF, JP. IF, NNIT 

REALO8 Error. EPS 

COMPLEX-16 No 

Mildef Timor-Available 

C 	Local timing variables 

INTEGER Time, TotalTime 

Silded SunOS-Arch 

INTEGER TimoStart, TimeEnd 

#endif /s SunOS-Arch e/ 

dendif /5 Timer-Available •/ 

sAlAd Parallel-Arch 

C Residual Function Declaration 

REAL ParRosidual 

SandiA 

#ifdet Timer-Available 

C Timer Function Declarations 

#jfdef MasPar_AIch 

INTEGER mpTimerllapeed 

*endif /e MasParArch 5/ 

SandiA /aTioor_Available •/ 

Oil del C11200-Arch 

C Compiler Directives 

CMF$ 	COMMON FEONLY /IDatai 

CMF$ 	COMMON FEONLY /RData/ 

CMF$ 	COMMON FEONLY /CDataJ 

CMF$ 	COMMON FEONLY /THIN/ 

CMF$ 	COMMON FEONLY /BXBTBZI 

CMF$ 	LAYOUT Field(NEWS. NEWS. NEWS) 

CMF$ 	LAYOUT ThinField(NE'dS, NEWS) 

CMF$ 	LAYOUT DltaFiold(NEWS. ,0005, NEWS) 

CMF$ 	LAYOUT TopSx(:NEWS, NEWS) 

CMF$ 	LAYOUT TopSy(:NEWS, SEWS) 

CMF$ 	LAYOUT TopA(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT TopB(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT TopC(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT TopAo(NEWS. NEWS) 

CMF$ 	LAYOUT CelA(NEWS, NEWS. NEWS,:SERIAL) 

CMF$ 	LAYOUT ColR(NEWS. NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT Ce1C(,NEWS, NEWS. NEWS. SERIAL) 

CMF$ 	LAYOUT BotS(NEWS. NEWS) 

CMF$ 	LAYOUT BotA(:NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT BstB(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT BotC(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT 3otAo(NEWS, NEWS) 
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CMF$ 	LAYOUT ParSI4to9(NEWS. ,,NEWS) 

Bendif I. CM200_Arch 5/ 

C Equivalence Statements 

EQUIVALENCE (ITEIIAX IData(7)) (HCHEC3 , IData(8)), 

& 	(IOUTPT.IData(9)).(NNITER.Ioata(10)),(MSS,IDate(15)), 

& 	(IP,IData(16)),(JP.IData(17)).(KP,IData(18)) 

EQUIVALENCE (EPS ,RData(3)) (Error ,RData(4)) 

C Print out some diagnostics. 

#ifdef DEBUG 

PRINT 0, 'Get into ITER, with NI. NY, NZ 	' NI, NY, NZ 

Oendif Is DEBUG e/ 

Bifdef Parallel-Arch 

PRINT •, Parallel Iterative Solver Version 1.0' 

tifdef C11200-Arch 

PRINT 5 Connection Machine FORTRAN 

Oendif / CM200Arch s/ 

#ifdef Macper_Arch 

PRINT •. 'MacPer High Performance FORTRAN' 

lendif /5  MaoPar_Arch e/ 
*endif /. Parallel_Arch 5/ 

Ujfdof Serial-Arch 
PRINT e, 'Serial Iterative Solver Version 1.0' 

sifdef SonGS_Arch 

PRINT e,  'boOS FORTRAN 77' 

Mondif /5 SunOS-Arch e/ 

Ojfdef QSF_lrch 

PRINT e,  OSF/1 FORTRAN 77' 

Mendif /0  OSF_Arch e/ 

Gendif / Serial-Arch 0/ 

PRINT e,  'Jacobian Method' 

IF (ThinShoet) THEN 

PRINT e, 'Including Thin Sheet Approximation' 

END IF 

C Set Ho, is. the source field. 

Bo C  CData(1) 

Ojfdef Parallel-Arch 

C Initialise the parallel arrays, if on a parallel machine. On the 

C Connection Machine, this should help force the compiler to allocate the 

C arrays on the CM (OPU). 

Field 	(0.0, 0.0) 

ThinField • (0.0, 0.0) 

DeltaField 	(0.0. 0.0) 

TooSm 	(0.0. 0.0) 

TovSy 	(0.0. 0.0) 

TopA 0.0 

Tool = 0.0 

TopC 0.0 

Turfs 	(0.0. 0.0) 

ColA 0.0 

CelB 0.0 

Ce1C 0.0 

BotA C  0.0 
BosS 0.0 

BotC 0.0 

ParSI4to9 	(0.0. 0.0) 

BosS = (0.0. 0.0) 
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Botio 	(0.0. 0.0) 

C If oars on a parallel machine, then all the field values and 

C coefficients need to be copied over to the back and, in a symmetric 

C shape. 

C Copy the field values on to the field array 

DO K 	1, ND 

DO .1 	1, NY 

DO I 	1, ND 

Field(I,J,K) 	XX(I,J,K) 

Field(I+NX,J,K) 	YY(I.J.K) 

Field(I+200X,J,K) 	ZZ(I,J,K) 

0510 DO 

END DO 

END DO 

C Initialise the Thinsheet Field array from the field at the surface 

C above the thin sheet (in case it is present) 

DO J 	I, NY 

DO I 	1. LIX 

ThinField(X,J) 	XX(I,J,I ) 

ThinField(I+MX,J) 	YY(r,J,l ) 

Thinfield(I+200X,J) 	ZZ(I,J,l ) 

END DO 

END DO 

C Copy the coefficients to the parallel representation 

CALL. SBCCDE (TopA, TupO. TopC, TopSa, TopSy, Topio, 

& 	 ThinSheet, OX, NY) 

CALL CELCOE (ColA, ColD, CelC, SIX, II?, ND) 

CALL OBCCDE (800A, BonN. BotC, PsrOIltog, DotS, BotAo, 

& 	 OX, NY, ND) 

Nondif I. Parallel-Arch o/ 

Oifdsf Timor-Available 

C Do anything we need for timers, before the iterations start 

Oifdef SumOS_Arch 

CALL clock (TotalTioe) 	 ! Start SunOS clock 

Nondif /e SonOS_Arch e/ 

Totalline 0 

Dendif / Timer-Available e/ 

C Start the iteration loop 

NSTARTNNITER+l 

DO II = OSTART. STE.MAX 

Oifdef Timer_Available 

Nit def MacPar_Arch 

CALL mpTiosrStert C) Start NaoPsr clock 

Sondif /e  MasPsr_Arcb 	/ 

#ifdof CMZOO_Arch 

CALL CM-timer-clear (0) Clear CM clock 

CALL CM-time—tart (0) Start CM clock 

Scout /c  CM200_Arch .1 
Oendif / 	Timer-Available C/ 

LINITII 

ONITERLI 

Error0 

MCheck 	MOO (NNIter. LIChec3) 
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C Update the top, middle, and bottom of th. grid... 

Ijidod Parallel-Arch 

#ifdof Timer_Available 

lit dot CM200_Arch 

CALL CM-timer-clear (1) 	Clear CM clock 

CALL CM-timer-start (1) 	Start CM clock 

lendif /0 CM200_Arch e/ 

lildef SunOS-Arch 

CALL clock (TimeStart) 

#ondit /0  SunOS-Arch e/ 

landiS / Timor-Available •/ 

CALL ParITESBC (Field, ThinField, TopSx, TopSy, 

A 	 TopA, TopS, TopC, TopAo, So, DeltaO'ield, 

& 	 MX, NY, NZ, Thiolheet ) 

#ifdef Timer-Available 

SitdeS CM200_Arch 

CALL CM-timer-stop (1) 

Time 	CM? (CM-timer-read-cm-buoy (I) • 1000.0) 

CALL CM-timer-clear (1) 

CALL CM-timer-start (1) 

oendif /e  CM200_irch of 

liSdof SunOS-Arch 

CALL clock (Timetnd) 

Time 	(Timetnd - TimeStart) / 1000 

*ondit /0  SunOS-Arch 0/ 

PRINT 5, 'Top Surface: ', Time, I (me)' 

hideS C5200-Arch 

CALL CM-timer-clear (1) 	Clear CM clock 

CALL CM_timer_start (1) 	Start CM clock 

londit /0  C5210-Arch 0/ 

diOdeS SunOS-Arch 

CALL clock (TimeStart) 

loodif /o SunOS-Arch e/ 

somdit /0 Timer-Available 0/ 

CALL parITECEL( Field, ColA, Cell, CelC, DeltaIield, 

A 	 MX, MY, NZ) 

hideS Timer-Available 

hit dot C11200-Arch 

CALL CM-timer-stop (1) 

Time 	IN? (CM-timer-road-cm-busy (1) e 1000.0) 

CALL CM-timer-clear (1) 

CALL CM_timer_start (1) 

landiS /0  CM200_Arch of 

hideS SunCS_Arch 

CALL clock (Timetod) 

Time 0  (Timetod TimeStart) / 1000 

SandAl /0  S=OS-Arch 0/ 

PRINT a, 'Central Points: ', Time, ' (mo)' 

bit dat CM200_Arch 

CALL CM-timer-clear (1) 	Clear CM clock 

CALL CM-timer-start (I) 	Start CM clock 

SandiA /0  CM200_Arch / 

hifdef SunOS-Arch 

CALL clock (TimeStart) 

SandiA /e SunOS-Arch  o/ 

bendit /a Timer-Available / 
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CALL ParITEBBC(Fiold. BetS, Betko, BetA, BetA, BotC, 

A 	ParSI4te9, Delte.Piold, MX, NT, NZ) 

Mifdof Timor-Available 

Bit dot CM200_Arch 

CALL CM-timer-stop (1) 

Time - SAT (CM-timer-read-cm-busy (1) • 1000.0) 

CALL CM-timer-dour (1) 

CALL CM-timer-start (1) 

#ondif /e CM200_Arch 0/ 

tifdef SumOS..Ardh 

CALL clock (Timetnd) 

Time 	(TimoEnd - TimoStart) / 1000 

sondif /oSumOS_Arch 0/ 

PRINT 0, 	'Bottom Surface: 	', Time, (me)' 

NonfAt /e Timor-Available 0/ 

Error 	ParRESIDUAL 	(DoltaFiald, AX, NY, 	AZ, 	I?, 	JP, 	(P. 

A ThieSheot ) 

doedif /0 Parallel-Arch 0/ 

Nifdof Serial-Arch 

Nifdef Ti=er-Available 

tifdef SunOS-Arch 

CALL clock (TimeStart) 

tonfif /0  SunOS-Arch .1 

Oendit / 	Timor-Available e/ 

CALL ITESBC (MChock) 

sit dot Timer-Available 

Ojfdef SunOS-Arch 

CALL clock (Timotnd) 

Time 	(Timotnd 	TimoStert) I 1000 

tendif /e  SomOS_Arch e/ 

PRINT 0, 	'Top Surface: 	', Time, 	• 	(ms)' 

Nit dot SemIS_Arch 

CALL clock (TimeStart) 

Sendif /0 SunOS-Arch e/ 

Bandit /e Timer-Available -/ 

CALL ITECEL Whack) 

Nit dot Timer-Available 

Mifdof SunOS-Arch 

CALL clock (Timetmd) 

Time 	(TimeEnd 	TitoeStart) 	/ 1000 

tandif / 	SunOS-Arch 0/ 

PRINT 0, 	'Central Pointe: 	', 	Time, 	' (mm)' 

Sitdef ScmOS_Arch 

CALL clock (TimoStart) 

Mendif / 	SunOS-Arch 0/ 

Nendif /0  Timer-Available c/ 

CALL ITEBBC (MChack) 

Bit dod Timer-Available 

Nifdef SumAS_Arch 
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CALL. clock (TimeEnd) 5, 
Time- (TimeEnd - TimeStart) / 1000 

Sondif /eSum0S_Arch e/ 

PRINT 0, 'Bottom Surface: ', Time, ' (me) 

Macdid /0 Timor-Available of 

DoodAd /5  Serial-Arch 5/ 

siddef Timer-Available 

C Get the time for this iteration, and the running tote), time so for, 

C both in milliseconds 

*ifdef MacPar_Arch 

Time mpTimerllapsed 0 
TotalTime 	TotalTime + TIME 

Nondif /0 MacPar_Arch of 

Biddef C5200-Arch 

CALL CM-timer-stop (0) 

Time 	CUT (CM-timer-read-cm-busy (0) e  1000.0) 

TotalTime TotalTime • Time 

gondif /5  C4200-Arch 0/ 

Bifdef SunOS-Arch 

CALL clock (Time) 

Time 	Time / 1000 

Time Time - TotalTime 

TotalTime = TotalTime * Time 

Oendif fo  S,mOS_Arch of 

C Report progress if oe need to... 

IF(MCHECK.EQ.0) THEN 

WRITE(e,789) UNITER, Error, I?, 3?, K?, 

b TotalTime, Time 

END IF 

Solos fe  Timer_Not_Available ef 

IF(MCHECK.EQ.0) WRITE(°,789) UNITER. Error, II', IF, K? 

Sendif fe  Timer-Available of 

C Has it converged yet? 

IF(MCHECK. EQ. 0. AND. Error. LE. EPS) THEN 

MSG-111 

Uifdef Ti=er-Available 

PRINT , 'Successfully converged after ', TotalTime. 

A 	' milliseconds.' 

Babe / Timer_Not_Available af 

PRINT e,  'Successfully converged.' 

Bendif fe  Timer-Available e/ 

PRINT 5.  'Took '. UNITER. • iterations to reach 

& 	Error, ' error.' 

Midded Parallel-Arch 

C After successful convergence, copy the field values 

IF (Thinliseet) THEN 

DO J= 2, NY-1 

ID I 	2, NX-1 

X0(I,3) 	ThinFiold(I,3) 

'(0(1.3) 	ThinField(I+NX,3) 

END DO 

END ID 

END IF 
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DO K 	1, NZ 

DO J 	2, NY-1 

DO N 	2, NI-i 

XX(I,J,K) 	Field(I,J,K) 

YY(I.J.K) 	Field(I+NX,J,K) 

ZZ(I,J,K) 	Field(I+2CNX,J,K) 

END DO 

END DO 

END DO 

Dondif /0  Parallel_Arch 5/ 

RETURN 

ENDIF 	 Converged? 

C Should we write the current state to a file? 

IF(NNITER.E.IOUTPT.AND.NNITER.NE.ITEMAX) THEN 

CALl. RDSA3D(2) 

ENDIF 

C End of iteration loop 

END DO 

C Didn't converge 

Oifdef Timor-Available 

PRINT ., 'No convergence after ', TotalTime, 

A 	' milliseconds.' 

seine I. Timor-Not-Available 0/ 

PRINT ., 'No convergence...' 

nondif /0  Timer-Available •/ 
PRINT • 'Took ' , INITER. ' iterations to reach 

A 	Error, ' error. 

Njfdaf Pe.rallol_Arch 

C After maximum iteration exhausted, copy the field values 

IF (ThiaSheet) THEN 

DO 3 	2, 111-1 
DO I 	2, NI-1 

10(1,3) = ThinField(I,3) 
YO(I,J) = ThieField(I*NX,J) 

END DO 

END DO 

END IF 

DO K = 1. ND 
DO 3 	2, NY-1 

DO I 	2, NI-i 

11(1,3,1) 	Field(N,3,K) 

YY(I,J,K) 	Pieid(I+NX,3,K) 

ZZ(N,J,K) 	Fieid(IO2ONX.J,K) 

END DO 

END DO 

END DO 

Oendif /s Parallel_Arch •/ 

MSG= lll 

Nifdef Timer-Available 

789 	FOR1KAT(1I. 'Iteration = ', 16, ' Error 	', 110.3. 
A 	' Location 	', 313, ' Time (ms) 	', 110. 110 

Odes /* Timer-Not-Available / 
789 	FORIIAT(1X. 'Iteration 	', 16, ' Error 	', 110.3, 

A 	' Location • ', 313) 

Hendif /5  Ti=er-Available .1 
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C Finished, o roturn. 

RETURN 

END 
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B.2 Bottom.FCM 
C ParITEBBC.f - Subroutine to perform one iteration over all the grid 

C points on the bottom plane of the model. Calculates the now field at 

C all the bottom plane points. and only updates the old field and array of 

C changes at the points of interest, is. not on the boundaries. 

C Maspar High Performance Fortran 

C Kenneth MacDonald 

C 30th November 1993 

C Updated 6th December 1993 

C Support for Connection Machine FORTRAN and cpp added. 

C Kenneth MacDonald March 1994 

C 

SUBROUTINE ParITEBBC (Field, S. 10, A, B, C. S14to9. 

b 	DeltaField, NE, NY, Hz) 

C Do one iteration on the bottom boundary of the model. This differs 

C from the central points in that there is a surface integral to be 

C calculated for each component, and an extra term for the I component too 

C (S14to9). 

I'.PLICIT NONE 

C Arguments 

INTEGER NI. NY. sz 	 The size of the model 

COMPLEX-16 Field(30NI, NY, NZ) ! The 3 components of the field 

COMPLEX-16 S(NX5NY, NEatly) 	The surface integral coefficients 

COMPLEX-16 Ao(30UX, NY) 	 Singular point coefficient 

NERL58 A(3°NX, NY. 6) 	 ! Sane component coefficients 

NZA1e8 B(3oNX, NY, 6) 	 Component+l coefficients 

REAL-6 C(3°NX, NY, 6) 	 Component+2 coefficients 

CSMpLEX0I6 S14to9(NX, NY) 	Extra to add to X comp 

COMPLEX-16 DeltaFisld(3*NX, MY, 0:01) 	1 The field changes 

C local Variables 

COMPLEIu16 FieldShift(3eNX, NY) 

CIMPLEX016 Neepield(3eNX, NY) 

COMPLEX-16 Sntegrands(NX 0NY, NEoNY) 

CSMPI.EX016 Stretchpield(NX0NY) 

LOGICAL SffDiagonal(NX*NY, NX0NY) 

LOGICAL A112D(MX, NY) 

INTEGER I, 

REAL-8 Pi 

C Compiler directives 

zifdef Macpar_Arch 

CMPF ONOPU Fieldlhift 

CMPF INDPU NewField 

CMPF ONDPU Intogrands 

CMPF ONDPU StretchField 

CMPF INUPU OffDiagocaJ. 

CMPF CNDPU A112D 

nendif 

#ifde± C.4200-Arch 

CMF$ LAYOUT Field(:NEWS, 	NEWS, 	NEWS) 

CMF$ LAYOUT S(:NEWS, 	SEWS) 

CMFS LAYOUT io(:NEWS. 	:NEWS) 

CMF$ LAYOUT A(:NEWS, 	NEWS, 	SERIAL) 

CMF$ LAYOUT B(:NEWS, 	:NEWS, 	SERIAL) 

CMF$ LAYOUT C(:NZWS, 	NEWS, 	SERIAL) 

Shifted field 

The new field 

Surface integral (B 	5) 

Bottom plane in a vector 

True for off the diagonal 

Tote everywhere 

Grid point indices 

JaNE Pi 
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COPS 	LAYOUT SI4to9(NEWS, NEWS) 

COPS 	LAYOUT OeltaFie1d(NEWS, NEWS, NEWS) 	
5, 

COPS 	LAYOUT FieldShift(NEWS. NEWS) 

aMPS 	LAYOUT NesField(NEWS, NEWS) 

COPS 	LAYOUT Iategrsnds(NEWS. NEWS) 

COPS 	LAYOUT StretchPield(NEWS) 

COPS 	LAYOUT Offli onal(NEWS, SEWS) 

COPS 	LAYOUT A112D(NEWS, NEWS) 

sendif 

C First of all we calculate each integral for each component in 

C sequence. The 20 bottom surface is reshaped to a 10 vector, which is 

C spread over the 20 array of coefficients (5). These two are multiplied 

C elementally, and then summed over one dimension to calculate the 

C integral at each point. These values are then reshaped back to the 2D 

C surface grid. The code for each component is given explicitly, no loop 

C over the three components. 

C Initialise Pi 

Pt 	4.0 5 ATAN (1.0) 

C Set the pack / unpack masks to true everywhere 

i112D 	TRUE. 

C Sot the mask to true on the off diagonal elements 

0000imgonai = TRUE. 	 ! Default is true 

FORALL (Ii:NX0NY, J=INX-NY) 

A 	OffDiagonal(I. .1) 	(lIES) 	 False on diagonal 

C First reshape the I component at the bottom plume of the model 

StretchPisld 	PACK (ARNAYvFie1d(DMX, :, HZ), MASK-TRUE., 

A 	VECTOR"StretchField) 

C Spread this and multiple by the coefficients to get the integrassds, 

C under control of the 000 diagonal mask 

WHERE (OffDiagonal) 

Integrands 	S * SPREAD (StretcbField, 010*2. SCDPIES=NXeNY) 

END WHERE 

C Now sum up the integremds at each grid point 

StretchField 	SUM (Integrendo. MASK=OffDiagonal. 010=1) 

C Reshape the stretched field back to the 2D grid shape 

NesField(1HE, ) = UNPACK (VECTORStretchField. 

A 	MASK=A112D. FIELONewFie1d(lNX. )) 

C This is the I component, so add on the extra terms 

UewField(1:NX, :) = SewFieldUNX. :) • 514to9 

C Now divide by (2Pi) 

NewField(1NX. ) 	NewPield(111X, ) / (200 • Ph) 

C The same needs to be done for Y component now 

StretchPield = PACK (ARR.AYePield(UX+l2oNX, :, Na), 

A 

 

MASK-TRUE., VECTOR=StretchField) 



APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 127 

WHERE (OffDiagooal) 

Intogrende 	S • SPREAD (StretchField. DIM-2. NCOPIESNX°HT) 

END WHERE 

C Sun integrands 

StretchField 	SUM (Integrande. MASK0ffDiagonal. DIM-1) 

UeFiold(NX+I.2°NX, :) 	UNPACK (VECToReStrotchField. 

A 	MASKA112D. FIELD-NewField(NX+l2°NX. )) 

NeField(NX+12oNX. ) 	NeFie1d(NX+12NX. ) / (2D0 	PA) 

C And finally the Z component 

StretchField 	PACK (ARRAYeField(2oNXcl:3.NX. , HZ), 

A 	MASK-TRUE., VECToReStretchField) 

WHERE (Off Diagonal) 

Integrands • S 	SPREAD (StretchField. DIM-2, NCOPIES=NX°NY) 

END WHERE 

C Sum integrands 

StrotchField 	SUM (Integrende, 	MASK0ffDiagonal, 	DIM-1) 

Sec,Field(2OHX+1:3°NX, 	:) 	UNPACK (VECTDRStretchField, 

& 	MASKA112D. 	FIELDNewFie1d(2sNX+13NX, 	:)) 

euField(2ONXI:3NX, 	) 	= NowField(25NX+13eNX. 	) 	/ 	(2D0 • Pi) 

C Now do the rest of the terms in parallel 

C The extra calf conpnents. 	The sixth coefficient is for the NZ-1 field 

C value, 	so the (NZ-1) plane is used. 

NeePield 	NeuPield + 

i 

	

A(:. 	, 	2) 	0 CSHIFT 	(Field(:, 	NZ), 	DIM-1, 	SHIFT-1) 	* Oil 

& 	,t(:, 	:. 	3) 	0 CSHIFT 	(Field(:. 	,, 	NZ). 	DIM-1, 	SHIFT-1) 	+ 211 

A 	A(, 	, 	4) 	e CSHIFT 	(Field(, 	, 	HZ), 	DIM-2, 	SHIFT--I) 	+ 101 

& 	A(, 	5) 	• CSHIFT 	(Field(, 	, 	HZ), 	DIM-2, 	SHIFT-I) 	+ 121 

A 	i(:, 	, 	6) 	e 	Field(:, 	. 	HZ-I) 110 

C Copy the bottom plane to the shifted array for the coopenent+1 terms 

FieldShift = CSHIFT (Field(:. 	. HZ), DIM-1, SHIPT=NX) 

C Add on the cooponeot*l terms. 	The sixth coefficient is multiplied by 

C the (NZ-1) plane shifted by (+NX). 

NewField 	NeuField • 

A 	3(:, 	. 	1.) 	FieldSbift 	+ 111 

A 	3(:. 	, 2) a  CSHIFT (FieldShift, 	DIM-1, SHIFT--I) 011 

A 	O(, 	, 3) c CSHIFT (PieldShift. 	DS1I1. SHIFT-0 211 

A 	5(. 	• 4) 	• CSHIFT (FieldShift, 	D1M2, 	SHIFT-1) 	* 101 

A 	3(, 	. 5) s CSHIFT (FieldShift. 	DIM-2, SHIFT-1) 	* 121 

s 	3(. 	, 	6) 	e  CSHIFT 	(Field(:. 	, 	HZ-1), 	DIM-1, 	SRIPTNX) 110 

C Shift the bottom plans of the field by another component (HZ) 

PieldShift • CSHIFT (FieldSbift, 	DIM-1, SHIFTNX) 

C Add on the conponent+2 terms. 	This time the sixth coefficient is 

C multiplied by the (NZ-1) plane shifted by (-OX) • which is the sane as 

C (+2NX) • 	but faster. 

Heepield • NeeField + 
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6 	C(:, , 	1) FieldOhift + 111 

6 	C(, , 	2) COuP? (FieldShift, DIM-1, SHIFT--I) 	+ 011 

3) h 

	

C(:, CSHIFT (Fieldshift, DIM-1, SHIFT-1) 211 

& 	C(, , 	4) CSHIFT (Fieldlhift. DIM-2, SHIFT--I) 	+ 101 

6 	CO. 	:, 5) CSHIFT (Fieldlhift, DL)12, SHIFT-t) 	+ 121 

6 	C(, , 	6) CSHIFT 	(Field(:, 	, NZ-1). DIM-1, 	SHIFTS-NI) 110 

C Divide through by the singular point coefficient, but being careful of 

C0o0 

WHERE (Ao.NE.0) 

NeuField 	NeuFiold / to 

END WHERE 

C Update the array of changes in the field, at the bottom plane. Update 

C all the points on the plane, even the boundaries. These should then be 

C ignored when the residuals are being calculated. 

DeltaField(:, 	, HZ) 	NeeField - Field(:, :, Hz) 

C Copy the now values to the old field now, component at a time 

Field(2:NI-1, 2:NY-1, HZ) 	HeeField(2NI-1, 2HY-1) 	S component 

Field(NX+2:20NI-1, 211Y-l. HZ) = 

& 	NewFicld(NX+22'NX1. 2:111-1) 	 T component 

Field (2°NX+2:3°61l, 2:NY1, HZ) 

6 	SewField(2eNX+2:3°HXt. 2:111-1) 	 Z component 

C Done 

RETURN 

END 
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B.3 Top.FCM 
C ParITESBC.f - Subroutine to perform one iteration over the top surface 

C of the model grid. P. Thin Sheet layer to catered for, if present. The 

C now field values are calculated for all the gridpointe in the thin sheet 

C and top layer of the model. and only the relevant values are updated in 

C the array of changes, and the old field values. 

C MasPer High Performance FORTRAN 90 

C Kenneth MacDonald 

C 30th November 1993 

C Updated 6th December 1993 

C Added support for Connection Machine FORTRAN and cpp March 1994 

C 

SUBROUTINE ParITESBC (Field. Sheet, SX, ST 

B 	A. 0, C, An, So, DeltaField, NI, NY, HZ, ThinSheet) 

C The subroutine calculates one iteration at the top surface of the 

C model. The possibility of a Thin Sheet layer is catered for, but isn't 

C necessary. The I-, and Y- components (above the sheet) are calculated 

C separately, and then the 1+, Y+ and Z components are calculated in 

C parallel. if there is no thin sheet the I- and Y- components are copied 

C to 1* and Y+ respectively. 

IMPLICIT NONE 

C Arguments 

INTEGER 31. 	NY, 	NY The model size 

COMPLEX-16 Field(35NX, 	NY, 	NZ)! Field components 	(BmByIBz) 

COMPLEX-16 Sheet(3°NX, 	NY) 3 components for Thin Sheet, 	Z0- 

tEAI..8 SX(MX5NY, 	NXOUY)1 I component integral coefficients 

REAL-8 5Y(NXcNY, NXONY)! I component integral coefficients 

REAL-8 1(3095, 	NY, 	7) 	! Sane component coefficionts,XSA0X,.. 

?2ALe6 3(3oHX. 	NY, 6) Cmmponent+1 	coefficients, 	X0°Y,.. 

RElIcS C(3e3JX, 	NY, 	6) Component-2 coefficients, 	X=C*Z,.. 

COMpLEXe16 Ao(3ONX, NY) Singular point values 

CIMPLEX*16 So Source field scalar 

COMpLEI016 DeltaIield(3*NZ, NY, 0DZ)! Change in the field 

LOGICAL ThinSheet Indicates presence of Thin Sheet 

C Lccal. Variables 

COMPLEX-16 Newpield(3°6X. 	NY) The new calculated values 

COMPLEX-16 NscSheet(35NX, 	NY) The new thin sheet values 

CSMPLEXe16 FieldShift(3sMX, 	NY) Plane of shifted field 

COMPLEX-16 Incegrands(NXeNY, 	NXoNY)1 	Integral (coeffs a  field) 

CIMPLEXe16 5trotch1ield(NXNY) 1 Field stretched to a vector 

LOGICAL 11120(91, NY) All set True 

LOGICAL Activefodes(3NX, 	NY) Active grid points 

INTEGER I, 	J ! Counters 

REALeS Pt I 	Pt 

C Compiler Directives 

Oif dci MasPsr_Arch 

CMPF 	ONDPU NewField 

CMPF 	ONDPU Newfheet 

CMPF 	ONDPU FieldShift 

CMPF 	ONDPU Integrands 

CMPF 	ONDPU StretchField 

CMPF 	ONDPU 11120 

CMPF 	ONDPU ActivoNodee 

Oendit 
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Wifdef CM200_Arch 

CMF$ 	LAYOUT Field(:NEWS, NEWS, NEWS) 

CMF$ 	LAYOUT Sheet(,NEWS, NEWS) 

CMF$ 	LAYOUT SX(:WEWS, NEWS) 

CMF$ 	LAYOUT SY(MEWS, NEWS) 

CMF$ 	LAYOUT A(:NEWS. NEWS, SERIAL) 

ClIPS 	LAYOUT B(NEWS, NEWS, SERIAL) 

COPS 	LAYOUT C(NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT Ao(,NEWS, NEWS) 

COPS 	LAYOUT Del.taPield(,NEWS, NEWS, NEWS) 

COPS 	LAYOUT NesFie1d(NE14S, NEWS) 

COPS 	LAYOUT UewSheet(:NEWS, NEWS) 

COPS 	LAYOUT FieldShjft(:NEWS, NEWS) 

CMF$ 	LAYOUT Integrands(NEWS, NEWS) 

CMF$ 	LAYOUT Stretchpield(:NEWS) 

COPS 	LAYOUT A112D(,NEWS, NEWS) 

COPS 	LAYOUT ActiveNodee(,NEWS, NEWS) 

Sendif 

C Begin Code 

C Set the value of Pi 

Pi 	4.0 5  ATAN (1.0) 

C Set the logjcels A111D and i112D, to TRUE., which are used in the 

C packing and unpacking of the 2D <-> 10 representations of the field. 

A112D 	TRUE. 

C Calculate the I- component, by the surface integral. This is needed 

C for both cases. 

C Reshape the field into a 10 vector array. Of there is no thin cheat, 

C then use Z=1, else use Sheet 

Stretchfield 	PACK (ARAY"Fie1d(2sNX+13°MX. , 1), 

A 	MASK TRUE., VECCOR"Stretchfield) 

C Calculate the integrends by spreading the field, and multiplying by the 

C coefficients 

Integranris = SI 5  SPREAD (Stretchiield, DIM-2, NCOPIESUX5NY) 

C Sun up the integrende at each point 

Stretchiield 	SUM (Integronds. D101) 

C Reshape the 10 vector field beck to it's 2D shape 

NesSheet(1NX. :) = - UNPACK (VECTORsStretchFiold, 

t 	MASKi112D, FIELDMewSheet(1,NX,)) 

lewSheet(1:NX, 	) 	NewSheet(1NX, ) / (2 e P1) 

C Add on the So value (a complex scaler) 

UewSheet(1:NX, :) 	UewSheet(l:NX, ) + No 

C Calculate the Y- com000ent, by the surface integral. This too is 

C needed for both cases. 

StretchField = PACK (kRRAY..Pield(2sNX+13°NX. , 1), MASK-TRUE.. 

& VECTORStretchField) 

Integreode 	NY SPREAD (StretchField. DIM-2, NCSPIESNXeUY) 

StrstchPield 	SUM (Integrends, DIM-1) 

Newfho.t(NX+l,2N1. ) e - UNPACK (VECTORStretchField, 
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A 	MASX.i112D. FIELD-NevSheet(NX+1:2ONX,:)) 

l.wSheet(NX+12eNX. :) • NewShe.t(NX+12OHX, ) / (2 * P1) 

C Now calculate the three components for the Z*1 (X+, Y+, Z). X4 and 7+ 

C will be zero if no thin sheet. 

C Some component terms. Use Sheet (0-) values for Z-1 direction. 

NesField A(, , 2) 	• CSHIFT 	(Field(:, , 	1), 	DIM-1, 	SHIFT-1) +! 	011 

A A(:, , 	3) CSHIFT (Field(:, 	:, 1), DIM-1. 	SHIFT-1) 	+ 211 

A A(, 4) 0 CSHIFT (Field(:, , 	1), DIM-2, 	SHIFT=-1) 	+ 101 

A A( 	• 5) o CSHIFT (Field(: 1), DIM-2, 	SHIFT-1) 	+ 121 

A A(,  * Sheet + 110 

A 4(  0 Field( 	• 	• 	2) 112 

C Component 1 terms. Copy the field to a temporary array. 

FieldShift CSHIFT (Field(, 1), 	DIM -1, 	SHIFTNX) 

C Add up the terms 

NewField NosField a. 

A 	3(. 	, 1) Fieldlhift *  

2) CSHIFT (Pielilhift, DIM-1, SHIFT-t) 	+ 011 

3) CSHIFT (Fieldlhift. DIM-1. SHIFT-1) 	a 211 

A 	3(, 	:, 4) CSHIFT (FialdShift, DIM-2, SHIFT-l) 	* 101 

 CSHIFT (FieidShift, DIM-2, SHIFT-1) 	* 121 

 & 

	

B(:, 	, a  CSHIFT 	(Field(:, 2), 	DIM -1, 	SHIFTNX) 112 

C Compovoxat • 2 terms. 

FisldShift 	CSHIFT (FieldShift, DIM-1, SHIFTIIX) 

C Add up the terms 

SemField MacField + 

A C(, , 	1) FjeldShift +  

A C(, 	:, 2) CSHIFT (FieldShift, DIM-1, 	SHIFT-1) 	* 011 

A C(:. , 	3) CSHIFT (FieldShift. DIM-1, SHIFT-1) 	+ 211 

A C(, 	:,  CSHIFT (Fieldlhift. DIM-2, 	SHIFT-1) 	+ 101 

A C(, 	:,  - CSHIFT (Fjeldlhift, 51Mv2, SHIFT-1) 	+ 121 

A C(a, , 	6) CSHIFT 	(Field(:. 	, 2), DIM-1, 	SHIFTNX) 112 

C Divide through by the singular point value, checking if it is 0 

WHERE (Ao.NE.0) 

UewField NeuField / Am 

END WHERE 

C Copy the field components according to the presence of a thin sheet. 

C If there is. then Z- 	Z+. 

C If there isn't, thou Xc * I-, and 1+ 	y-. 

IF (Thinlheet) THEN 

NawSheat(2o61*1a3°HI, ) 	IewField(2cNX+1:305X, ) Copy Z to shoot 

ELSE 
iowFjold(la2eUX. ) • NeoSheot(12*NX. > 	Copy I. 7 to Field(l) 

INS IF 

C As a safety measure, copy 1 to the sheet. Z'i*Z needs Sheet value. 

ewSheet(2tX+13ONE. a) - NecField(2°MX+1a3°NX, a) 

C Update the array of changes in fields. 

IF (ThinSheet) THEN 

Delta1ie1d(. • 0) 	NeeSheet - Sheet 
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ESJDIF 

Deltafield(:. 	. 1) 	Newfield - Field(:. 	1) 

C Set the active node points. Leave the boundaries alone. 

ActiveNodes 	. FALSE. 

ActiveNodes(2;NX1. 2N't-1) 	TRUE. 	 Sot X components true 

ActiveNodes(NXO2:2OUX1. 2:}fl-1) 	TRUE. 	Set 5' components true 

ActjveNOdeo(20NX+2:3eNX.1, 2NY-1) 	TRUE. 	Set Z components true 

C Copy the now values to the old arrays 

WHERE (ActiveHoden) 

Field(, I) NesField 

Sheet NevSheet 

END WHERE 

C Done 

RETURN 

END 
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B.4 Interior.FCM 
C ParITECEL.t - Subroutine to perform one iteration over all the central. 

C grid points. It also updates the array of changes. 

C MasPar High Performance Fortran 

C Kenny MacDonald 29 Nov 93 

C Updated 6 Dec 1993 

C Added support for Connection Machine FORTRAN and cpp. 

C Kenneth MacDonald March 1994. 

C 

SUBROUTINE ParITECEI. (Field, A, B. C, DeltaPield, NI, NY, NZ) 

C Do one iteration over the central points. The coefficients are stored 

C in three arrays (A. B. and C). Each consists of several planes' 

C conformable with the field array. 

C A links corresponding components 

C B links the component to component -. 1 

C C lines the component to component + 2 

C Essentially, we have the following three equations for the three 

C components. 

C C = A(lNX) - I * B(lNX) a  Y * C(1:NX) • Z 

C V 	A(NX*1,2llX) a  7 * B(MX+1:2NX) 	C S  C(OX+12MX) c  I 

C Z 	l(22X+1,30X) • z * B(2NX+1,3NX) 	X * C(2N1+1,3tX) e  Y 

IMPLICIT NONE 

C Argunents 

INTEGER OX, NY, HZ The sins of the model 

COMPLEX-16 Fisld(3°NX, NY, 02) The B field (BolBylBi) 

?,EALs8 1(3592, 	NY, HZ. 7) Sans component coefficients 

N.E.ALe8 B(3aNX. 	NY, NZ, 19) Coefficients for component+1 

REAL-8 C(3-0X, NY, lIZ, 19) ! Coefficients for ccoponent*2 

COMPLEX-16 Deltalield(3CNX, NY. O:NZ)! 	The field changes 

C local Variables 

COMPLEXO16 	NewField(3cNX. NY, NZ) ! The updated field 

COMPLZXO16 	FieldShift(35N1, NY, 02)! The shifted field 

LOGICAL 	Central(3SNX, NY, HZ) 	Central points 

COMPLEX-16 	i 	 1 The square root of (-1) 

C Compiler directives 

sit def 4asPar_Arch 

CMPF 	INDPU NewField 

CMPF 	ONDPU FieldShift 

CMPF 	INDPU Central 

nendif 

Oifdef CO200-Arch 

CMF$ 	LAYOUT Field(liEWS, NEWS, NEWS) 

CMF$ 	LAYOUT A(,NEWS, NEWS. NEWS. SERIAL) 

CMF$ 	LAYOUT B ( NEWS • NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT C(NEWS, NEWS, NEWS, SERIAL) 

CMF$ 	LAYOUT DeltaFiald(,NEWS, NEWS, NEWS) 

CMF$ 	LAYOUT NawField(,NEWS, NEWS, NEWS) 

CMF$ 	LAYOUT FieldShlft(,NEWS, NEWS, MEWS) 

COPS 	LAYOUT Central(:NEWS, NEWS, NEWS) 

Bandit 

1s 
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C Begin Cod. 	 15 

C First Set 'i' 

(0.0, 1.0) 

C Define the central points 

Central 	FALSE. 	 All off by default 

Central(2NX-1, 2 61-1, 2:NZ-1) 	TRUE. 	X cooponents on 

Central(NX+2:2°tJX-i. 2:61-1. 2:52-1) 	TRUE. 	T components on 

Central (2ONX+2:3eNI-i, 2:60-1, 2:52-1) 	TRUE. 	2 components on 

C Calculate the new field values for all the points, and only worry 

C about which ones we are interested in at the end, when we copy back to 

C old field. 

C Multiply the seen components 

NowField = A(:, . . 2) • CSHIFT (Field, DIM-1, SHIFT--l) * 	011 

B 	i(:. 	, , 3) o CSHIFT (Field. 016=1, SHIFT-1) * 	 211 

B 	i(:. , , 4) o CSHIFT (Field, D162. SHIFT--I) + 	 101 

B 	i(:. 	, . 5) - CSHIFT (Field. DIM-2, SHIFT-1) * 	 ! 121 

B 	A(:, :, , 6) 5  CSHIFT (Field, DIM-3, SHIFT--I) + 	 110 

A 	A(:. , , 7) o CSHIFT (Field, DIM-3, SHIFT0 	 112 

C Now the component to the right. f6 X -> 0, 0 -> 2, Z -> X 

C Copy the field to the shifted field 

FieldShift 	CSHIFT (Field, 0161, SNIFTNX) 

Iewfield = NewField + 	 Remember the same components 

B 	3(:, 	, :, 1) 5 FisldShift 4 	 111 

B 	B(:, 	, , 2) • CSHIFT (FieldShift, DIM-1, SHIFT--I) w 	011 

B 	0(: • 	. , 3) e CSHIFT (FieldShift. DIM-1, SHIFT-1) * 	 211 

B 	B(:, . , 4) • CSHIFT (FieldShift, Dfl12, SHIFT-1) + 	101 

B 	B(:, :, . 5) • CSHIFT (FieldShift. DIM-2, SHIFT-l) + 	 121. 

B 	5(:. . :, 6) • CSHIFT (FieldShift, DIM-3, SHIFT-1) + 	110 

B 	8(:. , :, 7) 5 CSHIFT (FieldShift, DIM-3, SHIFT-1) + 	 112 

B 	B(. , , 6) 
B 	CS11IFT(CSHIFT(FieldShift.DIM1.SRIFT1).DIM52,SHIFT1)+ 	001 

& 	B(. , :, 9) 
B 	CSliIFT(CSHIFT(FieldShift.lIHi.SBIFT1).DIH2.SHIFT1)+ 	021 

B 	B(:. , , 10) 
B 	CSHIT(CSHIFT(FisldShift,DIM1.SHIFT1).DIM53,SHIFT1)+ 	! 010 

B 	3(, :, , 11) 

& 	CSHIFT(CSHIT(FieldShift.DIM1.SHIFT1).DIM3.SHIFTi)* 	012 

B 	8(:, , , 12) 

B 	CSHIFT(CSHIFT(FieldShift.DIM2,SRIFT1),DIM3.SHIFT1) 	100 

lesField 	NeuField + 

B 	80. , , 13) 

& 	CSHIPT(CSliIFT(FieldShift,DIM2.SBIFTl).DIM53,SHIFT1)+ 	102 

B 	B(:. , , 14) 
B 	CSHIFT(CSHIFT(FieldShift.DIM'2.SRIFT51).D1H3.SRIFT1)4 	120 

B 	B(:, , :, 15) 
B 	CSHIFT(CSHIFT(FieldShift.DIM2.SRIFT1).D1M3.SBIPTI)4 	122 

B 	3(:. . :, 16) - 

B 	CSHIFT(CSHIr(Fieldshift.DIM=1.SBIFT*1).DIN=2,SRIFT=-l)* 	201 

B 	3(. . , 17) 

B 	CSHIFT(CSRIFT(FieldShift.D161.SBIFTI).D1H52.SRIFT*1)+ 	221 

B 	3(:, , , 18) - 

B 	CSHI(CSHI(FieldShift.DIM1.SRIFTi).DIM3.SBIFT+1)* 	210 

B 	30. , , 19) 

B 	CSHIpT(CSHIFT(FieldShift.01M1.SRIFT+1).D163.SHIFT1) 	212 

C Now for +he neat components, shift by another 62 in the C direction 
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FieldShift 	CSHIFT (Fi.ldShidt, DIN-1, SHIFT-NI) 
.5 

C Now sum up the products of each direction 

hayField 	MacField * 	 Remember the same components 

ft 	C(, 	I) 	FialdShift + 	 111 

& 	C(. 	. 2) • CSHIFT (FieldShift. DIM-1, SHIFT'-I) 	 ! 011 

ft 	C(, 	3) • CSHIFT (FieldShift, DIN-I. SHIFT-1) 	 211 

A: 	C(:. 	:. 4) a CSHIFT (FieldShift, DIM-2, SHIFT--I) + 	 101 

ft 	C(, 	• 5) a csairr (FieldShift, 01M2. SHIFT-1) + 	 121 

& 	C(. 	. 6) e  CSHIFT (FieldShift. DIN-3, SHIFT--l) + 	 110 

A 	C(. 	7) • CSHIFT (FieldShift, DIM-3, SHIFT-1) * 	 112 

ft 	C(. . . 8) 

ft 	CSHIFT(CSHIFT(FieldShift.DIMI.SHIFT1).DIM2.SHIF1I)* 	! 001 

& 	C(, . :. 9) 

& 	CSMIT(CSHIFT(FieldShift,D1141.SHIFT-1),D1M2.SHIFT1)+ 	021 

ft 	C(. 	. 10) 

ft 	CSEIFT(CSHIFT(Pie1dShift,DIM1.SHIFT1),DIM3,SHIFT1)* 	! 010 

ft 	C( ......11) - 

I 	CSHIFT(CSHIFT(FieldShift,DIM1,SHIFTI).D1M3,SHIFT1)+ 	012 

ft 	C(, . 	12) - 

ft 	CSHIFT(CSHIFT(Fie1dShift.DIM2,SHIFT1).DIM3,SHIFT1) 	100 

hayField MacField + 

& 	C(. . . 13) 

ft 	CS8IFT(CSHIFT(1'ieldShift.DIM2.SHIFTi).DIM3.SHXFT1)+ 	102 

ft 	C( 	. . 14) 5 

ft 	CSHIFT(CSHIFT(FieldShift.DIM52.SMIFT51).DIhl3,SflIFT-1)* 	! 120 

& 	C(, 	. 15) 

& 	CSMIFT(CSHIFT(FieldShift,D1112.SMIFTI),D1113.SHIFT1)* 	122 

ft 	C(. . 	16) - 

ft 	CSHIFT(CSMIFT(FieldShi2t.DIM1,SBIFT1),DIM52,SHIFTi)* 	201 

ft 	C(. 	. 17) 

ft 	CSHtFT(CSHIT(FieldShift.DIM1.SHIFT1),DIM2.SlfIFTi) 	221 

ft 	C(, 	. 18) 

ft 	CSHIFT(CSHIFT(Fie1dShift.DIM1.SHIFT1),DIll3.S8IFT1)° 	210 
ft 	C(, . . 19) 

ft 	CSHIFT(CSHIFT(Fieldlhift,DIMI.SHIFT1),51M3.SHIFT1) 	212 

C Now divide by the singular point coefficient 

Macfield 	Macfield / (i(:, . 	1) + i) 	 Add i' first 

C Only update Deltafiald. and Field for the central grid points. 

WHERE (Central) 

C Update the central elements in the difference array,  

Del.taField(:, . lrNZ) 	NeePield - Field 

C Copy Mew Field to the Did Field 

Field = NesField 

END WHERE 

C Done 

RETURN 

END 



Appendix C 

Task Farm, Code Excerpts 

C.1 Taskfarm.F 
C toskforo.f 

C Initialise the tool, form and issue tasks to the moon Program 

C Kenneth MacDonald 1994 

04sf ins SIZEOF_PARAM_SflUCI 4 

PROGRAM AUT02DFARI( 

IMPLICIT NONE 

C Parameters 

flrFEGER MAX-JOBS 

PARAMETER (MAX-JOBS 256) 

C Include files 

INCLUDE chimp. inn' 

INCLUDE pu].-tf.inc' 

INCLUDE pul. inn' 

C Common Blocks 

IrrEGER NumJobs 

INTEGER Job 

COMMON /Jobslnto/ Nuniobo. Job 

C PUL-TF Vartebles 

INTEGER thisproc 

:NTXGER retvoj. 

INTEGER form 

INTEGER  made 

21TEGER status 

EXTERNAL TPPFN(neketemk) 

EXTERNAL TFFPN(dotssk) 

EXTERNAL TPPFN(processr.sult) 

C Externe]. functions 

136 
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INTEGER GetNuojobs 

C Code 

thioproc chpisit 0 

	

rotval 	PULeetOebug (MODULEALJ.. DEBUGALL) 

	

retval 	PULimit ('suto2dfexm', CHPWILD) 

farm IFinit ('suto2dfarm') 

IF (chpexport () NE. CHPOK) TEEN 

PRINT e, 'Error: chpeoport foiled' 

retoal 	chpesit (0) 

END IF 

Bifdof MASTER 

	

statue 	TFOPOO (farm, TFSRCSNK. SIZEOFPARP.M_STRUCT. 

& SIZEOF_PARAM_STRUCT) 

Boise 

Bifdef WORKER 

	

status 	TFopeo (fern, TFWRX. SIZEOF.PARAMSTRUCT, 

A 	SIZEIFJ'AR.AMSTRUCT) 

Noise 

	

status 	TFopon (farm, TFSRCWRKSNK, SIZEOF_PARAM..STRUCT, 

A 	SIZEOF_PARAMSTRUCT) 

Bendif 

Gendif 

IF (statue NE. TFOK) TEEN 

PRINT 0 'Error: TFopen failed with error ', status 

ELSE 

PRINT • 'TFopso succeeded' 

END IF 

mode TFquery (farm) 

IF (nods LT. 0) THEN 

PRINT •, 'Error: TFquery failed with error ', sods 

E15  

PRINT •, 'TFquery succeeded. Returned ', mode 

END IF 

IF (mode.EQ.TPSRC.IR.mode.EQ.TFSRCSNK.OR.00de.EQ.TFSRCWRX) TEEN 

NuoJobe 	GetNuniobe C) 

PRINT 5, 'Number of Jobs found: ', Numjobe 

Job 1 

END IF 

statue TFoperate (form, TFFFN(meketaek) • TFFFN(dotask), 

A 	TFFFN(processresult)) 

IF (status.NE.TPOK) TEEN 

PRINT s, 'Error: TFoper.te failed with error ', status 

ELSE 

PRINT 0, 'Tylperate succeeded' 

END IF 

status = TFclose (farm) 

IF (otatus.NE.TFGK) THEN 

PRINT o, 'Error: TYclose failed with error ', status 

ELSE 
PRINT e, 'TN'close succeeded' 

END IF 

retvai e  PULexit C) 

	

retval 	chpexit (0) 

	

STOP 	 - 

END 
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B 

SUBROUTINE moketaok (teskout, outlength, retvel) 

C Arguments 

INTEGER teekout 

INTEGER outlength 

INTEGER retool 

C Common Blocks 

INTEGER Numjobo 

INTEGER Job 

COMMON /JobelaGo/ NunJobo, Job 

C Code 

IF (Job.GT.NumJobe) TIIESI 

retool 0 

01.50 

teokout Job 

Job 	Job * I 

retvei. SIZEOP..PARAM_STRUCT 

END IF 

RETURN 

END 

SUBROUTINE dotaok (tookin, inloogth, tookout, outiongth, retool) 

C Arguments 

INTEGER tookin. ioloogtb 

INTEGER tookout, outlength 

INTEGER retvoi 

C Code 

tookout teokin 

CALL AUT02D_Main (toekin) 
PRINT , 'Coiling Job Number ', tookin 

retvnl = SIZEOF,.PAStAMETEP,_STRUCT 

RETURN 

END 

C .,O *eoo... **S5OeflooO*sfl***eS000*_**_000*e**_00**00*0*0*0***O** 

SUBROUTINE proceeereoult (tookin, toek000. retvai) 

C Arguments 

INTEGER tookin 

INTEGER Cookout 

INTEGER retool 

C Code 

PRINT 0, 'outo2dfoxm: Job ', toekin, ' completed.' 

retool 
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RETUFUI 

END 
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C.2 	auto2d-main. FCM 

C 	Auto2D 

C 	Original code by Helena Poll 

C 	Took farm and additional options by Kenneth MacDonald 

Bifndsf TASK-FARM /n Only have a main program if not for the tonic farm .1 
PROGRAM AUM02D 

CALL AUT02D_MAIN (1) 

STOP 

END 

Sendif /0 TASK-FARM •/ 

SUBROUTINE AUT92D_IIAIN (ToDoJobNwnber) 

IMPLICIT HONE 

C 	Include any inc files here 

INCLUDE limits. inca 

C 	Common blocks 

C 	Arguments 

INTEGER ToDojobNumber 	Worker process's job in taokf arm 

C 	Variable Declarations 

C 	Start ,the program! 

C 	Loop over the number of models, solving each one 

DO Model 	I, NusoModele 

IneDModel = FALSE. 	Always assume 2D initially 

C 	Loop over number of periods for this model 

DO PerLoop 	l.NumPeriods 

Biffef TASK-FARM 

IF (Thisjob.EQ.JobNumber) TEEN 
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Dendif 

Period Periode(PerLoop) 

C 	Generate a grid 

IF (SenGrid) TILED 

CALL. RoadGrid ('grid.med', 	Period, 	YCrid, 	ZGrid, Reefrid, 

S CY, 	DY, 	CZ, 	DX, 	Resiotivities, 	SlumBlocks, 	Sites, 

2 SiteNums, 	NumSitos) 

ELSE IF (Stretch) THEN 

DY Sizes(PerLoop) 

CALL Stretchlrid 	(CT. 	CZ. 	DY, 	DZ. 	'fGrid. 	ZGrid, 

1 ResGrid, 	LeftEnd(PorLoop), RightEnd(PorLoop) 

2 Resiotivitios, 	NumBlocks. 	Sites, 	SiteNsrns, 

3 NumSitoo, Period. IneDModol, 	Interactive, 

4 Granulorities(PerLoop)) 

ELSE 

CALL AutoGrid 	(C?, 	CZ, 	DY, 	DZ, FInd, 	Zlrid, 

1 RoeGnid, LeftEnd(PerLoop), 	RightEnd(PorLoop), 

2 Rosietivities, 	NumBlock,, 	Site.,, 	Sitetoms, 

3 NumSitos, Period, GnoDModel, 	Interactive, 

4 Granulerities (Perloop)) 

ENDIF 

C 	Solve for this model 

IF (.LIDTSneDModol) THEN 

CALL MATRIX (FInd, ZGrid, ReoGrid, Field, 

1 	 Polarisation, MexGrid) 

C 	Write results 

END IF 

Uifdef TASK-FARM 

END IF 	 (Thisiob EQ. JobNumbor) 

Bendif 

END DO 	 Period loop 

END DO 	 Model Loop 

C 	Finished 

RETURN 

END 




