
Parallel Processing Methods Applied to

Two and Three Dimensional

Geo-electromagnetic Induction

Modelling

Kenneth J MacDonald

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

to the

University of Edinburgh

1996

Abstract

Two existing finite difference algorithms for solving the forward modelling prob-

lem of geo electromagnetic induction have been recoded to take advantage of high

performance massively parallel SIMD (single instruction multiple data) computer

architectures. Poll's[48] solves the two scalar polarised fields in the two dimen-

sional (2D) problem, and the other from Pu[51] solves for all three components

of the magnetic field in three dimensional (3D) structures. Both models apply

integral boundary conditions at the top and bottom of the grid to limit total

mesh size. The 3D model introduces a thin sheet at the top of the model to

describe near surface features. An efficient data parallel algorithm ensures the

evaluation of the integrals maintains a high ratio of processor utilisation on the

parallel hardware. Data parallel versions of the point Jacobian, Gauss-Seidel and

successive overrelaxation iterative solvers have been developed. The latter two

require two level black-white ordering, which to equalise the processor load bal-

ance, has been implemented it both a horizontally banded and chequer boarded

remapping of grid nodes.

The 2D model was also developed to form a task farm, whereby the solution

for each period is performed on one of a cluster of workstations. These solutions

are independent of each other, so are executed simultaneously on however many

workstations are available at the time.

Modern workstations, coupled with the original 2D Gauss-Jordan solver, are

faster than the SIMD computers for all but the largest grid sizes. However, the

3D code certainly benefited from the parallel processing for any but the smallest

models.

A new automatic meshing algorithm, which stretches a predefined number of

grid points over the conductivity structure, has also been developed. In part, this

was to control the mesh sizes and hence load balancing on the SIMD computers,

but investigations into grid spacing for 2D models show that severely restricting

the number of grid points results in a much faster estimated solution.

11

Acknowledgements

I would like to thank my supervisor Dr. Bruce Hobbs for his unfailing patience

and encouragement over the duration of my studies, as an undergraduate and

postgraduate. His enthusiasm for life as well as science has helped enormously in

shaping my own approach to this study. Thanks must also go to my secondary

supervisors Dr. Roger Banks and Mr Graham Dawes for their help and advice.

This work was carried out with the financial support of N.E.R.C. under stu-

dentship number GT4/91/GS/41, for which I am grateful.

A would also like to extend a special thank you to Dr Rosemary Hutton, lately

of The University of Edinburgh, for introducing me to the subject of magneto-

tellurics and for her faith in and support of me as an undergraduate.

The geo-electromagnetic modelling group at the University of Victoria, Canada

led by Dr. John Weaver are to be graciously thanked for inviting me to join their

team for three months Ashok Agarwal, Xinghua Pu and Helena Poll were not

only excellent academic hosts, but they also made my stay away from home most

enjoyable.

Credit should undoubtably go to my friends and family, who in combination,

kicked me into completing this thesis and supported me through the difficult as

well as good times.

Finally, I would like to thank my fiancée, Helena Taborda, whose faith in me

and support has been, and always will be, a source of strength and encourage-

ment.

iv

Contents

Abstract 	 i

Acknowledgements 	 iv

Constants, Symbols and Nomenclature 	 xi

1 Introduction 	 1

	

1.1 	Historical Review1

	

1.2 	Basic Electromagnetic Theory3

1.2.1 Dimensionality6

1.2.2 	The Magnetotelluric Method 	7

	

1.3 	Review of Geo-electromagnetic Modelling8

	

1.4 	Review of work in this thesis11

2 	Parallel Processing 13

2.1 History of Parallel Processing 13

2.2 Differing Computer Architectures 15

2.2.1 	The SISD Computing Model16

2.2.2 	The SIMD Computing Model 16

2.2.3 	The MIMD Computing Model19

2.3 Load Balancing and Granularity22

2.4 Parallel Processing Algorithms24

2.5 Development Software 26

2.5.1 	Data Parallel Languages 26

2.5.2 	Message Passing Libraries 30

V

2.5.3 Task Farms 30

2.6 	Available Hardware 31

2.6.1 The DEC mpp/12000SX 	31

2.6.2 The Connection Machine 200 33

2.6.3 The Workstation Cluster 34

2.6.4 Other Serial Machines 34

3 Model Algorithms 35

3.1 	Two Dimensional Model Formulation 35

3.1.1 	Interior Grid Points38

3.1.2 	Boundary Conditions 39

3.2 	Three Dimensional Model Formulation 42

3.2.1 	Vertical Edge Boundary Conditions42

3.2.2 	Internal Grid Points 44

3.2.3 	Top and Bottom Boundary Conditions 46

4 	Parallel Implementations 48

4.1 	Matrix Inversion 48

4.1.1 	Form of the coefficient matrix 48

4.1.2 	Gauss-Jordan Direct Method 49

4.1.3 	Iterative Solvers 50

4.1.4 	Simultaneous Relaxation 53

4.1.5 	Successive Relaxation58

4.1.6 	Successive Over-relaxation 63

4.1.7 	Iterative Starting Values 64

4.1.8 	Parallel Integral Evaluation 64

4.1.9 	Three Dimensional Array Storage 66

4.2 	Two Dimensional Task Farm67

4.3 	Model Performance 67

4.3.1 	Two Dimensional Model 67

4.3.2 	Three Dimensional Model• 72

4.3.3 	Task Farm 74

vi

5 	Two Dimensional Gridding Strategies 75
5.1 What Makes a Good Grid?75

5.2 Automatic Grid Generation 77

5.2.1 	Review 77

5.3 Elastic Membrane Grid79

5.3.1 	Why another algorithm? 79

5.3.2 	Grid Generation80

5.3.3 	Grid Verification 85

5.4 The COMMEMI 2-D Project 86

5.5 Comparing Grids 86

6 Conclusions and Further Work

A Two Dimensional Code Excerpts 	 105

A.1 Matrix-Iter.FCM105

A.2 Store-Iter.FCM109

A.3 Jacobian.FCM112

B Three Dimensional Code Excerpts 	 115

B.1 Iter3D.FCM115

B.2 Bottom.FCM125

B.3 	Top. FCM 129

B.4 	Interior. FCM133

C Task Farm Code Excerpts 	 136

C.1 Taskfarm.F136

C.2 auto2d-main.FCM140

vii

List of Tables

	

1.1 	Time scales of natural geomagnetic variations2

	

2.1 	Flynn's classification16

2.2 Comparison of FORTRAN 77 and FORTRAN 9027

4.1 2D Arrays stored on processor elements58

4.2 Performance for two dimensional (23 x 9) model71

4.3 Performance for two dimensional (123 x 66) model72

4.4 Performance for three dimensional models 73

4.5 Profile of three dimensional iteration step74

4.6 Performance of the two dimensional task farm 	74

viii

List of Figures

1.1 One, Two and Three Dimensional Structures7

2.1 Richardson's scheme for numerical weather prediction by human

parallel computers 14

2.2 Classical Von Neumann Computer Architecture 15

2.3 The SISD computer architecture16

2.4 The SIMD computing model17

2.5 Lattice Topologies19

2.6 Hypercube Topologies 20

2.7 The MIMD computing model 20

2.8 Quantised Execution Time 23

2.9 Domain partition processing 25

2.10 Pipeline processing 26

2.11 The High Performance FORTRANCSHIFT intrinsic function. 	29

2.12 Classic Task Farm 31

3.1 	Two Dimensional Model Configuration37

3.2 	General 3D model configuration43

3.3 	3D internal points45

4.1 	Form of the 21) coefficient matrix49

4.2 	U versus z in a one dimensional stratified Earth56

4.3 Five point High Performance FORTRANJacobian Iteration Step 	59

4.4 	Gauss-Seidel Iteration Front60

4.5 	2D Ordering Schemes60

4.6 	2D Ordering Schemes63

lx

4.7 	Evaluating the two dimensional surface integral in parallel 65

4.8 Three dimensional field component storage scheme66

4.9 	Effect of one dimensional solutions as initial values for the parallel

Point Jacobian 68

4.10 Point Jacobian versus Gauss-Seidel parallel iterative schemes . . 	69

4.11 Chequer Board Gauss-Seidel versus Successive Over Relaxation

parallel iterative schemes70

5.1 2D Cartesian grids 78

5.2 Reduction of model structure to one dimension 79

5.3 Points on an Elastic Grid80

5.4 Linear and cubic approximations to the elastic function 83

5.5 Example elastic membrane grid 85

5.6 The seven standard COMMEMI models 87

5.7 COMMEMI 2D-0 Poll and Weaver grids: Apparent Resistivity 88

5.8 COMMEMI 2D-0 Poll and Weaver grids: Phase 89

5.9 COMMEMI 2D-2 Poll and stretched grids: Apparent Resistivity 89

5.10 COMMEMI 2D-2 Poll and stretched grids: Phase 90

5.11 COMMEMI 2D-2 Poll and sparse stretched grids: Apparent Res-

istivity 91

5.12 COMMEMI 2D-2 Poll and sparse stretched grids: Phase 92

5.13 COMMEMI 2D-2 Poll and very sparse stretched grids: Apparent

Resistivity 93

5.14 COMMEMI 2D-2 Poll and very sparse stretched grids: Phase 	. . 93

x

Constants, Symbols and

Nomenclature

Magnetic permeability of free space (47r x 10 henry m').

	

£0 	Electrical permittivity of free space (8.85x 10-12 Farads rn').

	

B 	Magnetic field.

	

E 	Electric field.

	

F 	Vector field, either B or E.

X,Y,Z BX,BJ,BZ

U,V,W E,E J,EZ

	

F 	Scalar field, either X or U.

	

F 	Anomalous scalar field.

F, F 	One dimensional scalar field solutions at the left and right

edges of the model.

	

U 	Discrete representation of a scalar field.
U(P) 	The pth iteration level of u.

/ (P)() Some measure of change between 	and

	

Uij 	The scalar value of u at the grid node (y, z).

u mapped on to a processor array.

a +- b, c Value of a depends on the values of b and c.

	

77 	Elastic coefficient for stretched grid calculations.

Net stress at a point in the stretched grid.

xi

Chapter 1

Introduction

"Now here's the point, my friend. Electricity, radioactivity, atomic

energy - the true initiate knows that these are metaphors, masks, con-

ventional lies, or, at most, pathetic surrogates, for an ancestral, for-

gotten force, a force the initiate seeks and one day will know. We

should speak perhaps" - he hesitated a moment - "of telluric cur-

rents."

"What?" one of us asked, I forget who.

- Signor Agliè in Foucault's Pendulum by Umberto Eco, 1988.

1. .1 Historical Review

Although the Ancient Greeks recognised electricity, it is a Dane, Hans Christian

Oersted (1777 - 1851). who is credited with the initial discovery of a link between

electricity and magnetism in 1819. During a lecture, he placed a segment of

conducting wire horizontally, and at right angles above a magnetic needle. Of

course, nothing happened, and he continued the lecture without further thought

on the result. However, while moving the apparatus at the end of the lecture,

he noted, to his amazement, that if the wire was placed parallel to the needle, it

would cause a 900 deflection in the needle.

It was only two years later that Michael Faraday (1791 - 1867), in his famous

Christmas Day experiment of 1821, built the first prototype of the electric motor.

1

CHAPTER 1. INTRODUCTION 	 2

He continued his work, with the aim of finding a reciprocal link to Oersted's that

show electric currents induced by magnetic fields. He built what is now known as

an induction coil, and expected to find current induced in the secondary coil while

current flowed in the primary. There was no such effect visible, but he noticed

that whenever the current connection was made or broken, the galvanometer gave

a slight kick. He quickly satisfied himself that this was the effect he was looking

for, and became the father of electromagnetic induction.

Faraday's Law states that an electric current will be induced in a conducting

material in the presence of a time varying magnetic field, and that the magnitude

of the current will be proportional to the rate of change of the magnetic field.

The converse is also true, in that a time varying electric current will result in

an associated magnetic field. This phenomenon is most commonly observed in

the multitude of electrical transformers and motors which surround us in modern

life.

The same is also true on a global scale. The Earth has a finite, albeit inhomo-

geneous, electrical conductivity, and experiences a range of time varying magnetic

fields. The electrical currents induced in the Earth are known as telluric cur-

rents. Schuster (1851 - 1934) was the first to separate the internal and external

magnetic fields in 1889[57], and therefore the first to prove the existence of geo-

electromagnetic induction. Table 1.1 details some of the main natural sources of

geomagnetic field variations, along with their characteristic time scales.

Variation Time scale
Main field reversals 106 Years
Reversal events 105 Years
Non-dipole field and secular variations 10 - 1000 Years
Regular magnetic storm activity 0.5 - 4 Days
Diurnal variations 24, 12, and 8 Hours
Pulsations 0.2 - 600 Seconds
Sferics 3 - 1 000 Hertz

Table 1.1. Time scales of natural geomagnetic variations.

The power spectrum of the main field reversals is not known, and since none

CHAPTER 1. INTRODUCTION 	 3

have occured in historical times, they are not used for induction studies, but for

tracing the tectonic history of ocean floor, where they leave the basalt magnetised

parallel to the field at the time of cooling.

The non-dipole field and secular variations tell us more about the kinematics

of the source of the main field, than the conductivity structure of the Earth.

The long period of changes results in a very weak induced electric field, which

combined with the difficulty of making accurate measurements of telluric currents

over such long periods, means that they are not relevant for induction studies.

The more frequent disturbances are all used as natural power sources for geo-

electromagnetic studies. As a rule of thumb, which will be shown mathematically

later, the higher the frequency of the source, the finer the resolution and the

shallower the penetration. Thus the diurnal variations allow global conductivity

studies, and the high frequency spectra excited by thunder storms make excellent

sources for regional magnetotelluric measurements.

1.2 Basic Electromagnetic Theory

James Clerk Maxwell (1831 - 1879) was a mathematician, unlike Faraday who

confessed to an elementary understanding of mathematics. He preferred geomet-

rical rather than analytic methods of solution, and when he heard of Faraday's

lines of force, the geometry attracted him and he began to put Faraday's ideas

into a mathematical. form. His equations completely describing the interaction

between electric and magnetic fields can be found in any elementary textbook on

electromagnetism. In a linear, isotropic medium of uniform dielectric permittivity

and magnetic permeability 1,t, they are, in S.I. units

VE

= o 	 (1.2)

VxE = - aB 	 (1.3)
at

VxB = 	
OE
	 (1.4)

CHAPTER 1. INTRODUCTION 	 4

where p is the electric charge volume density, not to be confused with the electrical

resistivity which is denoted by p in the rest of this work. j is the electric current

volume density, which in a source free medium of electrical conductivity a is

j = aE. 	 (1.5)

The most striking consequence of his equations is that changes in electric and

magnetic fields can be propagated as waves, with a velocity the same as that

which had been measured of light. He wrote

"We can scarcely avoid the inference that light consists in the

transverse undulations of the same medium which is the cause of elec-

tric and magnetic phenomena."

thus being the first to recognise light as an electromagnetic wave.

Taking the curl of (1.3) and substituting from (1.4) and (1.5) leads to

32E
(1.6)

at 	at2

Following the approach of Weaver[73], and introducing dimensionless coeffi-

cients vi = 1,taL2/T and '2 = MEL21T2 (L and T being characteristic length and

time scales respectively), with 1' = 1/L, t' = t/T and V', the grad operator with

respect to the dimensionless space variables, (1.6) can be written

a2E
(1.7)

,9t, 	at12

with the relative values of v1 and z2 determining the importance of each term.

The dielectric permittivity, E, does not vary appreciably from that of free space

for the vast majority of materials in the Earth, except that of water, which is 80

times greater. The magnetic permeability, jt, only varies from that of free space

in concentrated highly magnetic minerals, such as magnetite (5 times greater).

Even in hematite it is only 5% greater[61]. The constants can therefore be taken

to be their free space values, namely

=eo= 8.85 x 1012 F/rn and p = 	= 4r x 10 H/rn 	(1.8)

CHAPTER 1. INTRODUCTION 	 5

where ,UE = 1/c2 (c is the velocity of light). It therefore follows that v2 = (L/cT)2
and zi1/ii2 = ,uac2T.

In the case of global studies, where L is of the order of 107 m, then v2 << 1
for time variations of less than 3 Hz (v2 < 0.01). Taking L io in (10 km) for

regional studies, the same is true for frequencies of less than 3 kHz. The electrical

conductivity of rocks varies between 10-6 to iO S/rn, and 4 S/rn for sea water.
Therefore, the ratio v1/v2 , will be much greater than one inside the Earth for

frequencies less than 100 kHz. In the case of the air, where a = 0, and hence

= 0, the first term will still dominate due to the fact that v2 is very much less
than unity:

The third term in (1.7) can therefore be dropped, which is equivalent to

dropping the second term on the right hand side of (1.4), now written as

VxB=jaE
	

(1.9)

where the definition of j, (1.5), has been incorporated. Taking the divergence of

(1.9) and noting that V (V x A) = 0, it is shown that

Vj=0. 	 (1.10)

In regions of homogeneous conductivity, therefore, (1.1) can be written

VE=0

which shows that finite electrical charge densities can only exist in those geo-

electromagnetic conditions where there are spatial changes in conductivity.

It is assumed that the sources share a common harmonic time dependence

with angular frequency w so that the fields can be written

E = E(x,y,z)ewJt 	 (1.12)

B = B(x,y,z)e t . 	 (1.13)

Using these harmonic properties dropping the third term, (1.6) can now be

rewritten

CHAPTER 1. INTRODUCTION 	 6

V x (V x E) + iwpE = 0. 	 (1.14)

The vector calculus identity V x (V x A) = V(V A) - V2 A, allows us to

write (1.14) as

V2 E + V[(Va) E/a] = iw1wE. 	 (1.15)

In areas of constant conductivity, such as these inside our model cells, applying

(1.11) leads to

V2 E = iwuuE, 	 (1.16)

the electrical diffusion equation.

A similar approach for B leads to

V 2B=iw1.tcrB, 	 (1.17)

the magnetic diffusion equation.

In his now classic paper of 1950, Price[50] analysed the general problem of a

uniform half space excited by a known source field above it.

1.2.1 Dimensionality

This thesis is concerned with the numerical modelling of two and three-dimensional

resistivity structures. The one dimensional case is indirectly addressed, since it

must be solved in order to set boundary conditions for two dimensional models.

The simplest geological structure to model is known as a half-space. This

is defined by a horizontal plane at z = 0, which separates a non conducting

vacuum for z <0 and uniformly conducting material for z > 0. One dimensional

structures only vary their properties with depth, such as a series of horizontal

layers, as shown in Figure 1.1(a).

Many geological structures are inherently two-dimensional, in that they do

not vary in character along one particular direction, known as the strike (along

the x-axis in Figure 1.1(b)). This premise holds true for a large range of scales.

CHAPTER 1. INTRODUCTION
	

7

Y x

Y

(a) 	 (b)
	 (c)

Figure 1.1. One, Two and Three Dimensional Structures

For example, faults and dykes tend to run in straight lines, and even coastlines.

can often be considered to be straight over hundreds of kilometers. Therefore we

can restrict the variation in model structure and reap the benefits in the resulting

reduction in the degrees of freedom of the problem.

The general case is of a fully three-dimensional conductivity structure. The

three degrees of freedom allow a complete description of any geological formation

and setting. Figure 1.1(c) illustrates a block embedded in a homogeneous host

rock.

1.2.2 The Magnet otelluric Method

The origins of the magnetotelluric method can be found in the classic papers of

Tikhonov[63] & Caignard[7]. Natural source fields over a broad frequency band,

for example the last four entries in Table 1.1, are used to explore the subsurface

conductivity. Time series of the horizontal components of both the electric and

magnetic fields are measured at appropriate sites, and Fourier transformed into

power spectra in the frequency domain. Caignard showed that if the region has

a one-dimensional conductivity structure, then an apparent resistivity is defined

as

(1.18)

where /10 is the permeability and w is the frequency. In the two-dimensional case

the apparent resistivity depends on the direction of B and E so that the two

CHAPTER 1. INTRODUCTION
	 ro]

possible values are

2

(Pa)x
= 	

2
 and (Pa)y

- go

- wB

In practical electromagnetic units, Caignard obtained

2 rIEI
Pa= 	 (1.20)

for the true resistivity of a half space, where E is measured in millivolts per

kilometre, the electrodes being separated by typically one hundred metres, H,

the magnetic field, in nanotesla and -, the period, in seconds. Conveniently, the

apparent resistivity then has units of ohm metres

This method of geophysical prospecting has been applied to a variety of geo-

logical structures. For example, the EMSLAB[16][68][3] project studied the deep

continental crust of North America on the regional scale. Magnetotellurics are

frequently employed to evaluate potential geothermal regions, such as Jones et

al.[28] in Southern Portugal, which discounted possible development, or the more

successful studies of Lagios et al.[35] and Galanopoulos et al.[21]in the Greek

Aegean islands.

1.3 	Review of Geo- electromagnetic Modelling

Forward modelling is defined to be the process of deriving a set of electromagnetic

field values, or response functions, from a given resistivity structure. The process

of deducing a resistivity from a given response function, usually derived from real

measurements, is known as inversion.

Inverse methods exist for one dimensional problems, such as those of Bailey[2]

for a spherical Earth and Weidelt[77] for a flat Earth. These derive a conductance

structure directly from the surface response functions. However, two and three

dimensional inversion methods rely on calculating multiple forward models and

somehow minimising the misfit between the modelled and measured responses.

deGroot-Hedlin and Constable's[12] two dimensional Occam inversion searches

for the smoothest varying conductivity structure. They discretise the model on

CHAPTER 1. INTRODUCTION 	 9

a dense mesh and allow each cell to vary in conductivity, but not size. This mesh

is then used as a rough grid for Wannamaker's[70] two dimensional finite element

code. Agarwal and Weaver[l] prefer to progressively add structural blocks until

the data are matched, thus arriving at a different, but equally valid, definition

of minimum complexity model. Smith and Booker[59] have developed what they

term a "rapid inversion" algorithm for two and three-dimensional structures.

They perform a series of one dimensional inversions under each measurement site,

which they interpolate to form a new input grid for the two or three dimensional

forward model.

Such algorithms may require many forward models to be calculated, thus fast

and, accurate forward modelling is an essential tool for the exploration of the

electrical conductivity of the Earth.

There are three distinct approaches to forward modelling geo-electromagnetic

induction:

Analogue Construct physical scale models in the laboratory, apply a source

field, and measure the field components at the site locations.

Analytic A series of mathematical formula can give the exact solution to a

particular problem.

Numerical Approximate reality with a discrete, digital representation of the

relevant physical properties, construct some system of equations which de-

scribe the electromagnetic field behaviour, and solve.

All of these techniques have undergone development since the earliest at-

tempts to model the real world. Analogue modelling has the advantage of being

able to represent arbitrarily complex physical structures, limited only by the skill

and resources (financial and time) of the modeller. Dosso[14] presented a gen-

eral review in 1973; Hu et al.[26] examine sea mount effects, and Chen et al.[8]

investigate tectonic subduction zones. Chen[9] also constructed analogue models

for the EMSLAB region. However, even minor alterations to the model require

significant amounts of time, ruling this technique out for iterative inversions of in

field recorded measurements. The scarcity of suitable materials with laboratory

scale conductivities can also limit the construction of models.

CHAPTER 1. INTRODUCTION 	 10

The beauty and appeal of analytic models lie in their ability to give precise

predictions of the electromagnetic field at the site locations. They are however,

severely limited to a few special case conductivity structures and source configur-

ations. d'Erceville and Kunetz[13] obtained the first analytic solution for lateral

conductivity variations in 1962 by considering a vertical contact between two

blocks, overlying a perfect conducting or insulating half space. Rankin[54] intro-

duced another vertical boundary to construct a dyke in a homogeneous host rock,

and Weaver[71] allowed the contacts to extend infinitely downwards. Perhaps the

most useful application of such analytic models, is that they can be compared to

numerical models of the same conductivity structure and source field. The first

COMMEMI[85] model, as shown later in Figure 5.6(0) has an analytic solution,

discovered by Weaver, LeQuang and Fischer[75] [76].

Numerical models exhibit the greatest variety and effort of the three modelling

families. As computers become able to handle larger sets of numbers more quickly,

so the numerical models become more complex and finer scaled. Kaikkonen[31]

reviews a variety methods. These generally involve superimposing a mesh of grid

points over the conductivity structure to be modelled, and describing the local

field behaviour in each block with a system of equations. This system, along with

suitable boundary conditions is solved to obtain the modelled response.

Neves[43] developed the first numerical model using finite differences, which

were later used by Jones and Price[29] in two dimensions and by Jones and

Vozoff[30] in three dimensions. Wannamaker[70] developed a two dimensional

finite element algorithm which has been integrated into the commercial Geotools

magnetotelluric interpretation package[22]. Coggon[10] was perhaps first to ap-

ply this method to the geo-electromagnetic induction problem. Many others have

followed, such as Reddy and Rankin[55], who took advantage of the method's abil-

ity to operate on non-rectangular meshes to model dipping contacts. Madden[38]

and Ku et al.[33] modelled the conductivity structure as . a network of resistors

and inductors to which they applied Kirchoff's Laws of voltage and current.

Integral equation methods have proved popular in three dimensional mod-

elling, where the large meshes required by finite elements and differences prove

impossible to accommodate on typical computers. These methods calculate the

CHAPTER 1. INTRODUCTION 	 11

anomalous fields inside inhomogeneous regions in the country rock, therefore re-

quiring a much reduced mesh so long as the number of such regions is not too

great. Raiche[52], Weidelt[78] and Hohmann[25] laid the groundwork for this

particular technique.

When the main model complexity lies in the upper surface of the model then

a thin sheet approach may be followed. Price[49] originally introduced this idea,

whereby a physically thin region of arbitrarily varying conductivity is approxim-

ated by a sheet of zero thickness and conductance equivalent to the integrated

original conductivity. Vasseur and Weidelt[65] allowed a general conductivity

variation, but constrained by a surrounding uniform area, which was relaxed by

McKirdy and Weaver[39], and McKirdy, Weaver and Dawson[40] who introduced

two dimensional structures at the boundaries.

There is a great deal of effort concentrating on the three dimensional problem

now, with the rapid development of high speed, large capacity computers. Pu[51]

has developed a hybrid thin sheet and finite difference code which offers the

potential to model virtually any geological structure, given a suitably powerful

computing facility.

1.4 	Review of work in this thesis

This thesis investigates possible approaches to take advantage of parallel pro-

cessing methods in geo-electromagnetic modelling. There has been rapid devel-

opment in the field of concurrent computing which is reviewed in Chapter 2.

Chapter 3 introduces two existing model algorithms which were adopted for

this study. Poll's[48] two dimensional code, complete with automatic mesh gen-

eration, and Pu's[51] elaborate three dimensional code.

A massively parallel implementation of these models algorithm is developed

and evaluated in Chapter 4. The same source code compiles either for a Thinking

Machines CM 200 at Edinburgh, or a DEC mpp/12000SX in Victoria, British

Columbia. This chapter also describes an alternative approach to parallelisation,

utilising a cluster of workstations configured as a task farm, which is portable to

a wide variety of platforms.

Some of the issues raised in Chapter 4 called for the development of a new

CHAPTER 1. INTRODUCTION
	

12

automatic meshing algorithm. A description of past and present meshing tech-

niques is presented in Chapter 5, along with a stretched grid algorithm which

controls the number of nodes allocated to a model mesh. Comparisons of several

different grids indicate where gridding can be relaxed.

Finally, Chapter 6 closes this thesis with a discussion of the results and sug-

gestions for where future effort would be best applied.

Chapter 2

Parallel Processing

2.1 History of Parallel Processing

Far from being a recent technological development, the story of parallel pro-

cessing is as old as data processing itself. As soon as people started to perform

calculations on data, the concept of sharing the work, or "divide and conquer"

surely occured to them.

With the faltering birth of mechanical computing in the nineteenth century,

Menabrea (1842) wrote about Charles Babbage's Analytical Engine

when a long series of identical computations is to be performed,

such as those required for the formation of numerical tables, the ma-

chine can be brought into play so as to give several results at the same

time, which will greatly abridge the whole amount of the processes.

Although the ideas of parallel processing surfaced from time to time, large

scale parallelism remained unrealistic with the available technology. Wallace[67]

describes how Lewis F. Richardson (1922) proposed that 64,000 human computers

could calculate the weather for the whole globe, if they were 'coordinated by an

official of higher rank'. His fantasy is illustrated in Figure 2.1.

Parallel processing, in its simplest form, also appeared during the race to con-

struct an atomic bomb during the Second World War. When Richard Feynman

was given the task of managing a large group of human particular algorithms.

13

CHAPTER 2. PARALLEL PROCESSING
	

14

Figure 2.1. Richardson's scheme for numerical weather prediction by human
parallel computers, as shown by Wallace (1988)

His superiors at Los Alamos, including Professor Pauli, were amazed at the time

saved by Feynman's practices. Before his death, Richard Feynman completed

the mathematical theory which enabled his friend Danny Hillis to build the Con-

nection Machine, and found Thinking Machines Corporation, one of the major

pioneers in parallel hardware.

The development of the earliest electronic computers in the post war years

effectively represented a step away from these early ideas of parallel processing.

EDSAC 1 (1949) and UNIVAC (1951) implemented a form of instruction pipelin-

ing in a classical von Neumann computer model, as shown in Figure 2.2.

In the forty-five years since EDSAC 1, there has been a steady twenty-five

fold increase in floating point performance each decade. This has been achieved

through advances in engineering and hardware technology, and until very recently,

each generation of supercomputers has followed the Von Neumann model.

CHAPTER 2. PARALLEL PROCESSING
	

15

Data Store

Single

Instruction Store \J 	7

Multipurpose 	< >

Processor Input Device

Output Device
Bidirectional

Bus

Figure 2.2. Classical Von Neumann Computer Architecture

In 1947 John Von Neumann proposed that an electronic general purpose pro-

grammable computer could be built using a single processing unit which commu-

nicates through an array of electrical connections known as a bus. Everything

else required to operate the computer is attached to this bus.

The 1980s brought very large-scale integrated circuit multiprocessors, with

directly connected memory, distributed between the processors, and/or acting

as a global memory, accessible equally from all processors. Various network

topologies have been designed for inter-processor communication pathways, from

the simplistic lattice, through rings and toruses, to hypercubes.

2.2 Differing Computer Architectures

The taxonomy covering the variety of parallel architectures is as fluid as the

hardware itself, due to the rapid development witnessed over the last couple of

decades. Flynn's (1966) classification, described by Modi[41], and reproduced

in Table 2.1 is commonly accepted. He identifies four types of computational

architecture: SISD, SIMD, MISD and MIMD'.

The MISD design highlights the age of this classification, and it is doubtful if

any machines of this architecture were ever built. Today, only the multiple data

'Each is pronounced by making the word fragment of the first three letters and then adding
a "dee" sound. For example SIMD —* "sim-dee".

CHAPTER 2. PARALLEL PROCESSING
	

16

1 11 Single Data Stream Multiple Data Stream

Single Instruction Stream SISD SIMD

Multiple Instruction Stream MISD MIMD

Table 2.1. Flynn's classification

(SO (S

Control Unit Processor Datum

Figure 2.3. The SISD computer architecture

stream types are considered appropriate to describe parallel computers.

2.2.1 The SISD Computing Model

We will briefly concern ourselves with the SISD model, as it obviously represents

the traditional serial computer. This will lay the basis for further understanding

the novel features of parallel computers.

The SISD architecture, see Figure 2.3, is analogous to the von Neumann. In

this design there exists one processing unit, one memory storage unit, and one

bus linking the two. In operation, the processor fetches one instruction from the•

memory, followed by a datum (determined by the instruction) from the same

memory. The necessary calculation is performed, and the result is placed back

in memory.

At the time, primitive valves were fragile and unreliable, so this was a practical

approach to building any computer, in that the von Neumann computer only had

one of each item.

The following sections describe the two remaining, SIMD and MIMD, models,

and introduce the particular machines on which the work presented in this thesis

was carried out. The common features will be described in the SIMD section, and

then the differences between the two will be highlighted in the MIMD section.

2.2.2 The SIMD Computing Model

CHAPTER 2. PARALLEL PROCESSING
	

17

(SI) 7J_ 	.f.-U

o "< L®)
Cot

unit 	

P.

Data elements

Processors connected in a network

Figure 2.4. The SIMD computing model

SIMD is an acronym for Single Instruction, Multiple Data, as noted above in

Flynn's classification (Table 2.1). This is often referred to Data Parallel computing,

in that it is the data which is distributed, not the program. One distinguishing

feature of many SIMD computers is that they are built of large numbers of pro-

cessors, thousands, or even tens of thousands, working synchronously, i.e. locked

to one clock.

The SIMD Control Unit

Because there can be only one instruction active at any time (Single Instruction),

a powerful processor, generally a workstation, is promoted to be the controller.

It is this, and only this, processor which can issue instructions to all the others.

Instructions may be conditional on data local to the processors. For example,

a ratio may be calculated so long as the denominator is non-zero. However, any

processor which fails the test will be idle for that computational cycle, reducing

overall efficiency. This is one of the main drawbacks of the SIMD architecture.

All external data I/O, such as disc storage and networking, is routed through

this control unit.

CHAPTER 2. PARALLEL PROCESSING

The SIMD Memory Model

Each processor has a relatively small bank of local memory, but when scaled by

the number of processors, the total amount of memory available becomes signi-

ficant. Only the local processor may access this memory, and in many respects it

is the extent of this memory which dictates the maximum dimensions and shape

of the problem which can be posed on the entire machine.

Communications

There are several forms of communications which may take place in a SIMD ma-

chine:

. Control unit communicates data or instructions with one processor. All

other processors remain idle.

. Control unit broadcasts data or instructions to all processors, each of which

stores a copy of the data in its own local memory.

Arrays, or sections of arrays, pass between the control unit and the pro-

cessors.

Data reduction to control unit. Data from all, or a subset, of the processors

is reduced to a scalar value which is received, by the control unit.

Regular inter-processor communication, in which data is moved homogen-

eously across the processors.

General inter-processor communication, where each processor is commu-

nicating with any other processor, addressed by a pointer stored in local

-. 	memory.

Topology

The topology of the architecture describes the configuration of the communication

network connecting the processors together. Inter processor communications will,

obviously be more efficient if the data passes through the minimum number of

CHAPTER 2. PARALLEL PROCESSING
	

19

Figure 2.5. Lattice Topologies in (a) one dimension, and (b) two dimensions

processors on its route to its destination. The dimensionality of the network also

affects the mapping of model parameters to processors.

An n-dimensional lattice is the simplest network topology. Figure 2.5 shows

two lattice networks, in one and two dimensions. The last node has a direct

connection back around to the first to allow for fast data wraparound. However,

any two processors in this configuration may be separated by many intermediate

processors

A novel networking scheme has been developed to overcome this problem.

An n-dimensional hypercube is constructed such that each of the 2' nodes is

connected to n neighbouring nodes. This has the advantage that the processor

array is at most n processors long in any direction. Figure 2.6 illustrates how

(n + 1) dimensional hypercubes can be constructed from two n dimensional hy-

percubes connected together by an extra 2(m1) lines.

2.2.3 The MIMD Computing Model

In contrast to SIMD computers, MIMD machines have traditionally consisted

of many fewer processors, tens or hundreds. This is undoubtedly mainly due to

the expense of the more powerful processors utilised, but also the difficulty of

building a network with a high enough 'bandwidth' to support large numbers of

such processors. The bandwidth of any communication route is simply a measure

(a) 	 (b) 	 (c)

CHAPTER 2. PARALLEL PROCESSING
	

20

(d)

Figure 2.6. Hypercube Topologies in (a) one dimension, (b) two dimensions,
(c) three dimensions, and (d) four dimensions

()

it

12

	

o 2J
	

1)2

unit

Data 0,anent,

_

- 	 n Pressors connected in a network 	- 	- 	- 	Possible access to 	-

shared global tretuory

Figure 2.7. The MIMD computing model

CHAPTER 2. PARALLEL PROCESSING 	 21

of how much information it can carry in a fixed time.

However, to overcome the lack of processor numbers, each processor is typ-

ically as powerful as a single processor workstation, and can be running code

independently of all the others.

The MIMD Control Unit

There is still a need to delegate one, or more, processors to control the machine as

a whole. Subsets of processors may be grouped together, along with their control

processor, to form an independent MIMD machine within the global machine. At

least one processor also acts as an interface to the external I/O channels. Whereas

the SIMD control unit sends microcode instructions, the MIMD control unit sends

program fragments to the set of processors under its control. Each processor is

then free to complete its task in however long it may require.

The MIMD Memory Model

As in a SIMD machine, each of the processors will have its own local memory,

scaled to match the greater processing power. Once again this is typically of the

same order as a workstation : up to tens of megabytes. Some of this is reserved

by the operating system, since a copy is running on each processor.

Figure 2.7 also shows an optional area of shared global memory, which is not

associated with any particular processor. In fact, each processor is equally able

to read from, or write to, this memory. Obviously, these operations are more

expensive than local memory accesses.

Communications

Because each processor is, in effect, running a different program, communications

are much more complicated in the MIMD model. The type and quantity of data

is not fixed over the set of processors. Indeed, the data may in fact be a control

message sent from one processor to another, unlike the SIMD machine.

The guaranteed synchronisation present in a SIMD machine cannot be relied

on. Of course, the program can arrange the computations to be synchronous, but

CHAPTER 2. PARALLEL PROCESSING
	

22

non-synchronous communications have to be catered for. Therefore, the range of

communication modes can be summarised by the following selection.

Synchronous, where all the processors are communicating simultaneously,

which is the simplest form of communications. However, this places restric-

tions on the algorithm, similar to these found in the SIMD machine.

Blocking non-synchronous, where processors are free to communicate whenever

they require, but wait for the communication to complete before continuing

their task. Unfortunately, this can result in inefficiencies in the program,

as many processors may be idle at any one time. Even worse, there may

develop a situation known as deadlock when the majority of processors are

blocking, almost inevitably leading eventually to all processors being in the

blocked state.

Non-blocking non-synchronous, where processors continue their task once a

communication is initiated. The processor will complete the communication

at a later, undetermined time. This has the disadvantage that corrupt data

are difficult to deal with, since once they have been sent, the transmitting

process may have destroyed the originals.

2.3 Load Balancing and Granularity

The problem of keeping all the processors in a parallel machine busy is known as

load balancing, and has already been alluded to in the earlier discussion of the

SIMD and MIMD architectures.

Load balancing is intimately linked to the relationship between the granu-

larity of the algorithm and the number of available processors. Simply put, the

granularity is a measure of how fine, or small, the tasks given to each processor

are. In a massively parallel SIMD machine, the granularity will almost always

be very fine. A large MIMD machine is able to handle a range of granularities,

and a cluster of workstations is best suited to a parallel algorithm with a coarse

granularity.

CHAPTER 2. PARALLEL PROCESSING
	

23

7T

6T

Execution 5T
Time.

4T

31

2T

I

N 	2N 	3N 	4N 	5N 	6N

Number of Subtasks

Figure 2.8. Graph showing how total execution time becomes quantised in the
parallel regime. T is one quanta of execution time, and N is the number of
processors.

In order for us to examine some aspects of load balancing, let us first consider

a very coarse grained problem on two processors. If the amount of work required

by each subtask is equivalent, and if there is an even number of subtasks, then

both processors will be working until the whole problem is completed. However,

as soon as an odd number of subtasks is required, one processor is going to

be left idle while the Other performs the last.subtask. The worst case can be

encapsulated in the following rule

Nt = N+ 1 	 . 	(2.1)

where Nt is the number of subtasks, and N > 1 is the number of available

processors. This rule can be also be applied to find the worst case in a massively

parallel SIMD machine, where the number of processors could be several thousand.

In this case, the problem will almost certainly be very fine grained, and N - 1

processors will be idle for half of the total execution time.

The total execution time, therefore, increases in a step function, as the number

of subtasks increase. We can see in Figure 2.8, that so long as the number

CHAPTER 2. PARALLEL PROCESSING 	 24

of subtasks lies in an interval between two integer multiples of the number of

processors, the execution time will be the same. This is important, because it

means the machine could be capable of carrying out significantly more work with

no time penalty, resulting in a more efficient program.

When each subtask represents a different, possibly unknown, amount of work,

the problem of load balancing becomes virtually intractable. These problems

should only occur in a program written for a MIMD machine, as the programmer

is always aware of how much work is being given to processors in a SIMD machine.

The MIMD machine, with its ability to run different programs on different pro-

cessors, can instruct the controlling processor to monitor the load balance of the

allocated set Of processors, and modify its approach to the problem appropriately.

2.4 Parallel Processing Algorithms

The process of solving an application problem on any computer can be broken

down into roughly three stages: define the application, e.g. by mathematical

formulae; specify the algorithm (and write computer code); and finally, execution

of the code on the computer.

Kung[34] identifies nine different models of computation on a research parallel

computer.
local computation 4. multi-function pipeline 7 divide-and-conquer

domain partition 	5. ring 	 8. query processing

pipeline 	 6. recursive computation 9. task queue
Each of his models corresponds to a different way in which data is passed

between processors. I. will describe only the first four; 1 and 2 being similar, but

contrasting with the commonly implemented 3 and 4.

'Local computation' and 'domain partition' both involve decomposing the

input data into a series of sub-domains, each of which is mapped to a single

processor. Kung differentiates between the two, by noting that many algorithms

depend only on a local datum, while others involve the communication of data

between sub-domains. His choice of name for 2 is therefore not ideal, as it can

describe 1 equally well. Figure 2.9 shows these two models.

CHAPTER 2. PARALLEL PROCESSING
	

25

[1 	
Input Data

Processors
01 	02 03 04 05166 	 Output Data

Input Data

................................4

Processors

01 02 03 04 05 06 	 Output Data

Figure 2.9. Domain partition processing with (a) local computation, (b) inter
sub-domain communication

CHAPTER 2. PARALLEL PROCESSING
	

26

Pi
	 p 	 p

2 	 n

3D2D1

Figure 2.10. Pipeline processing: In multi-function pipelines, each process may
be different operations

Later chapters will show how domain partition can be applied to both simul-

taneous and successive relaxations.

The 'pipeline' and, the more general, 'multi-function pipeline' models repres-

ent the process of passing all the data through a sequence of processes. As the

first datum leaves the first processor, the second datum enters the beginning of

the pipeline. This model is completely analogous to the UNIX shell pipe ('').

2.5 Development Software

This section presents the two approaches referred to in the rest of the text, out

of a myriad of possible parallel programming styles.

2.5.1 Data Parallel Languages

These languages, as the title suggests, treat the data as a parallel object. The

most common data parallel language, and the one used in this work,.is derived

from FORTRAN 90. The important development in this standard of FORTRAN

over the FORTRAN 77 standard is the promotion of the multidimensional matrix

to an intrinsic data type, along with REAL, COMPLEX, etc. Perhaps this difference

can best be shown in the two code fragments in Table 2.2.

Each declares a one dimensional array of ten integers. The FORTRAN 77 code

on the left must contain an explicit DO loop in order to set each element in the

array. The FORTRAN 90 code, in contrast, can set every element in the array by

simply referring to the array name without the subscript and parentheses. On a

serial machine, the compiler will in effect generate an implicit DO loop to perform

CHAPTER 2. PARALLEL PROCESSING 	 27

FORTRAN 77 FORTRAN 90

INTEGER N(10) INTEGER N(10)
INTEGER I

DO I = 1, 	10 N = 1
N(I) 	= 1

END DO

Table 2.2. Initialising the elements of an array in FORTRAN 77 and FORTRAN
90

the same actions as the FORTRAN 77 code, but on a parallel machine, there is the

possibility of each element being assigned to a different processor, and therefore,

the complete array being set at once.

Until recently, each vendor of a parallel machine wrote their own parallel

extensions to the FORTRAN 77 standard. It was in this environment of proprietary

languages that the FORTRAN 90 standard slowly emerged. However, some parallel

aspects are lacking in the standard, and yet another committee was given the

task of defining a High Performance FORTRANstandard. I will simply call these

modern languages FORTRAN 90 in the rest of this thesis.

There are also improvements to logical flow control statements, but I will

ignore these, as they are largely irrelevant to this work. Instead, I will briefly

describe some of the useful array constructs which map directly to a parallel,

especially SIMD, architecture.

Element Processor Mapping

Since FORTRAN 90 is an inherently data parallel language, array elements must be

mapped to processors in the machine. There are numerous ways of achieving this,

but one thing they all have in common is that virtual processors are introduced

to present a one to one mapping to the FORTRAN 90 programmer. The compiler

arranges for each processor to timeshare between multiple array elements. This

can have serious repercussions in performance on a SIMD machine. See Section 2.3

for a discussion of this load balancing problem.

CHAPTER 2. PARALLEL PROCESSING

Elemental Operations

If two arrays are conformant, that is with the same number and length of di-

mensions, then they may be combined by elemental operators. The following are

examples of elemental operators.

Assignment A = 1

Simple Arithmetic B = A+B, C = A*B

Intrinsic Functions B = SIN(A), C = LOG(A)

Type Modifiers B. = REAL(C)

As their name suggests, each of these operations act equally on all the elements

in the arrays. It is important to remember that A*B is not matrix multiplication,

but simply each element in A multiplied by the corresponding element in B.

Reduction Operators

These operators reduce the rank of an array, either by one, or all the way down

to a scalar, and are new intrinsic functions, specific to arrays. If the function is

called with only one argument (an array), then the result is a scalar calculated

by the function. In addition, an integer constant representing a dimension may

also be passed, which determines a direction over which the calculation is to

take place, and the shape of the resulting array (with rank one less than the

argument).

Examples of these reduction operators include

Total = SUN(A) sets the scalar variable Total to be the sum of all the

elements in A.

B = MAX (A, DIMENSION= 1) will result in B containing the maximum values

along the first dimension of A. B has rank one less than A.

CHAPTER 2. PARALLEL PROCESSING
	

29

Regular Communications

Entire data arrays can be translated across the processor array very easily. Nearest

neighbour communication, in particular, is highly efficient. High Performance

FORTRANspecifies two new intrinsic functions to implement this kind if trans-

lation; SHIFT and CSHIFT. These functions require three arguments; the source

array, a dimension index along which to translate, and a displacement. The

CHSIFT form ensures that elements which "fall off" the array are wrapped back

to the opposite edge. Figure 2.11 shows an array before and after a CSHIFT

operation.

1 2 3 4 5 CSHIFT(A, SHIFT=1, DIM=1) 	
2 3 4 5 1

6 7 8 9 10 7 8 9 10 6 -
11 12 13 14 15 	 12 13 14 15 11

Figure 2.11. The High Performance FORTRANCSHIFT intrinsic function.

Scope and Masks

The behaviour of these array intrinsics and arithmetic operators can be con-

strained by one of two methods. The array intrinsics allow an optional mask to

be passed as an extra argument. A mask is simply a logical array, conformant

with the source array, where a . TRUE. signifies that the operator is to be ap-

plied at that location, otherwise no action is performed. The second method is

to modify the scope of a section of code inside a WHERE . . . END WHERE construct.

This is the direct analogue of the FORTRAN 77 IF . . . END IF construct, except

that it tests each element of an array to determine the logical flow. The classic

example of this in use is to avoid division by zero. For example:

WHERE (A.NE.0)
• B = 1 / A

END WHERE

In a parallel machine, these masks and scope constraints can be thought of

as specifying which processors should be turned on or off for the subsequent

operations.

CHAPTER 2. PARALLEL PROCESSING 	 30

Array Sections

A sub-array can easily be extracted from a larger array by using the following

syntax B = A (n: m, ...). One n: m pair is required for each dimension in A. m

indicates the start, and n the end of the section in that particular dimension.

There are two special cases to be considered. First of all, if there is simply one

constant, with no :, then that specifies the start and end of the section. If there

is only a :, then the whole extent of the dimension is included in the section.

2.5.2 Message Passing Libraries

There are as many message passing libraries available as there are centres devel-

oping parallel code. However, a standard known as MPI[42] is emerging. These

libraries are only applicable to MIMD machines, as SIMD machines cannot support

processors running different code simultaneously.

In general, message passing is a much coarser grained form of parallelism

than the FORTRAN 90 paradigm. However, there is a greater flexibility, allowing

a broader range of algorithms to be implemented. The programmer has the

choice of how to parallelise the code, whether to follow the data parallel path, or

to implement a pipeline or any of the other computational models discussed in

Section 2.4.

2.5.3 Task Farms

A task farm is built on top of a message passing library, and contains the following

components, as shown in Figure 2.12:

Worker Processes which wait for sub-tasks to perform. This is where the bulk

of the work is done in parallel, shared between them all.

Source Process which divides up the complete problem into manageable por-

tions and passes them on to the workers.

Sink Process which listens to messages from the workers, and collects their

results when they have completed their sub-tasks. It is the sink's job to

recombine the results to form the complete solution of the problem.

CHAPTER 2. PARALLEL PROCESSING
	

31

Figure 2.12. Classic Task Farm

The source process has overall control, and can influence the performance of

the task farm by adapting its task partition policy depending on how the workers

are coping.

2.6 Available Hardware

2.6.1 The DEC mpp/12000SX

Although now built by Digital Equipment Corporation, this type of computer

was conceived and marketed by MasPar, a name which has been retained by

DEC. I shall also refer to it as a MasPar in the rest of this work.

This machine was donated by DEC to the British Columbia Provincial Gov-

ernment Computer Centre in Victoria. In turn, they offered some very attractive

computer-time packages to Canadian academic institutions, one of which was

purchased by Dr Weaver to support this work.

The MasPar was one of the pioneering massively parallel SIMD machines,

and is considered old technology by many in the numerical scientific community.

CHAPTER 2. PARALLEL PROCESSING 	 32

There was a very low demand for time on this machine, which resulted in a rapid

development cycle, as I was usually the only user.

There are 8192 (214) simple processors arranged in a two dimensional lattice,

similar to that shown in Figure 2.5(b), and each processor has 16kB of local

memory. Therefore, the total memory available is 128MB, which is not signific-

antly larger than a modern fast workstation class machine.

The fact that the processors are linked in a two dimensional, 64x 128, network,

facilitates mapping of two dimensional arrays, but can cause problems with higher

dimensions. To overcome this, each processor partitions its own local memory,

indexed by a third subscript on an array. Unfortunately, this has the effect of

reducing the available storage space allocated to the original two dimensions.

The process of partitioning the local memory is also applied when virtual

processors are required. If either of the first two dimensions exceed the number

of physical processors in the lattice, the system partitions the local memories,

and allocates each slice to a set of 8192 virtual processors. Computational time

on the physical processors is now shared between the virtual processors.

This method of creating virtual processors has the unfortunate side effect of

the likelihood of leaving a large percentage of processors idle for much of the

time. For example, processing a 65 x 128 matrix would be using the machine at

half efficiency. Section 2.3 introduced the idea of load balancing and efficiency.

The machine is hosted by a DEC microVAX workstation running the OSF/1

operating system. A MasPar FORTRAN compiler is used to build binaries from a

very close variant of High Performance FORTRAN. When writing code, the author

must be very careful to prevent what MasPar call "data sloshing". This occurs

when an individual element of a parallel matrix is accessed. Instead of querying

the responsible processor, the whole matrix is copied to the workstation memory,

where the FORTRAN 77 type access is carried out. The next time the matrix is

operated on as a whole, it is copied back to the processor lattice. This obviously

poses a severe threat to overall performance; and must be avoided through careful

algorithm design and implementation.

CHAPTER 2. PARALLEL PROCESSING
	

33

2.6.2 The Connection Machine 200

The Connection Machine is also a massively parallel SIMD machine, designed and

constructed by Thinking Machines Corporation. The Edinburgh Parallel Com-

puting Centre (EPCC) maintains a CM-200 to the United Kingdom academic

community on behalf of the Engineering and Physical Sciences Research Council

(EPSERC).

The basic unit of the CM-200 is a processing node constructed from two CM

processor chips, two network chips, one optional 32 bit floating point processor

and one megabyte of memory. Each processor chip contains sixteen one bit

processors clocked at 8MHz. A sequencer interfaces the front end workstation to

the rest of the machine, translating incoming code to nano-instructions for the

simple processors.

There are several specialised buses linking the nodes. First of all, the instruc-

tion broadcast bus, which simply sends instructions from the sequencer to all the

nodes. There is also a scalar memory bus which allows the sequencer to access

any memory location for reading or writing, thus avoiding the problem of data

sloshing from which the MasPar suffers. The global result bus returns a datum,

combined from the single bit outputs of all the processors, to the sequencer. Fi-

nally there is the general interprocessor communication network. Each of the

processor chips • (16 processors) forms a vertex of a hypercube. The associated

network chip supports three forms of communication across this topology.

Router Completely general processor to processor communications. Any pro-

cessor can access any memory location throughout the network, with all

processors making memory accesses simultaneously.

NEWS (North East West South) Nearest neighbour communication on an n-

dimensional Cartesian grid.

Scans and Spreads Combines computation with communication on a NEWS

grid. Especially, efficient for finding sums, maximum values, et cetera in an

array.

A fully configured CM-200 has 2048 processor nodes, or 64k processors, linked

in a twelve dimensional hypercube, complete with two gigabytes of memory. The

CHAPTER 2. PARALLEL PROCESSING 	 34

machine at Edinburgh is a quarter of that size, with 16k processors in a ten

dimensional hypercube and 512 megabytes of memory.

The main programming language is Connection Machine FORTRAN, which is

very close to High Performance FORTRAN. The front end host computer is a Sun

4 workstation, on which all software is developed before running on the back end

parallel machine.

2.6.3 The Workstation Cluster

The Department of Geology & Geophysics at The University of Edinburgh pos-

sesses an impressive array of Unix workstations, from a variety of manufacturers.

Subsets of these computers were available at different times to be configured as

a task farm, as described in Section 2.5.3. They all share a common network

filesystem (NFS) based file space running on top of TCP/IP, with generally Un-

writable local discs. The network is lOMbit/s thin Ethernet which competes with

a large Novell IPX LAN.

The particular task farm implementation was based upon the Parallel Utilities

Library Task Farm (PUL-TF)[15][6} written at the EPCC. This piece of software

is available for no charge to UK academics.

2.6.4 Other Serial Machines

I had access to a large Sun SparcCentre 2000 at the University of Edinburgh.

This machine, with 256Mb of memory serves as a computer server for academics,

which means that jobs are virtually always timesharing.

Digital Corporation, in an attempt to popularise their new line of Alpha

processors, donated user accounts on a fully configured AXP class machine. In

return for alerting them to bugs in the compilers and operating system, I was

allowed network access and unlimited CPU time on this 190MHz A1pha21064

based machine, with 256Mb of core memory.

Chapter 3

Model Algorithms

3.1 Two Dimensional Model Formulation

The solution of a two dimensional problem splits into two distinct and inde-

pendent modes, with either the electric or magnetic field polarised along the

conductivity strike direction. Hobbs[24] suggests the use of the terms B Polar-

isation and E Polarisation. If we consider the strike to be along the x axis, then

the conductivity structure does does not vary with x. The electromagnetic field

can be expressed as B = (Br , 0, 0) and E = (0, E, E) for B polarisation and

similarly B = (0, B, B) and E = (Er, 0, 0) for E polarisation. It is conventional

to write the Cartesian field components as

E = U(y,z),E = V(y, z), Ez W(y,z) (3.1)

B —_X(y,z),B = Y(y,z),B = Z(y,z) (3.2)

Rewriting (1.3) and (1.9) in terms of these components gives six well known

scalar equations

ay DZ 	
(3.3)

ax

 = bLoaV 	 (3.4)

35

CHAPTER 3. MODEL ALGORITHMS
	

36

ax
- —toaW 	 (3.5)

and

az 	ay - 	/JaU (3.6) az
aU = —iwY (3.7)

. aU
(3.8)

These equations have decoupled into two independent sets, with (3.3), (3.4)

and (3.5) corresponding to the B polarisation and (3.6), (3.7) and (3.8) defining

the E polarisation solution. Since Maxwell's equations allow the derivation of 'E

from B and vice versa, the two dimensional solutions need only be for the scalar

fields X and U respectively.

I will present only these equations necessary to the background for later sec-

tions here. A more detailed derivation can be found in Poll[48].

Figure 3.1 represents a general two dimensional conductivity model. The x

axis is pointing into the page, and the structure is infinite along that axis. The

structure is one dimensional at the extremities of y, in that it only varies with z,

all the way to +oo. z increases downwards into the Earth model, with z = 0 at

the air boundary.

The model structure is defined as •a series of regions of homogeneous and

isotropic conductivity, a, with discontinuities in conductivity at the boundaries.

The atmosphere is treated as a perfect insulator, i.e. a = 0 for z < 0. A half-space

of constant conductivity, a0, underlies the whole model.

The vertical plane of the model is divided up into M by N smaller rectangles,

forming a grid on which the model and solution are discretised. Each of these

rectangular cells covers an area of constant conductivity, and will have a discon-

tinuity af an edge, if and only if that edge coincides with the model structure.

The vertices of the cells are labelled Xm,n , which are the same subscripts used to

label the width, hm, height, k, and conductivity, am,m, of the cell.

CHAPTER 3. MODEL ALGORITHMS
	

37

ce

Figure 3.1. Two Dimensional Model Configuration. Insert shows the dimensions
and values around a grid cell.

Any discrete, finite model must address the behaviour of the fields in the

interior of the model and at the edges. The equations for the interior points are

relatively straightforward to develop, but there are a great variety of approaches

to the boundaries.

As was previously stated this finite difference formulation of the geoelectro-

magnetic induction problem was developed by Poll[48]. It draws upon many

years experience in the different parts, bringing them together to form perhaps

the most sophisticated finite difference model to date. The expressions are presen-

ted in terms of anomalous field differences, that is the difference from the one

dimensional solution at y = —oc.

I shall briefly summarise the historical development of this model's constituent

parts:

interior points This is essentially that which was presented by Brewitt-Taylor

and Weaver[4] for their finite difference model[5], but written in terms of

the anomalous and host fields.

side boundaries The one dimensional solutions were originally derived by Wait [66]

(3.9)

(3.12)

(3.13)

CHAPTER 3. MODEL ALGORITHMS

in 1953 for the propagation of radio waves, then developed by Schmucker[56]

and later by Summers and Weaver[60]. The asymptotic relationship linking

U(±oo) .to the model boundary in E polarisation were developed by Weaver

and Brewitt-Taylor[74].

surface boundaries The integral equations for the top surface E polarisation

model are derived from the thin sheet approximation developed by Price[49],

and generalised by, amongst others, Ranganayaki and Madden[53] and

Weaver[73].

3.1.1 Interior Grid Points

The finite difference equations for the anomolous field' at the centre of the interior

grid cells, each of height k, width hm and resistivity Pm,n, can be written in the

following general form

CiFm,n_i + C2Fm+i,n ± C3Fm,n+i + C4 Fm_ 1,n = (C5 +)Fm,n + K

where C5 = C1 + C2 + C3 + C4 and, for B polarisation

Co = w 0hk

- hm_ipm_i,n + hm pm,m_i
Cl - 	I

- kn_ipm,n_i + km pm,n
C2 - 	LI

hm_ipm_i,n + hm pm,n
C3 - 	 I /'f

finuo
kn_i Pm-i ri—i + kn pm_i n

C4—_ 	
1.
Itrn_1L'O

K = —C1X 1 —(C2 ±C4 —05 i)X—C3X 1

'The anomolous field, F, is defined as the difference between the local field and the one-
dimensional field at the left side of the grid, F.

(3.20)

(3.21)

(3.22)

(3.23)

CHAPTER 3. MODEL ALGORITHMS
	 we

and for E polarisation

F=U

Co = 	Wo m,nhk

1 - C m

n_1L'O

k
C2 Lf1

C3
h

= k

k
C4 - L

[tm_ltJO

K =
\

with h = hm_i + hm and k = k_1 + k for simplicity.

The E polarisation is not expressed in terms of a but the weighted average

conductivities, as introduced by Brewitt-Taylor and Weaver[4].

- 	- hmkn_iUm,n_i + hmknam,n

h+ k+ inn

hmiknam_i,n + h_ik_ia-i._i 	
(3.24)

h+ k+
k_1 	k

=+ a 	 (3.25)

3.1.2 Boundary Conditions

The sets of equations developed for the interior points can not be assumed to be

valid around the edges of the model grid. In particular, there are no nodes outside

the declared grid, so that some of the terms in the equations will be undefined.

A boundary condition is a rule which governs, in some manner, the behaviour

of the solution at that boundary of the model. The most common boundary

conditions are classified as one of two families

CHAPTER 3. MODEL ALGORITHMS 	 40

Dirichiet The values of the solution at the boundary are prescribed, and remain

fixed throughout the solution process. For example, 'u,1 = 0.

Neumann The values of the solution at the boundary are constrained by pre-

scribed normal derivatives. For example, aF zQ = 0. az

Left and Right Boundary Conditions

As has been mentioned before, the conductivity structure degenerates to be one

dimensional at the left and right edges of the model. The field at an infinite dis-

tance along the y axis will also be one dimensional, as the disturbance caused by

variations in conductivity with y will have completely diffused to zero. This will

be some considerable distance in some situations, especially ocean coasts[11][53].

The one dimensional solutions at y = +oc are denoted as F+ and F, where

F = X for B polarisation, and F = U for E polarisation. These solutions

themselves can be used as Dirichiet boundary conditions for the B polarisation

case, so long as the edges of the grid are suitably far away from the anomalous

structures.

The E polarisation fields, however, do not recover to their one dimensional

form so quickly, and the asymptotic boundary conditions derived by Weaver

and Brewitt-Taylor[74] are employed. Poll writes the anomolous field boundary

conditions at the top surface corners as

F1U1 - U2 = 0 	 (3.26)

FNVUNJ - UN_l = (FN - 	- U-) 	 (3.27)

where 171 = ii;; - 2, FN = 2EN + l+N and € = Yi
The side boundary conditions for z > 0, written in terms of the anomalous

field, are

X, (Z) = 0 	 (3.28)

XN(z) = X(z)—X(z) 	(3.29)

CHAPTER 3. MODEL ALGORITHMS
	

41

	

U(z.1)U1, - U(z)U1,_1 = 0 	 (3.30)

U+(zn_1)UN,n - U+(zn)UN, fl_l =

U(z)U(z-1) - U(z_i)U(z) 	 (3.31)

Top Boundary Conditions

For B polarisation it is obvious from (3.4) and (3.5) that above the surface of the

Earth, which is non-conducting atmosphere, DX/(9y = 0 and DX/(9z = 0 so that

X(y,0-) = X0 	 (3.32)

where X0 is some constant. For a uniform horizontal source magnetic field of

B0 the total field above a one dimensional Earth is 2B0 . Therefore we can write

X(y, 0-) = 2B0 since the model becomes one dimensional as jyj -4 cc.

In the E polarisation case, setting a =. 0 leads to

aaz 	a' az
and -+ - = 0. 	 (3.33)

ay Dz

The solution of this differential equation, results in the same integral boundary

condition as that obtained by Schmucker[56], which can be written in terms of

the discrete anomalous electric field as

(i-2 N-1\

LUl,N + MU,, + NU-1,1 + PiUi,1 + QU +1, 1 + (+) RUm,i
\m=2 m=i+2)

+ 	= SUj + 	 (3.34)
ki

where L, M, N, P, Q, R, S and T are derived coefficients, as in Poll[48].

Bottom Boundary Conditions

It is possible to allow the model mesh to extend to great depths in the model as

both X and U approach zero as z - cc. However, it is computationally expensive

to dedicate these grid points for this purpose, so Poll has implemented an integral

boundary condition at a depth z = d, below which lies a half space of constant

CHAPTER 3. MODEL ALGORITHMS 	 42

conductivity, a. These were originally developed by Green and Weaver[23] and

can be written in terms of the discrete anomalous fields as

/i-2 N-1\
NX_l,N + PiXi,N + QiXi+l,N + (> +) RXm,i.

\rm=2 m=i+2/
+7ru 0TiN1i,NZ_l = SX +TX 	 - a)V (3.35)

kN_i

for B polarisation, and

LiUi,NZ +MiUNY ,NZ +NiUi_l,N +PjUj,N +QiUi+l,N
/i-2 N,-1\

)RrUm,Nz + Ui,NZ _l=SiUN+TiUN (3.36)
\m=2 m=i+2J

for E polarisation.

3.2 Three Dimensional Model Formulation

The following description of the mathematical formulation of the three dimen-

sional model is all based upon work developed by Xinghua Pu[51] at the Uni-

versity of Victoria, British Columbia, Canada. I will only present what is ne-

cessary to show the links between the mathematical and the parallel processing

algorithms.

The model solves the magnetic field components for a general three dimen-

sional structure, overlaid by an optional thin sheet of variable conductance, with

general two dimensional structures at the vertical boundaries. Figure 3.2 shows

such a model.

3.2.1 Vertical Edge Boundary Conditions

There are numerous ways to enforce boundary conditions around the vertical

edges of the three dimensional model volume.

CHAPTER 3. MODEL ALGORITHMS
	

43

Rn,

z=d

Figure 3.2. General 3D model configuration (After Pu, 1994)

If one assumes that the structure is periodic in the horizontal directions,

then periodic boundary conditions can be applied, as in the case of the Fourier

methods of Park[46] and Jiracek[27]. However, in order to eliminate the effects

of repeating the structure, the boundaries are extended to great distances from

the three dimensional structure, resulting in expensive grid point usage.

The other methods rely on previously calculated field values for the boundar-

ies, which are then fixed. This class of boundary conditions is known as Dirichlet

boundary conditions and there are, of course, a variety of methods of finding these

values. Mackie et al.[37] divide their three dimensional model into a series of ver-

tical slices, which are each embedded in a two dimensional B Polarisation grid,

reflecting the regional two dimensional structure. Unfortunately, this approach

has two obvious drawbacks. First of all, a large number of 2D problems need to

be solved (one for each slice), and secondly, not all regional model configurations

can be described by a single electrical strike.

To allow as general as possible regional structure, Pu imposes the condition

CHAPTER 3. MODEL ALGORITHMS
	

44

that the model structure degenerates to two dimensions at the vertical model

boundaries, each with a strike normal to the boundary. Thus, the regional struc-

ture can be constructed from two perpendicular strikes, as at some tectonic mar-

gins, for example.

As has been discussed in Section 3.1, two dimensional solutions split into two

distinct and independent modes, "E Polarisation" and "B Polarisation". In or-

der to describe the four vertical boundaries, two solutions of each polarisation

are required. The solutions on opposing boundaries will be polarised in the same

direction. Pu developed an E Polarisation solution for B and B in order to over-

come the fact that the solution for E is dependent on a volume weighted average

of electrical conductivity, whereas any solution for B depends on a weighted aver-

age of resistivity. Simply taking the reciprocal of either of these is not equivalent

to the other, as noted by Brewitt-Taylor[4]. The reader is referred to Pu[51] for

a full description of the two dimensional solutions.

In summary, the components of the magnetic field are fixed at their two

dimensional approximations over the vertical boundary surfaces of the model.

3.2.2 Internal Grid Points

The three Cartesian components of the magnetic field vector need .to be solved

for all the internal grid points. These values are potentially dependent on all the

surrounding points, as is shown in Figure 3.3. This figure also illustrates the

point numbering scheme used in this section, as well for describing interprocessor

communications in Chapter 4.

The internal governing differential equation is obtained by applying volume

integration over the cuboid, surface S and volume V, surrounding a grid point,

and utilising a vector relation

I (VXA)dv=JdS x A 	 (3.37)

where V is a volume bounded by a closed surface 5, with dS positive outward

from the enclosed volume. This relation is derived from the well-known Gauss

divergence theorem

CHAPTER 3. MODEL ALGORITHMS
	

45

Figure 3.3. 3D internal points, showing numbering scheme

f (V A)dv = A• dS. 	 (3.38)

A volume integration of the Maxwell equation (1.3) gives

fV
V X Edv = — Z'w

fV B
 . dv 	 (3.39

which can be further transformed by (3.37) and Maxwell equation (1.4) into

f V x E dv fdS x E=_±fp(VxB) x dS. 	(3.40)

Equation (3.39) then becomes

p(VxB)xdS=iwiifBdv. 	 (3.41)

Pu presents the finite difference equivalent of (3.41) to be

CHAPTER 3. MODEL ALGORITHMS 	 46

(i + C101 + C121 + C10 + c11'2)X111 = c101 X101 + c121 X121 + cuoXiio + c112 X112

(c221 - C201 + Cool - c021)Y1 + c201Y201 - c221Y221 - c001Y001 + c02121
- c001)Y0 - (c221 - c201)Y2 - (c201 - cooi)Yioi + (c221 -

(C212 - c210 + c010 - c012)Z111 + c012 Z012 - c212Z212 - c010 Z010 + c210 Z210

+(co12 - coio)Zoui - (c212 - c210)Z211 - (c210 - coio)Zo + (c212 - c012)Z112.

(3.42)

(i + C011 ± C211 + c10 + c112)Y111 = c011Y011 + c2111' 11 + c110Y110 + c11217112

(c221 - c201 + c001 - c021)X111 + c201X201 - c221X221 - c001 X001 + c021 X021

- cooi)Xioi - (c221 - c021)X121 - (c021 - c001)X0 + (c221 - C201)X211

(c122 - C102 + C100 - c120)Z11 + c120 Z120 - c122 Z122 c100 Z100 + c102 Z102

- cioo)Zuoi - (c122 - c120)Z121 - (c120 - c100)Z0 + (c122 -

(3.43)

(i + C011 + C211 + C101 + c121)Z1 = c011 Z011 + c211Z211 + c101 Z101 + c121 Z121

(c212 - c210 + C010 - c012)X111 + c012 X012 - c212X212 - c010 X010 + c210 X210

- couo)Xuo - (c212 - c012)X 2 - (c012 - c010)X0 + (C212 - c210)X211

- C120 + C100 - c102)Y1 + c102Y102 - c122Y122 - c100Y100 + c120Y120

+(c120 - cioo)Yjio - (c122 - c102)Y112 - (c102 - c100)Y101 + (c122 - c120)Y121

(3.44)

3.2.3 Top and Bottom Boundary Conditions

The thin sheet (as introduced in Section 1.3) at the upper surface of the model
allows shallow features to be incorporated without dedicating valuable grid nodes
to their representation. The approximation holds so long as it is much thinner
than the skin depth inside it, and that high conductivity layers are set deep in the

model. The Z component remains unchanged across the thin sheet (Z— =

CHAPTER 3. MODEL ALGORITHMS 	 47

and is used to calculate the horizontal components thus

X(r, 0—) = B0 - M1Z(r, 0—), Y(r, 0—) = —M2 Z(r, 0—). 	(3.45)

where B0 is the source field and

(3.46)
100 00 	 YV

M2Z = 	L00L Z(u,v)
00 	 [(x—u)2+(y—v)2]

dudy.

The boundary condition above the thin sheet (z = 0—) can be written in

terms of discrete finite differences as

L M
X 0 = B0 +AZ 0 , 	 (3.47)

1=1 m=1
L M

YApo = 	BAg Z 0 , 	 (3.48)
1=1 m=1

ZApo = Z 1 ,

	

	 (3.49)

=2 ... L-1,=2 ... M-1 v=0

where A and B are given in Appendix A of Pu's thesis[51].

The boundary conditions under the thin sheet (z = 0+) do not involve a

complete surface integral, yet are more complex to write in full than for the

interior points.

The model grid is underlain by a half-space of constant conductivity (a = 0-0

for z > d). The integral boundary condition as developed in Weaver's book[73]

is applied over this contact surface. Once again, Pu[51] has a full derivation of

the lengthy finite difference expressions for these boundary conditions.

4

Chapter 4

Parallel Implementations

This chapter describes the two and three dimensional modelling parallel al-

gorithms. The iterative solvers are developed for the two dimensional case, but

apply equally to the three dimensional problem.

4.1 Matrix Inversion

The forward modelling problem has been reduced to solving systems of equations

Au = b 	 (4.1)

where A is the coefficient matrix1, u is a column vector of field values, which are

to be found, and b is a representation of the sources contained within the model.

4.1.1 Form of the coefficient matrix

The coefficient matrix is composed of N x N sub-matrices, each with N x N

elements. The overall matrix is sparse, as three non-zero elements are located

along the leading diagonal, and two further elements each N positions to either

side of the diagonal, reflecting the essentially local nature of the equations. Fig-

ure 4.1.1 illustrates the form of a typical coefficient matrix.

'Often referred to as the stiffness matrix, from the numerical modelling of mechanical
structures.

CHAPTER 4. PARALLEL IMPLEMENTATIONS
	

49

IVZ

N N

• • . • •0000
• . • • o.000

N • • • • . 0 0 • 0 0

• • • • 000.o
• • . S 5 	0 0 0 0 5

0000.. 000••

0,000••• 00••

N o o • o a 	o • . . a
000.000......

0000•000••

Figure 4.1. Form of the 2D coefficient matrix. [o] marks zero elements, and [.]
non-zero elements. This matrix is from an E Polarisation model, with N x N
grid points (N = 5 in this case).

The integral boundary conditions at the Earth's surface, (z = 0), and at the

top of the half space, (z = d), fully populate the upper and lower diagonal sub-

matrices. Unfortunately, this destroys any possibility of utilising a straightfor-

ward sparse matrix compaction scheme, as large numbers of unrequired elements

from the inner diagonal sub-matrices would also be stored.

4.1.2 Gauss-Jordan Direct Method

Poll's original algorithm solved the system of equations (4.1) by the Gauss-Jordan

direct method, commonly found in any linear algebra textbook. The system

is reduced to a triangular system and then back substitution leads to the final

solution. This method has the advantage of providing a solution in a fixed number

of steps (n3 + 0(n2) multiplications).

However, like all direct methods, it can suffer from a lack of accuracy for

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 1 50

ill conditioned systems, and just as importantly in this study, it requires the

complete matrix to be constructed and stored. Poll's code writes the matrix

to the filesystem, and reads from it as necessary when carrying out the back

substitution stage.

4.1.3 Iterative Solvers

Iterative solvers start with an initial guess as to the solution, 	and repeatedly

relax it, until some criterion is satisfied. The superscript figure in parentheses

denotes the iteration level, zero being the set of values before the relaxation

commences. Each step can be represented by

= Gu + k 	 (4.2)

where 	represents the relaxation process and k is the residual.

An iterative method is defined to be stationary if G = G 	for all n, i.e.

the relaxation step is the same at all iterative levels. Only stationary iterative

methods are considered in this thesis.

The major advantage of iterative methods is that the coefficient matrix A

does not need to be expressed explicitly. Instead, all the information contained

in the finite difference equations and boundary, conditions is expressed as a set

of rules governing the relaxation towards the final solution.

Convergence

Ideally any iterative technique should converge toü, the solution of (4.1), for any

starting vector, 	The method is defined to be weakly convergent if the series

converges for any 	and is strongly convergent if it converges to

the same limit, independent of 	It is therefore necessary to show that the

chosen method is strongly convergent as we wish the method to be stable, for all

models.

CHAPTER 4. .PARALLEL IMPLEMENTATIONS 	 51

Consistency

An iterative method, once converged to a solution, should not then deviate from

that solution with further iterations. If it does remain at the solution, then the

method it consistent.

Put formally, as by Young[81], the method (4.2) is consistent with the system

(4.1) if and only if, for some n, (') is a solution, say ii of (4.1), then 	=
= ... =

Therefore, the related system

(I—G)ü=k
	

(4.3)

can be derived from the iterative method (4.2) once convergence has been reached.

Conditions for Convergence

Smith[58] presents the general condition for convergence, the development of

which follows.

Defining the error 	in the nth approximation to the exact solution as

= ii - 	and substituting into (4.2) yields

e' = (I - G)ü + 	- k 	 (4.4)

and using the related system (4.3)

e'' = Ge 	 (4.5)

and therefore

e 	= Ge° 	 (4.6)

The series of iterates (1), 	 , u(),. . . will converge to to ü as n tends

to infinity if

	

urn e = 0 	 (4.7)
n-+oo

	

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 52

However, since the desired behaviour is for convergence for arbitrary 	and

e° the condition for convergence is

	

urn G' = 0 	 (4.8)
n—*oo

Assuming that the matrix G of order m has m linearly independent ei-

genvectors g, i = 1, m, then these eigenvectors can be used as a basis of the

rn-dimensional vector space. The error vector can therefore be expressed as a

unique linear combination of these eigenvalues, thus

e°

= 	
ag
	

(4.9)

and therefore

e(1) = Ge ° = 	aGg 	 (4.10)

The definition of eigenvectors state that Ggi = Aigi if)j is the corresponding

eigenvalue, so

rn
e(1) =ajAigi 	 (4.11)

and

e = a)g 	 (4.12)

Therefore 	will tend to 0 as ri tends to infinity, for any 	if and only if

jA j j < 1 for all i. This is equivalent to requiring the spectral radius p(G) of G

be less than one.

It is sufficient to require that G I I < 1 since p(G) < uGH (Young[81], The-

orem 3.4, p.32).

Stopping Criteria

The number of iterations required to allow convergence to a solution is potentially

infinite, so some kind of criterion as to when to stop must be checked against

CHAPTER 4. PARALLEL IMPLEMENTATIONS . 	 53

regularly.

The chosen criterion must be

an accurate assessment of the state of convergence of the problem, and

inexpensive to compute, or it will dominate the whole process.

These two requirements work against each other, in that the more accurate

criteria are more expensive to compute. However, by only applying the criterion

once, every ten iterations or so, the second can be satisfied.

The essence of the criterion is that it should measure how much the solution

is changing between iteration levels. As in all measurements of change, either

the absolute or relative changes can be considered, and because the solution is

discrete across the grid, these differences can be calculated on a local or global

basis.

The local absolute maximum change can be calculated by

= rnaxi$) -
i,J

which is also known as the i-infinity (i) norm of the change vector.

Similarly, a local relative maximum change can be calculated by

(4.13)

= max
(p) - (p-i) ui,j

(p) ui, j
(4.14)

The corresponding global maxima are found by summing the terms in (4.13)

and (4.14). For example, the global relative change can be expressed as

E . 	(P) - (P-i)
= /_.li,j ' z,j 	i,j 	, 	

. 	(4.15)
v' 	(P)
/__4,j i,j

4.1.4 Simultaneous Relaxation

Traditional Point Jacobian Relaxation

Simultaneous relaxation indicates that all the elements ui of the solution column

matrix u are updated simultaneously ; i.e. the (p + l)th iteration level depends

only upon the pth level ((P)

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 54

For non-boundary nodes this can be written

T13- U]3 , 	U 11 Uj4, Ui,j 	 (4.16)

This simple dependency relation has two striking properties:

It is straightforward to parallelise on a SIMD computer, as every node can

be updated independent of all the others.

It has been long acknowledged to be mathematically slow to converge.

Before continuing with the parallel implementation of this method, I will

briefly discuss its behaviour for this particular modelling problem.

For convergence to be guaranteed, it is necessary that HG! < 1. In the point

Jacobian, G takes the form

	

G=D'(L+U) 	 (4.17)

where D, L and U are, respectively, the diagonal, strictly lower and strictly upper

elements of A.

Taking the ith equation of Au = b to be

a 1x1 + a 2x2 	+ aiixi + 	+ airn xm = b

then the ith row of G is

ail ai2 	a_1 	
...

Choosing i, such that this row's 11-norm2 is the greatest for all i, and taking

the infinity norm of the matrix, the Jacobian will converge if

a1 + jai2j +... + 	+ 0 + 	+ 	+ aj < jaii j 	(4.18)

211x111 = xij + 1x21 + - - - Ixj, from Kreyszig[32], c•1024

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 55

This condition is better known as ensuring that the matrix A is strictly diag-

onally dominant, i.e. the modulus of the diagonal element must be greater than

the sum of the moduli of the other elements in that row.

The question is now whether the matrix A generated from the equations in

Section3.1 is diagonally dominant or not.

Examination of (3.9 shows that for diagonal dominance, I (C5 + i) I must be

shown to be greater than (I C,+ I C + I C3 + I C4). Analysis of the derivation of

these coefficients, (3.11) to (3.23) reveals that they are: (a) all positive; and (b)

all purely real scalars. The former states that

(4.19)

Now, rewriting (4.18) as

C5 < (C5 + i) 	 (4.20)

and remembering that C5 is real, then (4.20) must be valid by the triangle in-

equality. Hence the interior points all lead to diagonally dominant rows in the

matrix A, for all models geometries.

In the B polarisation case, the side boundaries are governed by a Dirichiet

boundary condition, in that X± = X±OO, so are automatic, in that the diagonal

element is unity, and all the others in that row are zero. The asymptotic relation

between U and 	in the E polarisation case complicates matters. (3.31) and

(3.31) show that for diagonal dominance

U(z_1) > U(z 	 (4.21)

or, that the magnitude of U in a one dimensional solution is always decreasing

as z increases.

In a one dimensional Earth, the field is governed by the well known differential

equation

çci = iw 0aU. 	 (4.22)

This equation holds true in layers of constant conductivity, and has solution

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 56

10,

10°

Half Space
- - Conductive Layer

10 	 - - - - Resistive Layer

10 6

10 °
0.0 	1.0 	2.0 	3.0 	4.0

Depth (kin)

Figure 4.2. U versus z in a one dimensional stratified Earth

in the th layer, as expressed by Levy et al.[36]

U(z,w) = Aje1 	+ Be' 	 (4.23)

where A and B (replacing their U and D to avoid confusion) are the amplitudes

of up-going and down-going waves at the top of the th layer, and 'y 	/iwtoaj.

However, the recursive relations for the amplitudes, working from the bottom

half space, where A = 0, up to z = 0, do not immediately lead to the desired

result.

Figure 4.2 illustrates JU(z)l calculated for three different models:

half space 1 Qm,

1km thick conductive layer (10002m) embedded 1km in the half space, and

1km thick resistive layer (0.001lm) embedded 1km in the half space.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 5

The half space shows the expected behaviour, in that there is no upward

travelling wave (A is zero), so that there is a simple exponential decay in U. The

resistive layer slows the decay with depth, but does not reverse it. The conductive

layer exhibits the greater dissipation of energy, which starts in the host material,

well above the boundary. This is due to the phase change of the reflected wave

decaying as it travels upwards.

Combining the evidence from this brief experiment, and a hand waving ar-

gument regarding, energy dissipation, I conclude that U almost certainly does

decrease monotonically with depth, no matter the model configuration.

The equations describing the coefficients for the top and bottom surface

boundaries do not lend themselves to this analysis, but a check has been added

to the subroutine which evaluates them. If a row is found to be non-diagonally

dominant, then the operator is alerted and advised that the model may not con-

verge. In my experience, this warning has never been issued, and the Jacobian

method has converged for every model with which it has been tested.

Parallel Simultaneous Relaxation

I will now describe in some detail the implementation of the Point Jacobian it-

erative solution on a SIMD computer'. Each model grid point is mapped to a

(virtual) processor element in the computer, and the local field value and coeffi-

cients are stored on that element's memory.' Table 4.1 lists the High Performance

FORTRANvariable names which are referred to by the code fragments.

The first iteration requires an initial estimate, 	to be made. This is often

set at zero, except where Dirichiet boundary conditions pertain, but the method

is not dependent on 	and will converge for any initial values, so long as A is

diagonally dominant. However, if 	is already close to the final solution, then

fewer iterations will be required to reach satisfactory convergence. Therefore, N

one dimensional solutions are calculated, one for each column of grid points in

the model, and the iterative process is started from these values. In areas of the

model distant from lateral changes in conductivity, the one dimensional values

will approximate the final two dimensional solution, as discussed in Section 3.1.2.

3See Section 2.2.2 for a full description of the 5IMD computing environment.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 58

Variable Algebraic name Description
F u(') Current field values
Mew_F (p+1) Next iteration field values
Source b Right hand term
Self

Left

Right

Up

Down
Surface

a0

a1

a2
a3

a4
R

Coefficient for

Coefficient for u 1

Coefficient for

Coefficient for u]_i

Coefficient for u] 1
Surface integral coefficients

Table 4.1. 2D Arrays stored on processor elements

The High Performance FORTRANCSHTFT4 intrinsic function operates on the

field value array four times, as shown in the code fragment, Figure 4.3.

4.1.5 Successive Relaxation

The conceptual thrust behind the development of successive relaxation methods

is to introduce newly calculated values .into the ongoing calculations as early as

possible. Hence these are no longer simultaneous, in that all the values cannot

be updated in one discrete step.

The simplest example of successive relaxation, Gauss-Seidel, is defined by

(p) 	(p+l) (p+i) (p) (p)
~- u_ 	?Li+i,j, Ui,j+i.

Traditionally, in a serial computer, this has been implemented as a 'iteration

front' propagating from u1,1 down to UNN,NXN, with each line being updated

at a different iteration level. Figure 4.4 shows this in action.

The dependencies in (4.24) do not, in themselves, demand numerous coexist-

ing iteration levels in the array, but only two.

By labelling the elements as either black or white, a modified scheme can

be followed. The values of all the black elements are updated simultaneously,

'See Regular Communications on page 29 for a description of CSHIFT.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 59

C 	Simultaneous relaxation of F(Ny, Nz)

DO Iteration = 1, Max_Iteration

C 	Now update the central points

New_F = Factor * (Left * CSHIFT (F, SHIFT=-1, DIM=1) +
Right * CSHIFT (F, SHIFT1, DIM1) +
Up * CSHIFT (F, SHIFT=-1, DIM=2) +
Down * CSHIFT (F, SHIFT=1, DIM=2) - Self * F)

C 	Check for convergence

IF (Residual .LT. Tolerance) THEN
RETURN

END IF

END DO

Figure 4.3. Five point High Performance FORTRANJac0biaII Iteration Step

using the initial values of the surrounding elements. The newly calculated black

values are now available for the update of the white elements. These two updates

constitute one iteration, as both are required to update the whole array.

This act of labelling the elements is known as ordering the iteration, and many

different patterns exist, depending on the nature of the problem. The traditional,

serial ordering presented in Figure 4.4 is known as the natural ordering. Ortega &

Voigt [45] present an excellent review of many ordering schemes for a wide range

of problems, including a three coloured ordering for nine point finite differences.

For this particular problem, two orderings are applied; horizontally banded

and chequer board, each of which are described below.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 60

12345
2345
345
45
5

Figure 4.4. The Gauss-Seidel iteration front. The figures denote the iteration
level at which each element in the array is first updated.

(b)

(c)

Figure 4.5. 2D Ordering Scheme: (a) Horizontal banding (b) Partitioned into
black and white ; (c) Black stacked on top of white

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 61

Horizontally Banded Ordering

This ordering, as shown in Figure 4.5(a), was chosen as an intermediate step be-

fore attempting chequer board ordering, because it results in a simpler remapping

of model nodes to processing elements. It also extends the partitioning already

enforced by the horizontal surface boundary conditions.

The modified iteration dependencies can now be written as

Black +— 	u,i_1, ul,j, t41 , u] (4.25)

White 	c+i) — 	(p+1) (p+l)
i-1,j' , (4.26)

where the black elements are updated before the white.

A High Performance FORTRANma5k5, Black, can be created with the same

pattern as Figure 4.5(a), and two successive point Jacobian iterations, one us-

ing the WHERE (Black) . . . END WHERE and the other using the negated WHERE

NOT. Black) ... scoping constructs.

However, splitting the iterative process into two sequential updates removes

one degree of parallelism from the operation. The WHERE statements turn off

half of the processing elements for each sub-iteration, resulting in a great drop of

machine efficiency, as it is highly unlikely that the allocation of virtual processors

to physical processors in the computer is such that all physical processors are busy

for both sub-iterations.

This problem can be overcome by a non-trivial remapping of model grid nodes

to virtual processors. Figure 4.5(b) and (c) illustrate this mapping. The two col-

ours are segregated, and stacked white on top of black, giving each virtual pro-

cessor one grid point of each colour. Under this allocation, all physical processors

will be active, no matter which colour of grid nodes are being updated. .

Instead of resorting to masks, it is simpler to operate on array sections'. For

example, to select all the black nodes from the array use G (: , :, Black), and

for white use G(: , : , White), where G is the remapped array of values, and

'See Scope and Masks on page 29.
'See Array Sections on page 30

CHAPTER 4. PARALLEL IMPLEMENTATIONS
	

62

Black and White are scalars, valued zero and one respectively.

From this point onwards, I will use the following notation to specify local data

communication within a parallel data array. Individual elements are denoted

the two dimensions, (YZ), of the model grid having been remapped to

three dimensions in the parallel computer. The third dimension contains the col-

our information of each node. The central element in this local coordinate system

is labelled urn, and since I am only considering nearest neighbour interactions,

the range for these subscripts is 0 < 6 < 2.

After transforming, the horizontally banded dependencies are

(p+1) 	 () Black 	 (4.27) '-'rn 	_ 11102,

(p+1) 	(p+l) (p)(p+1) 	 (4.28) White z-' 	- 11110 , I'0ii, 11120

These are much more complex than before the remapping, with some of the

operations, (Black102 and \'Vhit.e120), requiring a shift along two dimensions, and

therefore a longer time to complete the data communication. This apparent in-

crease in communication overhead is overestimated, as all the lix translations

are simply moving data between two virtual processors, both of which are alloc-

ated to the same physical processor. In fact, all communication along the third

(colour) dimension takes place in local memory, not between physical processors.

Chequer Board Ordering

Another regular remapping of the nodes to processors as shown in Figure 4.6

results in a higher proportion of new iterate to be used in the calculation of the

current iteration level.

Special cases have to be made at the top and bottom of the model, where

the integral boundary conditions (only the bottom for B Polarisation problems)

demand a different ordering.

Black:

(p+1) 	 ii 122' 11111 	 (4.29) 11111 	012 	112i 1*~212,

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 63

(a) 	 (b)

(c)

Figure 4.6. 2D Ordering Scheme: (a) Chequer banding (b) Partitioned into
black and white ; (c) Black stacked on top of white

White:

(p+1) 	(p) 	(p) 	(p) 	(p) 	(p)
v111 	4 	p010, 116, 1/210, 110, 1/111 	 (4.30)

4.1.6 Successive Over-relaxation

Successive over-relaxation is a variant of the Gauss-Seidel which can improve the

rate of convergence of the function u by adding an amount wZ.u, where Lu is

the change due to the standard Gauss-Seidel iteration. The quantity w is termed

the acceleration parameter or relaxation factor.

It can be shown that this converges for w < 2, for example in Varga[64], yet

the exact choice of w is crucial to the effectiveness of the method. Values less than

unity lead to underrelaxation, more than unity to the desired overrelaxation. and

when w = 1 the method degenerates to Gauss-Seidel. There is an optimum value,

Wopt for most rapid convergence, but its computation is inordinately expensive

for these forms of problem. Unfortunately, the convergence rate does not vary

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 64

symmetrically around Wopt. It improves gradually as w approaches W0pt from

below, and rapidly deteriorates for Wopt <w < 2.

4.1.7 Iterative Starting Values

Unlike the serial Gauss-Jordan matrix inversion algorithm employed by Poll,

these iterative solutions can be helped by setting the anomalous field values

before iterating to the final solution. In fact, it is common practice to solve a

system directly, and then apply an iterative technique to reduce rounding errors

in the original solution[18].

Poll's one dimensional solutions for the y = ±oc boundary conditions essen-

tially follow those of Schmucker[56]. She only solves for F, and sets the anomal-

ous fields to be F = 0 and F+ = F+ - F. As each one dimensional solution is

strictly independent, I have implemented a parallel version which solves for each

column in the grid simultaneously. The anomalous field is then set by subtracting

F from each solution.

4.1.8 Parallel Integral Evaluation

The five point scheme breaks down at the edges of the model grid, for two reasons.

One of the points will always be missing, but this can easily be overcome by

setting the appropriate coefficient to be zero, so that when the whole field array

is shifted the product for that imaginary element will be zero.

The integral boundary conditions employed at the bottom, and the top in E

polarisation, require wider data communication between grid cells. The mechan-

ics of calculating the surface integrals is the same for the top and bottom, so I

will only describe how the top layer is evaluated in the E polarisation.

The data dependencies inherent in (3.34), (3.35) and (3.36) can be written as

-. . , 	u ,1 	 (4.31)

except that u is replaced by Uj 	for (3.35) and (3.36). The formu1 can

also be written in a general form

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 65

Surface field values
F(2:y-1, 1)

2 3 4 Nv-i

"Spread" Ny-I Copies

2 2 	1 	4 	... --S 	Ny-I 	I
3 2 	3 	4 	Ny-I

4 23 	4... Ny-I

Ny-I 	1 2 	3 	4 	Ny-I

Multiply by the Coefficients
and "Sum" Along Rows

	

I 2 	 23 4... 	 Nv.I1

	

s 	23

	

4 	---- 	2 3 4 Nv-I I

2 3 4 Ny-I

Figure 4.7. Evaluating the two dimensional surface integral in parallel.

= -- (Ru 1 + b,1'u 	+ c..i). 	 (4.32)
a,1 \m~I-i 	 J

The SIMD computing model does not allow the central points and these bound-

aries to be calculated simultaneously, so the majority of processors (allocated to

central points) are available to help when the integrals are being evaluated. To

achieve this, the workload is distributed by performing the elemental matrix mul-

tiplication over the whole virtual processor space.

Every point along the surface is updated simultaneously by constructing a

two dimensional matrix of the surface field values, which is conformant with the

coefficient matrix R in (4.32). Each product Ru is then calculated locally on

each virtual processor, and the summation is made along the rows of the resulting

array, as illustrated in Figure 4.7.

The High Performance FORTRAN SPREAD intrinsic function allows the one

dimensional array section F(2 : Ny-i, 1) to be replicated to form the two dimen-

sional array. The SUM reduction operator7 with the appropriate dimension spe-

cified then performs the summation, and reduces back to a one dimensional array,

7See Reduction Operators on page 28.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 66

Figure 4.8. Three dimensional field component storage scheme

which is substituted into (4.32) and finally assigned to New_F(2:Ny-1,1).

4.1.9 Three Dimensional Array Storage

The two dimensional algorithm only involves the solution of a scalar quantity,

from which is deduced the other two field components. The three dimensional

model, on the other hand, solves for all three components of the magnetic field.

X. Y and Z. The finite difference equations for the interior points given in

(3.42), (3.43) and (3.44) allow the independent updating of each component in a

Jacobian solver.
In practice most models seem to have approximately the same number of

grid points in the two horizontal axes, but the MasPar has a rectangular array

of processors. Placing the three components on three sets of processors keeps

more processors busy than arranging them as three elements in a local array on

each processor. Figure 4.8 shows this partitioning for one horizontal plane in a

L x M x N model grid. The third dimension in the diagram does not represent

z in the model, but the coefficients Cjjk in the equations.

When cross component terms are to be evaluated, a simple CSHIFT with —L

as an argument for the x axis will bring all the Y values to their corresponding

X components, and so on.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 67

4.2 Two Dimensional Task Farm

The major thrust of this chapter has been in describing the fine grained paral-

lelisation of the two and three dimensional codes. However, since responses at

multiple inducing frequencies are almost always calculated, and each solution is

in practice independent of the others, it is possible to implement a classic task

farm, as described in Section 2.5.3.

This approach required minimal changes to the original serial code, since the

models are being executed on the same architecture. These changes were as

detailed below.

A source and a sink subroutine had to be written. The source reads in the

model input file. counts how many tasks (models and periods) there are.

and issues a task number to each worker as they became available. The

sink was only necessary as a stub for the PUL-TF library.

The main part of the program had to be able to pick an individual model and

period out of the input file at random, and not solve each one sequentially

in a loop.

All file I/O had to be modified to read and write to uniquely named files, as

several instances of the same code would be running simultaneously. The

task number was used as an extra extension to the file name.

Appendix C contains code excerpts for most of these changes. The file I/O

changes were critical since the workstation cluster operates on a shared filespace.

That is, the same code running on two different machines reads and writes to the

same directory.

4.3 Model Performance

4.3.1 Two Dimensional Model

Figure 4.9 shows how the parallel Point Jacobian solver converges. Both

the axes are on a logarithmic scale to make the differences visible. The steady

100

- 	-2 10

10,

CHAPTER 4. PARALLEL IMPLEMENTATIONS

1 	 10 	 100
Number of Iterations

Figure 4.9. Convergence rates for the Point Jacobian parallel solver starting
with zero anomalous field and with the one dimensional solutions.

CHAPTER 4. PARALLEL IMPLEMENTATIONS
	

69

100

10'

ci)

ca
o 10

ci)

LL
10'

10'
1 	 10 	 100

Number of Iterations

Mom

Figure 4.10. Convergence rates for the parallel Point Jacobian and Gauss-Seidel,
both Horizontal Banding and Chequer Board, iterative schemes.

decrease is as expected, with the same fractional reduction in iteration error for

each decade of iterations, as discussed for these methods by Forsythe[17].

Setting the initial guess for 	to be the one dimensional soundings at each

mesh column has the effect of shifting the curve down a fraction. However,

this is not an acceleration, since the gradient has not been changed. Of course,

convergence is reached more quickly, since the solver is given a head start. All

the iterative solutions in the rest of this section apply this initial estimate for the

anomalous field.

Acceleration is evident in Figure 4.10. The solid curve represents the basic

point Jacobian method, as seen in Figure 4.9. Both of the Gauss-Seidel meth-

ods, horizontal banded (dotted curve) and chequered (dashed curve) mappings,

start off making bigger changes to the iterates. Half way to convergence, the

Jacobian begins to change the iterates more, but the Gauss-Seidel methods reach

the stopping criterion earlier.

100

on

- 	—2 o 10

100

CHAPTER 4. PARALLEL IMPLEMENTATIONS
	

70

1 	 10 	 100
Number of Iterations

Figure 4.11. Convergence rates for the parallel Chequer Board Gauss-Seidel
and Successive Overrelaxation (w 1.1) iterative schemes.

The difference between the Jacobian and the horizontally banded Gauss-Seidel

is greater than the extra advantage of the chequer board mapping. Analysis of

the ratio of iterate levels in the update stages suggests the horizontally banded

could require approximately two thirds the iterations of the Jacobian. Similarly

the chequer board mapping should reduce this fraction to one half. This par-

ticular model attained convergence in 80% and 75% of the Jacobian iterations

respectively. These ratios are dependent on the model structure, especially the

proportion of horizontal boundary points to body points. For example, the model

in Table 4.3 attained convergence within 64% and 55% of the Jacobian iteration

count.

At first, the notion of applying successive over relaxation to the chequer board

mapping offered the prospect of significantly more rapid convergence. However,

it was soon found that any choice of w much greater than 1.1 was susceptible

to divergence for some models. Figure 4.11 shows that this method (dotted

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 71

Computer Solver Iterations Time (s)
Iteration
Time (ms)

Sparc2 Gauss-Jordan - 2 -
Sparc2 Chequered G-S 494 3.5 7
Sparc2 Banded G-S 528 4 7
Sparc2 Chequered S.O.R. 509 4 8
Sparc2 Jacobian 627 9 6
CM200 Chequered G-S 494 8 16
MasPar Chequered G-S 494 8 15
CM200 Banded G-S 528 8 15
MasPar Banded G-S 528 8 15
CM200 Chequered S.O.R. 509 9 17
MasPar Chequered S.O.R. 509 9 17
CM200 Jacobian 627 9 14
MasPar Jacobian 627 9 14

Table 4.2. Performance for two dimensional (23 x 9) model

curve) does indeed accelerate the Gauss-Seidel (solid curve), but with such a low

relaxation parameter, the number of iterations is not significantly reduced.

Although Figures 4.10 and 4.11 show that the S.O.R. algorithm requires the

fewest iterations to converge, it is not the quickest in real calculations. This can be

attributed to the greater amount of work required in each iteration. Had larger

acceleration parameters resulted in convergence, then this extra multiplication

and addition may have been worth while. Tables 4.2 and 4.3 show that in terms

of wall clock time, the chequer board, and sometimes the horizontally banded,

Gauss-Seidel is faster. The last column in these tables indicates that there was

indeed a time penalty per iteration for all the machines.

Tables 4.2 and 4.3 summarise the performance of the two dimensional code on

a variety of different hardware for two models. Comparing the execution times

on the Sun Sparc2 serial workstation, it is obvious that the direct Gauss-Jordan

solution performs well on this type of machine, being an order of magnitude

faster for the large model. For smaller models, the typical workstation running

this code at least as fast as or faster than the parallel supercomputers. However,

as Table 4.3 shows, it starts to fall behind the iterative solutions for larger and

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 72

Computer Solver Iterations Time (s)
Iteration
Time (ms)

CM200 Chequered G-S 4306 69 16
CM200 Chequered S.O.R. 4251 74 17
CM200 Banded G-S 5012 80 16
CM200 Jacobian 7781 105 14
Sparc2 Gauss-Jordan - 129 -
MasPar Chequered G-S 4306 129 30
MasPar Chequered S.O.R. 4251 140 33
MasPar Banded G-S 5012 145 29
MasPar Jacobian 7781 200 26
Sparc2 Chequered G-S 4306 1257 292
Sparc2 Chequered S.O.R. 4251 1339 315
Sparc2 Banded G-S 5012 1464 292
Sparc2 Jacobian 7781 1891 243

Table 4.3. Performance for two dimensional (123 x 66) model

larger models.

It is also interesting to note how the time per iteration changes for each of the

SIMD machines between the two models. The CM200's times remain constant.

whereas the MasPar takes approximately twice the time for each iteration of

the larger model. Referring back to Section 2.6, it becomes apparent that this

discrepancy is due to the capacities of the two machines. The MasPar has had

to simulate two virtual processors on each physical processor to accommodate

the larger grid, but the CM200, with double the processor count does not need

to. If the number of vertical grid points had been reduced to less than 64 (the

processor array is 128 x 64) then the MasPar's times would have been equivalent

to the C1200. This is a perfect illustration of the need to design suitable grids

for these types of computer.

4.3.2 Three Dimensional Model

The three dimensional model's performance exhibited much the same beha-

viour as the two dimensional one discussed above. Table 4.4 summarises some

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 73

Computer Model Solver Iterations Time (s)
Iteration
Time (ms)

AXP 7 x 7 x 7 Serial G-S 81 2 25
Sparc2 7 x 7 x 7 Serial G-S 81 11 136
CM200 7 x 7 x 7 Jacobian 134 23 172
MasPar 7 x 7 x 7 Jacobian 134 53 400

AXP 15 x 15x10 Serial G-S 349 116 330

CM200 15 x 15 x 10 Jacobian 596 228 380

MasPar 15 x 15 x 10 Jacobian 596 367 620

Sun 2000 15 x 15 x 10 Serial G-S 349 401 1150

Sparc2 15 x 15 x 10 Serial G-S 349 685 1960

CM200 29 x 29 x 9 Jacobian 671 487 730
AXP 29 x 29 x 9 Serial G-S 404 1587 3930
Sun 2000 29 x 29 x 9 Serial G-S 404 3132 7750

Table 4.4. Performance for three dimensional models

timings on a variety of hardware. Once again, it's only for the larger models that

the SIMD machines are faster than the serial machines.

The MasPar could only solve the smaller models, performing less than twice

as fast as a typical desktop workstation for the medium sized grid. The Mas-

Par's relatively poor performance, as measured against the CM200, is due to its

two dimensional processor array. The CM200, with its dynamic interprocessor

communication network is more efficient.

The largest model has the maximum number of grid points which can be

accommodated on the CM200. When this machine is running at full capacity,

i.e. optimum load balance, it is significantly quicker than even a highly specified

serial machine. However, it is limited by these constraints of memory limits.

A closer examination of the computational profile of the three dimensional it-

eration steps reveals that the same proportion of time is being spent in each task

for both the serial and parallel codes. Assuming the parallel machines are pro-

cessing the interior points efficiently, then this equivalence indicates the boundary

condition surface integrals evaluations are also efficient.

CHAPTER 4. PARALLEL IMPLEMENTATIONS 	 74

Subroutine Serial Parallel
Thin Sheet & Top 32% 35%
Interior 42% 41%
Bottom 26% 22%
Residuals - 2%

Table 4.5. Profile of serial and parallel three dimensional iteration step for
15 x 15 x 15 model.

Workstations Execution Time Speed Up
1 	 143 	 1.0
3 	 58 	 2.5
5 	 40 	 3.6

Table 4.6. Performance of the two dimensional task farm.

4.3.3 Task Farm

It proved difficult to gain consistent performance figures for the task farm runs,

as each workstation was a resource shared between many students. One or more

workstations could be busy with another CPU intensive task without the source

process being aware, thus making load balancing problematic and haphazard.

Table 4.6 shows the execution times and speed up factors for a model run

of ten periods. The five workstation task farm achieved a lower than expected

speedup (3.6 as opposed to closer to 5) because one workstation solved two larger

grids. The others were then left idle, waiting for the last task to complete.

The ease of running the task farm version of the two dimensional code, instead

of submitting jobs to a batch queue on a SIMD machine, prompted me to make

the task farm my first choice for running routine models.

Chapter 5

Two Dimensional Gridding

Strategies

5.1 What Makes a Good Grid?

The validity of any particular grid is a complex concept. Several criteria, over

and above the conductivity structure, have to be weighed against each other

Different programmes, using different models, will have different error re-

sponses to the same grid.

The accuracy of the generated responses. Generally, the higher the grid

point density, the more accurate the calculated response will be.

The computation time allocated to the particular problem. Grids with

numerous points will take longer to solve than sparse grids.

The dominant consideration is the conductivity structure itself. Combined

with the temporal frequency of the field, the structure creates a distribution

of skin depths over the model space. Parkinson{47}, along with many others.

eloquently introduces the concept of the electromagnetic skin depth. It is defined

as

11

s=v 	 (5.1)

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	76

where w is the angilar frequency of the field and a is the conductivity. Consider-

ing B as a damped wave, propagating in a conductor, with magnitude (derived

from the diffusion equation)

B - Boe_z e_1t_9) 	 (5.2)

it becomes apparent that for every increase in depth by s, the amplitude decreases

by a factor e and the phase changes by one radian. The skin depth, combining

the conductivity of the host medium and the frequency of the field, is therefore

the scale length against which model grids are measured.

Weaver[73] gives some guidance on grid generation, which is particularly relev-

ant to finite difference solutions. In paraphrase, he presents these three guidelines

Grid spacing should be no more than one quarter a skin depth, except more

than two skin depths away from a conductivity boundary. Finer spacing is

desirable very close to the boundary.

The grid should extend, horizontally, at least three skin depths away from

a vertical conductivity boundary.

The grid should be locally symmetric around conductivity boundaries, and

should vary as smoothly as possible. with no more than a doubling or

halving anywhere.

Wannamaker et al.[69] present the following, more detailed, guidelines in the

user documentation for their two dimensional finite element model.

Adjacent element dimensions should not change by more then a factor of 3

to .5.

Element dimensions should be approximately 614 in the vicinity of changes

in resistivity.

No single resistivity block should be less than 4 elements wide or 3 elements

thick to fit galvanic components of the field.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES. 	77

2 or 3 6 away from variations in conductivity element dimensions may be

increased to the order of 6 of the medium.

Vertical element dimensions may be increased approximately exponentially

downwards, but the maximum should still be held to 1 or 2 6.

The mesh should extend horizontally to 8 or 10 6 away from the nearest

2-D structure, or 10 to 12 times the height of the inhomogeneous structure.

The bottom mesh boundary should be extended to 8 to 10 6 of the back-

ground conductivity from the air interface, or 10 to 12 times the width of

the inhomogeneous structure.

Even following these guidelines, some additional tuning may be required after

inspecting the results and any estimates of errors which the model provides.

Wannamaker et al.[70] experimented with different grid geometries to overcome

problems with differing machine precision.

5.2 Automatic Grid Generation

5.2.1 Review

The construction of grids has long been attempted by the modelling programs

themselves. This is seen as increasingly important, as the size and complexity

of models has grown over time. The advent of three dimensional modelling on

generally available computing hardware will soon be adding to the demand for

automatic grid generation. At the moment. the number of grid points is still small

for these three dimensional models, and a degree of intelligence is required to

ensure that the nodes are placed where they are most required, as the traditional

criteria break down in a node famine.

As discussed in Chapter 1, geoelectromagnetic numerical models fall into sev-

eral distinct categories. As far as gridding is concerned, another division is ap-

parent: whether the grid is Cartesian or not. The bulk of research in automatic

gridding in other disciplines, such as computational fluid dynamics, is directed

(a) 	 (b) 	 (c)

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	78

Figure 5.1. Cartesian grids in two dimensions: (a) Regular; (b) Irregular;
(c) Disconnected.

towards non-Cartesian grids in two dimensions, and disconnected Cartesian grids

in three dimensions.

Madden's EMCAL [38] program of 1971 allowed the user to define a sparse

grid, consisting mainly of the block boundaries and site locations. EM CAL would

then examine the grid spacing, and insert more lines of nodes if required. The

original grid was not altered, merely lines of grid points added half way between

existing lines. This simplistic approach had the unfortunate result of rapidly

varying grid spacings, often closest to the conductivity boundaries, thus clearly

violating Weaver's condition (3).

Poll[48] devised a method which took the opposite approach, in that it gen-

erated a grid automatically, and then allowed the operator to make adjustments

if he so wished. The algorithm tries to follow the guidelines set out above. It

treats the problem as that of generating two independent one dimensional grids,

one for the horizontal spacings and one for the vertical spacings.

The conductivity structure is compressed along one axis, as shown in Fig-

ure 5.2, to form a series of segments from one conductivity junction to the next.

Independent local grids are grown outwards from the segment boundaries, with

the spacing starting at one quarter of a skin depth and increasing exponentially.

These local grids are then reconciled to form one grid covering the whole axis of

the model. She describes the process in more detail in her Ph.D. Thesis[481.

The Geotools Corporation gives the following prominent warning in their user

manual[22]:

Although Geotools attempts to provide the user with some guidance

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	79

El
	 100

bIJ 100

IM

Figure 5.2. Reduction of model structure to one dimension.

regarding the construction of a computationally valid mesh, the user

must exercise care to ensure that the earth model is properly discret-

ized.

They then go on to repeat Wannamaker's guidelines[69], and introduce their

own algorithm based upon them. It starts with the coarsest grid which accom-

modates the conductivity structure and then repeatedly examines the rows and

columns to determine which require to be split. The splitting criteria are weighted

averages calculated along only one edge of the row or column, and they admit

that this can cause noticeable problems in the top row. Their algorithm is delib-

erately generous with grid point allocation, with the aim of depending upon the

operator to then manually remove lines where they are not required, if the mesh

size is required to be constrained to a minimum.

5.3 Elastic Membrane Grid

5.3.1 Why another algorithm?

The massively parallel versions of the modelling programmes developed in Chap-

ters 4 can exhibit wild fluctuations in efficiency over a narrow range of numbers of

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	80

	

6 	 1], 	 113

X I 	 X 2 	 X 3 	 X

Figure 5.3. Points on an Elastic Grid. r j are the elastic coefficients. xi are the
grid point locations. . are fixed, unmovable points. o are floating points.

allocated grid nodes. It can often be vital to control the numbers of nodes, so as

to avoid a dramatic drop in efficiency as the problem's load balance' deteriorates,

as is illustrated in Section 4.3.1 on page 72. The automatic and semi-automatic

gridding algorithms discussed do not allow fine control of the number of grid

points, merely having maxima dictated by size of arrays allocated at compilation.

An algorithm which can most usefully distribute a fixed number of grid nodes

over the model space was therefore developed to overcome this problem.

5.3.2 Grid Generation

Since the modelling programmes require a connected Cartesian grid, e.g. Fig-

ure 5.1(b), each dimension can be treated independently. The vertical dimension

is a special case, but can be handled elegantly by the same algorithm.

As the title suggests, a series of linearly connected grid points is stretched over

the conductivity structure. Variations in spacing are achieved through varying

the elastic coefficients over the model. I will first develop the relaxing algorithm,

by which the points are distributed over the model, and then detail how the

variations in the elastic coefficients are calculated.

Elastic Relaxation

A prescribed number, N, of grid points, hereafter referred to simply as points',

are distributed evenly along the length of the axis in question. The two end

points are fixed at their initial positions, and all the others are 'floating'; i.e.

given the freedom to vary their position.

'See Section 2.3 for a discussion of this problem.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	81

Only if the model space is a half-space, and the elastic coefficient invariant

along the line, will the equal spacing of the points represent a system with no

elastic strain. The net stress at a floating point can be calculated by taking the

difference of the opposing elastic stresses on each side of the point, thus

= 	- x_1) - Tli(Xi+l - x) 	 (5.3)

The point xi is then displaced to a new location x, reducing the elastic strain

according to Hooke's Law

x=x—aç,2<i<N 	 (5.4)

where a is a scaling factor, generally set to 0.5. It can also be thought of as

having a damping influence if it is less than unity. If this value is set too high,

then instabilities and oscillations will result; too low and the convergence to

equilibrium will be too slow.

Each floating point is therefore displaced in turn, thus reducing the total stress

in the system. A check on the displacement must be made. however, to ensure

that sequential points do not 'hop' over each other. If this is the case, the current

point is moved to within 90% of the distance to the point it wishes to cross.

The serial FORTRAN 77 implementation updates the position of each point

in turn, so that the following point, for example, will be updated using the new

position of the previous. After all the floating points have been displaced, a

convergence test is applied to decide whether the membrane has reached equilib-

rium. The most straightforward test is to compare the largest displacement to a

required tolerance, and succeed if it is smaller.

Although not explicitly included in Weaver's grid criteria, all conductivity

boundaries must be sampled by a grid point, which complicates this algorithm.

In theory, fixed points could be initially allocated, and being fixed would be

guaranteed to remain at the conductivity boundary right through to conver-

gence. However, this would prohibit floating points migrating across boundaries,

resulting in local minima of stress being found, instead of near global minima.

Two strategies for allowing floating points to cross boundaries were con-

sidered. Firstly, potential wells, which can be thought of as sticky patches could

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	32

be located at the conductivity boundaries. These would act as traps for points,

and could be implemented by requiring a large net stress to build up at that

point before allowing it to be displaced, as shown in (5.5).

x— a, 	i>cO 	 (5.5) Xi 	
Is

Xi 	I iI <(o

This would undoubtably help keep points at the required locations, but could

not guarantee their presence, as there is no way to unconditionally replace a point

once it has left the trap.

The second approach, which is the one implemented, is to simply allow all

points to float, and to rely on the fact that the relaxed state will exhibit a high

density of points around the boundary 2 . The closest point is then moved and fixed

to the exact boundary location, and the strain relaxed again. However, when two

adjacent points are chosen to be fixed to boundaries, the second point is instead

moved to between them, set free to move, and its neighbouring point is fixed to

the second boundary. This special case guarantees at least one internal grid point

in any small conductivity blocks, which otherwise may have been overlooked.

This approach has the advantage of simplicity and does not interfere with the

search for the global stress minimum. It is also computationally inexpensive, as

only a handful of iterations are generally required for the secondary relaxation

stage.

It is equally apparent that field measurement locations must also be sampled

by grid points, and these can be inserted into the grid in the same manner as

those at conductivity boundaries.

Estimation of the Elastic Function

Each dimension is treated as a projection of conductivity boundaries, resulting

in a line segmented into different skin depths. The chosen skin depths are the

minima encountered on either side of the boundary. This is analogous to the

scheme developed by Poll[48] and described earlier. Figure 5.2 illustrates the

21YVeaver's first criterion

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	83

X 	 Kt

Figure 5.4. Linear and cubic approximations to the elastic function

procedure. I will first of all develop the method for the horizontal dimension, and

then make the necessary adjustments to deal with the special case of the vertical.

Each segment therefore has a skin depth specified at each end, and another,

local skin depth in the interior. This algorithm departs from that of Poll, in

that it uses these skin depths to generate a grid density function along the line,

instead of individually placing points inside each segment.

The fact that the selected skin depths do not vary across a segment boundary,

ensures that the elastic function is continuous. This will help result in a smoothly

varying grid density across the boundary.

The function should have local maxima at the conductivity boundaries, and

local minima between them. The obvious way forward would be to construct a

series of linear functions, connecting the proscribed maxima and minima with

straight line approximations. However, this would have the unfortunate property

of making the elastic function piecewise smooth, destroying some of the symmetry

around the boundaries.

In order to preserve global smoothness, third degree polynomials. with sta-

tionary points at the maxima and minima were calculated. Figure 5.4 shows

the linear and cubic approximations for one half segment, from the internal local

minimum at xo to the right boundary at x.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	84
il

The cubic approximation can be found, since x0, xi , y0 and Yi are all known.

The constraints are

f(xo) = ax + bx + cx0 + d = Yo 	 (5.6)

f(xi)= ax, +bx+cxi +d = Yi 	 (5.7)

f'(x) = 3ax2 + 2bx + c = 0 at x = x0 and x = 	(5.8)

Substituting x0 = 0 and some simple algebra gives d = y, c = 0, b = —ax1

and

- YiYo a— 3_,2 xl 2 x1
(5.9)

The nonzero coefficients a and b, along with yo, y j and x1. are stored for each

half segment, so that the elastic coefficient can be calculated anywhere along the

grid.

The actual values of Yo and yi need to be determined from the skin depths,

in a manner that preserves the relationship between skin depth and grid spa-

cing. Since the grid spacing is directly proportional to the skin depth, the elastic

coefficient must be inversely proportional to the skin depth.

Figure 5.5 shows a typical horizontal grid generated by this algorithm.

Vertical Grid Generation

As the electromagnetic fields diffuse into the Earth. their amplitudes diminish

in a fashion linked to the skin depth. Therefore, the grid for the vertical axis

should become more sparse as depth increases. The finite difference approxima-

tion still requires, however, that the spacing be regular and more dense around

conductivity boundaries.

The elastic membrane algorithm can generate such grids, simply by altering

the elastic coefficient function. The cubic approximation developed for the hori-

zontal grid ensures that the spacing around the conductivity boundaries is valid,

and the elastic function can be made to decrease with depth by applying an en-

velope. This envelope is simply a linearly decreasing function, ranging from 1 at

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	85

2.0

1.5

C.)

a)
jtO

0.5

0.0
0

Location

Figure 5.5. Example elastic function calculated at the grid points, denoted by
the impulses. The S's are the skin depths in each partitioned region.

the surface to 0.1 at the base of the model.

5.3.3 Grid Verification

As it stands the elastic membrane algorithm does not render operator intervention

unnecessary. Some method of verifying the grid is required, and a measure of its

validity presented to the operator, who can then take further action to insert or

adjust the position of individual points.

The verification takes several steps, with each contributing a weighted score.

o The grid spacing is checked to vary by no more than a factor of two.

The grid points on either side of a conductivity boundary are checked to

be at least 90% symmetric.

The grid spacing, around a conductivity boundary, is no more than one

quarter of a skin depth.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	86

No grid spacing is more than two skin depths.

5.4 The COMMEMI 2-D Project

The COMMEMI, or COmparison of Modelling Methods in Electro- Magnetic In-

duction problems, was first proposed by Zhdanov at the 6th IAGA Workshop on

Electromagnetic Induction in the Earth and Moon in 1982. It aimed to:

estimate the accuracy, effectiveness and universality of existing modelling

programs;

select the most suitable programs for the International Laboratory of Nu-

merical Electromagnetic Modelling at the University of Oulu in Finland;

generalise methods of model design and data presentation:

determine directions for further development of modelling methods.

The relevance of COMMEMI to this thesis is that it supplied a series of seven

standard models, which were made widely available in [83], [85] and [84]. The

models vary from a simple conductor buried in a resistive host in Figure 5.6(1) to

a very complex regional structure in Figure 5.6(5). The model in Figure .5.6(0)

was added to the original six, after Weaver, LeQuang and Fischer[75][76] found

its analytic solutions.

5.5 Comparing Grids

Poll's[48] code was altered to treat every surface grid point as a field measurement

site, in order to force the calculation of apparent resistivity and phase all along the

model. Choosing a limited number of static sites common to all the models would

have left the possibility of missing variations away from these sites, especially at

higher frequencies, where the shallow skin depth allows localised perturbations

to the background field. Subroutines to read in grids from a file were also added.

to enable testing of manually generated meshes.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	87

(0 	0 	(0
	 .11.5 	I) 	0.5

I

50

1. 	 7

Model 0 	 Model 1

.22 	 4 I) 	10 	 22
7

to
U.) 	 (0)

3))

to

7.

Model 2

.7) 	1) 	 21)

Models 3a & 3b

-0 	 0 	1 	S 	 .00 	45q55 10 	120 141 1(1) (70110)) 	121)

25

to 	 10 	

00)
io

Ujo

2.5 /
	

/ 1)

Ito
140

3(0)

200
50

.7. 	 7

	

Model 4 	 Model .5

Figure 5.6. The seven standard COMMEMI models

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	88

2

	

20.0
	

20.0

5)

	

15.0 	 15.0
E 	 CD

CD

0

	

10.0 	 10.0 :

0) ci) 	 0

0 Poll' Aoo,cO(c 045 52 Points)
B

B 	 . W5woce COMMEUc Gnci (42 P00cM

	

Ca 5.0 	 5.0
(0

.0-c + 0.

QO+OC.0c.

	

0.0 	 0.0
—50.0 	 0.0 	 50.0

Location (kilometres)

Figure 5.7. COMMEMI 2D-0 Poll and Weaver grids: Apparent Resistivity

Poll versus Weaver's COMMIEMI Grid

Figures 5.7 and 5.8 show the B polarisation solutions for the first COMMEMI

model (Figure 5.6(0)). Weaver's grid is taken from his published results[72}.

The two series of points obviously fall on the same locus, for both the apparent

resistivity and phase.

Poll versus Equivalent Elastic Grid

The stretched grid algorithm was given the same number of points as Poll's

automatic gridder requested, and was instructed to distribute them over the

same model dimensions as Weaver's COMMEMI grid.

Figures 5.9 and 5.10 show the B polarisation solutions for the third COM-

MEMI model (Figure 5.6(2)).

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES

	

60.0 	 60.0

	

55.0 	 o 	 55.0

0 	 -

0) a) 	 ct
0 	 (0

C)

	

50.0 	 50.0 cL

In 	 0 Polls Automatic Grid (52 Points) CD
2 	+ Weasers COMMOMI God (42 Points) 	 I 	CD

0.

	

45.0 	
2

o04)00 0
	 0

 450
0.. 	 -

+0

a

40.0 40.0
-100.0 	-50.0 	0.0 	50.0 	100.0

Location (kilometres)

Figure 5.8. COMMEMI 2D-0 Poll and Weaver grids: Phase

120.0 - 120.0
0 Poll's Automatic Grid

Stretched Grid

I
100.0 0+ 100.0

E CD

0 CD
I.

: 80.0 0 80.0 	.
a

0)
U)

I

[

0
n 0

iE I
a 60.0 - o 	0 - 60.0 	CZ

CD

15

40.0 . 40.0
-100.0 -50.0 	0.0 	50.0 100.0

Location (km)

89

Figure 5.9. COMMEMI 2D-2 Poll and stretched grids: Apparent Resistivity

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES
	

90

'p

70.0 1 70.0
0 Polls Grid I

Stretched Grid
00

60.0
In 0 	0

60.0
0)

0
0 a

0) 0_
'p o

CD —
ci) 0 	 0 0

CD

CD cc CD

°50.0

I

50.0

00

I 40.0 40.0
—100.0 —50.0 	0.0 	50.0 100.0

Location (km)

Figure 5.10. COMMEMI 2D-2 Poll and stretched grids: Phase

Half the Grid Points

Reducing the number of grid points by one half from 98 to 49 for the COIvIMEMI

2D-2 model, does not seem to have had an adverse effect on the response accuracy.

as is shown in Figures 5.11 and 5.12. There were only two grid nodes where

there was too rapid a change of spacing, as the output from the grid validation

subroutine indicates...

Checking for variations in spacing...

(Good between 50% and 200%)
*Too rapid change of spacing at -82.4431122 (44.6539268%)

*Too rapid change of spacing at 	79.6015286 (231.893173%)

Checking for symmetry around boundary points...

(Good between 85% and 115%)

Grid Validation Suinniary:-
Spacing: 95.9183655%

CHAPTER 5. TWO DIMENSIONAL RIDDING STRATEGIES
	

91

120.0 . 	120.0
Poll's Automatic Grid

Stretched Grid (Half Points)

100.0 0 + 	+ 9 e 	 + - 100.0 	D

E
E i. 	 0 - :n
o
>'

0
00 *

m
5)

: 80.0 0
0

80.0

W
a.)

0 	 0
0

- 0 t I
CL 60.0 0 	 o-60.0

40.0 40.0
—100.0 —50.0 	0.0 	50.0 100.0

Location (km)

Figure 5.11. COMMEMI 2D-2 Poll and sparse stretched grids: Apparent Res-
istivity

Symmetry: 100.%

One Third of Grid Points

When the number of grid points was reduced to only one third suggested by Poll's

automatic gridder, there were four grid locations found with unacceptably rapid

changes in grid spacing...

Checking for variations in spacing...

(Good between 50% and 200%)

*Too rapid change of spacing at -78.4005369 (42.6403961%)

*Too rapid change of spacing at -1.06711347 (277.345428%)

*Too rapid change of spacing at 	7.06711341 (36.0561218%)

*Too rapid change of spacing at 	74.4641702 (232.689255%)

Checking for symmetry around boundary points...

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	92

70.0 r
	 70.0

o Polls Grid
OD 	Stretched Grid (Half Points(

60.0L
0

a) 	 I 	 0
ci) 	 0 CD

0 	oO
C, 	 I 	 0

r 	
a

ci) 	
0 	 0 0

a, 	 °
(ci 	I01

°50.0 	
I

0 	 0
0 0

0 	ø+Oe.i. 	 0 0 	 i,eO0+01 * 0

(0
CD
Co

50.0

40.0 I1 	 140.0
—100.0 	—50.0 	 0.0 	 50.0 	100.0

Location (km)

Figure 5.12. COMMEMI 2D-2 Poll and sparse stretched grids: Phase

(Good between 85°h and 115%)

Grid Validation Summary:-

Spacing: 87.8787842%

Symmetry: 100.

Figures 5.13 and 5.14 show the apparent resistivity and phase for the stretched

grid diverging from Poll's finer grid. However, the divergence is not very great,

and the much smaller, and therefore quicker, model grid still gives an excellent

estimate of the model response.

CHAPTER 5. TWO DIMENSIONAL GRIDDING STRATEGIES 	93

120.0 120.0
Pots Automatic Grid
Stretched Grid (Third Points)

Q
100.0 0 + 	• 	 .0+0* G 100.0

E a)

.2.
0

.;

2 	80.0 80.0 	5.

I:
CO
	60.0

CL

0 60.0
CD

40.0 40.0
—100.0 —50.0 	0.0 	50.0 100.0

Location (km)

Figure 5.13. COMMEMI 2D-2 Poll and very sparse stretched grids: Apparent
Resistivity

70.0
	 im

Polls Grid
Stretched Grid (Third Points)

60.0k 	 : 	 J60.0

oo

CL
CD

CD

CL

500
	 50.0

r +* 0%

40.0 	 30.0
—100.0 	—50.0 	0.0 	50.0 	100.0

Location (km)

Figure 5.14. COMMEMI 2D-2 Poll and very sparse stretched grids: Phase

11

1.

Chapter 6

Conclusions and Further Work

Both the two and three dimensional model algorithms were successfully adapted

for the massively parallel SIMD computers, having rewritten their solver cores with

fine grained parallel iterative methods. However, their relatively poor perform-

ance, combined with the fact that these machines operate batch queue systems.

make them impractical for routine use.

Investigations into two dimensional model solution behaviour, utilising a new

automatic mesh generation algorithm, have shown that model accuracy can be

maintained with coarser grids in many cases. It has also been confirmed that

there is no gain in precision in constructing finer grids than are commonly in use

today. The elastic mesh grid generator could prove useful for prototyping models

rapidly, such as may be required in the initial stages of some two dimensional

inversion packages. The inversion routine could choose the number of grid points.

allowing more, and hence slower iterations, as the model converges to its final

state.
It seems that the task farm approach is ideal for computing large numbers of

two dimensional models, as modern workstations can solve a single frequency in

a short time, at most a few minutes. It is also much more likely that an academic

institution will have access to a suitable workstation cluster, rather than a state

of the art parallel supercomputer. Indeed, a laboratory of tens of modern PC

class Intel Pentium based running appropriate software would make a valuable

computing resource when dedicated to out of hours task farms.

94

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 	 95

If anything, the rapid pace in the increase of computing power has accel-

erated recently with the development of machines such as the Cray T3D. This

architecture is based on large numbers of DEC Alpha processors sharing enorm-

ous amounts of very fast core memory. Such a machine with 512 processors and 32
1.
gigabytes of core memory is now installed at the Edinburgh Parallel Computing

Centre.

This scale of machine is at last able to model three dimensional structures

at the same kind of detail as is routine today in two dimensional analysis and

interpretation. It is sobering to note that each processing element in a T3D is

approximately equivalent to the AXP described in Chapter 2 which performed so

well for the three dimensional code (see Table 4.4 on page 73). However, a High

Performance FORTRANcOmpiler only became available on the T31) in the last few

months, unfortunately too late to port the code in this thesis.

However, Wilson has implemented a task farm version of Newman and Hoh-

rnann's{44] three dimensional integral equation model, and Yu and Edwards'[82]

finite difference simulation for axisymmetric models. He has recently reported

some impressive performance results on the T3D[80]. Wilsonet al.{80] has raised

the possibility of changing Yu and Edwards' code to implement a parallel solver,

as well as operate in a task farm. I am certainly of the opinion that both fine and

coarse grained parallelisation are valid and should be pursued for three dimen-

sional models. Schultz and Smith at the University of Cambridge have developed

a staggered grid three dimensional model with an accelerated iterative solver.

This model would, along with Pu's, make an excellent candidate for further de-

velopment on the T31).

Three dimensional model performance can be greatly improved with the ap-

plication of faster solver techniques. Mackie et al.[37] propagate an impedance

matrix through their three dimensional model to solve the problem. This results

in multiple small matrix inversions rather than one huge inversion. Freund[19][20]

has developed some promising looking Krylov Subspace methods for complex

non-Hermitian linear system which may be applicable to this problem.

Bibliography

A K Agarwal and J ,T Weaver. Inversion of the COPROD2 data by a method

of modeling. Journal of Geomagnetism and Geoelectricity, 45(9):969-983.

1993.

R C Bailey. Inversion of the geomagnetic induction problem. Proceedings of

the Royal Society of London, 315(A):185-194. 1970.

.1 R Booker and A D Chave. Introduction to the special section on the

EMSLAB Juan de Fuca experiment. Journal of Geophysical Research.

94:14093-14098, 1989.

C R Brewitt-Taylor and J T Weaver. On the finite difference solution of

two-dimensional induction problems. Geophysical Journal of the Royal As-

tronomical Society, 47:375-396, 1976.

C R Brewitt-Taylor and J T Weaver. A Computer Program for the Solu-

tion of Electromagnetic Induction Problems. Dept. of Physics, University of

Victoria, revised edition, February 1976-86.

R A A Bruce, S Chapple, N B MacDonald, A S Trew, and S Trewin. CHIMP

and PUL: Support for portable parallel computing. Journal of Future Gen-

eration Computer Systems, 1995.

L Cagniard. Basic theory of the magnetotelluric method. Geophysics.

18:605-635, 1953.

J Chen, H W Dosso, and M Ingham. Electromagnetic induction in New Zea-

land: Analogue model and field results. Physics of the Earth and Planetary

Interiors, 62:257-270, 1990.

96

BIBLIOGRAPHY 	 % 97

J Chen, H W Dosso, and W Nienaber. Laboratory ele.ctromagnetic model

results for the EMSLAB region. Journal of Geophysical Research, 84:14167-

14172,1989.

J H Coggon. Electromagnetic and electrical modelling by the finite element

method. Geophysics, 36(1):132-155, February 1971.

T W Dawson, J T Weaver, and U Raval. B-polarization induction in two

generalized thin sheets at the surface of a conducting half space. Geophysical

Journal of the Royal Astronomical Society, 69:209-234, 1982.

C deGroot Hedlin and S Constable. 	Occam's inversion to generate

smooth, two-dimensional models from magnetotelluric data. Geophysics.

55(12):1613-1624, December 1990.

I d'Erceville and G Kunetz. The effect of a fault on the Earth's natural

electromagnetic field. Geophysics, 27:651-665, 1962.

H W Dosso. A review of analogue model studies of the coast effect. Physics

of the Earth and Planetary Interiors, 7:294-302, 1973.

Edinburgh Parallel Computing Centre. PUL-TF User Guide.

EMSLAB Group. The EMSLAB electromagnetic sounding experiment. EQS

Transactions of the American Geophysical Union, 69:98-99. 1988.

G E Forsythe. Numerical Analysis and Partial Differential Equations. Sur-

veys in Applied Maths. John Wiley & Sons, 1958.

G E Forsythe and W R Wasow. Finite-Difference Methods for Partial Dif-

ferential Equations. Applied Maths Series. John Wiley & Sons, 1960.

R W Freund. Krylov subspace methods for complex non-Hermitian linear

systems. Technical Report 91.11, Research Institute for Advanced Computer

Science (RIACS), Mail Stop Ellis Street, NASA Ames Research Center, Mof-

fett Field, CA 94035 USA, May 1991.

BIBLIOGRAPHY 	 98

420] R W Freund. Transpose-free quasi-minimal residual methods for non-

Hermitian linear systems. Numerical Analysis Manuscript 92-07, AT&T

Bell Laboratories, Room 2C-420, 600 Mountain Avenue, Murray Hill, NJ

07974-0636, July 1992.

D Galanopoulos, V R S Hutton, and G J K Dawes. The Milos geothermal-

field - modeling and interpretation of electromagnetic induction studies.

Physics of the Earth and Planetary Interiors, 66(1-2):76-91, 1991.

Geotools Corporation, 5808 Balcones Drive Suite 202, Austin TX 78731.

USA. Geotools: A complete system for magnet otelluric interpretation, 1993.

V R Green and J T Weaver. Two-dimensional induction in a thin sheet

of variable integrated conductivity at the surface of a uniformly conducting

Earth. Geophysical Journal of the Royal Astronomical Society, 55:721-736.

1978.

B A Hobbs. Terminology and symbols for use in studies of electromagnetic

induction in the Earth. Surveys in Geopyhsics, 13:489-515, 1992.

G W Hohmann. Three-dimensional induced polarization and electromag-

netic modeling. Geophysics, 40:309-324. 1975.

W B Hu, , W Nienaber, and H W Dosso. Vertical magnetic field response

of a seamount. Physics of the Earth and Planetary Interiors, 54:135-139.

1989.

G R Jiracek, R P Reddig, and R K Kojima. Application of the Rayleigh-

FFT technique to magnetotelluric modeling and correction. Physics of the

Earth and Planetary Interiors, 53:365-375. 1989.

F W Jones. A Correia, G K Dawes, V R S Hutton, P Jones, and K J Mac-

Donald. Preliminary results of a magneto-telluric survey over a geothermal

anomaly in Portugal. Physics of the Earth and Planetary Interiors, 73:274-

281, 1992.

BIBLIOGRAPHY 	 99

F W Jones and A T Price. The perturbations of a1ternat1ing geomagnetic

fields by conductivity anomalies. Geophysical Journal of the Royal Astro-

nomical Society, 20:317-334, 1970.

F W Jones and K Vozoff. The calculation of magnetotelluric quantities for

three-dimensional conductivity inhomogeneities. Geophysics, 43:1167-1175,

1978.

P Kaikkonen. Numerical electromagnetic modeling including studies of char-

acteristic dimensions: A review. Surveys in Geophysics, 8:301-337, 1986.

E Kreyszig. Advanced Engineering Mathematics. Wiley, sixth edition. 1988.

C C Ku, M S Hsieh, and S H Lim. The topographic effect in electromagnetic

fields. Canadian Journal of Earth Science, 10:645-656, 1973.

H T Kung. Computational models for parallel computers. Philosophical

Transactions of the Royal Society of London, A 326:357-371. 1988.

E Lagios, A Tzanis, N Delibasis, J Drakopoulos, and G K J Dawes.

Geothermal-exploration of Kos-island, Greece - magnetotelluric and micro-

seismicity studies. Geothermics, 23(3):267-281, 1994.

S Levy, D Oldenburg, and J Wang. Subsurface imaging using magnetotelluric

data. Geophysics, 53(l):1040117. 1988.

R L Mackie, T R Madden, and P E Wannamaker. Three-dimensional mag-

netotelluric modeling using difference equations - Theory and comparisons

to integral equation solutions. Geophysics, 58(2):215-226, February 1993.

T R Madden. EMCAL, 1971.

D McA McKirdv and J T Weaver. Induction in a thin sheet of variable

conductance at the surface of a stratified earth - I. Two-dimensional theory.

Geophysical Journal of the Royal Astronomical Society, 78(1):93-103. 1984.

BIBLIOGRAPHY 	 100

1 McA McKirdy, J T Weaver, and T W Dawson. Induction in a thin

sheet of variable conductance at the surface of a stratified earth-IT. Three-

dimensional theory. Geophysical Journal of the Royal Astronomical Society,

80(1):177-194, 1985.

J J Modi. Parallel Algorithms and Matrix Computation. Oxford Applied

Mathematics and Computing Science Series. Clarendon Press, 1988.

MPI Consortium. Message Passing Interface specification/description.

A S Neves. The Magneto-Telluric Method in Two-Dimensional Structures.

PhD thesis, MIT, Department of Geology & Geophysics, 1957.

G A Newman, G W Hohmann, and W L Anderson. Transient electromag-

netic response of a three-dimensional body in a layered earth. Geophysics.

51:1608-1627, 1986.

J M Ortega and R G Voigt. Solution of partial differential equations on

vector and parallel computers. SIAM Review, 1985.

5 K Park, A S Orange, and T R Madden. Effects of three-dimensional

structure on magnetotelluric sounding curves. Geophysics, 48:1402-1405,

1983.

W D Parkinson. Introduction to Geomagnetism. Scottish Academic Press,

1983.

Helena E Poll. Automatic Forward Modelling of Two-Dimensional Problems

in Electromagnetic Induction. PhD thesis, University of Victoria, B.C., 1994.

A T Price. The induction of electric currents in non-uniform thin sheets and

shells. Quarterly Journal of Mechanics and Applied Maths, 2:283-310, 1949.

A •T Price. Electromagnetic induction in a semi-infinte conductor with a

plane boundary. Quarterly Journal of Mechanics and Applied Maths, 3:385-

410, 1950.

BIBLIOGRAPHY 	 101

Xinghua Pu. Three Dimensional Geomagnetic Forward Mo,,delling. PhD

thesis, University of Victoria, 1994.

A P Raiche. An integral equation approach to three-dimensional modelling.

Geophysical Journal of the Royal Astronomical Society, 36:363-376, 1974.

R P Ranganayaki and T R Madden. Generalized thin sheet analysis in

magnetotellurics: an extension of price's analysis. Geophysical Journal of

the Royal Astronomical Society, 60:445-457, 1980.

D Rankin. The magnetotelluric effect of a dike. Geophysics, 27:666-676,

1962.

I K Reddy and D Rankin. Magnetotelluric response of a two-dimensional

sloping contact by the finite element method. Pure and Applied Geophysics,

105:847-857. 1973.

U Schmucker. Interpretation of induction anomolies above non-uniform sur-

face layers. Geophysics, 36:156-165, 1971.

A Schuster. The diurnal variation of terrestrial magnetism. Philosophical

Transactions of the Royal Society of London, 1889.

G D Smith. Numerical Solution of Partial Differential Equations: Finite

Difference iViethods. Oxford applied mathematics and computing science

series. Clarendon Press, third edition, 1985.

J T Smith and J R Booker. Rapid inversion of 2-dimensional and 3-

dimensional magnetotelluric data. Journal of Geophysical Research, 96:390 5-

3922. 1991.

D lvi Summers and J T Weaver. Electromagnetic induction in a stratified

conducting half space by an arbritary periodic source. Canadian Journal of

Physics, .51:1064-1074. 1973.

W lvi Telford. L P Geldart, and R E Sheriff. Applied Geophysics. Cambridge

University Press, second edition, 1990.

BIBLIOGRAPHY 	 102
il

Thinking Machines Corporation, Cambridge, Massachusetts, USA. Connec-

tion Machine CM-200 Series Technical Summary, first edition, June 1991.

A N Tikhonov. Dtermination of the electrical characteristics of the deep

strata of the Earth's crust. DokI. Akad. Nauk SSSR, 73:295-297, 1950.

R S Varga. Matrix iterative analysis. Pretence Hall, 1962.

G Vasseur and P Weidelt. Bimodal electromagnetic induction in non-uniform

thin sheets with an application to the northern Pyrenean induction anomaly.

Geophysical Journal of the Royal Astronomical Society, 51:669-690, 1977.

J R Wait. Propagation of radio waves over a stratified ground. Geophysics,

18:416-422, 1953.

D J Wallace. Scientific compuation on SIMD and MIMD machines. Philo-

sophical Transactions of the Royal Society of London, A 326:481-498, 1988.

P E Wannamaker, J R Booker, J H Filloux, A G Jones, G R Jiracek, A D

Chave, P Tarits, H S Waif, G D Egbert, C T Young, J A Stodt, M Mar-

tinez, L K Law, T Yukutake, J S Segawa, A White, and A W Green. Mag-

netotelluric observations across the Defuca, Juan subduction system in the

EMSLAB project. Journal of Geophysical Research, 94:14111-14125, 1989.

Philip E Wannamaker, John A Stodt, and Luis Rijo. PW2D Finite element

prgram for solution of magnetotelluric responses of two-dimensional earth

resistivity structure. Earth Science Laboratory, University of Utah Research

Institute, 391 Chipeta Way, Suite C, Salt Lake City, Utah 84108, USA,

revised edition, June 1987.

Philip E Wannamaker, John A Stodt, and Luis Rijo. A stable finite element

solution for two-dimensional magnetotelluric modelling. Geophysical Journal

of the Royal Astronomical Society, 88:277-296, 1987.

J T Weaver. The electromagnetic field within a discontinuous conductor

with reference to geomagnetic micropulsations near a coastline. Canadian

Journal of Physics, 41:484-495, 1963.

BIBLIOGRAPHY 	 103

J T Weaver. Finite difference calculations for COMMEMI. Technical report,

Department of Physics, University of Victoria, British Columbia, Canada,

May 1984.

J T Weaver. Mathematical methods for geo- electromagnetic induction. Ap-

plied and engineering mathematical series. Research Studies Press Ltd, 1994.

J T Weaver and C R Brewitt-Taylor. Improved boundary conditions for

the numerical solution of E-polarization problems in geomagnetic induction.

Geophysical Journal of the Royal Astronomical Society, 54:309-317, 1978.

J T Weaver, B V LeQuang, and G Fischer. A comparison of analytical and

numerical results for a 2-D control model in electromagnetic induction - I.

B-polarisation calculations. Geophysical Journal of the Royal Astronomical

Society, 82:263-277, 1985.

J T Weaver, B V LeQuang, and G Fischer. A comparison of analytical and

numerical results for a 2-D control model in electromagnetic induction - II.

E-polarisation calculations. Geophysical Journal of the Royal Astronomical

Society, 87:917-948, 1986.

P Weidelt. The inverse problem of geomagnetic induction. Zeitschrift für

Geophysik, 38:257-289, 1972.

P Weidelt. Electromagnetic induction in three-dimensional structures.

Journal of Geophysics, 41:85-109, 1975.

K i\l Westaway. The endless quest - Three thousand years of science. Blackie

and Son Ltd, 1934.

Andrew J S Wilson. Kenneth J MacDonald, Liming Yu, Bill Day, and Ham-

ish Mills. Electromagnetic Modelling on Parallel Computers. Schiumberger-

Doll Research. 1996. In Print.

David M Young. Iterative solution of large linear systems. Computer Science

and Applied Mathematics. Academic Press, 1971.

BIBLIOGRAPHY 	 104

L Yu. Computation of the electrical responses of mid-ocean ridge structures.

Technical Report 5, University of Toronto, 1994.

M S Zhdanov and Iv M Varentsov. Progress report on the COMMEMI

project. page 438. 7th IAGA Workshop on Electromagnetic Induction in the

Earth and Moon, 1984. August 15-22, Ile-Ife, Nigeria.

M S Zhdanov and Iv M Varentsov. Progress report II on the COMMEMI

project. In IA GA/IA MAP Abstracts, volume 2, page 438. .5th General As-

sembly of IAGA, 1985. August 5-17, Prague, Czechoslovakia.

M S Zhdanov and Iv M Varentsov. Revised program of COMMEMI project.

Technical report, Institue of Terrestial Magnetism, Ionosphere and Radio

Wave Propogation, USSR Academy of Sciences, 1985.

Appendix A

Two Dimensional Code Excerpts

A.1 Matrix-Iter.FCM
Hinclude "Arch.h

C Original subroutine written by Helena Poll 1988.

(This subroutine, celled by FR2D, directs the matrix

elimination procedure and prints out the Fieldo.POtL'88)

C Converted to Iterative version by Kenneth MacDonald October 1993

C Tidied up by Kenneth MacDonald February 1994

C Added support for CM Fortran, and cpp. Kenneth MacDonald March 1994

SUBROUTINE MATRIX(YGrid, ZOrid, ResGrid, Field NPo1, MD)

C This subroutine calculates the coefficients for each grid point and

C stores them in arrays, ready for the iterative solver. The solution is

C then written to the output file.

C Set up the names of the subroutines to call, depending on Architecture

sit dci CM200.Arch

Mdci inc FIELD-to-PARALLEL FEFie1d2CN

Mdefine CELL-to-PARALLEL FECe112CM

Mdci ins SURF-to-PARALLEL FESuri 2CM

Mdci inc PARALLEL-to-FIELD CMField2F!

Mendif

Mit dci 9asPerArch

Mdci inc FIELD-to-PARALLEL FEFie1d2DPU

Mdci ins CELL-to-PARALLEL FECe112DPU

Mdci ins SURF-to-PARALLEL FESur±2DPU

Mendif

C No inolicit variable names cussed

IMPLICIT NONE

C Include files

INCLUDE 'limits, inn'

C Common Blocks

INTEGER 	NY. NE

105

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS
	

106

COMMON /LIMITS/ NY, NZ

REAL-8 Pi, Omega, 0Mm, PECood, PRImaul

COMPLEX-16 OSlope

COMMON /CONST/ PA, Omega, 	rmu. PRComd, 	PRInsul, 	OSlope

INTEGER NOM. 	(start, 	(Flag, 	tEnd, 	EFirot

COMMON /0400/ NON, 	(Start, 	(Flag, tEnd. 	(First

INTEGER NO

COMMON /SVI/NQ

INTEGER Msxlter

COMMON /Iterative/ Maxitar

C Arguments

INTEGER MD

REAI.aB YOrid(MO)

REAL-8 ZOrid(MO)

REAL08 ResOrid(MD, 	MO)

COMPLEX-16 Field(MD, 	MO)

INTEGER OPal

C Local FE Variables

INTEGER I, 	J

COMPLEX* 16 LeftElanent

COMPLEX- 16 CentreBlock(Olaxlrid)

COMPLEX-16 ItightBlock(MacGrid)

COMPLEX-16 0015

COMPLEX-16 CellMotrjx(MaxGrid, 	MacGrid, 	6)

CIMPLEXaI6 Ssr±Matrix(MaxGrid. 	MacGrid, 2)

REAL-8 Error

C Local parallel variables

OjOdef Parallel-Arch

COMPLEX*16 	PCollMatrix(NY, OX, 6)

COMPLEXO16 	POurfllatrix(NY+2, NY, 2)

COMPLEXC16 	PField(NY, NZ) 	Parallel copy of the field

tendif

C Compiler Directives

tifdef CM200_Arch

CMF$ 	COMMON F0000LY /SVO/

CMF$ 	COMMON FEONLY /Limits/

CMF$ 	COMMON FEONLY /Const/

COPS 	COMMON FEONLY /Band/

CMF$ 	LAYOUT YOrid(SEROAL)

CMF$ 	LAYOUT ZGrid(:5001AL)

CMF$ 	LAYOUT ReeGrid(SERIAL, SERIAL)

COPS 	LAYOUT Field(:5004IAL, SERIAL)

CMF$ 	LAYOUT Csntraalock(:SEROAL)

CMF$ 	LAYOUT Rightolock(:SERIAL)

CMF$ 	LAYOUT CellMatrix(:SERIAL, SERIAL, SERIAL)

COPS 	LAYOUT SurfMatrix(SEROAL, SERIAL, SERIAL)

COPS 	LAYOUT PCallMatrir(NEWS, NEWS, SERIAL)

CVFS 	LAYOUT POurfMatrir(OIEWS, NEWS, SERIAL)

CMF$ 	LAYOUT PField(:NEWS, NEWS)

Dendif

C loitialins Variables

Maxlter = 1000

Error 1.00-5

ROmps = (Field(NY. NZ) - Fjo1d. NZ))/(YOrid(NY) - YGrid(1))

(FAcet 1

(End 0

(Flag 0

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 107

(Start

LISM = NY - 2

EQ 0

C Top BC First, but only for E Polarisation

IF (NPo1.EQ.1) THEN

3=1

DO I 	2. NY - 1

CALL CPUTA(YGrid, ZOrid, SecOnd, CentreBloch. ENS,

& 	RightBlock, LeftElenent, Field, NPoI, 3, I, MD, MeaCrid)

CALL SURF-STORE (SurfMatnix, MaxGrid. LeftEloment,

ContreBlock, RightBlock(I-1), ENS, I, 3)

END DO

END IF

C Genera]. Block

DI 3 	2, NZ - 1

D01v2,NY-1

CALL, CPNTA(TGrid, ZGnid, Roefrid, CentreBlocic, ENS,

B 	RightBlock, LeftElement. Field, fF01, 3, I, MD. laaGrid)

CALL CENTRE-STORE (ColiMatrix, HomInid, LeftElenent,

A 	CentraBlock, P.ightBlock(I1). ENS, I. 3)

END DO

END DO

C Bottom Block

KEEl 1

3 NZ

DO I = 2, NY 	1

CALL, CPNTA(YGnid, ZGnid, Reefnid, CentreBlock, ENS,

B 	RightBlock, LeftElement, Field, SF01, 3, I, MD, MemGr.d)

CALL SURF-STORE (SorfMatnim. MacGrid, LoftElenont,

A 	CentreBlock, RightBlock(I-1), ENS, I, 3)

END DO

C Start the timer

Bifdef MacPar_Arch

CALL mpTinerStart () 	Start clock

Bendif /c MaoPor.,Arch e/

C Now Solve Iteratively

C First the code to solve on a serial machine. Simply call ITER_SSLVE

Bifdef Serial-Arch

CALL ITER..SOLVE (Field, Cellflatrix. Swr±Matrix. MD, MacGrid.

A 	MamCrid, Memlter, Error. NPoI)

nendif

C Now the code to solve on a parallel machine. First of all, we have to

C copy all the arrays across to the SF0, then call ITER_SDLV!, and finally

C copy the field hack again.

Eifdej Parallel-Arch

C Copy the arrays to a parallel array

CALL FIELD-to-PARALLEL (Field, Meld, MD, NY. NZ) 	yield

CALL CELL-to-PARALLEL (CeliMatnix. PCellMatrix. MacGrid,

B 	NY, liz) 	 Cello

CALL SURF-to-PARALLEL (SurfMatnix. PSsrfMatria, MacGrid. NY)! Surfaces

C Nov call the solver with the parallel arrays

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 108

CALL ITER_SOLVE Wield, PCellMatrix, PSurdMotrix, NY, NZ,

Maxlter, Error, NPoL>

C Copy the parallel field back to the aerial version

CALL PARALLEL-to-FIELD (Field PField, MD, NY, NZ)

Nendif -

C Stop timer and print time taken

Oifdef MacPer_Arch

Time 	mpTioerflopsed C)

PRINT 0, 'Time Elapsed (ms): ", Time

Nandif /s MaoPar_Arch /

C Print Field in Formatted output

CALL WRITE(Ytrid, Ztrid, Field, MD, NP01)

CALL DUMP-FIELD (Ytrid, Zlrid, Field. MD, SPol, 'ras')

C Finished

RETURN

END

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 109

A.2 Store-Iter.FCM
C

C This subroutine stores the five coefficients plus the right hand side

C constant from the finite difference equations in an array. This is only

C possible for the central points, as the top and bottom need many more

C coefficients (due to the integral boundary conditions).

SUBROUTINE CENTRE-STORE (Matrix, Size, Lefttlement, CentreBlock,

6 	 RightElement, ENS, NY, IZ)

IMPLICIT NINE

C Common blocks

COMMON /LIMITS/NY,NZ

INTEGER NT, HE

C Arguments

INTEGER Size ! The size of the matrix

COMPLEX-16 latrix(Size, 	Size, 	6) The matrix to be filled

COMPLEX-16 Lefttlement Single diagonal element in the left block

CSMPLEXc16 CsmtreBlock(NY) Vector of elements in the centre block

COMPLEX-16 RightElement Element in the right block

COMPLEX016 ENS The Eight hand side value

INTEGER IT, 	IS The current grid coordinates of the point

C local Variables

INTEGER Counter Simple general purpose counter

C The SELF coefficient

Matrim(IY, IS, 1) 	CentreBlock(IY - 1)

C The LEFT coefficient

IF (IY.NE.l) THEN

Matrix(IY, IZ, 2) = CentreBlock(IY - 2)

END IF

C The RIGHT coefficient

IF (IV.NE.GY) THEN

Matrix(SY, IZ. 3) 	CencreBlock(IY)

END IF

C The UP coefficient

IF (IZ.NE.l) THEN

Mmtrix(SY, IZ, 4) 	LeftElement

END IF

C The DOWN coefficient

IF (IZ.HE.IZ) THEN

Matrim(IY, IS, 5) 	RigktElement

EEl) IF

C The ENS Constant

Matriz(SY, IZ, 6) = ENS

RETURN

END 	 -

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 110
1.

B

C This subroutine stores the integral equation finite difference coefficients

C in a marIne for use in the iterative solver. Called for each point on the

C bottom of the central grid, and for the top in E-Polarisation.

C Must be called for only top or bottom points. Gives Error message if it

C is called from a central point.

SUBROUTINE SURF-STORE (Surf, Coof, Size, LoftElemect, CentroBlock,

RightElemont. aBS. I?, IZ)

IMPLICIT NOSE

C Common Blocks

INTEGER NY, NZ

COMMON /LIMITS/NY. HZ

C Arguments

INTEGER 	Size 	 The max size of the arrays

COMPLEX-16 	SurfCcof(Sizo, Size, 2) 	The coeff matrix to fill

COMPLEX-16 	LeftElement 	 The left off diog element

COMPLEX-16 	ControBlock(Sime) 	The centre elements

COMPLEX-16 	RightElement 	 The right off diag element

COMPLEX016 	aBS 	 The FINS constant

IITESEN 	IV, OZ 	 The grid coordinates

C Local Variables

IITEGER 	WhichSurface 	 Top or bottom?

INTEGER 	Counter 	 General counter

C Compiler Directives

CMF$ 	LAYOUT SurfCoef(,NEWS, NEWS, SERIAL)

C Check xatnim is big enough. Must be 2ONY°(NY+2)

IF (Sizs.LT.(NY * 2)) THEN

PRINT c, Error, SURF-STORE called with toe email a matrix.

RETURN 	 Don't continue, just returts.

END IF

C Are we at the Top or Bottom Surface V Set the Up or Down coefte and

C set the index 'WhichSurface' to 1 or 2.

IF (IZ.EQ.i) TEEN

SurfCoef(NY * 1, IV, 1) 	RightElement 	Doom coeff

'ohichSurf ace 	1 	 Top

ELSE IF (IZ.EO.1IZ) THEN

SurfCcef(NY + 1, IV, 2) 	LeftEleeent 	Up coeff

WhichSur±acs = 2 	 Bottom

ELSE

PRINT 0, 'Error, SURF-STORE called from central gridpoint.'

RETURN 	 Error, shouldn't be in hers.

END IF

.0 Now fill in the line in the array

II Counter = 2, IV - 1

SurfCoet(Counter. DY, WhickSurfaca) 	Centroglocic(Coucter - 1)

END DO

C No,, store the 0155 constant value in the and of the line

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 111

SurfCof(NY * 2. I?, WhichSurce) 	IWS

C Done

RETURN

END

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 112

A.3 Jacobian.FCM
C Jacobian (v.07) leaPer High Performance Fortran

C Kenny MacDonald 18th November 1993

C This version of the Jacobian solver calculates the maximum

C absolute residuals and stops iterating according to that.

SUBROUTINE ITEFt_SOLVE (Field, Matrices, Surface.

& 	 NY, NZ. Mamlter. Error, NPo1)

IMPLICIT NONE 	 Important this

C Arguments

INTEGER 	NY, NO 	The model grid size

COMPLEX-16 	Field(NY, 82)

COMPLEX.16 	Matrices(NY, 02, 6)

COMPLEX-i6 	Surface(NY+2. NY, 2)

INTEGER 	M—iter 	 Max somber of iterations

REAL-8 	Error 	 Required Error

INTEGER 	OPol. 	 Polarisation of the problem

C Local Variables

INTEGER 	I, 3 	 Coordinates of a grid point

INTEGER 	Direction 	 Current direction

INTEGER 	Iteration 	 Iteration counter

COMPLEX-16 	tewField(NY. 02) 	Updated field vaules

COMPLEX-16 	Value(NY) 	 Tamp values for surface colts

COMPLEI16 	Products(NY, NY) 	Surface tamp values

COMPLEX-16 	Change(NY, NO) 	 Errors at each iteration

REAL-8 	Reeiduel(NY, 82) 	Absolute residual each point

REAL-8 	MerResidual 	 The macAnon absolute residual

INTEGER 	Top 	 The top layer of the problem

LOGICAL 	ActiveNodes(NY, NZ) 	! Active modes are TRUE.

LOGICAL 	Offoiag(NY, NY) 	 Off diagonal surface elements

LOGICAL 	Cemtral(NY, NO) 	 The central grid points

C Compiler Directives

Nifdef Rasp—Arch

cmpf ONDPU 	Field, NesField, Surface, Matrices, Value, Products

cmpf ONDPU 	Residual, ActiveNodes, OffDiag, Central, Change

lendif

Hifdef CR200_Arch

CMF$ 	LAYOUT Field(NEWS, NEWS)

CMF$ 	LAYOUT Matrices(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT Surface(NEWS, NEWS, SERIAL)

CMFS 	LAYOUT NewField(IIEWS, NEWS)

CMF$ 	LAYOUT Value(NEWS)

CMFS 	LAYOUT Products(:NEWS, NEWS)

CMF$ 	LAYOUT Change (NEWS. NEWS)

CMF$ 	LAYOUT ActivsNodea(NEWS, NEWS)

CMFS 	LAYOUT 0ffDiag(NEWS, NEWS)

CMF$ 	LAYOUT Cemtral(:SEIf 5, NEWS)

Pendif

C Display required tolerances

PRINT •. 'Required maximum residual '. Error

sifdef MasPar_Arch

PRINT e, 'RasPer High Performance Fortran Version'

Nendif

#iidsf CR200_Arch
PRINT -' 'Connection Machine Fortran Version'

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 113

Oendjf

PRINT •, 'Using Jacobian (v8) solver, absolute residuals'

C Set the upper most layer of interest

IF (NPo1.EQ.0) THEM

Top 	2 	 BPo1, ignore surface

ELSE

Top 	1 	 EPo1. coed surface

END IF

C Set up Active Nodes according to Polarisation

ActiveNodes 	. FALSE.

ActjveNodes(2:NT-1, Top:HZ) 	TRUE.

C Loop over the calculations

DO Iteration = 1, Maxlter

C First Calculate the Top Surface iteration if EPo1

IF (MPol.EQ.1) THEN

Sffbiag 	. FALSE. 	 Initialise to FALSE

Value(2:NT-1) 	Surface(NY + 2, 2:NY-1, 1) 	Set to P.115 values

FERALL (I 	1:NY. .1 	1:51)

& 	SffDiag(I, .1) 	1.ME.J 	 False on Diagonal

WHERE (DffDiag)

Products = -Surface(1:NY, 1:111. 1)

A

	

	SPREAD (Fiold(1:NY, 1). DIM-2, NCSPIESNY)l Calculate products

END WHERE

Valuo(1:11Y) 	Valuo(1:NY) 	 Sum up products at each point

& 	SUM (Products(1:NY. 1:NY), MASKOffDiag, DIM-1)

Vlue(1:11Y) = ,talue(1:NY) -

A 	Surface(NY + 1. 1:NY, 1) 0 Field(1:NT. 2) 	The point bolos

FORALL (I 	2:51-1)

A 	NswFiold(I, 1) = Value(I) / Surface(I, I, 1)! Div by sold coed

END IF

C Dow do the central points in parallel using CSHIFT's for coamumication

Central = FALSE. 	 Initialise to FALSE

Central(2:NY-1, 2:52-1) 	TRUE. 	Set central points true

WHERE (Central)

MacField 	Matrices(:, 	. 6) - 	 P.115

& 	Matrices(:, :, 2) e EOSHIFT (Field. SHIFT-1, SIM1) - 	Loft

A 	Matrices(:. • 3) 5 EOSHSFF (Field. SHIFT-1, DIM-1) - 	Right

A 	Matrices(:, . 4) • EDSHIFT (Field. SHIFT--I, DIM-2) - 	Up

A 	Matrices(:, . 5) 5 EDSHIFT (Field, SHIFT-1, 0111=2) 	Sown

NeeField 	MacField / Matrices(:, . 1) 	 Self

END WHERE

C Finally Calculate the Bottom Surface iteration.

Offliag = FALSE. 	 Initialise to FALSE

Value(l:SY) = Surface(NY + 2. 1:S1, 2) 	Sot to 5.115 values

FIRALL (S 	1:1ST. .1 = 1:51)

A 	SffDiag(I. J) = I.NE.J 	 ! False on Diagonal

WHERE (DffDiag)

Products(1:NY. 1:51) = -Surfaae(1:NY, 1:51, 2)

A

	

	SPREAD (Fiold(1:NY. NZ). DIM-2, NCOPIESNY)! Calculate products

END WHERE

Vlue(1:51) = Valus(1:NY) 	+ 	Sum up products at each point

& 	SUN (Produccs(1:NY. 1:51). MASE=Offoiag, DIM-1)

Value(1:4Y) s Value(1:NY) -

& 	Surface(NY + 1. 1:111, 2) 	Field(l:NT, NZ-1)! The point above

FSR.ALL (1 	2,111-i)

APPENDIX A. TWO DIMENSIONAL CODE EXCERPTS 	 114

& 	EewField(I, HZ) 	Value(I) / Surface(I, I, 2) 	Div by self coef

C Calculate the residual at each point.

WHERE (ActiveNodee)

Change 	NesField - Field

Residual • SORT (REAL (Change)e.2 0

& 	AIMAG (Chenge).e2)

END WHERE

MaxResidual 	MAXYAI. (Residual, maokbctiveNodes)

C Copy NeeField to Field

WHERE (ActiveNodee)

Field NesFiald

END WHERE

C Print iteration number and maximum residual

PRINT 5, Iteration ', Iteration, I MaxReeidual

b 	 MaxReeidual

C Is the maximum residual lees than the prescribed error?

C If so, then just return floe.

IF (MaxResidual.LT.Error) TEEN

PRINT 0, Needed ' Iteration. I Iterations'

RETURN

END IF

END DO

PRINT •, 'Reached Maximum Iteration Count of 1 . Maxiter

PRINT e, 'Solution not converged to required residual.

RETURN

END

'C

It

Appendix B

Three Dimensional Code

Excerpts

B.1 Iter3D.FCM
C------------------ITER
C Original. by Xinghau Pu
C APR. 15.1992

C Rewritten in MasPer High Performance FORTRAN to use Data Parallel

C features by Kenneth MacDonald and Ashok Agarwel, Autumn 1993.

C added support for Connection Machine FORTRAN and C preprocessor by

C Kenneth MacDonald, March 1994.

C This is the main controlling subroutine for the iterative solver. All

C the parallel arrays are declared and allocated in this subroutine. and
C are then passed as arguments to the subsequent subroutines.

C...

/s Define Parallel or Serial. version C /

Hincluda "Arch.h"

/s Do we have a timer available? •/

5mdef Timer-Available

Oifdof CM200..Arch
Dde±ine Timer-Available

Dendif /e CR200_Arch -/

OAK def MasPar_Arch
sde± ins Timer-Available

Oendif /0 MacPar_Arch .1

sifdef SunOS-Arch
Odef ins Tinerj.vmilable

Dendif /s SunOS-Arch •/

115

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS
	

116

SUBROUTINE ITER (NE. NY, NO)

IMPLICIT NONE

INCLUDE EJI3D.F'

Uifdef Timor-Available

#ifdet CM200_Arch
INCLUDE /usr/include/cm/timer-fort h

Bsndif 1° CM200_Arch e/

nendif /5 Timor-Available •/

C Arguments

INTEGER NX, NT, NZ
	

The size of the model End

C Common Blocks

INTEGER IDnta(NI) Misc. INTEGER variables

COMMON 	/IData/Xflate

REAL-8 	RData(NR) Mioc REAL variables

COMMON 	/RData/P.D ate

COMPL00016 CData(NC) Mist COMPLEX variables

COMMON 	/CData/CDete

COMPLEX*16 XX(LD,MD,50) Br

COMPLEX-16 YY(LD,MD.ND) By

COMPLEX-16 ZZ(LD,MD.SD) Br

COMPLEX-16 XO(LD,MD) Boo (Thin Sheet)

COMPLEX-16 YO(LD.MO) By. (Thin Sheet)

COMMON 	/BXBYBZ/ IX,YY,ZZ,XO.YO

LOGICAL ThinShest 	 Thin Sheet Flag

COMMON 11510/ ThinSheet

C Local Variables

Bifdof Parallel-Arch

C 	Field Values

COMPLEX516 Field(30NX,NY,NZ) 	B Field

COMPLEX-16 Thinpjeld(356X,NY) 	Thin Sheet B Field

CSMPLEX0I6 Deltefiold(3eNI,NY,SrMZ) 	Change in the Field

C 	Top surface coefficients

P.EALO6 TopSr(NX5NY, MIsSY)

REALe8 TopSy(NXSNY, 4X0NY)

REAL-8 TopA(30NX,NY.7)

REAL58 TopB(306X.NT.6)
REAL8 TopC(3ONX.NY.6)

CIMPLEXO16 Topio(35NX. NY)

C 	Internal cell coefficients

Surface integral. XsSxsX

Surface integral 'tSyeZ

Self components XTopAsX,..

Cross componen;+1 XsTopBoV,..

Cross component*2 XTopCeZ...

Singular point XX/Topio...

REALM CslA(35NX, NY, NZ, 7) 	Self components XCelAoX,..

REAL58 CelB(3eNX, NY. NO, 19) 	1 Cross component+l XCeLB0T...

RE.P.L8 Ce1C(3eNX, NY. NO, 19) 	I Croon componentv2 XCelCeZ,..

C 	Bottom surface coefficients

PLILOB BotA(3eNX, NY. 6) 	Self components X=UotAeX,..

REAL-8 BotB(35NX, NY. 6) 	Cross component+l XBotBY...

REAL8 BotC(3sNX, NY. 6) 	Cross compsnsnt+2 leBotCel...

CDMPLEXOI6 Psr$14to9(NX.NY) 	Ertrs X Terme XeX+PsrSI4to9

COMPLEX16 BotS(NXsNY.NX5MY) 	! Surface integral XSnX,..

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 117

COMPLEX-16 Botio(3.NX, NY) 	Singular point X'X/Botio,..
N

C 	Loop counters

INTEGER I, J. K

Sendif Jo Parallel-Arch e/

C 	Misc scaler variables

INTEGER OSTART, ITEMAX, ONITER, 100TPT, MCHECK. NCMEC3,

& 	II, MSG, IF, JP. IF, NNIT

REALO8 Error. EPS

COMPLEX-16 No

Mildef Timor-Available

C 	Local timing variables

INTEGER Time, TotalTime

Silded SunOS-Arch

INTEGER TimoStart, TimeEnd

#endif /s SunOS-Arch e/

dendif /5 Timer-Available •/

sAlAd Parallel-Arch

C Residual Function Declaration

REAL ParRosidual

SandiA

#ifdet Timer-Available

C Timer Function Declarations

#jfdef MasPar_AIch

INTEGER mpTimerllapeed

*endif /e MasParArch 5/

SandiA /aTioor_Available •/

Oil del C11200-Arch

C Compiler Directives

CMF$ 	COMMON FEONLY /IDatai

CMF$ 	COMMON FEONLY /RData/

CMF$ 	COMMON FEONLY /CDataJ

CMF$ 	COMMON FEONLY /THIN/

CMF$ 	COMMON FEONLY /BXBTBZI

CMF$ 	LAYOUT Field(NEWS. NEWS. NEWS)

CMF$ 	LAYOUT ThinField(NE'dS, NEWS)

CMF$ 	LAYOUT DltaFiold(NEWS. ,0005, NEWS)

CMF$ 	LAYOUT TopSx(:NEWS, NEWS)

CMF$ 	LAYOUT TopSy(:NEWS, SEWS)

CMF$ 	LAYOUT TopA(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT TopB(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT TopC(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT TopAo(NEWS. NEWS)

CMF$ 	LAYOUT CelA(NEWS, NEWS. NEWS,:SERIAL)

CMF$ 	LAYOUT ColR(NEWS. NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT Ce1C(,NEWS, NEWS. NEWS. SERIAL)

CMF$ 	LAYOUT BotS(NEWS. NEWS)

CMF$ 	LAYOUT BotA(:NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT BstB(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT BotC(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT 3otAo(NEWS, NEWS)

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 118

CMF$ 	LAYOUT ParSI4to9(NEWS. ,,NEWS)

Bendif I. CM200_Arch 5/

C Equivalence Statements

EQUIVALENCE (ITEIIAX IData(7)) (HCHEC3 , IData(8)),

& 	(IOUTPT.IData(9)).(NNITER.Ioata(10)),(MSS,IDate(15)),

& 	(IP,IData(16)),(JP.IData(17)).(KP,IData(18))

EQUIVALENCE (EPS ,RData(3)) (Error ,RData(4))

C Print out some diagnostics.

#ifdef DEBUG

PRINT 0, 'Get into ITER, with NI. NY, NZ 	' NI, NY, NZ

Oendif Is DEBUG e/

Bifdef Parallel-Arch

PRINT •, Parallel Iterative Solver Version 1.0'

tifdef C11200-Arch

PRINT 5 Connection Machine FORTRAN

Oendif / CM200Arch s/

#ifdef Macper_Arch

PRINT •. 'MacPer High Performance FORTRAN'

lendif /5 MaoPar_Arch e/
*endif /. Parallel_Arch 5/

Ujfdof Serial-Arch
PRINT e, 'Serial Iterative Solver Version 1.0'

sifdef SonGS_Arch

PRINT e, 'boOS FORTRAN 77'

Mondif /5 SunOS-Arch e/

Ojfdef QSF_lrch

PRINT e, OSF/1 FORTRAN 77'

Mendif /0 OSF_Arch e/

Gendif / Serial-Arch 0/

PRINT e, 'Jacobian Method'

IF (ThinShoet) THEN

PRINT e, 'Including Thin Sheet Approximation'

END IF

C Set Ho, is. the source field.

Bo C CData(1)

Ojfdef Parallel-Arch

C Initialise the parallel arrays, if on a parallel machine. On the

C Connection Machine, this should help force the compiler to allocate the

C arrays on the CM (OPU).

Field 	(0.0, 0.0)

ThinField • (0.0, 0.0)

DeltaField 	(0.0. 0.0)

TooSm 	(0.0. 0.0)

TovSy 	(0.0. 0.0)

TopA 0.0

Tool = 0.0

TopC 0.0

Turfs 	(0.0. 0.0)

ColA 0.0

CelB 0.0

Ce1C 0.0

BotA C 0.0
BosS 0.0

BotC 0.0

ParSI4to9 	(0.0. 0.0)

BosS = (0.0. 0.0)

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 119

Botio 	(0.0. 0.0)

C If oars on a parallel machine, then all the field values and

C coefficients need to be copied over to the back and, in a symmetric

C shape.

C Copy the field values on to the field array

DO K 	1, ND

DO .1 	1, NY

DO I 	1, ND

Field(I,J,K) 	XX(I,J,K)

Field(I+NX,J,K) 	YY(I.J.K)

Field(I+200X,J,K) 	ZZ(I,J,K)

0510 DO

END DO

END DO

C Initialise the Thinsheet Field array from the field at the surface

C above the thin sheet (in case it is present)

DO J 	I, NY

DO I 	1. LIX

ThinField(X,J) 	XX(I,J,I)

ThinField(I+MX,J) 	YY(r,J,l)

Thinfield(I+200X,J) 	ZZ(I,J,l)

END DO

END DO

C Copy the coefficients to the parallel representation

CALL. SBCCDE (TopA, TupO. TopC, TopSa, TopSy, Topio,

& 	 ThinSheet, OX, NY)

CALL CELCOE (ColA, ColD, CelC, SIX, II?, ND)

CALL OBCCDE (800A, BonN. BotC, PsrOIltog, DotS, BotAo,

& 	 OX, NY, ND)

Nondif I. Parallel-Arch o/

Oifdsf Timor-Available

C Do anything we need for timers, before the iterations start

Oifdef SumOS_Arch

CALL clock (TotalTioe) 	 ! Start SunOS clock

Nondif /e SonOS_Arch e/

Totalline 0

Dendif / Timer-Available e/

C Start the iteration loop

NSTARTNNITER+l

DO II = OSTART. STE.MAX

Oifdef Timer_Available

Nit def MacPar_Arch

CALL mpTiosrStert C) Start NaoPsr clock

Sondif /e MasPsr_Arcb 	/

#ifdof CMZOO_Arch

CALL CM-timer-clear (0) Clear CM clock

CALL CM-time—tart (0) Start CM clock

Scout /c CM200_Arch .1
Oendif / 	Timer-Available C/

LINITII

ONITERLI

Error0

MCheck 	MOO (NNIter. LIChec3)

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 120

C Update the top, middle, and bottom of th. grid...

Ijidod Parallel-Arch

#ifdof Timer_Available

lit dot CM200_Arch

CALL CM-timer-clear (1) 	Clear CM clock

CALL CM-timer-start (1) 	Start CM clock

lendif /0 CM200_Arch e/

lildef SunOS-Arch

CALL clock (TimeStart)

#ondit /0 SunOS-Arch e/

landiS / Timor-Available •/

CALL ParITESBC (Field, ThinField, TopSx, TopSy,

A 	 TopA, TopS, TopC, TopAo, So, DeltaO'ield,

& 	 MX, NY, NZ, Thiolheet)

#ifdef Timer-Available

SitdeS CM200_Arch

CALL CM-timer-stop (1)

Time 	CM? (CM-timer-read-cm-buoy (I) • 1000.0)

CALL CM-timer-clear (1)

CALL CM-timer-start (1)

oendif /e CM200_irch of

liSdof SunOS-Arch

CALL clock (Timetnd)

Time 	(Timetnd - TimeStart) / 1000

*ondit /0 SunOS-Arch 0/

PRINT 5, 'Top Surface: ', Time, I (me)'

hideS C5200-Arch

CALL CM-timer-clear (1) 	Clear CM clock

CALL CM_timer_start (1) 	Start CM clock

londit /0 C5210-Arch 0/

diOdeS SunOS-Arch

CALL clock (TimeStart)

loodif /o SunOS-Arch e/

somdit /0 Timer-Available 0/

CALL parITECEL(Field, ColA, Cell, CelC, DeltaIield,

A 	 MX, MY, NZ)

hideS Timer-Available

hit dot C11200-Arch

CALL CM-timer-stop (1)

Time 	IN? (CM-timer-road-cm-busy (1) e 1000.0)

CALL CM-timer-clear (1)

CALL CM_timer_start (1)

landiS /0 CM200_Arch of

hideS SunCS_Arch

CALL clock (Timetod)

Time 0 (Timetod TimeStart) / 1000

SandAl /0 S=OS-Arch 0/

PRINT a, 'Central Points: ', Time, ' (mo)'

bit dat CM200_Arch

CALL CM-timer-clear (1) 	Clear CM clock

CALL CM-timer-start (I) 	Start CM clock

SandiA /0 CM200_Arch /

hifdef SunOS-Arch

CALL clock (TimeStart)

SandiA /e SunOS-Arch o/

bendit /a Timer-Available /

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 121

CALL ParITEBBC(Fiold. BetS, Betko, BetA, BetA, BotC,

A 	ParSI4te9, Delte.Piold, MX, NT, NZ)

Mifdof Timor-Available

Bit dot CM200_Arch

CALL CM-timer-stop (1)

Time - SAT (CM-timer-read-cm-busy (1) • 1000.0)

CALL CM-timer-dour (1)

CALL CM-timer-start (1)

#ondif /e CM200_Arch 0/

tifdef SumOS..Ardh

CALL clock (Timetnd)

Time 	(TimoEnd - TimoStart) / 1000

sondif /oSumOS_Arch 0/

PRINT 0, 	'Bottom Surface: 	', Time, (me)'

NonfAt /e Timor-Available 0/

Error 	ParRESIDUAL 	(DoltaFiald, AX, NY, 	AZ, 	I?, 	JP, 	(P.

A ThieSheot)

doedif /0 Parallel-Arch 0/

Nifdof Serial-Arch

Nifdef Ti=er-Available

tifdef SunOS-Arch

CALL clock (TimeStart)

tonfif /0 SunOS-Arch .1

Oendit / 	Timor-Available e/

CALL ITESBC (MChock)

sit dot Timer-Available

Ojfdef SunOS-Arch

CALL clock (Timotnd)

Time 	(Timotnd 	TimoStert) I 1000

tendif /e SomOS_Arch e/

PRINT 0, 	'Top Surface: 	', Time, 	• 	(ms)'

Nit dot SemIS_Arch

CALL clock (TimeStart)

Sendif /0 SunOS-Arch e/

Bandit /e Timer-Available -/

CALL ITECEL Whack)

Nit dot Timer-Available

Mifdof SunOS-Arch

CALL clock (Timetmd)

Time 	(TimeEnd 	TitoeStart) 	/ 1000

tandif / 	SunOS-Arch 0/

PRINT 0, 	'Central Pointe: 	', 	Time, 	' (mm)'

Sitdef ScmOS_Arch

CALL clock (TimoStart)

Mendif / 	SunOS-Arch 0/

Nendif /0 Timer-Available c/

CALL ITEBBC (MChack)

Bit dod Timer-Available

Nifdef SumAS_Arch

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 122

CALL. clock (TimeEnd) 5,
Time- (TimeEnd - TimeStart) / 1000

Sondif /eSum0S_Arch e/

PRINT 0, 'Bottom Surface: ', Time, ' (me)

Macdid /0 Timor-Available of

DoodAd /5 Serial-Arch 5/

siddef Timer-Available

C Get the time for this iteration, and the running tote), time so for,

C both in milliseconds

*ifdef MacPar_Arch

Time mpTimerllapsed 0
TotalTime 	TotalTime + TIME

Nondif /0 MacPar_Arch of

Biddef C5200-Arch

CALL CM-timer-stop (0)

Time 	CUT (CM-timer-read-cm-busy (0) e 1000.0)

TotalTime TotalTime • Time

gondif /5 C4200-Arch 0/

Bifdef SunOS-Arch

CALL clock (Time)

Time 	Time / 1000

Time Time - TotalTime

TotalTime = TotalTime * Time

Oendif fo S,mOS_Arch of

C Report progress if oe need to...

IF(MCHECK.EQ.0) THEN

WRITE(e,789) UNITER, Error, I?, 3?, K?,

b TotalTime, Time

END IF

Solos fe Timer_Not_Available ef

IF(MCHECK.EQ.0) WRITE(°,789) UNITER. Error, II', IF, K?

Sendif fe Timer-Available of

C Has it converged yet?

IF(MCHECK. EQ. 0. AND. Error. LE. EPS) THEN

MSG-111

Uifdef Ti=er-Available

PRINT , 'Successfully converged after ', TotalTime.

A 	' milliseconds.'

Babe / Timer_Not_Available af

PRINT e, 'Successfully converged.'

Bendif fe Timer-Available e/

PRINT 5. 'Took '. UNITER. • iterations to reach

& 	Error, ' error.'

Midded Parallel-Arch

C After successful convergence, copy the field values

IF (Thinliseet) THEN

DO J= 2, NY-1

ID I 	2, NX-1

X0(I,3) 	ThinFiold(I,3)

'(0(1.3) 	ThinField(I+NX,3)

END DO

END ID

END IF

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 123

DO K 	1, NZ

DO J 	2, NY-1

DO N 	2, NI-i

XX(I,J,K) 	Field(I,J,K)

YY(I.J.K) 	Field(I+NX,J,K)

ZZ(I,J,K) 	Field(I+2CNX,J,K)

END DO

END DO

END DO

Dondif /0 Parallel_Arch 5/

RETURN

ENDIF 	 Converged?

C Should we write the current state to a file?

IF(NNITER.E.IOUTPT.AND.NNITER.NE.ITEMAX) THEN

CALl. RDSA3D(2)

ENDIF

C End of iteration loop

END DO

C Didn't converge

Oifdef Timor-Available

PRINT ., 'No convergence after ', TotalTime,

A 	' milliseconds.'

seine I. Timor-Not-Available 0/

PRINT ., 'No convergence...'

nondif /0 Timer-Available •/
PRINT • 'Took ' , INITER. ' iterations to reach

A 	Error, ' error.

Njfdaf Pe.rallol_Arch

C After maximum iteration exhausted, copy the field values

IF (ThiaSheet) THEN

DO 3 	2, 111-1
DO I 	2, NI-1

10(1,3) = ThinField(I,3)
YO(I,J) = ThieField(I*NX,J)

END DO

END DO

END IF

DO K = 1. ND
DO 3 	2, NY-1

DO I 	2, NI-i

11(1,3,1) 	Field(N,3,K)

YY(I,J,K) 	Pieid(I+NX,3,K)

ZZ(N,J,K) 	Fieid(IO2ONX.J,K)

END DO

END DO

END DO

Oendif /s Parallel_Arch •/

MSG= lll

Nifdef Timer-Available

789 	FOR1KAT(1I. 'Iteration = ', 16, ' Error 	', 110.3.
A 	' Location 	', 313, ' Time (ms) 	', 110. 110

Odes /* Timer-Not-Available /
789 	FORIIAT(1X. 'Iteration 	', 16, ' Error 	', 110.3,

A 	' Location • ', 313)

Hendif /5 Ti=er-Available .1

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 124

C Finished, o roturn.

RETURN

END

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS
	

125

B.2 Bottom.FCM
C ParITEBBC.f - Subroutine to perform one iteration over all the grid

C points on the bottom plane of the model. Calculates the now field at

C all the bottom plane points. and only updates the old field and array of

C changes at the points of interest, is. not on the boundaries.

C Maspar High Performance Fortran

C Kenneth MacDonald

C 30th November 1993

C Updated 6th December 1993

C Support for Connection Machine FORTRAN and cpp added.

C Kenneth MacDonald March 1994

C

SUBROUTINE ParITEBBC (Field, S. 10, A, B, C. S14to9.

b 	DeltaField, NE, NY, Hz)

C Do one iteration on the bottom boundary of the model. This differs

C from the central points in that there is a surface integral to be

C calculated for each component, and an extra term for the I component too

C (S14to9).

I'.PLICIT NONE

C Arguments

INTEGER NI. NY. sz 	 The size of the model

COMPLEX-16 Field(30NI, NY, NZ) ! The 3 components of the field

COMPLEX-16 S(NX5NY, NEatly) 	The surface integral coefficients

COMPLEX-16 Ao(30UX, NY) 	 Singular point coefficient

NERL58 A(3°NX, NY. 6) 	 ! Sane component coefficients

NZA1e8 B(3oNX, NY, 6) 	 Component+l coefficients

REAL-6 C(3°NX, NY, 6) 	 Component+2 coefficients

CSMpLEX0I6 S14to9(NX, NY) 	Extra to add to X comp

COMPLEX-16 DeltaFisld(3*NX, MY, 0:01) 	1 The field changes

C local Variables

COMPLEIu16 FieldShift(3eNX, NY)

CIMPLEX016 Neepield(3eNX, NY)

COMPLEX-16 Sntegrands(NX 0NY, NEoNY)

CSMPI.EX016 Stretchpield(NX0NY)

LOGICAL SffDiagonal(NX*NY, NX0NY)

LOGICAL A112D(MX, NY)

INTEGER I,

REAL-8 Pi

C Compiler directives

zifdef Macpar_Arch

CMPF ONOPU Fieldlhift

CMPF INDPU NewField

CMPF ONDPU Intogrands

CMPF ONDPU StretchField

CMPF INUPU OffDiagocaJ.

CMPF CNDPU A112D

nendif

#ifde± C.4200-Arch

CMF$ LAYOUT Field(:NEWS, 	NEWS, 	NEWS)

CMF$ LAYOUT S(:NEWS, 	SEWS)

CMFS LAYOUT io(:NEWS. 	:NEWS)

CMF$ LAYOUT A(:NEWS, 	NEWS, 	SERIAL)

CMF$ LAYOUT B(:NEWS, 	:NEWS, 	SERIAL)

CMF$ LAYOUT C(:NZWS, 	NEWS, 	SERIAL)

Shifted field

The new field

Surface integral (B 	5)

Bottom plane in a vector

True for off the diagonal

Tote everywhere

Grid point indices

JaNE Pi

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 126

COPS 	LAYOUT SI4to9(NEWS, NEWS)

COPS 	LAYOUT OeltaFie1d(NEWS, NEWS, NEWS) 	
5,

COPS 	LAYOUT FieldShift(NEWS. NEWS)

aMPS 	LAYOUT NesField(NEWS, NEWS)

COPS 	LAYOUT Iategrsnds(NEWS. NEWS)

COPS 	LAYOUT StretchPield(NEWS)

COPS 	LAYOUT Offli onal(NEWS, SEWS)

COPS 	LAYOUT A112D(NEWS, NEWS)

sendif

C First of all we calculate each integral for each component in

C sequence. The 20 bottom surface is reshaped to a 10 vector, which is

C spread over the 20 array of coefficients (5). These two are multiplied

C elementally, and then summed over one dimension to calculate the

C integral at each point. These values are then reshaped back to the 2D

C surface grid. The code for each component is given explicitly, no loop

C over the three components.

C Initialise Pi

Pt 	4.0 5 ATAN (1.0)

C Set the pack / unpack masks to true everywhere

i112D 	TRUE.

C Sot the mask to true on the off diagonal elements

0000imgonai = TRUE. 	 ! Default is true

FORALL (Ii:NX0NY, J=INX-NY)

A 	OffDiagonal(I. .1) 	(lIES) 	 False on diagonal

C First reshape the I component at the bottom plume of the model

StretchPisld 	PACK (ARNAYvFie1d(DMX, :, HZ), MASK-TRUE.,

A 	VECTOR"StretchField)

C Spread this and multiple by the coefficients to get the integrassds,

C under control of the 000 diagonal mask

WHERE (OffDiagonal)

Integrands 	S * SPREAD (StretcbField, 010*2. SCDPIES=NXeNY)

END WHERE

C Now sum up the integremds at each grid point

StretchField 	SUM (Integrendo. MASK=OffDiagonal. 010=1)

C Reshape the stretched field back to the 2D grid shape

NesField(1HE,) = UNPACK (VECTORStretchField.

A 	MASK=A112D. FIELONewFie1d(lNX.))

C This is the I component, so add on the extra terms

UewField(1:NX, :) = SewFieldUNX. :) • 514to9

C Now divide by (2Pi)

NewField(1NX.) 	NewPield(111X,) / (200 • Ph)

C The same needs to be done for Y component now

StretchPield = PACK (ARR.AYePield(UX+l2oNX, :, Na),

A

MASK-TRUE., VECTOR=StretchField)

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 127

WHERE (OffDiagooal)

Intogrende 	S • SPREAD (StretchField. DIM-2. NCOPIESNX°HT)

END WHERE

C Sun integrands

StretchField 	SUM (Integrande. MASK0ffDiagonal. DIM-1)

UeFiold(NX+I.2°NX, :) 	UNPACK (VECToReStrotchField.

A 	MASKA112D. FIELD-NewField(NX+l2°NX.))

NeField(NX+12oNX.) 	NeFie1d(NX+12NX.) / (2D0 	PA)

C And finally the Z component

StretchField 	PACK (ARRAYeField(2oNXcl:3.NX. , HZ),

A 	MASK-TRUE., VECToReStretchField)

WHERE (Off Diagonal)

Integrands • S 	SPREAD (StretchField. DIM-2, NCOPIES=NX°NY)

END WHERE

C Sum integrands

StrotchField 	SUM (Integrende, 	MASK0ffDiagonal, 	DIM-1)

Sec,Field(2OHX+1:3°NX, 	:) 	UNPACK (VECTDRStretchField,

& 	MASKA112D. 	FIELDNewFie1d(2sNX+13NX, 	:))

euField(2ONXI:3NX,) 	= NowField(25NX+13eNX.) 	/ 	(2D0 • Pi)

C Now do the rest of the terms in parallel

C The extra calf conpnents. 	The sixth coefficient is for the NZ-1 field

C value, 	so the (NZ-1) plane is used.

NeePield 	NeuPield +

i

	

A(:. 	, 	2) 	0 CSHIFT 	(Field(:, 	NZ), 	DIM-1, 	SHIFT-1) 	* Oil

& 	,t(:, 	:. 	3) 	0 CSHIFT 	(Field(:. 	,, 	NZ). 	DIM-1, 	SHIFT-1) 	+ 211

A 	A(, 	, 	4) 	e CSHIFT 	(Field(, 	, 	HZ), 	DIM-2, 	SHIFT--I) 	+ 101

& 	A(, 	5) 	• CSHIFT 	(Field(, 	, 	HZ), 	DIM-2, 	SHIFT-I) 	+ 121

A 	i(:, 	, 	6) 	e 	Field(:, 	. 	HZ-I) 110

C Copy the bottom plane to the shifted array for the coopenent+1 terms

FieldShift = CSHIFT (Field(:. 	. HZ), DIM-1, SHIPT=NX)

C Add on the cooponeot*l terms. 	The sixth coefficient is multiplied by

C the (NZ-1) plane shifted by (+NX).

NewField 	NeuField •

A 	3(:, 	. 	1.) 	FieldSbift 	+ 111

A 	3(:. 	, 2) a CSHIFT (FieldShift, 	DIM-1, SHIFT--I) 011

A 	O(, 	, 3) c CSHIFT (PieldShift. 	DS1I1. SHIFT-0 211

A 	5(. 	• 4) 	• CSHIFT (FieldShift, 	D1M2, 	SHIFT-1) 	* 101

A 	3(, 	. 5) s CSHIFT (FieldShift. 	DIM-2, SHIFT-1) 	* 121

s 	3(. 	, 	6) 	e CSHIFT 	(Field(:. 	, 	HZ-1), 	DIM-1, 	SRIPTNX) 110

C Shift the bottom plans of the field by another component (HZ)

PieldShift • CSHIFT (FieldSbift, 	DIM-1, SHIFTNX)

C Add on the conponent+2 terms. 	This time the sixth coefficient is

C multiplied by the (NZ-1) plane shifted by (-OX) • which is the sane as

C (+2NX) • 	but faster.

Heepield • NeeField +

APPENDIX B. THREE DIMENSIONAL CODE EXCEPTS 	 128

6 	C(:, , 	1) FieldOhift + 111

6 	C(, , 	2) COuP? (FieldShift, DIM-1, SHIFT--I) 	+ 011

3) h

	

C(:, CSHIFT (Fieldshift, DIM-1, SHIFT-1) 211

& 	C(, , 	4) CSHIFT (Fieldlhift. DIM-2, SHIFT--I) 	+ 101

6 	CO. 	:, 5) CSHIFT (Fieldlhift, DL)12, SHIFT-t) 	+ 121

6 	C(, , 	6) CSHIFT 	(Field(:, 	, NZ-1). DIM-1, 	SHIFTS-NI) 110

C Divide through by the singular point coefficient, but being careful of

C0o0

WHERE (Ao.NE.0)

NeuField 	NeuFiold / to

END WHERE

C Update the array of changes in the field, at the bottom plane. Update

C all the points on the plane, even the boundaries. These should then be

C ignored when the residuals are being calculated.

DeltaField(:, 	, HZ) 	NeeField - Field(:, :, Hz)

C Copy the now values to the old field now, component at a time

Field(2:NI-1, 2:NY-1, HZ) 	HeeField(2NI-1, 2HY-1) 	S component

Field(NX+2:20NI-1, 211Y-l. HZ) =

& 	NewFicld(NX+22'NX1. 2:111-1) 	 T component

Field (2°NX+2:3°61l, 2:NY1, HZ)

6 	SewField(2eNX+2:3°HXt. 2:111-1) 	 Z component

C Done

RETURN

END

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS
	

129

B.3 Top.FCM
C ParITESBC.f - Subroutine to perform one iteration over the top surface

C of the model grid. P. Thin Sheet layer to catered for, if present. The

C now field values are calculated for all the gridpointe in the thin sheet

C and top layer of the model. and only the relevant values are updated in

C the array of changes, and the old field values.

C MasPer High Performance FORTRAN 90

C Kenneth MacDonald

C 30th November 1993

C Updated 6th December 1993

C Added support for Connection Machine FORTRAN and cpp March 1994

C

SUBROUTINE ParITESBC (Field. Sheet, SX, ST

B 	A. 0, C, An, So, DeltaField, NI, NY, HZ, ThinSheet)

C The subroutine calculates one iteration at the top surface of the

C model. The possibility of a Thin Sheet layer is catered for, but isn't

C necessary. The I-, and Y- components (above the sheet) are calculated

C separately, and then the 1+, Y+ and Z components are calculated in

C parallel. if there is no thin sheet the I- and Y- components are copied

C to 1* and Y+ respectively.

IMPLICIT NONE

C Arguments

INTEGER 31. 	NY, 	NY The model size

COMPLEX-16 Field(35NX, 	NY, 	NZ)! Field components 	(BmByIBz)

COMPLEX-16 Sheet(3°NX, 	NY) 3 components for Thin Sheet, 	Z0-

tEAI..8 SX(MX5NY, 	NXOUY)1 I component integral coefficients

REAL-8 5Y(NXcNY, NXONY)! I component integral coefficients

REAL-8 1(3095, 	NY, 	7) 	! Sane component coefficionts,XSA0X,..

?2ALe6 3(3oHX. 	NY, 6) Cmmponent+1 	coefficients, 	X0°Y,..

RElIcS C(3e3JX, 	NY, 	6) Component-2 coefficients, 	X=C*Z,..

COMpLEXe16 Ao(3ONX, NY) Singular point values

CIMPLEX*16 So Source field scalar

COMpLEI016 DeltaIield(3*NZ, NY, 0DZ)! Change in the field

LOGICAL ThinSheet Indicates presence of Thin Sheet

C Lccal. Variables

COMPLEX-16 Newpield(3°6X. 	NY) The new calculated values

COMPLEX-16 NscSheet(35NX, 	NY) The new thin sheet values

CSMPLEXe16 FieldShift(3sMX, 	NY) Plane of shifted field

COMPLEX-16 Incegrands(NXeNY, 	NXoNY)1 	Integral (coeffs a field)

CIMPLEXe16 5trotch1ield(NXNY) 1 Field stretched to a vector

LOGICAL 11120(91, NY) All set True

LOGICAL Activefodes(3NX, 	NY) Active grid points

INTEGER I, 	J ! Counters

REALeS Pt I 	Pt

C Compiler Directives

Oif dci MasPsr_Arch

CMPF 	ONDPU NewField

CMPF 	ONDPU Newfheet

CMPF 	ONDPU FieldShift

CMPF 	ONDPU Integrands

CMPF 	ONDPU StretchField

CMPF 	ONDPU 11120

CMPF 	ONDPU ActivoNodee

Oendit

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 130

Wifdef CM200_Arch

CMF$ 	LAYOUT Field(:NEWS, NEWS, NEWS)

CMF$ 	LAYOUT Sheet(,NEWS, NEWS)

CMF$ 	LAYOUT SX(:WEWS, NEWS)

CMF$ 	LAYOUT SY(MEWS, NEWS)

CMF$ 	LAYOUT A(:NEWS. NEWS, SERIAL)

ClIPS 	LAYOUT B(NEWS, NEWS, SERIAL)

COPS 	LAYOUT C(NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT Ao(,NEWS, NEWS)

COPS 	LAYOUT Del.taPield(,NEWS, NEWS, NEWS)

COPS 	LAYOUT NesFie1d(NE14S, NEWS)

COPS 	LAYOUT UewSheet(:NEWS, NEWS)

COPS 	LAYOUT FieldShjft(:NEWS, NEWS)

CMF$ 	LAYOUT Integrands(NEWS, NEWS)

CMF$ 	LAYOUT Stretchpield(:NEWS)

COPS 	LAYOUT A112D(,NEWS, NEWS)

COPS 	LAYOUT ActiveNodee(,NEWS, NEWS)

Sendif

C Begin Code

C Set the value of Pi

Pi 	4.0 5 ATAN (1.0)

C Set the logjcels A111D and i112D, to TRUE., which are used in the

C packing and unpacking of the 2D <-> 10 representations of the field.

A112D 	TRUE.

C Calculate the I- component, by the surface integral. This is needed

C for both cases.

C Reshape the field into a 10 vector array. Of there is no thin cheat,

C then use Z=1, else use Sheet

Stretchfield 	PACK (ARAY"Fie1d(2sNX+13°MX. , 1),

A 	MASK TRUE., VECCOR"Stretchfield)

C Calculate the integrends by spreading the field, and multiplying by the

C coefficients

Integranris = SI 5 SPREAD (Stretchiield, DIM-2, NCOPIESUX5NY)

C Sun up the integrende at each point

Stretchiield 	SUM (Integronds. D101)

C Reshape the 10 vector field beck to it's 2D shape

NesSheet(1NX. :) = - UNPACK (VECTORsStretchFiold,

t 	MASKi112D, FIELDMewSheet(1,NX,))

lewSheet(1:NX,) 	NewSheet(1NX,) / (2 e P1)

C Add on the So value (a complex scaler)

UewSheet(1:NX, :) 	UewSheet(l:NX,) + No

C Calculate the Y- com000ent, by the surface integral. This too is

C needed for both cases.

StretchField = PACK (kRRAY..Pield(2sNX+13°NX. , 1), MASK-TRUE..

& VECTORStretchField)

Integreode 	NY SPREAD (StretchField. DIM-2, NCSPIESNXeUY)

StrstchPield 	SUM (Integrends, DIM-1)

Newfho.t(NX+l,2N1.) e - UNPACK (VECTORStretchField,

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 131

A 	MASX.i112D. FIELD-NevSheet(NX+1:2ONX,:))

l.wSheet(NX+12eNX. :) • NewShe.t(NX+12OHX,) / (2 * P1)

C Now calculate the three components for the Z*1 (X+, Y+, Z). X4 and 7+

C will be zero if no thin sheet.

C Some component terms. Use Sheet (0-) values for Z-1 direction.

NesField A(, , 2) 	• CSHIFT 	(Field(:, , 	1), 	DIM-1, 	SHIFT-1) +! 	011

A A(:, , 	3) CSHIFT (Field(:, 	:, 1), DIM-1. 	SHIFT-1) 	+ 211

A A(, 4) 0 CSHIFT (Field(:, , 	1), DIM-2, 	SHIFT=-1) 	+ 101

A A(• 5) o CSHIFT (Field(: 1), DIM-2, 	SHIFT-1) 	+ 121

A A(, * Sheet + 110

A 4(0 Field(• 	• 	2) 112

C Component 1 terms. Copy the field to a temporary array.

FieldShift CSHIFT (Field(, 1), 	DIM -1, 	SHIFTNX)

C Add up the terms

NewField NosField a.

A 	3(. 	, 1) Fieldlhift *

2) CSHIFT (Pielilhift, DIM-1, SHIFT-t) 	+ 011

3) CSHIFT (Fieldlhift. DIM-1. SHIFT-1) 	a 211

A 	3(, 	:, 4) CSHIFT (FialdShift, DIM-2, SHIFT-l) 	* 101

 CSHIFT (FieidShift, DIM-2, SHIFT-1) 	* 121

 &

	

B(:, 	, a CSHIFT 	(Field(:, 2), 	DIM -1, 	SHIFTNX) 112

C Compovoxat • 2 terms.

FisldShift 	CSHIFT (FieldShift, DIM-1, SHIFTIIX)

C Add up the terms

SemField MacField +

A C(, , 	1) FjeldShift +

A C(, 	:, 2) CSHIFT (FieldShift, DIM-1, 	SHIFT-1) 	* 011

A C(:. , 	3) CSHIFT (FieldShift. DIM-1, SHIFT-1) 	+ 211

A C(, 	:, CSHIFT (Fieldlhift. DIM-2, 	SHIFT-1) 	+ 101

A C(, 	:, - CSHIFT (Fjeldlhift, 51Mv2, SHIFT-1) 	+ 121

A C(a, , 	6) CSHIFT 	(Field(:. 	, 2), DIM-1, 	SHIFTNX) 112

C Divide through by the singular point value, checking if it is 0

WHERE (Ao.NE.0)

UewField NeuField / Am

END WHERE

C Copy the field components according to the presence of a thin sheet.

C If there is. then Z- 	Z+.

C If there isn't, thou Xc * I-, and 1+ 	y-.

IF (Thinlheet) THEN

NawSheat(2o61*1a3°HI,) 	IewField(2cNX+1:305X,) Copy Z to shoot

ELSE
iowFjold(la2eUX.) • NeoSheot(12*NX. > 	Copy I. 7 to Field(l)

INS IF

C As a safety measure, copy 1 to the sheet. Z'i*Z needs Sheet value.

ewSheet(2tX+13ONE. a) - NecField(2°MX+1a3°NX, a)

C Update the array of changes in fields.

IF (ThinSheet) THEN

Delta1ie1d(. • 0) 	NeeSheet - Sheet

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 132

ESJDIF

Deltafield(:. 	. 1) 	Newfield - Field(:. 	1)

C Set the active node points. Leave the boundaries alone.

ActiveNodes 	. FALSE.

ActiveNodes(2;NX1. 2N't-1) 	TRUE. 	 Sot X components true

ActiveNodes(NXO2:2OUX1. 2:}fl-1) 	TRUE. 	Set 5' components true

ActjveNOdeo(20NX+2:3eNX.1, 2NY-1) 	TRUE. 	Set Z components true

C Copy the now values to the old arrays

WHERE (ActiveHoden)

Field(, I) NesField

Sheet NevSheet

END WHERE

C Done

RETURN

END

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 133

B.4 Interior.FCM
C ParITECEL.t - Subroutine to perform one iteration over all the central.

C grid points. It also updates the array of changes.

C MasPar High Performance Fortran

C Kenny MacDonald 29 Nov 93

C Updated 6 Dec 1993

C Added support for Connection Machine FORTRAN and cpp.

C Kenneth MacDonald March 1994.

C

SUBROUTINE ParITECEI. (Field, A, B. C, DeltaPield, NI, NY, NZ)

C Do one iteration over the central points. The coefficients are stored

C in three arrays (A. B. and C). Each consists of several planes'

C conformable with the field array.

C A links corresponding components

C B links the component to component -. 1

C C lines the component to component + 2

C Essentially, we have the following three equations for the three

C components.

C C = A(lNX) - I * B(lNX) a Y * C(1:NX) • Z

C V 	A(NX*1,2llX) a 7 * B(MX+1:2NX) 	C S C(OX+12MX) c I

C Z 	l(22X+1,30X) • z * B(2NX+1,3NX) 	X * C(2N1+1,3tX) e Y

IMPLICIT NONE

C Argunents

INTEGER OX, NY, HZ The sins of the model

COMPLEX-16 Fisld(3°NX, NY, 02) The B field (BolBylBi)

?,EALs8 1(3592, 	NY, HZ. 7) Sans component coefficients

N.E.ALe8 B(3aNX. 	NY, NZ, 19) Coefficients for component+1

REAL-8 C(3-0X, NY, lIZ, 19) ! Coefficients for ccoponent*2

COMPLEX-16 Deltalield(3CNX, NY. O:NZ)! 	The field changes

C local Variables

COMPLEXO16 	NewField(3cNX. NY, NZ) ! The updated field

COMPLZXO16 	FieldShift(35N1, NY, 02)! The shifted field

LOGICAL 	Central(3SNX, NY, HZ) 	Central points

COMPLEX-16 	i 	 1 The square root of (-1)

C Compiler directives

sit def 4asPar_Arch

CMPF 	INDPU NewField

CMPF 	ONDPU FieldShift

CMPF 	INDPU Central

nendif

Oifdef CO200-Arch

CMF$ 	LAYOUT Field(liEWS, NEWS, NEWS)

CMF$ 	LAYOUT A(,NEWS, NEWS. NEWS. SERIAL)

CMF$ 	LAYOUT B (NEWS • NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT C(NEWS, NEWS, NEWS, SERIAL)

CMF$ 	LAYOUT DeltaFiald(,NEWS, NEWS, NEWS)

CMF$ 	LAYOUT NawField(,NEWS, NEWS, NEWS)

CMF$ 	LAYOUT FieldShlft(,NEWS, NEWS, MEWS)

COPS 	LAYOUT Central(:NEWS, NEWS, NEWS)

Bandit

1s

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 134

C Begin Cod. 	 15

C First Set 'i'

(0.0, 1.0)

C Define the central points

Central 	FALSE. 	 All off by default

Central(2NX-1, 2 61-1, 2:NZ-1) 	TRUE. 	X cooponents on

Central(NX+2:2°tJX-i. 2:61-1. 2:52-1) 	TRUE. 	T components on

Central (2ONX+2:3eNI-i, 2:60-1, 2:52-1) 	TRUE. 	2 components on

C Calculate the new field values for all the points, and only worry

C about which ones we are interested in at the end, when we copy back to

C old field.

C Multiply the seen components

NowField = A(:, . . 2) • CSHIFT (Field, DIM-1, SHIFT--l) * 	011

B 	i(:. 	, , 3) o CSHIFT (Field. 016=1, SHIFT-1) * 	 211

B 	i(:. , , 4) o CSHIFT (Field, D162. SHIFT--I) + 	 101

B 	i(:. 	, . 5) - CSHIFT (Field. DIM-2, SHIFT-1) * 	 ! 121

B 	A(:, :, , 6) 5 CSHIFT (Field, DIM-3, SHIFT--I) + 	 110

A 	A(:. , , 7) o CSHIFT (Field, DIM-3, SHIFT0 	 112

C Now the component to the right. f6 X -> 0, 0 -> 2, Z -> X

C Copy the field to the shifted field

FieldShift 	CSHIFT (Field, 0161, SNIFTNX)

Iewfield = NewField + 	 Remember the same components

B 	3(:, 	, :, 1) 5 FisldShift 4 	 111

B 	B(:, 	, , 2) • CSHIFT (FieldShift, DIM-1, SHIFT--I) w 	011

B 	0(: • 	. , 3) e CSHIFT (FieldShift. DIM-1, SHIFT-1) * 	 211

B 	B(:, . , 4) • CSHIFT (FieldShift, Dfl12, SHIFT-1) + 	101

B 	B(:, :, . 5) • CSHIFT (FieldShift. DIM-2, SHIFT-l) + 	 121.

B 	5(:. . :, 6) • CSHIFT (FieldShift, DIM-3, SHIFT-1) + 	110

B 	8(:. , :, 7) 5 CSHIFT (FieldShift, DIM-3, SHIFT-1) + 	 112

B 	B(. , , 6)
B 	CS11IFT(CSHIFT(FieldShift.DIM1.SRIFT1).DIM52,SHIFT1)+ 	001

& 	B(. , :, 9)
B 	CSliIFT(CSHIFT(FieldShift.lIHi.SBIFT1).DIH2.SHIFT1)+ 	021

B 	B(:. , , 10)
B 	CSHIT(CSHIFT(FisldShift,DIM1.SHIFT1).DIM53,SHIFT1)+ 	! 010

B 	3(, :, , 11)

& 	CSHIFT(CSHIT(FieldShift.DIM1.SHIFT1).DIM3.SHIFTi)* 	012

B 	8(:, , , 12)

B 	CSHIFT(CSHIFT(FieldShift.DIM2,SRIFT1),DIM3.SHIFT1) 	100

lesField 	NeuField +

B 	80. , , 13)

& 	CSHIPT(CSliIFT(FieldShift,DIM2.SBIFTl).DIM53,SHIFT1)+ 	102

B 	B(:. , , 14)
B 	CSHIFT(CSHIFT(FieldShift.DIM'2.SRIFT51).D1H3.SRIFT1)4 	120

B 	B(:, , :, 15)
B 	CSHIFT(CSHIFT(FieldShift.DIM2.SRIFT1).D1M3.SBIPTI)4 	122

B 	3(:. . :, 16) -

B 	CSHIFT(CSHIr(Fieldshift.DIM=1.SBIFT*1).DIN=2,SRIFT=-l)* 	201

B 	3(. . , 17)

B 	CSHIFT(CSRIFT(FieldShift.D161.SBIFTI).D1H52.SRIFT*1)+ 	221

B 	3(:, , , 18) -

B 	CSHI(CSHI(FieldShift.DIM1.SRIFTi).DIM3.SBIFT+1)* 	210

B 	30. , , 19)

B 	CSHIpT(CSHIFT(FieldShift.01M1.SRIFT+1).D163.SHIFT1) 	212

C Now for +he neat components, shift by another 62 in the C direction

APPENDIX B. THREE DIMENSIONAL CODE EXCERPTS 	 135

FieldShift 	CSHIFT (Fi.ldShidt, DIN-1, SHIFT-NI)
.5

C Now sum up the products of each direction

hayField 	MacField * 	 Remember the same components

ft 	C(, 	I) 	FialdShift + 	 111

& 	C(. 	. 2) • CSHIFT (FieldShift. DIM-1, SHIFT'-I) 	 ! 011

ft 	C(, 	3) • CSHIFT (FieldShift, DIN-I. SHIFT-1) 	 211

A: 	C(:. 	:. 4) a CSHIFT (FieldShift, DIM-2, SHIFT--I) + 	 101

ft 	C(, 	• 5) a csairr (FieldShift, 01M2. SHIFT-1) + 	 121

& 	C(. 	. 6) e CSHIFT (FieldShift. DIN-3, SHIFT--l) + 	 110

A 	C(. 	7) • CSHIFT (FieldShift, DIM-3, SHIFT-1) * 	 112

ft 	C(. . . 8)

ft 	CSHIFT(CSHIFT(FieldShift.DIMI.SHIFT1).DIM2.SHIF1I)* 	! 001

& 	C(, . :. 9)

& 	CSMIT(CSHIFT(FieldShift,D1141.SHIFT-1),D1M2.SHIFT1)+ 	021

ft 	C(. 	. 10)

ft 	CSEIFT(CSHIFT(Pie1dShift,DIM1.SHIFT1),DIM3,SHIFT1)* 	! 010

ft 	C(......11) -

I 	CSHIFT(CSHIFT(FieldShift,DIM1,SHIFTI).D1M3,SHIFT1)+ 	012

ft 	C(, . 	12) -

ft 	CSHIFT(CSHIFT(Fie1dShift.DIM2,SHIFT1).DIM3,SHIFT1) 	100

hayField MacField +

& 	C(. . . 13)

ft 	CS8IFT(CSHIFT(1'ieldShift.DIM2.SHIFTi).DIM3.SHXFT1)+ 	102

ft 	C(. . 14) 5

ft 	CSHIFT(CSHIFT(FieldShift.DIM52.SMIFT51).DIhl3,SflIFT-1)* 	! 120

& 	C(, 	. 15)

& 	CSMIFT(CSHIFT(FieldShift,D1112.SMIFTI),D1113.SHIFT1)* 	122

ft 	C(. . 	16) -

ft 	CSHIFT(CSMIFT(FieldShi2t.DIM1,SBIFT1),DIM52,SHIFTi)* 	201

ft 	C(. 	. 17)

ft 	CSHtFT(CSHIT(FieldShift.DIM1.SHIFT1),DIM2.SlfIFTi) 	221

ft 	C(, 	. 18)

ft 	CSHIFT(CSHIFT(Fie1dShift.DIM1.SHIFT1),DIll3.S8IFT1)° 	210
ft 	C(, . . 19)

ft 	CSHIFT(CSHIFT(Fieldlhift,DIMI.SHIFT1),51M3.SHIFT1) 	212

C Now divide by the singular point coefficient

Macfield 	Macfield / (i(:, . 	1) + i) 	 Add i' first

C Only update Deltafiald. and Field for the central grid points.

WHERE (Central)

C Update the central elements in the difference array,

Del.taField(:, . lrNZ) 	NeePield - Field

C Copy Mew Field to the Did Field

Field = NesField

END WHERE

C Done

RETURN

END

Appendix C

Task Farm, Code Excerpts

C.1 Taskfarm.F
C toskforo.f

C Initialise the tool, form and issue tasks to the moon Program

C Kenneth MacDonald 1994

04sf ins SIZEOF_PARAM_SflUCI 4

PROGRAM AUT02DFARI(

IMPLICIT NONE

C Parameters

flrFEGER MAX-JOBS

PARAMETER (MAX-JOBS 256)

C Include files

INCLUDE chimp. inn'

INCLUDE pu].-tf.inc'

INCLUDE pul. inn'

C Common Blocks

IrrEGER NumJobs

INTEGER Job

COMMON /Jobslnto/ Nuniobo. Job

C PUL-TF Vartebles

INTEGER thisproc

:NTXGER retvoj.

INTEGER form

INTEGER made

21TEGER status

EXTERNAL TPPFN(neketemk)

EXTERNAL TFFPN(dotssk)

EXTERNAL TPPFN(processr.sult)

C Externe]. functions

136

	

APPENDIX 	C. TASK FARM CODE EXCERPTS 	 137
11

INTEGER GetNuojobs

C Code

thioproc chpisit 0

	

rotval 	PULeetOebug (MODULEALJ.. DEBUGALL)

	

retval 	PULimit ('suto2dfexm', CHPWILD)

farm IFinit ('suto2dfarm')

IF (chpexport () NE. CHPOK) TEEN

PRINT e, 'Error: chpeoport foiled'

retoal 	chpesit (0)

END IF

Bifdof MASTER

	

statue 	TFOPOO (farm, TFSRCSNK. SIZEOFPARP.M_STRUCT.

& SIZEOF_PARAM_STRUCT)

Boise

Bifdef WORKER

	

status 	TFopeo (fern, TFWRX. SIZEOF.PARAMSTRUCT,

A 	SIZEIFJ'AR.AMSTRUCT)

Noise

	

status 	TFopon (farm, TFSRCWRKSNK, SIZEOF_PARAM..STRUCT,

A 	SIZEOF_PARAMSTRUCT)

Bendif

Gendif

IF (statue NE. TFOK) TEEN

PRINT 0 'Error: TFopen failed with error ', status

ELSE

PRINT • 'TFopso succeeded'

END IF

mode TFquery (farm)

IF (nods LT. 0) THEN

PRINT •, 'Error: TFquery failed with error ', sods

E15

PRINT •, 'TFquery succeeded. Returned ', mode

END IF

IF (mode.EQ.TPSRC.IR.mode.EQ.TFSRCSNK.OR.00de.EQ.TFSRCWRX) TEEN

NuoJobe 	GetNuniobe C)

PRINT 5, 'Number of Jobs found: ', Numjobe

Job 1

END IF

statue TFoperate (form, TFFFN(meketaek) • TFFFN(dotask),

A 	TFFFN(processresult))

IF (status.NE.TPOK) TEEN

PRINT s, 'Error: TFoper.te failed with error ', status

ELSE

PRINT 0, 'Tylperate succeeded'

END IF

status = TFclose (farm)

IF (otatus.NE.TFGK) THEN

PRINT o, 'Error: TYclose failed with error ', status

ELSE
PRINT e, 'TN'close succeeded'

END IF

retvai e PULexit C)

	

retval 	chpexit (0)

	

STOP 	 -

END

APPENDIX C. TASK FARM CODE EXCERPTS 	 138

B

SUBROUTINE moketaok (teskout, outlength, retvel)

C Arguments

INTEGER teekout

INTEGER outlength

INTEGER retool

C Common Blocks

INTEGER Numjobo

INTEGER Job

COMMON /JobelaGo/ NunJobo, Job

C Code

IF (Job.GT.NumJobe) TIIESI

retool 0

01.50

teokout Job

Job 	Job * I

retvei. SIZEOP..PARAM_STRUCT

END IF

RETURN

END

SUBROUTINE dotaok (tookin, inloogth, tookout, outiongth, retool)

C Arguments

INTEGER tookin. ioloogtb

INTEGER tookout, outlength

INTEGER retvoi

C Code

tookout teokin

CALL AUT02D_Main (toekin)
PRINT , 'Coiling Job Number ', tookin

retvnl = SIZEOF,.PAStAMETEP,_STRUCT

RETURN

END

C .,O *eoo... **S5OeflooO*sfl***eS000*_**_000*e**_00**00*0*0*0***O**

SUBROUTINE proceeereoult (tookin, toek000. retvai)

C Arguments

INTEGER tookin

INTEGER Cookout

INTEGER retool

C Code

PRINT 0, 'outo2dfoxm: Job ', toekin, ' completed.'

retool

APPENDIX C. TASK E4RM CODE EXCERPTS 	 139

RETUFUI

END

APPENDIX C. TASK FARM CODE EXCERPTS 	 140

C.2 	auto2d-main. FCM

C 	Auto2D

C 	Original code by Helena Poll

C 	Took farm and additional options by Kenneth MacDonald

Bifndsf TASK-FARM /n Only have a main program if not for the tonic farm .1
PROGRAM AUM02D

CALL AUT02D_MAIN (1)

STOP

END

Sendif /0 TASK-FARM •/

SUBROUTINE AUT92D_IIAIN (ToDoJobNwnber)

IMPLICIT HONE

C 	Include any inc files here

INCLUDE limits. inca

C 	Common blocks

C 	Arguments

INTEGER ToDojobNumber 	Worker process's job in taokf arm

C 	Variable Declarations

C 	Start ,the program!

C 	Loop over the number of models, solving each one

DO Model 	I, NusoModele

IneDModel = FALSE. 	Always assume 2D initially

C 	Loop over number of periods for this model

DO PerLoop 	l.NumPeriods

Biffef TASK-FARM

IF (Thisjob.EQ.JobNumber) TEEN

APPENDIX C. TASK FARM CODE EXCERPTS 	 141

Dendif

Period Periode(PerLoop)

C 	Generate a grid

IF (SenGrid) TILED

CALL. RoadGrid ('grid.med', 	Period, 	YCrid, 	ZGrid, Reefrid,

S CY, 	DY, 	CZ, 	DX, 	Resiotivities, 	SlumBlocks, 	Sites,

2 SiteNums, 	NumSitos)

ELSE IF (Stretch) THEN

DY Sizes(PerLoop)

CALL Stretchlrid 	(CT. 	CZ. 	DY, 	DZ. 	'fGrid. 	ZGrid,

1 ResGrid, 	LeftEnd(PorLoop), RightEnd(PorLoop)

2 Resiotivitios, 	NumBlocks. 	Sites, 	SiteNsrns,

3 NumSitoo, Period. IneDModol, 	Interactive,

4 Granulorities(PerLoop))

ELSE

CALL AutoGrid 	(C?, 	CZ, 	DY, 	DZ, FInd, 	Zlrid,

1 RoeGnid, LeftEnd(PerLoop), 	RightEnd(PorLoop),

2 Rosietivities, 	NumBlock,, 	Site.,, 	Sitetoms,

3 NumSitos, Period, GnoDModel, 	Interactive,

4 Granulerities (Perloop))

ENDIF

C 	Solve for this model

IF (.LIDTSneDModol) THEN

CALL MATRIX (FInd, ZGrid, ReoGrid, Field,

1 	 Polarisation, MexGrid)

C 	Write results

END IF

Uifdef TASK-FARM

END IF 	 (Thisiob EQ. JobNumbor)

Bendif

END DO 	 Period loop

END DO 	 Model Loop

C 	Finished

RETURN

END

