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Abstract

This thesis describes the design and implementation of an edge

detection system for use in semantically-based early visual process¬

ing. An overall vision system architecture is first selected, based

on the need to clearly specify the performance of each module. The

role of early processing within this system is then discussed. To

specify the edge detection module, both its input and the required

output are examined in detail. On the input side, the scene layout

and scene-to-image transformation are__ investigated in both signal

processing and information processing terms. On the output side, a

particular example of constraint analysis (determining if an image

edge could be the result of a reflectance boundary in the scene] is

formally analysed in photometric terms. From these considerations, a

set of goals of edge detection for constraint analysis are listed.

Since image edges occur over a wide range of scales, the result¬

ing structure of the edge detector is multi-level, i.e. it attempts

to find edges of a single scale separately before integrating all of

the image edges into a single representation. This is achieved by

applying the same "single-level system" to several different-

resolution versions of the image, before attempting to construct the

final edge representation.

The single-level system finds and tracks step-like edges in its

input, and also labels areas of extended intensity gradient and image

texture. To avoid making assumptions about the nature of the under¬

lying intensity changes and to ensure that edges are localised accu¬

rately, first differencing followed by thresholding is the initial

processing step. Thresholding in the presence of noise is modelled

by a communication channel, and the best threshold chosen to be that



which maximises the information transmitted over the channel. The

edge tracker design is based on an analysis of how step-like edges

digitise. Image areas of extended gradient and texture are located

using a region-finding technique, and identified by examining the

smoothness of intensity variations within each region.

The multi-level system consists of two parts, a set of

adjacent-level comparators, and a multi-level integrator. By analys¬

ing the constraints on the output of the single-level system and the

relationship between the outputs of two nearby resolutions, tech¬

niques for combining the resulting two sets of edge data in an

adjacent-level comparator are developed. One important goal here is

to find and represent fuzzy edges. This is achieved by tracking

along step edges at the lower resolution, at the same time examining

corresponding areas of the higher resolution output. The role of the

multi-level integrator is to combine the outputs of the adjacent-

level comparators into a single coherent representation of all the

edges present in the image.

The algorithms used throughout the system are described in

detail, and examples of the system output for a range of images are

given.
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J_ Introduction

The field of computer vision is concerned with methods for

automatically extracting scene information from images. Most com¬

puter vision systems can be usefully split into two parts; that con¬

cerned with what is termed "low-level" vision, and that concerned

with "high-level" vision. Broadly speaking, low-level vision is

image-based, while high-level vision is model-based.

The role of low-level vision, also known as early visual pro¬

cessing, is to locate and represent particular types of image inten¬

sity variations which contain useful information about interesting

events in the corresponding scene. For example, it may be desirable

in a particular system to find the image curves which are the projec¬

tion of shadow boundaries in the scene.

This type of early processing normally takes place in two

stages; first, places of interest in the image are located, then,

they are analysed to extract the desired information about the scene.

The former stage is conventionally known as edge detection, although

the term covers a wide range of techniques. Some programs known as

edge detectors simply mark image locations where the local intensi¬

ties satisfy a particular property. Others measure the edge strength

and direction at each point, while yet others form lines and curves

representing the changes in image intensity.

-L*-L Area of Investigation

The subject of this thesis is edge detection. The two main

problems tackled involve the identification of a suitable methodology

for designing edge detectors^, and the design and implementation of an

edge detection system for a specific task.
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w.The methodology proposed is an overall framework in which to

approach edge detector design, rather than a set of design rules or

an algorithm for producing variants of a particular type of edge

detector. I consider how the design of edge detectors relates to the

complete system design, and investigate the role of edge detection

within a total system. I believe that arriving at a suitable specif¬

ication for edge detection within a given system is of crucial impor¬

tance.

Since it is very difficult to discuss in detail issues such as

design methodology in general terms, the design and implementation of

an edge detection system for a specific task is also presented in

this thesis. The modern conception of general purpose vision systems

in which relatively autonomous low-level processing interfaces to the

high-level system at the level of surface information's used as the
basic system architecture. The specific task examined is that of

II

constructing an edge detector whose output will be used to label

image edges as particular types of scene boundaries", based on examin¬

ing the intensities in the neighbourhood of the edge) In other

words, we decide on an appropriate set of goals for an edge detector
"to

whose output is used as input by an edge labelling process, and try

to design a system to satisfy them.

J_.2_ Overview

There has recently been considerable interest in the methodology

of computer vision system design. To some extent this stems from the

work of David Marr, who suggested some general principles based on

treating vision explicitly as a complex information processing task.

In this thesis, I investigate some of these issues from the point of

view of their use in designing edge detectors. I suggest that
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understanding the scene to image transformation in detail is the fun¬

damental step in designing early visual processors. The thesis is

entitled "Edge Detection for Semantically-Based Early Visual Process¬

ing", where the term "semantically-based" is used to emphasise what I

see as the crucial role of the scene to image relationship, both in

forming an overall methodology for designing low-level vision system

modules, and in the specific design of particular components.

/ There are several ways to go about designing and implementing

edge detectors. Commonly, a particular mathematical model is chosen

to represent the intensities in a small neighbourhood of the image.

The model is fitted to intensities in an image neighbourhood, then

parameters of the best-fit model are used as a suitable description

of the intensities on which to base decisions about the presence of

edges. The important first step in this approach is the choice of

model. Unless it represents the image intensities in a way which

allows the important relationships to be expressed, no amount of

ingenuity in model-fitting or parameter extraction will produce the

desired result.

By closely examining the scene to image relationship in this

work, I have tried to determine the important properties of image

intensities. I believe the key to this lies in recognising the veri-

dicality of the image. In other words, image intensities are not

probabilistically generated (apart from any electrical noise

present), but faithfully reflect the layout of the scene under pro¬

jection. A direct result of this is a desire to use a simple tech¬

nique to perform the first stage of edge detection. Complex methods

usually enforce the selection of a particular model for the intensity

function in a neighbourhood of the picture. The process of fitting
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the intensities to the model can be thought of as the invocation of a

set of constraints about the underlying intensity function, which may

not be justified.

Attempting to describe the properties of the image intensity

function is effectively a means of defining the edge detector's

input. To fully specify an edge detector, at least at the theoreti¬

cal level, the required output must also be defined in some way. To

simplify the specification, I have chosen an overall system architec¬

ture which assumes that early processing is autonomous, i.e. not

closely directed by the high-level system. There are many ways of

performing early processing within this paradigm, for example,

stereopsis and the use of optical flow are two popular methods.

As one might expect, no single edge detector can be optimally

suitable for all types of early processing. Different methods of

using the edge information require it to be found and represented in

different ways. So before attempting to design and implement an edge

detector, it is advisable to decide what its output is to be used

for, and to use this knowledge in specifying and designing the detec¬

tor.

The edge detector described in this thesis is designed for use

with intensity-based edge labelling. Considerable interest has been

shown in this type of early processing recently. The basic idea is

to examine the patterns of image intensities produced by different

types of entity in the scene, e.g. shadow boundaries, reflectance

boundaries, etc., and to use this information to label image edges

with their scene "meaning". This problem is interesting from the

point of view of edge detection because it involves being able to

find edges accurately and being able to select intensities from the
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neighbourhood of the edge in a known way for analysis. Thus it makes

quite stringent demands on the performance of the edge detector. In

fact, most of the work reported on edge labelling in the literature

has used edges selected manually for their input, indicating the need

for work in this area.

By selecting a particular use for the edge detector's output,

the demands the edge labeller puts on the performance of the edge

detector, and on the representation of the edges detected, can be

investigated in detail. This enables me to suggest some quite

specific performance goals for the edge detector, which can be used

as a basis for design.

One particular goal is that the edge detector should find and

represent all the significant intensity changes in the image. These

typically occur over a wide range of scales. For example, the edge

resulting from one object obscuring part of another is normally very

sharp, while edges generated by shadows in the scene are often quite

blurred. It is very difficult to find both blurred and sharp edges

within the same neighbourhood simultaneously, so the normal solution

to this problem is to make several passes over the image, each time

looking for edges of a different width. Systems with this structure

are sometimes referred to as multi-channel or multi-level edge detec¬

tors. Unfortunately, the difficult problem with such systems is that

of integrating the multiple sets of edge data produced into a single

representation. This is hard because some edges occur in more than

one data set, and because edges can interact in complex ways in dif¬

ferent channels.

I attack this problem by finding edges accurately, and by care¬

fully specifying the output of each channel. By representing edges
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accurately, it is easy to compare edges in different channels to see

if they are in the same place. The point of carefully specifying the

single channel output is to make it easier to work out the relation¬

ships between channels. Based on this work, I suggest three features

which, I believe, it is important to incorporate into an edge detec¬

tor if it is to be multi-channel.

Like most edge detectors, the one described here involves thres¬

holding. Choice of threshold is usually a difficult issue, espe¬

cially if the quantity being thresholded is subject to noise. In

this thesis I present a new method for threshold selection in the

presence of noise. It treats the effect of noise in a similar way to

its treatment in a communication channel. In terms of the analogy,

the threshold selected is that
, which maximises the information

transferred over the channel in an information-theoretic sense, by

using the noise statistics and the image intensity distribution.

J_. 3_ A. Note on Terminology

The terminology of edge detection tends to be confusing for two

reasons. Related events occur in the scene, the image, the digitised

image, and the edge detector output, and it is not always clear which

is being referred to by a particular term. Also, some terms are used

both with their general meaning and with a technical meaning. Unfor¬

tunately, there does not appear to be any simple way round this prob¬

lem except by introducing yet more terms for various entities, which

should be kept to a minimum.

In this thesis, I try to use appropriate terminology to distin¬

guish scene entities from image entities. The scene layout refers to

the position and orientation of objects in the world. The term

"boundary" refers to entities in the scene, such as reflectance
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boundaries where the photometric surface properties change, or sur¬

face orientation boundaries, where the local orientation of a surface

changes. The terminology is slightly complicated by the fact that

the position of the camera in the scene has important implications,

and generates another type of boundary where one object passes in

front of another. In this thesis, these are called obscuring boun¬

daries. Because obscuring boundaries are particularly important, but

depend on the camera position as well as the scene layout, I use the

term "scene/imaging" to refer to such entities.

The general term used to refer to entities in the image is

"intensity change". The term "edge" is used both in its general

sense to refer to a large subclass of intensity changes and, prefixed

by an adjective such as "step", to refer to a defined type of inten¬

sity change. The term "significant" is initially used to refer, in a

general way, to edges which are interesting for some reason. How¬

ever, significant is formally defined in chapter four and is used

according to that- definition thereafter. The location or value of

the intensity change between two adjacent 4-connected pixels is

referred to as a "boundary segment", and the term "region boundary"

has its normal meaning. These are the only two exceptions to the use

of "boundary" to refer to scene/imaging entities.

J_._4 Readers Guide

Chapter two contains the discussion of general methodological

issues, and the derivation of the goals of edge detection. It begins

by investigating the process of design of vision systems, followed by

a discussion of the choice of an appropriate system architecture.

This leads to an investigation of the role of edge detection. Then,

by considering the input and output requirements for the task chosen,
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a set of goals for edge detection are selected.

Chapter three is a survey of related work in edge detection and

its use in edge labelling. It concludes by suggesting, from consid¬

ering the results of other research, that the system required should

be mul ti-channel.

The design of the single-level system is begun in chapter four.

After a discussion of the issue of representation, the first process¬

ing step is selected. Since this involves thresholding, a method of

selecting a threshold is required. A new technique for automatic

threshold selection in the presence of noise is presented.

The design of the remainder of the single-level system is

described in chapter five. This includes pixel labelling, edge

tracking, and finding regions of extended gradient and texture. The

way in which image texture arises is discussed and a computational

definition of texture given.

Chapter six contains the design of the other components needed

to construct a multi-channel system. A technique for comparing the

outputs of two single-level systems using different resolution images

as input is described in detail. From consideration of the issues

involved in designing the multi-level system, three main features are

suggested as being important in the construction of multi-channel

systems.

Finally, the contributions of the thesis are summarised in

chapter seven, and some suggestions for further work are made.
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_2. Towards a_ Theory of Edge Detection

2_.J_ Introduction

In this chapter an attempt will be made to specify the goals of

edge detection for analysing monochrome images of three-dimensional

scenes. It will be argued that it is only by first choosing an

architecture for the complete vision system, then specifying the role

of early processing, and within that the role of edge detection, that

the desired output of the edge detector can be defined.

It seems likely that any high performance computer vision system

will be an entity of great complexity. To understand and construct

such systems, it is essential that they consist of a number of com¬

municating modules. The overall system structure and the interfaces

between the modules must be clearly specified. One of the greatest

problems in building large A.I. programs has been the difficulty in

imposing a coherent overall structure and in defining the interfaces.

This is due to two related problems: lack of underlying theory and

lack of rigour in system specification. The result of this is that

while these programs may do something, perhaps even something useful,

they have had no lasting value because they cannot be related to

other work in the field, and though a problem may have been solved,

it's often not quite clear which problem has been solved.

These criticisms are particularly pertinent to work in computer

vision, since it is usually clear what the desired output of the

overall system should be for any given input. Specification of the

role of individual modules is not, however, so straightforward, since

it is often not obvious how the system should be decomposed. Addi¬

tionally, the decomposition will depend on the information being used

by the system, e.g. the structure of a system based on exploiting
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optical flow may well be different from one using intensity-based

edge classification. One breakdown of a vision system has been pro¬

posed by the M.I.T. vision group (p.4 Grimson 1981 ). The differences

between that structure and the one described in this thesis will be

discussed in chapter three.

The goal of a 3~d vision system is normally to describe the

imaged scene in some way, often in terms of surface layout or known

objects, so the appropriate method of analysis must be strongly

influenced by the three-dimensional nature of the scene. Since the

scene is subject to physical laws and produces the corresponding

image via a deterministic imaging transform, one might expect scene

analysis also to be supported by a firm theory.

David Marr had much to say on these issues. He suggested that

any complex information processing task has to be understood on three

different levels (Marr 1982). The top level being that of computa¬

tional theory. This specifies what problem is being solved, what the

basic constraints affording a solution are, and what the strategy of

the solution is. The middle level is that of the algorithm. This

specifies in a formal way how the solution can proceed: there can be

many algorithms for any given computational theory. The bottom level

is that of the implementation. It is at this level that the theory

is ultimately used to solve problems and produce practical results.

There can be many implementations of any given algorithm. In terms

of edge detection, the computational theory should first of all

specify what the role of edge detection is in terms of its overall

objectives and its input/output behaviour. Then by analysing the

form of the input available to the edge detector, it should outline

the properties of and constraints on the input which lead to an
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overall strategy for achieving the desired performance. This leads

to the design of algorithms to meet the goals specified by the

theory, utilising the constraints provided by the analysis. The

specification of the algorithms should be sufficiently detailed to

allow straightforward implementation of them in any particular pro¬

gramming language - the implementation level.

It is useful to bear this tripartite division in mind, although

the three levels are usually not independent. In the case of early

processing, the characteristics of the imaging device, nominally an

implementation-level consideration, certainly affect the development

of the computational theory. Many special-purpose imaging devices

and techniques, such as triangulation rangefinders (Popplestone et al

1975) or the use of photometric stereo (woodham 1978), have been used

to simplify the accompanying computational theory of scene analysis.

Similarly, the type of computer on which the system is to be imple¬

mented has a strong effect on the language used for describing algo¬

rithms and, inevitably, on the algorithms themselves. This issue is

particularly relevant to the case of early processing where there may

be good opportunities to use parallel processing techniques. Anyone

who has programmed regularly on a serial machine has probably adopted

serial thinking habits unconciously. This is another good reason for

emphasising the importance of also working at the level of computa¬

tional theory, not just at the level of algorithms.

Elsewhere, Marr [1977) specified in a related way that a result

in A.I. should consist of the following:

1. isolation of a particular information processing problem

2. formulation of a computational theory for it.

3. construction of a set of algorithms that implement it
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4. a practical demonstration that the algorithms are success¬

ful.

In practice these four categories are rarely as well defined as one

might hope. In particular, isolation of a particular problem and the

formulation of a computational theory of it are sometimes closely

linked. In a large and complex system it may be necessary to have an

overall computational theory in mind before the individual modules

can be identified, their theory developed, and algorithms con¬

structed. This is certainly true in the case of vision. Different

vision system architectures can require quite different performance

from the early processing module. In this chapter an attempt is made

to isolate and specify the problem of edge detection for monochrome

images of 3_d scenes. In view of the number of edge detectors that

have been presented in the literature, it may seem unnecessary to

design yet another, but it can be argued that many of the edge detec¬

tors so far constructed have been designed on a fairly ad hoc basis.

It's often not clear what the goals of a particular edge detector

are, nor how the output is related to the input, i.e. the image. It

is interesting to note that many edge detectors have been proposed

with no reference to the vision system of which they are to be a com¬

ponent. Indeed, a separate discipline of edge detection seems to

have arisen with no obvious means of comparing the performance of

different edge detectors. This issue will be further discussed in

chapter three, where the field of edge detection will be surveyed.

The construction of a general purpose vision system, i.e. one

able to deal with a wide variety of scenes, has only recently become

a feasible project due to increased understanding of what the early

processing can, and should, deliver. Previously, various attempts to
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get round this problem were tried. Some programs working on the

blocks world (e.g. Waltz 1975) used a perfect line drawing as input,

assuming that such a drawing could be obtained from an image. This

was a dangerous assumption because it was rarely the case in practice

that such a perfect line drawing could be easily obtained. Later,

systems working on more general images used edges derived by hand.

Again, this is dangerous because it's not clear that a subjectively

"reasonable" hand segmentation could be achieved automatically in

practice. Also, hand segmentation by the system designer could

unconciously incorporate high-level, scene-specific or program-

specific knowledge in reaching the final segmentation.

This problem of defining the input doesn't arise in the same way

for edge detection, the input is fixed once a particular class of

imaging devices has been chosen. Thus, edge detection is a good

place to start to try and develop computational theories of vision

because the imaging transformation is known. By trying to specify an

allowed range of scenes or equivalently by listing a set of con¬

straints on the types of scenes to be dealt with, a reasonable

attempt can be made to produce a specification of the image.

2_. 2_ Choosing a_ Vision System Architecture

Before trying to specify in detail the goals of early processing

and then edge detection, it is first necessary to have some idea of

the overall role of early processing within the vision system. It is

generally accepted that a useful division can be made between low-

level vision and high-level vision. Low-level vision is taken to

encompass such functions as edge detection and region finding,

whereas high-level vision normally refers to tasks such as object

recognition. The reason for this split is that low-level vision
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bears a close relationship to the scene being investigated, and is

always data driven to some extent, whereas high-level vision is

mainly concerned with performing a specific task in a goal-directed

way. In research in computer vision, two quite different types of

relationship have been proposed between the low- and high-level

vision systems, crucially affecting the role of early processing.

In the first paradigm, the vision system is seen as being

roughly hierarchical with the early processing being autonomous and

entirely data-driven. This is based on the observation that the

image is veridical and on the belief that generally useful con¬

straints can be found, which, operating at the early processing

level, allow an appropriate segmentation of the image to be made.

The veridicality of the image arises from the causal relation of the

image to the scene. If the scene changes in some way then the image

will also change in an entirely predictable way. Founded on this

relationship, and on the physically describable nature of objects in

the world is the hope of formulating a set of constraints providing

the basis of a segmentation strategy. However, for this to be suc¬

cessful, the scene has to be physically describable in a certain way.

What is required is a set of laws governing the behaviour and

interactions of light sources, objects, and imaging devices at the

level of surfaces. This has not yet been satisfactorily achieved

although there are encouraging signs (Barrow and Tenenbaum 1978, Bin-

ford 1981, Horn 1977).

In the second paradigm, low-level vision is seen as a more

goal-directed process, controlled to a greater or lesser extent by

the high-level vision system. This, it is claimed, is necessary to

deal with the severe difficulty of early processing caused by electr-



ical noise and the complexity of the scene. Every available piece of

knowledge and data should be brought to bear on each part of the

analysis task. The principle of operation is that the system begins

by doing the easier bits of the early processing, then does as much

high-level processing as can be done with this initial segmentation.

These intermediate results of high-level processing are used to guide

the low-level system to a more refined segmentation, which in turn

leads the high-level system to reevaluate its output, and so on in

this cyclic fashion until a satisfactory overall result is achieved.

This idea has been further generalised in the case of what are

known as "heterarchic" systems. These are well described by the

phrase "community of experts", and usually consist of a set of

knowledge sources, a global interface/data structure for communica¬

tion between knowledge sources, and an executive for deciding issues

such as what should be done next. The best known example of such a

system is the Hearsay speech understanding system (Lesser and Erman

1977) which apparently performed well, but it should be noted that

the task of speech understanding is fundamentally different from that

of scene analysis. In vision, as mentioned above, the input is an

image which is veridical, i.e. faithfully informs about the scene.

Also, the imaging transformation is always the same for a particular

imaging device. In the case of speech understanding the transforma¬

tion from an intended utterance to pressure waves varies widely, not

only from speaker to speaker, but also in separate utterances by the

same speaker. This is most easily seen in the case of people with

different accents speaking the same language: the same words have a

very different sound. Thus, the problem of speech understanding is

quite different from that of vision since the transformation from

intended utterance to pressure waves cannot be described as veridical
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in the same way as the transformation from scene to image. The fact

that the Hearsay system has been a successful one as far as speech

understanding is concerned does not mean that the same type of struc¬

ture is necessary to analyse a scene successfully.

Chronologically speaking, the first computer vision systems used

autonomous early processing, then, later, goal-directed vision became

popular. Recently, autonomous early processing has staged a strong

comeback and is again the most popular.

The first influential piece of work in scene analysis was by

Roberts (1 965). A photograph of some white polyhedral blocks on a

dark background was digitised to provide the input. The desired out¬

put was a set of 3~d positions for certain prototypical object models

whose projection "explained" the lines found in the image. The

structure of the system was simple; first, a line drawing was derived

from the image, then object models were matched to the line drawing.

Roberts found that obtaining a good line drawing was the most diffi¬

cult part of the process. He had three criteria for his edge detec¬

tion process

- the edges produced should be as sharp as possible

- the background should produce as little noise as possible

- the intensity of the lines produced should correspond closely

to a human's ability to perceive the edge in the original

picture.

The first two of these goals are strongly dependent on the domain of

the program. One can hope to find sharp edges corresponding to the

edges of blocks, with relatively uniform, noise-free regions between

them corresponding to the planar faces only in simple blocks world
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scenes. Even in this specially chosen domain, shadows and surface

markings can lead to problems. One of the main criticisms of

Roberts's work is that in his early processing stage he used an

over-simplified scene/image model. If his early processor failed to

produce a perfect line drawing, the model matching routines would

also fail since they discarded lines not attached to junctions at

both ends. The main point to note is that after a line drawing had

been produced, no further examination of the image or reevaluation of

the result of early processing (i.e. the line drawing) took place.

It was discovered that even with such scenes as white blocks on

a dark background, it was sometimes not possible to achieve the per¬

fect segmentation required with a single pass of, for example, a

Roberts-type edge detector. This led to the development of

heterarchical systems, the best known of which in vision is Shirai's

(1973)- Again this dealt with light coloured blocks on a dark back¬

ground. Shirai classified the edges into three types:

contour - between object and background

boundary - between two objects

internal - between faces of the same object

He assumed that contour edges could easily be found. Then, based on

two guidelines:

- find boundary lines before internal lines

- first look for lines which have smaller search areas

he developed a set of ten heuristic rules for guiding the search for

new lines based on the current interpretation of the lines previously

found. The overall structure of the system is described by the block

diagram below:
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In designing his particular edge detection algorithms, Shirai took

into account the various types of edges that arise in polyhedral

scenes (Herskovits and Binford 1970). Also, because his system

always looked for a specific edge in a specific place, he could use

sensitive detectors without incurring prohibitive processing times or

too many spurious edges.

Although this was one of the most successful programs in dealing

with the blocks world, it did have some problems. In certain cir¬

cumstances it could miss objects altogether, and the heuristics could

fail with concave polyhedra.

It is interesting to consider why Roberts, the first person in

the field, took a hierarchical approach, whereas Shirai, who came to

the same problem ten years later, decided to use the more complex

heterarchical system. This can be related to the different problems

they faced. Roberts, meeting a new problem, had to understand the

basic structure of the solution and identify the available con¬

straints. By the time Shirai was working, much more had been done on

blocks world vision and many of the constraints were well known. His

program can be thought of as a reconfiguration of the knowledge in a

more complex way using a variety of special tools to solve particular
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problems. In other words, his main contribution with this piece of

work was in the field of controlling or structuring vision algo¬

rithms.

This pattern of first understanding the problem, finding the

basic constraints and implementing them in a system with a relatively

simple structure, then later reconfiguring the system in a more com¬

plex way for better performance, can be expected in other problems.

Although there may be some deep equivalence between hierarchical and

heterarchical systems operating on the same basic system of con¬

straints, it's much easier to develop theories and find constraints

within the more comprehensible structure of the hierarchical system.

The "community of experts" idea is a seductive one, but leads to dif¬

ficulties in specifying the role of each knowledge source and the

interfaces between them, especially if the basic theory of the system

is not fully worked out. The problem of edge detection for complex

scenes is not yet sufficiently well understood in terms of the basic

principles and constraints to allow a heterarchical approach.

Recent advances in vision have come about as a result of adopt¬

ing a more rigorous methodology as detailed in the previous section.

This attempt to modularise vision, and to specify and design indivi¬

dual modules has naturally led back to the idea of autonomous early

processing. The emphasis must be on understanding the problem and

providing an acceptable theory; restructuring the system for better

performance can come later. Using this more rigourous methodology,

several pieces of work have been described in the literature which

seem to be leading towards a solution to the problem of early visual

processing. Probably the best known of these is Marr's work (see

Marr (19 82 J in the first instance], his theory of edge detection will
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be discussed in detail in chapter three. Barrow and Tenenbaum (1978 J

and Binford (1981 ) have also made important contributions, their work

will also be described later. The real value of this type of work is

that the constraints identified are of lasting value, and are not

dependent on any particular algorithm or set of hardware.

However, there is one final caveat. Since the problem of early

processing has not yet been "solved" there is always the possibility

that autonomous early processing won't work and the extra complexity

of heterarchic systems will be needed to solve the problem at all.

This seems unlikely in vision since to date heterarchical systems

have simply given improved performance. They have not been shown to

work on problems where hierarchical systems have failed completely.

Since the object of this thesis is to develop a theory of edge detec¬

tion for monochrome images, it is more appropriate to do it within

the framework of autonomous early processing. The basic issues are

more likely to come to the fore within the simpler hierarchical

structure than in the more complex heterarchical type of system.

2._3 The Role of Edge Detection in Early Processing

Having decided on an autonomous early processing system working

on a single monochrome image as input, it is now necessary to clarify

the desired output of early processing and the role of edge detec¬

tion. Based on the realisation that the image is veridical and only

makes sense as a projection of a 3~d scene, the objective of early

processing is considered here to be the interpretation of the image

data in terms of 3~d scene/imaging events. The term "scene/imaging"

is used because the generation of, for example, obscuring edges

depends on both the layout of the scene and the position and orienta¬

tion of the camera within the scene. This has been shown to be
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feasible, at least for a limited domain by Barrow and Tenenbaum

(1978), who constructed a world model consisting of a certain limited

class of objects under restricted lighting conditions. By then ana¬

lysing the types of edges which were generated in images of such

scenes in terms of relationships on image intensities across and

along the edges, they were able to identify a number of tests which

could be used to identify some of the edges as reflectance edges,

etc. Their ultimate objective was to produce "intrinsic images" of

reflectance, incident light, range, and surface orientation, evaluat¬

ing these quantities at each point in the image. Unfortunately, it

does not seem likely that this can be achieved with a single mono¬

chrome image for any general class of scenes, because it requires

quantitative photometric analysis of every aspect of the scene.

Thus, the output of early processing for this particular approach is

likely to be a compromise between the desirable and the achievable.

A more realistic goal is to segment the image into surfaces, with

every image "edge" labelled with its scene interpretation. Possible

interpretations for such edges would be obscuring edge, shadow edge,

reflectance edge, surface orientation edge, and highlight. The prob¬

lem of texture will also have to be investigated if the system is to

be applied to a wide class of scenes. There is some indication that

this is a realistic goal, although the problem has not yet been

solved (uilman 1976, Binford 1981, Fischler et al 1982, Witkin 1982J.

Achieving this segmentation would seem to fall naturally into

two stages. First, find all the places in the image corresponding to

significant scene/imaging events. Given the veridicality of the

image, any intensity variation not attributable to noise must have

been caused by some variation in incident light, surface reflectance,

surface orientation, or surface range. In this sense, all non-noise
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intensity variations are significant. However, the majority of image

intensity changes are due to smooth variations in incident light or

surface shape and these are not particularly informative, unless one

is interested in recovering local surface shape. Discontinuities or

steep gradients in image intensity are more interesting because they

are the result of important changes in the scene - it is these which

are referred to by the term "significant". This definition will be

extended and formalised in section H.2.

Second, given this set of intensity changes, interpret each one

and label it with its scene/imaging meaning. Thus, early processing

is seen as edge detection followed by constraint analysis as shown

below:

image

edge data

structure

surface segmentation

interpreted edges

This thesis is concerned with specifying, designing, and imple¬

menting the edge detection block in such a system. The input to the

edge detector is a monochrome image, the output remains to be speci¬

fied, but, broadly speaking, should be the complete set of image

edges in a representation suitable for constraint analysis. Clearly,

the exact role of edge detection depends critically on what is a use¬

ful input to constraint analysis. (The importance of taking into

account the requirement of the succeeding stage of processing in

designing a particular system component has previously been pointed
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out by Hildreth (1980) .) In general terms, it should be possible to

relate edges to the underlying image intensities in their vicinity,

because one aspect of constraint analysis involves various tests on

the pattern of image intensities across and along edges. Attention

must also be paid to finding and representing edges as accurately as

possible, and to maintaining connectivity relations between edges.

However, before an attempt can be made to design an edge detec¬

tion system, the goals of edge detection have to be stated precisely,

and a better understanding of the relationship between scene and

image is necessary. For example, what is meant by the term "edge"

and how does it relate to the scene? To achieve this both the scene

and the process of imaging have to be investigated at the appropriate

level. In the next section the imaging process will be analysed

rather formally, and this clarifies the meaning of a number of terms

which will be used later. Then, in the following two sections, a

further analysis of the scene and imaging will be carried out in

terms of surfaces, light intensities, and projections. This will

enable a more specific set of goals for edge detection to be del¬

ineated which can act as a basis for the construction of algorithms.

2.H_ The Imaging Transformation

Three separate entities are identifiable in the imaging

transformation; these are

- the scene

- the analogue image

- the digitised image.

The geometrical relationship between points in the scene and

corresponding points in the analogue image is, for a reasonable cam-
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era, adequately modelled by perspective projection. It is this rela¬

tionship which forms the basis of the claim for image veridicality.

However, a computer vision system doesn't have access to the analogue

image, only to the digitised version. The process of digitisation,

sampling followed by quantisation, severely affects the relationship

between scene and image, and will often be mentioned in this thesis.

_2.J4.J_ Imaging

Light from the scene is focussed through a lens system onto the

target of the imaging device. It is assumed in this thesis that

imaging is ideal and that the target is a bounded rectangular plane.

The image irradiance, E, which is the incident flux density (in W/m )
on the target, is taken to be a function of the position on the tar¬

get, and the wavelength of light.

E=E(x, y,A)

where x,y are independent and bounded, with

Xn S X < X1 m

yls y < ym

_2.4_.2_ Noise

Various sources contribute to what can be regarded as random

noise in the image intensity. These include defects in the imaging

device (Brain 1979] and noise in the electronics. For many systems,

and for the one used here in particular (Beattie 1980), the noise

probability density function (pdf) can be described by the Gaussian

curve
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-U-m)2
p(z) = —e 2°2

0\ j2TT

where o is the noise standard deviation, and a is the mean. This is

conventionally written z=n(p,o j. We will later use the fact that

the sum or difference of two variables with Gaussian pdfs is another

variable with a Gaussian pdf (p.740 Kreyszig 1972). If

z} = n(m1,o2J z2= n( u2, o2J
then

2 2
z2= N( Ml- U2, +a2)

2. 4_. 3_ Sampling

The first stage in the conversion from analogue image intensity

to an array of quantised values is sampling. For typical sensors

this is not adequately modelled by the Dirac delta function, but

involves integrating the product of image intensity and some response

function over time at a large number of sampling points on the image

plane. Tne response function defines the performance of an indivi¬

dual receptor, e.g. a single photodiode in a photodiode array, and

has three arguments, two for the spatial dimensions ana one for the

wavelength of the incident light, s(x,y,AJ. It is assumed that in

spatial terms S simply integrates the incident light equally over a

rectangular area Ax,Ay,

i .e.
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s(x,y,A)=
k (A J | x | , | y | <^~
0 otherwise

This is a reasonable approximation to the performance of many prac¬

tical imaging devices. It is also assumed that the spectral response

of S is normalised to some central frequency Aq, as shown in
fig.2.1.

Typical receptor spectral response.

Thus the response of a single receptor cell centred on (x^.y ) is

c(x0.y0)= E(x,y,A].s(xQ- x,yQ- y,AQ- Aj dx dy dA

In fact, the output of typical imagers is the time integral of C over

some period. It is assumed that both S and E are constant over time

so:

D(x0,y0)- T c(xQ,y0)

where T is the period of integration. Most real imaging devices con¬

sist of a rectangularly spaced array of receptors, which will be

denoted by R. To produce an m*n array by sampling over the area of
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the image plane already defined by x^,x .y^and y^, then:

* V yi6y = ~—

x - X,
m 1

Sx =
n

and the i,j th. component of R will be given by

R(i,j)= D( x1+(j- j)6x, y1+(i- -j}6y)

where i refers to the row coordinate and j to the column coordinate.

For the sampling areas to cover the image without gaps between indi¬

vidual receptors:

6x = Ax

Sy = Ay

produces the situation shown in fig.2.2. Some cameras have gaps

between the receptors in either or both of the x and y directions.

The model decribed here can easily be extended to deal with these

cases.

_2._4._M Quantisation

The final step in producing the pixel array is that of quantisa¬

tion. Each R(i,j J is compared to a set of decision levels. Each

adjacent pair of decision levels has associated with it a unique

code. For convenience, the pairs of decision levels are often num-

27



1

n

n
x

Trance plane layout,

bered with integers as shown in fig.2.3- The only case considered

here is that of regularly spaced decision levels, thus, given a par¬

ticular R ( i , j J, the quantised value, q(i,j), is

q(i>j )=n

where

nAq £ R(i , j J < i.n+1 JAq

where Aq is the spacing between quantisation thresholds, which com¬

pletes the transformation from image irradiance to greyscale pixel

value.

0
t-

TJ f ' * *1
'

> - 1 O '

^

0 1
I I

St
doc asion

levels

"i u 2.3

Intensity quantisation levels.
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2.5_ The Relationship Between Scene and Image

While the above mathematical analysis of the process of forming

a digitised image is useful, it is even more important to perform an

analysis in terms of information processing. After all, the object

of a vision system is to infer information about the scene, given the

digitised image. Within the constraints imposed by the imaging sys¬

tem, the image is veridical. That is, it faithfully informs about

the scene producing it. Any relationship among intensity values is

not a random occurrence (apart from a noise component), but is the

causal result of the way the scene is. Examining the possible range

of scenes in very general terms should be useful in helping to

specify the goals of edge detection more closely.

The world contains objects, light sources, and a transparent

medium. Assuming that the imaging device is a monochrome T.V. cam¬

era, then we are interested in how light is reflected from objects to

the camera. The imaging equation (Horn and Sjoberg 1978) shows that

image irradiance is directly proportional to surface radiance. So if

we examine the behaviour of surfaces in terms of surface radiance,

our observations will be easily expressible in terms of image irradi¬

ance. The radiance of a Lambertian surface varies continuously

across the surface except under two conditions:

1. a step change in surface reflectance

2. a step change in surface irradiance.

The step change in surface irradiance would normally be at a shadow

boundary caused by another object obscuring a light source. For a

step change, the light would have to be from a point source. The

step change could also be caused by indirect illumination, but this

is very unlikely. Indirect illumination usually produces smooth gra-

29



clients in surface irradiance. We only consider Lambertian surfaces

in this section because our main purpose is the derivation of the

edge detection process, not the construction of a full world model.

This does not mean that our early processing system will be limited

to scenes containing only Lambertian surfaces, since at this stage

analysis of the world only serves to produce goals for edge detec¬

tion.

Consider the illumination of two adjacent elementary areas on

the image plane. Two cases exist as shown in fig.2.

1. they can be illuminated by adjacent areas of the same

surface

2. they can be illuminated by unrelated areas of dif¬

ferent surfaces.

"'
- r L- -*-Lj • ^

The t'/O vays of Illuminating adjacent ii.^age plane areas.

In the first case what we know about surface radiance also holds

for image irradiance, since there is a direct mapping from adjacent

pieces of surface to adjacent pieces of image. In the second case it

is likely that the adjacent image areas will be subject to quite dif¬

ferent amounts of irradiance, producing a discontinuity known as an

obscuring edge. In practice, due to the defects of practical devices
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these discontinuities will be blurred (see Brain (19793 for optics,

Herskovits and Binford (1970) for empirical results). Steep gra¬

dients in image irradiance can also be caused by shadows from

extended sources and from variations in object shape, such as the

edges of polyhedral blocks. The analogue image, then, contains a

wide range of intensity variations (assuming perceived intensity is

proportional to image irradiance), ranging from steep gradients to

uniform regions.

In processing the image we should be particularly interested in

places where the intensity is changing quickly, since we might be

able to recognise these as due to object boundaries, shape changes,

shadows, or reflectance changes. Of course, a computer vision system

only has access to a digitised version of the image. So, while it

may be relatively easy to formally define notions of continuity and

discontinuity for analogue signals, it is not so easy for digitised

ones. Edge detection, which can be viewed as a search for signifi¬

cant gradients in the digitised image, has reflected this difficulty.

As shall be seen in the next chapter, some methods treat the digi¬

tised image as if the underlying signal is continuous everywhere,

whereas others assume that the underlying signal contains ideal step

edges. As we have noted above, the analogue image does, in fact,

contain intensity variations over a wide range of scales, limited at

the upper end by the optical and electronic signal processing capa¬

bilities of the imaging device.

The process of digitisation raises significant issues itself.

Some important image effects are largely dependent on the sampling

and quantisation resolutions of the imager. Consider an image of a

chessboard pattern. If each black or white square covers many pix-
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els, then it will be easy to identify each square as a separate

region. At the other extreme, if many squares are subtended by each

pixel, the image will be a uniform grey. Only in some intermediate

range where the number of squares subtended by the image is of the

same order as the number of pixels will the image take on a textured

appearance. The concept of texture is largely to do with relative

sizes and resolutions. Related to this is the question of object

shape variations which occur over a wide range of scales both in the

scene and in the image. In images of natural scenes these variations

will cover a range from step edges to regions of uniform intensity.

What constitutes a step edge is highly dependent on the relative size

and distance of the phenomenon, the optical imaging system, and the

resolution of the device. The corner of a building may look like a

step edge from a distance, but appears as a gradual shape change

close up. One cannot get rid of this problem simply by using higher

resolution imaging devices. In terms of the above example, that just

means you have to retreat a little further before the corner of the

building looks like a step edge again.

The point of this discussion is to illustrate that the concept

of "edge" is a complex one, especially in digitised images. Since

the scene events which are most informative (e.g. reflectance boun¬

daries, shadows, etc.), produce discontinuities and steep gradients

in analogue image intensity, we are interested in places in the digi¬

tised image where the intensity values are changing quickly. The

difficulty is in being any more specific at this level. If we design

a mask which will react to some specific pattern, say, ideal step

edges, we will miss the gradients which are also important. Addi¬

tionally, the characteristics of an edge may change along the edge,

so any simple approach seems certain to fail. In other words we must



be careful not to over-specify what we are willing to accept as a

significant entity in the digitised image because that will find only

some of the legitimate edges.

2.6_ The Goals of Edge Detection

Having found the places in the digitised image where significant

intensity changes take place, it is necessary to represent those

changes in a way useful for later processing. By investigating one

specific case in detail, we should gain a much better idea of what is

a suitable representation. Hence, to identify the specific goals of

edge detection we consider the particular case of a reflectance boun¬

dary. By analysing its transformation from scene to image to digi¬

tised image, it is possible to gain a better understanding of how

image edges are formed and relate to their counterparts in the scene.

More importantly, we can also take note of any assumptions made in

the derivation of constraints on image edges and determine how these

should affect edge detection.

First, consider a smooth, not necessarily planar, surface on

which lies a sharp boundary in reflectance. In a recent standardisa¬

tion of photometric terms (Nicodemus et al 197?) the reflectance of a

small surface patch is defined as the dimensionless ratio of

reflected flux to incident flux and is denoted by p, i.e.

Consider a small thin strip of the surface approximately perpendicu¬

lar to the reflectance boundary, and imagine looking at this strip

"side on":
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P1 dA1 dA2 p2
reflectance boundary

To simplify the analysis assume that the surface is Lambertian, and

consider two small areas dA^ and dA2 near the reflectance boundary.
The reflectance of surface patch dA^ is p , and that of dA2 is p2«
The irradiance of a small surface patch, dA, is the incident flux

density

d<j>i ^
irradiance (e) = -rr— —~v ' dA 2

m

The radiant exitance is the exitant flux density

d<j>
radiant exitance (m) =

r W
dA 2

m

Thus, the reflectance of a surface can also be defined as

M
p e

The radiant exitance, being the total exitant flux, can also be

described in terms of the radiance (l ) which is the flux emitted per

unit surface area per unit projected solid angle. By integrating

over the projected solid angle (fi) we get

M= L dfi
i r r
r

For a Lambertian surface L is the same in all directions, so
r

M= L dfl
r r

r

So we have

m= ttl
r

,. TTLM r
P TPe e

for our two small areas dA^ and dA2> we have
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TTL
r1

irL

K1 E1 P2 E2
Assuming that the distance between the areas is small so that

E^~ E2=E then

r2

P ! E p E
L = —L- L = —

r1 it r2 it

Now the imaging equation as expressed by Horn and Sjoberg (1978 J is

t r (11 1 f d 41= l-jj-Jl—J COS a
P

where I is the image irradiance, d, fp, and a are as shown in

image "lane

ig i r",3. r~ 2. nr*jo rl g j_ •

fig.2.5. So

T r 4I a L cos a
r

For our two small surface patches, the corresponding image areas will

have

I. a L .cos a.
r1 1

P1E 4
a cos a,

TT 1

P2E 4
2a ^r303 a2

and the ratio of these will be
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11 P1 cos «1
12 P2 cos^a2

Since we have already assumed that dA^ is near dA2 it is reasonable
4 4 r

to also assume that cos cos a2 [or the difference could be
corrected for) giving

So the ratio of image irradiance is equal to the ratio of surface

reflectance. Assuming that image intensity is proportional to image

P1 P1
irradiance then —= — where P., P_ are the intensities of the

P2 "2 12
appropriate pixels.

Looking back over this derivation, the main assumptions were:

1. the thin strip of surface is approximately perpendicular to

the reflected boundary.

2. the surface is Lambertian

3. the distance between the areas is small with respect to the

variations in incident light

4. image intensity is proportional to image irradiance.

It is convenient to deal with these in reverse order, starting with

the requirement that image intensity is proportional to image irradi¬

ance. If digitisation was accurately modelled by applying the Dirac

delta function at each position in a grid of sampling points, then we

wouldn't have to worry about this assumption. Unfortunately, as

noted in section 2.4, this is not the case and normal imaging devices

effectively integrate the image irradiance over some small image

area. If we suppose the image of a sharp reflectance boundary to be

a step edge in image irradiance and imagine superimposing the edge on

a digitisation grid, in the general case we get something like the
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effect shown in fig.2.6 where image irradiance is integrated over

each rectangular area, then quantised, to give the corresponding

?i~. 2.5

Digitising a steg eige. -

pixel intensity. Clearly, those pixels through which the edge runs

[known as mixea pixelsj will have an image intensity which depends on

tne position of the edge within the pixel as well as the intensities

on eitner side of the eage . These pixels obviously violate assump¬

tion 4 and should be avoided when testing ratios. Of course, since

point sampling is not the case, no pixel is ideal, out mixed pixels

should certainly be avoided.

Mixed pixels arise because of. both aliasing and the non point-

like nature of the sampling function. One tecnni que that nas been

used to eliminate this problem is matches Gaussian filtering of tne

image to remove high frequency components and enhance edges in the

selected frequency band. While effective, this method reduces the

accuracy of edge localisation because the higher frequency components

in the edges are removed. To achieve maximum, accuracy in ecge local¬

isation the edge detector described later in this thesis does not

prefilter the image before searching for eages. This means tnat

steps will have to be taken to deal with mixed pixels explicitly.

To satisfy assumption 3, we must choose pixels as close to the

edge as possible in order to minimise differences due to intensity
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gradients. This is somewhat at odds with assumption 4 which indicated

that pixels actually on the edge, i.e. mixed pixels, were of no use.

In other words, assumptions 3 ana 4 taken together imply that for

constraint analysis we want access to pixels as close to the edge as

possible as long as they are not mixed pixels. To make sure we find

pure (i.e. not mixed) pixels as close to the edge as possible we must

find and represent the edge accurately. In terms of actually per¬

forming the ratio test, one can attempt to measure the intensity gra¬

dients on either siae of the edge ana factor out the variation (uil-

m an 1 97 6 ).

For a non-Lambertian surface, L is a function of the amount and
r

direction of the incident flux and the exitant airection, so the

relationship between M and becomes, in the general case, much more

complicated, while this clearly has important ramifications for con¬

straint derivation and may produce extra edges, e.g. highlights, it

seems likely that any edge detector suitable for dealing with edges

from scenes containing only Lambertian-surfacea objects will also do

quite well for more g' neral scenes, since constraint analysis will

still consist of examining intensities in the neighbourhood of edges.

The first constraint was that the pixels investigated should be

roughly perpendicular to the edge. This again means that our edge

detector should find the edge, including its local direction, accu¬

rately, and from the edge representation it should be possible to

compute the direction perpendicular to the edge.

Summarising the above, the edge detector should find ana

represent image edges as accurately as possible. From the edge

representation it should be possible to tell which pixels are mixed

and which are pure. It should also be possible to select pixels on
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either aide of the edge roughly perpendicular to the direction of the

edge.

Although the discussion above has been couched in terms of

reflectance edges, the constraints will also apply when finding and

interpreting other types of image edges. Based on both the general

and specific analyses of edge formation and detection, and the needs

of constraint analysis, we can now write down a set of goals for edge

detection upon which the effective design of algorithms may be based.

These are:

General

1. Find all the significant intensity varia¬

tions they are all caused by some¬

thing in the scene.

2. Relate edges to their scene meaning, this

is, after all, the stated goal of early

processing and it might be possible to

get some way toward this end in edge

detection.

Step-like Edges

Step-like edges are important for constraint

analysis so:

1. Find and represent step edges as accu¬

rately as possible.

2. Try to maintain a clear relationship

between edges and their underlying

image intensities. In particular, know

which pixels are mixed and which are

pure.
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In the next chapter we will examine existing methods of edge detec¬

tion to see if they satisfy these criteria.
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3_. A Survey of Edge Detection and Its Use in Edge Labelling

3.1_ Introduction

The key step in the development of an edge detection system is

the identification of the correspondence between the elements of

interest in the scene and their characteristic appearance in the

image. This is (at least conceptually) simple in the blocks world

domain, where it means recognising the image intensity patterns pro¬

duced by polyhedral surface boundaries. For general scenes, the

situation, as discussed in chapter two, is much more complicated. In

the blocks world one might naively expect all the edges to be of the

same width, whereas in the general case, edges of a range of widths

are produced. In the polyhedral blocks world, one can also expect

the edges to be straight, with areas of relatively smooth gradient

between them. For general scenes, no such simplifying assumptions

may be made .

A further important difference between the desired performance

of blocks world and general purpose edge detectors arises due to the

different system structures. In blocks world vision the output of

the edge detector is normally expected to be a set of lines suitable

for use in modelling or model-matching. This leads to two points of

int erest:

1. Surface marks, shadows, etc. are not normally considered

useful to the high-level system, in fact, they will con¬

fuse it, so they shouldn't be found by the edge detector.

Alternatively, if shadow edges are detected and recog¬

nised as such before the edge data is passed on to higher

levels of processing, they can be used or discarded as

appropriate. Waltz (1 975 J found shadow boundaries to be
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an effective constraint on line labelling, although his

system used perfect line drawings rather than image edges

as its input data.

2. In most blocks world scenes the number of desired edges is

often small. Terms such as "data reduction" are some¬

times listed as desirable properties of edge detectors.

In general purpose vision systems, edge detection must normally

be followed by a process for extracting surface information. For

example, in the case of stereopsis, surface markings, etc. are impor¬

tant for producing a less sparse array of disparities, so the edge

detector should produce as many meaningful edges as possible to

improve the system's performance. In general, all early processing

systems which attempt to extract 3~d information from the image, pro¬

duce better results from more detailed input data. In the case of

edge labelling, the edge detector will not know whether particular

image edges are important or not, so it should output as many edges

as possible. Thus we see that edge detection for general purpose

vision systems has a completely different set of requirements than

that for blocks world vision. This point is worth stressing because

the different requirements have not been explicitly recognised, which

results in some confusion about what edge detectors should be doing.

In the remainder of this chapter the field of edge detection

will be selectively surveyed. In section 3.2 ways of extracting

edges of a single width from images are examined. In section 3.3

systems for finding edges of several widths, either using a family of

different-sized edge detectors, or using several different-resolution

versions of the image, are considered. This is followed by a discus¬

sion of methods of assigning a scene meaning to image edges.
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Finally, in section 3.5, general conclusions of the survey are noted.

3_.2 Finding Edges of a Limited Range of Widths

Interesting scene events such as surface boundaries normally

give rise to large rates of change in image intensity, so the basic

idea of edge detection is to search the image for high gradients.

Two main techniques have been widely used. In the first the pixel

values are assumed to be ideal samples of some smooth underlying

function, and the presence or absence of an edge at a particular

point is decided by examining the first or second derivatives of the

function. In the second method, an ideal edge model is fitted to

intensity values in the neighbourhood of a pixel. Parameters of the

fitted model and a measure of the goodness of fit are used to deter¬

mine the presence or absence of an edge.

Some idea of the advantages and disadvantages of the former

metnod can be obtained from consideration of the ideal edges and

their first and second derivatives shown in fig. 3.1. In 3.1(a) the

ideal step produces a peak in the first derivative and a zero-

crossing in the second, both in the same place as the edge. In the

slightly more realistic rounded step edge shown in 3.1(b) the peak

and zero-crossing are still in the correct position. However, if the

first derivative peak is found, as is normally the case, by thres¬

holding, several points will be above threshold. Non-maxima suppres¬

sion or thinning are sometimes used to obtain a single response,

although in many cases these will produce inaccurate results. The

zero-crossing of the second derivative corresponds to the peak of the

first derivative (and the point of inflection on the original edge),

so it doesn't need thinning. The main problem with it is that other,

non-edge, image features also produce zero second derivatives. For
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This shows the first and second derivatives of four ^one-dimensionalJ

idealised edge models. In each case ^1 is the original intensity,

[11.i is the first derivative, and ,111, is the second derivative.
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example, the uniform areas on either side of the edge do so. Any

noise on the intensities will produce spurious zero-crossings. These

problems are exacerbated with wider edges as shown in fig. 3.1(c) and

(d). One solution to this is to threshold the slope of the zero-

crossings. In terms of performance in the presence of noise, first

difference operators are more reliable than second difference opera¬

tors. To summarise: it is easier to achieve higher accuracy in

localisation with second difference operators due to the broad

response of first difference operators. However, detection reliabil¬

ity is harder to achieve for second difference operators due to their

higher sensitivity to noise and the fact that they respond to image

entities other than edges.

Roberts (1 965), whose goals of edge detection were listed in

section 2.2, based his edge detector on a simple gradient operator,

as shown in fig. 3.2. He recognised that an important additional

constraint was that edges are continuous in one direction, and used

this to find feature points, i.e. image points where the gradient is

above a threshold. Perhaps the most widely used operator in this

class has been the Sobel (Duda & Hart 1973J, shown in fig. 3.3. It

is usually thought of as a set of two 3*3 masks applied to the neigh¬

bourhood of the point in question. The computationally expensive

square root operation is normally replaced by taking the sum of the

magnitudes of z^ and z^, which is much quicker but less effective.
It may appear slightly surprising that the Sobel operator has been so

popular in view of the small size of the masks used and the current

widespread interest in using very large neighbourhoods to combat

noise. But, because of its small size, the Sobel operator tends to

locate edges accurately in the sense that the maximum response to an

intensity change will be within a pixel distance of the maximum
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gradient in the underlying intensity function. However, because it

is a thresholded first difference operator it will often respond over

a wide band of pixels near the location of the maximum gradient,

leading to a need for non-maxima suppression. A second reason for

the popularity of the Sobel operator is that it is very easy to com¬

pute, requiring only additions and subtractions.

The second main class of edge detectors are based on using a set

of ideal edge templates. These consist of matching a series of such

templates (of ideal step edges over a range of orientations and step

sizes) to the greyscale picture values in a local window, then thres¬

holding some measure of the goodness of fit between the best-match

template and the window to find the edge points. The set of tem¬

plates may be represented by a truncated orthogonal series with

parametrised coefficients. Truncation is useful for noise rejection

and can also lead to an analytic solution to finding the best fit

template. One of the first edge detectors of this type was intro¬

duced by Hueckel (1971 j and was based on the Fourier series. This

suffered from problems due to the mismatch between the 2-d series,

which are polar in nature, and the rectangular digitisation grid.

0'Gorman (1978) designed a detector on the same principles as

Hueckel's, but used the more computationally appropriate Walsh func¬

tions. The basic idea is that an ideal step edge template is

represented by a truncated series of Walsh functions. To allow for

edges of varying intensity, step size, and orientation, the template

is parametrised and thus so are the Walsh function coefficients. The

equivalent series of coefficients is computed for a small window of

the picture function. The distance between the two sets of coeffi¬

cients is then minimised to find the parameters describing the best-
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fit template. Finally, to decide whether or not an edge segment is

present in the window, a measure of the closeness of fit between the

window coefficients and the best-fit template coefficients is thres-

holded. Note that the Sobel, Hueckel, and O'Gorman operators simply

mark edge points, and give some measure of edge magnitude and orien¬

tation. Line finding must still be carried out on their outputs.

A complete edge detection and line finding system based on tem¬

plate matching has been described by Nevatia and Babu (1 980) . Rather

than use a parametrised template method, they prefer six 5*5 masks

representing ideal step edges spaced 30°apart in orientation. The

magnitude of the highest output and the direction of the mask produc¬

ing it are noted for each pixel. Then, by thresholding and non-

maxima suppression, edge points are located. Interestingly, they use

a very low threshold, arguing that it is the job of the high-level

system to select and use the edges as desired. Line linking is car¬

ried out by examining neighbours of each point for edges in the same

direction, and using the information for tracking. Finally, each

line is represented by a set of linear segments.

One reason for the existence of such a large body of work as

that on edge detection may be the difficulty in evaluating edge

detector performance. A figure of merit for edge detector perfor¬

mance has been suggested by Pratt (1 978J. It is defined as:

tively. d(i] is the offset, i.e. positional error, between the ith.

edge point found and its true position, and a is a weighting factor

which can be used to adjust the relative penalties for errors in

where 1^ and 1^ are the number of ideal and actual edge points repec-
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position vs. errors in detection. To use this measure, an ideal nar¬

row ramp edge is subject to Gaussian noise to provide the same known

input to each edge detector.

The main problem with this method of evaluation, in common with

the design procedure of some edge detectors, is the oversimplified

edge model. Additionally, edge detector performance and utility is

task dependent. For example, an eage detector which is optimal for

use in a system for inspecting printed circuit boards may be of lit¬

tle use in a system for analysing chest x-rays. As we saw in chapter

two, although step edges are important, they are by no means the only

type of edge needing consideration. Even in the blocks world,

several different types of edge profiles arise (Herskovits and Bin-

ford 1970, Horn 1977). Thus, template matching is not suitable for a

general purpose vision system, where edges of many different types,

widths, and spacings must be expected. Similarly, the result of

applying the above test to an edge detection system measures only one

aspect of required performance, and cannot be used as the sole meas¬

ure of good design.

Edge detectors based on first or second derivatives do not

suffer from the use of an oversimplified edge model in the same way

as those based on template matching. However, they still must be

able to deal with multiple edge widths and image texture to be con¬

sidered general purpose. In the next section we examine edge detec¬

tor systems designed to deal with these problems.

3.3_ Representing Edges of a Range of Widths

In principle, detecting edges of a range of widths is simple.

The image can be filtered in some way such that only edge components

of a certain spatial frequency remain. These can then be detected.
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The major problem is representing the output. Should all edges of

all widths be stored? Should only the "best" edges in a particular

image region be stored? How can the notion of "best" edge be formal¬

ised? How does texture relate to variable-width edge detection?

Tnese are some of the questions that must be answered if edge opera¬

tors of several sizes are to be successfully applied to an image.

It has been recognised for some time that solving the issue of

detecting edges of different widths and relating them in a coherent

way is central if progress is to be made in early visual processing.

Insight into this problem has been provided by Witkin (1983j with his

"scale-space" filtering ideas. He solved the problem of matching

edges at different widths by:

1. using a continuously-varying scale parameter

2. using a second derivative convolution function with particu¬

lar properties which guarantees that certain constraints

will hold on the zero-crossing contours at different

scales .

His basic system, which is currently applicable to one-dimensional

signals only, convolves the signal, f(xj, with (in theory) a contin-
2

uum of Gaussian second derivatives with varying variance {o J. This

produces a two-dimensional output since the convolution is a function

of both the position on the signal and the variance of the Gaussian.

This output is called a scale-space image. A line of constant a in

the image represents the convolution of the original signal with the

second derivative of a Gaussian. A line of constant position (x) in

the image represents the convolution output at that point as o is

varied. Witkin chose to use the Gaussian because as o is decreased

additional zero-crossings may appear but existing ones never



disappear (although they may move in the x direction). As a result,

if a "line drawing" of the scale-space image is formed from the

zero-crossing contours, it consists of a set of arches (assuming the

horizontal variable is x and o decreases from top to bottom).

Witkin introduced two assumptions on which he based his claims

for the utility of the representation.

1. Zero-crossings on the same zero-crossing contour (across

variations in a) arise from a single underlying event.

2. Tne localisation accuracy of the zero-crossing contours

increases as o decreases.

The first of these is clearly important in any system attempting to

label image entities with their scene meaning since it provides a way

of grouping the edges produced by a single scene phenomenon at dif¬

ferent scales. Taken together the two assumptions mean that the more

reliable (in terms of noise performance) but less accurate zero-

crossings found with large o values can be easily related to the

corresponding (and more accuratej zero-crossings produced with small

a values, thus holding out the prospect of an edge detector which

is both robust and accurate. It is interesting to note that some of

the zero-crossing contours illustrated in Witkins scale-space images

exhibit considerable variation in the x-direction. This shows why

attempts to use only a few mask sizes (corresponding to a few values

of o in Witkin's system) have run into difficulties in matching edges

found with different masks.

Finally, Witkin investigated the use of a ternary tree represen¬

tation of the scale-space image and produced criteria for pruning the

tree to effectively filter the image to produce versions of the ori-



ginal signal which emphasised those features which were found to be

particularly noticeable to human observers.

An earlier attempt to investigate these issues was undertaken by

Rosenfeld and his collaborators (Rosenfeld & Thurston 1971 ; Rosen-

feld, Thurston & Lee 1971} as detailed in fig. At each point in

an image the average intensities of a pair of neighbourhoods on each

side of the point were differenced to give an edge value. By varying

the size and position of the neighbourhoods, edges of different

orientation and size could be found. The idea of the "best" mask

size was introduced and defined to be the size of the largest opera¬

tor whose output was significantly greater than that of larger masks

at the same point, but not significantly smaller than the next smal¬

lest mask. The idea of this being to use the largest mask which

doesn't suffer from interference from other edges, hence reducing the

effect of noise as much as possible. Non-maxima suppression was used

for edge thinning, taking into account the best mask size and orien¬

tation at each point. The output of the system was a single array of

the same dimensions as the original picture, containing a measure of

the edge magnitude at each point. It was not possible to estimate

edge width in this system because the neighbourhood size chosen as

"best" for each edge depended on the image distance to adjacent

interfering edges, not on the parameters of the edge in question.

The system was also applied to textured images using the output of a

Roberts cross operator applied to the original image as input. The

idea was that pixel values then represented the "edgeness" of the

local neighbourhood rather than its intensity. However, no attempt

was made to integrate the output of the latter system with that of

the normal edge detector.
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Fig. 3-4

This summarises the algorithm of Rosenfeld, Tnurston & Lee (1971 j for

variable-width edge detection. In their system four orientations

were used: horizontal, vertical, and the two diagonals.
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Some experiments were also carried out using non-overlapping

neighbourhoods of a range of sizes in a top-down way. The edge

points found using large neighbourhoods were used to decide where to

look for edges of smaller neighbourhoods. However, no attempt was

made to integrate the output of different-si zed neighbourhoods.

This idea of using the edges in a reduced resolution version of

the image to guide the search for edges at higher resolution was

applied to finding human profiles in images by Kelly (1 971 J , and

later generalised by Tanimoto & Pavlidis (1 975 j and Tanimoto (1 976 j.

The object of this work was not-to find edges of different widths but

to increase the computational efficiency and robustness of the vision

process. Starting with the original image, a reduced resolution ver¬

sion is produced by averaging the intensities over a 2*2 neighbour¬

hood to produce the new intensity value. This process may be carried

out until as small an image as desired is obtained, as shown in fig.

3.5. The complete data structure thus formed is normally referred to

as a pyramid.

Although these experiments had been carried out with multiple-

size edge detectors, the goal of the systems concerned was mainly to

achieve improvements in speed with some added noise rejection. It

had not been explicitly stated that many images contain edges of a

wide range of widths, and that representing these edges in a coherent

way was an important problem. The first person to address these

issues in some detail was Marr , whose work in this area culminated in

a comprehensive theory of edge detection (Marr & Hildreth 1980) .

Generating the final edge representation took place in three steps

(in practice the first two are combined}:

1. Pass the image through several smoothing filters centred at dif-
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Fig. 3.5

The pyramid image data structure. Starting with the original image,

an averaging operation is used to produce a reduced resolution image.

Most commonly, 2*2 neighbourhoods at level n are averaged to produce

a single pixel intensity at level n-1, as shown above. Various pro¬

perties of these data structures have been discussed by Tanimoto

C1976 J.
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ferent spatial frequencies.

2. Find €1i§ edges in each filtered image.

3. Consider the edge evidence from each channel to produce the final

representation.

This is illustrated in fig. 3« 6 below:

image-

smoothing

filter

edge

detection

smoothing

filter

edge

detection

raw

primal

sketch

Fig. 3.6

The overall structure of the Marr/Hildretn system.

Their choice of smoothing filter was based on two constraints.

First, since the motivation for filtering was to reduce the range of

intensity changes, the filter should have an approximately bano-pass

response. Second, they claim that since the entities in the scene

which give rise to intensity changes, such as obscuring boundaries,

are spatially localised then the filter also needs to be localised in

the spatial domain. Marr and Hildreth call this the "constraint of

spatial localisation". These two requirements are conflicting, but

the frequency response which best satisfies them has been shown to be

a Gaussian curve.

It is interesting to note that it is not sufficient for the

filter simply to extract edges within a certain narrow frequency
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band, removing all others. An ideal bandpass filter produces echoes

of strong edges because of its extent in the frequency domain. Con¬

sidering a single line of the image as a 1-d signal, and taking this

idea to the limit, if we could extract the (1 —d) component of the

line at a single frequency we would get a constant amplitude sine

wave, which would not be very informative about the position of

edges. It seems that it may be more fruitful to examine desirable

properties of the smoothing filter in the spatial domain rather than

the frequency domain. This explains Marr and Hildreth's need for

their constraint of spatial localisation.

To detect edges Marr and Hildreth use the second derivative. In

particular, they chose to use an orient at ion-independent second

derivative operator for computational efficiency, namely the Lapla-

cian. In other words, their theory suggests that the image is first

convolved with a 2-a Gaussian filter, then the Laplacian is applied.

In fact, these two steps can be combined so that the image can be

2
convolved with the Laplacian of a Gaussian, V G. The edges being the

2
zero crossings of V G*I, where * is the convolution operator. To

find the underlying edge direction, the direction of the contour of

the zero crossings may be used provided certain restrictions hold on

the variation of intensity in the vicinity of tne edge. The zero

crossings are represented by short linear segments together with the

slope of the convolution output, taken normal to the zero crossing

direction.

Finally, the zero crossings of several channels are combined

using a set of parsing rules, based on what Marr and Hildreth call

their "spatial coincidence assumption", which is:

If a zero-crossing segment is present in a set of independent
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2
V G channels over a contiguous range of sizes and the segment
has the same position and orientation in each channel, then the
set of such zero-crossing segments may be taken to indicate the
presence of an intensity change in the image that is due to a

single physical phenomenon (a change in reflectance, illumina¬
tion, depth or surface orientation].

This assumption is particularly important for the Marr/Hildreth sys¬

tem because it provides the key link between scene/imaging events and

image edges on which the integration of the outputs of several chan¬

nels are based. In the theory, Marr and Hildreth provide parsing

rules for dealing with isolated edges, bars, and blobs. For each of

these three classes a set of properties, {position, orientation, con¬

trast, length, width} is calculated. This is easy for an isolated

edge using the smallest channel to which the edge appears to be a

step (as opposed to a ramp] . For bars, small channels must also be

used to avoid interference. Blobs are small closed contours whose

properties are computed from fitted rectangles.

The final representation, the "raw primal sketch", thus consists

of a large number of lists, each containing the parameters listed

above for an isolated edge, bar, or blob.

By considering the Marr/Hildreth theory in the light of the dis¬

cussions in chapter two, we can see that it made several contribu¬

tions in two areas:

1. The explicit realisation:

a) that the input to an edge detector needs to be well defined,

b] that edges in images of natural scenes occur in a range of

widths.

2. The outline of an appropriate overall structure, showing that the

important problems are:

a] the design of smoothing filters,

b] designing systems to find the significant edges of a
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particular width,

c) finding a way of combining the channel outputs into a useful

representation.

Note that in a particular system it may be appropriate to combine

2(a) and (b) by designing a family of related masks which each detect

edges of a certain width, rather than by prefiltering the image.

The detailed aspects of the Marr/Hildreth theory need to be

improved. Haralick (1984) has shown that the single channel

Marr/Hildreth edge detector performs significantly worse than other

detectors of comparable size. The parsing rules for multi-channel

integration were also unsatisfactory. Typical images don't just con¬

tain isolated edges, (isolated) bars, and blobs. They also contain

corners, texture, highly non-linear, but nevertheless significant,

intensity variations, etc. The Marr/Hildreth system was not capable

of dealing with these. Hilcireth (1980j suggests that more must be

known about the requirements of the succeeding processes before the

outputs of different channels can be combined successfully into a

useful representation.

Another edge detection system with a similar overall structure

has oeen devised by Canny (1 983) . Derivation of the edge detector

masks is undertaken by specifying a set of three mathematically-

formulated performance criteria and finding the optimum mask. The

three criteria are:

1. There should be a low probability of error.

2. The edge points should be found as accurately as possible.

3. There should only be one response to a single edge.

When all three criteria are used the best operator turns out to

be closely approximated by the derivative of a Gaussian. In fact,
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the result of applying the criteria is a family of operators of the

same shape but different size, depending on the desired error rate

and accuracy of localisation. Hence, Canny's method is useful for

generating a series of masks of different sizes. Notice that the

three criteria do not actually contain a definition of an edge. For

instance, the first criterion specifies that there should be a low

probability of marking non-edges and of failing to mark true edges

without specifying what an edge is. In fact, the criteria were

applied to an ideal step edge, so the resulting operator is optimal

only for that input. Canny also developed optimal detectors for

ridge and bar edge types, however, he found difficulty in integrating

the ridge detector output with the step-edge detector output and did

not attempt to integrate the output of the bar detector. He suggests

that this problem of integrating different edge type representations

into a single description of the intensity changes in the image is

one which still needs a lot of work.

To integrate the edges found at different scales, Canny uses

what he calls a "feature synthesis" approach. The smallest operator

being used is first applied to the image. Then, the edges produced

are used to synthesise the output of a larger mask which would result

if these were the only edges in the image. These edges are compared

with the actual edges generated by the larger mask. Any additional

edges in the actual output are added to those produced by the smaller

mask to produce a complete set of the edges found by the two masks.

By concentrating mainly on step edges the multi-scale integration is

simplified. Additionally, the third performance criterion guarantees

that only those edges which are a significant distance apart are

found. This effectively removes the problem of microtexture, i.e.

image areas producing many edges close together - these are filtered
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out in Canny's system.

Interestingly, in the light of the design presented later in

this thesis, if only the first two performance criteria are used, a

difference of boxes operator performs best. In fact, it appears to

give maximum signal to noise ratio with arbitrarily good localisa¬

tion. However, because it has a high bandwidth it tends to produce

other peaks near the true one generated by the edge. This is not in

conflict with the claim that it maximises the signal to noise ratio,

since that only applies at the step. By adding his third criterion,

Canny effectively adds a smoothing requirement. Thus the trade off

is localisation accuracy and high bandwidth versus possible multiple

responses to a single edge. Canny chose to eliminate the multiple

response problem by adding his third criterion.

A potential problem with all edge detection systems is aliasing.

If the analogue image focussed on the target contains frequency com¬

ponents greater than twice the sampling frequency then aliasing will

occur, the high frequency components being reflected down about the

sampling frequency. Because it involves some low-pass filtering,

Canny's system reduces the effect of aliasing both in the original

image and in applying several operators at different scales. The

problem is more severe with difference of boxes operators and is dis¬

cussed in detail in chapter six.

Canny's operator for step edges is similar to the one used by

Witkin (1983) in his work on scale-space filtering. In terms of the

scale-space image (,in the 1-d signal case] Canny's system involves

using a finite set of masks rather than a continuum as Witkin did.

This means that the multi-scale integration is more difficult, since

a correspondence problem is introduced, i.e. which edges at one scale
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should be paired with which edges at an adjacent scale? Recall that

inWitkin's system additional edges (as represented by zero-crossings

in the second derivative of a Gaussian convolution) appear as the

mask size is reduced but that existing edges cannot disappear. Thus,

we might expect the edge set found by the smallest of Canny's masks

(as represented by peaks in his approximately first derivative of a

Gaussian convolution) to contain the complete set of edges for the

image. If this is so then why bother with the larger masks? One

reason is that the convolution output in Canny's system is thres-

holded, so that only peaks greater than a certain height are

retained. Faint edges may not be strong enough, relative to the

noise, to be detected by the small masks, but may be found with

larger masks which can extract edges with a smaller signal to noise

ratio. Canny provides a partial solution to this problem by using an

adaptive thresholding technique. If any part of an edge contour is

above a high threshold than all connected parts of the same contour

above a second, lower threshold are also marked.

It is not clear whether Canny's system notes the width of each

edge in the final representation. It is also not clear how it deals

with complex cases, such as the situation where a sharp intensity

change, e.g. a reflectance edge, is superimposed on an extended

change, e.g. a blurred shadow. However, Canny's system is probably

the most successful to date.

I*! T*16 Use of Edge Detectors in Edge Labelling

Since an image is a 2-d projection of a 3~d scene, there is

insufficient data in a single image to reconstruct the scene which

produced it. Even with two or more images, it is not possible to

perform a unique reconstruction unless assumptions are made about the
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nature of the scene, i.e. the range of possible scenes is constrained

in sane way. In this thesis we are concerned with designing an edge

detector for intensity-based edge classification, which is one par¬

ticular type of constraint-based early processing. The goal of edge

labelling is to classify image edges as particular types of scene

boundaries, and possibly also to gain some idea of surface shape.

For a simplified domain this was shown to be theoretically possible

by Barrow & Tenenbaum (1 978). The overall strategy has been outlined

in a more practical context by Fischler et al (1982) .

An early attempt by Horn (1 974) to determine true reflectances

from image intensities was later generalised by Ullman (1976) to

include light source detection. However, these methods only applied

to "achromatic Mondrians", which are flat, evenly lit surfaces of a

collection of rectangles of different reflectances (but not colours).

There was no need for edge detection since the method of processing

could be applied along scan lines of the image and be guaranteed to

cross edges normally. It is interesting to note that Ullman's "S"

operator basically compared intensities and intensity gradients on

either side of the edge. The same operator was later applied by

Forbus (1 977 ) to the task of identifying highlights in more general

scenes, but in this case it was applied along straight lines manually

selected from the image.

Witkin (1982J has presented a method for finding edges in images

generated by obscuring and shadow boundaries. The basic idea is that

because the surfaces on either side of an obscuring boundary are

separated in space, image curves on either side of the resulting edge

should correlate badly. On the other hand, curves on either side of

a shadow edge should correlate well (under a linear intensity
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transformation to account for the shadow], because they probably lie

on the same surface. Clearly, finding edges accurately is important

in getting the correct correlations. Although he mentions using an

edge detector, Witkin used edges traced by hand for the examples

given in his paper, which seems to imply that the edge detector was

not entirely satisfactory.

The spatial arrangement of edges can also help to decide their

type, as has been shown by Binford [1981 J. The ancestry of this work

can be traced to early blocks world edge-labelling programs. An

example is shown in fig. 3.7, where, if the edges labelled "s" have

previously been identified as shadow edges, then the other edges can

be identified as obscuring, surface orientation, and reflectance

edges respectively.

3.5 Conclusion

In view of the significant body of work noted above, deriving

scene boundary interpretations from image edges is an important goal

of early processing. To achieve this goal, edge detection must pro¬

vide a suitable input to the edge labelling process, but edge detec¬

tors do not appear to be satisfactory in this respect as yet. From

the complexity of image edges and the results of previous work in

this area, the appropriate overall structure suitable for such a sys¬

tem seems clear. It should be mul ti -channel; significant intensity

changes must be found separately in each channel, then integrated

into a single coherent representation. In the next chapter, we begin

the synthesis of a system based on this structure designed to satisfy

the goals of edge detection listed at the conclusion of chapter two.
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(a)

(b)

Fig. 3.7

If the edges labelled "s" in each of the above have previously been

identified as shadow edges, then the other edges are most likely to

be:

(a) obscuring edge

(b) surface orientation edge

(c) reflectance edge

[After Binford (l98l)J.
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_4. The Initial Image Representation

_4.J_ Implications of the General Goals

In the preceding two chapters, suitable goals for edge detection

for constraint analysis have been derived, based on analysing the

needs of the succeeding process, and an appropriate structure for the

overall system has been chosen, based on previous work in the field.

The need for an improved edge detection system to enable constraint

analysis to be automated was also demonstrated. In this chapter, the

synthesis of a system which is specifically designed to satisfy the

goals of edge detection for edge labelling, which are restated below,

is begun.

Goals of Edge Detection

General

1. Find all the significant intensity variations - they are all

caused by something in the scene.

2. Relate significant intensity variations to their scene meaning.

Although this is really the job of the constraint analysis sys¬

tem, it may be possible to achieve some preliminary semantic

labelling during edge detection.

Step-like Edges

3. Find and represent step edges as accurately as possible.

4. Try to maintain a clear relationship between an edge description

and its underlying image intensities. In particular, know

which pixels are mixed and which are pure.

The greyscale value of a pixel in a digitised image of a typical

scene depends on many factors. Some of these, such as the relation-
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ship between image intensity and greyseale value, can be assumed to

be constant and known. Others, such as the angle between elements of

surface and the imaging device, are not constant and are unknown.

The object of constraint analysis is to solve for some of these unk¬

nowns .

Due to the complexity of the scene/image relationship and the

reduction in dimensionality, it is always necessary to make assump¬

tions about the scene and the scene-to-image transformation. These

assumptions are manifested in a search for expected relationships

among pixel intensities. Image analysis can be considered to consist

of searching for particular intensity patterns and deducing scene

properties from their parameters and relationships. In all but the

simplest systems this complete process takes place over several

stages. Each stage can be thought of as a process-representation

pair. Given the image as input, some process is used to transform

the image to produce an initial image representation. This fi'st

level representation forms the input to another process which

transforms it into a second-level representation, and so on. To

begin with, it is often useful to think only of the representations,

the appropriate processes can be designed later, once their specifi¬

cations, i.e. input representation, output representation, and the

relationship between them, have been determined. Of course,

representations have to be chosen for which it is possible to find

processes able to generate them, so compromise is usually necessary,

and the overall system design may require several iterations.

The role of a representation is to explicate certain properties

of the data set concerned, usually at the expense of suppressing oth¬

ers if the size of the representation is to be kept within bounds.
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Typical early processing systems use two representations. The first

makes explicit certain pixel positions and properties in the image

which are in some way interesting. The second usually explicates

certain relationships among entities in the first representation, for

example, representing certain sets of data points which satisfy some

geometric property, such as connectedness, as a single entity.

The choice of system architecture described in chapter two and

the resulting goals of edge detection rested on the veridicality of

the image. In other words, pixel intensities and relationships among

them are a faithful representation of the scene concerned under pro¬

jection. Since the image is veridical, and only makes sense as a 2-d

projection of a 3~d scene, the best way to analyse it is to use the

veridicality and attempt to label image entities with their scene

meaning, even at the early processing stage. This principle and the

goals of edge detection should direct our choice of initial image

representation. However, since relatively few simplifying assump¬

tions were made in deriving the goals (for example, the occurrence of

texture has not been ruled out), it is to be expected that achieving

them will be a complex process using several intermediate representa¬

tions. At this stage we must try to decide what is appropriate for

the initial representation of the image.

The first goal requires that all significant intensity varia¬

tions should be found. This implies that every possible intensity

change location should be examined and the magnitude of the change

should be classified, at least as significant or not. In a digitised

image, every boundary segment between two adjacent pixels is such a

location, where the difference in pixel intensities gives the magni¬

tude of the change.

68



Alternatively, some measure of the intensity gradient at each

pixel could be found using a neighbourhood centred on the pixel.

This approach suffers from the disadvantage that it requires certain

assumptions to be made about permissable intensity patterns, for

example by fitting a plane to the intensities in the neighbourhood.

Since the first goal of edge detection requires the identification of

all intensity variations, this approach will not be used here.

Further support for the simple representation suggested above

comes from the third and fourth goals of edge detection, which

require step edges to be found as accurately as possible while main¬

taining a simple relationship between the edge representation and

pixel intensities. Most representations based on local neighbour¬

hoods effectively low-pass filter the image, resulting in a distor¬

tion of phenomena with significant high-frequency components, such as

step edges. Consequently, the accuracy of edge localisation is

reduced (witkin 1983}. It has been shown, for certain types of edge

detector, that there is an uncertainty principle relating sensitivity

to localisation (Canny 1983}. In other words, the better an edge

detector performs at extracting edges from noise, the worse will be

its localisation ability and vice versa.

Since the ultimate goal of the edge detection system described

here is to provide a suitable input for constraint analysis, some

further light may be shed on what is a "significant" intensity varia¬

tion by considering the semantics of intensity changes. As we saw in

chapter two, intensity changes occur over a wide range of scales in

the image. Parts of the image where the intensity is changing

quickly are particularly interesting because they normally correspond

to interesting events in the scene. So we begin by dividing the
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range of intensity changes into three classes: uniform, fuzzy, and

step, basing the classification on scene/image semantics.

A region of the image containing only small intensity changes -

known as a uniform region - normally corresponds to a single surface

in the scene whose shape, incident light, and reflectance properties

are changing slowly.

An image region containing intensity changes of an intermediate

magnitude - a fuzzy region - could, for example, be caused by a sha¬

dow from an extended source, indirect illumination, a change in sur¬

face orientation, or an extended change in surface reflectance pro¬

perties.

A step region in the image corresponds to what would be an ideal

step discontinuity in intensity in a perfect imaging system. These

are most commonly caused by obscuring boundaries where one object

passes in front of another. Step-like edges may also be caused by

shadows from point sources, sharp changes in surface reflectance pro¬

perties, or parts of a surface whose orientation is changing very

quickly.

In signal processing terms this classification is relatively

arbitrary, but it is justifiable on a semantic basis since one of our

general goals of edge detection is to relate image intensity varia¬

tions to their scene counterparts. For any particular image undei—

standing system the boundaries between the classes will depend both

on the overall goals of the system and on the detailed performance of

its image acquisition hardware.

The spatial resolution of the imaging device is particuarly cru¬

cial, since it limits, via the sampling theorem, the highest spatial

frequency of change the system will "see". For any practical imaging
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device a step edge will be blurred to some extent, resulting in it

not being possible to distinguish step edges from fuzzy regions sim¬

ply by thresholding. This is not only due to the sampling frequency

being too low, but is also caused by the non point-like nature of the

sampling function. That is, the receptive field of each pixel covers

a finite area and has a particular spatial response. Taking this

into account, the formal definition of a step edge given later does

not depend only on the magnitude of the intensity step. This diffi¬

culty in distinguishing steps and fuzzy regions further justifies

choosing an initial representation which separates intensity changes

into one of just two classes; significant or not. Later, significant

intensity changes can be subdivided into fuzzy regions or steps by

considering the spatial distribution of the intensity change.

The simplest way of carrying out the above suggestions, i.e.

flag each boundary segment between adjacent pixels if the correspond¬

ing intensity change is significant, is to use first differences,

followed by thresholding the magnitude of the difference.

To summarise this section:

1. We want to identify every "significant" intensity change in

the image.

2. Ideally, we would like to separate intensity changes into

three classes: uniform, fuzzy, step.

3. (2) is not possible only on the basis of intensity change,

so we begin by labelling intensity changes as significant

or not.

4. To avoid making assumptions about the underlying intensity

function, we should use the simplest method possible.

5. In practice, the first processing step is first differencing
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followed by thresholding.

_4._2 Thresholding in Noise

The conclusion of the preceding section was that the initial

image representation should contain a flag for every boundary segment

between adjacent pixels where the value of the flag indicates whether

or not the corresponding pixel boundary is significant. If we had

access to a noiseless digitised image we might begin by labelling the

boundary between pixels and with intensities 1^ and I2 as "pri¬
mary" (significant) if

In other words any difference in the greyscale values of the two pix¬

els would indicate the presence of a significant boundary.

However, we may only be interested in intensity changes which

are greater than a certain magnitude, in which case we could increase

the significance threshold to some larger value. Given a particular

imaging device it would be relatively easy to work out the limit this

puts on variations in image irradiance. If desired, one could then

compute, for example, how much a particular surface, under known

scene layout and illumination conditions, would have to be changing

in shape to surpass the threshold. Alternatively, one could turn

this computation around and decide what was significant in scene

terms, then calculate the resulting minimum variation in image inten¬

sity for use as the threshold setting.

This approach is complicated by the presence of noise, which

means that the value and method of application of any threshold

chosen for the kind of reasons given above may have to be modified.

All image acquisition systems suffer from noise, which arises both in
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the imaging device and the associated electronics. The first problem

is to characterise the noise. If a solid state camera is being used,

preprocessing may be necessary to correct for the variable response

of the individual detectors, which can be large relative to the ran¬

dom noise (Binford 1981 ).

When using a vidicon it's normally assumed that adjacent pixels

have similar responses, although there may be significant variation

over the whole target area. For random noise we follow the conven¬

tional and reasonable assumption that the noise probability density

function is Gaussian or normal. The parameters of the distribution

can be found by several methods. One, used by Herskovits and Binford

(l970j, is to capture an image of a uniform scene and average pixel

intensities over local neighbourhoods, comparing the average with the

pixel intensity in the centre of the neighbourhood to find the vari¬

ance. A more accurate, but also more computationally expensive,

method is to capture several images of the same scene and use

corresponding pixels in each image to calculate the noise parameters.

One problem with this method is the potential existence of periodi¬

city in the scene lighting.

The first step in the edge detection system described here is

first differencing, followed by thresholding the magnitude to obtain

the significant intensity changes. Since the image intensities are

affected by noise, so are the first differences. This makes the

choice of threshold important. If it is too low, many spurious edges

will be generated by noise. On the other hand, if it is too high,

the sensitivity of the system will be needlessly reduced. Different

images have different edge distributions, so the selection of a best

threshold may be an image-dependent task. Ideally, it is desirable

73



to automatically find the threshold for any given image.

To find an automatic threshold selection mechanism, we must be

able to measure the utility of the output as the threshold is varied.

The best threshold can then be found. We describe the effect of

noise on intensities using an information-theoretic communication

channel model (Gallager 1968). This provides access to a body of

theory which is ideally suited to describing the problem noted above.

The image itself and estimates of the noise statistics are

available. To fully specify the noise we must know both its distri¬

bution of intensity values and the spatial layout of those values.

In this thesis, we assume that the noise statistics do not vary

across the image plane. We also assume that the noise on each pixel

is stationary and independent.

Assume, for the moment, that the ideal distribution of first

differences in the image concerned is also available, i.e. the

noise-free distribution of first differences. If this distribution

is I, we have

imax

I lU) = 1
i=-imax

where imax is the maximum first difference amplitude. If the first

differencing threshold is denoted by s, the probability of no-

boundary at a particular location in the noise-free image is given by

P(0)= I l(i)
i=-s

and the probability of a boundary at a particular location is
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-s-1 imax

p(0- I l(i) + I l(i)
i=-imax i=s+1

These are the a priori probabilities of no-boundary and boundary

respectively.

We next estimate the effect of noise on the ideal first differ¬

ence distribution to generate the corresponding noisy distribution,

from which we can find the probabilities of no-boundary and boundary

in the noisy image. Since the noise distribution on pixel intensi¬

ties is known, the corresponding distribution on first differences is

easily found. The effect of noise on any particular element in the

ideal distribution can then be computed. This can be represented by

a set of conditional probabilities of altering the first difference

amplitude, and can be illustrated graphically in a transition

diagram, a simple example of which is shown in fig. 4.1. Each transi¬

tion is labelled with a conditional probability, namely, the proba¬

bility of that transition •..•ccurring given that an edge of the magni¬

tude indicated on the left has already occurred. The set of transi¬

tions is represented by N(j):

jmax
I NCj ] = 1

j=-jmax

To obtain the complete noisy distribution we apply the set of noise

transitions to every element in the noise-free first difference dis¬

tribution and sum over all impinging noise transitions for each out¬

put element. In other words, we convolve the noise distribution with

the noise-free distribution of first differences.
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transmitter receiver

Fig. 4.1

Each line in a transition diagram indicates a conditional pro¬

bability of the input symbol at the left of the line appearing

as the output symbol at the right end of the line.

Call the output (noisy) first difference distribution 0:

imax

I 0(..J-1
k=-imax

i.e. the range of the output signal is limited to that of the input

signal. In practice this has no effect, since edges of such large

amplitudes don't usually occur. In terms of the input and noise dis¬

tributions, 0 is given by:

imax jmax
0(k)= I I N(j)*I(i) : k=i+j

i=-imax j=-jmax

and the output probabilities of no-boundary and boundary are given by

Q(0)= I 0(k)
k=-s
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-s-1 imax

Q(1)= I 0(k) + I 0(k)
k=-imax k=s+1

Having calculated the a priori and a posteriori probabilities of no-

boundary and boundary, we can begin looking for a way of measuring

the utility of a particular threshold choice. One appropriate set of

measures is provided by information theory. Although information

theory has been applied to threshold selection before [Pun (1 980},

Johannsen & Bille (1982]] the effect of noise has not previously been

included.

For instance, we might initially consider maximising the infor¬

mation content (entropy) of the output (noisy) distribution. The

appropriate formula for the entropy is

H=-Q(o)log2Q(o) - Q(1)log^Q(1) bits/boundary

This is a maximum when q(o)=q(i)=0.5, i.e. it would always recommend

a threshold which produced an equal number of boundaries and no-

boundaries. This is undesirable because in typical images there are

many fewer real boundaries than no-boundaries, so equalising their

probabilities will generate many spurious boundaries due to noise.

What is really required is a measure of the similarity between

the noise-free and noisy edge maps. In other words, given an edge

map for the noise-free image resulting from a particular threshold

choice, we want to know how much the edge map produced by using the

corresponding threshold on the noisy image will be corrupted. If we

think of the noise generation process as a communication channel,

with the noise-free distribution representing the transmitter alpha¬

bet probability distribution, the effect of noise on the edges

representing the effect of errors in transmission, and the noisy
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distribution representing the receiver alphabet distribution, what we

require is a measure of the information transmitted over the channel.

With conventional communication channels, the channel behaviour is

fixed by its physical properties, and maximising channel capacity

becomes a process of finding the transmitter alphabet distribution

which best matches the channel (Gallager 1968). In our case the

situation is different because both the transmitter probabilities and

channel transition probabilities depend on the threshold choice.

Basically, we want to find the value of threshold which gives the

transmitter and transition probabilities which maximise the informa¬

tion transmitted over the channel.

In conventional information theory, the measure of the amount of

information transmitted over a noisy channel is given by the mutual

information of the source and receiver. This can be justified as

follows. First, consider a noiseless channel as fhown in fig.

4.2(a). The entropy of the source, h(s^), is given by

k

H(s1)= - I p(a|<) l0S2p(ak) bits/symbol
k=1

for a source alphabet [a^...a^...a^j. Since the channel is noise¬
less, no errors can occur, so the entropy of the receiver, h(s ),

will be the same as that of the tranmitter, i.e.

h(s1) = h(s2)
Also, in the noiseless channel, the conditional probabilities of the

transmitter symbols given the receiver symbols will be

0 j#k
p(a. lb . )= .k 1 j ; 1 j =k

and so the conditional entropy of the transmitter given the receiver,

given by
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K K

H(S1|S2)" J* p(akana bjl l0gp|a>.)k = 1j = 1 J v k1 j;
will be zero. This follows from the fact that the receiver specifies

the transmitter (and vice versaj in the absence of errors.

Now consider the case of the noisy channel, as shown in fig.

4.2(b). In this case, the receiver entropy will not be the same as

the transmitter's in general, and the transition probabilites will be

nonzero for j=k. The conditional entropy h(s^|S,J is now nonzero
and, in fact, measures the freedom of the transmitter with respect to

the receiver. In other words, it measures the information lost in

the channel. Thus if we take the difference of the information ori¬

ginally available, as measured by the source entropy, and the infor¬

mation lost in the channel, as measured by the conditional entropy,

we get a measure of the information transmitted over the channel.

This measure is known as the mutual information of the channel, i.e.

I(s1 ,s2) = H(s1 )-h(s1 |s2j
K K K

- I p(a Jlog-r—J- i I p(a and b ) log , ]
k=i K p^V k=ik =1 k J PLakibjJ

K K p(a jb.J
= I I p(a and b jlog , |J
k-i j-1 k J PlakJ

or, since we can also think of the freedom of the receiver with

respect to the transmitter,

K K Pl'b |a j
l(srS )= I I p(a and b jlog——1 ^

k = 1j-1 k J Pl°jJ
K K p(b.|a J

X(S , S )= I i p(b |a j p(a Jlog—— bits/symbol' ^
k =1 j = 1 J k k Pl°jJ

In the application described here, the thresholding operation

reduces a multi-symbol channel to a binary channel. Ideally, we
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H(S-) S1 S2
h(s j) = h(s2)
h(s1\s2)=o
i(svS2)=h(s1)

H(S2)

(a)

H(S1)

NOISE

S1
>

s2

h(s1)th(s2>
h(s1\s2)*0
i(s1,s2)=h(s1)-h(s1\s2)

H(So)

(b)

Fig. H.2
In the noiseless channel, shown in [a], the source entropy is the
same as the receiver entropy and because the channel has no freedom
of choice the conditional entropy of the transmitter with respect to
the receiver is zero. In the noisy channel, shown in (b), the source
and receiver entropies are no longer the same and the conditional
entropy becomes a measure of the information lost in the channel.
Taking the difference of the source entropy and the conditional
entropy produces the mutual information, which is a measure of the
information transmitted over the channel.
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would like to select a threshold on the noise-free edge map from

semantic considerations, then find the equivalent threshold on the

noisy edge map producing the maximum information transfer over the

binary channel. However, because of the difficulty of choosing a

threshold on semantic grounds we begin with a method for finding the

threshold which simply maximises information transfer over the binary

channel unconditionally. In terms of first differencing we find the

threshold which, when applied to the noisy first differences, pro¬

duces the edge map most similar to that which would be obtained from

the noise-free first differences using the same threshold.

Remembering that the mutual information is the difference

between the source entropy, which is a measure of the information

available, and the conditional entropy, which is a measure of the

information lost in the channel, we can interpret the maximisation as

follows. Beginning with a very high threshold value, we have small

source entropy because of the imbalance in the probabilities of edge

and no-edge (few edges generated), and low conditional entropy

because the high threshold produces a small probability of error (few

spurious edges). As the threshold is decreased, the source entropy

increases (more edges generated) as does the conditional entropy

(more spurious edges). For a typical first difference distribution

(unimodal, peak around zero), the conditional entropy initially rises

more slowly than the source entropy. The threshold selected is the

one where reducing it any further increases the conditional entropy

more than the source entropy. This means that we should obtain the

threshold producing the largest number of significant edges con¬

sistent with keeping the number of erroneous edges small.
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Since we are only interested in whether an edge is significant

or not, the system is represented by a binary channel as shown in

fig. 4.3.

noise-free

distribution

noisy

distribution

Fig. 4.3

The transition diagram for a binary channel representing the

effect of noise on the thresholding process.

P(o), P(1), Q(o), and Q(1) are already known, additionally it is

necessary to find EQ1 , the probability of a spurious boundary being
generated due to noise, and E1 Q, the probability of a real boundary
being lost due to noise. This information can be obtained from the

much larger transition diagram representing the greyscale system.

Consider an individual transition, whose conditional probability is

given by n(j), from l(i) to o(k), i.e. k=i+j. Four different types

of such transitions occur as shown in fig. 4.4.

To find the probability of the transition labelled in fig.

4.3, we sum l(i)*n(j) for every transition such that
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Fig 4.4

This shows the four types of transition on the full system transition

diagram, enabling it to be reduced to a binary channel. The four

types are:

a] The magnitude of this boundary both before and after noise

is applied is not significant.

b) In this case, a boundary which is not significant becomes so

due to noise.

c) Here, a significant boundary loses its significance due to

noise.

d] Finally, in this case a significant boundary is not suffi¬

ciently affected by noise to lose its significance.
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and | i+j | >s

Similarly, to find the overall probability of the transition E , we

sum l(i)*N(j) for every transition for which

|i|>s

|i+j |*s

Now E^ and E are conventionally given as conditional probabili¬
ties, and since p(b|a]=p(a and b]/p(a) we must divide the overall

probability by the appropriate source probability

imax jmax
I I l(i)*N(j)

i=-imax j=-jmax
pTO]E01

imax jmax
I I

i=-imax j=-jmax
j o" pTT]

The general formula for mutual information is

imax jmax p(b . la.)
I(S1'S2J". 1 . . 1 . P(bJ)ai).p(a.)log2 ^ j1i=imin j=jmin J jJ

where the a. refer to transmitter probabilities and the b, to
i j

receiver probabilities. In the particular case of the binary channel

of fig. 4.3, we get
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I(s,,s2). (1-E01 )PC0)1oe2 ♦ E01P(0)log2 ^

E10 (1-Ei0)
+ E10P(l)log2 + (1-Elo)p(l)log2 Q[-| j bits/edge.
In applying this formula, the noise-free distribution of first

differences is not available. However, the noisy distribution of

first differences is available and can initially be used as a noise-

free distribution. Applying the method produces the mutual informa¬

tion as a function of the threshold, and also produces an output dis¬

tribution, which is the input distribution blurred by noise. This

output can be used as another input distribution to obtain a second

mutual information function and another blurred distribution. This

process can be repeated as often as desired, then back extrapolation

can be used to obtain the best threshold for the original image.

Justification for the extrapolation comes from the fact that the

sum of two variables with Gaussian distributions also has a Gaussian

distribution. If the original first difference distribution approxi¬

mates a Gaussian (which it often does in practice) then adding noise

to the image will just produce another Gaussian edge distribution

with a slightly larger variance. This follows from the fact that the

2
convolution of a Gaussian of variance with a Gaussian of variance

2 2 2
is another Gaussian with variance + a2 as shown in Appendix 1.

Hence, if the first difference distribution of the original image is

Gaussian, then successively blurring it with Gaussian noise produces

a series of Gaussian distributions with increasing variances.

Since the shape of the image distribution is fixed (i.e. assumed

Gaussian) and the shape of the noise distribution is also fixed

(assumed Gaussian) the threshold producing the maximum mutual infor¬

mation must only be a function of the ratio of the image variance to
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the noise variance. Unfortunately, it is not easy to derive an

analytical expression for this function since the integral of an

error function is encountered in the analysis. However, the rela¬

tionship between the variance ratio and the best threshold can be

investigated numerically. By generating a series of Gaussian distri¬

butions and using them to represent the image distribution of first

differences, the threshold value giving maximum mutual information

can be plotted as a function of the ratio of the first difference

variance to the noise variance as shown in fig. 4.5. It turns out

that this relationship is very nearly linear for variance ratios

between 1 and 9. In practice, the series of Gaussians obtained by

successively blurring an image distribution will not have linearly

increasing variances, but will instead have variances given by

2 2 2
a = a , + a

p p-1 n

2 2
where is the noise variance, a ^ is the variance of the original

2
first difference distribution blurred p-1 times, and o is the vari-

P

ance of the pth. blurred first difference distribution. Rearranging

this,

2 2
a a .

-P = 1 + J2n!
2 2

a a
n n

Now, in the linear portion of fig. 4.5,

TP " C1 / ♦ C2
n

where is the threshold producing the maximum mutual information on

the pth. iteration and and C2 are constants. So

S6



Fig. L.5

Threshold versus variance ratio.
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The constants, and C^, can be determined from fig. 4.5. So, given
the threshold producing the maximum mutual information on any itera¬

tion, it is straightforward to use the recursive equation given above

to find the corresponding threshold on any other iteration. In par¬

ticular, given the maximum mutual information threshold on the first

iteration, i.e. the threshold resulting from applying the method to

the first difference distribution obtained from the actual (noisy)

image, the appropriate threshold on the ideal (noise-free) image can

be obtained. The best threshold on the noise-free image is the one,

according to the method outlined here, which will give the edge map,

resulting from first differencing ar.d thresholding, most similar to

that which would have been obtained from the noise-free image.

If the distribution of first differences is only approximately

Gaussian or the variance ratio is not in the range 1-9, then the

relationships defined above will not hold exactly, but a maximum

mutual information threshold successively increasing with each itera¬

tion can still be expected and the set of such thresholds can be used

in back extrapolation to estimate the maximum mutual information

threshold on the noise-free image.

The algorithm used is as follows:

Threshold-finding Algorithm

1. Construct first difference distribution for given image.

2. For every threshold value in range compute mutual informa-
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tion I(S1 , S2).

3. Store threshold value which gives max{ l(S1 , S2)}.

4. Convolve noise with first difference distribution to gen¬

erate new first difference distribution.

5. Repeat 2-4, n-1 more times.

6. Using the n values of best threshold, extrapolate back to

get best threshold for original image.

For practical purposes, blurring the input distribution is carried

out separately from the mutual information calculation. The algo¬

rithm is summarised graphically in fig. 4.6.

The variation in the value of the mutual information as the

threshold is varied can be investigated with the aid of test distri¬

butions. A flat distribution is shown in fig. 4.7(a). As the thres¬

hold is increased the information transmitted will increase until the

source probabilities are equal (threshold in centre of range). The

information lost in the channel will be constant above a certain low

value of threshold. Hence, we expect the mutual information to be a

maximum at a threshold value of about 127, dropping off to zero sym¬

metrically on each side. The resulting graph of mutual information

vs. threshold is shown in fig. 4.7(b).

A second test distribution consisting of two equal-sized Gaus¬

sian peaks is shown in fig. 4.8(a), with the resulting graph of

mutual information vs. threshold in fig.4.8(b). In this case, both

the tendency to equalise the source probabilities, and the tendency

to reduce errors in the channel combine to produce a threshold (max¬

imum mutual information) midway between the two peaks.

To investigate the relative effect of equalising source proba¬

bilities versus minimising channel errors, the third test
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Mutual
Information
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t

difference
distribution

,, Convolve
17 with noise

Fig. 4.6
Beginning with the distribution of first differences derived from the
image, the mutual information is plotted against threshold using the
known noise distribution. The image distribution is then blurred
with the noise and the resulting distribution of first differences
obtained. Again, the mutual information is plotted against threshold
for this distribution. This process of blurring followed by calcu¬
lating the mutual information as a function of threshold is repeated
several times, as shown in fig. 4.6(a) above. Finally, as shown in
fig. 4.6(b) overleaf, the thresholds producing the maximum mutual
information are plotted and used to estimate the best threshold for
the zeroth iteration. This is taken to be an estimate of the best
threshold for the original image.

Threshold
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distribution shown in fig. 4.9(a) is appropriate. Again this con¬

sists of two Gaussian peaks, the one on the left of area 0.75 and the

one on the right of area 0.25. The resulting graph of mutual infor¬

mation vs. threshold is shown in fig. 4.9(b), with its maximum again

roughly midway between the peaks. This ability to select a threshold

in the valley between two peaks of dissimilar size is often listed as

a desirable property of threshold selection techniques.

The distribution of first differences from most real images

tends to be unimodal with a peak around zero. In this case, very low

threshold values produce a high probability of error, keeping the

information transmitted low. As the threshold increases away from

the peak the effect of errors in the channel becomes negigible but

the imbalance in the source probabilities increases, again producing

a low information transfer. The maximum information transmitted

occurs with a threshold value between these extremes.

As an example we will use the sports shoe picture (shown in fig.

5.18). The initial distribution of first difference magnitudes is

shown in fig. 4.10. Since we are only interested in edge magnitude,

the histogram is one-sided. The resulting mutual information as a

function of threshold is shown in fig. 4.11. Iterating the method

twice more produces the mutual information functions shown in fig.

4.12. Taking the maxima of these three curves and extrapolating

backwards suggests a threshold value of 18 greylevels. The edge maps

resulting from thresholds of 10-30 greylevels are shown in fig. 4.13.

Satisfactory performance of this algorithm depends on several

factors. Basically, it finds the threshold which generates the larg¬

est number of edges subject to a low probability of error. This

means that in a low-noise situation the algorithm would recommend a
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very low threshold, which may not be suitable for some early process¬

ing systems. In the limit, if we had a completely noise free image,

the algorithm would always recommend using the threshold which pro¬

duces an equal probability of edge and no-edge. This would probably

not be desirable for most systems. The behaviour of the algorithm

has already been described for several different types of first

difference distributions. For the most common type of distribution

(unimodal, peak around zero] the algorithm recommends a threshold

value similar to one a human user might choose if he or she had

access to the distributions. For atypical distributions, which could

be produced, for example, by texture field images, or by close-ups of

surfaces with strong illumination gradients, it is probably desirable

to base the choice of threshold on semantic considerations as well as

statistical ones. In these circumstances the algorithm described

above may not be ideal.

An alternative way of applying the same basic method is to first

choose a particular threshold on the noise-free distribution. This

choice could be based on knowledge of the image contents, or on other

semantic considerations. This threshold then remains fixed on the

input distribution, while the output threshold is varied and the

mutual information calculated. Selecting the threshold producing the

maximum mutual information would generate the edge map most similar

to the desired edge map resulting from the initial threshold choice.

The algorithm for this technique is given below.

Alternative Thresh old-Finding Algorithm

1. Choose desired threshold from semantic considerations.

2. Construct distribution of first differences.

3. Deconvolve noise distribution with first-difference distribution
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to produce noise-free distribution of first differences.

4. For fixed threshold in noise-free distribution (chosen in #1 ) and

for every threshold value in range for noisy distribution (con¬

structed in #2) compute l(si,S2).

5. Use threshold value gi ving max{ l(SI , S2) }.

Difficulties in applying this algorithm arise in steps 1 and 3. The

main difficulty lies in choosing a desired threshold value on seman¬

tic grounds. For a given restricted set of images, the most useful

threshold could be estimated by empirical methods, but for a more

general scene analysis system it would be better to have a theoreti¬

cally well-founded way of choosing the ideal threshold. However,

this is a problem which is, as yet, difficult to formulate, let alone

solve, so it has not been investigated in this thesis.

Deconvolving the noise distribution with the first difference

distribution is not difficult if both distributions are simply

treated as deterministic signals. It is then identical to deblurring

a (line of a) blurred image - a standard problem in image restoration

(Kimia and Zucker 1983). However, in the application considered

here, we are dealing with finite samples of statistical distribu¬

tions, so the problem may be ill-conditioned.

To summarise this chapter: For various reasons, first differenc¬

ing followed by thresholding is chosen as the first processing step.

The effect of noise on the image is modelled by a communication chan¬

nel, and the threshold which maximises channel capacity is applied to

the first differences.
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Fig. 4.7

The probability distribution, shown in fig. 4.7(a), is flat, produc¬

ing the graph of mutual information shown in fig. 4.7(b) overleaf.

The maximum mutual information occurs with a threshold in the centre

of the intensity range.
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The test probability distribution, shown in fig. 4.8(a) above, con¬

sists of two Gaussians of equal area. As with all the examples used

in this chapter, the noise distribution used was Gaussian with a

standard deviation of 7.75 greylevels. The resulting mutual informa¬

tion, shown overleaf in fig. 4.8(b), peaks in the centre of the

trough in the input distribution.
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This test distribution, above, consists of two Gaussians of unequal

area. The resulting graph of mutual information, overleaf, again

peaks in the trough of the distribution.
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This shows the distribution of first differences in the shoe picture.
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This show3 the mutual information as a function of threshold using

the distribution of fig. 4.70 as input.
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(a)

Fig. 4.72

The graph of mutual information vs. threshold, above, is the result

of using the blurred version of the distribution shown overleaf as

input. The graph overleaf is the result of using the same distribu¬

tion blurred twice.
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These edge maps show the primary boundary segments produced with

thresholds of:

a) 10

b) 18

c) 25

d) 30

The edge map shown in (bj is the one chosen by the thresholding

method.
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5_ The Single Level System

Although we ultimately want to find and represent edges of a

range of widths, it is difficult to do so in a single pass over the

image. Hence, we begin by finding sharp, step-like edges and

representing them accurately. At the same time we mark other

interesting image entities (as gradient regions or texture regions),

so that when it comes to constructing the multi-level system,

integration of the outputs of the various single-level systems will

be facilitated.

In fig. 4.10, we saw the effect of labelling boundary segments

as significant or not. It is noticeable that there seems to be two

distinct types of grouping of segments. One type consists of large

regions of the image containing many significant boundary segments,

while the other type is thin and extended. This is quite reasonable,

since fuzzy regions, for example as produced by blurred shadows, have

significant width even along the direction of steepest intensity gra¬

dient, while step-like edges are always thin in one direction,

namely, perpendicular to the edge. In view of our previous desire to

classify image intensity changes into three types (uniform, fuzzy,

and step) and since the boundary segments now labelled primary (sig¬

nificant) should include both fuzzy regions and steps, the next prob¬

lem is to distinguish between these two classes and find and

represent them in a useful way. Because of their different image

characteristics, it is necessary to utilise a range of techniques to

analyse the image further in terms of these components.

5.1_ Finding Step Edges

In view of the importance of step-like edges in the goals of

edge detection derived earlier, and since the patterns of primary
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boundary segments produced by step-like edges are more constrained,

it is advantageous to deal with step-like edges first. Recall that

the goals of edge detection which specifically apply to step-like

edges were:

- find and represent the edges as accurately as possible

- try to maintain a clear relationship between edges and their

underlying image intensities. In particular, know which

pixels are mixed and which are pure.

Since these goals refer explicitly to the mixed pixel problem and

express the need to find step edges accurately, while at the same

time making as few limiting assumptions about the nature of the

intensities in the vicinity of the edge as possible (this follows

from the general goal of dealing with all significant intensity vari¬

ations) , the method of finding step-like edges is based on analysing

how they transform under digitisation. The basic idea is to identify

constraints among pixel intensities which must be satisfied by all

step-like edges. These constraints can then be used as a test. Any

image neighbourhood whose pixel intensities violate the constraints

can be immediately excluded from further consideration. The con¬

straints can then be further utilised to represent the edges in a

useful way. Finally, if desired, the set of constraints produced can

also be used to generate an explicit formal definition of a step

edge .

5_.1_.1_ Pixel Classification

First, we note the mixed pixel problem. Because of optical

imperfections and the non-pointlike nature of the sampling, when a

step edge is digitised, the intensity transition may lie, not between

pixels, but within a pixel. This mixed pixel will have a greyscale
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value somewhere between those of its neighbours across the edge, as

shown in fig. 5.1. The effect of this is that a step edge, even an

ideal step edge, will not generate a single line of primary boun¬

daries but pixels with one, two, three, or four primary boundaries

depending on the local geometry and intensity variations of the edge

relative to the quantisation grid. This phenomenon could be observed

in fig. 4.10.

As a first pass at identifying mixed pixels, we could classify

all pixels with more than one primary boundary segment as mixed, but

this leads to errors . An edge that runs diagonally across the sam¬

pling grid as shown in fig. 5.2 can produce pixels such as those

labelled "p" in the figure, which have more than one primary boundary

segment, but are unmixed. To combat this problem only pixels which

have two parallel primary boundary segments are labelled as mixed.

This is reasonable since all step edges of sufficient amplitude,

regardless of their attitude to the quantisation grid, will produce

parallel pairs of primary boundary segments as shown in fig. 5.3.

In our attempt to identify the primary boundary segments belong¬

ing to step edges, the first task is to label all pixels with two

parallel primary boundary segments as mixed. However, by no means

all such pixels will be due to step edges, some of them will be

caused by gradients and textured areas of the image. To find those

really resulting from step edges, we can use a distinguishing pro¬

perty of such edges, which is their very limited physical extent per¬

pendicular to the direction of the edge. Consider a pixel through

which a step edge is passing, which is locally straight, as shown in

fig. 5.4.
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Fig. 5.1
This illustrates how nixed pixels arise when an edge is digitised.

If each mixed pixel with more than one primary boundary segment is
labelled "mixed", then errors arise with diagonal edges, the pixels
marked "p" above being wrongly labelled.
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The edge cannot pass through any more than two of the adjacent

4-connected pixels, |_A,B,C,d]. Neither can it pass through more than

two of the four diagonally-connected pixels, [e,F,G,h]. Notice that

the edge can either pass through two adjacent 4-connected pixels,

such as A and B, or through two opposite ^-connected pixels, such as

B and D. However, it cannot pass through two adjacent diagonal pix¬

els, such as e and f, but only through two opposite diagonal pixels,

such as e and G. This results from the fact that edges are thin per¬

pendicular to their direction and can be incorporated into a test as

follows:

The Cross Test

If a mixed pixel has a pair of opposite

diagonally-connected pixels, neither of which

are mixed, then label it "legal".

A step edge will always produce mixed pixels which are legal as

defined above. Extended gradients and regions of texture are not

guaranteed to do so. In fact, gradients, in general, won't produce

legal mixed pixels because they usually produce several adjacent rows

of mixed pixels, which will then fail the cross test. It is possible

to imagine a textured region that would produce mixed pixels which

all pass the test, but it is highly unlikely to occur.

Although the analysis above has concentrated on mixed pixel pro¬

duction by step edges, if the edges pass between the receptive fields

of adjacent pixels, then single primary boundary segments will

result. Hence, in general, the digitised image of a step edge will

contain legal mixed pixels (i.e. those which pass the cross test],

and primary boundary segments. The latter being horizontal (between
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two pixels in the same column] or vertical (between two pixels in the

same row]. The existence of a primary boundary segment automatically

implies that the pixels on either side of it are unmixed (since mixed

pixels "swallow" the four adjacent boundary segments]. Note that,

although a straight edge was assumed in the derivation of the cross

test, the method also works for curved edges. The amount of curva¬

ture allowed depends on both the pixel and greyscale resolution.

An analysis of the performance of the cross test with curved

edges is given in appendix 2. It shows that for a relatively high

significance threshold, as might be used in a noisy image, curved

edges of high curvature are successfully dealt with. In such images,

problems with noise will affect the tracker much more than problems

with edge curvature. The use of a low significance threshold, as

would be appropriate in a low-noise image, does lead to the cross

test failing with edges of high curvature. Basically, the higher the

amplitude of the edge the lower the curvature which causes problems.

The highest curvature which can be handled successfully is tabulated

against step amplitude for a particular case in appendix 2. If

desired, mixed pixels which fail the cross test could be investigated

in more detail, and those resulting from high curvature marked as

points of interest.

5_. 2 Step Edge Track ing

Having found the constituents of step edges, we next need to

represent them in a useful manner. The ultimate goal of this system

is to produce an output suitable for use by a constraint analysis

program, which wants access to pixel intensities across the edge,

along the length of the edge. The first requirement, therefore, is

for each complete edge to be ultimately represented as a single
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entity. That is, merely marking the pixels and boundary segments

belonging to step edges in the image array isn't enough - each step

edge must be represented separately, enabling it to be handled as a

single item. Since the constraint analysis program will also find it

necessary to investigate intensity variations along edges, the posi¬

tion of each edge point within the edge must be known. This can

easily be taken care of if each edge point is linked in some way to

adjacent edge points. To achieve this, we return to the analysis of

step edge digitisation and examine the constraints produced by the

fact that the edge is continuous.

The basic approach is to classify the possible connectivity

relationships for each of the three primitive edge segments, i.e.

legal mixed pixels, horizontal and vertical primary boundary seg¬

ments. This is done by taking each of the primitives in turn and

working out what patterns of legal mixed pixels and single primary

boundary segments could result in its immediate neighbourhood if that

primitive was in a step edge. For example, the appropriate neigh¬

bourhood of a legal mixed pixel is shown in fig. 5.5. It consists of

the eight adjacent pixels and eight adjacent boundary segments.

Under the assumption that the edge is locally straight, step edges

are drawn through the central pixel in all significantly different

angles and positions. The resulting pattern of mixed pixels and pri¬

mary boundary segments is analysed and reduced to a set of if-then

rules as shown in fig. 5.5. mixed(p) is a predicate returning true

if its argument is a legal mixed pixel, ses(b) returns true if b is a

single primary boundary segment. lnp(x] indicates that pixel or

boundary segment x is a legal next tracking position on the edge. A

similar set of rules for primary boundary segments is shown in fig.

5.6.
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This shows the 3*2 neighbourhood of a vertical single boundary seg
ment, the 2*3 neighbourhood of a horizontal single boundary segment
and the corresponding set of rules for edge tracking.
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Connected edges are found by tracking using these rule sets.

Consider moving a pointer along the elements of a step edge. In

operation, each of the rules of the appropriate set is applied at the

current edge element. If the LHS of any rule succeeds then the RHS

defines one adjacent pointer position on the edge currently being

tracked. So the rule set in fig. 5.5 is applied whenever the pointer

is at a legal mixed pixel. For example, the first rule indicates

that if the pixel directly above the current one is also mixed, then

it is an adjacent pointer position. When all of the rules have been

applied the number of "successes" (i.e. the number of rules that

fired] is examined. If the edge primitive has only one neighbour,

i.e. only one rule fired, then it must be at the end of the edge,

such points are called terminators. If it has two neighbours then it

is a mid-line point, whereas, if it has three of four neighbours it

is classified as a junction.

To illustrate the use of these rule sets, consider fig. 5.7(b)

which shows the primary boundary segments of part of an edge in a

picture of a cup (fig. 5.7(a)). Let's say that the pointer is

currently at the mixed pixel marked x. Applying the rule set of fig.

5.5, rule 2 fires because of the mixed pixel on the right of x

(marked y) , rule 8 also fires because of the mixed pixel marked z.

None of the ses predicates return true because boundary segments of

mixed pixels are not considered. Now imagine moving the pointer to

pixel y and applying the same rule set. In this case rule 4 fires

because of pixel x and rule 11 fires because of the single boundary

segment attached to the top right hand corner of pixel y. This boun¬

dary segment is considered because neither of the pixels above it or

below it is mixed (not having two parallel primary boundary seg¬

ments) .
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Fig. 5.7
This shows (above) the edge map of a picture of a cup,
and (below) the primary boundary segments (emboldened) in
part of the edge.

(b)
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Since the rules of figs. 5.5 and 5.6 give the neighbours of any-

primitive edge point they can easily be used for edge tracking. The

tracking algorithm scans an enlarged image array (with both pixels

and boundary segments explicitly represented) in a raster fashion

until it finds an interesting point, i.e. a single primary boundary

segment or a legal mixed pixel. It then finds how many neighbours

the point has by applying the appropriate rule set. If it has only

one, then it must be at the end of an edge, i .e. a terminator. If it

has three or four then it must be a junction point. If the point is

a junction or a terminator then it and its adjacent edge points are

put on a stack. The top of the stack is taken and used as a starting

point to track an edge. As tracking proceeds used points are marked

in a Boolean array overlaid on the picture array. When the end of

the edge is reached (i.e. when another junction or terminator is

found), if it is a junction, any unused adjacent edge points are put

on top of the stack, and the edge coordinate list of the edge just

tracked is stored. Now, unless the stack is empty the top starting

point is taken and tracking proceeds again. When the stack is empty,

the raster scan proceeds to find other unused starting points. When

the raster scan is finally complete all the edges which have termina¬

tors or junction points at their ends have been found and are

represented by lists of coordinates. However, any simple closed

loops will not have been found since they consist entirely of mid¬

line points, so an extra pass through the picture has to be made to

find these edges (which are very rare). In this pass as soon as an

unused edge point is found it is used as a starting point and its two

neighbours noted. Tracking proceeds from one of its neighbours and

terminates when the other neighbour is reached. The core of the

algorithm is shown below in P0P2 (Burstall, Collins and Popplestone
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1977).

until i>imax do

1->j;

until j>jmax do

if interesting(pi ctur e ,i , j ) and unused (picture ,i ,j ) then

neighbours (picture ,i ,j ) ->number->start_list;

if number=1 or number>2 then !junction or terminator

false->unused(i ,j); ! mark pixel used

start_list<>stack->stack;

until null(stack) do

track(stack,edge_list)->stack->edge_list;
enddo;

cl os e;

close;

j + 1 ~>j;

enddo;

i+1->i;

enddo;

The function track takes the top starting point off the stack and

tracks along the edge which starts there until it reaches a termina¬

tor or junction. If it finds a junction, it puts the unused starting

points on the stack.

5_.1_.3_ Finding Step Edges - Discussion

A schematic of the complete edge finding process, as described

so far, is shown in fig. 5.8. First, every boundary between adjacent

pixels is examined and classified as primary if it is greater than

the classification threshold. Otherwise, it is classified as secon-

120



dary, .Next, pixels are classified as mixed if they have two parallel
'r.yv^vV-"' <•

primary boundary segments. Then the diagonals of mixed pixels are

tested/to see if they are legal or not. Both of these can be done in

one pass using a raster scan. Finally, edge tracking is based on the

resulting classification. The output at this stage consists of an

enlarged array in which both pixels and boundaries are classified,

and a list of lists, with each sublist containing a set of image

coordinates representing one edge.

video digitised edge classified edge

signal picture map pixel array lists

+

noise

Fig. 5.8
Block diagram of the edge detection system

The initial pixel classification, the cross test, and the set of

tracking rules implicitly define a step edge. Less formally, we can

say that a step edge is a steep gradient in image intensity which

extends for less than one pixel width, and which has intensity gra¬

dients on either side of the edge which are not significant.

Clearly, this definition is rather more restrictive than is conven¬

tionally understood by the term "edge" in computer vision. This is

intentional as the strict definition provides the constraints on

which the method of edge detection and tracking is based. Further¬

more, such strict definitions are essential if scene/image semantics
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are to be fully exploited. The strict edge definition is not con¬

tradictory to the earlier assertion that we need to make as few lim¬

iting assumptions about the nature of the intensities in the vicinity

of the edge as possible. The definition must be based on the con¬

straints provided by the nature of image edges, which ultimately

result from the physics of the scene and the properties of the imag¬

ing transform and digitisation. It implies that there exists a set

of scene/imaging entities such as obscuring edges, shadows from point

sources, etc., whose resulting image characteristics are distinguish¬

able from the characteristics of scene/imaging entities which are not

in the set. The definition should encompass all edges resulting from

entities within the set, regardless, for instance, of the general

lighting conditions, but strictly exclude other image entities. This

is only possible if the scene/image semantics have been correctly

taken into account. Thus the apparent contradiction above is

resolved. We need a strict definition to ensure a clean semantic

relationship between the edges found by the edge detection system and

their corresponding scene causes, but must make no extra assumptions

which would lead to some legitimate edges being missed in certain

circumstances. The discussion of the semantics of edge formation in

chapter two, and the analysis of step edge digitisation provide the

necessary precision for the edge detector described here. If edge

detectors are not strictly defined, nor based on any rigorous exami¬

nation of the relationship between scene and image, the result of

applying them is an output which is not clearly related to the scene

and is thus difficult to use as a basis for further analysis.

Our initial concentration on step-like edges is not to imply

that blurred edges are considered unimportant. That would be con¬

tradictory to the goals of edge detection. Blurred edges will be
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found by applying the same methods as described in this chapter to

reduced resolution versions of the image, as described in chapter 6.

5.1_.4 Edge Tracking Exanples

To verify that the methods worked as expected, a test image of a

white figure on a dark background was used. Photographs of a monitor

screen showing the original picture and of a line drawing display

showing the tracked edges are shown in fig. 5.9. The input was digi¬

tised to 64*64 pixels with 256 greylevels. In this section, we have

chosen particular thresholds to illustrate various points, rather

than use the automatic threshold selection method described in

chapter four. Threshold selection is not critical in this first

example. The resulting primary boundaries are shown in fig. 5.10.

The pixel classification is shown in fig. 5.11. Both pixels and

boundary segments exist separately in the data structure, but, for

convenience, only pixels are used to show the classification. The

boundary segment information is included in the figure using the fol¬

lowing legend:

N

S single primary boundary on the north, south,
E east, or west side of the pixel.
W

M legal mixed pixel

X illegal mixed pixel

1 "1
2 J pixel with two primary boundary segments
3 r adjacent in the positions shown (where the
4 L lines indicate primary boundary segments].

If a pixel is classified as mixed, then none of its four sur¬

rounding boundary segments are considered in the tracking process.

This is implicit in the tracking rule sets, based on the observation

that an edge cannot both go through a pixel, and go between it and an
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rig. 5.9

7-t t0? photograph shows the test inage 0f a whit- figure or. a black
background. Trie lower photograph shews the result of edge tracking[note that the scale and aspect ratio of the line-drawing outout dev¬ice »ro diff^r°r.t fro.r those cf th«* ncr.itcr
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Fig. 5.10
This shows the primary boundary segments resulting from the test
image. In some cases the boundary passes between pixels, in others
it goes through them.
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Fig. 5.11
This shows the pixel and pixel boundary classification for the test
image. m indicates a mixed pixel. N,S,E,W indicate pixels with a
single primary boundary segment on the north, south, east, or west
side respectively. 1,2,3,4 are pixels with two adjacent primary
boundaries, as follows:

1-1 2 -J 3 -r 4-L
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adjacent pixel. Since illegal mixed pixels are typically generated

by extended gradients or by texture it is not surprising that there

are none in this test image.

Finally, the edges are tracked based on the pixel/boundary clas¬

sification. The tracker produces a list of edges, each edge being

represented by a list of coordinate pairs. Each pair denotes either

a pixel or a boundary segment. The results of tracking for the test

image produce the expected edges as shown in the lower photograph of

fig. 5.9.

A more complicated image produced by a toy steamroller and the

resulting tracked edges are shown in fig. 5.12. The classification,

which includes some illegal mixed pixels, is shown in fig. 5.13.

Notice how several illegal mixed pixels are caused by the combination

of the shadow edge and the variation in radiance due to the shape of

the front roller. Also interesting is the break on the curved front

edge of the body in the output image. Close examination of the input

picture shows this is due to a part of the front roller of about the

same intensity as the body which gradually merges with the background

because of its curvature. In cases such as this, the result of our

acceptance of the preeminence of image veridicality is that the out¬

put of the system should accurately reflect the structure of the

input image, even if, as in this case, it leads to shorter tracked

edges.

The effect of varying the threshold on this image is shown in

fig. 5.19. With a very high threshold of 30 greylevels, it can be

seen that several lengthy edges are still found. These edges are

mainly obscuring edges (the top, front, and bottom of the body, and

the inner edge of the rear wheel] and sharp surface orientation edges
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(a)

(b)

Fig. 5.12

(a) shows the input, which is a picture of a toy steam engine (64*64
(bj show^the"edges tracked with a significance threshold of 20

greylevels (d=20).
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Fig. 5.13
This shows the pixel classification of the steam engine picture with
a threshold of 20 greylevels. Notice the illegal (for tracking)
mixed pixels, marked X, which result from a shadow on the front
roller producing an extended gradient.
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Fig. 5.14
These show the effect of varying the threshold on edge tracking. The
pixel noise was estimated at 5 greylevels standard deviation. The
thresholds used were:

a I d = 30

b] d = 1 2
c J d = 5
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(on the top of the body and on the front wheel). It may be useful

to first use a high threshold when interpreting an image, then when

some attempt has been made to classify the edges, go on to using

lower thresholds to get more detail. The precise representation of

the edges is useful in this respect: if an edge segment is found at a

high threshold, it is also going to be found in the same place at a

lower threshold. Suppose an extended shadow was coincident with a

sharp reflectance edge, then the reflectance edge could be found with

a high threshold, and the shadow at a low threshold. If only a low

threshold was used the region of illegal mixed pixels due to the sha¬

dow could lead to the reflectance edge being missed.

The effect of reducing the threshold too much is shown in fig.

5.14(c), and its accompanying classification in fig. 5.15. Most of

the edges are too short to be of any use for constraint analysis.

Such a classification could be useful for defining areas of gradient,

i.e. areas of the image where surface shape or incident light varia¬

tions extend over a substantial 2-d area. By taking the difference

of two classifications made using different thresholds, all the gra¬

dients of a particular magnitude could be found.

The image and edges of fig. 5.16 and the accompanying classifi¬

cation in fig. 5.17 illustrate that the edge finder also finds thin

bars successfully. Both the bottom cover of the top book and a thin

line of print on the face of the bottom book (faint in the photo¬

graph) are successfully found. This is not surprising since bars of

a certain width also satisfy the two basic constraints of thinness

and continuity used in the derivation of the edge detector. It would

be a trivial matter to modify the edge detector to distinguish

between edges and bars using a modified cross test. If the intensity
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Fig. 5.15
This shows the classification resulting from a low threshold. Sha¬
dows, intensity gradients, and noise, produce a large number of ille¬
gal mixed pixels.
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Fig. 5.16
The input picture, in (a,1, consists cf two books (64*64 pixels]. The
tracked edges (d=20J are shown in (b,'. The bottom cover of the top
book, which is effectively a bar in the image, is tracked success¬

fully.
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Fig. 5.17
This shows the classification of the books picture. The lettering on
the spine of the lower book produces illegal mixed pixels because the
edges are too close together.
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of the unmixed diagonal pixels were both greater than or less than

the intensity of the central mixed pixel then a bar would be indi¬

cated. For a normal step-like edge the mixed pixel intensity is

between the intensities of those on either side. Notice how the

lettering on the spine of the bottom book gives rise to illegal mixed

pixels. Ideally, we would like that region to be ultimately labelled

as texture.

Finally, another example illustrating how too much detail and

shading give rise to large areas of illegal mixed pixels is shown in

fig. 5.19 which is the classification of the sports shoe picture.

Figs. 5.18(a) and (b) show the original picture of the shoe and the

resulting tracked edges. At this resolution the shoelaces are just a

jumble of edges and so produce a large region of mainly illegal mixed

pixels. Similarly, the shading towards the sole of the shoe produces

further areas containing many illegal mixed pixels.

The process detailed above satisfies the specific goals relating

to step edges. To some extent we have also satisfied our first goal

of edge detection which was to find all the significant intensity

variations. However, it is desirable to do rather more than just

identify those places in the image where the intensities are changing

quickly. This is reflected in the second goal which exhorts us to

relate image events to their scene causes, if possible. From fig.

5.19, we see that in a complex image, many of the mixed pixels are

not in step-like edges and so are labelled illegal. In the next sec¬

tion we investigate the causes of these illegal mixed pixels and try

to identify methods for analysing the corresponding image regions

further.
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(a)

Fig. 5.18
The input picture of a sports shoe (64*61 pixels) is shown in (a).
The tracked edges shown in (b) were obtained with a threshold of 20
greylevels.

lb)
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Fig. 5.19
In the classification of the sports shoe picture, the laces produce
interfering edges and hence illegal mixed pixels. The intensity gra¬
dients near the sole of the shoe also produce illegal mixed pixels.
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5.2 Dealing with Gradients and Texture

The edge detection system described in section 5.1 finds and

represents in a useful way those intensity variations which satisfy

the two constraints of thinness and continuity. As an intentional

side effect, it also marks those pixels in the image where there are

other significant intensity variations. These illegal (for edge

tracking) mixed pixels have failed the cross test and so must result

from significant intensity variations which extend in more than one

direction. In this section, we first consider the origin of these

illegal mixed pixels, then try to delimit their extent and classify

them further.

5.2.1_ The Generation of Ex tended Gradients and Texture

By considering the scene and image-forming process, we see that

illegal mixed pixels can be formed in two ways. Firstly, gradual

changes in surface orientation, surface illumination, surface reflec¬

tance, or some combination of these at the appropriate scale, rela¬

tive to the spatial and greyscale resolution of the imaging device,

can produce extensive intensity variations of sufficient amplitude to

be significant. Normally, the region of significant intensity varia¬

tion will correspond to all or part of a single surface in the scene.

The key point about variations arising in this way is that they are

smooth.

Secondly, extensive image intensity variations can be caused by

"texture". However, texture is difficult to define for scene

analysis. According to the Concise Oxford Dictionary texture is

"arrangement of threads etc. in textile fabric, charac¬
teristic feel due to this; arrangement of small consti¬
tuent parts, perceived structure, (of skin, rock, soil,
organic tissue, literary work, etc.); representation of
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structure and detail of objects in art; (Mus.) quality of
sound formed by combining parts."

For computer vision, a rather more precise definition of texture is

needed (one will be given later) , but we can begin from the above by

considering texture as "perceived structure". It is important to

note that texture is not simply structure but perceived structure.

It is clear that texture cannot be defined solely in terms of a world

model. The optical system, image resolution, relative size and dis¬

tance of objects in the scene all affect whether an object is seen as

an individual item or as an element in a texture field. However,

seme world considerations may be useful in coming to an understanding

of texture. Various scene arrangements can constitute texture for a

human observer. Sometimes it is a large number of similar objects

close together at a relatively large distance, e.g. the leaves of a

tree. Alternatively, the perception of texture can be caused by mul¬

tiple variations in surface reflectance properties, e.g. wood grain.

Also, a textured appearance may be caused by multiple surface orien¬

tation variations viewed at an appropriate distance, e.g. the bark of

a tree. There are two main factors here - surface orientation (and

range) variations, and surface reflectance variations. When there

are many of these close together such that we cannot clearly perceive

the individual variations, we call that texture.

What is being suggested is that the perception of texture occurs

when the perceiver is unable to fully "process" that part of the

visual field to a stage where the individual surface

orientation/reflectance changes can be unambiguously interpreted as

scene events because of insufficient information. For a computer

vision system, this implies that a definition of texture must rest,

not only on the image effects, but also on a model of the early pro-
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In fact, most of the work done with texture in computer vision

has been concerned with the problem of discriminating between dif¬

ferent textures (Bajcsy (1 973]» Haralick et al (1 9733 , Maleson et al

(1977), Schatz (1 977], Laws (1 980)) . According to an authoritative

survey of this work (Haralick (1 979)3

"...a formal approach or precise definition of texture
does not exist. The texture discrimination techniques
are, for the most part, ad hoc."

Usually textures are classified as either micro-textures or macro-

textures. Briefly, micro-textures are image fields containing many

intensity changes with no obvious geometrical relationship to them.

We only consider micro-textures in this thesis, and only they satisfy

the definition given above. Macro-textures, such as the pattern of

paving stones that precedes you as you walk along a pavement, are not

textures in the same sense.

A summary of the argument so far is:

1. we previously devised a way of finding and tracking step edges

which also labelled as illegal (for tracking) other significant

intensity variations.

2. these illegal intensity variations can only be due to two types of

scene events:

a. smooth changes of reflectance, surface orienta¬

tion, illumination on a single surface pro¬

ducing a smoothly varying region of image

intensity.

b. sharp changes (relative to the sampling fre¬

quency) of reflectance, range, or illumina¬

tion on single or multiple surfaces such that

a textured region results.
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cessing. When there is not enough information, i.e. not high enough

resolution, for individual intensity changes to be distinguished and

processed normally, then the region containing these changes can be

called "texture" and other methods applied.

The early processing system described in chapter two is based on

finding step edges and interpreting them by analysing the intensity

variations across and along the edges. This requires that each edge

is distinguishable by the edge finding and tracking process. If the

edges are too close together they will interact and fail the cross

test. As mixed pixels which fail the cross test are marked illegal,

regions of texture in images will consist of many illegal mixed pix¬

els. An attempt can now be made at a definition of texture, as fol¬

lows:

When a number of scene/imaging events, such as obscuring

boundaries, surface orientation boundaries, or reflec¬

tance boundaries, are close enough together to produce a

set of intensity changes in the image which cannot be

distinguished by the edge detection and tracking mechan¬

ism being used by the perceiver concerned, then the image

region enclosing that set of intensity changes is said to

be textured.

To achieve the necessary precision, this computational definition of

texture is closely coupled to the rest of the early processing sys¬

tem. However, the general idea of defining texture to be those

regions of the image where the intensity changes are too close

together to be separably investigated is more general. Thus, a com¬

parable definition of texture could be devised for any similar early

processing system.
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We now consider how we can find these regions and label them

appropriately as texture or gradient.

5.2.2 Finding Gradient and Texture Reg ions

The process of classifying illegal mixed pixels as gradient or

texture takes place in two stages:

1 . group the illegal mixed pixels into illegal

regions.

2. classify each region as gradient or texture.

The definition of an illegal mixed pixel as being one in a part of

the image where there is extensive intensity variation over a sub¬

stantial area of the image makes it unlikely that they occur in iso¬

lation, so it is a reasonable first step to attempt to group nearby

illegal mixed pixels together. Then, the assumption that each ille¬

gal region [a connected group of illegal mixed pixels) arises either

because of gradient or texture can be made. Of course, it can happen

that the two can be superimposed, in which case it is desirable that

the region should be labelled as texture because texture-based ana¬

lytic methods will need to be applied to recover further information

about the scene. Also, the situation can arise where adjacent

regions of gradient or texture give rise to a single illegal region,

but no attempt is made to consider that eventuality at present.

So, illegal mixed pixels are usually found in groups because of

the way they arise. However, these groups are not always completely

homogeneous, occasionally containing legal mixed pixels or even pix¬

els without a significant boundary. This can be seen in the initial

classification of the sports shoe picture (fig. 5.19) which is repro¬

duced overleaf as fig. 5.20. The illegal mixed pixels on the top of

the shoe result from the large number of step-like edges produced by
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Fig. 5.20
The initial classification of the sports shoe picture.
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the shoelaces. Because the edges are very close together (in terms

of the digitised image] they interact and fail the cross test. The

illegal pixels near the bottom of the shoe are the result of inten¬

sity gradients caused by changes in the surface orientation and

incident light. Considering the definitions given above for texture

and gradient, and taking image veridicality into account, it is

appropriate to group illegal mixed pixels into "illegal regions" on

the basis of connectivity. So, for any two illegal mixed pixels in

an image, they are in the same illegal region if a path between them

can be found which only passes through illegal mixed pixels. For

this purpose each pixel is considered adjacent to its eight neigh¬

bours. This definition is easily formalisable and consistent with

the earlier assumptions concerning the formation of illegal mixed

pixels.

The algorithm for finding illegal regions is based on a couple

of well-known techniques for boundary tracking and connectivity

analysis (Rosenfeld and Kak 1982]. One distinguishing characteristic

of each illegal region arising from its definition is that it has an

exterior boundary. By classifying pixels into two sets: illegal

mixed pixels and others, this boundary can be found by tracking

between pixels of the two classes, and hence the illegal regions can

be defined. In fact, we actually track along the border of the ille¬

gal region, which is the set of illegal mixed pixels just inside the

region boundary. Operating a raster scan, each pixel is examined in

turn until an unused illegal mixed pixel is found. The coordinates

of this pixel are stored and tracking proceeds by "keeping your right

hand on the boundary" (from inside the region], i.e. tracking anti¬

clockwise. The region boundary is imagined to pass between pixels,

since this avoids problems with unit width regions and makes it
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easier to tell whether a pixel is inside a particular region. Track-
' • y*\:

ing,..proceeds , based on 8-connectivity, until the starting point is
■

reaohed again. 8-connectivity was chosen because the illegal regions

are sometimes not homogeneous. This is especially true of textured

regions. Using 8-connectivity makes the illegal region definition

slightly more flexible in overcoming these variations. For example,

if we are tracking the boundary and reach pixel 1 in fig. 5.21 then,

since tracking is based only on illegal mixed pixels, pixel 2 would

not be encompassed by the region if only 4-connectivity was used.

Because of the inhomogeneous nature of illegal regions resulting from

texture, holes in the regions are filled in and assumed to be part of

the region. Normally these holes are very small, consisting of only

one or two pixels. If desired, holes could also be tracked and their

areas computed. Large holes could then be dealt with separately since

they probably arise from a scene source different from the surround¬

ing region.

X2
boundary with

'8-connectivity X2
X X' X

X ' X

XXX

X

X

X' X

X
boundary with

4-connectivity XXX

X indicates an illegal mixed pixel.

Fig. 5.21
This shows the advantage of ,8-connectivity for tracking illegal region
boundaries.
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During tracking, the position of each vertical boundary segment

is noted and the bounding rectangle of the region is kept. Using

these, the region is "filled in", i.e. every pixel inside the region

boundary is marked. This is done by moving a pointer from left to

right along every row in the bounding rectangle. Each time the

pointer is moved the two pixels indicated before and after the move¬

ment are checked to see if a legal-illegal (or illegal-legal] transi¬

tion occurred. If such a transition did occur then a further check

is made to see if the boundary between the two pixels was stored as

one of the vertical boundary segments of the illegal region. If it

was part of the region boundary, then a switch, initially set at off,

is flipped. The switch indicates whether or not the pixel currently

being pointed to is inside the region. This is an implementation of

the well known technique for finding whether or not a point is inside

a closed curve. You simply draw a line from the current position to

a point known to be outside the curve. Then count the number of

times the line intersects the 'curve. If the number of intersections

is odd, then the current point is inside the curve; if the number is

even, then it is outside. By repeating the above process for every

row of the bounding rectangle, the illegal region is marked. It's

necessary to store the vertical boundary segments on the region boun¬

dary to ensure that holes are filled in. The illegal regions found

by applying this method to the shoe picture are shown in fig. 5.22.

5_. 2.3 Distinguishing between Gradient and Tex ture

Illegal regions are produced either by gradients or by texture.

We need a test which, given an illegal region as an argument, indi¬

cates whether it's a gradient region or a texture region. A gradient

region is produced when the image intensity variations in a region,
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The illegal regions found in the sports shoe picture.
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which are the result of smoothly changing incident light and/or sur¬

face orientation and/or reflectance variations on a single surface in

the scene, are significant. A texture region is produced when many

sharp intensity changes are so close together in the image that they

cannot be distinguished separately. These edges may be of any kind.

Because textured regions can be produced in so many different ways it

is difficult to model them. However, in general, the intensity vari¬

ations within a textured region will not have an obvious relationship

to neighbouring intensity variations, unlike gradient regions where

smoothness can be expected. Thus, we can see a broad division

between gradient regions consisting of smoothly changing intensities,

and texture regions consisting of relatively unrelated intensity

changes. Since it's not obvious how to model texture for our pur¬

poses a reasonable approach is to model gradient regions and to make

a decision based on how well a particular region fits the model.

One possible method is to constrain the allowed surface shapes

in the world, and to classify the light source types. The expected

class of gradient regions could then be derived, as a set of inten¬

sity surface types. Classification would involve finding the best

fit match between the region under consideration and one of the

allowed set. The goodness of match would be thresholded to provide a

decision - gradients should fit well, textures badly. This approach

is, however, unsatisfactory, from several points of view:

1. it puts constraints on world shapes and light sources, which

limits the applicability of the system and hence violates

our first goal of edge detection.

2. deriving an effective set of allowed image intensity sur¬

faces may be difficult.
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3. this method would incur a heavy computational load.

An alternative approach would be to first find the intensity

gradient (magnitude and direction) everywhere within the illegal

region and then use these to produce a histogram of amplitude vs.

direction. This can be represented in a polar coordinate system with

the angle given by the direction and the radius given by the ampli¬

tude (fig. 5.23). Since a gradient surface should be smoothly vary¬

ing both in amplitude and direction, it should produce a single large

cluster in the histogram. Texture, on the other hand, should produce

a scattered histogram with many small clumps (fig. 5.24). However,

it is not obvious what decision criteria could be used to distinguish

between gradient and texture and how these could be arrived at.

Another problem with this approach, in common with many other

histogram-based methods, is that it doesn't take into account the

local image intensity relationships in the region above the level of

first differences. Since we're interested in examining image inten¬

sity smoothness we need to examine relations between nearby first

differences. As a result of this flaw, it is conceivable that a

region which is not smoothly varying could still produce a single

cluster in the histogram. For example, a large texture region,

assuming it had randomly distributed intensities, might well produce

a single large connected region in the histogram.

An alternative approach, which attempts to make use of local

smoothness, is to base the decision on the second differences within

the region. In a gradient region, because the intensity is smoothly

varying in amplitude and direction, the second differences should be

small. In a texture region, where these constraints don't hold, the

second differences should be large.
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In the ease of an ideal plane, which we can take as the limiting

case of a gradient region, the second differences will be zero. At

the other extreme, where the sign of adjacent first differences is

different, the magnitude of the 2nd. differences will be the sum of

the magnitudes of the first differences as shown in fig. 5.25. So we

base our method of distinguishing between gradient and texture on

whether the magnitude of the 2nd. difference tends towards zero (gra¬

dient) or towards the sum of the magnitudes of the first differences

(texture) .

For each illegal region, the region-finding process outlined

above marks all the pixels inside the region in an auxiliary array in

registration with the picture array, and returns the bounding rectan¬

gle within which the illegal region is enclosed. Each row of the

bounding rectangle is tracked along, and at any point where there are

three consecutive pixels inside the region the second difference and

the average first difference are evaluated. If the pixels are p ,

P2> and p , then

2nd .difference d2 = pr2|vp3

ave. 1 st .difference d ,=■
iprp2 + p2-p3

1 2

For a gradient region we expect d2 to tend to zero and
for a texture region we expect it to tend to | d^+d^ I* Since the
2nd. differences are subject to symmetrical Gaussian noise (standard

deviation 2a, where o is the picture noise standard deviation) the

local decision is made as follows:

if d2>d 1 then texture else gradient
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slope

direction

Fig. 5.23
A polar histogram of intensity gradients could be used to discrim¬
inate between gradient and texture regions. The intensity gradient
is computed at every point in the region, then plotted on the histo¬
gram, with slope as radius and direction as angle.

gradient
histogram

texture

histogram

Fig. 5.24
Since a gradient region arises from one surface with smoothly-varying
properties, the corresponding histogram should have a single con¬
nected cluster of entries. On the other hand, since intensities
within the texture region will often be locally uncorrelated, a his¬
togram with scattered entries should result.

12 12

d2= dn- d12- 0 d2~ d11 d12~ 11 12

Fig. 5.25
2nd. differences for idealised gradient and texture.
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That is, since zero and the sum of the first difference magnitudes

are the bounds on d^ and since the noise is symmetrical, the thres¬
hold is chosen in the middle of the range (d^j.

A pair of tallies is kept representing the number of times the

decision was made in favour of texture and the number of times in

favour of gradient. The same process is repeated for the columns of

the illegal region producing another pair of tallies based on the

vertical 2nd. differences in the illegal region. The results of

applying this technique to the shoe picture are shown in fig. 5.26.

All that remains is to make a decision for each region depending

on its four tallies. We must take into account the possibility of

unidirectional textures (i.e. textures which are oriented in one

direction only, e.g. looking at a zebra from a distance). So if

either the horizontal or vertical texture tally is significantly

greater than the corresponding gradient tally, then the region should

be labelled "texture". Since there is obviously no point at which

gradient suddenly becomes texture (or vice-versa) there should be a

"don't know" classification category which is chosen if the gradient

and texture tallies are about the same. Thus the decision test is as

follows:

if h_tex_tally - h_grad_tally > hthreshold

or v_tex_tally - v_grad_tally > vthreshold then TEXTURE

elseif h_grad_tally - h_tex_tally > hthreshold

or v_grad_tally - v_tex_tally > vthreshold then GRADIENT

else DON'T KNOW

The thresholds are chosen to be some constant factor times the
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equivalent horizontal or vertical region sizes (i.e. the number of

times the appropriate 2nd. difference operator was applied). The

equivalent horizontal region size is then simply the sum of

h_grad_tally and h_tex_tally; similarly for the vertical size. The

final classification obtained by using a multiplying factor of 0.25

on the shoe picture is shown in fig. 5.27.

We originally performed gradient/texture classification by find¬

ing the average first and second differences for an entire region and

then basing the classification on these (Beattie 1982).

if d2~d^>t then the region was labelled as texture,

if d2~d1<-t then the region was labelled as gradient.

-t<d -d^<t led to the region being unclassified.

The threshold depended on the picture noise and the size of the

illegal region. This method suffered from the same disadvantage as

the histogram technique mentioned above, in that averaging the magni¬

tude of the first and second differences over an entire region des¬

troyed the clear relationship between local smoothness of intensity

and the region texture measure. The method described in this section

is better in the sense that it usually produces the classification

expected by the user from her/his knowledge of the scene which pro¬

duced the image, as it did in the sports shoe picture.

In the previous discussion of texture it was suggested that the

perception of texture occurs when the perceiving system is unable to

fully interpret each intensity change in terms of its scene meaning.

This results in a field of intensity changes being dealt with as a

single unit. Implementation of this idea was performed in two

stages:
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1. First identify those intensity changes to which the system

would not be expected to assign a scene meaning because

of their proximity to other intensity changes.

2. Separate these into those caused by smooth extended gra¬

dients and those caused by step-like intensity changes.

The algorithms for these two steps comprise an algorithmic definition

of texture. If the algorithms have been well chosen, the texture

regions produced by applying them to a given image should correspond

closely to what we would expect given our earlier computational

definition of texture. Notice that, as Marr (1982) has suggested,

the algorithmic definition is only one particular interpretation of

the computational definition. Many other algorithms could have been

used, each of which might produce slightly different results, indeed,

several have been suggested in this section. Tne one selected was

chosen because it seemed closest to the computational definition.

However, if one of the others was used, the results should not differ

too drastically since they should all be constrained by being dif¬

ferent implementations of the same computational definition.

5.3 The Struc ture of the Single Level System

Consider again the final shoe picture classification given in

fig. 5.27. The illegal regions have been correctly labelled as gra¬

dient or texture, and by applying the edge tracker described in sec¬

tion 5.1 it is possible to identify the step-like edges. The output

of the system would be a pixel/boundary segment classification [in an

array in which each illegal region is identified) and a list of step

edges, each list represented by a sub-list of coordinate pairs. This

representation is a good one if it forms an appropriate input to the

next level of the system. We have assumed that edges will next be
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subject to constraint analysis, for which our representation is suit¬

able. However, consider fig. 5.28 which is meant to represent the

image of a cylinder with a strong intensity gradient on its cylindri¬

cal face. Running the programs of sections 5.1 and 5.2 would produce

the results shown in fig. 5.29 There is an obvious problem here in

that the gradient region boundaries on the left and right of the

region are really part of the same scene element as the left and

right edges of the face as found by the edge tracker. This

represents a case where a uniform region and a texture region should

be blended. This can be detected by checking the smoothness of

intensity change across gradient region boundaries and marking those

where the intensity change is smooth, since they are the result of a

smoothly increasing gradient going above threshold and are not par¬

ticularly significant in scene terms. For example, in fig. 5.29 the

top boundary of the gradient region is caused in this way. Removing

gradient regions which have such boundaries is simple and would

effectively blend the gradient region with the adjacent uniform

region. In the current implementation of the system the resulting

region would be considered to be uniform. Thus, although gradient

region boundaries are often significant in scene terms, there are

exceptions which could be detected if desired. This phenomenon can

also be seen in the shoe picture classification where the sides of

some of the gradient regions at the base of the shoe are really con¬

tinuations of the step edges produced by the stripes on the shoe

(i.e. they are reflectance edges). Similarly, texture region boun¬

daries are usually highly significant in scene terms (often they are

obscuring edges). To summarise the above: the boundaries of gradient

and texture regions are often significant in scene terms in that they

correspond to particular scene/imaging events, such as reflectance



Fig. 5.28
This shows a cylinder with the lighting arranged so as to produce a
strong intensity gradient on the cylindrical face.

tracked edges

Fig. 5.29
As the system is currently organised, the input image shown in fig.
5.28 would produce the set of tracked edges shown on the left, and
the gradient region (within the classified pixel array) on the right.
The left, right, and bottom sides of the gradient region are signifi¬
cant scene/imaging entities, so it is desirable to represent them
explicitly.
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edg«f;^p^9bacuring edges, so they should be explicitly represented in
*

r* 4 J. •
a useful way.

This can be accomplished quite elegantly by reorganising the

system as shown in fig. 5.30. After the initial pixel classifica¬

tion, as described in the first part of section 5.1, the illegal

regions are found and classified, as described in section 5.2. At

this point the boundary of each illegal region is explicitly inserted

into the data structure using horizontal and vertical primary boun¬

dary segments. Some care has to be taken to ensure that the con¬

straints on which the tracking rules of figs. 5.5 and 5.6 are based

are not violated. Now the edge tracker as described in the latter

part of section 5.1 can be run unaltered and will automatically find

the illegal region boundaries as well as the step-like edges.

ar ray

Fig. 5.30
The final structure of the single-level system.

The effect of reorganising the system in this way is shown in

figs. 5.31 and 5.32 overleaf. Edge tracking on the pixel/boundary

classification before inserting illegal region boundaries produces
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Fig. 5.31
This shows only the step-like edges which were tracked in the shoe
picture. The commas are used to indicate terminators or junction
points, while dots indicate mid-line points.

in
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Fig. 5.32
This shows the step-like edges and the illegal region boundaries
tracked by delaying the edge tracking until after gradient/texture
clasaification.
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the edges shown in fig. 5.31. If the illegal region boundaries are

inserted then edge tracking produces the enlarged set of edges shown

in fig. 5.32. Notice that this has the desired effect of finding the

edges of the stripes on the side of the shoe. To facilitate further

analysis, the edge list produced is divided into three sub-lists.

One contains the step-like edges tracked, one contains the boundaries

of texture regions, and one contains the boundaries of gradient

regions. If desired, some further analysis could be carried out on

the gradient region edges, since these are easily discriminable into

two classes. Consider the gradient region found in fig. 5.29. On

the top edge of the region, the boundary is produced because the

intensity gradient resulting from the combination of surface orienta¬

tion change and variation in illumination goes above threshold. On

the sides of the region, the boundary is due to a sharp change in

surface orientation which is unrelated to the factors causing the

gradient region. Boundaries of the former type occur quite commonly

and can be identified by examining the smoothness of the image inten¬

sity across the boundary.

This completes the design of the single-level system. The goals

of edge detection for step edges have been satisfied, as has the

first general goal of finding all the significant intensity varia¬

tions. Some progress has been made on the second general goal by

classifying illegal regions as gradient or texture, although further

constraint analysis is not the subject of this thesis. However, as

previously mentioned, intensity variations occur over a wide range of

scales in the image. In particular, blurred edges whose width is two

or three pixels wide commonly occur. At present these are

represented as gradient regions, but it would be advantageous to also

represent these as edges in some way. In the next chapter we
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investigate the problem of finding and representing edges and regions

at different scales.
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6 Hie Multi-Level System

In this chapter, we investigate the requirements and behaviour

of multi-level systems. The major area of interest is in integrating

the data provided by several single-level systems, operating on

different-resolution versions of the image, to generate a useful

representation of all the significant intensity changes in the image.

6.1_ Need for the Multi-Level System

As we have seen, images of most types of scenes contain edges of

a range of widths.. Edges containing the highest frequency com¬

ponents, i.e. step edges, are the most important type in scene

analysis, but blurred edges are also important since they also result

from significant scene/imaging events. To be general purpose, an

edge detection system should be capable of explicitly representing

blurred edges. Several image analysis algorithms, particularly in

the area of stereopsis, use results obtained with low-pass filtered

images to guide the vision processes working with full images.

Ideally, there should be explicit links between input representations

to facilitate the propagation of disparities between channels. More

specifically, the edge detection system being designed here is

intended for intensity-based edge labelling, part of which should

involve identifying shadow edges which are often blurred.

A second reason for using low-pass filtered versions of images

is to increase system robustness. Filtering out the higher frequen¬

cies reduces the noise present in the output image. The penalty for

removing the higher frequencies is that the accuracy of edge locali¬

sation is generally reduced. Hence the need for multi-channel sys¬

tems: high bandwidth channels can be used to find the step edges

accurately, but low-bandwidth channels are also needed to find the
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blurred edges and improve the overall system performance in noise.

To make full use of the multi-channel system, however, the outputs of

the various channels must be successfully integrated into a single

coherent representation of all the edges present in the image. This

is currently the major problem in successfully designing and imple¬

menting such systems.

As implied above, the basic idea of multi-channel edge detection

is to use a set of low-pass or band-pass filters to produce a series

of filtered versions of the original image in which the rate of

intensity change is limited, then to find the edges present in each

filtered image. There are two ways of doing this. The first is to

combine the filtering and edge detection tasks in a single operation.

This results in a family of edge detector masks which have the same

basic shape, but variable spatial extent. The second method is to

prefilter the image before applying the edge detectors. One variant

of this second method is to reduce the resolution of the image as

well as, or instead'of, filtering. Reducing the resolution is basi¬

cally a low-pass operation itself, as we shall see. Apart from the

computational advantages of such an approach, some justification for

reducing the resolution comes from the reduced information content of

the filtered image, which should require a smaller data set to fully

describe it.

In terms of the scene-image relationship, reducing the resolu¬

tion is very similar to increasing the scene-camera distance.

Averaging an n*n block of pixels at a high resolution to produce a

single pixel value at a lower resolution is similar to increasing the

scene-camera distance until the portion of scene that previously sub¬

tended an n*n block of pixels, subtends a single pixel.
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Since the single-level system (SLS) described in chapters three

to five is general purpose and, therefore, not dependent on the

scene-image distance, it should be able to be successfully applied to

an image at any reasonable resolution. Also, since resolution reduc¬

tion is a low-pass operation, the SLS will react to different

freqency components in different resolution versions of the image.

So, one way to find edges of a range of widths is to apply the SLS to

several different-resolution versions of the same image, then combine

the multiple sets of SLS outputs.

The need to combine outputs is the major factor in determining

how much resolution reduction is suitable. For computational effi¬

ciency, it would be better to use few resolutions as widely spaced as

possible. At the other extreme, using a continuum of mask sizes

(witkin 1983). corresponding to the use of many resolutions in our

case, has been shown to have advantages. Since computational effi¬

ciency is not the main goal of this thesis for the reasons given in

chapter two, a small reduction in resolution will be used here to

simplify the combination process. As we shall see in the next sec¬

tion, for our system there are advantages in averaging the intensi¬

ties in a 2*2 window to produce the intensity of a pixel in the next

lower resolution (as was shown in fig. 3.5]. Therefore, we begin the

multi-level system by successively reducing the original image by a

factor of four, applying the single-level system to each version of

the original image produced.

To design a method for combining the outputs of two or more

single-level systems, we must consider how the image entities pro¬

duced by significant scene events change as the resolution is

reduced. These changes can be examined in either the frequency or
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spatial domains.

First, consider the frequency domain. Tanimoto & Pavlidis

(1975] and Tanimoto (1 976J have investigated this issue. They show

that the transfer function of the resolution reduction is basically

low-pass, but that aliasing occurs as shown in fig. 6.1. Although

the effect on the frequency spectrum gives some idea of the overall

effect of reducing the resolution, namely that high frequencies are

attenuated more than low frequencies, and that frequency components

above half the new sampling frequency are aliased down about it, it

is very difficult to estimate the results in the spatial domain. Yet

our method of combining the outputs of SLSs run on different-

resolution versions of the image must rest squarely in the spatial

domain, because it is the spatial arrangement of image intensities

which reflects the spatial layout of the scene. This is generally

true of any vision system based on trying to extract scene properties

from images.

To investigate the effect of reducing image resolution in the

spatial domain, we must find how the image appearance of each type of

scene/imaging entity is affected. For instance, how does a blurred

shadow edge change under a reduction of resolution? Fortunately,

because we have carefully specified the single-level system, and

because the design of the SLS rested on image veridicality, we can

consider the effect of reducing resolution on the output of the SLS

rather than the input. This would not be the case if, for example,

we had some relaxation operation built into the SLS. Then, it would

be difficult to predict the exact relationship between the input and

output at each level, making it much harder to combine the outputs.
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input
spectrum

spectrum
after
reduction

spectrum
after

averaging

Fig. 6.1

To see the effect of reducing resolution, it is helpful to consider
the two operations of averaging and reducing the sampling frequency
separately. Let (a) above represent a flat amplitude spectrum of an
image line. If the line contains N pixels then the maximum frequency
which can be faithfully represented is N/2 ( f above). The
effect of averaging, i.e. replacing each pixel intensity by the aver¬
age of its own and the succeeding pixel's intensity, is a low-pass
filtering operation producing the spectrum shown in (b). Reducing
the resolution, by deleting every other pixel, is equivalent to
reducing the sampling frequency to half its original value, producing
the aliasing effect shown in (c), where the frequency components pre¬
viously above f /2 are folded down about that frequency.
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There are four identifiable entities in the single-level system

output, as follows:

- step edges

- gradient regions

- texture regions

- uniform regions

In fact, gradient and texture region boundaries are also represented

explicitly, but it is not necessary to consider these here since the

regions themselves are used. Each of the four types of entity satis¬

fies certain constraints, as follows:

step edge - thinness, connectivity, gradient,

gradient region - thickness, connectivity, gradient, smoothness,

texture region - thickness, connectivity, gradient, roughness,

uniform region - gradient (lack of).

By examining the effect of reducing image resolution on these con¬

straints we can see how the entities in the SLS output change with

resolution.

For a step edge, both thinness and connectivity are preserved.

Since the low resolution SLS should be able to use a lower signifi¬

cance threshold for the same error rate, gradient significance should

also be preserved. In other words, a step edge should map to a step

edge under a reduction in resolution (barring interference).

Next, consider the spatial aspects of gradient and texture

regions, i.e. their properties of thickness and connectivity. Both

of these may be violated by reducing the resolution. The connec¬

tivity of a convex gradient or texture region would not be affected,

but in extreme cases, the connectivity of a concave region could
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change, as shown in fig. 6.2. Since the spatial extent of a gradient

or texture region will be reduced, it will often be the case that an

elongated gradient, e.g. as produced by a blurred edge, or texture

region, will lead to the thickness constraint being violated; and

hence the thinness constraint being satisfied. So under a reduction

in resolution a gradient or texture region may become a step edge.

The smoothness or roughness of gradient or texture regions may or may

not be preserved depending on the periodicity of the intensity

changes within the region relative to the new sampling frequency.

Finally, consider uniform regions. Their only constraint is a

lack of gradient amplitude. Since the sensitivity of the system

should be increased as the resolution is decreased, faint intensity

changes which may not have been detectable at high resolution may be

found under reduction.

We can summarise the effects of reducing resolution on the four

types of image entities as follows:

steps
"

-> steps; illegal regions (IJ

gradients -> gradients; steps

textures -> textures; gradients; steps

uniform -> uniform; others

where the I indicates interference.

Now the reason for reducing the resolution is mainly to find and

represent blurred edges explicitly, although we are also interested

in increasing sensitivity. From the above we see that blurred edges

will produce low-resolution step edges (as will what were originally

step and faint edges). Hence, if we take high and low resolution

versions of the same image and compare the two lists of step edges

produced (not including gradient and texture region boundaries) , we
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high resolution low resolution

Fig. 6.2
A strongly concave region, such as the one shown above, may undergo a
change in connectivity as the image resolution is reduced.

should find extra entries in the low resolution edge list correspond¬

ing to blurred and faint edges. Some edges will also have disap¬

peared due to interference. So one way to improve the edge

detector's performance on blurred and faint edges is to run the SLS

on two resolutions, take each step edge found at the low resolution,

and check the corresponding part of the high resolution classified

array to determine the type of the edge. Four edge types are possi¬

ble depending on the high resolution output. They are:

Low resolution High resolution edge type

step step step

step gradient fuzzy

step texture complex

step uniform faint

The complex type covers the situation where a single edge at low
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resolution is a result of the interaction of several image entities

at the higher resolution, for example, a bar of the appropriate width

could produce this type of edge.

In the next section, the algorithms and implementation details

of this method of combining the edges from two different resolutions

will be described.

6_.2_ The Adjacent-Level Comparator

We can now proceed to investigate in detail techniques for com¬

bining the outputs of two SLSs run on different-resolution versions

of an image, based on the general principles described in the previ¬

ous section. The process for combining the two SLS outputs is called

an "adjacent-level comparator" , since it essentially compares the

step edges found in one resolution with the coresponding intensity

changes in the other.

The input to the adj ace nt-level comparator (alc) is provided by

running two instantiations of the single-level system on different-

resolution versions of the same image, as shown in fig. 6.3. The

lower resolution version of the image is produced from the higher

resolution version by averaging 2*2 blocks of pixels to produce a

single intensity value. This is the smallest reasonable reduction in

resolution for discrete systems. It has the advantage that examining

the high-resolution neighbourhood of, for instance, a low-resolution

mixed pixel only involves looking at a few pixels and boundary seg¬

ments, and that part of either a gradient region _or a texture region,

but not both, can exist in a particular neighbourhood. (Any two pix¬

els in the 2*2 neighbourhood are 8-connected, and so must be in the

same region, if any.)
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high-resolution
image

list of step
edges

Fig. 6.3
The input to the adjacent-level comparator is provided by the
pixel/boundary classification of the higher resolution image and the
list of step edges produced by the lower resolution image. The lower
resolution image is obtained from the higher resolution by averaging
non-overlapping 2*2 neighbourhoods to produce a single low-resolution
pixel intensity.

Recall that when tracking an edge, three types of edge elements

occur, mixed pixels and horizontal and vertical primary boundary seg¬

ments. The high-resolution neighbourhoods corresponding to each of

these are shown in fig. 6.4.

The choice of significance threshold for each resolution is

important, since the two thresholds should be related to each other

for best results. Various arrangements may be useful. The method

described in chapter four can be used to find the threshold value for

the high resolution, then choosing a threshold of half this value at

the low resolution should give roughly the same probability of error

(since averaging by a factor of four should reduce the noise standard

174



■* ■

-

mixed pixel

vertical

p.b.s.

low resolution

(a)

(b)

high resolution

hi

b3

1 i 11

<N

!

a

p U
L_

p3
J

bl

b2

b1

! p1
i

p2r

i

~1
i

I

L _

i

J
i

• p4
i

p3

b2

horizontal

p.b.s.

(cj

r

b2
! p1 P2 ;
I
1

i p P3 !
bl

i

Fig. 6.4
From investigation of how the three types of edge element occur and
change with resolution, the high-resolution neighbourhoods which must
be investigated for each type are shown above. For a low-resolution
mixed pixel, the appropriate high-level neighbourhood consists of the
corresponding four high-resolution pixels (p1-p4j and four boundary
segments (b1 —b4). For the low-resolution primary boundary segments,
the high-resolution neighbourhood to be investigated consists of two
boundary segments (bl—b2) and four pixels (p1-p4).

deviation by a factor of two). Alternatively, the entropy method can

be applied to the low resolution, and the high-resolution threshold

chosen to maintain a constant probability of error. Or the entropy

method can be applied separately to both resolutions to produce both

thresholds.
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Possibly the simplest approach is to use the same threshold with

both resolutions, leading to a considerably smaller probability of

error at the lower resolution (i.e. fewer spurious edges generated by

noise or true edges removed by noise). The effect of this on a test

image is shown in figs. 6.5 and 6.6. Fig. 6.5 shows the high resolu¬

tion pixel classification in which the background, using the thres¬

hold chosen, is fairly noisy. By using the same threshold with the

low resolution, as shown in fig. 6.6(a), the noise is effectively

r emo ved.

The input to the adjacent-level comparator in this case is pro¬

vided by the high-resolution classification of fig. 6.5, stored as an

array, and the list of step edges produced by running the SLS on the

low-resolution image as shown in fig. 6.6(b), stored as a list of

lists of coordinate pairs. In fact, with this simple image only a

single edge was produced.

To classify the edge as one of jstep, fuzzy, faint, complex} the

adjacent-level comparator (alc) retraces its path along the step edge

produced at the lower resolution. As the edge is tracked, the ALC

maintains four tallies, one for each of the four edge types listed

above. At each location it examines the neighbourhood in the high-

resolution classified array, as shown in fig. 6.4, corresponding to

the edge element under consideration. Based on the contents of the

neighbourhood, two points are awarded at each location. This is

because up to two of the four types of entity in the SLS output can

occur in any one neighbourhood. When the complete edge has been

tracked, the edge is labelled as one of the four types based on the

final values of the four tallies.
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Fig. 6.5
This shows the high-resolution pixel (and boundary segment) classifi¬
cation of the test picture using a significance threshold which pro¬
duces some noise in the background.
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Fig. 6.6
The low-resolution classification produced by using the same thres¬
hold as was used to obtain the high-resolution classification shown
in fig. 6.5 is shown in (aj. Because the threshold is now relatively
larger with respect to the noise standard deviation, the spurious
boundary segments have been removed. Edge tracking on this classifi¬
cation produces the single step edge plotted in (bj.
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The details of the algorithm for awarding the points are some¬

what complicated, but can be summarised as follows. They are derived

from an examination of what happens at the places in the image where

different entities meet. The basic idea is to look for evidence of

step, fuzzy, and complex edges in the high resolution image. Lack of

evidence is taken to indicate that the appropriate edge type is

"faint".

First, consider the high-resolution classification neighbourhood

corresponding to a low-resolution mixed pixel, using the notation of

fig. 6.4. If any two or more of the pixels, p1-p4, are of the same

type, i.e. one of imixed, gradient, texture}, then both points are

awarded to the corresponding edge tally, {step, fuzzy, complex}. If

two pixels are of different types, one point is awarded to each of

the corresponding edge tallies. If none of the above holds, the four

boundary segments, b1-b4, are examined. If one or more of these is

significant then the step edge tally is increased appropriately.

Finally, if the total number of points awarded at this stage is less

than two, the remaining points are awarded to the faint edge tally.

So at each edge element location exactly two points are awarded.

The procedure for vertical primary boundary segments is similar.

Three scores are used for step, fuzzy, and complex edge types. The

two boundary segments, b1 and b2, are examined first. The step edge

score is set equal to the number which are significant (o, 1 or 2) .

Next, the four pixels, p1-p4, are examined and the three scores

updated according to the type of the pixels. Now if any score is two

or more, both points are awarded to the corresponding tally, other¬

wise points are awarded according to the scores (if no score is two

or more then the sum of the scores cannot be greater than two). How-
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ever, if the sum of the scores is less than two, the tally for the

faint edge type is updated accordingly to bring the total number of

points awarded to two.

The procedure for horizontal primary boundary segments is ident¬

ical to that just described if the high-resolution neighbourhood is

relabelled as shown in fig. 6.4(c).

When the end of the edge is reached, the four tallies are used

to classify it as one of (step, fuzzy, faint, complex}. The classif¬

ication procedure is simple. If the step tally is greater than 3/4

of the total number of tallies, then the edge is labelled "step",

otherwise the edge is labelled as being the type of the largest of

the other three tallies. In fact, it may be better not to classify

the edge at this stage but to pass each edge list to the next process

with its full set of tallies. This will be discussed in the next

section. For a more detailed description of ALC operation, see

appendix 3 where a simplified P0P2-like implementation of the algo¬

rithm is listed.

To gain some idea of how the two resolutions are related in

practice, the two classifications can be superimposed. The test pic¬

ture is shown in this way in fig. 6.7. Each box shows four high-

resolution pixels and one low-resolution pixel, the central one. As

can be seen, the step edge produced by the object boundary produces

edge elements at both resolutions in the same place, while the noise

only produces edge elements at the high resolution.

To see the effect of using a different threshold, fig. 6.8 shows

the high-resolution classification produced by using a relatively

high threshold on the cup picture. By using a low-resolution thres¬

hold of half the high-resolution value, to maintain approximately
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Fig. 6.7
This shows both the high- and low-resolution classifications of the
test picture superimposed. Each box contains four high-resolution
pixels, in the corners, and the corresponding low-resolution pixel,
in the centre.
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Fig. 6.8
This figure shows the high resolution classification of the cup pic¬
ture obtained using a fairly high threshold value.
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constant error probability, the low-resolution classification and

step edges shown in fig. 6.9(a) and (b) respectively, are generated.

Notice that the edges produced by the cup handle which were separate

in the high-resolution classification have interfered to produce a

texture region at the low resolution. Since the low-resolution

threshold is much more sensitive, it finds substantially more of the

cup outline and also finds some shadows which were too faint to be

picked up at the higher resolution. These are labelled as faint

edges by the ALC. By examining the superposition of the two classif¬

ications, as shown in fig. 6.10, it can be seen how the edges pro¬

duced by the cup handle interfere at the low resolution to produce a

texture region.

The output of the ALC consists of an edge list for each of the

four types, each individual edge being represented by its low-

resolution list of coordinate pairs. In the cup example, the edges

found at the bottom of the cup are labelled "faint" as shown in fig.

6.9(b), while the others are labelled "step".

As a final example of the use of the ALC, we consider its

response to a blurred edge. A suitable test image was generated by

placing sane 1 ight-coloured shapes on a dark background and defocuss-

ing the camera slightly to blur the edges. The pixel classification

of a 64*64 neighbourhood of the (256*256) test image is shown in fig.

6.11. The blurred edge produces gradient regions as expected. With

the threshold value chosen, some noise can be seen.

The effect of reducing the resolution of the image section used

above to produce a 32*32 neighbourhood is shown in fig. 6.12. The

classification of fig. 6.12(a) was obtained by using a threshold half

the value of that used to obtain fig. 6.11. It was suggested above
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Fig. 6.9
The low-resolution classification generated by ,a.chosen to maintain the same probability of error as . .

is shown in (a) above. Because the noise is reduced by a f^or oftwo by averaging, the threshold value is haivcd and the system is
more sensitive. Applying the edge tracker to this
produces the edges shown in [bj.

184



."vf

3
W ■ l

V

w
V

i

t
E

V
w

w

E
E

E

V
V

w

E
E

E

w

w

w

E
E

E

w

w

y
S

s
2

S 2

S 3
M

3 H

3 S
H

H N

S
M

N

S
H

N 1
4

y s
S

s s
S

s s
S

E
E

E

w
w

w
2

S

3
3

E 3

2 3
M

N

N H

3
N

N
N N

N

N
N

3 3
I

M 1
4

4

E
S

E

w
w

w

E

2
■ ! 1 4

1
N

4

y

S
E

E

w

""
11

*
M

1

1

| I
E

E
E

u

ww!
sw

2
H

M 1 1 I E!w i1 M 1 4
1 E \y ' S

! E

E

•-i
i Ei

tl 4

x 1
w I

X 4 I !
1 fi'
, ! 2

y s

r r
y ,H H

X

T
M M

S
T

M M

N S
M

1 1
! E

E
E

y : S
W

- i c|

W N *
Ml M '

- u

4

n
M 4

!
i 1 i

i 1 jH 3
X 1 M I M

M|2 M fM

; 2
M i r

2 3

3
T

1 4
T

1

E | ]
1

E

E
E

y E, y 1 i H
W ' E 1 4 j | H

W
i E!W I

H 4 jM 1 M

N1M :t
.

i

s !
2

2 M M

2 M

M
M

3.1
X 1 3

|

£ ;3
E 3

e ;y

E

T:
y e

w'.l
!

r 1 1
i

i
i

E

E
E

w ' E W
y

| 1 m 1 I
«!» , ' |

i

V M

•1
M II

M
M Mi

M
H M |n M

M 1 M

1

!
j

E 1
M

-

T

2

3 2
T

3

i E
E

E

y e ui 1
- M 1

w e 4i
i

,

i
1

; l
i 2

1

M! s

*) T
y t

T 1
,

E

E
E

4 E Wl '

■> 1 :« i 1
"

i 1 ,E'! j
j 1 1

i
m 4 ;s s |S s

i M ; M 1 M 2
E w M IN In :JI

3
3 1 •

! 1 I *'1
el

1 ! '
4 ' ; i - i \

w i,* | 1

1

1

E '1

! ' i <! 1 i i i
i | el
1 1 e '

1 . e:

m 11 e:>J 1
1 1 1 1

'

E.3 ! 1
| 2 | .1 1 i
!

1 ■ 1

1 '
1

1

i 1 v:
' E

V i r! 1
y i ' i 1

1 i
l 1 1

E ») 1
X , E 4 j

'
! f

£ .

t •

/• r,; T! , ; i
, 1 ! 1 1 1 . ; < j

M ! : |
M M M 4 S S E

S 3 jS 5 |s S | £
T j M ' 4 | M H ! M ' 1 S

H M H C I C ! :i :J

y

4

s 1 1 ! c c

—

c M * " H 4 1 M £
£

■

y

4

y

3 s H s ! 1 i
1

t M I-1 ! j 1;:i .! n Hi
w

w

w
tl " N 1 s

I
1

1

r f v : 1
1 1 : ■ K

■ • > , , , ■ 5
u

y

y

S

1 !
.

' !
S s S i ; '

i i i ■ 1 e
V
y

u
N M M :i ti M M M s S " " «

)
1 i

£
i 1 E

I !
y

y

» !
N

i i ;
( i

:

'

E

• EE
»

V i: ' i
1

' i

\ 1 E
w

w

y

y

4

4 S

5

s 5

s

s s

s
s s

s
s s

S

s s
s

s
s

s s

1

-1
s

s

s
s

s
s s

s

3 S
3

s s
3

S S
s

3 S
s

3 S
3

3 S
s

3 S
s 1 s

3 SjS S
S

S 3
s

s s
s

s s
s

s s
3

S!
s

s s
s

s s

! j eS I S i 2
s s|s sj s :|

Fig. 6.10
This shows the high- and low-resolution classifications of the cup
picture superimposed. Of particular interest is the region contain¬
ing the handle of the cup, just above the centre right of the pic¬
ture. The edges, generated by the obscuring boundaries of the han¬
dle, are just sufficiently far apart to be found separately at the
high resolution, but at the low resolution they interfere to produce
a texture region.
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Fig. 6.11
This shows the pixel classification of a 64*64 picture
containing a vertical blurred edge.

neighbourhood
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Fig. 6.12
The classification shown in (aj above, resulted from reducing the
resolution of the neighbourhood used to generate fig. 6.11 and apply¬
ing a threshold of half the value used in fig. 6.11. This maintains
an approximately constant error probability. The classification in
(bj was obtained using the same threshold as that used in fig. 6.11.
This removes the noise, but also reduces the sensitivity.
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thafc..fcMfl should maintain a roughly constant error probability, and

this =fdoes seem to be the case here. The classification of fig.

6.12(b) was obtained using the same threshold as that used in fig.

6.11. Although this reduces the sensitivity of the system, as can be

seen from the smaller average width of the gradient region, it also

decreases the error probability, in this case removing all of the

noise. Comparing fig. 6.11 with fig. 6.12(a), we see that the aver¬

age edge width is smaller due to the reduction in resolution.

Further reducing the resolution has the effect shown in fig.

6.13, where the edge width is less than one pixel, resulting in the

edge being found as a step. Hence, if this resolution and the next

higher one were used to provide the inputs to an ALC, the edge would

be found and tracked as a step at the lower resolution. When the

higher resolution neighbourhoods corresponding to the step edge were

examined, the edge would be labelled as type "fuzzy" due to the gra¬

dient region.

3HNNN1 M3NNNNN 11111
w tl 1M

w 11 1
w il E

w M E

w M E
w M E

w M E
w M E

w 1-1 E

w 11 E
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w M E
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4SSSS211M4SSSSSS2

Fig. 6.13
Further reducing the resolution causes the edge width to become less
than one pixel. Since the thickess constraint is now violated, but
the thinness constraint is now satisfied, the edge is found and
tracked as a step.
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Many blurred edges are not of uniform width. Because they are

normally generated by shadow or surface orientation boundaries, the

resulting edge width can vary considerably. In fact, if the 256*256

test image used above is reduced to 64*64 pixels, some of the edges

are not of uniform width as can be seen from the classification shown

in fig. 6.14. However, if we further reduce the resolution to 32*32

pixels, then all edges in this image become steps, as shown in fig.

6.15. This illustrates the general principle of the multi-level sys¬

tem. All blurred edges will eventually become steps at some resolu¬

tion, if they are not subject to interference.

The fact that blurred edges have variable width results in dif¬

ferent parts of the edge becoming steps at different resolutions, as

happened in the example just discussed. In the final output

representation of the system, this behaviour should be taken into

account, and it should be possible to relate the different parts of

the edge across resolutions. The form of a suitable representation

to do this will be discussed in the next section.

6_.3_ The Multi-Level Integrator

By taking a particular image, reducing the resolution as

described in section 6.2, inputting both images to single-level sys¬

tems, and feeding the outputs into an adjacent-level comparator,

edges of 1-2 pixels width can be found and represented. The struc¬

ture of this process was shown in fig. 6.3. If the low-resolution

image produced above was further reduced in the same way, and the two

lower-resolution images fed into a second ALC, then edges of 1-4 pix¬

els width could be found. The problem is that they would be in two

different representations, i.e. the outputs of the two ALCs. So to

find edges of a range of widths, it is necessary to run several
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Fig. 6.14
This shows the classification of the'64*64 version of the test image.
Note that both the right vertical edge and the horizontal edge are
not of constant width.
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Fig. 6.15
Further reducing the resolution of the test image to 32*32 pixels
produces the classification shown above. At this level, all of the
blurred edges have become steps.

versions of the ALC, as shown in fig. 6.16. To find broad edges the

resolution has to be reduced, but to make sure all the sharp edges

are found the highest resolution must also be used.

Hence, it is necessary to propose another process which takes

the multiple ALC outputs, and forms a single description of all the

edges in the image. In other words, the overall system structure

should be as shown in fig. 6.17. The new block is called a multi¬

level integrator (MLl) because its job is to take the multiple
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Fig. 6.16
To find edges of a range of widths, multiple applications of the SLS
are required. Each pair of adjacent SLSs feed an ALC which compares
the output at the two resolutions.

outputs produced by ALCs and form a single representation.

In view of the need for this additional block, one might ques¬

tion the need for the ALC. However, if we simply fed the outputs of

several SLSs into the MLI we would still need some way of relating

the outputs of different SLSs. I believe it is best to use a uniform

approach, and form links between adjacent resolution SLS outputs

before attempting the integration. This is the role of the ALC - to

provide an explicit link between the outputs of two SLSs, where the

SLSs have been fed with images related in the way specified in sec¬

tion 6.2. Once these links have been formed, the job of the MLI is

greatly simplified. Currently, the ALC classifies each low
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Fig. 6.17
The final system architecture contains three layers. Using the links
between resolutions provided by the ALC, the multi-level integrator
constructs the final data structure.

resolution edge as one of four types. It may be better to pass the

four tallies to the MLI with each edge, rather than a single

interpretation, which would give the MLI more scope in making deci-

sionaover several resolutions in difficult cases.
» ' ' '

This use of the ALC is an example of a useful modularisation

technique. Where several entities, in this case SLS outputs, have to

be compared with each other, it greatly simplifies the comparison

process if the entities can be compared in pairs, rather than in

total. Additionally, since the relationship between the outputs of

adjacent SLSs is the same for each pair, the same comparison process

should be applied in each case.
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In summary, although it is necessary to use several SLSs if a

wide range of edge widths is to be dealt with, it is better, due to

the relationship between the SLSs, to compare them in pairs. This

simplifies the process of comparison, increases the modularity of the

overall system, and constructs the explicit links necessary for suc¬

cessful multi-channel operation.

In general terms, the role of the multi-level integrator is to

take the multiple sets of edges produced by the adjacent-level com¬

parators used and relate them in a single representation. If no sin¬

gle representation was available, the constraint analysis system

would not be able to identify the set of edges (i.e. one at each

resolution) resulting from a particular scene entity.

The final output representation should make constraint analysis

easy. Therefore, to obtain greatest accuracy, step edges should be

represented at the highest resolution. Blurred edges, to be tracked

and manipulated easily, should be represented as step edges at the

resolution at which this occurs, but, for more detailed investiga¬

tion, the simple transforms between levels make it easy to find the

corresponding neighbourhoods of higher-resolution images. An edge of

non-uniform width should be held as a step at the appropriate resolu¬

tion with pointers to pieces of the same edge which are steps at

higher resolutions.

This representation, used in conjunction with the original

image, would provide the input to a set of processes whose purpose is

to generate a full semantic labelling of image edges. Reflectance

edges could be labelled using the test described in section 2.6.

Something similar to Ullman's "S" operator (uilman 1976) could be

used to identify shadow and highlight edges, while a variant of
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Witkin's technique (Witkin 1982} would provide a method for labelling

obscuring edges. Notice that the multi-level edge representation can

play a useful part in this edge labelling process. For example,

because of the way in which they are generated, obscuring edges

should exist at the highest resolution, whereas shadow and surface

orientation edges will often be slightly blurred thereby causing gra¬

dient regions at the highest resolution. Hence, the test to find

obscuring edges doesn't need to be applied to edges labelled "fuzzy"

in the multi-level representation. This also helps improve the effi¬

ciency of the edge-labelling process. The test for obscuring edges,

for example, should be applied to edges labelled "step" first, while

the test for shadow edges should start with edges labelled "fuzzy".

Notice that, strictly speaking, the edge labelling processes cannot

assert that an edge is definitely of a specific type. All they can

do is assert that an edge satisfies the constraints which should be

met by an edge of that type. The multi-level integrator has not been

implemented because, apart from time constraints, it is difficult to

know in detail what the next stage in the process, in this case con¬

straint analysis, needs in the form of a representation. This claim

is not inconsistent with the earlier use of a hypothetical constraint

analysis system to derive the goals of edge detection, because like

vision processes, representations can also be thought of at different

levels. We can use Marr's (1982} three levels: In this case the

theory level might involve considering what is being represented and

why, and investigating the structure of the representation and its

properties in a mathematical, sense. The algorithm level would obvi¬

ously be concerned with setting up the appropriate structures and

accessing data items. The implementation level would contain the

implementation of the algorithms in the appropriate software or
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hardware.

An example serves to illustrate this point. Witkin(l982) has

described a method for distinguishing obscuring and shadow edges. A

set of image curves parallel to the edge in question are formed at

various distances from the edge. By correlating the intensities on

these curves between curves, the type of the edge can be estimated

from the variation in the correlation parameters as the edge is

crossed. Ullman (1 976) and Forbus (1 977 ) have described a method for

identifying shadow and highlight edges. In this case, a set of paths

perpendicular to the edge are required along which a particular

operator is applied. Hence, we see two techniques of edge labelling,

both based on investigating intensities in the neighbourhood of the

edge, which require substantially different edge representations. In

one case, a set of curves (with intensities] parallel to the edge in

question are required, in the other, a set of curves (with intensi¬

ties] perpendicular to the edge are needed.

An additional problem in deciding on a suitable representation

is that to date constraint analysis systems have used only single-

width edges. However, we are justified in making some suggestions

about the final representation, since it is clear what the next stage

will require at the theory level, if not at the algorithm and imple¬

mentation levels. Edges should be represented as steps at the

highest resolution possible. If it is desirable to maintain a com¬

plete set of edges at. each resolution, pointers can be used to link

the appropriate edges, producing the tree-like structure shown in

fig. 6.18, where nodes represent edges. Each edge at a particular

resolution is linked to the corresponding edges in the next highest

resolution. Note that not all edges will have such links, because of
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int«ajlp*«ice. This structure can be generated by starting with the

lowest resolution edge list, tracking along each edge checking the

next higher resolution classified array and edge list to form the

edge correspondences. In fact, the ALC could be extended to perform

this task at the same time as i t classifies edge types. The task of

the MLI would then be to set up the final data structure.

Highest

Fig. 6.18
A tree-like structure like the one shown above may be an appropriate
final representation for the multi-level system. Each node
represents an edge, probably stored as a list of coordinates and an
associated edge type. The links are connections between the same
edge at different resolutions. Hence, due to interference, not every
node will link to another level.
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6.4 Features Needed In Multi-Channel Systems

In this chapter an attempt has been made to identify the impor¬

tant features of multi-channel edge detector systems. There are

three interrelated points to note:

1. The classes of entities produced by the single-channel sys¬

tem should be precisely defined.

2. There should be a clear relationship between the outputs of

adjacent single-channel systems.

3. There should be a simple (or at least calculable) relation¬

ship between the output of the single-channel system and

the underlying intensity changes.

The first two of these are needed so that the way the various enti¬

ties in the channel output change as the channel parameters change

can be worked out. It is necessary, but not sufficient, to define

the output of the single-channel system well. It must also be

defined in such a way that the effect of changing channel parameters

produces a useful relationship between the channel outputs. In the

system described here, this was done by describing each of the

classes of channel output in terms of a few basic constraints, then

examining the effect of reducing resolution on the constraints.

Because the entities in the single-channel output were easy -to

describe in terms of these basic constraints, and because the con¬

straints were simple image properties, the effect of reducing resolu¬

tion was easy to specify.

The third point is important for two reasons. Firstly, it must

be the aim of any edge detector to provide an output which is in some

way clearly related to the image. Secondly, it has been by maintain¬

ing simple, well-defined relationships to the image throughout the
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derivation of the edge detector described here that has allowed the

properties of multi-channel systems to be investigated. In fact,

points 1 and 2 can be interpreted as extensions to point 3- Tying

the edge detector output to the image is the key step in enabling the

design of the edge detector itself, and in specifying the performance

of the succeeding module in the system.
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7 Conclusion

7.1_ Contributions of this Thesis

The main problems in designing and implementing edge detectors

are deciding what exactly is supposed to be detected, doing the

detection, and reducing the effect of noise during detection. In

this thesis all of these areas have been investigated.

The methodology of producing vision systems has been discussed

in recent years by Marr and others. In this thesis I have tried to

present a deeper investigation of some of the issues involved by

explicitly considering the methodology being used while designing a

specific vision system component. In particular, I have shown how it

is preferable to choose a simple system architecture when one is

investigating vision issues at Marr's theory level. I have also dis¬

cussed the role of the succeeding process in a system when designing

a particular component. In chapter two, we saw how investigating a

particular edge labelling task in detail enabled several features of

the required edge detector to be listed, from which suitable goals of

edge detection could be derived.

Since the earliest days of computer vision, it has been recog¬

nised that image noise is a problem. In this thesis, I have

described a technique for automatically selecting a threshold in the

presence of noise. It takes both the noise statistics and the dis¬

tribution of intensities in the image into account. However, I

avoided the use of the word "optimal" to describe the threshold

selected. While a particular quantity may be optimal with respect to

a particular criterion, the real issue is the choice of criterion.

The threshold selected by the method described in chapter four is

based on modelling the addition of noise to the image by a

200



communication channel. Finding the threshold which maximises the

mutual information of the channel should give the output edge map

most similar to the ideal edge map in an information-theoretic sense.

There was some difficulty in choosing appropriate terminology to

describe the "edge detector" described in this thesis, because it

does rather more than most systems so named. As well as finding and

tracking step edges, the single-level system also locates and identi¬

fies image regions containing extended smooth gradients or texture.

In this context, a computational definition of texture was given,

which, although closely related to the design of the rest of the sys¬

tem described here, is, I believe, usefully generalisable to other

systems. The edge detector was designed so that the various classes

of entities present in its output were closely related to the input

image. I believe this is a very desirable property of any edge

detection system, particularly if it is to be multi-channel. This

relationship also enabled the entities in the single-level system

output to be described in terms of a few basic constraints, which

proved to be very useful in constructing the adj acent-1 evel compara¬

tor .

One advantage of the single-level system over other edge detec¬

tors is that the output contains four classes of entity (step edges,

gradient regions, texture regions, and uniform regions) rather than

the usual two (edge or no-edge). The way this can be exploited by

any user of the system obviously depends on the application, but one

obvious advantage is that step-like edges are separated from other

types of intensity change.

Another advantage of the single-level system is that the four

classes of entity in its output are well defined. Hence, if a step
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edge is represented by a given list of coordinate pairs, it will be

the case that there exists an intensity change, of at least a certain

amplitude, which is thin in one direction, on the image curve indi¬

cated. The fact that I could rely on knowing what kind of intensity

change produced a particular entity in the single-level system output

was one of the main advantages in the design of the multi-level sys¬

tem.

Although the multi-level system was not fully implemented,

enough was done to enable three important features necessary for the

design of multi-level systems to be identified. Namely;

1. The classes of entities produced by the single-level system

should be precisely defined.

2. There should be a clear relationship between the outputs of

adjacent single-level systems.

3. There should be a simple (or at least calculable) relation¬

ship between the output of the single-level system and

the underlying intensity changes.

The straightforward nature of the design of the adjacent-level com¬

parator would seem to reflect a successful single-level system design

and support the claim for the importance of the three features listed

above .

Of course, the edge detector does not perform perfectly. Like

most detectors based on tracking, it is susceptible to noise generat¬

ing a break in an edge, and hence causing tracking to terminate. No

measures were taken to combat this because I felt that, for example,

"jumping" short breaks in edges, violated the principle of veridical-

ity in that the final tracked edge coordinate list would not faith¬

fully reflect the image structure. On the other hand, it is clear
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that some measures have to be taken to combat noise. Just how far

one should go is, to some extent, an open question.

To make as few assumptions as possible about the nature of the

image, the simplest available method of finding intensity changes was

used, i.e. first differences. In effect, this was to avoid prejudg¬

ing the image. Again, this makes the system somewhat susceptible to

noise. However, this is partially alleviated by reducing the resolu-

tiion and linking edges across resolutions.

J_.2_ Suggestions for Further Work

Although the field of edge detection has been the subject of

many research programmes over the past two decades, I feel that there

is still a need for further work and I will try and suggest ways in

which the research described in this thesis could be carried on.

I believe that the most important area requiring attention is in

the specification and evaluation of edge detectors. In this thesis I

have made a start at improving the appropriate design methodology.

This could be refined and improved by trying to use the same basic

ideas to design edge detectors for different tasks. For instance, it

would be interesting to produce an edge detector for stereopsis using

the methodology described here. This should illustrate how different

requirements in the succeeding process affect edge detector design.

If further work could be expended on designing an edge labelling

system, which would allow the implementation of a suitable multi¬

level integrator, use of the total system would undoubtedly highlight

shortcomings in the current edge detector design as described here.

It may then be possible to relate these to the design methodology as

well as to specific problems in the edge detector.
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Edge detector evaluation is closely related to specification

because we have to know what an edge detector is supposed to be doing

before we can say how well it is doing it. I discuss evaluation in

this further work section because of its close links to specification

which has been a topic in this thesis, and because the somewhat

unconventional nature of the edge detector designed here illustrates

the failings of current evaluation techniques.

Two approaches to evaluation are extant. One involves the use

of a figure of merit, such as that discussed in chapter three, with

very simple, artificially-generated images, such as those containing

only a single ramp edge. Usually, Gaussian noise is added in varying

amounts. Since the image is so simple, an ideal response can be sug¬

gested and the actual output of a particular edge detector measured

via the figure of merit. The problem with this approach is that the

test images are nothing like real images, so it is not at all clear

that detectors with a high figure of merit will perform well with

real scenes. The alternative approach, which attempts to get round

this problem, involves using a set of real images. Now the problem

is in measuring performance. Currently, this seems to be done on a

manual basis, which is also unsatisfactory, since it is purely sub¬

jective .

The way round these problems would seem to be to merge these two

techniques using modern computer graphics methods. Complex, realis¬

tic scenes could be created and used to generate test images. The

big advantage is that the user could specify the desired output of

the edge detector in scene/imaging terms, for instance, giving the

minimum change in surface radiance across a reflectance boundary that

was to be detected. These specifications could then be automatically
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transformed to generate a set of image edges to be matched with those

found by the detector under test.

The threshold selection techniques described in chapter four

could also be the subject of some further work. If a method of

deconvolving the (known) noise distribution from the image distribu¬

tion could be found, the technique would be a very useful one. The

problem is that, while the image is a fairly large sample, it is not

an infinite one, and so the problem may be ill-conditioned. However,

I believe that such techniques are available in the field of image

restoration, so this problem should be tractable.

In general, I believe the approach taken in this thesis has led

to both the elucidation of some fruitful general principles, and the

development of some useful specific techniques. Carrying on the work

along the lines suggested above could further extend our understand¬

ing of edge detection and vision.
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t _ Appendix 1_

Blurring an image which has a Gaussian probability distibution

with Gaussian noise is equivalent, in terms of the distributions, to

convolving one Gaussian with another.

Blurred

Let the original image distribution be

i(t) i— e

and let the noise distribution be

then the blurred image distribution is

y(t] = l(t) * N(t)
where * is the convolution operator.
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now utilising the error function integral (Kreyszig 1972, p.692)

y(t) = K K

2 2
1 °1°2

2 2
°1 + °2

2tt

restoring K and K and simplifying, we get

■(t)=- 1 2(af + a*)
2ti\

2 2

°1 + °2
2 2

which is Gaussian with mean zero and variance + a^.
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Appendix 2

The cross test labels a mixed pixel as illegal (for tracking) if

neither diagonal has both adjacent pixels unmixed. If a step-like

edge is straight, it should generate mixed pixels which all pass the

cross test, but if an edge is curved the cross test may fail as shown

below.

In each case the pixels labelled © fail. To quantify the amount

of curvature which causes failure we can examine how circular edges

digitise, circles having constant curvature. Assume we have an image

consisting of a 1ight-coloured circle on a dark background, with cir¬

cle image intensity s and background intensity 0. Also assume the

image is digitised by uniformly integrating over square pixel areas

of length of side one unit. For a typical case, even with small cir¬

cles, there is no problem, as shown overleaf.

The three examples A, B, and C above, where failure does occur

represent worst cases. We will examine only case C since it is the

easiest to analyse, but because of their similarity cases A and B

should produce similar results.
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The basic idea will be to choose a significance threshold t and

find the smallest circle which can be successfully digitised as a

function of both t and the edge amplitude s. An appropriate part of

the circle and quantisation grid is shown overleaf.

For the cross test to fail both p2 and p5 must be mixed, so

|p1 - P2| > t

|p2 - p31 > t

|p4 - p51 > t

|p5 - p6| > t

but, in fact, since we are trying to minimise circle radius, we need

only check

|p1 - p21 > t

|p5 - p6| > t

with a background (analogue) intensity of 0 and an intensity inside

the circle of s, this means we need
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, 2 2
y =/r -x

2 2 1
r = n + jj-

A1 " y - n dx
-1

A1 = J /r2 - x2 - n dx

integrating and simplifying, we get the following expression for A

in terms of n

A. =
r 2 1[n +-7-J sin

-1

Similarly, for A„

n

2

n -1
- 3. -I

-1

A = I n - y dx
-3

A2 '
-3

n -/r2- x2 dx
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Tabulating both A1 and k^ against n and r, we get
n r A1 A2
2 2.06 0.0412 0.2284

3 3.04 0.0276 0.1441

4 4.03 0. 0208 0.1063

5 5.02 0.01 66 0.0844

6 6. 02 0.01 39 0.0701

7 7.02 0.01 1 9 0.0599

8 8.01 0.01 04 0.0523

9 9.01 0.00 93 0.0465

1 0 1 0.01 0.0083 0.041 8

From this we see that k^ > so we can concentrate on

A > -
1 s

A^ increases as the radius decreases so we can find the smallest A1
which doesn't satisfy the inequality. This will be the smallest cii—

cle which can be successfully tracked. Assuming we have a signifi¬

cance threshold of 18 greylevels then we can tabulate the smallest

circle radius correctly tracked, , as a function of the edge ampli¬

tude

s 20 50 100 150 200 250

-t 0.9 0.36 0.18 0.12 0.09 0.072

rc 2 2 2 2 2 2

Using a very much smaller significance threshold, t=2, gives

218



3 20 50 1 00 150 200 250

0.1 0.0M 0.02 0.013 0.010 0.008

rc 2 3 5 7 9 11

Hence, in a low-noise image where a relatively large threshold is

being used, curved edges are not a problem. However, in a low-noise

image using a low threshold will limit the edge curvature that will

be successfully tracked.
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Appendix 3

The ALC operates by tracking low-resolution step edges, at each

point examining the corresponding area of the high resolution

pixel/boundary segment classification. Based on the type of pixels

and boundary segments found in the classification, the edge is

labelled as one of {step, fuzzy, complex, faint}.

In the following listing, the function classify_edge controls

the edge tracking and makes the decision on edge type. At each edge

point it calls one of the three functions, mixed_rules,

vertical_rules , or hori zontal_rules , depending on whether the edge

point is a mixed pixel, a vertical significant boundary segment, or a

horizontal significant boundary segment. These functions perform the

examination of the high resolution classification, allocating points

among four tallies [one tally for each edge type). When the end of

the edge is reached, it is classified according to the tally totals.
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function classify_edge edge_list => edge_type;
IGiven the list of coordinate pairs of a low-resolution
Itracked edge, this function retracks the edge examining
! the corresponding part of the high-resolution edge/pixel
! boundary segment classification. Based on the type of
! pixels in the appropriate high-resolution neighbourhood
lit assigns points to tallies representing the four edge
!types, then classifies each edge as one of {step, fuzzy,
! complex, faint} based on the total tallies for the edge,
f ind_length(edge_list j ->edge_length;
while in_edge do

get_edge_point (edge_listj ->edge_point;
if is_mixed [edge_point] then ! mixed pixel

mixed_rules (edge_point) ->point_tall ies
elseif is_vertical(edge_point] then !vertical b.s.

vertical_rules(edge_point)->point_tallies
else ! horizontal b.s.

hori zontal_rules (edge_point} ->point tall ies;
update_tall ies (point_tall ies ,tally_set7~>tally_set;

enddo;
! Now, given the set of tally totals and the length of the
ledge, decide which type it is.
decomposed all y_set} ->step_tally->fuzzy_tally->complex_tally

->faint_tally;
edge_length*1 .5->threshold;
if step_tally > threshold then

"step"->edge_type
elseif fuzzy_tally>complex_tally and fuzzy_tally>faint_tally then

" fuzzy"->edge_type
elseif complex_tally>fuzzy_tally and complex_tally>faint_tally then

" complex" ->edge_type
elseif faint_tally>fuzzy_tally and faint_tally>complex_tally then

"faint"->edge_type
else

print('edge not classified'}
endf unction;
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function mixed_rules edge_point => point_tallies;
IGiven the coordinates of a mixed pixel, this function
! examines the appropriate neighbourhood of the high-
Iresolution pixel/boundary segment classification and,
! depending on the pixel and boundary segment types,
[allocates two points among the four edge-type tallies.
! b4
! p1 P2
! b3 bl
! P^ P3
! b2
for p=p1 to p^4 do

if is_mixed(p) then step_score+1->step_score
elseif is_gradient(p) then fuzzy_score+1 ->fuzzy_score
elseif is_texture(p) then complex_score+1->complex_score

enddo
for b=b1 to b^ do

if is_signif icant (b) then bounds+1->bounds
enddo

make_zero(tallies);
if step_score>1 and not (f uzzy_score>1 or complex_score>1 ) then

2->step_tally; make_set (tall ies) ->point_tall ies; exi t;
if f uzzy_score>1 and not (step_score>1 or complex_score>1 ) then

2->fuzzy_tally; make_set (tall ies) ->point_tall ies; exi t;
if complex_score>1 and not (step_score>1 or f uzzy_score>1 ) then

2->complex_tally;make_set(tallies)->point_tallies;exit;
step_score->step_tally;
fuzzy_score->fuzzy_tally;
complex_score->complex_tally;
step_score+fuzzy_score+complex_score->total_score;
if total_score=1 then

if bounds>0 then step_tally+1 ->step_tally
else 1->faint_tally;

if total_score=0 then
if bounds>1 then 2->step_tally
elseif bounds=1 then 1->step_tally; 1 ->faint_tally
else 2->faint tally;

make_set (tall ies7~>point_tall ies;
endf unction;
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function vertical_rules edge_point => point_tallies;
JGiven the coordinates of a significant vertical
! boundary segment, this function examines the
! appropriate neighbourhood of the high-resolution
! pixel/boundary segment classification and allocates
! two points among the four edge-type tallies
! depending on the type of the pixels and the boundary
! segments in the neighbourhood.
! b 1

! P1 p2
! P^ p3
! b2

for b=b1 to b2 do
if is_significant(b) then step_score+1->step_score

enddo;
for p=p1 to p4 do

if is_mixed(p) then step_score+1->step_score
elseif is_gradient(p) then fuzzy_score+1->fuzzy_score
elseif is_texture(p) then complex_score+1->complex_score

enddo;
if step_score>1 and not (f uzzy_score>1 or complex_score>1 ) then

2->step_tally;make_set(tallies)->point_tallies;exit;
if f uzzy_score>1 and not (step_score>l or complex_score>1 ) then

2->fuzzy_tally; make_set (tall ies) ->point_tall ies ; exi t;
if complex_score>1 and not (step_score>1 or f uzzy_score>1 ) then

2->complex_score;make_set(tallies)->point_tallies;exit;
step_score->step_tally;
fuzzy_score->fuzzy_tally;
complex_score->complex_tally;
step_score+fuzzy_score+complex_score->total_score;
if total_score=1 then

1->faint_tally
elseif total_score=0 then

2->faint_tally;
make_set(tallies)->point_tallies;
endf unction;
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function horizontal_rules edge_point => point_tallies;
!Given the coordinates of a significant horizontal
!boundary segment, this function examines the
! appropriate neighbourhood of the high-resolution
!pixel/boundary segment classification and
! allocates two points among the four edge_type
Itallies depending on the type of the pixels and
! the boundary segments in the neighbourhood.
! p4 p1
! b2 b 1
! p3 p2
get_neighbours (edge_point) -Neighbourhood;
rot at e_by_90( neighbour hood);
overlay (neighbourhood .classification);
vertical_rules (edge_point) ->point_tall ies;
reset (neighbour hood,classification);
!This function uses the symmetry of the horizontal
land vertical primary boundary segment neighbourhoods
!to make the vertical_rules function apply to the
! horizontal case,

endf unction;
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Abstract: This paper is in two parts. In the
first, we argue that edge detectors cannot be
designed in isolation but only as components
whose function is defined in terms of system
goals. The second section describes the
current state of an edge detector intended as
part of a semantically based early visual
processing system. The role of this system is
to label image entities with their scene
"meaning". As a first step in the orocess, the
edge detector finds and tracks step-like edges
and labels areas of texture and gradient in the
image.

1.0 Introduction

Edge detection is the first steo in most
computer vision systems. Hundreds of edge
detectors have been developed, (see eg Davis
{1975}) but only a few are useful as part of a
vision system. We suggest that this is due to
two interrelated failings. Firstly, it is not
usually clear how the outout of an edge
detector can be used for the next stage of
processing and, secondly, it is not clear how
the edge detector outout relates to the input,
ie the image. Both of these nroblems arise
from considering edge detection as an end in
itself, ncc as a component which has to fit
into a system. One result of this is that
techniaues for measuring edge detector
performance (eg p.495 Pratt {1978}) are based
on relatively arbitrary signal Drocessing
measures, not on information nrocessing. Only,
by clearly defining the role of edge detection
in terms of the relationshiD between the scene,

image, and the rest of the early processing
system can an edge detector be designed as an
effective component. This pacer describes the
current state of an edge detector which has
been designed as part of an early visual
processing system which itself embodies an
opinion about how to do 3-d vision.

There is a significant and growing body of
opinion in A.I. that early processing can be
performed autonomously, ie without direction
from higher levels of the vision system, (eg
Tenenbaum, Barrow, and Fischler {1980}). The
basis for this view is the belief that entities
in the world (surfaces and light sources) can
be adeauately described without specific
knowledge of scene content. In this approach.,
which arises from the veridicality of the image,
image entities are interpreted as scene
entities even at the early processing stage.
An appropriate goal for early visual processina
is to interpret significant image entities as
shadow edges, regions of texture, etc. This
type of early processing takes place in two
stages:
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- 1. find the edges in the image
2. attempt to label these edges with

their scene 'meanina' based on

constraint analysis.

The role of edge detection is to find
image entities on which constraint analysis
can take place. To make a sensible choice, the
edge detector must incorporate some notion of
how image entities relate to scene events. So
before starting to design an edge detector, it
is necessary to consider what is meant by the
term "edge", how it relates to scenes, and how
edges should be represented for constraint
analysis.

To establish how image intensity
variations arise, we begin by examining the
behaviour of surfaces and light sources in the
scene. The world contains objects, light
sources, and a transparent medium. Assuming
that our imaaing device is a monochrome TV
camera, we are interested in how light is
reflected from objects to our imaaing device.
The imaging eauation (Horn and Sjobera 1978)
shows that image irradiance is directly
proportional to surface radiance. So, if we
examine the behaviour of surfaces in terms of
surface radiance, our observations will be
easily expressible in terms of image
irradi-ance. The radiance of a Lambertian
surface varies continuously except under two
conditions:

1. a step change in surface reflectance
2. a step change in surface irradiance.

The step change in surface irradiance would
normally be a shadow caused by another object
obscuring a light source. For a step change,
the light would have to be from a point-like
source. The steo change could also be caused
by indirect illumination, but this is very
unlikely. Indirect illumination usually
produces smooth gradients in surface
irradiance. We only consider Lambertian
surfaces in this paoer because our main goal
is the analysis of the edge detection orocess,
not the construction of a full world model for
constraint derivation. This dees not mean

that our early processing system will be
limited to scenes containing only Lambertian
surfaces, since at this stage, analysis of the
world onlv serves to produce general goals for
edge detection.

Having looked at the scene, we can now
examine the transition from scene to image.
Consider the illumination of adjacent
elementarv areas on the imaqe plane. Two
cases exist, as shown in fig.l:

1. they can be illuminated by adjacent
areas of the same surface

2. they can be illuminated by unrelated
areas of different surfaces.

In the first case, what we know about
surface radiance also holds for image
irradiance since there is a direct mapping
from adjacent pieces of surface to adjacent
pieces of image. This means that
discontinuities in surface radiance will cause

discontinuities in imaae irradiance, due to
shadows and to changes in surface reflectance.
In the second case, it is likely that the
adjacent image areas will be subject to quite
different amounts of irradiance, producing a
steo discontinuity. In practice, due to the
defects of practical devices, these
discontinuities will be blurred (see Brain
{1979} for optics, Herskovits and Binford



{1970} for empirical results). Steep
gradients in image irradiance can also be
caused by shadows from extended sources and
from variations in object shape, such as the
corners of polyhedral blocks. The analogue
image, then, contains a wide range of
intensity variations (assuming perceived
intensity is proportional to image
irradiance), ranging from steep gradients to
uniform regions.

In processing the image we are particularly
interested in places where the intensity is
changing auickly, since we might be able to
recognise these as due to object boundaries,
shape changes, shadows, or reflectance
changes. Of course, a computer vision
system only has access to a diaitised image.
So, while it may be relatively easy to
formally define notions of continuity and
discontinuity for ideal analogue signals, it
is not easy for noisy digitised ones. Edge
detection, which can be viewed as a search for
discontinuities and significant gradients in
the digitised image, has reflected this
difficulty. Some methods treat the digitised
image as if the underlying signal is
continuous everywhere, but others assume that
the underlying signal contains ideal step
edges (see Brooks {1978}). As noted above,
the analogue image does, in fact, contain
intensity variations over a wide range of
scales, limited at the upper end by the
optical and signal processing capabilities of
the imaging device.

The process of digitisation raises some
significant issues. Some important image
effects are largely dependent on the sampling
and quantisation resolutions of the imaging
device. Consider an image of a chessboard
pattern. If each black or white sguare covers
many pixels, then it will be easy to identify
them as separate regions. At the other
extreme, if many squares are subtended by each
pixel, the image will be a uniform arey. Only
in some intermediate range, where the number
of sauares subtended by the image is of the
same order as the number of pixels, will the
image take on a textured appearance. The
concept of texture is largely to do with
relative sizes and resolutions. Similarly,
object shape variations occur over a wide
range of scales, both in the scene and in the

image. In images of natural scenes, these
variations will cover a ranqe from step edges
to uniform regions. What constitutes a steo
edge is highly dependent on the relative size
and distance of the phenomenon, the optical
imagine system, and the resolution of the device.
The corner of a buildina may look like a step
edqe from a distance, but appears as a gradual
shape chancre close up. One cannot get rid of
this problem simply by using higher resolution
imaginq devices. In terms of the above example,
that just means you have to retreat a little
further before the corner of the building again
looks like a step edge.

The point of this discussion is to
illustrate that the concent of "edqe" is a very
complex one, especially in digitised images.
Since the scene events we are interested in
(obscurina edges, shadows, etc) produce
discontinuities and steep gradients in analogue
image intensity, we are interested in places in
the digitised image where the intensity values
are changing auickly. The difficulty is in
being any more specific at this level. If we
design a mask which will react to some
particular pattern, say, ideal step edges, we
may miss other aradients which are important.
In other words, we must be careful not to over

specify what we are willing to accent as a
significant entity in the digitised image.

Having found the places in the digitised
image where significant intensity changes take
place, we need to represent those chanaes in a
way useful for later processing. The stage
following edge detection in our system is
constraint analysis, which involves examining
image intensities in the vicinity of the edge.
This means finding sets of pixels on either
side of the edge, as close to the edge as
possible. For example, as Ullman {1976} has
noted, the intensity across a reflectance edge
has a constant ratio, which is the ratio of
surface reflectances. But this assumes that
the incident liqht on both sides of the edge
is the same. To test for reflectance edges
then, we need access to intensity values as
close to the edge as possible to ensure that
the lighting constraint holds. However, we
must beware of mixed pixels, since these are
no use for such a test. (A mixed pixel is one
throuah which a step edge passes. Its
intensity depends on the position of the steo
within the receptive field of the pixel, as
well as the intensities on either side of the

edge.) It seems that we need a method of
finding and representing edges which satisfies
the following criteria:

1. the edge should be represented as

accurately as possible
2. pixels should be classified as mixed

or oure

3. it should be possible to tell from the
edge detector output what the under¬
lying image intensity variations were.

2.0 Finding Significant Intensity Changes

As noted above, intensity chanaes occur
over a wide range of scales in the image, but
the places where intensity changes auickly are
of particular interest, since they correspond
to informative scene/imaging events. We begin
by dividing this range into 3 classes: uniform,
gradient, and steo. A uniform reaion of the
imaae corresponds to a surface in the scene

whose shape, incident light, and reflectance
properties are chanaing slowly. A gradient
region is one where the intensity values are
changing more auickly and could be caused by a
shadow from an extended source, indirect
illumination, a piece of surface,whose shape



is changing, or an extended chanqe in the
surface reflectance properties. A step region
in the image corresponds to what would usually
be an ideal step discontinuity in a perfect
imaging system. These can be caused by
obscuring edges where one object passes in
front of another, shadows from point sources,
sharp changes in surface reflectance
properties, or parts of a surface whose shape
is changing very quickly. It is important to
note that, for a particular imaging device,
the boundaries of this classification depend
crucially on both its spatial and greyscale
resolution. Also, for a real imaging device,
step edges will be blurred to some extent and
noise will be present, so it will be
impossible to separate gradients from steps by
simply thresholding the intensity change.

Since both the gradients and steps are
informative about scene events, they can be
considered to be significant. We begin by
attempting to label each boundary between
pixels (assuming 4-connectedness) as primary
or secondary. Primary boundaries are
considered to be significant. In terms of the
above classification they should be part of
steps or gradients. In an ideal noiseless
image, uniform regions could be defined as
groups of pixels connected by secondary
boundaries, a secondary boundary being defined
as one between two pixels which have identical
or adjacent greyscale values, ie

|/l-/2l«l
However, the situation is complicated by the
presence of noise arising in the electronics
of the imaging device and associated systems.
In line with the earlier statement about
image veridicality, small surface marks and
defects are not considered to be noise. It is
assumed that the noise is Gaussian. This
holds for many systems, and for ours in
particular (Beattie 1980). The intensity
difference (b) between two pixels with
intensity values /, and /,, subject to
Gaussian-noise of standard deviation a, is

b = N(/1-/2,2o2)
So, the noise standard deviation on the
difference between the pixels is greater by a
factor of /2 than the noise on the pixels
themselves. It is this observation which has
led to the plethora of mask-based edge
detectors, since these reduce the effect of
noise in proportion to the square root of the
size of the mask. However, we want to find
all of the significant boundaries between
pixels so a mask will not be used because it
tends to limit both the type of edge points
found and the accuracy with which they can be
located. Even with a small mask, eg 3*3, the
same output can be generated by an edge, a
bar, or a blob (p.566 Rosenfeld and Thurston
{1971}). To help combat noise, we want to
choose a threshold d such that if |/^-/2|>d
the boundary is labelled primary (significant);
otherwise, it is labelled secondary.

For a particular choice of d, given the
picture noise, we can find an expression for
the probability of a legitimate secondary
boundary being wrongly labelled as primary.
In the case where /j=/2 the probability of the
boundary being wrongly classified as primary
can be shown to be

PL = 2(1 - 4>(^))
where

$(x) = / e U2/2rr -» du

P]_ is the probability of a spurious primary
boundary being generated by noise. By taking
the ratio k = $, ie expressing the threshold
in terms of the noise, this probability can be
graphed as shown in Fig.2. For a low
probability of wrongly classifying a boundary
in a uniform region a value of k of 2-5 is
appropriate. Thus the classification
threshold d should be set about

d = 2 • 5*/2a

where a is the picture noise standard deviation.
As well as enabling a reasonable choice of
threshold to be made, knowing the probability
of generating spurious primary boundaries
could be useful in finding and interpreting
edges. A more extensive investigation of the
probabilities involved in choosing a threshold
is given in Beattie(1981).

3.0 Finding Step Edges

One of the problems of working at the
lowest level is that is is difficult to relate
operations on pixels to hiqher level goals of
the vision system. In this section, we hope
to show that this problem is alleviated both
by having the goals of edge detection well
defined, and by knowing what to expect in the
image.

Primary boundaries can be generated by
image gradients or by step-like edges. Step
edges are particularly interesting because
they correspond to informative scene/imaging
events. We first identify those primary
boundaries which are part of step edges, then
use the results to track the curves in the

image.

3.1 Classifying Pixels

First, we consider the mixed pixel
problem. VThen a step edge is digitised, the
intensity transition may lie within a pixel.
This pixel will have a greyscale value some¬
where between those of its neighbours across
the edge. The effect of this is that a step



edge, even an tdaal step edge, will not
generate a single line of primary boundaries
but Pixels bordered by one, two, three, or
even four primary boundaries depending on the
local geometry and intensity variations of the
edge relative to the sampling grid. Since the
intensity of the mixed pixel lies between the
intensities of those on either side of it
across the edge, all oixels which have two
parallel primary boundaries are labelled
"mixed". Some of them will be due to

gradients and textured areas. To find those
mixed pixels which are really part of step
edges, we can use their thinness as a
distinguishing property. Consider a Pixel
through which a step edge is passing. Assume
that the edge is locally straight as shown in
Fig.3. The edge cannot pass through any more
than two of the 4-connected pixels (pl-p4).
Neither can it pass through any more than two
of the diagonally-connected pixels (p5-p8).
Notice that the edge can either pass through
two adjacent 4-connected nixeis, such as ol
and p2, or through two opposite 4-connected
pixels, such as o2 and p4 as shown in Fig,3.
However, it cannot pass through two adjacent
diagonal pixels, such as p6 and o7, but only
through two opposite diagonal pixels, such as
p6 and p8. This can be incorporated into a
test as follows (the cross test):

If a mixed pixel has a pair of opposite
diagonally-connected pixels, neither of which
are mixed, then label it "legal".

PT P1

9**- 7*-
Pi n

fig.3
A step edge passing

through pA.

step edge

In other words, if you imagine drawing a
little cross on every pixel labelled "mixed",
then label as legal those which have at least
one diagonal which doesn't enter mixed pixels,
otherwise label it illegal. The labels
"legal" and "illegal" are simply used to indi¬
cate whether or not a mixed pixel could

legally be part of a step edge. A step edge
will always produce mixed pixels which are
legal as defined here. Gradients and regions
of texture are not guaranteed to do so. In
fact, gradients in general won't produce
legal mixed pixels because they usually result
in multiple adjacent rows of mixed pixels all
of which fail the cross test. Similarly,
textured regions usually produce a large
proportion of illegal mixed oixels. It is
possible to imagine a textured region which
would produce only legal mixed oixels, but it
is exceedingly unlikely to occur in a real
scene.

At this stage boundaries and pixels have
been classified: boundaries are primary or
secondary; pixels are unmixed, legal mixed, or
illegal mixed. A mixed pixel is understood to
"swallow" the primary boundaries surrounding
it. This is reasonable since the boundaries
don't indicate an edge between two pixels. An
"unswallowed" primary boundary is called an
unattached primary boundary (upb). The pixel
and boundary classification for the 64*64
picture of a toy steam engine shown in Fig.4
is shown in Fig.5. Although both pixels and
boundaries exist, the whole classification can
be given, using only pixels and one character
per pixel, with the following legend:

legal mixed Pixel

illegal mixed Pixel

unattached primary boundary on the
£ tOP , , bottom, right, or left side of
W the pixel

1 ~1 NE
2 _J SE pixel with two adjacent
3 r NW unattached primary boundaries
4 L. sw as indicated

3.2 Tracking

Following boundary and pixel classification,
t.ie next stage is tracking. The two primitives
are legal mixed pixels and unattached primary
boundaries (horizontal and vertical). Note
that the existence of an unattached primary
boundary automatically implies that the pixels
on either side of it are unmixed. Note also
that the method works for curved edges. The
amount of curvature allowed depends on the
greyscale resolution. The basic approach
taken for tracking is to examine the patterns
of mixed pixels and unattached primary
boundaries produced by a step edge. Imagine
moving a pointer along the edge. The current
position of the pointer can either be a mixed
pixel or an unattached primary boundary.
Legal next positions for the pointer can be
expressed as a pair of sets of if-then rules
which express the possible connectivity
relationships of the primitives in step edges.

The two sets of rules are shown in Fig.6.
Mixed (n) is true if the relevant pixel o is
a legal mixed pixel; upb (b) is true if
boundary b is an unattached primary boundary;
Inn (n) indicates that n, which can be a legal
mixed pixel or an unattached primary boundary,
is an adjacent pointer position. In operation,
each of the rules of the appropriate set is
applied in turn at the current pointer
position. If the LHS of any rule succeeds
then its RHS defines one legal next position
for the pointer. If the current position has
only one neiqhbour then it must be at the end
of an edce and is called a terminator. If it
has two neighbours then it must be a mid-line

point. If it has three or four neighbours it
is classified as a junction. Tracking is
based on a raster scan with edqes beina marked
as used when they are found. Further details
of the tracking algorithm are given in Beattie
(1981). The results of tracking on the steam
engine are shown in Fig.7.

fig.U
nonito
twtoshoving the picture of th^toy steara

engine before digitisation.



fig. 5
The result! of pjfcjil »nS boundary classification on
the sterna «n«ia^PtetttM (6W«6U pixels).
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These two sets of tracking rules are used to
find the neighbours of mixed pixels or
unattached primary boundaries on step edges.

4.0 Dealing with Gradients and Texture

As a by-product of the method of findina
step edges, certain pixels in an image are
labelled "illegal". These pixels are in
regions where significant intensity variations
are taking Dlace, but which fail the cross
test. Recall that pixels which pass the cross
test are part of intensity variations which
are very thin in one direction. Pixels which
fail the cross test must, therefore, be oart
of image intensity variations which are fat,
ie occur over significant distances in two
orthogonal directions. Because of this,

fig.T
The results of edge tracking on the
pixel classification of fig.5.

illegal mixed oixels don't usually occur in isolation,
but in clusters. These illeqal reaions can arise
in two ways. As already described they can
result from extended gradients in imaqe
intensity which can be caused by a number of
scene events. This type of illegal region
corresponds to a single surface, one or more of
whose parameters is varying siqnificantly but
smoothly. Alternatively, illegal regions can
be caused by many step-like edges sufficiently
close together such that they cannot be
resolved by the cross test. In other words,
the*' can result from textured areas of the
image■
4.1 Texture

So far texture has been mentioned a

couple of.times without being defined. The
concept of texture is a complex one for early
visual processing, it is easy to be misled by
its everyday use. It is important to realise
that texture is not simply structure but
perceived structure. Clearly, texture cannot
be defined in terms of a world model alone.
The optical system, imaoe resolution, and the
relative size and distance of objects in the
scene all affect whether an object is seen, as
an individual item or as an element in a

texture field. However, some world considera¬
tions may be useful in coming to an under¬
standing of texture. Various scene arrange¬
ments can constitute texture for a human
observer. Sometimes it is a large number of
similar objects close together at a relatively
large distance, eg the leaves of a tree.
Alternatively, the perception of texture can
be caused by multiple variations in surface
reflectance properties, eg wood grain. Also,
a textured appearance may be caused by surface
share variations viewed at an appropriate
distance, eg the bark of a tree. There are
two main factors here - surface shape (and
range) variations and surface reflectance
variations. When there are many of these close
toqether such that we cannot clearly perceive
the individual variations, we call that
texture. (This is a more restricted descrip¬
tion of texture than many in common usage.)

What is being suggested is that the perception
of texture occurs when the oerceiver is unable
to fully "process" that Dart of the visual
field to a stage where the individual shape/
reflectance changes can be interpreted as 3-d
events because of insufficient information.
For a computer vision system, this implies
that a definition of texture inu|^ rest, not
only on the image effects, but also on a model
of the early orocessina. When there is not



enough information, ie not high enough
sampling frequency or greyscale resolution for
individual intensity changes to be
distinguished and processed normally, then the
region containing these changes can be called
"texture" and other methods applied.

fig.8
The initial classification of a 6U* 61 pixel
picture of a sports shoe.

The early orocessing system described in
preceding sections is based on finding step
edges and interpreting them by analysing the
intensity variations across and along the
edges. This requires that each edge is
distinguishable by the edge finding and
tracking process. If the edges are too close
together they will interact and fail the cross
test. With this in mind an attempt can now be
made at a definition of texture, but note that
it will only hold for the particular early
processing method being used.

When a nwnber of scene/imaging events, such as
obscuring edges, shape edges, or reflectance
edges, are close enough together to produce a
set of image edges which cannot be
distinguished by the edge detection and
tracking mechanism, then the image region
enclosing that set of edges is said to be
textured.

Although this definition is customised for our
early processing system, there must be an
equivalent one for any similar system.

4.2 Distinguishing Between Texture and
Gradient

Fig.8 shows a 64*64 picture of a sports
shoe after pixel classification. We want to
decide which illegal mixed pixels are due to
image gradients and which are due to image
texture. This decision is made in two steps:

1. group the illegal mixed pixels into
illegal regions

2. classify each region as gradient or
texture.

For grouping purposes every pixel is con¬
sidered to belong to one of the following two
classes:

1. illegal mixed pixels
2. others.

Because illegal regions, especially those due
to texture, are not always homogeneous, ie
they don't contain only illegal mixed pixels,
boundary tracking is used to find the illegal
regions. A boundary passes between pixels of
the two classes mentioned above. After
tracking the external boundary of a region,
the entire interior is considered to be part
of the illegal region. The actual tracking
process is of the "keeping your left hand on
the wall" type, and is based on 8-connect-
ivity. Again, this provides for slightly more
flexibility in dealing with inhomogeneous
regions. The algorithm used is described in
detail in Beattie (1982).

The assumption is made that each illegal
region arises either because of gradient or
texture. Of course, it can happen that the
two can be superimposed, in which case it is
desirable that the region should be labelled
texture, because texture-based analytic
methods will be needed to recover further
information. Also, the situation can arise
where adjacent regions of gradient or texture
give rise to a single illegal reqion. At this
stage in the development of the system no
attempt is made to divide these regions.

To distinguish between gradient and
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texture we want to use the fact that the

underlying intensity variations are smooth in
a gradient region but not in a texture region.
There are several ways to do this (see Beattie
{1982}). As a first pass we use a method
based on first and second differences of
intensity within the regions. In the case of
an ideal plane, which we can take as the
limiting case of a gradient reqion, the 2nd
difference will be zero. In the case of some

idealised piece of texture, the 2nd difference
will be the sum of the first differences as

shown in Fig.9. We base our method of
distinguishing between gradient and texture on
whether the 2nd difference tends towards zero

(gradient) or towards the sum of the first
differences (texture). The 2nd difference
operator (both horizontal and vertical) is
applied wherever possible in an illegal region
and the average 1st and 2nd differences com¬
puted (d j , d2 j .

fig. 9
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Limiting cases of the simple gradient
and texture models.

Taking:

d2 -d,

results in a number which should be positive
for texture and negative for gradient.
Rather than simply setting the threshold at 0,
because noise is emphasised by the
differencing operations and also because the



distinction between gradient and texture is
fuzzy, we use two thresholds at +d and -d. If
dj - di > d then the region is labelled
textured, if d2 - di <-d it is labelled
gradient, otherwise it is labelled "don't
know". The threshold is based on the picture
noise and the size of the illegal region.
Using a similar investigation of probabilities
as that used to decide on the significance
threshold in section 2.0, a threshold of
d = ( JZo )/ ynj was chosen, where n2 is the
number of second difference operator
applications. Again, details of the thres¬
hold derivation and the classification
algorithm are given in Beattie (1982) . The
resulting updated pixel classification for the
shoe picture is shown in Fig.10, with the
following amendment to the legend.

G gradient
T texture
X don't know (or reqion too small)

This approach has proven to be satisfactory in
operation in that it usually produces the
classification expected from knowledqe of the
scene which produced the image. However, it
can be criticised for being somewhat ad hoc
due to the crudeness of the models of gradient
and texture and the rather arbitrary thres¬
hold selection.

fir,.10
The final classification of the sports shoe picture.
One of the illegal regions (narked with X's) has not
been classified as gradient or texture.
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5.0 Summary

The structure of the current system is
shown in Fig.11. It produces an edge list in
which each step edge found is represented as a
list of co-ordinate pairs, and a pixel class¬
ification with some regions marked as gradient
or texture. By analysing how intensity
variations in the image arise, it has been
possible to devise an edge detector whose out¬
put should provide a basis for interpreting
image entities as scene entities. Designing
the edge detector as a component, with
specific goals, in an early processing system,
enables a series of rational choices to be
made, even at the pixel level, where the

danger of basing algorithms on ad hoc
heuristics is greatest. We claim that the
added complexity of this scheme over some
others is needed to deal with imaqes of real
scenes in a useful way. The system is still
being refined.

To heln combat noise and to find edges of
a variety of sizes it would be interesting to
apply our method to several versions of the
same picture at different resolutions. Because
the position of each edge is known exactly
there should be no great problem in inventing
a set of rules for combining the information.
This has been a difficulty in the Marr and
Hildreth system (Marr and Hildreth {1980;,
Hildreth {1980}). In accordance with our

general philosophy these rules should be
worked out by considering how the edges have
arisen as well as their image appearance.

fig.11
The structure of the system

updated pixel
classification

edge list
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Abstract: It is well known that intensity-
changes in images of natural scenes take place
over a wide range of scales. To find such edges
a family of different-sized edge detection masks
may be used, or the same mask may be applied to
different-resolution versions of the image. The
outstanding problem with such systems lies in
integrating the multiple sets of edge data
produced into a single coherent representation.
The system described in this paper is an attempt
to solve this problem based on accurate edge
localisation and the use of scene-image
semantics.

Images of natural scenes contain edges of many
widths, from sharp step-like edges to blurred edges
many pixels wide. Since it is difficult to design
a single edge detection mask which will perform
well over a range of edge widths, the normal solut¬
ion is to search the image several times, each time
looking for edges of a particular width.1'43 This
can be accomplished either by using a family of
different-sized masks, or by applying the same mask
to multiple different-resolution versions of the
image. The major difficulty in this approach lies
in constructing a single coherent description of
all the edges in the image given the multiple sets
of image data. In this paper we describe a multi¬
level system which attempts to use accurate edge
localisation and scene-image semantics to simplify
this problem.

Before attempting to design an edge detector its
role must be specified by defining an overall
vision system architecture and hence determining
the needs of the component succeeding the edge
detector. It is assumed here that the images to be
used are of natural 3-d scenes produced via a con¬
ventional monochrome imaging device (e.g. vidicon).
The overall vision system architecture is assumed
to be hierarchical, since this simplifies modular¬
isation and helps in determining the specificatiors
of individual components. It is widely accepted
that vision systems can be usefully split into
high-level and low-level parts, with the interface
being a description of the scene at the level of
surfaces. The basic mechanism of the low-level
vision system can be thought of as edge detection
followed by constraint analysis, possibly over a
set of images. Constraint analysis may consist of
labelling each edge in a single image with its
scene interpretation based on examining intensities
in the neighbourhood of the edge "'5or ofstereopsis

or the use of motion.

THE GOALS OF EDGE DETECTION

The input to the edge detection system is provided
by the image, which, apart from random noise and
other minor degradations, is veridical. In other
words, the image is a faithful representation of the
scene under perspective projection. The output of
the edge detection system must be a description of
the intensity changes in the image in a represent¬
ation suitable as an input to constraint analysis.
Since on the one hand we have the veridical image
and on the other hand the need to interpret image
edges with their scene meaning, there is a clear
implication that the edge detection process could
benefit from both an analysis of how scene events
produce image edges and the kind of information
that should be explicit in the final edge
representation to facilitate constraint analysis.
Furthermore, to exploit image veridicality, edges
should be related to their corresponding scene
events throughout the derivation of the edge
detector, even at the earliest processing stages.
One consequence of this approach is that certain
scene events which in some systems are considered
to be noise to be eliminated, e.g. small surface
marks, now assume parity with all other scene/
imaging events, such as obscuring boundaries.

To investigate the imaging process and the needs of
constraint analysis, one example was studied in
detail, that of a sharp reflectance boundary on a
surface. The constraints on the resulting image
edge are well known 6 >7. By
examining the assumptions that had to be made to
label the image edge with its scene meaning, this
study led to the formation of a set of goals for
edge detection, as follows:

GENERAL

1. Find all the significant intensity variations -

they are all caused by something in the scene.

2. If possible, relate significant intensity
variations to their scene meaning. Although
this is really the job of the constraint
analysis system, it may be possible to achieve
some preliminary semantic labelling during edge
detection.

STEP-LIKE EDGES

3. Find and represent step edges as accurately as
possible.



4. Try to maintain a clear relationship between an

edge representation and its underlying image
intensities. In particular, know which pixels
are mixed and which are pure.

Since edge detection is the first operation carried
out on the image, it is impossible to know at this
stage which edges correspond to important scene
events. In particular, the importance of an edge
may not be directly related to its amplitude. Thus
it is essential that the low-level vision system
make as few assumptions about the image as possible,
because these may then limit the performance of the
high-level system.

It is well-known that step-like edges are particul¬
arly important because they often correspond to
interesting scene events. When using step-edge
representations for constraint analysis, we are
usually interested in the location of the edge and
the pattern of intensities in its neighbourhood.
Hence the accuracy with which the edge is found and
represented is crucial. A limiting factor in
determining edge position is provided by the mixed
pixel problem. If a sharp edge passes through the
receptive field of a pixel, its resulting intensity
depends on the position of the edge as well as the
local image irradiance. Unless some assumptions
are made about the shape of the edge, which is
undesirable for the reason given above, the
intensity of a mixed pixel should not be used in
constraint analysis.

Structure of the System

Designing an edge detector based on the consider¬
ations given above led to a system with the
structure shown in Fig. 1. Exactly the same edge
detection process, the single-level system (SLS),
is applied to several different-resolution versions
of the image.

The outputs of each pair of adjacent resolutions are
then input to an adjacent level comparator (ALC)
which integrates the information contained in the
two representations. Finally, the ALC outputs are
combined into a single representation of the
intensity changes in the image in a multi-level
integrator (MLI). The current status of the system
is that the single-level systems and adjacent-level
comparators have been implemented.

The Structure of the Mulli-Levet System

Assimilation

Single Adjacent
L»v»l Level
Systems Comparators

Fig. 1

The Single-level System

The SLS will only be summarised here, since it has
already been described in detail elsewhere®; its
internal structure is shown in Fig. 2.

Structure ot the Single Level System

puel classification

original imagt

Fig. 2
Based on first differencing, pixel classification-,
finding image areas of high gradient, smoothness
analysis, and edge tracking, its output has two
main parts: an edge list and a classification array.
The classification array overlays the image and
marks areas where extensive significant intensity
changes are taking place as "gradient" or "texture'.'
The edge list contains sublists of sets of co-ordin¬
ate pairs for each step edge and gradient and
texture boundary. The pixel classification result¬
ing from a picture of a sports shoe is shown in
Fig. 3. Mixed pixels in step edges are marked M.

Fig. 3
The final claaaificationi
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texture regiona are marked T.
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The output of the SLS is designed to express four
types of image entity, each type satisfying certain
constraints as follows:

Step edge - thinness, connectivity.gradient.
Gradient region - thickness,connectivity.gradient,

smoothness.
Uniform region - gradient (lack of).



Texture region - thickness, connectivity.gradient,
roughness.

The Ad.jacent-level Comparator

In the SLS output, blurred edges occur implicitly
as gradient regions in the classification array,
but since they are often important in scene terms,
it is desirable to have them represented explicitly
in the final data structure. By reducing the
resolution of the image, say by averaging intensit¬
ies in an n x n window to produce a new single
pixel value. Blurred edges of a certain width will
become low-resolution step edges. The basic idea
of the ALC is to use the outputs of two SLSs,
whose inputs are an image and its reduced resolut¬
ion version produced by averaging 2x2 windows, to
find and represent blurred edges explicitly and
increase system sensitivity.

The effect of reducing resolution on the constraints
of the four SLS output entities provides the basis
for ALC operation. If no interference occurs, step
edges should produce step edges at lower resolut¬
ions. The connectivity of a gradient or texture
region is normally preserved under reduction, but
the thickness constraint will eventually be viol¬
ated. Finally, since the low resolution SLS should
be more sensitive than its high resolution counter¬
part, gradient significance should be preserved,
and additional faint edges may be found. The
effects of reducing resolution can be summarised as
follows:

Steps -* steps.
Gradients -► gradients, steps.
Textures ■» textures, gradients, steps.
Uniform ->■ uniform, others (t.g.s.).

By comparing the two edge lists produced from two
SLSs, extra edges should be found in the low resol¬
ution edge list corresponding to blurred and faint
edges. Some edges will also be missing because of
interference. The ALC traverses the high resolut¬
ion classified array examining the pixels corres¬
ponding to the low resolution step edges. Four
edge types are labelled depending on the array
contents, as follows:

Low Resolution High Resolution Edge Type

step
step
step
step

step
gradient
texture

uniform

step
blurred

complex
faint

The complex type covers the situation where a

single edge at low resolution is a result of the
interaction of several image entities at the higher
resolution. Fig. 4 shows part of the classified
array output of two adjacent SLSs superimposed.
Each rectangle encloses four high-resolution pixels
and one low-resolution pixel (the central one). The
part of the image concerned clearly has a step edge
running through it.

Conclusion

This paper has described the current status of an

edge detection system, in which an attempt is being
made to find a way of producing a single coherent
representation of all the edges in the image.

Fig. 4

Assuming that the basic structure is to first find
edges of different widths separately, then integrate
-the information into one description, three features
seem to be necessary to the system's operation:

1. Precise definition of the classes of entities

produced at each resolution (or by each mask of
a certain width ).

2. A simple (or at least calculable) relationship
between the output of the system at one resol¬
ution (or mask size) and the underlying image
intensities.

3. A clear relationship between the outputs of the
system at adjacent resolutions (or mask sizes).

Using the first of the above, the way in which each
type of entity changes as the resolution (or mask
size) is changed can be worked out. The latter two
features are needed to ensure that the correspond¬
ing output primitives in different resolution (mask
size) outputs can be correctly matched.
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