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Abstract
In this thesis we consider two sets of combinatorial structures defined on an Eulerian
graph: the Eulerian orientations and Euler tours. We are interested in the computational
problems of counting (computing the number of elements in the set) and sampling
(generating a random element of the set). Specifically, we are interested in the question
of when there exists an efficient algorithm for counting or sampling the elements of
either set.

The Eulerian orientations of a number of classes of planar lattices are of practical
significance as they correspond to configurations of certain models studied in statistical
physics. In 1992 Mihail and Winkler showed that counting Eulerian orientations of a
general Eulerian graph is #P-complete and demonstrated that the problem of sampling
an Eulerian orientation can be reduced to the tractable problem of sampling a perfect
matching of a bipartite graph. We present a proof that this problem remains #P-
complete when the input is restricted to being a planar graph, and analyse a natural
algorithm for generating random Eulerian orientations of one of the afore-mentioned
planar lattices. Moreover, we make some progress towards classifying the range of
planar graphs on which this algorithm is rapidly mixing by exhibiting an infinite class
of planar graphs for which the algorithm will always take an exponential amount of
time to converge.

The problem of counting the Euler tours of undirected graphs has proven to be less
amenable to analysis than that of Eulerian orientations. Although it has been known
for many years that the number of Euler tours of any directed graph can be computed in
polynomial time, until recently very little was known about the complexity of counting
Euler tours of an undirected graph. Brightwell and Winkler showed that this problem is
#P-complete in 2005 and, apart from a few very simple examples, e.g., series-parellel
graphs, there are no known tractable cases, nor are there any good reasons to believe
the problem to be intractable. Moreover, despite several unsuccessful attempts, there
has been no progress made on the question of approximability. Indeed, this problem
was considered to be one of the more difficult open problems in approximate counting
since long before the complexity of exact counting was resolved. By considering a
randomised input model, we are able to show that a very simple algorithm can sample
or approximately count the Euler tours of almost every d-in/d-out directed graph in
expected polynomial time. Then, we present some partial results towards showing that
this algorithm can be used to sample or approximately count the Euler tours of almost
every 2d-regular graph in expected polynomial time. We also provide some empirical
evidence to support the unproven conjecture required to obtain this result. As a side-
result of this work, we obtain an asymptotic characterisation of the distribution of the
number of Eulerian orientations of a random 2d-regular graph.
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Chapter 1

Introduction

Counting problems are a fundamental class of problems in the fields of combinatorics

and algorithms and complexity. Moreover, solutions to such problems are of great

practical value across the sciences because many real problems can be modelled as

counting problems, particularly those related to the estimation of probabilities. For

example, evaluating thermodynamic properties of physical systems [6], calculating

the output probabilities of Bayesian networks [24], and calculating the probability of

correct reconstruction of DNA from fragments using sequencing by hybridisation [4]

are all counting problems.

Many counting problems, including those studied in this thesis, are defined on

graphs. Before proceeding, we summarise the definitions of graphs and the graph-

theoretic properties we will use later in the thesis. For a thorough introduction to the

theory of graphs see, for example, [90].

Definition 1.1. An undirected graph G = (V,E) is a set of vertices V and a set of edges

E; each e ∈ E is an unordered pair of vertices, e = {u,v}, where u,v ∈V . The degree

of a vertex v ∈ V is the number of edges e ∈ E containing v. We denote the degree of

a vertex by deg(v).

Definition 1.2. A directed graph ~G = (V,A) is a set of vertices V and a set of arcs A;

each a ∈ A is an ordered pair of vertices, a = (u,v), where u,v ∈ V . We say an arc

a = (u,v) is directed towards v and away from u, and call u and v the source and target

of a, respectively. The out-degree (resp. in-degree) of a vertex v ∈V is the number of

arcs directed away from (resp. towards) v in A. We denote the in-degree and out-degree

of v by indeg(v) and outdeg(v), respectively.

Definition 1.3. We say a directed graph ~G = (V,A) is an orientation of a graph

1



Chapter 1. Introduction 2

G = (V,E) if there exists a bijection from E to A in which each {u,v} ∈ E is mapped

to (u,v) or (v,u).

Typically, we do not allow loops (edges or arcs where u = v) or multiple copies of

the same edge or arc. However, in some cases we wish to allow duplicates, in which

case we speak of multigraphs and directed multigraphs.

Definition 1.4. An undirected multigraph G = (V,E) is a set of vertices V and a

multiset of edges E.

Definition 1.5. A directed multigraph G = (V,A) is a set of vertices V and a multiset

of arcs A.

Remark 1.6. A graph or directed graph which does not contain any loops or multiple

edges is often said to be simple. A simple directed graph is not necessarily an

orientation of a simple graph, since (u,v) and (v,u) do not count as the same arc.

Often, we are interested in some particular substructure of a graph or directed graph

G.

Definition 1.7. Let G = (V,E) be a graph or directed graph. A subgraph of G is a

graph H = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E. If V ′ = V , we say H is a spanning

subgraph of G. If H 6= G we say G is a proper subgraph of G.

Definition 1.8. A graph G = (V,E) with vertex set V = {v0,v1, . . . ,vk−1} and edge set

E = {{vi,vi+1 mod k} : i = 0,1, . . . ,k−1} ,

is called a cycle. The subgraphs of a graph G which are cycles are called the cycles of

G.

Definition 1.9. A directed graph G = (V,A) with vertex set V = {v0,v1, . . . ,vk−1} and

arc set

A = {(vi,vi+1 mod k) : i = 0,1, . . . ,k−1} ,

is called a directed cycle. The subgraphs of a directed graph ~G which are directed

cycles are called the directed cycles of ~G, or sometimes the cycles of ~G.

Definition 1.10. A connected graph is called a tree if it contains no cycles. The

spanning subgraphs of G which are trees are called the spanning trees of G.
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Definition 1.11. A rooted tree is a tree T = (V,E) with a single distinguished root

vertex r. For each v ∈ V , the first node on the unique path from v to r is called the

parent of v; all other neighbours of v are called the children of v.

Definition 1.12. An arborescence with root v is a rooted tree in which every edge has

been directed towards v.

Let ~G = (V,A) be a directed graph and let v ∈ V . The set of arborescences of
~G rooted at v, denoted ARB(~G,v), is the set of spanning subgraphs of ~G which are

arborescences rooted at v. We denote by ARB(~G) the set of all arborescences of G.

There are several classes of graphs in which some additional conditions are placed

on E or A.

Definition 1.13. A graph G = (V,E) is said to be bipartite if there exists a partition of

V into A∪B such that for every e = {u,v} ∈ E, either u ∈ A and v ∈ B or v ∈ A and

u ∈ B.

Definition 1.14. Let G = (V,E) be an undirected graph. We say G is d-regular if we

have deg(v) = d for every vertex v ∈V .

Definition 1.15. Let ~G = (V,A) be a directed graph. We say ~G is d-in/d-out if we have

indeg(v) = outdeg(v) = d for every vertex v ∈V .

Definition 1.16. A graph G is called planar if it can be drawn in the plane such that

1. each vertex is mapped to a unique point in R2;

2. each edge {u,v} is a line whose endpoints are the points for u and v;

3. the interior of an edge {u,v} contains no vertex and no point of any other edge.

This drawing is called an embedding of G. An embedding of G can be viewed as

a decomposition of the plane R2 into a number of regions, exactly one of which is

unbounded. We refer to the sets of edges bounding these regions as the faces of G.

The unbounded region is referred to as the unbounded face of G.

Generally, when we speak of a graph G being planar we are considering the graph

G and a fixed embedding of G. Assuming we have a fixed embedding of G, we have

the notion of dual graph of G.

Definition 1.17. Let G be a planar graph with some fixed embedding in the plane. The

dual graph of G, denoted G?, is the graph whose vertices are the faces of G and which

has an edge joining each pair of faces η and σ which share an edge in G.



Chapter 1. Introduction 4

The classes of graphs and directed graphs which are the focus of this thesis are

those which satisfy the Eulerian condition.

Definition 1.18. An undirected graph G = (V,E) is said to be Eulerian if all vertices

have even degree. A directed graph ~G = (V,A) is said to be Eulerian if we have

indeg(v) = outdeg(v) for every vertex v ∈V .

Note that for all d ≥ 1, every 2d-regular undirected graph, and every d-in/d-out

directed graph, satisfies the Eulerian condition. We are interested in two closely related

structures which can only be defined on Eulerian graphs: Eulerian orientations and

Euler tours.

Definition 1.19. Let G = (V,E) be an undirected graph and let α : V → Z satisfy

∑
v∈V

α(v) = 0 .

We say an orientation of G is an α-orientation1 of G if for every v ∈V ,

outdeg(v)− indeg(v) = α(v) .

If α(v) = 0 for all v ∈ V , then each α-orientation of G is an Eulerian directed graph.

In this case, we refer to the α-orientations as Eulerian orientations, and denote this set

by EO(G).

Remark 1.20. The set EO(G) is non-empty if and only if G satisfies the Eulerian

condition (Definition 1.18).

Definition 1.21. Let G = (V,E) be a graph. We define a tour of G to be a sequence

of vertices v0v1v2 . . .vk−1 in which {vi,vi+1 mod k} ∈ E for i = 0,1, . . . ,k−1. An Euler

tour of G is a tour that uses every edge exactly once. Two Euler tours are equivalent if

one is a cyclic permutation of the other. We denote the set of all Euler tours of a graph

G by ET(G).

Definition 1.22. Let ~G = (V,A) be a directed graph. We define a tour of G to be a

sequence of vertices v0v1v2, . . . ,vk−1 in which (vi,vi+1 mod k)∈A for i= 0,1, . . . ,m−1.

An Euler tour is a tour that uses every arc exactly once. Two Euler tours are equivalent

if one is a cyclic permutation of the other. We denote the set of all Euler tours of a

directed graph ~G by ET(~G).

1In [32], α-orientations were defined as orientations satisfying outdeg(v) = α(v). However, for our
purposes, it is more convenient to work with this definition
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Remark 1.23. We can also define Euler tours of multigraphs. In this case, we treat the

duplicate edges as distinct so a sequence v0v1 . . .vm−1 can correspond to multiple Euler

tours, as we assign each occurrence of uv or vu to a distinct instance of the duplicated

edge {u,v}.

Remark 1.24. The set ET(G) is non-empty if and only if G connected and satisfies the

Eulerian condition (Definition 1.18).

The remainder of this chapter is organised as follows. In §1.1.1 we summarise the

theory of the complexity of counting problems. In §1.1.2 we describe the relationship

between counting and sampling that is the key tool for finding approximate solutions

to counting problems. In §1.2 we summarise the basic techniques used to construct

sampling algorithms. Finally, in §1.3 we survey previous work on the problems of

counting/sampling Eulerian orientations and Euler tours and put the work of this thesis

into its correct context.

1.1 Counting and Sampling

1.1.1 Computational Complexity of Counting

In theoretical computer science, computational problems are often viewed as questions

about relations between problem instances and sets of feasible solutions. Formally, if

we consider instances and solutions to be encoded in the same finite alphabet Σ then

a computational problem can be viewed as a relation R ⊆ Σ?×Σ? which maps each

instance x ∈ Σ? to a (finite) set of solutions

Ω(x) = {y ∈ Σ
? : (x,y) ∈ R} .

The most widely studied computational problems of this form are decision problems,

where we are asking if a particular input has a solution.

Definition 1.25. Let Σ be a finite alphabet and R ⊂ Σ? × Σ?. For a particular

instance x ∈ Σ?, the decision problem R asks whether there exists some y ∈ Σ? such

that (x,y) ∈ R. We say a decision problem R is in the class NP (non-deterministic

polynomial time) if

1. there exists a polynomial p(·) such that for any instance x ∈ Σ? we have

|y| ≤ p(|x|) ∀y ∈ Σ
? such that (x,y) ∈ R ;
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2. there exists a polynomial time algorithm for testing the predicate (x,y) ∈ R.

The subset of NP consisting of problems for which there exist polynomial time

algorithms is known as P. Although it is not known whether or not there exists a

polynomial time algorithm for all problems in NP, it is well known [20, 60] (see

[89] for an English translation of the second article and [3, Chapter 2] for a general

reference) that there exists another subset of NP, known as the NP-complete problems,

which are the “hardest” problems in NP; that is, if we had a polynomial time algorithm

for any NP-complete problem then we could construct a polynomial time algorithm for

any problem in NP. The canonical problem in this class is the Boolean satisfiability

problem, defined below.

Example 1.26. The Boolean satisfiability problem (SAT) is a decision problem whose

instances are Boolean expressions written using only ∧, ∨, and ¬. Given a Boolean

expression ψ, we want to determine whether there exists an assignment to the variables

in ψ that will make ψ true. Given any particular assignment to the variables, we can

quickly check whether or not the expression evaluates to true, so the problem is in

NP. It was shown by Cook [20] (and, simultaneously, by Levin [60]) that for any

instance x of an NP relation R we can construct an instance of SAT, ψR, such that there

exists some (x,y) ∈ R if and only if ψR has a satisfying assignment. Hence, SAT is

NP-complete.

There are two possible scenarios: either P = NP, in which case every algorithm in

NP has a polynomial time algorithm; or P ⊂ NP, in which case there does not exist a

polynomial time algorithm for any NP-complete problem.

Counting problems are a natural generalisation of decision problems. A decision

problem asks whether some set of objects is non-empty, whereas a counting problem

asks for something stronger: the exact number of objects in the set. Valiant formalised

the computational complexity of counting problems in his seminal 1979 paper [92], in

which he defined the complexity class #P.

Definition 1.27. Let Σ be a finite alphabet. Given a relation R⊂ Σ?×Σ? we can define

the counting problem for R as the problem of computing a function NR : Σ?→ N with

values

NR(x) = |{y ∈ Σ
? : (x,y) ∈ R}| .

We say the counting problem NR is in the class #P if
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1. there exists a polynomial p(·) such that for any instance x ∈ Σ? we have

|y| ≤ p(|x|) ∀y ∈ Σ
? such that (x,y) ∈ R ;

2. there exists a polynomial time algorithm for testing the predicate (x,y) ∈ R.

In general, for any reasonable function f : Σ? → N there exists some relation

R⊆ Σ?×Σ? such that f = NR. Thus, we will usually refer to counting problems as

functions from Σ? to N, without referring to their defining relation R.

An algorithm that counts the number of solutions to a problem can also determine

whether or not there exists a solution, so we cannot expect every counting problem to

be efficiently solvable unless P=NP. We denote by FP the subset of #P which consists

of all functions f : Σ? → N which can be computed in polynomial time. As in the

decision case, the set of problems which are “hardest” for #P are called #P-complete.

Definition 1.28. Given two counting problems f and g we say f is polynomial-time

Turing reducible to g, denoted f ≤PT g, if there exists a Turing machine with an oracle

for f that computes g(x) in time polynomial in |x|. We say a problem f is #P-complete

if every problem in #P is polynomial-time Turing reducible to f .

Remark 1.29. #P-completeness is accepted to be strong evidence of computational

intractability: exhibiting a polynomial time algorithm for all problems in #P would

imply the collapse of the polynomial-time hierarchy [88] (for a general reference, see

[3, Chapter 17]).

The construction used in [20] to show that SAT is NP-complete can be used to

construct an instance of #SAT with the same number of solutions as any #P problem

[92, Lemma 2]. Hence, every #P problem is reducible to #SAT; that is to say, #SAT is

#P-complete. This is the observation used by Valiant in [92], in which #SAT is taken to

be the defining problem for the class of #P-complete problems. The interesting result

in [92] was that there exist #P-complete problems for which the decision problem is in

P. Specifically, Valiant showed that every problem in #P can be reduced to counting

perfect matchings in bipartite graphs; that is, counting perfect matchings of a bipartite

graph is #P-complete. But the question of whether or not a bipartite graph has a perfect

matching can be solved by computing a maximum flow in a network, something which

can be achieved in polynomial time [98, §3.8].

There are some non-trivial counting problems for which polynomial-time algo-

rithms exist. For example, counting perfect matchings in a bipartite planar graph G can
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be achieved by evaluating the determinant of a special matrix, known as the Pfaffian

[54]. Similarly, the number of spanning trees of a graph can be computed by evaluating

the determinant of another special matrix, known as the Laplacian [55] (see §1.3.2 for

a description of a related result). It is well-known that the determinant of any matrix

can be computed in polynomial time [85]; hence, both these problems are in FP. See

[47, Chapter 1] for a nice presentation of both these results.

However, the majority of interesting counting problems tend to be #P-complete.

For example, counting perfect matchings [92], counting Eulerian orientations [69],

counting solutions to propositional formulae in DNF [93], and estimating the partition

function of several important models in statistical physics [97] are all examples of #P-

complete problems. In all these cases, the best known algorithms for exact counting

have exponential running time, despite the corresponding decision problems lying in P.

This has shifted the focus towards designing polynomial algorithms for approximate

counting. Many of these algorithms use randomisation to produce a close estimate of

the true answer with high probability, but run in polynomial time. That is, at some

points during the execution of the algorithm a “fair coin” is tossed and the next step

of the algorithm depends on the outcome. This leads to algorithms which can produce

different outputs on different executions with the same input and sometimes produce

an output that does not match the requirements of the problem. The goal in analysing

this type of algorithm is not only to prove that they run in polynomial time but also

that the probability of the answer being correct is sufficiently high. Formally, we are

interested in designing algorithms with the following specifications:

Definition 1.30. Let Σ be a finite alphabet and let f : Σ∗→ N be a counting problem

on Σ. A randomised approximation scheme for f with confidence parameter δ is a

randomised algorithm that takes as input an instance x ∈ Σ∗ and an error parameter ε,

and outputs a number N ∈ N (this is a random variable of the “coin tosses” made by

the algorithm),

P[(1− ε) f (x)≤ N ≤ (1+ ε) f (x)]≥ 1−δ . (1.1)

We call this a fully polynomial randomised approximation scheme, or an fpras, if the

algorithm runs in time bounded by a polynomial in |x|, ε−1 and log(δ−1) for every

instance x.

Remark 1.31. We cannot expect an fpras to exist for every problem in #P. For example,

suppose we had an fpras for #SAT. That is, we have an algorithm A that takes as input
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a propositional formula ψ and returns a number N satisfying

(1− ε)#SAT(ψ)≤ N ≤ (1+ ε)#SAT(ψ)

with probability 3/4. Then, if ψ has no satisfying assignments A returns 0 with

probability 3/4. But if ψ has one or more satisfying assignments A returns some

number N > 0 with probability 3/4. Hence, A can determine whether or not ψ is

satisfiable with 3/4 accuracy. It is widely believed [3, Chapter 7] that such an algorithm

cannot exist for any NP-complete problem; hence, it is unlikely that an fpras for #SAT

exists.

In light of Remark 1.31 we only search for an fpras for a problem f ∈ #P if we

know that the corresponding decision problem is in P.

1.1.2 The relationship between counting and sampling

In almost all known approximate counting algorithms, the use of randomness referred

to in Definition 1.30 is necessary. That is to say, apart from a few notable cases, e.g.,

[96, 8], the only known approximate counting algorithms are randomised algorithms.

One of the reasons for this fact is that most approximation algorithms for #P-complete

problems take advantage of a close relationship between approximate counting and

random generation discovered in 1986 by Jerrum, Valiant, and Vazirani [52]. Before

we describe this relationship, we define the sampling problem for a relation R.

Definition 1.32. Let Σ be a finite alphabet and let R⊂ Σ?×Σ?. The sampling problem

for R asks for a randomised algorithm that, given an instance x ∈ Σ?, generates

uniformly at random y ∈ Σ? such that (x,y) ∈ R.

Often, it is too much to ask for an algorithm that samples exactly from the uniform

distribution. However, when this is the case we are sometimes able to come up with

an algorithm that generates samples from a distribution that is close enough to uniform

for practical purposes. In order to be able to speak about the accuracy of a particular

sampling algorithm we need a notion of distance between probability distributions;

the variation distance (defined below) is a standard measure of distance between two

probability distributions [41, Chapter 2].

Definition 1.33. The total variation distance ‖ µ1−µ2 ‖TV between two distributions

µ1,µ2 on a set Ω is defined as

‖ µ1−µ2 ‖TV=
1
2 ∑

ω∈Ω

|µ1(ω)−µ2(ω)|= max
A⊆Ω

|µ1(A)−µ2(A)| .
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PM(G)

PM(Ge1)

1

PM(Ge1e2)

1

PM(Ge1 ē2)

0

PM(Gē1)

0

PM(Gē1e2)

1

PMē1 ē2(G)

0

Figure 1.1: Top three levels of a decomposition tree for the perfect matching problem

Now that we have a notion of distance between probability distributions, we are

able to define what it means for an algorithm to be an almost uniform sampler.

Definition 1.34. Let Σ be a finite alphabet and R ⊂ Σ? × Σ?. An almost uniform

sampler for R is a randomised algorithm which, for instance x ∈ Σ∗ and sampling

tolerance δ > 0, outputs a random variable W ∈ {y ∈ Σ? : (x,y) ∈ R} such that the

variation distance between the distribution of W and the uniform distribution is no

more than δ. We call this a fully polynomial almost uniform sampler, or an fpaus, if

the algorithm runs in time polynomial in |x| and logδ−1 for all instances x.

There is a class of relations for which the existence of an fpras for the counting

problem is equivalent to the existence of a fpaus for the sampling problem [52]. The

relations for which this is the case are those which satisfy a property known as self-

reducibility.

Definition 1.35. A relation R⊂ Σ?×Σ? is said to be self-reducible if and only if

1. there exists a polynomial time computable function g : Σ?→ N such that

(x,y) ∈ R⇒ |y|= g(|x|) ;

2. there exist polynomial time computable functions ψ : Σ? × Σ? → Σ? and

σ : Σ?→ N satisfying

σ(x) = O(log(|x|)) , (1.2)

g(x)> 0→ σ(x)> 0 ∀x ∈ Σ
? , (1.3)

|ψ(x,w)|< |x| ∀x,w ∈ Σ
? , (1.4)
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and such that, for all x ∈ Σ? and all y = y1 · · ·yg(|x|) ∈ Σ?,

(x,y1y2 · · ·yg(|x|)) ∈ R⇔ (ψ(x,y1 · · ·yσ(x)),yσ(x)+1 · · ·yg(|x|)) ∈ R . (1.5)

The above definition requires that if we choose the first σ(x) bits of a solution to

x we can construct another smaller instance of the same problem x′ = ψ(x,y1 · · ·yσ(x))

such that the solutions of x starting with y1 · · ·yσ(x) are obtained by concatenating

y1 · · ·yσ(x) with a solution y′ of x′, and that every solution of x′ gives a solution to x

in this way.

Intuitively, this says that, given any instance x, we can construct a number of

smaller instances of the same problem such that the solutions of x are obtained by

extending solutions to the smaller instances. Thus, we can think of the function ψ as

decomposing the set of solutions to x into a tree structure such that

1. each vertex is a subset of the solutions to x, with all solutions at the root, and the

sets at the children of a node partitioning the set at that node ;

2. each edge is labelled with a string w ∈ Σ?;

3. each leaf is of the form S = {y}, with y equal to the concatenation of the labels

on the path from the root to S.

We will now demonstrate the concept of self-reducibility with a concrete example.

Example 1.36. Let G = (V,E) be a graph. A matching of G is a set M ⊂ E such that

each vertex is contained in no more than one e ∈M. We say a matching M is perfect

if every vertex in V is contained in some edge e ∈M. We denote by PM(G) the set of

perfect matchings of G. Now, suppose we have a relation R where (x,y)∈R if and only

if x encodes a graph G = (V,E) and y encodes a perfect matching of G. Each solution

is a string y1y2 · · ·ym where yi = 1 if ei ∈M and yi = 0 if ei /∈M (we are assuming some

order on the edges E = {e1,e2, . . . ,em}).
Given any edge e = {u,v} of G we can construct two graphs Ge, in which we

remove u and v and all edges incident with them from G, and Gē, in which we only

remove e from the set of edges. Every perfect matching of Gē is a perfect matching

of G; in fact, the perfect matchings of Gē are exactly the set of perfect matchings of

G that do not contain e. The perfect matchings of Ge are not perfect matchings of G,

since neither u nor v is contained in any perfect matching of Ge. But we can add e

to every perfect matching of Ge to obtain a perfect matching of G; hence, the perfect
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matchings of Ge correspond exactly to the perfect matchings of G that contain e. By

repeating this process, we obtain a tree decomposition of the set of perfect matchings

of G in the form of Figure 1.1

Suppose we have a self-reducible relation R and an fpras, COUNT, for the counting

problem of R. The fpaus implied by the result of [52] is given (roughly) in Algorithm 1.

If we had an algorithm for computing NR exactly, then Algorithm 1 would be an exact

sampler. However, since we only have an fpras we must make do with approximations

to each of the NR(xi) when we compute the probabilities at Step 4. However, we are

able to obtain close enough approximations to the values NR(xi) to ensure that the

algorithm is an fpaus. See [52] for details.

Algorithm 1: GEN
Input: x ∈ Σ? and self-reducible R⊂ Σ?×Σ?

Output: An almost uniformly random y ∈ Σ? such that (x,y) ∈ R

begin1

Obtain x1,x2, . . . ,xn from x by choosing the first σ(|x|) bits of the solution;2

for i← 1 to n do3

ρi← COUNT(xi);4

end5

Set x′ = xi with probability proportional to ρi;6

yi← GEN(x′);7

return the y ∈ Σ? with (x,y) ∈ R corresponding to yi;8

end9

To go in the other direction, turning an fpaus into an fpras we use Algorithm 2.

Assuming we have an fpaus for a self-reducible R, GEN, Algorithm 2 is an fpras for

NR. Again, see [52] for the details. In §2.7, we describe the application of Algorithm

2 to a concrete example.

Fortunately, for those of us interested in algorithms for counting and sampling, a

great deal of #P-complete problems are self-reducible. Moreover, in the cases where

they are not, e.g., transposition tables [22, 23], the problems often satisfy a slightly

weaker self-reducible property which means we can still use Algorithm 2 to construct

approximate counting algorithms.
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Algorithm 2: COUNT
Input: x ∈ Σ? and self-reducible R⊂ Σ?×Σ? and a constant ε > 0

Output: A number N such that (1− ε)N ≤ NR(x)≤ (1+ ε)N

begin1

Π := 1, m := g(x), t := 180|x|3c;2

while g(x)> 0 do3

Let S = {y1, . . . ,yt} be the set of results obtained by making t calls to4

GEN with input (x,ε/11m);

Let w be the most common prefix of elements of S;5

ρ := |{y ∈ S : w is an initial segment of y}|/|S|;6

x := ψ(x,w);7

Π := Π/ρ;8

end9

return Π10

end11

1.1.3 Applications of counting/sampling algorithms

An important class of counting/sampling problems come from the field of statistical

mechanics (also known as statistical physics) [7]. Statistical mechanics provides a

framework for relating the microscopic (local) properties of individual atoms and

molecules in some physical object to the macroscopic (global) properties that can

be observed in the real world; in particular, it provides an interpretation of the

thermodynamic properties of an object, such as free energy and entropy, in terms

of the microscopic properties of the configuration of the particles within that object.

These systems will, in general, contain a large number of particles, thus rendering exact

computation impractical due to an unfeasibly large number of possible configurations.

However, if we have an fpaus for generating random configurations, we can generate

a large number of samples and then estimate the thermodynamic property of interest

by averaging over all the samples generated. Moreover, an important quantity known

as the partition function is no more than the solution to the counting problem which

enumerates the number of configurations (possibly with some weight associated

with each configuration). In many cases, evaluating the partition function is #P-

complete [45, 97] and many algorithms for approximating the partition function use

Markov chain Monte Carlo [50, 62]. One of the problems studied in this thesis,
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counting and sampling Eulerian orientations of planar graphs, is equivalent to counting

and sampling configurations in so-called ice-type models [7, Chapter 8].

1.2 Markov chain Monte Carlo

In this section we define Markov chains and explain how they are used in the

construction of algorithms for almost uniform sampling. General references for the

material of this section are, e.g., [41, Chapter 6], [70, Chapters 7, 10 and 11] and [47].

Definition 1.37. A discrete-time Markov chain M with finite state space Ω is a

stochastic process (Xt)t≥0, with Xt ∈ Ω for all t = 1,2, . . ., that satisfies the Markov

property:

P[Xt+1 = y |Xt = xt , Xt−1 = xt−1, . . . , X0 = x0] = P[Xt+1 = y|Xt = xt ] ; (1.6)

that is, the probability of being in a particular state at the (t +1)-th step depends only

on the state at the t-th step.

In the applications of Markov chains to sampling problems we are only ever

interested in time-homogeneous Markov chains, where the probability in (1.6) depends

only on the state and not on the time t. In this situation, we can define a Markov chain

by its transition probability matrix P:

P(x,y) = P[Xt+1 = y|Xt = x] ∀x,y ∈Ω . (1.7)

For t ≥ 0, we then define the t-step probability distribution of M by the following

inductive formula:

Pt(x,y) =

{
I(x,y) , if t = 0;

∑z∈Ω Pt−1(x,z)P(z,y) , otherwise ,

where I(x,y) = 1 if x = y and 0 otherwise. Every Markov chain has a number of

stationary distributions which are the distributions Pt(x, ·) can converge to as t→ ∞.

Definition 1.38. Let M be a time-homogeneous Markov chain with state space Ω and

transition probability matrix P. A distribution π : Ω→ [0,1] is called a stationary

distribution of M if

∑
x∈Ω

π(x)P(x,y) = π(y) ∀y ∈Ω . (1.8)
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An arbitrary Markov chain can have any number of stationary distributions, but

in the application of Markov chains to designing sampling algorithms we will want

chains that always converge to the distribution we are interested in. We now define the

ergodic property, which ensures that a chain has a unique stationary distribution.

Definition 1.39. Let M be a time-homogeneous Markov chain with state space Ω

and transition probability matrix P. M is said to be ergodic if M is aperiodic and

irreducible:

M is aperiodic if ∀x ∈Ω , gcd{t : Pt(x,x)> 0}= 1; (1.9)

M is irreducible if ∀x,y ∈Ω, ∃t such that Pt(x,y)> 0 . (1.10)

Remark 1.40. A sufficient (and easily testable) condition for aperiodicity is:

∀x ∈Ω , P(x,x)> 0 . (1.11)

The following well-known [41] theorem shows that ergodic Markov chains always

converge to a unique stationary distribution.

Theorem 1.41. Every ergodic Markov chain M has a unique stationary distribution

π; moreover, M converges to π in the sense that Pt(x,y)→ π(y) for all x,y ∈Ω.

We say a Markov chain is time-reversible if it satisfies the detailed balance

condition

∀x,y ∈Ω π(x)P(x,y) = π(y)P(x,y), . (1.12)

If P is symmetric then (1.12) is true if and only if π is uniform over Ω.

A very simple example of a Markov chain is a random walk on a graph or directed

graph.

Example 1.42. Let G = (V,E) be a graph. The random walk on G is a Markov chain

with state space V and probability transition matrix

P(u,v) =

{
1

deg(u) if {u,v} ∈ E ;

0 otherwise
. (1.13)

This is just the random process on V which, at each step, moves to a random neighbour

of the current vertex. We observe that this Markov chain is ergodic if and only if G is

connected and non-bipartite. Obviously, the graph must be connected for the random

walk to be irreducible. On the other hand, if G is bipartite then the random walk
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is periodic with period 2: after t steps we are in the same part of the bipartition we

started in if and only if t is even. The presence of a single odd cycle ensures that the

random walk is aperiodic, since this gives an odd length path by which the chain can

return to any vertex on the cycle from itself. The stationary distribution of this chain is

not uniform; if we take π to denote the stationary distribution of the random walk, we

have

π(v) =
deg(v)

2m
,

where 2m = ∑v∈V deg(v). It is easy to check that this distribution satisfies (1.8) since,

for all v ∈V ,

∑
u∈V

π(u)P(u,v) =
1

2m
|{u ∈V : P(u,v)> 0}|= deg(v)

2m
= π(v) .

We can also define random walks on directed graphs. For a directed graph

G = (V,A) we replace (1.13) by

P(u,v) =

{
1

outdeg(u) if (u,v) ∈ A ;

0 otherwise
.

In this case, at each step we follow a random outgoing arc of current vertex to reach the

next state. However, in this case we do not always have a nice stationary distribution

as we do for random walks on undirected graphs.

Given a relation R⊂ Σ?×Σ? we can construct an almost uniform sampler for R by

defining a class of Markov chains such that for each instance we have an ergodic chain

M that converges to the uniform distribution on the set of feasible solutions.

If we run a Markov chain M = (Ω,P) for an infinite number of steps, and then

take the current state as our output, we know that this will be be sampled from the

stationary distribution of M . In practice, we can only run the chain for a finite number

steps. A Markov chain Monte Carlo (MCMC) algorithm generates random samples

from a set Ω by starting at some state x0 ∈ Ω and then running a Markov chain for

sufficiently many steps that the probability of any particular y ∈ Ω being the current

state is (approximately) π(y). The quality of the sample improves as a function of the

number of steps. However, given an arbitrary Markov chain it is far from clear how

long we need to run it for before the distribution is “close enough” to the stationary

distribution (i.e., within ε in total variation distance), and this can vary hugely even

across Markov chains defined on the same state space. The time it takes for this

convergence to occur is known as the mixing time of the Markov chain, defined below.
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In the following, we assume we are dealing with an infinite family of Markov chains

defined by the instances of some sampling problem. The properties described are

asymptotic properties for all chains in such a class.

Definition 1.43. Let M be a finite, discrete time Markov chain with state space Ω. For

ε > 0, the mixing time of M from initial state x ∈Ω, τx(ε), is defined as

τx(ε) = min{t : ||Pt(x, ·)−π||TV ≤ ε} .

We define the mixing time of M , τ(ε), to be the maximum over the mixing times from

each state:

τ(ε) = sup
x∈Ω

τx(ε) .

Definition 1.44. A Markov chain M on state space Ω is said to be rapidly mixing if,

for all for all initial states x∈Ω and all ε > 0, τx(ε) is bounded above by some function

which is polynomial in |x| and ε−1. A Markov chain is said to be torpidly mixing if

there exist some ε > 0 and x ∈ Ω for which τx(ε) is bounded below by some function

exponential in |x|.

For example, if the state space of the Markov chain is the set of perfect matchings

(Example 1.36), then the mixing time must be bounded in terms of the number of

vertices and edges of G.

Suppose R is a relation defining a self-reducible counting problem. If we have a

Markov chain M which is rapidly mixing on the set of solutions,

Ω(x) = {y ∈ Σ
? : (x,y) ∈ R} ,

for all x ∈ Σ?, then M is an fpaus for R, and we can use the Algorithm COUNT

(Algorithm 2) to construct an fpras for the counting problem NR. So, the problem of

finding an fpras can be reduced to the problem of finding a rapidly mixing Markov

chain.

There are two principal techniques used in the analysis of the mixing times of

Markov chains: coupling and conductance. Coupling is used to show that chains

are rapidly mixing, whereas conductance can be used to show that chains are rapidly

mixing or torpidly mixing.

1.2.1 Coupling

Coupling is a standard technique for proving upper bounds on the mixing time of

Markov chains [1, 16].
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Definition 1.45. A coupling C of a Markov chain M is a stochastic process (Xt ,Yt)t≥0

on Ω×Ω such that each of the marginal distributions, (Xt)t≥0 and (Yt)t≥0, is a faithful

copy of the original Markov chain.

One approach to bounding the mixing time of a Markov chain is to use the coupling

inequality of Aldous [1].

Lemma 1.46 ([1]). Let M = (Ω,P) be a time-homogeneous, finite state Markov chain.

For every state x ∈ Ω, the variation distance between π and the t-step distribution at

time t, Pt(x, ·), is bounded above by the probability of any coupling coalescing by time

t, i.e.,

max
x∈Ω

‖ Pt−π ‖TV≤ sup
X0,Y0

P[Xt 6= Yt ] . (1.14)

Thus, in order to obtain a polynomial bound on the mixing time it suffices

to construct a coupling which will have coalesced (with high probability) after a

polynomial number of steps. In general, couplings can be difficult to describe and

analyse, so it is common to restrict attention to Markovian couplings.

Definition 1.47. A coupling C of a Markov chain M = (Ω,P) is said to be Markovian

if C is itself a Markov chain on Ω×Ω. That is, the distribution of the pair of states

(Xt+1,Yt+1) depends only on the values of (Xt ,Yt).

The advantage of Markovian couplings over general couplings is that they allow us

to analyse the behaviour of the coupling by considering only single steps at a time. We

now give an illustrative example of a Markovian coupling.

Example 1.48. Let G = (V,E) be a graph. A k-colouring of G is a mapping

σ : V →{1,2, . . . ,k} .

We say σ is a valid k-colouring if σ(u) 6= σ(v) for every {u,v} ∈ E. Let Ω be the set of

all valid k-colourings of G. There is a very simple Markov chain M on Ω. Let Xt ∈Ω

denote the current state of the chain. We now define how one step of the Markov chain

obtains Xt+1 from Xt .

One step of the chain M

1. Choose v ∈V and c ∈ {1,2, . . . ,k} uniformly at random;

2. Let X ′ denote the colouring in which X ′(u) = Xt(u) for all u 6= v and X ′(v) = c;

3. If X ′ ∈Ω then set Xt+1 = X ′. Otherwise, set Xt+1 = Xt .
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This chain is ergodic when the number of colours k is greater than the minimum degree

of G plus 2, see, e.g., [70, §11.5], and converges to the uniform distribution on Ω. The

simplest coupling of M is the one which chooses the same vertex v and colour c for

both chains. If we can re-colour v to c in both chains, then we have increased the

number of vertices that the two copies of the chain agree on. However, if we can re-

colour v in one copy of the chain but not the other, and v has the same colour in the

current state of both chains, then the number of disagreements will increase,

It has been shown that the simple coupling described above can be used to prove

rapid mixing of M whenever we have k ≥ 2∆+ 1, where ∆ is the maximum degree

of G [46]. It is known that the Markov chain M is rapidly mixing for graphs with

fewer colours but these results require more sophisticated couplings, some of which

are non-Markovian. See [34] for a survey of these results.

We will give more details of coupling and a technique called path coupling [16, 13]

when we analyse the mixing time of a particular Markov chain in Chapter 2.

1.2.2 Conductance

The coupling technique can only be used to show that a Markov chain is rapidly mixing

and, in the case of Markovian couplings at least, cannot always be applied [58]. An

alternative approach is to estimate the conductance of the chain.

Definition 1.49. Let M = (Ω,P) be a discrete state, time-homogeneous, Markov chain

with stationary distribution π. For any non-empty set S ⊂ Ω the conductance Φ(S) of

S is defined to be

Φ(S) =
∑x∈S,y∈Ω\S π(x)P(x,y)

π(S)
.

We define the conductance of M as being the minimum over all sets:

Φ(M ) = min
S⊂Ω

0<π(S)≤1/2

Φ(S) .

In 1989, Sinclair and Jerrum [79] showed how conductance could be used

to analyse the mixing times of Markov chains by exhibiting the following close

relationship between the conductance and mixing time of a Markov chain.

Theorem 1.50 ([79]). Let M = (Ω,P) be a time-homogeneous, reversible Markov

chain and suppose P(x,x) ≥ 1/2 for all x ∈ Ω. Then, the mixing time, τ(ε), and

conductance, Φ(M ), satisfy
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1. For all x ∈Ω, τx(ε)≤ 2
Φ(M )2

(
log(ε−1)+ log(π(x)−1)

)
;

2. maxx∈Ω τx(ε)≥ 1−2Φ(M )
2Φ(M )

log(ε−1).

Thus, if one can show that the conductance of M is “large”, i.e., bounded below

by an inverse polynomial in the size of the elements of Ω, then one can deduce that M
is rapidly mixing. On the other hand, if the conductance of M is exponentially small

then M is torpidly mixing. Moreover, to show torpid mixing we only need to show a

bound on the mixing time for some ε > 0. Defining the boundary of a set S as

∂S = {x ∈ S : P(x,y)> 0 for some y ∈Ω\S}

we get

Φ(S)≤ π(∂S)/π(S) . (1.15)

Hence, to show that a chain is torpidly mixing it suffices to find a set for which the

right-hand side of (1.15) is bounded above by some exponentially small function. This

is encapsulated in the following theorem, taken from [63]:

Theorem 1.51. If, for some S ⊂Ω satisfying 0 < |S| ≤ |Ω|/2, the ratio π(∂S)/π(S) is

exponentially small in the size of the elements of Ω, then the Markov chain is torpidly

mixing.

Conductance can also be used to find upper bounds on the mixing time, particularly

using a technique known as canonical paths, due to Jerrum and Sinclair [49]. This

technique has been successfully applied to analysing many Markov chains, e.g., [22,

51], but will not be used in this thesis. However, in Chapter 2 we will use a technique

known as comparison, which is also based on conductance, to analyse the mixing time

of a Markov chain (see §2.6.2 for details).

1.2.3 Dart throwing

An alternative approach that is sometimes applicable is dart throwing. Suppose we

have a set S whose elements we want to count or sample, but do not know of a

polynomial time algorithm for doing so. Now suppose that we have a polynomial

time algorithm for testing x ∈ S and that there exists a set S′ ⊇ S for which we have an

fpaus and which satisfies
|S|
|S′|
≥ 1

p(n)
, (1.16)
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where n is the size of the elements of S and p(·) is a polynomial. Then, using our fpaus

for S′, we generate elements of S′ until we obtain an element of S. Each element of

S′ is generated in polynomial time and (1.16) means we will only have to generate a

polynomial number of elements of S′ before we get an element of S. Moreover, we can

approximate
|S|
|S′|

(1.17)

by generating a polynomial number of samples from S′ and then taking the proportion

of them which lie in S as an estimation of (1.17). Then, if we can also calculate or

approximate |S′|, we can use this to obtain an approximation of |S|. The fpaus for S′

could be a rapidly mixing Markov chain, e.g., [36], or S′ could be some simple set that

we can sample from without recourse to MCMC, e.g., [27].

In Chapter 3, we describe how this approach can be used to sample Euler tours

of a graph or directed graph. The algorithms resulting from this are shown to run in

expected polynomial time for almost every d-in/d-out graph and we conjecture that

they run in expected polynomial time for almost every 2d-regular graph. These results

are proven using random graphs.

1.3 Eulerian orientations and Euler tours

Recall that we denote the set of Eulerian orientations of a graph G by EO(G) and the

set of Euler tours by ET(G). It is a classical graph-theoretic result that the Eulerian

graphs are the only graphs that admit Eulerian orientations and that Eulerian graphs

and directed graphs are the only graphs and directed graphs to admit Euler tours. In

this thesis, we are interested in the complexity of the following two problems:

Name. #EO.

Instance. An undirected graph G.

Output. The number of Eulerian orientations of G.

and

Name. #ET.

Instance. An undirected graph G.

Output. The number of Euler tours of G.

We are also interested in these problems under various restrictions, specifically:
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Name. #PlanarEO.

Instance. A planar graph G.

Output. The number of Eulerian orientations of G.

and

Name. #DirectedET.

Instance. A directed graph ~G.

Output. The number of Euler tours of ~G.

Recall the conditions for EO(G) ET(G) to be non-empty (Remarks 1.20 and 1.24).

Hence, to solve the decision problem EO(G) 6= /0 all we need to do is check that each

vertex satisfies the Eulerian condition (Definition 1.18). To solve the decision problem

ET(G) 6= /0 we need to check that each vertex satisfies the Eulerian condition and that G

is connected. Checking that each vertex has even degree and that a graph is connected

can both be achieved in polynomial time, so both decision problems are in P. However,

both #EO and #ET are #P-complete. Exact counting of Eulerian orientations was

shown to be #P-complete by Mihail and Winkler in 1992 [68, 69]. In [68, 69], Mihail

and Winkler also described a method to construct an fpras for #EO that works for

every undirected graph. In the case of Euler tours, the complexity of counting Euler

tours remained open until 2005, when it was shown to be #P-complete by Brightwell

and Winkler [15]. More recently, Ge and Stefankovic [37] have shown that counting

Euler tours is #P-complete for 4-regular planar graphs. The status of approximately

counting or sampling the Euler tours of an undirected graph is still unresolved, even

for simple classes, e.g., 4-regular planar graphs. Indeed, the only positive result to date

is the recent proof of Chebolu et al. [17] that we can exactly count the Euler tours of

series-parallel graphs in polynomial time. In the following two sections, we present a

summary of what is known about these two problems.

1.3.1 Eulerian orientations

The number of Eulerian orientations of an undirected graph is a subject that has

received attention in statistical physics [61, 6, 29], combinatorics [78, 95, 65, 33],

and theoretical computer science [68, 69, 62, 38]. The problem of sampling/counting

Eulerian orientations in a general Eulerian graph is almost entirely understood: the

complexity of exact counting resolved by Mihail and Winkler in 1992 [68, 69]; Mihail

and Winkler (also in [68, 69]) provided a reduction for constructing an fpaus or an

fpras for any Eulerian graph, which we will describe in a moment.
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The Eulerian orientations of certain planar lattices have special significance

in statistical physics as the configurations of so-called “ice models” [61, 6, 7,

29], motivating studying the complexity of counting/sampling Eulerian orientations

restricted to planar graphs or planar lattices. Lieb [61] and Baxter [6] have derived

asymptotic expressions for the number of Eulerian orientations of the square and

triangular lattice.

Definition 1.52. The infinite square lattice is the 4-regular infinite graph with vertex

set {(i, j) : i, j ∈ Z} and such that for every i, j ∈ Z there is an edge joining (i, j) to

(i, j±1) and (i±1, j).

Definition 1.53. The infinite triangular lattice is the 6-regular infinite graph with

vertex set {(i, j) : i, j ∈ Z} and such that for every i, j ∈ Z there is an edge joining

(i, j) to (i±1, j), (i, j±1), (i−1, j+1), and (i+1, j−1).

The ice models defined on two further Eulerian lattices are studied in [29] but we

will not be considering them in this thesis. The lattices defined in Definition 1.52

and 1.53 are both infinite, so finite sub-lattices are used in order to be able to perform

computational analysis; boundary conditions are used to simulate the influence of the

infinite lattice.

Definition 1.54. A solid subgraph of an infinite lattice is subgraph which can be

obtained by taking some finite cycle and everything lying on its interior.

Suppose, for example, we are taking the subgraph of the square lattice induced by

the set

{(i, j) : 0≤ i, j < n} ,

which we denote by G(n,n).

Each of the (n− 2)2 internal vertices of G(n,n) (those in which i, j /∈ {0,n− 1})
has degree 4 and we enforce the Eulerian condition on each of these. The boundary

vertices (those with at least one of i and j equal to 0 or n−1) have one of the following

boundary conditions applied to them.

Fixed Suppose we have fixed an orientation for the rest of the infinite lattice,

which extends to an Eulerian orientation of G(n,n). Then, sampling an

Eulerian orientation consistent with the fixed boundary condition is equivalent

to sampling an α-orientation of G(n,n) for a specific α : V → Z, which we will

now define. For each (i, j) with 0 < i, j < n−1 we set α(vi, j) = 0. Each of the
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Figure 1.2: Square and triangular ice

non-corner boundary vertices has α(v) =±1 and each of the corner vertices has

α(v) ∈ {−2,0,2} such that

n−1

∑
i=0

α(v0,i)+α(vn−1,i)+α(vi,0)+α(vi,n−1) = 0 .

Clearly, any α-orientation of G(n,n) can be extended to an Eulerian orientation

of the infinite lattice. Typically, a fixed boundary condition will be of a regular

form similar to that given by the dotted arrows in Figure 1.2;

Free Enforce the Eulerian condition on all even degree vertices and insist that

|indeg(v)−outdeg(v)|= 1

for all vertices v of odd degree. The Eulerian orientations with free boundary

conditions could be viewed as a generalisation of α-orientations. Here we are

giving a set, α(v) = {−1,+1}, of allowed values for indeg(v)−outdeg(v);

Torus Assume that the graph is a torus, so the edge leaving a boundary vertex wraps

around and attaches to another boundary vertex. In the case of the grid we have

edges connecting (0, j) to (n−1, j) and connecting ( j,0) to (n−1,0).

The ice models defined on the square lattice and the triangular lattice are considered

solved [61, 6, 7], in the sense that an asymptotic expression is known for the number

of Eulerian orientations of the subgraphs induced by the set {(i, j) : 0 ≤ i, j < n}
for a toroidal boundary condition. Specifically, in each case the authors obtain the

exponential growth rate of the number of Eulerian orientations of an n× n section of

the lattice with toroidal boundary condition. This is achieved using the transfer matrix

method [61, 6, 7, 39].
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We now sketch the transfer matrix method, as applied to counting Eulerian

orientations of the square grid; this work is originally due to Lieb [61]. Let C denote

a configuration of the arcs in the k-th column of an Eulerian orientation of the n× n

grid; that is, an assignment of up or down to each arc. Each configuration can be

defined by choosing the set of down arcs, so there are 2n possible configurations. For

each configuration C ′ of arcs for the (k+1)-th column, let A(C ,C ′) denote the number

of ways to configure the horizontal arcs joining both columns so that the Eulerian

condition can be satisfied at each vertex. Note that this is dependent only on C and C ′

so A(C ,C ′) depends only on n and not k. Then, the number of Eulerian orientations of

the n×n grid with toroidal boundary conditions can be written as

∑
C 0

∑
C 1

· · · ∑
C n−1

n

∏
i=0

A(C i,C i+1 mod n) = Trace(An) .

In [61] Lieb analyses the structure of A to find the maximum eigenvalue of A, which can

be used to estimate the asymptotic growth rate of Trace(An). In [6] Baxter performs

a similar, though more complicated, analysis to obtain a corresponding result for the

triangular lattice.

Remark 1.55. The transfer matrix method is a general schema for counting structures

defined on grids and similar recursively definable graphs, see [39] for a general

description. When applicable, it yields an algorithm for exact counting. However,

these algorithms are often inefficient as they require the multiplication of large

matrices. This approach only becomes practical when some useful structure exists

that allows us to either (a) improve the running time of the algorithm or (b) obtain an

asymptotic estimate for the quantity in question. In §3.6, we discuss how the transfer

matrix method can be applied to counting Euler tours of the grid.

The research of Lieb and Baxter was carried out in the 1960s. Despite their

analyses of the asymptotic growth rate of the EOs of these lattices, the question of

whether there existed efficient algorithms for counting (exactly or approximately) was

still of interest. The estimates of [61] and [6] only capture the exponential growth

rate and so are not useful for the construction of an fpaus for sampling Eulerian

orientations either, so the question of whether one could sample Eulerian orientations

of these lattices in polynomial time remained open until the result of Mihail and

Winkler [68, 69] in 1992. Being able to generate random configurations of models is

important in statistical physics as physicists often want to compute average properties

of configurations; hence, this was an important open problem in the area of sampling

algorithms.
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In a related line of research, McKay [65] has obtained asymptotic estimates for

the total number of Eulerian directed graphs and Eulerian orientations on n vertices,

as well as the number of Eulerian directed graphs and Eulerian orientations on n

vertices with exactly m edges2. The results of §3.4 of this thesis can be viewed as

complementing those of [65] by providing an asymptotic estimate of the number of

Eulerian orientations of random 2d-regular graphs, when d is a constant. In fact, we

provide a stronger result: an asymptotic expression for the distribution of the number

of Eulerian orientations of a random 2d-regular graph. We are also able to show that

almost every 2d-regular graph has few Eulerian orientations, where few is taken to

mean within a polynomial factor of Schrijver’s lower bound [78] (see Theorem 1.56

below).

The flavour of the calculations in [65] is similar to that of §3.4, in the sense that both

obtain the asymptotic estimate by the so-called saddle-point method [25]. However,

the actual approaches are quire different. McKay defines a generating function whose

constant term is equal to the required quantity and then applies Cauchy’s theorem to

obtain an integral expression for this value. In §3.4 we take a more direct combinatorial

approach, using the configuration model for graphs with fixed degree sequence. The

approach of McKay seems to be best suited to the situation where we are enumerating

all objects in a set, without regard to the vertex degrees. Although a similar approach

has been applied to estimating the number of graphs with fixed degree sequence [67],

we do not know of any result applying this approach to counting Eulerian orientations

or Eulerian directed graphs with fixed degree sequences. Moreover, McKay’s method

is not suited to the extra analysis required to obtain the concentration result mentioned

above. However, one distinct advantage of the approach used in [65] and [67] is that

the results hold for larger degrees. Results using the configuration model only hold

when if the degrees of the vertices are very small compared to n. Although beyond

the scope of this thesis, it would be interesting to see if McKay’s approach could be

extended to obtain similar results (to those of §3.4) for graphs with larger degrees.

Several authors have derived upper and lower bounds on the number of Eulerian

orientations of certain classes of Eulerian graphs. The number of Eulerian orientations

of a regular graph has been studied by Schrijver [78] and Las Vergnas [95]. Schrijver

proved the following theorem.

Theorem 1.56 (Schrijver [78]). Let d be some fixed integer and let G be a 2d-regular

2Recall from the discussion in Remark 1.6 that not every Eulerian directed graph is an Eulerian
orientation.
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graph on n vertices. Then,((2d
d

)
2d

)n

≤ |EO(G)| ≤
(

2d
d

)n/2

.

Las Vergnas [95] was able to generalise the bound of Theorem 1.56 by considering

also the girth and the number of edge-disjoint cycles in the graphs.

For the planar case, Zickfeld and Felsner [33] have, in the more general context

of α-orientations, obtained upper and lower bounds on the number of Eulerian

orientations of several classes of planar graphs. In particular, they showed that the

number of Eulerian orientations of any planar Eulerian graph G is never less than the

number of α-orientations of G, for any α.

The number of Eulerian orientations of a graph G is closely related to the number

of perfect matchings of a specially constructed bipartite graph. For any Eulerian graph

G = (V,E) we can construct a bipartite graph HG such that

∏
v∈V

(deg(v)/2)!|EO(G)|= |PM(HG)| , (1.18)

where EO(G) denotes the set of Eulerian orientations of G and PM(HG) denotes the

set of perfect matchings of HG. This reduction was first made explicit by Mihail and

Winkler [68, 69] but is implicit in the earlier work of Schrijver [78].

We now describe the reduction and explain how it can be used to construct an fpras

or an fpaus for EO(G), despite the fact that Eulerian orientations are not self-reducible.

Let G = (V,E) be an Eulerian graph. Let HG = (A,B,F) be the bipartite graph with

bipartition

A =
⋃
v∈V

Xv , Xv = {xv,e : e = {u,v} ∈ E} ,

and

B = {we : e ∈ E}∪
⋃
v∈V

Yv , Yv = {yv,i : 1≤ i≤ deg(v)/2} .

and edge set

F = {(xu,e,we),(xv,e,we) : e = {u,v} ∈ E}∪
⋃
v∈V

Xv×Yv .

Suppose we have an Eulerian orientation E ∈ EO(G). We construct a perfect matching

M ∈ PM(HG) as follows: for each edge e = {u,v} ∈ E we include (xv,e,we) in M if e

is oriented (u,v) in E and include (xu,e,we) in M if e is oriented (v,u) in E ; complete

M by, for each v ∈V , choosing any perfect matching on Yv and the unmatched vertices
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in Xv. Every edge in G receives an orientation in E , so every vertex in {we : e ∈ E}
is matched with a vertex in

⋃
v∈V Xv in the first step. This uses up half of the vertices

in
⋃

v∈V Xv. The remaining vertices are all matched with Yv in the second step, so the

construction always yields a perfect matching. Moreover, each Eulerian orientation

gives rise to exactly

∏
v∈V

(deg(v)/2)!

perfect matchings; this is the number of ways to choose the edges in the second step.

Now, suppose we have a perfect matching M ∈ PM(HG). We construct an Eulerian

orientation E of G as follows: for each edge e = {u,v} ∈ E we orient e towards u if

(xu,e,we) ∈M and orient e towards v if (xv,e,we) ∈M. Exactly half of the vertices in

Xv must be matched to vertices in Yv in any perfect matching. Thus, exactly half of

the edges incident with v are oriented towards v in this construction. Moreover, the

perfect matching M exactly determines E ∈ EO(G), so there is exactly one Eulerian

orientation of G corresponding to each perfect matching of HG. The ratio (1.18)

follows from the fact that the procedure just described is exactly the reversal of

the mapping from Eulerian orientation to perfect matching described in the previous

paragraph.

The relationship between EO(G) and PM(G) has two important consequences: the

existence of an fpaus and an fpras for EO(G). Given a uniformly random perfect

matching M ∈ PM(HG), applying the reduction described above gives a uniformly

random Eulerian orientation E ∈ EO(G), since each E ∈ EO(G) arises as a result of

an equal number of perfect matchings. Thus, any fpaus for PM(HG) can be turned

into an fpaus for EO(G). The celebrated Jerrum-Sinclair chain [49] (see [51, 10] for

improvements) can be used to sample a perfect matching of any bipartite graph in time

O(n7(logn)4).

Similarly, an fpras for counting perfect matchings of bipartite graphs can be used

to construct an fpras for the number Eulerian orientations of any graph G: multiplying

an ε-approximation for PM(HG) by

∏
v∈V

(deg(v)/2)!

gives an ε-approximation for EO(G). In [51], Jerrum et al. describe how to use the

Jerrum-Sinclair chain to construct an fpras for the number of perfect matchings of any

bipartite graph that runs in polynomial-time. Thus, by using the construction described

in [69], we can use the results of [51] (with an improvement to the running time from
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[10]) to show the existence of an fpaus and fpras for the Eulerian orientations of any

Eulerian graph.

Several authors [62, 38, 29] have considered other sampling schemes for the

Eulerian orientations of the Eulerian planar lattices, due to their connection to the

ice models of statistical physics. Eloranta [29] has studied dynamics for generating

random configurations of four different ice models, including the two described above

(see Figure 1.2). Although called probabilistic cellular automata in [29], these

dynamics are nothing more than the face reversing Markov chain studied in [62, 38]

and in Chapter 2 of this thesis.

Luby et al. [62] and Goldberg et al. [38] have shown that the face reversing Markov

chain mixes rapidly on the Eulerian orientations of the square lattice with fixed and

free boundary conditions, respectively. In this thesis, we extend current knowledge

by showing that counting Eulerian orientations remains #P-complete for planar graphs

and show that the Markov chain studied in [62] and [38] can be used to construct an

fpras or fpaus for the Eulerian orientations of the triangular lattice. Specifically, in

Chapter 2 of this thesis we will show that this chain is rapidly mixing on the triangular

lattice under any fixed boundary condition. However, we also show that there exists an

infinite family of planar graphs for which this chain is torpidly mixing.

1.3.2 Euler tours

Euler tours are a classical graph theoretical structure, studied in every undergraduate

graph theory class. Indeed, the result believed to be the first theorem in graph theory

is the one that introduced Euler tours: Euler’s solution to the Königsberg bridge

problem [30]. It was in order to solve this problem that Euler defined the concept

of a graph and stated what is now known as the Eulerian condition (Definition 1.18).

The complexity of counting/sampling Euler tours is quite different depending on

whether the input is a directed graph or an undirected graph. For any Eulerian directed

graph ~G it is possible to exactly count the number of Euler tours of ~G in polynomial

time [94, 47] and there exist many polynomial time sampling algorithms, e.g., [19, 72].

In the undirected case the counting problem is #P-complete in general and, apart

from the special case of series-parallel graphs [17] there are no known polynomial

cases. Moreover, apart from the cases of the complete graph [66] and series-parallel

graphs [17] there are no known polynomial time sampling algorithms.
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1.3.2.1 Euler tours of directed graphs

In the case of Eulerian directed graphs, it is possible to compute #ET(~G) in polynomial

time using a relationship between the Euler tours of ~G and the arborescences of ~G (see

Definition 1.12).

For any Eulerian directed graph ~G = (V,A), the so-called BEST theorem (due to de

Bruijn and van Aardenne-Ehrenfest [94], extending a result of Smith and Tutte [80])

reduces the problem of computing |ET(~G)| to the problem of computing |ARB(~G,v)|
for any vertex v ∈V .

Theorem 1.57 ([94]). Let ~G = (V,A) be an Eulerian directed graph and let du =

outdeg(u) for each u ∈V . For any v ∈V , we have

|ET (~G)|=

[
∏
u∈V

(du−1)!

]
|ARB(~G,v)| . (1.19)

We now sketch the proof of Theorem 1.57. Let ~G = (V,A) be an Eulerian directed

graph and let v ∈ V . Suppose we have an Euler tour T = (a0,a1, . . . ,am−1) of ~G

and further suppose that v is the source of a0. Given T we can construct a unique

A ∈ ARB(~G,v): for each vertex u 6= v we take the last arc leaving u on T to be the

unique arc leaving u in A . To see that this construction always gives an arborescence,

suppose we have a cycle C = (v0,v1, . . . ,vk−1) such that (vi,v(i+1) mod k) is the last arc

leaving vi on T for each i = 0,1, . . . ,k−1. Consider how T behaves on ~G. Each time

T reaches a vertex vi on C the next arc on T is from ~G−C, unless we have reached the

last occurrence of vi on T . But this cannot occur until T has passed all paths from vi

to v in ~G−C, in which case T would define an Euler tour on ~G−C, contradicting the

assumption that T is an Euler tour of G. Thus, choosing a0 from the dv arcs leaving v

in ~G is sufficient to induce a unique arborescence A ∈ ARB(~G,v).

Next, suppose we have an arborescence A of ~G with root v. Moreover, suppose

we have an ordering on the arcs leaving each vertex of ~G such that for each u 6= v the

unique arc leaving u in A is the last arc in the ordering. For each such ordering we can

construct a unique Euler tour of ~G as follows. Starting at v we choose the least-most

arc in the ordering of the out-arcs of v. Then, at each subsequent vertex we choose the

least arc which has not yet been used. This process terminates when we reach v and

there are no more unused arcs left to choose, and at this point we have constructed an

Euler tour of ~G.

Thus, there are dv arborescences with root v associated to each Euler tour, one for
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each arc leaving v, and

(dv)! ∏
u6=v

(du−1)!

Euler tours associated to each arborescence with root v. Taken together, these two facts

imply (1.19).

One immediate corollary to Theorem 1.57 is that there are an equal number of

arborescences rooted at each vertex of any Eulerian directed graph. However, more

importantly, Tutte [90] showed that we can calculate the number of arborescences

rooted at a vertex of any directed graph by computing the determinant of minor of

a specially constructed matrix.

Definition 1.58. Let M be a n×n matrix. For any row/column index i, we denote by

Mii the matrix obtained by removing the row and column indexed by i. This is known

as the i-th minor of M.

Theorem 1.59 (Tutte [90]). Let ~G = (V,A) be a directed graph. We define the

Laplacian of ~G to be the matrix L with entries given by

Lu,v =

{
outdeg(u) if u = v ;

−du,v if u 6= v and there are du,v arcs from u to v in ~G.

For any vertex v ∈ V , the number of arborescences rooted at v is equal to the

determinant of the v-th minor of L.

We can calculate the determinant of any n× n matrix in time polynomial in n by,

e.g., Gaussian elimination [84]; hence, the above theorem tells us that we can count

the Euler tours of any Eulerian directed graph in time polynomial in the number of

vertices.

Remark 1.60. For the special case of 2-in/2-out directed graphs, Macris & Pulé [64]

claimed that one could obtain the number of Euler tours by computing the determinant

of an alternative matrix; Lauri [59] claimed to have a combinatorial proof of this

result. However, the result in [64] is incorrect. Indeed, we can construct an example

with 5 vertices for which this method gives the wrong value. This counter-example is

contained in Appendix A.

Remark 1.61. The importance of the BEST theorem goes beyond the fact that it allows

us to count Euler tours of directed graphs in polynomial time. Indeed, almost every

result about counting or sampling Euler tours of any graph (directed or undirected)

depends on the relationship implied by this theorem, e.g., [19, 66, 72, 15].



Chapter 1. Introduction 32

There exist several schemes for generating random Euler tours of an Eulerian di-

rected graph ~G, all of them based on the relationship between tours and arborescences

described above. These can be grouped into two types: those based on the fact that

we can count the number of arborescences in any directed graph in polynomial time

[42, 18, 57, 19]; and those based on a random walk in ~G [53, 99, 72]. In the next two

paragraphs we will briefly describe algorithms of both types.

In the algorithms based on Theorem 1.59, the arborescence is constructed one arc at

a time. At each step the algorithm considers a vertex u which has not yet been assigned

its unique out-arc in A . Let Out(u) denote the set of arcs leaving u in ~G and suppose

we want to compute the probability a = (u,w) ∈ Out(u) is contained in a uniformly

random arborescence of ~G. Let ~Ga denote the directed graph in which we have replaced

u and w by a single vertex uw which has the same outgoing arcs as w in ~G and has the

incoming arcs of both u and w in ~G. The arborescences in ARB(~G,v) containing (u,w)

are in one-to-one correspondence with the arborescences in ARB(~Ga,v). Hence, the

probability (u,w) is contained in a uniformly random element of ARB(~G,v) is

|ARB(~Ga,v)|
|ARB(~G,v)|

. (1.20)

By Theorem 1.59, we can compute (1.20) in polynomial time. We need to choose

n− 1 arcs, so the total computational cost of choosing a random arborescence is a

polynomial in n. Implemented naively, this algorithm will have running time O(n3)

but some clever tricks used in [19] reduce this to the amount of time taken to multiply

n×n matrices (currently O(n2.376) [21]3).

Remark 1.62. The astute reader will notice that the algorithm just described is no more

than an instantiation of the general scheme described in Algorithm 1.

The second, and perhaps better-known, class of algorithms are based on random

walks [72]. The most efficient of these algorithms is believed to be the Propp-Wilson

algorithm [72], which is based on the concept of loop-erased random walks. The

running times of these algorithms are in terms of properties of the random walk, e.g.,

cover time or hitting time (defined below), so a direct comparison of running times

is difficult. For some cases, the running time of a random walk based algorithm

could be exponential, in which case algorithms based on Theorem 1.57 could be more

3It is worth mentioning that the constant term hidden by the O(·) here is so large that the algorithm
is only worthwhile when used for matrices that are so large modern computers would struggle to handle
them. Hence, the best practical algorithm is still Strassen’s algorithm [85] (see [98] for a general
reference), which has running time O(n2.807)
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efficient. However, it is believed that for most graphs, the Propp-Wilson algorithm will

outperform all known algorithms based on Theorem 1.57 [72].

Definition 1.63. Let ~G = (V,A) be a directed graph and let u,v ∈ V . A random walk

γ from u to v is obtained by setting γ1 = u and then setting γi+1 to be the target of a

randomly chosen arc leaving γi until we reach γt = v. A loop erased random walk, γ′,

is constructed from γ by removing all loops in the order in which they appear on γ. We

define the indices of the positions in γ that are not on loops, i.e., the positions that do

not occur between two occurrences of some vertex on γ, inductively by

i1 = 1;

i j = max{i : γi = γi j−1
}+1 .

Then γ′, the loop erased version of γ, is defined by γ′j = γi j
.

We define a random variable LERW (u,v) whose value is a loop erased random

walk from u to v. Similarly, LERW (u,U) is a loop erased random walk from u to any

vertex in U ; that is, the random walk γ terminates as soon as we reach a vertex from U .

Example 1.64. Suppose we have

γ = 1,2,3,1,4,2,5 .

Then i1 = 1, i2 = 5, i3 = 6 and i4 = 7, so

γ
′ = 1,4,2,5 .

Algorithm 3: Propp-Wilson

Input: A directed graph ~G = (V,A) and a vertex v ∈V

Output: A uniformly random arborescence A of ~G rooted at v

begin
U ←− {v}, A ←− /0;

while U 6=V do
Choose u ∈V −U ;

γ←− LERW (u,U);

Add the edges of γ to T and the vertices to U ;
end

end
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The Propp-Wilson algorithm is presented as Algorithm 3. Propp and Wilson proved

that this algorithm generates a random arborescence from the uniform distribution on

ARB(~G,v) for any directed graph, and that the running time is bounded by the hitting

time.

Definition 1.65. Let ~G = (V,A) be a directed graph. The hitting time of u,v ∈V is the

random variable recording the amount of time for the random walk on ~G, (Xt)t≥0, to

reach v given that it started at u:

Hu,v = inf{t : Xt = v : X0 = u} .

The hitting time of ~G is the maximum expected hitting time over all pairs of vertices:

h(~G) = max
u,v∈V

E(Hu,v) .

Remark 1.66. The Propp-Wilson algorithm can be regarded as a Markov chain, M PW ,

on ARB(~G), which operates as follows. Let Xt denote the t-th state of the chain and

let rt be the root of Xt . We use Xt(v) to denote the unique arc leaving v in Xt , for each

v 6= rt . We now describe how M PW generates the next state of the chain, Xt+1, given Xt .

One step of the Markov chain M PW

1. Choose a random arc (rt ,rt+1) ∈ A.

2. Obtain Xt+1 from Xt by removing Xt(rt+1) and adding (rt ,rt+1).

Consider what happens when the sequence of root vertices of states, Xt , . . . ,Xt+k,

forms a cycle (v0,v1, . . . ,vk−1). On the transition (Xt ,Xt+1) we remove (v0,v1) from

the arborescence and add (v1,v2). Then, on the transition (Xt+1,Xt+2) we remove

(v1,v2) and add (v2,v3), and so on. Eventually, the transition (Xt+k−1,Xt+k) removes

(vk−1,v0) and adds (v0,v1). Hence, Xt+k = Xt . Thus, at any particular step t of the

chain, the arcs which have been used by the random walk but are not on a loop are

contained in Xt , so this chain is equivalent to the Propp-Wilson algorithm [72]. The

result of Propp-Wilson [72] was to show that this chain has reached its stationary

distribution once all vertices have been visited by the random walk.

1.3.2.2 Euler tours of undirected graphs

Next, we turn to the problem of generating and counting Euler tours of an undirected

graph G = (V,E). Two alternative representations have been used to reason about the

set of Euler tours of an undirected graph: transition systems and orbs.
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The first, and more direct representation, is to define a tour T according to its

component 2-paths: the pairs of edges which are visited consecutively on T .

Definition 1.67. Let G = (V,E) be an Eulerian graph and let v ∈ V (G). We define a

transition system at v to be a decomposition of the set of edges incident with v into

pairs. A transition system of G is a function T that maps each v to a transition system

on v. We denote by TS(G) the set of transition systems of G.

We can also define a transition system of an Eulerian directed graph by adding the

restriction that an in-arc of v must be paired with an out-arc of v.

Suppose G = (V,E) is an Eulerian graph on n vertices such that deg(v) = dv, for

each v ∈V . The number of ways to choose a pairing of the edges at v is(2dv
dv

)
dv!

2dv
;

hence, the number of transition systems of any graph satisfying deg(v) = dv is

∏
v∈V

(2dv
dv

)
dv!

2dv
.

In particular, every 2d-regular graph has((2d
d

)
d!

2d

)n

transition systems. Similarly, a directed graph in which outdeg(v) = dv, for every

v ∈V , has

∏
v∈V

dv!

transition systems, and every d-in/d-out directed graph has

d!n

transition systems.

Each transition system T of G corresponds to a decomposition of the edges of G

into a set of edge-disjoint cycles, denoted by C (T ), where the edges that are paired

together by T lie on the same cycle. Hence, the Euler tours of G are equivalent to the

set of transition systems for which C (T ) contains exactly one component. It seems

the first method to exactly count the number of Euler tours of any Eulerian graph was

developed by Tarry [86] in 1887. This approach chooses a transition system vertex
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by vertex, ensuring that the current transition system can always be extended to the

transition system of an Euler tour. Suppose G is an Eulerian graph and v is a vertex of

G. Let P (v) denote the set of pairings of the edges incident with v. For each ρ ∈ P (v),

let Gρ denote the graph obtained by removing v and adding the edges u,w for each

{{u,v},{v,w}} ∈ ρ. Then, for any v ∈V , we have

#ET(G) = ∑
ρ∈P (v)

Gρ is connected

#ET(Gρ) . (1.21)

The equation in (1.21) can be expanded recursively to compute each of the #ET(Gρ),

stopping the recursion when we reach a graph for which we can easily calculate the

number of Euler tours, e.g., a graph with 2 vertices. This procedure is not practical

for large graphs as the running time is proportional to the number of Euler tours of

G, which is almost certainly exponential in the number of vertices. Therefore, Tarry’s

approach is not useful for developing polynomial-time algorithms for counting Euler

tours.

Kötzig [56] showed that any Eulerian transition system can be transformed into

another by performing a sequence of local changes, each one altering the transition

system at exactly one vertex.

Definition 1.68. Let G = (V,E) be an Eulerian graph, let T be an Euler tour of G

and let T denote the transition system corresponding to T . A κ-transformation at v

takes two pairs of edges {e, f} and {e′, f ′} in T (v) and obtains T ′ by replacing them

by {e, f ′} and {e′, f}. If T ′ induces an Euler tour T ′ we call this an allowed transition

and denote this by T ⇒v T ′.

An allowed κ-transformation corresponds to choosing two distinct occurrences of

v on T and reversing the segment of T between them. In [87] Tetali and Vempala used

this result to define an ergodic Markov chain that converges to the uniform distribution

on the set of Euler tours of any Eulerian graph. The transitions in this chain are very

simple. Let Xt denote the t-th state of the chain. We now describe how a step of the

Kötzig move chain obtains Xt+1, given Xt .

One step of the Kötzig chain

1. Choose v ∈ V uniformly at random and choose a κ-transformation uniformly at

random from the set of potential transformations;
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2. If the chosen transformation is allowed in Xt then apply it to obtain Xt+1 as the

next state;

3. Otherwise, set Xt+1 = Xt .

In [87], Tetali and Vempala attempted to use the multi-commodity flow technique [49]

to prove this chain was rapidly mixing, in the case where the given graph is either

4-regular or 6-regular. To apply this technique one needs to define certain canonical

paths between states in the Markov chain. The construction for these paths in [87] does

not give paths with the claimed properties; hence, the proof does not work. Even now,

several years later, no one has been able to fix the argument of [87]. The reason for this

is that the structure of the state space of the chain, upon which proofs of rapid mixing

depend, is very complicated. Although the change we are making in an individual

transition is local, we need to look at the whole tour to determine whether or not a

particular change is legal. Generally speaking, the only Markov chains whose mixing

times are amenable to analysis by current proof techniques are those in which the

moves are very local; that is, we can determine which changes we can apply to a part

of the structure by considering the parts of the structure close to the part we want to

change. So, even in the simple cases of 4-regular and 6-regular graphs, the problem of

sampling Euler tours of undirected graphs in polynomial time remains open.

McKay and Wormald [67] have obtained an asymptotic expression for the number

of Euler tours of Kn for n odd. One corollary of this result is that a simple dart throwing

algorithm can be used to generate random Euler tours of Kn in polynomial time. This

algorithm, described in Chapter 3 of this thesis, does not run in polynomial time for

every Eulerian graph: the graph Bn (see Example 1.70 below) is one example of a

graph for which it will take exponential time; see §3.6 for more interesting examples.

Thus, it is an interesting open problem to determine on which classes of graphs this

algorithm is effective. In Chapter 3 of this thesis we present some partial results

towards showing that the simple algorithm studied by McKay and Wormald will run in

expected polynomial time for almost all 2d-regular graphs. Whether or not this is the

case depends on an unproven conjecture, a conjecture which is supported by empirical

evidence.

For many years it was not even known whether or not there might exist a

polynomial-time algorithm for exactly counting the Euler tours of an undirected graph.

This question was finally resolved by Brightwell and Winkler [15] in 2005, when

they showed that the problem was indeed #P-complete4. Brightwell and Winkler
4As one might have expected, given the difficultly in finding a polynomial-time algorithm.
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considered a second representation for the Euler tours of a graph G.

Definition 1.69. Let G = (V,E) be an Eulerian graph. We define an orb of G rooted

at v to be a pair (E ,A), where E ∈ EO(G) and A ∈ARB(E ,v). We use ORB(G,v) to

denote the set of orbs of G rooted at a particular vertex v, and ORB(G) to denote the

set of all orbs of G.

From Theorem 1.57, we know that the number of Euler tours of a particular

Eulerian orientation E ∈ EO(G) is[
∏

u∈V (G)

(deg(u)/2−1)!

]
|ARB(E ,v)| ,

for an arbitrary vertex v ∈V . Hence, the number of Euler tours of G satisfies

|ET(G)|= 1
n

[
∏

u∈V (G)

(deg(u)/2−1)!

]
|ORB(G)| .

Brightwell and Winkler [15] showed that counting orbs is #P-complete via a reduction

from #EO; hence, #ET is also #P-complete.

Although the reason Brightwell and Winkler came up with the concept of an orb

was to prove #P-completeness of #ET, the connections between orbs and Euler tours

also suggests ideas that might allow us to come up with polynomial-time algorithms

for sampling Euler tours. Let (E ,A) ∈ ORB(G,v). We can generate a random

Euler tour associated with (E ,A) in polynomial time: all we need to do is choose

a random ordering on the non-arborescence out-arcs of each vertex and then follow the

deterministic procedure described in the proof of Theorem 1.57. Hence, if we could

sample from the uniform distribution on the orbs of G, we could also sample from

the uniform distribution on the Euler tours of G. Unfortunately, this is no easy task.

The algorithms for sampling arborescences do not generalise to sampling orbs as most

known algorithms for sampling arborescences are heavily dependent on the fact that

the input graph is directed.

To illustrate why the problem of sampling orbs of an undirected graph is so

different from that of sampling arborescences of a directed graph, we consider the

following naive idea for a sampling algorithm. Suppose we try to choose the

arborescence part of the orb step by step, in a similar fashion to the algorithms

based on Theorem 1.59, e.g., [19]. At each step we want to calculate the probability

that an edge incident with a vertex u is oriented away from u and contained in the

arborescence part of a random orb. But this would require being able to count the
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number of orbs containing a particular set of arcs in their arborescence, and this

is clearly #P-complete! Attempts to generalise the random walk algorithms to the

undirected case suffer from similar problems, since we need an algorithm that changes

both the orientation part and the arborescence part simultaneously.

We know that we can generate random Eulerian orientations of any graph in

polynomial time, and that we can generate Euler tours of any Eulerian directed graph in

polynomial time. However, simply choosing a uniformly random Eulerian orientation

E ∈ EO(G) and then choosing a random Euler tour T ∈ ET(E) will not give a

uniformly random Euler tour, since different Eulerian orientations of a graph can have

very different numbers of Euler tours. For example, consider the graph obtained by

duplicating each edge of the n-cycle.

Example 1.70. Let Bn be the multigraph obtained by duplicating each edge in the n-

cycle Cn = (0,1,2, . . . ,n−1). The Eulerian orientations of Bn can be grouped into two

equivalence classes. For each i we label the edges joining i to (i+1) mod n as ei and

fi. We say two Eulerian orientations E ,E ′ ∈ EO(Bn) are equivalent if either E ′ is the

reverse of E or E ′ can be obtained from E by switching the orientations of ei and fi for

each i in some set S ⊂ {1,2, . . . ,n}. This relation partitions EO(G) into two classes:

the orientations in which ei and fi are both oriented in the same direction for every i

and the orientations in which ei and fi are oriented in opposite directions for every i.

There are exactly two Eulerian orientations in the first class and 2n in the second.

Both of the orientations in the first class have 2n−1 arborescences rooted at each

vertex v, and each of the orientations in the second class have n arborescences rooted

at each vertex v. Hence, if we choose a random orb as suggested above, the probability

of obtaining a particular (E ,A) with E in the the first class is

1
2n +2

1
n2n−1 ,

but the probability of obtaining a particular (E ,A) with E in the second class is

1
2n +2

1
n2 .

1.4 Contents of the thesis

The problems #EO and #ET have been shown to #P-complete for general graphs by

Mihail and Winkler [69] and Brightwell and Winkler [15], respectively. We extend

current knowledge by showing that the complexity of counting Eulerian orientations
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remains #P-complete for planar graphs. This result is contained in the first section of

Chapter 2.

The Eulerian orientations of any graph can be sampled in polynomial time, by

combining the reduction of Mihail and Winkler [69] with the results of Jerrum et

al. [49, 51] (improvements in [10]). A more natural chain on the Eulerian orientations

of planar graphs has been studied in [62, 38], in which the mixing time was analysed

on the Eulerian orientations of the square lattice. In Chapter 2 we show that this chain

is rapidly mixing on the triangular lattice, a planar lattice that which is of interest in the

statistical physics community [6, 29]. However, we also show that there exist planar

graphs for which it will always take an exponential time to converge.

In Chapter 3 we describe a simple algorithm that can be used to generate uniform

Euler tours or approximately count the number of Euler tours of any Eulerian graph or

Eulerian directed graph. It is known that this algorithm runs in expected polynomial

time for the complete graph [66], but also that it can be expected to take an exponential

amount of time for other graphs. We use the theory of random graphs to show that the

algorithm runs in expected polynomial time for almost every Eulerian directed graph.

Although we are not able to show that this algorithm runs in expected polynomial

time on almost every 2d-regular graph, we obtain some partial results towards showing

that this is the case. This includes an analysis of the number of Eulerian orientations of

a random 2d-regular graph that is of independent interest. Whether or not the algorithm

runs in expected polynomial time for almost every 2d-regular graph depends on an

unproven conjecture regarding an estimate for the second moment of the number of

orbs of a random 2d-regular graph. In Chapter 3, we provide some empirical evidence

to support our conjecture.
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Eulerian orientations of planar graphs

2.1 Introduction

Recall that the Eulerian orientations of certain planar graphs are of particular practical

interest as they correspond to configurations of the ice-type models studied in the

statistical physics community, e.g., the square lattice [61], the triangular lattice [6],

the Kagomé lattice [29], and the 3.4.6.4 lattice [29]. While the #P-completeness of

counting the Eulerian orientations of a general Eulerian graph (#EO) was established

in [68, 69], it is not known if the problem remains #P-complete under the restriction

that the input be a planar graph (#PlanarEO). The first result of this chapter answers

this question by showing that #EO is polynomial-time Turing reducible to #PlanarEO.

Given the computational hardness of exact counting, we turn our attention to

approximation. Recall from §1.1.2 that one approach to approximate counting is

via random sampling. It is known that we can generate (almost) uniformly random

Eulerian orientations of any Eulerian graph in polynomial time (by combining the

result of Mihail and Winkler [68, 69] described in §1.3.1 with the rapidly mixing

Markov chain of [49, 51, 10]). In this chapter, we are interested in a different approach,

which uses a natural Markov chain on the α-orientations of a planar graph. The reason

for using a chain on the set of α-orientations is that sampling Eulerian orientations of

a solid subgraph of an infinite lattice with some fixed boundary condition requires one

to sample α-orientations of a non-Eulerian graph.

The Markov chain we study is in the style of the “Glauber dynamics” often used to

generated random configurations of physical models. Although the approach of Mihail

and Winkler detailed in §1.3.1 gives an fpaus for the set of Eulerian orientations of

any graph, this chain is still of interest as it is the method most commonly used in

41
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practice [28, 2, 29]. The main contribution of this chapter is to show that this Markov

chain is rapidly mixing for any solid subgraph of the triangular lattice. However, we

are also able to find an infinite family of planar graphs for which this Markov chain

will take an exponential number of steps to converge.

The contents of this chapter is as follows. In §2.2 we describe the reduction

that shows #PlanarEO is #P-complete. In §2.3, we define the face-reversal Markov

chain and show that the stationary distribution is the uniform distribution on the set

of α-orientations of any planar graph. In this section, we also describe a result of

Felsner [32] that is useful in the analysis of this Markov chain. In §2.4, we describe

path coupling, a technique for constructing couplings that we will use to analyse the

mixing time of the Markov chain. Path coupling is not applicable directly to the face-

reversal chain, so, in §2.5, we first extend the chain with additional moves, in the style

of [62, 38]. Then, in §2.6, we show that the face-reversal chain is rapidly mixing when

the input is a solid section of the triangular lattice with a fixed boundary condition. This

analysis is broken into two parts. In §2.6.1 we use path coupling to analyse the mixing

time of the extended chain. Then, in §2.6.2, we use a technique called comparison

to infer that the face-reversal chain is rapidly mixing on this class of graphs. In §2.7

we show how the face-reversal chain can be used to construct an fpras for counting

Eulerian orientations of the triangular lattice. Finally, in §2.8 we show that there exist

planar graphs for which the face-reversal chain is torpidly mixing, using a distributive

lattice structure (due to Felsner [32]) on the set of α-orientations of a planar graph.

2.2 Computational Complexity of #PlanarEO

Before discussing algorithms for sampling Eulerian orientations of planar graphs,

we provide a polynomial-time reduction from #EO to #PlanarEO. This shows that

#PlanarEO is #P-complete since the #P-completeness of #EO is already known

[68, 69]. Our reduction uses a recursive gadget (suggested by Mark Jerrum [48]) and

can be seen as an application of the so-called Fibonacci method of Vadhan [91].

The proof is as follows. Given a non-planar Eulerian graph G with an embedding

in the plane, we construct a sequence of planar Eulerian graphs Gk, k = 0,1, . . . , `+1,

where ` is the number of crossing edges in the embedding of G. We then show that

the values #EO(Gk) give evaluations of a degree ` polynomial p(x) at a sequence of

distinct points. This polynomial, p(x), has the value #EO(G) as one of its coefficients.

Hence, we can obtain the value #EO(G) from the values #EO(Gk), using the Lagrange
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Figure 2.1: The crossover box

Interpolation Formula:

Theorem 2.1 (Lagrange). Given d + 1 distinct real values β0,β1, . . . ,βd , d ≥ 2, and

d +1 points (α0,β0),(α1,β1), . . . ,(αd,βd), there is a unique polynomial of the form

f (x) =
d−1

∑
i=0

aixi

passing through these points, specified by

f (x) =
d

∑
i=0

βi ∏
j 6=i

x−α j

αi−α j
. (2.1)

Theorem 2.2. #PlanarEO is #P-complete.

Proof. We prove the theorem by exhibiting a polynomial time reduction from #EO to

#PlanarEO. That, is given an oracle for computing #PlanarEO we can construct an

algorithm that can compute #EO for any non-planar graph.

Let G be any non-planar graph and suppose we have an embedding in the plane

with ` crossings. We turn G into a planar graph G0 by removing each pair of crossing

edges {x,y} and {u,v} and replacing them by a pair of paths (x,s,y) and (u,s,v),

where s is a vertex not contained in G, as in Figure 2.1(a). Every Eulerian orientation

of G induces an Eulerian orientation of G0; however, not all Eulerian orientations of

G0 correspond to Eulerian orientations of G, e.g., {(u,s),(v,s)} may be present in an

Eulerian orientation of G0. We say E ∈ EO(G0) is valid at s if the orientation of the

edges incident with s is consistent with an orientation of G, i.e., exactly one of {u,s}
and {v,s}, and of {x,s} and {y,s} is directed towards s in E .
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We now define a sequence of graphs Hk, each of which has 4 vertices of degree 1,

labelled uk, vk, xk, and yk. Let H0 be the graph Figure 2.1(a). For k ≥ 1, we define

Hk recursively in terms of Hk−1 and a 4-cycle. Each vertex of the cycle connects

to a pair of vertices from {(uk,uk−1),(vk,vk−1),(xk,xk−1),(yk,yk−1)}, as illustrated in

Figure 2.1(b). We then define Gk to be the graph obtained from G by replacing each

pair of crossing edges {x,y},{u,v} with Hk. To do this we delete the edges {x,y} and

{u,v} and identify x, y, u and v with xk, yk, uk, and vk. We call the copy of Hk used to

replace {x,y} and {u,v} the crossover box for the crossing {x,y} and {u,v}. We say

an orientation of Gk is valid at particular crossover box if the orientation of the edges

(of Hk) incident with uk, vk, xk, and yk are consistent with an orientation of G.

Let ak (resp. bk) denote the number of orientations of the edges of Hk satisfying

the Eulerian condition which correspond to valid (resp. invalid) orientations. These

values satisfy

ak = 4ak−1 +2bk−1 (2.2)

bk = 4ak−1 +3bk−1 (2.3)

with a0 = b0 = 1. Now, let Ni denote the number of Eulerian orientations of G0 which

are valid at exactly i crossover boxes, so N` = #EO(G). Each Eulerian orientation of

G0 counted by Ni corresponds to exactly ai
kb`−i

k Eulerian orientations of Gk, so we can

write

#PlanarEO(Gk) =
`

∑
i=0

Niai
kb`−i

k .

Hence, computing #PlanarEO(Gk)/b`k corresponds to evaluating the polynomial

p(z) =
`

∑
i=0

Nizi

at the point ak/bk. It is straightforward to check that ak/bk is a non-repeating sequence

(either by basic calculus or an application of [91, Lemma 6.2]). Hence, by evaluating

#PlanarEO(Gk)/b`k at the value ak/bk, for k = 0,1, . . . , `+ 1, we obtain enough

information to recover the values Ni, i = 0,1, . . . , `, by the Lagrange interpolation

formula (Theorem 2.1).

Letting n and m denote the number of vertices and edges in G we have

|V (Gk)|= n+(4k+1)`

and

|E(Gk)|= m+(8k+2)` .
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Hence, we can compute #EO(Gk) in time polynomial in n, m, and `, for each k. We

can embed a graph with m edges in the plane with at most
(m

2

)
crossings: if we lay the

vertices out on a circle each pair of edges can cross at most once. Thus, the number of

steps required for the whole reduction is bounded by a polynomial in m and n.

2.3 A natural Markov chain for sampling α-orientations

Before we define the natural Markov chain on the set of α-orientations of a planar

graph, we introduce some structural results of Felsner [32] which will be useful in the

definition and subsequent analysis of the chain. Let G = (V,E) be a planar graph and

let F (G) denote the set of bounded faces in some planar embedding of G. We will

use f to denote the number of elements in F (G). A face is said to be directed in an

orientation of G if its boundary edges form a directed cycle. We say a directed face γ is

clockwise oriented (resp. counter-clockwise oriented) if the orientation of the edges of

γ is clockwise (resp. counter-clockwise) on γ. We recall the definition of α-orientation.

Definition 2.3. Let G = (V,E) be a graph and let α : V → Z. An α-orientation of G is

an orientation in which outdeg(v)− indeg(v) = α(v) for all v ∈V . Let α-O(G) denote

the set of α-orientations of G.

Note that the Eulerian orientations of a graph are the α-orientations where α(v) = 0

for all v ∈V .

Definition 2.4. If an edge e ∈ E has the same orientation in every α-orientation of G,

we say e is α-rigid.

Felsner defined a special set of cycles in a planar graph, with respect to α, which

he calls the essential cycles.

Definition 2.5 ( [32]). A cycle C of G is essential (with respect to α) if

1. C is simple and chord free;

2. all edges on the interior of C are α-rigid;

3. there exists an α-orientation of G in which C is a directed cycle.

We denote by F α(G) the set of essential cycles of G with respect to α.



Chapter 2. Eulerian orientations of planar graphs 46

Remark 2.6. The set of essential cycles are exactly the faces of the planar graph

obtained by removing all rigid edges. In particular, for the case of Eulerian orientations

we have that F (G) is the set of essential cycles.

From here on we will assume that all rigid edges have been removed, with α

updated accordingly, so the essential cycles of G, with respect to α, will always be

F (G).

In [32], Felsner has shown that it is possible to convert any α-orientation of a planar

graph G into another by performing a sequence of reversals of the edges of directed

faces. Furthermore, Felsner defined a partial order on α-O(G).

Definition 2.7. Let G= (V,E) be a planar graph and suppose we have some α : V →N.

We define a partially ordered set Fels(G) = (α-O(G),≺), where E ≺ E ′ if E ′ can be

obtained from E by performing a sequence of reversals of clockwise oriented directed

faces.

This order has a unique maximum element and minimum element: the unique

α-orientation with no clockwise cycles, Emax, and the unique α-orientation with no

counter-clockwise cycles, Emin. In [32], Felsner proved this order forms a finite

distributive lattice.

Definition 2.8. A distributive lattice is a partially ordered set (L,≺) which also

satisfies:

1. every pair of elements x,y ∈ L has a unique least upper bound, x∨ y, called the

join;

2. every pair of elements x,y ∈ L has a unique greatest lower bound, x∧ y, called

the meet;

3. the join and meet operations are distributive

x∧ (y∨ z) = (x∧ y)∨ (x∧ z) .

That Fels(G) is a distributive lattice is established by giving a bijection between

the α-orientations of a planar graph and a set of functions called α-potentials: for each

E ∈ α-O(G) the α-potential associated with E is a function

℘E : F (G)→ N .
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To define these functions Felsner used a partial order on F (G): σ ≺F ρ if σ and ρ

share an edge and that edge is counter-clockwise on σ in the minimum orientation.

The α-potentials are then defined as the set of functions of the form ℘ : F (G)→ N
satisfying

σ and ρ share an edge⇒ |℘(σ)−℘(ρ)| ≤ 1 (2.4)

σ is on the boundary⇒℘(σ)≤ 1 (2.5)

σ≺F ρ⇒℘(σ)≤℘(ρ) (2.6)

The bijection is given as follows: for each E ∈ α-O(G), we define ℘E to be

function F (G)→ N where ℘E(σ) is equal to the number of times σ is reversed on

any shortest path from Emin to E . See Figure 2.2 for an example. In the figure, each

face is labelled with its potential value.

Figure 2.2: The Felsner lattice for a small graph

Any partial order ≺ of a set L induces a graph with vertex set L called the cover

graph of L.
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Definition 2.9. The cover graph of a partially ordered set (L,≺) is the graph with

vertex set L and an edge joining x,y ∈ L if there is no z ∈ L such that x≺ z≺ y.

In the case of the Felsner lattice, two orientations are adjacent in the cover graph

if they disagree on the orientation of a single directed face. Felsner’s result suggests

a natural Markov chain MF on the set of α-orientations of any planar graph G: a

random walk on the cover graph of Fels(G). Each transition in this chain reverses the

orientation of a random directed face, so we call this the face-reversal Markov chain.

We now formally define our face-reversal chain, by specifying how Xt+1 is

generated from the current state Xt . We use cw and ccw to denote clockwise and

counter-clockwise, respectively.

One step of the chain MF

1. Choose κ ∈ F (G) and dir ∈ {cw,ccw} uniformly at random.

2. If κ is dir-directed then obtain Xt+1 from Xt by reversing the orientation of all

the edges in κ.

3. Otherwise, set Xt+1 = Xt .

Proposition 2.10. For any planar graph G = (V,E) and any α : V → Z, the chain MF

is ergodic and converges to the uniform distribution on α-O(G).

Proof. By choosing the direction (cw or ccw) in which to perform the reversal as well

as choosing a face, we automatically ensure that the probability of Xt+1 being equal to

Xt is at least 1/2. Hence, MF is aperiodic.

Felsner’s result [32] (described above) ensures the chain is connected, and so

ergodic. The transition probability matrix of MF is

P(E ,E ′) =


1

2|F (G)| if E⊕E ′ = γ, for γ ∈ F (G)

1−∑E ′′ 6=E P(E ,E ′′) if E = E ′

0 otherwise

.

Thus, the chain is ergodic and symmetric, and so converges to the uniform distribution

on α-O(G).

Felsner’s result has more use than proving ergodicity. We use the distributive lattice

structure as part of our proofs of rapid mixing (§2.6), and torpid mixing (§2.8), of MF

on different classes of graphs.



Chapter 2. Eulerian orientations of planar graphs 49

2.4 Path Coupling

Suppose M is an ergodic time-homogeneous Markov chain on finite state space Ω with

probability transition matrix P and stationary distribution π. Recall the definition of

the mixing time of a Markov chain from §1.2: a function τ(ε) such that for any ε > 0

and t > τ(ε),

max
x∈Ω

‖ Pt(x, ·)−π(·) ‖TV≤ ε .

We say a chain is rapidly mixing if there is a polynomial upper bound on τ(ε) and

torpidly mixing if there exists some ε > 0 such that τ(ε) is exponentially bounded from

below.

Path Coupling
Recall from §1.2 that coupling is a common method used to show a Markov chain is

rapidly mixing. The path coupling method, due to Bubley and Dyer [16], simplifies

the process of defining and analysing a coupling. Bubley and Dyer showed that, if we

define and analyse a Markovian coupling on the adjacent states in the chain then we

can also construct a coupling for nonadjacent X and Y by composing the couplings

of the pairs of states along a path X = Z0,Z1, . . . ,Zr = Y , where (Zi,Zi+1) is a pair of

states adjacent in the chain, for i = 0,1, . . . ,r. This is encapsulated in the following

theorem:

Theorem 2.11 (Bubley and Dyer [16]). Let M be an ergodic Markov chain with state

space Ω and let δ be an integer valued metric defined on Ω×Ω which takes values in

{0,1, . . . ,D}. Let S be a subset of Ω×Ω such that for all (X ,Y ) ∈ Ω×Ω there exists

a path

X = Z0,Z1, . . . ,Zr = Y

between X and Y such that (Zi,Zi+1) ∈ S for 0≤ i < r and

r−1

∑
i=0

δ(Zi,Zi+1) = δ(X ,Y ) .

Now suppose (Xt ,Yt) is a coupling of M defined on S. If there exists β ≤ 1 such that

for all (X ,Y ) ∈ S

E[δ(Xt+1,Yt+1)|(Xt ,Yt) = (X ,Y )]≤ βδ(Xt ,Yt)

then this coupling can be extended to a coupling (Xt ,Yt) defined on the whole of Ω×Ω

such that

E[δ(Xt+1,Yt+1)]≤ βδ(Xt ,Yt) .
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Moreover, if β < 1 then τ(ε)≤ log(Dε−1)
1−β

.

Remark 2.12. Although Theorem 2.11 does not require it, in most applications we have

that S is the set of pairs of states adjacent in the chain:

S = {(X ,Y ) ∈Ω : P(X ,Y )> 0} .

If β = 1 in Theorem 2.11 then in order to use the Bubley-Dyer path coupling

technique of Theorem 2.11 it must be shown that the variance of the distance between

any two states (not just the pairs in S) after one step of the coupling can be bounded

away from 0, see, e.g., [16, 38]. This situation is undesirable, as the power of the

path coupling technique is that it allows one to avoid considering all pairs of states. A

recent result has relaxed this condition:

Theorem 2.13 (Bordewich and Dyer [13]). Suppose we have a path coupling

C = (Xt ,Yt) for an ergodic Markov chain M with distance metric δ : Ω×Ω →
{0, . . . ,D}, where S⊂Ω×Ω is the set of pairs of states at distance 1. Let p denote the

minimum transition probability between pairs of states in S. We define a new chain,

the lazy chain M ?, with probability transition matrix

P?(X ,Y ) =


P(X ,Y )+p

1+p X = Y
P(X ,Y )

1+p otherwise
.

If β≤ 1 for the coupling C then the mixing time of the chain M ? satisfies

τ
?(ε)≤ dp−1eD2edlogε

−1e .

Moreover, if τ′(ε) denotes the random time Bin(τ?(ε),(1+ p)−1), where Bin denotes

the binomial distribution, then the distribution of Xτ′(ε) is within ε of the stationary

distribution of the original chain M .

Observation 2.14. For any Markov chain M which has a uniform stationary distribu-

tion, the lazy chain M ? will also have a uniform stationary distribution.

The effect of the lazy chain M ? is to adjust the transition probabilities slightly, so

as to introduce a small additional probability that the distance between the two chains

will change at any particular step. In many circumstances where β= 1, this is sufficient

to ensure that the lazy chain is rapidly mixing. The second part of the above theorem

means that, for all practical purposes, we can consider the mixing time of the chain M
to be the same as the mixing time of M ?.
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Applying Path Coupling to MF

To apply path coupling to bounding the mixing time of the face-reversal chain MF , we

need to define a metric δ : Ω2 → N on the set of α-orientations of a planar graph G.

The most natural choice is to define δ(E , Ê), for each E , Ê ∈ α-O(G), to be the length

of the shortest path between E and Ê in the cover graph of Fels(G). In particular,

δ(E , Ê) = 1 if E and Ê differ on a single face. Let Emin and Emax denote the unique

minimum and maximum elements of Fels(G). The fact that Fels(G) is a distributive

lattice implies that the maximum value the metric δ can take on pairs from α-O(G) is

D = δ(Emin,Emax), since we can always find a path of length ≤ D between two states

E and Ê either by going down from E to Emin and then up to Ê , or by taking a similar

path through Emax.

Let S denote the set of pairs of Eulerian orientations which disagree on the

orientation of a single directed face:

S = {(E , Ê) ∈ α-O(G)×α-O(G) : E⊕ Ê = γ, for some γ ∈ F (G)} .

To apply path coupling (Theorem 2.11 or Theorem 2.13), we need to define a one-step

Markovian coupling C on S and show that, in expectation, the distance between any

pair of states in S does not increase after one step of C . The natural choice is the

coupling that chooses the same face and direction in both chains. This is a maximal

coupling for our chosen distance metric. That is, if this coupling does not contract

(for our chosen metric δ), we cannot expect any other one-step Markovian coupling to

contract.

Proposition 2.15. There is no one-step Markovian coupling for MF that contracts

under the metric δ.

Proof. Consider the situation in Figure 2.3. This is the subgraph of some graph

G incident with a face γ, which consists of the only edges on which a pair of α-

orientations, E and Ê , disagree. Any face in G not contained in the part of the graph

shown in Figure 2.3 will either be directed in both E and Ê or will be directed in

neither E nor Ê . Hence, the move available, if any, resulting from choosing any face

not included in the subgraph shown will be the same for E and Ê . By choosing one

of these faces and the same direction in both chains, we can ensure that the distance

between the two copies of the chain does not increase over one step of the coupling.

By choosing γ and a different direction in both copies of the chain, we can ensure

coalescence with probability 1/ f . However, each neighbour of γ will be reversed with
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γ γ

E Ê

Figure 2.3: A configuration that gives rise to a non-contracting coupling for MF

probability 1/2 f in E but cannot be reversed in Ê . Hence, the distance will increase

by 1 with probability 3/2 f , giving a total expected increase of 1/2 f .

2.5 Extending the chain

In §2.4, we saw that no one-step Markovian coupling is sufficient to show rapid mixing

of MF using the metric δ. However, we will see that if we extend the chain with extra

moves in the style of [62, 38], we will then be able to design an appropriate path

coupling for the extended chain. It is these additional “tower moves” that will allow

us to couple with β≤ 1.

Definition 2.16. Let G be a planar graph, E an α-orientation of G, and γ a face of

G. We say γ is almost-directed in E if all but one of the edges of γ have a common

direction on γ. We call the edge oriented in the opposite direction the blocking edge

of γ. For faces η and σ which are, respectively, almost-directed and directed in the

orientation E , we say there is a tower starting at η and ending at σ if there is a sequence

of faces η = γ1, . . . ,γh = σ such that

• γi is almost directed in E , and the blocking edge of γi is shared with γi+1 for

1≤ i≤ h−1.

• γh is directed in E

We say h is the height of the tower.

Observe that the definition of a tower implies that C =
⊕

1≤i≤h γi is a directed cycle

in E . We say that a tower is clockwise (resp. counter-clockwise) in an orientation if
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E Ê

Figure 2.4: Reversing a tower

this cycle is clockwise (resp. counter-clockwise) in the orientation. We call γh and γ1

the top and bottom of the tower, respectively, and refer to the right and left sides of the

towers in terms of a walk from the bottom to the top. It follows that in a clockwise

tower the internal edges are all directed from the right to the left, and vice-versa for

counter-clockwise towers. Moreover, if T = (γ1, . . . ,γh) is a clockwise tower in E and

E ′ is obtained by reversing C, then T ′ = (γh,γh−1, . . . ,γ1) is a counter-clockwise tower

in E ′, see, e.g., Figure 2.4.

Let E ∈ α-O(G) and suppose η ∈ F (G) is almost directed in E . If there is a tower

in E starting at η we can find it by walking along the faces of G, starting at η and

choosing the face sharing the blocking edge with the current face at each step. If at

any point we reach a directed face then we have found a tower. On the other hand, we

can be certain there is no tower starting at η if we reach a face γi satisfying one of the

following:

• γi is not directed but not almost directed1;

• the blocking edge of γi lies on the boundary of the graph;

• the blocking edge of γi is the same edge as the blocking edge of γi−1.

To see that the process of forming a tower terminates (i.e., does not wrap around

on itself), note that reaching some already explored face implies the existence of a

cycle C such that every edge joining C to a vertex on its interior is directed towards C.

But then none of these vertices can be involved in a directed cycle in E , or, indeed,

in any other α-orientation of G. Hence, these edges must have the same orientation

in every α-orientation of G; that is, all edges joining C to its interior are rigid. We
1This situation cannot occur in the subgraphs of the triangular lattice we consider in §2.6



Chapter 2. Eulerian orientations of planar graphs 54

have assumed that all rigid edges have already been removed from G, and α has been

adjusted accordingly, so this situation cannot occur. Furthermore, we observe that

when α(v) = 0, v cannot be incident with more than deg(v)/2 faces in any tower.

We now define the tower-moves chain, MT, by describing how to obtain Xt+1 from

Xt . The definition includes an undetermined probability pT which will be fixed later.

One step of the Markov chain MT

1. Choose dir ∈ {cw,ccw} and κ ∈ F (G) u.a.r.

2. If κ is a dir-cycle then obtain Xt+1 from Xt by reversing the orientation of all the

edges in κ.

3. If there is a dir-tower T = (γi)1≤i≤h with γ1 = κ then let C =
⊕

1≤i≤h γi. With

probability pT obtain Xt+1 from Xt by reversing all the edges of C.

4. Otherwise, set Xt+1 = Xt

This type of chain has been used to extend the face reversal chain in the past,

see [62, 38]. The irreducibility of this chain is inherited from the irreducibility of

MF , since every transition in MF is also a transition in MT. Again, the fact they

we choose the direction of reversal for each transition ensures that there is a self-

loop probability of 1/2. Hence, MT is aperiodic and so ergodic. As long as pT is

chosen to be independent of whether T is a clockwise or a counter-clockwise tower,

MT converges to the uniform distribution. To see this suppose E can be obtained from

Ê by reversing a clockwise tower T . Then we can obtain Ê from E by reversing a

counter-clockwise tower containing the same faces as T . Hence, P(E , Ê) = P(Ê ,E)

for any E , Ê ∈Ω, and the stationary distribution of MT is uniform.

2.6 Rapid mixing on the triangular lattice

Up to now, we have not placed any restriction on G or α, beyond the fact that G is a

planar graph and α is a function assigning an integer to the vertices of G, such that G

has no α-rigid edges. That is to say, we have shown that both MF and MT converge

to the uniform distribution on the set of α-orientations of any planar graph G = (V,E),

for any α : V → N. In this section, we will prove that MF is rapidly mixing on the

set of Eulerian orientations, possibly with some fixed boundary condition, of any solid

subgraph G of the triangular lattice. These are the α-orientations of solid subgraph

of the triangular lattice G, for some α with α(v) = 0 for every internal vertex v; the

boundary condition determines the values for α(v) on boundary vertices. Hereafter,
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we are assuming we have some fixed boundary condition, and use EO(G) to refer to

the set of Eulerian orientations of G with this fixed boundary condition.

First, in §2.6.1, we show that MT (or, more precisely, the lazy version of MT) is

rapidly mixing on the Eulerian orientations of any solid subgraph G of the triangular

lattice, possibly with some fixed boundary condition. Then, in §2.6.2, we use the

comparison technique of Diaconis and Saloff-Coste [26] to obtain rapid mixing of

MF .

2.6.1 Rapid mixing of M ?
T

In this section we use the path coupling technique of Bubley and Dyer [16] to analyse

the mixing time of the Markov chain MT on EO(G) when G is a solid subgraph of the

triangular lattice with some fixed boundary condition, and pT is chosen appropriately;

more precisely, we use the result of Bordewich and Dyer [13] to show that the lazy

chain M ?
T (see Theorem 2.13) mixes rapidly.

This is not the first result regarding the mixing time of this type of chain. MT has

been shown to be rapidly mixing on the square lattice (using different pT values to ones

we shall use) for the case of a particular fixed boundary condition [62] and for the case

of a free boundary [38]. Fehrenbach and Rüschendorf [31] attempted to give a proof of

rapid mixing for a related Markov chain (on the triangular lattice) in which only towers

of height 2 are used. However, the path coupling defined for the chain in [31] does not

contract as claimed. In fact, it is possible to show that no one-step path coupling, using

the natural distance metric, can prove rapid mixing for the chain in [31]. It could be

that a one-step coupling will work with a more complicated metric [14], but this has

not been attempted.

Rapid mixing proofs for MT are dependent on the correct choice of the probabilities

pT . For example, the proof of [38] sets pT to 1/4h if the tower runs along the

boundary, and 1/2h otherwise, where h is the height of the tower T . We now state

the main result of this section but defer the proof until we have presented some useful

lemmas.

Theorem 2.17. Let G be a solid section of the triangular lattice with any fixed

boundary condition. Then, M ?
T , the lazy version of the Markov chain MT, is rapidly

mixing with mixing time τM ?
T
(ε) satisfying

τM ?
T
(ε) ∈ O( f 4 logε

−1) ,

when pT = 1/3h for all towers T of height h.
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Consequentially, the chain MT can be considered to mix in this time, for all

practical purposes (see [13]). Note that, with pT = 1/3h, the transition probability

matrix of the chain, P, is given by

P(E ,E ′) =



1
2 f if E⊕E ′ is a single face

1
6 f h if E⊕E ′ is a single tower of height h

1−∑E ′′ 6=E P(E ,E ′′) if E = E ′

0 otherwise .

We first bound the maximum distance between any pair of α-orientations of the

triangular lattice.

Lemma 2.18. Let G be any solid subgraph of the triangular lattice with f bounded

faces. The maximum distance between any pair of α-orientations of G in the Felsner

lattice is O( f 3/2).

Proof. The maximum distance between any two vertices in the cover graph of the

Felsner lattice is equal to the distance between the maximum and minimum elements.

Thus, the problem reduces to bounding δ(Emax,Emin).

We write ℘max for ℘Emax
, the potential function corresponding to the maximum

element of Fels(G). Then, from the definition of the bijection between α-orientations

and α-potentials given in §2.3 we can conclude that the distance between the maximum

and minimum orientations is ∑γ∈F (G)℘max(γ).

Conditions (2.4) and (2.5) of the definition of α-potentials imply that ℘max(γ) is

exactly the minimum number of edges in a shortest path in the dual graph of G from

γ to the unbounded face. Let Gk be the smallest graph which contains a face γ with

℘max(γ) = k. We can construct Gk inductively, starting with G1 = K3. To extend Gk

to Gk+1 we add a triangular face onto each edge of the boundary of Gk; see Figure 2.5

for an example of what these look like. Let γ be the single face which is contained

in G1. Every path in the dual graph of Gk from γ to the unbounded face has length k,

so ℘max(γ) = k in the maximum α-potential of Gk. Moreover, removing any boundary

face will introduce a path (in the dual graph) from the γ to the unbounded face of length

k− 1, so any graph smaller than Gk will not have any face which has value k in the

maximum α-potential.

A simple inductive argument shows that the number of faces added at each step is

3k. This implies |F (Gk)| ∈Θ(k2), so ℘max(γ) ∈ O(
√

f ) for any face γ.



Chapter 2. Eulerian orientations of planar graphs 57

Figure 2.5: The graph G3 from Lemma 2.18. The edges from G1 and G2 \G1 are

marked by dashed and dotted lines respectively

Let S be the set of pairs of orientations at distance 1 in the Felsner lattice. We want

to define a coupling C for every pair (E , Ê) ∈ S. Suppose (E , Ê) ∈ S, let γ be the face

on which they disagree, and let N(γ) denote the set of faces which share an edge with

γ. Suppose (Xt ,Yt) = (E , Ê). Our path coupling C for MT chooses the same face κ in

both chains and couples the transitions as follows:

• if κ = γ then reverse κ in E but not Ê with probability 1/2, and reverse κ in Ê
but not in E with probability 1/2;

• if the same transition is available for the choice of κ in both E and Ê then

apply this change to both orientations with the relevant probability and leave

both unchanged otherwise;

• if different transitions are available for κ in both orientations (with the transition

in E happens with higher probability) then apply both transitions with the lower

probability, apply the transition in E alone with its remaining probability, and

leave both orientations unchanged otherwise.

In order to apply Bordewich and Dyer’s path coupling theorem (Theorem 2.13)

we need to show that the expected distance between the two copies of the chain does

not increase after a single step of the coupling. To do this we need to consider which

choice of faces will cause the distance to increase, which choices will leave the distance

unchanged, and which choices will cause the distance to decrease.

Definition 2.19. Suppose (E , Ê) is the current state, (Xt ,Yt), of the coupling C . We

say the move resulting from choosing κ involves σ ∈ N(γ) if κ = σ or there is a tower

(in either E or Ê) starting at κ that contains σ.
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The distance between the coupled chains can change if and only if κ = γ or the

move at κ involves some σ ∈ N(γ). Note that no move can involve more than one

element of N(γ), so, in the analysis of our path coupling, we can treat each σ ∈ N(γ)

separately. In the following analysis, for each σ ∈ N(γ), we use δσ to denote the

contribution to the change to the distance between the two Eulerian orientations after

a single step of the coupling resulting from moves involving the face σ. We will now

analyse the expected value of δσ, conditioned on whether σ is a directed face in E or

Ê , or is directed in neither.

Lemma 2.20. Suppose σ ∈ N(γ) is a directed face in E or Ê . Then E[δσ] =
1

3 f .

Proof. We assume that σ is directed in E ; the case when σ is directed in Ê is

symmetric. Let κ ∈ F (G) such that selecting κ gives a move which involves σ in

at least one of the coupled chains. We have two cases to consider:

Case κ = σ: Since σ is a neighbour of γ, and σ is directed in E , it follows that

the blocking edge of σ in Ê is the edge shared with γ. Then T = {σ,γ} is a tower of

height 2 in Ê with a reversal probability of 1
12 f . The coupling reverses σ in E and T in

Ê with probability 1
12 f , and reverses σ in E but leaves Ê unchanged with probability

5
12 f . The former results in coalescence, whereas the latter yields a pair of orientations

which are distance 2 apart. Hence, the contribution to E[δσ] from this case is

5
12 f
− 1

12 f
=

1
3 f

.

Case κ 6= σ: Since γ and σ are both directed in E it follows that there must be

a tower T1 starting at κ and ending at σ in E that does not contain γ, and a tower

T2 = T1∪{γ} starting at κ in Ê . Let h be the height of T1, so T1 is reversed in E with

probability 1
6 f h and T2 is reversed in Ê with probability 1

6 f (h+1) . Observe that if we

reverse T1 in E we obtain an orientation which is distance h+ 1 from Ê , but if we

also reverse T2 in Ê then we have the same orientation in both chains. Therefore, the

contribution to E[δσ] from this case is

h
(

1
6 f h
− 1

6 f (h+1)

)
− 1

6 f (h+1)
= 0 .

Thus, the only face whose selection will result in a move which has non-zero

contribution to E[δσ] is σ itself, so E[δσ] = 1/3 f .

Lemma 2.21. If σ ∈ N(γ) is not directed in E or Ê then E[δσ] is no more than 1
3 f .



Chapter 2. Eulerian orientations of planar graphs 59

Proof. Observe that, since σ is not directed in E or Ê , the blocking edge of σ will

not be shared with γ in either orientation and the blocking edge of σ is different in

both orientations. Hence, no tower can include both σ and γ. Assuming there is a

tower containing σ in at least one of the two orientations we have two disjoint cases to

consider. Suppose E has a tower starting at some η ∈ N(σ)\{γ}. Then there will be

no tower containing σ in Ê as the procedure for constructing towers described in §2.3

is guaranteed to reach a pair of consecutive faces sharing the same blocking edge (σ

and η). Thus, when we are in this situation we can assume that one of the orientations

will be unchanged after one step of the coupling. In the second case, when there is no

tower starting at any η ∈ N(σ)\{γ} in E or Ê , there may be a tower starting at σ in

either orientation.

w u

v

ρ η σ

γ

Figure 2.6: Example from Lemma 2.21

∃ a tower starting at η ∈ N(σ)\γ in E or Ê: We can assume, without loss of

generality, that E is the orientation with a tower starting at some η ∈ N(σ)\γ. Since

no move involving σ is possible in Ê we only need to bound the expected distance

between E and all E ′ which can be obtained by making a move involving σ in E .

We begin by showing that any tower containing σ in E must start at σ or a

neighbour of σ. To see this suppose we have a tower in E containing ρ, η, and σ

where η is a neighbour of σ and ρ ∈ N(η)\{σ}. Let u,v,w be the vertices of σ, and

suppose that the edges of σ are oriented (u,v), (u,w), and (w,v) and that {u,w} is the

edge shared between γ and σ. Then σ must share {v,w} with η. Recall that no vertex

can be incident with more then 3 faces in any tower. Therefore, v cannot belong to

the edge shared between ρ and η, so ρ must contain w (as illustrated in Figure 2.6).

To satisfy the definition of a tower, both edges of ρ incident with w must be oriented

away from w. But this implies that there are 4 edges oriented away from w in E , a

contradiction (e.g., see Figure 2.6). An identical argument holds if the edges of σ are
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oriented (v,u), (u,w), and (v,w). Hence, any tower containing σ must start at η or σ.

Let h be the height of the tower starting at σ. Then, the move in which σ is the

chosen face is made with probability 1
6 f h , and the move in which η is the chosen face

is made with probability 1
6 f (h+1) (if it exists). Since these moves increase the distance

by h and h+1, respectively, we have

E[δσ]≤
h

6 f h
+

h+1
6 f (h+1)

=
1

3 f
.

@ a tower starting at η ∈ N(σ)\γ in E or Ê: In the worst case, we could have a

tower starting at σ in both orientations. If this occurs, then the two towers will have

opposite orientations in E and Ê , and each will be the largest tower containing σ in

the orientation. Let T1 and T2 denote the towers in E and Ê , respectively, and let h1

and h2 be the heights of each tower. If h1 ≤ h2 then the coupling reverses the towers

in E and Ê with probability 1
6 f h2

, and reverses the tower in E alone with probability
1

6 f h1
− 1

6 f h2
, conditional on σ being the chosen face. The first situation yields a pair

orientations which are distance h1 + h2 + 1 apart, and the second a pair orientations

which are h1 +1 apart. Hence,

E[δσ]≤ (h1 +h2)
1

6 f h2
+h1

(
1

6 f h1
− 1

6 f h2

)
=

1
3 f

.

The analysis is identical if h2 ≤ h1.

Since two cases are disjoint, we see that E[δσ] is no more than 1
3 f .

We now apply Theorem 2.13 to obtain a bound on the mixing time.

Proof of Theorem 2.17. We use the coupling defined earlier and analysed in Lemma 2.20

and Lemma 2.21. With probability 1/ f , γ is reversed in one or the other of the two

orientations, causing the two chains to coalesce. Combining this fact with the results

of Lemmas 2.20 and 2.21 we find that for all E and Ê differing on the orientation of

a single face

E[δ(Xt+1,Yt+1)−δ(Xt ,Yt)|(Xt ,Yt) = (E , Ê)]≤ 3
1

3 f
− 1

f
= 0 ,

where (Xt ,Yt)t≥1 is the coupling C defined on S, the set of pairs of Eulerian orientations

which are adjacent in the cover graph of the Felsner lattice. The transition probability

for any pair of states in S is 1/2 f . Moreover, since we have just shown that β = 1

for the path coupling C , we can apply Theorem 2.13 with p = 1/2 f and D ∈ O( f
3
2 )

(from Lemma 2.18) to obtain that the lazy version of the chain, M ?
T , mixes in time

τ(ε) ∈ O( f 4 logε−1).
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2.6.2 Rapid mixing of MF

In the previous section, we applied Theorem 2.13 to show that the lazy version of the

tower chain, M ?
T , is rapidly mixing. Since the smallest transition probability of any

pair in the set S used to define the path coupling is 1/2 f , it follows that the transition

probability matrix of this chain, P?, is given by

P?(E ,E ′) =



1
2 f+1 if E⊕E ′ = is a single face

1
3(2 f+1)h if E⊕E ′ is a single tower of height h

1−∑E ′′ 6=E P?(E ,E ′′) if E = E ′

0 otherwise

Although this chain has different transition probabilities, it also converges to the

uniform distribution on Ω = EO(G). Hence, we can apply the comparison method

of Diaconis and Saloff-Coste [26] to obtain a bound on the mixing time of MF .

The Comparison Method
If we cannot find a bound on the mixing time of a Markov chain M by direct analysis of

M , but can find a bound on the mixing time of another chain M̃ , which has the same

state space as M , we can often use the so-called comparison theorem of Diaconis

and Saloff-Coste [26] to obtain a bound on the mixing time of M . We will use

the formulation of the Diaconis and Saloff-Coste result from [73], restated here for

convenience. Note that we are using E(P) to denote the set of edges corresponding to

moves between adjacent states in the Markov chain with transition matrix P.

Theorem 2.22. ( [73, Proposition 4]) Suppose P and P̃ are the transition matrices of

two reversible Markov chains, M and M̃ , both with the state space Ω and stationary

distribution π, and let π? = minx∈Ω π(x). For each pair (u,v) ∈ E(P̃), define a path γuv

which is a sequence of states u = u0,u1, , . . . ,uk = v with (ui,ui+1)∈ E(P) for all i. For

(x,y) ∈ E(P), let Γ(x,y) = {(u,v) ∈ E(P̃) : (x,y) ∈ γuv}. Let

A = max
(x,y)∈E(P)

{
1

π(x)P(x,y) ∑
(u,v)∈Γ(x,y)

|γuv |π(u)P̃(u,v)

}
.

Suppose that the second largest eigenvalue, λ1, of P̃ satisfies λ1 ≥ 1/2. Then for any

0 < ε < 1

τM (ε) ∈ O(AτM̃ (ε) log1/π?) .

To obtain a polynomial bound on the mixing time of M , we want to show that the

simulation of the transitions of M̃ by transitions of M does not overload any edge in
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E(P). That is, we want the value of A in Theorem 2.22 to be bounded by a polynomial

in the size of the elements of Ω.

Comparing MF and M ?
T

We first show that every move of M ?
T can be simulated by moves of the chain MF .

Suppose T = {γ1,γ2, . . . ,γh} is a tower in E and that Ê is the orientation obtained by

reversing T . Observe that by the definition of a tower γh is a directed cycle in E . Then

we can apply the transition in MF that reverses γh to E and obtain a new Eulerian

orientation E ′′. But there is now a tower T ′ = {γ1,γ2, . . . ,γh−1} in E ′ which can be

reversed to obtain Ê . Repeating this process until we reach Ê gives a decomposition

of the tower move reversing T in E into moves of the chain MF . Hence, we are able

to apply the comparison method (Theorem 2.22) to obtain a bound on the mixing time

of MF .

We are now ready to prove our rapid mixing result for MF . We bound the mixing

time in terms of f , the number of unbounded faces, and h, the height of the largest

tower. Then, we derive mixing times for several different cases by considering the

values h can take.

Theorem 2.23. Suppose G is a solid subgraph of the triangular lattice and let h be the

maximum height of any tower in an Eulerian orientation of G (possibly with respect

to some fixed boundary condition). Then the mixing time of the face-reversal Markov

chain MF satisfies

τMF
(ε) ∈ O(h2 f 5 logε

−1) .

Proof. Note that MF and M ?
T both have a self-loop probability of 1/2, ensuring that

the second-largest eigenvalue of either chain will be at least 1/2, so Theorem 2.22 can

be applied.

Let P and P? denote the transition matrices of MF and M ?
T . For each pair of states

(x,y) that differ on the orientation of exactly one face (i.e., each (x,y) ∈ E(P)), we

define Γ(x,y) to be the set of all transitions in M ?
T containing the transition t = (x,y)

as a sub-move. Each pair (u,v) ∈ Γ(x,y) corresponds to a pair of orientations which
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differ on exactly one tower; let γuv denote this tower. For each (x,y) ∈ E(P) we have

Ax,y =
1

π(x)P(x,y) ∑
(u,v)∈Γ(x,y)

|γuv |π(u)P?(u,v)

= 2 f ∑
(u,v)∈Γ(x,y)

|γuv |P?(u,v) , (2.7)

≤ 1+
1
3
(|Γ(x,y)|−1) , (2.8)

where (2.7) is due to the fact that all transition probabilities in P are 1
2 f and that π is

uniform, and (2.8) is due to the fact that P?(u,v)= 1
2 f+1 if (u,v)= (x,y), and P?(u,v)=

1
3(2 f+1)|γuv |

if (u,v) is the reversal of a tower.

We will now find an upper bound for |Γ(x,y)|. Let γ be the face that is reversed in

the transition t = (x,y). We need to consider the different cases in which t can feature

as part of the decomposition of a tower move (u,v) ∈ E(P?). Observe that there are

three different directions in which a tower can pass through γ and contain t as a sub-

move (one for each pair of edges of γ). Let hi be the height of the maximum length

tower passing through γ in direction i (over all orientations E ∈ Ω), let (γ j)1≤ j≤h j

denote the sequence of faces that make up this tower, and suppose γk = γ. Any other

tower which passes through γ in this direction and whose encoding uses t must be

subtower of the maximum length tower. Moreover, the bottom of any such tower must

be contained in {γ j : 1 ≤ j < k} and the top of any such tower must be contained in

{γ j : k≤ j≤ hi}. To see this, observe that x is the orientation obtained by reversing the

tower (γk+1,γk+2, . . . ,γhi
) (in the orientation containing the maximum length tower).

Hence, reversing the tower (γ j,γ j+1, . . . ,γhi
), for any j satisfying k < j ≤ hi will yield

an orientation containing a tower whose encoding uses t. Moreover, each of these

orientations has a tower whose encoding uses t for each element of {γ1, . . . ,γk−1}.
Thus, the number of towers using t that pass through γ in direction i is (k−1)(hi−k+

1), which could be as large as h2
i /4. Hence, we have

|Γ(x,y)| ≤ O(h2
0)+O(h2

1)+O(h2
2) = O(h2) .

Thus, we have Ax,y ∈ O(h2) for all (x,y) ∈ E(P). Finally, we need to find an upper

bound on the value 1/π?, where π? is the minimum value of the stationary distribution

of MF . Since this is the uniform distribution, 1/π has the same value on all x ∈ Ω:

|Ω|. The number of edges in G is no more than 3 f , so 23 f provides an upper bound

on the number of orientations of G, and so also on 1/π?. Combining all this with

Theorems 2.22 and 2.17 we get

τMF
(ε) ∈ O(h2 f 5 logε

−1) .
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As a corollary to Theorem 2.23, we can obtain a bound on the mixing time of

MF for any solid subgraph of the triangular lattice and arbitrary boundary condition

(Corollary 2.24). However, this bound is overly pessimistic and we can improve it by

a factor of f for two important special cases (Corollary 2.25 and Corollary 2.26).

Corollary 2.24. Let G be a solid subgraph of the triangular lattice and let α be an

arbitrary boundary condition. Then the mixing time of MF satisfies

τMF
(ε) ∈ O( f 7 logε

−1)

Proof. In general, when we consider an arbitrary solid subgraph of the triangular

lattice with an arbitrary fixed boundary condition, we can have towers of height O( f )

and so, in this case, Theorem 2.23 gives a bound on the mixing time of

τMF
(ε) ∈ O( f 7 logε

−1) .

Corollary 2.25. Suppose G is an Eulerian solid subgraph of the triangular lattice.

Then, the mixing time of MF satisfies

τMF
(ε) ∈ O( f 6 logε

−1)

Proof. We need to bound the height of any tower in an Eulerian orientation of G, where

G is a solid subgraph of the triangular lattice.

Let T = (γ1,γ2, . . . ,γh) denote a tower in an Eulerian orientation of G. We assume

that T is a clockwise tower; the argument is identical for counter-clockwise towers.

Recall that all the internal edges of a clockwise tower are directed towards the vertices

on the left, so any Eulerian orientation of G must contain a set of h− 1 edge-disjoint

directed paths linking the left-side vertices to the right-side vertices. Each of these

paths must go around the top or the bottom of the tower. But each path that goes

around the bottom (resp. top) contributes 1 to the distance from γ1 (resp. γh) to the

boundary. Hence, by (2.4), (2.5) and (2.6), max(℘max(γ1),℘max(γh)) ≥ h/2. But

℘max(γ) ∈ O(
√

f ) for any γ (see proof of Lemma 2.18), whence h ∈ O(
√

f ).

Corollary 2.26. Let G be the subgraph of triangular lattice induced by the set of

vertices

{(i, j) : 0≤ i < n, 0≤ j < n} .

Then, the mixing time of MF satisfies

τMF
(ε) ∈ O( f 6 logε

−1)
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Proof. Recall that no vertex can be incident with more than 3 faces in a tower in

an orientation of G. That is, towers can only extend in straight lines in the natural

embedding of G in the plane. Thus, the longest sequence of any faces which can form

a tower is n, which is equal to
√

f .

2.7 Approximating #EO(G)

Suppose G is a solid subgraph of the triangular lattice and α some fixed boundary

condition. If we choose an edge e = {u,v} from the unbounded face for the above

reduction, then the resulting graph will be a solid subgraph of the triangular lattice

and the pair of functions α(u,v) and α(v,u) will both correspond to boundary conditions

on G− e. In other words, the problem of counting Eulerian orientations with fixed

boundary conditions is self-reducible (Definition 1.35) for solid subgraphs of the

triangular lattice. Thus, we can use our rapidly mixing Markov chain with Algorithm 2

to approximate the number of Eulerian orientations with fixed boundary condition of

any solid subgraph of the triangular lattice.

We now sketch how the algorithm operates. We construct a sequence of graphs

G1, . . . ,Gm, where m is the number of edges, defined inductively as

G1 = G ;

Gi = Gi−1− ei−1 for i≥ 2 ,

where ei is an edge from the boundary face of Gi for each i = 1,2, . . . ,m− 1, and a

sequence of boundary conditions

α1 = α

αi = (αi−1)ai for i≥ 2 ,

where ai is an orientation of the edge ei. For i = 1,2, . . . ,m−1, we estimate

ρi =
#αi-O(Gi+1)

#αi-O(Gi)
,

by generating random αi-orientations of Gi and counting how many can be extended

to αi+1-orientations of Gi+1. The value returned by Algorithm 2 is an approximation

to

#α-O(G) =

(
m−1

∏
i=1

ρi

)−1

.
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2.8 Torpid mixing

Given the small collection of positive results regarding the mixing time of the face-

reversal chain MF (Theorem 2.23 and [62, 38]) and given that the reduction of [69]

allows us to sample from EO(G) in polynomial time for any graph, one might hope

that MF would be rapidly mixing on the set of Eulerian orientations of any planar

graph. In fact, this is not true and in this section we exhibit a family of planar graphs

for which MF is torpidly mixing. Consider the family of graphs HN , of which H2 is

shown in Figure 2.7. Formally, HN is a graph with vertex set

V = {vi : 1≤ i≤ 12N}∪{ui : 1≤ i≤ 12N +6}∪{wi : 1≤ i≤ 6N} .

The edges of HN consists of the disjoint union of three large cycles:

E1 = (v1, . . . ,v12N ,v1) ;

E2 = (u1, . . . ,u12N+6,u1) ;

E3 = (v1,u2,w1,u3,v3, . . . ,u12N+6,v1) .

It is the large face in the centre of each of these graphs that creates the bottleneck in

the Markov chain we will use to show torpid mixing. We label this face C and its

neighbours ηi (for 1≤ i≤ 6N). The face that is adjacent to both ηi and ηi+1 is labelled

σi, and the face that is only adjacent to ηi is labelled ρi. Note that there are 6N σi faces

and 6N ρi faces.

The reason C causes torpid mixing is that we are able to partition the state space of

the chain into two parts S and S̄, such that the only transitions crossing from S into S̄ are

transitions reversing C. Because C has so many edges (linear in the number of vertices)

we are able to show that the set of orientations in which C is directed is exponentially

small. Hence, by Theorem 1.51, the face-reversal chain will be torpidly mixing.

Theorem 2.27. The face-reversal chain MF is torpidly mixing on EO(HN) for N ≥ 3.

Proof. From Theorem 1.51 we know that MF is torpidly mixing on a set of Eulerian

orientations Ω if there exists some S ⊂ Ω, with 0 < |S| ≤ |Ω|/2, such that |∂S|/|S| is

exponentially small in f .

Recall the definition of α-potentials and the Felsner lattice from §2.3; in particular,

recall that for any γ ∈ F (G) the value ℘E(γ) is equal to the number of times γ is

reversed on any path from Emin, the unique minimum element of the Felsner lattice,
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C

η1 σ1 η2 σ2

ρ1 ρ2

Figure 2.7: The graph H2

to E . Let ℘max =℘Emax
, where Emax is the unique maximum element of the Felsner

lattice.

Let S be the set of all Eulerian orientations E on HN satisfying ℘E(C) ≤ 1. From

the conditions (2.4), (2.5), and (2.6), we can deduce that the value of ℘max(C) is 3.

Hence, we can define a bijection between S and Ω\S by mapping℘E to℘max−℘E for

each E ∈ S (this corresponds to mapping E to the orientation with all edges reversed),

so |S|= |Ω|/2.

An Eulerian orientation E is an element of ∂S if and only if C is a counter-clockwise

directed cycle in E and ℘E(C) = 1. For this to occur we must have ℘E(ηi) = 1 for

each ηi. Hence, the number of Eulerian orientations satisfying this condition is exactly

22k since each of the σi and ρi can take potential value 0 or 1, where k = 6N.

We note that C is the only directed cycle in Emin so |S|= |S′|+1, where

S′ = {E ∈Ω :℘E(C) = 1} .
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We can partition S′ as
⋃

I⊂[k] SI , where

SI = {E ∈Ω :℘E(C) = 1 ∧℘E(ηi) = 1 ⇔ i ∈ I} .

We can find the size of each of the SI by counting the number of potential functions

which correspond to members of SI . If E ∈ SI then there are two possible values for

℘E(σi) for each i with ℘E(ηi) = 1 and ℘E(ηi+1) = 1, and two possible values for

℘E(ρi) for each i with ℘E(ηi) = 1. All of the other σi and ρi must have potential

value 0. Hence,

|SI|= 2|I|+c(I) ,

where c(I) counts the number of circular successions in I. The number of j-subsets of

{1, . . . ,k} containing m circular successions is given by the following expression2:

c(k, j,m) =

0 if j = 0 , j > k , or m < 2 j− k

k
j

( j
m

)(k− j−1
j−m−1

)
otherwise

. (2.9)

Then,

|S|= 1+
k

∑
j=0

2 j
j

∑
m=0

2mc(k, j,m) (2.10)

=
k−1

∑
j=1

j−1

∑
m=max(0,2 j−k)

k
j

(
j

m

)(
k− j−1
j−m−1

)
2 j+m +1+22k (2.11)

>
k−1

∑
j=1

(
j

2 j− k

)
23 j−k (2.12)

>

(b16
17kc
d 1

17ke

)
2

31
17 k−3 if k ≥ 17 (2.13)

≥ 2(2+
1

17 )k−3 (2.14)

The last line of this follows from the fact that(b16
17kc
d 1

17ke

)
≥ 2

4k
17

when k ≥ 17. Hence,

|∂S|/|S|< 8 ·2−
1

17 k ∈ O(2−
1

51 f ) .

Remark 2.28. Observe that we can obtain HN as a subgraph of the infinite triangular

lattice (see the embedding of H2 in Figure 2.7, for an example). Hence, the requirement

that the input is a solid subgraph is necessary for the rapid mixing result of §2.6 to hold.

2The expression (2.9) can be obtained by standard generating function calculations, see e.g., [40,
§2.3.22]
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Euler tours of Random Graphs

3.1 Introduction

For situations where we do not have a rapidly mixing Markov chain (or some other

fpaus) for every instance of a sampling problem, we relax the problem and search for

a sampling algorithm that works for almost all inputs. Formally, we want to show, for

some particular sampling problem on an alphabet Σ, that there exists an algorithm A
such that for x chosen uniformly at random from Σ?, the probability that A behaves

like an a fpaus for Ω(x) tends to 1 as |x| → ∞.

When we first started looking at Euler tours, our goal was to find a rapidly mixing

Markov chain on the set of Euler tours of an undirected Eulerian graph. This task

proved too difficult, even restricted to special classes of graphs such as planar graphs

or 4-regular graphs. Inspired by results showing that, with high probability, one could

sample or approximately count Hamiltonian cycles of a random d-regular graph in

polynomial time [36], we turned our attention in this direction. Still, the problem

proved too difficult. In this chapter we describe results that we believe to be milestones

on the road to showing we can, with high probability, sample or approximately count

the Euler tours of a random 2d-regular graph, using very simple algorithms.

When studying the behaviour of algorithms on random inputs, it is typical for the

algorithm itself to be very simple; the hard work goes into the analysis. A natural

and simple algorithm for generating a random Euler tour is given in Algorithm 4. In

Algorithm 4, we use E(v) to denote the set of edges incident with v and T for the

partial tour, or set of edges which have already been used. We use T ·e to represent the

concatenation of e with the sequence of edges T . Recall the definition of a transition

system of an Eulerian graph G from §1.3.2 (Definition 1.67), and that we use C (T ) to

69
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Algorithm 4: Generate
Input: An Eulerian graph or directed graph G

Output: A uniformly random Euler tour T of G

repeat
u ∈V (G);

e = (u,v) ∈ E(u);

T = (e);

while E(v)\T 6= /0 do
e = (v,w) ∈u.a.r. E(v)\T ;

v← w;

T ← T ·e;
end

until T = E(G) ;

return T ;

denote the decomposition of G into a set of edge-disjoint cycles induced by a particular

transition system T of G. One way of looking at Algorithm 4 is that it generates a

random transition system of G by choosing one random edge pairing at a time. If this

closes a cycle, i.e., forms a component in C (T ), before it has visited every edge, then

the algorithm restarts; eventually the algorithm will generate the transition system of

an Euler tour T . The algorithm starts at a particular vertex u and chooses an edge

incident with it, setting the “current vertex” v to be the opposite end-point of this edge.

Then, at each subsequent step we randomly choose an edge incident with v that has

not been used before and pair it with the edge chosen at the previous step, updating the

“current vertex” v to be the opposite endpoint of the chosen edge. Eventually, we will

return to the initial vertex with no more edges available. At this point we have either

constructed a uniformly random Euler tour, or generated a partial transition system that

does not extend to a transition system of a tour; i.e., we have generated the transition

system of an Euler tour of an Eulerian proper subgraph of G.

We will now show that Algorithm 4 generates Euler tours with equal probability.

Suppose G is a graph with degree sequence 2d = (2d1,2d2, . . . ,2dn), let T be some

Euler tour of G, and let u be the initial vertex in Algorithm 4. Since Euler tours are

equivalent up to circular rotation, we can choose any edge incident with u to be the

first edge of the tour. The probability that this edge is directed away from u, and so

valid as the first edge of the tour, is 1/2. The second time we reach u the probability
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of choosing the edge-pairing prescribed by T is 1
2du−2 , then 1

2du−4 for the third time,

and so on. At all other vertices v, the probability of choosing the correct edge-pairing

the first time we pass v is 1
2dv−1 , then 1

2dv−3 , and so on. Hence, the probability that this

procedure constructs the particular Euler tour T is

1
22du+1 du

(
2du

du

)( n

∏
v=1

(2dv
dv

)
dv!

2dv

)−1

=
du
(2du

du

)
22du+1

1
|TS(G)|

,

where TS(G) is the set of transition systems of G. Thus, the probability of Algorithm 4

terminating, i.e., generating an Euler tour, on any iteration is

du
(2du

du

)
22du+1

|ET(G)|
|TS(G)|

(3.1)

We can also apply Algorithm 4 to sampling Euler tours of Eulerian directed graphs.

Suppose G is an Eulerian directed graph on vertex set V = {1,2, . . . ,n}with out-degree

sequence d = (d1,d2, . . . ,dn). If we now take E(v) to be the set of arcs directed away

from v in G, for each v ∈ V , then Algorithm 4 returns a uniformly random Euler tour

of G. When G is directed, the probabilities of choosing the correct arc at each pass

of u are 1
du−1 , 1

du−2 , etc., and the probabilities of choosing the correct arc at each pass

of v 6= u are 1
dv

, 1
dv−1 , etc. Hence, the probability of Algorithm 4 terminating on any

iteration is

du
|ET(G)|
|TS(G)|

. (3.2)

We can use the same idea to construct an algorithm for approximating the number

of Euler tours of any Eulerian graph or directed graph. Algorithm 5 iterates the process

of Algorithm 4 a number of times and takes the proportion of these iterations which

yield Euler tours as an estimation of the probability (3.1) or (3.2), depending on

whether G is a graph or directed graph. Since we have an exact expression for the

number of transition systems of a graph or directed graph, we can use this to obtain an

approximation of the number of Euler tours of G.

The time taken to generate a random Euler tour, and the time required to get a

good quality approximation of the number of Euler tours, is strongly dependent on the

ratio of the number of transition systems to the number of Euler tours. In particular,

if |ET(G)|/|TS(G)| is bounded from below by an inverse polynomial in the number

of vertices of G, then Algorithm 4 and Algorithm 5 will run in expected polynomial

time, i.e., the algorithms will behave like an fpaus and an fpras, respectively. One

consequence of the results in [66] is that the ratio |ET(G)|/|TS(G)| is bounded below
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Algorithm 5: Count
Input: An Eulerian graph or directed graph G, an integer N

Output: An approximation to (3.1) or (3.2)

count← 0;

u ∈V (G);

d← deg(u);

for t← 1 to N do
e = (v,u) ∈ E(v);

T ← (e);

while E(v)\T 6= /0 do
e = (v,w) ∈u.a.r. E(v)\T ;

v← w;

T ← T ·e;
end
if T = E(G) then

count← count +1;

end

end
return count/N;

by an inverse polynomial when G is the complete graph on K2n+1 or a tournament

on 2n+1 vertices (an Eulerian orientation of K2n+1). However, there exist graphs for

which this will not be the case. For example, consider the graph from Example 1.70.

This graph has 3n transition systems, but only (n+1)2n Euler tours, so both algorithms

will require exponential time. That example, however, is of a particularly contrived

multigraph, so we might hope the algorithms will perform better on a typical, i.e.,

random, graph. That is to say, we are looking for a result of the following form:

Let C 1,C 2, . . . , be a sequence of sets of Eulerian graphs. There exists some

constant α > 0 such that the probability that |ET(G)|/|TS(G)| ≥ nα for G chosen

randomly from C n tends to 1 as n→ ∞

In this chapter we investigate the above statement for the cases when C n is taken to

be equal to the class of d-in/d-out graphs or the class of 2d-regular graphs. In the case

of d-in/d-out graphs, we are able to obtain a complete proof.

Definition 3.1. Let d be some fixed positive integer and suppose we have a vector
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d = (d1,d2, · · · ,dn) such that

d ≥ dn ≥ dn−1 ≥ ·· · ≥ d1 ≥ 1 ,

and let m = ∑v dv. We use ~G(n,d) to denote the set of Eulerian directed graphs with

out-degree sequence d, and ~G?(n,d) to denote the set of Eulerian directed multigraphs

with out-degree sequence d. We use ~G(n,d) and ~G?(n,d) to denote the set of d-in/d-

out graphs and multigraphs, respectively.

Theorem 3.2. Let d be some fixed positive integer greater than 1, let n ∈ N. If ~G is

chosen uniformly at random from ~G(n,d) we have

P
[
|ET(G)|
|TS(G)|

∈Ω(n−2)

]
→ 1 as n→ ∞ .

In the case of 2d-regular graphs we are only able to make a conjecture but support

this conjecture with a mix of empirical and theoretical evidence.

Definition 3.3. Let d be some fixed positive integer and suppose we have a vector

d = (d1,d2, · · · ,dn) such that

d ≥ dn ≥ dn−1 ≥ ·· · ≥ d2 ≥ d1 ≥ 1 ,

and let 2m = ∑
n
v=1 dv. We use G(n,d) to denote the set of all undirected graphs with

degree sequence d and G?(n,d) to denote the set of multigraphs with degree sequence

d. We use G(n,d) and G?(n,d) to denote the sets of d-regular graphs and d-regular

multigraphs with n vertices, respectively.

Conjecture 3.4. Let d be some fixed positive integer greater than 1, let n ∈ N. If G is

chosen uniformly at random from G(n,2d) we have

P
[
|ET(G)|
|TS(G)|

∈Ω(n−1)

]
→ 1 as n→ ∞ .

The contents of this chapter are as follows. In §3.2, we describe the models we

use to study random graphs and the techniques used in our analysis. Recall that, by

the BEST Theorem (Theorem 1.57), counting arborescences is equivalent to counting

Euler tours for any Eulerian directed graph. In §3.3 we analyse the distribution of the

number of arborescences of a random d-in/d-out graph, and use this to infer results

about the number of Euler tours of a random d-in/d-out graph. In §3.4, we analyse

the distribution of the number of Eulerian orientations of a random 2d-regular graph.

Each one of these orientations is a d-in/d-out graph, so, recalling the definition of an
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orb of an Eulerian graph G (Definition 1.69) as a pair (E ,A), where E is an Eulerian

orientation of G and A is an arborescence of E , we would hope that the results of

§3.3 and S3.4 could be combined to say something about the number of orbs of a

random 2d-regular graph. As observed by Brightwell and Winkler [15], the BEST

theorem can be used to relate the number of orbs of an Eulerian graph to the number

of Euler tours, so this would be equivalent to analysing the number of Euler tours of a

random 2d-regular graph. Unfortunately, we were unable to bring this line of research

to completion. In §3.5 we provide some initial results, and state a conjecture which, if

true, will show that we can, with high probability, sample and approximately count the

Euler tours of a random 2d-regular graph in expected polynomial time. Furthermore,

we present some empirical evidence to support our conjecture. Finally, in §3.6, we give

some examples of graphs on which Algorithm 4 and Algorithm 5 will not be effective.

3.2 Random graphs

In this chapter, we are interested in the random variables representing the number of

Euler tours or Eulerian orientations of G when G is chosen uniformly at random from

G(n,d) or ~G(n,d). In order to be able to study properties of random elements of

G(n,d) or ~G(n,d), we need a model for generating random elements of both sets. In

the next section we describe the configuration model [9, 11], which we will use to

generate random graphs with a fixed degree sequence.

3.2.1 The configuration model for random graphs

The model we use to generate random graphs is the configuration model of Bol-

lobás [11] (implicit in the earlier work of Bender and Canfield [9]). See the

survey of Wormald [100] or the textbooks of Bollobás [12] and Janson, Luczak, and

Rucinski [44] for more details of the contents of this section.

Definition 3.5. Suppose we have d as in Definition 3.3. For every v = 1,2, . . . ,n we

define a set Wv containing dv points. Each one of these represents an endpoint of an

edge incident with v. We define the set W to be formed as the union of these n disjoint

sets. We call a perfect matching on W a configuration and we call a matching on W a

partial configuration. Let Ωn,d denote the sets of configurations for particular d.

For each F ∈ Ωn,d, we define the projection of F, σ(F), to be the multigraph in

which each set Wv is contracted to a single vertex: a pair {x,y} ∈ F with x ∈Wu and
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y ∈Wv corresponds to an edge {u,v} in σ(F). For each partial configuration F′, we

define the projection σ(F′) to be the graph obtained by applying the same operation to

the pairs in F′; that is, σ(F′) is the subgraph of σ(F) corresponding to the pairs in F′,

for any F⊇ F′.

We say that F contains a loop if it contains a pair {x,y} ∈ F with x,y ∈Wv for

some v, and that F contains a double edge if there are pairs {x,y} and {x′,y′} in F with

x,x′ ∈Wu and y,y′ ∈Wv for some u 6= v. If F does not contain any loops or double edges

then σ(F) is a simple graph, i.e., σ(F) ∈G(n,d). Furthermore each graph G ∈G(n,d)
is the projection of exactly ∏

n
v=1 dv! different configurations; (non-simple) multigraphs

are obtained as the projection of fewer configurations, with this number depending on

the number of loops and double edges.

Hence, we can generate a uniformly random graph G ∈ G(n,d) by generating

uniformly random configurations F∈Ωn,d until we obtain an F with no loops or double

edges, and then returning G = σ(F). The probability of a configuration not containing

any loops or double edges is, asymptotically,

exp(−λ/2−λ
2/4) , (3.3)

where λ= 1
m ∑1≤v≤n

(dv
2

)
[12, Theorem 2.16]. Since each dv is bounded by the constant

d, it follows that this probability will always be a small constant. However, as we

increase d this probability gets smaller and smaller, so this approach will not be so

useful for practical generation of random graphs. For example, if du = dv = 10 for all

u and v, then (3.3) is already e−99/4 < 10−10.

Our main interest in the model is as a tool for analysing properties of random

graphs, and for this task the inefficiency of the random graph generation algorithm is

irrelevant. In §3.5, we describe the result of some computational experiments. For

this task we used one of the more practical algorithms for generating random regular

graphs, due to Steger and Wormald [83]. This algorithm generates random graphs

with a probability that is close to the uniform distribution, sacrificing accuracy for

efficiency.

Note that the distribution on G?(n,d) that results from taking the projection of

uniformly random F∈Ωn,d is not uniform. This is because the probability of obtaining

a particular element of G?(n,d) depends on the number of loops and double edges.

We use the directed configuration model for generating random Eulerian directed

graphs with fixed out-degree sequence.
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Definition 3.6. Suppose we have d as in Definition 3.1. For every v = 1,2, . . . ,n we

define a pair of sets Sv and Tv, each containing dv points. The points in Sv represent the

endpoints of arcs for which v is the source, and the points in Tv represent the endpoints

of arcs for which v is the target. We call a perfect matching from S to T a directed

configuration, and we call a matching a partial directed configuration. We use Φn,d to

denote the set of all directed configurations, for particular d.

For each~F∈Φn,d, we define the projection of~F, σ(~F), to be the directed multigraph

in which the sets Sv∪Tv have been contracted to a single vertex. That is, we have an arc

from u to v in σ(~F) whenever we have a pair (x,y) from Su×Tv in~F. For each partial

configuration~F
′
, we define the projection σ(~F

′
) to be graph obtained by applying the

same operation to the pairs in~F; that is, σ(~F
′
) is the subgraph of σ(~F) corresponding

to the pairs in~F
′
, for any~F⊇~F′.

We say a directed configuration ~F has a loop if it contains a pair (x,y) ∈ Sv×Tv

and a double arc if it contains pairs (x,y) and (x′,y′) from Su× Tv for u 6= v. Note

that we do not consider (x,y) ∈ Su×Tv and (x′,y′) ∈ Sv×Tu to be a double arc. As in

the undirected case, each simple directed graph is the projection of the same number of

configurations, ∏v(dv!)2, and the probability that a uniformly random~F∈Φn,d projects

to a simple directed graph is, asymptotically,

exp
(
−m2

m
− (m2−m)2

2m2

)
, (3.4)

where m2 = ∑v d2
v .

Remark 3.7. The probability (3.4) follows as a result of arguments given in Theo-

rem 3.30. We believe this is a new result, though the calculations are similar to

those used to prove (3.3). The directed configuration model has been studied in the

literature [4], also in the context of Euler tours, but only for the case dv = 2 for all v.

3.2.2 Asymptotic Distributions

Any numerical characteristic of a graph G, e.g., the number of Euler tours, gives rise

to a random variable when we consider G as being drawn at random from some class

of graphs. In this work, we would like to know when the probability of Algorithm 4

returning an Euler tour is bounded below by an inverse polynomial. For example, we

want to show there exists some α > 0 such that

P
[
|ET(G)|
|TS(G)|

≥ n−α : G ∈G(n,4)
]
→ 1 , (3.5)
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as n→∞. That is, we want to show that the probability Algorithm 4 terminates on any

particular iteration is at least n−α for almost every G ∈ G(n,4). Let T n,4 denote the

random variable counting the number of Euler tours of a random 4-regular graph. In

Section 3.5.1, we show that the expected number of Euler tours of a 4-regular graph

satisfies

E[T n,4]→ e3/4
√

π

2n
3n .

There are 3 possible transition systems at each vertex of a 4-regular graph, so

|T S(G)|= 3n for each G∈G(n,4). Thus, to prove (3.5) all we need to do is show T n,4

is concentrated around its mean. In many cases, Chebyshev’s inequality (see below) is

sufficient to prove concentration results and it has seen a great deal of application to

the analysis of randomised algorithms, see, e.g., [70].

Theorem 3.8 (Chebyshev’s Inequality). Let X be a random variable. For any a > 0,

P[|X−E[X ]| ≥ a]≤ Var[X ]

a2 .

However, in some cases Chebyshev’s inequality is not strong enough and we need

to look harder at the distribution of the random variable of interest.

Exact formulas for the distributions of interesting combinatorial quantities are rare

and even when they exist are usually too complicated to be of use. Hence, the focus is

shifted to the search for an asymptotic distribution that holds with increasing accuracy.

Definition 3.9. Let X1,X2, . . . be a sequence of integer-valued random variables. We

say (Xn)n≥0 converges in distribution to a random variable Z, or Z is the asymptotic

distribution of Xn, if

P[Xn = x]→ P[Z = x] , as n→ ∞ .

We use Xn
d→ Z to denote convergence in distribution.

If Xn
d→ Z then, for large values of n, we can consider Xn to have the same

distribution as Z. A particularly important instance of this that arises in the study

of random graphs with fixed degree sequence is convergence to a Poisson distribution.

Definition 3.10. A non-negative integer-valued random variable X is said to have a

Poisson distribution with mean λ if

P[X = x] = e−λ λx

x!
, x ∈ N .
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Definition 3.11. Let λ1,λ2, . . . ,λk be arbitrary non-negative real constants and let

X1,n, X2,n, . . . ,Xk,n be a set of non-negative integer random variables defined on

the same probability space Ωn, for each n. We say these random variables are

asymptotically independent Poisson random variables with means λi, if their joint

distribution converges to that of independent Poisson variables with means λi. That

is, for every fixed set of non-negative integers {xi : 1≤ i≤ k} we have

P[Xi,n = xi ,∀1≤ i≤ k]→
k

∏
i=1

e−λi
λ

xi
i

xi!
,

as n→ ∞.

It is well-known that a Poisson random variable is completely determined by the

values of its factorial moments.

Definition 3.12. For any non-negative integers n and k, we define the factorial power

(falling factorial) (n)k by

(n)(n−1) · · ·(n− k+1) .

If k > n we have (n)k = 0.

Definition 3.13. Let X be a random variable. The k-th factorial moment of X is given

by E[(X)k].

The following lemma shows how the asymptotic values of the factorial moments

can be used to show that a set of sequences of random variables converge to

independent Poisson random variables.

Theorem 3.14 (Theorem 1.23 [12]). Let λ1,λ2, . . . ,λk be arbitrary non-negative real

constants and let X1,n, X2,n, . . . ,Xk,n be a set of non-negative integer random variables

defined on the same probability space Ωn, for each n. If

E
[
(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk

]
→

k

∏
i=1

λ
ji
i .

holds for each fixed set of non-negative integers j1, j2, . . . , jk then the variables

X1,n, . . . ,Xk,n are asymptotically independent Poisson random variables with means

λi.

Often, when we apply Theorem 3.14 the random variables Xi,n will be counting

the number of occurrences of some sort of substructure. For example, suppose Xi,n(G)

counts the number of i-cycles in a random graph on n vertices and let Cin denote the set
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of different i-cycles you can form on n vertices. Then, we can write Xi,n = ∑C∈Cin IC,

where IC is the indicator variable for the event C ∈ G. That is,

IC =

1 C ∈CYCLES(G)

0 C /∈CYCLES(G)
.

In this case, computing the factorial power (Xi,n)k amounts to summing over products

of indicator functions for ordered tuples of distinct i-cycles, e.g.,

(Xi,n)3 = ∑
(C1,C2,C3)∈C3

in
C1 6=C2 6=C3

IC1IC2IC3 .

Theorem 3.14 can be used to prove the following theorem, due to Bollobás [11] (or [12,

Theorem 2.16]).

Theorem 3.15 (Bollobás [11]). Let λ = 1
m ∑v

(dv
2

)
and for each integer i let λi = λi/2i

and let Xi,n count the number of i-cycles in a multigraph G obtained as the projection

of a uniformly random F ∈ Ωn,d. For any fixed positive integer k, the set of variables

Xi,n for i < k are asymptotically Poisson independent random variables with means λi.

The asymptotic independence of the random variables Xi,n follows from a well-

known property of random regular graphs [44, 100].

Lemma 3.16. Let d be some fixed, non-negative integer, and let H be some graph with

more edges than vertices. Then, for G chosen uniformly at random from G(n,d) we

have

P[H is a subgraph of G]→ 0 ,

as n→ ∞.

Recall that a simple graph is a multigraph with no loops or double edges. Hence,

when F is chosen uniformly at random from Ωn,d, we have

P[σ(F) is simple ] = P[X1,n = X2,n = 0] ,

and thus we can infer (3.3) from Theorem 3.15 and Definition 3.11.

3.2.3 Conditioning on short cycle counts

There are many combinatorial quantities which do not have asymptotic Poisson

distributions, e.g., the number of Hamiltonian cycles, the number of perfect matchings,



Chapter 3. Euler tours of Random Graphs 80

or the number of Euler tours of a random 2d-regular graph. However, it is still possible

to compute asymptotic distributions for many of these quantities and Theorem 3.15 is

the foundation of many of these results.

We will now discuss one of these results in more detail. As this result is on random

regular graphs, where dv = d for all v, for the rest of this section we will speak of the

set of d-regular graphs, G(n,d), and the regular configuration model, Ωn,d .

Definition 3.17. Let G = (V,E) be a graph. We say a cycle in G is a Hamiltonian cycle

if it visits each vertex v ∈V exactly once.

Definition 3.18. Let G = (V,E) be a graph. We say a subgraph H of G is a 2-factor if

each vertex v ∈V has degree 2 in H; that is, H is a set of vertex-disjoint cycles which

contains every vertex of G.

In 1988, Frieze [35] showed that one could find a Hamiltonian cycle in almost every

d-regular graph, for d ≥ 85, though it was widely believed that this held for all d ≥ 3.

Then, Robinson and Wormald [75] showed that, for d = 3, the number of Hamiltonian

cycles of a random 3-regular graph, Hn, satisfied

E[H2
n ]

E[Hn]2
→ 3

e
. (3.6)

Applying Chebyshev’s inequality with a = E[Hn], we find

P[Hn = 0]≤ P[|Hn−E[Hn]| ≥ E[Hn]]≤
(

3
e
−1
)
.

Hence, from (3.6) we can deduce that at least a 2− 3e−1 fraction of 3-regular graphs

are Hamiltonian. However, proving the result people expected,

P[G is Hamiltonian : G ∈G(n,d)]→ 1 ,

for any d ≥ 3, was beyond the powers of Chebyshev’s inequality.

Then, in a pair of papers from the early 90’s [76, 77] Robinson and Wormald

managed to prove that for all d ≥ 3, a random d-regular graph will contain a

Hamiltonian cycle with high probability, using a technique we call conditioning on

short cycle counts. Their proof involved partitioning Ωn,d into a family of sets indexed

by vectors of the numbers of occurrences of cycles of various lengths, namely

Ωx = {F ∈Ωn,d : Xi,n(F) = xi for all 1≤ i≤ k} .

Robinson and Wormald approached this result indirectly, by analysing the number of

perfect matchings in a random d-regular graph. Subsequent work of Frieze et al. [36]
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obtained the same result using the same technique, but this time working directly

with the number of Hamiltonian cycles. Specifically, Frieze et al. [36] showed that

the variance of the number of Hamiltonian cycles can be divided into two parts: the

variance between the groups Ωx, x ∈ Nk; and the variance within each of the different

groups. The calculations in [76, 77, 36] showed that almost of all the variance comes

from the variance between the groups, and so the variance within any particular group

is negligible. Thus, with high probability the number of Hamilton cycles in a graph G

chosen randomly from Ωx will be close to the expected number of Hamilton cycles for

graphs in that group,

Ex = E[Hn(F) : F ∈ Σx] ,

Furthermore, with high probability the group F lies in will have Ex large enough to

imply that the number of Hamilton cycles in σ(F) is > 0.

In fact, Frieze et al. [36] proved something stronger. The main contribution of

their paper was to adapt the argument of Robinson and Wormald to show that, with

high probability, the number of Hamiltonian cycles in a random d-regular graph was

at most a linear factor less than the number of 2-factors. Since there exists an fpaus for

the 2-factors of any graph, using the Jerrum-Sinclair chain [49], it follows that we can

sample (and so approximately count) the Hamiltonian cycles of almost every d-regular

graph in polynomial time. Their proof is comprised of the following two steps:

1. They show that the expected number of Hamiltonian cycles in a random d-

regular graph G is within a linear factor of the number of 2-factors of G;

2. They show that the random variable counting the Hamiltonian cycles is concen-

trated around its mean.

A general version of this method was presented by Molloy et al. [71].

Janson [43] showed that the result of [76, 77, 36] really amounts to obtaining an

asymptotic distribution for the number of Hamiltonian cycles. He streamlined the

general approach of Molloy et al. [71] to obtain the following general theorem.

Theorem 3.19 (Janson [43]). Let λi > 0 and δi ≥ −1, i = 1,2, . . . , be constants and

suppose that for each n there are random variables Xi,n, i = 1,2, . . . , and Yn (defined

on the same probability space Ωn) such that Xi,n is non-negative integer valued and

E[Yn] 6= 0 (at least for large n) and furthermore the following conditions are satisfied

1. Xi,n
d→ Zi as n→ ∞, jointly for all i, where Zi is a Poisson random variable with

mean λi;
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2. For any finite sequence x1, . . .xk of non-negative integers

E[Yn|X1,n = x1, . . .Xk,n = xk]

E[Yn]
→

k

∏
i=1

(1+δi)
xie−λiδi asn→ ∞ ;

3. ∑i λiδ
2
i < ∞;

4. limn→∞
E[Y 2

n ]
E[Yn]2

≤ exp(∑i λiδ
2
i )+o(1) .

Then
Yn

E[Yn]

d→W =
∞

∏
i=1

(1+δi)
Zie−λiδi ,

as n→ ∞. Moreover, this and the convergence of the Xi,n to the Zi in 1 hold jointly.

Remark 3.20. In the proof of Theorem 3.19 given in [43], it is shown that Conditions 1

and 2 imply an asymptotic lower bound of exp(∑i λiδ
2
i ) on E[Y 2

n ]/E[Yn]
2. Hence,

whenever the conditions of Theorem 3.19 hold, we actually have

E[Y 2
n ]

E[Yn]2
→ exp(∑

i
λiδ

2
i ) ,

as n→ ∞.

Remark 3.21. The convergence of Xi,n to Zi and Yn/E[Yn] to W implied by Theo-

rem 3.19 holds jointly. Hence, if the conditions of Theorem 3.19 hold, and Y ′n has

the distribution of Yn conditioned on X1,n = X2,n = 0, then we can conclude that

E[Y ′n]
E[Yn]

→ exp(−λ1δ1−λ2δ2) ,

E[(Y ′n)2]

E[Y ′n]2
→ exp(−λ1δ

2
1−λ2δ

2
2)

E[Y 2
n ]

E[Yn]2
.

We will use the properties mentioned in Remark 3.20 and Remark 3.21 to simplify

the proofs of §3.4. The following lemma gives a useful reformulation of Condition 2

of Theorem 3.19 that will be used several times in the proofs of this chapter.

Lemma 3.22 (Janson [43]). Suppose Condition 1 of Theorem 3.19 holds, Yn ≥ 0, and

that
E[Yn(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk ]

E[Yn]
→

k

∏
i=1

µ ji
i ,

for some µi ≥ 0 and every finite sequence of non-negative integers j1, j2, . . . , jk. Then,

Condition 2 of Theorem 3.19 holds with δi = µi/λi−1.



Chapter 3. Euler tours of Random Graphs 83

As in the work of Robinson and Wormald [76, 77] and Frieze et al. [36], the

proof of Theorem 3.19 is basically an analysis of variance. The state space Ωn

is partitioned by conditioning on fixed values for the auxiliary variables Xi,n. The

first three conditions of the theorem imply a lower bound on the variance between

the partitions; the fourth condition gives a matching upper bound on the variance in

the unconditioned space. Since this upper bound matches the lower bound, we can

conclude that the variance within each component is negligible. Hence, the values of

Yn are almost surely determined by the values of the auxiliary variables.

For example, in the problem studied by Frieze et al. [36], we have Yn equal to the

number of Hamiltonian cycles in a random G ∈G(n,d), for some fixed d > 2, and Xi,n

equal to the number of i-cycles in a random G ∈G(n,d). It is shown in [36] that, with

high probability, the value of W is sufficiently large so that for all n sufficiently large

we have Yn > 0.

In applications of Theorem 3.19 to random regular graphs, Xi,n tends to be the

number of i-cycles in a random configuration F ∈ Ωn,d , Zi a Poisson random variable

with mean λi = (d− 1)i/2i, and Yn the combinatorial quantity we are interested in.

For example, this is the case in the original line of work investigating the number

of Hamiltonian cycles [76, 77, 36], and also in subsequent work characterising the

asymptotic distributions for several numerical characteristics of random d-regular

graphs, e.g., the number of perfect matchings [43, 71], the number of 2-factors [74],

and the number of 3-star factors [5]. In most cases, the chief goal of the analysis

is to show that the particular structure occurs with probability approaching 1, in a

random G ∈G(n,d). However, as is the case in [36], this type of result may also have

algorithmic implications.

In the remainder of this chapter, we derive asymptotic distributions for the number

of Euler tours in a random d-in/d-out graph (§3.3), and the number of Eulerian

orientations in a random 2d-regular Eulerian graph (§3.4), for small, fixed, d. By

arguing along the lines of Frieze et al. [36], we are able to show that the number of

Euler tours in random d-in/d-out graph is close to the number of transition systems, and

consequently that Algorithm 4 and Algorithm 5 run in expected polynomial time on

almost every d-in/d-out graph. We conjecture that a similar result holds for the Euler

tours of a random 2d-regular graph and, in §3.5, we put forward some arguments to

support this conjecture.

In §3.4, we also show that most 2d-regular graphs have few Eulerian orientations,

in the sense that the probability that EO(G) is within a linear factor of the lower bound
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of Schrijver (Theorem 1.56) tends to 1 as n→ ∞.

3.3 Euler tours of random d-in/d-out graphs

In this section we analyse the number of Euler tours of random Eulerian directed

graphs, using the directed configuration model as our model for generating random

graphs. Recall that, given an integer vector d = (d1,d2, . . . ,dn), this can be used to

study properties of random elements of the set of directed graphs in which vertex

v ∈ {1,2, . . . ,n} has indeg(v) = outdeg(v) = dv.

Although the quantity we are interested in is the number of Euler tours of a random

directed graph, it is easier to enumerate arborescences and, by the BEST theorem

(Theorem 1.57), this is equivalent to enumerating Euler tours. Let An,d count the

number of arborescences of a directed graph G chosen uniformly at random from
~G(n,d). In §3.3.1 we obtain asymptotic expressions for the first two moments of

An,d. Then, in §3.3.2, we use Janson’s theorem (Theorem 3.19) to characterise the

asymptotic distribution of An,d , for the special case when dv = d for all v.

Given the asymptotic distribution of An,d it is straightforward to show that the value

of An,d is almost always close to the mean, E[An,d] (Theorem 3.35), from which we

can immediately infer Theorem 3.2. Although we believe a similar result holds for

Eulerian directed graphs with arbitrary fixed degree sequence d, proving this seems to

be beyond the method used to prove Theorem 3.35.

3.3.1 Estimating the moments of An,d

We obtain asymptotic estimates for the moments of An,d by first computing the

moments of a random variable counting arborescences of non-uniform directed

multigraphs and then conditioning on the graph being simple. We will use the

following two facts several times in the proofs of this section.

Fact 3.23. Falling factorials of sums obey the well known multinomial theorem

(x1 + x2 + · · ·+ xl)k = ∑
∑δi=k
δi≥0

(
k

δ1, . . . ,δl

) l

∏
i=1

(xi)δi .

Definition 3.24. A rooted forest is a set of disjoint trees with distinguished root

vertices. We call a rooted forest a rooted k-forest if it contains exactly k components.

.
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Fact 3.25. Let V = {1,2, . . . ,n}. The number of rooted k-forests on V in which v has

δv children is (
n−1
k−1

)(
n− k

δv : v ∈V

)
.

See, e.g., [81, Theorem 5.3.4], for a proof of Fact 3.25. We also consider the natural

generalisation of the configuration model to non-Eulerian directed graphs.

Definition 3.26. Suppose s = (s1,s2, . . . ,sn) and t = (t1, t2, . . . , tn) are a pair of positive

vectors. Now, suppose we have disjoint sets of points Sv and Tv satisfying |Sv| = sv

and |Tv| = tv, for each v = 1,2, . . . ,n and let S =
⋃n

v=1 Sv and T =
⋃n

v=1 Tv. We call

the set of perfect matchings from S to T directed configurations and denote the set of

all directed configurations by Φn,s,t. As before, we call the matchings from S to T the

partial directed configurations of Φn,s,t.

We define projection in this generalised configuration model in the same way as in

the original directed configuration model.

In Lemma 3.27 below, we use Fact 3.23 and Fact 3.25 to count the number of

partial configurations that project to a directed forest in Φn,s,t.

In the proof of the following lemma, and throughout this section we take the

term directed forest to mean a forest in which every edge in a component has been

directed towards the the root. Furthermore, we will often speak of a configuration for

an arborescence or directed forest. We take this to mean a partial configuration that

projects to an arborescence or directed forest.

Lemma 3.27. Let s and t be a pair of positive n-vectors and let V = {1,2, . . . ,n}. The

number of ways to choose a configuration for a directed forest rooted at R⊆V in Φn,s,t

is

∏
v/∈R

sv

(
∑
v∈R

tv

)(
∑
v∈V

tv−1

)
n−|R|−1

. (3.7)

Proof. In counting the number of partial configurations that project to forests, we need

to enumerate the forests that can occur in some directed graph ~G ∈ ~G(n,s, t), and also

the number of partial configurations in Φn,s,t that project to each forest. The first part

of our analysis counts the number of such forests in which each vertex v ∈ V has a

particular number of children, δv.

Let F be a forest on V rooted at R and, for each v ∈ V , let δv be the number of

children of v in F . The number of ways to choose a point for the source and target of



Chapter 3. Euler tours of Random Graphs 86

each arc in F is

∏
v/∈R

sv

n

∏
v=1

(tv)δv , (3.8)

since we must choose one of the points in Sv for the source of the arc leaving each

v /∈ R and choose one of the points in Tv as the target of each arc entering v.

We now count the number of forests on V which have roots at R, and which agree

with the vector δδδ = (δ1,δ2, . . . ,δn) of child counts. One way to approach this task is

to observe that we can construct a forest rooted at R by first choosing a k-forest on

V −R, where k = ∑v∈R δv, and then attaching each root of this forest as a child of some

v ∈ R. By Fact 3.25, the number of k-forests on V −R in which v ∈V −R has exactly

δv children is (
n−|R|−1

k−1

)(
n−|R|− k

δv : v ∈V −R

)
. (3.9)

The number of ways we can divide the roots of this forest amongst the members of R

so that each v ∈ R has δv children is(
k

δv : v ∈ R

)
. (3.10)

Combining (3.9) and (3.10), we see that the number forests rooted at R that agree with

child count vector δδδ is(
n−|R|−1

k−1

)(
n−|R|− k

δv : v ∈V −R

)(
k

δv : v ∈ R

)
.

Hence, by (3.8), the number of partial configurations projecting to these forests is(
n−|R|−1

k−1

)(
n−|R|− k

δv : v ∈V −R

)(
k

δv : v ∈ R

)
∏
v/∈R

sv ∏
v∈V

(tv)δv . (3.11)

Now, summing (3.11) over all possible vectors δδδ gives

∏
v/∈R

sv

n−|R|

∑
k=1

(
n−|R|−1

k−1

)(
∑

∑v∈R δv=k

(
k

δv : v ∈ R

)
∏
v∈R

(tv)δv

)

×

(
∑

∑v/∈R δv=n−|R|−k

(
n−|R|− k
δv : v /∈ R

)
∏
v/∈R

(tv)δv

)
. (3.12)

We can use Fact 3.23 to simplify (3.12). The two sums over the different δv

in (3.12) are the multinomial expansions of the falling factorial powers (∑v∈R tv)k and

(∑v/∈R tv)n−|R|−k , respectively. Hence, (3.12) is equal to

∏
v/∈R

sv

n−|R|

∑
k=1

(
n−|R|−1

k−1

)(
∑
v∈R

tv

)
k

(
∑
v/∈R

tv

)
n−|R|−k

,

which is itself the multinomial expansion of (3.7).
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We now use Lemma 3.27 to analyse the expectation and variance of the number

of arborescences in σ(F), when F is chosen uniformly at random from Φn,d. In the

following, we say A ⊂~F is an arborescence of~F ∈Φn,d if σ(A) is an arborescence of

σ(F), and denote the set of arborescences of ~F by ARB(~F). In the following proofs,

we will abuse terminology slightly and switch between speaking of arborescences of

configurations and directed graphs arbitrarily.

Theorem 3.28. Let d be some fixed constant, n ∈ N, and let d = (d1,d2, . . . ,dn) be a

sequence of integers satisfying

d ≥ dn ≥ dn−1 ≥ ·· · ≥ d1 ≥ 1 ,

and let m = ∑
n
v=1 dv. We define A?

n,d to be the random variable counting the

arborescences of uniformly random~F ∈Φn,d. Then,

E[A?
n,d] =

n
m

n

∏
v=1

dv;

E[(A?
n,d)

2]

E[A?
n,d]

2 =
m

m−n+1
.

Proof. We first consider the first moment of A?
n,d. To calculate the first moment of

A?
n,d we need to enumerate pairs (~F,A), where~F ∈ Φn,d and A is an arborescence of

~F, and then divide this quantity by |Φn,d |. Given A , it is easy to count the number of

configurations~F ∈ Φn,d for which A ⊂~F. In any directed graph ~G with m arcs, there

are exactly m−n+1 arcs not contained in any particular element of ARB(~G). Hence,

if we have a configuration for an arborescence, there are (m− n+ 1)! ways to extend

this to a complete configuration. Applying Lemma 3.27 with s = t = d, we see that the

number of arborescences rooted at any particular vertex v is

dv

(
∏
u6=v

du

)
(m−1)n−2 . (3.13)

By the BEST theorem (Theorem 1.57), there are an equal number of arborescences

rooted at each vertex of any~F ∈ Φn,d. Hence, multiplying (3.13) by by n(m−n+1)!

gives the number of pairs (~F,A) with~F ∈Φn,d and A ∈ ARB(~F):

n(m−1)!

(
∏
v∈V

dv

)
.

Finally, dividing by the total number of configurations in Φn,d, which is m!, gives the

claimed value for E[A?
n,d].
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To compute the second moment of A?
n,d we need to evaluate the following

expression
1

m! ∑
~F∈Φn.d

|ARB(~F)|2 . (3.14)

We observe that the term |ARB(~F)|2 in (3.14) is equal to the number of elements in

the set

{(A ,A ′) : A ,A ′ ∈ ARB(~F)} .

That is,

E[(A?
n,d)

2] =
|Φ̃n,d|
|Φn,d |

,

where

Φ̃n,d = {(~F,A ,A ′) :~F ∈Φn,d,A ,A ′ ∈ ARB(~F)|} .

Hence, to evaluate E[(A?
n,d)

2] we need to count the number of elements of Φ̃n,d.

We compute |Φ̃n,d| as follows. First, we count the number of ways to choose the

intersection of a pair of arborescences A and A ′. Then, we count the number of ways

to extend this intersection to A and A ′. Finally, we count the number of ways to choose

the remainder of~F so that A and A ′ are both in ARB(~F).

The last step is the easiest. Suppose we have a pair of arborescences (A ,A ′) of

some configuration ~F ∈ Φn,d and suppose F = A∩A ′ is a forest rooted at R ⊆ V .

Since we need to add |R|−1 arcs to F for each arborescence, there will be n+ |R|−2

edges in A∪A ′ and, hence, there are (m−n−|R|+2)! ways to choose the remaining

edges for~F.

We now proceed to enumerate the different pairs (A ,A ′) with F = A∩A ′ rooted

at R. In fact, we overcount slightly, with the number of times (A ,A ′) is counted

depending on the roots of A and A ′. We use the BEST Theorem (Theorem 1.57)

to get back to the correct number at the end of the proof.

We start by counting the number of ways we can choose F , the edges in both

arborescences, and then count the number of ways to choose the edges which are in

one or the other arborescence. By Lemma 3.27, the number of ways to choose F
rooted at R is (

∏
v/∈R

dv

)(
∑
v∈R

dv

)
(m−1)n−|R|−1 . (3.15)

For each v ∈ R, let Fv denote the component of F with root v, and let xv be the

number of points in
⋃

u∈Fv
Tu not used by arcs in F . That is,

xv = ∑
u∈Fv

du−|Fv|+1 .
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Note that this is the number of points available to add incoming arcs to vertices of Fv

when we are completing A and A ′. Moreover, we have

∑
v∈R

xv = m−n+ |R| .

We now turn our attention to the number of ways to choose A \A ′ and A ′ \A .

Choosing the remaining arcs for A and A ′ is equivalent to choosing a pair of disjoint

configurations for trees on R in which there are xv points available for the targets of

arcs entering v and dv points available for the sources of the arcs leaving v, for each

v ∈ R.

Suppose we have already chosen A \A ′ such that the root of A is r and suppose

that there are δv additional arcs directed towards vertices in Fv, for each v ∈ R. Now,

suppose we want to choose A ′ \A such that the root of A ′ is r′, and, for the moment,

suppose r 6= r′. Choosing A ′ \A amounts to choosing a tree on R rooted at r′ in which

there are xv−δv points available for arcs directed towards each v, dv−1 points available

for the source of the arc directed away from each v 6= r, and dr points available for the

source of the arc directed away from r. Hence, by Lemma 3.27, we see that the number

of ways to choose A ′ \A is

(xr′−δr′)dr

(dr−1)(dr′−1)

(
∏
v∈R

(dv−1)

)
(m−n)|R|−2 .

Using Fact 3.25, we can deduce that the number of ways to choose A is

∏v∈R dv

dr
∑

|δδδ|=|R|−1
δr≥1

(
|R|−2

δr−1;δv : v ∈ R\{r}

)
∏
v∈R

(xv)δv .

Therefore, the number of ways to complete F to A∪A ′ is equal to

∏v∈R dv(dv−1)
(dr−1)(dr′−1)

(m−n)|R|−2

times

∑
|δδδ|=|R|−1

δr≥1

(xr′−δr′)

(
|R|−2

δr−1;δv : v ∈ R\{r}

)
∏
v∈R

(xv)δv . (3.16)

We can divide (3.16) into two sums:

xr′ ∑
|δδδ|=|R|−1

δr≥1

(
|R|−2

δr−1;δv : v ∈ R\{r}

)
∏
v∈R

(xv)δv (3.17)
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and

− ∑
|δδδ|=|R|−1

δr≥1

δr′

(
|R|−2

δr−1;δv : v ∈ R\{r}

)
∏
v∈R

(xv)δv . (3.18)

Applying Fact 3.23, we see that (3.17) and (3.18) are equal to xrxr′(m−n+ |R|−1)|R|−2

and −xrxr′(|R|−2)(m−n+ |R|−2)|R|−3, respectively. Hence, the number of ways to

complete F to A∪A ′ is

xrxr′

(dr−1)(dr′−1)

(
∏
v∈R

dv(dv−1)

)
(m−n+ |R|−2)2|R|−4 . (3.19)

If r = r′, we can apply an almost identical argument to show that the number of ways

to complete F to A∪A ′ is

xr(xr−1)
dr(dr−1)

(
∏
v∈R

dv(dv−1)

)
(m−n+ |R|−2)2|R|−4 . (3.20)

Multiplying (3.19) and (3.20) by (dr − 1)(dr′ − 1) and dr(dr − 1), respectively, and

summing over r and r′ gives(
∑

r 6=r′
xrxr′+∑

r
xr(xr−1)

)(
∏
v∈R

dv(dv−1)

)
(m−n+ |R|−2)2|R|−4 . (3.21)

Since ∑r∈R xr = m−n+ |R|, we have

∑
r 6=r′

xrxr′+∑
r

xr(xr−1) = ∑
r∈R

xr

(
xr−1+ ∑

r′ 6=r
(xr′)

)
= (m−n+ |R|)(m−n+ |R|−1) .

Hence, (3.21) is equal to(
∏
v∈R

dv(dv−1)

)
(m−n+ |R|)2|R|−2 .

Multiplying by the number of ways to choose F , given in (3.15), and the number of

ways to choose the portion of~F not contained in A∪A ′, which is (m−n−|R|+2)!,

yields the following expression(
∏
v∈V

dv

)
(m−1)!

(
∏
v∈R

(dv−1)

)(
∑
v∈R

dv

)
. (3.22)

The expression (3.22) over-counts the number of triples (~F,A ,A ′) in which the

intersection A∩A ′ is a forest rooted at R. Each triple (~F,A ,A ′) in which A and A ′ are
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rooted at different vertices u and v is counted (du− 1)(dv− 1) times, and each triple

(~F,A ,A ′) in which A and A ′ are rooted at the same vertex v is counted dv(dv− 1)

times.

Only the second two factors of (3.22) depend on R. Summing these over all R⊆V

gives

∑
R⊆V

(
∑
v∈R

dv

)(
∏
v∈R

(dv−1)

)
, (3.23)

We can evaluate (3.23) by separating it into n separate sums, each corresponding to the

sum over R 3 v, for v ∈V ,

dv ∑
R3v

∏
u∈R

(du−1) = (dv−1)

(
∏
u∈V

du

)
. (3.24)

Then, summing the right-hand side of (3.24) over each v ∈V , and combining with the

rest of (3.22), gives (
∏
v∈V

dv

)2

(m−n)(m−1)! . (3.25)

We cannot immediately obtain the quantity we are looking for from (3.25) as it

over-counts different triples by different amounts. However, by the BEST theorem

(Theorem 1.57), we know that the number of triples (~F,A ,A ′) in which A is rooted at

u and A ′ is rooted at v does not depend on u or v, since the projection σ(~F) is always

an Eulerian directed graph. Thus, it follows that the factor by which (3.25) over-counts

the number of triples is

1
n2

(
∑
u6=v

(du−1)(dv−1)+∑
v

dv(dv−1)

)
=

(m−n+1)(m−n)
n2 . (3.26)

Then, dividing (3.25) by (3.26) and m! gives

E[(A?
n,d)

2] =
n2

m(m−n+1)

(
∏
v∈V

dv

)2

.

An Eulerian directed graph is simple if and only if it does not contain any

loops or double arcs; we do, however, allow the arcs (u,v) and (v,u) to be present.

In Theorem 3.30 below, we estimate the first and second moments of An,d using

Theorem 3.28 and conditioning on there being no loops or double arcs in~F.

Before proceeding with the proof of Theorem 3.30, we state a useful property of

the directed configuration model. A similar property is used, implicitly or explicitly,

in almost all results on the undirected configuration model [100].



Chapter 3. Euler tours of Random Graphs 92

Lemma 3.29. For any fixed directed graph H with more arcs than vertices, and ~F

chosen uniformly at random from Φn,d, the probability σ(~F) contains H as a subgraph

tends to 0, as m→ ∞.

Proof. The reason for this is as follows. Suppose H has i vertices and j edges. For each

set S⊂{1,2, . . . ,n}with |S|= i, the number of ways we can choose configuration pairs

that will give H as a subgraph of σ(F) on the vertices S is bounded by a constant. The

probability of one of these sets of configuration pairs occurring in a random F ∈ Φn,d

is
(m− j)!

m!
→ m− j ,

since there are (m− j)! ways to choose the remainder of a configuration, given a set of

j edges. But the number of ways to choose S is(
n
i

)
→ ni .

Hence, we can, rather crudely, bound the probability of H occurring as a subgraph of

σ(~F) by O(mi− j).

We now proceed with the proof of Theorem 3.30. We will use (the ideas of)

Lemma 3.29 to show that the factorial moments of various random variables converge.

Theorem 3.30. Let d be some fixed constant, n∈N, and let d be a sequence of integers

satisfying

d ≥ dn ≥ dn−1 ≥ ·· · ≥ d1 ≥ 1 ,

and let m = ∑
n
v=1 dv. Furthermore, suppose m− n→ ∞. Let An,d denote the number

of arborescences of an Eulerian directed graph chosen randomly from ~G(n,d). Then,

E[An,d]→ e1 n
m ∏

v
dv ;

E[A2
n,d]

E[An,d]2
→ e−n/m m

m−n
,

Proof. In the following we will use m2 to denote ∑v d2
v .

The proof is as follows. Recall that~F contains a loop at v if there is an edge from

Sv×Tv in~F and that~F contains a double arc from u to v if there is a pair of edges from

Su×Tv in~F, for some pair of vertices u 6= v. Let L and D denote the number of loops

and double arcs in a random~F ∈ Φn,d. Then, the event “~F is simple” is equivalent to

the event {L = D = 0}. We first analyse the distributions of L and D, which we can
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use to estimate the probability that ~F is simple. Then, we consider two new random

variables, L(1) and D(1), which count the number of loops and double arcs in~F when

(~F,A) is chosen randomly from the set

Φn,d = {(~F,A) :~F ∈Φn,d, A ∈ ARB(~F)} . (3.27)

By analysing the distributions of L(1) and D(1) we can estimate

E[An,d] =
P[L(1) = D(1) = 0]
P[L = D = 0]

E[A?
n.d] .

Finally, we consider random variables, L(2) and D(2), which count the number of loops

and double arcs in~F when (~F,A ,A ′) is chosen randomly from the set

Φ̃n,d = {(~F,A ,A ′) :~F ∈Φn,d, A ,A ′ ∈ ARB(~F)} . (3.28)

By analysing the distributions of L(2) and D(2) we can estimate

E[(An,d)
2] =

P[L(2) = D(2) = 0]
P[L = D = 0]

E[(A?
n.d)

2] .

We first compute the expectation of L and D. Suppose we have a loop edge

e ∈ Sv×Tv in ~F and let Ie be the indicator variable for the event e ∈ F . Then, we

can write L = ∑v∈V ∑e∈Sv×Tv Ie and, by linearity of expectation, we have

E[L] = ∑
v∈V

∑
e∈Sv×Tv

E[Ie] = ∑
v∈V

∑
e∈Sv×Tv

P[e ∈ F ] . (3.29)

Given e, the number of ways to choose~F with e ∈~F is (m−1)!, so the probability of a

random~F ∈ Φn,d containing e is 1/m. For each v ∈V , there are d2
v ways to choose an

edge from Sv×Tv. Hence,

E[L] =
1
m ∑

v
d2

v =
m2

m
. (3.30)

Next, we compute the expectation of D. Here, for every pair of edges e, f ∈ Su×Tv,

for some u 6= v, we define an indicator variable Ie, f for the event e, f ∈~F. Then D =

∑u6=v ∑e, f∈Su×Tv Ie, f . By linearity of expectation, we have

E[D] = ∑
u∈V

∑
v∈V\{u}

∑
e, f∈Su×Tv

P[e, f ∈~F] . (3.31)

The probability of a particular pair of edges e and f occurring in a random config-

uration ~F ∈ Φn,d is, asymptotically, 1/m2. Moreover, the number of ways to choose
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e, f ∈ Su×Tv is 2
(du

2

)(dv
2

)
. Hence, the sum in (3.31) becomes

E[D]→ 2
m2 ∑

u∈V
∑

v∈V\{u}

(
du

2

)(
dv

2

)

=
1

2m2

(
∑
u∈V

(du)2

)2

− 1
2m2 ∑

u∈V
(du)

2
2 . (3.32)

To finish the calculation we observe that the numerator of the negative term in (3.32)

is O(m) (each du is bounded above by a constant d, so ∑u(du)
2
2 ≤ d3m). Hence, this

part of the sum disappears as m→ ∞ and

E[D]→ (m2−m)2

2m2 . (3.33)

We would like to use Theorem 3.14 to show that L and D are asymptotically

Poisson, so we can use (3.30) and (3.33) to estimate P[L = D = 0]. To apply

Theorem 3.14, we need to show that, for every pair of non-negative integers i and

j, we have

E[(L) j(D)k]→ E[L] jE[D]k . (3.34)

Consider ordered tuples of the form t = (e1,e2, . . . ,e j,( f1,g1),( f2,g2), . . . ,( fk,gk))

where ei is a loop, for i = 1,2, . . . , j, ( fi,gi) is a double arc for i = 1,2, . . . ,k, and

all edges are distinct. For each such t, we define an indicator variable It for the event

t ∈~F (~F contains all components of t). Then, we can write

E[(L) j(D)k] = ∑
t
E[It] = ∑

t
P[t ∈~F] . (3.35)

First, we consider the contribution to E[(L) j(D)k] from tuples where no vertex

occurs more than once. We can write this as

1
2k ∑

v1∈V1

d2
v1

m ∑
v2∈V2

d2
v2

m−1
· · · ∑

v j+1∈V j+1

(dv j+1)2

m− j
· · · ∑

v2k∈V j+2k

(dv2k)2

m−2k
, (3.36)

where Vi =V −{v j : j < i}. We can re-write the last sum as

1
m−2k

(
m2−m− ∑

v∈V2k

(dv j+2k)2

)
. (3.37)

Since k and d are both fixed, it follows that (3.37) is, asymptotically, (m2−m)/m.

We can apply the same reasoning to show that each of the sums over Vi, for

i = j+1, . . . ,2k, converge to (m2−m)/m. Similarly, each of the sums over Vi, for

i = 1,2, . . . , j, converges to m2/m. Hence, the asymptotic value of (3.36) is

E[L] jE[D]k .
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By Lemma 3.29, we know that the probability of~F containing any set of cycles on

j vertices, for fixed j, in which any vertex occurs more than once, is (asymptotically)

0. Hence, the contribution to (3.35) from ordered tuples in which any vertex features

more than once is negligible and, therefore, (3.34) holds.

We have shown that L and D converge to independent Poisson random variables

and, therefore, the probability that~F is simple when~F is chosen uniformly at random

from Φn,d is (asymptotically)

exp
(
−m2

m
− (m2−m)2

2m2

)
. (3.38)

Next, we consider the distributions of L(1) and D(1). We first estimate E[L(1)].

Suppose we have a loop edge e ∈ Sv× Tv, for some v ∈ V . A loop edge cannot be

contained in any arborescence, and, thus, the number of pairs (~F,A) ∈ Φn,d where

e ∈~F, is equal to the number of pairs (~F,A) ∈ Φn,d′ , where d′ is equal to d with dv

replaced by dv−1. Hence, from Theorem 3.28, we can see that the number of elements

of Φn,d with e ∈~F is equal to

n(dv−1)∏
u6=v

du(m−2)! . (3.39)

Dividing (3.39) by the total number of elements in Φn.d, which we can also obtain from

Theorem 3.28, gives the probability

P[e ∈~F : (~F,A) ∈Φn,d] =
dv−1

dv(m−1)
(3.40)

Evaluating (3.29) with this probability in the place of P[e ∈ F ] gives

E[L(1)] =
1

m−1 ∑
v

dv(dv−1)→ m2−m
m

.

Next, we evaluate E[D(1)]. Suppose we have a pair of edges e, f ∈ Su× Tv for

some u 6= v. By Lemma 3.27, the number of arborescences rooted at u in which each

w /∈ {u,v} has dw points available for its incoming and outgoing arcs, u has du points

available for incoming arcs, and v has dv−2 points available for incoming arcs and dv

available for outgoing arcs is (
∏
w∈V

dw

)
(m−3)n−2 . (3.41)

The expression in (3.41) counts the number of partial configurations which consist of

the edges e and f along with n−1 configuration edges that project to an arborescence
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rooted at u. There are (m−n−1)! ways to extend each of these partial configurations

to some ~F ∈ Φn,d. Hence, the following expression counts the number of pairs

(~F,A) ∈Φn,d with e, f ∈~F and A rooted at u.(
n

∏
w=1

dw

)
(m−3)! . (3.42)

By the BEST Theorem (Theorem 1.57), we know that each ~F ∈ Φn,d has the same

number of arborescences rooted at each vertex, so (3.42) counts exactly 1/n of the

pairs (~F,A) ∈Φn,d with e, f ∈~F. Multiplying (3.42) by n and dividing by |Φn,d| gives

P[e, f ∈~F : (~F,A) ∈Φn,d]→
1

m2 . (3.43)

This is the same probability as when ~F is chosen uniformly at random from Φn,d, so

evaluating (3.33) with (3.43) in place of P[e, f ∈ F ] does not change the (asymptotic)

value and we have

E[D(1)]→ E[D] .

As described in Lemma 3.29, the probability that a random F ∈ Φn,d contains a

particular k-vertex subgraph with more arcs than vertices tends to 0. This is also true

when we are sampling (F̃,A) uniformly at random from Φn,d. Hence, the contribution

to E[(L(1)) j(D(1))k], from ordered tuples of loops and double arcs which overlap at any

vertex is negligible. We can thus conclude that the factorial moments converge to

E[(L(1)) j(D(1))k]→ E[L(1)] jED(1)]k .

Hence, the probability of~F being simple in a random (~F,A) ∈Φn,d is

exp
(
−m2−m

m
− (m2−m)2

2m2

)
. (3.44)

Together (3.38) and (3.44) give the claimed estimate for E[An,d].

Finally, we consider the distributions of L(2) and D(2). Suppose we have a loop

edge e ∈ Sv×Tv. The number of elements of Φ̃n,d with e ∈~F is equal to the number

of elements of Φ̃n,d′ , where d′ is the out-degree vector we used to compute E[L(1)]. By

Theorem 3.28, we have

|Φ̃n,d|=
(dv−1)2

(dv)2
n2

m−n

(
∏
w∈V

dw

)2

(m−2)! .

Dividing by the number of elements in Φ̃n,d, which know from Theorem 3.28, we see

that

P[e ∈~F : (~F,A ,A ′) ∈ Φ̃n,d]→
(dv−1)2

(dv)2m
.
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Evaluating (3.30) with this probability in the place of P[e ∈ F ] gives

E[L(2)]→ m2−2m+n
m

. (3.45)

We now evaluate E[D(2)]. Suppose we have a pair of edges e, f ∈ Su×Tv for some

u 6= v. There are three cases to consider: e, f ∈ A∪A ′; e, f /∈ A∪A ′; or exactly one

of e and f is in A∪A ′. We estimate E[D(2)] as follows. Using slightly more general

arguments than those used to compute the second moment in Theorem 3.28, we count

the number of triples (~F,A ,A ′) for each of these three cases, obtaining expressions

which overcount in the same way as (3.25). Then, since the way in which triples are

over-counted is the same in each of the three analyses, i.e., the number of times each

triple (~F,A ,A ′) is counted is determined by the out-degrees of the roots of A and A ′,
we can add these three expressions together, apply the BEST theorem, and proceed as

we did in the proof of Theorem 3.28.

Note that the fact that the in-degree and out-degree of each vertex v are equal is only

used at the last step of the analysis of the second moment of A?
n,d (in Theorem 3.28).

That is, if we are working in the general directed configuration model of Definition 3.3

(with the added condition that ∑sv = ∑ tv = m) and follow the arguments of the second

part of Theorem 3.28 we find that, for each R⊆V , the expression over-counting

triples (~F,A ,A ′) where A∩A ′ is a forest rooted at R (given by (3.22) in the proof

of Theorem 3.28) becomes(
∏
w∈V

sw

)
(m−1)!

(
∑

w∈R
tw

)(
∏
w∈R

(sw−1)

)
. (3.46)

The factor by which (3.46) over-counts (~F,A ,A ′) is (sr− 1)(sr′ − 1) if A and A ′ are

rooted at different vertices r,r′ ∈ R, and is sr(sr − 1) if both are rooted at the same

vertex r ∈ R.

As we did for (3.22) in the proof of Theorem 3.28, we can separate (3.46) into two

parts: the part that does not depend on R,(
∏
w∈V

sw

)
(m−1)! ,

and the part that does (
∑

w∈R
tw

)(
∏
w∈R

(sw−1)

)
. (3.47)

Summing (3.47) over all possibilities for R gives(
∑

w∈V

tw(sw−1)
sw

)(
∏
w∈V

sw

)
.
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Hence, in the general directed configuration model, the expression which over-counts

triples of the form (~F,A ,A ′) is(
∑

w∈V

tw(sw−1)
sw

)(
∏
w∈V

sw

)2

(m−1)! (3.48)

Now, suppose e, f /∈ A∪A ′. In this case we want to count the number of triples

(~F,A ,A ′) where~F ∈Φn,s,t, for s = d, except su = du−2, and t = d, except tv = dv−2.

Adding e and f to the~F part of each element of this set of triples gives the set of triples

(~F,A ,A ′) ∈ Φ̃n,d with e, f ∈~F− (A∪A ′). Evaluating (3.48) for the stated values of s
and t gives (

m−n− du

du−2
− dv−2

dv

)
(du−2)2

d2
u

(
∏
w∈V

dw

)2

(m−3)! ,

or, asymptotically, as m−n→ ∞,

(m−n)
(du−2)2

d2
u

(
∏
w∈V

dw

)2

(m−3)! , (3.49)

Next, suppose e, f ∈ A∪A ′. Since there can be at most one arc leaving u in A
or A ′ it follows that we have an arc (u,v) in both A and A ′. Hence, when we are

choosing the pair of arborescences we must assume that (u,v) is always present. This

corresponds to replacing u and v by a single vertex v′ which has dv points available

for outgoing arcs and du + dv− 2 points available for incoming arcs. That is, in this

instance we want to count triples (~F,A ,A ′) with~F ∈ Φn,s,t, where s and t are vectors

indexed by V\{u,v} and v′ satisfying sw = tw = dw for w ∈ V\{u,v}, sv′ = dv, and

tv′ = du+dv−2. Evaluating (3.48) with these values for s and t yields, asymptotically,

(m−n)
1

(du)2

(
∏
w∈V

dw

)2

(m−3)! . (3.50)

We can extend each of the triples counted by (3.50) to an element of Φ̃n,d in four ways,

since we can put e or f into either arborescence. Hence, the expression over-counting

triples (~F,A ,A ′) ∈ Φ̃n,d with e, f ∈ A∪A ′ is, asymptotically,

(m−n)
4

(du)2

(
∏
w∈V

dw

)2

(m−3)! . (3.51)

Finally, suppose exactly one of e and f is in A∪A ′. This case is a little bit more

complicated. Suppose e ∈ A . We contract u and v to a single vertex v′, as in the
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previous case, and choose a forest on V\{u,v} and v′, with root R. Then, we proceed

as in the proof of Theorem 3.28, except we consider u to be one of the roots of the

components of F when choosing A ′; that is, when choosing A \A ′ we choose a tree

on R, but when choosing A ′ \A we choose a tree on R∪{u}, where the vertices in the

component of our initial forest have now been divided between a component rooted at

u and a component containing v. The final expression counting the number of ways to

complete F to A∪A ′ does not depend on how the vertices are distributed amongst the

components of F , so it is safe to do this. In this way, we obtain the expression

(du−2)

(
∑

w∈R
tw

)(
∏
w∈R

(sw−1)

)(
∏

w∈V\{u}
sw

)
(m−1)! (3.52)

which over-counts the number of triples (~F,A ,A ′) where R∪{u} are the roots of the

components of A∩A ′, e ∈ A , and f ∈~F\(A∪A ′).
Proceeding as before, by summing over all possibilities for R, gives, asymptotically,

(m−n)
du−2
(du)2

(
∏
w∈V

dw

)2

(m−1)! .

The cases where e ∈ A ′, f ∈ A , and f ∈ A ′ are all equivalent, so the expression over-

counting triples (~F,A ,A ′) with exactly one of e and f in A∪A ′ is, asymptotically,

(m−n)
4(du−2)
(du)2

(
∏
w∈V

dw

)2

(m−1)! . (3.53)

Adding (3.49), (3.51), and (3.53) gives

(m−n)

(
∏
w∈V

dw

)2

(m−3)! . (3.54)

Finally, we observe that the triples are over-counted consistently in the three separate

constructions given above. Hence, we can conclude, by the same reasoning as was

used in Theorem 3.28, that (3.54) over-counts the elements of Φ̃n,d by a factor of

(m−n−1)(m−n−2)
n2 . (3.55)

Dividing (3.54) by (3.55) and the number of elements in Φ̃n,d, which we can obtain

using Theorem 3.28, gives

P[e, f ∈~F : (~F,A ,A ′) ∈ Φ̃n,d]→
1

m2 .
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This is the same probability for e, f ∈~F when~F is chosen uniformly at random from

Φn,d, so we can conclude

E[D(2)]→ E[D] .

The factorial moments converge, again because we only need to consider the con-

tribution from ordered tuples of non-overlapping loops and double arcs. Hence, the

probability that~F is simple, when (~F,A ,A ′) is chosen uniformly at random from Φ̃n,d,

is

exp
(
−m2−2m+n

m
− (m2−m)2

2m2

)
(3.56)

Combining (3.38) and (3.56) gives the claimed estimate for E(An,d)
2.

3.3.2 The asymptotic distribution of An,d

The primary goal in this section is to prove that ~T n,d is concentrated around its mean.

By the BEST Theorem, this is equivalent to proving a concentration result for An,d.

The obvious first step is to try to apply Chebyshev’s inequality (Theorem 3.8). Suppose

we want to show

P{An,d ≤ n−αE[An,d]}→ 0 .

We can bound this probability by

P{An,d ≤ n−αE[An,d]} ≤ P
{
|An,d−E[An,d]| ≥ (1−n−α)E[An,d]

}
≤
(

nα−1
nα

)2 E[A2
n,d]−E[An,d]

2

E[An,d]2
,

where the last step is obtained by applying Chebyshev with a = (1− n−α)E[An,d],

and using the fact that Var[X ] = E[X2]−E[X ]2 for any random variable X . Then, by

Theorem 3.30, we can deduce that this upper bound is, asymptotically, equal to

e−n/mm
m−n

−1 .

This will be a constant, since we are assuming that dv ≤ d for each v ∈ V . Thus, to

prove the result we want, we will need something stronger.

In this section, we show how we can apply Janson’s Theorem (Theorem 3.19) to

determine the asymptotic distribution of An,d (the special case where dv = d for all

v ∈V ). In our application of Theorem 3.19 we will have Yn = An,d , and Xi,n counting

the number of directed i-cycles in σ(~F) for~F chosen uniformly at random from Φn,d .
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In the following two lemmas (Lemma 3.31 and Lemma 3.32), we establish that

Condition 1 and Condition 2 of Theorem 3.19 hold when we take Xi,n to count directed

i-cycles in a random ~F ∈Φn,d and Yn to be equal to A?
n,d.

Lemma 3.31. For each fixed positive integer i, let Xi,n count the number of directed

i-cycles in a directed graph ~G chosen uniformly at random from ~G(n,d), and let

λi = λi/i, where λ = m2/m. Then, for any fixed set of integers j2, . . . , jk we have

E

[
k

∏
i=2

(Xi) ji

]
→

k

∏
i=1

λ
ji
i .

Proof. We say a set of i edges e1,e2, . . . ,ei in a directed configuration is an i-cycle

if there is a sequence of distinct vertices v0,v1, . . . ,vi−1 such that e j ∈ Sv j ×Tv j+1 mod i

for j = 0,1, . . . , i− 1. Let Ci,d denote the set of all possible i-cycles for a particular

out-degree vector d. For each C ∈ Ci,d, we define an indicator variable IC for the event

C ∈~F, so Xi,n = ∑C∈Ci,n IC. Then, by linearity of expectation, we can write E[Xi,n] as

E[Xi,n] = ∑
C∈Ci,d

E[IC]

= ∑
C∈Ci,d

P[C ∈~F] . (3.57)

There are (m− i)! configurations containing each i-cycle, and, therefore, for any i-cycle

C,

P[C ∈~F] = (m− i)!
m!

→ 1
mi .

So, to estimate E[Xi,n], we only need to compute |Ci,d| and then divide by mi. Let

V = {1,2, . . . ,n} and suppose S is an i-subset of V . There are (i−1)! different ways to

arrange S into an i-cycle (v0,v1, . . . ,vi−1). Given a particular i-cycle (v0,v1, . . . ,vi−1)

on S, there are ∏v∈S d2
v ways to choose edges e j ∈ Sv j×Tv( j+1) mod i , for j = 0,1, . . . , i−1.

Hence, (3.57) becomes

E[Xi,n]→
(i−1)!

mi ∑
S⊂V
|S|=i

∏
v∈S

d2
v . (3.58)

Now, observe that

(m2

m

)i
=

1
mi

(
∑
v∈V

(dv)
2

)i

=
1
mi ∑

∑sv=i

(
i

sv : v ∈V

)
∏
v∈V

d2sv
v . (3.59)
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Consider the contribution to (3.59) from terms in which sv = 2 for some v ∈ V . This

can be crudely bounded as

(i)2

2mi ∑
v∈V

(dv)
4

(
∑

u∈V\{v}
d2

u

)i−2

≤ (i)2

2
d4m−1→ 0 .

Similarly, the contribution from all terms with sv = j > 2 for some v ∈V can be shown

to be O(mi− j+1). Hence, we have

i!
mi ∑

S⊂V
|S|=i

∏
v∈S

(dv)
2→

(m2

m

)i
. (3.60)

Plugging the approximation given in (3.60) into (3.58) gives

E[Xi,n]→
1
i

(m2

m

)i
= λi .

Suppose we have a sequence of fixed non-negative integers j1, j2, . . . , jk. To

evaluate the factorial moment

E

[
m

∏
i=1

(Xi,n) ji

]
(3.61)

we need to enumerate ordered tuples of j = j1 + j2 + · · ·+ jk directed cycles where

the first j1 cycles are loops, the next j2 are 2-cycles, and so on. By Lemma 3.29, we

know that the probability of any particular partial configuration with more edges than

vertices occurring in a random~F ∈ Φn,d tends to 0. Hence, the only tuples of directed

cycles which have non-negligible contribution to (3.61) are those in which the cycles

are vertex-disjoint. Given a set S⊂V with |S|= j, there are

j!

∏
k
i=1 i ji ∏v∈S

(dv)
2

ways to choose configurations for an ordered tuple of vertex-disjoint j-cycles, with

ji being the number of i-cycles. The probability of any one of these sets of cycles

occurring in a random configuration is, asymptotically, 1/m j. Hence, the contribution

to (3.61) from tuples of vertex-disjoint cycles, is, asymptotically,

j!
m j ∏

k
i=1 i ji ∑

S⊂V
|S|= j

∏
v∈S

(dv)
2 (3.62)

By the same arguments used to prove (3.60), we can show that (3.62) is (asymptoti-

cally) equal to
1

∏
k
i=1 i ji

(m2

m

) j
=

k

∏
i=1

λ
ji
i .
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Lemma 3.32. For each i, let Xi,n be as in Lemma 3.31, and let µi = (λi−1)/i, where

λ = m2/m. Then, for any fixed set of integers j1, j2, . . . , jk we have

E
[
A?

n,d ∏
k
i=1(Xi,n) ji

]
E[A?

n,d]
→

k

∏
i=1

µ ji
i .

Proof. We first establish
E[A?

n,d Xi,n]

E[A?
n,d]

→ µi .

The factorial moments then hold for the same reason as was given in Lemma 3.31:

the contribution from ordered tuples of loops and double arcs with repeated vertices is

asymptotically insignificant.

Let Φn,d be the set of pairs (~F,A) where~F ∈ Φn,d and A is an arborescence of~F.

We let Ci(F) and Ci,d have the same meaning as in the proof of Lemma 3.31. Then, as

we did for E[Xi,n], we can expand

E[A?
n,d Xi,n]

E[A?
n,d]

=
1
|Φn,d|

∑
(~F,A)∈Φn,d

∑
C∈Ci,d

IC(F)

=
|{(~F,A ,C) :~F ∈Φn,d,A ∈ ARB(~F),C ∈ Ci(F)|

|Φn,d|

= ∑
C∈Ci,d

P[C ⊂~F : (~F,A) ∈Φn,d] .

Hence, we only need to estimate the probability that a particular C ∈ Ci,d is

contained in ~F when (~F,A) is chosen uniformly at random from Φn,d. To do this,

we enumerate the elements of Φn,d with C ⊂~F. This is done by first choosing which

of the edges of C are going to be in A , then choosing the remaining edges for A , and

finally choosing the remaining edges for~F.

Let S denote the set of vertices of C and let R ⊆ S be the vertices v ∈ S for which

the arc leaving v on C is not contained in A . Then, C∩A consists of a set of disjoint

directed paths, each one ending at some v∈R. For each v∈R, let Pv denote the directed

path in C∩A ending at v. Choosing the remainder of A is then equivalent to choosing

an arborescence on (V\S)∪R, where we have collapsed each path to a single vertex.

Each v ∈V\S has dv points for arcs entering and leaving v. For each v ∈ R, the number

of points available for arcs entering v is equal to the number of points in Pv not used

by C. Therefore, for each v ∈ R, there are ∑u∈Pv(du−1) points for arcs entering v and

dv−1 points for arcs leaving v. Using Lemma 3.27, we can deduce that the number of

ways to choose the remainder of A , and then~F, is

n
∏v∈R(dv−1)

∏v∈S dv

(
∏

v
dv

)
(m− i−1)! .
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Summing over R and dividing by |Φn,d|, which we know from Theorem 3.28, gives

P[C ⊂~F : (~F,A) ∈Φn,d]→
1
mi ∑

R⊆S
|R|≥1

∏v∈R(dv−1)
∏v∈S dv

=
1
mi

(
1− 1

∏v∈S dv

)
.

For each S ⊂ V with |S| = i, there are (i− 1)!∏v∈S d2
v ways to form an i-cycle on S.

Hence,

E[A?
n,d Xi,n]

E[A?
n,d]

→ (i−1)!
mi ∑

S⊂V
|S|=i

(
∏
v∈S

d2
v −∏

v∈S
dv

)

By a similar argument as was used in Lemma 3.31 we can show

∑
S⊂V
|S|=i

∏
v∈S

dv→
mi

i!
,

and so conclude
E[A?

n,d Xi,n]

EA?
n,d

→ 1
i

(m2

m

)i
− 1

i
= µi .

We now have sufficient ammunition to apply Janson’s theorem and obtain an

asymptotic distribution for the number of arborescences of a random d-in/d-out graph.

Theorem 3.33. Let d ≥ 2 be some fixed integer, let n ∈ N, and let An,d denote the

number of arborescences in a random directed graph ~G chosen uniformly at random

from ~G(n,d). Then,
An,d

E[An,d]
→

∞

∏
i=2

(
1− 1

di

)Zi

e1/i ,

where the Zi are independent Poisson random variables with means di/i.

Proof. Let Xi,n be the random variable counting i-cycles studied in Lemma 3.31 and

Lemma 3.32. To apply Janson’s Theorem (Theorem 3.19), we need to show that the

four conditions in the hypothesis of the theorem are satisfied by An,d and {Xi,n : i≥ 2}.
Restricted to the case where du = dv = d for all u,v, Lemma 3.31 provides Condition 1,

by showing that the random variables Xi,n converge jointly to independent Poisson

random variables with means

λi =
di

i
.
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Lemma 3.32 tells us that the random variables Xi,n, taken with A?
n,d , satisfy

E
[
A?

n,d ∏
k
i=1(Xi,n) ji

]
E[A?

n,d]
→

k

∏
i=1

µ ji
i ,

where

µi =
di−1

i
.

Hence, by Lemma 3.22, Condition 2 is satisfied for Yn = A?
n,d with

δi =−
1
di .

Since the Xi,n are all considered to be independent, we can condition on X1,n = 0 to

infer that Condition 2 of Theorem 3.19 is also satisfied, with the same δi values, when

we take Yn = An,d and Xi,n, i≥ 2. Evaluating the sum in Condition 3 gives

∞

∑
i=2

1
idi =−

1
d
+ log

(
d

d−1

)
,

since

log
(

d
d−1

)
= log

(
1

1− 1
d

)
=

∞

∑
i=1

1
idi .

Finally, Theorem 3.30 provides Condition 4.

The short cycle conditioning method fails when we allow vertices of different

degrees. In general, we have

E[A2
n,d]

E[An,d]2
= e−n/m m

m−n
.

Consider the class of graphs containing n/2 vertices of out-degree 2 and n/2 vertices

of out-degree 3, which we denote ~G(n,2,3). If An,2,3 counts the number of Euler tours

of G chosen uniformly at random from ~G(n,2,3) then, by Theorem 3.30, we have

E[A2
n,2,3]

E[An,2,3]2
→ e−2/5 5

3
≈ 1.172 ,

since we have m = 5n/2. From Lemma 3.31 and Lemma 3.32 we obtain

λi =
1
i

(
13
5

)i

and δi =−
1
i

(
5

13

)i

.

Hence,
∞

∑
i=2

λiδ
2
i =−

5
13

+ log(13/8)≈ 1.106 ,
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and therefore Condition 4 of Theorem 3.19 is not satisfied. Proofs using the small

subgraph conditioning method depend strongly on the fact that these values match,

since it is this (asymptotic) equality that implies the variance within each class is

negligible. We do not have a good explanation for why this breaks down when we

allow different degrees, nor do we believe it to be strong evidence that a concentration

result cannot be obtained for a more general case than du = dv = d. Indeed, we can still

conclude that a large proportion of directed graphs with fixed degree sequence have a

large number of arborescences.

3.3.3 Bounding T n,d with high probability

By Theorem 3.30 of §3.3.1, we know that the expected number of arborescences of a

random d-in/d-out graph is

E[An,d]→ e1dn−1 .

Hence, if we let T n,d denote the number of Euler tours of a random d-in/d-out graph

we have

E[T n,d] = n−1E[An,d](d−1)!n→ e1

dn
(d!)n .

Let TS(n,d) denote the number of transition systems of a d-in/d-out graph. There are

d! ways to choose a pairing on in-arcs with out-arcs at each vertex, so

TS(n,d) = (d!)n .

Hence, to prove Theorem 3.2, we just need to show that the number of arborescences

of a random d-in/d-out graph is concentrated around E[An,d] (Theorem 3.35 below).

We prove Theorem 3.35 by arguing along the lines of [36]. In the following proof we

will use a Lemma from [77], (which was used in the proof of [36]).

Lemma 3.34 (Lemma 3 [77]). Let η1,η2, . . . be given, Suppose that η1 > 0 and, for

some c > 0, ηi+1/ηi > c, for all i≥ 1. Then, uniformly over x≥ 1,
∞

∑
i=1

∞

∑
t=ηi(1+yi)

ηt
i

t!eηi
= O(e−c0x) ,

where yi = xη
−1/3
i and c0 = min{η1/3

1 ,η
2/3
1 }/4

Theorem 3.35. Let d ≥ 2 be some fixed integer, let n ∈N, and suppose ~G is a directed

graph chosen uniformly at random from ~G(n,d). Then,

P

[
|ET(~G)|
|TS(~G)|

≥ e1

d
n−2

]
→ 1 ,
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as n→ ∞.

Proof. Let An,d denote the number of arborescences of a directed graph ~G chosen

uniformly at random from ~G(n,d). We have shown, in Theorem 3.30, that the

expectation of An,d satisfies

E[An,d]→ e1dn−1 .

The number of Euler tours of any directed graph ~G ∈G(n,d) is equal to

1
n
|ARB(~G)|(d−1)!n ,

and the number of transition systems of ~G is equal to d!n. Hence, the statement of the

theorem is equivalent to saying

P
[

An,d

E[An,d]
≥ 1

n

]
→ 1 ,

as n→ ∞.

For x = (x1,x2, . . . ,xk) we define Gx to be the set of all d-regular Eulerian directed

graphs containing exactly xi directed cycles of length i for each i≤ k, and

W (k)(x) =
k

∏
i=2

(
1− 1

di

)xi

e1/i .

For each fixed γ > 0 we define

S(γ) = {x : xi ≤ λi + γλ
2/3
i for 2≤ i≤ k} .

From Lemma 3.31, the probability that ~G chosen uniformly at random from ~G(n,d)

has exactly xi i-cycles is
λ

xi
i

eλixi!
.

Hence, by Lemma 3.34, the probability that a random ~G is not contained in Gx for

some x ∈ S(γ) is

∑
x/∈S(γ)

P[~G ∈ Gx]≤
∞

∑
i=2

P[Xi,n ≥ λi + γλ
2/3
i ]

=
∞

∑
i=2

∞

∑
t=λi(1+γλ

−1/3
i )

λt
i

eλit!

∈ e−aγ ,
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where a = d1/3/4; i.e., a is an absolute constant greater than 0. Hence, to verify the

theorem all we need do is show that

W (k)(x)≥ e−(b+cγ) ∀x ∈ S(γ) , (3.63)

where b and c are absolute constants independent of γ. Then, by Theorem 3.33, we

have

P
[

An,d

E[An,d]
≥ e−(b+cγ)

]
≥ 1− e−aγ .

For any ε > 0, we can choose γ so that e−aγ < ε. Then, we can choose n large enough

so that e−(b+c)γ > n−1. That is, if we can show (3.63) holds, we will have shown that

for every ε > 0, there exists n ∈ N such that

P
[

An,d

E[An,d]
≥ 1

n

]
> 1− ε ,

So, it remains to prove (3.63). For x ∈ S(γ) we have W (k)(x)≥ ABγ, where

A =
k

∏
i=2

(
1− 1

di

)λi

e1/i

B =
k

∏
i=2

(
1− 1

di

)λ
2/3
i

.

Using the elementary inequality 1− x≥ e−x/(1−x), we can bound A and B as

A≥
∞

∏
i=2

exp
(
− di

i(di−1)
+

1
i

)
= exp

(
k

∑
i=2
− 1

i(di−1)

)
,

and

B≥
∞

∏
i=2

exp

(
− d2i/3

i2/3(di−1)

)

≥ exp

(
−

∞

∑
i=2

1
i2/3di/3

)
.

The sums inside the exponentials are clearly convergent, so we can find absolute

constants b and c so that A≥ e−b and B≥ e−c.



Chapter 3. Euler tours of Random Graphs 109

3.4 The number of Eulerian orientations of random

regular graphs

In this section we turn our attention to the distribution of the number of Eulerian

orientations of a random regular graph. Recalling the relationship between the number

of orbs and Euler tours, we would hope that this will take us closer to our main goal:

obtaining an asymptotic distribution for the number of Euler tours of a random regular

graph. Although we did not manage to achieve this, we believe the analysis in this

section, particularly the analysis of the second moment of the number of Eulerian

orientations of a random regular graph, will be a key part of the analysis required

to obtain the corresponding result for orbs. Moreover, as the number of Eulerian

orientations is a quantity of interest in its own right, the results of this section are

of independent interest.

In this section we restrict our attention to regular graphs. The reason for this is

that we cannot find a closed form for the number of Eulerian orientations of a random

configuration F ∈ Ωn,d, as we could for arborescences of Φn,d, and the asymptotic

analysis carried out in the proof of Theorem 3.47 does not immediately carry over to

the general configuration model.

For fixed positive integer d, and n ∈ N, we define En,2d to be the random variable

counting Eulerian orientations of a random 2d-regular graph. In §3.4.2 we analyse the

number of Eulerian orientations of a random 2d-regular graph, obtaining asymptotic

results for constant d. As we did for arborescences in §3.3, we first analyse the

moments of an auxiliary variable, E?
n,2d , which counts Eulerian orientations of random

configurations F ∈ Ωn,2d , and then condition on F projecting to a simple graph. The

asymptotic analysis of §3.4.2 uses Laplace’s method for estimating integrals. We

briefly describe the details of this method in §3.4.1.

We apply these estimates in two ways. Firstly, in §3.4.3, we use these estimates

and Theorem 3.19 to characterise the asymptotic distribution of En,2d . Then, in §3.4.4,

we use Chebyshev’s inequality (Theorem 3.8) to show that almost every 2d-regular

graph has few Eulerian orientations; that is, we show that the probability the number of

Eulerian orientations of a random G ∈G(n,2d) exceeds Schrijver’s lower bound [78]

(see Theorem 1.56) by more than a linear factor tends to 0 as n goes to infinity.

In the previous section, the asymptotic distribution of the number of arborescences

was used to show a simple algorithm for sampling Euler tours runs in expected

polynomial time for almost every directed graph ~G ∈ ~G(n,d). We remark that we
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cannot obtain a similar result here. Firstly, it is not clear if the set of Eulerian

orientations of a graph G sit nicely inside some other set of orientations, apart from

the set of all orientations of G. Moreover, our results imply that most regular graphs

have few Eulerian orientations, i.e., close to the minimum possible, so even if we had

a “nice” set of orientations that the Eulerian orientations sat inside, it is still unlikely

that the relative size of the set of Eulerian orientations (of a particular graph) within

this set would be large enough for a dart-throwing approach to work.

3.4.1 Laplace’s Method

In our analysis of the second moment of the number of Eulerian orientations, we

will need to compute an asymptotic estimate of an integral. The approach we use

is Laplace’s method [25, Chapter 4], also known as saddle-point analysis. This is

a general approach for estimating an integral of the form
∫

en f (x)dx whose value is

concentrated around a single maximum term. The first step in an application of this

method is to locate the maximum.

Definition 3.36. Let f (x) be a real-valued function. We say f has a critical point at a,

if the value of the first derivative of f at a is 0: f ′(a) = 0.

A critical point a is a local maximum if and only if the second derivative of f is

negative at a, f ′′(a) < 0, and a critical point a is a local minimum if and only if the

second derivative is positive at a, f ′′(a)> 0.

The local maxima and minima of a multi-dimensional function can be defined in a

similar way. First, we need to define positive definite and negative definite matrices.

Definition 3.37. We say an n×n symmetric, real-valued matrix A is negative definite

if

xT Ax < 0 , ∀x ∈ Rn .

We say A is positive definite if −A is negative definite.

Definition 3.38. Let f (x1,x2, . . . ,xd) be an d-ary real-valued function. A point a ∈Rd

is a critical point of f if all first order partial derivatives of f are 0 at a:

∂ f
∂xi

(a) = 0 , for i = 1,2, . . . ,d .

We define the Hessian matrix of second order partial derivatives of f :

D2 f (x)i, j =
∂ f

∂xix j
, for i, j = 1,2, . . . ,d .
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A critical point a is a local maximum of f if and only if D2 f (a) is a negative definite

matrix, and a local minimum if and only if D2 f (a) is a positive definite matrix.

To apply Laplace’s method to estimate an integral,
∫

en f (x)dx, we search for

the local maxima on the range of integration and consider the value of f (x) in the

neighbourhoods of these points. We want to show that the asymptotic value of the

integral is determined by the value within a small neighbourhood of the maximum

value a, and that in this neighbourhood f (x) can be approximated by a Gaussian

integral; i.e., an integral of the form∫
Rn

e−
1
2 xT Axdx , (3.64)

for positive definite n×n matrix A.

Definition 3.39. Let A be an n× n matrix. The determinant of A, denoted |A|, is the

quantity

∑
σ∈Sn

sgn(σ)
n

∏
i=1

Ai,σ(i) ,

where Sn is taken to be the set of all permutations of {1,2, . . . ,n}. The signature of a

permutation is +1 (resp. −1) if σ can be obtained from the identity permutation,

σ(i) = i , for all i ∈ {1,2, . . . ,n} ,

by performing an even (resp. odd) number of transpositions of adjacent numbers.

Example 3.40. The determinant of the 2×2 matrix

A =

[
a b

c d

]

is ad− bc. This is the only determinant we will deal with explicitly in the proofs of

this section.

The following result, which can be found in, e.g., [25, Chapter 4], shows how we

can compute the value of (3.64) by computing the determinant of A.

Theorem 3.41. Let A be a positive definite n×n matrix. Then,∫
Rn

e−
1
2 xT Axdx =

(2π)d/2√
|A|

,

where |A| denotes the determinant of A.
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3.4.2 Estimating the moments of En,d

Our goal in this section is to find asymptotic estimates of the first and second moments

of the number of Eulerian orientations of a random graph G ∈ G(n,2d). We start by

estimating the moments of E?
n,2d , the number of Eulerian orientations of σ(F) where

F is chosen uniformly at random from Ωn,2d . These estimates can then be turned into

estimates for the moments of En,2d by conditioning on F not containing any loops or

double edges.

Before proving the theorem, we provide some technical lemmas. We make no

claim to the novelty of the identities presented in Lemma 3.44 or Lemma 3.45 but

include proofs here due to not knowing a suitable reference.

For a square matrix A we denote the determinant of A by |A| and write A[α,β] for

the submatrix with rows indexed by α and columns indexed by β. In Lemma 3.44,

we show how to compute the determinant of a sum of two matrices, using Laplace’s

formula. Recall the definition of a matrix minor.

Definition 3.42. Let M be a n×n matrix. For any row and column indices i and j, we

denote by Mi j the matrix obtained by removing the row indexed by i and the column

indexed by j. This is known as the (i, j)-minor of M. We define the (i, j)-cofactor of

M to be (−1)i+ j|Mi j|.

One approach to computing determinants of matrices, is to use Laplace Expansion,

which expresses the value of the determinant of a matrix in terms of its cofactors.

Fact 3.43 (Laplace, see Chapter 5 of [84]). Let A be an n×n matrix and let ai j denote

the entry in row i and column j. Then,

|A|=
n

∑
i=1

(−1)i+ jai j|Ai j| ,

for any j ∈ {1,2, . . . ,n} (expanding along column j) and

|A|=
n

∑
j=1

(−1)i+ jai j|Ai j| ,

for any i ∈ {1,2, . . . ,n} (expanding along row i).

Lemma 3.44. Let A,B be n×n square matrices. Then

|A+B|=
n

∑
k=0

∑
α,β∈Sn,k

(−1)s(α)+s(β)|A[α,β]||B[ᾱ, β̄]| , (3.65)

where Sn,k is the set of k-subsequences of (1,2, . . . ,n), ᾱ is the subsequence obtained

by removing α from (1,2, . . . ,n), and s(α) = ∑αi.
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Proof. We prove by induction. For n = 2 the lemma can be checked by expanding

all the determinants involved. Let n > 2 and suppose the lemma is true for all k < n.

Using Fact 3.43 to expand |A+B| gives

|A+B|=
n

∑
i=1

(−1)i+1(a1,i +b1,i)|A1,i +B1,i| .

Each term in the sum is itself a sum of two (n− 1)× (n− 1) matrices, and so, by

induction, we can write

|A+B|=
n

∑
i=1

n

∑
k=1

∑
α,β∈Sn,k

α31,β3i

(−1)s(α)+s(β)+|{ j∈β: j<i}|(a1,i +b1,i)|A[α−1,β−i]||B[ᾱ, β̄]| ,

(3.66)

where γ−k is the sequence γ with k removed. We will now explain where the terms in

(3.66) come from. Consider the expansion of |A1,i +B1,i| by applying the Lemma:

|A1,i +B1,i|=
n−1

∑
k=0

∑
α′.β′∈Sn,k

1/∈α′,i/∈β′

(−1)s1(α
′)+si(β

′)|A[α′,β′]||B[ᾱ′−1, β̄′−i| ,

where si(γ) = s(γ)− |{ j ∈ γ : j > i}. The functions si come from the fact that any

j > 1 in α′ is actually indexing the ( j− 1)-th row of A1,i +B1,i, and any j > i in β′

is actually indexing the ( j− 1)-th column of A1,i +B1,i. For the sake of presentation,

we have mapped the subsequences α′ and β′ used in the inductive application of (3.65)

to |A1,i +B1,i| to subsequences α and β of (1,2, . . . ,n) satisfying 1 ∈ α and i ∈ β. By

considering this mapping, we can see that the power of −1 in the term corresponding

to α and β in the inductive application of (3.65) to |A1,i +B1,i| is

(−1)s(α)−k+s(β)−i−|{ j∈β: j>i}| = (−1)s(α)−k+s(β)−i−(k−1−|{ j∈β: j<i}|)

= (−1)s(α)+s(β)−i+1+|{ j∈β: j<i}| . (3.67)

Multiplying (3.67) by (−1)i+1 gives the power of −1 used in (3.66).

We will now show the equivalence of (3.66) and the RHS of (3.65) by showing

that we can obtain (3.66) by expanding each term in the RHS of (3.65) using Laplace

expansion. Each term in (3.65) is expanded as follows: if 1 ∈ α then we expand

|A[α,β]| along row 1; if 1 /∈ α then we expand |B[ᾱ, β̄]| along row 1.

Let i ∈ [n] and suppose we have a pair of sequences α and β with 1 ∈ α and i ∈ β.

We obtain the term a1,iA[α−1,β−i]B[ᾱ, β̄] by expanding A[α,β]B[ᾱ, β̄] and obtain the

term b1,iA[α−1,β−i]B[ᾱ, β̄] by expanding A[α−1,β−i]B[α−1,β−i], as described above.
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Thus, the terms in the sum obtained by expanding each term of (3.65) are identical to

the terms in the RHS of (3.66). It remains to show that each term has the correct sign.

We first consider terms of the form a1,i|A[α−1,β−i]||B[ᾱ, β̄]|. Using Fact 3.43,

expanding |A[α,β]| along row 1 gives

(−1)s(α)+s(β)|A[α,β]|= ∑
i∈β

(−1)s(α)+s(β)+|{ j∈β: j≤i}|+1a1,i|A[α−1,β−i]|

= ∑
i∈β

(−1)s(α)+s(β)+|{ j∈β: j<i}|a1,i|A[α−1,β−i]| , (3.68)

so a1,i|A[α−1,β−i]||B[ᾱ, β̄]| has the same sign in (3.66) and the sum obtained by

applying Laplace expansion to each term in (3.65)..

Next, we consider terms of the form b1,i|A[α−1,β−i]||B[ᾱ, β̄]|. Again using

Fact 3.43, we expand |B[α−1,β−i]| along row 1. Consider the term in this expansion

involving b1,i:

(−1)s(α−1)+s(β−i)+1+|{ j/∈β: j≤i}|b1,i|B[ᾱ, β̄]| . (3.69)

The sign of b1,i|B[ᾱ, β̄]| in (3.69) is

(−1)s(α)+s(β)−i+|{ j/∈β: j≤i}| .

Note that

|{ j /∈ β : j ≤ i}|+ |{ j ∈ β : j < i}|= i ;

this implies that |{ j ∈ β : j < i}| is even if and only if −i+ |{ j /∈ β : j ≤ i} is even.

Hence, b1,i|A[α−1,β−i]||B[ᾱ, β̄]| has the same sign in (3.66) and the sum obtained by

applying Laplace expansion to each term in (3.65).

Lemma 3.45. For each positive integer d,

d

∑
i=0

(
d
i

)2

=

(
2d
d

)
;

d

∑
i=1

i
(

d
i

)2

=
d
2

(
2d
d

)
;

d

∑
i=1

i2
(

d
i

)2

=
d3

2(2d−1)

(
2d
d

)
.

Proof. We prove the first identity by observing that the number of ways to choose

d values from {1,2, . . . ,2d}, is the same as the total number of ways to choose i

values from {1,2, . . . ,d} and d− i values from {d+1,d+2, . . . ,2d}, for i= 0,1, . . . ,d.

Hence, (
2d
d

)
=

d

∑
i=0

(
d
i

)(
d

d− i

)
=

d

∑
i=0

(
d
i

)2

.
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The other two follow by straightforward calculations:

d

∑
i=1

i
(

d
i

)2

= d
d

∑
i=1

(
d−1
i−1

)(
d

d− i

)
= d
(

2d−1
d−1

)
=

d
2

(
2d
d

)
;

d

∑
i=1

i2
(

d
i

)2

= d2
d−1

∑
i=0

(
d−1

i

)
=

d3

2(2d−1)

(
2d
d

)
.

We will now use Lemma 3.44 and Lemma 3.45 to prove the following Lemma,

which gives some properties of a particular matrix. This matrix will arise in the proof

of Theorem 3.47 as the Hessian matrix of a function.

Lemma 3.46. Suppose d is an integer greater than 1 and let M be the d×d symmetric

matrix given by

Mi j =


4i j
d −

(2d
d

)
i 6= j

4i2
d −

(2d
d

)
− (2d

d )

(d
i)

2 i = j

This matrix is negative definite and has determinant

|M|= (−1)d

(2d
d

)d+1

∏
d
i=1
(d

i

)2
d−1

2d−1
.

Proof. We first show that M is negative definite. Recall that a symmetric real-valued

matrix is negative definite if and only if xT Mx < 0 for every x ∈ Rd . In other words,

we can prove M is negative definite by showing the following strict inequality holds

for all x ∈ Rd: (
d

∑
i=1

2ixi

)2

< d
(

2d
d

)( d

∑
i=1

xi

)2

+d
(

2d
d

) d

∑
i=1

x2
i(d

i

)2 .

We will use the following elementary inequality,

(a+b)2 ≤ 2d−1
d

a2 +
2d−1
d−1

b2 ,

which holds for any a and b. Then, by writing

a =
d

∑
i=0

(2i−d)xi , and b =
d

∑
i=0

dxi ,

we have (
d

∑
i=1

2ixi

)2

≤ 2d−1
d

(
d

∑
i=0

(2i−d)xi

)2

+
d2(2d−1)

d−1

(
d

∑
i=0

xi

)2

.
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Next, we apply the Cauchy-Schwarz inequality [82],(
d

∑
i=1

aibi

)2

≤

(
d

∑
i=1

a2
i

)(
d

∑
i=1

b2
i

)
,

giving (
d

∑
i=1

(2i−d)xi

)2

≤

(
d

∑
i=1

(2i−d)2
(

d
i

)2
) d

∑
i=1

x2
i(d

i

)2

 .

We can use Lemma 3.45 to show

d

∑
i=0

(2i−d)2
(

d
i

)2

=
d2

2d−1

(
2d
d

)
.

Hence, we have shown(
d

∑
i=1

2ixi

)2

≤ d2(2d−1)
d−1

(
d

∑
i=1

xi

)2

+d
(

2d
d

) d

∑
i=1

x2
i(d

i

)2 .

Finally, we observe that for any d ≥ 2, we have d2(2d−1)
d−1 < d

(2d
d

)
.

We now turn our attention to evaluating the determinant. To evaluate |M| using

Lemma 3.44, we write M as A+B where

Ai, j =

 −
(2d

d )

(d
i)

2 i = j

0 otherwise

and

Bi, j =
4i j
d
−
(

2d
d

)
.

We first show that the determinant of every square sub-matrix of B with more than

2 rows is 0. Recall that a square matrix has determinant 0 if we can write any row as a

linear combination of other rows [84]. Let Bk denote the k-th row of B,

Bk =

(
4k
d
−
(

2d
d

)
,
8k
d
−
(

2d
d

)
, . . . ,

4dk
d
−
(

2d
d

))
.

It is straightforward to see that Bk can be written as the sum

Bk =
k− j
i− j

Bi +
i− k
i− j

B j ,

for any i and j. Hence, any square submatrix of B with more than two rows will have

determinant 0. Moreover, the fact that A is a diagonal matrix means that |Aα,β| 6= 0 if
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and only if α = β. Thus, using Lemma 3.44 and Lemma 3.45, we can compute the

determinant of M as follows

|M|=

(
d

∏
j=1

A j j

)(
1+

k

∑
j=1

B j j

A j j
+ ∑

1≤i< j≤d

(BiiB j j−B2
i j)

AiiA j j

)

= (−1)d

 (2d
d

)d

∏
d
i=1
(d

i

)2

( d

∑
j=0

(
d
j

)2

− 2

d
(2d

d

) ∑
0≤i, j≤d

( j− i)2
(

d
i

)2(d
j

)2
)

= (−1)d

 (2d
d

)d

∏
d
i=1
(d

i

)2

((2d
d

)
− d

2d−1

(
2d
d

))

= (−1)d

(2d
d

)d+1

∏
d
i=1
(d

i

)2
d−1

2d−1
.

In the following theorem, Theorem 3.47, we estimate the first and second moment

of the number of Eulerian orientations of G, when G is obtained as the projection of

a random F ∈ Ωn,2d . In the following, we will refer to Eulerian orientations of graphs

and configurations. We define an Eulerian orientation of a configuration F ∈ Ωn,2d to

be a partitioning of W into a pair of equally sized disjoint subsets S and T , in which

each Wv is partitioned into a pair of d-element subsets, Sv and Tv, such that each edge

in F has one endpoint in S and the other in T . For each vertex v, Sv corresponds to the

endpoints of arcs for which v is the source and Tv corresponds to the endpoints of arcs

for which v is the target. We will use EO(F) to denote the set of Eulerian orientations

of F. The following proof, and the proofs of several subsequent theorems, use Stirling’s

formula [25] to approximate factorials: as n→ ∞,

n!→
(n

e

)2√
2πn . (3.70)

Theorem 3.47. Let n ∈ N and let d be some fixed positive integer satisfying d ≥ 2.

Let E?
n,2d be the number of Eulerian orientations in a random 2d-regular multigraph

obtained as the projection of a uniformly random F ∈Ωn,2d . Then, as n→ ∞,

E[E?
n,2d]→

((2d
d

)
2d

)n√
πdn ;

E[(E?
n,2d)

2]

E[E?
n,2d]

2 →
√

2d−1
2d−2

.

Proof. We first evaluate E[E?
n,2d]. The value of E[E?

n,2d] is given by

E[E?
n,2d] =

|Ωn,2d|
|Ωn,2d |

,
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where

Ωn,2d = {(F,E) : F ∈Ωn,2d,E ∈ EO(F)} .

Let V = {1,2, . . . ,n}. We can enumerate the elements of Ωn,2d as follows: for each

vertex v ∈V partition the set Wv into two equally sized sets Sv and Tv; choose a perfect

matching from S =
⋃

v∈V Sv to T =
⋃

v∈V Tv. There are(
2d
d

)n

different ways to choose the sets S and T and (dn)! ways to choose a perfect matching

from S to T , for each choice of S and T . Hence, the number of elements in Ωn,2d is

|Ωn,2d|=
(

2d
d

)n

(dn)! .

Dividing this by the number of configurations in Ωn,2d ,

|Ωn,2d |=
(

2dn
dn

)
(dn)!2−dn ,

and applying Stirling’s formula (3.70) we obtain

E[E?
n,2d] =

(2d
d

)n
2dn(2dn

dn

) →

((2d
d

)
2d

)n√
πdn .

We now turn our attention to computing E[(E?
n,2d)

2]/E[E?
n,2d]

2; in fact, we only

compute an asymptotic upper bound. The corresponding lower bound follows from

the results in §3.4.3 and the comments in Remark 3.20. The second moment of E?
n,2d

can be written as

E[(E?
n,2d)

2] =
|Ω̃n,2d|
|Ωn,2d |

,

where

Ω̃n,2d = {(F,E ,E ′) : F ∈Ωn,2d,E ,E ′ ∈ EO(F)}

We now describe how we can enumerate Ω̃n,2d . Any pair of Eulerian orientations

(E ,E ′) of a graph G defines a decomposition of the edges of G into two sets: E ∩E ′,
the edges that have the same orientation in E and E ′; and E⊕E ′, the edges that are

oriented differently in E andE ′. Given this decomposition and the orientation E , we

can immediately determine the orientation E ′. Hence, to enumerate triples (F,E ,E ′),
we start by partitioning W into S and T , as we did for the first moment. Then, for each

v ∈ V we choose an equal number of vertices from Sv and Tv to be swapped between

the two sets. This gives two new sets S′ and T ′, where S′v corresponds to endpoints
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of arcs for which v is the source in E ′ and T ′v corresponds to the endpoints of arcs for

which v is the target in E ′. Choosing (F,E ,E ′) is then equivalent to choosing two

perfect matchings, one from S∩S′ to T ∩T ′ and one from S\S′ to T\T ′.
We start by choosing the out-degree in E ∩E ′ for each v ∈ V ; that is, we choose

the number of points that will be contained in Sv ∩ S′v. Suppose dv = |Sv ∩ S′v|. The

number of ways to choose S and T is, as before,(
2d
d

)n

.

Given S and T we choose, for each v ∈ V , a subset of size dv from each of Sv and Tv;

these will be the points in Sv ∩ S′v and Tv ∩ T ′v , respectively. The number of ways in

which we can do this is

∏
v∈V

(
d
dv

)2

.

Once we have chosen S, T , S′, and T ′ the number of ways to choose a pair of perfect

matchings from S∩S′ to T ∩T ′ and from S\S′ to T\T ′ is(
∑
v∈V

dv

)
!

(
dn−∑

v∈V
dv

)
! .

For each i = 0,1, . . . ,d, we define Vi = {v ∈ V : |Sv∩ S′v| = i} and let ci = |Vi|. Then,

the number of ways to choose E and E ′, satisfying |Sv∩S′v|= dv for all v ∈V , is(
2d
d

)n
(

d

∏
i=0

(
d
i

)2ci
)(

d

∑
i=1

ici

)
!

(
dn−

d

∑
i=1

ici

)
! . (3.71)

Summing over all choices for dv gives |Ωn,2d|, and then dividing by the total number

of configurations in Ωn,d gives an expression for E[(E?
n,2d)

2]:

E[(E?
n,2d)

2] =

(2d
d

)n(2dn
dn

)
(dn)!2−dn

× ∑
c0+c1+···+cd=n

(
n

c0,c1, . . . ,cd

)( d

∏
i=0

(
d
i

)2ci
)
(

d

∑
i=1

ici)!(dn−
d

∑
i=1

ici)!

=

(2d
d

)n
2dn(2dn

dn

) ∑
c0+c1+···+cd=n

(
d

∏
i=0

(
d
i

)2ci
)

n!(∑d
i=1 ici)!(dn−∑

d
i=1 ici)!

(dn)!∏
d
i=0 ci!

.

(3.72)

By setting c0 = n−∑
d
i=1 ci and applying Stirling’s formula (3.70) to the factorials,

(dn)!, (∑ ici)!, and (dn−∑ ici)!, we can approximate the summand corresponding to
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c = (c1,c2, . . . ,cd) in (3.72) by(
d

∏
i=0

(
d
i

)2ci
)

nn(∑d
i=1 ici)∑

d
i=1 ici(dn−∑

d
i=1 ici)

dn−∑
d
i=1 ici

(dn)dn(n−∑
d
i=1 ci)n−∑

d
i=1 ci ∏

d
i=1 cci

i

×

(
(∑d

i=1 ici)(dn−∑
d
i=1 ici)

(2π)d−1d(n−∑
d
i=1 ci)∏

d
i=1 ci

)1/2

. (3.73)

We can also use Stirling’s formula (3.70) to approximate the first part of (3.72) as((2d
d

)
2d

)n√
πdn .

Next, we divide the top and bottom of the upper term in (3.73) by ndn+1to get[(
d

∏
i=1

(
d
i

)2ci/n
)

(∑d
i=1 ici/n)∑

d
i=1 ici/n(d−∑

d
i=1 ici/n)d−∑

d
i=1 ici/n

dd(1−∑
d
i=1 ci/n)1−∑

d
i=1 ci/n

∏
d
i=1(ci/n)ci/n

]n

.

Similarly, we replace ci by ci/n in the lower term to get(
(∑d

i=1 ici/n)(d−∑
d
i=1 ici/n)

(2π)d−1dnd−1(1−∑
d
i=1 ci/n)∏

d
i=1(ci/n)

)1/2

.

Hence, we can write

E[(E?
n,2d)

2]→

((2d
d

)
2d

)2n
1

(2πn)d/2−1 ∑
c1+c2+···cd≤n

eng(c/n)h(c/n) , (3.74)

where

g(x) =d log(2)−d log(d)− log
(

2d
d

)
+

(
d

∑
i=1

ixi

)
log

(
d

∑
i=1

ixi

)
+

(
d−

d

∑
i=1

ixi

)
log

(
d−

d

∑
i=1

ixi

)

+
d

∑
i=1

xi log
(

d
i

)2

−
d

∑
i=1

xi log(xi)−

(
1−

d

∑
i=1

xi

)
log

(
1−

d

∑
i=1

xi

)
.

and

h(x) =

(
(∑d

i=1 xi)(d−∑
d
i=1 xi)

2(∏1≤i≤d xi)(1−∑
d
i=1 xi)

)1/2

.

As we are only looking for an asymptotic upper bound on E[(E?
n,2d)

2]/E[E?
n,2d]

2, we

reduce our problem to estimating the following upper bound

E[(E?
n,2d)

2]

E[E?
n,2d]

2 ≤
2

d(2πn)d/2

∫
x∈S(d)

eng(x)h(x)dx , (3.75)
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where S(d) = {x∈ [0,1]d : |x| ≤ 1}; we ensure g(x) and h(x) are both defined for all of

S(d) by setting g(x) = h(x) = 0 if any of the logarithms would evaluate to log(0) (or

any of the terms in the denominator of h(x) are 0). We observe that the contribution

to individual terms of the integral in (3.75) from h(x) is very small in comparison with

eng(x). Hence, the value of the integral is dominated by the terms where g(x) is close

to the maxima of g on S(d).

We will now estimate the integral in (3.75) using Laplace’s method. First, we

show that g(x) has a unique local maximum at a point a; hence, the value of eng(x) is

negligible, except in a small neighbourhood of a. By expanding g(x) around a using a

Taylor series, we are able to approximate (3.75) by a Gaussian integral. We can then

evaluate this using Theorem 3.41 and Lemma 3.46 to obtain an asymptotic estimate

for (3.75).

First, we find the unique local maximum of g in S(d). We write g(x) as the sum

d log(2)− log
(

2d
d

)
−d log(d)+g1(x)+g2(x) ,

where

g1(x) =

(
d

∑
i=1

ixi

)
log

(
d

∑
i=1

ixi

)
+

(
d−

d

∑
i=1

ixi

)
log

(
d−

d

∑
i=1

ixi

)
,

and

g2(x) =
d

∑
i=1

xi log
(

d
i

)2

−
d

∑
i=1

xi log(xi)−

(
1−

d

∑
i=1

xi

)
log

(
1−

d

∑
i=1

xi

)
.

The value of g1(x) is

m log(m)+(d−m) log(d−m)

for m = ∑i ixi, and, hence, the maxima of g1 are given by the set of points satisfying

d

∑
i=1

ixi = d−
d

∑
i=1

ixi . (3.76)

Taking the partial derivatives of g2 gives

∂g2

∂xi
= log

(
d
i

)2

− logxi + log

(
1−

d

∑
j=1

x j

)
,

for each i = 1,2, . . . ,d. Hence, any critical point of g2 must satisfy

xi =

(
d
i

)2
(

1−
d

∑
j=1

x j

)
, i = 1,2, . . . ,d (3.77)
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This is a system of d equations in d unknowns, so g2 has a unique critical point. Using

Lemma 3.45, we can verify that a particular point a, defined by

a =

(d
i

)2(2d
d

) : i = 1 . . .d

 ,

satisfies (3.77). Hence, a is the unique critical point of g2.

Recall the condition for a to be a local maximum of g2: we must have that the

Hessian matrix, D2g2(a), of second order partial derivatives evaluated at a is negative

definite. The second order derivatives of g2(x) are

∂g
∂xix j

=− 1
1−∑

d
i=1 xi

, i 6= j , (3.78)

∂g
∂xix j

=− 1
1−∑

d
i=1 xi

− 1
xi

i = j . (3.79)

Evaluating (3.78) and (3.79) at a gives the values for the Hessian matrix

D2g2(a)i, j =

 −
(2d

d

)
i 6= j

−
(2d

d

)
− (2d

d )

(d
i)

2 i = j
.

D2g2(a) is certainly negative definite, so a is the unique local maximum of g2 on S(d).

Moreover, since a satisfies (3.76), a is also a local maximum of g1. Recall that g(x)
is equal to the sum of g1(x) and g2(x) (plus some terms not dependent on x). Since a
is the unique point which is a local maximum of both functions, it follows that a must

be the unique local maximum of g(x). Furthermore, using Lemma 3.45, we can see

that g(a) = 0.

Next we consider the region

S̄(d) = {x ∈ [0,1]d : |xi−ai| ≤ n−1/2 log(n), for each i = 1,2, . . . ,d} .

We note that within S̄(d), we have that ng(x) is approximated by its second order

Taylor expansion

ng(x)→ n
2
(x−a)T D2g(a)(x−a) .

To see this consider the contribution from any third order term to ng(x):

n(xi−ai)(x j−a j)(xk−ak)
∂g

∂xix jxk
(a) . (3.80)

Within the region S̄(d), the absolute value of (3.80) is O(n−1/2 log(n)3), which is equal

to 0 in the limit.
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Moreover, the contribution to (3.75) from points outside S̄(d) will be negligible.

To see this, we note that the point x with |xi − ai| ≥ n−1/2 log(n) that maximizes

g(x) will, necessarily, be the point closest to a, i.e., one of the two points with

|xi−ai|= n−1/2 log(n) and x j = a j for j 6= i. Then, by considering the Taylor

expansion of g(x) around a, we can see that, for all points with xi−ai ≥ n−1/2 log(n),

for some i = 1,2, . . . ,d, we have

eng(x) ≤ e−γ log(n)2
,

where γ is some absolute constant independent of n. That is, in the limit, we will have

eng(x)h(x)→ 0 for x /∈ S̄(d). Hence, we can approximate (3.75) as

2
d(2πn)d/2

∫ a1+n−1/2 log(n)

a1−n−1/2 log(n)
· · ·

∫ ad+n−1/2 log(n)

ad−n−1/2 log(n)
eng(x)h(x)dx . (3.81)

We want to replace the integral in (3.81) by a Gaussian. To achieve this, we apply

the change of variable

x = a+ zn−1/2 ,

and integrate over z ∈ [− log(n), log(n)]d . As n→ ∞, we have

h(a+ zn−1/2)→ h(a) =
d
2

 (2d
d

)d+1

2∏
d
i=0
(d

i

)2

1/2

,

and

g(a+ zn−1/2)→ 1
2

zT Mz ,

where M =−D2g(a). Furthermore, we have

dx = nd/2dz .

Hence, by dominated convergence1, (3.81) is asymptotically equal to (2d
d

)d+1

2∏
d
i=0
(d

i

)2

1/2
1

(2π)d/2

∫
[− log(n),log(n)]d

e−
1
2 xT Mzdz . (3.82)

1If fn converges point-wise on S and is dominated by some integrable function F , then

lim
n→∞

∫
S

fndµ =
∫

S
lim
n→∞

fndµ .
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We can extend the range of integration to Rd without changing the asymptotic value

of (3.82), since the contribution from all values outside of [− log(n), log(n)]d will be

negligible, giving  (2d
d

)d+1

2∏
d
i=0
(d

i

)2

1/2
1

(2π)d/2

∫
Rd

e−
1
2 zT Mzdz . (3.83)

Recall that D2g(a) is a negative definite matrix. Hence, the integral in (3.83) is a

d-dimensional Gaussian, which we can evaluate using Theorem 3.41 as

(2π)d/2√
|M|

.

From Lemma 3.46, we see that

|M|=
(2d

d

)d+1

∏
d
i=1
(d

i

)2
d−1

2d−1
.

and so we can conclude that

lim
n→∞

E[(E?
n,2d)

2]

E[E?
n,2d]

2 ≤
√

2d−1
2d−2

.

Remark 3.48. It would also be possible to obtain an exact asymptotic estimate for

E[(E?
n,2d)

2] by using the Euler-Maclaurin summation formula [25, Chapter 3]. This is

a technique that can be used to approximate certain, smooth, summations by integrals.

The terms in the summation (3.74) vary smoothly enough for this to be applicable.

However, the asymptotic upper bound computed in Theorem 3.47 is sufficient for our

purposes, as we can obtain the matching asymptotic lower bound as a side-effect of

our application of Theorem 3.19 in §3.4.3, thus avoiding the need to introduce more

analytical machinery.

The next theorem estimates the expected number of Eulerian orientations in a

random 2d-regular graph. We use the same idea as the proof of Theorem 3.30, except

we are now conditioning on there being no loops or double edges. However, where we

had to do a tedious analysis of the number of loops and double arcs that can occur on

configurations sampled in weighted distributions in the proof of Theorem 3.30, we can

automatically infer Theorem 3.49 from the joint convergence of the random variables

in Janson’s Theorem (Theorem 3.19; see also Remark 3.21) and the results presented

in the next section.
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When we were analysing the moments of the number of arborescences of a random

d-in/d-out graph, we needed to condition on a random variable not involved in the

application of Janson’s Theorem, the number of double arcs. Hence, we could not use

the joint convergence of the random variables implied by Janson’s Theorem to obtain

Theorem 3.30.

Theorem 3.49. Let n ∈ N and let d be some fixed positive integer. Let En,2d denote

the number of Eulerian orientations of a graph G chosen uniformly at random from

G(n,2d). Then

E[En,2d]→ e−3/4

((2d
d

)
2d

)n√
πdn , and

E[(En,2d)
2]

E[En,2d]2
→ exp

(
− 1

2(2d−1)
− 1

4(2d−1)2

)√
2d−1
2d−2

.

Proof. Follows from Theorem 3.47, Remark 3.21, Theorem 3.15, and Lemma 3.51.

In §3.4.3 we will prove that E?
n,2d and Xi,n (the random variables counting the

number of i-cycles in σ(F) when F is chosen uniformly at random from Ωn,2d)

satisfy the conditions of Janson’s Theorem (Theorem 3.19) with λi = (2d − 1)i/2i

and δi = (2d−1)−i. Hence, in light of Remark 3.21, we have

E[En,2d]

E[E?
n,2d]

→ exp(−1/2−1/4) ,

and
E[E2

n,2d]

E[(E?
n,2d)

2]
→ exp

(
−3

2
− 1

2(2d−1)
− 1

4(2d−1)2

)
.

3.4.3 The asymptotic distribution of En,2d

In this section we characterise the asymptotic distribution of the number of Eulerian

orientations of a random 2d-regular graph.

Theorem 3.50. Let d be some fixed integer greater than 1, and let En,2d count the

number of Eulerian orientations of a random G ∈G(n,2d). Then

En,2d

E[En,2d]
→

∞

∏
i=3

(
1+

1
(2d−1)i

)Zi

e−1/2i ,

as n→ ∞, where Zi are independent Poisson random variables with E[Zi] =
(2d−1)i

2i .
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Although we do not have an immediate algorithmic application of this result, we

believe it to be a milestone on the road to characterising the asymptotic distribution

of the number of Euler tours of a random 2d-regular graph, a result that would have

algorithmic value (see §3.5).

To obtain an asymptotic distribution of the number of Eulerian orientations, En,2d ,

we will use Janson’s Theorem (Theorem 3.19). In our application of Janson’s

Theorem, we will have Yn = En,2d , and Xi,n counting simple cycles of length i in

random G ∈ G(n,2d). For Condition 1 of Theorem 3.19, we need to show that the

random variables Xi,n are asymptotic to Poisson random variables. It is a classic result

in the theory of random graphs (due to Bollobás [11]; given as Theorem 3.15 in this

thesis) that, for any fixed k, the random variables counting i-cycles, for i ≤ k, are

asymptotic to independent random variables with means

λi =
(2d−1)i

2i
.

The following lemma (see also Lemma 3.22) establishes Condition 2 of Theorem 3.19.

Lemma 3.51. Let d be some fixed positive integer, let E?
n,2d denote the number of

Eulerian orientations in σ(F) for F ∈Ωn,2d , and let Xi,n denote the number of cycles of

length i in σ(F) when F is chosen uniformly at random from Ωn,2d . Then, for any fixed

set of non-negative integers j1, j2, . . . , jk we have

E
[
E?

n,2d(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk
]

E[E?
n,2d]

→
k

∏
i=1

µ ji
i ,

where µi =
(2d−1)i+1

2i .

Proof. We start by establishing

E[E?
n,2d Xi,n]

E[E?
n,2d]

→ µi (3.84)

for i ≥ 1. Convergence of the factorial moments then follows for similar reasons as

before (see Lemma 3.29 or Lemma 3.16).

In this proof, we consider cycles in configurations F ∈ Ωn,2d . We say a partial

configuration F′ ⊆ F is a cycle, if the projection of F′, σ(F′), is a cycle in σ(F). That

is, for each i≥ 1, we call a set of edges e0,e1, . . . ,ei−1 in F ∈Ωn,d an i-cycle if there is

a sequence of vertices v0,v1, . . . ,vi−1 such that e j has one endpoint in Wv j and one in

Wv j+1 mod i for i = 0,1, . . . , i−1. We will use Ci(F) to denote the set of i-cycles in F, and

use Ci,n to denote the set of all i-cycles that can occur in some F ∈Ωn,2d .
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Recalling the definition of Ωn,2d from Theorem 3.47, we can expand the left-hand

side of (3.84) as

E[E?
n,2d Xi,n]

E[E?
n,2d]

=
1

|Ωn,2d|
∑

F∈Ωn,2d

|EO(F)||Ci(F)|

= ∑
F∈Ωn,2d

∑
E∈EO(F)

∑
C∈Ci(F)

1
|Ωn,2d|

= ∑
C∈Ci,n

|{(F,E) ∈Ωn,2d : C ⊆ F}|
|Ωn,2d|

= |Ci,n|P[C ⊆ F : (F,E) ∈Ωn,2d] ,

since the probability P[C ⊆ F : (F,E) ∈Ωn,2d] is the same for each C ∈ Ci,n. Hence, to

prove (3.84), it suffices to estimate |Ci,n| and P[C ⊆ F : (F,E) ∈Ωn,2d].

For i≥ 3, the number of ways to choose an i-cycle on V is (n)i
2i , since there are (n)i

ways to choose a sequence of i vertices, and sequences which are the reverse of one

another or equivalent under cyclic permutation are considered to be the same cycle. For

each i-cycle C, there are ((2d)2)
i ways to choose a partial configuration that projects

to C, so

|Ci,n|=
(n)i(2d)i(2d−1)i

2i
→ (n)i(2d)i(2d−1)i

2i
, (3.85)

for i ≥ 3. In fact, (3.85) also describes the number of elements in Ci,n for i = 1 and

i = 2. There are n ways to choose a loop vertex v, and
(2d

2

)
ways to choose the end-

points for a loop at v. There are
(n

2

)
ways to choose a pair of vertices u and v and 2

(2d
2

)2

ways to choose a partial configuration projecting to a double edge between u and v.

To estimate P[C ⊆ F : (F,E) ∈Ωn,2d] we need to count the number of elements of

Ωn,2d with C ⊆ F. Recall how we enumerate the elements of Ωn,2d when computing

E[E?
n,2d] in the proof of Theorem 3.47. First, we choose a partition of W into S and T

by dividing each Wv into equally sized disjoint subsets Sv and Tv. Then, we choose a

perfect matching from S to T . We follow the same approach here, by first assigning the

endpoints of the edges in C to S and T and then choosing the remainder of S and T . A

vertex v on the cycle C is said to be balanced if the edges incident with Wv on C contain

one point from Sv and one point from Tv, negatively imbalanced if the edges contain

two points from Sv and positively imbalanced if the edges contain two points from Tv.

Positively and negatively imbalanced vertices must alternate around C; therefore there

must be an equal number of each. Hence, assigning the endpoints of the edges in C to

S and T is equivalent to choosing an even subset of the vertices of C to be imbalanced,

and then fixing one vertex in that set to be positively imbalanced.
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Given an assignment of the endpoints of the edges of C to S and T , we now want

to partition the rest of the points in each Wv into Sv∪Tv. If v is an imbalanced vertex

of C, then we have already chosen two points from Wv to lie in Sv or in Tv, and, hence,

there are
(2d−2

d−2

)
ways to complete the partitioning of Wv into Sv∪Tv. If v is a balanced

vertex on C then there are
(2d−2

d−1

)
ways to complete the partition of Wv into Sv ∪ Tv,

since we have already chosen one element of Sv and one element of Tv. Finally, if v

is not on C there are
(2d

d

)
ways to partition Wv into Sv ∪Tv. Once we have chosen S

and T , there are (dn− i)! ways to choose the remainder of the perfect matching from

S to T . Hence, the number of pairs (F,E) ∈Ωn,2d where F contains a particular cycle

C ∈ Ci,n with 2 j imbalanced vertices is

2
(

i
2 j

)(
2d
d

)n−i(2d−2
d−2

)2 j(2d−2
d−1

)i−2 j

(dn− i)! .

We note that(
2d−2
d−2

)
=

(d−1)
2(2d−1)

(
2d
d

)
, and

(
2d−2
d−1

)
=

d
2(2d−1)

(
2d
d

)
.

Hence, the number of pairs (F,E) ∈Ωn,2d where F contains a particular cycle C ∈ Ci,n

with 2 j imbalanced vertices is

2
(

2d
d

)n

(dn− i)!
(

d
2(2d−1)

)i( i
2 j

)(
d−1

d

)2 j

.

Using the following identity

bi/2c

∑
j=0

(
i

2 j

)
x2 j =

(1+ x)i

2
+

(1− x)i

2
,

we see that
bi/2c

∑
j=0

(
i

2 j

)(
d−1

d

)2 j

=
1
2

(
2d−1

d

)i

+
1

2di .

Hence, we can see that the number of pairs (F,E) ∈Ωn,2d with C ⊆ F is equal to(
2d
d

)n (dn− i)!
2i

(
1+

1
(2d−1)i

)
.

Dividing by the number of elements in Ωn,2d , which we know to be
(2d

d

)n
(dn)!, gives

P[C ⊆ F : (F,E) ∈Ωn,2d] =
1

2i(dn)i

(
1+

1
(2d−1)i

)
→ 1

2idini

(
1+

1
(2d−1)i

)
.
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Finally, multiplying by the number of elements of Ci,n, which is given in (3.85), we

obtain
E[E?

n,2d Xi,n]

E[E?
n,2d]

→ (2d−1)i +1
2i

.

The factorial moments converge as stated for similar reasons as were given in

Lemma 3.29, see also, e.g, [100, Lemma 2.7] (given as Lemma 3.16 of this thesis).

Suppose we have a graph H on r vertices with r+ s edges, for r and s fixed and s > 0.

The number of ways to choose a partial configuration F′ projecting to H is O(nr), and

the probability of F′ ⊆ F when (F,E) is chosen uniformly at random from Ωn,2d is

O(n−r−s). Thus, we can conclude that the contribution to

E
[
E?

n,2d(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk
]

E[E?
n,2d]

from sets of cycles in which any vertex occurs on more than one cycle is O(n−1), and

so can be treated as 0 as n→ 0. Hence, cycles occur (asymptotically) independently

and we can conclude

E
[
E?

n,2d(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk
]

E[E?
n,2d]

→
k

∏
i=1

µ ji
i .

We will now prove Theorem 3.50 by applying Janson’s Theorem (Theorem 3.19)

with Lemma 3.51, Theorem 3.49, and Theorem 3.15 providing the required values.

Proof of Theorem 3.50. Our goal is to show

En,2d

E[En,2d]
→

∞

∏
i=3

(
1+

1
(2d−1)i

)Zi

e−1/2i ,

as n→ ∞, where Zi are independent Poisson random variables with E[Zi] =
(2d−1)i

2i .

We first apply Theorem 3.19 with Yn = E?
n,2d (from Theorem 3.47) and Xi,n the random

variables counting i-cycles from Lemma 3.51 and Theorem 3.15 to obtain

E?
n,2d

E[E?
n,2d]

→W =
∞

∏
i=1

(
1+

1
(2d−1)i

)Zi

e−1/2i ,

as n→ ∞. The convergence of E?
n,2d /E[E

?
n,2d] to W implied by Theorem 3.19 is joint

with the convergence of the random variables Xi,n to Zi. Hence, the distribution of E?
n,2d

conditioned on X1,n = X2,n = 0 is asymptotic to that of W conditioned on Z1 = Z2 = 0

(see Remark 3.21). Thus, it suffices to show that Theorem 3.19 holds with Yn = E?
n,2d .
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To apply Theorem 3.19, we need to verify the conditions 1 to 4 (of Theorem 3.19).

Theorem 3.15, due to Bollobás [11, 12], tells us that the Xi,n converge jointly to Poisson

random variables with means

λi =
(2d−1)i

2i
.

Hence, Condition 1 holds.

Lemma 3.51 tells us that the random variables Xi,n, taken together with E?
n,2d ,

satisfy, for any sequence of non-negative integers j1, j2, . . . , jk,

E[E?
n,2d(X1,n) j1(X2,n) j2 · · ·(Xk,n) jk ]

E[E?
n,2d]

→
k

∏
i=1

µ ji
i ,

as n→ ∞. Hence, by Lemma 3.22, we see that Condition 2 is satisfied with

δi =
µi

λi
−1 =

1
(2d−1)i .

For Condition 3, we evaluate

∞

∑
i=1

λiδ
2
i =

1
2

log
(

2d−1
2d−2

)
,

since

log
(

2d−1
2d−2

)
= log

(
1

1− 1
2d−1

)
=

∞

∑
i=1

1
i(2d−1)i .

Finally, Theorem 3.49 gives

lim
n→∞

E[(E?
n,2d)

2]

E[E?
n,2d]

2 ≤
√

2d−1
2d−2

,

so Condition 4 is also satisfied.

3.4.4 Bounding En,2d with high probability

Recall that Schrijver ([78], given as Theorem 1.56 of this thesis) has shown that the

number of Eulerian orientations in any 2d-regular graph is at least((2d
d

)
2d

)n

.

We can use Theorem 3.49 to infer that almost every 2d-regular graph has few Eulerian

orientations, in the sense that the number of Eulerian orientations is at most a linear

factor larger than Schrijver’s lower bound.
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Theorem 3.52. Let d be a fixed positive integer satisfying d ≥ 2. Suppose G is a

random 2d-regular graph. Then, with probability tending to 1 as n→ ∞, we have

P

[
#EO(G)≤ O(n)

((2d
d

)
2d

)n]
→ 1 ,

as n→ ∞.

Proof of Theorem 3.52. Let En,2d denote the number of Eulerian orientations of a

graph chosen uniformly at random from G(n,2d). We have shown, in Theorem 3.49,

that the expectation of En,2d satisfies

E[En,2d]→ e−3/4
√

πdn

((2d
d

)
2d

)n

.

Hence, the statement of the theorem is equivalent to saying

P
{

En,2d ≤
√

nE[En,2d]
}
→ 1 ,

as n→ ∞.

Recall Chebyshev’s inequality (Theorem 3.8): for any random variable X ,

P{|X−E[X ]| ≥ aE[X ]} ≤ Var[X ]

a2E[X ]2
,

By Theorem 3.49, we can assume the existence of a function cd(n) such that

E[E2
n,2d] = cd(n)E[En,2d]

2 ,

and

cd(n)→ exp
(
− 4d−1

4(2d−1)2

)√
2d−1
2d−2

Then, we have

P{En,2d ≥
√

nE[En,2d]} ≤ P{|En,2d−E[En,2d]| ≥ (
√

n−1)E[En,2d]}

≤ cd(n)−1
(
√

n−1)2

→ 0 ,

where we are using Chebyshev’s inequality with a =
√

n−1 and the fact that, for any

random variable X , Var[X ] = E[X2]−E[X ]2.
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Theorem 3.52 tells us that almost every 2d-regular graph has few Eulerian

orientations, in the sense that the number of Eulerian orientations is within a linear

factor of Schrijver’s lower bound. An example of a regular graph G for which the

number of Eulerian orientations greatly exceeds Schrijver’s lower bound is the toroidal

grid (see §1.3.1). Lieb [61] showed that the number of Eulerian orientations of the
√

n×
√

n toroidal grid is (
4
3

)3n/2

>>

((4
2

)
22

)n

.

In §3.6 we show a similar (but weaker) result for the number of Euler tours of toroidal

grids.

Let G be a particular 2d-regular graph, let ~G be a random orientation of G, and

let Iv denote the indicator variable for v satisfying the Eulerian condition in ~G. There

are 22d different orientations for the edges incident with v, of which
(2d

d

)
satisfy the

Eulerian condition. Hence,

P(Iv = 1) =

(2d
d

)
22d .

Now, suppose all the Iv were independent. Then the total number of Eulerian

orientations of G would be

2dn

((2d
d

)
22d

)n

=

((2d
d

)
2d

)n

.

Theorem 3.52 tells us that this rather crude estimate actually manages to capture

the exponential factor in the number of Eulerian orientations of almost every 2d-

regular graph. Of course, in reality the orientations of the arcs at different vertices

are not independent since choosing an orientation for the arcs incident with v implies

a particular orientation on the arc v shares with each of its neighbours. However,

Theorem 3.52 confirms the intuition that this dependence cannot be very strong, at

least for large graphs.

3.5 The number of Euler tours of random Eulerian

graphs

As was the case in the previous section, we restrict our attention to the class of graphs

with fixed even degrees, and generate our random graphs using the configuration

model. In this section, as was the case in §3.4, we restrict ourselves to the regular

case. That is, we are sampling graphs from G(n,2d). Recall the BEST Theorem
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(Theorem 1.57). This gives the following relationship between the sizes of the sets of

Euler tours and arborescences of an Eulerian directed graph ~G:

|ET(~G)|= 1
n
(d−1)!n|ARB(~G)| .

Brightwell and Winkler used this relationship to count Euler tours of an undirected

graph by counting the orbs of G. We recall (Definition 1.69) that the set of orbs of a

graph is the set of pairs

ORB(G) = {(E ,A) : E ∈ EO(G),A ∈ ARB(E)} .

In previous sections, we were able to obtain asymptotic estimates for the second

moments of random variables counting arborescences (and so also Euler tours) of

random d-in/d-out graphs and Eulerian orientations of random 2d-regular graphs.

Unfortunately, finding an estimate for the second moment of the number of orbs (and

so also the number of tours) of undirected graphs has proved elusive. However, we are

able to make a conjecture, and in §3.5.1 we provide some evidence, both empirical and

theoretical, as to why we think it to be true. We then explain, in §3.5.2, how, if this

conjecture holds, we will be able to obtain an asymptotic distribution for the number

of orbs of a random 2d-regular graph. Then, by almost identical arguments to those

used to prove Theorem 3.35, we would be able to show the probabilistic inequality of

Conjecture 3.4 holds.

3.5.1 Estimating the moments of On,2d

Recall the definition of an orb: the set of orbs of a graph G is the set of pairs (E ,A)

where E is an Eulerian orientation of G and A is an arborescence of E . It is more

straightforward to analyse the moments of the number of orbs of a random regular

graph than the number of Euler tours. Given an estimate of any moment of the number

of orbs of a random 2d-regular graph we can immediately infer an estimate of the

corresponding moment for the number of Euler tours.

Theorem 3.53. Let d be some fixed positive integer and let n ∈ N. Let O?
n,2d be

the random variable counting the orbs of a 2d-regular multigraph obtained as the

projection of a random F ∈Ωn,2d . Then,

E[O?
n,2d]→

√
πn
d

((2d
d

)
d

2d

)n

.
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Proof. As in the proof of Theorem 3.47, we define an Eulerian orientation of a

configuration F ∈ Ωn,2d to be a partition W = S ∪ T , where each Wv is split into

equally sized sets Sv and Tv, such that each edge in F has one endpoint in S and one

endpoint in T . Hence, each Eulerian orientation of a configuration F corresponds to

a directed configuration~F from an instance of the directed configuration model Φn,d .

Recall, from §3.3.1, that we defined an arborescence of a directed configuration ~F

to be a partial directed configuration ~F
′ ⊂ ~F such that σ(~F

′
) is an arborescence of

σ(~F). We now define an orb of a configuration to be a pair (E ,A), where E ∈ EO(F)

and A ∈ ARB(E). The expected number of orbs of a random configuration can be

computed as

E[O?
n,2d] =

|Ωn,2d|
|Ωn,2d |

,

where

Ωn,2d = {(F,E ,A) : F ∈Ωn,2d,E ∈ EO(F),A ∈ ARB(E)} .

To enumerate the elements of Ωn,2d , we first partition W into S and T . Then, we

enumerate the triples (F,E ,A) corresponding to that partitioning. Each partitioning

of W into S and T gives rise to an instance of the directed configuration model Φn,d ,

and, therefore, we can compute the number of triples (F,E ,A) with E consistent with

S and T using Lemma 3.27. Note that we never need to consider the generation of F,

as this is implicit in E . From Lemma 3.27, we see that the number of partial directed

configurations that project to arborescences in an instance of Φn,d is

ndn(dn−1)n−2 .

Given an arborescence A , there are dn−n+1 arcs that need to be added to complete

E , and (dn− n+ 1)! ways to choose configuration edges for these arcs. Finally, we

note that there are
(2d

d

)n
ways to partition W into S and T . Hence, the number of

elements in Ωn,2d is

|Ωn,2d|=
(

2d
d

)n

ndn(dn−1)! .

Dividing by

|Ωn,2d |=
(2dn)!
(dn)!2dn

and applying Stirling’s formula (3.70) we find

E[O?
n,2d]→

((
2d
d

)
d
2d

)n√
πn
d

.
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As in the case of Eulerian orientations, we can infer an estimation for E[On,2d] from

the estimation of E[O?
n,2d] by conditioning on there being no loops or double edges.

Theorem 3.54. Let d be some fixed positive integer and let n ∈ N. Let On,2d denote

the random variable counting the orbs of a random G ∈G(n,2d). Then,

E[On,2d]→ e3/4
√

πn
d

((2d
d

)
d

2d

)n

.

Proof. The theorem follows from the result of Bollobás [11] (see Theorem 3.15) and

from calculations already carried out in the proofs of Theorem 3.30 and Lemma 3.32.

Let L and D count the number of loops and double edges in a random configuration

F ∈Ωn,2d , and let L(1) and D(1) count the number of loops and double edges in F when

(F,E ,A) is chosen randomly from

Ωn,2d = {(F,E ,A) : F ∈Ωn,2d,E ∈ EO(F),A ∈ ARB(E)} .

We can estimate E[On,2d] as

E[On,2d] =
P[L(1) = D(1) = 0]
P[L = D = 0]

E[O?
n,2d]

From the classic result of Bollobás [11] (Theorem 3.15), we have

P[L = D = 0]→ exp
(
−2d−1

2
− (2d−1)2

4

)
= exp(−d2 +1/4) . (3.86)

Thus, it remains to estimate P[L(1) = D(1) = 0].

Recall how we enumerated the elements of Ωn,2d in Theorem 3.47 by first

partitioning W into S and T . Each partition of W into S and T gives rise to an instance

of the directed configuration model Φn,d , and an equal number of elements of Ωn,2d

arise from each choice of S and T . Hence, the expected number of loops in F, when

(F,E ,A) is chosen uniformly at random from Ωn,2d , is equal to the expected number

of loops in~F, when (~F,A) is chosen randomly from

Φn,d = {(~F,A) :~F ∈Φn,d,A ∈ ARB(E)} ,

as defined in the proof of Theorem 3.30 and Lemma 3.32. Hence, by arguments already

presented in the proof of Theorem 3.30

E[L(1)]→ m2−m
m

= d−1 ,
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since now m2 = d2n and m = dn. Similarly, the expected number of double edges can

be obtained as the expected number of double arcs and directed 2-cycles in ~F when

(~F,A) is chosen uniformly at random from Φn,d . Hence, by arguments presented in

Theorem 3.30 and Lemma 3.32, we have

E[D(1)]→ (m2−m)2

2m2 +
(m2/m)2−1

2
= d(d−1) .

It is straightforward to check that the factorial moments of L(1) and D(1) converge

jointly. Hence, L(1) and D(1) converge to a pair of independent Poisson random

variables with means d−1 and d(d−1), respectively. We can now estimate

P[L(1) = D(1) = 0]→ exp(−d2 +1) .

Combining our estimate of P[L = D = 0] and P[L(1) = D(1) = 0] gives

E[On,2d]

E[O?
n,2d]

=
P[L(1) = D(1) = 0]
P[L = D = 0]

→ exp(3/4) .

Let T n,2d be the random variable counting Euler tours of a random 2d-regular

graph. Applying the BEST theorem to Theorem 3.53 and Theorem 3.54, i.e.,

multiplying by n−1(d−1)!n, we get

E[T ?
n,2d]→

√
π

dn

((2d
d

)
d!

2d

)n

;

E[T n,2d]→ e3/4
√

π

dn

((2d
d

)
d!

2d

)n

We have not been able to obtain an asymptotic estimate for the second moment,

but make the following conjecture.

Conjecture 3.55. Let d be a fixed integer satisfying d ≥ 2. For each n ∈ N, we define

O?
n,2d to be the random variable counting the number of orbs of a graph G obtained

as the projection of a random F ∈ Ωn,2d and define On,2d to be the random variable

counting the number of orbs of a random 2d-regular graph. Then,

E[(O?
n,2d)

2]

E[O?
n,2d]

2 →
√

2d−1
2d−2

;

E[O2
n,2d]

E[On,2d]2
→ exp

(
− 1

2(2d−1)
− 1

4(2d−1)2

)
.
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We now discuss the motivation behind Conjecture 3.55, and present some empirical

evidence that seems to support it. The principal reason we believe (or, rather,

hope) Conjecture 3.55 to be true comes from the next section: if Conjecture 3.55

holds then we can apply Janson’s Theorem (Theorem 3.19) with Yn = T n,2d and Xi,n

counting i-cycles to obtain an asymptotic distribution for T n,2d (and, hence, confirm

Conjecture 3.4).

The key to establishing Conjecture 3.55 is enumerating the elements of the set

Ω̃n,2d = {(F,E ,E ′,A ,A ′) : F ∈Ωn,2d,E ,E ′ ∈ EO(F),A ∈ARB(E),A ′ ∈ARB(E ′)} .

This should be achievable by combining the proofs of the two previous sections. First,

we partition W into S∪T and S′∪T ′, as per the proof of Theorem 3.47. Then, we want

to enumerate the set of tuples (F,E ,E ′,A ,A ′) with S, T , S′, and T ′ defining E and E ′.
For example, by Theorem 3.28, we can compute that the number of elements of Ω̃n,2d

in which E ∩E ′ or E⊕E ′ is empty is

d2n−1

d−1
(2n)! .

As another example, consider the number of elements of Ω̃n,2d satisfying A∪A ′ ⊆
E ∩E ′. That is, the case when both the arborescences are contained in the portion of

edges the Eulerian orientations agree on. Suppose we have |Sv ∩ S′v| = dv, for some

vector of non-negative integers d = (d1,d2, . . . ,dn) satisfying

d ≥ dn ≥ dn−1 ≥ ·· · ≥ 1 .

Since A∪A ′ ⊆ E ∩E ′, the number of ways we can choose A , A ′ and E ∩E ′ is, by

Theorem 3.28,
n2

m(m−n)

(
∏

v
dv

)2

m! ,

where m = ∑v dv. Then, since there are no edges from A or A ′ in E⊕E ′, the number

of ways we can choose the remaining edges of E (and so also F and E ′) is (dn−m)!.

Letting ci = |{v : dv = i}|, we can see that the number of elements of Ω̃n,2d satisfying

A∪A ′ ⊆ E ∩E ′ is(
2d
d

)2

∑
c0+c1+···+cd=n

(
n

c0,c1, . . . ,cd

) d

∏
i=1

(
i2ci

(
d
i

)2ci
)

× n2(∑i ici)!(dn−∑i ici)!
(∑i ici)!(n−∑i ci)!
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Table 3.1: Critical ratio for d = 2

It is clear that computing this value alone, which could be seen as one of the “easy

cases” in the computation of |Ω̃n,2d| takes as much work as proving Theorem 3.28 and

Theorem 3.47.

We make the conjecture that, in general, the number of triples, for a particular c is

something like

d2n(
d

∑
i=1

ici)!(dn−
d

∑
i=1

ici)! f (c) , (3.87)

for some rational function f (c). If this is the case, then Conjecture 3.55 could

be proven (or disproven) by the argument used to prove Theorem 3.47 with f (c)
incorporated into h(c). However, we have not been able to derive a nice expression

in the form of (3.87). Once we allow edges from A and A ′ to occur in E ∩E ′ or

E⊕E ′, the situation grows more complicated as we now have two types of edges

(those in E ∩E ′ and those in E⊕E ′) and the argument used to prove Theorem 3.28

does not work. Despite this, it seems an expression of the form given in (3.87) should

exist.

Although we have not been able to prove Conjecture 3.55 we have obtained some

empirical evidence to support it, see Table 3.1. This data was generated as follows:

for each n we generated n2 different 4-regular graphs using the random generation

algorithm of Steger and Wormald [83]; then, for each G we computed an estimate for
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|ET(G)|, ZG, using Algorithm 5 with N = n2. We then computed two values

Z(1) =
1
n2 ∑

G
ZG ;

Z(2) =
1
n2 ∑

G
Z2

G .

The ratio Z2/(Z1)
2 was taken as an approximation of the critical ratio of On,4,

E[O2
n,4]

E[On,4]2
.

In Table 3.1 we have graphed it against the number of vertices n, with the conjectured

critical ratio marked by a green line at

exp
(
−1

6
− 1

36

)√
3
2
≈ 1.0083225 .

3.5.2 The asymptotic distribution of On,2d

The main result of this section is contingent on a positive answer to Conjecture 3.55.

Assuming Conjecture 3.55, we proceed to show how we can obtain an asymptotic

distribution for the number of orbs (or Euler tours) of a random 2d-regular graph.

Let Xi,n denote the number of i-cycles in a random F ∈ Ωn,d and let λi =
(2d−1)i

2i . As

stated previously, it is well known that the variables Xi,n are asymptotically independent

Poisson random variables with means λi. Hence, Condition 1 of Theorem 3.19 is

satisfied by Xi,n. The next lemma establishes Condition 2 of Theorem 3.19 for Yn =

On,2d .

Lemma 3.56. Let Xi,n count the number of directed i-cycles in a graph G ∈G?(n,2d).

Then, for any fixed set of integers j1, j2, . . . , jk we have

E
[
O?

n,2d ∏
k
i=1(Xi,n) ji

]
E[O?

n,2d]
→

k

∏
i=1

µ ji
i ,

where µi =
(2d−1)i−1

2i .

Proof. We start establishing
E[O?

n,2d Xi,n]

E[O?
n,2d]

→ µi (3.88)

for i ≥ 1. Convergence of the factorial moments then follows for similar reasons as

before (see Lemma 3.51).
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Let Ci,n denote the number of i-cycles which can occur in a configuration Ωn,2d ,

as defined in Lemma 3.51. Then, for the same reasons as were given in the proof of

Lemma 3.51 we have

E[O?
n,2d Xi,n]

E[O?
n,2d]

= |Ci,n|P[C ⊆ F : (F,E ,A) ∈Ωn,2d] ,

where we now define Ωn,2d to be the set

Ωn,2d = {(F,E ,A) : F ∈Ωn,2d,E ∈ EO(F),A ∈ ARB(E)} .

From the proof of Lemma 3.51, we already know

|Ci,n|=
(n)i(2d)i(2d−1)i

2i
→ (n)i(2d)i(2d−1)i

2i
.

Thus, it remains to estimate the probability P[C ⊆ F : (F,E ,A) ∈Ωn,2d].

Let C ∈ Ci,n. We want to count the number of elements of Ωn,2d with C⊂ F. We can

achieve this by following a similar approach to that used in the proof of Lemma 3.51.

We start by choosing a partition of W into S and T as per the proof of Lemma 3.51.

First, we assign the endpoints of the edges of C to S and T . A vertex v on C is said to

be balanced if one of the edges incident with v on C has a point from Sv and one has

a point from Tv; we say a vertex v is negatively (resp. positively) imbalanced if both

edges incident with v on C contain a point from Sv (resp. Tv). Given a particular choice

of j positively and negatively imbalanced vertices, the number of ways to choose S and

T is (see proof of Lemma 3.51)(
2d
d

)n( d
2(2d−1)

)i(d−1
d

)2 j

. (3.89)

Next, we choose which of the edges of C are to lie in A . For each balanced vertex

we have two choices: the edge with a point from Sv is either contained in A or it is not.

For each negatively balanced vertex there are three choices: we could have exactly one

of the two edges contained in A , or we could have that neither of them are. Finally, the

edge corresponding to the arc leaving any positively imbalanced vertex in A cannot be

contained in C. The intersection of any arborescence A with C is a set of directed paths.

Suppose this intersection contains k paths ending in negatively imbalanced vertices

(these must necessarily be paths of length 1), and l paths ending in balanced vertices.

Then A∩C contains j + k + l components, since each positively imbalanced vertex

must necessarily be the endpoint of a path in the intersection. Suppose R is the set of

endpoints of these paths and let Pv denote the path ending in v, for each v ∈ R.
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Next, we want to choose the remaining edges in A . The argument is similar to that

in Lemma 3.32: choosing the remainder of A is equivalent to choosing a arborescence

on (V\C)∪R, where we have contracted the path ending in v to a single vertex, for

each v ∈ R. For v ∈ R, let xv denote the points in
⋃

u∈Pv
Tu that are not used by edges

in C and let yv be equal to the number of points from
⋃

u∈Pv
Su not used in edges of C.

Then, for each v ∈ R, we have

xv = (d−1)|Pv| ,

if the first and last vertices of Pv are both balanced or the first vertex of Pv is negatively

imbalanced and the last vertex is positively imbalanced,

xv = (d−1)|Pv|+1 ,

if the first vertex of Pv is negatively imbalanced and either |Pv|= 1 or the last vertex is

balanced, and

xv = (d−1)|Pv|−1 ,

if the last vertex is positively imbalanced and either |Pv| = 1 or the first vertex of Pv

is balanced. We have yv equal to either d− 2, d− 1, or d, depending on whether v is

negatively imbalanced, balanced, or positively imbalanced.

Choosing the remainder of A is equivalent to choosing a tree on (V\C)∪ R in

which there are d points available for incoming and outgoing arcs of each v /∈C. For

each v ∈ R, there are xv points available for incoming arcs and yv points available for

outgoing arcs.

By Lemma 3.27, the number of ways to choose the remaining edges for A and E
such that R gives the roots of the components of A∩C, is

n(d−2)k(d−1)ldn−i+ j(dn− i−1)! ,

since we have ∑v∈R xv+d(n− i) = dn− i. Hence, the number of arborescences A with

R as the roots of the components in A∩C is

n2 j−k(d−2)k(d−1)ldn−i+ j−1(dn− i)! ,

since we must choose which of the two arcs leaving each imbalanced vertex in R is

contained in A .

Suppose j = 0. That is, C is a directed cycle in E . We note that C∩A cannot be

equal to C. Hence, in this case, we must have l > 0. Summing over all choices for R
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gives

i

∑
l=1

(
i
l

)
(d−1)ldn−i(dn− i−1)! = (dn−dn−i)(dn− i−1)! .

Then, by (3.89), the number of elements of Ωn,2d with C ⊂ F in which C has no

imbalanced vertices in E is

2n
(

2d
d

)n( d
2(2d−1)

)i

(dn−dn−i)(dn− i−1)! (3.90)

On the other hand, suppose that j > 0. Each of the positively imbalanced vertices

of C will be the endpoint of a path in C∩A . Hence, in this case we can have l = 0.

First, we sum over l, to get

i−2 j

∑
l=0

(
i−2 j

l

)
(d−1)l = di−2 j .

Then, we sum over k to get

2 j
j

∑
k=0

(
j
d

)(
d−2

2

)k

= d j .

Hence, the number of elements of Ωn,2d with C ⊂ F in which C has a particular set of

j imbalanced vertices in E is, for each j > 0,

2n
(

2d
d

)n( d
2(2d−1)

)i(d−1
d

)2 j

dn(dn− i−1)! . (3.91)

Combining (3.90) and (3.91), and summing over all choices for the sets of

imbalanced vertices we get that the number of (F,E ,A) ∈Ωn,2d with C ⊂ F is

2n
(

2d
d

)n( d
2(2d−1)

)i

dn(dn− i−1)!

(
bi/2c

∑
j=0

(
i

2 j

)(
d−1

d

)2 j

− 1
di

)
.

We have shown, in Lemma 3.51, that

bi/2c

∑
j=0

(
i

2 j

)(
d−1

d

)2 j

=
1
2

(
2d−1

d

)i

+
1

2di .

Hence, the number of (F,E ,A) ∈Ωn,2d with C ⊂ F is(
2d
d

)n dnn(dn− i−1)!
2i

(
1− 1

(2d−1)i

)
.

Dividing by the number of elements in Ωn,2d ,

|Ωn,2d|=
(

2d
d

)n

ndn(dn−1)! ,
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gives

P[C ⊆ F : (F,E ,A) ∈Ωn,2d]→
1

2idini

(
1− 1

(2d−1)i

)
.

Finally, multiplying by |Ci,n| gives (3.88).

Now, if Conjecture 3.55 was true, we could apply Janson’s theorem to obtain an

asymptotic distribution for Tn. For i≥ 3 we have

δi =−
1

(2d−1)i .

Hence,

∑
i≥3

λiδ
2
i =

1
2 ∑

i≥3

1
i(2d−1)i =

1
2

log
(

2d−1
2d−2

)
− 1

2(2d−1)
− 1

4(2d−1)2 .

Thus, On,2d and Xi,n would satisfy the conditions of Janson’s Theorem if Conjec-

ture 3.55 was true, in which case we would have

On,2d

E[On,2d]
→∏

i≥3

(
1+

1
(2d−1)i

)Zi

,

where the Zi are Poisson random variables with mean λi =
(2d−1)i

2i . This could then be

used to infer a concentration result of the form

P
[

On,2d

E[On,2d]
≥ n−1/2

]
→ 1 ,

as n→ ∞, of which Conjecture 3.4 would be an immediate corollary.

3.6 Euler tours of the grid

We close this chapter by presenting some examples of simple 4-regular graphs for

which Algorithm 4 and Algorithm 5 have exponential running time. The graphs we

consider are the m×n square grids with toroidal boundaries.

Definition 3.57. The m× n toroidal grid, denoted G(m,n), is the 4-regular graph

with vertex set {(i, j) : 0 ≤ i < m,0 ≤ j < n} and an edge joining each (i, j) to

(i±1 mod m, j±1 mod n).

Remark 3.58. In the following, for ease of presentation, we assume all addition of row

and column indices is done modulo m and n, respectively. Hence, the set of edges is

G(n,m) is given by {{(i, j),(i±1, j±1)} : 0≤ i≤ m−1,0≤ j ≤ n−1} .
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Golin et al. [39] claim that we can exactly count Euler tours of G(m,n) using

the transfer matrix method. This is the same method used in [61] and [6] to obtain

the exponential growth rate of the number of Eulerian orientations of the square and

triangular lattices, respectively. This is certainly true – we can define a transfer matrix

for counting many combinatorial structures defined on G(m,n) – but Golin et al. do

not provide any calculations or even a description of the transfer matrix used. As we

shall see, just defining an appropriate transfer matrix is not exactly straightforward.

Moreover, the (naive) algorithm based on the transfer matrix we define is sure to be

very inefficient, even for relatively small values of m.

We now discuss the problem of counting the Euler tours of G(m,n) and devise

a transfer matrix for the problem. We illustrate how this approach can be used to

derive exact expressions for |ET(G(m,n))| by computing the number of Euler tours for

G(2,n) and G(3,n). In general, this leads to a polynomial-time algorithm for counting

the Euler tours of G(m,n), for fixed m, albeit one with an exponential dependence on

m. Finally, we discuss why Algorithms 4 and Algorithm 5 will not behave like an fpaus

or an fpras for ET(G(m,n)), even when one of m and n is bounded.

Recall the definition of a transition system from §1.3.2. Each transition system

T of G(m,n) defines a decomposition of G(m,n) into a set of disjoint cycles, which

we denote by C (T ). If C (T ) has a single element, then T defines an Euler tour of

G(m,n). Let Vk = {(i, j) : 0 ≤ i ≤ m− 1,0 ≤ j ≤ k− 1}. We say a partial transition

system, defined only on Vk, is legal if it can be extended to a transition system defining

an Euler tour of G(m,n). Each partial transition system T defined on Vk decomposes

the subgraph induced by Vk into a set of disjoint paths and cycles. The paths in this

decomposition will include the trailing horizontal edges joining column 0 and column

n− 1, and column k− 1 and column k. A necessary condition for a partial transition

system T defined on Vk to be legal is for there to be no cycles in the decomposition of

Vk induced by T . Hence, each legal partial transition system T decomposes Vk into a

set of m paths, where each one of the end-edges of these paths is contained in the set

{{(i,0),(i,n−1)} : 0≤ i≤ m−1}∪{{(i,k−1),(i,k)} : 0≤ i≤ m−1} .

We classify the legal transition systems on Vk by the set of perfect matchings

on {l0, l1, . . . , lm−1,r0,r1, . . . ,rm−1}, denoted P (m), by identifying li with the edge

{(i,0),(i,n− 1)} and ri with the edge {(i,k− 1),(i,k)}. Then, to each legal T we

assign the class C ∈ P (m), where the edges of C correspond to the endpoints of the

paths in the decomposition of Vk induced by T . Clearly, the set of classes is the same
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for any k.

For C ,C ′ ∈ P (m), we define A(C ,C ′) to be the the number of transition systems on

Vk+1 \Vk = {(i,k) : 0≤ i≤ m−1} which extend a transition system on Vk with class

C to a transition system on Vk+1 with class C ′. Then A is a P(2m)×P(2m) matrix,

where P(2m) is the number of perfect matchings on K2m:

P(2m) =

(
2m
m

)
m!
2m .

Consider the effect of choosing a transition system on

Vk+1 \Vk = {(i, j) : 0≤ i≤ m−1} .

The only illegal transition system on Vk+1\Vk is the one in which {(i,k),(i+1 mod m)}
is paired with {(i,k),(i−1 mod m,k)}, for each i = 0,1, . . . ,m− 1. Each other

transition system defines a set of edge-disjoint paths, where each path has its end-edges

in the set

{{(i,k−1),(i,k)} : 0≤ i≤ m−1}∪{{(i,k),(i,k+1)} : 0≤ i≤ m−1}

Hence, we can identify the legal transition systems on Vk+1 \Vk with the set of

perfect matchings on {l′0, l′1, . . . , l′m−1,r
′
0,r
′
1, . . . ,r

′
m−1}, where l′i corresponds to the

edge {(i,k− 1),(i,k)} and r′i corresponds to the edge {(i,k),(i,k+ 1)}. Suppose the

perfect matching contains l′ir
′
j for i > j. Then exactly one of the following must hold

(see Figure 3.1 for an example):

1. The horizontal edge {(i,k− 1),(i,k)} is paired with the upwards vertical edge

{(i,k),(i + 1,k)} at (i,k), the downwards vertical edge {(i′−1,k),(i′,k))} is

paired with the horizontal edge {(i′,k),(i′,k + 1} at (i′,k), and the horizontal

edge {(t,k−1),(t,k)} is paired with the horizontal edge {(t,k),(t,k+1) at (t,k)

for each t ∈ [0.. j−1]∪ [i+1..m−1];

2. The horizontal edge {(i,k−1),(i,k)} is paired with the downwards vertical edge

{(i,k),(i− 1,k)} at (i,k), the downwards vertical edge {(i′+ 1,k),(i′,k))} is

paired with the horizontal edge {(i′,k),(i′,k + 1} at (i′,k), and the horizontal

edge {(t,k−1),(t,k)} is paired with the horizontal edge {(t,k),(t,k+1) at (t,k)

for each t ∈ [ j+1..i−1];

A similar situation holds for i < j or edges l′i l
′
j or r′ir

′
j. Hence, we can enumerate

the set of matchings which can correspond to transition systems on a particular column



Chapter 3. Euler tours of Random Graphs 146

0 0

1 1

2 2

3 3

4 4

5 5

0 0

1 1

2 2

3 3

4 4

5 5

Figure 3.1: Two possibilities for transition systems extending Vk to Vk+1 in G(n,6) with

edge l′4r′1. Solid (resp. broken) edges are paired together.

of G(n,m) as follows. Let M represent an arbitrary matching on {l′0, l′1, . . . , l′m−1} and

{r′0,r′1, . . . ,r′m−1}. Choose a decomposition of the cycle (0,1, . . . ,m−1) into a number

of edge disjoint paths. Then, for each i which is not the endpoint of one of these paths

we set l′ir
′
i ∈M. Each other i occurs as the endpoint of exactly two paths: label one of

these l′i and the other r′i. Collapsing each of these paths to a single edge-pairing gives

the remaining edges in M.

Given C ∈ P (m) for Vk and M, a matching for Vk+1\Vk, we obtain C ′ by identifying

ri with l′i in M, and renaming r′i as ri. The result is either a set of 2-paths that contract to

give the perfect matching C ′, or some set of edges including at least one cycle. In this

latter case, the transition system defining M does not extend a legal transition system

on Vk of class C to a legal transition system on Vk+1. Finally, we note that each M yields

a different C ′ when applied to C , so A(C ,C ′) is just the number of transition systems

on Vk+1 \Vk that yield the M which extends C to C ′, if it exists, and 0 otherwise.

Suppose l′ir
′
i ∈ M for all i. There are 2m distinct transition systems which yield

M: m ways to decompose (0,1, . . . ,m−1) into a single path and then 2 ways to label

the endpoints. Alternatively, for each i, there is a pair of transition systems where l′i is

connected to r′i by a path that uses all the vertical edges, and such that for j 6= i, l′i is

connected to r′i by a path consisting of two vertical edges. These are the only transition

systems that gives rise to the matching M with l′ir
′
i ∈M for all i. Hence, A(C ,C ) = 2m.

Now, suppose there is exactly one pair i 6= j with lir j, l jri ∈M. This can arise as a
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result of two transition systems: choose a decomposition of (0,1, . . . ,m− 1) into two

paths by breaking the cycle at i and j and then label the endpoints so that li and r j are

opposite endpoints of one path. Similarly, there are two transition systems yielding

each matching M with lil j,r jri ∈M for exactly one pair i 6= j. Hence, in this case we

have A(C ,C ′) = 2.

In all other cases, there is a single transition system on Vk+1\Vk that gives rise to

M. Hence, A(C ,C ′) ∈ {0,1,2,2m}.
Let x(C ) = 1 if liri ∈ C for all i and x(C ) = 0 otherwise, and let y(C ) = 1 if

identifying li with ri in C gives rise to a single m-cycle and y(C ) = 0 otherwise. Then,

|ET(G(m,n))|= xAnyT .

For any fixed constant m, A is a constant-sized matrix so, in theory, we can compute

|ET(G(m,n))| in polynomial time. However, the number of rows in A,

(2m)!
m!2m ,

grows very quickly, e.g., for m = 10, A has 654729075 rows and the same number of

columns, making computation impractical. It may be possible to exploit structure in

A to simplify the computation, as Lieb [61] and Baxter [6] did for the transfer matrix

counting Eulerian orientations.

For example, if lil j ∈ C , then A(C ,C ′) 6= 0 only if lil j ∈ C ′. Hence, we could exploit

the use of an ordering on P (m) such that C ≺ C ′ if there are fewer edges of the form lil j

in C than are in C ′. If the rows and columns of A satisfy such an ordering then A has a

structure similar to a block-diagonal matrix; see Proposition 3.59 and Proposition 3.59

below for examples. With such a matrix, we know there will be large contiguous blocks

consisting entirely of 0s. Indeed, it was a structure similar to this that enabled Lieb and

Baxter to compute asymptotic estimates of the number of Eulerian orientations of the

grid and triangular lattice.

In the following we use A[S] to denote the square sub-matrix of S with rows and

columns indexed by S. We use In to denote the n×n matrix which has value 1 in each

entry on the diagonal, and is 0 everywhere else, and use Jn to denote the n×n matrix

with all entries equal to 1.

Proposition 3.59. The number of Euler tours of the 2× n toroidal grid, G(2,n), is,

asymptotically,

(2n+3)6n−1−2n−1 .
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Proof. There are 3 perfect matchings on K4, so the transfer matrix for counting Euler

tours of the 2×n toroidal grid has 3 entries. These are

A =


4 2 2

2 4 2

0 0 6

 .

It is straightforward to calculate An. Firstly, we observe that An[0,1] = (A[0,1])n and[
4 2

2 4

]n

=

[
2n−1(3n +1) 2n−1(3n−1)

2n−1(3n−1) 2n−1(3n +1)

]
.

Moreover, it is clear that we also have An
3,3 = 6n since A3,3 is the only non-zero value

in the third row. Finally, we can calculate An
3,1 = An

3,2 = 2n6n−1. Hence, we have

An =


2n−1(3n +1) 2n−1(3n−1) 2n6n−1

2n−1(3n−1) 2n−1(3n +1) 2n6n−1

0 0 6n

 .

Finally, x = (1,0,0) and y = (0,1,1), from which we can deduce the claimed value for

|ET(G(2,n))|.

The number of transition systems of G(2,n) is 9n. Hence, the probability that

Algorithm 4 will generate an Euler tour on a particular orientation is ∼
(2

3

)n
.

Proposition 3.60. The number of Euler tours of the 3×n toroidal grid G(3,n) is

4
3

20n−14n− 4
3

5n +2n .

Proof. There are 15 pairings on {l1, l2, l3,r1,r2,r3}, each of which can arise from the

transition system on a single column of G(n,3). Table 3.2 enumerates these pairings,

along with the number of transition systems on Vk+1\Vk that each arise from, and

whether each of them extends to an Euler tour. With the ordering given in Table 3.2

we can write the transfer matrix A as

A =



A1 B1 C1 C1 C1

B1 A1 C1 C1 C1

0 0 D1 0 0

0 0 0 D1 0

0 0 0 0 D1


,
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No. σ #TS ET No. σ #TS ET

1 6 No 2 1 Yes

3 1 Yes 4 2 No

5 2 No 6 2 No

7 2 No 8 1 Yes

9 1 Yes 10 2 No

11 1 Yes 12 1 Yes

13 2 No 14 1 Yes

15 1 Yes

Table 3.2: Pairings for m = 3

where A1 = 5I3 + J3, B1 = 2J3, C1 = I3 + J3 and D1 = 2I3 + 6J3. Moreover, this

block structure is preserved over taking powers of A; that is, there exist 3×3 matrices

An,Bn,Cn and Dn such that

An =



An Bn Cn Cn Cn

Bn An Cn Cn Cn

0 0 Dn 0 0

0 0 0 Dn 0

0 0 0 0 Dn


.

Observe that [
An Bn

Bn An

]
=

[
A1 B1

B1 A1

]n

and Dn = (D1)
n ,

so we can calculate the values of these entries independently.

Claim 3.61.

An = 5nI3 +
14n +2n−2 ·5n

6
J3 and Bn =

14n−2n

6
J3

Proof. We write [
A1 B1

B1 A1

]
= 5I6 +

[
J3 2J3

2J3 J3

]
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and expand the powers of this sum by the binomial theorem2. Observing that

[
J3 0

0 J3

]k− j[
0 2J3

2J3 0

] j

=



2 j

[
Jk

3 0

0 Jk
3

]
if j mod 2 = 0

2 j

[
0 Jk

3

Jk
3 0

]
if j mod 2 = 1

,

we find [
J3 2J3

2J3 J3

]k

=

[
3k+(−1)k

2 Jk
3

3k−(−1)k

2 Jk
3

3k−(−1)k

2 Jk
3

3k+(−1)k

2 Jk
3

]
,

from which the claimed values for An and Bn follow.

By a similar calculation we can obtain

Dn = 2nI3 +
20n−2n

3
J3

Now, observe that Cn =A1Cn−1+B1Cn−1+C1Dn−1. Hence, if we let Cn = xnI3 + ynJ3

we can derive linear recurrences for xn and yn, which can be solved for

xn =
1
3
(5n−2n) ;

yn =
1
9
(2 ·20n−2 ·14n−5n +2n) .

From Table 3.2 we obtain

y = (0,1,1,0,0,0,0,1,1,0,1,1,0,1,1) ,

from which we can calculate |ET(G(3,n))|.

The number of transition systems of G(3,n) is 27n. Hence, the probability of

Algorithm 4 generating an Euler tour of any iteration is ∼
(20

27

)n
. For m = 4 the

transfer matrix has 105 rows and 105 columns, making direct computations of the

n-th power impractical. In both [61] and [6] the authors obtain the exponential growth

rate of |EO(G(n,n))| by calculating the maximum eigenvalue of the transfer matrix

A. This is made possible by the fact that the number of Eulerian orientations is equal

to the trace of An. Moreover, the transfer matrix for Eulerian orientations is block

diagonal, so it is sufficient to restrict analysis to a single block. In the case of the

transfer matrix for Euler tours things become more difficult because (a) the number of

2This is possible since all the matrices involved commute multiplicatively
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Euler tours is not obtainable in terms of something simple like the trace and (b) the

matrix is not block diagonal so we need to compute all/more entries of An. Although

this complexity prevented us from deriving exact values or asymptotic estimates for

|ET(G(m,n))|, we were able to obtain a crude upper bound on the number of Euler

tours of G(m,n), which is sufficient to show that Algorithm 4 and Algorithm 5 require

exponential running time on G(m,n), for any m and n.

Proposition 3.62.
|ET(G(n,m)| ≤ 80nm/4 .

Proof. The set of cycles of the form ((2i,2 j),(2i+1,2 j),(2i+1,2 j+1),(2i,2 j+1))

for 0≤ i≤m/2 and 0≤ j≤ n/2 is a set of nm/4 vertex-disjoint 4-cycles. The number

of transition systems containing any particular k-subset of these cycles is 3nm−4k.

Hence, by inclusion-exclusion, the number of transition systems containing none of

these cycles is
nm/4

∑
k=0

(
nm/4

k

)
(−1)k3nm−4k = 80nm/4 ,

and this is certainly greater than the number of Euler tours of G(n,m).

There are 3 choices for the transition system at each vertex of G(n,m), so

|TS(G(n,m))| is equal to 3nm. Hence, we can bound the probability Algorithm 4

generates an Euler tour of G(n,m) on any particular iteration as

|ET(G(m,n))|
|TS(G(m,n))|

≤
(

80
81

)nm/4

, (3.92)

which tends to 0 as either m or n goes to infinity. Hence, we can conclude that

Algorithm 4 does not have the behaviour of an fpaus, and Algorithm 5 does not have

the behaviour of an fpras, on G(m,n).

In light of the conjectured asymptotic distribution of T n,4 it is not wholly surprising

that G(m,n) has exponentially fewer Euler tours than transition systems. There are at

least nm 4-cycles in G(m,n): for 0≤ i≤ m−1 and 0≤ j ≤ n−1 we have the cycle

((i, j),(i+1, j),(i+1, j+1),(i, j+1)) ,

where addition of the first and second coordinate is taken modulo n and modulo m,

respectively. Then, the factor of W corresponding to i = 4 is(
80
81

)nm

for the class Gx containing G(m,n), and thus we can expect that the value of T n,4 for

graphs in this class will almost surely be exponentially smaller than E[T n,4].
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Conclusions

In this thesis, we addressed the complexity of generating and counting Eulerian

orientations and Euler tours. Firstly, we analysed the complexity of exactly counting

random Eulerian orientations of planar graphs. We then investigated the running time

of a particular Markov chain Monte Carlo algorithm for generating random Eulerian

orientations of planar graphs with a distribution that is close to uniform. Secondly,

we studied the problem of generating and counting Euler tours of Eulerian graphs

and digraphs. Although there are many positive results for the directed case of this

problem, almost nothing is known for the undirected case. Indeed, the structure of this

problem seems to make it particularly difficult to analyse Markov chain Monte Carlo

algorithms. Hence, we shifted our focus to investigating the running time of a simple

algorithm on random Eulerian graphs and digraphs.

In Chapter 2 we showed that the complexity of counting Eulerian orientations of

planar graphs is #P-complete. Although there already exists an algorithm which can

approximately count the Eulerian orientations of any Eulerian graph, we considered

an alternative approach to this problem for planar graphs. We showed that a different

approach, using a well-known Markov chain (the face-reversal Markov chain M F ,

a.k.a. Glauber Dynamics) mixes rapidly on the Eulerian orientations of triangular

lattice, which are of practical importance as configurations of an ice-type model studied

in statistical physics. These results complement existing results for the square lattice

and are of a practical value as it is this algorithm that physicists tend to use in practice.

However, we also showed that this chain is torpidly mixing on the set of Eulerian

orientations of certain planar graphs containing a bounded face with a large number

of edges (linear in the size of the graph). The only rapid mixing results for this chain

are on the Eulerian orientations of the square and triangular lattices; however, one
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would expect that it mixes rapidly for a larger class of graphs. We were not able to

determine the class of planar graphs for which it should be rapidly mixing. However,

we were able to develop some intuition. For example, suppose that, in every planar

graph G, the cut with the worst (smallest) conductance is of the form used in the proof

of Theorem 2.27. That is, there exists some face γ ∈ F (G), such that we can partition

Ω = EO(G) into two sets S and S̄ satisfying

1. ∀E ∈ S, ℘E(γ)≤℘max(γ)/2;

2. Every transition (of M F ) from S to S̄ reverses the edges of γ;

3. Φ(S) = Φ(M F ).

Let k = |η |. There are 2k orientations of the edges of η, and, therefore, the fraction of

Ω in which γ is clockwise oriented is > 2−k. Thus, if k is a constant, we would expect

the conductance of S to be at least bounded below by some inverse polynomial. Thus,

we make the following conjecture:

Conjecture 4.1. Let k be some fixed constant and suppose G is a planar graph that

can be embedded in the plane such that none of the bounded faces have more than k

edges. Then the face-reversal chain is rapidly mixing.

In Chapter 3 we analysed the number of Eulerian orientations and Euler tours of

random graphs. In particular, we were able to obtain asymptotic distributions for

the number of Euler tours of a random d-in/d-out directed graph and the number of

Eulerian orientations of a random 2d-regular graph. Intuitively, one would expect that

these results would combine to enable us to find an asymptotic characterisation of the

distribution of the number of Euler tours of a random 2d-regular graph. However, this

result proved elusive. We did, however, make a conjecture regarding the ratio of the

second moment and the square of the first (for the random variable counting Euler

tours of a random 2d-regular graph). In §3.5, we showed how, if this conjecture is

true, we would be able to obtain an asymptotic distribution for the number of Euler

tours of a random 2d-regular graph. Although we did not prove this conjecture, we

did perform an empirical investigation which provided some evidence to support it;

see Table 3.1. Not only do our empirical studies support the conjecture upon which the

proof of the asymptotic distribution depends, but the corresponding ratio of the random

variable counting Eulerian orientations of 2d-regular graphs (obtained in §3.4) matches

the conjectured ratio for the random variable counting Euler orientation of random 2d-

regular graphs.
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In the case of Euler tours of d-in/d-out directed graphs we were able to show that

almost every digraph G ∈ ~G(n,d) has close to the maximum number of Euler tours

possible. A consequence of this is that a pair of simple algorithms, Algorithm 4 and

Algorithm 5, satisfy the conditions of an fpras and an fpaus respectively, for the Euler

tours of almost every d-regular Eulerian digraph. It is already known that we can

sample Euler tours of every Eulerian orientation in polynomial time so this result is

not so interesting in itself. However, unlike other polynomial time algorithms for this

problem, Algorithm 4 and Algorithm 5 generalise naturally to the undirected case.

That is, if the conjectured asymptotic distribution for the number of Euler tours of

undirected 2d-regular graphs is true, and we have provided (reasonably) convincing

evidence of this, then Algorithm 4 and Algorithm 5 will be an fpaus and an fpras for

the Euler tours of almost every 2d-regular graph.

The asymptotic distributions of Chapter 3 suggest a strong connection between the

number of short cycles of different lengths and the number of Euler tours of graphs.

This matches the results of §3.6, where we showed that the toroidal grid, which has

many short cycles, has much less Euler tours than the expected value. This also relates

to the work of Lieb [61] and Baxter [6] on the Eulerian orientations of the square and

triangular lattices. Our analysis of the number of Eulerian orientations of random 2d-

regular graphs, presented in §3.4 shows that the number of Eulerian orientations of

each of these lattices is very far from typical. It would be interesting to try to prove

a non-probabilistic result along the lines of the asymptotic distribution results, e.g.,

showing that graphs which do not have many short cycles, or possibly graphs with

large girth, have a number of Euler tours (resp. Eulerian orientations) that is close the

expected value we can obtain from Theorem 3.53 (resp. Theorem 3.49).

To conclude, we have, in the work presented this thesis, extended the body of

knowledge regarding the problems of counting Euler tours and Eulerian orientations

in several ways. We have analysed the complexity of exactly counting Eulerian

orientations of planar graphs. We have made some further progress towards classifying

the planar graphs on which the natural face-reversal Markov chain is rapidly mixing.

Finally, in the most significant part of this thesis, we have made progress towards

obtaining an algorithmic result on the complexity of sampling and approximately

counting Euler tours of random graphs. The problem of sampling (and approximately

counting) Euler tours in polynomial time is, as explained in §1.3.2, a hard open

problem in the area of sampling algorithms. We hope that the work presented in

Chapter 3 of this thesis will prove useful to future students of this problem.



Appendix A

The interlace Matrix approach to

counting Euler tours

An alternative approach to the determinant method (Theorem 1.57 and Theorem 1.59)

for counting Euler tours of directed graphs was provided by Macris and Pulé in [64].

The justification for the claimed result in [64] was by complicated analytic calculation,

but Lauri attempted to provide a combinatorial proof in [59]. Unfortunately, both

these attempted proofs are false. In this section we explain the approach and provide a

counter-example.

Definition A.1. Let G be a 2-regular Eulerian digraph on V = {1,2, . . . ,n} and let T
be some arbitrary Euler tour of G. We say u and v interlace on T if they alternate on

T ; that is, T = (u . . .v . . .u . . .v . . .). We use u∼ v to denote “u and v interlace on T ”

The interlace matrix of T is then defined as

I(T )u,v =


1 if u∼ v and u < v ;

−1 if u∼ v and u > v ;

0 otherwise .

Macris and Pulé make following claim.

Claim A.2. Let G be a 2-regular Eulerian digraph on V = {1,2, . . . ,n}, and let In be

the n×n identity matrix. Then, for any Euler tour T of G,

|ET (G)|= |In + I(T )| .

However, there exists a simple example for which the above claim does not hold!

Suppose we have the Eulerian orientation E of K5 given in Figure A.1. The Laplacian
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Figure A.1: Counter-example to Claim A.2

matrix of this Eulerian orientation is

L =



2 −1 0 0 −1

0 2 −1 0 −1

−1 0 2 −1 0

−1 −1 0 2 0

0 0 −1 −1 2

.


By the BEST theorem, we can easily compute the number of Euler tours of E to be

11. Now, consider the Euler tour T ∈ ET (E): (1,5,4,2,3,4,1,2,5,3). The interlace

matrix of T is

I(T ) =



0 1 1 0 1

−1 0 1 1 0

−1 −1 0 1 1

0 −1 −1 0 0

−1 0 −1 0 0


.

Calculating the determinant |I5 + I(T )| gives 15! Thus, even for this small example

Claim A.2 does not hold.
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