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Abstract

Many interesting concepts in mathematics are essentially ‘cross-domain’ in nature, relating objects from more than one
area of mathematics, e.g. prime order groups. These concepts are often vital to the formation of a mathematical theory.
Often, the introduction of cross-domain concepts to an investigation seems to exercise a mathematician’s creative ability.
TheHRprogram, (Colton et al., 1999), proposes new concepts in mathematics. Its original implementation was limited
to working in one mathematical domain at a time, so it was unable to create cross-domain concepts. Here, we describe
an extension ofHR to multiple domains. Cross-domain concept formation is facilitated by generalisation of the data
structures and heuristic measures employed by the program, and the implementation of a new production rule. Results
achieved include generation of the concepts of prime order groups, graph nodes of maximal degree and an interesting
class of graph.

1 Introduction

In previous work on automated mathematical discovery,
(Lenat, 1976), (Colton et al., 1999), and in this paper, a
mathematical concept is taken to mean a class of math-
ematical objects, such as prime numbers, square num-
bers, Abelian groups, complete graphs etc.1 Mathemat-
ical concept formation is the process of identifying new
classes of mathematical objects with interesting and/or
desirable properties. In human mathematics, this is typic-
ally pursued in one of two ways: it can be a free exercise,
in which a mathematician is looking for new things to in-
vestigate, or a more directed process, in which a mathem-
atician is looking for a concept satisfying certain require-
ments as part of an investigation or a proof, see Colton
(2000), chapter 3.

A mathematical domain is an area of mathematical
study. Examples include number theory, the study of ques-
tions about numbers (usually meaning whole numbers),
and graph theory, the study of sets of vertices,V , and
edges,E, consisting of pairs of elements fromE (or more
informally, the study of diagrams consisting of nodes joined
together with lines, see Figure 1). Across-domain concept
is a set of objects in one domain that are identified as a
distinct class using information from at least one other
domain. Some examples illustrate this idea.

1A prime number is a natural number with exactly two factors, e.g.
2, 3, 5, 7. A square number is one that is equal to an integer times itself,
e.g. 1,4,9,16. An Abelian group is a group in which, for all elements
a, b in the group,ab = ba. A complete graph is one in which every
node is joined to every other node.

The concept ofeven order nodesis cross-domain. It
is the set of nodes in a graph which are joined to an even
number of edges (see Figure 1). The order of a node is a
graph theory concept, and the concept of even numbers is
from number theory. Euler’s solution to the K¨onigsberg
bridge problem, (Euler, 1736), required the use of even
order nodes, and launched the field of graph theory.

The city of Königsberg in East Prussia was divided by
a river containing two islands. Seven bridges connected
the islands to each other and to the banks of the river, and
the citizens of the city wondered if there was a way to tour
the city crossing every bridge exactly once. Euler proved
that this was in general possible if and only if every land
mass was connected to an even number of bridges, which
was not the case in K¨onigsberg.2
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Figure 1: Illustration of even order nodes. Nodesa, b and
c are even-order nodes, but nodesd ande are not

2See http://www.cut-the-knot.com/doyou know/graphs.html for
more details.



The concept ofprime order groupsis another example
of a cross-domain concept. A prime order group is one
containing a prime number of elements. Sylow’s the-
orem, (Sylow, 1872), required the concept of prime or-
der groups. While not as easy to state and understand as
Euler’s result, it too was a breakthrough and forms per-
haps the most profound result in finite group theory.3

Some of the most common examples of cross-domain
concepts relate numbers to other domains, like the two
examples above. There are also others, such as sets of
matrices forming a group. A recent Fields medal winner
was awarded the prize for a cross-domain investigation:
Richard Borcherds proved the ‘Moonshine Conjecture’,
originally proposed by John Conway and others, (Con-
way and Norton, 1979). This theorem links elliptic mod-
ular functions with concepts from string theory and group
theory.4

Cross-domain reasoning also arises in the natural sci-
ences, most commonly when some mathematics is ap-
plied to experimental results. For example, Mendel foun-
ded the field of genetics when he applied some element-
ary combinatorics to the results of his famous pea experi-
ments.

In summary, we’ve seen that cross-domain concepts,
while not dense in the mathematical literature, often provide
the inspirational step leading to results of real importance.
These ideas represent what we think of as creative stages
in the development of a theory. An effective automated
mathematical discovery package should have the ability
to form cross-domain concepts, and therefore be able to
provide the inspiration for such creative steps.

1.1 Background

The first automated mathematical concept formation pro-
gram was Lenat’sAM, as described in Lenat (1976).AM
stored concepts as definitions in LISP, and modified old
definitions to create new concepts. It also made conjec-
tures about the concepts it had invented. Lenat provided
AM with 76 initial concepts, mostly referring to bags,
sets and set operations. When running,AM developed
set-theory based definitions of numbers. It then quickly
moved into number theory, and re-invented some famous
concepts such as highly composite numbers. Lenat fol-
lowed upAM with EURISKO, Lenat (1983), which was
given some number-theory and set-theory concepts to start
with. However, neither program had facilities for expli-
citly reasoning about the two different domains in order
to propose cross-domain concepts.

3For those interested, Sylow’s three-part theorem built on a result of
Cauchy, which stated that a group whose order is divisible by a primep
has an element of orderp. Sylow extended this to the following: Ifpn

is the largest power of the primep to divide the order of a groupG then
(i) G has subgroups of orderpn (ii) G has1 + kp such subgroups for
somek, (iii) any two such subgroups are conjugate. Almost all work on
finite groups uses Sylow’s theorems. (O’Connor and Robertson, 1999)

4There is a good, short summary of the story of the moonshine con-
jecture at http://www.sciam.com/1998/1198issue/1198profile.html

GT5, Epstein (1988), was written by Epstein to per-
form concept formation, conjecture making and theorem
proving in graph theory. In GT, a graph type is repres-
ented by a seed,S, consisting of a set of base cases for
the type, a constructor,f , and a set of constraints for the
constructor,σ. These last two together describe a correct
and complete construction of all graphs in the class. GT
formed new concepts by generalising, specialising and
merging old ones, performing heuristic search on a best-
first agenda basis. At least one of the conjectures pro-
posed and proved by GT involved cross-domain concepts:

There are no odd-regular graphs on an odd
number of vertices.

This theorem states that, given an odd number of points,
there is no way to join them up such that every point is
connected to the sameoddnumber of other points. How-
ever, no other cross-domain conjectures are reported. GT
eventually succumbed to the size of the search space and
stopped producing concepts and conjectures that the pro-
gram’s author considered interesting.

The HR6 program, Colton et al. (1999), is an auto-
mated concept formation which also makes conjectures
about its concepts and calls on theorem proving and model
generation tools to settle them. At the start of anHRses-
sion, a domain is chosen, some initial objects in that do-
main are provided, and axioms for that domain are spe-
cified by the user. All model generation and theorem
proving tasks are then carried out with respect to these
axioms. HRwill then proceed to form concepts within
that domain, using general production rules such as ‘con-
junct’ (pick out objects satisfying the definition of two
previous concepts) and ‘common’ (pick out pairs of ob-
jects sharing a particular property) to make new concepts.
A weighted sum is taken of a variety of heuristic meas-
ures to evaluate the interestingness of a concept.HRwill
then apply more production rules to the most interesting
concepts. However, the original version ofHRcould not
store objects from more than one domain at a time, so
could not reason about multiple domains in order to form
cross-domain concepts. TheHRproject is ongoing, and
a new version is being developed in Java, (Colton et al.,
2000).

1.2 Paper outline

In the rest of this paper, we describe the generalisation
and extension of theHRprogram to perform cross-domain
concept formation. In section 2, we describe the operation
and knowledge structures of theHR program, and how
they were altered to allow cross-domain concept form-
ation. In section 3 we discuss the results achieved by
the new version of the program looking for cross-domain

5GT stands for Graph Theorist
6HR is named after Hardy and Ramanujam, two famous mathem-

aticians who worked together for a period early in the twentieth century.



Table 1: Concept table for ‘group operation’ (rows for 2
groups shown)

Group Element Element Element
c2 e e e
c2 e a a
c2 a e a
c2 a a e
c3 e e e
c3 e a a
c3 e b b
c3 a e a
c3 a a b
c3 a b e
c3 b e b
c3 b a e
c3 b b a

concepts in graph theory and number theory. These in-
cluded rediscovery of nodes of maximal degree, discov-
ery of an interesting type of graph and a generally high
yield of good quality concepts. In section 4, we draw
some conclusions and outline some suggestions for fur-
ther work.

2 Concept formation in HR

There follows a brief description of theHRprogram. Fur-
ther details can be found in (Bundy et al., 1998) or on the
HRproject webpage7.

2.1 Representation

Designed initially to work with finite algebras,HR can
work in any finite mathematical domain. The user must
supply a set of axioms for the domain, and a set of initial
concepts to work with. Typically, these will consist of a
set of entities from the domain, together with a way of
breaking them down. So, for example, in group theory
the user might supply the Cayley table8 for some small
groups, or in number theory, the breakdown of the first 10
integers into their divisors.

In HR, each concept is represented as a data table, and
each entity to which that concept is applicable will have
one or more rows in the table. The first column in the table
identifies the entity, and the other columns refer to prop-
erties of the entity or its components. For an example, see
table 1, the Cayley table for two cyclic groups.

2.2 Operation

HR functions on a best-first heuristic search basis. New
7http://www.dai.ed.ac.uk/˜simonco/research/hr
8A Cayley table for a group gives the result of applying the group’s

multiplication operation to any pair of elements.

concepts are generated byHR’s 9 production rules, and
evaluated using 7 heuristics. A weighted sum of the seven
scores is calculated for each concept, and the concepts
are sorted into order, the highest scoring concepts coming
first. The weights for each heuristic are set by the user.

2.3 HR’s heuristics and production rules

HRuses the following heuristics to measure the interest-
ingness of a concept:

Parsimony Concepts with small data tables tend to de-
scribe objects more parsimoniously, so these are
scored positively.

Discrimination and Invariance The user can supply a
‘gold standard’ categorisation, and these two heur-
istics will measure how close a concept comes to
achieving that categorisation.

Complexity This is a measure of how many production
rule steps were applied to build the concept. Sim-
pler concepts are preferred.

Applicability The proportion of entities known toHRwhich
are referred to by the concept is the applicability.

Novelty If the categorisation produced by a concept hasn’t
been seen before, then it is a novel concept, and so
scores highly. Categorisations that have been seen
many times before yield lower novelty scores.

Provable facts Concepts relating to proved theorems are
scored highly.

The production rules used to form new concepts are:

Size Measures the size of a set, e.g. given a table of
integers and their divisors, it will produce a table
showing how many divisors each number has.

Split Picks out an integer value - usually 1 or 2. Given
a table showing how many divisors a number has,
the split rule can pick out integers with exactly 2
divisors (prime numbers).

Match Produces a table containing rows with matching
columns. So, given a table of integers decomposed
into their factors, it can pick out numbers which
decompose into two identical factors, i.e. square
numbers.

Forall Finds a set of entities, all of which have sub-objects
of a certain type. Given the concept of central ele-
ments in a group, it will produce Abelian groups
(i.e. groups in which all elements are central).

Conjunct Forms the conjunction of two previous con-
cepts, e.g. from square numbers and prime divisors,
it can form squares of primes.



Exists Removes a column from a data table. So, given
a table consisting of groups and their elements of
order 3, it will produce a table of all groups which
contain an element of order 3.

Compose Given two concepts representing a function,
this production rule will produce a data table rep-
resenting their composition. For example, given a
data table containing groups and their sizes, and a
data table containing integers and their prime factors,
the compose rule would produce a table containing
groups and the prime factors of their size.

Common Picks out entities with rows in common, e.g.
integers sharing the same prime divisors.

Negate Returns the entities and corresponding rowsnot
appearing in a previous concept’s table with respect
to the complete list of entities provided by the user.
For example, given the concept of even numbers,
this production rule will produce the concept of odd
numbers.

Note that none of the production rules are domain spe-
cific, and all perform only very basic operations.

2.4 Adapting HRfor Cross-domain Work

We now look at the modifications made toHRin order to
allow it to form cross-domain concepts. As we mentioned
above, Colton’sHRprogram performs not only concept
formation but also conjecture making, theorem proving
and counterexample finding. In the work reported here,
however, only the concept formation capabilities of the
program were used. This was becauseHRcurrently lacks
the ability to interface with inductive theorem provers,
and so would be unlikely to be able to prove any conjec-
tures involving numbers or graphs. It was anticipated that
all the testing would involve number theory, so the the-
orem proving mechanism of the program was switched
off for this work.

The first stage of the development work involved mak-
ing some changes to the wayHRstores concepts in order
to be able to distinguish between concepts from different
domains.HRstores a list of ‘entities’, e.g. a list of groups
or a list of numbers depending on the working domain.
This was changed to allow entities to be identified with
their domains.

Some small changes were required to the wayHR
builds new concepts. For example,negate , returns a
table containing entities not satisfying a previous concept
definition. This was changed to test the domain of the
previous concept, and return a table containing only those
entities from the same domainwhich do not satisfy the
previous concept definition.

Certain aspects of the wayHRmeasures the interest-
ingness of its concepts also required modification. One
heuristic HR employs measures the ‘applicability’ of a
concept, i.e. the proportion of entities to which it applies.

This had to be changed so thatHRonly measured how
many entities in the concept’s own domain were referred
to by the concept. The ‘complexity’ measure was also
changed so as to be more lenient towards cross-domain
concepts. The measures concerned with classifications
(discrimination, invariance and novelty) required changes
to allow meaningful measurements to be made with re-
spect to the applicable domain. These changes consisted
of directingHRto only refer to categorisations in the same
domain when making the measurements.

2.4.1 User settings to control cross-domain work

Some new settings were added to allow the user to control
the multi-domain aspects of an investigation. The first al-
teration was to set up a system whereby the user can pre-
scribe the amount of investigation to take place in each
domain presented. This was achieved by adding user set-
table optionsdomain list anddomain multiplier .
The user setsdomain list to be a list of domains, say
[group,integer] , anddomain multiplier to be
a number, say 50, and thenHRwill produce 50 concepts
in graph theory, 50 concepts in number theory, and then
carry on pursuing whatever it finds most interesting. This
setting has no effect on the cross-domain aspect of the in-
vestigation, it simply specifies the domain that a concept
should refer to.

The second change was to add two more user options
to control the cross-domain behaviour of the program,
no cross before andencourage cross after .
The user setsno cross before to a value, say 150,
and then no cross-domain concepts will be formed until
150 single-domain concepts have been formed.
encourage cross after is set to a value, say 200,
and then after 200 concepts have been formed, cross-domain
pairs will be chosen first by the two-table production rules.

A further change was to relax the complexity limits
for cross domain concepts.HR has a user settable op-
tion calledcomplex max which sets a depth limit for
the search. This was modified so that a concept relating
objects fromn domains could be built on up to a depth of
n times the complexity limit set.

2.4.2 A new production rule: extreme

Although HR’s existing multi-concept production rules
could be made to function across multiple domains (with
minor modifications), it was important to establish the ef-
ficacy or otherwise of production rules designed explicitly
to facilitate cross-domain reasoning. We decided to de-
velop a rule to introduce extremes of orderings intoHR.
Several previously inaccessible concepts require the use
of an ordering. For example, in graph theory we may
be interested in the node of maximum degree, the largest
clique, or the longest path. In group theory, we might
be interested in the elements of maximal order or the
largest proper subgroup. In number theory, we might be
interested in the largest prime divisor or largest common



Table 2:extreme with parameters (1,3). Bold rows are
extracted

Group Element Number
G0 a 1
G0 b 2
G0 c 3
G1 a 1
G1 b 2

Table 3:extreme with parameters (1,3). Bold rows are
extracted

Graph Node Number
G0 a 4
G0 a 5
G0 a 7
G0 b 1
G0 b 9

factor. We needed to keep the rule general, to allowHR
to use any ordering it has available, and to allow it to ori-
ent an ordering in either direction, in order to be able to
extract both maximal and minimal values.

This new production rule was calledextreme . It
takes in two pre-existing concepts, and treats one of them
as an ordering. It then takes the other concept and extracts
only those rows whose entry in a specified column (first
parameter) are the ‘largest’ for a specified entity (second
parameter: graph, node, group member, etc.) with respect
to the ordering chosen. If several rows share the same
extremal value, they are all extracted. Tables 2, 3 and 4
show examples, using the ordering in table 5.

Note that no ordering properties such as asymmetry
or transitivity are assumed or checked for when choosing
a concept to use as an ordering for theextreme rule.
This was a deliberate decision, taken for several reasons:
firstly, checking that a table has the necessary properties
to qualify as a partial or total ordering would be computa-
tionally expensive. Secondly, it was anticipated that com-
pletely inappropriate ordering tables would tend to give
empty tables, i.e. would not have any extremal values,
and soHRwould not form a new concept (it would in-
stead conjecture that such a value did not exist). This was
borne out by the results achieved. Thirdly by keeping the
rule as general as possible we were givingHRa chance to
come up with something truly novel using a table as an
‘ordering’ that a human mathematician had never previ-
ously considered using. The originalHRproject had fol-
lowed a pro-generality methodology, and we wanted to
preserve this in our extensions.

Table 4:extreme with parameters (2,3). Bold rows are
extracted

Graph Node Number
G0 a 4
G0 a 5
G0 a 7
G0 b 1
G0 b 9

Table 5: Ordering - this concept is given toHR when
working in number theory

Number Number
1 0
2 0
2 1
3 0
3 1
3 2
...

...

3 Results

We evaluated the final product with respect to several pre-
cise criteria, in the hope that all these measures together
would give an accurate account of the degree of success of
the project. The two main areas of testing were: an eval-
uation ofHR’s ability to spot classically interesting cross-
domain concepts and evaluation of the quality of the new
concepts output byHR. There follows a description of the
testing criteria, the methods used for testing and the res-
ults. In this paper, for considerations of space and intelli-
gibility to non-mathematicians, we report only the results
obtained in graph theory and number theory. Details of
group theory and number theory testing, and further de-
tails of the graph theory testing including the complete
output from a run, can be found in (Steel, 1999).

3.1 Generating standard interesting concepts

To measure the ability to re-invent standard cross-domain
concepts, we compiled a list of target concepts for which
the originalHRimplementation was capable of finding the
individual single domain concepts required. Then we ran
HR in the two domains, and examined the output to see
how many of these concepts had been rediscovered. The
methodology used was the following: first setHRup with
the correct production rules to build the single domain
concepts that are required to form the cross-domain target
concepts. Then, set the weights for the concept measuring
heuristics, and setHRoff to form 500 concepts.

Several 500 concept batches were run with different



Table 6: Graph theory and number theory target con-
cepts. The double line separates ‘core’ concepts from
‘peripheral’ concepts

Concept Reason for Inclusion

Eulerian graphs
A result in the first graph

theory paper, Euler (1736).

Maximal order nodes
Used in many inequalities

of invariants.

Minimal order nodes
Used in the greedy graph

factorization algorithm and
several inequalities.

Odd order nodes
No. of odd order nodes

A graph contains an
Eulerian path if it has 0
or 2 odd order nodes.

Even order nodes Needed for Eulerian graphs.
Number of nodes of

max/min order
Give an indication of the
structure of the graph.

Order of a star
graph centre

Identifies star graph uniquely.

Star graph with an
even order node

Characterises symmetric
star graphs.

weights assigned to the concept measures. After each run,
weights were altered to try to favour the root single do-
main concepts required to build the missing targets. The
idea behind this was that if the target concepts really were
representative of the kind of concepts we wantHRto find,
then by adjusting the weights to perform well on these
concepts, we would not be ‘over-tweaking’ but rather de-
termining a set of weights well-suited to concept forma-
tion in that particular pair of domains. In the event, after
four 500 concept runs, we had found a set of weights that
gave our best performance on the target set.

3.1.1 What is a ‘classically interesting’ concept?

Cross-domain concepts, whilst vital to mathematics, are
not particularly dense in the literature. This is inconveni-
ent, as we need a significant number of target concepts
to get representative test results. Consequentially, a small
number of vital concepts were picked out and identified
as ‘core’ target concepts. Then, some slightly more ob-
scure concepts that could still be considered interesting
were identified, and labelled as ‘peripheral’ target con-
cepts. Table 6, gives the test concepts for the runs in
graphs and numbers, and the reasons for their inclusion.

3.1.2 Standard concepts reinvented

HRwas able to reinvent 2 out of 3 of the core targets and 3
out of 5 of the peripheral targets in the testing undertaken.
The missed targets were traced to a particular step in the
investigation whereHR applied itsexists production
rule in such a way as to miss abstracting away the actual
order of the nodes. This can be easily fixed - a version

of HRis under development that will insist on applying a
production rule with all possible parameters before atten-
tion is switched to another concept, or another rule.

3.2 Inventing new concepts

We measured the interestingness level of all the concepts
produced in a 500 concept run on the following scale:

Type 1 - Concepts in the classical target set (core or
peripheral).

Type 2- Concepts of a similar level of interest to those
in the peripheral target set, of interest but only in special-
ised areas of the theory. For example, non-regular graphs,
graphs with all nodes of order greater than one and nodes
of prime order were all found in one test run and classified
as type 2.

Type 3 - Concepts which may be of interest, but only
in a specialised situation. For example, graphs with more
than two nodes of order 1 and graphs where all nodes are
of order eithera or b, anda + 1 = b.

Type 4 - Anything not falling into the above three
types

To analyse thoughtfully and accurately the quality of
cross-domain concepts in a 500 concept run with respect
to our four-point scale was a time consuming process, and
only one run was completely analysed in this way. The
run chosen was the run in graph theory and number the-
ory that produced the most classical target concepts. A
complete list of the concepts evaluated, and their classi-
fications, is given in appendix 1 of (Steel, 1999).

HR’s own measures of interestingness were not re-
ferred to at this stage of the evaluation process. By de-
fault, HRre-evaluates all the concepts it has invented so
far every time it invents another 10 new concepts. After
this re-evaluation, the top ten concepts (ranked by inter-
estingness) are displayed on the screen. For this evalu-
ation run, the program was altered to prevent it from dis-
playing the top ten list, to ensure that the concepts were
categorised purely on their apparent mathematical merit.
This allowed us to compareHR’s measure of interesting-
ness with our own later (see section 3.3).

The proportion of concepts fitting into each of the four
categories are illustrated in the pie chart in figure 2. We
can classify a concept satisfying the criteria for a type 1,
type 2 or type 3 classification as being ‘acceptable’, in
that it must at the very least be plausible and of some in-
terest. Of the concepts in the run analysed, 56% were ac-
ceptable. This compares favourably with Lenat’s 125 out
of 300 (42%)‘acceptable’ concepts inAM, and 200 out
of 1000 (20%) forEURISKO. Few very interesting con-
cepts (i.e. type 1 or type 2) were found in the run (just 8%
of the total cross-domain concepts). This is comparable
with Lenat’s 25 out of 300 ‘really interesting’ concepts in
AM (8.3%). Of course, we must be wary of attaching ex-
cessive importance to subjective judgements of this kind
without knowing exactly what Lenat was classing as an
‘acceptable’ or a ‘really interesting’ concept.



Figure 2: Overall concept quality

3.3 Effectiveness ofHR’s interestingness meas-
ures

An effective concept formation program should rate as in-
teresting the same concepts a human mathematician would
rate as interesting. We evaluated this by collating the
interestingness measures assigned to the concepts in the
fully evaluated run presented in figure 2. The maximal,
mean and minimal interestingness scores for each cat-
egory of concept are illustrated in bar chart form in figure
3. There is a significant fall in the mean level of interest-
ingness (the central, light coloured bar in the chart) from
type 2 to type 3 to type 4, but a smaller fall in the maximal
and minimal values. The spread of interestingness values
assigned between maximum and minimum for any given
concept type was more significant than the scale of the de-
crease in the mean value. This is unfortunate, as it means
HRcan be misled: it could assess a type 4 concept to be
more interesting that a type 1 concept.HRcannot cur-
rently undertake any mathematical investigation of these
concepts as its proof tools are limited to first order logic.
HRhas no background knowledge of the mathematical lit-
erature. Despite this, we are asking it to give an instant
evaluation of the mathematical worth of a concept. Given
the scale of this task, achieving a general correlation with
the human assessment of interestingness is a good result,
but the degree of mis-assessment imposes a limit on the
success of the program. Some suggestions for improve-
ments are given in section 4.

Figure 3:HR’s evaluation of concepts’ interestingness

3.4 Discovery highlights

A good automated concept formation program should come
up with some new novel and interesting concepts. To
evaluate this, one interesting looking concept was extrac-
ted from the analysed graph theory run. It had the follow-
ing definition:

A GraphG with a noden1 of orderM such
that∀ nodesn2 ∈ G, order(n1)≥ order (n2),
and M = {I|∃ a noden3 ∈ G,order(n3)
= I}.

This corresponds to a graph with a node of orderM
that is the maximal order node in a graph in which there
are nodes ofM different orders. The definition is fairly
complicated, but a moment’s thought reveals that such a
graph must have at least one node of every order from
1 to M . What is the minimum number of nodes that a
simple graph9 with such a property can be drawn on for a
particularM ? We managed to prove the following simple
theorem:

Theorem 1 ∀m ∈ N, m ≥ 1, ∃G, a graph onm + 1
vertices s.t.∀n, 1 ≤ n ≤ m, ∃ a node of ordern in G

Proof The proof is by induction onm, details in
(Steel, 1999).

This type of graph was new to the authors, but it has
appeared in mathematical literature. In (Zeitz, 1999), a
problem is posed involving a host inviting 10 couples for
a party:

I ask everyone present, including my wife,
how many people they shook hands with. It
turns out that everyone shook hands with a
different number of people. If we assume
that no one shook hands with his or her part-
ner, how many people did my wife shake hands
with? (I did not ask myself any questions.)

9A simple graph is one with no duplicated connections and no loops.



By drawing a graph, which turns out to be of the type we
rediscovered, and applying a little induction, Zeitz shows
that the hostess must have shaken 10 hands.

So, our graph theory concept is involved in at least
two simple but interesting pieces of mathematics. This
is a promising result. The concept was also a complete
surprise to the authors - it seems to be a characteristic
of HR that it is able to find a way of inventing concepts
which at first thought one would not expect it to have the
capacity to represent.HRfinds them interesting because
it can evaluate qualities of the underlying data rather than
just the definition.

4 Conclusions and Further Work

The control structure of the cross-domainHR could be
modified so that cross-domain concepts are only formed
when they are needed to develop a theory further.HR
could have a pre-set interestingness limit, and attempt to
generate cross-domain concepts only when formation in a
single domain was producing concepts below that threshold
setting.

As highlighted by the bar chart in figure 3, there is
room for improvement inHR’s interestingness heuristics.
One easy way to improve performance would be to in-
crease the number of modelsHRis given in each domain.
This would make the applicability measure more accur-
ate, and so decrease the interestingness of concepts which
consist of a convoluted definition of one particular model.
However, it would also slow the program down.

The conjecture making and theorem proving aspects
of the HR project have not been extended in this pro-
ject. Allowing HRaccess to inductive theorem provers
would give it a chance to prove some cross-domain con-
jectures involving numbers. In particular, many graph
theory proofs are based on induction. Being able to prove
cross-domain conjectures would also allowHR to judge
the worth of cross-domain concepts more accurately, as it
does in the single domain version.

Designing and adding further production rules would
enhanceHR’s coverage of mathematics. A useful exercise
would be to pick some concepts, say from an index or
glossary in an undergraduate text, and analyse what kind
of rules would be required to build those concepts. This
would at least give a feel for the scale of the problem, i.e.
whether we need ten more production rules or a thousand
more production rules. It would be useful to carry out this
kind of analysis before embarking on further extensions to
the work.

The results achieved by the program were generally
encouraging. In particular, the ideas behindHRwere seen
to generalise to a search space with a much larger branch-
ing factor without destroying the quality of the concepts
constructed. If the cross-domain conjecture making abil-
ities of HRcan be extended similarly, and there is every
reason to believe that they can, then perhaps a future ver-

sion of HRwill be able to come up with a discovery of
real mathematical importance.
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