
Value Function Approximation on Non-Linear Manifolds
for Robot Motor Control

Masashi Sugiyama∗,† Hirotaka Hachiya† Christopher Towell† and Sethu Vijayakumar†

Abstract— The least squares approach works efficiently in
value function approximation, given appropriate basis func-
tions. Because of its smoothness, the Gaussian kernel is a
popular and useful choice as a basis function. However, it
does not allow for discontinuity which typically arises in real-
world reinforcement learning tasks. In this paper, we propose
a new basis function based on geodesic Gaussian kernels,
which exploits the non-linear manifold structure induced by
the Markov decision processes. The usefulness of the proposed
method is successfully demonstrated in a simulated robot arm
control and Khepera robot navigation.

I. INTRODUCTION

Value function approximation is an essential ingredient
of reinforcement learning (RL), especially in the context
of solving Markov Decision Processes (MDPs) using policy
iteration methods [1]. In problems with large discrete state
space or continuous state spaces, it becomes necessary to
use function approximation methods to represent the value
functions. A least squares approach using a linear com-
bination of predetermined under-complete basis functions
has shown to be promising in this task [2]. Fourier func-
tions (trigonometric polynomials), Gaussian kernels [3], and
wavelets [4] are popular basis function choices for general
function approximation problems. Both Fourier bases (global
functions) and Gaussian kernels (localized functions) have
certain smoothness properties that make them particularly
useful for modeling inherently smooth, continuous functions.
Wavelets provide basis functions at various different scales
and may also be employed for approximating smooth func-
tions with local discontinuity.

Typical value functions in RL tasks are predominantly
smooth with some discontinuous parts [5]. To illustrate this,
let us consider a toy RL task of guiding an agent to a goal in a
grid world (see Fig.1(a)). In this task, a state corresponds to a
two-dimensional Cartesian position of the agent. The agent
can not move over the wall, so the value function of this
task is highly discontinuous across the wall. On the other
hand, the value function is smooth along the maze since
neighboring reachable states in the maze have similar values
(see Fig.1(b)). Due to the discontinuity, simply employing
Fourier functions or Gaussian kernels as basis functions

The authors acknowledge financial support from MEXT (Grant-in-Aid
for Young Scientists 17700142 and Grant-in-Aid for Scientific Research (B)
18300057), the Okawa Foundation, and EU Erasmus Mundus Scholarship.

∗Department of Computer Science, Tokyo Institute of
Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
sugi@cs.titech.ac.jp

†School of Informatics, University of Edinburgh, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK. H.Hachiya@sms.ed.ac.uk,
C.C.Towell@sms.ed.ac.uk, sethu.vijayakumar@ed.ac.uk

tend to produce undesired, non-optimal results around the
discontinuity, affecting the overall performance significantly.
Wavelets could be a viable alternative, but are over-complete
bases—one has to appropriately choose a subset of basis
functions, which is not a straightforward task in practice.

Recently, the article [5] proposed considering value func-
tions defined not on the Euclidean space, but on graphs
induced by the MDPs (see Fig.1(c)). Value functions which
usually contain discontinuity in the Euclidean domain (e.g.,
across the wall) are typically smooth on graphs (e.g., along
the maze). Hence, approximating value functions on graphs
can be expected to work better than approximating them in
the Euclidean domain.

The spectral graph theory [6] showed that Fourier-like
smooth bases on graphs are given as minor eigenvectors
of the graph-Laplacian matrix. However, their global nature
implies that the overall accuracy of this method tends to
be degraded by local noise. The article [7] defined diffusion
wavelets, which posses natural multi-resolution structure on
graphs. The paper [8] showed that diffusion wavelets could
be employed in value function approximation, although the
issue of choosing a suitable subset of basis functions from
the over-complete set is not discussed—this is not straight-
forward in practice due to the lack of a natural ordering of
basis functions.

In the machine learning community, Gaussian kernels
seem to be more popular than Fourier functions or wavelets
because of their locality and smoothness [3], [9], [10]. Fur-
thermore, Gaussian kernels have ‘centers’, which alleviates
the difficulty of basis subset choice, e.g., uniform allocation
[2] or sample-dependent allocation [11]. In this paper, we
therefore define Gaussian kernels on graphs (which we call
geodesic Gaussian kernel), and propose using them for
value function approximation. Our definition of Gaussian
kernels on graphs employs the shortest paths between states
rather than the Euclidean distance, which can be computed
efficiently using the Dijkstra algorithm [12], [13]. Moreover,
an effective use of Gaussian kernels opens up the possibility
to exploit the recent advances in using Gaussian processes
for temporal difference learning [11].

When basis functions defined on the state space are used
for approximating the state-action value function, they should
be extended over the action space. This is typically done
by simply copying the basis functions over the action space
[2], [5]. In this paper, we propose a new strategy for this
extension, which takes into account the transition after taking
actions. This new strategy is demonstrated to work very well
when the transition is predominantly deterministic.

Sethu
Text Box
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'07), Rome, Italy (2007).



→
→
→
↓
→
→
→
→
→
→
→
→
→
→
↑
→
↑
→

→
→
→
↓
→
↓
→
→
→
→
→
→
→
→
→
→
↑
→

→
→
↓
↓
→
↓
↓
→
→
→
→
→
↑
→
↑
→
↑
→

→
→
→
↓
→
→
→
→
→
→
→
↑
↑
→
↑
→
→
→

→
→
↓
↓
→
↓
→
→
→
→
→
→
→
→
↑
→
→
→

→
→
→
↓
→
→
→
→
→
→
→
→
↑
→
→
→
→
→

→
→
→
↓
↓
↓
↓
↓
→
→
→
↑
↑
→
→
→
↑
→

↓
↓
→
↓
↓
↓
↓
↓
→
→
→
↑
→
→
↑
→
↑
→

↓
↓
↓
↓
↓
↓
↓
↓
→
→
↑
↑
↑
↑
↑
↑
↑
↑

→
↑

→
→
→
→
→
↑
↑
→
→
→
→
↑
↑
↑
↑
↑
→
↑

→
→
↑
→
→
→
→
→
↑
↑
↑
→
→
→
→
→
→
↑

→
→
↑
→
↑
↑
↑
↑
↑
→
→
→
↑
↑
→
↑
↑
↑

→
→
→
→
→
↑
→
↑
→
↑
↑
↑
↑
↑
↑
↑
↑
↑

→
→
→
↑
↑
↑
↑
↑
↑
↑
→
↑
↑
↑
↑
↑
↑
↑

→
→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
→
↑
↑
↑
→
↑

→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(a)

5
10

15
20

5

10

15

20

−30

−20

−10

x

y

(b) (c)

Fig. 1. An illustrative example of an RL task of guiding an agent to a goal in the grid world. (a) Black areas are walls over which the agent cannot move
while the goal is represented in gray. Arrows on the grids represent one of the optimal policies. (b) Optimal state value function (in log-scale). (c) Graph
induced by the MDP and a random policy.

II. FORMULATION OF THE REINFORCEMENT LEARNING

PROBLEM

In this section, we briefly introduce the notation and
reinforcement learning (RL) formulation that we will use
across the manuscript.

A. Markov Decision Processes

Let us consider a Markov decision process (MDP)
(S,A,P , R, γ), where S = {s(1), s(2), . . . , s(n)} is a finite1

set of states, A = {a(1), a(2), . . . , a(m)} is a finite set of
actions, P(s, a, s′) : S × A × S → [0, 1] is the joint
probability of making a transition to state s′ if action a is
taken in state s, R(s, a, s′) : S×A×S → R is an immediate
reward for making a transition from s to s′ by action a,
and γ ∈ [0, 1) is the discount factor for future rewards. The
expected rewardR(s, a) for a state-action pair (s, a) is given
as

R(s, a) =
∑

s′∈S

P(s, a, s′)R(s, a, s′). (1)

Let π(s) : S → A be a deterministic policy which the agent
follows. In this paper, we focus on deterministic policies
since there always exists an optimal deterministic policy [2].
Let Qπ(s, a) : S×A → R be a state-action value function for
policy π, which indicates the expected long-term discounted
sum of rewards the agent receives when the agent takes
action a in state s and follows policy π thereafter. Qπ(s, a)
satisfies the following Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′)Qπ(s′, π(s′)). (2)

The goal of RL is to obtain a policy which results in
maximum amount of long-term rewards. The optimal policy
π∗(s) is defined as π∗(s) = argmaxa∈A Q∗(s, a), where
Q∗(s, a) is the optimal state-action value function defined
by Q∗(s, a) = maxπ Qπ(s, a).

1For the moment, we focus on discrete state spaces. In Sec.III-D, we
extend the proposed method to the continuous state space.

B. Least Squares Policy Iteration

In practice, the optimal policy π∗(s) can not be directly
obtained since R(s, a) and P(s, a, s′) are usually unknown;
even when they are known, direct computation of π∗(s) is
often computationally intractable.

To cope with this problem, the paper [2] proposed ap-
proximating the state-action value function Qπ(s, a) using a
linear model:

Q̂π(s, a; w) =

k∑

i=1

wiφi(s, a), (3)

where k is the number of basis functions which is usu-
ally much smaller than the number of states, w =
(w1, w2, . . . , wk)> are the parameters to be learned, >

denotes the transpose, and {φi(s, a)}ki=1 are pre-determined
basis functions. Note that k and {φi(s, a)}ki=1 can depend
on policy π, but we do not show the explicit dependence
for the sake of simplicity. Assume we have roll-out samples
from a sequence of actions: {(si, ai, ri, s

′
i)}ti=1, where each

tuple denotes the agent experiencing a transition from si

to s′i on taking action ai with immediate reward ri. Under
the Least Squares Policy Iteration (LSPI) formulation [2],
the parameter w is learned so that the Bellman equation
(2) is optimally approximated in the least squares sense2.
Consequently, based on the approximated state-action value
function with learned parameter ŵ

π, the policy is updated
as

π(s)←− argmax
a∈A

Q̂π(s, a; ŵπ). (4)

Approximating the state-action value function and updating
the policy is iteratively carried out until some convergence
criterion is met.

III. GAUSSIAN KERNELS ON GRAPHS

In the LSPI algorithm, the choice of basis functions
{φi(s, a)}ki=1 is an open design issue. Gaussian kernels
have traditionally been a popular choice [2], [11], but they

2There are two alternative approaches: Bellman residual minimization
and fixed point approximation. We take the latter approach following the
suggestion in the reference [2].



can not approximate discontinuous functions well. Recently,
more sophisticated methods of constructing suitable basis
functions have been proposed, which effectively make use
of the graph structure induced by MDPs [5]. In this section,
we introduce a novel way of constructing basis functions
by incorporating the graph structure; while relation to the
existing graph-based methods is discussed in the separate
report [14].

A. MDP-Induced Graph

Let G be a graph induced by an MDP, where states S
are nodes of the graph and the transitions with non-zero
transition probabilities from one node to another are edges.
The edges may have weights determined, e.g., based on
the transition probabilities or the distance between nodes.
The graph structure corresponding to an example grid world
shown in Fig.1(a) is illustrated in Fig.1(c). In practice,
such graph structure (including the connection weights) are
estimated from samples of a finite length. We assume that
the graph G is connected. Typically, the graph is sparse in
RL tasks, i.e., ` � n(n − 1)/2, where ` is the number of
edges and n is the number of nodes.

B. Ordinary Gaussian Kernels

Ordinary Gaussian kernels (OGKs) on the Euclidean space
are defined as

K(s, s′) = exp

(
−ED(s, s′)2

2σ2

)
, (5)

where ED(s, s′) are the Euclidean distance between states
s and s′; for example, ED(s, s′) = ‖x − x

′‖ when the
Cartesian positions of s and s′ in the state space are given
by x and x

′, respectively. σ2 is the variance parameter of
the Gaussian kernel.

The above Gaussian function is defined on the state space
S, where s′ is treated as a center of the kernel. In order
to employ the Gaussian kernel in the LSPI algorithm, it
needs to be extended over the state-action space S × A.
This is usually carried out by simply ‘copying’ the Gaussian
function over the action space [2], [5]. More precisely: let
the total number k of basis functions be mp, where m is the
number of possible actions and p is the number of Gaussian
centers. For the i-th action a(i) (∈ A) (i = 1, 2, . . . , m) and
for the j-th Gaussian center c(j) (∈ S) (j = 1, 2, . . . , p), the
(i + (j − 1)m)-th basis function is defined as

φi+(j−1)m(s, a) = I(a = a(i))K(s, c(j)), (6)

where I(·) is the indicator function, i.e., I(a = a(i)) = 1 if
a = a(i) otherwise I(a = a(i)) = 0.

Gaussian kernels are shift-invariant, i.e., they do not
directly depend on the absolute positions x and x

′, but
depend only on the difference between two positions; more
specifically, Gaussian kernels depend only on the distance
between two positions.

C. Geodesic Gaussian Kernels

On graphs, a natural definition of the distance would be
the shortest path. So we define Gaussian kernels on graphs
based on the shortest path:

K(s, s′) = exp

(
−SP(s, s′)2

2σ2

)
, (7)

where SP(s, s′) denotes the shortest path from state s to
state s′. The shortest path on a graph can be interpreted as
a discrete approximation to the geodesic distance on a non-
linear manifold [6]. For this reason, we call Eq.(7) a geodesic
Gaussian kernel (GGK).

Shortest paths on graphs can be efficiently computed using
the Dijkstra algorithm [12]. With its naive implementation,
computational complexity for computing the shortest paths
from a single node to all other nodes is O(n2), where n is
the number of nodes. If the Fibonacci heap is employed, the
computational complexity can be reduced to O(n log n + `)
[13], where ` is the number of edges. Since the graph in
value function approximation problems is typically sparse
(i.e., ` � n2), using the Fibonacci heap provides signifi-
cant computational gains. Furthermore, there exist various
approximation algorithms which are computationally very
efficient (see [15] and and references therein).

Analogous to OGKs, we need to extend GGKs to the state-
action space for using them in the LSPI method. A naive way
is to just employ Eq.(6), but this can cause a ‘shift’ in the
Gaussian centers since the state usually changes when some
action is taken. To incorporate this transition, we propose
defining the basis functions as the expectation of Gaussian
functions after transition, i.e.,

φi+(j−1)m(s, a) = I(a = a(i))
∑

s′∈S

P(s, a, s′)K(s′, c(j)).

(8)
This shifting scheme is expected to work well when the
transition is predominantly deterministic (see Sec.IV and
Sec.V-A for experimental evaluation).

D. Extension to Continuous State Spaces

So far, we focused on discrete state spaces. However, the
concept of GGKs can be naturally extended to continuous
state spaces, which is explained here. First, the continuous
state space is discretized, which gives a graph as a discrete
approximation to the non-linear manifold structure of the
continuous state space. Based on the graph, we construct
GGKs in the same way as the discrete case. Finally, the
discrete GGKs are interpolated, e.g., using a linear method
to give continuous GGKs.

Although this procedure discretizes the continuous state
space, it must be noted that the discretization is only for the
purpose of obtaining the graph as a discrete approximation of
the continuous non-linear manifold; the resulting basis func-
tions themselves are continuously interpolated and hence, the
state space is still treated as continuous as opposed to other
conventional discretization procedures.



→
→
→
→
↓
→
→
→
→
↑
→
→

→
→
→
→
→
↓
→
↓
→
↑
→
→

↓
→
→
↑
↓
↓
↓
↓
→
↑
→
→

↓
→
↑
↑
↓
↓
↓
↓
→
↑
→
→

↓
→

→
→
→
→

→
→

→
→
→
→

→
↓
→
→
→
↓
→
→
↑
→
→
→

→
→
→
→
→
→
→
→
↑
↑
↑
→

→
→
→
→
→
↓
→
→

→
→

↓
→
→
→
→
↓
→
↑

→
→

↓
↓
↓
↓
→
↓
→
↑
↑
→
→
→

→
→
↓
↓
→
↓
→
→
→
→
→
→

↓
↓
↓
↓
↓
↓
→
→
→
→
↑
→

↓
↓
↓
↓
↓
↓
→
→
→
↑
→
→

→
→
→
↑
↑
↑

→
→
↑
→
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Sutton’s maze

→
→
↓
→
→
↓
→
↓
→
→
→
→
↑
→
→
→
→
↑

→
→
→
→
→
↓
→
→
→
→
→
→
→
→
→
→
→
↑

→
→
→
→
→
↓
→
→
→
→
→
↑
→
→
→
↑
↑
↑

↓
→
→
→
→
↓
→
↓
→
→
→
↑
→
↑
↑
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
↓
→
→
↑
↑
↑
↑
↑
↑
↑
↑

↓
→
→

↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→
→
↑
↑
↑
↑
↑

↓
↓
→
→
→
↓
↓
↓
→
→
↑
→
→
→
→
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→
→
↑
↑
↑
↑

↓
↓
↓
↓
↓
→
→
→
→
→
→
→
→
↑
↑
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
→
→
→
↑
↑
↑
↑
↑
↑
↑
↑

↓
↓
→

→
→
↓
↓
→
→
→
→
↓
↓
→
→
→
→
→
→
↓
→

↓
→
→
→
→
→
→
↓
→
↓
↓
→
→
↓
→
→
↓
→

↓
↓
↓
→
→
→
↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→

↓
↓
↓
↓
↓
↓
→
→
→
→
↓
↓
↓
↓
↓
↓
↓
→

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
→
→
↓
→
↓
→

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Three-room maze

Fig. 2. Two intricated mazes used for simulation.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of kernels

M
ea

n 
sq

ua
re

d 
er

ro
r

GGK(1)
GGK(5)
GGK(9)
OGK(1)
OGK(5)
OGK(9)
GLE
DW

50 100

7

8

9

10

x 10
−3

(a) Sutton’s maze

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Number of kernels

M
ea

n 
sq

ua
re

d 
er

ro
r

GGK(1)
GGK(5)
GGK(9)
OGK(1)
OGK(5)
OGK(9)
GLE
DW

50 100

4

5

x 10
−4

(b) Three-room maze

Fig. 3. Mean squared error of approximated value functions averaged over 100 trials for
the Sutton and three room mazes. In the legend, the standard deviation σ of GGKs and
OGKs is denoted in the bracket.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

ct
io

n 
of

 o
pt

im
al

 s
ta

te
s

(a) Sutton’s maze

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

ct
io

n 
of

 o
pt

im
al

 s
ta

te
s

(b) Three-room maze

Fig. 4. Fraction of optimal states averaged over 100
trials for the Sutton and three room mazes.

IV. EXPERIMENTAL COMPARISON

In this section, we report the results of extensive and
systematic experiments for illustrating the difference between
GGKs and other basis functions. We employ two standard
grid world problems illustrated in Fig.2, and evaluate the
goodness of approximated value functions by computing the
mean squared error (MSE) with respect to the optimal value
function and the goodness of obtained policies by calculating
the fraction of states from which the agent can get to the
goal optimally (i.e., in the shortest number of steps). 20
series of random walk of length 300 are gathered as training
samples, which are used for estimating the graph as well
as the transition probability and expected reward. We set
the edge weights in the graph to 1 (which is equivalent
to the Euclidean distance between two nodes). We test
GGKs, OGKs, graph-Laplacian eigenfunctions (GLEs) [5],
and diffusion wavelets (DWs) [8].

This simulation is repeated 100 times for each maze
and each method, randomly changing training samples in
each run. The mean of the above scores as a function
of the number of bases is plotted in Fig.4. Note that
the actual number of bases is four times more because

of the extension of basis functions over the action space
(see Eq.(6) and Eq.(8)). GGKs and OGKs are tested with
small/medium/large Gaussian widths.

Fig.3 depicts MSEs of the approximated value functions
for each method. They show that MSEs of GGKs with width
1, OGKs with width 1, GLEs, and DWs are very small and
decrease as the number of kernels increases. On the other
hand, MSEs of GGKs and OGKs with medium/large width
are large and increase as the number of kernels increases.
Therefore, from the viewpoint of approximation quality of
the value functions, the width of GGKs and OGKs should
be small.

Fig.4 depicts the fraction of optimal states in the obtained
policy. They show that overall GGKs with medium/large
width give much better policies than OGKs, GLEs, and DWs.
An interesting finding from the graphs is that GGKs tend
to work better if the Gaussian width is large, while OGKs
show the opposite trend; this may be explained as follows.
Tails of OGKs extend across the wall. Therefore, OGKs
with large width tend to produce undesired value function
and erroneous policies around the partitions. This tail effect
can be alleviated if the Gaussian width is made small.



However, this in turn makes the approximated value function
fluctuating; so the resulting policies are still erroneous. The
fluctuation problem with a small Gaussian width seems to be
improved if the number of bases is increased, while the tail
effect with a large Gaussian width still remains even when
the number of bases is increased. On the other hand, GGKs
do not suffer from the tail problem thanks to the geodesic
construction. Therefore, GGKs allows us to make the width
large without being affected by the discontinuity across the
wall. Consequently, smooth value functions along the maze
are produced and hence better policies can be obtained by
GGKs with large widths. This result highlights a helpful
property since it alleviates the practical issue of determining
the values of the Gaussian width parameter.

V. APPLICATIONS

As discussed in the previous section, the proposed GGKs
bring a number of preferable properties for making value
function approximation effective. In this section, we in-
vestigate the application of the GGK-based method to the
challenging problems of a (simulated) robot arm control and
mobile robot navigation and demonstrate its usefulness.

A. Robot Arm Control

We use a simulator of a two-joint robot arm (moving in
a plane) illustrated in Fig.5(a). The task is to lead the end
effector (‘hand’) of the arm to an object while avoiding the
obstacles. Possible actions are to increase or decrease the
angle of each joint (‘shoulder’ and ‘elbow’) by 5 degrees in
the plane, simulating coarse stepper motor joints. Thus the
state space S is the 2-dimensional discrete space consisting
of two joint angles as illustrated in Fig.5(b). The black area
in the middle corresponds to the obstacle in the joint angle
state space. The action space A involves 4 actions: increase
or decrease one of the joint angles. We give a positive
immediate reward +1 when the robot’s end effector touches
the object; otherwise the robot receives no immediate reward.
Note that actions which make the arm collide with obstacles
are not allowed. The discount factor is set to γ = 0.9.
In this environment, we can change the joint angle exactly
by 5 degrees, so the environment is deterministic. However,
because of the obstacles, it is difficult to explicitly compute
an inverse kinematic model; furthermore, the obstacles intro-
duce discontinuity in value functions. Therefore, this robot
arm control task is an interesting test bed for investigating
the behaviour of GGKs.

We collected training samples from 50 series of 1000
random arm movements, where the start state is chosen
randomly in each trial. The graph induced by the above MDP
consists of 1605 nodes and we assigned uniform weights to
the edges. There are totally 16 goal states in this environment
(see Fig.5(b)), so we put the first 16 Gaussian centers at the
goals and the remaining centers are chosen randomly in the
state space. For GGKs, kernel functions are extended over
the action space using the shifting scheme (see Eq.(8)) since
the transition is deterministic in this experiment.

Fig.6 illustrates the value functions approximated using
GGKs and OGKs3. The graphs show that GGKs give a nice
smooth surface with obstacle-induced discontinuity sharply
preserved, while OGKs tend to smooth out the discontinuity.
This makes a significant difference in avoiding the obstacle:
from ‘A’ to ‘B’ in Fig.5(b), the GGK-based value function
results in a trajectory that avoids the obstacle (see Fig.6(a)).
On the other hand, the OGK-based value function yields a
trajectory that tries to move the arm through the obstacle
by following the gradient upward (see Fig.6(b)). The latter
causes the arm to get stuck behind the obstacle.

Fig.7 summarizes the performance of GGKs and OGKs
measured by the percentage of successful movements (i.e.,
the end effector reaches the target) averaged over 30 indepen-
dent runs. More precisely, in each run, totally 50000 training
samples are collected using a different random seed, a policy
is then computed by the GGK- or OGK-based method using
LSPI, and the obtained policy is tested. This graph shows
that GGKs remarkably outperform OGKs since the arm can
successfully avoid the obstacle. The performance of OGK
does not go beyond 0.6 even when the number of kernels
is increased. This is caused by the ‘tail effect’ of ordinary
Gaussian functions; the OGK-based policy can not lead the
end effector to the object if it starts from the bottom-left half
of the state space

When the number of kernels is increased, the performance
of both GGKs and OGKs once gets worse at around k =
20. This would be caused by our kernel center allocation
strategy: the first 16 kernels are put at the goal states and
the remaining kernel centers are chosen randomly. When k
is less than or equal to 16, the approximated value function
tends to have a unimodal profile since all kernels are put
at the goal states. However, when k is larger than 16, this
unimodality is broken and the surface of the approximated
value function gets slightly fluctuated. This small fluctuation
can cause an error in policies and therefore the performance
is degraded at around k = 20. This performance degradation
tends to be improved as the number of kernels is further
increased.

Overall, the above result shows that when GGKs are
combined with our kernel center allocation strategy, almost
perfect policies can be obtained with a very small number of
kernels. Therefore, the proposed method is computationally
very advantageous.

B. Robot Agent Navigation

The above simple robot arm control simulation shows that
the GGK method is promising. Here we apply GGKs to a
more challenging task of a mobile robot navigation, which
involves a high-dimensional and continuous state space.

We employ a Khepera robot illustrated in Fig.8(a) on a
navigation task. A Khepera is equipped with 8 infra-red

3For illustration purposes, let us display the state value function V π(s) :
S → R, which is the expected long-term discounted sum of rewards the
agent receives when the agent takes actions following policy π from state s.
From the definition, it can be confirmed that V π(s) is expressed V π(s) =
Qπ(s, π(s)).



(a) A schematic

A
B

(b) State space

Fig. 5. A two-joint robot arm.

−100

0

100

180

0

−180

0

1

2

3

Joint 1 (degree)
Joint 2 (degree)

(a) Geodesic Gaussian kernels

−100

0

100

180

0

−180

0

0.5

1

Joint 1 (degree)
Joint 2 (degree)

(b) Ordinary Gaussian kernels

Fig. 6. Approximated value functions.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

ct
io

n 
of

 s
uc

ce
ss

fu
l t

ria
ls

GGK(5)
GGK(9)
OGK(5)
OGK(9)

Fig. 7. Number of successful trials.

sensors (‘s1’ to ‘s8’ in the figure) which measure the strength
of the reflected light returned from surrounding obstacles.
Each sensor produces a scalar value between 0 and 1023
(which may be regarded as continuous): the sensor obtains
the maximum value 1023 if an obstacle is just in front
of the sensor and the value decreases as the obstacle gets
farther till it reaches the minimum value 0. Therefore, the
state space S is 8-dimensional and continuous. The Khepera
has two wheels and takes the following 4 defined actions:
forward, left-rotation, right-rotation and backward (i.e., the
action space A contains 4 actions). The speed of the left
and right wheels for each action is described in Fig.8(a) in
the bracket (the unit is pulse per 10 milliseconds). Note that
the sensor values and the wheel speed are highly stochastic
due to the change of the ambient light, noise, the skid etc.
Furthermore, perceptual aliasing occurs due to the limited
range and resolution of sensors. Therefore, the state transition
is highly stochastic. We set the discount factor to γ = 0.9.

The goal of the navigation task is to make the Khepera
explore the environment as much as possible. To this end, we
give a positive reward +1 when the Khepera moves forward
and a negative reward −2 when the Khepera collides with an
obstacle. We do not give any reward to the left/right rotation
and backward actions. This reward design encourages the
Khepera to go forward without hitting obstacles, through
which extensive exploration in the environment could be
achieved.

We collected training samples from 200 series of 100
random movements in a fixed environment with several ob-
stacles (see Fig.9(a)). Then we constructed a graph from the
gathered samples by discretizing the continuous state space
using the Self-Organizing Map (SOM) [16]. The number of
nodes (states) in the graph is set to 696 (equivalent with
the SOM map size of 24 × 29); this value is computed by
the standard rule-of-thumb formula 5

√
n [17], where n is

the number of samples. The connectivity of the graph is
determined by the state transition probability computed from
the samples, i.e., if there is a state transition from one node
to another in the samples, an edge is established between
these two nodes and the edge weight is set according to
the Euclidean distance between them. Fig.8(b) illustrates an
example of the obtained graph structure—for visualization
purposes, we projected the 8-dimensional state space onto a
2-dimensional subspace spanned by

(−1 −1 0 0 1 1 0 0),
(0 0 1 1 0 0 −1 −1).

(9)

The i-th element in the above bases corresponds to the output
of the i-th sensor (see Fig.8(a)). Therefore, the projection
onto this subspace roughly means that the horizontal axis
corresponds to the distance to the left/right obstacle, while
the vertical axis corresponds to the distance to the front/back
obstacle. For clear visibility, we only displayed the edges
whose weight is less than 250. This graph has a notable
feature: the nodes around the region ‘B’ in the figure are



(a) A schematic

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

(b) State space projected onto a 2-dimensional subspace for visualization.

Fig. 8. Khepera robot.

(a) Training

(b) Test

Fig. 9. Simulation environment

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃
⊃⊃

⊃⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃↑ ⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃

↑⊃
⊃

⊃
⊃⊃

⊃
⊃
⊃⊃
⊃⊃

↑⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
↑

↑
⊃

⊃
⊃⊃

↑
⊃

⊃⊃
↑⊃

⊃⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
⊃

↑
↑

↑
↑↑

↑
⊃

⊃⊃
⊃↑

⊃⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑↑↑
↑
⊃↑

↑

↑

↑↑
↑

↑
⊃⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑⊃

⊃
↑

↑↑
⊃

↑
⊃

⊃
⊃⊃

⊃⊃⊃⊃⊃⊃

↑↑↑↑↑
↑↑

↑↑
↑↑

↑↑

↑
↑
⊃⊃

↑
↑

⊃
⊃

⊃⊃⊃⊃⊃⊃⊃⊃

↑↑

↑↑↑↑
↑
↑↑

↑
↑
↑

↑

↑
↑

⊃↑
⊃

⊃
⊃

⊃
⊃⊃⊃⊃⊃⊃⊃⊃

↑
↑

↑
↑↑
↑↑

↑
↑
↑

↑
↑

↑

↑
⊃

⊂
⊂↑↑
⊃

⊃
⊃⊃⊃⊃⊃⊃

⊃⊃

↑

↑↑
↑↑
↑

↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑↑↑
⊃

⊃⊃
⊃⊃⊃⊃

⊃
⊃⊃

↑
↑↑↑↑↑
↑
↑

↑
↑

↑
↑

↑

↑

⊂
⊂⊂ ⊂↑
⊃⊃⊃⊃⊃⊃↑

⊃⊃↓

↑↑↑↑↑↑
↑↑
↑

↑
↑

↑
↑

↑

⊂↑
⊂ ↑↑⊃

⊃ ⊃⊃⊃⊃⊃
⊃↓↓

↑↑↑ ↑↑↑↑
↑

↑
↑

↑
↑

↑
⊂

⊂↑
↑ ⊂
↑⊂

⊃⊂⊃⊃⊃⊂
⊂⊂↓

↑↑↑ ↑↑↑↑
↑

↑
↑

↑
↑

⊂
⊂

⊂
↑

↑ ⊂
⊂⊂

⊂⊂
⊂⊂⊃↑⊂ ⊂⊂

↑↑↑↑↑↑↑
⊂

↑

↑
↑

↑↑
⊂

↑
↑

⊂
⊂

⊂
⊂

⊂⊂
⊂⊂⊂⊂⊂⊂⊂

↑↑↑↑↑↑↑
↑

↑

↑
↑

↑↑
↑

⊂
↑

↑
⊂

⊂
⊂

⊂⊂
⊂⊂

⊃⊃
↑⊂⊂

↑↑↑ ↑↑ ↑↑
↑

↑

↑
↑ ↑ ↑

↑⊂
↑

⊂
⊂

⊂
⊂

⊂↑⊂⊂
⊂⊂

↑⊂⊂

↑ ↑↑ ↑↑ ↑⊂
↑

↑
↑

↑ ↑
⊂ ↑

⊂ ↑
⊂

⊂
⊂⊂

⊂⊂⊂⊂
⊂
↑

⊂⊂⊂

↑↑↑ ↑↑ ↑⊂
↑

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂⊂⊂

⊂⊂⊂⊂
⊂⊂⊂

↑ ↑⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂⊂⊂ ⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂⊂⊂⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂

⊂⊂⊂⊂⊂⊂

(a) Geodesic Gaussian kernels

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃
⊃⊃

⊃⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃⊃ ⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃

⊃⊃
⊃

⊃
⊃⊃

⊃
⊃
⊃⊃
⊃⊃

⊃⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃
⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
↑

⊃
⊃

⊃
⊃⊃

⊃
⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑↑↑
↑
↑↑

↑

⊃

⊃⊃
⊃

⊃
⊃⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑↑

↑
↑

⊃⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃⊃⊃⊃⊃⊃

↑↑↑↑↑
↑↑

↑↑
↑↑

↑↑

↑
↑
↑↓

↓
↓

↓
↓

↓↓↓⊃⊃⊃⊃⊃

↑↑

↑↑↑↑
↑
↑↑

↑
↑
↑

↑

↑
↑

↑↓
↓

↓
↓

↓
↓↓↓↓↓⊃⊃⊃

↑
↑

↑
↑↑
↑↑

↑
↑
↑

↑
↑

↑

↑
↑

↑
↑↓↓
↓

↓
↓↓↓↓↓↓

⊃⊃

↑

↑↑
↑↑
↑

↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑↓↓
↓

↓↓
↓↓↓↓

↓
⊃⊃

↑
↑↑↑↑↑
↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑ ↓↓
↓↓↓↓↓↓↓

↓ ↓↓

↑↑↑↑↑↑
↑↑
↑

↑
↑

↑
↑

↑

↑ ↑
↓ ↓↓↓

↓ ↓↓↓↓↓
↓↓↓

↑↑↑ ↑↑↑↑
↑

↑
↑

↑
↑

↑
↑

↑ ↓
↓ ↓
↓↓

↓ ↓↓↓↓↓
↓↓↓

↑↑↑ ↑↑↑↑
↑

↑
↑

↑
↑

↑
↑

↑
↓

↓ ↓
↓↓

↓↓
↓↓↓↓↓ ↓↓

↑↑↑↑↑↑↑
↑

↑

↑
↑

↑↑
↓

↓
⊂

⊂
⊂

⊂
⊂

↓↓
↓↓↓↓↓↓↓

↑↑↑↑↑↑↑
↑

↑

↑
↑

⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂⊂
↓↓

↓↓
↓↓↓

↑↑↑ ↑↑ ↑↑
↑

↑

⊂
⊂⊂⊂

⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂⊂⊂⊂
↓↓

↓↓↓

↑ ↑↑ ↑↑ ⊂⊂
⊂

⊂
⊂

⊂ ⊂
⊂ ⊂

⊂ ⊂
⊂

⊂
⊂⊂

⊂⊂⊂⊂
⊂
⊂

↓⊂↓

↑⊂↑ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂⊂⊂

⊂⊂⊂⊂
⊂⊂⊂

⊂⊂⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂⊂⊂ ⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂⊂⊂⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂

⊂⊂⊂⊂⊂⊂

(b) Ordinary Gaussian kernels

Fig. 10. Examples of obtained policy.

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

80

85

Number of kernels

A
ve

ra
ge

d 
to

ta
l r

ew
ar

ds

 

 

GGK(200)
GGK(1000)
OGK(200)
OGK(1000)

Fig. 11. Average amount of exploration.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of kernels

C
om

pu
ta

tio
n 

tim
e 

[s
ec

]

 

 

GGK(1000)
OGK(1000)

Fig. 12. Computation time.

directly connected to the nodes at ‘A’, but are not directly
connected to the nodes at ‘C’, ‘D’, and ‘E’. This implies that
the geodesic distance from ‘B’ to ‘C’, ‘D’, or ‘E’ is large,
although the Euclidean distance is small.

Since the transition from one state to another is highly
stochastic in the current experiment, we decided to simply
duplicate the GGK function over the action space (see
Eq.(6)). For obtaining continuous GGKs, GGK functions
need to be interpolated (see Sec.III-D). We may employ a
simple linear interpolation method in general. However, the
current experiment has unique characteristics—at least one
of the sensor values is always zero since the Khepera is never
completely surrounded by obstacles. Therefore, samples are
always on the surface of the 8-dimensional hypercube-shaped
state space. On the other hand, the node centers determined
by the SOM are not generally on the surface. This means that

any sample is not included in the convex hull of its nearest
nodes and we need to extrapolate the function value. Here,
we simply add the Euclidean distance between the sample
and its nearest node when computing kernel values; more
precisely, for a state s that is not generally located on a
node center, the GGK-based basis function is defined as

φi+(j−1)m(s, a) =

I(a = a(i)) exp

(
− (ED(s, s̃) + SP(s̃, c(j)))2

2σ2

)
, (10)

where s̃ is the node closest to s in the Euclidean distance.
Fig.10 illustrates an example of actions selected at each

node by the GGK-based and OGK-based policies. We used
100 kernels and set the width to 1000. The symbols ‘↑’, ’↓’,
‘⊂’, and ‘⊃’ in the figure indicates forward, backward, left
rotation, and right rotation actions. This shows that there is



a clear difference in the obtained policies at the state ‘C’;
the backward action is most likely to be taken by the OGK-
based policy while the left/right rotation are most likely to
be taken by the GGK-based policy. This causes a significant
difference in the performance. To explain this, let us assume
that the Khepera is at the state ‘C’, i.e., it faces the wall.
The GGK-based policy guides the Khepera from ‘C’ to ‘A’
via ‘D’ or ‘E’ by taking left/right rotation actions and it
can avoid the obstacle successfully. On the other hand, the
OGK-based policy leads Khepera from ‘C’ to ‘A’ via ‘B’
by taking backward actions; then the forward action is taken
at ‘B’. Thus, the Khepera returns to ‘C’ again and ends up
moving back and forth between ‘C’ and ‘B’ (see also the
attached video).

For the performance evaluation, we use a more compli-
cated environment than the one used for gathering training
samples (see Fig.9). Thus we are evaluating how well
the obtained policies can be generalized to an unknown
environment. In this test environment, we let the Khepera
run from a fixed starting position (see Fig.9(b)) and take
150 steps following the obtained policy. We compute the
sum of rewards, i.e., +1 for the forward action. If the
Khepera collides with an obstacle before 150 steps, we
stop the evaluation. The mean test performance over 20
independent runs is depicted in Fig.11 as a function of
the number of kernels. More precisely, in each run, we
construct a graph based on the training samples taken from
the training environment and put the specified number of
kernels randomly on the graph. Then, a policy is learned
by the GGK or OGK-based LSPI method using the training
samples. The test performance is measured 5 times for each
policy and the average is output. Fig.11 shows that GGKs
significantly outperform OGKs, demonstrating that GGKs
are promising even in the challenging setting with a high-
dimensional continuous state space.

Fig. 12 depicts the computation time of each method as
a function of the number of kernels. This shows that the
computation time monotonically increases as the number
of kernels increases and the GGK-based and OGK-based
methods have comparable computation time. This implies
that the computation time of the GGK functions is negligible.
Given that the GGK-based method works much better than
the OGK-based method with a smaller number of kernels,
the proposed method could be regarded as a computationally
efficient alternative to the standard OGK-based method.

VI. CONCLUSIONS AND OUTLOOK

We proposed a new basis construction method for value
function approximation. The proposed geodesic Gaussian
kernels (GGKs) have several preferable properties such as
the smoothness along the graph and easy computability. We
demonstrated the practical usefulness of the proposed method
for challenging applications: both the robot arm reaching
with obstacles and the Khepera exploration experiments
showed quantitative improvements as well as intuitive, inter-
pretable behavioral advantages evident from the experiments.

Experiments in Sec.IV showed that GGKs with large width
has larger MSEs than that with smaller width, but GGKs with
large width gave better policies than that with smaller width.
We conjecture that the GGKs with large width give smoother
value functions and they result in stable policies. Although
this explanation would be intuitively reasonable, it needs to
be elucidated in a more rigorous way.

It is shown that the policies obtained by GGKs are not so
sensitive to the choice of the width of the Gaussian kernels,
i.e., a reasonable large width works very well. This is a very
useful property in practice. Also, the heuristics of putting
Gaussian centers on goal states is shown to work quite well.
Even so, it is an important future direction to develop a
method for optimally tuning the width as well as the location
parameters, e.g., based on the statistical machine learning
theory [9].

We defined the Gaussian kernels on the state space, and
then extended them over the action space. If we define basis
functions directly on the state-action space, the quality of
value function approximation and the computational effi-
ciency could be further improved. Our future research will
focus on this topic.

REFERENCES

[1] R. S. Sutton and G. A. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[2] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”
Journal of Machine Learning Research, vol. 4, no. Dec, pp. 1107–
1149, 2003.

[3] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Computation, vol. 7, no. 2, pp. 219–
269, 1995.

[4] I. Daubechies, Ten Lectures on Wavelets. Philadelphia and Pennsyl-
vania: Society for Industrial and Applied Mathematics, 1992.

[5] S. Mahadevan, “Proto-value functions: Developmental reinforcement
learning,” in Proceedings of International Conference on Machine
Learning, Bonn, Germany, 2005.

[6] F. R. K. Chung, Spectral Graph Theory. Providence, R.I.: American
Mathematical Society, 1997.

[7] R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and
Computational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.

[8] S. Mahadevan and M. Maggioni, “Value function approximation with
diffusion wavelets and Laplacian eigenfunctions,” in Advances in
Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf,
and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 843–850.

[9] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[10] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge,

MA: MIT Press, 2002.
[11] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with

Gaussian processes,” in Proceedings of International Conference on
Machine Learning, Bonn, Germany, 2005.

[12] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[13] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 569–615, 1987.

[14] M. Sugiyama, H. Hachiya, C. Towell, and S. Vijayakumar, “Geodesic
Gaussian kernels for value function approximation,” in Proceedings
of 2006 Workshop on Information-Based Induction Sciences, Osaka,
Japan, Oct. 31–Nov. 2 2006, pp. 316–321.

[15] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in 16th Annual ACM-SIAM Symposium
on Discrete Algorithms, Vancouver, Canada, 2005, pp. 156–165.

[16] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 1995.
[17] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas,

“SOM toolbox for Matlab 5,” Helsinki University of
Technology, Tech. Rep. A57, 2000. [Online]. Available:
http://www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdf




